xref: /linux/mm/vmscan.c (revision e23feb16685a8d1c62aa5bba7ebcddf4ba57ffcb)
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13 
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmpressure.h>
23 #include <linux/vmstat.h>
24 #include <linux/file.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/buffer_head.h>	/* for try_to_release_page(),
28 					buffer_heads_over_limit */
29 #include <linux/mm_inline.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44 #include <linux/oom.h>
45 #include <linux/prefetch.h>
46 
47 #include <asm/tlbflush.h>
48 #include <asm/div64.h>
49 
50 #include <linux/swapops.h>
51 #include <linux/balloon_compaction.h>
52 
53 #include "internal.h"
54 
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/vmscan.h>
57 
58 struct scan_control {
59 	/* Incremented by the number of inactive pages that were scanned */
60 	unsigned long nr_scanned;
61 
62 	/* Number of pages freed so far during a call to shrink_zones() */
63 	unsigned long nr_reclaimed;
64 
65 	/* How many pages shrink_list() should reclaim */
66 	unsigned long nr_to_reclaim;
67 
68 	unsigned long hibernation_mode;
69 
70 	/* This context's GFP mask */
71 	gfp_t gfp_mask;
72 
73 	int may_writepage;
74 
75 	/* Can mapped pages be reclaimed? */
76 	int may_unmap;
77 
78 	/* Can pages be swapped as part of reclaim? */
79 	int may_swap;
80 
81 	int order;
82 
83 	/* Scan (total_size >> priority) pages at once */
84 	int priority;
85 
86 	/*
87 	 * The memory cgroup that hit its limit and as a result is the
88 	 * primary target of this reclaim invocation.
89 	 */
90 	struct mem_cgroup *target_mem_cgroup;
91 
92 	/*
93 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
94 	 * are scanned.
95 	 */
96 	nodemask_t	*nodemask;
97 };
98 
99 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
100 
101 #ifdef ARCH_HAS_PREFETCH
102 #define prefetch_prev_lru_page(_page, _base, _field)			\
103 	do {								\
104 		if ((_page)->lru.prev != _base) {			\
105 			struct page *prev;				\
106 									\
107 			prev = lru_to_page(&(_page->lru));		\
108 			prefetch(&prev->_field);			\
109 		}							\
110 	} while (0)
111 #else
112 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
113 #endif
114 
115 #ifdef ARCH_HAS_PREFETCHW
116 #define prefetchw_prev_lru_page(_page, _base, _field)			\
117 	do {								\
118 		if ((_page)->lru.prev != _base) {			\
119 			struct page *prev;				\
120 									\
121 			prev = lru_to_page(&(_page->lru));		\
122 			prefetchw(&prev->_field);			\
123 		}							\
124 	} while (0)
125 #else
126 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
127 #endif
128 
129 /*
130  * From 0 .. 100.  Higher means more swappy.
131  */
132 int vm_swappiness = 60;
133 unsigned long vm_total_pages;	/* The total number of pages which the VM controls */
134 
135 static LIST_HEAD(shrinker_list);
136 static DECLARE_RWSEM(shrinker_rwsem);
137 
138 #ifdef CONFIG_MEMCG
139 static bool global_reclaim(struct scan_control *sc)
140 {
141 	return !sc->target_mem_cgroup;
142 }
143 #else
144 static bool global_reclaim(struct scan_control *sc)
145 {
146 	return true;
147 }
148 #endif
149 
150 unsigned long zone_reclaimable_pages(struct zone *zone)
151 {
152 	int nr;
153 
154 	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
155 	     zone_page_state(zone, NR_INACTIVE_FILE);
156 
157 	if (get_nr_swap_pages() > 0)
158 		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
159 		      zone_page_state(zone, NR_INACTIVE_ANON);
160 
161 	return nr;
162 }
163 
164 bool zone_reclaimable(struct zone *zone)
165 {
166 	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
167 }
168 
169 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
170 {
171 	if (!mem_cgroup_disabled())
172 		return mem_cgroup_get_lru_size(lruvec, lru);
173 
174 	return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
175 }
176 
177 /*
178  * Add a shrinker callback to be called from the vm.
179  */
180 int register_shrinker(struct shrinker *shrinker)
181 {
182 	size_t size = sizeof(*shrinker->nr_deferred);
183 
184 	/*
185 	 * If we only have one possible node in the system anyway, save
186 	 * ourselves the trouble and disable NUMA aware behavior. This way we
187 	 * will save memory and some small loop time later.
188 	 */
189 	if (nr_node_ids == 1)
190 		shrinker->flags &= ~SHRINKER_NUMA_AWARE;
191 
192 	if (shrinker->flags & SHRINKER_NUMA_AWARE)
193 		size *= nr_node_ids;
194 
195 	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
196 	if (!shrinker->nr_deferred)
197 		return -ENOMEM;
198 
199 	down_write(&shrinker_rwsem);
200 	list_add_tail(&shrinker->list, &shrinker_list);
201 	up_write(&shrinker_rwsem);
202 	return 0;
203 }
204 EXPORT_SYMBOL(register_shrinker);
205 
206 /*
207  * Remove one
208  */
209 void unregister_shrinker(struct shrinker *shrinker)
210 {
211 	down_write(&shrinker_rwsem);
212 	list_del(&shrinker->list);
213 	up_write(&shrinker_rwsem);
214 }
215 EXPORT_SYMBOL(unregister_shrinker);
216 
217 #define SHRINK_BATCH 128
218 
219 static unsigned long
220 shrink_slab_node(struct shrink_control *shrinkctl, struct shrinker *shrinker,
221 		 unsigned long nr_pages_scanned, unsigned long lru_pages)
222 {
223 	unsigned long freed = 0;
224 	unsigned long long delta;
225 	long total_scan;
226 	long max_pass;
227 	long nr;
228 	long new_nr;
229 	int nid = shrinkctl->nid;
230 	long batch_size = shrinker->batch ? shrinker->batch
231 					  : SHRINK_BATCH;
232 
233 	max_pass = shrinker->count_objects(shrinker, shrinkctl);
234 	if (max_pass == 0)
235 		return 0;
236 
237 	/*
238 	 * copy the current shrinker scan count into a local variable
239 	 * and zero it so that other concurrent shrinker invocations
240 	 * don't also do this scanning work.
241 	 */
242 	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
243 
244 	total_scan = nr;
245 	delta = (4 * nr_pages_scanned) / shrinker->seeks;
246 	delta *= max_pass;
247 	do_div(delta, lru_pages + 1);
248 	total_scan += delta;
249 	if (total_scan < 0) {
250 		printk(KERN_ERR
251 		"shrink_slab: %pF negative objects to delete nr=%ld\n",
252 		       shrinker->scan_objects, total_scan);
253 		total_scan = max_pass;
254 	}
255 
256 	/*
257 	 * We need to avoid excessive windup on filesystem shrinkers
258 	 * due to large numbers of GFP_NOFS allocations causing the
259 	 * shrinkers to return -1 all the time. This results in a large
260 	 * nr being built up so when a shrink that can do some work
261 	 * comes along it empties the entire cache due to nr >>>
262 	 * max_pass.  This is bad for sustaining a working set in
263 	 * memory.
264 	 *
265 	 * Hence only allow the shrinker to scan the entire cache when
266 	 * a large delta change is calculated directly.
267 	 */
268 	if (delta < max_pass / 4)
269 		total_scan = min(total_scan, max_pass / 2);
270 
271 	/*
272 	 * Avoid risking looping forever due to too large nr value:
273 	 * never try to free more than twice the estimate number of
274 	 * freeable entries.
275 	 */
276 	if (total_scan > max_pass * 2)
277 		total_scan = max_pass * 2;
278 
279 	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
280 				nr_pages_scanned, lru_pages,
281 				max_pass, delta, total_scan);
282 
283 	while (total_scan >= batch_size) {
284 		unsigned long ret;
285 
286 		shrinkctl->nr_to_scan = batch_size;
287 		ret = shrinker->scan_objects(shrinker, shrinkctl);
288 		if (ret == SHRINK_STOP)
289 			break;
290 		freed += ret;
291 
292 		count_vm_events(SLABS_SCANNED, batch_size);
293 		total_scan -= batch_size;
294 
295 		cond_resched();
296 	}
297 
298 	/*
299 	 * move the unused scan count back into the shrinker in a
300 	 * manner that handles concurrent updates. If we exhausted the
301 	 * scan, there is no need to do an update.
302 	 */
303 	if (total_scan > 0)
304 		new_nr = atomic_long_add_return(total_scan,
305 						&shrinker->nr_deferred[nid]);
306 	else
307 		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
308 
309 	trace_mm_shrink_slab_end(shrinker, freed, nr, new_nr);
310 	return freed;
311 }
312 
313 /*
314  * Call the shrink functions to age shrinkable caches
315  *
316  * Here we assume it costs one seek to replace a lru page and that it also
317  * takes a seek to recreate a cache object.  With this in mind we age equal
318  * percentages of the lru and ageable caches.  This should balance the seeks
319  * generated by these structures.
320  *
321  * If the vm encountered mapped pages on the LRU it increase the pressure on
322  * slab to avoid swapping.
323  *
324  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
325  *
326  * `lru_pages' represents the number of on-LRU pages in all the zones which
327  * are eligible for the caller's allocation attempt.  It is used for balancing
328  * slab reclaim versus page reclaim.
329  *
330  * Returns the number of slab objects which we shrunk.
331  */
332 unsigned long shrink_slab(struct shrink_control *shrinkctl,
333 			  unsigned long nr_pages_scanned,
334 			  unsigned long lru_pages)
335 {
336 	struct shrinker *shrinker;
337 	unsigned long freed = 0;
338 
339 	if (nr_pages_scanned == 0)
340 		nr_pages_scanned = SWAP_CLUSTER_MAX;
341 
342 	if (!down_read_trylock(&shrinker_rwsem)) {
343 		/*
344 		 * If we would return 0, our callers would understand that we
345 		 * have nothing else to shrink and give up trying. By returning
346 		 * 1 we keep it going and assume we'll be able to shrink next
347 		 * time.
348 		 */
349 		freed = 1;
350 		goto out;
351 	}
352 
353 	list_for_each_entry(shrinker, &shrinker_list, list) {
354 		for_each_node_mask(shrinkctl->nid, shrinkctl->nodes_to_scan) {
355 			if (!node_online(shrinkctl->nid))
356 				continue;
357 
358 			if (!(shrinker->flags & SHRINKER_NUMA_AWARE) &&
359 			    (shrinkctl->nid != 0))
360 				break;
361 
362 			freed += shrink_slab_node(shrinkctl, shrinker,
363 				 nr_pages_scanned, lru_pages);
364 
365 		}
366 	}
367 	up_read(&shrinker_rwsem);
368 out:
369 	cond_resched();
370 	return freed;
371 }
372 
373 static inline int is_page_cache_freeable(struct page *page)
374 {
375 	/*
376 	 * A freeable page cache page is referenced only by the caller
377 	 * that isolated the page, the page cache radix tree and
378 	 * optional buffer heads at page->private.
379 	 */
380 	return page_count(page) - page_has_private(page) == 2;
381 }
382 
383 static int may_write_to_queue(struct backing_dev_info *bdi,
384 			      struct scan_control *sc)
385 {
386 	if (current->flags & PF_SWAPWRITE)
387 		return 1;
388 	if (!bdi_write_congested(bdi))
389 		return 1;
390 	if (bdi == current->backing_dev_info)
391 		return 1;
392 	return 0;
393 }
394 
395 /*
396  * We detected a synchronous write error writing a page out.  Probably
397  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
398  * fsync(), msync() or close().
399  *
400  * The tricky part is that after writepage we cannot touch the mapping: nothing
401  * prevents it from being freed up.  But we have a ref on the page and once
402  * that page is locked, the mapping is pinned.
403  *
404  * We're allowed to run sleeping lock_page() here because we know the caller has
405  * __GFP_FS.
406  */
407 static void handle_write_error(struct address_space *mapping,
408 				struct page *page, int error)
409 {
410 	lock_page(page);
411 	if (page_mapping(page) == mapping)
412 		mapping_set_error(mapping, error);
413 	unlock_page(page);
414 }
415 
416 /* possible outcome of pageout() */
417 typedef enum {
418 	/* failed to write page out, page is locked */
419 	PAGE_KEEP,
420 	/* move page to the active list, page is locked */
421 	PAGE_ACTIVATE,
422 	/* page has been sent to the disk successfully, page is unlocked */
423 	PAGE_SUCCESS,
424 	/* page is clean and locked */
425 	PAGE_CLEAN,
426 } pageout_t;
427 
428 /*
429  * pageout is called by shrink_page_list() for each dirty page.
430  * Calls ->writepage().
431  */
432 static pageout_t pageout(struct page *page, struct address_space *mapping,
433 			 struct scan_control *sc)
434 {
435 	/*
436 	 * If the page is dirty, only perform writeback if that write
437 	 * will be non-blocking.  To prevent this allocation from being
438 	 * stalled by pagecache activity.  But note that there may be
439 	 * stalls if we need to run get_block().  We could test
440 	 * PagePrivate for that.
441 	 *
442 	 * If this process is currently in __generic_file_aio_write() against
443 	 * this page's queue, we can perform writeback even if that
444 	 * will block.
445 	 *
446 	 * If the page is swapcache, write it back even if that would
447 	 * block, for some throttling. This happens by accident, because
448 	 * swap_backing_dev_info is bust: it doesn't reflect the
449 	 * congestion state of the swapdevs.  Easy to fix, if needed.
450 	 */
451 	if (!is_page_cache_freeable(page))
452 		return PAGE_KEEP;
453 	if (!mapping) {
454 		/*
455 		 * Some data journaling orphaned pages can have
456 		 * page->mapping == NULL while being dirty with clean buffers.
457 		 */
458 		if (page_has_private(page)) {
459 			if (try_to_free_buffers(page)) {
460 				ClearPageDirty(page);
461 				printk("%s: orphaned page\n", __func__);
462 				return PAGE_CLEAN;
463 			}
464 		}
465 		return PAGE_KEEP;
466 	}
467 	if (mapping->a_ops->writepage == NULL)
468 		return PAGE_ACTIVATE;
469 	if (!may_write_to_queue(mapping->backing_dev_info, sc))
470 		return PAGE_KEEP;
471 
472 	if (clear_page_dirty_for_io(page)) {
473 		int res;
474 		struct writeback_control wbc = {
475 			.sync_mode = WB_SYNC_NONE,
476 			.nr_to_write = SWAP_CLUSTER_MAX,
477 			.range_start = 0,
478 			.range_end = LLONG_MAX,
479 			.for_reclaim = 1,
480 		};
481 
482 		SetPageReclaim(page);
483 		res = mapping->a_ops->writepage(page, &wbc);
484 		if (res < 0)
485 			handle_write_error(mapping, page, res);
486 		if (res == AOP_WRITEPAGE_ACTIVATE) {
487 			ClearPageReclaim(page);
488 			return PAGE_ACTIVATE;
489 		}
490 
491 		if (!PageWriteback(page)) {
492 			/* synchronous write or broken a_ops? */
493 			ClearPageReclaim(page);
494 		}
495 		trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
496 		inc_zone_page_state(page, NR_VMSCAN_WRITE);
497 		return PAGE_SUCCESS;
498 	}
499 
500 	return PAGE_CLEAN;
501 }
502 
503 /*
504  * Same as remove_mapping, but if the page is removed from the mapping, it
505  * gets returned with a refcount of 0.
506  */
507 static int __remove_mapping(struct address_space *mapping, struct page *page)
508 {
509 	BUG_ON(!PageLocked(page));
510 	BUG_ON(mapping != page_mapping(page));
511 
512 	spin_lock_irq(&mapping->tree_lock);
513 	/*
514 	 * The non racy check for a busy page.
