xref: /linux/mm/vmscan.c (revision dcb8cbb58a218c99aab0dbf3f76cf06a04d44f37)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
4  *
5  *  Swap reorganised 29.12.95, Stephen Tweedie.
6  *  kswapd added: 7.1.96  sct
7  *  Removed kswapd_ctl limits, and swap out as many pages as needed
8  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
9  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
10  *  Multiqueue VM started 5.8.00, Rik van Riel.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/mm.h>
16 #include <linux/sched/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h>	/* for buffer_heads_over_limit */
30 #include <linux/mm_inline.h>
31 #include <linux/backing-dev.h>
32 #include <linux/rmap.h>
33 #include <linux/topology.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/compaction.h>
37 #include <linux/notifier.h>
38 #include <linux/mutex.h>
39 #include <linux/delay.h>
40 #include <linux/kthread.h>
41 #include <linux/freezer.h>
42 #include <linux/memcontrol.h>
43 #include <linux/migrate.h>
44 #include <linux/delayacct.h>
45 #include <linux/sysctl.h>
46 #include <linux/memory-tiers.h>
47 #include <linux/oom.h>
48 #include <linux/pagevec.h>
49 #include <linux/prefetch.h>
50 #include <linux/printk.h>
51 #include <linux/dax.h>
52 #include <linux/psi.h>
53 #include <linux/pagewalk.h>
54 #include <linux/shmem_fs.h>
55 #include <linux/ctype.h>
56 #include <linux/debugfs.h>
57 #include <linux/khugepaged.h>
58 #include <linux/rculist_nulls.h>
59 #include <linux/random.h>
60 #include <linux/srcu.h>
61 
62 #include <asm/tlbflush.h>
63 #include <asm/div64.h>
64 
65 #include <linux/swapops.h>
66 #include <linux/balloon_compaction.h>
67 #include <linux/sched/sysctl.h>
68 
69 #include "internal.h"
70 #include "swap.h"
71 
72 #define CREATE_TRACE_POINTS
73 #include <trace/events/vmscan.h>
74 
75 struct scan_control {
76 	/* How many pages shrink_list() should reclaim */
77 	unsigned long nr_to_reclaim;
78 
79 	/*
80 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
81 	 * are scanned.
82 	 */
83 	nodemask_t	*nodemask;
84 
85 	/*
86 	 * The memory cgroup that hit its limit and as a result is the
87 	 * primary target of this reclaim invocation.
88 	 */
89 	struct mem_cgroup *target_mem_cgroup;
90 
91 	/*
92 	 * Scan pressure balancing between anon and file LRUs
93 	 */
94 	unsigned long	anon_cost;
95 	unsigned long	file_cost;
96 
97 	/* Can active folios be deactivated as part of reclaim? */
98 #define DEACTIVATE_ANON 1
99 #define DEACTIVATE_FILE 2
100 	unsigned int may_deactivate:2;
101 	unsigned int force_deactivate:1;
102 	unsigned int skipped_deactivate:1;
103 
104 	/* Writepage batching in laptop mode; RECLAIM_WRITE */
105 	unsigned int may_writepage:1;
106 
107 	/* Can mapped folios be reclaimed? */
108 	unsigned int may_unmap:1;
109 
110 	/* Can folios be swapped as part of reclaim? */
111 	unsigned int may_swap:1;
112 
113 	/* Proactive reclaim invoked by userspace through memory.reclaim */
114 	unsigned int proactive:1;
115 
116 	/*
117 	 * Cgroup memory below memory.low is protected as long as we
118 	 * don't threaten to OOM. If any cgroup is reclaimed at
119 	 * reduced force or passed over entirely due to its memory.low
120 	 * setting (memcg_low_skipped), and nothing is reclaimed as a
121 	 * result, then go back for one more cycle that reclaims the protected
122 	 * memory (memcg_low_reclaim) to avert OOM.
123 	 */
124 	unsigned int memcg_low_reclaim:1;
125 	unsigned int memcg_low_skipped:1;
126 
127 	unsigned int hibernation_mode:1;
128 
129 	/* One of the zones is ready for compaction */
130 	unsigned int compaction_ready:1;
131 
132 	/* There is easily reclaimable cold cache in the current node */
133 	unsigned int cache_trim_mode:1;
134 
135 	/* The file folios on the current node are dangerously low */
136 	unsigned int file_is_tiny:1;
137 
138 	/* Always discard instead of demoting to lower tier memory */
139 	unsigned int no_demotion:1;
140 
141 	/* Allocation order */
142 	s8 order;
143 
144 	/* Scan (total_size >> priority) pages at once */
145 	s8 priority;
146 
147 	/* The highest zone to isolate folios for reclaim from */
148 	s8 reclaim_idx;
149 
150 	/* This context's GFP mask */
151 	gfp_t gfp_mask;
152 
153 	/* Incremented by the number of inactive pages that were scanned */
154 	unsigned long nr_scanned;
155 
156 	/* Number of pages freed so far during a call to shrink_zones() */
157 	unsigned long nr_reclaimed;
158 
159 	struct {
160 		unsigned int dirty;
161 		unsigned int unqueued_dirty;
162 		unsigned int congested;
163 		unsigned int writeback;
164 		unsigned int immediate;
165 		unsigned int file_taken;
166 		unsigned int taken;
167 	} nr;
168 
169 	/* for recording the reclaimed slab by now */
170 	struct reclaim_state reclaim_state;
171 };
172 
173 #ifdef ARCH_HAS_PREFETCHW
174 #define prefetchw_prev_lru_folio(_folio, _base, _field)			\
175 	do {								\
176 		if ((_folio)->lru.prev != _base) {			\
177 			struct folio *prev;				\
178 									\
179 			prev = lru_to_folio(&(_folio->lru));		\
180 			prefetchw(&prev->_field);			\
181 		}							\
182 	} while (0)
183 #else
184 #define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0)
185 #endif
186 
187 /*
188  * From 0 .. 200.  Higher means more swappy.
189  */
190 int vm_swappiness = 60;
191 
192 LIST_HEAD(shrinker_list);
193 DEFINE_MUTEX(shrinker_mutex);
194 DEFINE_SRCU(shrinker_srcu);
195 static atomic_t shrinker_srcu_generation = ATOMIC_INIT(0);
196 
197 #ifdef CONFIG_MEMCG
198 static int shrinker_nr_max;
199 
200 /* The shrinker_info is expanded in a batch of BITS_PER_LONG */
201 static inline int shrinker_map_size(int nr_items)
202 {
203 	return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long));
204 }
205 
206 static inline int shrinker_defer_size(int nr_items)
207 {
208 	return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t));
209 }
210 
211 static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg,
212 						     int nid)
213 {
214 	return srcu_dereference_check(memcg->nodeinfo[nid]->shrinker_info,
215 				      &shrinker_srcu,
216 				      lockdep_is_held(&shrinker_mutex));
217 }
218 
219 static struct shrinker_info *shrinker_info_srcu(struct mem_cgroup *memcg,
220 						     int nid)
221 {
222 	return srcu_dereference(memcg->nodeinfo[nid]->shrinker_info,
223 				&shrinker_srcu);
224 }
225 
226 static void free_shrinker_info_rcu(struct rcu_head *head)
227 {
228 	kvfree(container_of(head, struct shrinker_info, rcu));
229 }
230 
231 static int expand_one_shrinker_info(struct mem_cgroup *memcg,
232 				    int map_size, int defer_size,
233 				    int old_map_size, int old_defer_size,
234 				    int new_nr_max)
235 {
236 	struct shrinker_info *new, *old;
237 	struct mem_cgroup_per_node *pn;
238 	int nid;
239 	int size = map_size + defer_size;
240 
241 	for_each_node(nid) {
242 		pn = memcg->nodeinfo[nid];
243 		old = shrinker_info_protected(memcg, nid);
244 		/* Not yet online memcg */
245 		if (!old)
246 			return 0;
247 
248 		/* Already expanded this shrinker_info */
249 		if (new_nr_max <= old->map_nr_max)
250 			continue;
251 
252 		new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
253 		if (!new)
254 			return -ENOMEM;
255 
256 		new->nr_deferred = (atomic_long_t *)(new + 1);
257 		new->map = (void *)new->nr_deferred + defer_size;
258 		new->map_nr_max = new_nr_max;
259 
260 		/* map: set all old bits, clear all new bits */
261 		memset(new->map, (int)0xff, old_map_size);
262 		memset((void *)new->map + old_map_size, 0, map_size - old_map_size);
263 		/* nr_deferred: copy old values, clear all new values */
264 		memcpy(new->nr_deferred, old->nr_deferred, old_defer_size);
265 		memset((void *)new->nr_deferred + old_defer_size, 0,
266 		       defer_size - old_defer_size);
267 
268 		rcu_assign_pointer(pn->shrinker_info, new);
269 		call_srcu(&shrinker_srcu, &old->rcu, free_shrinker_info_rcu);
270 	}
271 
272 	return 0;
273 }
274 
275 void free_shrinker_info(struct mem_cgroup *memcg)
276 {
277 	struct mem_cgroup_per_node *pn;
278 	struct shrinker_info *info;
279 	int nid;
280 
281 	for_each_node(nid) {
282 		pn = memcg->nodeinfo[nid];
283 		info = rcu_dereference_protected(pn->shrinker_info, true);
284 		kvfree(info);
285 		rcu_assign_pointer(pn->shrinker_info, NULL);
286 	}
287 }
288 
289 int alloc_shrinker_info(struct mem_cgroup *memcg)
290 {
291 	struct shrinker_info *info;
292 	int nid, size, ret = 0;
293 	int map_size, defer_size = 0;
294 
295 	mutex_lock(&shrinker_mutex);
296 	map_size = shrinker_map_size(shrinker_nr_max);
297 	defer_size = shrinker_defer_size(shrinker_nr_max);
298 	size = map_size + defer_size;
299 	for_each_node(nid) {
300 		info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid);
301 		if (!info) {
302 			free_shrinker_info(memcg);
303 			ret = -ENOMEM;
304 			break;
305 		}
306 		info->nr_deferred = (atomic_long_t *)(info + 1);
307 		info->map = (void *)info->nr_deferred + defer_size;
308 		info->map_nr_max = shrinker_nr_max;
309 		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info);
310 	}
311 	mutex_unlock(&shrinker_mutex);
312 
313 	return ret;
314 }
315 
316 static int expand_shrinker_info(int new_id)
317 {
318 	int ret = 0;
319 	int new_nr_max = round_up(new_id + 1, BITS_PER_LONG);
320 	int map_size, defer_size = 0;
321 	int old_map_size, old_defer_size = 0;
322 	struct mem_cgroup *memcg;
323 
324 	if (!root_mem_cgroup)
325 		goto out;
326 
327 	lockdep_assert_held(&shrinker_mutex);
328 
329 	map_size = shrinker_map_size(new_nr_max);
330 	defer_size = shrinker_defer_size(new_nr_max);
331 	old_map_size = shrinker_map_size(shrinker_nr_max);
332 	old_defer_size = shrinker_defer_size(shrinker_nr_max);
333 
334 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
335 	do {
336 		ret = expand_one_shrinker_info(memcg, map_size, defer_size,
337 					       old_map_size, old_defer_size,
338 					       new_nr_max);
339 		if (ret) {
340 			mem_cgroup_iter_break(NULL, memcg);
341 			goto out;
342 		}
343 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
344 out:
345 	if (!ret)
346 		shrinker_nr_max = new_nr_max;
347 
348 	return ret;
349 }
350 
351 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
352 {
353 	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
354 		struct shrinker_info *info;
355 		int srcu_idx;
356 
357 		srcu_idx = srcu_read_lock(&shrinker_srcu);
358 		info = shrinker_info_srcu(memcg, nid);
359 		if (!WARN_ON_ONCE(shrinker_id >= info->map_nr_max)) {
360 			/* Pairs with smp mb in shrink_slab() */
361 			smp_mb__before_atomic();
362 			set_bit(shrinker_id, info->map);
363 		}
364 		srcu_read_unlock(&shrinker_srcu, srcu_idx);
365 	}
366 }
367 
368 static DEFINE_IDR(shrinker_idr);
369 
370 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
371 {
372 	int id, ret = -ENOMEM;
373 
374 	if (mem_cgroup_disabled())
375 		return -ENOSYS;
376 
377 	mutex_lock(&shrinker_mutex);
378 	id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL);
379 	if (id < 0)
380 		goto unlock;
381 
382 	if (id >= shrinker_nr_max) {
383 		if (expand_shrinker_info(id)) {
384 			idr_remove(&shrinker_idr, id);
385 			goto unlock;
386 		}
387 	}
388 	shrinker->id = id;
389 	ret = 0;
390 unlock:
391 	mutex_unlock(&shrinker_mutex);
392 	return ret;
393 }
394 
395 static void unregister_memcg_shrinker(struct shrinker *shrinker)
396 {
397 	int id = shrinker->id;
398 
399 	BUG_ON(id < 0);
400 
401 	lockdep_assert_held(&shrinker_mutex);
402 
403 	idr_remove(&shrinker_idr, id);
404 }
405 
406 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
407 				   struct mem_cgroup *memcg)
408 {
409 	struct shrinker_info *info;
410 
411 	info = shrinker_info_srcu(memcg, nid);
412 	return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0);
413 }
414 
415 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
416 				  struct mem_cgroup *memcg)
417 {
418 	struct shrinker_info *info;
419 
420 	info = shrinker_info_srcu(memcg, nid);
421 	return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]);
422 }
423 
424 void reparent_shrinker_deferred(struct mem_cgroup *memcg)
425 {
426 	int i, nid;
427 	long nr;
428 	struct mem_cgroup *parent;
429 	struct shrinker_info *child_info, *parent_info;
430 
431 	parent = parent_mem_cgroup(memcg);
432 	if (!parent)
433 		parent = root_mem_cgroup;
434 
435 	/* Prevent from concurrent shrinker_info expand */
436 	mutex_lock(&shrinker_mutex);
437 	for_each_node(nid) {
438 		child_info = shrinker_info_protected(memcg, nid);
439 		parent_info = shrinker_info_protected(parent, nid);
440 		for (i = 0; i < child_info->map_nr_max; i++) {
441 			nr = atomic_long_read(&child_info->nr_deferred[i]);
442 			atomic_long_add(nr, &parent_info->nr_deferred[i]);
443 		}
444 	}
445 	mutex_unlock(&shrinker_mutex);
446 }
447 
448 static bool cgroup_reclaim(struct scan_control *sc)
449 {
450 	return sc->target_mem_cgroup;
451 }
452 
453 static bool global_reclaim(struct scan_control *sc)
454 {
455 	return !sc->target_mem_cgroup || mem_cgroup_is_root(sc->target_mem_cgroup);
456 }
457 
458 /**
459  * writeback_throttling_sane - is the usual dirty throttling mechanism available?
460  * @sc: scan_control in question
461  *
462  * The normal page dirty throttling mechanism in balance_dirty_pages() is
463  * completely broken with the legacy memcg and direct stalling in
464  * shrink_folio_list() is used for throttling instead, which lacks all the
465  * niceties such as fairness, adaptive pausing, bandwidth proportional
466  * allocation and configurability.
467  *
468  * This function tests whether the vmscan currently in progress can assume
469  * that the normal dirty throttling mechanism is operational.
470  */
471 static bool writeback_throttling_sane(struct scan_control *sc)
472 {
473 	if (!cgroup_reclaim(sc))
474 		return true;
475 #ifdef CONFIG_CGROUP_WRITEBACK
476 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
477 		return true;
478 #endif
479 	return false;
480 }
481 #else
482 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
483 {
484 	return -ENOSYS;
485 }
486 
487 static void unregister_memcg_shrinker(struct shrinker *shrinker)
488 {
489 }
490 
491 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
492 				   struct mem_cgroup *memcg)
493 {
494 	return 0;
495 }
496 
497 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
498 				  struct mem_cgroup *memcg)
499 {
500 	return 0;
501 }
502 
503 static bool cgroup_reclaim(struct scan_control *sc)
504 {
505 	return false;
506 }
507 
508 static bool global_reclaim(struct scan_control *sc)
509 {
510 	return true;
511 }
512 
513 static bool writeback_throttling_sane(struct scan_control *sc)
514 {
515 	return true;
516 }
517 #endif
518 
519 static void set_task_reclaim_state(struct task_struct *task,
520 				   struct reclaim_state *rs)
521 {
522 	/* Check for an overwrite */
523 	WARN_ON_ONCE(rs && task->reclaim_state);
524 
525 	/* Check for the nulling of an already-nulled member */
526 	WARN_ON_ONCE(!rs && !task->reclaim_state);
527 
528 	task->reclaim_state = rs;
529 }
530 
531 /*
532  * flush_reclaim_state(): add pages reclaimed outside of LRU-based reclaim to
533  * scan_control->nr_reclaimed.
534  */
535 static void flush_reclaim_state(struct scan_control *sc)
536 {
537 	/*
538 	 * Currently, reclaim_state->reclaimed includes three types of pages
539 	 * freed outside of vmscan:
540 	 * (1) Slab pages.
541 	 * (2) Clean file pages from pruned inodes (on highmem systems).
542 	 * (3) XFS freed buffer pages.
543 	 *
544 	 * For all of these cases, we cannot universally link the pages to a
545 	 * single memcg. For example, a memcg-aware shrinker can free one object
546 	 * charged to the target memcg, causing an entire page to be freed.
547 	 * If we count the entire page as reclaimed from the memcg, we end up
548 	 * overestimating the reclaimed amount (potentially under-reclaiming).
549 	 *
550 	 * Only count such pages for global reclaim to prevent under-reclaiming
551 	 * from the target memcg; preventing unnecessary retries during memcg
552 	 * charging and false positives from proactive reclaim.
553 	 *
554 	 * For uncommon cases where the freed pages were actually mostly
555 	 * charged to the target memcg, we end up underestimating the reclaimed
556 	 * amount. This should be fine. The freed pages will be uncharged
557 	 * anyway, even if they are not counted here properly, and we will be
558 	 * able to make forward progress in charging (which is usually in a
559 	 * retry loop).
560 	 *
561 	 * We can go one step further, and report the uncharged objcg pages in
562 	 * memcg reclaim, to make reporting more accurate and reduce
563 	 * underestimation, but it's probably not worth the complexity for now.
564 	 */
565 	if (current->reclaim_state && global_reclaim(sc)) {
566 		sc->nr_reclaimed += current->reclaim_state->reclaimed;
567 		current->reclaim_state->reclaimed = 0;
568 	}
569 }
570 
571 static long xchg_nr_deferred(struct shrinker *shrinker,
572 			     struct shrink_control *sc)
573 {
574 	int nid = sc->nid;
575 
576 	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
577 		nid = 0;
578 
579 	if (sc->memcg &&
580 	    (shrinker->flags & SHRINKER_MEMCG_AWARE))
581 		return xchg_nr_deferred_memcg(nid, shrinker,
582 					      sc->memcg);
583 
584 	return atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
585 }
586 
587 
588 static long add_nr_deferred(long nr, struct shrinker *shrinker,
589 			    struct shrink_control *sc)
590 {
591 	int nid = sc->nid;
592 
593 	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
594 		nid = 0;
595 
596 	if (sc->memcg &&
597 	    (shrinker->flags & SHRINKER_MEMCG_AWARE))
598 		return add_nr_deferred_memcg(nr, nid, shrinker,
599 					     sc->memcg);
600 
601 	return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]);
602 }
603 
604 static bool can_demote(int nid, struct scan_control *sc)
605 {
606 	if (!numa_demotion_enabled)
607 		return false;
608 	if (sc && sc->no_demotion)
609 		return false;
610 	if (next_demotion_node(nid) == NUMA_NO_NODE)
611 		return false;
612 
613 	return true;
614 }
615 
616 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
617 					  int nid,
618 					  struct scan_control *sc)
619 {
620 	if (memcg == NULL) {
621 		/*
622 		 * For non-memcg reclaim, is there
623 		 * space in any swap device?
624 		 */
625 		if (get_nr_swap_pages() > 0)
626 			return true;
627 	} else {
628 		/* Is the memcg below its swap limit? */
629 		if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
630 			return true;
631 	}
632 
633 	/*
634 	 * The page can not be swapped.
635 	 *
636 	 * Can it be reclaimed from this node via demotion?
637 	 */
638 	return can_demote(nid, sc);
639 }
640 
641 /*
642  * This misses isolated folios which are not accounted for to save counters.
643  * As the data only determines if reclaim or compaction continues, it is
644  * not expected that isolated folios will be a dominating factor.
645  */
646 unsigned long zone_reclaimable_pages(struct zone *zone)
647 {
648 	unsigned long nr;
649 
650 	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
651 		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
652 	if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
653 		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
654 			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
655 
656 	return nr;
657 }
658 
659 /**
660  * lruvec_lru_size -  Returns the number of pages on the given LRU list.
661  * @lruvec: lru vector
662  * @lru: lru to use
663  * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list)
664  */
665 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
666 				     int zone_idx)
667 {
668 	unsigned long size = 0;
669 	int zid;
670 
671 	for (zid = 0; zid <= zone_idx; zid++) {
672 		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
673 
674 		if (!managed_zone(zone))
675 			continue;
676 
677 		if (!mem_cgroup_disabled())
678 			size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
679 		else
680 			size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
681 	}
682 	return size;
683 }
684 
685 /*
686  * Add a shrinker callback to be called from the vm.
687  */
688 static int __prealloc_shrinker(struct shrinker *shrinker)
689 {
690 	unsigned int size;
691 	int err;
692 
693 	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
694 		err = prealloc_memcg_shrinker(shrinker);
695 		if (err != -ENOSYS)
696 			return err;
697 
698 		shrinker->flags &= ~SHRINKER_MEMCG_AWARE;
699 	}
700 
701 	size = sizeof(*shrinker->nr_deferred);
702 	if (shrinker->flags & SHRINKER_NUMA_AWARE)
703 		size *= nr_node_ids;
704 
705 	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
706 	if (!shrinker->nr_deferred)
707 		return -ENOMEM;
708 
709 	return 0;
710 }
711 
712 #ifdef CONFIG_SHRINKER_DEBUG
713 int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...)
714 {
715 	va_list ap;
716 	int err;
717 
718 	va_start(ap, fmt);
719 	shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap);
720 	va_end(ap);
721 	if (!shrinker->name)
722 		return -ENOMEM;
723 
724 	err = __prealloc_shrinker(shrinker);
725 	if (err) {
726 		kfree_const(shrinker->name);
727 		shrinker->name = NULL;
728 	}
729 
730 	return err;
731 }
732 #else
733 int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...)
734 {
735 	return __prealloc_shrinker(shrinker);
736 }
737 #endif
738 
739 void free_prealloced_shrinker(struct shrinker *shrinker)
740 {
741 #ifdef CONFIG_SHRINKER_DEBUG
742 	kfree_const(shrinker->name);
743 	shrinker->name = NULL;
744 #endif
745 	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
746 		mutex_lock(&shrinker_mutex);
747 		unregister_memcg_shrinker(shrinker);
748 		mutex_unlock(&shrinker_mutex);
749 		return;
750 	}
751 
752 	kfree(shrinker->nr_deferred);
753 	shrinker->nr_deferred = NULL;
754 }
755 
756 void register_shrinker_prepared(struct shrinker *shrinker)
757 {
758 	mutex_lock(&shrinker_mutex);
759 	list_add_tail_rcu(&shrinker->list, &shrinker_list);
760 	shrinker->flags |= SHRINKER_REGISTERED;
761 	shrinker_debugfs_add(shrinker);
762 	mutex_unlock(&shrinker_mutex);
763 }
764 
765 static int __register_shrinker(struct shrinker *shrinker)
766 {
767 	int err = __prealloc_shrinker(shrinker);
768 
769 	if (err)
770 		return err;
771 	register_shrinker_prepared(shrinker);
772 	return 0;
773 }
774 
775 #ifdef CONFIG_SHRINKER_DEBUG
776 int register_shrinker(struct shrinker *shrinker, const char *fmt, ...)
777 {
778 	va_list ap;
779 	int err;
780 
781 	va_start(ap, fmt);
782 	shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap);
783 	va_end(ap);
784 	if (!shrinker->name)
785 		return -ENOMEM;
786 
787 	err = __register_shrinker(shrinker);
788 	if (err) {
789 		kfree_const(shrinker->name);
790 		shrinker->name = NULL;
791 	}
792 	return err;
793 }
794 #else
795 int register_shrinker(struct shrinker *shrinker, const char *fmt, ...)
796 {
797 	return __register_shrinker(shrinker);
798 }
799 #endif
800 EXPORT_SYMBOL(register_shrinker);
801 
802 /*
803  * Remove one
804  */
805 void unregister_shrinker(struct shrinker *shrinker)
806 {
807 	struct dentry *debugfs_entry;
808 	int debugfs_id;
809 
810 	if (!(shrinker->flags & SHRINKER_REGISTERED))
811 		return;
812 
813 	mutex_lock(&shrinker_mutex);
814 	list_del_rcu(&shrinker->list);
815 	shrinker->flags &= ~SHRINKER_REGISTERED;
816 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
817 		unregister_memcg_shrinker(shrinker);
818 	debugfs_entry = shrinker_debugfs_detach(shrinker, &debugfs_id);
819 	mutex_unlock(&shrinker_mutex);
820 
821 	atomic_inc(&shrinker_srcu_generation);
822 	synchronize_srcu(&shrinker_srcu);
823 
824 	shrinker_debugfs_remove(debugfs_entry, debugfs_id);
825 
826 	kfree(shrinker->nr_deferred);
827 	shrinker->nr_deferred = NULL;
828 }
829 EXPORT_SYMBOL(unregister_shrinker);
830 
831 /**
832  * synchronize_shrinkers - Wait for all running shrinkers to complete.
833  *
834  * This is useful to guarantee that all shrinker invocations have seen an
835  * update, before freeing memory.
836  */
837 void synchronize_shrinkers(void)
838 {
839 	atomic_inc(&shrinker_srcu_generation);
840 	synchronize_srcu(&shrinker_srcu);
841 }
842 EXPORT_SYMBOL(synchronize_shrinkers);
843 
844 #define SHRINK_BATCH 128
845 
846 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
847 				    struct shrinker *shrinker, int priority)
848 {
849 	unsigned long freed = 0;
850 	unsigned long long delta;
851 	long total_scan;
852 	long freeable;
853 	long nr;
854 	long new_nr;
855 	long batch_size = shrinker->batch ? shrinker->batch
856 					  : SHRINK_BATCH;
857 	long scanned = 0, next_deferred;
858 
859 	freeable = shrinker->count_objects(shrinker, shrinkctl);
860 	if (freeable == 0 || freeable == SHRINK_EMPTY)
861 		return freeable;
862 
863 	/*
864 	 * copy the current shrinker scan count into a local variable
865 	 * and zero it so that other concurrent shrinker invocations
866 	 * don't also do this scanning work.
867 	 */
868 	nr = xchg_nr_deferred(shrinker, shrinkctl);
869 
870 	if (shrinker->seeks) {
871 		delta = freeable >> priority;
872 		delta *= 4;
873 		do_div(delta, shrinker->seeks);
874 	} else {
875 		/*
876 		 * These objects don't require any IO to create. Trim
877 		 * them aggressively under memory pressure to keep
878 		 * them from causing refetches in the IO caches.
879 		 */
880 		delta = freeable / 2;
881 	}
882 
883 	total_scan = nr >> priority;
884 	total_scan += delta;
885 	total_scan = min(total_scan, (2 * freeable));
886 
887 	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
888 				   freeable, delta, total_scan, priority);
889 
890 	/*
891 	 * Normally, we should not scan less than batch_size objects in one
892 	 * pass to avoid too frequent shrinker calls, but if the slab has less
893 	 * than batch_size objects in total and we are really tight on memory,
894 	 * we will try to reclaim all available objects, otherwise we can end
895 	 * up failing allocations although there are plenty of reclaimable
896 	 * objects spread over several slabs with usage less than the
897 	 * batch_size.
898 	 *
899 	 * We detect the "tight on memory" situations by looking at the total
900 	 * number of objects we want to scan (total_scan). If it is greater
901 	 * than the total number of objects on slab (freeable), we must be
902 	 * scanning at high prio and therefore should try to reclaim as much as
903 	 * possible.
904 	 */
905 	while (total_scan >= batch_size ||
906 	       total_scan >= freeable) {
907 		unsigned long ret;
908 		unsigned long nr_to_scan = min(batch_size, total_scan);
909 
910 		shrinkctl->nr_to_scan = nr_to_scan;
911 		shrinkctl->nr_scanned = nr_to_scan;
912 		ret = shrinker->scan_objects(shrinker, shrinkctl);
913 		if (ret == SHRINK_STOP)
914 			break;
915 		freed += ret;
916 
917 		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
918 		total_scan -= shrinkctl->nr_scanned;
919 		scanned += shrinkctl->nr_scanned;
920 
921 		cond_resched();
922 	}
923 
924 	/*
925 	 * The deferred work is increased by any new work (delta) that wasn't
926 	 * done, decreased by old deferred work that was done now.
927 	 *
928 	 * And it is capped to two times of the freeable items.
929 	 */
930 	next_deferred = max_t(long, (nr + delta - scanned), 0);
931 	next_deferred = min(next_deferred, (2 * freeable));
932 
933 	/*
934 	 * move the unused scan count back into the shrinker in a
935 	 * manner that handles concurrent updates.
936 	 */
937 	new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl);
938 
939 	trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan);
940 	return freed;
941 }
942 
943 #ifdef CONFIG_MEMCG
944 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
945 			struct mem_cgroup *memcg, int priority)
946 {
947 	struct shrinker_info *info;
948 	unsigned long ret, freed = 0;
949 	int srcu_idx, generation;
950 	int i = 0;
951 
952 	if (!mem_cgroup_online(memcg))
953 		return 0;
954 
955 again:
956 	srcu_idx = srcu_read_lock(&shrinker_srcu);
957 	info = shrinker_info_srcu(memcg, nid);
958 	if (unlikely(!info))
959 		goto unlock;
960 
961 	generation = atomic_read(&shrinker_srcu_generation);
962 	for_each_set_bit_from(i, info->map, info->map_nr_max) {
963 		struct shrink_control sc = {
964 			.gfp_mask = gfp_mask,
965 			.nid = nid,
966 			.memcg = memcg,
967 		};
968 		struct shrinker *shrinker;
969 
970 		shrinker = idr_find(&shrinker_idr, i);
971 		if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) {
972 			if (!shrinker)
973 				clear_bit(i, info->map);
974 			continue;
975 		}
976 
977 		/* Call non-slab shrinkers even though kmem is disabled */
978 		if (!memcg_kmem_online() &&
979 		    !(shrinker->flags & SHRINKER_NONSLAB))
980 			continue;
981 
982 		ret = do_shrink_slab(&sc, shrinker, priority);
983 		if (ret == SHRINK_EMPTY) {
984 			clear_bit(i, info->map);
985 			/*
986 			 * After the shrinker reported that it had no objects to
987 			 * free, but before we cleared the corresponding bit in
988 			 * the memcg shrinker map, a new object might have been
989 			 * added. To make sure, we have the bit set in this
990 			 * case, we invoke the shrinker one more time and reset
991 			 * the bit if it reports that it is not empty anymore.
992 			 * The memory barrier here pairs with the barrier in
993 			 * set_shrinker_bit():
994 			 *
995 			 * list_lru_add()     shrink_slab_memcg()
996 			 *   list_add_tail()    clear_bit()
997 			 *   <MB>               <MB>
998 			 *   set_bit()          do_shrink_slab()
999 			 */
1000 			smp_mb__after_atomic();
1001 			ret = do_shrink_slab(&sc, shrinker, priority);
1002 			if (ret == SHRINK_EMPTY)
1003 				ret = 0;
1004 			else
1005 				set_shrinker_bit(memcg, nid, i);
1006 		}
1007 		freed += ret;
1008 		if (atomic_read(&shrinker_srcu_generation) != generation) {
1009 			srcu_read_unlock(&shrinker_srcu, srcu_idx);
1010 			i++;
1011 			goto again;
1012 		}
1013 	}
1014 unlock:
1015 	srcu_read_unlock(&shrinker_srcu, srcu_idx);
1016 	return freed;
1017 }
1018 #else /* CONFIG_MEMCG */
1019 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
1020 			struct mem_cgroup *memcg, int priority)
1021 {
1022 	return 0;
1023 }
1024 #endif /* CONFIG_MEMCG */
1025 
1026 /**
1027  * shrink_slab - shrink slab caches
1028  * @gfp_mask: allocation context
1029  * @nid: node whose slab caches to target
1030  * @memcg: memory cgroup whose slab caches to target
1031  * @priority: the reclaim priority
1032  *
1033  * Call the shrink functions to age shrinkable caches.
1034  *
1035  * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
1036  * unaware shrinkers will receive a node id of 0 instead.
1037  *
1038  * @memcg specifies the memory cgroup to target. Unaware shrinkers
1039  * are called only if it is the root cgroup.
1040  *
1041  * @priority is sc->priority, we take the number of objects and >> by priority
1042  * in order to get the scan target.
1043  *
1044  * Returns the number of reclaimed slab objects.
1045  */
1046 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
1047 				 struct mem_cgroup *memcg,
1048 				 int priority)
1049 {
1050 	unsigned long ret, freed = 0;
1051 	struct shrinker *shrinker;
1052 	int srcu_idx, generation;
1053 
1054 	/*
1055 	 * The root memcg might be allocated even though memcg is disabled
1056 	 * via "cgroup_disable=memory" boot parameter.  This could make
1057 	 * mem_cgroup_is_root() return false, then just run memcg slab
1058 	 * shrink, but skip global shrink.  This may result in premature
1059 	 * oom.
1060 	 */
1061 	if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
1062 		return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
1063 
1064 	srcu_idx = srcu_read_lock(&shrinker_srcu);
1065 
1066 	generation = atomic_read(&shrinker_srcu_generation);
1067 	list_for_each_entry_srcu(shrinker, &shrinker_list, list,
1068 				 srcu_read_lock_held(&shrinker_srcu)) {
1069 		struct shrink_control sc = {
1070 			.gfp_mask = gfp_mask,
1071 			.nid = nid,
1072 			.memcg = memcg,
1073 		};
1074 
1075 		ret = do_shrink_slab(&sc, shrinker, priority);
1076 		if (ret == SHRINK_EMPTY)
1077 			ret = 0;
1078 		freed += ret;
1079 
1080 		if (atomic_read(&shrinker_srcu_generation) != generation) {
1081 			freed = freed ? : 1;
1082 			break;
1083 		}
1084 	}
1085 
1086 	srcu_read_unlock(&shrinker_srcu, srcu_idx);
1087 	cond_resched();
1088 	return freed;
1089 }
1090 
1091 static unsigned long drop_slab_node(int nid)
1092 {
1093 	unsigned long freed = 0;
1094 	struct mem_cgroup *memcg = NULL;
1095 
1096 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
1097 	do {
1098 		freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
1099 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
1100 
1101 	return freed;
1102 }
1103 
1104 void drop_slab(void)
1105 {
1106 	int nid;
1107 	int shift = 0;
1108 	unsigned long freed;
1109 
1110 	do {
1111 		freed = 0;
1112 		for_each_online_node(nid) {
1113 			if (fatal_signal_pending(current))
1114 				return;
1115 
1116 			freed += drop_slab_node(nid);
1117 		}
1118 	} while ((freed >> shift++) > 1);
1119 }
1120 
1121 static int reclaimer_offset(void)
1122 {
1123 	BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD !=
1124 			PGDEMOTE_DIRECT - PGDEMOTE_KSWAPD);
1125 	BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD !=
1126 			PGSCAN_DIRECT - PGSCAN_KSWAPD);
1127 	BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD !=
1128 			PGDEMOTE_KHUGEPAGED - PGDEMOTE_KSWAPD);
1129 	BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD !=
1130 			PGSCAN_KHUGEPAGED - PGSCAN_KSWAPD);
1131 
1132 	if (current_is_kswapd())
1133 		return 0;
1134 	if (current_is_khugepaged())
1135 		return PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD;
1136 	return PGSTEAL_DIRECT - PGSTEAL_KSWAPD;
1137 }
1138 
1139 static inline int is_page_cache_freeable(struct folio *folio)
1140 {
1141 	/*
1142 	 * A freeable page cache folio is referenced only by the caller
1143 	 * that isolated the folio, the page cache and optional filesystem
1144 	 * private data at folio->private.
