1 /* 2 * linux/mm/vmscan.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * 6 * Swap reorganised 29.12.95, Stephen Tweedie. 7 * kswapd added: 7.1.96 sct 8 * Removed kswapd_ctl limits, and swap out as many pages as needed 9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 11 * Multiqueue VM started 5.8.00, Rik van Riel. 12 */ 13 14 #include <linux/mm.h> 15 #include <linux/module.h> 16 #include <linux/gfp.h> 17 #include <linux/kernel_stat.h> 18 #include <linux/swap.h> 19 #include <linux/pagemap.h> 20 #include <linux/init.h> 21 #include <linux/highmem.h> 22 #include <linux/vmpressure.h> 23 #include <linux/vmstat.h> 24 #include <linux/file.h> 25 #include <linux/writeback.h> 26 #include <linux/blkdev.h> 27 #include <linux/buffer_head.h> /* for try_to_release_page(), 28 buffer_heads_over_limit */ 29 #include <linux/mm_inline.h> 30 #include <linux/backing-dev.h> 31 #include <linux/rmap.h> 32 #include <linux/topology.h> 33 #include <linux/cpu.h> 34 #include <linux/cpuset.h> 35 #include <linux/compaction.h> 36 #include <linux/notifier.h> 37 #include <linux/rwsem.h> 38 #include <linux/delay.h> 39 #include <linux/kthread.h> 40 #include <linux/freezer.h> 41 #include <linux/memcontrol.h> 42 #include <linux/delayacct.h> 43 #include <linux/sysctl.h> 44 #include <linux/oom.h> 45 #include <linux/prefetch.h> 46 47 #include <asm/tlbflush.h> 48 #include <asm/div64.h> 49 50 #include <linux/swapops.h> 51 #include <linux/balloon_compaction.h> 52 53 #include "internal.h" 54 55 #define CREATE_TRACE_POINTS 56 #include <trace/events/vmscan.h> 57 58 struct scan_control { 59 /* Incremented by the number of inactive pages that were scanned */ 60 unsigned long nr_scanned; 61 62 /* Number of pages freed so far during a call to shrink_zones() */ 63 unsigned long nr_reclaimed; 64 65 /* How many pages shrink_list() should reclaim */ 66 unsigned long nr_to_reclaim; 67 68 unsigned long hibernation_mode; 69 70 /* This context's GFP mask */ 71 gfp_t gfp_mask; 72 73 int may_writepage; 74 75 /* Can mapped pages be reclaimed? */ 76 int may_unmap; 77 78 /* Can pages be swapped as part of reclaim? */ 79 int may_swap; 80 81 int order; 82 83 /* Scan (total_size >> priority) pages at once */ 84 int priority; 85 86 /* 87 * The memory cgroup that hit its limit and as a result is the 88 * primary target of this reclaim invocation. 89 */ 90 struct mem_cgroup *target_mem_cgroup; 91 92 /* 93 * Nodemask of nodes allowed by the caller. If NULL, all nodes 94 * are scanned. 95 */ 96 nodemask_t *nodemask; 97 }; 98 99 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru)) 100 101 #ifdef ARCH_HAS_PREFETCH 102 #define prefetch_prev_lru_page(_page, _base, _field) \ 103 do { \ 104 if ((_page)->lru.prev != _base) { \ 105 struct page *prev; \ 106 \ 107 prev = lru_to_page(&(_page->lru)); \ 108 prefetch(&prev->_field); \ 109 } \ 110 } while (0) 111 #else 112 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0) 113 #endif 114 115 #ifdef ARCH_HAS_PREFETCHW 116 #define prefetchw_prev_lru_page(_page, _base, _field) \ 117 do { \ 118 if ((_page)->lru.prev != _base) { \ 119 struct page *prev; \ 120 \ 121 prev = lru_to_page(&(_page->lru)); \ 122 prefetchw(&prev->_field); \ 123 } \ 124 } while (0) 125 #else 126 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 127 #endif 128 129 /* 130 * From 0 .. 100. Higher means more swappy. 131 */ 132 int vm_swappiness = 60; 133 unsigned long vm_total_pages; /* The total number of pages which the VM controls */ 134 135 static LIST_HEAD(shrinker_list); 136 static DECLARE_RWSEM(shrinker_rwsem); 137 138 #ifdef CONFIG_MEMCG 139 static bool global_reclaim(struct scan_control *sc) 140 { 141 return !sc->target_mem_cgroup; 142 } 143 #else 144 static bool global_reclaim(struct scan_control *sc) 145 { 146 return true; 147 } 148 #endif 149 150 unsigned long zone_reclaimable_pages(struct zone *zone) 151 { 152 int nr; 153 154 nr = zone_page_state(zone, NR_ACTIVE_FILE) + 155 zone_page_state(zone, NR_INACTIVE_FILE); 156 157 if (get_nr_swap_pages() > 0) 158 nr += zone_page_state(zone, NR_ACTIVE_ANON) + 159 zone_page_state(zone, NR_INACTIVE_ANON); 160 161 return nr; 162 } 163 164 bool zone_reclaimable(struct zone *zone) 165 { 166 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6; 167 } 168 169 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru) 170 { 171 if (!mem_cgroup_disabled()) 172 return mem_cgroup_get_lru_size(lruvec, lru); 173 174 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru); 175 } 176 177 /* 178 * Add a shrinker callback to be called from the vm. 179 */ 180 int register_shrinker(struct shrinker *shrinker) 181 { 182 size_t size = sizeof(*shrinker->nr_deferred); 183 184 /* 185 * If we only have one possible node in the system anyway, save 186 * ourselves the trouble and disable NUMA aware behavior. This way we 187 * will save memory and some small loop time later. 188 */ 189 if (nr_node_ids == 1) 190 shrinker->flags &= ~SHRINKER_NUMA_AWARE; 191 192 if (shrinker->flags & SHRINKER_NUMA_AWARE) 193 size *= nr_node_ids; 194 195 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); 196 if (!shrinker->nr_deferred) 197 return -ENOMEM; 198 199 down_write(&shrinker_rwsem); 200 list_add_tail(&shrinker->list, &shrinker_list); 201 up_write(&shrinker_rwsem); 202 return 0; 203 } 204 EXPORT_SYMBOL(register_shrinker); 205 206 /* 207 * Remove one 208 */ 209 void unregister_shrinker(struct shrinker *shrinker) 210 { 211 down_write(&shrinker_rwsem); 212 list_del(&shrinker->list); 213 up_write(&shrinker_rwsem); 214 } 215 EXPORT_SYMBOL(unregister_shrinker); 216 217 #define SHRINK_BATCH 128 218 219 static unsigned long 220 shrink_slab_node(struct shrink_control *shrinkctl, struct shrinker *shrinker, 221 unsigned long nr_pages_scanned, unsigned long lru_pages) 222 { 223 unsigned long freed = 0; 224 unsigned long long delta; 225 long total_scan; 226 long max_pass; 227 long nr; 228 long new_nr; 229 int nid = shrinkctl->nid; 230 long batch_size = shrinker->batch ? shrinker->batch 231 : SHRINK_BATCH; 232 233 max_pass = shrinker->count_objects(shrinker, shrinkctl); 234 if (max_pass == 0) 235 return 0; 236 237 /* 238 * copy the current shrinker scan count into a local variable 239 * and zero it so that other concurrent shrinker invocations 240 * don't also do this scanning work. 241 */ 242 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0); 243 244 total_scan = nr; 245 delta = (4 * nr_pages_scanned) / shrinker->seeks; 246 delta *= max_pass; 247 do_div(delta, lru_pages + 1); 248 total_scan += delta; 249 if (total_scan < 0) { 250 printk(KERN_ERR 251 "shrink_slab: %pF negative objects to delete nr=%ld\n", 252 shrinker->scan_objects, total_scan); 253 total_scan = max_pass; 254 } 255 256 /* 257 * We need to avoid excessive windup on filesystem shrinkers 258 * due to large numbers of GFP_NOFS allocations causing the 259 * shrinkers to return -1 all the time. This results in a large 260 * nr being built up so when a shrink that can do some work 261 * comes along it empties the entire cache due to nr >>> 262 * max_pass. This is bad for sustaining a working set in 263 * memory. 264 * 265 * Hence only allow the shrinker to scan the entire cache when 266 * a large delta change is calculated directly. 267 */ 268 if (delta < max_pass / 4) 269 total_scan = min(total_scan, max_pass / 2); 270 271 /* 272 * Avoid risking looping forever due to too large nr value: 273 * never try to free more than twice the estimate number of 274 * freeable entries. 275 */ 276 if (total_scan > max_pass * 2) 277 total_scan = max_pass * 2; 278 279 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, 280 nr_pages_scanned, lru_pages, 281 max_pass, delta, total_scan); 282 283 while (total_scan >= batch_size) { 284 unsigned long ret; 285 286 shrinkctl->nr_to_scan = batch_size; 287 ret = shrinker->scan_objects(shrinker, shrinkctl); 288 if (ret == SHRINK_STOP) 289 break; 290 freed += ret; 291 292 count_vm_events(SLABS_SCANNED, batch_size); 293 total_scan -= batch_size; 294 295 cond_resched(); 296 } 297 298 /* 299 * move the unused scan count back into the shrinker in a 300 * manner that handles concurrent updates. If we exhausted the 301 * scan, there is no need to do an update. 302 */ 303 if (total_scan > 0) 304 new_nr = atomic_long_add_return(total_scan, 305 &shrinker->nr_deferred[nid]); 306 else 307 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]); 308 309 trace_mm_shrink_slab_end(shrinker, freed, nr, new_nr); 310 return freed; 311 } 312 313 /* 314 * Call the shrink functions to age shrinkable caches 315 * 316 * Here we assume it costs one seek to replace a lru page and that it also 317 * takes a seek to recreate a cache object. With this in mind we age equal 318 * percentages of the lru and ageable caches. This should balance the seeks 319 * generated by these structures. 320 * 321 * If the vm encountered mapped pages on the LRU it increase the pressure on 322 * slab to avoid swapping. 323 * 324 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits. 325 * 326 * `lru_pages' represents the number of on-LRU pages in all the zones which 327 * are eligible for the caller's allocation attempt. It is used for balancing 328 * slab reclaim versus page reclaim. 329 * 330 * Returns the number of slab objects which we shrunk. 331 */ 332 unsigned long shrink_slab(struct shrink_control *shrinkctl, 333 unsigned long nr_pages_scanned, 334 unsigned long lru_pages) 335 { 336 struct shrinker *shrinker; 337 unsigned long freed = 0; 338 339 if (nr_pages_scanned == 0) 340 nr_pages_scanned = SWAP_CLUSTER_MAX; 341 342 if (!down_read_trylock(&shrinker_rwsem)) { 343 /* 344 * If we would return 0, our callers would understand that we 345 * have nothing else to shrink and give up trying. By returning 346 * 1 we keep it going and assume we'll be able to shrink next 347 * time. 348 */ 349 freed = 1; 350 goto out; 351 } 352 353 list_for_each_entry(shrinker, &shrinker_list, list) { 354 for_each_node_mask(shrinkctl->nid, shrinkctl->nodes_to_scan) { 355 if (!node_online(shrinkctl->nid)) 356 continue; 357 358 if (!(shrinker->flags & SHRINKER_NUMA_AWARE) && 359 (shrinkctl->nid != 0)) 360 break; 361 362 freed += shrink_slab_node(shrinkctl, shrinker, 363 nr_pages_scanned, lru_pages); 364 365 } 366 } 367 up_read(&shrinker_rwsem); 368 out: 369 cond_resched(); 370 return freed; 371 } 372 373 static inline int is_page_cache_freeable(struct page *page) 374 { 375 /* 376 * A freeable page cache page is referenced only by the caller 377 * that isolated the page, the page cache radix tree and 378 * optional buffer heads at page->private. 379 */ 380 return page_count(page) - page_has_private(page) == 2; 381 } 382 383 static int may_write_to_queue(struct backing_dev_info *bdi, 384 struct scan_control *sc) 385 { 386 if (current->flags & PF_SWAPWRITE) 387 return 1; 388 if (!bdi_write_congested(bdi)) 389 return 1; 390 if (bdi == current->backing_dev_info) 391 return 1; 392 return 0; 393 } 394 395 /* 396 * We detected a synchronous write error writing a page out. Probably 397 * -ENOSPC. We need to propagate that into the address_space for a subsequent 398 * fsync(), msync() or close(). 399 * 400 * The tricky part is that after writepage we cannot touch the mapping: nothing 401 * prevents it from being freed up. But we have a ref on the page and once 402 * that page is locked, the mapping is pinned. 403 * 404 * We're allowed to run sleeping lock_page() here because we know the caller has 405 * __GFP_FS. 406 */ 407 static void handle_write_error(struct address_space *mapping, 408 struct page *page, int error) 409 { 410 lock_page(page); 411 if (page_mapping(page) == mapping) 412 mapping_set_error(mapping, error); 413 unlock_page(page); 414 } 415 416 /* possible outcome of pageout() */ 417 typedef enum { 418 /* failed to write page out, page is locked */ 419 PAGE_KEEP, 420 /* move page to the active list, page is locked */ 421 PAGE_ACTIVATE, 422 /* page has been sent to the disk successfully, page is unlocked */ 423 PAGE_SUCCESS, 424 /* page is clean and locked */ 425 PAGE_CLEAN, 426 } pageout_t; 427 428 /* 429 * pageout is called by shrink_page_list() for each dirty page. 430 * Calls ->writepage(). 431 */ 432 static pageout_t pageout(struct page *page, struct address_space *mapping, 433 struct scan_control *sc) 434 { 435 /* 436 * If the page is dirty, only perform writeback if that write 437 * will be non-blocking. To prevent this allocation from being 438 * stalled by pagecache activity. But note that there may be 439 * stalls if we need to run get_block(). We could test 440 * PagePrivate for that. 441 * 442 * If this process is currently in __generic_file_aio_write() against 443 * this page's queue, we can perform writeback even if that 444 * will block. 445 * 446 * If the page is swapcache, write it back even if that would 447 * block, for some throttling. This happens by accident, because 448 * swap_backing_dev_info is bust: it doesn't reflect the 449 * congestion state of the swapdevs. Easy to fix, if needed. 450 */ 451 if (!is_page_cache_freeable(page)) 452 return PAGE_KEEP; 453 if (!mapping) { 454 /* 455 * Some data journaling orphaned pages can have 456 * page->mapping == NULL while being dirty with clean buffers. 457 */ 458 if (page_has_private(page)) { 459 if (try_to_free_buffers(page)) { 460 ClearPageDirty(page); 461 printk("%s: orphaned page\n", __func__); 462 return PAGE_CLEAN; 463 } 464 } 465 return PAGE_KEEP; 466 } 467 if (mapping->a_ops->writepage == NULL) 468 return PAGE_ACTIVATE; 469 if (!may_write_to_queue(mapping->backing_dev_info, sc)) 470 return PAGE_KEEP; 471 472 if (clear_page_dirty_for_io(page)) { 473 int res; 474 struct writeback_control wbc = { 475 .sync_mode = WB_SYNC_NONE, 476 .nr_to_write = SWAP_CLUSTER_MAX, 477 .range_start = 0, 478 .range_end = LLONG_MAX, 479 .for_reclaim = 1, 480 }; 481 482 SetPageReclaim(page); 483 res = mapping->a_ops->writepage(page, &wbc); 484 if (res < 0) 485 handle_write_error(mapping, page, res); 486 if (res == AOP_WRITEPAGE_ACTIVATE) { 487 ClearPageReclaim(page); 488 return PAGE_ACTIVATE; 489 } 490 491 if (!PageWriteback(page)) { 492 /* synchronous write or broken a_ops? */ 493 ClearPageReclaim(page); 494 } 495 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page)); 496 inc_zone_page_state(page, NR_VMSCAN_WRITE); 497 return PAGE_SUCCESS; 498 } 499 500 return PAGE_CLEAN; 501 } 502 503 /* 504 * Same as remove_mapping, but if the page is removed from the mapping, it 505 * gets returned with a refcount of 0. 