1 /* 2 * linux/mm/vmscan.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * 6 * Swap reorganised 29.12.95, Stephen Tweedie. 7 * kswapd added: 7.1.96 sct 8 * Removed kswapd_ctl limits, and swap out as many pages as needed 9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 11 * Multiqueue VM started 5.8.00, Rik van Riel. 12 */ 13 14 #include <linux/mm.h> 15 #include <linux/module.h> 16 #include <linux/slab.h> 17 #include <linux/kernel_stat.h> 18 #include <linux/swap.h> 19 #include <linux/pagemap.h> 20 #include <linux/init.h> 21 #include <linux/highmem.h> 22 #include <linux/vmstat.h> 23 #include <linux/file.h> 24 #include <linux/writeback.h> 25 #include <linux/blkdev.h> 26 #include <linux/buffer_head.h> /* for try_to_release_page(), 27 buffer_heads_over_limit */ 28 #include <linux/mm_inline.h> 29 #include <linux/pagevec.h> 30 #include <linux/backing-dev.h> 31 #include <linux/rmap.h> 32 #include <linux/topology.h> 33 #include <linux/cpu.h> 34 #include <linux/cpuset.h> 35 #include <linux/notifier.h> 36 #include <linux/rwsem.h> 37 #include <linux/delay.h> 38 #include <linux/kthread.h> 39 #include <linux/freezer.h> 40 #include <linux/memcontrol.h> 41 42 #include <asm/tlbflush.h> 43 #include <asm/div64.h> 44 45 #include <linux/swapops.h> 46 47 #include "internal.h" 48 49 struct scan_control { 50 /* Incremented by the number of inactive pages that were scanned */ 51 unsigned long nr_scanned; 52 53 /* This context's GFP mask */ 54 gfp_t gfp_mask; 55 56 int may_writepage; 57 58 /* Can pages be swapped as part of reclaim? */ 59 int may_swap; 60 61 /* This context's SWAP_CLUSTER_MAX. If freeing memory for 62 * suspend, we effectively ignore SWAP_CLUSTER_MAX. 63 * In this context, it doesn't matter that we scan the 64 * whole list at once. */ 65 int swap_cluster_max; 66 67 int swappiness; 68 69 int all_unreclaimable; 70 71 int order; 72 73 /* 74 * Pages that have (or should have) IO pending. If we run into 75 * a lot of these, we're better off waiting a little for IO to 76 * finish rather than scanning more pages in the VM. 77 */ 78 int nr_io_pages; 79 80 /* Which cgroup do we reclaim from */ 81 struct mem_cgroup *mem_cgroup; 82 83 /* Pluggable isolate pages callback */ 84 unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst, 85 unsigned long *scanned, int order, int mode, 86 struct zone *z, struct mem_cgroup *mem_cont, 87 int active); 88 }; 89 90 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru)) 91 92 #ifdef ARCH_HAS_PREFETCH 93 #define prefetch_prev_lru_page(_page, _base, _field) \ 94 do { \ 95 if ((_page)->lru.prev != _base) { \ 96 struct page *prev; \ 97 \ 98 prev = lru_to_page(&(_page->lru)); \ 99 prefetch(&prev->_field); \ 100 } \ 101 } while (0) 102 #else 103 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0) 104 #endif 105 106 #ifdef ARCH_HAS_PREFETCHW 107 #define prefetchw_prev_lru_page(_page, _base, _field) \ 108 do { \ 109 if ((_page)->lru.prev != _base) { \ 110 struct page *prev; \ 111 \ 112 prev = lru_to_page(&(_page->lru)); \ 113 prefetchw(&prev->_field); \ 114 } \ 115 } while (0) 116 #else 117 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 118 #endif 119 120 /* 121 * From 0 .. 100. Higher means more swappy. 122 */ 123 int vm_swappiness = 60; 124 long vm_total_pages; /* The total number of pages which the VM controls */ 125 126 static LIST_HEAD(shrinker_list); 127 static DECLARE_RWSEM(shrinker_rwsem); 128 129 #ifdef CONFIG_CGROUP_MEM_CONT 130 #define scan_global_lru(sc) (!(sc)->mem_cgroup) 131 #else 132 #define scan_global_lru(sc) (1) 133 #endif 134 135 /* 136 * Add a shrinker callback to be called from the vm 137 */ 138 void register_shrinker(struct shrinker *shrinker) 139 { 140 shrinker->nr = 0; 141 down_write(&shrinker_rwsem); 142 list_add_tail(&shrinker->list, &shrinker_list); 143 up_write(&shrinker_rwsem); 144 } 145 EXPORT_SYMBOL(register_shrinker); 146 147 /* 148 * Remove one 149 */ 150 void unregister_shrinker(struct shrinker *shrinker) 151 { 152 down_write(&shrinker_rwsem); 153 list_del(&shrinker->list); 154 up_write(&shrinker_rwsem); 155 } 156 EXPORT_SYMBOL(unregister_shrinker); 157 158 #define SHRINK_BATCH 128 159 /* 160 * Call the shrink functions to age shrinkable caches 161 * 162 * Here we assume it costs one seek to replace a lru page and that it also 163 * takes a seek to recreate a cache object. With this in mind we age equal 164 * percentages of the lru and ageable caches. This should balance the seeks 165 * generated by these structures. 166 * 167 * If the vm encountered mapped pages on the LRU it increase the pressure on 168 * slab to avoid swapping. 169 * 170 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits. 171 * 172 * `lru_pages' represents the number of on-LRU pages in all the zones which 173 * are eligible for the caller's allocation attempt. It is used for balancing 174 * slab reclaim versus page reclaim. 175 * 176 * Returns the number of slab objects which we shrunk. 177 */ 178 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask, 179 unsigned long lru_pages) 180 { 181 struct shrinker *shrinker; 182 unsigned long ret = 0; 183 184 if (scanned == 0) 185 scanned = SWAP_CLUSTER_MAX; 186 187 if (!down_read_trylock(&shrinker_rwsem)) 188 return 1; /* Assume we'll be able to shrink next time */ 189 190 list_for_each_entry(shrinker, &shrinker_list, list) { 191 unsigned long long delta; 192 unsigned long total_scan; 193 unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask); 194 195 delta = (4 * scanned) / shrinker->seeks; 196 delta *= max_pass; 197 do_div(delta, lru_pages + 1); 198 shrinker->nr += delta; 199 if (shrinker->nr < 0) { 200 printk(KERN_ERR "%s: nr=%ld\n", 201 __FUNCTION__, shrinker->nr); 202 shrinker->nr = max_pass; 203 } 204 205 /* 206 * Avoid risking looping forever due to too large nr value: 207 * never try to free more than twice the estimate number of 208 * freeable entries. 209 */ 210 if (shrinker->nr > max_pass * 2) 211 shrinker->nr = max_pass * 2; 212 213 total_scan = shrinker->nr; 214 shrinker->nr = 0; 215 216 while (total_scan >= SHRINK_BATCH) { 217 long this_scan = SHRINK_BATCH; 218 int shrink_ret; 219 int nr_before; 220 221 nr_before = (*shrinker->shrink)(0, gfp_mask); 222 shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask); 223 if (shrink_ret == -1) 224 break; 225 if (shrink_ret < nr_before) 226 ret += nr_before - shrink_ret; 227 count_vm_events(SLABS_SCANNED, this_scan); 228 total_scan -= this_scan; 229 230 cond_resched(); 231 } 232 233 shrinker->nr += total_scan; 234 } 235 up_read(&shrinker_rwsem); 236 return ret; 237 } 238 239 /* Called without lock on whether page is mapped, so answer is unstable */ 240 static inline int page_mapping_inuse(struct page *page) 241 { 242 struct address_space *mapping; 243 244 /* Page is in somebody's page tables. */ 245 if (page_mapped(page)) 246 return 1; 247 248 /* Be more reluctant to reclaim swapcache than pagecache */ 249 if (PageSwapCache(page)) 250 return 1; 251 252 mapping = page_mapping(page); 253 if (!mapping) 254 return 0; 255 256 /* File is mmap'd by somebody? */ 257 return mapping_mapped(mapping); 258 } 259 260 static inline int is_page_cache_freeable(struct page *page) 261 { 262 return page_count(page) - !!PagePrivate(page) == 2; 263 } 264 265 static int may_write_to_queue(struct backing_dev_info *bdi) 266 { 267 if (current->flags & PF_SWAPWRITE) 268 return 1; 269 if (!bdi_write_congested(bdi)) 270 return 1; 271 if (bdi == current->backing_dev_info) 272 return 1; 273 return 0; 274 } 275 276 /* 277 * We detected a synchronous write error writing a page out. Probably 278 * -ENOSPC. We need to propagate that into the address_space for a subsequent 279 * fsync(), msync() or close(). 280 * 281 * The tricky part is that after writepage we cannot touch the mapping: nothing 282 * prevents it from being freed up. But we have a ref on the page and once 283 * that page is locked, the mapping is pinned. 