1 /* 2 * linux/mm/vmscan.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * 6 * Swap reorganised 29.12.95, Stephen Tweedie. 7 * kswapd added: 7.1.96 sct 8 * Removed kswapd_ctl limits, and swap out as many pages as needed 9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 11 * Multiqueue VM started 5.8.00, Rik van Riel. 12 */ 13 14 #include <linux/mm.h> 15 #include <linux/module.h> 16 #include <linux/gfp.h> 17 #include <linux/kernel_stat.h> 18 #include <linux/swap.h> 19 #include <linux/pagemap.h> 20 #include <linux/init.h> 21 #include <linux/highmem.h> 22 #include <linux/vmstat.h> 23 #include <linux/file.h> 24 #include <linux/writeback.h> 25 #include <linux/blkdev.h> 26 #include <linux/buffer_head.h> /* for try_to_release_page(), 27 buffer_heads_over_limit */ 28 #include <linux/mm_inline.h> 29 #include <linux/pagevec.h> 30 #include <linux/backing-dev.h> 31 #include <linux/rmap.h> 32 #include <linux/topology.h> 33 #include <linux/cpu.h> 34 #include <linux/cpuset.h> 35 #include <linux/notifier.h> 36 #include <linux/rwsem.h> 37 #include <linux/delay.h> 38 #include <linux/kthread.h> 39 #include <linux/freezer.h> 40 #include <linux/memcontrol.h> 41 #include <linux/delayacct.h> 42 #include <linux/sysctl.h> 43 44 #include <asm/tlbflush.h> 45 #include <asm/div64.h> 46 47 #include <linux/swapops.h> 48 49 #include "internal.h" 50 51 #define CREATE_TRACE_POINTS 52 #include <trace/events/vmscan.h> 53 54 enum lumpy_mode { 55 LUMPY_MODE_NONE, 56 LUMPY_MODE_ASYNC, 57 LUMPY_MODE_SYNC, 58 }; 59 60 struct scan_control { 61 /* Incremented by the number of inactive pages that were scanned */ 62 unsigned long nr_scanned; 63 64 /* Number of pages freed so far during a call to shrink_zones() */ 65 unsigned long nr_reclaimed; 66 67 /* How many pages shrink_list() should reclaim */ 68 unsigned long nr_to_reclaim; 69 70 unsigned long hibernation_mode; 71 72 /* This context's GFP mask */ 73 gfp_t gfp_mask; 74 75 int may_writepage; 76 77 /* Can mapped pages be reclaimed? */ 78 int may_unmap; 79 80 /* Can pages be swapped as part of reclaim? */ 81 int may_swap; 82 83 int swappiness; 84 85 int order; 86 87 /* 88 * Intend to reclaim enough continuous memory rather than reclaim 89 * enough amount of memory. i.e, mode for high order allocation. 90 */ 91 enum lumpy_mode lumpy_reclaim_mode; 92 93 /* Which cgroup do we reclaim from */ 94 struct mem_cgroup *mem_cgroup; 95 96 /* 97 * Nodemask of nodes allowed by the caller. If NULL, all nodes 98 * are scanned. 99 */ 100 nodemask_t *nodemask; 101 }; 102 103 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru)) 104 105 #ifdef ARCH_HAS_PREFETCH 106 #define prefetch_prev_lru_page(_page, _base, _field) \ 107 do { \ 108 if ((_page)->lru.prev != _base) { \ 109 struct page *prev; \ 110 \ 111 prev = lru_to_page(&(_page->lru)); \ 112 prefetch(&prev->_field); \ 113 } \ 114 } while (0) 115 #else 116 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0) 117 #endif 118 119 #ifdef ARCH_HAS_PREFETCHW 120 #define prefetchw_prev_lru_page(_page, _base, _field) \ 121 do { \ 122 if ((_page)->lru.prev != _base) { \ 123 struct page *prev; \ 124 \ 125 prev = lru_to_page(&(_page->lru)); \ 126 prefetchw(&prev->_field); \ 127 } \ 128 } while (0) 129 #else 130 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 131 #endif 132 133 /* 134 * From 0 .. 100. Higher means more swappy. 135 */ 136 int vm_swappiness = 60; 137 long vm_total_pages; /* The total number of pages which the VM controls */ 138 139 static LIST_HEAD(shrinker_list); 140 static DECLARE_RWSEM(shrinker_rwsem); 141 142 #ifdef CONFIG_CGROUP_MEM_RES_CTLR 143 #define scanning_global_lru(sc) (!(sc)->mem_cgroup) 144 #else 145 #define scanning_global_lru(sc) (1) 146 #endif 147 148 static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone, 149 struct scan_control *sc) 150 { 151 if (!scanning_global_lru(sc)) 152 return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone); 153 154 return &zone->reclaim_stat; 155 } 156 157 static unsigned long zone_nr_lru_pages(struct zone *zone, 158 struct scan_control *sc, enum lru_list lru) 159 { 160 if (!scanning_global_lru(sc)) 161 return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru); 162 163 return zone_page_state(zone, NR_LRU_BASE + lru); 164 } 165 166 167 /* 168 * Add a shrinker callback to be called from the vm 169 */ 170 void register_shrinker(struct shrinker *shrinker) 171 { 172 shrinker->nr = 0; 173 down_write(&shrinker_rwsem); 174 list_add_tail(&shrinker->list, &shrinker_list); 175 up_write(&shrinker_rwsem); 176 } 177 EXPORT_SYMBOL(register_shrinker); 178 179 /* 180 * Remove one 181 */ 182 void unregister_shrinker(struct shrinker *shrinker) 183 { 184 down_write(&shrinker_rwsem); 185 list_del(&shrinker->list); 186 up_write(&shrinker_rwsem); 187 } 188 EXPORT_SYMBOL(unregister_shrinker); 189 190 #define SHRINK_BATCH 128 191 /* 192 * Call the shrink functions to age shrinkable caches 193 * 194 * Here we assume it costs one seek to replace a lru page and that it also 195 * takes a seek to recreate a cache object. With this in mind we age equal 196 * percentages of the lru and ageable caches. This should balance the seeks 197 * generated by these structures. 198 * 199 * If the vm encountered mapped pages on the LRU it increase the pressure on 200 * slab to avoid swapping. 201 * 202 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits. 203 * 204 * `lru_pages' represents the number of on-LRU pages in all the zones which 205 * are eligible for the caller's allocation attempt. It is used for balancing 206 * slab reclaim versus page reclaim. 207 * 208 * Returns the number of slab objects which we shrunk. 209 */ 210 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask, 211 unsigned long lru_pages) 212 { 213 struct shrinker *shrinker; 214 unsigned long ret = 0; 215 216 if (scanned == 0) 217 scanned = SWAP_CLUSTER_MAX; 218 219 if (!down_read_trylock(&shrinker_rwsem)) 220 return 1; /* Assume we'll be able to shrink next time */ 221 222 list_for_each_entry(shrinker, &shrinker_list, list) { 223 unsigned long long delta; 224 unsigned long total_scan; 225 unsigned long max_pass; 226 227 max_pass = (*shrinker->shrink)(shrinker, 0, gfp_mask); 228 delta = (4 * scanned) / shrinker->seeks; 229 delta *= max_pass; 230 do_div(delta, lru_pages + 1); 231 shrinker->nr += delta; 232 if (shrinker->nr < 0) { 233 printk(KERN_ERR "shrink_slab: %pF negative objects to " 234 "delete nr=%ld\n", 235 shrinker->shrink, shrinker->nr); 236 shrinker->nr = max_pass; 237 } 238 239 /* 240 * Avoid risking looping forever due to too large nr value: 241 * never try to free more than twice the estimate number of 242 * freeable entries. 243 */ 244 if (shrinker->nr > max_pass * 2) 245 shrinker->nr = max_pass * 2; 246 247 total_scan = shrinker->nr; 248 shrinker->nr = 0; 249 250 while (total_scan >= SHRINK_BATCH) { 251 long this_scan = SHRINK_BATCH; 252 int shrink_ret; 253 int nr_before; 254 255 nr_before = (*shrinker->shrink)(shrinker, 0, gfp_mask); 256 shrink_ret = (*shrinker->shrink)(shrinker, this_scan, 257 gfp_mask); 258 if (shrink_ret == -1) 259 break; 260 if (shrink_ret < nr_before) 261 ret += nr_before - shrink_ret; 262 count_vm_events(SLABS_SCANNED, this_scan); 263 total_scan -= this_scan; 264 265 cond_resched(); 266 } 267 268 shrinker->nr += total_scan; 269 } 270 up_read(&shrinker_rwsem); 271 return ret; 272 } 273 274 static void set_lumpy_reclaim_mode(int priority, struct scan_control *sc, 275 bool sync) 276 { 277 enum lumpy_mode mode = sync ? LUMPY_MODE_SYNC : LUMPY_MODE_ASYNC; 278 279 /* 280 * Some reclaim have alredy been failed. No worth to try synchronous 281 * lumpy reclaim. 282 */ 283 if (sync && sc->lumpy_reclaim_mode == LUMPY_MODE_NONE) 284 return; 285 286 /* 287 * If we need a large contiguous chunk of memory, or have 288 * trouble getting a small set of contiguous pages, we 289 * will reclaim both active and inactive pages. 290 */ 291 if (sc->order > PAGE_ALLOC_COSTLY_ORDER) 292 sc->lumpy_reclaim_mode = mode; 293 else if (sc->order && priority < DEF_PRIORITY - 2) 294 sc->lumpy_reclaim_mode = mode; 295 else 296 sc->lumpy_reclaim_mode = LUMPY_MODE_NONE; 297 } 298 299 static void disable_lumpy_reclaim_mode(struct scan_control *sc) 300 { 301 sc->lumpy_reclaim_mode = LUMPY_MODE_NONE; 302 } 303 304 static inline int is_page_cache_freeable(struct page *page) 305 { 306 /* 307 * A freeable page cache page is referenced only by the caller 308 * that isolated the page, the page cache radix tree and 309 * optional buffer heads at page->private. 310 */ 311 return page_count(page) - page_has_private(page) == 2; 312 } 313 314 static int may_write_to_queue(struct backing_dev_info *bdi, 315 struct scan_control *sc) 316 { 317 if (current->flags & PF_SWAPWRITE) 318 return 1; 319 if (!bdi_write_congested(bdi)) 320 return 1; 321 if (bdi == current->backing_dev_info) 322 return 1; 323 324 /* lumpy reclaim for hugepage often need a lot of write */ 325 if (sc->order > PAGE_ALLOC_COSTLY_ORDER) 326 return 1; 327 return 0; 328 } 329 330 /* 331 * We detected a synchronous write error writing a page out. Probably 332 * -ENOSPC. We need to propagate that into the address_space for a subsequent 333 * fsync(), msync() or close(). 334 * 335 * The tricky part is that after writepage we cannot touch the mapping: nothing 336 * prevents it from being freed up. But we have a ref on the page and once 337 * that page is locked, the mapping is pinned. 338 * 339 * We're allowed to run sleeping lock_page() here because we know the caller has 340 * __GFP_FS. 341 */ 342 static void handle_write_error(struct address_space *mapping, 343 struct page *page, int error) 344 { 345 lock_page_nosync(page); 346 if (page_mapping(page) == mapping) 347 mapping_set_error(mapping, error); 348 unlock_page(page); 349 } 350 351 /* possible outcome of pageout() */ 352 typedef enum { 353 /* failed to write page out, page is locked */ 354 PAGE_KEEP, 355 /* move page to the active list, page is locked */ 356 PAGE_ACTIVATE, 357 /* page has been sent to the disk successfully, page is unlocked */ 358 PAGE_SUCCESS, 359 /* page is clean and locked */ 360 PAGE_CLEAN, 361 } pageout_t; 362 363 /* 364 * pageout is called by shrink_page_list() for each dirty page. 365 * Calls ->writepage(). 366 */ 367 static pageout_t pageout(struct page *page, struct address_space *mapping, 368 struct scan_control *sc) 369 { 370 /* 371 * If the page is dirty, only perform writeback if that write 372 * will be non-blocking. To prevent this allocation from being 373 * stalled by pagecache activity. But note that there may be 374 * stalls if we need to run get_block(). We could test 375 * PagePrivate for that. 376 * 377 * If this process is currently in __generic_file_aio_write() against 378 * this page's queue, we can perform writeback even if that 379 * will block. 380 * 381 * If the page is swapcache, write it back even if that would 382 * block, for some throttling. This happens by accident, because 383 * swap_backing_dev_info is bust: it doesn't reflect the 384 * congestion state of the swapdevs. Easy to fix, if needed. 385 */ 386 if (!is_page_cache_freeable(page)) 387 return PAGE_KEEP; 388 if (!mapping) { 389 /* 390 * Some data journaling orphaned pages can have 391 * page->mapping == NULL while being dirty with clean buffers. 