1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 4 * 5 * Swap reorganised 29.12.95, Stephen Tweedie. 6 * kswapd added: 7.1.96 sct 7 * Removed kswapd_ctl limits, and swap out as many pages as needed 8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 9 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 10 * Multiqueue VM started 5.8.00, Rik van Riel. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 15 #include <linux/mm.h> 16 #include <linux/sched/mm.h> 17 #include <linux/module.h> 18 #include <linux/gfp.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/swap.h> 21 #include <linux/pagemap.h> 22 #include <linux/init.h> 23 #include <linux/highmem.h> 24 #include <linux/vmpressure.h> 25 #include <linux/vmstat.h> 26 #include <linux/file.h> 27 #include <linux/writeback.h> 28 #include <linux/blkdev.h> 29 #include <linux/buffer_head.h> /* for buffer_heads_over_limit */ 30 #include <linux/mm_inline.h> 31 #include <linux/backing-dev.h> 32 #include <linux/rmap.h> 33 #include <linux/topology.h> 34 #include <linux/cpu.h> 35 #include <linux/cpuset.h> 36 #include <linux/compaction.h> 37 #include <linux/notifier.h> 38 #include <linux/delay.h> 39 #include <linux/kthread.h> 40 #include <linux/freezer.h> 41 #include <linux/memcontrol.h> 42 #include <linux/migrate.h> 43 #include <linux/delayacct.h> 44 #include <linux/sysctl.h> 45 #include <linux/memory-tiers.h> 46 #include <linux/oom.h> 47 #include <linux/pagevec.h> 48 #include <linux/prefetch.h> 49 #include <linux/printk.h> 50 #include <linux/dax.h> 51 #include <linux/psi.h> 52 #include <linux/pagewalk.h> 53 #include <linux/shmem_fs.h> 54 #include <linux/ctype.h> 55 #include <linux/debugfs.h> 56 #include <linux/khugepaged.h> 57 #include <linux/rculist_nulls.h> 58 #include <linux/random.h> 59 60 #include <asm/tlbflush.h> 61 #include <asm/div64.h> 62 63 #include <linux/swapops.h> 64 #include <linux/balloon_compaction.h> 65 #include <linux/sched/sysctl.h> 66 67 #include "internal.h" 68 #include "swap.h" 69 70 #define CREATE_TRACE_POINTS 71 #include <trace/events/vmscan.h> 72 73 struct scan_control { 74 /* How many pages shrink_list() should reclaim */ 75 unsigned long nr_to_reclaim; 76 77 /* 78 * Nodemask of nodes allowed by the caller. If NULL, all nodes 79 * are scanned. 80 */ 81 nodemask_t *nodemask; 82 83 /* 84 * The memory cgroup that hit its limit and as a result is the 85 * primary target of this reclaim invocation. 86 */ 87 struct mem_cgroup *target_mem_cgroup; 88 89 /* 90 * Scan pressure balancing between anon and file LRUs 91 */ 92 unsigned long anon_cost; 93 unsigned long file_cost; 94 95 #ifdef CONFIG_MEMCG 96 /* Swappiness value for proactive reclaim. Always use sc_swappiness()! */ 97 int *proactive_swappiness; 98 #endif 99 100 /* Can active folios be deactivated as part of reclaim? */ 101 #define DEACTIVATE_ANON 1 102 #define DEACTIVATE_FILE 2 103 unsigned int may_deactivate:2; 104 unsigned int force_deactivate:1; 105 unsigned int skipped_deactivate:1; 106 107 /* Writepage batching in laptop mode; RECLAIM_WRITE */ 108 unsigned int may_writepage:1; 109 110 /* Can mapped folios be reclaimed? */ 111 unsigned int may_unmap:1; 112 113 /* Can folios be swapped as part of reclaim? */ 114 unsigned int may_swap:1; 115 116 /* Not allow cache_trim_mode to be turned on as part of reclaim? */ 117 unsigned int no_cache_trim_mode:1; 118 119 /* Has cache_trim_mode failed at least once? */ 120 unsigned int cache_trim_mode_failed:1; 121 122 /* Proactive reclaim invoked by userspace through memory.reclaim */ 123 unsigned int proactive:1; 124 125 /* 126 * Cgroup memory below memory.low is protected as long as we 127 * don't threaten to OOM. If any cgroup is reclaimed at 128 * reduced force or passed over entirely due to its memory.low 129 * setting (memcg_low_skipped), and nothing is reclaimed as a 130 * result, then go back for one more cycle that reclaims the protected 131 * memory (memcg_low_reclaim) to avert OOM. 132 */ 133 unsigned int memcg_low_reclaim:1; 134 unsigned int memcg_low_skipped:1; 135 136 /* Shared cgroup tree walk failed, rescan the whole tree */ 137 unsigned int memcg_full_walk:1; 138 139 unsigned int hibernation_mode:1; 140 141 /* One of the zones is ready for compaction */ 142 unsigned int compaction_ready:1; 143 144 /* There is easily reclaimable cold cache in the current node */ 145 unsigned int cache_trim_mode:1; 146 147 /* The file folios on the current node are dangerously low */ 148 unsigned int file_is_tiny:1; 149 150 /* Always discard instead of demoting to lower tier memory */ 151 unsigned int no_demotion:1; 152 153 /* Allocation order */ 154 s8 order; 155 156 /* Scan (total_size >> priority) pages at once */ 157 s8 priority; 158 159 /* The highest zone to isolate folios for reclaim from */ 160 s8 reclaim_idx; 161 162 /* This context's GFP mask */ 163 gfp_t gfp_mask; 164 165 /* Incremented by the number of inactive pages that were scanned */ 166 unsigned long nr_scanned; 167 168 /* Number of pages freed so far during a call to shrink_zones() */ 169 unsigned long nr_reclaimed; 170 171 struct { 172 unsigned int dirty; 173 unsigned int unqueued_dirty; 174 unsigned int congested; 175 unsigned int writeback; 176 unsigned int immediate; 177 unsigned int file_taken; 178 unsigned int taken; 179 } nr; 180 181 /* for recording the reclaimed slab by now */ 182 struct reclaim_state reclaim_state; 183 }; 184 185 #ifdef ARCH_HAS_PREFETCHW 186 #define prefetchw_prev_lru_folio(_folio, _base, _field) \ 187 do { \ 188 if ((_folio)->lru.prev != _base) { \ 189 struct folio *prev; \ 190 \ 191 prev = lru_to_folio(&(_folio->lru)); \ 192 prefetchw(&prev->_field); \ 193 } \ 194 } while (0) 195 #else 196 #define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0) 197 #endif 198 199 /* 200 * From 0 .. MAX_SWAPPINESS. Higher means more swappy. 201 */ 202 int vm_swappiness = 60; 203 204 #ifdef CONFIG_MEMCG 205 206 /* Returns true for reclaim through cgroup limits or cgroup interfaces. */ 207 static bool cgroup_reclaim(struct scan_control *sc) 208 { 209 return sc->target_mem_cgroup; 210 } 211 212 /* 213 * Returns true for reclaim on the root cgroup. This is true for direct 214 * allocator reclaim and reclaim through cgroup interfaces on the root cgroup. 215 */ 216 static bool root_reclaim(struct scan_control *sc) 217 { 218 return !sc->target_mem_cgroup || mem_cgroup_is_root(sc->target_mem_cgroup); 219 } 220 221 /** 222 * writeback_throttling_sane - is the usual dirty throttling mechanism available? 223 * @sc: scan_control in question 224 * 225 * The normal page dirty throttling mechanism in balance_dirty_pages() is 226 * completely broken with the legacy memcg and direct stalling in 227 * shrink_folio_list() is used for throttling instead, which lacks all the 228 * niceties such as fairness, adaptive pausing, bandwidth proportional 229 * allocation and configurability. 230 * 231 * This function tests whether the vmscan currently in progress can assume 232 * that the normal dirty throttling mechanism is operational. 233 */ 234 static bool writeback_throttling_sane(struct scan_control *sc) 235 { 236 if (!cgroup_reclaim(sc)) 237 return true; 238 #ifdef CONFIG_CGROUP_WRITEBACK 239 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 240 return true; 241 #endif 242 return false; 243 } 244 245 static int sc_swappiness(struct scan_control *sc, struct mem_cgroup *memcg) 246 { 247 if (sc->proactive && sc->proactive_swappiness) 248 return *sc->proactive_swappiness; 249 return mem_cgroup_swappiness(memcg); 250 } 251 #else 252 static bool cgroup_reclaim(struct scan_control *sc) 253 { 254 return false; 255 } 256 257 static bool root_reclaim(struct scan_control *sc) 258 { 259 return true; 260 } 261 262 static bool writeback_throttling_sane(struct scan_control *sc) 263 { 264 return true; 265 } 266 267 static int sc_swappiness(struct scan_control *sc, struct mem_cgroup *memcg) 268 { 269 return READ_ONCE(vm_swappiness); 270 } 271 #endif 272 273 static void set_task_reclaim_state(struct task_struct *task, 274 struct reclaim_state *rs) 275 { 276 /* Check for an overwrite */ 277 WARN_ON_ONCE(rs && task->reclaim_state); 278 279 /* Check for the nulling of an already-nulled member */ 280 WARN_ON_ONCE(!rs && !task->reclaim_state); 281 282 task->reclaim_state = rs; 283 } 284 285 /* 286 * flush_reclaim_state(): add pages reclaimed outside of LRU-based reclaim to 287 * scan_control->nr_reclaimed. 288 */ 289 static void flush_reclaim_state(struct scan_control *sc) 290 { 291 /* 292 * Currently, reclaim_state->reclaimed includes three types of pages 293 * freed outside of vmscan: 294 * (1) Slab pages. 295 * (2) Clean file pages from pruned inodes (on highmem systems). 296 * (3) XFS freed buffer pages. 297 * 298 * For all of these cases, we cannot universally link the pages to a 299 * single memcg. For example, a memcg-aware shrinker can free one object 300 * charged to the target memcg, causing an entire page to be freed. 301 * If we count the entire page as reclaimed from the memcg, we end up 302 * overestimating the reclaimed amount (potentially under-reclaiming). 303 * 304 * Only count such pages for global reclaim to prevent under-reclaiming 305 * from the target memcg; preventing unnecessary retries during memcg 306 * charging and false positives from proactive reclaim. 307 * 308 * For uncommon cases where the freed pages were actually mostly 309 * charged to the target memcg, we end up underestimating the reclaimed 310 * amount. This should be fine. The freed pages will be uncharged 311 * anyway, even if they are not counted here properly, and we will be 312 * able to make forward progress in charging (which is usually in a 313 * retry loop). 314 * 315 * We can go one step further, and report the uncharged objcg pages in 316 * memcg reclaim, to make reporting more accurate and reduce 317 * underestimation, but it's probably not worth the complexity for now. 318 */ 319 if (current->reclaim_state && root_reclaim(sc)) { 320 sc->nr_reclaimed += current->reclaim_state->reclaimed; 321 current->reclaim_state->reclaimed = 0; 322 } 323 } 324 325 static bool can_demote(int nid, struct scan_control *sc) 326 { 327 if (!numa_demotion_enabled) 328 return false; 329 if (sc && sc->no_demotion) 330 return false; 331 if (next_demotion_node(nid) == NUMA_NO_NODE) 332 return false; 333 334 return true; 335 } 336 337 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg, 338 int nid, 339 struct scan_control *sc) 340 { 341 if (memcg == NULL) { 342 /* 343 * For non-memcg reclaim, is there 344 * space in any swap device? 345 */ 346 if (get_nr_swap_pages() > 0) 347 return true; 348 } else { 349 /* Is the memcg below its swap limit? */ 350 if (mem_cgroup_get_nr_swap_pages(memcg) > 0) 351 return true; 352 } 353 354 /* 355 * The page can not be swapped. 356 * 357 * Can it be reclaimed from this node via demotion? 358 */ 359 return can_demote(nid, sc); 360 } 361 362 /* 363 * This misses isolated folios which are not accounted for to save counters. 364 * As the data only determines if reclaim or compaction continues, it is 365 * not expected that isolated folios will be a dominating factor. 366 */ 367 unsigned long zone_reclaimable_pages(struct zone *zone) 368 { 369 unsigned long nr; 370 371 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) + 372 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE); 373 if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL)) 374 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) + 375 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON); 376 377 return nr; 378 } 379 380 /** 381 * lruvec_lru_size - Returns the number of pages on the given LRU list. 382 * @lruvec: lru vector 383 * @lru: lru to use 384 * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list) 385 */ 386 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, 387 int zone_idx) 388 { 389 unsigned long size = 0; 390 int zid; 391 392 for (zid = 0; zid <= zone_idx; zid++) { 393 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid]; 394 395 if (!managed_zone(zone)) 396 continue; 397 398 if (!mem_cgroup_disabled()) 399 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid); 400 else 401 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru); 402 } 403 return size; 404 } 405 406 static unsigned long drop_slab_node(int nid) 407 { 408 unsigned long freed = 0; 409 struct mem_cgroup *memcg = NULL; 410 411 memcg = mem_cgroup_iter(NULL, NULL, NULL); 412 do { 413 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0); 414 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 415 416 return freed; 417 } 418 419 void drop_slab(void) 420 { 421 int nid; 422 int shift = 0; 423 unsigned long freed; 424 425 do { 426 freed = 0; 427 for_each_online_node(nid) { 428 if (fatal_signal_pending(current)) 429 return; 430 431 freed += drop_slab_node(nid); 432 } 433 } while ((freed >> shift++) > 1); 434 } 435 436 static int reclaimer_offset(void) 437 { 438 BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD != 439 PGDEMOTE_DIRECT - PGDEMOTE_KSWAPD); 440 BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD != 441 PGDEMOTE_KHUGEPAGED - PGDEMOTE_KSWAPD); 442 BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD != 443 PGSCAN_DIRECT - PGSCAN_KSWAPD); 444 BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD != 445 PGSCAN_KHUGEPAGED - PGSCAN_KSWAPD); 446 447 if (current_is_kswapd()) 448 return 0; 449 if (current_is_khugepaged()) 450 return PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD; 451 return PGSTEAL_DIRECT - PGSTEAL_KSWAPD; 452 } 453 454 static inline int is_page_cache_freeable(struct folio *folio) 455 { 456 /* 457 * A freeable page cache folio is referenced only by the caller 458 * that isolated the folio, the page cache and optional filesystem 459 * private data at folio->private. 460 */ 461 return folio_ref_count(folio) - folio_test_private(folio) == 462 1 + folio_nr_pages(folio); 463 } 464 465 /* 466 * We detected a synchronous write error writing a folio out. Probably 467 * -ENOSPC. We need to propagate that into the address_space for a subsequent 468 * fsync(), msync() or close(). 469 * 470 * The tricky part is that after writepage we cannot touch the mapping: nothing 471 * prevents it from being freed up. But we have a ref on the folio and once 472 * that folio is locked, the mapping is pinned. 473 * 474 * We're allowed to run sleeping folio_lock() here because we know the caller has 475 * __GFP_FS. 476 */ 477 static void handle_write_error(struct address_space *mapping, 478 struct folio *folio, int error) 479 { 480 folio_lock(folio); 481 if (folio_mapping(folio) == mapping) 482 mapping_set_error(mapping, error); 483 folio_unlock(folio); 484 } 485 486 static bool skip_throttle_noprogress(pg_data_t *pgdat) 487 { 488 int reclaimable = 0, write_pending = 0; 489 int i; 490 491 /* 492 * If kswapd is disabled, reschedule if necessary but do not 493 * throttle as the system is likely near OOM. 494 */ 495 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 496 return true; 497 498 /* 499 * If there are a lot of dirty/writeback folios then do not 500 * throttle as throttling will occur when the folios cycle 501 * towards the end of the LRU if still under writeback. 502 */ 503 for (i = 0; i < MAX_NR_ZONES; i++) { 504 struct zone *zone = pgdat->node_zones + i; 505 506 if (!managed_zone(zone)) 507 continue; 508 509 reclaimable += zone_reclaimable_pages(zone); 510 write_pending += zone_page_state_snapshot(zone, 511 NR_ZONE_WRITE_PENDING); 512 } 513 if (2 * write_pending <= reclaimable) 514 return true; 515 516 return false; 517 } 518 519 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason) 520 { 521 wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason]; 522 long timeout, ret; 523 DEFINE_WAIT(wait); 524 525 /* 526 * Do not throttle user workers, kthreads other than kswapd or 527 * workqueues. They may be required for reclaim to make 528 * forward progress (e.g. journalling workqueues or kthreads). 529 */ 530 if (!current_is_kswapd() && 531 current->flags & (PF_USER_WORKER|PF_KTHREAD)) { 532 cond_resched(); 533 return; 534 } 535 536 /* 537 * These figures are pulled out of thin air. 538 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many 539 * parallel reclaimers which is a short-lived event so the timeout is 540 * short. Failing to make progress or waiting on writeback are 541 * potentially long-lived events so use a longer timeout. This is shaky 542 * logic as a failure to make progress could be due to anything from 543 * writeback to a slow device to excessive referenced folios at the tail 544 * of the inactive LRU. 545 */ 546 switch(reason) { 547 case VMSCAN_THROTTLE_WRITEBACK: 548 timeout = HZ/10; 549 550 if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) { 551 WRITE_ONCE(pgdat->nr_reclaim_start, 552 node_page_state(pgdat, NR_THROTTLED_WRITTEN)); 553 } 554 555 break; 556 case VMSCAN_THROTTLE_CONGESTED: 557 fallthrough; 558 case VMSCAN_THROTTLE_NOPROGRESS: 559 if (skip_throttle_noprogress(pgdat)) { 560 cond_resched(); 561 return; 562 } 563 564 timeout = 1; 565 566 break; 567 case VMSCAN_THROTTLE_ISOLATED: 568 timeout = HZ/50; 569 break; 570 default: 571 WARN_ON_ONCE(1); 572 timeout = HZ; 573 break; 574 } 575 576 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE); 577 ret = schedule_timeout(timeout); 578 finish_wait(wqh, &wait); 579 580 if (reason == VMSCAN_THROTTLE_WRITEBACK) 581 atomic_dec(&pgdat->nr_writeback_throttled); 582 583 trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout), 584 jiffies_to_usecs(timeout - ret), 585 reason); 586 } 587 588 /* 589 * Account for folios written if tasks are throttled waiting on dirty 590 * folios to clean. If enough folios have been cleaned since throttling 591 * started then wakeup the throttled tasks. 592 */ 593 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio, 594 int nr_throttled) 595 { 596 unsigned long nr_written; 597 598 node_stat_add_folio(folio, NR_THROTTLED_WRITTEN); 599 600 /* 601 * This is an inaccurate read as the per-cpu deltas may not 602 * be synchronised. However, given that the system is 603 * writeback throttled, it is not worth taking the penalty 604 * of getting an accurate count. At worst, the throttle 605 * timeout guarantees forward progress. 606 */ 607 nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) - 608 READ_ONCE(pgdat->nr_reclaim_start); 609 610 if (nr_written > SWAP_CLUSTER_MAX * nr_throttled) 611 wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]); 612 } 613 614 /* possible outcome of pageout() */ 615 typedef enum { 616 /* failed to write folio out, folio is locked */ 617 PAGE_KEEP, 618 /* move folio to the active list, folio is locked */ 619 PAGE_ACTIVATE, 620 /* folio has been sent to the disk successfully, folio is unlocked */ 621 PAGE_SUCCESS, 622 /* folio is clean and locked */ 623 PAGE_CLEAN, 624 } pageout_t; 625 626 /* 627 * pageout is called by shrink_folio_list() for each dirty folio. 628 * Calls ->writepage(). 629 */ 630 static pageout_t pageout(struct folio *folio, struct address_space *mapping, 631 struct swap_iocb **plug) 632 { 633 /* 634 * If the folio is dirty, only perform writeback if that write 635 * will be non-blocking. To prevent this allocation from being 636 * stalled by pagecache activity. But note that there may be 637 * stalls if we need to run get_block(). We could test 638 * PagePrivate for that. 639 * 640 * If this process is currently in __generic_file_write_iter() against 641 * this folio's queue, we can perform writeback even if that 642 * will block. 643 * 644 * If the folio is swapcache, write it back even if that would 645 * block, for some throttling. This happens by accident, because 646 * swap_backing_dev_info is bust: it doesn't reflect the 647 * congestion state of the swapdevs. Easy to fix, if needed. 648 */ 649 if (!is_page_cache_freeable(folio)) 650 return PAGE_KEEP; 651 if (!mapping) { 652 /* 653 * Some data journaling orphaned folios can have 654 * folio->mapping == NULL while being dirty with clean buffers. 655 */ 656 if (folio_test_private(folio)) { 657 if (try_to_free_buffers(folio)) { 658 folio_clear_dirty(folio); 659 pr_info("%s: orphaned folio\n", __func__); 660 return PAGE_CLEAN; 661 } 662 } 663 return PAGE_KEEP; 664 } 665 if (mapping->a_ops->writepage == NULL) 666 return PAGE_ACTIVATE; 667 668 if (folio_clear_dirty_for_io(folio)) { 669 int res; 670 struct writeback_control wbc = { 671 .sync_mode = WB_SYNC_NONE, 672 .nr_to_write = SWAP_CLUSTER_MAX, 673 .range_start = 0, 674 .range_end = LLONG_MAX, 675 .for_reclaim = 1, 676 .swap_plug = plug, 677 }; 678 679 folio_set_reclaim(folio); 680 res = mapping->a_ops->writepage(&folio->page, &wbc); 681 if (res < 0) 682 handle_write_error(mapping, folio, res); 683 if (res == AOP_WRITEPAGE_ACTIVATE) { 684 folio_clear_reclaim(folio); 685 return PAGE_ACTIVATE; 686 } 687 688 if (!folio_test_writeback(folio)) { 689 /* synchronous write or broken a_ops? */ 690 folio_clear_reclaim(folio); 691 } 692 trace_mm_vmscan_write_folio(folio); 693 node_stat_add_folio(folio, NR_VMSCAN_WRITE); 694 return PAGE_SUCCESS; 695 } 696 697 return PAGE_CLEAN; 698 } 699 700 /* 701 * Same as remove_mapping, but if the folio is removed from the mapping, it 702 * gets returned with a refcount of 0. 703 */ 704 static int __remove_mapping(struct address_space *mapping, struct folio *folio, 705 bool reclaimed, struct mem_cgroup *target_memcg) 706 { 707 int refcount; 708 void *shadow = NULL; 709 710 BUG_ON(!folio_test_locked(folio)); 711 BUG_ON(mapping != folio_mapping(folio)); 712 713 if (!folio_test_swapcache(folio)) 714 spin_lock(&mapping->host->i_lock); 715 xa_lock_irq(&mapping->i_pages); 716 /* 717 * The non racy check for a busy folio. 718 * 719 * Must be careful with the order of the tests. When someone has 720 * a ref to the folio, it may be possible that they dirty it then 721 * drop the reference. So if the dirty flag is tested before the 722 * refcount here, then the following race may occur: 723 * 724 * get_user_pages(&page); 725 * [user mapping goes away] 726 * write_to(page); 727 * !folio_test_dirty(folio) [good] 728 * folio_set_dirty(folio); 729 * folio_put(folio); 730 * !refcount(folio) [good, discard it] 731 * 732 * [oops, our write_to data is lost] 733 * 734 * Reversing the order of the tests ensures such a situation cannot 735 * escape unnoticed. The smp_rmb is needed to ensure the folio->flags 736 * load is not satisfied before that of folio->_refcount. 737 * 738 * Note that if the dirty flag is always set via folio_mark_dirty, 739 * and thus under the i_pages lock, then this ordering is not required. 740 */ 741 refcount = 1 + folio_nr_pages(folio); 742 if (!folio_ref_freeze(folio, refcount)) 743 goto cannot_free; 744 /* note: atomic_cmpxchg in folio_ref_freeze provides the smp_rmb */ 745 if (unlikely(folio_test_dirty(folio))) { 746 folio_ref_unfreeze(folio, refcount); 747 goto cannot_free; 748 } 749 750 if (folio_test_swapcache(folio)) { 751 swp_entry_t swap = folio->swap; 752 753 if (reclaimed && !mapping_exiting(mapping)) 754 shadow = workingset_eviction(folio, target_memcg); 755 __delete_from_swap_cache(folio, swap, shadow); 756 mem_cgroup_swapout(folio, swap); 757 xa_unlock_irq(&mapping->i_pages); 758 put_swap_folio(folio, swap); 759 } else { 760 void (*free_folio)(struct folio *); 761 762 free_folio = mapping->a_ops->free_folio; 763 /* 764 * Remember a shadow entry for reclaimed file cache in 765 * order to detect refaults, thus thrashing, later on. 766 * 767 * But don't store shadows in an address space that is 768 * already exiting. This is not just an optimization, 769 * inode reclaim needs to empty out the radix tree or 770 * the nodes are lost. Don't plant shadows behind its 771 * back. 772 * 773 * We also don't store shadows for DAX mappings because the 774 * only page cache folios found in these are zero pages 775 * covering holes, and because we don't want to mix DAX 776 * exceptional entries and shadow exceptional entries in the 777 * same address_space. 778 */ 779 if (reclaimed && folio_is_file_lru(folio) && 780 !mapping_exiting(mapping) && !dax_mapping(mapping)) 781 shadow = workingset_eviction(folio, target_memcg); 782 __filemap_remove_folio(folio, shadow); 783 xa_unlock_irq(&mapping->i_pages); 784 if (mapping_shrinkable(mapping)) 785 inode_add_lru(mapping->host); 786 spin_unlock(&mapping->host->i_lock); 787 788 if (free_folio) 789 free_folio(folio); 790 } 791 792 return 1; 793 794 cannot_free: 795 xa_unlock_irq(&mapping->i_pages); 796 if (!folio_test_swapcache(folio)) 797 spin_unlock(&mapping->host->i_lock); 798 return 0; 799 } 800 801 /** 802 * remove_mapping() - Attempt to remove a folio from its mapping. 803 * @mapping: The address space. 804 * @folio: The folio to remove. 805 * 806 * If the folio is dirty, under writeback or if someone else has a ref 807 * on it, removal will fail. 808 * Return: The number of pages removed from the mapping. 0 if the folio 809 * could not be removed. 810 * Context: The caller should have a single refcount on the folio and 811 * hold its lock. 812 */ 813 long remove_mapping(struct address_space *mapping, struct folio *folio) 814 { 815 if (__remove_mapping(mapping, folio, false, NULL)) { 816 /* 817 * Unfreezing the refcount with 1 effectively 818 * drops the pagecache ref for us without requiring another 819 * atomic operation. 820 */ 821 folio_ref_unfreeze(folio, 1); 822 return folio_nr_pages(folio); 823 } 824 return 0; 825 } 826 827 /** 828 * folio_putback_lru - Put previously isolated folio onto appropriate LRU list. 829 * @folio: Folio to be returned to an LRU list. 830 * 831 * Add previously isolated @folio to appropriate LRU list. 832 * The folio may still be unevictable for other reasons. 833 * 834 * Context: lru_lock must not be held, interrupts must be enabled. 835 */ 836 void folio_putback_lru(struct folio *folio) 837 { 838 folio_add_lru(folio); 839 folio_put(folio); /* drop ref from isolate */ 840 } 841 842 enum folio_references { 843 FOLIOREF_RECLAIM, 844 FOLIOREF_RECLAIM_CLEAN, 845 FOLIOREF_KEEP, 846 FOLIOREF_ACTIVATE, 847 }; 848 849 static enum folio_references folio_check_references(struct folio *folio, 850 struct scan_control *sc) 851 { 852 int referenced_ptes, referenced_folio; 853 unsigned long vm_flags; 854 855 referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup, 856 &vm_flags); 857 referenced_folio = folio_test_clear_referenced(folio); 858 859 /* 860 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma. 861 * Let the folio, now marked Mlocked, be moved to the unevictable list. 862 */ 863 if (vm_flags & VM_LOCKED) 864 return FOLIOREF_ACTIVATE; 865 866 /* 867 * There are two cases to consider. 868 * 1) Rmap lock contention: rotate. 869 * 2) Skip the non-shared swapbacked folio mapped solely by 870 * the exiting or OOM-reaped process. 871 */ 872 if (referenced_ptes == -1) 873 return FOLIOREF_KEEP; 874 875 if (referenced_ptes) { 876 /* 877 * All mapped folios start out with page table 878 * references from the instantiating fault, so we need 879 * to look twice if a mapped file/anon folio is used more 880 * than once. 881 * 882 * Mark it and spare it for another trip around the 883 * inactive list. Another page table reference will 884 * lead to its activation. 885 * 886 * Note: the mark is set for activated folios as well 887 * so that recently deactivated but used folios are 888 * quickly recovered. 889 */ 890 folio_set_referenced(folio); 891 892 if (referenced_folio || referenced_ptes > 1) 893 return FOLIOREF_ACTIVATE; 894 895 /* 896 * Activate file-backed executable folios after first usage. 897 */ 898 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) 899 return FOLIOREF_ACTIVATE; 900 901 return FOLIOREF_KEEP; 902 } 903 904 /* Reclaim if clean, defer dirty folios to writeback */ 905 if (referenced_folio && folio_is_file_lru(folio)) 906 return FOLIOREF_RECLAIM_CLEAN; 907 908 return FOLIOREF_RECLAIM; 909 } 910 911 /* Check if a folio is dirty or under writeback */ 912 static void folio_check_dirty_writeback(struct folio *folio, 913 bool *dirty, bool *writeback) 914 { 915 struct address_space *mapping; 916 917 /* 918 * Anonymous folios are not handled by flushers and must be written 919 * from reclaim context. Do not stall reclaim based on them. 920 * MADV_FREE anonymous folios are put into inactive file list too. 921 * They could be mistakenly treated as file lru. So further anon 922 * test is needed. 923 */ 924 if (!folio_is_file_lru(folio) || 925 (folio_test_anon(folio) && !folio_test_swapbacked(folio))) { 926 *dirty = false; 927 *writeback = false; 928 return; 929 } 930 931 /* By default assume that the folio flags are accurate */ 932 *dirty = folio_test_dirty(folio); 933 *writeback = folio_test_writeback(folio); 934 935 /* Verify dirty/writeback state if the filesystem supports it */ 936 if (!folio_test_private(folio)) 937 return; 938 939 mapping = folio_mapping(folio); 940 if (mapping && mapping->a_ops->is_dirty_writeback) 941 mapping->a_ops->is_dirty_writeback(folio, dirty, writeback); 942 } 943 944 struct folio *alloc_migrate_folio(struct folio *src, unsigned long private) 945 { 946 struct folio *dst; 947 nodemask_t *allowed_mask; 948 struct migration_target_control *mtc; 949 950 mtc = (struct migration_target_control *)private; 951 952 allowed_mask = mtc->nmask; 953 /* 954 * make sure we allocate from the target node first also trying to 955 * demote or reclaim pages from the target node via kswapd if we are 956 * low on free memory on target node. If we don't do this and if 957 * we have free memory on the slower(lower) memtier, we would start 958 * allocating pages from slower(lower) memory tiers without even forcing 959 * a demotion of cold pages from the target memtier. This can result 960 * in the kernel placing hot pages in slower(lower) memory tiers. 