xref: /linux/mm/vmscan.c (revision de2fe5e07d58424bc286fff3fd3c1b0bf933cd58)
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13 
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/file.h>
23 #include <linux/writeback.h>
24 #include <linux/blkdev.h>
25 #include <linux/buffer_head.h>	/* for try_to_release_page(),
26 					buffer_heads_over_limit */
27 #include <linux/mm_inline.h>
28 #include <linux/pagevec.h>
29 #include <linux/backing-dev.h>
30 #include <linux/rmap.h>
31 #include <linux/topology.h>
32 #include <linux/cpu.h>
33 #include <linux/cpuset.h>
34 #include <linux/notifier.h>
35 #include <linux/rwsem.h>
36 #include <linux/delay.h>
37 
38 #include <asm/tlbflush.h>
39 #include <asm/div64.h>
40 
41 #include <linux/swapops.h>
42 
43 #include "internal.h"
44 
45 struct scan_control {
46 	/* Incremented by the number of inactive pages that were scanned */
47 	unsigned long nr_scanned;
48 
49 	unsigned long nr_mapped;	/* From page_state */
50 
51 	/* This context's GFP mask */
52 	gfp_t gfp_mask;
53 
54 	int may_writepage;
55 
56 	/* Can pages be swapped as part of reclaim? */
57 	int may_swap;
58 
59 	/* This context's SWAP_CLUSTER_MAX. If freeing memory for
60 	 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
61 	 * In this context, it doesn't matter that we scan the
62 	 * whole list at once. */
63 	int swap_cluster_max;
64 };
65 
66 /*
67  * The list of shrinker callbacks used by to apply pressure to
68  * ageable caches.
69  */
70 struct shrinker {
71 	shrinker_t		shrinker;
72 	struct list_head	list;
73 	int			seeks;	/* seeks to recreate an obj */
74 	long			nr;	/* objs pending delete */
75 };
76 
77 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
78 
79 #ifdef ARCH_HAS_PREFETCH
80 #define prefetch_prev_lru_page(_page, _base, _field)			\
81 	do {								\
82 		if ((_page)->lru.prev != _base) {			\
83 			struct page *prev;				\
84 									\
85 			prev = lru_to_page(&(_page->lru));		\
86 			prefetch(&prev->_field);			\
87 		}							\
88 	} while (0)
89 #else
90 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
91 #endif
92 
93 #ifdef ARCH_HAS_PREFETCHW
94 #define prefetchw_prev_lru_page(_page, _base, _field)			\
95 	do {								\
96 		if ((_page)->lru.prev != _base) {			\
97 			struct page *prev;				\
98 									\
99 			prev = lru_to_page(&(_page->lru));		\
100 			prefetchw(&prev->_field);			\
101 		}							\
102 	} while (0)
103 #else
104 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
105 #endif
106 
107 /*
108  * From 0 .. 100.  Higher means more swappy.
109  */
110 int vm_swappiness = 60;
111 static long total_memory;
112 
113 static LIST_HEAD(shrinker_list);
114 static DECLARE_RWSEM(shrinker_rwsem);
115 
116 /*
117  * Add a shrinker callback to be called from the vm
118  */
119 struct shrinker *set_shrinker(int seeks, shrinker_t theshrinker)
120 {
121         struct shrinker *shrinker;
122 
123         shrinker = kmalloc(sizeof(*shrinker), GFP_KERNEL);
124         if (shrinker) {
125 	        shrinker->shrinker = theshrinker;
126 	        shrinker->seeks = seeks;
127 	        shrinker->nr = 0;
128 	        down_write(&shrinker_rwsem);
129 	        list_add_tail(&shrinker->list, &shrinker_list);
130 	        up_write(&shrinker_rwsem);
131 	}
132 	return shrinker;
133 }
134 EXPORT_SYMBOL(set_shrinker);
135 
136 /*
137  * Remove one
138  */
139 void remove_shrinker(struct shrinker *shrinker)
140 {
141 	down_write(&shrinker_rwsem);
142 	list_del(&shrinker->list);
143 	up_write(&shrinker_rwsem);
144 	kfree(shrinker);
145 }
146 EXPORT_SYMBOL(remove_shrinker);
147 
148 #define SHRINK_BATCH 128
149 /*
150  * Call the shrink functions to age shrinkable caches
151  *
152  * Here we assume it costs one seek to replace a lru page and that it also
153  * takes a seek to recreate a cache object.  With this in mind we age equal
154  * percentages of the lru and ageable caches.  This should balance the seeks
155  * generated by these structures.
156  *
157  * If the vm encounted mapped pages on the LRU it increase the pressure on
158  * slab to avoid swapping.
159  *
160  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
161  *
162  * `lru_pages' represents the number of on-LRU pages in all the zones which
163  * are eligible for the caller's allocation attempt.  It is used for balancing
164  * slab reclaim versus page reclaim.
165  *
166  * Returns the number of slab objects which we shrunk.
167  */
168 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
169 			unsigned long lru_pages)
170 {
171 	struct shrinker *shrinker;
172 	unsigned long ret = 0;
173 
174 	if (scanned == 0)
175 		scanned = SWAP_CLUSTER_MAX;
176 
177 	if (!down_read_trylock(&shrinker_rwsem))
178 		return 1;	/* Assume we'll be able to shrink next time */
179 
180 	list_for_each_entry(shrinker, &shrinker_list, list) {
181 		unsigned long long delta;
182 		unsigned long total_scan;
183 		unsigned long max_pass = (*shrinker->shrinker)(0, gfp_mask);
184 
185 		delta = (4 * scanned) / shrinker->seeks;
186 		delta *= max_pass;
187 		do_div(delta, lru_pages + 1);
188 		shrinker->nr += delta;
189 		if (shrinker->nr < 0) {
190 			printk(KERN_ERR "%s: nr=%ld\n",
191 					__FUNCTION__, shrinker->nr);
192 			shrinker->nr = max_pass;
193 		}
194 
195 		/*
196 		 * Avoid risking looping forever due to too large nr value:
197 		 * never try to free more than twice the estimate number of
198 		 * freeable entries.
