1 /* 2 * linux/mm/vmscan.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * 6 * Swap reorganised 29.12.95, Stephen Tweedie. 7 * kswapd added: 7.1.96 sct 8 * Removed kswapd_ctl limits, and swap out as many pages as needed 9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 11 * Multiqueue VM started 5.8.00, Rik van Riel. 12 */ 13 14 #include <linux/mm.h> 15 #include <linux/module.h> 16 #include <linux/gfp.h> 17 #include <linux/kernel_stat.h> 18 #include <linux/swap.h> 19 #include <linux/pagemap.h> 20 #include <linux/init.h> 21 #include <linux/highmem.h> 22 #include <linux/vmstat.h> 23 #include <linux/file.h> 24 #include <linux/writeback.h> 25 #include <linux/blkdev.h> 26 #include <linux/buffer_head.h> /* for try_to_release_page(), 27 buffer_heads_over_limit */ 28 #include <linux/mm_inline.h> 29 #include <linux/pagevec.h> 30 #include <linux/backing-dev.h> 31 #include <linux/rmap.h> 32 #include <linux/topology.h> 33 #include <linux/cpu.h> 34 #include <linux/cpuset.h> 35 #include <linux/notifier.h> 36 #include <linux/rwsem.h> 37 #include <linux/delay.h> 38 #include <linux/kthread.h> 39 #include <linux/freezer.h> 40 #include <linux/memcontrol.h> 41 #include <linux/delayacct.h> 42 #include <linux/sysctl.h> 43 44 #include <asm/tlbflush.h> 45 #include <asm/div64.h> 46 47 #include <linux/swapops.h> 48 49 #include "internal.h" 50 51 #define CREATE_TRACE_POINTS 52 #include <trace/events/vmscan.h> 53 54 struct scan_control { 55 /* Incremented by the number of inactive pages that were scanned */ 56 unsigned long nr_scanned; 57 58 /* Number of pages freed so far during a call to shrink_zones() */ 59 unsigned long nr_reclaimed; 60 61 /* How many pages shrink_list() should reclaim */ 62 unsigned long nr_to_reclaim; 63 64 unsigned long hibernation_mode; 65 66 /* This context's GFP mask */ 67 gfp_t gfp_mask; 68 69 int may_writepage; 70 71 /* Can mapped pages be reclaimed? */ 72 int may_unmap; 73 74 /* Can pages be swapped as part of reclaim? */ 75 int may_swap; 76 77 int swappiness; 78 79 int order; 80 81 /* 82 * Intend to reclaim enough contenious memory rather than to reclaim 83 * enough amount memory. I.e, it's the mode for high order allocation. 84 */ 85 bool lumpy_reclaim_mode; 86 87 /* Which cgroup do we reclaim from */ 88 struct mem_cgroup *mem_cgroup; 89 90 /* 91 * Nodemask of nodes allowed by the caller. If NULL, all nodes 92 * are scanned. 93 */ 94 nodemask_t *nodemask; 95 }; 96 97 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru)) 98 99 #ifdef ARCH_HAS_PREFETCH 100 #define prefetch_prev_lru_page(_page, _base, _field) \ 101 do { \ 102 if ((_page)->lru.prev != _base) { \ 103 struct page *prev; \ 104 \ 105 prev = lru_to_page(&(_page->lru)); \ 106 prefetch(&prev->_field); \ 107 } \ 108 } while (0) 109 #else 110 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0) 111 #endif 112 113 #ifdef ARCH_HAS_PREFETCHW 114 #define prefetchw_prev_lru_page(_page, _base, _field) \ 115 do { \ 116 if ((_page)->lru.prev != _base) { \ 117 struct page *prev; \ 118 \ 119 prev = lru_to_page(&(_page->lru)); \ 120 prefetchw(&prev->_field); \ 121 } \ 122 } while (0) 123 #else 124 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 125 #endif 126 127 /* 128 * From 0 .. 100. Higher means more swappy. 129 */ 130 int vm_swappiness = 60; 131 long vm_total_pages; /* The total number of pages which the VM controls */ 132 133 static LIST_HEAD(shrinker_list); 134 static DECLARE_RWSEM(shrinker_rwsem); 135 136 #ifdef CONFIG_CGROUP_MEM_RES_CTLR 137 #define scanning_global_lru(sc) (!(sc)->mem_cgroup) 138 #else 139 #define scanning_global_lru(sc) (1) 140 #endif 141 142 static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone, 143 struct scan_control *sc) 144 { 145 if (!scanning_global_lru(sc)) 146 return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone); 147 148 return &zone->reclaim_stat; 149 } 150 151 static unsigned long zone_nr_lru_pages(struct zone *zone, 152 struct scan_control *sc, enum lru_list lru) 153 { 154 if (!scanning_global_lru(sc)) 155 return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru); 156 157 return zone_page_state(zone, NR_LRU_BASE + lru); 158 } 159 160 161 /* 162 * Add a shrinker callback to be called from the vm 163 */ 164 void register_shrinker(struct shrinker *shrinker) 165 { 166 shrinker->nr = 0; 167 down_write(&shrinker_rwsem); 168 list_add_tail(&shrinker->list, &shrinker_list); 169 up_write(&shrinker_rwsem); 170 } 171 EXPORT_SYMBOL(register_shrinker); 172 173 /* 174 * Remove one 175 */ 176 void unregister_shrinker(struct shrinker *shrinker) 177 { 178 down_write(&shrinker_rwsem); 179 list_del(&shrinker->list); 180 up_write(&shrinker_rwsem); 181 } 182 EXPORT_SYMBOL(unregister_shrinker); 183 184 #define SHRINK_BATCH 128 185 /* 186 * Call the shrink functions to age shrinkable caches 187 * 188 * Here we assume it costs one seek to replace a lru page and that it also 189 * takes a seek to recreate a cache object. With this in mind we age equal 190 * percentages of the lru and ageable caches. This should balance the seeks 191 * generated by these structures. 192 * 193 * If the vm encountered mapped pages on the LRU it increase the pressure on 194 * slab to avoid swapping. 195 * 196 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits. 197 * 198 * `lru_pages' represents the number of on-LRU pages in all the zones which 199 * are eligible for the caller's allocation attempt. It is used for balancing 200 * slab reclaim versus page reclaim. 201 * 202 * Returns the number of slab objects which we shrunk. 203 */ 204 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask, 205 unsigned long lru_pages) 206 { 207 struct shrinker *shrinker; 208 unsigned long ret = 0; 209 210 if (scanned == 0) 211 scanned = SWAP_CLUSTER_MAX; 212 213 if (!down_read_trylock(&shrinker_rwsem)) 214 return 1; /* Assume we'll be able to shrink next time */ 215 216 list_for_each_entry(shrinker, &shrinker_list, list) { 217 unsigned long long delta; 218 unsigned long total_scan; 219 unsigned long max_pass; 220 221 max_pass = (*shrinker->shrink)(shrinker, 0, gfp_mask); 222 delta = (4 * scanned) / shrinker->seeks; 223 delta *= max_pass; 224 do_div(delta, lru_pages + 1); 225 shrinker->nr += delta; 226 if (shrinker->nr < 0) { 227 printk(KERN_ERR "shrink_slab: %pF negative objects to " 228 "delete nr=%ld\n", 229 shrinker->shrink, shrinker->nr); 230 shrinker->nr = max_pass; 231 } 232 233 /* 234 * Avoid risking looping forever due to too large nr value: 235 * never try to free more than twice the estimate number of 236 * freeable entries. 237 */ 238 if (shrinker->nr > max_pass * 2) 239 shrinker->nr = max_pass * 2; 240 241 total_scan = shrinker->nr; 242 shrinker->nr = 0; 243 244 while (total_scan >= SHRINK_BATCH) { 245 long this_scan = SHRINK_BATCH; 246 int shrink_ret; 247 int nr_before; 248 249 nr_before = (*shrinker->shrink)(shrinker, 0, gfp_mask); 250 shrink_ret = (*shrinker->shrink)(shrinker, this_scan, 251 gfp_mask); 252 if (shrink_ret == -1) 253 break; 254 if (shrink_ret < nr_before) 255 ret += nr_before - shrink_ret; 256 count_vm_events(SLABS_SCANNED, this_scan); 257 total_scan -= this_scan; 258 259 cond_resched(); 260 } 261 262 shrinker->nr += total_scan; 263 } 264 up_read(&shrinker_rwsem); 265 return ret; 266 } 267 268 static inline int is_page_cache_freeable(struct page *page) 269 { 270 /* 271 * A freeable page cache page is referenced only by the caller 272 * that isolated the page, the page cache radix tree and 273 * optional buffer heads at page->private. 274 */ 275 return page_count(page) - page_has_private(page) == 2; 276 } 277 278 static int may_write_to_queue(struct backing_dev_info *bdi) 279 { 280 if (current->flags & PF_SWAPWRITE) 281 return 1; 282 if (!bdi_write_congested(bdi)) 283 return 1; 284 if (bdi == current->backing_dev_info) 285 return 1; 286 return 0; 287 } 288 289 /* 290 * We detected a synchronous write error writing a page out. Probably 291 * -ENOSPC. We need to propagate that into the address_space for a subsequent 292 * fsync(), msync() or close(). 293 * 294 * The tricky part is that after writepage we cannot touch the mapping: nothing 295 * prevents it from being freed up. But we have a ref on the page and once 296 * that page is locked, the mapping is pinned. 297 * 298 * We're allowed to run sleeping lock_page() here because we know the caller has 299 * __GFP_FS. 300 */ 301 static void handle_write_error(struct address_space *mapping, 302 struct page *page, int error) 303 { 304 lock_page_nosync(page); 305 if (page_mapping(page) == mapping) 306 mapping_set_error(mapping, error); 307 unlock_page(page); 308 } 309 310 /* Request for sync pageout. */ 311 enum pageout_io { 312 PAGEOUT_IO_ASYNC, 313 PAGEOUT_IO_SYNC, 314 }; 315 316 /* possible outcome of pageout() */ 317 typedef enum { 318 /* failed to write page out, page is locked */ 319 PAGE_KEEP, 320 /* move page to the active list, page is locked */ 321 PAGE_ACTIVATE, 322 /* page has been sent to the disk successfully, page is unlocked */ 323 PAGE_SUCCESS, 324 /* page is clean and locked */ 325 PAGE_CLEAN, 326 } pageout_t; 327 328 /* 329 * pageout is called by shrink_page_list() for each dirty page. 330 * Calls ->writepage(). 331 */ 332 static pageout_t pageout(struct page *page, struct address_space *mapping, 333 enum pageout_io sync_writeback) 334 { 335 /* 336 * If the page is dirty, only perform writeback if that write 337 * will be non-blocking. To prevent this allocation from being 338 * stalled by pagecache activity. But note that there may be 339 * stalls if we need to run get_block(). We could test 340 * PagePrivate for that. 341 * 342 * If this process is currently in __generic_file_aio_write() against 343 * this page's queue, we can perform writeback even if that 344 * will block. 345 * 346 * If the page is swapcache, write it back even if that would 347 * block, for some throttling. This happens by accident, because 348 * swap_backing_dev_info is bust: it doesn't reflect the 349 * congestion state of the swapdevs. Easy to fix, if needed. 350 */ 351 if (!is_page_cache_freeable(page)) 352 return PAGE_KEEP; 353 if (!mapping) { 354 /* 355 * Some data journaling orphaned pages can have 356 * page->mapping == NULL while being dirty with clean buffers. 357 */ 358 if (page_has_private(page)) { 359 if (try_to_free_buffers(page)) { 360 ClearPageDirty(page); 361 printk("%s: orphaned page\n", __func__); 362 return PAGE_CLEAN; 363 } 364 } 365 return PAGE_KEEP; 366 } 367 if (mapping->a_ops->writepage == NULL) 368 return PAGE_ACTIVATE; 369 if (!may_write_to_queue(mapping->backing_dev_info)) 370 return PAGE_KEEP; 371 372 if (clear_page_dirty_for_io(page)) { 373 int res; 374 struct writeback_control wbc = { 375 .sync_mode = WB_SYNC_NONE, 376 .nr_to_write = SWAP_CLUSTER_MAX, 377 .range_start = 0, 378 .range_end = LLONG_MAX, 379 .nonblocking = 1, 380 .for_reclaim = 1, 381 }; 382 383 SetPageReclaim(page); 384 res = mapping->a_ops->writepage(page, &wbc); 385 if (res < 0) 386 handle_write_error(mapping, page, res); 387 if (res == AOP_WRITEPAGE_ACTIVATE) { 388 ClearPageReclaim(page); 389 return PAGE_ACTIVATE; 390 } 391 392 /* 393 * Wait on writeback if requested to. This happens when 394 * direct reclaiming a large contiguous area and the 395 * first attempt to free a range of pages fails. 