xref: /linux/mm/vmscan.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
4  *
5  *  Swap reorganised 29.12.95, Stephen Tweedie.
6  *  kswapd added: 7.1.96  sct
7  *  Removed kswapd_ctl limits, and swap out as many pages as needed
8  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
9  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
10  *  Multiqueue VM started 5.8.00, Rik van Riel.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/mm.h>
16 #include <linux/sched/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h>	/* for buffer_heads_over_limit */
30 #include <linux/mm_inline.h>
31 #include <linux/backing-dev.h>
32 #include <linux/rmap.h>
33 #include <linux/topology.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/compaction.h>
37 #include <linux/notifier.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/migrate.h>
43 #include <linux/delayacct.h>
44 #include <linux/sysctl.h>
45 #include <linux/memory-tiers.h>
46 #include <linux/oom.h>
47 #include <linux/pagevec.h>
48 #include <linux/prefetch.h>
49 #include <linux/printk.h>
50 #include <linux/dax.h>
51 #include <linux/psi.h>
52 #include <linux/pagewalk.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/ctype.h>
55 #include <linux/debugfs.h>
56 #include <linux/khugepaged.h>
57 #include <linux/rculist_nulls.h>
58 #include <linux/random.h>
59 
60 #include <asm/tlbflush.h>
61 #include <asm/div64.h>
62 
63 #include <linux/swapops.h>
64 #include <linux/balloon_compaction.h>
65 #include <linux/sched/sysctl.h>
66 
67 #include "internal.h"
68 #include "swap.h"
69 
70 #define CREATE_TRACE_POINTS
71 #include <trace/events/vmscan.h>
72 
73 struct scan_control {
74 	/* How many pages shrink_list() should reclaim */
75 	unsigned long nr_to_reclaim;
76 
77 	/*
78 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
79 	 * are scanned.
80 	 */
81 	nodemask_t	*nodemask;
82 
83 	/*
84 	 * The memory cgroup that hit its limit and as a result is the
85 	 * primary target of this reclaim invocation.
86 	 */
87 	struct mem_cgroup *target_mem_cgroup;
88 
89 	/*
90 	 * Scan pressure balancing between anon and file LRUs
91 	 */
92 	unsigned long	anon_cost;
93 	unsigned long	file_cost;
94 
95 	/* Can active folios be deactivated as part of reclaim? */
96 #define DEACTIVATE_ANON 1
97 #define DEACTIVATE_FILE 2
98 	unsigned int may_deactivate:2;
99 	unsigned int force_deactivate:1;
100 	unsigned int skipped_deactivate:1;
101 
102 	/* Writepage batching in laptop mode; RECLAIM_WRITE */
103 	unsigned int may_writepage:1;
104 
105 	/* Can mapped folios be reclaimed? */
106 	unsigned int may_unmap:1;
107 
108 	/* Can folios be swapped as part of reclaim? */
109 	unsigned int may_swap:1;
110 
111 	/* Not allow cache_trim_mode to be turned on as part of reclaim? */
112 	unsigned int no_cache_trim_mode:1;
113 
114 	/* Has cache_trim_mode failed at least once? */
115 	unsigned int cache_trim_mode_failed:1;
116 
117 	/* Proactive reclaim invoked by userspace through memory.reclaim */
118 	unsigned int proactive:1;
119 
120 	/*
121 	 * Cgroup memory below memory.low is protected as long as we
122 	 * don't threaten to OOM. If any cgroup is reclaimed at
123 	 * reduced force or passed over entirely due to its memory.low
124 	 * setting (memcg_low_skipped), and nothing is reclaimed as a
125 	 * result, then go back for one more cycle that reclaims the protected
126 	 * memory (memcg_low_reclaim) to avert OOM.
127 	 */
128 	unsigned int memcg_low_reclaim:1;
129 	unsigned int memcg_low_skipped:1;
130 
131 	unsigned int hibernation_mode:1;
132 
133 	/* One of the zones is ready for compaction */
134 	unsigned int compaction_ready:1;
135 
136 	/* There is easily reclaimable cold cache in the current node */
137 	unsigned int cache_trim_mode:1;
138 
139 	/* The file folios on the current node are dangerously low */
140 	unsigned int file_is_tiny:1;
141 
142 	/* Always discard instead of demoting to lower tier memory */
143 	unsigned int no_demotion:1;
144 
145 	/* Allocation order */
146 	s8 order;
147 
148 	/* Scan (total_size >> priority) pages at once */
149 	s8 priority;
150 
151 	/* The highest zone to isolate folios for reclaim from */
152 	s8 reclaim_idx;
153 
154 	/* This context's GFP mask */
155 	gfp_t gfp_mask;
156 
157 	/* Incremented by the number of inactive pages that were scanned */
158 	unsigned long nr_scanned;
159 
160 	/* Number of pages freed so far during a call to shrink_zones() */
161 	unsigned long nr_reclaimed;
162 
163 	struct {
164 		unsigned int dirty;
165 		unsigned int unqueued_dirty;
166 		unsigned int congested;
167 		unsigned int writeback;
168 		unsigned int immediate;
169 		unsigned int file_taken;
170 		unsigned int taken;
171 	} nr;
172 
173 	/* for recording the reclaimed slab by now */
174 	struct reclaim_state reclaim_state;
175 };
176 
177 #ifdef ARCH_HAS_PREFETCHW
178 #define prefetchw_prev_lru_folio(_folio, _base, _field)			\
179 	do {								\
180 		if ((_folio)->lru.prev != _base) {			\
181 			struct folio *prev;				\
182 									\
183 			prev = lru_to_folio(&(_folio->lru));		\
184 			prefetchw(&prev->_field);			\
185 		}							\
186 	} while (0)
187 #else
188 #define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0)
189 #endif
190 
191 /*
192  * From 0 .. 200.  Higher means more swappy.
193  */
194 int vm_swappiness = 60;
195 
196 #ifdef CONFIG_MEMCG
197 
198 /* Returns true for reclaim through cgroup limits or cgroup interfaces. */
199 static bool cgroup_reclaim(struct scan_control *sc)
200 {
201 	return sc->target_mem_cgroup;
202 }
203 
204 /*
205  * Returns true for reclaim on the root cgroup. This is true for direct
206  * allocator reclaim and reclaim through cgroup interfaces on the root cgroup.
207  */
208 static bool root_reclaim(struct scan_control *sc)
209 {
210 	return !sc->target_mem_cgroup || mem_cgroup_is_root(sc->target_mem_cgroup);
211 }
212 
213 /**
214  * writeback_throttling_sane - is the usual dirty throttling mechanism available?
215  * @sc: scan_control in question
216  *
217  * The normal page dirty throttling mechanism in balance_dirty_pages() is
218  * completely broken with the legacy memcg and direct stalling in
219  * shrink_folio_list() is used for throttling instead, which lacks all the
220  * niceties such as fairness, adaptive pausing, bandwidth proportional
221  * allocation and configurability.
222  *
223  * This function tests whether the vmscan currently in progress can assume
224  * that the normal dirty throttling mechanism is operational.
225  */
226 static bool writeback_throttling_sane(struct scan_control *sc)
227 {
228 	if (!cgroup_reclaim(sc))
229 		return true;
230 #ifdef CONFIG_CGROUP_WRITEBACK
231 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
232 		return true;
233 #endif
234 	return false;
235 }
236 #else
237 static bool cgroup_reclaim(struct scan_control *sc)
238 {
239 	return false;
240 }
241 
242 static bool root_reclaim(struct scan_control *sc)
243 {
244 	return true;
245 }
246 
247 static bool writeback_throttling_sane(struct scan_control *sc)
248 {
249 	return true;
250 }
251 #endif
252 
253 static void set_task_reclaim_state(struct task_struct *task,
254 				   struct reclaim_state *rs)
255 {
256 	/* Check for an overwrite */
257 	WARN_ON_ONCE(rs && task->reclaim_state);
258 
259 	/* Check for the nulling of an already-nulled member */
260 	WARN_ON_ONCE(!rs && !task->reclaim_state);
261 
262 	task->reclaim_state = rs;
263 }
264 
265 /*
266  * flush_reclaim_state(): add pages reclaimed outside of LRU-based reclaim to
267  * scan_control->nr_reclaimed.
268  */
269 static void flush_reclaim_state(struct scan_control *sc)
270 {
271 	/*
272 	 * Currently, reclaim_state->reclaimed includes three types of pages
273 	 * freed outside of vmscan:
274 	 * (1) Slab pages.
275 	 * (2) Clean file pages from pruned inodes (on highmem systems).
276 	 * (3) XFS freed buffer pages.
277 	 *
278 	 * For all of these cases, we cannot universally link the pages to a
279 	 * single memcg. For example, a memcg-aware shrinker can free one object
280 	 * charged to the target memcg, causing an entire page to be freed.
281 	 * If we count the entire page as reclaimed from the memcg, we end up
282 	 * overestimating the reclaimed amount (potentially under-reclaiming).
283 	 *
284 	 * Only count such pages for global reclaim to prevent under-reclaiming
285 	 * from the target memcg; preventing unnecessary retries during memcg
286 	 * charging and false positives from proactive reclaim.
287 	 *
288 	 * For uncommon cases where the freed pages were actually mostly
289 	 * charged to the target memcg, we end up underestimating the reclaimed
290 	 * amount. This should be fine. The freed pages will be uncharged
291 	 * anyway, even if they are not counted here properly, and we will be
292 	 * able to make forward progress in charging (which is usually in a
293 	 * retry loop).
294 	 *
295 	 * We can go one step further, and report the uncharged objcg pages in
296 	 * memcg reclaim, to make reporting more accurate and reduce
297 	 * underestimation, but it's probably not worth the complexity for now.
298 	 */
299 	if (current->reclaim_state && root_reclaim(sc)) {
300 		sc->nr_reclaimed += current->reclaim_state->reclaimed;
301 		current->reclaim_state->reclaimed = 0;
302 	}
303 }
304 
305 static bool can_demote(int nid, struct scan_control *sc)
306 {
307 	if (!numa_demotion_enabled)
308 		return false;
309 	if (sc && sc->no_demotion)
310 		return false;
311 	if (next_demotion_node(nid) == NUMA_NO_NODE)
312 		return false;
313 
314 	return true;
315 }
316 
317 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
318 					  int nid,
319 					  struct scan_control *sc)
320 {
321 	if (memcg == NULL) {
322 		/*
323 		 * For non-memcg reclaim, is there
324 		 * space in any swap device?
325 		 */
326 		if (get_nr_swap_pages() > 0)
327 			return true;
328 	} else {
329 		/* Is the memcg below its swap limit? */
330 		if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
331 			return true;
332 	}
333 
334 	/*
335 	 * The page can not be swapped.
336 	 *
337 	 * Can it be reclaimed from this node via demotion?
338 	 */
339 	return can_demote(nid, sc);
340 }
341 
342 /*
343  * This misses isolated folios which are not accounted for to save counters.
344  * As the data only determines if reclaim or compaction continues, it is
345  * not expected that isolated folios will be a dominating factor.
346  */
347 unsigned long zone_reclaimable_pages(struct zone *zone)
348 {
349 	unsigned long nr;
350 
351 	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
352 		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
353 	if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
354 		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
355 			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
356 
357 	return nr;
358 }
359 
360 /**
361  * lruvec_lru_size -  Returns the number of pages on the given LRU list.
362  * @lruvec: lru vector
363  * @lru: lru to use
364  * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list)
365  */
366 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
367 				     int zone_idx)
368 {
369 	unsigned long size = 0;
370 	int zid;
371 
372 	for (zid = 0; zid <= zone_idx; zid++) {
373 		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
374 
375 		if (!managed_zone(zone))
376 			continue;
377 
378 		if (!mem_cgroup_disabled())
379 			size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
380 		else
381 			size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
382 	}
383 	return size;
384 }
385 
386 static unsigned long drop_slab_node(int nid)
387 {
388 	unsigned long freed = 0;
389 	struct mem_cgroup *memcg = NULL;
390 
391 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
392 	do {
393 		freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
394 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
395 
396 	return freed;
397 }
398 
399 void drop_slab(void)
400 {
401 	int nid;
402 	int shift = 0;
403 	unsigned long freed;
404 
405 	do {
406 		freed = 0;
407 		for_each_online_node(nid) {
408 			if (fatal_signal_pending(current))
409 				return;
410 
411 			freed += drop_slab_node(nid);
412 		}
413 	} while ((freed >> shift++) > 1);
414 }
415 
416 static int reclaimer_offset(void)
417 {
418 	BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD !=
419 			PGDEMOTE_DIRECT - PGDEMOTE_KSWAPD);
420 	BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD !=
421 			PGDEMOTE_KHUGEPAGED - PGDEMOTE_KSWAPD);
422 	BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD !=
423 			PGSCAN_DIRECT - PGSCAN_KSWAPD);
424 	BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD !=
425 			PGSCAN_KHUGEPAGED - PGSCAN_KSWAPD);
426 
427 	if (current_is_kswapd())
428 		return 0;
429 	if (current_is_khugepaged())
430 		return PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD;
431 	return PGSTEAL_DIRECT - PGSTEAL_KSWAPD;
432 }
433 
434 static inline int is_page_cache_freeable(struct folio *folio)
435 {
436 	/*
437 	 * A freeable page cache folio is referenced only by the caller
438 	 * that isolated the folio, the page cache and optional filesystem
439 	 * private data at folio->private.
440 	 */
441 	return folio_ref_count(folio) - folio_test_private(folio) ==
442 		1 + folio_nr_pages(folio);
443 }
444 
445 /*
446  * We detected a synchronous write error writing a folio out.  Probably
447  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
448  * fsync(), msync() or close().
449  *
450  * The tricky part is that after writepage we cannot touch the mapping: nothing
451  * prevents it from being freed up.  But we have a ref on the folio and once
452  * that folio is locked, the mapping is pinned.
453  *
454  * We're allowed to run sleeping folio_lock() here because we know the caller has
455  * __GFP_FS.
456  */
457 static void handle_write_error(struct address_space *mapping,
458 				struct folio *folio, int error)
459 {
460 	folio_lock(folio);
461 	if (folio_mapping(folio) == mapping)
462 		mapping_set_error(mapping, error);
463 	folio_unlock(folio);
464 }
465 
466 static bool skip_throttle_noprogress(pg_data_t *pgdat)
467 {
468 	int reclaimable = 0, write_pending = 0;
469 	int i;
470 
471 	/*
472 	 * If kswapd is disabled, reschedule if necessary but do not
473 	 * throttle as the system is likely near OOM.
474 	 */
475 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
476 		return true;
477 
478 	/*
479 	 * If there are a lot of dirty/writeback folios then do not
480 	 * throttle as throttling will occur when the folios cycle
481 	 * towards the end of the LRU if still under writeback.
482 	 */
483 	for (i = 0; i < MAX_NR_ZONES; i++) {
484 		struct zone *zone = pgdat->node_zones + i;
485 
486 		if (!managed_zone(zone))
487 			continue;
488 
489 		reclaimable += zone_reclaimable_pages(zone);
490 		write_pending += zone_page_state_snapshot(zone,
491 						  NR_ZONE_WRITE_PENDING);
492 	}
493 	if (2 * write_pending <= reclaimable)
494 		return true;
495 
496 	return false;
497 }
498 
499 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
500 {
501 	wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason];
502 	long timeout, ret;
503 	DEFINE_WAIT(wait);
504 
505 	/*
506 	 * Do not throttle user workers, kthreads other than kswapd or
507 	 * workqueues. They may be required for reclaim to make
508 	 * forward progress (e.g. journalling workqueues or kthreads).
509 	 */
510 	if (!current_is_kswapd() &&
511 	    current->flags & (PF_USER_WORKER|PF_KTHREAD)) {
512 		cond_resched();
513 		return;
514 	}
515 
516 	/*
517 	 * These figures are pulled out of thin air.
518 	 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
519 	 * parallel reclaimers which is a short-lived event so the timeout is
520 	 * short. Failing to make progress or waiting on writeback are
521 	 * potentially long-lived events so use a longer timeout. This is shaky
522 	 * logic as a failure to make progress could be due to anything from
523 	 * writeback to a slow device to excessive referenced folios at the tail
524 	 * of the inactive LRU.
525 	 */
526 	switch(reason) {
527 	case VMSCAN_THROTTLE_WRITEBACK:
528 		timeout = HZ/10;
529 
530 		if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) {
531 			WRITE_ONCE(pgdat->nr_reclaim_start,
532 				node_page_state(pgdat, NR_THROTTLED_WRITTEN));
533 		}
534 
535 		break;
536 	case VMSCAN_THROTTLE_CONGESTED:
537 		fallthrough;
538 	case VMSCAN_THROTTLE_NOPROGRESS:
539 		if (skip_throttle_noprogress(pgdat)) {
540 			cond_resched();
541 			return;
542 		}
543 
544 		timeout = 1;
545 
546 		break;
547 	case VMSCAN_THROTTLE_ISOLATED:
548 		timeout = HZ/50;
549 		break;
550 	default:
551 		WARN_ON_ONCE(1);
552 		timeout = HZ;
553 		break;
554 	}
555 
556 	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
557 	ret = schedule_timeout(timeout);
558 	finish_wait(wqh, &wait);
559 
560 	if (reason == VMSCAN_THROTTLE_WRITEBACK)
561 		atomic_dec(&pgdat->nr_writeback_throttled);
562 
563 	trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout),
564 				jiffies_to_usecs(timeout - ret),
565 				reason);
566 }
567 
568 /*
569  * Account for folios written if tasks are throttled waiting on dirty
570  * folios to clean. If enough folios have been cleaned since throttling
571  * started then wakeup the throttled tasks.
572  */
573 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
574 							int nr_throttled)
575 {
576 	unsigned long nr_written;
577 
578 	node_stat_add_folio(folio, NR_THROTTLED_WRITTEN);
579 
580 	/*
581 	 * This is an inaccurate read as the per-cpu deltas may not
582 	 * be synchronised. However, given that the system is
583 	 * writeback throttled, it is not worth taking the penalty
584 	 * of getting an accurate count. At worst, the throttle
585 	 * timeout guarantees forward progress.
586 	 */
587 	nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) -
588 		READ_ONCE(pgdat->nr_reclaim_start);
589 
590 	if (nr_written > SWAP_CLUSTER_MAX * nr_throttled)
591 		wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]);
592 }
593 
594 /* possible outcome of pageout() */
595 typedef enum {
596 	/* failed to write folio out, folio is locked */
597 	PAGE_KEEP,
598 	/* move folio to the active list, folio is locked */
599 	PAGE_ACTIVATE,
600 	/* folio has been sent to the disk successfully, folio is unlocked */
601 	PAGE_SUCCESS,
602 	/* folio is clean and locked */
603 	PAGE_CLEAN,
604 } pageout_t;
605 
606 /*
607  * pageout is called by shrink_folio_list() for each dirty folio.
608  * Calls ->writepage().
609  */
610 static pageout_t pageout(struct folio *folio, struct address_space *mapping,
611 			 struct swap_iocb **plug)
612 {
613 	/*
614 	 * If the folio is dirty, only perform writeback if that write
615 	 * will be non-blocking.  To prevent this allocation from being
616 	 * stalled by pagecache activity.  But note that there may be
617 	 * stalls if we need to run get_block().  We could test
618 	 * PagePrivate for that.
619 	 *
620 	 * If this process is currently in __generic_file_write_iter() against
621 	 * this folio's queue, we can perform writeback even if that
622 	 * will block.
623 	 *
624 	 * If the folio is swapcache, write it back even if that would
625 	 * block, for some throttling. This happens by accident, because
626 	 * swap_backing_dev_info is bust: it doesn't reflect the
627 	 * congestion state of the swapdevs.  Easy to fix, if needed.
628 	 */
629 	if (!is_page_cache_freeable(folio))
630 		return PAGE_KEEP;
631 	if (!mapping) {
632 		/*
633 		 * Some data journaling orphaned folios can have
634 		 * folio->mapping == NULL while being dirty with clean buffers.
635 		 */
636 		if (folio_test_private(folio)) {
637 			if (try_to_free_buffers(folio)) {
638 				folio_clear_dirty(folio);
639 				pr_info("%s: orphaned folio\n", __func__);
640 				return PAGE_CLEAN;
641 			}
642 		}
643 		return PAGE_KEEP;
644 	}
645 	if (mapping->a_ops->writepage == NULL)
646 		return PAGE_ACTIVATE;
647 
648 	if (folio_clear_dirty_for_io(folio)) {
649 		int res;
650 		struct writeback_control wbc = {
651 			.sync_mode = WB_SYNC_NONE,
652 			.nr_to_write = SWAP_CLUSTER_MAX,
653 			.range_start = 0,
654 			.range_end = LLONG_MAX,
655 			.for_reclaim = 1,
656 			.swap_plug = plug,
657 		};
658 
659 		folio_set_reclaim(folio);
660 		res = mapping->a_ops->writepage(&folio->page, &wbc);
661 		if (res < 0)
662 			handle_write_error(mapping, folio, res);
663 		if (res == AOP_WRITEPAGE_ACTIVATE) {
664 			folio_clear_reclaim(folio);
665 			return PAGE_ACTIVATE;
666 		}
667 
668 		if (!folio_test_writeback(folio)) {
669 			/* synchronous write or broken a_ops? */
670 			folio_clear_reclaim(folio);
671 		}
672 		trace_mm_vmscan_write_folio(folio);
673 		node_stat_add_folio(folio, NR_VMSCAN_WRITE);
674 		return PAGE_SUCCESS;
675 	}
676 
677 	return PAGE_CLEAN;
678 }
679 
680 /*
681  * Same as remove_mapping, but if the folio is removed from the mapping, it
682  * gets returned with a refcount of 0.
683  */
684 static int __remove_mapping(struct address_space *mapping, struct folio *folio,
685 			    bool reclaimed, struct mem_cgroup *target_memcg)
686 {
687 	int refcount;
688 	void *shadow = NULL;
689 
690 	BUG_ON(!folio_test_locked(folio));
691 	BUG_ON(mapping != folio_mapping(folio));
692 
693 	if (!folio_test_swapcache(folio))
694 		spin_lock(&mapping->host->i_lock);
695 	xa_lock_irq(&mapping->i_pages);
696 	/*
697 	 * The non racy check for a busy folio.
698 	 *
699 	 * Must be careful with the order of the tests. When someone has
700 	 * a ref to the folio, it may be possible that they dirty it then
701 	 * drop the reference. So if the dirty flag is tested before the
702 	 * refcount here, then the following race may occur:
703 	 *
704 	 * get_user_pages(&page);
705 	 * [user mapping goes away]
706 	 * write_to(page);
707 	 *				!folio_test_dirty(folio)    [good]
708 	 * folio_set_dirty(folio);
709 	 * folio_put(folio);
710 	 *				!refcount(folio)   [good, discard it]
711 	 *
712 	 * [oops, our write_to data is lost]
713 	 *
714 	 * Reversing the order of the tests ensures such a situation cannot
715 	 * escape unnoticed. The smp_rmb is needed to ensure the folio->flags
716 	 * load is not satisfied before that of folio->_refcount.
717 	 *
718 	 * Note that if the dirty flag is always set via folio_mark_dirty,
719 	 * and thus under the i_pages lock, then this ordering is not required.
720 	 */
721 	refcount = 1 + folio_nr_pages(folio);
722 	if (!folio_ref_freeze(folio, refcount))
723 		goto cannot_free;
724 	/* note: atomic_cmpxchg in folio_ref_freeze provides the smp_rmb */
725 	if (unlikely(folio_test_dirty(folio))) {
726 		folio_ref_unfreeze(folio, refcount);
727 		goto cannot_free;
728 	}
729 
730 	if (folio_test_swapcache(folio)) {
731 		swp_entry_t swap = folio->swap;
732 
733 		if (reclaimed && !mapping_exiting(mapping))
734 			shadow = workingset_eviction(folio, target_memcg);
735 		__delete_from_swap_cache(folio, swap, shadow);
736 		mem_cgroup_swapout(folio, swap);
737 		xa_unlock_irq(&mapping->i_pages);
738 		put_swap_folio(folio, swap);
739 	} else {
740 		void (*free_folio)(struct folio *);
741 
742 		free_folio = mapping->a_ops->free_folio;
743 		/*
744 		 * Remember a shadow entry for reclaimed file cache in
745 		 * order to detect refaults, thus thrashing, later on.
746 		 *
747 		 * But don't store shadows in an address space that is
748 		 * already exiting.  This is not just an optimization,
749 		 * inode reclaim needs to empty out the radix tree or
750 		 * the nodes are lost.  Don't plant shadows behind its
751 		 * back.
752 		 *
753 		 * We also don't store shadows for DAX mappings because the
754 		 * only page cache folios found in these are zero pages
755 		 * covering holes, and because we don't want to mix DAX
756 		 * exceptional entries and shadow exceptional entries in the
757 		 * same address_space.
758 		 */
759 		if (reclaimed && folio_is_file_lru(folio) &&
760 		    !mapping_exiting(mapping) && !dax_mapping(mapping))
761 			shadow = workingset_eviction(folio, target_memcg);
762 		__filemap_remove_folio(folio, shadow);
763 		xa_unlock_irq(&mapping->i_pages);
764 		if (mapping_shrinkable(mapping))
765 			inode_add_lru(mapping->host);
766 		spin_unlock(&mapping->host->i_lock);
767 
768 		if (free_folio)
769 			free_folio(folio);
770 	}
771 
772 	return 1;
773 
774 cannot_free:
775 	xa_unlock_irq(&mapping->i_pages);
776 	if (!folio_test_swapcache(folio))
777 		spin_unlock(&mapping->host->i_lock);
778 	return 0;
779 }
780 
781 /**
782  * remove_mapping() - Attempt to remove a folio from its mapping.
783  * @mapping: The address space.
784  * @folio: The folio to remove.
785  *
786  * If the folio is dirty, under writeback or if someone else has a ref
787  * on it, removal will fail.
788  * Return: The number of pages removed from the mapping.  0 if the folio
789  * could not be removed.
790  * Context: The caller should have a single refcount on the folio and
791  * hold its lock.
792  */
793 long remove_mapping(struct address_space *mapping, struct folio *folio)
794 {
795 	if (__remove_mapping(mapping, folio, false, NULL)) {
796 		/*
797 		 * Unfreezing the refcount with 1 effectively
798 		 * drops the pagecache ref for us without requiring another
799 		 * atomic operation.
800 		 */
801 		folio_ref_unfreeze(folio, 1);
802 		return folio_nr_pages(folio);
803 	}
804 	return 0;
805 }
806 
807 /**
808  * folio_putback_lru - Put previously isolated folio onto appropriate LRU list.
809  * @folio: Folio to be returned to an LRU list.
810  *
811  * Add previously isolated @folio to appropriate LRU list.
812  * The folio may still be unevictable for other reasons.
813  *
814  * Context: lru_lock must not be held, interrupts must be enabled.
815  */
816 void folio_putback_lru(struct folio *folio)
817 {
818 	folio_add_lru(folio);
819 	folio_put(folio);		/* drop ref from isolate */
820 }
821 
822 enum folio_references {
823 	FOLIOREF_RECLAIM,
824 	FOLIOREF_RECLAIM_CLEAN,
825 	FOLIOREF_KEEP,
826 	FOLIOREF_ACTIVATE,
827 };
828 
829 static enum folio_references folio_check_references(struct folio *folio,
830 						  struct scan_control *sc)
831 {
832 	int referenced_ptes, referenced_folio;
833 	unsigned long vm_flags;
834 
835 	referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup,
836 					   &vm_flags);
837 	referenced_folio = folio_test_clear_referenced(folio);
838 
839 	/*
840 	 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma.
841 	 * Let the folio, now marked Mlocked, be moved to the unevictable list.
842 	 */
843 	if (vm_flags & VM_LOCKED)
844 		return FOLIOREF_ACTIVATE;
845 
846 	/* rmap lock contention: rotate */
847 	if (referenced_ptes == -1)
848 		return FOLIOREF_KEEP;
849 
850 	if (referenced_ptes) {
851 		/*
852 		 * All mapped folios start out with page table
853 		 * references from the instantiating fault, so we need
854 		 * to look twice if a mapped file/anon folio is used more
855 		 * than once.
856 		 *
857 		 * Mark it and spare it for another trip around the
858 		 * inactive list.  Another page table reference will
859 		 * lead to its activation.
860 		 *
861 		 * Note: the mark is set for activated folios as well
862 		 * so that recently deactivated but used folios are
863 		 * quickly recovered.
864 		 */
865 		folio_set_referenced(folio);
866 
867 		if (referenced_folio || referenced_ptes > 1)
868 			return FOLIOREF_ACTIVATE;
869 
870 		/*
871 		 * Activate file-backed executable folios after first usage.
872 		 */
873 		if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio))
874 			return FOLIOREF_ACTIVATE;
875 
876 		return FOLIOREF_KEEP;
877 	}
878 
879 	/* Reclaim if clean, defer dirty folios to writeback */
880 	if (referenced_folio && folio_is_file_lru(folio))
881 		return FOLIOREF_RECLAIM_CLEAN;
882 
883 	return FOLIOREF_RECLAIM;
884 }
885 
886 /* Check if a folio is dirty or under writeback */
887 static void folio_check_dirty_writeback(struct folio *folio,
888 				       bool *dirty, bool *writeback)
889 {
890 	struct address_space *mapping;
891 
892 	/*
893 	 * Anonymous folios are not handled by flushers and must be written
894 	 * from reclaim context. Do not stall reclaim based on them.
895 	 * MADV_FREE anonymous folios are put into inactive file list too.
896 	 * They could be mistakenly treated as file lru. So further anon
897 	 * test is needed.
898 	 */
899 	if (!folio_is_file_lru(folio) ||
900 	    (folio_test_anon(folio) && !folio_test_swapbacked(folio))) {
901 		*dirty = false;
902 		*writeback = false;
903 		return;
904 	}
905 
906 	/* By default assume that the folio flags are accurate */
907 	*dirty = folio_test_dirty(folio);
908 	*writeback = folio_test_writeback(folio);
909 
910 	/* Verify dirty/writeback state if the filesystem supports it */
911 	if (!folio_test_private(folio))
912 		return;
913 
914 	mapping = folio_mapping(folio);
915 	if (mapping && mapping->a_ops->is_dirty_writeback)
916 		mapping->a_ops->is_dirty_writeback(folio, dirty, writeback);
917 }
918 
919 static struct folio *alloc_demote_folio(struct folio *src,
920 		unsigned long private)
921 {
922 	struct folio *dst;
923 	nodemask_t *allowed_mask;
924 	struct migration_target_control *mtc;
925 
926 	mtc = (struct migration_target_control *)private;
927 
928 	allowed_mask = mtc->nmask;
929 	/*
930 	 * make sure we allocate from the target node first also trying to
931 	 * demote or reclaim pages from the target node via kswapd if we are
932 	 * low on free memory on target node. If we don't do this and if
933 	 * we have free memory on the slower(lower) memtier, we would start
934 	 * allocating pages from slower(lower) memory tiers without even forcing
935 	 * a demotion of cold pages from the target memtier. This can result
936 	 * in the kernel placing hot pages in slower(lower) memory tiers.
937 	 */
938 	mtc->nmask = NULL;
939 	mtc->gfp_mask |= __GFP_THISNODE;
940 	dst = alloc_migration_target(src, (unsigned long)mtc);
941 	if (dst)
942 		return dst;
943 
944 	mtc->gfp_mask &= ~__GFP_THISNODE;
945 	mtc->nmask = allowed_mask;
946 
947 	return alloc_migration_target(src, (unsigned long)mtc);
948 }
949 
950 /*
951  * Take folios on @demote_folios and attempt to demote them to another node.
952  * Folios which are not demoted are left on @demote_folios.
953  */
954 static unsigned int demote_folio_list(struct list_head *demote_folios,
955 				     struct pglist_data *pgdat)
956 {
957 	int target_nid = next_demotion_node(pgdat->node_id);
958 	unsigned int nr_succeeded;
959 	nodemask_t allowed_mask;
960 
961 	struct migration_target_control mtc = {
962 		/*
963 		 * Allocate from 'node', or fail quickly and quietly.
964 		 * When this happens, 'page' will likely just be discarded
965 		 * instead of migrated.
966 		 */
967 		.gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | __GFP_NOWARN |
968 			__GFP_NOMEMALLOC | GFP_NOWAIT,
969 		.nid = target_nid,
970 		.nmask = &allowed_mask
971 	};
972 
973 	if (list_empty(demote_folios))
974 		return 0;
975 
976 	if (target_nid == NUMA_NO_NODE)
977 		return 0;
978 
979 	node_get_allowed_targets(pgdat, &allowed_mask);
980 
981 	/* Demotion ignores all cpuset and mempolicy settings */
982 	migrate_pages(demote_folios, alloc_demote_folio, NULL,
983 		      (unsigned long)&mtc, MIGRATE_ASYNC, MR_DEMOTION,
984 		      &nr_succeeded);
985 
986 	mod_node_page_state(pgdat, PGDEMOTE_KSWAPD + reclaimer_offset(),
987 			    nr_succeeded);
988 
989 	return nr_succeeded;
990 }
991 
992 static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask)
993 {
994 	if (gfp_mask & __GFP_FS)
995 		return true;
996 	if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO))
997 		return false;
998 	/*
999 	 * We can "enter_fs" for swap-cache with only __GFP_IO
1000 	 * providing this isn't SWP_FS_OPS.