392 */ 393 if (page_has_private(page)) { 394 if (try_to_free_buffers(page)) { 395 ClearPageDirty(page); 396 printk("%s: orphaned page\n", __func__); 397 return PAGE_CLEAN; 398 } 399 } 400 return PAGE_KEEP; 401 } 402 if (mapping->a_ops->writepage == NULL) 403 return PAGE_ACTIVATE; 404 if (!may_write_to_queue(mapping->backing_dev_info, sc)) 405 return PAGE_KEEP; 406 407 if (clear_page_dirty_for_io(page)) { 408 int res; 409 struct writeback_control wbc = { 410 .sync_mode = WB_SYNC_NONE, 411 .nr_to_write = SWAP_CLUSTER_MAX, 412 .range_start = 0, 413 .range_end = LLONG_MAX, 414 .for_reclaim = 1, 415 }; 416 417 SetPageReclaim(page); 418 res = mapping->a_ops->writepage(page, &wbc); 419 if (res < 0) 420 handle_write_error(mapping, page, res); 421 if (res == AOP_WRITEPAGE_ACTIVATE) { 422 ClearPageReclaim(page); 423 return PAGE_ACTIVATE; 424 } 425 426 /* 427 * Wait on writeback if requested to. This happens when 428 * direct reclaiming a large contiguous area and the 429 * first attempt to free a range of pages fails. 430 */ 431 if (PageWriteback(page) && 432 sc->lumpy_reclaim_mode == LUMPY_MODE_SYNC) 433 wait_on_page_writeback(page); 434 435 if (!PageWriteback(page)) { 436 /* synchronous write or broken a_ops? */ 437 ClearPageReclaim(page); 438 } 439 trace_mm_vmscan_writepage(page, 440 trace_reclaim_flags(page, sc->lumpy_reclaim_mode)); 441 inc_zone_page_state(page, NR_VMSCAN_WRITE); 442 return PAGE_SUCCESS; 443 } 444 445 return PAGE_CLEAN; 446 } 447 448 /* 449 * Same as remove_mapping, but if the page is removed from the mapping, it 450 * gets returned with a refcount of 0. 451 */ 452 static int __remove_mapping(struct address_space *mapping, struct page *page) 453 { 454 BUG_ON(!PageLocked(page)); 455 BUG_ON(mapping != page_mapping(page)); 456 457 spin_lock_irq(&mapping->tree_lock); 458 /* 459 * The non racy check for a busy page. 460 * 461 * Must be careful with the order of the tests. When someone has 462 * a ref to the page, it may be possible that they dirty it then 463 * drop the reference. So if PageDirty is tested before page_count 464 * here, then the following race may occur: 465 * 466 * get_user_pages(&page); 467 * [user mapping goes away] 468 * write_to(page); 469 * !PageDirty(page) [good] 470 * SetPageDirty(page); 471 * put_page(page); 472 * !page_count(page) [good, discard it] 473 * 474 * [oops, our write_to data is lost] 475 * 476 * Reversing the order of the tests ensures such a situation cannot 477 * escape unnoticed. The smp_rmb is needed to ensure the page->flags 478 * load is not satisfied before that of page->_count. 479 * 480 * Note that if SetPageDirty is always performed via set_page_dirty, 481 * and thus under tree_lock, then this ordering is not required. 482 */ 483 if (!page_freeze_refs(page, 2)) 484 goto cannot_free; 485 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */ 486 if (unlikely(PageDirty(page))) { 487 page_unfreeze_refs(page, 2); 488 goto cannot_free; 489 } 490 491 if (PageSwapCache(page)) { 492 swp_entry_t swap = { .val = page_private(page) }; 493 __delete_from_swap_cache(page); 494 spin_unlock_irq(&mapping->tree_lock); 495 swapcache_free(swap, page); 496 } else { 497 __remove_from_page_cache(page); 498 spin_unlock_irq(&mapping->tree_lock); 499 mem_cgroup_uncharge_cache_page(page); 500 } 501 502 return 1; 503 504 cannot_free: 505 spin_unlock_irq(&mapping->tree_lock); 506 return 0; 507 } 508 509 /* 510 * Attempt to detach a locked page from its ->mapping. If it is dirty or if 511 * someone else has a ref on the page, abort and return 0. If it was 512 * successfully detached, return 1. Assumes the caller has a single ref on 513 * this page. 514 */ 515 int remove_mapping(struct address_space *mapping, struct page *page) 516 { 517 if (__remove_mapping(mapping, page)) { 518 /* 519 * Unfreezing the refcount with 1 rather than 2 effectively 520 * drops the pagecache ref for us without requiring another 521 * atomic operation. 522 */ 523 page_unfreeze_refs(page, 1); 524 return 1; 525 } 526 return 0; 527 } 528 529 /** 530 * putback_lru_page - put previously isolated page onto appropriate LRU list 531 * @page: page to be put back to appropriate lru list 532 * 533 * Add previously isolated @page to appropriate LRU list. 534 * Page may still be unevictable for other reasons. 535 * 536 * lru_lock must not be held, interrupts must be enabled. 537 */ 538 void putback_lru_page(struct page *page) 539 { 540 int lru; 541 int active = !!TestClearPageActive(page); 542 int was_unevictable = PageUnevictable(page); 543 544 VM_BUG_ON(PageLRU(page)); 545 546 redo: 547 ClearPageUnevictable(page); 548 549 if (page_evictable(page, NULL)) { 550 /* 551 * For evictable pages, we can use the cache. 552 * In event of a race, worst case is we end up with an 553 * unevictable page on [in]active list. 554 * We know how to handle that. 555 */ 556 lru = active + page_lru_base_type(page); 557 lru_cache_add_lru(page, lru); 558 } else { 559 /* 560 * Put unevictable pages directly on zone's unevictable 561 * list. 562 */ 563 lru = LRU_UNEVICTABLE; 564 add_page_to_unevictable_list(page); 565 /* 566 * When racing with an mlock clearing (page is 567 * unlocked), make sure that if the other thread does 568 * not observe our setting of PG_lru and fails 569 * isolation, we see PG_mlocked cleared below and move 570 * the page back to the evictable list. 571 * 572 * The other side is TestClearPageMlocked(). 573 */ 574 smp_mb(); 575 } 576 577 /* 578 * page's status can change while we move it among lru. If an evictable 579 * page is on unevictable list, it never be freed. To avoid that, 580 * check after we added it to the list, again. 581 */ 582 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) { 583 if (!isolate_lru_page(page)) { 584 put_page(page); 585 goto redo; 586 } 587 /* This means someone else dropped this page from LRU 588 * So, it will be freed or putback to LRU again. There is 589 * nothing to do here. 590 */ 591 } 592 593 if (was_unevictable && lru != LRU_UNEVICTABLE) 594 count_vm_event(UNEVICTABLE_PGRESCUED); 595 else if (!was_unevictable && lru == LRU_UNEVICTABLE) 596 count_vm_event(UNEVICTABLE_PGCULLED); 597 598 put_page(page); /* drop ref from isolate */ 599 } 600 601 enum page_references { 602 PAGEREF_RECLAIM, 603 PAGEREF_RECLAIM_CLEAN, 604 PAGEREF_KEEP, 605 PAGEREF_ACTIVATE, 606 }; 607 608 static enum page_references page_check_references(struct page *page, 609 struct scan_control *sc) 610 { 611 int referenced_ptes, referenced_page; 612 unsigned long vm_flags; 613 614 referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags); 615 referenced_page = TestClearPageReferenced(page); 616 617 /* Lumpy reclaim - ignore references */ 618 if (sc->lumpy_reclaim_mode != LUMPY_MODE_NONE) 619 return PAGEREF_RECLAIM; 620 621 /* 622 * Mlock lost the isolation race with us. Let try_to_unmap() 623 * move the page to the unevictable list. 624 */ 625 if (vm_flags & VM_LOCKED) 626 return PAGEREF_RECLAIM; 627 628 if (referenced_ptes) { 629 if (PageAnon(page)) 630 return PAGEREF_ACTIVATE; 631 /* 632 * All mapped pages start out with page table 633 * references from the instantiating fault, so we need 634 * to look twice if a mapped file page is used more 635 * than once. 636 * 637 * Mark it and spare it for another trip around the 638 * inactive list. Another page table reference will 639 * lead to its activation. 640 * 641 * Note: the mark is set for activated pages as well 642 * so that recently deactivated but used pages are 643 * quickly recovered. 644 */ 645 SetPageReferenced(page); 646 647 if (referenced_page) 648 return PAGEREF_ACTIVATE; 649 650 return PAGEREF_KEEP; 651 } 652 653 /* Reclaim if clean, defer dirty pages to writeback */ 654 if (referenced_page && !PageSwapBacked(page)) 655 return PAGEREF_RECLAIM_CLEAN; 656 657 return PAGEREF_RECLAIM; 658 } 659 660 static noinline_for_stack void free_page_list(struct list_head *free_pages) 661 { 662 struct pagevec freed_pvec; 663 struct page *page, *tmp; 664 665 pagevec_init(&freed_pvec, 1); 666 667 list_for_each_entry_safe(page, tmp, free_pages, lru) { 668 list_del(&page->lru); 669 if (!pagevec_add(&freed_pvec, page)) { 670 __pagevec_free(&freed_pvec); 671 pagevec_reinit(&freed_pvec); 672 } 673 } 674 675 pagevec_free(&freed_pvec); 676 } 677 678 /* 679 * shrink_page_list() returns the number of reclaimed pages 680 */ 681 static unsigned long shrink_page_list(struct list_head *page_list, 682 struct zone *zone, 683 struct scan_control *sc) 684 { 685 LIST_HEAD(ret_pages); 686 LIST_HEAD(free_pages); 687 int pgactivate = 0; 688 unsigned long nr_dirty = 0; 689 unsigned long nr_congested = 0; 690 unsigned long nr_reclaimed = 0; 691 692 cond_resched(); 693 694 while (!list_empty(page_list)) { 695 enum page_references references; 696 struct address_space *mapping; 697 struct page *page; 698 int may_enter_fs; 699 700 cond_resched(); 701 702 page = lru_to_page(page_list); 703 list_del(&page->lru); 704 705 if (!trylock_page(page)) 706 goto keep; 707 708 VM_BUG_ON(PageActive(page)); 709 VM_BUG_ON(page_zone(page) != zone); 710 711 sc->nr_scanned++; 712 713 if (unlikely(!page_evictable(page, NULL))) 714 goto cull_mlocked; 715 716 if (!sc->may_unmap && page_mapped(page)) 717 goto keep_locked; 718 719 /* Double the slab pressure for mapped and swapcache pages */ 720 if (page_mapped(page) || PageSwapCache(page)) 721 sc->nr_scanned++; 722 723 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 724 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 725 726 if (PageWriteback(page)) { 727 /* 728 * Synchronous reclaim is performed in two passes, 729 * first an asynchronous pass over the list to 730 * start parallel writeback, and a second synchronous 731 * pass to wait for the IO to complete. Wait here 732 * for any page for which writeback has already 733 * started. 734 */ 735 if (sc->lumpy_reclaim_mode == LUMPY_MODE_SYNC && 736 may_enter_fs) 737 wait_on_page_writeback(page); 738 else { 739 unlock_page(page); 740 goto keep_lumpy; 741 } 742 } 743 744 references = page_check_references(page, sc); 745 switch (references) { 746 case PAGEREF_ACTIVATE: 747 goto activate_locked; 748 case PAGEREF_KEEP: 749 goto keep_locked; 750 case PAGEREF_RECLAIM: 751 case PAGEREF_RECLAIM_CLEAN: 752 ; /* try to reclaim the page below */ 753 } 754 755 /* 756 * Anonymous process memory has backing store? 757 * Try to allocate it some swap space here. 758 */ 759 if (PageAnon(page) && !PageSwapCache(page)) { 760 if (!(sc->gfp_mask & __GFP_IO)) 761 goto keep_locked; 762 if (!add_to_swap(page)) 763 goto activate_locked; 764 may_enter_fs = 1; 765 } 766 767 mapping = page_mapping(page); 768 769 /* 770 * The page is mapped into the page tables of one or more 771 * processes. Try to unmap it here. 772 */ 773 if (page_mapped(page) && mapping) { 774 switch (try_to_unmap(page, TTU_UNMAP)) { 775 case SWAP_FAIL: 776 goto activate_locked; 777 case SWAP_AGAIN: 778 goto keep_locked; 779 case SWAP_MLOCK: 780 goto cull_mlocked; 781 case SWAP_SUCCESS: 782 ; /* try to free the page below */ 783 } 784 } 785 786 if (PageDirty(page)) { 787 nr_dirty++; 788 789 if (references == PAGEREF_RECLAIM_CLEAN) 790 goto keep_locked; 791 if (!may_enter_fs) 792 goto keep_locked; 793 if (!sc->may_writepage) 794 goto keep_locked; 795 796 /* Page is dirty, try to write it out here */ 797 switch (pageout(page, mapping, sc)) { 798 case PAGE_KEEP: 799 nr_congested++; 800 goto keep_locked; 801 case PAGE_ACTIVATE: 802 goto activate_locked; 803 case PAGE_SUCCESS: 804 if (PageWriteback(page)) 805 goto keep_lumpy; 806 if (PageDirty(page)) 807 goto keep; 808 809 /* 810 * A synchronous write - probably a ramdisk. Go 811 * ahead and try to reclaim the page. 812 */ 813 if (!trylock_page(page)) 814 goto keep; 815 if (PageDirty(page) || PageWriteback(page)) 816 goto keep_locked; 817 mapping = page_mapping(page); 818 case PAGE_CLEAN: 819 ; /* try to free the page below */ 820 } 821 } 822 823 /* 824 * If the page has buffers, try to free the buffer mappings 825 * associated with this page. If we succeed we try to free 826 * the page as well. 827 * 828 * We do this even if the page is PageDirty(). 