xref: /linux/mm/vmscan.c (revision d8327c784b51b57dac2c26cfad87dce0d68dfd98)
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13 
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/file.h>
23 #include <linux/writeback.h>
24 #include <linux/blkdev.h>
25 #include <linux/buffer_head.h>	/* for try_to_release_page(),
26 					buffer_heads_over_limit */
27 #include <linux/mm_inline.h>
28 #include <linux/pagevec.h>
29 #include <linux/backing-dev.h>
30 #include <linux/rmap.h>
31 #include <linux/topology.h>
32 #include <linux/cpu.h>
33 #include <linux/cpuset.h>
34 #include <linux/notifier.h>
35 #include <linux/rwsem.h>
36 
37 #include <asm/tlbflush.h>
38 #include <asm/div64.h>
39 
40 #include <linux/swapops.h>
41 
42 /* possible outcome of pageout() */
43 typedef enum {
44 	/* failed to write page out, page is locked */
45 	PAGE_KEEP,
46 	/* move page to the active list, page is locked */
47 	PAGE_ACTIVATE,
48 	/* page has been sent to the disk successfully, page is unlocked */
49 	PAGE_SUCCESS,
50 	/* page is clean and locked */
51 	PAGE_CLEAN,
52 } pageout_t;
53 
54 struct scan_control {
55 	/* Ask refill_inactive_zone, or shrink_cache to scan this many pages */
56 	unsigned long nr_to_scan;
57 
58 	/* Incremented by the number of inactive pages that were scanned */
59 	unsigned long nr_scanned;
60 
61 	/* Incremented by the number of pages reclaimed */
62 	unsigned long nr_reclaimed;
63 
64 	unsigned long nr_mapped;	/* From page_state */
65 
66 	/* Ask shrink_caches, or shrink_zone to scan at this priority */
67 	unsigned int priority;
68 
69 	/* This context's GFP mask */
70 	gfp_t gfp_mask;
71 
72 	int may_writepage;
73 
74 	/* Can pages be swapped as part of reclaim? */
75 	int may_swap;
76 
77 	/* This context's SWAP_CLUSTER_MAX. If freeing memory for
78 	 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
79 	 * In this context, it doesn't matter that we scan the
80 	 * whole list at once. */
81 	int swap_cluster_max;
82 };
83 
84 /*
85  * The list of shrinker callbacks used by to apply pressure to
86  * ageable caches.
87  */
88 struct shrinker {
89 	shrinker_t		shrinker;
90 	struct list_head	list;
91 	int			seeks;	/* seeks to recreate an obj */
92 	long			nr;	/* objs pending delete */
93 };
94 
95 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
96 
97 #ifdef ARCH_HAS_PREFETCH
98 #define prefetch_prev_lru_page(_page, _base, _field)			\
99 	do {								\
100 		if ((_page)->lru.prev != _base) {			\
101 			struct page *prev;				\
102 									\
103 			prev = lru_to_page(&(_page->lru));		\
104 			prefetch(&prev->_field);			\
105 		}							\
106 	} while (0)
107 #else
108 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
109 #endif
110 
111 #ifdef ARCH_HAS_PREFETCHW
112 #define prefetchw_prev_lru_page(_page, _base, _field)			\
113 	do {								\
114 		if ((_page)->lru.prev != _base) {			\
115 			struct page *prev;				\
116 									\
117 			prev = lru_to_page(&(_page->lru));		\
118 			prefetchw(&prev->_field);			\
119 		}							\
120 	} while (0)
121 #else
122 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
123 #endif
124 
125 /*
126  * From 0 .. 100.  Higher means more swappy.
127  */
128 int vm_swappiness = 60;
129 static long total_memory;
130 
131 static LIST_HEAD(shrinker_list);
132 static DECLARE_RWSEM(shrinker_rwsem);
133 
134 /*
135  * Add a shrinker callback to be called from the vm
136  */
137 struct shrinker *set_shrinker(int seeks, shrinker_t theshrinker)
138 {
139         struct shrinker *shrinker;
140 
141         shrinker = kmalloc(sizeof(*shrinker), GFP_KERNEL);
142         if (shrinker) {
143 	        shrinker->shrinker = theshrinker;
144 	        shrinker->seeks = seeks;
145 	        shrinker->nr = 0;
146 	        down_write(&shrinker_rwsem);
147 	        list_add_tail(&shrinker->list, &shrinker_list);
148 	        up_write(&shrinker_rwsem);
149 	}
150 	return shrinker;
151 }
152 EXPORT_SYMBOL(set_shrinker);
153 
154 /*
155  * Remove one
156  */
157 void remove_shrinker(struct shrinker *shrinker)
158 {
159 	down_write(&shrinker_rwsem);
160 	list_del(&shrinker->list);
161 	up_write(&shrinker_rwsem);
162 	kfree(shrinker);
163 }
164 EXPORT_SYMBOL(remove_shrinker);
165 
166 #define SHRINK_BATCH 128
167 /*
168  * Call the shrink functions to age shrinkable caches
169  *
170  * Here we assume it costs one seek to replace a lru page and that it also
171  * takes a seek to recreate a cache object.  With this in mind we age equal
172  * percentages of the lru and ageable caches.  This should balance the seeks
173  * generated by these structures.
174  *
175  * If the vm encounted mapped pages on the LRU it increase the pressure on
176  * slab to avoid swapping.
177  *
178  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
179  *
180  * `lru_pages' represents the number of on-LRU pages in all the zones which
181  * are eligible for the caller's allocation attempt.  It is used for balancing
182  * slab reclaim versus page reclaim.
183  *
184  * Returns the number of slab objects which we shrunk.
185  */
186 int shrink_slab(unsigned long scanned, gfp_t gfp_mask, unsigned long lru_pages)
187 {
188 	struct shrinker *shrinker;
189 	int ret = 0;
190 
191 	if (scanned == 0)
192 		scanned = SWAP_CLUSTER_MAX;
193 
194 	if (!down_read_trylock(&shrinker_rwsem))
195 		return 1;	/* Assume we'll be able to shrink next time */
196 
197 	list_for_each_entry(shrinker, &shrinker_list, list) {
198 		unsigned long long delta;
199 		unsigned long total_scan;
200 		unsigned long max_pass = (*shrinker->shrinker)(0, gfp_mask);
201 
202 		delta = (4 * scanned) / shrinker->seeks;
203 		delta *= max_pass;
204 		do_div(delta, lru_pages + 1);
205 		shrinker->nr += delta;
206 		if (shrinker->nr < 0) {
207 			printk(KERN_ERR "%s: nr=%ld\n",
208 					__FUNCTION__, shrinker->nr);
209 			shrinker->nr = max_pass;
210 		}
211 
212 		/*
213 		 * Avoid risking looping forever due to too large nr value:
214 		 * never try to free more than twice the estimate number of
215 		 * freeable entries.
216 		 */
217 		if (shrinker->nr > max_pass * 2)
218 			shrinker->nr = max_pass * 2;
219 
220 		total_scan = shrinker->nr;
221 		shrinker->nr = 0;
222 
223 		while (total_scan >= SHRINK_BATCH) {
224 			long this_scan = SHRINK_BATCH;
225 			int shrink_ret;
226 			int nr_before;
227 
228 			nr_before = (*shrinker->shrinker)(0, gfp_mask);
229 			shrink_ret = (*shrinker->shrinker)(this_scan, gfp_mask);
230 			if (shrink_ret == -1)
231 				break;
232 			if (shrink_ret < nr_before)
233 				ret += nr_before - shrink_ret;
234 			mod_page_state(slabs_scanned, this_scan);
235 			total_scan -= this_scan;
236 
237 			cond_resched();
238 		}
239 
240 		shrinker->nr += total_scan;
241 	}
242 	up_read(&shrinker_rwsem);
243 	return ret;
244 }
245 
246 /* Called without lock on whether page is mapped, so answer is unstable */
247 static inline int page_mapping_inuse(struct page *page)
248 {
249 	struct address_space *mapping;
250 
251 	/* Page is in somebody's page tables. */
252 	if (page_mapped(page))
253 		return 1;
254 
255 	/* Be more reluctant to reclaim swapcache than pagecache */
256 	if (PageSwapCache(page))
257 		return 1;
258 
259 	mapping = page_mapping(page);
260 	if (!mapping)
261 		return 0;
262 
263 	/* File is mmap'd by somebody? */
264 	return mapping_mapped(mapping);
265 }
266 
267 static inline int is_page_cache_freeable(struct page *page)
268 {
269 	return page_count(page) - !!PagePrivate(page) == 2;
270 }
271 
272 static int may_write_to_queue(struct backing_dev_info *bdi)
273 {
274 	if (current->flags & PF_SWAPWRITE)
275 		return 1;
276 	if (!bdi_write_congested(bdi))
277 		return 1;
278 	if (bdi == current->backing_dev_info)
279 		return 1;
280 	return 0;
281 }
282 
283 /*
284  * We detected a synchronous write error writing a page out.  Probably
285  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
286  * fsync(), msync() or close().
