xref: /linux/mm/vmscan.c (revision ed3174d93c342b8b2eeba6bbd124707d55304a7b)
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13 
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h>	/* for try_to_release_page(),
27 					buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41 
42 #include <asm/tlbflush.h>
43 #include <asm/div64.h>
44 
45 #include <linux/swapops.h>
46 
47 #include "internal.h"
48 
49 struct scan_control {
50 	/* Incremented by the number of inactive pages that were scanned */
51 	unsigned long nr_scanned;
52 
53 	/* This context's GFP mask */
54 	gfp_t gfp_mask;
55 
56 	int may_writepage;
57 
58 	/* Can pages be swapped as part of reclaim? */
59 	int may_swap;
60 
61 	/* This context's SWAP_CLUSTER_MAX. If freeing memory for
62 	 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
63 	 * In this context, it doesn't matter that we scan the
64 	 * whole list at once. */
65 	int swap_cluster_max;
66 
67 	int swappiness;
68 
69 	int all_unreclaimable;
70 
71 	int order;
72 
73 	/*
74 	 * Pages that have (or should have) IO pending.  If we run into
75 	 * a lot of these, we're better off waiting a little for IO to
76 	 * finish rather than scanning more pages in the VM.
77 	 */
78 	int nr_io_pages;
79 
80 	/* Which cgroup do we reclaim from */
81 	struct mem_cgroup *mem_cgroup;
82 
83 	/* Pluggable isolate pages callback */
84 	unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst,
85 			unsigned long *scanned, int order, int mode,
86 			struct zone *z, struct mem_cgroup *mem_cont,
87 			int active);
88 };
89 
90 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
91 
92 #ifdef ARCH_HAS_PREFETCH
93 #define prefetch_prev_lru_page(_page, _base, _field)			\
94 	do {								\
95 		if ((_page)->lru.prev != _base) {			\
96 			struct page *prev;				\
97 									\
98 			prev = lru_to_page(&(_page->lru));		\
99 			prefetch(&prev->_field);			\
100 		}							\
101 	} while (0)
102 #else
103 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
104 #endif
105 
106 #ifdef ARCH_HAS_PREFETCHW
107 #define prefetchw_prev_lru_page(_page, _base, _field)			\
108 	do {								\
109 		if ((_page)->lru.prev != _base) {			\
110 			struct page *prev;				\
111 									\
112 			prev = lru_to_page(&(_page->lru));		\
113 			prefetchw(&prev->_field);			\
114 		}							\
115 	} while (0)
116 #else
117 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
118 #endif
119 
120 /*
121  * From 0 .. 100.  Higher means more swappy.
122  */
123 int vm_swappiness = 60;
124 long vm_total_pages;	/* The total number of pages which the VM controls */
125 
126 static LIST_HEAD(shrinker_list);
127 static DECLARE_RWSEM(shrinker_rwsem);
128 
129 #ifdef CONFIG_CGROUP_MEM_CONT
130 #define scan_global_lru(sc)	(!(sc)->mem_cgroup)
131 #else
132 #define scan_global_lru(sc)	(1)
133 #endif
134 
135 /*
136  * Add a shrinker callback to be called from the vm
137  */
138 void register_shrinker(struct shrinker *shrinker)
139 {
140 	shrinker->nr = 0;
141 	down_write(&shrinker_rwsem);
142 	list_add_tail(&shrinker->list, &shrinker_list);
143 	up_write(&shrinker_rwsem);
144 }
145 EXPORT_SYMBOL(register_shrinker);
146 
147 /*
148  * Remove one
149  */
150 void unregister_shrinker(struct shrinker *shrinker)
151 {
152 	down_write(&shrinker_rwsem);
153 	list_del(&shrinker->list);
154 	up_write(&shrinker_rwsem);
155 }
156 EXPORT_SYMBOL(unregister_shrinker);
157 
158 #define SHRINK_BATCH 128
159 /*
160  * Call the shrink functions to age shrinkable caches
161  *
162  * Here we assume it costs one seek to replace a lru page and that it also
163  * takes a seek to recreate a cache object.  With this in mind we age equal
164  * percentages of the lru and ageable caches.  This should balance the seeks
165  * generated by these structures.
166  *
167  * If the vm encountered mapped pages on the LRU it increase the pressure on
168  * slab to avoid swapping.
169  *
170  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
171  *
172  * `lru_pages' represents the number of on-LRU pages in all the zones which
173  * are eligible for the caller's allocation attempt.  It is used for balancing
174  * slab reclaim versus page reclaim.
175  *
176  * Returns the number of slab objects which we shrunk.
177  */
178 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
179 			unsigned long lru_pages)
180 {
181 	struct shrinker *shrinker;
182 	unsigned long ret = 0;
183 
184 	if (scanned == 0)
185 		scanned = SWAP_CLUSTER_MAX;
186 
187 	if (!down_read_trylock(&shrinker_rwsem))
188 		return 1;	/* Assume we'll be able to shrink next time */
189 
190 	list_for_each_entry(shrinker, &shrinker_list, list) {
191 		unsigned long long delta;
192 		unsigned long total_scan;
193 		unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask);
194 
195 		delta = (4 * scanned) / shrinker->seeks;
196 		delta *= max_pass;
197 		do_div(delta, lru_pages + 1);
198 		shrinker->nr += delta;
199 		if (shrinker->nr < 0) {
200 			printk(KERN_ERR "%s: nr=%ld\n",
201 					__FUNCTION__, shrinker->nr);
202 			shrinker->nr = max_pass;
203 		}
204 
205 		/*
206 		 * Avoid risking looping forever due to too large nr value:
207 		 * never try to free more than twice the estimate number of
208 		 * freeable entries.
209 		 */
210 		if (shrinker->nr > max_pass * 2)
211 			shrinker->nr = max_pass * 2;
212 
213 		total_scan = shrinker->nr;
214 		shrinker->nr = 0;
215 
216 		while (total_scan >= SHRINK_BATCH) {
217 			long this_scan = SHRINK_BATCH;
218 			int shrink_ret;
219 			int nr_before;
220 
221 			nr_before = (*shrinker->shrink)(0, gfp_mask);
222 			shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask);
223 			if (shrink_ret == -1)
224 				break;
225 			if (shrink_ret < nr_before)
226 				ret += nr_before - shrink_ret;
227 			count_vm_events(SLABS_SCANNED, this_scan);
228 			total_scan -= this_scan;
229 
230 			cond_resched();
231 		}
232 
233 		shrinker->nr += total_scan;
234 	}
235 	up_read(&shrinker_rwsem);
236 	return ret;
237 }
238 
239 /* Called without lock on whether page is mapped, so answer is unstable */
240 static inline int page_mapping_inuse(struct page *page)
241 {
242 	struct address_space *mapping;
243 
244 	/* Page is in somebody's page tables. */
245 	if (page_mapped(page))
246 		return 1;
247 
248 	/* Be more reluctant to reclaim swapcache than pagecache */
249 	if (PageSwapCache(page))
250 		return 1;
251 
252 	mapping = page_mapping(page);
253 	if (!mapping)
254 		return 0;
255 
256 	/* File is mmap'd by somebody? */
257 	return mapping_mapped(mapping);
258 }
259 
260 static inline int is_page_cache_freeable(struct page *page)
261 {
262 	return page_count(page) - !!PagePrivate(page) == 2;
263 }
264 
265 static int may_write_to_queue(struct backing_dev_info *bdi)
266 {
267 	if (current->flags & PF_SWAPWRITE)
268 		return 1;
269 	if (!bdi_write_congested(bdi))
270 		return 1;
271 	if (bdi == current->backing_dev_info)
272 		return 1;
273 	return 0;
274 }
275 
276 /*
277  * We detected a synchronous write error writing a page out.  Probably
278  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
279  * fsync(), msync() or close().
280  *
281  * The tricky part is that after writepage we cannot touch the mapping: nothing
282  * prevents it from being freed up.  But we have a ref on the page and once
283  * that page is locked, the mapping is pinned.
284  *
285  * We're allowed to run sleeping lock_page() here because we know the caller has
286  * __GFP_FS.
287  */
288 static void handle_write_error(struct address_space *mapping,
289 				struct page *page, int error)
290 {
291 	lock_page(page);
292 	if (page_mapping(page) == mapping)
293 		mapping_set_error(mapping, error);
294 	unlock_page(page);
295 }
296 
297 /* Request for sync pageout. */
298 enum pageout_io {
299 	PAGEOUT_IO_ASYNC,
300 	PAGEOUT_IO_SYNC,
301 };
302 
303 /* possible outcome of pageout() */
304 typedef enum {
305 	/* failed to write page out, page is locked */
306 	PAGE_KEEP,
307 	/* move page to the active list, page is locked */
308 	PAGE_ACTIVATE,
309 	/* page has been sent to the disk successfully, page is unlocked */
310 	PAGE_SUCCESS,
311 	/* page is clean and locked */
312 	PAGE_CLEAN,
313 } pageout_t;
314 
315 /*
316  * pageout is called by shrink_page_list() for each dirty page.
317  * Calls ->writepage().
318  */
319 static pageout_t pageout(struct page *page, struct address_space *mapping,
320 						enum pageout_io sync_writeback)
321 {
322 	/*
323 	 * If the page is dirty, only perform writeback if that write
324 	 * will be non-blocking.  To prevent this allocation from being
325 	 * stalled by pagecache activity.  But note that there may be
326 	 * stalls if we need to run get_block().  We could test
327 	 * PagePrivate for that.