199 		 */
200 		if (shrinker->nr > max_pass * 2)
201 			shrinker->nr = max_pass * 2;
202 
203 		total_scan = shrinker->nr;
204 		shrinker->nr = 0;
205 
206 		while (total_scan >= SHRINK_BATCH) {
207 			long this_scan = SHRINK_BATCH;
208 			int shrink_ret;
209 			int nr_before;
210 
211 			nr_before = (*shrinker->shrinker)(0, gfp_mask);
212 			shrink_ret = (*shrinker->shrinker)(this_scan, gfp_mask);
213 			if (shrink_ret == -1)
214 				break;
215 			if (shrink_ret < nr_before)
216 				ret += nr_before - shrink_ret;
217 			mod_page_state(slabs_scanned, this_scan);
218 			total_scan -= this_scan;
219 
220 			cond_resched();
221 		}
222 
223 		shrinker->nr += total_scan;
224 	}
225 	up_read(&shrinker_rwsem);
226 	return ret;
227 }
228 
229 /* Called without lock on whether page is mapped, so answer is unstable */
230 static inline int page_mapping_inuse(struct page *page)
231 {
232 	struct address_space *mapping;
233 
234 	/* Page is in somebody's page tables. */
235 	if (page_mapped(page))
236 		return 1;
237 
238 	/* Be more reluctant to reclaim swapcache than pagecache */
239 	if (PageSwapCache(page))
240 		return 1;
241 
242 	mapping = page_mapping(page);
243 	if (!mapping)
244 		return 0;
245 
246 	/* File is mmap'd by somebody? */
247 	return mapping_mapped(mapping);
248 }
249 
250 static inline int is_page_cache_freeable(struct page *page)
251 {
252 	return page_count(page) - !!PagePrivate(page) == 2;
253 }
254 
255 static int may_write_to_queue(struct backing_dev_info *bdi)
256 {
257 	if (current->flags & PF_SWAPWRITE)
258 		return 1;
259 	if (!bdi_write_congested(bdi))
260 		return 1;
261 	if (bdi == current->backing_dev_info)
262 		return 1;
263 	return 0;
264 }
265 
266 /*
267  * We detected a synchronous write error writing a page out.  Probably
268  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
269  * fsync(), msync() or close().
270  *
271  * The tricky part is that after writepage we cannot touch the mapping: nothing
272  * prevents it from being freed up.  But we have a ref on the page and once
273  * that page is locked, the mapping is pinned.
274  *
275  * We're allowed to run sleeping lock_page() here because we know the caller has
276  * __GFP_FS.
277  */
278 static void handle_write_error(struct address_space *mapping,
279 				struct page *page, int error)
280 {
281 	lock_page(page);
282 	if (page_mapping(page) == mapping) {
283 		if (error == -ENOSPC)
284 			set_bit(AS_ENOSPC, &mapping->flags);
285 		else
286 			set_bit(AS_EIO, &mapping->flags);
287 	}
288 	unlock_page(page);
289 }
290 
291 /*
292  * pageout is called by shrink_page_list() for each dirty page.
293  * Calls ->writepage().
294  */
295 pageout_t pageout(struct page *page, struct address_space *mapping)
296 {
297 	/*
298 	 * If the page is dirty, only perform writeback if that write
299 	 * will be non-blocking.  To prevent this allocation from being
300 	 * stalled by pagecache activity.  But note that there may be
301 	 * stalls if we need to run get_block().  We could test
302 	 * PagePrivate for that.
303 	 *
304 	 * If this process is currently in generic_file_write() against
305 	 * this page's queue, we can perform writeback even if that
306 	 * will block.
307 	 *
308 	 * If the page is swapcache, write it back even if that would
309 	 * block, for some throttling. This happens by accident, because
310 	 * swap_backing_dev_info is bust: it doesn't reflect the
311 	 * congestion state of the swapdevs.  Easy to fix, if needed.
312 	 * See swapfile.c:page_queue_congested().
313 	 */
314 	if (!is_page_cache_freeable(page))
315 		return PAGE_KEEP;
316 	if (!mapping) {
317 		/*
318 		 * Some data journaling orphaned pages can have
319 		 * page->mapping == NULL while being dirty with clean buffers.
320 		 */
321 		if (PagePrivate(page)) {
322 			if (try_to_free_buffers(page)) {
323 				ClearPageDirty(page);
324 				printk("%s: orphaned page\n", __FUNCTION__);
325 				return PAGE_CLEAN;
326 			}
327 		}
328 		return PAGE_KEEP;
329 	}
330 	if (mapping->a_ops->writepage == NULL)
331 		return PAGE_ACTIVATE;
332 	if (!may_write_to_queue(mapping->backing_dev_info))
333 		return PAGE_KEEP;
334 
335 	if (clear_page_dirty_for_io(page)) {
336 		int res;
337 		struct writeback_control wbc = {
338 			.sync_mode = WB_SYNC_NONE,
339 			.nr_to_write = SWAP_CLUSTER_MAX,
340 			.nonblocking = 1,
341 			.for_reclaim = 1,
342 		};
343 
344 		SetPageReclaim(page);
345 		res = mapping->a_ops->writepage(page, &wbc);
346 		if (res < 0)
347 			handle_write_error(mapping, page, res);
348 		if (res == AOP_WRITEPAGE_ACTIVATE) {
349 			ClearPageReclaim(page);
350 			return PAGE_ACTIVATE;
351 		}
352 		if (!PageWriteback(page)) {
353 			/* synchronous write or broken a_ops? */
354 			ClearPageReclaim(page);
355 		}
356 
357 		return PAGE_SUCCESS;
358 	}
359 
360 	return PAGE_CLEAN;
361 }
362 
363 int remove_mapping(struct address_space *mapping, struct page *page)
364 {
365 	if (!mapping)
366 		return 0;		/* truncate got there first */
367 
368 	write_lock_irq(&mapping->tree_lock);
369 
370 	/*
371 	 * The non-racy check for busy page.  It is critical to check
372 	 * PageDirty _after_ making sure that the page is freeable and
373 	 * not in use by anybody. 	(pagecache + us == 2)
374 	 */
375 	if (unlikely(page_count(page) != 2))
376 		goto cannot_free;
377 	smp_rmb();
378 	if (unlikely(PageDirty(page)))
379 		goto cannot_free;
380 
381 	if (PageSwapCache(page)) {
382 		swp_entry_t swap = { .val = page_private(page) };
383 		__delete_from_swap_cache(page);
384 		write_unlock_irq(&mapping->tree_lock);
385 		swap_free(swap);
386 		__put_page(page);	/* The pagecache ref */
387 		return 1;
388 	}
389 
390 	__remove_from_page_cache(page);
391 	write_unlock_irq(&mapping->tree_lock);
392 	__put_page(page);
393 	return 1;
394 
395 cannot_free:
396 	write_unlock_irq(&mapping->tree_lock);
397 	return 0;
398 }
399 
400 /*
401  * shrink_page_list() returns the number of reclaimed pages
402  */
403 static unsigned long shrink_page_list(struct list_head *page_list,
404 					struct scan_control *sc)
405 {
406 	LIST_HEAD(ret_pages);
407 	struct pagevec freed_pvec;
408 	int pgactivate = 0;
409 	unsigned long nr_reclaimed = 0;
410 
411 	cond_resched();
412 
413 	pagevec_init(&freed_pvec, 1);
414 	while (!list_empty(page_list)) {
415 		struct address_space *mapping;
416 		struct page *page;
417 		int may_enter_fs;
418 		int referenced;
419 
420 		cond_resched();
421 
422 		page = lru_to_page(page_list);
423 		list_del(&page->lru);
424 
425 		if (TestSetPageLocked(page))
426 			goto keep;
427 
428 		BUG_ON(PageActive(page));
429 
430 		sc->nr_scanned++;
431 
432 		if (!sc->may_swap && page_mapped(page))
433 			goto keep_locked;
434 
435 		/* Double the slab pressure for mapped and swapcache pages */
436 		if (page_mapped(page) || PageSwapCache(page))
437 			sc->nr_scanned++;
438 
439 		if (PageWriteback(page))
440 			goto keep_locked;
441 
442 		referenced = page_referenced(page, 1);
443 		/* In active use or really unfreeable?  Activate it. */
444 		if (referenced && page_mapping_inuse(page))
445 			goto activate_locked;
446 
447 #ifdef CONFIG_SWAP
448 		/*
449 		 * Anonymous process memory has backing store?