829 * try_to_release_page() does not perform I/O, but it is 830 * possible for a page to have PageDirty set, but it is actually 831 * clean (all its buffers are clean). This happens if the 832 * buffers were written out directly, with submit_bh(). ext3 833 * will do this, as well as the blockdev mapping. 834 * try_to_release_page() will discover that cleanness and will 835 * drop the buffers and mark the page clean - it can be freed. 836 * 837 * Rarely, pages can have buffers and no ->mapping. These are 838 * the pages which were not successfully invalidated in 839 * truncate_complete_page(). We try to drop those buffers here 840 * and if that worked, and the page is no longer mapped into 841 * process address space (page_count == 1) it can be freed. 842 * Otherwise, leave the page on the LRU so it is swappable. 843 */ 844 if (page_has_private(page)) { 845 if (!try_to_release_page(page, sc->gfp_mask)) 846 goto activate_locked; 847 if (!mapping && page_count(page) == 1) { 848 unlock_page(page); 849 if (put_page_testzero(page)) 850 goto free_it; 851 else { 852 /* 853 * rare race with speculative reference. 854 * the speculative reference will free 855 * this page shortly, so we may 856 * increment nr_reclaimed here (and 857 * leave it off the LRU). 858 */ 859 nr_reclaimed++; 860 continue; 861 } 862 } 863 } 864 865 if (!mapping || !__remove_mapping(mapping, page)) 866 goto keep_locked; 867 868 /* 869 * At this point, we have no other references and there is 870 * no way to pick any more up (removed from LRU, removed 871 * from pagecache). Can use non-atomic bitops now (and 872 * we obviously don't have to worry about waking up a process 873 * waiting on the page lock, because there are no references. 874 */ 875 __clear_page_locked(page); 876 free_it: 877 nr_reclaimed++; 878 879 /* 880 * Is there need to periodically free_page_list? It would 881 * appear not as the counts should be low 882 */ 883 list_add(&page->lru, &free_pages); 884 continue; 885 886 cull_mlocked: 887 if (PageSwapCache(page)) 888 try_to_free_swap(page); 889 unlock_page(page); 890 putback_lru_page(page); 891 disable_lumpy_reclaim_mode(sc); 892 continue; 893 894 activate_locked: 895 /* Not a candidate for swapping, so reclaim swap space. */ 896 if (PageSwapCache(page) && vm_swap_full()) 897 try_to_free_swap(page); 898 VM_BUG_ON(PageActive(page)); 899 SetPageActive(page); 900 pgactivate++; 901 keep_locked: 902 unlock_page(page); 903 keep: 904 disable_lumpy_reclaim_mode(sc); 905 keep_lumpy: 906 list_add(&page->lru, &ret_pages); 907 VM_BUG_ON(PageLRU(page) || PageUnevictable(page)); 908 } 909 910 /* 911 * Tag a zone as congested if all the dirty pages encountered were 912 * backed by a congested BDI. In this case, reclaimers should just 913 * back off and wait for congestion to clear because further reclaim 914 * will encounter the same problem 915 */ 916 if (nr_dirty == nr_congested) 917 zone_set_flag(zone, ZONE_CONGESTED); 918 919 free_page_list(&free_pages); 920 921 list_splice(&ret_pages, page_list); 922 count_vm_events(PGACTIVATE, pgactivate); 923 return nr_reclaimed; 924 } 925 926 /* 927 * Attempt to remove the specified page from its LRU. Only take this page 928 * if it is of the appropriate PageActive status. Pages which are being 929 * freed elsewhere are also ignored. 930 * 931 * page: page to consider 932 * mode: one of the LRU isolation modes defined above 933 * 934 * returns 0 on success, -ve errno on failure. 935 */ 936 int __isolate_lru_page(struct page *page, int mode, int file) 937 { 938 int ret = -EINVAL; 939 940 /* Only take pages on the LRU. */ 941 if (!PageLRU(page)) 942 return ret; 943 944 /* 945 * When checking the active state, we need to be sure we are 946 * dealing with comparible boolean values. Take the logical not 947 * of each. 948 */ 949 if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode)) 950 return ret; 951 952 if (mode != ISOLATE_BOTH && page_is_file_cache(page) != file) 953 return ret; 954 955 /* 956 * When this function is being called for lumpy reclaim, we 957 * initially look into all LRU pages, active, inactive and 958 * unevictable; only give shrink_page_list evictable pages. 959 */ 960 if (PageUnevictable(page)) 961 return ret; 962 963 ret = -EBUSY; 964 965 if (likely(get_page_unless_zero(page))) { 966 /* 967 * Be careful not to clear PageLRU until after we're 968 * sure the page is not being freed elsewhere -- the 969 * page release code relies on it. 970 */ 971 ClearPageLRU(page); 972 ret = 0; 973 } 974 975 return ret; 976 } 977 978 /* 979 * zone->lru_lock is heavily contended. Some of the functions that 980 * shrink the lists perform better by taking out a batch of pages 981 * and working on them outside the LRU lock. 982 * 983 * For pagecache intensive workloads, this function is the hottest 984 * spot in the kernel (apart from copy_*_user functions). 985 * 986 * Appropriate locks must be held before calling this function. 987 * 988 * @nr_to_scan: The number of pages to look through on the list. 989 * @src: The LRU list to pull pages off. 990 * @dst: The temp list to put pages on to. 991 * @scanned: The number of pages that were scanned. 992 * @order: The caller's attempted allocation order 993 * @mode: One of the LRU isolation modes 994 * @file: True [1] if isolating file [!anon] pages 995 * 996 * returns how many pages were moved onto *@dst. 997 */ 998 static unsigned long isolate_lru_pages(unsigned long nr_to_scan, 999 struct list_head *src, struct list_head *dst, 1000 unsigned long *scanned, int order, int mode, int file) 1001 { 1002 unsigned long nr_taken = 0; 1003 unsigned long nr_lumpy_taken = 0; 1004 unsigned long nr_lumpy_dirty = 0; 1005 unsigned long nr_lumpy_failed = 0; 1006 unsigned long scan; 1007 1008 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) { 1009 struct page *page; 1010 unsigned long pfn; 1011 unsigned long end_pfn; 1012 unsigned long page_pfn; 1013 int zone_id; 1014 1015 page = lru_to_page(src); 1016 prefetchw_prev_lru_page(page, src, flags); 1017 1018 VM_BUG_ON(!PageLRU(page)); 1019 1020 switch (__isolate_lru_page(page, mode, file)) { 1021 case 0: 1022 list_move(&page->lru, dst); 1023 mem_cgroup_del_lru(page); 1024 nr_taken++; 1025 break; 1026 1027 case -EBUSY: 1028 /* else it is being freed elsewhere */ 1029 list_move(&page->lru, src); 1030 mem_cgroup_rotate_lru_list(page, page_lru(page)); 1031 continue; 1032 1033 default: 1034 BUG(); 1035 } 1036 1037 if (!order) 1038 continue; 1039 1040 /* 1041 * Attempt to take all pages in the order aligned region 1042 * surrounding the tag page. Only take those pages of 1043 * the same active state as that tag page. We may safely 1044 * round the target page pfn down to the requested order 1045 * as the mem_map is guarenteed valid out to MAX_ORDER, 1046 * where that page is in a different zone we will detect 1047 * it from its zone id and abort this block scan. 1048 */ 1049 zone_id = page_zone_id(page); 1050 page_pfn = page_to_pfn(page); 1051 pfn = page_pfn & ~((1 << order) - 1); 1052 end_pfn = pfn + (1 << order); 1053 for (; pfn < end_pfn; pfn++) { 1054 struct page *cursor_page; 1055 1056 /* The target page is in the block, ignore it. */ 1057 if (unlikely(pfn == page_pfn)) 1058 continue; 1059 1060 /* Avoid holes within the zone. */ 1061 if (unlikely(!pfn_valid_within(pfn))) 1062 break; 1063 1064 cursor_page = pfn_to_page(pfn); 1065 1066 /* Check that we have not crossed a zone boundary. */ 1067 if (unlikely(page_zone_id(cursor_page) != zone_id)) 1068 break; 1069 1070 /* 1071 * If we don't have enough swap space, reclaiming of 1072 * anon page which don't already have a swap slot is 1073 * pointless. 1074 */ 1075 if (nr_swap_pages <= 0 && PageAnon(cursor_page) && 1076 !PageSwapCache(cursor_page)) 1077 break; 1078 1079 if (__isolate_lru_page(cursor_page, mode, file) == 0) { 1080 list_move(&cursor_page->lru, dst); 1081 mem_cgroup_del_lru(cursor_page); 1082 nr_taken++; 1083 nr_lumpy_taken++; 1084 if (PageDirty(cursor_page)) 1085 nr_lumpy_dirty++; 1086 scan++; 1087 } else { 1088 /* the page is freed already. */ 1089 if (!page_count(cursor_page)) 1090 continue; 1091 break; 1092 } 1093 } 1094 1095 /* If we break out of the loop above, lumpy reclaim failed */ 1096 if (pfn < end_pfn) 1097 nr_lumpy_failed++; 1098 } 1099 1100 *scanned = scan; 1101 1102 trace_mm_vmscan_lru_isolate(order, 1103 nr_to_scan, scan, 1104 nr_taken, 1105 nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed, 1106 mode); 1107 return nr_taken; 1108 } 1109 1110 static unsigned long isolate_pages_global(unsigned long nr, 1111 struct list_head *dst, 1112 unsigned long *scanned, int order, 1113 int mode, struct zone *z, 1114 int active, int file) 1115 { 1116 int lru = LRU_BASE; 1117 if (active) 1118 lru += LRU_ACTIVE; 1119 if (file) 1120 lru += LRU_FILE; 1121 return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order, 1122 mode, file); 1123 } 1124 1125 /* 1126 * clear_active_flags() is a helper for shrink_active_list(), clearing 1127 * any active bits from the pages in the list. 1128 */ 1129 static unsigned long clear_active_flags(struct list_head *page_list, 1130 unsigned int *count) 1131 { 1132 int nr_active = 0; 1133 int lru; 1134 struct page *page; 1135 1136 list_for_each_entry(page, page_list, lru) { 1137 lru = page_lru_base_type(page); 1138 if (PageActive(page)) { 1139 lru += LRU_ACTIVE; 1140 ClearPageActive(page); 1141 nr_active++; 1142 } 1143 if (count) 1144 count[lru]++; 1145 } 1146 1147 return nr_active; 1148 } 1149 1150 /** 1151 * isolate_lru_page - tries to isolate a page from its LRU list 1152 * @page: page to isolate from its LRU list 1153 * 1154 * Isolates a @page from an LRU list, clears PageLRU and adjusts the 1155 * vmstat statistic corresponding to whatever LRU list the page was on. 1156 * 1157 * Returns 0 if the page was removed from an LRU list. 1158 * Returns -EBUSY if the page was not on an LRU list. 1159 * 1160 * The returned page will have PageLRU() cleared. If it was found on 1161 * the active list, it will have PageActive set. If it was found on 1162 * the unevictable list, it will have the PageUnevictable bit set. That flag 1163 * may need to be cleared by the caller before letting the page go. 1164 * 1165 * The vmstat statistic corresponding to the list on which the page was 1166 * found will be decremented. 1167 * 1168 * Restrictions: 1169 * (1) Must be called with an elevated refcount on the page. This is a 1170 * fundamentnal difference from isolate_lru_pages (which is called 1171 * without a stable reference). 1172 * (2) the lru_lock must not be held. 1173 * (3) interrupts must be enabled. 1174 */ 1175 int isolate_lru_page(struct page *page) 1176 { 1177 int ret = -EBUSY; 1178 1179 if (PageLRU(page)) { 1180 struct zone *zone = page_zone(page); 1181 1182 spin_lock_irq(&zone->lru_lock); 1183 if (PageLRU(page) && get_page_unless_zero(page)) { 1184 int lru = page_lru(page); 1185 ret = 0; 1186 ClearPageLRU(page); 1187 1188 del_page_from_lru_list(zone, page, lru); 1189 } 1190 spin_unlock_irq(&zone->lru_lock); 1191 } 1192 return ret; 1193 } 1194 1195 /* 1196 * Are there way too many processes in the direct reclaim path already? 