1145 	 */
1146 	return folio_ref_count(folio) - folio_test_private(folio) ==
1147 		1 + folio_nr_pages(folio);
1148 }
1149 
1150 /*
1151  * We detected a synchronous write error writing a folio out.  Probably
1152  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
1153  * fsync(), msync() or close().
1154  *
1155  * The tricky part is that after writepage we cannot touch the mapping: nothing
1156  * prevents it from being freed up.  But we have a ref on the folio and once
1157  * that folio is locked, the mapping is pinned.
1158  *
1159  * We're allowed to run sleeping folio_lock() here because we know the caller has
1160  * __GFP_FS.
1161  */
1162 static void handle_write_error(struct address_space *mapping,
1163 				struct folio *folio, int error)
1164 {
1165 	folio_lock(folio);
1166 	if (folio_mapping(folio) == mapping)
1167 		mapping_set_error(mapping, error);
1168 	folio_unlock(folio);
1169 }
1170 
1171 static bool skip_throttle_noprogress(pg_data_t *pgdat)
1172 {
1173 	int reclaimable = 0, write_pending = 0;
1174 	int i;
1175 
1176 	/*
1177 	 * If kswapd is disabled, reschedule if necessary but do not
1178 	 * throttle as the system is likely near OOM.
1179 	 */
1180 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
1181 		return true;
1182 
1183 	/*
1184 	 * If there are a lot of dirty/writeback folios then do not
1185 	 * throttle as throttling will occur when the folios cycle
1186 	 * towards the end of the LRU if still under writeback.
1187 	 */
1188 	for (i = 0; i < MAX_NR_ZONES; i++) {
1189 		struct zone *zone = pgdat->node_zones + i;
1190 
1191 		if (!managed_zone(zone))
1192 			continue;
1193 
1194 		reclaimable += zone_reclaimable_pages(zone);
1195 		write_pending += zone_page_state_snapshot(zone,
1196 						  NR_ZONE_WRITE_PENDING);
1197 	}
1198 	if (2 * write_pending <= reclaimable)
1199 		return true;
1200 
1201 	return false;
1202 }
1203 
1204 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
1205 {
1206 	wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason];
1207 	long timeout, ret;
1208 	DEFINE_WAIT(wait);
1209 
1210 	/*
1211 	 * Do not throttle user workers, kthreads other than kswapd or
1212 	 * workqueues. They may be required for reclaim to make
1213 	 * forward progress (e.g. journalling workqueues or kthreads).
1214 	 */
1215 	if (!current_is_kswapd() &&
1216 	    current->flags & (PF_USER_WORKER|PF_KTHREAD)) {
1217 		cond_resched();
1218 		return;
1219 	}
1220 
1221 	/*
1222 	 * These figures are pulled out of thin air.
1223 	 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
1224 	 * parallel reclaimers which is a short-lived event so the timeout is
1225 	 * short. Failing to make progress or waiting on writeback are
1226 	 * potentially long-lived events so use a longer timeout. This is shaky
1227 	 * logic as a failure to make progress could be due to anything from
1228 	 * writeback to a slow device to excessive referenced folios at the tail
1229 	 * of the inactive LRU.
1230 	 */
1231 	switch(reason) {
1232 	case VMSCAN_THROTTLE_WRITEBACK:
1233 		timeout = HZ/10;
1234 
1235 		if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) {
1236 			WRITE_ONCE(pgdat->nr_reclaim_start,
1237 				node_page_state(pgdat, NR_THROTTLED_WRITTEN));
1238 		}
1239 
1240 		break;
1241 	case VMSCAN_THROTTLE_CONGESTED:
1242 		fallthrough;
1243 	case VMSCAN_THROTTLE_NOPROGRESS:
1244 		if (skip_throttle_noprogress(pgdat)) {
1245 			cond_resched();
1246 			return;
1247 		}
1248 
1249 		timeout = 1;
1250 
1251 		break;
1252 	case VMSCAN_THROTTLE_ISOLATED:
1253 		timeout = HZ/50;
1254 		break;
1255 	default:
1256 		WARN_ON_ONCE(1);
1257 		timeout = HZ;
1258 		break;
1259 	}
1260 
1261 	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1262 	ret = schedule_timeout(timeout);
1263 	finish_wait(wqh, &wait);
1264 
1265 	if (reason == VMSCAN_THROTTLE_WRITEBACK)
1266 		atomic_dec(&pgdat->nr_writeback_throttled);
1267 
1268 	trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout),
1269 				jiffies_to_usecs(timeout - ret),
1270 				reason);
1271 }
1272 
1273 /*
1274  * Account for folios written if tasks are throttled waiting on dirty
1275  * folios to clean. If enough folios have been cleaned since throttling
1276  * started then wakeup the throttled tasks.
1277  */
1278 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
1279 							int nr_throttled)
1280 {
1281 	unsigned long nr_written;
1282 
1283 	node_stat_add_folio(folio, NR_THROTTLED_WRITTEN);
1284 
1285 	/*
1286 	 * This is an inaccurate read as the per-cpu deltas may not
1287 	 * be synchronised. However, given that the system is
1288 	 * writeback throttled, it is not worth taking the penalty
1289 	 * of getting an accurate count. At worst, the throttle
1290 	 * timeout guarantees forward progress.
1291 	 */
1292 	nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) -
1293 		READ_ONCE(pgdat->nr_reclaim_start);
1294 
1295 	if (nr_written > SWAP_CLUSTER_MAX * nr_throttled)
1296 		wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]);
1297 }
1298 
1299 /* possible outcome of pageout() */
1300 typedef enum {
1301 	/* failed to write folio out, folio is locked */
1302 	PAGE_KEEP,
1303 	/* move folio to the active list, folio is locked */
1304 	PAGE_ACTIVATE,
1305 	/* folio has been sent to the disk successfully, folio is unlocked */
1306 	PAGE_SUCCESS,
1307 	/* folio is clean and locked */
1308 	PAGE_CLEAN,
1309 } pageout_t;
1310 
1311 /*
1312  * pageout is called by shrink_folio_list() for each dirty folio.
1313  * Calls ->writepage().
1314  */
1315 static pageout_t pageout(struct folio *folio, struct address_space *mapping,
1316 			 struct swap_iocb **plug)
1317 {
1318 	/*
1319 	 * If the folio is dirty, only perform writeback if that write
1320 	 * will be non-blocking.  To prevent this allocation from being
1321 	 * stalled by pagecache activity.  But note that there may be
1322 	 * stalls if we need to run get_block().  We could test
1323 	 * PagePrivate for that.
1324 	 *
1325 	 * If this process is currently in __generic_file_write_iter() against
1326 	 * this folio's queue, we can perform writeback even if that
1327 	 * will block.
1328 	 *
1329 	 * If the folio is swapcache, write it back even if that would
1330 	 * block, for some throttling. This happens by accident, because
1331 	 * swap_backing_dev_info is bust: it doesn't reflect the
1332 	 * congestion state of the swapdevs.  Easy to fix, if needed.
1333 	 */
1334 	if (!is_page_cache_freeable(folio))
1335 		return PAGE_KEEP;
1336 	if (!mapping) {
1337 		/*
1338 		 * Some data journaling orphaned folios can have
1339 		 * folio->mapping == NULL while being dirty with clean buffers.
1340 		 */
1341 		if (folio_test_private(folio)) {
1342 			if (try_to_free_buffers(folio)) {
1343 				folio_clear_dirty(folio);
1344 				pr_info("%s: orphaned folio\n", __func__);
1345 				return PAGE_CLEAN;
1346 			}
1347 		}
1348 		return PAGE_KEEP;
1349 	}
1350 	if (mapping->a_ops->writepage == NULL)
1351 		return PAGE_ACTIVATE;
1352 
1353 	if (folio_clear_dirty_for_io(folio)) {
1354 		int res;
1355 		struct writeback_control wbc = {
1356 			.sync_mode = WB_SYNC_NONE,
1357 			.nr_to_write = SWAP_CLUSTER_MAX,
1358 			.range_start = 0,
1359 			.range_end = LLONG_MAX,
1360 			.for_reclaim = 1,
1361 			.swap_plug = plug,
1362 		};
1363 
1364 		folio_set_reclaim(folio);
1365 		res = mapping->a_ops->writepage(&folio->page, &wbc);
1366 		if (res < 0)
1367 			handle_write_error(mapping, folio, res);
1368 		if (res == AOP_WRITEPAGE_ACTIVATE) {
1369 			folio_clear_reclaim(folio);
1370 			return PAGE_ACTIVATE;
1371 		}
1372 
1373 		if (!folio_test_writeback(folio)) {
1374 			/* synchronous write or broken a_ops? */
1375 			folio_clear_reclaim(folio);
1376 		}
1377 		trace_mm_vmscan_write_folio(folio);
1378 		node_stat_add_folio(folio, NR_VMSCAN_WRITE);
1379 		return PAGE_SUCCESS;
1380 	}
1381 
1382 	return PAGE_CLEAN;
1383 }
1384 
1385 /*
1386  * Same as remove_mapping, but if the folio is removed from the mapping, it
1387  * gets returned with a refcount of 0.
1388  */
1389 static int __remove_mapping(struct address_space *mapping, struct folio *folio,
1390 			    bool reclaimed, struct mem_cgroup *target_memcg)
1391 {
1392 	int refcount;
1393 	void *shadow = NULL;
1394 
1395 	BUG_ON(!folio_test_locked(folio));
1396 	BUG_ON(mapping != folio_mapping(folio));
1397 
1398 	if (!folio_test_swapcache(folio))
1399 		spin_lock(&mapping->host->i_lock);
1400 	xa_lock_irq(&mapping->i_pages);
1401 	/*
1402 	 * The non racy check for a busy folio.
1403 	 *
1404 	 * Must be careful with the order of the tests. When someone has
1405 	 * a ref to the folio, it may be possible that they dirty it then
1406 	 * drop the reference. So if the dirty flag is tested before the
1407 	 * refcount here, then the following race may occur:
1408 	 *
1409 	 * get_user_pages(&page);
1410 	 * [user mapping goes away]
1411 	 * write_to(page);
1412 	 *				!folio_test_dirty(folio)    [good]
1413 	 * folio_set_dirty(folio);
1414 	 * folio_put(folio);
1415 	 *				!refcount(folio)   [good, discard it]
1416 	 *
1417 	 * [oops, our write_to data is lost]
1418 	 *
1419 	 * Reversing the order of the tests ensures such a situation cannot
1420 	 * escape unnoticed. The smp_rmb is needed to ensure the folio->flags
1421 	 * load is not satisfied before that of folio->_refcount.
1422 	 *
1423 	 * Note that if the dirty flag is always set via folio_mark_dirty,
1424 	 * and thus under the i_pages lock, then this ordering is not required.
1425 	 */
1426 	refcount = 1 + folio_nr_pages(folio);
1427 	if (!folio_ref_freeze(folio, refcount))
1428 		goto cannot_free;
1429 	/* note: atomic_cmpxchg in folio_ref_freeze provides the smp_rmb */
1430 	if (unlikely(folio_test_dirty(folio))) {
1431 		folio_ref_unfreeze(folio, refcount);
1432 		goto cannot_free;
1433 	}
1434 
1435 	if (folio_test_swapcache(folio)) {
1436 		swp_entry_t swap = folio_swap_entry(folio);
1437 
1438 		if (reclaimed && !mapping_exiting(mapping))
1439 			shadow = workingset_eviction(folio, target_memcg);
1440 		__delete_from_swap_cache(folio, swap, shadow);
1441 		mem_cgroup_swapout(folio, swap);
1442 		xa_unlock_irq(&mapping->i_pages);
1443 		put_swap_folio(folio, swap);
1444 	} else {
1445 		void (*free_folio)(struct folio *);
1446 
1447 		free_folio = mapping->a_ops->free_folio;
1448 		/*
1449 		 * Remember a shadow entry for reclaimed file cache in
1450 		 * order to detect refaults, thus thrashing, later on.
1451 		 *
1452 		 * But don't store shadows in an address space that is
1453 		 * already exiting.  This is not just an optimization,
1454 		 * inode reclaim needs to empty out the radix tree or
1455 		 * the nodes are lost.  Don't plant shadows behind its
1456 		 * back.
1457 		 *
1458 		 * We also don't store shadows for DAX mappings because the
1459 		 * only page cache folios found in these are zero pages
1460 		 * covering holes, and because we don't want to mix DAX
1461 		 * exceptional entries and shadow exceptional entries in the
1462 		 * same address_space.
1463 		 */
1464 		if (reclaimed && folio_is_file_lru(folio) &&
1465 		    !mapping_exiting(mapping) && !dax_mapping(mapping))
1466 			shadow = workingset_eviction(folio, target_memcg);
1467 		__filemap_remove_folio(folio, shadow);
1468 		xa_unlock_irq(&mapping->i_pages);
1469 		if (mapping_shrinkable(mapping))
1470 			inode_add_lru(mapping->host);
1471 		spin_unlock(&mapping->host->i_lock);
1472 
1473 		if (free_folio)
1474 			free_folio(folio);
1475 	}
1476 
1477 	return 1;
1478 
1479 cannot_free:
1480 	xa_unlock_irq(&mapping->i_pages);
1481 	if (!folio_test_swapcache(folio))
1482 		spin_unlock(&mapping->host->i_lock);
1483 	return 0;
1484 }
1485 
1486 /**
1487  * remove_mapping() - Attempt to remove a folio from its mapping.
1488  * @mapping: The address space.
1489  * @folio: The folio to remove.
1490  *
1491  * If the folio is dirty, under writeback or if someone else has a ref
1492  * on it, removal will fail.
1493  * Return: The number of pages removed from the mapping.  0 if the folio
1494  * could not be removed.
1495  * Context: The caller should have a single refcount on the folio and
1496  * hold its lock.
1497  */
1498 long remove_mapping(struct address_space *mapping, struct folio *folio)
1499 {
1500 	if (__remove_mapping(mapping, folio, false, NULL)) {
1501 		/*
1502 		 * Unfreezing the refcount with 1 effectively
1503 		 * drops the pagecache ref for us without requiring another
1504 		 * atomic operation.
1505 		 */
1506 		folio_ref_unfreeze(folio, 1);
1507 		return folio_nr_pages(folio);
1508 	}
1509 	return 0;
1510 }
1511 
1512 /**
1513  * folio_putback_lru - Put previously isolated folio onto appropriate LRU list.
1514  * @folio: Folio to be returned to an LRU list.
1515  *
1516  * Add previously isolated @folio to appropriate LRU list.
1517  * The folio may still be unevictable for other reasons.
1518  *
1519  * Context: lru_lock must not be held, interrupts must be enabled.
1520  */
1521 void folio_putback_lru(struct folio *folio)
1522 {
1523 	folio_add_lru(folio);
1524 	folio_put(folio);		/* drop ref from isolate */
1525 }
1526 
1527 enum folio_references {
1528 	FOLIOREF_RECLAIM,
1529 	FOLIOREF_RECLAIM_CLEAN,
1530 	FOLIOREF_KEEP,
1531 	FOLIOREF_ACTIVATE,
1532 };
1533 
1534 static enum folio_references folio_check_references(struct folio *folio,
1535 						  struct scan_control *sc)
1536 {
1537 	int referenced_ptes, referenced_folio;
1538 	unsigned long vm_flags;
1539 
1540 	referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup,
1541 					   &vm_flags);
1542 	referenced_folio = folio_test_clear_referenced(folio);
1543 
1544 	/*
1545 	 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma.
1546 	 * Let the folio, now marked Mlocked, be moved to the unevictable list.
1547 	 */
1548 	if (vm_flags & VM_LOCKED)
1549 		return FOLIOREF_ACTIVATE;
1550 
1551 	/* rmap lock contention: rotate */
1552 	if (referenced_ptes == -1)
1553 		return FOLIOREF_KEEP;
1554 
1555 	if (referenced_ptes) {
1556 		/*
1557 		 * All mapped folios start out with page table
1558 		 * references from the instantiating fault, so we need
1559 		 * to look twice if a mapped file/anon folio is used more
1560 		 * than once.
1561 		 *
1562 		 * Mark it and spare it for another trip around the
1563 		 * inactive list.  Another page table reference will
1564 		 * lead to its activation.
1565 		 *
1566 		 * Note: the mark is set for activated folios as well
1567 		 * so that recently deactivated but used folios are
1568 		 * quickly recovered.
1569 		 */
1570 		folio_set_referenced(folio);
1571 
1572 		if (referenced_folio || referenced_ptes > 1)
1573 			return FOLIOREF_ACTIVATE;
1574 
1575 		/*
1576 		 * Activate file-backed executable folios after first usage.
1577 		 */
1578 		if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio))
1579 			return FOLIOREF_ACTIVATE;
1580 
1581 		return FOLIOREF_KEEP;
1582 	}
1583 
1584 	/* Reclaim if clean, defer dirty folios to writeback */
1585 	if (referenced_folio && folio_is_file_lru(folio))
1586 		return FOLIOREF_RECLAIM_CLEAN;
1587 
1588 	return FOLIOREF_RECLAIM;
1589 }
1590 
1591 /* Check if a folio is dirty or under writeback */
1592 static void folio_check_dirty_writeback(struct folio *folio,
1593 				       bool *dirty, bool *writeback)
1594 {
1595 	struct address_space *mapping;
1596 
1597 	/*
1598 	 * Anonymous folios are not handled by flushers and must be written
1599 	 * from reclaim context. Do not stall reclaim based on them.
1600 	 * MADV_FREE anonymous folios are put into inactive file list too.
1601 	 * They could be mistakenly treated as file lru. So further anon
1602 	 * test is needed.
1603 	 */
1604 	if (!folio_is_file_lru(folio) ||
1605 	    (folio_test_anon(folio) && !folio_test_swapbacked(folio))) {
1606 		*dirty = false;
1607 		*writeback = false;
1608 		return;
1609 	}
1610 
1611 	/* By default assume that the folio flags are accurate */
1612 	*dirty = folio_test_dirty(folio);
1613 	*writeback = folio_test_writeback(folio);
1614 
1615 	/* Verify dirty/writeback state if the filesystem supports it */
1616 	if (!folio_test_private(folio))
1617 		return;
1618 
1619 	mapping = folio_mapping(folio);
1620 	if (mapping && mapping->a_ops->is_dirty_writeback)
1621 		mapping->a_ops->is_dirty_writeback(folio, dirty, writeback);
1622 }
1623 
1624 static struct folio *alloc_demote_folio(struct folio *src,
1625 		unsigned long private)
1626 {
1627 	struct folio *dst;
1628 	nodemask_t *allowed_mask;
1629 	struct migration_target_control *mtc;
1630 
1631 	mtc = (struct migration_target_control *)private;
1632 
1633 	allowed_mask = mtc->nmask;
1634 	/*
1635 	 * make sure we allocate from the target node first also trying to
1636 	 * demote or reclaim pages from the target node via kswapd if we are
1637 	 * low on free memory on target node. If we don't do this and if
1638 	 * we have free memory on the slower(lower) memtier, we would start
1639 	 * allocating pages from slower(lower) memory tiers without even forcing
1640 	 * a demotion of cold pages from the target memtier. This can result
1641 	 * in the kernel placing hot pages in slower(lower) memory tiers.
1642 	 */
1643 	mtc->nmask = NULL;
1644 	mtc->gfp_mask |= __GFP_THISNODE;
1645 	dst = alloc_migration_target(src, (unsigned long)mtc);
1646 	if (dst)
1647 		return dst;
1648 
1649 	mtc->gfp_mask &= ~__GFP_THISNODE;
1650 	mtc->nmask = allowed_mask;
1651 
1652 	return alloc_migration_target(src, (unsigned long)mtc);
1653 }
1654 
1655 /*
1656  * Take folios on @demote_folios and attempt to demote them to another node.
1657  * Folios which are not demoted are left on @demote_folios.
1658  */
1659 static unsigned int demote_folio_list(struct list_head *demote_folios,
1660 				     struct pglist_data *pgdat)
1661 {
1662 	int target_nid = next_demotion_node(pgdat->node_id);
1663 	unsigned int nr_succeeded;
1664 	nodemask_t allowed_mask;
1665 
1666 	struct migration_target_control mtc = {
1667 		/*
1668 		 * Allocate from 'node', or fail quickly and quietly.
1669 		 * When this happens, 'page' will likely just be discarded
1670 		 * instead of migrated.
1671 		 */
1672 		.gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | __GFP_NOWARN |
1673 			__GFP_NOMEMALLOC | GFP_NOWAIT,
1674 		.nid = target_nid,
1675 		.nmask = &allowed_mask
1676 	};
1677 
1678 	if (list_empty(demote_folios))
1679 		return 0;
1680 
1681 	if (target_nid == NUMA_NO_NODE)
1682 		return 0;
1683 
1684 	node_get_allowed_targets(pgdat, &allowed_mask);
1685 
1686 	/* Demotion ignores all cpuset and mempolicy settings */
1687 	migrate_pages(demote_folios, alloc_demote_folio, NULL,
1688 		      (unsigned long)&mtc, MIGRATE_ASYNC, MR_DEMOTION,
1689 		      &nr_succeeded);
1690 
1691 	__count_vm_events(PGDEMOTE_KSWAPD + reclaimer_offset(), nr_succeeded);
1692 
1693 	return nr_succeeded;
1694 }
1695 
1696 static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask)
1697 {
1698 	if (gfp_mask & __GFP_FS)
1699 		return true;
1700 	if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO))
1701 		return false;
1702 	/*
1703 	 * We can "enter_fs" for swap-cache with only __GFP_IO
1704 	 * providing this isn't SWP_FS_OPS.
1705 	 * ->flags can be updated non-atomicially (scan_swap_map_slots),
1706 	 * but that will never affect SWP_FS_OPS, so the data_race
1707 	 * is safe.
1708 	 */
1709 	return !data_race(folio_swap_flags(folio) & SWP_FS_OPS);
1710 }
1711 
1712 /*
1713  * shrink_folio_list() returns the number of reclaimed pages
1714  */
1715 static unsigned int shrink_folio_list(struct list_head *folio_list,
1716 		struct pglist_data *pgdat, struct scan_control *sc,
1717 		struct reclaim_stat *stat, bool ignore_references)
1718 {
1719 	LIST_HEAD(ret_folios);
1720 	LIST_HEAD(free_folios);
1721 	LIST_HEAD(demote_folios);
1722 	unsigned int nr_reclaimed = 0;
1723 	unsigned int pgactivate = 0;
1724 	bool do_demote_pass;
1725 	struct swap_iocb *plug = NULL;
1726 
1727 	memset(stat, 0, sizeof(*stat));
1728 	cond_resched();
1729 	do_demote_pass = can_demote(pgdat->node_id, sc);
1730 
1731 retry:
1732 	while (!list_empty(folio_list)) {
1733 		struct address_space *mapping;
1734 		struct folio *folio;
1735 		enum folio_references references = FOLIOREF_RECLAIM;
1736 		bool dirty, writeback;
1737 		unsigned int nr_pages;
1738 
1739 		cond_resched();
1740 
1741 		folio = lru_to_folio(folio_list);
1742 		list_del(&folio->lru);
1743 
1744 		if (!folio_trylock(folio))
1745 			goto keep;
1746 
1747 		VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1748 
1749 		nr_pages = folio_nr_pages(folio);
1750 
1751 		/* Account the number of base pages */
1752 		sc->nr_scanned += nr_pages;
1753 
1754 		if (unlikely(!folio_evictable(folio)))
1755 			goto activate_locked;
1756 
1757 		if (!sc->may_unmap && folio_mapped(folio))
1758 			goto keep_locked;
1759 
1760 		/* folio_update_gen() tried to promote this page? */
1761 		if (lru_gen_enabled() && !ignore_references &&
1762 		    folio_mapped(folio) && folio_test_referenced(folio))
1763 			goto keep_locked;
1764 
1765 		/*
1766 		 * The number of dirty pages determines if a node is marked
1767 		 * reclaim_congested. kswapd will stall and start writing
1768 		 * folios if the tail of the LRU is all dirty unqueued folios.
1769 		 */
1770 		folio_check_dirty_writeback(folio, &dirty, &writeback);
1771 		if (dirty || writeback)
1772 			stat->nr_dirty += nr_pages;
1773 
1774 		if (dirty && !writeback)
1775 			stat->nr_unqueued_dirty += nr_pages;
1776 
1777 		/*
1778 		 * Treat this folio as congested if folios are cycling
1779 		 * through the LRU so quickly that the folios marked
1780 		 * for immediate reclaim are making it to the end of
1781 		 * the LRU a second time.
1782 		 */
1783 		if (writeback && folio_test_reclaim(folio))
1784 			stat->nr_congested += nr_pages;
1785 
1786 		/*
1787 		 * If a folio at the tail of the LRU is under writeback, there
1788 		 * are three cases to consider.
1789 		 *
1790 		 * 1) If reclaim is encountering an excessive number
1791 		 *    of folios under writeback and this folio has both
1792 		 *    the writeback and reclaim flags set, then it
1793 		 *    indicates that folios are being queued for I/O but
1794 		 *    are being recycled through the LRU before the I/O
1795 		 *    can complete. Waiting on the folio itself risks an
1796 		 *    indefinite stall if it is impossible to writeback
1797 		 *    the folio due to I/O error or disconnected storage
1798 		 *    so instead note that the LRU is being scanned too
1799 		 *    quickly and the caller can stall after the folio
1800 		 *    list has been processed.
1801 		 *
1802 		 * 2) Global or new memcg reclaim encounters a folio that is
1803 		 *    not marked for immediate reclaim, or the caller does not
1804 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1805 		 *    not to fs). In this case mark the folio for immediate
1806 		 *    reclaim and continue scanning.
1807 		 *
1808 		 *    Require may_enter_fs() because we would wait on fs, which
1809 		 *    may not have submitted I/O yet. And the loop driver might
1810 		 *    enter reclaim, and deadlock if it waits on a folio for
1811 		 *    which it is needed to do the write (loop masks off
1812 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1813 		 *    would probably show more reasons.
1814 		 *
1815 		 * 3) Legacy memcg encounters a folio that already has the
1816 		 *    reclaim flag set. memcg does not have any dirty folio
1817 		 *    throttling so we could easily OOM just because too many
1818 		 *    folios are in writeback and there is nothing else to
1819 		 *    reclaim. Wait for the writeback to complete.
1820 		 *
1821 		 * In cases 1) and 2) we activate the folios to get them out of
1822 		 * the way while we continue scanning for clean folios on the
1823 		 * inactive list and refilling from the active list. The
1824 		 * observation here is that waiting for disk writes is more
1825 		 * expensive than potentially causing reloads down the line.
1826 		 * Since they're marked for immediate reclaim, they won't put
1827 		 * memory pressure on the cache working set any longer than it
1828 		 * takes to write them to disk.
1829 		 */
1830 		if (folio_test_writeback(folio)) {
1831 			/* Case 1 above */
1832 			if (current_is_kswapd() &&
1833 			    folio_test_reclaim(folio) &&
1834 			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1835 				stat->nr_immediate += nr_pages;
1836 				goto activate_locked;
1837 
1838 			/* Case 2 above */
1839 			} else if (writeback_throttling_sane(sc) ||
1840 			    !folio_test_reclaim(folio) ||
1841 			    !may_enter_fs(folio, sc->gfp_mask)) {
1842 				/*
1843 				 * This is slightly racy -
1844 				 * folio_end_writeback() might have
1845 				 * just cleared the reclaim flag, then
1846 				 * setting the reclaim flag here ends up
1847 				 * interpreted as the readahead flag - but
1848 				 * that does not matter enough to care.
1849 				 * What we do want is for this folio to
1850 				 * have the reclaim flag set next time
1851 				 * memcg reclaim reaches the tests above,
1852 				 * so it will then wait for writeback to
1853 				 * avoid OOM; and it's also appropriate
1854 				 * in global reclaim.
1855 				 */
1856 				folio_set_reclaim(folio);
1857 				stat->nr_writeback += nr_pages;
1858 				goto activate_locked;
1859 
1860 			/* Case 3 above */
1861 			} else {
1862 				folio_unlock(folio);
1863 				folio_wait_writeback(folio);
1864 				/* then go back and try same folio again */
1865 				list_add_tail(&folio->lru, folio_list);
1866 				continue;
1867 			}
1868 		}
1869 
1870 		if (!ignore_references)
1871 			references = folio_check_references(folio, sc);
1872 
1873 		switch (references) {
1874 		case FOLIOREF_ACTIVATE:
1875 			goto activate_locked;
1876 		case FOLIOREF_KEEP:
1877 			stat->nr_ref_keep += nr_pages;
1878 			goto keep_locked;
1879 		case FOLIOREF_RECLAIM:
1880 		case FOLIOREF_RECLAIM_CLEAN:
1881 			; /* try to reclaim the folio below */
1882 		}
1883 
1884 		/*
1885 		 * Before reclaiming the folio, try to relocate
1886 		 * its contents to another node.
1887 		 */
1888 		if (do_demote_pass &&
1889 		    (thp_migration_supported() || !folio_test_large(folio))) {
1890 			list_add(&folio->lru, &demote_folios);
1891 			folio_unlock(folio);
1892 			continue;
1893 		}
1894 
1895 		/*
1896 		 * Anonymous process memory has backing store?
1897 		 * Try to allocate it some swap space here.
1898 		 * Lazyfree folio could be freed directly
1899 		 */
1900 		if (folio_test_anon(folio) && folio_test_swapbacked(folio)) {
1901 			if (!folio_test_swapcache(folio)) {
1902 				if (!(sc->gfp_mask & __GFP_IO))
1903 					goto keep_locked;
1904 				if (folio_maybe_dma_pinned(folio))
1905 					goto keep_locked;
1906 				if (folio_test_large(folio)) {
1907 					/* cannot split folio, skip it */
1908 					if (!can_split_folio(folio, NULL))
1909 						goto activate_locked;
1910 					/*
1911 					 * Split folios without a PMD map right
1912 					 * away. Chances are some or all of the
1913 					 * tail pages can be freed without IO.
1914 					 */
1915 					if (!folio_entire_mapcount(folio) &&
1916 					    split_folio_to_list(folio,
1917 								folio_list))
1918 						goto activate_locked;
1919 				}
1920 				if (!add_to_swap(folio)) {
1921 					if (!folio_test_large(folio))
1922 						goto activate_locked_split;
1923 					/* Fallback to swap normal pages */
1924 					if (split_folio_to_list(folio,
1925 								folio_list))
1926 						goto activate_locked;
1927 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1928 					count_vm_event(THP_SWPOUT_FALLBACK);
1929 #endif
1930 					if (!add_to_swap(folio))
1931 						goto activate_locked_split;
1932 				}
1933 			}
1934 		} else if (folio_test_swapbacked(folio) &&
1935 			   folio_test_large(folio)) {
1936 			/* Split shmem folio */
1937 			if (split_folio_to_list(folio, folio_list))
1938 				goto keep_locked;
1939 		}
1940 
1941 		/*
1942 		 * If the folio was split above, the tail pages will make
1943 		 * their own pass through this function and be accounted
1944 		 * then.
1945 		 */
1946 		if ((nr_pages > 1) && !folio_test_large(folio)) {
1947 			sc->nr_scanned -= (nr_pages - 1);
1948 			nr_pages = 1;
1949 		}
1950 
1951 		/*
1952 		 * The folio is mapped into the page tables of one or more
1953 		 * processes. Try to unmap it here.
1954 		 */
1955 		if (folio_mapped(folio)) {
1956 			enum ttu_flags flags = TTU_BATCH_FLUSH;
1957 			bool was_swapbacked = folio_test_swapbacked(folio);
1958 
1959 			if (folio_test_pmd_mappable(folio))
1960 				flags |= TTU_SPLIT_HUGE_PMD;
1961 
1962 			try_to_unmap(folio, flags);
1963 			if (folio_mapped(folio)) {
1964 				stat->nr_unmap_fail += nr_pages;
1965 				if (!was_swapbacked &&
1966 				    folio_test_swapbacked(folio))
1967 					stat->nr_lazyfree_fail += nr_pages;
1968 				goto activate_locked;
1969 			}
1970 		}
1971 
1972 		/*
1973 		 * Folio is unmapped now so it cannot be newly pinned anymore.
1974 		 * No point in trying to reclaim folio if it is pinned.
1975 		 * Furthermore we don't want to reclaim underlying fs metadata
1976 		 * if the folio is pinned and thus potentially modified by the
1977 		 * pinning process as that may upset the filesystem.
1978 		 */
1979 		if (folio_maybe_dma_pinned(folio))
1980 			goto activate_locked;
1981 
1982 		mapping = folio_mapping(folio);
1983 		if (folio_test_dirty(folio)) {
1984 			/*
1985 			 * Only kswapd can writeback filesystem folios
1986 			 * to avoid risk of stack overflow. But avoid
1987 			 * injecting inefficient single-folio I/O into
1988 			 * flusher writeback as much as possible: only
1989 			 * write folios when we've encountered many
1990 			 * dirty folios, and when we've already scanned
1991 			 * the rest of the LRU for clean folios and see
1992 			 * the same dirty folios again (with the reclaim
1993 			 * flag set).
1994 			 */
1995 			if (folio_is_file_lru(folio) &&
1996 			    (!current_is_kswapd() ||
1997 			     !folio_test_reclaim(folio) ||
1998 			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1999 				/*
2000 				 * Immediately reclaim when written back.
2001 				 * Similar in principle to folio_deactivate()
2002 				 * except we already have the folio isolated
2003 				 * and know it's dirty
2004 				 */
2005 				node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE,
2006 						nr_pages);
2007 				folio_set_reclaim(folio);
2008 
2009 				goto activate_locked;
2010 			}
2011 
2012 			if (references == FOLIOREF_RECLAIM_CLEAN)
2013 				goto keep_locked;
2014 			if (!may_enter_fs(folio, sc->gfp_mask))
2015 				goto keep_locked;
2016 			if (!sc->may_writepage)
2017 				goto keep_locked;
2018 
2019 			/*
2020 			 * Folio is dirty. Flush the TLB if a writable entry
2021 			 * potentially exists to avoid CPU writes after I/O
2022 			 * starts and then write it out here.
2023 			 */
2024 			try_to_unmap_flush_dirty();
2025 			switch (pageout(folio, mapping, &plug)) {
2026 			case PAGE_KEEP:
2027 				goto keep_locked;
2028 			case PAGE_ACTIVATE:
2029 				goto activate_locked;
2030 			case PAGE_SUCCESS:
2031 				stat->nr_pageout += nr_pages;
2032 
2033 				if (folio_test_writeback(folio))
2034 					goto keep;
2035 				if (folio_test_dirty(folio))
2036 					goto keep;
2037 
2038 				/*
2039 				 * A synchronous write - probably a ramdisk.  Go
2040 				 * ahead and try to reclaim the folio.