284 * 285 * We're allowed to run sleeping lock_page() here because we know the caller has 286 * __GFP_FS. 287 */ 288 static void handle_write_error(struct address_space *mapping, 289 struct page *page, int error) 290 { 291 lock_page(page); 292 if (page_mapping(page) == mapping) 293 mapping_set_error(mapping, error); 294 unlock_page(page); 295 } 296 297 /* Request for sync pageout. */ 298 enum pageout_io { 299 PAGEOUT_IO_ASYNC, 300 PAGEOUT_IO_SYNC, 301 }; 302 303 /* possible outcome of pageout() */ 304 typedef enum { 305 /* failed to write page out, page is locked */ 306 PAGE_KEEP, 307 /* move page to the active list, page is locked */ 308 PAGE_ACTIVATE, 309 /* page has been sent to the disk successfully, page is unlocked */ 310 PAGE_SUCCESS, 311 /* page is clean and locked */ 312 PAGE_CLEAN, 313 } pageout_t; 314 315 /* 316 * pageout is called by shrink_page_list() for each dirty page. 317 * Calls ->writepage(). 318 */ 319 static pageout_t pageout(struct page *page, struct address_space *mapping, 320 enum pageout_io sync_writeback) 321 { 322 /* 323 * If the page is dirty, only perform writeback if that write 324 * will be non-blocking. To prevent this allocation from being 325 * stalled by pagecache activity. But note that there may be 326 * stalls if we need to run get_block(). We could test 327 * PagePrivate for that. 328 * 329 * If this process is currently in generic_file_write() against 330 * this page's queue, we can perform writeback even if that 331 * will block. 332 * 333 * If the page is swapcache, write it back even if that would 334 * block, for some throttling. This happens by accident, because 335 * swap_backing_dev_info is bust: it doesn't reflect the 336 * congestion state of the swapdevs. Easy to fix, if needed. 337 * See swapfile.c:page_queue_congested(). 338 */ 339 if (!is_page_cache_freeable(page)) 340 return PAGE_KEEP; 341 if (!mapping) { 342 /* 343 * Some data journaling orphaned pages can have 344 * page->mapping == NULL while being dirty with clean buffers. 345 */ 346 if (PagePrivate(page)) { 347 if (try_to_free_buffers(page)) { 348 ClearPageDirty(page); 349 printk("%s: orphaned page\n", __FUNCTION__); 350 return PAGE_CLEAN; 351 } 352 } 353 return PAGE_KEEP; 354 } 355 if (mapping->a_ops->writepage == NULL) 356 return PAGE_ACTIVATE; 357 if (!may_write_to_queue(mapping->backing_dev_info)) 358 return PAGE_KEEP; 359 360 if (clear_page_dirty_for_io(page)) { 361 int res; 362 struct writeback_control wbc = { 363 .sync_mode = WB_SYNC_NONE, 364 .nr_to_write = SWAP_CLUSTER_MAX, 365 .range_start = 0, 366 .range_end = LLONG_MAX, 367 .nonblocking = 1, 368 .for_reclaim = 1, 369 }; 370 371 SetPageReclaim(page); 372 res = mapping->a_ops->writepage(page, &wbc); 373 if (res < 0) 374 handle_write_error(mapping, page, res); 375 if (res == AOP_WRITEPAGE_ACTIVATE) { 376 ClearPageReclaim(page); 377 return PAGE_ACTIVATE; 378 } 379 380 /* 381 * Wait on writeback if requested to. This happens when 382 * direct reclaiming a large contiguous area and the 383 * first attempt to free a range of pages fails. 384 */ 385 if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC) 386 wait_on_page_writeback(page); 387 388 if (!PageWriteback(page)) { 389 /* synchronous write or broken a_ops? */ 390 ClearPageReclaim(page); 391 } 392 inc_zone_page_state(page, NR_VMSCAN_WRITE); 393 return PAGE_SUCCESS; 394 } 395 396 return PAGE_CLEAN; 397 } 398 399 /* 400 * Attempt to detach a locked page from its ->mapping. If it is dirty or if 401 * someone else has a ref on the page, abort and return 0. If it was 402 * successfully detached, return 1. Assumes the caller has a single ref on 403 * this page. 404 */ 405 int remove_mapping(struct address_space *mapping, struct page *page) 406 { 407 BUG_ON(!PageLocked(page)); 408 BUG_ON(mapping != page_mapping(page)); 409 410 write_lock_irq(&mapping->tree_lock); 411 /* 412 * The non racy check for a busy page. 413 * 414 * Must be careful with the order of the tests. When someone has 415 * a ref to the page, it may be possible that they dirty it then 416 * drop the reference. So if PageDirty is tested before page_count 417 * here, then the following race may occur: 418 * 419 * get_user_pages(&page); 420 * [user mapping goes away] 421 * write_to(page); 422 * !PageDirty(page) [good] 423 * SetPageDirty(page); 424 * put_page(page); 425 * !page_count(page) [good, discard it] 426 * 427 * [oops, our write_to data is lost] 428 * 429 * Reversing the order of the tests ensures such a situation cannot 430 * escape unnoticed. The smp_rmb is needed to ensure the page->flags 431 * load is not satisfied before that of page->_count. 432 * 433 * Note that if SetPageDirty is always performed via set_page_dirty, 434 * and thus under tree_lock, then this ordering is not required. 435 */ 436 if (unlikely(page_count(page) != 2)) 437 goto cannot_free; 438 smp_rmb(); 439 if (unlikely(PageDirty(page))) 440 goto cannot_free; 441 442 if (PageSwapCache(page)) { 443 swp_entry_t swap = { .val = page_private(page) }; 444 __delete_from_swap_cache(page); 445 write_unlock_irq(&mapping->tree_lock); 446 swap_free(swap); 447 __put_page(page); /* The pagecache ref */ 448 return 1; 449 } 450 451 __remove_from_page_cache(page); 452 write_unlock_irq(&mapping->tree_lock); 453 __put_page(page); 454 return 1; 455 456 cannot_free: 457 write_unlock_irq(&mapping->tree_lock); 458 return 0; 459 } 460 461 /* 462 * shrink_page_list() returns the number of reclaimed pages 463 */ 464 static unsigned long shrink_page_list(struct list_head *page_list, 465 struct scan_control *sc, 466 enum pageout_io sync_writeback) 467 { 468 LIST_HEAD(ret_pages); 469 struct pagevec freed_pvec; 470 int pgactivate = 0; 471 unsigned long nr_reclaimed = 0; 472 473 cond_resched(); 474 475 pagevec_init(&freed_pvec, 1); 476 while (!list_empty(page_list)) { 477 struct address_space *mapping; 478 struct page *page; 479 int may_enter_fs; 480 int referenced; 481 482 cond_resched(); 483 484 page = lru_to_page(page_list); 485 list_del(&page->lru); 486 487 if (TestSetPageLocked(page)) 488 goto keep; 489 490 VM_BUG_ON(PageActive(page)); 491 492 sc->nr_scanned++; 493 494 if (!sc->may_swap && page_mapped(page)) 495 goto keep_locked; 496 497 /* Double the slab pressure for mapped and swapcache pages */ 498 if (page_mapped(page) || PageSwapCache(page)) 499 sc->nr_scanned++; 500 501 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 502 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 503 504 if (PageWriteback(page)) { 505 /* 506 * Synchronous reclaim is performed in two passes, 507 * first an asynchronous pass over the list to 508 * start parallel writeback, and a second synchronous 509 * pass to wait for the IO to complete. Wait here 510 * for any page for which writeback has already 511 * started. 512 */ 513 if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs) 514 wait_on_page_writeback(page); 515 else { 516 sc->nr_io_pages++; 517 goto keep_locked; 518 } 519 } 520 521 referenced = page_referenced(page, 1, sc->mem_cgroup); 522 /* In active use or really unfreeable? Activate it. */ 523 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && 524 referenced && page_mapping_inuse(page)) 525 goto activate_locked; 526 527 #ifdef CONFIG_SWAP 528 /* 529 * Anonymous process memory has backing store? 