1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 4 * 5 * Swap reorganised 29.12.95, Stephen Tweedie. 6 * kswapd added: 7.1.96 sct 7 * Removed kswapd_ctl limits, and swap out as many pages as needed 8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 9 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 10 * Multiqueue VM started 5.8.00, Rik van Riel. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 15 #include <linux/mm.h> 16 #include <linux/sched/mm.h> 17 #include <linux/module.h> 18 #include <linux/gfp.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/swap.h> 21 #include <linux/pagemap.h> 22 #include <linux/init.h> 23 #include <linux/highmem.h> 24 #include <linux/vmpressure.h> 25 #include <linux/vmstat.h> 26 #include <linux/file.h> 27 #include <linux/writeback.h> 28 #include <linux/blkdev.h> 29 #include <linux/buffer_head.h> /* for try_to_release_page(), 30 buffer_heads_over_limit */ 31 #include <linux/mm_inline.h> 32 #include <linux/backing-dev.h> 33 #include <linux/rmap.h> 34 #include <linux/topology.h> 35 #include <linux/cpu.h> 36 #include <linux/cpuset.h> 37 #include <linux/compaction.h> 38 #include <linux/notifier.h> 39 #include <linux/rwsem.h> 40 #include <linux/delay.h> 41 #include <linux/kthread.h> 42 #include <linux/freezer.h> 43 #include <linux/memcontrol.h> 44 #include <linux/migrate.h> 45 #include <linux/delayacct.h> 46 #include <linux/sysctl.h> 47 #include <linux/oom.h> 48 #include <linux/pagevec.h> 49 #include <linux/prefetch.h> 50 #include <linux/printk.h> 51 #include <linux/dax.h> 52 #include <linux/psi.h> 53 54 #include <asm/tlbflush.h> 55 #include <asm/div64.h> 56 57 #include <linux/swapops.h> 58 #include <linux/balloon_compaction.h> 59 60 #include "internal.h" 61 62 #define CREATE_TRACE_POINTS 63 #include <trace/events/vmscan.h> 64 65 struct scan_control { 66 /* How many pages shrink_list() should reclaim */ 67 unsigned long nr_to_reclaim; 68 69 /* 70 * Nodemask of nodes allowed by the caller. If NULL, all nodes 71 * are scanned. 72 */ 73 nodemask_t *nodemask; 74 75 /* 76 * The memory cgroup that hit its limit and as a result is the 77 * primary target of this reclaim invocation. 78 */ 79 struct mem_cgroup *target_mem_cgroup; 80 81 /* 82 * Scan pressure balancing between anon and file LRUs 83 */ 84 unsigned long anon_cost; 85 unsigned long file_cost; 86 87 /* Can active pages be deactivated as part of reclaim? */ 88 #define DEACTIVATE_ANON 1 89 #define DEACTIVATE_FILE 2 90 unsigned int may_deactivate:2; 91 unsigned int force_deactivate:1; 92 unsigned int skipped_deactivate:1; 93 94 /* Writepage batching in laptop mode; RECLAIM_WRITE */ 95 unsigned int may_writepage:1; 96 97 /* Can mapped pages be reclaimed? */ 98 unsigned int may_unmap:1; 99 100 /* Can pages be swapped as part of reclaim? */ 101 unsigned int may_swap:1; 102 103 /* 104 * Cgroup memory below memory.low is protected as long as we 105 * don't threaten to OOM. If any cgroup is reclaimed at 106 * reduced force or passed over entirely due to its memory.low 107 * setting (memcg_low_skipped), and nothing is reclaimed as a 108 * result, then go back for one more cycle that reclaims the protected 109 * memory (memcg_low_reclaim) to avert OOM. 110 */ 111 unsigned int memcg_low_reclaim:1; 112 unsigned int memcg_low_skipped:1; 113 114 unsigned int hibernation_mode:1; 115 116 /* One of the zones is ready for compaction */ 117 unsigned int compaction_ready:1; 118 119 /* There is easily reclaimable cold cache in the current node */ 120 unsigned int cache_trim_mode:1; 121 122 /* The file pages on the current node are dangerously low */ 123 unsigned int file_is_tiny:1; 124 125 /* Always discard instead of demoting to lower tier memory */ 126 unsigned int no_demotion:1; 127 128 /* Allocation order */ 129 s8 order; 130 131 /* Scan (total_size >> priority) pages at once */ 132 s8 priority; 133 134 /* The highest zone to isolate pages for reclaim from */ 135 s8 reclaim_idx; 136 137 /* This context's GFP mask */ 138 gfp_t gfp_mask; 139 140 /* Incremented by the number of inactive pages that were scanned */ 141 unsigned long nr_scanned; 142 143 /* Number of pages freed so far during a call to shrink_zones() */ 144 unsigned long nr_reclaimed; 145 146 struct { 147 unsigned int dirty; 148 unsigned int unqueued_dirty; 149 unsigned int congested; 150 unsigned int writeback; 151 unsigned int immediate; 152 unsigned int file_taken; 153 unsigned int taken; 154 } nr; 155 156 /* for recording the reclaimed slab by now */ 157 struct reclaim_state reclaim_state; 158 }; 159 160 #ifdef ARCH_HAS_PREFETCHW 161 #define prefetchw_prev_lru_page(_page, _base, _field) \ 162 do { \ 163 if ((_page)->lru.prev != _base) { \ 164 struct page *prev; \ 165 \ 166 prev = lru_to_page(&(_page->lru)); \ 167 prefetchw(&prev->_field); \ 168 } \ 169 } while (0) 170 #else 171 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 172 #endif 173 174 /* 175 * From 0 .. 200. Higher means more swappy. 176 */ 177 int vm_swappiness = 60; 178 179 static void set_task_reclaim_state(struct task_struct *task, 180 struct reclaim_state *rs) 181 { 182 /* Check for an overwrite */ 183 WARN_ON_ONCE(rs && task->reclaim_state); 184 185 /* Check for the nulling of an already-nulled member */ 186 WARN_ON_ONCE(!rs && !task->reclaim_state); 187 188 task->reclaim_state = rs; 189 } 190 191 static LIST_HEAD(shrinker_list); 192 static DECLARE_RWSEM(shrinker_rwsem); 193 194 #ifdef CONFIG_MEMCG 195 static int shrinker_nr_max; 196 197 /* The shrinker_info is expanded in a batch of BITS_PER_LONG */ 198 static inline int shrinker_map_size(int nr_items) 199 { 200 return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long)); 201 } 202 203 static inline int shrinker_defer_size(int nr_items) 204 { 205 return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t)); 206 } 207 208 static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg, 209 int nid) 210 { 211 return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info, 212 lockdep_is_held(&shrinker_rwsem)); 213 } 214 215 static int expand_one_shrinker_info(struct mem_cgroup *memcg, 216 int map_size, int defer_size, 217 int old_map_size, int old_defer_size) 218 { 219 struct shrinker_info *new, *old; 220 struct mem_cgroup_per_node *pn; 221 int nid; 222 int size = map_size + defer_size; 223 224 for_each_node(nid) { 225 pn = memcg->nodeinfo[nid]; 226 old = shrinker_info_protected(memcg, nid); 227 /* Not yet online memcg */ 228 if (!old) 229 return 0; 230 231 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid); 232 if (!new) 233 return -ENOMEM; 234 235 new->nr_deferred = (atomic_long_t *)(new + 1); 236 new->map = (void *)new->nr_deferred + defer_size; 237 238 /* map: set all old bits, clear all new bits */ 239 memset(new->map, (int)0xff, old_map_size); 240 memset((void *)new->map + old_map_size, 0, map_size - old_map_size); 241 /* nr_deferred: copy old values, clear all new values */ 242 memcpy(new->nr_deferred, old->nr_deferred, old_defer_size); 243 memset((void *)new->nr_deferred + old_defer_size, 0, 244 defer_size - old_defer_size); 245 246 rcu_assign_pointer(pn->shrinker_info, new); 247 kvfree_rcu(old, rcu); 248 } 249 250 return 0; 251 } 252 253 void free_shrinker_info(struct mem_cgroup *memcg) 254 { 255 struct mem_cgroup_per_node *pn; 256 struct shrinker_info *info; 257 int nid; 258 259 for_each_node(nid) { 260 pn = memcg->nodeinfo[nid]; 261 info = rcu_dereference_protected(pn->shrinker_info, true); 262 kvfree(info); 263 rcu_assign_pointer(pn->shrinker_info, NULL); 264 } 265 } 266 267 int alloc_shrinker_info(struct mem_cgroup *memcg) 268 { 269 struct shrinker_info *info; 270 int nid, size, ret = 0; 271 int map_size, defer_size = 0; 272 273 down_write(&shrinker_rwsem); 274 map_size = shrinker_map_size(shrinker_nr_max); 275 defer_size = shrinker_defer_size(shrinker_nr_max); 276 size = map_size + defer_size; 277 for_each_node(nid) { 278 info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid); 279 if (!info) { 280 free_shrinker_info(memcg); 281 ret = -ENOMEM; 282 break; 283 } 284 info->nr_deferred = (atomic_long_t *)(info + 1); 285 info->map = (void *)info->nr_deferred + defer_size; 286 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info); 287 } 288 up_write(&shrinker_rwsem); 289 290 return ret; 291 } 292 293 static inline bool need_expand(int nr_max) 294 { 295 return round_up(nr_max, BITS_PER_LONG) > 296 round_up(shrinker_nr_max, BITS_PER_LONG); 297 } 298 299 static int expand_shrinker_info(int new_id) 300 { 301 int ret = 0; 302 int new_nr_max = new_id + 1; 303 int map_size, defer_size = 0; 304 int old_map_size, old_defer_size = 0; 305 struct mem_cgroup *memcg; 306 307 if (!need_expand(new_nr_max)) 308 goto out; 309 310 if (!root_mem_cgroup) 311 goto out; 312 313 lockdep_assert_held(&shrinker_rwsem); 314 315 map_size = shrinker_map_size(new_nr_max); 316 defer_size = shrinker_defer_size(new_nr_max); 317 old_map_size = shrinker_map_size(shrinker_nr_max); 318 old_defer_size = shrinker_defer_size(shrinker_nr_max); 319 320 memcg = mem_cgroup_iter(NULL, NULL, NULL); 321 do { 322 ret = expand_one_shrinker_info(memcg, map_size, defer_size, 323 old_map_size, old_defer_size); 324 if (ret) { 325 mem_cgroup_iter_break(NULL, memcg); 326 goto out; 327 } 328 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 329 out: 330 if (!ret) 331 shrinker_nr_max = new_nr_max; 332 333 return ret; 334 } 335 336 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id) 337 { 338 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) { 339 struct shrinker_info *info; 340 341 rcu_read_lock(); 342 info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info); 343 /* Pairs with smp mb in shrink_slab() */ 344 smp_mb__before_atomic(); 345 set_bit(shrinker_id, info->map); 346 rcu_read_unlock(); 347 } 348 } 349 350 static DEFINE_IDR(shrinker_idr); 351 352 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 353 { 354 int id, ret = -ENOMEM; 355 356 if (mem_cgroup_disabled()) 357 return -ENOSYS; 358 359 down_write(&shrinker_rwsem); 360 /* This may call shrinker, so it must use down_read_trylock() */ 361 id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL); 362 if (id < 0) 363 goto unlock; 364 365 if (id >= shrinker_nr_max) { 366 if (expand_shrinker_info(id)) { 367 idr_remove(&shrinker_idr, id); 368 goto unlock; 369 } 370 } 371 shrinker->id = id; 372 ret = 0; 373 unlock: 374 up_write(&shrinker_rwsem); 375 return ret; 376 } 377 378 static void unregister_memcg_shrinker(struct shrinker *shrinker) 379 { 380 int id = shrinker->id; 381 382 BUG_ON(id < 0); 383 384 lockdep_assert_held(&shrinker_rwsem); 385 386 idr_remove(&shrinker_idr, id); 387 } 388 389 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker, 390 struct mem_cgroup *memcg) 391 { 392 struct shrinker_info *info; 393 394 info = shrinker_info_protected(memcg, nid); 395 return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0); 396 } 397 398 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker, 399 struct mem_cgroup *memcg) 400 { 401 struct shrinker_info *info; 402 403 info = shrinker_info_protected(memcg, nid); 404 return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]); 405 } 406 407 void reparent_shrinker_deferred(struct mem_cgroup *memcg) 408 { 409 int i, nid; 410 long nr; 411 struct mem_cgroup *parent; 412 struct shrinker_info *child_info, *parent_info; 413 414 parent = parent_mem_cgroup(memcg); 415 if (!parent) 416 parent = root_mem_cgroup; 417 418 /* Prevent from concurrent shrinker_info expand */ 419 down_read(&shrinker_rwsem); 420 for_each_node(nid) { 421 child_info = shrinker_info_protected(memcg, nid); 422 parent_info = shrinker_info_protected(parent, nid); 423 for (i = 0; i < shrinker_nr_max; i++) { 424 nr = atomic_long_read(&child_info->nr_deferred[i]); 425 atomic_long_add(nr, &parent_info->nr_deferred[i]); 426 } 427 } 428 up_read(&shrinker_rwsem); 429 } 430 431 static bool cgroup_reclaim(struct scan_control *sc) 432 { 433 return sc->target_mem_cgroup; 434 } 435 436 /** 437 * writeback_throttling_sane - is the usual dirty throttling mechanism available? 438 * @sc: scan_control in question 439 * 440 * The normal page dirty throttling mechanism in balance_dirty_pages() is 441 * completely broken with the legacy memcg and direct stalling in 442 * shrink_page_list() is used for throttling instead, which lacks all the 443 * niceties such as fairness, adaptive pausing, bandwidth proportional 444 * allocation and configurability. 445 * 446 * This function tests whether the vmscan currently in progress can assume 447 * that the normal dirty throttling mechanism is operational. 448 */ 449 static bool writeback_throttling_sane(struct scan_control *sc) 450 { 451 if (!cgroup_reclaim(sc)) 452 return true; 453 #ifdef CONFIG_CGROUP_WRITEBACK 454 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 455 return true; 456 #endif 457 return false; 458 } 459 #else 460 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 461 { 462 return -ENOSYS; 463 } 464 465 static void unregister_memcg_shrinker(struct shrinker *shrinker) 466 { 467 } 468 469 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker, 470 struct mem_cgroup *memcg) 471 { 472 return 0; 473 } 474 475 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker, 476 struct mem_cgroup *memcg) 477 { 478 return 0; 479 } 480 481 static bool cgroup_reclaim(struct scan_control *sc) 482 { 483 return false; 484 } 485 486 static bool writeback_throttling_sane(struct scan_control *sc) 487 { 488 return true; 489 } 490 #endif 491 492 static long xchg_nr_deferred(struct shrinker *shrinker, 493 struct shrink_control *sc) 494 { 495 int nid = sc->nid; 496 497 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 498 nid = 0; 499 500 if (sc->memcg && 501 (shrinker->flags & SHRINKER_MEMCG_AWARE)) 502 return xchg_nr_deferred_memcg(nid, shrinker, 503 sc->memcg); 504 505 return atomic_long_xchg(&shrinker->nr_deferred[nid], 0); 506 } 507 508 509 static long add_nr_deferred(long nr, struct shrinker *shrinker, 510 struct shrink_control *sc) 511 { 512 int nid = sc->nid; 513 514 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 515 nid = 0; 516 517 if (sc->memcg && 518 (shrinker->flags & SHRINKER_MEMCG_AWARE)) 519 return add_nr_deferred_memcg(nr, nid, shrinker, 520 sc->memcg); 521 522 return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]); 523 } 524 525 static bool can_demote(int nid, struct scan_control *sc) 526 { 527 if (!numa_demotion_enabled) 528 return false; 529 if (sc) { 530 if (sc->no_demotion) 531 return false; 532 /* It is pointless to do demotion in memcg reclaim */ 533 if (cgroup_reclaim(sc)) 534 return false; 535 } 536 if (next_demotion_node(nid) == NUMA_NO_NODE) 537 return false; 538 539 return true; 540 } 541 542 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg, 543 int nid, 544 struct scan_control *sc) 545 { 546 if (memcg == NULL) { 547 /* 548 * For non-memcg reclaim, is there 549 * space in any swap device? 550 */ 551 if (get_nr_swap_pages() > 0) 552 return true; 553 } else { 554 /* Is the memcg below its swap limit? */ 555 if (mem_cgroup_get_nr_swap_pages(memcg) > 0) 556 return true; 557 } 558 559 /* 560 * The page can not be swapped. 561 * 562 * Can it be reclaimed from this node via demotion? 563 */ 564 return can_demote(nid, sc); 565 } 566 567 /* 568 * This misses isolated pages which are not accounted for to save counters. 569 * As the data only determines if reclaim or compaction continues, it is 570 * not expected that isolated pages will be a dominating factor. 571 */ 572 unsigned long zone_reclaimable_pages(struct zone *zone) 573 { 574 unsigned long nr; 575 576 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) + 577 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE); 578 if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL)) 579 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) + 580 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON); 581 582 return nr; 583 } 584 585 /** 586 * lruvec_lru_size - Returns the number of pages on the given LRU list. 587 * @lruvec: lru vector 588 * @lru: lru to use 589 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list) 590 */ 591 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, 592 int zone_idx) 593 { 594 unsigned long size = 0; 595 int zid; 596 597 for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) { 598 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid]; 599 600 if (!managed_zone(zone)) 601 continue; 602 603 if (!mem_cgroup_disabled()) 604 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid); 605 else 606 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru); 607 } 608 return size; 609 } 610 611 /* 612 * Add a shrinker callback to be called from the vm. 613 */ 614 int prealloc_shrinker(struct shrinker *shrinker) 615 { 616 unsigned int size; 617 int err; 618 619 if (shrinker->flags & SHRINKER_MEMCG_AWARE) { 620 err = prealloc_memcg_shrinker(shrinker); 621 if (err != -ENOSYS) 622 return err; 623 624 shrinker->flags &= ~SHRINKER_MEMCG_AWARE; 625 } 626 627 size = sizeof(*shrinker->nr_deferred); 628 if (shrinker->flags & SHRINKER_NUMA_AWARE) 629 size *= nr_node_ids; 630 631 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); 632 if (!shrinker->nr_deferred) 633 return -ENOMEM; 634 635 return 0; 636 } 637 638 void free_prealloced_shrinker(struct shrinker *shrinker) 639 { 640 if (shrinker->flags & SHRINKER_MEMCG_AWARE) { 641 down_write(&shrinker_rwsem); 642 unregister_memcg_shrinker(shrinker); 643 up_write(&shrinker_rwsem); 644 return; 645 } 646 647 kfree(shrinker->nr_deferred); 648 shrinker->nr_deferred = NULL; 649 } 650 651 void register_shrinker_prepared(struct shrinker *shrinker) 652 { 653 down_write(&shrinker_rwsem); 654 list_add_tail(&shrinker->list, &shrinker_list); 655 shrinker->flags |= SHRINKER_REGISTERED; 656 up_write(&shrinker_rwsem); 657 } 658 659 int register_shrinker(struct shrinker *shrinker) 660 { 661 int err = prealloc_shrinker(shrinker); 662 663 if (err) 664 return err; 665 register_shrinker_prepared(shrinker); 666 return 0; 667 } 668 EXPORT_SYMBOL(register_shrinker); 669 670 /* 671 * Remove one 672 */ 673 void unregister_shrinker(struct shrinker *shrinker) 674 { 675 if (!(shrinker->flags & SHRINKER_REGISTERED)) 676 return; 677 678 down_write(&shrinker_rwsem); 679 list_del(&shrinker->list); 680 shrinker->flags &= ~SHRINKER_REGISTERED; 681 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 682 unregister_memcg_shrinker(shrinker); 683 up_write(&shrinker_rwsem); 684 685 kfree(shrinker->nr_deferred); 686 shrinker->nr_deferred = NULL; 687 } 688 EXPORT_SYMBOL(unregister_shrinker); 689 690 /** 691 * synchronize_shrinkers - Wait for all running shrinkers to complete. 692 * 693 * This is equivalent to calling unregister_shrink() and register_shrinker(), 694 * but atomically and with less overhead. This is useful to guarantee that all 695 * shrinker invocations have seen an update, before freeing memory, similar to 696 * rcu. 697 */ 698 void synchronize_shrinkers(void) 699 { 700 down_write(&shrinker_rwsem); 701 up_write(&shrinker_rwsem); 702 } 703 EXPORT_SYMBOL(synchronize_shrinkers); 704 705 #define SHRINK_BATCH 128 706 707 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl, 708 struct shrinker *shrinker, int priority) 709 { 710 unsigned long freed = 0; 711 unsigned long long delta; 712 long total_scan; 713 long freeable; 714 long nr; 715 long new_nr; 716 long batch_size = shrinker->batch ? shrinker->batch 717 : SHRINK_BATCH; 718 long scanned = 0, next_deferred; 719 720 freeable = shrinker->count_objects(shrinker, shrinkctl); 721 if (freeable == 0 || freeable == SHRINK_EMPTY) 722 return freeable; 723 724 /* 725 * copy the current shrinker scan count into a local variable 726 * and zero it so that other concurrent shrinker invocations 727 * don't also do this scanning work. 728 */ 729 nr = xchg_nr_deferred(shrinker, shrinkctl); 730 731 if (shrinker->seeks) { 732 delta = freeable >> priority; 733 delta *= 4; 734 do_div(delta, shrinker->seeks); 735 } else { 736 /* 737 * These objects don't require any IO to create. Trim 738 * them aggressively under memory pressure to keep 739 * them from causing refetches in the IO caches. 