2041 				 */
2042 				if (!folio_trylock(folio))
2043 					goto keep;
2044 				if (folio_test_dirty(folio) ||
2045 				    folio_test_writeback(folio))
2046 					goto keep_locked;
2047 				mapping = folio_mapping(folio);
2048 				fallthrough;
2049 			case PAGE_CLEAN:
2050 				; /* try to free the folio below */
2051 			}
2052 		}
2053 
2054 		/*
2055 		 * If the folio has buffers, try to free the buffer
2056 		 * mappings associated with this folio. If we succeed
2057 		 * we try to free the folio as well.
2058 		 *
2059 		 * We do this even if the folio is dirty.
2060 		 * filemap_release_folio() does not perform I/O, but it
2061 		 * is possible for a folio to have the dirty flag set,
2062 		 * but it is actually clean (all its buffers are clean).
2063 		 * This happens if the buffers were written out directly,
2064 		 * with submit_bh(). ext3 will do this, as well as
2065 		 * the blockdev mapping.  filemap_release_folio() will
2066 		 * discover that cleanness and will drop the buffers
2067 		 * and mark the folio clean - it can be freed.
2068 		 *
2069 		 * Rarely, folios can have buffers and no ->mapping.
2070 		 * These are the folios which were not successfully
2071 		 * invalidated in truncate_cleanup_folio().  We try to
2072 		 * drop those buffers here and if that worked, and the
2073 		 * folio is no longer mapped into process address space
2074 		 * (refcount == 1) it can be freed.  Otherwise, leave
2075 		 * the folio on the LRU so it is swappable.
2076 		 */
2077 		if (folio_has_private(folio)) {
2078 			if (!filemap_release_folio(folio, sc->gfp_mask))
2079 				goto activate_locked;
2080 			if (!mapping && folio_ref_count(folio) == 1) {
2081 				folio_unlock(folio);
2082 				if (folio_put_testzero(folio))
2083 					goto free_it;
2084 				else {
2085 					/*
2086 					 * rare race with speculative reference.
2087 					 * the speculative reference will free
2088 					 * this folio shortly, so we may
2089 					 * increment nr_reclaimed here (and
2090 					 * leave it off the LRU).
2091 					 */
2092 					nr_reclaimed += nr_pages;
2093 					continue;
2094 				}
2095 			}
2096 		}
2097 
2098 		if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) {
2099 			/* follow __remove_mapping for reference */
2100 			if (!folio_ref_freeze(folio, 1))
2101 				goto keep_locked;
2102 			/*
2103 			 * The folio has only one reference left, which is
2104 			 * from the isolation. After the caller puts the
2105 			 * folio back on the lru and drops the reference, the
2106 			 * folio will be freed anyway. It doesn't matter
2107 			 * which lru it goes on. So we don't bother checking
2108 			 * the dirty flag here.
2109 			 */
2110 			count_vm_events(PGLAZYFREED, nr_pages);
2111 			count_memcg_folio_events(folio, PGLAZYFREED, nr_pages);
2112 		} else if (!mapping || !__remove_mapping(mapping, folio, true,
2113 							 sc->target_mem_cgroup))
2114 			goto keep_locked;
2115 
2116 		folio_unlock(folio);
2117 free_it:
2118 		/*
2119 		 * Folio may get swapped out as a whole, need to account
2120 		 * all pages in it.
2121 		 */
2122 		nr_reclaimed += nr_pages;
2123 
2124 		/*
2125 		 * Is there need to periodically free_folio_list? It would
2126 		 * appear not as the counts should be low
2127 		 */
2128 		if (unlikely(folio_test_large(folio)))
2129 			destroy_large_folio(folio);
2130 		else
2131 			list_add(&folio->lru, &free_folios);
2132 		continue;
2133 
2134 activate_locked_split:
2135 		/*
2136 		 * The tail pages that are failed to add into swap cache
2137 		 * reach here.  Fixup nr_scanned and nr_pages.
2138 		 */
2139 		if (nr_pages > 1) {
2140 			sc->nr_scanned -= (nr_pages - 1);
2141 			nr_pages = 1;
2142 		}
2143 activate_locked:
2144 		/* Not a candidate for swapping, so reclaim swap space. */
2145 		if (folio_test_swapcache(folio) &&
2146 		    (mem_cgroup_swap_full(folio) || folio_test_mlocked(folio)))
2147 			folio_free_swap(folio);
2148 		VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
2149 		if (!folio_test_mlocked(folio)) {
2150 			int type = folio_is_file_lru(folio);
2151 			folio_set_active(folio);
2152 			stat->nr_activate[type] += nr_pages;
2153 			count_memcg_folio_events(folio, PGACTIVATE, nr_pages);
2154 		}
2155 keep_locked:
2156 		folio_unlock(folio);
2157 keep:
2158 		list_add(&folio->lru, &ret_folios);
2159 		VM_BUG_ON_FOLIO(folio_test_lru(folio) ||
2160 				folio_test_unevictable(folio), folio);
2161 	}
2162 	/* 'folio_list' is always empty here */
2163 
2164 	/* Migrate folios selected for demotion */
2165 	nr_reclaimed += demote_folio_list(&demote_folios, pgdat);
2166 	/* Folios that could not be demoted are still in @demote_folios */
2167 	if (!list_empty(&demote_folios)) {
2168 		/* Folios which weren't demoted go back on @folio_list */
2169 		list_splice_init(&demote_folios, folio_list);
2170 
2171 		/*
2172 		 * goto retry to reclaim the undemoted folios in folio_list if
2173 		 * desired.
2174 		 *
2175 		 * Reclaiming directly from top tier nodes is not often desired
2176 		 * due to it breaking the LRU ordering: in general memory
2177 		 * should be reclaimed from lower tier nodes and demoted from
2178 		 * top tier nodes.
2179 		 *
2180 		 * However, disabling reclaim from top tier nodes entirely
2181 		 * would cause ooms in edge scenarios where lower tier memory
2182 		 * is unreclaimable for whatever reason, eg memory being
2183 		 * mlocked or too hot to reclaim. We can disable reclaim
2184 		 * from top tier nodes in proactive reclaim though as that is
2185 		 * not real memory pressure.
2186 		 */
2187 		if (!sc->proactive) {
2188 			do_demote_pass = false;
2189 			goto retry;
2190 		}
2191 	}
2192 
2193 	pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
2194 
2195 	mem_cgroup_uncharge_list(&free_folios);
2196 	try_to_unmap_flush();
2197 	free_unref_page_list(&free_folios);
2198 
2199 	list_splice(&ret_folios, folio_list);
2200 	count_vm_events(PGACTIVATE, pgactivate);
2201 
2202 	if (plug)
2203 		swap_write_unplug(plug);
2204 	return nr_reclaimed;
2205 }
2206 
2207 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
2208 					   struct list_head *folio_list)
2209 {
2210 	struct scan_control sc = {
2211 		.gfp_mask = GFP_KERNEL,
2212 		.may_unmap = 1,
2213 	};
2214 	struct reclaim_stat stat;
2215 	unsigned int nr_reclaimed;
2216 	struct folio *folio, *next;
2217 	LIST_HEAD(clean_folios);
2218 	unsigned int noreclaim_flag;
2219 
2220 	list_for_each_entry_safe(folio, next, folio_list, lru) {
2221 		if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) &&
2222 		    !folio_test_dirty(folio) && !__folio_test_movable(folio) &&
2223 		    !folio_test_unevictable(folio)) {
2224 			folio_clear_active(folio);
2225 			list_move(&folio->lru, &clean_folios);
2226 		}
2227 	}
2228 
2229 	/*
2230 	 * We should be safe here since we are only dealing with file pages and
2231 	 * we are not kswapd and therefore cannot write dirty file pages. But
2232 	 * call memalloc_noreclaim_save() anyway, just in case these conditions
2233 	 * change in the future.
2234 	 */
2235 	noreclaim_flag = memalloc_noreclaim_save();
2236 	nr_reclaimed = shrink_folio_list(&clean_folios, zone->zone_pgdat, &sc,
2237 					&stat, true);
2238 	memalloc_noreclaim_restore(noreclaim_flag);
2239 
2240 	list_splice(&clean_folios, folio_list);
2241 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2242 			    -(long)nr_reclaimed);
2243 	/*
2244 	 * Since lazyfree pages are isolated from file LRU from the beginning,
2245 	 * they will rotate back to anonymous LRU in the end if it failed to
2246 	 * discard so isolated count will be mismatched.
2247 	 * Compensate the isolated count for both LRU lists.
2248 	 */
2249 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
2250 			    stat.nr_lazyfree_fail);
2251 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2252 			    -(long)stat.nr_lazyfree_fail);
2253 	return nr_reclaimed;
2254 }
2255 
2256 /*
2257  * Update LRU sizes after isolating pages. The LRU size updates must
2258  * be complete before mem_cgroup_update_lru_size due to a sanity check.
2259  */
2260 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
2261 			enum lru_list lru, unsigned long *nr_zone_taken)
2262 {
2263 	int zid;
2264 
2265 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2266 		if (!nr_zone_taken[zid])
2267 			continue;
2268 
2269 		update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
2270 	}
2271 
2272 }
2273 
2274 /*
2275  * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
2276  *
2277  * lruvec->lru_lock is heavily contended.  Some of the functions that
2278  * shrink the lists perform better by taking out a batch of pages
2279  * and working on them outside the LRU lock.
2280  *
2281  * For pagecache intensive workloads, this function is the hottest
2282  * spot in the kernel (apart from copy_*_user functions).
2283  *
2284  * Lru_lock must be held before calling this function.
2285  *
2286  * @nr_to_scan:	The number of eligible pages to look through on the list.
2287  * @lruvec:	The LRU vector to pull pages from.
2288  * @dst:	The temp list to put pages on to.
2289  * @nr_scanned:	The number of pages that were scanned.
2290  * @sc:		The scan_control struct for this reclaim session
2291  * @lru:	LRU list id for isolating
2292  *
2293  * returns how many pages were moved onto *@dst.
2294  */
2295 static unsigned long isolate_lru_folios(unsigned long nr_to_scan,
2296 		struct lruvec *lruvec, struct list_head *dst,
2297 		unsigned long *nr_scanned, struct scan_control *sc,
2298 		enum lru_list lru)
2299 {
2300 	struct list_head *src = &lruvec->lists[lru];
2301 	unsigned long nr_taken = 0;
2302 	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
2303 	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
2304 	unsigned long skipped = 0;
2305 	unsigned long scan, total_scan, nr_pages;
2306 	LIST_HEAD(folios_skipped);
2307 
2308 	total_scan = 0;
2309 	scan = 0;
2310 	while (scan < nr_to_scan && !list_empty(src)) {
2311 		struct list_head *move_to = src;
2312 		struct folio *folio;
2313 
2314 		folio = lru_to_folio(src);
2315 		prefetchw_prev_lru_folio(folio, src, flags);
2316 
2317 		nr_pages = folio_nr_pages(folio);
2318 		total_scan += nr_pages;
2319 
2320 		if (folio_zonenum(folio) > sc->reclaim_idx) {
2321 			nr_skipped[folio_zonenum(folio)] += nr_pages;
2322 			move_to = &folios_skipped;
2323 			goto move;
2324 		}
2325 
2326 		/*
2327 		 * Do not count skipped folios because that makes the function
2328 		 * return with no isolated folios if the LRU mostly contains
2329 		 * ineligible folios.  This causes the VM to not reclaim any
2330 		 * folios, triggering a premature OOM.
2331 		 * Account all pages in a folio.
2332 		 */
2333 		scan += nr_pages;
2334 
2335 		if (!folio_test_lru(folio))
2336 			goto move;
2337 		if (!sc->may_unmap && folio_mapped(folio))
2338 			goto move;
2339 
2340 		/*
2341 		 * Be careful not to clear the lru flag until after we're
2342 		 * sure the folio is not being freed elsewhere -- the
2343 		 * folio release code relies on it.
2344 		 */
2345 		if (unlikely(!folio_try_get(folio)))
2346 			goto move;
2347 
2348 		if (!folio_test_clear_lru(folio)) {
2349 			/* Another thread is already isolating this folio */
2350 			folio_put(folio);
2351 			goto move;
2352 		}
2353 
2354 		nr_taken += nr_pages;
2355 		nr_zone_taken[folio_zonenum(folio)] += nr_pages;
2356 		move_to = dst;
2357 move:
2358 		list_move(&folio->lru, move_to);
2359 	}
2360 
2361 	/*
2362 	 * Splice any skipped folios to the start of the LRU list. Note that
2363 	 * this disrupts the LRU order when reclaiming for lower zones but
2364 	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
2365 	 * scanning would soon rescan the same folios to skip and waste lots
2366 	 * of cpu cycles.
2367 	 */
2368 	if (!list_empty(&folios_skipped)) {
2369 		int zid;
2370 
2371 		list_splice(&folios_skipped, src);
2372 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2373 			if (!nr_skipped[zid])
2374 				continue;
2375 
2376 			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
2377 			skipped += nr_skipped[zid];
2378 		}
2379 	}
2380 	*nr_scanned = total_scan;
2381 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
2382 				    total_scan, skipped, nr_taken,
2383 				    sc->may_unmap ? 0 : ISOLATE_UNMAPPED, lru);
2384 	update_lru_sizes(lruvec, lru, nr_zone_taken);
2385 	return nr_taken;
2386 }
2387 
2388 /**
2389  * folio_isolate_lru() - Try to isolate a folio from its LRU list.
2390  * @folio: Folio to isolate from its LRU list.
2391  *
2392  * Isolate a @folio from an LRU list and adjust the vmstat statistic
2393  * corresponding to whatever LRU list the folio was on.
2394  *
2395  * The folio will have its LRU flag cleared.  If it was found on the
2396  * active list, it will have the Active flag set.  If it was found on the
2397  * unevictable list, it will have the Unevictable flag set.  These flags
2398  * may need to be cleared by the caller before letting the page go.
2399  *
2400  * Context:
2401  *
2402  * (1) Must be called with an elevated refcount on the folio. This is a
2403  *     fundamental difference from isolate_lru_folios() (which is called
2404  *     without a stable reference).
2405  * (2) The lru_lock must not be held.
2406  * (3) Interrupts must be enabled.
2407  *
2408  * Return: true if the folio was removed from an LRU list.
2409  * false if the folio was not on an LRU list.
2410  */
2411 bool folio_isolate_lru(struct folio *folio)
2412 {
2413 	bool ret = false;
2414 
2415 	VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio);
2416 
2417 	if (folio_test_clear_lru(folio)) {
2418 		struct lruvec *lruvec;
2419 
2420 		folio_get(folio);
2421 		lruvec = folio_lruvec_lock_irq(folio);
2422 		lruvec_del_folio(lruvec, folio);
2423 		unlock_page_lruvec_irq(lruvec);
2424 		ret = true;
2425 	}
2426 
2427 	return ret;
2428 }
2429 
2430 /*
2431  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
2432  * then get rescheduled. When there are massive number of tasks doing page
2433  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
2434  * the LRU list will go small and be scanned faster than necessary, leading to
2435  * unnecessary swapping, thrashing and OOM.
2436  */
2437 static int too_many_isolated(struct pglist_data *pgdat, int file,
2438 		struct scan_control *sc)
2439 {
2440 	unsigned long inactive, isolated;
2441 	bool too_many;
2442 
2443 	if (current_is_kswapd())
2444 		return 0;
2445 
2446 	if (!writeback_throttling_sane(sc))
2447 		return 0;
2448 
2449 	if (file) {
2450 		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
2451 		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
2452 	} else {
2453 		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
2454 		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
2455 	}
2456 
2457 	/*
2458 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
2459 	 * won't get blocked by normal direct-reclaimers, forming a circular
2460 	 * deadlock.
2461 	 */
2462 	if (gfp_has_io_fs(sc->gfp_mask))
2463 		inactive >>= 3;
2464 
2465 	too_many = isolated > inactive;
2466 
2467 	/* Wake up tasks throttled due to too_many_isolated. */
2468 	if (!too_many)
2469 		wake_throttle_isolated(pgdat);
2470 
2471 	return too_many;
2472 }
2473 
2474 /*
2475  * move_folios_to_lru() moves folios from private @list to appropriate LRU list.
2476  * On return, @list is reused as a list of folios to be freed by the caller.
2477  *
2478  * Returns the number of pages moved to the given lruvec.
2479  */
2480 static unsigned int move_folios_to_lru(struct lruvec *lruvec,
2481 		struct list_head *list)
2482 {
2483 	int nr_pages, nr_moved = 0;
2484 	LIST_HEAD(folios_to_free);
2485 
2486 	while (!list_empty(list)) {
2487 		struct folio *folio = lru_to_folio(list);
2488 
2489 		VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
2490 		list_del(&folio->lru);
2491 		if (unlikely(!folio_evictable(folio))) {
2492 			spin_unlock_irq(&lruvec->lru_lock);
2493 			folio_putback_lru(folio);
2494 			spin_lock_irq(&lruvec->lru_lock);
2495 			continue;
2496 		}
2497 
2498 		/*
2499 		 * The folio_set_lru needs to be kept here for list integrity.
2500 		 * Otherwise:
2501 		 *   #0 move_folios_to_lru             #1 release_pages
2502 		 *   if (!folio_put_testzero())
2503 		 *				      if (folio_put_testzero())
2504 		 *				        !lru //skip lru_lock
2505 		 *     folio_set_lru()
2506 		 *     list_add(&folio->lru,)
2507 		 *                                        list_add(&folio->lru,)
2508 		 */
2509 		folio_set_lru(folio);
2510 
2511 		if (unlikely(folio_put_testzero(folio))) {
2512 			__folio_clear_lru_flags(folio);
2513 
2514 			if (unlikely(folio_test_large(folio))) {
2515 				spin_unlock_irq(&lruvec->lru_lock);
2516 				destroy_large_folio(folio);
2517 				spin_lock_irq(&lruvec->lru_lock);
2518 			} else
2519 				list_add(&folio->lru, &folios_to_free);
2520 
2521 			continue;
2522 		}
2523 
2524 		/*
2525 		 * All pages were isolated from the same lruvec (and isolation
2526 		 * inhibits memcg migration).
2527 		 */
2528 		VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio);
2529 		lruvec_add_folio(lruvec, folio);
2530 		nr_pages = folio_nr_pages(folio);
2531 		nr_moved += nr_pages;
2532 		if (folio_test_active(folio))
2533 			workingset_age_nonresident(lruvec, nr_pages);
2534 	}
2535 
2536 	/*
2537 	 * To save our caller's stack, now use input list for pages to free.
2538 	 */
2539 	list_splice(&folios_to_free, list);
2540 
2541 	return nr_moved;
2542 }
2543 
2544 /*
2545  * If a kernel thread (such as nfsd for loop-back mounts) services a backing
2546  * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case
2547  * we should not throttle.  Otherwise it is safe to do so.
2548  */
2549 static int current_may_throttle(void)
2550 {
2551 	return !(current->flags & PF_LOCAL_THROTTLE);
2552 }
2553 
2554 /*
2555  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
2556  * of reclaimed pages
2557  */
2558 static unsigned long shrink_inactive_list(unsigned long nr_to_scan,
2559 		struct lruvec *lruvec, struct scan_control *sc,
2560 		enum lru_list lru)
2561 {
2562 	LIST_HEAD(folio_list);
2563 	unsigned long nr_scanned;
2564 	unsigned int nr_reclaimed = 0;
2565 	unsigned long nr_taken;
2566 	struct reclaim_stat stat;
2567 	bool file = is_file_lru(lru);
2568 	enum vm_event_item item;
2569 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2570 	bool stalled = false;
2571 
2572 	while (unlikely(too_many_isolated(pgdat, file, sc))) {
2573 		if (stalled)
2574 			return 0;
2575 
2576 		/* wait a bit for the reclaimer. */
2577 		stalled = true;
2578 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
2579 
2580 		/* We are about to die and free our memory. Return now. */
2581 		if (fatal_signal_pending(current))
2582 			return SWAP_CLUSTER_MAX;
2583 	}
2584 
2585 	lru_add_drain();
2586 
2587 	spin_lock_irq(&lruvec->lru_lock);
2588 
2589 	nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &folio_list,
2590 				     &nr_scanned, sc, lru);
2591 
2592 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2593 	item = PGSCAN_KSWAPD + reclaimer_offset();
2594 	if (!cgroup_reclaim(sc))
2595 		__count_vm_events(item, nr_scanned);
2596 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
2597 	__count_vm_events(PGSCAN_ANON + file, nr_scanned);
2598 
2599 	spin_unlock_irq(&lruvec->lru_lock);
2600 
2601 	if (nr_taken == 0)
2602 		return 0;
2603 
2604 	nr_reclaimed = shrink_folio_list(&folio_list, pgdat, sc, &stat, false);
2605 
2606 	spin_lock_irq(&lruvec->lru_lock);
2607 	move_folios_to_lru(lruvec, &folio_list);
2608 
2609 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2610 	item = PGSTEAL_KSWAPD + reclaimer_offset();
2611 	if (!cgroup_reclaim(sc))
2612 		__count_vm_events(item, nr_reclaimed);
2613 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
2614 	__count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
2615 	spin_unlock_irq(&lruvec->lru_lock);
2616 
2617 	lru_note_cost(lruvec, file, stat.nr_pageout, nr_scanned - nr_reclaimed);
2618 	mem_cgroup_uncharge_list(&folio_list);
2619 	free_unref_page_list(&folio_list);
2620 
2621 	/*
2622 	 * If dirty folios are scanned that are not queued for IO, it
2623 	 * implies that flushers are not doing their job. This can
2624 	 * happen when memory pressure pushes dirty folios to the end of
2625 	 * the LRU before the dirty limits are breached and the dirty
2626 	 * data has expired. It can also happen when the proportion of
2627 	 * dirty folios grows not through writes but through memory
2628 	 * pressure reclaiming all the clean cache. And in some cases,
2629 	 * the flushers simply cannot keep up with the allocation
2630 	 * rate. Nudge the flusher threads in case they are asleep.
2631 	 */
2632 	if (stat.nr_unqueued_dirty == nr_taken) {
2633 		wakeup_flusher_threads(WB_REASON_VMSCAN);
2634 		/*
2635 		 * For cgroupv1 dirty throttling is achieved by waking up
2636 		 * the kernel flusher here and later waiting on folios
2637 		 * which are in writeback to finish (see shrink_folio_list()).
2638 		 *
2639 		 * Flusher may not be able to issue writeback quickly
2640 		 * enough for cgroupv1 writeback throttling to work
2641 		 * on a large system.
2642 		 */
2643 		if (!writeback_throttling_sane(sc))
2644 			reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
2645 	}
2646 
2647 	sc->nr.dirty += stat.nr_dirty;
2648 	sc->nr.congested += stat.nr_congested;
2649 	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2650 	sc->nr.writeback += stat.nr_writeback;
2651 	sc->nr.immediate += stat.nr_immediate;
2652 	sc->nr.taken += nr_taken;
2653 	if (file)
2654 		sc->nr.file_taken += nr_taken;
2655 
2656 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2657 			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2658 	return nr_reclaimed;
2659 }
2660 
2661 /*
2662  * shrink_active_list() moves folios from the active LRU to the inactive LRU.
2663  *
2664  * We move them the other way if the folio is referenced by one or more
2665  * processes.
2666  *
2667  * If the folios are mostly unmapped, the processing is fast and it is
2668  * appropriate to hold lru_lock across the whole operation.  But if
2669  * the folios are mapped, the processing is slow (folio_referenced()), so
2670  * we should drop lru_lock around each folio.  It's impossible to balance
2671  * this, so instead we remove the folios from the LRU while processing them.
2672  * It is safe to rely on the active flag against the non-LRU folios in here
2673  * because nobody will play with that bit on a non-LRU folio.
2674  *
2675  * The downside is that we have to touch folio->_refcount against each folio.
2676  * But we had to alter folio->flags anyway.
2677  */
2678 static void shrink_active_list(unsigned long nr_to_scan,
2679 			       struct lruvec *lruvec,
2680 			       struct scan_control *sc,
2681 			       enum lru_list lru)
2682 {
2683 	unsigned long nr_taken;
2684 	unsigned long nr_scanned;
2685 	unsigned long vm_flags;
2686 	LIST_HEAD(l_hold);	/* The folios which were snipped off */
2687 	LIST_HEAD(l_active);
2688 	LIST_HEAD(l_inactive);
2689 	unsigned nr_deactivate, nr_activate;
2690 	unsigned nr_rotated = 0;
2691 	int file = is_file_lru(lru);
2692 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2693 
2694 	lru_add_drain();
2695 
2696 	spin_lock_irq(&lruvec->lru_lock);
2697 
2698 	nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &l_hold,
2699 				     &nr_scanned, sc, lru);
2700 
2701 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2702 
2703 	if (!cgroup_reclaim(sc))
2704 		__count_vm_events(PGREFILL, nr_scanned);
2705 	__count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2706 
2707 	spin_unlock_irq(&lruvec->lru_lock);
2708 
2709 	while (!list_empty(&l_hold)) {
2710 		struct folio *folio;
2711 
2712 		cond_resched();
2713 		folio = lru_to_folio(&l_hold);
2714 		list_del(&folio->lru);
2715 
2716 		if (unlikely(!folio_evictable(folio))) {
2717 			folio_putback_lru(folio);
2718 			continue;
2719 		}
2720 
2721 		if (unlikely(buffer_heads_over_limit)) {
2722 			if (folio_test_private(folio) && folio_trylock(folio)) {
2723 				if (folio_test_private(folio))
2724 					filemap_release_folio(folio, 0);
2725 				folio_unlock(folio);
2726 			}
2727 		}
2728 
2729 		/* Referenced or rmap lock contention: rotate */
2730 		if (folio_referenced(folio, 0, sc->target_mem_cgroup,
2731 				     &vm_flags) != 0) {
2732 			/*
2733 			 * Identify referenced, file-backed active folios and
2734 			 * give them one more trip around the active list. So
2735 			 * that executable code get better chances to stay in
2736 			 * memory under moderate memory pressure.  Anon folios
2737 			 * are not likely to be evicted by use-once streaming
2738 			 * IO, plus JVM can create lots of anon VM_EXEC folios,
2739 			 * so we ignore them here.
2740 			 */
2741 			if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) {
2742 				nr_rotated += folio_nr_pages(folio);
2743 				list_add(&folio->lru, &l_active);
2744 				continue;
2745 			}
2746 		}
2747 
2748 		folio_clear_active(folio);	/* we are de-activating */
2749 		folio_set_workingset(folio);
2750 		list_add(&folio->lru, &l_inactive);
2751 	}
2752 
2753 	/*
2754 	 * Move folios back to the lru list.
2755 	 */
2756 	spin_lock_irq(&lruvec->lru_lock);
2757 
2758 	nr_activate = move_folios_to_lru(lruvec, &l_active);
2759 	nr_deactivate = move_folios_to_lru(lruvec, &l_inactive);
2760 	/* Keep all free folios in l_active list */
2761 	list_splice(&l_inactive, &l_active);
2762 
2763 	__count_vm_events(PGDEACTIVATE, nr_deactivate);
2764 	__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2765 
2766 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2767 	spin_unlock_irq(&lruvec->lru_lock);
2768 
2769 	if (nr_rotated)
2770 		lru_note_cost(lruvec, file, 0, nr_rotated);
2771 	mem_cgroup_uncharge_list(&l_active);
2772 	free_unref_page_list(&l_active);
2773 	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2774 			nr_deactivate, nr_rotated, sc->priority, file);
2775 }
2776 
2777 static unsigned int reclaim_folio_list(struct list_head *folio_list,
2778 				      struct pglist_data *pgdat)
2779 {
2780 	struct reclaim_stat dummy_stat;
2781 	unsigned int nr_reclaimed;
2782 	struct folio *folio;
2783 	struct scan_control sc = {
2784 		.gfp_mask = GFP_KERNEL,
2785 		.may_writepage = 1,
2786 		.may_unmap = 1,
2787 		.may_swap = 1,
2788 		.no_demotion = 1,
2789 	};
2790 
2791 	nr_reclaimed = shrink_folio_list(folio_list, pgdat, &sc, &dummy_stat, false);
2792 	while (!list_empty(folio_list)) {
2793 		folio = lru_to_folio(folio_list);
2794 		list_del(&folio->lru);
2795 		folio_putback_lru(folio);
2796 	}
2797 
2798 	return nr_reclaimed;
2799 }
2800 
2801 unsigned long reclaim_pages(struct list_head *folio_list)
2802 {
2803 	int nid;
2804 	unsigned int nr_reclaimed = 0;
2805 	LIST_HEAD(node_folio_list);
2806 	unsigned int noreclaim_flag;
2807 
2808 	if (list_empty(folio_list))
2809 		return nr_reclaimed;
2810 
2811 	noreclaim_flag = memalloc_noreclaim_save();
2812 
2813 	nid = folio_nid(lru_to_folio(folio_list));
2814 	do {
2815 		struct folio *folio = lru_to_folio(folio_list);
2816 
2817 		if (nid == folio_nid(folio)) {
2818 			folio_clear_active(folio);
2819 			list_move(&folio->lru, &node_folio_list);
2820 			continue;
2821 		}
2822 
2823 		nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2824 		nid = folio_nid(lru_to_folio(folio_list));
2825 	} while (!list_empty(folio_list));
2826 
2827 	nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2828 
2829 	memalloc_noreclaim_restore(noreclaim_flag);
2830 
2831 	return nr_reclaimed;
2832 }
2833 
2834 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2835 				 struct lruvec *lruvec, struct scan_control *sc)
2836 {
2837 	if (is_active_lru(lru)) {
2838 		if (sc->may_deactivate & (1 << is_file_lru(lru)))
2839 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2840 		else
2841 			sc->skipped_deactivate = 1;
2842 		return 0;
2843 	}
2844 
2845 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2846 }
2847 
2848 /*
2849  * The inactive anon list should be small enough that the VM never has
2850  * to do too much work.
2851  *
2852  * The inactive file list should be small enough to leave most memory
2853  * to the established workingset on the scan-resistant active list,
2854  * but large enough to avoid thrashing the aggregate readahead window.
2855  *
2856  * Both inactive lists should also be large enough that each inactive
2857  * folio has a chance to be referenced again before it is reclaimed.
2858  *
2859  * If that fails and refaulting is observed, the inactive list grows.
2860  *
2861  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE folios
2862  * on this LRU, maintained by the pageout code. An inactive_ratio
2863  * of 3 means 3:1 or 25% of the folios are kept on the inactive list.
2864  *
2865  * total     target    max
2866  * memory    ratio     inactive
2867  * -------------------------------------
2868  *   10MB       1         5MB
2869  *  100MB       1        50MB
2870  *    1GB       3       250MB
2871  *   10GB      10       0.9GB
2872  *  100GB      31         3GB
2873  *    1TB     101        10GB
2874  *   10TB     320        32GB
2875  */
2876 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2877 {
2878 	enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2879 	unsigned long inactive, active;
2880 	unsigned long inactive_ratio;
2881 	unsigned long gb;
2882 
2883 	inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2884 	active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2885 
2886 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
2887 	if (gb)
2888 		inactive_ratio = int_sqrt(10 * gb);
2889 	else
2890 		inactive_ratio = 1;
2891 
2892 	return inactive * inactive_ratio < active;
2893 }
2894 
2895 enum scan_balance {
2896 	SCAN_EQUAL,
2897 	SCAN_FRACT,
2898 	SCAN_ANON,
2899 	SCAN_FILE,
2900 };
2901 
2902 static void prepare_scan_count(pg_data_t *pgdat, struct scan_control *sc)
2903 {
2904 	unsigned long file;
2905 	struct lruvec *target_lruvec;
2906 
2907 	if (lru_gen_enabled())
2908 		return;
2909 
2910 	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2911 
2912 	/*
2913 	 * Flush the memory cgroup stats, so that we read accurate per-memcg
2914 	 * lruvec stats for heuristics.
2915 	 */
2916 	mem_cgroup_flush_stats();
2917 
2918 	/*
2919 	 * Determine the scan balance between anon and file LRUs.
2920 	 */
2921 	spin_lock_irq(&target_lruvec->lru_lock);
2922 	sc->anon_cost = target_lruvec->anon_cost;
2923 	sc->file_cost = target_lruvec->file_cost;
2924 	spin_unlock_irq(&target_lruvec->lru_lock);
2925 
2926 	/*
2927 	 * Target desirable inactive:active list ratios for the anon
2928 	 * and file LRU lists.
2929 	 */
2930 	if (!sc->force_deactivate) {
2931 		unsigned long refaults;
2932 
2933 		/*
2934 		 * When refaults are being observed, it means a new
2935 		 * workingset is being established. Deactivate to get
2936 		 * rid of any stale active pages quickly.
2937 		 */
2938 		refaults = lruvec_page_state(target_lruvec,
2939 				WORKINGSET_ACTIVATE_ANON);
2940 		if (refaults != target_lruvec->refaults[WORKINGSET_ANON] ||
2941 			inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2942 			sc->may_deactivate |= DEACTIVATE_ANON;
2943 		else
2944 			sc->may_deactivate &= ~DEACTIVATE_ANON;
2945 
2946 		refaults = lruvec_page_state(target_lruvec,
2947 				WORKINGSET_ACTIVATE_FILE);
2948 		if (refaults != target_lruvec->refaults[WORKINGSET_FILE] ||
2949 		    inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2950 			sc->may_deactivate |= DEACTIVATE_FILE;
2951 		else
2952 			sc->may_deactivate &= ~DEACTIVATE_FILE;
2953 	} else
2954 		sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2955 
2956 	/*
2957 	 * If we have plenty of inactive file pages that aren't
2958 	 * thrashing, try to reclaim those first before touching
2959 	 * anonymous pages.
2960 	 */
2961 	file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2962 	if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
2963 		sc->cache_trim_mode = 1;
2964 	else
2965 		sc->cache_trim_mode = 0;
2966 
2967 	/*
2968 	 * Prevent the reclaimer from falling into the cache trap: as
2969 	 * cache pages start out inactive, every cache fault will tip
2970 	 * the scan balance towards the file LRU.  And as the file LRU
2971 	 * shrinks, so does the window for rotation from references.
2972 	 * This means we have a runaway feedback loop where a tiny
2973 	 * thrashing file LRU becomes infinitely more attractive than
2974 	 * anon pages.  Try to detect this based on file LRU size.
2975 	 */
2976 	if (!cgroup_reclaim(sc)) {
2977 		unsigned long total_high_wmark = 0;
2978 		unsigned long free, anon;
2979 		int z;
2980 
2981 		free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2982 		file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2983 			   node_page_state(pgdat, NR_INACTIVE_FILE);
2984 
2985 		for (z = 0; z < MAX_NR_ZONES; z++) {
2986 			struct zone *zone = &pgdat->node_zones[z];
2987 
2988 			if (!managed_zone(zone))
2989 				continue;
2990 
2991 			total_high_wmark += high_wmark_pages(zone);
2992 		}
2993 
2994 		/*
2995 		 * Consider anon: if that's low too, this isn't a
2996 		 * runaway file reclaim problem, but rather just
2997 		 * extreme pressure. Reclaim as per usual then.