396 */ 397 if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC) 398 wait_on_page_writeback(page); 399 400 if (!PageWriteback(page)) { 401 /* synchronous write or broken a_ops? */ 402 ClearPageReclaim(page); 403 } 404 trace_mm_vmscan_writepage(page, 405 trace_reclaim_flags(page, sync_writeback)); 406 inc_zone_page_state(page, NR_VMSCAN_WRITE); 407 return PAGE_SUCCESS; 408 } 409 410 return PAGE_CLEAN; 411 } 412 413 /* 414 * Same as remove_mapping, but if the page is removed from the mapping, it 415 * gets returned with a refcount of 0. 416 */ 417 static int __remove_mapping(struct address_space *mapping, struct page *page) 418 { 419 BUG_ON(!PageLocked(page)); 420 BUG_ON(mapping != page_mapping(page)); 421 422 spin_lock_irq(&mapping->tree_lock); 423 /* 424 * The non racy check for a busy page. 425 * 426 * Must be careful with the order of the tests. When someone has 427 * a ref to the page, it may be possible that they dirty it then 428 * drop the reference. So if PageDirty is tested before page_count 429 * here, then the following race may occur: 430 * 431 * get_user_pages(&page); 432 * [user mapping goes away] 433 * write_to(page); 434 * !PageDirty(page) [good] 435 * SetPageDirty(page); 436 * put_page(page); 437 * !page_count(page) [good, discard it] 438 * 439 * [oops, our write_to data is lost] 440 * 441 * Reversing the order of the tests ensures such a situation cannot 442 * escape unnoticed. The smp_rmb is needed to ensure the page->flags 443 * load is not satisfied before that of page->_count. 444 * 445 * Note that if SetPageDirty is always performed via set_page_dirty, 446 * and thus under tree_lock, then this ordering is not required. 447 */ 448 if (!page_freeze_refs(page, 2)) 449 goto cannot_free; 450 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */ 451 if (unlikely(PageDirty(page))) { 452 page_unfreeze_refs(page, 2); 453 goto cannot_free; 454 } 455 456 if (PageSwapCache(page)) { 457 swp_entry_t swap = { .val = page_private(page) }; 458 __delete_from_swap_cache(page); 459 spin_unlock_irq(&mapping->tree_lock); 460 swapcache_free(swap, page); 461 } else { 462 __remove_from_page_cache(page); 463 spin_unlock_irq(&mapping->tree_lock); 464 mem_cgroup_uncharge_cache_page(page); 465 } 466 467 return 1; 468 469 cannot_free: 470 spin_unlock_irq(&mapping->tree_lock); 471 return 0; 472 } 473 474 /* 475 * Attempt to detach a locked page from its ->mapping. If it is dirty or if 476 * someone else has a ref on the page, abort and return 0. If it was 477 * successfully detached, return 1. Assumes the caller has a single ref on 478 * this page. 479 */ 480 int remove_mapping(struct address_space *mapping, struct page *page) 481 { 482 if (__remove_mapping(mapping, page)) { 483 /* 484 * Unfreezing the refcount with 1 rather than 2 effectively 485 * drops the pagecache ref for us without requiring another 486 * atomic operation. 487 */ 488 page_unfreeze_refs(page, 1); 489 return 1; 490 } 491 return 0; 492 } 493 494 /** 495 * putback_lru_page - put previously isolated page onto appropriate LRU list 496 * @page: page to be put back to appropriate lru list 497 * 498 * Add previously isolated @page to appropriate LRU list. 499 * Page may still be unevictable for other reasons. 500 * 501 * lru_lock must not be held, interrupts must be enabled. 502 */ 503 void putback_lru_page(struct page *page) 504 { 505 int lru; 506 int active = !!TestClearPageActive(page); 507 int was_unevictable = PageUnevictable(page); 508 509 VM_BUG_ON(PageLRU(page)); 510 511 redo: 512 ClearPageUnevictable(page); 513 514 if (page_evictable(page, NULL)) { 515 /* 516 * For evictable pages, we can use the cache. 517 * In event of a race, worst case is we end up with an 518 * unevictable page on [in]active list. 519 * We know how to handle that. 520 */ 521 lru = active + page_lru_base_type(page); 522 lru_cache_add_lru(page, lru); 523 } else { 524 /* 525 * Put unevictable pages directly on zone's unevictable 526 * list. 527 */ 528 lru = LRU_UNEVICTABLE; 529 add_page_to_unevictable_list(page); 530 /* 531 * When racing with an mlock clearing (page is 532 * unlocked), make sure that if the other thread does 533 * not observe our setting of PG_lru and fails 534 * isolation, we see PG_mlocked cleared below and move 535 * the page back to the evictable list. 536 * 537 * The other side is TestClearPageMlocked(). 538 */ 539 smp_mb(); 540 } 541 542 /* 543 * page's status can change while we move it among lru. If an evictable 544 * page is on unevictable list, it never be freed. To avoid that, 545 * check after we added it to the list, again. 546 */ 547 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) { 548 if (!isolate_lru_page(page)) { 549 put_page(page); 550 goto redo; 551 } 552 /* This means someone else dropped this page from LRU 553 * So, it will be freed or putback to LRU again. There is 554 * nothing to do here. 555 */ 556 } 557 558 if (was_unevictable && lru != LRU_UNEVICTABLE) 559 count_vm_event(UNEVICTABLE_PGRESCUED); 560 else if (!was_unevictable && lru == LRU_UNEVICTABLE) 561 count_vm_event(UNEVICTABLE_PGCULLED); 562 563 put_page(page); /* drop ref from isolate */ 564 } 565 566 enum page_references { 567 PAGEREF_RECLAIM, 568 PAGEREF_RECLAIM_CLEAN, 569 PAGEREF_KEEP, 570 PAGEREF_ACTIVATE, 571 }; 572 573 static enum page_references page_check_references(struct page *page, 574 struct scan_control *sc) 575 { 576 int referenced_ptes, referenced_page; 577 unsigned long vm_flags; 578 579 referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags); 580 referenced_page = TestClearPageReferenced(page); 581 582 /* Lumpy reclaim - ignore references */ 583 if (sc->lumpy_reclaim_mode) 584 return PAGEREF_RECLAIM; 585 586 /* 587 * Mlock lost the isolation race with us. Let try_to_unmap() 588 * move the page to the unevictable list. 589 */ 590 if (vm_flags & VM_LOCKED) 591 return PAGEREF_RECLAIM; 592 593 if (referenced_ptes) { 594 if (PageAnon(page)) 595 return PAGEREF_ACTIVATE; 596 /* 597 * All mapped pages start out with page table 598 * references from the instantiating fault, so we need 599 * to look twice if a mapped file page is used more 600 * than once. 601 * 602 * Mark it and spare it for another trip around the 603 * inactive list. Another page table reference will 604 * lead to its activation. 605 * 606 * Note: the mark is set for activated pages as well 607 * so that recently deactivated but used pages are 608 * quickly recovered. 609 */ 610 SetPageReferenced(page); 611 612 if (referenced_page) 613 return PAGEREF_ACTIVATE; 614 615 return PAGEREF_KEEP; 616 } 617 618 /* Reclaim if clean, defer dirty pages to writeback */ 619 if (referenced_page) 620 return PAGEREF_RECLAIM_CLEAN; 621 622 return PAGEREF_RECLAIM; 623 } 624 625 static noinline_for_stack void free_page_list(struct list_head *free_pages) 626 { 627 struct pagevec freed_pvec; 628 struct page *page, *tmp; 629 630 pagevec_init(&freed_pvec, 1); 631 632 list_for_each_entry_safe(page, tmp, free_pages, lru) { 633 list_del(&page->lru); 634 if (!pagevec_add(&freed_pvec, page)) { 635 __pagevec_free(&freed_pvec); 636 pagevec_reinit(&freed_pvec); 637 } 638 } 639 640 pagevec_free(&freed_pvec); 641 } 642 643 /* 644 * shrink_page_list() returns the number of reclaimed pages 645 */ 646 static unsigned long shrink_page_list(struct list_head *page_list, 647 struct scan_control *sc, 648 enum pageout_io sync_writeback) 649 { 650 LIST_HEAD(ret_pages); 651 LIST_HEAD(free_pages); 652 int pgactivate = 0; 653 unsigned long nr_reclaimed = 0; 654 655 cond_resched(); 656 657 while (!list_empty(page_list)) { 658 enum page_references references; 659 struct address_space *mapping; 660 struct page *page; 661 int may_enter_fs; 662 663 cond_resched(); 664 665 page = lru_to_page(page_list); 666 list_del(&page->lru); 667 668 if (!trylock_page(page)) 669 goto keep; 670 671 VM_BUG_ON(PageActive(page)); 672 673 sc->nr_scanned++; 674 675 if (unlikely(!page_evictable(page, NULL))) 676 goto cull_mlocked; 677 678 if (!sc->may_unmap && page_mapped(page)) 679 goto keep_locked; 680 681 /* Double the slab pressure for mapped and swapcache pages */ 682 if (page_mapped(page) || PageSwapCache(page)) 683 sc->nr_scanned++; 684 685 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 686 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 687 688 if (PageWriteback(page)) { 689 /* 690 * Synchronous reclaim is performed in two passes, 691 * first an asynchronous pass over the list to 692 * start parallel writeback, and a second synchronous 693 * pass to wait for the IO to complete. Wait here 694 * for any page for which writeback has already 695 * started. 696 */ 697 if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs) 698 wait_on_page_writeback(page); 699 else 700 goto keep_locked; 701 } 702 703 references = page_check_references(page, sc); 704 switch (references) { 705 case PAGEREF_ACTIVATE: 706 goto activate_locked; 707 case PAGEREF_KEEP: 708 goto keep_locked; 709 case PAGEREF_RECLAIM: 710 case PAGEREF_RECLAIM_CLEAN: 711 ; /* try to reclaim the page below */ 712 } 713 714 /* 715 * Anonymous process memory has backing store? 716 * Try to allocate it some swap space here. 717 */ 718 if (PageAnon(page) && !PageSwapCache(page)) { 719 if (!(sc->gfp_mask & __GFP_IO)) 720 goto keep_locked; 721 if (!add_to_swap(page)) 722 goto activate_locked; 723 may_enter_fs = 1; 724 } 725 726 mapping = page_mapping(page); 727 728 /* 729 * The page is mapped into the page tables of one or more 730 * processes. Try to unmap it here. 731 */ 732 if (page_mapped(page) && mapping) { 733 switch (try_to_unmap(page, TTU_UNMAP)) { 734 case SWAP_FAIL: 735 goto activate_locked; 736 case SWAP_AGAIN: 737 goto keep_locked; 738 case SWAP_MLOCK: 739 goto cull_mlocked; 740 case SWAP_SUCCESS: 741 ; /* try to free the page below */ 742 } 743 } 744 745 if (PageDirty(page)) { 746 if (references == PAGEREF_RECLAIM_CLEAN) 747 goto keep_locked; 748 if (!may_enter_fs) 749 goto keep_locked; 750 if (!sc->may_writepage) 751 goto keep_locked; 752 753 /* Page is dirty, try to write it out here */ 754 switch (pageout(page, mapping, sync_writeback)) { 755 case PAGE_KEEP: 756 goto keep_locked; 757 case PAGE_ACTIVATE: 758 goto activate_locked; 759 case PAGE_SUCCESS: 760 if (PageWriteback(page) || PageDirty(page)) 761 goto keep; 762 /* 763 * A synchronous write - probably a ramdisk. Go 764 * ahead and try to reclaim the page. 765 */ 766 if (!trylock_page(page)) 767 goto keep; 768 if (PageDirty(page) || PageWriteback(page)) 769 goto keep_locked; 770 mapping = page_mapping(page); 771 case PAGE_CLEAN: 772 ; /* try to free the page below */ 773 } 774 } 775 776 /* 777 * If the page has buffers, try to free the buffer mappings 778 * associated with this page. If we succeed we try to free 779 * the page as well. 780 * 781 * We do this even if the page is PageDirty(). 782 * try_to_release_page() does not perform I/O, but it is 783 * possible for a page to have PageDirty set, but it is actually 784 * clean (all its buffers are clean). This happens if the 785 * buffers were written out directly, with submit_bh(). ext3 786 * will do this, as well as the blockdev mapping. 787 * try_to_release_page() will discover that cleanness and will 788 * drop the buffers and mark the page clean - it can be freed. 789 * 790 * Rarely, pages can have buffers and no ->mapping. These are 791 * the pages which were not successfully invalidated in 792 * truncate_complete_page(). We try to drop those buffers here 793 * and if that worked, and the page is no longer mapped into 794 * process address space (page_count == 1) it can be freed. 795 * Otherwise, leave the page on the LRU so it is swappable. 