328 	 *
329 	 * If this process is currently in generic_file_write() against
330 	 * this page's queue, we can perform writeback even if that
331 	 * will block.
332 	 *
333 	 * If the page is swapcache, write it back even if that would
334 	 * block, for some throttling. This happens by accident, because
335 	 * swap_backing_dev_info is bust: it doesn't reflect the
336 	 * congestion state of the swapdevs.  Easy to fix, if needed.
337 	 * See swapfile.c:page_queue_congested().
338 	 */
339 	if (!is_page_cache_freeable(page))
340 		return PAGE_KEEP;
341 	if (!mapping) {
342 		/*
343 		 * Some data journaling orphaned pages can have
344 		 * page->mapping == NULL while being dirty with clean buffers.
345 		 */
346 		if (PagePrivate(page)) {
347 			if (try_to_free_buffers(page)) {
348 				ClearPageDirty(page);
349 				printk("%s: orphaned page\n", __FUNCTION__);
350 				return PAGE_CLEAN;
351 			}
352 		}
353 		return PAGE_KEEP;
354 	}
355 	if (mapping->a_ops->writepage == NULL)
356 		return PAGE_ACTIVATE;
357 	if (!may_write_to_queue(mapping->backing_dev_info))
358 		return PAGE_KEEP;
359 
360 	if (clear_page_dirty_for_io(page)) {
361 		int res;
362 		struct writeback_control wbc = {
363 			.sync_mode = WB_SYNC_NONE,
364 			.nr_to_write = SWAP_CLUSTER_MAX,
365 			.range_start = 0,
366 			.range_end = LLONG_MAX,
367 			.nonblocking = 1,
368 			.for_reclaim = 1,
369 		};
370 
371 		SetPageReclaim(page);
372 		res = mapping->a_ops->writepage(page, &wbc);
373 		if (res < 0)
374 			handle_write_error(mapping, page, res);
375 		if (res == AOP_WRITEPAGE_ACTIVATE) {
376 			ClearPageReclaim(page);
377 			return PAGE_ACTIVATE;
378 		}
379 
380 		/*
381 		 * Wait on writeback if requested to. This happens when
382 		 * direct reclaiming a large contiguous area and the
383 		 * first attempt to free a range of pages fails.
384 		 */
385 		if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
386 			wait_on_page_writeback(page);
387 
388 		if (!PageWriteback(page)) {
389 			/* synchronous write or broken a_ops? */
390 			ClearPageReclaim(page);
391 		}
392 		inc_zone_page_state(page, NR_VMSCAN_WRITE);
393 		return PAGE_SUCCESS;
394 	}
395 
396 	return PAGE_CLEAN;
397 }
398 
399 /*
400  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
401  * someone else has a ref on the page, abort and return 0.  If it was
402  * successfully detached, return 1.  Assumes the caller has a single ref on
403  * this page.
404  */
405 int remove_mapping(struct address_space *mapping, struct page *page)
406 {
407 	BUG_ON(!PageLocked(page));
408 	BUG_ON(mapping != page_mapping(page));
409 
410 	write_lock_irq(&mapping->tree_lock);
411 	/*
412 	 * The non racy check for a busy page.
413 	 *
414 	 * Must be careful with the order of the tests. When someone has
415 	 * a ref to the page, it may be possible that they dirty it then
416 	 * drop the reference. So if PageDirty is tested before page_count
417 	 * here, then the following race may occur:
418 	 *
419 	 * get_user_pages(&page);
420 	 * [user mapping goes away]
421 	 * write_to(page);
422 	 *				!PageDirty(page)    [good]
423 	 * SetPageDirty(page);
424 	 * put_page(page);
425 	 *				!page_count(page)   [good, discard it]
426 	 *
427 	 * [oops, our write_to data is lost]
428 	 *
429 	 * Reversing the order of the tests ensures such a situation cannot
430 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
431 	 * load is not satisfied before that of page->_count.
432 	 *
433 	 * Note that if SetPageDirty is always performed via set_page_dirty,
434 	 * and thus under tree_lock, then this ordering is not required.
435 	 */
436 	if (unlikely(page_count(page) != 2))
437 		goto cannot_free;
438 	smp_rmb();
439 	if (unlikely(PageDirty(page)))
440 		goto cannot_free;
441 
442 	if (PageSwapCache(page)) {
443 		swp_entry_t swap = { .val = page_private(page) };
444 		__delete_from_swap_cache(page);
445 		write_unlock_irq(&mapping->tree_lock);
446 		swap_free(swap);
447 		__put_page(page);	/* The pagecache ref */
448 		return 1;
449 	}
450 
451 	__remove_from_page_cache(page);
452 	write_unlock_irq(&mapping->tree_lock);
453 	__put_page(page);
454 	return 1;
455 
456 cannot_free:
457 	write_unlock_irq(&mapping->tree_lock);
458 	return 0;
459 }
460 
461 /*
462  * shrink_page_list() returns the number of reclaimed pages
463  */
464 static unsigned long shrink_page_list(struct list_head *page_list,
465 					struct scan_control *sc,
466 					enum pageout_io sync_writeback)
467 {
468 	LIST_HEAD(ret_pages);
469 	struct pagevec freed_pvec;
470 	int pgactivate = 0;
471 	unsigned long nr_reclaimed = 0;
472 
473 	cond_resched();
474 
475 	pagevec_init(&freed_pvec, 1);
476 	while (!list_empty(page_list)) {
477 		struct address_space *mapping;
478 		struct page *page;
479 		int may_enter_fs;
480 		int referenced;
481 
482 		cond_resched();
483 
484 		page = lru_to_page(page_list);
485 		list_del(&page->lru);
486 
487 		if (TestSetPageLocked(page))
488 			goto keep;
489 
490 		VM_BUG_ON(PageActive(page));
491 
492 		sc->nr_scanned++;
493 
494 		if (!sc->may_swap && page_mapped(page))
495 			goto keep_locked;
496 
497 		/* Double the slab pressure for mapped and swapcache pages */
498 		if (page_mapped(page) || PageSwapCache(page))
499 			sc->nr_scanned++;
500 
501 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
502 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
503 
504 		if (PageWriteback(page)) {
505 			/*
506 			 * Synchronous reclaim is performed in two passes,
507 			 * first an asynchronous pass over the list to
508 			 * start parallel writeback, and a second synchronous
509 			 * pass to wait for the IO to complete.  Wait here
510 			 * for any page for which writeback has already
511 			 * started.
512 			 */
513 			if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
514 				wait_on_page_writeback(page);
515 			else {
516 				sc->nr_io_pages++;
517 				goto keep_locked;
518 			}
519 		}
520 
521 		referenced = page_referenced(page, 1, sc->mem_cgroup);
522 		/* In active use or really unfreeable?  Activate it. */
523 		if (sc->order <= PAGE_ALLOC_COSTLY_ORDER &&
524 					referenced && page_mapping_inuse(page))
525 			goto activate_locked;
526 
527 #ifdef CONFIG_SWAP
528 		/*
529 		 * Anonymous process memory has backing store?
530 		 * Try to allocate it some swap space here.
531 		 */
532 		if (PageAnon(page) && !PageSwapCache(page))
533 			if (!add_to_swap(page, GFP_ATOMIC))
534 				goto activate_locked;
535 #endif /* CONFIG_SWAP */
536 
537 		mapping = page_mapping(page);
538 
539 		/*
540 		 * The page is mapped into the page tables of one or more
541 		 * processes. Try to unmap it here.
542 		 */
543 		if (page_mapped(page) && mapping) {
544 			switch (try_to_unmap(page, 0)) {
545 			case SWAP_FAIL:
546 				goto activate_locked;
547 			case SWAP_AGAIN:
548 				goto keep_locked;
549 			case SWAP_SUCCESS:
550 				; /* try to free the page below */
551 			}
552 		}
553 
554 		if (PageDirty(page)) {
555 			if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && referenced)
556 				goto keep_locked;
557 			if (!may_enter_fs) {
558 				sc->nr_io_pages++;
559 				goto keep_locked;
560 			}
561 			if (!sc->may_writepage)
562 				goto keep_locked;
563 
564 			/* Page is dirty, try to write it out here */
565 			switch (pageout(page, mapping, sync_writeback)) {
566 			case PAGE_KEEP:
567 				goto keep_locked;
568 			case PAGE_ACTIVATE:
569 				goto activate_locked;
570 			case PAGE_SUCCESS:
571 				if (PageWriteback(page) || PageDirty(page)) {
572 					sc->nr_io_pages++;
573 					goto keep;
574 				}
575 				/*
576 				 * A synchronous write - probably a ramdisk.  Go
577 				 * ahead and try to reclaim the page.
578 				 */
579 				if (TestSetPageLocked(page))
580 					goto keep;
581 				if (PageDirty(page) || PageWriteback(page))
582 					goto keep_locked;
583 				mapping = page_mapping(page);
584 			case PAGE_CLEAN:
585 				; /* try to free the page below */
586 			}
587 		}
588 
589 		/*
590 		 * If the page has buffers, try to free the buffer mappings
591 		 * associated with this page. If we succeed we try to free
592 		 * the page as well.
593 		 *
594 		 * We do this even if the page is PageDirty().
595 		 * try_to_release_page() does not perform I/O, but it is
596 		 * possible for a page to have PageDirty set, but it is actually
597 		 * clean (all its buffers are clean).  This happens if the
598 		 * buffers were written out directly, with submit_bh(). ext3
599 		 * will do this, as well as the blockdev mapping.