1197 */ 1198 static int too_many_isolated(struct zone *zone, int file, 1199 struct scan_control *sc) 1200 { 1201 unsigned long inactive, isolated; 1202 1203 if (current_is_kswapd()) 1204 return 0; 1205 1206 if (!scanning_global_lru(sc)) 1207 return 0; 1208 1209 if (file) { 1210 inactive = zone_page_state(zone, NR_INACTIVE_FILE); 1211 isolated = zone_page_state(zone, NR_ISOLATED_FILE); 1212 } else { 1213 inactive = zone_page_state(zone, NR_INACTIVE_ANON); 1214 isolated = zone_page_state(zone, NR_ISOLATED_ANON); 1215 } 1216 1217 return isolated > inactive; 1218 } 1219 1220 /* 1221 * TODO: Try merging with migrations version of putback_lru_pages 1222 */ 1223 static noinline_for_stack void 1224 putback_lru_pages(struct zone *zone, struct scan_control *sc, 1225 unsigned long nr_anon, unsigned long nr_file, 1226 struct list_head *page_list) 1227 { 1228 struct page *page; 1229 struct pagevec pvec; 1230 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc); 1231 1232 pagevec_init(&pvec, 1); 1233 1234 /* 1235 * Put back any unfreeable pages. 1236 */ 1237 spin_lock(&zone->lru_lock); 1238 while (!list_empty(page_list)) { 1239 int lru; 1240 page = lru_to_page(page_list); 1241 VM_BUG_ON(PageLRU(page)); 1242 list_del(&page->lru); 1243 if (unlikely(!page_evictable(page, NULL))) { 1244 spin_unlock_irq(&zone->lru_lock); 1245 putback_lru_page(page); 1246 spin_lock_irq(&zone->lru_lock); 1247 continue; 1248 } 1249 SetPageLRU(page); 1250 lru = page_lru(page); 1251 add_page_to_lru_list(zone, page, lru); 1252 if (is_active_lru(lru)) { 1253 int file = is_file_lru(lru); 1254 reclaim_stat->recent_rotated[file]++; 1255 } 1256 if (!pagevec_add(&pvec, page)) { 1257 spin_unlock_irq(&zone->lru_lock); 1258 __pagevec_release(&pvec); 1259 spin_lock_irq(&zone->lru_lock); 1260 } 1261 } 1262 __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon); 1263 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file); 1264 1265 spin_unlock_irq(&zone->lru_lock); 1266 pagevec_release(&pvec); 1267 } 1268 1269 static noinline_for_stack void update_isolated_counts(struct zone *zone, 1270 struct scan_control *sc, 1271 unsigned long *nr_anon, 1272 unsigned long *nr_file, 1273 struct list_head *isolated_list) 1274 { 1275 unsigned long nr_active; 1276 unsigned int count[NR_LRU_LISTS] = { 0, }; 1277 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc); 1278 1279 nr_active = clear_active_flags(isolated_list, count); 1280 __count_vm_events(PGDEACTIVATE, nr_active); 1281 1282 __mod_zone_page_state(zone, NR_ACTIVE_FILE, 1283 -count[LRU_ACTIVE_FILE]); 1284 __mod_zone_page_state(zone, NR_INACTIVE_FILE, 1285 -count[LRU_INACTIVE_FILE]); 1286 __mod_zone_page_state(zone, NR_ACTIVE_ANON, 1287 -count[LRU_ACTIVE_ANON]); 1288 __mod_zone_page_state(zone, NR_INACTIVE_ANON, 1289 -count[LRU_INACTIVE_ANON]); 1290 1291 *nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON]; 1292 *nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE]; 1293 __mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon); 1294 __mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file); 1295 1296 reclaim_stat->recent_scanned[0] += *nr_anon; 1297 reclaim_stat->recent_scanned[1] += *nr_file; 1298 } 1299 1300 /* 1301 * Returns true if the caller should wait to clean dirty/writeback pages. 1302 * 1303 * If we are direct reclaiming for contiguous pages and we do not reclaim 1304 * everything in the list, try again and wait for writeback IO to complete. 1305 * This will stall high-order allocations noticeably. Only do that when really 1306 * need to free the pages under high memory pressure. 1307 */ 1308 static inline bool should_reclaim_stall(unsigned long nr_taken, 1309 unsigned long nr_freed, 1310 int priority, 1311 struct scan_control *sc) 1312 { 1313 int lumpy_stall_priority; 1314 1315 /* kswapd should not stall on sync IO */ 1316 if (current_is_kswapd()) 1317 return false; 1318 1319 /* Only stall on lumpy reclaim */ 1320 if (sc->lumpy_reclaim_mode == LUMPY_MODE_NONE) 1321 return false; 1322 1323 /* If we have relaimed everything on the isolated list, no stall */ 1324 if (nr_freed == nr_taken) 1325 return false; 1326 1327 /* 1328 * For high-order allocations, there are two stall thresholds. 1329 * High-cost allocations stall immediately where as lower 1330 * order allocations such as stacks require the scanning 1331 * priority to be much higher before stalling. 1332 */ 1333 if (sc->order > PAGE_ALLOC_COSTLY_ORDER) 1334 lumpy_stall_priority = DEF_PRIORITY; 1335 else 1336 lumpy_stall_priority = DEF_PRIORITY / 3; 1337 1338 return priority <= lumpy_stall_priority; 1339 } 1340 1341 /* 1342 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number 1343 * of reclaimed pages 1344 */ 1345 static noinline_for_stack unsigned long 1346 shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone, 1347 struct scan_control *sc, int priority, int file) 1348 { 1349 LIST_HEAD(page_list); 1350 unsigned long nr_scanned; 1351 unsigned long nr_reclaimed = 0; 1352 unsigned long nr_taken; 1353 unsigned long nr_anon; 1354 unsigned long nr_file; 1355 1356 while (unlikely(too_many_isolated(zone, file, sc))) { 1357 congestion_wait(BLK_RW_ASYNC, HZ/10); 1358 1359 /* We are about to die and free our memory. Return now. */ 1360 if (fatal_signal_pending(current)) 1361 return SWAP_CLUSTER_MAX; 1362 } 1363 1364 set_lumpy_reclaim_mode(priority, sc, false); 1365 lru_add_drain(); 1366 spin_lock_irq(&zone->lru_lock); 1367 1368 if (scanning_global_lru(sc)) { 1369 nr_taken = isolate_pages_global(nr_to_scan, 1370 &page_list, &nr_scanned, sc->order, 1371 sc->lumpy_reclaim_mode == LUMPY_MODE_NONE ? 1372 ISOLATE_INACTIVE : ISOLATE_BOTH, 1373 zone, 0, file); 1374 zone->pages_scanned += nr_scanned; 1375 if (current_is_kswapd()) 1376 __count_zone_vm_events(PGSCAN_KSWAPD, zone, 1377 nr_scanned); 1378 else 1379 __count_zone_vm_events(PGSCAN_DIRECT, zone, 1380 nr_scanned); 1381 } else { 1382 nr_taken = mem_cgroup_isolate_pages(nr_to_scan, 1383 &page_list, &nr_scanned, sc->order, 1384 sc->lumpy_reclaim_mode == LUMPY_MODE_NONE ? 1385 ISOLATE_INACTIVE : ISOLATE_BOTH, 1386 zone, sc->mem_cgroup, 1387 0, file); 1388 /* 1389 * mem_cgroup_isolate_pages() keeps track of 1390 * scanned pages on its own. 1391 */ 1392 } 1393 1394 if (nr_taken == 0) { 1395 spin_unlock_irq(&zone->lru_lock); 1396 return 0; 1397 } 1398 1399 update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list); 1400 1401 spin_unlock_irq(&zone->lru_lock); 1402 1403 nr_reclaimed = shrink_page_list(&page_list, zone, sc); 1404 1405 /* Check if we should syncronously wait for writeback */ 1406 if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) { 1407 set_lumpy_reclaim_mode(priority, sc, true); 1408 nr_reclaimed += shrink_page_list(&page_list, zone, sc); 1409 } 1410 1411 local_irq_disable(); 1412 if (current_is_kswapd()) 1413 __count_vm_events(KSWAPD_STEAL, nr_reclaimed); 1414 __count_zone_vm_events(PGSTEAL, zone, nr_reclaimed); 1415 1416 putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list); 1417 1418 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id, 1419 zone_idx(zone), 1420 nr_scanned, nr_reclaimed, 1421 priority, 1422 trace_shrink_flags(file, sc->lumpy_reclaim_mode)); 1423 return nr_reclaimed; 1424 } 1425 1426 /* 1427 * This moves pages from the active list to the inactive list. 1428 * 1429 * We move them the other way if the page is referenced by one or more 1430 * processes, from rmap. 1431 * 1432 * If the pages are mostly unmapped, the processing is fast and it is 1433 * appropriate to hold zone->lru_lock across the whole operation. But if 1434 * the pages are mapped, the processing is slow (page_referenced()) so we 1435 * should drop zone->lru_lock around each page. It's impossible to balance 1436 * this, so instead we remove the pages from the LRU while processing them. 1437 * It is safe to rely on PG_active against the non-LRU pages in here because 1438 * nobody will play with that bit on a non-LRU page. 1439 * 1440 * The downside is that we have to touch page->_count against each page. 1441 * But we had to alter page->flags anyway. 1442 */ 1443 1444 static void move_active_pages_to_lru(struct zone *zone, 1445 struct list_head *list, 1446 enum lru_list lru) 1447 { 1448 unsigned long pgmoved = 0; 1449 struct pagevec pvec; 1450 struct page *page; 1451 1452 pagevec_init(&pvec, 1); 1453 1454 while (!list_empty(list)) { 1455 page = lru_to_page(list); 1456 1457 VM_BUG_ON(PageLRU(page)); 1458 SetPageLRU(page); 1459 1460 list_move(&page->lru, &zone->lru[lru].list); 1461 mem_cgroup_add_lru_list(page, lru); 1462 pgmoved++; 1463 1464 if (!pagevec_add(&pvec, page) || list_empty(list)) { 1465 spin_unlock_irq(&zone->lru_lock); 1466 if (buffer_heads_over_limit) 1467 pagevec_strip(&pvec); 1468 __pagevec_release(&pvec); 1469 spin_lock_irq(&zone->lru_lock); 1470 } 1471 } 1472 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved); 1473 if (!is_active_lru(lru)) 1474 __count_vm_events(PGDEACTIVATE, pgmoved); 1475 } 1476 1477 static void shrink_active_list(unsigned long nr_pages, struct zone *zone, 1478 struct scan_control *sc, int priority, int file) 1479 { 1480 unsigned long nr_taken; 1481 unsigned long pgscanned; 1482 unsigned long vm_flags; 1483 LIST_HEAD(l_hold); /* The pages which were snipped off */ 1484 LIST_HEAD(l_active); 1485 LIST_HEAD(l_inactive); 1486 struct page *page; 1487 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc); 1488 unsigned long nr_rotated = 0; 1489 1490 lru_add_drain(); 1491 spin_lock_irq(&zone->lru_lock); 1492 if (scanning_global_lru(sc)) { 1493 nr_taken = isolate_pages_global(nr_pages, &l_hold, 1494 &pgscanned, sc->order, 1495 ISOLATE_ACTIVE, zone, 1496 1, file); 1497 zone->pages_scanned += pgscanned; 1498 } else { 1499 nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold, 1500 &pgscanned, sc->order, 1501 ISOLATE_ACTIVE, zone, 1502 sc->mem_cgroup, 1, file); 1503 /* 1504 * mem_cgroup_isolate_pages() keeps track of 1505 * scanned pages on its own. 1506 */ 1507 } 1508 1509 reclaim_stat->recent_scanned[file] += nr_taken; 1510 1511 __count_zone_vm_events(PGREFILL, zone, pgscanned); 1512 if (file) 1513 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken); 1514 else 1515 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken); 1516 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken); 1517 spin_unlock_irq(&zone->lru_lock); 1518 1519 while (!list_empty(&l_hold)) { 1520 cond_resched(); 1521 page = lru_to_page(&l_hold); 1522 list_del(&page->lru); 1523 1524 if (unlikely(!page_evictable(page, NULL))) { 1525 putback_lru_page(page); 1526 continue; 1527 } 1528 1529 if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) { 1530 nr_rotated++; 1531 /* 1532 * Identify referenced, file-backed active pages and 1533 * give them one more trip around the active list. So 1534 * that executable code get better chances to stay in 1535 * memory under moderate memory pressure. Anon pages 1536 * are not likely to be evicted by use-once streaming 1537 * IO, plus JVM can create lots of anon VM_EXEC pages, 1538 * so we ignore them here. 1539 */ 1540 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) { 1541 list_add(&page->lru, &l_active); 1542 continue; 1543 } 1544 } 1545 1546 ClearPageActive(page); /* we are de-activating */ 1547 list_add(&page->lru, &l_inactive); 1548 } 1549 1550 /* 1551 * Move pages back to the lru list. 1552 */ 1553 spin_lock_irq(&zone->lru_lock); 1554 /* 1555 * Count referenced pages from currently used mappings as rotated, 1556 * even though only some of them are actually re-activated. This 1557 * helps balance scan pressure between file and anonymous pages in 1558 * get_scan_ratio. 