287  *
288  * The tricky part is that after writepage we cannot touch the mapping: nothing
289  * prevents it from being freed up.  But we have a ref on the page and once
290  * that page is locked, the mapping is pinned.
291  *
292  * We're allowed to run sleeping lock_page() here because we know the caller has
293  * __GFP_FS.
294  */
295 static void handle_write_error(struct address_space *mapping,
296 				struct page *page, int error)
297 {
298 	lock_page(page);
299 	if (page_mapping(page) == mapping) {
300 		if (error == -ENOSPC)
301 			set_bit(AS_ENOSPC, &mapping->flags);
302 		else
303 			set_bit(AS_EIO, &mapping->flags);
304 	}
305 	unlock_page(page);
306 }
307 
308 /*
309  * pageout is called by shrink_list() for each dirty page. Calls ->writepage().
310  */
311 static pageout_t pageout(struct page *page, struct address_space *mapping)
312 {
313 	/*
314 	 * If the page is dirty, only perform writeback if that write
315 	 * will be non-blocking.  To prevent this allocation from being
316 	 * stalled by pagecache activity.  But note that there may be
317 	 * stalls if we need to run get_block().  We could test
318 	 * PagePrivate for that.
319 	 *
320 	 * If this process is currently in generic_file_write() against
321 	 * this page's queue, we can perform writeback even if that
322 	 * will block.
323 	 *
324 	 * If the page is swapcache, write it back even if that would
325 	 * block, for some throttling. This happens by accident, because
326 	 * swap_backing_dev_info is bust: it doesn't reflect the
327 	 * congestion state of the swapdevs.  Easy to fix, if needed.
328 	 * See swapfile.c:page_queue_congested().
329 	 */
330 	if (!is_page_cache_freeable(page))
331 		return PAGE_KEEP;
332 	if (!mapping) {
333 		/*
334 		 * Some data journaling orphaned pages can have
335 		 * page->mapping == NULL while being dirty with clean buffers.
336 		 */
337 		if (PagePrivate(page)) {
338 			if (try_to_free_buffers(page)) {
339 				ClearPageDirty(page);
340 				printk("%s: orphaned page\n", __FUNCTION__);
341 				return PAGE_CLEAN;
342 			}
343 		}
344 		return PAGE_KEEP;
345 	}
346 	if (mapping->a_ops->writepage == NULL)
347 		return PAGE_ACTIVATE;
348 	if (!may_write_to_queue(mapping->backing_dev_info))
349 		return PAGE_KEEP;
350 
351 	if (clear_page_dirty_for_io(page)) {
352 		int res;
353 		struct writeback_control wbc = {
354 			.sync_mode = WB_SYNC_NONE,
355 			.nr_to_write = SWAP_CLUSTER_MAX,
356 			.nonblocking = 1,
357 			.for_reclaim = 1,
358 		};
359 
360 		SetPageReclaim(page);
361 		res = mapping->a_ops->writepage(page, &wbc);
362 		if (res < 0)
363 			handle_write_error(mapping, page, res);
364 		if (res == AOP_WRITEPAGE_ACTIVATE) {
365 			ClearPageReclaim(page);
366 			return PAGE_ACTIVATE;
367 		}
368 		if (!PageWriteback(page)) {
369 			/* synchronous write or broken a_ops? */
370 			ClearPageReclaim(page);
371 		}
372 
373 		return PAGE_SUCCESS;
374 	}
375 
376 	return PAGE_CLEAN;
377 }
378 
379 static int remove_mapping(struct address_space *mapping, struct page *page)
380 {
381 	if (!mapping)
382 		return 0;		/* truncate got there first */
383 
384 	write_lock_irq(&mapping->tree_lock);
385 
386 	/*
387 	 * The non-racy check for busy page.  It is critical to check
388 	 * PageDirty _after_ making sure that the page is freeable and
389 	 * not in use by anybody. 	(pagecache + us == 2)
390 	 */
391 	if (unlikely(page_count(page) != 2))
392 		goto cannot_free;
393 	smp_rmb();
394 	if (unlikely(PageDirty(page)))
395 		goto cannot_free;
396 
397 	if (PageSwapCache(page)) {
398 		swp_entry_t swap = { .val = page_private(page) };
399 		__delete_from_swap_cache(page);
400 		write_unlock_irq(&mapping->tree_lock);
401 		swap_free(swap);
402 		__put_page(page);	/* The pagecache ref */
403 		return 1;
404 	}
405 
406 	__remove_from_page_cache(page);
407 	write_unlock_irq(&mapping->tree_lock);
408 	__put_page(page);
409 	return 1;
410 
411 cannot_free:
412 	write_unlock_irq(&mapping->tree_lock);
413 	return 0;
414 }
415 
416 /*
417  * shrink_list adds the number of reclaimed pages to sc->nr_reclaimed
418  */
419 static int shrink_list(struct list_head *page_list, struct scan_control *sc)
420 {
421 	LIST_HEAD(ret_pages);
422 	struct pagevec freed_pvec;
423 	int pgactivate = 0;
424 	int reclaimed = 0;
425 
426 	cond_resched();
427 
428 	pagevec_init(&freed_pvec, 1);
429 	while (!list_empty(page_list)) {
430 		struct address_space *mapping;
431 		struct page *page;
432 		int may_enter_fs;
433 		int referenced;
434 
435 		cond_resched();
436 
437 		page = lru_to_page(page_list);
438 		list_del(&page->lru);
439 
440 		if (TestSetPageLocked(page))
441 			goto keep;
442 
443 		BUG_ON(PageActive(page));
444 
445 		sc->nr_scanned++;
446 
447 		if (!sc->may_swap && page_mapped(page))
448 			goto keep_locked;
449 
450 		/* Double the slab pressure for mapped and swapcache pages */
451 		if (page_mapped(page) || PageSwapCache(page))
452 			sc->nr_scanned++;
453 
454 		if (PageWriteback(page))
455 			goto keep_locked;
456 
457 		referenced = page_referenced(page, 1);
458 		/* In active use or really unfreeable?  Activate it. */
459 		if (referenced && page_mapping_inuse(page))
460 			goto activate_locked;
461 
462 #ifdef CONFIG_SWAP
463 		/*
464 		 * Anonymous process memory has backing store?
465 		 * Try to allocate it some swap space here.
466 		 */
467 		if (PageAnon(page) && !PageSwapCache(page)) {
468 			if (!sc->may_swap)
469 				goto keep_locked;
470 			if (!add_to_swap(page, GFP_ATOMIC))
471 				goto activate_locked;
472 		}
473 #endif /* CONFIG_SWAP */
474 
475 		mapping = page_mapping(page);
476 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
477 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
478 
479 		/*
480 		 * The page is mapped into the page tables of one or more
481 		 * processes. Try to unmap it here.
482 		 */
483 		if (page_mapped(page) && mapping) {
484 			/*
485 			 * No unmapping if we do not swap
486 			 */
487 			if (!sc->may_swap)
488 				goto keep_locked;
489 
490 			switch (try_to_unmap(page, 0)) {
491 			case SWAP_FAIL:
492 				goto activate_locked;
493 			case SWAP_AGAIN:
494 				goto keep_locked;
495 			case SWAP_SUCCESS:
496 				; /* try to free the page below */
497 			}
498 		}
499 
500 		if (PageDirty(page)) {
501 			if (referenced)
502 				goto keep_locked;
503 			if (!may_enter_fs)
504 				goto keep_locked;
505 			if (!sc->may_writepage)
506 				goto keep_locked;
507 
508 			/* Page is dirty, try to write it out here */
509 			switch(pageout(page, mapping)) {
510 			case PAGE_KEEP:
511 				goto keep_locked;
512 			case PAGE_ACTIVATE:
513 				goto activate_locked;
514 			case PAGE_SUCCESS:
515 				if (PageWriteback(page) || PageDirty(page))
516 					goto keep;
517 				/*
518 				 * A synchronous write - probably a ramdisk.  Go
519 				 * ahead and try to reclaim the page.