450 		 * Try to allocate it some swap space here.
451 		 */
452 		if (PageAnon(page) && !PageSwapCache(page))
453 			if (!add_to_swap(page, GFP_ATOMIC))
454 				goto activate_locked;
455 #endif /* CONFIG_SWAP */
456 
457 		mapping = page_mapping(page);
458 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
459 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
460 
461 		/*
462 		 * The page is mapped into the page tables of one or more
463 		 * processes. Try to unmap it here.
464 		 */
465 		if (page_mapped(page) && mapping) {
466 			switch (try_to_unmap(page, 0)) {
467 			case SWAP_FAIL:
468 				goto activate_locked;
469 			case SWAP_AGAIN:
470 				goto keep_locked;
471 			case SWAP_SUCCESS:
472 				; /* try to free the page below */
473 			}
474 		}
475 
476 		if (PageDirty(page)) {
477 			if (referenced)
478 				goto keep_locked;
479 			if (!may_enter_fs)
480 				goto keep_locked;
481 			if (!sc->may_writepage)
482 				goto keep_locked;
483 
484 			/* Page is dirty, try to write it out here */
485 			switch(pageout(page, mapping)) {
486 			case PAGE_KEEP:
487 				goto keep_locked;
488 			case PAGE_ACTIVATE:
489 				goto activate_locked;
490 			case PAGE_SUCCESS:
491 				if (PageWriteback(page) || PageDirty(page))
492 					goto keep;
493 				/*
494 				 * A synchronous write - probably a ramdisk.  Go
495 				 * ahead and try to reclaim the page.
496 				 */
497 				if (TestSetPageLocked(page))
498 					goto keep;
499 				if (PageDirty(page) || PageWriteback(page))
500 					goto keep_locked;
501 				mapping = page_mapping(page);
502 			case PAGE_CLEAN:
503 				; /* try to free the page below */
504 			}
505 		}
506 
507 		/*
508 		 * If the page has buffers, try to free the buffer mappings
509 		 * associated with this page. If we succeed we try to free
510 		 * the page as well.
511 		 *
512 		 * We do this even if the page is PageDirty().
513 		 * try_to_release_page() does not perform I/O, but it is
514 		 * possible for a page to have PageDirty set, but it is actually
515 		 * clean (all its buffers are clean).  This happens if the
516 		 * buffers were written out directly, with submit_bh(). ext3
517 		 * will do this, as well as the blockdev mapping.
518 		 * try_to_release_page() will discover that cleanness and will
519 		 * drop the buffers and mark the page clean - it can be freed.
520 		 *
521 		 * Rarely, pages can have buffers and no ->mapping.  These are
522 		 * the pages which were not successfully invalidated in
523 		 * truncate_complete_page().  We try to drop those buffers here
524 		 * and if that worked, and the page is no longer mapped into
525 		 * process address space (page_count == 1) it can be freed.
526 		 * Otherwise, leave the page on the LRU so it is swappable.
527 		 */
528 		if (PagePrivate(page)) {
529 			if (!try_to_release_page(page, sc->gfp_mask))
530 				goto activate_locked;
531 			if (!mapping && page_count(page) == 1)
532 				goto free_it;
533 		}
534 
535 		if (!remove_mapping(mapping, page))
536 			goto keep_locked;
537 
538 free_it:
539 		unlock_page(page);
540 		nr_reclaimed++;
541 		if (!pagevec_add(&freed_pvec, page))
542 			__pagevec_release_nonlru(&freed_pvec);
543 		continue;
544 
545 activate_locked:
546 		SetPageActive(page);
547 		pgactivate++;
548 keep_locked:
549 		unlock_page(page);
550 keep:
551 		list_add(&page->lru, &ret_pages);
552 		BUG_ON(PageLRU(page));
553 	}
554 	list_splice(&ret_pages, page_list);
555 	if (pagevec_count(&freed_pvec))
556 		__pagevec_release_nonlru(&freed_pvec);
557 	mod_page_state(pgactivate, pgactivate);
558 	return nr_reclaimed;
559 }
560 
561 /*
562  * zone->lru_lock is heavily contended.  Some of the functions that
563  * shrink the lists perform better by taking out a batch of pages
564  * and working on them outside the LRU lock.
565  *
566  * For pagecache intensive workloads, this function is the hottest
567  * spot in the kernel (apart from copy_*_user functions).
568  *
569  * Appropriate locks must be held before calling this function.
570  *
571  * @nr_to_scan:	The number of pages to look through on the list.
572  * @src:	The LRU list to pull pages off.
573  * @dst:	The temp list to put pages on to.
574  * @scanned:	The number of pages that were scanned.
575  *
576  * returns how many pages were moved onto *@dst.
577  */
578 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
579 		struct list_head *src, struct list_head *dst,
580 		unsigned long *scanned)
581 {
582 	unsigned long nr_taken = 0;
583 	struct page *page;
584 	unsigned long scan;
585 
586 	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
587 		struct list_head *target;
588 		page = lru_to_page(src);
589 		prefetchw_prev_lru_page(page, src, flags);
590 
591 		BUG_ON(!PageLRU(page));
592 
593 		list_del(&page->lru);
594 		target = src;
595 		if (likely(get_page_unless_zero(page))) {
596 			/*
597 			 * Be careful not to clear PageLRU until after we're
598 			 * sure the page is not being freed elsewhere -- the
599 			 * page release code relies on it.
