xref: /linux/mm/vmscan.c (revision d2eba640a4b96bc1bdc0f4a500b8b8d5e16725c8)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/mm/vmscan.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *
7  *  Swap reorganised 29.12.95, Stephen Tweedie.
8  *  kswapd added: 7.1.96  sct
9  *  Removed kswapd_ctl limits, and swap out as many pages as needed
10  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
12  *  Multiqueue VM started 5.8.00, Rik van Riel.
13  */
14 
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/mm.h>
18 #include <linux/sched/mm.h>
19 #include <linux/module.h>
20 #include <linux/gfp.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/swap.h>
23 #include <linux/pagemap.h>
24 #include <linux/init.h>
25 #include <linux/highmem.h>
26 #include <linux/vmpressure.h>
27 #include <linux/vmstat.h>
28 #include <linux/file.h>
29 #include <linux/writeback.h>
30 #include <linux/blkdev.h>
31 #include <linux/buffer_head.h>	/* for try_to_release_page(),
32 					buffer_heads_over_limit */
33 #include <linux/mm_inline.h>
34 #include <linux/backing-dev.h>
35 #include <linux/rmap.h>
36 #include <linux/topology.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/compaction.h>
40 #include <linux/notifier.h>
41 #include <linux/rwsem.h>
42 #include <linux/delay.h>
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45 #include <linux/memcontrol.h>
46 #include <linux/delayacct.h>
47 #include <linux/sysctl.h>
48 #include <linux/oom.h>
49 #include <linux/pagevec.h>
50 #include <linux/prefetch.h>
51 #include <linux/printk.h>
52 #include <linux/dax.h>
53 #include <linux/psi.h>
54 
55 #include <asm/tlbflush.h>
56 #include <asm/div64.h>
57 
58 #include <linux/swapops.h>
59 #include <linux/balloon_compaction.h>
60 
61 #include "internal.h"
62 
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/vmscan.h>
65 
66 struct scan_control {
67 	/* How many pages shrink_list() should reclaim */
68 	unsigned long nr_to_reclaim;
69 
70 	/*
71 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
72 	 * are scanned.
73 	 */
74 	nodemask_t	*nodemask;
75 
76 	/*
77 	 * The memory cgroup that hit its limit and as a result is the
78 	 * primary target of this reclaim invocation.
79 	 */
80 	struct mem_cgroup *target_mem_cgroup;
81 
82 	/* Writepage batching in laptop mode; RECLAIM_WRITE */
83 	unsigned int may_writepage:1;
84 
85 	/* Can mapped pages be reclaimed? */
86 	unsigned int may_unmap:1;
87 
88 	/* Can pages be swapped as part of reclaim? */
89 	unsigned int may_swap:1;
90 
91 	/* e.g. boosted watermark reclaim leaves slabs alone */
92 	unsigned int may_shrinkslab:1;
93 
94 	/*
95 	 * Cgroups are not reclaimed below their configured memory.low,
96 	 * unless we threaten to OOM. If any cgroups are skipped due to
97 	 * memory.low and nothing was reclaimed, go back for memory.low.
98 	 */
99 	unsigned int memcg_low_reclaim:1;
100 	unsigned int memcg_low_skipped:1;
101 
102 	unsigned int hibernation_mode:1;
103 
104 	/* One of the zones is ready for compaction */
105 	unsigned int compaction_ready:1;
106 
107 	/* Allocation order */
108 	s8 order;
109 
110 	/* Scan (total_size >> priority) pages at once */
111 	s8 priority;
112 
113 	/* The highest zone to isolate pages for reclaim from */
114 	s8 reclaim_idx;
115 
116 	/* This context's GFP mask */
117 	gfp_t gfp_mask;
118 
119 	/* Incremented by the number of inactive pages that were scanned */
120 	unsigned long nr_scanned;
121 
122 	/* Number of pages freed so far during a call to shrink_zones() */
123 	unsigned long nr_reclaimed;
124 
125 	struct {
126 		unsigned int dirty;
127 		unsigned int unqueued_dirty;
128 		unsigned int congested;
129 		unsigned int writeback;
130 		unsigned int immediate;
131 		unsigned int file_taken;
132 		unsigned int taken;
133 	} nr;
134 
135 	/* for recording the reclaimed slab by now */
136 	struct reclaim_state reclaim_state;
137 };
138 
139 #ifdef ARCH_HAS_PREFETCH
140 #define prefetch_prev_lru_page(_page, _base, _field)			\
141 	do {								\
142 		if ((_page)->lru.prev != _base) {			\
143 			struct page *prev;				\
144 									\
145 			prev = lru_to_page(&(_page->lru));		\
146 			prefetch(&prev->_field);			\
147 		}							\
148 	} while (0)
149 #else
150 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
151 #endif
152 
153 #ifdef ARCH_HAS_PREFETCHW
154 #define prefetchw_prev_lru_page(_page, _base, _field)			\
155 	do {								\
156 		if ((_page)->lru.prev != _base) {			\
157 			struct page *prev;				\
158 									\
159 			prev = lru_to_page(&(_page->lru));		\
160 			prefetchw(&prev->_field);			\
161 		}							\
162 	} while (0)
163 #else
164 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
165 #endif
166 
167 /*
168  * From 0 .. 100.  Higher means more swappy.
169  */
170 int vm_swappiness = 60;
171 /*
172  * The total number of pages which are beyond the high watermark within all
173  * zones.
174  */
175 unsigned long vm_total_pages;
176 
177 static LIST_HEAD(shrinker_list);
178 static DECLARE_RWSEM(shrinker_rwsem);
179 
180 #ifdef CONFIG_MEMCG_KMEM
181 
182 /*
183  * We allow subsystems to populate their shrinker-related
184  * LRU lists before register_shrinker_prepared() is called
185  * for the shrinker, since we don't want to impose
186  * restrictions on their internal registration order.
187  * In this case shrink_slab_memcg() may find corresponding
188  * bit is set in the shrinkers map.
189  *
190  * This value is used by the function to detect registering
191  * shrinkers and to skip do_shrink_slab() calls for them.
192  */
193 #define SHRINKER_REGISTERING ((struct shrinker *)~0UL)
194 
195 static DEFINE_IDR(shrinker_idr);
196 static int shrinker_nr_max;
197 
198 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
199 {
200 	int id, ret = -ENOMEM;
201 
202 	down_write(&shrinker_rwsem);
203 	/* This may call shrinker, so it must use down_read_trylock() */
204 	id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
205 	if (id < 0)
206 		goto unlock;
207 
208 	if (id >= shrinker_nr_max) {
209 		if (memcg_expand_shrinker_maps(id)) {
210 			idr_remove(&shrinker_idr, id);
211 			goto unlock;
212 		}
213 
214 		shrinker_nr_max = id + 1;
215 	}
216 	shrinker->id = id;
217 	ret = 0;
218 unlock:
219 	up_write(&shrinker_rwsem);
220 	return ret;
221 }
222 
223 static void unregister_memcg_shrinker(struct shrinker *shrinker)
224 {
225 	int id = shrinker->id;
226 
227 	BUG_ON(id < 0);
228 
229 	down_write(&shrinker_rwsem);
230 	idr_remove(&shrinker_idr, id);
231 	up_write(&shrinker_rwsem);
232 }
233 #else /* CONFIG_MEMCG_KMEM */
234 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
235 {
236 	return 0;
237 }
238 
239 static void unregister_memcg_shrinker(struct shrinker *shrinker)
240 {
241 }
242 #endif /* CONFIG_MEMCG_KMEM */
243 
244 static void set_task_reclaim_state(struct task_struct *task,
245 				   struct reclaim_state *rs)
246 {
247 	/* Check for an overwrite */
248 	WARN_ON_ONCE(rs && task->reclaim_state);
249 
250 	/* Check for the nulling of an already-nulled member */
251 	WARN_ON_ONCE(!rs && !task->reclaim_state);
252 
253 	task->reclaim_state = rs;
254 }
255 
256 #ifdef CONFIG_MEMCG
257 static bool global_reclaim(struct scan_control *sc)
258 {
259 	return !sc->target_mem_cgroup;
260 }
261 
262 /**
263  * sane_reclaim - is the usual dirty throttling mechanism operational?
264  * @sc: scan_control in question
265  *
266  * The normal page dirty throttling mechanism in balance_dirty_pages() is
267  * completely broken with the legacy memcg and direct stalling in
268  * shrink_page_list() is used for throttling instead, which lacks all the
269  * niceties such as fairness, adaptive pausing, bandwidth proportional
270  * allocation and configurability.
271  *
272  * This function tests whether the vmscan currently in progress can assume
273  * that the normal dirty throttling mechanism is operational.
274  */
275 static bool sane_reclaim(struct scan_control *sc)
276 {
277 	struct mem_cgroup *memcg = sc->target_mem_cgroup;
278 
279 	if (!memcg)
280 		return true;
281 #ifdef CONFIG_CGROUP_WRITEBACK
282 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
283 		return true;
284 #endif
285 	return false;
286 }
287 
288 static void set_memcg_congestion(pg_data_t *pgdat,
289 				struct mem_cgroup *memcg,
290 				bool congested)
291 {
292 	struct mem_cgroup_per_node *mn;
293 
294 	if (!memcg)
295 		return;
296 
297 	mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
298 	WRITE_ONCE(mn->congested, congested);
299 }
300 
301 static bool memcg_congested(pg_data_t *pgdat,
302 			struct mem_cgroup *memcg)
303 {
304 	struct mem_cgroup_per_node *mn;
305 
306 	mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
307 	return READ_ONCE(mn->congested);
308 
309 }
310 #else
311 static bool global_reclaim(struct scan_control *sc)
312 {
313 	return true;
314 }
315 
316 static bool sane_reclaim(struct scan_control *sc)
317 {
318 	return true;
319 }
320 
321 static inline void set_memcg_congestion(struct pglist_data *pgdat,
322 				struct mem_cgroup *memcg, bool congested)
323 {
324 }
325 
326 static inline bool memcg_congested(struct pglist_data *pgdat,
327 			struct mem_cgroup *memcg)
328 {
329 	return false;
330 
331 }
332 #endif
333 
334 /*
335  * This misses isolated pages which are not accounted for to save counters.
336  * As the data only determines if reclaim or compaction continues, it is
337  * not expected that isolated pages will be a dominating factor.
338  */
339 unsigned long zone_reclaimable_pages(struct zone *zone)
340 {
341 	unsigned long nr;
342 
343 	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
344 		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
345 	if (get_nr_swap_pages() > 0)
346 		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
347 			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
348 
349 	return nr;
350 }
351 
352 /**
353  * lruvec_lru_size -  Returns the number of pages on the given LRU list.
354  * @lruvec: lru vector
355  * @lru: lru to use
356  * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
357  */
358 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
359 {
360 	unsigned long lru_size;
361 	int zid;
362 
363 	if (!mem_cgroup_disabled())
364 		lru_size = lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
365 	else
366 		lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
367 
368 	for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
369 		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
370 		unsigned long size;
371 
372 		if (!managed_zone(zone))
373 			continue;
374 
375 		if (!mem_cgroup_disabled())
376 			size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
377 		else
378 			size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
379 				       NR_ZONE_LRU_BASE + lru);
380 		lru_size -= min(size, lru_size);
381 	}
382 
383 	return lru_size;
384 
385 }
386 
387 /*
388  * Add a shrinker callback to be called from the vm.
389  */
390 int prealloc_shrinker(struct shrinker *shrinker)
391 {
392 	unsigned int size = sizeof(*shrinker->nr_deferred);
393 
394 	if (shrinker->flags & SHRINKER_NUMA_AWARE)
395 		size *= nr_node_ids;
396 
397 	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
398 	if (!shrinker->nr_deferred)
399 		return -ENOMEM;
400 
401 	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
402 		if (prealloc_memcg_shrinker(shrinker))
403 			goto free_deferred;
404 	}
405 
406 	return 0;
407 
408 free_deferred:
409 	kfree(shrinker->nr_deferred);
410 	shrinker->nr_deferred = NULL;
411 	return -ENOMEM;
412 }
413 
414 void free_prealloced_shrinker(struct shrinker *shrinker)
415 {
416 	if (!shrinker->nr_deferred)
417 		return;
418 
419 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
420 		unregister_memcg_shrinker(shrinker);
421 
422 	kfree(shrinker->nr_deferred);
423 	shrinker->nr_deferred = NULL;
424 }
425 
426 void register_shrinker_prepared(struct shrinker *shrinker)
427 {
428 	down_write(&shrinker_rwsem);
429 	list_add_tail(&shrinker->list, &shrinker_list);
430 #ifdef CONFIG_MEMCG_KMEM
431 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
432 		idr_replace(&shrinker_idr, shrinker, shrinker->id);
433 #endif
434 	up_write(&shrinker_rwsem);
435 }
436 
437 int register_shrinker(struct shrinker *shrinker)
438 {
439 	int err = prealloc_shrinker(shrinker);
440 
441 	if (err)
442 		return err;
443 	register_shrinker_prepared(shrinker);
444 	return 0;
445 }
446 EXPORT_SYMBOL(register_shrinker);
447 
448 /*
449  * Remove one
450  */
451 void unregister_shrinker(struct shrinker *shrinker)
452 {
453 	if (!shrinker->nr_deferred)
454 		return;
455 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
456 		unregister_memcg_shrinker(shrinker);
457 	down_write(&shrinker_rwsem);
458 	list_del(&shrinker->list);
459 	up_write(&shrinker_rwsem);
460 	kfree(shrinker->nr_deferred);
461 	shrinker->nr_deferred = NULL;
462 }
463 EXPORT_SYMBOL(unregister_shrinker);
464 
465 #define SHRINK_BATCH 128
466 
467 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
468 				    struct shrinker *shrinker, int priority)
469 {
470 	unsigned long freed = 0;
471 	unsigned long long delta;
472 	long total_scan;
473 	long freeable;
474 	long nr;
475 	long new_nr;
476 	int nid = shrinkctl->nid;
477 	long batch_size = shrinker->batch ? shrinker->batch
478 					  : SHRINK_BATCH;
479 	long scanned = 0, next_deferred;
480 
481 	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
482 		nid = 0;
483 
484 	freeable = shrinker->count_objects(shrinker, shrinkctl);
485 	if (freeable == 0 || freeable == SHRINK_EMPTY)
486 		return freeable;
487 
488 	/*
489 	 * copy the current shrinker scan count into a local variable
490 	 * and zero it so that other concurrent shrinker invocations
491 	 * don't also do this scanning work.
492 	 */
493 	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
494 
495 	total_scan = nr;
496 	if (shrinker->seeks) {
497 		delta = freeable >> priority;
498 		delta *= 4;
499 		do_div(delta, shrinker->seeks);
500 	} else {
501 		/*
502 		 * These objects don't require any IO to create. Trim
503 		 * them aggressively under memory pressure to keep
504 		 * them from causing refetches in the IO caches.
505 		 */
506 		delta = freeable / 2;
507 	}
508 
509 	total_scan += delta;
510 	if (total_scan < 0) {
511 		pr_err("shrink_slab: %pS negative objects to delete nr=%ld\n",
512 		       shrinker->scan_objects, total_scan);
513 		total_scan = freeable;
514 		next_deferred = nr;
515 	} else
516 		next_deferred = total_scan;
517 
518 	/*
519 	 * We need to avoid excessive windup on filesystem shrinkers
520 	 * due to large numbers of GFP_NOFS allocations causing the
521 	 * shrinkers to return -1 all the time. This results in a large
522 	 * nr being built up so when a shrink that can do some work
523 	 * comes along it empties the entire cache due to nr >>>
524 	 * freeable. This is bad for sustaining a working set in
525 	 * memory.
526 	 *
527 	 * Hence only allow the shrinker to scan the entire cache when
528 	 * a large delta change is calculated directly.
529 	 */
530 	if (delta < freeable / 4)
531 		total_scan = min(total_scan, freeable / 2);
532 
533 	/*
534 	 * Avoid risking looping forever due to too large nr value:
535 	 * never try to free more than twice the estimate number of
536 	 * freeable entries.
537 	 */
538 	if (total_scan > freeable * 2)
539 		total_scan = freeable * 2;
540 
541 	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
542 				   freeable, delta, total_scan, priority);
543 
544 	/*
545 	 * Normally, we should not scan less than batch_size objects in one
546 	 * pass to avoid too frequent shrinker calls, but if the slab has less
547 	 * than batch_size objects in total and we are really tight on memory,
548 	 * we will try to reclaim all available objects, otherwise we can end
549 	 * up failing allocations although there are plenty of reclaimable
550 	 * objects spread over several slabs with usage less than the
551 	 * batch_size.
552 	 *
553 	 * We detect the "tight on memory" situations by looking at the total
554 	 * number of objects we want to scan (total_scan). If it is greater
555 	 * than the total number of objects on slab (freeable), we must be
556 	 * scanning at high prio and therefore should try to reclaim as much as
557 	 * possible.
558 	 */
559 	while (total_scan >= batch_size ||
560 	       total_scan >= freeable) {
561 		unsigned long ret;
562 		unsigned long nr_to_scan = min(batch_size, total_scan);
563 
564 		shrinkctl->nr_to_scan = nr_to_scan;
565 		shrinkctl->nr_scanned = nr_to_scan;
566 		ret = shrinker->scan_objects(shrinker, shrinkctl);
567 		if (ret == SHRINK_STOP)
568 			break;
569 		freed += ret;
570 
571 		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
572 		total_scan -= shrinkctl->nr_scanned;
573 		scanned += shrinkctl->nr_scanned;
574 
575 		cond_resched();
576 	}
577 
578 	if (next_deferred >= scanned)
579 		next_deferred -= scanned;
580 	else
581 		next_deferred = 0;
582 	/*
583 	 * move the unused scan count back into the shrinker in a
584 	 * manner that handles concurrent updates. If we exhausted the
585 	 * scan, there is no need to do an update.