520 				 */
521 				if (TestSetPageLocked(page))
522 					goto keep;
523 				if (PageDirty(page) || PageWriteback(page))
524 					goto keep_locked;
525 				mapping = page_mapping(page);
526 			case PAGE_CLEAN:
527 				; /* try to free the page below */
528 			}
529 		}
530 
531 		/*
532 		 * If the page has buffers, try to free the buffer mappings
533 		 * associated with this page. If we succeed we try to free
534 		 * the page as well.
535 		 *
536 		 * We do this even if the page is PageDirty().
537 		 * try_to_release_page() does not perform I/O, but it is
538 		 * possible for a page to have PageDirty set, but it is actually
539 		 * clean (all its buffers are clean).  This happens if the
540 		 * buffers were written out directly, with submit_bh(). ext3
541 		 * will do this, as well as the blockdev mapping.
542 		 * try_to_release_page() will discover that cleanness and will
543 		 * drop the buffers and mark the page clean - it can be freed.
544 		 *
545 		 * Rarely, pages can have buffers and no ->mapping.  These are
546 		 * the pages which were not successfully invalidated in
547 		 * truncate_complete_page().  We try to drop those buffers here
548 		 * and if that worked, and the page is no longer mapped into
549 		 * process address space (page_count == 1) it can be freed.
550 		 * Otherwise, leave the page on the LRU so it is swappable.
551 		 */
552 		if (PagePrivate(page)) {
553 			if (!try_to_release_page(page, sc->gfp_mask))
554 				goto activate_locked;
555 			if (!mapping && page_count(page) == 1)
556 				goto free_it;
557 		}
558 
559 		if (!remove_mapping(mapping, page))
560 			goto keep_locked;
561 
562 free_it:
563 		unlock_page(page);
564 		reclaimed++;
565 		if (!pagevec_add(&freed_pvec, page))
566 			__pagevec_release_nonlru(&freed_pvec);
567 		continue;
568 
569 activate_locked:
570 		SetPageActive(page);
571 		pgactivate++;
572 keep_locked:
573 		unlock_page(page);
574 keep:
575 		list_add(&page->lru, &ret_pages);
576 		BUG_ON(PageLRU(page));
577 	}
578 	list_splice(&ret_pages, page_list);
579 	if (pagevec_count(&freed_pvec))
580 		__pagevec_release_nonlru(&freed_pvec);
581 	mod_page_state(pgactivate, pgactivate);
582 	sc->nr_reclaimed += reclaimed;
583 	return reclaimed;
584 }
585 
586 #ifdef CONFIG_MIGRATION
587 static inline void move_to_lru(struct page *page)
588 {
589 	list_del(&page->lru);
590 	if (PageActive(page)) {
591 		/*
592 		 * lru_cache_add_active checks that
593 		 * the PG_active bit is off.
594 		 */
595 		ClearPageActive(page);
596 		lru_cache_add_active(page);
597 	} else {
598 		lru_cache_add(page);
599 	}
600 	put_page(page);
601 }
602 
603 /*
604  * Add isolated pages on the list back to the LRU.
605  *
606  * returns the number of pages put back.
607  */
608 int putback_lru_pages(struct list_head *l)
609 {
610 	struct page *page;
611 	struct page *page2;
612 	int count = 0;
613 
614 	list_for_each_entry_safe(page, page2, l, lru) {
615 		move_to_lru(page);
616 		count++;
617 	}
618 	return count;
619 }
620 
621 /*
622  * Non migratable page
623  */
624 int fail_migrate_page(struct page *newpage, struct page *page)
625 {
626 	return -EIO;
627 }
628 EXPORT_SYMBOL(fail_migrate_page);
629 
630 /*
631  * swapout a single page
632  * page is locked upon entry, unlocked on exit
633  */
634 static int swap_page(struct page *page)
635 {
636 	struct address_space *mapping = page_mapping(page);
637 
638 	if (page_mapped(page) && mapping)
639 		if (try_to_unmap(page, 1) != SWAP_SUCCESS)
640 			goto unlock_retry;
641 
642 	if (PageDirty(page)) {
643 		/* Page is dirty, try to write it out here */
644 		switch(pageout(page, mapping)) {
645 		case PAGE_KEEP:
646 		case PAGE_ACTIVATE:
647 			goto unlock_retry;
648 
649 		case PAGE_SUCCESS:
650 			goto retry;
651 
652 		case PAGE_CLEAN:
653 			; /* try to free the page below */
654 		}
655 	}
656 
657 	if (PagePrivate(page)) {
658 		if (!try_to_release_page(page, GFP_KERNEL) ||
659 		    (!mapping && page_count(page) == 1))
660 			goto unlock_retry;
661 	}
662 
663 	if (remove_mapping(mapping, page)) {
664 		/* Success */
665 		unlock_page(page);
666 		return 0;
667 	}
668 
669 unlock_retry:
670 	unlock_page(page);
671 
672 retry:
673 	return -EAGAIN;
674 }
675 EXPORT_SYMBOL(swap_page);
676 
677 /*
678  * Page migration was first developed in the context of the memory hotplug
679  * project. The main authors of the migration code are:
680  *
681  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
682  * Hirokazu Takahashi <taka@valinux.co.jp>
683  * Dave Hansen <haveblue@us.ibm.com>
684  * Christoph Lameter <clameter@sgi.com>
685  */
686 
687 /*
688  * Remove references for a page and establish the new page with the correct
689  * basic settings to be able to stop accesses to the page.
690  */
691 int migrate_page_remove_references(struct page *newpage,
692 				struct page *page, int nr_refs)
693 {
694 	struct address_space *mapping = page_mapping(page);
695 	struct page **radix_pointer;
696 
697 	/*
698 	 * Avoid doing any of the following work if the page count
699 	 * indicates that the page is in use or truncate has removed
700 	 * the page.
701 	 */
702 	if (!mapping || page_mapcount(page) + nr_refs != page_count(page))
703 		return -EAGAIN;
704 
705 	/*
706 	 * Establish swap ptes for anonymous pages or destroy pte
707 	 * maps for files.
708 	 *
709 	 * In order to reestablish file backed mappings the fault handlers
710 	 * will take the radix tree_lock which may then be used to stop
711   	 * processses from accessing this page until the new page is ready.
712 	 *
713 	 * A process accessing via a swap pte (an anonymous page) will take a
714 	 * page_lock on the old page which will block the process until the
715 	 * migration attempt is complete. At that time the PageSwapCache bit
716 	 * will be examined. If the page was migrated then the PageSwapCache
717 	 * bit will be clear and the operation to retrieve the page will be
718 	 * retried which will find the new page in the radix tree. Then a new
719 	 * direct mapping may be generated based on the radix tree contents.
720 	 *
721 	 * If the page was not migrated then the PageSwapCache bit
722 	 * is still set and the operation may continue.
723 	 */
724 	if (try_to_unmap(page, 1) == SWAP_FAIL)
725 		/* A vma has VM_LOCKED set -> Permanent failure */
726 		return -EPERM;
727 
728 	/*
729 	 * Give up if we were unable to remove all mappings.
730 	 */
731 	if (page_mapcount(page))
732 		return -EAGAIN;
733 
734 	write_lock_irq(&mapping->tree_lock);
735 
736 	radix_pointer = (struct page **)radix_tree_lookup_slot(
737 						&mapping->page_tree,
738 						page_index(page));
739 
740 	if (!page_mapping(page) || page_count(page) != nr_refs ||
741 			*radix_pointer != page) {
742 		write_unlock_irq(&mapping->tree_lock);
743 		return -EAGAIN;
744 	}
745 
746 	/*
747 	 * Now we know that no one else is looking at the page.
748 	 *
749 	 * Certain minimal information about a page must be available
750 	 * in order for other subsystems to properly handle the page if they
751 	 * find it through the radix tree update before we are finished
752 	 * copying the page.
753 	 */
754 	get_page(newpage);
755 	newpage->index = page->index;
756 	newpage->mapping = page->mapping;
757 	if (PageSwapCache(page)) {
758 		SetPageSwapCache(newpage);
759 		set_page_private(newpage, page_private(page));
760 	}
761 
762 	*radix_pointer = newpage;
763 	__put_page(page);
764 	write_unlock_irq(&mapping->tree_lock);
765 
766 	return 0;
767 }
768 EXPORT_SYMBOL(migrate_page_remove_references);
769 
770 /*
771  * Copy the page to its new location
772  */
773 void migrate_page_copy(struct page *newpage, struct page *page)
774 {
775 	copy_highpage(newpage, page);
776 
777 	if (PageError(page))
778 		SetPageError(newpage);
779 	if (PageReferenced(page))
780 		SetPageReferenced(newpage);
781 	if (PageUptodate(page))
782 		SetPageUptodate(newpage);
783 	if (PageActive(page))
784 		SetPageActive(newpage);
785 	if (PageChecked(page))
786 		SetPageChecked(newpage);
787 	if (PageMappedToDisk(page))
788 		SetPageMappedToDisk(newpage);
789 
790 	if (PageDirty(page)) {
791 		clear_page_dirty_for_io(page);
792 		set_page_dirty(newpage);
793  	}
794 
795 	ClearPageSwapCache(page);
796 	ClearPageActive(page);
797 	ClearPagePrivate(page);
798 	set_page_private(page, 0);
799 	page->mapping = NULL;
800 
801 	/*
802 	 * If any waiters have accumulated on the new page then
803 	 * wake them up.