2998 		 */
2999 		anon = node_page_state(pgdat, NR_INACTIVE_ANON);
3000 
3001 		sc->file_is_tiny =
3002 			file + free <= total_high_wmark &&
3003 			!(sc->may_deactivate & DEACTIVATE_ANON) &&
3004 			anon >> sc->priority;
3005 	}
3006 }
3007 
3008 /*
3009  * Determine how aggressively the anon and file LRU lists should be
3010  * scanned.
3011  *
3012  * nr[0] = anon inactive folios to scan; nr[1] = anon active folios to scan
3013  * nr[2] = file inactive folios to scan; nr[3] = file active folios to scan
3014  */
3015 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
3016 			   unsigned long *nr)
3017 {
3018 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
3019 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3020 	unsigned long anon_cost, file_cost, total_cost;
3021 	int swappiness = mem_cgroup_swappiness(memcg);
3022 	u64 fraction[ANON_AND_FILE];
3023 	u64 denominator = 0;	/* gcc */
3024 	enum scan_balance scan_balance;
3025 	unsigned long ap, fp;
3026 	enum lru_list lru;
3027 
3028 	/* If we have no swap space, do not bother scanning anon folios. */
3029 	if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
3030 		scan_balance = SCAN_FILE;
3031 		goto out;
3032 	}
3033 
3034 	/*
3035 	 * Global reclaim will swap to prevent OOM even with no
3036 	 * swappiness, but memcg users want to use this knob to
3037 	 * disable swapping for individual groups completely when
3038 	 * using the memory controller's swap limit feature would be
3039 	 * too expensive.
3040 	 */
3041 	if (cgroup_reclaim(sc) && !swappiness) {
3042 		scan_balance = SCAN_FILE;
3043 		goto out;
3044 	}
3045 
3046 	/*
3047 	 * Do not apply any pressure balancing cleverness when the
3048 	 * system is close to OOM, scan both anon and file equally
3049 	 * (unless the swappiness setting disagrees with swapping).
3050 	 */
3051 	if (!sc->priority && swappiness) {
3052 		scan_balance = SCAN_EQUAL;
3053 		goto out;
3054 	}
3055 
3056 	/*
3057 	 * If the system is almost out of file pages, force-scan anon.
3058 	 */
3059 	if (sc->file_is_tiny) {
3060 		scan_balance = SCAN_ANON;
3061 		goto out;
3062 	}
3063 
3064 	/*
3065 	 * If there is enough inactive page cache, we do not reclaim
3066 	 * anything from the anonymous working right now.
3067 	 */
3068 	if (sc->cache_trim_mode) {
3069 		scan_balance = SCAN_FILE;
3070 		goto out;
3071 	}
3072 
3073 	scan_balance = SCAN_FRACT;
3074 	/*
3075 	 * Calculate the pressure balance between anon and file pages.
3076 	 *
3077 	 * The amount of pressure we put on each LRU is inversely
3078 	 * proportional to the cost of reclaiming each list, as
3079 	 * determined by the share of pages that are refaulting, times
3080 	 * the relative IO cost of bringing back a swapped out
3081 	 * anonymous page vs reloading a filesystem page (swappiness).
3082 	 *
3083 	 * Although we limit that influence to ensure no list gets
3084 	 * left behind completely: at least a third of the pressure is
3085 	 * applied, before swappiness.
3086 	 *
3087 	 * With swappiness at 100, anon and file have equal IO cost.
3088 	 */
3089 	total_cost = sc->anon_cost + sc->file_cost;
3090 	anon_cost = total_cost + sc->anon_cost;
3091 	file_cost = total_cost + sc->file_cost;
3092 	total_cost = anon_cost + file_cost;
3093 
3094 	ap = swappiness * (total_cost + 1);
3095 	ap /= anon_cost + 1;
3096 
3097 	fp = (200 - swappiness) * (total_cost + 1);
3098 	fp /= file_cost + 1;
3099 
3100 	fraction[0] = ap;
3101 	fraction[1] = fp;
3102 	denominator = ap + fp;
3103 out:
3104 	for_each_evictable_lru(lru) {
3105 		int file = is_file_lru(lru);
3106 		unsigned long lruvec_size;
3107 		unsigned long low, min;
3108 		unsigned long scan;
3109 
3110 		lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
3111 		mem_cgroup_protection(sc->target_mem_cgroup, memcg,
3112 				      &min, &low);
3113 
3114 		if (min || low) {
3115 			/*
3116 			 * Scale a cgroup's reclaim pressure by proportioning
3117 			 * its current usage to its memory.low or memory.min
3118 			 * setting.
3119 			 *
3120 			 * This is important, as otherwise scanning aggression
3121 			 * becomes extremely binary -- from nothing as we
3122 			 * approach the memory protection threshold, to totally
3123 			 * nominal as we exceed it.  This results in requiring
3124 			 * setting extremely liberal protection thresholds. It
3125 			 * also means we simply get no protection at all if we
3126 			 * set it too low, which is not ideal.
3127 			 *
3128 			 * If there is any protection in place, we reduce scan
3129 			 * pressure by how much of the total memory used is
3130 			 * within protection thresholds.
3131 			 *
3132 			 * There is one special case: in the first reclaim pass,
3133 			 * we skip over all groups that are within their low
3134 			 * protection. If that fails to reclaim enough pages to
3135 			 * satisfy the reclaim goal, we come back and override
3136 			 * the best-effort low protection. However, we still
3137 			 * ideally want to honor how well-behaved groups are in
3138 			 * that case instead of simply punishing them all
3139 			 * equally. As such, we reclaim them based on how much
3140 			 * memory they are using, reducing the scan pressure
3141 			 * again by how much of the total memory used is under
3142 			 * hard protection.
3143 			 */
3144 			unsigned long cgroup_size = mem_cgroup_size(memcg);
3145 			unsigned long protection;
3146 
3147 			/* memory.low scaling, make sure we retry before OOM */
3148 			if (!sc->memcg_low_reclaim && low > min) {
3149 				protection = low;
3150 				sc->memcg_low_skipped = 1;
3151 			} else {
3152 				protection = min;
3153 			}
3154 
3155 			/* Avoid TOCTOU with earlier protection check */
3156 			cgroup_size = max(cgroup_size, protection);
3157 
3158 			scan = lruvec_size - lruvec_size * protection /
3159 				(cgroup_size + 1);
3160 
3161 			/*
3162 			 * Minimally target SWAP_CLUSTER_MAX pages to keep
3163 			 * reclaim moving forwards, avoiding decrementing
3164 			 * sc->priority further than desirable.
3165 			 */
3166 			scan = max(scan, SWAP_CLUSTER_MAX);
3167 		} else {
3168 			scan = lruvec_size;
3169 		}
3170 
3171 		scan >>= sc->priority;
3172 
3173 		/*
3174 		 * If the cgroup's already been deleted, make sure to
3175 		 * scrape out the remaining cache.
3176 		 */
3177 		if (!scan && !mem_cgroup_online(memcg))
3178 			scan = min(lruvec_size, SWAP_CLUSTER_MAX);
3179 
3180 		switch (scan_balance) {
3181 		case SCAN_EQUAL:
3182 			/* Scan lists relative to size */
3183 			break;
3184 		case SCAN_FRACT:
3185 			/*
3186 			 * Scan types proportional to swappiness and
3187 			 * their relative recent reclaim efficiency.
3188 			 * Make sure we don't miss the last page on
3189 			 * the offlined memory cgroups because of a
3190 			 * round-off error.
3191 			 */
3192 			scan = mem_cgroup_online(memcg) ?
3193 			       div64_u64(scan * fraction[file], denominator) :
3194 			       DIV64_U64_ROUND_UP(scan * fraction[file],
3195 						  denominator);
3196 			break;
3197 		case SCAN_FILE:
3198 		case SCAN_ANON:
3199 			/* Scan one type exclusively */
3200 			if ((scan_balance == SCAN_FILE) != file)
3201 				scan = 0;
3202 			break;
3203 		default:
3204 			/* Look ma, no brain */
3205 			BUG();
3206 		}
3207 
3208 		nr[lru] = scan;
3209 	}
3210 }
3211 
3212 /*
3213  * Anonymous LRU management is a waste if there is
3214  * ultimately no way to reclaim the memory.
3215  */
3216 static bool can_age_anon_pages(struct pglist_data *pgdat,
3217 			       struct scan_control *sc)
3218 {
3219 	/* Aging the anon LRU is valuable if swap is present: */
3220 	if (total_swap_pages > 0)
3221 		return true;
3222 
3223 	/* Also valuable if anon pages can be demoted: */
3224 	return can_demote(pgdat->node_id, sc);
3225 }
3226 
3227 #ifdef CONFIG_LRU_GEN
3228 
3229 #ifdef CONFIG_LRU_GEN_ENABLED
3230 DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS);
3231 #define get_cap(cap)	static_branch_likely(&lru_gen_caps[cap])
3232 #else
3233 DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS);
3234 #define get_cap(cap)	static_branch_unlikely(&lru_gen_caps[cap])
3235 #endif
3236 
3237 static bool should_walk_mmu(void)
3238 {
3239 	return arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK);
3240 }
3241 
3242 static bool should_clear_pmd_young(void)
3243 {
3244 	return arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG);
3245 }
3246 
3247 /******************************************************************************
3248  *                          shorthand helpers
3249  ******************************************************************************/
3250 
3251 #define LRU_REFS_FLAGS	(BIT(PG_referenced) | BIT(PG_workingset))
3252 
3253 #define DEFINE_MAX_SEQ(lruvec)						\
3254 	unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq)
3255 
3256 #define DEFINE_MIN_SEQ(lruvec)						\
3257 	unsigned long min_seq[ANON_AND_FILE] = {			\
3258 		READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]),	\
3259 		READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]),	\
3260 	}
3261 
3262 #define for_each_gen_type_zone(gen, type, zone)				\
3263 	for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++)			\
3264 		for ((type) = 0; (type) < ANON_AND_FILE; (type)++)	\
3265 			for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++)
3266 
3267 #define get_memcg_gen(seq)	((seq) % MEMCG_NR_GENS)
3268 #define get_memcg_bin(bin)	((bin) % MEMCG_NR_BINS)
3269 
3270 static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid)
3271 {
3272 	struct pglist_data *pgdat = NODE_DATA(nid);
3273 
3274 #ifdef CONFIG_MEMCG
3275 	if (memcg) {
3276 		struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec;
3277 
3278 		/* see the comment in mem_cgroup_lruvec() */
3279 		if (!lruvec->pgdat)
3280 			lruvec->pgdat = pgdat;
3281 
3282 		return lruvec;
3283 	}
3284 #endif
3285 	VM_WARN_ON_ONCE(!mem_cgroup_disabled());
3286 
3287 	return &pgdat->__lruvec;
3288 }
3289 
3290 static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc)
3291 {
3292 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3293 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
3294 
3295 	if (!sc->may_swap)
3296 		return 0;
3297 
3298 	if (!can_demote(pgdat->node_id, sc) &&
3299 	    mem_cgroup_get_nr_swap_pages(memcg) < MIN_LRU_BATCH)
3300 		return 0;
3301 
3302 	return mem_cgroup_swappiness(memcg);
3303 }
3304 
3305 static int get_nr_gens(struct lruvec *lruvec, int type)
3306 {
3307 	return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1;
3308 }
3309 
3310 static bool __maybe_unused seq_is_valid(struct lruvec *lruvec)
3311 {
3312 	/* see the comment on lru_gen_folio */
3313 	return get_nr_gens(lruvec, LRU_GEN_FILE) >= MIN_NR_GENS &&
3314 	       get_nr_gens(lruvec, LRU_GEN_FILE) <= get_nr_gens(lruvec, LRU_GEN_ANON) &&
3315 	       get_nr_gens(lruvec, LRU_GEN_ANON) <= MAX_NR_GENS;
3316 }
3317 
3318 /******************************************************************************
3319  *                          Bloom filters
3320  ******************************************************************************/
3321 
3322 /*
3323  * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when
3324  * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of
3325  * bits in a bitmap, k is the number of hash functions and n is the number of
3326  * inserted items.
3327  *
3328  * Page table walkers use one of the two filters to reduce their search space.
3329  * To get rid of non-leaf entries that no longer have enough leaf entries, the
3330  * aging uses the double-buffering technique to flip to the other filter each
3331  * time it produces a new generation. For non-leaf entries that have enough
3332  * leaf entries, the aging carries them over to the next generation in
3333  * walk_pmd_range(); the eviction also report them when walking the rmap
3334  * in lru_gen_look_around().
3335  *
3336  * For future optimizations:
3337  * 1. It's not necessary to keep both filters all the time. The spare one can be
3338  *    freed after the RCU grace period and reallocated if needed again.
3339  * 2. And when reallocating, it's worth scaling its size according to the number
3340  *    of inserted entries in the other filter, to reduce the memory overhead on
3341  *    small systems and false positives on large systems.
3342  * 3. Jenkins' hash function is an alternative to Knuth's.
3343  */
3344 #define BLOOM_FILTER_SHIFT	15
3345 
3346 static inline int filter_gen_from_seq(unsigned long seq)
3347 {
3348 	return seq % NR_BLOOM_FILTERS;
3349 }
3350 
3351 static void get_item_key(void *item, int *key)
3352 {
3353 	u32 hash = hash_ptr(item, BLOOM_FILTER_SHIFT * 2);
3354 
3355 	BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32));
3356 
3357 	key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1);
3358 	key[1] = hash >> BLOOM_FILTER_SHIFT;
3359 }
3360 
3361 static bool test_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item)
3362 {
3363 	int key[2];
3364 	unsigned long *filter;
3365 	int gen = filter_gen_from_seq(seq);
3366 
3367 	filter = READ_ONCE(lruvec->mm_state.filters[gen]);
3368 	if (!filter)
3369 		return true;
3370 
3371 	get_item_key(item, key);
3372 
3373 	return test_bit(key[0], filter) && test_bit(key[1], filter);
3374 }
3375 
3376 static void update_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item)
3377 {
3378 	int key[2];
3379 	unsigned long *filter;
3380 	int gen = filter_gen_from_seq(seq);
3381 
3382 	filter = READ_ONCE(lruvec->mm_state.filters[gen]);
3383 	if (!filter)
3384 		return;
3385 
3386 	get_item_key(item, key);
3387 
3388 	if (!test_bit(key[0], filter))
3389 		set_bit(key[0], filter);
3390 	if (!test_bit(key[1], filter))
3391 		set_bit(key[1], filter);
3392 }
3393 
3394 static void reset_bloom_filter(struct lruvec *lruvec, unsigned long seq)
3395 {
3396 	unsigned long *filter;
3397 	int gen = filter_gen_from_seq(seq);
3398 
3399 	filter = lruvec->mm_state.filters[gen];
3400 	if (filter) {
3401 		bitmap_clear(filter, 0, BIT(BLOOM_FILTER_SHIFT));
3402 		return;
3403 	}
3404 
3405 	filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT),
3406 			       __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
3407 	WRITE_ONCE(lruvec->mm_state.filters[gen], filter);
3408 }
3409 
3410 /******************************************************************************
3411  *                          mm_struct list
3412  ******************************************************************************/
3413 
3414 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
3415 {
3416 	static struct lru_gen_mm_list mm_list = {
3417 		.fifo = LIST_HEAD_INIT(mm_list.fifo),
3418 		.lock = __SPIN_LOCK_UNLOCKED(mm_list.lock),
3419 	};
3420 
3421 #ifdef CONFIG_MEMCG
3422 	if (memcg)
3423 		return &memcg->mm_list;
3424 #endif
3425 	VM_WARN_ON_ONCE(!mem_cgroup_disabled());
3426 
3427 	return &mm_list;
3428 }
3429 
3430 void lru_gen_add_mm(struct mm_struct *mm)
3431 {
3432 	int nid;
3433 	struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm);
3434 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3435 
3436 	VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list));
3437 #ifdef CONFIG_MEMCG
3438 	VM_WARN_ON_ONCE(mm->lru_gen.memcg);
3439 	mm->lru_gen.memcg = memcg;
3440 #endif
3441 	spin_lock(&mm_list->lock);
3442 
3443 	for_each_node_state(nid, N_MEMORY) {
3444 		struct lruvec *lruvec = get_lruvec(memcg, nid);
3445 
3446 		/* the first addition since the last iteration */
3447 		if (lruvec->mm_state.tail == &mm_list->fifo)
3448 			lruvec->mm_state.tail = &mm->lru_gen.list;
3449 	}
3450 
3451 	list_add_tail(&mm->lru_gen.list, &mm_list->fifo);
3452 
3453 	spin_unlock(&mm_list->lock);
3454 }
3455 
3456 void lru_gen_del_mm(struct mm_struct *mm)
3457 {
3458 	int nid;
3459 	struct lru_gen_mm_list *mm_list;
3460 	struct mem_cgroup *memcg = NULL;
3461 
3462 	if (list_empty(&mm->lru_gen.list))
3463 		return;
3464 
3465 #ifdef CONFIG_MEMCG
3466 	memcg = mm->lru_gen.memcg;
3467 #endif
3468 	mm_list = get_mm_list(memcg);
3469 
3470 	spin_lock(&mm_list->lock);
3471 
3472 	for_each_node(nid) {
3473 		struct lruvec *lruvec = get_lruvec(memcg, nid);
3474 
3475 		/* where the current iteration continues after */
3476 		if (lruvec->mm_state.head == &mm->lru_gen.list)
3477 			lruvec->mm_state.head = lruvec->mm_state.head->prev;
3478 
3479 		/* where the last iteration ended before */
3480 		if (lruvec->mm_state.tail == &mm->lru_gen.list)
3481 			lruvec->mm_state.tail = lruvec->mm_state.tail->next;
3482 	}
3483 
3484 	list_del_init(&mm->lru_gen.list);
3485 
3486 	spin_unlock(&mm_list->lock);
3487 
3488 #ifdef CONFIG_MEMCG
3489 	mem_cgroup_put(mm->lru_gen.memcg);
3490 	mm->lru_gen.memcg = NULL;
3491 #endif
3492 }
3493 
3494 #ifdef CONFIG_MEMCG
3495 void lru_gen_migrate_mm(struct mm_struct *mm)
3496 {
3497 	struct mem_cgroup *memcg;
3498 	struct task_struct *task = rcu_dereference_protected(mm->owner, true);
3499 
3500 	VM_WARN_ON_ONCE(task->mm != mm);
3501 	lockdep_assert_held(&task->alloc_lock);
3502 
3503 	/* for mm_update_next_owner() */
3504 	if (mem_cgroup_disabled())
3505 		return;
3506 
3507 	/* migration can happen before addition */
3508 	if (!mm->lru_gen.memcg)
3509 		return;
3510 
3511 	rcu_read_lock();
3512 	memcg = mem_cgroup_from_task(task);
3513 	rcu_read_unlock();
3514 	if (memcg == mm->lru_gen.memcg)
3515 		return;
3516 
3517 	VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list));
3518 
3519 	lru_gen_del_mm(mm);
3520 	lru_gen_add_mm(mm);
3521 }
3522 #endif
3523 
3524 static void reset_mm_stats(struct lruvec *lruvec, struct lru_gen_mm_walk *walk, bool last)
3525 {
3526 	int i;
3527 	int hist;
3528 
3529 	lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock);
3530 
3531 	if (walk) {
3532 		hist = lru_hist_from_seq(walk->max_seq);
3533 
3534 		for (i = 0; i < NR_MM_STATS; i++) {
3535 			WRITE_ONCE(lruvec->mm_state.stats[hist][i],
3536 				   lruvec->mm_state.stats[hist][i] + walk->mm_stats[i]);
3537 			walk->mm_stats[i] = 0;
3538 		}
3539 	}
3540 
3541 	if (NR_HIST_GENS > 1 && last) {
3542 		hist = lru_hist_from_seq(lruvec->mm_state.seq + 1);
3543 
3544 		for (i = 0; i < NR_MM_STATS; i++)
3545 			WRITE_ONCE(lruvec->mm_state.stats[hist][i], 0);
3546 	}
3547 }
3548 
3549 static bool should_skip_mm(struct mm_struct *mm, struct lru_gen_mm_walk *walk)
3550 {
3551 	int type;
3552 	unsigned long size = 0;
3553 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3554 	int key = pgdat->node_id % BITS_PER_TYPE(mm->lru_gen.bitmap);
3555 
3556 	if (!walk->force_scan && !test_bit(key, &mm->lru_gen.bitmap))
3557 		return true;
3558 
3559 	clear_bit(key, &mm->lru_gen.bitmap);
3560 
3561 	for (type = !walk->can_swap; type < ANON_AND_FILE; type++) {
3562 		size += type ? get_mm_counter(mm, MM_FILEPAGES) :
3563 			       get_mm_counter(mm, MM_ANONPAGES) +
3564 			       get_mm_counter(mm, MM_SHMEMPAGES);
3565 	}
3566 
3567 	if (size < MIN_LRU_BATCH)
3568 		return true;
3569 
3570 	return !mmget_not_zero(mm);
3571 }
3572 
3573 static bool iterate_mm_list(struct lruvec *lruvec, struct lru_gen_mm_walk *walk,
3574 			    struct mm_struct **iter)
3575 {
3576 	bool first = false;
3577 	bool last = false;
3578 	struct mm_struct *mm = NULL;
3579 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3580 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3581 	struct lru_gen_mm_state *mm_state = &lruvec->mm_state;
3582 
3583 	/*
3584 	 * mm_state->seq is incremented after each iteration of mm_list. There
3585 	 * are three interesting cases for this page table walker:
3586 	 * 1. It tries to start a new iteration with a stale max_seq: there is
3587 	 *    nothing left to do.
3588 	 * 2. It started the next iteration: it needs to reset the Bloom filter
3589 	 *    so that a fresh set of PTE tables can be recorded.
3590 	 * 3. It ended the current iteration: it needs to reset the mm stats
3591 	 *    counters and tell its caller to increment max_seq.
3592 	 */
3593 	spin_lock(&mm_list->lock);
3594 
3595 	VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->max_seq);
3596 
3597 	if (walk->max_seq <= mm_state->seq)
3598 		goto done;
3599 
3600 	if (!mm_state->head)
3601 		mm_state->head = &mm_list->fifo;
3602 
3603 	if (mm_state->head == &mm_list->fifo)
3604 		first = true;
3605 
3606 	do {
3607 		mm_state->head = mm_state->head->next;
3608 		if (mm_state->head == &mm_list->fifo) {
3609 			WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3610 			last = true;
3611 			break;
3612 		}
3613 
3614 		/* force scan for those added after the last iteration */
3615 		if (!mm_state->tail || mm_state->tail == mm_state->head) {
3616 			mm_state->tail = mm_state->head->next;
3617 			walk->force_scan = true;
3618 		}
3619 
3620 		mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list);
3621 		if (should_skip_mm(mm, walk))
3622 			mm = NULL;
3623 	} while (!mm);
3624 done:
3625 	if (*iter || last)
3626 		reset_mm_stats(lruvec, walk, last);
3627 
3628 	spin_unlock(&mm_list->lock);
3629 
3630 	if (mm && first)
3631 		reset_bloom_filter(lruvec, walk->max_seq + 1);
3632 
3633 	if (*iter)
3634 		mmput_async(*iter);
3635 
3636 	*iter = mm;
3637 
3638 	return last;
3639 }
3640 
3641 static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long max_seq)
3642 {
3643 	bool success = false;
3644 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3645 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3646 	struct lru_gen_mm_state *mm_state = &lruvec->mm_state;
3647 
3648 	spin_lock(&mm_list->lock);
3649 
3650 	VM_WARN_ON_ONCE(mm_state->seq + 1 < max_seq);
3651 
3652 	if (max_seq > mm_state->seq) {
3653 		mm_state->head = NULL;
3654 		mm_state->tail = NULL;
3655 		WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3656 		reset_mm_stats(lruvec, NULL, true);
3657 		success = true;
3658 	}
3659 
3660 	spin_unlock(&mm_list->lock);
3661 
3662 	return success;
3663 }
3664 
3665 /******************************************************************************
3666  *                          PID controller
3667  ******************************************************************************/
3668 
3669 /*
3670  * A feedback loop based on Proportional-Integral-Derivative (PID) controller.
3671  *
3672  * The P term is refaulted/(evicted+protected) from a tier in the generation
3673  * currently being evicted; the I term is the exponential moving average of the
3674  * P term over the generations previously evicted, using the smoothing factor
3675  * 1/2; the D term isn't supported.
3676  *
3677  * The setpoint (SP) is always the first tier of one type; the process variable
3678  * (PV) is either any tier of the other type or any other tier of the same
3679  * type.
3680  *
3681  * The error is the difference between the SP and the PV; the correction is to
3682  * turn off protection when SP>PV or turn on protection when SP<PV.
3683  *
3684  * For future optimizations:
3685  * 1. The D term may discount the other two terms over time so that long-lived
3686  *    generations can resist stale information.
3687  */
3688 struct ctrl_pos {
3689 	unsigned long refaulted;
3690 	unsigned long total;
3691 	int gain;
3692 };
3693 
3694 static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain,
3695 			  struct ctrl_pos *pos)
3696 {
3697 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3698 	int hist = lru_hist_from_seq(lrugen->min_seq[type]);
3699 
3700 	pos->refaulted = lrugen->avg_refaulted[type][tier] +
3701 			 atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3702 	pos->total = lrugen->avg_total[type][tier] +
3703 		     atomic_long_read(&lrugen->evicted[hist][type][tier]);
3704 	if (tier)
3705 		pos->total += lrugen->protected[hist][type][tier - 1];
3706 	pos->gain = gain;
3707 }
3708 
3709 static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover)
3710 {
3711 	int hist, tier;
3712 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3713 	bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1;
3714 	unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1;
3715 
3716 	lockdep_assert_held(&lruvec->lru_lock);
3717 
3718 	if (!carryover && !clear)
3719 		return;
3720 
3721 	hist = lru_hist_from_seq(seq);
3722 
3723 	for (tier = 0; tier < MAX_NR_TIERS; tier++) {
3724 		if (carryover) {
3725 			unsigned long sum;
3726 
3727 			sum = lrugen->avg_refaulted[type][tier] +
3728 			      atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3729 			WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2);
3730 
3731 			sum = lrugen->avg_total[type][tier] +
3732 			      atomic_long_read(&lrugen->evicted[hist][type][tier]);
3733 			if (tier)
3734 				sum += lrugen->protected[hist][type][tier - 1];
3735 			WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2);
3736 		}
3737 
3738 		if (clear) {
3739 			atomic_long_set(&lrugen->refaulted[hist][type][tier], 0);
3740 			atomic_long_set(&lrugen->evicted[hist][type][tier], 0);
3741 			if (tier)
3742 				WRITE_ONCE(lrugen->protected[hist][type][tier - 1], 0);
3743 		}
3744 	}
3745 }
3746 
3747 static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv)
3748 {
3749 	/*
3750 	 * Return true if the PV has a limited number of refaults or a lower
3751 	 * refaulted/total than the SP.
3752 	 */
3753 	return pv->refaulted < MIN_LRU_BATCH ||
3754 	       pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <=
3755 	       (sp->refaulted + 1) * pv->total * pv->gain;
3756 }
3757 
3758 /******************************************************************************
3759  *                          the aging
3760  ******************************************************************************/
3761 
3762 /* promote pages accessed through page tables */
3763 static int folio_update_gen(struct folio *folio, int gen)
3764 {
3765 	unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3766 
3767 	VM_WARN_ON_ONCE(gen >= MAX_NR_GENS);
3768 	VM_WARN_ON_ONCE(!rcu_read_lock_held());
3769 
3770 	do {
3771 		/* lru_gen_del_folio() has isolated this page? */
3772 		if (!(old_flags & LRU_GEN_MASK)) {
3773 			/* for shrink_folio_list() */
3774 			new_flags = old_flags | BIT(PG_referenced);
3775 			continue;
3776 		}
3777 
3778 		new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3779 		new_flags |= (gen + 1UL) << LRU_GEN_PGOFF;
3780 	} while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3781 
3782 	return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3783 }
3784 
3785 /* protect pages accessed multiple times through file descriptors */
3786 static int folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming)
3787 {
3788 	int type = folio_is_file_lru(folio);
3789 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3790 	int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
3791 	unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3792 
3793 	VM_WARN_ON_ONCE_FOLIO(!(old_flags & LRU_GEN_MASK), folio);
3794 
3795 	do {
3796 		new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3797 		/* folio_update_gen() has promoted this page? */
3798 		if (new_gen >= 0 && new_gen != old_gen)
3799 			return new_gen;
3800 
3801 		new_gen = (old_gen + 1) % MAX_NR_GENS;
3802 
3803 		new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3804 		new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF;
3805 		/* for folio_end_writeback() */
3806 		if (reclaiming)
3807 			new_flags |= BIT(PG_reclaim);
3808 	} while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3809 
3810 	lru_gen_update_size(lruvec, folio, old_gen, new_gen);
3811 
3812 	return new_gen;
3813 }
3814 
3815 static void update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio,
3816 			      int old_gen, int new_gen)
3817 {
3818 	int type = folio_is_file_lru(folio);
3819 	int zone = folio_zonenum(folio);
3820 	int delta = folio_nr_pages(folio);
3821 
3822 	VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS);
3823 	VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS);
3824 
3825 	walk->batched++;
3826 
3827 	walk->nr_pages[old_gen][type][zone] -= delta;
3828 	walk->nr_pages[new_gen][type][zone] += delta;
3829 }
3830 
3831 static void reset_batch_size(struct lruvec *lruvec, struct lru_gen_mm_walk *walk)
3832 {
3833 	int gen, type, zone;
3834 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3835 
3836 	walk->batched = 0;
3837 
3838 	for_each_gen_type_zone(gen, type, zone) {
3839 		enum lru_list lru = type * LRU_INACTIVE_FILE;
3840 		int delta = walk->nr_pages[gen][type][zone];
3841 
3842 		if (!delta)
3843 			continue;
3844 
3845 		walk->nr_pages[gen][type][zone] = 0;
3846 		WRITE_ONCE(lrugen->nr_pages[gen][type][zone],
3847 			   lrugen->nr_pages[gen][type][zone] + delta);
3848 
3849 		if (lru_gen_is_active(lruvec, gen))
3850 			lru += LRU_ACTIVE;
3851 		__update_lru_size(lruvec, lru, zone, delta);
3852 	}
3853 }
3854 
3855 static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args)
3856 {
3857 	struct address_space *mapping;
3858 	struct vm_area_struct *vma = args->vma;
3859 	struct lru_gen_mm_walk *walk = args->private;
3860 
3861 	if (!vma_is_accessible(vma))
3862 		return true;
3863 
3864 	if (is_vm_hugetlb_page(vma))
3865 		return true;
3866 
3867 	if (!vma_has_recency(vma))
3868 		return true;
3869 
3870 	if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL))
3871 		return true;
3872 
3873 	if (vma == get_gate_vma(vma->vm_mm))
3874 		return true;
3875 
3876 	if (vma_is_anonymous(vma))
3877 		return !walk->can_swap;
3878 
3879 	if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping))
3880 		return true;
3881 
3882 	mapping = vma->vm_file->f_mapping;
3883 	if (mapping_unevictable(mapping))
3884 		return true;
3885 
3886 	if (shmem_mapping(mapping))
3887 		return !walk->can_swap;
3888 
3889 	/* to exclude special mappings like dax, etc. */
3890 	return !mapping->a_ops->read_folio;
3891 }
3892 
3893 /*
3894  * Some userspace memory allocators map many single-page VMAs. Instead of
3895  * returning back to the PGD table for each of such VMAs, finish an entire PMD
3896  * table to reduce zigzags and improve cache performance.