961 */ 962 mtc->nmask = NULL; 963 mtc->gfp_mask |= __GFP_THISNODE; 964 dst = alloc_migration_target(src, (unsigned long)mtc); 965 if (dst) 966 return dst; 967 968 mtc->gfp_mask &= ~__GFP_THISNODE; 969 mtc->nmask = allowed_mask; 970 971 return alloc_migration_target(src, (unsigned long)mtc); 972 } 973 974 /* 975 * Take folios on @demote_folios and attempt to demote them to another node. 976 * Folios which are not demoted are left on @demote_folios. 977 */ 978 static unsigned int demote_folio_list(struct list_head *demote_folios, 979 struct pglist_data *pgdat) 980 { 981 int target_nid = next_demotion_node(pgdat->node_id); 982 unsigned int nr_succeeded; 983 nodemask_t allowed_mask; 984 985 struct migration_target_control mtc = { 986 /* 987 * Allocate from 'node', or fail quickly and quietly. 988 * When this happens, 'page' will likely just be discarded 989 * instead of migrated. 990 */ 991 .gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | __GFP_NOWARN | 992 __GFP_NOMEMALLOC | GFP_NOWAIT, 993 .nid = target_nid, 994 .nmask = &allowed_mask, 995 .reason = MR_DEMOTION, 996 }; 997 998 if (list_empty(demote_folios)) 999 return 0; 1000 1001 if (target_nid == NUMA_NO_NODE) 1002 return 0; 1003 1004 node_get_allowed_targets(pgdat, &allowed_mask); 1005 1006 /* Demotion ignores all cpuset and mempolicy settings */ 1007 migrate_pages(demote_folios, alloc_migrate_folio, NULL, 1008 (unsigned long)&mtc, MIGRATE_ASYNC, MR_DEMOTION, 1009 &nr_succeeded); 1010 1011 mod_node_page_state(pgdat, PGDEMOTE_KSWAPD + reclaimer_offset(), 1012 nr_succeeded); 1013 1014 return nr_succeeded; 1015 } 1016 1017 static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask) 1018 { 1019 if (gfp_mask & __GFP_FS) 1020 return true; 1021 if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO)) 1022 return false; 1023 /* 1024 * We can "enter_fs" for swap-cache with only __GFP_IO 1025 * providing this isn't SWP_FS_OPS. 1026 * ->flags can be updated non-atomicially (scan_swap_map_slots), 1027 * but that will never affect SWP_FS_OPS, so the data_race 1028 * is safe. 1029 */ 1030 return !data_race(folio_swap_flags(folio) & SWP_FS_OPS); 1031 } 1032 1033 /* 1034 * shrink_folio_list() returns the number of reclaimed pages 1035 */ 1036 static unsigned int shrink_folio_list(struct list_head *folio_list, 1037 struct pglist_data *pgdat, struct scan_control *sc, 1038 struct reclaim_stat *stat, bool ignore_references) 1039 { 1040 struct folio_batch free_folios; 1041 LIST_HEAD(ret_folios); 1042 LIST_HEAD(demote_folios); 1043 unsigned int nr_reclaimed = 0; 1044 unsigned int pgactivate = 0; 1045 bool do_demote_pass; 1046 struct swap_iocb *plug = NULL; 1047 1048 folio_batch_init(&free_folios); 1049 memset(stat, 0, sizeof(*stat)); 1050 cond_resched(); 1051 do_demote_pass = can_demote(pgdat->node_id, sc); 1052 1053 retry: 1054 while (!list_empty(folio_list)) { 1055 struct address_space *mapping; 1056 struct folio *folio; 1057 enum folio_references references = FOLIOREF_RECLAIM; 1058 bool dirty, writeback; 1059 unsigned int nr_pages; 1060 1061 cond_resched(); 1062 1063 folio = lru_to_folio(folio_list); 1064 list_del(&folio->lru); 1065 1066 if (!folio_trylock(folio)) 1067 goto keep; 1068 1069 VM_BUG_ON_FOLIO(folio_test_active(folio), folio); 1070 1071 nr_pages = folio_nr_pages(folio); 1072 1073 /* Account the number of base pages */ 1074 sc->nr_scanned += nr_pages; 1075 1076 if (unlikely(!folio_evictable(folio))) 1077 goto activate_locked; 1078 1079 if (!sc->may_unmap && folio_mapped(folio)) 1080 goto keep_locked; 1081 1082 /* folio_update_gen() tried to promote this page? */ 1083 if (lru_gen_enabled() && !ignore_references && 1084 folio_mapped(folio) && folio_test_referenced(folio)) 1085 goto keep_locked; 1086 1087 /* 1088 * The number of dirty pages determines if a node is marked 1089 * reclaim_congested. kswapd will stall and start writing 1090 * folios if the tail of the LRU is all dirty unqueued folios. 1091 */ 1092 folio_check_dirty_writeback(folio, &dirty, &writeback); 1093 if (dirty || writeback) 1094 stat->nr_dirty += nr_pages; 1095 1096 if (dirty && !writeback) 1097 stat->nr_unqueued_dirty += nr_pages; 1098 1099 /* 1100 * Treat this folio as congested if folios are cycling 1101 * through the LRU so quickly that the folios marked 1102 * for immediate reclaim are making it to the end of 1103 * the LRU a second time. 1104 */ 1105 if (writeback && folio_test_reclaim(folio)) 1106 stat->nr_congested += nr_pages; 1107 1108 /* 1109 * If a folio at the tail of the LRU is under writeback, there 1110 * are three cases to consider. 1111 * 1112 * 1) If reclaim is encountering an excessive number 1113 * of folios under writeback and this folio has both 1114 * the writeback and reclaim flags set, then it 1115 * indicates that folios are being queued for I/O but 1116 * are being recycled through the LRU before the I/O 1117 * can complete. Waiting on the folio itself risks an 1118 * indefinite stall if it is impossible to writeback 1119 * the folio due to I/O error or disconnected storage 1120 * so instead note that the LRU is being scanned too 1121 * quickly and the caller can stall after the folio 1122 * list has been processed. 1123 * 1124 * 2) Global or new memcg reclaim encounters a folio that is 1125 * not marked for immediate reclaim, or the caller does not 1126 * have __GFP_FS (or __GFP_IO if it's simply going to swap, 1127 * not to fs). In this case mark the folio for immediate 1128 * reclaim and continue scanning. 1129 * 1130 * Require may_enter_fs() because we would wait on fs, which 1131 * may not have submitted I/O yet. And the loop driver might 1132 * enter reclaim, and deadlock if it waits on a folio for 1133 * which it is needed to do the write (loop masks off 1134 * __GFP_IO|__GFP_FS for this reason); but more thought 1135 * would probably show more reasons. 1136 * 1137 * 3) Legacy memcg encounters a folio that already has the 1138 * reclaim flag set. memcg does not have any dirty folio 1139 * throttling so we could easily OOM just because too many 1140 * folios are in writeback and there is nothing else to 1141 * reclaim. Wait for the writeback to complete. 1142 * 1143 * In cases 1) and 2) we activate the folios to get them out of 1144 * the way while we continue scanning for clean folios on the 1145 * inactive list and refilling from the active list. The 1146 * observation here is that waiting for disk writes is more 1147 * expensive than potentially causing reloads down the line. 1148 * Since they're marked for immediate reclaim, they won't put 1149 * memory pressure on the cache working set any longer than it 1150 * takes to write them to disk. 1151 */ 1152 if (folio_test_writeback(folio)) { 1153 /* Case 1 above */ 1154 if (current_is_kswapd() && 1155 folio_test_reclaim(folio) && 1156 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) { 1157 stat->nr_immediate += nr_pages; 1158 goto activate_locked; 1159 1160 /* Case 2 above */ 1161 } else if (writeback_throttling_sane(sc) || 1162 !folio_test_reclaim(folio) || 1163 !may_enter_fs(folio, sc->gfp_mask)) { 1164 /* 1165 * This is slightly racy - 1166 * folio_end_writeback() might have 1167 * just cleared the reclaim flag, then 1168 * setting the reclaim flag here ends up 1169 * interpreted as the readahead flag - but 1170 * that does not matter enough to care. 1171 * What we do want is for this folio to 1172 * have the reclaim flag set next time 1173 * memcg reclaim reaches the tests above, 1174 * so it will then wait for writeback to 1175 * avoid OOM; and it's also appropriate 1176 * in global reclaim. 1177 */ 1178 folio_set_reclaim(folio); 1179 stat->nr_writeback += nr_pages; 1180 goto activate_locked; 1181 1182 /* Case 3 above */ 1183 } else { 1184 folio_unlock(folio); 1185 folio_wait_writeback(folio); 1186 /* then go back and try same folio again */ 1187 list_add_tail(&folio->lru, folio_list); 1188 continue; 1189 } 1190 } 1191 1192 if (!ignore_references) 1193 references = folio_check_references(folio, sc); 1194 1195 switch (references) { 1196 case FOLIOREF_ACTIVATE: 1197 goto activate_locked; 1198 case FOLIOREF_KEEP: 1199 stat->nr_ref_keep += nr_pages; 1200 goto keep_locked; 1201 case FOLIOREF_RECLAIM: 1202 case FOLIOREF_RECLAIM_CLEAN: 1203 ; /* try to reclaim the folio below */ 1204 } 1205 1206 /* 1207 * Before reclaiming the folio, try to relocate 1208 * its contents to another node. 1209 */ 1210 if (do_demote_pass && 1211 (thp_migration_supported() || !folio_test_large(folio))) { 1212 list_add(&folio->lru, &demote_folios); 1213 folio_unlock(folio); 1214 continue; 1215 } 1216 1217 /* 1218 * Anonymous process memory has backing store? 1219 * Try to allocate it some swap space here. 1220 * Lazyfree folio could be freed directly 1221 */ 1222 if (folio_test_anon(folio) && folio_test_swapbacked(folio)) { 1223 if (!folio_test_swapcache(folio)) { 1224 if (!(sc->gfp_mask & __GFP_IO)) 1225 goto keep_locked; 1226 if (folio_maybe_dma_pinned(folio)) 1227 goto keep_locked; 1228 if (folio_test_large(folio)) { 1229 /* cannot split folio, skip it */ 1230 if (!can_split_folio(folio, NULL)) 1231 goto activate_locked; 1232 /* 1233 * Split partially mapped folios right away. 1234 * We can free the unmapped pages without IO. 1235 */ 1236 if (data_race(!list_empty(&folio->_deferred_list)) && 1237 split_folio_to_list(folio, folio_list)) 1238 goto activate_locked; 1239 } 1240 if (!add_to_swap(folio)) { 1241 int __maybe_unused order = folio_order(folio); 1242 1243 if (!folio_test_large(folio)) 1244 goto activate_locked_split; 1245 /* Fallback to swap normal pages */ 1246 if (split_folio_to_list(folio, folio_list)) 1247 goto activate_locked; 1248 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1249 if (nr_pages >= HPAGE_PMD_NR) { 1250 count_memcg_folio_events(folio, 1251 THP_SWPOUT_FALLBACK, 1); 1252 count_vm_event(THP_SWPOUT_FALLBACK); 1253 } 1254 count_mthp_stat(order, MTHP_STAT_SWPOUT_FALLBACK); 1255 #endif 1256 if (!add_to_swap(folio)) 1257 goto activate_locked_split; 1258 } 1259 } 1260 } else if (folio_test_swapbacked(folio) && 1261 folio_test_large(folio)) { 1262 /* Split shmem folio */ 1263 if (split_folio_to_list(folio, folio_list)) 1264 goto keep_locked; 1265 } 1266 1267 /* 1268 * If the folio was split above, the tail pages will make 1269 * their own pass through this function and be accounted 1270 * then. 1271 */ 1272 if ((nr_pages > 1) && !folio_test_large(folio)) { 1273 sc->nr_scanned -= (nr_pages - 1); 1274 nr_pages = 1; 1275 } 1276 1277 /* 1278 * The folio is mapped into the page tables of one or more 1279 * processes. Try to unmap it here. 1280 */ 1281 if (folio_mapped(folio)) { 1282 enum ttu_flags flags = TTU_BATCH_FLUSH; 1283 bool was_swapbacked = folio_test_swapbacked(folio); 1284 1285 if (folio_test_pmd_mappable(folio)) 1286 flags |= TTU_SPLIT_HUGE_PMD; 1287 /* 1288 * Without TTU_SYNC, try_to_unmap will only begin to 1289 * hold PTL from the first present PTE within a large 1290 * folio. Some initial PTEs might be skipped due to 1291 * races with parallel PTE writes in which PTEs can be 1292 * cleared temporarily before being written new present 1293 * values. This will lead to a large folio is still 1294 * mapped while some subpages have been partially 1295 * unmapped after try_to_unmap; TTU_SYNC helps 1296 * try_to_unmap acquire PTL from the first PTE, 1297 * eliminating the influence of temporary PTE values. 1298 */ 1299 if (folio_test_large(folio)) 1300 flags |= TTU_SYNC; 1301 1302 try_to_unmap(folio, flags); 1303 if (folio_mapped(folio)) { 1304 stat->nr_unmap_fail += nr_pages; 1305 if (!was_swapbacked && 1306 folio_test_swapbacked(folio)) 1307 stat->nr_lazyfree_fail += nr_pages; 1308 goto activate_locked; 1309 } 1310 } 1311 1312 /* 1313 * Folio is unmapped now so it cannot be newly pinned anymore. 1314 * No point in trying to reclaim folio if it is pinned. 1315 * Furthermore we don't want to reclaim underlying fs metadata 1316 * if the folio is pinned and thus potentially modified by the 1317 * pinning process as that may upset the filesystem. 1318 */ 1319 if (folio_maybe_dma_pinned(folio)) 1320 goto activate_locked; 1321 1322 mapping = folio_mapping(folio); 1323 if (folio_test_dirty(folio)) { 1324 /* 1325 * Only kswapd can writeback filesystem folios 1326 * to avoid risk of stack overflow. But avoid 1327 * injecting inefficient single-folio I/O into 1328 * flusher writeback as much as possible: only 1329 * write folios when we've encountered many 1330 * dirty folios, and when we've already scanned 1331 * the rest of the LRU for clean folios and see 1332 * the same dirty folios again (with the reclaim 1333 * flag set). 1334 */ 1335 if (folio_is_file_lru(folio) && 1336 (!current_is_kswapd() || 1337 !folio_test_reclaim(folio) || 1338 !test_bit(PGDAT_DIRTY, &pgdat->flags))) { 1339 /* 1340 * Immediately reclaim when written back. 1341 * Similar in principle to folio_deactivate() 1342 * except we already have the folio isolated 1343 * and know it's dirty 1344 */ 1345 node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE, 1346 nr_pages); 1347 folio_set_reclaim(folio); 1348 1349 goto activate_locked; 1350 } 1351 1352 if (references == FOLIOREF_RECLAIM_CLEAN) 1353 goto keep_locked; 1354 if (!may_enter_fs(folio, sc->gfp_mask)) 1355 goto keep_locked; 1356 if (!sc->may_writepage) 1357 goto keep_locked; 1358 1359 /* 1360 * Folio is dirty. Flush the TLB if a writable entry 1361 * potentially exists to avoid CPU writes after I/O 1362 * starts and then write it out here. 1363 */ 1364 try_to_unmap_flush_dirty(); 1365 switch (pageout(folio, mapping, &plug)) { 1366 case PAGE_KEEP: 1367 goto keep_locked; 1368 case PAGE_ACTIVATE: 1369 goto activate_locked; 1370 case PAGE_SUCCESS: 1371 stat->nr_pageout += nr_pages; 1372 1373 if (folio_test_writeback(folio)) 1374 goto keep; 1375 if (folio_test_dirty(folio)) 1376 goto keep; 1377 1378 /* 1379 * A synchronous write - probably a ramdisk. Go 1380 * ahead and try to reclaim the folio. 1381 */ 1382 if (!folio_trylock(folio)) 1383 goto keep; 1384 if (folio_test_dirty(folio) || 1385 folio_test_writeback(folio)) 1386 goto keep_locked; 1387 mapping = folio_mapping(folio); 1388 fallthrough; 1389 case PAGE_CLEAN: 1390 ; /* try to free the folio below */ 1391 } 1392 } 1393 1394 /* 1395 * If the folio has buffers, try to free the buffer 1396 * mappings associated with this folio. If we succeed 1397 * we try to free the folio as well. 1398 * 1399 * We do this even if the folio is dirty. 1400 * filemap_release_folio() does not perform I/O, but it 1401 * is possible for a folio to have the dirty flag set, 1402 * but it is actually clean (all its buffers are clean). 1403 * This happens if the buffers were written out directly, 1404 * with submit_bh(). ext3 will do this, as well as 1405 * the blockdev mapping. filemap_release_folio() will 1406 * discover that cleanness and will drop the buffers 1407 * and mark the folio clean - it can be freed. 1408 * 1409 * Rarely, folios can have buffers and no ->mapping. 1410 * These are the folios which were not successfully 1411 * invalidated in truncate_cleanup_folio(). We try to 1412 * drop those buffers here and if that worked, and the 1413 * folio is no longer mapped into process address space 1414 * (refcount == 1) it can be freed. Otherwise, leave 1415 * the folio on the LRU so it is swappable. 1416 */ 1417 if (folio_needs_release(folio)) { 1418 if (!filemap_release_folio(folio, sc->gfp_mask)) 1419 goto activate_locked; 1420 if (!mapping && folio_ref_count(folio) == 1) { 1421 folio_unlock(folio); 1422 if (folio_put_testzero(folio)) 1423 goto free_it; 1424 else { 1425 /* 1426 * rare race with speculative reference. 1427 * the speculative reference will free 1428 * this folio shortly, so we may 1429 * increment nr_reclaimed here (and 1430 * leave it off the LRU). 1431 */ 1432 nr_reclaimed += nr_pages; 1433 continue; 1434 } 1435 } 1436 } 1437 1438 if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) { 1439 /* follow __remove_mapping for reference */ 1440 if (!folio_ref_freeze(folio, 1)) 1441 goto keep_locked; 1442 /* 1443 * The folio has only one reference left, which is 1444 * from the isolation. After the caller puts the 1445 * folio back on the lru and drops the reference, the 1446 * folio will be freed anyway. It doesn't matter 1447 * which lru it goes on. So we don't bother checking 1448 * the dirty flag here. 1449 */ 1450 count_vm_events(PGLAZYFREED, nr_pages); 1451 count_memcg_folio_events(folio, PGLAZYFREED, nr_pages); 1452 } else if (!mapping || !__remove_mapping(mapping, folio, true, 1453 sc->target_mem_cgroup)) 1454 goto keep_locked; 1455 1456 folio_unlock(folio); 1457 free_it: 1458 /* 1459 * Folio may get swapped out as a whole, need to account 1460 * all pages in it. 1461 */ 1462 nr_reclaimed += nr_pages; 1463 1464 folio_undo_large_rmappable(folio); 1465 if (folio_batch_add(&free_folios, folio) == 0) { 1466 mem_cgroup_uncharge_folios(&free_folios); 1467 try_to_unmap_flush(); 1468 free_unref_folios(&free_folios); 1469 } 1470 continue; 1471 1472 activate_locked_split: 1473 /* 1474 * The tail pages that are failed to add into swap cache 1475 * reach here. Fixup nr_scanned and nr_pages. 1476 */ 1477 if (nr_pages > 1) { 1478 sc->nr_scanned -= (nr_pages - 1); 1479 nr_pages = 1; 1480 } 1481 activate_locked: 1482 /* Not a candidate for swapping, so reclaim swap space. */ 1483 if (folio_test_swapcache(folio) && 1484 (mem_cgroup_swap_full(folio) || folio_test_mlocked(folio))) 1485 folio_free_swap(folio); 1486 VM_BUG_ON_FOLIO(folio_test_active(folio), folio); 1487 if (!folio_test_mlocked(folio)) { 1488 int type = folio_is_file_lru(folio); 1489 folio_set_active(folio); 1490 stat->nr_activate[type] += nr_pages; 1491 count_memcg_folio_events(folio, PGACTIVATE, nr_pages); 1492 } 1493 keep_locked: 1494 folio_unlock(folio); 1495 keep: 1496 list_add(&folio->lru, &ret_folios); 1497 VM_BUG_ON_FOLIO(folio_test_lru(folio) || 1498 folio_test_unevictable(folio), folio); 1499 } 1500 /* 'folio_list' is always empty here */ 1501 1502 /* Migrate folios selected for demotion */ 1503 nr_reclaimed += demote_folio_list(&demote_folios, pgdat); 1504 /* Folios that could not be demoted are still in @demote_folios */ 1505 if (!list_empty(&demote_folios)) { 1506 /* Folios which weren't demoted go back on @folio_list */ 1507 list_splice_init(&demote_folios, folio_list); 1508 1509 /* 1510 * goto retry to reclaim the undemoted folios in folio_list if 1511 * desired. 1512 * 1513 * Reclaiming directly from top tier nodes is not often desired 1514 * due to it breaking the LRU ordering: in general memory 1515 * should be reclaimed from lower tier nodes and demoted from 1516 * top tier nodes. 1517 * 1518 * However, disabling reclaim from top tier nodes entirely 1519 * would cause ooms in edge scenarios where lower tier memory 1520 * is unreclaimable for whatever reason, eg memory being 1521 * mlocked or too hot to reclaim. We can disable reclaim 1522 * from top tier nodes in proactive reclaim though as that is 1523 * not real memory pressure. 1524 */ 1525 if (!sc->proactive) { 1526 do_demote_pass = false; 1527 goto retry; 1528 } 1529 } 1530 1531 pgactivate = stat->nr_activate[0] + stat->nr_activate[1]; 1532 1533 mem_cgroup_uncharge_folios(&free_folios); 1534 try_to_unmap_flush(); 1535 free_unref_folios(&free_folios); 1536 1537 list_splice(&ret_folios, folio_list); 1538 count_vm_events(PGACTIVATE, pgactivate); 1539 1540 if (plug) 1541 swap_write_unplug(plug); 1542 return nr_reclaimed; 1543 } 1544 1545 unsigned int reclaim_clean_pages_from_list(struct zone *zone, 1546 struct list_head *folio_list) 1547 { 1548 struct scan_control sc = { 1549 .gfp_mask = GFP_KERNEL, 1550 .may_unmap = 1, 1551 }; 1552 struct reclaim_stat stat; 1553 unsigned int nr_reclaimed; 1554 struct folio *folio, *next; 1555 LIST_HEAD(clean_folios); 1556 unsigned int noreclaim_flag; 1557 1558 list_for_each_entry_safe(folio, next, folio_list, lru) { 1559 if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) && 1560 !folio_test_dirty(folio) && !__folio_test_movable(folio) && 1561 !folio_test_unevictable(folio)) { 1562 folio_clear_active(folio); 1563 list_move(&folio->lru, &clean_folios); 1564 } 1565 } 1566 1567 /* 1568 * We should be safe here since we are only dealing with file pages and 1569 * we are not kswapd and therefore cannot write dirty file pages. But 1570 * call memalloc_noreclaim_save() anyway, just in case these conditions 1571 * change in the future. 1572 */ 1573 noreclaim_flag = memalloc_noreclaim_save(); 1574 nr_reclaimed = shrink_folio_list(&clean_folios, zone->zone_pgdat, &sc, 1575 &stat, true); 1576 memalloc_noreclaim_restore(noreclaim_flag); 1577 1578 list_splice(&clean_folios, folio_list); 1579 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, 1580 -(long)nr_reclaimed); 1581 /* 1582 * Since lazyfree pages are isolated from file LRU from the beginning, 1583 * they will rotate back to anonymous LRU in the end if it failed to 1584 * discard so isolated count will be mismatched. 1585 * Compensate the isolated count for both LRU lists. 1586 */ 1587 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON, 1588 stat.nr_lazyfree_fail); 1589 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, 1590 -(long)stat.nr_lazyfree_fail); 1591 return nr_reclaimed; 1592 } 1593 1594 /* 1595 * Update LRU sizes after isolating pages. The LRU size updates must 1596 * be complete before mem_cgroup_update_lru_size due to a sanity check. 1597 */ 1598 static __always_inline void update_lru_sizes(struct lruvec *lruvec, 1599 enum lru_list lru, unsigned long *nr_zone_taken) 1600 { 1601 int zid; 1602 1603 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1604 if (!nr_zone_taken[zid]) 1605 continue; 1606 1607 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 1608 } 1609 1610 } 1611 1612 #ifdef CONFIG_CMA 1613 /* 1614 * It is waste of effort to scan and reclaim CMA pages if it is not available 1615 * for current allocation context. Kswapd can not be enrolled as it can not 1616 * distinguish this scenario by using sc->gfp_mask = GFP_KERNEL 1617 */ 1618 static bool skip_cma(struct folio *folio, struct scan_control *sc) 1619 { 1620 return !current_is_kswapd() && 1621 gfp_migratetype(sc->gfp_mask) != MIGRATE_MOVABLE && 1622 folio_migratetype(folio) == MIGRATE_CMA; 1623 } 1624 #else 1625 static bool skip_cma(struct folio *folio, struct scan_control *sc) 1626 { 1627 return false; 1628 } 1629 #endif 1630 1631 /* 1632 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times. 1633 * 1634 * lruvec->lru_lock is heavily contended. Some of the functions that 1635 * shrink the lists perform better by taking out a batch of pages 1636 * and working on them outside the LRU lock. 1637 * 1638 * For pagecache intensive workloads, this function is the hottest 1639 * spot in the kernel (apart from copy_*_user functions). 1640 * 1641 * Lru_lock must be held before calling this function. 1642 * 1643 * @nr_to_scan: The number of eligible pages to look through on the list. 1644 * @lruvec: The LRU vector to pull pages from. 1645 * @dst: The temp list to put pages on to. 1646 * @nr_scanned: The number of pages that were scanned. 1647 * @sc: The scan_control struct for this reclaim session 1648 * @lru: LRU list id for isolating 1649 * 1650 * returns how many pages were moved onto *@dst. 1651 */ 1652 static unsigned long isolate_lru_folios(unsigned long nr_to_scan, 1653 struct lruvec *lruvec, struct list_head *dst, 1654 unsigned long *nr_scanned, struct scan_control *sc, 1655 enum lru_list lru) 1656 { 1657 struct list_head *src = &lruvec->lists[lru]; 1658 unsigned long nr_taken = 0; 1659 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 }; 1660 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, }; 1661 unsigned long skipped = 0; 1662 unsigned long scan, total_scan, nr_pages; 1663 LIST_HEAD(folios_skipped); 1664 1665 total_scan = 0; 1666 scan = 0; 1667 while (scan < nr_to_scan && !list_empty(src)) { 1668 struct list_head *move_to = src; 1669 struct folio *folio; 1670 1671 folio = lru_to_folio(src); 1672 prefetchw_prev_lru_folio(folio, src, flags); 1673 1674 nr_pages = folio_nr_pages(folio); 1675 total_scan += nr_pages; 1676 1677 if (folio_zonenum(folio) > sc->reclaim_idx || 1678 skip_cma(folio, sc)) { 1679 nr_skipped[folio_zonenum(folio)] += nr_pages; 1680 move_to = &folios_skipped; 1681 goto move; 1682 } 1683 1684 /* 1685 * Do not count skipped folios because that makes the function 1686 * return with no isolated folios if the LRU mostly contains 1687 * ineligible folios. This causes the VM to not reclaim any 1688 * folios, triggering a premature OOM. 1689 * Account all pages in a folio. 1690 */ 1691 scan += nr_pages; 1692 1693 if (!folio_test_lru(folio)) 1694 goto move; 1695 if (!sc->may_unmap && folio_mapped(folio)) 1696 goto move; 1697 1698 /* 1699 * Be careful not to clear the lru flag until after we're 1700 * sure the folio is not being freed elsewhere -- the 1701 * folio release code relies on it. 1702 */ 1703 if (unlikely(!folio_try_get(folio))) 1704 goto move; 1705 1706 if (!folio_test_clear_lru(folio)) { 1707 /* Another thread is already isolating this folio */ 1708 folio_put(folio); 1709 goto move; 1710 } 1711 1712 nr_taken += nr_pages; 1713 nr_zone_taken[folio_zonenum(folio)] += nr_pages; 1714 move_to = dst; 1715 move: 1716 list_move(&folio->lru, move_to); 1717 } 1718 1719 /* 1720 * Splice any skipped folios to the start of the LRU list. Note that 1721 * this disrupts the LRU order when reclaiming for lower zones but 1722 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX 1723 * scanning would soon rescan the same folios to skip and waste lots 1724 * of cpu cycles. 1725 */ 1726 if (!list_empty(&folios_skipped)) { 1727 int zid; 1728 1729 list_splice(&folios_skipped, src); 1730 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1731 if (!nr_skipped[zid]) 1732 continue; 1733 1734 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]); 1735 skipped += nr_skipped[zid]; 1736 } 1737 } 1738 *nr_scanned = total_scan; 1739 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, 1740 total_scan, skipped, nr_taken, lru); 1741 update_lru_sizes(lruvec, lru, nr_zone_taken); 1742 return nr_taken; 1743 } 1744 1745 /** 1746 * folio_isolate_lru() - Try to isolate a folio from its LRU list. 1747 * @folio: Folio to isolate from its LRU list. 1748 * 1749 * Isolate a @folio from an LRU list and adjust the vmstat statistic 1750 * corresponding to whatever LRU list the folio was on. 1751 * 1752 * The folio will have its LRU flag cleared. If it was found on the 1753 * active list, it will have the Active flag set. If it was found on the 1754 * unevictable list, it will have the Unevictable flag set. These flags 1755 * may need to be cleared by the caller before letting the page go. 1756 * 1757 * Context: 1758 * 1759 * (1) Must be called with an elevated refcount on the folio. This is a 1760 * fundamental difference from isolate_lru_folios() (which is called 1761 * without a stable reference). 1762 * (2) The lru_lock must not be held. 1763 * (3) Interrupts must be enabled. 1764 * 1765 * Return: true if the folio was removed from an LRU list. 1766 * false if the folio was not on an LRU list. 1767 */ 1768 bool folio_isolate_lru(struct folio *folio) 1769 { 1770 bool ret = false; 1771 1772 VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio); 1773 1774 if (folio_test_clear_lru(folio)) { 1775 struct lruvec *lruvec; 1776 1777 folio_get(folio); 1778 lruvec = folio_lruvec_lock_irq(folio); 1779 lruvec_del_folio(lruvec, folio); 1780 unlock_page_lruvec_irq(lruvec); 1781 ret = true; 1782 } 1783 1784 return ret; 1785 } 1786 1787 /* 1788 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 1789 * then get rescheduled. When there are massive number of tasks doing page 1790 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 1791 * the LRU list will go small and be scanned faster than necessary, leading to 1792 * unnecessary swapping, thrashing and OOM. 1793 */ 1794 static bool too_many_isolated(struct pglist_data *pgdat, int file, 1795 struct scan_control *sc) 1796 { 1797 unsigned long inactive, isolated; 1798 bool too_many; 1799 1800 if (current_is_kswapd()) 1801 return false; 1802 1803 if (!writeback_throttling_sane(sc)) 1804 return false; 1805 1806 if (file) { 1807 inactive = node_page_state(pgdat, NR_INACTIVE_FILE); 1808 isolated = node_page_state(pgdat, NR_ISOLATED_FILE); 1809 } else { 1810 inactive = node_page_state(pgdat, NR_INACTIVE_ANON); 1811 isolated = node_page_state(pgdat, NR_ISOLATED_ANON); 1812 } 1813 1814 /* 1815 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 1816 * won't get blocked by normal direct-reclaimers, forming a circular 1817 * deadlock. 1818 */ 1819 if (gfp_has_io_fs(sc->gfp_mask)) 1820 inactive >>= 3; 1821 1822 too_many = isolated > inactive; 1823 1824 /* Wake up tasks throttled due to too_many_isolated. */ 1825 if (!too_many) 1826 wake_throttle_isolated(pgdat); 1827 1828 return too_many; 1829 } 1830 1831 /* 1832 * move_folios_to_lru() moves folios from private @list to appropriate LRU list. 1833 * 1834 * Returns the number of pages moved to the given lruvec. 1835 */ 1836 static unsigned int move_folios_to_lru(struct lruvec *lruvec, 1837 struct list_head *list) 1838 { 1839 int nr_pages, nr_moved = 0; 1840 struct folio_batch free_folios; 1841 1842 folio_batch_init(&free_folios); 1843 while (!list_empty(list)) { 1844 struct folio *folio = lru_to_folio(list); 1845 1846 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 1847 list_del(&folio->lru); 1848 if (unlikely(!folio_evictable(folio))) { 1849 spin_unlock_irq(&lruvec->lru_lock); 1850 folio_putback_lru(folio); 1851 spin_lock_irq(&lruvec->lru_lock); 1852 continue; 1853 } 1854 1855 /* 1856 * The folio_set_lru needs to be kept here for list integrity. 