xref: /linux/mm/vmscan.c (revision cb299ba8b5ef2239429484072fea394cd7581bd7)
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13 
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h>	/* for try_to_release_page(),
27 					buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41 #include <linux/delayacct.h>
42 #include <linux/sysctl.h>
43 
44 #include <asm/tlbflush.h>
45 #include <asm/div64.h>
46 
47 #include <linux/swapops.h>
48 
49 #include "internal.h"
50 
51 #define CREATE_TRACE_POINTS
52 #include <trace/events/vmscan.h>
53 
54 enum lumpy_mode {
55 	LUMPY_MODE_NONE,
56 	LUMPY_MODE_ASYNC,
57 	LUMPY_MODE_SYNC,
58 };
59 
60 struct scan_control {
61 	/* Incremented by the number of inactive pages that were scanned */
62 	unsigned long nr_scanned;
63 
64 	/* Number of pages freed so far during a call to shrink_zones() */
65 	unsigned long nr_reclaimed;
66 
67 	/* How many pages shrink_list() should reclaim */
68 	unsigned long nr_to_reclaim;
69 
70 	unsigned long hibernation_mode;
71 
72 	/* This context's GFP mask */
73 	gfp_t gfp_mask;
74 
75 	int may_writepage;
76 
77 	/* Can mapped pages be reclaimed? */
78 	int may_unmap;
79 
80 	/* Can pages be swapped as part of reclaim? */
81 	int may_swap;
82 
83 	int swappiness;
84 
85 	int order;
86 
87 	/*
88 	 * Intend to reclaim enough continuous memory rather than reclaim
89 	 * enough amount of memory. i.e, mode for high order allocation.
90 	 */
91 	enum lumpy_mode lumpy_reclaim_mode;
92 
93 	/* Which cgroup do we reclaim from */
94 	struct mem_cgroup *mem_cgroup;
95 
96 	/*
97 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
98 	 * are scanned.
99 	 */
100 	nodemask_t	*nodemask;
101 };
102 
103 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
104 
105 #ifdef ARCH_HAS_PREFETCH
106 #define prefetch_prev_lru_page(_page, _base, _field)			\
107 	do {								\
108 		if ((_page)->lru.prev != _base) {			\
109 			struct page *prev;				\
110 									\
111 			prev = lru_to_page(&(_page->lru));		\
112 			prefetch(&prev->_field);			\
113 		}							\
114 	} while (0)
115 #else
116 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
117 #endif
118 
119 #ifdef ARCH_HAS_PREFETCHW
120 #define prefetchw_prev_lru_page(_page, _base, _field)			\
121 	do {								\
122 		if ((_page)->lru.prev != _base) {			\
123 			struct page *prev;				\
124 									\
125 			prev = lru_to_page(&(_page->lru));		\
126 			prefetchw(&prev->_field);			\
127 		}							\
128 	} while (0)
129 #else
130 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
131 #endif
132 
133 /*
134  * From 0 .. 100.  Higher means more swappy.
135  */
136 int vm_swappiness = 60;
137 long vm_total_pages;	/* The total number of pages which the VM controls */
138 
139 static LIST_HEAD(shrinker_list);
140 static DECLARE_RWSEM(shrinker_rwsem);
141 
142 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
143 #define scanning_global_lru(sc)	(!(sc)->mem_cgroup)
144 #else
145 #define scanning_global_lru(sc)	(1)
146 #endif
147 
148 static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
149 						  struct scan_control *sc)
150 {
151 	if (!scanning_global_lru(sc))
152 		return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
153 
154 	return &zone->reclaim_stat;
155 }
156 
157 static unsigned long zone_nr_lru_pages(struct zone *zone,
158 				struct scan_control *sc, enum lru_list lru)
159 {
160 	if (!scanning_global_lru(sc))
161 		return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru);
162 
163 	return zone_page_state(zone, NR_LRU_BASE + lru);
164 }
165 
166 
167 /*
168  * Add a shrinker callback to be called from the vm
169  */
170 void register_shrinker(struct shrinker *shrinker)
171 {
172 	shrinker->nr = 0;
173 	down_write(&shrinker_rwsem);
174 	list_add_tail(&shrinker->list, &shrinker_list);
175 	up_write(&shrinker_rwsem);
176 }
177 EXPORT_SYMBOL(register_shrinker);
178 
179 /*
180  * Remove one
181  */
182 void unregister_shrinker(struct shrinker *shrinker)
183 {
184 	down_write(&shrinker_rwsem);
185 	list_del(&shrinker->list);
186 	up_write(&shrinker_rwsem);
187 }
188 EXPORT_SYMBOL(unregister_shrinker);
189 
190 #define SHRINK_BATCH 128
191 /*
192  * Call the shrink functions to age shrinkable caches
193  *
194  * Here we assume it costs one seek to replace a lru page and that it also
195  * takes a seek to recreate a cache object.  With this in mind we age equal
196  * percentages of the lru and ageable caches.  This should balance the seeks
197  * generated by these structures.
198  *
199  * If the vm encountered mapped pages on the LRU it increase the pressure on
200  * slab to avoid swapping.
201  *
202  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
203  *
204  * `lru_pages' represents the number of on-LRU pages in all the zones which
205  * are eligible for the caller's allocation attempt.  It is used for balancing
206  * slab reclaim versus page reclaim.
207  *
208  * Returns the number of slab objects which we shrunk.
209  */
210 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
211 			unsigned long lru_pages)
212 {
213 	struct shrinker *shrinker;
214 	unsigned long ret = 0;
215 
216 	if (scanned == 0)
217 		scanned = SWAP_CLUSTER_MAX;
218 
219 	if (!down_read_trylock(&shrinker_rwsem))
220 		return 1;	/* Assume we'll be able to shrink next time */
221 
222 	list_for_each_entry(shrinker, &shrinker_list, list) {
223 		unsigned long long delta;
224 		unsigned long total_scan;
225 		unsigned long max_pass;
226 
227 		max_pass = (*shrinker->shrink)(shrinker, 0, gfp_mask);
228 		delta = (4 * scanned) / shrinker->seeks;
229 		delta *= max_pass;
230 		do_div(delta, lru_pages + 1);
231 		shrinker->nr += delta;
232 		if (shrinker->nr < 0) {
233 			printk(KERN_ERR "shrink_slab: %pF negative objects to "
234 			       "delete nr=%ld\n",
235 			       shrinker->shrink, shrinker->nr);
236 			shrinker->nr = max_pass;
237 		}
238 
239 		/*
240 		 * Avoid risking looping forever due to too large nr value:
241 		 * never try to free more than twice the estimate number of
242 		 * freeable entries.
243 		 */
244 		if (shrinker->nr > max_pass * 2)
245 			shrinker->nr = max_pass * 2;
246 
247 		total_scan = shrinker->nr;
248 		shrinker->nr = 0;
249 
250 		while (total_scan >= SHRINK_BATCH) {
251 			long this_scan = SHRINK_BATCH;
252 			int shrink_ret;
253 			int nr_before;
254 
255 			nr_before = (*shrinker->shrink)(shrinker, 0, gfp_mask);
256 			shrink_ret = (*shrinker->shrink)(shrinker, this_scan,
257 								gfp_mask);
258 			if (shrink_ret == -1)
259 				break;
260 			if (shrink_ret < nr_before)
261 				ret += nr_before - shrink_ret;
262 			count_vm_events(SLABS_SCANNED, this_scan);
263 			total_scan -= this_scan;
264 
265 			cond_resched();
266 		}
267 
268 		shrinker->nr += total_scan;
269 	}
270 	up_read(&shrinker_rwsem);
271 	return ret;
272 }
273 
274 static void set_lumpy_reclaim_mode(int priority, struct scan_control *sc,
275 				   bool sync)
276 {
277 	enum lumpy_mode mode = sync ? LUMPY_MODE_SYNC : LUMPY_MODE_ASYNC;
278 
279 	/*
280 	 * Some reclaim have alredy been failed. No worth to try synchronous
281 	 * lumpy reclaim.
282 	 */
283 	if (sync && sc->lumpy_reclaim_mode == LUMPY_MODE_NONE)
284 		return;
285 
286 	/*
287 	 * If we need a large contiguous chunk of memory, or have
288 	 * trouble getting a small set of contiguous pages, we
289 	 * will reclaim both active and inactive pages.
290 	 */
291 	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
292 		sc->lumpy_reclaim_mode = mode;
293 	else if (sc->order && priority < DEF_PRIORITY - 2)
294 		sc->lumpy_reclaim_mode = mode;
295 	else
296 		sc->lumpy_reclaim_mode = LUMPY_MODE_NONE;
297 }
298 
299 static void disable_lumpy_reclaim_mode(struct scan_control *sc)
300 {
301 	sc->lumpy_reclaim_mode = LUMPY_MODE_NONE;
302 }
303 
304 static inline int is_page_cache_freeable(struct page *page)
305 {
306 	/*
307 	 * A freeable page cache page is referenced only by the caller
308 	 * that isolated the page, the page cache radix tree and
309 	 * optional buffer heads at page->private.
310 	 */
311 	return page_count(page) - page_has_private(page) == 2;
312 }
313 
314 static int may_write_to_queue(struct backing_dev_info *bdi,
315 			      struct scan_control *sc)
316 {
317 	if (current->flags & PF_SWAPWRITE)
318 		return 1;
319 	if (!bdi_write_congested(bdi))
320 		return 1;
321 	if (bdi == current->backing_dev_info)
322 		return 1;
323 
324 	/* lumpy reclaim for hugepage often need a lot of write */
325 	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
326 		return 1;
327 	return 0;
328 }
329 
330 /*
331  * We detected a synchronous write error writing a page out.  Probably
332  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
333  * fsync(), msync() or close().
334  *
335  * The tricky part is that after writepage we cannot touch the mapping: nothing
336  * prevents it from being freed up.  But we have a ref on the page and once
337  * that page is locked, the mapping is pinned.
338  *
339  * We're allowed to run sleeping lock_page() here because we know the caller has
340  * __GFP_FS.
341  */
342 static void handle_write_error(struct address_space *mapping,
343 				struct page *page, int error)
344 {
345 	lock_page_nosync(page);
346 	if (page_mapping(page) == mapping)
347 		mapping_set_error(mapping, error);
348 	unlock_page(page);
349 }
350 
351 /* possible outcome of pageout() */
352 typedef enum {
353 	/* failed to write page out, page is locked */
354 	PAGE_KEEP,
355 	/* move page to the active list, page is locked */
356 	PAGE_ACTIVATE,
357 	/* page has been sent to the disk successfully, page is unlocked */
358 	PAGE_SUCCESS,
359 	/* page is clean and locked */
360 	PAGE_CLEAN,
361 } pageout_t;
362 
363 /*
364  * pageout is called by shrink_page_list() for each dirty page.
365  * Calls ->writepage().
366  */
367 static pageout_t pageout(struct page *page, struct address_space *mapping,
368 			 struct scan_control *sc)
369 {
370 	/*
371 	 * If the page is dirty, only perform writeback if that write
372 	 * will be non-blocking.  To prevent this allocation from being
373 	 * stalled by pagecache activity.  But note that there may be
374 	 * stalls if we need to run get_block().  We could test
375 	 * PagePrivate for that.
376 	 *
377 	 * If this process is currently in __generic_file_aio_write() against
378 	 * this page's queue, we can perform writeback even if that
379 	 * will block.
380 	 *
381 	 * If the page is swapcache, write it back even if that would
382 	 * block, for some throttling. This happens by accident, because
383 	 * swap_backing_dev_info is bust: it doesn't reflect the
384 	 * congestion state of the swapdevs.  Easy to fix, if needed.
385 	 */
386 	if (!is_page_cache_freeable(page))
387 		return PAGE_KEEP;
388 	if (!mapping) {
389 		/*
390 		 * Some data journaling orphaned pages can have
391 		 * page->mapping == NULL while being dirty with clean buffers.
392 		 */
393 		if (page_has_private(page)) {
394 			if (try_to_free_buffers(page)) {
395 				ClearPageDirty(page);
396 				printk("%s: orphaned page\n", __func__);
397 				return PAGE_CLEAN;
398 			}
399 		}
400 		return PAGE_KEEP;
401 	}
402 	if (mapping->a_ops->writepage == NULL)
403 		return PAGE_ACTIVATE;
404 	if (!may_write_to_queue(mapping->backing_dev_info, sc))
405 		return PAGE_KEEP;
406 
407 	if (clear_page_dirty_for_io(page)) {
408 		int res;
409 		struct writeback_control wbc = {
410 			.sync_mode = WB_SYNC_NONE,
411 			.nr_to_write = SWAP_CLUSTER_MAX,
412 			.range_start = 0,
413 			.range_end = LLONG_MAX,
414 			.for_reclaim = 1,
415 		};
416 
417 		SetPageReclaim(page);
418 		res = mapping->a_ops->writepage(page, &wbc);
419 		if (res < 0)
420 			handle_write_error(mapping, page, res);
421 		if (res == AOP_WRITEPAGE_ACTIVATE) {
422 			ClearPageReclaim(page);
423 			return PAGE_ACTIVATE;
424 		}
425 
426 		/*
427 		 * Wait on writeback if requested to. This happens when
428 		 * direct reclaiming a large contiguous area and the
429 		 * first attempt to free a range of pages fails.