796 */ 797 if (page_has_private(page)) { 798 if (!try_to_release_page(page, sc->gfp_mask)) 799 goto activate_locked; 800 if (!mapping && page_count(page) == 1) { 801 unlock_page(page); 802 if (put_page_testzero(page)) 803 goto free_it; 804 else { 805 /* 806 * rare race with speculative reference. 807 * the speculative reference will free 808 * this page shortly, so we may 809 * increment nr_reclaimed here (and 810 * leave it off the LRU). 811 */ 812 nr_reclaimed++; 813 continue; 814 } 815 } 816 } 817 818 if (!mapping || !__remove_mapping(mapping, page)) 819 goto keep_locked; 820 821 /* 822 * At this point, we have no other references and there is 823 * no way to pick any more up (removed from LRU, removed 824 * from pagecache). Can use non-atomic bitops now (and 825 * we obviously don't have to worry about waking up a process 826 * waiting on the page lock, because there are no references. 827 */ 828 __clear_page_locked(page); 829 free_it: 830 nr_reclaimed++; 831 832 /* 833 * Is there need to periodically free_page_list? It would 834 * appear not as the counts should be low 835 */ 836 list_add(&page->lru, &free_pages); 837 continue; 838 839 cull_mlocked: 840 if (PageSwapCache(page)) 841 try_to_free_swap(page); 842 unlock_page(page); 843 putback_lru_page(page); 844 continue; 845 846 activate_locked: 847 /* Not a candidate for swapping, so reclaim swap space. */ 848 if (PageSwapCache(page) && vm_swap_full()) 849 try_to_free_swap(page); 850 VM_BUG_ON(PageActive(page)); 851 SetPageActive(page); 852 pgactivate++; 853 keep_locked: 854 unlock_page(page); 855 keep: 856 list_add(&page->lru, &ret_pages); 857 VM_BUG_ON(PageLRU(page) || PageUnevictable(page)); 858 } 859 860 free_page_list(&free_pages); 861 862 list_splice(&ret_pages, page_list); 863 count_vm_events(PGACTIVATE, pgactivate); 864 return nr_reclaimed; 865 } 866 867 /* 868 * Attempt to remove the specified page from its LRU. Only take this page 869 * if it is of the appropriate PageActive status. Pages which are being 870 * freed elsewhere are also ignored. 871 * 872 * page: page to consider 873 * mode: one of the LRU isolation modes defined above 874 * 875 * returns 0 on success, -ve errno on failure. 876 */ 877 int __isolate_lru_page(struct page *page, int mode, int file) 878 { 879 int ret = -EINVAL; 880 881 /* Only take pages on the LRU. */ 882 if (!PageLRU(page)) 883 return ret; 884 885 /* 886 * When checking the active state, we need to be sure we are 887 * dealing with comparible boolean values. Take the logical not 888 * of each. 889 */ 890 if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode)) 891 return ret; 892 893 if (mode != ISOLATE_BOTH && page_is_file_cache(page) != file) 894 return ret; 895 896 /* 897 * When this function is being called for lumpy reclaim, we 898 * initially look into all LRU pages, active, inactive and 899 * unevictable; only give shrink_page_list evictable pages. 900 */ 901 if (PageUnevictable(page)) 902 return ret; 903 904 ret = -EBUSY; 905 906 if (likely(get_page_unless_zero(page))) { 907 /* 908 * Be careful not to clear PageLRU until after we're 909 * sure the page is not being freed elsewhere -- the 910 * page release code relies on it. 911 */ 912 ClearPageLRU(page); 913 ret = 0; 914 } 915 916 return ret; 917 } 918 919 /* 920 * zone->lru_lock is heavily contended. Some of the functions that 921 * shrink the lists perform better by taking out a batch of pages 922 * and working on them outside the LRU lock. 923 * 924 * For pagecache intensive workloads, this function is the hottest 925 * spot in the kernel (apart from copy_*_user functions). 926 * 927 * Appropriate locks must be held before calling this function. 928 * 929 * @nr_to_scan: The number of pages to look through on the list. 930 * @src: The LRU list to pull pages off. 931 * @dst: The temp list to put pages on to. 932 * @scanned: The number of pages that were scanned. 933 * @order: The caller's attempted allocation order 934 * @mode: One of the LRU isolation modes 935 * @file: True [1] if isolating file [!anon] pages 936 * 937 * returns how many pages were moved onto *@dst. 938 */ 939 static unsigned long isolate_lru_pages(unsigned long nr_to_scan, 940 struct list_head *src, struct list_head *dst, 941 unsigned long *scanned, int order, int mode, int file) 942 { 943 unsigned long nr_taken = 0; 944 unsigned long nr_lumpy_taken = 0; 945 unsigned long nr_lumpy_dirty = 0; 946 unsigned long nr_lumpy_failed = 0; 947 unsigned long scan; 948 949 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) { 950 struct page *page; 951 unsigned long pfn; 952 unsigned long end_pfn; 953 unsigned long page_pfn; 954 int zone_id; 955 956 page = lru_to_page(src); 957 prefetchw_prev_lru_page(page, src, flags); 958 959 VM_BUG_ON(!PageLRU(page)); 960 961 switch (__isolate_lru_page(page, mode, file)) { 962 case 0: 963 list_move(&page->lru, dst); 964 mem_cgroup_del_lru(page); 965 nr_taken++; 966 break; 967 968 case -EBUSY: 969 /* else it is being freed elsewhere */ 970 list_move(&page->lru, src); 971 mem_cgroup_rotate_lru_list(page, page_lru(page)); 972 continue; 973 974 default: 975 BUG(); 976 } 977 978 if (!order) 979 continue; 980 981 /* 982 * Attempt to take all pages in the order aligned region 983 * surrounding the tag page. Only take those pages of 984 * the same active state as that tag page. We may safely 985 * round the target page pfn down to the requested order 986 * as the mem_map is guarenteed valid out to MAX_ORDER, 987 * where that page is in a different zone we will detect 988 * it from its zone id and abort this block scan. 989 */ 990 zone_id = page_zone_id(page); 991 page_pfn = page_to_pfn(page); 992 pfn = page_pfn & ~((1 << order) - 1); 993 end_pfn = pfn + (1 << order); 994 for (; pfn < end_pfn; pfn++) { 995 struct page *cursor_page; 996 997 /* The target page is in the block, ignore it. */ 998 if (unlikely(pfn == page_pfn)) 999 continue; 1000 1001 /* Avoid holes within the zone. */ 1002 if (unlikely(!pfn_valid_within(pfn))) 1003 break; 1004 1005 cursor_page = pfn_to_page(pfn); 1006 1007 /* Check that we have not crossed a zone boundary. */ 1008 if (unlikely(page_zone_id(cursor_page) != zone_id)) 1009 continue; 1010 1011 /* 1012 * If we don't have enough swap space, reclaiming of 1013 * anon page which don't already have a swap slot is 1014 * pointless. 1015 */ 1016 if (nr_swap_pages <= 0 && PageAnon(cursor_page) && 1017 !PageSwapCache(cursor_page)) 1018 continue; 1019 1020 if (__isolate_lru_page(cursor_page, mode, file) == 0) { 1021 list_move(&cursor_page->lru, dst); 1022 mem_cgroup_del_lru(cursor_page); 1023 nr_taken++; 1024 nr_lumpy_taken++; 1025 if (PageDirty(cursor_page)) 1026 nr_lumpy_dirty++; 1027 scan++; 1028 } else { 1029 if (mode == ISOLATE_BOTH && 1030 page_count(cursor_page)) 1031 nr_lumpy_failed++; 1032 } 1033 } 1034 } 1035 1036 *scanned = scan; 1037 1038 trace_mm_vmscan_lru_isolate(order, 1039 nr_to_scan, scan, 1040 nr_taken, 1041 nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed, 1042 mode); 1043 return nr_taken; 1044 } 1045 1046 static unsigned long isolate_pages_global(unsigned long nr, 1047 struct list_head *dst, 1048 unsigned long *scanned, int order, 1049 int mode, struct zone *z, 1050 int active, int file) 1051 { 1052 int lru = LRU_BASE; 1053 if (active) 1054 lru += LRU_ACTIVE; 1055 if (file) 1056 lru += LRU_FILE; 1057 return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order, 1058 mode, file); 1059 } 1060 1061 /* 1062 * clear_active_flags() is a helper for shrink_active_list(), clearing 1063 * any active bits from the pages in the list. 1064 */ 1065 static unsigned long clear_active_flags(struct list_head *page_list, 1066 unsigned int *count) 1067 { 1068 int nr_active = 0; 1069 int lru; 1070 struct page *page; 1071 1072 list_for_each_entry(page, page_list, lru) { 1073 lru = page_lru_base_type(page); 1074 if (PageActive(page)) { 1075 lru += LRU_ACTIVE; 1076 ClearPageActive(page); 1077 nr_active++; 1078 } 1079 if (count) 1080 count[lru]++; 1081 } 1082 1083 return nr_active; 1084 } 1085 1086 /** 1087 * isolate_lru_page - tries to isolate a page from its LRU list 1088 * @page: page to isolate from its LRU list 1089 * 1090 * Isolates a @page from an LRU list, clears PageLRU and adjusts the 1091 * vmstat statistic corresponding to whatever LRU list the page was on. 1092 * 1093 * Returns 0 if the page was removed from an LRU list. 1094 * Returns -EBUSY if the page was not on an LRU list. 1095 * 1096 * The returned page will have PageLRU() cleared. If it was found on 1097 * the active list, it will have PageActive set. If it was found on 1098 * the unevictable list, it will have the PageUnevictable bit set. That flag 1099 * may need to be cleared by the caller before letting the page go. 1100 * 1101 * The vmstat statistic corresponding to the list on which the page was 1102 * found will be decremented. 1103 * 1104 * Restrictions: 1105 * (1) Must be called with an elevated refcount on the page. This is a 1106 * fundamentnal difference from isolate_lru_pages (which is called 1107 * without a stable reference). 1108 * (2) the lru_lock must not be held. 1109 * (3) interrupts must be enabled. 1110 */ 1111 int isolate_lru_page(struct page *page) 1112 { 1113 int ret = -EBUSY; 1114 1115 if (PageLRU(page)) { 1116 struct zone *zone = page_zone(page); 1117 1118 spin_lock_irq(&zone->lru_lock); 1119 if (PageLRU(page) && get_page_unless_zero(page)) { 1120 int lru = page_lru(page); 1121 ret = 0; 1122 ClearPageLRU(page); 1123 1124 del_page_from_lru_list(zone, page, lru); 1125 } 1126 spin_unlock_irq(&zone->lru_lock); 1127 } 1128 return ret; 1129 } 1130 1131 /* 1132 * Are there way too many processes in the direct reclaim path already? 1133 */ 1134 static int too_many_isolated(struct zone *zone, int file, 1135 struct scan_control *sc) 1136 { 1137 unsigned long inactive, isolated; 1138 1139 if (current_is_kswapd()) 1140 return 0; 1141 1142 if (!scanning_global_lru(sc)) 1143 return 0; 1144 1145 if (file) { 1146 inactive = zone_page_state(zone, NR_INACTIVE_FILE); 1147 isolated = zone_page_state(zone, NR_ISOLATED_FILE); 1148 } else { 1149 inactive = zone_page_state(zone, NR_INACTIVE_ANON); 1150 isolated = zone_page_state(zone, NR_ISOLATED_ANON); 1151 } 1152 1153 return isolated > inactive; 1154 } 1155 1156 /* 1157 * TODO: Try merging with migrations version of putback_lru_pages 1158 */ 1159 static noinline_for_stack void 1160 putback_lru_pages(struct zone *zone, struct scan_control *sc, 1161 unsigned long nr_anon, unsigned long nr_file, 1162 struct list_head *page_list) 1163 { 1164 struct page *page; 1165 struct pagevec pvec; 1166 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc); 1167 1168 pagevec_init(&pvec, 1); 1169 1170 /* 1171 * Put back any unfreeable pages. 