740 */ 741 delta = freeable / 2; 742 } 743 744 total_scan = nr >> priority; 745 total_scan += delta; 746 total_scan = min(total_scan, (2 * freeable)); 747 748 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, 749 freeable, delta, total_scan, priority); 750 751 /* 752 * Normally, we should not scan less than batch_size objects in one 753 * pass to avoid too frequent shrinker calls, but if the slab has less 754 * than batch_size objects in total and we are really tight on memory, 755 * we will try to reclaim all available objects, otherwise we can end 756 * up failing allocations although there are plenty of reclaimable 757 * objects spread over several slabs with usage less than the 758 * batch_size. 759 * 760 * We detect the "tight on memory" situations by looking at the total 761 * number of objects we want to scan (total_scan). If it is greater 762 * than the total number of objects on slab (freeable), we must be 763 * scanning at high prio and therefore should try to reclaim as much as 764 * possible. 765 */ 766 while (total_scan >= batch_size || 767 total_scan >= freeable) { 768 unsigned long ret; 769 unsigned long nr_to_scan = min(batch_size, total_scan); 770 771 shrinkctl->nr_to_scan = nr_to_scan; 772 shrinkctl->nr_scanned = nr_to_scan; 773 ret = shrinker->scan_objects(shrinker, shrinkctl); 774 if (ret == SHRINK_STOP) 775 break; 776 freed += ret; 777 778 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned); 779 total_scan -= shrinkctl->nr_scanned; 780 scanned += shrinkctl->nr_scanned; 781 782 cond_resched(); 783 } 784 785 /* 786 * The deferred work is increased by any new work (delta) that wasn't 787 * done, decreased by old deferred work that was done now. 788 * 789 * And it is capped to two times of the freeable items. 790 */ 791 next_deferred = max_t(long, (nr + delta - scanned), 0); 792 next_deferred = min(next_deferred, (2 * freeable)); 793 794 /* 795 * move the unused scan count back into the shrinker in a 796 * manner that handles concurrent updates. 797 */ 798 new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl); 799 800 trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan); 801 return freed; 802 } 803 804 #ifdef CONFIG_MEMCG 805 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 806 struct mem_cgroup *memcg, int priority) 807 { 808 struct shrinker_info *info; 809 unsigned long ret, freed = 0; 810 int i; 811 812 if (!mem_cgroup_online(memcg)) 813 return 0; 814 815 if (!down_read_trylock(&shrinker_rwsem)) 816 return 0; 817 818 info = shrinker_info_protected(memcg, nid); 819 if (unlikely(!info)) 820 goto unlock; 821 822 for_each_set_bit(i, info->map, shrinker_nr_max) { 823 struct shrink_control sc = { 824 .gfp_mask = gfp_mask, 825 .nid = nid, 826 .memcg = memcg, 827 }; 828 struct shrinker *shrinker; 829 830 shrinker = idr_find(&shrinker_idr, i); 831 if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) { 832 if (!shrinker) 833 clear_bit(i, info->map); 834 continue; 835 } 836 837 /* Call non-slab shrinkers even though kmem is disabled */ 838 if (!memcg_kmem_enabled() && 839 !(shrinker->flags & SHRINKER_NONSLAB)) 840 continue; 841 842 ret = do_shrink_slab(&sc, shrinker, priority); 843 if (ret == SHRINK_EMPTY) { 844 clear_bit(i, info->map); 845 /* 846 * After the shrinker reported that it had no objects to 847 * free, but before we cleared the corresponding bit in 848 * the memcg shrinker map, a new object might have been 849 * added. To make sure, we have the bit set in this 850 * case, we invoke the shrinker one more time and reset 851 * the bit if it reports that it is not empty anymore. 852 * The memory barrier here pairs with the barrier in 853 * set_shrinker_bit(): 854 * 855 * list_lru_add() shrink_slab_memcg() 856 * list_add_tail() clear_bit() 857 * <MB> <MB> 858 * set_bit() do_shrink_slab() 859 */ 860 smp_mb__after_atomic(); 861 ret = do_shrink_slab(&sc, shrinker, priority); 862 if (ret == SHRINK_EMPTY) 863 ret = 0; 864 else 865 set_shrinker_bit(memcg, nid, i); 866 } 867 freed += ret; 868 869 if (rwsem_is_contended(&shrinker_rwsem)) { 870 freed = freed ? : 1; 871 break; 872 } 873 } 874 unlock: 875 up_read(&shrinker_rwsem); 876 return freed; 877 } 878 #else /* CONFIG_MEMCG */ 879 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 880 struct mem_cgroup *memcg, int priority) 881 { 882 return 0; 883 } 884 #endif /* CONFIG_MEMCG */ 885 886 /** 887 * shrink_slab - shrink slab caches 888 * @gfp_mask: allocation context 889 * @nid: node whose slab caches to target 890 * @memcg: memory cgroup whose slab caches to target 891 * @priority: the reclaim priority 892 * 893 * Call the shrink functions to age shrinkable caches. 894 * 895 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set, 896 * unaware shrinkers will receive a node id of 0 instead. 897 * 898 * @memcg specifies the memory cgroup to target. Unaware shrinkers 899 * are called only if it is the root cgroup. 900 * 901 * @priority is sc->priority, we take the number of objects and >> by priority 902 * in order to get the scan target. 903 * 904 * Returns the number of reclaimed slab objects. 905 */ 906 static unsigned long shrink_slab(gfp_t gfp_mask, int nid, 907 struct mem_cgroup *memcg, 908 int priority) 909 { 910 unsigned long ret, freed = 0; 911 struct shrinker *shrinker; 912 913 /* 914 * The root memcg might be allocated even though memcg is disabled 915 * via "cgroup_disable=memory" boot parameter. This could make 916 * mem_cgroup_is_root() return false, then just run memcg slab 917 * shrink, but skip global shrink. This may result in premature 918 * oom. 919 */ 920 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg)) 921 return shrink_slab_memcg(gfp_mask, nid, memcg, priority); 922 923 if (!down_read_trylock(&shrinker_rwsem)) 924 goto out; 925 926 list_for_each_entry(shrinker, &shrinker_list, list) { 927 struct shrink_control sc = { 928 .gfp_mask = gfp_mask, 929 .nid = nid, 930 .memcg = memcg, 931 }; 932 933 ret = do_shrink_slab(&sc, shrinker, priority); 934 if (ret == SHRINK_EMPTY) 935 ret = 0; 936 freed += ret; 937 /* 938 * Bail out if someone want to register a new shrinker to 939 * prevent the registration from being stalled for long periods 940 * by parallel ongoing shrinking. 941 */ 942 if (rwsem_is_contended(&shrinker_rwsem)) { 943 freed = freed ? : 1; 944 break; 945 } 946 } 947 948 up_read(&shrinker_rwsem); 949 out: 950 cond_resched(); 951 return freed; 952 } 953 954 static void drop_slab_node(int nid) 955 { 956 unsigned long freed; 957 int shift = 0; 958 959 do { 960 struct mem_cgroup *memcg = NULL; 961 962 if (fatal_signal_pending(current)) 963 return; 964 965 freed = 0; 966 memcg = mem_cgroup_iter(NULL, NULL, NULL); 967 do { 968 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0); 969 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 970 } while ((freed >> shift++) > 1); 971 } 972 973 void drop_slab(void) 974 { 975 int nid; 976 977 for_each_online_node(nid) 978 drop_slab_node(nid); 979 } 980 981 static inline int is_page_cache_freeable(struct page *page) 982 { 983 /* 984 * A freeable page cache page is referenced only by the caller 985 * that isolated the page, the page cache and optional buffer 986 * heads at page->private. 987 */ 988 int page_cache_pins = thp_nr_pages(page); 989 return page_count(page) - page_has_private(page) == 1 + page_cache_pins; 990 } 991 992 static int may_write_to_inode(struct inode *inode) 993 { 994 if (current->flags & PF_SWAPWRITE) 995 return 1; 996 if (!inode_write_congested(inode)) 997 return 1; 998 if (inode_to_bdi(inode) == current->backing_dev_info) 999 return 1; 1000 return 0; 1001 } 1002 1003 /* 1004 * We detected a synchronous write error writing a page out. Probably 1005 * -ENOSPC. We need to propagate that into the address_space for a subsequent 1006 * fsync(), msync() or close(). 1007 * 1008 * The tricky part is that after writepage we cannot touch the mapping: nothing 1009 * prevents it from being freed up. But we have a ref on the page and once 1010 * that page is locked, the mapping is pinned. 1011 * 1012 * We're allowed to run sleeping lock_page() here because we know the caller has 1013 * __GFP_FS. 1014 */ 1015 static void handle_write_error(struct address_space *mapping, 1016 struct page *page, int error) 1017 { 1018 lock_page(page); 1019 if (page_mapping(page) == mapping) 1020 mapping_set_error(mapping, error); 1021 unlock_page(page); 1022 } 1023 1024 static bool skip_throttle_noprogress(pg_data_t *pgdat) 1025 { 1026 int reclaimable = 0, write_pending = 0; 1027 int i; 1028 1029 /* 1030 * If kswapd is disabled, reschedule if necessary but do not 1031 * throttle as the system is likely near OOM. 1032 */ 1033 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 1034 return true; 1035 1036 /* 1037 * If there are a lot of dirty/writeback pages then do not 1038 * throttle as throttling will occur when the pages cycle 1039 * towards the end of the LRU if still under writeback. 1040 */ 1041 for (i = 0; i < MAX_NR_ZONES; i++) { 1042 struct zone *zone = pgdat->node_zones + i; 1043 1044 if (!populated_zone(zone)) 1045 continue; 1046 1047 reclaimable += zone_reclaimable_pages(zone); 1048 write_pending += zone_page_state_snapshot(zone, 1049 NR_ZONE_WRITE_PENDING); 1050 } 1051 if (2 * write_pending <= reclaimable) 1052 return true; 1053 1054 return false; 1055 } 1056 1057 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason) 1058 { 1059 wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason]; 1060 long timeout, ret; 1061 DEFINE_WAIT(wait); 1062 1063 /* 1064 * Do not throttle IO workers, kthreads other than kswapd or 1065 * workqueues. They may be required for reclaim to make 1066 * forward progress (e.g. journalling workqueues or kthreads). 1067 */ 1068 if (!current_is_kswapd() && 1069 current->flags & (PF_IO_WORKER|PF_KTHREAD)) { 1070 cond_resched(); 1071 return; 1072 } 1073 1074 /* 1075 * These figures are pulled out of thin air. 1076 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many 1077 * parallel reclaimers which is a short-lived event so the timeout is 1078 * short. Failing to make progress or waiting on writeback are 1079 * potentially long-lived events so use a longer timeout. This is shaky 1080 * logic as a failure to make progress could be due to anything from 1081 * writeback to a slow device to excessive references pages at the tail 1082 * of the inactive LRU. 1083 */ 1084 switch(reason) { 1085 case VMSCAN_THROTTLE_WRITEBACK: 1086 timeout = HZ/10; 1087 1088 if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) { 1089 WRITE_ONCE(pgdat->nr_reclaim_start, 1090 node_page_state(pgdat, NR_THROTTLED_WRITTEN)); 1091 } 1092 1093 break; 1094 case VMSCAN_THROTTLE_CONGESTED: 1095 fallthrough; 1096 case VMSCAN_THROTTLE_NOPROGRESS: 1097 if (skip_throttle_noprogress(pgdat)) { 1098 cond_resched(); 1099 return; 1100 } 1101 1102 timeout = 1; 1103 1104 break; 1105 case VMSCAN_THROTTLE_ISOLATED: 1106 timeout = HZ/50; 1107 break; 1108 default: 1109 WARN_ON_ONCE(1); 1110 timeout = HZ; 1111 break; 1112 } 1113 1114 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE); 1115 ret = schedule_timeout(timeout); 1116 finish_wait(wqh, &wait); 1117 1118 if (reason == VMSCAN_THROTTLE_WRITEBACK) 1119 atomic_dec(&pgdat->nr_writeback_throttled); 1120 1121 trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout), 1122 jiffies_to_usecs(timeout - ret), 1123 reason); 1124 } 1125 1126 /* 1127 * Account for pages written if tasks are throttled waiting on dirty 1128 * pages to clean. If enough pages have been cleaned since throttling 1129 * started then wakeup the throttled tasks. 1130 */ 1131 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio, 1132 int nr_throttled) 1133 { 1134 unsigned long nr_written; 1135 1136 node_stat_add_folio(folio, NR_THROTTLED_WRITTEN); 1137 1138 /* 1139 * This is an inaccurate read as the per-cpu deltas may not 1140 * be synchronised. However, given that the system is 1141 * writeback throttled, it is not worth taking the penalty 1142 * of getting an accurate count. At worst, the throttle 1143 * timeout guarantees forward progress. 1144 */ 1145 nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) - 1146 READ_ONCE(pgdat->nr_reclaim_start); 1147 1148 if (nr_written > SWAP_CLUSTER_MAX * nr_throttled) 1149 wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]); 1150 } 1151 1152 /* possible outcome of pageout() */ 1153 typedef enum { 1154 /* failed to write page out, page is locked */ 1155 PAGE_KEEP, 1156 /* move page to the active list, page is locked */ 1157 PAGE_ACTIVATE, 1158 /* page has been sent to the disk successfully, page is unlocked */ 1159 PAGE_SUCCESS, 1160 /* page is clean and locked */ 1161 PAGE_CLEAN, 1162 } pageout_t; 1163 1164 /* 1165 * pageout is called by shrink_page_list() for each dirty page. 1166 * Calls ->writepage(). 1167 */ 1168 static pageout_t pageout(struct page *page, struct address_space *mapping) 1169 { 1170 /* 1171 * If the page is dirty, only perform writeback if that write 1172 * will be non-blocking. To prevent this allocation from being 1173 * stalled by pagecache activity. But note that there may be 1174 * stalls if we need to run get_block(). We could test 1175 * PagePrivate for that. 1176 * 1177 * If this process is currently in __generic_file_write_iter() against 1178 * this page's queue, we can perform writeback even if that 1179 * will block. 1180 * 1181 * If the page is swapcache, write it back even if that would 1182 * block, for some throttling. This happens by accident, because 1183 * swap_backing_dev_info is bust: it doesn't reflect the 1184 * congestion state of the swapdevs. Easy to fix, if needed. 1185 */ 1186 if (!is_page_cache_freeable(page)) 1187 return PAGE_KEEP; 1188 if (!mapping) { 1189 /* 1190 * Some data journaling orphaned pages can have 1191 * page->mapping == NULL while being dirty with clean buffers. 1192 */ 1193 if (page_has_private(page)) { 1194 if (try_to_free_buffers(page)) { 1195 ClearPageDirty(page); 1196 pr_info("%s: orphaned page\n", __func__); 1197 return PAGE_CLEAN; 1198 } 1199 } 1200 return PAGE_KEEP; 1201 } 1202 if (mapping->a_ops->writepage == NULL) 1203 return PAGE_ACTIVATE; 1204 if (!may_write_to_inode(mapping->host)) 1205 return PAGE_KEEP; 1206 1207 if (clear_page_dirty_for_io(page)) { 1208 int res; 1209 struct writeback_control wbc = { 1210 .sync_mode = WB_SYNC_NONE, 1211 .nr_to_write = SWAP_CLUSTER_MAX, 1212 .range_start = 0, 1213 .range_end = LLONG_MAX, 1214 .for_reclaim = 1, 1215 }; 1216 1217 SetPageReclaim(page); 1218 res = mapping->a_ops->writepage(page, &wbc); 1219 if (res < 0) 1220 handle_write_error(mapping, page, res); 1221 if (res == AOP_WRITEPAGE_ACTIVATE) { 1222 ClearPageReclaim(page); 1223 return PAGE_ACTIVATE; 1224 } 1225 1226 if (!PageWriteback(page)) { 1227 /* synchronous write or broken a_ops? */ 1228 ClearPageReclaim(page); 1229 } 1230 trace_mm_vmscan_writepage(page); 1231 inc_node_page_state(page, NR_VMSCAN_WRITE); 1232 return PAGE_SUCCESS; 1233 } 1234 1235 return PAGE_CLEAN; 1236 } 1237 1238 /* 1239 * Same as remove_mapping, but if the page is removed from the mapping, it 1240 * gets returned with a refcount of 0. 1241 */ 1242 static int __remove_mapping(struct address_space *mapping, struct page *page, 1243 bool reclaimed, struct mem_cgroup *target_memcg) 1244 { 1245 int refcount; 1246 void *shadow = NULL; 1247 1248 BUG_ON(!PageLocked(page)); 1249 BUG_ON(mapping != page_mapping(page)); 1250 1251 if (!PageSwapCache(page)) 1252 spin_lock(&mapping->host->i_lock); 1253 xa_lock_irq(&mapping->i_pages); 1254 /* 1255 * The non racy check for a busy page. 1256 * 1257 * Must be careful with the order of the tests. When someone has 1258 * a ref to the page, it may be possible that they dirty it then 1259 * drop the reference. So if PageDirty is tested before page_count 1260 * here, then the following race may occur: 1261 * 1262 * get_user_pages(&page); 1263 * [user mapping goes away] 1264 * write_to(page); 1265 * !PageDirty(page) [good] 1266 * SetPageDirty(page); 1267 * put_page(page); 1268 * !page_count(page) [good, discard it] 1269 * 1270 * [oops, our write_to data is lost] 1271 * 1272 * Reversing the order of the tests ensures such a situation cannot 1273 * escape unnoticed. The smp_rmb is needed to ensure the page->flags 1274 * load is not satisfied before that of page->_refcount. 1275 * 1276 * Note that if SetPageDirty is always performed via set_page_dirty, 1277 * and thus under the i_pages lock, then this ordering is not required. 1278 */ 1279 refcount = 1 + compound_nr(page); 1280 if (!page_ref_freeze(page, refcount)) 1281 goto cannot_free; 1282 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */ 1283 if (unlikely(PageDirty(page))) { 1284 page_ref_unfreeze(page, refcount); 1285 goto cannot_free; 1286 } 1287 1288 if (PageSwapCache(page)) { 1289 swp_entry_t swap = { .val = page_private(page) }; 1290 mem_cgroup_swapout(page, swap); 1291 if (reclaimed && !mapping_exiting(mapping)) 1292 shadow = workingset_eviction(page, target_memcg); 1293 __delete_from_swap_cache(page, swap, shadow); 1294 xa_unlock_irq(&mapping->i_pages); 1295 put_swap_page(page, swap); 1296 } else { 1297 void (*freepage)(struct page *); 1298 1299 freepage = mapping->a_ops->freepage; 1300 /* 1301 * Remember a shadow entry for reclaimed file cache in 1302 * order to detect refaults, thus thrashing, later on. 1303 * 1304 * But don't store shadows in an address space that is 1305 * already exiting. This is not just an optimization, 1306 * inode reclaim needs to empty out the radix tree or 1307 * the nodes are lost. Don't plant shadows behind its 1308 * back. 1309 * 1310 * We also don't store shadows for DAX mappings because the 1311 * only page cache pages found in these are zero pages 1312 * covering holes, and because we don't want to mix DAX 1313 * exceptional entries and shadow exceptional entries in the 1314 * same address_space. 1315 */ 1316 if (reclaimed && page_is_file_lru(page) && 1317 !mapping_exiting(mapping) && !dax_mapping(mapping)) 1318 shadow = workingset_eviction(page, target_memcg); 1319 __delete_from_page_cache(page, shadow); 1320 xa_unlock_irq(&mapping->i_pages); 1321 if (mapping_shrinkable(mapping)) 1322 inode_add_lru(mapping->host); 1323 spin_unlock(&mapping->host->i_lock); 1324 1325 if (freepage != NULL) 1326 freepage(page); 1327 } 1328 1329 return 1; 1330 1331 cannot_free: 1332 xa_unlock_irq(&mapping->i_pages); 1333 if (!PageSwapCache(page)) 1334 spin_unlock(&mapping->host->i_lock); 1335 return 0; 1336 } 1337 1338 /* 1339 * Attempt to detach a locked page from its ->mapping. If it is dirty or if 1340 * someone else has a ref on the page, abort and return 0. If it was 1341 * successfully detached, return 1. Assumes the caller has a single ref on 1342 * this page. 1343 */ 1344 int remove_mapping(struct address_space *mapping, struct page *page) 1345 { 1346 if (__remove_mapping(mapping, page, false, NULL)) { 1347 /* 1348 * Unfreezing the refcount with 1 rather than 2 effectively 1349 * drops the pagecache ref for us without requiring another 1350 * atomic operation. 