804 	 */
805 	if (PageWriteback(newpage))
806 		end_page_writeback(newpage);
807 }
808 EXPORT_SYMBOL(migrate_page_copy);
809 
810 /*
811  * Common logic to directly migrate a single page suitable for
812  * pages that do not use PagePrivate.
813  *
814  * Pages are locked upon entry and exit.
815  */
816 int migrate_page(struct page *newpage, struct page *page)
817 {
818 	int rc;
819 
820 	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
821 
822 	rc = migrate_page_remove_references(newpage, page, 2);
823 
824 	if (rc)
825 		return rc;
826 
827 	migrate_page_copy(newpage, page);
828 
829 	/*
830 	 * Remove auxiliary swap entries and replace
831 	 * them with real ptes.
832 	 *
833 	 * Note that a real pte entry will allow processes that are not
834 	 * waiting on the page lock to use the new page via the page tables
835 	 * before the new page is unlocked.
836 	 */
837 	remove_from_swap(newpage);
838 	return 0;
839 }
840 EXPORT_SYMBOL(migrate_page);
841 
842 /*
843  * migrate_pages
844  *
845  * Two lists are passed to this function. The first list
846  * contains the pages isolated from the LRU to be migrated.
847  * The second list contains new pages that the pages isolated
848  * can be moved to. If the second list is NULL then all
849  * pages are swapped out.
850  *
851  * The function returns after 10 attempts or if no pages
852  * are movable anymore because to has become empty
853  * or no retryable pages exist anymore.
854  *
855  * Return: Number of pages not migrated when "to" ran empty.
856  */
857 int migrate_pages(struct list_head *from, struct list_head *to,
858 		  struct list_head *moved, struct list_head *failed)
859 {
860 	int retry;
861 	int nr_failed = 0;
862 	int pass = 0;
863 	struct page *page;
864 	struct page *page2;
865 	int swapwrite = current->flags & PF_SWAPWRITE;
866 	int rc;
867 
868 	if (!swapwrite)
869 		current->flags |= PF_SWAPWRITE;
870 
871 redo:
872 	retry = 0;
873 
874 	list_for_each_entry_safe(page, page2, from, lru) {
875 		struct page *newpage = NULL;
876 		struct address_space *mapping;
877 
878 		cond_resched();
879 
880 		rc = 0;
881 		if (page_count(page) == 1)
882 			/* page was freed from under us. So we are done. */
883 			goto next;
884 
885 		if (to && list_empty(to))
886 			break;
887 
888 		/*
889 		 * Skip locked pages during the first two passes to give the
890 		 * functions holding the lock time to release the page. Later we
891 		 * use lock_page() to have a higher chance of acquiring the
892 		 * lock.
893 		 */
894 		rc = -EAGAIN;
895 		if (pass > 2)
896 			lock_page(page);
897 		else
898 			if (TestSetPageLocked(page))
899 				goto next;
900 
901 		/*
902 		 * Only wait on writeback if we have already done a pass where
903 		 * we we may have triggered writeouts for lots of pages.
904 		 */
905 		if (pass > 0) {
906 			wait_on_page_writeback(page);
907 		} else {
908 			if (PageWriteback(page))
909 				goto unlock_page;
910 		}
911 
912 		/*
913 		 * Anonymous pages must have swap cache references otherwise
914 		 * the information contained in the page maps cannot be
915 		 * preserved.
916 		 */
917 		if (PageAnon(page) && !PageSwapCache(page)) {
918 			if (!add_to_swap(page, GFP_KERNEL)) {
919 				rc = -ENOMEM;
920 				goto unlock_page;
921 			}
922 		}
923 
924 		if (!to) {
925 			rc = swap_page(page);
926 			goto next;
927 		}
928 
929 		newpage = lru_to_page(to);
930 		lock_page(newpage);
931 
932 		/*
933 		 * Pages are properly locked and writeback is complete.
934 		 * Try to migrate the page.
935 		 */
936 		mapping = page_mapping(page);
937 		if (!mapping)
938 			goto unlock_both;
939 
940 		if (mapping->a_ops->migratepage) {
941 			/*
942 			 * Most pages have a mapping and most filesystems
943 			 * should provide a migration function. Anonymous
944 			 * pages are part of swap space which also has its
945 			 * own migration function. This is the most common
946 			 * path for page migration.
947 			 */
948 			rc = mapping->a_ops->migratepage(newpage, page);
949 			goto unlock_both;
950                 }
951 
952 		/*
953 		 * Default handling if a filesystem does not provide
954 		 * a migration function. We can only migrate clean
955 		 * pages so try to write out any dirty pages first.
956 		 */
957 		if (PageDirty(page)) {
958 			switch (pageout(page, mapping)) {
959 			case PAGE_KEEP:
960 			case PAGE_ACTIVATE:
961 				goto unlock_both;
962 
963 			case PAGE_SUCCESS:
964 				unlock_page(newpage);
965 				goto next;
966 
967 			case PAGE_CLEAN:
968 				; /* try to migrate the page below */
969 			}
970                 }
971 
972 		/*
973 		 * Buffers are managed in a filesystem specific way.
974 		 * We must have no buffers or drop them.
975 		 */
976 		if (!page_has_buffers(page) ||
977 		    try_to_release_page(page, GFP_KERNEL)) {
978 			rc = migrate_page(newpage, page);
979 			goto unlock_both;
980 		}
981 
982 		/*
983 		 * On early passes with mapped pages simply
984 		 * retry. There may be a lock held for some
985 		 * buffers that may go away. Later
986 		 * swap them out.
987 		 */
988 		if (pass > 4) {
989 			/*
990 			 * Persistently unable to drop buffers..... As a
991 			 * measure of last resort we fall back to
992 			 * swap_page().
993 			 */
994 			unlock_page(newpage);
995 			newpage = NULL;
996 			rc = swap_page(page);
997 			goto next;
998 		}
999 
1000 unlock_both:
1001 		unlock_page(newpage);
1002 
1003 unlock_page:
1004 		unlock_page(page);
1005 
1006 next:
1007 		if (rc == -EAGAIN) {
1008 			retry++;
1009 		} else if (rc) {
1010 			/* Permanent failure */
1011 			list_move(&page->lru, failed);
1012 			nr_failed++;
1013 		} else {
1014 			if (newpage) {
1015 				/* Successful migration. Return page to LRU */
1016 				move_to_lru(newpage);
1017 			}
1018 			list_move(&page->lru, moved);
1019 		}
1020 	}
1021 	if (retry && pass++ < 10)
1022 		goto redo;
1023 
1024 	if (!swapwrite)
1025 		current->flags &= ~PF_SWAPWRITE;
1026 
1027 	return nr_failed + retry;
1028 }
1029 
1030 /*
1031  * Isolate one page from the LRU lists and put it on the
1032  * indicated list with elevated refcount.
1033  *
1034  * Result:
1035  *  0 = page not on LRU list
1036  *  1 = page removed from LRU list and added to the specified list.
1037  */
1038 int isolate_lru_page(struct page *page)
1039 {
1040 	int ret = 0;
1041 
1042 	if (PageLRU(page)) {
1043 		struct zone *zone = page_zone(page);
1044 		spin_lock_irq(&zone->lru_lock);
1045 		if (TestClearPageLRU(page)) {
1046 			ret = 1;
1047 			get_page(page);
1048 			if (PageActive(page))
1049 				del_page_from_active_list(zone, page);
1050 			else
1051 				del_page_from_inactive_list(zone, page);
1052 		}
1053 		spin_unlock_irq(&zone->lru_lock);
1054 	}
1055 
1056 	return ret;
1057 }
1058 #endif
1059 
1060 /*
1061  * zone->lru_lock is heavily contended.  Some of the functions that
1062  * shrink the lists perform better by taking out a batch of pages
1063  * and working on them outside the LRU lock.
1064  *
1065  * For pagecache intensive workloads, this function is the hottest
1066  * spot in the kernel (apart from copy_*_user functions).