586 	 */
587 	if (next_deferred > 0)
588 		new_nr = atomic_long_add_return(next_deferred,
589 						&shrinker->nr_deferred[nid]);
590 	else
591 		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
592 
593 	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
594 	return freed;
595 }
596 
597 #ifdef CONFIG_MEMCG_KMEM
598 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
599 			struct mem_cgroup *memcg, int priority)
600 {
601 	struct memcg_shrinker_map *map;
602 	unsigned long ret, freed = 0;
603 	int i;
604 
605 	if (!memcg_kmem_enabled() || !mem_cgroup_online(memcg))
606 		return 0;
607 
608 	if (!down_read_trylock(&shrinker_rwsem))
609 		return 0;
610 
611 	map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
612 					true);
613 	if (unlikely(!map))
614 		goto unlock;
615 
616 	for_each_set_bit(i, map->map, shrinker_nr_max) {
617 		struct shrink_control sc = {
618 			.gfp_mask = gfp_mask,
619 			.nid = nid,
620 			.memcg = memcg,
621 		};
622 		struct shrinker *shrinker;
623 
624 		shrinker = idr_find(&shrinker_idr, i);
625 		if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
626 			if (!shrinker)
627 				clear_bit(i, map->map);
628 			continue;
629 		}
630 
631 		ret = do_shrink_slab(&sc, shrinker, priority);
632 		if (ret == SHRINK_EMPTY) {
633 			clear_bit(i, map->map);
634 			/*
635 			 * After the shrinker reported that it had no objects to
636 			 * free, but before we cleared the corresponding bit in
637 			 * the memcg shrinker map, a new object might have been
638 			 * added. To make sure, we have the bit set in this
639 			 * case, we invoke the shrinker one more time and reset
640 			 * the bit if it reports that it is not empty anymore.
641 			 * The memory barrier here pairs with the barrier in
642 			 * memcg_set_shrinker_bit():
643 			 *
644 			 * list_lru_add()     shrink_slab_memcg()
645 			 *   list_add_tail()    clear_bit()
646 			 *   <MB>               <MB>
647 			 *   set_bit()          do_shrink_slab()
648 			 */
649 			smp_mb__after_atomic();
650 			ret = do_shrink_slab(&sc, shrinker, priority);
651 			if (ret == SHRINK_EMPTY)
652 				ret = 0;
653 			else
654 				memcg_set_shrinker_bit(memcg, nid, i);
655 		}
656 		freed += ret;
657 
658 		if (rwsem_is_contended(&shrinker_rwsem)) {
659 			freed = freed ? : 1;
660 			break;
661 		}
662 	}
663 unlock:
664 	up_read(&shrinker_rwsem);
665 	return freed;
666 }
667 #else /* CONFIG_MEMCG_KMEM */
668 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
669 			struct mem_cgroup *memcg, int priority)
670 {
671 	return 0;
672 }
673 #endif /* CONFIG_MEMCG_KMEM */
674 
675 /**
676  * shrink_slab - shrink slab caches
677  * @gfp_mask: allocation context
678  * @nid: node whose slab caches to target
679  * @memcg: memory cgroup whose slab caches to target
680  * @priority: the reclaim priority
681  *
682  * Call the shrink functions to age shrinkable caches.
683  *
684  * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
685  * unaware shrinkers will receive a node id of 0 instead.
686  *
687  * @memcg specifies the memory cgroup to target. Unaware shrinkers
688  * are called only if it is the root cgroup.
689  *
690  * @priority is sc->priority, we take the number of objects and >> by priority
691  * in order to get the scan target.
692  *
693  * Returns the number of reclaimed slab objects.
694  */
695 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
696 				 struct mem_cgroup *memcg,
697 				 int priority)
698 {
699 	unsigned long ret, freed = 0;
700 	struct shrinker *shrinker;
701 
702 	if (!mem_cgroup_is_root(memcg))
703 		return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
704 
705 	if (!down_read_trylock(&shrinker_rwsem))
706 		goto out;
707 
708 	list_for_each_entry(shrinker, &shrinker_list, list) {
709 		struct shrink_control sc = {
710 			.gfp_mask = gfp_mask,
711 			.nid = nid,
712 			.memcg = memcg,
713 		};
714 
715 		ret = do_shrink_slab(&sc, shrinker, priority);
716 		if (ret == SHRINK_EMPTY)
717 			ret = 0;
718 		freed += ret;
719 		/*
720 		 * Bail out if someone want to register a new shrinker to
721 		 * prevent the regsitration from being stalled for long periods
722 		 * by parallel ongoing shrinking.
723 		 */
724 		if (rwsem_is_contended(&shrinker_rwsem)) {
725 			freed = freed ? : 1;
726 			break;
727 		}
728 	}
729 
730 	up_read(&shrinker_rwsem);
731 out:
732 	cond_resched();
733 	return freed;
734 }
735 
736 void drop_slab_node(int nid)
737 {
738 	unsigned long freed;
739 
740 	do {
741 		struct mem_cgroup *memcg = NULL;
742 
743 		freed = 0;
744 		memcg = mem_cgroup_iter(NULL, NULL, NULL);
745 		do {
746 			freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
747 		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
748 	} while (freed > 10);
749 }
750 
751 void drop_slab(void)
752 {
753 	int nid;
754 
755 	for_each_online_node(nid)
756 		drop_slab_node(nid);
757 }
758 
759 static inline int is_page_cache_freeable(struct page *page)
760 {
761 	/*
762 	 * A freeable page cache page is referenced only by the caller
763 	 * that isolated the page, the page cache and optional buffer
764 	 * heads at page->private.
765 	 */
766 	int page_cache_pins = PageTransHuge(page) && PageSwapCache(page) ?
767 		HPAGE_PMD_NR : 1;
768 	return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
769 }
770 
771 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
772 {
773 	if (current->flags & PF_SWAPWRITE)
774 		return 1;
775 	if (!inode_write_congested(inode))
776 		return 1;
777 	if (inode_to_bdi(inode) == current->backing_dev_info)
778 		return 1;
779 	return 0;
780 }
781 
782 /*
783  * We detected a synchronous write error writing a page out.  Probably
784  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
785  * fsync(), msync() or close().
786  *
787  * The tricky part is that after writepage we cannot touch the mapping: nothing
788  * prevents it from being freed up.  But we have a ref on the page and once
789  * that page is locked, the mapping is pinned.
790  *
791  * We're allowed to run sleeping lock_page() here because we know the caller has
792  * __GFP_FS.
793  */
794 static void handle_write_error(struct address_space *mapping,
795 				struct page *page, int error)
796 {
797 	lock_page(page);
798 	if (page_mapping(page) == mapping)
799 		mapping_set_error(mapping, error);
800 	unlock_page(page);
801 }
802 
803 /* possible outcome of pageout() */
804 typedef enum {
805 	/* failed to write page out, page is locked */
806 	PAGE_KEEP,
807 	/* move page to the active list, page is locked */
808 	PAGE_ACTIVATE,
809 	/* page has been sent to the disk successfully, page is unlocked */
810 	PAGE_SUCCESS,
811 	/* page is clean and locked */
812 	PAGE_CLEAN,
813 } pageout_t;
814 
815 /*
816  * pageout is called by shrink_page_list() for each dirty page.
817  * Calls ->writepage().
818  */
819 static pageout_t pageout(struct page *page, struct address_space *mapping,
820 			 struct scan_control *sc)
821 {
822 	/*
823 	 * If the page is dirty, only perform writeback if that write
824 	 * will be non-blocking.  To prevent this allocation from being
825 	 * stalled by pagecache activity.  But note that there may be
826 	 * stalls if we need to run get_block().  We could test
827 	 * PagePrivate for that.
828 	 *
829 	 * If this process is currently in __generic_file_write_iter() against
830 	 * this page's queue, we can perform writeback even if that
831 	 * will block.
832 	 *
833 	 * If the page is swapcache, write it back even if that would
834 	 * block, for some throttling. This happens by accident, because
835 	 * swap_backing_dev_info is bust: it doesn't reflect the
836 	 * congestion state of the swapdevs.  Easy to fix, if needed.
837 	 */
838 	if (!is_page_cache_freeable(page))
839 		return PAGE_KEEP;
840 	if (!mapping) {
841 		/*
842 		 * Some data journaling orphaned pages can have
843 		 * page->mapping == NULL while being dirty with clean buffers.
844 		 */
845 		if (page_has_private(page)) {
846 			if (try_to_free_buffers(page)) {
847 				ClearPageDirty(page);
848 				pr_info("%s: orphaned page\n", __func__);
849 				return PAGE_CLEAN;
850 			}
851 		}
852 		return PAGE_KEEP;
853 	}
854 	if (mapping->a_ops->writepage == NULL)
855 		return PAGE_ACTIVATE;
856 	if (!may_write_to_inode(mapping->host, sc))
857 		return PAGE_KEEP;
858 
859 	if (clear_page_dirty_for_io(page)) {
860 		int res;
861 		struct writeback_control wbc = {
862 			.sync_mode = WB_SYNC_NONE,
863 			.nr_to_write = SWAP_CLUSTER_MAX,
864 			.range_start = 0,
865 			.range_end = LLONG_MAX,
866 			.for_reclaim = 1,
867 		};
868 
869 		SetPageReclaim(page);
870 		res = mapping->a_ops->writepage(page, &wbc);
871 		if (res < 0)
872 			handle_write_error(mapping, page, res);
873 		if (res == AOP_WRITEPAGE_ACTIVATE) {
874 			ClearPageReclaim(page);
875 			return PAGE_ACTIVATE;
876 		}
877 
878 		if (!PageWriteback(page)) {
879 			/* synchronous write or broken a_ops? */
880 			ClearPageReclaim(page);
881 		}
882 		trace_mm_vmscan_writepage(page);
883 		inc_node_page_state(page, NR_VMSCAN_WRITE);
884 		return PAGE_SUCCESS;
885 	}
886 
887 	return PAGE_CLEAN;
888 }
889 
890 /*
891  * Same as remove_mapping, but if the page is removed from the mapping, it
892  * gets returned with a refcount of 0.
893  */
894 static int __remove_mapping(struct address_space *mapping, struct page *page,
895 			    bool reclaimed)
896 {
897 	unsigned long flags;
898 	int refcount;
899 
900 	BUG_ON(!PageLocked(page));
901 	BUG_ON(mapping != page_mapping(page));
902 
903 	xa_lock_irqsave(&mapping->i_pages, flags);
904 	/*
905 	 * The non racy check for a busy page.
906 	 *
907 	 * Must be careful with the order of the tests. When someone has
908 	 * a ref to the page, it may be possible that they dirty it then
909 	 * drop the reference. So if PageDirty is tested before page_count
910 	 * here, then the following race may occur:
911 	 *
912 	 * get_user_pages(&page);
913 	 * [user mapping goes away]
914 	 * write_to(page);
915 	 *				!PageDirty(page)    [good]
916 	 * SetPageDirty(page);
917 	 * put_page(page);
918 	 *				!page_count(page)   [good, discard it]
919 	 *
920 	 * [oops, our write_to data is lost]
921 	 *
922 	 * Reversing the order of the tests ensures such a situation cannot
923 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
924 	 * load is not satisfied before that of page->_refcount.
925 	 *
926 	 * Note that if SetPageDirty is always performed via set_page_dirty,
927 	 * and thus under the i_pages lock, then this ordering is not required.
928 	 */
929 	if (unlikely(PageTransHuge(page)) && PageSwapCache(page))
930 		refcount = 1 + HPAGE_PMD_NR;
931 	else
932 		refcount = 2;
933 	if (!page_ref_freeze(page, refcount))
934 		goto cannot_free;
935 	/* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
936 	if (unlikely(PageDirty(page))) {
937 		page_ref_unfreeze(page, refcount);
938 		goto cannot_free;
939 	}
940 
941 	if (PageSwapCache(page)) {
942 		swp_entry_t swap = { .val = page_private(page) };
943 		mem_cgroup_swapout(page, swap);
944 		__delete_from_swap_cache(page, swap);
945 		xa_unlock_irqrestore(&mapping->i_pages, flags);
946 		put_swap_page(page, swap);
947 	} else {
948 		void (*freepage)(struct page *);
949 		void *shadow = NULL;
950 
951 		freepage = mapping->a_ops->freepage;
952 		/*
953 		 * Remember a shadow entry for reclaimed file cache in
954 		 * order to detect refaults, thus thrashing, later on.
955 		 *
956 		 * But don't store shadows in an address space that is
957 		 * already exiting.  This is not just an optizimation,
958 		 * inode reclaim needs to empty out the radix tree or
959 		 * the nodes are lost.  Don't plant shadows behind its
960 		 * back.
961 		 *
962 		 * We also don't store shadows for DAX mappings because the
963 		 * only page cache pages found in these are zero pages
964 		 * covering holes, and because we don't want to mix DAX
965 		 * exceptional entries and shadow exceptional entries in the
966 		 * same address_space.
967 		 */
968 		if (reclaimed && page_is_file_cache(page) &&
969 		    !mapping_exiting(mapping) && !dax_mapping(mapping))
970 			shadow = workingset_eviction(page);
971 		__delete_from_page_cache(page, shadow);
972 		xa_unlock_irqrestore(&mapping->i_pages, flags);
973 
974 		if (freepage != NULL)
975 			freepage(page);
976 	}
977 
978 	return 1;
979 
980 cannot_free:
981 	xa_unlock_irqrestore(&mapping->i_pages, flags);
982 	return 0;
983 }
984 
985 /*
986  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
987  * someone else has a ref on the page, abort and return 0.  If it was
988  * successfully detached, return 1.  Assumes the caller has a single ref on
989  * this page.
990  */
991 int remove_mapping(struct address_space *mapping, struct page *page)
992 {
993 	if (__remove_mapping(mapping, page, false)) {
994 		/*
995 		 * Unfreezing the refcount with 1 rather than 2 effectively
996 		 * drops the pagecache ref for us without requiring another
997 		 * atomic operation.
998 		 */
999 		page_ref_unfreeze(page, 1);
1000 		return 1;
1001 	}
1002 	return 0;
1003 }
1004 
1005 /**
1006  * putback_lru_page - put previously isolated page onto appropriate LRU list
1007  * @page: page to be put back to appropriate lru list
1008  *
1009  * Add previously isolated @page to appropriate LRU list.
1010  * Page may still be unevictable for other reasons.
1011  *
1012  * lru_lock must not be held, interrupts must be enabled.
1013  */
1014 void putback_lru_page(struct page *page)
1015 {
1016 	lru_cache_add(page);
1017 	put_page(page);		/* drop ref from isolate */
1018 }
1019 
1020 enum page_references {
1021 	PAGEREF_RECLAIM,
1022 	PAGEREF_RECLAIM_CLEAN,
1023 	PAGEREF_KEEP,
1024 	PAGEREF_ACTIVATE,
1025 };
1026 
1027 static enum page_references page_check_references(struct page *page,
1028 						  struct scan_control *sc)
1029 {
1030 	int referenced_ptes, referenced_page;
1031 	unsigned long vm_flags;
1032 
1033 	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
1034 					  &vm_flags);
1035 	referenced_page = TestClearPageReferenced(page);
1036 
1037 	/*
1038 	 * Mlock lost the isolation race with us.  Let try_to_unmap()
1039 	 * move the page to the unevictable list.
1040 	 */
1041 	if (vm_flags & VM_LOCKED)
1042 		return PAGEREF_RECLAIM;
1043 
1044 	if (referenced_ptes) {
1045 		if (PageSwapBacked(page))
1046 			return PAGEREF_ACTIVATE;
1047 		/*
1048 		 * All mapped pages start out with page table
1049 		 * references from the instantiating fault, so we need
1050 		 * to look twice if a mapped file page is used more
1051 		 * than once.
1052 		 *
1053 		 * Mark it and spare it for another trip around the
1054 		 * inactive list.  Another page table reference will
1055 		 * lead to its activation.
1056 		 *
1057 		 * Note: the mark is set for activated pages as well
1058 		 * so that recently deactivated but used pages are
1059 		 * quickly recovered.
1060 		 */
1061 		SetPageReferenced(page);
1062 
1063 		if (referenced_page || referenced_ptes > 1)
1064 			return PAGEREF_ACTIVATE;
1065 
1066 		/*
1067 		 * Activate file-backed executable pages after first usage.
1068 		 */
1069 		if (vm_flags & VM_EXEC)
1070 			return PAGEREF_ACTIVATE;
1071 
1072 		return PAGEREF_KEEP;
1073 	}
1074 
1075 	/* Reclaim if clean, defer dirty pages to writeback */
1076 	if (referenced_page && !PageSwapBacked(page))
1077 		return PAGEREF_RECLAIM_CLEAN;
1078 
1079 	return PAGEREF_RECLAIM;
1080 }
1081 
1082 /* Check if a page is dirty or under writeback */
1083 static void page_check_dirty_writeback(struct page *page,
1084 				       bool *dirty, bool *writeback)
1085 {
1086 	struct address_space *mapping;
1087 
1088 	/*
1089 	 * Anonymous pages are not handled by flushers and must be written
1090 	 * from reclaim context. Do not stall reclaim based on them
1091 	 */
1092 	if (!page_is_file_cache(page) ||
1093 	    (PageAnon(page) && !PageSwapBacked(page))) {
1094 		*dirty = false;
1095 		*writeback = false;
1096 		return;
1097 	}
1098 
1099 	/* By default assume that the page flags are accurate */
1100 	*dirty = PageDirty(page);
1101 	*writeback = PageWriteback(page);
1102 
1103 	/* Verify dirty/writeback state if the filesystem supports it */
1104 	if (!page_has_private(page))
1105 		return;
1106 
1107 	mapping = page_mapping(page);
1108 	if (mapping && mapping->a_ops->is_dirty_writeback)
1109 		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1110 }
1111 
1112 /*
1113  * shrink_page_list() returns the number of reclaimed pages
1114  */
1115 static unsigned long shrink_page_list(struct list_head *page_list,
1116 				      struct pglist_data *pgdat,
1117 				      struct scan_control *sc,
1118 				      enum ttu_flags ttu_flags,
1119 				      struct reclaim_stat *stat,
1120 				      bool force_reclaim)
1121 {
1122 	LIST_HEAD(ret_pages);
1123 	LIST_HEAD(free_pages);
1124 	unsigned nr_reclaimed = 0;
1125 	unsigned pgactivate = 0;
1126 
1127 	memset(stat, 0, sizeof(*stat));
1128 	cond_resched();
1129 
1130 	while (!list_empty(page_list)) {
1131 		struct address_space *mapping;
1132 		struct page *page;
1133 		int may_enter_fs;
1134 		enum page_references references = PAGEREF_RECLAIM_CLEAN;
1135 		bool dirty, writeback;
1136 		unsigned int nr_pages;
1137 
1138 		cond_resched();
1139 
1140 		page = lru_to_page(page_list);
1141 		list_del(&page->lru);
1142 
1143 		if (!trylock_page(page))
1144 			goto keep;
1145 
1146 		VM_BUG_ON_PAGE(PageActive(page), page);
1147 
1148 		nr_pages = 1 << compound_order(page);
1149 
1150 		/* Account the number of base pages even though THP */
1151 		sc->nr_scanned += nr_pages;
1152 
1153 		if (unlikely(!page_evictable(page)))
1154 			goto activate_locked;
1155 
1156 		if (!sc->may_unmap && page_mapped(page))
1157 			goto keep_locked;
1158 
1159 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1160 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1161 
1162 		/*
1163 		 * The number of dirty pages determines if a node is marked
1164 		 * reclaim_congested which affects wait_iff_congested. kswapd
1165 		 * will stall and start writing pages if the tail of the LRU
1166 		 * is all dirty unqueued pages.
