1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 4 * 5 * Swap reorganised 29.12.95, Stephen Tweedie. 6 * kswapd added: 7.1.96 sct 7 * Removed kswapd_ctl limits, and swap out as many pages as needed 8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 9 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 10 * Multiqueue VM started 5.8.00, Rik van Riel. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 15 #include <linux/mm.h> 16 #include <linux/sched/mm.h> 17 #include <linux/module.h> 18 #include <linux/gfp.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/swap.h> 21 #include <linux/pagemap.h> 22 #include <linux/init.h> 23 #include <linux/highmem.h> 24 #include <linux/vmpressure.h> 25 #include <linux/vmstat.h> 26 #include <linux/file.h> 27 #include <linux/writeback.h> 28 #include <linux/blkdev.h> 29 #include <linux/buffer_head.h> /* for buffer_heads_over_limit */ 30 #include <linux/mm_inline.h> 31 #include <linux/backing-dev.h> 32 #include <linux/rmap.h> 33 #include <linux/topology.h> 34 #include <linux/cpu.h> 35 #include <linux/cpuset.h> 36 #include <linux/compaction.h> 37 #include <linux/notifier.h> 38 #include <linux/delay.h> 39 #include <linux/kthread.h> 40 #include <linux/freezer.h> 41 #include <linux/memcontrol.h> 42 #include <linux/migrate.h> 43 #include <linux/delayacct.h> 44 #include <linux/sysctl.h> 45 #include <linux/memory-tiers.h> 46 #include <linux/oom.h> 47 #include <linux/pagevec.h> 48 #include <linux/prefetch.h> 49 #include <linux/printk.h> 50 #include <linux/dax.h> 51 #include <linux/psi.h> 52 #include <linux/pagewalk.h> 53 #include <linux/shmem_fs.h> 54 #include <linux/ctype.h> 55 #include <linux/debugfs.h> 56 #include <linux/khugepaged.h> 57 #include <linux/rculist_nulls.h> 58 #include <linux/random.h> 59 60 #include <asm/tlbflush.h> 61 #include <asm/div64.h> 62 63 #include <linux/swapops.h> 64 #include <linux/balloon_compaction.h> 65 #include <linux/sched/sysctl.h> 66 67 #include "internal.h" 68 #include "swap.h" 69 70 #define CREATE_TRACE_POINTS 71 #include <trace/events/vmscan.h> 72 73 struct scan_control { 74 /* How many pages shrink_list() should reclaim */ 75 unsigned long nr_to_reclaim; 76 77 /* 78 * Nodemask of nodes allowed by the caller. If NULL, all nodes 79 * are scanned. 80 */ 81 nodemask_t *nodemask; 82 83 /* 84 * The memory cgroup that hit its limit and as a result is the 85 * primary target of this reclaim invocation. 86 */ 87 struct mem_cgroup *target_mem_cgroup; 88 89 /* 90 * Scan pressure balancing between anon and file LRUs 91 */ 92 unsigned long anon_cost; 93 unsigned long file_cost; 94 95 /* Can active folios be deactivated as part of reclaim? */ 96 #define DEACTIVATE_ANON 1 97 #define DEACTIVATE_FILE 2 98 unsigned int may_deactivate:2; 99 unsigned int force_deactivate:1; 100 unsigned int skipped_deactivate:1; 101 102 /* Writepage batching in laptop mode; RECLAIM_WRITE */ 103 unsigned int may_writepage:1; 104 105 /* Can mapped folios be reclaimed? */ 106 unsigned int may_unmap:1; 107 108 /* Can folios be swapped as part of reclaim? */ 109 unsigned int may_swap:1; 110 111 /* Proactive reclaim invoked by userspace through memory.reclaim */ 112 unsigned int proactive:1; 113 114 /* 115 * Cgroup memory below memory.low is protected as long as we 116 * don't threaten to OOM. If any cgroup is reclaimed at 117 * reduced force or passed over entirely due to its memory.low 118 * setting (memcg_low_skipped), and nothing is reclaimed as a 119 * result, then go back for one more cycle that reclaims the protected 120 * memory (memcg_low_reclaim) to avert OOM. 121 */ 122 unsigned int memcg_low_reclaim:1; 123 unsigned int memcg_low_skipped:1; 124 125 unsigned int hibernation_mode:1; 126 127 /* One of the zones is ready for compaction */ 128 unsigned int compaction_ready:1; 129 130 /* There is easily reclaimable cold cache in the current node */ 131 unsigned int cache_trim_mode:1; 132 133 /* The file folios on the current node are dangerously low */ 134 unsigned int file_is_tiny:1; 135 136 /* Always discard instead of demoting to lower tier memory */ 137 unsigned int no_demotion:1; 138 139 /* Allocation order */ 140 s8 order; 141 142 /* Scan (total_size >> priority) pages at once */ 143 s8 priority; 144 145 /* The highest zone to isolate folios for reclaim from */ 146 s8 reclaim_idx; 147 148 /* This context's GFP mask */ 149 gfp_t gfp_mask; 150 151 /* Incremented by the number of inactive pages that were scanned */ 152 unsigned long nr_scanned; 153 154 /* Number of pages freed so far during a call to shrink_zones() */ 155 unsigned long nr_reclaimed; 156 157 struct { 158 unsigned int dirty; 159 unsigned int unqueued_dirty; 160 unsigned int congested; 161 unsigned int writeback; 162 unsigned int immediate; 163 unsigned int file_taken; 164 unsigned int taken; 165 } nr; 166 167 /* for recording the reclaimed slab by now */ 168 struct reclaim_state reclaim_state; 169 }; 170 171 #ifdef ARCH_HAS_PREFETCHW 172 #define prefetchw_prev_lru_folio(_folio, _base, _field) \ 173 do { \ 174 if ((_folio)->lru.prev != _base) { \ 175 struct folio *prev; \ 176 \ 177 prev = lru_to_folio(&(_folio->lru)); \ 178 prefetchw(&prev->_field); \ 179 } \ 180 } while (0) 181 #else 182 #define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0) 183 #endif 184 185 /* 186 * From 0 .. 200. Higher means more swappy. 187 */ 188 int vm_swappiness = 60; 189 190 #ifdef CONFIG_MEMCG 191 192 /* Returns true for reclaim through cgroup limits or cgroup interfaces. */ 193 static bool cgroup_reclaim(struct scan_control *sc) 194 { 195 return sc->target_mem_cgroup; 196 } 197 198 /* 199 * Returns true for reclaim on the root cgroup. This is true for direct 200 * allocator reclaim and reclaim through cgroup interfaces on the root cgroup. 201 */ 202 static bool root_reclaim(struct scan_control *sc) 203 { 204 return !sc->target_mem_cgroup || mem_cgroup_is_root(sc->target_mem_cgroup); 205 } 206 207 /** 208 * writeback_throttling_sane - is the usual dirty throttling mechanism available? 209 * @sc: scan_control in question 210 * 211 * The normal page dirty throttling mechanism in balance_dirty_pages() is 212 * completely broken with the legacy memcg and direct stalling in 213 * shrink_folio_list() is used for throttling instead, which lacks all the 214 * niceties such as fairness, adaptive pausing, bandwidth proportional 215 * allocation and configurability. 216 * 217 * This function tests whether the vmscan currently in progress can assume 218 * that the normal dirty throttling mechanism is operational. 219 */ 220 static bool writeback_throttling_sane(struct scan_control *sc) 221 { 222 if (!cgroup_reclaim(sc)) 223 return true; 224 #ifdef CONFIG_CGROUP_WRITEBACK 225 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 226 return true; 227 #endif 228 return false; 229 } 230 #else 231 static bool cgroup_reclaim(struct scan_control *sc) 232 { 233 return false; 234 } 235 236 static bool root_reclaim(struct scan_control *sc) 237 { 238 return true; 239 } 240 241 static bool writeback_throttling_sane(struct scan_control *sc) 242 { 243 return true; 244 } 245 #endif 246 247 static void set_task_reclaim_state(struct task_struct *task, 248 struct reclaim_state *rs) 249 { 250 /* Check for an overwrite */ 251 WARN_ON_ONCE(rs && task->reclaim_state); 252 253 /* Check for the nulling of an already-nulled member */ 254 WARN_ON_ONCE(!rs && !task->reclaim_state); 255 256 task->reclaim_state = rs; 257 } 258 259 /* 260 * flush_reclaim_state(): add pages reclaimed outside of LRU-based reclaim to 261 * scan_control->nr_reclaimed. 262 */ 263 static void flush_reclaim_state(struct scan_control *sc) 264 { 265 /* 266 * Currently, reclaim_state->reclaimed includes three types of pages 267 * freed outside of vmscan: 268 * (1) Slab pages. 269 * (2) Clean file pages from pruned inodes (on highmem systems). 270 * (3) XFS freed buffer pages. 271 * 272 * For all of these cases, we cannot universally link the pages to a 273 * single memcg. For example, a memcg-aware shrinker can free one object 274 * charged to the target memcg, causing an entire page to be freed. 275 * If we count the entire page as reclaimed from the memcg, we end up 276 * overestimating the reclaimed amount (potentially under-reclaiming). 277 * 278 * Only count such pages for global reclaim to prevent under-reclaiming 279 * from the target memcg; preventing unnecessary retries during memcg 280 * charging and false positives from proactive reclaim. 281 * 282 * For uncommon cases where the freed pages were actually mostly 283 * charged to the target memcg, we end up underestimating the reclaimed 284 * amount. This should be fine. The freed pages will be uncharged 285 * anyway, even if they are not counted here properly, and we will be 286 * able to make forward progress in charging (which is usually in a 287 * retry loop). 288 * 289 * We can go one step further, and report the uncharged objcg pages in 290 * memcg reclaim, to make reporting more accurate and reduce 291 * underestimation, but it's probably not worth the complexity for now. 292 */ 293 if (current->reclaim_state && root_reclaim(sc)) { 294 sc->nr_reclaimed += current->reclaim_state->reclaimed; 295 current->reclaim_state->reclaimed = 0; 296 } 297 } 298 299 static bool can_demote(int nid, struct scan_control *sc) 300 { 301 if (!numa_demotion_enabled) 302 return false; 303 if (sc && sc->no_demotion) 304 return false; 305 if (next_demotion_node(nid) == NUMA_NO_NODE) 306 return false; 307 308 return true; 309 } 310 311 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg, 312 int nid, 313 struct scan_control *sc) 314 { 315 if (memcg == NULL) { 316 /* 317 * For non-memcg reclaim, is there 318 * space in any swap device? 319 */ 320 if (get_nr_swap_pages() > 0) 321 return true; 322 } else { 323 /* Is the memcg below its swap limit? */ 324 if (mem_cgroup_get_nr_swap_pages(memcg) > 0) 325 return true; 326 } 327 328 /* 329 * The page can not be swapped. 330 * 331 * Can it be reclaimed from this node via demotion? 332 */ 333 return can_demote(nid, sc); 334 } 335 336 /* 337 * This misses isolated folios which are not accounted for to save counters. 338 * As the data only determines if reclaim or compaction continues, it is 339 * not expected that isolated folios will be a dominating factor. 340 */ 341 unsigned long zone_reclaimable_pages(struct zone *zone) 342 { 343 unsigned long nr; 344 345 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) + 346 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE); 347 if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL)) 348 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) + 349 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON); 350 351 return nr; 352 } 353 354 /** 355 * lruvec_lru_size - Returns the number of pages on the given LRU list. 356 * @lruvec: lru vector 357 * @lru: lru to use 358 * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list) 359 */ 360 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, 361 int zone_idx) 362 { 363 unsigned long size = 0; 364 int zid; 365 366 for (zid = 0; zid <= zone_idx; zid++) { 367 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid]; 368 369 if (!managed_zone(zone)) 370 continue; 371 372 if (!mem_cgroup_disabled()) 373 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid); 374 else 375 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru); 376 } 377 return size; 378 } 379 380 static unsigned long drop_slab_node(int nid) 381 { 382 unsigned long freed = 0; 383 struct mem_cgroup *memcg = NULL; 384 385 memcg = mem_cgroup_iter(NULL, NULL, NULL); 386 do { 387 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0); 388 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 389 390 return freed; 391 } 392 393 void drop_slab(void) 394 { 395 int nid; 396 int shift = 0; 397 unsigned long freed; 398 399 do { 400 freed = 0; 401 for_each_online_node(nid) { 402 if (fatal_signal_pending(current)) 403 return; 404 405 freed += drop_slab_node(nid); 406 } 407 } while ((freed >> shift++) > 1); 408 } 409 410 static int reclaimer_offset(void) 411 { 412 BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD != 413 PGDEMOTE_DIRECT - PGDEMOTE_KSWAPD); 414 BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD != 415 PGSCAN_DIRECT - PGSCAN_KSWAPD); 416 BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD != 417 PGDEMOTE_KHUGEPAGED - PGDEMOTE_KSWAPD); 418 BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD != 419 PGSCAN_KHUGEPAGED - PGSCAN_KSWAPD); 420 421 if (current_is_kswapd()) 422 return 0; 423 if (current_is_khugepaged()) 424 return PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD; 425 return PGSTEAL_DIRECT - PGSTEAL_KSWAPD; 426 } 427 428 static inline int is_page_cache_freeable(struct folio *folio) 429 { 430 /* 431 * A freeable page cache folio is referenced only by the caller 432 * that isolated the folio, the page cache and optional filesystem 433 * private data at folio->private. 434 */ 435 return folio_ref_count(folio) - folio_test_private(folio) == 436 1 + folio_nr_pages(folio); 437 } 438 439 /* 440 * We detected a synchronous write error writing a folio out. Probably 441 * -ENOSPC. We need to propagate that into the address_space for a subsequent 442 * fsync(), msync() or close(). 443 * 444 * The tricky part is that after writepage we cannot touch the mapping: nothing 445 * prevents it from being freed up. But we have a ref on the folio and once 446 * that folio is locked, the mapping is pinned. 447 * 448 * We're allowed to run sleeping folio_lock() here because we know the caller has 449 * __GFP_FS. 450 */ 451 static void handle_write_error(struct address_space *mapping, 452 struct folio *folio, int error) 453 { 454 folio_lock(folio); 455 if (folio_mapping(folio) == mapping) 456 mapping_set_error(mapping, error); 457 folio_unlock(folio); 458 } 459 460 static bool skip_throttle_noprogress(pg_data_t *pgdat) 461 { 462 int reclaimable = 0, write_pending = 0; 463 int i; 464 465 /* 466 * If kswapd is disabled, reschedule if necessary but do not 467 * throttle as the system is likely near OOM. 468 */ 469 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 470 return true; 471 472 /* 473 * If there are a lot of dirty/writeback folios then do not 474 * throttle as throttling will occur when the folios cycle 475 * towards the end of the LRU if still under writeback. 476 */ 477 for (i = 0; i < MAX_NR_ZONES; i++) { 478 struct zone *zone = pgdat->node_zones + i; 479 480 if (!managed_zone(zone)) 481 continue; 482 483 reclaimable += zone_reclaimable_pages(zone); 484 write_pending += zone_page_state_snapshot(zone, 485 NR_ZONE_WRITE_PENDING); 486 } 487 if (2 * write_pending <= reclaimable) 488 return true; 489 490 return false; 491 } 492 493 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason) 494 { 495 wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason]; 496 long timeout, ret; 497 DEFINE_WAIT(wait); 498 499 /* 500 * Do not throttle user workers, kthreads other than kswapd or 501 * workqueues. They may be required for reclaim to make 502 * forward progress (e.g. journalling workqueues or kthreads). 503 */ 504 if (!current_is_kswapd() && 505 current->flags & (PF_USER_WORKER|PF_KTHREAD)) { 506 cond_resched(); 507 return; 508 } 509 510 /* 511 * These figures are pulled out of thin air. 512 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many 513 * parallel reclaimers which is a short-lived event so the timeout is 514 * short. Failing to make progress or waiting on writeback are 515 * potentially long-lived events so use a longer timeout. This is shaky 516 * logic as a failure to make progress could be due to anything from 517 * writeback to a slow device to excessive referenced folios at the tail 518 * of the inactive LRU. 519 */ 520 switch(reason) { 521 case VMSCAN_THROTTLE_WRITEBACK: 522 timeout = HZ/10; 523 524 if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) { 525 WRITE_ONCE(pgdat->nr_reclaim_start, 526 node_page_state(pgdat, NR_THROTTLED_WRITTEN)); 527 } 528 529 break; 530 case VMSCAN_THROTTLE_CONGESTED: 531 fallthrough; 532 case VMSCAN_THROTTLE_NOPROGRESS: 533 if (skip_throttle_noprogress(pgdat)) { 534 cond_resched(); 535 return; 536 } 537 538 timeout = 1; 539 540 break; 541 case VMSCAN_THROTTLE_ISOLATED: 542 timeout = HZ/50; 543 break; 544 default: 545 WARN_ON_ONCE(1); 546 timeout = HZ; 547 break; 548 } 549 550 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE); 551 ret = schedule_timeout(timeout); 552 finish_wait(wqh, &wait); 553 554 if (reason == VMSCAN_THROTTLE_WRITEBACK) 555 atomic_dec(&pgdat->nr_writeback_throttled); 556 557 trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout), 558 jiffies_to_usecs(timeout - ret), 559 reason); 560 } 561 562 /* 563 * Account for folios written if tasks are throttled waiting on dirty 564 * folios to clean. If enough folios have been cleaned since throttling 565 * started then wakeup the throttled tasks. 566 */ 567 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio, 568 int nr_throttled) 569 { 570 unsigned long nr_written; 571 572 node_stat_add_folio(folio, NR_THROTTLED_WRITTEN); 573 574 /* 575 * This is an inaccurate read as the per-cpu deltas may not 576 * be synchronised. However, given that the system is 577 * writeback throttled, it is not worth taking the penalty 578 * of getting an accurate count. At worst, the throttle 579 * timeout guarantees forward progress. 580 */ 581 nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) - 582 READ_ONCE(pgdat->nr_reclaim_start); 583 584 if (nr_written > SWAP_CLUSTER_MAX * nr_throttled) 585 wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]); 586 } 587 588 /* possible outcome of pageout() */ 589 typedef enum { 590 /* failed to write folio out, folio is locked */ 591 PAGE_KEEP, 592 /* move folio to the active list, folio is locked */ 593 PAGE_ACTIVATE, 594 /* folio has been sent to the disk successfully, folio is unlocked */ 595 PAGE_SUCCESS, 596 /* folio is clean and locked */ 597 PAGE_CLEAN, 598 } pageout_t; 599 600 /* 601 * pageout is called by shrink_folio_list() for each dirty folio. 602 * Calls ->writepage(). 603 */ 604 static pageout_t pageout(struct folio *folio, struct address_space *mapping, 605 struct swap_iocb **plug) 606 { 607 /* 608 * If the folio is dirty, only perform writeback if that write 609 * will be non-blocking. To prevent this allocation from being 610 * stalled by pagecache activity. But note that there may be 611 * stalls if we need to run get_block(). We could test 612 * PagePrivate for that. 613 * 614 * If this process is currently in __generic_file_write_iter() against 615 * this folio's queue, we can perform writeback even if that 616 * will block. 617 * 618 * If the folio is swapcache, write it back even if that would 619 * block, for some throttling. This happens by accident, because 620 * swap_backing_dev_info is bust: it doesn't reflect the 621 * congestion state of the swapdevs. Easy to fix, if needed. 622 */ 623 if (!is_page_cache_freeable(folio)) 624 return PAGE_KEEP; 625 if (!mapping) { 626 /* 627 * Some data journaling orphaned folios can have 628 * folio->mapping == NULL while being dirty with clean buffers. 629 */ 630 if (folio_test_private(folio)) { 631 if (try_to_free_buffers(folio)) { 632 folio_clear_dirty(folio); 633 pr_info("%s: orphaned folio\n", __func__); 634 return PAGE_CLEAN; 635 } 636 } 637 return PAGE_KEEP; 638 } 639 if (mapping->a_ops->writepage == NULL) 640 return PAGE_ACTIVATE; 641 642 if (folio_clear_dirty_for_io(folio)) { 643 int res; 644 struct writeback_control wbc = { 645 .sync_mode = WB_SYNC_NONE, 646 .nr_to_write = SWAP_CLUSTER_MAX, 647 .range_start = 0, 648 .range_end = LLONG_MAX, 649 .for_reclaim = 1, 650 .swap_plug = plug, 651 }; 652 653 folio_set_reclaim(folio); 654 res = mapping->a_ops->writepage(&folio->page, &wbc); 655 if (res < 0) 656 handle_write_error(mapping, folio, res); 657 if (res == AOP_WRITEPAGE_ACTIVATE) { 658 folio_clear_reclaim(folio); 659 return PAGE_ACTIVATE; 660 } 661 662 if (!folio_test_writeback(folio)) { 663 /* synchronous write or broken a_ops? */ 664 folio_clear_reclaim(folio); 665 } 666 trace_mm_vmscan_write_folio(folio); 667 node_stat_add_folio(folio, NR_VMSCAN_WRITE); 668 return PAGE_SUCCESS; 669 } 670 671 return PAGE_CLEAN; 672 } 673 674 /* 675 * Same as remove_mapping, but if the folio is removed from the mapping, it 676 * gets returned with a refcount of 0. 677 */ 678 static int __remove_mapping(struct address_space *mapping, struct folio *folio, 679 bool reclaimed, struct mem_cgroup *target_memcg) 680 { 681 int refcount; 682 void *shadow = NULL; 683 684 BUG_ON(!folio_test_locked(folio)); 685 BUG_ON(mapping != folio_mapping(folio)); 686 687 if (!folio_test_swapcache(folio)) 688 spin_lock(&mapping->host->i_lock); 689 xa_lock_irq(&mapping->i_pages); 690 /* 691 * The non racy check for a busy folio. 692 * 693 * Must be careful with the order of the tests. When someone has 694 * a ref to the folio, it may be possible that they dirty it then 695 * drop the reference. So if the dirty flag is tested before the 696 * refcount here, then the following race may occur: 697 * 698 * get_user_pages(&page); 699 * [user mapping goes away] 700 * write_to(page); 701 * !folio_test_dirty(folio) [good] 702 * folio_set_dirty(folio); 703 * folio_put(folio); 704 * !refcount(folio) [good, discard it] 705 * 706 * [oops, our write_to data is lost] 707 * 708 * Reversing the order of the tests ensures such a situation cannot 709 * escape unnoticed. The smp_rmb is needed to ensure the folio->flags 710 * load is not satisfied before that of folio->_refcount. 711 * 712 * Note that if the dirty flag is always set via folio_mark_dirty, 713 * and thus under the i_pages lock, then this ordering is not required. 714 */ 715 refcount = 1 + folio_nr_pages(folio); 716 if (!folio_ref_freeze(folio, refcount)) 717 goto cannot_free; 718 /* note: atomic_cmpxchg in folio_ref_freeze provides the smp_rmb */ 719 if (unlikely(folio_test_dirty(folio))) { 720 folio_ref_unfreeze(folio, refcount); 721 goto cannot_free; 722 } 723 724 if (folio_test_swapcache(folio)) { 725 swp_entry_t swap = folio->swap; 726 727 if (reclaimed && !mapping_exiting(mapping)) 728 shadow = workingset_eviction(folio, target_memcg); 729 __delete_from_swap_cache(folio, swap, shadow); 730 mem_cgroup_swapout(folio, swap); 731 xa_unlock_irq(&mapping->i_pages); 732 put_swap_folio(folio, swap); 733 } else { 734 void (*free_folio)(struct folio *); 735 736 free_folio = mapping->a_ops->free_folio; 737 /* 738 * Remember a shadow entry for reclaimed file cache in 739 * order to detect refaults, thus thrashing, later on. 740 * 741 * But don't store shadows in an address space that is 742 * already exiting. This is not just an optimization, 743 * inode reclaim needs to empty out the radix tree or 744 * the nodes are lost. Don't plant shadows behind its 745 * back. 746 * 747 * We also don't store shadows for DAX mappings because the 748 * only page cache folios found in these are zero pages 749 * covering holes, and because we don't want to mix DAX 750 * exceptional entries and shadow exceptional entries in the 751 * same address_space. 752 */ 753 if (reclaimed && folio_is_file_lru(folio) && 754 !mapping_exiting(mapping) && !dax_mapping(mapping)) 755 shadow = workingset_eviction(folio, target_memcg); 756 __filemap_remove_folio(folio, shadow); 757 xa_unlock_irq(&mapping->i_pages); 758 if (mapping_shrinkable(mapping)) 759 inode_add_lru(mapping->host); 760 spin_unlock(&mapping->host->i_lock); 761 762 if (free_folio) 763 free_folio(folio); 764 } 765 766 return 1; 767 768 cannot_free: 769 xa_unlock_irq(&mapping->i_pages); 770 if (!folio_test_swapcache(folio)) 771 spin_unlock(&mapping->host->i_lock); 772 return 0; 773 } 774 775 /** 776 * remove_mapping() - Attempt to remove a folio from its mapping. 777 * @mapping: The address space. 778 * @folio: The folio to remove. 779 * 780 * If the folio is dirty, under writeback or if someone else has a ref 781 * on it, removal will fail. 782 * Return: The number of pages removed from the mapping. 0 if the folio 783 * could not be removed. 784 * Context: The caller should have a single refcount on the folio and 785 * hold its lock. 786 */ 787 long remove_mapping(struct address_space *mapping, struct folio *folio) 788 { 789 if (__remove_mapping(mapping, folio, false, NULL)) { 790 /* 791 * Unfreezing the refcount with 1 effectively 792 * drops the pagecache ref for us without requiring another 793 * atomic operation. 794 */ 795 folio_ref_unfreeze(folio, 1); 796 return folio_nr_pages(folio); 797 } 798 return 0; 799 } 800 801 /** 802 * folio_putback_lru - Put previously isolated folio onto appropriate LRU list. 803 * @folio: Folio to be returned to an LRU list. 804 * 805 * Add previously isolated @folio to appropriate LRU list. 806 * The folio may still be unevictable for other reasons. 807 * 808 * Context: lru_lock must not be held, interrupts must be enabled. 809 */ 810 void folio_putback_lru(struct folio *folio) 811 { 812 folio_add_lru(folio); 813 folio_put(folio); /* drop ref from isolate */ 814 } 815 816 enum folio_references { 817 FOLIOREF_RECLAIM, 818 FOLIOREF_RECLAIM_CLEAN, 819 FOLIOREF_KEEP, 820 FOLIOREF_ACTIVATE, 821 }; 822 823 static enum folio_references folio_check_references(struct folio *folio, 824 struct scan_control *sc) 825 { 826 int referenced_ptes, referenced_folio; 827 unsigned long vm_flags; 828 829 referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup, 830 &vm_flags); 831 referenced_folio = folio_test_clear_referenced(folio); 832 833 /* 834 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma. 835 * Let the folio, now marked Mlocked, be moved to the unevictable list. 836 */ 837 if (vm_flags & VM_LOCKED) 838 return FOLIOREF_ACTIVATE; 839 840 /* rmap lock contention: rotate */ 841 if (referenced_ptes == -1) 842 return FOLIOREF_KEEP; 843 844 if (referenced_ptes) { 845 /* 846 * All mapped folios start out with page table 847 * references from the instantiating fault, so we need 848 * to look twice if a mapped file/anon folio is used more 849 * than once. 850 * 851 * Mark it and spare it for another trip around the 852 * inactive list. Another page table reference will 853 * lead to its activation. 854 * 855 * Note: the mark is set for activated folios as well 856 * so that recently deactivated but used folios are 857 * quickly recovered. 858 */ 859 folio_set_referenced(folio); 860 861 if (referenced_folio || referenced_ptes > 1) 862 return FOLIOREF_ACTIVATE; 863 864 /* 865 * Activate file-backed executable folios after first usage. 866 */ 867 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) 868 return FOLIOREF_ACTIVATE; 869 870 return FOLIOREF_KEEP; 871 } 872 873 /* Reclaim if clean, defer dirty folios to writeback */ 874 if (referenced_folio && folio_is_file_lru(folio)) 875 return FOLIOREF_RECLAIM_CLEAN; 876 877 return FOLIOREF_RECLAIM; 878 } 879 880 /* Check if a folio is dirty or under writeback */ 881 static void folio_check_dirty_writeback(struct folio *folio, 882 bool *dirty, bool *writeback) 883 { 884 struct address_space *mapping; 885 886 /* 887 * Anonymous folios are not handled by flushers and must be written 888 * from reclaim context. Do not stall reclaim based on them. 889 * MADV_FREE anonymous folios are put into inactive file list too. 890 * They could be mistakenly treated as file lru. So further anon 891 * test is needed. 892 */ 893 if (!folio_is_file_lru(folio) || 894 (folio_test_anon(folio) && !folio_test_swapbacked(folio))) { 895 *dirty = false; 896 *writeback = false; 897 return; 898 } 899 900 /* By default assume that the folio flags are accurate */ 901 *dirty = folio_test_dirty(folio); 902 *writeback = folio_test_writeback(folio); 903 904 /* Verify dirty/writeback state if the filesystem supports it */ 905 if (!folio_test_private(folio)) 906 return; 907 908 mapping = folio_mapping(folio); 909 if (mapping && mapping->a_ops->is_dirty_writeback) 910 mapping->a_ops->is_dirty_writeback(folio, dirty, writeback); 911 } 912 913 static struct folio *alloc_demote_folio(struct folio *src, 914 unsigned long private) 915 { 916 struct folio *dst; 917 nodemask_t *allowed_mask; 918 struct migration_target_control *mtc; 919 920 mtc = (struct migration_target_control *)private; 921 922 allowed_mask = mtc->nmask; 923 /* 924 * make sure we allocate from the target node first also trying to 925 * demote or reclaim pages from the target node via kswapd if we are 926 * low on free memory on target node. If we don't do this and if 927 * we have free memory on the slower(lower) memtier, we would start 928 * allocating pages from slower(lower) memory tiers without even forcing 929 * a demotion of cold pages from the target memtier. This can result 930 * in the kernel placing hot pages in slower(lower) memory tiers. 931 */ 932 mtc->nmask = NULL; 933 mtc->gfp_mask |= __GFP_THISNODE; 934 dst = alloc_migration_target(src, (unsigned long)mtc); 935 if (dst) 936 return dst; 937 938 mtc->gfp_mask &= ~__GFP_THISNODE; 939 mtc->nmask = allowed_mask; 940 941 return alloc_migration_target(src, (unsigned long)mtc); 942 } 943 944 /* 945 * Take folios on @demote_folios and attempt to demote them to another node. 946 * Folios which are not demoted are left on @demote_folios. 