1559 */ 1560 reclaim_stat->recent_rotated[file] += nr_rotated; 1561 1562 move_active_pages_to_lru(zone, &l_active, 1563 LRU_ACTIVE + file * LRU_FILE); 1564 move_active_pages_to_lru(zone, &l_inactive, 1565 LRU_BASE + file * LRU_FILE); 1566 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken); 1567 spin_unlock_irq(&zone->lru_lock); 1568 } 1569 1570 #ifdef CONFIG_SWAP 1571 static int inactive_anon_is_low_global(struct zone *zone) 1572 { 1573 unsigned long active, inactive; 1574 1575 active = zone_page_state(zone, NR_ACTIVE_ANON); 1576 inactive = zone_page_state(zone, NR_INACTIVE_ANON); 1577 1578 if (inactive * zone->inactive_ratio < active) 1579 return 1; 1580 1581 return 0; 1582 } 1583 1584 /** 1585 * inactive_anon_is_low - check if anonymous pages need to be deactivated 1586 * @zone: zone to check 1587 * @sc: scan control of this context 1588 * 1589 * Returns true if the zone does not have enough inactive anon pages, 1590 * meaning some active anon pages need to be deactivated. 1591 */ 1592 static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc) 1593 { 1594 int low; 1595 1596 /* 1597 * If we don't have swap space, anonymous page deactivation 1598 * is pointless. 1599 */ 1600 if (!total_swap_pages) 1601 return 0; 1602 1603 if (scanning_global_lru(sc)) 1604 low = inactive_anon_is_low_global(zone); 1605 else 1606 low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup); 1607 return low; 1608 } 1609 #else 1610 static inline int inactive_anon_is_low(struct zone *zone, 1611 struct scan_control *sc) 1612 { 1613 return 0; 1614 } 1615 #endif 1616 1617 static int inactive_file_is_low_global(struct zone *zone) 1618 { 1619 unsigned long active, inactive; 1620 1621 active = zone_page_state(zone, NR_ACTIVE_FILE); 1622 inactive = zone_page_state(zone, NR_INACTIVE_FILE); 1623 1624 return (active > inactive); 1625 } 1626 1627 /** 1628 * inactive_file_is_low - check if file pages need to be deactivated 1629 * @zone: zone to check 1630 * @sc: scan control of this context 1631 * 1632 * When the system is doing streaming IO, memory pressure here 1633 * ensures that active file pages get deactivated, until more 1634 * than half of the file pages are on the inactive list. 1635 * 1636 * Once we get to that situation, protect the system's working 1637 * set from being evicted by disabling active file page aging. 1638 * 1639 * This uses a different ratio than the anonymous pages, because 1640 * the page cache uses a use-once replacement algorithm. 1641 */ 1642 static int inactive_file_is_low(struct zone *zone, struct scan_control *sc) 1643 { 1644 int low; 1645 1646 if (scanning_global_lru(sc)) 1647 low = inactive_file_is_low_global(zone); 1648 else 1649 low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup); 1650 return low; 1651 } 1652 1653 static int inactive_list_is_low(struct zone *zone, struct scan_control *sc, 1654 int file) 1655 { 1656 if (file) 1657 return inactive_file_is_low(zone, sc); 1658 else 1659 return inactive_anon_is_low(zone, sc); 1660 } 1661 1662 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 1663 struct zone *zone, struct scan_control *sc, int priority) 1664 { 1665 int file = is_file_lru(lru); 1666 1667 if (is_active_lru(lru)) { 1668 if (inactive_list_is_low(zone, sc, file)) 1669 shrink_active_list(nr_to_scan, zone, sc, priority, file); 1670 return 0; 1671 } 1672 1673 return shrink_inactive_list(nr_to_scan, zone, sc, priority, file); 1674 } 1675 1676 /* 1677 * Smallish @nr_to_scan's are deposited in @nr_saved_scan, 1678 * until we collected @swap_cluster_max pages to scan. 1679 */ 1680 static unsigned long nr_scan_try_batch(unsigned long nr_to_scan, 1681 unsigned long *nr_saved_scan) 1682 { 1683 unsigned long nr; 1684 1685 *nr_saved_scan += nr_to_scan; 1686 nr = *nr_saved_scan; 1687 1688 if (nr >= SWAP_CLUSTER_MAX) 1689 *nr_saved_scan = 0; 1690 else 1691 nr = 0; 1692 1693 return nr; 1694 } 1695 1696 /* 1697 * Determine how aggressively the anon and file LRU lists should be 1698 * scanned. The relative value of each set of LRU lists is determined 1699 * by looking at the fraction of the pages scanned we did rotate back 1700 * onto the active list instead of evict. 1701 * 1702 * nr[0] = anon pages to scan; nr[1] = file pages to scan 1703 */ 1704 static void get_scan_count(struct zone *zone, struct scan_control *sc, 1705 unsigned long *nr, int priority) 1706 { 1707 unsigned long anon, file, free; 1708 unsigned long anon_prio, file_prio; 1709 unsigned long ap, fp; 1710 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc); 1711 u64 fraction[2], denominator; 1712 enum lru_list l; 1713 int noswap = 0; 1714 1715 /* If we have no swap space, do not bother scanning anon pages. */ 1716 if (!sc->may_swap || (nr_swap_pages <= 0)) { 1717 noswap = 1; 1718 fraction[0] = 0; 1719 fraction[1] = 1; 1720 denominator = 1; 1721 goto out; 1722 } 1723 1724 anon = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) + 1725 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON); 1726 file = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) + 1727 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE); 1728 1729 if (scanning_global_lru(sc)) { 1730 free = zone_page_state(zone, NR_FREE_PAGES); 1731 /* If we have very few page cache pages, 1732 force-scan anon pages. */ 1733 if (unlikely(file + free <= high_wmark_pages(zone))) { 1734 fraction[0] = 1; 1735 fraction[1] = 0; 1736 denominator = 1; 1737 goto out; 1738 } 1739 } 1740 1741 /* 1742 * With swappiness at 100, anonymous and file have the same priority. 1743 * This scanning priority is essentially the inverse of IO cost. 1744 */ 1745 anon_prio = sc->swappiness; 1746 file_prio = 200 - sc->swappiness; 1747 1748 /* 1749 * OK, so we have swap space and a fair amount of page cache 1750 * pages. We use the recently rotated / recently scanned 1751 * ratios to determine how valuable each cache is. 1752 * 1753 * Because workloads change over time (and to avoid overflow) 1754 * we keep these statistics as a floating average, which ends 1755 * up weighing recent references more than old ones. 1756 * 1757 * anon in [0], file in [1] 1758 */ 1759 spin_lock_irq(&zone->lru_lock); 1760 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) { 1761 reclaim_stat->recent_scanned[0] /= 2; 1762 reclaim_stat->recent_rotated[0] /= 2; 1763 } 1764 1765 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) { 1766 reclaim_stat->recent_scanned[1] /= 2; 1767 reclaim_stat->recent_rotated[1] /= 2; 1768 } 1769 1770 /* 1771 * The amount of pressure on anon vs file pages is inversely 1772 * proportional to the fraction of recently scanned pages on 1773 * each list that were recently referenced and in active use. 1774 */ 1775 ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1); 1776 ap /= reclaim_stat->recent_rotated[0] + 1; 1777 1778 fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1); 1779 fp /= reclaim_stat->recent_rotated[1] + 1; 1780 spin_unlock_irq(&zone->lru_lock); 1781 1782 fraction[0] = ap; 1783 fraction[1] = fp; 1784 denominator = ap + fp + 1; 1785 out: 1786 for_each_evictable_lru(l) { 1787 int file = is_file_lru(l); 1788 unsigned long scan; 1789 1790 scan = zone_nr_lru_pages(zone, sc, l); 1791 if (priority || noswap) { 1792 scan >>= priority; 1793 scan = div64_u64(scan * fraction[file], denominator); 1794 } 1795 nr[l] = nr_scan_try_batch(scan, 1796 &reclaim_stat->nr_saved_scan[l]); 1797 } 1798 } 1799 1800 /* 1801 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim. 1802 */ 1803 static void shrink_zone(int priority, struct zone *zone, 1804 struct scan_control *sc) 1805 { 1806 unsigned long nr[NR_LRU_LISTS]; 1807 unsigned long nr_to_scan; 1808 enum lru_list l; 1809 unsigned long nr_reclaimed = sc->nr_reclaimed; 1810 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 1811 1812 get_scan_count(zone, sc, nr, priority); 1813 1814 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 1815 nr[LRU_INACTIVE_FILE]) { 1816 for_each_evictable_lru(l) { 1817 if (nr[l]) { 1818 nr_to_scan = min_t(unsigned long, 1819 nr[l], SWAP_CLUSTER_MAX); 1820 nr[l] -= nr_to_scan; 1821 1822 nr_reclaimed += shrink_list(l, nr_to_scan, 1823 zone, sc, priority); 1824 } 1825 } 1826 /* 1827 * On large memory systems, scan >> priority can become 1828 * really large. This is fine for the starting priority; 1829 * we want to put equal scanning pressure on each zone. 1830 * However, if the VM has a harder time of freeing pages, 1831 * with multiple processes reclaiming pages, the total 1832 * freeing target can get unreasonably large. 1833 */ 1834 if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY) 1835 break; 1836 } 1837 1838 sc->nr_reclaimed = nr_reclaimed; 1839 1840 /* 1841 * Even if we did not try to evict anon pages at all, we want to 1842 * rebalance the anon lru active/inactive ratio. 1843 */ 1844 if (inactive_anon_is_low(zone, sc)) 1845 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0); 1846 1847 throttle_vm_writeout(sc->gfp_mask); 1848 } 1849 1850 /* 1851 * This is the direct reclaim path, for page-allocating processes. We only 1852 * try to reclaim pages from zones which will satisfy the caller's allocation 1853 * request. 1854 * 1855 * We reclaim from a zone even if that zone is over high_wmark_pages(zone). 1856 * Because: 1857 * a) The caller may be trying to free *extra* pages to satisfy a higher-order 1858 * allocation or 1859 * b) The target zone may be at high_wmark_pages(zone) but the lower zones 1860 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min' 1861 * zone defense algorithm. 1862 * 1863 * If a zone is deemed to be full of pinned pages then just give it a light 1864 * scan then give up on it. 1865 */ 1866 static void shrink_zones(int priority, struct zonelist *zonelist, 1867 struct scan_control *sc) 1868 { 1869 struct zoneref *z; 1870 struct zone *zone; 1871 1872 for_each_zone_zonelist_nodemask(zone, z, zonelist, 1873 gfp_zone(sc->gfp_mask), sc->nodemask) { 1874 if (!populated_zone(zone)) 1875 continue; 1876 /* 1877 * Take care memory controller reclaiming has small influence 1878 * to global LRU. 1879 */ 1880 if (scanning_global_lru(sc)) { 1881 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 1882 continue; 1883 if (zone->all_unreclaimable && priority != DEF_PRIORITY) 1884 continue; /* Let kswapd poll it */ 1885 } 1886 1887 shrink_zone(priority, zone, sc); 1888 } 1889 } 1890 1891 static bool zone_reclaimable(struct zone *zone) 1892 { 1893 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6; 1894 } 1895 1896 /* 1897 * As hibernation is going on, kswapd is freezed so that it can't mark 1898 * the zone into all_unreclaimable. It can't handle OOM during hibernation. 1899 * So let's check zone's unreclaimable in direct reclaim as well as kswapd. 1900 */ 1901 static bool all_unreclaimable(struct zonelist *zonelist, 1902 struct scan_control *sc) 1903 { 1904 struct zoneref *z; 1905 struct zone *zone; 1906 bool all_unreclaimable = true; 1907 1908 for_each_zone_zonelist_nodemask(zone, z, zonelist, 1909 gfp_zone(sc->gfp_mask), sc->nodemask) { 1910 if (!populated_zone(zone)) 1911 continue; 1912 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 1913 continue; 1914 if (zone_reclaimable(zone)) { 1915 all_unreclaimable = false; 1916 break; 1917 } 1918 } 1919 1920 return all_unreclaimable; 1921 } 1922 1923 /* 1924 * This is the main entry point to direct page reclaim. 1925 * 1926 * If a full scan of the inactive list fails to free enough memory then we 1927 * are "out of memory" and something needs to be killed. 1928 * 1929 * If the caller is !