600 			 */
601 			ClearPageLRU(page);
602 			target = dst;
603 			nr_taken++;
604 		} /* else it is being freed elsewhere */
605 
606 		list_add(&page->lru, target);
607 	}
608 
609 	*scanned = scan;
610 	return nr_taken;
611 }
612 
613 /*
614  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
615  * of reclaimed pages
616  */
617 static unsigned long shrink_inactive_list(unsigned long max_scan,
618 				struct zone *zone, struct scan_control *sc)
619 {
620 	LIST_HEAD(page_list);
621 	struct pagevec pvec;
622 	unsigned long nr_scanned = 0;
623 	unsigned long nr_reclaimed = 0;
624 
625 	pagevec_init(&pvec, 1);
626 
627 	lru_add_drain();
628 	spin_lock_irq(&zone->lru_lock);
629 	do {
630 		struct page *page;
631 		unsigned long nr_taken;
632 		unsigned long nr_scan;
633 		unsigned long nr_freed;
634 
635 		nr_taken = isolate_lru_pages(sc->swap_cluster_max,
636 					     &zone->inactive_list,
637 					     &page_list, &nr_scan);
638 		zone->nr_inactive -= nr_taken;
639 		zone->pages_scanned += nr_scan;
640 		spin_unlock_irq(&zone->lru_lock);
641 
642 		nr_scanned += nr_scan;
643 		nr_freed = shrink_page_list(&page_list, sc);
644 		nr_reclaimed += nr_freed;
645 		local_irq_disable();
646 		if (current_is_kswapd()) {
647 			__mod_page_state_zone(zone, pgscan_kswapd, nr_scan);
648 			__mod_page_state(kswapd_steal, nr_freed);
649 		} else
650 			__mod_page_state_zone(zone, pgscan_direct, nr_scan);
651 		__mod_page_state_zone(zone, pgsteal, nr_freed);
652 
653 		if (nr_taken == 0)
654 			goto done;
655 
656 		spin_lock(&zone->lru_lock);
657 		/*
658 		 * Put back any unfreeable pages.
659 		 */
660 		while (!list_empty(&page_list)) {
661 			page = lru_to_page(&page_list);
662 			BUG_ON(PageLRU(page));
663 			SetPageLRU(page);
664 			list_del(&page->lru);
665 			if (PageActive(page))
666 				add_page_to_active_list(zone, page);
667 			else
668 				add_page_to_inactive_list(zone, page);
669 			if (!pagevec_add(&pvec, page)) {
670 				spin_unlock_irq(&zone->lru_lock);
671 				__pagevec_release(&pvec);
672 				spin_lock_irq(&zone->lru_lock);
673 			}
674 		}
675   	} while (nr_scanned < max_scan);
676 	spin_unlock(&zone->lru_lock);
677 done:
678 	local_irq_enable();
679 	pagevec_release(&pvec);
680 	return nr_reclaimed;
681 }
682 
683 /*
684  * This moves pages from the active list to the inactive list.
685  *
686  * We move them the other way if the page is referenced by one or more
687  * processes, from rmap.
688  *
689  * If the pages are mostly unmapped, the processing is fast and it is
690  * appropriate to hold zone->lru_lock across the whole operation.  But if
691  * the pages are mapped, the processing is slow (page_referenced()) so we
692  * should drop zone->lru_lock around each page.  It's impossible to balance
693  * this, so instead we remove the pages from the LRU while processing them.
694  * It is safe to rely on PG_active against the non-LRU pages in here because
695  * nobody will play with that bit on a non-LRU page.
696  *
697  * The downside is that we have to touch page->_count against each page.
698  * But we had to alter page->flags anyway.
699  */
700 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
701 				struct scan_control *sc)
702 {
703 	unsigned long pgmoved;
704 	int pgdeactivate = 0;
705 	unsigned long pgscanned;
706 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
707 	LIST_HEAD(l_inactive);	/* Pages to go onto the inactive_list */
708 	LIST_HEAD(l_active);	/* Pages to go onto the active_list */
709 	struct page *page;
710 	struct pagevec pvec;
711 	int reclaim_mapped = 0;
712 
713 	if (sc->may_swap) {
714 		long mapped_ratio;
715 		long distress;
716 		long swap_tendency;
717 
718 		/*
719 		 * `distress' is a measure of how much trouble we're having
720 		 * reclaiming pages.  0 -> no problems.  100 -> great trouble.
721 		 */
722 		distress = 100 >> zone->prev_priority;
723 
724 		/*
725 		 * The point of this algorithm is to decide when to start
726 		 * reclaiming mapped memory instead of just pagecache.  Work out
727 		 * how much memory
728 		 * is mapped.
729 		 */
730 		mapped_ratio = (sc->nr_mapped * 100) / total_memory;
731 
732 		/*
733 		 * Now decide how much we really want to unmap some pages.  The
734 		 * mapped ratio is downgraded - just because there's a lot of
735 		 * mapped memory doesn't necessarily mean that page reclaim
736 		 * isn't succeeding.
737 		 *
738 		 * The distress ratio is important - we don't want to start
739 		 * going oom.
740 		 *
741 		 * A 100% value of vm_swappiness overrides this algorithm
742 		 * altogether.
743 		 */
744 		swap_tendency = mapped_ratio / 2 + distress + vm_swappiness;
745 
746 		/*
747 		 * Now use this metric to decide whether to start moving mapped
748 		 * memory onto the inactive list.