3897  */
3898 static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args,
3899 			 unsigned long *vm_start, unsigned long *vm_end)
3900 {
3901 	unsigned long start = round_up(*vm_end, size);
3902 	unsigned long end = (start | ~mask) + 1;
3903 	VMA_ITERATOR(vmi, args->mm, start);
3904 
3905 	VM_WARN_ON_ONCE(mask & size);
3906 	VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask));
3907 
3908 	for_each_vma(vmi, args->vma) {
3909 		if (end && end <= args->vma->vm_start)
3910 			return false;
3911 
3912 		if (should_skip_vma(args->vma->vm_start, args->vma->vm_end, args))
3913 			continue;
3914 
3915 		*vm_start = max(start, args->vma->vm_start);
3916 		*vm_end = min(end - 1, args->vma->vm_end - 1) + 1;
3917 
3918 		return true;
3919 	}
3920 
3921 	return false;
3922 }
3923 
3924 static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr)
3925 {
3926 	unsigned long pfn = pte_pfn(pte);
3927 
3928 	VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3929 
3930 	if (!pte_present(pte) || is_zero_pfn(pfn))
3931 		return -1;
3932 
3933 	if (WARN_ON_ONCE(pte_devmap(pte) || pte_special(pte)))
3934 		return -1;
3935 
3936 	if (WARN_ON_ONCE(!pfn_valid(pfn)))
3937 		return -1;
3938 
3939 	return pfn;
3940 }
3941 
3942 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
3943 static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr)
3944 {
3945 	unsigned long pfn = pmd_pfn(pmd);
3946 
3947 	VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3948 
3949 	if (!pmd_present(pmd) || is_huge_zero_pmd(pmd))
3950 		return -1;
3951 
3952 	if (WARN_ON_ONCE(pmd_devmap(pmd)))
3953 		return -1;
3954 
3955 	if (WARN_ON_ONCE(!pfn_valid(pfn)))
3956 		return -1;
3957 
3958 	return pfn;
3959 }
3960 #endif
3961 
3962 static struct folio *get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg,
3963 				   struct pglist_data *pgdat, bool can_swap)
3964 {
3965 	struct folio *folio;
3966 
3967 	/* try to avoid unnecessary memory loads */
3968 	if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
3969 		return NULL;
3970 
3971 	folio = pfn_folio(pfn);
3972 	if (folio_nid(folio) != pgdat->node_id)
3973 		return NULL;
3974 
3975 	if (folio_memcg_rcu(folio) != memcg)
3976 		return NULL;
3977 
3978 	/* file VMAs can contain anon pages from COW */
3979 	if (!folio_is_file_lru(folio) && !can_swap)
3980 		return NULL;
3981 
3982 	return folio;
3983 }
3984 
3985 static bool suitable_to_scan(int total, int young)
3986 {
3987 	int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8);
3988 
3989 	/* suitable if the average number of young PTEs per cacheline is >=1 */
3990 	return young * n >= total;
3991 }
3992 
3993 static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end,
3994 			   struct mm_walk *args)
3995 {
3996 	int i;
3997 	pte_t *pte;
3998 	spinlock_t *ptl;
3999 	unsigned long addr;
4000 	int total = 0;
4001 	int young = 0;
4002 	struct lru_gen_mm_walk *walk = args->private;
4003 	struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
4004 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
4005 	int old_gen, new_gen = lru_gen_from_seq(walk->max_seq);
4006 
4007 	VM_WARN_ON_ONCE(pmd_leaf(*pmd));
4008 
4009 	ptl = pte_lockptr(args->mm, pmd);
4010 	if (!spin_trylock(ptl))
4011 		return false;
4012 
4013 	arch_enter_lazy_mmu_mode();
4014 
4015 	pte = pte_offset_map(pmd, start & PMD_MASK);
4016 restart:
4017 	for (i = pte_index(start), addr = start; addr != end; i++, addr += PAGE_SIZE) {
4018 		unsigned long pfn;
4019 		struct folio *folio;
4020 
4021 		total++;
4022 		walk->mm_stats[MM_LEAF_TOTAL]++;
4023 
4024 		pfn = get_pte_pfn(pte[i], args->vma, addr);
4025 		if (pfn == -1)
4026 			continue;
4027 
4028 		if (!pte_young(pte[i])) {
4029 			walk->mm_stats[MM_LEAF_OLD]++;
4030 			continue;
4031 		}
4032 
4033 		folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
4034 		if (!folio)
4035 			continue;
4036 
4037 		if (!ptep_test_and_clear_young(args->vma, addr, pte + i))
4038 			VM_WARN_ON_ONCE(true);
4039 
4040 		young++;
4041 		walk->mm_stats[MM_LEAF_YOUNG]++;
4042 
4043 		if (pte_dirty(pte[i]) && !folio_test_dirty(folio) &&
4044 		    !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
4045 		      !folio_test_swapcache(folio)))
4046 			folio_mark_dirty(folio);
4047 
4048 		old_gen = folio_update_gen(folio, new_gen);
4049 		if (old_gen >= 0 && old_gen != new_gen)
4050 			update_batch_size(walk, folio, old_gen, new_gen);
4051 	}
4052 
4053 	if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, &start, &end))
4054 		goto restart;
4055 
4056 	pte_unmap(pte);
4057 
4058 	arch_leave_lazy_mmu_mode();
4059 	spin_unlock(ptl);
4060 
4061 	return suitable_to_scan(total, young);
4062 }
4063 
4064 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
4065 static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma,
4066 				  struct mm_walk *args, unsigned long *bitmap, unsigned long *first)
4067 {
4068 	int i;
4069 	pmd_t *pmd;
4070 	spinlock_t *ptl;
4071 	struct lru_gen_mm_walk *walk = args->private;
4072 	struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
4073 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
4074 	int old_gen, new_gen = lru_gen_from_seq(walk->max_seq);
4075 
4076 	VM_WARN_ON_ONCE(pud_leaf(*pud));
4077 
4078 	/* try to batch at most 1+MIN_LRU_BATCH+1 entries */
4079 	if (*first == -1) {
4080 		*first = addr;
4081 		bitmap_zero(bitmap, MIN_LRU_BATCH);
4082 		return;
4083 	}
4084 
4085 	i = addr == -1 ? 0 : pmd_index(addr) - pmd_index(*first);
4086 	if (i && i <= MIN_LRU_BATCH) {
4087 		__set_bit(i - 1, bitmap);
4088 		return;
4089 	}
4090 
4091 	pmd = pmd_offset(pud, *first);
4092 
4093 	ptl = pmd_lockptr(args->mm, pmd);
4094 	if (!spin_trylock(ptl))
4095 		goto done;
4096 
4097 	arch_enter_lazy_mmu_mode();
4098 
4099 	do {
4100 		unsigned long pfn;
4101 		struct folio *folio;
4102 
4103 		/* don't round down the first address */
4104 		addr = i ? (*first & PMD_MASK) + i * PMD_SIZE : *first;
4105 
4106 		pfn = get_pmd_pfn(pmd[i], vma, addr);
4107 		if (pfn == -1)
4108 			goto next;
4109 
4110 		if (!pmd_trans_huge(pmd[i])) {
4111 			if (should_clear_pmd_young())
4112 				pmdp_test_and_clear_young(vma, addr, pmd + i);
4113 			goto next;
4114 		}
4115 
4116 		folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
4117 		if (!folio)
4118 			goto next;
4119 
4120 		if (!pmdp_test_and_clear_young(vma, addr, pmd + i))
4121 			goto next;
4122 
4123 		walk->mm_stats[MM_LEAF_YOUNG]++;
4124 
4125 		if (pmd_dirty(pmd[i]) && !folio_test_dirty(folio) &&
4126 		    !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
4127 		      !folio_test_swapcache(folio)))
4128 			folio_mark_dirty(folio);
4129 
4130 		old_gen = folio_update_gen(folio, new_gen);
4131 		if (old_gen >= 0 && old_gen != new_gen)
4132 			update_batch_size(walk, folio, old_gen, new_gen);
4133 next:
4134 		i = i > MIN_LRU_BATCH ? 0 : find_next_bit(bitmap, MIN_LRU_BATCH, i) + 1;
4135 	} while (i <= MIN_LRU_BATCH);
4136 
4137 	arch_leave_lazy_mmu_mode();
4138 	spin_unlock(ptl);
4139 done:
4140 	*first = -1;
4141 }
4142 #else
4143 static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma,
4144 				  struct mm_walk *args, unsigned long *bitmap, unsigned long *first)
4145 {
4146 }
4147 #endif
4148 
4149 static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end,
4150 			   struct mm_walk *args)
4151 {
4152 	int i;
4153 	pmd_t *pmd;
4154 	unsigned long next;
4155 	unsigned long addr;
4156 	struct vm_area_struct *vma;
4157 	DECLARE_BITMAP(bitmap, MIN_LRU_BATCH);
4158 	unsigned long first = -1;
4159 	struct lru_gen_mm_walk *walk = args->private;
4160 
4161 	VM_WARN_ON_ONCE(pud_leaf(*pud));
4162 
4163 	/*
4164 	 * Finish an entire PMD in two passes: the first only reaches to PTE
4165 	 * tables to avoid taking the PMD lock; the second, if necessary, takes
4166 	 * the PMD lock to clear the accessed bit in PMD entries.
4167 	 */
4168 	pmd = pmd_offset(pud, start & PUD_MASK);
4169 restart:
4170 	/* walk_pte_range() may call get_next_vma() */
4171 	vma = args->vma;
4172 	for (i = pmd_index(start), addr = start; addr != end; i++, addr = next) {
4173 		pmd_t val = pmdp_get_lockless(pmd + i);
4174 
4175 		next = pmd_addr_end(addr, end);
4176 
4177 		if (!pmd_present(val) || is_huge_zero_pmd(val)) {
4178 			walk->mm_stats[MM_LEAF_TOTAL]++;
4179 			continue;
4180 		}
4181 
4182 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4183 		if (pmd_trans_huge(val)) {
4184 			unsigned long pfn = pmd_pfn(val);
4185 			struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
4186 
4187 			walk->mm_stats[MM_LEAF_TOTAL]++;
4188 
4189 			if (!pmd_young(val)) {
4190 				walk->mm_stats[MM_LEAF_OLD]++;
4191 				continue;
4192 			}
4193 
4194 			/* try to avoid unnecessary memory loads */
4195 			if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
4196 				continue;
4197 
4198 			walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
4199 			continue;
4200 		}
4201 #endif
4202 		walk->mm_stats[MM_NONLEAF_TOTAL]++;
4203 
4204 		if (should_clear_pmd_young()) {
4205 			if (!pmd_young(val))
4206 				continue;
4207 
4208 			walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
4209 		}
4210 
4211 		if (!walk->force_scan && !test_bloom_filter(walk->lruvec, walk->max_seq, pmd + i))
4212 			continue;
4213 
4214 		walk->mm_stats[MM_NONLEAF_FOUND]++;
4215 
4216 		if (!walk_pte_range(&val, addr, next, args))
4217 			continue;
4218 
4219 		walk->mm_stats[MM_NONLEAF_ADDED]++;
4220 
4221 		/* carry over to the next generation */
4222 		update_bloom_filter(walk->lruvec, walk->max_seq + 1, pmd + i);
4223 	}
4224 
4225 	walk_pmd_range_locked(pud, -1, vma, args, bitmap, &first);
4226 
4227 	if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, &start, &end))
4228 		goto restart;
4229 }
4230 
4231 static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end,
4232 			  struct mm_walk *args)
4233 {
4234 	int i;
4235 	pud_t *pud;
4236 	unsigned long addr;
4237 	unsigned long next;
4238 	struct lru_gen_mm_walk *walk = args->private;
4239 
4240 	VM_WARN_ON_ONCE(p4d_leaf(*p4d));
4241 
4242 	pud = pud_offset(p4d, start & P4D_MASK);
4243 restart:
4244 	for (i = pud_index(start), addr = start; addr != end; i++, addr = next) {
4245 		pud_t val = READ_ONCE(pud[i]);
4246 
4247 		next = pud_addr_end(addr, end);
4248 
4249 		if (!pud_present(val) || WARN_ON_ONCE(pud_leaf(val)))
4250 			continue;
4251 
4252 		walk_pmd_range(&val, addr, next, args);
4253 
4254 		if (need_resched() || walk->batched >= MAX_LRU_BATCH) {
4255 			end = (addr | ~PUD_MASK) + 1;
4256 			goto done;
4257 		}
4258 	}
4259 
4260 	if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, &start, &end))
4261 		goto restart;
4262 
4263 	end = round_up(end, P4D_SIZE);
4264 done:
4265 	if (!end || !args->vma)
4266 		return 1;
4267 
4268 	walk->next_addr = max(end, args->vma->vm_start);
4269 
4270 	return -EAGAIN;
4271 }
4272 
4273 static void walk_mm(struct lruvec *lruvec, struct mm_struct *mm, struct lru_gen_mm_walk *walk)
4274 {
4275 	static const struct mm_walk_ops mm_walk_ops = {
4276 		.test_walk = should_skip_vma,
4277 		.p4d_entry = walk_pud_range,
4278 	};
4279 
4280 	int err;
4281 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4282 
4283 	walk->next_addr = FIRST_USER_ADDRESS;
4284 
4285 	do {
4286 		DEFINE_MAX_SEQ(lruvec);
4287 
4288 		err = -EBUSY;
4289 
4290 		/* another thread might have called inc_max_seq() */
4291 		if (walk->max_seq != max_seq)
4292 			break;
4293 
4294 		/* folio_update_gen() requires stable folio_memcg() */
4295 		if (!mem_cgroup_trylock_pages(memcg))
4296 			break;
4297 
4298 		/* the caller might be holding the lock for write */
4299 		if (mmap_read_trylock(mm)) {
4300 			err = walk_page_range(mm, walk->next_addr, ULONG_MAX, &mm_walk_ops, walk);
4301 
4302 			mmap_read_unlock(mm);
4303 		}
4304 
4305 		mem_cgroup_unlock_pages();
4306 
4307 		if (walk->batched) {
4308 			spin_lock_irq(&lruvec->lru_lock);
4309 			reset_batch_size(lruvec, walk);
4310 			spin_unlock_irq(&lruvec->lru_lock);
4311 		}
4312 
4313 		cond_resched();
4314 	} while (err == -EAGAIN);
4315 }
4316 
4317 static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat, bool force_alloc)
4318 {
4319 	struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
4320 
4321 	if (pgdat && current_is_kswapd()) {
4322 		VM_WARN_ON_ONCE(walk);
4323 
4324 		walk = &pgdat->mm_walk;
4325 	} else if (!walk && force_alloc) {
4326 		VM_WARN_ON_ONCE(current_is_kswapd());
4327 
4328 		walk = kzalloc(sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
4329 	}
4330 
4331 	current->reclaim_state->mm_walk = walk;
4332 
4333 	return walk;
4334 }
4335 
4336 static void clear_mm_walk(void)
4337 {
4338 	struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
4339 
4340 	VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages)));
4341 	VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats)));
4342 
4343 	current->reclaim_state->mm_walk = NULL;
4344 
4345 	if (!current_is_kswapd())
4346 		kfree(walk);
4347 }
4348 
4349 static bool inc_min_seq(struct lruvec *lruvec, int type, bool can_swap)
4350 {
4351 	int zone;
4352 	int remaining = MAX_LRU_BATCH;
4353 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4354 	int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
4355 
4356 	if (type == LRU_GEN_ANON && !can_swap)
4357 		goto done;
4358 
4359 	/* prevent cold/hot inversion if force_scan is true */
4360 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4361 		struct list_head *head = &lrugen->folios[old_gen][type][zone];
4362 
4363 		while (!list_empty(head)) {
4364 			struct folio *folio = lru_to_folio(head);
4365 
4366 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
4367 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
4368 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
4369 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
4370 
4371 			new_gen = folio_inc_gen(lruvec, folio, false);
4372 			list_move_tail(&folio->lru, &lrugen->folios[new_gen][type][zone]);
4373 
4374 			if (!--remaining)
4375 				return false;
4376 		}
4377 	}
4378 done:
4379 	reset_ctrl_pos(lruvec, type, true);
4380 	WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1);
4381 
4382 	return true;
4383 }
4384 
4385 static bool try_to_inc_min_seq(struct lruvec *lruvec, bool can_swap)
4386 {
4387 	int gen, type, zone;
4388 	bool success = false;
4389 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4390 	DEFINE_MIN_SEQ(lruvec);
4391 
4392 	VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
4393 
4394 	/* find the oldest populated generation */
4395 	for (type = !can_swap; type < ANON_AND_FILE; type++) {
4396 		while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) {
4397 			gen = lru_gen_from_seq(min_seq[type]);
4398 
4399 			for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4400 				if (!list_empty(&lrugen->folios[gen][type][zone]))
4401 					goto next;
4402 			}
4403 
4404 			min_seq[type]++;
4405 		}
4406 next:
4407 		;
4408 	}
4409 
4410 	/* see the comment on lru_gen_folio */
4411 	if (can_swap) {
4412 		min_seq[LRU_GEN_ANON] = min(min_seq[LRU_GEN_ANON], min_seq[LRU_GEN_FILE]);
4413 		min_seq[LRU_GEN_FILE] = max(min_seq[LRU_GEN_ANON], lrugen->min_seq[LRU_GEN_FILE]);
4414 	}
4415 
4416 	for (type = !can_swap; type < ANON_AND_FILE; type++) {
4417 		if (min_seq[type] == lrugen->min_seq[type])
4418 			continue;
4419 
4420 		reset_ctrl_pos(lruvec, type, true);
4421 		WRITE_ONCE(lrugen->min_seq[type], min_seq[type]);
4422 		success = true;
4423 	}
4424 
4425 	return success;
4426 }
4427 
4428 static void inc_max_seq(struct lruvec *lruvec, bool can_swap, bool force_scan)
4429 {
4430 	int prev, next;
4431 	int type, zone;
4432 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4433 
4434 	spin_lock_irq(&lruvec->lru_lock);
4435 
4436 	VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
4437 
4438 	for (type = ANON_AND_FILE - 1; type >= 0; type--) {
4439 		if (get_nr_gens(lruvec, type) != MAX_NR_GENS)
4440 			continue;
4441 
4442 		VM_WARN_ON_ONCE(!force_scan && (type == LRU_GEN_FILE || can_swap));
4443 
4444 		while (!inc_min_seq(lruvec, type, can_swap)) {
4445 			spin_unlock_irq(&lruvec->lru_lock);
4446 			cond_resched();
4447 			spin_lock_irq(&lruvec->lru_lock);
4448 		}
4449 	}
4450 
4451 	/*
4452 	 * Update the active/inactive LRU sizes for compatibility. Both sides of
4453 	 * the current max_seq need to be covered, since max_seq+1 can overlap
4454 	 * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do
4455 	 * overlap, cold/hot inversion happens.
4456 	 */
4457 	prev = lru_gen_from_seq(lrugen->max_seq - 1);
4458 	next = lru_gen_from_seq(lrugen->max_seq + 1);
4459 
4460 	for (type = 0; type < ANON_AND_FILE; type++) {
4461 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4462 			enum lru_list lru = type * LRU_INACTIVE_FILE;
4463 			long delta = lrugen->nr_pages[prev][type][zone] -
4464 				     lrugen->nr_pages[next][type][zone];
4465 
4466 			if (!delta)
4467 				continue;
4468 
4469 			__update_lru_size(lruvec, lru, zone, delta);
4470 			__update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta);
4471 		}
4472 	}
4473 
4474 	for (type = 0; type < ANON_AND_FILE; type++)
4475 		reset_ctrl_pos(lruvec, type, false);
4476 
4477 	WRITE_ONCE(lrugen->timestamps[next], jiffies);
4478 	/* make sure preceding modifications appear */
4479 	smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1);
4480 
4481 	spin_unlock_irq(&lruvec->lru_lock);
4482 }
4483 
4484 static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long max_seq,
4485 			       struct scan_control *sc, bool can_swap, bool force_scan)
4486 {
4487 	bool success;
4488 	struct lru_gen_mm_walk *walk;
4489 	struct mm_struct *mm = NULL;
4490 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4491 
4492 	VM_WARN_ON_ONCE(max_seq > READ_ONCE(lrugen->max_seq));
4493 
4494 	/* see the comment in iterate_mm_list() */
4495 	if (max_seq <= READ_ONCE(lruvec->mm_state.seq)) {
4496 		success = false;
4497 		goto done;
4498 	}
4499 
4500 	/*
4501 	 * If the hardware doesn't automatically set the accessed bit, fallback
4502 	 * to lru_gen_look_around(), which only clears the accessed bit in a
4503 	 * handful of PTEs. Spreading the work out over a period of time usually
4504 	 * is less efficient, but it avoids bursty page faults.
4505 	 */
4506 	if (!should_walk_mmu()) {
4507 		success = iterate_mm_list_nowalk(lruvec, max_seq);
4508 		goto done;
4509 	}
4510 
4511 	walk = set_mm_walk(NULL, true);
4512 	if (!walk) {
4513 		success = iterate_mm_list_nowalk(lruvec, max_seq);
4514 		goto done;
4515 	}
4516 
4517 	walk->lruvec = lruvec;
4518 	walk->max_seq = max_seq;
4519 	walk->can_swap = can_swap;
4520 	walk->force_scan = force_scan;
4521 
4522 	do {
4523 		success = iterate_mm_list(lruvec, walk, &mm);
4524 		if (mm)
4525 			walk_mm(lruvec, mm, walk);
4526 	} while (mm);
4527 done:
4528 	if (success)
4529 		inc_max_seq(lruvec, can_swap, force_scan);
4530 
4531 	return success;
4532 }
4533 
4534 /******************************************************************************
4535  *                          working set protection
4536  ******************************************************************************/
4537 
4538 static bool lruvec_is_sizable(struct lruvec *lruvec, struct scan_control *sc)
4539 {
4540 	int gen, type, zone;
4541 	unsigned long total = 0;
4542 	bool can_swap = get_swappiness(lruvec, sc);
4543 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4544 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4545 	DEFINE_MAX_SEQ(lruvec);
4546 	DEFINE_MIN_SEQ(lruvec);
4547 
4548 	for (type = !can_swap; type < ANON_AND_FILE; type++) {
4549 		unsigned long seq;
4550 
4551 		for (seq = min_seq[type]; seq <= max_seq; seq++) {
4552 			gen = lru_gen_from_seq(seq);
4553 
4554 			for (zone = 0; zone < MAX_NR_ZONES; zone++)
4555 				total += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
4556 		}
4557 	}
4558 
4559 	/* whether the size is big enough to be helpful */
4560 	return mem_cgroup_online(memcg) ? (total >> sc->priority) : total;
4561 }
4562 
4563 static bool lruvec_is_reclaimable(struct lruvec *lruvec, struct scan_control *sc,
4564 				  unsigned long min_ttl)
4565 {
4566 	int gen;
4567 	unsigned long birth;
4568 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4569 	DEFINE_MIN_SEQ(lruvec);
4570 
4571 	/* see the comment on lru_gen_folio */
4572 	gen = lru_gen_from_seq(min_seq[LRU_GEN_FILE]);
4573 	birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
4574 
4575 	if (time_is_after_jiffies(birth + min_ttl))
4576 		return false;
4577 
4578 	if (!lruvec_is_sizable(lruvec, sc))
4579 		return false;
4580 
4581 	mem_cgroup_calculate_protection(NULL, memcg);
4582 
4583 	return !mem_cgroup_below_min(NULL, memcg);
4584 }
4585 
4586 /* to protect the working set of the last N jiffies */
4587 static unsigned long lru_gen_min_ttl __read_mostly;
4588 
4589 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
4590 {
4591 	struct mem_cgroup *memcg;
4592 	unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl);
4593 
4594 	VM_WARN_ON_ONCE(!current_is_kswapd());
4595 
4596 	/* check the order to exclude compaction-induced reclaim */
4597 	if (!min_ttl || sc->order || sc->priority == DEF_PRIORITY)
4598 		return;
4599 
4600 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
4601 	do {
4602 		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4603 
4604 		if (lruvec_is_reclaimable(lruvec, sc, min_ttl)) {
4605 			mem_cgroup_iter_break(NULL, memcg);
4606 			return;
4607 		}
4608 
4609 		cond_resched();
4610 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
4611 
4612 	/*
4613 	 * The main goal is to OOM kill if every generation from all memcgs is
4614 	 * younger than min_ttl. However, another possibility is all memcgs are
4615 	 * either too small or below min.
4616 	 */
4617 	if (mutex_trylock(&oom_lock)) {
4618 		struct oom_control oc = {
4619 			.gfp_mask = sc->gfp_mask,
4620 		};
4621 
4622 		out_of_memory(&oc);
4623 
4624 		mutex_unlock(&oom_lock);
4625 	}
4626 }
4627 
4628 /******************************************************************************
4629  *                          rmap/PT walk feedback
4630  ******************************************************************************/
4631 
4632 /*
4633  * This function exploits spatial locality when shrink_folio_list() walks the
4634  * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If
4635  * the scan was done cacheline efficiently, it adds the PMD entry pointing to
4636  * the PTE table to the Bloom filter. This forms a feedback loop between the
4637  * eviction and the aging.
4638  */
4639 void lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
4640 {
4641 	int i;
4642 	unsigned long start;
4643 	unsigned long end;
4644 	struct lru_gen_mm_walk *walk;
4645 	int young = 0;
4646 	pte_t *pte = pvmw->pte;
4647 	unsigned long addr = pvmw->address;
4648 	struct folio *folio = pfn_folio(pvmw->pfn);
4649 	struct mem_cgroup *memcg = folio_memcg(folio);
4650 	struct pglist_data *pgdat = folio_pgdat(folio);
4651 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4652 	DEFINE_MAX_SEQ(lruvec);
4653 	int old_gen, new_gen = lru_gen_from_seq(max_seq);
4654 
4655 	lockdep_assert_held(pvmw->ptl);
4656 	VM_WARN_ON_ONCE_FOLIO(folio_test_lru(folio), folio);
4657 
4658 	if (spin_is_contended(pvmw->ptl))
4659 		return;
4660 
4661 	/* avoid taking the LRU lock under the PTL when possible */
4662 	walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL;
4663 
4664 	start = max(addr & PMD_MASK, pvmw->vma->vm_start);
4665 	end = min(addr | ~PMD_MASK, pvmw->vma->vm_end - 1) + 1;
4666 
4667 	if (end - start > MIN_LRU_BATCH * PAGE_SIZE) {
4668 		if (addr - start < MIN_LRU_BATCH * PAGE_SIZE / 2)
4669 			end = start + MIN_LRU_BATCH * PAGE_SIZE;
4670 		else if (end - addr < MIN_LRU_BATCH * PAGE_SIZE / 2)
4671 			start = end - MIN_LRU_BATCH * PAGE_SIZE;
4672 		else {
4673 			start = addr - MIN_LRU_BATCH * PAGE_SIZE / 2;
4674 			end = addr + MIN_LRU_BATCH * PAGE_SIZE / 2;
4675 		}
4676 	}
4677 
4678 	/* folio_update_gen() requires stable folio_memcg() */
4679 	if (!mem_cgroup_trylock_pages(memcg))
4680 		return;
4681 
4682 	arch_enter_lazy_mmu_mode();
4683 
4684 	pte -= (addr - start) / PAGE_SIZE;
4685 
4686 	for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) {
4687 		unsigned long pfn;
4688 
4689 		pfn = get_pte_pfn(pte[i], pvmw->vma, addr);
4690 		if (pfn == -1)
4691 			continue;
4692 
4693 		if (!pte_young(pte[i]))
4694 			continue;
4695 
4696 		folio = get_pfn_folio(pfn, memcg, pgdat, !walk || walk->can_swap);
4697 		if (!folio)
4698 			continue;
4699 
4700 		if (!ptep_test_and_clear_young(pvmw->vma, addr, pte + i))
4701 			VM_WARN_ON_ONCE(true);
4702 
4703 		young++;
4704 
4705 		if (pte_dirty(pte[i]) && !folio_test_dirty(folio) &&
4706 		    !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
4707 		      !folio_test_swapcache(folio)))
4708 			folio_mark_dirty(folio);
4709 
4710 		if (walk) {
4711 			old_gen = folio_update_gen(folio, new_gen);
4712 			if (old_gen >= 0 && old_gen != new_gen)
4713 				update_batch_size(walk, folio, old_gen, new_gen);
4714 
4715 			continue;
4716 		}
4717 
4718 		old_gen = folio_lru_gen(folio);
4719 		if (old_gen < 0)
4720 			folio_set_referenced(folio);
4721 		else if (old_gen != new_gen)
4722 			folio_activate(folio);
4723 	}
4724 
4725 	arch_leave_lazy_mmu_mode();
4726 	mem_cgroup_unlock_pages();
4727 
4728 	/* feedback from rmap walkers to page table walkers */
4729 	if (suitable_to_scan(i, young))
4730 		update_bloom_filter(lruvec, max_seq, pvmw->pmd);
4731 }
4732 
4733 /******************************************************************************
4734  *                          memcg LRU
4735  ******************************************************************************/
4736 
4737 /* see the comment on MEMCG_NR_GENS */
4738 enum {
4739 	MEMCG_LRU_NOP,
4740 	MEMCG_LRU_HEAD,
4741 	MEMCG_LRU_TAIL,
4742 	MEMCG_LRU_OLD,
4743 	MEMCG_LRU_YOUNG,
4744 };
4745 
4746 #ifdef CONFIG_MEMCG
4747 
4748 static int lru_gen_memcg_seg(struct lruvec *lruvec)
4749 {
4750 	return READ_ONCE(lruvec->lrugen.seg);
4751 }
4752 
4753 static void lru_gen_rotate_memcg(struct lruvec *lruvec, int op)
4754 {
4755 	int seg;
4756 	int old, new;
4757 	int bin = get_random_u32_below(MEMCG_NR_BINS);
4758 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4759 
4760 	spin_lock(&pgdat->memcg_lru.lock);
4761 
4762 	VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list));
4763 
4764 	seg = 0;
4765 	new = old = lruvec->lrugen.gen;
4766 
4767 	/* see the comment on MEMCG_NR_GENS */
4768 	if (op == MEMCG_LRU_HEAD)
4769 		seg = MEMCG_LRU_HEAD;
4770 	else if (op == MEMCG_LRU_TAIL)
4771 		seg = MEMCG_LRU_TAIL;
4772 	else if (op == MEMCG_LRU_OLD)
4773 		new = get_memcg_gen(pgdat->memcg_lru.seq);
4774 	else if (op == MEMCG_LRU_YOUNG)
4775 		new = get_memcg_gen(pgdat->memcg_lru.seq + 1);
4776 	else
4777 		VM_WARN_ON_ONCE(true);
4778 
4779 	hlist_nulls_del_rcu(&lruvec->lrugen.list);
4780 
4781 	if (op == MEMCG_LRU_HEAD || op == MEMCG_LRU_OLD)
4782 		hlist_nulls_add_head_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
4783 	else
4784 		hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
4785 
4786 	pgdat->memcg_lru.nr_memcgs[old]--;
4787 	pgdat->memcg_lru.nr_memcgs[new]++;
4788 
4789 	lruvec->lrugen.gen = new;
4790 	WRITE_ONCE(lruvec->lrugen.seg, seg);
4791 
4792 	if (!pgdat->memcg_lru.nr_memcgs[old] && old == get_memcg_gen(pgdat->memcg_lru.seq))
4793 		WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
4794 
4795 	spin_unlock(&pgdat->memcg_lru.lock);
4796 }
4797 
4798 void lru_gen_online_memcg(struct mem_cgroup *memcg)
4799 {
4800 	int gen;
4801 	int nid;
4802 	int bin = get_random_u32_below(MEMCG_NR_BINS);
4803 
4804 	for_each_node(nid) {
4805 		struct pglist_data *pgdat = NODE_DATA(nid);
4806 		struct lruvec *lruvec = get_lruvec(memcg, nid);
4807 
4808 		spin_lock(&pgdat->memcg_lru.lock);
4809 
4810 		VM_WARN_ON_ONCE(!hlist_nulls_unhashed(&lruvec->lrugen.list));
4811 
4812 		gen = get_memcg_gen(pgdat->memcg_lru.seq);
4813 
4814 		hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[gen][bin]);
4815 		pgdat->memcg_lru.nr_memcgs[gen]++;
4816 
4817 		lruvec->lrugen.gen = gen;
4818 
4819 		spin_unlock(&pgdat->memcg_lru.lock);
4820 	}
4821 }
4822 
4823 void lru_gen_offline_memcg(struct mem_cgroup *memcg)
4824 {
4825 	int nid;
4826 
4827 	for_each_node(nid) {
4828 		struct lruvec *lruvec = get_lruvec(memcg, nid);
4829 
4830 		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_OLD);
4831 	}
4832 }
4833 
4834 void lru_gen_release_memcg(struct mem_cgroup *memcg)
4835 {
4836 	int gen;
4837 	int nid;
4838 
4839 	for_each_node(nid) {
4840 		struct pglist_data *pgdat = NODE_DATA(nid);
4841 		struct lruvec *lruvec = get_lruvec(memcg, nid);
4842 
4843 		spin_lock(&pgdat->memcg_lru.lock);
4844 
4845 		VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list));
4846 
4847 		gen = lruvec->lrugen.gen;
4848 
4849 		hlist_nulls_del_rcu(&lruvec->lrugen.list);
4850 		pgdat->memcg_lru.nr_memcgs[gen]--;
4851 
4852 		if (!pgdat->memcg_lru.nr_memcgs[gen] && gen == get_memcg_gen(pgdat->memcg_lru.seq))
4853 			WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
4854 
4855 		spin_unlock(&pgdat->memcg_lru.lock);
4856 	}
4857 }
4858 
4859 void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid)
4860 {
4861 	struct lruvec *lruvec = get_lruvec(memcg, nid);
4862 
4863 	/* see the comment on MEMCG_NR_GENS */
4864 	if (lru_gen_memcg_seg(lruvec) != MEMCG_LRU_HEAD)
4865 		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_HEAD);
4866 }
4867 
4868 #else /* !CONFIG_MEMCG */
4869 
4870 static int lru_gen_memcg_seg(struct lruvec *lruvec)
4871 {
4872 	return 0;
4873 }
4874 
4875 #endif
4876 
4877 /******************************************************************************
4878  *                          the eviction
4879  ******************************************************************************/
4880 
4881 static bool sort_folio(struct lruvec *lruvec, struct folio *folio, int tier_idx)
4882 {
4883 	bool success;
4884 	int gen = folio_lru_gen(folio);
4885 	int type = folio_is_file_lru(folio);
4886 	int zone = folio_zonenum(folio);
4887 	int delta = folio_nr_pages(folio);
4888 	int refs = folio_lru_refs(folio);
4889 	int tier = lru_tier_from_refs(refs);
4890 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4891 
4892 	VM_WARN_ON_ONCE_FOLIO(gen >= MAX_NR_GENS, folio);
4893 
4894 	/* unevictable */
4895 	if (!folio_evictable(folio)) {
4896 		success = lru_gen_del_folio(lruvec, folio, true);
4897 		VM_WARN_ON_ONCE_FOLIO(!success, folio);
4898 		folio_set_unevictable(folio);
4899 		lruvec_add_folio(lruvec, folio);
4900 		__count_vm_events(UNEVICTABLE_PGCULLED, delta);
4901 		return true;
4902 	}
4903 
4904 	/* dirty lazyfree */
4905 	if (type == LRU_GEN_FILE && folio_test_anon(folio) && folio_test_dirty(folio)) {
4906 		success = lru_gen_del_folio(lruvec, folio, true);
4907 		VM_WARN_ON_ONCE_FOLIO(!success, folio);
4908 		folio_set_swapbacked(folio);
4909 		lruvec_add_folio_tail(lruvec, folio);
4910 		return true;
4911 	}
4912 
4913 	/* promoted */
4914 	if (gen != lru_gen_from_seq(lrugen->min_seq[type])) {
4915 		list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4916 		return true;
4917 	}
4918 
4919 	/* protected */
4920 	if (tier > tier_idx) {
4921 		int hist = lru_hist_from_seq(lrugen->min_seq[type]);
4922 
4923 		gen = folio_inc_gen(lruvec, folio, false);
4924 		list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]);
4925 
4926 		WRITE_ONCE(lrugen->protected[hist][type][tier - 1],
4927 			   lrugen->protected[hist][type][tier - 1] + delta);
4928 		__mod_lruvec_state(lruvec, WORKINGSET_ACTIVATE_BASE + type, delta);
4929 		return true;
4930 	}
4931 
4932 	/* waiting for writeback */
4933 	if (folio_test_locked(folio) || folio_test_writeback(folio) ||
4934 	    (type == LRU_GEN_FILE && folio_test_dirty(folio))) {
4935 		gen = folio_inc_gen(lruvec, folio, true);
4936 		list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4937 		return true;
4938 	}
4939 
4940 	return false;
4941 }
4942 
4943 static bool isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc)
4944 {
4945 	bool success;
4946 
4947 	/* swapping inhibited */
4948 	if (!(sc->gfp_mask & __GFP_IO) &&
4949 	    (folio_test_dirty(folio) ||
4950 	     (folio_test_anon(folio) && !folio_test_swapcache(folio))))
4951 		return false;
4952 
4953 	/* raced with release_pages() */
4954 	if (!folio_try_get(folio))
4955 		return false;
4956 
4957 	/* raced with another isolation */
4958 	if (!folio_test_clear_lru(folio)) {
4959 		folio_put(folio);
4960 		return false;
4961 	}
4962 
4963 	/* see the comment on MAX_NR_TIERS */
4964 	if (!folio_test_referenced(folio))
4965 		set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS, 0);
4966 
4967 	/* for shrink_folio_list() */
4968 	folio_clear_reclaim(folio);
4969 	folio_clear_referenced(folio);
4970 
4971 	success = lru_gen_del_folio(lruvec, folio, true);
4972 	VM_WARN_ON_ONCE_FOLIO(!success, folio);
4973 
4974 	return true;
4975 }
4976 
4977 static int scan_folios(struct lruvec *lruvec, struct scan_control *sc,
4978 		       int type, int tier, struct list_head *list)
4979 {
4980 	int gen, zone;
4981 	enum vm_event_item item;
4982 	int sorted = 0;
4983 	int scanned = 0;
4984 	int isolated = 0;
4985 	int remaining = MAX_LRU_BATCH;
4986 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4987 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4988 
4989 	VM_WARN_ON_ONCE(!list_empty(list));
4990 
4991 	if (get_nr_gens(lruvec, type) == MIN_NR_GENS)
4992 		return 0;
4993 
4994 	gen = lru_gen_from_seq(lrugen->min_seq[type]);
4995 
4996 	for (zone = sc->reclaim_idx; zone >= 0; zone--) {
4997 		LIST_HEAD(moved);
4998 		int skipped = 0;
4999 		struct list_head *head = &lrugen->folios[gen][type][zone];
5000 
5001 		while (!list_empty(head)) {
5002 			struct folio *folio = lru_to_folio(head);
5003 			int delta = folio_nr_pages(folio);
5004 
5005 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5006 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
5007 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5008 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
5009 
5010 			scanned += delta;
5011 
5012 			if (sort_folio(lruvec, folio, tier))
5013 				sorted += delta;
5014 			else if (isolate_folio(lruvec, folio, sc)) {
5015 				list_add(&folio->lru, list);
5016 				isolated += delta;
5017 			} else {
5018 				list_move(&folio->lru, &moved);
5019 				skipped += delta;
5020 			}
5021 
5022 			if (!--remaining || max(isolated, skipped) >= MIN_LRU_BATCH)
5023 				break;
5024 		}
5025 
5026 		if (skipped) {
5027 			list_splice(&moved, head);
5028 			__count_zid_vm_events(PGSCAN_SKIP, zone, skipped);
5029 		}
5030 
5031 		if (!remaining || isolated >= MIN_LRU_BATCH)
5032 			break;
5033 	}
5034 
5035 	item = PGSCAN_KSWAPD + reclaimer_offset();
5036 	if (!cgroup_reclaim(sc)) {
5037 		__count_vm_events(item, isolated);
5038 		__count_vm_events(PGREFILL, sorted);
5039 	}
5040 	__count_memcg_events(memcg, item, isolated);
5041 	__count_memcg_events(memcg, PGREFILL, sorted);
5042 	__count_vm_events(PGSCAN_ANON + type, isolated);
5043 
5044 	/*
5045 	 * There might not be eligible folios due to reclaim_idx. Check the
5046 	 * remaining to prevent livelock if it's not making progress.