530 * Try to allocate it some swap space here. 531 */ 532 if (PageAnon(page) && !PageSwapCache(page)) 533 if (!add_to_swap(page, GFP_ATOMIC)) 534 goto activate_locked; 535 #endif /* CONFIG_SWAP */ 536 537 mapping = page_mapping(page); 538 539 /* 540 * The page is mapped into the page tables of one or more 541 * processes. Try to unmap it here. 542 */ 543 if (page_mapped(page) && mapping) { 544 switch (try_to_unmap(page, 0)) { 545 case SWAP_FAIL: 546 goto activate_locked; 547 case SWAP_AGAIN: 548 goto keep_locked; 549 case SWAP_SUCCESS: 550 ; /* try to free the page below */ 551 } 552 } 553 554 if (PageDirty(page)) { 555 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && referenced) 556 goto keep_locked; 557 if (!may_enter_fs) { 558 sc->nr_io_pages++; 559 goto keep_locked; 560 } 561 if (!sc->may_writepage) 562 goto keep_locked; 563 564 /* Page is dirty, try to write it out here */ 565 switch (pageout(page, mapping, sync_writeback)) { 566 case PAGE_KEEP: 567 goto keep_locked; 568 case PAGE_ACTIVATE: 569 goto activate_locked; 570 case PAGE_SUCCESS: 571 if (PageWriteback(page) || PageDirty(page)) { 572 sc->nr_io_pages++; 573 goto keep; 574 } 575 /* 576 * A synchronous write - probably a ramdisk. Go 577 * ahead and try to reclaim the page. 578 */ 579 if (TestSetPageLocked(page)) 580 goto keep; 581 if (PageDirty(page) || PageWriteback(page)) 582 goto keep_locked; 583 mapping = page_mapping(page); 584 case PAGE_CLEAN: 585 ; /* try to free the page below */ 586 } 587 } 588 589 /* 590 * If the page has buffers, try to free the buffer mappings 591 * associated with this page. If we succeed we try to free 592 * the page as well. 593 * 594 * We do this even if the page is PageDirty(). 595 * try_to_release_page() does not perform I/O, but it is 596 * possible for a page to have PageDirty set, but it is actually 597 * clean (all its buffers are clean). This happens if the 598 * buffers were written out directly, with submit_bh(). ext3 599 * will do this, as well as the blockdev mapping. 600 * try_to_release_page() will discover that cleanness and will 601 * drop the buffers and mark the page clean - it can be freed. 602 * 603 * Rarely, pages can have buffers and no ->mapping. These are 604 * the pages which were not successfully invalidated in 605 * truncate_complete_page(). We try to drop those buffers here 606 * and if that worked, and the page is no longer mapped into 607 * process address space (page_count == 1) it can be freed. 608 * Otherwise, leave the page on the LRU so it is swappable. 609 */ 610 if (PagePrivate(page)) { 611 if (!try_to_release_page(page, sc->gfp_mask)) 612 goto activate_locked; 613 if (!mapping && page_count(page) == 1) 614 goto free_it; 615 } 616 617 if (!mapping || !remove_mapping(mapping, page)) 618 goto keep_locked; 619 620 free_it: 621 unlock_page(page); 622 nr_reclaimed++; 623 if (!pagevec_add(&freed_pvec, page)) 624 __pagevec_release_nonlru(&freed_pvec); 625 continue; 626 627 activate_locked: 628 SetPageActive(page); 629 pgactivate++; 630 keep_locked: 631 unlock_page(page); 632 keep: 633 list_add(&page->lru, &ret_pages); 634 VM_BUG_ON(PageLRU(page)); 635 } 636 list_splice(&ret_pages, page_list); 637 if (pagevec_count(&freed_pvec)) 638 __pagevec_release_nonlru(&freed_pvec); 639 count_vm_events(PGACTIVATE, pgactivate); 640 return nr_reclaimed; 641 } 642 643 /* LRU Isolation modes. */ 644 #define ISOLATE_INACTIVE 0 /* Isolate inactive pages. */ 645 #define ISOLATE_ACTIVE 1 /* Isolate active pages. */ 646 #define ISOLATE_BOTH 2 /* Isolate both active and inactive pages. */ 647 648 /* 649 * Attempt to remove the specified page from its LRU. Only take this page 650 * if it is of the appropriate PageActive status. Pages which are being 651 * freed elsewhere are also ignored. 652 * 653 * page: page to consider 654 * mode: one of the LRU isolation modes defined above 655 * 656 * returns 0 on success, -ve errno on failure. 657 */ 658 int __isolate_lru_page(struct page *page, int mode) 659 { 660 int ret = -EINVAL; 661 662 /* Only take pages on the LRU. */ 663 if (!PageLRU(page)) 664 return ret; 665 666 /* 667 * When checking the active state, we need to be sure we are 668 * dealing with comparible boolean values. Take the logical not 669 * of each. 670 */ 671 if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode)) 672 return ret; 673 674 ret = -EBUSY; 675 if (likely(get_page_unless_zero(page))) { 676 /* 677 * Be careful not to clear PageLRU until after we're 678 * sure the page is not being freed elsewhere -- the 679 * page release code relies on it. 680 */ 681 ClearPageLRU(page); 682 ret = 0; 683 } 684 685 return ret; 686 } 687 688 /* 689 * zone->lru_lock is heavily contended. Some of the functions that 690 * shrink the lists perform better by taking out a batch of pages 691 * and working on them outside the LRU lock. 692 * 693 * For pagecache intensive workloads, this function is the hottest 694 * spot in the kernel (apart from copy_*_user functions). 695 * 696 * Appropriate locks must be held before calling this function. 697 * 698 * @nr_to_scan: The number of pages to look through on the list. 699 * @src: The LRU list to pull pages off. 700 * @dst: The temp list to put pages on to. 701 * @scanned: The number of pages that were scanned. 702 * @order: The caller's attempted allocation order 703 * @mode: One of the LRU isolation modes 704 * 705 * returns how many pages were moved onto *@dst. 706 */ 707 static unsigned long isolate_lru_pages(unsigned long nr_to_scan, 708 struct list_head *src, struct list_head *dst, 709 unsigned long *scanned, int order, int mode) 710 { 711 unsigned long nr_taken = 0; 712 unsigned long scan; 713 714 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) { 715 struct page *page; 716 unsigned long pfn; 717 unsigned long end_pfn; 718 unsigned long page_pfn; 719 int zone_id; 720 721 page = lru_to_page(src); 722 prefetchw_prev_lru_page(page, src, flags); 723 724 VM_BUG_ON(!PageLRU(page)); 725 726 switch (__isolate_lru_page(page, mode)) { 727 case 0: 728 list_move(&page->lru, dst); 729 nr_taken++; 730 break; 731 732 case -EBUSY: 733 /* else it is being freed elsewhere */ 734 list_move(&page->lru, src); 735 continue; 736 737 default: 738 BUG(); 739 } 740 741 if (!order) 742 continue; 743 744 /* 745 * Attempt to take all pages in the order aligned region 746 * surrounding the tag page. Only take those pages of 747 * the same active state as that tag page. We may safely 748 * round the target page pfn down to the requested order 749 * as the mem_map is guarenteed valid out to MAX_ORDER, 750 * where that page is in a different zone we will detect 751 * it from its zone id and abort this block scan. 752 */ 753 zone_id = page_zone_id(page); 754 page_pfn = page_to_pfn(page); 755 pfn = page_pfn & ~((1 << order) - 1); 756 end_pfn = pfn + (1 << order); 757 for (; pfn < end_pfn; pfn++) { 758 struct page *cursor_page; 759 760 /* The target page is in the block, ignore it. */ 761 if (unlikely(pfn == page_pfn)) 762 continue; 763 764 /* Avoid holes within the zone. */ 765 if (unlikely(!pfn_valid_within(pfn))) 766 break; 767 768 cursor_page = pfn_to_page(pfn); 769 /* Check that we have not crossed a zone boundary. */ 770 if (unlikely(page_zone_id(cursor_page) != zone_id)) 771 continue; 772 switch (__isolate_lru_page(cursor_page, mode)) { 773 case 0: 774 list_move(&cursor_page->lru, dst); 775 nr_taken++; 776 scan++; 777 break; 778 779 case -EBUSY: 780 /* else it is being freed elsewhere */ 781 list_move(&cursor_page->lru, src); 782 default: 783 break; 784 } 785 } 786 } 787 788 *scanned = scan; 789 return nr_taken; 790 } 791 792 static unsigned long isolate_pages_global(unsigned long nr, 793 struct list_head *dst, 794 unsigned long *scanned, int order, 795 int mode, struct zone *z, 796 struct mem_cgroup *mem_cont, 797 int active) 798 { 799 if (active) 800 return isolate_lru_pages(nr, &z->active_list, dst, 801 scanned, order, mode); 802 else 803 return isolate_lru_pages(nr, &z->inactive_list, dst, 804 scanned, order, mode); 805 } 806 807 /* 808 * clear_active_flags() is a helper for shrink_active_list(), clearing 809 * any active bits from the pages in the list. 810 */ 811 static unsigned long clear_active_flags(struct list_head *page_list) 812 { 813 int nr_active = 0; 814 struct page *page; 815 816 list_for_each_entry(page, page_list, lru) 817 if (PageActive(page)) { 818 ClearPageActive(page); 819 nr_active++; 820 } 821 822 return nr_active; 823 } 824 825 /* 826 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number 827 * of reclaimed pages 828 */ 829 static unsigned long shrink_inactive_list(unsigned long max_scan, 830 struct zone *zone, struct scan_control *sc) 831 { 832 LIST_HEAD(page_list); 833 struct pagevec pvec; 834 unsigned long nr_scanned = 0; 835 unsigned long nr_reclaimed = 0; 836 837 pagevec_init(&pvec, 1); 838 839 lru_add_drain(); 840 spin_lock_irq(&zone->lru_lock); 841 do { 842 struct page *page; 843 unsigned long nr_taken; 844 unsigned long nr_scan; 845 unsigned long nr_freed; 846 unsigned long nr_active; 847 848 nr_taken = sc->isolate_pages(sc->swap_cluster_max, 849 &page_list, &nr_scan, sc->order, 850 (sc->order > PAGE_ALLOC_COSTLY_ORDER)? 