515 	 *
516 	 * Must be careful with the order of the tests. When someone has
517 	 * a ref to the page, it may be possible that they dirty it then
518 	 * drop the reference. So if PageDirty is tested before page_count
519 	 * here, then the following race may occur:
520 	 *
521 	 * get_user_pages(&page);
522 	 * [user mapping goes away]
523 	 * write_to(page);
524 	 *				!PageDirty(page)    [good]
525 	 * SetPageDirty(page);
526 	 * put_page(page);
527 	 *				!page_count(page)   [good, discard it]
528 	 *
529 	 * [oops, our write_to data is lost]
530 	 *
531 	 * Reversing the order of the tests ensures such a situation cannot
532 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
533 	 * load is not satisfied before that of page->_count.
534 	 *
535 	 * Note that if SetPageDirty is always performed via set_page_dirty,
536 	 * and thus under tree_lock, then this ordering is not required.
537 	 */
538 	if (!page_freeze_refs(page, 2))
539 		goto cannot_free;
540 	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
541 	if (unlikely(PageDirty(page))) {
542 		page_unfreeze_refs(page, 2);
543 		goto cannot_free;
544 	}
545 
546 	if (PageSwapCache(page)) {
547 		swp_entry_t swap = { .val = page_private(page) };
548 		__delete_from_swap_cache(page);
549 		spin_unlock_irq(&mapping->tree_lock);
550 		swapcache_free(swap, page);
551 	} else {
552 		void (*freepage)(struct page *);
553 
554 		freepage = mapping->a_ops->freepage;
555 
556 		__delete_from_page_cache(page);
557 		spin_unlock_irq(&mapping->tree_lock);
558 		mem_cgroup_uncharge_cache_page(page);
559 
560 		if (freepage != NULL)
561 			freepage(page);
562 	}
563 
564 	return 1;
565 
566 cannot_free:
567 	spin_unlock_irq(&mapping->tree_lock);
568 	return 0;
569 }
570 
571 /*
572  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
573  * someone else has a ref on the page, abort and return 0.  If it was
574  * successfully detached, return 1.  Assumes the caller has a single ref on
575  * this page.
576  */
577 int remove_mapping(struct address_space *mapping, struct page *page)
578 {
579 	if (__remove_mapping(mapping, page)) {
580 		/*
581 		 * Unfreezing the refcount with 1 rather than 2 effectively
582 		 * drops the pagecache ref for us without requiring another
583 		 * atomic operation.
584 		 */
585 		page_unfreeze_refs(page, 1);
586 		return 1;
587 	}
588 	return 0;
589 }
590 
591 /**
592  * putback_lru_page - put previously isolated page onto appropriate LRU list
593  * @page: page to be put back to appropriate lru list
594  *
595  * Add previously isolated @page to appropriate LRU list.
596  * Page may still be unevictable for other reasons.
597  *
598  * lru_lock must not be held, interrupts must be enabled.
599  */
600 void putback_lru_page(struct page *page)
601 {
602 	bool is_unevictable;
603 	int was_unevictable = PageUnevictable(page);
604 
605 	VM_BUG_ON(PageLRU(page));
606 
607 redo:
608 	ClearPageUnevictable(page);
609 
610 	if (page_evictable(page)) {
611 		/*
612 		 * For evictable pages, we can use the cache.
613 		 * In event of a race, worst case is we end up with an
614 		 * unevictable page on [in]active list.
615 		 * We know how to handle that.
616 		 */
617 		is_unevictable = false;
618 		lru_cache_add(page);
619 	} else {
620 		/*
621 		 * Put unevictable pages directly on zone's unevictable
622 		 * list.
623 		 */
624 		is_unevictable = true;
625 		add_page_to_unevictable_list(page);
626 		/*
627 		 * When racing with an mlock or AS_UNEVICTABLE clearing
628 		 * (page is unlocked) make sure that if the other thread
629 		 * does not observe our setting of PG_lru and fails
630 		 * isolation/check_move_unevictable_pages,
631 		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
632 		 * the page back to the evictable list.
633 		 *
634 		 * The other side is TestClearPageMlocked() or shmem_lock().
635 		 */
636 		smp_mb();
637 	}
638 
639 	/*
640 	 * page's status can change while we move it among lru. If an evictable
641 	 * page is on unevictable list, it never be freed. To avoid that,
642 	 * check after we added it to the list, again.
643 	 */
644 	if (is_unevictable && page_evictable(page)) {
645 		if (!isolate_lru_page(page)) {
646 			put_page(page);
647 			goto redo;
648 		}
649 		/* This means someone else dropped this page from LRU
650 		 * So, it will be freed or putback to LRU again. There is
651 		 * nothing to do here.
652 		 */
653 	}
654 
655 	if (was_unevictable && !is_unevictable)
656 		count_vm_event(UNEVICTABLE_PGRESCUED);
657 	else if (!was_unevictable && is_unevictable)
658 		count_vm_event(UNEVICTABLE_PGCULLED);
659 
660 	put_page(page);		/* drop ref from isolate */
661 }
662 
663 enum page_references {
664 	PAGEREF_RECLAIM,
665 	PAGEREF_RECLAIM_CLEAN,
666 	PAGEREF_KEEP,
667 	PAGEREF_ACTIVATE,
668 };
669 
670 static enum page_references page_check_references(struct page *page,
671 						  struct scan_control *sc)
672 {
673 	int referenced_ptes, referenced_page;
674 	unsigned long vm_flags;
675 
676 	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
677 					  &vm_flags);
678 	referenced_page = TestClearPageReferenced(page);
679 
680 	/*
681 	 * Mlock lost the isolation race with us.  Let try_to_unmap()
682 	 * move the page to the unevictable list.
683 	 */
684 	if (vm_flags & VM_LOCKED)
685 		return PAGEREF_RECLAIM;
686 
687 	if (referenced_ptes) {
688 		if (PageSwapBacked(page))
689 			return PAGEREF_ACTIVATE;
690 		/*
691 		 * All mapped pages start out with page table
692 		 * references from the instantiating fault, so we need
693 		 * to look twice if a mapped file page is used more
694 		 * than once.
695 		 *
696 		 * Mark it and spare it for another trip around the
697 		 * inactive list.  Another page table reference will
698 		 * lead to its activation.
699 		 *
700 		 * Note: the mark is set for activated pages as well
701 		 * so that recently deactivated but used pages are
702 		 * quickly recovered.
703 		 */
704 		SetPageReferenced(page);
705 
706 		if (referenced_page || referenced_ptes > 1)
707 			return PAGEREF_ACTIVATE;
708 
709 		/*
710 		 * Activate file-backed executable pages after first usage.
711 		 */
712 		if (vm_flags & VM_EXEC)
713 			return PAGEREF_ACTIVATE;
714 
715 		return PAGEREF_KEEP;
716 	}
717 
718 	/* Reclaim if clean, defer dirty pages to writeback */
719 	if (referenced_page && !PageSwapBacked(page))
720 		return PAGEREF_RECLAIM_CLEAN;
721 
722 	return PAGEREF_RECLAIM;
723 }
724 
725 /* Check if a page is dirty or under writeback */
726 static void page_check_dirty_writeback(struct page *page,
727 				       bool *dirty, bool *writeback)
728 {
729 	struct address_space *mapping;
730 
731 	/*
732 	 * Anonymous pages are not handled by flushers and must be written
733 	 * from reclaim context. Do not stall reclaim based on them
734 	 */
735 	if (!page_is_file_cache(page)) {
736 		*dirty = false;
737 		*writeback = false;
738 		return;
739 	}
740 
741 	/* By default assume that the page flags are accurate */
742 	*dirty = PageDirty(page);
743 	*writeback = PageWriteback(page);
744 
745 	/* Verify dirty/writeback state if the filesystem supports it */
746 	if (!page_has_private(page))
747 		return;
748 
749 	mapping = page_mapping(page);
750 	if (mapping && mapping->a_ops->is_dirty_writeback)
751 		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
752 }
753 
754 /*
755  * shrink_page_list() returns the number of reclaimed pages
756  */
757 static unsigned long shrink_page_list(struct list_head *page_list,
758 				      struct zone *zone,
759 				      struct scan_control *sc,
760 				      enum ttu_flags ttu_flags,
761 				      unsigned long *ret_nr_dirty,
762 				      unsigned long *ret_nr_unqueued_dirty,
763 				      unsigned long *ret_nr_congested,
764 				      unsigned long *ret_nr_writeback,
765 				      unsigned long *ret_nr_immediate,
766 				      bool force_reclaim)
767 {
768 	LIST_HEAD(ret_pages);
769 	LIST_HEAD(free_pages);
770 	int pgactivate = 0;
771 	unsigned long nr_unqueued_dirty = 0;
772 	unsigned long nr_dirty = 0;
773 	unsigned long nr_congested = 0;
774 	unsigned long nr_reclaimed = 0;
775 	unsigned long nr_writeback = 0;
776 	unsigned long nr_immediate = 0;
777 
778 	cond_resched();
779 
780 	mem_cgroup_uncharge_start();
781 	while (!list_empty(page_list)) {
782 		struct address_space *mapping;
783 		struct page *page;
784 		int may_enter_fs;
785 		enum page_references references = PAGEREF_RECLAIM_CLEAN;
786 		bool dirty, writeback;
787 
788 		cond_resched();
789 
790 		page = lru_to_page(page_list);
791 		list_del(&page->lru);
792 
793 		if (!trylock_page(page))
794 			goto keep;
795 
796 		VM_BUG_ON(PageActive(page));
797 		VM_BUG_ON(page_zone(page) != zone);
798 
799 		sc->nr_scanned++;
800 
801 		if (unlikely(!page_evictable(page)))
802 			goto cull_mlocked;
803 
804 		if (!sc->may_unmap && page_mapped(page))
805 			goto keep_locked;
806 
807 		/* Double the slab pressure for mapped and swapcache pages */
808 		if (page_mapped(page) || PageSwapCache(page))
809 			sc->nr_scanned++;
810 
811 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
812 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
813 
814 		/*
815 		 * The number of dirty pages determines if a zone is marked
816 		 * reclaim_congested which affects wait_iff_congested. kswapd
817 		 * will stall and start writing pages if the tail of the LRU
818 		 * is all dirty unqueued pages.
819 		 */
820 		page_check_dirty_writeback(page, &dirty, &writeback);
821 		if (dirty || writeback)
822 			nr_dirty++;
823 
824 		if (dirty && !writeback)
825 			nr_unqueued_dirty++;
826 
827 		/*
828 		 * Treat this page as congested if the underlying BDI is or if
829 		 * pages are cycling through the LRU so quickly that the
830 		 * pages marked for immediate reclaim are making it to the
831 		 * end of the LRU a second time.
832 		 */
833 		mapping = page_mapping(page);
834 		if ((mapping && bdi_write_congested(mapping->backing_dev_info)) ||
835 		    (writeback && PageReclaim(page)))
836 			nr_congested++;
837 
838 		/*
839 		 * If a page at the tail of the LRU is under writeback, there
840 		 * are three cases to consider.
841 		 *
842 		 * 1) If reclaim is encountering an excessive number of pages
843 		 *    under writeback and this page is both under writeback and
844 		 *    PageReclaim then it indicates that pages are being queued
845 		 *    for IO but are being recycled through the LRU before the
846 		 *    IO can complete. Waiting on the page itself risks an
847 		 *    indefinite stall if it is impossible to writeback the
848 		 *    page due to IO error or disconnected storage so instead
849 		 *    note that the LRU is being scanned too quickly and the
850 		 *    caller can stall after page list has been processed.
851 		 *
852 		 * 2) Global reclaim encounters a page, memcg encounters a
853 		 *    page that is not marked for immediate reclaim or
854 		 *    the caller does not have __GFP_IO. In this case mark
855 		 *    the page for immediate reclaim and continue scanning.
856 		 *
857 		 *    __GFP_IO is checked  because a loop driver thread might
858 		 *    enter reclaim, and deadlock if it waits on a page for
859 		 *    which it is needed to do the write (loop masks off
860 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
861 		 *    would probably show more reasons.
862 		 *
863 		 *    Don't require __GFP_FS, since we're not going into the
864 		 *    FS, just waiting on its writeback completion. Worryingly,
865 		 *    ext4 gfs2 and xfs allocate pages with
866 		 *    grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing
867 		 *    may_enter_fs here is liable to OOM on them.
868 		 *
869 		 * 3) memcg encounters a page that is not already marked
870 		 *    PageReclaim. memcg does not have any dirty pages
871 		 *    throttling so we could easily OOM just because too many
872 		 *    pages are in writeback and there is nothing else to
873 		 *    reclaim. Wait for the writeback to complete.
874 		 */
875 		if (PageWriteback(page)) {
876 			/* Case 1 above */
877 			if (current_is_kswapd() &&
878 			    PageReclaim(page) &&
879 			    zone_is_reclaim_writeback(zone)) {
880 				nr_immediate++;
881 				goto keep_locked;
882 
883 			/* Case 2 above */
884 			} else if (global_reclaim(sc) ||
885 			    !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
886 				/*
887 				 * This is slightly racy - end_page_writeback()
888 				 * might have just cleared PageReclaim, then
889 				 * setting PageReclaim here end up interpreted
890 				 * as PageReadahead - but that does not matter
891 				 * enough to care.  What we do want is for this
892 				 * page to have PageReclaim set next time memcg
893 				 * reclaim reaches the tests above, so it will
894 				 * then wait_on_page_writeback() to avoid OOM;
895 				 * and it's also appropriate in global reclaim.
896 				 */
897 				SetPageReclaim(page);
898 				nr_writeback++;
899 
900 				goto keep_locked;
901 
902 			/* Case 3 above */
903 			} else {
904 				wait_on_page_writeback(page);
905 			}
906 		}
907 
908 		if (!force_reclaim)
909 			references = page_check_references(page, sc);
910 
911 		switch (references) {
912 		case PAGEREF_ACTIVATE:
913 			goto activate_locked;
914 		case PAGEREF_KEEP:
915 			goto keep_locked;
916 		case PAGEREF_RECLAIM:
917 		case PAGEREF_RECLAIM_CLEAN:
918 			; /* try to reclaim the page below */
919 		}
920 
921 		/*
922 		 * Anonymous process memory has backing store?
923 		 * Try to allocate it some swap space here.
924 		 */
925 		if (PageAnon(page) && !PageSwapCache(page)) {
926 			if (!(sc->gfp_mask & __GFP_IO))
927 				goto keep_locked;
928 			if (!add_to_swap(page, page_list))
929 				goto activate_locked;
930 			may_enter_fs = 1;
931 
932 			/* Adding to swap updated mapping */
933 			mapping = page_mapping(page);
934 		}
935 
936 		/*
937 		 * The page is mapped into the page tables of one or more
938 		 * processes. Try to unmap it here.
939 		 */
940 		if (page_mapped(page) && mapping) {
941 			switch (try_to_unmap(page, ttu_flags)) {
942 			case SWAP_FAIL:
943 				goto activate_locked;
944 			case SWAP_AGAIN:
945 				goto keep_locked;
946 			case SWAP_MLOCK:
947 				goto cull_mlocked;
948 			case SWAP_SUCCESS:
949 				; /* try to free the page below */
950 			}
951 		}
952 
953 		if (PageDirty(page)) {
954 			/*
955 			 * Only kswapd can writeback filesystem pages to
956 			 * avoid risk of stack overflow but only writeback
957 			 * if many dirty pages have been encountered.
958 			 */
959 			if (page_is_file_cache(page) &&
960 					(!current_is_kswapd() ||
961 					 !zone_is_reclaim_dirty(zone))) {
962 				/*
963 				 * Immediately reclaim when written back.
964 				 * Similar in principal to deactivate_page()
965 				 * except we already have the page isolated
966 				 * and know it's dirty
967 				 */
968 				inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
969 				SetPageReclaim(page);
970 
971 				goto keep_locked;
972 			}
973 
974 			if (references == PAGEREF_RECLAIM_CLEAN)
975 				goto keep_locked;
976 			if (!may_enter_fs)
977 				goto keep_locked;
978 			if (!sc->may_writepage)
979 				goto keep_locked;
980 
981 			/* Page is dirty, try to write it out here */
982 			switch (pageout(page, mapping, sc)) {
983 			case PAGE_KEEP:
984 				goto keep_locked;
985 			case PAGE_ACTIVATE:
986 				goto activate_locked;
987 			case PAGE_SUCCESS:
988 				if (PageWriteback(page))
989 					goto keep;
990 				if (PageDirty(page))
991 					goto keep;
992 
993 				/*
994 				 * A synchronous write - probably a ramdisk.  Go
995 				 * ahead and try to reclaim the page.