430 		 */
431 		if (PageWriteback(page) &&
432 		    sc->lumpy_reclaim_mode == LUMPY_MODE_SYNC)
433 			wait_on_page_writeback(page);
434 
435 		if (!PageWriteback(page)) {
436 			/* synchronous write or broken a_ops? */
437 			ClearPageReclaim(page);
438 		}
439 		trace_mm_vmscan_writepage(page,
440 			trace_reclaim_flags(page, sc->lumpy_reclaim_mode));
441 		inc_zone_page_state(page, NR_VMSCAN_WRITE);
442 		return PAGE_SUCCESS;
443 	}
444 
445 	return PAGE_CLEAN;
446 }
447 
448 /*
449  * Same as remove_mapping, but if the page is removed from the mapping, it
450  * gets returned with a refcount of 0.
451  */
452 static int __remove_mapping(struct address_space *mapping, struct page *page)
453 {
454 	BUG_ON(!PageLocked(page));
455 	BUG_ON(mapping != page_mapping(page));
456 
457 	spin_lock_irq(&mapping->tree_lock);
458 	/*
459 	 * The non racy check for a busy page.
460 	 *
461 	 * Must be careful with the order of the tests. When someone has
462 	 * a ref to the page, it may be possible that they dirty it then
463 	 * drop the reference. So if PageDirty is tested before page_count
464 	 * here, then the following race may occur:
465 	 *
466 	 * get_user_pages(&page);
467 	 * [user mapping goes away]
468 	 * write_to(page);
469 	 *				!PageDirty(page)    [good]
470 	 * SetPageDirty(page);
471 	 * put_page(page);
472 	 *				!page_count(page)   [good, discard it]
473 	 *
474 	 * [oops, our write_to data is lost]
475 	 *
476 	 * Reversing the order of the tests ensures such a situation cannot
477 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
478 	 * load is not satisfied before that of page->_count.
479 	 *
480 	 * Note that if SetPageDirty is always performed via set_page_dirty,
481 	 * and thus under tree_lock, then this ordering is not required.
482 	 */
483 	if (!page_freeze_refs(page, 2))
484 		goto cannot_free;
485 	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
486 	if (unlikely(PageDirty(page))) {
487 		page_unfreeze_refs(page, 2);
488 		goto cannot_free;
489 	}
490 
491 	if (PageSwapCache(page)) {
492 		swp_entry_t swap = { .val = page_private(page) };
493 		__delete_from_swap_cache(page);
494 		spin_unlock_irq(&mapping->tree_lock);
495 		swapcache_free(swap, page);
496 	} else {
497 		__remove_from_page_cache(page);
498 		spin_unlock_irq(&mapping->tree_lock);
499 		mem_cgroup_uncharge_cache_page(page);
500 	}
501 
502 	return 1;
503 
504 cannot_free:
505 	spin_unlock_irq(&mapping->tree_lock);
506 	return 0;
507 }
508 
509 /*
510  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
511  * someone else has a ref on the page, abort and return 0.  If it was
512  * successfully detached, return 1.  Assumes the caller has a single ref on
513  * this page.
514  */
515 int remove_mapping(struct address_space *mapping, struct page *page)
516 {
517 	if (__remove_mapping(mapping, page)) {
518 		/*
519 		 * Unfreezing the refcount with 1 rather than 2 effectively
520 		 * drops the pagecache ref for us without requiring another
521 		 * atomic operation.
522 		 */
523 		page_unfreeze_refs(page, 1);
524 		return 1;
525 	}
526 	return 0;
527 }
528 
529 /**
530  * putback_lru_page - put previously isolated page onto appropriate LRU list
531  * @page: page to be put back to appropriate lru list
532  *
533  * Add previously isolated @page to appropriate LRU list.
534  * Page may still be unevictable for other reasons.
535  *
536  * lru_lock must not be held, interrupts must be enabled.
537  */
538 void putback_lru_page(struct page *page)
539 {
540 	int lru;
541 	int active = !!TestClearPageActive(page);
542 	int was_unevictable = PageUnevictable(page);
543 
544 	VM_BUG_ON(PageLRU(page));
545 
546 redo:
547 	ClearPageUnevictable(page);
548 
549 	if (page_evictable(page, NULL)) {
550 		/*
551 		 * For evictable pages, we can use the cache.
552 		 * In event of a race, worst case is we end up with an
553 		 * unevictable page on [in]active list.
554 		 * We know how to handle that.
555 		 */
556 		lru = active + page_lru_base_type(page);
557 		lru_cache_add_lru(page, lru);
558 	} else {
559 		/*
560 		 * Put unevictable pages directly on zone's unevictable
561 		 * list.
562 		 */
563 		lru = LRU_UNEVICTABLE;
564 		add_page_to_unevictable_list(page);
565 		/*
566 		 * When racing with an mlock clearing (page is
567 		 * unlocked), make sure that if the other thread does
568 		 * not observe our setting of PG_lru and fails
569 		 * isolation, we see PG_mlocked cleared below and move
570 		 * the page back to the evictable list.
571 		 *
572 		 * The other side is TestClearPageMlocked().
573 		 */
574 		smp_mb();
575 	}
576 
577 	/*
578 	 * page's status can change while we move it among lru. If an evictable
579 	 * page is on unevictable list, it never be freed. To avoid that,
580 	 * check after we added it to the list, again.
581 	 */
582 	if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
583 		if (!isolate_lru_page(page)) {
584 			put_page(page);
585 			goto redo;
586 		}
587 		/* This means someone else dropped this page from LRU
588 		 * So, it will be freed or putback to LRU again. There is
589 		 * nothing to do here.
590 		 */
591 	}
592 
593 	if (was_unevictable && lru != LRU_UNEVICTABLE)
594 		count_vm_event(UNEVICTABLE_PGRESCUED);
595 	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
596 		count_vm_event(UNEVICTABLE_PGCULLED);
597 
598 	put_page(page);		/* drop ref from isolate */
599 }
600 
601 enum page_references {
602 	PAGEREF_RECLAIM,
603 	PAGEREF_RECLAIM_CLEAN,
604 	PAGEREF_KEEP,
605 	PAGEREF_ACTIVATE,
606 };
607 
608 static enum page_references page_check_references(struct page *page,
609 						  struct scan_control *sc)
610 {
611 	int referenced_ptes, referenced_page;
612 	unsigned long vm_flags;
613 
614 	referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
615 	referenced_page = TestClearPageReferenced(page);
616 
617 	/* Lumpy reclaim - ignore references */
618 	if (sc->lumpy_reclaim_mode != LUMPY_MODE_NONE)
619 		return PAGEREF_RECLAIM;
620 
621 	/*
622 	 * Mlock lost the isolation race with us.  Let try_to_unmap()
623 	 * move the page to the unevictable list.
624 	 */
625 	if (vm_flags & VM_LOCKED)
626 		return PAGEREF_RECLAIM;
627 
628 	if (referenced_ptes) {
629 		if (PageAnon(page))
630 			return PAGEREF_ACTIVATE;
631 		/*
632 		 * All mapped pages start out with page table
633 		 * references from the instantiating fault, so we need
634 		 * to look twice if a mapped file page is used more
635 		 * than once.
636 		 *
637 		 * Mark it and spare it for another trip around the
638 		 * inactive list.  Another page table reference will
639 		 * lead to its activation.
640 		 *
641 		 * Note: the mark is set for activated pages as well
642 		 * so that recently deactivated but used pages are
643 		 * quickly recovered.
644 		 */
645 		SetPageReferenced(page);
646 
647 		if (referenced_page)
648 			return PAGEREF_ACTIVATE;
649 
650 		return PAGEREF_KEEP;
651 	}
652 
653 	/* Reclaim if clean, defer dirty pages to writeback */
654 	if (referenced_page && !PageSwapBacked(page))
655 		return PAGEREF_RECLAIM_CLEAN;
656 
657 	return PAGEREF_RECLAIM;
658 }
659 
660 static noinline_for_stack void free_page_list(struct list_head *free_pages)
661 {
662 	struct pagevec freed_pvec;
663 	struct page *page, *tmp;
664 
665 	pagevec_init(&freed_pvec, 1);
666 
667 	list_for_each_entry_safe(page, tmp, free_pages, lru) {
668 		list_del(&page->lru);
669 		if (!pagevec_add(&freed_pvec, page)) {
670 			__pagevec_free(&freed_pvec);
671 			pagevec_reinit(&freed_pvec);
672 		}
673 	}
674 
675 	pagevec_free(&freed_pvec);
676 }
677 
678 /*
679  * shrink_page_list() returns the number of reclaimed pages
680  */
681 static unsigned long shrink_page_list(struct list_head *page_list,
682 				      struct zone *zone,
683 				      struct scan_control *sc)
684 {
685 	LIST_HEAD(ret_pages);
686 	LIST_HEAD(free_pages);
687 	int pgactivate = 0;
688 	unsigned long nr_dirty = 0;
689 	unsigned long nr_congested = 0;
690 	unsigned long nr_reclaimed = 0;
691 
692 	cond_resched();
693 
694 	while (!list_empty(page_list)) {
695 		enum page_references references;
696 		struct address_space *mapping;
697 		struct page *page;
698 		int may_enter_fs;
699 
700 		cond_resched();
701 
702 		page = lru_to_page(page_list);
703 		list_del(&page->lru);
704 
705 		if (!trylock_page(page))
706 			goto keep;
707 
708 		VM_BUG_ON(PageActive(page));
709 		VM_BUG_ON(page_zone(page) != zone);
710 
711 		sc->nr_scanned++;
712 
713 		if (unlikely(!page_evictable(page, NULL)))
714 			goto cull_mlocked;
715 
716 		if (!sc->may_unmap && page_mapped(page))
717 			goto keep_locked;
718 
719 		/* Double the slab pressure for mapped and swapcache pages */
720 		if (page_mapped(page) || PageSwapCache(page))
721 			sc->nr_scanned++;
722 
723 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
724 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
725 
726 		if (PageWriteback(page)) {
727 			/*
728 			 * Synchronous reclaim is performed in two passes,
729 			 * first an asynchronous pass over the list to
730 			 * start parallel writeback, and a second synchronous
731 			 * pass to wait for the IO to complete.  Wait here
732 			 * for any page for which writeback has already
733 			 * started.
734 			 */
735 			if (sc->lumpy_reclaim_mode == LUMPY_MODE_SYNC &&
736 			    may_enter_fs)
737 				wait_on_page_writeback(page);
738 			else {
739 				unlock_page(page);
740 				goto keep_lumpy;
741 			}
742 		}
743 
744 		references = page_check_references(page, sc);
745 		switch (references) {
746 		case PAGEREF_ACTIVATE:
747 			goto activate_locked;
748 		case PAGEREF_KEEP:
749 			goto keep_locked;
750 		case PAGEREF_RECLAIM:
751 		case PAGEREF_RECLAIM_CLEAN:
752 			; /* try to reclaim the page below */
753 		}
754 
755 		/*
756 		 * Anonymous process memory has backing store?
757 		 * Try to allocate it some swap space here.
758 		 */
759 		if (PageAnon(page) && !PageSwapCache(page)) {
760 			if (!(sc->gfp_mask & __GFP_IO))
761 				goto keep_locked;
762 			if (!add_to_swap(page))
763 				goto activate_locked;
764 			may_enter_fs = 1;
765 		}
766 
767 		mapping = page_mapping(page);
768 
769 		/*
770 		 * The page is mapped into the page tables of one or more
771 		 * processes. Try to unmap it here.
772 		 */
773 		if (page_mapped(page) && mapping) {
774 			switch (try_to_unmap(page, TTU_UNMAP)) {
775 			case SWAP_FAIL:
776 				goto activate_locked;
777 			case SWAP_AGAIN:
778 				goto keep_locked;
779 			case SWAP_MLOCK:
780 				goto cull_mlocked;
781 			case SWAP_SUCCESS:
782 				; /* try to free the page below */
783 			}
784 		}
785 
786 		if (PageDirty(page)) {
787 			nr_dirty++;
788 
789 			if (references == PAGEREF_RECLAIM_CLEAN)
790 				goto keep_locked;
791 			if (!may_enter_fs)
792 				goto keep_locked;
793 			if (!sc->may_writepage)
794 				goto keep_locked;
795 
796 			/* Page is dirty, try to write it out here */
797 			switch (pageout(page, mapping, sc)) {
798 			case PAGE_KEEP:
799 				nr_congested++;
800 				goto keep_locked;
801 			case PAGE_ACTIVATE:
802 				goto activate_locked;
803 			case PAGE_SUCCESS:
804 				if (PageWriteback(page))
805 					goto keep_lumpy;
806 				if (PageDirty(page))
807 					goto keep;
808 
809 				/*
810 				 * A synchronous write - probably a ramdisk.  Go
811 				 * ahead and try to reclaim the page.