851 ISOLATE_BOTH : ISOLATE_INACTIVE, 852 zone, sc->mem_cgroup, 0); 853 nr_active = clear_active_flags(&page_list); 854 __count_vm_events(PGDEACTIVATE, nr_active); 855 856 __mod_zone_page_state(zone, NR_ACTIVE, -nr_active); 857 __mod_zone_page_state(zone, NR_INACTIVE, 858 -(nr_taken - nr_active)); 859 if (scan_global_lru(sc)) 860 zone->pages_scanned += nr_scan; 861 spin_unlock_irq(&zone->lru_lock); 862 863 nr_scanned += nr_scan; 864 nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC); 865 866 /* 867 * If we are direct reclaiming for contiguous pages and we do 868 * not reclaim everything in the list, try again and wait 869 * for IO to complete. This will stall high-order allocations 870 * but that should be acceptable to the caller 871 */ 872 if (nr_freed < nr_taken && !current_is_kswapd() && 873 sc->order > PAGE_ALLOC_COSTLY_ORDER) { 874 congestion_wait(WRITE, HZ/10); 875 876 /* 877 * The attempt at page out may have made some 878 * of the pages active, mark them inactive again. 879 */ 880 nr_active = clear_active_flags(&page_list); 881 count_vm_events(PGDEACTIVATE, nr_active); 882 883 nr_freed += shrink_page_list(&page_list, sc, 884 PAGEOUT_IO_SYNC); 885 } 886 887 nr_reclaimed += nr_freed; 888 local_irq_disable(); 889 if (current_is_kswapd()) { 890 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scan); 891 __count_vm_events(KSWAPD_STEAL, nr_freed); 892 } else if (scan_global_lru(sc)) 893 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scan); 894 895 __count_zone_vm_events(PGSTEAL, zone, nr_freed); 896 897 if (nr_taken == 0) 898 goto done; 899 900 spin_lock(&zone->lru_lock); 901 /* 902 * Put back any unfreeable pages. 903 */ 904 while (!list_empty(&page_list)) { 905 page = lru_to_page(&page_list); 906 VM_BUG_ON(PageLRU(page)); 907 SetPageLRU(page); 908 list_del(&page->lru); 909 if (PageActive(page)) 910 add_page_to_active_list(zone, page); 911 else 912 add_page_to_inactive_list(zone, page); 913 if (!pagevec_add(&pvec, page)) { 914 spin_unlock_irq(&zone->lru_lock); 915 __pagevec_release(&pvec); 916 spin_lock_irq(&zone->lru_lock); 917 } 918 } 919 } while (nr_scanned < max_scan); 920 spin_unlock(&zone->lru_lock); 921 done: 922 local_irq_enable(); 923 pagevec_release(&pvec); 924 return nr_reclaimed; 925 } 926 927 /* 928 * We are about to scan this zone at a certain priority level. If that priority 929 * level is smaller (ie: more urgent) than the previous priority, then note 930 * that priority level within the zone. This is done so that when the next 931 * process comes in to scan this zone, it will immediately start out at this 932 * priority level rather than having to build up its own scanning priority. 933 * Here, this priority affects only the reclaim-mapped threshold. 934 */ 935 static inline void note_zone_scanning_priority(struct zone *zone, int priority) 936 { 937 if (priority < zone->prev_priority) 938 zone->prev_priority = priority; 939 } 940 941 static inline int zone_is_near_oom(struct zone *zone) 942 { 943 return zone->pages_scanned >= (zone_page_state(zone, NR_ACTIVE) 944 + zone_page_state(zone, NR_INACTIVE))*3; 945 } 946 947 /* 948 * Determine we should try to reclaim mapped pages. 949 * This is called only when sc->mem_cgroup is NULL. 950 */ 951 static int calc_reclaim_mapped(struct scan_control *sc, struct zone *zone, 952 int priority) 953 { 954 long mapped_ratio; 955 long distress; 956 long swap_tendency; 957 long imbalance; 958 int reclaim_mapped = 0; 959 int prev_priority; 960 961 if (scan_global_lru(sc) && zone_is_near_oom(zone)) 962 return 1; 963 /* 964 * `distress' is a measure of how much trouble we're having 965 * reclaiming pages. 0 -> no problems. 100 -> great trouble. 966 */ 967 if (scan_global_lru(sc)) 968 prev_priority = zone->prev_priority; 969 else 970 prev_priority = mem_cgroup_get_reclaim_priority(sc->mem_cgroup); 971 972 distress = 100 >> min(prev_priority, priority); 973 974 /* 975 * The point of this algorithm is to decide when to start 976 * reclaiming mapped memory instead of just pagecache. Work out 977 * how much memory 978 * is mapped. 979 */ 980 if (scan_global_lru(sc)) 981 mapped_ratio = ((global_page_state(NR_FILE_MAPPED) + 982 global_page_state(NR_ANON_PAGES)) * 100) / 983 vm_total_pages; 984 else 985 mapped_ratio = mem_cgroup_calc_mapped_ratio(sc->mem_cgroup); 986 987 /* 988 * Now decide how much we really want to unmap some pages. The 989 * mapped ratio is downgraded - just because there's a lot of 990 * mapped memory doesn't necessarily mean that page reclaim 991 * isn't succeeding. 992 * 993 * The distress ratio is important - we don't want to start 994 * going oom. 995 * 996 * A 100% value of vm_swappiness overrides this algorithm 997 * altogether. 998 */ 999 swap_tendency = mapped_ratio / 2 + distress + sc->swappiness; 1000 1001 /* 1002 * If there's huge imbalance between active and inactive 1003 * (think active 100 times larger than inactive) we should 1004 * become more permissive, or the system will take too much 1005 * cpu before it start swapping during memory pressure. 1006 * Distress is about avoiding early-oom, this is about 1007 * making swappiness graceful despite setting it to low 1008 * values. 1009 * 1010 * Avoid div by zero with nr_inactive+1, and max resulting 1011 * value is vm_total_pages. 1012 */ 1013 if (scan_global_lru(sc)) { 1014 imbalance = zone_page_state(zone, NR_ACTIVE); 1015 imbalance /= zone_page_state(zone, NR_INACTIVE) + 1; 1016 } else 1017 imbalance = mem_cgroup_reclaim_imbalance(sc->mem_cgroup); 1018 1019 /* 1020 * Reduce the effect of imbalance if swappiness is low, 1021 * this means for a swappiness very low, the imbalance 1022 * must be much higher than 100 for this logic to make 1023 * the difference. 1024 * 1025 * Max temporary value is vm_total_pages*100. 1026 */ 1027 imbalance *= (vm_swappiness + 1); 1028 imbalance /= 100; 1029 1030 /* 1031 * If not much of the ram is mapped, makes the imbalance 1032 * less relevant, it's high priority we refill the inactive 1033 * list with mapped pages only in presence of high ratio of 1034 * mapped pages. 1035 * 1036 * Max temporary value is vm_total_pages*100. 1037 */ 1038 imbalance *= mapped_ratio; 1039 imbalance /= 100; 1040 1041 /* apply imbalance feedback to swap_tendency */ 1042 swap_tendency += imbalance; 1043 1044 /* 1045 * Now use this metric to decide whether to start moving mapped 1046 * memory onto the inactive list. 1047 */ 1048 if (swap_tendency >= 100) 1049 reclaim_mapped = 1; 1050 1051 return reclaim_mapped; 1052 } 1053 1054 /* 1055 * This moves pages from the active list to the inactive list. 1056 * 1057 * We move them the other way if the page is referenced by one or more 1058 * processes, from rmap. 1059 * 1060 * If the pages are mostly unmapped, the processing is fast and it is 1061 * appropriate to hold zone->lru_lock across the whole operation. But if 1062 * the pages are mapped, the processing is slow (page_referenced()) so we 1063 * should drop zone->lru_lock around each page. It's impossible to balance 1064 * this, so instead we remove the pages from the LRU while processing them. 1065 * It is safe to rely on PG_active against the non-LRU pages in here because 1066 * nobody will play with that bit on a non-LRU page. 1067 * 1068 * The downside is that we have to touch page->_count against each page. 1069 * But we had to alter page->flags anyway. 