1351 */ 1352 page_ref_unfreeze(page, 1); 1353 return 1; 1354 } 1355 return 0; 1356 } 1357 1358 /** 1359 * putback_lru_page - put previously isolated page onto appropriate LRU list 1360 * @page: page to be put back to appropriate lru list 1361 * 1362 * Add previously isolated @page to appropriate LRU list. 1363 * Page may still be unevictable for other reasons. 1364 * 1365 * lru_lock must not be held, interrupts must be enabled. 1366 */ 1367 void putback_lru_page(struct page *page) 1368 { 1369 lru_cache_add(page); 1370 put_page(page); /* drop ref from isolate */ 1371 } 1372 1373 enum page_references { 1374 PAGEREF_RECLAIM, 1375 PAGEREF_RECLAIM_CLEAN, 1376 PAGEREF_KEEP, 1377 PAGEREF_ACTIVATE, 1378 }; 1379 1380 static enum page_references page_check_references(struct page *page, 1381 struct scan_control *sc) 1382 { 1383 int referenced_ptes, referenced_page; 1384 unsigned long vm_flags; 1385 1386 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup, 1387 &vm_flags); 1388 referenced_page = TestClearPageReferenced(page); 1389 1390 /* 1391 * Mlock lost the isolation race with us. Let try_to_unmap() 1392 * move the page to the unevictable list. 1393 */ 1394 if (vm_flags & VM_LOCKED) 1395 return PAGEREF_RECLAIM; 1396 1397 if (referenced_ptes) { 1398 /* 1399 * All mapped pages start out with page table 1400 * references from the instantiating fault, so we need 1401 * to look twice if a mapped file page is used more 1402 * than once. 1403 * 1404 * Mark it and spare it for another trip around the 1405 * inactive list. Another page table reference will 1406 * lead to its activation. 1407 * 1408 * Note: the mark is set for activated pages as well 1409 * so that recently deactivated but used pages are 1410 * quickly recovered. 1411 */ 1412 SetPageReferenced(page); 1413 1414 if (referenced_page || referenced_ptes > 1) 1415 return PAGEREF_ACTIVATE; 1416 1417 /* 1418 * Activate file-backed executable pages after first usage. 1419 */ 1420 if ((vm_flags & VM_EXEC) && !PageSwapBacked(page)) 1421 return PAGEREF_ACTIVATE; 1422 1423 return PAGEREF_KEEP; 1424 } 1425 1426 /* Reclaim if clean, defer dirty pages to writeback */ 1427 if (referenced_page && !PageSwapBacked(page)) 1428 return PAGEREF_RECLAIM_CLEAN; 1429 1430 return PAGEREF_RECLAIM; 1431 } 1432 1433 /* Check if a page is dirty or under writeback */ 1434 static void page_check_dirty_writeback(struct page *page, 1435 bool *dirty, bool *writeback) 1436 { 1437 struct address_space *mapping; 1438 1439 /* 1440 * Anonymous pages are not handled by flushers and must be written 1441 * from reclaim context. Do not stall reclaim based on them 1442 */ 1443 if (!page_is_file_lru(page) || 1444 (PageAnon(page) && !PageSwapBacked(page))) { 1445 *dirty = false; 1446 *writeback = false; 1447 return; 1448 } 1449 1450 /* By default assume that the page flags are accurate */ 1451 *dirty = PageDirty(page); 1452 *writeback = PageWriteback(page); 1453 1454 /* Verify dirty/writeback state if the filesystem supports it */ 1455 if (!page_has_private(page)) 1456 return; 1457 1458 mapping = page_mapping(page); 1459 if (mapping && mapping->a_ops->is_dirty_writeback) 1460 mapping->a_ops->is_dirty_writeback(page, dirty, writeback); 1461 } 1462 1463 static struct page *alloc_demote_page(struct page *page, unsigned long node) 1464 { 1465 struct migration_target_control mtc = { 1466 /* 1467 * Allocate from 'node', or fail quickly and quietly. 1468 * When this happens, 'page' will likely just be discarded 1469 * instead of migrated. 1470 */ 1471 .gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | 1472 __GFP_THISNODE | __GFP_NOWARN | 1473 __GFP_NOMEMALLOC | GFP_NOWAIT, 1474 .nid = node 1475 }; 1476 1477 return alloc_migration_target(page, (unsigned long)&mtc); 1478 } 1479 1480 /* 1481 * Take pages on @demote_list and attempt to demote them to 1482 * another node. Pages which are not demoted are left on 1483 * @demote_pages. 1484 */ 1485 static unsigned int demote_page_list(struct list_head *demote_pages, 1486 struct pglist_data *pgdat) 1487 { 1488 int target_nid = next_demotion_node(pgdat->node_id); 1489 unsigned int nr_succeeded; 1490 1491 if (list_empty(demote_pages)) 1492 return 0; 1493 1494 if (target_nid == NUMA_NO_NODE) 1495 return 0; 1496 1497 /* Demotion ignores all cpuset and mempolicy settings */ 1498 migrate_pages(demote_pages, alloc_demote_page, NULL, 1499 target_nid, MIGRATE_ASYNC, MR_DEMOTION, 1500 &nr_succeeded); 1501 1502 if (current_is_kswapd()) 1503 __count_vm_events(PGDEMOTE_KSWAPD, nr_succeeded); 1504 else 1505 __count_vm_events(PGDEMOTE_DIRECT, nr_succeeded); 1506 1507 return nr_succeeded; 1508 } 1509 1510 /* 1511 * shrink_page_list() returns the number of reclaimed pages 1512 */ 1513 static unsigned int shrink_page_list(struct list_head *page_list, 1514 struct pglist_data *pgdat, 1515 struct scan_control *sc, 1516 struct reclaim_stat *stat, 1517 bool ignore_references) 1518 { 1519 LIST_HEAD(ret_pages); 1520 LIST_HEAD(free_pages); 1521 LIST_HEAD(demote_pages); 1522 unsigned int nr_reclaimed = 0; 1523 unsigned int pgactivate = 0; 1524 bool do_demote_pass; 1525 1526 memset(stat, 0, sizeof(*stat)); 1527 cond_resched(); 1528 do_demote_pass = can_demote(pgdat->node_id, sc); 1529 1530 retry: 1531 while (!list_empty(page_list)) { 1532 struct address_space *mapping; 1533 struct page *page; 1534 enum page_references references = PAGEREF_RECLAIM; 1535 bool dirty, writeback, may_enter_fs; 1536 unsigned int nr_pages; 1537 1538 cond_resched(); 1539 1540 page = lru_to_page(page_list); 1541 list_del(&page->lru); 1542 1543 if (!trylock_page(page)) 1544 goto keep; 1545 1546 VM_BUG_ON_PAGE(PageActive(page), page); 1547 1548 nr_pages = compound_nr(page); 1549 1550 /* Account the number of base pages even though THP */ 1551 sc->nr_scanned += nr_pages; 1552 1553 if (unlikely(!page_evictable(page))) 1554 goto activate_locked; 1555 1556 if (!sc->may_unmap && page_mapped(page)) 1557 goto keep_locked; 1558 1559 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 1560 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 1561 1562 /* 1563 * The number of dirty pages determines if a node is marked 1564 * reclaim_congested. kswapd will stall and start writing 1565 * pages if the tail of the LRU is all dirty unqueued pages. 1566 */ 1567 page_check_dirty_writeback(page, &dirty, &writeback); 1568 if (dirty || writeback) 1569 stat->nr_dirty++; 1570 1571 if (dirty && !writeback) 1572 stat->nr_unqueued_dirty++; 1573 1574 /* 1575 * Treat this page as congested if the underlying BDI is or if 1576 * pages are cycling through the LRU so quickly that the 1577 * pages marked for immediate reclaim are making it to the 1578 * end of the LRU a second time. 1579 */ 1580 mapping = page_mapping(page); 1581 if (((dirty || writeback) && mapping && 1582 inode_write_congested(mapping->host)) || 1583 (writeback && PageReclaim(page))) 1584 stat->nr_congested++; 1585 1586 /* 1587 * If a page at the tail of the LRU is under writeback, there 1588 * are three cases to consider. 1589 * 1590 * 1) If reclaim is encountering an excessive number of pages 1591 * under writeback and this page is both under writeback and 1592 * PageReclaim then it indicates that pages are being queued 1593 * for IO but are being recycled through the LRU before the 1594 * IO can complete. Waiting on the page itself risks an 1595 * indefinite stall if it is impossible to writeback the 1596 * page due to IO error or disconnected storage so instead 1597 * note that the LRU is being scanned too quickly and the 1598 * caller can stall after page list has been processed. 1599 * 1600 * 2) Global or new memcg reclaim encounters a page that is 1601 * not marked for immediate reclaim, or the caller does not 1602 * have __GFP_FS (or __GFP_IO if it's simply going to swap, 1603 * not to fs). In this case mark the page for immediate 1604 * reclaim and continue scanning. 1605 * 1606 * Require may_enter_fs because we would wait on fs, which 1607 * may not have submitted IO yet. And the loop driver might 1608 * enter reclaim, and deadlock if it waits on a page for 1609 * which it is needed to do the write (loop masks off 1610 * __GFP_IO|__GFP_FS for this reason); but more thought 1611 * would probably show more reasons. 1612 * 1613 * 3) Legacy memcg encounters a page that is already marked 1614 * PageReclaim. memcg does not have any dirty pages 1615 * throttling so we could easily OOM just because too many 1616 * pages are in writeback and there is nothing else to 1617 * reclaim. Wait for the writeback to complete. 1618 * 1619 * In cases 1) and 2) we activate the pages to get them out of 1620 * the way while we continue scanning for clean pages on the 1621 * inactive list and refilling from the active list. The 1622 * observation here is that waiting for disk writes is more 1623 * expensive than potentially causing reloads down the line. 1624 * Since they're marked for immediate reclaim, they won't put 1625 * memory pressure on the cache working set any longer than it 1626 * takes to write them to disk. 1627 */ 1628 if (PageWriteback(page)) { 1629 /* Case 1 above */ 1630 if (current_is_kswapd() && 1631 PageReclaim(page) && 1632 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) { 1633 stat->nr_immediate++; 1634 goto activate_locked; 1635 1636 /* Case 2 above */ 1637 } else if (writeback_throttling_sane(sc) || 1638 !PageReclaim(page) || !may_enter_fs) { 1639 /* 1640 * This is slightly racy - end_page_writeback() 1641 * might have just cleared PageReclaim, then 1642 * setting PageReclaim here end up interpreted 1643 * as PageReadahead - but that does not matter 1644 * enough to care. What we do want is for this 1645 * page to have PageReclaim set next time memcg 1646 * reclaim reaches the tests above, so it will 1647 * then wait_on_page_writeback() to avoid OOM; 1648 * and it's also appropriate in global reclaim. 1649 */ 1650 SetPageReclaim(page); 1651 stat->nr_writeback++; 1652 goto activate_locked; 1653 1654 /* Case 3 above */ 1655 } else { 1656 unlock_page(page); 1657 wait_on_page_writeback(page); 1658 /* then go back and try same page again */ 1659 list_add_tail(&page->lru, page_list); 1660 continue; 1661 } 1662 } 1663 1664 if (!ignore_references) 1665 references = page_check_references(page, sc); 1666 1667 switch (references) { 1668 case PAGEREF_ACTIVATE: 1669 goto activate_locked; 1670 case PAGEREF_KEEP: 1671 stat->nr_ref_keep += nr_pages; 1672 goto keep_locked; 1673 case PAGEREF_RECLAIM: 1674 case PAGEREF_RECLAIM_CLEAN: 1675 ; /* try to reclaim the page below */ 1676 } 1677 1678 /* 1679 * Before reclaiming the page, try to relocate 1680 * its contents to another node. 1681 */ 1682 if (do_demote_pass && 1683 (thp_migration_supported() || !PageTransHuge(page))) { 1684 list_add(&page->lru, &demote_pages); 1685 unlock_page(page); 1686 continue; 1687 } 1688 1689 /* 1690 * Anonymous process memory has backing store? 1691 * Try to allocate it some swap space here. 1692 * Lazyfree page could be freed directly 1693 */ 1694 if (PageAnon(page) && PageSwapBacked(page)) { 1695 if (!PageSwapCache(page)) { 1696 if (!(sc->gfp_mask & __GFP_IO)) 1697 goto keep_locked; 1698 if (page_maybe_dma_pinned(page)) 1699 goto keep_locked; 1700 if (PageTransHuge(page)) { 1701 /* cannot split THP, skip it */ 1702 if (!can_split_huge_page(page, NULL)) 1703 goto activate_locked; 1704 /* 1705 * Split pages without a PMD map right 1706 * away. Chances are some or all of the 1707 * tail pages can be freed without IO. 1708 */ 1709 if (!compound_mapcount(page) && 1710 split_huge_page_to_list(page, 1711 page_list)) 1712 goto activate_locked; 1713 } 1714 if (!add_to_swap(page)) { 1715 if (!PageTransHuge(page)) 1716 goto activate_locked_split; 1717 /* Fallback to swap normal pages */ 1718 if (split_huge_page_to_list(page, 1719 page_list)) 1720 goto activate_locked; 1721 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1722 count_vm_event(THP_SWPOUT_FALLBACK); 1723 #endif 1724 if (!add_to_swap(page)) 1725 goto activate_locked_split; 1726 } 1727 1728 may_enter_fs = true; 1729 1730 /* Adding to swap updated mapping */ 1731 mapping = page_mapping(page); 1732 } 1733 } else if (unlikely(PageTransHuge(page))) { 1734 /* Split file THP */ 1735 if (split_huge_page_to_list(page, page_list)) 1736 goto keep_locked; 1737 } 1738 1739 /* 1740 * THP may get split above, need minus tail pages and update 1741 * nr_pages to avoid accounting tail pages twice. 1742 * 1743 * The tail pages that are added into swap cache successfully 1744 * reach here. 1745 */ 1746 if ((nr_pages > 1) && !PageTransHuge(page)) { 1747 sc->nr_scanned -= (nr_pages - 1); 1748 nr_pages = 1; 1749 } 1750 1751 /* 1752 * The page is mapped into the page tables of one or more 1753 * processes. Try to unmap it here. 1754 */ 1755 if (page_mapped(page)) { 1756 enum ttu_flags flags = TTU_BATCH_FLUSH; 1757 bool was_swapbacked = PageSwapBacked(page); 1758 1759 if (unlikely(PageTransHuge(page))) 1760 flags |= TTU_SPLIT_HUGE_PMD; 1761 1762 try_to_unmap(page, flags); 1763 if (page_mapped(page)) { 1764 stat->nr_unmap_fail += nr_pages; 1765 if (!was_swapbacked && PageSwapBacked(page)) 1766 stat->nr_lazyfree_fail += nr_pages; 1767 goto activate_locked; 1768 } 1769 } 1770 1771 if (PageDirty(page)) { 1772 /* 1773 * Only kswapd can writeback filesystem pages 1774 * to avoid risk of stack overflow. But avoid 1775 * injecting inefficient single-page IO into 1776 * flusher writeback as much as possible: only 1777 * write pages when we've encountered many 1778 * dirty pages, and when we've already scanned 1779 * the rest of the LRU for clean pages and see 1780 * the same dirty pages again (PageReclaim). 1781 */ 1782 if (page_is_file_lru(page) && 1783 (!current_is_kswapd() || !PageReclaim(page) || 1784 !test_bit(PGDAT_DIRTY, &pgdat->flags))) { 1785 /* 1786 * Immediately reclaim when written back. 1787 * Similar in principal to deactivate_page() 1788 * except we already have the page isolated 1789 * and know it's dirty 1790 */ 1791 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE); 1792 SetPageReclaim(page); 1793 1794 goto activate_locked; 1795 } 1796 1797 if (references == PAGEREF_RECLAIM_CLEAN) 1798 goto keep_locked; 1799 if (!may_enter_fs) 1800 goto keep_locked; 1801 if (!sc->may_writepage) 1802 goto keep_locked; 1803 1804 /* 1805 * Page is dirty. Flush the TLB if a writable entry 1806 * potentially exists to avoid CPU writes after IO 1807 * starts and then write it out here. 1808 */ 1809 try_to_unmap_flush_dirty(); 1810 switch (pageout(page, mapping)) { 1811 case PAGE_KEEP: 1812 goto keep_locked; 1813 case PAGE_ACTIVATE: 1814 goto activate_locked; 1815 case PAGE_SUCCESS: 1816 stat->nr_pageout += thp_nr_pages(page); 1817 1818 if (PageWriteback(page)) 1819 goto keep; 1820 if (PageDirty(page)) 1821 goto keep; 1822 1823 /* 1824 * A synchronous write - probably a ramdisk. Go 1825 * ahead and try to reclaim the page. 1826 */ 1827 if (!trylock_page(page)) 1828 goto keep; 1829 if (PageDirty(page) || PageWriteback(page)) 1830 goto keep_locked; 1831 mapping = page_mapping(page); 1832 fallthrough; 1833 case PAGE_CLEAN: 1834 ; /* try to free the page below */ 1835 } 1836 } 1837 1838 /* 1839 * If the page has buffers, try to free the buffer mappings 1840 * associated with this page. If we succeed we try to free 1841 * the page as well. 1842 * 1843 * We do this even if the page is PageDirty(). 1844 * try_to_release_page() does not perform I/O, but it is 1845 * possible for a page to have PageDirty set, but it is actually 1846 * clean (all its buffers are clean). This happens if the 1847 * buffers were written out directly, with submit_bh(). ext3 1848 * will do this, as well as the blockdev mapping. 1849 * try_to_release_page() will discover that cleanness and will 1850 * drop the buffers and mark the page clean - it can be freed. 1851 * 1852 * Rarely, pages can have buffers and no ->mapping. These are 1853 * the pages which were not successfully invalidated in 1854 * truncate_cleanup_page(). We try to drop those buffers here 1855 * and if that worked, and the page is no longer mapped into 1856 * process address space (page_count == 1) it can be freed. 1857 * Otherwise, leave the page on the LRU so it is swappable. 1858 */ 1859 if (page_has_private(page)) { 1860 if (!try_to_release_page(page, sc->gfp_mask)) 1861 goto activate_locked; 1862 if (!mapping && page_count(page) == 1) { 1863 unlock_page(page); 1864 if (put_page_testzero(page)) 1865 goto free_it; 1866 else { 1867 /* 1868 * rare race with speculative reference. 1869 * the speculative reference will free 1870 * this page shortly, so we may 1871 * increment nr_reclaimed here (and 1872 * leave it off the LRU). 1873 */ 1874 nr_reclaimed++; 1875 continue; 1876 } 1877 } 1878 } 1879 1880 if (PageAnon(page) && !PageSwapBacked(page)) { 1881 /* follow __remove_mapping for reference */ 1882 if (!page_ref_freeze(page, 1)) 1883 goto keep_locked; 1884 /* 1885 * The page has only one reference left, which is 1886 * from the isolation. After the caller puts the 1887 * page back on lru and drops the reference, the 1888 * page will be freed anyway. It doesn't matter 1889 * which lru it goes. So we don't bother checking 1890 * PageDirty here. 1891 */ 1892 count_vm_event(PGLAZYFREED); 1893 count_memcg_page_event(page, PGLAZYFREED); 1894 } else if (!mapping || !__remove_mapping(mapping, page, true, 1895 sc->target_mem_cgroup)) 1896 goto keep_locked; 1897 1898 unlock_page(page); 1899 free_it: 1900 /* 1901 * THP may get swapped out in a whole, need account 1902 * all base pages. 1903 */ 1904 nr_reclaimed += nr_pages; 1905 1906 /* 1907 * Is there need to periodically free_page_list? It would 1908 * appear not as the counts should be low 1909 */ 1910 if (unlikely(PageTransHuge(page))) 1911 destroy_compound_page(page); 1912 else 1913 list_add(&page->lru, &free_pages); 1914 continue; 1915 1916 activate_locked_split: 1917 /* 1918 * The tail pages that are failed to add into swap cache 1919 * reach here. Fixup nr_scanned and nr_pages. 1920 */ 1921 if (nr_pages > 1) { 1922 sc->nr_scanned -= (nr_pages - 1); 1923 nr_pages = 1; 1924 } 1925 activate_locked: 1926 /* Not a candidate for swapping, so reclaim swap space. */ 1927 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) || 1928 PageMlocked(page))) 1929 try_to_free_swap(page); 1930 VM_BUG_ON_PAGE(PageActive(page), page); 1931 if (!PageMlocked(page)) { 1932 int type = page_is_file_lru(page); 1933 SetPageActive(page); 1934 stat->nr_activate[type] += nr_pages; 1935 count_memcg_page_event(page, PGACTIVATE); 1936 } 1937 keep_locked: 1938 unlock_page(page); 1939 keep: 1940 list_add(&page->lru, &ret_pages); 1941 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page); 1942 } 1943 /* 'page_list' is always empty here */ 1944 1945 /* Migrate pages selected for demotion */ 1946 nr_reclaimed += demote_page_list(&demote_pages, pgdat); 1947 /* Pages that could not be demoted are still in @demote_pages */ 1948 if (!list_empty(&demote_pages)) { 1949 /* Pages which failed to demoted go back on @page_list for retry: */ 1950 list_splice_init(&demote_pages, page_list); 1951 do_demote_pass = false; 1952 goto retry; 1953 } 1954 1955 pgactivate = stat->nr_activate[0] + stat->nr_activate[1]; 1956 1957 mem_cgroup_uncharge_list(&free_pages); 1958 try_to_unmap_flush(); 1959 free_unref_page_list(&free_pages); 1960 1961 list_splice(&ret_pages, page_list); 1962 count_vm_events(PGACTIVATE, pgactivate); 1963 1964 return nr_reclaimed; 1965 } 1966 1967 unsigned int reclaim_clean_pages_from_list(struct zone *zone, 1968 struct list_head *page_list) 1969 { 1970 struct scan_control sc = { 1971 .gfp_mask = GFP_KERNEL, 1972 .may_unmap = 1, 1973 }; 1974 struct reclaim_stat stat; 1975 unsigned int nr_reclaimed; 1976 struct page *page, *next; 1977 LIST_HEAD(clean_pages); 1978 unsigned int noreclaim_flag; 1979 1980 list_for_each_entry_safe(page, next, page_list, lru) { 1981 if (!PageHuge(page) && page_is_file_lru(page) && 1982 !PageDirty(page) && !