1001 	 * ->flags can be updated non-atomicially (scan_swap_map_slots),
1002 	 * but that will never affect SWP_FS_OPS, so the data_race
1003 	 * is safe.
1004 	 */
1005 	return !data_race(folio_swap_flags(folio) & SWP_FS_OPS);
1006 }
1007 
1008 /*
1009  * shrink_folio_list() returns the number of reclaimed pages
1010  */
1011 static unsigned int shrink_folio_list(struct list_head *folio_list,
1012 		struct pglist_data *pgdat, struct scan_control *sc,
1013 		struct reclaim_stat *stat, bool ignore_references)
1014 {
1015 	struct folio_batch free_folios;
1016 	LIST_HEAD(ret_folios);
1017 	LIST_HEAD(demote_folios);
1018 	unsigned int nr_reclaimed = 0;
1019 	unsigned int pgactivate = 0;
1020 	bool do_demote_pass;
1021 	struct swap_iocb *plug = NULL;
1022 
1023 	folio_batch_init(&free_folios);
1024 	memset(stat, 0, sizeof(*stat));
1025 	cond_resched();
1026 	do_demote_pass = can_demote(pgdat->node_id, sc);
1027 
1028 retry:
1029 	while (!list_empty(folio_list)) {
1030 		struct address_space *mapping;
1031 		struct folio *folio;
1032 		enum folio_references references = FOLIOREF_RECLAIM;
1033 		bool dirty, writeback;
1034 		unsigned int nr_pages;
1035 
1036 		cond_resched();
1037 
1038 		folio = lru_to_folio(folio_list);
1039 		list_del(&folio->lru);
1040 
1041 		if (!folio_trylock(folio))
1042 			goto keep;
1043 
1044 		VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1045 
1046 		nr_pages = folio_nr_pages(folio);
1047 
1048 		/* Account the number of base pages */
1049 		sc->nr_scanned += nr_pages;
1050 
1051 		if (unlikely(!folio_evictable(folio)))
1052 			goto activate_locked;
1053 
1054 		if (!sc->may_unmap && folio_mapped(folio))
1055 			goto keep_locked;
1056 
1057 		/* folio_update_gen() tried to promote this page? */
1058 		if (lru_gen_enabled() && !ignore_references &&
1059 		    folio_mapped(folio) && folio_test_referenced(folio))
1060 			goto keep_locked;
1061 
1062 		/*
1063 		 * The number of dirty pages determines if a node is marked
1064 		 * reclaim_congested. kswapd will stall and start writing
1065 		 * folios if the tail of the LRU is all dirty unqueued folios.
1066 		 */
1067 		folio_check_dirty_writeback(folio, &dirty, &writeback);
1068 		if (dirty || writeback)
1069 			stat->nr_dirty += nr_pages;
1070 
1071 		if (dirty && !writeback)
1072 			stat->nr_unqueued_dirty += nr_pages;
1073 
1074 		/*
1075 		 * Treat this folio as congested if folios are cycling
1076 		 * through the LRU so quickly that the folios marked
1077 		 * for immediate reclaim are making it to the end of
1078 		 * the LRU a second time.
1079 		 */
1080 		if (writeback && folio_test_reclaim(folio))
1081 			stat->nr_congested += nr_pages;
1082 
1083 		/*
1084 		 * If a folio at the tail of the LRU is under writeback, there
1085 		 * are three cases to consider.
1086 		 *
1087 		 * 1) If reclaim is encountering an excessive number
1088 		 *    of folios under writeback and this folio has both
1089 		 *    the writeback and reclaim flags set, then it
1090 		 *    indicates that folios are being queued for I/O but
1091 		 *    are being recycled through the LRU before the I/O
1092 		 *    can complete. Waiting on the folio itself risks an
1093 		 *    indefinite stall if it is impossible to writeback
1094 		 *    the folio due to I/O error or disconnected storage
1095 		 *    so instead note that the LRU is being scanned too
1096 		 *    quickly and the caller can stall after the folio
1097 		 *    list has been processed.
1098 		 *
1099 		 * 2) Global or new memcg reclaim encounters a folio that is
1100 		 *    not marked for immediate reclaim, or the caller does not
1101 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1102 		 *    not to fs). In this case mark the folio for immediate
1103 		 *    reclaim and continue scanning.
1104 		 *
1105 		 *    Require may_enter_fs() because we would wait on fs, which
1106 		 *    may not have submitted I/O yet. And the loop driver might
1107 		 *    enter reclaim, and deadlock if it waits on a folio for
1108 		 *    which it is needed to do the write (loop masks off
1109 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1110 		 *    would probably show more reasons.
1111 		 *
1112 		 * 3) Legacy memcg encounters a folio that already has the
1113 		 *    reclaim flag set. memcg does not have any dirty folio
1114 		 *    throttling so we could easily OOM just because too many
1115 		 *    folios are in writeback and there is nothing else to
1116 		 *    reclaim. Wait for the writeback to complete.
1117 		 *
1118 		 * In cases 1) and 2) we activate the folios to get them out of
1119 		 * the way while we continue scanning for clean folios on the
1120 		 * inactive list and refilling from the active list. The
1121 		 * observation here is that waiting for disk writes is more
1122 		 * expensive than potentially causing reloads down the line.
1123 		 * Since they're marked for immediate reclaim, they won't put
1124 		 * memory pressure on the cache working set any longer than it
1125 		 * takes to write them to disk.
1126 		 */
1127 		if (folio_test_writeback(folio)) {
1128 			/* Case 1 above */
1129 			if (current_is_kswapd() &&
1130 			    folio_test_reclaim(folio) &&
1131 			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1132 				stat->nr_immediate += nr_pages;
1133 				goto activate_locked;
1134 
1135 			/* Case 2 above */
1136 			} else if (writeback_throttling_sane(sc) ||
1137 			    !folio_test_reclaim(folio) ||
1138 			    !may_enter_fs(folio, sc->gfp_mask)) {
1139 				/*
1140 				 * This is slightly racy -
1141 				 * folio_end_writeback() might have
1142 				 * just cleared the reclaim flag, then
1143 				 * setting the reclaim flag here ends up
1144 				 * interpreted as the readahead flag - but
1145 				 * that does not matter enough to care.
1146 				 * What we do want is for this folio to
1147 				 * have the reclaim flag set next time
1148 				 * memcg reclaim reaches the tests above,
1149 				 * so it will then wait for writeback to
1150 				 * avoid OOM; and it's also appropriate
1151 				 * in global reclaim.
1152 				 */
1153 				folio_set_reclaim(folio);
1154 				stat->nr_writeback += nr_pages;
1155 				goto activate_locked;
1156 
1157 			/* Case 3 above */
1158 			} else {
1159 				folio_unlock(folio);
1160 				folio_wait_writeback(folio);
1161 				/* then go back and try same folio again */
1162 				list_add_tail(&folio->lru, folio_list);
1163 				continue;
1164 			}
1165 		}
1166 
1167 		if (!ignore_references)
1168 			references = folio_check_references(folio, sc);
1169 
1170 		switch (references) {
1171 		case FOLIOREF_ACTIVATE:
1172 			goto activate_locked;
1173 		case FOLIOREF_KEEP:
1174 			stat->nr_ref_keep += nr_pages;
1175 			goto keep_locked;
1176 		case FOLIOREF_RECLAIM:
1177 		case FOLIOREF_RECLAIM_CLEAN:
1178 			; /* try to reclaim the folio below */
1179 		}
1180 
1181 		/*
1182 		 * Before reclaiming the folio, try to relocate
1183 		 * its contents to another node.
1184 		 */
1185 		if (do_demote_pass &&
1186 		    (thp_migration_supported() || !folio_test_large(folio))) {
1187 			list_add(&folio->lru, &demote_folios);
1188 			folio_unlock(folio);
1189 			continue;
1190 		}
1191 
1192 		/*
1193 		 * Anonymous process memory has backing store?
1194 		 * Try to allocate it some swap space here.
1195 		 * Lazyfree folio could be freed directly
1196 		 */
1197 		if (folio_test_anon(folio) && folio_test_swapbacked(folio)) {
1198 			if (!folio_test_swapcache(folio)) {
1199 				if (!(sc->gfp_mask & __GFP_IO))
1200 					goto keep_locked;
1201 				if (folio_maybe_dma_pinned(folio))
1202 					goto keep_locked;
1203 				if (folio_test_large(folio)) {
1204 					/* cannot split folio, skip it */
1205 					if (!can_split_folio(folio, NULL))
1206 						goto activate_locked;
1207 					/*
1208 					 * Split folios without a PMD map right
1209 					 * away. Chances are some or all of the
1210 					 * tail pages can be freed without IO.
1211 					 */
1212 					if (!folio_entire_mapcount(folio) &&
1213 					    split_folio_to_list(folio,
1214 								folio_list))
1215 						goto activate_locked;
1216 				}
1217 				if (!add_to_swap(folio)) {
1218 					if (!folio_test_large(folio))
1219 						goto activate_locked_split;
1220 					/* Fallback to swap normal pages */
1221 					if (split_folio_to_list(folio,
1222 								folio_list))
1223 						goto activate_locked;
1224 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1225 					count_memcg_folio_events(folio, THP_SWPOUT_FALLBACK, 1);
1226 					count_vm_event(THP_SWPOUT_FALLBACK);
1227 #endif
1228 					if (!add_to_swap(folio))
1229 						goto activate_locked_split;
1230 				}
1231 			}
1232 		} else if (folio_test_swapbacked(folio) &&
1233 			   folio_test_large(folio)) {
1234 			/* Split shmem folio */
1235 			if (split_folio_to_list(folio, folio_list))
1236 				goto keep_locked;
1237 		}
1238 
1239 		/*
1240 		 * If the folio was split above, the tail pages will make
1241 		 * their own pass through this function and be accounted
1242 		 * then.
1243 		 */
1244 		if ((nr_pages > 1) && !folio_test_large(folio)) {
1245 			sc->nr_scanned -= (nr_pages - 1);
1246 			nr_pages = 1;
1247 		}
1248 
1249 		/*
1250 		 * The folio is mapped into the page tables of one or more
1251 		 * processes. Try to unmap it here.
1252 		 */
1253 		if (folio_mapped(folio)) {
1254 			enum ttu_flags flags = TTU_BATCH_FLUSH;
1255 			bool was_swapbacked = folio_test_swapbacked(folio);
1256 
1257 			if (folio_test_pmd_mappable(folio))
1258 				flags |= TTU_SPLIT_HUGE_PMD;
1259 
1260 			try_to_unmap(folio, flags);
1261 			if (folio_mapped(folio)) {
1262 				stat->nr_unmap_fail += nr_pages;
1263 				if (!was_swapbacked &&
1264 				    folio_test_swapbacked(folio))
1265 					stat->nr_lazyfree_fail += nr_pages;
1266 				goto activate_locked;
1267 			}
1268 		}
1269 
1270 		/*
1271 		 * Folio is unmapped now so it cannot be newly pinned anymore.
1272 		 * No point in trying to reclaim folio if it is pinned.
1273 		 * Furthermore we don't want to reclaim underlying fs metadata
1274 		 * if the folio is pinned and thus potentially modified by the
1275 		 * pinning process as that may upset the filesystem.
1276 		 */
1277 		if (folio_maybe_dma_pinned(folio))
1278 			goto activate_locked;
1279 
1280 		mapping = folio_mapping(folio);
1281 		if (folio_test_dirty(folio)) {
1282 			/*
1283 			 * Only kswapd can writeback filesystem folios
1284 			 * to avoid risk of stack overflow. But avoid
1285 			 * injecting inefficient single-folio I/O into
1286 			 * flusher writeback as much as possible: only
1287 			 * write folios when we've encountered many
1288 			 * dirty folios, and when we've already scanned
1289 			 * the rest of the LRU for clean folios and see
1290 			 * the same dirty folios again (with the reclaim
1291 			 * flag set).
1292 			 */
1293 			if (folio_is_file_lru(folio) &&
1294 			    (!current_is_kswapd() ||
1295 			     !folio_test_reclaim(folio) ||
1296 			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1297 				/*
1298 				 * Immediately reclaim when written back.
1299 				 * Similar in principle to folio_deactivate()
1300 				 * except we already have the folio isolated
1301 				 * and know it's dirty
1302 				 */
1303 				node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE,
1304 						nr_pages);
1305 				folio_set_reclaim(folio);
1306 
1307 				goto activate_locked;
1308 			}
1309 
1310 			if (references == FOLIOREF_RECLAIM_CLEAN)
1311 				goto keep_locked;
1312 			if (!may_enter_fs(folio, sc->gfp_mask))
1313 				goto keep_locked;
1314 			if (!sc->may_writepage)
1315 				goto keep_locked;
1316 
1317 			/*
1318 			 * Folio is dirty. Flush the TLB if a writable entry
1319 			 * potentially exists to avoid CPU writes after I/O
1320 			 * starts and then write it out here.
1321 			 */
1322 			try_to_unmap_flush_dirty();
1323 			switch (pageout(folio, mapping, &plug)) {
1324 			case PAGE_KEEP:
1325 				goto keep_locked;
1326 			case PAGE_ACTIVATE:
1327 				goto activate_locked;
1328 			case PAGE_SUCCESS:
1329 				stat->nr_pageout += nr_pages;
1330 
1331 				if (folio_test_writeback(folio))
1332 					goto keep;
1333 				if (folio_test_dirty(folio))
1334 					goto keep;
1335 
1336 				/*
1337 				 * A synchronous write - probably a ramdisk.  Go
1338 				 * ahead and try to reclaim the folio.
1339 				 */
1340 				if (!folio_trylock(folio))
1341 					goto keep;
1342 				if (folio_test_dirty(folio) ||
1343 				    folio_test_writeback(folio))
1344 					goto keep_locked;
1345 				mapping = folio_mapping(folio);
1346 				fallthrough;
1347 			case PAGE_CLEAN:
1348 				; /* try to free the folio below */
1349 			}
1350 		}
1351 
1352 		/*
1353 		 * If the folio has buffers, try to free the buffer
1354 		 * mappings associated with this folio. If we succeed
1355 		 * we try to free the folio as well.
1356 		 *
1357 		 * We do this even if the folio is dirty.
1358 		 * filemap_release_folio() does not perform I/O, but it
1359 		 * is possible for a folio to have the dirty flag set,
1360 		 * but it is actually clean (all its buffers are clean).
1361 		 * This happens if the buffers were written out directly,
1362 		 * with submit_bh(). ext3 will do this, as well as
1363 		 * the blockdev mapping.  filemap_release_folio() will
1364 		 * discover that cleanness and will drop the buffers
1365 		 * and mark the folio clean - it can be freed.
1366 		 *
1367 		 * Rarely, folios can have buffers and no ->mapping.
1368 		 * These are the folios which were not successfully
1369 		 * invalidated in truncate_cleanup_folio().  We try to
1370 		 * drop those buffers here and if that worked, and the
1371 		 * folio is no longer mapped into process address space
1372 		 * (refcount == 1) it can be freed.  Otherwise, leave
1373 		 * the folio on the LRU so it is swappable.
1374 		 */
1375 		if (folio_needs_release(folio)) {
1376 			if (!filemap_release_folio(folio, sc->gfp_mask))
1377 				goto activate_locked;
1378 			if (!mapping && folio_ref_count(folio) == 1) {
1379 				folio_unlock(folio);
1380 				if (folio_put_testzero(folio))
1381 					goto free_it;
1382 				else {
1383 					/*
1384 					 * rare race with speculative reference.
1385 					 * the speculative reference will free
1386 					 * this folio shortly, so we may
1387 					 * increment nr_reclaimed here (and
1388 					 * leave it off the LRU).
1389 					 */
1390 					nr_reclaimed += nr_pages;
1391 					continue;
1392 				}
1393 			}
1394 		}
1395 
1396 		if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) {
1397 			/* follow __remove_mapping for reference */
1398 			if (!folio_ref_freeze(folio, 1))
1399 				goto keep_locked;
1400 			/*
1401 			 * The folio has only one reference left, which is
1402 			 * from the isolation. After the caller puts the
1403 			 * folio back on the lru and drops the reference, the
1404 			 * folio will be freed anyway. It doesn't matter
1405 			 * which lru it goes on. So we don't bother checking
1406 			 * the dirty flag here.
1407 			 */
1408 			count_vm_events(PGLAZYFREED, nr_pages);
1409 			count_memcg_folio_events(folio, PGLAZYFREED, nr_pages);
1410 		} else if (!mapping || !__remove_mapping(mapping, folio, true,
1411 							 sc->target_mem_cgroup))
1412 			goto keep_locked;
1413 
1414 		folio_unlock(folio);
1415 free_it:
1416 		/*
1417 		 * Folio may get swapped out as a whole, need to account
1418 		 * all pages in it.
1419 		 */
1420 		nr_reclaimed += nr_pages;
1421 
1422 		if (folio_test_large(folio) &&
1423 		    folio_test_large_rmappable(folio))
1424 			folio_undo_large_rmappable(folio);
1425 		if (folio_batch_add(&free_folios, folio) == 0) {
1426 			mem_cgroup_uncharge_folios(&free_folios);
1427 			try_to_unmap_flush();
1428 			free_unref_folios(&free_folios);
1429 		}
1430 		continue;
1431 
1432 activate_locked_split:
1433 		/*
1434 		 * The tail pages that are failed to add into swap cache
1435 		 * reach here.  Fixup nr_scanned and nr_pages.
1436 		 */
1437 		if (nr_pages > 1) {
1438 			sc->nr_scanned -= (nr_pages - 1);
1439 			nr_pages = 1;
1440 		}
1441 activate_locked:
1442 		/* Not a candidate for swapping, so reclaim swap space. */
1443 		if (folio_test_swapcache(folio) &&
1444 		    (mem_cgroup_swap_full(folio) || folio_test_mlocked(folio)))
1445 			folio_free_swap(folio);
1446 		VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1447 		if (!folio_test_mlocked(folio)) {
1448 			int type = folio_is_file_lru(folio);
1449 			folio_set_active(folio);
1450 			stat->nr_activate[type] += nr_pages;
1451 			count_memcg_folio_events(folio, PGACTIVATE, nr_pages);
1452 		}
1453 keep_locked:
1454 		folio_unlock(folio);
1455 keep:
1456 		list_add(&folio->lru, &ret_folios);
1457 		VM_BUG_ON_FOLIO(folio_test_lru(folio) ||
1458 				folio_test_unevictable(folio), folio);
1459 	}
1460 	/* 'folio_list' is always empty here */
1461 
1462 	/* Migrate folios selected for demotion */
1463 	nr_reclaimed += demote_folio_list(&demote_folios, pgdat);
1464 	/* Folios that could not be demoted are still in @demote_folios */
1465 	if (!list_empty(&demote_folios)) {
1466 		/* Folios which weren't demoted go back on @folio_list */
1467 		list_splice_init(&demote_folios, folio_list);
1468 
1469 		/*
1470 		 * goto retry to reclaim the undemoted folios in folio_list if
1471 		 * desired.
1472 		 *
1473 		 * Reclaiming directly from top tier nodes is not often desired
1474 		 * due to it breaking the LRU ordering: in general memory
1475 		 * should be reclaimed from lower tier nodes and demoted from
1476 		 * top tier nodes.
1477 		 *
1478 		 * However, disabling reclaim from top tier nodes entirely
1479 		 * would cause ooms in edge scenarios where lower tier memory
1480 		 * is unreclaimable for whatever reason, eg memory being
1481 		 * mlocked or too hot to reclaim. We can disable reclaim
1482 		 * from top tier nodes in proactive reclaim though as that is
1483 		 * not real memory pressure.
1484 		 */
1485 		if (!sc->proactive) {
1486 			do_demote_pass = false;
1487 			goto retry;
1488 		}
1489 	}
1490 
1491 	pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1492 
1493 	mem_cgroup_uncharge_folios(&free_folios);
1494 	try_to_unmap_flush();
1495 	free_unref_folios(&free_folios);
1496 
1497 	list_splice(&ret_folios, folio_list);
1498 	count_vm_events(PGACTIVATE, pgactivate);
1499 
1500 	if (plug)
1501 		swap_write_unplug(plug);
1502 	return nr_reclaimed;
1503 }
1504 
1505 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1506 					   struct list_head *folio_list)
1507 {
1508 	struct scan_control sc = {
1509 		.gfp_mask = GFP_KERNEL,
1510 		.may_unmap = 1,
1511 	};
1512 	struct reclaim_stat stat;
1513 	unsigned int nr_reclaimed;
1514 	struct folio *folio, *next;
1515 	LIST_HEAD(clean_folios);
1516 	unsigned int noreclaim_flag;
1517 
1518 	list_for_each_entry_safe(folio, next, folio_list, lru) {
1519 		if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) &&
1520 		    !folio_test_dirty(folio) && !__folio_test_movable(folio) &&
1521 		    !folio_test_unevictable(folio)) {
1522 			folio_clear_active(folio);
1523 			list_move(&folio->lru, &clean_folios);
1524 		}
1525 	}
1526 
1527 	/*
1528 	 * We should be safe here since we are only dealing with file pages and
1529 	 * we are not kswapd and therefore cannot write dirty file pages. But
1530 	 * call memalloc_noreclaim_save() anyway, just in case these conditions
1531 	 * change in the future.
1532 	 */
1533 	noreclaim_flag = memalloc_noreclaim_save();
1534 	nr_reclaimed = shrink_folio_list(&clean_folios, zone->zone_pgdat, &sc,
1535 					&stat, true);
1536 	memalloc_noreclaim_restore(noreclaim_flag);
1537 
1538 	list_splice(&clean_folios, folio_list);
1539 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1540 			    -(long)nr_reclaimed);
1541 	/*
1542 	 * Since lazyfree pages are isolated from file LRU from the beginning,
1543 	 * they will rotate back to anonymous LRU in the end if it failed to
1544 	 * discard so isolated count will be mismatched.
1545 	 * Compensate the isolated count for both LRU lists.
1546 	 */
1547 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
1548 			    stat.nr_lazyfree_fail);
1549 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1550 			    -(long)stat.nr_lazyfree_fail);
1551 	return nr_reclaimed;
1552 }
1553 
1554 /*
1555  * Update LRU sizes after isolating pages. The LRU size updates must
1556  * be complete before mem_cgroup_update_lru_size due to a sanity check.
1557  */
1558 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1559 			enum lru_list lru, unsigned long *nr_zone_taken)
1560 {
1561 	int zid;
1562 
1563 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1564 		if (!nr_zone_taken[zid])
1565 			continue;
1566 
1567 		update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1568 	}
1569 
1570 }
1571 
1572 #ifdef CONFIG_CMA
1573 /*
1574  * It is waste of effort to scan and reclaim CMA pages if it is not available
1575  * for current allocation context. Kswapd can not be enrolled as it can not
1576  * distinguish this scenario by using sc->gfp_mask = GFP_KERNEL
1577  */
1578 static bool skip_cma(struct folio *folio, struct scan_control *sc)
1579 {
1580 	return !current_is_kswapd() &&
1581 			gfp_migratetype(sc->gfp_mask) != MIGRATE_MOVABLE &&
1582 			folio_migratetype(folio) == MIGRATE_CMA;
1583 }
1584 #else
1585 static bool skip_cma(struct folio *folio, struct scan_control *sc)
1586 {
1587 	return false;
1588 }
1589 #endif
1590 
1591 /*
1592  * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
1593  *
1594  * lruvec->lru_lock is heavily contended.  Some of the functions that
1595  * shrink the lists perform better by taking out a batch of pages
1596  * and working on them outside the LRU lock.
1597  *
1598  * For pagecache intensive workloads, this function is the hottest
1599  * spot in the kernel (apart from copy_*_user functions).
1600  *
1601  * Lru_lock must be held before calling this function.
1602  *
1603  * @nr_to_scan:	The number of eligible pages to look through on the list.
1604  * @lruvec:	The LRU vector to pull pages from.
1605  * @dst:	The temp list to put pages on to.
1606  * @nr_scanned:	The number of pages that were scanned.
1607  * @sc:		The scan_control struct for this reclaim session
1608  * @lru:	LRU list id for isolating
1609  *
1610  * returns how many pages were moved onto *@dst.
1611  */
1612 static unsigned long isolate_lru_folios(unsigned long nr_to_scan,
1613 		struct lruvec *lruvec, struct list_head *dst,
1614 		unsigned long *nr_scanned, struct scan_control *sc,
1615 		enum lru_list lru)
1616 {
1617 	struct list_head *src = &lruvec->lists[lru];
1618 	unsigned long nr_taken = 0;
1619 	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1620 	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1621 	unsigned long skipped = 0;
1622 	unsigned long scan, total_scan, nr_pages;
1623 	LIST_HEAD(folios_skipped);
1624 
1625 	total_scan = 0;
1626 	scan = 0;
1627 	while (scan < nr_to_scan && !list_empty(src)) {
1628 		struct list_head *move_to = src;
1629 		struct folio *folio;
1630 
1631 		folio = lru_to_folio(src);
1632 		prefetchw_prev_lru_folio(folio, src, flags);
1633 
1634 		nr_pages = folio_nr_pages(folio);
1635 		total_scan += nr_pages;
1636 
1637 		if (folio_zonenum(folio) > sc->reclaim_idx ||
1638 				skip_cma(folio, sc)) {
1639 			nr_skipped[folio_zonenum(folio)] += nr_pages;
1640 			move_to = &folios_skipped;
1641 			goto move;
1642 		}
1643 
1644 		/*
1645 		 * Do not count skipped folios because that makes the function
1646 		 * return with no isolated folios if the LRU mostly contains
1647 		 * ineligible folios.  This causes the VM to not reclaim any
1648 		 * folios, triggering a premature OOM.
1649 		 * Account all pages in a folio.
1650 		 */
1651 		scan += nr_pages;
1652 
1653 		if (!folio_test_lru(folio))
1654 			goto move;
1655 		if (!sc->may_unmap && folio_mapped(folio))
1656 			goto move;
1657 
1658 		/*
1659 		 * Be careful not to clear the lru flag until after we're
1660 		 * sure the folio is not being freed elsewhere -- the
1661 		 * folio release code relies on it.
1662 		 */
1663 		if (unlikely(!folio_try_get(folio)))
1664 			goto move;
1665 
1666 		if (!folio_test_clear_lru(folio)) {
1667 			/* Another thread is already isolating this folio */
1668 			folio_put(folio);
1669 			goto move;
1670 		}
1671 
1672 		nr_taken += nr_pages;
1673 		nr_zone_taken[folio_zonenum(folio)] += nr_pages;
1674 		move_to = dst;
1675 move:
1676 		list_move(&folio->lru, move_to);
1677 	}
1678 
1679 	/*
1680 	 * Splice any skipped folios to the start of the LRU list. Note that
1681 	 * this disrupts the LRU order when reclaiming for lower zones but
1682 	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1683 	 * scanning would soon rescan the same folios to skip and waste lots
1684 	 * of cpu cycles.
1685 	 */
1686 	if (!list_empty(&folios_skipped)) {
1687 		int zid;
1688 
1689 		list_splice(&folios_skipped, src);
1690 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1691 			if (!nr_skipped[zid])
1692 				continue;
1693 
1694 			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1695 			skipped += nr_skipped[zid];
1696 		}
1697 	}
1698 	*nr_scanned = total_scan;
1699 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1700 				    total_scan, skipped, nr_taken, lru);
1701 	update_lru_sizes(lruvec, lru, nr_zone_taken);
1702 	return nr_taken;
1703 }
1704 
1705 /**
1706  * folio_isolate_lru() - Try to isolate a folio from its LRU list.
1707  * @folio: Folio to isolate from its LRU list.
1708  *
1709  * Isolate a @folio from an LRU list and adjust the vmstat statistic
1710  * corresponding to whatever LRU list the folio was on.
1711  *
1712  * The folio will have its LRU flag cleared.  If it was found on the
1713  * active list, it will have the Active flag set.  If it was found on the
1714  * unevictable list, it will have the Unevictable flag set.  These flags
1715  * may need to be cleared by the caller before letting the page go.
1716  *
1717  * Context:
1718  *
1719  * (1) Must be called with an elevated refcount on the folio. This is a
1720  *     fundamental difference from isolate_lru_folios() (which is called
1721  *     without a stable reference).
1722  * (2) The lru_lock must not be held.
1723  * (3) Interrupts must be enabled.
1724  *
1725  * Return: true if the folio was removed from an LRU list.
1726  * false if the folio was not on an LRU list.
1727  */
1728 bool folio_isolate_lru(struct folio *folio)
1729 {
1730 	bool ret = false;
1731 
1732 	VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio);
1733 
1734 	if (folio_test_clear_lru(folio)) {
1735 		struct lruvec *lruvec;
1736 
1737 		folio_get(folio);
1738 		lruvec = folio_lruvec_lock_irq(folio);
1739 		lruvec_del_folio(lruvec, folio);
1740 		unlock_page_lruvec_irq(lruvec);
1741 		ret = true;
1742 	}
1743 
1744 	return ret;
1745 }
1746 
1747 /*
1748  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1749  * then get rescheduled. When there are massive number of tasks doing page
1750  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1751  * the LRU list will go small and be scanned faster than necessary, leading to
1752  * unnecessary swapping, thrashing and OOM.
1753  */
1754 static bool too_many_isolated(struct pglist_data *pgdat, int file,
1755 		struct scan_control *sc)
1756 {
1757 	unsigned long inactive, isolated;
1758 	bool too_many;
1759 
1760 	if (current_is_kswapd())
1761 		return false;
1762 
1763 	if (!writeback_throttling_sane(sc))
1764 		return false;
1765 
1766 	if (file) {
1767 		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1768 		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1769 	} else {
1770 		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1771 		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1772 	}
1773 
1774 	/*
1775 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1776 	 * won't get blocked by normal direct-reclaimers, forming a circular
1777 	 * deadlock.
1778 	 */
1779 	if (gfp_has_io_fs(sc->gfp_mask))
1780 		inactive >>= 3;
1781 
1782 	too_many = isolated > inactive;
1783 
1784 	/* Wake up tasks throttled due to too_many_isolated. */
1785 	if (!too_many)
1786 		wake_throttle_isolated(pgdat);
1787 
1788 	return too_many;
1789 }
1790 
1791 /*
1792  * move_folios_to_lru() moves folios from private @list to appropriate LRU list.
1793  *
1794  * Returns the number of pages moved to the given lruvec.
1795  */
1796 static unsigned int move_folios_to_lru(struct lruvec *lruvec,
1797 		struct list_head *list)
1798 {
1799 	int nr_pages, nr_moved = 0;
1800 	struct folio_batch free_folios;
1801 
1802 	folio_batch_init(&free_folios);
1803 	while (!list_empty(list)) {
1804 		struct folio *folio = lru_to_folio(list);
1805 
1806 		VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
1807 		list_del(&folio->lru);
1808 		if (unlikely(!folio_evictable(folio))) {
1809 			spin_unlock_irq(&lruvec->lru_lock);
1810 			folio_putback_lru(folio);
1811 			spin_lock_irq(&lruvec->lru_lock);
1812 			continue;
1813 		}
1814 
1815 		/*
1816 		 * The folio_set_lru needs to be kept here for list integrity.
1817 		 * Otherwise:
1818 		 *   #0 move_folios_to_lru             #1 release_pages
1819 		 *   if (!folio_put_testzero())
1820 		 *				      if (folio_put_testzero())
1821 		 *				        !lru //skip lru_lock
1822 		 *     folio_set_lru()
1823 		 *     list_add(&folio->lru,)
1824 		 *                                        list_add(&folio->lru,)
1825 		 */
1826 		folio_set_lru(folio);
1827 
1828 		if (unlikely(folio_put_testzero(folio))) {
1829 			__folio_clear_lru_flags(folio);
1830 
1831 			if (folio_test_large(folio) &&
1832 			    folio_test_large_rmappable(folio))
1833 				folio_undo_large_rmappable(folio);
1834 			if (folio_batch_add(&free_folios, folio) == 0) {
1835 				spin_unlock_irq(&lruvec->lru_lock);
1836 				mem_cgroup_uncharge_folios(&free_folios);
1837 				free_unref_folios(&free_folios);
1838 				spin_lock_irq(&lruvec->lru_lock);
1839 			}
1840 
1841 			continue;
1842 		}
1843 
1844 		/*
1845 		 * All pages were isolated from the same lruvec (and isolation
1846 		 * inhibits memcg migration).