947 */ 948 static unsigned int demote_folio_list(struct list_head *demote_folios, 949 struct pglist_data *pgdat) 950 { 951 int target_nid = next_demotion_node(pgdat->node_id); 952 unsigned int nr_succeeded; 953 nodemask_t allowed_mask; 954 955 struct migration_target_control mtc = { 956 /* 957 * Allocate from 'node', or fail quickly and quietly. 958 * When this happens, 'page' will likely just be discarded 959 * instead of migrated. 960 */ 961 .gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | __GFP_NOWARN | 962 __GFP_NOMEMALLOC | GFP_NOWAIT, 963 .nid = target_nid, 964 .nmask = &allowed_mask 965 }; 966 967 if (list_empty(demote_folios)) 968 return 0; 969 970 if (target_nid == NUMA_NO_NODE) 971 return 0; 972 973 node_get_allowed_targets(pgdat, &allowed_mask); 974 975 /* Demotion ignores all cpuset and mempolicy settings */ 976 migrate_pages(demote_folios, alloc_demote_folio, NULL, 977 (unsigned long)&mtc, MIGRATE_ASYNC, MR_DEMOTION, 978 &nr_succeeded); 979 980 __count_vm_events(PGDEMOTE_KSWAPD + reclaimer_offset(), nr_succeeded); 981 982 return nr_succeeded; 983 } 984 985 static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask) 986 { 987 if (gfp_mask & __GFP_FS) 988 return true; 989 if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO)) 990 return false; 991 /* 992 * We can "enter_fs" for swap-cache with only __GFP_IO 993 * providing this isn't SWP_FS_OPS. 994 * ->flags can be updated non-atomicially (scan_swap_map_slots), 995 * but that will never affect SWP_FS_OPS, so the data_race 996 * is safe. 997 */ 998 return !data_race(folio_swap_flags(folio) & SWP_FS_OPS); 999 } 1000 1001 /* 1002 * shrink_folio_list() returns the number of reclaimed pages 1003 */ 1004 static unsigned int shrink_folio_list(struct list_head *folio_list, 1005 struct pglist_data *pgdat, struct scan_control *sc, 1006 struct reclaim_stat *stat, bool ignore_references) 1007 { 1008 LIST_HEAD(ret_folios); 1009 LIST_HEAD(free_folios); 1010 LIST_HEAD(demote_folios); 1011 unsigned int nr_reclaimed = 0; 1012 unsigned int pgactivate = 0; 1013 bool do_demote_pass; 1014 struct swap_iocb *plug = NULL; 1015 1016 memset(stat, 0, sizeof(*stat)); 1017 cond_resched(); 1018 do_demote_pass = can_demote(pgdat->node_id, sc); 1019 1020 retry: 1021 while (!list_empty(folio_list)) { 1022 struct address_space *mapping; 1023 struct folio *folio; 1024 enum folio_references references = FOLIOREF_RECLAIM; 1025 bool dirty, writeback; 1026 unsigned int nr_pages; 1027 1028 cond_resched(); 1029 1030 folio = lru_to_folio(folio_list); 1031 list_del(&folio->lru); 1032 1033 if (!folio_trylock(folio)) 1034 goto keep; 1035 1036 VM_BUG_ON_FOLIO(folio_test_active(folio), folio); 1037 1038 nr_pages = folio_nr_pages(folio); 1039 1040 /* Account the number of base pages */ 1041 sc->nr_scanned += nr_pages; 1042 1043 if (unlikely(!folio_evictable(folio))) 1044 goto activate_locked; 1045 1046 if (!sc->may_unmap && folio_mapped(folio)) 1047 goto keep_locked; 1048 1049 /* folio_update_gen() tried to promote this page? */ 1050 if (lru_gen_enabled() && !ignore_references && 1051 folio_mapped(folio) && folio_test_referenced(folio)) 1052 goto keep_locked; 1053 1054 /* 1055 * The number of dirty pages determines if a node is marked 1056 * reclaim_congested. kswapd will stall and start writing 1057 * folios if the tail of the LRU is all dirty unqueued folios. 1058 */ 1059 folio_check_dirty_writeback(folio, &dirty, &writeback); 1060 if (dirty || writeback) 1061 stat->nr_dirty += nr_pages; 1062 1063 if (dirty && !writeback) 1064 stat->nr_unqueued_dirty += nr_pages; 1065 1066 /* 1067 * Treat this folio as congested if folios are cycling 1068 * through the LRU so quickly that the folios marked 1069 * for immediate reclaim are making it to the end of 1070 * the LRU a second time. 1071 */ 1072 if (writeback && folio_test_reclaim(folio)) 1073 stat->nr_congested += nr_pages; 1074 1075 /* 1076 * If a folio at the tail of the LRU is under writeback, there 1077 * are three cases to consider. 1078 * 1079 * 1) If reclaim is encountering an excessive number 1080 * of folios under writeback and this folio has both 1081 * the writeback and reclaim flags set, then it 1082 * indicates that folios are being queued for I/O but 1083 * are being recycled through the LRU before the I/O 1084 * can complete. Waiting on the folio itself risks an 1085 * indefinite stall if it is impossible to writeback 1086 * the folio due to I/O error or disconnected storage 1087 * so instead note that the LRU is being scanned too 1088 * quickly and the caller can stall after the folio 1089 * list has been processed. 1090 * 1091 * 2) Global or new memcg reclaim encounters a folio that is 1092 * not marked for immediate reclaim, or the caller does not 1093 * have __GFP_FS (or __GFP_IO if it's simply going to swap, 1094 * not to fs). In this case mark the folio for immediate 1095 * reclaim and continue scanning. 1096 * 1097 * Require may_enter_fs() because we would wait on fs, which 1098 * may not have submitted I/O yet. And the loop driver might 1099 * enter reclaim, and deadlock if it waits on a folio for 1100 * which it is needed to do the write (loop masks off 1101 * __GFP_IO|__GFP_FS for this reason); but more thought 1102 * would probably show more reasons. 1103 * 1104 * 3) Legacy memcg encounters a folio that already has the 1105 * reclaim flag set. memcg does not have any dirty folio 1106 * throttling so we could easily OOM just because too many 1107 * folios are in writeback and there is nothing else to 1108 * reclaim. Wait for the writeback to complete. 1109 * 1110 * In cases 1) and 2) we activate the folios to get them out of 1111 * the way while we continue scanning for clean folios on the 1112 * inactive list and refilling from the active list. The 1113 * observation here is that waiting for disk writes is more 1114 * expensive than potentially causing reloads down the line. 1115 * Since they're marked for immediate reclaim, they won't put 1116 * memory pressure on the cache working set any longer than it 1117 * takes to write them to disk. 1118 */ 1119 if (folio_test_writeback(folio)) { 1120 /* Case 1 above */ 1121 if (current_is_kswapd() && 1122 folio_test_reclaim(folio) && 1123 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) { 1124 stat->nr_immediate += nr_pages; 1125 goto activate_locked; 1126 1127 /* Case 2 above */ 1128 } else if (writeback_throttling_sane(sc) || 1129 !folio_test_reclaim(folio) || 1130 !may_enter_fs(folio, sc->gfp_mask)) { 1131 /* 1132 * This is slightly racy - 1133 * folio_end_writeback() might have 1134 * just cleared the reclaim flag, then 1135 * setting the reclaim flag here ends up 1136 * interpreted as the readahead flag - but 1137 * that does not matter enough to care. 1138 * What we do want is for this folio to 1139 * have the reclaim flag set next time 1140 * memcg reclaim reaches the tests above, 1141 * so it will then wait for writeback to 1142 * avoid OOM; and it's also appropriate 1143 * in global reclaim. 1144 */ 1145 folio_set_reclaim(folio); 1146 stat->nr_writeback += nr_pages; 1147 goto activate_locked; 1148 1149 /* Case 3 above */ 1150 } else { 1151 folio_unlock(folio); 1152 folio_wait_writeback(folio); 1153 /* then go back and try same folio again */ 1154 list_add_tail(&folio->lru, folio_list); 1155 continue; 1156 } 1157 } 1158 1159 if (!ignore_references) 1160 references = folio_check_references(folio, sc); 1161 1162 switch (references) { 1163 case FOLIOREF_ACTIVATE: 1164 goto activate_locked; 1165 case FOLIOREF_KEEP: 1166 stat->nr_ref_keep += nr_pages; 1167 goto keep_locked; 1168 case FOLIOREF_RECLAIM: 1169 case FOLIOREF_RECLAIM_CLEAN: 1170 ; /* try to reclaim the folio below */ 1171 } 1172 1173 /* 1174 * Before reclaiming the folio, try to relocate 1175 * its contents to another node. 1176 */ 1177 if (do_demote_pass && 1178 (thp_migration_supported() || !folio_test_large(folio))) { 1179 list_add(&folio->lru, &demote_folios); 1180 folio_unlock(folio); 1181 continue; 1182 } 1183 1184 /* 1185 * Anonymous process memory has backing store? 1186 * Try to allocate it some swap space here. 1187 * Lazyfree folio could be freed directly 1188 */ 1189 if (folio_test_anon(folio) && folio_test_swapbacked(folio)) { 1190 if (!folio_test_swapcache(folio)) { 1191 if (!(sc->gfp_mask & __GFP_IO)) 1192 goto keep_locked; 1193 if (folio_maybe_dma_pinned(folio)) 1194 goto keep_locked; 1195 if (folio_test_large(folio)) { 1196 /* cannot split folio, skip it */ 1197 if (!can_split_folio(folio, NULL)) 1198 goto activate_locked; 1199 /* 1200 * Split folios without a PMD map right 1201 * away. Chances are some or all of the 1202 * tail pages can be freed without IO. 1203 */ 1204 if (!folio_entire_mapcount(folio) && 1205 split_folio_to_list(folio, 1206 folio_list)) 1207 goto activate_locked; 1208 } 1209 if (!add_to_swap(folio)) { 1210 if (!folio_test_large(folio)) 1211 goto activate_locked_split; 1212 /* Fallback to swap normal pages */ 1213 if (split_folio_to_list(folio, 1214 folio_list)) 1215 goto activate_locked; 1216 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1217 count_memcg_folio_events(folio, THP_SWPOUT_FALLBACK, 1); 1218 count_vm_event(THP_SWPOUT_FALLBACK); 1219 #endif 1220 if (!add_to_swap(folio)) 1221 goto activate_locked_split; 1222 } 1223 } 1224 } else if (folio_test_swapbacked(folio) && 1225 folio_test_large(folio)) { 1226 /* Split shmem folio */ 1227 if (split_folio_to_list(folio, folio_list)) 1228 goto keep_locked; 1229 } 1230 1231 /* 1232 * If the folio was split above, the tail pages will make 1233 * their own pass through this function and be accounted 1234 * then. 1235 */ 1236 if ((nr_pages > 1) && !folio_test_large(folio)) { 1237 sc->nr_scanned -= (nr_pages - 1); 1238 nr_pages = 1; 1239 } 1240 1241 /* 1242 * The folio is mapped into the page tables of one or more 1243 * processes. Try to unmap it here. 1244 */ 1245 if (folio_mapped(folio)) { 1246 enum ttu_flags flags = TTU_BATCH_FLUSH; 1247 bool was_swapbacked = folio_test_swapbacked(folio); 1248 1249 if (folio_test_pmd_mappable(folio)) 1250 flags |= TTU_SPLIT_HUGE_PMD; 1251 1252 try_to_unmap(folio, flags); 1253 if (folio_mapped(folio)) { 1254 stat->nr_unmap_fail += nr_pages; 1255 if (!was_swapbacked && 1256 folio_test_swapbacked(folio)) 1257 stat->nr_lazyfree_fail += nr_pages; 1258 goto activate_locked; 1259 } 1260 } 1261 1262 /* 1263 * Folio is unmapped now so it cannot be newly pinned anymore. 1264 * No point in trying to reclaim folio if it is pinned. 1265 * Furthermore we don't want to reclaim underlying fs metadata 1266 * if the folio is pinned and thus potentially modified by the 1267 * pinning process as that may upset the filesystem. 1268 */ 1269 if (folio_maybe_dma_pinned(folio)) 1270 goto activate_locked; 1271 1272 mapping = folio_mapping(folio); 1273 if (folio_test_dirty(folio)) { 1274 /* 1275 * Only kswapd can writeback filesystem folios 1276 * to avoid risk of stack overflow. But avoid 1277 * injecting inefficient single-folio I/O into 1278 * flusher writeback as much as possible: only 1279 * write folios when we've encountered many 1280 * dirty folios, and when we've already scanned 1281 * the rest of the LRU for clean folios and see 1282 * the same dirty folios again (with the reclaim 1283 * flag set). 1284 */ 1285 if (folio_is_file_lru(folio) && 1286 (!current_is_kswapd() || 1287 !folio_test_reclaim(folio) || 1288 !test_bit(PGDAT_DIRTY, &pgdat->flags))) { 1289 /* 1290 * Immediately reclaim when written back. 1291 * Similar in principle to folio_deactivate() 1292 * except we already have the folio isolated 1293 * and know it's dirty 1294 */ 1295 node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE, 1296 nr_pages); 1297 folio_set_reclaim(folio); 1298 1299 goto activate_locked; 1300 } 1301 1302 if (references == FOLIOREF_RECLAIM_CLEAN) 1303 goto keep_locked; 1304 if (!may_enter_fs(folio, sc->gfp_mask)) 1305 goto keep_locked; 1306 if (!sc->may_writepage) 1307 goto keep_locked; 1308 1309 /* 1310 * Folio is dirty. Flush the TLB if a writable entry 1311 * potentially exists to avoid CPU writes after I/O 1312 * starts and then write it out here. 1313 */ 1314 try_to_unmap_flush_dirty(); 1315 switch (pageout(folio, mapping, &plug)) { 1316 case PAGE_KEEP: 1317 goto keep_locked; 1318 case PAGE_ACTIVATE: 1319 goto activate_locked; 1320 case PAGE_SUCCESS: 1321 stat->nr_pageout += nr_pages; 1322 1323 if (folio_test_writeback(folio)) 1324 goto keep; 1325 if (folio_test_dirty(folio)) 1326 goto keep; 1327 1328 /* 1329 * A synchronous write - probably a ramdisk. Go 1330 * ahead and try to reclaim the folio. 1331 */ 1332 if (!folio_trylock(folio)) 1333 goto keep; 1334 if (folio_test_dirty(folio) || 1335 folio_test_writeback(folio)) 1336 goto keep_locked; 1337 mapping = folio_mapping(folio); 1338 fallthrough; 1339 case PAGE_CLEAN: 1340 ; /* try to free the folio below */ 1341 } 1342 } 1343 1344 /* 1345 * If the folio has buffers, try to free the buffer 1346 * mappings associated with this folio. If we succeed 1347 * we try to free the folio as well. 1348 * 1349 * We do this even if the folio is dirty. 1350 * filemap_release_folio() does not perform I/O, but it 1351 * is possible for a folio to have the dirty flag set, 1352 * but it is actually clean (all its buffers are clean). 1353 * This happens if the buffers were written out directly, 1354 * with submit_bh(). ext3 will do this, as well as 1355 * the blockdev mapping. filemap_release_folio() will 1356 * discover that cleanness and will drop the buffers 1357 * and mark the folio clean - it can be freed. 1358 * 1359 * Rarely, folios can have buffers and no ->mapping. 1360 * These are the folios which were not successfully 1361 * invalidated in truncate_cleanup_folio(). We try to 1362 * drop those buffers here and if that worked, and the 1363 * folio is no longer mapped into process address space 1364 * (refcount == 1) it can be freed. Otherwise, leave 1365 * the folio on the LRU so it is swappable. 1366 */ 1367 if (folio_needs_release(folio)) { 1368 if (!filemap_release_folio(folio, sc->gfp_mask)) 1369 goto activate_locked; 1370 if (!mapping && folio_ref_count(folio) == 1) { 1371 folio_unlock(folio); 1372 if (folio_put_testzero(folio)) 1373 goto free_it; 1374 else { 1375 /* 1376 * rare race with speculative reference. 1377 * the speculative reference will free 1378 * this folio shortly, so we may 1379 * increment nr_reclaimed here (and 1380 * leave it off the LRU). 1381 */ 1382 nr_reclaimed += nr_pages; 1383 continue; 1384 } 1385 } 1386 } 1387 1388 if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) { 1389 /* follow __remove_mapping for reference */ 1390 if (!folio_ref_freeze(folio, 1)) 1391 goto keep_locked; 1392 /* 1393 * The folio has only one reference left, which is 1394 * from the isolation. After the caller puts the 1395 * folio back on the lru and drops the reference, the 1396 * folio will be freed anyway. It doesn't matter 1397 * which lru it goes on. So we don't bother checking 1398 * the dirty flag here. 1399 */ 1400 count_vm_events(PGLAZYFREED, nr_pages); 1401 count_memcg_folio_events(folio, PGLAZYFREED, nr_pages); 1402 } else if (!mapping || !__remove_mapping(mapping, folio, true, 1403 sc->target_mem_cgroup)) 1404 goto keep_locked; 1405 1406 folio_unlock(folio); 1407 free_it: 1408 /* 1409 * Folio may get swapped out as a whole, need to account 1410 * all pages in it. 1411 */ 1412 nr_reclaimed += nr_pages; 1413 1414 /* 1415 * Is there need to periodically free_folio_list? It would 1416 * appear not as the counts should be low 1417 */ 1418 if (unlikely(folio_test_large(folio))) 1419 destroy_large_folio(folio); 1420 else 1421 list_add(&folio->lru, &free_folios); 1422 continue; 1423 1424 activate_locked_split: 1425 /* 1426 * The tail pages that are failed to add into swap cache 1427 * reach here. Fixup nr_scanned and nr_pages. 1428 */ 1429 if (nr_pages > 1) { 1430 sc->nr_scanned -= (nr_pages - 1); 1431 nr_pages = 1; 1432 } 1433 activate_locked: 1434 /* Not a candidate for swapping, so reclaim swap space. */ 1435 if (folio_test_swapcache(folio) && 1436 (mem_cgroup_swap_full(folio) || folio_test_mlocked(folio))) 1437 folio_free_swap(folio); 1438 VM_BUG_ON_FOLIO(folio_test_active(folio), folio); 1439 if (!folio_test_mlocked(folio)) { 1440 int type = folio_is_file_lru(folio); 1441 folio_set_active(folio); 1442 stat->nr_activate[type] += nr_pages; 1443 count_memcg_folio_events(folio, PGACTIVATE, nr_pages); 1444 } 1445 keep_locked: 1446 folio_unlock(folio); 1447 keep: 1448 list_add(&folio->lru, &ret_folios); 1449 VM_BUG_ON_FOLIO(folio_test_lru(folio) || 1450 folio_test_unevictable(folio), folio); 1451 } 1452 /* 'folio_list' is always empty here */ 1453 1454 /* Migrate folios selected for demotion */ 1455 nr_reclaimed += demote_folio_list(&demote_folios, pgdat); 1456 /* Folios that could not be demoted are still in @demote_folios */ 1457 if (!list_empty(&demote_folios)) { 1458 /* Folios which weren't demoted go back on @folio_list */ 1459 list_splice_init(&demote_folios, folio_list); 1460 1461 /* 1462 * goto retry to reclaim the undemoted folios in folio_list if 1463 * desired. 1464 * 1465 * Reclaiming directly from top tier nodes is not often desired 1466 * due to it breaking the LRU ordering: in general memory 1467 * should be reclaimed from lower tier nodes and demoted from 1468 * top tier nodes. 1469 * 1470 * However, disabling reclaim from top tier nodes entirely 1471 * would cause ooms in edge scenarios where lower tier memory 1472 * is unreclaimable for whatever reason, eg memory being 1473 * mlocked or too hot to reclaim. We can disable reclaim 1474 * from top tier nodes in proactive reclaim though as that is 1475 * not real memory pressure. 1476 */ 1477 if (!sc->proactive) { 1478 do_demote_pass = false; 1479 goto retry; 1480 } 1481 } 1482 1483 pgactivate = stat->nr_activate[0] + stat->nr_activate[1]; 1484 1485 mem_cgroup_uncharge_list(&free_folios); 1486 try_to_unmap_flush(); 1487 free_unref_page_list(&free_folios); 1488 1489 list_splice(&ret_folios, folio_list); 1490 count_vm_events(PGACTIVATE, pgactivate); 1491 1492 if (plug) 1493 swap_write_unplug(plug); 1494 return nr_reclaimed; 1495 } 1496 1497 unsigned int reclaim_clean_pages_from_list(struct zone *zone, 1498 struct list_head *folio_list) 1499 { 1500 struct scan_control sc = { 1501 .gfp_mask = GFP_KERNEL, 1502 .may_unmap = 1, 1503 }; 1504 struct reclaim_stat stat; 1505 unsigned int nr_reclaimed; 1506 struct folio *folio, *next; 1507 LIST_HEAD(clean_folios); 1508 unsigned int noreclaim_flag; 1509 1510 list_for_each_entry_safe(folio, next, folio_list, lru) { 1511 if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) && 1512 !folio_test_dirty(folio) && !__folio_test_movable(folio) && 1513 !folio_test_unevictable(folio)) { 1514 folio_clear_active(folio); 1515 list_move(&folio->lru, &clean_folios); 1516 } 1517 } 1518 1519 /* 1520 * We should be safe here since we are only dealing with file pages and 1521 * we are not kswapd and therefore cannot write dirty file pages. But 1522 * call memalloc_noreclaim_save() anyway, just in case these conditions 1523 * change in the future. 1524 */ 1525 noreclaim_flag = memalloc_noreclaim_save(); 1526 nr_reclaimed = shrink_folio_list(&clean_folios, zone->zone_pgdat, &sc, 1527 &stat, true); 1528 memalloc_noreclaim_restore(noreclaim_flag); 1529 1530 list_splice(&clean_folios, folio_list); 1531 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, 1532 -(long)nr_reclaimed); 1533 /* 1534 * Since lazyfree pages are isolated from file LRU from the beginning, 1535 * they will rotate back to anonymous LRU in the end if it failed to 1536 * discard so isolated count will be mismatched. 1537 * Compensate the isolated count for both LRU lists. 1538 */ 1539 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON, 1540 stat.nr_lazyfree_fail); 1541 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, 1542 -(long)stat.nr_lazyfree_fail); 1543 return nr_reclaimed; 1544 } 1545 1546 /* 1547 * Update LRU sizes after isolating pages. The LRU size updates must 1548 * be complete before mem_cgroup_update_lru_size due to a sanity check. 1549 */ 1550 static __always_inline void update_lru_sizes(struct lruvec *lruvec, 1551 enum lru_list lru, unsigned long *nr_zone_taken) 1552 { 1553 int zid; 1554 1555 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1556 if (!nr_zone_taken[zid]) 1557 continue; 1558 1559 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 1560 } 1561 1562 } 1563 1564 #ifdef CONFIG_CMA 1565 /* 1566 * It is waste of effort to scan and reclaim CMA pages if it is not available 1567 * for current allocation context. Kswapd can not be enrolled as it can not 1568 * distinguish this scenario by using sc->gfp_mask = GFP_KERNEL 1569 */ 1570 static bool skip_cma(struct folio *folio, struct scan_control *sc) 1571 { 1572 return !current_is_kswapd() && 1573 gfp_migratetype(sc->gfp_mask) != MIGRATE_MOVABLE && 1574 folio_migratetype(folio) == MIGRATE_CMA; 1575 } 1576 #else 1577 static bool skip_cma(struct folio *folio, struct scan_control *sc) 1578 { 1579 return false; 1580 } 1581 #endif 1582 1583 /* 1584 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times. 1585 * 1586 * lruvec->lru_lock is heavily contended. Some of the functions that 1587 * shrink the lists perform better by taking out a batch of pages 1588 * and working on them outside the LRU lock. 1589 * 1590 * For pagecache intensive workloads, this function is the hottest 1591 * spot in the kernel (apart from copy_*_user functions). 1592 * 1593 * Lru_lock must be held before calling this function. 1594 * 1595 * @nr_to_scan: The number of eligible pages to look through on the list. 1596 * @lruvec: The LRU vector to pull pages from. 1597 * @dst: The temp list to put pages on to. 1598 * @nr_scanned: The number of pages that were scanned. 1599 * @sc: The scan_control struct for this reclaim session 1600 * @lru: LRU list id for isolating 1601 * 1602 * returns how many pages were moved onto *@dst. 1603 */ 1604 static unsigned long isolate_lru_folios(unsigned long nr_to_scan, 1605 struct lruvec *lruvec, struct list_head *dst, 1606 unsigned long *nr_scanned, struct scan_control *sc, 1607 enum lru_list lru) 1608 { 1609 struct list_head *src = &lruvec->lists[lru]; 1610 unsigned long nr_taken = 0; 1611 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 }; 1612 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, }; 1613 unsigned long skipped = 0; 1614 unsigned long scan, total_scan, nr_pages; 1615 LIST_HEAD(folios_skipped); 1616 1617 total_scan = 0; 1618 scan = 0; 1619 while (scan < nr_to_scan && !list_empty(src)) { 1620 struct list_head *move_to = src; 1621 struct folio *folio; 1622 1623 folio = lru_to_folio(src); 1624 prefetchw_prev_lru_folio(folio, src, flags); 1625 1626 nr_pages = folio_nr_pages(folio); 1627 total_scan += nr_pages; 1628 1629 if (folio_zonenum(folio) > sc->reclaim_idx || 1630 skip_cma(folio, sc)) { 1631 nr_skipped[folio_zonenum(folio)] += nr_pages; 1632 move_to = &folios_skipped; 1633 goto move; 1634 } 1635 1636 /* 1637 * Do not count skipped folios because that makes the function 1638 * return with no isolated folios if the LRU mostly contains 1639 * ineligible folios. This causes the VM to not reclaim any 1640 * folios, triggering a premature OOM. 1641 * Account all pages in a folio. 1642 */ 1643 scan += nr_pages; 1644 1645 if (!folio_test_lru(folio)) 1646 goto move; 1647 if (!sc->may_unmap && folio_mapped(folio)) 1648 goto move; 1649 1650 /* 1651 * Be careful not to clear the lru flag until after we're 1652 * sure the folio is not being freed elsewhere -- the 1653 * folio release code relies on it. 1654 */ 1655 if (unlikely(!folio_try_get(folio))) 1656 goto move; 1657 1658 if (!folio_test_clear_lru(folio)) { 1659 /* Another thread is already isolating this folio */ 1660 folio_put(folio); 1661 goto move; 1662 } 1663 1664 nr_taken += nr_pages; 1665 nr_zone_taken[folio_zonenum(folio)] += nr_pages; 1666 move_to = dst; 1667 move: 1668 list_move(&folio->lru, move_to); 1669 } 1670 1671 /* 1672 * Splice any skipped folios to the start of the LRU list. Note that 1673 * this disrupts the LRU order when reclaiming for lower zones but 1674 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX 1675 * scanning would soon rescan the same folios to skip and waste lots 1676 * of cpu cycles. 1677 */ 1678 if (!list_empty(&folios_skipped)) { 1679 int zid; 1680 1681 list_splice(&folios_skipped, src); 1682 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1683 if (!nr_skipped[zid]) 1684 continue; 1685 1686 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]); 1687 skipped += nr_skipped[zid]; 1688 } 1689 } 1690 *nr_scanned = total_scan; 1691 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, 1692 total_scan, skipped, nr_taken, lru); 1693 update_lru_sizes(lruvec, lru, nr_zone_taken); 1694 return nr_taken; 1695 } 1696 1697 /** 1698 * folio_isolate_lru() - Try to isolate a folio from its LRU list. 1699 * @folio: Folio to isolate from its LRU list. 1700 * 1701 * Isolate a @folio from an LRU list and adjust the vmstat statistic 1702 * corresponding to whatever LRU list the folio was on. 1703 * 1704 * The folio will have its LRU flag cleared. If it was found on the 1705 * active list, it will have the Active flag set. If it was found on the 1706 * unevictable list, it will have the Unevictable flag set. These flags 1707 * may need to be cleared by the caller before letting the page go. 1708 * 1709 * Context: 1710 * 1711 * (1) Must be called with an elevated refcount on the folio. This is a 1712 * fundamental difference from isolate_lru_folios() (which is called 1713 * without a stable reference). 1714 * (2) The lru_lock must not be held. 1715 * (3) Interrupts must be enabled. 1716 * 1717 * Return: true if the folio was removed from an LRU list. 1718 * false if the folio was not on an LRU list. 1719 */ 1720 bool folio_isolate_lru(struct folio *folio) 1721 { 1722 bool ret = false; 1723 1724 VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio); 1725 1726 if (folio_test_clear_lru(folio)) { 1727 struct lruvec *lruvec; 1728 1729 folio_get(folio); 1730 lruvec = folio_lruvec_lock_irq(folio); 1731 lruvec_del_folio(lruvec, folio); 1732 unlock_page_lruvec_irq(lruvec); 1733 ret = true; 1734 } 1735 1736 return ret; 1737 } 1738 1739 /* 1740 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 1741 * then get rescheduled. When there are massive number of tasks doing page 1742 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 1743 * the LRU list will go small and be scanned faster than necessary, leading to 1744 * unnecessary swapping, thrashing and OOM. 1745 */ 1746 static int too_many_isolated(struct pglist_data *pgdat, int file, 1747 struct scan_control *sc) 1748 { 1749 unsigned long inactive, isolated; 1750 bool too_many; 1751 1752 if (current_is_kswapd()) 1753 return 0; 1754 1755 if (!writeback_throttling_sane(sc)) 1756 return 0; 1757 1758 if (file) { 1759 inactive = node_page_state(pgdat, NR_INACTIVE_FILE); 1760 isolated = node_page_state(pgdat, NR_ISOLATED_FILE); 1761 } else { 1762 inactive = node_page_state(pgdat, NR_INACTIVE_ANON); 1763 isolated = node_page_state(pgdat, NR_ISOLATED_ANON); 1764 } 1765 1766 /* 1767 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 1768 * won't get blocked by normal direct-reclaimers, forming a circular 1769 * deadlock. 1770 */ 1771 if (gfp_has_io_fs(sc->gfp_mask)) 1772 inactive >>= 3; 1773 1774 too_many = isolated > inactive; 1775 1776 /* Wake up tasks throttled due to too_many_isolated. */ 1777 if (!too_many) 1778 wake_throttle_isolated(pgdat); 1779 1780 return too_many; 1781 } 1782 1783 /* 1784 * move_folios_to_lru() moves folios from private @list to appropriate LRU list. 1785 * On return, @list is reused as a list of folios to be freed by the caller. 1786 * 1787 * Returns the number of pages moved to the given lruvec. 1788 */ 1789 static unsigned int move_folios_to_lru(struct lruvec *lruvec, 1790 struct list_head *list) 1791 { 1792 int nr_pages, nr_moved = 0; 1793 LIST_HEAD(folios_to_free); 1794 1795 while (!list_empty(list)) { 1796 struct folio *folio = lru_to_folio(list); 1797 1798 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 1799 list_del(&folio->lru); 1800 if (unlikely(!folio_evictable(folio))) { 1801 spin_unlock_irq(&lruvec->lru_lock); 1802 folio_putback_lru(folio); 1803 spin_lock_irq(&lruvec->lru_lock); 1804 continue; 1805 } 1806 1807 /* 1808 * The folio_set_lru needs to be kept here for list integrity. 1809 * Otherwise: 1810 * #0 move_folios_to_lru #1 release_pages 1811 * if (!folio_put_testzero()) 1812 * if (folio_put_testzero()) 1813 * !lru //skip lru_lock 1814 * folio_set_lru() 1815 * list_add(&folio->lru,) 1816 * list_add(&folio->lru,) 1817 */ 1818 folio_set_lru(folio); 1819 1820 if (unlikely(folio_put_testzero(folio))) { 1821 __folio_clear_lru_flags(folio); 1822 1823 if (unlikely(folio_test_large(folio))) { 1824 spin_unlock_irq(&lruvec->lru_lock); 1825 destroy_large_folio(folio); 1826 spin_lock_irq(&lruvec->lru_lock); 1827 } else 1828 list_add(&folio->lru, &folios_to_free); 1829 1830 continue; 1831 } 1832 1833 /* 1834 * All pages were isolated from the same lruvec (and isolation 1835 * inhibits memcg migration). 