__PageMovable(page) && 1983 !PageUnevictable(page)) { 1984 ClearPageActive(page); 1985 list_move(&page->lru, &clean_pages); 1986 } 1987 } 1988 1989 /* 1990 * We should be safe here since we are only dealing with file pages and 1991 * we are not kswapd and therefore cannot write dirty file pages. But 1992 * call memalloc_noreclaim_save() anyway, just in case these conditions 1993 * change in the future. 1994 */ 1995 noreclaim_flag = memalloc_noreclaim_save(); 1996 nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc, 1997 &stat, true); 1998 memalloc_noreclaim_restore(noreclaim_flag); 1999 2000 list_splice(&clean_pages, page_list); 2001 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, 2002 -(long)nr_reclaimed); 2003 /* 2004 * Since lazyfree pages are isolated from file LRU from the beginning, 2005 * they will rotate back to anonymous LRU in the end if it failed to 2006 * discard so isolated count will be mismatched. 2007 * Compensate the isolated count for both LRU lists. 2008 */ 2009 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON, 2010 stat.nr_lazyfree_fail); 2011 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, 2012 -(long)stat.nr_lazyfree_fail); 2013 return nr_reclaimed; 2014 } 2015 2016 /* 2017 * Attempt to remove the specified page from its LRU. Only take this page 2018 * if it is of the appropriate PageActive status. Pages which are being 2019 * freed elsewhere are also ignored. 2020 * 2021 * page: page to consider 2022 * mode: one of the LRU isolation modes defined above 2023 * 2024 * returns true on success, false on failure. 2025 */ 2026 bool __isolate_lru_page_prepare(struct page *page, isolate_mode_t mode) 2027 { 2028 /* Only take pages on the LRU. */ 2029 if (!PageLRU(page)) 2030 return false; 2031 2032 /* Compaction should not handle unevictable pages but CMA can do so */ 2033 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE)) 2034 return false; 2035 2036 /* 2037 * To minimise LRU disruption, the caller can indicate that it only 2038 * wants to isolate pages it will be able to operate on without 2039 * blocking - clean pages for the most part. 2040 * 2041 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages 2042 * that it is possible to migrate without blocking 2043 */ 2044 if (mode & ISOLATE_ASYNC_MIGRATE) { 2045 /* All the caller can do on PageWriteback is block */ 2046 if (PageWriteback(page)) 2047 return false; 2048 2049 if (PageDirty(page)) { 2050 struct address_space *mapping; 2051 bool migrate_dirty; 2052 2053 /* 2054 * Only pages without mappings or that have a 2055 * ->migratepage callback are possible to migrate 2056 * without blocking. However, we can be racing with 2057 * truncation so it's necessary to lock the page 2058 * to stabilise the mapping as truncation holds 2059 * the page lock until after the page is removed 2060 * from the page cache. 2061 */ 2062 if (!trylock_page(page)) 2063 return false; 2064 2065 mapping = page_mapping(page); 2066 migrate_dirty = !mapping || mapping->a_ops->migratepage; 2067 unlock_page(page); 2068 if (!migrate_dirty) 2069 return false; 2070 } 2071 } 2072 2073 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page)) 2074 return false; 2075 2076 return true; 2077 } 2078 2079 /* 2080 * Update LRU sizes after isolating pages. The LRU size updates must 2081 * be complete before mem_cgroup_update_lru_size due to a sanity check. 2082 */ 2083 static __always_inline void update_lru_sizes(struct lruvec *lruvec, 2084 enum lru_list lru, unsigned long *nr_zone_taken) 2085 { 2086 int zid; 2087 2088 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 2089 if (!nr_zone_taken[zid]) 2090 continue; 2091 2092 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 2093 } 2094 2095 } 2096 2097 /* 2098 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times. 2099 * 2100 * lruvec->lru_lock is heavily contended. Some of the functions that 2101 * shrink the lists perform better by taking out a batch of pages 2102 * and working on them outside the LRU lock. 2103 * 2104 * For pagecache intensive workloads, this function is the hottest 2105 * spot in the kernel (apart from copy_*_user functions). 2106 * 2107 * Lru_lock must be held before calling this function. 2108 * 2109 * @nr_to_scan: The number of eligible pages to look through on the list. 2110 * @lruvec: The LRU vector to pull pages from. 2111 * @dst: The temp list to put pages on to. 2112 * @nr_scanned: The number of pages that were scanned. 2113 * @sc: The scan_control struct for this reclaim session 2114 * @lru: LRU list id for isolating 2115 * 2116 * returns how many pages were moved onto *@dst. 2117 */ 2118 static unsigned long isolate_lru_pages(unsigned long nr_to_scan, 2119 struct lruvec *lruvec, struct list_head *dst, 2120 unsigned long *nr_scanned, struct scan_control *sc, 2121 enum lru_list lru) 2122 { 2123 struct list_head *src = &lruvec->lists[lru]; 2124 unsigned long nr_taken = 0; 2125 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 }; 2126 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, }; 2127 unsigned long skipped = 0; 2128 unsigned long scan, total_scan, nr_pages; 2129 LIST_HEAD(pages_skipped); 2130 isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED); 2131 2132 total_scan = 0; 2133 scan = 0; 2134 while (scan < nr_to_scan && !list_empty(src)) { 2135 struct page *page; 2136 2137 page = lru_to_page(src); 2138 prefetchw_prev_lru_page(page, src, flags); 2139 2140 nr_pages = compound_nr(page); 2141 total_scan += nr_pages; 2142 2143 if (page_zonenum(page) > sc->reclaim_idx) { 2144 list_move(&page->lru, &pages_skipped); 2145 nr_skipped[page_zonenum(page)] += nr_pages; 2146 continue; 2147 } 2148 2149 /* 2150 * Do not count skipped pages because that makes the function 2151 * return with no isolated pages if the LRU mostly contains 2152 * ineligible pages. This causes the VM to not reclaim any 2153 * pages, triggering a premature OOM. 2154 * 2155 * Account all tail pages of THP. This would not cause 2156 * premature OOM since __isolate_lru_page() returns -EBUSY 2157 * only when the page is being freed somewhere else. 2158 */ 2159 scan += nr_pages; 2160 if (!__isolate_lru_page_prepare(page, mode)) { 2161 /* It is being freed elsewhere */ 2162 list_move(&page->lru, src); 2163 continue; 2164 } 2165 /* 2166 * Be careful not to clear PageLRU until after we're 2167 * sure the page is not being freed elsewhere -- the 2168 * page release code relies on it. 2169 */ 2170 if (unlikely(!get_page_unless_zero(page))) { 2171 list_move(&page->lru, src); 2172 continue; 2173 } 2174 2175 if (!TestClearPageLRU(page)) { 2176 /* Another thread is already isolating this page */ 2177 put_page(page); 2178 list_move(&page->lru, src); 2179 continue; 2180 } 2181 2182 nr_taken += nr_pages; 2183 nr_zone_taken[page_zonenum(page)] += nr_pages; 2184 list_move(&page->lru, dst); 2185 } 2186 2187 /* 2188 * Splice any skipped pages to the start of the LRU list. Note that 2189 * this disrupts the LRU order when reclaiming for lower zones but 2190 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX 2191 * scanning would soon rescan the same pages to skip and put the 2192 * system at risk of premature OOM. 2193 */ 2194 if (!list_empty(&pages_skipped)) { 2195 int zid; 2196 2197 list_splice(&pages_skipped, src); 2198 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 2199 if (!nr_skipped[zid]) 2200 continue; 2201 2202 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]); 2203 skipped += nr_skipped[zid]; 2204 } 2205 } 2206 *nr_scanned = total_scan; 2207 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, 2208 total_scan, skipped, nr_taken, mode, lru); 2209 update_lru_sizes(lruvec, lru, nr_zone_taken); 2210 return nr_taken; 2211 } 2212 2213 /** 2214 * isolate_lru_page - tries to isolate a page from its LRU list 2215 * @page: page to isolate from its LRU list 2216 * 2217 * Isolates a @page from an LRU list, clears PageLRU and adjusts the 2218 * vmstat statistic corresponding to whatever LRU list the page was on. 2219 * 2220 * Returns 0 if the page was removed from an LRU list. 2221 * Returns -EBUSY if the page was not on an LRU list. 2222 * 2223 * The returned page will have PageLRU() cleared. If it was found on 2224 * the active list, it will have PageActive set. If it was found on 2225 * the unevictable list, it will have the PageUnevictable bit set. That flag 2226 * may need to be cleared by the caller before letting the page go. 2227 * 2228 * The vmstat statistic corresponding to the list on which the page was 2229 * found will be decremented. 2230 * 2231 * Restrictions: 2232 * 2233 * (1) Must be called with an elevated refcount on the page. This is a 2234 * fundamental difference from isolate_lru_pages (which is called 2235 * without a stable reference). 2236 * (2) the lru_lock must not be held. 2237 * (3) interrupts must be enabled. 2238 */ 2239 int isolate_lru_page(struct page *page) 2240 { 2241 struct folio *folio = page_folio(page); 2242 int ret = -EBUSY; 2243 2244 VM_BUG_ON_PAGE(!page_count(page), page); 2245 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page"); 2246 2247 if (TestClearPageLRU(page)) { 2248 struct lruvec *lruvec; 2249 2250 get_page(page); 2251 lruvec = folio_lruvec_lock_irq(folio); 2252 del_page_from_lru_list(page, lruvec); 2253 unlock_page_lruvec_irq(lruvec); 2254 ret = 0; 2255 } 2256 2257 return ret; 2258 } 2259 2260 /* 2261 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 2262 * then get rescheduled. When there are massive number of tasks doing page 2263 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 2264 * the LRU list will go small and be scanned faster than necessary, leading to 2265 * unnecessary swapping, thrashing and OOM. 2266 */ 2267 static int too_many_isolated(struct pglist_data *pgdat, int file, 2268 struct scan_control *sc) 2269 { 2270 unsigned long inactive, isolated; 2271 bool too_many; 2272 2273 if (current_is_kswapd()) 2274 return 0; 2275 2276 if (!writeback_throttling_sane(sc)) 2277 return 0; 2278 2279 if (file) { 2280 inactive = node_page_state(pgdat, NR_INACTIVE_FILE); 2281 isolated = node_page_state(pgdat, NR_ISOLATED_FILE); 2282 } else { 2283 inactive = node_page_state(pgdat, NR_INACTIVE_ANON); 2284 isolated = node_page_state(pgdat, NR_ISOLATED_ANON); 2285 } 2286 2287 /* 2288 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 2289 * won't get blocked by normal direct-reclaimers, forming a circular 2290 * deadlock. 2291 */ 2292 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 2293 inactive >>= 3; 2294 2295 too_many = isolated > inactive; 2296 2297 /* Wake up tasks throttled due to too_many_isolated. */ 2298 if (!too_many) 2299 wake_throttle_isolated(pgdat); 2300 2301 return too_many; 2302 } 2303 2304 /* 2305 * move_pages_to_lru() moves pages from private @list to appropriate LRU list. 2306 * On return, @list is reused as a list of pages to be freed by the caller. 2307 * 2308 * Returns the number of pages moved to the given lruvec. 2309 */ 2310 static unsigned int move_pages_to_lru(struct lruvec *lruvec, 2311 struct list_head *list) 2312 { 2313 int nr_pages, nr_moved = 0; 2314 LIST_HEAD(pages_to_free); 2315 struct page *page; 2316 2317 while (!list_empty(list)) { 2318 page = lru_to_page(list); 2319 VM_BUG_ON_PAGE(PageLRU(page), page); 2320 list_del(&page->lru); 2321 if (unlikely(!page_evictable(page))) { 2322 spin_unlock_irq(&lruvec->lru_lock); 2323 putback_lru_page(page); 2324 spin_lock_irq(&lruvec->lru_lock); 2325 continue; 2326 } 2327 2328 /* 2329 * The SetPageLRU needs to be kept here for list integrity. 2330 * Otherwise: 2331 * #0 move_pages_to_lru #1 release_pages 2332 * if !put_page_testzero 2333 * if (put_page_testzero()) 2334 * !PageLRU //skip lru_lock 2335 * SetPageLRU() 2336 * list_add(&page->lru,) 2337 * list_add(&page->lru,) 2338 */ 2339 SetPageLRU(page); 2340 2341 if (unlikely(put_page_testzero(page))) { 2342 __clear_page_lru_flags(page); 2343 2344 if (unlikely(PageCompound(page))) { 2345 spin_unlock_irq(&lruvec->lru_lock); 2346 destroy_compound_page(page); 2347 spin_lock_irq(&lruvec->lru_lock); 2348 } else 2349 list_add(&page->lru, &pages_to_free); 2350 2351 continue; 2352 } 2353 2354 /* 2355 * All pages were isolated from the same lruvec (and isolation 2356 * inhibits memcg migration). 2357 */ 2358 VM_BUG_ON_PAGE(!folio_matches_lruvec(page_folio(page), lruvec), page); 2359 add_page_to_lru_list(page, lruvec); 2360 nr_pages = thp_nr_pages(page); 2361 nr_moved += nr_pages; 2362 if (PageActive(page)) 2363 workingset_age_nonresident(lruvec, nr_pages); 2364 } 2365 2366 /* 2367 * To save our caller's stack, now use input list for pages to free. 2368 */ 2369 list_splice(&pages_to_free, list); 2370 2371 return nr_moved; 2372 } 2373 2374 /* 2375 * If a kernel thread (such as nfsd for loop-back mounts) services 2376 * a backing device by writing to the page cache it sets PF_LOCAL_THROTTLE. 2377 * In that case we should only throttle if the backing device it is 2378 * writing to is congested. In other cases it is safe to throttle. 2379 */ 2380 static int current_may_throttle(void) 2381 { 2382 return !(current->flags & PF_LOCAL_THROTTLE) || 2383 current->backing_dev_info == NULL || 2384 bdi_write_congested(current->backing_dev_info); 2385 } 2386 2387 /* 2388 * shrink_inactive_list() is a helper for shrink_node(). It returns the number 2389 * of reclaimed pages 2390 */ 2391 static unsigned long 2392 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, 2393 struct scan_control *sc, enum lru_list lru) 2394 { 2395 LIST_HEAD(page_list); 2396 unsigned long nr_scanned; 2397 unsigned int nr_reclaimed = 0; 2398 unsigned long nr_taken; 2399 struct reclaim_stat stat; 2400 bool file = is_file_lru(lru); 2401 enum vm_event_item item; 2402 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2403 bool stalled = false; 2404 2405 while (unlikely(too_many_isolated(pgdat, file, sc))) { 2406 if (stalled) 2407 return 0; 2408 2409 /* wait a bit for the reclaimer. */ 2410 stalled = true; 2411 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED); 2412 2413 /* We are about to die and free our memory. Return now. */ 2414 if (fatal_signal_pending(current)) 2415 return SWAP_CLUSTER_MAX; 2416 } 2417 2418 lru_add_drain(); 2419 2420 spin_lock_irq(&lruvec->lru_lock); 2421 2422 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list, 2423 &nr_scanned, sc, lru); 2424 2425 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2426 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT; 2427 if (!cgroup_reclaim(sc)) 2428 __count_vm_events(item, nr_scanned); 2429 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned); 2430 __count_vm_events(PGSCAN_ANON + file, nr_scanned); 2431 2432 spin_unlock_irq(&lruvec->lru_lock); 2433 2434 if (nr_taken == 0) 2435 return 0; 2436 2437 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, &stat, false); 2438 2439 spin_lock_irq(&lruvec->lru_lock); 2440 move_pages_to_lru(lruvec, &page_list); 2441 2442 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2443 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT; 2444 if (!cgroup_reclaim(sc)) 2445 __count_vm_events(item, nr_reclaimed); 2446 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed); 2447 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed); 2448 spin_unlock_irq(&lruvec->lru_lock); 2449 2450 lru_note_cost(lruvec, file, stat.nr_pageout); 2451 mem_cgroup_uncharge_list(&page_list); 2452 free_unref_page_list(&page_list); 2453 2454 /* 2455 * If dirty pages are scanned that are not queued for IO, it 2456 * implies that flushers are not doing their job. This can 2457 * happen when memory pressure pushes dirty pages to the end of 2458 * the LRU before the dirty limits are breached and the dirty 2459 * data has expired. It can also happen when the proportion of 2460 * dirty pages grows not through writes but through memory 2461 * pressure reclaiming all the clean cache. And in some cases, 2462 * the flushers simply cannot keep up with the allocation 2463 * rate. Nudge the flusher threads in case they are asleep. 2464 */ 2465 if (stat.nr_unqueued_dirty == nr_taken) 2466 wakeup_flusher_threads(WB_REASON_VMSCAN); 2467 2468 sc->nr.dirty += stat.nr_dirty; 2469 sc->nr.congested += stat.nr_congested; 2470 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty; 2471 sc->nr.writeback += stat.nr_writeback; 2472 sc->nr.immediate += stat.nr_immediate; 2473 sc->nr.taken += nr_taken; 2474 if (file) 2475 sc->nr.file_taken += nr_taken; 2476 2477 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 2478 nr_scanned, nr_reclaimed, &stat, sc->priority, file); 2479 return nr_reclaimed; 2480 } 2481 2482 /* 2483 * shrink_active_list() moves pages from the active LRU to the inactive LRU. 2484 * 2485 * We move them the other way if the page is referenced by one or more 2486 * processes. 2487 * 2488 * If the pages are mostly unmapped, the processing is fast and it is 2489 * appropriate to hold lru_lock across the whole operation. But if 2490 * the pages are mapped, the processing is slow (page_referenced()), so 2491 * we should drop lru_lock around each page. It's impossible to balance 2492 * this, so instead we remove the pages from the LRU while processing them. 2493 * It is safe to rely on PG_active against the non-LRU pages in here because 2494 * nobody will play with that bit on a non-LRU page. 2495 * 2496 * The downside is that we have to touch page->_refcount against each page. 2497 * But we had to alter page->flags anyway. 