996 				 */
997 				if (!trylock_page(page))
998 					goto keep;
999 				if (PageDirty(page) || PageWriteback(page))
1000 					goto keep_locked;
1001 				mapping = page_mapping(page);
1002 			case PAGE_CLEAN:
1003 				; /* try to free the page below */
1004 			}
1005 		}
1006 
1007 		/*
1008 		 * If the page has buffers, try to free the buffer mappings
1009 		 * associated with this page. If we succeed we try to free
1010 		 * the page as well.
1011 		 *
1012 		 * We do this even if the page is PageDirty().
1013 		 * try_to_release_page() does not perform I/O, but it is
1014 		 * possible for a page to have PageDirty set, but it is actually
1015 		 * clean (all its buffers are clean).  This happens if the
1016 		 * buffers were written out directly, with submit_bh(). ext3
1017 		 * will do this, as well as the blockdev mapping.
1018 		 * try_to_release_page() will discover that cleanness and will
1019 		 * drop the buffers and mark the page clean - it can be freed.
1020 		 *
1021 		 * Rarely, pages can have buffers and no ->mapping.  These are
1022 		 * the pages which were not successfully invalidated in
1023 		 * truncate_complete_page().  We try to drop those buffers here
1024 		 * and if that worked, and the page is no longer mapped into
1025 		 * process address space (page_count == 1) it can be freed.
1026 		 * Otherwise, leave the page on the LRU so it is swappable.
1027 		 */
1028 		if (page_has_private(page)) {
1029 			if (!try_to_release_page(page, sc->gfp_mask))
1030 				goto activate_locked;
1031 			if (!mapping && page_count(page) == 1) {
1032 				unlock_page(page);
1033 				if (put_page_testzero(page))
1034 					goto free_it;
1035 				else {
1036 					/*
1037 					 * rare race with speculative reference.
1038 					 * the speculative reference will free
1039 					 * this page shortly, so we may
1040 					 * increment nr_reclaimed here (and
1041 					 * leave it off the LRU).
1042 					 */
1043 					nr_reclaimed++;
1044 					continue;
1045 				}
1046 			}
1047 		}
1048 
1049 		if (!mapping || !__remove_mapping(mapping, page))
1050 			goto keep_locked;
1051 
1052 		/*
1053 		 * At this point, we have no other references and there is
1054 		 * no way to pick any more up (removed from LRU, removed
1055 		 * from pagecache). Can use non-atomic bitops now (and
1056 		 * we obviously don't have to worry about waking up a process
1057 		 * waiting on the page lock, because there are no references.
1058 		 */
1059 		__clear_page_locked(page);
1060 free_it:
1061 		nr_reclaimed++;
1062 
1063 		/*
1064 		 * Is there need to periodically free_page_list? It would
1065 		 * appear not as the counts should be low
1066 		 */
1067 		list_add(&page->lru, &free_pages);
1068 		continue;
1069 
1070 cull_mlocked:
1071 		if (PageSwapCache(page))
1072 			try_to_free_swap(page);
1073 		unlock_page(page);
1074 		putback_lru_page(page);
1075 		continue;
1076 
1077 activate_locked:
1078 		/* Not a candidate for swapping, so reclaim swap space. */
1079 		if (PageSwapCache(page) && vm_swap_full())
1080 			try_to_free_swap(page);
1081 		VM_BUG_ON(PageActive(page));
1082 		SetPageActive(page);
1083 		pgactivate++;
1084 keep_locked:
1085 		unlock_page(page);
1086 keep:
1087 		list_add(&page->lru, &ret_pages);
1088 		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1089 	}
1090 
1091 	free_hot_cold_page_list(&free_pages, 1);
1092 
1093 	list_splice(&ret_pages, page_list);
1094 	count_vm_events(PGACTIVATE, pgactivate);
1095 	mem_cgroup_uncharge_end();
1096 	*ret_nr_dirty += nr_dirty;
1097 	*ret_nr_congested += nr_congested;
1098 	*ret_nr_unqueued_dirty += nr_unqueued_dirty;
1099 	*ret_nr_writeback += nr_writeback;
1100 	*ret_nr_immediate += nr_immediate;
1101 	return nr_reclaimed;
1102 }
1103 
1104 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1105 					    struct list_head *page_list)
1106 {
1107 	struct scan_control sc = {
1108 		.gfp_mask = GFP_KERNEL,
1109 		.priority = DEF_PRIORITY,
1110 		.may_unmap = 1,
1111 	};
1112 	unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1113 	struct page *page, *next;
1114 	LIST_HEAD(clean_pages);
1115 
1116 	list_for_each_entry_safe(page, next, page_list, lru) {
1117 		if (page_is_file_cache(page) && !PageDirty(page) &&
1118 		    !isolated_balloon_page(page)) {
1119 			ClearPageActive(page);
1120 			list_move(&page->lru, &clean_pages);
1121 		}
1122 	}
1123 
1124 	ret = shrink_page_list(&clean_pages, zone, &sc,
1125 			TTU_UNMAP|TTU_IGNORE_ACCESS,
1126 			&dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1127 	list_splice(&clean_pages, page_list);
1128 	__mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
1129 	return ret;
1130 }
1131 
1132 /*
1133  * Attempt to remove the specified page from its LRU.  Only take this page
1134  * if it is of the appropriate PageActive status.  Pages which are being
1135  * freed elsewhere are also ignored.
1136  *
1137  * page:	page to consider
1138  * mode:	one of the LRU isolation modes defined above
1139  *
1140  * returns 0 on success, -ve errno on failure.
1141  */
1142 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1143 {
1144 	int ret = -EINVAL;
1145 
1146 	/* Only take pages on the LRU. */
1147 	if (!PageLRU(page))
1148 		return ret;
1149 
1150 	/* Compaction should not handle unevictable pages but CMA can do so */
1151 	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1152 		return ret;
1153 
1154 	ret = -EBUSY;
1155 
1156 	/*
1157 	 * To minimise LRU disruption, the caller can indicate that it only
1158 	 * wants to isolate pages it will be able to operate on without
1159 	 * blocking - clean pages for the most part.
1160 	 *
1161 	 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1162 	 * is used by reclaim when it is cannot write to backing storage
1163 	 *
1164 	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1165 	 * that it is possible to migrate without blocking
1166 	 */
1167 	if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1168 		/* All the caller can do on PageWriteback is block */
1169 		if (PageWriteback(page))
1170 			return ret;
1171 
1172 		if (PageDirty(page)) {
1173 			struct address_space *mapping;
1174 
1175 			/* ISOLATE_CLEAN means only clean pages */
1176 			if (mode & ISOLATE_CLEAN)
1177 				return ret;
1178 
1179 			/*
1180 			 * Only pages without mappings or that have a
1181 			 * ->migratepage callback are possible to migrate
1182 			 * without blocking
1183 			 */
1184 			mapping = page_mapping(page);
1185 			if (mapping && !mapping->a_ops->migratepage)
1186 				return ret;
1187 		}
1188 	}
1189 
1190 	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1191 		return ret;
1192 
1193 	if (likely(get_page_unless_zero(page))) {
1194 		/*
1195 		 * Be careful not to clear PageLRU until after we're
1196 		 * sure the page is not being freed elsewhere -- the
1197 		 * page release code relies on it.
1198 		 */
1199 		ClearPageLRU(page);
1200 		ret = 0;
1201 	}
1202 
1203 	return ret;
1204 }
1205 
1206 /*
1207  * zone->lru_lock is heavily contended.  Some of the functions that
1208  * shrink the lists perform better by taking out a batch of pages
1209  * and working on them outside the LRU lock.
1210  *
1211  * For pagecache intensive workloads, this function is the hottest
1212  * spot in the kernel (apart from copy_*_user functions).
1213  *
1214  * Appropriate locks must be held before calling this function.
1215  *
1216  * @nr_to_scan:	The number of pages to look through on the list.
1217  * @lruvec:	The LRU vector to pull pages from.
1218  * @dst:	The temp list to put pages on to.
1219  * @nr_scanned:	The number of pages that were scanned.
1220  * @sc:		The scan_control struct for this reclaim session
1221  * @mode:	One of the LRU isolation modes
1222  * @lru:	LRU list id for isolating
1223  *
1224  * returns how many pages were moved onto *@dst.
1225  */
1226 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1227 		struct lruvec *lruvec, struct list_head *dst,
1228 		unsigned long *nr_scanned, struct scan_control *sc,
1229 		isolate_mode_t mode, enum lru_list lru)
1230 {
1231 	struct list_head *src = &lruvec->lists[lru];
1232 	unsigned long nr_taken = 0;
1233 	unsigned long scan;
1234 
1235 	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1236 		struct page *page;
1237 		int nr_pages;
1238 
1239 		page = lru_to_page(src);
1240 		prefetchw_prev_lru_page(page, src, flags);
1241 
1242 		VM_BUG_ON(!PageLRU(page));
1243 
1244 		switch (__isolate_lru_page(page, mode)) {
1245 		case 0:
1246 			nr_pages = hpage_nr_pages(page);
1247 			mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
1248 			list_move(&page->lru, dst);
1249 			nr_taken += nr_pages;
1250 			break;
1251 
1252 		case -EBUSY:
1253 			/* else it is being freed elsewhere */
1254 			list_move(&page->lru, src);
1255 			continue;
1256 
1257 		default:
1258 			BUG();
1259 		}
1260 	}
1261 
1262 	*nr_scanned = scan;
1263 	trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1264 				    nr_taken, mode, is_file_lru(lru));
1265 	return nr_taken;
1266 }
1267 
1268 /**
1269  * isolate_lru_page - tries to isolate a page from its LRU list
1270  * @page: page to isolate from its LRU list
1271  *
1272  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1273  * vmstat statistic corresponding to whatever LRU list the page was on.
1274  *
1275  * Returns 0 if the page was removed from an LRU list.
1276  * Returns -EBUSY if the page was not on an LRU list.
1277  *
1278  * The returned page will have PageLRU() cleared.  If it was found on
1279  * the active list, it will have PageActive set.  If it was found on
1280  * the unevictable list, it will have the PageUnevictable bit set. That flag
1281  * may need to be cleared by the caller before letting the page go.
1282  *
1283  * The vmstat statistic corresponding to the list on which the page was
1284  * found will be decremented.
1285  *
1286  * Restrictions:
1287  * (1) Must be called with an elevated refcount on the page. This is a
1288  *     fundamentnal difference from isolate_lru_pages (which is called
1289  *     without a stable reference).
1290  * (2) the lru_lock must not be held.
1291  * (3) interrupts must be enabled.
1292  */
1293 int isolate_lru_page(struct page *page)
1294 {
1295 	int ret = -EBUSY;
1296 
1297 	VM_BUG_ON(!page_count(page));
1298 
1299 	if (PageLRU(page)) {
1300 		struct zone *zone = page_zone(page);
1301 		struct lruvec *lruvec;
1302 
1303 		spin_lock_irq(&zone->lru_lock);
1304 		lruvec = mem_cgroup_page_lruvec(page, zone);
1305 		if (PageLRU(page)) {
1306 			int lru = page_lru(page);
1307 			get_page(page);
1308 			ClearPageLRU(page);
1309 			del_page_from_lru_list(page, lruvec, lru);
1310 			ret = 0;
1311 		}
1312 		spin_unlock_irq(&zone->lru_lock);
1313 	}
1314 	return ret;
1315 }
1316 
1317 /*
1318  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1319  * then get resheduled. When there are massive number of tasks doing page
1320  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1321  * the LRU list will go small and be scanned faster than necessary, leading to
1322  * unnecessary swapping, thrashing and OOM.
1323  */
1324 static int too_many_isolated(struct zone *zone, int file,
1325 		struct scan_control *sc)
1326 {
1327 	unsigned long inactive, isolated;
1328 
1329 	if (current_is_kswapd())
1330 		return 0;
1331 
1332 	if (!global_reclaim(sc))
1333 		return 0;
1334 
1335 	if (file) {
1336 		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1337 		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1338 	} else {
1339 		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1340 		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1341 	}
1342 
1343 	/*
1344 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1345 	 * won't get blocked by normal direct-reclaimers, forming a circular
1346 	 * deadlock.
1347 	 */
1348 	if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
1349 		inactive >>= 3;
1350 
1351 	return isolated > inactive;
1352 }
1353 
1354 static noinline_for_stack void
1355 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1356 {
1357 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1358 	struct zone *zone = lruvec_zone(lruvec);
1359 	LIST_HEAD(pages_to_free);
1360 
1361 	/*
1362 	 * Put back any unfreeable pages.
1363 	 */
1364 	while (!list_empty(page_list)) {
1365 		struct page *page = lru_to_page(page_list);
1366 		int lru;
1367 
1368 		VM_BUG_ON(PageLRU(page));
1369 		list_del(&page->lru);
1370 		if (unlikely(!page_evictable(page))) {
1371 			spin_unlock_irq(&zone->lru_lock);
1372 			putback_lru_page(page);
1373 			spin_lock_irq(&zone->lru_lock);
1374 			continue;
1375 		}
1376 
1377 		lruvec = mem_cgroup_page_lruvec(page, zone);
1378 
1379 		SetPageLRU(page);
1380 		lru = page_lru(page);
1381 		add_page_to_lru_list(page, lruvec, lru);
1382 
1383 		if (is_active_lru(lru)) {
1384 			int file = is_file_lru(lru);
1385 			int numpages = hpage_nr_pages(page);
1386 			reclaim_stat->recent_rotated[file] += numpages;
1387 		}
1388 		if (put_page_testzero(page)) {
1389 			__ClearPageLRU(page);
1390 			__ClearPageActive(page);
1391 			del_page_from_lru_list(page, lruvec, lru);
1392 
1393 			if (unlikely(PageCompound(page))) {
1394 				spin_unlock_irq(&zone->lru_lock);
1395 				(*get_compound_page_dtor(page))(page);
1396 				spin_lock_irq(&zone->lru_lock);
1397 			} else
1398 				list_add(&page->lru, &pages_to_free);
1399 		}
1400 	}
1401 
1402 	/*
1403 	 * To save our caller's stack, now use input list for pages to free.