506 */ 507 static int __remove_mapping(struct address_space *mapping, struct page *page) 508 { 509 BUG_ON(!PageLocked(page)); 510 BUG_ON(mapping != page_mapping(page)); 511 512 spin_lock_irq(&mapping->tree_lock); 513 /* 514 * The non racy check for a busy page. 515 * 516 * Must be careful with the order of the tests. When someone has 517 * a ref to the page, it may be possible that they dirty it then 518 * drop the reference. So if PageDirty is tested before page_count 519 * here, then the following race may occur: 520 * 521 * get_user_pages(&page); 522 * [user mapping goes away] 523 * write_to(page); 524 * !PageDirty(page) [good] 525 * SetPageDirty(page); 526 * put_page(page); 527 * !page_count(page) [good, discard it] 528 * 529 * [oops, our write_to data is lost] 530 * 531 * Reversing the order of the tests ensures such a situation cannot 532 * escape unnoticed. The smp_rmb is needed to ensure the page->flags 533 * load is not satisfied before that of page->_count. 534 * 535 * Note that if SetPageDirty is always performed via set_page_dirty, 536 * and thus under tree_lock, then this ordering is not required. 537 */ 538 if (!page_freeze_refs(page, 2)) 539 goto cannot_free; 540 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */ 541 if (unlikely(PageDirty(page))) { 542 page_unfreeze_refs(page, 2); 543 goto cannot_free; 544 } 545 546 if (PageSwapCache(page)) { 547 swp_entry_t swap = { .val = page_private(page) }; 548 __delete_from_swap_cache(page); 549 spin_unlock_irq(&mapping->tree_lock); 550 swapcache_free(swap, page); 551 } else { 552 void (*freepage)(struct page *); 553 554 freepage = mapping->a_ops->freepage; 555 556 __delete_from_page_cache(page); 557 spin_unlock_irq(&mapping->tree_lock); 558 mem_cgroup_uncharge_cache_page(page); 559 560 if (freepage != NULL) 561 freepage(page); 562 } 563 564 return 1; 565 566 cannot_free: 567 spin_unlock_irq(&mapping->tree_lock); 568 return 0; 569 } 570 571 /* 572 * Attempt to detach a locked page from its ->mapping. If it is dirty or if 573 * someone else has a ref on the page, abort and return 0. If it was 574 * successfully detached, return 1. Assumes the caller has a single ref on 575 * this page. 576 */ 577 int remove_mapping(struct address_space *mapping, struct page *page) 578 { 579 if (__remove_mapping(mapping, page)) { 580 /* 581 * Unfreezing the refcount with 1 rather than 2 effectively 582 * drops the pagecache ref for us without requiring another 583 * atomic operation. 584 */ 585 page_unfreeze_refs(page, 1); 586 return 1; 587 } 588 return 0; 589 } 590 591 /** 592 * putback_lru_page - put previously isolated page onto appropriate LRU list 593 * @page: page to be put back to appropriate lru list 594 * 595 * Add previously isolated @page to appropriate LRU list. 596 * Page may still be unevictable for other reasons. 597 * 598 * lru_lock must not be held, interrupts must be enabled. 599 */ 600 void putback_lru_page(struct page *page) 601 { 602 bool is_unevictable; 603 int was_unevictable = PageUnevictable(page); 604 605 VM_BUG_ON(PageLRU(page)); 606 607 redo: 608 ClearPageUnevictable(page); 609 610 if (page_evictable(page)) { 611 /* 612 * For evictable pages, we can use the cache. 613 * In event of a race, worst case is we end up with an 614 * unevictable page on [in]active list. 615 * We know how to handle that. 616 */ 617 is_unevictable = false; 618 lru_cache_add(page); 619 } else { 620 /* 621 * Put unevictable pages directly on zone's unevictable 622 * list. 623 */ 624 is_unevictable = true; 625 add_page_to_unevictable_list(page); 626 /* 627 * When racing with an mlock or AS_UNEVICTABLE clearing 628 * (page is unlocked) make sure that if the other thread 629 * does not observe our setting of PG_lru and fails 630 * isolation/check_move_unevictable_pages, 631 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move 632 * the page back to the evictable list. 633 * 634 * The other side is TestClearPageMlocked() or shmem_lock(). 635 */ 636 smp_mb(); 637 } 638 639 /* 640 * page's status can change while we move it among lru. If an evictable 641 * page is on unevictable list, it never be freed. To avoid that, 642 * check after we added it to the list, again. 643 */ 644 if (is_unevictable && page_evictable(page)) { 645 if (!isolate_lru_page(page)) { 646 put_page(page); 647 goto redo; 648 } 649 /* This means someone else dropped this page from LRU 650 * So, it will be freed or putback to LRU again. There is 651 * nothing to do here. 652 */ 653 } 654 655 if (was_unevictable && !is_unevictable) 656 count_vm_event(UNEVICTABLE_PGRESCUED); 657 else if (!was_unevictable && is_unevictable) 658 count_vm_event(UNEVICTABLE_PGCULLED); 659 660 put_page(page); /* drop ref from isolate */ 661 } 662 663 enum page_references { 664 PAGEREF_RECLAIM, 665 PAGEREF_RECLAIM_CLEAN, 666 PAGEREF_KEEP, 667 PAGEREF_ACTIVATE, 668 }; 669 670 static enum page_references page_check_references(struct page *page, 671 struct scan_control *sc) 672 { 673 int referenced_ptes, referenced_page; 674 unsigned long vm_flags; 675 676 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup, 677 &vm_flags); 678 referenced_page = TestClearPageReferenced(page); 679 680 /* 681 * Mlock lost the isolation race with us. Let try_to_unmap() 682 * move the page to the unevictable list. 683 */ 684 if (vm_flags & VM_LOCKED) 685 return PAGEREF_RECLAIM; 686 687 if (referenced_ptes) { 688 if (PageSwapBacked(page)) 689 return PAGEREF_ACTIVATE; 690 /* 691 * All mapped pages start out with page table 692 * references from the instantiating fault, so we need 693 * to look twice if a mapped file page is used more 694 * than once. 695 * 696 * Mark it and spare it for another trip around the 697 * inactive list. Another page table reference will 698 * lead to its activation. 699 * 700 * Note: the mark is set for activated pages as well 701 * so that recently deactivated but used pages are 702 * quickly recovered. 703 */ 704 SetPageReferenced(page); 705 706 if (referenced_page || referenced_ptes > 1) 707 return PAGEREF_ACTIVATE; 708 709 /* 710 * Activate file-backed executable pages after first usage. 711 */ 712 if (vm_flags & VM_EXEC) 713 return PAGEREF_ACTIVATE; 714 715 return PAGEREF_KEEP; 716 } 717 718 /* Reclaim if clean, defer dirty pages to writeback */ 719 if (referenced_page && !PageSwapBacked(page)) 720 return PAGEREF_RECLAIM_CLEAN; 721 722 return PAGEREF_RECLAIM; 723 } 724 725 /* Check if a page is dirty or under writeback */ 726 static void page_check_dirty_writeback(struct page *page, 727 bool *dirty, bool *writeback) 728 { 729 struct address_space *mapping; 730 731 /* 732 * Anonymous pages are not handled by flushers and must be written 733 * from reclaim context. Do not stall reclaim based on them 734 */ 735 if (!page_is_file_cache(page)) { 736 *dirty = false; 737 *writeback = false; 738 return; 739 } 740 741 /* By default assume that the page flags are accurate */ 742 *dirty = PageDirty(page); 743 *writeback = PageWriteback(page); 744 745 /* Verify dirty/writeback state if the filesystem supports it */ 746 if (!page_has_private(page)) 747 return; 748 749 mapping = page_mapping(page); 750 if (mapping && mapping->a_ops->is_dirty_writeback) 751 mapping->a_ops->is_dirty_writeback(page, dirty, writeback); 752 } 753 754 /* 755 * shrink_page_list() returns the number of reclaimed pages 756 */ 757 static unsigned long shrink_page_list(struct list_head *page_list, 758 struct zone *zone, 759 struct scan_control *sc, 760 enum ttu_flags ttu_flags, 761 unsigned long *ret_nr_dirty, 762 unsigned long *ret_nr_unqueued_dirty, 763 unsigned long *ret_nr_congested, 764 unsigned long *ret_nr_writeback, 765 unsigned long *ret_nr_immediate, 766 bool force_reclaim) 767 { 768 LIST_HEAD(ret_pages); 769 LIST_HEAD(free_pages); 770 int pgactivate = 0; 771 unsigned long nr_unqueued_dirty = 0; 772 unsigned long nr_dirty = 0; 773 unsigned long nr_congested = 0; 774 unsigned long nr_reclaimed = 0; 775 unsigned long nr_writeback = 0; 776 unsigned long nr_immediate = 0; 777 778 cond_resched(); 779 780 mem_cgroup_uncharge_start(); 781 while (!list_empty(page_list)) { 782 struct address_space *mapping; 783 struct page *page; 784 int may_enter_fs; 785 enum page_references references = PAGEREF_RECLAIM_CLEAN; 786 bool dirty, writeback; 787 788 cond_resched(); 789 790 page = lru_to_page(page_list); 791 list_del(&page->lru); 792 793 if (!trylock_page(page)) 794 goto keep; 795 796 VM_BUG_ON(PageActive(page)); 797 VM_BUG_ON(page_zone(page) != zone); 798 799 sc->nr_scanned++; 800 801 if (unlikely(!page_evictable(page))) 802 goto cull_mlocked; 803 804 if (!sc->may_unmap && page_mapped(page)) 805 goto keep_locked; 806 807 /* Double the slab pressure for mapped and swapcache pages */ 808 if (page_mapped(page) || PageSwapCache(page)) 809 sc->nr_scanned++; 810 811 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 812 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 813 814 /* 815 * The number of dirty pages determines if a zone is marked 816 * reclaim_congested which affects wait_iff_congested. kswapd 817 * will stall and start writing pages if the tail of the LRU 818 * is all dirty unqueued pages. 819 */ 820 page_check_dirty_writeback(page, &dirty, &writeback); 821 if (dirty || writeback) 822 nr_dirty++; 823 824 if (dirty && !writeback) 825 nr_unqueued_dirty++; 826 827 /* 828 * Treat this page as congested if the underlying BDI is or if 829 * pages are cycling through the LRU so quickly that the 830 * pages marked for immediate reclaim are making it to the 831 * end of the LRU a second time. 832 */ 833 mapping = page_mapping(page); 834 if ((mapping && bdi_write_congested(mapping->backing_dev_info)) || 835 (writeback && PageReclaim(page))) 836 nr_congested++; 837 838 /* 839 * If a page at the tail of the LRU is under writeback, there 840 * are three cases to consider. 841 * 842 * 1) If reclaim is encountering an excessive number of pages 843 * under writeback and this page is both under writeback and 844 * PageReclaim then it indicates that pages are being queued 845 * for IO but are being recycled through the LRU before the 846 * IO can complete. Waiting on the page itself risks an 847 * indefinite stall if it is impossible to writeback the 848 * page due to IO error or disconnected storage so instead 849 * note that the LRU is being scanned too quickly and the 850 * caller can stall after page list has been processed. 851 * 852 * 2) Global reclaim encounters a page, memcg encounters a 853 * page that is not marked for immediate reclaim or 854 * the caller does not have __GFP_IO. In this case mark 855 * the page for immediate reclaim and continue scanning. 856 * 857 * __GFP_IO is checked because a loop driver thread might 858 * enter reclaim, and deadlock if it waits on a page for 859 * which it is needed to do the write (loop masks off 860 * __GFP_IO|__GFP_FS for this reason); but more thought 861 * would probably show more reasons. 862 * 863 * Don't require __GFP_FS, since we're not going into the 864 * FS, just waiting on its writeback completion. Worryingly, 865 * ext4 gfs2 and xfs allocate pages with 866 * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing 867 * may_enter_fs here is liable to OOM on them. 868 * 869 * 3) memcg encounters a page that is not already marked 870 * PageReclaim. memcg does not have any dirty pages 871 * throttling so we could easily OOM just because too many 872 * pages are in writeback and there is nothing else to 873 * reclaim. Wait for the writeback to complete. 874 */ 875 if (PageWriteback(page)) { 876 /* Case 1 above */ 877 if (current_is_kswapd() && 878 PageReclaim(page) && 879 zone_is_reclaim_writeback(zone)) { 880 nr_immediate++; 881 goto keep_locked; 882 883 /* Case 2 above */ 884 } else if (global_reclaim(sc) || 885 !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) { 886 /* 887 * This is slightly racy - end_page_writeback() 888 * might have just cleared PageReclaim, then 889 * setting PageReclaim here end up interpreted 890 * as PageReadahead - but that does not matter 891 * enough to care. What we do want is for this 892 * page to have PageReclaim set next time memcg 893 * reclaim reaches the tests above, so it will 894 * then wait_on_page_writeback() to avoid OOM; 895 * and it's also appropriate in global reclaim. 896 */ 897 SetPageReclaim(page); 898 nr_writeback++; 899 900 goto keep_locked; 901 902 /* Case 3 above */ 903 } else { 904 wait_on_page_writeback(page); 905 } 906 } 907 908 if (!force_reclaim) 909 references = page_check_references(page, sc); 910 911 switch (references) { 912 case PAGEREF_ACTIVATE: 913 goto activate_locked; 914 case PAGEREF_KEEP: 915 goto keep_locked; 916 case PAGEREF_RECLAIM: 917 case PAGEREF_RECLAIM_CLEAN: 918 ; /* try to reclaim the page below */ 919 } 920 921 /* 922 * Anonymous process memory has backing store? 923 * Try to allocate it some swap space here. 924 */ 925 if (PageAnon(page) && !PageSwapCache(page)) { 926 if (!(sc->gfp_mask & __GFP_IO)) 927 goto keep_locked; 928 if (!add_to_swap(page, page_list)) 929 goto activate_locked; 930 may_enter_fs = 1; 931 932 /* Adding to swap updated mapping */ 933 mapping = page_mapping(page); 934 } 935 936 /* 937 * The page is mapped into the page tables of one or more 938 * processes. Try to unmap it here. 939 */ 940 if (page_mapped(page) && mapping) { 941 switch (try_to_unmap(page, ttu_flags)) { 942 case SWAP_FAIL: 943 goto activate_locked; 944 case SWAP_AGAIN: 945 goto keep_locked; 946 case SWAP_MLOCK: 947 goto cull_mlocked; 948 case SWAP_SUCCESS: 949 ; /* try to free the page below */ 950 } 951 } 952 953 if (PageDirty(page)) { 954 /* 955 * Only kswapd can writeback filesystem pages to 956 * avoid risk of stack overflow but only writeback 957 * if many dirty pages have been encountered. 958 */ 959 if (page_is_file_cache(page) && 960 (!current_is_kswapd() || 961 !zone_is_reclaim_dirty(zone))) { 962 /* 963 * Immediately reclaim when written back. 964 * Similar in principal to deactivate_page() 965 * except we already have the page isolated 966 * and know it's dirty 967 */ 968 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE); 969 SetPageReclaim(page); 970 971 goto keep_locked; 972 } 973 974 if (references == PAGEREF_RECLAIM_CLEAN) 975 goto keep_locked; 976 if (!may_enter_fs) 977 goto keep_locked; 978 if (!sc->may_writepage) 979 goto keep_locked; 980 981 /* Page is dirty, try to write it out here */ 982 switch (pageout(page, mapping, sc)) { 983 case PAGE_KEEP: 984 goto keep_locked; 985 case PAGE_ACTIVATE: 986 goto activate_locked; 987 case PAGE_SUCCESS: 988 if (PageWriteback(page)) 989 goto keep; 990 if (PageDirty(page)) 991 goto keep; 992 993 /* 994 * A synchronous write - probably a ramdisk. Go 995 * ahead and try to reclaim the page. 996 */ 997 if (!trylock_page(page)) 998 goto keep; 999 if (PageDirty(page) || PageWriteback(page)) 1000 goto keep_locked; 1001 mapping = page_mapping(page); 1002 case PAGE_CLEAN: 1003 ; /* try to free the page below */ 1004 } 1005 } 1006 1007 /* 1008 * If the page has buffers, try to free the buffer mappings 1009 * associated with this page. If we succeed we try to free 1010 * the page as well. 1011 * 1012 * We do this even if the page is PageDirty(). 1013 * try_to_release_page() does not perform I/O, but it is 1014 * possible for a page to have PageDirty set, but it is actually 1015 * clean (all its buffers are clean). This happens if the 1016 * buffers were written out directly, with submit_bh(). ext3 1017 * will do this, as well as the blockdev mapping. 