1836 */ 1837 VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio); 1838 lruvec_add_folio(lruvec, folio); 1839 nr_pages = folio_nr_pages(folio); 1840 nr_moved += nr_pages; 1841 if (folio_test_active(folio)) 1842 workingset_age_nonresident(lruvec, nr_pages); 1843 } 1844 1845 /* 1846 * To save our caller's stack, now use input list for pages to free. 1847 */ 1848 list_splice(&folios_to_free, list); 1849 1850 return nr_moved; 1851 } 1852 1853 /* 1854 * If a kernel thread (such as nfsd for loop-back mounts) services a backing 1855 * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case 1856 * we should not throttle. Otherwise it is safe to do so. 1857 */ 1858 static int current_may_throttle(void) 1859 { 1860 return !(current->flags & PF_LOCAL_THROTTLE); 1861 } 1862 1863 /* 1864 * shrink_inactive_list() is a helper for shrink_node(). It returns the number 1865 * of reclaimed pages 1866 */ 1867 static unsigned long shrink_inactive_list(unsigned long nr_to_scan, 1868 struct lruvec *lruvec, struct scan_control *sc, 1869 enum lru_list lru) 1870 { 1871 LIST_HEAD(folio_list); 1872 unsigned long nr_scanned; 1873 unsigned int nr_reclaimed = 0; 1874 unsigned long nr_taken; 1875 struct reclaim_stat stat; 1876 bool file = is_file_lru(lru); 1877 enum vm_event_item item; 1878 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1879 bool stalled = false; 1880 1881 while (unlikely(too_many_isolated(pgdat, file, sc))) { 1882 if (stalled) 1883 return 0; 1884 1885 /* wait a bit for the reclaimer. */ 1886 stalled = true; 1887 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED); 1888 1889 /* We are about to die and free our memory. Return now. */ 1890 if (fatal_signal_pending(current)) 1891 return SWAP_CLUSTER_MAX; 1892 } 1893 1894 lru_add_drain(); 1895 1896 spin_lock_irq(&lruvec->lru_lock); 1897 1898 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &folio_list, 1899 &nr_scanned, sc, lru); 1900 1901 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 1902 item = PGSCAN_KSWAPD + reclaimer_offset(); 1903 if (!cgroup_reclaim(sc)) 1904 __count_vm_events(item, nr_scanned); 1905 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned); 1906 __count_vm_events(PGSCAN_ANON + file, nr_scanned); 1907 1908 spin_unlock_irq(&lruvec->lru_lock); 1909 1910 if (nr_taken == 0) 1911 return 0; 1912 1913 nr_reclaimed = shrink_folio_list(&folio_list, pgdat, sc, &stat, false); 1914 1915 spin_lock_irq(&lruvec->lru_lock); 1916 move_folios_to_lru(lruvec, &folio_list); 1917 1918 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 1919 item = PGSTEAL_KSWAPD + reclaimer_offset(); 1920 if (!cgroup_reclaim(sc)) 1921 __count_vm_events(item, nr_reclaimed); 1922 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed); 1923 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed); 1924 spin_unlock_irq(&lruvec->lru_lock); 1925 1926 lru_note_cost(lruvec, file, stat.nr_pageout, nr_scanned - nr_reclaimed); 1927 mem_cgroup_uncharge_list(&folio_list); 1928 free_unref_page_list(&folio_list); 1929 1930 /* 1931 * If dirty folios are scanned that are not queued for IO, it 1932 * implies that flushers are not doing their job. This can 1933 * happen when memory pressure pushes dirty folios to the end of 1934 * the LRU before the dirty limits are breached and the dirty 1935 * data has expired. It can also happen when the proportion of 1936 * dirty folios grows not through writes but through memory 1937 * pressure reclaiming all the clean cache. And in some cases, 1938 * the flushers simply cannot keep up with the allocation 1939 * rate. Nudge the flusher threads in case they are asleep. 1940 */ 1941 if (stat.nr_unqueued_dirty == nr_taken) { 1942 wakeup_flusher_threads(WB_REASON_VMSCAN); 1943 /* 1944 * For cgroupv1 dirty throttling is achieved by waking up 1945 * the kernel flusher here and later waiting on folios 1946 * which are in writeback to finish (see shrink_folio_list()). 1947 * 1948 * Flusher may not be able to issue writeback quickly 1949 * enough for cgroupv1 writeback throttling to work 1950 * on a large system. 1951 */ 1952 if (!writeback_throttling_sane(sc)) 1953 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK); 1954 } 1955 1956 sc->nr.dirty += stat.nr_dirty; 1957 sc->nr.congested += stat.nr_congested; 1958 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty; 1959 sc->nr.writeback += stat.nr_writeback; 1960 sc->nr.immediate += stat.nr_immediate; 1961 sc->nr.taken += nr_taken; 1962 if (file) 1963 sc->nr.file_taken += nr_taken; 1964 1965 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 1966 nr_scanned, nr_reclaimed, &stat, sc->priority, file); 1967 return nr_reclaimed; 1968 } 1969 1970 /* 1971 * shrink_active_list() moves folios from the active LRU to the inactive LRU. 1972 * 1973 * We move them the other way if the folio is referenced by one or more 1974 * processes. 1975 * 1976 * If the folios are mostly unmapped, the processing is fast and it is 1977 * appropriate to hold lru_lock across the whole operation. But if 1978 * the folios are mapped, the processing is slow (folio_referenced()), so 1979 * we should drop lru_lock around each folio. It's impossible to balance 1980 * this, so instead we remove the folios from the LRU while processing them. 1981 * It is safe to rely on the active flag against the non-LRU folios in here 1982 * because nobody will play with that bit on a non-LRU folio. 1983 * 1984 * The downside is that we have to touch folio->_refcount against each folio. 1985 * But we had to alter folio->flags anyway. 1986 */ 1987 static void shrink_active_list(unsigned long nr_to_scan, 1988 struct lruvec *lruvec, 1989 struct scan_control *sc, 1990 enum lru_list lru) 1991 { 1992 unsigned long nr_taken; 1993 unsigned long nr_scanned; 1994 unsigned long vm_flags; 1995 LIST_HEAD(l_hold); /* The folios which were snipped off */ 1996 LIST_HEAD(l_active); 1997 LIST_HEAD(l_inactive); 1998 unsigned nr_deactivate, nr_activate; 1999 unsigned nr_rotated = 0; 2000 int file = is_file_lru(lru); 2001 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2002 2003 lru_add_drain(); 2004 2005 spin_lock_irq(&lruvec->lru_lock); 2006 2007 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &l_hold, 2008 &nr_scanned, sc, lru); 2009 2010 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2011 2012 if (!cgroup_reclaim(sc)) 2013 __count_vm_events(PGREFILL, nr_scanned); 2014 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned); 2015 2016 spin_unlock_irq(&lruvec->lru_lock); 2017 2018 while (!list_empty(&l_hold)) { 2019 struct folio *folio; 2020 2021 cond_resched(); 2022 folio = lru_to_folio(&l_hold); 2023 list_del(&folio->lru); 2024 2025 if (unlikely(!folio_evictable(folio))) { 2026 folio_putback_lru(folio); 2027 continue; 2028 } 2029 2030 if (unlikely(buffer_heads_over_limit)) { 2031 if (folio_needs_release(folio) && 2032 folio_trylock(folio)) { 2033 filemap_release_folio(folio, 0); 2034 folio_unlock(folio); 2035 } 2036 } 2037 2038 /* Referenced or rmap lock contention: rotate */ 2039 if (folio_referenced(folio, 0, sc->target_mem_cgroup, 2040 &vm_flags) != 0) { 2041 /* 2042 * Identify referenced, file-backed active folios and 2043 * give them one more trip around the active list. So 2044 * that executable code get better chances to stay in 2045 * memory under moderate memory pressure. Anon folios 2046 * are not likely to be evicted by use-once streaming 2047 * IO, plus JVM can create lots of anon VM_EXEC folios, 2048 * so we ignore them here. 2049 */ 2050 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) { 2051 nr_rotated += folio_nr_pages(folio); 2052 list_add(&folio->lru, &l_active); 2053 continue; 2054 } 2055 } 2056 2057 folio_clear_active(folio); /* we are de-activating */ 2058 folio_set_workingset(folio); 2059 list_add(&folio->lru, &l_inactive); 2060 } 2061 2062 /* 2063 * Move folios back to the lru list. 2064 */ 2065 spin_lock_irq(&lruvec->lru_lock); 2066 2067 nr_activate = move_folios_to_lru(lruvec, &l_active); 2068 nr_deactivate = move_folios_to_lru(lruvec, &l_inactive); 2069 /* Keep all free folios in l_active list */ 2070 list_splice(&l_inactive, &l_active); 2071 2072 __count_vm_events(PGDEACTIVATE, nr_deactivate); 2073 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate); 2074 2075 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2076 spin_unlock_irq(&lruvec->lru_lock); 2077 2078 if (nr_rotated) 2079 lru_note_cost(lruvec, file, 0, nr_rotated); 2080 mem_cgroup_uncharge_list(&l_active); 2081 free_unref_page_list(&l_active); 2082 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate, 2083 nr_deactivate, nr_rotated, sc->priority, file); 2084 } 2085 2086 static unsigned int reclaim_folio_list(struct list_head *folio_list, 2087 struct pglist_data *pgdat) 2088 { 2089 struct reclaim_stat dummy_stat; 2090 unsigned int nr_reclaimed; 2091 struct folio *folio; 2092 struct scan_control sc = { 2093 .gfp_mask = GFP_KERNEL, 2094 .may_writepage = 1, 2095 .may_unmap = 1, 2096 .may_swap = 1, 2097 .no_demotion = 1, 2098 }; 2099 2100 nr_reclaimed = shrink_folio_list(folio_list, pgdat, &sc, &dummy_stat, false); 2101 while (!list_empty(folio_list)) { 2102 folio = lru_to_folio(folio_list); 2103 list_del(&folio->lru); 2104 folio_putback_lru(folio); 2105 } 2106 2107 return nr_reclaimed; 2108 } 2109 2110 unsigned long reclaim_pages(struct list_head *folio_list) 2111 { 2112 int nid; 2113 unsigned int nr_reclaimed = 0; 2114 LIST_HEAD(node_folio_list); 2115 unsigned int noreclaim_flag; 2116 2117 if (list_empty(folio_list)) 2118 return nr_reclaimed; 2119 2120 noreclaim_flag = memalloc_noreclaim_save(); 2121 2122 nid = folio_nid(lru_to_folio(folio_list)); 2123 do { 2124 struct folio *folio = lru_to_folio(folio_list); 2125 2126 if (nid == folio_nid(folio)) { 2127 folio_clear_active(folio); 2128 list_move(&folio->lru, &node_folio_list); 2129 continue; 2130 } 2131 2132 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid)); 2133 nid = folio_nid(lru_to_folio(folio_list)); 2134 } while (!list_empty(folio_list)); 2135 2136 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid)); 2137 2138 memalloc_noreclaim_restore(noreclaim_flag); 2139 2140 return nr_reclaimed; 2141 } 2142 2143 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 2144 struct lruvec *lruvec, struct scan_control *sc) 2145 { 2146 if (is_active_lru(lru)) { 2147 if (sc->may_deactivate & (1 << is_file_lru(lru))) 2148 shrink_active_list(nr_to_scan, lruvec, sc, lru); 2149 else 2150 sc->skipped_deactivate = 1; 2151 return 0; 2152 } 2153 2154 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 2155 } 2156 2157 /* 2158 * The inactive anon list should be small enough that the VM never has 2159 * to do too much work. 2160 * 2161 * The inactive file list should be small enough to leave most memory 2162 * to the established workingset on the scan-resistant active list, 2163 * but large enough to avoid thrashing the aggregate readahead window. 2164 * 2165 * Both inactive lists should also be large enough that each inactive 2166 * folio has a chance to be referenced again before it is reclaimed. 2167 * 2168 * If that fails and refaulting is observed, the inactive list grows. 2169 * 2170 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE folios 2171 * on this LRU, maintained by the pageout code. An inactive_ratio 2172 * of 3 means 3:1 or 25% of the folios are kept on the inactive list. 2173 * 2174 * total target max 2175 * memory ratio inactive 2176 * ------------------------------------- 2177 * 10MB 1 5MB 2178 * 100MB 1 50MB 2179 * 1GB 3 250MB 2180 * 10GB 10 0.9GB 2181 * 100GB 31 3GB 2182 * 1TB 101 10GB 2183 * 10TB 320 32GB 2184 */ 2185 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru) 2186 { 2187 enum lru_list active_lru = inactive_lru + LRU_ACTIVE; 2188 unsigned long inactive, active; 2189 unsigned long inactive_ratio; 2190 unsigned long gb; 2191 2192 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru); 2193 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru); 2194 2195 gb = (inactive + active) >> (30 - PAGE_SHIFT); 2196 if (gb) 2197 inactive_ratio = int_sqrt(10 * gb); 2198 else 2199 inactive_ratio = 1; 2200 2201 return inactive * inactive_ratio < active; 2202 } 2203 2204 enum scan_balance { 2205 SCAN_EQUAL, 2206 SCAN_FRACT, 2207 SCAN_ANON, 2208 SCAN_FILE, 2209 }; 2210 2211 static void prepare_scan_control(pg_data_t *pgdat, struct scan_control *sc) 2212 { 2213 unsigned long file; 2214 struct lruvec *target_lruvec; 2215 2216 if (lru_gen_enabled()) 2217 return; 2218 2219 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat); 2220 2221 /* 2222 * Flush the memory cgroup stats, so that we read accurate per-memcg 2223 * lruvec stats for heuristics. 2224 */ 2225 mem_cgroup_flush_stats(); 2226 2227 /* 2228 * Determine the scan balance between anon and file LRUs. 2229 */ 2230 spin_lock_irq(&target_lruvec->lru_lock); 2231 sc->anon_cost = target_lruvec->anon_cost; 2232 sc->file_cost = target_lruvec->file_cost; 2233 spin_unlock_irq(&target_lruvec->lru_lock); 2234 2235 /* 2236 * Target desirable inactive:active list ratios for the anon 2237 * and file LRU lists. 2238 */ 2239 if (!sc->force_deactivate) { 2240 unsigned long refaults; 2241 2242 /* 2243 * When refaults are being observed, it means a new 2244 * workingset is being established. Deactivate to get 2245 * rid of any stale active pages quickly. 2246 */ 2247 refaults = lruvec_page_state(target_lruvec, 2248 WORKINGSET_ACTIVATE_ANON); 2249 if (refaults != target_lruvec->refaults[WORKINGSET_ANON] || 2250 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON)) 2251 sc->may_deactivate |= DEACTIVATE_ANON; 2252 else 2253 sc->may_deactivate &= ~DEACTIVATE_ANON; 2254 2255 refaults = lruvec_page_state(target_lruvec, 2256 WORKINGSET_ACTIVATE_FILE); 2257 if (refaults != target_lruvec->refaults[WORKINGSET_FILE] || 2258 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE)) 2259 sc->may_deactivate |= DEACTIVATE_FILE; 2260 else 2261 sc->may_deactivate &= ~DEACTIVATE_FILE; 2262 } else 2263 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE; 2264 2265 /* 2266 * If we have plenty of inactive file pages that aren't 2267 * thrashing, try to reclaim those first before touching 2268 * anonymous pages. 2269 */ 2270 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE); 2271 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE)) 2272 sc->cache_trim_mode = 1; 2273 else 2274 sc->cache_trim_mode = 0; 2275 2276 /* 2277 * Prevent the reclaimer from falling into the cache trap: as 2278 * cache pages start out inactive, every cache fault will tip 2279 * the scan balance towards the file LRU. And as the file LRU 2280 * shrinks, so does the window for rotation from references. 2281 * This means we have a runaway feedback loop where a tiny 2282 * thrashing file LRU becomes infinitely more attractive than 2283 * anon pages. Try to detect this based on file LRU size. 2284 */ 2285 if (!cgroup_reclaim(sc)) { 2286 unsigned long total_high_wmark = 0; 2287 unsigned long free, anon; 2288 int z; 2289 2290 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES); 2291 file = node_page_state(pgdat, NR_ACTIVE_FILE) + 2292 node_page_state(pgdat, NR_INACTIVE_FILE); 2293 2294 for (z = 0; z < MAX_NR_ZONES; z++) { 2295 struct zone *zone = &pgdat->node_zones[z]; 2296 2297 if (!managed_zone(zone)) 2298 continue; 2299 2300 total_high_wmark += high_wmark_pages(zone); 2301 } 2302 2303 /* 2304 * Consider anon: if that's low too, this isn't a 2305 * runaway file reclaim problem, but rather just 2306 * extreme pressure. Reclaim as per usual then. 2307 */ 2308 anon = node_page_state(pgdat, NR_INACTIVE_ANON); 2309 2310 sc->file_is_tiny = 2311 file + free <= total_high_wmark && 2312 !(sc->may_deactivate & DEACTIVATE_ANON) && 2313 anon >> sc->priority; 2314 } 2315 } 2316 2317 /* 2318 * Determine how aggressively the anon and file LRU lists should be 2319 * scanned. 2320 * 2321 * nr[0] = anon inactive folios to scan; nr[1] = anon active folios to scan 2322 * nr[2] = file inactive folios to scan; nr[3] = file active folios to scan 2323 */ 2324 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc, 2325 unsigned long *nr) 2326 { 2327 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2328 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 2329 unsigned long anon_cost, file_cost, total_cost; 2330 int swappiness = mem_cgroup_swappiness(memcg); 2331 u64 fraction[ANON_AND_FILE]; 2332 u64 denominator = 0; /* gcc */ 2333 enum scan_balance scan_balance; 2334 unsigned long ap, fp; 2335 enum lru_list lru; 2336 2337 /* If we have no swap space, do not bother scanning anon folios. */ 2338 if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) { 2339 scan_balance = SCAN_FILE; 2340 goto out; 2341 } 2342 2343 /* 2344 * Global reclaim will swap to prevent OOM even with no 2345 * swappiness, but memcg users want to use this knob to 2346 * disable swapping for individual groups completely when 2347 * using the memory controller's swap limit feature would be 2348 * too expensive. 2349 */ 2350 if (cgroup_reclaim(sc) && !swappiness) { 2351 scan_balance = SCAN_FILE; 2352 goto out; 2353 } 2354 2355 /* 2356 * Do not apply any pressure balancing cleverness when the 2357 * system is close to OOM, scan both anon and file equally 2358 * (unless the swappiness setting disagrees with swapping). 2359 */ 2360 if (!sc->priority && swappiness) { 2361 scan_balance = SCAN_EQUAL; 2362 goto out; 2363 } 2364 2365 /* 2366 * If the system is almost out of file pages, force-scan anon. 2367 */ 2368 if (sc->file_is_tiny) { 2369 scan_balance = SCAN_ANON; 2370 goto out; 2371 } 2372 2373 /* 2374 * If there is enough inactive page cache, we do not reclaim 2375 * anything from the anonymous working right now. 2376 */ 2377 if (sc->cache_trim_mode) { 2378 scan_balance = SCAN_FILE; 2379 goto out; 2380 } 2381 2382 scan_balance = SCAN_FRACT; 2383 /* 2384 * Calculate the pressure balance between anon and file pages. 2385 * 2386 * The amount of pressure we put on each LRU is inversely 2387 * proportional to the cost of reclaiming each list, as 2388 * determined by the share of pages that are refaulting, times 2389 * the relative IO cost of bringing back a swapped out 2390 * anonymous page vs reloading a filesystem page (swappiness). 2391 * 2392 * Although we limit that influence to ensure no list gets 2393 * left behind completely: at least a third of the pressure is 2394 * applied, before swappiness. 2395 * 2396 * With swappiness at 100, anon and file have equal IO cost. 2397 */ 2398 total_cost = sc->anon_cost + sc->file_cost; 2399 anon_cost = total_cost + sc->anon_cost; 2400 file_cost = total_cost + sc->file_cost; 2401 total_cost = anon_cost + file_cost; 2402 2403 ap = swappiness * (total_cost + 1); 2404 ap /= anon_cost + 1; 2405 2406 fp = (200 - swappiness) * (total_cost + 1); 2407 fp /= file_cost + 1; 2408 2409 fraction[0] = ap; 2410 fraction[1] = fp; 2411 denominator = ap + fp; 2412 out: 2413 for_each_evictable_lru(lru) { 2414 int file = is_file_lru(lru); 2415 unsigned long lruvec_size; 2416 unsigned long low, min; 2417 unsigned long scan; 2418 2419 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx); 2420 mem_cgroup_protection(sc->target_mem_cgroup, memcg, 2421 &min, &low); 2422 2423 if (min || low) { 2424 /* 2425 * Scale a cgroup's reclaim pressure by proportioning 2426 * its current usage to its memory.low or memory.min 2427 * setting. 2428 * 2429 * This is important, as otherwise scanning aggression 2430 * becomes extremely binary -- from nothing as we 2431 * approach the memory protection threshold, to totally 2432 * nominal as we exceed it. This results in requiring 2433 * setting extremely liberal protection thresholds. It 2434 * also means we simply get no protection at all if we 2435 * set it too low, which is not ideal. 2436 * 2437 * If there is any protection in place, we reduce scan 2438 * pressure by how much of the total memory used is 2439 * within protection thresholds. 2440 * 2441 * There is one special case: in the first reclaim pass, 2442 * we skip over all groups that are within their low 2443 * protection. If that fails to reclaim enough pages to 2444 * satisfy the reclaim goal, we come back and override 2445 * the best-effort low protection. However, we still 2446 * ideally want to honor how well-behaved groups are in 2447 * that case instead of simply punishing them all 2448 * equally. As such, we reclaim them based on how much 2449 * memory they are using, reducing the scan pressure 2450 * again by how much of the total memory used is under 2451 * hard protection. 2452 */ 2453 unsigned long cgroup_size = mem_cgroup_size(memcg); 2454 unsigned long protection; 2455 2456 /* memory.low scaling, make sure we retry before OOM */ 2457 if (!sc->memcg_low_reclaim && low > min) { 2458 protection = low; 2459 sc->memcg_low_skipped = 1; 2460 } else { 2461 protection = min; 2462 } 2463 2464 /* Avoid TOCTOU with earlier protection check */ 2465 cgroup_size = max(cgroup_size, protection); 2466 2467 scan = lruvec_size - lruvec_size * protection / 2468 (cgroup_size + 1); 2469 2470 /* 2471 * Minimally target SWAP_CLUSTER_MAX pages to keep 2472 * reclaim moving forwards, avoiding decrementing 2473 * sc->priority further than desirable. 2474 */ 2475 scan = max(scan, SWAP_CLUSTER_MAX); 2476 } else { 2477 scan = lruvec_size; 2478 } 2479 2480 scan >>= sc->priority; 2481 2482 /* 2483 * If the cgroup's already been deleted, make sure to 2484 * scrape out the remaining cache. 2485 */ 2486 if (!scan && !mem_cgroup_online(memcg)) 2487 scan = min(lruvec_size, SWAP_CLUSTER_MAX); 2488 2489 switch (scan_balance) { 2490 case SCAN_EQUAL: 2491 /* Scan lists relative to size */ 2492 break; 2493 case SCAN_FRACT: 2494 /* 2495 * Scan types proportional to swappiness and 2496 * their relative recent reclaim efficiency. 2497 * Make sure we don't miss the last page on 2498 * the offlined memory cgroups because of a 2499 * round-off error. 2500 */ 2501 scan = mem_cgroup_online(memcg) ? 2502 div64_u64(scan * fraction[file], denominator) : 2503 DIV64_U64_ROUND_UP(scan * fraction[file], 2504 denominator); 2505 break; 2506 case SCAN_FILE: 2507 case SCAN_ANON: 2508 /* Scan one type exclusively */ 2509 if ((scan_balance == SCAN_FILE) != file) 2510 scan = 0; 2511 break; 2512 default: 2513 /* Look ma, no brain */ 2514 BUG(); 2515 } 2516 2517 nr[lru] = scan; 2518 } 2519 } 2520 2521 /* 2522 * Anonymous LRU management is a waste if there is 2523 * ultimately no way to reclaim the memory. 2524 */ 2525 static bool can_age_anon_pages(struct pglist_data *pgdat, 2526 struct scan_control *sc) 2527 { 2528 /* Aging the anon LRU is valuable if swap is present: */ 2529 if (total_swap_pages > 0) 2530 return true; 2531 2532 /* Also valuable if anon pages can be demoted: */ 2533 return can_demote(pgdat->node_id, sc); 2534 } 2535 2536 #ifdef CONFIG_LRU_GEN 2537 2538 #ifdef CONFIG_LRU_GEN_ENABLED 2539 DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS); 2540 #define get_cap(cap) static_branch_likely(&lru_gen_caps[cap]) 2541 #else 2542 DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS); 2543 #define get_cap(cap) static_branch_unlikely(&lru_gen_caps[cap]) 2544 #endif 2545 2546 static bool should_walk_mmu(void) 2547 { 2548 return arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK); 2549 } 2550 2551 static bool should_clear_pmd_young(void) 2552 { 2553 return arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG); 2554 } 2555 2556 /****************************************************************************** 2557 * shorthand helpers 2558 ******************************************************************************/ 2559 2560 #define LRU_REFS_FLAGS (BIT(PG_referenced) | BIT(PG_workingset)) 2561 2562 #define DEFINE_MAX_SEQ(lruvec) \ 2563 unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq) 2564 2565 #define DEFINE_MIN_SEQ(lruvec) \ 2566 unsigned long min_seq[ANON_AND_FILE] = { \ 2567 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]), \ 2568 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]), \ 2569 } 2570 2571 #define for_each_gen_type_zone(gen, type, zone) \ 2572 for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++) \ 2573 for ((type) = 0; (type) < ANON_AND_FILE; (type)++) \ 2574 for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++) 2575 2576 #define get_memcg_gen(seq) ((seq) % MEMCG_NR_GENS) 2577 #define get_memcg_bin(bin) ((bin) % MEMCG_NR_BINS) 2578 2579 static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid) 2580 { 2581 struct pglist_data *pgdat = NODE_DATA(nid); 2582 2583 #ifdef CONFIG_MEMCG 2584 if (memcg) { 2585 struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec; 2586 2587 /* see the comment in mem_cgroup_lruvec() */ 2588 if (!lruvec->pgdat) 2589 lruvec->pgdat = pgdat; 2590 2591 return lruvec; 2592 } 2593 #endif 2594 VM_WARN_ON_ONCE(!mem_cgroup_disabled()); 2595 2596 return &pgdat->__lruvec; 2597 } 2598 2599 static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc) 2600 { 2601 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 2602 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2603 2604 if (!sc->may_swap) 2605 return 0; 2606 2607 if (!can_demote(pgdat->node_id, sc) && 2608 mem_cgroup_get_nr_swap_pages(memcg) < MIN_LRU_BATCH) 2609 return 0; 2610 2611 return mem_cgroup_swappiness(memcg); 2612 } 2613 2614 static int get_nr_gens(struct lruvec *lruvec, int type) 2615 { 2616 return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1; 2617 } 2618 2619 static bool __maybe_unused seq_is_valid(struct lruvec *lruvec) 2620 { 2621 /* see the comment on lru_gen_folio */ 2622 return get_nr_gens(lruvec, LRU_GEN_FILE) >= MIN_NR_GENS && 2623 get_nr_gens(lruvec, LRU_GEN_FILE) <= get_nr_gens(lruvec, LRU_GEN_ANON) && 2624 get_nr_gens(lruvec, LRU_GEN_ANON) <= MAX_NR_GENS; 2625 } 2626 2627 /****************************************************************************** 2628 * Bloom filters 2629 ******************************************************************************/ 2630 2631 /* 2632 * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when 2633 * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of 2634 * bits in a bitmap, k is the number of hash functions and n is the number of 2635 * inserted items. 2636 * 2637 * Page table walkers use one of the two filters to reduce their search space. 2638 * To get rid of non-leaf entries that no longer have enough leaf entries, the 2639 * aging uses the double-buffering technique to flip to the other filter each 2640 * time it produces a new generation. For non-leaf entries that have enough 2641 * leaf entries, the aging carries them over to the next generation in 2642 * walk_pmd_range(); the eviction also report them when walking the rmap 2643 * in lru_gen_look_around(). 2644 * 2645 * For future optimizations: 2646 * 1. It's not necessary to keep both filters all the time. The spare one can be 2647 * freed after the RCU grace period and reallocated if needed again. 2648 * 2. And when reallocating, it's worth scaling its size according to the number 2649 * of inserted entries in the other filter, to reduce the memory overhead on 2650 * small systems and false positives on large systems. 