__GFP_FS then the probability of a failure is reasonably 1930 * high - the zone may be full of dirty or under-writeback pages, which this 1931 * caller can't do much about. We kick the writeback threads and take explicit 1932 * naps in the hope that some of these pages can be written. But if the 1933 * allocating task holds filesystem locks which prevent writeout this might not 1934 * work, and the allocation attempt will fail. 1935 * 1936 * returns: 0, if no pages reclaimed 1937 * else, the number of pages reclaimed 1938 */ 1939 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 1940 struct scan_control *sc) 1941 { 1942 int priority; 1943 unsigned long total_scanned = 0; 1944 struct reclaim_state *reclaim_state = current->reclaim_state; 1945 struct zoneref *z; 1946 struct zone *zone; 1947 unsigned long writeback_threshold; 1948 1949 get_mems_allowed(); 1950 delayacct_freepages_start(); 1951 1952 if (scanning_global_lru(sc)) 1953 count_vm_event(ALLOCSTALL); 1954 1955 for (priority = DEF_PRIORITY; priority >= 0; priority--) { 1956 sc->nr_scanned = 0; 1957 if (!priority) 1958 disable_swap_token(); 1959 shrink_zones(priority, zonelist, sc); 1960 /* 1961 * Don't shrink slabs when reclaiming memory from 1962 * over limit cgroups 1963 */ 1964 if (scanning_global_lru(sc)) { 1965 unsigned long lru_pages = 0; 1966 for_each_zone_zonelist(zone, z, zonelist, 1967 gfp_zone(sc->gfp_mask)) { 1968 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 1969 continue; 1970 1971 lru_pages += zone_reclaimable_pages(zone); 1972 } 1973 1974 shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages); 1975 if (reclaim_state) { 1976 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 1977 reclaim_state->reclaimed_slab = 0; 1978 } 1979 } 1980 total_scanned += sc->nr_scanned; 1981 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 1982 goto out; 1983 1984 /* 1985 * Try to write back as many pages as we just scanned. This 1986 * tends to cause slow streaming writers to write data to the 1987 * disk smoothly, at the dirtying rate, which is nice. But 1988 * that's undesirable in laptop mode, where we *want* lumpy 1989 * writeout. So in laptop mode, write out the whole world. 1990 */ 1991 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2; 1992 if (total_scanned > writeback_threshold) { 1993 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned); 1994 sc->may_writepage = 1; 1995 } 1996 1997 /* Take a nap, wait for some writeback to complete */ 1998 if (!sc->hibernation_mode && sc->nr_scanned && 1999 priority < DEF_PRIORITY - 2) { 2000 struct zone *preferred_zone; 2001 2002 first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask), 2003 NULL, &preferred_zone); 2004 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10); 2005 } 2006 } 2007 2008 out: 2009 delayacct_freepages_end(); 2010 put_mems_allowed(); 2011 2012 if (sc->nr_reclaimed) 2013 return sc->nr_reclaimed; 2014 2015 /* top priority shrink_zones still had more to do? don't OOM, then */ 2016 if (scanning_global_lru(sc) && !all_unreclaimable(zonelist, sc)) 2017 return 1; 2018 2019 return 0; 2020 } 2021 2022 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 2023 gfp_t gfp_mask, nodemask_t *nodemask) 2024 { 2025 unsigned long nr_reclaimed; 2026 struct scan_control sc = { 2027 .gfp_mask = gfp_mask, 2028 .may_writepage = !laptop_mode, 2029 .nr_to_reclaim = SWAP_CLUSTER_MAX, 2030 .may_unmap = 1, 2031 .may_swap = 1, 2032 .swappiness = vm_swappiness, 2033 .order = order, 2034 .mem_cgroup = NULL, 2035 .nodemask = nodemask, 2036 }; 2037 2038 trace_mm_vmscan_direct_reclaim_begin(order, 2039 sc.may_writepage, 2040 gfp_mask); 2041 2042 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 2043 2044 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 2045 2046 return nr_reclaimed; 2047 } 2048 2049 #ifdef CONFIG_CGROUP_MEM_RES_CTLR 2050 2051 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem, 2052 gfp_t gfp_mask, bool noswap, 2053 unsigned int swappiness, 2054 struct zone *zone) 2055 { 2056 struct scan_control sc = { 2057 .nr_to_reclaim = SWAP_CLUSTER_MAX, 2058 .may_writepage = !laptop_mode, 2059 .may_unmap = 1, 2060 .may_swap = !noswap, 2061 .swappiness = swappiness, 2062 .order = 0, 2063 .mem_cgroup = mem, 2064 }; 2065 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 2066 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 2067 2068 trace_mm_vmscan_memcg_softlimit_reclaim_begin(0, 2069 sc.may_writepage, 2070 sc.gfp_mask); 2071 2072 /* 2073 * NOTE: Although we can get the priority field, using it 2074 * here is not a good idea, since it limits the pages we can scan. 2075 * if we don't reclaim here, the shrink_zone from balance_pgdat 2076 * will pick up pages from other mem cgroup's as well. We hack 2077 * the priority and make it zero. 2078 */ 2079 shrink_zone(0, zone, &sc); 2080 2081 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 2082 2083 return sc.nr_reclaimed; 2084 } 2085 2086 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont, 2087 gfp_t gfp_mask, 2088 bool noswap, 2089 unsigned int swappiness) 2090 { 2091 struct zonelist *zonelist; 2092 unsigned long nr_reclaimed; 2093 struct scan_control sc = { 2094 .may_writepage = !laptop_mode, 2095 .may_unmap = 1, 2096 .may_swap = !noswap, 2097 .nr_to_reclaim = SWAP_CLUSTER_MAX, 2098 .swappiness = swappiness, 2099 .order = 0, 2100 .mem_cgroup = mem_cont, 2101 .nodemask = NULL, /* we don't care the placement */ 2102 }; 2103 2104 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 2105 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 2106 zonelist = NODE_DATA(numa_node_id())->node_zonelists; 2107 2108 trace_mm_vmscan_memcg_reclaim_begin(0, 2109 sc.may_writepage, 2110 sc.gfp_mask); 2111 2112 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 2113 2114 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 2115 2116 return nr_reclaimed; 2117 } 2118 #endif 2119 2120 /* is kswapd sleeping prematurely? */ 2121 static int sleeping_prematurely(pg_data_t *pgdat, int order, long remaining) 2122 { 2123 int i; 2124 2125 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */ 2126 if (remaining) 2127 return 1; 2128 2129 /* If after HZ/10, a zone is below the high mark, it's premature */ 2130 for (i = 0; i < pgdat->nr_zones; i++) { 2131 struct zone *zone = pgdat->node_zones + i; 2132 2133 if (!populated_zone(zone)) 2134 continue; 2135 2136 if (zone->all_unreclaimable) 2137 continue; 2138 2139 if (!zone_watermark_ok(zone, order, high_wmark_pages(zone), 2140 0, 0)) 2141 return 1; 2142 } 2143 2144 return 0; 2145 } 2146 2147 /* 2148 * For kswapd, balance_pgdat() will work across all this node's zones until 2149 * they are all at high_wmark_pages(zone). 2150 * 2151 * Returns the number of pages which were actually freed. 2152 * 2153 * There is special handling here for zones which are full of pinned pages. 2154 * This can happen if the pages are all mlocked, or if they are all used by 2155 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb. 2156 * What we do is to detect the case where all pages in the zone have been 2157 * scanned twice and there has been zero successful reclaim. Mark the zone as 2158 * dead and from now on, only perform a short scan. Basically we're polling 2159 * the zone for when the problem goes away. 2160 * 2161 * kswapd scans the zones in the highmem->normal->dma direction. It skips 2162 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 2163 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the 2164 * lower zones regardless of the number of free pages in the lower zones. This 2165 * interoperates with the page allocator fallback scheme to ensure that aging 2166 * of pages is balanced across the zones. 2167 */ 2168 static unsigned long balance_pgdat(pg_data_t *pgdat, int order) 2169 { 2170 int all_zones_ok; 2171 int priority; 2172 int i; 2173 unsigned long total_scanned; 2174 struct reclaim_state *reclaim_state = current->reclaim_state; 2175 struct scan_control sc = { 2176 .gfp_mask = GFP_KERNEL, 2177 .may_unmap = 1, 2178 .may_swap = 1, 2179 /* 2180 * kswapd doesn't want to be bailed out while reclaim. because 2181 * we want to put equal scanning pressure on each zone. 2182 */ 2183 .nr_to_reclaim = ULONG_MAX, 2184 .swappiness = vm_swappiness, 2185 .order = order, 2186 .mem_cgroup = NULL, 2187 }; 2188 loop_again: 2189 total_scanned = 0; 2190 sc.nr_reclaimed = 0; 2191 sc.may_writepage = !laptop_mode; 2192 count_vm_event(PAGEOUTRUN); 2193 2194 for (priority = DEF_PRIORITY; priority >= 0; priority--) { 2195 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */ 2196 unsigned long lru_pages = 0; 2197 int has_under_min_watermark_zone = 0; 2198 2199 /* The swap token gets in the way of swapout... */ 2200 if (!priority) 2201 disable_swap_token(); 2202 2203 all_zones_ok = 1; 2204 2205 /* 2206 * Scan in the highmem->dma direction for the highest 2207 * zone which needs scanning 2208 */ 2209 for (i = pgdat->nr_zones - 1; i >= 0; i--) { 2210 struct zone *zone = pgdat->node_zones + i; 2211 2212 if (!populated_zone(zone)) 2213 continue; 2214 2215 if (zone->all_unreclaimable && priority != DEF_PRIORITY) 2216 continue; 2217 2218 /* 2219 * Do some background aging of the anon list, to give 2220 * pages a chance to be referenced before reclaiming. 2221 */ 2222 if (inactive_anon_is_low(zone, &sc)) 2223 shrink_active_list(SWAP_CLUSTER_MAX, zone, 2224 &sc, priority, 0); 2225 2226 if (!zone_watermark_ok(zone, order, 2227 high_wmark_pages(zone), 0, 0)) { 2228 end_zone = i; 2229 break; 2230 } 2231 } 2232 if (i < 0) 2233 goto out; 2234 2235 for (i = 0; i <= end_zone; i++) { 2236 struct zone *zone = pgdat->node_zones + i; 2237 2238 lru_pages += zone_reclaimable_pages(zone); 2239 } 2240 2241 /* 2242 * Now scan the zone in the dma->highmem direction, stopping 2243 * at the last zone which needs scanning. 2244 * 2245 * We do this because the page allocator works in the opposite 2246 * direction. This prevents the page allocator from allocating 2247 * pages behind kswapd's direction of progress, which would 2248 * cause too much scanning of the lower zones. 2249 */ 2250 for (i = 0; i <= end_zone; i++) { 2251 struct zone *zone = pgdat->node_zones + i; 2252 int nr_slab; 2253 2254 if (!populated_zone(zone)) 2255 continue; 2256 2257 if (zone->all_unreclaimable && priority != DEF_PRIORITY) 2258 continue; 2259 2260 sc.nr_scanned = 0; 2261 2262 /* 2263 * Call soft limit reclaim before calling shrink_zone. 2264 * For now we ignore the return value 2265 */ 2266 mem_cgroup_soft_limit_reclaim(zone, order, sc.gfp_mask); 2267 2268 /* 2269 * We put equal pressure on every zone, unless one 2270 * zone has way too many pages free already. 2271 */ 2272 if (!zone_watermark_ok(zone, order, 2273 8*high_wmark_pages(zone), end_zone, 0)) 2274 shrink_zone(priority, zone, &sc); 2275 reclaim_state->reclaimed_slab = 0; 2276 nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL, 2277 lru_pages); 2278 sc.nr_reclaimed += reclaim_state->reclaimed_slab; 2279 total_scanned += sc.nr_scanned; 2280 if (zone->all_unreclaimable) 2281 continue; 2282 if (nr_slab == 0 && !zone_reclaimable(zone)) 2283 zone->all_unreclaimable = 1; 2284 /* 2285 * If we've done a decent amount of scanning and 2286 * the reclaim ratio is low, start doing writepage 2287 * even in laptop mode 2288 */ 2289 if (total_scanned > SWAP_CLUSTER_MAX * 2 && 2290 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2) 2291 sc.may_writepage = 1; 2292 2293 if (!zone_watermark_ok(zone, order, 2294 high_wmark_pages(zone), end_zone, 0)) { 2295 all_zones_ok = 0; 2296 /* 2297 * We are still under min water mark. This 2298 * means that we have a GFP_ATOMIC allocation 2299 * failure risk. Hurry up! 2300 */ 2301 if (!zone_watermark_ok(zone, order, 2302 min_wmark_pages(zone), end_zone, 0)) 2303 has_under_min_watermark_zone = 1; 2304 } else { 2305 /* 2306 * If a zone reaches its high watermark, 2307 * consider it to be no longer congested. It's 2308 * possible there are dirty pages backed by 2309 * congested BDIs but as pressure is relieved, 2310 * spectulatively avoid congestion waits 2311 */ 2312 zone_clear_flag(zone, ZONE_CONGESTED); 2313 } 2314 2315 } 2316 if (all_zones_ok) 2317 break; /* kswapd: all done */ 2318 /* 2319 * OK, kswapd is getting into trouble. Take a nap, then take 2320 * another pass across the zones. 