600 		 * try_to_release_page() will discover that cleanness and will
601 		 * drop the buffers and mark the page clean - it can be freed.
602 		 *
603 		 * Rarely, pages can have buffers and no ->mapping.  These are
604 		 * the pages which were not successfully invalidated in
605 		 * truncate_complete_page().  We try to drop those buffers here
606 		 * and if that worked, and the page is no longer mapped into
607 		 * process address space (page_count == 1) it can be freed.
608 		 * Otherwise, leave the page on the LRU so it is swappable.
609 		 */
610 		if (PagePrivate(page)) {
611 			if (!try_to_release_page(page, sc->gfp_mask))
612 				goto activate_locked;
613 			if (!mapping && page_count(page) == 1)
614 				goto free_it;
615 		}
616 
617 		if (!mapping || !remove_mapping(mapping, page))
618 			goto keep_locked;
619 
620 free_it:
621 		unlock_page(page);
622 		nr_reclaimed++;
623 		if (!pagevec_add(&freed_pvec, page))
624 			__pagevec_release_nonlru(&freed_pvec);
625 		continue;
626 
627 activate_locked:
628 		SetPageActive(page);
629 		pgactivate++;
630 keep_locked:
631 		unlock_page(page);
632 keep:
633 		list_add(&page->lru, &ret_pages);
634 		VM_BUG_ON(PageLRU(page));
635 	}
636 	list_splice(&ret_pages, page_list);
637 	if (pagevec_count(&freed_pvec))
638 		__pagevec_release_nonlru(&freed_pvec);
639 	count_vm_events(PGACTIVATE, pgactivate);
640 	return nr_reclaimed;
641 }
642 
643 /* LRU Isolation modes. */
644 #define ISOLATE_INACTIVE 0	/* Isolate inactive pages. */
645 #define ISOLATE_ACTIVE 1	/* Isolate active pages. */
646 #define ISOLATE_BOTH 2		/* Isolate both active and inactive pages. */
647 
648 /*
649  * Attempt to remove the specified page from its LRU.  Only take this page
650  * if it is of the appropriate PageActive status.  Pages which are being
651  * freed elsewhere are also ignored.
652  *
653  * page:	page to consider
654  * mode:	one of the LRU isolation modes defined above
655  *
656  * returns 0 on success, -ve errno on failure.
657  */
658 int __isolate_lru_page(struct page *page, int mode)
659 {
660 	int ret = -EINVAL;
661 
662 	/* Only take pages on the LRU. */
663 	if (!PageLRU(page))
664 		return ret;
665 
666 	/*
667 	 * When checking the active state, we need to be sure we are
668 	 * dealing with comparible boolean values.  Take the logical not
669 	 * of each.
670 	 */
671 	if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
672 		return ret;
673 
674 	ret = -EBUSY;
675 	if (likely(get_page_unless_zero(page))) {
676 		/*
677 		 * Be careful not to clear PageLRU until after we're
678 		 * sure the page is not being freed elsewhere -- the
679 		 * page release code relies on it.
680 		 */
681 		ClearPageLRU(page);
682 		ret = 0;
683 	}
684 
685 	return ret;
686 }
687 
688 /*
689  * zone->lru_lock is heavily contended.  Some of the functions that
690  * shrink the lists perform better by taking out a batch of pages
691  * and working on them outside the LRU lock.
692  *
693  * For pagecache intensive workloads, this function is the hottest
694  * spot in the kernel (apart from copy_*_user functions).
695  *
696  * Appropriate locks must be held before calling this function.
697  *
698  * @nr_to_scan:	The number of pages to look through on the list.
699  * @src:	The LRU list to pull pages off.
700  * @dst:	The temp list to put pages on to.
701  * @scanned:	The number of pages that were scanned.
702  * @order:	The caller's attempted allocation order
703  * @mode:	One of the LRU isolation modes
704  *
705  * returns how many pages were moved onto *@dst.
706  */
707 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
708 		struct list_head *src, struct list_head *dst,
709 		unsigned long *scanned, int order, int mode)
710 {
711 	unsigned long nr_taken = 0;
712 	unsigned long scan;
713 
714 	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
715 		struct page *page;
716 		unsigned long pfn;
717 		unsigned long end_pfn;
718 		unsigned long page_pfn;
719 		int zone_id;
720 
721 		page = lru_to_page(src);
722 		prefetchw_prev_lru_page(page, src, flags);
723 
724 		VM_BUG_ON(!PageLRU(page));
725 
726 		switch (__isolate_lru_page(page, mode)) {
727 		case 0:
728 			list_move(&page->lru, dst);
729 			nr_taken++;
730 			break;
731 
732 		case -EBUSY:
733 			/* else it is being freed elsewhere */
734 			list_move(&page->lru, src);
735 			continue;
736 
737 		default:
738 			BUG();
739 		}
740 
741 		if (!order)
742 			continue;
743 
744 		/*
745 		 * Attempt to take all pages in the order aligned region
746 		 * surrounding the tag page.  Only take those pages of
747 		 * the same active state as that tag page.  We may safely
748 		 * round the target page pfn down to the requested order
749 		 * as the mem_map is guarenteed valid out to MAX_ORDER,
750 		 * where that page is in a different zone we will detect
751 		 * it from its zone id and abort this block scan.
752 		 */
753 		zone_id = page_zone_id(page);
754 		page_pfn = page_to_pfn(page);
755 		pfn = page_pfn & ~((1 << order) - 1);
756 		end_pfn = pfn + (1 << order);
757 		for (; pfn < end_pfn; pfn++) {
758 			struct page *cursor_page;
759 
760 			/* The target page is in the block, ignore it. */
761 			if (unlikely(pfn == page_pfn))
762 				continue;
763 
764 			/* Avoid holes within the zone. */
765 			if (unlikely(!pfn_valid_within(pfn)))
766 				break;
767 
768 			cursor_page = pfn_to_page(pfn);
769 			/* Check that we have not crossed a zone boundary. */
770 			if (unlikely(page_zone_id(cursor_page) != zone_id))
771 				continue;
772 			switch (__isolate_lru_page(cursor_page, mode)) {
773 			case 0:
774 				list_move(&cursor_page->lru, dst);
775 				nr_taken++;
776 				scan++;
777 				break;
778 
779 			case -EBUSY:
780 				/* else it is being freed elsewhere */
781 				list_move(&cursor_page->lru, src);
782 			default:
783 				break;
784 			}
785 		}
786 	}
787 
788 	*scanned = scan;
789 	return nr_taken;
790 }
791 
792 static unsigned long isolate_pages_global(unsigned long nr,
793 					struct list_head *dst,
794 					unsigned long *scanned, int order,
795 					int mode, struct zone *z,
796 					struct mem_cgroup *mem_cont,
797 					int active)
798 {
799 	if (active)
800 		return isolate_lru_pages(nr, &z->active_list, dst,
801 						scanned, order, mode);
802 	else
803 		return isolate_lru_pages(nr, &z->inactive_list, dst,
804 						scanned, order, mode);
805 }
806 
807 /*
808  * clear_active_flags() is a helper for shrink_active_list(), clearing
809  * any active bits from the pages in the list.
810  */
811 static unsigned long clear_active_flags(struct list_head *page_list)
812 {
813 	int nr_active = 0;
814 	struct page *page;
815 
816 	list_for_each_entry(page, page_list, lru)
817 		if (PageActive(page)) {
818 			ClearPageActive(page);
819 			nr_active++;
820 		}
821 
822 	return nr_active;
823 }
824 
825 /*
826  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
827  * of reclaimed pages
828  */
829 static unsigned long shrink_inactive_list(unsigned long max_scan,
830 				struct zone *zone, struct scan_control *sc)
831 {
832 	LIST_HEAD(page_list);
833 	struct pagevec pvec;
834 	unsigned long nr_scanned = 0;
835 	unsigned long nr_reclaimed = 0;
836 
837 	pagevec_init(&pvec, 1);
838 
839 	lru_add_drain();
840 	spin_lock_irq(&zone->lru_lock);
841 	do {
842 		struct page *page;
843 		unsigned long nr_taken;
844 		unsigned long nr_scan;
845 		unsigned long nr_freed;
846 		unsigned long nr_active;
847 
848 		nr_taken = sc->isolate_pages(sc->swap_cluster_max,
849 			     &page_list, &nr_scan, sc->order,
850 			     (sc->order > PAGE_ALLOC_COSTLY_ORDER)?
851 					     ISOLATE_BOTH : ISOLATE_INACTIVE,
852 				zone, sc->mem_cgroup, 0);
853 		nr_active = clear_active_flags(&page_list);
854 		__count_vm_events(PGDEACTIVATE, nr_active);
855 
856 		__mod_zone_page_state(zone, NR_ACTIVE, -nr_active);
857 		__mod_zone_page_state(zone, NR_INACTIVE,
858 						-(nr_taken - nr_active));
859 		if (scan_global_lru(sc))
860 			zone->pages_scanned += nr_scan;
861 		spin_unlock_irq(&zone->lru_lock);
862 
863 		nr_scanned += nr_scan;
864 		nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);
865 
866 		/*
867 		 * If we are direct reclaiming for contiguous pages and we do
868 		 * not reclaim everything in the list, try again and wait
869 		 * for IO to complete. This will stall high-order allocations
870 		 * but that should be acceptable to the caller
871 		 */
872 		if (nr_freed < nr_taken && !current_is_kswapd() &&
873 					sc->order > PAGE_ALLOC_COSTLY_ORDER) {
874 			congestion_wait(WRITE, HZ/10);
875 
876 			/*
877 			 * The attempt at page out may have made some
878 			 * of the pages active, mark them inactive again.