1067  *
1068  * Appropriate locks must be held before calling this function.
1069  *
1070  * @nr_to_scan:	The number of pages to look through on the list.
1071  * @src:	The LRU list to pull pages off.
1072  * @dst:	The temp list to put pages on to.
1073  * @scanned:	The number of pages that were scanned.
1074  *
1075  * returns how many pages were moved onto *@dst.
1076  */
1077 static int isolate_lru_pages(int nr_to_scan, struct list_head *src,
1078 			     struct list_head *dst, int *scanned)
1079 {
1080 	int nr_taken = 0;
1081 	struct page *page;
1082 	int scan = 0;
1083 
1084 	while (scan++ < nr_to_scan && !list_empty(src)) {
1085 		page = lru_to_page(src);
1086 		prefetchw_prev_lru_page(page, src, flags);
1087 
1088 		if (!TestClearPageLRU(page))
1089 			BUG();
1090 		list_del(&page->lru);
1091 		if (get_page_testone(page)) {
1092 			/*
1093 			 * It is being freed elsewhere
1094 			 */
1095 			__put_page(page);
1096 			SetPageLRU(page);
1097 			list_add(&page->lru, src);
1098 			continue;
1099 		} else {
1100 			list_add(&page->lru, dst);
1101 			nr_taken++;
1102 		}
1103 	}
1104 
1105 	*scanned = scan;
1106 	return nr_taken;
1107 }
1108 
1109 /*
1110  * shrink_cache() adds the number of pages reclaimed to sc->nr_reclaimed
1111  */
1112 static void shrink_cache(struct zone *zone, struct scan_control *sc)
1113 {
1114 	LIST_HEAD(page_list);
1115 	struct pagevec pvec;
1116 	int max_scan = sc->nr_to_scan;
1117 
1118 	pagevec_init(&pvec, 1);
1119 
1120 	lru_add_drain();
1121 	spin_lock_irq(&zone->lru_lock);
1122 	while (max_scan > 0) {
1123 		struct page *page;
1124 		int nr_taken;
1125 		int nr_scan;
1126 		int nr_freed;
1127 
1128 		nr_taken = isolate_lru_pages(sc->swap_cluster_max,
1129 					     &zone->inactive_list,
1130 					     &page_list, &nr_scan);
1131 		zone->nr_inactive -= nr_taken;
1132 		zone->pages_scanned += nr_scan;
1133 		spin_unlock_irq(&zone->lru_lock);
1134 
1135 		if (nr_taken == 0)
1136 			goto done;
1137 
1138 		max_scan -= nr_scan;
1139 		nr_freed = shrink_list(&page_list, sc);
1140 
1141 		local_irq_disable();
1142 		if (current_is_kswapd()) {
1143 			__mod_page_state_zone(zone, pgscan_kswapd, nr_scan);
1144 			__mod_page_state(kswapd_steal, nr_freed);
1145 		} else
1146 			__mod_page_state_zone(zone, pgscan_direct, nr_scan);
1147 		__mod_page_state_zone(zone, pgsteal, nr_freed);
1148 
1149 		spin_lock(&zone->lru_lock);
1150 		/*
1151 		 * Put back any unfreeable pages.
1152 		 */
1153 		while (!list_empty(&page_list)) {
1154 			page = lru_to_page(&page_list);
1155 			if (TestSetPageLRU(page))
1156 				BUG();
1157 			list_del(&page->lru);
1158 			if (PageActive(page))
1159 				add_page_to_active_list(zone, page);
1160 			else
1161 				add_page_to_inactive_list(zone, page);
1162 			if (!pagevec_add(&pvec, page)) {
1163 				spin_unlock_irq(&zone->lru_lock);
1164 				__pagevec_release(&pvec);
1165 				spin_lock_irq(&zone->lru_lock);
1166 			}
1167 		}
1168   	}
1169 	spin_unlock_irq(&zone->lru_lock);
1170 done:
1171 	pagevec_release(&pvec);
1172 }
1173 
1174 /*
1175  * This moves pages from the active list to the inactive list.
1176  *
1177  * We move them the other way if the page is referenced by one or more
1178  * processes, from rmap.
1179  *
1180  * If the pages are mostly unmapped, the processing is fast and it is
1181  * appropriate to hold zone->lru_lock across the whole operation.  But if
1182  * the pages are mapped, the processing is slow (page_referenced()) so we
1183  * should drop zone->lru_lock around each page.  It's impossible to balance
1184  * this, so instead we remove the pages from the LRU while processing them.
1185  * It is safe to rely on PG_active against the non-LRU pages in here because
1186  * nobody will play with that bit on a non-LRU page.
1187  *
1188  * The downside is that we have to touch page->_count against each page.
1189  * But we had to alter page->flags anyway.
1190  */
1191 static void
1192 refill_inactive_zone(struct zone *zone, struct scan_control *sc)
1193 {
1194 	int pgmoved;
1195 	int pgdeactivate = 0;
1196 	int pgscanned;
1197 	int nr_pages = sc->nr_to_scan;
1198 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1199 	LIST_HEAD(l_inactive);	/* Pages to go onto the inactive_list */
1200 	LIST_HEAD(l_active);	/* Pages to go onto the active_list */
1201 	struct page *page;
1202 	struct pagevec pvec;
1203 	int reclaim_mapped = 0;
1204 
1205 	if (unlikely(sc->may_swap)) {
1206 		long mapped_ratio;
1207 		long distress;
1208 		long swap_tendency;
1209 
1210 		/*
1211 		 * `distress' is a measure of how much trouble we're having
1212 		 * reclaiming pages.  0 -> no problems.  100 -> great trouble.
1213 		 */
1214 		distress = 100 >> zone->prev_priority;
1215 
1216 		/*
1217 		 * The point of this algorithm is to decide when to start
1218 		 * reclaiming mapped memory instead of just pagecache.  Work out
1219 		 * how much memory
1220 		 * is mapped.
1221 		 */
1222 		mapped_ratio = (sc->nr_mapped * 100) / total_memory;
1223 
1224 		/*
1225 		 * Now decide how much we really want to unmap some pages.  The
1226 		 * mapped ratio is downgraded - just because there's a lot of
1227 		 * mapped memory doesn't necessarily mean that page reclaim
1228 		 * isn't succeeding.
1229 		 *
1230 		 * The distress ratio is important - we don't want to start
1231 		 * going oom.
1232 		 *
1233 		 * A 100% value of vm_swappiness overrides this algorithm
1234 		 * altogether.
1235 		 */
1236 		swap_tendency = mapped_ratio / 2 + distress + vm_swappiness;
1237 
1238 		/*
1239 		 * Now use this metric to decide whether to start moving mapped
1240 		 * memory onto the inactive list.