749 		 */
750 		if (swap_tendency >= 100)
751 			reclaim_mapped = 1;
752 	}
753 
754 	lru_add_drain();
755 	spin_lock_irq(&zone->lru_lock);
756 	pgmoved = isolate_lru_pages(nr_pages, &zone->active_list,
757 				    &l_hold, &pgscanned);
758 	zone->pages_scanned += pgscanned;
759 	zone->nr_active -= pgmoved;
760 	spin_unlock_irq(&zone->lru_lock);
761 
762 	while (!list_empty(&l_hold)) {
763 		cond_resched();
764 		page = lru_to_page(&l_hold);
765 		list_del(&page->lru);
766 		if (page_mapped(page)) {
767 			if (!reclaim_mapped ||
768 			    (total_swap_pages == 0 && PageAnon(page)) ||
769 			    page_referenced(page, 0)) {
770 				list_add(&page->lru, &l_active);
771 				continue;
772 			}
773 		}
774 		list_add(&page->lru, &l_inactive);
775 	}
776 
777 	pagevec_init(&pvec, 1);
778 	pgmoved = 0;
779 	spin_lock_irq(&zone->lru_lock);
780 	while (!list_empty(&l_inactive)) {
781 		page = lru_to_page(&l_inactive);
782 		prefetchw_prev_lru_page(page, &l_inactive, flags);
783 		BUG_ON(PageLRU(page));
784 		SetPageLRU(page);
785 		BUG_ON(!PageActive(page));
786 		ClearPageActive(page);
787 
788 		list_move(&page->lru, &zone->inactive_list);
789 		pgmoved++;
790 		if (!pagevec_add(&pvec, page)) {
791 			zone->nr_inactive += pgmoved;
792 			spin_unlock_irq(&zone->lru_lock);
793 			pgdeactivate += pgmoved;
794 			pgmoved = 0;
795 			if (buffer_heads_over_limit)
796 				pagevec_strip(&pvec);
797 			__pagevec_release(&pvec);
798 			spin_lock_irq(&zone->lru_lock);
799 		}
800 	}
801 	zone->nr_inactive += pgmoved;
802 	pgdeactivate += pgmoved;
803 	if (buffer_heads_over_limit) {
804 		spin_unlock_irq(&zone->lru_lock);
805 		pagevec_strip(&pvec);
806 		spin_lock_irq(&zone->lru_lock);
807 	}
808 
809 	pgmoved = 0;
810 	while (!list_empty(&l_active)) {
811 		page = lru_to_page(&l_active);
812 		prefetchw_prev_lru_page(page, &l_active, flags);
813 		BUG_ON(PageLRU(page));
814 		SetPageLRU(page);
815 		BUG_ON(!PageActive(page));
816 		list_move(&page->lru, &zone->active_list);
817 		pgmoved++;
818 		if (!pagevec_add(&pvec, page)) {
819 			zone->nr_active += pgmoved;
820 			pgmoved = 0;
821 			spin_unlock_irq(&zone->lru_lock);
822 			__pagevec_release(&pvec);
823 			spin_lock_irq(&zone->lru_lock);
824 		}
825 	}
826 	zone->nr_active += pgmoved;
827 	spin_unlock(&zone->lru_lock);
828 
829 	__mod_page_state_zone(zone, pgrefill, pgscanned);
830 	__mod_page_state(pgdeactivate, pgdeactivate);
831 	local_irq_enable();
832 
833 	pagevec_release(&pvec);
834 }
835 
836 /*
837  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
838  */
839 static unsigned long shrink_zone(int priority, struct zone *zone,
840 				struct scan_control *sc)
841 {
842 	unsigned long nr_active;
843 	unsigned long nr_inactive;
844 	unsigned long nr_to_scan;
845 	unsigned long nr_reclaimed = 0;
846 
847 	atomic_inc(&zone->reclaim_in_progress);
848 
849 	/*
850 	 * Add one to `nr_to_scan' just to make sure that the kernel will
851 	 * slowly sift through the active list.
852 	 */
853 	zone->nr_scan_active += (zone->nr_active >> priority) + 1;
854 	nr_active = zone->nr_scan_active;
855 	if (nr_active >= sc->swap_cluster_max)
856 		zone->nr_scan_active = 0;
857 	else
858 		nr_active = 0;
859 
860 	zone->nr_scan_inactive += (zone->nr_inactive >> priority) + 1;
861 	nr_inactive = zone->nr_scan_inactive;
862 	if (nr_inactive >= sc->swap_cluster_max)
863 		zone->nr_scan_inactive = 0;
864 	else
865 		nr_inactive = 0;
866 
867 	while (nr_active || nr_inactive) {
868 		if (nr_active) {
869 			nr_to_scan = min(nr_active,
870 					(unsigned long)sc->swap_cluster_max);
871 			nr_active -= nr_to_scan;
872 			shrink_active_list(nr_to_scan, zone, sc);
873 		}
874 
875 		if (nr_inactive) {
876 			nr_to_scan = min(nr_inactive,
877 					(unsigned long)sc->swap_cluster_max);
878 			nr_inactive -= nr_to_scan;
879 			nr_reclaimed += shrink_inactive_list(nr_to_scan, zone,
880 								sc);
881 		}
882 	}
883 
884 	throttle_vm_writeout();
885 
886 	atomic_dec(&zone->reclaim_in_progress);
887 	return nr_reclaimed;
888 }
889 
890 /*
891  * This is the direct reclaim path, for page-allocating processes.  We only
892  * try to reclaim pages from zones which will satisfy the caller's allocation
893  * request.
894  *
895  * We reclaim from a zone even if that zone is over pages_high.  Because:
896  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
897  *    allocation or
898  * b) The zones may be over pages_high but they must go *over* pages_high to
899  *    satisfy the `incremental min' zone defense algorithm.
900  *
901  * Returns the number of reclaimed pages.
902  *
903  * If a zone is deemed to be full of pinned pages then just give it a light
904  * scan then give up on it.
905  */
906 static unsigned long shrink_zones(int priority, struct zone **zones,
907 					struct scan_control *sc)
908 {
909 	unsigned long nr_reclaimed = 0;
910 	int i;
911 
912 	for (i = 0; zones[i] != NULL; i++) {
913 		struct zone *zone = zones[i];
914 
915 		if (!populated_zone(zone))
916 			continue;
917 
918 		if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
919 			continue;
920 
921 		zone->temp_priority = priority;
922 		if (zone->prev_priority > priority)
923 			zone->prev_priority = priority;
924 
925 		if (zone->all_unreclaimable && priority != DEF_PRIORITY)
926 			continue;	/* Let kswapd poll it */
927 
928 		nr_reclaimed += shrink_zone(priority, zone, sc);
929 	}
930 	return nr_reclaimed;
931 }
932 
933 /*
934  * This is the main entry point to direct page reclaim.
935  *
936  * If a full scan of the inactive list fails to free enough memory then we
937  * are "out of memory" and something needs to be killed.
938  *
939  * If the caller is !__GFP_FS then the probability of a failure is reasonably
940  * high - the zone may be full of dirty or under-writeback pages, which this
941  * caller can't do much about.  We kick pdflush and take explicit naps in the
942  * hope that some of these pages can be written.  But if the allocating task
943  * holds filesystem locks which prevent writeout this might not work, and the
944  * allocation attempt will fail.
945  */
946 unsigned long try_to_free_pages(struct zone **zones, gfp_t gfp_mask)
947 {
948 	int priority;
949 	int ret = 0;
950 	unsigned long total_scanned = 0;
951 	unsigned long nr_reclaimed = 0;
952 	struct reclaim_state *reclaim_state = current->reclaim_state;
953 	unsigned long lru_pages = 0;
954 	int i;
955 	struct scan_control sc = {
956 		.gfp_mask = gfp_mask,
957 		.may_writepage = !laptop_mode,
958 		.swap_cluster_max = SWAP_CLUSTER_MAX,
959 		.may_swap = 1,
960 	};
961 
962 	inc_page_state(allocstall);
963 
964 	for (i = 0; zones[i] != NULL; i++) {
965 		struct zone *zone = zones[i];
966 
967 		if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
968 			continue;
969 
970 		zone->temp_priority = DEF_PRIORITY;
971 		lru_pages += zone->nr_active + zone->nr_inactive;
972 	}
973 
974 	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
975 		sc.nr_mapped = read_page_state(nr_mapped);
976 		sc.nr_scanned = 0;
977 		if (!priority)
978 			disable_swap_token();
979 		nr_reclaimed += shrink_zones(priority, zones, &sc);
980 		shrink_slab(sc.nr_scanned, gfp_mask, lru_pages);
981 		if (reclaim_state) {
982 			nr_reclaimed += reclaim_state->reclaimed_slab;
983 			reclaim_state->reclaimed_slab = 0;
984 		}
985 		total_scanned += sc.nr_scanned;
986 		if (nr_reclaimed >= sc.swap_cluster_max) {
987 			ret = 1;
988 			goto out;
989 		}
990 
991 		/*
992 		 * Try to write back as many pages as we just scanned.  This
993 		 * tends to cause slow streaming writers to write data to the
994 		 * disk smoothly, at the dirtying rate, which is nice.   But
995 		 * that's undesirable in laptop mode, where we *want* lumpy
996 		 * writeout.  So in laptop mode, write out the whole world.