879 			 */
880 			nr_active = clear_active_flags(&page_list);
881 			count_vm_events(PGDEACTIVATE, nr_active);
882 
883 			nr_freed += shrink_page_list(&page_list, sc,
884 							PAGEOUT_IO_SYNC);
885 		}
886 
887 		nr_reclaimed += nr_freed;
888 		local_irq_disable();
889 		if (current_is_kswapd()) {
890 			__count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scan);
891 			__count_vm_events(KSWAPD_STEAL, nr_freed);
892 		} else if (scan_global_lru(sc))
893 			__count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scan);
894 
895 		__count_zone_vm_events(PGSTEAL, zone, nr_freed);
896 
897 		if (nr_taken == 0)
898 			goto done;
899 
900 		spin_lock(&zone->lru_lock);
901 		/*
902 		 * Put back any unfreeable pages.
903 		 */
904 		while (!list_empty(&page_list)) {
905 			page = lru_to_page(&page_list);
906 			VM_BUG_ON(PageLRU(page));
907 			SetPageLRU(page);
908 			list_del(&page->lru);
909 			if (PageActive(page))
910 				add_page_to_active_list(zone, page);
911 			else
912 				add_page_to_inactive_list(zone, page);
913 			if (!pagevec_add(&pvec, page)) {
914 				spin_unlock_irq(&zone->lru_lock);
915 				__pagevec_release(&pvec);
916 				spin_lock_irq(&zone->lru_lock);
917 			}
918 		}
919   	} while (nr_scanned < max_scan);
920 	spin_unlock(&zone->lru_lock);
921 done:
922 	local_irq_enable();
923 	pagevec_release(&pvec);
924 	return nr_reclaimed;
925 }
926 
927 /*
928  * We are about to scan this zone at a certain priority level.  If that priority
929  * level is smaller (ie: more urgent) than the previous priority, then note
930  * that priority level within the zone.  This is done so that when the next
931  * process comes in to scan this zone, it will immediately start out at this
932  * priority level rather than having to build up its own scanning priority.
933  * Here, this priority affects only the reclaim-mapped threshold.
934  */
935 static inline void note_zone_scanning_priority(struct zone *zone, int priority)
936 {
937 	if (priority < zone->prev_priority)
938 		zone->prev_priority = priority;
939 }
940 
941 static inline int zone_is_near_oom(struct zone *zone)
942 {
943 	return zone->pages_scanned >= (zone_page_state(zone, NR_ACTIVE)
944 				+ zone_page_state(zone, NR_INACTIVE))*3;
945 }
946 
947 /*
948  * Determine we should try to reclaim mapped pages.
949  * This is called only when sc->mem_cgroup is NULL.
950  */
951 static int calc_reclaim_mapped(struct scan_control *sc, struct zone *zone,
952 				int priority)
953 {
954 	long mapped_ratio;
955 	long distress;
956 	long swap_tendency;
957 	long imbalance;
958 	int reclaim_mapped = 0;
959 	int prev_priority;
960 
961 	if (scan_global_lru(sc) && zone_is_near_oom(zone))
962 		return 1;
963 	/*
964 	 * `distress' is a measure of how much trouble we're having
965 	 * reclaiming pages.  0 -> no problems.  100 -> great trouble.
966 	 */
967 	if (scan_global_lru(sc))
968 		prev_priority = zone->prev_priority;
969 	else
970 		prev_priority = mem_cgroup_get_reclaim_priority(sc->mem_cgroup);
971 
972 	distress = 100 >> min(prev_priority, priority);
973 
974 	/*
975 	 * The point of this algorithm is to decide when to start
976 	 * reclaiming mapped memory instead of just pagecache.  Work out
977 	 * how much memory
978 	 * is mapped.
979 	 */
980 	if (scan_global_lru(sc))
981 		mapped_ratio = ((global_page_state(NR_FILE_MAPPED) +
982 				global_page_state(NR_ANON_PAGES)) * 100) /
983 					vm_total_pages;
984 	else
985 		mapped_ratio = mem_cgroup_calc_mapped_ratio(sc->mem_cgroup);
986 
987 	/*
988 	 * Now decide how much we really want to unmap some pages.  The
989 	 * mapped ratio is downgraded - just because there's a lot of
990 	 * mapped memory doesn't necessarily mean that page reclaim
991 	 * isn't succeeding.
992 	 *
993 	 * The distress ratio is important - we don't want to start
994 	 * going oom.
995 	 *
996 	 * A 100% value of vm_swappiness overrides this algorithm
997 	 * altogether.
998 	 */
999 	swap_tendency = mapped_ratio / 2 + distress + sc->swappiness;
1000 
1001 	/*
1002 	 * If there's huge imbalance between active and inactive
1003 	 * (think active 100 times larger than inactive) we should
1004 	 * become more permissive, or the system will take too much
1005 	 * cpu before it start swapping during memory pressure.
1006 	 * Distress is about avoiding early-oom, this is about
1007 	 * making swappiness graceful despite setting it to low
1008 	 * values.
1009 	 *
1010 	 * Avoid div by zero with nr_inactive+1, and max resulting
1011 	 * value is vm_total_pages.
1012 	 */
1013 	if (scan_global_lru(sc)) {
1014 		imbalance  = zone_page_state(zone, NR_ACTIVE);
1015 		imbalance /= zone_page_state(zone, NR_INACTIVE) + 1;
1016 	} else
1017 		imbalance = mem_cgroup_reclaim_imbalance(sc->mem_cgroup);
1018 
1019 	/*
1020 	 * Reduce the effect of imbalance if swappiness is low,
1021 	 * this means for a swappiness very low, the imbalance
1022 	 * must be much higher than 100 for this logic to make
1023 	 * the difference.
1024 	 *
1025 	 * Max temporary value is vm_total_pages*100.
1026 	 */
1027 	imbalance *= (vm_swappiness + 1);
1028 	imbalance /= 100;
1029 
1030 	/*
1031 	 * If not much of the ram is mapped, makes the imbalance
1032 	 * less relevant, it's high priority we refill the inactive
1033 	 * list with mapped pages only in presence of high ratio of
1034 	 * mapped pages.
1035 	 *
1036 	 * Max temporary value is vm_total_pages*100.
1037 	 */
1038 	imbalance *= mapped_ratio;
1039 	imbalance /= 100;
1040 
1041 	/* apply imbalance feedback to swap_tendency */
1042 	swap_tendency += imbalance;
1043 
1044 	/*
1045 	 * Now use this metric to decide whether to start moving mapped
1046 	 * memory onto the inactive list.
1047 	 */
1048 	if (swap_tendency >= 100)
1049 		reclaim_mapped = 1;
1050 
1051 	return reclaim_mapped;
1052 }
1053 
1054 /*
1055  * This moves pages from the active list to the inactive list.
1056  *
1057  * We move them the other way if the page is referenced by one or more
1058  * processes, from rmap.
1059  *
1060  * If the pages are mostly unmapped, the processing is fast and it is
1061  * appropriate to hold zone->lru_lock across the whole operation.  But if
1062  * the pages are mapped, the processing is slow (page_referenced()) so we
1063  * should drop zone->lru_lock around each page.  It's impossible to balance
1064  * this, so instead we remove the pages from the LRU while processing them.
1065  * It is safe to rely on PG_active against the non-LRU pages in here because
1066  * nobody will play with that bit on a non-LRU page.
1067  *
1068  * The downside is that we have to touch page->_count against each page.
1069  * But we had to alter page->flags anyway.
1070  */
1071 
1072 
1073 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1074 				struct scan_control *sc, int priority)
1075 {
1076 	unsigned long pgmoved;
1077 	int pgdeactivate = 0;
1078 	unsigned long pgscanned;
1079 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1080 	LIST_HEAD(l_inactive);	/* Pages to go onto the inactive_list */
1081 	LIST_HEAD(l_active);	/* Pages to go onto the active_list */
1082 	struct page *page;
1083 	struct pagevec pvec;
1084 	int reclaim_mapped = 0;
1085 
1086 	if (sc->may_swap)
1087 		reclaim_mapped = calc_reclaim_mapped(sc, zone, priority);
1088 
1089 	lru_add_drain();
1090 	spin_lock_irq(&zone->lru_lock);
1091 	pgmoved = sc->isolate_pages(nr_pages, &l_hold, &pgscanned, sc->order,
1092 					ISOLATE_ACTIVE, zone,
1093 					sc->mem_cgroup, 1);
1094 	/*
1095 	 * zone->pages_scanned is used for detect zone's oom
1096 	 * mem_cgroup remembers nr_scan by itself.