1857 * Otherwise: 1858 * #0 move_folios_to_lru #1 release_pages 1859 * if (!folio_put_testzero()) 1860 * if (folio_put_testzero()) 1861 * !lru //skip lru_lock 1862 * folio_set_lru() 1863 * list_add(&folio->lru,) 1864 * list_add(&folio->lru,) 1865 */ 1866 folio_set_lru(folio); 1867 1868 if (unlikely(folio_put_testzero(folio))) { 1869 __folio_clear_lru_flags(folio); 1870 1871 folio_undo_large_rmappable(folio); 1872 if (folio_batch_add(&free_folios, folio) == 0) { 1873 spin_unlock_irq(&lruvec->lru_lock); 1874 mem_cgroup_uncharge_folios(&free_folios); 1875 free_unref_folios(&free_folios); 1876 spin_lock_irq(&lruvec->lru_lock); 1877 } 1878 1879 continue; 1880 } 1881 1882 /* 1883 * All pages were isolated from the same lruvec (and isolation 1884 * inhibits memcg migration). 1885 */ 1886 VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio); 1887 lruvec_add_folio(lruvec, folio); 1888 nr_pages = folio_nr_pages(folio); 1889 nr_moved += nr_pages; 1890 if (folio_test_active(folio)) 1891 workingset_age_nonresident(lruvec, nr_pages); 1892 } 1893 1894 if (free_folios.nr) { 1895 spin_unlock_irq(&lruvec->lru_lock); 1896 mem_cgroup_uncharge_folios(&free_folios); 1897 free_unref_folios(&free_folios); 1898 spin_lock_irq(&lruvec->lru_lock); 1899 } 1900 1901 return nr_moved; 1902 } 1903 1904 /* 1905 * If a kernel thread (such as nfsd for loop-back mounts) services a backing 1906 * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case 1907 * we should not throttle. Otherwise it is safe to do so. 1908 */ 1909 static int current_may_throttle(void) 1910 { 1911 return !(current->flags & PF_LOCAL_THROTTLE); 1912 } 1913 1914 /* 1915 * shrink_inactive_list() is a helper for shrink_node(). It returns the number 1916 * of reclaimed pages 1917 */ 1918 static unsigned long shrink_inactive_list(unsigned long nr_to_scan, 1919 struct lruvec *lruvec, struct scan_control *sc, 1920 enum lru_list lru) 1921 { 1922 LIST_HEAD(folio_list); 1923 unsigned long nr_scanned; 1924 unsigned int nr_reclaimed = 0; 1925 unsigned long nr_taken; 1926 struct reclaim_stat stat; 1927 bool file = is_file_lru(lru); 1928 enum vm_event_item item; 1929 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1930 bool stalled = false; 1931 1932 while (unlikely(too_many_isolated(pgdat, file, sc))) { 1933 if (stalled) 1934 return 0; 1935 1936 /* wait a bit for the reclaimer. */ 1937 stalled = true; 1938 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED); 1939 1940 /* We are about to die and free our memory. Return now. */ 1941 if (fatal_signal_pending(current)) 1942 return SWAP_CLUSTER_MAX; 1943 } 1944 1945 lru_add_drain(); 1946 1947 spin_lock_irq(&lruvec->lru_lock); 1948 1949 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &folio_list, 1950 &nr_scanned, sc, lru); 1951 1952 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 1953 item = PGSCAN_KSWAPD + reclaimer_offset(); 1954 if (!cgroup_reclaim(sc)) 1955 __count_vm_events(item, nr_scanned); 1956 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned); 1957 __count_vm_events(PGSCAN_ANON + file, nr_scanned); 1958 1959 spin_unlock_irq(&lruvec->lru_lock); 1960 1961 if (nr_taken == 0) 1962 return 0; 1963 1964 nr_reclaimed = shrink_folio_list(&folio_list, pgdat, sc, &stat, false); 1965 1966 spin_lock_irq(&lruvec->lru_lock); 1967 move_folios_to_lru(lruvec, &folio_list); 1968 1969 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 1970 item = PGSTEAL_KSWAPD + reclaimer_offset(); 1971 if (!cgroup_reclaim(sc)) 1972 __count_vm_events(item, nr_reclaimed); 1973 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed); 1974 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed); 1975 spin_unlock_irq(&lruvec->lru_lock); 1976 1977 lru_note_cost(lruvec, file, stat.nr_pageout, nr_scanned - nr_reclaimed); 1978 1979 /* 1980 * If dirty folios are scanned that are not queued for IO, it 1981 * implies that flushers are not doing their job. This can 1982 * happen when memory pressure pushes dirty folios to the end of 1983 * the LRU before the dirty limits are breached and the dirty 1984 * data has expired. It can also happen when the proportion of 1985 * dirty folios grows not through writes but through memory 1986 * pressure reclaiming all the clean cache. And in some cases, 1987 * the flushers simply cannot keep up with the allocation 1988 * rate. Nudge the flusher threads in case they are asleep. 1989 */ 1990 if (stat.nr_unqueued_dirty == nr_taken) { 1991 wakeup_flusher_threads(WB_REASON_VMSCAN); 1992 /* 1993 * For cgroupv1 dirty throttling is achieved by waking up 1994 * the kernel flusher here and later waiting on folios 1995 * which are in writeback to finish (see shrink_folio_list()). 1996 * 1997 * Flusher may not be able to issue writeback quickly 1998 * enough for cgroupv1 writeback throttling to work 1999 * on a large system. 2000 */ 2001 if (!writeback_throttling_sane(sc)) 2002 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK); 2003 } 2004 2005 sc->nr.dirty += stat.nr_dirty; 2006 sc->nr.congested += stat.nr_congested; 2007 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty; 2008 sc->nr.writeback += stat.nr_writeback; 2009 sc->nr.immediate += stat.nr_immediate; 2010 sc->nr.taken += nr_taken; 2011 if (file) 2012 sc->nr.file_taken += nr_taken; 2013 2014 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 2015 nr_scanned, nr_reclaimed, &stat, sc->priority, file); 2016 return nr_reclaimed; 2017 } 2018 2019 /* 2020 * shrink_active_list() moves folios from the active LRU to the inactive LRU. 2021 * 2022 * We move them the other way if the folio is referenced by one or more 2023 * processes. 2024 * 2025 * If the folios are mostly unmapped, the processing is fast and it is 2026 * appropriate to hold lru_lock across the whole operation. But if 2027 * the folios are mapped, the processing is slow (folio_referenced()), so 2028 * we should drop lru_lock around each folio. It's impossible to balance 2029 * this, so instead we remove the folios from the LRU while processing them. 2030 * It is safe to rely on the active flag against the non-LRU folios in here 2031 * because nobody will play with that bit on a non-LRU folio. 2032 * 2033 * The downside is that we have to touch folio->_refcount against each folio. 2034 * But we had to alter folio->flags anyway. 2035 */ 2036 static void shrink_active_list(unsigned long nr_to_scan, 2037 struct lruvec *lruvec, 2038 struct scan_control *sc, 2039 enum lru_list lru) 2040 { 2041 unsigned long nr_taken; 2042 unsigned long nr_scanned; 2043 unsigned long vm_flags; 2044 LIST_HEAD(l_hold); /* The folios which were snipped off */ 2045 LIST_HEAD(l_active); 2046 LIST_HEAD(l_inactive); 2047 unsigned nr_deactivate, nr_activate; 2048 unsigned nr_rotated = 0; 2049 bool file = is_file_lru(lru); 2050 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2051 2052 lru_add_drain(); 2053 2054 spin_lock_irq(&lruvec->lru_lock); 2055 2056 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &l_hold, 2057 &nr_scanned, sc, lru); 2058 2059 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2060 2061 if (!cgroup_reclaim(sc)) 2062 __count_vm_events(PGREFILL, nr_scanned); 2063 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned); 2064 2065 spin_unlock_irq(&lruvec->lru_lock); 2066 2067 while (!list_empty(&l_hold)) { 2068 struct folio *folio; 2069 2070 cond_resched(); 2071 folio = lru_to_folio(&l_hold); 2072 list_del(&folio->lru); 2073 2074 if (unlikely(!folio_evictable(folio))) { 2075 folio_putback_lru(folio); 2076 continue; 2077 } 2078 2079 if (unlikely(buffer_heads_over_limit)) { 2080 if (folio_needs_release(folio) && 2081 folio_trylock(folio)) { 2082 filemap_release_folio(folio, 0); 2083 folio_unlock(folio); 2084 } 2085 } 2086 2087 /* Referenced or rmap lock contention: rotate */ 2088 if (folio_referenced(folio, 0, sc->target_mem_cgroup, 2089 &vm_flags) != 0) { 2090 /* 2091 * Identify referenced, file-backed active folios and 2092 * give them one more trip around the active list. So 2093 * that executable code get better chances to stay in 2094 * memory under moderate memory pressure. Anon folios 2095 * are not likely to be evicted by use-once streaming 2096 * IO, plus JVM can create lots of anon VM_EXEC folios, 2097 * so we ignore them here. 2098 */ 2099 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) { 2100 nr_rotated += folio_nr_pages(folio); 2101 list_add(&folio->lru, &l_active); 2102 continue; 2103 } 2104 } 2105 2106 folio_clear_active(folio); /* we are de-activating */ 2107 folio_set_workingset(folio); 2108 list_add(&folio->lru, &l_inactive); 2109 } 2110 2111 /* 2112 * Move folios back to the lru list. 2113 */ 2114 spin_lock_irq(&lruvec->lru_lock); 2115 2116 nr_activate = move_folios_to_lru(lruvec, &l_active); 2117 nr_deactivate = move_folios_to_lru(lruvec, &l_inactive); 2118 2119 __count_vm_events(PGDEACTIVATE, nr_deactivate); 2120 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate); 2121 2122 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2123 spin_unlock_irq(&lruvec->lru_lock); 2124 2125 if (nr_rotated) 2126 lru_note_cost(lruvec, file, 0, nr_rotated); 2127 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate, 2128 nr_deactivate, nr_rotated, sc->priority, file); 2129 } 2130 2131 static unsigned int reclaim_folio_list(struct list_head *folio_list, 2132 struct pglist_data *pgdat) 2133 { 2134 struct reclaim_stat dummy_stat; 2135 unsigned int nr_reclaimed; 2136 struct folio *folio; 2137 struct scan_control sc = { 2138 .gfp_mask = GFP_KERNEL, 2139 .may_writepage = 1, 2140 .may_unmap = 1, 2141 .may_swap = 1, 2142 .no_demotion = 1, 2143 }; 2144 2145 nr_reclaimed = shrink_folio_list(folio_list, pgdat, &sc, &dummy_stat, true); 2146 while (!list_empty(folio_list)) { 2147 folio = lru_to_folio(folio_list); 2148 list_del(&folio->lru); 2149 folio_putback_lru(folio); 2150 } 2151 2152 return nr_reclaimed; 2153 } 2154 2155 unsigned long reclaim_pages(struct list_head *folio_list) 2156 { 2157 int nid; 2158 unsigned int nr_reclaimed = 0; 2159 LIST_HEAD(node_folio_list); 2160 unsigned int noreclaim_flag; 2161 2162 if (list_empty(folio_list)) 2163 return nr_reclaimed; 2164 2165 noreclaim_flag = memalloc_noreclaim_save(); 2166 2167 nid = folio_nid(lru_to_folio(folio_list)); 2168 do { 2169 struct folio *folio = lru_to_folio(folio_list); 2170 2171 if (nid == folio_nid(folio)) { 2172 folio_clear_active(folio); 2173 list_move(&folio->lru, &node_folio_list); 2174 continue; 2175 } 2176 2177 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid)); 2178 nid = folio_nid(lru_to_folio(folio_list)); 2179 } while (!list_empty(folio_list)); 2180 2181 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid)); 2182 2183 memalloc_noreclaim_restore(noreclaim_flag); 2184 2185 return nr_reclaimed; 2186 } 2187 2188 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 2189 struct lruvec *lruvec, struct scan_control *sc) 2190 { 2191 if (is_active_lru(lru)) { 2192 if (sc->may_deactivate & (1 << is_file_lru(lru))) 2193 shrink_active_list(nr_to_scan, lruvec, sc, lru); 2194 else 2195 sc->skipped_deactivate = 1; 2196 return 0; 2197 } 2198 2199 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 2200 } 2201 2202 /* 2203 * The inactive anon list should be small enough that the VM never has 2204 * to do too much work. 2205 * 2206 * The inactive file list should be small enough to leave most memory 2207 * to the established workingset on the scan-resistant active list, 2208 * but large enough to avoid thrashing the aggregate readahead window. 2209 * 2210 * Both inactive lists should also be large enough that each inactive 2211 * folio has a chance to be referenced again before it is reclaimed. 2212 * 2213 * If that fails and refaulting is observed, the inactive list grows. 2214 * 2215 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE folios 2216 * on this LRU, maintained by the pageout code. An inactive_ratio 2217 * of 3 means 3:1 or 25% of the folios are kept on the inactive list. 2218 * 2219 * total target max 2220 * memory ratio inactive 2221 * ------------------------------------- 2222 * 10MB 1 5MB 2223 * 100MB 1 50MB 2224 * 1GB 3 250MB 2225 * 10GB 10 0.9GB 2226 * 100GB 31 3GB 2227 * 1TB 101 10GB 2228 * 10TB 320 32GB 2229 */ 2230 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru) 2231 { 2232 enum lru_list active_lru = inactive_lru + LRU_ACTIVE; 2233 unsigned long inactive, active; 2234 unsigned long inactive_ratio; 2235 unsigned long gb; 2236 2237 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru); 2238 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru); 2239 2240 gb = (inactive + active) >> (30 - PAGE_SHIFT); 2241 if (gb) 2242 inactive_ratio = int_sqrt(10 * gb); 2243 else 2244 inactive_ratio = 1; 2245 2246 return inactive * inactive_ratio < active; 2247 } 2248 2249 enum scan_balance { 2250 SCAN_EQUAL, 2251 SCAN_FRACT, 2252 SCAN_ANON, 2253 SCAN_FILE, 2254 }; 2255 2256 static void prepare_scan_control(pg_data_t *pgdat, struct scan_control *sc) 2257 { 2258 unsigned long file; 2259 struct lruvec *target_lruvec; 2260 2261 if (lru_gen_enabled()) 2262 return; 2263 2264 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat); 2265 2266 /* 2267 * Flush the memory cgroup stats, so that we read accurate per-memcg 2268 * lruvec stats for heuristics. 2269 */ 2270 mem_cgroup_flush_stats(sc->target_mem_cgroup); 2271 2272 /* 2273 * Determine the scan balance between anon and file LRUs. 2274 */ 2275 spin_lock_irq(&target_lruvec->lru_lock); 2276 sc->anon_cost = target_lruvec->anon_cost; 2277 sc->file_cost = target_lruvec->file_cost; 2278 spin_unlock_irq(&target_lruvec->lru_lock); 2279 2280 /* 2281 * Target desirable inactive:active list ratios for the anon 2282 * and file LRU lists. 2283 */ 2284 if (!sc->force_deactivate) { 2285 unsigned long refaults; 2286 2287 /* 2288 * When refaults are being observed, it means a new 2289 * workingset is being established. Deactivate to get 2290 * rid of any stale active pages quickly. 2291 */ 2292 refaults = lruvec_page_state(target_lruvec, 2293 WORKINGSET_ACTIVATE_ANON); 2294 if (refaults != target_lruvec->refaults[WORKINGSET_ANON] || 2295 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON)) 2296 sc->may_deactivate |= DEACTIVATE_ANON; 2297 else 2298 sc->may_deactivate &= ~DEACTIVATE_ANON; 2299 2300 refaults = lruvec_page_state(target_lruvec, 2301 WORKINGSET_ACTIVATE_FILE); 2302 if (refaults != target_lruvec->refaults[WORKINGSET_FILE] || 2303 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE)) 2304 sc->may_deactivate |= DEACTIVATE_FILE; 2305 else 2306 sc->may_deactivate &= ~DEACTIVATE_FILE; 2307 } else 2308 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE; 2309 2310 /* 2311 * If we have plenty of inactive file pages that aren't 2312 * thrashing, try to reclaim those first before touching 2313 * anonymous pages. 2314 */ 2315 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE); 2316 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE) && 2317 !sc->no_cache_trim_mode) 2318 sc->cache_trim_mode = 1; 2319 else 2320 sc->cache_trim_mode = 0; 2321 2322 /* 2323 * Prevent the reclaimer from falling into the cache trap: as 2324 * cache pages start out inactive, every cache fault will tip 2325 * the scan balance towards the file LRU. And as the file LRU 2326 * shrinks, so does the window for rotation from references. 2327 * This means we have a runaway feedback loop where a tiny 2328 * thrashing file LRU becomes infinitely more attractive than 2329 * anon pages. Try to detect this based on file LRU size. 2330 */ 2331 if (!cgroup_reclaim(sc)) { 2332 unsigned long total_high_wmark = 0; 2333 unsigned long free, anon; 2334 int z; 2335 2336 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES); 2337 file = node_page_state(pgdat, NR_ACTIVE_FILE) + 2338 node_page_state(pgdat, NR_INACTIVE_FILE); 2339 2340 for (z = 0; z < MAX_NR_ZONES; z++) { 2341 struct zone *zone = &pgdat->node_zones[z]; 2342 2343 if (!managed_zone(zone)) 2344 continue; 2345 2346 total_high_wmark += high_wmark_pages(zone); 2347 } 2348 2349 /* 2350 * Consider anon: if that's low too, this isn't a 2351 * runaway file reclaim problem, but rather just 2352 * extreme pressure. Reclaim as per usual then. 2353 */ 2354 anon = node_page_state(pgdat, NR_INACTIVE_ANON); 2355 2356 sc->file_is_tiny = 2357 file + free <= total_high_wmark && 2358 !(sc->may_deactivate & DEACTIVATE_ANON) && 2359 anon >> sc->priority; 2360 } 2361 } 2362 2363 /* 2364 * Determine how aggressively the anon and file LRU lists should be 2365 * scanned. 2366 * 2367 * nr[0] = anon inactive folios to scan; nr[1] = anon active folios to scan 2368 * nr[2] = file inactive folios to scan; nr[3] = file active folios to scan 2369 */ 2370 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc, 2371 unsigned long *nr) 2372 { 2373 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2374 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 2375 unsigned long anon_cost, file_cost, total_cost; 2376 int swappiness = sc_swappiness(sc, memcg); 2377 u64 fraction[ANON_AND_FILE]; 2378 u64 denominator = 0; /* gcc */ 2379 enum scan_balance scan_balance; 2380 unsigned long ap, fp; 2381 enum lru_list lru; 2382 2383 /* If we have no swap space, do not bother scanning anon folios. */ 2384 if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) { 2385 scan_balance = SCAN_FILE; 2386 goto out; 2387 } 2388 2389 /* 2390 * Global reclaim will swap to prevent OOM even with no 2391 * swappiness, but memcg users want to use this knob to 2392 * disable swapping for individual groups completely when 2393 * using the memory controller's swap limit feature would be 2394 * too expensive. 2395 */ 2396 if (cgroup_reclaim(sc) && !swappiness) { 2397 scan_balance = SCAN_FILE; 2398 goto out; 2399 } 2400 2401 /* 2402 * Do not apply any pressure balancing cleverness when the 2403 * system is close to OOM, scan both anon and file equally 2404 * (unless the swappiness setting disagrees with swapping). 2405 */ 2406 if (!sc->priority && swappiness) { 2407 scan_balance = SCAN_EQUAL; 2408 goto out; 2409 } 2410 2411 /* 2412 * If the system is almost out of file pages, force-scan anon. 2413 */ 2414 if (sc->file_is_tiny) { 2415 scan_balance = SCAN_ANON; 2416 goto out; 2417 } 2418 2419 /* 2420 * If there is enough inactive page cache, we do not reclaim 2421 * anything from the anonymous working right now. 2422 */ 2423 if (sc->cache_trim_mode) { 2424 scan_balance = SCAN_FILE; 2425 goto out; 2426 } 2427 2428 scan_balance = SCAN_FRACT; 2429 /* 2430 * Calculate the pressure balance between anon and file pages. 2431 * 2432 * The amount of pressure we put on each LRU is inversely 2433 * proportional to the cost of reclaiming each list, as 2434 * determined by the share of pages that are refaulting, times 2435 * the relative IO cost of bringing back a swapped out 2436 * anonymous page vs reloading a filesystem page (swappiness). 2437 * 2438 * Although we limit that influence to ensure no list gets 2439 * left behind completely: at least a third of the pressure is 2440 * applied, before swappiness. 2441 * 2442 * With swappiness at 100, anon and file have equal IO cost. 2443 */ 2444 total_cost = sc->anon_cost + sc->file_cost; 2445 anon_cost = total_cost + sc->anon_cost; 2446 file_cost = total_cost + sc->file_cost; 2447 total_cost = anon_cost + file_cost; 2448 2449 ap = swappiness * (total_cost + 1); 2450 ap /= anon_cost + 1; 2451 2452 fp = (MAX_SWAPPINESS - swappiness) * (total_cost + 1); 2453 fp /= file_cost + 1; 2454 2455 fraction[0] = ap; 2456 fraction[1] = fp; 2457 denominator = ap + fp; 2458 out: 2459 for_each_evictable_lru(lru) { 2460 bool file = is_file_lru(lru); 2461 unsigned long lruvec_size; 2462 unsigned long low, min; 2463 unsigned long scan; 2464 2465 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx); 2466 mem_cgroup_protection(sc->target_mem_cgroup, memcg, 2467 &min, &low); 2468 2469 if (min || low) { 2470 /* 2471 * Scale a cgroup's reclaim pressure by proportioning 2472 * its current usage to its memory.low or memory.min 2473 * setting. 2474 * 2475 * This is important, as otherwise scanning aggression 2476 * becomes extremely binary -- from nothing as we 2477 * approach the memory protection threshold, to totally 2478 * nominal as we exceed it. This results in requiring 2479 * setting extremely liberal protection thresholds. It 2480 * also means we simply get no protection at all if we 2481 * set it too low, which is not ideal. 2482 * 2483 * If there is any protection in place, we reduce scan 2484 * pressure by how much of the total memory used is 2485 * within protection thresholds. 2486 * 2487 * There is one special case: in the first reclaim pass, 2488 * we skip over all groups that are within their low 2489 * protection. If that fails to reclaim enough pages to 2490 * satisfy the reclaim goal, we come back and override 2491 * the best-effort low protection. However, we still 2492 * ideally want to honor how well-behaved groups are in 2493 * that case instead of simply punishing them all 2494 * equally. As such, we reclaim them based on how much 2495 * memory they are using, reducing the scan pressure 2496 * again by how much of the total memory used is under 2497 * hard protection. 2498 */ 2499 unsigned long cgroup_size = mem_cgroup_size(memcg); 2500 unsigned long protection; 2501 2502 /* memory.low scaling, make sure we retry before OOM */ 2503 if (!sc->memcg_low_reclaim && low > min) { 2504 protection = low; 2505 sc->memcg_low_skipped = 1; 2506 } else { 2507 protection = min; 2508 } 2509 2510 /* Avoid TOCTOU with earlier protection check */ 2511 cgroup_size = max(cgroup_size, protection); 2512 2513 scan = lruvec_size - lruvec_size * protection / 2514 (cgroup_size + 1); 2515 2516 /* 2517 * Minimally target SWAP_CLUSTER_MAX pages to keep 2518 * reclaim moving forwards, avoiding decrementing 2519 * sc->priority further than desirable. 2520 */ 2521 scan = max(scan, SWAP_CLUSTER_MAX); 2522 } else { 2523 scan = lruvec_size; 2524 } 2525 2526 scan >>= sc->priority; 2527 2528 /* 2529 * If the cgroup's already been deleted, make sure to 2530 * scrape out the remaining cache. 2531 */ 2532 if (!scan && !mem_cgroup_online(memcg)) 2533 scan = min(lruvec_size, SWAP_CLUSTER_MAX); 2534 2535 switch (scan_balance) { 2536 case SCAN_EQUAL: 2537 /* Scan lists relative to size */ 2538 break; 2539 case SCAN_FRACT: 2540 /* 2541 * Scan types proportional to swappiness and 2542 * their relative recent reclaim efficiency. 2543 * Make sure we don't miss the last page on 2544 * the offlined memory cgroups because of a 2545 * round-off error. 2546 */ 2547 scan = mem_cgroup_online(memcg) ? 2548 div64_u64(scan * fraction[file], denominator) : 2549 DIV64_U64_ROUND_UP(scan * fraction[file], 2550 denominator); 2551 break; 2552 case SCAN_FILE: 2553 case SCAN_ANON: 2554 /* Scan one type exclusively */ 2555 if ((scan_balance == SCAN_FILE) != file) 2556 scan = 0; 2557 break; 2558 default: 2559 /* Look ma, no brain */ 2560 BUG(); 2561 } 2562 2563 nr[lru] = scan; 2564 } 2565 } 2566 2567 /* 2568 * Anonymous LRU management is a waste if there is 2569 * ultimately no way to reclaim the memory. 2570 */ 2571 static bool can_age_anon_pages(struct pglist_data *pgdat, 2572 struct scan_control *sc) 2573 { 2574 /* Aging the anon LRU is valuable if swap is present: */ 2575 if (total_swap_pages > 0) 2576 return true; 2577 2578 /* Also valuable if anon pages can be demoted: */ 2579 return can_demote(pgdat->node_id, sc); 2580 } 2581 2582 #ifdef CONFIG_LRU_GEN 2583 2584 #ifdef CONFIG_LRU_GEN_ENABLED 2585 DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS); 2586 #define get_cap(cap) static_branch_likely(&lru_gen_caps[cap]) 2587 #else 2588 DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS); 2589 #define get_cap(cap) static_branch_unlikely(&lru_gen_caps[cap]) 2590 #endif 2591 2592 static bool should_walk_mmu(void) 2593 { 2594 return arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK); 2595 } 2596 2597 static bool should_clear_pmd_young(void) 2598 { 2599 return arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG); 2600 } 2601 2602 /****************************************************************************** 2603 * shorthand helpers 2604 ******************************************************************************/ 2605 2606 #define LRU_REFS_FLAGS (BIT(PG_referenced) | BIT(PG_workingset)) 2607 2608 #define DEFINE_MAX_SEQ(lruvec) \ 2609 unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq) 2610 2611 #define DEFINE_MIN_SEQ(lruvec) \ 2612 unsigned long min_seq[ANON_AND_FILE] = { \ 2613 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]), \ 2614 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]), \ 2615 } 2616 2617 #define for_each_gen_type_zone(gen, type, zone) \ 2618 for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++) \ 2619 for ((type) = 0; (type) < ANON_AND_FILE; (type)++) \ 2620 for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++) 2621 2622 #define get_memcg_gen(seq) ((seq) % MEMCG_NR_GENS) 2623 #define get_memcg_bin(bin) ((bin) % MEMCG_NR_BINS) 2624 2625 static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid) 2626 { 2627 struct pglist_data *pgdat = NODE_DATA(nid); 2628 2629 #ifdef CONFIG_MEMCG 2630 if (memcg) { 2631 struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec; 2632 2633 /* see the comment in mem_cgroup_lruvec() */ 2634 if (!lruvec->pgdat) 2635 lruvec->pgdat = pgdat; 2636 2637 return lruvec; 2638 } 2639 #endif 2640 VM_WARN_ON_ONCE(!mem_cgroup_disabled()); 2641 2642 return &pgdat->__lruvec; 2643 } 2644 2645 static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc) 2646 { 2647 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 2648 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2649 2650 if (!sc->may_swap) 2651 return 0; 2652 2653 if (!can_demote(pgdat->node_id, sc) && 2654 mem_cgroup_get_nr_swap_pages(memcg) < MIN_LRU_BATCH) 2655 return 0; 2656 2657 return sc_swappiness(sc, memcg); 2658 } 2659 2660 static int get_nr_gens(struct lruvec *lruvec, int type) 2661 { 2662 return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1; 2663 } 2664 2665 static bool __maybe_unused seq_is_valid(struct lruvec *lruvec) 2666 { 2667 /* see the comment on lru_gen_folio */ 2668 return get_nr_gens(lruvec, LRU_GEN_FILE) >= MIN_NR_GENS && 2669 get_nr_gens(lruvec, LRU_GEN_FILE) <= get_nr_gens(lruvec, LRU_GEN_ANON) && 2670 get_nr_gens(lruvec, LRU_GEN_ANON) <= MAX_NR_GENS; 2671 } 2672 2673 /****************************************************************************** 2674 * Bloom filters 2675 ******************************************************************************/ 2676 2677 /* 2678 * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when 2679 * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of 2680 * bits in a bitmap, k is the number of hash functions and n is the number of 2681 * inserted items. 2682 * 2683 * Page table walkers use one of the two filters to reduce their search space. 2684 * To get rid of non-leaf entries that no longer have enough leaf entries, the 2685 * aging uses the double-buffering technique to flip to the other filter each 2686 * time it produces a new generation. For non-leaf entries that have enough 2687 * leaf entries, the aging carries them over to the next generation in 2688 * walk_pmd_range(); the eviction also report them when walking the rmap 2689 * in lru_gen_look_around(). 2690 * 2691 * For future optimizations: 2692 * 1. It's not necessary to keep both filters all the time. The spare one can be 2693 * freed after the RCU grace period and reallocated if needed again. 2694 * 2. And when reallocating, it's worth scaling its size according to the number 2695 * of inserted entries in the other filter, to reduce the memory overhead on 2696 * small systems and false positives on large systems. 