1167 		 */
1168 		page_check_dirty_writeback(page, &dirty, &writeback);
1169 		if (dirty || writeback)
1170 			stat->nr_dirty++;
1171 
1172 		if (dirty && !writeback)
1173 			stat->nr_unqueued_dirty++;
1174 
1175 		/*
1176 		 * Treat this page as congested if the underlying BDI is or if
1177 		 * pages are cycling through the LRU so quickly that the
1178 		 * pages marked for immediate reclaim are making it to the
1179 		 * end of the LRU a second time.
1180 		 */
1181 		mapping = page_mapping(page);
1182 		if (((dirty || writeback) && mapping &&
1183 		     inode_write_congested(mapping->host)) ||
1184 		    (writeback && PageReclaim(page)))
1185 			stat->nr_congested++;
1186 
1187 		/*
1188 		 * If a page at the tail of the LRU is under writeback, there
1189 		 * are three cases to consider.
1190 		 *
1191 		 * 1) If reclaim is encountering an excessive number of pages
1192 		 *    under writeback and this page is both under writeback and
1193 		 *    PageReclaim then it indicates that pages are being queued
1194 		 *    for IO but are being recycled through the LRU before the
1195 		 *    IO can complete. Waiting on the page itself risks an
1196 		 *    indefinite stall if it is impossible to writeback the
1197 		 *    page due to IO error or disconnected storage so instead
1198 		 *    note that the LRU is being scanned too quickly and the
1199 		 *    caller can stall after page list has been processed.
1200 		 *
1201 		 * 2) Global or new memcg reclaim encounters a page that is
1202 		 *    not marked for immediate reclaim, or the caller does not
1203 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1204 		 *    not to fs). In this case mark the page for immediate
1205 		 *    reclaim and continue scanning.
1206 		 *
1207 		 *    Require may_enter_fs because we would wait on fs, which
1208 		 *    may not have submitted IO yet. And the loop driver might
1209 		 *    enter reclaim, and deadlock if it waits on a page for
1210 		 *    which it is needed to do the write (loop masks off
1211 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1212 		 *    would probably show more reasons.
1213 		 *
1214 		 * 3) Legacy memcg encounters a page that is already marked
1215 		 *    PageReclaim. memcg does not have any dirty pages
1216 		 *    throttling so we could easily OOM just because too many
1217 		 *    pages are in writeback and there is nothing else to
1218 		 *    reclaim. Wait for the writeback to complete.
1219 		 *
1220 		 * In cases 1) and 2) we activate the pages to get them out of
1221 		 * the way while we continue scanning for clean pages on the
1222 		 * inactive list and refilling from the active list. The
1223 		 * observation here is that waiting for disk writes is more
1224 		 * expensive than potentially causing reloads down the line.
1225 		 * Since they're marked for immediate reclaim, they won't put
1226 		 * memory pressure on the cache working set any longer than it
1227 		 * takes to write them to disk.
1228 		 */
1229 		if (PageWriteback(page)) {
1230 			/* Case 1 above */
1231 			if (current_is_kswapd() &&
1232 			    PageReclaim(page) &&
1233 			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1234 				stat->nr_immediate++;
1235 				goto activate_locked;
1236 
1237 			/* Case 2 above */
1238 			} else if (sane_reclaim(sc) ||
1239 			    !PageReclaim(page) || !may_enter_fs) {
1240 				/*
1241 				 * This is slightly racy - end_page_writeback()
1242 				 * might have just cleared PageReclaim, then
1243 				 * setting PageReclaim here end up interpreted
1244 				 * as PageReadahead - but that does not matter
1245 				 * enough to care.  What we do want is for this
1246 				 * page to have PageReclaim set next time memcg
1247 				 * reclaim reaches the tests above, so it will
1248 				 * then wait_on_page_writeback() to avoid OOM;
1249 				 * and it's also appropriate in global reclaim.
1250 				 */
1251 				SetPageReclaim(page);
1252 				stat->nr_writeback++;
1253 				goto activate_locked;
1254 
1255 			/* Case 3 above */
1256 			} else {
1257 				unlock_page(page);
1258 				wait_on_page_writeback(page);
1259 				/* then go back and try same page again */
1260 				list_add_tail(&page->lru, page_list);
1261 				continue;
1262 			}
1263 		}
1264 
1265 		if (!force_reclaim)
1266 			references = page_check_references(page, sc);
1267 
1268 		switch (references) {
1269 		case PAGEREF_ACTIVATE:
1270 			goto activate_locked;
1271 		case PAGEREF_KEEP:
1272 			stat->nr_ref_keep += nr_pages;
1273 			goto keep_locked;
1274 		case PAGEREF_RECLAIM:
1275 		case PAGEREF_RECLAIM_CLEAN:
1276 			; /* try to reclaim the page below */
1277 		}
1278 
1279 		/*
1280 		 * Anonymous process memory has backing store?
1281 		 * Try to allocate it some swap space here.
1282 		 * Lazyfree page could be freed directly
1283 		 */
1284 		if (PageAnon(page) && PageSwapBacked(page)) {
1285 			if (!PageSwapCache(page)) {
1286 				if (!(sc->gfp_mask & __GFP_IO))
1287 					goto keep_locked;
1288 				if (PageTransHuge(page)) {
1289 					/* cannot split THP, skip it */
1290 					if (!can_split_huge_page(page, NULL))
1291 						goto activate_locked;
1292 					/*
1293 					 * Split pages without a PMD map right
1294 					 * away. Chances are some or all of the
1295 					 * tail pages can be freed without IO.
1296 					 */
1297 					if (!compound_mapcount(page) &&
1298 					    split_huge_page_to_list(page,
1299 								    page_list))
1300 						goto activate_locked;
1301 				}
1302 				if (!add_to_swap(page)) {
1303 					if (!PageTransHuge(page))
1304 						goto activate_locked_split;
1305 					/* Fallback to swap normal pages */
1306 					if (split_huge_page_to_list(page,
1307 								    page_list))
1308 						goto activate_locked;
1309 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1310 					count_vm_event(THP_SWPOUT_FALLBACK);
1311 #endif
1312 					if (!add_to_swap(page))
1313 						goto activate_locked_split;
1314 				}
1315 
1316 				may_enter_fs = 1;
1317 
1318 				/* Adding to swap updated mapping */
1319 				mapping = page_mapping(page);
1320 			}
1321 		} else if (unlikely(PageTransHuge(page))) {
1322 			/* Split file THP */
1323 			if (split_huge_page_to_list(page, page_list))
1324 				goto keep_locked;
1325 		}
1326 
1327 		/*
1328 		 * THP may get split above, need minus tail pages and update
1329 		 * nr_pages to avoid accounting tail pages twice.
1330 		 *
1331 		 * The tail pages that are added into swap cache successfully
1332 		 * reach here.
1333 		 */
1334 		if ((nr_pages > 1) && !PageTransHuge(page)) {
1335 			sc->nr_scanned -= (nr_pages - 1);
1336 			nr_pages = 1;
1337 		}
1338 
1339 		/*
1340 		 * The page is mapped into the page tables of one or more
1341 		 * processes. Try to unmap it here.
1342 		 */
1343 		if (page_mapped(page)) {
1344 			enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1345 
1346 			if (unlikely(PageTransHuge(page)))
1347 				flags |= TTU_SPLIT_HUGE_PMD;
1348 			if (!try_to_unmap(page, flags)) {
1349 				stat->nr_unmap_fail += nr_pages;
1350 				goto activate_locked;
1351 			}
1352 		}
1353 
1354 		if (PageDirty(page)) {
1355 			/*
1356 			 * Only kswapd can writeback filesystem pages
1357 			 * to avoid risk of stack overflow. But avoid
1358 			 * injecting inefficient single-page IO into
1359 			 * flusher writeback as much as possible: only
1360 			 * write pages when we've encountered many
1361 			 * dirty pages, and when we've already scanned
1362 			 * the rest of the LRU for clean pages and see
1363 			 * the same dirty pages again (PageReclaim).
1364 			 */
1365 			if (page_is_file_cache(page) &&
1366 			    (!current_is_kswapd() || !PageReclaim(page) ||
1367 			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1368 				/*
1369 				 * Immediately reclaim when written back.
1370 				 * Similar in principal to deactivate_page()
1371 				 * except we already have the page isolated
1372 				 * and know it's dirty
1373 				 */
1374 				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1375 				SetPageReclaim(page);
1376 
1377 				goto activate_locked;
1378 			}
1379 
1380 			if (references == PAGEREF_RECLAIM_CLEAN)
1381 				goto keep_locked;
1382 			if (!may_enter_fs)
1383 				goto keep_locked;
1384 			if (!sc->may_writepage)
1385 				goto keep_locked;
1386 
1387 			/*
1388 			 * Page is dirty. Flush the TLB if a writable entry
1389 			 * potentially exists to avoid CPU writes after IO
1390 			 * starts and then write it out here.
1391 			 */
1392 			try_to_unmap_flush_dirty();
1393 			switch (pageout(page, mapping, sc)) {
1394 			case PAGE_KEEP:
1395 				goto keep_locked;
1396 			case PAGE_ACTIVATE:
1397 				goto activate_locked;
1398 			case PAGE_SUCCESS:
1399 				if (PageWriteback(page))
1400 					goto keep;
1401 				if (PageDirty(page))
1402 					goto keep;
1403 
1404 				/*
1405 				 * A synchronous write - probably a ramdisk.  Go
1406 				 * ahead and try to reclaim the page.
1407 				 */
1408 				if (!trylock_page(page))
1409 					goto keep;
1410 				if (PageDirty(page) || PageWriteback(page))
1411 					goto keep_locked;
1412 				mapping = page_mapping(page);
1413 			case PAGE_CLEAN:
1414 				; /* try to free the page below */
1415 			}
1416 		}
1417 
1418 		/*
1419 		 * If the page has buffers, try to free the buffer mappings
1420 		 * associated with this page. If we succeed we try to free
1421 		 * the page as well.
1422 		 *
1423 		 * We do this even if the page is PageDirty().
1424 		 * try_to_release_page() does not perform I/O, but it is
1425 		 * possible for a page to have PageDirty set, but it is actually
1426 		 * clean (all its buffers are clean).  This happens if the
1427 		 * buffers were written out directly, with submit_bh(). ext3
1428 		 * will do this, as well as the blockdev mapping.
1429 		 * try_to_release_page() will discover that cleanness and will
1430 		 * drop the buffers and mark the page clean - it can be freed.
1431 		 *
1432 		 * Rarely, pages can have buffers and no ->mapping.  These are
1433 		 * the pages which were not successfully invalidated in
1434 		 * truncate_complete_page().  We try to drop those buffers here
1435 		 * and if that worked, and the page is no longer mapped into
1436 		 * process address space (page_count == 1) it can be freed.
1437 		 * Otherwise, leave the page on the LRU so it is swappable.
1438 		 */
1439 		if (page_has_private(page)) {
1440 			if (!try_to_release_page(page, sc->gfp_mask))
1441 				goto activate_locked;
1442 			if (!mapping && page_count(page) == 1) {
1443 				unlock_page(page);
1444 				if (put_page_testzero(page))
1445 					goto free_it;
1446 				else {
1447 					/*
1448 					 * rare race with speculative reference.
1449 					 * the speculative reference will free
1450 					 * this page shortly, so we may
1451 					 * increment nr_reclaimed here (and
1452 					 * leave it off the LRU).
1453 					 */
1454 					nr_reclaimed++;
1455 					continue;
1456 				}
1457 			}
1458 		}
1459 
1460 		if (PageAnon(page) && !PageSwapBacked(page)) {
1461 			/* follow __remove_mapping for reference */
1462 			if (!page_ref_freeze(page, 1))
1463 				goto keep_locked;
1464 			if (PageDirty(page)) {
1465 				page_ref_unfreeze(page, 1);
1466 				goto keep_locked;
1467 			}
1468 
1469 			count_vm_event(PGLAZYFREED);
1470 			count_memcg_page_event(page, PGLAZYFREED);
1471 		} else if (!mapping || !__remove_mapping(mapping, page, true))
1472 			goto keep_locked;
1473 
1474 		unlock_page(page);
1475 free_it:
1476 		/*
1477 		 * THP may get swapped out in a whole, need account
1478 		 * all base pages.
1479 		 */
1480 		nr_reclaimed += nr_pages;
1481 
1482 		/*
1483 		 * Is there need to periodically free_page_list? It would
1484 		 * appear not as the counts should be low
1485 		 */
1486 		if (unlikely(PageTransHuge(page))) {
1487 			mem_cgroup_uncharge(page);
1488 			(*get_compound_page_dtor(page))(page);
1489 		} else
1490 			list_add(&page->lru, &free_pages);
1491 		continue;
1492 
1493 activate_locked_split:
1494 		/*
1495 		 * The tail pages that are failed to add into swap cache
1496 		 * reach here.  Fixup nr_scanned and nr_pages.
1497 		 */
1498 		if (nr_pages > 1) {
1499 			sc->nr_scanned -= (nr_pages - 1);
1500 			nr_pages = 1;
1501 		}
1502 activate_locked:
1503 		/* Not a candidate for swapping, so reclaim swap space. */
1504 		if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1505 						PageMlocked(page)))
1506 			try_to_free_swap(page);
1507 		VM_BUG_ON_PAGE(PageActive(page), page);
1508 		if (!PageMlocked(page)) {
1509 			int type = page_is_file_cache(page);
1510 			SetPageActive(page);
1511 			stat->nr_activate[type] += nr_pages;
1512 			count_memcg_page_event(page, PGACTIVATE);
1513 		}
1514 keep_locked:
1515 		unlock_page(page);
1516 keep:
1517 		list_add(&page->lru, &ret_pages);
1518 		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1519 	}
1520 
1521 	pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1522 
1523 	mem_cgroup_uncharge_list(&free_pages);
1524 	try_to_unmap_flush();
1525 	free_unref_page_list(&free_pages);
1526 
1527 	list_splice(&ret_pages, page_list);
1528 	count_vm_events(PGACTIVATE, pgactivate);
1529 
1530 	return nr_reclaimed;
1531 }
1532 
1533 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1534 					    struct list_head *page_list)
1535 {
1536 	struct scan_control sc = {
1537 		.gfp_mask = GFP_KERNEL,
1538 		.priority = DEF_PRIORITY,
1539 		.may_unmap = 1,
1540 	};
1541 	struct reclaim_stat dummy_stat;
1542 	unsigned long ret;
1543 	struct page *page, *next;
1544 	LIST_HEAD(clean_pages);
1545 
1546 	list_for_each_entry_safe(page, next, page_list, lru) {
1547 		if (page_is_file_cache(page) && !PageDirty(page) &&
1548 		    !__PageMovable(page) && !PageUnevictable(page)) {
1549 			ClearPageActive(page);
1550 			list_move(&page->lru, &clean_pages);
1551 		}
1552 	}
1553 
1554 	ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1555 			TTU_IGNORE_ACCESS, &dummy_stat, true);
1556 	list_splice(&clean_pages, page_list);
1557 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1558 	return ret;
1559 }
1560 
1561 /*
1562  * Attempt to remove the specified page from its LRU.  Only take this page
1563  * if it is of the appropriate PageActive status.  Pages which are being
1564  * freed elsewhere are also ignored.
1565  *
1566  * page:	page to consider
1567  * mode:	one of the LRU isolation modes defined above
1568  *
1569  * returns 0 on success, -ve errno on failure.
1570  */
1571 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1572 {
1573 	int ret = -EINVAL;
1574 
1575 	/* Only take pages on the LRU. */
1576 	if (!PageLRU(page))
1577 		return ret;
1578 
1579 	/* Compaction should not handle unevictable pages but CMA can do so */
1580 	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1581 		return ret;
1582 
1583 	ret = -EBUSY;
1584 
1585 	/*
1586 	 * To minimise LRU disruption, the caller can indicate that it only
1587 	 * wants to isolate pages it will be able to operate on without
1588 	 * blocking - clean pages for the most part.
1589 	 *
1590 	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1591 	 * that it is possible to migrate without blocking
1592 	 */
1593 	if (mode & ISOLATE_ASYNC_MIGRATE) {
1594 		/* All the caller can do on PageWriteback is block */
1595 		if (PageWriteback(page))
1596 			return ret;
1597 
1598 		if (PageDirty(page)) {
1599 			struct address_space *mapping;
1600 			bool migrate_dirty;
1601 
1602 			/*
1603 			 * Only pages without mappings or that have a
1604 			 * ->migratepage callback are possible to migrate
1605 			 * without blocking. However, we can be racing with
1606 			 * truncation so it's necessary to lock the page
1607 			 * to stabilise the mapping as truncation holds
1608 			 * the page lock until after the page is removed
1609 			 * from the page cache.
1610 			 */
1611 			if (!trylock_page(page))
1612 				return ret;
1613 
1614 			mapping = page_mapping(page);
1615 			migrate_dirty = !mapping || mapping->a_ops->migratepage;
1616 			unlock_page(page);
1617 			if (!migrate_dirty)
1618 				return ret;
1619 		}
1620 	}
1621 
1622 	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1623 		return ret;
1624 
1625 	if (likely(get_page_unless_zero(page))) {
1626 		/*
1627 		 * Be careful not to clear PageLRU until after we're
1628 		 * sure the page is not being freed elsewhere -- the
1629 		 * page release code relies on it.