812 				 */
813 				if (!trylock_page(page))
814 					goto keep;
815 				if (PageDirty(page) || PageWriteback(page))
816 					goto keep_locked;
817 				mapping = page_mapping(page);
818 			case PAGE_CLEAN:
819 				; /* try to free the page below */
820 			}
821 		}
822 
823 		/*
824 		 * If the page has buffers, try to free the buffer mappings
825 		 * associated with this page. If we succeed we try to free
826 		 * the page as well.
827 		 *
828 		 * We do this even if the page is PageDirty().
829 		 * try_to_release_page() does not perform I/O, but it is
830 		 * possible for a page to have PageDirty set, but it is actually
831 		 * clean (all its buffers are clean).  This happens if the
832 		 * buffers were written out directly, with submit_bh(). ext3
833 		 * will do this, as well as the blockdev mapping.
834 		 * try_to_release_page() will discover that cleanness and will
835 		 * drop the buffers and mark the page clean - it can be freed.
836 		 *
837 		 * Rarely, pages can have buffers and no ->mapping.  These are
838 		 * the pages which were not successfully invalidated in
839 		 * truncate_complete_page().  We try to drop those buffers here
840 		 * and if that worked, and the page is no longer mapped into
841 		 * process address space (page_count == 1) it can be freed.
842 		 * Otherwise, leave the page on the LRU so it is swappable.
843 		 */
844 		if (page_has_private(page)) {
845 			if (!try_to_release_page(page, sc->gfp_mask))
846 				goto activate_locked;
847 			if (!mapping && page_count(page) == 1) {
848 				unlock_page(page);
849 				if (put_page_testzero(page))
850 					goto free_it;
851 				else {
852 					/*
853 					 * rare race with speculative reference.
854 					 * the speculative reference will free
855 					 * this page shortly, so we may
856 					 * increment nr_reclaimed here (and
857 					 * leave it off the LRU).
858 					 */
859 					nr_reclaimed++;
860 					continue;
861 				}
862 			}
863 		}
864 
865 		if (!mapping || !__remove_mapping(mapping, page))
866 			goto keep_locked;
867 
868 		/*
869 		 * At this point, we have no other references and there is
870 		 * no way to pick any more up (removed from LRU, removed
871 		 * from pagecache). Can use non-atomic bitops now (and
872 		 * we obviously don't have to worry about waking up a process
873 		 * waiting on the page lock, because there are no references.
874 		 */
875 		__clear_page_locked(page);
876 free_it:
877 		nr_reclaimed++;
878 
879 		/*
880 		 * Is there need to periodically free_page_list? It would
881 		 * appear not as the counts should be low
882 		 */
883 		list_add(&page->lru, &free_pages);
884 		continue;
885 
886 cull_mlocked:
887 		if (PageSwapCache(page))
888 			try_to_free_swap(page);
889 		unlock_page(page);
890 		putback_lru_page(page);
891 		disable_lumpy_reclaim_mode(sc);
892 		continue;
893 
894 activate_locked:
895 		/* Not a candidate for swapping, so reclaim swap space. */
896 		if (PageSwapCache(page) && vm_swap_full())
897 			try_to_free_swap(page);
898 		VM_BUG_ON(PageActive(page));
899 		SetPageActive(page);
900 		pgactivate++;
901 keep_locked:
902 		unlock_page(page);
903 keep:
904 		disable_lumpy_reclaim_mode(sc);
905 keep_lumpy:
906 		list_add(&page->lru, &ret_pages);
907 		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
908 	}
909 
910 	/*
911 	 * Tag a zone as congested if all the dirty pages encountered were
912 	 * backed by a congested BDI. In this case, reclaimers should just
913 	 * back off and wait for congestion to clear because further reclaim
914 	 * will encounter the same problem
915 	 */
916 	if (nr_dirty == nr_congested)
917 		zone_set_flag(zone, ZONE_CONGESTED);
918 
919 	free_page_list(&free_pages);
920 
921 	list_splice(&ret_pages, page_list);
922 	count_vm_events(PGACTIVATE, pgactivate);
923 	return nr_reclaimed;
924 }
925 
926 /*
927  * Attempt to remove the specified page from its LRU.  Only take this page
928  * if it is of the appropriate PageActive status.  Pages which are being
929  * freed elsewhere are also ignored.
930  *
931  * page:	page to consider
932  * mode:	one of the LRU isolation modes defined above
933  *
934  * returns 0 on success, -ve errno on failure.
935  */
936 int __isolate_lru_page(struct page *page, int mode, int file)
937 {
938 	int ret = -EINVAL;
939 
940 	/* Only take pages on the LRU. */
941 	if (!PageLRU(page))
942 		return ret;
943 
944 	/*
945 	 * When checking the active state, we need to be sure we are
946 	 * dealing with comparible boolean values.  Take the logical not
947 	 * of each.
948 	 */
949 	if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
950 		return ret;
951 
952 	if (mode != ISOLATE_BOTH && page_is_file_cache(page) != file)
953 		return ret;
954 
955 	/*
956 	 * When this function is being called for lumpy reclaim, we
957 	 * initially look into all LRU pages, active, inactive and
958 	 * unevictable; only give shrink_page_list evictable pages.
959 	 */
960 	if (PageUnevictable(page))
961 		return ret;
962 
963 	ret = -EBUSY;
964 
965 	if (likely(get_page_unless_zero(page))) {
966 		/*
967 		 * Be careful not to clear PageLRU until after we're
968 		 * sure the page is not being freed elsewhere -- the
969 		 * page release code relies on it.
970 		 */
971 		ClearPageLRU(page);
972 		ret = 0;
973 	}
974 
975 	return ret;
976 }
977 
978 /*
979  * zone->lru_lock is heavily contended.  Some of the functions that
980  * shrink the lists perform better by taking out a batch of pages
981  * and working on them outside the LRU lock.
982  *
983  * For pagecache intensive workloads, this function is the hottest
984  * spot in the kernel (apart from copy_*_user functions).
985  *
986  * Appropriate locks must be held before calling this function.
987  *
988  * @nr_to_scan:	The number of pages to look through on the list.
989  * @src:	The LRU list to pull pages off.
990  * @dst:	The temp list to put pages on to.
991  * @scanned:	The number of pages that were scanned.
992  * @order:	The caller's attempted allocation order
993  * @mode:	One of the LRU isolation modes
994  * @file:	True [1] if isolating file [!anon] pages
995  *
996  * returns how many pages were moved onto *@dst.
997  */
998 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
999 		struct list_head *src, struct list_head *dst,
1000 		unsigned long *scanned, int order, int mode, int file)
1001 {
1002 	unsigned long nr_taken = 0;
1003 	unsigned long nr_lumpy_taken = 0;
1004 	unsigned long nr_lumpy_dirty = 0;
1005 	unsigned long nr_lumpy_failed = 0;
1006 	unsigned long scan;
1007 
1008 	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1009 		struct page *page;
1010 		unsigned long pfn;
1011 		unsigned long end_pfn;
1012 		unsigned long page_pfn;
1013 		int zone_id;
1014 
1015 		page = lru_to_page(src);
1016 		prefetchw_prev_lru_page(page, src, flags);
1017 
1018 		VM_BUG_ON(!PageLRU(page));
1019 
1020 		switch (__isolate_lru_page(page, mode, file)) {
1021 		case 0:
1022 			list_move(&page->lru, dst);
1023 			mem_cgroup_del_lru(page);
1024 			nr_taken++;
1025 			break;
1026 
1027 		case -EBUSY:
1028 			/* else it is being freed elsewhere */
1029 			list_move(&page->lru, src);
1030 			mem_cgroup_rotate_lru_list(page, page_lru(page));
1031 			continue;
1032 
1033 		default:
1034 			BUG();
1035 		}
1036 
1037 		if (!order)
1038 			continue;
1039 
1040 		/*
1041 		 * Attempt to take all pages in the order aligned region
1042 		 * surrounding the tag page.  Only take those pages of
1043 		 * the same active state as that tag page.  We may safely
1044 		 * round the target page pfn down to the requested order
1045 		 * as the mem_map is guarenteed valid out to MAX_ORDER,
1046 		 * where that page is in a different zone we will detect
1047 		 * it from its zone id and abort this block scan.
1048 		 */
1049 		zone_id = page_zone_id(page);
1050 		page_pfn = page_to_pfn(page);
1051 		pfn = page_pfn & ~((1 << order) - 1);
1052 		end_pfn = pfn + (1 << order);
1053 		for (; pfn < end_pfn; pfn++) {
1054 			struct page *cursor_page;
1055 
1056 			/* The target page is in the block, ignore it. */
1057 			if (unlikely(pfn == page_pfn))
1058 				continue;
1059 
1060 			/* Avoid holes within the zone. */
1061 			if (unlikely(!pfn_valid_within(pfn)))
1062 				break;
1063 
1064 			cursor_page = pfn_to_page(pfn);
1065 
1066 			/* Check that we have not crossed a zone boundary. */
1067 			if (unlikely(page_zone_id(cursor_page) != zone_id))
1068 				break;
1069 
1070 			/*
1071 			 * If we don't have enough swap space, reclaiming of
1072 			 * anon page which don't already have a swap slot is
1073 			 * pointless.
1074 			 */
1075 			if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
1076 			    !PageSwapCache(cursor_page))
1077 				break;
1078 
1079 			if (__isolate_lru_page(cursor_page, mode, file) == 0) {
1080 				list_move(&cursor_page->lru, dst);
1081 				mem_cgroup_del_lru(cursor_page);
1082 				nr_taken++;
1083 				nr_lumpy_taken++;
1084 				if (PageDirty(cursor_page))
1085 					nr_lumpy_dirty++;
1086 				scan++;
1087 			} else {
1088 				/* the page is freed already. */
1089 				if (!page_count(cursor_page))
1090 					continue;
1091 				break;
1092 			}
1093 		}
1094 
1095 		/* If we break out of the loop above, lumpy reclaim failed */
1096 		if (pfn < end_pfn)
1097 			nr_lumpy_failed++;
1098 	}
1099 
1100 	*scanned = scan;
1101 
1102 	trace_mm_vmscan_lru_isolate(order,
1103 			nr_to_scan, scan,
1104 			nr_taken,
1105 			nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1106 			mode);
1107 	return nr_taken;
1108 }
1109 
1110 static unsigned long isolate_pages_global(unsigned long nr,
1111 					struct list_head *dst,
1112 					unsigned long *scanned, int order,
1113 					int mode, struct zone *z,
1114 					int active, int file)
1115 {
1116 	int lru = LRU_BASE;
1117 	if (active)
1118 		lru += LRU_ACTIVE;
1119 	if (file)
1120 		lru += LRU_FILE;
1121 	return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1122 								mode, file);
1123 }
1124 
1125 /*
1126  * clear_active_flags() is a helper for shrink_active_list(), clearing
1127  * any active bits from the pages in the list.
1128  */
1129 static unsigned long clear_active_flags(struct list_head *page_list,
1130 					unsigned int *count)
1131 {
1132 	int nr_active = 0;
1133 	int lru;
1134 	struct page *page;
1135 
1136 	list_for_each_entry(page, page_list, lru) {
1137 		lru = page_lru_base_type(page);
1138 		if (PageActive(page)) {
1139 			lru += LRU_ACTIVE;
1140 			ClearPageActive(page);
1141 			nr_active++;
1142 		}
1143 		if (count)
1144 			count[lru]++;
1145 	}
1146 
1147 	return nr_active;
1148 }
1149 
1150 /**
1151  * isolate_lru_page - tries to isolate a page from its LRU list
1152  * @page: page to isolate from its LRU list
1153  *
1154  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1155  * vmstat statistic corresponding to whatever LRU list the page was on.
1156  *
1157  * Returns 0 if the page was removed from an LRU list.
1158  * Returns -EBUSY if the page was not on an LRU list.
1159  *
1160  * The returned page will have PageLRU() cleared.  If it was found on
1161  * the active list, it will have PageActive set.  If it was found on
1162  * the unevictable list, it will have the PageUnevictable bit set. That flag
1163  * may need to be cleared by the caller before letting the page go.
1164  *
1165  * The vmstat statistic corresponding to the list on which the page was
1166  * found will be decremented.
1167  *
1168  * Restrictions:
1169  * (1) Must be called with an elevated refcount on the page. This is a
1170  *     fundamentnal difference from isolate_lru_pages (which is called
1171  *     without a stable reference).
1172  * (2) the lru_lock must not be held.
1173  * (3) interrupts must be enabled.