1241 		 */
1242 		if (swap_tendency >= 100)
1243 			reclaim_mapped = 1;
1244 	}
1245 
1246 	lru_add_drain();
1247 	spin_lock_irq(&zone->lru_lock);
1248 	pgmoved = isolate_lru_pages(nr_pages, &zone->active_list,
1249 				    &l_hold, &pgscanned);
1250 	zone->pages_scanned += pgscanned;
1251 	zone->nr_active -= pgmoved;
1252 	spin_unlock_irq(&zone->lru_lock);
1253 
1254 	while (!list_empty(&l_hold)) {
1255 		cond_resched();
1256 		page = lru_to_page(&l_hold);
1257 		list_del(&page->lru);
1258 		if (page_mapped(page)) {
1259 			if (!reclaim_mapped ||
1260 			    (total_swap_pages == 0 && PageAnon(page)) ||
1261 			    page_referenced(page, 0)) {
1262 				list_add(&page->lru, &l_active);
1263 				continue;
1264 			}
1265 		}
1266 		list_add(&page->lru, &l_inactive);
1267 	}
1268 
1269 	pagevec_init(&pvec, 1);
1270 	pgmoved = 0;
1271 	spin_lock_irq(&zone->lru_lock);
1272 	while (!list_empty(&l_inactive)) {
1273 		page = lru_to_page(&l_inactive);
1274 		prefetchw_prev_lru_page(page, &l_inactive, flags);
1275 		if (TestSetPageLRU(page))
1276 			BUG();
1277 		if (!TestClearPageActive(page))
1278 			BUG();
1279 		list_move(&page->lru, &zone->inactive_list);
1280 		pgmoved++;
1281 		if (!pagevec_add(&pvec, page)) {
1282 			zone->nr_inactive += pgmoved;
1283 			spin_unlock_irq(&zone->lru_lock);
1284 			pgdeactivate += pgmoved;
1285 			pgmoved = 0;
1286 			if (buffer_heads_over_limit)
1287 				pagevec_strip(&pvec);
1288 			__pagevec_release(&pvec);
1289 			spin_lock_irq(&zone->lru_lock);
1290 		}
1291 	}
1292 	zone->nr_inactive += pgmoved;
1293 	pgdeactivate += pgmoved;
1294 	if (buffer_heads_over_limit) {
1295 		spin_unlock_irq(&zone->lru_lock);
1296 		pagevec_strip(&pvec);
1297 		spin_lock_irq(&zone->lru_lock);
1298 	}
1299 
1300 	pgmoved = 0;
1301 	while (!list_empty(&l_active)) {
1302 		page = lru_to_page(&l_active);
1303 		prefetchw_prev_lru_page(page, &l_active, flags);
1304 		if (TestSetPageLRU(page))
1305 			BUG();
1306 		BUG_ON(!PageActive(page));
1307 		list_move(&page->lru, &zone->active_list);
1308 		pgmoved++;
1309 		if (!pagevec_add(&pvec, page)) {
1310 			zone->nr_active += pgmoved;
1311 			pgmoved = 0;
1312 			spin_unlock_irq(&zone->lru_lock);
1313 			__pagevec_release(&pvec);
1314 			spin_lock_irq(&zone->lru_lock);
1315 		}
1316 	}
1317 	zone->nr_active += pgmoved;
1318 	spin_unlock(&zone->lru_lock);
1319 
1320 	__mod_page_state_zone(zone, pgrefill, pgscanned);
1321 	__mod_page_state(pgdeactivate, pgdeactivate);
1322 	local_irq_enable();
1323 
1324 	pagevec_release(&pvec);
1325 }
1326 
1327 /*
1328  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1329  */
1330 static void
1331 shrink_zone(struct zone *zone, struct scan_control *sc)
1332 {
1333 	unsigned long nr_active;
1334 	unsigned long nr_inactive;
1335 
1336 	atomic_inc(&zone->reclaim_in_progress);
1337 
1338 	/*
1339 	 * Add one to `nr_to_scan' just to make sure that the kernel will
1340 	 * slowly sift through the active list.
1341 	 */
1342 	zone->nr_scan_active += (zone->nr_active >> sc->priority) + 1;
1343 	nr_active = zone->nr_scan_active;
1344 	if (nr_active >= sc->swap_cluster_max)
1345 		zone->nr_scan_active = 0;
1346 	else
1347 		nr_active = 0;
1348 
1349 	zone->nr_scan_inactive += (zone->nr_inactive >> sc->priority) + 1;
1350 	nr_inactive = zone->nr_scan_inactive;
1351 	if (nr_inactive >= sc->swap_cluster_max)
1352 		zone->nr_scan_inactive = 0;
1353 	else
1354 		nr_inactive = 0;
1355 
1356 	while (nr_active || nr_inactive) {
1357 		if (nr_active) {
1358 			sc->nr_to_scan = min(nr_active,
1359 					(unsigned long)sc->swap_cluster_max);
1360 			nr_active -= sc->nr_to_scan;
1361 			refill_inactive_zone(zone, sc);
1362 		}
1363 
1364 		if (nr_inactive) {
1365 			sc->nr_to_scan = min(nr_inactive,
1366 					(unsigned long)sc->swap_cluster_max);
1367 			nr_inactive -= sc->nr_to_scan;
1368 			shrink_cache(zone, sc);
1369 		}
1370 	}
1371 
1372 	throttle_vm_writeout();
1373 
1374 	atomic_dec(&zone->reclaim_in_progress);
1375 }
1376 
1377 /*
1378  * This is the direct reclaim path, for page-allocating processes.  We only
1379  * try to reclaim pages from zones which will satisfy the caller's allocation
1380  * request.
1381  *
1382  * We reclaim from a zone even if that zone is over pages_high.  Because:
1383  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1384  *    allocation or
1385  * b) The zones may be over pages_high but they must go *over* pages_high to
1386  *    satisfy the `incremental min' zone defense algorithm.
1387  *
1388  * Returns the number of reclaimed pages.
1389  *
1390  * If a zone is deemed to be full of pinned pages then just give it a light
1391  * scan then give up on it.
1392  */
1393 static void
1394 shrink_caches(struct zone **zones, struct scan_control *sc)
1395 {
1396 	int i;
1397 
1398 	for (i = 0; zones[i] != NULL; i++) {
1399 		struct zone *zone = zones[i];
1400 
1401 		if (!populated_zone(zone))
1402 			continue;
1403 
1404 		if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
1405 			continue;
1406 
1407 		zone->temp_priority = sc->priority;
1408 		if (zone->prev_priority > sc->priority)
1409 			zone->prev_priority = sc->priority;
1410 
1411 		if (zone->all_unreclaimable && sc->priority != DEF_PRIORITY)
1412 			continue;	/* Let kswapd poll it */
1413 
1414 		shrink_zone(zone, sc);
1415 	}
1416 }
1417 
1418 /*
1419  * This is the main entry point to direct page reclaim.
1420  *
1421  * If a full scan of the inactive list fails to free enough memory then we
1422  * are "out of memory" and something needs to be killed.
1423  *
1424  * If the caller is !__GFP_FS then the probability of a failure is reasonably
1425  * high - the zone may be full of dirty or under-writeback pages, which this
1426  * caller can't do much about.  We kick pdflush and take explicit naps in the
1427  * hope that some of these pages can be written.  But if the allocating task
1428  * holds filesystem locks which prevent writeout this might not work, and the
1429  * allocation attempt will fail.
1430  */
1431 int try_to_free_pages(struct zone **zones, gfp_t gfp_mask)
1432 {
1433 	int priority;
1434 	int ret = 0;
1435 	int total_scanned = 0, total_reclaimed = 0;
1436 	struct reclaim_state *reclaim_state = current->reclaim_state;
1437 	struct scan_control sc;
1438 	unsigned long lru_pages = 0;
1439 	int i;
1440 
1441 	sc.gfp_mask = gfp_mask;
1442 	sc.may_writepage = !laptop_mode;
1443 	sc.may_swap = 1;
1444 
1445 	inc_page_state(allocstall);
1446 
1447 	for (i = 0; zones[i] != NULL; i++) {
1448 		struct zone *zone = zones[i];
1449 
1450 		if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
1451 			continue;
1452 
1453 		zone->temp_priority = DEF_PRIORITY;
1454 		lru_pages += zone->nr_active + zone->nr_inactive;
1455 	}
1456 
1457 	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1458 		sc.nr_mapped = read_page_state(nr_mapped);
1459 		sc.nr_scanned = 0;
1460 		sc.nr_reclaimed = 0;
1461 		sc.priority = priority;
1462 		sc.swap_cluster_max = SWAP_CLUSTER_MAX;
1463 		if (!priority)
1464 			disable_swap_token();
1465 		shrink_caches(zones, &sc);
1466 		shrink_slab(sc.nr_scanned, gfp_mask, lru_pages);
1467 		if (reclaim_state) {
1468 			sc.nr_reclaimed += reclaim_state->reclaimed_slab;
1469 			reclaim_state->reclaimed_slab = 0;
1470 		}
1471 		total_scanned += sc.nr_scanned;
1472 		total_reclaimed += sc.nr_reclaimed;
1473 		if (total_reclaimed >= sc.swap_cluster_max) {
1474 			ret = 1;
1475 			goto out;
1476 		}
1477 
1478 		/*
1479 		 * Try to write back as many pages as we just scanned.  This
1480 		 * tends to cause slow streaming writers to write data to the
1481 		 * disk smoothly, at the dirtying rate, which is nice.   But
1482 		 * that's undesirable in laptop mode, where we *want* lumpy
1483 		 * writeout.  So in laptop mode, write out the whole world.
1484 		 */
1485 		if (total_scanned > sc.swap_cluster_max + sc.swap_cluster_max/2) {
1486 			wakeup_pdflush(laptop_mode ? 0 : total_scanned);
1487 			sc.may_writepage = 1;
1488 		}
1489 
1490 		/* Take a nap, wait for some writeback to complete */
1491 		if (sc.nr_scanned && priority < DEF_PRIORITY - 2)
1492 			blk_congestion_wait(WRITE, HZ/10);
1493 	}
1494 out:
1495 	for (i = 0; zones[i] != 0; i++) {
1496 		struct zone *zone = zones[i];
1497 
1498 		if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
1499 			continue;
1500 
1501 		zone->prev_priority = zone->temp_priority;
1502 	}
1503 	return ret;
1504 }
1505 
1506 /*
1507  * For kswapd, balance_pgdat() will work across all this node's zones until
1508  * they are all at pages_high.