1630 		 */
1631 		ClearPageLRU(page);
1632 		ret = 0;
1633 	}
1634 
1635 	return ret;
1636 }
1637 
1638 
1639 /*
1640  * Update LRU sizes after isolating pages. The LRU size updates must
1641  * be complete before mem_cgroup_update_lru_size due to a santity check.
1642  */
1643 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1644 			enum lru_list lru, unsigned long *nr_zone_taken)
1645 {
1646 	int zid;
1647 
1648 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1649 		if (!nr_zone_taken[zid])
1650 			continue;
1651 
1652 		__update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1653 #ifdef CONFIG_MEMCG
1654 		mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1655 #endif
1656 	}
1657 
1658 }
1659 
1660 /**
1661  * pgdat->lru_lock is heavily contended.  Some of the functions that
1662  * shrink the lists perform better by taking out a batch of pages
1663  * and working on them outside the LRU lock.
1664  *
1665  * For pagecache intensive workloads, this function is the hottest
1666  * spot in the kernel (apart from copy_*_user functions).
1667  *
1668  * Appropriate locks must be held before calling this function.
1669  *
1670  * @nr_to_scan:	The number of eligible pages to look through on the list.
1671  * @lruvec:	The LRU vector to pull pages from.
1672  * @dst:	The temp list to put pages on to.
1673  * @nr_scanned:	The number of pages that were scanned.
1674  * @sc:		The scan_control struct for this reclaim session
1675  * @mode:	One of the LRU isolation modes
1676  * @lru:	LRU list id for isolating
1677  *
1678  * returns how many pages were moved onto *@dst.
1679  */
1680 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1681 		struct lruvec *lruvec, struct list_head *dst,
1682 		unsigned long *nr_scanned, struct scan_control *sc,
1683 		enum lru_list lru)
1684 {
1685 	struct list_head *src = &lruvec->lists[lru];
1686 	unsigned long nr_taken = 0;
1687 	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1688 	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1689 	unsigned long skipped = 0;
1690 	unsigned long scan, total_scan, nr_pages;
1691 	LIST_HEAD(pages_skipped);
1692 	isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
1693 
1694 	total_scan = 0;
1695 	scan = 0;
1696 	while (scan < nr_to_scan && !list_empty(src)) {
1697 		struct page *page;
1698 
1699 		page = lru_to_page(src);
1700 		prefetchw_prev_lru_page(page, src, flags);
1701 
1702 		VM_BUG_ON_PAGE(!PageLRU(page), page);
1703 
1704 		nr_pages = 1 << compound_order(page);
1705 		total_scan += nr_pages;
1706 
1707 		if (page_zonenum(page) > sc->reclaim_idx) {
1708 			list_move(&page->lru, &pages_skipped);
1709 			nr_skipped[page_zonenum(page)] += nr_pages;
1710 			continue;
1711 		}
1712 
1713 		/*
1714 		 * Do not count skipped pages because that makes the function
1715 		 * return with no isolated pages if the LRU mostly contains
1716 		 * ineligible pages.  This causes the VM to not reclaim any
1717 		 * pages, triggering a premature OOM.
1718 		 *
1719 		 * Account all tail pages of THP.  This would not cause
1720 		 * premature OOM since __isolate_lru_page() returns -EBUSY
1721 		 * only when the page is being freed somewhere else.
1722 		 */
1723 		scan += nr_pages;
1724 		switch (__isolate_lru_page(page, mode)) {
1725 		case 0:
1726 			nr_taken += nr_pages;
1727 			nr_zone_taken[page_zonenum(page)] += nr_pages;
1728 			list_move(&page->lru, dst);
1729 			break;
1730 
1731 		case -EBUSY:
1732 			/* else it is being freed elsewhere */
1733 			list_move(&page->lru, src);
1734 			continue;
1735 
1736 		default:
1737 			BUG();
1738 		}
1739 	}
1740 
1741 	/*
1742 	 * Splice any skipped pages to the start of the LRU list. Note that
1743 	 * this disrupts the LRU order when reclaiming for lower zones but
1744 	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1745 	 * scanning would soon rescan the same pages to skip and put the
1746 	 * system at risk of premature OOM.
1747 	 */
1748 	if (!list_empty(&pages_skipped)) {
1749 		int zid;
1750 
1751 		list_splice(&pages_skipped, src);
1752 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1753 			if (!nr_skipped[zid])
1754 				continue;
1755 
1756 			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1757 			skipped += nr_skipped[zid];
1758 		}
1759 	}
1760 	*nr_scanned = total_scan;
1761 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1762 				    total_scan, skipped, nr_taken, mode, lru);
1763 	update_lru_sizes(lruvec, lru, nr_zone_taken);
1764 	return nr_taken;
1765 }
1766 
1767 /**
1768  * isolate_lru_page - tries to isolate a page from its LRU list
1769  * @page: page to isolate from its LRU list
1770  *
1771  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1772  * vmstat statistic corresponding to whatever LRU list the page was on.
1773  *
1774  * Returns 0 if the page was removed from an LRU list.
1775  * Returns -EBUSY if the page was not on an LRU list.
1776  *
1777  * The returned page will have PageLRU() cleared.  If it was found on
1778  * the active list, it will have PageActive set.  If it was found on
1779  * the unevictable list, it will have the PageUnevictable bit set. That flag
1780  * may need to be cleared by the caller before letting the page go.
1781  *
1782  * The vmstat statistic corresponding to the list on which the page was
1783  * found will be decremented.
1784  *
1785  * Restrictions:
1786  *
1787  * (1) Must be called with an elevated refcount on the page. This is a
1788  *     fundamentnal difference from isolate_lru_pages (which is called
1789  *     without a stable reference).
1790  * (2) the lru_lock must not be held.
1791  * (3) interrupts must be enabled.
1792  */
1793 int isolate_lru_page(struct page *page)
1794 {
1795 	int ret = -EBUSY;
1796 
1797 	VM_BUG_ON_PAGE(!page_count(page), page);
1798 	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1799 
1800 	if (PageLRU(page)) {
1801 		pg_data_t *pgdat = page_pgdat(page);
1802 		struct lruvec *lruvec;
1803 
1804 		spin_lock_irq(&pgdat->lru_lock);
1805 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1806 		if (PageLRU(page)) {
1807 			int lru = page_lru(page);
1808 			get_page(page);
1809 			ClearPageLRU(page);
1810 			del_page_from_lru_list(page, lruvec, lru);
1811 			ret = 0;
1812 		}
1813 		spin_unlock_irq(&pgdat->lru_lock);
1814 	}
1815 	return ret;
1816 }
1817 
1818 /*
1819  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1820  * then get resheduled. When there are massive number of tasks doing page
1821  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1822  * the LRU list will go small and be scanned faster than necessary, leading to
1823  * unnecessary swapping, thrashing and OOM.
1824  */
1825 static int too_many_isolated(struct pglist_data *pgdat, int file,
1826 		struct scan_control *sc)
1827 {
1828 	unsigned long inactive, isolated;
1829 
1830 	if (current_is_kswapd())
1831 		return 0;
1832 
1833 	if (!sane_reclaim(sc))
1834 		return 0;
1835 
1836 	if (file) {
1837 		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1838 		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1839 	} else {
1840 		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1841 		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1842 	}
1843 
1844 	/*
1845 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1846 	 * won't get blocked by normal direct-reclaimers, forming a circular
1847 	 * deadlock.
1848 	 */
1849 	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1850 		inactive >>= 3;
1851 
1852 	return isolated > inactive;
1853 }
1854 
1855 /*
1856  * This moves pages from @list to corresponding LRU list.
1857  *
1858  * We move them the other way if the page is referenced by one or more
1859  * processes, from rmap.
1860  *
1861  * If the pages are mostly unmapped, the processing is fast and it is
1862  * appropriate to hold zone_lru_lock across the whole operation.  But if
1863  * the pages are mapped, the processing is slow (page_referenced()) so we
1864  * should drop zone_lru_lock around each page.  It's impossible to balance
1865  * this, so instead we remove the pages from the LRU while processing them.
1866  * It is safe to rely on PG_active against the non-LRU pages in here because
1867  * nobody will play with that bit on a non-LRU page.
1868  *
1869  * The downside is that we have to touch page->_refcount against each page.
1870  * But we had to alter page->flags anyway.
1871  *
1872  * Returns the number of pages moved to the given lruvec.
1873  */
1874 
1875 static unsigned noinline_for_stack move_pages_to_lru(struct lruvec *lruvec,
1876 						     struct list_head *list)
1877 {
1878 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1879 	int nr_pages, nr_moved = 0;
1880 	LIST_HEAD(pages_to_free);
1881 	struct page *page;
1882 	enum lru_list lru;
1883 
1884 	while (!list_empty(list)) {
1885 		page = lru_to_page(list);
1886 		VM_BUG_ON_PAGE(PageLRU(page), page);
1887 		if (unlikely(!page_evictable(page))) {
1888 			list_del(&page->lru);
1889 			spin_unlock_irq(&pgdat->lru_lock);
1890 			putback_lru_page(page);
1891 			spin_lock_irq(&pgdat->lru_lock);
1892 			continue;
1893 		}
1894 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1895 
1896 		SetPageLRU(page);
1897 		lru = page_lru(page);
1898 
1899 		nr_pages = hpage_nr_pages(page);
1900 		update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1901 		list_move(&page->lru, &lruvec->lists[lru]);
1902 
1903 		if (put_page_testzero(page)) {
1904 			__ClearPageLRU(page);
1905 			__ClearPageActive(page);
1906 			del_page_from_lru_list(page, lruvec, lru);
1907 
1908 			if (unlikely(PageCompound(page))) {
1909 				spin_unlock_irq(&pgdat->lru_lock);
1910 				mem_cgroup_uncharge(page);
1911 				(*get_compound_page_dtor(page))(page);
1912 				spin_lock_irq(&pgdat->lru_lock);
1913 			} else
1914 				list_add(&page->lru, &pages_to_free);
1915 		} else {
1916 			nr_moved += nr_pages;
1917 		}
1918 	}
1919 
1920 	/*
1921 	 * To save our caller's stack, now use input list for pages to free.
1922 	 */
1923 	list_splice(&pages_to_free, list);
1924 
1925 	return nr_moved;
1926 }
1927 
1928 /*
1929  * If a kernel thread (such as nfsd for loop-back mounts) services
1930  * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1931  * In that case we should only throttle if the backing device it is
1932  * writing to is congested.  In other cases it is safe to throttle.
1933  */
1934 static int current_may_throttle(void)
1935 {
1936 	return !(current->flags & PF_LESS_THROTTLE) ||
1937 		current->backing_dev_info == NULL ||
1938 		bdi_write_congested(current->backing_dev_info);
1939 }
1940 
1941 /*
1942  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
1943  * of reclaimed pages
1944  */
1945 static noinline_for_stack unsigned long
1946 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1947 		     struct scan_control *sc, enum lru_list lru)
1948 {
1949 	LIST_HEAD(page_list);
1950 	unsigned long nr_scanned;
1951 	unsigned long nr_reclaimed = 0;
1952 	unsigned long nr_taken;
1953 	struct reclaim_stat stat;
1954 	int file = is_file_lru(lru);
1955 	enum vm_event_item item;
1956 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1957 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1958 	bool stalled = false;
1959 
1960 	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1961 		if (stalled)
1962 			return 0;
1963 
1964 		/* wait a bit for the reclaimer. */
1965 		msleep(100);
1966 		stalled = true;
1967 
1968 		/* We are about to die and free our memory. Return now. */
1969 		if (fatal_signal_pending(current))
1970 			return SWAP_CLUSTER_MAX;
1971 	}
1972 
1973 	lru_add_drain();
1974 
1975 	spin_lock_irq(&pgdat->lru_lock);
1976 
1977 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1978 				     &nr_scanned, sc, lru);
1979 
1980 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1981 	reclaim_stat->recent_scanned[file] += nr_taken;
1982 
1983 	item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
1984 	if (global_reclaim(sc))
1985 		__count_vm_events(item, nr_scanned);
1986 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
1987 	spin_unlock_irq(&pgdat->lru_lock);
1988 
1989 	if (nr_taken == 0)
1990 		return 0;
1991 
1992 	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1993 				&stat, false);
1994 
1995 	spin_lock_irq(&pgdat->lru_lock);
1996 
1997 	item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
1998 	if (global_reclaim(sc))
1999 		__count_vm_events(item, nr_reclaimed);
2000 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
2001 	reclaim_stat->recent_rotated[0] += stat.nr_activate[0];
2002 	reclaim_stat->recent_rotated[1] += stat.nr_activate[1];
2003 
2004 	move_pages_to_lru(lruvec, &page_list);
2005 
2006 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2007 
2008 	spin_unlock_irq(&pgdat->lru_lock);
2009 
2010 	mem_cgroup_uncharge_list(&page_list);
2011 	free_unref_page_list(&page_list);
2012 
2013 	/*
2014 	 * If dirty pages are scanned that are not queued for IO, it
2015 	 * implies that flushers are not doing their job. This can
2016 	 * happen when memory pressure pushes dirty pages to the end of
2017 	 * the LRU before the dirty limits are breached and the dirty
2018 	 * data has expired. It can also happen when the proportion of
2019 	 * dirty pages grows not through writes but through memory
2020 	 * pressure reclaiming all the clean cache. And in some cases,
2021 	 * the flushers simply cannot keep up with the allocation
2022 	 * rate. Nudge the flusher threads in case they are asleep.
2023 	 */
2024 	if (stat.nr_unqueued_dirty == nr_taken)
2025 		wakeup_flusher_threads(WB_REASON_VMSCAN);
2026 
2027 	sc->nr.dirty += stat.nr_dirty;
2028 	sc->nr.congested += stat.nr_congested;
2029 	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2030 	sc->nr.writeback += stat.nr_writeback;
2031 	sc->nr.immediate += stat.nr_immediate;
2032 	sc->nr.taken += nr_taken;
2033 	if (file)
2034 		sc->nr.file_taken += nr_taken;
2035 
2036 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2037 			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2038 	return nr_reclaimed;
2039 }
2040 
2041 static void shrink_active_list(unsigned long nr_to_scan,
2042 			       struct lruvec *lruvec,
2043 			       struct scan_control *sc,
2044 			       enum lru_list lru)
2045 {
2046 	unsigned long nr_taken;
2047 	unsigned long nr_scanned;
2048 	unsigned long vm_flags;
2049 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
2050 	LIST_HEAD(l_active);
2051 	LIST_HEAD(l_inactive);
2052 	struct page *page;
2053 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2054 	unsigned nr_deactivate, nr_activate;
2055 	unsigned nr_rotated = 0;
2056 	int file = is_file_lru(lru);
2057 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2058 
2059 	lru_add_drain();
2060 
2061 	spin_lock_irq(&pgdat->lru_lock);
2062 
2063 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2064 				     &nr_scanned, sc, lru);
2065 
2066 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2067 	reclaim_stat->recent_scanned[file] += nr_taken;
2068 
2069 	__count_vm_events(PGREFILL, nr_scanned);
2070 	__count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2071 
2072 	spin_unlock_irq(&pgdat->lru_lock);
2073 
2074 	while (!list_empty(&l_hold)) {
2075 		cond_resched();
2076 		page = lru_to_page(&l_hold);
2077 		list_del(&page->lru);
2078 
2079 		if (unlikely(!page_evictable(page))) {
2080 			putback_lru_page(page);
2081 			continue;
2082 		}
2083 
2084 		if (unlikely(buffer_heads_over_limit)) {
2085 			if (page_has_private(page) && trylock_page(page)) {
2086 				if (page_has_private(page))
2087 					try_to_release_page(page, 0);
2088 				unlock_page(page);
2089 			}
2090 		}
2091 
2092 		if (page_referenced(page, 0, sc->target_mem_cgroup,
2093 				    &vm_flags)) {
2094 			nr_rotated += hpage_nr_pages(page);
2095 			/*
2096 			 * Identify referenced, file-backed active pages and
2097 			 * give them one more trip around the active list. So
2098 			 * that executable code get better chances to stay in
2099 			 * memory under moderate memory pressure.  Anon pages
2100 			 * are not likely to be evicted by use-once streaming
2101 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
2102 			 * so we ignore them here.
2103 			 */
2104 			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
2105 				list_add(&page->lru, &l_active);
2106 				continue;
2107 			}
2108 		}
2109 
2110 		ClearPageActive(page);	/* we are de-activating */
2111 		SetPageWorkingset(page);
2112 		list_add(&page->lru, &l_inactive);
2113 	}
2114 
2115 	/*
2116 	 * Move pages back to the lru list.
2117 	 */
2118 	spin_lock_irq(&pgdat->lru_lock);
2119 	/*
2120 	 * Count referenced pages from currently used mappings as rotated,
2121 	 * even though only some of them are actually re-activated.  This
2122 	 * helps balance scan pressure between file and anonymous pages in
2123 	 * get_scan_count.
2124 	 */
2125 	reclaim_stat->recent_rotated[file] += nr_rotated;
2126 
2127 	nr_activate = move_pages_to_lru(lruvec, &l_active);
2128 	nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
2129 	/* Keep all free pages in l_active list */
2130 	list_splice(&l_inactive, &l_active);
2131 
2132 	__count_vm_events(PGDEACTIVATE, nr_deactivate);
2133 	__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2134 
2135 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2136 	spin_unlock_irq(&pgdat->lru_lock);
2137 
2138 	mem_cgroup_uncharge_list(&l_active);
2139 	free_unref_page_list(&l_active);
2140 	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2141 			nr_deactivate, nr_rotated, sc->priority, file);
2142 }
2143 
2144 /*
2145  * The inactive anon list should be small enough that the VM never has
2146  * to do too much work.
2147  *
2148  * The inactive file list should be small enough to leave most memory
2149  * to the established workingset on the scan-resistant active list,
2150  * but large enough to avoid thrashing the aggregate readahead window.
2151  *
2152  * Both inactive lists should also be large enough that each inactive
2153  * page has a chance to be referenced again before it is reclaimed.
2154  *
2155  * If that fails and refaulting is observed, the inactive list grows.