1174  */
1175 int isolate_lru_page(struct page *page)
1176 {
1177 	int ret = -EBUSY;
1178 
1179 	if (PageLRU(page)) {
1180 		struct zone *zone = page_zone(page);
1181 
1182 		spin_lock_irq(&zone->lru_lock);
1183 		if (PageLRU(page) && get_page_unless_zero(page)) {
1184 			int lru = page_lru(page);
1185 			ret = 0;
1186 			ClearPageLRU(page);
1187 
1188 			del_page_from_lru_list(zone, page, lru);
1189 		}
1190 		spin_unlock_irq(&zone->lru_lock);
1191 	}
1192 	return ret;
1193 }
1194 
1195 /*
1196  * Are there way too many processes in the direct reclaim path already?
1197  */
1198 static int too_many_isolated(struct zone *zone, int file,
1199 		struct scan_control *sc)
1200 {
1201 	unsigned long inactive, isolated;
1202 
1203 	if (current_is_kswapd())
1204 		return 0;
1205 
1206 	if (!scanning_global_lru(sc))
1207 		return 0;
1208 
1209 	if (file) {
1210 		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1211 		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1212 	} else {
1213 		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1214 		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1215 	}
1216 
1217 	return isolated > inactive;
1218 }
1219 
1220 /*
1221  * TODO: Try merging with migrations version of putback_lru_pages
1222  */
1223 static noinline_for_stack void
1224 putback_lru_pages(struct zone *zone, struct scan_control *sc,
1225 				unsigned long nr_anon, unsigned long nr_file,
1226 				struct list_head *page_list)
1227 {
1228 	struct page *page;
1229 	struct pagevec pvec;
1230 	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1231 
1232 	pagevec_init(&pvec, 1);
1233 
1234 	/*
1235 	 * Put back any unfreeable pages.
1236 	 */
1237 	spin_lock(&zone->lru_lock);
1238 	while (!list_empty(page_list)) {
1239 		int lru;
1240 		page = lru_to_page(page_list);
1241 		VM_BUG_ON(PageLRU(page));
1242 		list_del(&page->lru);
1243 		if (unlikely(!page_evictable(page, NULL))) {
1244 			spin_unlock_irq(&zone->lru_lock);
1245 			putback_lru_page(page);
1246 			spin_lock_irq(&zone->lru_lock);
1247 			continue;
1248 		}
1249 		SetPageLRU(page);
1250 		lru = page_lru(page);
1251 		add_page_to_lru_list(zone, page, lru);
1252 		if (is_active_lru(lru)) {
1253 			int file = is_file_lru(lru);
1254 			reclaim_stat->recent_rotated[file]++;
1255 		}
1256 		if (!pagevec_add(&pvec, page)) {
1257 			spin_unlock_irq(&zone->lru_lock);
1258 			__pagevec_release(&pvec);
1259 			spin_lock_irq(&zone->lru_lock);
1260 		}
1261 	}
1262 	__mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1263 	__mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1264 
1265 	spin_unlock_irq(&zone->lru_lock);
1266 	pagevec_release(&pvec);
1267 }
1268 
1269 static noinline_for_stack void update_isolated_counts(struct zone *zone,
1270 					struct scan_control *sc,
1271 					unsigned long *nr_anon,
1272 					unsigned long *nr_file,
1273 					struct list_head *isolated_list)
1274 {
1275 	unsigned long nr_active;
1276 	unsigned int count[NR_LRU_LISTS] = { 0, };
1277 	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1278 
1279 	nr_active = clear_active_flags(isolated_list, count);
1280 	__count_vm_events(PGDEACTIVATE, nr_active);
1281 
1282 	__mod_zone_page_state(zone, NR_ACTIVE_FILE,
1283 			      -count[LRU_ACTIVE_FILE]);
1284 	__mod_zone_page_state(zone, NR_INACTIVE_FILE,
1285 			      -count[LRU_INACTIVE_FILE]);
1286 	__mod_zone_page_state(zone, NR_ACTIVE_ANON,
1287 			      -count[LRU_ACTIVE_ANON]);
1288 	__mod_zone_page_state(zone, NR_INACTIVE_ANON,
1289 			      -count[LRU_INACTIVE_ANON]);
1290 
1291 	*nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1292 	*nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1293 	__mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1294 	__mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1295 
1296 	reclaim_stat->recent_scanned[0] += *nr_anon;
1297 	reclaim_stat->recent_scanned[1] += *nr_file;
1298 }
1299 
1300 /*
1301  * Returns true if the caller should wait to clean dirty/writeback pages.
1302  *
1303  * If we are direct reclaiming for contiguous pages and we do not reclaim
1304  * everything in the list, try again and wait for writeback IO to complete.
1305  * This will stall high-order allocations noticeably. Only do that when really
1306  * need to free the pages under high memory pressure.
1307  */
1308 static inline bool should_reclaim_stall(unsigned long nr_taken,
1309 					unsigned long nr_freed,
1310 					int priority,
1311 					struct scan_control *sc)
1312 {
1313 	int lumpy_stall_priority;
1314 
1315 	/* kswapd should not stall on sync IO */
1316 	if (current_is_kswapd())
1317 		return false;
1318 
1319 	/* Only stall on lumpy reclaim */
1320 	if (sc->lumpy_reclaim_mode == LUMPY_MODE_NONE)
1321 		return false;
1322 
1323 	/* If we have relaimed everything on the isolated list, no stall */
1324 	if (nr_freed == nr_taken)
1325 		return false;
1326 
1327 	/*
1328 	 * For high-order allocations, there are two stall thresholds.
1329 	 * High-cost allocations stall immediately where as lower
1330 	 * order allocations such as stacks require the scanning
1331 	 * priority to be much higher before stalling.
1332 	 */
1333 	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1334 		lumpy_stall_priority = DEF_PRIORITY;
1335 	else
1336 		lumpy_stall_priority = DEF_PRIORITY / 3;
1337 
1338 	return priority <= lumpy_stall_priority;
1339 }
1340 
1341 /*
1342  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1343  * of reclaimed pages
1344  */
1345 static noinline_for_stack unsigned long
1346 shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
1347 			struct scan_control *sc, int priority, int file)
1348 {
1349 	LIST_HEAD(page_list);
1350 	unsigned long nr_scanned;
1351 	unsigned long nr_reclaimed = 0;
1352 	unsigned long nr_taken;
1353 	unsigned long nr_anon;
1354 	unsigned long nr_file;
1355 
1356 	while (unlikely(too_many_isolated(zone, file, sc))) {
1357 		congestion_wait(BLK_RW_ASYNC, HZ/10);
1358 
1359 		/* We are about to die and free our memory. Return now. */
1360 		if (fatal_signal_pending(current))
1361 			return SWAP_CLUSTER_MAX;
1362 	}
1363 
1364 	set_lumpy_reclaim_mode(priority, sc, false);
1365 	lru_add_drain();
1366 	spin_lock_irq(&zone->lru_lock);
1367 
1368 	if (scanning_global_lru(sc)) {
1369 		nr_taken = isolate_pages_global(nr_to_scan,
1370 			&page_list, &nr_scanned, sc->order,
1371 			sc->lumpy_reclaim_mode == LUMPY_MODE_NONE ?
1372 					ISOLATE_INACTIVE : ISOLATE_BOTH,
1373 			zone, 0, file);
1374 		zone->pages_scanned += nr_scanned;
1375 		if (current_is_kswapd())
1376 			__count_zone_vm_events(PGSCAN_KSWAPD, zone,
1377 					       nr_scanned);
1378 		else
1379 			__count_zone_vm_events(PGSCAN_DIRECT, zone,
1380 					       nr_scanned);
1381 	} else {
1382 		nr_taken = mem_cgroup_isolate_pages(nr_to_scan,
1383 			&page_list, &nr_scanned, sc->order,
1384 			sc->lumpy_reclaim_mode == LUMPY_MODE_NONE ?
1385 					ISOLATE_INACTIVE : ISOLATE_BOTH,
1386 			zone, sc->mem_cgroup,
1387 			0, file);
1388 		/*
1389 		 * mem_cgroup_isolate_pages() keeps track of
1390 		 * scanned pages on its own.
1391 		 */
1392 	}
1393 
1394 	if (nr_taken == 0) {
1395 		spin_unlock_irq(&zone->lru_lock);
1396 		return 0;
1397 	}
1398 
1399 	update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
1400 
1401 	spin_unlock_irq(&zone->lru_lock);
1402 
1403 	nr_reclaimed = shrink_page_list(&page_list, zone, sc);
1404 
1405 	/* Check if we should syncronously wait for writeback */
1406 	if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1407 		set_lumpy_reclaim_mode(priority, sc, true);
1408 		nr_reclaimed += shrink_page_list(&page_list, zone, sc);
1409 	}
1410 
1411 	local_irq_disable();
1412 	if (current_is_kswapd())
1413 		__count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1414 	__count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
1415 
1416 	putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
1417 
1418 	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1419 		zone_idx(zone),
1420 		nr_scanned, nr_reclaimed,
1421 		priority,
1422 		trace_shrink_flags(file, sc->lumpy_reclaim_mode));
1423 	return nr_reclaimed;
1424 }
1425 
1426 /*
1427  * This moves pages from the active list to the inactive list.
1428  *
1429  * We move them the other way if the page is referenced by one or more
1430  * processes, from rmap.
1431  *
1432  * If the pages are mostly unmapped, the processing is fast and it is
1433  * appropriate to hold zone->lru_lock across the whole operation.  But if
1434  * the pages are mapped, the processing is slow (page_referenced()) so we
1435  * should drop zone->lru_lock around each page.  It's impossible to balance
1436  * this, so instead we remove the pages from the LRU while processing them.
1437  * It is safe to rely on PG_active against the non-LRU pages in here because
1438  * nobody will play with that bit on a non-LRU page.
1439  *
1440  * The downside is that we have to touch page->_count against each page.
1441  * But we had to alter page->flags anyway.
1442  */
1443 
1444 static void move_active_pages_to_lru(struct zone *zone,
1445 				     struct list_head *list,
1446 				     enum lru_list lru)
1447 {
1448 	unsigned long pgmoved = 0;
1449 	struct pagevec pvec;
1450 	struct page *page;
1451 
1452 	pagevec_init(&pvec, 1);
1453 
1454 	while (!list_empty(list)) {
1455 		page = lru_to_page(list);
1456 
1457 		VM_BUG_ON(PageLRU(page));
1458 		SetPageLRU(page);
1459 
1460 		list_move(&page->lru, &zone->lru[lru].list);
1461 		mem_cgroup_add_lru_list(page, lru);
1462 		pgmoved++;
1463 
1464 		if (!pagevec_add(&pvec, page) || list_empty(list)) {
1465 			spin_unlock_irq(&zone->lru_lock);
1466 			if (buffer_heads_over_limit)
1467 				pagevec_strip(&pvec);
1468 			__pagevec_release(&pvec);
1469 			spin_lock_irq(&zone->lru_lock);
1470 		}
1471 	}
1472 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1473 	if (!is_active_lru(lru))
1474 		__count_vm_events(PGDEACTIVATE, pgmoved);
1475 }
1476 
1477 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1478 			struct scan_control *sc, int priority, int file)
1479 {
1480 	unsigned long nr_taken;
1481 	unsigned long pgscanned;
1482 	unsigned long vm_flags;
1483 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1484 	LIST_HEAD(l_active);
1485 	LIST_HEAD(l_inactive);
1486 	struct page *page;
1487 	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1488 	unsigned long nr_rotated = 0;
1489 
1490 	lru_add_drain();
1491 	spin_lock_irq(&zone->lru_lock);
1492 	if (scanning_global_lru(sc)) {
1493 		nr_taken = isolate_pages_global(nr_pages, &l_hold,
1494 						&pgscanned, sc->order,
1495 						ISOLATE_ACTIVE, zone,
1496 						1, file);
1497 		zone->pages_scanned += pgscanned;
1498 	} else {
1499 		nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
1500 						&pgscanned, sc->order,
1501 						ISOLATE_ACTIVE, zone,
1502 						sc->mem_cgroup, 1, file);
1503 		/*
1504 		 * mem_cgroup_isolate_pages() keeps track of
1505 		 * scanned pages on its own.
1506 		 */
1507 	}
1508 
1509 	reclaim_stat->recent_scanned[file] += nr_taken;
1510 
1511 	__count_zone_vm_events(PGREFILL, zone, pgscanned);
1512 	if (file)
1513 		__mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1514 	else
1515 		__mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1516 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1517 	spin_unlock_irq(&zone->lru_lock);
1518 
1519 	while (!list_empty(&l_hold)) {
1520 		cond_resched();
1521 		page = lru_to_page(&l_hold);
1522 		list_del(&page->lru);
1523 
1524 		if (unlikely(!page_evictable(page, NULL))) {
1525 			putback_lru_page(page);
1526 			continue;
1527 		}
1528 
1529 		if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1530 			nr_rotated++;
1531 			/*
1532 			 * Identify referenced, file-backed active pages and
1533 			 * give them one more trip around the active list. So
1534 			 * that executable code get better chances to stay in
1535 			 * memory under moderate memory pressure.  Anon pages
1536 			 * are not likely to be evicted by use-once streaming
1537 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
1538 			 * so we ignore them here.