1070 */ 1071 1072 1073 static void shrink_active_list(unsigned long nr_pages, struct zone *zone, 1074 struct scan_control *sc, int priority) 1075 { 1076 unsigned long pgmoved; 1077 int pgdeactivate = 0; 1078 unsigned long pgscanned; 1079 LIST_HEAD(l_hold); /* The pages which were snipped off */ 1080 LIST_HEAD(l_inactive); /* Pages to go onto the inactive_list */ 1081 LIST_HEAD(l_active); /* Pages to go onto the active_list */ 1082 struct page *page; 1083 struct pagevec pvec; 1084 int reclaim_mapped = 0; 1085 1086 if (sc->may_swap) 1087 reclaim_mapped = calc_reclaim_mapped(sc, zone, priority); 1088 1089 lru_add_drain(); 1090 spin_lock_irq(&zone->lru_lock); 1091 pgmoved = sc->isolate_pages(nr_pages, &l_hold, &pgscanned, sc->order, 1092 ISOLATE_ACTIVE, zone, 1093 sc->mem_cgroup, 1); 1094 /* 1095 * zone->pages_scanned is used for detect zone's oom 1096 * mem_cgroup remembers nr_scan by itself. 1097 */ 1098 if (scan_global_lru(sc)) 1099 zone->pages_scanned += pgscanned; 1100 1101 __mod_zone_page_state(zone, NR_ACTIVE, -pgmoved); 1102 spin_unlock_irq(&zone->lru_lock); 1103 1104 while (!list_empty(&l_hold)) { 1105 cond_resched(); 1106 page = lru_to_page(&l_hold); 1107 list_del(&page->lru); 1108 if (page_mapped(page)) { 1109 if (!reclaim_mapped || 1110 (total_swap_pages == 0 && PageAnon(page)) || 1111 page_referenced(page, 0, sc->mem_cgroup)) { 1112 list_add(&page->lru, &l_active); 1113 continue; 1114 } 1115 } 1116 list_add(&page->lru, &l_inactive); 1117 } 1118 1119 pagevec_init(&pvec, 1); 1120 pgmoved = 0; 1121 spin_lock_irq(&zone->lru_lock); 1122 while (!list_empty(&l_inactive)) { 1123 page = lru_to_page(&l_inactive); 1124 prefetchw_prev_lru_page(page, &l_inactive, flags); 1125 VM_BUG_ON(PageLRU(page)); 1126 SetPageLRU(page); 1127 VM_BUG_ON(!PageActive(page)); 1128 ClearPageActive(page); 1129 1130 list_move(&page->lru, &zone->inactive_list); 1131 mem_cgroup_move_lists(page_get_page_cgroup(page), false); 1132 pgmoved++; 1133 if (!pagevec_add(&pvec, page)) { 1134 __mod_zone_page_state(zone, NR_INACTIVE, pgmoved); 1135 spin_unlock_irq(&zone->lru_lock); 1136 pgdeactivate += pgmoved; 1137 pgmoved = 0; 1138 if (buffer_heads_over_limit) 1139 pagevec_strip(&pvec); 1140 __pagevec_release(&pvec); 1141 spin_lock_irq(&zone->lru_lock); 1142 } 1143 } 1144 __mod_zone_page_state(zone, NR_INACTIVE, pgmoved); 1145 pgdeactivate += pgmoved; 1146 if (buffer_heads_over_limit) { 1147 spin_unlock_irq(&zone->lru_lock); 1148 pagevec_strip(&pvec); 1149 spin_lock_irq(&zone->lru_lock); 1150 } 1151 1152 pgmoved = 0; 1153 while (!list_empty(&l_active)) { 1154 page = lru_to_page(&l_active); 1155 prefetchw_prev_lru_page(page, &l_active, flags); 1156 VM_BUG_ON(PageLRU(page)); 1157 SetPageLRU(page); 1158 VM_BUG_ON(!PageActive(page)); 1159 list_move(&page->lru, &zone->active_list); 1160 mem_cgroup_move_lists(page_get_page_cgroup(page), true); 1161 pgmoved++; 1162 if (!pagevec_add(&pvec, page)) { 1163 __mod_zone_page_state(zone, NR_ACTIVE, pgmoved); 1164 pgmoved = 0; 1165 spin_unlock_irq(&zone->lru_lock); 1166 __pagevec_release(&pvec); 1167 spin_lock_irq(&zone->lru_lock); 1168 } 1169 } 1170 __mod_zone_page_state(zone, NR_ACTIVE, pgmoved); 1171 1172 __count_zone_vm_events(PGREFILL, zone, pgscanned); 1173 __count_vm_events(PGDEACTIVATE, pgdeactivate); 1174 spin_unlock_irq(&zone->lru_lock); 1175 1176 pagevec_release(&pvec); 1177 } 1178 1179 /* 1180 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim. 1181 */ 1182 static unsigned long shrink_zone(int priority, struct zone *zone, 1183 struct scan_control *sc) 1184 { 1185 unsigned long nr_active; 1186 unsigned long nr_inactive; 1187 unsigned long nr_to_scan; 1188 unsigned long nr_reclaimed = 0; 1189 1190 if (scan_global_lru(sc)) { 1191 /* 1192 * Add one to nr_to_scan just to make sure that the kernel 1193 * will slowly sift through the active list. 1194 */ 1195 zone->nr_scan_active += 1196 (zone_page_state(zone, NR_ACTIVE) >> priority) + 1; 1197 nr_active = zone->nr_scan_active; 1198 zone->nr_scan_inactive += 1199 (zone_page_state(zone, NR_INACTIVE) >> priority) + 1; 1200 nr_inactive = zone->nr_scan_inactive; 1201 if (nr_inactive >= sc->swap_cluster_max) 1202 zone->nr_scan_inactive = 0; 1203 else 1204 nr_inactive = 0; 1205 1206 if (nr_active >= sc->swap_cluster_max) 1207 zone->nr_scan_active = 0; 1208 else 1209 nr_active = 0; 1210 } else { 1211 /* 1212 * This reclaim occurs not because zone memory shortage but 1213 * because memory controller hits its limit. 1214 * Then, don't modify zone reclaim related data. 1215 */ 1216 nr_active = mem_cgroup_calc_reclaim_active(sc->mem_cgroup, 1217 zone, priority); 1218 1219 nr_inactive = mem_cgroup_calc_reclaim_inactive(sc->mem_cgroup, 1220 zone, priority); 1221 } 1222 1223 1224 while (nr_active || nr_inactive) { 1225 if (nr_active) { 1226 nr_to_scan = min(nr_active, 1227 (unsigned long)sc->swap_cluster_max); 1228 nr_active -= nr_to_scan; 1229 shrink_active_list(nr_to_scan, zone, sc, priority); 1230 } 1231 1232 if (nr_inactive) { 1233 nr_to_scan = min(nr_inactive, 1234 (unsigned long)sc->swap_cluster_max); 1235 nr_inactive -= nr_to_scan; 1236 nr_reclaimed += shrink_inactive_list(nr_to_scan, zone, 1237 sc); 1238 } 1239 } 1240 1241 throttle_vm_writeout(sc->gfp_mask); 1242 return nr_reclaimed; 1243 } 1244 1245 /* 1246 * This is the direct reclaim path, for page-allocating processes. We only 1247 * try to reclaim pages from zones which will satisfy the caller's allocation 1248 * request. 1249 * 1250 * We reclaim from a zone even if that zone is over pages_high. Because: 1251 * a) The caller may be trying to free *extra* pages to satisfy a higher-order 1252 * allocation or 1253 * b) The zones may be over pages_high but they must go *over* pages_high to 1254 * satisfy the `incremental min' zone defense algorithm. 1255 * 1256 * Returns the number of reclaimed pages. 1257 * 1258 * If a zone is deemed to be full of pinned pages then just give it a light 1259 * scan then give up on it. 1260 */ 1261 static unsigned long shrink_zones(int priority, struct zone **zones, 1262 struct scan_control *sc) 1263 { 1264 unsigned long nr_reclaimed = 0; 1265 int i; 1266 1267 1268 sc->all_unreclaimable = 1; 1269 for (i = 0; zones[i] != NULL; i++) { 1270 struct zone *zone = zones[i]; 1271 1272 if (!populated_zone(zone)) 1273 continue; 1274 /* 1275 * Take care memory controller reclaiming has small influence 1276 * to global LRU. 1277 */ 1278 if (scan_global_lru(sc)) { 1279 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 1280 continue; 1281 note_zone_scanning_priority(zone, priority); 1282 1283 if (zone_is_all_unreclaimable(zone) && 1284 priority != DEF_PRIORITY) 1285 continue; /* Let kswapd poll it */ 1286 sc->all_unreclaimable = 0; 1287 } else { 1288 /* 1289 * Ignore cpuset limitation here. We just want to reduce 1290 * # of used pages by us regardless of memory shortage. 1291 */ 1292 sc->all_unreclaimable = 0; 1293 mem_cgroup_note_reclaim_priority(sc->mem_cgroup, 1294 priority); 1295 } 1296 1297 nr_reclaimed += shrink_zone(priority, zone, sc); 1298 } 1299 1300 return nr_reclaimed; 1301 } 1302 1303 /* 1304 * This is the main entry point to direct page reclaim. 1305 * 1306 * If a full scan of the inactive list fails to free enough memory then we 1307 * are "out of memory" and something needs to be killed. 1308 * 1309 * If the caller is !