2651 * 3. Jenkins' hash function is an alternative to Knuth's. 2652 */ 2653 #define BLOOM_FILTER_SHIFT 15 2654 2655 static inline int filter_gen_from_seq(unsigned long seq) 2656 { 2657 return seq % NR_BLOOM_FILTERS; 2658 } 2659 2660 static void get_item_key(void *item, int *key) 2661 { 2662 u32 hash = hash_ptr(item, BLOOM_FILTER_SHIFT * 2); 2663 2664 BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32)); 2665 2666 key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1); 2667 key[1] = hash >> BLOOM_FILTER_SHIFT; 2668 } 2669 2670 static bool test_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item) 2671 { 2672 int key[2]; 2673 unsigned long *filter; 2674 int gen = filter_gen_from_seq(seq); 2675 2676 filter = READ_ONCE(lruvec->mm_state.filters[gen]); 2677 if (!filter) 2678 return true; 2679 2680 get_item_key(item, key); 2681 2682 return test_bit(key[0], filter) && test_bit(key[1], filter); 2683 } 2684 2685 static void update_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item) 2686 { 2687 int key[2]; 2688 unsigned long *filter; 2689 int gen = filter_gen_from_seq(seq); 2690 2691 filter = READ_ONCE(lruvec->mm_state.filters[gen]); 2692 if (!filter) 2693 return; 2694 2695 get_item_key(item, key); 2696 2697 if (!test_bit(key[0], filter)) 2698 set_bit(key[0], filter); 2699 if (!test_bit(key[1], filter)) 2700 set_bit(key[1], filter); 2701 } 2702 2703 static void reset_bloom_filter(struct lruvec *lruvec, unsigned long seq) 2704 { 2705 unsigned long *filter; 2706 int gen = filter_gen_from_seq(seq); 2707 2708 filter = lruvec->mm_state.filters[gen]; 2709 if (filter) { 2710 bitmap_clear(filter, 0, BIT(BLOOM_FILTER_SHIFT)); 2711 return; 2712 } 2713 2714 filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT), 2715 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN); 2716 WRITE_ONCE(lruvec->mm_state.filters[gen], filter); 2717 } 2718 2719 /****************************************************************************** 2720 * mm_struct list 2721 ******************************************************************************/ 2722 2723 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg) 2724 { 2725 static struct lru_gen_mm_list mm_list = { 2726 .fifo = LIST_HEAD_INIT(mm_list.fifo), 2727 .lock = __SPIN_LOCK_UNLOCKED(mm_list.lock), 2728 }; 2729 2730 #ifdef CONFIG_MEMCG 2731 if (memcg) 2732 return &memcg->mm_list; 2733 #endif 2734 VM_WARN_ON_ONCE(!mem_cgroup_disabled()); 2735 2736 return &mm_list; 2737 } 2738 2739 void lru_gen_add_mm(struct mm_struct *mm) 2740 { 2741 int nid; 2742 struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm); 2743 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 2744 2745 VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list)); 2746 #ifdef CONFIG_MEMCG 2747 VM_WARN_ON_ONCE(mm->lru_gen.memcg); 2748 mm->lru_gen.memcg = memcg; 2749 #endif 2750 spin_lock(&mm_list->lock); 2751 2752 for_each_node_state(nid, N_MEMORY) { 2753 struct lruvec *lruvec = get_lruvec(memcg, nid); 2754 2755 /* the first addition since the last iteration */ 2756 if (lruvec->mm_state.tail == &mm_list->fifo) 2757 lruvec->mm_state.tail = &mm->lru_gen.list; 2758 } 2759 2760 list_add_tail(&mm->lru_gen.list, &mm_list->fifo); 2761 2762 spin_unlock(&mm_list->lock); 2763 } 2764 2765 void lru_gen_del_mm(struct mm_struct *mm) 2766 { 2767 int nid; 2768 struct lru_gen_mm_list *mm_list; 2769 struct mem_cgroup *memcg = NULL; 2770 2771 if (list_empty(&mm->lru_gen.list)) 2772 return; 2773 2774 #ifdef CONFIG_MEMCG 2775 memcg = mm->lru_gen.memcg; 2776 #endif 2777 mm_list = get_mm_list(memcg); 2778 2779 spin_lock(&mm_list->lock); 2780 2781 for_each_node(nid) { 2782 struct lruvec *lruvec = get_lruvec(memcg, nid); 2783 2784 /* where the current iteration continues after */ 2785 if (lruvec->mm_state.head == &mm->lru_gen.list) 2786 lruvec->mm_state.head = lruvec->mm_state.head->prev; 2787 2788 /* where the last iteration ended before */ 2789 if (lruvec->mm_state.tail == &mm->lru_gen.list) 2790 lruvec->mm_state.tail = lruvec->mm_state.tail->next; 2791 } 2792 2793 list_del_init(&mm->lru_gen.list); 2794 2795 spin_unlock(&mm_list->lock); 2796 2797 #ifdef CONFIG_MEMCG 2798 mem_cgroup_put(mm->lru_gen.memcg); 2799 mm->lru_gen.memcg = NULL; 2800 #endif 2801 } 2802 2803 #ifdef CONFIG_MEMCG 2804 void lru_gen_migrate_mm(struct mm_struct *mm) 2805 { 2806 struct mem_cgroup *memcg; 2807 struct task_struct *task = rcu_dereference_protected(mm->owner, true); 2808 2809 VM_WARN_ON_ONCE(task->mm != mm); 2810 lockdep_assert_held(&task->alloc_lock); 2811 2812 /* for mm_update_next_owner() */ 2813 if (mem_cgroup_disabled()) 2814 return; 2815 2816 /* migration can happen before addition */ 2817 if (!mm->lru_gen.memcg) 2818 return; 2819 2820 rcu_read_lock(); 2821 memcg = mem_cgroup_from_task(task); 2822 rcu_read_unlock(); 2823 if (memcg == mm->lru_gen.memcg) 2824 return; 2825 2826 VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list)); 2827 2828 lru_gen_del_mm(mm); 2829 lru_gen_add_mm(mm); 2830 } 2831 #endif 2832 2833 static void reset_mm_stats(struct lruvec *lruvec, struct lru_gen_mm_walk *walk, bool last) 2834 { 2835 int i; 2836 int hist; 2837 2838 lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock); 2839 2840 if (walk) { 2841 hist = lru_hist_from_seq(walk->max_seq); 2842 2843 for (i = 0; i < NR_MM_STATS; i++) { 2844 WRITE_ONCE(lruvec->mm_state.stats[hist][i], 2845 lruvec->mm_state.stats[hist][i] + walk->mm_stats[i]); 2846 walk->mm_stats[i] = 0; 2847 } 2848 } 2849 2850 if (NR_HIST_GENS > 1 && last) { 2851 hist = lru_hist_from_seq(lruvec->mm_state.seq + 1); 2852 2853 for (i = 0; i < NR_MM_STATS; i++) 2854 WRITE_ONCE(lruvec->mm_state.stats[hist][i], 0); 2855 } 2856 } 2857 2858 static bool should_skip_mm(struct mm_struct *mm, struct lru_gen_mm_walk *walk) 2859 { 2860 int type; 2861 unsigned long size = 0; 2862 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 2863 int key = pgdat->node_id % BITS_PER_TYPE(mm->lru_gen.bitmap); 2864 2865 if (!walk->force_scan && !test_bit(key, &mm->lru_gen.bitmap)) 2866 return true; 2867 2868 clear_bit(key, &mm->lru_gen.bitmap); 2869 2870 for (type = !walk->can_swap; type < ANON_AND_FILE; type++) { 2871 size += type ? get_mm_counter(mm, MM_FILEPAGES) : 2872 get_mm_counter(mm, MM_ANONPAGES) + 2873 get_mm_counter(mm, MM_SHMEMPAGES); 2874 } 2875 2876 if (size < MIN_LRU_BATCH) 2877 return true; 2878 2879 return !mmget_not_zero(mm); 2880 } 2881 2882 static bool iterate_mm_list(struct lruvec *lruvec, struct lru_gen_mm_walk *walk, 2883 struct mm_struct **iter) 2884 { 2885 bool first = false; 2886 bool last = false; 2887 struct mm_struct *mm = NULL; 2888 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 2889 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 2890 struct lru_gen_mm_state *mm_state = &lruvec->mm_state; 2891 2892 /* 2893 * mm_state->seq is incremented after each iteration of mm_list. There 2894 * are three interesting cases for this page table walker: 2895 * 1. It tries to start a new iteration with a stale max_seq: there is 2896 * nothing left to do. 2897 * 2. It started the next iteration: it needs to reset the Bloom filter 2898 * so that a fresh set of PTE tables can be recorded. 2899 * 3. It ended the current iteration: it needs to reset the mm stats 2900 * counters and tell its caller to increment max_seq. 2901 */ 2902 spin_lock(&mm_list->lock); 2903 2904 VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->max_seq); 2905 2906 if (walk->max_seq <= mm_state->seq) 2907 goto done; 2908 2909 if (!mm_state->head) 2910 mm_state->head = &mm_list->fifo; 2911 2912 if (mm_state->head == &mm_list->fifo) 2913 first = true; 2914 2915 do { 2916 mm_state->head = mm_state->head->next; 2917 if (mm_state->head == &mm_list->fifo) { 2918 WRITE_ONCE(mm_state->seq, mm_state->seq + 1); 2919 last = true; 2920 break; 2921 } 2922 2923 /* force scan for those added after the last iteration */ 2924 if (!mm_state->tail || mm_state->tail == mm_state->head) { 2925 mm_state->tail = mm_state->head->next; 2926 walk->force_scan = true; 2927 } 2928 2929 mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list); 2930 if (should_skip_mm(mm, walk)) 2931 mm = NULL; 2932 } while (!mm); 2933 done: 2934 if (*iter || last) 2935 reset_mm_stats(lruvec, walk, last); 2936 2937 spin_unlock(&mm_list->lock); 2938 2939 if (mm && first) 2940 reset_bloom_filter(lruvec, walk->max_seq + 1); 2941 2942 if (*iter) 2943 mmput_async(*iter); 2944 2945 *iter = mm; 2946 2947 return last; 2948 } 2949 2950 static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long max_seq) 2951 { 2952 bool success = false; 2953 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 2954 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 2955 struct lru_gen_mm_state *mm_state = &lruvec->mm_state; 2956 2957 spin_lock(&mm_list->lock); 2958 2959 VM_WARN_ON_ONCE(mm_state->seq + 1 < max_seq); 2960 2961 if (max_seq > mm_state->seq) { 2962 mm_state->head = NULL; 2963 mm_state->tail = NULL; 2964 WRITE_ONCE(mm_state->seq, mm_state->seq + 1); 2965 reset_mm_stats(lruvec, NULL, true); 2966 success = true; 2967 } 2968 2969 spin_unlock(&mm_list->lock); 2970 2971 return success; 2972 } 2973 2974 /****************************************************************************** 2975 * PID controller 2976 ******************************************************************************/ 2977 2978 /* 2979 * A feedback loop based on Proportional-Integral-Derivative (PID) controller. 2980 * 2981 * The P term is refaulted/(evicted+protected) from a tier in the generation 2982 * currently being evicted; the I term is the exponential moving average of the 2983 * P term over the generations previously evicted, using the smoothing factor 2984 * 1/2; the D term isn't supported. 2985 * 2986 * The setpoint (SP) is always the first tier of one type; the process variable 2987 * (PV) is either any tier of the other type or any other tier of the same 2988 * type. 2989 * 2990 * The error is the difference between the SP and the PV; the correction is to 2991 * turn off protection when SP>PV or turn on protection when SP<PV. 2992 * 2993 * For future optimizations: 2994 * 1. The D term may discount the other two terms over time so that long-lived 2995 * generations can resist stale information. 2996 */ 2997 struct ctrl_pos { 2998 unsigned long refaulted; 2999 unsigned long total; 3000 int gain; 3001 }; 3002 3003 static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain, 3004 struct ctrl_pos *pos) 3005 { 3006 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3007 int hist = lru_hist_from_seq(lrugen->min_seq[type]); 3008 3009 pos->refaulted = lrugen->avg_refaulted[type][tier] + 3010 atomic_long_read(&lrugen->refaulted[hist][type][tier]); 3011 pos->total = lrugen->avg_total[type][tier] + 3012 atomic_long_read(&lrugen->evicted[hist][type][tier]); 3013 if (tier) 3014 pos->total += lrugen->protected[hist][type][tier - 1]; 3015 pos->gain = gain; 3016 } 3017 3018 static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover) 3019 { 3020 int hist, tier; 3021 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3022 bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1; 3023 unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1; 3024 3025 lockdep_assert_held(&lruvec->lru_lock); 3026 3027 if (!carryover && !clear) 3028 return; 3029 3030 hist = lru_hist_from_seq(seq); 3031 3032 for (tier = 0; tier < MAX_NR_TIERS; tier++) { 3033 if (carryover) { 3034 unsigned long sum; 3035 3036 sum = lrugen->avg_refaulted[type][tier] + 3037 atomic_long_read(&lrugen->refaulted[hist][type][tier]); 3038 WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2); 3039 3040 sum = lrugen->avg_total[type][tier] + 3041 atomic_long_read(&lrugen->evicted[hist][type][tier]); 3042 if (tier) 3043 sum += lrugen->protected[hist][type][tier - 1]; 3044 WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2); 3045 } 3046 3047 if (clear) { 3048 atomic_long_set(&lrugen->refaulted[hist][type][tier], 0); 3049 atomic_long_set(&lrugen->evicted[hist][type][tier], 0); 3050 if (tier) 3051 WRITE_ONCE(lrugen->protected[hist][type][tier - 1], 0); 3052 } 3053 } 3054 } 3055 3056 static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv) 3057 { 3058 /* 3059 * Return true if the PV has a limited number of refaults or a lower 3060 * refaulted/total than the SP. 3061 */ 3062 return pv->refaulted < MIN_LRU_BATCH || 3063 pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <= 3064 (sp->refaulted + 1) * pv->total * pv->gain; 3065 } 3066 3067 /****************************************************************************** 3068 * the aging 3069 ******************************************************************************/ 3070 3071 /* promote pages accessed through page tables */ 3072 static int folio_update_gen(struct folio *folio, int gen) 3073 { 3074 unsigned long new_flags, old_flags = READ_ONCE(folio->flags); 3075 3076 VM_WARN_ON_ONCE(gen >= MAX_NR_GENS); 3077 VM_WARN_ON_ONCE(!rcu_read_lock_held()); 3078 3079 do { 3080 /* lru_gen_del_folio() has isolated this page? */ 3081 if (!(old_flags & LRU_GEN_MASK)) { 3082 /* for shrink_folio_list() */ 3083 new_flags = old_flags | BIT(PG_referenced); 3084 continue; 3085 } 3086 3087 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS); 3088 new_flags |= (gen + 1UL) << LRU_GEN_PGOFF; 3089 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags)); 3090 3091 return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1; 3092 } 3093 3094 /* protect pages accessed multiple times through file descriptors */ 3095 static int folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming) 3096 { 3097 int type = folio_is_file_lru(folio); 3098 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3099 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]); 3100 unsigned long new_flags, old_flags = READ_ONCE(folio->flags); 3101 3102 VM_WARN_ON_ONCE_FOLIO(!(old_flags & LRU_GEN_MASK), folio); 3103 3104 do { 3105 new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1; 3106 /* folio_update_gen() has promoted this page? */ 3107 if (new_gen >= 0 && new_gen != old_gen) 3108 return new_gen; 3109 3110 new_gen = (old_gen + 1) % MAX_NR_GENS; 3111 3112 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS); 3113 new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF; 3114 /* for folio_end_writeback() */ 3115 if (reclaiming) 3116 new_flags |= BIT(PG_reclaim); 3117 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags)); 3118 3119 lru_gen_update_size(lruvec, folio, old_gen, new_gen); 3120 3121 return new_gen; 3122 } 3123 3124 static void update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio, 3125 int old_gen, int new_gen) 3126 { 3127 int type = folio_is_file_lru(folio); 3128 int zone = folio_zonenum(folio); 3129 int delta = folio_nr_pages(folio); 3130 3131 VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS); 3132 VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS); 3133 3134 walk->batched++; 3135 3136 walk->nr_pages[old_gen][type][zone] -= delta; 3137 walk->nr_pages[new_gen][type][zone] += delta; 3138 } 3139 3140 static void reset_batch_size(struct lruvec *lruvec, struct lru_gen_mm_walk *walk) 3141 { 3142 int gen, type, zone; 3143 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3144 3145 walk->batched = 0; 3146 3147 for_each_gen_type_zone(gen, type, zone) { 3148 enum lru_list lru = type * LRU_INACTIVE_FILE; 3149 int delta = walk->nr_pages[gen][type][zone]; 3150 3151 if (!delta) 3152 continue; 3153 3154 walk->nr_pages[gen][type][zone] = 0; 3155 WRITE_ONCE(lrugen->nr_pages[gen][type][zone], 3156 lrugen->nr_pages[gen][type][zone] + delta); 3157 3158 if (lru_gen_is_active(lruvec, gen)) 3159 lru += LRU_ACTIVE; 3160 __update_lru_size(lruvec, lru, zone, delta); 3161 } 3162 } 3163 3164 static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args) 3165 { 3166 struct address_space *mapping; 3167 struct vm_area_struct *vma = args->vma; 3168 struct lru_gen_mm_walk *walk = args->private; 3169 3170 if (!vma_is_accessible(vma)) 3171 return true; 3172 3173 if (is_vm_hugetlb_page(vma)) 3174 return true; 3175 3176 if (!vma_has_recency(vma)) 3177 return true; 3178 3179 if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) 3180 return true; 3181 3182 if (vma == get_gate_vma(vma->vm_mm)) 3183 return true; 3184 3185 if (vma_is_anonymous(vma)) 3186 return !walk->can_swap; 3187 3188 if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping)) 3189 return true; 3190 3191 mapping = vma->vm_file->f_mapping; 3192 if (mapping_unevictable(mapping)) 3193 return true; 3194 3195 if (shmem_mapping(mapping)) 3196 return !walk->can_swap; 3197 3198 /* to exclude special mappings like dax, etc. */ 3199 return !mapping->a_ops->read_folio; 3200 } 3201 3202 /* 3203 * Some userspace memory allocators map many single-page VMAs. Instead of 3204 * returning back to the PGD table for each of such VMAs, finish an entire PMD 3205 * table to reduce zigzags and improve cache performance. 3206 */ 3207 static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args, 3208 unsigned long *vm_start, unsigned long *vm_end) 3209 { 3210 unsigned long start = round_up(*vm_end, size); 3211 unsigned long end = (start | ~mask) + 1; 3212 VMA_ITERATOR(vmi, args->mm, start); 3213 3214 VM_WARN_ON_ONCE(mask & size); 3215 VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask)); 3216 3217 for_each_vma(vmi, args->vma) { 3218 if (end && end <= args->vma->vm_start) 3219 return false; 3220 3221 if (should_skip_vma(args->vma->vm_start, args->vma->vm_end, args)) 3222 continue; 3223 3224 *vm_start = max(start, args->vma->vm_start); 3225 *vm_end = min(end - 1, args->vma->vm_end - 1) + 1; 3226 3227 return true; 3228 } 3229 3230 return false; 3231 } 3232 3233 static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr) 3234 { 3235 unsigned long pfn = pte_pfn(pte); 3236 3237 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end); 3238 3239 if (!pte_present(pte) || is_zero_pfn(pfn)) 3240 return -1; 3241 3242 if (WARN_ON_ONCE(pte_devmap(pte) || pte_special(pte))) 3243 return -1; 3244 3245 if (WARN_ON_ONCE(!pfn_valid(pfn))) 3246 return -1; 3247 3248 return pfn; 3249 } 3250 3251 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG) 3252 static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr) 3253 { 3254 unsigned long pfn = pmd_pfn(pmd); 3255 3256 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end); 3257 3258 if (!pmd_present(pmd) || is_huge_zero_pmd(pmd)) 3259 return -1; 3260 3261 if (WARN_ON_ONCE(pmd_devmap(pmd))) 3262 return -1; 3263 3264 if (WARN_ON_ONCE(!pfn_valid(pfn))) 3265 return -1; 3266 3267 return pfn; 3268 } 3269 #endif 3270 3271 static struct folio *get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg, 3272 struct pglist_data *pgdat, bool can_swap) 3273 { 3274 struct folio *folio; 3275 3276 /* try to avoid unnecessary memory loads */ 3277 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat)) 3278 return NULL; 3279 3280 folio = pfn_folio(pfn); 3281 if (folio_nid(folio) != pgdat->node_id) 3282 return NULL; 3283 3284 if (folio_memcg_rcu(folio) != memcg) 3285 return NULL; 3286 3287 /* file VMAs can contain anon pages from COW */ 3288 if (!folio_is_file_lru(folio) && !can_swap) 3289 return NULL; 3290 3291 return folio; 3292 } 3293 3294 static bool suitable_to_scan(int total, int young) 3295 { 3296 int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8); 3297 3298 /* suitable if the average number of young PTEs per cacheline is >=1 */ 3299 return young * n >= total; 3300 } 3301 3302 static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end, 3303 struct mm_walk *args) 3304 { 3305 int i; 3306 pte_t *pte; 3307 spinlock_t *ptl; 3308 unsigned long addr; 3309 int total = 0; 3310 int young = 0; 3311 struct lru_gen_mm_walk *walk = args->private; 3312 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec); 3313 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 3314 int old_gen, new_gen = lru_gen_from_seq(walk->max_seq); 3315 3316 pte = pte_offset_map_nolock(args->mm, pmd, start & PMD_MASK, &ptl); 3317 if (!pte) 3318 return false; 3319 if (!spin_trylock(ptl)) { 3320 pte_unmap(pte); 3321 return false; 3322 } 3323 3324 arch_enter_lazy_mmu_mode(); 3325 restart: 3326 for (i = pte_index(start), addr = start; addr != end; i++, addr += PAGE_SIZE) { 3327 unsigned long pfn; 3328 struct folio *folio; 3329 pte_t ptent = ptep_get(pte + i); 3330 3331 total++; 3332 walk->mm_stats[MM_LEAF_TOTAL]++; 3333 3334 pfn = get_pte_pfn(ptent, args->vma, addr); 3335 if (pfn == -1) 3336 continue; 3337 3338 if (!pte_young(ptent)) { 3339 walk->mm_stats[MM_LEAF_OLD]++; 3340 continue; 3341 } 3342 3343 folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap); 3344 if (!folio) 3345 continue; 3346 3347 if (!ptep_test_and_clear_young(args->vma, addr, pte + i)) 3348 VM_WARN_ON_ONCE(true); 3349 3350 young++; 3351 walk->mm_stats[MM_LEAF_YOUNG]++; 3352 3353 if (pte_dirty(ptent) && !folio_test_dirty(folio) && 3354 !(folio_test_anon(folio) && folio_test_swapbacked(folio) && 3355 !folio_test_swapcache(folio))) 3356 folio_mark_dirty(folio); 3357 3358 old_gen = folio_update_gen(folio, new_gen); 3359 if (old_gen >= 0 && old_gen != new_gen) 3360 update_batch_size(walk, folio, old_gen, new_gen); 3361 } 3362 3363 if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, &start, &end)) 3364 goto restart; 3365 3366 arch_leave_lazy_mmu_mode(); 3367 pte_unmap_unlock(pte, ptl); 3368 3369 return suitable_to_scan(total, young); 3370 } 3371 3372 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG) 3373 static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma, 3374 struct mm_walk *args, unsigned long *bitmap, unsigned long *first) 3375 { 3376 int i; 3377 pmd_t *pmd; 3378 spinlock_t *ptl; 3379 struct lru_gen_mm_walk *walk = args->private; 3380 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec); 3381 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 3382 int old_gen, new_gen = lru_gen_from_seq(walk->max_seq); 3383 3384 VM_WARN_ON_ONCE(pud_leaf(*pud)); 3385 3386 /* try to batch at most 1+MIN_LRU_BATCH+1 entries */ 3387 if (*first == -1) { 3388 *first = addr; 3389 bitmap_zero(bitmap, MIN_LRU_BATCH); 3390 return; 3391 } 3392 3393 i = addr == -1 ? 0 : pmd_index(addr) - pmd_index(*first); 3394 if (i && i <= MIN_LRU_BATCH) { 3395 __set_bit(i - 1, bitmap); 3396 return; 3397 } 3398 3399 pmd = pmd_offset(pud, *first); 3400 3401 ptl = pmd_lockptr(args->mm, pmd); 3402 if (!spin_trylock(ptl)) 3403 goto done; 3404 3405 arch_enter_lazy_mmu_mode(); 3406 3407 do { 3408 unsigned long pfn; 3409 struct folio *folio; 3410 3411 /* don't round down the first address */ 3412 addr = i ? (*first & PMD_MASK) + i * PMD_SIZE : *first; 3413 3414 pfn = get_pmd_pfn(pmd[i], vma, addr); 3415 if (pfn == -1) 3416 goto next; 3417 3418 if (!pmd_trans_huge(pmd[i])) { 3419 if (should_clear_pmd_young()) 3420 pmdp_test_and_clear_young(vma, addr, pmd + i); 3421 goto next; 3422 } 3423 3424 folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap); 3425 if (!folio) 3426 goto next; 3427 3428 if (!pmdp_test_and_clear_young(vma, addr, pmd + i)) 3429 goto next; 3430 3431 walk->mm_stats[MM_LEAF_YOUNG]++; 3432 3433 if (pmd_dirty(pmd[i]) && !folio_test_dirty(folio) && 3434 !(folio_test_anon(folio) && folio_test_swapbacked(folio) && 3435 !folio_test_swapcache(folio))) 3436 folio_mark_dirty(folio); 3437 3438 old_gen = folio_update_gen(folio, new_gen); 3439 if (old_gen >= 0 && old_gen != new_gen) 3440 update_batch_size(walk, folio, old_gen, new_gen); 3441 next: 3442 i = i > MIN_LRU_BATCH ? 0 : find_next_bit(bitmap, MIN_LRU_BATCH, i) + 1; 3443 } while (i <= MIN_LRU_BATCH); 3444 3445 arch_leave_lazy_mmu_mode(); 3446 spin_unlock(ptl); 3447 done: 3448 *first = -1; 3449 } 3450 #else 3451 static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma, 3452 struct mm_walk *args, unsigned long *bitmap, unsigned long *first) 3453 { 3454 } 3455 #endif 3456 3457 static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end, 3458 struct mm_walk *args) 3459 { 3460 int i; 3461 pmd_t *pmd; 3462 unsigned long next; 3463 unsigned long addr; 3464 struct vm_area_struct *vma; 3465 DECLARE_BITMAP(bitmap, MIN_LRU_BATCH); 3466 unsigned long first = -1; 3467 struct lru_gen_mm_walk *walk = args->private; 3468 3469 VM_WARN_ON_ONCE(pud_leaf(*pud)); 3470 3471 /* 3472 * Finish an entire PMD in two passes: the first only reaches to PTE 3473 * tables to avoid taking the PMD lock; the second, if necessary, takes 3474 * the PMD lock to clear the accessed bit in PMD entries. 3475 */ 3476 pmd = pmd_offset(pud, start & PUD_MASK); 3477 restart: 3478 /* walk_pte_range() may call get_next_vma() */ 3479 vma = args->vma; 3480 for (i = pmd_index(start), addr = start; addr != end; i++, addr = next) { 3481 pmd_t val = pmdp_get_lockless(pmd + i); 3482 3483 next = pmd_addr_end(addr, end); 3484 3485 if (!pmd_present(val) || is_huge_zero_pmd(val)) { 3486 walk->mm_stats[MM_LEAF_TOTAL]++; 3487 continue; 3488 } 3489 3490 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3491 if (pmd_trans_huge(val)) { 3492 unsigned long pfn = pmd_pfn(val); 3493 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 3494 3495 walk->mm_stats[MM_LEAF_TOTAL]++; 3496 3497 if (!pmd_young(val)) { 3498 walk->mm_stats[MM_LEAF_OLD]++; 3499 continue; 3500 } 3501 3502 /* try to avoid unnecessary memory loads */ 3503 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat)) 3504 continue; 3505 3506 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first); 3507 continue; 3508 } 3509 #endif 3510 walk->mm_stats[MM_NONLEAF_TOTAL]++; 3511 3512 if (should_clear_pmd_young()) { 3513 if (!pmd_young(val)) 3514 continue; 3515 3516 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first); 3517 } 3518 3519 if (!walk->force_scan && !test_bloom_filter(walk->lruvec, walk->max_seq, pmd + i)) 3520 continue; 3521 3522 walk->mm_stats[MM_NONLEAF_FOUND]++; 3523 3524 if (!walk_pte_range(&val, addr, next, args)) 3525 continue; 3526 3527 walk->mm_stats[MM_NONLEAF_ADDED]++; 3528 3529 /* carry over to the next generation */ 3530 update_bloom_filter(walk->lruvec, walk->max_seq + 1, pmd + i); 3531 } 3532 3533 walk_pmd_range_locked(pud, -1, vma, args, bitmap, &first); 3534 3535 if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, &start, &end)) 3536 goto restart; 3537 } 3538 3539 static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end, 3540 struct mm_walk *args) 3541 { 3542 int i; 3543 pud_t *pud; 3544 unsigned long addr; 3545 unsigned long next; 3546 struct lru_gen_mm_walk *walk = args->private; 3547 3548 VM_WARN_ON_ONCE(p4d_leaf(*p4d)); 3549 3550 pud = pud_offset(p4d, start & P4D_MASK); 3551 restart: 3552 for (i = pud_index(start), addr = start; addr != end; i++, addr = next) { 3553 pud_t val = READ_ONCE(pud[i]); 3554 3555 next = pud_addr_end(addr, end); 3556 3557 if (!pud_present(val) || WARN_ON_ONCE(pud_leaf(val))) 3558 continue; 3559 3560 walk_pmd_range(&val, addr, next, args); 3561 3562 if (need_resched() || walk->batched >= MAX_LRU_BATCH) { 3563 end = (addr | ~PUD_MASK) + 1; 3564 goto done; 3565 } 3566 } 3567 3568 if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, &start, &end)) 3569 goto restart; 3570 3571 end = round_up(end, P4D_SIZE); 3572 done: 3573 if (!end || !args->vma) 3574 return 1; 3575 3576 walk->next_addr = max(end, args->vma->vm_start); 3577 3578 return -EAGAIN; 3579 } 3580 3581 static void walk_mm(struct lruvec *lruvec, struct mm_struct *mm, struct lru_gen_mm_walk *walk) 3582 { 3583 static const struct mm_walk_ops mm_walk_ops = { 3584 .test_walk = should_skip_vma, 3585 .p4d_entry = walk_pud_range, 3586 .walk_lock = PGWALK_RDLOCK, 3587 }; 3588 3589 int err; 3590 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 3591 3592 walk->next_addr = FIRST_USER_ADDRESS; 3593 3594 do { 3595 DEFINE_MAX_SEQ(lruvec); 3596 3597 err = -EBUSY; 3598 3599 /* another thread might have called inc_max_seq() */ 3600 if (walk->max_seq != max_seq) 3601 break; 3602 3603 /* folio_update_gen() requires stable folio_memcg() */ 3604 if (!mem_cgroup_trylock_pages(memcg)) 3605 break; 3606 3607 /* the caller might be holding the lock for write */ 3608 if (mmap_read_trylock(mm)) { 3609 err = walk_page_range(mm, walk->next_addr, ULONG_MAX, &mm_walk_ops, walk); 3610 3611 mmap_read_unlock(mm); 3612 } 3613 3614 mem_cgroup_unlock_pages(); 3615 3616 if (walk->batched) { 3617 spin_lock_irq(&lruvec->lru_lock); 3618 reset_batch_size(lruvec, walk); 3619 spin_unlock_irq(&lruvec->lru_lock); 3620 } 3621 3622 cond_resched(); 3623 } while (err == -EAGAIN); 3624 } 3625 3626 static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat, bool force_alloc) 3627 { 3628 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk; 3629 3630 if (pgdat && current_is_kswapd()) { 3631 VM_WARN_ON_ONCE(walk); 3632 3633 walk = &pgdat->mm_walk; 3634 } else if (!walk && force_alloc) { 3635 VM_WARN_ON_ONCE(current_is_kswapd()); 3636 3637 walk = kzalloc(sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN); 3638 } 3639 3640 current->reclaim_state->mm_walk = walk; 3641 3642 return walk; 3643 } 3644 3645 static void clear_mm_walk(void) 3646 { 3647 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk; 3648 3649 VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages))); 3650 VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats))); 3651 3652 current->reclaim_state->mm_walk = NULL; 3653 3654 if (!current_is_kswapd()) 3655 kfree(walk); 3656 } 3657 3658 static bool inc_min_seq(struct lruvec *lruvec, int type, bool can_swap) 3659 { 3660 int zone; 3661 int remaining = MAX_LRU_BATCH; 3662 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3663 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]); 3664 3665 if (type == LRU_GEN_ANON && !can_swap) 3666 goto done; 3667 3668 /* prevent cold/hot inversion if force_scan is true */ 3669 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 3670 struct list_head *head = &lrugen->folios[old_gen][type][zone]; 3671 3672 while (!list_empty(head)) { 3673 struct folio *folio = lru_to_folio(head); 3674 3675 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 3676 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio); 3677 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 3678 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio); 3679 3680 new_gen = folio_inc_gen(lruvec, folio, false); 3681 list_move_tail(&folio->lru, &lrugen->folios[new_gen][type][zone]); 3682 3683 if (!