1539 			 */
1540 			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1541 				list_add(&page->lru, &l_active);
1542 				continue;
1543 			}
1544 		}
1545 
1546 		ClearPageActive(page);	/* we are de-activating */
1547 		list_add(&page->lru, &l_inactive);
1548 	}
1549 
1550 	/*
1551 	 * Move pages back to the lru list.
1552 	 */
1553 	spin_lock_irq(&zone->lru_lock);
1554 	/*
1555 	 * Count referenced pages from currently used mappings as rotated,
1556 	 * even though only some of them are actually re-activated.  This
1557 	 * helps balance scan pressure between file and anonymous pages in
1558 	 * get_scan_ratio.
1559 	 */
1560 	reclaim_stat->recent_rotated[file] += nr_rotated;
1561 
1562 	move_active_pages_to_lru(zone, &l_active,
1563 						LRU_ACTIVE + file * LRU_FILE);
1564 	move_active_pages_to_lru(zone, &l_inactive,
1565 						LRU_BASE   + file * LRU_FILE);
1566 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1567 	spin_unlock_irq(&zone->lru_lock);
1568 }
1569 
1570 #ifdef CONFIG_SWAP
1571 static int inactive_anon_is_low_global(struct zone *zone)
1572 {
1573 	unsigned long active, inactive;
1574 
1575 	active = zone_page_state(zone, NR_ACTIVE_ANON);
1576 	inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1577 
1578 	if (inactive * zone->inactive_ratio < active)
1579 		return 1;
1580 
1581 	return 0;
1582 }
1583 
1584 /**
1585  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1586  * @zone: zone to check
1587  * @sc:   scan control of this context
1588  *
1589  * Returns true if the zone does not have enough inactive anon pages,
1590  * meaning some active anon pages need to be deactivated.
1591  */
1592 static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1593 {
1594 	int low;
1595 
1596 	/*
1597 	 * If we don't have swap space, anonymous page deactivation
1598 	 * is pointless.
1599 	 */
1600 	if (!total_swap_pages)
1601 		return 0;
1602 
1603 	if (scanning_global_lru(sc))
1604 		low = inactive_anon_is_low_global(zone);
1605 	else
1606 		low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1607 	return low;
1608 }
1609 #else
1610 static inline int inactive_anon_is_low(struct zone *zone,
1611 					struct scan_control *sc)
1612 {
1613 	return 0;
1614 }
1615 #endif
1616 
1617 static int inactive_file_is_low_global(struct zone *zone)
1618 {
1619 	unsigned long active, inactive;
1620 
1621 	active = zone_page_state(zone, NR_ACTIVE_FILE);
1622 	inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1623 
1624 	return (active > inactive);
1625 }
1626 
1627 /**
1628  * inactive_file_is_low - check if file pages need to be deactivated
1629  * @zone: zone to check
1630  * @sc:   scan control of this context
1631  *
1632  * When the system is doing streaming IO, memory pressure here
1633  * ensures that active file pages get deactivated, until more
1634  * than half of the file pages are on the inactive list.
1635  *
1636  * Once we get to that situation, protect the system's working
1637  * set from being evicted by disabling active file page aging.
1638  *
1639  * This uses a different ratio than the anonymous pages, because
1640  * the page cache uses a use-once replacement algorithm.
1641  */
1642 static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1643 {
1644 	int low;
1645 
1646 	if (scanning_global_lru(sc))
1647 		low = inactive_file_is_low_global(zone);
1648 	else
1649 		low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1650 	return low;
1651 }
1652 
1653 static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
1654 				int file)
1655 {
1656 	if (file)
1657 		return inactive_file_is_low(zone, sc);
1658 	else
1659 		return inactive_anon_is_low(zone, sc);
1660 }
1661 
1662 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1663 	struct zone *zone, struct scan_control *sc, int priority)
1664 {
1665 	int file = is_file_lru(lru);
1666 
1667 	if (is_active_lru(lru)) {
1668 		if (inactive_list_is_low(zone, sc, file))
1669 		    shrink_active_list(nr_to_scan, zone, sc, priority, file);
1670 		return 0;
1671 	}
1672 
1673 	return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1674 }
1675 
1676 /*
1677  * Smallish @nr_to_scan's are deposited in @nr_saved_scan,
1678  * until we collected @swap_cluster_max pages to scan.
1679  */
1680 static unsigned long nr_scan_try_batch(unsigned long nr_to_scan,
1681 				       unsigned long *nr_saved_scan)
1682 {
1683 	unsigned long nr;
1684 
1685 	*nr_saved_scan += nr_to_scan;
1686 	nr = *nr_saved_scan;
1687 
1688 	if (nr >= SWAP_CLUSTER_MAX)
1689 		*nr_saved_scan = 0;
1690 	else
1691 		nr = 0;
1692 
1693 	return nr;
1694 }
1695 
1696 /*
1697  * Determine how aggressively the anon and file LRU lists should be
1698  * scanned.  The relative value of each set of LRU lists is determined
1699  * by looking at the fraction of the pages scanned we did rotate back
1700  * onto the active list instead of evict.
1701  *
1702  * nr[0] = anon pages to scan; nr[1] = file pages to scan
1703  */
1704 static void get_scan_count(struct zone *zone, struct scan_control *sc,
1705 					unsigned long *nr, int priority)
1706 {
1707 	unsigned long anon, file, free;
1708 	unsigned long anon_prio, file_prio;
1709 	unsigned long ap, fp;
1710 	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1711 	u64 fraction[2], denominator;
1712 	enum lru_list l;
1713 	int noswap = 0;
1714 
1715 	/* If we have no swap space, do not bother scanning anon pages. */
1716 	if (!sc->may_swap || (nr_swap_pages <= 0)) {
1717 		noswap = 1;
1718 		fraction[0] = 0;
1719 		fraction[1] = 1;
1720 		denominator = 1;
1721 		goto out;
1722 	}
1723 
1724 	anon  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1725 		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1726 	file  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1727 		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1728 
1729 	if (scanning_global_lru(sc)) {
1730 		free  = zone_page_state(zone, NR_FREE_PAGES);
1731 		/* If we have very few page cache pages,
1732 		   force-scan anon pages. */
1733 		if (unlikely(file + free <= high_wmark_pages(zone))) {
1734 			fraction[0] = 1;
1735 			fraction[1] = 0;
1736 			denominator = 1;
1737 			goto out;
1738 		}
1739 	}
1740 
1741 	/*
1742 	 * With swappiness at 100, anonymous and file have the same priority.
1743 	 * This scanning priority is essentially the inverse of IO cost.
1744 	 */
1745 	anon_prio = sc->swappiness;
1746 	file_prio = 200 - sc->swappiness;
1747 
1748 	/*
1749 	 * OK, so we have swap space and a fair amount of page cache
1750 	 * pages.  We use the recently rotated / recently scanned
1751 	 * ratios to determine how valuable each cache is.
1752 	 *
1753 	 * Because workloads change over time (and to avoid overflow)
1754 	 * we keep these statistics as a floating average, which ends
1755 	 * up weighing recent references more than old ones.
1756 	 *
1757 	 * anon in [0], file in [1]
1758 	 */
1759 	spin_lock_irq(&zone->lru_lock);
1760 	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1761 		reclaim_stat->recent_scanned[0] /= 2;
1762 		reclaim_stat->recent_rotated[0] /= 2;
1763 	}
1764 
1765 	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1766 		reclaim_stat->recent_scanned[1] /= 2;
1767 		reclaim_stat->recent_rotated[1] /= 2;
1768 	}
1769 
1770 	/*
1771 	 * The amount of pressure on anon vs file pages is inversely
1772 	 * proportional to the fraction of recently scanned pages on
1773 	 * each list that were recently referenced and in active use.
1774 	 */
1775 	ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1776 	ap /= reclaim_stat->recent_rotated[0] + 1;
1777 
1778 	fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1779 	fp /= reclaim_stat->recent_rotated[1] + 1;
1780 	spin_unlock_irq(&zone->lru_lock);
1781 
1782 	fraction[0] = ap;
1783 	fraction[1] = fp;
1784 	denominator = ap + fp + 1;
1785 out:
1786 	for_each_evictable_lru(l) {
1787 		int file = is_file_lru(l);
1788 		unsigned long scan;
1789 
1790 		scan = zone_nr_lru_pages(zone, sc, l);
1791 		if (priority || noswap) {
1792 			scan >>= priority;
1793 			scan = div64_u64(scan * fraction[file], denominator);
1794 		}
1795 		nr[l] = nr_scan_try_batch(scan,
1796 					  &reclaim_stat->nr_saved_scan[l]);
1797 	}
1798 }
1799 
1800 /*
1801  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1802  */
1803 static void shrink_zone(int priority, struct zone *zone,
1804 				struct scan_control *sc)
1805 {
1806 	unsigned long nr[NR_LRU_LISTS];
1807 	unsigned long nr_to_scan;
1808 	enum lru_list l;
1809 	unsigned long nr_reclaimed = sc->nr_reclaimed;
1810 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1811 
1812 	get_scan_count(zone, sc, nr, priority);
1813 
1814 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1815 					nr[LRU_INACTIVE_FILE]) {
1816 		for_each_evictable_lru(l) {
1817 			if (nr[l]) {
1818 				nr_to_scan = min_t(unsigned long,
1819 						   nr[l], SWAP_CLUSTER_MAX);
1820 				nr[l] -= nr_to_scan;
1821 
1822 				nr_reclaimed += shrink_list(l, nr_to_scan,
1823 							    zone, sc, priority);
1824 			}
1825 		}
1826 		/*
1827 		 * On large memory systems, scan >> priority can become
1828 		 * really large. This is fine for the starting priority;
1829 		 * we want to put equal scanning pressure on each zone.
1830 		 * However, if the VM has a harder time of freeing pages,
1831 		 * with multiple processes reclaiming pages, the total
1832 		 * freeing target can get unreasonably large.
1833 		 */
1834 		if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
1835 			break;
1836 	}
1837 
1838 	sc->nr_reclaimed = nr_reclaimed;
1839 
1840 	/*
1841 	 * Even if we did not try to evict anon pages at all, we want to
1842 	 * rebalance the anon lru active/inactive ratio.
1843 	 */
1844 	if (inactive_anon_is_low(zone, sc))
1845 		shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1846 
1847 	throttle_vm_writeout(sc->gfp_mask);
1848 }
1849 
1850 /*
1851  * This is the direct reclaim path, for page-allocating processes.  We only
1852  * try to reclaim pages from zones which will satisfy the caller's allocation
1853  * request.
1854  *
1855  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1856  * Because:
1857  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1858  *    allocation or
1859  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1860  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1861  *    zone defense algorithm.
1862  *
1863  * If a zone is deemed to be full of pinned pages then just give it a light
1864  * scan then give up on it.
1865  */
1866 static void shrink_zones(int priority, struct zonelist *zonelist,
1867 					struct scan_control *sc)
1868 {
1869 	struct zoneref *z;
1870 	struct zone *zone;
1871 
1872 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1873 					gfp_zone(sc->gfp_mask), sc->nodemask) {
1874 		if (!populated_zone(zone))
1875 			continue;
1876 		/*
1877 		 * Take care memory controller reclaiming has small influence
1878 		 * to global LRU.
1879 		 */
1880 		if (scanning_global_lru(sc)) {
1881 			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1882 				continue;
1883 			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1884 				continue;	/* Let kswapd poll it */
1885 		}
1886 
1887 		shrink_zone(priority, zone, sc);
1888 	}
1889 }
1890 
1891 static bool zone_reclaimable(struct zone *zone)
1892 {
1893 	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
1894 }
1895 
1896 /*
1897  * As hibernation is going on, kswapd is freezed so that it can't mark
1898  * the zone into all_unreclaimable. It can't handle OOM during hibernation.
1899  * So let's check zone's unreclaimable in direct reclaim as well as kswapd.
1900  */
1901 static bool all_unreclaimable(struct zonelist *zonelist,
1902 		struct scan_control *sc)
1903 {
1904 	struct zoneref *z;
1905 	struct zone *zone;
1906 	bool all_unreclaimable = true;
1907 
1908 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1909 			gfp_zone(sc->gfp_mask), sc->nodemask) {
1910 		if (!populated_zone(zone))
1911 			continue;
1912 		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1913 			continue;
1914 		if (zone_reclaimable(zone)) {
1915 			all_unreclaimable = false;
1916 			break;
1917 		}
1918 	}
1919 
1920 	return all_unreclaimable;
1921 }
1922 
1923 /*
1924  * This is the main entry point to direct page reclaim.
1925  *
1926  * If a full scan of the inactive list fails to free enough memory then we
1927  * are "out of memory" and something needs to be killed.