1018 * try_to_release_page() will discover that cleanness and will 1019 * drop the buffers and mark the page clean - it can be freed. 1020 * 1021 * Rarely, pages can have buffers and no ->mapping. These are 1022 * the pages which were not successfully invalidated in 1023 * truncate_complete_page(). We try to drop those buffers here 1024 * and if that worked, and the page is no longer mapped into 1025 * process address space (page_count == 1) it can be freed. 1026 * Otherwise, leave the page on the LRU so it is swappable. 1027 */ 1028 if (page_has_private(page)) { 1029 if (!try_to_release_page(page, sc->gfp_mask)) 1030 goto activate_locked; 1031 if (!mapping && page_count(page) == 1) { 1032 unlock_page(page); 1033 if (put_page_testzero(page)) 1034 goto free_it; 1035 else { 1036 /* 1037 * rare race with speculative reference. 1038 * the speculative reference will free 1039 * this page shortly, so we may 1040 * increment nr_reclaimed here (and 1041 * leave it off the LRU). 1042 */ 1043 nr_reclaimed++; 1044 continue; 1045 } 1046 } 1047 } 1048 1049 if (!mapping || !__remove_mapping(mapping, page)) 1050 goto keep_locked; 1051 1052 /* 1053 * At this point, we have no other references and there is 1054 * no way to pick any more up (removed from LRU, removed 1055 * from pagecache). Can use non-atomic bitops now (and 1056 * we obviously don't have to worry about waking up a process 1057 * waiting on the page lock, because there are no references. 1058 */ 1059 __clear_page_locked(page); 1060 free_it: 1061 nr_reclaimed++; 1062 1063 /* 1064 * Is there need to periodically free_page_list? It would 1065 * appear not as the counts should be low 1066 */ 1067 list_add(&page->lru, &free_pages); 1068 continue; 1069 1070 cull_mlocked: 1071 if (PageSwapCache(page)) 1072 try_to_free_swap(page); 1073 unlock_page(page); 1074 putback_lru_page(page); 1075 continue; 1076 1077 activate_locked: 1078 /* Not a candidate for swapping, so reclaim swap space. */ 1079 if (PageSwapCache(page) && vm_swap_full()) 1080 try_to_free_swap(page); 1081 VM_BUG_ON(PageActive(page)); 1082 SetPageActive(page); 1083 pgactivate++; 1084 keep_locked: 1085 unlock_page(page); 1086 keep: 1087 list_add(&page->lru, &ret_pages); 1088 VM_BUG_ON(PageLRU(page) || PageUnevictable(page)); 1089 } 1090 1091 free_hot_cold_page_list(&free_pages, 1); 1092 1093 list_splice(&ret_pages, page_list); 1094 count_vm_events(PGACTIVATE, pgactivate); 1095 mem_cgroup_uncharge_end(); 1096 *ret_nr_dirty += nr_dirty; 1097 *ret_nr_congested += nr_congested; 1098 *ret_nr_unqueued_dirty += nr_unqueued_dirty; 1099 *ret_nr_writeback += nr_writeback; 1100 *ret_nr_immediate += nr_immediate; 1101 return nr_reclaimed; 1102 } 1103 1104 unsigned long reclaim_clean_pages_from_list(struct zone *zone, 1105 struct list_head *page_list) 1106 { 1107 struct scan_control sc = { 1108 .gfp_mask = GFP_KERNEL, 1109 .priority = DEF_PRIORITY, 1110 .may_unmap = 1, 1111 }; 1112 unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5; 1113 struct page *page, *next; 1114 LIST_HEAD(clean_pages); 1115 1116 list_for_each_entry_safe(page, next, page_list, lru) { 1117 if (page_is_file_cache(page) && !PageDirty(page) && 1118 !isolated_balloon_page(page)) { 1119 ClearPageActive(page); 1120 list_move(&page->lru, &clean_pages); 1121 } 1122 } 1123 1124 ret = shrink_page_list(&clean_pages, zone, &sc, 1125 TTU_UNMAP|TTU_IGNORE_ACCESS, 1126 &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true); 1127 list_splice(&clean_pages, page_list); 1128 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret); 1129 return ret; 1130 } 1131 1132 /* 1133 * Attempt to remove the specified page from its LRU. Only take this page 1134 * if it is of the appropriate PageActive status. Pages which are being 1135 * freed elsewhere are also ignored. 1136 * 1137 * page: page to consider 1138 * mode: one of the LRU isolation modes defined above 1139 * 1140 * returns 0 on success, -ve errno on failure. 1141 */ 1142 int __isolate_lru_page(struct page *page, isolate_mode_t mode) 1143 { 1144 int ret = -EINVAL; 1145 1146 /* Only take pages on the LRU. */ 1147 if (!PageLRU(page)) 1148 return ret; 1149 1150 /* Compaction should not handle unevictable pages but CMA can do so */ 1151 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE)) 1152 return ret; 1153 1154 ret = -EBUSY; 1155 1156 /* 1157 * To minimise LRU disruption, the caller can indicate that it only 1158 * wants to isolate pages it will be able to operate on without 1159 * blocking - clean pages for the most part. 1160 * 1161 * ISOLATE_CLEAN means that only clean pages should be isolated. This 1162 * is used by reclaim when it is cannot write to backing storage 1163 * 1164 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages 1165 * that it is possible to migrate without blocking 1166 */ 1167 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) { 1168 /* All the caller can do on PageWriteback is block */ 1169 if (PageWriteback(page)) 1170 return ret; 1171 1172 if (PageDirty(page)) { 1173 struct address_space *mapping; 1174 1175 /* ISOLATE_CLEAN means only clean pages */ 1176 if (mode & ISOLATE_CLEAN) 1177 return ret; 1178 1179 /* 1180 * Only pages without mappings or that have a 1181 * ->migratepage callback are possible to migrate 1182 * without blocking 1183 */ 1184 mapping = page_mapping(page); 1185 if (mapping && !mapping->a_ops->migratepage) 1186 return ret; 1187 } 1188 } 1189 1190 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page)) 1191 return ret; 1192 1193 if (likely(get_page_unless_zero(page))) { 1194 /* 1195 * Be careful not to clear PageLRU until after we're 1196 * sure the page is not being freed elsewhere -- the 1197 * page release code relies on it. 1198 */ 1199 ClearPageLRU(page); 1200 ret = 0; 1201 } 1202 1203 return ret; 1204 } 1205 1206 /* 1207 * zone->lru_lock is heavily contended. Some of the functions that 1208 * shrink the lists perform better by taking out a batch of pages 1209 * and working on them outside the LRU lock. 1210 * 1211 * For pagecache intensive workloads, this function is the hottest 1212 * spot in the kernel (apart from copy_*_user functions). 1213 * 1214 * Appropriate locks must be held before calling this function. 1215 * 1216 * @nr_to_scan: The number of pages to look through on the list. 1217 * @lruvec: The LRU vector to pull pages from. 1218 * @dst: The temp list to put pages on to. 1219 * @nr_scanned: The number of pages that were scanned. 1220 * @sc: The scan_control struct for this reclaim session 1221 * @mode: One of the LRU isolation modes 1222 * @lru: LRU list id for isolating 1223 * 1224 * returns how many pages were moved onto *@dst. 1225 */ 1226 static unsigned long isolate_lru_pages(unsigned long nr_to_scan, 1227 struct lruvec *lruvec, struct list_head *dst, 1228 unsigned long *nr_scanned, struct scan_control *sc, 1229 isolate_mode_t mode, enum lru_list lru) 1230 { 1231 struct list_head *src = &lruvec->lists[lru]; 1232 unsigned long nr_taken = 0; 1233 unsigned long scan; 1234 1235 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) { 1236 struct page *page; 1237 int nr_pages; 1238 1239 page = lru_to_page(src); 1240 prefetchw_prev_lru_page(page, src, flags); 1241 1242 VM_BUG_ON(!PageLRU(page)); 1243 1244 switch (__isolate_lru_page(page, mode)) { 1245 case 0: 1246 nr_pages = hpage_nr_pages(page); 1247 mem_cgroup_update_lru_size(lruvec, lru, -nr_pages); 1248 list_move(&page->lru, dst); 1249 nr_taken += nr_pages; 1250 break; 1251 1252 case -EBUSY: 1253 /* else it is being freed elsewhere */ 1254 list_move(&page->lru, src); 1255 continue; 1256 1257 default: 1258 BUG(); 1259 } 1260 } 1261 1262 *nr_scanned = scan; 1263 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan, 1264 nr_taken, mode, is_file_lru(lru)); 1265 return nr_taken; 1266 } 1267 1268 /** 1269 * isolate_lru_page - tries to isolate a page from its LRU list 1270 * @page: page to isolate from its LRU list 1271 * 1272 * Isolates a @page from an LRU list, clears PageLRU and adjusts the 1273 * vmstat statistic corresponding to whatever LRU list the page was on. 1274 * 1275 * Returns 0 if the page was removed from an LRU list. 1276 * Returns -EBUSY if the page was not on an LRU list. 1277 * 1278 * The returned page will have PageLRU() cleared. If it was found on 1279 * the active list, it will have PageActive set. If it was found on 1280 * the unevictable list, it will have the PageUnevictable bit set. That flag 1281 * may need to be cleared by the caller before letting the page go. 1282 * 1283 * The vmstat statistic corresponding to the list on which the page was 1284 * found will be decremented. 1285 * 1286 * Restrictions: 1287 * (1) Must be called with an elevated refcount on the page. This is a 1288 * fundamentnal difference from isolate_lru_pages (which is called 1289 * without a stable reference). 1290 * (2) the lru_lock must not be held. 1291 * (3) interrupts must be enabled. 1292 */ 1293 int isolate_lru_page(struct page *page) 1294 { 1295 int ret = -EBUSY; 1296 1297 VM_BUG_ON(!page_count(page)); 1298 1299 if (PageLRU(page)) { 1300 struct zone *zone = page_zone(page); 1301 struct lruvec *lruvec; 1302 1303 spin_lock_irq(&zone->lru_lock); 1304 lruvec = mem_cgroup_page_lruvec(page, zone); 1305 if (PageLRU(page)) { 1306 int lru = page_lru(page); 1307 get_page(page); 1308 ClearPageLRU(page); 1309 del_page_from_lru_list(page, lruvec, lru); 1310 ret = 0; 1311 } 1312 spin_unlock_irq(&zone->lru_lock); 1313 } 1314 return ret; 1315 } 1316 1317 /* 1318 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 1319 * then get resheduled. When there are massive number of tasks doing page 1320 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 1321 * the LRU list will go small and be scanned faster than necessary, leading to 1322 * unnecessary swapping, thrashing and OOM. 1323 */ 1324 static int too_many_isolated(struct zone *zone, int file, 1325 struct scan_control *sc) 1326 { 1327 unsigned long inactive, isolated; 1328 1329 if (current_is_kswapd()) 1330 return 0; 1331 1332 if (!global_reclaim(sc)) 1333 return 0; 1334 1335 if (file) { 1336 inactive = zone_page_state(zone, NR_INACTIVE_FILE); 1337 isolated = zone_page_state(zone, NR_ISOLATED_FILE); 1338 } else { 1339 inactive = zone_page_state(zone, NR_INACTIVE_ANON); 1340 isolated = zone_page_state(zone, NR_ISOLATED_ANON); 1341 } 1342 1343 /* 1344 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 1345 * won't get blocked by normal direct-reclaimers, forming a circular 1346 * deadlock. 1347 */ 1348 if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS) 1349 inactive >>= 3; 1350 1351 return isolated > inactive; 1352 } 1353 1354 static noinline_for_stack void 1355 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list) 1356 { 1357 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1358 struct zone *zone = lruvec_zone(lruvec); 1359 LIST_HEAD(pages_to_free); 1360 1361 /* 1362 * Put back any unfreeable pages. 1363 */ 1364 while (!list_empty(page_list)) { 1365 struct page *page = lru_to_page(page_list); 1366 int lru; 1367 1368 VM_BUG_ON(PageLRU(page)); 1369 list_del(&page->lru); 1370 if (unlikely(!page_evictable(page))) { 1371 spin_unlock_irq(&zone->lru_lock); 1372 putback_lru_page(page); 1373 spin_lock_irq(&zone->lru_lock); 1374 continue; 1375 } 1376 1377 lruvec = mem_cgroup_page_lruvec(page, zone); 1378 1379 SetPageLRU(page); 1380 lru = page_lru(page); 1381 add_page_to_lru_list(page, lruvec, lru); 1382 1383 if (is_active_lru(lru)) { 1384 int file = is_file_lru(lru); 1385 int numpages = hpage_nr_pages(page); 1386 reclaim_stat->recent_rotated[file] += numpages; 1387 } 1388 if (put_page_testzero(page)) { 1389 __ClearPageLRU(page); 1390 __ClearPageActive(page); 1391 del_page_from_lru_list(page, lruvec, lru); 1392 1393 if (unlikely(PageCompound(page))) { 1394 spin_unlock_irq(&zone->lru_lock); 1395 (*get_compound_page_dtor(page))(page); 1396 spin_lock_irq(&zone->lru_lock); 1397 } else 1398 list_add(&page->lru, &pages_to_free); 1399 } 1400 } 1401 1402 /* 1403 * To save our caller's stack, now use input list for pages to free. 1404 */ 1405 list_splice(&pages_to_free, page_list); 1406 } 1407 1408 /* 1409 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number 1410 * of reclaimed pages 1411 */ 1412 static noinline_for_stack unsigned long 1413 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, 1414 struct scan_control *sc, enum lru_list lru) 1415 { 1416 LIST_HEAD(page_list); 1417 unsigned long nr_scanned; 1418 unsigned long nr_reclaimed = 0; 1419 unsigned long nr_taken; 1420 unsigned long nr_dirty = 0; 1421 unsigned long nr_congested = 0; 1422 unsigned long nr_unqueued_dirty = 0; 1423 unsigned long nr_writeback = 0; 1424 unsigned long nr_immediate = 0; 1425 isolate_mode_t isolate_mode = 0; 1426 int file = is_file_lru(lru); 1427 struct zone *zone = lruvec_zone(lruvec); 1428 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1429 1430 while (unlikely(too_many_isolated(zone, file, sc))) { 1431 congestion_wait(BLK_RW_ASYNC, HZ/10); 1432 1433 /* We are about to die and free our memory. Return now. */ 1434 if (fatal_signal_pending(current)) 1435 return SWAP_CLUSTER_MAX; 1436 } 1437 1438 lru_add_drain(); 1439 1440 if (!sc->may_unmap) 1441 isolate_mode |= ISOLATE_UNMAPPED; 1442 if (!sc->may_writepage) 1443 isolate_mode |= ISOLATE_CLEAN; 1444 1445 spin_lock_irq(&zone->lru_lock); 1446 1447 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list, 1448 &nr_scanned, sc, isolate_mode, lru); 1449 1450 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken); 1451 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken); 1452 1453 if (global_reclaim(sc)) { 1454 zone->pages_scanned += nr_scanned; 1455 if (current_is_kswapd()) 1456 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned); 1457 else 1458 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned); 1459 } 1460 spin_unlock_irq(&zone->lru_lock); 1461 1462 if (nr_taken == 0) 1463 return 0; 1464 1465 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP, 1466 &nr_dirty, &nr_unqueued_dirty, &nr_congested, 1467 &nr_writeback, &nr_immediate, 1468 false); 1469 1470 spin_lock_irq(&zone->lru_lock); 1471 1472 reclaim_stat->recent_scanned[file] += nr_taken; 1473 1474 if (global_reclaim(sc)) { 1475 if (current_is_kswapd()) 1476 __count_zone_vm_events(PGSTEAL_KSWAPD, zone, 1477 nr_reclaimed); 1478 else 1479 __count_zone_vm_events(PGSTEAL_DIRECT, zone, 1480 nr_reclaimed); 1481 } 1482 1483 putback_inactive_pages(lruvec, &page_list); 1484 1485 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken); 1486 1487 spin_unlock_irq(&zone->lru_lock); 1488 1489 free_hot_cold_page_list(&page_list, 1); 1490 1491 /* 1492 * If reclaim is isolating dirty pages under writeback, it implies 1493 * that the long-lived page allocation rate is exceeding the page 1494 * laundering rate. Either the global limits are not being effective 1495 * at throttling processes due to the page distribution throughout 1496 * zones or there is heavy usage of a slow backing device. The 1497 * only option is to throttle from reclaim context which is not ideal 1498 * as there is no guarantee the dirtying process is throttled in the 1499 * same way balance_dirty_pages() manages. 