1097 	 */
1098 	if (scan_global_lru(sc))
1099 		zone->pages_scanned += pgscanned;
1100 
1101 	__mod_zone_page_state(zone, NR_ACTIVE, -pgmoved);
1102 	spin_unlock_irq(&zone->lru_lock);
1103 
1104 	while (!list_empty(&l_hold)) {
1105 		cond_resched();
1106 		page = lru_to_page(&l_hold);
1107 		list_del(&page->lru);
1108 		if (page_mapped(page)) {
1109 			if (!reclaim_mapped ||
1110 			    (total_swap_pages == 0 && PageAnon(page)) ||
1111 			    page_referenced(page, 0, sc->mem_cgroup)) {
1112 				list_add(&page->lru, &l_active);
1113 				continue;
1114 			}
1115 		}
1116 		list_add(&page->lru, &l_inactive);
1117 	}
1118 
1119 	pagevec_init(&pvec, 1);
1120 	pgmoved = 0;
1121 	spin_lock_irq(&zone->lru_lock);
1122 	while (!list_empty(&l_inactive)) {
1123 		page = lru_to_page(&l_inactive);
1124 		prefetchw_prev_lru_page(page, &l_inactive, flags);
1125 		VM_BUG_ON(PageLRU(page));
1126 		SetPageLRU(page);
1127 		VM_BUG_ON(!PageActive(page));
1128 		ClearPageActive(page);
1129 
1130 		list_move(&page->lru, &zone->inactive_list);
1131 		mem_cgroup_move_lists(page_get_page_cgroup(page), false);
1132 		pgmoved++;
1133 		if (!pagevec_add(&pvec, page)) {
1134 			__mod_zone_page_state(zone, NR_INACTIVE, pgmoved);
1135 			spin_unlock_irq(&zone->lru_lock);
1136 			pgdeactivate += pgmoved;
1137 			pgmoved = 0;
1138 			if (buffer_heads_over_limit)
1139 				pagevec_strip(&pvec);
1140 			__pagevec_release(&pvec);
1141 			spin_lock_irq(&zone->lru_lock);
1142 		}
1143 	}
1144 	__mod_zone_page_state(zone, NR_INACTIVE, pgmoved);
1145 	pgdeactivate += pgmoved;
1146 	if (buffer_heads_over_limit) {
1147 		spin_unlock_irq(&zone->lru_lock);
1148 		pagevec_strip(&pvec);
1149 		spin_lock_irq(&zone->lru_lock);
1150 	}
1151 
1152 	pgmoved = 0;
1153 	while (!list_empty(&l_active)) {
1154 		page = lru_to_page(&l_active);
1155 		prefetchw_prev_lru_page(page, &l_active, flags);
1156 		VM_BUG_ON(PageLRU(page));
1157 		SetPageLRU(page);
1158 		VM_BUG_ON(!PageActive(page));
1159 		list_move(&page->lru, &zone->active_list);
1160 		mem_cgroup_move_lists(page_get_page_cgroup(page), true);
1161 		pgmoved++;
1162 		if (!pagevec_add(&pvec, page)) {
1163 			__mod_zone_page_state(zone, NR_ACTIVE, pgmoved);
1164 			pgmoved = 0;
1165 			spin_unlock_irq(&zone->lru_lock);
1166 			__pagevec_release(&pvec);
1167 			spin_lock_irq(&zone->lru_lock);
1168 		}
1169 	}
1170 	__mod_zone_page_state(zone, NR_ACTIVE, pgmoved);
1171 
1172 	__count_zone_vm_events(PGREFILL, zone, pgscanned);
1173 	__count_vm_events(PGDEACTIVATE, pgdeactivate);
1174 	spin_unlock_irq(&zone->lru_lock);
1175 
1176 	pagevec_release(&pvec);
1177 }
1178 
1179 /*
1180  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1181  */
1182 static unsigned long shrink_zone(int priority, struct zone *zone,
1183 				struct scan_control *sc)
1184 {
1185 	unsigned long nr_active;
1186 	unsigned long nr_inactive;
1187 	unsigned long nr_to_scan;
1188 	unsigned long nr_reclaimed = 0;
1189 
1190 	if (scan_global_lru(sc)) {
1191 		/*
1192 		 * Add one to nr_to_scan just to make sure that the kernel
1193 		 * will slowly sift through the active list.
1194 		 */
1195 		zone->nr_scan_active +=
1196 			(zone_page_state(zone, NR_ACTIVE) >> priority) + 1;
1197 		nr_active = zone->nr_scan_active;
1198 		zone->nr_scan_inactive +=
1199 			(zone_page_state(zone, NR_INACTIVE) >> priority) + 1;
1200 		nr_inactive = zone->nr_scan_inactive;
1201 		if (nr_inactive >= sc->swap_cluster_max)
1202 			zone->nr_scan_inactive = 0;
1203 		else
1204 			nr_inactive = 0;
1205 
1206 		if (nr_active >= sc->swap_cluster_max)
1207 			zone->nr_scan_active = 0;
1208 		else
1209 			nr_active = 0;
1210 	} else {
1211 		/*
1212 		 * This reclaim occurs not because zone memory shortage but
1213 		 * because memory controller hits its limit.
1214 		 * Then, don't modify zone reclaim related data.
1215 		 */
1216 		nr_active = mem_cgroup_calc_reclaim_active(sc->mem_cgroup,
1217 					zone, priority);
1218 
1219 		nr_inactive = mem_cgroup_calc_reclaim_inactive(sc->mem_cgroup,
1220 					zone, priority);
1221 	}
1222 
1223 
1224 	while (nr_active || nr_inactive) {
1225 		if (nr_active) {
1226 			nr_to_scan = min(nr_active,
1227 					(unsigned long)sc->swap_cluster_max);
1228 			nr_active -= nr_to_scan;
1229 			shrink_active_list(nr_to_scan, zone, sc, priority);
1230 		}
1231 
1232 		if (nr_inactive) {
1233 			nr_to_scan = min(nr_inactive,
1234 					(unsigned long)sc->swap_cluster_max);
1235 			nr_inactive -= nr_to_scan;
1236 			nr_reclaimed += shrink_inactive_list(nr_to_scan, zone,
1237 								sc);
1238 		}
1239 	}
1240 
1241 	throttle_vm_writeout(sc->gfp_mask);
1242 	return nr_reclaimed;
1243 }
1244 
1245 /*
1246  * This is the direct reclaim path, for page-allocating processes.  We only
1247  * try to reclaim pages from zones which will satisfy the caller's allocation
1248  * request.
1249  *
1250  * We reclaim from a zone even if that zone is over pages_high.  Because:
1251  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1252  *    allocation or
1253  * b) The zones may be over pages_high but they must go *over* pages_high to
1254  *    satisfy the `incremental min' zone defense algorithm.
1255  *
1256  * Returns the number of reclaimed pages.
1257  *
1258  * If a zone is deemed to be full of pinned pages then just give it a light
1259  * scan then give up on it.
1260  */
1261 static unsigned long shrink_zones(int priority, struct zone **zones,
1262 					struct scan_control *sc)
1263 {
1264 	unsigned long nr_reclaimed = 0;
1265 	int i;
1266 
1267 
1268 	sc->all_unreclaimable = 1;
1269 	for (i = 0; zones[i] != NULL; i++) {
1270 		struct zone *zone = zones[i];
1271 
1272 		if (!populated_zone(zone))
1273 			continue;
1274 		/*
1275 		 * Take care memory controller reclaiming has small influence
1276 		 * to global LRU.
1277 		 */
1278 		if (scan_global_lru(sc)) {
1279 			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1280 				continue;
1281 			note_zone_scanning_priority(zone, priority);
1282 
1283 			if (zone_is_all_unreclaimable(zone) &&
1284 						priority != DEF_PRIORITY)
1285 				continue;	/* Let kswapd poll it */
1286 			sc->all_unreclaimable = 0;
1287 		} else {
1288 			/*
1289 			 * Ignore cpuset limitation here. We just want to reduce
1290 			 * # of used pages by us regardless of memory shortage.
1291 			 */
1292 			sc->all_unreclaimable = 0;
1293 			mem_cgroup_note_reclaim_priority(sc->mem_cgroup,
1294 							priority);
1295 		}
1296 
1297 		nr_reclaimed += shrink_zone(priority, zone, sc);
1298 	}
1299 
1300 	return nr_reclaimed;
1301 }
1302 
1303 /*
1304  * This is the main entry point to direct page reclaim.
1305  *
1306  * If a full scan of the inactive list fails to free enough memory then we
1307  * are "out of memory" and something needs to be killed.
1308  *
1309  * If the caller is !__GFP_FS then the probability of a failure is reasonably
1310  * high - the zone may be full of dirty or under-writeback pages, which this
1311  * caller can't do much about.  We kick pdflush and take explicit naps in the
1312  * hope that some of these pages can be written.  But if the allocating task
1313  * holds filesystem locks which prevent writeout this might not work, and the
1314  * allocation attempt will fail.
1315  */
1316 static unsigned long do_try_to_free_pages(struct zone **zones, gfp_t gfp_mask,
1317 					  struct scan_control *sc)
1318 {
1319 	int priority;
1320 	int ret = 0;
1321 	unsigned long total_scanned = 0;
1322 	unsigned long nr_reclaimed = 0;
1323 	struct reclaim_state *reclaim_state = current->reclaim_state;
1324 	unsigned long lru_pages = 0;
1325 	int i;
1326 
1327 	if (scan_global_lru(sc))
1328 		count_vm_event(ALLOCSTALL);
1329 	/*
1330 	 * mem_cgroup will not do shrink_slab.