2697 * 3. Jenkins' hash function is an alternative to Knuth's. 2698 */ 2699 #define BLOOM_FILTER_SHIFT 15 2700 2701 static inline int filter_gen_from_seq(unsigned long seq) 2702 { 2703 return seq % NR_BLOOM_FILTERS; 2704 } 2705 2706 static void get_item_key(void *item, int *key) 2707 { 2708 u32 hash = hash_ptr(item, BLOOM_FILTER_SHIFT * 2); 2709 2710 BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32)); 2711 2712 key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1); 2713 key[1] = hash >> BLOOM_FILTER_SHIFT; 2714 } 2715 2716 static bool test_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq, 2717 void *item) 2718 { 2719 int key[2]; 2720 unsigned long *filter; 2721 int gen = filter_gen_from_seq(seq); 2722 2723 filter = READ_ONCE(mm_state->filters[gen]); 2724 if (!filter) 2725 return true; 2726 2727 get_item_key(item, key); 2728 2729 return test_bit(key[0], filter) && test_bit(key[1], filter); 2730 } 2731 2732 static void update_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq, 2733 void *item) 2734 { 2735 int key[2]; 2736 unsigned long *filter; 2737 int gen = filter_gen_from_seq(seq); 2738 2739 filter = READ_ONCE(mm_state->filters[gen]); 2740 if (!filter) 2741 return; 2742 2743 get_item_key(item, key); 2744 2745 if (!test_bit(key[0], filter)) 2746 set_bit(key[0], filter); 2747 if (!test_bit(key[1], filter)) 2748 set_bit(key[1], filter); 2749 } 2750 2751 static void reset_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq) 2752 { 2753 unsigned long *filter; 2754 int gen = filter_gen_from_seq(seq); 2755 2756 filter = mm_state->filters[gen]; 2757 if (filter) { 2758 bitmap_clear(filter, 0, BIT(BLOOM_FILTER_SHIFT)); 2759 return; 2760 } 2761 2762 filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT), 2763 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN); 2764 WRITE_ONCE(mm_state->filters[gen], filter); 2765 } 2766 2767 /****************************************************************************** 2768 * mm_struct list 2769 ******************************************************************************/ 2770 2771 #ifdef CONFIG_LRU_GEN_WALKS_MMU 2772 2773 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg) 2774 { 2775 static struct lru_gen_mm_list mm_list = { 2776 .fifo = LIST_HEAD_INIT(mm_list.fifo), 2777 .lock = __SPIN_LOCK_UNLOCKED(mm_list.lock), 2778 }; 2779 2780 #ifdef CONFIG_MEMCG 2781 if (memcg) 2782 return &memcg->mm_list; 2783 #endif 2784 VM_WARN_ON_ONCE(!mem_cgroup_disabled()); 2785 2786 return &mm_list; 2787 } 2788 2789 static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec) 2790 { 2791 return &lruvec->mm_state; 2792 } 2793 2794 static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk) 2795 { 2796 int key; 2797 struct mm_struct *mm; 2798 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 2799 struct lru_gen_mm_state *mm_state = get_mm_state(walk->lruvec); 2800 2801 mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list); 2802 key = pgdat->node_id % BITS_PER_TYPE(mm->lru_gen.bitmap); 2803 2804 if (!walk->force_scan && !test_bit(key, &mm->lru_gen.bitmap)) 2805 return NULL; 2806 2807 clear_bit(key, &mm->lru_gen.bitmap); 2808 2809 return mmget_not_zero(mm) ? mm : NULL; 2810 } 2811 2812 void lru_gen_add_mm(struct mm_struct *mm) 2813 { 2814 int nid; 2815 struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm); 2816 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 2817 2818 VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list)); 2819 #ifdef CONFIG_MEMCG 2820 VM_WARN_ON_ONCE(mm->lru_gen.memcg); 2821 mm->lru_gen.memcg = memcg; 2822 #endif 2823 spin_lock(&mm_list->lock); 2824 2825 for_each_node_state(nid, N_MEMORY) { 2826 struct lruvec *lruvec = get_lruvec(memcg, nid); 2827 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 2828 2829 /* the first addition since the last iteration */ 2830 if (mm_state->tail == &mm_list->fifo) 2831 mm_state->tail = &mm->lru_gen.list; 2832 } 2833 2834 list_add_tail(&mm->lru_gen.list, &mm_list->fifo); 2835 2836 spin_unlock(&mm_list->lock); 2837 } 2838 2839 void lru_gen_del_mm(struct mm_struct *mm) 2840 { 2841 int nid; 2842 struct lru_gen_mm_list *mm_list; 2843 struct mem_cgroup *memcg = NULL; 2844 2845 if (list_empty(&mm->lru_gen.list)) 2846 return; 2847 2848 #ifdef CONFIG_MEMCG 2849 memcg = mm->lru_gen.memcg; 2850 #endif 2851 mm_list = get_mm_list(memcg); 2852 2853 spin_lock(&mm_list->lock); 2854 2855 for_each_node(nid) { 2856 struct lruvec *lruvec = get_lruvec(memcg, nid); 2857 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 2858 2859 /* where the current iteration continues after */ 2860 if (mm_state->head == &mm->lru_gen.list) 2861 mm_state->head = mm_state->head->prev; 2862 2863 /* where the last iteration ended before */ 2864 if (mm_state->tail == &mm->lru_gen.list) 2865 mm_state->tail = mm_state->tail->next; 2866 } 2867 2868 list_del_init(&mm->lru_gen.list); 2869 2870 spin_unlock(&mm_list->lock); 2871 2872 #ifdef CONFIG_MEMCG 2873 mem_cgroup_put(mm->lru_gen.memcg); 2874 mm->lru_gen.memcg = NULL; 2875 #endif 2876 } 2877 2878 #ifdef CONFIG_MEMCG 2879 void lru_gen_migrate_mm(struct mm_struct *mm) 2880 { 2881 struct mem_cgroup *memcg; 2882 struct task_struct *task = rcu_dereference_protected(mm->owner, true); 2883 2884 VM_WARN_ON_ONCE(task->mm != mm); 2885 lockdep_assert_held(&task->alloc_lock); 2886 2887 /* for mm_update_next_owner() */ 2888 if (mem_cgroup_disabled()) 2889 return; 2890 2891 /* migration can happen before addition */ 2892 if (!mm->lru_gen.memcg) 2893 return; 2894 2895 rcu_read_lock(); 2896 memcg = mem_cgroup_from_task(task); 2897 rcu_read_unlock(); 2898 if (memcg == mm->lru_gen.memcg) 2899 return; 2900 2901 VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list)); 2902 2903 lru_gen_del_mm(mm); 2904 lru_gen_add_mm(mm); 2905 } 2906 #endif 2907 2908 #else /* !CONFIG_LRU_GEN_WALKS_MMU */ 2909 2910 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg) 2911 { 2912 return NULL; 2913 } 2914 2915 static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec) 2916 { 2917 return NULL; 2918 } 2919 2920 static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk) 2921 { 2922 return NULL; 2923 } 2924 2925 #endif 2926 2927 static void reset_mm_stats(struct lru_gen_mm_walk *walk, bool last) 2928 { 2929 int i; 2930 int hist; 2931 struct lruvec *lruvec = walk->lruvec; 2932 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 2933 2934 lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock); 2935 2936 hist = lru_hist_from_seq(walk->seq); 2937 2938 for (i = 0; i < NR_MM_STATS; i++) { 2939 WRITE_ONCE(mm_state->stats[hist][i], 2940 mm_state->stats[hist][i] + walk->mm_stats[i]); 2941 walk->mm_stats[i] = 0; 2942 } 2943 2944 if (NR_HIST_GENS > 1 && last) { 2945 hist = lru_hist_from_seq(walk->seq + 1); 2946 2947 for (i = 0; i < NR_MM_STATS; i++) 2948 WRITE_ONCE(mm_state->stats[hist][i], 0); 2949 } 2950 } 2951 2952 static bool iterate_mm_list(struct lru_gen_mm_walk *walk, struct mm_struct **iter) 2953 { 2954 bool first = false; 2955 bool last = false; 2956 struct mm_struct *mm = NULL; 2957 struct lruvec *lruvec = walk->lruvec; 2958 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 2959 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 2960 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 2961 2962 /* 2963 * mm_state->seq is incremented after each iteration of mm_list. There 2964 * are three interesting cases for this page table walker: 2965 * 1. It tries to start a new iteration with a stale max_seq: there is 2966 * nothing left to do. 2967 * 2. It started the next iteration: it needs to reset the Bloom filter 2968 * so that a fresh set of PTE tables can be recorded. 2969 * 3. It ended the current iteration: it needs to reset the mm stats 2970 * counters and tell its caller to increment max_seq. 2971 */ 2972 spin_lock(&mm_list->lock); 2973 2974 VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->seq); 2975 2976 if (walk->seq <= mm_state->seq) 2977 goto done; 2978 2979 if (!mm_state->head) 2980 mm_state->head = &mm_list->fifo; 2981 2982 if (mm_state->head == &mm_list->fifo) 2983 first = true; 2984 2985 do { 2986 mm_state->head = mm_state->head->next; 2987 if (mm_state->head == &mm_list->fifo) { 2988 WRITE_ONCE(mm_state->seq, mm_state->seq + 1); 2989 last = true; 2990 break; 2991 } 2992 2993 /* force scan for those added after the last iteration */ 2994 if (!mm_state->tail || mm_state->tail == mm_state->head) { 2995 mm_state->tail = mm_state->head->next; 2996 walk->force_scan = true; 2997 } 2998 } while (!(mm = get_next_mm(walk))); 2999 done: 3000 if (*iter || last) 3001 reset_mm_stats(walk, last); 3002 3003 spin_unlock(&mm_list->lock); 3004 3005 if (mm && first) 3006 reset_bloom_filter(mm_state, walk->seq + 1); 3007 3008 if (*iter) 3009 mmput_async(*iter); 3010 3011 *iter = mm; 3012 3013 return last; 3014 } 3015 3016 static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long seq) 3017 { 3018 bool success = false; 3019 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 3020 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 3021 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 3022 3023 spin_lock(&mm_list->lock); 3024 3025 VM_WARN_ON_ONCE(mm_state->seq + 1 < seq); 3026 3027 if (seq > mm_state->seq) { 3028 mm_state->head = NULL; 3029 mm_state->tail = NULL; 3030 WRITE_ONCE(mm_state->seq, mm_state->seq + 1); 3031 success = true; 3032 } 3033 3034 spin_unlock(&mm_list->lock); 3035 3036 return success; 3037 } 3038 3039 /****************************************************************************** 3040 * PID controller 3041 ******************************************************************************/ 3042 3043 /* 3044 * A feedback loop based on Proportional-Integral-Derivative (PID) controller. 3045 * 3046 * The P term is refaulted/(evicted+protected) from a tier in the generation 3047 * currently being evicted; the I term is the exponential moving average of the 3048 * P term over the generations previously evicted, using the smoothing factor 3049 * 1/2; the D term isn't supported. 3050 * 3051 * The setpoint (SP) is always the first tier of one type; the process variable 3052 * (PV) is either any tier of the other type or any other tier of the same 3053 * type. 3054 * 3055 * The error is the difference between the SP and the PV; the correction is to 3056 * turn off protection when SP>PV or turn on protection when SP<PV. 3057 * 3058 * For future optimizations: 3059 * 1. The D term may discount the other two terms over time so that long-lived 3060 * generations can resist stale information. 3061 */ 3062 struct ctrl_pos { 3063 unsigned long refaulted; 3064 unsigned long total; 3065 int gain; 3066 }; 3067 3068 static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain, 3069 struct ctrl_pos *pos) 3070 { 3071 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3072 int hist = lru_hist_from_seq(lrugen->min_seq[type]); 3073 3074 pos->refaulted = lrugen->avg_refaulted[type][tier] + 3075 atomic_long_read(&lrugen->refaulted[hist][type][tier]); 3076 pos->total = lrugen->avg_total[type][tier] + 3077 atomic_long_read(&lrugen->evicted[hist][type][tier]); 3078 if (tier) 3079 pos->total += lrugen->protected[hist][type][tier - 1]; 3080 pos->gain = gain; 3081 } 3082 3083 static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover) 3084 { 3085 int hist, tier; 3086 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3087 bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1; 3088 unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1; 3089 3090 lockdep_assert_held(&lruvec->lru_lock); 3091 3092 if (!carryover && !clear) 3093 return; 3094 3095 hist = lru_hist_from_seq(seq); 3096 3097 for (tier = 0; tier < MAX_NR_TIERS; tier++) { 3098 if (carryover) { 3099 unsigned long sum; 3100 3101 sum = lrugen->avg_refaulted[type][tier] + 3102 atomic_long_read(&lrugen->refaulted[hist][type][tier]); 3103 WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2); 3104 3105 sum = lrugen->avg_total[type][tier] + 3106 atomic_long_read(&lrugen->evicted[hist][type][tier]); 3107 if (tier) 3108 sum += lrugen->protected[hist][type][tier - 1]; 3109 WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2); 3110 } 3111 3112 if (clear) { 3113 atomic_long_set(&lrugen->refaulted[hist][type][tier], 0); 3114 atomic_long_set(&lrugen->evicted[hist][type][tier], 0); 3115 if (tier) 3116 WRITE_ONCE(lrugen->protected[hist][type][tier - 1], 0); 3117 } 3118 } 3119 } 3120 3121 static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv) 3122 { 3123 /* 3124 * Return true if the PV has a limited number of refaults or a lower 3125 * refaulted/total than the SP. 3126 */ 3127 return pv->refaulted < MIN_LRU_BATCH || 3128 pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <= 3129 (sp->refaulted + 1) * pv->total * pv->gain; 3130 } 3131 3132 /****************************************************************************** 3133 * the aging 3134 ******************************************************************************/ 3135 3136 /* promote pages accessed through page tables */ 3137 static int folio_update_gen(struct folio *folio, int gen) 3138 { 3139 unsigned long new_flags, old_flags = READ_ONCE(folio->flags); 3140 3141 VM_WARN_ON_ONCE(gen >= MAX_NR_GENS); 3142 VM_WARN_ON_ONCE(!rcu_read_lock_held()); 3143 3144 do { 3145 /* lru_gen_del_folio() has isolated this page? */ 3146 if (!(old_flags & LRU_GEN_MASK)) { 3147 /* for shrink_folio_list() */ 3148 new_flags = old_flags | BIT(PG_referenced); 3149 continue; 3150 } 3151 3152 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS); 3153 new_flags |= (gen + 1UL) << LRU_GEN_PGOFF; 3154 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags)); 3155 3156 return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1; 3157 } 3158 3159 /* protect pages accessed multiple times through file descriptors */ 3160 static int folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming) 3161 { 3162 int type = folio_is_file_lru(folio); 3163 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3164 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]); 3165 unsigned long new_flags, old_flags = READ_ONCE(folio->flags); 3166 3167 VM_WARN_ON_ONCE_FOLIO(!(old_flags & LRU_GEN_MASK), folio); 3168 3169 do { 3170 new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1; 3171 /* folio_update_gen() has promoted this page? */ 3172 if (new_gen >= 0 && new_gen != old_gen) 3173 return new_gen; 3174 3175 new_gen = (old_gen + 1) % MAX_NR_GENS; 3176 3177 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS); 3178 new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF; 3179 /* for folio_end_writeback() */ 3180 if (reclaiming) 3181 new_flags |= BIT(PG_reclaim); 3182 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags)); 3183 3184 lru_gen_update_size(lruvec, folio, old_gen, new_gen); 3185 3186 return new_gen; 3187 } 3188 3189 static void update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio, 3190 int old_gen, int new_gen) 3191 { 3192 int type = folio_is_file_lru(folio); 3193 int zone = folio_zonenum(folio); 3194 int delta = folio_nr_pages(folio); 3195 3196 VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS); 3197 VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS); 3198 3199 walk->batched++; 3200 3201 walk->nr_pages[old_gen][type][zone] -= delta; 3202 walk->nr_pages[new_gen][type][zone] += delta; 3203 } 3204 3205 static void reset_batch_size(struct lru_gen_mm_walk *walk) 3206 { 3207 int gen, type, zone; 3208 struct lruvec *lruvec = walk->lruvec; 3209 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3210 3211 walk->batched = 0; 3212 3213 for_each_gen_type_zone(gen, type, zone) { 3214 enum lru_list lru = type * LRU_INACTIVE_FILE; 3215 int delta = walk->nr_pages[gen][type][zone]; 3216 3217 if (!delta) 3218 continue; 3219 3220 walk->nr_pages[gen][type][zone] = 0; 3221 WRITE_ONCE(lrugen->nr_pages[gen][type][zone], 3222 lrugen->nr_pages[gen][type][zone] + delta); 3223 3224 if (lru_gen_is_active(lruvec, gen)) 3225 lru += LRU_ACTIVE; 3226 __update_lru_size(lruvec, lru, zone, delta); 3227 } 3228 } 3229 3230 static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args) 3231 { 3232 struct address_space *mapping; 3233 struct vm_area_struct *vma = args->vma; 3234 struct lru_gen_mm_walk *walk = args->private; 3235 3236 if (!vma_is_accessible(vma)) 3237 return true; 3238 3239 if (is_vm_hugetlb_page(vma)) 3240 return true; 3241 3242 if (!vma_has_recency(vma)) 3243 return true; 3244 3245 if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) 3246 return true; 3247 3248 if (vma == get_gate_vma(vma->vm_mm)) 3249 return true; 3250 3251 if (vma_is_anonymous(vma)) 3252 return !walk->can_swap; 3253 3254 if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping)) 3255 return true; 3256 3257 mapping = vma->vm_file->f_mapping; 3258 if (mapping_unevictable(mapping)) 3259 return true; 3260 3261 if (shmem_mapping(mapping)) 3262 return !walk->can_swap; 3263 3264 /* to exclude special mappings like dax, etc. */ 3265 return !mapping->a_ops->read_folio; 3266 } 3267 3268 /* 3269 * Some userspace memory allocators map many single-page VMAs. Instead of 3270 * returning back to the PGD table for each of such VMAs, finish an entire PMD 3271 * table to reduce zigzags and improve cache performance. 3272 */ 3273 static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args, 3274 unsigned long *vm_start, unsigned long *vm_end) 3275 { 3276 unsigned long start = round_up(*vm_end, size); 3277 unsigned long end = (start | ~mask) + 1; 3278 VMA_ITERATOR(vmi, args->mm, start); 3279 3280 VM_WARN_ON_ONCE(mask & size); 3281 VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask)); 3282 3283 for_each_vma(vmi, args->vma) { 3284 if (end && end <= args->vma->vm_start) 3285 return false; 3286 3287 if (should_skip_vma(args->vma->vm_start, args->vma->vm_end, args)) 3288 continue; 3289 3290 *vm_start = max(start, args->vma->vm_start); 3291 *vm_end = min(end - 1, args->vma->vm_end - 1) + 1; 3292 3293 return true; 3294 } 3295 3296 return false; 3297 } 3298 3299 static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr) 3300 { 3301 unsigned long pfn = pte_pfn(pte); 3302 3303 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end); 3304 3305 if (!pte_present(pte) || is_zero_pfn(pfn)) 3306 return -1; 3307 3308 if (WARN_ON_ONCE(pte_devmap(pte) || pte_special(pte))) 3309 return -1; 3310 3311 if (WARN_ON_ONCE(!pfn_valid(pfn))) 3312 return -1; 3313 3314 return pfn; 3315 } 3316 3317 static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr) 3318 { 3319 unsigned long pfn = pmd_pfn(pmd); 3320 3321 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end); 3322 3323 if (!pmd_present(pmd) || is_huge_zero_pmd(pmd)) 3324 return -1; 3325 3326 if (WARN_ON_ONCE(pmd_devmap(pmd))) 3327 return -1; 3328 3329 if (WARN_ON_ONCE(!pfn_valid(pfn))) 3330 return -1; 3331 3332 return pfn; 3333 } 3334 3335 static struct folio *get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg, 3336 struct pglist_data *pgdat, bool can_swap) 3337 { 3338 struct folio *folio; 3339 3340 /* try to avoid unnecessary memory loads */ 3341 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat)) 3342 return NULL; 3343 3344 folio = pfn_folio(pfn); 3345 if (folio_nid(folio) != pgdat->node_id) 3346 return NULL; 3347 3348 if (folio_memcg_rcu(folio) != memcg) 3349 return NULL; 3350 3351 /* file VMAs can contain anon pages from COW */ 3352 if (!folio_is_file_lru(folio) && !can_swap) 3353 return NULL; 3354 3355 return folio; 3356 } 3357 3358 static bool suitable_to_scan(int total, int young) 3359 { 3360 int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8); 3361 3362 /* suitable if the average number of young PTEs per cacheline is >=1 */ 3363 return young * n >= total; 3364 } 3365 3366 static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end, 3367 struct mm_walk *args) 3368 { 3369 int i; 3370 pte_t *pte; 3371 spinlock_t *ptl; 3372 unsigned long addr; 3373 int total = 0; 3374 int young = 0; 3375 struct lru_gen_mm_walk *walk = args->private; 3376 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec); 3377 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 3378 DEFINE_MAX_SEQ(walk->lruvec); 3379 int old_gen, new_gen = lru_gen_from_seq(max_seq); 3380 3381 pte = pte_offset_map_nolock(args->mm, pmd, start & PMD_MASK, &ptl); 3382 if (!pte) 3383 return false; 3384 if (!spin_trylock(ptl)) { 3385 pte_unmap(pte); 3386 return false; 3387 } 3388 3389 arch_enter_lazy_mmu_mode(); 3390 restart: 3391 for (i = pte_index(start), addr = start; addr != end; i++, addr += PAGE_SIZE) { 3392 unsigned long pfn; 3393 struct folio *folio; 3394 pte_t ptent = ptep_get(pte + i); 3395 3396 total++; 3397 walk->mm_stats[MM_LEAF_TOTAL]++; 3398 3399 pfn = get_pte_pfn(ptent, args->vma, addr); 3400 if (pfn == -1) 3401 continue; 3402 3403 if (!pte_young(ptent)) { 3404 walk->mm_stats[MM_LEAF_OLD]++; 3405 continue; 3406 } 3407 3408 folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap); 3409 if (!folio) 3410 continue; 3411 3412 if (!ptep_test_and_clear_young(args->vma, addr, pte + i)) 3413 VM_WARN_ON_ONCE(true); 3414 3415 young++; 3416 walk->mm_stats[MM_LEAF_YOUNG]++; 3417 3418 if (pte_dirty(ptent) && !folio_test_dirty(folio) && 3419 !(folio_test_anon(folio) && folio_test_swapbacked(folio) && 3420 !folio_test_swapcache(folio))) 3421 folio_mark_dirty(folio); 3422 3423 old_gen = folio_update_gen(folio, new_gen); 3424 if (old_gen >= 0 && old_gen != new_gen) 3425 update_batch_size(walk, folio, old_gen, new_gen); 3426 } 3427 3428 if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, &start, &end)) 3429 goto restart; 3430 3431 arch_leave_lazy_mmu_mode(); 3432 pte_unmap_unlock(pte, ptl); 3433 3434 return suitable_to_scan(total, young); 3435 } 3436 3437 static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma, 3438 struct mm_walk *args, unsigned long *bitmap, unsigned long *first) 3439 { 3440 int i; 3441 pmd_t *pmd; 3442 spinlock_t *ptl; 3443 struct lru_gen_mm_walk *walk = args->private; 3444 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec); 3445 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 3446 DEFINE_MAX_SEQ(walk->lruvec); 3447 int old_gen, new_gen = lru_gen_from_seq(max_seq); 3448 3449 VM_WARN_ON_ONCE(pud_leaf(*pud)); 3450 3451 /* try to batch at most 1+MIN_LRU_BATCH+1 entries */ 3452 if (*first == -1) { 3453 *first = addr; 3454 bitmap_zero(bitmap, MIN_LRU_BATCH); 3455 return; 3456 } 3457 3458 i = addr == -1 ? 0 : pmd_index(addr) - pmd_index(*first); 3459 if (i && i <= MIN_LRU_BATCH) { 3460 __set_bit(i - 1, bitmap); 3461 return; 3462 } 3463 3464 pmd = pmd_offset(pud, *first); 3465 3466 ptl = pmd_lockptr(args->mm, pmd); 3467 if (!spin_trylock(ptl)) 3468 goto done; 3469 3470 arch_enter_lazy_mmu_mode(); 3471 3472 do { 3473 unsigned long pfn; 3474 struct folio *folio; 3475 3476 /* don't round down the first address */ 3477 addr = i ? (*first & PMD_MASK) + i * PMD_SIZE : *first; 3478 3479 pfn = get_pmd_pfn(pmd[i], vma, addr); 3480 if (pfn == -1) 3481 goto next; 3482 3483 if (!pmd_trans_huge(pmd[i])) { 3484 if (should_clear_pmd_young()) 3485 pmdp_test_and_clear_young(vma, addr, pmd + i); 3486 goto next; 3487 } 3488 3489 folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap); 3490 if (!folio) 3491 goto next; 3492 3493 if (!pmdp_test_and_clear_young(vma, addr, pmd + i)) 3494 goto next; 3495 3496 walk->mm_stats[MM_LEAF_YOUNG]++; 3497 3498 if (pmd_dirty(pmd[i]) && !folio_test_dirty(folio) && 3499 !(folio_test_anon(folio) && folio_test_swapbacked(folio) && 3500 !folio_test_swapcache(folio))) 3501 folio_mark_dirty(folio); 3502 3503 old_gen = folio_update_gen(folio, new_gen); 3504 if (old_gen >= 0 && old_gen != new_gen) 3505 update_batch_size(walk, folio, old_gen, new_gen); 3506 next: 3507 i = i > MIN_LRU_BATCH ? 0 : find_next_bit(bitmap, MIN_LRU_BATCH, i) + 1; 3508 } while (i <= MIN_LRU_BATCH); 3509 3510 arch_leave_lazy_mmu_mode(); 3511 spin_unlock(ptl); 3512 done: 3513 *first = -1; 3514 } 3515 3516 static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end, 3517 struct mm_walk *args) 3518 { 3519 int i; 3520 pmd_t *pmd; 3521 unsigned long next; 3522 unsigned long addr; 3523 struct vm_area_struct *vma; 3524 DECLARE_BITMAP(bitmap, MIN_LRU_BATCH); 3525 unsigned long first = -1; 3526 struct lru_gen_mm_walk *walk = args->private; 3527 struct lru_gen_mm_state *mm_state = get_mm_state(walk->lruvec); 3528 3529 VM_WARN_ON_ONCE(pud_leaf(*pud)); 3530 3531 /* 3532 * Finish an entire PMD in two passes: the first only reaches to PTE 3533 * tables to avoid taking the PMD lock; the second, if necessary, takes 3534 * the PMD lock to clear the accessed bit in PMD entries. 3535 */ 3536 pmd = pmd_offset(pud, start & PUD_MASK); 3537 restart: 3538 /* walk_pte_range() may call get_next_vma() */ 3539 vma = args->vma; 3540 for (i = pmd_index(start), addr = start; addr != end; i++, addr = next) { 3541 pmd_t val = pmdp_get_lockless(pmd + i); 3542 3543 next = pmd_addr_end(addr, end); 3544 3545 if (!pmd_present(val) || is_huge_zero_pmd(val)) { 3546 walk->mm_stats[MM_LEAF_TOTAL]++; 3547 continue; 3548 } 3549 3550 if (pmd_trans_huge(val)) { 3551 unsigned long pfn = pmd_pfn(val); 3552 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 3553 3554 walk->mm_stats[MM_LEAF_TOTAL]++; 3555 3556 if (!pmd_young(val)) { 3557 walk->mm_stats[MM_LEAF_OLD]++; 3558 continue; 3559 } 3560 3561 /* try to avoid unnecessary memory loads */ 3562 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat)) 3563 continue; 3564 3565 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first); 3566 continue; 3567 } 3568 3569 walk->mm_stats[MM_NONLEAF_TOTAL]++; 3570 3571 if (should_clear_pmd_young()) { 3572 if (!pmd_young(val)) 3573 continue; 3574 3575 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first); 3576 } 3577 3578 if (!walk->force_scan && !test_bloom_filter(mm_state, walk->seq, pmd + i)) 3579 continue; 3580 3581 walk->mm_stats[MM_NONLEAF_FOUND]++; 3582 3583 if (!walk_pte_range(&val, addr, next, args)) 3584 continue; 3585 3586 walk->mm_stats[MM_NONLEAF_ADDED]++; 3587 3588 /* carry over to the next generation */ 3589 update_bloom_filter(mm_state, walk->seq + 1, pmd + i); 3590 } 3591 3592 walk_pmd_range_locked(pud, -1, vma, args, bitmap, &first); 3593 3594 if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, &start, &end)) 3595 goto restart; 3596 } 3597 3598 static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end, 3599 struct mm_walk *args) 3600 { 3601 int i; 3602 pud_t *pud; 3603 unsigned long addr; 3604 unsigned long next; 3605 struct lru_gen_mm_walk *walk = args->private; 3606 3607 VM_WARN_ON_ONCE(p4d_leaf(*p4d)); 3608 3609 pud = pud_offset(p4d, start & P4D_MASK); 3610 restart: 3611 for (i = pud_index(start), addr = start; addr != end; i++, addr = next) { 3612 pud_t val = READ_ONCE(pud[i]); 3613 3614 next = pud_addr_end(addr, end); 3615 3616 if (!pud_present(val) || WARN_ON_ONCE(pud_leaf(val))) 3617 continue; 3618 3619 walk_pmd_range(&val, addr, next, args); 3620 3621 if (need_resched() || walk->batched >= MAX_LRU_BATCH) { 3622 end = (addr | ~PUD_MASK) + 1; 3623 goto done; 3624 } 3625 } 3626 3627 if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, &start, &end)) 3628 goto restart; 3629 3630 end = round_up(end, P4D_SIZE); 3631 done: 3632 if (!end || !args->vma) 3633 return 1; 3634 3635 walk->next_addr = max(end, args->vma->vm_start); 3636 3637 return -EAGAIN; 3638 } 3639 3640 static void walk_mm(struct mm_struct *mm, struct lru_gen_mm_walk *walk) 3641 { 3642 static const struct mm_walk_ops mm_walk_ops = { 3643 .test_walk = should_skip_vma, 3644 .p4d_entry = walk_pud_range, 3645 .walk_lock = PGWALK_RDLOCK, 3646 }; 3647 3648 int err; 3649 struct lruvec *lruvec = walk->lruvec; 3650 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 3651 3652 walk->next_addr = FIRST_USER_ADDRESS; 3653 3654 do { 3655 DEFINE_MAX_SEQ(lruvec); 3656 3657 err = -EBUSY; 3658 3659 /* another thread might have called inc_max_seq() */ 3660 if (walk->seq != max_seq) 3661 break; 3662 3663 /* folio_update_gen() requires stable folio_memcg() */ 3664 if (!mem_cgroup_trylock_pages(memcg)) 3665 break; 3666 3667 /* the caller might be holding the lock for write */ 3668 if (mmap_read_trylock(mm)) { 3669 err = walk_page_range(mm, walk->next_addr, ULONG_MAX, &mm_walk_ops, walk); 3670 3671 mmap_read_unlock(mm); 3672 } 3673 3674 mem_cgroup_unlock_pages(); 3675 3676 if (walk->batched) { 3677 spin_lock_irq(&lruvec->lru_lock); 3678 reset_batch_size(walk); 3679 spin_unlock_irq(&lruvec->lru_lock); 3680 } 3681 3682 cond_resched(); 3683 } while (err == -EAGAIN); 3684 } 3685 3686 static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat, bool force_alloc) 3687 { 3688 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk; 3689 3690 if (pgdat && current_is_kswapd()) { 3691 VM_WARN_ON_ONCE(walk); 3692 3693 walk = &pgdat->mm_walk; 3694 } else if (!walk && force_alloc) { 3695 VM_WARN_ON_ONCE(current_is_kswapd()); 3696 3697 walk = kzalloc(sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN); 3698 } 3699 3700 current->reclaim_state->mm_walk = walk; 3701 3702 return walk; 3703 } 3704 3705 static void clear_mm_walk(void) 3706 { 3707 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk; 3708 3709 VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages))); 3710 VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats))); 3711 3712 current->reclaim_state->mm_walk = NULL; 3713 3714 if (!current_is_kswapd()) 3715 kfree(walk); 3716 } 3717 3718 static bool inc_min_seq(struct lruvec *lruvec, int type, bool can_swap) 3719 { 3720 int zone; 3721 int remaining = MAX_LRU_BATCH; 3722 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3723 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]); 3724 3725 if (type == LRU_GEN_ANON && !can_swap) 3726 goto done; 3727 3728 /* prevent cold/hot inversion if force_scan is true */ 3729 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 3730 struct list_head *head = &lrugen->folios[old_gen][type][zone]; 3731 3732 while (!list_empty(head)) { 3733 struct folio *folio = lru_to_folio(head); 3734 3735 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 3736 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio); 3737 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 3738 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio); 3739 3740 new_gen = folio_inc_gen(lruvec, folio, false); 3741 list_move_tail(&folio->lru, &lrugen->folios[new_gen][type][zone]); 3742 3743 if (!