2498 */ 2499 static void shrink_active_list(unsigned long nr_to_scan, 2500 struct lruvec *lruvec, 2501 struct scan_control *sc, 2502 enum lru_list lru) 2503 { 2504 unsigned long nr_taken; 2505 unsigned long nr_scanned; 2506 unsigned long vm_flags; 2507 LIST_HEAD(l_hold); /* The pages which were snipped off */ 2508 LIST_HEAD(l_active); 2509 LIST_HEAD(l_inactive); 2510 struct page *page; 2511 unsigned nr_deactivate, nr_activate; 2512 unsigned nr_rotated = 0; 2513 int file = is_file_lru(lru); 2514 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2515 2516 lru_add_drain(); 2517 2518 spin_lock_irq(&lruvec->lru_lock); 2519 2520 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold, 2521 &nr_scanned, sc, lru); 2522 2523 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2524 2525 if (!cgroup_reclaim(sc)) 2526 __count_vm_events(PGREFILL, nr_scanned); 2527 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned); 2528 2529 spin_unlock_irq(&lruvec->lru_lock); 2530 2531 while (!list_empty(&l_hold)) { 2532 cond_resched(); 2533 page = lru_to_page(&l_hold); 2534 list_del(&page->lru); 2535 2536 if (unlikely(!page_evictable(page))) { 2537 putback_lru_page(page); 2538 continue; 2539 } 2540 2541 if (unlikely(buffer_heads_over_limit)) { 2542 if (page_has_private(page) && trylock_page(page)) { 2543 if (page_has_private(page)) 2544 try_to_release_page(page, 0); 2545 unlock_page(page); 2546 } 2547 } 2548 2549 if (page_referenced(page, 0, sc->target_mem_cgroup, 2550 &vm_flags)) { 2551 /* 2552 * Identify referenced, file-backed active pages and 2553 * give them one more trip around the active list. So 2554 * that executable code get better chances to stay in 2555 * memory under moderate memory pressure. Anon pages 2556 * are not likely to be evicted by use-once streaming 2557 * IO, plus JVM can create lots of anon VM_EXEC pages, 2558 * so we ignore them here. 2559 */ 2560 if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) { 2561 nr_rotated += thp_nr_pages(page); 2562 list_add(&page->lru, &l_active); 2563 continue; 2564 } 2565 } 2566 2567 ClearPageActive(page); /* we are de-activating */ 2568 SetPageWorkingset(page); 2569 list_add(&page->lru, &l_inactive); 2570 } 2571 2572 /* 2573 * Move pages back to the lru list. 2574 */ 2575 spin_lock_irq(&lruvec->lru_lock); 2576 2577 nr_activate = move_pages_to_lru(lruvec, &l_active); 2578 nr_deactivate = move_pages_to_lru(lruvec, &l_inactive); 2579 /* Keep all free pages in l_active list */ 2580 list_splice(&l_inactive, &l_active); 2581 2582 __count_vm_events(PGDEACTIVATE, nr_deactivate); 2583 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate); 2584 2585 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2586 spin_unlock_irq(&lruvec->lru_lock); 2587 2588 mem_cgroup_uncharge_list(&l_active); 2589 free_unref_page_list(&l_active); 2590 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate, 2591 nr_deactivate, nr_rotated, sc->priority, file); 2592 } 2593 2594 unsigned long reclaim_pages(struct list_head *page_list) 2595 { 2596 int nid = NUMA_NO_NODE; 2597 unsigned int nr_reclaimed = 0; 2598 LIST_HEAD(node_page_list); 2599 struct reclaim_stat dummy_stat; 2600 struct page *page; 2601 unsigned int noreclaim_flag; 2602 struct scan_control sc = { 2603 .gfp_mask = GFP_KERNEL, 2604 .may_writepage = 1, 2605 .may_unmap = 1, 2606 .may_swap = 1, 2607 .no_demotion = 1, 2608 }; 2609 2610 noreclaim_flag = memalloc_noreclaim_save(); 2611 2612 while (!list_empty(page_list)) { 2613 page = lru_to_page(page_list); 2614 if (nid == NUMA_NO_NODE) { 2615 nid = page_to_nid(page); 2616 INIT_LIST_HEAD(&node_page_list); 2617 } 2618 2619 if (nid == page_to_nid(page)) { 2620 ClearPageActive(page); 2621 list_move(&page->lru, &node_page_list); 2622 continue; 2623 } 2624 2625 nr_reclaimed += shrink_page_list(&node_page_list, 2626 NODE_DATA(nid), 2627 &sc, &dummy_stat, false); 2628 while (!list_empty(&node_page_list)) { 2629 page = lru_to_page(&node_page_list); 2630 list_del(&page->lru); 2631 putback_lru_page(page); 2632 } 2633 2634 nid = NUMA_NO_NODE; 2635 } 2636 2637 if (!list_empty(&node_page_list)) { 2638 nr_reclaimed += shrink_page_list(&node_page_list, 2639 NODE_DATA(nid), 2640 &sc, &dummy_stat, false); 2641 while (!list_empty(&node_page_list)) { 2642 page = lru_to_page(&node_page_list); 2643 list_del(&page->lru); 2644 putback_lru_page(page); 2645 } 2646 } 2647 2648 memalloc_noreclaim_restore(noreclaim_flag); 2649 2650 return nr_reclaimed; 2651 } 2652 2653 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 2654 struct lruvec *lruvec, struct scan_control *sc) 2655 { 2656 if (is_active_lru(lru)) { 2657 if (sc->may_deactivate & (1 << is_file_lru(lru))) 2658 shrink_active_list(nr_to_scan, lruvec, sc, lru); 2659 else 2660 sc->skipped_deactivate = 1; 2661 return 0; 2662 } 2663 2664 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 2665 } 2666 2667 /* 2668 * The inactive anon list should be small enough that the VM never has 2669 * to do too much work. 2670 * 2671 * The inactive file list should be small enough to leave most memory 2672 * to the established workingset on the scan-resistant active list, 2673 * but large enough to avoid thrashing the aggregate readahead window. 2674 * 2675 * Both inactive lists should also be large enough that each inactive 2676 * page has a chance to be referenced again before it is reclaimed. 2677 * 2678 * If that fails and refaulting is observed, the inactive list grows. 2679 * 2680 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages 2681 * on this LRU, maintained by the pageout code. An inactive_ratio 2682 * of 3 means 3:1 or 25% of the pages are kept on the inactive list. 2683 * 2684 * total target max 2685 * memory ratio inactive 2686 * ------------------------------------- 2687 * 10MB 1 5MB 2688 * 100MB 1 50MB 2689 * 1GB 3 250MB 2690 * 10GB 10 0.9GB 2691 * 100GB 31 3GB 2692 * 1TB 101 10GB 2693 * 10TB 320 32GB 2694 */ 2695 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru) 2696 { 2697 enum lru_list active_lru = inactive_lru + LRU_ACTIVE; 2698 unsigned long inactive, active; 2699 unsigned long inactive_ratio; 2700 unsigned long gb; 2701 2702 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru); 2703 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru); 2704 2705 gb = (inactive + active) >> (30 - PAGE_SHIFT); 2706 if (gb) 2707 inactive_ratio = int_sqrt(10 * gb); 2708 else 2709 inactive_ratio = 1; 2710 2711 return inactive * inactive_ratio < active; 2712 } 2713 2714 enum scan_balance { 2715 SCAN_EQUAL, 2716 SCAN_FRACT, 2717 SCAN_ANON, 2718 SCAN_FILE, 2719 }; 2720 2721 /* 2722 * Determine how aggressively the anon and file LRU lists should be 2723 * scanned. The relative value of each set of LRU lists is determined 2724 * by looking at the fraction of the pages scanned we did rotate back 2725 * onto the active list instead of evict. 2726 * 2727 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan 2728 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan 2729 */ 2730 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc, 2731 unsigned long *nr) 2732 { 2733 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2734 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 2735 unsigned long anon_cost, file_cost, total_cost; 2736 int swappiness = mem_cgroup_swappiness(memcg); 2737 u64 fraction[ANON_AND_FILE]; 2738 u64 denominator = 0; /* gcc */ 2739 enum scan_balance scan_balance; 2740 unsigned long ap, fp; 2741 enum lru_list lru; 2742 2743 /* If we have no swap space, do not bother scanning anon pages. */ 2744 if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) { 2745 scan_balance = SCAN_FILE; 2746 goto out; 2747 } 2748 2749 /* 2750 * Global reclaim will swap to prevent OOM even with no 2751 * swappiness, but memcg users want to use this knob to 2752 * disable swapping for individual groups completely when 2753 * using the memory controller's swap limit feature would be 2754 * too expensive. 2755 */ 2756 if (cgroup_reclaim(sc) && !swappiness) { 2757 scan_balance = SCAN_FILE; 2758 goto out; 2759 } 2760 2761 /* 2762 * Do not apply any pressure balancing cleverness when the 2763 * system is close to OOM, scan both anon and file equally 2764 * (unless the swappiness setting disagrees with swapping). 2765 */ 2766 if (!sc->priority && swappiness) { 2767 scan_balance = SCAN_EQUAL; 2768 goto out; 2769 } 2770 2771 /* 2772 * If the system is almost out of file pages, force-scan anon. 2773 */ 2774 if (sc->file_is_tiny) { 2775 scan_balance = SCAN_ANON; 2776 goto out; 2777 } 2778 2779 /* 2780 * If there is enough inactive page cache, we do not reclaim 2781 * anything from the anonymous working right now. 2782 */ 2783 if (sc->cache_trim_mode) { 2784 scan_balance = SCAN_FILE; 2785 goto out; 2786 } 2787 2788 scan_balance = SCAN_FRACT; 2789 /* 2790 * Calculate the pressure balance between anon and file pages. 2791 * 2792 * The amount of pressure we put on each LRU is inversely 2793 * proportional to the cost of reclaiming each list, as 2794 * determined by the share of pages that are refaulting, times 2795 * the relative IO cost of bringing back a swapped out 2796 * anonymous page vs reloading a filesystem page (swappiness). 2797 * 2798 * Although we limit that influence to ensure no list gets 2799 * left behind completely: at least a third of the pressure is 2800 * applied, before swappiness. 2801 * 2802 * With swappiness at 100, anon and file have equal IO cost. 2803 */ 2804 total_cost = sc->anon_cost + sc->file_cost; 2805 anon_cost = total_cost + sc->anon_cost; 2806 file_cost = total_cost + sc->file_cost; 2807 total_cost = anon_cost + file_cost; 2808 2809 ap = swappiness * (total_cost + 1); 2810 ap /= anon_cost + 1; 2811 2812 fp = (200 - swappiness) * (total_cost + 1); 2813 fp /= file_cost + 1; 2814 2815 fraction[0] = ap; 2816 fraction[1] = fp; 2817 denominator = ap + fp; 2818 out: 2819 for_each_evictable_lru(lru) { 2820 int file = is_file_lru(lru); 2821 unsigned long lruvec_size; 2822 unsigned long low, min; 2823 unsigned long scan; 2824 2825 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx); 2826 mem_cgroup_protection(sc->target_mem_cgroup, memcg, 2827 &min, &low); 2828 2829 if (min || low) { 2830 /* 2831 * Scale a cgroup's reclaim pressure by proportioning 2832 * its current usage to its memory.low or memory.min 2833 * setting. 2834 * 2835 * This is important, as otherwise scanning aggression 2836 * becomes extremely binary -- from nothing as we 2837 * approach the memory protection threshold, to totally 2838 * nominal as we exceed it. This results in requiring 2839 * setting extremely liberal protection thresholds. It 2840 * also means we simply get no protection at all if we 2841 * set it too low, which is not ideal. 2842 * 2843 * If there is any protection in place, we reduce scan 2844 * pressure by how much of the total memory used is 2845 * within protection thresholds. 2846 * 2847 * There is one special case: in the first reclaim pass, 2848 * we skip over all groups that are within their low 2849 * protection. If that fails to reclaim enough pages to 2850 * satisfy the reclaim goal, we come back and override 2851 * the best-effort low protection. However, we still 2852 * ideally want to honor how well-behaved groups are in 2853 * that case instead of simply punishing them all 2854 * equally. As such, we reclaim them based on how much 2855 * memory they are using, reducing the scan pressure 2856 * again by how much of the total memory used is under 2857 * hard protection. 2858 */ 2859 unsigned long cgroup_size = mem_cgroup_size(memcg); 2860 unsigned long protection; 2861 2862 /* memory.low scaling, make sure we retry before OOM */ 2863 if (!sc->memcg_low_reclaim && low > min) { 2864 protection = low; 2865 sc->memcg_low_skipped = 1; 2866 } else { 2867 protection = min; 2868 } 2869 2870 /* Avoid TOCTOU with earlier protection check */ 2871 cgroup_size = max(cgroup_size, protection); 2872 2873 scan = lruvec_size - lruvec_size * protection / 2874 (cgroup_size + 1); 2875 2876 /* 2877 * Minimally target SWAP_CLUSTER_MAX pages to keep 2878 * reclaim moving forwards, avoiding decrementing 2879 * sc->priority further than desirable. 2880 */ 2881 scan = max(scan, SWAP_CLUSTER_MAX); 2882 } else { 2883 scan = lruvec_size; 2884 } 2885 2886 scan >>= sc->priority; 2887 2888 /* 2889 * If the cgroup's already been deleted, make sure to 2890 * scrape out the remaining cache. 2891 */ 2892 if (!scan && !mem_cgroup_online(memcg)) 2893 scan = min(lruvec_size, SWAP_CLUSTER_MAX); 2894 2895 switch (scan_balance) { 2896 case SCAN_EQUAL: 2897 /* Scan lists relative to size */ 2898 break; 2899 case SCAN_FRACT: 2900 /* 2901 * Scan types proportional to swappiness and 2902 * their relative recent reclaim efficiency. 2903 * Make sure we don't miss the last page on 2904 * the offlined memory cgroups because of a 2905 * round-off error. 2906 */ 2907 scan = mem_cgroup_online(memcg) ? 2908 div64_u64(scan * fraction[file], denominator) : 2909 DIV64_U64_ROUND_UP(scan * fraction[file], 2910 denominator); 2911 break; 2912 case SCAN_FILE: 2913 case SCAN_ANON: 2914 /* Scan one type exclusively */ 2915 if ((scan_balance == SCAN_FILE) != file) 2916 scan = 0; 2917 break; 2918 default: 2919 /* Look ma, no brain */ 2920 BUG(); 2921 } 2922 2923 nr[lru] = scan; 2924 } 2925 } 2926 2927 /* 2928 * Anonymous LRU management is a waste if there is 2929 * ultimately no way to reclaim the memory. 2930 */ 2931 static bool can_age_anon_pages(struct pglist_data *pgdat, 2932 struct scan_control *sc) 2933 { 2934 /* Aging the anon LRU is valuable if swap is present: */ 2935 if (total_swap_pages > 0) 2936 return true; 2937 2938 /* Also valuable if anon pages can be demoted: */ 2939 return can_demote(pgdat->node_id, sc); 2940 } 2941 2942 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 2943 { 2944 unsigned long nr[NR_LRU_LISTS]; 2945 unsigned long targets[NR_LRU_LISTS]; 2946 unsigned long nr_to_scan; 2947 enum lru_list lru; 2948 unsigned long nr_reclaimed = 0; 2949 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 2950 struct blk_plug plug; 2951 bool scan_adjusted; 2952 2953 get_scan_count(lruvec, sc, nr); 2954 2955 /* Record the original scan target for proportional adjustments later */ 2956 memcpy(targets, nr, sizeof(nr)); 2957 2958 /* 2959 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal 2960 * event that can occur when there is little memory pressure e.g. 2961 * multiple streaming readers/writers. Hence, we do not abort scanning 2962 * when the requested number of pages are reclaimed when scanning at 2963 * DEF_PRIORITY on the assumption that the fact we are direct 2964 * reclaiming implies that kswapd is not keeping up and it is best to 2965 * do a batch of work at once. For memcg reclaim one check is made to 2966 * abort proportional reclaim if either the file or anon lru has already 2967 * dropped to zero at the first pass. 2968 */ 2969 scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() && 2970 sc->priority == DEF_PRIORITY); 2971 2972 blk_start_plug(&plug); 2973 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 2974 nr[LRU_INACTIVE_FILE]) { 2975 unsigned long nr_anon, nr_file, percentage; 2976 unsigned long nr_scanned; 2977 2978 for_each_evictable_lru(lru) { 2979 if (nr[lru]) { 2980 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 2981 nr[lru] -= nr_to_scan; 2982 2983 nr_reclaimed += shrink_list(lru, nr_to_scan, 2984 lruvec, sc); 2985 } 2986 } 2987 2988 cond_resched(); 2989 2990 if (nr_reclaimed < nr_to_reclaim || scan_adjusted) 2991 continue; 2992 2993 /* 2994 * For kswapd and memcg, reclaim at least the number of pages 2995 * requested. Ensure that the anon and file LRUs are scanned 2996 * proportionally what was requested by get_scan_count(). We 2997 * stop reclaiming one LRU and reduce the amount scanning 2998 * proportional to the original scan target. 2999 */ 3000 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 3001 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 3002 3003 /* 3004 * It's just vindictive to attack the larger once the smaller 3005 * has gone to zero. And given the way we stop scanning the 3006 * smaller below, this makes sure that we only make one nudge 3007 * towards proportionality once we've got nr_to_reclaim. 3008 */ 3009 if (!nr_file || !nr_anon) 3010 break; 3011 3012 if (nr_file > nr_anon) { 3013 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 3014 targets[LRU_ACTIVE_ANON] + 1; 3015 lru = LRU_BASE; 3016 percentage = nr_anon * 100 / scan_target; 3017 } else { 3018 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 3019 targets[LRU_ACTIVE_FILE] + 1; 3020 lru = LRU_FILE; 3021 percentage = nr_file * 100 / scan_target; 3022 } 3023 3024 /* Stop scanning the smaller of the LRU */ 3025 nr[lru] = 0; 3026 nr[lru + LRU_ACTIVE] = 0; 3027 3028 /* 3029 * Recalculate the other LRU scan count based on its original 3030 * scan target and the percentage scanning already complete 3031 */ 3032 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 3033 nr_scanned = targets[lru] - nr[lru]; 3034 nr[lru] = targets[lru] * (100 - percentage) / 100; 3035 nr[lru] -= min(nr[lru], nr_scanned); 3036 3037 lru += LRU_ACTIVE; 3038 nr_scanned = targets[lru] - nr[lru]; 3039 nr[lru] = targets[lru] * (100 - percentage) / 100; 3040 nr[lru] -= min(nr[lru], nr_scanned); 3041 3042 scan_adjusted = true; 3043 } 3044 blk_finish_plug(&plug); 3045 sc->nr_reclaimed += nr_reclaimed; 3046 3047 /* 3048 * Even if we did not try to evict anon pages at all, we want to 3049 * rebalance the anon lru active/inactive ratio. 3050 */ 3051 if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) && 3052 inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 3053 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 3054 sc, LRU_ACTIVE_ANON); 3055 } 3056 3057 /* Use reclaim/compaction for costly allocs or under memory pressure */ 3058 static bool in_reclaim_compaction(struct scan_control *sc) 3059 { 3060 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 3061 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 3062 sc->priority < DEF_PRIORITY - 2)) 3063 return true; 3064 3065 return false; 3066 } 3067 3068 /* 3069 * Reclaim/compaction is used for high-order allocation requests. It reclaims 3070 * order-0 pages before compacting the zone. should_continue_reclaim() returns 3071 * true if more pages should be reclaimed such that when the page allocator 3072 * calls try_to_compact_pages() that it will have enough free pages to succeed. 3073 * It will give up earlier than that if there is difficulty reclaiming pages. 3074 */ 3075 static inline bool should_continue_reclaim(struct pglist_data *pgdat, 3076 unsigned long nr_reclaimed, 3077 struct scan_control *sc) 3078 { 3079 unsigned long pages_for_compaction; 3080 unsigned long inactive_lru_pages; 3081 int z; 3082 3083 /* If not in reclaim/compaction mode, stop */ 3084 if (!in_reclaim_compaction(sc)) 3085 return false; 3086 3087 /* 3088 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX 3089 * number of pages that were scanned. This will return to the caller 3090 * with the risk reclaim/compaction and the resulting allocation attempt 3091 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL 3092 * allocations through requiring that the full LRU list has been scanned 3093 * first, by assuming that zero delta of sc->nr_scanned means full LRU 3094 * scan, but that approximation was wrong, and there were corner cases 3095 * where always a non-zero amount of pages were scanned. 3096 */ 3097 if (!nr_reclaimed) 3098 return false; 3099 3100 /* If compaction would go ahead or the allocation would succeed, stop */ 3101 for (z = 0; z <= sc->reclaim_idx; z++) { 3102 struct zone *zone = &pgdat->node_zones[z]; 3103 if (!managed_zone(zone)) 3104 continue; 3105 3106 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) { 3107 case COMPACT_SUCCESS: 3108 case COMPACT_CONTINUE: 3109 return false; 3110 default: 3111 /* check next zone */ 3112 ; 3113 } 3114 } 3115 3116 /* 3117 * If we have not reclaimed enough pages for compaction and the 3118 * inactive lists are large enough, continue reclaiming 3119 */ 3120 pages_for_compaction = compact_gap(sc->order); 3121 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE); 3122 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc)) 3123 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON); 3124 3125 return inactive_lru_pages > pages_for_compaction; 3126 } 3127 3128 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc) 3129 { 3130 struct mem_cgroup *target_memcg = sc->target_mem_cgroup; 3131 struct mem_cgroup *memcg; 3132 3133 memcg = mem_cgroup_iter(target_memcg, NULL, NULL); 3134 do { 3135 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 3136 unsigned long reclaimed; 3137 unsigned long scanned; 3138 3139 /* 3140 * This loop can become CPU-bound when target memcgs 3141 * aren't eligible for reclaim - either because they 3142 * don't have any reclaimable pages, or because their 3143 * memory is explicitly protected. Avoid soft lockups. 