5047 	 */
5048 	return isolated || !remaining ? scanned : 0;
5049 }
5050 
5051 static int get_tier_idx(struct lruvec *lruvec, int type)
5052 {
5053 	int tier;
5054 	struct ctrl_pos sp, pv;
5055 
5056 	/*
5057 	 * To leave a margin for fluctuations, use a larger gain factor (1:2).
5058 	 * This value is chosen because any other tier would have at least twice
5059 	 * as many refaults as the first tier.
5060 	 */
5061 	read_ctrl_pos(lruvec, type, 0, 1, &sp);
5062 	for (tier = 1; tier < MAX_NR_TIERS; tier++) {
5063 		read_ctrl_pos(lruvec, type, tier, 2, &pv);
5064 		if (!positive_ctrl_err(&sp, &pv))
5065 			break;
5066 	}
5067 
5068 	return tier - 1;
5069 }
5070 
5071 static int get_type_to_scan(struct lruvec *lruvec, int swappiness, int *tier_idx)
5072 {
5073 	int type, tier;
5074 	struct ctrl_pos sp, pv;
5075 	int gain[ANON_AND_FILE] = { swappiness, 200 - swappiness };
5076 
5077 	/*
5078 	 * Compare the first tier of anon with that of file to determine which
5079 	 * type to scan. Also need to compare other tiers of the selected type
5080 	 * with the first tier of the other type to determine the last tier (of
5081 	 * the selected type) to evict.
5082 	 */
5083 	read_ctrl_pos(lruvec, LRU_GEN_ANON, 0, gain[LRU_GEN_ANON], &sp);
5084 	read_ctrl_pos(lruvec, LRU_GEN_FILE, 0, gain[LRU_GEN_FILE], &pv);
5085 	type = positive_ctrl_err(&sp, &pv);
5086 
5087 	read_ctrl_pos(lruvec, !type, 0, gain[!type], &sp);
5088 	for (tier = 1; tier < MAX_NR_TIERS; tier++) {
5089 		read_ctrl_pos(lruvec, type, tier, gain[type], &pv);
5090 		if (!positive_ctrl_err(&sp, &pv))
5091 			break;
5092 	}
5093 
5094 	*tier_idx = tier - 1;
5095 
5096 	return type;
5097 }
5098 
5099 static int isolate_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness,
5100 			  int *type_scanned, struct list_head *list)
5101 {
5102 	int i;
5103 	int type;
5104 	int scanned;
5105 	int tier = -1;
5106 	DEFINE_MIN_SEQ(lruvec);
5107 
5108 	/*
5109 	 * Try to make the obvious choice first. When anon and file are both
5110 	 * available from the same generation, interpret swappiness 1 as file
5111 	 * first and 200 as anon first.
5112 	 */
5113 	if (!swappiness)
5114 		type = LRU_GEN_FILE;
5115 	else if (min_seq[LRU_GEN_ANON] < min_seq[LRU_GEN_FILE])
5116 		type = LRU_GEN_ANON;
5117 	else if (swappiness == 1)
5118 		type = LRU_GEN_FILE;
5119 	else if (swappiness == 200)
5120 		type = LRU_GEN_ANON;
5121 	else
5122 		type = get_type_to_scan(lruvec, swappiness, &tier);
5123 
5124 	for (i = !swappiness; i < ANON_AND_FILE; i++) {
5125 		if (tier < 0)
5126 			tier = get_tier_idx(lruvec, type);
5127 
5128 		scanned = scan_folios(lruvec, sc, type, tier, list);
5129 		if (scanned)
5130 			break;
5131 
5132 		type = !type;
5133 		tier = -1;
5134 	}
5135 
5136 	*type_scanned = type;
5137 
5138 	return scanned;
5139 }
5140 
5141 static int evict_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness)
5142 {
5143 	int type;
5144 	int scanned;
5145 	int reclaimed;
5146 	LIST_HEAD(list);
5147 	LIST_HEAD(clean);
5148 	struct folio *folio;
5149 	struct folio *next;
5150 	enum vm_event_item item;
5151 	struct reclaim_stat stat;
5152 	struct lru_gen_mm_walk *walk;
5153 	bool skip_retry = false;
5154 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5155 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
5156 
5157 	spin_lock_irq(&lruvec->lru_lock);
5158 
5159 	scanned = isolate_folios(lruvec, sc, swappiness, &type, &list);
5160 
5161 	scanned += try_to_inc_min_seq(lruvec, swappiness);
5162 
5163 	if (get_nr_gens(lruvec, !swappiness) == MIN_NR_GENS)
5164 		scanned = 0;
5165 
5166 	spin_unlock_irq(&lruvec->lru_lock);
5167 
5168 	if (list_empty(&list))
5169 		return scanned;
5170 retry:
5171 	reclaimed = shrink_folio_list(&list, pgdat, sc, &stat, false);
5172 	sc->nr_reclaimed += reclaimed;
5173 
5174 	list_for_each_entry_safe_reverse(folio, next, &list, lru) {
5175 		if (!folio_evictable(folio)) {
5176 			list_del(&folio->lru);
5177 			folio_putback_lru(folio);
5178 			continue;
5179 		}
5180 
5181 		if (folio_test_reclaim(folio) &&
5182 		    (folio_test_dirty(folio) || folio_test_writeback(folio))) {
5183 			/* restore LRU_REFS_FLAGS cleared by isolate_folio() */
5184 			if (folio_test_workingset(folio))
5185 				folio_set_referenced(folio);
5186 			continue;
5187 		}
5188 
5189 		if (skip_retry || folio_test_active(folio) || folio_test_referenced(folio) ||
5190 		    folio_mapped(folio) || folio_test_locked(folio) ||
5191 		    folio_test_dirty(folio) || folio_test_writeback(folio)) {
5192 			/* don't add rejected folios to the oldest generation */
5193 			set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS,
5194 				      BIT(PG_active));
5195 			continue;
5196 		}
5197 
5198 		/* retry folios that may have missed folio_rotate_reclaimable() */
5199 		list_move(&folio->lru, &clean);
5200 		sc->nr_scanned -= folio_nr_pages(folio);
5201 	}
5202 
5203 	spin_lock_irq(&lruvec->lru_lock);
5204 
5205 	move_folios_to_lru(lruvec, &list);
5206 
5207 	walk = current->reclaim_state->mm_walk;
5208 	if (walk && walk->batched)
5209 		reset_batch_size(lruvec, walk);
5210 
5211 	item = PGSTEAL_KSWAPD + reclaimer_offset();
5212 	if (!cgroup_reclaim(sc))
5213 		__count_vm_events(item, reclaimed);
5214 	__count_memcg_events(memcg, item, reclaimed);
5215 	__count_vm_events(PGSTEAL_ANON + type, reclaimed);
5216 
5217 	spin_unlock_irq(&lruvec->lru_lock);
5218 
5219 	mem_cgroup_uncharge_list(&list);
5220 	free_unref_page_list(&list);
5221 
5222 	INIT_LIST_HEAD(&list);
5223 	list_splice_init(&clean, &list);
5224 
5225 	if (!list_empty(&list)) {
5226 		skip_retry = true;
5227 		goto retry;
5228 	}
5229 
5230 	return scanned;
5231 }
5232 
5233 static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq,
5234 			     struct scan_control *sc, bool can_swap, unsigned long *nr_to_scan)
5235 {
5236 	int gen, type, zone;
5237 	unsigned long old = 0;
5238 	unsigned long young = 0;
5239 	unsigned long total = 0;
5240 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5241 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5242 	DEFINE_MIN_SEQ(lruvec);
5243 
5244 	/* whether this lruvec is completely out of cold folios */
5245 	if (min_seq[!can_swap] + MIN_NR_GENS > max_seq) {
5246 		*nr_to_scan = 0;
5247 		return true;
5248 	}
5249 
5250 	for (type = !can_swap; type < ANON_AND_FILE; type++) {
5251 		unsigned long seq;
5252 
5253 		for (seq = min_seq[type]; seq <= max_seq; seq++) {
5254 			unsigned long size = 0;
5255 
5256 			gen = lru_gen_from_seq(seq);
5257 
5258 			for (zone = 0; zone < MAX_NR_ZONES; zone++)
5259 				size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
5260 
5261 			total += size;
5262 			if (seq == max_seq)
5263 				young += size;
5264 			else if (seq + MIN_NR_GENS == max_seq)
5265 				old += size;
5266 		}
5267 	}
5268 
5269 	/* try to scrape all its memory if this memcg was deleted */
5270 	*nr_to_scan = mem_cgroup_online(memcg) ? (total >> sc->priority) : total;
5271 
5272 	/*
5273 	 * The aging tries to be lazy to reduce the overhead, while the eviction
5274 	 * stalls when the number of generations reaches MIN_NR_GENS. Hence, the
5275 	 * ideal number of generations is MIN_NR_GENS+1.
5276 	 */
5277 	if (min_seq[!can_swap] + MIN_NR_GENS < max_seq)
5278 		return false;
5279 
5280 	/*
5281 	 * It's also ideal to spread pages out evenly, i.e., 1/(MIN_NR_GENS+1)
5282 	 * of the total number of pages for each generation. A reasonable range
5283 	 * for this average portion is [1/MIN_NR_GENS, 1/(MIN_NR_GENS+2)]. The
5284 	 * aging cares about the upper bound of hot pages, while the eviction
5285 	 * cares about the lower bound of cold pages.
5286 	 */
5287 	if (young * MIN_NR_GENS > total)
5288 		return true;
5289 	if (old * (MIN_NR_GENS + 2) < total)
5290 		return true;
5291 
5292 	return false;
5293 }
5294 
5295 /*
5296  * For future optimizations:
5297  * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg
5298  *    reclaim.
5299  */
5300 static long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc, bool can_swap)
5301 {
5302 	unsigned long nr_to_scan;
5303 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5304 	DEFINE_MAX_SEQ(lruvec);
5305 
5306 	if (mem_cgroup_below_min(sc->target_mem_cgroup, memcg))
5307 		return 0;
5308 
5309 	if (!should_run_aging(lruvec, max_seq, sc, can_swap, &nr_to_scan))
5310 		return nr_to_scan;
5311 
5312 	/* skip the aging path at the default priority */
5313 	if (sc->priority == DEF_PRIORITY)
5314 		return nr_to_scan;
5315 
5316 	/* skip this lruvec as it's low on cold folios */
5317 	return try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, false) ? -1 : 0;
5318 }
5319 
5320 static unsigned long get_nr_to_reclaim(struct scan_control *sc)
5321 {
5322 	/* don't abort memcg reclaim to ensure fairness */
5323 	if (!global_reclaim(sc))
5324 		return -1;
5325 
5326 	return max(sc->nr_to_reclaim, compact_gap(sc->order));
5327 }
5328 
5329 static bool try_to_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5330 {
5331 	long nr_to_scan;
5332 	unsigned long scanned = 0;
5333 	unsigned long nr_to_reclaim = get_nr_to_reclaim(sc);
5334 	int swappiness = get_swappiness(lruvec, sc);
5335 
5336 	/* clean file folios are more likely to exist */
5337 	if (swappiness && !(sc->gfp_mask & __GFP_IO))
5338 		swappiness = 1;
5339 
5340 	while (true) {
5341 		int delta;
5342 
5343 		nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness);
5344 		if (nr_to_scan <= 0)
5345 			break;
5346 
5347 		delta = evict_folios(lruvec, sc, swappiness);
5348 		if (!delta)
5349 			break;
5350 
5351 		scanned += delta;
5352 		if (scanned >= nr_to_scan)
5353 			break;
5354 
5355 		if (sc->nr_reclaimed >= nr_to_reclaim)
5356 			break;
5357 
5358 		cond_resched();
5359 	}
5360 
5361 	/* whether try_to_inc_max_seq() was successful */
5362 	return nr_to_scan < 0;
5363 }
5364 
5365 static int shrink_one(struct lruvec *lruvec, struct scan_control *sc)
5366 {
5367 	bool success;
5368 	unsigned long scanned = sc->nr_scanned;
5369 	unsigned long reclaimed = sc->nr_reclaimed;
5370 	int seg = lru_gen_memcg_seg(lruvec);
5371 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5372 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
5373 
5374 	/* see the comment on MEMCG_NR_GENS */
5375 	if (!lruvec_is_sizable(lruvec, sc))
5376 		return seg != MEMCG_LRU_TAIL ? MEMCG_LRU_TAIL : MEMCG_LRU_YOUNG;
5377 
5378 	mem_cgroup_calculate_protection(NULL, memcg);
5379 
5380 	if (mem_cgroup_below_min(NULL, memcg))
5381 		return MEMCG_LRU_YOUNG;
5382 
5383 	if (mem_cgroup_below_low(NULL, memcg)) {
5384 		/* see the comment on MEMCG_NR_GENS */
5385 		if (seg != MEMCG_LRU_TAIL)
5386 			return MEMCG_LRU_TAIL;
5387 
5388 		memcg_memory_event(memcg, MEMCG_LOW);
5389 	}
5390 
5391 	success = try_to_shrink_lruvec(lruvec, sc);
5392 
5393 	shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, sc->priority);
5394 
5395 	if (!sc->proactive)
5396 		vmpressure(sc->gfp_mask, memcg, false, sc->nr_scanned - scanned,
5397 			   sc->nr_reclaimed - reclaimed);
5398 
5399 	flush_reclaim_state(sc);
5400 
5401 	return success ? MEMCG_LRU_YOUNG : 0;
5402 }
5403 
5404 #ifdef CONFIG_MEMCG
5405 
5406 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc)
5407 {
5408 	int op;
5409 	int gen;
5410 	int bin;
5411 	int first_bin;
5412 	struct lruvec *lruvec;
5413 	struct lru_gen_folio *lrugen;
5414 	struct mem_cgroup *memcg;
5415 	const struct hlist_nulls_node *pos;
5416 	unsigned long nr_to_reclaim = get_nr_to_reclaim(sc);
5417 
5418 	bin = first_bin = get_random_u32_below(MEMCG_NR_BINS);
5419 restart:
5420 	op = 0;
5421 	memcg = NULL;
5422 	gen = get_memcg_gen(READ_ONCE(pgdat->memcg_lru.seq));
5423 
5424 	rcu_read_lock();
5425 
5426 	hlist_nulls_for_each_entry_rcu(lrugen, pos, &pgdat->memcg_lru.fifo[gen][bin], list) {
5427 		if (op)
5428 			lru_gen_rotate_memcg(lruvec, op);
5429 
5430 		mem_cgroup_put(memcg);
5431 
5432 		lruvec = container_of(lrugen, struct lruvec, lrugen);
5433 		memcg = lruvec_memcg(lruvec);
5434 
5435 		if (!mem_cgroup_tryget(memcg)) {
5436 			op = 0;
5437 			memcg = NULL;
5438 			continue;
5439 		}
5440 
5441 		rcu_read_unlock();
5442 
5443 		op = shrink_one(lruvec, sc);
5444 
5445 		rcu_read_lock();
5446 
5447 		if (sc->nr_reclaimed >= nr_to_reclaim)
5448 			break;
5449 	}
5450 
5451 	rcu_read_unlock();
5452 
5453 	if (op)
5454 		lru_gen_rotate_memcg(lruvec, op);
5455 
5456 	mem_cgroup_put(memcg);
5457 
5458 	if (sc->nr_reclaimed >= nr_to_reclaim)
5459 		return;
5460 
5461 	/* restart if raced with lru_gen_rotate_memcg() */
5462 	if (gen != get_nulls_value(pos))
5463 		goto restart;
5464 
5465 	/* try the rest of the bins of the current generation */
5466 	bin = get_memcg_bin(bin + 1);
5467 	if (bin != first_bin)
5468 		goto restart;
5469 }
5470 
5471 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5472 {
5473 	struct blk_plug plug;
5474 
5475 	VM_WARN_ON_ONCE(global_reclaim(sc));
5476 	VM_WARN_ON_ONCE(!sc->may_writepage || !sc->may_unmap);
5477 
5478 	lru_add_drain();
5479 
5480 	blk_start_plug(&plug);
5481 
5482 	set_mm_walk(NULL, sc->proactive);
5483 
5484 	if (try_to_shrink_lruvec(lruvec, sc))
5485 		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_YOUNG);
5486 
5487 	clear_mm_walk();
5488 
5489 	blk_finish_plug(&plug);
5490 }
5491 
5492 #else /* !CONFIG_MEMCG */
5493 
5494 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc)
5495 {
5496 	BUILD_BUG();
5497 }
5498 
5499 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5500 {
5501 	BUILD_BUG();
5502 }
5503 
5504 #endif
5505 
5506 static void set_initial_priority(struct pglist_data *pgdat, struct scan_control *sc)
5507 {
5508 	int priority;
5509 	unsigned long reclaimable;
5510 	struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
5511 
5512 	if (sc->priority != DEF_PRIORITY || sc->nr_to_reclaim < MIN_LRU_BATCH)
5513 		return;
5514 	/*
5515 	 * Determine the initial priority based on ((total / MEMCG_NR_GENS) >>
5516 	 * priority) * reclaimed_to_scanned_ratio = nr_to_reclaim, where the
5517 	 * estimated reclaimed_to_scanned_ratio = inactive / total.
5518 	 */
5519 	reclaimable = node_page_state(pgdat, NR_INACTIVE_FILE);
5520 	if (get_swappiness(lruvec, sc))
5521 		reclaimable += node_page_state(pgdat, NR_INACTIVE_ANON);
5522 
5523 	reclaimable /= MEMCG_NR_GENS;
5524 
5525 	/* round down reclaimable and round up sc->nr_to_reclaim */
5526 	priority = fls_long(reclaimable) - 1 - fls_long(sc->nr_to_reclaim - 1);
5527 
5528 	sc->priority = clamp(priority, 0, DEF_PRIORITY);
5529 }
5530 
5531 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
5532 {
5533 	struct blk_plug plug;
5534 	unsigned long reclaimed = sc->nr_reclaimed;
5535 
5536 	VM_WARN_ON_ONCE(!global_reclaim(sc));
5537 
5538 	/*
5539 	 * Unmapped clean folios are already prioritized. Scanning for more of
5540 	 * them is likely futile and can cause high reclaim latency when there
5541 	 * is a large number of memcgs.
5542 	 */
5543 	if (!sc->may_writepage || !sc->may_unmap)
5544 		goto done;
5545 
5546 	lru_add_drain();
5547 
5548 	blk_start_plug(&plug);
5549 
5550 	set_mm_walk(pgdat, sc->proactive);
5551 
5552 	set_initial_priority(pgdat, sc);
5553 
5554 	if (current_is_kswapd())
5555 		sc->nr_reclaimed = 0;
5556 
5557 	if (mem_cgroup_disabled())
5558 		shrink_one(&pgdat->__lruvec, sc);
5559 	else
5560 		shrink_many(pgdat, sc);
5561 
5562 	if (current_is_kswapd())
5563 		sc->nr_reclaimed += reclaimed;
5564 
5565 	clear_mm_walk();
5566 
5567 	blk_finish_plug(&plug);
5568 done:
5569 	/* kswapd should never fail */
5570 	pgdat->kswapd_failures = 0;
5571 }
5572 
5573 /******************************************************************************
5574  *                          state change
5575  ******************************************************************************/
5576 
5577 static bool __maybe_unused state_is_valid(struct lruvec *lruvec)
5578 {
5579 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5580 
5581 	if (lrugen->enabled) {
5582 		enum lru_list lru;
5583 
5584 		for_each_evictable_lru(lru) {
5585 			if (!list_empty(&lruvec->lists[lru]))
5586 				return false;
5587 		}
5588 	} else {
5589 		int gen, type, zone;
5590 
5591 		for_each_gen_type_zone(gen, type, zone) {
5592 			if (!list_empty(&lrugen->folios[gen][type][zone]))
5593 				return false;
5594 		}
5595 	}
5596 
5597 	return true;
5598 }
5599 
5600 static bool fill_evictable(struct lruvec *lruvec)
5601 {
5602 	enum lru_list lru;
5603 	int remaining = MAX_LRU_BATCH;
5604 
5605 	for_each_evictable_lru(lru) {
5606 		int type = is_file_lru(lru);
5607 		bool active = is_active_lru(lru);
5608 		struct list_head *head = &lruvec->lists[lru];
5609 
5610 		while (!list_empty(head)) {
5611 			bool success;
5612 			struct folio *folio = lru_to_folio(head);
5613 
5614 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5615 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio) != active, folio);
5616 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5617 			VM_WARN_ON_ONCE_FOLIO(folio_lru_gen(folio) != -1, folio);
5618 
5619 			lruvec_del_folio(lruvec, folio);
5620 			success = lru_gen_add_folio(lruvec, folio, false);
5621 			VM_WARN_ON_ONCE(!success);
5622 
5623 			if (!--remaining)
5624 				return false;
5625 		}
5626 	}
5627 
5628 	return true;
5629 }
5630 
5631 static bool drain_evictable(struct lruvec *lruvec)
5632 {
5633 	int gen, type, zone;
5634 	int remaining = MAX_LRU_BATCH;
5635 
5636 	for_each_gen_type_zone(gen, type, zone) {
5637 		struct list_head *head = &lruvec->lrugen.folios[gen][type][zone];
5638 
5639 		while (!list_empty(head)) {
5640 			bool success;
5641 			struct folio *folio = lru_to_folio(head);
5642 
5643 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5644 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
5645 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5646 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
5647 
5648 			success = lru_gen_del_folio(lruvec, folio, false);
5649 			VM_WARN_ON_ONCE(!success);
5650 			lruvec_add_folio(lruvec, folio);
5651 
5652 			if (!--remaining)
5653 				return false;
5654 		}
5655 	}
5656 
5657 	return true;
5658 }
5659 
5660 static void lru_gen_change_state(bool enabled)
5661 {
5662 	static DEFINE_MUTEX(state_mutex);
5663 
5664 	struct mem_cgroup *memcg;
5665 
5666 	cgroup_lock();
5667 	cpus_read_lock();
5668 	get_online_mems();
5669 	mutex_lock(&state_mutex);
5670 
5671 	if (enabled == lru_gen_enabled())
5672 		goto unlock;
5673 
5674 	if (enabled)
5675 		static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5676 	else
5677 		static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5678 
5679 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
5680 	do {
5681 		int nid;
5682 
5683 		for_each_node(nid) {
5684 			struct lruvec *lruvec = get_lruvec(memcg, nid);
5685 
5686 			spin_lock_irq(&lruvec->lru_lock);
5687 
5688 			VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
5689 			VM_WARN_ON_ONCE(!state_is_valid(lruvec));
5690 
5691 			lruvec->lrugen.enabled = enabled;
5692 
5693 			while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) {
5694 				spin_unlock_irq(&lruvec->lru_lock);
5695 				cond_resched();
5696 				spin_lock_irq(&lruvec->lru_lock);
5697 			}
5698 
5699 			spin_unlock_irq(&lruvec->lru_lock);
5700 		}
5701 
5702 		cond_resched();
5703 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5704 unlock:
5705 	mutex_unlock(&state_mutex);
5706 	put_online_mems();
5707 	cpus_read_unlock();
5708 	cgroup_unlock();
5709 }
5710 
5711 /******************************************************************************
5712  *                          sysfs interface
5713  ******************************************************************************/
5714 
5715 static ssize_t min_ttl_ms_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5716 {
5717 	return sysfs_emit(buf, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl)));
5718 }
5719 
5720 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5721 static ssize_t min_ttl_ms_store(struct kobject *kobj, struct kobj_attribute *attr,
5722 				const char *buf, size_t len)
5723 {
5724 	unsigned int msecs;
5725 
5726 	if (kstrtouint(buf, 0, &msecs))
5727 		return -EINVAL;
5728 
5729 	WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs));
5730 
5731 	return len;
5732 }
5733 
5734 static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR_RW(min_ttl_ms);
5735 
5736 static ssize_t enabled_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5737 {
5738 	unsigned int caps = 0;
5739 
5740 	if (get_cap(LRU_GEN_CORE))
5741 		caps |= BIT(LRU_GEN_CORE);
5742 
5743 	if (should_walk_mmu())
5744 		caps |= BIT(LRU_GEN_MM_WALK);
5745 
5746 	if (should_clear_pmd_young())
5747 		caps |= BIT(LRU_GEN_NONLEAF_YOUNG);
5748 
5749 	return sysfs_emit(buf, "0x%04x\n", caps);
5750 }
5751 
5752 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5753 static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr,
5754 			     const char *buf, size_t len)
5755 {
5756 	int i;
5757 	unsigned int caps;
5758 
5759 	if (tolower(*buf) == 'n')
5760 		caps = 0;
5761 	else if (tolower(*buf) == 'y')
5762 		caps = -1;
5763 	else if (kstrtouint(buf, 0, &caps))
5764 		return -EINVAL;
5765 
5766 	for (i = 0; i < NR_LRU_GEN_CAPS; i++) {
5767 		bool enabled = caps & BIT(i);
5768 
5769 		if (i == LRU_GEN_CORE)
5770 			lru_gen_change_state(enabled);
5771 		else if (enabled)
5772 			static_branch_enable(&lru_gen_caps[i]);
5773 		else
5774 			static_branch_disable(&lru_gen_caps[i]);
5775 	}
5776 
5777 	return len;
5778 }
5779 
5780 static struct kobj_attribute lru_gen_enabled_attr = __ATTR_RW(enabled);
5781 
5782 static struct attribute *lru_gen_attrs[] = {
5783 	&lru_gen_min_ttl_attr.attr,
5784 	&lru_gen_enabled_attr.attr,
5785 	NULL
5786 };
5787 
5788 static const struct attribute_group lru_gen_attr_group = {
5789 	.name = "lru_gen",
5790 	.attrs = lru_gen_attrs,
5791 };
5792 
5793 /******************************************************************************
5794  *                          debugfs interface
5795  ******************************************************************************/
5796 
5797 static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos)
5798 {
5799 	struct mem_cgroup *memcg;
5800 	loff_t nr_to_skip = *pos;
5801 
5802 	m->private = kvmalloc(PATH_MAX, GFP_KERNEL);
5803 	if (!m->private)
5804 		return ERR_PTR(-ENOMEM);
5805 
5806 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
5807 	do {
5808 		int nid;
5809 
5810 		for_each_node_state(nid, N_MEMORY) {
5811 			if (!nr_to_skip--)
5812 				return get_lruvec(memcg, nid);
5813 		}
5814 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5815 
5816 	return NULL;
5817 }
5818 
5819 static void lru_gen_seq_stop(struct seq_file *m, void *v)
5820 {
5821 	if (!IS_ERR_OR_NULL(v))
5822 		mem_cgroup_iter_break(NULL, lruvec_memcg(v));
5823 
5824 	kvfree(m->private);
5825 	m->private = NULL;
5826 }
5827 
5828 static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos)
5829 {
5830 	int nid = lruvec_pgdat(v)->node_id;
5831 	struct mem_cgroup *memcg = lruvec_memcg(v);
5832 
5833 	++*pos;
5834 
5835 	nid = next_memory_node(nid);
5836 	if (nid == MAX_NUMNODES) {
5837 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
5838 		if (!memcg)
5839 			return NULL;
5840 
5841 		nid = first_memory_node;
5842 	}
5843 
5844 	return get_lruvec(memcg, nid);
5845 }
5846 
5847 static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec,
5848 				  unsigned long max_seq, unsigned long *min_seq,
5849 				  unsigned long seq)
5850 {
5851 	int i;
5852 	int type, tier;
5853 	int hist = lru_hist_from_seq(seq);
5854 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5855 
5856 	for (tier = 0; tier < MAX_NR_TIERS; tier++) {
5857 		seq_printf(m, "            %10d", tier);
5858 		for (type = 0; type < ANON_AND_FILE; type++) {
5859 			const char *s = "   ";
5860 			unsigned long n[3] = {};
5861 
5862 			if (seq == max_seq) {
5863 				s = "RT ";
5864 				n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]);
5865 				n[1] = READ_ONCE(lrugen->avg_total[type][tier]);
5866 			} else if (seq == min_seq[type] || NR_HIST_GENS > 1) {
5867 				s = "rep";
5868 				n[0] = atomic_long_read(&lrugen->refaulted[hist][type][tier]);
5869 				n[1] = atomic_long_read(&lrugen->evicted[hist][type][tier]);
5870 				if (tier)
5871 					n[2] = READ_ONCE(lrugen->protected[hist][type][tier - 1]);
5872 			}
5873 
5874 			for (i = 0; i < 3; i++)
5875 				seq_printf(m, " %10lu%c", n[i], s[i]);
5876 		}
5877 		seq_putc(m, '\n');
5878 	}
5879 
5880 	seq_puts(m, "                      ");
5881 	for (i = 0; i < NR_MM_STATS; i++) {
5882 		const char *s = "      ";
5883 		unsigned long n = 0;
5884 
5885 		if (seq == max_seq && NR_HIST_GENS == 1) {
5886 			s = "LOYNFA";
5887 			n = READ_ONCE(lruvec->mm_state.stats[hist][i]);
5888 		} else if (seq != max_seq && NR_HIST_GENS > 1) {
5889 			s = "loynfa";
5890 			n = READ_ONCE(lruvec->mm_state.stats[hist][i]);
5891 		}
5892 
5893 		seq_printf(m, " %10lu%c", n, s[i]);
5894 	}
5895 	seq_putc(m, '\n');
5896 }
5897 
5898 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5899 static int lru_gen_seq_show(struct seq_file *m, void *v)
5900 {
5901 	unsigned long seq;
5902 	bool full = !debugfs_real_fops(m->file)->write;
5903 	struct lruvec *lruvec = v;
5904 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5905 	int nid = lruvec_pgdat(lruvec)->node_id;
5906 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5907 	DEFINE_MAX_SEQ(lruvec);
5908 	DEFINE_MIN_SEQ(lruvec);
5909 
5910 	if (nid == first_memory_node) {
5911 		const char *path = memcg ? m->private : "";
5912 
5913 #ifdef CONFIG_MEMCG
5914 		if (memcg)
5915 			cgroup_path(memcg->css.cgroup, m->private, PATH_MAX);
5916 #endif
5917 		seq_printf(m, "memcg %5hu %s\n", mem_cgroup_id(memcg), path);
5918 	}
5919 
5920 	seq_printf(m, " node %5d\n", nid);
5921 
5922 	if (!full)
5923 		seq = min_seq[LRU_GEN_ANON];
5924 	else if (max_seq >= MAX_NR_GENS)
5925 		seq = max_seq - MAX_NR_GENS + 1;
5926 	else
5927 		seq = 0;
5928 
5929 	for (; seq <= max_seq; seq++) {
5930 		int type, zone;
5931 		int gen = lru_gen_from_seq(seq);
5932 		unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
5933 
5934 		seq_printf(m, " %10lu %10u", seq, jiffies_to_msecs(jiffies - birth));
5935 
5936 		for (type = 0; type < ANON_AND_FILE; type++) {
5937 			unsigned long size = 0;
5938 			char mark = full && seq < min_seq[type] ? 'x' : ' ';
5939 
5940 			for (zone = 0; zone < MAX_NR_ZONES; zone++)
5941 				size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
5942 
5943 			seq_printf(m, " %10lu%c", size, mark);
5944 		}
5945 
5946 		seq_putc(m, '\n');
5947 
5948 		if (full)
5949 			lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq);
5950 	}
5951 
5952 	return 0;
5953 }
5954 
5955 static const struct seq_operations lru_gen_seq_ops = {
5956 	.start = lru_gen_seq_start,
5957 	.stop = lru_gen_seq_stop,
5958 	.next = lru_gen_seq_next,
5959 	.show = lru_gen_seq_show,
5960 };
5961 
5962 static int run_aging(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
5963 		     bool can_swap, bool force_scan)
5964 {
5965 	DEFINE_MAX_SEQ(lruvec);
5966 	DEFINE_MIN_SEQ(lruvec);
5967 
5968 	if (seq < max_seq)
5969 		return 0;
5970 
5971 	if (seq > max_seq)
5972 		return -EINVAL;
5973 
5974 	if (!force_scan && min_seq[!can_swap] + MAX_NR_GENS - 1 <= max_seq)
5975 		return -ERANGE;
5976 
5977 	try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, force_scan);
5978 
5979 	return 0;
5980 }
5981 
5982 static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
5983 			int swappiness, unsigned long nr_to_reclaim)
5984 {
5985 	DEFINE_MAX_SEQ(lruvec);
5986 
5987 	if (seq + MIN_NR_GENS > max_seq)
5988 		return -EINVAL;
5989 
5990 	sc->nr_reclaimed = 0;
5991 
5992 	while (!signal_pending(current)) {
5993 		DEFINE_MIN_SEQ(lruvec);
5994 
5995 		if (seq < min_seq[!swappiness])
5996 			return 0;
5997 
5998 		if (sc->nr_reclaimed >= nr_to_reclaim)
5999 			return 0;
6000 
6001 		if (!evict_folios(lruvec, sc, swappiness))
6002 			return 0;
6003 
6004 		cond_resched();
6005 	}
6006 
6007 	return -EINTR;
6008 }
6009 
6010 static int run_cmd(char cmd, int memcg_id, int nid, unsigned long seq,
6011 		   struct scan_control *sc, int swappiness, unsigned long opt)
6012 {
6013 	struct lruvec *lruvec;
6014 	int err = -EINVAL;
6015 	struct mem_cgroup *memcg = NULL;
6016 
6017 	if (nid < 0 || nid >= MAX_NUMNODES || !node_state(nid, N_MEMORY))
6018 		return -EINVAL;
6019 
6020 	if (!mem_cgroup_disabled()) {
6021 		rcu_read_lock();
6022 
6023 		memcg = mem_cgroup_from_id(memcg_id);
6024 		if (!mem_cgroup_tryget(memcg))
6025 			memcg = NULL;
6026 
6027 		rcu_read_unlock();
6028 
6029 		if (!memcg)
6030 			return -EINVAL;
6031 	}
6032 
6033 	if (memcg_id != mem_cgroup_id(memcg))
6034 		goto done;
6035 
6036 	lruvec = get_lruvec(memcg, nid);
6037 
6038 	if (swappiness < 0)
6039 		swappiness = get_swappiness(lruvec, sc);
6040 	else if (swappiness > 200)
6041 		goto done;
6042 
6043 	switch (cmd) {
6044 	case '+':
6045 		err = run_aging(lruvec, seq, sc, swappiness, opt);
6046 		break;
6047 	case '-':
6048 		err = run_eviction(lruvec, seq, sc, swappiness, opt);
6049 		break;
6050 	}
6051 done:
6052 	mem_cgroup_put(memcg);
6053 
6054 	return err;
6055 }
6056 
6057 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
6058 static ssize_t lru_gen_seq_write(struct file *file, const char __user *src,
6059 				 size_t len, loff_t *pos)
6060 {
6061 	void *buf;
6062 	char *cur, *next;
6063 	unsigned int flags;
6064 	struct blk_plug plug;
6065 	int err = -EINVAL;
6066 	struct scan_control sc = {
6067 		.may_writepage = true,
6068 		.may_unmap = true,
6069 		.may_swap = true,
6070 		.reclaim_idx = MAX_NR_ZONES - 1,
6071 		.gfp_mask = GFP_KERNEL,
6072 	};
6073 
6074 	buf = kvmalloc(len + 1, GFP_KERNEL);
6075 	if (!buf)
6076 		return -ENOMEM;
6077 
6078 	if (copy_from_user(buf, src, len)) {
6079 		kvfree(buf);
6080 		return -EFAULT;
6081 	}
6082 
6083 	set_task_reclaim_state(current, &sc.reclaim_state);
6084 	flags = memalloc_noreclaim_save();
6085 	blk_start_plug(&plug);
6086 	if (!set_mm_walk(NULL, true)) {
6087 		err = -ENOMEM;
6088 		goto done;
6089 	}
6090 
6091 	next = buf;
6092 	next[len] = '\0';
6093 
6094 	while ((cur = strsep(&next, ",;\n"))) {
6095 		int n;
6096 		int end;
6097 		char cmd;
6098 		unsigned int memcg_id;
6099 		unsigned int nid;
6100 		unsigned long seq;
6101 		unsigned int swappiness = -1;
6102 		unsigned long opt = -1;
6103 
6104 		cur = skip_spaces(cur);
6105 		if (!*cur)
6106 			continue;
6107 
6108 		n = sscanf(cur, "%c %u %u %lu %n %u %n %lu %n", &cmd, &memcg_id, &nid,
6109 			   &seq, &end, &swappiness, &end, &opt, &end);
6110 		if (n < 4 || cur[end]) {
6111 			err = -EINVAL;
6112 			break;
6113 		}
6114 
6115 		err = run_cmd(cmd, memcg_id, nid, seq, &sc, swappiness, opt);
6116 		if (err)
6117 			break;
6118 	}
6119 done:
6120 	clear_mm_walk();
6121 	blk_finish_plug(&plug);
6122 	memalloc_noreclaim_restore(flags);
6123 	set_task_reclaim_state(current, NULL);
6124 
6125 	kvfree(buf);
6126 
6127 	return err ? : len;
6128 }
6129 
6130 static int lru_gen_seq_open(struct inode *inode, struct file *file)
6131 {
6132 	return seq_open(file, &lru_gen_seq_ops);
6133 }
6134 
6135 static const struct file_operations lru_gen_rw_fops = {
6136 	.open = lru_gen_seq_open,
6137 	.read = seq_read,
6138 	.write = lru_gen_seq_write,
6139 	.llseek = seq_lseek,
6140 	.release = seq_release,
6141 };
6142 
6143 static const struct file_operations lru_gen_ro_fops = {
6144 	.open = lru_gen_seq_open,
6145 	.read = seq_read,
6146 	.llseek = seq_lseek,
6147 	.release = seq_release,
6148 };
6149 
6150 /******************************************************************************
6151  *                          initialization
6152  ******************************************************************************/
6153 
6154 void lru_gen_init_lruvec(struct lruvec *lruvec)
6155 {
6156 	int i;
6157 	int gen, type, zone;
6158 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
6159 
6160 	lrugen->max_seq = MIN_NR_GENS + 1;
6161 	lrugen->enabled = lru_gen_enabled();
6162 
6163 	for (i = 0; i <= MIN_NR_GENS + 1; i++)
6164 		lrugen->timestamps[i] = jiffies;
6165 
6166 	for_each_gen_type_zone(gen, type, zone)
6167 		INIT_LIST_HEAD(&lrugen->folios[gen][type][zone]);
6168 
6169 	lruvec->mm_state.seq = MIN_NR_GENS;
6170 }
6171 
6172 #ifdef CONFIG_MEMCG
6173 
6174 void lru_gen_init_pgdat(struct pglist_data *pgdat)
6175 {
6176 	int i, j;
6177 
6178 	spin_lock_init(&pgdat->memcg_lru.lock);
6179 
6180 	for (i = 0; i < MEMCG_NR_GENS; i++) {
6181 		for (j = 0; j < MEMCG_NR_BINS; j++)
6182 			INIT_HLIST_NULLS_HEAD(&pgdat->memcg_lru.fifo[i][j], i);
6183 	}
6184 }
6185 
6186 void lru_gen_init_memcg(struct mem_cgroup *memcg)
6187 {
6188 	INIT_LIST_HEAD(&memcg->mm_list.fifo);
6189 	spin_lock_init(&memcg->mm_list.lock);
6190 }
6191 
6192 void lru_gen_exit_memcg(struct mem_cgroup *memcg)
6193 {
6194 	int i;
6195 	int nid;
6196 
6197 	VM_WARN_ON_ONCE(!list_empty(&memcg->mm_list.fifo));
6198 
6199 	for_each_node(nid) {
6200 		struct lruvec *lruvec = get_lruvec(memcg, nid);
6201 
6202 		VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0,
6203 					   sizeof(lruvec->lrugen.nr_pages)));
6204 
6205 		lruvec->lrugen.list.next = LIST_POISON1;
6206 
6207 		for (i = 0; i < NR_BLOOM_FILTERS; i++) {
6208 			bitmap_free(lruvec->mm_state.filters[i]);
6209 			lruvec->mm_state.filters[i] = NULL;
6210 		}
6211 	}
6212 }
6213 
6214 #endif /* CONFIG_MEMCG */
6215 
6216 static int __init init_lru_gen(void)
6217 {
6218 	BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS);
6219 	BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS);
6220 
6221 	if (sysfs_create_group(mm_kobj, &lru_gen_attr_group))
6222 		pr_err("lru_gen: failed to create sysfs group\n");
6223 
6224 	debugfs_create_file("lru_gen", 0644, NULL, NULL, &lru_gen_rw_fops);
6225 	debugfs_create_file("lru_gen_full", 0444, NULL, NULL, &lru_gen_ro_fops);
6226 
6227 	return 0;
6228 };
6229 late_initcall(init_lru_gen);
6230 
6231 #else /* !CONFIG_LRU_GEN */
6232 
6233 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
6234 {
6235 }
6236 
6237 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
6238 {
6239 }
6240 
6241 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
6242 {
6243 }
6244 
6245 #endif /* CONFIG_LRU_GEN */
6246 
6247 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
6248 {
6249 	unsigned long nr[NR_LRU_LISTS];
6250 	unsigned long targets[NR_LRU_LISTS];
6251 	unsigned long nr_to_scan;
6252 	enum lru_list lru;
6253 	unsigned long nr_reclaimed = 0;
6254 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
6255 	bool proportional_reclaim;
6256 	struct blk_plug plug;
6257 
6258 	if (lru_gen_enabled() && !global_reclaim(sc)) {
6259 		lru_gen_shrink_lruvec(lruvec, sc);
6260 		return;
6261 	}
6262 
6263 	get_scan_count(lruvec, sc, nr);
6264 
6265 	/* Record the original scan target for proportional adjustments later */
6266 	memcpy(targets, nr, sizeof(nr));
6267 
6268 	/*
6269 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
6270 	 * event that can occur when there is little memory pressure e.g.