--remaining) 3744 return false; 3745 } 3746 } 3747 done: 3748 reset_ctrl_pos(lruvec, type, true); 3749 WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1); 3750 3751 return true; 3752 } 3753 3754 static bool try_to_inc_min_seq(struct lruvec *lruvec, bool can_swap) 3755 { 3756 int gen, type, zone; 3757 bool success = false; 3758 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3759 DEFINE_MIN_SEQ(lruvec); 3760 3761 VM_WARN_ON_ONCE(!seq_is_valid(lruvec)); 3762 3763 /* find the oldest populated generation */ 3764 for (type = !can_swap; type < ANON_AND_FILE; type++) { 3765 while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) { 3766 gen = lru_gen_from_seq(min_seq[type]); 3767 3768 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 3769 if (!list_empty(&lrugen->folios[gen][type][zone])) 3770 goto next; 3771 } 3772 3773 min_seq[type]++; 3774 } 3775 next: 3776 ; 3777 } 3778 3779 /* see the comment on lru_gen_folio */ 3780 if (can_swap) { 3781 min_seq[LRU_GEN_ANON] = min(min_seq[LRU_GEN_ANON], min_seq[LRU_GEN_FILE]); 3782 min_seq[LRU_GEN_FILE] = max(min_seq[LRU_GEN_ANON], lrugen->min_seq[LRU_GEN_FILE]); 3783 } 3784 3785 for (type = !can_swap; type < ANON_AND_FILE; type++) { 3786 if (min_seq[type] == lrugen->min_seq[type]) 3787 continue; 3788 3789 reset_ctrl_pos(lruvec, type, true); 3790 WRITE_ONCE(lrugen->min_seq[type], min_seq[type]); 3791 success = true; 3792 } 3793 3794 return success; 3795 } 3796 3797 static bool inc_max_seq(struct lruvec *lruvec, unsigned long seq, 3798 bool can_swap, bool force_scan) 3799 { 3800 bool success; 3801 int prev, next; 3802 int type, zone; 3803 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3804 restart: 3805 if (seq < READ_ONCE(lrugen->max_seq)) 3806 return false; 3807 3808 spin_lock_irq(&lruvec->lru_lock); 3809 3810 VM_WARN_ON_ONCE(!seq_is_valid(lruvec)); 3811 3812 success = seq == lrugen->max_seq; 3813 if (!success) 3814 goto unlock; 3815 3816 for (type = ANON_AND_FILE - 1; type >= 0; type--) { 3817 if (get_nr_gens(lruvec, type) != MAX_NR_GENS) 3818 continue; 3819 3820 VM_WARN_ON_ONCE(!force_scan && (type == LRU_GEN_FILE || can_swap)); 3821 3822 if (inc_min_seq(lruvec, type, can_swap)) 3823 continue; 3824 3825 spin_unlock_irq(&lruvec->lru_lock); 3826 cond_resched(); 3827 goto restart; 3828 } 3829 3830 /* 3831 * Update the active/inactive LRU sizes for compatibility. Both sides of 3832 * the current max_seq need to be covered, since max_seq+1 can overlap 3833 * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do 3834 * overlap, cold/hot inversion happens. 3835 */ 3836 prev = lru_gen_from_seq(lrugen->max_seq - 1); 3837 next = lru_gen_from_seq(lrugen->max_seq + 1); 3838 3839 for (type = 0; type < ANON_AND_FILE; type++) { 3840 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 3841 enum lru_list lru = type * LRU_INACTIVE_FILE; 3842 long delta = lrugen->nr_pages[prev][type][zone] - 3843 lrugen->nr_pages[next][type][zone]; 3844 3845 if (!delta) 3846 continue; 3847 3848 __update_lru_size(lruvec, lru, zone, delta); 3849 __update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta); 3850 } 3851 } 3852 3853 for (type = 0; type < ANON_AND_FILE; type++) 3854 reset_ctrl_pos(lruvec, type, false); 3855 3856 WRITE_ONCE(lrugen->timestamps[next], jiffies); 3857 /* make sure preceding modifications appear */ 3858 smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1); 3859 unlock: 3860 spin_unlock_irq(&lruvec->lru_lock); 3861 3862 return success; 3863 } 3864 3865 static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long seq, 3866 bool can_swap, bool force_scan) 3867 { 3868 bool success; 3869 struct lru_gen_mm_walk *walk; 3870 struct mm_struct *mm = NULL; 3871 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3872 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 3873 3874 VM_WARN_ON_ONCE(seq > READ_ONCE(lrugen->max_seq)); 3875 3876 if (!mm_state) 3877 return inc_max_seq(lruvec, seq, can_swap, force_scan); 3878 3879 /* see the comment in iterate_mm_list() */ 3880 if (seq <= READ_ONCE(mm_state->seq)) 3881 return false; 3882 3883 /* 3884 * If the hardware doesn't automatically set the accessed bit, fallback 3885 * to lru_gen_look_around(), which only clears the accessed bit in a 3886 * handful of PTEs. Spreading the work out over a period of time usually 3887 * is less efficient, but it avoids bursty page faults. 3888 */ 3889 if (!should_walk_mmu()) { 3890 success = iterate_mm_list_nowalk(lruvec, seq); 3891 goto done; 3892 } 3893 3894 walk = set_mm_walk(NULL, true); 3895 if (!walk) { 3896 success = iterate_mm_list_nowalk(lruvec, seq); 3897 goto done; 3898 } 3899 3900 walk->lruvec = lruvec; 3901 walk->seq = seq; 3902 walk->can_swap = can_swap; 3903 walk->force_scan = force_scan; 3904 3905 do { 3906 success = iterate_mm_list(walk, &mm); 3907 if (mm) 3908 walk_mm(mm, walk); 3909 } while (mm); 3910 done: 3911 if (success) { 3912 success = inc_max_seq(lruvec, seq, can_swap, force_scan); 3913 WARN_ON_ONCE(!success); 3914 } 3915 3916 return success; 3917 } 3918 3919 /****************************************************************************** 3920 * working set protection 3921 ******************************************************************************/ 3922 3923 static void set_initial_priority(struct pglist_data *pgdat, struct scan_control *sc) 3924 { 3925 int priority; 3926 unsigned long reclaimable; 3927 3928 if (sc->priority != DEF_PRIORITY || sc->nr_to_reclaim < MIN_LRU_BATCH) 3929 return; 3930 /* 3931 * Determine the initial priority based on 3932 * (total >> priority) * reclaimed_to_scanned_ratio = nr_to_reclaim, 3933 * where reclaimed_to_scanned_ratio = inactive / total. 3934 */ 3935 reclaimable = node_page_state(pgdat, NR_INACTIVE_FILE); 3936 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc)) 3937 reclaimable += node_page_state(pgdat, NR_INACTIVE_ANON); 3938 3939 /* round down reclaimable and round up sc->nr_to_reclaim */ 3940 priority = fls_long(reclaimable) - 1 - fls_long(sc->nr_to_reclaim - 1); 3941 3942 /* 3943 * The estimation is based on LRU pages only, so cap it to prevent 3944 * overshoots of shrinker objects by large margins. 3945 */ 3946 sc->priority = clamp(priority, DEF_PRIORITY / 2, DEF_PRIORITY); 3947 } 3948 3949 static bool lruvec_is_sizable(struct lruvec *lruvec, struct scan_control *sc) 3950 { 3951 int gen, type, zone; 3952 unsigned long total = 0; 3953 bool can_swap = get_swappiness(lruvec, sc); 3954 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3955 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 3956 DEFINE_MAX_SEQ(lruvec); 3957 DEFINE_MIN_SEQ(lruvec); 3958 3959 for (type = !can_swap; type < ANON_AND_FILE; type++) { 3960 unsigned long seq; 3961 3962 for (seq = min_seq[type]; seq <= max_seq; seq++) { 3963 gen = lru_gen_from_seq(seq); 3964 3965 for (zone = 0; zone < MAX_NR_ZONES; zone++) 3966 total += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L); 3967 } 3968 } 3969 3970 /* whether the size is big enough to be helpful */ 3971 return mem_cgroup_online(memcg) ? (total >> sc->priority) : total; 3972 } 3973 3974 static bool lruvec_is_reclaimable(struct lruvec *lruvec, struct scan_control *sc, 3975 unsigned long min_ttl) 3976 { 3977 int gen; 3978 unsigned long birth; 3979 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 3980 DEFINE_MIN_SEQ(lruvec); 3981 3982 if (mem_cgroup_below_min(NULL, memcg)) 3983 return false; 3984 3985 if (!lruvec_is_sizable(lruvec, sc)) 3986 return false; 3987 3988 /* see the comment on lru_gen_folio */ 3989 gen = lru_gen_from_seq(min_seq[LRU_GEN_FILE]); 3990 birth = READ_ONCE(lruvec->lrugen.timestamps[gen]); 3991 3992 return time_is_before_jiffies(birth + min_ttl); 3993 } 3994 3995 /* to protect the working set of the last N jiffies */ 3996 static unsigned long lru_gen_min_ttl __read_mostly; 3997 3998 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc) 3999 { 4000 struct mem_cgroup *memcg; 4001 unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl); 4002 bool reclaimable = !min_ttl; 4003 4004 VM_WARN_ON_ONCE(!current_is_kswapd()); 4005 4006 set_initial_priority(pgdat, sc); 4007 4008 memcg = mem_cgroup_iter(NULL, NULL, NULL); 4009 do { 4010 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 4011 4012 mem_cgroup_calculate_protection(NULL, memcg); 4013 4014 if (!reclaimable) 4015 reclaimable = lruvec_is_reclaimable(lruvec, sc, min_ttl); 4016 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL))); 4017 4018 /* 4019 * The main goal is to OOM kill if every generation from all memcgs is 4020 * younger than min_ttl. However, another possibility is all memcgs are 4021 * either too small or below min. 4022 */ 4023 if (!reclaimable && mutex_trylock(&oom_lock)) { 4024 struct oom_control oc = { 4025 .gfp_mask = sc->gfp_mask, 4026 }; 4027 4028 out_of_memory(&oc); 4029 4030 mutex_unlock(&oom_lock); 4031 } 4032 } 4033 4034 /****************************************************************************** 4035 * rmap/PT walk feedback 4036 ******************************************************************************/ 4037 4038 /* 4039 * This function exploits spatial locality when shrink_folio_list() walks the 4040 * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If 4041 * the scan was done cacheline efficiently, it adds the PMD entry pointing to 4042 * the PTE table to the Bloom filter. This forms a feedback loop between the 4043 * eviction and the aging. 4044 */ 4045 void lru_gen_look_around(struct page_vma_mapped_walk *pvmw) 4046 { 4047 int i; 4048 unsigned long start; 4049 unsigned long end; 4050 struct lru_gen_mm_walk *walk; 4051 int young = 0; 4052 pte_t *pte = pvmw->pte; 4053 unsigned long addr = pvmw->address; 4054 struct vm_area_struct *vma = pvmw->vma; 4055 struct folio *folio = pfn_folio(pvmw->pfn); 4056 bool can_swap = !folio_is_file_lru(folio); 4057 struct mem_cgroup *memcg = folio_memcg(folio); 4058 struct pglist_data *pgdat = folio_pgdat(folio); 4059 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 4060 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 4061 DEFINE_MAX_SEQ(lruvec); 4062 int old_gen, new_gen = lru_gen_from_seq(max_seq); 4063 4064 lockdep_assert_held(pvmw->ptl); 4065 VM_WARN_ON_ONCE_FOLIO(folio_test_lru(folio), folio); 4066 4067 if (spin_is_contended(pvmw->ptl)) 4068 return; 4069 4070 /* exclude special VMAs containing anon pages from COW */ 4071 if (vma->vm_flags & VM_SPECIAL) 4072 return; 4073 4074 /* avoid taking the LRU lock under the PTL when possible */ 4075 walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL; 4076 4077 start = max(addr & PMD_MASK, vma->vm_start); 4078 end = min(addr | ~PMD_MASK, vma->vm_end - 1) + 1; 4079 4080 if (end - start > MIN_LRU_BATCH * PAGE_SIZE) { 4081 if (addr - start < MIN_LRU_BATCH * PAGE_SIZE / 2) 4082 end = start + MIN_LRU_BATCH * PAGE_SIZE; 4083 else if (end - addr < MIN_LRU_BATCH * PAGE_SIZE / 2) 4084 start = end - MIN_LRU_BATCH * PAGE_SIZE; 4085 else { 4086 start = addr - MIN_LRU_BATCH * PAGE_SIZE / 2; 4087 end = addr + MIN_LRU_BATCH * PAGE_SIZE / 2; 4088 } 4089 } 4090 4091 /* folio_update_gen() requires stable folio_memcg() */ 4092 if (!mem_cgroup_trylock_pages(memcg)) 4093 return; 4094 4095 arch_enter_lazy_mmu_mode(); 4096 4097 pte -= (addr - start) / PAGE_SIZE; 4098 4099 for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) { 4100 unsigned long pfn; 4101 pte_t ptent = ptep_get(pte + i); 4102 4103 pfn = get_pte_pfn(ptent, vma, addr); 4104 if (pfn == -1) 4105 continue; 4106 4107 if (!pte_young(ptent)) 4108 continue; 4109 4110 folio = get_pfn_folio(pfn, memcg, pgdat, can_swap); 4111 if (!folio) 4112 continue; 4113 4114 if (!ptep_test_and_clear_young(vma, addr, pte + i)) 4115 VM_WARN_ON_ONCE(true); 4116 4117 young++; 4118 4119 if (pte_dirty(ptent) && !folio_test_dirty(folio) && 4120 !(folio_test_anon(folio) && folio_test_swapbacked(folio) && 4121 !folio_test_swapcache(folio))) 4122 folio_mark_dirty(folio); 4123 4124 if (walk) { 4125 old_gen = folio_update_gen(folio, new_gen); 4126 if (old_gen >= 0 && old_gen != new_gen) 4127 update_batch_size(walk, folio, old_gen, new_gen); 4128 4129 continue; 4130 } 4131 4132 old_gen = folio_lru_gen(folio); 4133 if (old_gen < 0) 4134 folio_set_referenced(folio); 4135 else if (old_gen != new_gen) 4136 folio_activate(folio); 4137 } 4138 4139 arch_leave_lazy_mmu_mode(); 4140 mem_cgroup_unlock_pages(); 4141 4142 /* feedback from rmap walkers to page table walkers */ 4143 if (mm_state && suitable_to_scan(i, young)) 4144 update_bloom_filter(mm_state, max_seq, pvmw->pmd); 4145 } 4146 4147 /****************************************************************************** 4148 * memcg LRU 4149 ******************************************************************************/ 4150 4151 /* see the comment on MEMCG_NR_GENS */ 4152 enum { 4153 MEMCG_LRU_NOP, 4154 MEMCG_LRU_HEAD, 4155 MEMCG_LRU_TAIL, 4156 MEMCG_LRU_OLD, 4157 MEMCG_LRU_YOUNG, 4158 }; 4159 4160 static void lru_gen_rotate_memcg(struct lruvec *lruvec, int op) 4161 { 4162 int seg; 4163 int old, new; 4164 unsigned long flags; 4165 int bin = get_random_u32_below(MEMCG_NR_BINS); 4166 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 4167 4168 spin_lock_irqsave(&pgdat->memcg_lru.lock, flags); 4169 4170 VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list)); 4171 4172 seg = 0; 4173 new = old = lruvec->lrugen.gen; 4174 4175 /* see the comment on MEMCG_NR_GENS */ 4176 if (op == MEMCG_LRU_HEAD) 4177 seg = MEMCG_LRU_HEAD; 4178 else if (op == MEMCG_LRU_TAIL) 4179 seg = MEMCG_LRU_TAIL; 4180 else if (op == MEMCG_LRU_OLD) 4181 new = get_memcg_gen(pgdat->memcg_lru.seq); 4182 else if (op == MEMCG_LRU_YOUNG) 4183 new = get_memcg_gen(pgdat->memcg_lru.seq + 1); 4184 else 4185 VM_WARN_ON_ONCE(true); 4186 4187 WRITE_ONCE(lruvec->lrugen.seg, seg); 4188 WRITE_ONCE(lruvec->lrugen.gen, new); 4189 4190 hlist_nulls_del_rcu(&lruvec->lrugen.list); 4191 4192 if (op == MEMCG_LRU_HEAD || op == MEMCG_LRU_OLD) 4193 hlist_nulls_add_head_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]); 4194 else 4195 hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]); 4196 4197 pgdat->memcg_lru.nr_memcgs[old]--; 4198 pgdat->memcg_lru.nr_memcgs[new]++; 4199 4200 if (!pgdat->memcg_lru.nr_memcgs[old] && old == get_memcg_gen(pgdat->memcg_lru.seq)) 4201 WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1); 4202 4203 spin_unlock_irqrestore(&pgdat->memcg_lru.lock, flags); 4204 } 4205 4206 #ifdef CONFIG_MEMCG 4207 4208 void lru_gen_online_memcg(struct mem_cgroup *memcg) 4209 { 4210 int gen; 4211 int nid; 4212 int bin = get_random_u32_below(MEMCG_NR_BINS); 4213 4214 for_each_node(nid) { 4215 struct pglist_data *pgdat = NODE_DATA(nid); 4216 struct lruvec *lruvec = get_lruvec(memcg, nid); 4217 4218 spin_lock_irq(&pgdat->memcg_lru.lock); 4219 4220 VM_WARN_ON_ONCE(!hlist_nulls_unhashed(&lruvec->lrugen.list)); 4221 4222 gen = get_memcg_gen(pgdat->memcg_lru.seq); 4223 4224 lruvec->lrugen.gen = gen; 4225 4226 hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[gen][bin]); 4227 pgdat->memcg_lru.nr_memcgs[gen]++; 4228 4229 spin_unlock_irq(&pgdat->memcg_lru.lock); 4230 } 4231 } 4232 4233 void lru_gen_offline_memcg(struct mem_cgroup *memcg) 4234 { 4235 int nid; 4236 4237 for_each_node(nid) { 4238 struct lruvec *lruvec = get_lruvec(memcg, nid); 4239 4240 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_OLD); 4241 } 4242 } 4243 4244 void lru_gen_release_memcg(struct mem_cgroup *memcg) 4245 { 4246 int gen; 4247 int nid; 4248 4249 for_each_node(nid) { 4250 struct pglist_data *pgdat = NODE_DATA(nid); 4251 struct lruvec *lruvec = get_lruvec(memcg, nid); 4252 4253 spin_lock_irq(&pgdat->memcg_lru.lock); 4254 4255 if (hlist_nulls_unhashed(&lruvec->lrugen.list)) 4256 goto unlock; 4257 4258 gen = lruvec->lrugen.gen; 4259 4260 hlist_nulls_del_init_rcu(&lruvec->lrugen.list); 4261 pgdat->memcg_lru.nr_memcgs[gen]--; 4262 4263 if (!pgdat->memcg_lru.nr_memcgs[gen] && gen == get_memcg_gen(pgdat->memcg_lru.seq)) 4264 WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1); 4265 unlock: 4266 spin_unlock_irq(&pgdat->memcg_lru.lock); 4267 } 4268 } 4269 4270 void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid) 4271 { 4272 struct lruvec *lruvec = get_lruvec(memcg, nid); 4273 4274 /* see the comment on MEMCG_NR_GENS */ 4275 if (READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_HEAD) 4276 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_HEAD); 4277 } 4278 4279 #endif /* CONFIG_MEMCG */ 4280 4281 /****************************************************************************** 4282 * the eviction 4283 ******************************************************************************/ 4284 4285 static bool sort_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc, 4286 int tier_idx) 4287 { 4288 bool success; 4289 int gen = folio_lru_gen(folio); 4290 int type = folio_is_file_lru(folio); 4291 int zone = folio_zonenum(folio); 4292 int delta = folio_nr_pages(folio); 4293 int refs = folio_lru_refs(folio); 4294 int tier = lru_tier_from_refs(refs); 4295 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4296 4297 VM_WARN_ON_ONCE_FOLIO(gen >= MAX_NR_GENS, folio); 4298 4299 /* unevictable */ 4300 if (!folio_evictable(folio)) { 4301 success = lru_gen_del_folio(lruvec, folio, true); 4302 VM_WARN_ON_ONCE_FOLIO(!success, folio); 4303 folio_set_unevictable(folio); 4304 lruvec_add_folio(lruvec, folio); 4305 __count_vm_events(UNEVICTABLE_PGCULLED, delta); 4306 return true; 4307 } 4308 4309 /* promoted */ 4310 if (gen != lru_gen_from_seq(lrugen->min_seq[type])) { 4311 list_move(&folio->lru, &lrugen->folios[gen][type][zone]); 4312 return true; 4313 } 4314 4315 /* protected */ 4316 if (tier > tier_idx || refs == BIT(LRU_REFS_WIDTH)) { 4317 int hist = lru_hist_from_seq(lrugen->min_seq[type]); 4318 4319 gen = folio_inc_gen(lruvec, folio, false); 4320 list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]); 4321 4322 WRITE_ONCE(lrugen->protected[hist][type][tier - 1], 4323 lrugen->protected[hist][type][tier - 1] + delta); 4324 return true; 4325 } 4326 4327 /* ineligible */ 4328 if (zone > sc->reclaim_idx || skip_cma(folio, sc)) { 4329 gen = folio_inc_gen(lruvec, folio, false); 4330 list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]); 4331 return true; 4332 } 4333 4334 /* waiting for writeback */ 4335 if (folio_test_locked(folio) || folio_test_writeback(folio) || 4336 (type == LRU_GEN_FILE && folio_test_dirty(folio))) { 4337 gen = folio_inc_gen(lruvec, folio, true); 4338 list_move(&folio->lru, &lrugen->folios[gen][type][zone]); 4339 return true; 4340 } 4341 4342 return false; 4343 } 4344 4345 static bool isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc) 4346 { 4347 bool success; 4348 4349 /* swap constrained */ 4350 if (!(sc->gfp_mask & __GFP_IO) && 4351 (folio_test_dirty(folio) || 4352 (folio_test_anon(folio) && !folio_test_swapcache(folio)))) 4353 return false; 4354 4355 /* raced with release_pages() */ 4356 if (!folio_try_get(folio)) 4357 return false; 4358 4359 /* raced with another isolation */ 4360 if (!folio_test_clear_lru(folio)) { 4361 folio_put(folio); 4362 return false; 4363 } 4364 4365 /* see the comment on MAX_NR_TIERS */ 4366 if (!folio_test_referenced(folio)) 4367 set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS, 0); 4368 4369 /* for shrink_folio_list() */ 4370 folio_clear_reclaim(folio); 4371 folio_clear_referenced(folio); 4372 4373 success = lru_gen_del_folio(lruvec, folio, true); 4374 VM_WARN_ON_ONCE_FOLIO(!success, folio); 4375 4376 return true; 4377 } 4378 4379 static int scan_folios(struct lruvec *lruvec, struct scan_control *sc, 4380 int type, int tier, struct list_head *list) 4381 { 4382 int i; 4383 int gen; 4384 enum vm_event_item item; 4385 int sorted = 0; 4386 int scanned = 0; 4387 int isolated = 0; 4388 int skipped = 0; 4389 int remaining = MAX_LRU_BATCH; 4390 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4391 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4392 4393 VM_WARN_ON_ONCE(!list_empty(list)); 4394 4395 if (get_nr_gens(lruvec, type) == MIN_NR_GENS) 4396 return 0; 4397 4398 gen = lru_gen_from_seq(lrugen->min_seq[type]); 4399 4400 for (i = MAX_NR_ZONES; i > 0; i--) { 4401 LIST_HEAD(moved); 4402 int skipped_zone = 0; 4403 int zone = (sc->reclaim_idx + i) % MAX_NR_ZONES; 4404 struct list_head *head = &lrugen->folios[gen][type][zone]; 4405 4406 while (!list_empty(head)) { 4407 struct folio *folio = lru_to_folio(head); 4408 int delta = folio_nr_pages(folio); 4409 4410 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 4411 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio); 4412 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 4413 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio); 4414 4415 scanned += delta; 4416 4417 if (sort_folio(lruvec, folio, sc, tier)) 4418 sorted += delta; 4419 else if (isolate_folio(lruvec, folio, sc)) { 4420 list_add(&folio->lru, list); 4421 isolated += delta; 4422 } else { 4423 list_move(&folio->lru, &moved); 4424 skipped_zone += delta; 4425 } 4426 4427 if (!--remaining || max(isolated, skipped_zone) >= MIN_LRU_BATCH) 4428 break; 4429 } 4430 4431 if (skipped_zone) { 4432 list_splice(&moved, head); 4433 __count_zid_vm_events(PGSCAN_SKIP, zone, skipped_zone); 4434 skipped += skipped_zone; 4435 } 4436 4437 if (!remaining || isolated >= MIN_LRU_BATCH) 4438 break; 4439 } 4440 4441 item = PGSCAN_KSWAPD + reclaimer_offset(); 4442 if (!cgroup_reclaim(sc)) { 4443 __count_vm_events(item, isolated); 4444 __count_vm_events(PGREFILL, sorted); 4445 } 4446 __count_memcg_events(memcg, item, isolated); 4447 __count_memcg_events(memcg, PGREFILL, sorted); 4448 __count_vm_events(PGSCAN_ANON + type, isolated); 4449 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, MAX_LRU_BATCH, 4450 scanned, skipped, isolated, 4451 type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON); 4452 4453 /* 4454 * There might not be eligible folios due to reclaim_idx. Check the 4455 * remaining to prevent livelock if it's not making progress. 4456 */ 4457 return isolated || !remaining ? scanned : 0; 4458 } 4459 4460 static int get_tier_idx(struct lruvec *lruvec, int type) 4461 { 4462 int tier; 4463 struct ctrl_pos sp, pv; 4464 4465 /* 4466 * To leave a margin for fluctuations, use a larger gain factor (1:2). 4467 * This value is chosen because any other tier would have at least twice 4468 * as many refaults as the first tier. 4469 */ 4470 read_ctrl_pos(lruvec, type, 0, 1, &sp); 4471 for (tier = 1; tier < MAX_NR_TIERS; tier++) { 4472 read_ctrl_pos(lruvec, type, tier, 2, &pv); 4473 if (!positive_ctrl_err(&sp, &pv)) 4474 break; 4475 } 4476 4477 return tier - 1; 4478 } 4479 4480 static int get_type_to_scan(struct lruvec *lruvec, int swappiness, int *tier_idx) 4481 { 4482 int type, tier; 4483 struct ctrl_pos sp, pv; 4484 int gain[ANON_AND_FILE] = { swappiness, MAX_SWAPPINESS - swappiness }; 4485 4486 /* 4487 * Compare the first tier of anon with that of file to determine which 4488 * type to scan. Also need to compare other tiers of the selected type 4489 * with the first tier of the other type to determine the last tier (of 4490 * the selected type) to evict. 4491 */ 4492 read_ctrl_pos(lruvec, LRU_GEN_ANON, 0, gain[LRU_GEN_ANON], &sp); 4493 read_ctrl_pos(lruvec, LRU_GEN_FILE, 0, gain[LRU_GEN_FILE], &pv); 4494 type = positive_ctrl_err(&sp, &pv); 4495 4496 read_ctrl_pos(lruvec, !type, 0, gain[!type], &sp); 4497 for (tier = 1; tier < MAX_NR_TIERS; tier++) { 4498 read_ctrl_pos(lruvec, type, tier, gain[type], &pv); 4499 if (!positive_ctrl_err(&sp, &pv)) 4500 break; 4501 } 4502 4503 *tier_idx = tier - 1; 4504 4505 return type; 4506 } 4507 4508 static int isolate_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness, 4509 int *type_scanned, struct list_head *list) 4510 { 4511 int i; 4512 int type; 4513 int scanned; 4514 int tier = -1; 4515 DEFINE_MIN_SEQ(lruvec); 4516 4517 /* 4518 * Try to make the obvious choice first, and if anon and file are both 4519 * available from the same generation, 4520 * 1. Interpret swappiness 1 as file first and MAX_SWAPPINESS as anon 4521 * first. 4522 * 2. If !__GFP_IO, file first since clean pagecache is more likely to 4523 * exist than clean swapcache. 4524 */ 4525 if (!swappiness) 4526 type = LRU_GEN_FILE; 4527 else if (min_seq[LRU_GEN_ANON] < min_seq[LRU_GEN_FILE]) 4528 type = LRU_GEN_ANON; 4529 else if (swappiness == 1) 4530 type = LRU_GEN_FILE; 4531 else if (swappiness == MAX_SWAPPINESS) 4532 type = LRU_GEN_ANON; 4533 else if (!(sc->gfp_mask & __GFP_IO)) 4534 type = LRU_GEN_FILE; 4535 else 4536 type = get_type_to_scan(lruvec, swappiness, &tier); 4537 4538 for (i = !swappiness; i < ANON_AND_FILE; i++) { 4539 if (tier < 0) 4540 tier = get_tier_idx(lruvec, type); 4541 4542 scanned = scan_folios(lruvec, sc, type, tier, list); 4543 if (scanned) 4544 break; 4545 4546 type = !type; 4547 tier = -1; 4548 } 4549 4550 *type_scanned = type; 4551 4552 return scanned; 4553 } 4554 4555 static int evict_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness) 4556 { 4557 int type; 4558 int scanned; 4559 int reclaimed; 4560 LIST_HEAD(list); 4561 LIST_HEAD(clean); 4562 struct folio *folio; 4563 struct folio *next; 4564 enum vm_event_item item; 4565 struct reclaim_stat stat; 4566 struct lru_gen_mm_walk *walk; 4567 bool skip_retry = false; 4568 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4569 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 4570 4571 spin_lock_irq(&lruvec->lru_lock); 4572 4573 scanned = isolate_folios(lruvec, sc, swappiness, &type, &list); 4574 4575 scanned += try_to_inc_min_seq(lruvec, swappiness); 4576 4577 if (get_nr_gens(lruvec, !swappiness) == MIN_NR_GENS) 4578 scanned = 0; 4579 4580 spin_unlock_irq(&lruvec->lru_lock); 4581 4582 if (list_empty(&list)) 4583 return scanned; 4584 retry: 4585 reclaimed = shrink_folio_list(&list, pgdat, sc, &stat, false); 4586 sc->nr_reclaimed += reclaimed; 4587 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 4588 scanned, reclaimed, &stat, sc->priority, 4589 type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON); 4590 4591 list_for_each_entry_safe_reverse(folio, next, &list, lru) { 4592 if (!folio_evictable(folio)) { 4593 list_del(&folio->lru); 4594 folio_putback_lru(folio); 4595 continue; 4596 } 4597 4598 if (folio_test_reclaim(folio) && 4599 (folio_test_dirty(folio) || folio_test_writeback(folio))) { 4600 /* restore LRU_REFS_FLAGS cleared by isolate_folio() */ 4601 if (folio_test_workingset(folio)) 4602 folio_set_referenced(folio); 4603 continue; 4604 } 4605 4606 if (skip_retry || folio_test_active(folio) || folio_test_referenced(folio) || 4607 folio_mapped(folio) || folio_test_locked(folio) || 4608 folio_test_dirty(folio) || folio_test_writeback(folio)) { 4609 /* don't add rejected folios to the oldest generation */ 4610 set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS, 4611 BIT(PG_active)); 4612 continue; 4613 } 4614 4615 /* retry folios that may have missed folio_rotate_reclaimable() */ 4616 list_move(&folio->lru, &clean); 4617 } 4618 4619 spin_lock_irq(&lruvec->lru_lock); 4620 4621 move_folios_to_lru(lruvec, &list); 4622 4623 walk = current->reclaim_state->mm_walk; 4624 if (walk && walk->batched) { 4625 walk->lruvec = lruvec; 4626 reset_batch_size(walk); 4627 } 4628 4629 item = PGSTEAL_KSWAPD + reclaimer_offset(); 4630 if (!cgroup_reclaim(sc)) 4631 __count_vm_events(item, reclaimed); 4632 __count_memcg_events(memcg, item, reclaimed); 4633 __count_vm_events(PGSTEAL_ANON + type, reclaimed); 4634 4635 spin_unlock_irq(&lruvec->lru_lock); 4636 4637 list_splice_init(&clean, &list); 4638 4639 if (!list_empty(&list)) { 4640 skip_retry = true; 4641 goto retry; 4642 } 4643 4644 return scanned; 4645 } 4646 4647 static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq, 4648 bool can_swap, unsigned long *nr_to_scan) 4649 { 4650 int gen, type, zone; 4651 unsigned long old = 0; 4652 unsigned long young = 0; 4653 unsigned long total = 0; 4654 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4655 DEFINE_MIN_SEQ(lruvec); 4656 4657 /* whether this lruvec is completely out of cold folios */ 4658 if (min_seq[!can_swap] + MIN_NR_GENS > max_seq) { 4659 *nr_to_scan = 0; 4660 return true; 4661 } 4662 4663 for (type = !can_swap; type < ANON_AND_FILE; type++) { 4664 unsigned long seq; 4665 4666 for (seq = min_seq[type]; seq <= max_seq; seq++) { 4667 unsigned long size = 0; 4668 4669 gen = lru_gen_from_seq(seq); 4670 4671 for (zone = 0; zone < MAX_NR_ZONES; zone++) 4672 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L); 4673 4674 total += size; 4675 if (seq == max_seq) 4676 young += size; 4677 else if (seq + MIN_NR_GENS == max_seq) 4678 old += size; 4679 } 4680 } 4681 4682 *nr_to_scan = total; 4683 4684 /* 4685 * The aging tries to be lazy to reduce the overhead, while the eviction 4686 * stalls when the number of generations reaches MIN_NR_GENS. Hence, the 4687 * ideal number of generations is MIN_NR_GENS+1. 4688 */ 4689 if (min_seq[!can_swap] + MIN_NR_GENS < max_seq) 4690 return false; 4691 4692 /* 4693 * It's also ideal to spread pages out evenly, i.e., 1/(MIN_NR_GENS+1) 4694 * of the total number of pages for each generation. A reasonable range 4695 * for this average portion is [1/MIN_NR_GENS, 1/(MIN_NR_GENS+2)]. The 4696 * aging cares about the upper bound of hot pages, while the eviction 4697 * cares about the lower bound of cold pages. 4698 */ 4699 if (young * MIN_NR_GENS > total) 4700 return true; 4701 if (old * (MIN_NR_GENS + 2) < total) 4702 return true; 4703 4704 return false; 4705 } 4706 4707 /* 4708 * For future optimizations: 4709 * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg 4710 * reclaim. 4711 */ 4712 static long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc, bool can_swap) 4713 { 4714 bool success; 4715 unsigned long nr_to_scan; 4716 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4717 DEFINE_MAX_SEQ(lruvec); 4718 4719 if (mem_cgroup_below_min(sc->target_mem_cgroup, memcg)) 4720 return -1; 4721 4722 success = should_run_aging(lruvec, max_seq, can_swap, &nr_to_scan); 4723 4724 /* try to scrape all its memory if this memcg was deleted */ 4725 if (nr_to_scan && !mem_cgroup_online(memcg)) 4726 return nr_to_scan; 4727 4728 /* try to get away with not aging at the default priority */ 4729 if (!success || sc->priority == DEF_PRIORITY) 4730 return nr_to_scan >> sc->priority; 4731 4732 /* stop scanning this lruvec as it's low on cold folios */ 4733 return try_to_inc_max_seq(lruvec, max_seq, can_swap, false) ? -1 : 0; 4734 } 4735 4736 static bool should_abort_scan(struct lruvec *lruvec, struct scan_control *sc) 4737 { 4738 int i; 4739 enum zone_watermarks mark; 4740 4741 /* don't abort memcg reclaim to ensure fairness */ 4742 if (!root_reclaim(sc)) 4743 return false; 4744 4745 if (sc->nr_reclaimed >= max(sc->nr_to_reclaim, compact_gap(sc->order))) 4746 return true; 4747 4748 /* check the order to exclude compaction-induced reclaim */ 4749 if (!current_is_kswapd() || sc->order) 4750 return false; 4751 4752 mark = sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ? 