1404 	 */
1405 	list_splice(&pages_to_free, page_list);
1406 }
1407 
1408 /*
1409  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1410  * of reclaimed pages
1411  */
1412 static noinline_for_stack unsigned long
1413 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1414 		     struct scan_control *sc, enum lru_list lru)
1415 {
1416 	LIST_HEAD(page_list);
1417 	unsigned long nr_scanned;
1418 	unsigned long nr_reclaimed = 0;
1419 	unsigned long nr_taken;
1420 	unsigned long nr_dirty = 0;
1421 	unsigned long nr_congested = 0;
1422 	unsigned long nr_unqueued_dirty = 0;
1423 	unsigned long nr_writeback = 0;
1424 	unsigned long nr_immediate = 0;
1425 	isolate_mode_t isolate_mode = 0;
1426 	int file = is_file_lru(lru);
1427 	struct zone *zone = lruvec_zone(lruvec);
1428 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1429 
1430 	while (unlikely(too_many_isolated(zone, file, sc))) {
1431 		congestion_wait(BLK_RW_ASYNC, HZ/10);
1432 
1433 		/* We are about to die and free our memory. Return now. */
1434 		if (fatal_signal_pending(current))
1435 			return SWAP_CLUSTER_MAX;
1436 	}
1437 
1438 	lru_add_drain();
1439 
1440 	if (!sc->may_unmap)
1441 		isolate_mode |= ISOLATE_UNMAPPED;
1442 	if (!sc->may_writepage)
1443 		isolate_mode |= ISOLATE_CLEAN;
1444 
1445 	spin_lock_irq(&zone->lru_lock);
1446 
1447 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1448 				     &nr_scanned, sc, isolate_mode, lru);
1449 
1450 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1451 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1452 
1453 	if (global_reclaim(sc)) {
1454 		zone->pages_scanned += nr_scanned;
1455 		if (current_is_kswapd())
1456 			__count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1457 		else
1458 			__count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1459 	}
1460 	spin_unlock_irq(&zone->lru_lock);
1461 
1462 	if (nr_taken == 0)
1463 		return 0;
1464 
1465 	nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1466 				&nr_dirty, &nr_unqueued_dirty, &nr_congested,
1467 				&nr_writeback, &nr_immediate,
1468 				false);
1469 
1470 	spin_lock_irq(&zone->lru_lock);
1471 
1472 	reclaim_stat->recent_scanned[file] += nr_taken;
1473 
1474 	if (global_reclaim(sc)) {
1475 		if (current_is_kswapd())
1476 			__count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1477 					       nr_reclaimed);
1478 		else
1479 			__count_zone_vm_events(PGSTEAL_DIRECT, zone,
1480 					       nr_reclaimed);
1481 	}
1482 
1483 	putback_inactive_pages(lruvec, &page_list);
1484 
1485 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1486 
1487 	spin_unlock_irq(&zone->lru_lock);
1488 
1489 	free_hot_cold_page_list(&page_list, 1);
1490 
1491 	/*
1492 	 * If reclaim is isolating dirty pages under writeback, it implies
1493 	 * that the long-lived page allocation rate is exceeding the page
1494 	 * laundering rate. Either the global limits are not being effective
1495 	 * at throttling processes due to the page distribution throughout
1496 	 * zones or there is heavy usage of a slow backing device. The
1497 	 * only option is to throttle from reclaim context which is not ideal
1498 	 * as there is no guarantee the dirtying process is throttled in the
1499 	 * same way balance_dirty_pages() manages.
1500 	 *
1501 	 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1502 	 * of pages under pages flagged for immediate reclaim and stall if any
1503 	 * are encountered in the nr_immediate check below.
1504 	 */
1505 	if (nr_writeback && nr_writeback == nr_taken)
1506 		zone_set_flag(zone, ZONE_WRITEBACK);
1507 
1508 	/*
1509 	 * memcg will stall in page writeback so only consider forcibly
1510 	 * stalling for global reclaim
1511 	 */
1512 	if (global_reclaim(sc)) {
1513 		/*
1514 		 * Tag a zone as congested if all the dirty pages scanned were
1515 		 * backed by a congested BDI and wait_iff_congested will stall.
1516 		 */
1517 		if (nr_dirty && nr_dirty == nr_congested)
1518 			zone_set_flag(zone, ZONE_CONGESTED);
1519 
1520 		/*
1521 		 * If dirty pages are scanned that are not queued for IO, it
1522 		 * implies that flushers are not keeping up. In this case, flag
1523 		 * the zone ZONE_TAIL_LRU_DIRTY and kswapd will start writing
1524 		 * pages from reclaim context. It will forcibly stall in the
1525 		 * next check.
1526 		 */
1527 		if (nr_unqueued_dirty == nr_taken)
1528 			zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY);
1529 
1530 		/*
1531 		 * In addition, if kswapd scans pages marked marked for
1532 		 * immediate reclaim and under writeback (nr_immediate), it
1533 		 * implies that pages are cycling through the LRU faster than
1534 		 * they are written so also forcibly stall.
1535 		 */
1536 		if (nr_unqueued_dirty == nr_taken || nr_immediate)
1537 			congestion_wait(BLK_RW_ASYNC, HZ/10);
1538 	}
1539 
1540 	/*
1541 	 * Stall direct reclaim for IO completions if underlying BDIs or zone
1542 	 * is congested. Allow kswapd to continue until it starts encountering
1543 	 * unqueued dirty pages or cycling through the LRU too quickly.
1544 	 */
1545 	if (!sc->hibernation_mode && !current_is_kswapd())
1546 		wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1547 
1548 	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1549 		zone_idx(zone),
1550 		nr_scanned, nr_reclaimed,
1551 		sc->priority,
1552 		trace_shrink_flags(file));
1553 	return nr_reclaimed;
1554 }
1555 
1556 /*
1557  * This moves pages from the active list to the inactive list.
1558  *
1559  * We move them the other way if the page is referenced by one or more
1560  * processes, from rmap.
1561  *
1562  * If the pages are mostly unmapped, the processing is fast and it is
1563  * appropriate to hold zone->lru_lock across the whole operation.  But if
1564  * the pages are mapped, the processing is slow (page_referenced()) so we
1565  * should drop zone->lru_lock around each page.  It's impossible to balance
1566  * this, so instead we remove the pages from the LRU while processing them.
1567  * It is safe to rely on PG_active against the non-LRU pages in here because
1568  * nobody will play with that bit on a non-LRU page.
1569  *
1570  * The downside is that we have to touch page->_count against each page.
1571  * But we had to alter page->flags anyway.
1572  */
1573 
1574 static void move_active_pages_to_lru(struct lruvec *lruvec,
1575 				     struct list_head *list,
1576 				     struct list_head *pages_to_free,
1577 				     enum lru_list lru)
1578 {
1579 	struct zone *zone = lruvec_zone(lruvec);
1580 	unsigned long pgmoved = 0;
1581 	struct page *page;
1582 	int nr_pages;
1583 
1584 	while (!list_empty(list)) {
1585 		page = lru_to_page(list);
1586 		lruvec = mem_cgroup_page_lruvec(page, zone);
1587 
1588 		VM_BUG_ON(PageLRU(page));
1589 		SetPageLRU(page);
1590 
1591 		nr_pages = hpage_nr_pages(page);
1592 		mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1593 		list_move(&page->lru, &lruvec->lists[lru]);
1594 		pgmoved += nr_pages;
1595 
1596 		if (put_page_testzero(page)) {
1597 			__ClearPageLRU(page);
1598 			__ClearPageActive(page);
1599 			del_page_from_lru_list(page, lruvec, lru);
1600 
1601 			if (unlikely(PageCompound(page))) {
1602 				spin_unlock_irq(&zone->lru_lock);
1603 				(*get_compound_page_dtor(page))(page);
1604 				spin_lock_irq(&zone->lru_lock);
1605 			} else
1606 				list_add(&page->lru, pages_to_free);
1607 		}
1608 	}
1609 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1610 	if (!is_active_lru(lru))
1611 		__count_vm_events(PGDEACTIVATE, pgmoved);
1612 }
1613 
1614 static void shrink_active_list(unsigned long nr_to_scan,
1615 			       struct lruvec *lruvec,
1616 			       struct scan_control *sc,
1617 			       enum lru_list lru)
1618 {
1619 	unsigned long nr_taken;
1620 	unsigned long nr_scanned;
1621 	unsigned long vm_flags;
1622 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1623 	LIST_HEAD(l_active);
1624 	LIST_HEAD(l_inactive);
1625 	struct page *page;
1626 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1627 	unsigned long nr_rotated = 0;
1628 	isolate_mode_t isolate_mode = 0;
1629 	int file = is_file_lru(lru);
1630 	struct zone *zone = lruvec_zone(lruvec);
1631 
1632 	lru_add_drain();
1633 
1634 	if (!sc->may_unmap)
1635 		isolate_mode |= ISOLATE_UNMAPPED;
1636 	if (!sc->may_writepage)
1637 		isolate_mode |= ISOLATE_CLEAN;
1638 
1639 	spin_lock_irq(&zone->lru_lock);
1640 
1641 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1642 				     &nr_scanned, sc, isolate_mode, lru);
1643 	if (global_reclaim(sc))
1644 		zone->pages_scanned += nr_scanned;
1645 
1646 	reclaim_stat->recent_scanned[file] += nr_taken;
1647 
1648 	__count_zone_vm_events(PGREFILL, zone, nr_scanned);
1649 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1650 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1651 	spin_unlock_irq(&zone->lru_lock);
1652 
1653 	while (!list_empty(&l_hold)) {
1654 		cond_resched();
1655 		page = lru_to_page(&l_hold);
1656 		list_del(&page->lru);
1657 
1658 		if (unlikely(!page_evictable(page))) {
1659 			putback_lru_page(page);
1660 			continue;
1661 		}
1662 
1663 		if (unlikely(buffer_heads_over_limit)) {
1664 			if (page_has_private(page) && trylock_page(page)) {
1665 				if (page_has_private(page))
1666 					try_to_release_page(page, 0);
1667 				unlock_page(page);
1668 			}
1669 		}
1670 
1671 		if (page_referenced(page, 0, sc->target_mem_cgroup,
1672 				    &vm_flags)) {
1673 			nr_rotated += hpage_nr_pages(page);
1674 			/*
1675 			 * Identify referenced, file-backed active pages and
1676 			 * give them one more trip around the active list. So
1677 			 * that executable code get better chances to stay in
1678 			 * memory under moderate memory pressure.  Anon pages
1679 			 * are not likely to be evicted by use-once streaming
1680 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
1681 			 * so we ignore them here.
1682 			 */
1683 			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1684 				list_add(&page->lru, &l_active);
1685 				continue;
1686 			}
1687 		}
1688 
1689 		ClearPageActive(page);	/* we are de-activating */
1690 		list_add(&page->lru, &l_inactive);
1691 	}
1692 
1693 	/*
1694 	 * Move pages back to the lru list.
1695 	 */
1696 	spin_lock_irq(&zone->lru_lock);
1697 	/*
1698 	 * Count referenced pages from currently used mappings as rotated,
1699 	 * even though only some of them are actually re-activated.  This
1700 	 * helps balance scan pressure between file and anonymous pages in
1701 	 * get_scan_ratio.
1702 	 */
1703 	reclaim_stat->recent_rotated[file] += nr_rotated;
1704 
1705 	move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1706 	move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1707 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1708 	spin_unlock_irq(&zone->lru_lock);
1709 
1710 	free_hot_cold_page_list(&l_hold, 1);
1711 }
1712 
1713 #ifdef CONFIG_SWAP
1714 static int inactive_anon_is_low_global(struct zone *zone)
1715 {
1716 	unsigned long active, inactive;
1717 
1718 	active = zone_page_state(zone, NR_ACTIVE_ANON);
1719 	inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1720 
1721 	if (inactive * zone->inactive_ratio < active)
1722 		return 1;
1723 
1724 	return 0;
1725 }
1726 
1727 /**
1728  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1729  * @lruvec: LRU vector to check
1730  *
1731  * Returns true if the zone does not have enough inactive anon pages,
1732  * meaning some active anon pages need to be deactivated.
1733  */
1734 static int inactive_anon_is_low(struct lruvec *lruvec)
1735 {
1736 	/*
1737 	 * If we don't have swap space, anonymous page deactivation
1738 	 * is pointless.
1739 	 */
1740 	if (!total_swap_pages)
1741 		return 0;
1742 
1743 	if (!mem_cgroup_disabled())
1744 		return mem_cgroup_inactive_anon_is_low(lruvec);
1745 
1746 	return inactive_anon_is_low_global(lruvec_zone(lruvec));
1747 }
1748 #else
1749 static inline int inactive_anon_is_low(struct lruvec *lruvec)
1750 {
1751 	return 0;
1752 }
1753 #endif
1754 
1755 /**
1756  * inactive_file_is_low - check if file pages need to be deactivated
1757  * @lruvec: LRU vector to check
1758  *
1759  * When the system is doing streaming IO, memory pressure here
1760  * ensures that active file pages get deactivated, until more
1761  * than half of the file pages are on the inactive list.
1762  *
1763  * Once we get to that situation, protect the system's working
1764  * set from being evicted by disabling active file page aging.
1765  *
1766  * This uses a different ratio than the anonymous pages, because
1767  * the page cache uses a use-once replacement algorithm.
1768  */
1769 static int inactive_file_is_low(struct lruvec *lruvec)
1770 {
1771 	unsigned long inactive;
1772 	unsigned long active;
1773 
1774 	inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1775 	active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1776 
1777 	return active > inactive;
1778 }
1779 
1780 static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1781 {
1782 	if (is_file_lru(lru))
1783 		return inactive_file_is_low(lruvec);
1784 	else
1785 		return inactive_anon_is_low(lruvec);
1786 }
1787 
1788 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1789 				 struct lruvec *lruvec, struct scan_control *sc)
1790 {
1791 	if (is_active_lru(lru)) {
1792 		if (inactive_list_is_low(lruvec, lru))
1793 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
1794 		return 0;
1795 	}
1796 
1797 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1798 }
1799 
1800 static int vmscan_swappiness(struct scan_control *sc)
1801 {
1802 	if (global_reclaim(sc))
1803 		return vm_swappiness;
1804 	return mem_cgroup_swappiness(sc->target_mem_cgroup);
1805 }
1806 
1807 enum scan_balance {
1808 	SCAN_EQUAL,
1809 	SCAN_FRACT,
1810 	SCAN_ANON,
1811 	SCAN_FILE,
1812 };
1813 
1814 /*
1815  * Determine how aggressively the anon and file LRU lists should be
1816  * scanned.  The relative value of each set of LRU lists is determined
1817  * by looking at the fraction of the pages scanned we did rotate back
1818  * onto the active list instead of evict.
1819  *
1820  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1821  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1822  */
1823 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
1824 			   unsigned long *nr)
1825 {
1826 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1827 	u64 fraction[2];
1828 	u64 denominator = 0;	/* gcc */
1829 	struct zone *zone = lruvec_zone(lruvec);
1830 	unsigned long anon_prio, file_prio;
1831 	enum scan_balance scan_balance;
1832 	unsigned long anon, file, free;
1833 	bool force_scan = false;
1834 	unsigned long ap, fp;
1835 	enum lru_list lru;
1836 
1837 	/*
1838 	 * If the zone or memcg is small, nr[l] can be 0.  This
1839 	 * results in no scanning on this priority and a potential
1840 	 * priority drop.  Global direct reclaim can go to the next
1841 	 * zone and tends to have no problems. Global kswapd is for
1842 	 * zone balancing and it needs to scan a minimum amount. When
1843 	 * reclaiming for a memcg, a priority drop can cause high
1844 	 * latencies, so it's better to scan a minimum amount there as
1845 	 * well.
1846 	 */
1847 	if (current_is_kswapd() && !zone_reclaimable(zone))
1848 		force_scan = true;
1849 	if (!global_reclaim(sc))
1850 		force_scan = true;
1851 
1852 	/* If we have no swap space, do not bother scanning anon pages. */
1853 	if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
1854 		scan_balance = SCAN_FILE;
1855 		goto out;
1856 	}
1857 
1858 	/*
1859 	 * Global reclaim will swap to prevent OOM even with no
1860 	 * swappiness, but memcg users want to use this knob to
1861 	 * disable swapping for individual groups completely when
1862 	 * using the memory controller's swap limit feature would be
1863 	 * too expensive.
1864 	 */
1865 	if (!global_reclaim(sc) && !vmscan_swappiness(sc)) {
1866 		scan_balance = SCAN_FILE;
1867 		goto out;
1868 	}
1869 
1870 	/*
1871 	 * Do not apply any pressure balancing cleverness when the
1872 	 * system is close to OOM, scan both anon and file equally
1873 	 * (unless the swappiness setting disagrees with swapping).
1874 	 */
1875 	if (!sc->priority && vmscan_swappiness(sc)) {
1876 		scan_balance = SCAN_EQUAL;
1877 		goto out;
1878 	}
1879 
1880 	anon  = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
1881 		get_lru_size(lruvec, LRU_INACTIVE_ANON);
1882 	file  = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
1883 		get_lru_size(lruvec, LRU_INACTIVE_FILE);
1884 
1885 	/*
1886 	 * If it's foreseeable that reclaiming the file cache won't be
1887 	 * enough to get the zone back into a desirable shape, we have
1888 	 * to swap.  Better start now and leave the - probably heavily
1889 	 * thrashing - remaining file pages alone.