2321 */ 2322 if (total_scanned && (priority < DEF_PRIORITY - 2)) { 2323 if (has_under_min_watermark_zone) 2324 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT); 2325 else 2326 congestion_wait(BLK_RW_ASYNC, HZ/10); 2327 } 2328 2329 /* 2330 * We do this so kswapd doesn't build up large priorities for 2331 * example when it is freeing in parallel with allocators. It 2332 * matches the direct reclaim path behaviour in terms of impact 2333 * on zone->*_priority. 2334 */ 2335 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX) 2336 break; 2337 } 2338 out: 2339 if (!all_zones_ok) { 2340 cond_resched(); 2341 2342 try_to_freeze(); 2343 2344 /* 2345 * Fragmentation may mean that the system cannot be 2346 * rebalanced for high-order allocations in all zones. 2347 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX, 2348 * it means the zones have been fully scanned and are still 2349 * not balanced. For high-order allocations, there is 2350 * little point trying all over again as kswapd may 2351 * infinite loop. 2352 * 2353 * Instead, recheck all watermarks at order-0 as they 2354 * are the most important. If watermarks are ok, kswapd will go 2355 * back to sleep. High-order users can still perform direct 2356 * reclaim if they wish. 2357 */ 2358 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX) 2359 order = sc.order = 0; 2360 2361 goto loop_again; 2362 } 2363 2364 return sc.nr_reclaimed; 2365 } 2366 2367 /* 2368 * The background pageout daemon, started as a kernel thread 2369 * from the init process. 2370 * 2371 * This basically trickles out pages so that we have _some_ 2372 * free memory available even if there is no other activity 2373 * that frees anything up. This is needed for things like routing 2374 * etc, where we otherwise might have all activity going on in 2375 * asynchronous contexts that cannot page things out. 2376 * 2377 * If there are applications that are active memory-allocators 2378 * (most normal use), this basically shouldn't matter. 2379 */ 2380 static int kswapd(void *p) 2381 { 2382 unsigned long order; 2383 pg_data_t *pgdat = (pg_data_t*)p; 2384 struct task_struct *tsk = current; 2385 DEFINE_WAIT(wait); 2386 struct reclaim_state reclaim_state = { 2387 .reclaimed_slab = 0, 2388 }; 2389 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 2390 2391 lockdep_set_current_reclaim_state(GFP_KERNEL); 2392 2393 if (!cpumask_empty(cpumask)) 2394 set_cpus_allowed_ptr(tsk, cpumask); 2395 current->reclaim_state = &reclaim_state; 2396 2397 /* 2398 * Tell the memory management that we're a "memory allocator", 2399 * and that if we need more memory we should get access to it 2400 * regardless (see "__alloc_pages()"). "kswapd" should 2401 * never get caught in the normal page freeing logic. 2402 * 2403 * (Kswapd normally doesn't need memory anyway, but sometimes 2404 * you need a small amount of memory in order to be able to 2405 * page out something else, and this flag essentially protects 2406 * us from recursively trying to free more memory as we're 2407 * trying to free the first piece of memory in the first place). 2408 */ 2409 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 2410 set_freezable(); 2411 2412 order = 0; 2413 for ( ; ; ) { 2414 unsigned long new_order; 2415 int ret; 2416 2417 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 2418 new_order = pgdat->kswapd_max_order; 2419 pgdat->kswapd_max_order = 0; 2420 if (order < new_order) { 2421 /* 2422 * Don't sleep if someone wants a larger 'order' 2423 * allocation 2424 */ 2425 order = new_order; 2426 } else { 2427 if (!freezing(current) && !kthread_should_stop()) { 2428 long remaining = 0; 2429 2430 /* Try to sleep for a short interval */ 2431 if (!sleeping_prematurely(pgdat, order, remaining)) { 2432 remaining = schedule_timeout(HZ/10); 2433 finish_wait(&pgdat->kswapd_wait, &wait); 2434 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 2435 } 2436 2437 /* 2438 * After a short sleep, check if it was a 2439 * premature sleep. If not, then go fully 2440 * to sleep until explicitly woken up 2441 */ 2442 if (!sleeping_prematurely(pgdat, order, remaining)) { 2443 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 2444 schedule(); 2445 } else { 2446 if (remaining) 2447 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 2448 else 2449 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 2450 } 2451 } 2452 2453 order = pgdat->kswapd_max_order; 2454 } 2455 finish_wait(&pgdat->kswapd_wait, &wait); 2456 2457 ret = try_to_freeze(); 2458 if (kthread_should_stop()) 2459 break; 2460 2461 /* 2462 * We can speed up thawing tasks if we don't call balance_pgdat 2463 * after returning from the refrigerator 2464 */ 2465 if (!ret) { 2466 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order); 2467 balance_pgdat(pgdat, order); 2468 } 2469 } 2470 return 0; 2471 } 2472 2473 /* 2474 * A zone is low on free memory, so wake its kswapd task to service it. 2475 */ 2476 void wakeup_kswapd(struct zone *zone, int order) 2477 { 2478 pg_data_t *pgdat; 2479 2480 if (!populated_zone(zone)) 2481 return; 2482 2483 pgdat = zone->zone_pgdat; 2484 if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0)) 2485 return; 2486 if (pgdat->kswapd_max_order < order) 2487 pgdat->kswapd_max_order = order; 2488 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order); 2489 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 2490 return; 2491 if (!waitqueue_active(&pgdat->kswapd_wait)) 2492 return; 2493 wake_up_interruptible(&pgdat->kswapd_wait); 2494 } 2495 2496 /* 2497 * The reclaimable count would be mostly accurate. 2498 * The less reclaimable pages may be 2499 * - mlocked pages, which will be moved to unevictable list when encountered 2500 * - mapped pages, which may require several travels to be reclaimed 2501 * - dirty pages, which is not "instantly" reclaimable 2502 */ 2503 unsigned long global_reclaimable_pages(void) 2504 { 2505 int nr; 2506 2507 nr = global_page_state(NR_ACTIVE_FILE) + 2508 global_page_state(NR_INACTIVE_FILE); 2509 2510 if (nr_swap_pages > 0) 2511 nr += global_page_state(NR_ACTIVE_ANON) + 2512 global_page_state(NR_INACTIVE_ANON); 2513 2514 return nr; 2515 } 2516 2517 unsigned long zone_reclaimable_pages(struct zone *zone) 2518 { 2519 int nr; 2520 2521 nr = zone_page_state(zone, NR_ACTIVE_FILE) + 2522 zone_page_state(zone, NR_INACTIVE_FILE); 2523 2524 if (nr_swap_pages > 0) 2525 nr += zone_page_state(zone, NR_ACTIVE_ANON) + 2526 zone_page_state(zone, NR_INACTIVE_ANON); 2527 2528 return nr; 2529 } 2530 2531 #ifdef CONFIG_HIBERNATION 2532 /* 2533 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 2534 * freed pages. 2535 * 2536 * Rather than trying to age LRUs the aim is to preserve the overall 2537 * LRU order by reclaiming preferentially 2538 * inactive > active > active referenced > active mapped 2539 */ 2540 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 2541 { 2542 struct reclaim_state reclaim_state; 2543 struct scan_control sc = { 2544 .gfp_mask = GFP_HIGHUSER_MOVABLE, 2545 .may_swap = 1, 2546 .may_unmap = 1, 2547 .may_writepage = 1, 2548 .nr_to_reclaim = nr_to_reclaim, 2549 .hibernation_mode = 1, 2550 .swappiness = vm_swappiness, 2551 .order = 0, 2552 }; 2553 struct zonelist * zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 2554 struct task_struct *p = current; 2555 unsigned long nr_reclaimed; 2556 2557 p->flags |= PF_MEMALLOC; 2558 lockdep_set_current_reclaim_state(sc.gfp_mask); 2559 reclaim_state.reclaimed_slab = 0; 2560 p->reclaim_state = &reclaim_state; 2561 2562 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 2563 2564 p->reclaim_state = NULL; 2565 lockdep_clear_current_reclaim_state(); 2566 p->flags &= ~PF_MEMALLOC; 2567 2568 return nr_reclaimed; 2569 } 2570 #endif /* CONFIG_HIBERNATION */ 2571 2572 /* It's optimal to keep kswapds on the same CPUs as their memory, but 2573 not required for correctness. So if the last cpu in a node goes 2574 away, we get changed to run anywhere: as the first one comes back, 2575 restore their cpu bindings. */ 2576 static int __devinit cpu_callback(struct notifier_block *nfb, 2577 unsigned long action, void *hcpu) 2578 { 2579 int nid; 2580 2581 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) { 2582 for_each_node_state(nid, N_HIGH_MEMORY) { 2583 pg_data_t *pgdat = NODE_DATA(nid); 2584 const struct cpumask *mask; 2585 2586 mask = cpumask_of_node(pgdat->node_id); 2587 2588 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 2589 /* One of our CPUs online: restore mask */ 2590 set_cpus_allowed_ptr(pgdat->kswapd, mask); 2591 } 2592 } 2593 return NOTIFY_OK; 2594 } 2595 2596 /* 2597 * This kswapd start function will be called by init and node-hot-add. 2598 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. 2599 */ 2600 int kswapd_run(int nid) 2601 { 2602 pg_data_t *pgdat = NODE_DATA(nid); 2603 int ret = 0; 2604 2605 if (pgdat->kswapd) 2606 return 0; 2607 2608 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 2609 if (IS_ERR(pgdat->kswapd)) { 2610 /* failure at boot is fatal */ 2611 BUG_ON(system_state == SYSTEM_BOOTING); 2612 printk("Failed to start kswapd on node %d\n",nid); 2613 ret = -1; 2614 } 2615 return ret; 2616 } 2617 2618 /* 2619 * Called by memory hotplug when all memory in a node is offlined. 2620 */ 2621 void kswapd_stop(int nid) 2622 { 2623 struct task_struct *kswapd = NODE_DATA(nid)->kswapd; 2624 2625 if (kswapd) 2626 kthread_stop(kswapd); 2627 } 2628 2629 static int __init kswapd_init(void) 2630 { 2631 int nid; 2632 2633 swap_setup(); 2634 for_each_node_state(nid, N_HIGH_MEMORY) 2635 kswapd_run(nid); 2636 hotcpu_notifier(cpu_callback, 0); 2637 return 0; 2638 } 2639 2640 module_init(kswapd_init) 2641 2642 #ifdef CONFIG_NUMA 2643 /* 2644 * Zone reclaim mode 2645 * 2646 * If non-zero call zone_reclaim when the number of free pages falls below 2647 * the watermarks. 2648 */ 2649 int zone_reclaim_mode __read_mostly; 2650 2651 #define RECLAIM_OFF 0 2652 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */ 2653 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */ 2654 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */ 2655 2656 /* 2657 * Priority for ZONE_RECLAIM. This determines the fraction of pages 2658 * of a node considered for each zone_reclaim. 4 scans 1/16th of 2659 * a zone. 2660 */ 2661 #define ZONE_RECLAIM_PRIORITY 4 2662 2663 /* 2664 * Percentage of pages in a zone that must be unmapped for zone_reclaim to 2665 * occur. 2666 */ 2667 int sysctl_min_unmapped_ratio = 1; 2668 2669 /* 2670 * If the number of slab pages in a zone grows beyond this percentage then 2671 * slab reclaim needs to occur. 2672 */ 2673 int sysctl_min_slab_ratio = 5; 2674 2675 static inline unsigned long zone_unmapped_file_pages(struct zone *zone) 2676 { 2677 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED); 2678 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) + 2679 zone_page_state(zone, NR_ACTIVE_FILE); 2680 2681 /* 2682 * It's possible for there to be more file mapped pages than 2683 * accounted for by the pages on the file LRU lists because 2684 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 2685 */ 2686 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 2687 } 2688 2689 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 2690 static long zone_pagecache_reclaimable(struct zone *zone) 2691 { 2692 long nr_pagecache_reclaimable; 2693 long delta = 0; 2694 2695 /* 2696 * If RECLAIM_SWAP is set, then all file pages are considered 2697 * potentially reclaimable. Otherwise, we have to worry about 2698 * pages like swapcache and zone_unmapped_file_pages() provides 2699 * a better estimate 2700 */ 2701 if (zone_reclaim_mode & RECLAIM_SWAP) 2702 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES); 2703 else 2704 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone); 2705 2706 /* If we can't clean pages, remove dirty pages from consideration */ 2707 if (!