__GFP_FS then the probability of a failure is reasonably 1310 * high - the zone may be full of dirty or under-writeback pages, which this 1311 * caller can't do much about. We kick pdflush and take explicit naps in the 1312 * hope that some of these pages can be written. But if the allocating task 1313 * holds filesystem locks which prevent writeout this might not work, and the 1314 * allocation attempt will fail. 1315 */ 1316 static unsigned long do_try_to_free_pages(struct zone **zones, gfp_t gfp_mask, 1317 struct scan_control *sc) 1318 { 1319 int priority; 1320 int ret = 0; 1321 unsigned long total_scanned = 0; 1322 unsigned long nr_reclaimed = 0; 1323 struct reclaim_state *reclaim_state = current->reclaim_state; 1324 unsigned long lru_pages = 0; 1325 int i; 1326 1327 if (scan_global_lru(sc)) 1328 count_vm_event(ALLOCSTALL); 1329 /* 1330 * mem_cgroup will not do shrink_slab. 1331 */ 1332 if (scan_global_lru(sc)) { 1333 for (i = 0; zones[i] != NULL; i++) { 1334 struct zone *zone = zones[i]; 1335 1336 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 1337 continue; 1338 1339 lru_pages += zone_page_state(zone, NR_ACTIVE) 1340 + zone_page_state(zone, NR_INACTIVE); 1341 } 1342 } 1343 1344 for (priority = DEF_PRIORITY; priority >= 0; priority--) { 1345 sc->nr_scanned = 0; 1346 sc->nr_io_pages = 0; 1347 if (!priority) 1348 disable_swap_token(); 1349 nr_reclaimed += shrink_zones(priority, zones, sc); 1350 /* 1351 * Don't shrink slabs when reclaiming memory from 1352 * over limit cgroups 1353 */ 1354 if (scan_global_lru(sc)) { 1355 shrink_slab(sc->nr_scanned, gfp_mask, lru_pages); 1356 if (reclaim_state) { 1357 nr_reclaimed += reclaim_state->reclaimed_slab; 1358 reclaim_state->reclaimed_slab = 0; 1359 } 1360 } 1361 total_scanned += sc->nr_scanned; 1362 if (nr_reclaimed >= sc->swap_cluster_max) { 1363 ret = 1; 1364 goto out; 1365 } 1366 1367 /* 1368 * Try to write back as many pages as we just scanned. This 1369 * tends to cause slow streaming writers to write data to the 1370 * disk smoothly, at the dirtying rate, which is nice. But 1371 * that's undesirable in laptop mode, where we *want* lumpy 1372 * writeout. So in laptop mode, write out the whole world. 1373 */ 1374 if (total_scanned > sc->swap_cluster_max + 1375 sc->swap_cluster_max / 2) { 1376 wakeup_pdflush(laptop_mode ? 0 : total_scanned); 1377 sc->may_writepage = 1; 1378 } 1379 1380 /* Take a nap, wait for some writeback to complete */ 1381 if (sc->nr_scanned && priority < DEF_PRIORITY - 2 && 1382 sc->nr_io_pages > sc->swap_cluster_max) 1383 congestion_wait(WRITE, HZ/10); 1384 } 1385 /* top priority shrink_caches still had more to do? don't OOM, then */ 1386 if (!sc->all_unreclaimable && scan_global_lru(sc)) 1387 ret = 1; 1388 out: 1389 /* 1390 * Now that we've scanned all the zones at this priority level, note 1391 * that level within the zone so that the next thread which performs 1392 * scanning of this zone will immediately start out at this priority 1393 * level. This affects only the decision whether or not to bring 1394 * mapped pages onto the inactive list. 1395 */ 1396 if (priority < 0) 1397 priority = 0; 1398 1399 if (scan_global_lru(sc)) { 1400 for (i = 0; zones[i] != NULL; i++) { 1401 struct zone *zone = zones[i]; 1402 1403 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 1404 continue; 1405 1406 zone->prev_priority = priority; 1407 } 1408 } else 1409 mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority); 1410 1411 return ret; 1412 } 1413 1414 unsigned long try_to_free_pages(struct zone **zones, int order, gfp_t gfp_mask) 1415 { 1416 struct scan_control sc = { 1417 .gfp_mask = gfp_mask, 1418 .may_writepage = !laptop_mode, 1419 .swap_cluster_max = SWAP_CLUSTER_MAX, 1420 .may_swap = 1, 1421 .swappiness = vm_swappiness, 1422 .order = order, 1423 .mem_cgroup = NULL, 1424 .isolate_pages = isolate_pages_global, 1425 }; 1426 1427 return do_try_to_free_pages(zones, gfp_mask, &sc); 1428 } 1429 1430 #ifdef CONFIG_CGROUP_MEM_CONT 1431 1432 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont, 1433 gfp_t gfp_mask) 1434 { 1435 struct scan_control sc = { 1436 .gfp_mask = gfp_mask, 1437 .may_writepage = !laptop_mode, 1438 .may_swap = 1, 1439 .swap_cluster_max = SWAP_CLUSTER_MAX, 1440 .swappiness = vm_swappiness, 1441 .order = 0, 1442 .mem_cgroup = mem_cont, 1443 .isolate_pages = mem_cgroup_isolate_pages, 1444 }; 1445 struct zone **zones; 1446 int target_zone = gfp_zone(GFP_HIGHUSER_MOVABLE); 1447 1448 zones = NODE_DATA(numa_node_id())->node_zonelists[target_zone].zones; 1449 if (do_try_to_free_pages(zones, sc.gfp_mask, &sc)) 1450 return 1; 1451 return 0; 1452 } 1453 #endif 1454 1455 /* 1456 * For kswapd, balance_pgdat() will work across all this node's zones until 1457 * they are all at pages_high. 1458 * 1459 * Returns the number of pages which were actually freed. 1460 * 1461 * There is special handling here for zones which are full of pinned pages. 1462 * This can happen if the pages are all mlocked, or if they are all used by 1463 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb. 1464 * What we do is to detect the case where all pages in the zone have been 1465 * scanned twice and there has been zero successful reclaim. Mark the zone as 1466 * dead and from now on, only perform a short scan. Basically we're polling 1467 * the zone for when the problem goes away. 1468 * 1469 * kswapd scans the zones in the highmem->normal->dma direction. It skips 1470 * zones which have free_pages > pages_high, but once a zone is found to have 1471 * free_pages <= pages_high, we scan that zone and the lower zones regardless 1472 * of the number of free pages in the lower zones. This interoperates with 1473 * the page allocator fallback scheme to ensure that aging of pages is balanced 1474 * across the zones. 1475 */ 1476 static unsigned long balance_pgdat(pg_data_t *pgdat, int order) 1477 { 1478 int all_zones_ok; 1479 int priority; 1480 int i; 1481 unsigned long total_scanned; 1482 unsigned long nr_reclaimed; 1483 struct reclaim_state *reclaim_state = current->reclaim_state; 1484 struct scan_control sc = { 1485 .gfp_mask = GFP_KERNEL, 1486 .may_swap = 1, 1487 .swap_cluster_max = SWAP_CLUSTER_MAX, 1488 .swappiness = vm_swappiness, 1489 .order = order, 1490 .mem_cgroup = NULL, 1491 .isolate_pages = isolate_pages_global, 1492 }; 1493 /* 1494 * temp_priority is used to remember the scanning priority at which 1495 * this zone was successfully refilled to free_pages == pages_high. 1496 */ 1497 int temp_priority[MAX_NR_ZONES]; 1498 1499 loop_again: 1500 total_scanned = 0; 1501 nr_reclaimed = 0; 1502 sc.may_writepage = !laptop_mode; 1503 count_vm_event(PAGEOUTRUN); 1504 1505 for (i = 0; i < pgdat->nr_zones; i++) 1506 temp_priority[i] = DEF_PRIORITY; 1507 1508 for (priority = DEF_PRIORITY; priority >= 0; priority--) { 1509 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */ 1510 unsigned long lru_pages = 0; 1511 1512 /* The swap token gets in the way of swapout... */ 1513 if (!priority) 1514 disable_swap_token(); 1515 1516 sc.nr_io_pages = 0; 1517 all_zones_ok = 1; 1518 1519 /* 1520 * Scan in the highmem->dma direction for the highest 1521 * zone which needs scanning 1522 */ 1523 for (i = pgdat->nr_zones - 1; i >= 0; i--) { 1524 struct zone *zone = pgdat->node_zones + i; 1525 1526 if (!populated_zone(zone)) 1527 continue; 1528 1529 if (zone_is_all_unreclaimable(zone) && 1530 priority != DEF_PRIORITY) 1531 continue; 1532 1533 if (!zone_watermark_ok(zone, order, zone->pages_high, 1534 0, 0)) { 1535 end_zone = i; 1536 break; 1537 } 1538 } 1539 if (i < 0) 1540 goto out; 1541 1542 for (i = 0; i <= end_zone; i++) { 1543 struct zone *zone = pgdat->node_zones + i; 1544 1545 lru_pages += zone_page_state(zone, NR_ACTIVE) 1546 + zone_page_state(zone, NR_INACTIVE); 1547 } 1548 1549 /* 1550 * Now scan the zone in the dma->highmem direction, stopping 1551 * at the last zone which needs scanning. 1552 * 1553 * We do this because the page allocator works in the opposite 1554 * direction. This prevents the page allocator from allocating 1555 * pages behind kswapd's direction of progress, which would 1556 * cause too much scanning of the lower zones. 1557 */ 1558 for (i = 0; i <= end_zone; i++) { 1559 struct zone *zone = pgdat->node_zones + i; 1560 int nr_slab; 1561 1562 if (!populated_zone(zone)) 1563 continue; 1564 1565 if (zone_is_all_unreclaimable(zone) && 1566 priority != DEF_PRIORITY) 1567 continue; 1568 1569 if (!zone_watermark_ok(zone, order, zone->pages_high, 1570 end_zone, 0)) 1571 all_zones_ok = 0; 1572 temp_priority[i] = priority; 1573 sc.nr_scanned = 0; 1574 note_zone_scanning_priority(zone, priority); 1575 /* 1576 * We put equal pressure on every zone, unless one 1577 * zone has way too many pages free already. 