--remaining) 3684 return false; 3685 } 3686 } 3687 done: 3688 reset_ctrl_pos(lruvec, type, true); 3689 WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1); 3690 3691 return true; 3692 } 3693 3694 static bool try_to_inc_min_seq(struct lruvec *lruvec, bool can_swap) 3695 { 3696 int gen, type, zone; 3697 bool success = false; 3698 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3699 DEFINE_MIN_SEQ(lruvec); 3700 3701 VM_WARN_ON_ONCE(!seq_is_valid(lruvec)); 3702 3703 /* find the oldest populated generation */ 3704 for (type = !can_swap; type < ANON_AND_FILE; type++) { 3705 while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) { 3706 gen = lru_gen_from_seq(min_seq[type]); 3707 3708 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 3709 if (!list_empty(&lrugen->folios[gen][type][zone])) 3710 goto next; 3711 } 3712 3713 min_seq[type]++; 3714 } 3715 next: 3716 ; 3717 } 3718 3719 /* see the comment on lru_gen_folio */ 3720 if (can_swap) { 3721 min_seq[LRU_GEN_ANON] = min(min_seq[LRU_GEN_ANON], min_seq[LRU_GEN_FILE]); 3722 min_seq[LRU_GEN_FILE] = max(min_seq[LRU_GEN_ANON], lrugen->min_seq[LRU_GEN_FILE]); 3723 } 3724 3725 for (type = !can_swap; type < ANON_AND_FILE; type++) { 3726 if (min_seq[type] == lrugen->min_seq[type]) 3727 continue; 3728 3729 reset_ctrl_pos(lruvec, type, true); 3730 WRITE_ONCE(lrugen->min_seq[type], min_seq[type]); 3731 success = true; 3732 } 3733 3734 return success; 3735 } 3736 3737 static void inc_max_seq(struct lruvec *lruvec, bool can_swap, bool force_scan) 3738 { 3739 int prev, next; 3740 int type, zone; 3741 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3742 restart: 3743 spin_lock_irq(&lruvec->lru_lock); 3744 3745 VM_WARN_ON_ONCE(!seq_is_valid(lruvec)); 3746 3747 for (type = ANON_AND_FILE - 1; type >= 0; type--) { 3748 if (get_nr_gens(lruvec, type) != MAX_NR_GENS) 3749 continue; 3750 3751 VM_WARN_ON_ONCE(!force_scan && (type == LRU_GEN_FILE || can_swap)); 3752 3753 if (inc_min_seq(lruvec, type, can_swap)) 3754 continue; 3755 3756 spin_unlock_irq(&lruvec->lru_lock); 3757 cond_resched(); 3758 goto restart; 3759 } 3760 3761 /* 3762 * Update the active/inactive LRU sizes for compatibility. Both sides of 3763 * the current max_seq need to be covered, since max_seq+1 can overlap 3764 * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do 3765 * overlap, cold/hot inversion happens. 3766 */ 3767 prev = lru_gen_from_seq(lrugen->max_seq - 1); 3768 next = lru_gen_from_seq(lrugen->max_seq + 1); 3769 3770 for (type = 0; type < ANON_AND_FILE; type++) { 3771 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 3772 enum lru_list lru = type * LRU_INACTIVE_FILE; 3773 long delta = lrugen->nr_pages[prev][type][zone] - 3774 lrugen->nr_pages[next][type][zone]; 3775 3776 if (!delta) 3777 continue; 3778 3779 __update_lru_size(lruvec, lru, zone, delta); 3780 __update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta); 3781 } 3782 } 3783 3784 for (type = 0; type < ANON_AND_FILE; type++) 3785 reset_ctrl_pos(lruvec, type, false); 3786 3787 WRITE_ONCE(lrugen->timestamps[next], jiffies); 3788 /* make sure preceding modifications appear */ 3789 smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1); 3790 3791 spin_unlock_irq(&lruvec->lru_lock); 3792 } 3793 3794 static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long max_seq, 3795 struct scan_control *sc, bool can_swap, bool force_scan) 3796 { 3797 bool success; 3798 struct lru_gen_mm_walk *walk; 3799 struct mm_struct *mm = NULL; 3800 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3801 3802 VM_WARN_ON_ONCE(max_seq > READ_ONCE(lrugen->max_seq)); 3803 3804 /* see the comment in iterate_mm_list() */ 3805 if (max_seq <= READ_ONCE(lruvec->mm_state.seq)) { 3806 success = false; 3807 goto done; 3808 } 3809 3810 /* 3811 * If the hardware doesn't automatically set the accessed bit, fallback 3812 * to lru_gen_look_around(), which only clears the accessed bit in a 3813 * handful of PTEs. Spreading the work out over a period of time usually 3814 * is less efficient, but it avoids bursty page faults. 3815 */ 3816 if (!should_walk_mmu()) { 3817 success = iterate_mm_list_nowalk(lruvec, max_seq); 3818 goto done; 3819 } 3820 3821 walk = set_mm_walk(NULL, true); 3822 if (!walk) { 3823 success = iterate_mm_list_nowalk(lruvec, max_seq); 3824 goto done; 3825 } 3826 3827 walk->lruvec = lruvec; 3828 walk->max_seq = max_seq; 3829 walk->can_swap = can_swap; 3830 walk->force_scan = force_scan; 3831 3832 do { 3833 success = iterate_mm_list(lruvec, walk, &mm); 3834 if (mm) 3835 walk_mm(lruvec, mm, walk); 3836 } while (mm); 3837 done: 3838 if (success) 3839 inc_max_seq(lruvec, can_swap, force_scan); 3840 3841 return success; 3842 } 3843 3844 /****************************************************************************** 3845 * working set protection 3846 ******************************************************************************/ 3847 3848 static bool lruvec_is_sizable(struct lruvec *lruvec, struct scan_control *sc) 3849 { 3850 int gen, type, zone; 3851 unsigned long total = 0; 3852 bool can_swap = get_swappiness(lruvec, sc); 3853 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3854 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 3855 DEFINE_MAX_SEQ(lruvec); 3856 DEFINE_MIN_SEQ(lruvec); 3857 3858 for (type = !can_swap; type < ANON_AND_FILE; type++) { 3859 unsigned long seq; 3860 3861 for (seq = min_seq[type]; seq <= max_seq; seq++) { 3862 gen = lru_gen_from_seq(seq); 3863 3864 for (zone = 0; zone < MAX_NR_ZONES; zone++) 3865 total += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L); 3866 } 3867 } 3868 3869 /* whether the size is big enough to be helpful */ 3870 return mem_cgroup_online(memcg) ? (total >> sc->priority) : total; 3871 } 3872 3873 static bool lruvec_is_reclaimable(struct lruvec *lruvec, struct scan_control *sc, 3874 unsigned long min_ttl) 3875 { 3876 int gen; 3877 unsigned long birth; 3878 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 3879 DEFINE_MIN_SEQ(lruvec); 3880 3881 /* see the comment on lru_gen_folio */ 3882 gen = lru_gen_from_seq(min_seq[LRU_GEN_FILE]); 3883 birth = READ_ONCE(lruvec->lrugen.timestamps[gen]); 3884 3885 if (time_is_after_jiffies(birth + min_ttl)) 3886 return false; 3887 3888 if (!lruvec_is_sizable(lruvec, sc)) 3889 return false; 3890 3891 mem_cgroup_calculate_protection(NULL, memcg); 3892 3893 return !mem_cgroup_below_min(NULL, memcg); 3894 } 3895 3896 /* to protect the working set of the last N jiffies */ 3897 static unsigned long lru_gen_min_ttl __read_mostly; 3898 3899 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc) 3900 { 3901 struct mem_cgroup *memcg; 3902 unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl); 3903 3904 VM_WARN_ON_ONCE(!current_is_kswapd()); 3905 3906 /* check the order to exclude compaction-induced reclaim */ 3907 if (!min_ttl || sc->order || sc->priority == DEF_PRIORITY) 3908 return; 3909 3910 memcg = mem_cgroup_iter(NULL, NULL, NULL); 3911 do { 3912 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 3913 3914 if (lruvec_is_reclaimable(lruvec, sc, min_ttl)) { 3915 mem_cgroup_iter_break(NULL, memcg); 3916 return; 3917 } 3918 3919 cond_resched(); 3920 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL))); 3921 3922 /* 3923 * The main goal is to OOM kill if every generation from all memcgs is 3924 * younger than min_ttl. However, another possibility is all memcgs are 3925 * either too small or below min. 3926 */ 3927 if (mutex_trylock(&oom_lock)) { 3928 struct oom_control oc = { 3929 .gfp_mask = sc->gfp_mask, 3930 }; 3931 3932 out_of_memory(&oc); 3933 3934 mutex_unlock(&oom_lock); 3935 } 3936 } 3937 3938 /****************************************************************************** 3939 * rmap/PT walk feedback 3940 ******************************************************************************/ 3941 3942 /* 3943 * This function exploits spatial locality when shrink_folio_list() walks the 3944 * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If 3945 * the scan was done cacheline efficiently, it adds the PMD entry pointing to 3946 * the PTE table to the Bloom filter. This forms a feedback loop between the 3947 * eviction and the aging. 3948 */ 3949 void lru_gen_look_around(struct page_vma_mapped_walk *pvmw) 3950 { 3951 int i; 3952 unsigned long start; 3953 unsigned long end; 3954 struct lru_gen_mm_walk *walk; 3955 int young = 0; 3956 pte_t *pte = pvmw->pte; 3957 unsigned long addr = pvmw->address; 3958 struct folio *folio = pfn_folio(pvmw->pfn); 3959 bool can_swap = !folio_is_file_lru(folio); 3960 struct mem_cgroup *memcg = folio_memcg(folio); 3961 struct pglist_data *pgdat = folio_pgdat(folio); 3962 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 3963 DEFINE_MAX_SEQ(lruvec); 3964 int old_gen, new_gen = lru_gen_from_seq(max_seq); 3965 3966 lockdep_assert_held(pvmw->ptl); 3967 VM_WARN_ON_ONCE_FOLIO(folio_test_lru(folio), folio); 3968 3969 if (spin_is_contended(pvmw->ptl)) 3970 return; 3971 3972 /* avoid taking the LRU lock under the PTL when possible */ 3973 walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL; 3974 3975 start = max(addr & PMD_MASK, pvmw->vma->vm_start); 3976 end = min(addr | ~PMD_MASK, pvmw->vma->vm_end - 1) + 1; 3977 3978 if (end - start > MIN_LRU_BATCH * PAGE_SIZE) { 3979 if (addr - start < MIN_LRU_BATCH * PAGE_SIZE / 2) 3980 end = start + MIN_LRU_BATCH * PAGE_SIZE; 3981 else if (end - addr < MIN_LRU_BATCH * PAGE_SIZE / 2) 3982 start = end - MIN_LRU_BATCH * PAGE_SIZE; 3983 else { 3984 start = addr - MIN_LRU_BATCH * PAGE_SIZE / 2; 3985 end = addr + MIN_LRU_BATCH * PAGE_SIZE / 2; 3986 } 3987 } 3988 3989 /* folio_update_gen() requires stable folio_memcg() */ 3990 if (!mem_cgroup_trylock_pages(memcg)) 3991 return; 3992 3993 arch_enter_lazy_mmu_mode(); 3994 3995 pte -= (addr - start) / PAGE_SIZE; 3996 3997 for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) { 3998 unsigned long pfn; 3999 pte_t ptent = ptep_get(pte + i); 4000 4001 pfn = get_pte_pfn(ptent, pvmw->vma, addr); 4002 if (pfn == -1) 4003 continue; 4004 4005 if (!pte_young(ptent)) 4006 continue; 4007 4008 folio = get_pfn_folio(pfn, memcg, pgdat, can_swap); 4009 if (!folio) 4010 continue; 4011 4012 if (!ptep_test_and_clear_young(pvmw->vma, addr, pte + i)) 4013 VM_WARN_ON_ONCE(true); 4014 4015 young++; 4016 4017 if (pte_dirty(ptent) && !folio_test_dirty(folio) && 4018 !(folio_test_anon(folio) && folio_test_swapbacked(folio) && 4019 !folio_test_swapcache(folio))) 4020 folio_mark_dirty(folio); 4021 4022 if (walk) { 4023 old_gen = folio_update_gen(folio, new_gen); 4024 if (old_gen >= 0 && old_gen != new_gen) 4025 update_batch_size(walk, folio, old_gen, new_gen); 4026 4027 continue; 4028 } 4029 4030 old_gen = folio_lru_gen(folio); 4031 if (old_gen < 0) 4032 folio_set_referenced(folio); 4033 else if (old_gen != new_gen) 4034 folio_activate(folio); 4035 } 4036 4037 arch_leave_lazy_mmu_mode(); 4038 mem_cgroup_unlock_pages(); 4039 4040 /* feedback from rmap walkers to page table walkers */ 4041 if (suitable_to_scan(i, young)) 4042 update_bloom_filter(lruvec, max_seq, pvmw->pmd); 4043 } 4044 4045 /****************************************************************************** 4046 * memcg LRU 4047 ******************************************************************************/ 4048 4049 /* see the comment on MEMCG_NR_GENS */ 4050 enum { 4051 MEMCG_LRU_NOP, 4052 MEMCG_LRU_HEAD, 4053 MEMCG_LRU_TAIL, 4054 MEMCG_LRU_OLD, 4055 MEMCG_LRU_YOUNG, 4056 }; 4057 4058 #ifdef CONFIG_MEMCG 4059 4060 static int lru_gen_memcg_seg(struct lruvec *lruvec) 4061 { 4062 return READ_ONCE(lruvec->lrugen.seg); 4063 } 4064 4065 static void lru_gen_rotate_memcg(struct lruvec *lruvec, int op) 4066 { 4067 int seg; 4068 int old, new; 4069 unsigned long flags; 4070 int bin = get_random_u32_below(MEMCG_NR_BINS); 4071 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 4072 4073 spin_lock_irqsave(&pgdat->memcg_lru.lock, flags); 4074 4075 VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list)); 4076 4077 seg = 0; 4078 new = old = lruvec->lrugen.gen; 4079 4080 /* see the comment on MEMCG_NR_GENS */ 4081 if (op == MEMCG_LRU_HEAD) 4082 seg = MEMCG_LRU_HEAD; 4083 else if (op == MEMCG_LRU_TAIL) 4084 seg = MEMCG_LRU_TAIL; 4085 else if (op == MEMCG_LRU_OLD) 4086 new = get_memcg_gen(pgdat->memcg_lru.seq); 4087 else if (op == MEMCG_LRU_YOUNG) 4088 new = get_memcg_gen(pgdat->memcg_lru.seq + 1); 4089 else 4090 VM_WARN_ON_ONCE(true); 4091 4092 WRITE_ONCE(lruvec->lrugen.seg, seg); 4093 WRITE_ONCE(lruvec->lrugen.gen, new); 4094 4095 hlist_nulls_del_rcu(&lruvec->lrugen.list); 4096 4097 if (op == MEMCG_LRU_HEAD || op == MEMCG_LRU_OLD) 4098 hlist_nulls_add_head_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]); 4099 else 4100 hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]); 4101 4102 pgdat->memcg_lru.nr_memcgs[old]--; 4103 pgdat->memcg_lru.nr_memcgs[new]++; 4104 4105 if (!pgdat->memcg_lru.nr_memcgs[old] && old == get_memcg_gen(pgdat->memcg_lru.seq)) 4106 WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1); 4107 4108 spin_unlock_irqrestore(&pgdat->memcg_lru.lock, flags); 4109 } 4110 4111 void lru_gen_online_memcg(struct mem_cgroup *memcg) 4112 { 4113 int gen; 4114 int nid; 4115 int bin = get_random_u32_below(MEMCG_NR_BINS); 4116 4117 for_each_node(nid) { 4118 struct pglist_data *pgdat = NODE_DATA(nid); 4119 struct lruvec *lruvec = get_lruvec(memcg, nid); 4120 4121 spin_lock_irq(&pgdat->memcg_lru.lock); 4122 4123 VM_WARN_ON_ONCE(!hlist_nulls_unhashed(&lruvec->lrugen.list)); 4124 4125 gen = get_memcg_gen(pgdat->memcg_lru.seq); 4126 4127 lruvec->lrugen.gen = gen; 4128 4129 hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[gen][bin]); 4130 pgdat->memcg_lru.nr_memcgs[gen]++; 4131 4132 spin_unlock_irq(&pgdat->memcg_lru.lock); 4133 } 4134 } 4135 4136 void lru_gen_offline_memcg(struct mem_cgroup *memcg) 4137 { 4138 int nid; 4139 4140 for_each_node(nid) { 4141 struct lruvec *lruvec = get_lruvec(memcg, nid); 4142 4143 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_OLD); 4144 } 4145 } 4146 4147 void lru_gen_release_memcg(struct mem_cgroup *memcg) 4148 { 4149 int gen; 4150 int nid; 4151 4152 for_each_node(nid) { 4153 struct pglist_data *pgdat = NODE_DATA(nid); 4154 struct lruvec *lruvec = get_lruvec(memcg, nid); 4155 4156 spin_lock_irq(&pgdat->memcg_lru.lock); 4157 4158 if (hlist_nulls_unhashed(&lruvec->lrugen.list)) 4159 goto unlock; 4160 4161 gen = lruvec->lrugen.gen; 4162 4163 hlist_nulls_del_init_rcu(&lruvec->lrugen.list); 4164 pgdat->memcg_lru.nr_memcgs[gen]--; 4165 4166 if (!pgdat->memcg_lru.nr_memcgs[gen] && gen == get_memcg_gen(pgdat->memcg_lru.seq)) 4167 WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1); 4168 unlock: 4169 spin_unlock_irq(&pgdat->memcg_lru.lock); 4170 } 4171 } 4172 4173 void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid) 4174 { 4175 struct lruvec *lruvec = get_lruvec(memcg, nid); 4176 4177 /* see the comment on MEMCG_NR_GENS */ 4178 if (lru_gen_memcg_seg(lruvec) != MEMCG_LRU_HEAD) 4179 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_HEAD); 4180 } 4181 4182 #else /* !CONFIG_MEMCG */ 4183 4184 static int lru_gen_memcg_seg(struct lruvec *lruvec) 4185 { 4186 return 0; 4187 } 4188 4189 #endif 4190 4191 /****************************************************************************** 4192 * the eviction 4193 ******************************************************************************/ 4194 4195 static bool sort_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc, 4196 int tier_idx) 4197 { 4198 bool success; 4199 int gen = folio_lru_gen(folio); 4200 int type = folio_is_file_lru(folio); 4201 int zone = folio_zonenum(folio); 4202 int delta = folio_nr_pages(folio); 4203 int refs = folio_lru_refs(folio); 4204 int tier = lru_tier_from_refs(refs); 4205 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4206 4207 VM_WARN_ON_ONCE_FOLIO(gen >= MAX_NR_GENS, folio); 4208 4209 /* unevictable */ 4210 if (!folio_evictable(folio)) { 4211 success = lru_gen_del_folio(lruvec, folio, true); 4212 VM_WARN_ON_ONCE_FOLIO(!success, folio); 4213 folio_set_unevictable(folio); 4214 lruvec_add_folio(lruvec, folio); 4215 __count_vm_events(UNEVICTABLE_PGCULLED, delta); 4216 return true; 4217 } 4218 4219 /* dirty lazyfree */ 4220 if (type == LRU_GEN_FILE && folio_test_anon(folio) && folio_test_dirty(folio)) { 4221 success = lru_gen_del_folio(lruvec, folio, true); 4222 VM_WARN_ON_ONCE_FOLIO(!success, folio); 4223 folio_set_swapbacked(folio); 4224 lruvec_add_folio_tail(lruvec, folio); 4225 return true; 4226 } 4227 4228 /* promoted */ 4229 if (gen != lru_gen_from_seq(lrugen->min_seq[type])) { 4230 list_move(&folio->lru, &lrugen->folios[gen][type][zone]); 4231 return true; 4232 } 4233 4234 /* protected */ 4235 if (tier > tier_idx || refs == BIT(LRU_REFS_WIDTH)) { 4236 int hist = lru_hist_from_seq(lrugen->min_seq[type]); 4237 4238 gen = folio_inc_gen(lruvec, folio, false); 4239 list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]); 4240 4241 WRITE_ONCE(lrugen->protected[hist][type][tier - 1], 4242 lrugen->protected[hist][type][tier - 1] + delta); 4243 return true; 4244 } 4245 4246 /* ineligible */ 4247 if (zone > sc->reclaim_idx || skip_cma(folio, sc)) { 4248 gen = folio_inc_gen(lruvec, folio, false); 4249 list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]); 4250 return true; 4251 } 4252 4253 /* waiting for writeback */ 4254 if (folio_test_locked(folio) || folio_test_writeback(folio) || 4255 (type == LRU_GEN_FILE && folio_test_dirty(folio))) { 4256 gen = folio_inc_gen(lruvec, folio, true); 4257 list_move(&folio->lru, &lrugen->folios[gen][type][zone]); 4258 return true; 4259 } 4260 4261 return false; 4262 } 4263 4264 static bool isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc) 4265 { 4266 bool success; 4267 4268 /* swapping inhibited */ 4269 if (!(sc->gfp_mask & __GFP_IO) && 4270 (folio_test_dirty(folio) || 4271 (folio_test_anon(folio) && !folio_test_swapcache(folio)))) 4272 return false; 4273 4274 /* raced with release_pages() */ 4275 if (!folio_try_get(folio)) 4276 return false; 4277 4278 /* raced with another isolation */ 4279 if (!folio_test_clear_lru(folio)) { 4280 folio_put(folio); 4281 return false; 4282 } 4283 4284 /* see the comment on MAX_NR_TIERS */ 4285 if (!folio_test_referenced(folio)) 4286 set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS, 0); 4287 4288 /* for shrink_folio_list() */ 4289 folio_clear_reclaim(folio); 4290 folio_clear_referenced(folio); 4291 4292 success = lru_gen_del_folio(lruvec, folio, true); 4293 VM_WARN_ON_ONCE_FOLIO(!success, folio); 4294 4295 return true; 4296 } 4297 4298 static int scan_folios(struct lruvec *lruvec, struct scan_control *sc, 4299 int type, int tier, struct list_head *list) 4300 { 4301 int i; 4302 int gen; 4303 enum vm_event_item item; 4304 int sorted = 0; 4305 int scanned = 0; 4306 int isolated = 0; 4307 int skipped = 0; 4308 int remaining = MAX_LRU_BATCH; 4309 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4310 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4311 4312 VM_WARN_ON_ONCE(!list_empty(list)); 4313 4314 if (get_nr_gens(lruvec, type) == MIN_NR_GENS) 4315 return 0; 4316 4317 gen = lru_gen_from_seq(lrugen->min_seq[type]); 4318 4319 for (i = MAX_NR_ZONES; i > 0; i--) { 4320 LIST_HEAD(moved); 4321 int skipped_zone = 0; 4322 int zone = (sc->reclaim_idx + i) % MAX_NR_ZONES; 4323 struct list_head *head = &lrugen->folios[gen][type][zone]; 4324 4325 while (!list_empty(head)) { 4326 struct folio *folio = lru_to_folio(head); 4327 int delta = folio_nr_pages(folio); 4328 4329 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 4330 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio); 4331 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 4332 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio); 4333 4334 scanned += delta; 4335 4336 if (sort_folio(lruvec, folio, sc, tier)) 4337 sorted += delta; 4338 else if (isolate_folio(lruvec, folio, sc)) { 4339 list_add(&folio->lru, list); 4340 isolated += delta; 4341 } else { 4342 list_move(&folio->lru, &moved); 4343 skipped_zone += delta; 4344 } 4345 4346 if (!--remaining || max(isolated, skipped_zone) >= MIN_LRU_BATCH) 4347 break; 4348 } 4349 4350 if (skipped_zone) { 4351 list_splice(&moved, head); 4352 __count_zid_vm_events(PGSCAN_SKIP, zone, skipped_zone); 4353 skipped += skipped_zone; 4354 } 4355 4356 if (!remaining || isolated >= MIN_LRU_BATCH) 4357 break; 4358 } 4359 4360 item = PGSCAN_KSWAPD + reclaimer_offset(); 4361 if (!cgroup_reclaim(sc)) { 4362 __count_vm_events(item, isolated); 4363 __count_vm_events(PGREFILL, sorted); 4364 } 4365 __count_memcg_events(memcg, item, isolated); 4366 __count_memcg_events(memcg, PGREFILL, sorted); 4367 __count_vm_events(PGSCAN_ANON + type, isolated); 4368 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, MAX_LRU_BATCH, 4369 scanned, skipped, isolated, 4370 type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON); 4371 4372 /* 4373 * There might not be eligible folios due to reclaim_idx. Check the 4374 * remaining to prevent livelock if it's not making progress. 4375 */ 4376 return isolated || !remaining ? scanned : 0; 4377 } 4378 4379 static int get_tier_idx(struct lruvec *lruvec, int type) 4380 { 4381 int tier; 4382 struct ctrl_pos sp, pv; 4383 4384 /* 4385 * To leave a margin for fluctuations, use a larger gain factor (1:2). 4386 * This value is chosen because any other tier would have at least twice 4387 * as many refaults as the first tier. 4388 */ 4389 read_ctrl_pos(lruvec, type, 0, 1, &sp); 4390 for (tier = 1; tier < MAX_NR_TIERS; tier++) { 4391 read_ctrl_pos(lruvec, type, tier, 2, &pv); 4392 if (!positive_ctrl_err(&sp, &pv)) 4393 break; 4394 } 4395 4396 return tier - 1; 4397 } 4398 4399 static int get_type_to_scan(struct lruvec *lruvec, int swappiness, int *tier_idx) 4400 { 4401 int type, tier; 4402 struct ctrl_pos sp, pv; 4403 int gain[ANON_AND_FILE] = { swappiness, 200 - swappiness }; 4404 4405 /* 4406 * Compare the first tier of anon with that of file to determine which 4407 * type to scan. Also need to compare other tiers of the selected type 4408 * with the first tier of the other type to determine the last tier (of 4409 * the selected type) to evict. 4410 */ 4411 read_ctrl_pos(lruvec, LRU_GEN_ANON, 0, gain[LRU_GEN_ANON], &sp); 4412 read_ctrl_pos(lruvec, LRU_GEN_FILE, 0, gain[LRU_GEN_FILE], &pv); 4413 type = positive_ctrl_err(&sp, &pv); 4414 4415 read_ctrl_pos(lruvec, !type, 0, gain[!type], &sp); 4416 for (tier = 1; tier < MAX_NR_TIERS; tier++) { 4417 read_ctrl_pos(lruvec, type, tier, gain[type], &pv); 4418 if (!positive_ctrl_err(&sp, &pv)) 4419 break; 4420 } 4421 4422 *tier_idx = tier - 1; 4423 4424 return type; 4425 } 4426 4427 static int isolate_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness, 4428 int *type_scanned, struct list_head *list) 4429 { 4430 int i; 4431 int type; 4432 int scanned; 4433 int tier = -1; 4434 DEFINE_MIN_SEQ(lruvec); 4435 4436 /* 4437 * Try to make the obvious choice first. When anon and file are both 4438 * available from the same generation, interpret swappiness 1 as file 4439 * first and 200 as anon first. 4440 */ 4441 if (!swappiness) 4442 type = LRU_GEN_FILE; 4443 else if (min_seq[LRU_GEN_ANON] < min_seq[LRU_GEN_FILE]) 4444 type = LRU_GEN_ANON; 4445 else if (swappiness == 1) 4446 type = LRU_GEN_FILE; 4447 else if (swappiness == 200) 4448 type = LRU_GEN_ANON; 4449 else 4450 type = get_type_to_scan(lruvec, swappiness, &tier); 4451 4452 for (i = !swappiness; i < ANON_AND_FILE; i++) { 4453 if (tier < 0) 4454 tier = get_tier_idx(lruvec, type); 4455 4456 scanned = scan_folios(lruvec, sc, type, tier, list); 4457 if (scanned) 4458 break; 4459 4460 type = !type; 4461 tier = -1; 4462 } 4463 4464 *type_scanned = type; 4465 4466 return scanned; 4467 } 4468 4469 static int evict_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness) 4470 { 4471 int type; 4472 int scanned; 4473 int reclaimed; 4474 LIST_HEAD(list); 4475 LIST_HEAD(clean); 4476 struct folio *folio; 4477 struct folio *next; 4478 enum vm_event_item item; 4479 struct reclaim_stat stat; 4480 struct lru_gen_mm_walk *walk; 4481 bool skip_retry = false; 4482 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4483 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 4484 4485 spin_lock_irq(&lruvec->lru_lock); 4486 4487 scanned = isolate_folios(lruvec, sc, swappiness, &type, &list); 4488 4489 scanned += try_to_inc_min_seq(lruvec, swappiness); 4490 4491 if (get_nr_gens(lruvec, !swappiness) == MIN_NR_GENS) 4492 scanned = 0; 4493 4494 spin_unlock_irq(&lruvec->lru_lock); 4495 4496 if (list_empty(&list)) 4497 return scanned; 4498 retry: 4499 reclaimed = shrink_folio_list(&list, pgdat, sc, &stat, false); 4500 sc->nr_reclaimed += reclaimed; 4501 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 4502 scanned, reclaimed, &stat, sc->priority, 4503 type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON); 4504 4505 list_for_each_entry_safe_reverse(folio, next, &list, lru) { 4506 if (!folio_evictable(folio)) { 4507 list_del(&folio->lru); 4508 folio_putback_lru(folio); 4509 continue; 4510 } 4511 4512 if (folio_test_reclaim(folio) && 4513 (folio_test_dirty(folio) || folio_test_writeback(folio))) { 4514 /* restore LRU_REFS_FLAGS cleared by isolate_folio() */ 4515 if (folio_test_workingset(folio)) 4516 folio_set_referenced(folio); 4517 continue; 4518 } 4519 4520 if (skip_retry || folio_test_active(folio) || folio_test_referenced(folio) || 4521 folio_mapped(folio) || folio_test_locked(folio) || 4522 folio_test_dirty(folio) || folio_test_writeback(folio)) { 4523 /* don't add rejected folios to the oldest generation */ 4524 set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS, 4525 BIT(PG_active)); 4526 continue; 4527 } 4528 4529 /* retry folios that may have missed folio_rotate_reclaimable() */ 4530 list_move(&folio->lru, &clean); 4531 sc->nr_scanned -= folio_nr_pages(folio); 4532 } 4533 4534 spin_lock_irq(&lruvec->lru_lock); 4535 4536 move_folios_to_lru(lruvec, &list); 4537 4538 walk = current->reclaim_state->mm_walk; 4539 if (walk && walk->batched) 4540 reset_batch_size(lruvec, walk); 4541 4542 item = PGSTEAL_KSWAPD + reclaimer_offset(); 4543 if (!cgroup_reclaim(sc)) 4544 __count_vm_events(item, reclaimed); 4545 __count_memcg_events(memcg, item, reclaimed); 4546 __count_vm_events(PGSTEAL_ANON + type, reclaimed); 4547 4548 spin_unlock_irq(&lruvec->lru_lock); 4549 4550 mem_cgroup_uncharge_list(&list); 4551 free_unref_page_list(&list); 4552 4553 INIT_LIST_HEAD(&list); 4554 list_splice_init(&clean, &list); 4555 4556 if (!list_empty(&list)) { 4557 skip_retry = true; 4558 goto retry; 4559 } 4560 4561 return scanned; 4562 } 4563 4564 static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq, 4565 struct scan_control *sc, bool can_swap, unsigned long *nr_to_scan) 4566 { 4567 int gen, type, zone; 4568 unsigned long old = 0; 4569 unsigned long young = 0; 4570 unsigned long total = 0; 4571 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4572 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4573 DEFINE_MIN_SEQ(lruvec); 4574 4575 /* whether this lruvec is completely out of cold folios */ 4576 if (min_seq[!can_swap] + MIN_NR_GENS > max_seq) { 4577 *nr_to_scan = 0; 4578 return true; 4579 } 4580 4581 for (type = !can_swap; type < ANON_AND_FILE; type++) { 4582 unsigned long seq; 4583 4584 for (seq = min_seq[type]; seq <= max_seq; seq++) { 4585 unsigned long size = 0; 4586 4587 gen = lru_gen_from_seq(seq); 4588 4589 for (zone = 0; zone < MAX_NR_ZONES; zone++) 4590 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L); 4591 4592 total += size; 4593 if (seq == max_seq) 4594 young += size; 4595 else if (seq + MIN_NR_GENS == max_seq) 4596 old += size; 4597 } 4598 } 4599 4600 /* try to scrape all its memory if this memcg was deleted */ 4601 if (!mem_cgroup_online(memcg)) { 4602 *nr_to_scan = total; 4603 return false; 4604 } 4605 4606 *nr_to_scan = total >> sc->priority; 4607 4608 /* 4609 * The aging tries to be lazy to reduce the overhead, while the eviction 4610 * stalls when the number of generations reaches MIN_NR_GENS. Hence, the 4611 * ideal number of generations is MIN_NR_GENS+1. 4612 */ 4613 if (min_seq[!can_swap] + MIN_NR_GENS < max_seq) 4614 return false; 4615 4616 /* 4617 * It's also ideal to spread pages out evenly, i.e., 1/(MIN_NR_GENS+1) 4618 * of the total number of pages for each generation. A reasonable range 4619 * for this average portion is [1/MIN_NR_GENS, 1/(MIN_NR_GENS+2)]. The 4620 * aging cares about the upper bound of hot pages, while the eviction 4621 * cares about the lower bound of cold pages. 4622 */ 4623 if (young * MIN_NR_GENS > total) 4624 return true; 4625 if (old * (MIN_NR_GENS + 2) < total) 4626 return true; 4627 4628 return false; 4629 } 4630 4631 /* 4632 * For future optimizations: 4633 * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg 4634 * reclaim. 4635 */ 4636 static long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc, bool can_swap) 4637 { 4638 unsigned long nr_to_scan; 4639 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4640 DEFINE_MAX_SEQ(lruvec); 4641 4642 if (mem_cgroup_below_min(sc->target_mem_cgroup, memcg)) 4643 return -1; 4644 4645 if (!should_run_aging(lruvec, max_seq, sc, can_swap, &nr_to_scan)) 4646 return nr_to_scan; 4647 4648 /* skip the aging path at the default priority */ 4649 if (sc->priority == DEF_PRIORITY) 4650 return nr_to_scan; 4651 4652 /* skip this lruvec as it's low on cold folios */ 4653 return try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, false) ? -1 : 0; 4654 } 4655 4656 static bool should_abort_scan(struct lruvec *lruvec, struct scan_control *sc) 4657 { 4658 int i; 4659 enum zone_watermarks mark; 4660 4661 /* don't abort memcg reclaim to ensure fairness */ 4662 if (!root_reclaim(sc)) 4663 return false; 4664 4665 if (sc->nr_reclaimed >= max(sc->nr_to_reclaim, compact_gap(sc->order))) 4666 return true; 4667 4668 /* check the order to exclude compaction-induced reclaim */ 4669 if (!current_is_kswapd() || sc->order) 4670 return false; 4671 4672 mark = sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ? 