1847 		 */
1848 		VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio);
1849 		lruvec_add_folio(lruvec, folio);
1850 		nr_pages = folio_nr_pages(folio);
1851 		nr_moved += nr_pages;
1852 		if (folio_test_active(folio))
1853 			workingset_age_nonresident(lruvec, nr_pages);
1854 	}
1855 
1856 	if (free_folios.nr) {
1857 		spin_unlock_irq(&lruvec->lru_lock);
1858 		mem_cgroup_uncharge_folios(&free_folios);
1859 		free_unref_folios(&free_folios);
1860 		spin_lock_irq(&lruvec->lru_lock);
1861 	}
1862 
1863 	return nr_moved;
1864 }
1865 
1866 /*
1867  * If a kernel thread (such as nfsd for loop-back mounts) services a backing
1868  * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case
1869  * we should not throttle.  Otherwise it is safe to do so.
1870  */
1871 static int current_may_throttle(void)
1872 {
1873 	return !(current->flags & PF_LOCAL_THROTTLE);
1874 }
1875 
1876 /*
1877  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
1878  * of reclaimed pages
1879  */
1880 static unsigned long shrink_inactive_list(unsigned long nr_to_scan,
1881 		struct lruvec *lruvec, struct scan_control *sc,
1882 		enum lru_list lru)
1883 {
1884 	LIST_HEAD(folio_list);
1885 	unsigned long nr_scanned;
1886 	unsigned int nr_reclaimed = 0;
1887 	unsigned long nr_taken;
1888 	struct reclaim_stat stat;
1889 	bool file = is_file_lru(lru);
1890 	enum vm_event_item item;
1891 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1892 	bool stalled = false;
1893 
1894 	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1895 		if (stalled)
1896 			return 0;
1897 
1898 		/* wait a bit for the reclaimer. */
1899 		stalled = true;
1900 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
1901 
1902 		/* We are about to die and free our memory. Return now. */
1903 		if (fatal_signal_pending(current))
1904 			return SWAP_CLUSTER_MAX;
1905 	}
1906 
1907 	lru_add_drain();
1908 
1909 	spin_lock_irq(&lruvec->lru_lock);
1910 
1911 	nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &folio_list,
1912 				     &nr_scanned, sc, lru);
1913 
1914 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1915 	item = PGSCAN_KSWAPD + reclaimer_offset();
1916 	if (!cgroup_reclaim(sc))
1917 		__count_vm_events(item, nr_scanned);
1918 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
1919 	__count_vm_events(PGSCAN_ANON + file, nr_scanned);
1920 
1921 	spin_unlock_irq(&lruvec->lru_lock);
1922 
1923 	if (nr_taken == 0)
1924 		return 0;
1925 
1926 	nr_reclaimed = shrink_folio_list(&folio_list, pgdat, sc, &stat, false);
1927 
1928 	spin_lock_irq(&lruvec->lru_lock);
1929 	move_folios_to_lru(lruvec, &folio_list);
1930 
1931 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1932 	item = PGSTEAL_KSWAPD + reclaimer_offset();
1933 	if (!cgroup_reclaim(sc))
1934 		__count_vm_events(item, nr_reclaimed);
1935 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
1936 	__count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
1937 	spin_unlock_irq(&lruvec->lru_lock);
1938 
1939 	lru_note_cost(lruvec, file, stat.nr_pageout, nr_scanned - nr_reclaimed);
1940 
1941 	/*
1942 	 * If dirty folios are scanned that are not queued for IO, it
1943 	 * implies that flushers are not doing their job. This can
1944 	 * happen when memory pressure pushes dirty folios to the end of
1945 	 * the LRU before the dirty limits are breached and the dirty
1946 	 * data has expired. It can also happen when the proportion of
1947 	 * dirty folios grows not through writes but through memory
1948 	 * pressure reclaiming all the clean cache. And in some cases,
1949 	 * the flushers simply cannot keep up with the allocation
1950 	 * rate. Nudge the flusher threads in case they are asleep.
1951 	 */
1952 	if (stat.nr_unqueued_dirty == nr_taken) {
1953 		wakeup_flusher_threads(WB_REASON_VMSCAN);
1954 		/*
1955 		 * For cgroupv1 dirty throttling is achieved by waking up
1956 		 * the kernel flusher here and later waiting on folios
1957 		 * which are in writeback to finish (see shrink_folio_list()).
1958 		 *
1959 		 * Flusher may not be able to issue writeback quickly
1960 		 * enough for cgroupv1 writeback throttling to work
1961 		 * on a large system.
1962 		 */
1963 		if (!writeback_throttling_sane(sc))
1964 			reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
1965 	}
1966 
1967 	sc->nr.dirty += stat.nr_dirty;
1968 	sc->nr.congested += stat.nr_congested;
1969 	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
1970 	sc->nr.writeback += stat.nr_writeback;
1971 	sc->nr.immediate += stat.nr_immediate;
1972 	sc->nr.taken += nr_taken;
1973 	if (file)
1974 		sc->nr.file_taken += nr_taken;
1975 
1976 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1977 			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
1978 	return nr_reclaimed;
1979 }
1980 
1981 /*
1982  * shrink_active_list() moves folios from the active LRU to the inactive LRU.
1983  *
1984  * We move them the other way if the folio is referenced by one or more
1985  * processes.
1986  *
1987  * If the folios are mostly unmapped, the processing is fast and it is
1988  * appropriate to hold lru_lock across the whole operation.  But if
1989  * the folios are mapped, the processing is slow (folio_referenced()), so
1990  * we should drop lru_lock around each folio.  It's impossible to balance
1991  * this, so instead we remove the folios from the LRU while processing them.
1992  * It is safe to rely on the active flag against the non-LRU folios in here
1993  * because nobody will play with that bit on a non-LRU folio.
1994  *
1995  * The downside is that we have to touch folio->_refcount against each folio.
1996  * But we had to alter folio->flags anyway.
1997  */
1998 static void shrink_active_list(unsigned long nr_to_scan,
1999 			       struct lruvec *lruvec,
2000 			       struct scan_control *sc,
2001 			       enum lru_list lru)
2002 {
2003 	unsigned long nr_taken;
2004 	unsigned long nr_scanned;
2005 	unsigned long vm_flags;
2006 	LIST_HEAD(l_hold);	/* The folios which were snipped off */
2007 	LIST_HEAD(l_active);
2008 	LIST_HEAD(l_inactive);
2009 	unsigned nr_deactivate, nr_activate;
2010 	unsigned nr_rotated = 0;
2011 	bool file = is_file_lru(lru);
2012 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2013 
2014 	lru_add_drain();
2015 
2016 	spin_lock_irq(&lruvec->lru_lock);
2017 
2018 	nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &l_hold,
2019 				     &nr_scanned, sc, lru);
2020 
2021 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2022 
2023 	if (!cgroup_reclaim(sc))
2024 		__count_vm_events(PGREFILL, nr_scanned);
2025 	__count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2026 
2027 	spin_unlock_irq(&lruvec->lru_lock);
2028 
2029 	while (!list_empty(&l_hold)) {
2030 		struct folio *folio;
2031 
2032 		cond_resched();
2033 		folio = lru_to_folio(&l_hold);
2034 		list_del(&folio->lru);
2035 
2036 		if (unlikely(!folio_evictable(folio))) {
2037 			folio_putback_lru(folio);
2038 			continue;
2039 		}
2040 
2041 		if (unlikely(buffer_heads_over_limit)) {
2042 			if (folio_needs_release(folio) &&
2043 			    folio_trylock(folio)) {
2044 				filemap_release_folio(folio, 0);
2045 				folio_unlock(folio);
2046 			}
2047 		}
2048 
2049 		/* Referenced or rmap lock contention: rotate */
2050 		if (folio_referenced(folio, 0, sc->target_mem_cgroup,
2051 				     &vm_flags) != 0) {
2052 			/*
2053 			 * Identify referenced, file-backed active folios and
2054 			 * give them one more trip around the active list. So
2055 			 * that executable code get better chances to stay in
2056 			 * memory under moderate memory pressure.  Anon folios
2057 			 * are not likely to be evicted by use-once streaming
2058 			 * IO, plus JVM can create lots of anon VM_EXEC folios,
2059 			 * so we ignore them here.
2060 			 */
2061 			if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) {
2062 				nr_rotated += folio_nr_pages(folio);
2063 				list_add(&folio->lru, &l_active);
2064 				continue;
2065 			}
2066 		}
2067 
2068 		folio_clear_active(folio);	/* we are de-activating */
2069 		folio_set_workingset(folio);
2070 		list_add(&folio->lru, &l_inactive);
2071 	}
2072 
2073 	/*
2074 	 * Move folios back to the lru list.
2075 	 */
2076 	spin_lock_irq(&lruvec->lru_lock);
2077 
2078 	nr_activate = move_folios_to_lru(lruvec, &l_active);
2079 	nr_deactivate = move_folios_to_lru(lruvec, &l_inactive);
2080 
2081 	__count_vm_events(PGDEACTIVATE, nr_deactivate);
2082 	__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2083 
2084 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2085 	spin_unlock_irq(&lruvec->lru_lock);
2086 
2087 	if (nr_rotated)
2088 		lru_note_cost(lruvec, file, 0, nr_rotated);
2089 	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2090 			nr_deactivate, nr_rotated, sc->priority, file);
2091 }
2092 
2093 static unsigned int reclaim_folio_list(struct list_head *folio_list,
2094 				      struct pglist_data *pgdat,
2095 				      bool ignore_references)
2096 {
2097 	struct reclaim_stat dummy_stat;
2098 	unsigned int nr_reclaimed;
2099 	struct folio *folio;
2100 	struct scan_control sc = {
2101 		.gfp_mask = GFP_KERNEL,
2102 		.may_writepage = 1,
2103 		.may_unmap = 1,
2104 		.may_swap = 1,
2105 		.no_demotion = 1,
2106 	};
2107 
2108 	nr_reclaimed = shrink_folio_list(folio_list, pgdat, &sc, &dummy_stat, ignore_references);
2109 	while (!list_empty(folio_list)) {
2110 		folio = lru_to_folio(folio_list);
2111 		list_del(&folio->lru);
2112 		folio_putback_lru(folio);
2113 	}
2114 
2115 	return nr_reclaimed;
2116 }
2117 
2118 unsigned long reclaim_pages(struct list_head *folio_list, bool ignore_references)
2119 {
2120 	int nid;
2121 	unsigned int nr_reclaimed = 0;
2122 	LIST_HEAD(node_folio_list);
2123 	unsigned int noreclaim_flag;
2124 
2125 	if (list_empty(folio_list))
2126 		return nr_reclaimed;
2127 
2128 	noreclaim_flag = memalloc_noreclaim_save();
2129 
2130 	nid = folio_nid(lru_to_folio(folio_list));
2131 	do {
2132 		struct folio *folio = lru_to_folio(folio_list);
2133 
2134 		if (nid == folio_nid(folio)) {
2135 			folio_clear_active(folio);
2136 			list_move(&folio->lru, &node_folio_list);
2137 			continue;
2138 		}
2139 
2140 		nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid),
2141 						   ignore_references);
2142 		nid = folio_nid(lru_to_folio(folio_list));
2143 	} while (!list_empty(folio_list));
2144 
2145 	nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid), ignore_references);
2146 
2147 	memalloc_noreclaim_restore(noreclaim_flag);
2148 
2149 	return nr_reclaimed;
2150 }
2151 
2152 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2153 				 struct lruvec *lruvec, struct scan_control *sc)
2154 {
2155 	if (is_active_lru(lru)) {
2156 		if (sc->may_deactivate & (1 << is_file_lru(lru)))
2157 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2158 		else
2159 			sc->skipped_deactivate = 1;
2160 		return 0;
2161 	}
2162 
2163 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2164 }
2165 
2166 /*
2167  * The inactive anon list should be small enough that the VM never has
2168  * to do too much work.
2169  *
2170  * The inactive file list should be small enough to leave most memory
2171  * to the established workingset on the scan-resistant active list,
2172  * but large enough to avoid thrashing the aggregate readahead window.
2173  *
2174  * Both inactive lists should also be large enough that each inactive
2175  * folio has a chance to be referenced again before it is reclaimed.
2176  *
2177  * If that fails and refaulting is observed, the inactive list grows.
2178  *
2179  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE folios
2180  * on this LRU, maintained by the pageout code. An inactive_ratio
2181  * of 3 means 3:1 or 25% of the folios are kept on the inactive list.
2182  *
2183  * total     target    max
2184  * memory    ratio     inactive
2185  * -------------------------------------
2186  *   10MB       1         5MB
2187  *  100MB       1        50MB
2188  *    1GB       3       250MB
2189  *   10GB      10       0.9GB
2190  *  100GB      31         3GB
2191  *    1TB     101        10GB
2192  *   10TB     320        32GB
2193  */
2194 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2195 {
2196 	enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2197 	unsigned long inactive, active;
2198 	unsigned long inactive_ratio;
2199 	unsigned long gb;
2200 
2201 	inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2202 	active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2203 
2204 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
2205 	if (gb)
2206 		inactive_ratio = int_sqrt(10 * gb);
2207 	else
2208 		inactive_ratio = 1;
2209 
2210 	return inactive * inactive_ratio < active;
2211 }
2212 
2213 enum scan_balance {
2214 	SCAN_EQUAL,
2215 	SCAN_FRACT,
2216 	SCAN_ANON,
2217 	SCAN_FILE,
2218 };
2219 
2220 static void prepare_scan_control(pg_data_t *pgdat, struct scan_control *sc)
2221 {
2222 	unsigned long file;
2223 	struct lruvec *target_lruvec;
2224 
2225 	if (lru_gen_enabled())
2226 		return;
2227 
2228 	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2229 
2230 	/*
2231 	 * Flush the memory cgroup stats, so that we read accurate per-memcg
2232 	 * lruvec stats for heuristics.
2233 	 */
2234 	mem_cgroup_flush_stats(sc->target_mem_cgroup);
2235 
2236 	/*
2237 	 * Determine the scan balance between anon and file LRUs.
2238 	 */
2239 	spin_lock_irq(&target_lruvec->lru_lock);
2240 	sc->anon_cost = target_lruvec->anon_cost;
2241 	sc->file_cost = target_lruvec->file_cost;
2242 	spin_unlock_irq(&target_lruvec->lru_lock);
2243 
2244 	/*
2245 	 * Target desirable inactive:active list ratios for the anon
2246 	 * and file LRU lists.
2247 	 */
2248 	if (!sc->force_deactivate) {
2249 		unsigned long refaults;
2250 
2251 		/*
2252 		 * When refaults are being observed, it means a new
2253 		 * workingset is being established. Deactivate to get
2254 		 * rid of any stale active pages quickly.
2255 		 */
2256 		refaults = lruvec_page_state(target_lruvec,
2257 				WORKINGSET_ACTIVATE_ANON);
2258 		if (refaults != target_lruvec->refaults[WORKINGSET_ANON] ||
2259 			inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2260 			sc->may_deactivate |= DEACTIVATE_ANON;
2261 		else
2262 			sc->may_deactivate &= ~DEACTIVATE_ANON;
2263 
2264 		refaults = lruvec_page_state(target_lruvec,
2265 				WORKINGSET_ACTIVATE_FILE);
2266 		if (refaults != target_lruvec->refaults[WORKINGSET_FILE] ||
2267 		    inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2268 			sc->may_deactivate |= DEACTIVATE_FILE;
2269 		else
2270 			sc->may_deactivate &= ~DEACTIVATE_FILE;
2271 	} else
2272 		sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2273 
2274 	/*
2275 	 * If we have plenty of inactive file pages that aren't
2276 	 * thrashing, try to reclaim those first before touching
2277 	 * anonymous pages.
2278 	 */
2279 	file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2280 	if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE) &&
2281 	    !sc->no_cache_trim_mode)
2282 		sc->cache_trim_mode = 1;
2283 	else
2284 		sc->cache_trim_mode = 0;
2285 
2286 	/*
2287 	 * Prevent the reclaimer from falling into the cache trap: as
2288 	 * cache pages start out inactive, every cache fault will tip
2289 	 * the scan balance towards the file LRU.  And as the file LRU
2290 	 * shrinks, so does the window for rotation from references.
2291 	 * This means we have a runaway feedback loop where a tiny
2292 	 * thrashing file LRU becomes infinitely more attractive than
2293 	 * anon pages.  Try to detect this based on file LRU size.
2294 	 */
2295 	if (!cgroup_reclaim(sc)) {
2296 		unsigned long total_high_wmark = 0;
2297 		unsigned long free, anon;
2298 		int z;
2299 
2300 		free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2301 		file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2302 			   node_page_state(pgdat, NR_INACTIVE_FILE);
2303 
2304 		for (z = 0; z < MAX_NR_ZONES; z++) {
2305 			struct zone *zone = &pgdat->node_zones[z];
2306 
2307 			if (!managed_zone(zone))
2308 				continue;
2309 
2310 			total_high_wmark += high_wmark_pages(zone);
2311 		}
2312 
2313 		/*
2314 		 * Consider anon: if that's low too, this isn't a
2315 		 * runaway file reclaim problem, but rather just
2316 		 * extreme pressure. Reclaim as per usual then.
2317 		 */
2318 		anon = node_page_state(pgdat, NR_INACTIVE_ANON);
2319 
2320 		sc->file_is_tiny =
2321 			file + free <= total_high_wmark &&
2322 			!(sc->may_deactivate & DEACTIVATE_ANON) &&
2323 			anon >> sc->priority;
2324 	}
2325 }
2326 
2327 /*
2328  * Determine how aggressively the anon and file LRU lists should be
2329  * scanned.
2330  *
2331  * nr[0] = anon inactive folios to scan; nr[1] = anon active folios to scan
2332  * nr[2] = file inactive folios to scan; nr[3] = file active folios to scan
2333  */
2334 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2335 			   unsigned long *nr)
2336 {
2337 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2338 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2339 	unsigned long anon_cost, file_cost, total_cost;
2340 	int swappiness = mem_cgroup_swappiness(memcg);
2341 	u64 fraction[ANON_AND_FILE];
2342 	u64 denominator = 0;	/* gcc */
2343 	enum scan_balance scan_balance;
2344 	unsigned long ap, fp;
2345 	enum lru_list lru;
2346 
2347 	/* If we have no swap space, do not bother scanning anon folios. */
2348 	if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
2349 		scan_balance = SCAN_FILE;
2350 		goto out;
2351 	}
2352 
2353 	/*
2354 	 * Global reclaim will swap to prevent OOM even with no
2355 	 * swappiness, but memcg users want to use this knob to
2356 	 * disable swapping for individual groups completely when
2357 	 * using the memory controller's swap limit feature would be
2358 	 * too expensive.
2359 	 */
2360 	if (cgroup_reclaim(sc) && !swappiness) {
2361 		scan_balance = SCAN_FILE;
2362 		goto out;
2363 	}
2364 
2365 	/*
2366 	 * Do not apply any pressure balancing cleverness when the
2367 	 * system is close to OOM, scan both anon and file equally
2368 	 * (unless the swappiness setting disagrees with swapping).
2369 	 */
2370 	if (!sc->priority && swappiness) {
2371 		scan_balance = SCAN_EQUAL;
2372 		goto out;
2373 	}
2374 
2375 	/*
2376 	 * If the system is almost out of file pages, force-scan anon.
2377 	 */
2378 	if (sc->file_is_tiny) {
2379 		scan_balance = SCAN_ANON;
2380 		goto out;
2381 	}
2382 
2383 	/*
2384 	 * If there is enough inactive page cache, we do not reclaim
2385 	 * anything from the anonymous working right now.
2386 	 */
2387 	if (sc->cache_trim_mode) {
2388 		scan_balance = SCAN_FILE;
2389 		goto out;
2390 	}
2391 
2392 	scan_balance = SCAN_FRACT;
2393 	/*
2394 	 * Calculate the pressure balance between anon and file pages.
2395 	 *
2396 	 * The amount of pressure we put on each LRU is inversely
2397 	 * proportional to the cost of reclaiming each list, as
2398 	 * determined by the share of pages that are refaulting, times
2399 	 * the relative IO cost of bringing back a swapped out
2400 	 * anonymous page vs reloading a filesystem page (swappiness).
2401 	 *
2402 	 * Although we limit that influence to ensure no list gets
2403 	 * left behind completely: at least a third of the pressure is
2404 	 * applied, before swappiness.
2405 	 *
2406 	 * With swappiness at 100, anon and file have equal IO cost.
2407 	 */
2408 	total_cost = sc->anon_cost + sc->file_cost;
2409 	anon_cost = total_cost + sc->anon_cost;
2410 	file_cost = total_cost + sc->file_cost;
2411 	total_cost = anon_cost + file_cost;
2412 
2413 	ap = swappiness * (total_cost + 1);
2414 	ap /= anon_cost + 1;
2415 
2416 	fp = (200 - swappiness) * (total_cost + 1);
2417 	fp /= file_cost + 1;
2418 
2419 	fraction[0] = ap;
2420 	fraction[1] = fp;
2421 	denominator = ap + fp;
2422 out:
2423 	for_each_evictable_lru(lru) {
2424 		bool file = is_file_lru(lru);
2425 		unsigned long lruvec_size;
2426 		unsigned long low, min;
2427 		unsigned long scan;
2428 
2429 		lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2430 		mem_cgroup_protection(sc->target_mem_cgroup, memcg,
2431 				      &min, &low);
2432 
2433 		if (min || low) {
2434 			/*
2435 			 * Scale a cgroup's reclaim pressure by proportioning
2436 			 * its current usage to its memory.low or memory.min
2437 			 * setting.
2438 			 *
2439 			 * This is important, as otherwise scanning aggression
2440 			 * becomes extremely binary -- from nothing as we
2441 			 * approach the memory protection threshold, to totally
2442 			 * nominal as we exceed it.  This results in requiring
2443 			 * setting extremely liberal protection thresholds. It
2444 			 * also means we simply get no protection at all if we
2445 			 * set it too low, which is not ideal.
2446 			 *
2447 			 * If there is any protection in place, we reduce scan
2448 			 * pressure by how much of the total memory used is
2449 			 * within protection thresholds.
2450 			 *
2451 			 * There is one special case: in the first reclaim pass,
2452 			 * we skip over all groups that are within their low
2453 			 * protection. If that fails to reclaim enough pages to
2454 			 * satisfy the reclaim goal, we come back and override
2455 			 * the best-effort low protection. However, we still
2456 			 * ideally want to honor how well-behaved groups are in
2457 			 * that case instead of simply punishing them all
2458 			 * equally. As such, we reclaim them based on how much
2459 			 * memory they are using, reducing the scan pressure
2460 			 * again by how much of the total memory used is under
2461 			 * hard protection.
2462 			 */
2463 			unsigned long cgroup_size = mem_cgroup_size(memcg);
2464 			unsigned long protection;
2465 
2466 			/* memory.low scaling, make sure we retry before OOM */
2467 			if (!sc->memcg_low_reclaim && low > min) {
2468 				protection = low;
2469 				sc->memcg_low_skipped = 1;
2470 			} else {
2471 				protection = min;
2472 			}
2473 
2474 			/* Avoid TOCTOU with earlier protection check */
2475 			cgroup_size = max(cgroup_size, protection);
2476 
2477 			scan = lruvec_size - lruvec_size * protection /
2478 				(cgroup_size + 1);
2479 
2480 			/*
2481 			 * Minimally target SWAP_CLUSTER_MAX pages to keep
2482 			 * reclaim moving forwards, avoiding decrementing
2483 			 * sc->priority further than desirable.
2484 			 */
2485 			scan = max(scan, SWAP_CLUSTER_MAX);
2486 		} else {
2487 			scan = lruvec_size;
2488 		}
2489 
2490 		scan >>= sc->priority;
2491 
2492 		/*
2493 		 * If the cgroup's already been deleted, make sure to
2494 		 * scrape out the remaining cache.
2495 		 */
2496 		if (!scan && !mem_cgroup_online(memcg))
2497 			scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2498 
2499 		switch (scan_balance) {
2500 		case SCAN_EQUAL:
2501 			/* Scan lists relative to size */
2502 			break;
2503 		case SCAN_FRACT:
2504 			/*
2505 			 * Scan types proportional to swappiness and
2506 			 * their relative recent reclaim efficiency.
2507 			 * Make sure we don't miss the last page on
2508 			 * the offlined memory cgroups because of a
2509 			 * round-off error.
2510 			 */
2511 			scan = mem_cgroup_online(memcg) ?
2512 			       div64_u64(scan * fraction[file], denominator) :
2513 			       DIV64_U64_ROUND_UP(scan * fraction[file],
2514 						  denominator);
2515 			break;
2516 		case SCAN_FILE:
2517 		case SCAN_ANON:
2518 			/* Scan one type exclusively */
2519 			if ((scan_balance == SCAN_FILE) != file)
2520 				scan = 0;
2521 			break;
2522 		default:
2523 			/* Look ma, no brain */
2524 			BUG();
2525 		}
2526 
2527 		nr[lru] = scan;
2528 	}
2529 }
2530 
2531 /*
2532  * Anonymous LRU management is a waste if there is
2533  * ultimately no way to reclaim the memory.
2534  */
2535 static bool can_age_anon_pages(struct pglist_data *pgdat,
2536 			       struct scan_control *sc)
2537 {
2538 	/* Aging the anon LRU is valuable if swap is present: */
2539 	if (total_swap_pages > 0)
2540 		return true;
2541 
2542 	/* Also valuable if anon pages can be demoted: */
2543 	return can_demote(pgdat->node_id, sc);
2544 }
2545 
2546 #ifdef CONFIG_LRU_GEN
2547 
2548 #ifdef CONFIG_LRU_GEN_ENABLED
2549 DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS);
2550 #define get_cap(cap)	static_branch_likely(&lru_gen_caps[cap])
2551 #else
2552 DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS);
2553 #define get_cap(cap)	static_branch_unlikely(&lru_gen_caps[cap])
2554 #endif
2555 
2556 static bool should_walk_mmu(void)
2557 {
2558 	return arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK);
2559 }
2560 
2561 static bool should_clear_pmd_young(void)
2562 {
2563 	return arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG);
2564 }
2565 
2566 /******************************************************************************
2567  *                          shorthand helpers
2568  ******************************************************************************/
2569 
2570 #define LRU_REFS_FLAGS	(BIT(PG_referenced) | BIT(PG_workingset))
2571 
2572 #define DEFINE_MAX_SEQ(lruvec)						\
2573 	unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq)
2574 
2575 #define DEFINE_MIN_SEQ(lruvec)						\
2576 	unsigned long min_seq[ANON_AND_FILE] = {			\
2577 		READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]),	\
2578 		READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]),	\
2579 	}
2580 
2581 #define for_each_gen_type_zone(gen, type, zone)				\
2582 	for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++)			\
2583 		for ((type) = 0; (type) < ANON_AND_FILE; (type)++)	\
2584 			for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++)
2585 
2586 #define get_memcg_gen(seq)	((seq) % MEMCG_NR_GENS)
2587 #define get_memcg_bin(bin)	((bin) % MEMCG_NR_BINS)
2588 
2589 static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid)
2590 {
2591 	struct pglist_data *pgdat = NODE_DATA(nid);
2592 
2593 #ifdef CONFIG_MEMCG
2594 	if (memcg) {
2595 		struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec;
2596 
2597 		/* see the comment in mem_cgroup_lruvec() */
2598 		if (!lruvec->pgdat)
2599 			lruvec->pgdat = pgdat;
2600 
2601 		return lruvec;
2602 	}
2603 #endif
2604 	VM_WARN_ON_ONCE(!mem_cgroup_disabled());
2605 
2606 	return &pgdat->__lruvec;
2607 }
2608 
2609 static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc)
2610 {
2611 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2612 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2613 
2614 	if (!sc->may_swap)
2615 		return 0;
2616 
2617 	if (!can_demote(pgdat->node_id, sc) &&
2618 	    mem_cgroup_get_nr_swap_pages(memcg) < MIN_LRU_BATCH)
2619 		return 0;
2620 
2621 	return mem_cgroup_swappiness(memcg);
2622 }
2623 
2624 static int get_nr_gens(struct lruvec *lruvec, int type)
2625 {
2626 	return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1;
2627 }
2628 
2629 static bool __maybe_unused seq_is_valid(struct lruvec *lruvec)
2630 {
2631 	/* see the comment on lru_gen_folio */
2632 	return get_nr_gens(lruvec, LRU_GEN_FILE) >= MIN_NR_GENS &&
2633 	       get_nr_gens(lruvec, LRU_GEN_FILE) <= get_nr_gens(lruvec, LRU_GEN_ANON) &&
2634 	       get_nr_gens(lruvec, LRU_GEN_ANON) <= MAX_NR_GENS;
2635 }
2636 
2637 /******************************************************************************
2638  *                          Bloom filters
2639  ******************************************************************************/
2640 
2641 /*
2642  * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when
2643  * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of
2644  * bits in a bitmap, k is the number of hash functions and n is the number of
2645  * inserted items.
2646  *
2647  * Page table walkers use one of the two filters to reduce their search space.
2648  * To get rid of non-leaf entries that no longer have enough leaf entries, the
2649  * aging uses the double-buffering technique to flip to the other filter each
2650  * time it produces a new generation. For non-leaf entries that have enough
2651  * leaf entries, the aging carries them over to the next generation in
2652  * walk_pmd_range(); the eviction also report them when walking the rmap
2653  * in lru_gen_look_around().
2654  *
2655  * For future optimizations:
2656  * 1. It's not necessary to keep both filters all the time. The spare one can be
2657  *    freed after the RCU grace period and reallocated if needed again.
2658  * 2. And when reallocating, it's worth scaling its size according to the number
2659  *    of inserted entries in the other filter, to reduce the memory overhead on
2660  *    small systems and false positives on large systems.
2661  * 3. Jenkins' hash function is an alternative to Knuth's.