6271 	 * multiple streaming readers/writers. Hence, we do not abort scanning
6272 	 * when the requested number of pages are reclaimed when scanning at
6273 	 * DEF_PRIORITY on the assumption that the fact we are direct
6274 	 * reclaiming implies that kswapd is not keeping up and it is best to
6275 	 * do a batch of work at once. For memcg reclaim one check is made to
6276 	 * abort proportional reclaim if either the file or anon lru has already
6277 	 * dropped to zero at the first pass.
6278 	 */
6279 	proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
6280 				sc->priority == DEF_PRIORITY);
6281 
6282 	blk_start_plug(&plug);
6283 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
6284 					nr[LRU_INACTIVE_FILE]) {
6285 		unsigned long nr_anon, nr_file, percentage;
6286 		unsigned long nr_scanned;
6287 
6288 		for_each_evictable_lru(lru) {
6289 			if (nr[lru]) {
6290 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
6291 				nr[lru] -= nr_to_scan;
6292 
6293 				nr_reclaimed += shrink_list(lru, nr_to_scan,
6294 							    lruvec, sc);
6295 			}
6296 		}
6297 
6298 		cond_resched();
6299 
6300 		if (nr_reclaimed < nr_to_reclaim || proportional_reclaim)
6301 			continue;
6302 
6303 		/*
6304 		 * For kswapd and memcg, reclaim at least the number of pages
6305 		 * requested. Ensure that the anon and file LRUs are scanned
6306 		 * proportionally what was requested by get_scan_count(). We
6307 		 * stop reclaiming one LRU and reduce the amount scanning
6308 		 * proportional to the original scan target.
6309 		 */
6310 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
6311 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
6312 
6313 		/*
6314 		 * It's just vindictive to attack the larger once the smaller
6315 		 * has gone to zero.  And given the way we stop scanning the
6316 		 * smaller below, this makes sure that we only make one nudge
6317 		 * towards proportionality once we've got nr_to_reclaim.
6318 		 */
6319 		if (!nr_file || !nr_anon)
6320 			break;
6321 
6322 		if (nr_file > nr_anon) {
6323 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
6324 						targets[LRU_ACTIVE_ANON] + 1;
6325 			lru = LRU_BASE;
6326 			percentage = nr_anon * 100 / scan_target;
6327 		} else {
6328 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
6329 						targets[LRU_ACTIVE_FILE] + 1;
6330 			lru = LRU_FILE;
6331 			percentage = nr_file * 100 / scan_target;
6332 		}
6333 
6334 		/* Stop scanning the smaller of the LRU */
6335 		nr[lru] = 0;
6336 		nr[lru + LRU_ACTIVE] = 0;
6337 
6338 		/*
6339 		 * Recalculate the other LRU scan count based on its original
6340 		 * scan target and the percentage scanning already complete
6341 		 */
6342 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
6343 		nr_scanned = targets[lru] - nr[lru];
6344 		nr[lru] = targets[lru] * (100 - percentage) / 100;
6345 		nr[lru] -= min(nr[lru], nr_scanned);
6346 
6347 		lru += LRU_ACTIVE;
6348 		nr_scanned = targets[lru] - nr[lru];
6349 		nr[lru] = targets[lru] * (100 - percentage) / 100;
6350 		nr[lru] -= min(nr[lru], nr_scanned);
6351 	}
6352 	blk_finish_plug(&plug);
6353 	sc->nr_reclaimed += nr_reclaimed;
6354 
6355 	/*
6356 	 * Even if we did not try to evict anon pages at all, we want to
6357 	 * rebalance the anon lru active/inactive ratio.
6358 	 */
6359 	if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) &&
6360 	    inactive_is_low(lruvec, LRU_INACTIVE_ANON))
6361 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
6362 				   sc, LRU_ACTIVE_ANON);
6363 }
6364 
6365 /* Use reclaim/compaction for costly allocs or under memory pressure */
6366 static bool in_reclaim_compaction(struct scan_control *sc)
6367 {
6368 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
6369 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
6370 			 sc->priority < DEF_PRIORITY - 2))
6371 		return true;
6372 
6373 	return false;
6374 }
6375 
6376 /*
6377  * Reclaim/compaction is used for high-order allocation requests. It reclaims
6378  * order-0 pages before compacting the zone. should_continue_reclaim() returns
6379  * true if more pages should be reclaimed such that when the page allocator
6380  * calls try_to_compact_pages() that it will have enough free pages to succeed.
6381  * It will give up earlier than that if there is difficulty reclaiming pages.
6382  */
6383 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
6384 					unsigned long nr_reclaimed,
6385 					struct scan_control *sc)
6386 {
6387 	unsigned long pages_for_compaction;
6388 	unsigned long inactive_lru_pages;
6389 	int z;
6390 
6391 	/* If not in reclaim/compaction mode, stop */
6392 	if (!in_reclaim_compaction(sc))
6393 		return false;
6394 
6395 	/*
6396 	 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
6397 	 * number of pages that were scanned. This will return to the caller
6398 	 * with the risk reclaim/compaction and the resulting allocation attempt
6399 	 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
6400 	 * allocations through requiring that the full LRU list has been scanned
6401 	 * first, by assuming that zero delta of sc->nr_scanned means full LRU
6402 	 * scan, but that approximation was wrong, and there were corner cases
6403 	 * where always a non-zero amount of pages were scanned.
6404 	 */
6405 	if (!nr_reclaimed)
6406 		return false;
6407 
6408 	/* If compaction would go ahead or the allocation would succeed, stop */
6409 	for (z = 0; z <= sc->reclaim_idx; z++) {
6410 		struct zone *zone = &pgdat->node_zones[z];
6411 		if (!managed_zone(zone))
6412 			continue;
6413 
6414 		/* Allocation can already succeed, nothing to do */
6415 		if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone),
6416 				      sc->reclaim_idx, 0))
6417 			return false;
6418 
6419 		if (compaction_suitable(zone, sc->order, sc->reclaim_idx))
6420 			return false;
6421 	}
6422 
6423 	/*
6424 	 * If we have not reclaimed enough pages for compaction and the
6425 	 * inactive lists are large enough, continue reclaiming
6426 	 */
6427 	pages_for_compaction = compact_gap(sc->order);
6428 	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
6429 	if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
6430 		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
6431 
6432 	return inactive_lru_pages > pages_for_compaction;
6433 }
6434 
6435 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
6436 {
6437 	struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
6438 	struct mem_cgroup *memcg;
6439 
6440 	memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
6441 	do {
6442 		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
6443 		unsigned long reclaimed;
6444 		unsigned long scanned;
6445 
6446 		/*
6447 		 * This loop can become CPU-bound when target memcgs
6448 		 * aren't eligible for reclaim - either because they
6449 		 * don't have any reclaimable pages, or because their
6450 		 * memory is explicitly protected. Avoid soft lockups.
6451 		 */
6452 		cond_resched();
6453 
6454 		mem_cgroup_calculate_protection(target_memcg, memcg);
6455 
6456 		if (mem_cgroup_below_min(target_memcg, memcg)) {
6457 			/*
6458 			 * Hard protection.
6459 			 * If there is no reclaimable memory, OOM.
6460 			 */
6461 			continue;
6462 		} else if (mem_cgroup_below_low(target_memcg, memcg)) {
6463 			/*
6464 			 * Soft protection.
6465 			 * Respect the protection only as long as
6466 			 * there is an unprotected supply
6467 			 * of reclaimable memory from other cgroups.
6468 			 */
6469 			if (!sc->memcg_low_reclaim) {
6470 				sc->memcg_low_skipped = 1;
6471 				continue;
6472 			}
6473 			memcg_memory_event(memcg, MEMCG_LOW);
6474 		}
6475 
6476 		reclaimed = sc->nr_reclaimed;
6477 		scanned = sc->nr_scanned;
6478 
6479 		shrink_lruvec(lruvec, sc);
6480 
6481 		shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
6482 			    sc->priority);
6483 
6484 		/* Record the group's reclaim efficiency */
6485 		if (!sc->proactive)
6486 			vmpressure(sc->gfp_mask, memcg, false,
6487 				   sc->nr_scanned - scanned,
6488 				   sc->nr_reclaimed - reclaimed);
6489 
6490 	} while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
6491 }
6492 
6493 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
6494 {
6495 	unsigned long nr_reclaimed, nr_scanned, nr_node_reclaimed;
6496 	struct lruvec *target_lruvec;
6497 	bool reclaimable = false;
6498 
6499 	if (lru_gen_enabled() && global_reclaim(sc)) {
6500 		lru_gen_shrink_node(pgdat, sc);
6501 		return;
6502 	}
6503 
6504 	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
6505 
6506 again:
6507 	memset(&sc->nr, 0, sizeof(sc->nr));
6508 
6509 	nr_reclaimed = sc->nr_reclaimed;
6510 	nr_scanned = sc->nr_scanned;
6511 
6512 	prepare_scan_count(pgdat, sc);
6513 
6514 	shrink_node_memcgs(pgdat, sc);
6515 
6516 	flush_reclaim_state(sc);
6517 
6518 	nr_node_reclaimed = sc->nr_reclaimed - nr_reclaimed;
6519 
6520 	/* Record the subtree's reclaim efficiency */
6521 	if (!sc->proactive)
6522 		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
6523 			   sc->nr_scanned - nr_scanned, nr_node_reclaimed);
6524 
6525 	if (nr_node_reclaimed)
6526 		reclaimable = true;
6527 
6528 	if (current_is_kswapd()) {
6529 		/*
6530 		 * If reclaim is isolating dirty pages under writeback,
6531 		 * it implies that the long-lived page allocation rate
6532 		 * is exceeding the page laundering rate. Either the
6533 		 * global limits are not being effective at throttling
6534 		 * processes due to the page distribution throughout
6535 		 * zones or there is heavy usage of a slow backing
6536 		 * device. The only option is to throttle from reclaim
6537 		 * context which is not ideal as there is no guarantee
6538 		 * the dirtying process is throttled in the same way
6539 		 * balance_dirty_pages() manages.
6540 		 *
6541 		 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
6542 		 * count the number of pages under pages flagged for
6543 		 * immediate reclaim and stall if any are encountered
6544 		 * in the nr_immediate check below.
6545 		 */
6546 		if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
6547 			set_bit(PGDAT_WRITEBACK, &pgdat->flags);
6548 
6549 		/* Allow kswapd to start writing pages during reclaim.*/
6550 		if (sc->nr.unqueued_dirty == sc->nr.file_taken)
6551 			set_bit(PGDAT_DIRTY, &pgdat->flags);
6552 
6553 		/*
6554 		 * If kswapd scans pages marked for immediate
6555 		 * reclaim and under writeback (nr_immediate), it
6556 		 * implies that pages are cycling through the LRU
6557 		 * faster than they are written so forcibly stall
6558 		 * until some pages complete writeback.
6559 		 */
6560 		if (sc->nr.immediate)
6561 			reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
6562 	}
6563 
6564 	/*
6565 	 * Tag a node/memcg as congested if all the dirty pages were marked
6566 	 * for writeback and immediate reclaim (counted in nr.congested).
6567 	 *
6568 	 * Legacy memcg will stall in page writeback so avoid forcibly
6569 	 * stalling in reclaim_throttle().
6570 	 */
6571 	if ((current_is_kswapd() ||
6572 	     (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
6573 	    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
6574 		set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
6575 
6576 	/*
6577 	 * Stall direct reclaim for IO completions if the lruvec is
6578 	 * node is congested. Allow kswapd to continue until it
6579 	 * starts encountering unqueued dirty pages or cycling through
6580 	 * the LRU too quickly.
6581 	 */
6582 	if (!current_is_kswapd() && current_may_throttle() &&
6583 	    !sc->hibernation_mode &&
6584 	    test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
6585 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED);
6586 
6587 	if (should_continue_reclaim(pgdat, nr_node_reclaimed, sc))
6588 		goto again;
6589 
6590 	/*
6591 	 * Kswapd gives up on balancing particular nodes after too
6592 	 * many failures to reclaim anything from them and goes to
6593 	 * sleep. On reclaim progress, reset the failure counter. A
6594 	 * successful direct reclaim run will revive a dormant kswapd.
6595 	 */
6596 	if (reclaimable)
6597 		pgdat->kswapd_failures = 0;
6598 }
6599 
6600 /*
6601  * Returns true if compaction should go ahead for a costly-order request, or
6602  * the allocation would already succeed without compaction. Return false if we
6603  * should reclaim first.
6604  */
6605 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
6606 {
6607 	unsigned long watermark;
6608 
6609 	/* Allocation can already succeed, nothing to do */
6610 	if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone),
6611 			      sc->reclaim_idx, 0))
6612 		return true;
6613 
6614 	/* Compaction cannot yet proceed. Do reclaim. */
6615 	if (!compaction_suitable(zone, sc->order, sc->reclaim_idx))
6616 		return false;
6617 
6618 	/*
6619 	 * Compaction is already possible, but it takes time to run and there
6620 	 * are potentially other callers using the pages just freed. So proceed
6621 	 * with reclaim to make a buffer of free pages available to give
6622 	 * compaction a reasonable chance of completing and allocating the page.
6623 	 * Note that we won't actually reclaim the whole buffer in one attempt
6624 	 * as the target watermark in should_continue_reclaim() is lower. But if
6625 	 * we are already above the high+gap watermark, don't reclaim at all.
6626 	 */
6627 	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
6628 
6629 	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
6630 }
6631 
6632 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
6633 {
6634 	/*
6635 	 * If reclaim is making progress greater than 12% efficiency then
6636 	 * wake all the NOPROGRESS throttled tasks.
6637 	 */
6638 	if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) {
6639 		wait_queue_head_t *wqh;
6640 
6641 		wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS];
6642 		if (waitqueue_active(wqh))
6643 			wake_up(wqh);
6644 
6645 		return;
6646 	}
6647 
6648 	/*
6649 	 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will
6650 	 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages
6651 	 * under writeback and marked for immediate reclaim at the tail of the
6652 	 * LRU.
6653 	 */
6654 	if (current_is_kswapd() || cgroup_reclaim(sc))
6655 		return;
6656 
6657 	/* Throttle if making no progress at high prioities. */
6658 	if (sc->priority == 1 && !sc->nr_reclaimed)
6659 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS);
6660 }
6661 
6662 /*
6663  * This is the direct reclaim path, for page-allocating processes.  We only
6664  * try to reclaim pages from zones which will satisfy the caller's allocation
6665  * request.
6666  *
6667  * If a zone is deemed to be full of pinned pages then just give it a light
6668  * scan then give up on it.
6669  */
6670 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
6671 {
6672 	struct zoneref *z;
6673 	struct zone *zone;
6674 	unsigned long nr_soft_reclaimed;
6675 	unsigned long nr_soft_scanned;
6676 	gfp_t orig_mask;
6677 	pg_data_t *last_pgdat = NULL;
6678 	pg_data_t *first_pgdat = NULL;
6679 
6680 	/*
6681 	 * If the number of buffer_heads in the machine exceeds the maximum
6682 	 * allowed level, force direct reclaim to scan the highmem zone as
6683 	 * highmem pages could be pinning lowmem pages storing buffer_heads
6684 	 */
6685 	orig_mask = sc->gfp_mask;
6686 	if (buffer_heads_over_limit) {
6687 		sc->gfp_mask |= __GFP_HIGHMEM;
6688 		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
6689 	}
6690 
6691 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6692 					sc->reclaim_idx, sc->nodemask) {
6693 		/*
6694 		 * Take care memory controller reclaiming has small influence
6695 		 * to global LRU.
6696 		 */
6697 		if (!cgroup_reclaim(sc)) {
6698 			if (!cpuset_zone_allowed(zone,
6699 						 GFP_KERNEL | __GFP_HARDWALL))
6700 				continue;
6701 
6702 			/*
6703 			 * If we already have plenty of memory free for
6704 			 * compaction in this zone, don't free any more.
6705 			 * Even though compaction is invoked for any
6706 			 * non-zero order, only frequent costly order
6707 			 * reclamation is disruptive enough to become a
6708 			 * noticeable problem, like transparent huge
6709 			 * page allocations.
6710 			 */
6711 			if (IS_ENABLED(CONFIG_COMPACTION) &&
6712 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
6713 			    compaction_ready(zone, sc)) {
6714 				sc->compaction_ready = true;
6715 				continue;
6716 			}
6717 
6718 			/*
6719 			 * Shrink each node in the zonelist once. If the
6720 			 * zonelist is ordered by zone (not the default) then a
6721 			 * node may be shrunk multiple times but in that case
6722 			 * the user prefers lower zones being preserved.
6723 			 */
6724 			if (zone->zone_pgdat == last_pgdat)
6725 				continue;
6726 
6727 			/*
6728 			 * This steals pages from memory cgroups over softlimit
6729 			 * and returns the number of reclaimed pages and
6730 			 * scanned pages. This works for global memory pressure
6731 			 * and balancing, not for a memcg's limit.
6732 			 */
6733 			nr_soft_scanned = 0;
6734 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
6735 						sc->order, sc->gfp_mask,
6736 						&nr_soft_scanned);
6737 			sc->nr_reclaimed += nr_soft_reclaimed;
6738 			sc->nr_scanned += nr_soft_scanned;
6739 			/* need some check for avoid more shrink_zone() */
6740 		}
6741 
6742 		if (!first_pgdat)
6743 			first_pgdat = zone->zone_pgdat;
6744 
6745 		/* See comment about same check for global reclaim above */
6746 		if (zone->zone_pgdat == last_pgdat)
6747 			continue;
6748 		last_pgdat = zone->zone_pgdat;
6749 		shrink_node(zone->zone_pgdat, sc);
6750 	}
6751 
6752 	if (first_pgdat)
6753 		consider_reclaim_throttle(first_pgdat, sc);
6754 
6755 	/*
6756 	 * Restore to original mask to avoid the impact on the caller if we
6757 	 * promoted it to __GFP_HIGHMEM.
6758 	 */
6759 	sc->gfp_mask = orig_mask;
6760 }
6761 
6762 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
6763 {
6764 	struct lruvec *target_lruvec;
6765 	unsigned long refaults;
6766 
6767 	if (lru_gen_enabled())
6768 		return;
6769 
6770 	target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
6771 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
6772 	target_lruvec->refaults[WORKINGSET_ANON] = refaults;
6773 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
6774 	target_lruvec->refaults[WORKINGSET_FILE] = refaults;
6775 }
6776 
6777 /*
6778  * This is the main entry point to direct page reclaim.
6779  *
6780  * If a full scan of the inactive list fails to free enough memory then we
6781  * are "out of memory" and something needs to be killed.
6782  *
6783  * If the caller is !__GFP_FS then the probability of a failure is reasonably
6784  * high - the zone may be full of dirty or under-writeback pages, which this
6785  * caller can't do much about.  We kick the writeback threads and take explicit
6786  * naps in the hope that some of these pages can be written.  But if the
6787  * allocating task holds filesystem locks which prevent writeout this might not
6788  * work, and the allocation attempt will fail.
6789  *
6790  * returns:	0, if no pages reclaimed
6791  * 		else, the number of pages reclaimed
6792  */
6793 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
6794 					  struct scan_control *sc)
6795 {
6796 	int initial_priority = sc->priority;
6797 	pg_data_t *last_pgdat;
6798 	struct zoneref *z;
6799 	struct zone *zone;
6800 retry:
6801 	delayacct_freepages_start();
6802 
6803 	if (!cgroup_reclaim(sc))
6804 		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
6805 
6806 	do {
6807 		if (!sc->proactive)
6808 			vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
6809 					sc->priority);
6810 		sc->nr_scanned = 0;
6811 		shrink_zones(zonelist, sc);
6812 
6813 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
6814 			break;
6815 
6816 		if (sc->compaction_ready)
6817 			break;
6818 
6819 		/*
6820 		 * If we're getting trouble reclaiming, start doing
6821 		 * writepage even in laptop mode.
6822 		 */
6823 		if (sc->priority < DEF_PRIORITY - 2)
6824 			sc->may_writepage = 1;
6825 	} while (--sc->priority >= 0);
6826 
6827 	last_pgdat = NULL;
6828 	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
6829 					sc->nodemask) {
6830 		if (zone->zone_pgdat == last_pgdat)
6831 			continue;
6832 		last_pgdat = zone->zone_pgdat;
6833 
6834 		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
6835 
6836 		if (cgroup_reclaim(sc)) {
6837 			struct lruvec *lruvec;
6838 
6839 			lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
6840 						   zone->zone_pgdat);
6841 			clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
6842 		}
6843 	}
6844 
6845 	delayacct_freepages_end();
6846 
6847 	if (sc->nr_reclaimed)
6848 		return sc->nr_reclaimed;
6849 
6850 	/* Aborted reclaim to try compaction? don't OOM, then */
6851 	if (sc->compaction_ready)
6852 		return 1;
6853 
6854 	/*
6855 	 * We make inactive:active ratio decisions based on the node's
6856 	 * composition of memory, but a restrictive reclaim_idx or a
6857 	 * memory.low cgroup setting can exempt large amounts of
6858 	 * memory from reclaim. Neither of which are very common, so
6859 	 * instead of doing costly eligibility calculations of the
6860 	 * entire cgroup subtree up front, we assume the estimates are
6861 	 * good, and retry with forcible deactivation if that fails.
6862 	 */
6863 	if (sc->skipped_deactivate) {
6864 		sc->priority = initial_priority;
6865 		sc->force_deactivate = 1;
6866 		sc->skipped_deactivate = 0;
6867 		goto retry;
6868 	}
6869 
6870 	/* Untapped cgroup reserves?  Don't OOM, retry. */
6871 	if (sc->memcg_low_skipped) {
6872 		sc->priority = initial_priority;
6873 		sc->force_deactivate = 0;
6874 		sc->memcg_low_reclaim = 1;
6875 		sc->memcg_low_skipped = 0;
6876 		goto retry;
6877 	}
6878 
6879 	return 0;
6880 }
6881 
6882 static bool allow_direct_reclaim(pg_data_t *pgdat)
6883 {
6884 	struct zone *zone;
6885 	unsigned long pfmemalloc_reserve = 0;
6886 	unsigned long free_pages = 0;
6887 	int i;
6888 	bool wmark_ok;
6889 
6890 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6891 		return true;
6892 
6893 	for (i = 0; i <= ZONE_NORMAL; i++) {
6894 		zone = &pgdat->node_zones[i];
6895 		if (!managed_zone(zone))
6896 			continue;
6897 
6898 		if (!zone_reclaimable_pages(zone))
6899 			continue;
6900 
6901 		pfmemalloc_reserve += min_wmark_pages(zone);
6902 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
6903 	}
6904 
6905 	/* If there are no reserves (unexpected config) then do not throttle */
6906 	if (!pfmemalloc_reserve)
6907 		return true;
6908 
6909 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
6910 
6911 	/* kswapd must be awake if processes are being throttled */
6912 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
6913 		if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
6914 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
6915 
6916 		wake_up_interruptible(&pgdat->kswapd_wait);
6917 	}
6918 
6919 	return wmark_ok;
6920 }
6921 
6922 /*
6923  * Throttle direct reclaimers if backing storage is backed by the network
6924  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
6925  * depleted. kswapd will continue to make progress and wake the processes
6926  * when the low watermark is reached.
6927  *
6928  * Returns true if a fatal signal was delivered during throttling. If this
6929  * happens, the page allocator should not consider triggering the OOM killer.
6930  */
6931 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
6932 					nodemask_t *nodemask)
6933 {
6934 	struct zoneref *z;
6935 	struct zone *zone;
6936 	pg_data_t *pgdat = NULL;
6937 
6938 	/*
6939 	 * Kernel threads should not be throttled as they may be indirectly
6940 	 * responsible for cleaning pages necessary for reclaim to make forward
6941 	 * progress. kjournald for example may enter direct reclaim while
6942 	 * committing a transaction where throttling it could forcing other
6943 	 * processes to block on log_wait_commit().
6944 	 */
6945 	if (current->flags & PF_KTHREAD)
6946 		goto out;
6947 
6948 	/*
6949 	 * If a fatal signal is pending, this process should not throttle.
6950 	 * It should return quickly so it can exit and free its memory
6951 	 */
6952 	if (fatal_signal_pending(current))
6953 		goto out;
6954 
6955 	/*
6956 	 * Check if the pfmemalloc reserves are ok by finding the first node
6957 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
6958 	 * GFP_KERNEL will be required for allocating network buffers when
6959 	 * swapping over the network so ZONE_HIGHMEM is unusable.
6960 	 *
6961 	 * Throttling is based on the first usable node and throttled processes
6962 	 * wait on a queue until kswapd makes progress and wakes them. There
6963 	 * is an affinity then between processes waking up and where reclaim
6964 	 * progress has been made assuming the process wakes on the same node.
6965 	 * More importantly, processes running on remote nodes will not compete
6966 	 * for remote pfmemalloc reserves and processes on different nodes
6967 	 * should make reasonable progress.
6968 	 */
6969 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6970 					gfp_zone(gfp_mask), nodemask) {
6971 		if (zone_idx(zone) > ZONE_NORMAL)
6972 			continue;
6973 
6974 		/* Throttle based on the first usable node */
6975 		pgdat = zone->zone_pgdat;
6976 		if (allow_direct_reclaim(pgdat))
6977 			goto out;
6978 		break;
6979 	}
6980 
6981 	/* If no zone was usable by the allocation flags then do not throttle */
6982 	if (!pgdat)
6983 		goto out;
6984 
6985 	/* Account for the throttling */
6986 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
6987 
6988 	/*
6989 	 * If the caller cannot enter the filesystem, it's possible that it
6990 	 * is due to the caller holding an FS lock or performing a journal
6991 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
6992 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
6993 	 * blocked waiting on the same lock. Instead, throttle for up to a
6994 	 * second before continuing.
6995 	 */
6996 	if (!(gfp_mask & __GFP_FS))
6997 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
6998 			allow_direct_reclaim(pgdat), HZ);
6999 	else
7000 		/* Throttle until kswapd wakes the process */
7001 		wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
7002 			allow_direct_reclaim(pgdat));
7003 
7004 	if (fatal_signal_pending(current))
7005 		return true;
7006 
7007 out:
7008 	return false;
7009 }
7010 
7011 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
7012 				gfp_t gfp_mask, nodemask_t *nodemask)
7013 {
7014 	unsigned long nr_reclaimed;
7015 	struct scan_control sc = {
7016 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
7017 		.gfp_mask = current_gfp_context(gfp_mask),
7018 		.reclaim_idx = gfp_zone(gfp_mask),
7019 		.order = order,
7020 		.nodemask = nodemask,
7021 		.priority = DEF_PRIORITY,
7022 		.may_writepage = !laptop_mode,
7023 		.may_unmap = 1,
7024 		.may_swap = 1,
7025 	};
7026 
7027 	/*
7028 	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
7029 	 * Confirm they are large enough for max values.
7030 	 */
7031 	BUILD_BUG_ON(MAX_ORDER >= S8_MAX);
7032 	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
7033 	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
7034 
7035 	/*
7036 	 * Do not enter reclaim if fatal signal was delivered while throttled.
7037 	 * 1 is returned so that the page allocator does not OOM kill at this
7038 	 * point.
7039 	 */
7040 	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
7041 		return 1;
7042 
7043 	set_task_reclaim_state(current, &sc.reclaim_state);
7044 	trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
7045 
7046 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
7047 
7048 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
7049 	set_task_reclaim_state(current, NULL);
7050 
7051 	return nr_reclaimed;
7052 }
7053 
7054 #ifdef CONFIG_MEMCG
7055 
7056 /* Only used by soft limit reclaim. Do not reuse for anything else. */
7057 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
7058 						gfp_t gfp_mask, bool noswap,
7059 						pg_data_t *pgdat,
7060 						unsigned long *nr_scanned)
7061 {
7062 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
7063 	struct scan_control sc = {
7064 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
7065 		.target_mem_cgroup = memcg,
7066 		.may_writepage = !laptop_mode,
7067 		.may_unmap = 1,
7068 		.reclaim_idx = MAX_NR_ZONES - 1,
7069 		.may_swap = !noswap,
7070 	};
7071 
7072 	WARN_ON_ONCE(!current->reclaim_state);
7073 
7074 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
7075 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
7076 
7077 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
7078 						      sc.gfp_mask);
7079 
7080 	/*
7081 	 * NOTE: Although we can get the priority field, using it
7082 	 * here is not a good idea, since it limits the pages we can scan.