3144 */ 3145 cond_resched(); 3146 3147 mem_cgroup_calculate_protection(target_memcg, memcg); 3148 3149 if (mem_cgroup_below_min(memcg)) { 3150 /* 3151 * Hard protection. 3152 * If there is no reclaimable memory, OOM. 3153 */ 3154 continue; 3155 } else if (mem_cgroup_below_low(memcg)) { 3156 /* 3157 * Soft protection. 3158 * Respect the protection only as long as 3159 * there is an unprotected supply 3160 * of reclaimable memory from other cgroups. 3161 */ 3162 if (!sc->memcg_low_reclaim) { 3163 sc->memcg_low_skipped = 1; 3164 continue; 3165 } 3166 memcg_memory_event(memcg, MEMCG_LOW); 3167 } 3168 3169 reclaimed = sc->nr_reclaimed; 3170 scanned = sc->nr_scanned; 3171 3172 shrink_lruvec(lruvec, sc); 3173 3174 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, 3175 sc->priority); 3176 3177 /* Record the group's reclaim efficiency */ 3178 vmpressure(sc->gfp_mask, memcg, false, 3179 sc->nr_scanned - scanned, 3180 sc->nr_reclaimed - reclaimed); 3181 3182 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL))); 3183 } 3184 3185 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc) 3186 { 3187 struct reclaim_state *reclaim_state = current->reclaim_state; 3188 unsigned long nr_reclaimed, nr_scanned; 3189 struct lruvec *target_lruvec; 3190 bool reclaimable = false; 3191 unsigned long file; 3192 3193 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat); 3194 3195 again: 3196 /* 3197 * Flush the memory cgroup stats, so that we read accurate per-memcg 3198 * lruvec stats for heuristics. 3199 */ 3200 mem_cgroup_flush_stats(); 3201 3202 memset(&sc->nr, 0, sizeof(sc->nr)); 3203 3204 nr_reclaimed = sc->nr_reclaimed; 3205 nr_scanned = sc->nr_scanned; 3206 3207 /* 3208 * Determine the scan balance between anon and file LRUs. 3209 */ 3210 spin_lock_irq(&target_lruvec->lru_lock); 3211 sc->anon_cost = target_lruvec->anon_cost; 3212 sc->file_cost = target_lruvec->file_cost; 3213 spin_unlock_irq(&target_lruvec->lru_lock); 3214 3215 /* 3216 * Target desirable inactive:active list ratios for the anon 3217 * and file LRU lists. 3218 */ 3219 if (!sc->force_deactivate) { 3220 unsigned long refaults; 3221 3222 refaults = lruvec_page_state(target_lruvec, 3223 WORKINGSET_ACTIVATE_ANON); 3224 if (refaults != target_lruvec->refaults[0] || 3225 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON)) 3226 sc->may_deactivate |= DEACTIVATE_ANON; 3227 else 3228 sc->may_deactivate &= ~DEACTIVATE_ANON; 3229 3230 /* 3231 * When refaults are being observed, it means a new 3232 * workingset is being established. Deactivate to get 3233 * rid of any stale active pages quickly. 3234 */ 3235 refaults = lruvec_page_state(target_lruvec, 3236 WORKINGSET_ACTIVATE_FILE); 3237 if (refaults != target_lruvec->refaults[1] || 3238 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE)) 3239 sc->may_deactivate |= DEACTIVATE_FILE; 3240 else 3241 sc->may_deactivate &= ~DEACTIVATE_FILE; 3242 } else 3243 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE; 3244 3245 /* 3246 * If we have plenty of inactive file pages that aren't 3247 * thrashing, try to reclaim those first before touching 3248 * anonymous pages. 3249 */ 3250 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE); 3251 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE)) 3252 sc->cache_trim_mode = 1; 3253 else 3254 sc->cache_trim_mode = 0; 3255 3256 /* 3257 * Prevent the reclaimer from falling into the cache trap: as 3258 * cache pages start out inactive, every cache fault will tip 3259 * the scan balance towards the file LRU. And as the file LRU 3260 * shrinks, so does the window for rotation from references. 3261 * This means we have a runaway feedback loop where a tiny 3262 * thrashing file LRU becomes infinitely more attractive than 3263 * anon pages. Try to detect this based on file LRU size. 3264 */ 3265 if (!cgroup_reclaim(sc)) { 3266 unsigned long total_high_wmark = 0; 3267 unsigned long free, anon; 3268 int z; 3269 3270 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES); 3271 file = node_page_state(pgdat, NR_ACTIVE_FILE) + 3272 node_page_state(pgdat, NR_INACTIVE_FILE); 3273 3274 for (z = 0; z < MAX_NR_ZONES; z++) { 3275 struct zone *zone = &pgdat->node_zones[z]; 3276 if (!managed_zone(zone)) 3277 continue; 3278 3279 total_high_wmark += high_wmark_pages(zone); 3280 } 3281 3282 /* 3283 * Consider anon: if that's low too, this isn't a 3284 * runaway file reclaim problem, but rather just 3285 * extreme pressure. Reclaim as per usual then. 3286 */ 3287 anon = node_page_state(pgdat, NR_INACTIVE_ANON); 3288 3289 sc->file_is_tiny = 3290 file + free <= total_high_wmark && 3291 !(sc->may_deactivate & DEACTIVATE_ANON) && 3292 anon >> sc->priority; 3293 } 3294 3295 shrink_node_memcgs(pgdat, sc); 3296 3297 if (reclaim_state) { 3298 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 3299 reclaim_state->reclaimed_slab = 0; 3300 } 3301 3302 /* Record the subtree's reclaim efficiency */ 3303 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, 3304 sc->nr_scanned - nr_scanned, 3305 sc->nr_reclaimed - nr_reclaimed); 3306 3307 if (sc->nr_reclaimed - nr_reclaimed) 3308 reclaimable = true; 3309 3310 if (current_is_kswapd()) { 3311 /* 3312 * If reclaim is isolating dirty pages under writeback, 3313 * it implies that the long-lived page allocation rate 3314 * is exceeding the page laundering rate. Either the 3315 * global limits are not being effective at throttling 3316 * processes due to the page distribution throughout 3317 * zones or there is heavy usage of a slow backing 3318 * device. The only option is to throttle from reclaim 3319 * context which is not ideal as there is no guarantee 3320 * the dirtying process is throttled in the same way 3321 * balance_dirty_pages() manages. 3322 * 3323 * Once a node is flagged PGDAT_WRITEBACK, kswapd will 3324 * count the number of pages under pages flagged for 3325 * immediate reclaim and stall if any are encountered 3326 * in the nr_immediate check below. 3327 */ 3328 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken) 3329 set_bit(PGDAT_WRITEBACK, &pgdat->flags); 3330 3331 /* Allow kswapd to start writing pages during reclaim.*/ 3332 if (sc->nr.unqueued_dirty == sc->nr.file_taken) 3333 set_bit(PGDAT_DIRTY, &pgdat->flags); 3334 3335 /* 3336 * If kswapd scans pages marked for immediate 3337 * reclaim and under writeback (nr_immediate), it 3338 * implies that pages are cycling through the LRU 3339 * faster than they are written so forcibly stall 3340 * until some pages complete writeback. 3341 */ 3342 if (sc->nr.immediate) 3343 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK); 3344 } 3345 3346 /* 3347 * Tag a node/memcg as congested if all the dirty pages were marked 3348 * for writeback and immediate reclaim (counted in nr.congested). 3349 * 3350 * Legacy memcg will stall in page writeback so avoid forcibly 3351 * stalling in reclaim_throttle(). 3352 */ 3353 if ((current_is_kswapd() || 3354 (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) && 3355 sc->nr.dirty && sc->nr.dirty == sc->nr.congested) 3356 set_bit(LRUVEC_CONGESTED, &target_lruvec->flags); 3357 3358 /* 3359 * Stall direct reclaim for IO completions if the lruvec is 3360 * node is congested. Allow kswapd to continue until it 3361 * starts encountering unqueued dirty pages or cycling through 3362 * the LRU too quickly. 3363 */ 3364 if (!current_is_kswapd() && current_may_throttle() && 3365 !sc->hibernation_mode && 3366 test_bit(LRUVEC_CONGESTED, &target_lruvec->flags)) 3367 reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED); 3368 3369 if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed, 3370 sc)) 3371 goto again; 3372 3373 /* 3374 * Kswapd gives up on balancing particular nodes after too 3375 * many failures to reclaim anything from them and goes to 3376 * sleep. On reclaim progress, reset the failure counter. A 3377 * successful direct reclaim run will revive a dormant kswapd. 3378 */ 3379 if (reclaimable) 3380 pgdat->kswapd_failures = 0; 3381 } 3382 3383 /* 3384 * Returns true if compaction should go ahead for a costly-order request, or 3385 * the allocation would already succeed without compaction. Return false if we 3386 * should reclaim first. 3387 */ 3388 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) 3389 { 3390 unsigned long watermark; 3391 enum compact_result suitable; 3392 3393 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx); 3394 if (suitable == COMPACT_SUCCESS) 3395 /* Allocation should succeed already. Don't reclaim. */ 3396 return true; 3397 if (suitable == COMPACT_SKIPPED) 3398 /* Compaction cannot yet proceed. Do reclaim. */ 3399 return false; 3400 3401 /* 3402 * Compaction is already possible, but it takes time to run and there 3403 * are potentially other callers using the pages just freed. So proceed 3404 * with reclaim to make a buffer of free pages available to give 3405 * compaction a reasonable chance of completing and allocating the page. 3406 * Note that we won't actually reclaim the whole buffer in one attempt 3407 * as the target watermark in should_continue_reclaim() is lower. But if 3408 * we are already above the high+gap watermark, don't reclaim at all. 3409 */ 3410 watermark = high_wmark_pages(zone) + compact_gap(sc->order); 3411 3412 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx); 3413 } 3414 3415 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc) 3416 { 3417 /* 3418 * If reclaim is making progress greater than 12% efficiency then 3419 * wake all the NOPROGRESS throttled tasks. 3420 */ 3421 if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) { 3422 wait_queue_head_t *wqh; 3423 3424 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS]; 3425 if (waitqueue_active(wqh)) 3426 wake_up(wqh); 3427 3428 return; 3429 } 3430 3431 /* 3432 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will 3433 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages 3434 * under writeback and marked for immediate reclaim at the tail of the 3435 * LRU. 3436 */ 3437 if (current_is_kswapd() || cgroup_reclaim(sc)) 3438 return; 3439 3440 /* Throttle if making no progress at high prioities. */ 3441 if (sc->priority == 1 && !sc->nr_reclaimed) 3442 reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS); 3443 } 3444 3445 /* 3446 * This is the direct reclaim path, for page-allocating processes. We only 3447 * try to reclaim pages from zones which will satisfy the caller's allocation 3448 * request. 3449 * 3450 * If a zone is deemed to be full of pinned pages then just give it a light 3451 * scan then give up on it. 3452 */ 3453 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 3454 { 3455 struct zoneref *z; 3456 struct zone *zone; 3457 unsigned long nr_soft_reclaimed; 3458 unsigned long nr_soft_scanned; 3459 gfp_t orig_mask; 3460 pg_data_t *last_pgdat = NULL; 3461 pg_data_t *first_pgdat = NULL; 3462 3463 /* 3464 * If the number of buffer_heads in the machine exceeds the maximum 3465 * allowed level, force direct reclaim to scan the highmem zone as 3466 * highmem pages could be pinning lowmem pages storing buffer_heads 3467 */ 3468 orig_mask = sc->gfp_mask; 3469 if (buffer_heads_over_limit) { 3470 sc->gfp_mask |= __GFP_HIGHMEM; 3471 sc->reclaim_idx = gfp_zone(sc->gfp_mask); 3472 } 3473 3474 for_each_zone_zonelist_nodemask(zone, z, zonelist, 3475 sc->reclaim_idx, sc->nodemask) { 3476 /* 3477 * Take care memory controller reclaiming has small influence 3478 * to global LRU. 3479 */ 3480 if (!cgroup_reclaim(sc)) { 3481 if (!cpuset_zone_allowed(zone, 3482 GFP_KERNEL | __GFP_HARDWALL)) 3483 continue; 3484 3485 /* 3486 * If we already have plenty of memory free for 3487 * compaction in this zone, don't free any more. 3488 * Even though compaction is invoked for any 3489 * non-zero order, only frequent costly order 3490 * reclamation is disruptive enough to become a 3491 * noticeable problem, like transparent huge 3492 * page allocations. 3493 */ 3494 if (IS_ENABLED(CONFIG_COMPACTION) && 3495 sc->order > PAGE_ALLOC_COSTLY_ORDER && 3496 compaction_ready(zone, sc)) { 3497 sc->compaction_ready = true; 3498 continue; 3499 } 3500 3501 /* 3502 * Shrink each node in the zonelist once. If the 3503 * zonelist is ordered by zone (not the default) then a 3504 * node may be shrunk multiple times but in that case 3505 * the user prefers lower zones being preserved. 3506 */ 3507 if (zone->zone_pgdat == last_pgdat) 3508 continue; 3509 3510 /* 3511 * This steals pages from memory cgroups over softlimit 3512 * and returns the number of reclaimed pages and 3513 * scanned pages. This works for global memory pressure 3514 * and balancing, not for a memcg's limit. 3515 */ 3516 nr_soft_scanned = 0; 3517 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat, 3518 sc->order, sc->gfp_mask, 3519 &nr_soft_scanned); 3520 sc->nr_reclaimed += nr_soft_reclaimed; 3521 sc->nr_scanned += nr_soft_scanned; 3522 /* need some check for avoid more shrink_zone() */ 3523 } 3524 3525 if (!first_pgdat) 3526 first_pgdat = zone->zone_pgdat; 3527 3528 /* See comment about same check for global reclaim above */ 3529 if (zone->zone_pgdat == last_pgdat) 3530 continue; 3531 last_pgdat = zone->zone_pgdat; 3532 shrink_node(zone->zone_pgdat, sc); 3533 } 3534 3535 if (first_pgdat) 3536 consider_reclaim_throttle(first_pgdat, sc); 3537 3538 /* 3539 * Restore to original mask to avoid the impact on the caller if we 3540 * promoted it to __GFP_HIGHMEM. 3541 */ 3542 sc->gfp_mask = orig_mask; 3543 } 3544 3545 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat) 3546 { 3547 struct lruvec *target_lruvec; 3548 unsigned long refaults; 3549 3550 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat); 3551 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON); 3552 target_lruvec->refaults[0] = refaults; 3553 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE); 3554 target_lruvec->refaults[1] = refaults; 3555 } 3556 3557 /* 3558 * This is the main entry point to direct page reclaim. 3559 * 3560 * If a full scan of the inactive list fails to free enough memory then we 3561 * are "out of memory" and something needs to be killed. 3562 * 3563 * If the caller is !__GFP_FS then the probability of a failure is reasonably 3564 * high - the zone may be full of dirty or under-writeback pages, which this 3565 * caller can't do much about. We kick the writeback threads and take explicit 3566 * naps in the hope that some of these pages can be written. But if the 3567 * allocating task holds filesystem locks which prevent writeout this might not 3568 * work, and the allocation attempt will fail. 3569 * 3570 * returns: 0, if no pages reclaimed 3571 * else, the number of pages reclaimed 3572 */ 3573 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 3574 struct scan_control *sc) 3575 { 3576 int initial_priority = sc->priority; 3577 pg_data_t *last_pgdat; 3578 struct zoneref *z; 3579 struct zone *zone; 3580 retry: 3581 delayacct_freepages_start(); 3582 3583 if (!cgroup_reclaim(sc)) 3584 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1); 3585 3586 do { 3587 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 3588 sc->priority); 3589 sc->nr_scanned = 0; 3590 shrink_zones(zonelist, sc); 3591 3592 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 3593 break; 3594 3595 if (sc->compaction_ready) 3596 break; 3597 3598 /* 3599 * If we're getting trouble reclaiming, start doing 3600 * writepage even in laptop mode. 3601 */ 3602 if (sc->priority < DEF_PRIORITY - 2) 3603 sc->may_writepage = 1; 3604 } while (--sc->priority >= 0); 3605 3606 last_pgdat = NULL; 3607 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx, 3608 sc->nodemask) { 3609 if (zone->zone_pgdat == last_pgdat) 3610 continue; 3611 last_pgdat = zone->zone_pgdat; 3612 3613 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat); 3614 3615 if (cgroup_reclaim(sc)) { 3616 struct lruvec *lruvec; 3617 3618 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, 3619 zone->zone_pgdat); 3620 clear_bit(LRUVEC_CONGESTED, &lruvec->flags); 3621 } 3622 } 3623 3624 delayacct_freepages_end(); 3625 3626 if (sc->nr_reclaimed) 3627 return sc->nr_reclaimed; 3628 3629 /* Aborted reclaim to try compaction? don't OOM, then */ 3630 if (sc->compaction_ready) 3631 return 1; 3632 3633 /* 3634 * We make inactive:active ratio decisions based on the node's 3635 * composition of memory, but a restrictive reclaim_idx or a 3636 * memory.low cgroup setting can exempt large amounts of 3637 * memory from reclaim. Neither of which are very common, so 3638 * instead of doing costly eligibility calculations of the 3639 * entire cgroup subtree up front, we assume the estimates are 3640 * good, and retry with forcible deactivation if that fails. 3641 */ 3642 if (sc->skipped_deactivate) { 3643 sc->priority = initial_priority; 3644 sc->force_deactivate = 1; 3645 sc->skipped_deactivate = 0; 3646 goto retry; 3647 } 3648 3649 /* Untapped cgroup reserves? Don't OOM, retry. */ 3650 if (sc->memcg_low_skipped) { 3651 sc->priority = initial_priority; 3652 sc->force_deactivate = 0; 3653 sc->memcg_low_reclaim = 1; 3654 sc->memcg_low_skipped = 0; 3655 goto retry; 3656 } 3657 3658 return 0; 3659 } 3660 3661 static bool allow_direct_reclaim(pg_data_t *pgdat) 3662 { 3663 struct zone *zone; 3664 unsigned long pfmemalloc_reserve = 0; 3665 unsigned long free_pages = 0; 3666 int i; 3667 bool wmark_ok; 3668 3669 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 3670 return true; 3671 3672 for (i = 0; i <= ZONE_NORMAL; i++) { 3673 zone = &pgdat->node_zones[i]; 3674 if (!managed_zone(zone)) 3675 continue; 3676 3677 if (!zone_reclaimable_pages(zone)) 3678 continue; 3679 3680 pfmemalloc_reserve += min_wmark_pages(zone); 3681 free_pages += zone_page_state(zone, NR_FREE_PAGES); 3682 } 3683 3684 /* If there are no reserves (unexpected config) then do not throttle */ 3685 if (!pfmemalloc_reserve) 3686 return true; 3687 3688 wmark_ok = free_pages > pfmemalloc_reserve / 2; 3689 3690 /* kswapd must be awake if processes are being throttled */ 3691 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 3692 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL) 3693 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL); 3694 3695 wake_up_interruptible(&pgdat->kswapd_wait); 3696 } 3697 3698 return wmark_ok; 3699 } 3700 3701 /* 3702 * Throttle direct reclaimers if backing storage is backed by the network 3703 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 3704 * depleted. kswapd will continue to make progress and wake the processes 3705 * when the low watermark is reached. 3706 * 3707 * Returns true if a fatal signal was delivered during throttling. If this 3708 * happens, the page allocator should not consider triggering the OOM killer. 