1172 */ 1173 spin_lock(&zone->lru_lock); 1174 while (!list_empty(page_list)) { 1175 int lru; 1176 page = lru_to_page(page_list); 1177 VM_BUG_ON(PageLRU(page)); 1178 list_del(&page->lru); 1179 if (unlikely(!page_evictable(page, NULL))) { 1180 spin_unlock_irq(&zone->lru_lock); 1181 putback_lru_page(page); 1182 spin_lock_irq(&zone->lru_lock); 1183 continue; 1184 } 1185 SetPageLRU(page); 1186 lru = page_lru(page); 1187 add_page_to_lru_list(zone, page, lru); 1188 if (is_active_lru(lru)) { 1189 int file = is_file_lru(lru); 1190 reclaim_stat->recent_rotated[file]++; 1191 } 1192 if (!pagevec_add(&pvec, page)) { 1193 spin_unlock_irq(&zone->lru_lock); 1194 __pagevec_release(&pvec); 1195 spin_lock_irq(&zone->lru_lock); 1196 } 1197 } 1198 __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon); 1199 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file); 1200 1201 spin_unlock_irq(&zone->lru_lock); 1202 pagevec_release(&pvec); 1203 } 1204 1205 static noinline_for_stack void update_isolated_counts(struct zone *zone, 1206 struct scan_control *sc, 1207 unsigned long *nr_anon, 1208 unsigned long *nr_file, 1209 struct list_head *isolated_list) 1210 { 1211 unsigned long nr_active; 1212 unsigned int count[NR_LRU_LISTS] = { 0, }; 1213 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc); 1214 1215 nr_active = clear_active_flags(isolated_list, count); 1216 __count_vm_events(PGDEACTIVATE, nr_active); 1217 1218 __mod_zone_page_state(zone, NR_ACTIVE_FILE, 1219 -count[LRU_ACTIVE_FILE]); 1220 __mod_zone_page_state(zone, NR_INACTIVE_FILE, 1221 -count[LRU_INACTIVE_FILE]); 1222 __mod_zone_page_state(zone, NR_ACTIVE_ANON, 1223 -count[LRU_ACTIVE_ANON]); 1224 __mod_zone_page_state(zone, NR_INACTIVE_ANON, 1225 -count[LRU_INACTIVE_ANON]); 1226 1227 *nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON]; 1228 *nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE]; 1229 __mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon); 1230 __mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file); 1231 1232 reclaim_stat->recent_scanned[0] += *nr_anon; 1233 reclaim_stat->recent_scanned[1] += *nr_file; 1234 } 1235 1236 /* 1237 * Returns true if the caller should wait to clean dirty/writeback pages. 1238 * 1239 * If we are direct reclaiming for contiguous pages and we do not reclaim 1240 * everything in the list, try again and wait for writeback IO to complete. 1241 * This will stall high-order allocations noticeably. Only do that when really 1242 * need to free the pages under high memory pressure. 1243 */ 1244 static inline bool should_reclaim_stall(unsigned long nr_taken, 1245 unsigned long nr_freed, 1246 int priority, 1247 struct scan_control *sc) 1248 { 1249 int lumpy_stall_priority; 1250 1251 /* kswapd should not stall on sync IO */ 1252 if (current_is_kswapd()) 1253 return false; 1254 1255 /* Only stall on lumpy reclaim */ 1256 if (!sc->lumpy_reclaim_mode) 1257 return false; 1258 1259 /* If we have relaimed everything on the isolated list, no stall */ 1260 if (nr_freed == nr_taken) 1261 return false; 1262 1263 /* 1264 * For high-order allocations, there are two stall thresholds. 1265 * High-cost allocations stall immediately where as lower 1266 * order allocations such as stacks require the scanning 1267 * priority to be much higher before stalling. 1268 */ 1269 if (sc->order > PAGE_ALLOC_COSTLY_ORDER) 1270 lumpy_stall_priority = DEF_PRIORITY; 1271 else 1272 lumpy_stall_priority = DEF_PRIORITY / 3; 1273 1274 return priority <= lumpy_stall_priority; 1275 } 1276 1277 /* 1278 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number 1279 * of reclaimed pages 1280 */ 1281 static noinline_for_stack unsigned long 1282 shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone, 1283 struct scan_control *sc, int priority, int file) 1284 { 1285 LIST_HEAD(page_list); 1286 unsigned long nr_scanned; 1287 unsigned long nr_reclaimed = 0; 1288 unsigned long nr_taken; 1289 unsigned long nr_active; 1290 unsigned long nr_anon; 1291 unsigned long nr_file; 1292 1293 while (unlikely(too_many_isolated(zone, file, sc))) { 1294 congestion_wait(BLK_RW_ASYNC, HZ/10); 1295 1296 /* We are about to die and free our memory. Return now. */ 1297 if (fatal_signal_pending(current)) 1298 return SWAP_CLUSTER_MAX; 1299 } 1300 1301 1302 lru_add_drain(); 1303 spin_lock_irq(&zone->lru_lock); 1304 1305 if (scanning_global_lru(sc)) { 1306 nr_taken = isolate_pages_global(nr_to_scan, 1307 &page_list, &nr_scanned, sc->order, 1308 sc->lumpy_reclaim_mode ? 1309 ISOLATE_BOTH : ISOLATE_INACTIVE, 1310 zone, 0, file); 1311 zone->pages_scanned += nr_scanned; 1312 if (current_is_kswapd()) 1313 __count_zone_vm_events(PGSCAN_KSWAPD, zone, 1314 nr_scanned); 1315 else 1316 __count_zone_vm_events(PGSCAN_DIRECT, zone, 1317 nr_scanned); 1318 } else { 1319 nr_taken = mem_cgroup_isolate_pages(nr_to_scan, 1320 &page_list, &nr_scanned, sc->order, 1321 sc->lumpy_reclaim_mode ? 1322 ISOLATE_BOTH : ISOLATE_INACTIVE, 1323 zone, sc->mem_cgroup, 1324 0, file); 1325 /* 1326 * mem_cgroup_isolate_pages() keeps track of 1327 * scanned pages on its own. 1328 */ 1329 } 1330 1331 if (nr_taken == 0) { 1332 spin_unlock_irq(&zone->lru_lock); 1333 return 0; 1334 } 1335 1336 update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list); 1337 1338 spin_unlock_irq(&zone->lru_lock); 1339 1340 nr_reclaimed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC); 1341 1342 /* Check if we should syncronously wait for writeback */ 1343 if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) { 1344 congestion_wait(BLK_RW_ASYNC, HZ/10); 1345 1346 /* 1347 * The attempt at page out may have made some 1348 * of the pages active, mark them inactive again. 1349 */ 1350 nr_active = clear_active_flags(&page_list, NULL); 1351 count_vm_events(PGDEACTIVATE, nr_active); 1352 1353 nr_reclaimed += shrink_page_list(&page_list, sc, PAGEOUT_IO_SYNC); 1354 } 1355 1356 local_irq_disable(); 1357 if (current_is_kswapd()) 1358 __count_vm_events(KSWAPD_STEAL, nr_reclaimed); 1359 __count_zone_vm_events(PGSTEAL, zone, nr_reclaimed); 1360 1361 putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list); 1362 return nr_reclaimed; 1363 } 1364 1365 /* 1366 * This moves pages from the active list to the inactive list. 1367 * 1368 * We move them the other way if the page is referenced by one or more 1369 * processes, from rmap. 1370 * 1371 * If the pages are mostly unmapped, the processing is fast and it is 1372 * appropriate to hold zone->lru_lock across the whole operation. But if 1373 * the pages are mapped, the processing is slow (page_referenced()) so we 1374 * should drop zone->lru_lock around each page. It's impossible to balance 1375 * this, so instead we remove the pages from the LRU while processing them. 1376 * It is safe to rely on PG_active against the non-LRU pages in here because 1377 * nobody will play with that bit on a non-LRU page. 1378 * 1379 * The downside is that we have to touch page->_count against each page. 1380 * But we had to alter page->flags anyway. 1381 */ 1382 1383 static void move_active_pages_to_lru(struct zone *zone, 1384 struct list_head *list, 1385 enum lru_list lru) 1386 { 1387 unsigned long pgmoved = 0; 1388 struct pagevec pvec; 1389 struct page *page; 1390 1391 pagevec_init(&pvec, 1); 1392 1393 while (!list_empty(list)) { 1394 page = lru_to_page(list); 1395 1396 VM_BUG_ON(PageLRU(page)); 1397 SetPageLRU(page); 1398 1399 list_move(&page->lru, &zone->lru[lru].list); 1400 mem_cgroup_add_lru_list(page, lru); 1401 pgmoved++; 1402 1403 if (!pagevec_add(&pvec, page) || list_empty(list)) { 1404 spin_unlock_irq(&zone->lru_lock); 1405 if (buffer_heads_over_limit) 1406 pagevec_strip(&pvec); 1407 __pagevec_release(&pvec); 1408 spin_lock_irq(&zone->lru_lock); 1409 } 1410 } 1411 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved); 1412 if (!is_active_lru(lru)) 1413 __count_vm_events(PGDEACTIVATE, pgmoved); 1414 } 1415 1416 static void shrink_active_list(unsigned long nr_pages, struct zone *zone, 1417 struct scan_control *sc, int priority, int file) 1418 { 1419 unsigned long nr_taken; 1420 unsigned long pgscanned; 1421 unsigned long vm_flags; 1422 LIST_HEAD(l_hold); /* The pages which were snipped off */ 1423 LIST_HEAD(l_active); 1424 LIST_HEAD(l_inactive); 1425 struct page *page; 1426 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc); 1427 unsigned long nr_rotated = 0; 1428 1429 lru_add_drain(); 1430 spin_lock_irq(&zone->lru_lock); 1431 if (scanning_global_lru(sc)) { 1432 nr_taken = isolate_pages_global(nr_pages, &l_hold, 1433 &pgscanned, sc->order, 1434 ISOLATE_ACTIVE, zone, 1435 1, file); 1436 zone->pages_scanned += pgscanned; 1437 } else { 1438 nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold, 1439 &pgscanned, sc->order, 1440 ISOLATE_ACTIVE, zone, 1441 sc->mem_cgroup, 1, file); 1442 /* 1443 * mem_cgroup_isolate_pages() keeps track of 1444 * scanned pages on its own. 1445 */ 1446 } 1447 1448 reclaim_stat->recent_scanned[file] += nr_taken; 1449 1450 __count_zone_vm_events(PGREFILL, zone, pgscanned); 1451 if (file) 1452 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken); 1453 else 1454 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken); 1455 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken); 1456 spin_unlock_irq(&zone->lru_lock); 1457 1458 while (!list_empty(&l_hold)) { 1459 cond_resched(); 1460 page = lru_to_page(&l_hold); 1461 list_del(&page->lru); 1462 1463 if (unlikely(!page_evictable(page, NULL))) { 1464 putback_lru_page(page); 1465 continue; 1466 } 1467 1468 if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) { 1469 nr_rotated++; 1470 /* 1471 * Identify referenced, file-backed active pages and 1472 * give them one more trip around the active list. So 1473 * that executable code get better chances to stay in 1474 * memory under moderate memory pressure. Anon pages 1475 * are not likely to be evicted by use-once streaming 1476 * IO, plus JVM can create lots of anon VM_EXEC pages, 1477 * so we ignore them here. 1478 */ 1479 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) { 1480 list_add(&page->lru, &l_active); 1481 continue; 1482 } 1483 } 1484 1485 ClearPageActive(page); /* we are de-activating */ 1486 list_add(&page->lru, &l_inactive); 1487 } 1488 1489 /* 1490 * Move pages back to the lru list. 1491 */ 1492 spin_lock_irq(&zone->lru_lock); 1493 /* 1494 * Count referenced pages from currently used mappings as rotated, 1495 * even though only some of them are actually re-activated. This 1496 * helps balance scan pressure between file and anonymous pages in 1497 * get_scan_ratio. 1498 */ 1499 reclaim_stat->recent_rotated[file] += nr_rotated; 1500 1501 move_active_pages_to_lru(zone, &l_active, 1502 LRU_ACTIVE + file * LRU_FILE); 1503 move_active_pages_to_lru(zone, &l_inactive, 1504 LRU_BASE + file * LRU_FILE); 1505 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken); 1506 spin_unlock_irq(&zone->lru_lock); 1507 } 1508 1509 static int inactive_anon_is_low_global(struct zone *zone) 1510 { 1511 unsigned long active, inactive; 1512 1513 active = zone_page_state(zone, NR_ACTIVE_ANON); 1514 inactive = zone_page_state(zone, NR_INACTIVE_ANON); 1515 1516 if (inactive * zone->inactive_ratio < active) 1517 return 1; 1518 1519 return 0; 1520 } 1521 1522 /** 1523 * inactive_anon_is_low - check if anonymous pages need to be deactivated 1524 * @zone: zone to check 1525 * @sc: scan control of this context 1526 * 1527 * Returns true if the zone does not have enough inactive anon pages, 1528 * meaning some active anon pages need to be deactivated. 1529 */ 1530 static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc) 1531 { 1532 int low; 1533 1534 if (scanning_global_lru(sc)) 1535 low = inactive_anon_is_low_global(zone); 1536 else 1537 low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup); 1538 return low; 1539 } 1540 1541 static int inactive_file_is_low_global(struct zone *zone) 1542 { 1543 unsigned long active, inactive; 1544 1545 active = zone_page_state(zone, NR_ACTIVE_FILE); 1546 inactive = zone_page_state(zone, NR_INACTIVE_FILE); 1547 1548 return (active > inactive); 1549 } 1550 1551 /** 1552 * inactive_file_is_low - check if file pages need to be deactivated 1553 * @zone: zone to check 1554 * @sc: scan control of this context 1555 * 1556 * When the system is doing streaming IO, memory pressure here 1557 * ensures that active file pages get deactivated, until more 1558 * than half of the file pages are on the inactive list. 1559 * 1560 * Once we get to that situation, protect the system's working 1561 * set from being evicted by disabling active file page aging. 