1928  *
1929  * If the caller is !__GFP_FS then the probability of a failure is reasonably
1930  * high - the zone may be full of dirty or under-writeback pages, which this
1931  * caller can't do much about.  We kick the writeback threads and take explicit
1932  * naps in the hope that some of these pages can be written.  But if the
1933  * allocating task holds filesystem locks which prevent writeout this might not
1934  * work, and the allocation attempt will fail.
1935  *
1936  * returns:	0, if no pages reclaimed
1937  * 		else, the number of pages reclaimed
1938  */
1939 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
1940 					struct scan_control *sc)
1941 {
1942 	int priority;
1943 	unsigned long total_scanned = 0;
1944 	struct reclaim_state *reclaim_state = current->reclaim_state;
1945 	struct zoneref *z;
1946 	struct zone *zone;
1947 	unsigned long writeback_threshold;
1948 
1949 	get_mems_allowed();
1950 	delayacct_freepages_start();
1951 
1952 	if (scanning_global_lru(sc))
1953 		count_vm_event(ALLOCSTALL);
1954 
1955 	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1956 		sc->nr_scanned = 0;
1957 		if (!priority)
1958 			disable_swap_token();
1959 		shrink_zones(priority, zonelist, sc);
1960 		/*
1961 		 * Don't shrink slabs when reclaiming memory from
1962 		 * over limit cgroups
1963 		 */
1964 		if (scanning_global_lru(sc)) {
1965 			unsigned long lru_pages = 0;
1966 			for_each_zone_zonelist(zone, z, zonelist,
1967 					gfp_zone(sc->gfp_mask)) {
1968 				if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1969 					continue;
1970 
1971 				lru_pages += zone_reclaimable_pages(zone);
1972 			}
1973 
1974 			shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
1975 			if (reclaim_state) {
1976 				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
1977 				reclaim_state->reclaimed_slab = 0;
1978 			}
1979 		}
1980 		total_scanned += sc->nr_scanned;
1981 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
1982 			goto out;
1983 
1984 		/*
1985 		 * Try to write back as many pages as we just scanned.  This
1986 		 * tends to cause slow streaming writers to write data to the
1987 		 * disk smoothly, at the dirtying rate, which is nice.   But
1988 		 * that's undesirable in laptop mode, where we *want* lumpy
1989 		 * writeout.  So in laptop mode, write out the whole world.
1990 		 */
1991 		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
1992 		if (total_scanned > writeback_threshold) {
1993 			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
1994 			sc->may_writepage = 1;
1995 		}
1996 
1997 		/* Take a nap, wait for some writeback to complete */
1998 		if (!sc->hibernation_mode && sc->nr_scanned &&
1999 		    priority < DEF_PRIORITY - 2) {
2000 			struct zone *preferred_zone;
2001 
2002 			first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2003 							NULL, &preferred_zone);
2004 			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2005 		}
2006 	}
2007 
2008 out:
2009 	delayacct_freepages_end();
2010 	put_mems_allowed();
2011 
2012 	if (sc->nr_reclaimed)
2013 		return sc->nr_reclaimed;
2014 
2015 	/* top priority shrink_zones still had more to do? don't OOM, then */
2016 	if (scanning_global_lru(sc) && !all_unreclaimable(zonelist, sc))
2017 		return 1;
2018 
2019 	return 0;
2020 }
2021 
2022 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2023 				gfp_t gfp_mask, nodemask_t *nodemask)
2024 {
2025 	unsigned long nr_reclaimed;
2026 	struct scan_control sc = {
2027 		.gfp_mask = gfp_mask,
2028 		.may_writepage = !laptop_mode,
2029 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2030 		.may_unmap = 1,
2031 		.may_swap = 1,
2032 		.swappiness = vm_swappiness,
2033 		.order = order,
2034 		.mem_cgroup = NULL,
2035 		.nodemask = nodemask,
2036 	};
2037 
2038 	trace_mm_vmscan_direct_reclaim_begin(order,
2039 				sc.may_writepage,
2040 				gfp_mask);
2041 
2042 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2043 
2044 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2045 
2046 	return nr_reclaimed;
2047 }
2048 
2049 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2050 
2051 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
2052 						gfp_t gfp_mask, bool noswap,
2053 						unsigned int swappiness,
2054 						struct zone *zone)
2055 {
2056 	struct scan_control sc = {
2057 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2058 		.may_writepage = !laptop_mode,
2059 		.may_unmap = 1,
2060 		.may_swap = !noswap,
2061 		.swappiness = swappiness,
2062 		.order = 0,
2063 		.mem_cgroup = mem,
2064 	};
2065 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2066 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2067 
2068 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2069 						      sc.may_writepage,
2070 						      sc.gfp_mask);
2071 
2072 	/*
2073 	 * NOTE: Although we can get the priority field, using it
2074 	 * here is not a good idea, since it limits the pages we can scan.
2075 	 * if we don't reclaim here, the shrink_zone from balance_pgdat
2076 	 * will pick up pages from other mem cgroup's as well. We hack
2077 	 * the priority and make it zero.
2078 	 */
2079 	shrink_zone(0, zone, &sc);
2080 
2081 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2082 
2083 	return sc.nr_reclaimed;
2084 }
2085 
2086 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
2087 					   gfp_t gfp_mask,
2088 					   bool noswap,
2089 					   unsigned int swappiness)
2090 {
2091 	struct zonelist *zonelist;
2092 	unsigned long nr_reclaimed;
2093 	struct scan_control sc = {
2094 		.may_writepage = !laptop_mode,
2095 		.may_unmap = 1,
2096 		.may_swap = !noswap,
2097 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2098 		.swappiness = swappiness,
2099 		.order = 0,
2100 		.mem_cgroup = mem_cont,
2101 		.nodemask = NULL, /* we don't care the placement */
2102 	};
2103 
2104 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2105 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2106 	zonelist = NODE_DATA(numa_node_id())->node_zonelists;
2107 
2108 	trace_mm_vmscan_memcg_reclaim_begin(0,
2109 					    sc.may_writepage,
2110 					    sc.gfp_mask);
2111 
2112 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2113 
2114 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2115 
2116 	return nr_reclaimed;
2117 }
2118 #endif
2119 
2120 /* is kswapd sleeping prematurely? */
2121 static int sleeping_prematurely(pg_data_t *pgdat, int order, long remaining)
2122 {
2123 	int i;
2124 
2125 	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2126 	if (remaining)
2127 		return 1;
2128 
2129 	/* If after HZ/10, a zone is below the high mark, it's premature */
2130 	for (i = 0; i < pgdat->nr_zones; i++) {
2131 		struct zone *zone = pgdat->node_zones + i;
2132 
2133 		if (!populated_zone(zone))
2134 			continue;
2135 
2136 		if (zone->all_unreclaimable)
2137 			continue;
2138 
2139 		if (!zone_watermark_ok(zone, order, high_wmark_pages(zone),
2140 								0, 0))
2141 			return 1;
2142 	}
2143 
2144 	return 0;
2145 }
2146 
2147 /*
2148  * For kswapd, balance_pgdat() will work across all this node's zones until
2149  * they are all at high_wmark_pages(zone).
2150  *
2151  * Returns the number of pages which were actually freed.
2152  *
2153  * There is special handling here for zones which are full of pinned pages.
2154  * This can happen if the pages are all mlocked, or if they are all used by
2155  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2156  * What we do is to detect the case where all pages in the zone have been
2157  * scanned twice and there has been zero successful reclaim.  Mark the zone as
2158  * dead and from now on, only perform a short scan.  Basically we're polling
2159  * the zone for when the problem goes away.
2160  *
2161  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2162  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2163  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2164  * lower zones regardless of the number of free pages in the lower zones. This
2165  * interoperates with the page allocator fallback scheme to ensure that aging
2166  * of pages is balanced across the zones.
2167  */
2168 static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
2169 {
2170 	int all_zones_ok;
2171 	int priority;
2172 	int i;
2173 	unsigned long total_scanned;
2174 	struct reclaim_state *reclaim_state = current->reclaim_state;
2175 	struct scan_control sc = {
2176 		.gfp_mask = GFP_KERNEL,
2177 		.may_unmap = 1,
2178 		.may_swap = 1,
2179 		/*
2180 		 * kswapd doesn't want to be bailed out while reclaim. because
2181 		 * we want to put equal scanning pressure on each zone.
2182 		 */
2183 		.nr_to_reclaim = ULONG_MAX,
2184 		.swappiness = vm_swappiness,
2185 		.order = order,
2186 		.mem_cgroup = NULL,
2187 	};
2188 loop_again:
2189 	total_scanned = 0;
2190 	sc.nr_reclaimed = 0;
2191 	sc.may_writepage = !laptop_mode;
2192 	count_vm_event(PAGEOUTRUN);
2193 
2194 	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2195 		int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
2196 		unsigned long lru_pages = 0;
2197 		int has_under_min_watermark_zone = 0;
2198 
2199 		/* The swap token gets in the way of swapout... */
2200 		if (!priority)
2201 			disable_swap_token();
2202 
2203 		all_zones_ok = 1;
2204 
2205 		/*
2206 		 * Scan in the highmem->dma direction for the highest
2207 		 * zone which needs scanning
2208 		 */
2209 		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2210 			struct zone *zone = pgdat->node_zones + i;
2211 
2212 			if (!populated_zone(zone))
2213 				continue;
2214 
2215 			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2216 				continue;
2217 
2218 			/*
2219 			 * Do some background aging of the anon list, to give
2220 			 * pages a chance to be referenced before reclaiming.
2221 			 */
2222 			if (inactive_anon_is_low(zone, &sc))
2223 				shrink_active_list(SWAP_CLUSTER_MAX, zone,
2224 							&sc, priority, 0);
2225 
2226 			if (!zone_watermark_ok(zone, order,
2227 					high_wmark_pages(zone), 0, 0)) {
2228 				end_zone = i;
2229 				break;
2230 			}
2231 		}
2232 		if (i < 0)
2233 			goto out;
2234 
2235 		for (i = 0; i <= end_zone; i++) {
2236 			struct zone *zone = pgdat->node_zones + i;
2237 
2238 			lru_pages += zone_reclaimable_pages(zone);
2239 		}
2240 
2241 		/*
2242 		 * Now scan the zone in the dma->highmem direction, stopping
2243 		 * at the last zone which needs scanning.
2244 		 *
2245 		 * We do this because the page allocator works in the opposite
2246 		 * direction.  This prevents the page allocator from allocating
2247 		 * pages behind kswapd's direction of progress, which would
2248 		 * cause too much scanning of the lower zones.
2249 		 */
2250 		for (i = 0; i <= end_zone; i++) {
2251 			struct zone *zone = pgdat->node_zones + i;
2252 			int nr_slab;
2253 
2254 			if (!populated_zone(zone))
2255 				continue;
2256 
2257 			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2258 				continue;
2259 
2260 			sc.nr_scanned = 0;
2261 
2262 			/*
2263 			 * Call soft limit reclaim before calling shrink_zone.
2264 			 * For now we ignore the return value
2265 			 */
2266 			mem_cgroup_soft_limit_reclaim(zone, order, sc.gfp_mask);
2267 
2268 			/*
2269 			 * We put equal pressure on every zone, unless one
2270 			 * zone has way too many pages free already.
2271 			 */
2272 			if (!zone_watermark_ok(zone, order,
2273 					8*high_wmark_pages(zone), end_zone, 0))
2274 				shrink_zone(priority, zone, &sc);
2275 			reclaim_state->reclaimed_slab = 0;
2276 			nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
2277 						lru_pages);
2278 			sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2279 			total_scanned += sc.nr_scanned;
2280 			if (zone->all_unreclaimable)
2281 				continue;
2282 			if (nr_slab == 0 && !zone_reclaimable(zone))
2283 				zone->all_unreclaimable = 1;
2284 			/*
2285 			 * If we've done a decent amount of scanning and
2286 			 * the reclaim ratio is low, start doing writepage
2287 			 * even in laptop mode
2288 			 */
2289 			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2290 			    total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2291 				sc.may_writepage = 1;
2292 
2293 			if (!zone_watermark_ok(zone, order,
2294 					high_wmark_pages(zone), end_zone, 0)) {
2295 				all_zones_ok = 0;
2296 				/*
2297 				 * We are still under min water mark.  This
2298 				 * means that we have a GFP_ATOMIC allocation
2299 				 * failure risk. Hurry up!
2300 				 */
2301 				if (!zone_watermark_ok(zone, order,
2302 					    min_wmark_pages(zone), end_zone, 0))
2303 					has_under_min_watermark_zone = 1;
2304 			} else {
2305 				/*
2306 				 * If a zone reaches its high watermark,
2307 				 * consider it to be no longer congested. It's
2308 				 * possible there are dirty pages backed by
2309 				 * congested BDIs but as pressure is relieved,
2310 				 * spectulatively avoid congestion waits
2311 				 */
2312 				zone_clear_flag(zone, ZONE_CONGESTED);
2313 			}
2314 
2315 		}
2316 		if (all_zones_ok)
2317 			break;		/* kswapd: all done */
2318 		/*
2319 		 * OK, kswapd is getting into trouble.  Take a nap, then take
2320 		 * another pass across the zones.