1890 	 */
1891 	if (global_reclaim(sc)) {
1892 		free = zone_page_state(zone, NR_FREE_PAGES);
1893 		if (unlikely(file + free <= high_wmark_pages(zone))) {
1894 			scan_balance = SCAN_ANON;
1895 			goto out;
1896 		}
1897 	}
1898 
1899 	/*
1900 	 * There is enough inactive page cache, do not reclaim
1901 	 * anything from the anonymous working set right now.
1902 	 */
1903 	if (!inactive_file_is_low(lruvec)) {
1904 		scan_balance = SCAN_FILE;
1905 		goto out;
1906 	}
1907 
1908 	scan_balance = SCAN_FRACT;
1909 
1910 	/*
1911 	 * With swappiness at 100, anonymous and file have the same priority.
1912 	 * This scanning priority is essentially the inverse of IO cost.
1913 	 */
1914 	anon_prio = vmscan_swappiness(sc);
1915 	file_prio = 200 - anon_prio;
1916 
1917 	/*
1918 	 * OK, so we have swap space and a fair amount of page cache
1919 	 * pages.  We use the recently rotated / recently scanned
1920 	 * ratios to determine how valuable each cache is.
1921 	 *
1922 	 * Because workloads change over time (and to avoid overflow)
1923 	 * we keep these statistics as a floating average, which ends
1924 	 * up weighing recent references more than old ones.
1925 	 *
1926 	 * anon in [0], file in [1]
1927 	 */
1928 	spin_lock_irq(&zone->lru_lock);
1929 	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1930 		reclaim_stat->recent_scanned[0] /= 2;
1931 		reclaim_stat->recent_rotated[0] /= 2;
1932 	}
1933 
1934 	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1935 		reclaim_stat->recent_scanned[1] /= 2;
1936 		reclaim_stat->recent_rotated[1] /= 2;
1937 	}
1938 
1939 	/*
1940 	 * The amount of pressure on anon vs file pages is inversely
1941 	 * proportional to the fraction of recently scanned pages on
1942 	 * each list that were recently referenced and in active use.
1943 	 */
1944 	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1945 	ap /= reclaim_stat->recent_rotated[0] + 1;
1946 
1947 	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1948 	fp /= reclaim_stat->recent_rotated[1] + 1;
1949 	spin_unlock_irq(&zone->lru_lock);
1950 
1951 	fraction[0] = ap;
1952 	fraction[1] = fp;
1953 	denominator = ap + fp + 1;
1954 out:
1955 	for_each_evictable_lru(lru) {
1956 		int file = is_file_lru(lru);
1957 		unsigned long size;
1958 		unsigned long scan;
1959 
1960 		size = get_lru_size(lruvec, lru);
1961 		scan = size >> sc->priority;
1962 
1963 		if (!scan && force_scan)
1964 			scan = min(size, SWAP_CLUSTER_MAX);
1965 
1966 		switch (scan_balance) {
1967 		case SCAN_EQUAL:
1968 			/* Scan lists relative to size */
1969 			break;
1970 		case SCAN_FRACT:
1971 			/*
1972 			 * Scan types proportional to swappiness and
1973 			 * their relative recent reclaim efficiency.
1974 			 */
1975 			scan = div64_u64(scan * fraction[file], denominator);
1976 			break;
1977 		case SCAN_FILE:
1978 		case SCAN_ANON:
1979 			/* Scan one type exclusively */
1980 			if ((scan_balance == SCAN_FILE) != file)
1981 				scan = 0;
1982 			break;
1983 		default:
1984 			/* Look ma, no brain */
1985 			BUG();
1986 		}
1987 		nr[lru] = scan;
1988 	}
1989 }
1990 
1991 /*
1992  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1993  */
1994 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
1995 {
1996 	unsigned long nr[NR_LRU_LISTS];
1997 	unsigned long targets[NR_LRU_LISTS];
1998 	unsigned long nr_to_scan;
1999 	enum lru_list lru;
2000 	unsigned long nr_reclaimed = 0;
2001 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2002 	struct blk_plug plug;
2003 	bool scan_adjusted = false;
2004 
2005 	get_scan_count(lruvec, sc, nr);
2006 
2007 	/* Record the original scan target for proportional adjustments later */
2008 	memcpy(targets, nr, sizeof(nr));
2009 
2010 	blk_start_plug(&plug);
2011 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2012 					nr[LRU_INACTIVE_FILE]) {
2013 		unsigned long nr_anon, nr_file, percentage;
2014 		unsigned long nr_scanned;
2015 
2016 		for_each_evictable_lru(lru) {
2017 			if (nr[lru]) {
2018 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2019 				nr[lru] -= nr_to_scan;
2020 
2021 				nr_reclaimed += shrink_list(lru, nr_to_scan,
2022 							    lruvec, sc);
2023 			}
2024 		}
2025 
2026 		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2027 			continue;
2028 
2029 		/*
2030 		 * For global direct reclaim, reclaim only the number of pages
2031 		 * requested. Less care is taken to scan proportionally as it
2032 		 * is more important to minimise direct reclaim stall latency
2033 		 * than it is to properly age the LRU lists.
2034 		 */
2035 		if (global_reclaim(sc) && !current_is_kswapd())
2036 			break;
2037 
2038 		/*
2039 		 * For kswapd and memcg, reclaim at least the number of pages
2040 		 * requested. Ensure that the anon and file LRUs shrink
2041 		 * proportionally what was requested by get_scan_count(). We
2042 		 * stop reclaiming one LRU and reduce the amount scanning
2043 		 * proportional to the original scan target.
2044 		 */
2045 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2046 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2047 
2048 		if (nr_file > nr_anon) {
2049 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2050 						targets[LRU_ACTIVE_ANON] + 1;
2051 			lru = LRU_BASE;
2052 			percentage = nr_anon * 100 / scan_target;
2053 		} else {
2054 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2055 						targets[LRU_ACTIVE_FILE] + 1;
2056 			lru = LRU_FILE;
2057 			percentage = nr_file * 100 / scan_target;
2058 		}
2059 
2060 		/* Stop scanning the smaller of the LRU */
2061 		nr[lru] = 0;
2062 		nr[lru + LRU_ACTIVE] = 0;
2063 
2064 		/*
2065 		 * Recalculate the other LRU scan count based on its original
2066 		 * scan target and the percentage scanning already complete
2067 		 */
2068 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2069 		nr_scanned = targets[lru] - nr[lru];
2070 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2071 		nr[lru] -= min(nr[lru], nr_scanned);
2072 
2073 		lru += LRU_ACTIVE;
2074 		nr_scanned = targets[lru] - nr[lru];
2075 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2076 		nr[lru] -= min(nr[lru], nr_scanned);
2077 
2078 		scan_adjusted = true;
2079 	}
2080 	blk_finish_plug(&plug);
2081 	sc->nr_reclaimed += nr_reclaimed;
2082 
2083 	/*
2084 	 * Even if we did not try to evict anon pages at all, we want to
2085 	 * rebalance the anon lru active/inactive ratio.
2086 	 */
2087 	if (inactive_anon_is_low(lruvec))
2088 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2089 				   sc, LRU_ACTIVE_ANON);
2090 
2091 	throttle_vm_writeout(sc->gfp_mask);
2092 }
2093 
2094 /* Use reclaim/compaction for costly allocs or under memory pressure */
2095 static bool in_reclaim_compaction(struct scan_control *sc)
2096 {
2097 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2098 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2099 			 sc->priority < DEF_PRIORITY - 2))
2100 		return true;
2101 
2102 	return false;
2103 }
2104 
2105 /*
2106  * Reclaim/compaction is used for high-order allocation requests. It reclaims
2107  * order-0 pages before compacting the zone. should_continue_reclaim() returns
2108  * true if more pages should be reclaimed such that when the page allocator
2109  * calls try_to_compact_zone() that it will have enough free pages to succeed.
2110  * It will give up earlier than that if there is difficulty reclaiming pages.
2111  */
2112 static inline bool should_continue_reclaim(struct zone *zone,
2113 					unsigned long nr_reclaimed,
2114 					unsigned long nr_scanned,
2115 					struct scan_control *sc)
2116 {
2117 	unsigned long pages_for_compaction;
2118 	unsigned long inactive_lru_pages;
2119 
2120 	/* If not in reclaim/compaction mode, stop */
2121 	if (!in_reclaim_compaction(sc))
2122 		return false;
2123 
2124 	/* Consider stopping depending on scan and reclaim activity */
2125 	if (sc->gfp_mask & __GFP_REPEAT) {
2126 		/*
2127 		 * For __GFP_REPEAT allocations, stop reclaiming if the
2128 		 * full LRU list has been scanned and we are still failing
2129 		 * to reclaim pages. This full LRU scan is potentially
2130 		 * expensive but a __GFP_REPEAT caller really wants to succeed
2131 		 */
2132 		if (!nr_reclaimed && !nr_scanned)
2133 			return false;
2134 	} else {
2135 		/*
2136 		 * For non-__GFP_REPEAT allocations which can presumably
2137 		 * fail without consequence, stop if we failed to reclaim
2138 		 * any pages from the last SWAP_CLUSTER_MAX number of
2139 		 * pages that were scanned. This will return to the
2140 		 * caller faster at the risk reclaim/compaction and
2141 		 * the resulting allocation attempt fails
2142 		 */
2143 		if (!nr_reclaimed)
2144 			return false;
2145 	}
2146 
2147 	/*
2148 	 * If we have not reclaimed enough pages for compaction and the
2149 	 * inactive lists are large enough, continue reclaiming
2150 	 */
2151 	pages_for_compaction = (2UL << sc->order);
2152 	inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2153 	if (get_nr_swap_pages() > 0)
2154 		inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2155 	if (sc->nr_reclaimed < pages_for_compaction &&
2156 			inactive_lru_pages > pages_for_compaction)
2157 		return true;
2158 
2159 	/* If compaction would go ahead or the allocation would succeed, stop */
2160 	switch (compaction_suitable(zone, sc->order)) {
2161 	case COMPACT_PARTIAL:
2162 	case COMPACT_CONTINUE:
2163 		return false;
2164 	default:
2165 		return true;
2166 	}
2167 }
2168 
2169 static void shrink_zone(struct zone *zone, struct scan_control *sc)
2170 {
2171 	unsigned long nr_reclaimed, nr_scanned;
2172 
2173 	do {
2174 		struct mem_cgroup *root = sc->target_mem_cgroup;
2175 		struct mem_cgroup_reclaim_cookie reclaim = {
2176 			.zone = zone,
2177 			.priority = sc->priority,
2178 		};
2179 		struct mem_cgroup *memcg;
2180 
2181 		nr_reclaimed = sc->nr_reclaimed;
2182 		nr_scanned = sc->nr_scanned;
2183 
2184 		memcg = mem_cgroup_iter(root, NULL, &reclaim);
2185 		do {
2186 			struct lruvec *lruvec;
2187 
2188 			lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2189 
2190 			shrink_lruvec(lruvec, sc);
2191 
2192 			/*
2193 			 * Direct reclaim and kswapd have to scan all memory
2194 			 * cgroups to fulfill the overall scan target for the
2195 			 * zone.
2196 			 *
2197 			 * Limit reclaim, on the other hand, only cares about
2198 			 * nr_to_reclaim pages to be reclaimed and it will
2199 			 * retry with decreasing priority if one round over the
2200 			 * whole hierarchy is not sufficient.
2201 			 */
2202 			if (!global_reclaim(sc) &&
2203 					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2204 				mem_cgroup_iter_break(root, memcg);
2205 				break;
2206 			}
2207 			memcg = mem_cgroup_iter(root, memcg, &reclaim);
2208 		} while (memcg);
2209 
2210 		vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
2211 			   sc->nr_scanned - nr_scanned,
2212 			   sc->nr_reclaimed - nr_reclaimed);
2213 
2214 	} while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2215 					 sc->nr_scanned - nr_scanned, sc));
2216 }
2217 
2218 /* Returns true if compaction should go ahead for a high-order request */
2219 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2220 {
2221 	unsigned long balance_gap, watermark;
2222 	bool watermark_ok;
2223 
2224 	/* Do not consider compaction for orders reclaim is meant to satisfy */
2225 	if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
2226 		return false;
2227 
2228 	/*
2229 	 * Compaction takes time to run and there are potentially other
2230 	 * callers using the pages just freed. Continue reclaiming until
2231 	 * there is a buffer of free pages available to give compaction
2232 	 * a reasonable chance of completing and allocating the page
2233 	 */
2234 	balance_gap = min(low_wmark_pages(zone),
2235 		(zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2236 			KSWAPD_ZONE_BALANCE_GAP_RATIO);
2237 	watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
2238 	watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2239 
2240 	/*
2241 	 * If compaction is deferred, reclaim up to a point where
2242 	 * compaction will have a chance of success when re-enabled
2243 	 */
2244 	if (compaction_deferred(zone, sc->order))
2245 		return watermark_ok;
2246 
2247 	/* If compaction is not ready to start, keep reclaiming */
2248 	if (!compaction_suitable(zone, sc->order))
2249 		return false;
2250 
2251 	return watermark_ok;
2252 }
2253 
2254 /*
2255  * This is the direct reclaim path, for page-allocating processes.  We only
2256  * try to reclaim pages from zones which will satisfy the caller's allocation
2257  * request.
2258  *
2259  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2260  * Because:
2261  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2262  *    allocation or
2263  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2264  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2265  *    zone defense algorithm.
2266  *
2267  * If a zone is deemed to be full of pinned pages then just give it a light
2268  * scan then give up on it.
2269  *
2270  * This function returns true if a zone is being reclaimed for a costly
2271  * high-order allocation and compaction is ready to begin. This indicates to
2272  * the caller that it should consider retrying the allocation instead of
2273  * further reclaim.
2274  */
2275 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2276 {
2277 	struct zoneref *z;
2278 	struct zone *zone;
2279 	unsigned long nr_soft_reclaimed;
2280 	unsigned long nr_soft_scanned;
2281 	bool aborted_reclaim = false;
2282 
2283 	/*
2284 	 * If the number of buffer_heads in the machine exceeds the maximum
2285 	 * allowed level, force direct reclaim to scan the highmem zone as
2286 	 * highmem pages could be pinning lowmem pages storing buffer_heads
2287 	 */
2288 	if (buffer_heads_over_limit)
2289 		sc->gfp_mask |= __GFP_HIGHMEM;
2290 
2291 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2292 					gfp_zone(sc->gfp_mask), sc->nodemask) {
2293 		if (!populated_zone(zone))
2294 			continue;
2295 		/*
2296 		 * Take care memory controller reclaiming has small influence
2297 		 * to global LRU.
2298 		 */
2299 		if (global_reclaim(sc)) {
2300 			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2301 				continue;
2302 			if (sc->priority != DEF_PRIORITY &&
2303 			    !zone_reclaimable(zone))
2304 				continue;	/* Let kswapd poll it */
2305 			if (IS_ENABLED(CONFIG_COMPACTION)) {
2306 				/*
2307 				 * If we already have plenty of memory free for
2308 				 * compaction in this zone, don't free any more.
2309 				 * Even though compaction is invoked for any
2310 				 * non-zero order, only frequent costly order
2311 				 * reclamation is disruptive enough to become a
2312 				 * noticeable problem, like transparent huge
2313 				 * page allocations.
2314 				 */
2315 				if (compaction_ready(zone, sc)) {
2316 					aborted_reclaim = true;
2317 					continue;
2318 				}
2319 			}
2320 			/*
2321 			 * This steals pages from memory cgroups over softlimit
2322 			 * and returns the number of reclaimed pages and
2323 			 * scanned pages. This works for global memory pressure
2324 			 * and balancing, not for a memcg's limit.
2325 			 */
2326 			nr_soft_scanned = 0;
2327 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2328 						sc->order, sc->gfp_mask,
2329 						&nr_soft_scanned);
2330 			sc->nr_reclaimed += nr_soft_reclaimed;
2331 			sc->nr_scanned += nr_soft_scanned;
2332 			/* need some check for avoid more shrink_zone() */
2333 		}
2334 
2335 		shrink_zone(zone, sc);
2336 	}
2337 
2338 	return aborted_reclaim;
2339 }
2340 
2341 /* All zones in zonelist are unreclaimable? */
2342 static bool all_unreclaimable(struct zonelist *zonelist,
2343 		struct scan_control *sc)
2344 {
2345 	struct zoneref *z;
2346 	struct zone *zone;
2347 
2348 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2349 			gfp_zone(sc->gfp_mask), sc->nodemask) {
2350 		if (!populated_zone(zone))
2351 			continue;
2352 		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2353 			continue;
2354 		if (zone_reclaimable(zone))
2355 			return false;
2356 	}
2357 
2358 	return true;
2359 }
2360 
2361 /*
2362  * This is the main entry point to direct page reclaim.