1500 * 1501 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number 1502 * of pages under pages flagged for immediate reclaim and stall if any 1503 * are encountered in the nr_immediate check below. 1504 */ 1505 if (nr_writeback && nr_writeback == nr_taken) 1506 zone_set_flag(zone, ZONE_WRITEBACK); 1507 1508 /* 1509 * memcg will stall in page writeback so only consider forcibly 1510 * stalling for global reclaim 1511 */ 1512 if (global_reclaim(sc)) { 1513 /* 1514 * Tag a zone as congested if all the dirty pages scanned were 1515 * backed by a congested BDI and wait_iff_congested will stall. 1516 */ 1517 if (nr_dirty && nr_dirty == nr_congested) 1518 zone_set_flag(zone, ZONE_CONGESTED); 1519 1520 /* 1521 * If dirty pages are scanned that are not queued for IO, it 1522 * implies that flushers are not keeping up. In this case, flag 1523 * the zone ZONE_TAIL_LRU_DIRTY and kswapd will start writing 1524 * pages from reclaim context. It will forcibly stall in the 1525 * next check. 1526 */ 1527 if (nr_unqueued_dirty == nr_taken) 1528 zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY); 1529 1530 /* 1531 * In addition, if kswapd scans pages marked marked for 1532 * immediate reclaim and under writeback (nr_immediate), it 1533 * implies that pages are cycling through the LRU faster than 1534 * they are written so also forcibly stall. 1535 */ 1536 if (nr_unqueued_dirty == nr_taken || nr_immediate) 1537 congestion_wait(BLK_RW_ASYNC, HZ/10); 1538 } 1539 1540 /* 1541 * Stall direct reclaim for IO completions if underlying BDIs or zone 1542 * is congested. Allow kswapd to continue until it starts encountering 1543 * unqueued dirty pages or cycling through the LRU too quickly. 1544 */ 1545 if (!sc->hibernation_mode && !current_is_kswapd()) 1546 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10); 1547 1548 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id, 1549 zone_idx(zone), 1550 nr_scanned, nr_reclaimed, 1551 sc->priority, 1552 trace_shrink_flags(file)); 1553 return nr_reclaimed; 1554 } 1555 1556 /* 1557 * This moves pages from the active list to the inactive list. 1558 * 1559 * We move them the other way if the page is referenced by one or more 1560 * processes, from rmap. 1561 * 1562 * If the pages are mostly unmapped, the processing is fast and it is 1563 * appropriate to hold zone->lru_lock across the whole operation. But if 1564 * the pages are mapped, the processing is slow (page_referenced()) so we 1565 * should drop zone->lru_lock around each page. It's impossible to balance 1566 * this, so instead we remove the pages from the LRU while processing them. 1567 * It is safe to rely on PG_active against the non-LRU pages in here because 1568 * nobody will play with that bit on a non-LRU page. 1569 * 1570 * The downside is that we have to touch page->_count against each page. 1571 * But we had to alter page->flags anyway. 1572 */ 1573 1574 static void move_active_pages_to_lru(struct lruvec *lruvec, 1575 struct list_head *list, 1576 struct list_head *pages_to_free, 1577 enum lru_list lru) 1578 { 1579 struct zone *zone = lruvec_zone(lruvec); 1580 unsigned long pgmoved = 0; 1581 struct page *page; 1582 int nr_pages; 1583 1584 while (!list_empty(list)) { 1585 page = lru_to_page(list); 1586 lruvec = mem_cgroup_page_lruvec(page, zone); 1587 1588 VM_BUG_ON(PageLRU(page)); 1589 SetPageLRU(page); 1590 1591 nr_pages = hpage_nr_pages(page); 1592 mem_cgroup_update_lru_size(lruvec, lru, nr_pages); 1593 list_move(&page->lru, &lruvec->lists[lru]); 1594 pgmoved += nr_pages; 1595 1596 if (put_page_testzero(page)) { 1597 __ClearPageLRU(page); 1598 __ClearPageActive(page); 1599 del_page_from_lru_list(page, lruvec, lru); 1600 1601 if (unlikely(PageCompound(page))) { 1602 spin_unlock_irq(&zone->lru_lock); 1603 (*get_compound_page_dtor(page))(page); 1604 spin_lock_irq(&zone->lru_lock); 1605 } else 1606 list_add(&page->lru, pages_to_free); 1607 } 1608 } 1609 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved); 1610 if (!is_active_lru(lru)) 1611 __count_vm_events(PGDEACTIVATE, pgmoved); 1612 } 1613 1614 static void shrink_active_list(unsigned long nr_to_scan, 1615 struct lruvec *lruvec, 1616 struct scan_control *sc, 1617 enum lru_list lru) 1618 { 1619 unsigned long nr_taken; 1620 unsigned long nr_scanned; 1621 unsigned long vm_flags; 1622 LIST_HEAD(l_hold); /* The pages which were snipped off */ 1623 LIST_HEAD(l_active); 1624 LIST_HEAD(l_inactive); 1625 struct page *page; 1626 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1627 unsigned long nr_rotated = 0; 1628 isolate_mode_t isolate_mode = 0; 1629 int file = is_file_lru(lru); 1630 struct zone *zone = lruvec_zone(lruvec); 1631 1632 lru_add_drain(); 1633 1634 if (!sc->may_unmap) 1635 isolate_mode |= ISOLATE_UNMAPPED; 1636 if (!sc->may_writepage) 1637 isolate_mode |= ISOLATE_CLEAN; 1638 1639 spin_lock_irq(&zone->lru_lock); 1640 1641 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold, 1642 &nr_scanned, sc, isolate_mode, lru); 1643 if (global_reclaim(sc)) 1644 zone->pages_scanned += nr_scanned; 1645 1646 reclaim_stat->recent_scanned[file] += nr_taken; 1647 1648 __count_zone_vm_events(PGREFILL, zone, nr_scanned); 1649 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken); 1650 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken); 1651 spin_unlock_irq(&zone->lru_lock); 1652 1653 while (!list_empty(&l_hold)) { 1654 cond_resched(); 1655 page = lru_to_page(&l_hold); 1656 list_del(&page->lru); 1657 1658 if (unlikely(!page_evictable(page))) { 1659 putback_lru_page(page); 1660 continue; 1661 } 1662 1663 if (unlikely(buffer_heads_over_limit)) { 1664 if (page_has_private(page) && trylock_page(page)) { 1665 if (page_has_private(page)) 1666 try_to_release_page(page, 0); 1667 unlock_page(page); 1668 } 1669 } 1670 1671 if (page_referenced(page, 0, sc->target_mem_cgroup, 1672 &vm_flags)) { 1673 nr_rotated += hpage_nr_pages(page); 1674 /* 1675 * Identify referenced, file-backed active pages and 1676 * give them one more trip around the active list. So 1677 * that executable code get better chances to stay in 1678 * memory under moderate memory pressure. Anon pages 1679 * are not likely to be evicted by use-once streaming 1680 * IO, plus JVM can create lots of anon VM_EXEC pages, 1681 * so we ignore them here. 1682 */ 1683 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) { 1684 list_add(&page->lru, &l_active); 1685 continue; 1686 } 1687 } 1688 1689 ClearPageActive(page); /* we are de-activating */ 1690 list_add(&page->lru, &l_inactive); 1691 } 1692 1693 /* 1694 * Move pages back to the lru list. 1695 */ 1696 spin_lock_irq(&zone->lru_lock); 1697 /* 1698 * Count referenced pages from currently used mappings as rotated, 1699 * even though only some of them are actually re-activated. This 1700 * helps balance scan pressure between file and anonymous pages in 1701 * get_scan_ratio. 1702 */ 1703 reclaim_stat->recent_rotated[file] += nr_rotated; 1704 1705 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru); 1706 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE); 1707 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken); 1708 spin_unlock_irq(&zone->lru_lock); 1709 1710 free_hot_cold_page_list(&l_hold, 1); 1711 } 1712 1713 #ifdef CONFIG_SWAP 1714 static int inactive_anon_is_low_global(struct zone *zone) 1715 { 1716 unsigned long active, inactive; 1717 1718 active = zone_page_state(zone, NR_ACTIVE_ANON); 1719 inactive = zone_page_state(zone, NR_INACTIVE_ANON); 1720 1721 if (inactive * zone->inactive_ratio < active) 1722 return 1; 1723 1724 return 0; 1725 } 1726 1727 /** 1728 * inactive_anon_is_low - check if anonymous pages need to be deactivated 1729 * @lruvec: LRU vector to check 1730 * 1731 * Returns true if the zone does not have enough inactive anon pages, 1732 * meaning some active anon pages need to be deactivated. 1733 */ 1734 static int inactive_anon_is_low(struct lruvec *lruvec) 1735 { 1736 /* 1737 * If we don't have swap space, anonymous page deactivation 1738 * is pointless. 1739 */ 1740 if (!total_swap_pages) 1741 return 0; 1742 1743 if (!mem_cgroup_disabled()) 1744 return mem_cgroup_inactive_anon_is_low(lruvec); 1745 1746 return inactive_anon_is_low_global(lruvec_zone(lruvec)); 1747 } 1748 #else 1749 static inline int inactive_anon_is_low(struct lruvec *lruvec) 1750 { 1751 return 0; 1752 } 1753 #endif 1754 1755 /** 1756 * inactive_file_is_low - check if file pages need to be deactivated 1757 * @lruvec: LRU vector to check 1758 * 1759 * When the system is doing streaming IO, memory pressure here 1760 * ensures that active file pages get deactivated, until more 1761 * than half of the file pages are on the inactive list. 1762 * 1763 * Once we get to that situation, protect the system's working 1764 * set from being evicted by disabling active file page aging. 1765 * 1766 * This uses a different ratio than the anonymous pages, because 1767 * the page cache uses a use-once replacement algorithm. 1768 */ 1769 static int inactive_file_is_low(struct lruvec *lruvec) 1770 { 1771 unsigned long inactive; 1772 unsigned long active; 1773 1774 inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE); 1775 active = get_lru_size(lruvec, LRU_ACTIVE_FILE); 1776 1777 return active > inactive; 1778 } 1779 1780 static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru) 1781 { 1782 if (is_file_lru(lru)) 1783 return inactive_file_is_low(lruvec); 1784 else 1785 return inactive_anon_is_low(lruvec); 1786 } 1787 1788 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 1789 struct lruvec *lruvec, struct scan_control *sc) 1790 { 1791 if (is_active_lru(lru)) { 1792 if (inactive_list_is_low(lruvec, lru)) 1793 shrink_active_list(nr_to_scan, lruvec, sc, lru); 1794 return 0; 1795 } 1796 1797 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 1798 } 1799 1800 static int vmscan_swappiness(struct scan_control *sc) 1801 { 1802 if (global_reclaim(sc)) 1803 return vm_swappiness; 1804 return mem_cgroup_swappiness(sc->target_mem_cgroup); 1805 } 1806 1807 enum scan_balance { 1808 SCAN_EQUAL, 1809 SCAN_FRACT, 1810 SCAN_ANON, 1811 SCAN_FILE, 1812 }; 1813 1814 /* 1815 * Determine how aggressively the anon and file LRU lists should be 1816 * scanned. The relative value of each set of LRU lists is determined 1817 * by looking at the fraction of the pages scanned we did rotate back 1818 * onto the active list instead of evict. 1819 * 1820 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan 1821 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan 1822 */ 1823 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc, 1824 unsigned long *nr) 1825 { 1826 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1827 u64 fraction[2]; 1828 u64 denominator = 0; /* gcc */ 1829 struct zone *zone = lruvec_zone(lruvec); 1830 unsigned long anon_prio, file_prio; 1831 enum scan_balance scan_balance; 1832 unsigned long anon, file, free; 1833 bool force_scan = false; 1834 unsigned long ap, fp; 1835 enum lru_list lru; 1836 1837 /* 1838 * If the zone or memcg is small, nr[l] can be 0. This 1839 * results in no scanning on this priority and a potential 1840 * priority drop. Global direct reclaim can go to the next 1841 * zone and tends to have no problems. Global kswapd is for 1842 * zone balancing and it needs to scan a minimum amount. When 1843 * reclaiming for a memcg, a priority drop can cause high 1844 * latencies, so it's better to scan a minimum amount there as 1845 * well. 1846 */ 1847 if (current_is_kswapd() && !zone_reclaimable(zone)) 1848 force_scan = true; 1849 if (!global_reclaim(sc)) 1850 force_scan = true; 1851 1852 /* If we have no swap space, do not bother scanning anon pages. */ 1853 if (!sc->may_swap || (get_nr_swap_pages() <= 0)) { 1854 scan_balance = SCAN_FILE; 1855 goto out; 1856 } 1857 1858 /* 1859 * Global reclaim will swap to prevent OOM even with no 1860 * swappiness, but memcg users want to use this knob to 1861 * disable swapping for individual groups completely when 1862 * using the memory controller's swap limit feature would be 1863 * too expensive. 1864 */ 1865 if (!global_reclaim(sc) && !vmscan_swappiness(sc)) { 1866 scan_balance = SCAN_FILE; 1867 goto out; 1868 } 1869 1870 /* 1871 * Do not apply any pressure balancing cleverness when the 1872 * system is close to OOM, scan both anon and file equally 1873 * (unless the swappiness setting disagrees with swapping). 1874 */ 1875 if (!sc->priority && vmscan_swappiness(sc)) { 1876 scan_balance = SCAN_EQUAL; 1877 goto out; 1878 } 1879 1880 anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) + 1881 get_lru_size(lruvec, LRU_INACTIVE_ANON); 1882 file = get_lru_size(lruvec, LRU_ACTIVE_FILE) + 1883 get_lru_size(lruvec, LRU_INACTIVE_FILE); 1884 1885 /* 1886 * If it's foreseeable that reclaiming the file cache won't be 1887 * enough to get the zone back into a desirable shape, we have 1888 * to swap. Better start now and leave the - probably heavily 1889 * thrashing - remaining file pages alone. 1890 */ 1891 if (global_reclaim(sc)) { 1892 free = zone_page_state(zone, NR_FREE_PAGES); 1893 if (unlikely(file + free <= high_wmark_pages(zone))) { 1894 scan_balance = SCAN_ANON; 1895 goto out; 1896 } 1897 } 1898 1899 /* 1900 * There is enough inactive page cache, do not reclaim 1901 * anything from the anonymous working set right now. 1902 */ 1903 if (!inactive_file_is_low(lruvec)) { 1904 scan_balance = SCAN_FILE; 1905 goto out; 1906 } 1907 1908 scan_balance = SCAN_FRACT; 1909 1910 /* 1911 * With swappiness at 100, anonymous and file have the same priority. 