4673 WMARK_PROMO : WMARK_HIGH; 4674 4675 for (i = 0; i <= sc->reclaim_idx; i++) { 4676 struct zone *zone = lruvec_pgdat(lruvec)->node_zones + i; 4677 unsigned long size = wmark_pages(zone, mark) + MIN_LRU_BATCH; 4678 4679 if (managed_zone(zone) && !zone_watermark_ok(zone, 0, size, sc->reclaim_idx, 0)) 4680 return false; 4681 } 4682 4683 /* kswapd should abort if all eligible zones are safe */ 4684 return true; 4685 } 4686 4687 static bool try_to_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 4688 { 4689 long nr_to_scan; 4690 unsigned long scanned = 0; 4691 int swappiness = get_swappiness(lruvec, sc); 4692 4693 /* clean file folios are more likely to exist */ 4694 if (swappiness && !(sc->gfp_mask & __GFP_IO)) 4695 swappiness = 1; 4696 4697 while (true) { 4698 int delta; 4699 4700 nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness); 4701 if (nr_to_scan <= 0) 4702 break; 4703 4704 delta = evict_folios(lruvec, sc, swappiness); 4705 if (!delta) 4706 break; 4707 4708 scanned += delta; 4709 if (scanned >= nr_to_scan) 4710 break; 4711 4712 if (should_abort_scan(lruvec, sc)) 4713 break; 4714 4715 cond_resched(); 4716 } 4717 4718 /* whether this lruvec should be rotated */ 4719 return nr_to_scan < 0; 4720 } 4721 4722 static int shrink_one(struct lruvec *lruvec, struct scan_control *sc) 4723 { 4724 bool success; 4725 unsigned long scanned = sc->nr_scanned; 4726 unsigned long reclaimed = sc->nr_reclaimed; 4727 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4728 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 4729 4730 mem_cgroup_calculate_protection(NULL, memcg); 4731 4732 if (mem_cgroup_below_min(NULL, memcg)) 4733 return MEMCG_LRU_YOUNG; 4734 4735 if (mem_cgroup_below_low(NULL, memcg)) { 4736 /* see the comment on MEMCG_NR_GENS */ 4737 if (lru_gen_memcg_seg(lruvec) != MEMCG_LRU_TAIL) 4738 return MEMCG_LRU_TAIL; 4739 4740 memcg_memory_event(memcg, MEMCG_LOW); 4741 } 4742 4743 success = try_to_shrink_lruvec(lruvec, sc); 4744 4745 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, sc->priority); 4746 4747 if (!sc->proactive) 4748 vmpressure(sc->gfp_mask, memcg, false, sc->nr_scanned - scanned, 4749 sc->nr_reclaimed - reclaimed); 4750 4751 flush_reclaim_state(sc); 4752 4753 if (success && mem_cgroup_online(memcg)) 4754 return MEMCG_LRU_YOUNG; 4755 4756 if (!success && lruvec_is_sizable(lruvec, sc)) 4757 return 0; 4758 4759 /* one retry if offlined or too small */ 4760 return lru_gen_memcg_seg(lruvec) != MEMCG_LRU_TAIL ? 4761 MEMCG_LRU_TAIL : MEMCG_LRU_YOUNG; 4762 } 4763 4764 #ifdef CONFIG_MEMCG 4765 4766 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc) 4767 { 4768 int op; 4769 int gen; 4770 int bin; 4771 int first_bin; 4772 struct lruvec *lruvec; 4773 struct lru_gen_folio *lrugen; 4774 struct mem_cgroup *memcg; 4775 struct hlist_nulls_node *pos; 4776 4777 gen = get_memcg_gen(READ_ONCE(pgdat->memcg_lru.seq)); 4778 bin = first_bin = get_random_u32_below(MEMCG_NR_BINS); 4779 restart: 4780 op = 0; 4781 memcg = NULL; 4782 4783 rcu_read_lock(); 4784 4785 hlist_nulls_for_each_entry_rcu(lrugen, pos, &pgdat->memcg_lru.fifo[gen][bin], list) { 4786 if (op) { 4787 lru_gen_rotate_memcg(lruvec, op); 4788 op = 0; 4789 } 4790 4791 mem_cgroup_put(memcg); 4792 memcg = NULL; 4793 4794 if (gen != READ_ONCE(lrugen->gen)) 4795 continue; 4796 4797 lruvec = container_of(lrugen, struct lruvec, lrugen); 4798 memcg = lruvec_memcg(lruvec); 4799 4800 if (!mem_cgroup_tryget(memcg)) { 4801 lru_gen_release_memcg(memcg); 4802 memcg = NULL; 4803 continue; 4804 } 4805 4806 rcu_read_unlock(); 4807 4808 op = shrink_one(lruvec, sc); 4809 4810 rcu_read_lock(); 4811 4812 if (should_abort_scan(lruvec, sc)) 4813 break; 4814 } 4815 4816 rcu_read_unlock(); 4817 4818 if (op) 4819 lru_gen_rotate_memcg(lruvec, op); 4820 4821 mem_cgroup_put(memcg); 4822 4823 if (!is_a_nulls(pos)) 4824 return; 4825 4826 /* restart if raced with lru_gen_rotate_memcg() */ 4827 if (gen != get_nulls_value(pos)) 4828 goto restart; 4829 4830 /* try the rest of the bins of the current generation */ 4831 bin = get_memcg_bin(bin + 1); 4832 if (bin != first_bin) 4833 goto restart; 4834 } 4835 4836 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 4837 { 4838 struct blk_plug plug; 4839 4840 VM_WARN_ON_ONCE(root_reclaim(sc)); 4841 VM_WARN_ON_ONCE(!sc->may_writepage || !sc->may_unmap); 4842 4843 lru_add_drain(); 4844 4845 blk_start_plug(&plug); 4846 4847 set_mm_walk(NULL, sc->proactive); 4848 4849 if (try_to_shrink_lruvec(lruvec, sc)) 4850 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_YOUNG); 4851 4852 clear_mm_walk(); 4853 4854 blk_finish_plug(&plug); 4855 } 4856 4857 #else /* !CONFIG_MEMCG */ 4858 4859 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc) 4860 { 4861 BUILD_BUG(); 4862 } 4863 4864 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 4865 { 4866 BUILD_BUG(); 4867 } 4868 4869 #endif 4870 4871 static void set_initial_priority(struct pglist_data *pgdat, struct scan_control *sc) 4872 { 4873 int priority; 4874 unsigned long reclaimable; 4875 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat); 4876 4877 if (sc->priority != DEF_PRIORITY || sc->nr_to_reclaim < MIN_LRU_BATCH) 4878 return; 4879 /* 4880 * Determine the initial priority based on 4881 * (total >> priority) * reclaimed_to_scanned_ratio = nr_to_reclaim, 4882 * where reclaimed_to_scanned_ratio = inactive / total. 4883 */ 4884 reclaimable = node_page_state(pgdat, NR_INACTIVE_FILE); 4885 if (get_swappiness(lruvec, sc)) 4886 reclaimable += node_page_state(pgdat, NR_INACTIVE_ANON); 4887 4888 /* round down reclaimable and round up sc->nr_to_reclaim */ 4889 priority = fls_long(reclaimable) - 1 - fls_long(sc->nr_to_reclaim - 1); 4890 4891 sc->priority = clamp(priority, 0, DEF_PRIORITY); 4892 } 4893 4894 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc) 4895 { 4896 struct blk_plug plug; 4897 unsigned long reclaimed = sc->nr_reclaimed; 4898 4899 VM_WARN_ON_ONCE(!root_reclaim(sc)); 4900 4901 /* 4902 * Unmapped clean folios are already prioritized. Scanning for more of 4903 * them is likely futile and can cause high reclaim latency when there 4904 * is a large number of memcgs. 4905 */ 4906 if (!sc->may_writepage || !sc->may_unmap) 4907 goto done; 4908 4909 lru_add_drain(); 4910 4911 blk_start_plug(&plug); 4912 4913 set_mm_walk(pgdat, sc->proactive); 4914 4915 set_initial_priority(pgdat, sc); 4916 4917 if (current_is_kswapd()) 4918 sc->nr_reclaimed = 0; 4919 4920 if (mem_cgroup_disabled()) 4921 shrink_one(&pgdat->__lruvec, sc); 4922 else 4923 shrink_many(pgdat, sc); 4924 4925 if (current_is_kswapd()) 4926 sc->nr_reclaimed += reclaimed; 4927 4928 clear_mm_walk(); 4929 4930 blk_finish_plug(&plug); 4931 done: 4932 /* kswapd should never fail */ 4933 pgdat->kswapd_failures = 0; 4934 } 4935 4936 /****************************************************************************** 4937 * state change 4938 ******************************************************************************/ 4939 4940 static bool __maybe_unused state_is_valid(struct lruvec *lruvec) 4941 { 4942 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4943 4944 if (lrugen->enabled) { 4945 enum lru_list lru; 4946 4947 for_each_evictable_lru(lru) { 4948 if (!list_empty(&lruvec->lists[lru])) 4949 return false; 4950 } 4951 } else { 4952 int gen, type, zone; 4953 4954 for_each_gen_type_zone(gen, type, zone) { 4955 if (!list_empty(&lrugen->folios[gen][type][zone])) 4956 return false; 4957 } 4958 } 4959 4960 return true; 4961 } 4962 4963 static bool fill_evictable(struct lruvec *lruvec) 4964 { 4965 enum lru_list lru; 4966 int remaining = MAX_LRU_BATCH; 4967 4968 for_each_evictable_lru(lru) { 4969 int type = is_file_lru(lru); 4970 bool active = is_active_lru(lru); 4971 struct list_head *head = &lruvec->lists[lru]; 4972 4973 while (!list_empty(head)) { 4974 bool success; 4975 struct folio *folio = lru_to_folio(head); 4976 4977 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 4978 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio) != active, folio); 4979 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 4980 VM_WARN_ON_ONCE_FOLIO(folio_lru_gen(folio) != -1, folio); 4981 4982 lruvec_del_folio(lruvec, folio); 4983 success = lru_gen_add_folio(lruvec, folio, false); 4984 VM_WARN_ON_ONCE(!success); 4985 4986 if (!--remaining) 4987 return false; 4988 } 4989 } 4990 4991 return true; 4992 } 4993 4994 static bool drain_evictable(struct lruvec *lruvec) 4995 { 4996 int gen, type, zone; 4997 int remaining = MAX_LRU_BATCH; 4998 4999 for_each_gen_type_zone(gen, type, zone) { 5000 struct list_head *head = &lruvec->lrugen.folios[gen][type][zone]; 5001 5002 while (!list_empty(head)) { 5003 bool success; 5004 struct folio *folio = lru_to_folio(head); 5005 5006 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 5007 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio); 5008 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 5009 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio); 5010 5011 success = lru_gen_del_folio(lruvec, folio, false); 5012 VM_WARN_ON_ONCE(!success); 5013 lruvec_add_folio(lruvec, folio); 5014 5015 if (!--remaining) 5016 return false; 5017 } 5018 } 5019 5020 return true; 5021 } 5022 5023 static void lru_gen_change_state(bool enabled) 5024 { 5025 static DEFINE_MUTEX(state_mutex); 5026 5027 struct mem_cgroup *memcg; 5028 5029 cgroup_lock(); 5030 cpus_read_lock(); 5031 get_online_mems(); 5032 mutex_lock(&state_mutex); 5033 5034 if (enabled == lru_gen_enabled()) 5035 goto unlock; 5036 5037 if (enabled) 5038 static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]); 5039 else 5040 static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]); 5041 5042 memcg = mem_cgroup_iter(NULL, NULL, NULL); 5043 do { 5044 int nid; 5045 5046 for_each_node(nid) { 5047 struct lruvec *lruvec = get_lruvec(memcg, nid); 5048 5049 spin_lock_irq(&lruvec->lru_lock); 5050 5051 VM_WARN_ON_ONCE(!seq_is_valid(lruvec)); 5052 VM_WARN_ON_ONCE(!state_is_valid(lruvec)); 5053 5054 lruvec->lrugen.enabled = enabled; 5055 5056 while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) { 5057 spin_unlock_irq(&lruvec->lru_lock); 5058 cond_resched(); 5059 spin_lock_irq(&lruvec->lru_lock); 5060 } 5061 5062 spin_unlock_irq(&lruvec->lru_lock); 5063 } 5064 5065 cond_resched(); 5066 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL))); 5067 unlock: 5068 mutex_unlock(&state_mutex); 5069 put_online_mems(); 5070 cpus_read_unlock(); 5071 cgroup_unlock(); 5072 } 5073 5074 /****************************************************************************** 5075 * sysfs interface 5076 ******************************************************************************/ 5077 5078 static ssize_t min_ttl_ms_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) 5079 { 5080 return sysfs_emit(buf, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl))); 5081 } 5082 5083 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5084 static ssize_t min_ttl_ms_store(struct kobject *kobj, struct kobj_attribute *attr, 5085 const char *buf, size_t len) 5086 { 5087 unsigned int msecs; 5088 5089 if (kstrtouint(buf, 0, &msecs)) 5090 return -EINVAL; 5091 5092 WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs)); 5093 5094 return len; 5095 } 5096 5097 static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR_RW(min_ttl_ms); 5098 5099 static ssize_t enabled_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) 5100 { 5101 unsigned int caps = 0; 5102 5103 if (get_cap(LRU_GEN_CORE)) 5104 caps |= BIT(LRU_GEN_CORE); 5105 5106 if (should_walk_mmu()) 5107 caps |= BIT(LRU_GEN_MM_WALK); 5108 5109 if (should_clear_pmd_young()) 5110 caps |= BIT(LRU_GEN_NONLEAF_YOUNG); 5111 5112 return sysfs_emit(buf, "0x%04x\n", caps); 5113 } 5114 5115 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5116 static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr, 5117 const char *buf, size_t len) 5118 { 5119 int i; 5120 unsigned int caps; 5121 5122 if (tolower(*buf) == 'n') 5123 caps = 0; 5124 else if (tolower(*buf) == 'y') 5125 caps = -1; 5126 else if (kstrtouint(buf, 0, &caps)) 5127 return -EINVAL; 5128 5129 for (i = 0; i < NR_LRU_GEN_CAPS; i++) { 5130 bool enabled = caps & BIT(i); 5131 5132 if (i == LRU_GEN_CORE) 5133 lru_gen_change_state(enabled); 5134 else if (enabled) 5135 static_branch_enable(&lru_gen_caps[i]); 5136 else 5137 static_branch_disable(&lru_gen_caps[i]); 5138 } 5139 5140 return len; 5141 } 5142 5143 static struct kobj_attribute lru_gen_enabled_attr = __ATTR_RW(enabled); 5144 5145 static struct attribute *lru_gen_attrs[] = { 5146 &lru_gen_min_ttl_attr.attr, 5147 &lru_gen_enabled_attr.attr, 5148 NULL 5149 }; 5150 5151 static const struct attribute_group lru_gen_attr_group = { 5152 .name = "lru_gen", 5153 .attrs = lru_gen_attrs, 5154 }; 5155 5156 /****************************************************************************** 5157 * debugfs interface 5158 ******************************************************************************/ 5159 5160 static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos) 5161 { 5162 struct mem_cgroup *memcg; 5163 loff_t nr_to_skip = *pos; 5164 5165 m->private = kvmalloc(PATH_MAX, GFP_KERNEL); 5166 if (!m->private) 5167 return ERR_PTR(-ENOMEM); 5168 5169 memcg = mem_cgroup_iter(NULL, NULL, NULL); 5170 do { 5171 int nid; 5172 5173 for_each_node_state(nid, N_MEMORY) { 5174 if (!nr_to_skip--) 5175 return get_lruvec(memcg, nid); 5176 } 5177 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL))); 5178 5179 return NULL; 5180 } 5181 5182 static void lru_gen_seq_stop(struct seq_file *m, void *v) 5183 { 5184 if (!IS_ERR_OR_NULL(v)) 5185 mem_cgroup_iter_break(NULL, lruvec_memcg(v)); 5186 5187 kvfree(m->private); 5188 m->private = NULL; 5189 } 5190 5191 static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos) 5192 { 5193 int nid = lruvec_pgdat(v)->node_id; 5194 struct mem_cgroup *memcg = lruvec_memcg(v); 5195 5196 ++*pos; 5197 5198 nid = next_memory_node(nid); 5199 if (nid == MAX_NUMNODES) { 5200 memcg = mem_cgroup_iter(NULL, memcg, NULL); 5201 if (!memcg) 5202 return NULL; 5203 5204 nid = first_memory_node; 5205 } 5206 5207 return get_lruvec(memcg, nid); 5208 } 5209 5210 static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec, 5211 unsigned long max_seq, unsigned long *min_seq, 5212 unsigned long seq) 5213 { 5214 int i; 5215 int type, tier; 5216 int hist = lru_hist_from_seq(seq); 5217 struct lru_gen_folio *lrugen = &lruvec->lrugen; 5218 5219 for (tier = 0; tier < MAX_NR_TIERS; tier++) { 5220 seq_printf(m, " %10d", tier); 5221 for (type = 0; type < ANON_AND_FILE; type++) { 5222 const char *s = " "; 5223 unsigned long n[3] = {}; 5224 5225 if (seq == max_seq) { 5226 s = "RT "; 5227 n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]); 5228 n[1] = READ_ONCE(lrugen->avg_total[type][tier]); 5229 } else if (seq == min_seq[type] || NR_HIST_GENS > 1) { 5230 s = "rep"; 5231 n[0] = atomic_long_read(&lrugen->refaulted[hist][type][tier]); 5232 n[1] = atomic_long_read(&lrugen->evicted[hist][type][tier]); 5233 if (tier) 5234 n[2] = READ_ONCE(lrugen->protected[hist][type][tier - 1]); 5235 } 5236 5237 for (i = 0; i < 3; i++) 5238 seq_printf(m, " %10lu%c", n[i], s[i]); 5239 } 5240 seq_putc(m, '\n'); 5241 } 5242 5243 seq_puts(m, " "); 5244 for (i = 0; i < NR_MM_STATS; i++) { 5245 const char *s = " "; 5246 unsigned long n = 0; 5247 5248 if (seq == max_seq && NR_HIST_GENS == 1) { 5249 s = "LOYNFA"; 5250 n = READ_ONCE(lruvec->mm_state.stats[hist][i]); 5251 } else if (seq != max_seq && NR_HIST_GENS > 1) { 5252 s = "loynfa"; 5253 n = READ_ONCE(lruvec->mm_state.stats[hist][i]); 5254 } 5255 5256 seq_printf(m, " %10lu%c", n, s[i]); 5257 } 5258 seq_putc(m, '\n'); 5259 } 5260 5261 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5262 static int lru_gen_seq_show(struct seq_file *m, void *v) 5263 { 5264 unsigned long seq; 5265 bool full = !debugfs_real_fops(m->file)->write; 5266 struct lruvec *lruvec = v; 5267 struct lru_gen_folio *lrugen = &lruvec->lrugen; 5268 int nid = lruvec_pgdat(lruvec)->node_id; 5269 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 5270 DEFINE_MAX_SEQ(lruvec); 5271 DEFINE_MIN_SEQ(lruvec); 5272 5273 if (nid == first_memory_node) { 5274 const char *path = memcg ? m->private : ""; 5275 5276 #ifdef CONFIG_MEMCG 5277 if (memcg) 5278 cgroup_path(memcg->css.cgroup, m->private, PATH_MAX); 5279 #endif 5280 seq_printf(m, "memcg %5hu %s\n", mem_cgroup_id(memcg), path); 5281 } 5282 5283 seq_printf(m, " node %5d\n", nid); 5284 5285 if (!full) 5286 seq = min_seq[LRU_GEN_ANON]; 5287 else if (max_seq >= MAX_NR_GENS) 5288 seq = max_seq - MAX_NR_GENS + 1; 5289 else 5290 seq = 0; 5291 5292 for (; seq <= max_seq; seq++) { 5293 int type, zone; 5294 int gen = lru_gen_from_seq(seq); 5295 unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]); 5296 5297 seq_printf(m, " %10lu %10u", seq, jiffies_to_msecs(jiffies - birth)); 5298 5299 for (type = 0; type < ANON_AND_FILE; type++) { 5300 unsigned long size = 0; 5301 char mark = full && seq < min_seq[type] ? 'x' : ' '; 5302 5303 for (zone = 0; zone < MAX_NR_ZONES; zone++) 5304 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L); 5305 5306 seq_printf(m, " %10lu%c", size, mark); 5307 } 5308 5309 seq_putc(m, '\n'); 5310 5311 if (full) 5312 lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq); 5313 } 5314 5315 return 0; 5316 } 5317 5318 static const struct seq_operations lru_gen_seq_ops = { 5319 .start = lru_gen_seq_start, 5320 .stop = lru_gen_seq_stop, 5321 .next = lru_gen_seq_next, 5322 .show = lru_gen_seq_show, 5323 }; 5324 5325 static int run_aging(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc, 5326 bool can_swap, bool force_scan) 5327 { 5328 DEFINE_MAX_SEQ(lruvec); 5329 DEFINE_MIN_SEQ(lruvec); 5330 5331 if (seq < max_seq) 5332 return 0; 5333 5334 if (seq > max_seq) 5335 return -EINVAL; 5336 5337 if (!force_scan && min_seq[!can_swap] + MAX_NR_GENS - 1 <= max_seq) 5338 return -ERANGE; 5339 5340 try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, force_scan); 5341 5342 return 0; 5343 } 5344 5345 static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc, 5346 int swappiness, unsigned long nr_to_reclaim) 5347 { 5348 DEFINE_MAX_SEQ(lruvec); 5349 5350 if (seq + MIN_NR_GENS > max_seq) 5351 return -EINVAL; 5352 5353 sc->nr_reclaimed = 0; 5354 5355 while (!signal_pending(current)) { 5356 DEFINE_MIN_SEQ(lruvec); 5357 5358 if (seq < min_seq[!swappiness]) 5359 return 0; 5360 5361 if (sc->nr_reclaimed >= nr_to_reclaim) 5362 return 0; 5363 5364 if (!evict_folios(lruvec, sc, swappiness)) 5365 return 0; 5366 5367 cond_resched(); 5368 } 5369 5370 return -EINTR; 5371 } 5372 5373 static int run_cmd(char cmd, int memcg_id, int nid, unsigned long seq, 5374 struct scan_control *sc, int swappiness, unsigned long opt) 5375 { 5376 struct lruvec *lruvec; 5377 int err = -EINVAL; 5378 struct mem_cgroup *memcg = NULL; 5379 5380 if (nid < 0 || nid >= MAX_NUMNODES || !node_state(nid, N_MEMORY)) 5381 return -EINVAL; 5382 5383 if (!mem_cgroup_disabled()) { 5384 rcu_read_lock(); 5385 5386 memcg = mem_cgroup_from_id(memcg_id); 5387 if (!mem_cgroup_tryget(memcg)) 5388 memcg = NULL; 5389 5390 rcu_read_unlock(); 5391 5392 if (!memcg) 5393 return -EINVAL; 5394 } 5395 5396 if (memcg_id != mem_cgroup_id(memcg)) 5397 goto done; 5398 5399 lruvec = get_lruvec(memcg, nid); 5400 5401 if (swappiness < 0) 5402 swappiness = get_swappiness(lruvec, sc); 5403 else if (swappiness > 200) 5404 goto done; 5405 5406 switch (cmd) { 5407 case '+': 5408 err = run_aging(lruvec, seq, sc, swappiness, opt); 5409 break; 5410 case '-': 5411 err = run_eviction(lruvec, seq, sc, swappiness, opt); 5412 break; 5413 } 5414 done: 5415 mem_cgroup_put(memcg); 5416 5417 return err; 5418 } 5419 5420 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5421 static ssize_t lru_gen_seq_write(struct file *file, const char __user *src, 5422 size_t len, loff_t *pos) 5423 { 5424 void *buf; 5425 char *cur, *next; 5426 unsigned int flags; 5427 struct blk_plug plug; 5428 int err = -EINVAL; 5429 struct scan_control sc = { 5430 .may_writepage = true, 5431 .may_unmap = true, 5432 .may_swap = true, 5433 .reclaim_idx = MAX_NR_ZONES - 1, 5434 .gfp_mask = GFP_KERNEL, 5435 }; 5436 5437 buf = kvmalloc(len + 1, GFP_KERNEL); 5438 if (!buf) 5439 return -ENOMEM; 5440 5441 if (copy_from_user(buf, src, len)) { 5442 kvfree(buf); 5443 return -EFAULT; 5444 } 5445 5446 set_task_reclaim_state(current, &sc.reclaim_state); 5447 flags = memalloc_noreclaim_save(); 5448 blk_start_plug(&plug); 5449 if (!set_mm_walk(NULL, true)) { 5450 err = -ENOMEM; 5451 goto done; 5452 } 5453 5454 next = buf; 5455 next[len] = '\0'; 5456 5457 while ((cur = strsep(&next, ",;\n"))) { 5458 int n; 5459 int end; 5460 char cmd; 5461 unsigned int memcg_id; 5462 unsigned int nid; 5463 unsigned long seq; 5464 unsigned int swappiness = -1; 5465 unsigned long opt = -1; 5466 5467 cur = skip_spaces(cur); 5468 if (!*cur) 5469 continue; 5470 5471 n = sscanf(cur, "%c %u %u %lu %n %u %n %lu %n", &cmd, &memcg_id, &nid, 5472 &seq, &end, &swappiness, &end, &opt, &end); 5473 if (n < 4 || cur[end]) { 5474 err = -EINVAL; 5475 break; 5476 } 5477 5478 err = run_cmd(cmd, memcg_id, nid, seq, &sc, swappiness, opt); 5479 if (err) 5480 break; 5481 } 5482 done: 5483 clear_mm_walk(); 5484 blk_finish_plug(&plug); 5485 memalloc_noreclaim_restore(flags); 5486 set_task_reclaim_state(current, NULL); 5487 5488 kvfree(buf); 5489 5490 return err ? : len; 5491 } 5492 5493 static int lru_gen_seq_open(struct inode *inode, struct file *file) 5494 { 5495 return seq_open(file, &lru_gen_seq_ops); 5496 } 5497 5498 static const struct file_operations lru_gen_rw_fops = { 5499 .open = lru_gen_seq_open, 5500 .read = seq_read, 5501 .write = lru_gen_seq_write, 5502 .llseek = seq_lseek, 5503 .release = seq_release, 5504 }; 5505 5506 static const struct file_operations lru_gen_ro_fops = { 5507 .open = lru_gen_seq_open, 5508 .read = seq_read, 5509 .llseek = seq_lseek, 5510 .release = seq_release, 5511 }; 5512 5513 /****************************************************************************** 5514 * initialization 5515 ******************************************************************************/ 5516 5517 void lru_gen_init_lruvec(struct lruvec *lruvec) 5518 { 5519 int i; 5520 int gen, type, zone; 5521 struct lru_gen_folio *lrugen = &lruvec->lrugen; 5522 5523 lrugen->max_seq = MIN_NR_GENS + 1; 5524 lrugen->enabled = lru_gen_enabled(); 5525 5526 for (i = 0; i <= MIN_NR_GENS + 1; i++) 5527 lrugen->timestamps[i] = jiffies; 5528 5529 for_each_gen_type_zone(gen, type, zone) 5530 INIT_LIST_HEAD(&lrugen->folios[gen][type][zone]); 5531 5532 lruvec->mm_state.seq = MIN_NR_GENS; 5533 } 5534 5535 #ifdef CONFIG_MEMCG 5536 5537 void lru_gen_init_pgdat(struct pglist_data *pgdat) 5538 { 5539 int i, j; 5540 5541 spin_lock_init(&pgdat->memcg_lru.lock); 5542 5543 for (i = 0; i < MEMCG_NR_GENS; i++) { 5544 for (j = 0; j < MEMCG_NR_BINS; j++) 5545 INIT_HLIST_NULLS_HEAD(&pgdat->memcg_lru.fifo[i][j], i); 5546 } 5547 } 5548 5549 void lru_gen_init_memcg(struct mem_cgroup *memcg) 5550 { 5551 INIT_LIST_HEAD(&memcg->mm_list.fifo); 5552 spin_lock_init(&memcg->mm_list.lock); 5553 } 5554 5555 void lru_gen_exit_memcg(struct mem_cgroup *memcg) 5556 { 5557 int i; 5558 int nid; 5559 5560 VM_WARN_ON_ONCE(!list_empty(&memcg->mm_list.fifo)); 5561 5562 for_each_node(nid) { 5563 struct lruvec *lruvec = get_lruvec(memcg, nid); 5564 5565 VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0, 5566 sizeof(lruvec->lrugen.nr_pages))); 5567 5568 lruvec->lrugen.list.next = LIST_POISON1; 5569 5570 for (i = 0; i < NR_BLOOM_FILTERS; i++) { 5571 bitmap_free(lruvec->mm_state.filters[i]); 5572 lruvec->mm_state.filters[i] = NULL; 5573 } 5574 } 5575 } 5576 5577 #endif /* CONFIG_MEMCG */ 5578 5579 static int __init init_lru_gen(void) 5580 { 5581 BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS); 5582 BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS); 5583 5584 if (sysfs_create_group(mm_kobj, &lru_gen_attr_group)) 5585 pr_err("lru_gen: failed to create sysfs group\n"); 5586 5587 debugfs_create_file("lru_gen", 0644, NULL, NULL, &lru_gen_rw_fops); 5588 debugfs_create_file("lru_gen_full", 0444, NULL, NULL, &lru_gen_ro_fops); 5589 5590 return 0; 5591 }; 5592 late_initcall(init_lru_gen); 5593 5594 #else /* !CONFIG_LRU_GEN */ 5595 5596 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc) 5597 { 5598 } 5599 5600 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 5601 { 5602 } 5603 5604 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc) 5605 { 5606 } 5607 5608 #endif /* CONFIG_LRU_GEN */ 5609 5610 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 5611 { 5612 unsigned long nr[NR_LRU_LISTS]; 5613 unsigned long targets[NR_LRU_LISTS]; 5614 unsigned long nr_to_scan; 5615 enum lru_list lru; 5616 unsigned long nr_reclaimed = 0; 5617 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 5618 bool proportional_reclaim; 5619 struct blk_plug plug; 5620 5621 if (lru_gen_enabled() && !root_reclaim(sc)) { 5622 lru_gen_shrink_lruvec(lruvec, sc); 5623 return; 5624 } 5625 5626 get_scan_count(lruvec, sc, nr); 5627 5628 /* Record the original scan target for proportional adjustments later */ 5629 memcpy(targets, nr, sizeof(nr)); 5630 5631 /* 5632 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal 5633 * event that can occur when there is little memory pressure e.g. 5634 * multiple streaming readers/writers. Hence, we do not abort scanning 5635 * when the requested number of pages are reclaimed when scanning at 5636 * DEF_PRIORITY on the assumption that the fact we are direct 5637 * reclaiming implies that kswapd is not keeping up and it is best to 5638 * do a batch of work at once. For memcg reclaim one check is made to 5639 * abort proportional reclaim if either the file or anon lru has already 5640 * dropped to zero at the first pass. 5641 */ 5642 proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() && 5643 sc->priority == DEF_PRIORITY); 5644 5645 blk_start_plug(&plug); 5646 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 5647 nr[LRU_INACTIVE_FILE]) { 5648 unsigned long nr_anon, nr_file, percentage; 5649 unsigned long nr_scanned; 5650 5651 for_each_evictable_lru(lru) { 5652 if (nr[lru]) { 5653 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 5654 nr[lru] -= nr_to_scan; 5655 5656 nr_reclaimed += shrink_list(lru, nr_to_scan, 5657 lruvec, sc); 5658 } 5659 } 5660 5661 cond_resched(); 5662 5663 if (nr_reclaimed < nr_to_reclaim || proportional_reclaim) 5664 continue; 5665 5666 /* 5667 * For kswapd and memcg, reclaim at least the number of pages 5668 * requested. Ensure that the anon and file LRUs are scanned 5669 * proportionally what was requested by get_scan_count(). We 5670 * stop reclaiming one LRU and reduce the amount scanning 5671 * proportional to the original scan target. 5672 */ 5673 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 5674 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 5675 5676 /* 5677 * It's just vindictive to attack the larger once the smaller 5678 * has gone to zero. And given the way we stop scanning the 5679 * smaller below, this makes sure that we only make one nudge 5680 * towards proportionality once we've got nr_to_reclaim. 5681 */ 5682 if (!nr_file || !nr_anon) 5683 break; 5684 5685 if (nr_file > nr_anon) { 5686 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 5687 targets[LRU_ACTIVE_ANON] + 1; 5688 lru = LRU_BASE; 5689 percentage = nr_anon * 100 / scan_target; 5690 } else { 5691 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 5692 targets[LRU_ACTIVE_FILE] + 1; 5693 lru = LRU_FILE; 5694 percentage = nr_file * 100 / scan_target; 5695 } 5696 5697 /* Stop scanning the smaller of the LRU */ 5698 nr[lru] = 0; 5699 nr[lru + LRU_ACTIVE] = 0; 5700 5701 /* 5702 * Recalculate the other LRU scan count based on its original 5703 * scan target and the percentage scanning already complete 5704 */ 5705 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 5706 nr_scanned = targets[lru] - nr[lru]; 5707 nr[lru] = targets[lru] * (100 - percentage) / 100; 5708 nr[lru] -= min(nr[lru], nr_scanned); 5709 5710 lru += LRU_ACTIVE; 5711 nr_scanned = targets[lru] - nr[lru]; 5712 nr[lru] = targets[lru] * (100 - percentage) / 100; 5713 nr[lru] -= min(nr[lru], nr_scanned); 5714 } 5715 blk_finish_plug(&plug); 5716 sc->nr_reclaimed += nr_reclaimed; 5717 5718 /* 5719 * Even if we did not try to evict anon pages at all, we want to 5720 * rebalance the anon lru active/inactive ratio. 5721 */ 5722 if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) && 5723 inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 5724 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 5725 sc, LRU_ACTIVE_ANON); 5726 } 5727 5728 /* Use reclaim/compaction for costly allocs or under memory pressure */ 5729 static bool in_reclaim_compaction(struct scan_control *sc) 5730 { 5731 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 5732 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 5733 sc->priority < DEF_PRIORITY - 2)) 5734 return true; 5735 5736 return false; 5737 } 5738 5739 /* 5740 * Reclaim/compaction is used for high-order allocation requests. It reclaims 5741 * order-0 pages before compacting the zone. should_continue_reclaim() returns 5742 * true if more pages should be reclaimed such that when the page allocator 5743 * calls try_to_compact_pages() that it will have enough free pages to succeed. 