2662  */
2663 #define BLOOM_FILTER_SHIFT	15
2664 
2665 static inline int filter_gen_from_seq(unsigned long seq)
2666 {
2667 	return seq % NR_BLOOM_FILTERS;
2668 }
2669 
2670 static void get_item_key(void *item, int *key)
2671 {
2672 	u32 hash = hash_ptr(item, BLOOM_FILTER_SHIFT * 2);
2673 
2674 	BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32));
2675 
2676 	key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1);
2677 	key[1] = hash >> BLOOM_FILTER_SHIFT;
2678 }
2679 
2680 static bool test_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq,
2681 			      void *item)
2682 {
2683 	int key[2];
2684 	unsigned long *filter;
2685 	int gen = filter_gen_from_seq(seq);
2686 
2687 	filter = READ_ONCE(mm_state->filters[gen]);
2688 	if (!filter)
2689 		return true;
2690 
2691 	get_item_key(item, key);
2692 
2693 	return test_bit(key[0], filter) && test_bit(key[1], filter);
2694 }
2695 
2696 static void update_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq,
2697 				void *item)
2698 {
2699 	int key[2];
2700 	unsigned long *filter;
2701 	int gen = filter_gen_from_seq(seq);
2702 
2703 	filter = READ_ONCE(mm_state->filters[gen]);
2704 	if (!filter)
2705 		return;
2706 
2707 	get_item_key(item, key);
2708 
2709 	if (!test_bit(key[0], filter))
2710 		set_bit(key[0], filter);
2711 	if (!test_bit(key[1], filter))
2712 		set_bit(key[1], filter);
2713 }
2714 
2715 static void reset_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq)
2716 {
2717 	unsigned long *filter;
2718 	int gen = filter_gen_from_seq(seq);
2719 
2720 	filter = mm_state->filters[gen];
2721 	if (filter) {
2722 		bitmap_clear(filter, 0, BIT(BLOOM_FILTER_SHIFT));
2723 		return;
2724 	}
2725 
2726 	filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT),
2727 			       __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
2728 	WRITE_ONCE(mm_state->filters[gen], filter);
2729 }
2730 
2731 /******************************************************************************
2732  *                          mm_struct list
2733  ******************************************************************************/
2734 
2735 #ifdef CONFIG_LRU_GEN_WALKS_MMU
2736 
2737 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
2738 {
2739 	static struct lru_gen_mm_list mm_list = {
2740 		.fifo = LIST_HEAD_INIT(mm_list.fifo),
2741 		.lock = __SPIN_LOCK_UNLOCKED(mm_list.lock),
2742 	};
2743 
2744 #ifdef CONFIG_MEMCG
2745 	if (memcg)
2746 		return &memcg->mm_list;
2747 #endif
2748 	VM_WARN_ON_ONCE(!mem_cgroup_disabled());
2749 
2750 	return &mm_list;
2751 }
2752 
2753 static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec)
2754 {
2755 	return &lruvec->mm_state;
2756 }
2757 
2758 static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk)
2759 {
2760 	int key;
2761 	struct mm_struct *mm;
2762 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
2763 	struct lru_gen_mm_state *mm_state = get_mm_state(walk->lruvec);
2764 
2765 	mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list);
2766 	key = pgdat->node_id % BITS_PER_TYPE(mm->lru_gen.bitmap);
2767 
2768 	if (!walk->force_scan && !test_bit(key, &mm->lru_gen.bitmap))
2769 		return NULL;
2770 
2771 	clear_bit(key, &mm->lru_gen.bitmap);
2772 
2773 	return mmget_not_zero(mm) ? mm : NULL;
2774 }
2775 
2776 void lru_gen_add_mm(struct mm_struct *mm)
2777 {
2778 	int nid;
2779 	struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm);
2780 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
2781 
2782 	VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list));
2783 #ifdef CONFIG_MEMCG
2784 	VM_WARN_ON_ONCE(mm->lru_gen.memcg);
2785 	mm->lru_gen.memcg = memcg;
2786 #endif
2787 	spin_lock(&mm_list->lock);
2788 
2789 	for_each_node_state(nid, N_MEMORY) {
2790 		struct lruvec *lruvec = get_lruvec(memcg, nid);
2791 		struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
2792 
2793 		/* the first addition since the last iteration */
2794 		if (mm_state->tail == &mm_list->fifo)
2795 			mm_state->tail = &mm->lru_gen.list;
2796 	}
2797 
2798 	list_add_tail(&mm->lru_gen.list, &mm_list->fifo);
2799 
2800 	spin_unlock(&mm_list->lock);
2801 }
2802 
2803 void lru_gen_del_mm(struct mm_struct *mm)
2804 {
2805 	int nid;
2806 	struct lru_gen_mm_list *mm_list;
2807 	struct mem_cgroup *memcg = NULL;
2808 
2809 	if (list_empty(&mm->lru_gen.list))
2810 		return;
2811 
2812 #ifdef CONFIG_MEMCG
2813 	memcg = mm->lru_gen.memcg;
2814 #endif
2815 	mm_list = get_mm_list(memcg);
2816 
2817 	spin_lock(&mm_list->lock);
2818 
2819 	for_each_node(nid) {
2820 		struct lruvec *lruvec = get_lruvec(memcg, nid);
2821 		struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
2822 
2823 		/* where the current iteration continues after */
2824 		if (mm_state->head == &mm->lru_gen.list)
2825 			mm_state->head = mm_state->head->prev;
2826 
2827 		/* where the last iteration ended before */
2828 		if (mm_state->tail == &mm->lru_gen.list)
2829 			mm_state->tail = mm_state->tail->next;
2830 	}
2831 
2832 	list_del_init(&mm->lru_gen.list);
2833 
2834 	spin_unlock(&mm_list->lock);
2835 
2836 #ifdef CONFIG_MEMCG
2837 	mem_cgroup_put(mm->lru_gen.memcg);
2838 	mm->lru_gen.memcg = NULL;
2839 #endif
2840 }
2841 
2842 #ifdef CONFIG_MEMCG
2843 void lru_gen_migrate_mm(struct mm_struct *mm)
2844 {
2845 	struct mem_cgroup *memcg;
2846 	struct task_struct *task = rcu_dereference_protected(mm->owner, true);
2847 
2848 	VM_WARN_ON_ONCE(task->mm != mm);
2849 	lockdep_assert_held(&task->alloc_lock);
2850 
2851 	/* for mm_update_next_owner() */
2852 	if (mem_cgroup_disabled())
2853 		return;
2854 
2855 	/* migration can happen before addition */
2856 	if (!mm->lru_gen.memcg)
2857 		return;
2858 
2859 	rcu_read_lock();
2860 	memcg = mem_cgroup_from_task(task);
2861 	rcu_read_unlock();
2862 	if (memcg == mm->lru_gen.memcg)
2863 		return;
2864 
2865 	VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list));
2866 
2867 	lru_gen_del_mm(mm);
2868 	lru_gen_add_mm(mm);
2869 }
2870 #endif
2871 
2872 #else /* !CONFIG_LRU_GEN_WALKS_MMU */
2873 
2874 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
2875 {
2876 	return NULL;
2877 }
2878 
2879 static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec)
2880 {
2881 	return NULL;
2882 }
2883 
2884 static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk)
2885 {
2886 	return NULL;
2887 }
2888 
2889 #endif
2890 
2891 static void reset_mm_stats(struct lru_gen_mm_walk *walk, bool last)
2892 {
2893 	int i;
2894 	int hist;
2895 	struct lruvec *lruvec = walk->lruvec;
2896 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
2897 
2898 	lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock);
2899 
2900 	hist = lru_hist_from_seq(walk->seq);
2901 
2902 	for (i = 0; i < NR_MM_STATS; i++) {
2903 		WRITE_ONCE(mm_state->stats[hist][i],
2904 			   mm_state->stats[hist][i] + walk->mm_stats[i]);
2905 		walk->mm_stats[i] = 0;
2906 	}
2907 
2908 	if (NR_HIST_GENS > 1 && last) {
2909 		hist = lru_hist_from_seq(walk->seq + 1);
2910 
2911 		for (i = 0; i < NR_MM_STATS; i++)
2912 			WRITE_ONCE(mm_state->stats[hist][i], 0);
2913 	}
2914 }
2915 
2916 static bool iterate_mm_list(struct lru_gen_mm_walk *walk, struct mm_struct **iter)
2917 {
2918 	bool first = false;
2919 	bool last = false;
2920 	struct mm_struct *mm = NULL;
2921 	struct lruvec *lruvec = walk->lruvec;
2922 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2923 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
2924 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
2925 
2926 	/*
2927 	 * mm_state->seq is incremented after each iteration of mm_list. There
2928 	 * are three interesting cases for this page table walker:
2929 	 * 1. It tries to start a new iteration with a stale max_seq: there is
2930 	 *    nothing left to do.
2931 	 * 2. It started the next iteration: it needs to reset the Bloom filter
2932 	 *    so that a fresh set of PTE tables can be recorded.
2933 	 * 3. It ended the current iteration: it needs to reset the mm stats
2934 	 *    counters and tell its caller to increment max_seq.
2935 	 */
2936 	spin_lock(&mm_list->lock);
2937 
2938 	VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->seq);
2939 
2940 	if (walk->seq <= mm_state->seq)
2941 		goto done;
2942 
2943 	if (!mm_state->head)
2944 		mm_state->head = &mm_list->fifo;
2945 
2946 	if (mm_state->head == &mm_list->fifo)
2947 		first = true;
2948 
2949 	do {
2950 		mm_state->head = mm_state->head->next;
2951 		if (mm_state->head == &mm_list->fifo) {
2952 			WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
2953 			last = true;
2954 			break;
2955 		}
2956 
2957 		/* force scan for those added after the last iteration */
2958 		if (!mm_state->tail || mm_state->tail == mm_state->head) {
2959 			mm_state->tail = mm_state->head->next;
2960 			walk->force_scan = true;
2961 		}
2962 	} while (!(mm = get_next_mm(walk)));
2963 done:
2964 	if (*iter || last)
2965 		reset_mm_stats(walk, last);
2966 
2967 	spin_unlock(&mm_list->lock);
2968 
2969 	if (mm && first)
2970 		reset_bloom_filter(mm_state, walk->seq + 1);
2971 
2972 	if (*iter)
2973 		mmput_async(*iter);
2974 
2975 	*iter = mm;
2976 
2977 	return last;
2978 }
2979 
2980 static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long seq)
2981 {
2982 	bool success = false;
2983 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2984 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
2985 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
2986 
2987 	spin_lock(&mm_list->lock);
2988 
2989 	VM_WARN_ON_ONCE(mm_state->seq + 1 < seq);
2990 
2991 	if (seq > mm_state->seq) {
2992 		mm_state->head = NULL;
2993 		mm_state->tail = NULL;
2994 		WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
2995 		success = true;
2996 	}
2997 
2998 	spin_unlock(&mm_list->lock);
2999 
3000 	return success;
3001 }
3002 
3003 /******************************************************************************
3004  *                          PID controller
3005  ******************************************************************************/
3006 
3007 /*
3008  * A feedback loop based on Proportional-Integral-Derivative (PID) controller.
3009  *
3010  * The P term is refaulted/(evicted+protected) from a tier in the generation
3011  * currently being evicted; the I term is the exponential moving average of the
3012  * P term over the generations previously evicted, using the smoothing factor
3013  * 1/2; the D term isn't supported.
3014  *
3015  * The setpoint (SP) is always the first tier of one type; the process variable
3016  * (PV) is either any tier of the other type or any other tier of the same
3017  * type.
3018  *
3019  * The error is the difference between the SP and the PV; the correction is to
3020  * turn off protection when SP>PV or turn on protection when SP<PV.
3021  *
3022  * For future optimizations:
3023  * 1. The D term may discount the other two terms over time so that long-lived
3024  *    generations can resist stale information.
3025  */
3026 struct ctrl_pos {
3027 	unsigned long refaulted;
3028 	unsigned long total;
3029 	int gain;
3030 };
3031 
3032 static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain,
3033 			  struct ctrl_pos *pos)
3034 {
3035 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3036 	int hist = lru_hist_from_seq(lrugen->min_seq[type]);
3037 
3038 	pos->refaulted = lrugen->avg_refaulted[type][tier] +
3039 			 atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3040 	pos->total = lrugen->avg_total[type][tier] +
3041 		     atomic_long_read(&lrugen->evicted[hist][type][tier]);
3042 	if (tier)
3043 		pos->total += lrugen->protected[hist][type][tier - 1];
3044 	pos->gain = gain;
3045 }
3046 
3047 static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover)
3048 {
3049 	int hist, tier;
3050 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3051 	bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1;
3052 	unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1;
3053 
3054 	lockdep_assert_held(&lruvec->lru_lock);
3055 
3056 	if (!carryover && !clear)
3057 		return;
3058 
3059 	hist = lru_hist_from_seq(seq);
3060 
3061 	for (tier = 0; tier < MAX_NR_TIERS; tier++) {
3062 		if (carryover) {
3063 			unsigned long sum;
3064 
3065 			sum = lrugen->avg_refaulted[type][tier] +
3066 			      atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3067 			WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2);
3068 
3069 			sum = lrugen->avg_total[type][tier] +
3070 			      atomic_long_read(&lrugen->evicted[hist][type][tier]);
3071 			if (tier)
3072 				sum += lrugen->protected[hist][type][tier - 1];
3073 			WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2);
3074 		}
3075 
3076 		if (clear) {
3077 			atomic_long_set(&lrugen->refaulted[hist][type][tier], 0);
3078 			atomic_long_set(&lrugen->evicted[hist][type][tier], 0);
3079 			if (tier)
3080 				WRITE_ONCE(lrugen->protected[hist][type][tier - 1], 0);
3081 		}
3082 	}
3083 }
3084 
3085 static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv)
3086 {
3087 	/*
3088 	 * Return true if the PV has a limited number of refaults or a lower
3089 	 * refaulted/total than the SP.
3090 	 */
3091 	return pv->refaulted < MIN_LRU_BATCH ||
3092 	       pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <=
3093 	       (sp->refaulted + 1) * pv->total * pv->gain;
3094 }
3095 
3096 /******************************************************************************
3097  *                          the aging
3098  ******************************************************************************/
3099 
3100 /* promote pages accessed through page tables */
3101 static int folio_update_gen(struct folio *folio, int gen)
3102 {
3103 	unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3104 
3105 	VM_WARN_ON_ONCE(gen >= MAX_NR_GENS);
3106 	VM_WARN_ON_ONCE(!rcu_read_lock_held());
3107 
3108 	do {
3109 		/* lru_gen_del_folio() has isolated this page? */
3110 		if (!(old_flags & LRU_GEN_MASK)) {
3111 			/* for shrink_folio_list() */
3112 			new_flags = old_flags | BIT(PG_referenced);
3113 			continue;
3114 		}
3115 
3116 		new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3117 		new_flags |= (gen + 1UL) << LRU_GEN_PGOFF;
3118 	} while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3119 
3120 	return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3121 }
3122 
3123 /* protect pages accessed multiple times through file descriptors */
3124 static int folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming)
3125 {
3126 	int type = folio_is_file_lru(folio);
3127 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3128 	int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
3129 	unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3130 
3131 	VM_WARN_ON_ONCE_FOLIO(!(old_flags & LRU_GEN_MASK), folio);
3132 
3133 	do {
3134 		new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3135 		/* folio_update_gen() has promoted this page? */
3136 		if (new_gen >= 0 && new_gen != old_gen)
3137 			return new_gen;
3138 
3139 		new_gen = (old_gen + 1) % MAX_NR_GENS;
3140 
3141 		new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3142 		new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF;
3143 		/* for folio_end_writeback() */
3144 		if (reclaiming)
3145 			new_flags |= BIT(PG_reclaim);
3146 	} while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3147 
3148 	lru_gen_update_size(lruvec, folio, old_gen, new_gen);
3149 
3150 	return new_gen;
3151 }
3152 
3153 static void update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio,
3154 			      int old_gen, int new_gen)
3155 {
3156 	int type = folio_is_file_lru(folio);
3157 	int zone = folio_zonenum(folio);
3158 	int delta = folio_nr_pages(folio);
3159 
3160 	VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS);
3161 	VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS);
3162 
3163 	walk->batched++;
3164 
3165 	walk->nr_pages[old_gen][type][zone] -= delta;
3166 	walk->nr_pages[new_gen][type][zone] += delta;
3167 }
3168 
3169 static void reset_batch_size(struct lru_gen_mm_walk *walk)
3170 {
3171 	int gen, type, zone;
3172 	struct lruvec *lruvec = walk->lruvec;
3173 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3174 
3175 	walk->batched = 0;
3176 
3177 	for_each_gen_type_zone(gen, type, zone) {
3178 		enum lru_list lru = type * LRU_INACTIVE_FILE;
3179 		int delta = walk->nr_pages[gen][type][zone];
3180 
3181 		if (!delta)
3182 			continue;
3183 
3184 		walk->nr_pages[gen][type][zone] = 0;
3185 		WRITE_ONCE(lrugen->nr_pages[gen][type][zone],
3186 			   lrugen->nr_pages[gen][type][zone] + delta);
3187 
3188 		if (lru_gen_is_active(lruvec, gen))
3189 			lru += LRU_ACTIVE;
3190 		__update_lru_size(lruvec, lru, zone, delta);
3191 	}
3192 }
3193 
3194 static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args)
3195 {
3196 	struct address_space *mapping;
3197 	struct vm_area_struct *vma = args->vma;
3198 	struct lru_gen_mm_walk *walk = args->private;
3199 
3200 	if (!vma_is_accessible(vma))
3201 		return true;
3202 
3203 	if (is_vm_hugetlb_page(vma))
3204 		return true;
3205 
3206 	if (!vma_has_recency(vma))
3207 		return true;
3208 
3209 	if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL))
3210 		return true;
3211 
3212 	if (vma == get_gate_vma(vma->vm_mm))
3213 		return true;
3214 
3215 	if (vma_is_anonymous(vma))
3216 		return !walk->can_swap;
3217 
3218 	if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping))
3219 		return true;
3220 
3221 	mapping = vma->vm_file->f_mapping;
3222 	if (mapping_unevictable(mapping))
3223 		return true;
3224 
3225 	if (shmem_mapping(mapping))
3226 		return !walk->can_swap;
3227 
3228 	/* to exclude special mappings like dax, etc. */
3229 	return !mapping->a_ops->read_folio;
3230 }
3231 
3232 /*
3233  * Some userspace memory allocators map many single-page VMAs. Instead of
3234  * returning back to the PGD table for each of such VMAs, finish an entire PMD
3235  * table to reduce zigzags and improve cache performance.
3236  */
3237 static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args,
3238 			 unsigned long *vm_start, unsigned long *vm_end)
3239 {
3240 	unsigned long start = round_up(*vm_end, size);
3241 	unsigned long end = (start | ~mask) + 1;
3242 	VMA_ITERATOR(vmi, args->mm, start);
3243 
3244 	VM_WARN_ON_ONCE(mask & size);
3245 	VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask));
3246 
3247 	for_each_vma(vmi, args->vma) {
3248 		if (end && end <= args->vma->vm_start)
3249 			return false;
3250 
3251 		if (should_skip_vma(args->vma->vm_start, args->vma->vm_end, args))
3252 			continue;
3253 
3254 		*vm_start = max(start, args->vma->vm_start);
3255 		*vm_end = min(end - 1, args->vma->vm_end - 1) + 1;
3256 
3257 		return true;
3258 	}
3259 
3260 	return false;
3261 }
3262 
3263 static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr)
3264 {
3265 	unsigned long pfn = pte_pfn(pte);
3266 
3267 	VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3268 
3269 	if (!pte_present(pte) || is_zero_pfn(pfn))
3270 		return -1;
3271 
3272 	if (WARN_ON_ONCE(pte_devmap(pte) || pte_special(pte)))
3273 		return -1;
3274 
3275 	if (WARN_ON_ONCE(!pfn_valid(pfn)))
3276 		return -1;
3277 
3278 	return pfn;
3279 }
3280 
3281 static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr)
3282 {
3283 	unsigned long pfn = pmd_pfn(pmd);
3284 
3285 	VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3286 
3287 	if (!pmd_present(pmd) || is_huge_zero_pmd(pmd))
3288 		return -1;
3289 
3290 	if (WARN_ON_ONCE(pmd_devmap(pmd)))
3291 		return -1;
3292 
3293 	if (WARN_ON_ONCE(!pfn_valid(pfn)))
3294 		return -1;
3295 
3296 	return pfn;
3297 }
3298 
3299 static struct folio *get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg,
3300 				   struct pglist_data *pgdat, bool can_swap)
3301 {
3302 	struct folio *folio;
3303 
3304 	/* try to avoid unnecessary memory loads */
3305 	if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
3306 		return NULL;
3307 
3308 	folio = pfn_folio(pfn);
3309 	if (folio_nid(folio) != pgdat->node_id)
3310 		return NULL;
3311 
3312 	if (folio_memcg_rcu(folio) != memcg)
3313 		return NULL;
3314 
3315 	/* file VMAs can contain anon pages from COW */
3316 	if (!folio_is_file_lru(folio) && !can_swap)
3317 		return NULL;
3318 
3319 	return folio;
3320 }
3321 
3322 static bool suitable_to_scan(int total, int young)
3323 {
3324 	int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8);
3325 
3326 	/* suitable if the average number of young PTEs per cacheline is >=1 */
3327 	return young * n >= total;
3328 }
3329 
3330 static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end,
3331 			   struct mm_walk *args)
3332 {
3333 	int i;
3334 	pte_t *pte;
3335 	spinlock_t *ptl;
3336 	unsigned long addr;
3337 	int total = 0;
3338 	int young = 0;
3339 	struct lru_gen_mm_walk *walk = args->private;
3340 	struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3341 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3342 	DEFINE_MAX_SEQ(walk->lruvec);
3343 	int old_gen, new_gen = lru_gen_from_seq(max_seq);
3344 
3345 	pte = pte_offset_map_nolock(args->mm, pmd, start & PMD_MASK, &ptl);
3346 	if (!pte)
3347 		return false;
3348 	if (!spin_trylock(ptl)) {
3349 		pte_unmap(pte);
3350 		return false;
3351 	}
3352 
3353 	arch_enter_lazy_mmu_mode();
3354 restart:
3355 	for (i = pte_index(start), addr = start; addr != end; i++, addr += PAGE_SIZE) {
3356 		unsigned long pfn;
3357 		struct folio *folio;
3358 		pte_t ptent = ptep_get(pte + i);
3359 
3360 		total++;
3361 		walk->mm_stats[MM_LEAF_TOTAL]++;
3362 
3363 		pfn = get_pte_pfn(ptent, args->vma, addr);
3364 		if (pfn == -1)
3365 			continue;
3366 
3367 		if (!pte_young(ptent)) {
3368 			walk->mm_stats[MM_LEAF_OLD]++;
3369 			continue;
3370 		}
3371 
3372 		folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
3373 		if (!folio)
3374 			continue;
3375 
3376 		if (!ptep_test_and_clear_young(args->vma, addr, pte + i))
3377 			VM_WARN_ON_ONCE(true);
3378 
3379 		young++;
3380 		walk->mm_stats[MM_LEAF_YOUNG]++;
3381 
3382 		if (pte_dirty(ptent) && !folio_test_dirty(folio) &&
3383 		    !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
3384 		      !folio_test_swapcache(folio)))
3385 			folio_mark_dirty(folio);
3386 
3387 		old_gen = folio_update_gen(folio, new_gen);
3388 		if (old_gen >= 0 && old_gen != new_gen)
3389 			update_batch_size(walk, folio, old_gen, new_gen);
3390 	}
3391 
3392 	if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, &start, &end))
3393 		goto restart;
3394 
3395 	arch_leave_lazy_mmu_mode();
3396 	pte_unmap_unlock(pte, ptl);
3397 
3398 	return suitable_to_scan(total, young);
3399 }
3400 
3401 static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma,
3402 				  struct mm_walk *args, unsigned long *bitmap, unsigned long *first)
3403 {
3404 	int i;
3405 	pmd_t *pmd;
3406 	spinlock_t *ptl;
3407 	struct lru_gen_mm_walk *walk = args->private;
3408 	struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3409 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3410 	DEFINE_MAX_SEQ(walk->lruvec);
3411 	int old_gen, new_gen = lru_gen_from_seq(max_seq);
3412 
3413 	VM_WARN_ON_ONCE(pud_leaf(*pud));
3414 
3415 	/* try to batch at most 1+MIN_LRU_BATCH+1 entries */
3416 	if (*first == -1) {
3417 		*first = addr;
3418 		bitmap_zero(bitmap, MIN_LRU_BATCH);
3419 		return;
3420 	}
3421 
3422 	i = addr == -1 ? 0 : pmd_index(addr) - pmd_index(*first);
3423 	if (i && i <= MIN_LRU_BATCH) {
3424 		__set_bit(i - 1, bitmap);
3425 		return;
3426 	}
3427 
3428 	pmd = pmd_offset(pud, *first);
3429 
3430 	ptl = pmd_lockptr(args->mm, pmd);
3431 	if (!spin_trylock(ptl))
3432 		goto done;
3433 
3434 	arch_enter_lazy_mmu_mode();
3435 
3436 	do {
3437 		unsigned long pfn;
3438 		struct folio *folio;
3439 
3440 		/* don't round down the first address */
3441 		addr = i ? (*first & PMD_MASK) + i * PMD_SIZE : *first;
3442 
3443 		pfn = get_pmd_pfn(pmd[i], vma, addr);
3444 		if (pfn == -1)
3445 			goto next;
3446 
3447 		if (!pmd_trans_huge(pmd[i])) {
3448 			if (should_clear_pmd_young())
3449 				pmdp_test_and_clear_young(vma, addr, pmd + i);
3450 			goto next;
3451 		}
3452 
3453 		folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
3454 		if (!folio)
3455 			goto next;
3456 
3457 		if (!pmdp_test_and_clear_young(vma, addr, pmd + i))
3458 			goto next;
3459 
3460 		walk->mm_stats[MM_LEAF_YOUNG]++;
3461 
3462 		if (pmd_dirty(pmd[i]) && !folio_test_dirty(folio) &&
3463 		    !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
3464 		      !folio_test_swapcache(folio)))
3465 			folio_mark_dirty(folio);
3466 
3467 		old_gen = folio_update_gen(folio, new_gen);
3468 		if (old_gen >= 0 && old_gen != new_gen)
3469 			update_batch_size(walk, folio, old_gen, new_gen);
3470 next:
3471 		i = i > MIN_LRU_BATCH ? 0 : find_next_bit(bitmap, MIN_LRU_BATCH, i) + 1;
3472 	} while (i <= MIN_LRU_BATCH);
3473 
3474 	arch_leave_lazy_mmu_mode();
3475 	spin_unlock(ptl);
3476 done:
3477 	*first = -1;
3478 }
3479 
3480 static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end,
3481 			   struct mm_walk *args)
3482 {
3483 	int i;
3484 	pmd_t *pmd;
3485 	unsigned long next;
3486 	unsigned long addr;
3487 	struct vm_area_struct *vma;
3488 	DECLARE_BITMAP(bitmap, MIN_LRU_BATCH);
3489 	unsigned long first = -1;
3490 	struct lru_gen_mm_walk *walk = args->private;
3491 	struct lru_gen_mm_state *mm_state = get_mm_state(walk->lruvec);
3492 
3493 	VM_WARN_ON_ONCE(pud_leaf(*pud));
3494 
3495 	/*
3496 	 * Finish an entire PMD in two passes: the first only reaches to PTE
3497 	 * tables to avoid taking the PMD lock; the second, if necessary, takes
3498 	 * the PMD lock to clear the accessed bit in PMD entries.
3499 	 */
3500 	pmd = pmd_offset(pud, start & PUD_MASK);
3501 restart:
3502 	/* walk_pte_range() may call get_next_vma() */
3503 	vma = args->vma;
3504 	for (i = pmd_index(start), addr = start; addr != end; i++, addr = next) {
3505 		pmd_t val = pmdp_get_lockless(pmd + i);
3506 
3507 		next = pmd_addr_end(addr, end);
3508 
3509 		if (!pmd_present(val) || is_huge_zero_pmd(val)) {
3510 			walk->mm_stats[MM_LEAF_TOTAL]++;
3511 			continue;
3512 		}
3513 
3514 		if (pmd_trans_huge(val)) {
3515 			unsigned long pfn = pmd_pfn(val);
3516 			struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3517 
3518 			walk->mm_stats[MM_LEAF_TOTAL]++;
3519 
3520 			if (!pmd_young(val)) {
3521 				walk->mm_stats[MM_LEAF_OLD]++;
3522 				continue;
3523 			}
3524 
3525 			/* try to avoid unnecessary memory loads */
3526 			if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
3527 				continue;
3528 
3529 			walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
3530 			continue;
3531 		}
3532 
3533 		walk->mm_stats[MM_NONLEAF_TOTAL]++;
3534 
3535 		if (should_clear_pmd_young()) {
3536 			if (!pmd_young(val))
3537 				continue;
3538 
3539 			walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
3540 		}
3541 
3542 		if (!walk->force_scan && !test_bloom_filter(mm_state, walk->seq, pmd + i))
3543 			continue;
3544 
3545 		walk->mm_stats[MM_NONLEAF_FOUND]++;
3546 
3547 		if (!walk_pte_range(&val, addr, next, args))
3548 			continue;
3549 
3550 		walk->mm_stats[MM_NONLEAF_ADDED]++;
3551 
3552 		/* carry over to the next generation */
3553 		update_bloom_filter(mm_state, walk->seq + 1, pmd + i);
3554 	}
3555 
3556 	walk_pmd_range_locked(pud, -1, vma, args, bitmap, &first);
3557 
3558 	if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, &start, &end))
3559 		goto restart;
3560 }
3561 
3562 static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end,
3563 			  struct mm_walk *args)
3564 {
3565 	int i;
3566 	pud_t *pud;
3567 	unsigned long addr;
3568 	unsigned long next;
3569 	struct lru_gen_mm_walk *walk = args->private;
3570 
3571 	VM_WARN_ON_ONCE(p4d_leaf(*p4d));
3572 
3573 	pud = pud_offset(p4d, start & P4D_MASK);
3574 restart:
3575 	for (i = pud_index(start), addr = start; addr != end; i++, addr = next) {
3576 		pud_t val = READ_ONCE(pud[i]);
3577 
3578 		next = pud_addr_end(addr, end);
3579 
3580 		if (!pud_present(val) || WARN_ON_ONCE(pud_leaf(val)))
3581 			continue;
3582 
3583 		walk_pmd_range(&val, addr, next, args);
3584 
3585 		if (need_resched() || walk->batched >= MAX_LRU_BATCH) {
3586 			end = (addr | ~PUD_MASK) + 1;
3587 			goto done;
3588 		}
3589 	}
3590 
3591 	if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, &start, &end))
3592 		goto restart;
3593 
3594 	end = round_up(end, P4D_SIZE);
3595 done:
3596 	if (!end || !args->vma)
3597 		return 1;
3598 
3599 	walk->next_addr = max(end, args->vma->vm_start);
3600 
3601 	return -EAGAIN;
3602 }
3603 
3604 static void walk_mm(struct mm_struct *mm, struct lru_gen_mm_walk *walk)
3605 {
3606 	static const struct mm_walk_ops mm_walk_ops = {
3607 		.test_walk = should_skip_vma,
3608 		.p4d_entry = walk_pud_range,
3609 		.walk_lock = PGWALK_RDLOCK,
3610 	};
3611 
3612 	int err;
3613 	struct lruvec *lruvec = walk->lruvec;
3614 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3615 
3616 	walk->next_addr = FIRST_USER_ADDRESS;
3617 
3618 	do {
3619 		DEFINE_MAX_SEQ(lruvec);
3620 
3621 		err = -EBUSY;
3622 
3623 		/* another thread might have called inc_max_seq() */
3624 		if (walk->seq != max_seq)
3625 			break;
3626 
3627 		/* folio_update_gen() requires stable folio_memcg() */
3628 		if (!mem_cgroup_trylock_pages(memcg))
3629 			break;
3630 
3631 		/* the caller might be holding the lock for write */
3632 		if (mmap_read_trylock(mm)) {
3633 			err = walk_page_range(mm, walk->next_addr, ULONG_MAX, &mm_walk_ops, walk);
3634 
3635 			mmap_read_unlock(mm);
3636 		}
3637 
3638 		mem_cgroup_unlock_pages();
3639 
3640 		if (walk->batched) {
3641 			spin_lock_irq(&lruvec->lru_lock);
3642 			reset_batch_size(walk);
3643 			spin_unlock_irq(&lruvec->lru_lock);
3644 		}
3645 
3646 		cond_resched();
3647 	} while (err == -EAGAIN);
3648 }
3649 
3650 static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat, bool force_alloc)
3651 {
3652 	struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
3653 
3654 	if (pgdat && current_is_kswapd()) {
3655 		VM_WARN_ON_ONCE(walk);
3656 
3657 		walk = &pgdat->mm_walk;
3658 	} else if (!walk && force_alloc) {
3659 		VM_WARN_ON_ONCE(current_is_kswapd());
3660 
3661 		walk = kzalloc(sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
3662 	}
3663 
3664 	current->reclaim_state->mm_walk = walk;
3665 
3666 	return walk;
3667 }
3668 
3669 static void clear_mm_walk(void)
3670 {
3671 	struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
3672 
3673 	VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages)));
3674 	VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats)));
3675 
3676 	current->reclaim_state->mm_walk = NULL;
3677 
3678 	if (!current_is_kswapd())
3679 		kfree(walk);
3680 }
3681 
3682 static bool inc_min_seq(struct lruvec *lruvec, int type, bool can_swap)
3683 {
3684 	int zone;
3685 	int remaining = MAX_LRU_BATCH;
3686 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3687 	int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
3688 
3689 	if (type == LRU_GEN_ANON && !can_swap)
3690 		goto done;
3691 
3692 	/* prevent cold/hot inversion if force_scan is true */
3693 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3694 		struct list_head *head = &lrugen->folios[old_gen][type][zone];
3695 
3696 		while (!list_empty(head)) {
3697 			struct folio *folio = lru_to_folio(head);
3698 
3699 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
3700 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
3701 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
3702 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
3703 
3704 			new_gen = folio_inc_gen(lruvec, folio, false);
3705 			list_move_tail(&folio->lru, &lrugen->folios[new_gen][type][zone]);
3706 
3707 			if (!--remaining)
3708 				return false;
3709 		}
3710 	}
3711 done:
3712 	reset_ctrl_pos(lruvec, type, true);
3713 	WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1);
3714 
3715 	return true;
3716 }
3717 
3718 static bool try_to_inc_min_seq(struct lruvec *lruvec, bool can_swap)
3719 {
3720 	int gen, type, zone;
3721 	bool success = false;
3722 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3723 	DEFINE_MIN_SEQ(lruvec);
3724 
3725 	VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
3726 
3727 	/* find the oldest populated generation */
3728 	for (type = !can_swap; type < ANON_AND_FILE; type++) {
3729 		while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) {
3730 			gen = lru_gen_from_seq(min_seq[type]);
3731 
3732 			for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3733 				if (!list_empty(&lrugen->folios[gen][type][zone]))
3734 					goto next;
3735 			}
3736 
3737 			min_seq[type]++;
3738 		}
3739 next:
3740 		;
3741 	}
3742 
3743 	/* see the comment on lru_gen_folio */
3744 	if (can_swap) {
3745 		min_seq[LRU_GEN_ANON] = min(min_seq[LRU_GEN_ANON], min_seq[LRU_GEN_FILE]);
3746 		min_seq[LRU_GEN_FILE] = max(min_seq[LRU_GEN_ANON], lrugen->min_seq[LRU_GEN_FILE]);
3747 	}
3748 
3749 	for (type = !can_swap; type < ANON_AND_FILE; type++) {
3750 		if (min_seq[type] == lrugen->min_seq[type])
3751 			continue;
3752 
3753 		reset_ctrl_pos(lruvec, type, true);
3754 		WRITE_ONCE(lrugen->min_seq[type], min_seq[type]);
3755 		success = true;
3756 	}
3757 
3758 	return success;
3759 }
3760 
3761 static bool inc_max_seq(struct lruvec *lruvec, unsigned long seq,
3762 			bool can_swap, bool force_scan)
3763 {
3764 	bool success;
3765 	int prev, next;
3766 	int type, zone;
3767 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3768 restart:
3769 	if (seq < READ_ONCE(lrugen->max_seq))
3770 		return false;
3771 
3772 	spin_lock_irq(&lruvec->lru_lock);
3773 
3774 	VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
3775 
3776 	success = seq == lrugen->max_seq;
3777 	if (!success)
3778 		goto unlock;
3779 
3780 	for (type = ANON_AND_FILE - 1; type >= 0; type--) {
3781 		if (get_nr_gens(lruvec, type) != MAX_NR_GENS)
3782 			continue;
3783 
3784 		VM_WARN_ON_ONCE(!force_scan && (type == LRU_GEN_FILE || can_swap));
3785 
3786 		if (inc_min_seq(lruvec, type, can_swap))
3787 			continue;
3788 
3789 		spin_unlock_irq(&lruvec->lru_lock);
3790 		cond_resched();
3791 		goto restart;
3792 	}
3793 
3794 	/*
3795 	 * Update the active/inactive LRU sizes for compatibility. Both sides of
3796 	 * the current max_seq need to be covered, since max_seq+1 can overlap
3797 	 * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do
3798 	 * overlap, cold/hot inversion happens.