1562 * 1563 * This uses a different ratio than the anonymous pages, because 1564 * the page cache uses a use-once replacement algorithm. 1565 */ 1566 static int inactive_file_is_low(struct zone *zone, struct scan_control *sc) 1567 { 1568 int low; 1569 1570 if (scanning_global_lru(sc)) 1571 low = inactive_file_is_low_global(zone); 1572 else 1573 low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup); 1574 return low; 1575 } 1576 1577 static int inactive_list_is_low(struct zone *zone, struct scan_control *sc, 1578 int file) 1579 { 1580 if (file) 1581 return inactive_file_is_low(zone, sc); 1582 else 1583 return inactive_anon_is_low(zone, sc); 1584 } 1585 1586 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 1587 struct zone *zone, struct scan_control *sc, int priority) 1588 { 1589 int file = is_file_lru(lru); 1590 1591 if (is_active_lru(lru)) { 1592 if (inactive_list_is_low(zone, sc, file)) 1593 shrink_active_list(nr_to_scan, zone, sc, priority, file); 1594 return 0; 1595 } 1596 1597 return shrink_inactive_list(nr_to_scan, zone, sc, priority, file); 1598 } 1599 1600 /* 1601 * Smallish @nr_to_scan's are deposited in @nr_saved_scan, 1602 * until we collected @swap_cluster_max pages to scan. 1603 */ 1604 static unsigned long nr_scan_try_batch(unsigned long nr_to_scan, 1605 unsigned long *nr_saved_scan) 1606 { 1607 unsigned long nr; 1608 1609 *nr_saved_scan += nr_to_scan; 1610 nr = *nr_saved_scan; 1611 1612 if (nr >= SWAP_CLUSTER_MAX) 1613 *nr_saved_scan = 0; 1614 else 1615 nr = 0; 1616 1617 return nr; 1618 } 1619 1620 /* 1621 * Determine how aggressively the anon and file LRU lists should be 1622 * scanned. The relative value of each set of LRU lists is determined 1623 * by looking at the fraction of the pages scanned we did rotate back 1624 * onto the active list instead of evict. 1625 * 1626 * nr[0] = anon pages to scan; nr[1] = file pages to scan 1627 */ 1628 static void get_scan_count(struct zone *zone, struct scan_control *sc, 1629 unsigned long *nr, int priority) 1630 { 1631 unsigned long anon, file, free; 1632 unsigned long anon_prio, file_prio; 1633 unsigned long ap, fp; 1634 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc); 1635 u64 fraction[2], denominator; 1636 enum lru_list l; 1637 int noswap = 0; 1638 1639 /* If we have no swap space, do not bother scanning anon pages. */ 1640 if (!sc->may_swap || (nr_swap_pages <= 0)) { 1641 noswap = 1; 1642 fraction[0] = 0; 1643 fraction[1] = 1; 1644 denominator = 1; 1645 goto out; 1646 } 1647 1648 anon = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) + 1649 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON); 1650 file = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) + 1651 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE); 1652 1653 if (scanning_global_lru(sc)) { 1654 free = zone_page_state(zone, NR_FREE_PAGES); 1655 /* If we have very few page cache pages, 1656 force-scan anon pages. */ 1657 if (unlikely(file + free <= high_wmark_pages(zone))) { 1658 fraction[0] = 1; 1659 fraction[1] = 0; 1660 denominator = 1; 1661 goto out; 1662 } 1663 } 1664 1665 /* 1666 * With swappiness at 100, anonymous and file have the same priority. 1667 * This scanning priority is essentially the inverse of IO cost. 1668 */ 1669 anon_prio = sc->swappiness; 1670 file_prio = 200 - sc->swappiness; 1671 1672 /* 1673 * OK, so we have swap space and a fair amount of page cache 1674 * pages. We use the recently rotated / recently scanned 1675 * ratios to determine how valuable each cache is. 1676 * 1677 * Because workloads change over time (and to avoid overflow) 1678 * we keep these statistics as a floating average, which ends 1679 * up weighing recent references more than old ones. 1680 * 1681 * anon in [0], file in [1] 1682 */ 1683 spin_lock_irq(&zone->lru_lock); 1684 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) { 1685 reclaim_stat->recent_scanned[0] /= 2; 1686 reclaim_stat->recent_rotated[0] /= 2; 1687 } 1688 1689 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) { 1690 reclaim_stat->recent_scanned[1] /= 2; 1691 reclaim_stat->recent_rotated[1] /= 2; 1692 } 1693 1694 /* 1695 * The amount of pressure on anon vs file pages is inversely 1696 * proportional to the fraction of recently scanned pages on 1697 * each list that were recently referenced and in active use. 1698 */ 1699 ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1); 1700 ap /= reclaim_stat->recent_rotated[0] + 1; 1701 1702 fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1); 1703 fp /= reclaim_stat->recent_rotated[1] + 1; 1704 spin_unlock_irq(&zone->lru_lock); 1705 1706 fraction[0] = ap; 1707 fraction[1] = fp; 1708 denominator = ap + fp + 1; 1709 out: 1710 for_each_evictable_lru(l) { 1711 int file = is_file_lru(l); 1712 unsigned long scan; 1713 1714 scan = zone_nr_lru_pages(zone, sc, l); 1715 if (priority || noswap) { 1716 scan >>= priority; 1717 scan = div64_u64(scan * fraction[file], denominator); 1718 } 1719 nr[l] = nr_scan_try_batch(scan, 1720 &reclaim_stat->nr_saved_scan[l]); 1721 } 1722 } 1723 1724 static void set_lumpy_reclaim_mode(int priority, struct scan_control *sc) 1725 { 1726 /* 1727 * If we need a large contiguous chunk of memory, or have 1728 * trouble getting a small set of contiguous pages, we 1729 * will reclaim both active and inactive pages. 1730 */ 1731 if (sc->order > PAGE_ALLOC_COSTLY_ORDER) 1732 sc->lumpy_reclaim_mode = 1; 1733 else if (sc->order && priority < DEF_PRIORITY - 2) 1734 sc->lumpy_reclaim_mode = 1; 1735 else 1736 sc->lumpy_reclaim_mode = 0; 1737 } 1738 1739 /* 1740 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim. 1741 */ 1742 static void shrink_zone(int priority, struct zone *zone, 1743 struct scan_control *sc) 1744 { 1745 unsigned long nr[NR_LRU_LISTS]; 1746 unsigned long nr_to_scan; 1747 enum lru_list l; 1748 unsigned long nr_reclaimed = sc->nr_reclaimed; 1749 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 1750 1751 get_scan_count(zone, sc, nr, priority); 1752 1753 set_lumpy_reclaim_mode(priority, sc); 1754 1755 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 1756 nr[LRU_INACTIVE_FILE]) { 1757 for_each_evictable_lru(l) { 1758 if (nr[l]) { 1759 nr_to_scan = min_t(unsigned long, 1760 nr[l], SWAP_CLUSTER_MAX); 1761 nr[l] -= nr_to_scan; 1762 1763 nr_reclaimed += shrink_list(l, nr_to_scan, 1764 zone, sc, priority); 1765 } 1766 } 1767 /* 1768 * On large memory systems, scan >> priority can become 1769 * really large. This is fine for the starting priority; 1770 * we want to put equal scanning pressure on each zone. 1771 * However, if the VM has a harder time of freeing pages, 1772 * with multiple processes reclaiming pages, the total 1773 * freeing target can get unreasonably large. 1774 */ 1775 if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY) 1776 break; 1777 } 1778 1779 sc->nr_reclaimed = nr_reclaimed; 1780 1781 /* 1782 * Even if we did not try to evict anon pages at all, we want to 1783 * rebalance the anon lru active/inactive ratio. 1784 */ 1785 if (inactive_anon_is_low(zone, sc) && nr_swap_pages > 0) 1786 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0); 1787 1788 throttle_vm_writeout(sc->gfp_mask); 1789 } 1790 1791 /* 1792 * This is the direct reclaim path, for page-allocating processes. We only 1793 * try to reclaim pages from zones which will satisfy the caller's allocation 1794 * request. 1795 * 1796 * We reclaim from a zone even if that zone is over high_wmark_pages(zone). 1797 * Because: 1798 * a) The caller may be trying to free *extra* pages to satisfy a higher-order 1799 * allocation or 1800 * b) The target zone may be at high_wmark_pages(zone) but the lower zones 1801 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min' 1802 * zone defense algorithm. 1803 * 1804 * If a zone is deemed to be full of pinned pages then just give it a light 1805 * scan then give up on it. 1806 */ 1807 static bool shrink_zones(int priority, struct zonelist *zonelist, 1808 struct scan_control *sc) 1809 { 1810 struct zoneref *z; 1811 struct zone *zone; 1812 bool all_unreclaimable = true; 1813 1814 for_each_zone_zonelist_nodemask(zone, z, zonelist, 1815 gfp_zone(sc->gfp_mask), sc->nodemask) { 1816 if (!populated_zone(zone)) 1817 continue; 1818 /* 1819 * Take care memory controller reclaiming has small influence 1820 * to global LRU. 1821 */ 1822 if (scanning_global_lru(sc)) { 1823 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 1824 continue; 1825 if (zone->all_unreclaimable && priority != DEF_PRIORITY) 1826 continue; /* Let kswapd poll it */ 1827 } 1828 1829 shrink_zone(priority, zone, sc); 1830 all_unreclaimable = false; 1831 } 1832 return all_unreclaimable; 1833 } 1834 1835 /* 1836 * This is the main entry point to direct page reclaim. 1837 * 1838 * If a full scan of the inactive list fails to free enough memory then we 1839 * are "out of memory" and something needs to be killed. 1840 * 1841 * If the caller is !__GFP_FS then the probability of a failure is reasonably 1842 * high - the zone may be full of dirty or under-writeback pages, which this 1843 * caller can't do much about. We kick the writeback threads and take explicit 1844 * naps in the hope that some of these pages can be written. But if the 1845 * allocating task holds filesystem locks which prevent writeout this might not 1846 * work, and the allocation attempt will fail. 1847 * 1848 * returns: 0, if no pages reclaimed 1849 * else, the number of pages reclaimed 1850 */ 1851 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 1852 struct scan_control *sc) 1853 { 1854 int priority; 1855 bool all_unreclaimable; 1856 unsigned long total_scanned = 0; 1857 struct reclaim_state *reclaim_state = current->reclaim_state; 1858 struct zoneref *z; 1859 struct zone *zone; 1860 unsigned long writeback_threshold; 1861 1862 get_mems_allowed(); 1863 delayacct_freepages_start(); 1864 1865 if (scanning_global_lru(sc)) 1866 count_vm_event(ALLOCSTALL); 1867 1868 for (priority = DEF_PRIORITY; priority >= 0; priority--) { 1869 sc->nr_scanned = 0; 1870 if (!priority) 1871 disable_swap_token(); 1872 all_unreclaimable = shrink_zones(priority, zonelist, sc); 1873 /* 1874 * Don't shrink slabs when reclaiming memory from 1875 * over limit cgroups 1876 */ 1877 if (scanning_global_lru(sc)) { 1878 unsigned long lru_pages = 0; 1879 for_each_zone_zonelist(zone, z, zonelist, 1880 gfp_zone(sc->gfp_mask)) { 1881 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 1882 continue; 1883 1884 lru_pages += zone_reclaimable_pages(zone); 1885 } 1886 1887 shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages); 1888 if (reclaim_state) { 1889 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 1890 reclaim_state->reclaimed_slab = 0; 1891 } 1892 } 1893 total_scanned += sc->nr_scanned; 1894 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 1895 goto out; 1896 1897 /* 1898 * Try to write back as many pages as we just scanned. This 1899 * tends to cause slow streaming writers to write data to the 1900 * disk smoothly, at the dirtying rate, which is nice. But 1901 * that's undesirable in laptop mode, where we *want* lumpy 1902 * writeout. So in laptop mode, write out the whole world. 