2156  *
2157  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2158  * on this LRU, maintained by the pageout code. An inactive_ratio
2159  * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2160  *
2161  * total     target    max
2162  * memory    ratio     inactive
2163  * -------------------------------------
2164  *   10MB       1         5MB
2165  *  100MB       1        50MB
2166  *    1GB       3       250MB
2167  *   10GB      10       0.9GB
2168  *  100GB      31         3GB
2169  *    1TB     101        10GB
2170  *   10TB     320        32GB
2171  */
2172 static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2173 				 struct scan_control *sc, bool trace)
2174 {
2175 	enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2176 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2177 	enum lru_list inactive_lru = file * LRU_FILE;
2178 	unsigned long inactive, active;
2179 	unsigned long inactive_ratio;
2180 	unsigned long refaults;
2181 	unsigned long gb;
2182 
2183 	/*
2184 	 * If we don't have swap space, anonymous page deactivation
2185 	 * is pointless.
2186 	 */
2187 	if (!file && !total_swap_pages)
2188 		return false;
2189 
2190 	inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2191 	active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2192 
2193 	/*
2194 	 * When refaults are being observed, it means a new workingset
2195 	 * is being established. Disable active list protection to get
2196 	 * rid of the stale workingset quickly.
2197 	 */
2198 	refaults = lruvec_page_state_local(lruvec, WORKINGSET_ACTIVATE);
2199 	if (file && lruvec->refaults != refaults) {
2200 		inactive_ratio = 0;
2201 	} else {
2202 		gb = (inactive + active) >> (30 - PAGE_SHIFT);
2203 		if (gb)
2204 			inactive_ratio = int_sqrt(10 * gb);
2205 		else
2206 			inactive_ratio = 1;
2207 	}
2208 
2209 	if (trace)
2210 		trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
2211 			lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2212 			lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2213 			inactive_ratio, file);
2214 
2215 	return inactive * inactive_ratio < active;
2216 }
2217 
2218 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2219 				 struct lruvec *lruvec, struct scan_control *sc)
2220 {
2221 	if (is_active_lru(lru)) {
2222 		if (inactive_list_is_low(lruvec, is_file_lru(lru), sc, true))
2223 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2224 		return 0;
2225 	}
2226 
2227 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2228 }
2229 
2230 enum scan_balance {
2231 	SCAN_EQUAL,
2232 	SCAN_FRACT,
2233 	SCAN_ANON,
2234 	SCAN_FILE,
2235 };
2236 
2237 /*
2238  * Determine how aggressively the anon and file LRU lists should be
2239  * scanned.  The relative value of each set of LRU lists is determined
2240  * by looking at the fraction of the pages scanned we did rotate back
2241  * onto the active list instead of evict.
2242  *
2243  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2244  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2245  */
2246 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2247 			   struct scan_control *sc, unsigned long *nr,
2248 			   unsigned long *lru_pages)
2249 {
2250 	int swappiness = mem_cgroup_swappiness(memcg);
2251 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2252 	u64 fraction[2];
2253 	u64 denominator = 0;	/* gcc */
2254 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2255 	unsigned long anon_prio, file_prio;
2256 	enum scan_balance scan_balance;
2257 	unsigned long anon, file;
2258 	unsigned long ap, fp;
2259 	enum lru_list lru;
2260 
2261 	/* If we have no swap space, do not bother scanning anon pages. */
2262 	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2263 		scan_balance = SCAN_FILE;
2264 		goto out;
2265 	}
2266 
2267 	/*
2268 	 * Global reclaim will swap to prevent OOM even with no
2269 	 * swappiness, but memcg users want to use this knob to
2270 	 * disable swapping for individual groups completely when
2271 	 * using the memory controller's swap limit feature would be
2272 	 * too expensive.
2273 	 */
2274 	if (!global_reclaim(sc) && !swappiness) {
2275 		scan_balance = SCAN_FILE;
2276 		goto out;
2277 	}
2278 
2279 	/*
2280 	 * Do not apply any pressure balancing cleverness when the
2281 	 * system is close to OOM, scan both anon and file equally
2282 	 * (unless the swappiness setting disagrees with swapping).
2283 	 */
2284 	if (!sc->priority && swappiness) {
2285 		scan_balance = SCAN_EQUAL;
2286 		goto out;
2287 	}
2288 
2289 	/*
2290 	 * Prevent the reclaimer from falling into the cache trap: as
2291 	 * cache pages start out inactive, every cache fault will tip
2292 	 * the scan balance towards the file LRU.  And as the file LRU
2293 	 * shrinks, so does the window for rotation from references.
2294 	 * This means we have a runaway feedback loop where a tiny
2295 	 * thrashing file LRU becomes infinitely more attractive than
2296 	 * anon pages.  Try to detect this based on file LRU size.
2297 	 */
2298 	if (global_reclaim(sc)) {
2299 		unsigned long pgdatfile;
2300 		unsigned long pgdatfree;
2301 		int z;
2302 		unsigned long total_high_wmark = 0;
2303 
2304 		pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2305 		pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2306 			   node_page_state(pgdat, NR_INACTIVE_FILE);
2307 
2308 		for (z = 0; z < MAX_NR_ZONES; z++) {
2309 			struct zone *zone = &pgdat->node_zones[z];
2310 			if (!managed_zone(zone))
2311 				continue;
2312 
2313 			total_high_wmark += high_wmark_pages(zone);
2314 		}
2315 
2316 		if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2317 			/*
2318 			 * Force SCAN_ANON if there are enough inactive
2319 			 * anonymous pages on the LRU in eligible zones.
2320 			 * Otherwise, the small LRU gets thrashed.
2321 			 */
2322 			if (!inactive_list_is_low(lruvec, false, sc, false) &&
2323 			    lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
2324 					>> sc->priority) {
2325 				scan_balance = SCAN_ANON;
2326 				goto out;
2327 			}
2328 		}
2329 	}
2330 
2331 	/*
2332 	 * If there is enough inactive page cache, i.e. if the size of the
2333 	 * inactive list is greater than that of the active list *and* the
2334 	 * inactive list actually has some pages to scan on this priority, we
2335 	 * do not reclaim anything from the anonymous working set right now.
2336 	 * Without the second condition we could end up never scanning an
2337 	 * lruvec even if it has plenty of old anonymous pages unless the
2338 	 * system is under heavy pressure.
2339 	 */
2340 	if (!inactive_list_is_low(lruvec, true, sc, false) &&
2341 	    lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2342 		scan_balance = SCAN_FILE;
2343 		goto out;
2344 	}
2345 
2346 	scan_balance = SCAN_FRACT;
2347 
2348 	/*
2349 	 * With swappiness at 100, anonymous and file have the same priority.
2350 	 * This scanning priority is essentially the inverse of IO cost.
2351 	 */
2352 	anon_prio = swappiness;
2353 	file_prio = 200 - anon_prio;
2354 
2355 	/*
2356 	 * OK, so we have swap space and a fair amount of page cache
2357 	 * pages.  We use the recently rotated / recently scanned
2358 	 * ratios to determine how valuable each cache is.
2359 	 *
2360 	 * Because workloads change over time (and to avoid overflow)
2361 	 * we keep these statistics as a floating average, which ends
2362 	 * up weighing recent references more than old ones.
2363 	 *
2364 	 * anon in [0], file in [1]
2365 	 */
2366 
2367 	anon  = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2368 		lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2369 	file  = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2370 		lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2371 
2372 	spin_lock_irq(&pgdat->lru_lock);
2373 	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2374 		reclaim_stat->recent_scanned[0] /= 2;
2375 		reclaim_stat->recent_rotated[0] /= 2;
2376 	}
2377 
2378 	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2379 		reclaim_stat->recent_scanned[1] /= 2;
2380 		reclaim_stat->recent_rotated[1] /= 2;
2381 	}
2382 
2383 	/*
2384 	 * The amount of pressure on anon vs file pages is inversely
2385 	 * proportional to the fraction of recently scanned pages on
2386 	 * each list that were recently referenced and in active use.
2387 	 */
2388 	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2389 	ap /= reclaim_stat->recent_rotated[0] + 1;
2390 
2391 	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2392 	fp /= reclaim_stat->recent_rotated[1] + 1;
2393 	spin_unlock_irq(&pgdat->lru_lock);
2394 
2395 	fraction[0] = ap;
2396 	fraction[1] = fp;
2397 	denominator = ap + fp + 1;
2398 out:
2399 	*lru_pages = 0;
2400 	for_each_evictable_lru(lru) {
2401 		int file = is_file_lru(lru);
2402 		unsigned long size;
2403 		unsigned long scan;
2404 
2405 		size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2406 		scan = size >> sc->priority;
2407 		/*
2408 		 * If the cgroup's already been deleted, make sure to
2409 		 * scrape out the remaining cache.
2410 		 */
2411 		if (!scan && !mem_cgroup_online(memcg))
2412 			scan = min(size, SWAP_CLUSTER_MAX);
2413 
2414 		switch (scan_balance) {
2415 		case SCAN_EQUAL:
2416 			/* Scan lists relative to size */
2417 			break;
2418 		case SCAN_FRACT:
2419 			/*
2420 			 * Scan types proportional to swappiness and
2421 			 * their relative recent reclaim efficiency.
2422 			 * Make sure we don't miss the last page
2423 			 * because of a round-off error.
2424 			 */
2425 			scan = DIV64_U64_ROUND_UP(scan * fraction[file],
2426 						  denominator);
2427 			break;
2428 		case SCAN_FILE:
2429 		case SCAN_ANON:
2430 			/* Scan one type exclusively */
2431 			if ((scan_balance == SCAN_FILE) != file) {
2432 				size = 0;
2433 				scan = 0;
2434 			}
2435 			break;
2436 		default:
2437 			/* Look ma, no brain */
2438 			BUG();
2439 		}
2440 
2441 		*lru_pages += size;
2442 		nr[lru] = scan;
2443 	}
2444 }
2445 
2446 /*
2447  * This is a basic per-node page freer.  Used by both kswapd and direct reclaim.
2448  */
2449 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2450 			      struct scan_control *sc, unsigned long *lru_pages)
2451 {
2452 	struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2453 	unsigned long nr[NR_LRU_LISTS];
2454 	unsigned long targets[NR_LRU_LISTS];
2455 	unsigned long nr_to_scan;
2456 	enum lru_list lru;
2457 	unsigned long nr_reclaimed = 0;
2458 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2459 	struct blk_plug plug;
2460 	bool scan_adjusted;
2461 
2462 	get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2463 
2464 	/* Record the original scan target for proportional adjustments later */
2465 	memcpy(targets, nr, sizeof(nr));
2466 
2467 	/*
2468 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2469 	 * event that can occur when there is little memory pressure e.g.
2470 	 * multiple streaming readers/writers. Hence, we do not abort scanning
2471 	 * when the requested number of pages are reclaimed when scanning at
2472 	 * DEF_PRIORITY on the assumption that the fact we are direct
2473 	 * reclaiming implies that kswapd is not keeping up and it is best to
2474 	 * do a batch of work at once. For memcg reclaim one check is made to
2475 	 * abort proportional reclaim if either the file or anon lru has already
2476 	 * dropped to zero at the first pass.
2477 	 */
2478 	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2479 			 sc->priority == DEF_PRIORITY);
2480 
2481 	blk_start_plug(&plug);
2482 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2483 					nr[LRU_INACTIVE_FILE]) {
2484 		unsigned long nr_anon, nr_file, percentage;
2485 		unsigned long nr_scanned;
2486 
2487 		for_each_evictable_lru(lru) {
2488 			if (nr[lru]) {
2489 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2490 				nr[lru] -= nr_to_scan;
2491 
2492 				nr_reclaimed += shrink_list(lru, nr_to_scan,
2493 							    lruvec, sc);
2494 			}
2495 		}
2496 
2497 		cond_resched();
2498 
2499 		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2500 			continue;
2501 
2502 		/*
2503 		 * For kswapd and memcg, reclaim at least the number of pages
2504 		 * requested. Ensure that the anon and file LRUs are scanned
2505 		 * proportionally what was requested by get_scan_count(). We
2506 		 * stop reclaiming one LRU and reduce the amount scanning
2507 		 * proportional to the original scan target.
2508 		 */
2509 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2510 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2511 
2512 		/*
2513 		 * It's just vindictive to attack the larger once the smaller
2514 		 * has gone to zero.  And given the way we stop scanning the
2515 		 * smaller below, this makes sure that we only make one nudge
2516 		 * towards proportionality once we've got nr_to_reclaim.
2517 		 */
2518 		if (!nr_file || !nr_anon)
2519 			break;
2520 
2521 		if (nr_file > nr_anon) {
2522 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2523 						targets[LRU_ACTIVE_ANON] + 1;
2524 			lru = LRU_BASE;
2525 			percentage = nr_anon * 100 / scan_target;
2526 		} else {
2527 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2528 						targets[LRU_ACTIVE_FILE] + 1;
2529 			lru = LRU_FILE;
2530 			percentage = nr_file * 100 / scan_target;
2531 		}
2532 
2533 		/* Stop scanning the smaller of the LRU */
2534 		nr[lru] = 0;
2535 		nr[lru + LRU_ACTIVE] = 0;
2536 
2537 		/*
2538 		 * Recalculate the other LRU scan count based on its original
2539 		 * scan target and the percentage scanning already complete
2540 		 */
2541 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2542 		nr_scanned = targets[lru] - nr[lru];
2543 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2544 		nr[lru] -= min(nr[lru], nr_scanned);
2545 
2546 		lru += LRU_ACTIVE;
2547 		nr_scanned = targets[lru] - nr[lru];
2548 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2549 		nr[lru] -= min(nr[lru], nr_scanned);
2550 
2551 		scan_adjusted = true;
2552 	}
2553 	blk_finish_plug(&plug);
2554 	sc->nr_reclaimed += nr_reclaimed;
2555 
2556 	/*
2557 	 * Even if we did not try to evict anon pages at all, we want to
2558 	 * rebalance the anon lru active/inactive ratio.
2559 	 */
2560 	if (inactive_list_is_low(lruvec, false, sc, true))
2561 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2562 				   sc, LRU_ACTIVE_ANON);
2563 }
2564 
2565 /* Use reclaim/compaction for costly allocs or under memory pressure */
2566 static bool in_reclaim_compaction(struct scan_control *sc)
2567 {
2568 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2569 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2570 			 sc->priority < DEF_PRIORITY - 2))
2571 		return true;
2572 
2573 	return false;
2574 }
2575 
2576 /*
2577  * Reclaim/compaction is used for high-order allocation requests. It reclaims
2578  * order-0 pages before compacting the zone. should_continue_reclaim() returns
2579  * true if more pages should be reclaimed such that when the page allocator
2580  * calls try_to_compact_zone() that it will have enough free pages to succeed.
2581  * It will give up earlier than that if there is difficulty reclaiming pages.
2582  */
2583 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2584 					unsigned long nr_reclaimed,
2585 					unsigned long nr_scanned,
2586 					struct scan_control *sc)
2587 {
2588 	unsigned long pages_for_compaction;
2589 	unsigned long inactive_lru_pages;
2590 	int z;
2591 
2592 	/* If not in reclaim/compaction mode, stop */
2593 	if (!in_reclaim_compaction(sc))
2594 		return false;
2595 
2596 	/* Consider stopping depending on scan and reclaim activity */
2597 	if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) {
2598 		/*
2599 		 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2600 		 * full LRU list has been scanned and we are still failing
2601 		 * to reclaim pages. This full LRU scan is potentially
2602 		 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2603 		 */
2604 		if (!nr_reclaimed && !nr_scanned)
2605 			return false;
2606 	} else {
2607 		/*
2608 		 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2609 		 * fail without consequence, stop if we failed to reclaim
2610 		 * any pages from the last SWAP_CLUSTER_MAX number of
2611 		 * pages that were scanned. This will return to the
2612 		 * caller faster at the risk reclaim/compaction and
2613 		 * the resulting allocation attempt fails
2614 		 */
2615 		if (!nr_reclaimed)
2616 			return false;
2617 	}
2618 
2619 	/*
2620 	 * If we have not reclaimed enough pages for compaction and the
2621 	 * inactive lists are large enough, continue reclaiming
2622 	 */
2623 	pages_for_compaction = compact_gap(sc->order);
2624 	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2625 	if (get_nr_swap_pages() > 0)
2626 		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2627 	if (sc->nr_reclaimed < pages_for_compaction &&
2628 			inactive_lru_pages > pages_for_compaction)
2629 		return true;
2630 
2631 	/* If compaction would go ahead or the allocation would succeed, stop */
2632 	for (z = 0; z <= sc->reclaim_idx; z++) {
2633 		struct zone *zone = &pgdat->node_zones[z];
2634 		if (!managed_zone(zone))
2635 			continue;
2636 
2637 		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2638 		case COMPACT_SUCCESS:
2639 		case COMPACT_CONTINUE:
2640 			return false;
2641 		default:
2642 			/* check next zone */
2643 			;
2644 		}
2645 	}
2646 	return true;
2647 }
2648 
2649 static bool pgdat_memcg_congested(pg_data_t *pgdat, struct mem_cgroup *memcg)
2650 {
2651 	return test_bit(PGDAT_CONGESTED, &pgdat->flags) ||
2652 		(memcg && memcg_congested(pgdat, memcg));
2653 }
2654 
2655 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2656 {
2657 	struct reclaim_state *reclaim_state = current->reclaim_state;
2658 	unsigned long nr_reclaimed, nr_scanned;
2659 	bool reclaimable = false;
2660 
2661 	do {
2662 		struct mem_cgroup *root = sc->target_mem_cgroup;
2663 		struct mem_cgroup_reclaim_cookie reclaim = {
2664 			.pgdat = pgdat,
2665 			.priority = sc->priority,
2666 		};
2667 		unsigned long node_lru_pages = 0;
2668 		struct mem_cgroup *memcg;
2669 
2670 		memset(&sc->nr, 0, sizeof(sc->nr));
2671 
2672 		nr_reclaimed = sc->nr_reclaimed;
2673 		nr_scanned = sc->nr_scanned;
2674 
2675 		memcg = mem_cgroup_iter(root, NULL, &reclaim);
2676 		do {
2677 			unsigned long lru_pages;
2678 			unsigned long reclaimed;
2679 			unsigned long scanned;
2680 
2681 			switch (mem_cgroup_protected(root, memcg)) {
2682 			case MEMCG_PROT_MIN:
2683 				/*
2684 				 * Hard protection.
2685 				 * If there is no reclaimable memory, OOM.