5744 * It will give up earlier than that if there is difficulty reclaiming pages. 5745 */ 5746 static inline bool should_continue_reclaim(struct pglist_data *pgdat, 5747 unsigned long nr_reclaimed, 5748 struct scan_control *sc) 5749 { 5750 unsigned long pages_for_compaction; 5751 unsigned long inactive_lru_pages; 5752 int z; 5753 5754 /* If not in reclaim/compaction mode, stop */ 5755 if (!in_reclaim_compaction(sc)) 5756 return false; 5757 5758 /* 5759 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX 5760 * number of pages that were scanned. This will return to the caller 5761 * with the risk reclaim/compaction and the resulting allocation attempt 5762 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL 5763 * allocations through requiring that the full LRU list has been scanned 5764 * first, by assuming that zero delta of sc->nr_scanned means full LRU 5765 * scan, but that approximation was wrong, and there were corner cases 5766 * where always a non-zero amount of pages were scanned. 5767 */ 5768 if (!nr_reclaimed) 5769 return false; 5770 5771 /* If compaction would go ahead or the allocation would succeed, stop */ 5772 for (z = 0; z <= sc->reclaim_idx; z++) { 5773 struct zone *zone = &pgdat->node_zones[z]; 5774 if (!managed_zone(zone)) 5775 continue; 5776 5777 /* Allocation can already succeed, nothing to do */ 5778 if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone), 5779 sc->reclaim_idx, 0)) 5780 return false; 5781 5782 if (compaction_suitable(zone, sc->order, sc->reclaim_idx)) 5783 return false; 5784 } 5785 5786 /* 5787 * If we have not reclaimed enough pages for compaction and the 5788 * inactive lists are large enough, continue reclaiming 5789 */ 5790 pages_for_compaction = compact_gap(sc->order); 5791 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE); 5792 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc)) 5793 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON); 5794 5795 return inactive_lru_pages > pages_for_compaction; 5796 } 5797 5798 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc) 5799 { 5800 struct mem_cgroup *target_memcg = sc->target_mem_cgroup; 5801 struct mem_cgroup *memcg; 5802 5803 memcg = mem_cgroup_iter(target_memcg, NULL, NULL); 5804 do { 5805 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 5806 unsigned long reclaimed; 5807 unsigned long scanned; 5808 5809 /* 5810 * This loop can become CPU-bound when target memcgs 5811 * aren't eligible for reclaim - either because they 5812 * don't have any reclaimable pages, or because their 5813 * memory is explicitly protected. Avoid soft lockups. 5814 */ 5815 cond_resched(); 5816 5817 mem_cgroup_calculate_protection(target_memcg, memcg); 5818 5819 if (mem_cgroup_below_min(target_memcg, memcg)) { 5820 /* 5821 * Hard protection. 5822 * If there is no reclaimable memory, OOM. 5823 */ 5824 continue; 5825 } else if (mem_cgroup_below_low(target_memcg, memcg)) { 5826 /* 5827 * Soft protection. 5828 * Respect the protection only as long as 5829 * there is an unprotected supply 5830 * of reclaimable memory from other cgroups. 5831 */ 5832 if (!sc->memcg_low_reclaim) { 5833 sc->memcg_low_skipped = 1; 5834 continue; 5835 } 5836 memcg_memory_event(memcg, MEMCG_LOW); 5837 } 5838 5839 reclaimed = sc->nr_reclaimed; 5840 scanned = sc->nr_scanned; 5841 5842 shrink_lruvec(lruvec, sc); 5843 5844 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, 5845 sc->priority); 5846 5847 /* Record the group's reclaim efficiency */ 5848 if (!sc->proactive) 5849 vmpressure(sc->gfp_mask, memcg, false, 5850 sc->nr_scanned - scanned, 5851 sc->nr_reclaimed - reclaimed); 5852 5853 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL))); 5854 } 5855 5856 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc) 5857 { 5858 unsigned long nr_reclaimed, nr_scanned, nr_node_reclaimed; 5859 struct lruvec *target_lruvec; 5860 bool reclaimable = false; 5861 5862 if (lru_gen_enabled() && root_reclaim(sc)) { 5863 lru_gen_shrink_node(pgdat, sc); 5864 return; 5865 } 5866 5867 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat); 5868 5869 again: 5870 memset(&sc->nr, 0, sizeof(sc->nr)); 5871 5872 nr_reclaimed = sc->nr_reclaimed; 5873 nr_scanned = sc->nr_scanned; 5874 5875 prepare_scan_control(pgdat, sc); 5876 5877 shrink_node_memcgs(pgdat, sc); 5878 5879 flush_reclaim_state(sc); 5880 5881 nr_node_reclaimed = sc->nr_reclaimed - nr_reclaimed; 5882 5883 /* Record the subtree's reclaim efficiency */ 5884 if (!sc->proactive) 5885 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, 5886 sc->nr_scanned - nr_scanned, nr_node_reclaimed); 5887 5888 if (nr_node_reclaimed) 5889 reclaimable = true; 5890 5891 if (current_is_kswapd()) { 5892 /* 5893 * If reclaim is isolating dirty pages under writeback, 5894 * it implies that the long-lived page allocation rate 5895 * is exceeding the page laundering rate. Either the 5896 * global limits are not being effective at throttling 5897 * processes due to the page distribution throughout 5898 * zones or there is heavy usage of a slow backing 5899 * device. The only option is to throttle from reclaim 5900 * context which is not ideal as there is no guarantee 5901 * the dirtying process is throttled in the same way 5902 * balance_dirty_pages() manages. 5903 * 5904 * Once a node is flagged PGDAT_WRITEBACK, kswapd will 5905 * count the number of pages under pages flagged for 5906 * immediate reclaim and stall if any are encountered 5907 * in the nr_immediate check below. 5908 */ 5909 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken) 5910 set_bit(PGDAT_WRITEBACK, &pgdat->flags); 5911 5912 /* Allow kswapd to start writing pages during reclaim.*/ 5913 if (sc->nr.unqueued_dirty == sc->nr.file_taken) 5914 set_bit(PGDAT_DIRTY, &pgdat->flags); 5915 5916 /* 5917 * If kswapd scans pages marked for immediate 5918 * reclaim and under writeback (nr_immediate), it 5919 * implies that pages are cycling through the LRU 5920 * faster than they are written so forcibly stall 5921 * until some pages complete writeback. 5922 */ 5923 if (sc->nr.immediate) 5924 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK); 5925 } 5926 5927 /* 5928 * Tag a node/memcg as congested if all the dirty pages were marked 5929 * for writeback and immediate reclaim (counted in nr.congested). 5930 * 5931 * Legacy memcg will stall in page writeback so avoid forcibly 5932 * stalling in reclaim_throttle(). 5933 */ 5934 if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested) { 5935 if (cgroup_reclaim(sc) && writeback_throttling_sane(sc)) 5936 set_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags); 5937 5938 if (current_is_kswapd()) 5939 set_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags); 5940 } 5941 5942 /* 5943 * Stall direct reclaim for IO completions if the lruvec is 5944 * node is congested. Allow kswapd to continue until it 5945 * starts encountering unqueued dirty pages or cycling through 5946 * the LRU too quickly. 5947 */ 5948 if (!current_is_kswapd() && current_may_throttle() && 5949 !sc->hibernation_mode && 5950 (test_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags) || 5951 test_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags))) 5952 reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED); 5953 5954 if (should_continue_reclaim(pgdat, nr_node_reclaimed, sc)) 5955 goto again; 5956 5957 /* 5958 * Kswapd gives up on balancing particular nodes after too 5959 * many failures to reclaim anything from them and goes to 5960 * sleep. On reclaim progress, reset the failure counter. A 5961 * successful direct reclaim run will revive a dormant kswapd. 5962 */ 5963 if (reclaimable) 5964 pgdat->kswapd_failures = 0; 5965 } 5966 5967 /* 5968 * Returns true if compaction should go ahead for a costly-order request, or 5969 * the allocation would already succeed without compaction. Return false if we 5970 * should reclaim first. 5971 */ 5972 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) 5973 { 5974 unsigned long watermark; 5975 5976 /* Allocation can already succeed, nothing to do */ 5977 if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone), 5978 sc->reclaim_idx, 0)) 5979 return true; 5980 5981 /* Compaction cannot yet proceed. Do reclaim. */ 5982 if (!compaction_suitable(zone, sc->order, sc->reclaim_idx)) 5983 return false; 5984 5985 /* 5986 * Compaction is already possible, but it takes time to run and there 5987 * are potentially other callers using the pages just freed. So proceed 5988 * with reclaim to make a buffer of free pages available to give 5989 * compaction a reasonable chance of completing and allocating the page. 5990 * Note that we won't actually reclaim the whole buffer in one attempt 5991 * as the target watermark in should_continue_reclaim() is lower. But if 5992 * we are already above the high+gap watermark, don't reclaim at all. 5993 */ 5994 watermark = high_wmark_pages(zone) + compact_gap(sc->order); 5995 5996 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx); 5997 } 5998 5999 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc) 6000 { 6001 /* 6002 * If reclaim is making progress greater than 12% efficiency then 6003 * wake all the NOPROGRESS throttled tasks. 6004 */ 6005 if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) { 6006 wait_queue_head_t *wqh; 6007 6008 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS]; 6009 if (waitqueue_active(wqh)) 6010 wake_up(wqh); 6011 6012 return; 6013 } 6014 6015 /* 6016 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will 6017 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages 6018 * under writeback and marked for immediate reclaim at the tail of the 6019 * LRU. 6020 */ 6021 if (current_is_kswapd() || cgroup_reclaim(sc)) 6022 return; 6023 6024 /* Throttle if making no progress at high prioities. */ 6025 if (sc->priority == 1 && !sc->nr_reclaimed) 6026 reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS); 6027 } 6028 6029 /* 6030 * This is the direct reclaim path, for page-allocating processes. We only 6031 * try to reclaim pages from zones which will satisfy the caller's allocation 6032 * request. 6033 * 6034 * If a zone is deemed to be full of pinned pages then just give it a light 6035 * scan then give up on it. 6036 */ 6037 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 6038 { 6039 struct zoneref *z; 6040 struct zone *zone; 6041 unsigned long nr_soft_reclaimed; 6042 unsigned long nr_soft_scanned; 6043 gfp_t orig_mask; 6044 pg_data_t *last_pgdat = NULL; 6045 pg_data_t *first_pgdat = NULL; 6046 6047 /* 6048 * If the number of buffer_heads in the machine exceeds the maximum 6049 * allowed level, force direct reclaim to scan the highmem zone as 6050 * highmem pages could be pinning lowmem pages storing buffer_heads 6051 */ 6052 orig_mask = sc->gfp_mask; 6053 if (buffer_heads_over_limit) { 6054 sc->gfp_mask |= __GFP_HIGHMEM; 6055 sc->reclaim_idx = gfp_zone(sc->gfp_mask); 6056 } 6057 6058 for_each_zone_zonelist_nodemask(zone, z, zonelist, 6059 sc->reclaim_idx, sc->nodemask) { 6060 /* 6061 * Take care memory controller reclaiming has small influence 6062 * to global LRU. 6063 */ 6064 if (!cgroup_reclaim(sc)) { 6065 if (!cpuset_zone_allowed(zone, 6066 GFP_KERNEL | __GFP_HARDWALL)) 6067 continue; 6068 6069 /* 6070 * If we already have plenty of memory free for 6071 * compaction in this zone, don't free any more. 6072 * Even though compaction is invoked for any 6073 * non-zero order, only frequent costly order 6074 * reclamation is disruptive enough to become a 6075 * noticeable problem, like transparent huge 6076 * page allocations. 6077 */ 6078 if (IS_ENABLED(CONFIG_COMPACTION) && 6079 sc->order > PAGE_ALLOC_COSTLY_ORDER && 6080 compaction_ready(zone, sc)) { 6081 sc->compaction_ready = true; 6082 continue; 6083 } 6084 6085 /* 6086 * Shrink each node in the zonelist once. If the 6087 * zonelist is ordered by zone (not the default) then a 6088 * node may be shrunk multiple times but in that case 6089 * the user prefers lower zones being preserved. 6090 */ 6091 if (zone->zone_pgdat == last_pgdat) 6092 continue; 6093 6094 /* 6095 * This steals pages from memory cgroups over softlimit 6096 * and returns the number of reclaimed pages and 6097 * scanned pages. This works for global memory pressure 6098 * and balancing, not for a memcg's limit. 6099 */ 6100 nr_soft_scanned = 0; 6101 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat, 6102 sc->order, sc->gfp_mask, 6103 &nr_soft_scanned); 6104 sc->nr_reclaimed += nr_soft_reclaimed; 6105 sc->nr_scanned += nr_soft_scanned; 6106 /* need some check for avoid more shrink_zone() */ 6107 } 6108 6109 if (!first_pgdat) 6110 first_pgdat = zone->zone_pgdat; 6111 6112 /* See comment about same check for global reclaim above */ 6113 if (zone->zone_pgdat == last_pgdat) 6114 continue; 6115 last_pgdat = zone->zone_pgdat; 6116 shrink_node(zone->zone_pgdat, sc); 6117 } 6118 6119 if (first_pgdat) 6120 consider_reclaim_throttle(first_pgdat, sc); 6121 6122 /* 6123 * Restore to original mask to avoid the impact on the caller if we 6124 * promoted it to __GFP_HIGHMEM. 6125 */ 6126 sc->gfp_mask = orig_mask; 6127 } 6128 6129 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat) 6130 { 6131 struct lruvec *target_lruvec; 6132 unsigned long refaults; 6133 6134 if (lru_gen_enabled()) 6135 return; 6136 6137 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat); 6138 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON); 6139 target_lruvec->refaults[WORKINGSET_ANON] = refaults; 6140 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE); 6141 target_lruvec->refaults[WORKINGSET_FILE] = refaults; 6142 } 6143 6144 /* 6145 * This is the main entry point to direct page reclaim. 6146 * 6147 * If a full scan of the inactive list fails to free enough memory then we 6148 * are "out of memory" and something needs to be killed. 6149 * 6150 * If the caller is !__GFP_FS then the probability of a failure is reasonably 6151 * high - the zone may be full of dirty or under-writeback pages, which this 6152 * caller can't do much about. We kick the writeback threads and take explicit 6153 * naps in the hope that some of these pages can be written. But if the 6154 * allocating task holds filesystem locks which prevent writeout this might not 6155 * work, and the allocation attempt will fail. 6156 * 6157 * returns: 0, if no pages reclaimed 6158 * else, the number of pages reclaimed 6159 */ 6160 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 6161 struct scan_control *sc) 6162 { 6163 int initial_priority = sc->priority; 6164 pg_data_t *last_pgdat; 6165 struct zoneref *z; 6166 struct zone *zone; 6167 retry: 6168 delayacct_freepages_start(); 6169 6170 if (!cgroup_reclaim(sc)) 6171 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1); 6172 6173 do { 6174 if (!sc->proactive) 6175 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 6176 sc->priority); 6177 sc->nr_scanned = 0; 6178 shrink_zones(zonelist, sc); 6179 6180 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 6181 break; 6182 6183 if (sc->compaction_ready) 6184 break; 6185 6186 /* 6187 * If we're getting trouble reclaiming, start doing 6188 * writepage even in laptop mode. 6189 */ 6190 if (sc->priority < DEF_PRIORITY - 2) 6191 sc->may_writepage = 1; 6192 } while (--sc->priority >= 0); 6193 6194 last_pgdat = NULL; 6195 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx, 6196 sc->nodemask) { 6197 if (zone->zone_pgdat == last_pgdat) 6198 continue; 6199 last_pgdat = zone->zone_pgdat; 6200 6201 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat); 6202 6203 if (cgroup_reclaim(sc)) { 6204 struct lruvec *lruvec; 6205 6206 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, 6207 zone->zone_pgdat); 6208 clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags); 6209 } 6210 } 6211 6212 delayacct_freepages_end(); 6213 6214 if (sc->nr_reclaimed) 6215 return sc->nr_reclaimed; 6216 6217 /* Aborted reclaim to try compaction? don't OOM, then */ 6218 if (sc->compaction_ready) 6219 return 1; 6220 6221 /* 6222 * We make inactive:active ratio decisions based on the node's 6223 * composition of memory, but a restrictive reclaim_idx or a 6224 * memory.low cgroup setting can exempt large amounts of 6225 * memory from reclaim. Neither of which are very common, so 6226 * instead of doing costly eligibility calculations of the 6227 * entire cgroup subtree up front, we assume the estimates are 6228 * good, and retry with forcible deactivation if that fails. 6229 */ 6230 if (sc->skipped_deactivate) { 6231 sc->priority = initial_priority; 6232 sc->force_deactivate = 1; 6233 sc->skipped_deactivate = 0; 6234 goto retry; 6235 } 6236 6237 /* Untapped cgroup reserves? Don't OOM, retry. */ 6238 if (sc->memcg_low_skipped) { 6239 sc->priority = initial_priority; 6240 sc->force_deactivate = 0; 6241 sc->memcg_low_reclaim = 1; 6242 sc->memcg_low_skipped = 0; 6243 goto retry; 6244 } 6245 6246 return 0; 6247 } 6248 6249 static bool allow_direct_reclaim(pg_data_t *pgdat) 6250 { 6251 struct zone *zone; 6252 unsigned long pfmemalloc_reserve = 0; 6253 unsigned long free_pages = 0; 6254 int i; 6255 bool wmark_ok; 6256 6257 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 6258 return true; 6259 6260 for (i = 0; i <= ZONE_NORMAL; i++) { 6261 zone = &pgdat->node_zones[i]; 6262 if (!managed_zone(zone)) 6263 continue; 6264 6265 if (!zone_reclaimable_pages(zone)) 6266 continue; 6267 6268 pfmemalloc_reserve += min_wmark_pages(zone); 6269 free_pages += zone_page_state_snapshot(zone, NR_FREE_PAGES); 6270 } 6271 6272 /* If there are no reserves (unexpected config) then do not throttle */ 6273 if (!pfmemalloc_reserve) 6274 return true; 6275 6276 wmark_ok = free_pages > pfmemalloc_reserve / 2; 6277 6278 /* kswapd must be awake if processes are being throttled */ 6279 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 6280 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL) 6281 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL); 6282 6283 wake_up_interruptible(&pgdat->kswapd_wait); 6284 } 6285 6286 return wmark_ok; 6287 } 6288 6289 /* 6290 * Throttle direct reclaimers if backing storage is backed by the network 6291 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 6292 * depleted. kswapd will continue to make progress and wake the processes 6293 * when the low watermark is reached. 6294 * 6295 * Returns true if a fatal signal was delivered during throttling. If this 6296 * happens, the page allocator should not consider triggering the OOM killer. 6297 */ 6298 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 6299 nodemask_t *nodemask) 6300 { 6301 struct zoneref *z; 6302 struct zone *zone; 6303 pg_data_t *pgdat = NULL; 6304 6305 /* 6306 * Kernel threads should not be throttled as they may be indirectly 6307 * responsible for cleaning pages necessary for reclaim to make forward 6308 * progress. kjournald for example may enter direct reclaim while 6309 * committing a transaction where throttling it could forcing other 6310 * processes to block on log_wait_commit(). 6311 */ 6312 if (current->flags & PF_KTHREAD) 6313 goto out; 6314 6315 /* 6316 * If a fatal signal is pending, this process should not throttle. 6317 * It should return quickly so it can exit and free its memory 6318 */ 6319 if (fatal_signal_pending(current)) 6320 goto out; 6321 6322 /* 6323 * Check if the pfmemalloc reserves are ok by finding the first node 6324 * with a usable ZONE_NORMAL or lower zone. The expectation is that 6325 * GFP_KERNEL will be required for allocating network buffers when 6326 * swapping over the network so ZONE_HIGHMEM is unusable. 6327 * 6328 * Throttling is based on the first usable node and throttled processes 6329 * wait on a queue until kswapd makes progress and wakes them. There 6330 * is an affinity then between processes waking up and where reclaim 6331 * progress has been made assuming the process wakes on the same node. 6332 * More importantly, processes running on remote nodes will not compete 6333 * for remote pfmemalloc reserves and processes on different nodes 6334 * should make reasonable progress. 6335 */ 6336 for_each_zone_zonelist_nodemask(zone, z, zonelist, 6337 gfp_zone(gfp_mask), nodemask) { 6338 if (zone_idx(zone) > ZONE_NORMAL) 6339 continue; 6340 6341 /* Throttle based on the first usable node */ 6342 pgdat = zone->zone_pgdat; 6343 if (allow_direct_reclaim(pgdat)) 6344 goto out; 6345 break; 6346 } 6347 6348 /* If no zone was usable by the allocation flags then do not throttle */ 6349 if (!pgdat) 6350 goto out; 6351 6352 /* Account for the throttling */ 6353 count_vm_event(PGSCAN_DIRECT_THROTTLE); 6354 6355 /* 6356 * If the caller cannot enter the filesystem, it's possible that it 6357 * is due to the caller holding an FS lock or performing a journal 6358 * transaction in the case of a filesystem like ext[3|4]. In this case, 6359 * it is not safe to block on pfmemalloc_wait as kswapd could be 6360 * blocked waiting on the same lock. Instead, throttle for up to a 6361 * second before continuing. 6362 */ 6363 if (!(gfp_mask & __GFP_FS)) 6364 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 6365 allow_direct_reclaim(pgdat), HZ); 6366 else 6367 /* Throttle until kswapd wakes the process */ 6368 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 6369 allow_direct_reclaim(pgdat)); 6370 6371 if (fatal_signal_pending(current)) 6372 return true; 6373 6374 out: 6375 return false; 6376 } 6377 6378 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 6379 gfp_t gfp_mask, nodemask_t *nodemask) 6380 { 6381 unsigned long nr_reclaimed; 6382 struct scan_control sc = { 6383 .nr_to_reclaim = SWAP_CLUSTER_MAX, 6384 .gfp_mask = current_gfp_context(gfp_mask), 6385 .reclaim_idx = gfp_zone(gfp_mask), 6386 .order = order, 6387 .nodemask = nodemask, 6388 .priority = DEF_PRIORITY, 6389 .may_writepage = !laptop_mode, 6390 .may_unmap = 1, 6391 .may_swap = 1, 6392 }; 6393 6394 /* 6395 * scan_control uses s8 fields for order, priority, and reclaim_idx. 6396 * Confirm they are large enough for max values. 6397 */ 6398 BUILD_BUG_ON(MAX_ORDER >= S8_MAX); 6399 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX); 6400 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX); 6401 6402 /* 6403 * Do not enter reclaim if fatal signal was delivered while throttled. 6404 * 1 is returned so that the page allocator does not OOM kill at this 6405 * point. 6406 */ 6407 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask)) 6408 return 1; 6409 6410 set_task_reclaim_state(current, &sc.reclaim_state); 6411 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask); 6412 6413 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 6414 6415 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 6416 set_task_reclaim_state(current, NULL); 6417 6418 return nr_reclaimed; 6419 } 6420 6421 #ifdef CONFIG_MEMCG 6422 6423 /* Only used by soft limit reclaim. Do not reuse for anything else. */ 6424 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg, 6425 gfp_t gfp_mask, bool noswap, 6426 pg_data_t *pgdat, 6427 unsigned long *nr_scanned) 6428 { 6429 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 6430 struct scan_control sc = { 6431 .nr_to_reclaim = SWAP_CLUSTER_MAX, 6432 .target_mem_cgroup = memcg, 6433 .may_writepage = !laptop_mode, 6434 .may_unmap = 1, 6435 .reclaim_idx = MAX_NR_ZONES - 1, 6436 .may_swap = !noswap, 6437 }; 6438 6439 WARN_ON_ONCE(!current->reclaim_state); 6440 6441 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 6442 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 6443 6444 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 6445 sc.gfp_mask); 6446 6447 /* 6448 * NOTE: Although we can get the priority field, using it 6449 * here is not a good idea, since it limits the pages we can scan. 6450 * if we don't reclaim here, the shrink_node from balance_pgdat 6451 * will pick up pages from other mem cgroup's as well. We hack 6452 * the priority and make it zero. 6453 */ 6454 shrink_lruvec(lruvec, &sc); 6455 6456 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 6457 6458 *nr_scanned = sc.nr_scanned; 6459 6460 return sc.nr_reclaimed; 6461 } 6462 6463 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 6464 unsigned long nr_pages, 6465 gfp_t gfp_mask, 6466 unsigned int reclaim_options) 6467 { 6468 unsigned long nr_reclaimed; 6469 unsigned int noreclaim_flag; 6470 struct scan_control sc = { 6471 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 6472 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) | 6473 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 6474 .reclaim_idx = MAX_NR_ZONES - 1, 6475 .target_mem_cgroup = memcg, 6476 .priority = DEF_PRIORITY, 6477 .may_writepage = !laptop_mode, 6478 .may_unmap = 1, 6479 .may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP), 6480 .proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE), 6481 }; 6482 /* 6483 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put 6484 * equal pressure on all the nodes. This is based on the assumption that 6485 * the reclaim does not bail out early. 6486 */ 6487 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 6488 6489 set_task_reclaim_state(current, &sc.reclaim_state); 6490 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask); 6491 noreclaim_flag = memalloc_noreclaim_save(); 6492 6493 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 6494 6495 memalloc_noreclaim_restore(noreclaim_flag); 6496 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 6497 set_task_reclaim_state(current, NULL); 6498 6499 return nr_reclaimed; 6500 } 6501 #endif 6502 6503 static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc) 6504 { 6505 struct mem_cgroup *memcg; 6506 struct lruvec *lruvec; 6507 6508 if (lru_gen_enabled()) { 6509 lru_gen_age_node(pgdat, sc); 6510 return; 6511 } 6512 6513 if (!can_age_anon_pages(pgdat, sc)) 6514 return; 6515 6516 lruvec = mem_cgroup_lruvec(NULL, pgdat); 6517 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 6518 return; 6519 6520 memcg = mem_cgroup_iter(NULL, NULL, NULL); 6521 do { 6522 lruvec = mem_cgroup_lruvec(memcg, pgdat); 6523 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 6524 sc, LRU_ACTIVE_ANON); 6525 memcg = mem_cgroup_iter(NULL, memcg, NULL); 6526 } while (memcg); 6527 } 6528 6529 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx) 6530 { 6531 int i; 6532 struct zone *zone; 6533 6534 /* 6535 * Check for watermark boosts top-down as the higher zones 6536 * are more likely to be boosted. Both watermarks and boosts 6537 * should not be checked at the same time as reclaim would 6538 * start prematurely when there is no boosting and a lower 6539 * zone is balanced. 6540 */ 6541 for (i = highest_zoneidx; i >= 0; i--) { 6542 zone = pgdat->node_zones + i; 6543 if (!managed_zone(zone)) 6544 continue; 6545 6546 if (zone->watermark_boost) 6547 return true; 6548 } 6549 6550 return false; 6551 } 6552 6553 /* 6554 * Returns true if there is an eligible zone balanced for the request order 6555 * and highest_zoneidx 6556 */ 6557 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx) 6558 { 6559 int i; 6560 unsigned long mark = -1; 6561 struct zone *zone; 6562 6563 /* 6564 * Check watermarks bottom-up as lower zones are more likely to 6565 * meet watermarks. 6566 */ 6567 for (i = 0; i <= highest_zoneidx; i++) { 6568 zone = pgdat->node_zones + i; 6569 6570 if (!managed_zone(zone)) 6571 continue; 6572 6573 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) 6574 mark = wmark_pages(zone, WMARK_PROMO); 6575 else 6576 mark = high_wmark_pages(zone); 6577 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx)) 6578 return true; 6579 } 6580 6581 /* 6582 * If a node has no managed zone within highest_zoneidx, it does not 6583 * need balancing by definition. This can happen if a zone-restricted 6584 * allocation tries to wake a remote kswapd. 6585 */ 6586 if (mark == -1) 6587 return true; 6588 6589 return false; 6590 } 6591 6592 /* Clear pgdat state for congested, dirty or under writeback. */ 6593 static void clear_pgdat_congested(pg_data_t *pgdat) 6594 { 6595 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat); 6596 6597 clear_bit(LRUVEC_NODE_CONGESTED, &lruvec->flags); 6598 clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags); 6599 clear_bit(PGDAT_DIRTY, &pgdat->flags); 6600 clear_bit(PGDAT_WRITEBACK, &pgdat->flags); 6601 } 6602 6603 /* 6604 * Prepare kswapd for sleeping. This verifies that there are no processes 6605 * waiting in throttle_direct_reclaim() and that watermarks have been met. 6606 * 6607 * Returns true if kswapd is ready to sleep 6608 */ 6609 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, 6610 int highest_zoneidx) 6611 { 6612 /* 6613 * The throttled processes are normally woken up in balance_pgdat() as 6614 * soon as allow_direct_reclaim() is true. But there is a potential 6615 * race between when kswapd checks the watermarks and a process gets 6616 * throttled. There is also a potential race if processes get 6617 * throttled, kswapd wakes, a large process exits thereby balancing the 6618 * zones, which causes kswapd to exit balance_pgdat() before reaching 6619 * the wake up checks. If kswapd is going to sleep, no process should 6620 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If 6621 * the wake up is premature, processes will wake kswapd and get 6622 * throttled again. The difference from wake ups in balance_pgdat() is 6623 * that here we are under prepare_to_wait(). 