2321 		 */
2322 		if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2323 			if (has_under_min_watermark_zone)
2324 				count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2325 			else
2326 				congestion_wait(BLK_RW_ASYNC, HZ/10);
2327 		}
2328 
2329 		/*
2330 		 * We do this so kswapd doesn't build up large priorities for
2331 		 * example when it is freeing in parallel with allocators. It
2332 		 * matches the direct reclaim path behaviour in terms of impact
2333 		 * on zone->*_priority.
2334 		 */
2335 		if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2336 			break;
2337 	}
2338 out:
2339 	if (!all_zones_ok) {
2340 		cond_resched();
2341 
2342 		try_to_freeze();
2343 
2344 		/*
2345 		 * Fragmentation may mean that the system cannot be
2346 		 * rebalanced for high-order allocations in all zones.
2347 		 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2348 		 * it means the zones have been fully scanned and are still
2349 		 * not balanced. For high-order allocations, there is
2350 		 * little point trying all over again as kswapd may
2351 		 * infinite loop.
2352 		 *
2353 		 * Instead, recheck all watermarks at order-0 as they
2354 		 * are the most important. If watermarks are ok, kswapd will go
2355 		 * back to sleep. High-order users can still perform direct
2356 		 * reclaim if they wish.
2357 		 */
2358 		if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2359 			order = sc.order = 0;
2360 
2361 		goto loop_again;
2362 	}
2363 
2364 	return sc.nr_reclaimed;
2365 }
2366 
2367 /*
2368  * The background pageout daemon, started as a kernel thread
2369  * from the init process.
2370  *
2371  * This basically trickles out pages so that we have _some_
2372  * free memory available even if there is no other activity
2373  * that frees anything up. This is needed for things like routing
2374  * etc, where we otherwise might have all activity going on in
2375  * asynchronous contexts that cannot page things out.
2376  *
2377  * If there are applications that are active memory-allocators
2378  * (most normal use), this basically shouldn't matter.
2379  */
2380 static int kswapd(void *p)
2381 {
2382 	unsigned long order;
2383 	pg_data_t *pgdat = (pg_data_t*)p;
2384 	struct task_struct *tsk = current;
2385 	DEFINE_WAIT(wait);
2386 	struct reclaim_state reclaim_state = {
2387 		.reclaimed_slab = 0,
2388 	};
2389 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2390 
2391 	lockdep_set_current_reclaim_state(GFP_KERNEL);
2392 
2393 	if (!cpumask_empty(cpumask))
2394 		set_cpus_allowed_ptr(tsk, cpumask);
2395 	current->reclaim_state = &reclaim_state;
2396 
2397 	/*
2398 	 * Tell the memory management that we're a "memory allocator",
2399 	 * and that if we need more memory we should get access to it
2400 	 * regardless (see "__alloc_pages()"). "kswapd" should
2401 	 * never get caught in the normal page freeing logic.
2402 	 *
2403 	 * (Kswapd normally doesn't need memory anyway, but sometimes
2404 	 * you need a small amount of memory in order to be able to
2405 	 * page out something else, and this flag essentially protects
2406 	 * us from recursively trying to free more memory as we're
2407 	 * trying to free the first piece of memory in the first place).
2408 	 */
2409 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2410 	set_freezable();
2411 
2412 	order = 0;
2413 	for ( ; ; ) {
2414 		unsigned long new_order;
2415 		int ret;
2416 
2417 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2418 		new_order = pgdat->kswapd_max_order;
2419 		pgdat->kswapd_max_order = 0;
2420 		if (order < new_order) {
2421 			/*
2422 			 * Don't sleep if someone wants a larger 'order'
2423 			 * allocation
2424 			 */
2425 			order = new_order;
2426 		} else {
2427 			if (!freezing(current) && !kthread_should_stop()) {
2428 				long remaining = 0;
2429 
2430 				/* Try to sleep for a short interval */
2431 				if (!sleeping_prematurely(pgdat, order, remaining)) {
2432 					remaining = schedule_timeout(HZ/10);
2433 					finish_wait(&pgdat->kswapd_wait, &wait);
2434 					prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2435 				}
2436 
2437 				/*
2438 				 * After a short sleep, check if it was a
2439 				 * premature sleep. If not, then go fully
2440 				 * to sleep until explicitly woken up
2441 				 */
2442 				if (!sleeping_prematurely(pgdat, order, remaining)) {
2443 					trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2444 					schedule();
2445 				} else {
2446 					if (remaining)
2447 						count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2448 					else
2449 						count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2450 				}
2451 			}
2452 
2453 			order = pgdat->kswapd_max_order;
2454 		}
2455 		finish_wait(&pgdat->kswapd_wait, &wait);
2456 
2457 		ret = try_to_freeze();
2458 		if (kthread_should_stop())
2459 			break;
2460 
2461 		/*
2462 		 * We can speed up thawing tasks if we don't call balance_pgdat
2463 		 * after returning from the refrigerator
2464 		 */
2465 		if (!ret) {
2466 			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2467 			balance_pgdat(pgdat, order);
2468 		}
2469 	}
2470 	return 0;
2471 }
2472 
2473 /*
2474  * A zone is low on free memory, so wake its kswapd task to service it.
2475  */
2476 void wakeup_kswapd(struct zone *zone, int order)
2477 {
2478 	pg_data_t *pgdat;
2479 
2480 	if (!populated_zone(zone))
2481 		return;
2482 
2483 	pgdat = zone->zone_pgdat;
2484 	if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0))
2485 		return;
2486 	if (pgdat->kswapd_max_order < order)
2487 		pgdat->kswapd_max_order = order;
2488 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2489 	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2490 		return;
2491 	if (!waitqueue_active(&pgdat->kswapd_wait))
2492 		return;
2493 	wake_up_interruptible(&pgdat->kswapd_wait);
2494 }
2495 
2496 /*
2497  * The reclaimable count would be mostly accurate.
2498  * The less reclaimable pages may be
2499  * - mlocked pages, which will be moved to unevictable list when encountered
2500  * - mapped pages, which may require several travels to be reclaimed
2501  * - dirty pages, which is not "instantly" reclaimable
2502  */
2503 unsigned long global_reclaimable_pages(void)
2504 {
2505 	int nr;
2506 
2507 	nr = global_page_state(NR_ACTIVE_FILE) +
2508 	     global_page_state(NR_INACTIVE_FILE);
2509 
2510 	if (nr_swap_pages > 0)
2511 		nr += global_page_state(NR_ACTIVE_ANON) +
2512 		      global_page_state(NR_INACTIVE_ANON);
2513 
2514 	return nr;
2515 }
2516 
2517 unsigned long zone_reclaimable_pages(struct zone *zone)
2518 {
2519 	int nr;
2520 
2521 	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2522 	     zone_page_state(zone, NR_INACTIVE_FILE);
2523 
2524 	if (nr_swap_pages > 0)
2525 		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2526 		      zone_page_state(zone, NR_INACTIVE_ANON);
2527 
2528 	return nr;
2529 }
2530 
2531 #ifdef CONFIG_HIBERNATION
2532 /*
2533  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2534  * freed pages.
2535  *
2536  * Rather than trying to age LRUs the aim is to preserve the overall
2537  * LRU order by reclaiming preferentially
2538  * inactive > active > active referenced > active mapped
2539  */
2540 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
2541 {
2542 	struct reclaim_state reclaim_state;
2543 	struct scan_control sc = {
2544 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
2545 		.may_swap = 1,
2546 		.may_unmap = 1,
2547 		.may_writepage = 1,
2548 		.nr_to_reclaim = nr_to_reclaim,
2549 		.hibernation_mode = 1,
2550 		.swappiness = vm_swappiness,
2551 		.order = 0,
2552 	};
2553 	struct zonelist * zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
2554 	struct task_struct *p = current;
2555 	unsigned long nr_reclaimed;
2556 
2557 	p->flags |= PF_MEMALLOC;
2558 	lockdep_set_current_reclaim_state(sc.gfp_mask);
2559 	reclaim_state.reclaimed_slab = 0;
2560 	p->reclaim_state = &reclaim_state;
2561 
2562 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2563 
2564 	p->reclaim_state = NULL;
2565 	lockdep_clear_current_reclaim_state();
2566 	p->flags &= ~PF_MEMALLOC;
2567 
2568 	return nr_reclaimed;
2569 }
2570 #endif /* CONFIG_HIBERNATION */
2571 
2572 /* It's optimal to keep kswapds on the same CPUs as their memory, but
2573    not required for correctness.  So if the last cpu in a node goes
2574    away, we get changed to run anywhere: as the first one comes back,
2575    restore their cpu bindings. */
2576 static int __devinit cpu_callback(struct notifier_block *nfb,
2577 				  unsigned long action, void *hcpu)
2578 {
2579 	int nid;
2580 
2581 	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2582 		for_each_node_state(nid, N_HIGH_MEMORY) {
2583 			pg_data_t *pgdat = NODE_DATA(nid);
2584 			const struct cpumask *mask;
2585 
2586 			mask = cpumask_of_node(pgdat->node_id);
2587 
2588 			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2589 				/* One of our CPUs online: restore mask */
2590 				set_cpus_allowed_ptr(pgdat->kswapd, mask);
2591 		}
2592 	}
2593 	return NOTIFY_OK;
2594 }
2595 
2596 /*
2597  * This kswapd start function will be called by init and node-hot-add.
2598  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2599  */
2600 int kswapd_run(int nid)
2601 {
2602 	pg_data_t *pgdat = NODE_DATA(nid);
2603 	int ret = 0;
2604 
2605 	if (pgdat->kswapd)
2606 		return 0;
2607 
2608 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2609 	if (IS_ERR(pgdat->kswapd)) {
2610 		/* failure at boot is fatal */
2611 		BUG_ON(system_state == SYSTEM_BOOTING);
2612 		printk("Failed to start kswapd on node %d\n",nid);
2613 		ret = -1;
2614 	}
2615 	return ret;
2616 }
2617 
2618 /*
2619  * Called by memory hotplug when all memory in a node is offlined.
2620  */
2621 void kswapd_stop(int nid)
2622 {
2623 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
2624 
2625 	if (kswapd)
2626 		kthread_stop(kswapd);
2627 }
2628 
2629 static int __init kswapd_init(void)
2630 {
2631 	int nid;
2632 
2633 	swap_setup();
2634 	for_each_node_state(nid, N_HIGH_MEMORY)
2635  		kswapd_run(nid);
2636 	hotcpu_notifier(cpu_callback, 0);
2637 	return 0;
2638 }
2639 
2640 module_init(kswapd_init)
2641 
2642 #ifdef CONFIG_NUMA
2643 /*
2644  * Zone reclaim mode
2645  *
2646  * If non-zero call zone_reclaim when the number of free pages falls below
2647  * the watermarks.
2648  */
2649 int zone_reclaim_mode __read_mostly;
2650 
2651 #define RECLAIM_OFF 0
2652 #define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
2653 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
2654 #define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
2655 
2656 /*
2657  * Priority for ZONE_RECLAIM. This determines the fraction of pages
2658  * of a node considered for each zone_reclaim. 4 scans 1/16th of
2659  * a zone.
2660  */
2661 #define ZONE_RECLAIM_PRIORITY 4
2662 
2663 /*
2664  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2665  * occur.
2666  */
2667 int sysctl_min_unmapped_ratio = 1;
2668 
2669 /*
2670  * If the number of slab pages in a zone grows beyond this percentage then
2671  * slab reclaim needs to occur.
2672  */
2673 int sysctl_min_slab_ratio = 5;
2674 
2675 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
2676 {
2677 	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
2678 	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
2679 		zone_page_state(zone, NR_ACTIVE_FILE);
2680 
2681 	/*
2682 	 * It's possible for there to be more file mapped pages than
2683 	 * accounted for by the pages on the file LRU lists because
2684 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
2685 	 */
2686 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
2687 }
2688 
2689 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
2690 static long zone_pagecache_reclaimable(struct zone *zone)
2691 {
2692 	long nr_pagecache_reclaimable;
2693 	long delta = 0;
2694 
2695 	/*
2696 	 * If RECLAIM_SWAP is set, then all file pages are considered
2697 	 * potentially reclaimable. Otherwise, we have to worry about
2698 	 * pages like swapcache and zone_unmapped_file_pages() provides
2699 	 * a better estimate
2700 	 */
2701 	if (zone_reclaim_mode & RECLAIM_SWAP)
2702 		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
2703 	else
2704 		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
2705 
2706 	/* If we can't clean pages, remove dirty pages from consideration */
2707 	if (!(zone_reclaim_mode & RECLAIM_WRITE))
2708 		delta += zone_page_state(zone, NR_FILE_DIRTY);
2709 
2710 	/* Watch for any possible underflows due to delta */
2711 	if (unlikely(delta > nr_pagecache_reclaimable))
2712 		delta = nr_pagecache_reclaimable;
2713 
2714 	return nr_pagecache_reclaimable - delta;
2715 }
2716 
2717 /*
2718  * Try to free up some pages from this zone through reclaim.