3799 	 */
3800 	prev = lru_gen_from_seq(lrugen->max_seq - 1);
3801 	next = lru_gen_from_seq(lrugen->max_seq + 1);
3802 
3803 	for (type = 0; type < ANON_AND_FILE; type++) {
3804 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3805 			enum lru_list lru = type * LRU_INACTIVE_FILE;
3806 			long delta = lrugen->nr_pages[prev][type][zone] -
3807 				     lrugen->nr_pages[next][type][zone];
3808 
3809 			if (!delta)
3810 				continue;
3811 
3812 			__update_lru_size(lruvec, lru, zone, delta);
3813 			__update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta);
3814 		}
3815 	}
3816 
3817 	for (type = 0; type < ANON_AND_FILE; type++)
3818 		reset_ctrl_pos(lruvec, type, false);
3819 
3820 	WRITE_ONCE(lrugen->timestamps[next], jiffies);
3821 	/* make sure preceding modifications appear */
3822 	smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1);
3823 unlock:
3824 	spin_unlock_irq(&lruvec->lru_lock);
3825 
3826 	return success;
3827 }
3828 
3829 static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long seq,
3830 			       bool can_swap, bool force_scan)
3831 {
3832 	bool success;
3833 	struct lru_gen_mm_walk *walk;
3834 	struct mm_struct *mm = NULL;
3835 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3836 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
3837 
3838 	VM_WARN_ON_ONCE(seq > READ_ONCE(lrugen->max_seq));
3839 
3840 	if (!mm_state)
3841 		return inc_max_seq(lruvec, seq, can_swap, force_scan);
3842 
3843 	/* see the comment in iterate_mm_list() */
3844 	if (seq <= READ_ONCE(mm_state->seq))
3845 		return false;
3846 
3847 	/*
3848 	 * If the hardware doesn't automatically set the accessed bit, fallback
3849 	 * to lru_gen_look_around(), which only clears the accessed bit in a
3850 	 * handful of PTEs. Spreading the work out over a period of time usually
3851 	 * is less efficient, but it avoids bursty page faults.
3852 	 */
3853 	if (!should_walk_mmu()) {
3854 		success = iterate_mm_list_nowalk(lruvec, seq);
3855 		goto done;
3856 	}
3857 
3858 	walk = set_mm_walk(NULL, true);
3859 	if (!walk) {
3860 		success = iterate_mm_list_nowalk(lruvec, seq);
3861 		goto done;
3862 	}
3863 
3864 	walk->lruvec = lruvec;
3865 	walk->seq = seq;
3866 	walk->can_swap = can_swap;
3867 	walk->force_scan = force_scan;
3868 
3869 	do {
3870 		success = iterate_mm_list(walk, &mm);
3871 		if (mm)
3872 			walk_mm(mm, walk);
3873 	} while (mm);
3874 done:
3875 	if (success) {
3876 		success = inc_max_seq(lruvec, seq, can_swap, force_scan);
3877 		WARN_ON_ONCE(!success);
3878 	}
3879 
3880 	return success;
3881 }
3882 
3883 /******************************************************************************
3884  *                          working set protection
3885  ******************************************************************************/
3886 
3887 static bool lruvec_is_sizable(struct lruvec *lruvec, struct scan_control *sc)
3888 {
3889 	int gen, type, zone;
3890 	unsigned long total = 0;
3891 	bool can_swap = get_swappiness(lruvec, sc);
3892 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3893 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3894 	DEFINE_MAX_SEQ(lruvec);
3895 	DEFINE_MIN_SEQ(lruvec);
3896 
3897 	for (type = !can_swap; type < ANON_AND_FILE; type++) {
3898 		unsigned long seq;
3899 
3900 		for (seq = min_seq[type]; seq <= max_seq; seq++) {
3901 			gen = lru_gen_from_seq(seq);
3902 
3903 			for (zone = 0; zone < MAX_NR_ZONES; zone++)
3904 				total += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
3905 		}
3906 	}
3907 
3908 	/* whether the size is big enough to be helpful */
3909 	return mem_cgroup_online(memcg) ? (total >> sc->priority) : total;
3910 }
3911 
3912 static bool lruvec_is_reclaimable(struct lruvec *lruvec, struct scan_control *sc,
3913 				  unsigned long min_ttl)
3914 {
3915 	int gen;
3916 	unsigned long birth;
3917 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3918 	DEFINE_MIN_SEQ(lruvec);
3919 
3920 	/* see the comment on lru_gen_folio */
3921 	gen = lru_gen_from_seq(min_seq[LRU_GEN_FILE]);
3922 	birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
3923 
3924 	if (time_is_after_jiffies(birth + min_ttl))
3925 		return false;
3926 
3927 	if (!lruvec_is_sizable(lruvec, sc))
3928 		return false;
3929 
3930 	mem_cgroup_calculate_protection(NULL, memcg);
3931 
3932 	return !mem_cgroup_below_min(NULL, memcg);
3933 }
3934 
3935 /* to protect the working set of the last N jiffies */
3936 static unsigned long lru_gen_min_ttl __read_mostly;
3937 
3938 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
3939 {
3940 	struct mem_cgroup *memcg;
3941 	unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl);
3942 
3943 	VM_WARN_ON_ONCE(!current_is_kswapd());
3944 
3945 	/* check the order to exclude compaction-induced reclaim */
3946 	if (!min_ttl || sc->order || sc->priority == DEF_PRIORITY)
3947 		return;
3948 
3949 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
3950 	do {
3951 		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3952 
3953 		if (lruvec_is_reclaimable(lruvec, sc, min_ttl)) {
3954 			mem_cgroup_iter_break(NULL, memcg);
3955 			return;
3956 		}
3957 
3958 		cond_resched();
3959 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
3960 
3961 	/*
3962 	 * The main goal is to OOM kill if every generation from all memcgs is
3963 	 * younger than min_ttl. However, another possibility is all memcgs are
3964 	 * either too small or below min.
3965 	 */
3966 	if (mutex_trylock(&oom_lock)) {
3967 		struct oom_control oc = {
3968 			.gfp_mask = sc->gfp_mask,
3969 		};
3970 
3971 		out_of_memory(&oc);
3972 
3973 		mutex_unlock(&oom_lock);
3974 	}
3975 }
3976 
3977 /******************************************************************************
3978  *                          rmap/PT walk feedback
3979  ******************************************************************************/
3980 
3981 /*
3982  * This function exploits spatial locality when shrink_folio_list() walks the
3983  * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If
3984  * the scan was done cacheline efficiently, it adds the PMD entry pointing to
3985  * the PTE table to the Bloom filter. This forms a feedback loop between the
3986  * eviction and the aging.
3987  */
3988 void lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
3989 {
3990 	int i;
3991 	unsigned long start;
3992 	unsigned long end;
3993 	struct lru_gen_mm_walk *walk;
3994 	int young = 0;
3995 	pte_t *pte = pvmw->pte;
3996 	unsigned long addr = pvmw->address;
3997 	struct vm_area_struct *vma = pvmw->vma;
3998 	struct folio *folio = pfn_folio(pvmw->pfn);
3999 	bool can_swap = !folio_is_file_lru(folio);
4000 	struct mem_cgroup *memcg = folio_memcg(folio);
4001 	struct pglist_data *pgdat = folio_pgdat(folio);
4002 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4003 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
4004 	DEFINE_MAX_SEQ(lruvec);
4005 	int old_gen, new_gen = lru_gen_from_seq(max_seq);
4006 
4007 	lockdep_assert_held(pvmw->ptl);
4008 	VM_WARN_ON_ONCE_FOLIO(folio_test_lru(folio), folio);
4009 
4010 	if (spin_is_contended(pvmw->ptl))
4011 		return;
4012 
4013 	/* exclude special VMAs containing anon pages from COW */
4014 	if (vma->vm_flags & VM_SPECIAL)
4015 		return;
4016 
4017 	/* avoid taking the LRU lock under the PTL when possible */
4018 	walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL;
4019 
4020 	start = max(addr & PMD_MASK, vma->vm_start);
4021 	end = min(addr | ~PMD_MASK, vma->vm_end - 1) + 1;
4022 
4023 	if (end - start > MIN_LRU_BATCH * PAGE_SIZE) {
4024 		if (addr - start < MIN_LRU_BATCH * PAGE_SIZE / 2)
4025 			end = start + MIN_LRU_BATCH * PAGE_SIZE;
4026 		else if (end - addr < MIN_LRU_BATCH * PAGE_SIZE / 2)
4027 			start = end - MIN_LRU_BATCH * PAGE_SIZE;
4028 		else {
4029 			start = addr - MIN_LRU_BATCH * PAGE_SIZE / 2;
4030 			end = addr + MIN_LRU_BATCH * PAGE_SIZE / 2;
4031 		}
4032 	}
4033 
4034 	/* folio_update_gen() requires stable folio_memcg() */
4035 	if (!mem_cgroup_trylock_pages(memcg))
4036 		return;
4037 
4038 	arch_enter_lazy_mmu_mode();
4039 
4040 	pte -= (addr - start) / PAGE_SIZE;
4041 
4042 	for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) {
4043 		unsigned long pfn;
4044 		pte_t ptent = ptep_get(pte + i);
4045 
4046 		pfn = get_pte_pfn(ptent, vma, addr);
4047 		if (pfn == -1)
4048 			continue;
4049 
4050 		if (!pte_young(ptent))
4051 			continue;
4052 
4053 		folio = get_pfn_folio(pfn, memcg, pgdat, can_swap);
4054 		if (!folio)
4055 			continue;
4056 
4057 		if (!ptep_test_and_clear_young(vma, addr, pte + i))
4058 			VM_WARN_ON_ONCE(true);
4059 
4060 		young++;
4061 
4062 		if (pte_dirty(ptent) && !folio_test_dirty(folio) &&
4063 		    !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
4064 		      !folio_test_swapcache(folio)))
4065 			folio_mark_dirty(folio);
4066 
4067 		if (walk) {
4068 			old_gen = folio_update_gen(folio, new_gen);
4069 			if (old_gen >= 0 && old_gen != new_gen)
4070 				update_batch_size(walk, folio, old_gen, new_gen);
4071 
4072 			continue;
4073 		}
4074 
4075 		old_gen = folio_lru_gen(folio);
4076 		if (old_gen < 0)
4077 			folio_set_referenced(folio);
4078 		else if (old_gen != new_gen)
4079 			folio_activate(folio);
4080 	}
4081 
4082 	arch_leave_lazy_mmu_mode();
4083 	mem_cgroup_unlock_pages();
4084 
4085 	/* feedback from rmap walkers to page table walkers */
4086 	if (mm_state && suitable_to_scan(i, young))
4087 		update_bloom_filter(mm_state, max_seq, pvmw->pmd);
4088 }
4089 
4090 /******************************************************************************
4091  *                          memcg LRU
4092  ******************************************************************************/
4093 
4094 /* see the comment on MEMCG_NR_GENS */
4095 enum {
4096 	MEMCG_LRU_NOP,
4097 	MEMCG_LRU_HEAD,
4098 	MEMCG_LRU_TAIL,
4099 	MEMCG_LRU_OLD,
4100 	MEMCG_LRU_YOUNG,
4101 };
4102 
4103 static void lru_gen_rotate_memcg(struct lruvec *lruvec, int op)
4104 {
4105 	int seg;
4106 	int old, new;
4107 	unsigned long flags;
4108 	int bin = get_random_u32_below(MEMCG_NR_BINS);
4109 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4110 
4111 	spin_lock_irqsave(&pgdat->memcg_lru.lock, flags);
4112 
4113 	VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list));
4114 
4115 	seg = 0;
4116 	new = old = lruvec->lrugen.gen;
4117 
4118 	/* see the comment on MEMCG_NR_GENS */
4119 	if (op == MEMCG_LRU_HEAD)
4120 		seg = MEMCG_LRU_HEAD;
4121 	else if (op == MEMCG_LRU_TAIL)
4122 		seg = MEMCG_LRU_TAIL;
4123 	else if (op == MEMCG_LRU_OLD)
4124 		new = get_memcg_gen(pgdat->memcg_lru.seq);
4125 	else if (op == MEMCG_LRU_YOUNG)
4126 		new = get_memcg_gen(pgdat->memcg_lru.seq + 1);
4127 	else
4128 		VM_WARN_ON_ONCE(true);
4129 
4130 	WRITE_ONCE(lruvec->lrugen.seg, seg);
4131 	WRITE_ONCE(lruvec->lrugen.gen, new);
4132 
4133 	hlist_nulls_del_rcu(&lruvec->lrugen.list);
4134 
4135 	if (op == MEMCG_LRU_HEAD || op == MEMCG_LRU_OLD)
4136 		hlist_nulls_add_head_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
4137 	else
4138 		hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
4139 
4140 	pgdat->memcg_lru.nr_memcgs[old]--;
4141 	pgdat->memcg_lru.nr_memcgs[new]++;
4142 
4143 	if (!pgdat->memcg_lru.nr_memcgs[old] && old == get_memcg_gen(pgdat->memcg_lru.seq))
4144 		WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
4145 
4146 	spin_unlock_irqrestore(&pgdat->memcg_lru.lock, flags);
4147 }
4148 
4149 #ifdef CONFIG_MEMCG
4150 
4151 void lru_gen_online_memcg(struct mem_cgroup *memcg)
4152 {
4153 	int gen;
4154 	int nid;
4155 	int bin = get_random_u32_below(MEMCG_NR_BINS);
4156 
4157 	for_each_node(nid) {
4158 		struct pglist_data *pgdat = NODE_DATA(nid);
4159 		struct lruvec *lruvec = get_lruvec(memcg, nid);
4160 
4161 		spin_lock_irq(&pgdat->memcg_lru.lock);
4162 
4163 		VM_WARN_ON_ONCE(!hlist_nulls_unhashed(&lruvec->lrugen.list));
4164 
4165 		gen = get_memcg_gen(pgdat->memcg_lru.seq);
4166 
4167 		lruvec->lrugen.gen = gen;
4168 
4169 		hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[gen][bin]);
4170 		pgdat->memcg_lru.nr_memcgs[gen]++;
4171 
4172 		spin_unlock_irq(&pgdat->memcg_lru.lock);
4173 	}
4174 }
4175 
4176 void lru_gen_offline_memcg(struct mem_cgroup *memcg)
4177 {
4178 	int nid;
4179 
4180 	for_each_node(nid) {
4181 		struct lruvec *lruvec = get_lruvec(memcg, nid);
4182 
4183 		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_OLD);
4184 	}
4185 }
4186 
4187 void lru_gen_release_memcg(struct mem_cgroup *memcg)
4188 {
4189 	int gen;
4190 	int nid;
4191 
4192 	for_each_node(nid) {
4193 		struct pglist_data *pgdat = NODE_DATA(nid);
4194 		struct lruvec *lruvec = get_lruvec(memcg, nid);
4195 
4196 		spin_lock_irq(&pgdat->memcg_lru.lock);
4197 
4198 		if (hlist_nulls_unhashed(&lruvec->lrugen.list))
4199 			goto unlock;
4200 
4201 		gen = lruvec->lrugen.gen;
4202 
4203 		hlist_nulls_del_init_rcu(&lruvec->lrugen.list);
4204 		pgdat->memcg_lru.nr_memcgs[gen]--;
4205 
4206 		if (!pgdat->memcg_lru.nr_memcgs[gen] && gen == get_memcg_gen(pgdat->memcg_lru.seq))
4207 			WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
4208 unlock:
4209 		spin_unlock_irq(&pgdat->memcg_lru.lock);
4210 	}
4211 }
4212 
4213 void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid)
4214 {
4215 	struct lruvec *lruvec = get_lruvec(memcg, nid);
4216 
4217 	/* see the comment on MEMCG_NR_GENS */
4218 	if (READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_HEAD)
4219 		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_HEAD);
4220 }
4221 
4222 #endif /* CONFIG_MEMCG */
4223 
4224 /******************************************************************************
4225  *                          the eviction
4226  ******************************************************************************/
4227 
4228 static bool sort_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc,
4229 		       int tier_idx)
4230 {
4231 	bool success;
4232 	int gen = folio_lru_gen(folio);
4233 	int type = folio_is_file_lru(folio);
4234 	int zone = folio_zonenum(folio);
4235 	int delta = folio_nr_pages(folio);
4236 	int refs = folio_lru_refs(folio);
4237 	int tier = lru_tier_from_refs(refs);
4238 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4239 
4240 	VM_WARN_ON_ONCE_FOLIO(gen >= MAX_NR_GENS, folio);
4241 
4242 	/* unevictable */
4243 	if (!folio_evictable(folio)) {
4244 		success = lru_gen_del_folio(lruvec, folio, true);
4245 		VM_WARN_ON_ONCE_FOLIO(!success, folio);
4246 		folio_set_unevictable(folio);
4247 		lruvec_add_folio(lruvec, folio);
4248 		__count_vm_events(UNEVICTABLE_PGCULLED, delta);
4249 		return true;
4250 	}
4251 
4252 	/* dirty lazyfree */
4253 	if (type == LRU_GEN_FILE && folio_test_anon(folio) && folio_test_dirty(folio)) {
4254 		success = lru_gen_del_folio(lruvec, folio, true);
4255 		VM_WARN_ON_ONCE_FOLIO(!success, folio);
4256 		folio_set_swapbacked(folio);
4257 		lruvec_add_folio_tail(lruvec, folio);
4258 		return true;
4259 	}
4260 
4261 	/* promoted */
4262 	if (gen != lru_gen_from_seq(lrugen->min_seq[type])) {
4263 		list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4264 		return true;
4265 	}
4266 
4267 	/* protected */
4268 	if (tier > tier_idx || refs == BIT(LRU_REFS_WIDTH)) {
4269 		int hist = lru_hist_from_seq(lrugen->min_seq[type]);
4270 
4271 		gen = folio_inc_gen(lruvec, folio, false);
4272 		list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]);
4273 
4274 		WRITE_ONCE(lrugen->protected[hist][type][tier - 1],
4275 			   lrugen->protected[hist][type][tier - 1] + delta);
4276 		return true;
4277 	}
4278 
4279 	/* ineligible */
4280 	if (zone > sc->reclaim_idx || skip_cma(folio, sc)) {
4281 		gen = folio_inc_gen(lruvec, folio, false);
4282 		list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]);
4283 		return true;
4284 	}
4285 
4286 	/* waiting for writeback */
4287 	if (folio_test_locked(folio) || folio_test_writeback(folio) ||
4288 	    (type == LRU_GEN_FILE && folio_test_dirty(folio))) {
4289 		gen = folio_inc_gen(lruvec, folio, true);
4290 		list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4291 		return true;
4292 	}
4293 
4294 	return false;
4295 }
4296 
4297 static bool isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc)
4298 {
4299 	bool success;
4300 
4301 	/* swap constrained */
4302 	if (!(sc->gfp_mask & __GFP_IO) &&
4303 	    (folio_test_dirty(folio) ||
4304 	     (folio_test_anon(folio) && !folio_test_swapcache(folio))))
4305 		return false;
4306 
4307 	/* raced with release_pages() */
4308 	if (!folio_try_get(folio))
4309 		return false;
4310 
4311 	/* raced with another isolation */
4312 	if (!folio_test_clear_lru(folio)) {
4313 		folio_put(folio);
4314 		return false;
4315 	}
4316 
4317 	/* see the comment on MAX_NR_TIERS */
4318 	if (!folio_test_referenced(folio))
4319 		set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS, 0);
4320 
4321 	/* for shrink_folio_list() */
4322 	folio_clear_reclaim(folio);
4323 	folio_clear_referenced(folio);
4324 
4325 	success = lru_gen_del_folio(lruvec, folio, true);
4326 	VM_WARN_ON_ONCE_FOLIO(!success, folio);
4327 
4328 	return true;
4329 }
4330 
4331 static int scan_folios(struct lruvec *lruvec, struct scan_control *sc,
4332 		       int type, int tier, struct list_head *list)
4333 {
4334 	int i;
4335 	int gen;
4336 	enum vm_event_item item;
4337 	int sorted = 0;
4338 	int scanned = 0;
4339 	int isolated = 0;
4340 	int skipped = 0;
4341 	int remaining = MAX_LRU_BATCH;
4342 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4343 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4344 
4345 	VM_WARN_ON_ONCE(!list_empty(list));
4346 
4347 	if (get_nr_gens(lruvec, type) == MIN_NR_GENS)
4348 		return 0;
4349 
4350 	gen = lru_gen_from_seq(lrugen->min_seq[type]);
4351 
4352 	for (i = MAX_NR_ZONES; i > 0; i--) {
4353 		LIST_HEAD(moved);
4354 		int skipped_zone = 0;
4355 		int zone = (sc->reclaim_idx + i) % MAX_NR_ZONES;
4356 		struct list_head *head = &lrugen->folios[gen][type][zone];
4357 
4358 		while (!list_empty(head)) {
4359 			struct folio *folio = lru_to_folio(head);
4360 			int delta = folio_nr_pages(folio);
4361 
4362 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
4363 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
4364 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
4365 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
4366 
4367 			scanned += delta;
4368 
4369 			if (sort_folio(lruvec, folio, sc, tier))
4370 				sorted += delta;
4371 			else if (isolate_folio(lruvec, folio, sc)) {
4372 				list_add(&folio->lru, list);
4373 				isolated += delta;
4374 			} else {
4375 				list_move(&folio->lru, &moved);
4376 				skipped_zone += delta;
4377 			}
4378 
4379 			if (!--remaining || max(isolated, skipped_zone) >= MIN_LRU_BATCH)
4380 				break;
4381 		}
4382 
4383 		if (skipped_zone) {
4384 			list_splice(&moved, head);
4385 			__count_zid_vm_events(PGSCAN_SKIP, zone, skipped_zone);
4386 			skipped += skipped_zone;
4387 		}
4388 
4389 		if (!remaining || isolated >= MIN_LRU_BATCH)
4390 			break;
4391 	}
4392 
4393 	item = PGSCAN_KSWAPD + reclaimer_offset();
4394 	if (!cgroup_reclaim(sc)) {
4395 		__count_vm_events(item, isolated);
4396 		__count_vm_events(PGREFILL, sorted);
4397 	}
4398 	__count_memcg_events(memcg, item, isolated);
4399 	__count_memcg_events(memcg, PGREFILL, sorted);
4400 	__count_vm_events(PGSCAN_ANON + type, isolated);
4401 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, MAX_LRU_BATCH,
4402 				scanned, skipped, isolated,
4403 				type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON);
4404 
4405 	/*
4406 	 * There might not be eligible folios due to reclaim_idx. Check the
4407 	 * remaining to prevent livelock if it's not making progress.
4408 	 */
4409 	return isolated || !remaining ? scanned : 0;
4410 }
4411 
4412 static int get_tier_idx(struct lruvec *lruvec, int type)
4413 {
4414 	int tier;
4415 	struct ctrl_pos sp, pv;
4416 
4417 	/*
4418 	 * To leave a margin for fluctuations, use a larger gain factor (1:2).
4419 	 * This value is chosen because any other tier would have at least twice
4420 	 * as many refaults as the first tier.
4421 	 */
4422 	read_ctrl_pos(lruvec, type, 0, 1, &sp);
4423 	for (tier = 1; tier < MAX_NR_TIERS; tier++) {
4424 		read_ctrl_pos(lruvec, type, tier, 2, &pv);
4425 		if (!positive_ctrl_err(&sp, &pv))
4426 			break;
4427 	}
4428 
4429 	return tier - 1;
4430 }
4431 
4432 static int get_type_to_scan(struct lruvec *lruvec, int swappiness, int *tier_idx)
4433 {
4434 	int type, tier;
4435 	struct ctrl_pos sp, pv;
4436 	int gain[ANON_AND_FILE] = { swappiness, 200 - swappiness };
4437 
4438 	/*
4439 	 * Compare the first tier of anon with that of file to determine which
4440 	 * type to scan. Also need to compare other tiers of the selected type
4441 	 * with the first tier of the other type to determine the last tier (of
4442 	 * the selected type) to evict.
4443 	 */
4444 	read_ctrl_pos(lruvec, LRU_GEN_ANON, 0, gain[LRU_GEN_ANON], &sp);
4445 	read_ctrl_pos(lruvec, LRU_GEN_FILE, 0, gain[LRU_GEN_FILE], &pv);
4446 	type = positive_ctrl_err(&sp, &pv);
4447 
4448 	read_ctrl_pos(lruvec, !type, 0, gain[!type], &sp);
4449 	for (tier = 1; tier < MAX_NR_TIERS; tier++) {
4450 		read_ctrl_pos(lruvec, type, tier, gain[type], &pv);
4451 		if (!positive_ctrl_err(&sp, &pv))
4452 			break;
4453 	}
4454 
4455 	*tier_idx = tier - 1;
4456 
4457 	return type;
4458 }
4459 
4460 static int isolate_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness,
4461 			  int *type_scanned, struct list_head *list)
4462 {
4463 	int i;
4464 	int type;
4465 	int scanned;
4466 	int tier = -1;
4467 	DEFINE_MIN_SEQ(lruvec);
4468 
4469 	/*
4470 	 * Try to make the obvious choice first, and if anon and file are both
4471 	 * available from the same generation,
4472 	 * 1. Interpret swappiness 1 as file first and MAX_SWAPPINESS as anon
4473 	 *    first.
4474 	 * 2. If !__GFP_IO, file first since clean pagecache is more likely to
4475 	 *    exist than clean swapcache.
4476 	 */
4477 	if (!swappiness)
4478 		type = LRU_GEN_FILE;
4479 	else if (min_seq[LRU_GEN_ANON] < min_seq[LRU_GEN_FILE])
4480 		type = LRU_GEN_ANON;
4481 	else if (swappiness == 1)
4482 		type = LRU_GEN_FILE;
4483 	else if (swappiness == 200)
4484 		type = LRU_GEN_ANON;
4485 	else if (!(sc->gfp_mask & __GFP_IO))
4486 		type = LRU_GEN_FILE;
4487 	else
4488 		type = get_type_to_scan(lruvec, swappiness, &tier);
4489 
4490 	for (i = !swappiness; i < ANON_AND_FILE; i++) {
4491 		if (tier < 0)
4492 			tier = get_tier_idx(lruvec, type);
4493 
4494 		scanned = scan_folios(lruvec, sc, type, tier, list);
4495 		if (scanned)
4496 			break;
4497 
4498 		type = !type;
4499 		tier = -1;
4500 	}
4501 
4502 	*type_scanned = type;
4503 
4504 	return scanned;
4505 }
4506 
4507 static int evict_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness)
4508 {
4509 	int type;
4510 	int scanned;
4511 	int reclaimed;
4512 	LIST_HEAD(list);
4513 	LIST_HEAD(clean);
4514 	struct folio *folio;
4515 	struct folio *next;
4516 	enum vm_event_item item;
4517 	struct reclaim_stat stat;
4518 	struct lru_gen_mm_walk *walk;
4519 	bool skip_retry = false;
4520 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4521 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4522 
4523 	spin_lock_irq(&lruvec->lru_lock);
4524 
4525 	scanned = isolate_folios(lruvec, sc, swappiness, &type, &list);
4526 
4527 	scanned += try_to_inc_min_seq(lruvec, swappiness);
4528 
4529 	if (get_nr_gens(lruvec, !swappiness) == MIN_NR_GENS)
4530 		scanned = 0;
4531 
4532 	spin_unlock_irq(&lruvec->lru_lock);
4533 
4534 	if (list_empty(&list))
4535 		return scanned;
4536 retry:
4537 	reclaimed = shrink_folio_list(&list, pgdat, sc, &stat, false);
4538 	sc->nr_reclaimed += reclaimed;
4539 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
4540 			scanned, reclaimed, &stat, sc->priority,
4541 			type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON);
4542 
4543 	list_for_each_entry_safe_reverse(folio, next, &list, lru) {
4544 		if (!folio_evictable(folio)) {
4545 			list_del(&folio->lru);
4546 			folio_putback_lru(folio);
4547 			continue;
4548 		}
4549 
4550 		if (folio_test_reclaim(folio) &&
4551 		    (folio_test_dirty(folio) || folio_test_writeback(folio))) {
4552 			/* restore LRU_REFS_FLAGS cleared by isolate_folio() */
4553 			if (folio_test_workingset(folio))
4554 				folio_set_referenced(folio);
4555 			continue;
4556 		}
4557 
4558 		if (skip_retry || folio_test_active(folio) || folio_test_referenced(folio) ||
4559 		    folio_mapped(folio) || folio_test_locked(folio) ||
4560 		    folio_test_dirty(folio) || folio_test_writeback(folio)) {
4561 			/* don't add rejected folios to the oldest generation */
4562 			set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS,
4563 				      BIT(PG_active));
4564 			continue;
4565 		}
4566 
4567 		/* retry folios that may have missed folio_rotate_reclaimable() */
4568 		list_move(&folio->lru, &clean);
4569 		sc->nr_scanned -= folio_nr_pages(folio);
4570 	}
4571 
4572 	spin_lock_irq(&lruvec->lru_lock);
4573 
4574 	move_folios_to_lru(lruvec, &list);
4575 
4576 	walk = current->reclaim_state->mm_walk;
4577 	if (walk && walk->batched) {
4578 		walk->lruvec = lruvec;
4579 		reset_batch_size(walk);
4580 	}
4581 
4582 	item = PGSTEAL_KSWAPD + reclaimer_offset();
4583 	if (!cgroup_reclaim(sc))
4584 		__count_vm_events(item, reclaimed);
4585 	__count_memcg_events(memcg, item, reclaimed);
4586 	__count_vm_events(PGSTEAL_ANON + type, reclaimed);
4587 
4588 	spin_unlock_irq(&lruvec->lru_lock);
4589 
4590 	list_splice_init(&clean, &list);
4591 
4592 	if (!list_empty(&list)) {
4593 		skip_retry = true;
4594 		goto retry;
4595 	}
4596 
4597 	return scanned;
4598 }
4599 
4600 static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq,
4601 			     bool can_swap, unsigned long *nr_to_scan)
4602 {
4603 	int gen, type, zone;
4604 	unsigned long old = 0;
4605 	unsigned long young = 0;
4606 	unsigned long total = 0;
4607 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4608 	DEFINE_MIN_SEQ(lruvec);
4609 
4610 	/* whether this lruvec is completely out of cold folios */
4611 	if (min_seq[!can_swap] + MIN_NR_GENS > max_seq) {
4612 		*nr_to_scan = 0;
4613 		return true;
4614 	}
4615 
4616 	for (type = !can_swap; type < ANON_AND_FILE; type++) {
4617 		unsigned long seq;
4618 
4619 		for (seq = min_seq[type]; seq <= max_seq; seq++) {
4620 			unsigned long size = 0;
4621 
4622 			gen = lru_gen_from_seq(seq);
4623 
4624 			for (zone = 0; zone < MAX_NR_ZONES; zone++)
4625 				size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
4626 
4627 			total += size;
4628 			if (seq == max_seq)
4629 				young += size;
4630 			else if (seq + MIN_NR_GENS == max_seq)
4631 				old += size;
4632 		}
4633 	}
4634 
4635 	*nr_to_scan = total;
4636 
4637 	/*
4638 	 * The aging tries to be lazy to reduce the overhead, while the eviction
4639 	 * stalls when the number of generations reaches MIN_NR_GENS. Hence, the
4640 	 * ideal number of generations is MIN_NR_GENS+1.