1578 */ 1579 if (!zone_watermark_ok(zone, order, 8*zone->pages_high, 1580 end_zone, 0)) 1581 nr_reclaimed += shrink_zone(priority, zone, &sc); 1582 reclaim_state->reclaimed_slab = 0; 1583 nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL, 1584 lru_pages); 1585 nr_reclaimed += reclaim_state->reclaimed_slab; 1586 total_scanned += sc.nr_scanned; 1587 if (zone_is_all_unreclaimable(zone)) 1588 continue; 1589 if (nr_slab == 0 && zone->pages_scanned >= 1590 (zone_page_state(zone, NR_ACTIVE) 1591 + zone_page_state(zone, NR_INACTIVE)) * 6) 1592 zone_set_flag(zone, 1593 ZONE_ALL_UNRECLAIMABLE); 1594 /* 1595 * If we've done a decent amount of scanning and 1596 * the reclaim ratio is low, start doing writepage 1597 * even in laptop mode 1598 */ 1599 if (total_scanned > SWAP_CLUSTER_MAX * 2 && 1600 total_scanned > nr_reclaimed + nr_reclaimed / 2) 1601 sc.may_writepage = 1; 1602 } 1603 if (all_zones_ok) 1604 break; /* kswapd: all done */ 1605 /* 1606 * OK, kswapd is getting into trouble. Take a nap, then take 1607 * another pass across the zones. 1608 */ 1609 if (total_scanned && priority < DEF_PRIORITY - 2 && 1610 sc.nr_io_pages > sc.swap_cluster_max) 1611 congestion_wait(WRITE, HZ/10); 1612 1613 /* 1614 * We do this so kswapd doesn't build up large priorities for 1615 * example when it is freeing in parallel with allocators. It 1616 * matches the direct reclaim path behaviour in terms of impact 1617 * on zone->*_priority. 1618 */ 1619 if (nr_reclaimed >= SWAP_CLUSTER_MAX) 1620 break; 1621 } 1622 out: 1623 /* 1624 * Note within each zone the priority level at which this zone was 1625 * brought into a happy state. So that the next thread which scans this 1626 * zone will start out at that priority level. 1627 */ 1628 for (i = 0; i < pgdat->nr_zones; i++) { 1629 struct zone *zone = pgdat->node_zones + i; 1630 1631 zone->prev_priority = temp_priority[i]; 1632 } 1633 if (!all_zones_ok) { 1634 cond_resched(); 1635 1636 try_to_freeze(); 1637 1638 goto loop_again; 1639 } 1640 1641 return nr_reclaimed; 1642 } 1643 1644 /* 1645 * The background pageout daemon, started as a kernel thread 1646 * from the init process. 1647 * 1648 * This basically trickles out pages so that we have _some_ 1649 * free memory available even if there is no other activity 1650 * that frees anything up. This is needed for things like routing 1651 * etc, where we otherwise might have all activity going on in 1652 * asynchronous contexts that cannot page things out. 1653 * 1654 * If there are applications that are active memory-allocators 1655 * (most normal use), this basically shouldn't matter. 1656 */ 1657 static int kswapd(void *p) 1658 { 1659 unsigned long order; 1660 pg_data_t *pgdat = (pg_data_t*)p; 1661 struct task_struct *tsk = current; 1662 DEFINE_WAIT(wait); 1663 struct reclaim_state reclaim_state = { 1664 .reclaimed_slab = 0, 1665 }; 1666 cpumask_t cpumask; 1667 1668 cpumask = node_to_cpumask(pgdat->node_id); 1669 if (!cpus_empty(cpumask)) 1670 set_cpus_allowed(tsk, cpumask); 1671 current->reclaim_state = &reclaim_state; 1672 1673 /* 1674 * Tell the memory management that we're a "memory allocator", 1675 * and that if we need more memory we should get access to it 1676 * regardless (see "__alloc_pages()"). "kswapd" should 1677 * never get caught in the normal page freeing logic. 1678 * 1679 * (Kswapd normally doesn't need memory anyway, but sometimes 1680 * you need a small amount of memory in order to be able to 1681 * page out something else, and this flag essentially protects 1682 * us from recursively trying to free more memory as we're 1683 * trying to free the first piece of memory in the first place). 1684 */ 1685 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 1686 set_freezable(); 1687 1688 order = 0; 1689 for ( ; ; ) { 1690 unsigned long new_order; 1691 1692 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 1693 new_order = pgdat->kswapd_max_order; 1694 pgdat->kswapd_max_order = 0; 1695 if (order < new_order) { 1696 /* 1697 * Don't sleep if someone wants a larger 'order' 1698 * allocation 1699 */ 1700 order = new_order; 1701 } else { 1702 if (!freezing(current)) 1703 schedule(); 1704 1705 order = pgdat->kswapd_max_order; 1706 } 1707 finish_wait(&pgdat->kswapd_wait, &wait); 1708 1709 if (!try_to_freeze()) { 1710 /* We can speed up thawing tasks if we don't call 1711 * balance_pgdat after returning from the refrigerator 1712 */ 1713 balance_pgdat(pgdat, order); 1714 } 1715 } 1716 return 0; 1717 } 1718 1719 /* 1720 * A zone is low on free memory, so wake its kswapd task to service it. 1721 */ 1722 void wakeup_kswapd(struct zone *zone, int order) 1723 { 1724 pg_data_t *pgdat; 1725 1726 if (!populated_zone(zone)) 1727 return; 1728 1729 pgdat = zone->zone_pgdat; 1730 if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0)) 1731 return; 1732 if (pgdat->kswapd_max_order < order) 1733 pgdat->kswapd_max_order = order; 1734 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 1735 return; 1736 if (!waitqueue_active(&pgdat->kswapd_wait)) 1737 return; 1738 wake_up_interruptible(&pgdat->kswapd_wait); 1739 } 1740 1741 #ifdef CONFIG_PM 1742 /* 1743 * Helper function for shrink_all_memory(). Tries to reclaim 'nr_pages' pages 1744 * from LRU lists system-wide, for given pass and priority, and returns the 1745 * number of reclaimed pages 1746 * 1747 * For pass > 3 we also try to shrink the LRU lists that contain a few pages 1748 */ 1749 static unsigned long shrink_all_zones(unsigned long nr_pages, int prio, 1750 int pass, struct scan_control *sc) 1751 { 1752 struct zone *zone; 1753 unsigned long nr_to_scan, ret = 0; 1754 1755 for_each_zone(zone) { 1756 1757 if (!populated_zone(zone)) 1758 continue; 1759 1760 if (zone_is_all_unreclaimable(zone) && prio != DEF_PRIORITY) 1761 continue; 1762 1763 /* For pass = 0 we don't shrink the active list */ 1764 if (pass > 0) { 1765 zone->nr_scan_active += 1766 (zone_page_state(zone, NR_ACTIVE) >> prio) + 1; 1767 if (zone->nr_scan_active >= nr_pages || pass > 3) { 1768 zone->nr_scan_active = 0; 1769 nr_to_scan = min(nr_pages, 1770 zone_page_state(zone, NR_ACTIVE)); 1771 shrink_active_list(nr_to_scan, zone, sc, prio); 1772 } 1773 } 1774 1775 zone->nr_scan_inactive += 1776 (zone_page_state(zone, NR_INACTIVE) >> prio) + 1; 1777 if (zone->nr_scan_inactive >= nr_pages || pass > 3) { 1778 zone->nr_scan_inactive = 0; 1779 nr_to_scan = min(nr_pages, 1780 zone_page_state(zone, NR_INACTIVE)); 1781 ret += shrink_inactive_list(nr_to_scan, zone, sc); 1782 if (ret >= nr_pages) 1783 return ret; 1784 } 1785 } 1786 1787 return ret; 1788 } 1789 1790 static unsigned long count_lru_pages(void) 1791 { 1792 return global_page_state(NR_ACTIVE) + global_page_state(NR_INACTIVE); 1793 } 1794 1795 /* 1796 * Try to free `nr_pages' of memory, system-wide, and return the number of 1797 * freed pages. 1798 * 1799 * Rather than trying to age LRUs the aim is to preserve the overall 1800 * LRU order by reclaiming preferentially 1801 * inactive > active > active referenced > active mapped 1802 */ 1803 unsigned long shrink_all_memory(unsigned long nr_pages) 1804 { 1805 unsigned long lru_pages, nr_slab; 1806 unsigned long ret = 0; 1807 int pass; 1808 struct reclaim_state reclaim_state; 1809 struct scan_control sc = { 1810 .gfp_mask = GFP_KERNEL, 1811 .may_swap = 0, 1812 .swap_cluster_max = nr_pages, 1813 .may_writepage = 1, 1814 .swappiness = vm_swappiness, 1815 .isolate_pages = isolate_pages_global, 1816 }; 1817 1818 current->reclaim_state = &reclaim_state; 1819 1820 lru_pages = count_lru_pages(); 1821 nr_slab = global_page_state(NR_SLAB_RECLAIMABLE); 1822 /* If slab caches are huge, it's better to hit them first */ 1823 while (nr_slab >= lru_pages) { 1824 reclaim_state.reclaimed_slab = 0; 1825 shrink_slab(nr_pages, sc.gfp_mask, lru_pages); 1826 if (!reclaim_state.reclaimed_slab) 1827 break; 1828 1829 ret += reclaim_state.reclaimed_slab; 1830 if (ret >= nr_pages) 1831 goto out; 1832 1833 nr_slab -= reclaim_state.reclaimed_slab; 1834 } 1835 1836 /* 1837 * We try to shrink LRUs in 5 passes: 1838 * 0 = Reclaim from inactive_list only 1839 * 1 = Reclaim from active list but don't reclaim mapped 1840 * 2 = 2nd pass of type 1 1841 * 3 = Reclaim mapped (normal reclaim) 1842 * 4 = 2nd pass of type 3 1843 */ 1844 for (pass = 0; pass < 5; pass++) { 1845 