3709 */ 3710 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 3711 nodemask_t *nodemask) 3712 { 3713 struct zoneref *z; 3714 struct zone *zone; 3715 pg_data_t *pgdat = NULL; 3716 3717 /* 3718 * Kernel threads should not be throttled as they may be indirectly 3719 * responsible for cleaning pages necessary for reclaim to make forward 3720 * progress. kjournald for example may enter direct reclaim while 3721 * committing a transaction where throttling it could forcing other 3722 * processes to block on log_wait_commit(). 3723 */ 3724 if (current->flags & PF_KTHREAD) 3725 goto out; 3726 3727 /* 3728 * If a fatal signal is pending, this process should not throttle. 3729 * It should return quickly so it can exit and free its memory 3730 */ 3731 if (fatal_signal_pending(current)) 3732 goto out; 3733 3734 /* 3735 * Check if the pfmemalloc reserves are ok by finding the first node 3736 * with a usable ZONE_NORMAL or lower zone. The expectation is that 3737 * GFP_KERNEL will be required for allocating network buffers when 3738 * swapping over the network so ZONE_HIGHMEM is unusable. 3739 * 3740 * Throttling is based on the first usable node and throttled processes 3741 * wait on a queue until kswapd makes progress and wakes them. There 3742 * is an affinity then between processes waking up and where reclaim 3743 * progress has been made assuming the process wakes on the same node. 3744 * More importantly, processes running on remote nodes will not compete 3745 * for remote pfmemalloc reserves and processes on different nodes 3746 * should make reasonable progress. 3747 */ 3748 for_each_zone_zonelist_nodemask(zone, z, zonelist, 3749 gfp_zone(gfp_mask), nodemask) { 3750 if (zone_idx(zone) > ZONE_NORMAL) 3751 continue; 3752 3753 /* Throttle based on the first usable node */ 3754 pgdat = zone->zone_pgdat; 3755 if (allow_direct_reclaim(pgdat)) 3756 goto out; 3757 break; 3758 } 3759 3760 /* If no zone was usable by the allocation flags then do not throttle */ 3761 if (!pgdat) 3762 goto out; 3763 3764 /* Account for the throttling */ 3765 count_vm_event(PGSCAN_DIRECT_THROTTLE); 3766 3767 /* 3768 * If the caller cannot enter the filesystem, it's possible that it 3769 * is due to the caller holding an FS lock or performing a journal 3770 * transaction in the case of a filesystem like ext[3|4]. In this case, 3771 * it is not safe to block on pfmemalloc_wait as kswapd could be 3772 * blocked waiting on the same lock. Instead, throttle for up to a 3773 * second before continuing. 3774 */ 3775 if (!(gfp_mask & __GFP_FS)) 3776 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 3777 allow_direct_reclaim(pgdat), HZ); 3778 else 3779 /* Throttle until kswapd wakes the process */ 3780 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 3781 allow_direct_reclaim(pgdat)); 3782 3783 if (fatal_signal_pending(current)) 3784 return true; 3785 3786 out: 3787 return false; 3788 } 3789 3790 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 3791 gfp_t gfp_mask, nodemask_t *nodemask) 3792 { 3793 unsigned long nr_reclaimed; 3794 struct scan_control sc = { 3795 .nr_to_reclaim = SWAP_CLUSTER_MAX, 3796 .gfp_mask = current_gfp_context(gfp_mask), 3797 .reclaim_idx = gfp_zone(gfp_mask), 3798 .order = order, 3799 .nodemask = nodemask, 3800 .priority = DEF_PRIORITY, 3801 .may_writepage = !laptop_mode, 3802 .may_unmap = 1, 3803 .may_swap = 1, 3804 }; 3805 3806 /* 3807 * scan_control uses s8 fields for order, priority, and reclaim_idx. 3808 * Confirm they are large enough for max values. 3809 */ 3810 BUILD_BUG_ON(MAX_ORDER > S8_MAX); 3811 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX); 3812 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX); 3813 3814 /* 3815 * Do not enter reclaim if fatal signal was delivered while throttled. 3816 * 1 is returned so that the page allocator does not OOM kill at this 3817 * point. 3818 */ 3819 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask)) 3820 return 1; 3821 3822 set_task_reclaim_state(current, &sc.reclaim_state); 3823 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask); 3824 3825 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3826 3827 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 3828 set_task_reclaim_state(current, NULL); 3829 3830 return nr_reclaimed; 3831 } 3832 3833 #ifdef CONFIG_MEMCG 3834 3835 /* Only used by soft limit reclaim. Do not reuse for anything else. */ 3836 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg, 3837 gfp_t gfp_mask, bool noswap, 3838 pg_data_t *pgdat, 3839 unsigned long *nr_scanned) 3840 { 3841 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 3842 struct scan_control sc = { 3843 .nr_to_reclaim = SWAP_CLUSTER_MAX, 3844 .target_mem_cgroup = memcg, 3845 .may_writepage = !laptop_mode, 3846 .may_unmap = 1, 3847 .reclaim_idx = MAX_NR_ZONES - 1, 3848 .may_swap = !noswap, 3849 }; 3850 3851 WARN_ON_ONCE(!current->reclaim_state); 3852 3853 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 3854 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 3855 3856 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 3857 sc.gfp_mask); 3858 3859 /* 3860 * NOTE: Although we can get the priority field, using it 3861 * here is not a good idea, since it limits the pages we can scan. 3862 * if we don't reclaim here, the shrink_node from balance_pgdat 3863 * will pick up pages from other mem cgroup's as well. We hack 3864 * the priority and make it zero. 3865 */ 3866 shrink_lruvec(lruvec, &sc); 3867 3868 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 3869 3870 *nr_scanned = sc.nr_scanned; 3871 3872 return sc.nr_reclaimed; 3873 } 3874 3875 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 3876 unsigned long nr_pages, 3877 gfp_t gfp_mask, 3878 bool may_swap) 3879 { 3880 unsigned long nr_reclaimed; 3881 unsigned int noreclaim_flag; 3882 struct scan_control sc = { 3883 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 3884 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) | 3885 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 3886 .reclaim_idx = MAX_NR_ZONES - 1, 3887 .target_mem_cgroup = memcg, 3888 .priority = DEF_PRIORITY, 3889 .may_writepage = !laptop_mode, 3890 .may_unmap = 1, 3891 .may_swap = may_swap, 3892 }; 3893 /* 3894 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put 3895 * equal pressure on all the nodes. This is based on the assumption that 3896 * the reclaim does not bail out early. 3897 */ 3898 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 3899 3900 set_task_reclaim_state(current, &sc.reclaim_state); 3901 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask); 3902 noreclaim_flag = memalloc_noreclaim_save(); 3903 3904 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3905 3906 memalloc_noreclaim_restore(noreclaim_flag); 3907 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 3908 set_task_reclaim_state(current, NULL); 3909 3910 return nr_reclaimed; 3911 } 3912 #endif 3913 3914 static void age_active_anon(struct pglist_data *pgdat, 3915 struct scan_control *sc) 3916 { 3917 struct mem_cgroup *memcg; 3918 struct lruvec *lruvec; 3919 3920 if (!can_age_anon_pages(pgdat, sc)) 3921 return; 3922 3923 lruvec = mem_cgroup_lruvec(NULL, pgdat); 3924 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 3925 return; 3926 3927 memcg = mem_cgroup_iter(NULL, NULL, NULL); 3928 do { 3929 lruvec = mem_cgroup_lruvec(memcg, pgdat); 3930 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 3931 sc, LRU_ACTIVE_ANON); 3932 memcg = mem_cgroup_iter(NULL, memcg, NULL); 3933 } while (memcg); 3934 } 3935 3936 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx) 3937 { 3938 int i; 3939 struct zone *zone; 3940 3941 /* 3942 * Check for watermark boosts top-down as the higher zones 3943 * are more likely to be boosted. Both watermarks and boosts 3944 * should not be checked at the same time as reclaim would 3945 * start prematurely when there is no boosting and a lower 3946 * zone is balanced. 3947 */ 3948 for (i = highest_zoneidx; i >= 0; i--) { 3949 zone = pgdat->node_zones + i; 3950 if (!managed_zone(zone)) 3951 continue; 3952 3953 if (zone->watermark_boost) 3954 return true; 3955 } 3956 3957 return false; 3958 } 3959 3960 /* 3961 * Returns true if there is an eligible zone balanced for the request order 3962 * and highest_zoneidx 3963 */ 3964 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx) 3965 { 3966 int i; 3967 unsigned long mark = -1; 3968 struct zone *zone; 3969 3970 /* 3971 * Check watermarks bottom-up as lower zones are more likely to 3972 * meet watermarks. 3973 */ 3974 for (i = 0; i <= highest_zoneidx; i++) { 3975 zone = pgdat->node_zones + i; 3976 3977 if (!managed_zone(zone)) 3978 continue; 3979 3980 mark = high_wmark_pages(zone); 3981 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx)) 3982 return true; 3983 } 3984 3985 /* 3986 * If a node has no populated zone within highest_zoneidx, it does not 3987 * need balancing by definition. This can happen if a zone-restricted 3988 * allocation tries to wake a remote kswapd. 3989 */ 3990 if (mark == -1) 3991 return true; 3992 3993 return false; 3994 } 3995 3996 /* Clear pgdat state for congested, dirty or under writeback. */ 3997 static void clear_pgdat_congested(pg_data_t *pgdat) 3998 { 3999 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat); 4000 4001 clear_bit(LRUVEC_CONGESTED, &lruvec->flags); 4002 clear_bit(PGDAT_DIRTY, &pgdat->flags); 4003 clear_bit(PGDAT_WRITEBACK, &pgdat->flags); 4004 } 4005 4006 /* 4007 * Prepare kswapd for sleeping. This verifies that there are no processes 4008 * waiting in throttle_direct_reclaim() and that watermarks have been met. 4009 * 4010 * Returns true if kswapd is ready to sleep 4011 */ 4012 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, 4013 int highest_zoneidx) 4014 { 4015 /* 4016 * The throttled processes are normally woken up in balance_pgdat() as 4017 * soon as allow_direct_reclaim() is true. But there is a potential 4018 * race between when kswapd checks the watermarks and a process gets 4019 * throttled. There is also a potential race if processes get 4020 * throttled, kswapd wakes, a large process exits thereby balancing the 4021 * zones, which causes kswapd to exit balance_pgdat() before reaching 4022 * the wake up checks. If kswapd is going to sleep, no process should 4023 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If 4024 * the wake up is premature, processes will wake kswapd and get 4025 * throttled again. The difference from wake ups in balance_pgdat() is 4026 * that here we are under prepare_to_wait(). 4027 */ 4028 if (waitqueue_active(&pgdat->pfmemalloc_wait)) 4029 wake_up_all(&pgdat->pfmemalloc_wait); 4030 4031 /* Hopeless node, leave it to direct reclaim */ 4032 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 4033 return true; 4034 4035 if (pgdat_balanced(pgdat, order, highest_zoneidx)) { 4036 clear_pgdat_congested(pgdat); 4037 return true; 4038 } 4039 4040 return false; 4041 } 4042 4043 /* 4044 * kswapd shrinks a node of pages that are at or below the highest usable 4045 * zone that is currently unbalanced. 4046 * 4047 * Returns true if kswapd scanned at least the requested number of pages to 4048 * reclaim or if the lack of progress was due to pages under writeback. 4049 * This is used to determine if the scanning priority needs to be raised. 4050 */ 4051 static bool kswapd_shrink_node(pg_data_t *pgdat, 4052 struct scan_control *sc) 4053 { 4054 struct zone *zone; 4055 int z; 4056 4057 /* Reclaim a number of pages proportional to the number of zones */ 4058 sc->nr_to_reclaim = 0; 4059 for (z = 0; z <= sc->reclaim_idx; z++) { 4060 zone = pgdat->node_zones + z; 4061 if (!managed_zone(zone)) 4062 continue; 4063 4064 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX); 4065 } 4066 4067 /* 4068 * Historically care was taken to put equal pressure on all zones but 4069 * now pressure is applied based on node LRU order. 4070 */ 4071 shrink_node(pgdat, sc); 4072 4073 /* 4074 * Fragmentation may mean that the system cannot be rebalanced for 4075 * high-order allocations. If twice the allocation size has been 4076 * reclaimed then recheck watermarks only at order-0 to prevent 4077 * excessive reclaim. Assume that a process requested a high-order 4078 * can direct reclaim/compact. 4079 */ 4080 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order)) 4081 sc->order = 0; 4082 4083 return sc->nr_scanned >= sc->nr_to_reclaim; 4084 } 4085 4086 /* Page allocator PCP high watermark is lowered if reclaim is active. */ 4087 static inline void 4088 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active) 4089 { 4090 int i; 4091 struct zone *zone; 4092 4093 for (i = 0; i <= highest_zoneidx; i++) { 4094 zone = pgdat->node_zones + i; 4095 4096 if (!managed_zone(zone)) 4097 continue; 4098 4099 if (active) 4100 set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags); 4101 else 4102 clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags); 4103 } 4104 } 4105 4106 static inline void 4107 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx) 4108 { 4109 update_reclaim_active(pgdat, highest_zoneidx, true); 4110 } 4111 4112 static inline void 4113 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx) 4114 { 4115 update_reclaim_active(pgdat, highest_zoneidx, false); 4116 } 4117 4118 /* 4119 * For kswapd, balance_pgdat() will reclaim pages across a node from zones 4120 * that are eligible for use by the caller until at least one zone is 4121 * balanced. 4122 * 4123 * Returns the order kswapd finished reclaiming at. 4124 * 4125 * kswapd scans the zones in the highmem->normal->dma direction. It skips 4126 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 4127 * found to have free_pages <= high_wmark_pages(zone), any page in that zone 4128 * or lower is eligible for reclaim until at least one usable zone is 4129 * balanced. 4130 */ 4131 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx) 4132 { 4133 int i; 4134 unsigned long nr_soft_reclaimed; 4135 unsigned long nr_soft_scanned; 4136 unsigned long pflags; 4137 unsigned long nr_boost_reclaim; 4138 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, }; 4139 bool boosted; 4140 struct zone *zone; 4141 struct scan_control sc = { 4142 .gfp_mask = GFP_KERNEL, 4143 .order = order, 4144 .may_unmap = 1, 4145 }; 4146 4147 set_task_reclaim_state(current, &sc.reclaim_state); 4148 psi_memstall_enter(&pflags); 4149 __fs_reclaim_acquire(_THIS_IP_); 4150 4151 count_vm_event(PAGEOUTRUN); 4152 4153 /* 4154 * Account for the reclaim boost. Note that the zone boost is left in 4155 * place so that parallel allocations that are near the watermark will 4156 * stall or direct reclaim until kswapd is finished. 4157 */ 4158 nr_boost_reclaim = 0; 4159 for (i = 0; i <= highest_zoneidx; i++) { 4160 zone = pgdat->node_zones + i; 4161 if (!managed_zone(zone)) 4162 continue; 4163 4164 nr_boost_reclaim += zone->watermark_boost; 4165 zone_boosts[i] = zone->watermark_boost; 4166 } 4167 boosted = nr_boost_reclaim; 4168 4169 restart: 4170 set_reclaim_active(pgdat, highest_zoneidx); 4171 sc.priority = DEF_PRIORITY; 4172 do { 4173 unsigned long nr_reclaimed = sc.nr_reclaimed; 4174 bool raise_priority = true; 4175 bool balanced; 4176 bool ret; 4177 4178 sc.reclaim_idx = highest_zoneidx; 4179 4180 /* 4181 * If the number of buffer_heads exceeds the maximum allowed 4182 * then consider reclaiming from all zones. This has a dual 4183 * purpose -- on 64-bit systems it is expected that 4184 * buffer_heads are stripped during active rotation. On 32-bit 4185 * systems, highmem pages can pin lowmem memory and shrinking 4186 * buffers can relieve lowmem pressure. Reclaim may still not 4187 * go ahead if all eligible zones for the original allocation 4188 * request are balanced to avoid excessive reclaim from kswapd. 4189 */ 4190 if (buffer_heads_over_limit) { 4191 for (i = MAX_NR_ZONES - 1; i >= 0; i--) { 4192 zone = pgdat->node_zones + i; 4193 if (!managed_zone(zone)) 4194 continue; 4195 4196 sc.reclaim_idx = i; 4197 break; 4198 } 4199 } 4200 4201 /* 4202 * If the pgdat is imbalanced then ignore boosting and preserve 4203 * the watermarks for a later time and restart. Note that the 4204 * zone watermarks will be still reset at the end of balancing 4205 * on the grounds that the normal reclaim should be enough to 4206 * re-evaluate if boosting is required when kswapd next wakes. 4207 */ 4208 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx); 4209 if (!balanced && nr_boost_reclaim) { 4210 nr_boost_reclaim = 0; 4211 goto restart; 4212 } 4213 4214 /* 4215 * If boosting is not active then only reclaim if there are no 4216 * eligible zones. Note that sc.reclaim_idx is not used as 4217 * buffer_heads_over_limit may have adjusted it. 4218 */ 4219 if (!nr_boost_reclaim && balanced) 4220 goto out; 4221 4222 /* Limit the priority of boosting to avoid reclaim writeback */ 4223 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2) 4224 raise_priority = false; 4225 4226 /* 4227 * Do not writeback or swap pages for boosted reclaim. The 4228 * intent is to relieve pressure not issue sub-optimal IO 4229 * from reclaim context. If no pages are reclaimed, the 4230 * reclaim will be aborted. 4231 */ 4232 sc.may_writepage = !laptop_mode && !nr_boost_reclaim; 4233 sc.may_swap = !nr_boost_reclaim; 4234 4235 /* 4236 * Do some background aging of the anon list, to give 4237 * pages a chance to be referenced before reclaiming. All 4238 * pages are rotated regardless of classzone as this is 4239 * about consistent aging. 4240 */ 4241 age_active_anon(pgdat, &sc); 4242 4243 /* 4244 * If we're getting trouble reclaiming, start doing writepage 4245 * even in laptop mode. 4246 */ 4247 if (sc.priority < DEF_PRIORITY - 2) 4248 sc.may_writepage = 1; 4249 4250 /* Call soft limit reclaim before calling shrink_node. */ 4251 sc.nr_scanned = 0; 4252 nr_soft_scanned = 0; 4253 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order, 4254 sc.gfp_mask, &nr_soft_scanned); 4255 sc.nr_reclaimed += nr_soft_reclaimed; 4256 4257 /* 4258 * There should be no need to raise the scanning priority if 4259 * enough pages are already being scanned that that high 4260 * watermark would be met at 100% efficiency. 4261 */ 4262 if (kswapd_shrink_node(pgdat, &sc)) 4263 raise_priority = false; 4264 4265 /* 4266 * If the low watermark is met there is no need for processes 4267 * to be throttled on pfmemalloc_wait as they should not be 4268 * able to safely make forward progress. Wake them 4269 */ 4270 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 4271 allow_direct_reclaim(pgdat)) 4272 wake_up_all(&pgdat->pfmemalloc_wait); 4273 4274 /* Check if kswapd should be suspending */ 4275 __fs_reclaim_release(_THIS_IP_); 4276 ret = try_to_freeze(); 4277 __fs_reclaim_acquire(_THIS_IP_); 4278 if (ret || kthread_should_stop()) 4279 break; 4280 4281 /* 4282 * Raise priority if scanning rate is too low or there was no 4283 * progress in reclaiming pages 4284 */ 4285 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed; 4286 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed); 4287 4288 /* 4289 * If reclaim made no progress for a boost, stop reclaim as 4290 * IO cannot be queued and it could be an infinite loop in 4291 * extreme circumstances. 