2686 				 */
2687 				continue;
2688 			case MEMCG_PROT_LOW:
2689 				/*
2690 				 * Soft protection.
2691 				 * Respect the protection only as long as
2692 				 * there is an unprotected supply
2693 				 * of reclaimable memory from other cgroups.
2694 				 */
2695 				if (!sc->memcg_low_reclaim) {
2696 					sc->memcg_low_skipped = 1;
2697 					continue;
2698 				}
2699 				memcg_memory_event(memcg, MEMCG_LOW);
2700 				break;
2701 			case MEMCG_PROT_NONE:
2702 				break;
2703 			}
2704 
2705 			reclaimed = sc->nr_reclaimed;
2706 			scanned = sc->nr_scanned;
2707 			shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2708 			node_lru_pages += lru_pages;
2709 
2710 			if (sc->may_shrinkslab) {
2711 				shrink_slab(sc->gfp_mask, pgdat->node_id,
2712 				    memcg, sc->priority);
2713 			}
2714 
2715 			/* Record the group's reclaim efficiency */
2716 			vmpressure(sc->gfp_mask, memcg, false,
2717 				   sc->nr_scanned - scanned,
2718 				   sc->nr_reclaimed - reclaimed);
2719 
2720 			/*
2721 			 * Kswapd have to scan all memory cgroups to fulfill
2722 			 * the overall scan target for the node.
2723 			 *
2724 			 * Limit reclaim, on the other hand, only cares about
2725 			 * nr_to_reclaim pages to be reclaimed and it will
2726 			 * retry with decreasing priority if one round over the
2727 			 * whole hierarchy is not sufficient.
2728 			 */
2729 			if (!current_is_kswapd() &&
2730 					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2731 				mem_cgroup_iter_break(root, memcg);
2732 				break;
2733 			}
2734 		} while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2735 
2736 		if (reclaim_state) {
2737 			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2738 			reclaim_state->reclaimed_slab = 0;
2739 		}
2740 
2741 		/* Record the subtree's reclaim efficiency */
2742 		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2743 			   sc->nr_scanned - nr_scanned,
2744 			   sc->nr_reclaimed - nr_reclaimed);
2745 
2746 		if (sc->nr_reclaimed - nr_reclaimed)
2747 			reclaimable = true;
2748 
2749 		if (current_is_kswapd()) {
2750 			/*
2751 			 * If reclaim is isolating dirty pages under writeback,
2752 			 * it implies that the long-lived page allocation rate
2753 			 * is exceeding the page laundering rate. Either the
2754 			 * global limits are not being effective at throttling
2755 			 * processes due to the page distribution throughout
2756 			 * zones or there is heavy usage of a slow backing
2757 			 * device. The only option is to throttle from reclaim
2758 			 * context which is not ideal as there is no guarantee
2759 			 * the dirtying process is throttled in the same way
2760 			 * balance_dirty_pages() manages.
2761 			 *
2762 			 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2763 			 * count the number of pages under pages flagged for
2764 			 * immediate reclaim and stall if any are encountered
2765 			 * in the nr_immediate check below.
2766 			 */
2767 			if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
2768 				set_bit(PGDAT_WRITEBACK, &pgdat->flags);
2769 
2770 			/*
2771 			 * Tag a node as congested if all the dirty pages
2772 			 * scanned were backed by a congested BDI and
2773 			 * wait_iff_congested will stall.
2774 			 */
2775 			if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2776 				set_bit(PGDAT_CONGESTED, &pgdat->flags);
2777 
2778 			/* Allow kswapd to start writing pages during reclaim.*/
2779 			if (sc->nr.unqueued_dirty == sc->nr.file_taken)
2780 				set_bit(PGDAT_DIRTY, &pgdat->flags);
2781 
2782 			/*
2783 			 * If kswapd scans pages marked marked for immediate
2784 			 * reclaim and under writeback (nr_immediate), it
2785 			 * implies that pages are cycling through the LRU
2786 			 * faster than they are written so also forcibly stall.
2787 			 */
2788 			if (sc->nr.immediate)
2789 				congestion_wait(BLK_RW_ASYNC, HZ/10);
2790 		}
2791 
2792 		/*
2793 		 * Legacy memcg will stall in page writeback so avoid forcibly
2794 		 * stalling in wait_iff_congested().
2795 		 */
2796 		if (!global_reclaim(sc) && sane_reclaim(sc) &&
2797 		    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2798 			set_memcg_congestion(pgdat, root, true);
2799 
2800 		/*
2801 		 * Stall direct reclaim for IO completions if underlying BDIs
2802 		 * and node is congested. Allow kswapd to continue until it
2803 		 * starts encountering unqueued dirty pages or cycling through
2804 		 * the LRU too quickly.
2805 		 */
2806 		if (!sc->hibernation_mode && !current_is_kswapd() &&
2807 		   current_may_throttle() && pgdat_memcg_congested(pgdat, root))
2808 			wait_iff_congested(BLK_RW_ASYNC, HZ/10);
2809 
2810 	} while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2811 					 sc->nr_scanned - nr_scanned, sc));
2812 
2813 	/*
2814 	 * Kswapd gives up on balancing particular nodes after too
2815 	 * many failures to reclaim anything from them and goes to
2816 	 * sleep. On reclaim progress, reset the failure counter. A
2817 	 * successful direct reclaim run will revive a dormant kswapd.
2818 	 */
2819 	if (reclaimable)
2820 		pgdat->kswapd_failures = 0;
2821 
2822 	return reclaimable;
2823 }
2824 
2825 /*
2826  * Returns true if compaction should go ahead for a costly-order request, or
2827  * the allocation would already succeed without compaction. Return false if we
2828  * should reclaim first.
2829  */
2830 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2831 {
2832 	unsigned long watermark;
2833 	enum compact_result suitable;
2834 
2835 	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2836 	if (suitable == COMPACT_SUCCESS)
2837 		/* Allocation should succeed already. Don't reclaim. */
2838 		return true;
2839 	if (suitable == COMPACT_SKIPPED)
2840 		/* Compaction cannot yet proceed. Do reclaim. */
2841 		return false;
2842 
2843 	/*
2844 	 * Compaction is already possible, but it takes time to run and there
2845 	 * are potentially other callers using the pages just freed. So proceed
2846 	 * with reclaim to make a buffer of free pages available to give
2847 	 * compaction a reasonable chance of completing and allocating the page.
2848 	 * Note that we won't actually reclaim the whole buffer in one attempt
2849 	 * as the target watermark in should_continue_reclaim() is lower. But if
2850 	 * we are already above the high+gap watermark, don't reclaim at all.
2851 	 */
2852 	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2853 
2854 	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2855 }
2856 
2857 /*
2858  * This is the direct reclaim path, for page-allocating processes.  We only
2859  * try to reclaim pages from zones which will satisfy the caller's allocation
2860  * request.
2861  *
2862  * If a zone is deemed to be full of pinned pages then just give it a light
2863  * scan then give up on it.
2864  */
2865 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2866 {
2867 	struct zoneref *z;
2868 	struct zone *zone;
2869 	unsigned long nr_soft_reclaimed;
2870 	unsigned long nr_soft_scanned;
2871 	gfp_t orig_mask;
2872 	pg_data_t *last_pgdat = NULL;
2873 
2874 	/*
2875 	 * If the number of buffer_heads in the machine exceeds the maximum
2876 	 * allowed level, force direct reclaim to scan the highmem zone as
2877 	 * highmem pages could be pinning lowmem pages storing buffer_heads
2878 	 */
2879 	orig_mask = sc->gfp_mask;
2880 	if (buffer_heads_over_limit) {
2881 		sc->gfp_mask |= __GFP_HIGHMEM;
2882 		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2883 	}
2884 
2885 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2886 					sc->reclaim_idx, sc->nodemask) {
2887 		/*
2888 		 * Take care memory controller reclaiming has small influence
2889 		 * to global LRU.
2890 		 */
2891 		if (global_reclaim(sc)) {
2892 			if (!cpuset_zone_allowed(zone,
2893 						 GFP_KERNEL | __GFP_HARDWALL))
2894 				continue;
2895 
2896 			/*
2897 			 * If we already have plenty of memory free for
2898 			 * compaction in this zone, don't free any more.
2899 			 * Even though compaction is invoked for any
2900 			 * non-zero order, only frequent costly order
2901 			 * reclamation is disruptive enough to become a
2902 			 * noticeable problem, like transparent huge
2903 			 * page allocations.
2904 			 */
2905 			if (IS_ENABLED(CONFIG_COMPACTION) &&
2906 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2907 			    compaction_ready(zone, sc)) {
2908 				sc->compaction_ready = true;
2909 				continue;
2910 			}
2911 
2912 			/*
2913 			 * Shrink each node in the zonelist once. If the
2914 			 * zonelist is ordered by zone (not the default) then a
2915 			 * node may be shrunk multiple times but in that case
2916 			 * the user prefers lower zones being preserved.
2917 			 */
2918 			if (zone->zone_pgdat == last_pgdat)
2919 				continue;
2920 
2921 			/*
2922 			 * This steals pages from memory cgroups over softlimit
2923 			 * and returns the number of reclaimed pages and
2924 			 * scanned pages. This works for global memory pressure
2925 			 * and balancing, not for a memcg's limit.
2926 			 */
2927 			nr_soft_scanned = 0;
2928 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2929 						sc->order, sc->gfp_mask,
2930 						&nr_soft_scanned);
2931 			sc->nr_reclaimed += nr_soft_reclaimed;
2932 			sc->nr_scanned += nr_soft_scanned;
2933 			/* need some check for avoid more shrink_zone() */
2934 		}
2935 
2936 		/* See comment about same check for global reclaim above */
2937 		if (zone->zone_pgdat == last_pgdat)
2938 			continue;
2939 		last_pgdat = zone->zone_pgdat;
2940 		shrink_node(zone->zone_pgdat, sc);
2941 	}
2942 
2943 	/*
2944 	 * Restore to original mask to avoid the impact on the caller if we
2945 	 * promoted it to __GFP_HIGHMEM.
2946 	 */
2947 	sc->gfp_mask = orig_mask;
2948 }
2949 
2950 static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
2951 {
2952 	struct mem_cgroup *memcg;
2953 
2954 	memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
2955 	do {
2956 		unsigned long refaults;
2957 		struct lruvec *lruvec;
2958 
2959 		lruvec = mem_cgroup_lruvec(pgdat, memcg);
2960 		refaults = lruvec_page_state_local(lruvec, WORKINGSET_ACTIVATE);
2961 		lruvec->refaults = refaults;
2962 	} while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
2963 }
2964 
2965 /*
2966  * This is the main entry point to direct page reclaim.
2967  *
2968  * If a full scan of the inactive list fails to free enough memory then we
2969  * are "out of memory" and something needs to be killed.
2970  *
2971  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2972  * high - the zone may be full of dirty or under-writeback pages, which this
2973  * caller can't do much about.  We kick the writeback threads and take explicit
2974  * naps in the hope that some of these pages can be written.  But if the
2975  * allocating task holds filesystem locks which prevent writeout this might not
2976  * work, and the allocation attempt will fail.
2977  *
2978  * returns:	0, if no pages reclaimed
2979  * 		else, the number of pages reclaimed
2980  */
2981 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2982 					  struct scan_control *sc)
2983 {
2984 	int initial_priority = sc->priority;
2985 	pg_data_t *last_pgdat;
2986 	struct zoneref *z;
2987 	struct zone *zone;
2988 retry:
2989 	delayacct_freepages_start();
2990 
2991 	if (global_reclaim(sc))
2992 		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
2993 
2994 	do {
2995 		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2996 				sc->priority);
2997 		sc->nr_scanned = 0;
2998 		shrink_zones(zonelist, sc);
2999 
3000 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3001 			break;
3002 
3003 		if (sc->compaction_ready)
3004 			break;
3005 
3006 		/*
3007 		 * If we're getting trouble reclaiming, start doing
3008 		 * writepage even in laptop mode.
3009 		 */
3010 		if (sc->priority < DEF_PRIORITY - 2)
3011 			sc->may_writepage = 1;
3012 	} while (--sc->priority >= 0);
3013 
3014 	last_pgdat = NULL;
3015 	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3016 					sc->nodemask) {
3017 		if (zone->zone_pgdat == last_pgdat)
3018 			continue;
3019 		last_pgdat = zone->zone_pgdat;
3020 		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3021 		set_memcg_congestion(last_pgdat, sc->target_mem_cgroup, false);
3022 	}
3023 
3024 	delayacct_freepages_end();
3025 
3026 	if (sc->nr_reclaimed)
3027 		return sc->nr_reclaimed;
3028 
3029 	/* Aborted reclaim to try compaction? don't OOM, then */
3030 	if (sc->compaction_ready)
3031 		return 1;
3032 
3033 	/* Untapped cgroup reserves?  Don't OOM, retry. */
3034 	if (sc->memcg_low_skipped) {
3035 		sc->priority = initial_priority;
3036 		sc->memcg_low_reclaim = 1;
3037 		sc->memcg_low_skipped = 0;
3038 		goto retry;
3039 	}
3040 
3041 	return 0;
3042 }
3043 
3044 static bool allow_direct_reclaim(pg_data_t *pgdat)
3045 {
3046 	struct zone *zone;
3047 	unsigned long pfmemalloc_reserve = 0;
3048 	unsigned long free_pages = 0;
3049 	int i;
3050 	bool wmark_ok;
3051 
3052 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3053 		return true;
3054 
3055 	for (i = 0; i <= ZONE_NORMAL; i++) {
3056 		zone = &pgdat->node_zones[i];
3057 		if (!managed_zone(zone))
3058 			continue;
3059 
3060 		if (!zone_reclaimable_pages(zone))
3061 			continue;
3062 
3063 		pfmemalloc_reserve += min_wmark_pages(zone);
3064 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
3065 	}
3066 
3067 	/* If there are no reserves (unexpected config) then do not throttle */
3068 	if (!pfmemalloc_reserve)
3069 		return true;
3070 
3071 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
3072 
3073 	/* kswapd must be awake if processes are being throttled */
3074 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3075 		pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
3076 						(enum zone_type)ZONE_NORMAL);
3077 		wake_up_interruptible(&pgdat->kswapd_wait);
3078 	}
3079 
3080 	return wmark_ok;
3081 }
3082 
3083 /*
3084  * Throttle direct reclaimers if backing storage is backed by the network
3085  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3086  * depleted. kswapd will continue to make progress and wake the processes
3087  * when the low watermark is reached.
3088  *
3089  * Returns true if a fatal signal was delivered during throttling. If this
3090  * happens, the page allocator should not consider triggering the OOM killer.
3091  */
3092 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3093 					nodemask_t *nodemask)
3094 {
3095 	struct zoneref *z;
3096 	struct zone *zone;
3097 	pg_data_t *pgdat = NULL;
3098 
3099 	/*
3100 	 * Kernel threads should not be throttled as they may be indirectly
3101 	 * responsible for cleaning pages necessary for reclaim to make forward
3102 	 * progress. kjournald for example may enter direct reclaim while
3103 	 * committing a transaction where throttling it could forcing other
3104 	 * processes to block on log_wait_commit().
3105 	 */
3106 	if (current->flags & PF_KTHREAD)
3107 		goto out;
3108 
3109 	/*
3110 	 * If a fatal signal is pending, this process should not throttle.
3111 	 * It should return quickly so it can exit and free its memory
3112 	 */
3113 	if (fatal_signal_pending(current))
3114 		goto out;
3115 
3116 	/*
3117 	 * Check if the pfmemalloc reserves are ok by finding the first node
3118 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3119 	 * GFP_KERNEL will be required for allocating network buffers when
3120 	 * swapping over the network so ZONE_HIGHMEM is unusable.
3121 	 *
3122 	 * Throttling is based on the first usable node and throttled processes
3123 	 * wait on a queue until kswapd makes progress and wakes them. There
3124 	 * is an affinity then between processes waking up and where reclaim
3125 	 * progress has been made assuming the process wakes on the same node.
3126 	 * More importantly, processes running on remote nodes will not compete
3127 	 * for remote pfmemalloc reserves and processes on different nodes
3128 	 * should make reasonable progress.
3129 	 */
3130 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
3131 					gfp_zone(gfp_mask), nodemask) {
3132 		if (zone_idx(zone) > ZONE_NORMAL)
3133 			continue;
3134 
3135 		/* Throttle based on the first usable node */
3136 		pgdat = zone->zone_pgdat;
3137 		if (allow_direct_reclaim(pgdat))
3138 			goto out;
3139 		break;
3140 	}
3141 
3142 	/* If no zone was usable by the allocation flags then do not throttle */
3143 	if (!pgdat)
3144 		goto out;
3145 
3146 	/* Account for the throttling */
3147 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
3148 
3149 	/*
3150 	 * If the caller cannot enter the filesystem, it's possible that it
3151 	 * is due to the caller holding an FS lock or performing a journal
3152 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
3153 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
3154 	 * blocked waiting on the same lock. Instead, throttle for up to a
3155 	 * second before continuing.
3156 	 */
3157 	if (!(gfp_mask & __GFP_FS)) {
3158 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3159 			allow_direct_reclaim(pgdat), HZ);
3160 
3161 		goto check_pending;
3162 	}
3163 
3164 	/* Throttle until kswapd wakes the process */
3165 	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3166 		allow_direct_reclaim(pgdat));
3167 
3168 check_pending:
3169 	if (fatal_signal_pending(current))
3170 		return true;
3171 
3172 out:
3173 	return false;
3174 }
3175 
3176 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3177 				gfp_t gfp_mask, nodemask_t *nodemask)
3178 {
3179 	unsigned long nr_reclaimed;
3180 	struct scan_control sc = {
3181 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3182 		.gfp_mask = current_gfp_context(gfp_mask),
3183 		.reclaim_idx = gfp_zone(gfp_mask),
3184 		.order = order,
3185 		.nodemask = nodemask,
3186 		.priority = DEF_PRIORITY,
3187 		.may_writepage = !laptop_mode,
3188 		.may_unmap = 1,
3189 		.may_swap = 1,
3190 		.may_shrinkslab = 1,
3191 	};
3192 
3193 	/*
3194 	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3195 	 * Confirm they are large enough for max values.
3196 	 */
3197 	BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3198 	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3199 	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3200 
3201 	/*
3202 	 * Do not enter reclaim if fatal signal was delivered while throttled.