4753 WMARK_PROMO : WMARK_HIGH; 4754 4755 for (i = 0; i <= sc->reclaim_idx; i++) { 4756 struct zone *zone = lruvec_pgdat(lruvec)->node_zones + i; 4757 unsigned long size = wmark_pages(zone, mark) + MIN_LRU_BATCH; 4758 4759 if (managed_zone(zone) && !zone_watermark_ok(zone, 0, size, sc->reclaim_idx, 0)) 4760 return false; 4761 } 4762 4763 /* kswapd should abort if all eligible zones are safe */ 4764 return true; 4765 } 4766 4767 static bool try_to_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 4768 { 4769 long nr_to_scan; 4770 unsigned long scanned = 0; 4771 int swappiness = get_swappiness(lruvec, sc); 4772 4773 while (true) { 4774 int delta; 4775 4776 nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness); 4777 if (nr_to_scan <= 0) 4778 break; 4779 4780 delta = evict_folios(lruvec, sc, swappiness); 4781 if (!delta) 4782 break; 4783 4784 scanned += delta; 4785 if (scanned >= nr_to_scan) 4786 break; 4787 4788 if (should_abort_scan(lruvec, sc)) 4789 break; 4790 4791 cond_resched(); 4792 } 4793 4794 /* whether this lruvec should be rotated */ 4795 return nr_to_scan < 0; 4796 } 4797 4798 static int shrink_one(struct lruvec *lruvec, struct scan_control *sc) 4799 { 4800 bool success; 4801 unsigned long scanned = sc->nr_scanned; 4802 unsigned long reclaimed = sc->nr_reclaimed; 4803 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4804 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 4805 4806 /* lru_gen_age_node() called mem_cgroup_calculate_protection() */ 4807 if (mem_cgroup_below_min(NULL, memcg)) 4808 return MEMCG_LRU_YOUNG; 4809 4810 if (mem_cgroup_below_low(NULL, memcg)) { 4811 /* see the comment on MEMCG_NR_GENS */ 4812 if (READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_TAIL) 4813 return MEMCG_LRU_TAIL; 4814 4815 memcg_memory_event(memcg, MEMCG_LOW); 4816 } 4817 4818 success = try_to_shrink_lruvec(lruvec, sc); 4819 4820 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, sc->priority); 4821 4822 if (!sc->proactive) 4823 vmpressure(sc->gfp_mask, memcg, false, sc->nr_scanned - scanned, 4824 sc->nr_reclaimed - reclaimed); 4825 4826 flush_reclaim_state(sc); 4827 4828 if (success && mem_cgroup_online(memcg)) 4829 return MEMCG_LRU_YOUNG; 4830 4831 if (!success && lruvec_is_sizable(lruvec, sc)) 4832 return 0; 4833 4834 /* one retry if offlined or too small */ 4835 return READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_TAIL ? 4836 MEMCG_LRU_TAIL : MEMCG_LRU_YOUNG; 4837 } 4838 4839 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc) 4840 { 4841 int op; 4842 int gen; 4843 int bin; 4844 int first_bin; 4845 struct lruvec *lruvec; 4846 struct lru_gen_folio *lrugen; 4847 struct mem_cgroup *memcg; 4848 struct hlist_nulls_node *pos; 4849 4850 gen = get_memcg_gen(READ_ONCE(pgdat->memcg_lru.seq)); 4851 bin = first_bin = get_random_u32_below(MEMCG_NR_BINS); 4852 restart: 4853 op = 0; 4854 memcg = NULL; 4855 4856 rcu_read_lock(); 4857 4858 hlist_nulls_for_each_entry_rcu(lrugen, pos, &pgdat->memcg_lru.fifo[gen][bin], list) { 4859 if (op) { 4860 lru_gen_rotate_memcg(lruvec, op); 4861 op = 0; 4862 } 4863 4864 mem_cgroup_put(memcg); 4865 memcg = NULL; 4866 4867 if (gen != READ_ONCE(lrugen->gen)) 4868 continue; 4869 4870 lruvec = container_of(lrugen, struct lruvec, lrugen); 4871 memcg = lruvec_memcg(lruvec); 4872 4873 if (!mem_cgroup_tryget(memcg)) { 4874 lru_gen_release_memcg(memcg); 4875 memcg = NULL; 4876 continue; 4877 } 4878 4879 rcu_read_unlock(); 4880 4881 op = shrink_one(lruvec, sc); 4882 4883 rcu_read_lock(); 4884 4885 if (should_abort_scan(lruvec, sc)) 4886 break; 4887 } 4888 4889 rcu_read_unlock(); 4890 4891 if (op) 4892 lru_gen_rotate_memcg(lruvec, op); 4893 4894 mem_cgroup_put(memcg); 4895 4896 if (!is_a_nulls(pos)) 4897 return; 4898 4899 /* restart if raced with lru_gen_rotate_memcg() */ 4900 if (gen != get_nulls_value(pos)) 4901 goto restart; 4902 4903 /* try the rest of the bins of the current generation */ 4904 bin = get_memcg_bin(bin + 1); 4905 if (bin != first_bin) 4906 goto restart; 4907 } 4908 4909 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 4910 { 4911 struct blk_plug plug; 4912 4913 VM_WARN_ON_ONCE(root_reclaim(sc)); 4914 VM_WARN_ON_ONCE(!sc->may_writepage || !sc->may_unmap); 4915 4916 lru_add_drain(); 4917 4918 blk_start_plug(&plug); 4919 4920 set_mm_walk(NULL, sc->proactive); 4921 4922 if (try_to_shrink_lruvec(lruvec, sc)) 4923 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_YOUNG); 4924 4925 clear_mm_walk(); 4926 4927 blk_finish_plug(&plug); 4928 } 4929 4930 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc) 4931 { 4932 struct blk_plug plug; 4933 unsigned long reclaimed = sc->nr_reclaimed; 4934 4935 VM_WARN_ON_ONCE(!root_reclaim(sc)); 4936 4937 /* 4938 * Unmapped clean folios are already prioritized. Scanning for more of 4939 * them is likely futile and can cause high reclaim latency when there 4940 * is a large number of memcgs. 4941 */ 4942 if (!sc->may_writepage || !sc->may_unmap) 4943 goto done; 4944 4945 lru_add_drain(); 4946 4947 blk_start_plug(&plug); 4948 4949 set_mm_walk(pgdat, sc->proactive); 4950 4951 set_initial_priority(pgdat, sc); 4952 4953 if (current_is_kswapd()) 4954 sc->nr_reclaimed = 0; 4955 4956 if (mem_cgroup_disabled()) 4957 shrink_one(&pgdat->__lruvec, sc); 4958 else 4959 shrink_many(pgdat, sc); 4960 4961 if (current_is_kswapd()) 4962 sc->nr_reclaimed += reclaimed; 4963 4964 clear_mm_walk(); 4965 4966 blk_finish_plug(&plug); 4967 done: 4968 /* kswapd should never fail */ 4969 pgdat->kswapd_failures = 0; 4970 } 4971 4972 /****************************************************************************** 4973 * state change 4974 ******************************************************************************/ 4975 4976 static bool __maybe_unused state_is_valid(struct lruvec *lruvec) 4977 { 4978 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4979 4980 if (lrugen->enabled) { 4981 enum lru_list lru; 4982 4983 for_each_evictable_lru(lru) { 4984 if (!list_empty(&lruvec->lists[lru])) 4985 return false; 4986 } 4987 } else { 4988 int gen, type, zone; 4989 4990 for_each_gen_type_zone(gen, type, zone) { 4991 if (!list_empty(&lrugen->folios[gen][type][zone])) 4992 return false; 4993 } 4994 } 4995 4996 return true; 4997 } 4998 4999 static bool fill_evictable(struct lruvec *lruvec) 5000 { 5001 enum lru_list lru; 5002 int remaining = MAX_LRU_BATCH; 5003 5004 for_each_evictable_lru(lru) { 5005 int type = is_file_lru(lru); 5006 bool active = is_active_lru(lru); 5007 struct list_head *head = &lruvec->lists[lru]; 5008 5009 while (!list_empty(head)) { 5010 bool success; 5011 struct folio *folio = lru_to_folio(head); 5012 5013 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 5014 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio) != active, folio); 5015 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 5016 VM_WARN_ON_ONCE_FOLIO(folio_lru_gen(folio) != -1, folio); 5017 5018 lruvec_del_folio(lruvec, folio); 5019 success = lru_gen_add_folio(lruvec, folio, false); 5020 VM_WARN_ON_ONCE(!success); 5021 5022 if (!--remaining) 5023 return false; 5024 } 5025 } 5026 5027 return true; 5028 } 5029 5030 static bool drain_evictable(struct lruvec *lruvec) 5031 { 5032 int gen, type, zone; 5033 int remaining = MAX_LRU_BATCH; 5034 5035 for_each_gen_type_zone(gen, type, zone) { 5036 struct list_head *head = &lruvec->lrugen.folios[gen][type][zone]; 5037 5038 while (!list_empty(head)) { 5039 bool success; 5040 struct folio *folio = lru_to_folio(head); 5041 5042 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 5043 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio); 5044 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 5045 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio); 5046 5047 success = lru_gen_del_folio(lruvec, folio, false); 5048 VM_WARN_ON_ONCE(!success); 5049 lruvec_add_folio(lruvec, folio); 5050 5051 if (!--remaining) 5052 return false; 5053 } 5054 } 5055 5056 return true; 5057 } 5058 5059 static void lru_gen_change_state(bool enabled) 5060 { 5061 static DEFINE_MUTEX(state_mutex); 5062 5063 struct mem_cgroup *memcg; 5064 5065 cgroup_lock(); 5066 cpus_read_lock(); 5067 get_online_mems(); 5068 mutex_lock(&state_mutex); 5069 5070 if (enabled == lru_gen_enabled()) 5071 goto unlock; 5072 5073 if (enabled) 5074 static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]); 5075 else 5076 static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]); 5077 5078 memcg = mem_cgroup_iter(NULL, NULL, NULL); 5079 do { 5080 int nid; 5081 5082 for_each_node(nid) { 5083 struct lruvec *lruvec = get_lruvec(memcg, nid); 5084 5085 spin_lock_irq(&lruvec->lru_lock); 5086 5087 VM_WARN_ON_ONCE(!seq_is_valid(lruvec)); 5088 VM_WARN_ON_ONCE(!state_is_valid(lruvec)); 5089 5090 lruvec->lrugen.enabled = enabled; 5091 5092 while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) { 5093 spin_unlock_irq(&lruvec->lru_lock); 5094 cond_resched(); 5095 spin_lock_irq(&lruvec->lru_lock); 5096 } 5097 5098 spin_unlock_irq(&lruvec->lru_lock); 5099 } 5100 5101 cond_resched(); 5102 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL))); 5103 unlock: 5104 mutex_unlock(&state_mutex); 5105 put_online_mems(); 5106 cpus_read_unlock(); 5107 cgroup_unlock(); 5108 } 5109 5110 /****************************************************************************** 5111 * sysfs interface 5112 ******************************************************************************/ 5113 5114 static ssize_t min_ttl_ms_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) 5115 { 5116 return sysfs_emit(buf, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl))); 5117 } 5118 5119 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5120 static ssize_t min_ttl_ms_store(struct kobject *kobj, struct kobj_attribute *attr, 5121 const char *buf, size_t len) 5122 { 5123 unsigned int msecs; 5124 5125 if (kstrtouint(buf, 0, &msecs)) 5126 return -EINVAL; 5127 5128 WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs)); 5129 5130 return len; 5131 } 5132 5133 static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR_RW(min_ttl_ms); 5134 5135 static ssize_t enabled_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) 5136 { 5137 unsigned int caps = 0; 5138 5139 if (get_cap(LRU_GEN_CORE)) 5140 caps |= BIT(LRU_GEN_CORE); 5141 5142 if (should_walk_mmu()) 5143 caps |= BIT(LRU_GEN_MM_WALK); 5144 5145 if (should_clear_pmd_young()) 5146 caps |= BIT(LRU_GEN_NONLEAF_YOUNG); 5147 5148 return sysfs_emit(buf, "0x%04x\n", caps); 5149 } 5150 5151 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5152 static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr, 5153 const char *buf, size_t len) 5154 { 5155 int i; 5156 unsigned int caps; 5157 5158 if (tolower(*buf) == 'n') 5159 caps = 0; 5160 else if (tolower(*buf) == 'y') 5161 caps = -1; 5162 else if (kstrtouint(buf, 0, &caps)) 5163 return -EINVAL; 5164 5165 for (i = 0; i < NR_LRU_GEN_CAPS; i++) { 5166 bool enabled = caps & BIT(i); 5167 5168 if (i == LRU_GEN_CORE) 5169 lru_gen_change_state(enabled); 5170 else if (enabled) 5171 static_branch_enable(&lru_gen_caps[i]); 5172 else 5173 static_branch_disable(&lru_gen_caps[i]); 5174 } 5175 5176 return len; 5177 } 5178 5179 static struct kobj_attribute lru_gen_enabled_attr = __ATTR_RW(enabled); 5180 5181 static struct attribute *lru_gen_attrs[] = { 5182 &lru_gen_min_ttl_attr.attr, 5183 &lru_gen_enabled_attr.attr, 5184 NULL 5185 }; 5186 5187 static const struct attribute_group lru_gen_attr_group = { 5188 .name = "lru_gen", 5189 .attrs = lru_gen_attrs, 5190 }; 5191 5192 /****************************************************************************** 5193 * debugfs interface 5194 ******************************************************************************/ 5195 5196 static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos) 5197 { 5198 struct mem_cgroup *memcg; 5199 loff_t nr_to_skip = *pos; 5200 5201 m->private = kvmalloc(PATH_MAX, GFP_KERNEL); 5202 if (!m->private) 5203 return ERR_PTR(-ENOMEM); 5204 5205 memcg = mem_cgroup_iter(NULL, NULL, NULL); 5206 do { 5207 int nid; 5208 5209 for_each_node_state(nid, N_MEMORY) { 5210 if (!nr_to_skip--) 5211 return get_lruvec(memcg, nid); 5212 } 5213 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL))); 5214 5215 return NULL; 5216 } 5217 5218 static void lru_gen_seq_stop(struct seq_file *m, void *v) 5219 { 5220 if (!IS_ERR_OR_NULL(v)) 5221 mem_cgroup_iter_break(NULL, lruvec_memcg(v)); 5222 5223 kvfree(m->private); 5224 m->private = NULL; 5225 } 5226 5227 static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos) 5228 { 5229 int nid = lruvec_pgdat(v)->node_id; 5230 struct mem_cgroup *memcg = lruvec_memcg(v); 5231 5232 ++*pos; 5233 5234 nid = next_memory_node(nid); 5235 if (nid == MAX_NUMNODES) { 5236 memcg = mem_cgroup_iter(NULL, memcg, NULL); 5237 if (!memcg) 5238 return NULL; 5239 5240 nid = first_memory_node; 5241 } 5242 5243 return get_lruvec(memcg, nid); 5244 } 5245 5246 static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec, 5247 unsigned long max_seq, unsigned long *min_seq, 5248 unsigned long seq) 5249 { 5250 int i; 5251 int type, tier; 5252 int hist = lru_hist_from_seq(seq); 5253 struct lru_gen_folio *lrugen = &lruvec->lrugen; 5254 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 5255 5256 for (tier = 0; tier < MAX_NR_TIERS; tier++) { 5257 seq_printf(m, " %10d", tier); 5258 for (type = 0; type < ANON_AND_FILE; type++) { 5259 const char *s = " "; 5260 unsigned long n[3] = {}; 5261 5262 if (seq == max_seq) { 5263 s = "RT "; 5264 n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]); 5265 n[1] = READ_ONCE(lrugen->avg_total[type][tier]); 5266 } else if (seq == min_seq[type] || NR_HIST_GENS > 1) { 5267 s = "rep"; 5268 n[0] = atomic_long_read(&lrugen->refaulted[hist][type][tier]); 5269 n[1] = atomic_long_read(&lrugen->evicted[hist][type][tier]); 5270 if (tier) 5271 n[2] = READ_ONCE(lrugen->protected[hist][type][tier - 1]); 5272 } 5273 5274 for (i = 0; i < 3; i++) 5275 seq_printf(m, " %10lu%c", n[i], s[i]); 5276 } 5277 seq_putc(m, '\n'); 5278 } 5279 5280 if (!mm_state) 5281 return; 5282 5283 seq_puts(m, " "); 5284 for (i = 0; i < NR_MM_STATS; i++) { 5285 const char *s = " "; 5286 unsigned long n = 0; 5287 5288 if (seq == max_seq && NR_HIST_GENS == 1) { 5289 s = "LOYNFA"; 5290 n = READ_ONCE(mm_state->stats[hist][i]); 5291 } else if (seq != max_seq && NR_HIST_GENS > 1) { 5292 s = "loynfa"; 5293 n = READ_ONCE(mm_state->stats[hist][i]); 5294 } 5295 5296 seq_printf(m, " %10lu%c", n, s[i]); 5297 } 5298 seq_putc(m, '\n'); 5299 } 5300 5301 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5302 static int lru_gen_seq_show(struct seq_file *m, void *v) 5303 { 5304 unsigned long seq; 5305 bool full = !debugfs_real_fops(m->file)->write; 5306 struct lruvec *lruvec = v; 5307 struct lru_gen_folio *lrugen = &lruvec->lrugen; 5308 int nid = lruvec_pgdat(lruvec)->node_id; 5309 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 5310 DEFINE_MAX_SEQ(lruvec); 5311 DEFINE_MIN_SEQ(lruvec); 5312 5313 if (nid == first_memory_node) { 5314 const char *path = memcg ? m->private : ""; 5315 5316 #ifdef CONFIG_MEMCG 5317 if (memcg) 5318 cgroup_path(memcg->css.cgroup, m->private, PATH_MAX); 5319 #endif 5320 seq_printf(m, "memcg %5hu %s\n", mem_cgroup_id(memcg), path); 5321 } 5322 5323 seq_printf(m, " node %5d\n", nid); 5324 5325 if (!full) 5326 seq = min_seq[LRU_GEN_ANON]; 5327 else if (max_seq >= MAX_NR_GENS) 5328 seq = max_seq - MAX_NR_GENS + 1; 5329 else 5330 seq = 0; 5331 5332 for (; seq <= max_seq; seq++) { 5333 int type, zone; 5334 int gen = lru_gen_from_seq(seq); 5335 unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]); 5336 5337 seq_printf(m, " %10lu %10u", seq, jiffies_to_msecs(jiffies - birth)); 5338 5339 for (type = 0; type < ANON_AND_FILE; type++) { 5340 unsigned long size = 0; 5341 char mark = full && seq < min_seq[type] ? 'x' : ' '; 5342 5343 for (zone = 0; zone < MAX_NR_ZONES; zone++) 5344 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L); 5345 5346 seq_printf(m, " %10lu%c", size, mark); 5347 } 5348 5349 seq_putc(m, '\n'); 5350 5351 if (full) 5352 lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq); 5353 } 5354 5355 return 0; 5356 } 5357 5358 static const struct seq_operations lru_gen_seq_ops = { 5359 .start = lru_gen_seq_start, 5360 .stop = lru_gen_seq_stop, 5361 .next = lru_gen_seq_next, 5362 .show = lru_gen_seq_show, 5363 }; 5364 5365 static int run_aging(struct lruvec *lruvec, unsigned long seq, 5366 bool can_swap, bool force_scan) 5367 { 5368 DEFINE_MAX_SEQ(lruvec); 5369 DEFINE_MIN_SEQ(lruvec); 5370 5371 if (seq < max_seq) 5372 return 0; 5373 5374 if (seq > max_seq) 5375 return -EINVAL; 5376 5377 if (!force_scan && min_seq[!can_swap] + MAX_NR_GENS - 1 <= max_seq) 5378 return -ERANGE; 5379 5380 try_to_inc_max_seq(lruvec, max_seq, can_swap, force_scan); 5381 5382 return 0; 5383 } 5384 5385 static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc, 5386 int swappiness, unsigned long nr_to_reclaim) 5387 { 5388 DEFINE_MAX_SEQ(lruvec); 5389 5390 if (seq + MIN_NR_GENS > max_seq) 5391 return -EINVAL; 5392 5393 sc->nr_reclaimed = 0; 5394 5395 while (!signal_pending(current)) { 5396 DEFINE_MIN_SEQ(lruvec); 5397 5398 if (seq < min_seq[!swappiness]) 5399 return 0; 5400 5401 if (sc->nr_reclaimed >= nr_to_reclaim) 5402 return 0; 5403 5404 if (!evict_folios(lruvec, sc, swappiness)) 5405 return 0; 5406 5407 cond_resched(); 5408 } 5409 5410 return -EINTR; 5411 } 5412 5413 static int run_cmd(char cmd, int memcg_id, int nid, unsigned long seq, 5414 struct scan_control *sc, int swappiness, unsigned long opt) 5415 { 5416 struct lruvec *lruvec; 5417 int err = -EINVAL; 5418 struct mem_cgroup *memcg = NULL; 5419 5420 if (nid < 0 || nid >= MAX_NUMNODES || !node_state(nid, N_MEMORY)) 5421 return -EINVAL; 5422 5423 if (!mem_cgroup_disabled()) { 5424 rcu_read_lock(); 5425 5426 memcg = mem_cgroup_from_id(memcg_id); 5427 if (!mem_cgroup_tryget(memcg)) 5428 memcg = NULL; 5429 5430 rcu_read_unlock(); 5431 5432 if (!memcg) 5433 return -EINVAL; 5434 } 5435 5436 if (memcg_id != mem_cgroup_id(memcg)) 5437 goto done; 5438 5439 lruvec = get_lruvec(memcg, nid); 5440 5441 if (swappiness < MIN_SWAPPINESS) 5442 swappiness = get_swappiness(lruvec, sc); 5443 else if (swappiness > MAX_SWAPPINESS) 5444 goto done; 5445 5446 switch (cmd) { 5447 case '+': 5448 err = run_aging(lruvec, seq, swappiness, opt); 5449 break; 5450 case '-': 5451 err = run_eviction(lruvec, seq, sc, swappiness, opt); 5452 break; 5453 } 5454 done: 5455 mem_cgroup_put(memcg); 5456 5457 return err; 5458 } 5459 5460 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5461 static ssize_t lru_gen_seq_write(struct file *file, const char __user *src, 5462 size_t len, loff_t *pos) 5463 { 5464 void *buf; 5465 char *cur, *next; 5466 unsigned int flags; 5467 struct blk_plug plug; 5468 int err = -EINVAL; 5469 struct scan_control sc = { 5470 .may_writepage = true, 5471 .may_unmap = true, 5472 .may_swap = true, 5473 .reclaim_idx = MAX_NR_ZONES - 1, 5474 .gfp_mask = GFP_KERNEL, 5475 }; 5476 5477 buf = kvmalloc(len + 1, GFP_KERNEL); 5478 if (!buf) 5479 return -ENOMEM; 5480 5481 if (copy_from_user(buf, src, len)) { 5482 kvfree(buf); 5483 return -EFAULT; 5484 } 5485 5486 set_task_reclaim_state(current, &sc.reclaim_state); 5487 flags = memalloc_noreclaim_save(); 5488 blk_start_plug(&plug); 5489 if (!set_mm_walk(NULL, true)) { 5490 err = -ENOMEM; 5491 goto done; 5492 } 5493 5494 next = buf; 5495 next[len] = '\0'; 5496 5497 while ((cur = strsep(&next, ",;\n"))) { 5498 int n; 5499 int end; 5500 char cmd; 5501 unsigned int memcg_id; 5502 unsigned int nid; 5503 unsigned long seq; 5504 unsigned int swappiness = -1; 5505 unsigned long opt = -1; 5506 5507 cur = skip_spaces(cur); 5508 if (!*cur) 5509 continue; 5510 5511 n = sscanf(cur, "%c %u %u %lu %n %u %n %lu %n", &cmd, &memcg_id, &nid, 5512 &seq, &end, &swappiness, &end, &opt, &end); 5513 if (n < 4 || cur[end]) { 5514 err = -EINVAL; 5515 break; 5516 } 5517 5518 err = run_cmd(cmd, memcg_id, nid, seq, &sc, swappiness, opt); 5519 if (err) 5520 break; 5521 } 5522 done: 5523 clear_mm_walk(); 5524 blk_finish_plug(&plug); 5525 memalloc_noreclaim_restore(flags); 5526 set_task_reclaim_state(current, NULL); 5527 5528 kvfree(buf); 5529 5530 return err ? : len; 5531 } 5532 5533 static int lru_gen_seq_open(struct inode *inode, struct file *file) 5534 { 5535 return seq_open(file, &lru_gen_seq_ops); 5536 } 5537 5538 static const struct file_operations lru_gen_rw_fops = { 5539 .open = lru_gen_seq_open, 5540 .read = seq_read, 5541 .write = lru_gen_seq_write, 5542 .llseek = seq_lseek, 5543 .release = seq_release, 5544 }; 5545 5546 static const struct file_operations lru_gen_ro_fops = { 5547 .open = lru_gen_seq_open, 5548 .read = seq_read, 5549 .llseek = seq_lseek, 5550 .release = seq_release, 5551 }; 5552 5553 /****************************************************************************** 5554 * initialization 5555 ******************************************************************************/ 5556 5557 void lru_gen_init_pgdat(struct pglist_data *pgdat) 5558 { 5559 int i, j; 5560 5561 spin_lock_init(&pgdat->memcg_lru.lock); 5562 5563 for (i = 0; i < MEMCG_NR_GENS; i++) { 5564 for (j = 0; j < MEMCG_NR_BINS; j++) 5565 INIT_HLIST_NULLS_HEAD(&pgdat->memcg_lru.fifo[i][j], i); 5566 } 5567 } 5568 5569 void lru_gen_init_lruvec(struct lruvec *lruvec) 5570 { 5571 int i; 5572 int gen, type, zone; 5573 struct lru_gen_folio *lrugen = &lruvec->lrugen; 5574 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 5575 5576 lrugen->max_seq = MIN_NR_GENS + 1; 5577 lrugen->enabled = lru_gen_enabled(); 5578 5579 for (i = 0; i <= MIN_NR_GENS + 1; i++) 5580 lrugen->timestamps[i] = jiffies; 5581 5582 for_each_gen_type_zone(gen, type, zone) 5583 INIT_LIST_HEAD(&lrugen->folios[gen][type][zone]); 5584 5585 if (mm_state) 5586 mm_state->seq = MIN_NR_GENS; 5587 } 5588 5589 #ifdef CONFIG_MEMCG 5590 5591 void lru_gen_init_memcg(struct mem_cgroup *memcg) 5592 { 5593 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 5594 5595 if (!mm_list) 5596 return; 5597 5598 INIT_LIST_HEAD(&mm_list->fifo); 5599 spin_lock_init(&mm_list->lock); 5600 } 5601 5602 void lru_gen_exit_memcg(struct mem_cgroup *memcg) 5603 { 5604 int i; 5605 int nid; 5606 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 5607 5608 VM_WARN_ON_ONCE(mm_list && !list_empty(&mm_list->fifo)); 5609 5610 for_each_node(nid) { 5611 struct lruvec *lruvec = get_lruvec(memcg, nid); 5612 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 5613 5614 VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0, 5615 sizeof(lruvec->lrugen.nr_pages))); 5616 5617 lruvec->lrugen.list.next = LIST_POISON1; 5618 5619 if (!mm_state) 5620 continue; 5621 5622 for (i = 0; i < NR_BLOOM_FILTERS; i++) { 5623 bitmap_free(mm_state->filters[i]); 5624 mm_state->filters[i] = NULL; 5625 } 5626 } 5627 } 5628 5629 #endif /* CONFIG_MEMCG */ 5630 5631 static int __init init_lru_gen(void) 5632 { 5633 BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS); 5634 BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS); 5635 5636 if (sysfs_create_group(mm_kobj, &lru_gen_attr_group)) 5637 pr_err("lru_gen: failed to create sysfs group\n"); 5638 5639 debugfs_create_file("lru_gen", 0644, NULL, NULL, &lru_gen_rw_fops); 5640 debugfs_create_file("lru_gen_full", 0444, NULL, NULL, &lru_gen_ro_fops); 5641 5642 return 0; 5643 }; 5644 late_initcall(init_lru_gen); 5645 5646 #else /* !CONFIG_LRU_GEN */ 5647 5648 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc) 5649 { 5650 BUILD_BUG(); 5651 } 5652 5653 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 5654 { 5655 BUILD_BUG(); 5656 } 5657 5658 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc) 5659 { 5660 BUILD_BUG(); 5661 } 5662 5663 #endif /* CONFIG_LRU_GEN */ 5664 5665 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 5666 { 5667 unsigned long nr[NR_LRU_LISTS]; 5668 unsigned long targets[NR_LRU_LISTS]; 5669 unsigned long nr_to_scan; 5670 enum lru_list lru; 5671 unsigned long nr_reclaimed = 0; 5672 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 5673 bool proportional_reclaim; 5674 struct blk_plug plug; 5675 5676 if (lru_gen_enabled() && !root_reclaim(sc)) { 5677 lru_gen_shrink_lruvec(lruvec, sc); 5678 return; 5679 } 5680 5681 get_scan_count(lruvec, sc, nr); 5682 5683 /* Record the original scan target for proportional adjustments later */ 5684 memcpy(targets, nr, sizeof(nr)); 5685 5686 /* 5687 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal 5688 * event that can occur when there is little memory pressure e.g. 5689 * multiple streaming readers/writers. Hence, we do not abort scanning 5690 * when the requested number of pages are reclaimed when scanning at 5691 * DEF_PRIORITY on the assumption that the fact we are direct 5692 * reclaiming implies that kswapd is not keeping up and it is best to 5693 * do a batch of work at once. For memcg reclaim one check is made to 5694 * abort proportional reclaim if either the file or anon lru has already 5695 * dropped to zero at the first pass. 5696 */ 5697 proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() && 5698 sc->priority == DEF_PRIORITY); 5699 5700 blk_start_plug(&plug); 5701 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 5702 nr[LRU_INACTIVE_FILE]) { 5703 unsigned long nr_anon, nr_file, percentage; 5704 unsigned long nr_scanned; 5705 5706 for_each_evictable_lru(lru) { 5707 if (nr[lru]) { 5708 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 5709 nr[lru] -= nr_to_scan; 5710 5711 nr_reclaimed += shrink_list(lru, nr_to_scan, 5712 lruvec, sc); 5713 } 5714 } 5715 5716 cond_resched(); 5717 5718 if (nr_reclaimed < nr_to_reclaim || proportional_reclaim) 5719 continue; 5720 5721 /* 5722 * For kswapd and memcg, reclaim at least the number of pages 5723 * requested. Ensure that the anon and file LRUs are scanned 5724 * proportionally what was requested by get_scan_count(). We 5725 * stop reclaiming one LRU and reduce the amount scanning 5726 * proportional to the original scan target. 5727 */ 5728 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 5729 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 5730 5731 /* 5732 * It's just vindictive to attack the larger once the smaller 5733 * has gone to zero. And given the way we stop scanning the 5734 * smaller below, this makes sure that we only make one nudge 5735 * towards proportionality once we've got nr_to_reclaim. 5736 */ 5737 if (!nr_file || !nr_anon) 5738 break; 5739 5740 if (nr_file > nr_anon) { 5741 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 5742 targets[LRU_ACTIVE_ANON] + 1; 5743 lru = LRU_BASE; 5744 percentage = nr_anon * 100 / scan_target; 5745 } else { 5746 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 5747 targets[LRU_ACTIVE_FILE] + 1; 5748 lru = LRU_FILE; 5749 percentage = nr_file * 100 / scan_target; 5750 } 5751 5752 /* Stop scanning the smaller of the LRU */ 5753 nr[lru] = 0; 5754 nr[lru + LRU_ACTIVE] = 0; 5755 5756 /* 5757 * Recalculate the other LRU scan count based on its original 5758 * scan target and the percentage scanning already complete 5759 */ 5760 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 5761 nr_scanned = targets[lru] - nr[lru]; 5762 nr[lru] = targets[lru] * (100 - percentage) / 100; 5763 nr[lru] -= min(nr[lru], nr_scanned); 5764 5765 lru += LRU_ACTIVE; 5766 nr_scanned = targets[lru] - nr[lru]; 5767 nr[lru] = targets[lru] * (100 - percentage) / 100; 5768 nr[lru] -= min(nr[lru], nr_scanned); 5769 } 5770 blk_finish_plug(&plug); 5771 sc->nr_reclaimed += nr_reclaimed; 5772 5773 /* 5774 * Even if we did not try to evict anon pages at all, we want to 5775 * rebalance the anon lru active/inactive ratio. 5776 */ 5777 if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) && 5778 inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 5779 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 5780 sc, LRU_ACTIVE_ANON); 5781 } 5782 5783 /* Use reclaim/compaction for costly allocs or under memory pressure */ 5784 static bool in_reclaim_compaction(struct scan_control *sc) 5785 { 5786 if (gfp_compaction_allowed(sc->gfp_mask) && sc->order && 5787 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 5788 sc->priority < DEF_PRIORITY - 2)) 5789 return true; 5790 5791 return false; 5792 } 5793 5794 /* 5795 * Reclaim/compaction is used for high-order allocation requests. It reclaims 5796 * order-0 pages before compacting the zone. should_continue_reclaim() returns 5797 * true if more pages should be reclaimed such that when the page allocator 5798 * calls try_to_compact_pages() that it will have enough free pages to succeed. 5799 * It will give up earlier than that if there is difficulty reclaiming pages. 5800 */ 5801 static inline bool should_continue_reclaim(struct pglist_data *pgdat, 5802 unsigned long nr_reclaimed, 5803 struct scan_control *sc) 5804 { 5805 unsigned long pages_for_compaction; 5806 unsigned long inactive_lru_pages; 5807 int z; 5808 5809 /* If not in reclaim/compaction mode, stop */ 5810 if (!in_reclaim_compaction(sc)) 5811 return false; 5812 5813 /* 5814 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX 5815 * number of pages that were scanned. This will return to the caller 5816 * with the risk reclaim/compaction and the resulting allocation attempt 5817 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL 5818 * allocations through requiring that the full LRU list has been scanned 5819 * first, by assuming that zero delta of sc->nr_scanned means full LRU 5820 * scan, but that approximation was wrong, and there were corner cases 5821 * where always a non-zero amount of pages were scanned. 