997 		 */
998 		if (total_scanned > sc.swap_cluster_max +
999 					sc.swap_cluster_max / 2) {
1000 			wakeup_pdflush(laptop_mode ? 0 : total_scanned);
1001 			sc.may_writepage = 1;
1002 		}
1003 
1004 		/* Take a nap, wait for some writeback to complete */
1005 		if (sc.nr_scanned && priority < DEF_PRIORITY - 2)
1006 			blk_congestion_wait(WRITE, HZ/10);
1007 	}
1008 out:
1009 	for (i = 0; zones[i] != 0; i++) {
1010 		struct zone *zone = zones[i];
1011 
1012 		if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
1013 			continue;
1014 
1015 		zone->prev_priority = zone->temp_priority;
1016 	}
1017 	return ret;
1018 }
1019 
1020 /*
1021  * For kswapd, balance_pgdat() will work across all this node's zones until
1022  * they are all at pages_high.
1023  *
1024  * If `nr_pages' is non-zero then it is the number of pages which are to be
1025  * reclaimed, regardless of the zone occupancies.  This is a software suspend
1026  * special.
1027  *
1028  * Returns the number of pages which were actually freed.
1029  *
1030  * There is special handling here for zones which are full of pinned pages.
1031  * This can happen if the pages are all mlocked, or if they are all used by
1032  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
1033  * What we do is to detect the case where all pages in the zone have been
1034  * scanned twice and there has been zero successful reclaim.  Mark the zone as
1035  * dead and from now on, only perform a short scan.  Basically we're polling
1036  * the zone for when the problem goes away.
1037  *
1038  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
1039  * zones which have free_pages > pages_high, but once a zone is found to have
1040  * free_pages <= pages_high, we scan that zone and the lower zones regardless
1041  * of the number of free pages in the lower zones.  This interoperates with
1042  * the page allocator fallback scheme to ensure that aging of pages is balanced
1043  * across the zones.
1044  */
1045 static unsigned long balance_pgdat(pg_data_t *pgdat, unsigned long nr_pages,
1046 				int order)
1047 {
1048 	unsigned long to_free = nr_pages;
1049 	int all_zones_ok;
1050 	int priority;
1051 	int i;
1052 	unsigned long total_scanned;
1053 	unsigned long nr_reclaimed;
1054 	struct reclaim_state *reclaim_state = current->reclaim_state;
1055 	struct scan_control sc = {
1056 		.gfp_mask = GFP_KERNEL,
1057 		.may_swap = 1,
1058 		.swap_cluster_max = nr_pages ? nr_pages : SWAP_CLUSTER_MAX,
1059 	};
1060 
1061 loop_again:
1062 	total_scanned = 0;
1063 	nr_reclaimed = 0;
1064 	sc.may_writepage = !laptop_mode,
1065 	sc.nr_mapped = read_page_state(nr_mapped);
1066 
1067 	inc_page_state(pageoutrun);
1068 
1069 	for (i = 0; i < pgdat->nr_zones; i++) {
1070 		struct zone *zone = pgdat->node_zones + i;
1071 
1072 		zone->temp_priority = DEF_PRIORITY;
1073 	}
1074 
1075 	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1076 		int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
1077 		unsigned long lru_pages = 0;
1078 
1079 		/* The swap token gets in the way of swapout... */
1080 		if (!priority)
1081 			disable_swap_token();
1082 
1083 		all_zones_ok = 1;
1084 
1085 		if (nr_pages == 0) {
1086 			/*
1087 			 * Scan in the highmem->dma direction for the highest
1088 			 * zone which needs scanning
1089 			 */
1090 			for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1091 				struct zone *zone = pgdat->node_zones + i;
1092 
1093 				if (!populated_zone(zone))
1094 					continue;
1095 
1096 				if (zone->all_unreclaimable &&
1097 						priority != DEF_PRIORITY)
1098 					continue;
1099 
1100 				if (!zone_watermark_ok(zone, order,
1101 						zone->pages_high, 0, 0)) {
1102 					end_zone = i;
1103 					goto scan;
1104 				}
1105 			}
1106 			goto out;
1107 		} else {
1108 			end_zone = pgdat->nr_zones - 1;
1109 		}
1110 scan:
1111 		for (i = 0; i <= end_zone; i++) {
1112 			struct zone *zone = pgdat->node_zones + i;
1113 
1114 			lru_pages += zone->nr_active + zone->nr_inactive;
1115 		}
1116 
1117 		/*
1118 		 * Now scan the zone in the dma->highmem direction, stopping
1119 		 * at the last zone which needs scanning.
1120 		 *
1121 		 * We do this because the page allocator works in the opposite
1122 		 * direction.  This prevents the page allocator from allocating
1123 		 * pages behind kswapd's direction of progress, which would
1124 		 * cause too much scanning of the lower zones.
1125 		 */
1126 		for (i = 0; i <= end_zone; i++) {
1127 			struct zone *zone = pgdat->node_zones + i;
1128 			int nr_slab;
1129 
1130 			if (!populated_zone(zone))
1131 				continue;
1132 
1133 			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1134 				continue;
1135 
1136 			if (nr_pages == 0) {	/* Not software suspend */
1137 				if (!zone_watermark_ok(zone, order,
1138 						zone->pages_high, end_zone, 0))
1139 					all_zones_ok = 0;
1140 			}
1141 			zone->temp_priority = priority;
1142 			if (zone->prev_priority > priority)
1143 				zone->prev_priority = priority;
1144 			sc.nr_scanned = 0;
1145 			nr_reclaimed += shrink_zone(priority, zone, &sc);
1146 			reclaim_state->reclaimed_slab = 0;
1147 			nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
1148 						lru_pages);
1149 			nr_reclaimed += reclaim_state->reclaimed_slab;
1150 			total_scanned += sc.nr_scanned;
1151 			if (zone->all_unreclaimable)
1152 				continue;
1153 			if (nr_slab == 0 && zone->pages_scanned >=
1154 				    (zone->nr_active + zone->nr_inactive) * 4)
1155 				zone->all_unreclaimable = 1;
1156 			/*
1157 			 * If we've done a decent amount of scanning and
1158 			 * the reclaim ratio is low, start doing writepage
1159 			 * even in laptop mode
1160 			 */
1161 			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
1162 			    total_scanned > nr_reclaimed + nr_reclaimed / 2)
1163 				sc.may_writepage = 1;
1164 		}
1165 		if (nr_pages && to_free > nr_reclaimed)
1166 			continue;	/* swsusp: need to do more work */
1167 		if (all_zones_ok)
1168 			break;		/* kswapd: all done */
1169 		/*
1170 		 * OK, kswapd is getting into trouble.  Take a nap, then take
1171 		 * another pass across the zones.