3203 	 * 1 is returned so that the page allocator does not OOM kill at this
3204 	 * point.
3205 	 */
3206 	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3207 		return 1;
3208 
3209 	set_task_reclaim_state(current, &sc.reclaim_state);
3210 	trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
3211 
3212 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3213 
3214 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3215 	set_task_reclaim_state(current, NULL);
3216 
3217 	return nr_reclaimed;
3218 }
3219 
3220 #ifdef CONFIG_MEMCG
3221 
3222 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3223 						gfp_t gfp_mask, bool noswap,
3224 						pg_data_t *pgdat,
3225 						unsigned long *nr_scanned)
3226 {
3227 	struct scan_control sc = {
3228 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3229 		.target_mem_cgroup = memcg,
3230 		.may_writepage = !laptop_mode,
3231 		.may_unmap = 1,
3232 		.reclaim_idx = MAX_NR_ZONES - 1,
3233 		.may_swap = !noswap,
3234 		.may_shrinkslab = 1,
3235 	};
3236 	unsigned long lru_pages;
3237 
3238 	set_task_reclaim_state(current, &sc.reclaim_state);
3239 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3240 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3241 
3242 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3243 						      sc.gfp_mask);
3244 
3245 	/*
3246 	 * NOTE: Although we can get the priority field, using it
3247 	 * here is not a good idea, since it limits the pages we can scan.
3248 	 * if we don't reclaim here, the shrink_node from balance_pgdat
3249 	 * will pick up pages from other mem cgroup's as well. We hack
3250 	 * the priority and make it zero.
3251 	 */
3252 	shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3253 
3254 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3255 
3256 	set_task_reclaim_state(current, NULL);
3257 	*nr_scanned = sc.nr_scanned;
3258 
3259 	return sc.nr_reclaimed;
3260 }
3261 
3262 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3263 					   unsigned long nr_pages,
3264 					   gfp_t gfp_mask,
3265 					   bool may_swap)
3266 {
3267 	struct zonelist *zonelist;
3268 	unsigned long nr_reclaimed;
3269 	unsigned long pflags;
3270 	int nid;
3271 	unsigned int noreclaim_flag;
3272 	struct scan_control sc = {
3273 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3274 		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3275 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3276 		.reclaim_idx = MAX_NR_ZONES - 1,
3277 		.target_mem_cgroup = memcg,
3278 		.priority = DEF_PRIORITY,
3279 		.may_writepage = !laptop_mode,
3280 		.may_unmap = 1,
3281 		.may_swap = may_swap,
3282 		.may_shrinkslab = 1,
3283 	};
3284 
3285 	set_task_reclaim_state(current, &sc.reclaim_state);
3286 	/*
3287 	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3288 	 * take care of from where we get pages. So the node where we start the
3289 	 * scan does not need to be the current node.
3290 	 */
3291 	nid = mem_cgroup_select_victim_node(memcg);
3292 
3293 	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3294 
3295 	trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
3296 
3297 	psi_memstall_enter(&pflags);
3298 	noreclaim_flag = memalloc_noreclaim_save();
3299 
3300 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3301 
3302 	memalloc_noreclaim_restore(noreclaim_flag);
3303 	psi_memstall_leave(&pflags);
3304 
3305 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3306 	set_task_reclaim_state(current, NULL);
3307 
3308 	return nr_reclaimed;
3309 }
3310 #endif
3311 
3312 static void age_active_anon(struct pglist_data *pgdat,
3313 				struct scan_control *sc)
3314 {
3315 	struct mem_cgroup *memcg;
3316 
3317 	if (!total_swap_pages)
3318 		return;
3319 
3320 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
3321 	do {
3322 		struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3323 
3324 		if (inactive_list_is_low(lruvec, false, sc, true))
3325 			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3326 					   sc, LRU_ACTIVE_ANON);
3327 
3328 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
3329 	} while (memcg);
3330 }
3331 
3332 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int classzone_idx)
3333 {
3334 	int i;
3335 	struct zone *zone;
3336 
3337 	/*
3338 	 * Check for watermark boosts top-down as the higher zones
3339 	 * are more likely to be boosted. Both watermarks and boosts
3340 	 * should not be checked at the time time as reclaim would
3341 	 * start prematurely when there is no boosting and a lower
3342 	 * zone is balanced.
3343 	 */
3344 	for (i = classzone_idx; i >= 0; i--) {
3345 		zone = pgdat->node_zones + i;
3346 		if (!managed_zone(zone))
3347 			continue;
3348 
3349 		if (zone->watermark_boost)
3350 			return true;
3351 	}
3352 
3353 	return false;
3354 }
3355 
3356 /*
3357  * Returns true if there is an eligible zone balanced for the request order
3358  * and classzone_idx
3359  */
3360 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3361 {
3362 	int i;
3363 	unsigned long mark = -1;
3364 	struct zone *zone;
3365 
3366 	/*
3367 	 * Check watermarks bottom-up as lower zones are more likely to
3368 	 * meet watermarks.
3369 	 */
3370 	for (i = 0; i <= classzone_idx; i++) {
3371 		zone = pgdat->node_zones + i;
3372 
3373 		if (!managed_zone(zone))
3374 			continue;
3375 
3376 		mark = high_wmark_pages(zone);
3377 		if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3378 			return true;
3379 	}
3380 
3381 	/*
3382 	 * If a node has no populated zone within classzone_idx, it does not
3383 	 * need balancing by definition. This can happen if a zone-restricted
3384 	 * allocation tries to wake a remote kswapd.
3385 	 */
3386 	if (mark == -1)
3387 		return true;
3388 
3389 	return false;
3390 }
3391 
3392 /* Clear pgdat state for congested, dirty or under writeback. */
3393 static void clear_pgdat_congested(pg_data_t *pgdat)
3394 {
3395 	clear_bit(PGDAT_CONGESTED, &pgdat->flags);
3396 	clear_bit(PGDAT_DIRTY, &pgdat->flags);
3397 	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3398 }
3399 
3400 /*
3401  * Prepare kswapd for sleeping. This verifies that there are no processes
3402  * waiting in throttle_direct_reclaim() and that watermarks have been met.
3403  *
3404  * Returns true if kswapd is ready to sleep
3405  */
3406 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3407 {
3408 	/*
3409 	 * The throttled processes are normally woken up in balance_pgdat() as
3410 	 * soon as allow_direct_reclaim() is true. But there is a potential
3411 	 * race between when kswapd checks the watermarks and a process gets
3412 	 * throttled. There is also a potential race if processes get
3413 	 * throttled, kswapd wakes, a large process exits thereby balancing the
3414 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
3415 	 * the wake up checks. If kswapd is going to sleep, no process should
3416 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3417 	 * the wake up is premature, processes will wake kswapd and get
3418 	 * throttled again. The difference from wake ups in balance_pgdat() is
3419 	 * that here we are under prepare_to_wait().
3420 	 */
3421 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
3422 		wake_up_all(&pgdat->pfmemalloc_wait);
3423 
3424 	/* Hopeless node, leave it to direct reclaim */
3425 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3426 		return true;
3427 
3428 	if (pgdat_balanced(pgdat, order, classzone_idx)) {
3429 		clear_pgdat_congested(pgdat);
3430 		return true;
3431 	}
3432 
3433 	return false;
3434 }
3435 
3436 /*
3437  * kswapd shrinks a node of pages that are at or below the highest usable
3438  * zone that is currently unbalanced.
3439  *
3440  * Returns true if kswapd scanned at least the requested number of pages to
3441  * reclaim or if the lack of progress was due to pages under writeback.
3442  * This is used to determine if the scanning priority needs to be raised.
3443  */
3444 static bool kswapd_shrink_node(pg_data_t *pgdat,
3445 			       struct scan_control *sc)
3446 {
3447 	struct zone *zone;
3448 	int z;
3449 
3450 	/* Reclaim a number of pages proportional to the number of zones */
3451 	sc->nr_to_reclaim = 0;
3452 	for (z = 0; z <= sc->reclaim_idx; z++) {
3453 		zone = pgdat->node_zones + z;
3454 		if (!managed_zone(zone))
3455 			continue;
3456 
3457 		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3458 	}
3459 
3460 	/*
3461 	 * Historically care was taken to put equal pressure on all zones but
3462 	 * now pressure is applied based on node LRU order.
3463 	 */
3464 	shrink_node(pgdat, sc);
3465 
3466 	/*
3467 	 * Fragmentation may mean that the system cannot be rebalanced for
3468 	 * high-order allocations. If twice the allocation size has been
3469 	 * reclaimed then recheck watermarks only at order-0 to prevent
3470 	 * excessive reclaim. Assume that a process requested a high-order
3471 	 * can direct reclaim/compact.
3472 	 */
3473 	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3474 		sc->order = 0;
3475 
3476 	return sc->nr_scanned >= sc->nr_to_reclaim;
3477 }
3478 
3479 /*
3480  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3481  * that are eligible for use by the caller until at least one zone is
3482  * balanced.
3483  *
3484  * Returns the order kswapd finished reclaiming at.
3485  *
3486  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3487  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3488  * found to have free_pages <= high_wmark_pages(zone), any page in that zone
3489  * or lower is eligible for reclaim until at least one usable zone is
3490  * balanced.
3491  */
3492 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3493 {
3494 	int i;
3495 	unsigned long nr_soft_reclaimed;
3496 	unsigned long nr_soft_scanned;
3497 	unsigned long pflags;
3498 	unsigned long nr_boost_reclaim;
3499 	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
3500 	bool boosted;
3501 	struct zone *zone;
3502 	struct scan_control sc = {
3503 		.gfp_mask = GFP_KERNEL,
3504 		.order = order,
3505 		.may_unmap = 1,
3506 	};
3507 
3508 	set_task_reclaim_state(current, &sc.reclaim_state);
3509 	psi_memstall_enter(&pflags);
3510 	__fs_reclaim_acquire();
3511 
3512 	count_vm_event(PAGEOUTRUN);
3513 
3514 	/*
3515 	 * Account for the reclaim boost. Note that the zone boost is left in
3516 	 * place so that parallel allocations that are near the watermark will
3517 	 * stall or direct reclaim until kswapd is finished.
3518 	 */
3519 	nr_boost_reclaim = 0;
3520 	for (i = 0; i <= classzone_idx; i++) {
3521 		zone = pgdat->node_zones + i;
3522 		if (!managed_zone(zone))
3523 			continue;
3524 
3525 		nr_boost_reclaim += zone->watermark_boost;
3526 		zone_boosts[i] = zone->watermark_boost;
3527 	}
3528 	boosted = nr_boost_reclaim;
3529 
3530 restart:
3531 	sc.priority = DEF_PRIORITY;
3532 	do {
3533 		unsigned long nr_reclaimed = sc.nr_reclaimed;
3534 		bool raise_priority = true;
3535 		bool balanced;
3536 		bool ret;
3537 
3538 		sc.reclaim_idx = classzone_idx;
3539 
3540 		/*
3541 		 * If the number of buffer_heads exceeds the maximum allowed
3542 		 * then consider reclaiming from all zones. This has a dual
3543 		 * purpose -- on 64-bit systems it is expected that
3544 		 * buffer_heads are stripped during active rotation. On 32-bit
3545 		 * systems, highmem pages can pin lowmem memory and shrinking
3546 		 * buffers can relieve lowmem pressure. Reclaim may still not
3547 		 * go ahead if all eligible zones for the original allocation
3548 		 * request are balanced to avoid excessive reclaim from kswapd.
3549 		 */
3550 		if (buffer_heads_over_limit) {
3551 			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3552 				zone = pgdat->node_zones + i;
3553 				if (!managed_zone(zone))
3554 					continue;
3555 
3556 				sc.reclaim_idx = i;
3557 				break;
3558 			}
3559 		}
3560 
3561 		/*
3562 		 * If the pgdat is imbalanced then ignore boosting and preserve
3563 		 * the watermarks for a later time and restart. Note that the
3564 		 * zone watermarks will be still reset at the end of balancing
3565 		 * on the grounds that the normal reclaim should be enough to
3566 		 * re-evaluate if boosting is required when kswapd next wakes.
3567 		 */
3568 		balanced = pgdat_balanced(pgdat, sc.order, classzone_idx);
3569 		if (!balanced && nr_boost_reclaim) {
3570 			nr_boost_reclaim = 0;
3571 			goto restart;
3572 		}
3573 
3574 		/*
3575 		 * If boosting is not active then only reclaim if there are no
3576 		 * eligible zones. Note that sc.reclaim_idx is not used as
3577 		 * buffer_heads_over_limit may have adjusted it.
3578 		 */
3579 		if (!nr_boost_reclaim && balanced)
3580 			goto out;
3581 
3582 		/* Limit the priority of boosting to avoid reclaim writeback */
3583 		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
3584 			raise_priority = false;
3585 
3586 		/*
3587 		 * Do not writeback or swap pages for boosted reclaim. The
3588 		 * intent is to relieve pressure not issue sub-optimal IO
3589 		 * from reclaim context. If no pages are reclaimed, the
3590 		 * reclaim will be aborted.
3591 		 */
3592 		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
3593 		sc.may_swap = !nr_boost_reclaim;
3594 		sc.may_shrinkslab = !nr_boost_reclaim;
3595 
3596 		/*
3597 		 * Do some background aging of the anon list, to give
3598 		 * pages a chance to be referenced before reclaiming. All
3599 		 * pages are rotated regardless of classzone as this is
3600 		 * about consistent aging.
3601 		 */
3602 		age_active_anon(pgdat, &sc);
3603 
3604 		/*
3605 		 * If we're getting trouble reclaiming, start doing writepage
3606 		 * even in laptop mode.
3607 		 */
3608 		if (sc.priority < DEF_PRIORITY - 2)
3609 			sc.may_writepage = 1;
3610 
3611 		/* Call soft limit reclaim before calling shrink_node. */
3612 		sc.nr_scanned = 0;
3613 		nr_soft_scanned = 0;
3614 		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3615 						sc.gfp_mask, &nr_soft_scanned);
3616 		sc.nr_reclaimed += nr_soft_reclaimed;
3617 
3618 		/*
3619 		 * There should be no need to raise the scanning priority if
3620 		 * enough pages are already being scanned that that high
3621 		 * watermark would be met at 100% efficiency.
3622 		 */
3623 		if (kswapd_shrink_node(pgdat, &sc))
3624 			raise_priority = false;
3625 
3626 		/*
3627 		 * If the low watermark is met there is no need for processes
3628 		 * to be throttled on pfmemalloc_wait as they should not be
3629 		 * able to safely make forward progress. Wake them
3630 		 */
3631 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3632 				allow_direct_reclaim(pgdat))
3633 			wake_up_all(&pgdat->pfmemalloc_wait);
3634 
3635 		/* Check if kswapd should be suspending */
3636 		__fs_reclaim_release();
3637 		ret = try_to_freeze();
3638 		__fs_reclaim_acquire();
3639 		if (ret || kthread_should_stop())
3640 			break;
3641 
3642 		/*
3643 		 * Raise priority if scanning rate is too low or there was no
3644 		 * progress in reclaiming pages
3645 		 */
3646 		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3647 		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
3648 
3649 		/*
3650 		 * If reclaim made no progress for a boost, stop reclaim as
3651 		 * IO cannot be queued and it could be an infinite loop in
3652 		 * extreme circumstances.
3653 		 */
3654 		if (nr_boost_reclaim && !nr_reclaimed)
3655 			break;
3656 
3657 		if (raise_priority || !nr_reclaimed)
3658 			sc.priority--;
3659 	} while (sc.priority >= 1);
3660 
3661 	if (!sc.nr_reclaimed)
3662 		pgdat->kswapd_failures++;
3663 
3664 out:
3665 	/* If reclaim was boosted, account for the reclaim done in this pass */
3666 	if (boosted) {
3667 		unsigned long flags;
3668 
3669 		for (i = 0; i <= classzone_idx; i++) {
3670 			if (!zone_boosts[i])
3671 				continue;
3672 
3673 			/* Increments are under the zone lock */
3674 			zone = pgdat->node_zones + i;
3675 			spin_lock_irqsave(&zone->lock, flags);
3676 			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
3677 			spin_unlock_irqrestore(&zone->lock, flags);
3678 		}
3679 
3680 		/*
3681 		 * As there is now likely space, wakeup kcompact to defragment
3682 		 * pageblocks.
3683 		 */
3684 		wakeup_kcompactd(pgdat, pageblock_order, classzone_idx);
3685 	}
3686 
3687 	snapshot_refaults(NULL, pgdat);
3688 	__fs_reclaim_release();
3689 	psi_memstall_leave(&pflags);
3690 	set_task_reclaim_state(current, NULL);
3691 
3692 	/*
3693 	 * Return the order kswapd stopped reclaiming at as
3694 	 * prepare_kswapd_sleep() takes it into account. If another caller
3695 	 * entered the allocator slow path while kswapd was awake, order will
3696 	 * remain at the higher level.
3697 	 */
3698 	return sc.order;
3699 }
3700 
3701 /*
3702  * The pgdat->kswapd_classzone_idx is used to pass the highest zone index to be
3703  * reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is not
3704  * a valid index then either kswapd runs for first time or kswapd couldn't sleep
3705  * after previous reclaim attempt (node is still unbalanced). In that case
3706  * return the zone index of the previous kswapd reclaim cycle.
3707  */
3708 static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
3709 					   enum zone_type prev_classzone_idx)
3710 {
3711 	if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3712 		return prev_classzone_idx;
3713 	return pgdat->kswapd_classzone_idx;
3714 }
3715 
3716 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3717 				unsigned int classzone_idx)
3718 {
3719 	long remaining = 0;
3720 	DEFINE_WAIT(wait);
3721 
3722 	if (freezing(current) || kthread_should_stop())
3723 		return;
3724 
3725 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3726 
3727 	/*
3728 	 * Try to sleep for a short interval. Note that kcompactd will only be
3729 	 * woken if it is possible to sleep for a short interval. This is
3730 	 * deliberate on the assumption that if reclaim cannot keep an
3731 	 * eligible zone balanced that it's also unlikely that compaction will
3732 	 * succeed.
3733 	 */
3734 	if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3735 		/*
3736 		 * Compaction records what page blocks it recently failed to
3737 		 * isolate pages from and skips them in the future scanning.