1331 	 */
1332 	if (scan_global_lru(sc)) {
1333 		for (i = 0; zones[i] != NULL; i++) {
1334 			struct zone *zone = zones[i];
1335 
1336 			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1337 				continue;
1338 
1339 			lru_pages += zone_page_state(zone, NR_ACTIVE)
1340 					+ zone_page_state(zone, NR_INACTIVE);
1341 		}
1342 	}
1343 
1344 	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1345 		sc->nr_scanned = 0;
1346 		sc->nr_io_pages = 0;
1347 		if (!priority)
1348 			disable_swap_token();
1349 		nr_reclaimed += shrink_zones(priority, zones, sc);
1350 		/*
1351 		 * Don't shrink slabs when reclaiming memory from
1352 		 * over limit cgroups
1353 		 */
1354 		if (scan_global_lru(sc)) {
1355 			shrink_slab(sc->nr_scanned, gfp_mask, lru_pages);
1356 			if (reclaim_state) {
1357 				nr_reclaimed += reclaim_state->reclaimed_slab;
1358 				reclaim_state->reclaimed_slab = 0;
1359 			}
1360 		}
1361 		total_scanned += sc->nr_scanned;
1362 		if (nr_reclaimed >= sc->swap_cluster_max) {
1363 			ret = 1;
1364 			goto out;
1365 		}
1366 
1367 		/*
1368 		 * Try to write back as many pages as we just scanned.  This
1369 		 * tends to cause slow streaming writers to write data to the
1370 		 * disk smoothly, at the dirtying rate, which is nice.   But
1371 		 * that's undesirable in laptop mode, where we *want* lumpy
1372 		 * writeout.  So in laptop mode, write out the whole world.
1373 		 */
1374 		if (total_scanned > sc->swap_cluster_max +
1375 					sc->swap_cluster_max / 2) {
1376 			wakeup_pdflush(laptop_mode ? 0 : total_scanned);
1377 			sc->may_writepage = 1;
1378 		}
1379 
1380 		/* Take a nap, wait for some writeback to complete */
1381 		if (sc->nr_scanned && priority < DEF_PRIORITY - 2 &&
1382 				sc->nr_io_pages > sc->swap_cluster_max)
1383 			congestion_wait(WRITE, HZ/10);
1384 	}
1385 	/* top priority shrink_caches still had more to do? don't OOM, then */
1386 	if (!sc->all_unreclaimable && scan_global_lru(sc))
1387 		ret = 1;
1388 out:
1389 	/*
1390 	 * Now that we've scanned all the zones at this priority level, note
1391 	 * that level within the zone so that the next thread which performs
1392 	 * scanning of this zone will immediately start out at this priority
1393 	 * level.  This affects only the decision whether or not to bring
1394 	 * mapped pages onto the inactive list.
1395 	 */
1396 	if (priority < 0)
1397 		priority = 0;
1398 
1399 	if (scan_global_lru(sc)) {
1400 		for (i = 0; zones[i] != NULL; i++) {
1401 			struct zone *zone = zones[i];
1402 
1403 			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1404 				continue;
1405 
1406 			zone->prev_priority = priority;
1407 		}
1408 	} else
1409 		mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority);
1410 
1411 	return ret;
1412 }
1413 
1414 unsigned long try_to_free_pages(struct zone **zones, int order, gfp_t gfp_mask)
1415 {
1416 	struct scan_control sc = {
1417 		.gfp_mask = gfp_mask,
1418 		.may_writepage = !laptop_mode,
1419 		.swap_cluster_max = SWAP_CLUSTER_MAX,
1420 		.may_swap = 1,
1421 		.swappiness = vm_swappiness,
1422 		.order = order,
1423 		.mem_cgroup = NULL,
1424 		.isolate_pages = isolate_pages_global,
1425 	};
1426 
1427 	return do_try_to_free_pages(zones, gfp_mask, &sc);
1428 }
1429 
1430 #ifdef CONFIG_CGROUP_MEM_CONT
1431 
1432 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
1433 						gfp_t gfp_mask)
1434 {
1435 	struct scan_control sc = {
1436 		.gfp_mask = gfp_mask,
1437 		.may_writepage = !laptop_mode,
1438 		.may_swap = 1,
1439 		.swap_cluster_max = SWAP_CLUSTER_MAX,
1440 		.swappiness = vm_swappiness,
1441 		.order = 0,
1442 		.mem_cgroup = mem_cont,
1443 		.isolate_pages = mem_cgroup_isolate_pages,
1444 	};
1445 	struct zone **zones;
1446 	int target_zone = gfp_zone(GFP_HIGHUSER_MOVABLE);
1447 
1448 	zones = NODE_DATA(numa_node_id())->node_zonelists[target_zone].zones;
1449 	if (do_try_to_free_pages(zones, sc.gfp_mask, &sc))
1450 		return 1;
1451 	return 0;
1452 }
1453 #endif
1454 
1455 /*
1456  * For kswapd, balance_pgdat() will work across all this node's zones until
1457  * they are all at pages_high.
1458  *
1459  * Returns the number of pages which were actually freed.
1460  *
1461  * There is special handling here for zones which are full of pinned pages.
1462  * This can happen if the pages are all mlocked, or if they are all used by
1463  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
1464  * What we do is to detect the case where all pages in the zone have been
1465  * scanned twice and there has been zero successful reclaim.  Mark the zone as
1466  * dead and from now on, only perform a short scan.  Basically we're polling
1467  * the zone for when the problem goes away.
1468  *
1469  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
1470  * zones which have free_pages > pages_high, but once a zone is found to have
1471  * free_pages <= pages_high, we scan that zone and the lower zones regardless
1472  * of the number of free pages in the lower zones.  This interoperates with
1473  * the page allocator fallback scheme to ensure that aging of pages is balanced
1474  * across the zones.
1475  */
1476 static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
1477 {
1478 	int all_zones_ok;
1479 	int priority;
1480 	int i;
1481 	unsigned long total_scanned;
1482 	unsigned long nr_reclaimed;
1483 	struct reclaim_state *reclaim_state = current->reclaim_state;
1484 	struct scan_control sc = {
1485 		.gfp_mask = GFP_KERNEL,
1486 		.may_swap = 1,
1487 		.swap_cluster_max = SWAP_CLUSTER_MAX,
1488 		.swappiness = vm_swappiness,
1489 		.order = order,
1490 		.mem_cgroup = NULL,
1491 		.isolate_pages = isolate_pages_global,
1492 	};
1493 	/*
1494 	 * temp_priority is used to remember the scanning priority at which
1495 	 * this zone was successfully refilled to free_pages == pages_high.
1496 	 */
1497 	int temp_priority[MAX_NR_ZONES];
1498 
1499 loop_again:
1500 	total_scanned = 0;
1501 	nr_reclaimed = 0;
1502 	sc.may_writepage = !laptop_mode;
1503 	count_vm_event(PAGEOUTRUN);
1504 
1505 	for (i = 0; i < pgdat->nr_zones; i++)
1506 		temp_priority[i] = DEF_PRIORITY;
1507 
1508 	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1509 		int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
1510 		unsigned long lru_pages = 0;
1511 
1512 		/* The swap token gets in the way of swapout... */
1513 		if (!priority)
1514 			disable_swap_token();
1515 
1516 		sc.nr_io_pages = 0;
1517 		all_zones_ok = 1;
1518 
1519 		/*
1520 		 * Scan in the highmem->dma direction for the highest
1521 		 * zone which needs scanning
1522 		 */
1523 		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1524 			struct zone *zone = pgdat->node_zones + i;
1525 
1526 			if (!populated_zone(zone))
1527 				continue;
1528 
1529 			if (zone_is_all_unreclaimable(zone) &&
1530 			    priority != DEF_PRIORITY)
1531 				continue;
1532 
1533 			if (!zone_watermark_ok(zone, order, zone->pages_high,
1534 					       0, 0)) {
1535 				end_zone = i;
1536 				break;
1537 			}
1538 		}
1539 		if (i < 0)
1540 			goto out;
1541 
1542 		for (i = 0; i <= end_zone; i++) {
1543 			struct zone *zone = pgdat->node_zones + i;
1544 
1545 			lru_pages += zone_page_state(zone, NR_ACTIVE)
1546 					+ zone_page_state(zone, NR_INACTIVE);
1547 		}
1548 
1549 		/*
1550 		 * Now scan the zone in the dma->highmem direction, stopping
1551 		 * at the last zone which needs scanning.
1552 		 *
1553 		 * We do this because the page allocator works in the opposite
1554 		 * direction.  This prevents the page allocator from allocating
1555 		 * pages behind kswapd's direction of progress, which would
1556 		 * cause too much scanning of the lower zones.
1557 		 */
1558 		for (i = 0; i <= end_zone; i++) {
1559 			struct zone *zone = pgdat->node_zones + i;
1560 			int nr_slab;
1561 
1562 			if (!populated_zone(zone))
1563 				continue;
1564 
1565 			if (zone_is_all_unreclaimable(zone) &&
1566 					priority != DEF_PRIORITY)
1567 				continue;
1568 
1569 			if (!zone_watermark_ok(zone, order, zone->pages_high,
1570 					       end_zone, 0))
1571 				all_zones_ok = 0;
1572 			temp_priority[i] = priority;
1573 			sc.nr_scanned = 0;
1574 			note_zone_scanning_priority(zone, priority);
1575 			/*
1576 			 * We put equal pressure on every zone, unless one
1577 			 * zone has way too many pages free already.
1578 			 */
1579 			if (!zone_watermark_ok(zone, order, 8*zone->pages_high,
1580 						end_zone, 0))
1581 				nr_reclaimed += shrink_zone(priority, zone, &sc);
1582 			reclaim_state->reclaimed_slab = 0;
1583 			nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
1584 						lru_pages);
1585 			nr_reclaimed += reclaim_state->reclaimed_slab;
1586 			total_scanned += sc.nr_scanned;
1587 			if (zone_is_all_unreclaimable(zone))
1588 				continue;
1589 			if (nr_slab == 0 && zone->pages_scanned >=
1590 				(zone_page_state(zone, NR_ACTIVE)
1591 				+ zone_page_state(zone, NR_INACTIVE)) * 6)
1592 					zone_set_flag(zone,
1593 						      ZONE_ALL_UNRECLAIMABLE);
1594 			/*
1595 			 * If we've done a decent amount of scanning and
1596 			 * the reclaim ratio is low, start doing writepage
1597 			 * even in laptop mode
1598 			 */
1599 			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
1600 			    total_scanned > nr_reclaimed + nr_reclaimed / 2)
1601 				sc.may_writepage = 1;
1602 		}
1603 		if (all_zones_ok)
1604 			break;		/* kswapd: all done */
1605 		/*
1606 		 * OK, kswapd is getting into trouble.  Take a nap, then take
1607 		 * another pass across the zones.