4641 	 */
4642 	if (min_seq[!can_swap] + MIN_NR_GENS < max_seq)
4643 		return false;
4644 
4645 	/*
4646 	 * It's also ideal to spread pages out evenly, i.e., 1/(MIN_NR_GENS+1)
4647 	 * of the total number of pages for each generation. A reasonable range
4648 	 * for this average portion is [1/MIN_NR_GENS, 1/(MIN_NR_GENS+2)]. The
4649 	 * aging cares about the upper bound of hot pages, while the eviction
4650 	 * cares about the lower bound of cold pages.
4651 	 */
4652 	if (young * MIN_NR_GENS > total)
4653 		return true;
4654 	if (old * (MIN_NR_GENS + 2) < total)
4655 		return true;
4656 
4657 	return false;
4658 }
4659 
4660 /*
4661  * For future optimizations:
4662  * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg
4663  *    reclaim.
4664  */
4665 static long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc, bool can_swap)
4666 {
4667 	bool success;
4668 	unsigned long nr_to_scan;
4669 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4670 	DEFINE_MAX_SEQ(lruvec);
4671 
4672 	if (mem_cgroup_below_min(sc->target_mem_cgroup, memcg))
4673 		return -1;
4674 
4675 	success = should_run_aging(lruvec, max_seq, can_swap, &nr_to_scan);
4676 
4677 	/* try to scrape all its memory if this memcg was deleted */
4678 	if (nr_to_scan && !mem_cgroup_online(memcg))
4679 		return nr_to_scan;
4680 
4681 	/* try to get away with not aging at the default priority */
4682 	if (!success || sc->priority == DEF_PRIORITY)
4683 		return nr_to_scan >> sc->priority;
4684 
4685 	/* stop scanning this lruvec as it's low on cold folios */
4686 	return try_to_inc_max_seq(lruvec, max_seq, can_swap, false) ? -1 : 0;
4687 }
4688 
4689 static bool should_abort_scan(struct lruvec *lruvec, struct scan_control *sc)
4690 {
4691 	int i;
4692 	enum zone_watermarks mark;
4693 
4694 	/* don't abort memcg reclaim to ensure fairness */
4695 	if (!root_reclaim(sc))
4696 		return false;
4697 
4698 	if (sc->nr_reclaimed >= max(sc->nr_to_reclaim, compact_gap(sc->order)))
4699 		return true;
4700 
4701 	/* check the order to exclude compaction-induced reclaim */
4702 	if (!current_is_kswapd() || sc->order)
4703 		return false;
4704 
4705 	mark = sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ?
4706 	       WMARK_PROMO : WMARK_HIGH;
4707 
4708 	for (i = 0; i <= sc->reclaim_idx; i++) {
4709 		struct zone *zone = lruvec_pgdat(lruvec)->node_zones + i;
4710 		unsigned long size = wmark_pages(zone, mark) + MIN_LRU_BATCH;
4711 
4712 		if (managed_zone(zone) && !zone_watermark_ok(zone, 0, size, sc->reclaim_idx, 0))
4713 			return false;
4714 	}
4715 
4716 	/* kswapd should abort if all eligible zones are safe */
4717 	return true;
4718 }
4719 
4720 static bool try_to_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
4721 {
4722 	long nr_to_scan;
4723 	unsigned long scanned = 0;
4724 	int swappiness = get_swappiness(lruvec, sc);
4725 
4726 	while (true) {
4727 		int delta;
4728 
4729 		nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness);
4730 		if (nr_to_scan <= 0)
4731 			break;
4732 
4733 		delta = evict_folios(lruvec, sc, swappiness);
4734 		if (!delta)
4735 			break;
4736 
4737 		scanned += delta;
4738 		if (scanned >= nr_to_scan)
4739 			break;
4740 
4741 		if (should_abort_scan(lruvec, sc))
4742 			break;
4743 
4744 		cond_resched();
4745 	}
4746 
4747 	/* whether this lruvec should be rotated */
4748 	return nr_to_scan < 0;
4749 }
4750 
4751 static int shrink_one(struct lruvec *lruvec, struct scan_control *sc)
4752 {
4753 	bool success;
4754 	unsigned long scanned = sc->nr_scanned;
4755 	unsigned long reclaimed = sc->nr_reclaimed;
4756 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4757 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4758 
4759 	mem_cgroup_calculate_protection(NULL, memcg);
4760 
4761 	if (mem_cgroup_below_min(NULL, memcg))
4762 		return MEMCG_LRU_YOUNG;
4763 
4764 	if (mem_cgroup_below_low(NULL, memcg)) {
4765 		/* see the comment on MEMCG_NR_GENS */
4766 		if (READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_TAIL)
4767 			return MEMCG_LRU_TAIL;
4768 
4769 		memcg_memory_event(memcg, MEMCG_LOW);
4770 	}
4771 
4772 	success = try_to_shrink_lruvec(lruvec, sc);
4773 
4774 	shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, sc->priority);
4775 
4776 	if (!sc->proactive)
4777 		vmpressure(sc->gfp_mask, memcg, false, sc->nr_scanned - scanned,
4778 			   sc->nr_reclaimed - reclaimed);
4779 
4780 	flush_reclaim_state(sc);
4781 
4782 	if (success && mem_cgroup_online(memcg))
4783 		return MEMCG_LRU_YOUNG;
4784 
4785 	if (!success && lruvec_is_sizable(lruvec, sc))
4786 		return 0;
4787 
4788 	/* one retry if offlined or too small */
4789 	return READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_TAIL ?
4790 	       MEMCG_LRU_TAIL : MEMCG_LRU_YOUNG;
4791 }
4792 
4793 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc)
4794 {
4795 	int op;
4796 	int gen;
4797 	int bin;
4798 	int first_bin;
4799 	struct lruvec *lruvec;
4800 	struct lru_gen_folio *lrugen;
4801 	struct mem_cgroup *memcg;
4802 	struct hlist_nulls_node *pos;
4803 
4804 	gen = get_memcg_gen(READ_ONCE(pgdat->memcg_lru.seq));
4805 	bin = first_bin = get_random_u32_below(MEMCG_NR_BINS);
4806 restart:
4807 	op = 0;
4808 	memcg = NULL;
4809 
4810 	rcu_read_lock();
4811 
4812 	hlist_nulls_for_each_entry_rcu(lrugen, pos, &pgdat->memcg_lru.fifo[gen][bin], list) {
4813 		if (op) {
4814 			lru_gen_rotate_memcg(lruvec, op);
4815 			op = 0;
4816 		}
4817 
4818 		mem_cgroup_put(memcg);
4819 		memcg = NULL;
4820 
4821 		if (gen != READ_ONCE(lrugen->gen))
4822 			continue;
4823 
4824 		lruvec = container_of(lrugen, struct lruvec, lrugen);
4825 		memcg = lruvec_memcg(lruvec);
4826 
4827 		if (!mem_cgroup_tryget(memcg)) {
4828 			lru_gen_release_memcg(memcg);
4829 			memcg = NULL;
4830 			continue;
4831 		}
4832 
4833 		rcu_read_unlock();
4834 
4835 		op = shrink_one(lruvec, sc);
4836 
4837 		rcu_read_lock();
4838 
4839 		if (should_abort_scan(lruvec, sc))
4840 			break;
4841 	}
4842 
4843 	rcu_read_unlock();
4844 
4845 	if (op)
4846 		lru_gen_rotate_memcg(lruvec, op);
4847 
4848 	mem_cgroup_put(memcg);
4849 
4850 	if (!is_a_nulls(pos))
4851 		return;
4852 
4853 	/* restart if raced with lru_gen_rotate_memcg() */
4854 	if (gen != get_nulls_value(pos))
4855 		goto restart;
4856 
4857 	/* try the rest of the bins of the current generation */
4858 	bin = get_memcg_bin(bin + 1);
4859 	if (bin != first_bin)
4860 		goto restart;
4861 }
4862 
4863 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
4864 {
4865 	struct blk_plug plug;
4866 
4867 	VM_WARN_ON_ONCE(root_reclaim(sc));
4868 	VM_WARN_ON_ONCE(!sc->may_writepage || !sc->may_unmap);
4869 
4870 	lru_add_drain();
4871 
4872 	blk_start_plug(&plug);
4873 
4874 	set_mm_walk(NULL, sc->proactive);
4875 
4876 	if (try_to_shrink_lruvec(lruvec, sc))
4877 		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_YOUNG);
4878 
4879 	clear_mm_walk();
4880 
4881 	blk_finish_plug(&plug);
4882 }
4883 
4884 static void set_initial_priority(struct pglist_data *pgdat, struct scan_control *sc)
4885 {
4886 	int priority;
4887 	unsigned long reclaimable;
4888 
4889 	if (sc->priority != DEF_PRIORITY || sc->nr_to_reclaim < MIN_LRU_BATCH)
4890 		return;
4891 	/*
4892 	 * Determine the initial priority based on
4893 	 * (total >> priority) * reclaimed_to_scanned_ratio = nr_to_reclaim,
4894 	 * where reclaimed_to_scanned_ratio = inactive / total.
4895 	 */
4896 	reclaimable = node_page_state(pgdat, NR_INACTIVE_FILE);
4897 	if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
4898 		reclaimable += node_page_state(pgdat, NR_INACTIVE_ANON);
4899 
4900 	/* round down reclaimable and round up sc->nr_to_reclaim */
4901 	priority = fls_long(reclaimable) - 1 - fls_long(sc->nr_to_reclaim - 1);
4902 
4903 	sc->priority = clamp(priority, 0, DEF_PRIORITY);
4904 }
4905 
4906 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
4907 {
4908 	struct blk_plug plug;
4909 	unsigned long reclaimed = sc->nr_reclaimed;
4910 
4911 	VM_WARN_ON_ONCE(!root_reclaim(sc));
4912 
4913 	/*
4914 	 * Unmapped clean folios are already prioritized. Scanning for more of
4915 	 * them is likely futile and can cause high reclaim latency when there
4916 	 * is a large number of memcgs.
4917 	 */
4918 	if (!sc->may_writepage || !sc->may_unmap)
4919 		goto done;
4920 
4921 	lru_add_drain();
4922 
4923 	blk_start_plug(&plug);
4924 
4925 	set_mm_walk(pgdat, sc->proactive);
4926 
4927 	set_initial_priority(pgdat, sc);
4928 
4929 	if (current_is_kswapd())
4930 		sc->nr_reclaimed = 0;
4931 
4932 	if (mem_cgroup_disabled())
4933 		shrink_one(&pgdat->__lruvec, sc);
4934 	else
4935 		shrink_many(pgdat, sc);
4936 
4937 	if (current_is_kswapd())
4938 		sc->nr_reclaimed += reclaimed;
4939 
4940 	clear_mm_walk();
4941 
4942 	blk_finish_plug(&plug);
4943 done:
4944 	/* kswapd should never fail */
4945 	pgdat->kswapd_failures = 0;
4946 }
4947 
4948 /******************************************************************************
4949  *                          state change
4950  ******************************************************************************/
4951 
4952 static bool __maybe_unused state_is_valid(struct lruvec *lruvec)
4953 {
4954 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4955 
4956 	if (lrugen->enabled) {
4957 		enum lru_list lru;
4958 
4959 		for_each_evictable_lru(lru) {
4960 			if (!list_empty(&lruvec->lists[lru]))
4961 				return false;
4962 		}
4963 	} else {
4964 		int gen, type, zone;
4965 
4966 		for_each_gen_type_zone(gen, type, zone) {
4967 			if (!list_empty(&lrugen->folios[gen][type][zone]))
4968 				return false;
4969 		}
4970 	}
4971 
4972 	return true;
4973 }
4974 
4975 static bool fill_evictable(struct lruvec *lruvec)
4976 {
4977 	enum lru_list lru;
4978 	int remaining = MAX_LRU_BATCH;
4979 
4980 	for_each_evictable_lru(lru) {
4981 		int type = is_file_lru(lru);
4982 		bool active = is_active_lru(lru);
4983 		struct list_head *head = &lruvec->lists[lru];
4984 
4985 		while (!list_empty(head)) {
4986 			bool success;
4987 			struct folio *folio = lru_to_folio(head);
4988 
4989 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
4990 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio) != active, folio);
4991 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
4992 			VM_WARN_ON_ONCE_FOLIO(folio_lru_gen(folio) != -1, folio);
4993 
4994 			lruvec_del_folio(lruvec, folio);
4995 			success = lru_gen_add_folio(lruvec, folio, false);
4996 			VM_WARN_ON_ONCE(!success);
4997 
4998 			if (!--remaining)
4999 				return false;
5000 		}
5001 	}
5002 
5003 	return true;
5004 }
5005 
5006 static bool drain_evictable(struct lruvec *lruvec)
5007 {
5008 	int gen, type, zone;
5009 	int remaining = MAX_LRU_BATCH;
5010 
5011 	for_each_gen_type_zone(gen, type, zone) {
5012 		struct list_head *head = &lruvec->lrugen.folios[gen][type][zone];
5013 
5014 		while (!list_empty(head)) {
5015 			bool success;
5016 			struct folio *folio = lru_to_folio(head);
5017 
5018 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5019 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
5020 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5021 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
5022 
5023 			success = lru_gen_del_folio(lruvec, folio, false);
5024 			VM_WARN_ON_ONCE(!success);
5025 			lruvec_add_folio(lruvec, folio);
5026 
5027 			if (!--remaining)
5028 				return false;
5029 		}
5030 	}
5031 
5032 	return true;
5033 }
5034 
5035 static void lru_gen_change_state(bool enabled)
5036 {
5037 	static DEFINE_MUTEX(state_mutex);
5038 
5039 	struct mem_cgroup *memcg;
5040 
5041 	cgroup_lock();
5042 	cpus_read_lock();
5043 	get_online_mems();
5044 	mutex_lock(&state_mutex);
5045 
5046 	if (enabled == lru_gen_enabled())
5047 		goto unlock;
5048 
5049 	if (enabled)
5050 		static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5051 	else
5052 		static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5053 
5054 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
5055 	do {
5056 		int nid;
5057 
5058 		for_each_node(nid) {
5059 			struct lruvec *lruvec = get_lruvec(memcg, nid);
5060 
5061 			spin_lock_irq(&lruvec->lru_lock);
5062 
5063 			VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
5064 			VM_WARN_ON_ONCE(!state_is_valid(lruvec));
5065 
5066 			lruvec->lrugen.enabled = enabled;
5067 
5068 			while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) {
5069 				spin_unlock_irq(&lruvec->lru_lock);
5070 				cond_resched();
5071 				spin_lock_irq(&lruvec->lru_lock);
5072 			}
5073 
5074 			spin_unlock_irq(&lruvec->lru_lock);
5075 		}
5076 
5077 		cond_resched();
5078 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5079 unlock:
5080 	mutex_unlock(&state_mutex);
5081 	put_online_mems();
5082 	cpus_read_unlock();
5083 	cgroup_unlock();
5084 }
5085 
5086 /******************************************************************************
5087  *                          sysfs interface
5088  ******************************************************************************/
5089 
5090 static ssize_t min_ttl_ms_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5091 {
5092 	return sysfs_emit(buf, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl)));
5093 }
5094 
5095 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5096 static ssize_t min_ttl_ms_store(struct kobject *kobj, struct kobj_attribute *attr,
5097 				const char *buf, size_t len)
5098 {
5099 	unsigned int msecs;
5100 
5101 	if (kstrtouint(buf, 0, &msecs))
5102 		return -EINVAL;
5103 
5104 	WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs));
5105 
5106 	return len;
5107 }
5108 
5109 static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR_RW(min_ttl_ms);
5110 
5111 static ssize_t enabled_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5112 {
5113 	unsigned int caps = 0;
5114 
5115 	if (get_cap(LRU_GEN_CORE))
5116 		caps |= BIT(LRU_GEN_CORE);
5117 
5118 	if (should_walk_mmu())
5119 		caps |= BIT(LRU_GEN_MM_WALK);
5120 
5121 	if (should_clear_pmd_young())
5122 		caps |= BIT(LRU_GEN_NONLEAF_YOUNG);
5123 
5124 	return sysfs_emit(buf, "0x%04x\n", caps);
5125 }
5126 
5127 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5128 static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr,
5129 			     const char *buf, size_t len)
5130 {
5131 	int i;
5132 	unsigned int caps;
5133 
5134 	if (tolower(*buf) == 'n')
5135 		caps = 0;
5136 	else if (tolower(*buf) == 'y')
5137 		caps = -1;
5138 	else if (kstrtouint(buf, 0, &caps))
5139 		return -EINVAL;
5140 
5141 	for (i = 0; i < NR_LRU_GEN_CAPS; i++) {
5142 		bool enabled = caps & BIT(i);
5143 
5144 		if (i == LRU_GEN_CORE)
5145 			lru_gen_change_state(enabled);
5146 		else if (enabled)
5147 			static_branch_enable(&lru_gen_caps[i]);
5148 		else
5149 			static_branch_disable(&lru_gen_caps[i]);
5150 	}
5151 
5152 	return len;
5153 }
5154 
5155 static struct kobj_attribute lru_gen_enabled_attr = __ATTR_RW(enabled);
5156 
5157 static struct attribute *lru_gen_attrs[] = {
5158 	&lru_gen_min_ttl_attr.attr,
5159 	&lru_gen_enabled_attr.attr,
5160 	NULL
5161 };
5162 
5163 static const struct attribute_group lru_gen_attr_group = {
5164 	.name = "lru_gen",
5165 	.attrs = lru_gen_attrs,
5166 };
5167 
5168 /******************************************************************************
5169  *                          debugfs interface
5170  ******************************************************************************/
5171 
5172 static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos)
5173 {
5174 	struct mem_cgroup *memcg;
5175 	loff_t nr_to_skip = *pos;
5176 
5177 	m->private = kvmalloc(PATH_MAX, GFP_KERNEL);
5178 	if (!m->private)
5179 		return ERR_PTR(-ENOMEM);
5180 
5181 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
5182 	do {
5183 		int nid;
5184 
5185 		for_each_node_state(nid, N_MEMORY) {
5186 			if (!nr_to_skip--)
5187 				return get_lruvec(memcg, nid);
5188 		}
5189 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5190 
5191 	return NULL;
5192 }
5193 
5194 static void lru_gen_seq_stop(struct seq_file *m, void *v)
5195 {
5196 	if (!IS_ERR_OR_NULL(v))
5197 		mem_cgroup_iter_break(NULL, lruvec_memcg(v));
5198 
5199 	kvfree(m->private);
5200 	m->private = NULL;
5201 }
5202 
5203 static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos)
5204 {
5205 	int nid = lruvec_pgdat(v)->node_id;
5206 	struct mem_cgroup *memcg = lruvec_memcg(v);
5207 
5208 	++*pos;
5209 
5210 	nid = next_memory_node(nid);
5211 	if (nid == MAX_NUMNODES) {
5212 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
5213 		if (!memcg)
5214 			return NULL;
5215 
5216 		nid = first_memory_node;
5217 	}
5218 
5219 	return get_lruvec(memcg, nid);
5220 }
5221 
5222 static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec,
5223 				  unsigned long max_seq, unsigned long *min_seq,
5224 				  unsigned long seq)
5225 {
5226 	int i;
5227 	int type, tier;
5228 	int hist = lru_hist_from_seq(seq);
5229 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5230 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
5231 
5232 	for (tier = 0; tier < MAX_NR_TIERS; tier++) {
5233 		seq_printf(m, "            %10d", tier);
5234 		for (type = 0; type < ANON_AND_FILE; type++) {
5235 			const char *s = "   ";
5236 			unsigned long n[3] = {};
5237 
5238 			if (seq == max_seq) {
5239 				s = "RT ";
5240 				n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]);
5241 				n[1] = READ_ONCE(lrugen->avg_total[type][tier]);
5242 			} else if (seq == min_seq[type] || NR_HIST_GENS > 1) {
5243 				s = "rep";
5244 				n[0] = atomic_long_read(&lrugen->refaulted[hist][type][tier]);
5245 				n[1] = atomic_long_read(&lrugen->evicted[hist][type][tier]);
5246 				if (tier)
5247 					n[2] = READ_ONCE(lrugen->protected[hist][type][tier - 1]);
5248 			}
5249 
5250 			for (i = 0; i < 3; i++)
5251 				seq_printf(m, " %10lu%c", n[i], s[i]);
5252 		}
5253 		seq_putc(m, '\n');
5254 	}
5255 
5256 	if (!mm_state)
5257 		return;
5258 
5259 	seq_puts(m, "                      ");
5260 	for (i = 0; i < NR_MM_STATS; i++) {
5261 		const char *s = "      ";
5262 		unsigned long n = 0;
5263 
5264 		if (seq == max_seq && NR_HIST_GENS == 1) {
5265 			s = "LOYNFA";
5266 			n = READ_ONCE(mm_state->stats[hist][i]);
5267 		} else if (seq != max_seq && NR_HIST_GENS > 1) {
5268 			s = "loynfa";
5269 			n = READ_ONCE(mm_state->stats[hist][i]);
5270 		}
5271 
5272 		seq_printf(m, " %10lu%c", n, s[i]);
5273 	}
5274 	seq_putc(m, '\n');
5275 }
5276 
5277 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5278 static int lru_gen_seq_show(struct seq_file *m, void *v)
5279 {
5280 	unsigned long seq;
5281 	bool full = !debugfs_real_fops(m->file)->write;
5282 	struct lruvec *lruvec = v;
5283 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5284 	int nid = lruvec_pgdat(lruvec)->node_id;
5285 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5286 	DEFINE_MAX_SEQ(lruvec);
5287 	DEFINE_MIN_SEQ(lruvec);
5288 
5289 	if (nid == first_memory_node) {
5290 		const char *path = memcg ? m->private : "";
5291 
5292 #ifdef CONFIG_MEMCG
5293 		if (memcg)
5294 			cgroup_path(memcg->css.cgroup, m->private, PATH_MAX);
5295 #endif
5296 		seq_printf(m, "memcg %5hu %s\n", mem_cgroup_id(memcg), path);
5297 	}
5298 
5299 	seq_printf(m, " node %5d\n", nid);
5300 
5301 	if (!full)
5302 		seq = min_seq[LRU_GEN_ANON];
5303 	else if (max_seq >= MAX_NR_GENS)
5304 		seq = max_seq - MAX_NR_GENS + 1;
5305 	else
5306 		seq = 0;
5307 
5308 	for (; seq <= max_seq; seq++) {
5309 		int type, zone;
5310 		int gen = lru_gen_from_seq(seq);
5311 		unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
5312 
5313 		seq_printf(m, " %10lu %10u", seq, jiffies_to_msecs(jiffies - birth));
5314 
5315 		for (type = 0; type < ANON_AND_FILE; type++) {
5316 			unsigned long size = 0;
5317 			char mark = full && seq < min_seq[type] ? 'x' : ' ';
5318 
5319 			for (zone = 0; zone < MAX_NR_ZONES; zone++)
5320 				size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
5321 
5322 			seq_printf(m, " %10lu%c", size, mark);
5323 		}
5324 
5325 		seq_putc(m, '\n');
5326 
5327 		if (full)
5328 			lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq);
5329 	}
5330 
5331 	return 0;
5332 }
5333 
5334 static const struct seq_operations lru_gen_seq_ops = {
5335 	.start = lru_gen_seq_start,
5336 	.stop = lru_gen_seq_stop,
5337 	.next = lru_gen_seq_next,
5338 	.show = lru_gen_seq_show,
5339 };
5340 
5341 static int run_aging(struct lruvec *lruvec, unsigned long seq,
5342 		     bool can_swap, bool force_scan)
5343 {
5344 	DEFINE_MAX_SEQ(lruvec);
5345 	DEFINE_MIN_SEQ(lruvec);
5346 
5347 	if (seq < max_seq)
5348 		return 0;
5349 
5350 	if (seq > max_seq)
5351 		return -EINVAL;
5352 
5353 	if (!force_scan && min_seq[!can_swap] + MAX_NR_GENS - 1 <= max_seq)
5354 		return -ERANGE;
5355 
5356 	try_to_inc_max_seq(lruvec, max_seq, can_swap, force_scan);
5357 
5358 	return 0;
5359 }
5360 
5361 static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
5362 			int swappiness, unsigned long nr_to_reclaim)
5363 {
5364 	DEFINE_MAX_SEQ(lruvec);
5365 
5366 	if (seq + MIN_NR_GENS > max_seq)
5367 		return -EINVAL;
5368 
5369 	sc->nr_reclaimed = 0;
5370 
5371 	while (!signal_pending(current)) {
5372 		DEFINE_MIN_SEQ(lruvec);
5373 
5374 		if (seq < min_seq[!swappiness])
5375 			return 0;
5376 
5377 		if (sc->nr_reclaimed >= nr_to_reclaim)
5378 			return 0;
5379 
5380 		if (!evict_folios(lruvec, sc, swappiness))
5381 			return 0;
5382 
5383 		cond_resched();
5384 	}
5385 
5386 	return -EINTR;
5387 }
5388 
5389 static int run_cmd(char cmd, int memcg_id, int nid, unsigned long seq,
5390 		   struct scan_control *sc, int swappiness, unsigned long opt)
5391 {
5392 	struct lruvec *lruvec;
5393 	int err = -EINVAL;
5394 	struct mem_cgroup *memcg = NULL;
5395 
5396 	if (nid < 0 || nid >= MAX_NUMNODES || !node_state(nid, N_MEMORY))
5397 		return -EINVAL;
5398 
5399 	if (!mem_cgroup_disabled()) {
5400 		rcu_read_lock();
5401 
5402 		memcg = mem_cgroup_from_id(memcg_id);
5403 		if (!mem_cgroup_tryget(memcg))
5404 			memcg = NULL;
5405 
5406 		rcu_read_unlock();
5407 
5408 		if (!memcg)
5409 			return -EINVAL;
5410 	}
5411 
5412 	if (memcg_id != mem_cgroup_id(memcg))
5413 		goto done;
5414 
5415 	lruvec = get_lruvec(memcg, nid);
5416 
5417 	if (swappiness < 0)
5418 		swappiness = get_swappiness(lruvec, sc);
5419 	else if (swappiness > 200)
5420 		goto done;
5421 
5422 	switch (cmd) {
5423 	case '+':
5424 		err = run_aging(lruvec, seq, swappiness, opt);
5425 		break;
5426 	case '-':
5427 		err = run_eviction(lruvec, seq, sc, swappiness, opt);
5428 		break;
5429 	}
5430 done:
5431 	mem_cgroup_put(memcg);
5432 
5433 	return err;
5434 }
5435 
5436 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5437 static ssize_t lru_gen_seq_write(struct file *file, const char __user *src,
5438 				 size_t len, loff_t *pos)
5439 {
5440 	void *buf;
5441 	char *cur, *next;
5442 	unsigned int flags;
5443 	struct blk_plug plug;
5444 	int err = -EINVAL;
5445 	struct scan_control sc = {
5446 		.may_writepage = true,
5447 		.may_unmap = true,
5448 		.may_swap = true,
5449 		.reclaim_idx = MAX_NR_ZONES - 1,
5450 		.gfp_mask = GFP_KERNEL,
5451 	};
5452 
5453 	buf = kvmalloc(len + 1, GFP_KERNEL);
5454 	if (!buf)
5455 		return -ENOMEM;
5456 
5457 	if (copy_from_user(buf, src, len)) {
5458 		kvfree(buf);
5459 		return -EFAULT;
5460 	}
5461 
5462 	set_task_reclaim_state(current, &sc.reclaim_state);
5463 	flags = memalloc_noreclaim_save();
5464 	blk_start_plug(&plug);
5465 	if (!set_mm_walk(NULL, true)) {
5466 		err = -ENOMEM;
5467 		goto done;
5468 	}
5469 
5470 	next = buf;
5471 	next[len] = '\0';
5472 
5473 	while ((cur = strsep(&next, ",;\n"))) {
5474 		int n;
5475 		int end;
5476 		char cmd;
5477 		unsigned int memcg_id;
5478 		unsigned int nid;
5479 		unsigned long seq;
5480 		unsigned int swappiness = -1;
5481 		unsigned long opt = -1;
5482 
5483 		cur = skip_spaces(cur);
5484 		if (!*cur)
5485 			continue;
5486 
5487 		n = sscanf(cur, "%c %u %u %lu %n %u %n %lu %n", &cmd, &memcg_id, &nid,
5488 			   &seq, &end, &swappiness, &end, &opt, &end);
5489 		if (n < 4 || cur[end]) {
5490 			err = -EINVAL;
5491 			break;
5492 		}
5493 
5494 		err = run_cmd(cmd, memcg_id, nid, seq, &sc, swappiness, opt);
5495 		if (err)
5496 			break;
5497 	}
5498 done:
5499 	clear_mm_walk();
5500 	blk_finish_plug(&plug);
5501 	memalloc_noreclaim_restore(flags);
5502 	set_task_reclaim_state(current, NULL);
5503 
5504 	kvfree(buf);
5505 
5506 	return err ? : len;
5507 }
5508 
5509 static int lru_gen_seq_open(struct inode *inode, struct file *file)
5510 {
5511 	return seq_open(file, &lru_gen_seq_ops);
5512 }
5513 
5514 static const struct file_operations lru_gen_rw_fops = {
5515 	.open = lru_gen_seq_open,
5516 	.read = seq_read,
5517 	.write = lru_gen_seq_write,
5518 	.llseek = seq_lseek,
5519 	.release = seq_release,
5520 };
5521 
5522 static const struct file_operations lru_gen_ro_fops = {
5523 	.open = lru_gen_seq_open,
5524 	.read = seq_read,
5525 	.llseek = seq_lseek,
5526 	.release = seq_release,
5527 };
5528 
5529 /******************************************************************************
5530  *                          initialization
5531  ******************************************************************************/
5532 
5533 void lru_gen_init_pgdat(struct pglist_data *pgdat)
5534 {
5535 	int i, j;
5536 
5537 	spin_lock_init(&pgdat->memcg_lru.lock);
5538 
5539 	for (i = 0; i < MEMCG_NR_GENS; i++) {
5540 		for (j = 0; j < MEMCG_NR_BINS; j++)
5541 			INIT_HLIST_NULLS_HEAD(&pgdat->memcg_lru.fifo[i][j], i);
5542 	}
5543 }
5544 
5545 void lru_gen_init_lruvec(struct lruvec *lruvec)
5546 {
5547 	int i;
5548 	int gen, type, zone;
5549 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5550 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
5551 
5552 	lrugen->max_seq = MIN_NR_GENS + 1;
5553 	lrugen->enabled = lru_gen_enabled();
5554 
5555 	for (i = 0; i <= MIN_NR_GENS + 1; i++)
5556 		lrugen->timestamps[i] = jiffies;
5557 
5558 	for_each_gen_type_zone(gen, type, zone)
5559 		INIT_LIST_HEAD(&lrugen->folios[gen][type][zone]);
5560 
5561 	if (mm_state)
5562 		mm_state->seq = MIN_NR_GENS;
5563 }
5564 
5565 #ifdef CONFIG_MEMCG
5566 
5567 void lru_gen_init_memcg(struct mem_cgroup *memcg)
5568 {
5569 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
5570 
5571 	if (!mm_list)
5572 		return;
5573 
5574 	INIT_LIST_HEAD(&mm_list->fifo);
5575 	spin_lock_init(&mm_list->lock);
5576 }
5577 
5578 void lru_gen_exit_memcg(struct mem_cgroup *memcg)
5579 {
5580 	int i;
5581 	int nid;
5582 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
5583 
5584 	VM_WARN_ON_ONCE(mm_list && !list_empty(&mm_list->fifo));
5585 
5586 	for_each_node(nid) {
5587 		struct lruvec *lruvec = get_lruvec(memcg, nid);
5588 		struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
5589 
5590 		VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0,
5591 					   sizeof(lruvec->lrugen.nr_pages)));
5592 
5593 		lruvec->lrugen.list.next = LIST_POISON1;
5594 
5595 		if (!mm_state)
5596 			continue;
5597 
5598 		for (i = 0; i < NR_BLOOM_FILTERS; i++) {
5599 			bitmap_free(mm_state->filters[i]);
5600 			mm_state->filters[i] = NULL;
5601 		}
5602 	}
5603 }
5604 
5605 #endif /* CONFIG_MEMCG */
5606 
5607 static int __init init_lru_gen(void)
5608 {
5609 	BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS);
5610 	BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS);
5611 
5612 	if (sysfs_create_group(mm_kobj, &lru_gen_attr_group))
5613 		pr_err("lru_gen: failed to create sysfs group\n");
5614 
5615 	debugfs_create_file("lru_gen", 0644, NULL, NULL, &lru_gen_rw_fops);
5616 	debugfs_create_file("lru_gen_full", 0444, NULL, NULL, &lru_gen_ro_fops);
5617 
5618 	return 0;
5619 };
5620 late_initcall(init_lru_gen);
5621 
5622 #else /* !CONFIG_LRU_GEN */
5623 
5624 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
5625 {
5626 	BUILD_BUG();
5627 }
5628 
5629 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5630 {
5631 	BUILD_BUG();
5632 }
5633 
5634 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
5635 {
5636 	BUILD_BUG();
5637 }
5638 
5639 #endif /* CONFIG_LRU_GEN */
5640 
5641 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5642 {
5643 	unsigned long nr[NR_LRU_LISTS];
5644 	unsigned long targets[NR_LRU_LISTS];
5645 	unsigned long nr_to_scan;
5646 	enum lru_list lru;
5647 	unsigned long nr_reclaimed = 0;
5648 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
5649 	bool proportional_reclaim;
5650 	struct blk_plug plug;
5651 
5652 	if (lru_gen_enabled() && !root_reclaim(sc)) {
5653 		lru_gen_shrink_lruvec(lruvec, sc);
5654 		return;
5655 	}
5656 
5657 	get_scan_count(lruvec, sc, nr);
5658 
5659 	/* Record the original scan target for proportional adjustments later */
5660 	memcpy(targets, nr, sizeof(nr));
5661 
5662 	/*
5663 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
5664 	 * event that can occur when there is little memory pressure e.g.