3738 		 * When kswapd is going to sleep, it is reasonable to assume
3739 		 * that pages and compaction may succeed so reset the cache.
3740 		 */
3741 		reset_isolation_suitable(pgdat);
3742 
3743 		/*
3744 		 * We have freed the memory, now we should compact it to make
3745 		 * allocation of the requested order possible.
3746 		 */
3747 		wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3748 
3749 		remaining = schedule_timeout(HZ/10);
3750 
3751 		/*
3752 		 * If woken prematurely then reset kswapd_classzone_idx and
3753 		 * order. The values will either be from a wakeup request or
3754 		 * the previous request that slept prematurely.
3755 		 */
3756 		if (remaining) {
3757 			pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3758 			pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3759 		}
3760 
3761 		finish_wait(&pgdat->kswapd_wait, &wait);
3762 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3763 	}
3764 
3765 	/*
3766 	 * After a short sleep, check if it was a premature sleep. If not, then
3767 	 * go fully to sleep until explicitly woken up.
3768 	 */
3769 	if (!remaining &&
3770 	    prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3771 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3772 
3773 		/*
3774 		 * vmstat counters are not perfectly accurate and the estimated
3775 		 * value for counters such as NR_FREE_PAGES can deviate from the
3776 		 * true value by nr_online_cpus * threshold. To avoid the zone
3777 		 * watermarks being breached while under pressure, we reduce the
3778 		 * per-cpu vmstat threshold while kswapd is awake and restore
3779 		 * them before going back to sleep.
3780 		 */
3781 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3782 
3783 		if (!kthread_should_stop())
3784 			schedule();
3785 
3786 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3787 	} else {
3788 		if (remaining)
3789 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3790 		else
3791 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3792 	}
3793 	finish_wait(&pgdat->kswapd_wait, &wait);
3794 }
3795 
3796 /*
3797  * The background pageout daemon, started as a kernel thread
3798  * from the init process.
3799  *
3800  * This basically trickles out pages so that we have _some_
3801  * free memory available even if there is no other activity
3802  * that frees anything up. This is needed for things like routing
3803  * etc, where we otherwise might have all activity going on in
3804  * asynchronous contexts that cannot page things out.
3805  *
3806  * If there are applications that are active memory-allocators
3807  * (most normal use), this basically shouldn't matter.
3808  */
3809 static int kswapd(void *p)
3810 {
3811 	unsigned int alloc_order, reclaim_order;
3812 	unsigned int classzone_idx = MAX_NR_ZONES - 1;
3813 	pg_data_t *pgdat = (pg_data_t*)p;
3814 	struct task_struct *tsk = current;
3815 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3816 
3817 	if (!cpumask_empty(cpumask))
3818 		set_cpus_allowed_ptr(tsk, cpumask);
3819 
3820 	/*
3821 	 * Tell the memory management that we're a "memory allocator",
3822 	 * and that if we need more memory we should get access to it
3823 	 * regardless (see "__alloc_pages()"). "kswapd" should
3824 	 * never get caught in the normal page freeing logic.
3825 	 *
3826 	 * (Kswapd normally doesn't need memory anyway, but sometimes
3827 	 * you need a small amount of memory in order to be able to
3828 	 * page out something else, and this flag essentially protects
3829 	 * us from recursively trying to free more memory as we're
3830 	 * trying to free the first piece of memory in the first place).
3831 	 */
3832 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3833 	set_freezable();
3834 
3835 	pgdat->kswapd_order = 0;
3836 	pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3837 	for ( ; ; ) {
3838 		bool ret;
3839 
3840 		alloc_order = reclaim_order = pgdat->kswapd_order;
3841 		classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3842 
3843 kswapd_try_sleep:
3844 		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3845 					classzone_idx);
3846 
3847 		/* Read the new order and classzone_idx */
3848 		alloc_order = reclaim_order = pgdat->kswapd_order;
3849 		classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3850 		pgdat->kswapd_order = 0;
3851 		pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3852 
3853 		ret = try_to_freeze();
3854 		if (kthread_should_stop())
3855 			break;
3856 
3857 		/*
3858 		 * We can speed up thawing tasks if we don't call balance_pgdat
3859 		 * after returning from the refrigerator
3860 		 */
3861 		if (ret)
3862 			continue;
3863 
3864 		/*
3865 		 * Reclaim begins at the requested order but if a high-order
3866 		 * reclaim fails then kswapd falls back to reclaiming for
3867 		 * order-0. If that happens, kswapd will consider sleeping
3868 		 * for the order it finished reclaiming at (reclaim_order)
3869 		 * but kcompactd is woken to compact for the original
3870 		 * request (alloc_order).
3871 		 */
3872 		trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3873 						alloc_order);
3874 		reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3875 		if (reclaim_order < alloc_order)
3876 			goto kswapd_try_sleep;
3877 	}
3878 
3879 	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3880 
3881 	return 0;
3882 }
3883 
3884 /*
3885  * A zone is low on free memory or too fragmented for high-order memory.  If
3886  * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
3887  * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
3888  * has failed or is not needed, still wake up kcompactd if only compaction is
3889  * needed.
3890  */
3891 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
3892 		   enum zone_type classzone_idx)
3893 {
3894 	pg_data_t *pgdat;
3895 
3896 	if (!managed_zone(zone))
3897 		return;
3898 
3899 	if (!cpuset_zone_allowed(zone, gfp_flags))
3900 		return;
3901 	pgdat = zone->zone_pgdat;
3902 
3903 	if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3904 		pgdat->kswapd_classzone_idx = classzone_idx;
3905 	else
3906 		pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx,
3907 						  classzone_idx);
3908 	pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3909 	if (!waitqueue_active(&pgdat->kswapd_wait))
3910 		return;
3911 
3912 	/* Hopeless node, leave it to direct reclaim if possible */
3913 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
3914 	    (pgdat_balanced(pgdat, order, classzone_idx) &&
3915 	     !pgdat_watermark_boosted(pgdat, classzone_idx))) {
3916 		/*
3917 		 * There may be plenty of free memory available, but it's too
3918 		 * fragmented for high-order allocations.  Wake up kcompactd
3919 		 * and rely on compaction_suitable() to determine if it's
3920 		 * needed.  If it fails, it will defer subsequent attempts to
3921 		 * ratelimit its work.
3922 		 */
3923 		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
3924 			wakeup_kcompactd(pgdat, order, classzone_idx);
3925 		return;
3926 	}
3927 
3928 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order,
3929 				      gfp_flags);
3930 	wake_up_interruptible(&pgdat->kswapd_wait);
3931 }
3932 
3933 #ifdef CONFIG_HIBERNATION
3934 /*
3935  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3936  * freed pages.
3937  *
3938  * Rather than trying to age LRUs the aim is to preserve the overall
3939  * LRU order by reclaiming preferentially
3940  * inactive > active > active referenced > active mapped
3941  */
3942 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3943 {
3944 	struct scan_control sc = {
3945 		.nr_to_reclaim = nr_to_reclaim,
3946 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3947 		.reclaim_idx = MAX_NR_ZONES - 1,
3948 		.priority = DEF_PRIORITY,
3949 		.may_writepage = 1,
3950 		.may_unmap = 1,
3951 		.may_swap = 1,
3952 		.hibernation_mode = 1,
3953 	};
3954 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3955 	unsigned long nr_reclaimed;
3956 	unsigned int noreclaim_flag;
3957 
3958 	fs_reclaim_acquire(sc.gfp_mask);
3959 	noreclaim_flag = memalloc_noreclaim_save();
3960 	set_task_reclaim_state(current, &sc.reclaim_state);
3961 
3962 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3963 
3964 	set_task_reclaim_state(current, NULL);
3965 	memalloc_noreclaim_restore(noreclaim_flag);
3966 	fs_reclaim_release(sc.gfp_mask);
3967 
3968 	return nr_reclaimed;
3969 }
3970 #endif /* CONFIG_HIBERNATION */
3971 
3972 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3973    not required for correctness.  So if the last cpu in a node goes
3974    away, we get changed to run anywhere: as the first one comes back,
3975    restore their cpu bindings. */
3976 static int kswapd_cpu_online(unsigned int cpu)
3977 {
3978 	int nid;
3979 
3980 	for_each_node_state(nid, N_MEMORY) {
3981 		pg_data_t *pgdat = NODE_DATA(nid);
3982 		const struct cpumask *mask;
3983 
3984 		mask = cpumask_of_node(pgdat->node_id);
3985 
3986 		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3987 			/* One of our CPUs online: restore mask */
3988 			set_cpus_allowed_ptr(pgdat->kswapd, mask);
3989 	}
3990 	return 0;
3991 }
3992 
3993 /*
3994  * This kswapd start function will be called by init and node-hot-add.
3995  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3996  */
3997 int kswapd_run(int nid)
3998 {
3999 	pg_data_t *pgdat = NODE_DATA(nid);
4000 	int ret = 0;
4001 
4002 	if (pgdat->kswapd)
4003 		return 0;
4004 
4005 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4006 	if (IS_ERR(pgdat->kswapd)) {
4007 		/* failure at boot is fatal */
4008 		BUG_ON(system_state < SYSTEM_RUNNING);
4009 		pr_err("Failed to start kswapd on node %d\n", nid);
4010 		ret = PTR_ERR(pgdat->kswapd);
4011 		pgdat->kswapd = NULL;
4012 	}
4013 	return ret;
4014 }
4015 
4016 /*
4017  * Called by memory hotplug when all memory in a node is offlined.  Caller must
4018  * hold mem_hotplug_begin/end().
4019  */
4020 void kswapd_stop(int nid)
4021 {
4022 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4023 
4024 	if (kswapd) {
4025 		kthread_stop(kswapd);
4026 		NODE_DATA(nid)->kswapd = NULL;
4027 	}
4028 }
4029 
4030 static int __init kswapd_init(void)
4031 {
4032 	int nid, ret;
4033 
4034 	swap_setup();
4035 	for_each_node_state(nid, N_MEMORY)
4036  		kswapd_run(nid);
4037 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
4038 					"mm/vmscan:online", kswapd_cpu_online,
4039 					NULL);
4040 	WARN_ON(ret < 0);
4041 	return 0;
4042 }
4043 
4044 module_init(kswapd_init)
4045 
4046 #ifdef CONFIG_NUMA
4047 /*
4048  * Node reclaim mode
4049  *
4050  * If non-zero call node_reclaim when the number of free pages falls below
4051  * the watermarks.
4052  */
4053 int node_reclaim_mode __read_mostly;
4054 
4055 #define RECLAIM_OFF 0
4056 #define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
4057 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
4058 #define RECLAIM_UNMAP (1<<2)	/* Unmap pages during reclaim */
4059 
4060 /*
4061  * Priority for NODE_RECLAIM. This determines the fraction of pages
4062  * of a node considered for each zone_reclaim. 4 scans 1/16th of
4063  * a zone.
4064  */
4065 #define NODE_RECLAIM_PRIORITY 4
4066 
4067 /*
4068  * Percentage of pages in a zone that must be unmapped for node_reclaim to
4069  * occur.
4070  */
4071 int sysctl_min_unmapped_ratio = 1;
4072 
4073 /*
4074  * If the number of slab pages in a zone grows beyond this percentage then
4075  * slab reclaim needs to occur.
4076  */
4077 int sysctl_min_slab_ratio = 5;
4078 
4079 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4080 {
4081 	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4082 	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4083 		node_page_state(pgdat, NR_ACTIVE_FILE);
4084 
4085 	/*
4086 	 * It's possible for there to be more file mapped pages than
4087 	 * accounted for by the pages on the file LRU lists because
4088 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4089 	 */
4090 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4091 }
4092 
4093 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
4094 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4095 {
4096 	unsigned long nr_pagecache_reclaimable;
4097 	unsigned long delta = 0;
4098 
4099 	/*
4100 	 * If RECLAIM_UNMAP is set, then all file pages are considered
4101 	 * potentially reclaimable. Otherwise, we have to worry about
4102 	 * pages like swapcache and node_unmapped_file_pages() provides
4103 	 * a better estimate
4104 	 */
4105 	if (node_reclaim_mode & RECLAIM_UNMAP)
4106 		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4107 	else
4108 		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4109 
4110 	/* If we can't clean pages, remove dirty pages from consideration */
4111 	if (!(node_reclaim_mode & RECLAIM_WRITE))
4112 		delta += node_page_state(pgdat, NR_FILE_DIRTY);
4113 
4114 	/* Watch for any possible underflows due to delta */
4115 	if (unlikely(delta > nr_pagecache_reclaimable))
4116 		delta = nr_pagecache_reclaimable;
4117 
4118 	return nr_pagecache_reclaimable - delta;
4119 }
4120 
4121 /*
4122  * Try to free up some pages from this node through reclaim.
4123  */
4124 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4125 {
4126 	/* Minimum pages needed in order to stay on node */
4127 	const unsigned long nr_pages = 1 << order;
4128 	struct task_struct *p = current;
4129 	unsigned int noreclaim_flag;
4130 	struct scan_control sc = {
4131 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4132 		.gfp_mask = current_gfp_context(gfp_mask),
4133 		.order = order,
4134 		.priority = NODE_RECLAIM_PRIORITY,
4135 		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4136 		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4137 		.may_swap = 1,
4138 		.reclaim_idx = gfp_zone(gfp_mask),
4139 	};
4140 
4141 	trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4142 					   sc.gfp_mask);
4143 
4144 	cond_resched();
4145 	fs_reclaim_acquire(sc.gfp_mask);
4146 	/*
4147 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4148 	 * and we also need to be able to write out pages for RECLAIM_WRITE
4149 	 * and RECLAIM_UNMAP.
4150 	 */
4151 	noreclaim_flag = memalloc_noreclaim_save();
4152 	p->flags |= PF_SWAPWRITE;
4153 	set_task_reclaim_state(p, &sc.reclaim_state);
4154 
4155 	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4156 		/*
4157 		 * Free memory by calling shrink node with increasing
4158 		 * priorities until we have enough memory freed.
4159 		 */
4160 		do {
4161 			shrink_node(pgdat, &sc);
4162 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4163 	}
4164 
4165 	set_task_reclaim_state(p, NULL);
4166 	current->flags &= ~PF_SWAPWRITE;
4167 	memalloc_noreclaim_restore(noreclaim_flag);
4168 	fs_reclaim_release(sc.gfp_mask);
4169 
4170 	trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4171 
4172 	return sc.nr_reclaimed >= nr_pages;
4173 }
4174 
4175 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4176 {
4177 	int ret;
4178 
4179 	/*
4180 	 * Node reclaim reclaims unmapped file backed pages and
4181 	 * slab pages if we are over the defined limits.
4182 	 *
4183 	 * A small portion of unmapped file backed pages is needed for
4184 	 * file I/O otherwise pages read by file I/O will be immediately
4185 	 * thrown out if the node is overallocated. So we do not reclaim
4186 	 * if less than a specified percentage of the node is used by
4187 	 * unmapped file backed pages.
4188 	 */
4189 	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4190 	    node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
4191 		return NODE_RECLAIM_FULL;
4192 
4193 	/*
4194 	 * Do not scan if the allocation should not be delayed.
4195 	 */
4196 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4197 		return NODE_RECLAIM_NOSCAN;
4198 
4199 	/*
4200 	 * Only run node reclaim on the local node or on nodes that do not
4201 	 * have associated processors. This will favor the local processor
4202 	 * over remote processors and spread off node memory allocations
4203 	 * as wide as possible.
4204 	 */
4205 	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4206 		return NODE_RECLAIM_NOSCAN;
4207 
4208 	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4209 		return NODE_RECLAIM_NOSCAN;
4210 
4211 	ret = __node_reclaim(pgdat, gfp_mask, order);
4212 	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4213 
4214 	if (!ret)
4215 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4216 
4217 	return ret;
4218 }
4219 #endif
4220 
4221 /*
4222  * page_evictable - test whether a page is evictable
4223  * @page: the page to test
4224  *
4225  * Test whether page is evictable--i.e., should be placed on active/inactive
4226  * lists vs unevictable list.
4227  *
4228  * Reasons page might not be evictable:
4229  * (1) page's mapping marked unevictable
4230  * (2) page is part of an mlocked VMA
4231  *
4232  */
4233 int page_evictable(struct page *page)
4234 {
4235 	int ret;
4236 
4237 	/* Prevent address_space of inode and swap cache from being freed */
4238 	rcu_read_lock();
4239 	ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
4240 	rcu_read_unlock();
4241 	return ret;
4242 }
4243 
4244 /**
4245  * check_move_unevictable_pages - check pages for evictability and move to
4246  * appropriate zone lru list
4247  * @pvec: pagevec with lru pages to check
4248  *
4249  * Checks pages for evictability, if an evictable page is in the unevictable
4250  * lru list, moves it to the appropriate evictable lru list. This function
4251  * should be only used for lru pages.
4252  */
4253 void check_move_unevictable_pages(struct pagevec *pvec)
4254 {
4255 	struct lruvec *lruvec;
4256 	struct pglist_data *pgdat = NULL;
4257 	int pgscanned = 0;
4258 	int pgrescued = 0;
4259 	int i;
4260 
4261 	for (i = 0; i < pvec->nr; i++) {
4262 		struct page *page = pvec->pages[i];
4263 		struct pglist_data *pagepgdat = page_pgdat(page);
4264 
4265 		pgscanned++;
4266 		if (pagepgdat != pgdat) {
4267 			if (pgdat)
4268 				spin_unlock_irq(&pgdat->lru_lock);
4269 			pgdat = pagepgdat;
4270 			spin_lock_irq(&pgdat->lru_lock);
4271 		}
4272 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
4273 
4274 		if (!PageLRU(page) || !PageUnevictable(page))
4275 			continue;
4276 
4277 		if (page_evictable(page)) {
4278 			enum lru_list lru = page_lru_base_type(page);
4279 
4280 			VM_BUG_ON_PAGE(PageActive(page), page);
4281 			ClearPageUnevictable(page);
4282 			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
4283 			add_page_to_lru_list(page, lruvec, lru);
4284 			pgrescued++;
4285 		}
4286 	}
4287 
4288 	if (pgdat) {
4289 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4290 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4291 		spin_unlock_irq(&pgdat->lru_lock);
4292 	}
4293 }
4294 EXPORT_SYMBOL_GPL(check_move_unevictable_pages);
4295