1912 * This scanning priority is essentially the inverse of IO cost. 1913 */ 1914 anon_prio = vmscan_swappiness(sc); 1915 file_prio = 200 - anon_prio; 1916 1917 /* 1918 * OK, so we have swap space and a fair amount of page cache 1919 * pages. We use the recently rotated / recently scanned 1920 * ratios to determine how valuable each cache is. 1921 * 1922 * Because workloads change over time (and to avoid overflow) 1923 * we keep these statistics as a floating average, which ends 1924 * up weighing recent references more than old ones. 1925 * 1926 * anon in [0], file in [1] 1927 */ 1928 spin_lock_irq(&zone->lru_lock); 1929 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) { 1930 reclaim_stat->recent_scanned[0] /= 2; 1931 reclaim_stat->recent_rotated[0] /= 2; 1932 } 1933 1934 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) { 1935 reclaim_stat->recent_scanned[1] /= 2; 1936 reclaim_stat->recent_rotated[1] /= 2; 1937 } 1938 1939 /* 1940 * The amount of pressure on anon vs file pages is inversely 1941 * proportional to the fraction of recently scanned pages on 1942 * each list that were recently referenced and in active use. 1943 */ 1944 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1); 1945 ap /= reclaim_stat->recent_rotated[0] + 1; 1946 1947 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1); 1948 fp /= reclaim_stat->recent_rotated[1] + 1; 1949 spin_unlock_irq(&zone->lru_lock); 1950 1951 fraction[0] = ap; 1952 fraction[1] = fp; 1953 denominator = ap + fp + 1; 1954 out: 1955 for_each_evictable_lru(lru) { 1956 int file = is_file_lru(lru); 1957 unsigned long size; 1958 unsigned long scan; 1959 1960 size = get_lru_size(lruvec, lru); 1961 scan = size >> sc->priority; 1962 1963 if (!scan && force_scan) 1964 scan = min(size, SWAP_CLUSTER_MAX); 1965 1966 switch (scan_balance) { 1967 case SCAN_EQUAL: 1968 /* Scan lists relative to size */ 1969 break; 1970 case SCAN_FRACT: 1971 /* 1972 * Scan types proportional to swappiness and 1973 * their relative recent reclaim efficiency. 1974 */ 1975 scan = div64_u64(scan * fraction[file], denominator); 1976 break; 1977 case SCAN_FILE: 1978 case SCAN_ANON: 1979 /* Scan one type exclusively */ 1980 if ((scan_balance == SCAN_FILE) != file) 1981 scan = 0; 1982 break; 1983 default: 1984 /* Look ma, no brain */ 1985 BUG(); 1986 } 1987 nr[lru] = scan; 1988 } 1989 } 1990 1991 /* 1992 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim. 1993 */ 1994 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 1995 { 1996 unsigned long nr[NR_LRU_LISTS]; 1997 unsigned long targets[NR_LRU_LISTS]; 1998 unsigned long nr_to_scan; 1999 enum lru_list lru; 2000 unsigned long nr_reclaimed = 0; 2001 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 2002 struct blk_plug plug; 2003 bool scan_adjusted = false; 2004 2005 get_scan_count(lruvec, sc, nr); 2006 2007 /* Record the original scan target for proportional adjustments later */ 2008 memcpy(targets, nr, sizeof(nr)); 2009 2010 blk_start_plug(&plug); 2011 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 2012 nr[LRU_INACTIVE_FILE]) { 2013 unsigned long nr_anon, nr_file, percentage; 2014 unsigned long nr_scanned; 2015 2016 for_each_evictable_lru(lru) { 2017 if (nr[lru]) { 2018 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 2019 nr[lru] -= nr_to_scan; 2020 2021 nr_reclaimed += shrink_list(lru, nr_to_scan, 2022 lruvec, sc); 2023 } 2024 } 2025 2026 if (nr_reclaimed < nr_to_reclaim || scan_adjusted) 2027 continue; 2028 2029 /* 2030 * For global direct reclaim, reclaim only the number of pages 2031 * requested. Less care is taken to scan proportionally as it 2032 * is more important to minimise direct reclaim stall latency 2033 * than it is to properly age the LRU lists. 2034 */ 2035 if (global_reclaim(sc) && !current_is_kswapd()) 2036 break; 2037 2038 /* 2039 * For kswapd and memcg, reclaim at least the number of pages 2040 * requested. Ensure that the anon and file LRUs shrink 2041 * proportionally what was requested by get_scan_count(). We 2042 * stop reclaiming one LRU and reduce the amount scanning 2043 * proportional to the original scan target. 2044 */ 2045 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 2046 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 2047 2048 if (nr_file > nr_anon) { 2049 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 2050 targets[LRU_ACTIVE_ANON] + 1; 2051 lru = LRU_BASE; 2052 percentage = nr_anon * 100 / scan_target; 2053 } else { 2054 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 2055 targets[LRU_ACTIVE_FILE] + 1; 2056 lru = LRU_FILE; 2057 percentage = nr_file * 100 / scan_target; 2058 } 2059 2060 /* Stop scanning the smaller of the LRU */ 2061 nr[lru] = 0; 2062 nr[lru + LRU_ACTIVE] = 0; 2063 2064 /* 2065 * Recalculate the other LRU scan count based on its original 2066 * scan target and the percentage scanning already complete 2067 */ 2068 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 2069 nr_scanned = targets[lru] - nr[lru]; 2070 nr[lru] = targets[lru] * (100 - percentage) / 100; 2071 nr[lru] -= min(nr[lru], nr_scanned); 2072 2073 lru += LRU_ACTIVE; 2074 nr_scanned = targets[lru] - nr[lru]; 2075 nr[lru] = targets[lru] * (100 - percentage) / 100; 2076 nr[lru] -= min(nr[lru], nr_scanned); 2077 2078 scan_adjusted = true; 2079 } 2080 blk_finish_plug(&plug); 2081 sc->nr_reclaimed += nr_reclaimed; 2082 2083 /* 2084 * Even if we did not try to evict anon pages at all, we want to 2085 * rebalance the anon lru active/inactive ratio. 2086 */ 2087 if (inactive_anon_is_low(lruvec)) 2088 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 2089 sc, LRU_ACTIVE_ANON); 2090 2091 throttle_vm_writeout(sc->gfp_mask); 2092 } 2093 2094 /* Use reclaim/compaction for costly allocs or under memory pressure */ 2095 static bool in_reclaim_compaction(struct scan_control *sc) 2096 { 2097 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 2098 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 2099 sc->priority < DEF_PRIORITY - 2)) 2100 return true; 2101 2102 return false; 2103 } 2104 2105 /* 2106 * Reclaim/compaction is used for high-order allocation requests. It reclaims 2107 * order-0 pages before compacting the zone. should_continue_reclaim() returns 2108 * true if more pages should be reclaimed such that when the page allocator 2109 * calls try_to_compact_zone() that it will have enough free pages to succeed. 2110 * It will give up earlier than that if there is difficulty reclaiming pages. 2111 */ 2112 static inline bool should_continue_reclaim(struct zone *zone, 2113 unsigned long nr_reclaimed, 2114 unsigned long nr_scanned, 2115 struct scan_control *sc) 2116 { 2117 unsigned long pages_for_compaction; 2118 unsigned long inactive_lru_pages; 2119 2120 /* If not in reclaim/compaction mode, stop */ 2121 if (!in_reclaim_compaction(sc)) 2122 return false; 2123 2124 /* Consider stopping depending on scan and reclaim activity */ 2125 if (sc->gfp_mask & __GFP_REPEAT) { 2126 /* 2127 * For __GFP_REPEAT allocations, stop reclaiming if the 2128 * full LRU list has been scanned and we are still failing 2129 * to reclaim pages. This full LRU scan is potentially 2130 * expensive but a __GFP_REPEAT caller really wants to succeed 2131 */ 2132 if (!nr_reclaimed && !nr_scanned) 2133 return false; 2134 } else { 2135 /* 2136 * For non-__GFP_REPEAT allocations which can presumably 2137 * fail without consequence, stop if we failed to reclaim 2138 * any pages from the last SWAP_CLUSTER_MAX number of 2139 * pages that were scanned. This will return to the 2140 * caller faster at the risk reclaim/compaction and 2141 * the resulting allocation attempt fails 2142 */ 2143 if (!nr_reclaimed) 2144 return false; 2145 } 2146 2147 /* 2148 * If we have not reclaimed enough pages for compaction and the 2149 * inactive lists are large enough, continue reclaiming 2150 */ 2151 pages_for_compaction = (2UL << sc->order); 2152 inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE); 2153 if (get_nr_swap_pages() > 0) 2154 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON); 2155 if (sc->nr_reclaimed < pages_for_compaction && 2156 inactive_lru_pages > pages_for_compaction) 2157 return true; 2158 2159 /* If compaction would go ahead or the allocation would succeed, stop */ 2160 switch (compaction_suitable(zone, sc->order)) { 2161 case COMPACT_PARTIAL: 2162 case COMPACT_CONTINUE: 2163 return false; 2164 default: 2165 return true; 2166 } 2167 } 2168 2169 static void shrink_zone(struct zone *zone, struct scan_control *sc) 2170 { 2171 unsigned long nr_reclaimed, nr_scanned; 2172 2173 do { 2174 struct mem_cgroup *root = sc->target_mem_cgroup; 2175 struct mem_cgroup_reclaim_cookie reclaim = { 2176 .zone = zone, 2177 .priority = sc->priority, 2178 }; 2179 struct mem_cgroup *memcg; 2180 2181 nr_reclaimed = sc->nr_reclaimed; 2182 nr_scanned = sc->nr_scanned; 2183 2184 memcg = mem_cgroup_iter(root, NULL, &reclaim); 2185 do { 2186 struct lruvec *lruvec; 2187 2188 lruvec = mem_cgroup_zone_lruvec(zone, memcg); 2189 2190 shrink_lruvec(lruvec, sc); 2191 2192 /* 2193 * Direct reclaim and kswapd have to scan all memory 2194 * cgroups to fulfill the overall scan target for the 2195 * zone. 2196 * 2197 * Limit reclaim, on the other hand, only cares about 2198 * nr_to_reclaim pages to be reclaimed and it will 2199 * retry with decreasing priority if one round over the 2200 * whole hierarchy is not sufficient. 2201 */ 2202 if (!global_reclaim(sc) && 2203 sc->nr_reclaimed >= sc->nr_to_reclaim) { 2204 mem_cgroup_iter_break(root, memcg); 2205 break; 2206 } 2207 memcg = mem_cgroup_iter(root, memcg, &reclaim); 2208 } while (memcg); 2209 2210 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, 2211 sc->nr_scanned - nr_scanned, 2212 sc->nr_reclaimed - nr_reclaimed); 2213 2214 } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed, 2215 sc->nr_scanned - nr_scanned, sc)); 2216 } 2217 2218 /* Returns true if compaction should go ahead for a high-order request */ 2219 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) 2220 { 2221 unsigned long balance_gap, watermark; 2222 bool watermark_ok; 2223 2224 /* Do not consider compaction for orders reclaim is meant to satisfy */ 2225 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER) 2226 return false; 2227 2228 /* 2229 * Compaction takes time to run and there are potentially other 2230 * callers using the pages just freed. Continue reclaiming until 2231 * there is a buffer of free pages available to give compaction 2232 * a reasonable chance of completing and allocating the page 2233 */ 2234 balance_gap = min(low_wmark_pages(zone), 2235 (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) / 2236 KSWAPD_ZONE_BALANCE_GAP_RATIO); 2237 watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order); 2238 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0); 2239 2240 /* 2241 * If compaction is deferred, reclaim up to a point where 2242 * compaction will have a chance of success when re-enabled 2243 */ 2244 if (compaction_deferred(zone, sc->order)) 2245 return watermark_ok; 2246 2247 /* If compaction is not ready to start, keep reclaiming */ 2248 if (!compaction_suitable(zone, sc->order)) 2249 return false; 2250 2251 return watermark_ok; 2252 } 2253 2254 /* 2255 * This is the direct reclaim path, for page-allocating processes. We only 2256 * try to reclaim pages from zones which will satisfy the caller's allocation 2257 * request. 2258 * 2259 * We reclaim from a zone even if that zone is over high_wmark_pages(zone). 2260 * Because: 2261 * a) The caller may be trying to free *extra* pages to satisfy a higher-order 2262 * allocation or 2263 * b) The target zone may be at high_wmark_pages(zone) but the lower zones 2264 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min' 2265 * zone defense algorithm. 2266 * 2267 * If a zone is deemed to be full of pinned pages then just give it a light 2268 * scan then give up on it. 2269 * 2270 * This function returns true if a zone is being reclaimed for a costly 2271 * high-order allocation and compaction is ready to begin. This indicates to 2272 * the caller that it should consider retrying the allocation instead of 2273 * further reclaim. 2274 */ 2275 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 2276 { 2277 struct zoneref *z; 2278 struct zone *zone; 2279 unsigned long nr_soft_reclaimed; 2280 unsigned long nr_soft_scanned; 2281 bool aborted_reclaim = false; 2282 2283 /* 2284 * If the number of buffer_heads in the machine exceeds the maximum 2285 * allowed level, force direct reclaim to scan the highmem zone as 2286 * highmem pages could be pinning lowmem pages storing buffer_heads 2287 */ 2288 if (buffer_heads_over_limit) 2289 sc->gfp_mask |= __GFP_HIGHMEM; 2290 2291 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2292 gfp_zone(sc->gfp_mask), sc->nodemask) { 2293 if (!populated_zone(zone)) 2294 continue; 2295 /* 2296 * Take care memory controller reclaiming has small influence 2297 * to global LRU. 2298 */ 2299 if (global_reclaim(sc)) { 2300 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 2301 continue; 2302 if (sc->priority != DEF_PRIORITY && 2303 !zone_reclaimable(zone)) 2304 continue; /* Let kswapd poll it */ 2305 if (IS_ENABLED(CONFIG_COMPACTION)) { 2306 /* 2307 * If we already have plenty of memory free for 2308 * compaction in this zone, don't free any more. 2309 * Even though compaction is invoked for any 2310 * non-zero order, only frequent costly order 2311 * reclamation is disruptive enough to become a 2312 * noticeable problem, like transparent huge 2313 * page allocations. 2314 */ 2315 if (compaction_ready(zone, sc)) { 2316 aborted_reclaim = true; 2317 continue; 2318 } 2319 } 2320 /* 2321 * This steals pages from memory cgroups over softlimit 2322 * and returns the number of reclaimed pages and 2323 * scanned pages. This works for global memory pressure 2324 * and balancing, not for a memcg's limit. 2325 */ 2326 nr_soft_scanned = 0; 2327 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone, 2328 sc->order, sc->gfp_mask, 2329 &nr_soft_scanned); 2330 sc->nr_reclaimed += nr_soft_reclaimed; 2331 sc->nr_scanned += nr_soft_scanned; 2332 /* need some check for avoid more shrink_zone() */ 2333 } 2334 2335 shrink_zone(zone, sc); 2336 } 2337 2338 return aborted_reclaim; 2339 } 2340 2341 /* All zones in zonelist are unreclaimable? */ 2342 static bool all_unreclaimable(struct zonelist *zonelist, 2343 struct scan_control *sc) 2344 { 2345 struct zoneref *z; 2346 struct zone *zone; 2347 2348 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2349 gfp_zone(sc->gfp_mask), sc->nodemask) { 2350 if (!populated_zone(zone)) 2351 continue; 2352 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 2353 continue; 2354 if (zone_reclaimable(zone)) 2355 return false; 2356 } 2357 2358 return true; 2359 } 2360 2361 /* 2362 * This is the main entry point to direct page reclaim. 2363 * 2364 * If a full scan of the inactive list fails to free enough memory then we 2365 * are "out of memory" and something needs to be killed. 2366 * 2367 * If the caller is !__GFP_FS then the probability of a failure is reasonably 2368 * high - the zone may be full of dirty or under-writeback pages, which this 2369 * caller can't do much about. We kick the writeback threads and take explicit 2370 * naps in the hope that some of these pages can be written. But if the 2371 * allocating task holds filesystem locks which prevent writeout this might not 2372 * work, and the allocation attempt will fail. 2373 * 2374 * returns: 0, if no pages reclaimed 2375 * else, the number of pages reclaimed 2376 */ 2377 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 2378 struct scan_control *sc, 2379 struct shrink_control *shrink) 2380 { 2381 unsigned long total_scanned = 0; 2382 struct reclaim_state *reclaim_state = current->reclaim_state; 2383 struct zoneref *z; 2384 struct zone *zone; 2385 unsigned long writeback_threshold; 2386 bool aborted_reclaim; 2387 2388 delayacct_freepages_start(); 2389 2390 if (global_reclaim(sc)) 2391 count_vm_event(ALLOCSTALL); 2392 2393 do { 2394 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 2395 sc->priority); 2396 sc->nr_scanned = 0; 2397 aborted_reclaim = shrink_zones(zonelist, sc); 2398 2399 /* 2400 * Don't shrink slabs when reclaiming memory from over limit 2401 * cgroups but do shrink slab at least once when aborting 2402 * reclaim for compaction to avoid unevenly scanning file/anon 2403 * LRU pages over slab pages. 