1903 */ 1904 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2; 1905 if (total_scanned > writeback_threshold) { 1906 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned); 1907 sc->may_writepage = 1; 1908 } 1909 1910 /* Take a nap, wait for some writeback to complete */ 1911 if (!sc->hibernation_mode && sc->nr_scanned && 1912 priority < DEF_PRIORITY - 2) 1913 congestion_wait(BLK_RW_ASYNC, HZ/10); 1914 } 1915 1916 out: 1917 /* 1918 * Now that we've scanned all the zones at this priority level, note 1919 * that level within the zone so that the next thread which performs 1920 * scanning of this zone will immediately start out at this priority 1921 * level. This affects only the decision whether or not to bring 1922 * mapped pages onto the inactive list. 1923 */ 1924 if (priority < 0) 1925 priority = 0; 1926 1927 delayacct_freepages_end(); 1928 put_mems_allowed(); 1929 1930 if (sc->nr_reclaimed) 1931 return sc->nr_reclaimed; 1932 1933 /* top priority shrink_zones still had more to do? don't OOM, then */ 1934 if (scanning_global_lru(sc) && !all_unreclaimable) 1935 return 1; 1936 1937 return 0; 1938 } 1939 1940 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 1941 gfp_t gfp_mask, nodemask_t *nodemask) 1942 { 1943 unsigned long nr_reclaimed; 1944 struct scan_control sc = { 1945 .gfp_mask = gfp_mask, 1946 .may_writepage = !laptop_mode, 1947 .nr_to_reclaim = SWAP_CLUSTER_MAX, 1948 .may_unmap = 1, 1949 .may_swap = 1, 1950 .swappiness = vm_swappiness, 1951 .order = order, 1952 .mem_cgroup = NULL, 1953 .nodemask = nodemask, 1954 }; 1955 1956 trace_mm_vmscan_direct_reclaim_begin(order, 1957 sc.may_writepage, 1958 gfp_mask); 1959 1960 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 1961 1962 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 1963 1964 return nr_reclaimed; 1965 } 1966 1967 #ifdef CONFIG_CGROUP_MEM_RES_CTLR 1968 1969 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem, 1970 gfp_t gfp_mask, bool noswap, 1971 unsigned int swappiness, 1972 struct zone *zone) 1973 { 1974 struct scan_control sc = { 1975 .nr_to_reclaim = SWAP_CLUSTER_MAX, 1976 .may_writepage = !laptop_mode, 1977 .may_unmap = 1, 1978 .may_swap = !noswap, 1979 .swappiness = swappiness, 1980 .order = 0, 1981 .mem_cgroup = mem, 1982 }; 1983 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 1984 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 1985 1986 trace_mm_vmscan_memcg_softlimit_reclaim_begin(0, 1987 sc.may_writepage, 1988 sc.gfp_mask); 1989 1990 /* 1991 * NOTE: Although we can get the priority field, using it 1992 * here is not a good idea, since it limits the pages we can scan. 1993 * if we don't reclaim here, the shrink_zone from balance_pgdat 1994 * will pick up pages from other mem cgroup's as well. We hack 1995 * the priority and make it zero. 1996 */ 1997 shrink_zone(0, zone, &sc); 1998 1999 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 2000 2001 return sc.nr_reclaimed; 2002 } 2003 2004 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont, 2005 gfp_t gfp_mask, 2006 bool noswap, 2007 unsigned int swappiness) 2008 { 2009 struct zonelist *zonelist; 2010 unsigned long nr_reclaimed; 2011 struct scan_control sc = { 2012 .may_writepage = !laptop_mode, 2013 .may_unmap = 1, 2014 .may_swap = !noswap, 2015 .nr_to_reclaim = SWAP_CLUSTER_MAX, 2016 .swappiness = swappiness, 2017 .order = 0, 2018 .mem_cgroup = mem_cont, 2019 .nodemask = NULL, /* we don't care the placement */ 2020 }; 2021 2022 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 2023 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 2024 zonelist = NODE_DATA(numa_node_id())->node_zonelists; 2025 2026 trace_mm_vmscan_memcg_reclaim_begin(0, 2027 sc.may_writepage, 2028 sc.gfp_mask); 2029 2030 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 2031 2032 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 2033 2034 return nr_reclaimed; 2035 } 2036 #endif 2037 2038 /* is kswapd sleeping prematurely? */ 2039 static int sleeping_prematurely(pg_data_t *pgdat, int order, long remaining) 2040 { 2041 int i; 2042 2043 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */ 2044 if (remaining) 2045 return 1; 2046 2047 /* If after HZ/10, a zone is below the high mark, it's premature */ 2048 for (i = 0; i < pgdat->nr_zones; i++) { 2049 struct zone *zone = pgdat->node_zones + i; 2050 2051 if (!populated_zone(zone)) 2052 continue; 2053 2054 if (zone->all_unreclaimable) 2055 continue; 2056 2057 if (!zone_watermark_ok(zone, order, high_wmark_pages(zone), 2058 0, 0)) 2059 return 1; 2060 } 2061 2062 return 0; 2063 } 2064 2065 /* 2066 * For kswapd, balance_pgdat() will work across all this node's zones until 2067 * they are all at high_wmark_pages(zone). 2068 * 2069 * Returns the number of pages which were actually freed. 2070 * 2071 * There is special handling here for zones which are full of pinned pages. 2072 * This can happen if the pages are all mlocked, or if they are all used by 2073 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb. 2074 * What we do is to detect the case where all pages in the zone have been 2075 * scanned twice and there has been zero successful reclaim. Mark the zone as 2076 * dead and from now on, only perform a short scan. Basically we're polling 2077 * the zone for when the problem goes away. 2078 * 2079 * kswapd scans the zones in the highmem->normal->dma direction. It skips 2080 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 2081 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the 2082 * lower zones regardless of the number of free pages in the lower zones. This 2083 * interoperates with the page allocator fallback scheme to ensure that aging 2084 * of pages is balanced across the zones. 2085 */ 2086 static unsigned long balance_pgdat(pg_data_t *pgdat, int order) 2087 { 2088 int all_zones_ok; 2089 int priority; 2090 int i; 2091 unsigned long total_scanned; 2092 struct reclaim_state *reclaim_state = current->reclaim_state; 2093 struct scan_control sc = { 2094 .gfp_mask = GFP_KERNEL, 2095 .may_unmap = 1, 2096 .may_swap = 1, 2097 /* 2098 * kswapd doesn't want to be bailed out while reclaim. because 2099 * we want to put equal scanning pressure on each zone. 2100 */ 2101 .nr_to_reclaim = ULONG_MAX, 2102 .swappiness = vm_swappiness, 2103 .order = order, 2104 .mem_cgroup = NULL, 2105 }; 2106 loop_again: 2107 total_scanned = 0; 2108 sc.nr_reclaimed = 0; 2109 sc.may_writepage = !laptop_mode; 2110 count_vm_event(PAGEOUTRUN); 2111 2112 for (priority = DEF_PRIORITY; priority >= 0; priority--) { 2113 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */ 2114 unsigned long lru_pages = 0; 2115 int has_under_min_watermark_zone = 0; 2116 2117 /* The swap token gets in the way of swapout... */ 2118 if (!priority) 2119 disable_swap_token(); 2120 2121 all_zones_ok = 1; 2122 2123 /* 2124 * Scan in the highmem->dma direction for the highest 2125 * zone which needs scanning 2126 */ 2127 for (i = pgdat->nr_zones - 1; i >= 0; i--) { 2128 struct zone *zone = pgdat->node_zones + i; 2129 2130 if (!populated_zone(zone)) 2131 continue; 2132 2133 if (zone->all_unreclaimable && priority != DEF_PRIORITY) 2134 continue; 2135 2136 /* 2137 * Do some background aging of the anon list, to give 2138 * pages a chance to be referenced before reclaiming. 2139 */ 2140 if (inactive_anon_is_low(zone, &sc)) 2141 shrink_active_list(SWAP_CLUSTER_MAX, zone, 2142 &sc, priority, 0); 2143 2144 if (!zone_watermark_ok(zone, order, 2145 high_wmark_pages(zone), 0, 0)) { 2146 end_zone = i; 2147 break; 2148 } 2149 } 2150 if (i < 0) 2151 goto out; 2152 2153 for (i = 0; i <= end_zone; i++) { 2154 struct zone *zone = pgdat->node_zones + i; 2155 2156 lru_pages += zone_reclaimable_pages(zone); 2157 } 2158 2159 /* 2160 * Now scan the zone in the dma->highmem direction, stopping 2161 * at the last zone which needs scanning. 2162 * 2163 * We do this because the page allocator works in the opposite 2164 * direction. This prevents the page allocator from allocating 2165 * pages behind kswapd's direction of progress, which would 2166 * cause too much scanning of the lower zones. 2167 */ 2168 for (i = 0; i <= end_zone; i++) { 2169 struct zone *zone = pgdat->node_zones + i; 2170 int nr_slab; 2171 2172 if (!populated_zone(zone)) 2173 continue; 2174 2175 if (zone->all_unreclaimable && priority != DEF_PRIORITY) 2176 continue; 2177 2178 sc.nr_scanned = 0; 2179 2180 /* 2181 * Call soft limit reclaim before calling shrink_zone. 2182 * For now we ignore the return value 2183 */ 2184 mem_cgroup_soft_limit_reclaim(zone, order, sc.gfp_mask); 2185 2186 /* 2187 * We put equal pressure on every zone, unless one 2188 * zone has way too many pages free already. 2189 */ 2190 if (!zone_watermark_ok(zone, order, 2191 8*high_wmark_pages(zone), end_zone, 0)) 2192 shrink_zone(priority, zone, &sc); 2193 reclaim_state->reclaimed_slab = 0; 2194 nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL, 2195 lru_pages); 2196 sc.nr_reclaimed += reclaim_state->reclaimed_slab; 2197 total_scanned += sc.nr_scanned; 2198 if (zone->all_unreclaimable) 2199 continue; 2200 if (nr_slab == 0 && 2201 zone->pages_scanned >= (zone_reclaimable_pages(zone) * 6)) 2202 zone->all_unreclaimable = 1; 2203 /* 2204 * If we've done a decent amount of scanning and 2205 * the reclaim ratio is low, start doing writepage 2206 * even in laptop mode 2207 */ 2208 if (total_scanned > SWAP_CLUSTER_MAX * 2 && 2209 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2) 2210 sc.may_writepage = 1; 2211 2212 if (!zone_watermark_ok(zone, order, 2213 high_wmark_pages(zone), end_zone, 0)) { 2214 all_zones_ok = 0; 2215 /* 2216 * We are still under min water mark. This 2217 * means that we have a GFP_ATOMIC allocation 2218 * failure risk. Hurry up! 2219 */ 2220 if (!zone_watermark_ok(zone, order, 2221 min_wmark_pages(zone), end_zone, 0)) 2222 has_under_min_watermark_zone = 1; 2223 } 2224 2225 } 2226 if (all_zones_ok) 2227 break; /* kswapd: all done */ 2228 /* 2229 * OK, kswapd is getting into trouble. Take a nap, then take 2230 * another pass across the zones. 2231 */ 2232 if (total_scanned && (priority < DEF_PRIORITY - 2)) { 2233 if (has_under_min_watermark_zone) 2234 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT); 2235 else 2236 congestion_wait(BLK_RW_ASYNC, HZ/10); 2237 } 2238 2239 /* 2240 * We do this so kswapd doesn't build up large priorities for 2241 * example when it is freeing in parallel with allocators. It 2242 * matches the direct reclaim path behaviour in terms of impact 2243 * on zone->*_priority. 2244 */ 2245 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX) 2246 break; 2247 } 2248 out: 2249 if (!all_zones_ok) { 2250 cond_resched(); 2251 2252 try_to_freeze(); 2253 2254 /* 2255 * Fragmentation may mean that the system cannot be 2256 * rebalanced for high-order allocations in all zones. 2257 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX, 2258 * it means the zones have been fully scanned and are still 2259 * not balanced. For high-order allocations, there is 2260 * little point trying all over again as kswapd may 2261 * infinite loop. 2262 * 2263 * Instead, recheck all watermarks at order-0 as they 2264 * are the most important. If watermarks are ok, kswapd will go 2265 * back to sleep. High-order users can still perform direct 2266 * reclaim if they wish. 2267 */ 2268 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX) 2269 order = sc.order = 0; 2270 2271 goto loop_again; 2272 } 2273 2274 return sc.nr_reclaimed; 2275 } 2276 2277 /* 2278 * The background pageout daemon, started as a kernel thread 2279 * from the init process. 