1608 		 */
1609 		if (total_scanned && priority < DEF_PRIORITY - 2 &&
1610 					sc.nr_io_pages > sc.swap_cluster_max)
1611 			congestion_wait(WRITE, HZ/10);
1612 
1613 		/*
1614 		 * We do this so kswapd doesn't build up large priorities for
1615 		 * example when it is freeing in parallel with allocators. It
1616 		 * matches the direct reclaim path behaviour in terms of impact
1617 		 * on zone->*_priority.
1618 		 */
1619 		if (nr_reclaimed >= SWAP_CLUSTER_MAX)
1620 			break;
1621 	}
1622 out:
1623 	/*
1624 	 * Note within each zone the priority level at which this zone was
1625 	 * brought into a happy state.  So that the next thread which scans this
1626 	 * zone will start out at that priority level.
1627 	 */
1628 	for (i = 0; i < pgdat->nr_zones; i++) {
1629 		struct zone *zone = pgdat->node_zones + i;
1630 
1631 		zone->prev_priority = temp_priority[i];
1632 	}
1633 	if (!all_zones_ok) {
1634 		cond_resched();
1635 
1636 		try_to_freeze();
1637 
1638 		goto loop_again;
1639 	}
1640 
1641 	return nr_reclaimed;
1642 }
1643 
1644 /*
1645  * The background pageout daemon, started as a kernel thread
1646  * from the init process.
1647  *
1648  * This basically trickles out pages so that we have _some_
1649  * free memory available even if there is no other activity
1650  * that frees anything up. This is needed for things like routing
1651  * etc, where we otherwise might have all activity going on in
1652  * asynchronous contexts that cannot page things out.
1653  *
1654  * If there are applications that are active memory-allocators
1655  * (most normal use), this basically shouldn't matter.
1656  */
1657 static int kswapd(void *p)
1658 {
1659 	unsigned long order;
1660 	pg_data_t *pgdat = (pg_data_t*)p;
1661 	struct task_struct *tsk = current;
1662 	DEFINE_WAIT(wait);
1663 	struct reclaim_state reclaim_state = {
1664 		.reclaimed_slab = 0,
1665 	};
1666 	cpumask_t cpumask;
1667 
1668 	cpumask = node_to_cpumask(pgdat->node_id);
1669 	if (!cpus_empty(cpumask))
1670 		set_cpus_allowed(tsk, cpumask);
1671 	current->reclaim_state = &reclaim_state;
1672 
1673 	/*
1674 	 * Tell the memory management that we're a "memory allocator",
1675 	 * and that if we need more memory we should get access to it
1676 	 * regardless (see "__alloc_pages()"). "kswapd" should
1677 	 * never get caught in the normal page freeing logic.
1678 	 *
1679 	 * (Kswapd normally doesn't need memory anyway, but sometimes
1680 	 * you need a small amount of memory in order to be able to
1681 	 * page out something else, and this flag essentially protects
1682 	 * us from recursively trying to free more memory as we're
1683 	 * trying to free the first piece of memory in the first place).
1684 	 */
1685 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
1686 	set_freezable();
1687 
1688 	order = 0;
1689 	for ( ; ; ) {
1690 		unsigned long new_order;
1691 
1692 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
1693 		new_order = pgdat->kswapd_max_order;
1694 		pgdat->kswapd_max_order = 0;
1695 		if (order < new_order) {
1696 			/*
1697 			 * Don't sleep if someone wants a larger 'order'
1698 			 * allocation
1699 			 */
1700 			order = new_order;
1701 		} else {
1702 			if (!freezing(current))
1703 				schedule();
1704 
1705 			order = pgdat->kswapd_max_order;
1706 		}
1707 		finish_wait(&pgdat->kswapd_wait, &wait);
1708 
1709 		if (!try_to_freeze()) {
1710 			/* We can speed up thawing tasks if we don't call
1711 			 * balance_pgdat after returning from the refrigerator
1712 			 */
1713 			balance_pgdat(pgdat, order);
1714 		}
1715 	}
1716 	return 0;
1717 }
1718 
1719 /*
1720  * A zone is low on free memory, so wake its kswapd task to service it.
1721  */
1722 void wakeup_kswapd(struct zone *zone, int order)
1723 {
1724 	pg_data_t *pgdat;
1725 
1726 	if (!populated_zone(zone))
1727 		return;
1728 
1729 	pgdat = zone->zone_pgdat;
1730 	if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0))
1731 		return;
1732 	if (pgdat->kswapd_max_order < order)
1733 		pgdat->kswapd_max_order = order;
1734 	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1735 		return;
1736 	if (!waitqueue_active(&pgdat->kswapd_wait))
1737 		return;
1738 	wake_up_interruptible(&pgdat->kswapd_wait);
1739 }
1740 
1741 #ifdef CONFIG_PM
1742 /*
1743  * Helper function for shrink_all_memory().  Tries to reclaim 'nr_pages' pages
1744  * from LRU lists system-wide, for given pass and priority, and returns the
1745  * number of reclaimed pages
1746  *
1747  * For pass > 3 we also try to shrink the LRU lists that contain a few pages
1748  */
1749 static unsigned long shrink_all_zones(unsigned long nr_pages, int prio,
1750 				      int pass, struct scan_control *sc)
1751 {
1752 	struct zone *zone;
1753 	unsigned long nr_to_scan, ret = 0;
1754 
1755 	for_each_zone(zone) {
1756 
1757 		if (!populated_zone(zone))
1758 			continue;
1759 
1760 		if (zone_is_all_unreclaimable(zone) && prio != DEF_PRIORITY)
1761 			continue;
1762 
1763 		/* For pass = 0 we don't shrink the active list */
1764 		if (pass > 0) {
1765 			zone->nr_scan_active +=
1766 				(zone_page_state(zone, NR_ACTIVE) >> prio) + 1;
1767 			if (zone->nr_scan_active >= nr_pages || pass > 3) {
1768 				zone->nr_scan_active = 0;
1769 				nr_to_scan = min(nr_pages,
1770 					zone_page_state(zone, NR_ACTIVE));
1771 				shrink_active_list(nr_to_scan, zone, sc, prio);
1772 			}
1773 		}
1774 
1775 		zone->nr_scan_inactive +=
1776 			(zone_page_state(zone, NR_INACTIVE) >> prio) + 1;
1777 		if (zone->nr_scan_inactive >= nr_pages || pass > 3) {
1778 			zone->nr_scan_inactive = 0;
1779 			nr_to_scan = min(nr_pages,
1780 				zone_page_state(zone, NR_INACTIVE));
1781 			ret += shrink_inactive_list(nr_to_scan, zone, sc);
1782 			if (ret >= nr_pages)
1783 				return ret;
1784 		}
1785 	}
1786 
1787 	return ret;
1788 }
1789 
1790 static unsigned long count_lru_pages(void)
1791 {
1792 	return global_page_state(NR_ACTIVE) + global_page_state(NR_INACTIVE);
1793 }
1794 
1795 /*
1796  * Try to free `nr_pages' of memory, system-wide, and return the number of
1797  * freed pages.