2363  *
2364  * If a full scan of the inactive list fails to free enough memory then we
2365  * are "out of memory" and something needs to be killed.
2366  *
2367  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2368  * high - the zone may be full of dirty or under-writeback pages, which this
2369  * caller can't do much about.  We kick the writeback threads and take explicit
2370  * naps in the hope that some of these pages can be written.  But if the
2371  * allocating task holds filesystem locks which prevent writeout this might not
2372  * work, and the allocation attempt will fail.
2373  *
2374  * returns:	0, if no pages reclaimed
2375  * 		else, the number of pages reclaimed
2376  */
2377 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2378 					struct scan_control *sc,
2379 					struct shrink_control *shrink)
2380 {
2381 	unsigned long total_scanned = 0;
2382 	struct reclaim_state *reclaim_state = current->reclaim_state;
2383 	struct zoneref *z;
2384 	struct zone *zone;
2385 	unsigned long writeback_threshold;
2386 	bool aborted_reclaim;
2387 
2388 	delayacct_freepages_start();
2389 
2390 	if (global_reclaim(sc))
2391 		count_vm_event(ALLOCSTALL);
2392 
2393 	do {
2394 		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2395 				sc->priority);
2396 		sc->nr_scanned = 0;
2397 		aborted_reclaim = shrink_zones(zonelist, sc);
2398 
2399 		/*
2400 		 * Don't shrink slabs when reclaiming memory from over limit
2401 		 * cgroups but do shrink slab at least once when aborting
2402 		 * reclaim for compaction to avoid unevenly scanning file/anon
2403 		 * LRU pages over slab pages.
2404 		 */
2405 		if (global_reclaim(sc)) {
2406 			unsigned long lru_pages = 0;
2407 
2408 			nodes_clear(shrink->nodes_to_scan);
2409 			for_each_zone_zonelist(zone, z, zonelist,
2410 					gfp_zone(sc->gfp_mask)) {
2411 				if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2412 					continue;
2413 
2414 				lru_pages += zone_reclaimable_pages(zone);
2415 				node_set(zone_to_nid(zone),
2416 					 shrink->nodes_to_scan);
2417 			}
2418 
2419 			shrink_slab(shrink, sc->nr_scanned, lru_pages);
2420 			if (reclaim_state) {
2421 				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2422 				reclaim_state->reclaimed_slab = 0;
2423 			}
2424 		}
2425 		total_scanned += sc->nr_scanned;
2426 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2427 			goto out;
2428 
2429 		/*
2430 		 * If we're getting trouble reclaiming, start doing
2431 		 * writepage even in laptop mode.
2432 		 */
2433 		if (sc->priority < DEF_PRIORITY - 2)
2434 			sc->may_writepage = 1;
2435 
2436 		/*
2437 		 * Try to write back as many pages as we just scanned.  This
2438 		 * tends to cause slow streaming writers to write data to the
2439 		 * disk smoothly, at the dirtying rate, which is nice.   But
2440 		 * that's undesirable in laptop mode, where we *want* lumpy
2441 		 * writeout.  So in laptop mode, write out the whole world.
2442 		 */
2443 		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2444 		if (total_scanned > writeback_threshold) {
2445 			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2446 						WB_REASON_TRY_TO_FREE_PAGES);
2447 			sc->may_writepage = 1;
2448 		}
2449 	} while (--sc->priority >= 0 && !aborted_reclaim);
2450 
2451 out:
2452 	delayacct_freepages_end();
2453 
2454 	if (sc->nr_reclaimed)
2455 		return sc->nr_reclaimed;
2456 
2457 	/*
2458 	 * As hibernation is going on, kswapd is freezed so that it can't mark
2459 	 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2460 	 * check.
2461 	 */
2462 	if (oom_killer_disabled)
2463 		return 0;
2464 
2465 	/* Aborted reclaim to try compaction? don't OOM, then */
2466 	if (aborted_reclaim)
2467 		return 1;
2468 
2469 	/* top priority shrink_zones still had more to do? don't OOM, then */
2470 	if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2471 		return 1;
2472 
2473 	return 0;
2474 }
2475 
2476 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2477 {
2478 	struct zone *zone;
2479 	unsigned long pfmemalloc_reserve = 0;
2480 	unsigned long free_pages = 0;
2481 	int i;
2482 	bool wmark_ok;
2483 
2484 	for (i = 0; i <= ZONE_NORMAL; i++) {
2485 		zone = &pgdat->node_zones[i];
2486 		pfmemalloc_reserve += min_wmark_pages(zone);
2487 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
2488 	}
2489 
2490 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
2491 
2492 	/* kswapd must be awake if processes are being throttled */
2493 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2494 		pgdat->classzone_idx = min(pgdat->classzone_idx,
2495 						(enum zone_type)ZONE_NORMAL);
2496 		wake_up_interruptible(&pgdat->kswapd_wait);
2497 	}
2498 
2499 	return wmark_ok;
2500 }
2501 
2502 /*
2503  * Throttle direct reclaimers if backing storage is backed by the network
2504  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2505  * depleted. kswapd will continue to make progress and wake the processes
2506  * when the low watermark is reached.
2507  *
2508  * Returns true if a fatal signal was delivered during throttling. If this
2509  * happens, the page allocator should not consider triggering the OOM killer.
2510  */
2511 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2512 					nodemask_t *nodemask)
2513 {
2514 	struct zone *zone;
2515 	int high_zoneidx = gfp_zone(gfp_mask);
2516 	pg_data_t *pgdat;
2517 
2518 	/*
2519 	 * Kernel threads should not be throttled as they may be indirectly
2520 	 * responsible for cleaning pages necessary for reclaim to make forward
2521 	 * progress. kjournald for example may enter direct reclaim while
2522 	 * committing a transaction where throttling it could forcing other
2523 	 * processes to block on log_wait_commit().
2524 	 */
2525 	if (current->flags & PF_KTHREAD)
2526 		goto out;
2527 
2528 	/*
2529 	 * If a fatal signal is pending, this process should not throttle.
2530 	 * It should return quickly so it can exit and free its memory
2531 	 */
2532 	if (fatal_signal_pending(current))
2533 		goto out;
2534 
2535 	/* Check if the pfmemalloc reserves are ok */
2536 	first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone);
2537 	pgdat = zone->zone_pgdat;
2538 	if (pfmemalloc_watermark_ok(pgdat))
2539 		goto out;
2540 
2541 	/* Account for the throttling */
2542 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
2543 
2544 	/*
2545 	 * If the caller cannot enter the filesystem, it's possible that it
2546 	 * is due to the caller holding an FS lock or performing a journal
2547 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
2548 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
2549 	 * blocked waiting on the same lock. Instead, throttle for up to a
2550 	 * second before continuing.
2551 	 */
2552 	if (!(gfp_mask & __GFP_FS)) {
2553 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2554 			pfmemalloc_watermark_ok(pgdat), HZ);
2555 
2556 		goto check_pending;
2557 	}
2558 
2559 	/* Throttle until kswapd wakes the process */
2560 	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2561 		pfmemalloc_watermark_ok(pgdat));
2562 
2563 check_pending:
2564 	if (fatal_signal_pending(current))
2565 		return true;
2566 
2567 out:
2568 	return false;
2569 }
2570 
2571 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2572 				gfp_t gfp_mask, nodemask_t *nodemask)
2573 {
2574 	unsigned long nr_reclaimed;
2575 	struct scan_control sc = {
2576 		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2577 		.may_writepage = !laptop_mode,
2578 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2579 		.may_unmap = 1,
2580 		.may_swap = 1,
2581 		.order = order,
2582 		.priority = DEF_PRIORITY,
2583 		.target_mem_cgroup = NULL,
2584 		.nodemask = nodemask,
2585 	};
2586 	struct shrink_control shrink = {
2587 		.gfp_mask = sc.gfp_mask,
2588 	};
2589 
2590 	/*
2591 	 * Do not enter reclaim if fatal signal was delivered while throttled.
2592 	 * 1 is returned so that the page allocator does not OOM kill at this
2593 	 * point.
2594 	 */
2595 	if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2596 		return 1;
2597 
2598 	trace_mm_vmscan_direct_reclaim_begin(order,
2599 				sc.may_writepage,
2600 				gfp_mask);
2601 
2602 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2603 
2604 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2605 
2606 	return nr_reclaimed;
2607 }
2608 
2609 #ifdef CONFIG_MEMCG
2610 
2611 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2612 						gfp_t gfp_mask, bool noswap,
2613 						struct zone *zone,
2614 						unsigned long *nr_scanned)
2615 {
2616 	struct scan_control sc = {
2617 		.nr_scanned = 0,
2618 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2619 		.may_writepage = !laptop_mode,
2620 		.may_unmap = 1,
2621 		.may_swap = !noswap,
2622 		.order = 0,
2623 		.priority = 0,
2624 		.target_mem_cgroup = memcg,
2625 	};
2626 	struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2627 
2628 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2629 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2630 
2631 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2632 						      sc.may_writepage,
2633 						      sc.gfp_mask);
2634 
2635 	/*
2636 	 * NOTE: Although we can get the priority field, using it
2637 	 * here is not a good idea, since it limits the pages we can scan.
2638 	 * if we don't reclaim here, the shrink_zone from balance_pgdat
2639 	 * will pick up pages from other mem cgroup's as well. We hack
2640 	 * the priority and make it zero.
2641 	 */
2642 	shrink_lruvec(lruvec, &sc);
2643 
2644 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2645 
2646 	*nr_scanned = sc.nr_scanned;
2647 	return sc.nr_reclaimed;
2648 }
2649 
2650 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2651 					   gfp_t gfp_mask,
2652 					   bool noswap)
2653 {
2654 	struct zonelist *zonelist;
2655 	unsigned long nr_reclaimed;
2656 	int nid;
2657 	struct scan_control sc = {
2658 		.may_writepage = !laptop_mode,
2659 		.may_unmap = 1,
2660 		.may_swap = !noswap,
2661 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2662 		.order = 0,
2663 		.priority = DEF_PRIORITY,
2664 		.target_mem_cgroup = memcg,
2665 		.nodemask = NULL, /* we don't care the placement */
2666 		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2667 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2668 	};
2669 	struct shrink_control shrink = {
2670 		.gfp_mask = sc.gfp_mask,
2671 	};
2672 
2673 	/*
2674 	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2675 	 * take care of from where we get pages. So the node where we start the
2676 	 * scan does not need to be the current node.
2677 	 */
2678 	nid = mem_cgroup_select_victim_node(memcg);
2679 
2680 	zonelist = NODE_DATA(nid)->node_zonelists;
2681 
2682 	trace_mm_vmscan_memcg_reclaim_begin(0,
2683 					    sc.may_writepage,
2684 					    sc.gfp_mask);
2685 
2686 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2687 
2688 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2689 
2690 	return nr_reclaimed;
2691 }
2692 #endif
2693 
2694 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2695 {
2696 	struct mem_cgroup *memcg;
2697 
2698 	if (!total_swap_pages)
2699 		return;
2700 
2701 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
2702 	do {
2703 		struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2704 
2705 		if (inactive_anon_is_low(lruvec))
2706 			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2707 					   sc, LRU_ACTIVE_ANON);
2708 
2709 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
2710 	} while (memcg);
2711 }
2712 
2713 static bool zone_balanced(struct zone *zone, int order,
2714 			  unsigned long balance_gap, int classzone_idx)
2715 {
2716 	if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2717 				    balance_gap, classzone_idx, 0))
2718 		return false;
2719 
2720 	if (IS_ENABLED(CONFIG_COMPACTION) && order &&
2721 	    !compaction_suitable(zone, order))
2722 		return false;
2723 
2724 	return true;
2725 }
2726 
2727 /*
2728  * pgdat_balanced() is used when checking if a node is balanced.
2729  *
2730  * For order-0, all zones must be balanced!
2731  *
2732  * For high-order allocations only zones that meet watermarks and are in a
2733  * zone allowed by the callers classzone_idx are added to balanced_pages. The
2734  * total of balanced pages must be at least 25% of the zones allowed by
2735  * classzone_idx for the node to be considered balanced. Forcing all zones to
2736  * be balanced for high orders can cause excessive reclaim when there are
2737  * imbalanced zones.
2738  * The choice of 25% is due to
2739  *   o a 16M DMA zone that is balanced will not balance a zone on any
2740  *     reasonable sized machine
2741  *   o On all other machines, the top zone must be at least a reasonable
2742  *     percentage of the middle zones. For example, on 32-bit x86, highmem
2743  *     would need to be at least 256M for it to be balance a whole node.
2744  *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2745  *     to balance a node on its own. These seemed like reasonable ratios.
2746  */
2747 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
2748 {
2749 	unsigned long managed_pages = 0;
2750 	unsigned long balanced_pages = 0;
2751 	int i;
2752 
2753 	/* Check the watermark levels */
2754 	for (i = 0; i <= classzone_idx; i++) {
2755 		struct zone *zone = pgdat->node_zones + i;
2756 
2757 		if (!populated_zone(zone))
2758 			continue;
2759 
2760 		managed_pages += zone->managed_pages;
2761 
2762 		/*
2763 		 * A special case here:
2764 		 *
2765 		 * balance_pgdat() skips over all_unreclaimable after
2766 		 * DEF_PRIORITY. Effectively, it considers them balanced so
2767 		 * they must be considered balanced here as well!
2768 		 */
2769 		if (!zone_reclaimable(zone)) {
2770 			balanced_pages += zone->managed_pages;
2771 			continue;
2772 		}
2773 
2774 		if (zone_balanced(zone, order, 0, i))
2775 			balanced_pages += zone->managed_pages;
2776 		else if (!order)
2777 			return false;
2778 	}
2779 
2780 	if (order)
2781 		return balanced_pages >= (managed_pages >> 2);
2782 	else
2783 		return true;
2784 }
2785 
2786 /*
2787  * Prepare kswapd for sleeping. This verifies that there are no processes
2788  * waiting in throttle_direct_reclaim() and that watermarks have been met.
2789  *
2790  * Returns true if kswapd is ready to sleep
2791  */
2792 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2793 					int classzone_idx)
2794 {
2795 	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2796 	if (remaining)
2797 		return false;
2798 
2799 	/*
2800 	 * There is a potential race between when kswapd checks its watermarks
2801 	 * and a process gets throttled. There is also a potential race if
2802 	 * processes get throttled, kswapd wakes, a large process exits therby
2803 	 * balancing the zones that causes kswapd to miss a wakeup. If kswapd
2804 	 * is going to sleep, no process should be sleeping on pfmemalloc_wait
2805 	 * so wake them now if necessary. If necessary, processes will wake
2806 	 * kswapd and get throttled again
2807 	 */
2808 	if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
2809 		wake_up(&pgdat->pfmemalloc_wait);
2810 		return false;
2811 	}
2812 
2813 	return pgdat_balanced(pgdat, order, classzone_idx);
2814 }
2815 
2816 /*
2817  * kswapd shrinks the zone by the number of pages required to reach
2818  * the high watermark.
2819  *
2820  * Returns true if kswapd scanned at least the requested number of pages to
2821  * reclaim or if the lack of progress was due to pages under writeback.
2822  * This is used to determine if the scanning priority needs to be raised.