4292 */ 4293 if (nr_boost_reclaim && !nr_reclaimed) 4294 break; 4295 4296 if (raise_priority || !nr_reclaimed) 4297 sc.priority--; 4298 } while (sc.priority >= 1); 4299 4300 if (!sc.nr_reclaimed) 4301 pgdat->kswapd_failures++; 4302 4303 out: 4304 clear_reclaim_active(pgdat, highest_zoneidx); 4305 4306 /* If reclaim was boosted, account for the reclaim done in this pass */ 4307 if (boosted) { 4308 unsigned long flags; 4309 4310 for (i = 0; i <= highest_zoneidx; i++) { 4311 if (!zone_boosts[i]) 4312 continue; 4313 4314 /* Increments are under the zone lock */ 4315 zone = pgdat->node_zones + i; 4316 spin_lock_irqsave(&zone->lock, flags); 4317 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]); 4318 spin_unlock_irqrestore(&zone->lock, flags); 4319 } 4320 4321 /* 4322 * As there is now likely space, wakeup kcompact to defragment 4323 * pageblocks. 4324 */ 4325 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx); 4326 } 4327 4328 snapshot_refaults(NULL, pgdat); 4329 __fs_reclaim_release(_THIS_IP_); 4330 psi_memstall_leave(&pflags); 4331 set_task_reclaim_state(current, NULL); 4332 4333 /* 4334 * Return the order kswapd stopped reclaiming at as 4335 * prepare_kswapd_sleep() takes it into account. If another caller 4336 * entered the allocator slow path while kswapd was awake, order will 4337 * remain at the higher level. 4338 */ 4339 return sc.order; 4340 } 4341 4342 /* 4343 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to 4344 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is 4345 * not a valid index then either kswapd runs for first time or kswapd couldn't 4346 * sleep after previous reclaim attempt (node is still unbalanced). In that 4347 * case return the zone index of the previous kswapd reclaim cycle. 4348 */ 4349 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat, 4350 enum zone_type prev_highest_zoneidx) 4351 { 4352 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 4353 4354 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx; 4355 } 4356 4357 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order, 4358 unsigned int highest_zoneidx) 4359 { 4360 long remaining = 0; 4361 DEFINE_WAIT(wait); 4362 4363 if (freezing(current) || kthread_should_stop()) 4364 return; 4365 4366 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 4367 4368 /* 4369 * Try to sleep for a short interval. Note that kcompactd will only be 4370 * woken if it is possible to sleep for a short interval. This is 4371 * deliberate on the assumption that if reclaim cannot keep an 4372 * eligible zone balanced that it's also unlikely that compaction will 4373 * succeed. 4374 */ 4375 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 4376 /* 4377 * Compaction records what page blocks it recently failed to 4378 * isolate pages from and skips them in the future scanning. 4379 * When kswapd is going to sleep, it is reasonable to assume 4380 * that pages and compaction may succeed so reset the cache. 4381 */ 4382 reset_isolation_suitable(pgdat); 4383 4384 /* 4385 * We have freed the memory, now we should compact it to make 4386 * allocation of the requested order possible. 4387 */ 4388 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx); 4389 4390 remaining = schedule_timeout(HZ/10); 4391 4392 /* 4393 * If woken prematurely then reset kswapd_highest_zoneidx and 4394 * order. The values will either be from a wakeup request or 4395 * the previous request that slept prematurely. 4396 */ 4397 if (remaining) { 4398 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, 4399 kswapd_highest_zoneidx(pgdat, 4400 highest_zoneidx)); 4401 4402 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order) 4403 WRITE_ONCE(pgdat->kswapd_order, reclaim_order); 4404 } 4405 4406 finish_wait(&pgdat->kswapd_wait, &wait); 4407 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 4408 } 4409 4410 /* 4411 * After a short sleep, check if it was a premature sleep. If not, then 4412 * go fully to sleep until explicitly woken up. 4413 */ 4414 if (!remaining && 4415 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 4416 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 4417 4418 /* 4419 * vmstat counters are not perfectly accurate and the estimated 4420 * value for counters such as NR_FREE_PAGES can deviate from the 4421 * true value by nr_online_cpus * threshold. To avoid the zone 4422 * watermarks being breached while under pressure, we reduce the 4423 * per-cpu vmstat threshold while kswapd is awake and restore 4424 * them before going back to sleep. 4425 */ 4426 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 4427 4428 if (!kthread_should_stop()) 4429 schedule(); 4430 4431 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 4432 } else { 4433 if (remaining) 4434 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 4435 else 4436 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 4437 } 4438 finish_wait(&pgdat->kswapd_wait, &wait); 4439 } 4440 4441 /* 4442 * The background pageout daemon, started as a kernel thread 4443 * from the init process. 4444 * 4445 * This basically trickles out pages so that we have _some_ 4446 * free memory available even if there is no other activity 4447 * that frees anything up. This is needed for things like routing 4448 * etc, where we otherwise might have all activity going on in 4449 * asynchronous contexts that cannot page things out. 4450 * 4451 * If there are applications that are active memory-allocators 4452 * (most normal use), this basically shouldn't matter. 4453 */ 4454 static int kswapd(void *p) 4455 { 4456 unsigned int alloc_order, reclaim_order; 4457 unsigned int highest_zoneidx = MAX_NR_ZONES - 1; 4458 pg_data_t *pgdat = (pg_data_t *)p; 4459 struct task_struct *tsk = current; 4460 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 4461 4462 if (!cpumask_empty(cpumask)) 4463 set_cpus_allowed_ptr(tsk, cpumask); 4464 4465 /* 4466 * Tell the memory management that we're a "memory allocator", 4467 * and that if we need more memory we should get access to it 4468 * regardless (see "__alloc_pages()"). "kswapd" should 4469 * never get caught in the normal page freeing logic. 4470 * 4471 * (Kswapd normally doesn't need memory anyway, but sometimes 4472 * you need a small amount of memory in order to be able to 4473 * page out something else, and this flag essentially protects 4474 * us from recursively trying to free more memory as we're 4475 * trying to free the first piece of memory in the first place). 4476 */ 4477 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 4478 set_freezable(); 4479 4480 WRITE_ONCE(pgdat->kswapd_order, 0); 4481 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 4482 atomic_set(&pgdat->nr_writeback_throttled, 0); 4483 for ( ; ; ) { 4484 bool ret; 4485 4486 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order); 4487 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 4488 highest_zoneidx); 4489 4490 kswapd_try_sleep: 4491 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order, 4492 highest_zoneidx); 4493 4494 /* Read the new order and highest_zoneidx */ 4495 alloc_order = READ_ONCE(pgdat->kswapd_order); 4496 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 4497 highest_zoneidx); 4498 WRITE_ONCE(pgdat->kswapd_order, 0); 4499 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 4500 4501 ret = try_to_freeze(); 4502 if (kthread_should_stop()) 4503 break; 4504 4505 /* 4506 * We can speed up thawing tasks if we don't call balance_pgdat 4507 * after returning from the refrigerator 4508 */ 4509 if (ret) 4510 continue; 4511 4512 /* 4513 * Reclaim begins at the requested order but if a high-order 4514 * reclaim fails then kswapd falls back to reclaiming for 4515 * order-0. If that happens, kswapd will consider sleeping 4516 * for the order it finished reclaiming at (reclaim_order) 4517 * but kcompactd is woken to compact for the original 4518 * request (alloc_order). 4519 */ 4520 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx, 4521 alloc_order); 4522 reclaim_order = balance_pgdat(pgdat, alloc_order, 4523 highest_zoneidx); 4524 if (reclaim_order < alloc_order) 4525 goto kswapd_try_sleep; 4526 } 4527 4528 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD); 4529 4530 return 0; 4531 } 4532 4533 /* 4534 * A zone is low on free memory or too fragmented for high-order memory. If 4535 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's 4536 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim 4537 * has failed or is not needed, still wake up kcompactd if only compaction is 4538 * needed. 4539 */ 4540 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order, 4541 enum zone_type highest_zoneidx) 4542 { 4543 pg_data_t *pgdat; 4544 enum zone_type curr_idx; 4545 4546 if (!managed_zone(zone)) 4547 return; 4548 4549 if (!cpuset_zone_allowed(zone, gfp_flags)) 4550 return; 4551 4552 pgdat = zone->zone_pgdat; 4553 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 4554 4555 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx) 4556 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx); 4557 4558 if (READ_ONCE(pgdat->kswapd_order) < order) 4559 WRITE_ONCE(pgdat->kswapd_order, order); 4560 4561 if (!waitqueue_active(&pgdat->kswapd_wait)) 4562 return; 4563 4564 /* Hopeless node, leave it to direct reclaim if possible */ 4565 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES || 4566 (pgdat_balanced(pgdat, order, highest_zoneidx) && 4567 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) { 4568 /* 4569 * There may be plenty of free memory available, but it's too 4570 * fragmented for high-order allocations. Wake up kcompactd 4571 * and rely on compaction_suitable() to determine if it's 4572 * needed. If it fails, it will defer subsequent attempts to 4573 * ratelimit its work. 4574 */ 4575 if (!(gfp_flags & __GFP_DIRECT_RECLAIM)) 4576 wakeup_kcompactd(pgdat, order, highest_zoneidx); 4577 return; 4578 } 4579 4580 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order, 4581 gfp_flags); 4582 wake_up_interruptible(&pgdat->kswapd_wait); 4583 } 4584 4585 #ifdef CONFIG_HIBERNATION 4586 /* 4587 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 4588 * freed pages. 4589 * 4590 * Rather than trying to age LRUs the aim is to preserve the overall 4591 * LRU order by reclaiming preferentially 4592 * inactive > active > active referenced > active mapped 4593 */ 4594 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 4595 { 4596 struct scan_control sc = { 4597 .nr_to_reclaim = nr_to_reclaim, 4598 .gfp_mask = GFP_HIGHUSER_MOVABLE, 4599 .reclaim_idx = MAX_NR_ZONES - 1, 4600 .priority = DEF_PRIORITY, 4601 .may_writepage = 1, 4602 .may_unmap = 1, 4603 .may_swap = 1, 4604 .hibernation_mode = 1, 4605 }; 4606 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 4607 unsigned long nr_reclaimed; 4608 unsigned int noreclaim_flag; 4609 4610 fs_reclaim_acquire(sc.gfp_mask); 4611 noreclaim_flag = memalloc_noreclaim_save(); 4612 set_task_reclaim_state(current, &sc.reclaim_state); 4613 4614 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 4615 4616 set_task_reclaim_state(current, NULL); 4617 memalloc_noreclaim_restore(noreclaim_flag); 4618 fs_reclaim_release(sc.gfp_mask); 4619 4620 return nr_reclaimed; 4621 } 4622 #endif /* CONFIG_HIBERNATION */ 4623 4624 /* 4625 * This kswapd start function will be called by init and node-hot-add. 4626 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. 4627 */ 4628 void kswapd_run(int nid) 4629 { 4630 pg_data_t *pgdat = NODE_DATA(nid); 4631 4632 if (pgdat->kswapd) 4633 return; 4634 4635 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 4636 if (IS_ERR(pgdat->kswapd)) { 4637 /* failure at boot is fatal */ 4638 BUG_ON(system_state < SYSTEM_RUNNING); 4639 pr_err("Failed to start kswapd on node %d\n", nid); 4640 pgdat->kswapd = NULL; 4641 } 4642 } 4643 4644 /* 4645 * Called by memory hotplug when all memory in a node is offlined. Caller must 4646 * hold mem_hotplug_begin/end(). 4647 */ 4648 void kswapd_stop(int nid) 4649 { 4650 struct task_struct *kswapd = NODE_DATA(nid)->kswapd; 4651 4652 if (kswapd) { 4653 kthread_stop(kswapd); 4654 NODE_DATA(nid)->kswapd = NULL; 4655 } 4656 } 4657 4658 static int __init kswapd_init(void) 4659 { 4660 int nid; 4661 4662 swap_setup(); 4663 for_each_node_state(nid, N_MEMORY) 4664 kswapd_run(nid); 4665 return 0; 4666 } 4667 4668 module_init(kswapd_init) 4669 4670 #ifdef CONFIG_NUMA 4671 /* 4672 * Node reclaim mode 4673 * 4674 * If non-zero call node_reclaim when the number of free pages falls below 4675 * the watermarks. 4676 */ 4677 int node_reclaim_mode __read_mostly; 4678 4679 /* 4680 * Priority for NODE_RECLAIM. This determines the fraction of pages 4681 * of a node considered for each zone_reclaim. 4 scans 1/16th of 4682 * a zone. 4683 */ 4684 #define NODE_RECLAIM_PRIORITY 4 4685 4686 /* 4687 * Percentage of pages in a zone that must be unmapped for node_reclaim to 4688 * occur. 4689 */ 4690 int sysctl_min_unmapped_ratio = 1; 4691 4692 /* 4693 * If the number of slab pages in a zone grows beyond this percentage then 4694 * slab reclaim needs to occur. 4695 */ 4696 int sysctl_min_slab_ratio = 5; 4697 4698 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat) 4699 { 4700 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED); 4701 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) + 4702 node_page_state(pgdat, NR_ACTIVE_FILE); 4703 4704 /* 4705 * It's possible for there to be more file mapped pages than 4706 * accounted for by the pages on the file LRU lists because 4707 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 4708 */ 4709 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 4710 } 4711 4712 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 4713 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat) 4714 { 4715 unsigned long nr_pagecache_reclaimable; 4716 unsigned long delta = 0; 4717 4718 /* 4719 * If RECLAIM_UNMAP is set, then all file pages are considered 4720 * potentially reclaimable. Otherwise, we have to worry about 4721 * pages like swapcache and node_unmapped_file_pages() provides 4722 * a better estimate 4723 */ 4724 if (node_reclaim_mode & RECLAIM_UNMAP) 4725 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES); 4726 else 4727 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat); 4728 4729 /* If we can't clean pages, remove dirty pages from consideration */ 4730 if (!(node_reclaim_mode & RECLAIM_WRITE)) 4731 delta += node_page_state(pgdat, NR_FILE_DIRTY); 4732 4733 /* Watch for any possible underflows due to delta */ 4734 if (unlikely(delta > nr_pagecache_reclaimable)) 4735 delta = nr_pagecache_reclaimable; 4736 4737 return nr_pagecache_reclaimable - delta; 4738 } 4739 4740 /* 4741 * Try to free up some pages from this node through reclaim. 4742 */ 4743 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 4744 { 4745 /* Minimum pages needed in order to stay on node */ 4746 const unsigned long nr_pages = 1 << order; 4747 struct task_struct *p = current; 4748 unsigned int noreclaim_flag; 4749 struct scan_control sc = { 4750 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 4751 .gfp_mask = current_gfp_context(gfp_mask), 4752 .order = order, 4753 .priority = NODE_RECLAIM_PRIORITY, 4754 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE), 4755 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP), 4756 .may_swap = 1, 4757 .reclaim_idx = gfp_zone(gfp_mask), 4758 }; 4759 unsigned long pflags; 4760 4761 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order, 4762 sc.gfp_mask); 4763 4764 cond_resched(); 4765 psi_memstall_enter(&pflags); 4766 fs_reclaim_acquire(sc.gfp_mask); 4767 /* 4768 * We need to be able to allocate from the reserves for RECLAIM_UNMAP 4769 * and we also need to be able to write out pages for RECLAIM_WRITE 4770 * and RECLAIM_UNMAP. 4771 */ 4772 noreclaim_flag = memalloc_noreclaim_save(); 4773 p->flags |= PF_SWAPWRITE; 4774 set_task_reclaim_state(p, &sc.reclaim_state); 4775 4776 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) { 4777 /* 4778 * Free memory by calling shrink node with increasing 4779 * priorities until we have enough memory freed. 4780 */ 4781 do { 4782 shrink_node(pgdat, &sc); 4783 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 4784 } 4785 4786 set_task_reclaim_state(p, NULL); 4787 current->flags &= ~PF_SWAPWRITE; 4788 memalloc_noreclaim_restore(noreclaim_flag); 4789 fs_reclaim_release(sc.gfp_mask); 4790 psi_memstall_leave(&pflags); 4791 4792 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed); 4793 4794 return sc.nr_reclaimed >= nr_pages; 4795 } 4796 4797 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 4798 { 4799 int ret; 4800 4801 /* 4802 * Node reclaim reclaims unmapped file backed pages and 4803 * slab pages if we are over the defined limits. 4804 * 4805 * A small portion of unmapped file backed pages is needed for 4806 * file I/O otherwise pages read by file I/O will be immediately 4807 * thrown out if the node is overallocated. So we do not reclaim 4808 * if less than a specified percentage of the node is used by 4809 * unmapped file backed pages. 4810 */ 4811 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages && 4812 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <= 4813 pgdat->min_slab_pages) 4814 return NODE_RECLAIM_FULL; 4815 4816 /* 4817 * Do not scan if the allocation should not be delayed. 4818 */ 4819 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) 4820 return NODE_RECLAIM_NOSCAN; 4821 4822 /* 4823 * Only run node reclaim on the local node or on nodes that do not 4824 * have associated processors. This will favor the local processor 4825 * over remote processors and spread off node memory allocations 4826 * as wide as possible. 4827 */ 4828 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id()) 4829 return NODE_RECLAIM_NOSCAN; 4830 4831 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags)) 4832 return NODE_RECLAIM_NOSCAN; 4833 4834 ret = __node_reclaim(pgdat, gfp_mask, order); 4835 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags); 4836 4837 if (!ret) 4838 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 4839 4840 return ret; 4841 } 4842 #endif 4843 4844 /** 4845 * check_move_unevictable_pages - check pages for evictability and move to 4846 * appropriate zone lru list 4847 * @pvec: pagevec with lru pages to check 4848 * 4849 * Checks pages for evictability, if an evictable page is in the unevictable 4850 * lru list, moves it to the appropriate evictable lru list. This function 4851 * should be only used for lru pages. 4852 */ 4853 void check_move_unevictable_pages(struct pagevec *pvec) 4854 { 4855 struct lruvec *lruvec = NULL; 4856 int pgscanned = 0; 4857 int pgrescued = 0; 4858 int i; 4859 4860 for (i = 0; i < pvec->nr; i++) { 4861 struct page *page = pvec->pages[i]; 4862 struct folio *folio = page_folio(page); 4863 int nr_pages; 4864 4865 if (PageTransTail(page)) 4866 continue; 4867 4868 nr_pages = thp_nr_pages(page); 4869 pgscanned += nr_pages; 4870 4871 /* block memcg migration during page moving between lru */ 4872 if (!TestClearPageLRU(page)) 4873 continue; 4874 4875 lruvec = folio_lruvec_relock_irq(folio, lruvec); 4876 if (page_evictable(page) && PageUnevictable(page)) { 4877 del_page_from_lru_list(page, lruvec); 4878 ClearPageUnevictable(page); 4879 add_page_to_lru_list(page, lruvec); 4880 pgrescued += nr_pages; 4881 } 4882 SetPageLRU(page); 4883 } 4884 4885 if (lruvec) { 4886 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 4887 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 4888 unlock_page_lruvec_irq(lruvec); 4889 } else if (pgscanned) { 4890 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 4891 } 4892 } 4893 EXPORT_SYMBOL_GPL(check_move_unevictable_pages); 4894