5665 	 * multiple streaming readers/writers. Hence, we do not abort scanning
5666 	 * when the requested number of pages are reclaimed when scanning at
5667 	 * DEF_PRIORITY on the assumption that the fact we are direct
5668 	 * reclaiming implies that kswapd is not keeping up and it is best to
5669 	 * do a batch of work at once. For memcg reclaim one check is made to
5670 	 * abort proportional reclaim if either the file or anon lru has already
5671 	 * dropped to zero at the first pass.
5672 	 */
5673 	proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
5674 				sc->priority == DEF_PRIORITY);
5675 
5676 	blk_start_plug(&plug);
5677 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
5678 					nr[LRU_INACTIVE_FILE]) {
5679 		unsigned long nr_anon, nr_file, percentage;
5680 		unsigned long nr_scanned;
5681 
5682 		for_each_evictable_lru(lru) {
5683 			if (nr[lru]) {
5684 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
5685 				nr[lru] -= nr_to_scan;
5686 
5687 				nr_reclaimed += shrink_list(lru, nr_to_scan,
5688 							    lruvec, sc);
5689 			}
5690 		}
5691 
5692 		cond_resched();
5693 
5694 		if (nr_reclaimed < nr_to_reclaim || proportional_reclaim)
5695 			continue;
5696 
5697 		/*
5698 		 * For kswapd and memcg, reclaim at least the number of pages
5699 		 * requested. Ensure that the anon and file LRUs are scanned
5700 		 * proportionally what was requested by get_scan_count(). We
5701 		 * stop reclaiming one LRU and reduce the amount scanning
5702 		 * proportional to the original scan target.
5703 		 */
5704 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
5705 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
5706 
5707 		/*
5708 		 * It's just vindictive to attack the larger once the smaller
5709 		 * has gone to zero.  And given the way we stop scanning the
5710 		 * smaller below, this makes sure that we only make one nudge
5711 		 * towards proportionality once we've got nr_to_reclaim.
5712 		 */
5713 		if (!nr_file || !nr_anon)
5714 			break;
5715 
5716 		if (nr_file > nr_anon) {
5717 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
5718 						targets[LRU_ACTIVE_ANON] + 1;
5719 			lru = LRU_BASE;
5720 			percentage = nr_anon * 100 / scan_target;
5721 		} else {
5722 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
5723 						targets[LRU_ACTIVE_FILE] + 1;
5724 			lru = LRU_FILE;
5725 			percentage = nr_file * 100 / scan_target;
5726 		}
5727 
5728 		/* Stop scanning the smaller of the LRU */
5729 		nr[lru] = 0;
5730 		nr[lru + LRU_ACTIVE] = 0;
5731 
5732 		/*
5733 		 * Recalculate the other LRU scan count based on its original
5734 		 * scan target and the percentage scanning already complete
5735 		 */
5736 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
5737 		nr_scanned = targets[lru] - nr[lru];
5738 		nr[lru] = targets[lru] * (100 - percentage) / 100;
5739 		nr[lru] -= min(nr[lru], nr_scanned);
5740 
5741 		lru += LRU_ACTIVE;
5742 		nr_scanned = targets[lru] - nr[lru];
5743 		nr[lru] = targets[lru] * (100 - percentage) / 100;
5744 		nr[lru] -= min(nr[lru], nr_scanned);
5745 	}
5746 	blk_finish_plug(&plug);
5747 	sc->nr_reclaimed += nr_reclaimed;
5748 
5749 	/*
5750 	 * Even if we did not try to evict anon pages at all, we want to
5751 	 * rebalance the anon lru active/inactive ratio.
5752 	 */
5753 	if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) &&
5754 	    inactive_is_low(lruvec, LRU_INACTIVE_ANON))
5755 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
5756 				   sc, LRU_ACTIVE_ANON);
5757 }
5758 
5759 /* Use reclaim/compaction for costly allocs or under memory pressure */
5760 static bool in_reclaim_compaction(struct scan_control *sc)
5761 {
5762 	if (gfp_compaction_allowed(sc->gfp_mask) && sc->order &&
5763 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
5764 			 sc->priority < DEF_PRIORITY - 2))
5765 		return true;
5766 
5767 	return false;
5768 }
5769 
5770 /*
5771  * Reclaim/compaction is used for high-order allocation requests. It reclaims
5772  * order-0 pages before compacting the zone. should_continue_reclaim() returns
5773  * true if more pages should be reclaimed such that when the page allocator
5774  * calls try_to_compact_pages() that it will have enough free pages to succeed.
5775  * It will give up earlier than that if there is difficulty reclaiming pages.
5776  */
5777 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
5778 					unsigned long nr_reclaimed,
5779 					struct scan_control *sc)
5780 {
5781 	unsigned long pages_for_compaction;
5782 	unsigned long inactive_lru_pages;
5783 	int z;
5784 
5785 	/* If not in reclaim/compaction mode, stop */
5786 	if (!in_reclaim_compaction(sc))
5787 		return false;
5788 
5789 	/*
5790 	 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
5791 	 * number of pages that were scanned. This will return to the caller
5792 	 * with the risk reclaim/compaction and the resulting allocation attempt
5793 	 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
5794 	 * allocations through requiring that the full LRU list has been scanned
5795 	 * first, by assuming that zero delta of sc->nr_scanned means full LRU
5796 	 * scan, but that approximation was wrong, and there were corner cases
5797 	 * where always a non-zero amount of pages were scanned.
5798 	 */
5799 	if (!nr_reclaimed)
5800 		return false;
5801 
5802 	/* If compaction would go ahead or the allocation would succeed, stop */
5803 	for (z = 0; z <= sc->reclaim_idx; z++) {
5804 		struct zone *zone = &pgdat->node_zones[z];
5805 		if (!managed_zone(zone))
5806 			continue;
5807 
5808 		/* Allocation can already succeed, nothing to do */
5809 		if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone),
5810 				      sc->reclaim_idx, 0))
5811 			return false;
5812 
5813 		if (compaction_suitable(zone, sc->order, sc->reclaim_idx))
5814 			return false;
5815 	}
5816 
5817 	/*
5818 	 * If we have not reclaimed enough pages for compaction and the
5819 	 * inactive lists are large enough, continue reclaiming
5820 	 */
5821 	pages_for_compaction = compact_gap(sc->order);
5822 	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
5823 	if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
5824 		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
5825 
5826 	return inactive_lru_pages > pages_for_compaction;
5827 }
5828 
5829 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
5830 {
5831 	struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
5832 	struct mem_cgroup *memcg;
5833 
5834 	memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
5835 	do {
5836 		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
5837 		unsigned long reclaimed;
5838 		unsigned long scanned;
5839 
5840 		/*
5841 		 * This loop can become CPU-bound when target memcgs
5842 		 * aren't eligible for reclaim - either because they
5843 		 * don't have any reclaimable pages, or because their
5844 		 * memory is explicitly protected. Avoid soft lockups.
5845 		 */
5846 		cond_resched();
5847 
5848 		mem_cgroup_calculate_protection(target_memcg, memcg);
5849 
5850 		if (mem_cgroup_below_min(target_memcg, memcg)) {
5851 			/*
5852 			 * Hard protection.
5853 			 * If there is no reclaimable memory, OOM.
5854 			 */
5855 			continue;
5856 		} else if (mem_cgroup_below_low(target_memcg, memcg)) {
5857 			/*
5858 			 * Soft protection.
5859 			 * Respect the protection only as long as
5860 			 * there is an unprotected supply
5861 			 * of reclaimable memory from other cgroups.
5862 			 */
5863 			if (!sc->memcg_low_reclaim) {
5864 				sc->memcg_low_skipped = 1;
5865 				continue;
5866 			}
5867 			memcg_memory_event(memcg, MEMCG_LOW);
5868 		}
5869 
5870 		reclaimed = sc->nr_reclaimed;
5871 		scanned = sc->nr_scanned;
5872 
5873 		shrink_lruvec(lruvec, sc);
5874 
5875 		shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
5876 			    sc->priority);
5877 
5878 		/* Record the group's reclaim efficiency */
5879 		if (!sc->proactive)
5880 			vmpressure(sc->gfp_mask, memcg, false,
5881 				   sc->nr_scanned - scanned,
5882 				   sc->nr_reclaimed - reclaimed);
5883 
5884 	} while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
5885 }
5886 
5887 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
5888 {
5889 	unsigned long nr_reclaimed, nr_scanned, nr_node_reclaimed;
5890 	struct lruvec *target_lruvec;
5891 	bool reclaimable = false;
5892 
5893 	if (lru_gen_enabled() && root_reclaim(sc)) {
5894 		lru_gen_shrink_node(pgdat, sc);
5895 		return;
5896 	}
5897 
5898 	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
5899 
5900 again:
5901 	memset(&sc->nr, 0, sizeof(sc->nr));
5902 
5903 	nr_reclaimed = sc->nr_reclaimed;
5904 	nr_scanned = sc->nr_scanned;
5905 
5906 	prepare_scan_control(pgdat, sc);
5907 
5908 	shrink_node_memcgs(pgdat, sc);
5909 
5910 	flush_reclaim_state(sc);
5911 
5912 	nr_node_reclaimed = sc->nr_reclaimed - nr_reclaimed;
5913 
5914 	/* Record the subtree's reclaim efficiency */
5915 	if (!sc->proactive)
5916 		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
5917 			   sc->nr_scanned - nr_scanned, nr_node_reclaimed);
5918 
5919 	if (nr_node_reclaimed)
5920 		reclaimable = true;
5921 
5922 	if (current_is_kswapd()) {
5923 		/*
5924 		 * If reclaim is isolating dirty pages under writeback,
5925 		 * it implies that the long-lived page allocation rate
5926 		 * is exceeding the page laundering rate. Either the
5927 		 * global limits are not being effective at throttling
5928 		 * processes due to the page distribution throughout
5929 		 * zones or there is heavy usage of a slow backing
5930 		 * device. The only option is to throttle from reclaim
5931 		 * context which is not ideal as there is no guarantee
5932 		 * the dirtying process is throttled in the same way
5933 		 * balance_dirty_pages() manages.
5934 		 *
5935 		 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
5936 		 * count the number of pages under pages flagged for
5937 		 * immediate reclaim and stall if any are encountered
5938 		 * in the nr_immediate check below.
5939 		 */
5940 		if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
5941 			set_bit(PGDAT_WRITEBACK, &pgdat->flags);
5942 
5943 		/* Allow kswapd to start writing pages during reclaim.*/
5944 		if (sc->nr.unqueued_dirty == sc->nr.file_taken)
5945 			set_bit(PGDAT_DIRTY, &pgdat->flags);
5946 
5947 		/*
5948 		 * If kswapd scans pages marked for immediate
5949 		 * reclaim and under writeback (nr_immediate), it
5950 		 * implies that pages are cycling through the LRU
5951 		 * faster than they are written so forcibly stall
5952 		 * until some pages complete writeback.
5953 		 */
5954 		if (sc->nr.immediate)
5955 			reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
5956 	}
5957 
5958 	/*
5959 	 * Tag a node/memcg as congested if all the dirty pages were marked
5960 	 * for writeback and immediate reclaim (counted in nr.congested).
5961 	 *
5962 	 * Legacy memcg will stall in page writeback so avoid forcibly
5963 	 * stalling in reclaim_throttle().
5964 	 */
5965 	if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested) {
5966 		if (cgroup_reclaim(sc) && writeback_throttling_sane(sc))
5967 			set_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags);
5968 
5969 		if (current_is_kswapd())
5970 			set_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags);
5971 	}
5972 
5973 	/*
5974 	 * Stall direct reclaim for IO completions if the lruvec is
5975 	 * node is congested. Allow kswapd to continue until it
5976 	 * starts encountering unqueued dirty pages or cycling through
5977 	 * the LRU too quickly.
5978 	 */
5979 	if (!current_is_kswapd() && current_may_throttle() &&
5980 	    !sc->hibernation_mode &&
5981 	    (test_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags) ||
5982 	     test_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags)))
5983 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED);
5984 
5985 	if (should_continue_reclaim(pgdat, nr_node_reclaimed, sc))
5986 		goto again;
5987 
5988 	/*
5989 	 * Kswapd gives up on balancing particular nodes after too
5990 	 * many failures to reclaim anything from them and goes to
5991 	 * sleep. On reclaim progress, reset the failure counter. A
5992 	 * successful direct reclaim run will revive a dormant kswapd.
5993 	 */
5994 	if (reclaimable)
5995 		pgdat->kswapd_failures = 0;
5996 	else if (sc->cache_trim_mode)
5997 		sc->cache_trim_mode_failed = 1;
5998 }
5999 
6000 /*
6001  * Returns true if compaction should go ahead for a costly-order request, or
6002  * the allocation would already succeed without compaction. Return false if we
6003  * should reclaim first.
6004  */
6005 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
6006 {
6007 	unsigned long watermark;
6008 
6009 	if (!gfp_compaction_allowed(sc->gfp_mask))
6010 		return false;
6011 
6012 	/* Allocation can already succeed, nothing to do */
6013 	if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone),
6014 			      sc->reclaim_idx, 0))
6015 		return true;
6016 
6017 	/* Compaction cannot yet proceed. Do reclaim. */
6018 	if (!compaction_suitable(zone, sc->order, sc->reclaim_idx))
6019 		return false;
6020 
6021 	/*
6022 	 * Compaction is already possible, but it takes time to run and there
6023 	 * are potentially other callers using the pages just freed. So proceed
6024 	 * with reclaim to make a buffer of free pages available to give
6025 	 * compaction a reasonable chance of completing and allocating the page.
6026 	 * Note that we won't actually reclaim the whole buffer in one attempt
6027 	 * as the target watermark in should_continue_reclaim() is lower. But if
6028 	 * we are already above the high+gap watermark, don't reclaim at all.
6029 	 */
6030 	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
6031 
6032 	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
6033 }
6034 
6035 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
6036 {
6037 	/*
6038 	 * If reclaim is making progress greater than 12% efficiency then
6039 	 * wake all the NOPROGRESS throttled tasks.
6040 	 */
6041 	if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) {
6042 		wait_queue_head_t *wqh;
6043 
6044 		wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS];
6045 		if (waitqueue_active(wqh))
6046 			wake_up(wqh);
6047 
6048 		return;
6049 	}
6050 
6051 	/*
6052 	 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will
6053 	 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages
6054 	 * under writeback and marked for immediate reclaim at the tail of the
6055 	 * LRU.
6056 	 */
6057 	if (current_is_kswapd() || cgroup_reclaim(sc))
6058 		return;
6059 
6060 	/* Throttle if making no progress at high prioities. */
6061 	if (sc->priority == 1 && !sc->nr_reclaimed)
6062 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS);
6063 }
6064 
6065 /*
6066  * This is the direct reclaim path, for page-allocating processes.  We only
6067  * try to reclaim pages from zones which will satisfy the caller's allocation
6068  * request.
6069  *
6070  * If a zone is deemed to be full of pinned pages then just give it a light
6071  * scan then give up on it.
6072  */
6073 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
6074 {
6075 	struct zoneref *z;
6076 	struct zone *zone;
6077 	unsigned long nr_soft_reclaimed;
6078 	unsigned long nr_soft_scanned;
6079 	gfp_t orig_mask;
6080 	pg_data_t *last_pgdat = NULL;
6081 	pg_data_t *first_pgdat = NULL;
6082 
6083 	/*
6084 	 * If the number of buffer_heads in the machine exceeds the maximum
6085 	 * allowed level, force direct reclaim to scan the highmem zone as
6086 	 * highmem pages could be pinning lowmem pages storing buffer_heads
6087 	 */
6088 	orig_mask = sc->gfp_mask;
6089 	if (buffer_heads_over_limit) {
6090 		sc->gfp_mask |= __GFP_HIGHMEM;
6091 		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
6092 	}
6093 
6094 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6095 					sc->reclaim_idx, sc->nodemask) {
6096 		/*
6097 		 * Take care memory controller reclaiming has small influence
6098 		 * to global LRU.
6099 		 */
6100 		if (!cgroup_reclaim(sc)) {
6101 			if (!cpuset_zone_allowed(zone,
6102 						 GFP_KERNEL | __GFP_HARDWALL))
6103 				continue;
6104 
6105 			/*
6106 			 * If we already have plenty of memory free for
6107 			 * compaction in this zone, don't free any more.
6108 			 * Even though compaction is invoked for any
6109 			 * non-zero order, only frequent costly order
6110 			 * reclamation is disruptive enough to become a
6111 			 * noticeable problem, like transparent huge
6112 			 * page allocations.
6113 			 */
6114 			if (IS_ENABLED(CONFIG_COMPACTION) &&
6115 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
6116 			    compaction_ready(zone, sc)) {
6117 				sc->compaction_ready = true;
6118 				continue;
6119 			}
6120 
6121 			/*
6122 			 * Shrink each node in the zonelist once. If the
6123 			 * zonelist is ordered by zone (not the default) then a
6124 			 * node may be shrunk multiple times but in that case
6125 			 * the user prefers lower zones being preserved.
6126 			 */
6127 			if (zone->zone_pgdat == last_pgdat)
6128 				continue;
6129 
6130 			/*
6131 			 * This steals pages from memory cgroups over softlimit
6132 			 * and returns the number of reclaimed pages and
6133 			 * scanned pages. This works for global memory pressure
6134 			 * and balancing, not for a memcg's limit.
6135 			 */
6136 			nr_soft_scanned = 0;
6137 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
6138 						sc->order, sc->gfp_mask,
6139 						&nr_soft_scanned);
6140 			sc->nr_reclaimed += nr_soft_reclaimed;
6141 			sc->nr_scanned += nr_soft_scanned;
6142 			/* need some check for avoid more shrink_zone() */
6143 		}
6144 
6145 		if (!first_pgdat)
6146 			first_pgdat = zone->zone_pgdat;
6147 
6148 		/* See comment about same check for global reclaim above */
6149 		if (zone->zone_pgdat == last_pgdat)
6150 			continue;
6151 		last_pgdat = zone->zone_pgdat;
6152 		shrink_node(zone->zone_pgdat, sc);
6153 	}
6154 
6155 	if (first_pgdat)
6156 		consider_reclaim_throttle(first_pgdat, sc);
6157 
6158 	/*
6159 	 * Restore to original mask to avoid the impact on the caller if we
6160 	 * promoted it to __GFP_HIGHMEM.
6161 	 */
6162 	sc->gfp_mask = orig_mask;
6163 }
6164 
6165 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
6166 {
6167 	struct lruvec *target_lruvec;
6168 	unsigned long refaults;
6169 
6170 	if (lru_gen_enabled())
6171 		return;
6172 
6173 	target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
6174 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
6175 	target_lruvec->refaults[WORKINGSET_ANON] = refaults;
6176 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
6177 	target_lruvec->refaults[WORKINGSET_FILE] = refaults;
6178 }
6179 
6180 /*
6181  * This is the main entry point to direct page reclaim.
6182  *
6183  * If a full scan of the inactive list fails to free enough memory then we
6184  * are "out of memory" and something needs to be killed.
6185  *
6186  * If the caller is !__GFP_FS then the probability of a failure is reasonably
6187  * high - the zone may be full of dirty or under-writeback pages, which this
6188  * caller can't do much about.  We kick the writeback threads and take explicit
6189  * naps in the hope that some of these pages can be written.  But if the
6190  * allocating task holds filesystem locks which prevent writeout this might not
6191  * work, and the allocation attempt will fail.
6192  *
6193  * returns:	0, if no pages reclaimed
6194  * 		else, the number of pages reclaimed
6195  */
6196 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
6197 					  struct scan_control *sc)
6198 {
6199 	int initial_priority = sc->priority;
6200 	pg_data_t *last_pgdat;
6201 	struct zoneref *z;
6202 	struct zone *zone;
6203 retry:
6204 	delayacct_freepages_start();
6205 
6206 	if (!cgroup_reclaim(sc))
6207 		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
6208 
6209 	do {
6210 		if (!sc->proactive)
6211 			vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
6212 					sc->priority);
6213 		sc->nr_scanned = 0;
6214 		shrink_zones(zonelist, sc);
6215 
6216 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
6217 			break;
6218 
6219 		if (sc->compaction_ready)
6220 			break;
6221 
6222 		/*
6223 		 * If we're getting trouble reclaiming, start doing
6224 		 * writepage even in laptop mode.
6225 		 */
6226 		if (sc->priority < DEF_PRIORITY - 2)
6227 			sc->may_writepage = 1;
6228 	} while (--sc->priority >= 0);
6229 
6230 	last_pgdat = NULL;
6231 	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
6232 					sc->nodemask) {
6233 		if (zone->zone_pgdat == last_pgdat)
6234 			continue;
6235 		last_pgdat = zone->zone_pgdat;
6236 
6237 		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
6238 
6239 		if (cgroup_reclaim(sc)) {
6240 			struct lruvec *lruvec;
6241 
6242 			lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
6243 						   zone->zone_pgdat);
6244 			clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags);
6245 		}
6246 	}
6247 
6248 	delayacct_freepages_end();
6249 
6250 	if (sc->nr_reclaimed)
6251 		return sc->nr_reclaimed;
6252 
6253 	/* Aborted reclaim to try compaction? don't OOM, then */
6254 	if (sc->compaction_ready)
6255 		return 1;
6256 
6257 	/*
6258 	 * We make inactive:active ratio decisions based on the node's
6259 	 * composition of memory, but a restrictive reclaim_idx or a
6260 	 * memory.low cgroup setting can exempt large amounts of
6261 	 * memory from reclaim. Neither of which are very common, so
6262 	 * instead of doing costly eligibility calculations of the
6263 	 * entire cgroup subtree up front, we assume the estimates are
6264 	 * good, and retry with forcible deactivation if that fails.
6265 	 */
6266 	if (sc->skipped_deactivate) {
6267 		sc->priority = initial_priority;
6268 		sc->force_deactivate = 1;
6269 		sc->skipped_deactivate = 0;
6270 		goto retry;
6271 	}
6272 
6273 	/* Untapped cgroup reserves?  Don't OOM, retry. */
6274 	if (sc->memcg_low_skipped) {
6275 		sc->priority = initial_priority;
6276 		sc->force_deactivate = 0;
6277 		sc->memcg_low_reclaim = 1;
6278 		sc->memcg_low_skipped = 0;
6279 		goto retry;
6280 	}
6281 
6282 	return 0;
6283 }
6284 
6285 static bool allow_direct_reclaim(pg_data_t *pgdat)
6286 {
6287 	struct zone *zone;
6288 	unsigned long pfmemalloc_reserve = 0;
6289 	unsigned long free_pages = 0;
6290 	int i;
6291 	bool wmark_ok;
6292 
6293 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6294 		return true;
6295 
6296 	for (i = 0; i <= ZONE_NORMAL; i++) {
6297 		zone = &pgdat->node_zones[i];
6298 		if (!managed_zone(zone))
6299 			continue;
6300 
6301 		if (!zone_reclaimable_pages(zone))
6302 			continue;
6303 
6304 		pfmemalloc_reserve += min_wmark_pages(zone);
6305 		free_pages += zone_page_state_snapshot(zone, NR_FREE_PAGES);
6306 	}
6307 
6308 	/* If there are no reserves (unexpected config) then do not throttle */
6309 	if (!pfmemalloc_reserve)
6310 		return true;
6311 
6312 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
6313 
6314 	/* kswapd must be awake if processes are being throttled */
6315 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
6316 		if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
6317 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
6318 
6319 		wake_up_interruptible(&pgdat->kswapd_wait);
6320 	}
6321 
6322 	return wmark_ok;
6323 }
6324 
6325 /*
6326  * Throttle direct reclaimers if backing storage is backed by the network
6327  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
6328  * depleted. kswapd will continue to make progress and wake the processes
6329  * when the low watermark is reached.
6330  *
6331  * Returns true if a fatal signal was delivered during throttling. If this
6332  * happens, the page allocator should not consider triggering the OOM killer.
6333  */
6334 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
6335 					nodemask_t *nodemask)
6336 {
6337 	struct zoneref *z;
6338 	struct zone *zone;
6339 	pg_data_t *pgdat = NULL;
6340 
6341 	/*
6342 	 * Kernel threads should not be throttled as they may be indirectly
6343 	 * responsible for cleaning pages necessary for reclaim to make forward
6344 	 * progress. kjournald for example may enter direct reclaim while
6345 	 * committing a transaction where throttling it could forcing other
6346 	 * processes to block on log_wait_commit().
6347 	 */
6348 	if (current->flags & PF_KTHREAD)
6349 		goto out;
6350 
6351 	/*
6352 	 * If a fatal signal is pending, this process should not throttle.
6353 	 * It should return quickly so it can exit and free its memory
6354 	 */
6355 	if (fatal_signal_pending(current))
6356 		goto out;
6357 
6358 	/*
6359 	 * Check if the pfmemalloc reserves are ok by finding the first node
6360 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
6361 	 * GFP_KERNEL will be required for allocating network buffers when
6362 	 * swapping over the network so ZONE_HIGHMEM is unusable.
6363 	 *
6364 	 * Throttling is based on the first usable node and throttled processes
6365 	 * wait on a queue until kswapd makes progress and wakes them. There
6366 	 * is an affinity then between processes waking up and where reclaim
6367 	 * progress has been made assuming the process wakes on the same node.
6368 	 * More importantly, processes running on remote nodes will not compete
6369 	 * for remote pfmemalloc reserves and processes on different nodes
6370 	 * should make reasonable progress.
6371 	 */
6372 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6373 					gfp_zone(gfp_mask), nodemask) {
6374 		if (zone_idx(zone) > ZONE_NORMAL)
6375 			continue;
6376 
6377 		/* Throttle based on the first usable node */
6378 		pgdat = zone->zone_pgdat;
6379 		if (allow_direct_reclaim(pgdat))
6380 			goto out;
6381 		break;
6382 	}
6383 
6384 	/* If no zone was usable by the allocation flags then do not throttle */
6385 	if (!pgdat)
6386 		goto out;
6387 
6388 	/* Account for the throttling */
6389 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
6390 
6391 	/*
6392 	 * If the caller cannot enter the filesystem, it's possible that it
6393 	 * is due to the caller holding an FS lock or performing a journal
6394 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
6395 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
6396 	 * blocked waiting on the same lock. Instead, throttle for up to a
6397 	 * second before continuing.
6398 	 */
6399 	if (!(gfp_mask & __GFP_FS))
6400 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
6401 			allow_direct_reclaim(pgdat), HZ);
6402 	else
6403 		/* Throttle until kswapd wakes the process */
6404 		wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
6405 			allow_direct_reclaim(pgdat));
6406 
6407 	if (fatal_signal_pending(current))
6408 		return true;
6409 
6410 out:
6411 	return false;
6412 }
6413 
6414 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
6415 				gfp_t gfp_mask, nodemask_t *nodemask)
6416 {
6417 	unsigned long nr_reclaimed;
6418 	struct scan_control sc = {
6419 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
6420 		.gfp_mask = current_gfp_context(gfp_mask),
6421 		.reclaim_idx = gfp_zone(gfp_mask),
6422 		.order = order,
6423 		.nodemask = nodemask,
6424 		.priority = DEF_PRIORITY,
6425 		.may_writepage = !laptop_mode,
6426 		.may_unmap = 1,
6427 		.may_swap = 1,
6428 	};
6429 
6430 	/*
6431 	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
6432 	 * Confirm they are large enough for max values.
6433 	 */
6434 	BUILD_BUG_ON(MAX_PAGE_ORDER >= S8_MAX);
6435 	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
6436 	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
6437 
6438 	/*
6439 	 * Do not enter reclaim if fatal signal was delivered while throttled.
6440 	 * 1 is returned so that the page allocator does not OOM kill at this
6441 	 * point.
6442 	 */
6443 	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
6444 		return 1;
6445 
6446 	set_task_reclaim_state(current, &sc.reclaim_state);
6447 	trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
6448 
6449 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
6450 
6451 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
6452 	set_task_reclaim_state(current, NULL);
6453 
6454 	return nr_reclaimed;
6455 }
6456 
6457 #ifdef CONFIG_MEMCG
6458 
6459 /* Only used by soft limit reclaim. Do not reuse for anything else. */
6460 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
6461 						gfp_t gfp_mask, bool noswap,
6462 						pg_data_t *pgdat,
6463 						unsigned long *nr_scanned)
6464 {
6465 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
6466 	struct scan_control sc = {
6467 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
6468 		.target_mem_cgroup = memcg,
6469 		.may_writepage = !laptop_mode,
6470 		.may_unmap = 1,
6471 		.reclaim_idx = MAX_NR_ZONES - 1,
6472 		.may_swap = !noswap,
6473 	};
6474 
6475 	WARN_ON_ONCE(!current->reclaim_state);
6476 
6477 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
6478 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
6479 
6480 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
6481 						      sc.gfp_mask);
6482 
6483 	/*
6484 	 * NOTE: Although we can get the priority field, using it
6485 	 * here is not a good idea, since it limits the pages we can scan.
6486 	 * if we don't reclaim here, the shrink_node from balance_pgdat
6487 	 * will pick up pages from other mem cgroup's as well. We hack
6488 	 * the priority and make it zero.
6489 	 */
6490 	shrink_lruvec(lruvec, &sc);
6491 
6492 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
6493 
6494 	*nr_scanned = sc.nr_scanned;
6495 
6496 	return sc.nr_reclaimed;
6497 }
6498 
6499 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
6500 					   unsigned long nr_pages,
6501 					   gfp_t gfp_mask,
6502 					   unsigned int reclaim_options)
6503 {
6504 	unsigned long nr_reclaimed;
6505 	unsigned int noreclaim_flag;
6506 	struct scan_control sc = {
6507 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
6508 		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
6509 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
6510 		.reclaim_idx = MAX_NR_ZONES - 1,
6511 		.target_mem_cgroup = memcg,
6512 		.priority = DEF_PRIORITY,
6513 		.may_writepage = !laptop_mode,
6514 		.may_unmap = 1,
6515 		.may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP),
6516 		.proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE),
6517 	};
6518 	/*
6519 	 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
6520 	 * equal pressure on all the nodes. This is based on the assumption that
6521 	 * the reclaim does not bail out early.
6522 	 */
6523 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
6524 
6525 	set_task_reclaim_state(current, &sc.reclaim_state);
6526 	trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
6527 	noreclaim_flag = memalloc_noreclaim_save();
6528 
6529 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
6530 
6531 	memalloc_noreclaim_restore(noreclaim_flag);
6532 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
6533 	set_task_reclaim_state(current, NULL);
6534 
6535 	return nr_reclaimed;
6536 }
6537 #endif
6538 
6539 static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc)
6540 {
6541 	struct mem_cgroup *memcg;
6542 	struct lruvec *lruvec;
6543 
6544 	if (lru_gen_enabled()) {
6545 		lru_gen_age_node(pgdat, sc);
6546 		return;
6547 	}
6548 
6549 	if (!can_age_anon_pages(pgdat, sc))
6550 		return;
6551 
6552 	lruvec = mem_cgroup_lruvec(NULL, pgdat);
6553 	if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
6554 		return;
6555 
6556 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
6557 	do {
6558 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
6559 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
6560 				   sc, LRU_ACTIVE_ANON);
6561 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
6562 	} while (memcg);
6563 }
6564 
6565 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
6566 {
6567 	int i;
6568 	struct zone *zone;
6569 
6570 	/*
6571 	 * Check for watermark boosts top-down as the higher zones
6572 	 * are more likely to be boosted. Both watermarks and boosts
6573 	 * should not be checked at the same time as reclaim would
6574 	 * start prematurely when there is no boosting and a lower
6575 	 * zone is balanced.