2823  */
2824 static bool kswapd_shrink_zone(struct zone *zone,
2825 			       int classzone_idx,
2826 			       struct scan_control *sc,
2827 			       unsigned long lru_pages,
2828 			       unsigned long *nr_attempted)
2829 {
2830 	int testorder = sc->order;
2831 	unsigned long balance_gap;
2832 	struct reclaim_state *reclaim_state = current->reclaim_state;
2833 	struct shrink_control shrink = {
2834 		.gfp_mask = sc->gfp_mask,
2835 	};
2836 	bool lowmem_pressure;
2837 
2838 	/* Reclaim above the high watermark. */
2839 	sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
2840 
2841 	/*
2842 	 * Kswapd reclaims only single pages with compaction enabled. Trying
2843 	 * too hard to reclaim until contiguous free pages have become
2844 	 * available can hurt performance by evicting too much useful data
2845 	 * from memory. Do not reclaim more than needed for compaction.
2846 	 */
2847 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2848 			compaction_suitable(zone, sc->order) !=
2849 				COMPACT_SKIPPED)
2850 		testorder = 0;
2851 
2852 	/*
2853 	 * We put equal pressure on every zone, unless one zone has way too
2854 	 * many pages free already. The "too many pages" is defined as the
2855 	 * high wmark plus a "gap" where the gap is either the low
2856 	 * watermark or 1% of the zone, whichever is smaller.
2857 	 */
2858 	balance_gap = min(low_wmark_pages(zone),
2859 		(zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2860 		KSWAPD_ZONE_BALANCE_GAP_RATIO);
2861 
2862 	/*
2863 	 * If there is no low memory pressure or the zone is balanced then no
2864 	 * reclaim is necessary
2865 	 */
2866 	lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
2867 	if (!lowmem_pressure && zone_balanced(zone, testorder,
2868 						balance_gap, classzone_idx))
2869 		return true;
2870 
2871 	shrink_zone(zone, sc);
2872 	nodes_clear(shrink.nodes_to_scan);
2873 	node_set(zone_to_nid(zone), shrink.nodes_to_scan);
2874 
2875 	reclaim_state->reclaimed_slab = 0;
2876 	shrink_slab(&shrink, sc->nr_scanned, lru_pages);
2877 	sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2878 
2879 	/* Account for the number of pages attempted to reclaim */
2880 	*nr_attempted += sc->nr_to_reclaim;
2881 
2882 	zone_clear_flag(zone, ZONE_WRITEBACK);
2883 
2884 	/*
2885 	 * If a zone reaches its high watermark, consider it to be no longer
2886 	 * congested. It's possible there are dirty pages backed by congested
2887 	 * BDIs but as pressure is relieved, speculatively avoid congestion
2888 	 * waits.
2889 	 */
2890 	if (zone_reclaimable(zone) &&
2891 	    zone_balanced(zone, testorder, 0, classzone_idx)) {
2892 		zone_clear_flag(zone, ZONE_CONGESTED);
2893 		zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
2894 	}
2895 
2896 	return sc->nr_scanned >= sc->nr_to_reclaim;
2897 }
2898 
2899 /*
2900  * For kswapd, balance_pgdat() will work across all this node's zones until
2901  * they are all at high_wmark_pages(zone).
2902  *
2903  * Returns the final order kswapd was reclaiming at
2904  *
2905  * There is special handling here for zones which are full of pinned pages.
2906  * This can happen if the pages are all mlocked, or if they are all used by
2907  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2908  * What we do is to detect the case where all pages in the zone have been
2909  * scanned twice and there has been zero successful reclaim.  Mark the zone as
2910  * dead and from now on, only perform a short scan.  Basically we're polling
2911  * the zone for when the problem goes away.
2912  *
2913  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2914  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2915  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2916  * lower zones regardless of the number of free pages in the lower zones. This
2917  * interoperates with the page allocator fallback scheme to ensure that aging
2918  * of pages is balanced across the zones.
2919  */
2920 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2921 							int *classzone_idx)
2922 {
2923 	int i;
2924 	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
2925 	unsigned long nr_soft_reclaimed;
2926 	unsigned long nr_soft_scanned;
2927 	struct scan_control sc = {
2928 		.gfp_mask = GFP_KERNEL,
2929 		.priority = DEF_PRIORITY,
2930 		.may_unmap = 1,
2931 		.may_swap = 1,
2932 		.may_writepage = !laptop_mode,
2933 		.order = order,
2934 		.target_mem_cgroup = NULL,
2935 	};
2936 	count_vm_event(PAGEOUTRUN);
2937 
2938 	do {
2939 		unsigned long lru_pages = 0;
2940 		unsigned long nr_attempted = 0;
2941 		bool raise_priority = true;
2942 		bool pgdat_needs_compaction = (order > 0);
2943 
2944 		sc.nr_reclaimed = 0;
2945 
2946 		/*
2947 		 * Scan in the highmem->dma direction for the highest
2948 		 * zone which needs scanning
2949 		 */
2950 		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2951 			struct zone *zone = pgdat->node_zones + i;
2952 
2953 			if (!populated_zone(zone))
2954 				continue;
2955 
2956 			if (sc.priority != DEF_PRIORITY &&
2957 			    !zone_reclaimable(zone))
2958 				continue;
2959 
2960 			/*
2961 			 * Do some background aging of the anon list, to give
2962 			 * pages a chance to be referenced before reclaiming.
2963 			 */
2964 			age_active_anon(zone, &sc);
2965 
2966 			/*
2967 			 * If the number of buffer_heads in the machine
2968 			 * exceeds the maximum allowed level and this node
2969 			 * has a highmem zone, force kswapd to reclaim from
2970 			 * it to relieve lowmem pressure.
2971 			 */
2972 			if (buffer_heads_over_limit && is_highmem_idx(i)) {
2973 				end_zone = i;
2974 				break;
2975 			}
2976 
2977 			if (!zone_balanced(zone, order, 0, 0)) {
2978 				end_zone = i;
2979 				break;
2980 			} else {
2981 				/*
2982 				 * If balanced, clear the dirty and congested
2983 				 * flags
2984 				 */
2985 				zone_clear_flag(zone, ZONE_CONGESTED);
2986 				zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
2987 			}
2988 		}
2989 
2990 		if (i < 0)
2991 			goto out;
2992 
2993 		for (i = 0; i <= end_zone; i++) {
2994 			struct zone *zone = pgdat->node_zones + i;
2995 
2996 			if (!populated_zone(zone))
2997 				continue;
2998 
2999 			lru_pages += zone_reclaimable_pages(zone);
3000 
3001 			/*
3002 			 * If any zone is currently balanced then kswapd will
3003 			 * not call compaction as it is expected that the
3004 			 * necessary pages are already available.
3005 			 */
3006 			if (pgdat_needs_compaction &&
3007 					zone_watermark_ok(zone, order,
3008 						low_wmark_pages(zone),
3009 						*classzone_idx, 0))
3010 				pgdat_needs_compaction = false;
3011 		}
3012 
3013 		/*
3014 		 * If we're getting trouble reclaiming, start doing writepage
3015 		 * even in laptop mode.
3016 		 */
3017 		if (sc.priority < DEF_PRIORITY - 2)
3018 			sc.may_writepage = 1;
3019 
3020 		/*
3021 		 * Now scan the zone in the dma->highmem direction, stopping
3022 		 * at the last zone which needs scanning.
3023 		 *
3024 		 * We do this because the page allocator works in the opposite
3025 		 * direction.  This prevents the page allocator from allocating
3026 		 * pages behind kswapd's direction of progress, which would
3027 		 * cause too much scanning of the lower zones.
3028 		 */
3029 		for (i = 0; i <= end_zone; i++) {
3030 			struct zone *zone = pgdat->node_zones + i;
3031 
3032 			if (!populated_zone(zone))
3033 				continue;
3034 
3035 			if (sc.priority != DEF_PRIORITY &&
3036 			    !zone_reclaimable(zone))
3037 				continue;
3038 
3039 			sc.nr_scanned = 0;
3040 
3041 			nr_soft_scanned = 0;
3042 			/*
3043 			 * Call soft limit reclaim before calling shrink_zone.
3044 			 */
3045 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
3046 							order, sc.gfp_mask,
3047 							&nr_soft_scanned);
3048 			sc.nr_reclaimed += nr_soft_reclaimed;
3049 
3050 			/*
3051 			 * There should be no need to raise the scanning
3052 			 * priority if enough pages are already being scanned
3053 			 * that that high watermark would be met at 100%
3054 			 * efficiency.
3055 			 */
3056 			if (kswapd_shrink_zone(zone, end_zone, &sc,
3057 					lru_pages, &nr_attempted))
3058 				raise_priority = false;
3059 		}
3060 
3061 		/*
3062 		 * If the low watermark is met there is no need for processes
3063 		 * to be throttled on pfmemalloc_wait as they should not be
3064 		 * able to safely make forward progress. Wake them
3065 		 */
3066 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3067 				pfmemalloc_watermark_ok(pgdat))
3068 			wake_up(&pgdat->pfmemalloc_wait);
3069 
3070 		/*
3071 		 * Fragmentation may mean that the system cannot be rebalanced
3072 		 * for high-order allocations in all zones. If twice the
3073 		 * allocation size has been reclaimed and the zones are still
3074 		 * not balanced then recheck the watermarks at order-0 to
3075 		 * prevent kswapd reclaiming excessively. Assume that a
3076 		 * process requested a high-order can direct reclaim/compact.
3077 		 */
3078 		if (order && sc.nr_reclaimed >= 2UL << order)
3079 			order = sc.order = 0;
3080 
3081 		/* Check if kswapd should be suspending */
3082 		if (try_to_freeze() || kthread_should_stop())
3083 			break;
3084 
3085 		/*
3086 		 * Compact if necessary and kswapd is reclaiming at least the
3087 		 * high watermark number of pages as requsted
3088 		 */
3089 		if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
3090 			compact_pgdat(pgdat, order);
3091 
3092 		/*
3093 		 * Raise priority if scanning rate is too low or there was no
3094 		 * progress in reclaiming pages
3095 		 */
3096 		if (raise_priority || !sc.nr_reclaimed)
3097 			sc.priority--;
3098 	} while (sc.priority >= 1 &&
3099 		 !pgdat_balanced(pgdat, order, *classzone_idx));
3100 
3101 out:
3102 	/*
3103 	 * Return the order we were reclaiming at so prepare_kswapd_sleep()
3104 	 * makes a decision on the order we were last reclaiming at. However,
3105 	 * if another caller entered the allocator slow path while kswapd
3106 	 * was awake, order will remain at the higher level
3107 	 */
3108 	*classzone_idx = end_zone;
3109 	return order;
3110 }
3111 
3112 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3113 {
3114 	long remaining = 0;
3115 	DEFINE_WAIT(wait);
3116 
3117 	if (freezing(current) || kthread_should_stop())
3118 		return;
3119 
3120 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3121 
3122 	/* Try to sleep for a short interval */
3123 	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3124 		remaining = schedule_timeout(HZ/10);
3125 		finish_wait(&pgdat->kswapd_wait, &wait);
3126 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3127 	}
3128 
3129 	/*
3130 	 * After a short sleep, check if it was a premature sleep. If not, then
3131 	 * go fully to sleep until explicitly woken up.
3132 	 */
3133 	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3134 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3135 
3136 		/*
3137 		 * vmstat counters are not perfectly accurate and the estimated
3138 		 * value for counters such as NR_FREE_PAGES can deviate from the
3139 		 * true value by nr_online_cpus * threshold. To avoid the zone
3140 		 * watermarks being breached while under pressure, we reduce the
3141 		 * per-cpu vmstat threshold while kswapd is awake and restore
3142 		 * them before going back to sleep.
3143 		 */
3144 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3145 
3146 		/*
3147 		 * Compaction records what page blocks it recently failed to
3148 		 * isolate pages from and skips them in the future scanning.
3149 		 * When kswapd is going to sleep, it is reasonable to assume
3150 		 * that pages and compaction may succeed so reset the cache.
3151 		 */
3152 		reset_isolation_suitable(pgdat);
3153 
3154 		if (!kthread_should_stop())
3155 			schedule();
3156 
3157 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3158 	} else {
3159 		if (remaining)
3160 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3161 		else
3162 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3163 	}
3164 	finish_wait(&pgdat->kswapd_wait, &wait);
3165 }
3166 
3167 /*
3168  * The background pageout daemon, started as a kernel thread
3169  * from the init process.
3170  *
3171  * This basically trickles out pages so that we have _some_
3172  * free memory available even if there is no other activity
3173  * that frees anything up. This is needed for things like routing
3174  * etc, where we otherwise might have all activity going on in
3175  * asynchronous contexts that cannot page things out.
3176  *
3177  * If there are applications that are active memory-allocators
3178  * (most normal use), this basically shouldn't matter.
3179  */
3180 static int kswapd(void *p)
3181 {
3182 	unsigned long order, new_order;
3183 	unsigned balanced_order;
3184 	int classzone_idx, new_classzone_idx;
3185 	int balanced_classzone_idx;
3186 	pg_data_t *pgdat = (pg_data_t*)p;
3187 	struct task_struct *tsk = current;
3188 
3189 	struct reclaim_state reclaim_state = {
3190 		.reclaimed_slab = 0,
3191 	};
3192 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3193 
3194 	lockdep_set_current_reclaim_state(GFP_KERNEL);
3195 
3196 	if (!cpumask_empty(cpumask))
3197 		set_cpus_allowed_ptr(tsk, cpumask);
3198 	current->reclaim_state = &reclaim_state;
3199 
3200 	/*
3201 	 * Tell the memory management that we're a "memory allocator",
3202 	 * and that if we need more memory we should get access to it
3203 	 * regardless (see "__alloc_pages()"). "kswapd" should
3204 	 * never get caught in the normal page freeing logic.
3205 	 *
3206 	 * (Kswapd normally doesn't need memory anyway, but sometimes
3207 	 * you need a small amount of memory in order to be able to
3208 	 * page out something else, and this flag essentially protects
3209 	 * us from recursively trying to free more memory as we're
3210 	 * trying to free the first piece of memory in the first place).
3211 	 */
3212 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3213 	set_freezable();
3214 
3215 	order = new_order = 0;
3216 	balanced_order = 0;
3217 	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3218 	balanced_classzone_idx = classzone_idx;
3219 	for ( ; ; ) {
3220 		bool ret;
3221 
3222 		/*
3223 		 * If the last balance_pgdat was unsuccessful it's unlikely a
3224 		 * new request of a similar or harder type will succeed soon
3225 		 * so consider going to sleep on the basis we reclaimed at
3226 		 */
3227 		if (balanced_classzone_idx >= new_classzone_idx &&
3228 					balanced_order == new_order) {
3229 			new_order = pgdat->kswapd_max_order;
3230 			new_classzone_idx = pgdat->classzone_idx;
3231 			pgdat->kswapd_max_order =  0;
3232 			pgdat->classzone_idx = pgdat->nr_zones - 1;
3233 		}
3234 
3235 		if (order < new_order || classzone_idx > new_classzone_idx) {
3236 			/*
3237 			 * Don't sleep if someone wants a larger 'order'
3238 			 * allocation or has tigher zone constraints
3239 			 */
3240 			order = new_order;
3241 			classzone_idx = new_classzone_idx;
3242 		} else {
3243 			kswapd_try_to_sleep(pgdat, balanced_order,
3244 						balanced_classzone_idx);
3245 			order = pgdat->kswapd_max_order;
3246 			classzone_idx = pgdat->classzone_idx;
3247 			new_order = order;
3248 			new_classzone_idx = classzone_idx;
3249 			pgdat->kswapd_max_order = 0;
3250 			pgdat->classzone_idx = pgdat->nr_zones - 1;
3251 		}
3252 
3253 		ret = try_to_freeze();
3254 		if (kthread_should_stop())
3255 			break;
3256 
3257 		/*
3258 		 * We can speed up thawing tasks if we don't call balance_pgdat
3259 		 * after returning from the refrigerator
3260 		 */
3261 		if (!ret) {
3262 			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3263 			balanced_classzone_idx = classzone_idx;
3264 			balanced_order = balance_pgdat(pgdat, order,
3265 						&balanced_classzone_idx);
3266 		}
3267 	}
3268 
3269 	current->reclaim_state = NULL;
3270 	return 0;
3271 }
3272 
3273 /*
3274  * A zone is low on free memory, so wake its kswapd task to service it.