2280 * 2281 * This basically trickles out pages so that we have _some_ 2282 * free memory available even if there is no other activity 2283 * that frees anything up. This is needed for things like routing 2284 * etc, where we otherwise might have all activity going on in 2285 * asynchronous contexts that cannot page things out. 2286 * 2287 * If there are applications that are active memory-allocators 2288 * (most normal use), this basically shouldn't matter. 2289 */ 2290 static int kswapd(void *p) 2291 { 2292 unsigned long order; 2293 pg_data_t *pgdat = (pg_data_t*)p; 2294 struct task_struct *tsk = current; 2295 DEFINE_WAIT(wait); 2296 struct reclaim_state reclaim_state = { 2297 .reclaimed_slab = 0, 2298 }; 2299 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 2300 2301 lockdep_set_current_reclaim_state(GFP_KERNEL); 2302 2303 if (!cpumask_empty(cpumask)) 2304 set_cpus_allowed_ptr(tsk, cpumask); 2305 current->reclaim_state = &reclaim_state; 2306 2307 /* 2308 * Tell the memory management that we're a "memory allocator", 2309 * and that if we need more memory we should get access to it 2310 * regardless (see "__alloc_pages()"). "kswapd" should 2311 * never get caught in the normal page freeing logic. 2312 * 2313 * (Kswapd normally doesn't need memory anyway, but sometimes 2314 * you need a small amount of memory in order to be able to 2315 * page out something else, and this flag essentially protects 2316 * us from recursively trying to free more memory as we're 2317 * trying to free the first piece of memory in the first place). 2318 */ 2319 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 2320 set_freezable(); 2321 2322 order = 0; 2323 for ( ; ; ) { 2324 unsigned long new_order; 2325 int ret; 2326 2327 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 2328 new_order = pgdat->kswapd_max_order; 2329 pgdat->kswapd_max_order = 0; 2330 if (order < new_order) { 2331 /* 2332 * Don't sleep if someone wants a larger 'order' 2333 * allocation 2334 */ 2335 order = new_order; 2336 } else { 2337 if (!freezing(current) && !kthread_should_stop()) { 2338 long remaining = 0; 2339 2340 /* Try to sleep for a short interval */ 2341 if (!sleeping_prematurely(pgdat, order, remaining)) { 2342 remaining = schedule_timeout(HZ/10); 2343 finish_wait(&pgdat->kswapd_wait, &wait); 2344 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 2345 } 2346 2347 /* 2348 * After a short sleep, check if it was a 2349 * premature sleep. If not, then go fully 2350 * to sleep until explicitly woken up 2351 */ 2352 if (!sleeping_prematurely(pgdat, order, remaining)) { 2353 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 2354 schedule(); 2355 } else { 2356 if (remaining) 2357 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 2358 else 2359 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 2360 } 2361 } 2362 2363 order = pgdat->kswapd_max_order; 2364 } 2365 finish_wait(&pgdat->kswapd_wait, &wait); 2366 2367 ret = try_to_freeze(); 2368 if (kthread_should_stop()) 2369 break; 2370 2371 /* 2372 * We can speed up thawing tasks if we don't call balance_pgdat 2373 * after returning from the refrigerator 2374 */ 2375 if (!ret) { 2376 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order); 2377 balance_pgdat(pgdat, order); 2378 } 2379 } 2380 return 0; 2381 } 2382 2383 /* 2384 * A zone is low on free memory, so wake its kswapd task to service it. 2385 */ 2386 void wakeup_kswapd(struct zone *zone, int order) 2387 { 2388 pg_data_t *pgdat; 2389 2390 if (!populated_zone(zone)) 2391 return; 2392 2393 pgdat = zone->zone_pgdat; 2394 if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0)) 2395 return; 2396 if (pgdat->kswapd_max_order < order) 2397 pgdat->kswapd_max_order = order; 2398 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order); 2399 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 2400 return; 2401 if (!waitqueue_active(&pgdat->kswapd_wait)) 2402 return; 2403 wake_up_interruptible(&pgdat->kswapd_wait); 2404 } 2405 2406 /* 2407 * The reclaimable count would be mostly accurate. 2408 * The less reclaimable pages may be 2409 * - mlocked pages, which will be moved to unevictable list when encountered 2410 * - mapped pages, which may require several travels to be reclaimed 2411 * - dirty pages, which is not "instantly" reclaimable 2412 */ 2413 unsigned long global_reclaimable_pages(void) 2414 { 2415 int nr; 2416 2417 nr = global_page_state(NR_ACTIVE_FILE) + 2418 global_page_state(NR_INACTIVE_FILE); 2419 2420 if (nr_swap_pages > 0) 2421 nr += global_page_state(NR_ACTIVE_ANON) + 2422 global_page_state(NR_INACTIVE_ANON); 2423 2424 return nr; 2425 } 2426 2427 unsigned long zone_reclaimable_pages(struct zone *zone) 2428 { 2429 int nr; 2430 2431 nr = zone_page_state(zone, NR_ACTIVE_FILE) + 2432 zone_page_state(zone, NR_INACTIVE_FILE); 2433 2434 if (nr_swap_pages > 0) 2435 nr += zone_page_state(zone, NR_ACTIVE_ANON) + 2436 zone_page_state(zone, NR_INACTIVE_ANON); 2437 2438 return nr; 2439 } 2440 2441 #ifdef CONFIG_HIBERNATION 2442 /* 2443 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 2444 * freed pages. 2445 * 2446 * Rather than trying to age LRUs the aim is to preserve the overall 2447 * LRU order by reclaiming preferentially 2448 * inactive > active > active referenced > active mapped 2449 */ 2450 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 2451 { 2452 struct reclaim_state reclaim_state; 2453 struct scan_control sc = { 2454 .gfp_mask = GFP_HIGHUSER_MOVABLE, 2455 .may_swap = 1, 2456 .may_unmap = 1, 2457 .may_writepage = 1, 2458 .nr_to_reclaim = nr_to_reclaim, 2459 .hibernation_mode = 1, 2460 .swappiness = vm_swappiness, 2461 .order = 0, 2462 }; 2463 struct zonelist * zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 2464 struct task_struct *p = current; 2465 unsigned long nr_reclaimed; 2466 2467 p->flags |= PF_MEMALLOC; 2468 lockdep_set_current_reclaim_state(sc.gfp_mask); 2469 reclaim_state.reclaimed_slab = 0; 2470 p->reclaim_state = &reclaim_state; 2471 2472 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 2473 2474 p->reclaim_state = NULL; 2475 lockdep_clear_current_reclaim_state(); 2476 p->flags &= ~PF_MEMALLOC; 2477 2478 return nr_reclaimed; 2479 } 2480 #endif /* CONFIG_HIBERNATION */ 2481 2482 /* It's optimal to keep kswapds on the same CPUs as their memory, but 2483 not required for correctness. So if the last cpu in a node goes 2484 away, we get changed to run anywhere: as the first one comes back, 2485 restore their cpu bindings. */ 2486 static int __devinit cpu_callback(struct notifier_block *nfb, 2487 unsigned long action, void *hcpu) 2488 { 2489 int nid; 2490 2491 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) { 2492 for_each_node_state(nid, N_HIGH_MEMORY) { 2493 pg_data_t *pgdat = NODE_DATA(nid); 2494 const struct cpumask *mask; 2495 2496 mask = cpumask_of_node(pgdat->node_id); 2497 2498 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 2499 /* One of our CPUs online: restore mask */ 2500 set_cpus_allowed_ptr(pgdat->kswapd, mask); 2501 } 2502 } 2503 return NOTIFY_OK; 2504 } 2505 2506 /* 2507 * This kswapd start function will be called by init and node-hot-add. 2508 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. 2509 */ 2510 int kswapd_run(int nid) 2511 { 2512 pg_data_t *pgdat = NODE_DATA(nid); 2513 int ret = 0; 2514 2515 if (pgdat->kswapd) 2516 return 0; 2517 2518 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 2519 if (IS_ERR(pgdat->kswapd)) { 2520 /* failure at boot is fatal */ 2521 BUG_ON(system_state == SYSTEM_BOOTING); 2522 printk("Failed to start kswapd on node %d\n",nid); 2523 ret = -1; 2524 } 2525 return ret; 2526 } 2527 2528 /* 2529 * Called by memory hotplug when all memory in a node is offlined. 2530 */ 2531 void kswapd_stop(int nid) 2532 { 2533 struct task_struct *kswapd = NODE_DATA(nid)->kswapd; 2534 2535 if (kswapd) 2536 kthread_stop(kswapd); 2537 } 2538 2539 static int __init kswapd_init(void) 2540 { 2541 int nid; 2542 2543 swap_setup(); 2544 for_each_node_state(nid, N_HIGH_MEMORY) 2545 kswapd_run(nid); 2546 hotcpu_notifier(cpu_callback, 0); 2547 return 0; 2548 } 2549 2550 module_init(kswapd_init) 2551 2552 #ifdef CONFIG_NUMA 2553 /* 2554 * Zone reclaim mode 2555 * 2556 * If non-zero call zone_reclaim when the number of free pages falls below 2557 * the watermarks. 2558 */ 2559 int zone_reclaim_mode __read_mostly; 2560 2561 #define RECLAIM_OFF 0 2562 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */ 2563 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */ 2564 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */ 2565 2566 /* 2567 * Priority for ZONE_RECLAIM. This determines the fraction of pages 2568 * of a node considered for each zone_reclaim. 4 scans 1/16th of 2569 * a zone. 2570 */ 2571 #define ZONE_RECLAIM_PRIORITY 4 2572 2573 /* 2574 * Percentage of pages in a zone that must be unmapped for zone_reclaim to 2575 * occur. 2576 */ 2577 int sysctl_min_unmapped_ratio = 1; 2578 2579 /* 2580 * If the number of slab pages in a zone grows beyond this percentage then 2581 * slab reclaim needs to occur. 2582 */ 2583 int sysctl_min_slab_ratio = 5; 2584 2585 static inline unsigned long zone_unmapped_file_pages(struct zone *zone) 2586 { 2587 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED); 2588 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) + 2589 zone_page_state(zone, NR_ACTIVE_FILE); 2590 2591 /* 2592 * It's possible for there to be more file mapped pages than 2593 * accounted for by the pages on the file LRU lists because 2594 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 2595 */ 2596 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 2597 } 2598 2599 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 2600 static long zone_pagecache_reclaimable(struct zone *zone) 2601 { 2602 long nr_pagecache_reclaimable; 2603 long delta = 0; 2604 2605 /* 2606 * If RECLAIM_SWAP is set, then all file pages are considered 2607 * potentially reclaimable. Otherwise, we have to worry about 2608 * pages like swapcache and zone_unmapped_file_pages() provides 2609 * a better estimate 2610 */ 2611 if (zone_reclaim_mode & RECLAIM_SWAP) 2612 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES); 2613 else 2614 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone); 2615 2616 /* If we can't clean pages, remove dirty pages from consideration */ 2617 if (!(zone_reclaim_mode & RECLAIM_WRITE)) 2618 delta += zone_page_state(zone, NR_FILE_DIRTY); 2619 2620 /* Watch for any possible underflows due to delta */ 2621 if (unlikely(delta > nr_pagecache_reclaimable)) 2622 delta = nr_pagecache_reclaimable; 2623 2624 return nr_pagecache_reclaimable - delta; 2625 } 2626 2627 /* 2628 * Try to free up some pages from this zone through reclaim. 2629 */ 2630 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) 2631 { 2632 /* Minimum pages needed in order to stay on node */ 2633 const unsigned long nr_pages = 1 << order; 2634 struct task_struct *p = current; 2635 struct reclaim_state reclaim_state; 2636 int priority; 2637 struct scan_control sc = { 2638 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE), 2639 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP), 2640 .may_swap = 1, 2641 .nr_to_reclaim = max_t(unsigned long, nr_pages, 2642 SWAP_CLUSTER_MAX), 2643 .gfp_mask = gfp_mask, 2644 .swappiness = vm_swappiness, 2645 .order = order, 2646 }; 2647 unsigned long nr_slab_pages0, nr_slab_pages1; 2648 2649 cond_resched(); 2650 /* 2651 * We need to be able to allocate from the reserves for RECLAIM_SWAP 2652 * and we also need to be able to write out pages for RECLAIM_WRITE 2653 * and RECLAIM_SWAP. 2654 */ 2655 p->flags |= PF_MEMALLOC | PF_SWAPWRITE; 2656 lockdep_set_current_reclaim_state(gfp_mask); 2657 reclaim_state.reclaimed_slab = 0; 2658 p->reclaim_state = &reclaim_state; 2659 2660 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) { 2661 /* 2662 * Free memory by calling shrink zone with increasing 2663 * priorities until we have enough memory freed. 