1509  *
1510  * If `nr_pages' is non-zero then it is the number of pages which are to be
1511  * reclaimed, regardless of the zone occupancies.  This is a software suspend
1512  * special.
1513  *
1514  * Returns the number of pages which were actually freed.
1515  *
1516  * There is special handling here for zones which are full of pinned pages.
1517  * This can happen if the pages are all mlocked, or if they are all used by
1518  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
1519  * What we do is to detect the case where all pages in the zone have been
1520  * scanned twice and there has been zero successful reclaim.  Mark the zone as
1521  * dead and from now on, only perform a short scan.  Basically we're polling
1522  * the zone for when the problem goes away.
1523  *
1524  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
1525  * zones which have free_pages > pages_high, but once a zone is found to have
1526  * free_pages <= pages_high, we scan that zone and the lower zones regardless
1527  * of the number of free pages in the lower zones.  This interoperates with
1528  * the page allocator fallback scheme to ensure that aging of pages is balanced
1529  * across the zones.
1530  */
1531 static int balance_pgdat(pg_data_t *pgdat, int nr_pages, int order)
1532 {
1533 	int to_free = nr_pages;
1534 	int all_zones_ok;
1535 	int priority;
1536 	int i;
1537 	int total_scanned, total_reclaimed;
1538 	struct reclaim_state *reclaim_state = current->reclaim_state;
1539 	struct scan_control sc;
1540 
1541 loop_again:
1542 	total_scanned = 0;
1543 	total_reclaimed = 0;
1544 	sc.gfp_mask = GFP_KERNEL;
1545 	sc.may_writepage = !laptop_mode;
1546 	sc.may_swap = 1;
1547 	sc.nr_mapped = read_page_state(nr_mapped);
1548 
1549 	inc_page_state(pageoutrun);
1550 
1551 	for (i = 0; i < pgdat->nr_zones; i++) {
1552 		struct zone *zone = pgdat->node_zones + i;
1553 
1554 		zone->temp_priority = DEF_PRIORITY;
1555 	}
1556 
1557 	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1558 		int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
1559 		unsigned long lru_pages = 0;
1560 
1561 		/* The swap token gets in the way of swapout... */
1562 		if (!priority)
1563 			disable_swap_token();
1564 
1565 		all_zones_ok = 1;
1566 
1567 		if (nr_pages == 0) {
1568 			/*
1569 			 * Scan in the highmem->dma direction for the highest
1570 			 * zone which needs scanning
1571 			 */
1572 			for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1573 				struct zone *zone = pgdat->node_zones + i;
1574 
1575 				if (!populated_zone(zone))
1576 					continue;
1577 
1578 				if (zone->all_unreclaimable &&
1579 						priority != DEF_PRIORITY)
1580 					continue;
1581 
1582 				if (!zone_watermark_ok(zone, order,
1583 						zone->pages_high, 0, 0)) {
1584 					end_zone = i;
1585 					goto scan;
1586 				}
1587 			}
1588 			goto out;
1589 		} else {
1590 			end_zone = pgdat->nr_zones - 1;
1591 		}
1592 scan:
1593 		for (i = 0; i <= end_zone; i++) {
1594 			struct zone *zone = pgdat->node_zones + i;
1595 
1596 			lru_pages += zone->nr_active + zone->nr_inactive;
1597 		}
1598 
1599 		/*
1600 		 * Now scan the zone in the dma->highmem direction, stopping
1601 		 * at the last zone which needs scanning.
1602 		 *
1603 		 * We do this because the page allocator works in the opposite
1604 		 * direction.  This prevents the page allocator from allocating
1605 		 * pages behind kswapd's direction of progress, which would
1606 		 * cause too much scanning of the lower zones.
1607 		 */
1608 		for (i = 0; i <= end_zone; i++) {
1609 			struct zone *zone = pgdat->node_zones + i;
1610 			int nr_slab;
1611 
1612 			if (!populated_zone(zone))
1613 				continue;
1614 
1615 			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1616 				continue;
1617 
1618 			if (nr_pages == 0) {	/* Not software suspend */
1619 				if (!zone_watermark_ok(zone, order,
1620 						zone->pages_high, end_zone, 0))
1621 					all_zones_ok = 0;
1622 			}
1623 			zone->temp_priority = priority;
1624 			if (zone->prev_priority > priority)
1625 				zone->prev_priority = priority;
1626 			sc.nr_scanned = 0;
1627 			sc.nr_reclaimed = 0;
1628 			sc.priority = priority;
1629 			sc.swap_cluster_max = nr_pages? nr_pages : SWAP_CLUSTER_MAX;
1630 			shrink_zone(zone, &sc);
1631 			reclaim_state->reclaimed_slab = 0;
1632 			nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
1633 						lru_pages);
1634 			sc.nr_reclaimed += reclaim_state->reclaimed_slab;
1635 			total_reclaimed += sc.nr_reclaimed;
1636 			total_scanned += sc.nr_scanned;
1637 			if (zone->all_unreclaimable)
1638 				continue;
1639 			if (nr_slab == 0 && zone->pages_scanned >=
1640 				    (zone->nr_active + zone->nr_inactive) * 4)
1641 				zone->all_unreclaimable = 1;
1642 			/*
1643 			 * If we've done a decent amount of scanning and
1644 			 * the reclaim ratio is low, start doing writepage
1645 			 * even in laptop mode
1646 			 */
1647 			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
1648 			    total_scanned > total_reclaimed+total_reclaimed/2)
1649 				sc.may_writepage = 1;
1650 		}
1651 		if (nr_pages && to_free > total_reclaimed)
1652 			continue;	/* swsusp: need to do more work */
1653 		if (all_zones_ok)
1654 			break;		/* kswapd: all done */
1655 		/*
1656 		 * OK, kswapd is getting into trouble.  Take a nap, then take
1657 		 * another pass across the zones.
1658 		 */
1659 		if (total_scanned && priority < DEF_PRIORITY - 2)
1660 			blk_congestion_wait(WRITE, HZ/10);
1661 
1662 		/*
1663 		 * We do this so kswapd doesn't build up large priorities for
1664 		 * example when it is freeing in parallel with allocators. It
1665 		 * matches the direct reclaim path behaviour in terms of impact
1666 		 * on zone->*_priority.
1667 		 */
1668 		if ((total_reclaimed >= SWAP_CLUSTER_MAX) && (!nr_pages))
1669 			break;
1670 	}
1671 out:
1672 	for (i = 0; i < pgdat->nr_zones; i++) {
1673 		struct zone *zone = pgdat->node_zones + i;
1674 
1675 		zone->prev_priority = zone->temp_priority;
1676 	}
1677 	if (!all_zones_ok) {
1678 		cond_resched();
1679 		goto loop_again;
1680 	}
1681 
1682 	return total_reclaimed;
1683 }
1684 
1685 /*
1686  * The background pageout daemon, started as a kernel thread
1687  * from the init process.
1688  *
1689  * This basically trickles out pages so that we have _some_
1690  * free memory available even if there is no other activity
1691  * that frees anything up. This is needed for things like routing
1692  * etc, where we otherwise might have all activity going on in
1693  * asynchronous contexts that cannot page things out.
1694  *
1695  * If there are applications that are active memory-allocators
1696  * (most normal use), this basically shouldn't matter.
1697  */
1698 static int kswapd(void *p)
1699 {
1700 	unsigned long order;
1701 	pg_data_t *pgdat = (pg_data_t*)p;
1702 	struct task_struct *tsk = current;
1703 	DEFINE_WAIT(wait);
1704 	struct reclaim_state reclaim_state = {
1705 		.reclaimed_slab = 0,
1706 	};
1707 	cpumask_t cpumask;
1708 
1709 	daemonize("kswapd%d", pgdat->node_id);
1710 	cpumask = node_to_cpumask(pgdat->node_id);
1711 	if (!cpus_empty(cpumask))
1712 		set_cpus_allowed(tsk, cpumask);
1713 	current->reclaim_state = &reclaim_state;
1714 
1715 	/*
1716 	 * Tell the memory management that we're a "memory allocator",
1717 	 * and that if we need more memory we should get access to it
1718 	 * regardless (see "__alloc_pages()"). "kswapd" should
1719 	 * never get caught in the normal page freeing logic.
1720 	 *
1721 	 * (Kswapd normally doesn't need memory anyway, but sometimes
1722 	 * you need a small amount of memory in order to be able to
1723 	 * page out something else, and this flag essentially protects
1724 	 * us from recursively trying to free more memory as we're
1725 	 * trying to free the first piece of memory in the first place).