2404 */ 2405 if (global_reclaim(sc)) { 2406 unsigned long lru_pages = 0; 2407 2408 nodes_clear(shrink->nodes_to_scan); 2409 for_each_zone_zonelist(zone, z, zonelist, 2410 gfp_zone(sc->gfp_mask)) { 2411 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 2412 continue; 2413 2414 lru_pages += zone_reclaimable_pages(zone); 2415 node_set(zone_to_nid(zone), 2416 shrink->nodes_to_scan); 2417 } 2418 2419 shrink_slab(shrink, sc->nr_scanned, lru_pages); 2420 if (reclaim_state) { 2421 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 2422 reclaim_state->reclaimed_slab = 0; 2423 } 2424 } 2425 total_scanned += sc->nr_scanned; 2426 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 2427 goto out; 2428 2429 /* 2430 * If we're getting trouble reclaiming, start doing 2431 * writepage even in laptop mode. 2432 */ 2433 if (sc->priority < DEF_PRIORITY - 2) 2434 sc->may_writepage = 1; 2435 2436 /* 2437 * Try to write back as many pages as we just scanned. This 2438 * tends to cause slow streaming writers to write data to the 2439 * disk smoothly, at the dirtying rate, which is nice. But 2440 * that's undesirable in laptop mode, where we *want* lumpy 2441 * writeout. So in laptop mode, write out the whole world. 2442 */ 2443 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2; 2444 if (total_scanned > writeback_threshold) { 2445 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned, 2446 WB_REASON_TRY_TO_FREE_PAGES); 2447 sc->may_writepage = 1; 2448 } 2449 } while (--sc->priority >= 0 && !aborted_reclaim); 2450 2451 out: 2452 delayacct_freepages_end(); 2453 2454 if (sc->nr_reclaimed) 2455 return sc->nr_reclaimed; 2456 2457 /* 2458 * As hibernation is going on, kswapd is freezed so that it can't mark 2459 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable 2460 * check. 2461 */ 2462 if (oom_killer_disabled) 2463 return 0; 2464 2465 /* Aborted reclaim to try compaction? don't OOM, then */ 2466 if (aborted_reclaim) 2467 return 1; 2468 2469 /* top priority shrink_zones still had more to do? don't OOM, then */ 2470 if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc)) 2471 return 1; 2472 2473 return 0; 2474 } 2475 2476 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat) 2477 { 2478 struct zone *zone; 2479 unsigned long pfmemalloc_reserve = 0; 2480 unsigned long free_pages = 0; 2481 int i; 2482 bool wmark_ok; 2483 2484 for (i = 0; i <= ZONE_NORMAL; i++) { 2485 zone = &pgdat->node_zones[i]; 2486 pfmemalloc_reserve += min_wmark_pages(zone); 2487 free_pages += zone_page_state(zone, NR_FREE_PAGES); 2488 } 2489 2490 wmark_ok = free_pages > pfmemalloc_reserve / 2; 2491 2492 /* kswapd must be awake if processes are being throttled */ 2493 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 2494 pgdat->classzone_idx = min(pgdat->classzone_idx, 2495 (enum zone_type)ZONE_NORMAL); 2496 wake_up_interruptible(&pgdat->kswapd_wait); 2497 } 2498 2499 return wmark_ok; 2500 } 2501 2502 /* 2503 * Throttle direct reclaimers if backing storage is backed by the network 2504 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 2505 * depleted. kswapd will continue to make progress and wake the processes 2506 * when the low watermark is reached. 2507 * 2508 * Returns true if a fatal signal was delivered during throttling. If this 2509 * happens, the page allocator should not consider triggering the OOM killer. 2510 */ 2511 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 2512 nodemask_t *nodemask) 2513 { 2514 struct zone *zone; 2515 int high_zoneidx = gfp_zone(gfp_mask); 2516 pg_data_t *pgdat; 2517 2518 /* 2519 * Kernel threads should not be throttled as they may be indirectly 2520 * responsible for cleaning pages necessary for reclaim to make forward 2521 * progress. kjournald for example may enter direct reclaim while 2522 * committing a transaction where throttling it could forcing other 2523 * processes to block on log_wait_commit(). 2524 */ 2525 if (current->flags & PF_KTHREAD) 2526 goto out; 2527 2528 /* 2529 * If a fatal signal is pending, this process should not throttle. 2530 * It should return quickly so it can exit and free its memory 2531 */ 2532 if (fatal_signal_pending(current)) 2533 goto out; 2534 2535 /* Check if the pfmemalloc reserves are ok */ 2536 first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone); 2537 pgdat = zone->zone_pgdat; 2538 if (pfmemalloc_watermark_ok(pgdat)) 2539 goto out; 2540 2541 /* Account for the throttling */ 2542 count_vm_event(PGSCAN_DIRECT_THROTTLE); 2543 2544 /* 2545 * If the caller cannot enter the filesystem, it's possible that it 2546 * is due to the caller holding an FS lock or performing a journal 2547 * transaction in the case of a filesystem like ext[3|4]. In this case, 2548 * it is not safe to block on pfmemalloc_wait as kswapd could be 2549 * blocked waiting on the same lock. Instead, throttle for up to a 2550 * second before continuing. 2551 */ 2552 if (!(gfp_mask & __GFP_FS)) { 2553 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 2554 pfmemalloc_watermark_ok(pgdat), HZ); 2555 2556 goto check_pending; 2557 } 2558 2559 /* Throttle until kswapd wakes the process */ 2560 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 2561 pfmemalloc_watermark_ok(pgdat)); 2562 2563 check_pending: 2564 if (fatal_signal_pending(current)) 2565 return true; 2566 2567 out: 2568 return false; 2569 } 2570 2571 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 2572 gfp_t gfp_mask, nodemask_t *nodemask) 2573 { 2574 unsigned long nr_reclaimed; 2575 struct scan_control sc = { 2576 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)), 2577 .may_writepage = !laptop_mode, 2578 .nr_to_reclaim = SWAP_CLUSTER_MAX, 2579 .may_unmap = 1, 2580 .may_swap = 1, 2581 .order = order, 2582 .priority = DEF_PRIORITY, 2583 .target_mem_cgroup = NULL, 2584 .nodemask = nodemask, 2585 }; 2586 struct shrink_control shrink = { 2587 .gfp_mask = sc.gfp_mask, 2588 }; 2589 2590 /* 2591 * Do not enter reclaim if fatal signal was delivered while throttled. 2592 * 1 is returned so that the page allocator does not OOM kill at this 2593 * point. 2594 */ 2595 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask)) 2596 return 1; 2597 2598 trace_mm_vmscan_direct_reclaim_begin(order, 2599 sc.may_writepage, 2600 gfp_mask); 2601 2602 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink); 2603 2604 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 2605 2606 return nr_reclaimed; 2607 } 2608 2609 #ifdef CONFIG_MEMCG 2610 2611 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg, 2612 gfp_t gfp_mask, bool noswap, 2613 struct zone *zone, 2614 unsigned long *nr_scanned) 2615 { 2616 struct scan_control sc = { 2617 .nr_scanned = 0, 2618 .nr_to_reclaim = SWAP_CLUSTER_MAX, 2619 .may_writepage = !laptop_mode, 2620 .may_unmap = 1, 2621 .may_swap = !noswap, 2622 .order = 0, 2623 .priority = 0, 2624 .target_mem_cgroup = memcg, 2625 }; 2626 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg); 2627 2628 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 2629 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 2630 2631 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 2632 sc.may_writepage, 2633 sc.gfp_mask); 2634 2635 /* 2636 * NOTE: Although we can get the priority field, using it 2637 * here is not a good idea, since it limits the pages we can scan. 2638 * if we don't reclaim here, the shrink_zone from balance_pgdat 2639 * will pick up pages from other mem cgroup's as well. We hack 2640 * the priority and make it zero. 2641 */ 2642 shrink_lruvec(lruvec, &sc); 2643 2644 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 2645 2646 *nr_scanned = sc.nr_scanned; 2647 return sc.nr_reclaimed; 2648 } 2649 2650 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 2651 gfp_t gfp_mask, 2652 bool noswap) 2653 { 2654 struct zonelist *zonelist; 2655 unsigned long nr_reclaimed; 2656 int nid; 2657 struct scan_control sc = { 2658 .may_writepage = !laptop_mode, 2659 .may_unmap = 1, 2660 .may_swap = !noswap, 2661 .nr_to_reclaim = SWAP_CLUSTER_MAX, 2662 .order = 0, 2663 .priority = DEF_PRIORITY, 2664 .target_mem_cgroup = memcg, 2665 .nodemask = NULL, /* we don't care the placement */ 2666 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 2667 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 2668 }; 2669 struct shrink_control shrink = { 2670 .gfp_mask = sc.gfp_mask, 2671 }; 2672 2673 /* 2674 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't 2675 * take care of from where we get pages. So the node where we start the 2676 * scan does not need to be the current node. 2677 */ 2678 nid = mem_cgroup_select_victim_node(memcg); 2679 2680 zonelist = NODE_DATA(nid)->node_zonelists; 2681 2682 trace_mm_vmscan_memcg_reclaim_begin(0, 2683 sc.may_writepage, 2684 sc.gfp_mask); 2685 2686 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink); 2687 2688 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 2689 2690 return nr_reclaimed; 2691 } 2692 #endif 2693 2694 static void age_active_anon(struct zone *zone, struct scan_control *sc) 2695 { 2696 struct mem_cgroup *memcg; 2697 2698 if (!total_swap_pages) 2699 return; 2700 2701 memcg = mem_cgroup_iter(NULL, NULL, NULL); 2702 do { 2703 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg); 2704 2705 if (inactive_anon_is_low(lruvec)) 2706 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 2707 sc, LRU_ACTIVE_ANON); 2708 2709 memcg = mem_cgroup_iter(NULL, memcg, NULL); 2710 } while (memcg); 2711 } 2712 2713 static bool zone_balanced(struct zone *zone, int order, 2714 unsigned long balance_gap, int classzone_idx) 2715 { 2716 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) + 2717 balance_gap, classzone_idx, 0)) 2718 return false; 2719 2720 if (IS_ENABLED(CONFIG_COMPACTION) && order && 2721 !compaction_suitable(zone, order)) 2722 return false; 2723 2724 return true; 2725 } 2726 2727 /* 2728 * pgdat_balanced() is used when checking if a node is balanced. 2729 * 2730 * For order-0, all zones must be balanced! 2731 * 2732 * For high-order allocations only zones that meet watermarks and are in a 2733 * zone allowed by the callers classzone_idx are added to balanced_pages. The 2734 * total of balanced pages must be at least 25% of the zones allowed by 2735 * classzone_idx for the node to be considered balanced. Forcing all zones to 2736 * be balanced for high orders can cause excessive reclaim when there are 2737 * imbalanced zones. 2738 * The choice of 25% is due to 2739 * o a 16M DMA zone that is balanced will not balance a zone on any 2740 * reasonable sized machine 2741 * o On all other machines, the top zone must be at least a reasonable 2742 * percentage of the middle zones. For example, on 32-bit x86, highmem 2743 * would need to be at least 256M for it to be balance a whole node. 2744 * Similarly, on x86-64 the Normal zone would need to be at least 1G 2745 * to balance a node on its own. These seemed like reasonable ratios. 2746 */ 2747 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx) 2748 { 2749 unsigned long managed_pages = 0; 2750 unsigned long balanced_pages = 0; 2751 int i; 2752 2753 /* Check the watermark levels */ 2754 for (i = 0; i <= classzone_idx; i++) { 2755 struct zone *zone = pgdat->node_zones + i; 2756 2757 if (!populated_zone(zone)) 2758 continue; 2759 2760 managed_pages += zone->managed_pages; 2761 2762 /* 2763 * A special case here: 2764 * 2765 * balance_pgdat() skips over all_unreclaimable after 2766 * DEF_PRIORITY. Effectively, it considers them balanced so 2767 * they must be considered balanced here as well! 2768 */ 2769 if (!zone_reclaimable(zone)) { 2770 balanced_pages += zone->managed_pages; 2771 continue; 2772 } 2773 2774 if (zone_balanced(zone, order, 0, i)) 2775 balanced_pages += zone->managed_pages; 2776 else if (!order) 2777 return false; 2778 } 2779 2780 if (order) 2781 return balanced_pages >= (managed_pages >> 2); 2782 else 2783 return true; 2784 } 2785 2786 /* 2787 * Prepare kswapd for sleeping. This verifies that there are no processes 2788 * waiting in throttle_direct_reclaim() and that watermarks have been met. 2789 * 2790 * Returns true if kswapd is ready to sleep 2791 */ 2792 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining, 2793 int classzone_idx) 2794 { 2795 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */ 2796 if (remaining) 2797 return false; 2798 2799 /* 2800 * There is a potential race between when kswapd checks its watermarks 2801 * and a process gets throttled. There is also a potential race if 2802 * processes get throttled, kswapd wakes, a large process exits therby 2803 * balancing the zones that causes kswapd to miss a wakeup. If kswapd 2804 * is going to sleep, no process should be sleeping on pfmemalloc_wait 2805 * so wake them now if necessary. If necessary, processes will wake 2806 * kswapd and get throttled again 2807 */ 2808 if (waitqueue_active(&pgdat->pfmemalloc_wait)) { 2809 wake_up(&pgdat->pfmemalloc_wait); 2810 return false; 2811 } 2812 2813 return pgdat_balanced(pgdat, order, classzone_idx); 2814 } 2815 2816 /* 2817 * kswapd shrinks the zone by the number of pages required to reach 2818 * the high watermark. 2819 * 2820 * Returns true if kswapd scanned at least the requested number of pages to 2821 * reclaim or if the lack of progress was due to pages under writeback. 2822 * This is used to determine if the scanning priority needs to be raised. 2823 */ 2824 static bool kswapd_shrink_zone(struct zone *zone, 2825 int classzone_idx, 2826 struct scan_control *sc, 2827 unsigned long lru_pages, 2828 unsigned long *nr_attempted) 2829 { 2830 int testorder = sc->order; 2831 unsigned long balance_gap; 2832 struct reclaim_state *reclaim_state = current->reclaim_state; 2833 struct shrink_control shrink = { 2834 .gfp_mask = sc->gfp_mask, 2835 }; 2836 bool lowmem_pressure; 2837 2838 /* Reclaim above the high watermark. */ 2839 sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone)); 2840 2841 /* 2842 * Kswapd reclaims only single pages with compaction enabled. Trying 2843 * too hard to reclaim until contiguous free pages have become 2844 * available can hurt performance by evicting too much useful data 2845 * from memory. Do not reclaim more than needed for compaction. 