2664 */ 2665 priority = ZONE_RECLAIM_PRIORITY; 2666 do { 2667 shrink_zone(priority, zone, &sc); 2668 priority--; 2669 } while (priority >= 0 && sc.nr_reclaimed < nr_pages); 2670 } 2671 2672 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE); 2673 if (nr_slab_pages0 > zone->min_slab_pages) { 2674 /* 2675 * shrink_slab() does not currently allow us to determine how 2676 * many pages were freed in this zone. So we take the current 2677 * number of slab pages and shake the slab until it is reduced 2678 * by the same nr_pages that we used for reclaiming unmapped 2679 * pages. 2680 * 2681 * Note that shrink_slab will free memory on all zones and may 2682 * take a long time. 2683 */ 2684 for (;;) { 2685 unsigned long lru_pages = zone_reclaimable_pages(zone); 2686 2687 /* No reclaimable slab or very low memory pressure */ 2688 if (!shrink_slab(sc.nr_scanned, gfp_mask, lru_pages)) 2689 break; 2690 2691 /* Freed enough memory */ 2692 nr_slab_pages1 = zone_page_state(zone, 2693 NR_SLAB_RECLAIMABLE); 2694 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0) 2695 break; 2696 } 2697 2698 /* 2699 * Update nr_reclaimed by the number of slab pages we 2700 * reclaimed from this zone. 2701 */ 2702 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE); 2703 if (nr_slab_pages1 < nr_slab_pages0) 2704 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1; 2705 } 2706 2707 p->reclaim_state = NULL; 2708 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE); 2709 lockdep_clear_current_reclaim_state(); 2710 return sc.nr_reclaimed >= nr_pages; 2711 } 2712 2713 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) 2714 { 2715 int node_id; 2716 int ret; 2717 2718 /* 2719 * Zone reclaim reclaims unmapped file backed pages and 2720 * slab pages if we are over the defined limits. 2721 * 2722 * A small portion of unmapped file backed pages is needed for 2723 * file I/O otherwise pages read by file I/O will be immediately 2724 * thrown out if the zone is overallocated. So we do not reclaim 2725 * if less than a specified percentage of the zone is used by 2726 * unmapped file backed pages. 2727 */ 2728 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages && 2729 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages) 2730 return ZONE_RECLAIM_FULL; 2731 2732 if (zone->all_unreclaimable) 2733 return ZONE_RECLAIM_FULL; 2734 2735 /* 2736 * Do not scan if the allocation should not be delayed. 2737 */ 2738 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC)) 2739 return ZONE_RECLAIM_NOSCAN; 2740 2741 /* 2742 * Only run zone reclaim on the local zone or on zones that do not 2743 * have associated processors. This will favor the local processor 2744 * over remote processors and spread off node memory allocations 2745 * as wide as possible. 2746 */ 2747 node_id = zone_to_nid(zone); 2748 if (node_state(node_id, N_CPU) && node_id != numa_node_id()) 2749 return ZONE_RECLAIM_NOSCAN; 2750 2751 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED)) 2752 return ZONE_RECLAIM_NOSCAN; 2753 2754 ret = __zone_reclaim(zone, gfp_mask, order); 2755 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED); 2756 2757 if (!ret) 2758 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 2759 2760 return ret; 2761 } 2762 #endif 2763 2764 /* 2765 * page_evictable - test whether a page is evictable 2766 * @page: the page to test 2767 * @vma: the VMA in which the page is or will be mapped, may be NULL 2768 * 2769 * Test whether page is evictable--i.e., should be placed on active/inactive 2770 * lists vs unevictable list. The vma argument is !NULL when called from the 2771 * fault path to determine how to instantate a new page. 2772 * 2773 * Reasons page might not be evictable: 2774 * (1) page's mapping marked unevictable 2775 * (2) page is part of an mlocked VMA 2776 * 2777 */ 2778 int page_evictable(struct page *page, struct vm_area_struct *vma) 2779 { 2780 2781 if (mapping_unevictable(page_mapping(page))) 2782 return 0; 2783 2784 if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page))) 2785 return 0; 2786 2787 return 1; 2788 } 2789 2790 /** 2791 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list 2792 * @page: page to check evictability and move to appropriate lru list 2793 * @zone: zone page is in 2794 * 2795 * Checks a page for evictability and moves the page to the appropriate 2796 * zone lru list. 2797 * 2798 * Restrictions: zone->lru_lock must be held, page must be on LRU and must 2799 * have PageUnevictable set. 2800 */ 2801 static void check_move_unevictable_page(struct page *page, struct zone *zone) 2802 { 2803 VM_BUG_ON(PageActive(page)); 2804 2805 retry: 2806 ClearPageUnevictable(page); 2807 if (page_evictable(page, NULL)) { 2808 enum lru_list l = page_lru_base_type(page); 2809 2810 __dec_zone_state(zone, NR_UNEVICTABLE); 2811 list_move(&page->lru, &zone->lru[l].list); 2812 mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l); 2813 __inc_zone_state(zone, NR_INACTIVE_ANON + l); 2814 __count_vm_event(UNEVICTABLE_PGRESCUED); 2815 } else { 2816 /* 2817 * rotate unevictable list 2818 */ 2819 SetPageUnevictable(page); 2820 list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list); 2821 mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE); 2822 if (page_evictable(page, NULL)) 2823 goto retry; 2824 } 2825 } 2826 2827 /** 2828 * scan_mapping_unevictable_pages - scan an address space for evictable pages 2829 * @mapping: struct address_space to scan for evictable pages 2830 * 2831 * Scan all pages in mapping. Check unevictable pages for 2832 * evictability and move them to the appropriate zone lru list. 2833 */ 2834 void scan_mapping_unevictable_pages(struct address_space *mapping) 2835 { 2836 pgoff_t next = 0; 2837 pgoff_t end = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >> 2838 PAGE_CACHE_SHIFT; 2839 struct zone *zone; 2840 struct pagevec pvec; 2841 2842 if (mapping->nrpages == 0) 2843 return; 2844 2845 pagevec_init(&pvec, 0); 2846 while (next < end && 2847 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) { 2848 int i; 2849 int pg_scanned = 0; 2850 2851 zone = NULL; 2852 2853 for (i = 0; i < pagevec_count(&pvec); i++) { 2854 struct page *page = pvec.pages[i]; 2855 pgoff_t page_index = page->index; 2856 struct zone *pagezone = page_zone(page); 2857 2858 pg_scanned++; 2859 if (page_index > next) 2860 next = page_index; 2861 next++; 2862 2863 if (pagezone != zone) { 2864 if (zone) 2865 spin_unlock_irq(&zone->lru_lock); 2866 zone = pagezone; 2867 spin_lock_irq(&zone->lru_lock); 2868 } 2869 2870 if (PageLRU(page) && PageUnevictable(page)) 2871 check_move_unevictable_page(page, zone); 2872 } 2873 if (zone) 2874 spin_unlock_irq(&zone->lru_lock); 2875 pagevec_release(&pvec); 2876 2877 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned); 2878 } 2879 2880 } 2881 2882 /** 2883 * scan_zone_unevictable_pages - check unevictable list for evictable pages 2884 * @zone - zone of which to scan the unevictable list 2885 * 2886 * Scan @zone's unevictable LRU lists to check for pages that have become 2887 * evictable. Move those that have to @zone's inactive list where they 2888 * become candidates for reclaim, unless shrink_inactive_zone() decides 2889 * to reactivate them. Pages that are still unevictable are rotated 2890 * back onto @zone's unevictable list. 2891 */ 2892 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */ 2893 static void scan_zone_unevictable_pages(struct zone *zone) 2894 { 2895 struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list; 2896 unsigned long scan; 2897 unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE); 2898 2899 while (nr_to_scan > 0) { 2900 unsigned long batch_size = min(nr_to_scan, 2901 SCAN_UNEVICTABLE_BATCH_SIZE); 2902 2903 spin_lock_irq(&zone->lru_lock); 2904 for (scan = 0; scan < batch_size; scan++) { 2905 struct page *page = lru_to_page(l_unevictable); 2906 2907 if (!trylock_page(page)) 2908 continue; 2909 2910 prefetchw_prev_lru_page(page, l_unevictable, flags); 2911 2912 if (likely(PageLRU(page) && PageUnevictable(page))) 2913 check_move_unevictable_page(page, zone); 2914 2915 unlock_page(page); 2916 } 2917 spin_unlock_irq(&zone->lru_lock); 2918 2919 nr_to_scan -= batch_size; 2920 } 2921 } 2922 2923 2924 /** 2925 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages 2926 * 2927 * A really big hammer: scan all zones' unevictable LRU lists to check for 2928 * pages that have become evictable. Move those back to the zones' 2929 * inactive list where they become candidates for reclaim. 2930 * This occurs when, e.g., we have unswappable pages on the unevictable lists, 2931 * and we add swap to the system. As such, it runs in the context of a task 2932 * that has possibly/probably made some previously unevictable pages 2933 * evictable. 2934 */ 2935 static void scan_all_zones_unevictable_pages(void) 2936 { 2937 struct zone *zone; 2938 2939 for_each_zone(zone) { 2940 scan_zone_unevictable_pages(zone); 2941 } 2942 } 2943 2944 /* 2945 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of 2946 * all nodes' unevictable lists for evictable pages 2947 */ 2948 unsigned long scan_unevictable_pages; 2949 2950 int scan_unevictable_handler(struct ctl_table *table, int write, 2951 void __user *buffer, 2952 size_t *length, loff_t *ppos) 2953 { 2954 proc_doulongvec_minmax(table, write, buffer, length, ppos); 2955 2956 if (write && *(unsigned long *)table->data) 2957 scan_all_zones_unevictable_pages(); 2958 2959 scan_unevictable_pages = 0; 2960 return 0; 2961 } 2962 2963 /* 2964 * per node 'scan_unevictable_pages' attribute. On demand re-scan of 2965 * a specified node's per zone unevictable lists for evictable pages. 2966 */ 2967 2968 static ssize_t read_scan_unevictable_node(struct sys_device *dev, 2969 struct sysdev_attribute *attr, 2970 char *buf) 2971 { 2972 return sprintf(buf, "0\n"); /* always zero; should fit... */ 2973 } 2974 2975 static ssize_t write_scan_unevictable_node(struct sys_device *dev, 2976 struct sysdev_attribute *attr, 2977 const char *buf, size_t count) 2978 { 2979 struct zone *node_zones = NODE_DATA(dev->id)->node_zones; 2980 struct zone *zone; 2981 unsigned long res; 2982 unsigned long req = strict_strtoul(buf, 10, &res); 2983 2984 if (!req) 2985 return 1; /* zero is no-op */ 2986 2987 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) { 2988 if (!populated_zone(zone)) 2989 continue; 2990 scan_zone_unevictable_pages(zone); 2991 } 2992 return 1; 2993 } 2994 2995 2996 static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR, 2997 read_scan_unevictable_node, 2998 write_scan_unevictable_node); 2999 3000 int scan_unevictable_register_node(struct node *node) 3001 { 3002 return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages); 3003 } 3004 3005 void scan_unevictable_unregister_node(struct node *node) 3006 { 3007 sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages); 3008 } 3009 3010