6576 	 */
6577 	for (i = highest_zoneidx; i >= 0; i--) {
6578 		zone = pgdat->node_zones + i;
6579 		if (!managed_zone(zone))
6580 			continue;
6581 
6582 		if (zone->watermark_boost)
6583 			return true;
6584 	}
6585 
6586 	return false;
6587 }
6588 
6589 /*
6590  * Returns true if there is an eligible zone balanced for the request order
6591  * and highest_zoneidx
6592  */
6593 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
6594 {
6595 	int i;
6596 	unsigned long mark = -1;
6597 	struct zone *zone;
6598 
6599 	/*
6600 	 * Check watermarks bottom-up as lower zones are more likely to
6601 	 * meet watermarks.
6602 	 */
6603 	for (i = 0; i <= highest_zoneidx; i++) {
6604 		zone = pgdat->node_zones + i;
6605 
6606 		if (!managed_zone(zone))
6607 			continue;
6608 
6609 		if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)
6610 			mark = wmark_pages(zone, WMARK_PROMO);
6611 		else
6612 			mark = high_wmark_pages(zone);
6613 		if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
6614 			return true;
6615 	}
6616 
6617 	/*
6618 	 * If a node has no managed zone within highest_zoneidx, it does not
6619 	 * need balancing by definition. This can happen if a zone-restricted
6620 	 * allocation tries to wake a remote kswapd.
6621 	 */
6622 	if (mark == -1)
6623 		return true;
6624 
6625 	return false;
6626 }
6627 
6628 /* Clear pgdat state for congested, dirty or under writeback. */
6629 static void clear_pgdat_congested(pg_data_t *pgdat)
6630 {
6631 	struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
6632 
6633 	clear_bit(LRUVEC_NODE_CONGESTED, &lruvec->flags);
6634 	clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags);
6635 	clear_bit(PGDAT_DIRTY, &pgdat->flags);
6636 	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
6637 }
6638 
6639 /*
6640  * Prepare kswapd for sleeping. This verifies that there are no processes
6641  * waiting in throttle_direct_reclaim() and that watermarks have been met.
6642  *
6643  * Returns true if kswapd is ready to sleep
6644  */
6645 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
6646 				int highest_zoneidx)
6647 {
6648 	/*
6649 	 * The throttled processes are normally woken up in balance_pgdat() as
6650 	 * soon as allow_direct_reclaim() is true. But there is a potential
6651 	 * race between when kswapd checks the watermarks and a process gets
6652 	 * throttled. There is also a potential race if processes get
6653 	 * throttled, kswapd wakes, a large process exits thereby balancing the
6654 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
6655 	 * the wake up checks. If kswapd is going to sleep, no process should
6656 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
6657 	 * the wake up is premature, processes will wake kswapd and get
6658 	 * throttled again. The difference from wake ups in balance_pgdat() is
6659 	 * that here we are under prepare_to_wait().
6660 	 */
6661 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
6662 		wake_up_all(&pgdat->pfmemalloc_wait);
6663 
6664 	/* Hopeless node, leave it to direct reclaim */
6665 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6666 		return true;
6667 
6668 	if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
6669 		clear_pgdat_congested(pgdat);
6670 		return true;
6671 	}
6672 
6673 	return false;
6674 }
6675 
6676 /*
6677  * kswapd shrinks a node of pages that are at or below the highest usable
6678  * zone that is currently unbalanced.
6679  *
6680  * Returns true if kswapd scanned at least the requested number of pages to
6681  * reclaim or if the lack of progress was due to pages under writeback.
6682  * This is used to determine if the scanning priority needs to be raised.
6683  */
6684 static bool kswapd_shrink_node(pg_data_t *pgdat,
6685 			       struct scan_control *sc)
6686 {
6687 	struct zone *zone;
6688 	int z;
6689 
6690 	/* Reclaim a number of pages proportional to the number of zones */
6691 	sc->nr_to_reclaim = 0;
6692 	for (z = 0; z <= sc->reclaim_idx; z++) {
6693 		zone = pgdat->node_zones + z;
6694 		if (!managed_zone(zone))
6695 			continue;
6696 
6697 		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
6698 	}
6699 
6700 	/*
6701 	 * Historically care was taken to put equal pressure on all zones but
6702 	 * now pressure is applied based on node LRU order.
6703 	 */
6704 	shrink_node(pgdat, sc);
6705 
6706 	/*
6707 	 * Fragmentation may mean that the system cannot be rebalanced for
6708 	 * high-order allocations. If twice the allocation size has been
6709 	 * reclaimed then recheck watermarks only at order-0 to prevent
6710 	 * excessive reclaim. Assume that a process requested a high-order
6711 	 * can direct reclaim/compact.
6712 	 */
6713 	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
6714 		sc->order = 0;
6715 
6716 	return sc->nr_scanned >= sc->nr_to_reclaim;
6717 }
6718 
6719 /* Page allocator PCP high watermark is lowered if reclaim is active. */
6720 static inline void
6721 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
6722 {
6723 	int i;
6724 	struct zone *zone;
6725 
6726 	for (i = 0; i <= highest_zoneidx; i++) {
6727 		zone = pgdat->node_zones + i;
6728 
6729 		if (!managed_zone(zone))
6730 			continue;
6731 
6732 		if (active)
6733 			set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
6734 		else
6735 			clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
6736 	}
6737 }
6738 
6739 static inline void
6740 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
6741 {
6742 	update_reclaim_active(pgdat, highest_zoneidx, true);
6743 }
6744 
6745 static inline void
6746 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
6747 {
6748 	update_reclaim_active(pgdat, highest_zoneidx, false);
6749 }
6750 
6751 /*
6752  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
6753  * that are eligible for use by the caller until at least one zone is
6754  * balanced.
6755  *
6756  * Returns the order kswapd finished reclaiming at.
6757  *
6758  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
6759  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
6760  * found to have free_pages <= high_wmark_pages(zone), any page in that zone
6761  * or lower is eligible for reclaim until at least one usable zone is
6762  * balanced.
6763  */
6764 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
6765 {
6766 	int i;
6767 	unsigned long nr_soft_reclaimed;
6768 	unsigned long nr_soft_scanned;
6769 	unsigned long pflags;
6770 	unsigned long nr_boost_reclaim;
6771 	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
6772 	bool boosted;
6773 	struct zone *zone;
6774 	struct scan_control sc = {
6775 		.gfp_mask = GFP_KERNEL,
6776 		.order = order,
6777 		.may_unmap = 1,
6778 	};
6779 
6780 	set_task_reclaim_state(current, &sc.reclaim_state);
6781 	psi_memstall_enter(&pflags);
6782 	__fs_reclaim_acquire(_THIS_IP_);
6783 
6784 	count_vm_event(PAGEOUTRUN);
6785 
6786 	/*
6787 	 * Account for the reclaim boost. Note that the zone boost is left in
6788 	 * place so that parallel allocations that are near the watermark will
6789 	 * stall or direct reclaim until kswapd is finished.
6790 	 */
6791 	nr_boost_reclaim = 0;
6792 	for (i = 0; i <= highest_zoneidx; i++) {
6793 		zone = pgdat->node_zones + i;
6794 		if (!managed_zone(zone))
6795 			continue;
6796 
6797 		nr_boost_reclaim += zone->watermark_boost;
6798 		zone_boosts[i] = zone->watermark_boost;
6799 	}
6800 	boosted = nr_boost_reclaim;
6801 
6802 restart:
6803 	set_reclaim_active(pgdat, highest_zoneidx);
6804 	sc.priority = DEF_PRIORITY;
6805 	do {
6806 		unsigned long nr_reclaimed = sc.nr_reclaimed;
6807 		bool raise_priority = true;
6808 		bool balanced;
6809 		bool ret;
6810 		bool was_frozen;
6811 
6812 		sc.reclaim_idx = highest_zoneidx;
6813 
6814 		/*
6815 		 * If the number of buffer_heads exceeds the maximum allowed
6816 		 * then consider reclaiming from all zones. This has a dual
6817 		 * purpose -- on 64-bit systems it is expected that
6818 		 * buffer_heads are stripped during active rotation. On 32-bit
6819 		 * systems, highmem pages can pin lowmem memory and shrinking
6820 		 * buffers can relieve lowmem pressure. Reclaim may still not
6821 		 * go ahead if all eligible zones for the original allocation
6822 		 * request are balanced to avoid excessive reclaim from kswapd.
6823 		 */
6824 		if (buffer_heads_over_limit) {
6825 			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
6826 				zone = pgdat->node_zones + i;
6827 				if (!managed_zone(zone))
6828 					continue;
6829 
6830 				sc.reclaim_idx = i;
6831 				break;
6832 			}
6833 		}
6834 
6835 		/*
6836 		 * If the pgdat is imbalanced then ignore boosting and preserve
6837 		 * the watermarks for a later time and restart. Note that the
6838 		 * zone watermarks will be still reset at the end of balancing
6839 		 * on the grounds that the normal reclaim should be enough to
6840 		 * re-evaluate if boosting is required when kswapd next wakes.
6841 		 */
6842 		balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
6843 		if (!balanced && nr_boost_reclaim) {
6844 			nr_boost_reclaim = 0;
6845 			goto restart;
6846 		}
6847 
6848 		/*
6849 		 * If boosting is not active then only reclaim if there are no
6850 		 * eligible zones. Note that sc.reclaim_idx is not used as
6851 		 * buffer_heads_over_limit may have adjusted it.
6852 		 */
6853 		if (!nr_boost_reclaim && balanced)
6854 			goto out;
6855 
6856 		/* Limit the priority of boosting to avoid reclaim writeback */
6857 		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
6858 			raise_priority = false;
6859 
6860 		/*
6861 		 * Do not writeback or swap pages for boosted reclaim. The
6862 		 * intent is to relieve pressure not issue sub-optimal IO
6863 		 * from reclaim context. If no pages are reclaimed, the
6864 		 * reclaim will be aborted.
6865 		 */
6866 		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
6867 		sc.may_swap = !nr_boost_reclaim;
6868 
6869 		/*
6870 		 * Do some background aging, to give pages a chance to be
6871 		 * referenced before reclaiming. All pages are rotated
6872 		 * regardless of classzone as this is about consistent aging.
6873 		 */
6874 		kswapd_age_node(pgdat, &sc);
6875 
6876 		/*
6877 		 * If we're getting trouble reclaiming, start doing writepage
6878 		 * even in laptop mode.
6879 		 */
6880 		if (sc.priority < DEF_PRIORITY - 2)
6881 			sc.may_writepage = 1;
6882 
6883 		/* Call soft limit reclaim before calling shrink_node. */
6884 		sc.nr_scanned = 0;
6885 		nr_soft_scanned = 0;
6886 		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
6887 						sc.gfp_mask, &nr_soft_scanned);
6888 		sc.nr_reclaimed += nr_soft_reclaimed;
6889 
6890 		/*
6891 		 * There should be no need to raise the scanning priority if
6892 		 * enough pages are already being scanned that that high
6893 		 * watermark would be met at 100% efficiency.
6894 		 */
6895 		if (kswapd_shrink_node(pgdat, &sc))
6896 			raise_priority = false;
6897 
6898 		/*
6899 		 * If the low watermark is met there is no need for processes
6900 		 * to be throttled on pfmemalloc_wait as they should not be
6901 		 * able to safely make forward progress. Wake them
6902 		 */
6903 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
6904 				allow_direct_reclaim(pgdat))
6905 			wake_up_all(&pgdat->pfmemalloc_wait);
6906 
6907 		/* Check if kswapd should be suspending */
6908 		__fs_reclaim_release(_THIS_IP_);
6909 		ret = kthread_freezable_should_stop(&was_frozen);
6910 		__fs_reclaim_acquire(_THIS_IP_);
6911 		if (was_frozen || ret)
6912 			break;
6913 
6914 		/*
6915 		 * Raise priority if scanning rate is too low or there was no
6916 		 * progress in reclaiming pages
6917 		 */
6918 		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
6919 		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
6920 
6921 		/*
6922 		 * If reclaim made no progress for a boost, stop reclaim as
6923 		 * IO cannot be queued and it could be an infinite loop in
6924 		 * extreme circumstances.
6925 		 */
6926 		if (nr_boost_reclaim && !nr_reclaimed)
6927 			break;
6928 
6929 		if (raise_priority || !nr_reclaimed)
6930 			sc.priority--;
6931 	} while (sc.priority >= 1);
6932 
6933 	/*
6934 	 * Restart only if it went through the priority loop all the way,
6935 	 * but cache_trim_mode didn't work.
6936 	 */
6937 	if (!sc.nr_reclaimed && sc.priority < 1 &&
6938 	    !sc.no_cache_trim_mode && sc.cache_trim_mode_failed) {
6939 		sc.no_cache_trim_mode = 1;
6940 		goto restart;
6941 	}
6942 
6943 	if (!sc.nr_reclaimed)
6944 		pgdat->kswapd_failures++;
6945 
6946 out:
6947 	clear_reclaim_active(pgdat, highest_zoneidx);
6948 
6949 	/* If reclaim was boosted, account for the reclaim done in this pass */
6950 	if (boosted) {
6951 		unsigned long flags;
6952 
6953 		for (i = 0; i <= highest_zoneidx; i++) {
6954 			if (!zone_boosts[i])
6955 				continue;
6956 
6957 			/* Increments are under the zone lock */
6958 			zone = pgdat->node_zones + i;
6959 			spin_lock_irqsave(&zone->lock, flags);
6960 			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
6961 			spin_unlock_irqrestore(&zone->lock, flags);
6962 		}
6963 
6964 		/*
6965 		 * As there is now likely space, wakeup kcompact to defragment
6966 		 * pageblocks.
6967 		 */
6968 		wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
6969 	}
6970 
6971 	snapshot_refaults(NULL, pgdat);
6972 	__fs_reclaim_release(_THIS_IP_);
6973 	psi_memstall_leave(&pflags);
6974 	set_task_reclaim_state(current, NULL);
6975 
6976 	/*
6977 	 * Return the order kswapd stopped reclaiming at as
6978 	 * prepare_kswapd_sleep() takes it into account. If another caller
6979 	 * entered the allocator slow path while kswapd was awake, order will
6980 	 * remain at the higher level.
6981 	 */
6982 	return sc.order;
6983 }
6984 
6985 /*
6986  * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
6987  * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
6988  * not a valid index then either kswapd runs for first time or kswapd couldn't
6989  * sleep after previous reclaim attempt (node is still unbalanced). In that
6990  * case return the zone index of the previous kswapd reclaim cycle.
6991  */
6992 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
6993 					   enum zone_type prev_highest_zoneidx)
6994 {
6995 	enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
6996 
6997 	return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
6998 }
6999 
7000 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
7001 				unsigned int highest_zoneidx)
7002 {
7003 	long remaining = 0;
7004 	DEFINE_WAIT(wait);
7005 
7006 	if (freezing(current) || kthread_should_stop())
7007 		return;
7008 
7009 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7010 
7011 	/*
7012 	 * Try to sleep for a short interval. Note that kcompactd will only be
7013 	 * woken if it is possible to sleep for a short interval. This is
7014 	 * deliberate on the assumption that if reclaim cannot keep an
7015 	 * eligible zone balanced that it's also unlikely that compaction will
7016 	 * succeed.
7017 	 */
7018 	if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7019 		/*
7020 		 * Compaction records what page blocks it recently failed to
7021 		 * isolate pages from and skips them in the future scanning.
7022 		 * When kswapd is going to sleep, it is reasonable to assume
7023 		 * that pages and compaction may succeed so reset the cache.
7024 		 */
7025 		reset_isolation_suitable(pgdat);
7026 
7027 		/*
7028 		 * We have freed the memory, now we should compact it to make
7029 		 * allocation of the requested order possible.
7030 		 */
7031 		wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
7032 
7033 		remaining = schedule_timeout(HZ/10);
7034 
7035 		/*
7036 		 * If woken prematurely then reset kswapd_highest_zoneidx and
7037 		 * order. The values will either be from a wakeup request or
7038 		 * the previous request that slept prematurely.
7039 		 */
7040 		if (remaining) {
7041 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
7042 					kswapd_highest_zoneidx(pgdat,
7043 							highest_zoneidx));
7044 
7045 			if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
7046 				WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
7047 		}
7048 
7049 		finish_wait(&pgdat->kswapd_wait, &wait);
7050 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7051 	}
7052 
7053 	/*
7054 	 * After a short sleep, check if it was a premature sleep. If not, then
7055 	 * go fully to sleep until explicitly woken up.
7056 	 */
7057 	if (!remaining &&
7058 	    prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7059 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
7060 
7061 		/*
7062 		 * vmstat counters are not perfectly accurate and the estimated
7063 		 * value for counters such as NR_FREE_PAGES can deviate from the
7064 		 * true value by nr_online_cpus * threshold. To avoid the zone
7065 		 * watermarks being breached while under pressure, we reduce the
7066 		 * per-cpu vmstat threshold while kswapd is awake and restore
7067 		 * them before going back to sleep.
7068 		 */
7069 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
7070 
7071 		if (!kthread_should_stop())
7072 			schedule();
7073 
7074 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
7075 	} else {
7076 		if (remaining)
7077 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
7078 		else
7079 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
7080 	}
7081 	finish_wait(&pgdat->kswapd_wait, &wait);
7082 }
7083 
7084 /*
7085  * The background pageout daemon, started as a kernel thread
7086  * from the init process.
7087  *
7088  * This basically trickles out pages so that we have _some_
7089  * free memory available even if there is no other activity
7090  * that frees anything up. This is needed for things like routing
7091  * etc, where we otherwise might have all activity going on in
7092  * asynchronous contexts that cannot page things out.
7093  *
7094  * If there are applications that are active memory-allocators
7095  * (most normal use), this basically shouldn't matter.
7096  */
7097 static int kswapd(void *p)
7098 {
7099 	unsigned int alloc_order, reclaim_order;
7100 	unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
7101 	pg_data_t *pgdat = (pg_data_t *)p;
7102 	struct task_struct *tsk = current;
7103 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7104 
7105 	if (!cpumask_empty(cpumask))
7106 		set_cpus_allowed_ptr(tsk, cpumask);
7107 
7108 	/*
7109 	 * Tell the memory management that we're a "memory allocator",
7110 	 * and that if we need more memory we should get access to it
7111 	 * regardless (see "__alloc_pages()"). "kswapd" should
7112 	 * never get caught in the normal page freeing logic.
7113 	 *
7114 	 * (Kswapd normally doesn't need memory anyway, but sometimes
7115 	 * you need a small amount of memory in order to be able to
7116 	 * page out something else, and this flag essentially protects
7117 	 * us from recursively trying to free more memory as we're
7118 	 * trying to free the first piece of memory in the first place).
7119 	 */
7120 	tsk->flags |= PF_MEMALLOC | PF_KSWAPD;
7121 	set_freezable();
7122 
7123 	WRITE_ONCE(pgdat->kswapd_order, 0);
7124 	WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7125 	atomic_set(&pgdat->nr_writeback_throttled, 0);
7126 	for ( ; ; ) {
7127 		bool was_frozen;
7128 
7129 		alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
7130 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7131 							highest_zoneidx);
7132 
7133 kswapd_try_sleep:
7134 		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
7135 					highest_zoneidx);
7136 
7137 		/* Read the new order and highest_zoneidx */
7138 		alloc_order = READ_ONCE(pgdat->kswapd_order);
7139 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7140 							highest_zoneidx);
7141 		WRITE_ONCE(pgdat->kswapd_order, 0);
7142 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7143 
7144 		if (kthread_freezable_should_stop(&was_frozen))
7145 			break;
7146 
7147 		/*
7148 		 * We can speed up thawing tasks if we don't call balance_pgdat
7149 		 * after returning from the refrigerator
7150 		 */
7151 		if (was_frozen)
7152 			continue;
7153 
7154 		/*
7155 		 * Reclaim begins at the requested order but if a high-order
7156 		 * reclaim fails then kswapd falls back to reclaiming for
7157 		 * order-0. If that happens, kswapd will consider sleeping
7158 		 * for the order it finished reclaiming at (reclaim_order)
7159 		 * but kcompactd is woken to compact for the original
7160 		 * request (alloc_order).
7161 		 */
7162 		trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
7163 						alloc_order);
7164 		reclaim_order = balance_pgdat(pgdat, alloc_order,
7165 						highest_zoneidx);
7166 		if (reclaim_order < alloc_order)
7167 			goto kswapd_try_sleep;
7168 	}
7169 
7170 	tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD);
7171 
7172 	return 0;
7173 }
7174 
7175 /*
7176  * A zone is low on free memory or too fragmented for high-order memory.  If
7177  * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
7178  * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
7179  * has failed or is not needed, still wake up kcompactd if only compaction is
7180  * needed.
7181  */
7182 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
7183 		   enum zone_type highest_zoneidx)
7184 {
7185 	pg_data_t *pgdat;
7186 	enum zone_type curr_idx;
7187 
7188 	if (!managed_zone(zone))
7189 		return;
7190 
7191 	if (!cpuset_zone_allowed(zone, gfp_flags))
7192 		return;
7193 
7194 	pgdat = zone->zone_pgdat;
7195 	curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7196 
7197 	if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
7198 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
7199 
7200 	if (READ_ONCE(pgdat->kswapd_order) < order)
7201 		WRITE_ONCE(pgdat->kswapd_order, order);
7202 
7203 	if (!waitqueue_active(&pgdat->kswapd_wait))
7204 		return;
7205 
7206 	/* Hopeless node, leave it to direct reclaim if possible */
7207 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
7208 	    (pgdat_balanced(pgdat, order, highest_zoneidx) &&
7209 	     !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
7210 		/*
7211 		 * There may be plenty of free memory available, but it's too
7212 		 * fragmented for high-order allocations.  Wake up kcompactd
7213 		 * and rely on compaction_suitable() to determine if it's
7214 		 * needed.  If it fails, it will defer subsequent attempts to
7215 		 * ratelimit its work.
7216 		 */
7217 		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
7218 			wakeup_kcompactd(pgdat, order, highest_zoneidx);
7219 		return;
7220 	}
7221 
7222 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
7223 				      gfp_flags);
7224 	wake_up_interruptible(&pgdat->kswapd_wait);
7225 }
7226 
7227 #ifdef CONFIG_HIBERNATION
7228 /*
7229  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
7230  * freed pages.
7231  *
7232  * Rather than trying to age LRUs the aim is to preserve the overall
7233  * LRU order by reclaiming preferentially
7234  * inactive > active > active referenced > active mapped
7235  */
7236 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
7237 {
7238 	struct scan_control sc = {
7239 		.nr_to_reclaim = nr_to_reclaim,
7240 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
7241 		.reclaim_idx = MAX_NR_ZONES - 1,
7242 		.priority = DEF_PRIORITY,
7243 		.may_writepage = 1,
7244 		.may_unmap = 1,
7245 		.may_swap = 1,
7246 		.hibernation_mode = 1,
7247 	};
7248 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7249 	unsigned long nr_reclaimed;
7250 	unsigned int noreclaim_flag;
7251 
7252 	fs_reclaim_acquire(sc.gfp_mask);
7253 	noreclaim_flag = memalloc_noreclaim_save();
7254 	set_task_reclaim_state(current, &sc.reclaim_state);
7255 
7256 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
7257 
7258 	set_task_reclaim_state(current, NULL);
7259 	memalloc_noreclaim_restore(noreclaim_flag);
7260 	fs_reclaim_release(sc.gfp_mask);
7261 
7262 	return nr_reclaimed;
7263 }
7264 #endif /* CONFIG_HIBERNATION */
7265 
7266 /*
7267  * This kswapd start function will be called by init and node-hot-add.
7268  */
7269 void __meminit kswapd_run(int nid)
7270 {
7271 	pg_data_t *pgdat = NODE_DATA(nid);
7272 
7273 	pgdat_kswapd_lock(pgdat);
7274 	if (!pgdat->kswapd) {
7275 		pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
7276 		if (IS_ERR(pgdat->kswapd)) {
7277 			/* failure at boot is fatal */
7278 			pr_err("Failed to start kswapd on node %d,ret=%ld\n",
7279 				   nid, PTR_ERR(pgdat->kswapd));
7280 			BUG_ON(system_state < SYSTEM_RUNNING);
7281 			pgdat->kswapd = NULL;
7282 		}
7283 	}
7284 	pgdat_kswapd_unlock(pgdat);
7285 }
7286 
7287 /*
7288  * Called by memory hotplug when all memory in a node is offlined.  Caller must
7289  * be holding mem_hotplug_begin/done().
7290  */
7291 void __meminit kswapd_stop(int nid)
7292 {
7293 	pg_data_t *pgdat = NODE_DATA(nid);
7294 	struct task_struct *kswapd;
7295 
7296 	pgdat_kswapd_lock(pgdat);
7297 	kswapd = pgdat->kswapd;
7298 	if (kswapd) {
7299 		kthread_stop(kswapd);
7300 		pgdat->kswapd = NULL;
7301 	}
7302 	pgdat_kswapd_unlock(pgdat);
7303 }
7304 
7305 static int __init kswapd_init(void)
7306 {
7307 	int nid;
7308 
7309 	swap_setup();
7310 	for_each_node_state(nid, N_MEMORY)
7311  		kswapd_run(nid);
7312 	return 0;
7313 }
7314 
7315 module_init(kswapd_init)
7316 
7317 #ifdef CONFIG_NUMA
7318 /*
7319  * Node reclaim mode
7320  *
7321  * If non-zero call node_reclaim when the number of free pages falls below
7322  * the watermarks.
7323  */
7324 int node_reclaim_mode __read_mostly;
7325 
7326 /*
7327  * Priority for NODE_RECLAIM. This determines the fraction of pages
7328  * of a node considered for each zone_reclaim. 4 scans 1/16th of
7329  * a zone.
7330  */
7331 #define NODE_RECLAIM_PRIORITY 4
7332 
7333 /*
7334  * Percentage of pages in a zone that must be unmapped for node_reclaim to
7335  * occur.
7336  */
7337 int sysctl_min_unmapped_ratio = 1;
7338 
7339 /*
7340  * If the number of slab pages in a zone grows beyond this percentage then
7341  * slab reclaim needs to occur.
7342  */
7343 int sysctl_min_slab_ratio = 5;
7344 
7345 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
7346 {
7347 	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
7348 	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
7349 		node_page_state(pgdat, NR_ACTIVE_FILE);
7350 
7351 	/*
7352 	 * It's possible for there to be more file mapped pages than
7353 	 * accounted for by the pages on the file LRU lists because
7354 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
7355 	 */
7356 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
7357 }
7358 
7359 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
7360 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
7361 {
7362 	unsigned long nr_pagecache_reclaimable;
7363 	unsigned long delta = 0;
7364 
7365 	/*
7366 	 * If RECLAIM_UNMAP is set, then all file pages are considered
7367 	 * potentially reclaimable. Otherwise, we have to worry about
7368 	 * pages like swapcache and node_unmapped_file_pages() provides
7369 	 * a better estimate
7370 	 */
7371 	if (node_reclaim_mode & RECLAIM_UNMAP)
7372 		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
7373 	else
7374 		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
7375 
7376 	/* If we can't clean pages, remove dirty pages from consideration */
7377 	if (!(node_reclaim_mode & RECLAIM_WRITE))
7378 		delta += node_page_state(pgdat, NR_FILE_DIRTY);
7379 
7380 	/* Watch for any possible underflows due to delta */
7381 	if (unlikely(delta > nr_pagecache_reclaimable))
7382 		delta = nr_pagecache_reclaimable;
7383 
7384 	return nr_pagecache_reclaimable - delta;
7385 }
7386 
7387 /*
7388  * Try to free up some pages from this node through reclaim.
7389  */
7390 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
7391 {
7392 	/* Minimum pages needed in order to stay on node */
7393 	const unsigned long nr_pages = 1 << order;
7394 	struct task_struct *p = current;
7395 	unsigned int noreclaim_flag;
7396 	struct scan_control sc = {
7397 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7398 		.gfp_mask = current_gfp_context(gfp_mask),
7399 		.order = order,
7400 		.priority = NODE_RECLAIM_PRIORITY,
7401 		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
7402 		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
7403 		.may_swap = 1,
7404 		.reclaim_idx = gfp_zone(gfp_mask),
7405 	};
7406 	unsigned long pflags;
7407 
7408 	trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
7409 					   sc.gfp_mask);
7410 
7411 	cond_resched();
7412 	psi_memstall_enter(&pflags);
7413 	delayacct_freepages_start();
7414 	fs_reclaim_acquire(sc.gfp_mask);
7415 	/*
7416 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
7417 	 */
7418 	noreclaim_flag = memalloc_noreclaim_save();
7419 	set_task_reclaim_state(p, &sc.reclaim_state);
7420 
7421 	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages ||
7422 	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) {
7423 		/*
7424 		 * Free memory by calling shrink node with increasing
7425 		 * priorities until we have enough memory freed.
7426 		 */
7427 		do {
7428 			shrink_node(pgdat, &sc);
7429 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
7430 	}
7431 
7432 	set_task_reclaim_state(p, NULL);
7433 	memalloc_noreclaim_restore(noreclaim_flag);
7434 	fs_reclaim_release(sc.gfp_mask);
7435 	psi_memstall_leave(&pflags);
7436 	delayacct_freepages_end();
7437 
7438 	trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
7439 
7440 	return sc.nr_reclaimed >= nr_pages;
7441 }
7442 
7443 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
7444 {
7445 	int ret;
7446 
7447 	/*
7448 	 * Node reclaim reclaims unmapped file backed pages and
7449 	 * slab pages if we are over the defined limits.
7450 	 *
7451 	 * A small portion of unmapped file backed pages is needed for
7452 	 * file I/O otherwise pages read by file I/O will be immediately
7453 	 * thrown out if the node is overallocated. So we do not reclaim
7454 	 * if less than a specified percentage of the node is used by
7455 	 * unmapped file backed pages.
7456 	 */
7457 	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
7458 	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
7459 	    pgdat->min_slab_pages)
7460 		return NODE_RECLAIM_FULL;
7461 
7462 	/*
7463 	 * Do not scan if the allocation should not be delayed.
7464 	 */
7465 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
7466 		return NODE_RECLAIM_NOSCAN;
7467 
7468 	/*
7469 	 * Only run node reclaim on the local node or on nodes that do not
7470 	 * have associated processors. This will favor the local processor
7471 	 * over remote processors and spread off node memory allocations
7472 	 * as wide as possible.
7473 	 */
7474 	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
7475 		return NODE_RECLAIM_NOSCAN;
7476 
7477 	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
7478 		return NODE_RECLAIM_NOSCAN;
7479 
7480 	ret = __node_reclaim(pgdat, gfp_mask, order);
7481 	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
7482 
7483 	if (!ret)
7484 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
7485 
7486 	return ret;
7487 }
7488 #endif
7489 
7490 /**
7491  * check_move_unevictable_folios - Move evictable folios to appropriate zone
7492  * lru list
7493  * @fbatch: Batch of lru folios to check.
7494  *
7495  * Checks folios for evictability, if an evictable folio is in the unevictable
7496  * lru list, moves it to the appropriate evictable lru list. This function
7497  * should be only used for lru folios.
7498  */
7499 void check_move_unevictable_folios(struct folio_batch *fbatch)
7500 {
7501 	struct lruvec *lruvec = NULL;
7502 	int pgscanned = 0;
7503 	int pgrescued = 0;
7504 	int i;
7505 
7506 	for (i = 0; i < fbatch->nr; i++) {
7507 		struct folio *folio = fbatch->folios[i];
7508 		int nr_pages = folio_nr_pages(folio);
7509 
7510 		pgscanned += nr_pages;
7511 
7512 		/* block memcg migration while the folio moves between lrus */
7513 		if (!folio_test_clear_lru(folio))
7514 			continue;
7515 
7516 		lruvec = folio_lruvec_relock_irq(folio, lruvec);
7517 		if (folio_evictable(folio) && folio_test_unevictable(folio)) {
7518 			lruvec_del_folio(lruvec, folio);
7519 			folio_clear_unevictable(folio);
7520 			lruvec_add_folio(lruvec, folio);
7521 			pgrescued += nr_pages;
7522 		}
7523 		folio_set_lru(folio);
7524 	}
7525 
7526 	if (lruvec) {
7527 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
7528 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
7529 		unlock_page_lruvec_irq(lruvec);
7530 	} else if (pgscanned) {
7531 		count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
7532 	}
7533 }
7534 EXPORT_SYMBOL_GPL(check_move_unevictable_folios);
7535