2719  */
2720 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2721 {
2722 	/* Minimum pages needed in order to stay on node */
2723 	const unsigned long nr_pages = 1 << order;
2724 	struct task_struct *p = current;
2725 	struct reclaim_state reclaim_state;
2726 	int priority;
2727 	struct scan_control sc = {
2728 		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
2729 		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2730 		.may_swap = 1,
2731 		.nr_to_reclaim = max_t(unsigned long, nr_pages,
2732 				       SWAP_CLUSTER_MAX),
2733 		.gfp_mask = gfp_mask,
2734 		.swappiness = vm_swappiness,
2735 		.order = order,
2736 	};
2737 	unsigned long nr_slab_pages0, nr_slab_pages1;
2738 
2739 	cond_resched();
2740 	/*
2741 	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2742 	 * and we also need to be able to write out pages for RECLAIM_WRITE
2743 	 * and RECLAIM_SWAP.
2744 	 */
2745 	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
2746 	lockdep_set_current_reclaim_state(gfp_mask);
2747 	reclaim_state.reclaimed_slab = 0;
2748 	p->reclaim_state = &reclaim_state;
2749 
2750 	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
2751 		/*
2752 		 * Free memory by calling shrink zone with increasing
2753 		 * priorities until we have enough memory freed.
2754 		 */
2755 		priority = ZONE_RECLAIM_PRIORITY;
2756 		do {
2757 			shrink_zone(priority, zone, &sc);
2758 			priority--;
2759 		} while (priority >= 0 && sc.nr_reclaimed < nr_pages);
2760 	}
2761 
2762 	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2763 	if (nr_slab_pages0 > zone->min_slab_pages) {
2764 		/*
2765 		 * shrink_slab() does not currently allow us to determine how
2766 		 * many pages were freed in this zone. So we take the current
2767 		 * number of slab pages and shake the slab until it is reduced
2768 		 * by the same nr_pages that we used for reclaiming unmapped
2769 		 * pages.
2770 		 *
2771 		 * Note that shrink_slab will free memory on all zones and may
2772 		 * take a long time.
2773 		 */
2774 		for (;;) {
2775 			unsigned long lru_pages = zone_reclaimable_pages(zone);
2776 
2777 			/* No reclaimable slab or very low memory pressure */
2778 			if (!shrink_slab(sc.nr_scanned, gfp_mask, lru_pages))
2779 				break;
2780 
2781 			/* Freed enough memory */
2782 			nr_slab_pages1 = zone_page_state(zone,
2783 							NR_SLAB_RECLAIMABLE);
2784 			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
2785 				break;
2786 		}
2787 
2788 		/*
2789 		 * Update nr_reclaimed by the number of slab pages we
2790 		 * reclaimed from this zone.
2791 		 */
2792 		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2793 		if (nr_slab_pages1 < nr_slab_pages0)
2794 			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
2795 	}
2796 
2797 	p->reclaim_state = NULL;
2798 	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
2799 	lockdep_clear_current_reclaim_state();
2800 	return sc.nr_reclaimed >= nr_pages;
2801 }
2802 
2803 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2804 {
2805 	int node_id;
2806 	int ret;
2807 
2808 	/*
2809 	 * Zone reclaim reclaims unmapped file backed pages and
2810 	 * slab pages if we are over the defined limits.
2811 	 *
2812 	 * A small portion of unmapped file backed pages is needed for
2813 	 * file I/O otherwise pages read by file I/O will be immediately
2814 	 * thrown out if the zone is overallocated. So we do not reclaim
2815 	 * if less than a specified percentage of the zone is used by
2816 	 * unmapped file backed pages.
2817 	 */
2818 	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
2819 	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
2820 		return ZONE_RECLAIM_FULL;
2821 
2822 	if (zone->all_unreclaimable)
2823 		return ZONE_RECLAIM_FULL;
2824 
2825 	/*
2826 	 * Do not scan if the allocation should not be delayed.
2827 	 */
2828 	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
2829 		return ZONE_RECLAIM_NOSCAN;
2830 
2831 	/*
2832 	 * Only run zone reclaim on the local zone or on zones that do not
2833 	 * have associated processors. This will favor the local processor
2834 	 * over remote processors and spread off node memory allocations
2835 	 * as wide as possible.
2836 	 */
2837 	node_id = zone_to_nid(zone);
2838 	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
2839 		return ZONE_RECLAIM_NOSCAN;
2840 
2841 	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
2842 		return ZONE_RECLAIM_NOSCAN;
2843 
2844 	ret = __zone_reclaim(zone, gfp_mask, order);
2845 	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
2846 
2847 	if (!ret)
2848 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
2849 
2850 	return ret;
2851 }
2852 #endif
2853 
2854 /*
2855  * page_evictable - test whether a page is evictable
2856  * @page: the page to test
2857  * @vma: the VMA in which the page is or will be mapped, may be NULL
2858  *
2859  * Test whether page is evictable--i.e., should be placed on active/inactive
2860  * lists vs unevictable list.  The vma argument is !NULL when called from the
2861  * fault path to determine how to instantate a new page.
2862  *
2863  * Reasons page might not be evictable:
2864  * (1) page's mapping marked unevictable
2865  * (2) page is part of an mlocked VMA
2866  *
2867  */
2868 int page_evictable(struct page *page, struct vm_area_struct *vma)
2869 {
2870 
2871 	if (mapping_unevictable(page_mapping(page)))
2872 		return 0;
2873 
2874 	if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
2875 		return 0;
2876 
2877 	return 1;
2878 }
2879 
2880 /**
2881  * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
2882  * @page: page to check evictability and move to appropriate lru list
2883  * @zone: zone page is in
2884  *
2885  * Checks a page for evictability and moves the page to the appropriate
2886  * zone lru list.
2887  *
2888  * Restrictions: zone->lru_lock must be held, page must be on LRU and must
2889  * have PageUnevictable set.
2890  */
2891 static void check_move_unevictable_page(struct page *page, struct zone *zone)
2892 {
2893 	VM_BUG_ON(PageActive(page));
2894 
2895 retry:
2896 	ClearPageUnevictable(page);
2897 	if (page_evictable(page, NULL)) {
2898 		enum lru_list l = page_lru_base_type(page);
2899 
2900 		__dec_zone_state(zone, NR_UNEVICTABLE);
2901 		list_move(&page->lru, &zone->lru[l].list);
2902 		mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
2903 		__inc_zone_state(zone, NR_INACTIVE_ANON + l);
2904 		__count_vm_event(UNEVICTABLE_PGRESCUED);
2905 	} else {
2906 		/*
2907 		 * rotate unevictable list
2908 		 */
2909 		SetPageUnevictable(page);
2910 		list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
2911 		mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
2912 		if (page_evictable(page, NULL))
2913 			goto retry;
2914 	}
2915 }
2916 
2917 /**
2918  * scan_mapping_unevictable_pages - scan an address space for evictable pages
2919  * @mapping: struct address_space to scan for evictable pages
2920  *
2921  * Scan all pages in mapping.  Check unevictable pages for
2922  * evictability and move them to the appropriate zone lru list.
2923  */
2924 void scan_mapping_unevictable_pages(struct address_space *mapping)
2925 {
2926 	pgoff_t next = 0;
2927 	pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
2928 			 PAGE_CACHE_SHIFT;
2929 	struct zone *zone;
2930 	struct pagevec pvec;
2931 
2932 	if (mapping->nrpages == 0)
2933 		return;
2934 
2935 	pagevec_init(&pvec, 0);
2936 	while (next < end &&
2937 		pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
2938 		int i;
2939 		int pg_scanned = 0;
2940 
2941 		zone = NULL;
2942 
2943 		for (i = 0; i < pagevec_count(&pvec); i++) {
2944 			struct page *page = pvec.pages[i];
2945 			pgoff_t page_index = page->index;
2946 			struct zone *pagezone = page_zone(page);
2947 
2948 			pg_scanned++;
2949 			if (page_index > next)
2950 				next = page_index;
2951 			next++;
2952 
2953 			if (pagezone != zone) {
2954 				if (zone)
2955 					spin_unlock_irq(&zone->lru_lock);
2956 				zone = pagezone;
2957 				spin_lock_irq(&zone->lru_lock);
2958 			}
2959 
2960 			if (PageLRU(page) && PageUnevictable(page))
2961 				check_move_unevictable_page(page, zone);
2962 		}
2963 		if (zone)
2964 			spin_unlock_irq(&zone->lru_lock);
2965 		pagevec_release(&pvec);
2966 
2967 		count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
2968 	}
2969 
2970 }
2971 
2972 /**
2973  * scan_zone_unevictable_pages - check unevictable list for evictable pages
2974  * @zone - zone of which to scan the unevictable list
2975  *
2976  * Scan @zone's unevictable LRU lists to check for pages that have become
2977  * evictable.  Move those that have to @zone's inactive list where they
2978  * become candidates for reclaim, unless shrink_inactive_zone() decides
2979  * to reactivate them.  Pages that are still unevictable are rotated
2980  * back onto @zone's unevictable list.
2981  */
2982 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
2983 static void scan_zone_unevictable_pages(struct zone *zone)
2984 {
2985 	struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
2986 	unsigned long scan;
2987 	unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
2988 
2989 	while (nr_to_scan > 0) {
2990 		unsigned long batch_size = min(nr_to_scan,
2991 						SCAN_UNEVICTABLE_BATCH_SIZE);
2992 
2993 		spin_lock_irq(&zone->lru_lock);
2994 		for (scan = 0;  scan < batch_size; scan++) {
2995 			struct page *page = lru_to_page(l_unevictable);
2996 
2997 			if (!trylock_page(page))
2998 				continue;
2999 
3000 			prefetchw_prev_lru_page(page, l_unevictable, flags);
3001 
3002 			if (likely(PageLRU(page) && PageUnevictable(page)))
3003 				check_move_unevictable_page(page, zone);
3004 
3005 			unlock_page(page);
3006 		}
3007 		spin_unlock_irq(&zone->lru_lock);
3008 
3009 		nr_to_scan -= batch_size;
3010 	}
3011 }
3012 
3013 
3014 /**
3015  * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
3016  *
3017  * A really big hammer:  scan all zones' unevictable LRU lists to check for
3018  * pages that have become evictable.  Move those back to the zones'
3019  * inactive list where they become candidates for reclaim.
3020  * This occurs when, e.g., we have unswappable pages on the unevictable lists,
3021  * and we add swap to the system.  As such, it runs in the context of a task
3022  * that has possibly/probably made some previously unevictable pages
3023  * evictable.
3024  */
3025 static void scan_all_zones_unevictable_pages(void)
3026 {
3027 	struct zone *zone;
3028 
3029 	for_each_zone(zone) {
3030 		scan_zone_unevictable_pages(zone);
3031 	}
3032 }
3033 
3034 /*
3035  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3036  * all nodes' unevictable lists for evictable pages
3037  */
3038 unsigned long scan_unevictable_pages;
3039 
3040 int scan_unevictable_handler(struct ctl_table *table, int write,
3041 			   void __user *buffer,
3042 			   size_t *length, loff_t *ppos)
3043 {
3044 	proc_doulongvec_minmax(table, write, buffer, length, ppos);
3045 
3046 	if (write && *(unsigned long *)table->data)
3047 		scan_all_zones_unevictable_pages();
3048 
3049 	scan_unevictable_pages = 0;
3050 	return 0;
3051 }
3052 
3053 #ifdef CONFIG_NUMA
3054 /*
3055  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3056  * a specified node's per zone unevictable lists for evictable pages.
3057  */
3058 
3059 static ssize_t read_scan_unevictable_node(struct sys_device *dev,
3060 					  struct sysdev_attribute *attr,
3061 					  char *buf)
3062 {
3063 	return sprintf(buf, "0\n");	/* always zero; should fit... */
3064 }
3065 
3066 static ssize_t write_scan_unevictable_node(struct sys_device *dev,
3067 					   struct sysdev_attribute *attr,
3068 					const char *buf, size_t count)
3069 {
3070 	struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
3071 	struct zone *zone;
3072 	unsigned long res;
3073 	unsigned long req = strict_strtoul(buf, 10, &res);
3074 
3075 	if (!req)
3076 		return 1;	/* zero is no-op */
3077 
3078 	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
3079 		if (!populated_zone(zone))
3080 			continue;
3081 		scan_zone_unevictable_pages(zone);
3082 	}
3083 	return 1;
3084 }
3085 
3086 
3087 static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3088 			read_scan_unevictable_node,
3089 			write_scan_unevictable_node);
3090 
3091 int scan_unevictable_register_node(struct node *node)
3092 {
3093 	return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
3094 }
3095 
3096 void scan_unevictable_unregister_node(struct node *node)
3097 {
3098 	sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
3099 }
3100 #endif
3101