1726 	 */
1727 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
1728 
1729 	order = 0;
1730 	for ( ; ; ) {
1731 		unsigned long new_order;
1732 
1733 		try_to_freeze();
1734 
1735 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
1736 		new_order = pgdat->kswapd_max_order;
1737 		pgdat->kswapd_max_order = 0;
1738 		if (order < new_order) {
1739 			/*
1740 			 * Don't sleep if someone wants a larger 'order'
1741 			 * allocation
1742 			 */
1743 			order = new_order;
1744 		} else {
1745 			schedule();
1746 			order = pgdat->kswapd_max_order;
1747 		}
1748 		finish_wait(&pgdat->kswapd_wait, &wait);
1749 
1750 		balance_pgdat(pgdat, 0, order);
1751 	}
1752 	return 0;
1753 }
1754 
1755 /*
1756  * A zone is low on free memory, so wake its kswapd task to service it.
1757  */
1758 void wakeup_kswapd(struct zone *zone, int order)
1759 {
1760 	pg_data_t *pgdat;
1761 
1762 	if (!populated_zone(zone))
1763 		return;
1764 
1765 	pgdat = zone->zone_pgdat;
1766 	if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0))
1767 		return;
1768 	if (pgdat->kswapd_max_order < order)
1769 		pgdat->kswapd_max_order = order;
1770 	if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
1771 		return;
1772 	if (!waitqueue_active(&pgdat->kswapd_wait))
1773 		return;
1774 	wake_up_interruptible(&pgdat->kswapd_wait);
1775 }
1776 
1777 #ifdef CONFIG_PM
1778 /*
1779  * Try to free `nr_pages' of memory, system-wide.  Returns the number of freed
1780  * pages.
1781  */
1782 int shrink_all_memory(int nr_pages)
1783 {
1784 	pg_data_t *pgdat;
1785 	int nr_to_free = nr_pages;
1786 	int ret = 0;
1787 	struct reclaim_state reclaim_state = {
1788 		.reclaimed_slab = 0,
1789 	};
1790 
1791 	current->reclaim_state = &reclaim_state;
1792 	for_each_pgdat(pgdat) {
1793 		int freed;
1794 		freed = balance_pgdat(pgdat, nr_to_free, 0);
1795 		ret += freed;
1796 		nr_to_free -= freed;
1797 		if (nr_to_free <= 0)
1798 			break;
1799 	}
1800 	current->reclaim_state = NULL;
1801 	return ret;
1802 }
1803 #endif
1804 
1805 #ifdef CONFIG_HOTPLUG_CPU
1806 /* It's optimal to keep kswapds on the same CPUs as their memory, but
1807    not required for correctness.  So if the last cpu in a node goes
1808    away, we get changed to run anywhere: as the first one comes back,
1809    restore their cpu bindings. */
1810 static int __devinit cpu_callback(struct notifier_block *nfb,
1811 				  unsigned long action,
1812 				  void *hcpu)
1813 {
1814 	pg_data_t *pgdat;
1815 	cpumask_t mask;
1816 
1817 	if (action == CPU_ONLINE) {
1818 		for_each_pgdat(pgdat) {
1819 			mask = node_to_cpumask(pgdat->node_id);
1820 			if (any_online_cpu(mask) != NR_CPUS)
1821 				/* One of our CPUs online: restore mask */
1822 				set_cpus_allowed(pgdat->kswapd, mask);
1823 		}
1824 	}
1825 	return NOTIFY_OK;
1826 }
1827 #endif /* CONFIG_HOTPLUG_CPU */
1828 
1829 static int __init kswapd_init(void)
1830 {
1831 	pg_data_t *pgdat;
1832 	swap_setup();
1833 	for_each_pgdat(pgdat)
1834 		pgdat->kswapd
1835 		= find_task_by_pid(kernel_thread(kswapd, pgdat, CLONE_KERNEL));
1836 	total_memory = nr_free_pagecache_pages();
1837 	hotcpu_notifier(cpu_callback, 0);
1838 	return 0;
1839 }
1840 
1841 module_init(kswapd_init)
1842 
1843 #ifdef CONFIG_NUMA
1844 /*
1845  * Zone reclaim mode
1846  *
1847  * If non-zero call zone_reclaim when the number of free pages falls below
1848  * the watermarks.
1849  *
1850  * In the future we may add flags to the mode. However, the page allocator
1851  * should only have to check that zone_reclaim_mode != 0 before calling
1852  * zone_reclaim().
1853  */
1854 int zone_reclaim_mode __read_mostly;
1855 
1856 #define RECLAIM_OFF 0
1857 #define RECLAIM_ZONE (1<<0)	/* Run shrink_cache on the zone */
1858 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
1859 #define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
1860 #define RECLAIM_SLAB (1<<3)	/* Do a global slab shrink if the zone is out of memory */
1861 
1862 /*
1863  * Mininum time between zone reclaim scans
1864  */
1865 int zone_reclaim_interval __read_mostly = 30*HZ;
1866 
1867 /*
1868  * Priority for ZONE_RECLAIM. This determines the fraction of pages
1869  * of a node considered for each zone_reclaim. 4 scans 1/16th of
1870  * a zone.
1871  */
1872 #define ZONE_RECLAIM_PRIORITY 4
1873 
1874 /*
1875  * Try to free up some pages from this zone through reclaim.
1876  */
1877 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
1878 {
1879 	int nr_pages;
1880 	struct task_struct *p = current;
1881 	struct reclaim_state reclaim_state;
1882 	struct scan_control sc;
1883 	cpumask_t mask;
1884 	int node_id;
1885 
1886 	if (time_before(jiffies,
1887 		zone->last_unsuccessful_zone_reclaim + zone_reclaim_interval))
1888 			return 0;
1889 
1890 	if (!(gfp_mask & __GFP_WAIT) ||
1891 		zone->all_unreclaimable ||
1892 		atomic_read(&zone->reclaim_in_progress) > 0 ||
1893 		(p->flags & PF_MEMALLOC))
1894 			return 0;
1895 
1896 	node_id = zone->zone_pgdat->node_id;
1897 	mask = node_to_cpumask(node_id);
1898 	if (!cpus_empty(mask) && node_id != numa_node_id())
1899 		return 0;
1900 
1901 	sc.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE);
1902 	sc.may_swap = !!(zone_reclaim_mode & RECLAIM_SWAP);
1903 	sc.nr_scanned = 0;
1904 	sc.nr_reclaimed = 0;
1905 	sc.priority = ZONE_RECLAIM_PRIORITY + 1;
1906 	sc.nr_mapped = read_page_state(nr_mapped);
1907 	sc.gfp_mask = gfp_mask;
1908 
1909 	disable_swap_token();
1910 
1911 	nr_pages = 1 << order;
1912 	if (nr_pages > SWAP_CLUSTER_MAX)
1913 		sc.swap_cluster_max = nr_pages;
1914 	else
1915 		sc.swap_cluster_max = SWAP_CLUSTER_MAX;
1916 
1917 	cond_resched();
1918 	/*
1919 	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
1920 	 * and we also need to be able to write out pages for RECLAIM_WRITE
1921 	 * and RECLAIM_SWAP.
1922 	 */
1923 	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
1924 	reclaim_state.reclaimed_slab = 0;
1925 	p->reclaim_state = &reclaim_state;
1926 
1927 	/*
1928 	 * Free memory by calling shrink zone with increasing priorities
1929 	 * until we have enough memory freed.
1930 	 */
1931 	do {
1932 		sc.priority--;
1933 		shrink_zone(zone, &sc);
1934 
1935 	} while (sc.nr_reclaimed < nr_pages && sc.priority > 0);
1936 
1937 	if (sc.nr_reclaimed < nr_pages && (zone_reclaim_mode & RECLAIM_SLAB)) {
1938 		/*
1939 		 * shrink_slab does not currently allow us to determine
1940 		 * how many pages were freed in the zone. So we just
1941 		 * shake the slab and then go offnode for a single allocation.
1942 		 *
1943 		 * shrink_slab will free memory on all zones and may take
1944 		 * a long time.
1945 		 */
1946 		shrink_slab(sc.nr_scanned, gfp_mask, order);
1947 	}
1948 
1949 	p->reclaim_state = NULL;
1950 	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
1951 
1952 	if (sc.nr_reclaimed == 0)
1953 		zone->last_unsuccessful_zone_reclaim = jiffies;
1954 
1955 	return sc.nr_reclaimed >= nr_pages;
1956 }
1957 #endif
1958 
1959