1798  *
1799  * Rather than trying to age LRUs the aim is to preserve the overall
1800  * LRU order by reclaiming preferentially
1801  * inactive > active > active referenced > active mapped
1802  */
1803 unsigned long shrink_all_memory(unsigned long nr_pages)
1804 {
1805 	unsigned long lru_pages, nr_slab;
1806 	unsigned long ret = 0;
1807 	int pass;
1808 	struct reclaim_state reclaim_state;
1809 	struct scan_control sc = {
1810 		.gfp_mask = GFP_KERNEL,
1811 		.may_swap = 0,
1812 		.swap_cluster_max = nr_pages,
1813 		.may_writepage = 1,
1814 		.swappiness = vm_swappiness,
1815 		.isolate_pages = isolate_pages_global,
1816 	};
1817 
1818 	current->reclaim_state = &reclaim_state;
1819 
1820 	lru_pages = count_lru_pages();
1821 	nr_slab = global_page_state(NR_SLAB_RECLAIMABLE);
1822 	/* If slab caches are huge, it's better to hit them first */
1823 	while (nr_slab >= lru_pages) {
1824 		reclaim_state.reclaimed_slab = 0;
1825 		shrink_slab(nr_pages, sc.gfp_mask, lru_pages);
1826 		if (!reclaim_state.reclaimed_slab)
1827 			break;
1828 
1829 		ret += reclaim_state.reclaimed_slab;
1830 		if (ret >= nr_pages)
1831 			goto out;
1832 
1833 		nr_slab -= reclaim_state.reclaimed_slab;
1834 	}
1835 
1836 	/*
1837 	 * We try to shrink LRUs in 5 passes:
1838 	 * 0 = Reclaim from inactive_list only
1839 	 * 1 = Reclaim from active list but don't reclaim mapped
1840 	 * 2 = 2nd pass of type 1
1841 	 * 3 = Reclaim mapped (normal reclaim)
1842 	 * 4 = 2nd pass of type 3
1843 	 */
1844 	for (pass = 0; pass < 5; pass++) {
1845 		int prio;
1846 
1847 		/* Force reclaiming mapped pages in the passes #3 and #4 */
1848 		if (pass > 2) {
1849 			sc.may_swap = 1;
1850 			sc.swappiness = 100;
1851 		}
1852 
1853 		for (prio = DEF_PRIORITY; prio >= 0; prio--) {
1854 			unsigned long nr_to_scan = nr_pages - ret;
1855 
1856 			sc.nr_scanned = 0;
1857 			ret += shrink_all_zones(nr_to_scan, prio, pass, &sc);
1858 			if (ret >= nr_pages)
1859 				goto out;
1860 
1861 			reclaim_state.reclaimed_slab = 0;
1862 			shrink_slab(sc.nr_scanned, sc.gfp_mask,
1863 					count_lru_pages());
1864 			ret += reclaim_state.reclaimed_slab;
1865 			if (ret >= nr_pages)
1866 				goto out;
1867 
1868 			if (sc.nr_scanned && prio < DEF_PRIORITY - 2)
1869 				congestion_wait(WRITE, HZ / 10);
1870 		}
1871 	}
1872 
1873 	/*
1874 	 * If ret = 0, we could not shrink LRUs, but there may be something
1875 	 * in slab caches
1876 	 */
1877 	if (!ret) {
1878 		do {
1879 			reclaim_state.reclaimed_slab = 0;
1880 			shrink_slab(nr_pages, sc.gfp_mask, count_lru_pages());
1881 			ret += reclaim_state.reclaimed_slab;
1882 		} while (ret < nr_pages && reclaim_state.reclaimed_slab > 0);
1883 	}
1884 
1885 out:
1886 	current->reclaim_state = NULL;
1887 
1888 	return ret;
1889 }
1890 #endif
1891 
1892 /* It's optimal to keep kswapds on the same CPUs as their memory, but
1893    not required for correctness.  So if the last cpu in a node goes
1894    away, we get changed to run anywhere: as the first one comes back,
1895    restore their cpu bindings. */
1896 static int __devinit cpu_callback(struct notifier_block *nfb,
1897 				  unsigned long action, void *hcpu)
1898 {
1899 	pg_data_t *pgdat;
1900 	cpumask_t mask;
1901 	int nid;
1902 
1903 	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
1904 		for_each_node_state(nid, N_HIGH_MEMORY) {
1905 			pgdat = NODE_DATA(nid);
1906 			mask = node_to_cpumask(pgdat->node_id);
1907 			if (any_online_cpu(mask) != NR_CPUS)
1908 				/* One of our CPUs online: restore mask */
1909 				set_cpus_allowed(pgdat->kswapd, mask);
1910 		}
1911 	}
1912 	return NOTIFY_OK;
1913 }
1914 
1915 /*
1916  * This kswapd start function will be called by init and node-hot-add.
1917  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
1918  */
1919 int kswapd_run(int nid)
1920 {
1921 	pg_data_t *pgdat = NODE_DATA(nid);
1922 	int ret = 0;
1923 
1924 	if (pgdat->kswapd)
1925 		return 0;
1926 
1927 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
1928 	if (IS_ERR(pgdat->kswapd)) {
1929 		/* failure at boot is fatal */
1930 		BUG_ON(system_state == SYSTEM_BOOTING);
1931 		printk("Failed to start kswapd on node %d\n",nid);
1932 		ret = -1;
1933 	}
1934 	return ret;
1935 }
1936 
1937 static int __init kswapd_init(void)
1938 {
1939 	int nid;
1940 
1941 	swap_setup();
1942 	for_each_node_state(nid, N_HIGH_MEMORY)
1943  		kswapd_run(nid);
1944 	hotcpu_notifier(cpu_callback, 0);
1945 	return 0;
1946 }
1947 
1948 module_init(kswapd_init)
1949 
1950 #ifdef CONFIG_NUMA
1951 /*
1952  * Zone reclaim mode
1953  *
1954  * If non-zero call zone_reclaim when the number of free pages falls below
1955  * the watermarks.
1956  */
1957 int zone_reclaim_mode __read_mostly;
1958 
1959 #define RECLAIM_OFF 0
1960 #define RECLAIM_ZONE (1<<0)	/* Run shrink_cache on the zone */
1961 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
1962 #define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
1963 
1964 /*
1965  * Priority for ZONE_RECLAIM. This determines the fraction of pages
1966  * of a node considered for each zone_reclaim. 4 scans 1/16th of
1967  * a zone.
1968  */
1969 #define ZONE_RECLAIM_PRIORITY 4
1970 
1971 /*
1972  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
1973  * occur.
1974  */
1975 int sysctl_min_unmapped_ratio = 1;
1976 
1977 /*
1978  * If the number of slab pages in a zone grows beyond this percentage then
1979  * slab reclaim needs to occur.
1980  */
1981 int sysctl_min_slab_ratio = 5;
1982 
1983 /*
1984  * Try to free up some pages from this zone through reclaim.
1985  */
1986 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
1987 {
1988 	/* Minimum pages needed in order to stay on node */
1989 	const unsigned long nr_pages = 1 << order;
1990 	struct task_struct *p = current;
1991 	struct reclaim_state reclaim_state;
1992 	int priority;
1993 	unsigned long nr_reclaimed = 0;
1994 	struct scan_control sc = {
1995 		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
1996 		.may_swap = !!(zone_reclaim_mode & RECLAIM_SWAP),
1997 		.swap_cluster_max = max_t(unsigned long, nr_pages,
1998 					SWAP_CLUSTER_MAX),
1999 		.gfp_mask = gfp_mask,
2000 		.swappiness = vm_swappiness,
2001 		.isolate_pages = isolate_pages_global,
2002 	};
2003 	unsigned long slab_reclaimable;
2004 
2005 	disable_swap_token();
2006 	cond_resched();
2007 	/*
2008 	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2009 	 * and we also need to be able to write out pages for RECLAIM_WRITE
2010 	 * and RECLAIM_SWAP.
2011 	 */
2012 	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
2013 	reclaim_state.reclaimed_slab = 0;
2014 	p->reclaim_state = &reclaim_state;
2015 
2016 	if (zone_page_state(zone, NR_FILE_PAGES) -
2017 		zone_page_state(zone, NR_FILE_MAPPED) >
2018 		zone->min_unmapped_pages) {
2019 		/*
2020 		 * Free memory by calling shrink zone with increasing
2021 		 * priorities until we have enough memory freed.
2022 		 */
2023 		priority = ZONE_RECLAIM_PRIORITY;
2024 		do {
2025 			note_zone_scanning_priority(zone, priority);
2026 			nr_reclaimed += shrink_zone(priority, zone, &sc);
2027 			priority--;
2028 		} while (priority >= 0 && nr_reclaimed < nr_pages);
2029 	}
2030 
2031 	slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2032 	if (slab_reclaimable > zone->min_slab_pages) {
2033 		/*
2034 		 * shrink_slab() does not currently allow us to determine how
2035 		 * many pages were freed in this zone. So we take the current
2036 		 * number of slab pages and shake the slab until it is reduced
2037 		 * by the same nr_pages that we used for reclaiming unmapped
2038 		 * pages.
2039 		 *
2040 		 * Note that shrink_slab will free memory on all zones and may
2041 		 * take a long time.
2042 		 */
2043 		while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
2044 			zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
2045 				slab_reclaimable - nr_pages)
2046 			;
2047 
2048 		/*
2049 		 * Update nr_reclaimed by the number of slab pages we
2050 		 * reclaimed from this zone.
2051 		 */
2052 		nr_reclaimed += slab_reclaimable -
2053 			zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2054 	}
2055 
2056 	p->reclaim_state = NULL;
2057 	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
2058 	return nr_reclaimed >= nr_pages;
2059 }
2060 
2061 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2062 {
2063 	int node_id;
2064 	int ret;
2065 
2066 	/*
2067 	 * Zone reclaim reclaims unmapped file backed pages and
2068 	 * slab pages if we are over the defined limits.
2069 	 *
2070 	 * A small portion of unmapped file backed pages is needed for
2071 	 * file I/O otherwise pages read by file I/O will be immediately
2072 	 * thrown out if the zone is overallocated. So we do not reclaim
2073 	 * if less than a specified percentage of the zone is used by
2074 	 * unmapped file backed pages.
2075 	 */
2076 	if (zone_page_state(zone, NR_FILE_PAGES) -
2077 	    zone_page_state(zone, NR_FILE_MAPPED) <= zone->min_unmapped_pages
2078 	    && zone_page_state(zone, NR_SLAB_RECLAIMABLE)
2079 			<= zone->min_slab_pages)
2080 		return 0;
2081 
2082 	if (zone_is_all_unreclaimable(zone))
2083 		return 0;
2084 
2085 	/*
2086 	 * Do not scan if the allocation should not be delayed.
2087 	 */
2088 	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
2089 			return 0;
2090 
2091 	/*
2092 	 * Only run zone reclaim on the local zone or on zones that do not
2093 	 * have associated processors. This will favor the local processor
2094 	 * over remote processors and spread off node memory allocations
2095 	 * as wide as possible.
2096 	 */
2097 	node_id = zone_to_nid(zone);
2098 	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
2099 		return 0;
2100 
2101 	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
2102 		return 0;
2103 	ret = __zone_reclaim(zone, gfp_mask, order);
2104 	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
2105 
2106 	return ret;
2107 }
2108 #endif
2109