7083 	 * if we don't reclaim here, the shrink_node from balance_pgdat
7084 	 * will pick up pages from other mem cgroup's as well. We hack
7085 	 * the priority and make it zero.
7086 	 */
7087 	shrink_lruvec(lruvec, &sc);
7088 
7089 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
7090 
7091 	*nr_scanned = sc.nr_scanned;
7092 
7093 	return sc.nr_reclaimed;
7094 }
7095 
7096 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
7097 					   unsigned long nr_pages,
7098 					   gfp_t gfp_mask,
7099 					   unsigned int reclaim_options)
7100 {
7101 	unsigned long nr_reclaimed;
7102 	unsigned int noreclaim_flag;
7103 	struct scan_control sc = {
7104 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7105 		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
7106 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
7107 		.reclaim_idx = MAX_NR_ZONES - 1,
7108 		.target_mem_cgroup = memcg,
7109 		.priority = DEF_PRIORITY,
7110 		.may_writepage = !laptop_mode,
7111 		.may_unmap = 1,
7112 		.may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP),
7113 		.proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE),
7114 	};
7115 	/*
7116 	 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
7117 	 * equal pressure on all the nodes. This is based on the assumption that
7118 	 * the reclaim does not bail out early.
7119 	 */
7120 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7121 
7122 	set_task_reclaim_state(current, &sc.reclaim_state);
7123 	trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
7124 	noreclaim_flag = memalloc_noreclaim_save();
7125 
7126 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
7127 
7128 	memalloc_noreclaim_restore(noreclaim_flag);
7129 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
7130 	set_task_reclaim_state(current, NULL);
7131 
7132 	return nr_reclaimed;
7133 }
7134 #endif
7135 
7136 static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc)
7137 {
7138 	struct mem_cgroup *memcg;
7139 	struct lruvec *lruvec;
7140 
7141 	if (lru_gen_enabled()) {
7142 		lru_gen_age_node(pgdat, sc);
7143 		return;
7144 	}
7145 
7146 	if (!can_age_anon_pages(pgdat, sc))
7147 		return;
7148 
7149 	lruvec = mem_cgroup_lruvec(NULL, pgdat);
7150 	if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
7151 		return;
7152 
7153 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
7154 	do {
7155 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
7156 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
7157 				   sc, LRU_ACTIVE_ANON);
7158 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
7159 	} while (memcg);
7160 }
7161 
7162 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
7163 {
7164 	int i;
7165 	struct zone *zone;
7166 
7167 	/*
7168 	 * Check for watermark boosts top-down as the higher zones
7169 	 * are more likely to be boosted. Both watermarks and boosts
7170 	 * should not be checked at the same time as reclaim would
7171 	 * start prematurely when there is no boosting and a lower
7172 	 * zone is balanced.
7173 	 */
7174 	for (i = highest_zoneidx; i >= 0; i--) {
7175 		zone = pgdat->node_zones + i;
7176 		if (!managed_zone(zone))
7177 			continue;
7178 
7179 		if (zone->watermark_boost)
7180 			return true;
7181 	}
7182 
7183 	return false;
7184 }
7185 
7186 /*
7187  * Returns true if there is an eligible zone balanced for the request order
7188  * and highest_zoneidx
7189  */
7190 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
7191 {
7192 	int i;
7193 	unsigned long mark = -1;
7194 	struct zone *zone;
7195 
7196 	/*
7197 	 * Check watermarks bottom-up as lower zones are more likely to
7198 	 * meet watermarks.
7199 	 */
7200 	for (i = 0; i <= highest_zoneidx; i++) {
7201 		zone = pgdat->node_zones + i;
7202 
7203 		if (!managed_zone(zone))
7204 			continue;
7205 
7206 		if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)
7207 			mark = wmark_pages(zone, WMARK_PROMO);
7208 		else
7209 			mark = high_wmark_pages(zone);
7210 		if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
7211 			return true;
7212 	}
7213 
7214 	/*
7215 	 * If a node has no managed zone within highest_zoneidx, it does not
7216 	 * need balancing by definition. This can happen if a zone-restricted
7217 	 * allocation tries to wake a remote kswapd.
7218 	 */
7219 	if (mark == -1)
7220 		return true;
7221 
7222 	return false;
7223 }
7224 
7225 /* Clear pgdat state for congested, dirty or under writeback. */
7226 static void clear_pgdat_congested(pg_data_t *pgdat)
7227 {
7228 	struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
7229 
7230 	clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
7231 	clear_bit(PGDAT_DIRTY, &pgdat->flags);
7232 	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
7233 }
7234 
7235 /*
7236  * Prepare kswapd for sleeping. This verifies that there are no processes
7237  * waiting in throttle_direct_reclaim() and that watermarks have been met.
7238  *
7239  * Returns true if kswapd is ready to sleep
7240  */
7241 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
7242 				int highest_zoneidx)
7243 {
7244 	/*
7245 	 * The throttled processes are normally woken up in balance_pgdat() as
7246 	 * soon as allow_direct_reclaim() is true. But there is a potential
7247 	 * race between when kswapd checks the watermarks and a process gets
7248 	 * throttled. There is also a potential race if processes get
7249 	 * throttled, kswapd wakes, a large process exits thereby balancing the
7250 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
7251 	 * the wake up checks. If kswapd is going to sleep, no process should
7252 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
7253 	 * the wake up is premature, processes will wake kswapd and get
7254 	 * throttled again. The difference from wake ups in balance_pgdat() is
7255 	 * that here we are under prepare_to_wait().
7256 	 */
7257 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
7258 		wake_up_all(&pgdat->pfmemalloc_wait);
7259 
7260 	/* Hopeless node, leave it to direct reclaim */
7261 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
7262 		return true;
7263 
7264 	if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
7265 		clear_pgdat_congested(pgdat);
7266 		return true;
7267 	}
7268 
7269 	return false;
7270 }
7271 
7272 /*
7273  * kswapd shrinks a node of pages that are at or below the highest usable
7274  * zone that is currently unbalanced.
7275  *
7276  * Returns true if kswapd scanned at least the requested number of pages to
7277  * reclaim or if the lack of progress was due to pages under writeback.
7278  * This is used to determine if the scanning priority needs to be raised.
7279  */
7280 static bool kswapd_shrink_node(pg_data_t *pgdat,
7281 			       struct scan_control *sc)
7282 {
7283 	struct zone *zone;
7284 	int z;
7285 
7286 	/* Reclaim a number of pages proportional to the number of zones */
7287 	sc->nr_to_reclaim = 0;
7288 	for (z = 0; z <= sc->reclaim_idx; z++) {
7289 		zone = pgdat->node_zones + z;
7290 		if (!managed_zone(zone))
7291 			continue;
7292 
7293 		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
7294 	}
7295 
7296 	/*
7297 	 * Historically care was taken to put equal pressure on all zones but
7298 	 * now pressure is applied based on node LRU order.
7299 	 */
7300 	shrink_node(pgdat, sc);
7301 
7302 	/*
7303 	 * Fragmentation may mean that the system cannot be rebalanced for
7304 	 * high-order allocations. If twice the allocation size has been
7305 	 * reclaimed then recheck watermarks only at order-0 to prevent
7306 	 * excessive reclaim. Assume that a process requested a high-order
7307 	 * can direct reclaim/compact.
7308 	 */
7309 	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
7310 		sc->order = 0;
7311 
7312 	return sc->nr_scanned >= sc->nr_to_reclaim;
7313 }
7314 
7315 /* Page allocator PCP high watermark is lowered if reclaim is active. */
7316 static inline void
7317 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
7318 {
7319 	int i;
7320 	struct zone *zone;
7321 
7322 	for (i = 0; i <= highest_zoneidx; i++) {
7323 		zone = pgdat->node_zones + i;
7324 
7325 		if (!managed_zone(zone))
7326 			continue;
7327 
7328 		if (active)
7329 			set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
7330 		else
7331 			clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
7332 	}
7333 }
7334 
7335 static inline void
7336 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
7337 {
7338 	update_reclaim_active(pgdat, highest_zoneidx, true);
7339 }
7340 
7341 static inline void
7342 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
7343 {
7344 	update_reclaim_active(pgdat, highest_zoneidx, false);
7345 }
7346 
7347 /*
7348  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
7349  * that are eligible for use by the caller until at least one zone is
7350  * balanced.
7351  *
7352  * Returns the order kswapd finished reclaiming at.
7353  *
7354  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
7355  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
7356  * found to have free_pages <= high_wmark_pages(zone), any page in that zone
7357  * or lower is eligible for reclaim until at least one usable zone is
7358  * balanced.
7359  */
7360 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
7361 {
7362 	int i;
7363 	unsigned long nr_soft_reclaimed;
7364 	unsigned long nr_soft_scanned;
7365 	unsigned long pflags;
7366 	unsigned long nr_boost_reclaim;
7367 	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
7368 	bool boosted;
7369 	struct zone *zone;
7370 	struct scan_control sc = {
7371 		.gfp_mask = GFP_KERNEL,
7372 		.order = order,
7373 		.may_unmap = 1,
7374 	};
7375 
7376 	set_task_reclaim_state(current, &sc.reclaim_state);
7377 	psi_memstall_enter(&pflags);
7378 	__fs_reclaim_acquire(_THIS_IP_);
7379 
7380 	count_vm_event(PAGEOUTRUN);
7381 
7382 	/*
7383 	 * Account for the reclaim boost. Note that the zone boost is left in
7384 	 * place so that parallel allocations that are near the watermark will
7385 	 * stall or direct reclaim until kswapd is finished.
7386 	 */
7387 	nr_boost_reclaim = 0;
7388 	for (i = 0; i <= highest_zoneidx; i++) {
7389 		zone = pgdat->node_zones + i;
7390 		if (!managed_zone(zone))
7391 			continue;
7392 
7393 		nr_boost_reclaim += zone->watermark_boost;
7394 		zone_boosts[i] = zone->watermark_boost;
7395 	}
7396 	boosted = nr_boost_reclaim;
7397 
7398 restart:
7399 	set_reclaim_active(pgdat, highest_zoneidx);
7400 	sc.priority = DEF_PRIORITY;
7401 	do {
7402 		unsigned long nr_reclaimed = sc.nr_reclaimed;
7403 		bool raise_priority = true;
7404 		bool balanced;
7405 		bool ret;
7406 
7407 		sc.reclaim_idx = highest_zoneidx;
7408 
7409 		/*
7410 		 * If the number of buffer_heads exceeds the maximum allowed
7411 		 * then consider reclaiming from all zones. This has a dual
7412 		 * purpose -- on 64-bit systems it is expected that
7413 		 * buffer_heads are stripped during active rotation. On 32-bit
7414 		 * systems, highmem pages can pin lowmem memory and shrinking
7415 		 * buffers can relieve lowmem pressure. Reclaim may still not
7416 		 * go ahead if all eligible zones for the original allocation
7417 		 * request are balanced to avoid excessive reclaim from kswapd.
7418 		 */
7419 		if (buffer_heads_over_limit) {
7420 			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
7421 				zone = pgdat->node_zones + i;
7422 				if (!managed_zone(zone))
7423 					continue;
7424 
7425 				sc.reclaim_idx = i;
7426 				break;
7427 			}
7428 		}
7429 
7430 		/*
7431 		 * If the pgdat is imbalanced then ignore boosting and preserve
7432 		 * the watermarks for a later time and restart. Note that the
7433 		 * zone watermarks will be still reset at the end of balancing
7434 		 * on the grounds that the normal reclaim should be enough to
7435 		 * re-evaluate if boosting is required when kswapd next wakes.
7436 		 */
7437 		balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
7438 		if (!balanced && nr_boost_reclaim) {
7439 			nr_boost_reclaim = 0;
7440 			goto restart;
7441 		}
7442 
7443 		/*
7444 		 * If boosting is not active then only reclaim if there are no
7445 		 * eligible zones. Note that sc.reclaim_idx is not used as
7446 		 * buffer_heads_over_limit may have adjusted it.
7447 		 */
7448 		if (!nr_boost_reclaim && balanced)
7449 			goto out;
7450 
7451 		/* Limit the priority of boosting to avoid reclaim writeback */
7452 		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
7453 			raise_priority = false;
7454 
7455 		/*
7456 		 * Do not writeback or swap pages for boosted reclaim. The
7457 		 * intent is to relieve pressure not issue sub-optimal IO
7458 		 * from reclaim context. If no pages are reclaimed, the
7459 		 * reclaim will be aborted.
7460 		 */
7461 		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
7462 		sc.may_swap = !nr_boost_reclaim;
7463 
7464 		/*
7465 		 * Do some background aging, to give pages a chance to be
7466 		 * referenced before reclaiming. All pages are rotated
7467 		 * regardless of classzone as this is about consistent aging.
7468 		 */
7469 		kswapd_age_node(pgdat, &sc);
7470 
7471 		/*
7472 		 * If we're getting trouble reclaiming, start doing writepage
7473 		 * even in laptop mode.
7474 		 */
7475 		if (sc.priority < DEF_PRIORITY - 2)
7476 			sc.may_writepage = 1;
7477 
7478 		/* Call soft limit reclaim before calling shrink_node. */
7479 		sc.nr_scanned = 0;
7480 		nr_soft_scanned = 0;
7481 		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
7482 						sc.gfp_mask, &nr_soft_scanned);
7483 		sc.nr_reclaimed += nr_soft_reclaimed;
7484 
7485 		/*
7486 		 * There should be no need to raise the scanning priority if
7487 		 * enough pages are already being scanned that that high
7488 		 * watermark would be met at 100% efficiency.
7489 		 */
7490 		if (kswapd_shrink_node(pgdat, &sc))
7491 			raise_priority = false;
7492 
7493 		/*
7494 		 * If the low watermark is met there is no need for processes
7495 		 * to be throttled on pfmemalloc_wait as they should not be
7496 		 * able to safely make forward progress. Wake them
7497 		 */
7498 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
7499 				allow_direct_reclaim(pgdat))
7500 			wake_up_all(&pgdat->pfmemalloc_wait);
7501 
7502 		/* Check if kswapd should be suspending */
7503 		__fs_reclaim_release(_THIS_IP_);
7504 		ret = try_to_freeze();
7505 		__fs_reclaim_acquire(_THIS_IP_);
7506 		if (ret || kthread_should_stop())
7507 			break;
7508 
7509 		/*
7510 		 * Raise priority if scanning rate is too low or there was no
7511 		 * progress in reclaiming pages
7512 		 */
7513 		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
7514 		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
7515 
7516 		/*
7517 		 * If reclaim made no progress for a boost, stop reclaim as
7518 		 * IO cannot be queued and it could be an infinite loop in
7519 		 * extreme circumstances.
7520 		 */
7521 		if (nr_boost_reclaim && !nr_reclaimed)
7522 			break;
7523 
7524 		if (raise_priority || !nr_reclaimed)
7525 			sc.priority--;
7526 	} while (sc.priority >= 1);
7527 
7528 	if (!sc.nr_reclaimed)
7529 		pgdat->kswapd_failures++;
7530 
7531 out:
7532 	clear_reclaim_active(pgdat, highest_zoneidx);
7533 
7534 	/* If reclaim was boosted, account for the reclaim done in this pass */
7535 	if (boosted) {
7536 		unsigned long flags;
7537 
7538 		for (i = 0; i <= highest_zoneidx; i++) {
7539 			if (!zone_boosts[i])
7540 				continue;
7541 
7542 			/* Increments are under the zone lock */
7543 			zone = pgdat->node_zones + i;
7544 			spin_lock_irqsave(&zone->lock, flags);
7545 			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
7546 			spin_unlock_irqrestore(&zone->lock, flags);
7547 		}
7548 
7549 		/*
7550 		 * As there is now likely space, wakeup kcompact to defragment
7551 		 * pageblocks.
7552 		 */
7553 		wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
7554 	}
7555 
7556 	snapshot_refaults(NULL, pgdat);
7557 	__fs_reclaim_release(_THIS_IP_);
7558 	psi_memstall_leave(&pflags);
7559 	set_task_reclaim_state(current, NULL);
7560 
7561 	/*
7562 	 * Return the order kswapd stopped reclaiming at as
7563 	 * prepare_kswapd_sleep() takes it into account. If another caller
7564 	 * entered the allocator slow path while kswapd was awake, order will
7565 	 * remain at the higher level.
7566 	 */
7567 	return sc.order;
7568 }
7569 
7570 /*
7571  * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
7572  * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
7573  * not a valid index then either kswapd runs for first time or kswapd couldn't
7574  * sleep after previous reclaim attempt (node is still unbalanced). In that
7575  * case return the zone index of the previous kswapd reclaim cycle.
7576  */
7577 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
7578 					   enum zone_type prev_highest_zoneidx)
7579 {
7580 	enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7581 
7582 	return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
7583 }
7584 
7585 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
7586 				unsigned int highest_zoneidx)
7587 {
7588 	long remaining = 0;
7589 	DEFINE_WAIT(wait);
7590 
7591 	if (freezing(current) || kthread_should_stop())
7592 		return;
7593 
7594 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7595 
7596 	/*
7597 	 * Try to sleep for a short interval. Note that kcompactd will only be
7598 	 * woken if it is possible to sleep for a short interval. This is
7599 	 * deliberate on the assumption that if reclaim cannot keep an
7600 	 * eligible zone balanced that it's also unlikely that compaction will
7601 	 * succeed.
7602 	 */
7603 	if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7604 		/*
7605 		 * Compaction records what page blocks it recently failed to
7606 		 * isolate pages from and skips them in the future scanning.
7607 		 * When kswapd is going to sleep, it is reasonable to assume
7608 		 * that pages and compaction may succeed so reset the cache.
7609 		 */
7610 		reset_isolation_suitable(pgdat);
7611 
7612 		/*
7613 		 * We have freed the memory, now we should compact it to make
7614 		 * allocation of the requested order possible.
7615 		 */
7616 		wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
7617 
7618 		remaining = schedule_timeout(HZ/10);
7619 
7620 		/*
7621 		 * If woken prematurely then reset kswapd_highest_zoneidx and
7622 		 * order. The values will either be from a wakeup request or
7623 		 * the previous request that slept prematurely.
7624 		 */
7625 		if (remaining) {
7626 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
7627 					kswapd_highest_zoneidx(pgdat,
7628 							highest_zoneidx));
7629 
7630 			if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
7631 				WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
7632 		}
7633 
7634 		finish_wait(&pgdat->kswapd_wait, &wait);
7635 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7636 	}
7637 
7638 	/*
7639 	 * After a short sleep, check if it was a premature sleep. If not, then
7640 	 * go fully to sleep until explicitly woken up.
7641 	 */
7642 	if (!remaining &&
7643 	    prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7644 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
7645 
7646 		/*
7647 		 * vmstat counters are not perfectly accurate and the estimated
7648 		 * value for counters such as NR_FREE_PAGES can deviate from the
7649 		 * true value by nr_online_cpus * threshold. To avoid the zone
7650 		 * watermarks being breached while under pressure, we reduce the
7651 		 * per-cpu vmstat threshold while kswapd is awake and restore
7652 		 * them before going back to sleep.
7653 		 */
7654 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
7655 
7656 		if (!kthread_should_stop())
7657 			schedule();
7658 
7659 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
7660 	} else {
7661 		if (remaining)
7662 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
7663 		else
7664 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
7665 	}
7666 	finish_wait(&pgdat->kswapd_wait, &wait);
7667 }
7668 
7669 /*
7670  * The background pageout daemon, started as a kernel thread
7671  * from the init process.
7672  *
7673  * This basically trickles out pages so that we have _some_
7674  * free memory available even if there is no other activity
7675  * that frees anything up. This is needed for things like routing
7676  * etc, where we otherwise might have all activity going on in
7677  * asynchronous contexts that cannot page things out.
7678  *
7679  * If there are applications that are active memory-allocators
7680  * (most normal use), this basically shouldn't matter.
7681  */
7682 static int kswapd(void *p)
7683 {
7684 	unsigned int alloc_order, reclaim_order;
7685 	unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
7686 	pg_data_t *pgdat = (pg_data_t *)p;
7687 	struct task_struct *tsk = current;
7688 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7689 
7690 	if (!cpumask_empty(cpumask))
7691 		set_cpus_allowed_ptr(tsk, cpumask);
7692 
7693 	/*
7694 	 * Tell the memory management that we're a "memory allocator",
7695 	 * and that if we need more memory we should get access to it
7696 	 * regardless (see "__alloc_pages()"). "kswapd" should
7697 	 * never get caught in the normal page freeing logic.
7698 	 *
7699 	 * (Kswapd normally doesn't need memory anyway, but sometimes
7700 	 * you need a small amount of memory in order to be able to
7701 	 * page out something else, and this flag essentially protects
7702 	 * us from recursively trying to free more memory as we're
7703 	 * trying to free the first piece of memory in the first place).
7704 	 */
7705 	tsk->flags |= PF_MEMALLOC | PF_KSWAPD;
7706 	set_freezable();
7707 
7708 	WRITE_ONCE(pgdat->kswapd_order, 0);
7709 	WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7710 	atomic_set(&pgdat->nr_writeback_throttled, 0);
7711 	for ( ; ; ) {
7712 		bool ret;
7713 
7714 		alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
7715 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7716 							highest_zoneidx);
7717 
7718 kswapd_try_sleep:
7719 		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
7720 					highest_zoneidx);
7721 
7722 		/* Read the new order and highest_zoneidx */
7723 		alloc_order = READ_ONCE(pgdat->kswapd_order);
7724 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7725 							highest_zoneidx);
7726 		WRITE_ONCE(pgdat->kswapd_order, 0);
7727 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7728 
7729 		ret = try_to_freeze();
7730 		if (kthread_should_stop())
7731 			break;
7732 
7733 		/*
7734 		 * We can speed up thawing tasks if we don't call balance_pgdat
7735 		 * after returning from the refrigerator
7736 		 */
7737 		if (ret)
7738 			continue;
7739 
7740 		/*
7741 		 * Reclaim begins at the requested order but if a high-order
7742 		 * reclaim fails then kswapd falls back to reclaiming for
7743 		 * order-0. If that happens, kswapd will consider sleeping
7744 		 * for the order it finished reclaiming at (reclaim_order)
7745 		 * but kcompactd is woken to compact for the original
7746 		 * request (alloc_order).
7747 		 */
7748 		trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
7749 						alloc_order);
7750 		reclaim_order = balance_pgdat(pgdat, alloc_order,
7751 						highest_zoneidx);
7752 		if (reclaim_order < alloc_order)
7753 			goto kswapd_try_sleep;
7754 	}
7755 
7756 	tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD);
7757 
7758 	return 0;
7759 }
7760 
7761 /*
7762  * A zone is low on free memory or too fragmented for high-order memory.  If
7763  * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
7764  * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
7765  * has failed or is not needed, still wake up kcompactd if only compaction is
7766  * needed.
7767  */
7768 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
7769 		   enum zone_type highest_zoneidx)
7770 {
7771 	pg_data_t *pgdat;
7772 	enum zone_type curr_idx;
7773 
7774 	if (!managed_zone(zone))
7775 		return;
7776 
7777 	if (!cpuset_zone_allowed(zone, gfp_flags))
7778 		return;
7779 
7780 	pgdat = zone->zone_pgdat;
7781 	curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7782 
7783 	if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
7784 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
7785 
7786 	if (READ_ONCE(pgdat->kswapd_order) < order)
7787 		WRITE_ONCE(pgdat->kswapd_order, order);
7788 
7789 	if (!waitqueue_active(&pgdat->kswapd_wait))
7790 		return;
7791 
7792 	/* Hopeless node, leave it to direct reclaim if possible */
7793 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
7794 	    (pgdat_balanced(pgdat, order, highest_zoneidx) &&
7795 	     !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
7796 		/*
7797 		 * There may be plenty of free memory available, but it's too
7798 		 * fragmented for high-order allocations.  Wake up kcompactd
7799 		 * and rely on compaction_suitable() to determine if it's
7800 		 * needed.  If it fails, it will defer subsequent attempts to
7801 		 * ratelimit its work.
7802 		 */
7803 		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
7804 			wakeup_kcompactd(pgdat, order, highest_zoneidx);
7805 		return;
7806 	}
7807 
7808 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
7809 				      gfp_flags);
7810 	wake_up_interruptible(&pgdat->kswapd_wait);
7811 }
7812 
7813 #ifdef CONFIG_HIBERNATION
7814 /*
7815  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
7816  * freed pages.
7817  *
7818  * Rather than trying to age LRUs the aim is to preserve the overall
7819  * LRU order by reclaiming preferentially
7820  * inactive > active > active referenced > active mapped
7821  */
7822 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
7823 {
7824 	struct scan_control sc = {
7825 		.nr_to_reclaim = nr_to_reclaim,
7826 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
7827 		.reclaim_idx = MAX_NR_ZONES - 1,
7828 		.priority = DEF_PRIORITY,
7829 		.may_writepage = 1,
7830 		.may_unmap = 1,
7831 		.may_swap = 1,
7832 		.hibernation_mode = 1,
7833 	};
7834 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7835 	unsigned long nr_reclaimed;
7836 	unsigned int noreclaim_flag;
7837 
7838 	fs_reclaim_acquire(sc.gfp_mask);
7839 	noreclaim_flag = memalloc_noreclaim_save();
7840 	set_task_reclaim_state(current, &sc.reclaim_state);
7841 
7842 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
7843 
7844 	set_task_reclaim_state(current, NULL);
7845 	memalloc_noreclaim_restore(noreclaim_flag);
7846 	fs_reclaim_release(sc.gfp_mask);
7847 
7848 	return nr_reclaimed;
7849 }
7850 #endif /* CONFIG_HIBERNATION */
7851 
7852 /*
7853  * This kswapd start function will be called by init and node-hot-add.
7854  */
7855 void kswapd_run(int nid)
7856 {
7857 	pg_data_t *pgdat = NODE_DATA(nid);
7858 
7859 	pgdat_kswapd_lock(pgdat);
7860 	if (!pgdat->kswapd) {
7861 		pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
7862 		if (IS_ERR(pgdat->kswapd)) {
7863 			/* failure at boot is fatal */
7864 			BUG_ON(system_state < SYSTEM_RUNNING);
7865 			pr_err("Failed to start kswapd on node %d\n", nid);
7866 			pgdat->kswapd = NULL;
7867 		}
7868 	}
7869 	pgdat_kswapd_unlock(pgdat);
7870 }
7871 
7872 /*
7873  * Called by memory hotplug when all memory in a node is offlined.  Caller must
7874  * be holding mem_hotplug_begin/done().
7875  */
7876 void kswapd_stop(int nid)
7877 {
7878 	pg_data_t *pgdat = NODE_DATA(nid);
7879 	struct task_struct *kswapd;
7880 
7881 	pgdat_kswapd_lock(pgdat);
7882 	kswapd = pgdat->kswapd;
7883 	if (kswapd) {
7884 		kthread_stop(kswapd);
7885 		pgdat->kswapd = NULL;
7886 	}
7887 	pgdat_kswapd_unlock(pgdat);
7888 }
7889 
7890 static int __init kswapd_init(void)
7891 {
7892 	int nid;
7893 
7894 	swap_setup();
7895 	for_each_node_state(nid, N_MEMORY)
7896  		kswapd_run(nid);
7897 	return 0;
7898 }
7899 
7900 module_init(kswapd_init)
7901 
7902 #ifdef CONFIG_NUMA
7903 /*
7904  * Node reclaim mode
7905  *
7906  * If non-zero call node_reclaim when the number of free pages falls below
7907  * the watermarks.
7908  */
7909 int node_reclaim_mode __read_mostly;
7910 
7911 /*
7912  * Priority for NODE_RECLAIM. This determines the fraction of pages
7913  * of a node considered for each zone_reclaim. 4 scans 1/16th of
7914  * a zone.
7915  */
7916 #define NODE_RECLAIM_PRIORITY 4
7917 
7918 /*
7919  * Percentage of pages in a zone that must be unmapped for node_reclaim to
7920  * occur.
7921  */
7922 int sysctl_min_unmapped_ratio = 1;
7923 
7924 /*
7925  * If the number of slab pages in a zone grows beyond this percentage then
7926  * slab reclaim needs to occur.
7927  */
7928 int sysctl_min_slab_ratio = 5;
7929 
7930 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
7931 {
7932 	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
7933 	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
7934 		node_page_state(pgdat, NR_ACTIVE_FILE);
7935 
7936 	/*
7937 	 * It's possible for there to be more file mapped pages than
7938 	 * accounted for by the pages on the file LRU lists because
7939 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
7940 	 */
7941 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
7942 }
7943 
7944 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
7945 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
7946 {
7947 	unsigned long nr_pagecache_reclaimable;
7948 	unsigned long delta = 0;
7949 
7950 	/*
7951 	 * If RECLAIM_UNMAP is set, then all file pages are considered
7952 	 * potentially reclaimable. Otherwise, we have to worry about
7953 	 * pages like swapcache and node_unmapped_file_pages() provides
7954 	 * a better estimate
7955 	 */
7956 	if (node_reclaim_mode & RECLAIM_UNMAP)
7957 		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
7958 	else
7959 		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
7960 
7961 	/* If we can't clean pages, remove dirty pages from consideration */
7962 	if (!(node_reclaim_mode & RECLAIM_WRITE))
7963 		delta += node_page_state(pgdat, NR_FILE_DIRTY);
7964 
7965 	/* Watch for any possible underflows due to delta */
7966 	if (unlikely(delta > nr_pagecache_reclaimable))
7967 		delta = nr_pagecache_reclaimable;
7968 
7969 	return nr_pagecache_reclaimable - delta;
7970 }
7971 
7972 /*
7973  * Try to free up some pages from this node through reclaim.
7974  */
7975 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
7976 {
7977 	/* Minimum pages needed in order to stay on node */
7978 	const unsigned long nr_pages = 1 << order;
7979 	struct task_struct *p = current;
7980 	unsigned int noreclaim_flag;
7981 	struct scan_control sc = {
7982 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7983 		.gfp_mask = current_gfp_context(gfp_mask),
7984 		.order = order,
7985 		.priority = NODE_RECLAIM_PRIORITY,
7986 		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
7987 		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
7988 		.may_swap = 1,
7989 		.reclaim_idx = gfp_zone(gfp_mask),
7990 	};
7991 	unsigned long pflags;
7992 
7993 	trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
7994 					   sc.gfp_mask);
7995 
7996 	cond_resched();
7997 	psi_memstall_enter(&pflags);
7998 	fs_reclaim_acquire(sc.gfp_mask);
7999 	/*
8000 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
8001 	 */
8002 	noreclaim_flag = memalloc_noreclaim_save();
8003 	set_task_reclaim_state(p, &sc.reclaim_state);
8004 
8005 	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages ||
8006 	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) {
8007 		/*
8008 		 * Free memory by calling shrink node with increasing
8009 		 * priorities until we have enough memory freed.
8010 		 */
8011 		do {
8012 			shrink_node(pgdat, &sc);
8013 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
8014 	}
8015 
8016 	set_task_reclaim_state(p, NULL);
8017 	memalloc_noreclaim_restore(noreclaim_flag);
8018 	fs_reclaim_release(sc.gfp_mask);
8019 	psi_memstall_leave(&pflags);
8020 
8021 	trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
8022 
8023 	return sc.nr_reclaimed >= nr_pages;
8024 }
8025 
8026 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
8027 {
8028 	int ret;
8029 
8030 	/*
8031 	 * Node reclaim reclaims unmapped file backed pages and
8032 	 * slab pages if we are over the defined limits.
8033 	 *
8034 	 * A small portion of unmapped file backed pages is needed for
8035 	 * file I/O otherwise pages read by file I/O will be immediately
8036 	 * thrown out if the node is overallocated. So we do not reclaim
8037 	 * if less than a specified percentage of the node is used by
8038 	 * unmapped file backed pages.
8039 	 */
8040 	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
8041 	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
8042 	    pgdat->min_slab_pages)
8043 		return NODE_RECLAIM_FULL;
8044 
8045 	/*
8046 	 * Do not scan if the allocation should not be delayed.
8047 	 */
8048 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
8049 		return NODE_RECLAIM_NOSCAN;
8050 
8051 	/*
8052 	 * Only run node reclaim on the local node or on nodes that do not
8053 	 * have associated processors. This will favor the local processor
8054 	 * over remote processors and spread off node memory allocations
8055 	 * as wide as possible.
8056 	 */
8057 	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
8058 		return NODE_RECLAIM_NOSCAN;
8059 
8060 	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
8061 		return NODE_RECLAIM_NOSCAN;
8062 
8063 	ret = __node_reclaim(pgdat, gfp_mask, order);
8064 	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
8065 
8066 	if (!ret)
8067 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
8068 
8069 	return ret;
8070 }
8071 #endif
8072 
8073 void check_move_unevictable_pages(struct pagevec *pvec)
8074 {
8075 	struct folio_batch fbatch;
8076 	unsigned i;
8077 
8078 	folio_batch_init(&fbatch);
8079 	for (i = 0; i < pvec->nr; i++) {
8080 		struct page *page = pvec->pages[i];
8081 
8082 		if (PageTransTail(page))
8083 			continue;
8084 		folio_batch_add(&fbatch, page_folio(page));
8085 	}
8086 	check_move_unevictable_folios(&fbatch);
8087 }
8088 EXPORT_SYMBOL_GPL(check_move_unevictable_pages);
8089 
8090 /**
8091  * check_move_unevictable_folios - Move evictable folios to appropriate zone
8092  * lru list
8093  * @fbatch: Batch of lru folios to check.
8094  *
8095  * Checks folios for evictability, if an evictable folio is in the unevictable
8096  * lru list, moves it to the appropriate evictable lru list. This function
8097  * should be only used for lru folios.
8098  */
8099 void check_move_unevictable_folios(struct folio_batch *fbatch)
8100 {
8101 	struct lruvec *lruvec = NULL;
8102 	int pgscanned = 0;
8103 	int pgrescued = 0;
8104 	int i;
8105 
8106 	for (i = 0; i < fbatch->nr; i++) {
8107 		struct folio *folio = fbatch->folios[i];
8108 		int nr_pages = folio_nr_pages(folio);
8109 
8110 		pgscanned += nr_pages;
8111 
8112 		/* block memcg migration while the folio moves between lrus */
8113 		if (!folio_test_clear_lru(folio))
8114 			continue;
8115 
8116 		lruvec = folio_lruvec_relock_irq(folio, lruvec);
8117 		if (folio_evictable(folio) && folio_test_unevictable(folio)) {
8118 			lruvec_del_folio(lruvec, folio);
8119 			folio_clear_unevictable(folio);
8120 			lruvec_add_folio(lruvec, folio);
8121 			pgrescued += nr_pages;
8122 		}
8123 		folio_set_lru(folio);
8124 	}
8125 
8126 	if (lruvec) {
8127 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
8128 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
8129 		unlock_page_lruvec_irq(lruvec);
8130 	} else if (pgscanned) {
8131 		count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
8132 	}
8133 }
8134 EXPORT_SYMBOL_GPL(check_move_unevictable_folios);
8135