2846 */ 2847 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 2848 compaction_suitable(zone, sc->order) != 2849 COMPACT_SKIPPED) 2850 testorder = 0; 2851 2852 /* 2853 * We put equal pressure on every zone, unless one zone has way too 2854 * many pages free already. The "too many pages" is defined as the 2855 * high wmark plus a "gap" where the gap is either the low 2856 * watermark or 1% of the zone, whichever is smaller. 2857 */ 2858 balance_gap = min(low_wmark_pages(zone), 2859 (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) / 2860 KSWAPD_ZONE_BALANCE_GAP_RATIO); 2861 2862 /* 2863 * If there is no low memory pressure or the zone is balanced then no 2864 * reclaim is necessary 2865 */ 2866 lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone)); 2867 if (!lowmem_pressure && zone_balanced(zone, testorder, 2868 balance_gap, classzone_idx)) 2869 return true; 2870 2871 shrink_zone(zone, sc); 2872 nodes_clear(shrink.nodes_to_scan); 2873 node_set(zone_to_nid(zone), shrink.nodes_to_scan); 2874 2875 reclaim_state->reclaimed_slab = 0; 2876 shrink_slab(&shrink, sc->nr_scanned, lru_pages); 2877 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 2878 2879 /* Account for the number of pages attempted to reclaim */ 2880 *nr_attempted += sc->nr_to_reclaim; 2881 2882 zone_clear_flag(zone, ZONE_WRITEBACK); 2883 2884 /* 2885 * If a zone reaches its high watermark, consider it to be no longer 2886 * congested. It's possible there are dirty pages backed by congested 2887 * BDIs but as pressure is relieved, speculatively avoid congestion 2888 * waits. 2889 */ 2890 if (zone_reclaimable(zone) && 2891 zone_balanced(zone, testorder, 0, classzone_idx)) { 2892 zone_clear_flag(zone, ZONE_CONGESTED); 2893 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY); 2894 } 2895 2896 return sc->nr_scanned >= sc->nr_to_reclaim; 2897 } 2898 2899 /* 2900 * For kswapd, balance_pgdat() will work across all this node's zones until 2901 * they are all at high_wmark_pages(zone). 2902 * 2903 * Returns the final order kswapd was reclaiming at 2904 * 2905 * There is special handling here for zones which are full of pinned pages. 2906 * This can happen if the pages are all mlocked, or if they are all used by 2907 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb. 2908 * What we do is to detect the case where all pages in the zone have been 2909 * scanned twice and there has been zero successful reclaim. Mark the zone as 2910 * dead and from now on, only perform a short scan. Basically we're polling 2911 * the zone for when the problem goes away. 2912 * 2913 * kswapd scans the zones in the highmem->normal->dma direction. It skips 2914 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 2915 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the 2916 * lower zones regardless of the number of free pages in the lower zones. This 2917 * interoperates with the page allocator fallback scheme to ensure that aging 2918 * of pages is balanced across the zones. 2919 */ 2920 static unsigned long balance_pgdat(pg_data_t *pgdat, int order, 2921 int *classzone_idx) 2922 { 2923 int i; 2924 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */ 2925 unsigned long nr_soft_reclaimed; 2926 unsigned long nr_soft_scanned; 2927 struct scan_control sc = { 2928 .gfp_mask = GFP_KERNEL, 2929 .priority = DEF_PRIORITY, 2930 .may_unmap = 1, 2931 .may_swap = 1, 2932 .may_writepage = !laptop_mode, 2933 .order = order, 2934 .target_mem_cgroup = NULL, 2935 }; 2936 count_vm_event(PAGEOUTRUN); 2937 2938 do { 2939 unsigned long lru_pages = 0; 2940 unsigned long nr_attempted = 0; 2941 bool raise_priority = true; 2942 bool pgdat_needs_compaction = (order > 0); 2943 2944 sc.nr_reclaimed = 0; 2945 2946 /* 2947 * Scan in the highmem->dma direction for the highest 2948 * zone which needs scanning 2949 */ 2950 for (i = pgdat->nr_zones - 1; i >= 0; i--) { 2951 struct zone *zone = pgdat->node_zones + i; 2952 2953 if (!populated_zone(zone)) 2954 continue; 2955 2956 if (sc.priority != DEF_PRIORITY && 2957 !zone_reclaimable(zone)) 2958 continue; 2959 2960 /* 2961 * Do some background aging of the anon list, to give 2962 * pages a chance to be referenced before reclaiming. 2963 */ 2964 age_active_anon(zone, &sc); 2965 2966 /* 2967 * If the number of buffer_heads in the machine 2968 * exceeds the maximum allowed level and this node 2969 * has a highmem zone, force kswapd to reclaim from 2970 * it to relieve lowmem pressure. 2971 */ 2972 if (buffer_heads_over_limit && is_highmem_idx(i)) { 2973 end_zone = i; 2974 break; 2975 } 2976 2977 if (!zone_balanced(zone, order, 0, 0)) { 2978 end_zone = i; 2979 break; 2980 } else { 2981 /* 2982 * If balanced, clear the dirty and congested 2983 * flags 2984 */ 2985 zone_clear_flag(zone, ZONE_CONGESTED); 2986 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY); 2987 } 2988 } 2989 2990 if (i < 0) 2991 goto out; 2992 2993 for (i = 0; i <= end_zone; i++) { 2994 struct zone *zone = pgdat->node_zones + i; 2995 2996 if (!populated_zone(zone)) 2997 continue; 2998 2999 lru_pages += zone_reclaimable_pages(zone); 3000 3001 /* 3002 * If any zone is currently balanced then kswapd will 3003 * not call compaction as it is expected that the 3004 * necessary pages are already available. 3005 */ 3006 if (pgdat_needs_compaction && 3007 zone_watermark_ok(zone, order, 3008 low_wmark_pages(zone), 3009 *classzone_idx, 0)) 3010 pgdat_needs_compaction = false; 3011 } 3012 3013 /* 3014 * If we're getting trouble reclaiming, start doing writepage 3015 * even in laptop mode. 3016 */ 3017 if (sc.priority < DEF_PRIORITY - 2) 3018 sc.may_writepage = 1; 3019 3020 /* 3021 * Now scan the zone in the dma->highmem direction, stopping 3022 * at the last zone which needs scanning. 3023 * 3024 * We do this because the page allocator works in the opposite 3025 * direction. This prevents the page allocator from allocating 3026 * pages behind kswapd's direction of progress, which would 3027 * cause too much scanning of the lower zones. 3028 */ 3029 for (i = 0; i <= end_zone; i++) { 3030 struct zone *zone = pgdat->node_zones + i; 3031 3032 if (!populated_zone(zone)) 3033 continue; 3034 3035 if (sc.priority != DEF_PRIORITY && 3036 !zone_reclaimable(zone)) 3037 continue; 3038 3039 sc.nr_scanned = 0; 3040 3041 nr_soft_scanned = 0; 3042 /* 3043 * Call soft limit reclaim before calling shrink_zone. 3044 */ 3045 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone, 3046 order, sc.gfp_mask, 3047 &nr_soft_scanned); 3048 sc.nr_reclaimed += nr_soft_reclaimed; 3049 3050 /* 3051 * There should be no need to raise the scanning 3052 * priority if enough pages are already being scanned 3053 * that that high watermark would be met at 100% 3054 * efficiency. 3055 */ 3056 if (kswapd_shrink_zone(zone, end_zone, &sc, 3057 lru_pages, &nr_attempted)) 3058 raise_priority = false; 3059 } 3060 3061 /* 3062 * If the low watermark is met there is no need for processes 3063 * to be throttled on pfmemalloc_wait as they should not be 3064 * able to safely make forward progress. Wake them 3065 */ 3066 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 3067 pfmemalloc_watermark_ok(pgdat)) 3068 wake_up(&pgdat->pfmemalloc_wait); 3069 3070 /* 3071 * Fragmentation may mean that the system cannot be rebalanced 3072 * for high-order allocations in all zones. If twice the 3073 * allocation size has been reclaimed and the zones are still 3074 * not balanced then recheck the watermarks at order-0 to 3075 * prevent kswapd reclaiming excessively. Assume that a 3076 * process requested a high-order can direct reclaim/compact. 3077 */ 3078 if (order && sc.nr_reclaimed >= 2UL << order) 3079 order = sc.order = 0; 3080 3081 /* Check if kswapd should be suspending */ 3082 if (try_to_freeze() || kthread_should_stop()) 3083 break; 3084 3085 /* 3086 * Compact if necessary and kswapd is reclaiming at least the 3087 * high watermark number of pages as requsted 3088 */ 3089 if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted) 3090 compact_pgdat(pgdat, order); 3091 3092 /* 3093 * Raise priority if scanning rate is too low or there was no 3094 * progress in reclaiming pages 3095 */ 3096 if (raise_priority || !sc.nr_reclaimed) 3097 sc.priority--; 3098 } while (sc.priority >= 1 && 3099 !pgdat_balanced(pgdat, order, *classzone_idx)); 3100 3101 out: 3102 /* 3103 * Return the order we were reclaiming at so prepare_kswapd_sleep() 3104 * makes a decision on the order we were last reclaiming at. However, 3105 * if another caller entered the allocator slow path while kswapd 3106 * was awake, order will remain at the higher level 3107 */ 3108 *classzone_idx = end_zone; 3109 return order; 3110 } 3111 3112 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx) 3113 { 3114 long remaining = 0; 3115 DEFINE_WAIT(wait); 3116 3117 if (freezing(current) || kthread_should_stop()) 3118 return; 3119 3120 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3121 3122 /* Try to sleep for a short interval */ 3123 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) { 3124 remaining = schedule_timeout(HZ/10); 3125 finish_wait(&pgdat->kswapd_wait, &wait); 3126 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3127 } 3128 3129 /* 3130 * After a short sleep, check if it was a premature sleep. If not, then 3131 * go fully to sleep until explicitly woken up. 3132 */ 3133 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) { 3134 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 3135 3136 /* 3137 * vmstat counters are not perfectly accurate and the estimated 3138 * value for counters such as NR_FREE_PAGES can deviate from the 3139 * true value by nr_online_cpus * threshold. To avoid the zone 3140 * watermarks being breached while under pressure, we reduce the 3141 * per-cpu vmstat threshold while kswapd is awake and restore 3142 * them before going back to sleep. 3143 */ 3144 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 3145 3146 /* 3147 * Compaction records what page blocks it recently failed to 3148 * isolate pages from and skips them in the future scanning. 3149 * When kswapd is going to sleep, it is reasonable to assume 3150 * that pages and compaction may succeed so reset the cache. 3151 */ 3152 reset_isolation_suitable(pgdat); 3153 3154 if (!kthread_should_stop()) 3155 schedule(); 3156 3157 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 3158 } else { 3159 if (remaining) 3160 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 3161 else 3162 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 3163 } 3164 finish_wait(&pgdat->kswapd_wait, &wait); 3165 } 3166 3167 /* 3168 * The background pageout daemon, started as a kernel thread 3169 * from the init process. 3170 * 3171 * This basically trickles out pages so that we have _some_ 3172 * free memory available even if there is no other activity 3173 * that frees anything up. This is needed for things like routing 3174 * etc, where we otherwise might have all activity going on in 3175 * asynchronous contexts that cannot page things out. 3176 * 3177 * If there are applications that are active memory-allocators 3178 * (most normal use), this basically shouldn't matter. 3179 */ 3180 static int kswapd(void *p) 3181 { 3182 unsigned long order, new_order; 3183 unsigned balanced_order; 3184 int classzone_idx, new_classzone_idx; 3185 int balanced_classzone_idx; 3186 pg_data_t *pgdat = (pg_data_t*)p; 3187 struct task_struct *tsk = current; 3188 3189 struct reclaim_state reclaim_state = { 3190 .reclaimed_slab = 0, 3191 }; 3192 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 3193 3194 lockdep_set_current_reclaim_state(GFP_KERNEL); 3195 3196 if (!cpumask_empty(cpumask)) 3197 set_cpus_allowed_ptr(tsk, cpumask); 3198 current->reclaim_state = &reclaim_state; 3199 3200 /* 3201 * Tell the memory management that we're a "memory allocator", 3202 * and that if we need more memory we should get access to it 3203 * regardless (see "__alloc_pages()"). "kswapd" should 3204 * never get caught in the normal page freeing logic. 3205 * 3206 * (Kswapd normally doesn't need memory anyway, but sometimes 3207 * you need a small amount of memory in order to be able to 3208 * page out something else, and this flag essentially protects 3209 * us from recursively trying to free more memory as we're 3210 * trying to free the first piece of memory in the first place). 3211 */ 3212 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 3213 set_freezable(); 3214 3215 order = new_order = 0; 3216 balanced_order = 0; 3217 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1; 3218 balanced_classzone_idx = classzone_idx; 3219 for ( ; ; ) { 3220 bool ret; 3221 3222 /* 3223 * If the last balance_pgdat was unsuccessful it's unlikely a 3224 * new request of a similar or harder type will succeed soon 3225 * so consider going to sleep on the basis we reclaimed at 3226 */ 3227 if (balanced_classzone_idx >= new_classzone_idx && 3228 balanced_order == new_order) { 3229 new_order = pgdat->kswapd_max_order; 3230 new_classzone_idx = pgdat->classzone_idx; 3231 pgdat->kswapd_max_order = 0; 3232 pgdat->classzone_idx = pgdat->nr_zones - 1; 3233 } 3234 3235 if (order < new_order || classzone_idx > new_classzone_idx) { 3236 /* 3237 * Don't sleep if someone wants a larger 'order' 3238 * allocation or has tigher zone constraints 3239 */ 3240 order = new_order; 3241 classzone_idx = new_classzone_idx; 3242 } else { 3243 kswapd_try_to_sleep(pgdat, balanced_order, 3244 balanced_classzone_idx); 3245 order = pgdat->kswapd_max_order; 3246 classzone_idx = pgdat->classzone_idx; 3247 new_order = order; 3248 new_classzone_idx = classzone_idx; 3249 pgdat->kswapd_max_order = 0; 3250 pgdat->classzone_idx = pgdat->nr_zones - 1; 3251 } 3252 3253 ret = try_to_freeze(); 3254 if (kthread_should_stop()) 3255 break; 3256 3257 /* 3258 * We can speed up thawing tasks if we don't call balance_pgdat 3259 * after returning from the refrigerator 3260 */ 3261 if (!ret) { 3262 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order); 3263 balanced_classzone_idx = classzone_idx; 3264 balanced_order = balance_pgdat(pgdat, order, 3265 &balanced_classzone_idx); 3266 } 3267 } 3268 3269 current->reclaim_state = NULL; 3270 return 0; 3271 } 3272 3273 /* 3274 * A zone is low on free memory, so wake its kswapd task to service it. 3275 */ 3276 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx) 3277 { 3278 pg_data_t *pgdat; 3279 3280 if (!populated_zone(zone)) 3281 return; 3282 3283 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 3284 return; 3285 pgdat = zone->zone_pgdat; 3286 if (pgdat->kswapd_max_order < order) { 3287 pgdat->kswapd_max_order = order; 3288 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx); 3289 } 3290 if (!waitqueue_active(&pgdat->kswapd_wait)) 3291 return; 3292 if (zone_balanced(zone, order, 0, 0)) 3293 return; 3294 3295 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order); 3296 wake_up_interruptible(&pgdat->kswapd_wait); 3297 } 3298 3299 /* 3300 * The reclaimable count would be mostly accurate. 