3275  */
3276 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3277 {
3278 	pg_data_t *pgdat;
3279 
3280 	if (!populated_zone(zone))
3281 		return;
3282 
3283 	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
3284 		return;
3285 	pgdat = zone->zone_pgdat;
3286 	if (pgdat->kswapd_max_order < order) {
3287 		pgdat->kswapd_max_order = order;
3288 		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3289 	}
3290 	if (!waitqueue_active(&pgdat->kswapd_wait))
3291 		return;
3292 	if (zone_balanced(zone, order, 0, 0))
3293 		return;
3294 
3295 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3296 	wake_up_interruptible(&pgdat->kswapd_wait);
3297 }
3298 
3299 /*
3300  * The reclaimable count would be mostly accurate.
3301  * The less reclaimable pages may be
3302  * - mlocked pages, which will be moved to unevictable list when encountered
3303  * - mapped pages, which may require several travels to be reclaimed
3304  * - dirty pages, which is not "instantly" reclaimable
3305  */
3306 unsigned long global_reclaimable_pages(void)
3307 {
3308 	int nr;
3309 
3310 	nr = global_page_state(NR_ACTIVE_FILE) +
3311 	     global_page_state(NR_INACTIVE_FILE);
3312 
3313 	if (get_nr_swap_pages() > 0)
3314 		nr += global_page_state(NR_ACTIVE_ANON) +
3315 		      global_page_state(NR_INACTIVE_ANON);
3316 
3317 	return nr;
3318 }
3319 
3320 #ifdef CONFIG_HIBERNATION
3321 /*
3322  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3323  * freed pages.
3324  *
3325  * Rather than trying to age LRUs the aim is to preserve the overall
3326  * LRU order by reclaiming preferentially
3327  * inactive > active > active referenced > active mapped
3328  */
3329 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3330 {
3331 	struct reclaim_state reclaim_state;
3332 	struct scan_control sc = {
3333 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3334 		.may_swap = 1,
3335 		.may_unmap = 1,
3336 		.may_writepage = 1,
3337 		.nr_to_reclaim = nr_to_reclaim,
3338 		.hibernation_mode = 1,
3339 		.order = 0,
3340 		.priority = DEF_PRIORITY,
3341 	};
3342 	struct shrink_control shrink = {
3343 		.gfp_mask = sc.gfp_mask,
3344 	};
3345 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3346 	struct task_struct *p = current;
3347 	unsigned long nr_reclaimed;
3348 
3349 	p->flags |= PF_MEMALLOC;
3350 	lockdep_set_current_reclaim_state(sc.gfp_mask);
3351 	reclaim_state.reclaimed_slab = 0;
3352 	p->reclaim_state = &reclaim_state;
3353 
3354 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3355 
3356 	p->reclaim_state = NULL;
3357 	lockdep_clear_current_reclaim_state();
3358 	p->flags &= ~PF_MEMALLOC;
3359 
3360 	return nr_reclaimed;
3361 }
3362 #endif /* CONFIG_HIBERNATION */
3363 
3364 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3365    not required for correctness.  So if the last cpu in a node goes
3366    away, we get changed to run anywhere: as the first one comes back,
3367    restore their cpu bindings. */
3368 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3369 			void *hcpu)
3370 {
3371 	int nid;
3372 
3373 	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3374 		for_each_node_state(nid, N_MEMORY) {
3375 			pg_data_t *pgdat = NODE_DATA(nid);
3376 			const struct cpumask *mask;
3377 
3378 			mask = cpumask_of_node(pgdat->node_id);
3379 
3380 			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3381 				/* One of our CPUs online: restore mask */
3382 				set_cpus_allowed_ptr(pgdat->kswapd, mask);
3383 		}
3384 	}
3385 	return NOTIFY_OK;
3386 }
3387 
3388 /*
3389  * This kswapd start function will be called by init and node-hot-add.
3390  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3391  */
3392 int kswapd_run(int nid)
3393 {
3394 	pg_data_t *pgdat = NODE_DATA(nid);
3395 	int ret = 0;
3396 
3397 	if (pgdat->kswapd)
3398 		return 0;
3399 
3400 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3401 	if (IS_ERR(pgdat->kswapd)) {
3402 		/* failure at boot is fatal */
3403 		BUG_ON(system_state == SYSTEM_BOOTING);
3404 		pr_err("Failed to start kswapd on node %d\n", nid);
3405 		ret = PTR_ERR(pgdat->kswapd);
3406 		pgdat->kswapd = NULL;
3407 	}
3408 	return ret;
3409 }
3410 
3411 /*
3412  * Called by memory hotplug when all memory in a node is offlined.  Caller must
3413  * hold lock_memory_hotplug().
3414  */
3415 void kswapd_stop(int nid)
3416 {
3417 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3418 
3419 	if (kswapd) {
3420 		kthread_stop(kswapd);
3421 		NODE_DATA(nid)->kswapd = NULL;
3422 	}
3423 }
3424 
3425 static int __init kswapd_init(void)
3426 {
3427 	int nid;
3428 
3429 	swap_setup();
3430 	for_each_node_state(nid, N_MEMORY)
3431  		kswapd_run(nid);
3432 	hotcpu_notifier(cpu_callback, 0);
3433 	return 0;
3434 }
3435 
3436 module_init(kswapd_init)
3437 
3438 #ifdef CONFIG_NUMA
3439 /*
3440  * Zone reclaim mode
3441  *
3442  * If non-zero call zone_reclaim when the number of free pages falls below
3443  * the watermarks.
3444  */
3445 int zone_reclaim_mode __read_mostly;
3446 
3447 #define RECLAIM_OFF 0
3448 #define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3449 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3450 #define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
3451 
3452 /*
3453  * Priority for ZONE_RECLAIM. This determines the fraction of pages
3454  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3455  * a zone.
3456  */
3457 #define ZONE_RECLAIM_PRIORITY 4
3458 
3459 /*
3460  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3461  * occur.
3462  */
3463 int sysctl_min_unmapped_ratio = 1;
3464 
3465 /*
3466  * If the number of slab pages in a zone grows beyond this percentage then
3467  * slab reclaim needs to occur.
3468  */
3469 int sysctl_min_slab_ratio = 5;
3470 
3471 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3472 {
3473 	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3474 	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3475 		zone_page_state(zone, NR_ACTIVE_FILE);
3476 
3477 	/*
3478 	 * It's possible for there to be more file mapped pages than
3479 	 * accounted for by the pages on the file LRU lists because
3480 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3481 	 */
3482 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3483 }
3484 
3485 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3486 static long zone_pagecache_reclaimable(struct zone *zone)
3487 {
3488 	long nr_pagecache_reclaimable;
3489 	long delta = 0;
3490 
3491 	/*
3492 	 * If RECLAIM_SWAP is set, then all file pages are considered
3493 	 * potentially reclaimable. Otherwise, we have to worry about
3494 	 * pages like swapcache and zone_unmapped_file_pages() provides
3495 	 * a better estimate
3496 	 */
3497 	if (zone_reclaim_mode & RECLAIM_SWAP)
3498 		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3499 	else
3500 		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3501 
3502 	/* If we can't clean pages, remove dirty pages from consideration */
3503 	if (!(zone_reclaim_mode & RECLAIM_WRITE))
3504 		delta += zone_page_state(zone, NR_FILE_DIRTY);
3505 
3506 	/* Watch for any possible underflows due to delta */
3507 	if (unlikely(delta > nr_pagecache_reclaimable))
3508 		delta = nr_pagecache_reclaimable;
3509 
3510 	return nr_pagecache_reclaimable - delta;
3511 }
3512 
3513 /*
3514  * Try to free up some pages from this zone through reclaim.
3515  */
3516 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3517 {
3518 	/* Minimum pages needed in order to stay on node */
3519 	const unsigned long nr_pages = 1 << order;
3520 	struct task_struct *p = current;
3521 	struct reclaim_state reclaim_state;
3522 	struct scan_control sc = {
3523 		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3524 		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3525 		.may_swap = 1,
3526 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3527 		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3528 		.order = order,
3529 		.priority = ZONE_RECLAIM_PRIORITY,
3530 	};
3531 	struct shrink_control shrink = {
3532 		.gfp_mask = sc.gfp_mask,
3533 	};
3534 	unsigned long nr_slab_pages0, nr_slab_pages1;
3535 
3536 	cond_resched();
3537 	/*
3538 	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3539 	 * and we also need to be able to write out pages for RECLAIM_WRITE
3540 	 * and RECLAIM_SWAP.
3541 	 */
3542 	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3543 	lockdep_set_current_reclaim_state(gfp_mask);
3544 	reclaim_state.reclaimed_slab = 0;
3545 	p->reclaim_state = &reclaim_state;
3546 
3547 	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3548 		/*
3549 		 * Free memory by calling shrink zone with increasing
3550 		 * priorities until we have enough memory freed.
3551 		 */
3552 		do {
3553 			shrink_zone(zone, &sc);
3554 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3555 	}
3556 
3557 	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3558 	if (nr_slab_pages0 > zone->min_slab_pages) {
3559 		/*
3560 		 * shrink_slab() does not currently allow us to determine how
3561 		 * many pages were freed in this zone. So we take the current
3562 		 * number of slab pages and shake the slab until it is reduced
3563 		 * by the same nr_pages that we used for reclaiming unmapped
3564 		 * pages.
3565 		 */
3566 		nodes_clear(shrink.nodes_to_scan);
3567 		node_set(zone_to_nid(zone), shrink.nodes_to_scan);
3568 		for (;;) {
3569 			unsigned long lru_pages = zone_reclaimable_pages(zone);
3570 
3571 			/* No reclaimable slab or very low memory pressure */
3572 			if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3573 				break;
3574 
3575 			/* Freed enough memory */
3576 			nr_slab_pages1 = zone_page_state(zone,
3577 							NR_SLAB_RECLAIMABLE);
3578 			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3579 				break;
3580 		}
3581 
3582 		/*
3583 		 * Update nr_reclaimed by the number of slab pages we
3584 		 * reclaimed from this zone.
3585 		 */
3586 		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3587 		if (nr_slab_pages1 < nr_slab_pages0)
3588 			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3589 	}
3590 
3591 	p->reclaim_state = NULL;
3592 	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3593 	lockdep_clear_current_reclaim_state();
3594 	return sc.nr_reclaimed >= nr_pages;
3595 }
3596 
3597 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3598 {
3599 	int node_id;
3600 	int ret;
3601 
3602 	/*
3603 	 * Zone reclaim reclaims unmapped file backed pages and
3604 	 * slab pages if we are over the defined limits.
3605 	 *
3606 	 * A small portion of unmapped file backed pages is needed for
3607 	 * file I/O otherwise pages read by file I/O will be immediately
3608 	 * thrown out if the zone is overallocated. So we do not reclaim
3609 	 * if less than a specified percentage of the zone is used by
3610 	 * unmapped file backed pages.
3611 	 */
3612 	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3613 	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3614 		return ZONE_RECLAIM_FULL;
3615 
3616 	if (!zone_reclaimable(zone))
3617 		return ZONE_RECLAIM_FULL;
3618 
3619 	/*
3620 	 * Do not scan if the allocation should not be delayed.
3621 	 */
3622 	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3623 		return ZONE_RECLAIM_NOSCAN;
3624 
3625 	/*
3626 	 * Only run zone reclaim on the local zone or on zones that do not
3627 	 * have associated processors. This will favor the local processor
3628 	 * over remote processors and spread off node memory allocations
3629 	 * as wide as possible.
3630 	 */
3631 	node_id = zone_to_nid(zone);
3632 	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3633 		return ZONE_RECLAIM_NOSCAN;
3634 
3635 	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3636 		return ZONE_RECLAIM_NOSCAN;
3637 
3638 	ret = __zone_reclaim(zone, gfp_mask, order);
3639 	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3640 
3641 	if (!ret)
3642 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3643 
3644 	return ret;
3645 }
3646 #endif
3647 
3648 /*
3649  * page_evictable - test whether a page is evictable
3650  * @page: the page to test
3651  *
3652  * Test whether page is evictable--i.e., should be placed on active/inactive
3653  * lists vs unevictable list.
3654  *
3655  * Reasons page might not be evictable:
3656  * (1) page's mapping marked unevictable
3657  * (2) page is part of an mlocked VMA
3658  *
3659  */
3660 int page_evictable(struct page *page)
3661 {
3662 	return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3663 }
3664 
3665 #ifdef CONFIG_SHMEM
3666 /**
3667  * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3668  * @pages:	array of pages to check
3669  * @nr_pages:	number of pages to check
3670  *
3671  * Checks pages for evictability and moves them to the appropriate lru list.
3672  *
3673  * This function is only used for SysV IPC SHM_UNLOCK.
3674  */
3675 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3676 {
3677 	struct lruvec *lruvec;
3678 	struct zone *zone = NULL;
3679 	int pgscanned = 0;
3680 	int pgrescued = 0;
3681 	int i;
3682 
3683 	for (i = 0; i < nr_pages; i++) {
3684 		struct page *page = pages[i];
3685 		struct zone *pagezone;
3686 
3687 		pgscanned++;
3688 		pagezone = page_zone(page);
3689 		if (pagezone != zone) {
3690 			if (zone)
3691 				spin_unlock_irq(&zone->lru_lock);
3692 			zone = pagezone;
3693 			spin_lock_irq(&zone->lru_lock);
3694 		}
3695 		lruvec = mem_cgroup_page_lruvec(page, zone);
3696 
3697 		if (!PageLRU(page) || !PageUnevictable(page))
3698 			continue;
3699 
3700 		if (page_evictable(page)) {
3701 			enum lru_list lru = page_lru_base_type(page);
3702 
3703 			VM_BUG_ON(PageActive(page));
3704 			ClearPageUnevictable(page);
3705 			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3706 			add_page_to_lru_list(page, lruvec, lru);
3707 			pgrescued++;
3708 		}
3709 	}
3710 
3711 	if (zone) {
3712 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3713 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3714 		spin_unlock_irq(&zone->lru_lock);
3715 	}
3716 }
3717 #endif /* CONFIG_SHMEM */
3718 
3719 static void warn_scan_unevictable_pages(void)
3720 {
3721 	printk_once(KERN_WARNING
3722 		    "%s: The scan_unevictable_pages sysctl/node-interface has been "
3723 		    "disabled for lack of a legitimate use case.  If you have "
3724 		    "one, please send an email to linux-mm@kvack.org.\n",
3725 		    current->comm);
3726 }
3727 
3728 /*
3729  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3730  * all nodes' unevictable lists for evictable pages
3731  */
3732 unsigned long scan_unevictable_pages;
3733 
3734 int scan_unevictable_handler(struct ctl_table *table, int write,
3735 			   void __user *buffer,
3736 			   size_t *length, loff_t *ppos)
3737 {
3738 	warn_scan_unevictable_pages();
3739 	proc_doulongvec_minmax(table, write, buffer, length, ppos);
3740 	scan_unevictable_pages = 0;
3741 	return 0;
3742 }
3743 
3744 #ifdef CONFIG_NUMA
3745 /*
3746  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3747  * a specified node's per zone unevictable lists for evictable pages.
3748  */
3749 
3750 static ssize_t read_scan_unevictable_node(struct device *dev,
3751 					  struct device_attribute *attr,
3752 					  char *buf)
3753 {
3754 	warn_scan_unevictable_pages();
3755 	return sprintf(buf, "0\n");	/* always zero; should fit... */
3756 }
3757 
3758 static ssize_t write_scan_unevictable_node(struct device *dev,
3759 					   struct device_attribute *attr,
3760 					const char *buf, size_t count)
3761 {
3762 	warn_scan_unevictable_pages();
3763 	return 1;
3764 }
3765 
3766 
3767 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3768 			read_scan_unevictable_node,
3769 			write_scan_unevictable_node);
3770 
3771 int scan_unevictable_register_node(struct node *node)
3772 {
3773 	return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3774 }
3775 
3776 void scan_unevictable_unregister_node(struct node *node)
3777 {
3778 	device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3779 }
3780 #endif
3781