6624 */ 6625 if (waitqueue_active(&pgdat->pfmemalloc_wait)) 6626 wake_up_all(&pgdat->pfmemalloc_wait); 6627 6628 /* Hopeless node, leave it to direct reclaim */ 6629 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 6630 return true; 6631 6632 if (pgdat_balanced(pgdat, order, highest_zoneidx)) { 6633 clear_pgdat_congested(pgdat); 6634 return true; 6635 } 6636 6637 return false; 6638 } 6639 6640 /* 6641 * kswapd shrinks a node of pages that are at or below the highest usable 6642 * zone that is currently unbalanced. 6643 * 6644 * Returns true if kswapd scanned at least the requested number of pages to 6645 * reclaim or if the lack of progress was due to pages under writeback. 6646 * This is used to determine if the scanning priority needs to be raised. 6647 */ 6648 static bool kswapd_shrink_node(pg_data_t *pgdat, 6649 struct scan_control *sc) 6650 { 6651 struct zone *zone; 6652 int z; 6653 6654 /* Reclaim a number of pages proportional to the number of zones */ 6655 sc->nr_to_reclaim = 0; 6656 for (z = 0; z <= sc->reclaim_idx; z++) { 6657 zone = pgdat->node_zones + z; 6658 if (!managed_zone(zone)) 6659 continue; 6660 6661 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX); 6662 } 6663 6664 /* 6665 * Historically care was taken to put equal pressure on all zones but 6666 * now pressure is applied based on node LRU order. 6667 */ 6668 shrink_node(pgdat, sc); 6669 6670 /* 6671 * Fragmentation may mean that the system cannot be rebalanced for 6672 * high-order allocations. If twice the allocation size has been 6673 * reclaimed then recheck watermarks only at order-0 to prevent 6674 * excessive reclaim. Assume that a process requested a high-order 6675 * can direct reclaim/compact. 6676 */ 6677 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order)) 6678 sc->order = 0; 6679 6680 return sc->nr_scanned >= sc->nr_to_reclaim; 6681 } 6682 6683 /* Page allocator PCP high watermark is lowered if reclaim is active. */ 6684 static inline void 6685 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active) 6686 { 6687 int i; 6688 struct zone *zone; 6689 6690 for (i = 0; i <= highest_zoneidx; i++) { 6691 zone = pgdat->node_zones + i; 6692 6693 if (!managed_zone(zone)) 6694 continue; 6695 6696 if (active) 6697 set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags); 6698 else 6699 clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags); 6700 } 6701 } 6702 6703 static inline void 6704 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx) 6705 { 6706 update_reclaim_active(pgdat, highest_zoneidx, true); 6707 } 6708 6709 static inline void 6710 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx) 6711 { 6712 update_reclaim_active(pgdat, highest_zoneidx, false); 6713 } 6714 6715 /* 6716 * For kswapd, balance_pgdat() will reclaim pages across a node from zones 6717 * that are eligible for use by the caller until at least one zone is 6718 * balanced. 6719 * 6720 * Returns the order kswapd finished reclaiming at. 6721 * 6722 * kswapd scans the zones in the highmem->normal->dma direction. It skips 6723 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 6724 * found to have free_pages <= high_wmark_pages(zone), any page in that zone 6725 * or lower is eligible for reclaim until at least one usable zone is 6726 * balanced. 6727 */ 6728 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx) 6729 { 6730 int i; 6731 unsigned long nr_soft_reclaimed; 6732 unsigned long nr_soft_scanned; 6733 unsigned long pflags; 6734 unsigned long nr_boost_reclaim; 6735 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, }; 6736 bool boosted; 6737 struct zone *zone; 6738 struct scan_control sc = { 6739 .gfp_mask = GFP_KERNEL, 6740 .order = order, 6741 .may_unmap = 1, 6742 }; 6743 6744 set_task_reclaim_state(current, &sc.reclaim_state); 6745 psi_memstall_enter(&pflags); 6746 __fs_reclaim_acquire(_THIS_IP_); 6747 6748 count_vm_event(PAGEOUTRUN); 6749 6750 /* 6751 * Account for the reclaim boost. Note that the zone boost is left in 6752 * place so that parallel allocations that are near the watermark will 6753 * stall or direct reclaim until kswapd is finished. 6754 */ 6755 nr_boost_reclaim = 0; 6756 for (i = 0; i <= highest_zoneidx; i++) { 6757 zone = pgdat->node_zones + i; 6758 if (!managed_zone(zone)) 6759 continue; 6760 6761 nr_boost_reclaim += zone->watermark_boost; 6762 zone_boosts[i] = zone->watermark_boost; 6763 } 6764 boosted = nr_boost_reclaim; 6765 6766 restart: 6767 set_reclaim_active(pgdat, highest_zoneidx); 6768 sc.priority = DEF_PRIORITY; 6769 do { 6770 unsigned long nr_reclaimed = sc.nr_reclaimed; 6771 bool raise_priority = true; 6772 bool balanced; 6773 bool ret; 6774 6775 sc.reclaim_idx = highest_zoneidx; 6776 6777 /* 6778 * If the number of buffer_heads exceeds the maximum allowed 6779 * then consider reclaiming from all zones. This has a dual 6780 * purpose -- on 64-bit systems it is expected that 6781 * buffer_heads are stripped during active rotation. On 32-bit 6782 * systems, highmem pages can pin lowmem memory and shrinking 6783 * buffers can relieve lowmem pressure. Reclaim may still not 6784 * go ahead if all eligible zones for the original allocation 6785 * request are balanced to avoid excessive reclaim from kswapd. 6786 */ 6787 if (buffer_heads_over_limit) { 6788 for (i = MAX_NR_ZONES - 1; i >= 0; i--) { 6789 zone = pgdat->node_zones + i; 6790 if (!managed_zone(zone)) 6791 continue; 6792 6793 sc.reclaim_idx = i; 6794 break; 6795 } 6796 } 6797 6798 /* 6799 * If the pgdat is imbalanced then ignore boosting and preserve 6800 * the watermarks for a later time and restart. Note that the 6801 * zone watermarks will be still reset at the end of balancing 6802 * on the grounds that the normal reclaim should be enough to 6803 * re-evaluate if boosting is required when kswapd next wakes. 6804 */ 6805 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx); 6806 if (!balanced && nr_boost_reclaim) { 6807 nr_boost_reclaim = 0; 6808 goto restart; 6809 } 6810 6811 /* 6812 * If boosting is not active then only reclaim if there are no 6813 * eligible zones. Note that sc.reclaim_idx is not used as 6814 * buffer_heads_over_limit may have adjusted it. 6815 */ 6816 if (!nr_boost_reclaim && balanced) 6817 goto out; 6818 6819 /* Limit the priority of boosting to avoid reclaim writeback */ 6820 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2) 6821 raise_priority = false; 6822 6823 /* 6824 * Do not writeback or swap pages for boosted reclaim. The 6825 * intent is to relieve pressure not issue sub-optimal IO 6826 * from reclaim context. If no pages are reclaimed, the 6827 * reclaim will be aborted. 6828 */ 6829 sc.may_writepage = !laptop_mode && !nr_boost_reclaim; 6830 sc.may_swap = !nr_boost_reclaim; 6831 6832 /* 6833 * Do some background aging, to give pages a chance to be 6834 * referenced before reclaiming. All pages are rotated 6835 * regardless of classzone as this is about consistent aging. 6836 */ 6837 kswapd_age_node(pgdat, &sc); 6838 6839 /* 6840 * If we're getting trouble reclaiming, start doing writepage 6841 * even in laptop mode. 6842 */ 6843 if (sc.priority < DEF_PRIORITY - 2) 6844 sc.may_writepage = 1; 6845 6846 /* Call soft limit reclaim before calling shrink_node. */ 6847 sc.nr_scanned = 0; 6848 nr_soft_scanned = 0; 6849 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order, 6850 sc.gfp_mask, &nr_soft_scanned); 6851 sc.nr_reclaimed += nr_soft_reclaimed; 6852 6853 /* 6854 * There should be no need to raise the scanning priority if 6855 * enough pages are already being scanned that that high 6856 * watermark would be met at 100% efficiency. 6857 */ 6858 if (kswapd_shrink_node(pgdat, &sc)) 6859 raise_priority = false; 6860 6861 /* 6862 * If the low watermark is met there is no need for processes 6863 * to be throttled on pfmemalloc_wait as they should not be 6864 * able to safely make forward progress. Wake them 6865 */ 6866 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 6867 allow_direct_reclaim(pgdat)) 6868 wake_up_all(&pgdat->pfmemalloc_wait); 6869 6870 /* Check if kswapd should be suspending */ 6871 __fs_reclaim_release(_THIS_IP_); 6872 ret = try_to_freeze(); 6873 __fs_reclaim_acquire(_THIS_IP_); 6874 if (ret || kthread_should_stop()) 6875 break; 6876 6877 /* 6878 * Raise priority if scanning rate is too low or there was no 6879 * progress in reclaiming pages 6880 */ 6881 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed; 6882 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed); 6883 6884 /* 6885 * If reclaim made no progress for a boost, stop reclaim as 6886 * IO cannot be queued and it could be an infinite loop in 6887 * extreme circumstances. 6888 */ 6889 if (nr_boost_reclaim && !nr_reclaimed) 6890 break; 6891 6892 if (raise_priority || !nr_reclaimed) 6893 sc.priority--; 6894 } while (sc.priority >= 1); 6895 6896 if (!sc.nr_reclaimed) 6897 pgdat->kswapd_failures++; 6898 6899 out: 6900 clear_reclaim_active(pgdat, highest_zoneidx); 6901 6902 /* If reclaim was boosted, account for the reclaim done in this pass */ 6903 if (boosted) { 6904 unsigned long flags; 6905 6906 for (i = 0; i <= highest_zoneidx; i++) { 6907 if (!zone_boosts[i]) 6908 continue; 6909 6910 /* Increments are under the zone lock */ 6911 zone = pgdat->node_zones + i; 6912 spin_lock_irqsave(&zone->lock, flags); 6913 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]); 6914 spin_unlock_irqrestore(&zone->lock, flags); 6915 } 6916 6917 /* 6918 * As there is now likely space, wakeup kcompact to defragment 6919 * pageblocks. 6920 */ 6921 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx); 6922 } 6923 6924 snapshot_refaults(NULL, pgdat); 6925 __fs_reclaim_release(_THIS_IP_); 6926 psi_memstall_leave(&pflags); 6927 set_task_reclaim_state(current, NULL); 6928 6929 /* 6930 * Return the order kswapd stopped reclaiming at as 6931 * prepare_kswapd_sleep() takes it into account. If another caller 6932 * entered the allocator slow path while kswapd was awake, order will 6933 * remain at the higher level. 6934 */ 6935 return sc.order; 6936 } 6937 6938 /* 6939 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to 6940 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is 6941 * not a valid index then either kswapd runs for first time or kswapd couldn't 6942 * sleep after previous reclaim attempt (node is still unbalanced). In that 6943 * case return the zone index of the previous kswapd reclaim cycle. 6944 */ 6945 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat, 6946 enum zone_type prev_highest_zoneidx) 6947 { 6948 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 6949 6950 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx; 6951 } 6952 6953 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order, 6954 unsigned int highest_zoneidx) 6955 { 6956 long remaining = 0; 6957 DEFINE_WAIT(wait); 6958 6959 if (freezing(current) || kthread_should_stop()) 6960 return; 6961 6962 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 6963 6964 /* 6965 * Try to sleep for a short interval. Note that kcompactd will only be 6966 * woken if it is possible to sleep for a short interval. This is 6967 * deliberate on the assumption that if reclaim cannot keep an 6968 * eligible zone balanced that it's also unlikely that compaction will 6969 * succeed. 6970 */ 6971 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 6972 /* 6973 * Compaction records what page blocks it recently failed to 6974 * isolate pages from and skips them in the future scanning. 6975 * When kswapd is going to sleep, it is reasonable to assume 6976 * that pages and compaction may succeed so reset the cache. 6977 */ 6978 reset_isolation_suitable(pgdat); 6979 6980 /* 6981 * We have freed the memory, now we should compact it to make 6982 * allocation of the requested order possible. 6983 */ 6984 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx); 6985 6986 remaining = schedule_timeout(HZ/10); 6987 6988 /* 6989 * If woken prematurely then reset kswapd_highest_zoneidx and 6990 * order. The values will either be from a wakeup request or 6991 * the previous request that slept prematurely. 6992 */ 6993 if (remaining) { 6994 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, 6995 kswapd_highest_zoneidx(pgdat, 6996 highest_zoneidx)); 6997 6998 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order) 6999 WRITE_ONCE(pgdat->kswapd_order, reclaim_order); 7000 } 7001 7002 finish_wait(&pgdat->kswapd_wait, &wait); 7003 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 7004 } 7005 7006 /* 7007 * After a short sleep, check if it was a premature sleep. If not, then 7008 * go fully to sleep until explicitly woken up. 7009 */ 7010 if (!remaining && 7011 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 7012 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 7013 7014 /* 7015 * vmstat counters are not perfectly accurate and the estimated 7016 * value for counters such as NR_FREE_PAGES can deviate from the 7017 * true value by nr_online_cpus * threshold. To avoid the zone 7018 * watermarks being breached while under pressure, we reduce the 7019 * per-cpu vmstat threshold while kswapd is awake and restore 7020 * them before going back to sleep. 7021 */ 7022 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 7023 7024 if (!kthread_should_stop()) 7025 schedule(); 7026 7027 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 7028 } else { 7029 if (remaining) 7030 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 7031 else 7032 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 7033 } 7034 finish_wait(&pgdat->kswapd_wait, &wait); 7035 } 7036 7037 /* 7038 * The background pageout daemon, started as a kernel thread 7039 * from the init process. 7040 * 7041 * This basically trickles out pages so that we have _some_ 7042 * free memory available even if there is no other activity 7043 * that frees anything up. This is needed for things like routing 7044 * etc, where we otherwise might have all activity going on in 7045 * asynchronous contexts that cannot page things out. 7046 * 7047 * If there are applications that are active memory-allocators 7048 * (most normal use), this basically shouldn't matter. 7049 */ 7050 static int kswapd(void *p) 7051 { 7052 unsigned int alloc_order, reclaim_order; 7053 unsigned int highest_zoneidx = MAX_NR_ZONES - 1; 7054 pg_data_t *pgdat = (pg_data_t *)p; 7055 struct task_struct *tsk = current; 7056 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 7057 7058 if (!cpumask_empty(cpumask)) 7059 set_cpus_allowed_ptr(tsk, cpumask); 7060 7061 /* 7062 * Tell the memory management that we're a "memory allocator", 7063 * and that if we need more memory we should get access to it 7064 * regardless (see "__alloc_pages()"). "kswapd" should 7065 * never get caught in the normal page freeing logic. 7066 * 7067 * (Kswapd normally doesn't need memory anyway, but sometimes 7068 * you need a small amount of memory in order to be able to 7069 * page out something else, and this flag essentially protects 7070 * us from recursively trying to free more memory as we're 7071 * trying to free the first piece of memory in the first place). 7072 */ 7073 tsk->flags |= PF_MEMALLOC | PF_KSWAPD; 7074 set_freezable(); 7075 7076 WRITE_ONCE(pgdat->kswapd_order, 0); 7077 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 7078 atomic_set(&pgdat->nr_writeback_throttled, 0); 7079 for ( ; ; ) { 7080 bool ret; 7081 7082 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order); 7083 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 7084 highest_zoneidx); 7085 7086 kswapd_try_sleep: 7087 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order, 7088 highest_zoneidx); 7089 7090 /* Read the new order and highest_zoneidx */ 7091 alloc_order = READ_ONCE(pgdat->kswapd_order); 7092 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 7093 highest_zoneidx); 7094 WRITE_ONCE(pgdat->kswapd_order, 0); 7095 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 7096 7097 ret = try_to_freeze(); 7098 if (kthread_should_stop()) 7099 break; 7100 7101 /* 7102 * We can speed up thawing tasks if we don't call balance_pgdat 7103 * after returning from the refrigerator 7104 */ 7105 if (ret) 7106 continue; 7107 7108 /* 7109 * Reclaim begins at the requested order but if a high-order 7110 * reclaim fails then kswapd falls back to reclaiming for 7111 * order-0. If that happens, kswapd will consider sleeping 7112 * for the order it finished reclaiming at (reclaim_order) 7113 * but kcompactd is woken to compact for the original 7114 * request (alloc_order). 7115 */ 7116 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx, 7117 alloc_order); 7118 reclaim_order = balance_pgdat(pgdat, alloc_order, 7119 highest_zoneidx); 7120 if (reclaim_order < alloc_order) 7121 goto kswapd_try_sleep; 7122 } 7123 7124 tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD); 7125 7126 return 0; 7127 } 7128 7129 /* 7130 * A zone is low on free memory or too fragmented for high-order memory. If 7131 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's 7132 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim 7133 * has failed or is not needed, still wake up kcompactd if only compaction is 7134 * needed. 7135 */ 7136 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order, 7137 enum zone_type highest_zoneidx) 7138 { 7139 pg_data_t *pgdat; 7140 enum zone_type curr_idx; 7141 7142 if (!managed_zone(zone)) 7143 return; 7144 7145 if (!cpuset_zone_allowed(zone, gfp_flags)) 7146 return; 7147 7148 pgdat = zone->zone_pgdat; 7149 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 7150 7151 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx) 7152 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx); 7153 7154 if (READ_ONCE(pgdat->kswapd_order) < order) 7155 WRITE_ONCE(pgdat->kswapd_order, order); 7156 7157 if (!waitqueue_active(&pgdat->kswapd_wait)) 7158 return; 7159 7160 /* Hopeless node, leave it to direct reclaim if possible */ 7161 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES || 7162 (pgdat_balanced(pgdat, order, highest_zoneidx) && 7163 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) { 7164 /* 7165 * There may be plenty of free memory available, but it's too 7166 * fragmented for high-order allocations. Wake up kcompactd 7167 * and rely on compaction_suitable() to determine if it's 7168 * needed. If it fails, it will defer subsequent attempts to 7169 * ratelimit its work. 7170 */ 7171 if (!(gfp_flags & __GFP_DIRECT_RECLAIM)) 7172 wakeup_kcompactd(pgdat, order, highest_zoneidx); 7173 return; 7174 } 7175 7176 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order, 7177 gfp_flags); 7178 wake_up_interruptible(&pgdat->kswapd_wait); 7179 } 7180 7181 #ifdef CONFIG_HIBERNATION 7182 /* 7183 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 7184 * freed pages. 7185 * 7186 * Rather than trying to age LRUs the aim is to preserve the overall 7187 * LRU order by reclaiming preferentially 7188 * inactive > active > active referenced > active mapped 7189 */ 7190 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 7191 { 7192 struct scan_control sc = { 7193 .nr_to_reclaim = nr_to_reclaim, 7194 .gfp_mask = GFP_HIGHUSER_MOVABLE, 7195 .reclaim_idx = MAX_NR_ZONES - 1, 7196 .priority = DEF_PRIORITY, 7197 .may_writepage = 1, 7198 .may_unmap = 1, 7199 .may_swap = 1, 7200 .hibernation_mode = 1, 7201 }; 7202 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 7203 unsigned long nr_reclaimed; 7204 unsigned int noreclaim_flag; 7205 7206 fs_reclaim_acquire(sc.gfp_mask); 7207 noreclaim_flag = memalloc_noreclaim_save(); 7208 set_task_reclaim_state(current, &sc.reclaim_state); 7209 7210 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 7211 7212 set_task_reclaim_state(current, NULL); 7213 memalloc_noreclaim_restore(noreclaim_flag); 7214 fs_reclaim_release(sc.gfp_mask); 7215 7216 return nr_reclaimed; 7217 } 7218 #endif /* CONFIG_HIBERNATION */ 7219 7220 /* 7221 * This kswapd start function will be called by init and node-hot-add. 7222 */ 7223 void __meminit kswapd_run(int nid) 7224 { 7225 pg_data_t *pgdat = NODE_DATA(nid); 7226 7227 pgdat_kswapd_lock(pgdat); 7228 if (!pgdat->kswapd) { 7229 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 7230 if (IS_ERR(pgdat->kswapd)) { 7231 /* failure at boot is fatal */ 7232 pr_err("Failed to start kswapd on node %d,ret=%ld\n", 7233 nid, PTR_ERR(pgdat->kswapd)); 7234 BUG_ON(system_state < SYSTEM_RUNNING); 7235 pgdat->kswapd = NULL; 7236 } 7237 } 7238 pgdat_kswapd_unlock(pgdat); 7239 } 7240 7241 /* 7242 * Called by memory hotplug when all memory in a node is offlined. Caller must 7243 * be holding mem_hotplug_begin/done(). 7244 */ 7245 void __meminit kswapd_stop(int nid) 7246 { 7247 pg_data_t *pgdat = NODE_DATA(nid); 7248 struct task_struct *kswapd; 7249 7250 pgdat_kswapd_lock(pgdat); 7251 kswapd = pgdat->kswapd; 7252 if (kswapd) { 7253 kthread_stop(kswapd); 7254 pgdat->kswapd = NULL; 7255 } 7256 pgdat_kswapd_unlock(pgdat); 7257 } 7258 7259 static int __init kswapd_init(void) 7260 { 7261 int nid; 7262 7263 swap_setup(); 7264 for_each_node_state(nid, N_MEMORY) 7265 kswapd_run(nid); 7266 return 0; 7267 } 7268 7269 module_init(kswapd_init) 7270 7271 #ifdef CONFIG_NUMA 7272 /* 7273 * Node reclaim mode 7274 * 7275 * If non-zero call node_reclaim when the number of free pages falls below 7276 * the watermarks. 7277 */ 7278 int node_reclaim_mode __read_mostly; 7279 7280 /* 7281 * Priority for NODE_RECLAIM. This determines the fraction of pages 7282 * of a node considered for each zone_reclaim. 4 scans 1/16th of 7283 * a zone. 7284 */ 7285 #define NODE_RECLAIM_PRIORITY 4 7286 7287 /* 7288 * Percentage of pages in a zone that must be unmapped for node_reclaim to 7289 * occur. 7290 */ 7291 int sysctl_min_unmapped_ratio = 1; 7292 7293 /* 7294 * If the number of slab pages in a zone grows beyond this percentage then 7295 * slab reclaim needs to occur. 7296 */ 7297 int sysctl_min_slab_ratio = 5; 7298 7299 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat) 7300 { 7301 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED); 7302 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) + 7303 node_page_state(pgdat, NR_ACTIVE_FILE); 7304 7305 /* 7306 * It's possible for there to be more file mapped pages than 7307 * accounted for by the pages on the file LRU lists because 7308 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 7309 */ 7310 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 7311 } 7312 7313 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 7314 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat) 7315 { 7316 unsigned long nr_pagecache_reclaimable; 7317 unsigned long delta = 0; 7318 7319 /* 7320 * If RECLAIM_UNMAP is set, then all file pages are considered 7321 * potentially reclaimable. Otherwise, we have to worry about 7322 * pages like swapcache and node_unmapped_file_pages() provides 7323 * a better estimate 7324 */ 7325 if (node_reclaim_mode & RECLAIM_UNMAP) 7326 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES); 7327 else 7328 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat); 7329 7330 /* If we can't clean pages, remove dirty pages from consideration */ 7331 if (!(node_reclaim_mode & RECLAIM_WRITE)) 7332 delta += node_page_state(pgdat, NR_FILE_DIRTY); 7333 7334 /* Watch for any possible underflows due to delta */ 7335 if (unlikely(delta > nr_pagecache_reclaimable)) 7336 delta = nr_pagecache_reclaimable; 7337 7338 return nr_pagecache_reclaimable - delta; 7339 } 7340 7341 /* 7342 * Try to free up some pages from this node through reclaim. 7343 */ 7344 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 7345 { 7346 /* Minimum pages needed in order to stay on node */ 7347 const unsigned long nr_pages = 1 << order; 7348 struct task_struct *p = current; 7349 unsigned int noreclaim_flag; 7350 struct scan_control sc = { 7351 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 7352 .gfp_mask = current_gfp_context(gfp_mask), 7353 .order = order, 7354 .priority = NODE_RECLAIM_PRIORITY, 7355 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE), 7356 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP), 7357 .may_swap = 1, 7358 .reclaim_idx = gfp_zone(gfp_mask), 7359 }; 7360 unsigned long pflags; 7361 7362 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order, 7363 sc.gfp_mask); 7364 7365 cond_resched(); 7366 psi_memstall_enter(&pflags); 7367 delayacct_freepages_start(); 7368 fs_reclaim_acquire(sc.gfp_mask); 7369 /* 7370 * We need to be able to allocate from the reserves for RECLAIM_UNMAP 7371 */ 7372 noreclaim_flag = memalloc_noreclaim_save(); 7373 set_task_reclaim_state(p, &sc.reclaim_state); 7374 7375 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages || 7376 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) { 7377 /* 7378 * Free memory by calling shrink node with increasing 7379 * priorities until we have enough memory freed. 7380 */ 7381 do { 7382 shrink_node(pgdat, &sc); 7383 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 7384 } 7385 7386 set_task_reclaim_state(p, NULL); 7387 memalloc_noreclaim_restore(noreclaim_flag); 7388 fs_reclaim_release(sc.gfp_mask); 7389 psi_memstall_leave(&pflags); 7390 delayacct_freepages_end(); 7391 7392 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed); 7393 7394 return sc.nr_reclaimed >= nr_pages; 7395 } 7396 7397 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 7398 { 7399 int ret; 7400 7401 /* 7402 * Node reclaim reclaims unmapped file backed pages and 7403 * slab pages if we are over the defined limits. 7404 * 7405 * A small portion of unmapped file backed pages is needed for 7406 * file I/O otherwise pages read by file I/O will be immediately 7407 * thrown out if the node is overallocated. So we do not reclaim 7408 * if less than a specified percentage of the node is used by 7409 * unmapped file backed pages. 7410 */ 7411 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages && 7412 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <= 7413 pgdat->min_slab_pages) 7414 return NODE_RECLAIM_FULL; 7415 7416 /* 7417 * Do not scan if the allocation should not be delayed. 7418 */ 7419 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) 7420 return NODE_RECLAIM_NOSCAN; 7421 7422 /* 7423 * Only run node reclaim on the local node or on nodes that do not 7424 * have associated processors. This will favor the local processor 7425 * over remote processors and spread off node memory allocations 7426 * as wide as possible. 7427 */ 7428 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id()) 7429 return NODE_RECLAIM_NOSCAN; 7430 7431 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags)) 7432 return NODE_RECLAIM_NOSCAN; 7433 7434 ret = __node_reclaim(pgdat, gfp_mask, order); 7435 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags); 7436 7437 if (!ret) 7438 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 7439 7440 return ret; 7441 } 7442 #endif 7443 7444 /** 7445 * check_move_unevictable_folios - Move evictable folios to appropriate zone 7446 * lru list 7447 * @fbatch: Batch of lru folios to check. 7448 * 7449 * Checks folios for evictability, if an evictable folio is in the unevictable 7450 * lru list, moves it to the appropriate evictable lru list. This function 7451 * should be only used for lru folios. 7452 */ 7453 void check_move_unevictable_folios(struct folio_batch *fbatch) 7454 { 7455 struct lruvec *lruvec = NULL; 7456 int pgscanned = 0; 7457 int pgrescued = 0; 7458 int i; 7459 7460 for (i = 0; i < fbatch->nr; i++) { 7461 struct folio *folio = fbatch->folios[i]; 7462 int nr_pages = folio_nr_pages(folio); 7463 7464 pgscanned += nr_pages; 7465 7466 /* block memcg migration while the folio moves between lrus */ 7467 if (!folio_test_clear_lru(folio)) 7468 continue; 7469 7470 lruvec = folio_lruvec_relock_irq(folio, lruvec); 7471 if (folio_evictable(folio) && folio_test_unevictable(folio)) { 7472 lruvec_del_folio(lruvec, folio); 7473 folio_clear_unevictable(folio); 7474 lruvec_add_folio(lruvec, folio); 7475 pgrescued += nr_pages; 7476 } 7477 folio_set_lru(folio); 7478 } 7479 7480 if (lruvec) { 7481 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 7482 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 7483 unlock_page_lruvec_irq(lruvec); 7484 } else if (pgscanned) { 7485 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 7486 } 7487 } 7488 EXPORT_SYMBOL_GPL(check_move_unevictable_folios); 7489