1172 		 */
1173 		if (total_scanned && priority < DEF_PRIORITY - 2)
1174 			blk_congestion_wait(WRITE, HZ/10);
1175 
1176 		/*
1177 		 * We do this so kswapd doesn't build up large priorities for
1178 		 * example when it is freeing in parallel with allocators. It
1179 		 * matches the direct reclaim path behaviour in terms of impact
1180 		 * on zone->*_priority.
1181 		 */
1182 		if ((nr_reclaimed >= SWAP_CLUSTER_MAX) && !nr_pages)
1183 			break;
1184 	}
1185 out:
1186 	for (i = 0; i < pgdat->nr_zones; i++) {
1187 		struct zone *zone = pgdat->node_zones + i;
1188 
1189 		zone->prev_priority = zone->temp_priority;
1190 	}
1191 	if (!all_zones_ok) {
1192 		cond_resched();
1193 		goto loop_again;
1194 	}
1195 
1196 	return nr_reclaimed;
1197 }
1198 
1199 /*
1200  * The background pageout daemon, started as a kernel thread
1201  * from the init process.
1202  *
1203  * This basically trickles out pages so that we have _some_
1204  * free memory available even if there is no other activity
1205  * that frees anything up. This is needed for things like routing
1206  * etc, where we otherwise might have all activity going on in
1207  * asynchronous contexts that cannot page things out.
1208  *
1209  * If there are applications that are active memory-allocators
1210  * (most normal use), this basically shouldn't matter.
1211  */
1212 static int kswapd(void *p)
1213 {
1214 	unsigned long order;
1215 	pg_data_t *pgdat = (pg_data_t*)p;
1216 	struct task_struct *tsk = current;
1217 	DEFINE_WAIT(wait);
1218 	struct reclaim_state reclaim_state = {
1219 		.reclaimed_slab = 0,
1220 	};
1221 	cpumask_t cpumask;
1222 
1223 	daemonize("kswapd%d", pgdat->node_id);
1224 	cpumask = node_to_cpumask(pgdat->node_id);
1225 	if (!cpus_empty(cpumask))
1226 		set_cpus_allowed(tsk, cpumask);
1227 	current->reclaim_state = &reclaim_state;
1228 
1229 	/*
1230 	 * Tell the memory management that we're a "memory allocator",
1231 	 * and that if we need more memory we should get access to it
1232 	 * regardless (see "__alloc_pages()"). "kswapd" should
1233 	 * never get caught in the normal page freeing logic.
1234 	 *
1235 	 * (Kswapd normally doesn't need memory anyway, but sometimes
1236 	 * you need a small amount of memory in order to be able to
1237 	 * page out something else, and this flag essentially protects
1238 	 * us from recursively trying to free more memory as we're
1239 	 * trying to free the first piece of memory in the first place).
1240 	 */
1241 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
1242 
1243 	order = 0;
1244 	for ( ; ; ) {
1245 		unsigned long new_order;
1246 
1247 		try_to_freeze();
1248 
1249 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
1250 		new_order = pgdat->kswapd_max_order;
1251 		pgdat->kswapd_max_order = 0;
1252 		if (order < new_order) {
1253 			/*
1254 			 * Don't sleep if someone wants a larger 'order'
1255 			 * allocation
1256 			 */
1257 			order = new_order;
1258 		} else {
1259 			schedule();
1260 			order = pgdat->kswapd_max_order;
1261 		}
1262 		finish_wait(&pgdat->kswapd_wait, &wait);
1263 
1264 		balance_pgdat(pgdat, 0, order);
1265 	}
1266 	return 0;
1267 }
1268 
1269 /*
1270  * A zone is low on free memory, so wake its kswapd task to service it.
1271  */
1272 void wakeup_kswapd(struct zone *zone, int order)
1273 {
1274 	pg_data_t *pgdat;
1275 
1276 	if (!populated_zone(zone))
1277 		return;
1278 
1279 	pgdat = zone->zone_pgdat;
1280 	if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0))
1281 		return;
1282 	if (pgdat->kswapd_max_order < order)
1283 		pgdat->kswapd_max_order = order;
1284 	if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
1285 		return;
1286 	if (!waitqueue_active(&pgdat->kswapd_wait))
1287 		return;
1288 	wake_up_interruptible(&pgdat->kswapd_wait);
1289 }
1290 
1291 #ifdef CONFIG_PM
1292 /*
1293  * Try to free `nr_pages' of memory, system-wide.  Returns the number of freed
1294  * pages.
1295  */
1296 unsigned long shrink_all_memory(unsigned long nr_pages)
1297 {
1298 	pg_data_t *pgdat;
1299 	unsigned long nr_to_free = nr_pages;
1300 	unsigned long ret = 0;
1301 	unsigned retry = 2;
1302 	struct reclaim_state reclaim_state = {
1303 		.reclaimed_slab = 0,
1304 	};
1305 
1306 	current->reclaim_state = &reclaim_state;
1307 repeat:
1308 	for_each_online_pgdat(pgdat) {
1309 		unsigned long freed;
1310 
1311 		freed = balance_pgdat(pgdat, nr_to_free, 0);
1312 		ret += freed;
1313 		nr_to_free -= freed;
1314 		if ((long)nr_to_free <= 0)
1315 			break;
1316 	}
1317 	if (retry-- && ret < nr_pages) {
1318 		blk_congestion_wait(WRITE, HZ/5);
1319 		goto repeat;
1320 	}
1321 	current->reclaim_state = NULL;
1322 	return ret;
1323 }
1324 #endif
1325 
1326 #ifdef CONFIG_HOTPLUG_CPU
1327 /* It's optimal to keep kswapds on the same CPUs as their memory, but
1328    not required for correctness.  So if the last cpu in a node goes
1329    away, we get changed to run anywhere: as the first one comes back,
1330    restore their cpu bindings. */
1331 static int __devinit cpu_callback(struct notifier_block *nfb,
1332 				  unsigned long action, void *hcpu)
1333 {
1334 	pg_data_t *pgdat;
1335 	cpumask_t mask;
1336 
1337 	if (action == CPU_ONLINE) {
1338 		for_each_online_pgdat(pgdat) {
1339 			mask = node_to_cpumask(pgdat->node_id);
1340 			if (any_online_cpu(mask) != NR_CPUS)
1341 				/* One of our CPUs online: restore mask */
1342 				set_cpus_allowed(pgdat->kswapd, mask);
1343 		}
1344 	}
1345 	return NOTIFY_OK;
1346 }
1347 #endif /* CONFIG_HOTPLUG_CPU */
1348 
1349 static int __init kswapd_init(void)
1350 {
1351 	pg_data_t *pgdat;
1352 
1353 	swap_setup();
1354 	for_each_online_pgdat(pgdat) {
1355 		pid_t pid;
1356 
1357 		pid = kernel_thread(kswapd, pgdat, CLONE_KERNEL);
1358 		BUG_ON(pid < 0);
1359 		read_lock(&tasklist_lock);
1360 		pgdat->kswapd = find_task_by_pid(pid);
1361 		read_unlock(&tasklist_lock);
1362 	}
1363 	total_memory = nr_free_pagecache_pages();
1364 	hotcpu_notifier(cpu_callback, 0);
1365 	return 0;
1366 }
1367 
1368 module_init(kswapd_init)
1369 
1370 #ifdef CONFIG_NUMA
1371 /*
1372  * Zone reclaim mode
1373  *
1374  * If non-zero call zone_reclaim when the number of free pages falls below
1375  * the watermarks.