5822 */ 5823 if (!nr_reclaimed) 5824 return false; 5825 5826 /* If compaction would go ahead or the allocation would succeed, stop */ 5827 for (z = 0; z <= sc->reclaim_idx; z++) { 5828 struct zone *zone = &pgdat->node_zones[z]; 5829 if (!managed_zone(zone)) 5830 continue; 5831 5832 /* Allocation can already succeed, nothing to do */ 5833 if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone), 5834 sc->reclaim_idx, 0)) 5835 return false; 5836 5837 if (compaction_suitable(zone, sc->order, sc->reclaim_idx)) 5838 return false; 5839 } 5840 5841 /* 5842 * If we have not reclaimed enough pages for compaction and the 5843 * inactive lists are large enough, continue reclaiming 5844 */ 5845 pages_for_compaction = compact_gap(sc->order); 5846 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE); 5847 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc)) 5848 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON); 5849 5850 return inactive_lru_pages > pages_for_compaction; 5851 } 5852 5853 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc) 5854 { 5855 struct mem_cgroup *target_memcg = sc->target_mem_cgroup; 5856 struct mem_cgroup_reclaim_cookie reclaim = { 5857 .pgdat = pgdat, 5858 }; 5859 struct mem_cgroup_reclaim_cookie *partial = &reclaim; 5860 struct mem_cgroup *memcg; 5861 5862 /* 5863 * In most cases, direct reclaimers can do partial walks 5864 * through the cgroup tree, using an iterator state that 5865 * persists across invocations. This strikes a balance between 5866 * fairness and allocation latency. 5867 * 5868 * For kswapd, reliable forward progress is more important 5869 * than a quick return to idle. Always do full walks. 5870 */ 5871 if (current_is_kswapd() || sc->memcg_full_walk) 5872 partial = NULL; 5873 5874 memcg = mem_cgroup_iter(target_memcg, NULL, partial); 5875 do { 5876 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 5877 unsigned long reclaimed; 5878 unsigned long scanned; 5879 5880 /* 5881 * This loop can become CPU-bound when target memcgs 5882 * aren't eligible for reclaim - either because they 5883 * don't have any reclaimable pages, or because their 5884 * memory is explicitly protected. Avoid soft lockups. 5885 */ 5886 cond_resched(); 5887 5888 mem_cgroup_calculate_protection(target_memcg, memcg); 5889 5890 if (mem_cgroup_below_min(target_memcg, memcg)) { 5891 /* 5892 * Hard protection. 5893 * If there is no reclaimable memory, OOM. 5894 */ 5895 continue; 5896 } else if (mem_cgroup_below_low(target_memcg, memcg)) { 5897 /* 5898 * Soft protection. 5899 * Respect the protection only as long as 5900 * there is an unprotected supply 5901 * of reclaimable memory from other cgroups. 5902 */ 5903 if (!sc->memcg_low_reclaim) { 5904 sc->memcg_low_skipped = 1; 5905 continue; 5906 } 5907 memcg_memory_event(memcg, MEMCG_LOW); 5908 } 5909 5910 reclaimed = sc->nr_reclaimed; 5911 scanned = sc->nr_scanned; 5912 5913 shrink_lruvec(lruvec, sc); 5914 5915 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, 5916 sc->priority); 5917 5918 /* Record the group's reclaim efficiency */ 5919 if (!sc->proactive) 5920 vmpressure(sc->gfp_mask, memcg, false, 5921 sc->nr_scanned - scanned, 5922 sc->nr_reclaimed - reclaimed); 5923 5924 /* If partial walks are allowed, bail once goal is reached */ 5925 if (partial && sc->nr_reclaimed >= sc->nr_to_reclaim) { 5926 mem_cgroup_iter_break(target_memcg, memcg); 5927 break; 5928 } 5929 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, partial))); 5930 } 5931 5932 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc) 5933 { 5934 unsigned long nr_reclaimed, nr_scanned, nr_node_reclaimed; 5935 struct lruvec *target_lruvec; 5936 bool reclaimable = false; 5937 5938 if (lru_gen_enabled() && root_reclaim(sc)) { 5939 lru_gen_shrink_node(pgdat, sc); 5940 return; 5941 } 5942 5943 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat); 5944 5945 again: 5946 memset(&sc->nr, 0, sizeof(sc->nr)); 5947 5948 nr_reclaimed = sc->nr_reclaimed; 5949 nr_scanned = sc->nr_scanned; 5950 5951 prepare_scan_control(pgdat, sc); 5952 5953 shrink_node_memcgs(pgdat, sc); 5954 5955 flush_reclaim_state(sc); 5956 5957 nr_node_reclaimed = sc->nr_reclaimed - nr_reclaimed; 5958 5959 /* Record the subtree's reclaim efficiency */ 5960 if (!sc->proactive) 5961 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, 5962 sc->nr_scanned - nr_scanned, nr_node_reclaimed); 5963 5964 if (nr_node_reclaimed) 5965 reclaimable = true; 5966 5967 if (current_is_kswapd()) { 5968 /* 5969 * If reclaim is isolating dirty pages under writeback, 5970 * it implies that the long-lived page allocation rate 5971 * is exceeding the page laundering rate. Either the 5972 * global limits are not being effective at throttling 5973 * processes due to the page distribution throughout 5974 * zones or there is heavy usage of a slow backing 5975 * device. The only option is to throttle from reclaim 5976 * context which is not ideal as there is no guarantee 5977 * the dirtying process is throttled in the same way 5978 * balance_dirty_pages() manages. 5979 * 5980 * Once a node is flagged PGDAT_WRITEBACK, kswapd will 5981 * count the number of pages under pages flagged for 5982 * immediate reclaim and stall if any are encountered 5983 * in the nr_immediate check below. 5984 */ 5985 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken) 5986 set_bit(PGDAT_WRITEBACK, &pgdat->flags); 5987 5988 /* Allow kswapd to start writing pages during reclaim.*/ 5989 if (sc->nr.unqueued_dirty == sc->nr.file_taken) 5990 set_bit(PGDAT_DIRTY, &pgdat->flags); 5991 5992 /* 5993 * If kswapd scans pages marked for immediate 5994 * reclaim and under writeback (nr_immediate), it 5995 * implies that pages are cycling through the LRU 5996 * faster than they are written so forcibly stall 5997 * until some pages complete writeback. 5998 */ 5999 if (sc->nr.immediate) 6000 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK); 6001 } 6002 6003 /* 6004 * Tag a node/memcg as congested if all the dirty pages were marked 6005 * for writeback and immediate reclaim (counted in nr.congested). 6006 * 6007 * Legacy memcg will stall in page writeback so avoid forcibly 6008 * stalling in reclaim_throttle(). 6009 */ 6010 if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested) { 6011 if (cgroup_reclaim(sc) && writeback_throttling_sane(sc)) 6012 set_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags); 6013 6014 if (current_is_kswapd()) 6015 set_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags); 6016 } 6017 6018 /* 6019 * Stall direct reclaim for IO completions if the lruvec is 6020 * node is congested. Allow kswapd to continue until it 6021 * starts encountering unqueued dirty pages or cycling through 6022 * the LRU too quickly. 6023 */ 6024 if (!current_is_kswapd() && current_may_throttle() && 6025 !sc->hibernation_mode && 6026 (test_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags) || 6027 test_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags))) 6028 reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED); 6029 6030 if (should_continue_reclaim(pgdat, nr_node_reclaimed, sc)) 6031 goto again; 6032 6033 /* 6034 * Kswapd gives up on balancing particular nodes after too 6035 * many failures to reclaim anything from them and goes to 6036 * sleep. On reclaim progress, reset the failure counter. A 6037 * successful direct reclaim run will revive a dormant kswapd. 6038 */ 6039 if (reclaimable) 6040 pgdat->kswapd_failures = 0; 6041 else if (sc->cache_trim_mode) 6042 sc->cache_trim_mode_failed = 1; 6043 } 6044 6045 /* 6046 * Returns true if compaction should go ahead for a costly-order request, or 6047 * the allocation would already succeed without compaction. Return false if we 6048 * should reclaim first. 6049 */ 6050 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) 6051 { 6052 unsigned long watermark; 6053 6054 if (!gfp_compaction_allowed(sc->gfp_mask)) 6055 return false; 6056 6057 /* Allocation can already succeed, nothing to do */ 6058 if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone), 6059 sc->reclaim_idx, 0)) 6060 return true; 6061 6062 /* Compaction cannot yet proceed. Do reclaim. */ 6063 if (!compaction_suitable(zone, sc->order, sc->reclaim_idx)) 6064 return false; 6065 6066 /* 6067 * Compaction is already possible, but it takes time to run and there 6068 * are potentially other callers using the pages just freed. So proceed 6069 * with reclaim to make a buffer of free pages available to give 6070 * compaction a reasonable chance of completing and allocating the page. 6071 * Note that we won't actually reclaim the whole buffer in one attempt 6072 * as the target watermark in should_continue_reclaim() is lower. But if 6073 * we are already above the high+gap watermark, don't reclaim at all. 6074 */ 6075 watermark = high_wmark_pages(zone) + compact_gap(sc->order); 6076 6077 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx); 6078 } 6079 6080 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc) 6081 { 6082 /* 6083 * If reclaim is making progress greater than 12% efficiency then 6084 * wake all the NOPROGRESS throttled tasks. 6085 */ 6086 if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) { 6087 wait_queue_head_t *wqh; 6088 6089 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS]; 6090 if (waitqueue_active(wqh)) 6091 wake_up(wqh); 6092 6093 return; 6094 } 6095 6096 /* 6097 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will 6098 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages 6099 * under writeback and marked for immediate reclaim at the tail of the 6100 * LRU. 6101 */ 6102 if (current_is_kswapd() || cgroup_reclaim(sc)) 6103 return; 6104 6105 /* Throttle if making no progress at high prioities. */ 6106 if (sc->priority == 1 && !sc->nr_reclaimed) 6107 reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS); 6108 } 6109 6110 /* 6111 * This is the direct reclaim path, for page-allocating processes. We only 6112 * try to reclaim pages from zones which will satisfy the caller's allocation 6113 * request. 6114 * 6115 * If a zone is deemed to be full of pinned pages then just give it a light 6116 * scan then give up on it. 6117 */ 6118 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 6119 { 6120 struct zoneref *z; 6121 struct zone *zone; 6122 unsigned long nr_soft_reclaimed; 6123 unsigned long nr_soft_scanned; 6124 gfp_t orig_mask; 6125 pg_data_t *last_pgdat = NULL; 6126 pg_data_t *first_pgdat = NULL; 6127 6128 /* 6129 * If the number of buffer_heads in the machine exceeds the maximum 6130 * allowed level, force direct reclaim to scan the highmem zone as 6131 * highmem pages could be pinning lowmem pages storing buffer_heads 6132 */ 6133 orig_mask = sc->gfp_mask; 6134 if (buffer_heads_over_limit) { 6135 sc->gfp_mask |= __GFP_HIGHMEM; 6136 sc->reclaim_idx = gfp_zone(sc->gfp_mask); 6137 } 6138 6139 for_each_zone_zonelist_nodemask(zone, z, zonelist, 6140 sc->reclaim_idx, sc->nodemask) { 6141 /* 6142 * Take care memory controller reclaiming has small influence 6143 * to global LRU. 6144 */ 6145 if (!cgroup_reclaim(sc)) { 6146 if (!cpuset_zone_allowed(zone, 6147 GFP_KERNEL | __GFP_HARDWALL)) 6148 continue; 6149 6150 /* 6151 * If we already have plenty of memory free for 6152 * compaction in this zone, don't free any more. 6153 * Even though compaction is invoked for any 6154 * non-zero order, only frequent costly order 6155 * reclamation is disruptive enough to become a 6156 * noticeable problem, like transparent huge 6157 * page allocations. 6158 */ 6159 if (IS_ENABLED(CONFIG_COMPACTION) && 6160 sc->order > PAGE_ALLOC_COSTLY_ORDER && 6161 compaction_ready(zone, sc)) { 6162 sc->compaction_ready = true; 6163 continue; 6164 } 6165 6166 /* 6167 * Shrink each node in the zonelist once. If the 6168 * zonelist is ordered by zone (not the default) then a 6169 * node may be shrunk multiple times but in that case 6170 * the user prefers lower zones being preserved. 6171 */ 6172 if (zone->zone_pgdat == last_pgdat) 6173 continue; 6174 6175 /* 6176 * This steals pages from memory cgroups over softlimit 6177 * and returns the number of reclaimed pages and 6178 * scanned pages. This works for global memory pressure 6179 * and balancing, not for a memcg's limit. 6180 */ 6181 nr_soft_scanned = 0; 6182 nr_soft_reclaimed = memcg1_soft_limit_reclaim(zone->zone_pgdat, 6183 sc->order, sc->gfp_mask, 6184 &nr_soft_scanned); 6185 sc->nr_reclaimed += nr_soft_reclaimed; 6186 sc->nr_scanned += nr_soft_scanned; 6187 /* need some check for avoid more shrink_zone() */ 6188 } 6189 6190 if (!first_pgdat) 6191 first_pgdat = zone->zone_pgdat; 6192 6193 /* See comment about same check for global reclaim above */ 6194 if (zone->zone_pgdat == last_pgdat) 6195 continue; 6196 last_pgdat = zone->zone_pgdat; 6197 shrink_node(zone->zone_pgdat, sc); 6198 } 6199 6200 if (first_pgdat) 6201 consider_reclaim_throttle(first_pgdat, sc); 6202 6203 /* 6204 * Restore to original mask to avoid the impact on the caller if we 6205 * promoted it to __GFP_HIGHMEM. 6206 */ 6207 sc->gfp_mask = orig_mask; 6208 } 6209 6210 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat) 6211 { 6212 struct lruvec *target_lruvec; 6213 unsigned long refaults; 6214 6215 if (lru_gen_enabled()) 6216 return; 6217 6218 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat); 6219 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON); 6220 target_lruvec->refaults[WORKINGSET_ANON] = refaults; 6221 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE); 6222 target_lruvec->refaults[WORKINGSET_FILE] = refaults; 6223 } 6224 6225 /* 6226 * This is the main entry point to direct page reclaim. 6227 * 6228 * If a full scan of the inactive list fails to free enough memory then we 6229 * are "out of memory" and something needs to be killed. 6230 * 6231 * If the caller is !__GFP_FS then the probability of a failure is reasonably 6232 * high - the zone may be full of dirty or under-writeback pages, which this 6233 * caller can't do much about. We kick the writeback threads and take explicit 6234 * naps in the hope that some of these pages can be written. But if the 6235 * allocating task holds filesystem locks which prevent writeout this might not 6236 * work, and the allocation attempt will fail. 6237 * 6238 * returns: 0, if no pages reclaimed 6239 * else, the number of pages reclaimed 6240 */ 6241 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 6242 struct scan_control *sc) 6243 { 6244 int initial_priority = sc->priority; 6245 pg_data_t *last_pgdat; 6246 struct zoneref *z; 6247 struct zone *zone; 6248 retry: 6249 delayacct_freepages_start(); 6250 6251 if (!cgroup_reclaim(sc)) 6252 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1); 6253 6254 do { 6255 if (!sc->proactive) 6256 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 6257 sc->priority); 6258 sc->nr_scanned = 0; 6259 shrink_zones(zonelist, sc); 6260 6261 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 6262 break; 6263 6264 if (sc->compaction_ready) 6265 break; 6266 6267 /* 6268 * If we're getting trouble reclaiming, start doing 6269 * writepage even in laptop mode. 6270 */ 6271 if (sc->priority < DEF_PRIORITY - 2) 6272 sc->may_writepage = 1; 6273 } while (--sc->priority >= 0); 6274 6275 last_pgdat = NULL; 6276 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx, 6277 sc->nodemask) { 6278 if (zone->zone_pgdat == last_pgdat) 6279 continue; 6280 last_pgdat = zone->zone_pgdat; 6281 6282 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat); 6283 6284 if (cgroup_reclaim(sc)) { 6285 struct lruvec *lruvec; 6286 6287 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, 6288 zone->zone_pgdat); 6289 clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags); 6290 } 6291 } 6292 6293 delayacct_freepages_end(); 6294 6295 if (sc->nr_reclaimed) 6296 return sc->nr_reclaimed; 6297 6298 /* Aborted reclaim to try compaction? don't OOM, then */ 6299 if (sc->compaction_ready) 6300 return 1; 6301 6302 /* 6303 * In most cases, direct reclaimers can do partial walks 6304 * through the cgroup tree to meet the reclaim goal while 6305 * keeping latency low. Since the iterator state is shared 6306 * among all direct reclaim invocations (to retain fairness 6307 * among cgroups), though, high concurrency can result in 6308 * individual threads not seeing enough cgroups to make 6309 * meaningful forward progress. Avoid false OOMs in this case. 6310 */ 6311 if (!sc->memcg_full_walk) { 6312 sc->priority = initial_priority; 6313 sc->memcg_full_walk = 1; 6314 goto retry; 6315 } 6316 6317 /* 6318 * We make inactive:active ratio decisions based on the node's 6319 * composition of memory, but a restrictive reclaim_idx or a 6320 * memory.low cgroup setting can exempt large amounts of 6321 * memory from reclaim. Neither of which are very common, so 6322 * instead of doing costly eligibility calculations of the 6323 * entire cgroup subtree up front, we assume the estimates are 6324 * good, and retry with forcible deactivation if that fails. 6325 */ 6326 if (sc->skipped_deactivate) { 6327 sc->priority = initial_priority; 6328 sc->force_deactivate = 1; 6329 sc->skipped_deactivate = 0; 6330 goto retry; 6331 } 6332 6333 /* Untapped cgroup reserves? Don't OOM, retry. */ 6334 if (sc->memcg_low_skipped) { 6335 sc->priority = initial_priority; 6336 sc->force_deactivate = 0; 6337 sc->memcg_low_reclaim = 1; 6338 sc->memcg_low_skipped = 0; 6339 goto retry; 6340 } 6341 6342 return 0; 6343 } 6344 6345 static bool allow_direct_reclaim(pg_data_t *pgdat) 6346 { 6347 struct zone *zone; 6348 unsigned long pfmemalloc_reserve = 0; 6349 unsigned long free_pages = 0; 6350 int i; 6351 bool wmark_ok; 6352 6353 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 6354 return true; 6355 6356 for (i = 0; i <= ZONE_NORMAL; i++) { 6357 zone = &pgdat->node_zones[i]; 6358 if (!managed_zone(zone)) 6359 continue; 6360 6361 if (!zone_reclaimable_pages(zone)) 6362 continue; 6363 6364 pfmemalloc_reserve += min_wmark_pages(zone); 6365 free_pages += zone_page_state_snapshot(zone, NR_FREE_PAGES); 6366 } 6367 6368 /* If there are no reserves (unexpected config) then do not throttle */ 6369 if (!pfmemalloc_reserve) 6370 return true; 6371 6372 wmark_ok = free_pages > pfmemalloc_reserve / 2; 6373 6374 /* kswapd must be awake if processes are being throttled */ 6375 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 6376 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL) 6377 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL); 6378 6379 wake_up_interruptible(&pgdat->kswapd_wait); 6380 } 6381 6382 return wmark_ok; 6383 } 6384 6385 /* 6386 * Throttle direct reclaimers if backing storage is backed by the network 6387 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 6388 * depleted. kswapd will continue to make progress and wake the processes 6389 * when the low watermark is reached. 6390 * 6391 * Returns true if a fatal signal was delivered during throttling. If this 6392 * happens, the page allocator should not consider triggering the OOM killer. 6393 */ 6394 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 6395 nodemask_t *nodemask) 6396 { 6397 struct zoneref *z; 6398 struct zone *zone; 6399 pg_data_t *pgdat = NULL; 6400 6401 /* 6402 * Kernel threads should not be throttled as they may be indirectly 6403 * responsible for cleaning pages necessary for reclaim to make forward 6404 * progress. kjournald for example may enter direct reclaim while 6405 * committing a transaction where throttling it could forcing other 6406 * processes to block on log_wait_commit(). 6407 */ 6408 if (current->flags & PF_KTHREAD) 6409 goto out; 6410 6411 /* 6412 * If a fatal signal is pending, this process should not throttle. 6413 * It should return quickly so it can exit and free its memory 6414 */ 6415 if (fatal_signal_pending(current)) 6416 goto out; 6417 6418 /* 6419 * Check if the pfmemalloc reserves are ok by finding the first node 6420 * with a usable ZONE_NORMAL or lower zone. The expectation is that 6421 * GFP_KERNEL will be required for allocating network buffers when 6422 * swapping over the network so ZONE_HIGHMEM is unusable. 6423 * 6424 * Throttling is based on the first usable node and throttled processes 6425 * wait on a queue until kswapd makes progress and wakes them. There 6426 * is an affinity then between processes waking up and where reclaim 6427 * progress has been made assuming the process wakes on the same node. 6428 * More importantly, processes running on remote nodes will not compete 6429 * for remote pfmemalloc reserves and processes on different nodes 6430 * should make reasonable progress. 6431 */ 6432 for_each_zone_zonelist_nodemask(zone, z, zonelist, 6433 gfp_zone(gfp_mask), nodemask) { 6434 if (zone_idx(zone) > ZONE_NORMAL) 6435 continue; 6436 6437 /* Throttle based on the first usable node */ 6438 pgdat = zone->zone_pgdat; 6439 if (allow_direct_reclaim(pgdat)) 6440 goto out; 6441 break; 6442 } 6443 6444 /* If no zone was usable by the allocation flags then do not throttle */ 6445 if (!pgdat) 6446 goto out; 6447 6448 /* Account for the throttling */ 6449 count_vm_event(PGSCAN_DIRECT_THROTTLE); 6450 6451 /* 6452 * If the caller cannot enter the filesystem, it's possible that it 6453 * is due to the caller holding an FS lock or performing a journal 6454 * transaction in the case of a filesystem like ext[3|4]. In this case, 6455 * it is not safe to block on pfmemalloc_wait as kswapd could be 6456 * blocked waiting on the same lock. Instead, throttle for up to a 6457 * second before continuing. 6458 */ 6459 if (!(gfp_mask & __GFP_FS)) 6460 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 6461 allow_direct_reclaim(pgdat), HZ); 6462 else 6463 /* Throttle until kswapd wakes the process */ 6464 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 6465 allow_direct_reclaim(pgdat)); 6466 6467 if (fatal_signal_pending(current)) 6468 return true; 6469 6470 out: 6471 return false; 6472 } 6473 6474 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 6475 gfp_t gfp_mask, nodemask_t *nodemask) 6476 { 6477 unsigned long nr_reclaimed; 6478 struct scan_control sc = { 6479 .nr_to_reclaim = SWAP_CLUSTER_MAX, 6480 .gfp_mask = current_gfp_context(gfp_mask), 6481 .reclaim_idx = gfp_zone(gfp_mask), 6482 .order = order, 6483 .nodemask = nodemask, 6484 .priority = DEF_PRIORITY, 6485 .may_writepage = !laptop_mode, 6486 .may_unmap = 1, 6487 .may_swap = 1, 6488 }; 6489 6490 /* 6491 * scan_control uses s8 fields for order, priority, and reclaim_idx. 6492 * Confirm they are large enough for max values. 6493 */ 6494 BUILD_BUG_ON(MAX_PAGE_ORDER >= S8_MAX); 6495 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX); 6496 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX); 6497 6498 /* 6499 * Do not enter reclaim if fatal signal was delivered while throttled. 6500 * 1 is returned so that the page allocator does not OOM kill at this 6501 * point. 6502 */ 6503 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask)) 6504 return 1; 6505 6506 set_task_reclaim_state(current, &sc.reclaim_state); 6507 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask); 6508 6509 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 6510 6511 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 6512 set_task_reclaim_state(current, NULL); 6513 6514 return nr_reclaimed; 6515 } 6516 6517 #ifdef CONFIG_MEMCG 6518 6519 /* Only used by soft limit reclaim. Do not reuse for anything else. */ 6520 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg, 6521 gfp_t gfp_mask, bool noswap, 6522 pg_data_t *pgdat, 6523 unsigned long *nr_scanned) 6524 { 6525 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 6526 struct scan_control sc = { 6527 .nr_to_reclaim = SWAP_CLUSTER_MAX, 6528 .target_mem_cgroup = memcg, 6529 .may_writepage = !laptop_mode, 6530 .may_unmap = 1, 6531 .reclaim_idx = MAX_NR_ZONES - 1, 6532 .may_swap = !noswap, 6533 }; 6534 6535 WARN_ON_ONCE(!current->reclaim_state); 6536 6537 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 6538 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 6539 6540 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 6541 sc.gfp_mask); 6542 6543 /* 6544 * NOTE: Although we can get the priority field, using it 6545 * here is not a good idea, since it limits the pages we can scan. 6546 * if we don't reclaim here, the shrink_node from balance_pgdat 6547 * will pick up pages from other mem cgroup's as well. We hack 6548 * the priority and make it zero. 6549 */ 6550 shrink_lruvec(lruvec, &sc); 6551 6552 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 6553 6554 *nr_scanned = sc.nr_scanned; 6555 6556 return sc.nr_reclaimed; 6557 } 6558 6559 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 6560 unsigned long nr_pages, 6561 gfp_t gfp_mask, 6562 unsigned int reclaim_options, 6563 int *swappiness) 6564 { 6565 unsigned long nr_reclaimed; 6566 unsigned int noreclaim_flag; 6567 struct scan_control sc = { 6568 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 6569 .proactive_swappiness = swappiness, 6570 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) | 6571 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 6572 .reclaim_idx = MAX_NR_ZONES - 1, 6573 .target_mem_cgroup = memcg, 6574 .priority = DEF_PRIORITY, 6575 .may_writepage = !laptop_mode, 6576 .may_unmap = 1, 6577 .may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP), 6578 .proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE), 6579 }; 6580 /* 6581 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put 6582 * equal pressure on all the nodes. This is based on the assumption that 6583 * the reclaim does not bail out early. 6584 */ 6585 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 6586 6587 set_task_reclaim_state(current, &sc.reclaim_state); 6588 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask); 6589 noreclaim_flag = memalloc_noreclaim_save(); 6590 6591 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 6592 6593 memalloc_noreclaim_restore(noreclaim_flag); 6594 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 6595 set_task_reclaim_state(current, NULL); 6596 6597 return nr_reclaimed; 6598 } 6599 #endif 6600 6601 static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc) 6602 { 6603 struct mem_cgroup *memcg; 6604 struct lruvec *lruvec; 6605 6606 if (lru_gen_enabled()) { 6607 lru_gen_age_node(pgdat, sc); 6608 return; 6609 } 6610 6611 if (!can_age_anon_pages(pgdat, sc)) 6612 return; 6613 6614 lruvec = mem_cgroup_lruvec(NULL, pgdat); 6615 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 6616 return; 6617 6618 memcg = mem_cgroup_iter(NULL, NULL, NULL); 6619 do { 6620 lruvec = mem_cgroup_lruvec(memcg, pgdat); 6621 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 6622 sc, LRU_ACTIVE_ANON); 6623 memcg = mem_cgroup_iter(NULL, memcg, NULL); 6624 } while (memcg); 6625 } 6626 6627 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx) 6628 { 6629 int i; 6630 struct zone *zone; 6631 6632 /* 6633 * Check for watermark boosts top-down as the higher zones 6634 * are more likely to be boosted. Both watermarks and boosts 6635 * should not be checked at the same time as reclaim would 6636 * start prematurely when there is no boosting and a lower 6637 * zone is balanced. 6638 */ 6639 for (i = highest_zoneidx; i >= 0; i--) { 6640 zone = pgdat->node_zones + i; 6641 if (!managed_zone(zone)) 6642 continue; 6643 6644 if (zone->watermark_boost) 6645 return true; 6646 } 6647 6648 return false; 6649 } 6650 6651 /* 6652 * Returns true if there is an eligible zone balanced for the request order 6653 * and highest_zoneidx 6654 */ 6655 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx) 6656 { 6657 int i; 6658 unsigned long mark = -1; 6659 struct zone *zone; 6660 6661 /* 6662 * Check watermarks bottom-up as lower zones are more likely to 6663 * meet watermarks. 6664 */ 6665 for (i = 0; i <= highest_zoneidx; i++) { 6666 zone = pgdat->node_zones + i; 6667 6668 if (!managed_zone(zone)) 6669 continue; 6670 6671 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) 6672 mark = wmark_pages(zone, WMARK_PROMO); 6673 else 6674 mark = high_wmark_pages(zone); 6675 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx)) 6676 return true; 6677 } 6678 6679 /* 6680 * If a node has no managed zone within highest_zoneidx, it does not 6681 * need balancing by definition. This can happen if a zone-restricted 6682 * allocation tries to wake a remote kswapd. 6683 */ 6684 if (mark == -1) 6685 return true; 6686 6687 return false; 6688 } 6689 6690 /* Clear pgdat state for congested, dirty or under writeback. */ 6691 static void clear_pgdat_congested(pg_data_t *pgdat) 6692 { 6693 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat); 6694 6695 clear_bit(LRUVEC_NODE_CONGESTED, &lruvec->flags); 6696 clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags); 6697 clear_bit(PGDAT_DIRTY, &pgdat->flags); 6698 clear_bit(PGDAT_WRITEBACK, &pgdat->flags); 6699 } 6700 6701 /* 6702 * Prepare kswapd for sleeping. This verifies that there are no processes 6703 * waiting in throttle_direct_reclaim() and that watermarks have been met. 6704 * 6705 * Returns true if kswapd is ready to sleep 6706 */ 6707 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, 6708 int highest_zoneidx) 6709 { 6710 /* 6711 * The throttled processes are normally woken up in balance_pgdat() as 6712 * soon as allow_direct_reclaim() is true. But there is a potential 6713 * race between when kswapd checks the watermarks and a process gets 6714 * throttled. There is also a potential race if processes get 6715 * throttled, kswapd wakes, a large process exits thereby balancing the 6716 * zones, which causes kswapd to exit balance_pgdat() before reaching 6717 * the wake up checks. If kswapd is going to sleep, no process should 6718 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If 6719 * the wake up is premature, processes will wake kswapd and get 6720 * throttled again. The difference from wake ups in balance_pgdat() is 6721 * that here we are under prepare_to_wait(). 