3301 * The less reclaimable pages may be 3302 * - mlocked pages, which will be moved to unevictable list when encountered 3303 * - mapped pages, which may require several travels to be reclaimed 3304 * - dirty pages, which is not "instantly" reclaimable 3305 */ 3306 unsigned long global_reclaimable_pages(void) 3307 { 3308 int nr; 3309 3310 nr = global_page_state(NR_ACTIVE_FILE) + 3311 global_page_state(NR_INACTIVE_FILE); 3312 3313 if (get_nr_swap_pages() > 0) 3314 nr += global_page_state(NR_ACTIVE_ANON) + 3315 global_page_state(NR_INACTIVE_ANON); 3316 3317 return nr; 3318 } 3319 3320 #ifdef CONFIG_HIBERNATION 3321 /* 3322 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 3323 * freed pages. 3324 * 3325 * Rather than trying to age LRUs the aim is to preserve the overall 3326 * LRU order by reclaiming preferentially 3327 * inactive > active > active referenced > active mapped 3328 */ 3329 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 3330 { 3331 struct reclaim_state reclaim_state; 3332 struct scan_control sc = { 3333 .gfp_mask = GFP_HIGHUSER_MOVABLE, 3334 .may_swap = 1, 3335 .may_unmap = 1, 3336 .may_writepage = 1, 3337 .nr_to_reclaim = nr_to_reclaim, 3338 .hibernation_mode = 1, 3339 .order = 0, 3340 .priority = DEF_PRIORITY, 3341 }; 3342 struct shrink_control shrink = { 3343 .gfp_mask = sc.gfp_mask, 3344 }; 3345 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 3346 struct task_struct *p = current; 3347 unsigned long nr_reclaimed; 3348 3349 p->flags |= PF_MEMALLOC; 3350 lockdep_set_current_reclaim_state(sc.gfp_mask); 3351 reclaim_state.reclaimed_slab = 0; 3352 p->reclaim_state = &reclaim_state; 3353 3354 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink); 3355 3356 p->reclaim_state = NULL; 3357 lockdep_clear_current_reclaim_state(); 3358 p->flags &= ~PF_MEMALLOC; 3359 3360 return nr_reclaimed; 3361 } 3362 #endif /* CONFIG_HIBERNATION */ 3363 3364 /* It's optimal to keep kswapds on the same CPUs as their memory, but 3365 not required for correctness. So if the last cpu in a node goes 3366 away, we get changed to run anywhere: as the first one comes back, 3367 restore their cpu bindings. */ 3368 static int cpu_callback(struct notifier_block *nfb, unsigned long action, 3369 void *hcpu) 3370 { 3371 int nid; 3372 3373 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) { 3374 for_each_node_state(nid, N_MEMORY) { 3375 pg_data_t *pgdat = NODE_DATA(nid); 3376 const struct cpumask *mask; 3377 3378 mask = cpumask_of_node(pgdat->node_id); 3379 3380 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 3381 /* One of our CPUs online: restore mask */ 3382 set_cpus_allowed_ptr(pgdat->kswapd, mask); 3383 } 3384 } 3385 return NOTIFY_OK; 3386 } 3387 3388 /* 3389 * This kswapd start function will be called by init and node-hot-add. 3390 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. 3391 */ 3392 int kswapd_run(int nid) 3393 { 3394 pg_data_t *pgdat = NODE_DATA(nid); 3395 int ret = 0; 3396 3397 if (pgdat->kswapd) 3398 return 0; 3399 3400 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 3401 if (IS_ERR(pgdat->kswapd)) { 3402 /* failure at boot is fatal */ 3403 BUG_ON(system_state == SYSTEM_BOOTING); 3404 pr_err("Failed to start kswapd on node %d\n", nid); 3405 ret = PTR_ERR(pgdat->kswapd); 3406 pgdat->kswapd = NULL; 3407 } 3408 return ret; 3409 } 3410 3411 /* 3412 * Called by memory hotplug when all memory in a node is offlined. Caller must 3413 * hold lock_memory_hotplug(). 3414 */ 3415 void kswapd_stop(int nid) 3416 { 3417 struct task_struct *kswapd = NODE_DATA(nid)->kswapd; 3418 3419 if (kswapd) { 3420 kthread_stop(kswapd); 3421 NODE_DATA(nid)->kswapd = NULL; 3422 } 3423 } 3424 3425 static int __init kswapd_init(void) 3426 { 3427 int nid; 3428 3429 swap_setup(); 3430 for_each_node_state(nid, N_MEMORY) 3431 kswapd_run(nid); 3432 hotcpu_notifier(cpu_callback, 0); 3433 return 0; 3434 } 3435 3436 module_init(kswapd_init) 3437 3438 #ifdef CONFIG_NUMA 3439 /* 3440 * Zone reclaim mode 3441 * 3442 * If non-zero call zone_reclaim when the number of free pages falls below 3443 * the watermarks. 3444 */ 3445 int zone_reclaim_mode __read_mostly; 3446 3447 #define RECLAIM_OFF 0 3448 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */ 3449 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */ 3450 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */ 3451 3452 /* 3453 * Priority for ZONE_RECLAIM. This determines the fraction of pages 3454 * of a node considered for each zone_reclaim. 4 scans 1/16th of 3455 * a zone. 3456 */ 3457 #define ZONE_RECLAIM_PRIORITY 4 3458 3459 /* 3460 * Percentage of pages in a zone that must be unmapped for zone_reclaim to 3461 * occur. 3462 */ 3463 int sysctl_min_unmapped_ratio = 1; 3464 3465 /* 3466 * If the number of slab pages in a zone grows beyond this percentage then 3467 * slab reclaim needs to occur. 3468 */ 3469 int sysctl_min_slab_ratio = 5; 3470 3471 static inline unsigned long zone_unmapped_file_pages(struct zone *zone) 3472 { 3473 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED); 3474 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) + 3475 zone_page_state(zone, NR_ACTIVE_FILE); 3476 3477 /* 3478 * It's possible for there to be more file mapped pages than 3479 * accounted for by the pages on the file LRU lists because 3480 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 3481 */ 3482 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 3483 } 3484 3485 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 3486 static long zone_pagecache_reclaimable(struct zone *zone) 3487 { 3488 long nr_pagecache_reclaimable; 3489 long delta = 0; 3490 3491 /* 3492 * If RECLAIM_SWAP is set, then all file pages are considered 3493 * potentially reclaimable. Otherwise, we have to worry about 3494 * pages like swapcache and zone_unmapped_file_pages() provides 3495 * a better estimate 3496 */ 3497 if (zone_reclaim_mode & RECLAIM_SWAP) 3498 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES); 3499 else 3500 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone); 3501 3502 /* If we can't clean pages, remove dirty pages from consideration */ 3503 if (!(zone_reclaim_mode & RECLAIM_WRITE)) 3504 delta += zone_page_state(zone, NR_FILE_DIRTY); 3505 3506 /* Watch for any possible underflows due to delta */ 3507 if (unlikely(delta > nr_pagecache_reclaimable)) 3508 delta = nr_pagecache_reclaimable; 3509 3510 return nr_pagecache_reclaimable - delta; 3511 } 3512 3513 /* 3514 * Try to free up some pages from this zone through reclaim. 3515 */ 3516 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) 3517 { 3518 /* Minimum pages needed in order to stay on node */ 3519 const unsigned long nr_pages = 1 << order; 3520 struct task_struct *p = current; 3521 struct reclaim_state reclaim_state; 3522 struct scan_control sc = { 3523 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE), 3524 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP), 3525 .may_swap = 1, 3526 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 3527 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)), 3528 .order = order, 3529 .priority = ZONE_RECLAIM_PRIORITY, 3530 }; 3531 struct shrink_control shrink = { 3532 .gfp_mask = sc.gfp_mask, 3533 }; 3534 unsigned long nr_slab_pages0, nr_slab_pages1; 3535 3536 cond_resched(); 3537 /* 3538 * We need to be able to allocate from the reserves for RECLAIM_SWAP 3539 * and we also need to be able to write out pages for RECLAIM_WRITE 3540 * and RECLAIM_SWAP. 3541 */ 3542 p->flags |= PF_MEMALLOC | PF_SWAPWRITE; 3543 lockdep_set_current_reclaim_state(gfp_mask); 3544 reclaim_state.reclaimed_slab = 0; 3545 p->reclaim_state = &reclaim_state; 3546 3547 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) { 3548 /* 3549 * Free memory by calling shrink zone with increasing 3550 * priorities until we have enough memory freed. 3551 */ 3552 do { 3553 shrink_zone(zone, &sc); 3554 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 3555 } 3556 3557 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE); 3558 if (nr_slab_pages0 > zone->min_slab_pages) { 3559 /* 3560 * shrink_slab() does not currently allow us to determine how 3561 * many pages were freed in this zone. So we take the current 3562 * number of slab pages and shake the slab until it is reduced 3563 * by the same nr_pages that we used for reclaiming unmapped 3564 * pages. 3565 */ 3566 nodes_clear(shrink.nodes_to_scan); 3567 node_set(zone_to_nid(zone), shrink.nodes_to_scan); 3568 for (;;) { 3569 unsigned long lru_pages = zone_reclaimable_pages(zone); 3570 3571 /* No reclaimable slab or very low memory pressure */ 3572 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages)) 3573 break; 3574 3575 /* Freed enough memory */ 3576 nr_slab_pages1 = zone_page_state(zone, 3577 NR_SLAB_RECLAIMABLE); 3578 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0) 3579 break; 3580 } 3581 3582 /* 3583 * Update nr_reclaimed by the number of slab pages we 3584 * reclaimed from this zone. 3585 */ 3586 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE); 3587 if (nr_slab_pages1 < nr_slab_pages0) 3588 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1; 3589 } 3590 3591 p->reclaim_state = NULL; 3592 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE); 3593 lockdep_clear_current_reclaim_state(); 3594 return sc.nr_reclaimed >= nr_pages; 3595 } 3596 3597 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) 3598 { 3599 int node_id; 3600 int ret; 3601 3602 /* 3603 * Zone reclaim reclaims unmapped file backed pages and 3604 * slab pages if we are over the defined limits. 3605 * 3606 * A small portion of unmapped file backed pages is needed for 3607 * file I/O otherwise pages read by file I/O will be immediately 3608 * thrown out if the zone is overallocated. So we do not reclaim 3609 * if less than a specified percentage of the zone is used by 3610 * unmapped file backed pages. 3611 */ 3612 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages && 3613 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages) 3614 return ZONE_RECLAIM_FULL; 3615 3616 if (!zone_reclaimable(zone)) 3617 return ZONE_RECLAIM_FULL; 3618 3619 /* 3620 * Do not scan if the allocation should not be delayed. 3621 */ 3622 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC)) 3623 return ZONE_RECLAIM_NOSCAN; 3624 3625 /* 3626 * Only run zone reclaim on the local zone or on zones that do not 3627 * have associated processors. This will favor the local processor 3628 * over remote processors and spread off node memory allocations 3629 * as wide as possible. 3630 */ 3631 node_id = zone_to_nid(zone); 3632 if (node_state(node_id, N_CPU) && node_id != numa_node_id()) 3633 return ZONE_RECLAIM_NOSCAN; 3634 3635 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED)) 3636 return ZONE_RECLAIM_NOSCAN; 3637 3638 ret = __zone_reclaim(zone, gfp_mask, order); 3639 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED); 3640 3641 if (!ret) 3642 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 3643 3644 return ret; 3645 } 3646 #endif 3647 3648 /* 3649 * page_evictable - test whether a page is evictable 3650 * @page: the page to test 3651 * 3652 * Test whether page is evictable--i.e., should be placed on active/inactive 3653 * lists vs unevictable list. 3654 * 3655 * Reasons page might not be evictable: 3656 * (1) page's mapping marked unevictable 3657 * (2) page is part of an mlocked VMA 3658 * 3659 */ 3660 int page_evictable(struct page *page) 3661 { 3662 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page); 3663 } 3664 3665 #ifdef CONFIG_SHMEM 3666 /** 3667 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list 3668 * @pages: array of pages to check 3669 * @nr_pages: number of pages to check 3670 * 3671 * Checks pages for evictability and moves them to the appropriate lru list. 3672 * 3673 * This function is only used for SysV IPC SHM_UNLOCK. 3674 */ 3675 void check_move_unevictable_pages(struct page **pages, int nr_pages) 3676 { 3677 struct lruvec *lruvec; 3678 struct zone *zone = NULL; 3679 int pgscanned = 0; 3680 int pgrescued = 0; 3681 int i; 3682 3683 for (i = 0; i < nr_pages; i++) { 3684 struct page *page = pages[i]; 3685 struct zone *pagezone; 3686 3687 pgscanned++; 3688 pagezone = page_zone(page); 3689 if (pagezone != zone) { 3690 if (zone) 3691 spin_unlock_irq(&zone->lru_lock); 3692 zone = pagezone; 3693 spin_lock_irq(&zone->lru_lock); 3694 } 3695 lruvec = mem_cgroup_page_lruvec(page, zone); 3696 3697 if (!PageLRU(page) || !PageUnevictable(page)) 3698 continue; 3699 3700 if (page_evictable(page)) { 3701 enum lru_list lru = page_lru_base_type(page); 3702 3703 VM_BUG_ON(PageActive(page)); 3704 ClearPageUnevictable(page); 3705 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE); 3706 add_page_to_lru_list(page, lruvec, lru); 3707 pgrescued++; 3708 } 3709 } 3710 3711 if (zone) { 3712 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 3713 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 3714 spin_unlock_irq(&zone->lru_lock); 3715 } 3716 } 3717 #endif /* CONFIG_SHMEM */ 3718 3719 static void warn_scan_unevictable_pages(void) 3720 { 3721 printk_once(KERN_WARNING 3722 "%s: The scan_unevictable_pages sysctl/node-interface has been " 3723 "disabled for lack of a legitimate use case. If you have " 3724 "one, please send an email to linux-mm@kvack.org.\n", 3725 current->comm); 3726 } 3727 3728 /* 3729 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of 3730 * all nodes' unevictable lists for evictable pages 3731 */ 3732 unsigned long scan_unevictable_pages; 3733 3734 int scan_unevictable_handler(struct ctl_table *table, int write, 3735 void __user *buffer, 3736 size_t *length, loff_t *ppos) 3737 { 3738 warn_scan_unevictable_pages(); 3739 proc_doulongvec_minmax(table, write, buffer, length, ppos); 3740 scan_unevictable_pages = 0; 3741 return 0; 3742 } 3743 3744 #ifdef CONFIG_NUMA 3745 /* 3746 * per node 'scan_unevictable_pages' attribute. On demand re-scan of 3747 * a specified node's per zone unevictable lists for evictable pages. 3748 */ 3749 3750 static ssize_t read_scan_unevictable_node(struct device *dev, 3751 struct device_attribute *attr, 3752 char *buf) 3753 { 3754 warn_scan_unevictable_pages(); 3755 return sprintf(buf, "0\n"); /* always zero; should fit... */ 3756 } 3757 3758 static ssize_t write_scan_unevictable_node(struct device *dev, 3759 struct device_attribute *attr, 3760 const char *buf, size_t count) 3761 { 3762 warn_scan_unevictable_pages(); 3763 return 1; 3764 } 3765 3766 3767 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR, 3768 read_scan_unevictable_node, 3769 write_scan_unevictable_node); 3770 3771 int scan_unevictable_register_node(struct node *node) 3772 { 3773 return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages); 3774 } 3775 3776 void scan_unevictable_unregister_node(struct node *node) 3777 { 3778 device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages); 3779 } 3780 #endif 3781