1376  *
1377  * In the future we may add flags to the mode. However, the page allocator
1378  * should only have to check that zone_reclaim_mode != 0 before calling
1379  * zone_reclaim().
1380  */
1381 int zone_reclaim_mode __read_mostly;
1382 
1383 #define RECLAIM_OFF 0
1384 #define RECLAIM_ZONE (1<<0)	/* Run shrink_cache on the zone */
1385 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
1386 #define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
1387 #define RECLAIM_SLAB (1<<3)	/* Do a global slab shrink if the zone is out of memory */
1388 
1389 /*
1390  * Mininum time between zone reclaim scans
1391  */
1392 int zone_reclaim_interval __read_mostly = 30*HZ;
1393 
1394 /*
1395  * Priority for ZONE_RECLAIM. This determines the fraction of pages
1396  * of a node considered for each zone_reclaim. 4 scans 1/16th of
1397  * a zone.
1398  */
1399 #define ZONE_RECLAIM_PRIORITY 4
1400 
1401 /*
1402  * Try to free up some pages from this zone through reclaim.
1403  */
1404 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
1405 {
1406 	/* Minimum pages needed in order to stay on node */
1407 	const unsigned long nr_pages = 1 << order;
1408 	struct task_struct *p = current;
1409 	struct reclaim_state reclaim_state;
1410 	int priority;
1411 	unsigned long nr_reclaimed = 0;
1412 	struct scan_control sc = {
1413 		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
1414 		.may_swap = !!(zone_reclaim_mode & RECLAIM_SWAP),
1415 		.nr_mapped = read_page_state(nr_mapped),
1416 		.swap_cluster_max = max_t(unsigned long, nr_pages,
1417 					SWAP_CLUSTER_MAX),
1418 		.gfp_mask = gfp_mask,
1419 	};
1420 
1421 	disable_swap_token();
1422 	cond_resched();
1423 	/*
1424 	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
1425 	 * and we also need to be able to write out pages for RECLAIM_WRITE
1426 	 * and RECLAIM_SWAP.
1427 	 */
1428 	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
1429 	reclaim_state.reclaimed_slab = 0;
1430 	p->reclaim_state = &reclaim_state;
1431 
1432 	/*
1433 	 * Free memory by calling shrink zone with increasing priorities
1434 	 * until we have enough memory freed.
1435 	 */
1436 	priority = ZONE_RECLAIM_PRIORITY;
1437 	do {
1438 		nr_reclaimed += shrink_zone(priority, zone, &sc);
1439 		priority--;
1440 	} while (priority >= 0 && nr_reclaimed < nr_pages);
1441 
1442 	if (nr_reclaimed < nr_pages && (zone_reclaim_mode & RECLAIM_SLAB)) {
1443 		/*
1444 		 * shrink_slab() does not currently allow us to determine how
1445 		 * many pages were freed in this zone. So we just shake the slab
1446 		 * a bit and then go off node for this particular allocation
1447 		 * despite possibly having freed enough memory to allocate in
1448 		 * this zone.  If we freed local memory then the next
1449 		 * allocations will be local again.
1450 		 *
1451 		 * shrink_slab will free memory on all zones and may take
1452 		 * a long time.
1453 		 */
1454 		shrink_slab(sc.nr_scanned, gfp_mask, order);
1455 	}
1456 
1457 	p->reclaim_state = NULL;
1458 	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
1459 
1460 	if (nr_reclaimed == 0) {
1461 		/*
1462 		 * We were unable to reclaim enough pages to stay on node.  We
1463 		 * now allow off node accesses for a certain time period before
1464 		 * trying again to reclaim pages from the local zone.
1465 		 */
1466 		zone->last_unsuccessful_zone_reclaim = jiffies;
1467 	}
1468 
1469 	return nr_reclaimed >= nr_pages;
1470 }
1471 
1472 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
1473 {
1474 	cpumask_t mask;
1475 	int node_id;
1476 
1477 	/*
1478 	 * Do not reclaim if there was a recent unsuccessful attempt at zone
1479 	 * reclaim.  In that case we let allocations go off node for the
1480 	 * zone_reclaim_interval.  Otherwise we would scan for each off-node
1481 	 * page allocation.
1482 	 */
1483 	if (time_before(jiffies,
1484 		zone->last_unsuccessful_zone_reclaim + zone_reclaim_interval))
1485 			return 0;
1486 
1487 	/*
1488 	 * Avoid concurrent zone reclaims, do not reclaim in a zone that does
1489 	 * not have reclaimable pages and if we should not delay the allocation
1490 	 * then do not scan.
1491 	 */
1492 	if (!(gfp_mask & __GFP_WAIT) ||
1493 		zone->all_unreclaimable ||
1494 		atomic_read(&zone->reclaim_in_progress) > 0 ||
1495 		(current->flags & PF_MEMALLOC))
1496 			return 0;
1497 
1498 	/*
1499 	 * Only run zone reclaim on the local zone or on zones that do not
1500 	 * have associated processors. This will favor the local processor
1501 	 * over remote processors and spread off node memory allocations
1502 	 * as wide as possible.
1503 	 */
1504 	node_id = zone->zone_pgdat->node_id;
1505 	mask = node_to_cpumask(node_id);
1506 	if (!cpus_empty(mask) && node_id != numa_node_id())
1507 		return 0;
1508 	return __zone_reclaim(zone, gfp_mask, order);
1509 }
1510 #endif
1511