6722 */ 6723 if (waitqueue_active(&pgdat->pfmemalloc_wait)) 6724 wake_up_all(&pgdat->pfmemalloc_wait); 6725 6726 /* Hopeless node, leave it to direct reclaim */ 6727 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 6728 return true; 6729 6730 if (pgdat_balanced(pgdat, order, highest_zoneidx)) { 6731 clear_pgdat_congested(pgdat); 6732 return true; 6733 } 6734 6735 return false; 6736 } 6737 6738 /* 6739 * kswapd shrinks a node of pages that are at or below the highest usable 6740 * zone that is currently unbalanced. 6741 * 6742 * Returns true if kswapd scanned at least the requested number of pages to 6743 * reclaim or if the lack of progress was due to pages under writeback. 6744 * This is used to determine if the scanning priority needs to be raised. 6745 */ 6746 static bool kswapd_shrink_node(pg_data_t *pgdat, 6747 struct scan_control *sc) 6748 { 6749 struct zone *zone; 6750 int z; 6751 unsigned long nr_reclaimed = sc->nr_reclaimed; 6752 6753 /* Reclaim a number of pages proportional to the number of zones */ 6754 sc->nr_to_reclaim = 0; 6755 for (z = 0; z <= sc->reclaim_idx; z++) { 6756 zone = pgdat->node_zones + z; 6757 if (!managed_zone(zone)) 6758 continue; 6759 6760 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX); 6761 } 6762 6763 /* 6764 * Historically care was taken to put equal pressure on all zones but 6765 * now pressure is applied based on node LRU order. 6766 */ 6767 shrink_node(pgdat, sc); 6768 6769 /* 6770 * Fragmentation may mean that the system cannot be rebalanced for 6771 * high-order allocations. If twice the allocation size has been 6772 * reclaimed then recheck watermarks only at order-0 to prevent 6773 * excessive reclaim. Assume that a process requested a high-order 6774 * can direct reclaim/compact. 6775 */ 6776 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order)) 6777 sc->order = 0; 6778 6779 /* account for progress from mm_account_reclaimed_pages() */ 6780 return max(sc->nr_scanned, sc->nr_reclaimed - nr_reclaimed) >= sc->nr_to_reclaim; 6781 } 6782 6783 /* Page allocator PCP high watermark is lowered if reclaim is active. */ 6784 static inline void 6785 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active) 6786 { 6787 int i; 6788 struct zone *zone; 6789 6790 for (i = 0; i <= highest_zoneidx; i++) { 6791 zone = pgdat->node_zones + i; 6792 6793 if (!managed_zone(zone)) 6794 continue; 6795 6796 if (active) 6797 set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags); 6798 else 6799 clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags); 6800 } 6801 } 6802 6803 static inline void 6804 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx) 6805 { 6806 update_reclaim_active(pgdat, highest_zoneidx, true); 6807 } 6808 6809 static inline void 6810 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx) 6811 { 6812 update_reclaim_active(pgdat, highest_zoneidx, false); 6813 } 6814 6815 /* 6816 * For kswapd, balance_pgdat() will reclaim pages across a node from zones 6817 * that are eligible for use by the caller until at least one zone is 6818 * balanced. 6819 * 6820 * Returns the order kswapd finished reclaiming at. 6821 * 6822 * kswapd scans the zones in the highmem->normal->dma direction. It skips 6823 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 6824 * found to have free_pages <= high_wmark_pages(zone), any page in that zone 6825 * or lower is eligible for reclaim until at least one usable zone is 6826 * balanced. 6827 */ 6828 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx) 6829 { 6830 int i; 6831 unsigned long nr_soft_reclaimed; 6832 unsigned long nr_soft_scanned; 6833 unsigned long pflags; 6834 unsigned long nr_boost_reclaim; 6835 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, }; 6836 bool boosted; 6837 struct zone *zone; 6838 struct scan_control sc = { 6839 .gfp_mask = GFP_KERNEL, 6840 .order = order, 6841 .may_unmap = 1, 6842 }; 6843 6844 set_task_reclaim_state(current, &sc.reclaim_state); 6845 psi_memstall_enter(&pflags); 6846 __fs_reclaim_acquire(_THIS_IP_); 6847 6848 count_vm_event(PAGEOUTRUN); 6849 6850 /* 6851 * Account for the reclaim boost. Note that the zone boost is left in 6852 * place so that parallel allocations that are near the watermark will 6853 * stall or direct reclaim until kswapd is finished. 6854 */ 6855 nr_boost_reclaim = 0; 6856 for (i = 0; i <= highest_zoneidx; i++) { 6857 zone = pgdat->node_zones + i; 6858 if (!managed_zone(zone)) 6859 continue; 6860 6861 nr_boost_reclaim += zone->watermark_boost; 6862 zone_boosts[i] = zone->watermark_boost; 6863 } 6864 boosted = nr_boost_reclaim; 6865 6866 restart: 6867 set_reclaim_active(pgdat, highest_zoneidx); 6868 sc.priority = DEF_PRIORITY; 6869 do { 6870 unsigned long nr_reclaimed = sc.nr_reclaimed; 6871 bool raise_priority = true; 6872 bool balanced; 6873 bool ret; 6874 bool was_frozen; 6875 6876 sc.reclaim_idx = highest_zoneidx; 6877 6878 /* 6879 * If the number of buffer_heads exceeds the maximum allowed 6880 * then consider reclaiming from all zones. This has a dual 6881 * purpose -- on 64-bit systems it is expected that 6882 * buffer_heads are stripped during active rotation. On 32-bit 6883 * systems, highmem pages can pin lowmem memory and shrinking 6884 * buffers can relieve lowmem pressure. Reclaim may still not 6885 * go ahead if all eligible zones for the original allocation 6886 * request are balanced to avoid excessive reclaim from kswapd. 6887 */ 6888 if (buffer_heads_over_limit) { 6889 for (i = MAX_NR_ZONES - 1; i >= 0; i--) { 6890 zone = pgdat->node_zones + i; 6891 if (!managed_zone(zone)) 6892 continue; 6893 6894 sc.reclaim_idx = i; 6895 break; 6896 } 6897 } 6898 6899 /* 6900 * If the pgdat is imbalanced then ignore boosting and preserve 6901 * the watermarks for a later time and restart. Note that the 6902 * zone watermarks will be still reset at the end of balancing 6903 * on the grounds that the normal reclaim should be enough to 6904 * re-evaluate if boosting is required when kswapd next wakes. 6905 */ 6906 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx); 6907 if (!balanced && nr_boost_reclaim) { 6908 nr_boost_reclaim = 0; 6909 goto restart; 6910 } 6911 6912 /* 6913 * If boosting is not active then only reclaim if there are no 6914 * eligible zones. Note that sc.reclaim_idx is not used as 6915 * buffer_heads_over_limit may have adjusted it. 6916 */ 6917 if (!nr_boost_reclaim && balanced) 6918 goto out; 6919 6920 /* Limit the priority of boosting to avoid reclaim writeback */ 6921 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2) 6922 raise_priority = false; 6923 6924 /* 6925 * Do not writeback or swap pages for boosted reclaim. The 6926 * intent is to relieve pressure not issue sub-optimal IO 6927 * from reclaim context. If no pages are reclaimed, the 6928 * reclaim will be aborted. 6929 */ 6930 sc.may_writepage = !laptop_mode && !nr_boost_reclaim; 6931 sc.may_swap = !nr_boost_reclaim; 6932 6933 /* 6934 * Do some background aging, to give pages a chance to be 6935 * referenced before reclaiming. All pages are rotated 6936 * regardless of classzone as this is about consistent aging. 6937 */ 6938 kswapd_age_node(pgdat, &sc); 6939 6940 /* 6941 * If we're getting trouble reclaiming, start doing writepage 6942 * even in laptop mode. 6943 */ 6944 if (sc.priority < DEF_PRIORITY - 2) 6945 sc.may_writepage = 1; 6946 6947 /* Call soft limit reclaim before calling shrink_node. */ 6948 sc.nr_scanned = 0; 6949 nr_soft_scanned = 0; 6950 nr_soft_reclaimed = memcg1_soft_limit_reclaim(pgdat, sc.order, 6951 sc.gfp_mask, &nr_soft_scanned); 6952 sc.nr_reclaimed += nr_soft_reclaimed; 6953 6954 /* 6955 * There should be no need to raise the scanning priority if 6956 * enough pages are already being scanned that that high 6957 * watermark would be met at 100% efficiency. 6958 */ 6959 if (kswapd_shrink_node(pgdat, &sc)) 6960 raise_priority = false; 6961 6962 /* 6963 * If the low watermark is met there is no need for processes 6964 * to be throttled on pfmemalloc_wait as they should not be 6965 * able to safely make forward progress. Wake them 6966 */ 6967 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 6968 allow_direct_reclaim(pgdat)) 6969 wake_up_all(&pgdat->pfmemalloc_wait); 6970 6971 /* Check if kswapd should be suspending */ 6972 __fs_reclaim_release(_THIS_IP_); 6973 ret = kthread_freezable_should_stop(&was_frozen); 6974 __fs_reclaim_acquire(_THIS_IP_); 6975 if (was_frozen || ret) 6976 break; 6977 6978 /* 6979 * Raise priority if scanning rate is too low or there was no 6980 * progress in reclaiming pages 6981 */ 6982 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed; 6983 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed); 6984 6985 /* 6986 * If reclaim made no progress for a boost, stop reclaim as 6987 * IO cannot be queued and it could be an infinite loop in 6988 * extreme circumstances. 6989 */ 6990 if (nr_boost_reclaim && !nr_reclaimed) 6991 break; 6992 6993 if (raise_priority || !nr_reclaimed) 6994 sc.priority--; 6995 } while (sc.priority >= 1); 6996 6997 /* 6998 * Restart only if it went through the priority loop all the way, 6999 * but cache_trim_mode didn't work. 7000 */ 7001 if (!sc.nr_reclaimed && sc.priority < 1 && 7002 !sc.no_cache_trim_mode && sc.cache_trim_mode_failed) { 7003 sc.no_cache_trim_mode = 1; 7004 goto restart; 7005 } 7006 7007 if (!sc.nr_reclaimed) 7008 pgdat->kswapd_failures++; 7009 7010 out: 7011 clear_reclaim_active(pgdat, highest_zoneidx); 7012 7013 /* If reclaim was boosted, account for the reclaim done in this pass */ 7014 if (boosted) { 7015 unsigned long flags; 7016 7017 for (i = 0; i <= highest_zoneidx; i++) { 7018 if (!zone_boosts[i]) 7019 continue; 7020 7021 /* Increments are under the zone lock */ 7022 zone = pgdat->node_zones + i; 7023 spin_lock_irqsave(&zone->lock, flags); 7024 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]); 7025 spin_unlock_irqrestore(&zone->lock, flags); 7026 } 7027 7028 /* 7029 * As there is now likely space, wakeup kcompact to defragment 7030 * pageblocks. 7031 */ 7032 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx); 7033 } 7034 7035 snapshot_refaults(NULL, pgdat); 7036 __fs_reclaim_release(_THIS_IP_); 7037 psi_memstall_leave(&pflags); 7038 set_task_reclaim_state(current, NULL); 7039 7040 /* 7041 * Return the order kswapd stopped reclaiming at as 7042 * prepare_kswapd_sleep() takes it into account. If another caller 7043 * entered the allocator slow path while kswapd was awake, order will 7044 * remain at the higher level. 7045 */ 7046 return sc.order; 7047 } 7048 7049 /* 7050 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to 7051 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is 7052 * not a valid index then either kswapd runs for first time or kswapd couldn't 7053 * sleep after previous reclaim attempt (node is still unbalanced). In that 7054 * case return the zone index of the previous kswapd reclaim cycle. 7055 */ 7056 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat, 7057 enum zone_type prev_highest_zoneidx) 7058 { 7059 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 7060 7061 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx; 7062 } 7063 7064 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order, 7065 unsigned int highest_zoneidx) 7066 { 7067 long remaining = 0; 7068 DEFINE_WAIT(wait); 7069 7070 if (freezing(current) || kthread_should_stop()) 7071 return; 7072 7073 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 7074 7075 /* 7076 * Try to sleep for a short interval. Note that kcompactd will only be 7077 * woken if it is possible to sleep for a short interval. This is 7078 * deliberate on the assumption that if reclaim cannot keep an 7079 * eligible zone balanced that it's also unlikely that compaction will 7080 * succeed. 7081 */ 7082 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 7083 /* 7084 * Compaction records what page blocks it recently failed to 7085 * isolate pages from and skips them in the future scanning. 7086 * When kswapd is going to sleep, it is reasonable to assume 7087 * that pages and compaction may succeed so reset the cache. 7088 */ 7089 reset_isolation_suitable(pgdat); 7090 7091 /* 7092 * We have freed the memory, now we should compact it to make 7093 * allocation of the requested order possible. 7094 */ 7095 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx); 7096 7097 remaining = schedule_timeout(HZ/10); 7098 7099 /* 7100 * If woken prematurely then reset kswapd_highest_zoneidx and 7101 * order. The values will either be from a wakeup request or 7102 * the previous request that slept prematurely. 7103 */ 7104 if (remaining) { 7105 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, 7106 kswapd_highest_zoneidx(pgdat, 7107 highest_zoneidx)); 7108 7109 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order) 7110 WRITE_ONCE(pgdat->kswapd_order, reclaim_order); 7111 } 7112 7113 finish_wait(&pgdat->kswapd_wait, &wait); 7114 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 7115 } 7116 7117 /* 7118 * After a short sleep, check if it was a premature sleep. If not, then 7119 * go fully to sleep until explicitly woken up. 7120 */ 7121 if (!remaining && 7122 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 7123 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 7124 7125 /* 7126 * vmstat counters are not perfectly accurate and the estimated 7127 * value for counters such as NR_FREE_PAGES can deviate from the 7128 * true value by nr_online_cpus * threshold. To avoid the zone 7129 * watermarks being breached while under pressure, we reduce the 7130 * per-cpu vmstat threshold while kswapd is awake and restore 7131 * them before going back to sleep. 7132 */ 7133 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 7134 7135 if (!kthread_should_stop()) 7136 schedule(); 7137 7138 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 7139 } else { 7140 if (remaining) 7141 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 7142 else 7143 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 7144 } 7145 finish_wait(&pgdat->kswapd_wait, &wait); 7146 } 7147 7148 /* 7149 * The background pageout daemon, started as a kernel thread 7150 * from the init process. 7151 * 7152 * This basically trickles out pages so that we have _some_ 7153 * free memory available even if there is no other activity 7154 * that frees anything up. This is needed for things like routing 7155 * etc, where we otherwise might have all activity going on in 7156 * asynchronous contexts that cannot page things out. 7157 * 7158 * If there are applications that are active memory-allocators 7159 * (most normal use), this basically shouldn't matter. 7160 */ 7161 static int kswapd(void *p) 7162 { 7163 unsigned int alloc_order, reclaim_order; 7164 unsigned int highest_zoneidx = MAX_NR_ZONES - 1; 7165 pg_data_t *pgdat = (pg_data_t *)p; 7166 struct task_struct *tsk = current; 7167 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 7168 7169 if (!cpumask_empty(cpumask)) 7170 set_cpus_allowed_ptr(tsk, cpumask); 7171 7172 /* 7173 * Tell the memory management that we're a "memory allocator", 7174 * and that if we need more memory we should get access to it 7175 * regardless (see "__alloc_pages()"). "kswapd" should 7176 * never get caught in the normal page freeing logic. 7177 * 7178 * (Kswapd normally doesn't need memory anyway, but sometimes 7179 * you need a small amount of memory in order to be able to 7180 * page out something else, and this flag essentially protects 7181 * us from recursively trying to free more memory as we're 7182 * trying to free the first piece of memory in the first place). 7183 */ 7184 tsk->flags |= PF_MEMALLOC | PF_KSWAPD; 7185 set_freezable(); 7186 7187 WRITE_ONCE(pgdat->kswapd_order, 0); 7188 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 7189 atomic_set(&pgdat->nr_writeback_throttled, 0); 7190 for ( ; ; ) { 7191 bool was_frozen; 7192 7193 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order); 7194 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 7195 highest_zoneidx); 7196 7197 kswapd_try_sleep: 7198 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order, 7199 highest_zoneidx); 7200 7201 /* Read the new order and highest_zoneidx */ 7202 alloc_order = READ_ONCE(pgdat->kswapd_order); 7203 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 7204 highest_zoneidx); 7205 WRITE_ONCE(pgdat->kswapd_order, 0); 7206 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 7207 7208 if (kthread_freezable_should_stop(&was_frozen)) 7209 break; 7210 7211 /* 7212 * We can speed up thawing tasks if we don't call balance_pgdat 7213 * after returning from the refrigerator 7214 */ 7215 if (was_frozen) 7216 continue; 7217 7218 /* 7219 * Reclaim begins at the requested order but if a high-order 7220 * reclaim fails then kswapd falls back to reclaiming for 7221 * order-0. If that happens, kswapd will consider sleeping 7222 * for the order it finished reclaiming at (reclaim_order) 7223 * but kcompactd is woken to compact for the original 7224 * request (alloc_order). 7225 */ 7226 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx, 7227 alloc_order); 7228 reclaim_order = balance_pgdat(pgdat, alloc_order, 7229 highest_zoneidx); 7230 if (reclaim_order < alloc_order) 7231 goto kswapd_try_sleep; 7232 } 7233 7234 tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD); 7235 7236 return 0; 7237 } 7238 7239 /* 7240 * A zone is low on free memory or too fragmented for high-order memory. If 7241 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's 7242 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim 7243 * has failed or is not needed, still wake up kcompactd if only compaction is 7244 * needed. 7245 */ 7246 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order, 7247 enum zone_type highest_zoneidx) 7248 { 7249 pg_data_t *pgdat; 7250 enum zone_type curr_idx; 7251 7252 if (!managed_zone(zone)) 7253 return; 7254 7255 if (!cpuset_zone_allowed(zone, gfp_flags)) 7256 return; 7257 7258 pgdat = zone->zone_pgdat; 7259 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 7260 7261 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx) 7262 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx); 7263 7264 if (READ_ONCE(pgdat->kswapd_order) < order) 7265 WRITE_ONCE(pgdat->kswapd_order, order); 7266 7267 if (!waitqueue_active(&pgdat->kswapd_wait)) 7268 return; 7269 7270 /* Hopeless node, leave it to direct reclaim if possible */ 7271 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES || 7272 (pgdat_balanced(pgdat, order, highest_zoneidx) && 7273 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) { 7274 /* 7275 * There may be plenty of free memory available, but it's too 7276 * fragmented for high-order allocations. Wake up kcompactd 7277 * and rely on compaction_suitable() to determine if it's 7278 * needed. If it fails, it will defer subsequent attempts to 7279 * ratelimit its work. 7280 */ 7281 if (!(gfp_flags & __GFP_DIRECT_RECLAIM)) 7282 wakeup_kcompactd(pgdat, order, highest_zoneidx); 7283 return; 7284 } 7285 7286 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order, 7287 gfp_flags); 7288 wake_up_interruptible(&pgdat->kswapd_wait); 7289 } 7290 7291 #ifdef CONFIG_HIBERNATION 7292 /* 7293 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 7294 * freed pages. 7295 * 7296 * Rather than trying to age LRUs the aim is to preserve the overall 7297 * LRU order by reclaiming preferentially 7298 * inactive > active > active referenced > active mapped 7299 */ 7300 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 7301 { 7302 struct scan_control sc = { 7303 .nr_to_reclaim = nr_to_reclaim, 7304 .gfp_mask = GFP_HIGHUSER_MOVABLE, 7305 .reclaim_idx = MAX_NR_ZONES - 1, 7306 .priority = DEF_PRIORITY, 7307 .may_writepage = 1, 7308 .may_unmap = 1, 7309 .may_swap = 1, 7310 .hibernation_mode = 1, 7311 }; 7312 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 7313 unsigned long nr_reclaimed; 7314 unsigned int noreclaim_flag; 7315 7316 fs_reclaim_acquire(sc.gfp_mask); 7317 noreclaim_flag = memalloc_noreclaim_save(); 7318 set_task_reclaim_state(current, &sc.reclaim_state); 7319 7320 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 7321 7322 set_task_reclaim_state(current, NULL); 7323 memalloc_noreclaim_restore(noreclaim_flag); 7324 fs_reclaim_release(sc.gfp_mask); 7325 7326 return nr_reclaimed; 7327 } 7328 #endif /* CONFIG_HIBERNATION */ 7329 7330 /* 7331 * This kswapd start function will be called by init and node-hot-add. 7332 */ 7333 void __meminit kswapd_run(int nid) 7334 { 7335 pg_data_t *pgdat = NODE_DATA(nid); 7336 7337 pgdat_kswapd_lock(pgdat); 7338 if (!pgdat->kswapd) { 7339 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 7340 if (IS_ERR(pgdat->kswapd)) { 7341 /* failure at boot is fatal */ 7342 pr_err("Failed to start kswapd on node %d,ret=%ld\n", 7343 nid, PTR_ERR(pgdat->kswapd)); 7344 BUG_ON(system_state < SYSTEM_RUNNING); 7345 pgdat->kswapd = NULL; 7346 } 7347 } 7348 pgdat_kswapd_unlock(pgdat); 7349 } 7350 7351 /* 7352 * Called by memory hotplug when all memory in a node is offlined. Caller must 7353 * be holding mem_hotplug_begin/done(). 7354 */ 7355 void __meminit kswapd_stop(int nid) 7356 { 7357 pg_data_t *pgdat = NODE_DATA(nid); 7358 struct task_struct *kswapd; 7359 7360 pgdat_kswapd_lock(pgdat); 7361 kswapd = pgdat->kswapd; 7362 if (kswapd) { 7363 kthread_stop(kswapd); 7364 pgdat->kswapd = NULL; 7365 } 7366 pgdat_kswapd_unlock(pgdat); 7367 } 7368 7369 static int __init kswapd_init(void) 7370 { 7371 int nid; 7372 7373 swap_setup(); 7374 for_each_node_state(nid, N_MEMORY) 7375 kswapd_run(nid); 7376 return 0; 7377 } 7378 7379 module_init(kswapd_init) 7380 7381 #ifdef CONFIG_NUMA 7382 /* 7383 * Node reclaim mode 7384 * 7385 * If non-zero call node_reclaim when the number of free pages falls below 7386 * the watermarks. 7387 */ 7388 int node_reclaim_mode __read_mostly; 7389 7390 /* 7391 * Priority for NODE_RECLAIM. This determines the fraction of pages 7392 * of a node considered for each zone_reclaim. 4 scans 1/16th of 7393 * a zone. 7394 */ 7395 #define NODE_RECLAIM_PRIORITY 4 7396 7397 /* 7398 * Percentage of pages in a zone that must be unmapped for node_reclaim to 7399 * occur. 7400 */ 7401 int sysctl_min_unmapped_ratio = 1; 7402 7403 /* 7404 * If the number of slab pages in a zone grows beyond this percentage then 7405 * slab reclaim needs to occur. 7406 */ 7407 int sysctl_min_slab_ratio = 5; 7408 7409 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat) 7410 { 7411 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED); 7412 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) + 7413 node_page_state(pgdat, NR_ACTIVE_FILE); 7414 7415 /* 7416 * It's possible for there to be more file mapped pages than 7417 * accounted for by the pages on the file LRU lists because 7418 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 7419 */ 7420 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 7421 } 7422 7423 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 7424 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat) 7425 { 7426 unsigned long nr_pagecache_reclaimable; 7427 unsigned long delta = 0; 7428 7429 /* 7430 * If RECLAIM_UNMAP is set, then all file pages are considered 7431 * potentially reclaimable. Otherwise, we have to worry about 7432 * pages like swapcache and node_unmapped_file_pages() provides 7433 * a better estimate 7434 */ 7435 if (node_reclaim_mode & RECLAIM_UNMAP) 7436 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES); 7437 else 7438 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat); 7439 7440 /* If we can't clean pages, remove dirty pages from consideration */ 7441 if (!(node_reclaim_mode & RECLAIM_WRITE)) 7442 delta += node_page_state(pgdat, NR_FILE_DIRTY); 7443 7444 /* Watch for any possible underflows due to delta */ 7445 if (unlikely(delta > nr_pagecache_reclaimable)) 7446 delta = nr_pagecache_reclaimable; 7447 7448 return nr_pagecache_reclaimable - delta; 7449 } 7450 7451 /* 7452 * Try to free up some pages from this node through reclaim. 7453 */ 7454 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 7455 { 7456 /* Minimum pages needed in order to stay on node */ 7457 const unsigned long nr_pages = 1 << order; 7458 struct task_struct *p = current; 7459 unsigned int noreclaim_flag; 7460 struct scan_control sc = { 7461 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 7462 .gfp_mask = current_gfp_context(gfp_mask), 7463 .order = order, 7464 .priority = NODE_RECLAIM_PRIORITY, 7465 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE), 7466 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP), 7467 .may_swap = 1, 7468 .reclaim_idx = gfp_zone(gfp_mask), 7469 }; 7470 unsigned long pflags; 7471 7472 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order, 7473 sc.gfp_mask); 7474 7475 cond_resched(); 7476 psi_memstall_enter(&pflags); 7477 delayacct_freepages_start(); 7478 fs_reclaim_acquire(sc.gfp_mask); 7479 /* 7480 * We need to be able to allocate from the reserves for RECLAIM_UNMAP 7481 */ 7482 noreclaim_flag = memalloc_noreclaim_save(); 7483 set_task_reclaim_state(p, &sc.reclaim_state); 7484 7485 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages || 7486 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) { 7487 /* 7488 * Free memory by calling shrink node with increasing 7489 * priorities until we have enough memory freed. 7490 */ 7491 do { 7492 shrink_node(pgdat, &sc); 7493 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 7494 } 7495 7496 set_task_reclaim_state(p, NULL); 7497 memalloc_noreclaim_restore(noreclaim_flag); 7498 fs_reclaim_release(sc.gfp_mask); 7499 psi_memstall_leave(&pflags); 7500 delayacct_freepages_end(); 7501 7502 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed); 7503 7504 return sc.nr_reclaimed >= nr_pages; 7505 } 7506 7507 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 7508 { 7509 int ret; 7510 7511 /* 7512 * Node reclaim reclaims unmapped file backed pages and 7513 * slab pages if we are over the defined limits. 7514 * 7515 * A small portion of unmapped file backed pages is needed for 7516 * file I/O otherwise pages read by file I/O will be immediately 7517 * thrown out if the node is overallocated. So we do not reclaim 7518 * if less than a specified percentage of the node is used by 7519 * unmapped file backed pages. 7520 */ 7521 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages && 7522 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <= 7523 pgdat->min_slab_pages) 7524 return NODE_RECLAIM_FULL; 7525 7526 /* 7527 * Do not scan if the allocation should not be delayed. 7528 */ 7529 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) 7530 return NODE_RECLAIM_NOSCAN; 7531 7532 /* 7533 * Only run node reclaim on the local node or on nodes that do not 7534 * have associated processors. This will favor the local processor 7535 * over remote processors and spread off node memory allocations 7536 * as wide as possible. 7537 */ 7538 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id()) 7539 return NODE_RECLAIM_NOSCAN; 7540 7541 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags)) 7542 return NODE_RECLAIM_NOSCAN; 7543 7544 ret = __node_reclaim(pgdat, gfp_mask, order); 7545 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags); 7546 7547 if (ret) 7548 count_vm_event(PGSCAN_ZONE_RECLAIM_SUCCESS); 7549 else 7550 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 7551 7552 return ret; 7553 } 7554 #endif 7555 7556 /** 7557 * check_move_unevictable_folios - Move evictable folios to appropriate zone 7558 * lru list 7559 * @fbatch: Batch of lru folios to check. 7560 * 7561 * Checks folios for evictability, if an evictable folio is in the unevictable 7562 * lru list, moves it to the appropriate evictable lru list. This function 7563 * should be only used for lru folios. 7564 */ 7565 void check_move_unevictable_folios(struct folio_batch *fbatch) 7566 { 7567 struct lruvec *lruvec = NULL; 7568 int pgscanned = 0; 7569 int pgrescued = 0; 7570 int i; 7571 7572 for (i = 0; i < fbatch->nr; i++) { 7573 struct folio *folio = fbatch->folios[i]; 7574 int nr_pages = folio_nr_pages(folio); 7575 7576 pgscanned += nr_pages; 7577 7578 /* block memcg migration while the folio moves between lrus */ 7579 if (!folio_test_clear_lru(folio)) 7580 continue; 7581 7582 lruvec = folio_lruvec_relock_irq(folio, lruvec); 7583 if (folio_evictable(folio) && folio_test_unevictable(folio)) { 7584 lruvec_del_folio(lruvec, folio); 7585 folio_clear_unevictable(folio); 7586 lruvec_add_folio(lruvec, folio); 7587 pgrescued += nr_pages; 7588 } 7589 folio_set_lru(folio); 7590 } 7591 7592 if (lruvec) { 7593 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 7594 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 7595 unlock_page_lruvec_irq(lruvec); 7596 } else if (pgscanned) { 7597 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 7598 } 7599 } 7600 EXPORT_SYMBOL_GPL(check_move_unevictable_folios); 7601