int prio; 1846 1847 /* Force reclaiming mapped pages in the passes #3 and #4 */ 1848 if (pass > 2) { 1849 sc.may_swap = 1; 1850 sc.swappiness = 100; 1851 } 1852 1853 for (prio = DEF_PRIORITY; prio >= 0; prio--) { 1854 unsigned long nr_to_scan = nr_pages - ret; 1855 1856 sc.nr_scanned = 0; 1857 ret += shrink_all_zones(nr_to_scan, prio, pass, &sc); 1858 if (ret >= nr_pages) 1859 goto out; 1860 1861 reclaim_state.reclaimed_slab = 0; 1862 shrink_slab(sc.nr_scanned, sc.gfp_mask, 1863 count_lru_pages()); 1864 ret += reclaim_state.reclaimed_slab; 1865 if (ret >= nr_pages) 1866 goto out; 1867 1868 if (sc.nr_scanned && prio < DEF_PRIORITY - 2) 1869 congestion_wait(WRITE, HZ / 10); 1870 } 1871 } 1872 1873 /* 1874 * If ret = 0, we could not shrink LRUs, but there may be something 1875 * in slab caches 1876 */ 1877 if (!ret) { 1878 do { 1879 reclaim_state.reclaimed_slab = 0; 1880 shrink_slab(nr_pages, sc.gfp_mask, count_lru_pages()); 1881 ret += reclaim_state.reclaimed_slab; 1882 } while (ret < nr_pages && reclaim_state.reclaimed_slab > 0); 1883 } 1884 1885 out: 1886 current->reclaim_state = NULL; 1887 1888 return ret; 1889 } 1890 #endif 1891 1892 /* It's optimal to keep kswapds on the same CPUs as their memory, but 1893 not required for correctness. So if the last cpu in a node goes 1894 away, we get changed to run anywhere: as the first one comes back, 1895 restore their cpu bindings. */ 1896 static int __devinit cpu_callback(struct notifier_block *nfb, 1897 unsigned long action, void *hcpu) 1898 { 1899 pg_data_t *pgdat; 1900 cpumask_t mask; 1901 int nid; 1902 1903 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) { 1904 for_each_node_state(nid, N_HIGH_MEMORY) { 1905 pgdat = NODE_DATA(nid); 1906 mask = node_to_cpumask(pgdat->node_id); 1907 if (any_online_cpu(mask) != NR_CPUS) 1908 /* One of our CPUs online: restore mask */ 1909 set_cpus_allowed(pgdat->kswapd, mask); 1910 } 1911 } 1912 return NOTIFY_OK; 1913 } 1914 1915 /* 1916 * This kswapd start function will be called by init and node-hot-add. 1917 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. 1918 */ 1919 int kswapd_run(int nid) 1920 { 1921 pg_data_t *pgdat = NODE_DATA(nid); 1922 int ret = 0; 1923 1924 if (pgdat->kswapd) 1925 return 0; 1926 1927 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 1928 if (IS_ERR(pgdat->kswapd)) { 1929 /* failure at boot is fatal */ 1930 BUG_ON(system_state == SYSTEM_BOOTING); 1931 printk("Failed to start kswapd on node %d\n",nid); 1932 ret = -1; 1933 } 1934 return ret; 1935 } 1936 1937 static int __init kswapd_init(void) 1938 { 1939 int nid; 1940 1941 swap_setup(); 1942 for_each_node_state(nid, N_HIGH_MEMORY) 1943 kswapd_run(nid); 1944 hotcpu_notifier(cpu_callback, 0); 1945 return 0; 1946 } 1947 1948 module_init(kswapd_init) 1949 1950 #ifdef CONFIG_NUMA 1951 /* 1952 * Zone reclaim mode 1953 * 1954 * If non-zero call zone_reclaim when the number of free pages falls below 1955 * the watermarks. 1956 */ 1957 int zone_reclaim_mode __read_mostly; 1958 1959 #define RECLAIM_OFF 0 1960 #define RECLAIM_ZONE (1<<0) /* Run shrink_cache on the zone */ 1961 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */ 1962 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */ 1963 1964 /* 1965 * Priority for ZONE_RECLAIM. This determines the fraction of pages 1966 * of a node considered for each zone_reclaim. 4 scans 1/16th of 1967 * a zone. 1968 */ 1969 #define ZONE_RECLAIM_PRIORITY 4 1970 1971 /* 1972 * Percentage of pages in a zone that must be unmapped for zone_reclaim to 1973 * occur. 1974 */ 1975 int sysctl_min_unmapped_ratio = 1; 1976 1977 /* 1978 * If the number of slab pages in a zone grows beyond this percentage then 1979 * slab reclaim needs to occur. 1980 */ 1981 int sysctl_min_slab_ratio = 5; 1982 1983 /* 1984 * Try to free up some pages from this zone through reclaim. 1985 */ 1986 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) 1987 { 1988 /* Minimum pages needed in order to stay on node */ 1989 const unsigned long nr_pages = 1 << order; 1990 struct task_struct *p = current; 1991 struct reclaim_state reclaim_state; 1992 int priority; 1993 unsigned long nr_reclaimed = 0; 1994 struct scan_control sc = { 1995 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE), 1996 .may_swap = !!(zone_reclaim_mode & RECLAIM_SWAP), 1997 .swap_cluster_max = max_t(unsigned long, nr_pages, 1998 SWAP_CLUSTER_MAX), 1999 .gfp_mask = gfp_mask, 2000 .swappiness = vm_swappiness, 2001 .isolate_pages = isolate_pages_global, 2002 }; 2003 unsigned long slab_reclaimable; 2004 2005 disable_swap_token(); 2006 cond_resched(); 2007 /* 2008 * We need to be able to allocate from the reserves for RECLAIM_SWAP 2009 * and we also need to be able to write out pages for RECLAIM_WRITE 2010 * and RECLAIM_SWAP. 2011 */ 2012 p->flags |= PF_MEMALLOC | PF_SWAPWRITE; 2013 reclaim_state.reclaimed_slab = 0; 2014 p->reclaim_state = &reclaim_state; 2015 2016 if (zone_page_state(zone, NR_FILE_PAGES) - 2017 zone_page_state(zone, NR_FILE_MAPPED) > 2018 zone->min_unmapped_pages) { 2019 /* 2020 * Free memory by calling shrink zone with increasing 2021 * priorities until we have enough memory freed. 2022 */ 2023 priority = ZONE_RECLAIM_PRIORITY; 2024 do { 2025 note_zone_scanning_priority(zone, priority); 2026 nr_reclaimed += shrink_zone(priority, zone, &sc); 2027 priority--; 2028 } while (priority >= 0 && nr_reclaimed < nr_pages); 2029 } 2030 2031 slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE); 2032 if (slab_reclaimable > zone->min_slab_pages) { 2033 /* 2034 * shrink_slab() does not currently allow us to determine how 2035 * many pages were freed in this zone. So we take the current 2036 * number of slab pages and shake the slab until it is reduced 2037 * by the same nr_pages that we used for reclaiming unmapped 2038 * pages. 2039 * 2040 * Note that shrink_slab will free memory on all zones and may 2041 * take a long time. 2042 */ 2043 while (shrink_slab(sc.nr_scanned, gfp_mask, order) && 2044 zone_page_state(zone, NR_SLAB_RECLAIMABLE) > 2045 slab_reclaimable - nr_pages) 2046 ; 2047 2048 /* 2049 * Update nr_reclaimed by the number of slab pages we 2050 * reclaimed from this zone. 2051 */ 2052 nr_reclaimed += slab_reclaimable - 2053 zone_page_state(zone, NR_SLAB_RECLAIMABLE); 2054 } 2055 2056 p->reclaim_state = NULL; 2057 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE); 2058 return nr_reclaimed >= nr_pages; 2059 } 2060 2061 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) 2062 { 2063 int node_id; 2064 int ret; 2065 2066 /* 2067 * Zone reclaim reclaims unmapped file backed pages and 2068 * slab pages if we are over the defined limits. 2069 * 2070 * A small portion of unmapped file backed pages is needed for 2071 * file I/O otherwise pages read by file I/O will be immediately 2072 * thrown out if the zone is overallocated. So we do not reclaim 2073 * if less than a specified percentage of the zone is used by 2074 * unmapped file backed pages. 2075 */ 2076 if (zone_page_state(zone, NR_FILE_PAGES) - 2077 zone_page_state(zone, NR_FILE_MAPPED) <= zone->min_unmapped_pages 2078 && zone_page_state(zone, NR_SLAB_RECLAIMABLE) 2079 <= zone->min_slab_pages) 2080 return 0; 2081 2082 if (zone_is_all_unreclaimable(zone)) 2083 return 0; 2084 2085 /* 2086 * Do not scan if the allocation should not be delayed. 2087 */ 2088 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC)) 2089 return 0; 2090 2091 /* 2092 * Only run zone reclaim on the local zone or on zones that do not 2093 * have associated processors. This will favor the local processor 2094 * over remote processors and spread off node memory allocations 2095 * as wide as possible. 2096 */ 2097 node_id = zone_to_nid(zone); 2098 if (node_state(node_id, N_CPU) && node_id != numa_node_id()) 2099 return 0; 2100 2101 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED)) 2102 return 0; 2103 ret = __zone_reclaim(zone, gfp_mask, order); 2104 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED); 2105 2106 return ret; 2107 } 2108 #endif 2109