(zone_reclaim_mode & RECLAIM_WRITE)) 2708 delta += zone_page_state(zone, NR_FILE_DIRTY); 2709 2710 /* Watch for any possible underflows due to delta */ 2711 if (unlikely(delta > nr_pagecache_reclaimable)) 2712 delta = nr_pagecache_reclaimable; 2713 2714 return nr_pagecache_reclaimable - delta; 2715 } 2716 2717 /* 2718 * Try to free up some pages from this zone through reclaim. 2719 */ 2720 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) 2721 { 2722 /* Minimum pages needed in order to stay on node */ 2723 const unsigned long nr_pages = 1 << order; 2724 struct task_struct *p = current; 2725 struct reclaim_state reclaim_state; 2726 int priority; 2727 struct scan_control sc = { 2728 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE), 2729 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP), 2730 .may_swap = 1, 2731 .nr_to_reclaim = max_t(unsigned long, nr_pages, 2732 SWAP_CLUSTER_MAX), 2733 .gfp_mask = gfp_mask, 2734 .swappiness = vm_swappiness, 2735 .order = order, 2736 }; 2737 unsigned long nr_slab_pages0, nr_slab_pages1; 2738 2739 cond_resched(); 2740 /* 2741 * We need to be able to allocate from the reserves for RECLAIM_SWAP 2742 * and we also need to be able to write out pages for RECLAIM_WRITE 2743 * and RECLAIM_SWAP. 2744 */ 2745 p->flags |= PF_MEMALLOC | PF_SWAPWRITE; 2746 lockdep_set_current_reclaim_state(gfp_mask); 2747 reclaim_state.reclaimed_slab = 0; 2748 p->reclaim_state = &reclaim_state; 2749 2750 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) { 2751 /* 2752 * Free memory by calling shrink zone with increasing 2753 * priorities until we have enough memory freed. 2754 */ 2755 priority = ZONE_RECLAIM_PRIORITY; 2756 do { 2757 shrink_zone(priority, zone, &sc); 2758 priority--; 2759 } while (priority >= 0 && sc.nr_reclaimed < nr_pages); 2760 } 2761 2762 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE); 2763 if (nr_slab_pages0 > zone->min_slab_pages) { 2764 /* 2765 * shrink_slab() does not currently allow us to determine how 2766 * many pages were freed in this zone. So we take the current 2767 * number of slab pages and shake the slab until it is reduced 2768 * by the same nr_pages that we used for reclaiming unmapped 2769 * pages. 2770 * 2771 * Note that shrink_slab will free memory on all zones and may 2772 * take a long time. 2773 */ 2774 for (;;) { 2775 unsigned long lru_pages = zone_reclaimable_pages(zone); 2776 2777 /* No reclaimable slab or very low memory pressure */ 2778 if (!shrink_slab(sc.nr_scanned, gfp_mask, lru_pages)) 2779 break; 2780 2781 /* Freed enough memory */ 2782 nr_slab_pages1 = zone_page_state(zone, 2783 NR_SLAB_RECLAIMABLE); 2784 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0) 2785 break; 2786 } 2787 2788 /* 2789 * Update nr_reclaimed by the number of slab pages we 2790 * reclaimed from this zone. 2791 */ 2792 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE); 2793 if (nr_slab_pages1 < nr_slab_pages0) 2794 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1; 2795 } 2796 2797 p->reclaim_state = NULL; 2798 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE); 2799 lockdep_clear_current_reclaim_state(); 2800 return sc.nr_reclaimed >= nr_pages; 2801 } 2802 2803 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) 2804 { 2805 int node_id; 2806 int ret; 2807 2808 /* 2809 * Zone reclaim reclaims unmapped file backed pages and 2810 * slab pages if we are over the defined limits. 2811 * 2812 * A small portion of unmapped file backed pages is needed for 2813 * file I/O otherwise pages read by file I/O will be immediately 2814 * thrown out if the zone is overallocated. So we do not reclaim 2815 * if less than a specified percentage of the zone is used by 2816 * unmapped file backed pages. 2817 */ 2818 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages && 2819 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages) 2820 return ZONE_RECLAIM_FULL; 2821 2822 if (zone->all_unreclaimable) 2823 return ZONE_RECLAIM_FULL; 2824 2825 /* 2826 * Do not scan if the allocation should not be delayed. 2827 */ 2828 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC)) 2829 return ZONE_RECLAIM_NOSCAN; 2830 2831 /* 2832 * Only run zone reclaim on the local zone or on zones that do not 2833 * have associated processors. This will favor the local processor 2834 * over remote processors and spread off node memory allocations 2835 * as wide as possible. 2836 */ 2837 node_id = zone_to_nid(zone); 2838 if (node_state(node_id, N_CPU) && node_id != numa_node_id()) 2839 return ZONE_RECLAIM_NOSCAN; 2840 2841 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED)) 2842 return ZONE_RECLAIM_NOSCAN; 2843 2844 ret = __zone_reclaim(zone, gfp_mask, order); 2845 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED); 2846 2847 if (!ret) 2848 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 2849 2850 return ret; 2851 } 2852 #endif 2853 2854 /* 2855 * page_evictable - test whether a page is evictable 2856 * @page: the page to test 2857 * @vma: the VMA in which the page is or will be mapped, may be NULL 2858 * 2859 * Test whether page is evictable--i.e., should be placed on active/inactive 2860 * lists vs unevictable list. The vma argument is !NULL when called from the 2861 * fault path to determine how to instantate a new page. 2862 * 2863 * Reasons page might not be evictable: 2864 * (1) page's mapping marked unevictable 2865 * (2) page is part of an mlocked VMA 2866 * 2867 */ 2868 int page_evictable(struct page *page, struct vm_area_struct *vma) 2869 { 2870 2871 if (mapping_unevictable(page_mapping(page))) 2872 return 0; 2873 2874 if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page))) 2875 return 0; 2876 2877 return 1; 2878 } 2879 2880 /** 2881 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list 2882 * @page: page to check evictability and move to appropriate lru list 2883 * @zone: zone page is in 2884 * 2885 * Checks a page for evictability and moves the page to the appropriate 2886 * zone lru list. 2887 * 2888 * Restrictions: zone->lru_lock must be held, page must be on LRU and must 2889 * have PageUnevictable set. 2890 */ 2891 static void check_move_unevictable_page(struct page *page, struct zone *zone) 2892 { 2893 VM_BUG_ON(PageActive(page)); 2894 2895 retry: 2896 ClearPageUnevictable(page); 2897 if (page_evictable(page, NULL)) { 2898 enum lru_list l = page_lru_base_type(page); 2899 2900 __dec_zone_state(zone, NR_UNEVICTABLE); 2901 list_move(&page->lru, &zone->lru[l].list); 2902 mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l); 2903 __inc_zone_state(zone, NR_INACTIVE_ANON + l); 2904 __count_vm_event(UNEVICTABLE_PGRESCUED); 2905 } else { 2906 /* 2907 * rotate unevictable list 2908 */ 2909 SetPageUnevictable(page); 2910 list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list); 2911 mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE); 2912 if (page_evictable(page, NULL)) 2913 goto retry; 2914 } 2915 } 2916 2917 /** 2918 * scan_mapping_unevictable_pages - scan an address space for evictable pages 2919 * @mapping: struct address_space to scan for evictable pages 2920 * 2921 * Scan all pages in mapping. Check unevictable pages for 2922 * evictability and move them to the appropriate zone lru list. 2923 */ 2924 void scan_mapping_unevictable_pages(struct address_space *mapping) 2925 { 2926 pgoff_t next = 0; 2927 pgoff_t end = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >> 2928 PAGE_CACHE_SHIFT; 2929 struct zone *zone; 2930 struct pagevec pvec; 2931 2932 if (mapping->nrpages == 0) 2933 return; 2934 2935 pagevec_init(&pvec, 0); 2936 while (next < end && 2937 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) { 2938 int i; 2939 int pg_scanned = 0; 2940 2941 zone = NULL; 2942 2943 for (i = 0; i < pagevec_count(&pvec); i++) { 2944 struct page *page = pvec.pages[i]; 2945 pgoff_t page_index = page->index; 2946 struct zone *pagezone = page_zone(page); 2947 2948 pg_scanned++; 2949 if (page_index > next) 2950 next = page_index; 2951 next++; 2952 2953 if (pagezone != zone) { 2954 if (zone) 2955 spin_unlock_irq(&zone->lru_lock); 2956 zone = pagezone; 2957 spin_lock_irq(&zone->lru_lock); 2958 } 2959 2960 if (PageLRU(page) && PageUnevictable(page)) 2961 check_move_unevictable_page(page, zone); 2962 } 2963 if (zone) 2964 spin_unlock_irq(&zone->lru_lock); 2965 pagevec_release(&pvec); 2966 2967 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned); 2968 } 2969 2970 } 2971 2972 /** 2973 * scan_zone_unevictable_pages - check unevictable list for evictable pages 2974 * @zone - zone of which to scan the unevictable list 2975 * 2976 * Scan @zone's unevictable LRU lists to check for pages that have become 2977 * evictable. Move those that have to @zone's inactive list where they 2978 * become candidates for reclaim, unless shrink_inactive_zone() decides 2979 * to reactivate them. Pages that are still unevictable are rotated 2980 * back onto @zone's unevictable list. 2981 */ 2982 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */ 2983 static void scan_zone_unevictable_pages(struct zone *zone) 2984 { 2985 struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list; 2986 unsigned long scan; 2987 unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE); 2988 2989 while (nr_to_scan > 0) { 2990 unsigned long batch_size = min(nr_to_scan, 2991 SCAN_UNEVICTABLE_BATCH_SIZE); 2992 2993 spin_lock_irq(&zone->lru_lock); 2994 for (scan = 0; scan < batch_size; scan++) { 2995 struct page *page = lru_to_page(l_unevictable); 2996 2997 if (!trylock_page(page)) 2998 continue; 2999 3000 prefetchw_prev_lru_page(page, l_unevictable, flags); 3001 3002 if (likely(PageLRU(page) && PageUnevictable(page))) 3003 check_move_unevictable_page(page, zone); 3004 3005 unlock_page(page); 3006 } 3007 spin_unlock_irq(&zone->lru_lock); 3008 3009 nr_to_scan -= batch_size; 3010 } 3011 } 3012 3013 3014 /** 3015 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages 3016 * 3017 * A really big hammer: scan all zones' unevictable LRU lists to check for 3018 * pages that have become evictable. Move those back to the zones' 3019 * inactive list where they become candidates for reclaim. 3020 * This occurs when, e.g., we have unswappable pages on the unevictable lists, 3021 * and we add swap to the system. As such, it runs in the context of a task 3022 * that has possibly/probably made some previously unevictable pages 3023 * evictable. 3024 */ 3025 static void scan_all_zones_unevictable_pages(void) 3026 { 3027 struct zone *zone; 3028 3029 for_each_zone(zone) { 3030 scan_zone_unevictable_pages(zone); 3031 } 3032 } 3033 3034 /* 3035 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of 3036 * all nodes' unevictable lists for evictable pages 3037 */ 3038 unsigned long scan_unevictable_pages; 3039 3040 int scan_unevictable_handler(struct ctl_table *table, int write, 3041 void __user *buffer, 3042 size_t *length, loff_t *ppos) 3043 { 3044 proc_doulongvec_minmax(table, write, buffer, length, ppos); 3045 3046 if (write && *(unsigned long *)table->data) 3047 scan_all_zones_unevictable_pages(); 3048 3049 scan_unevictable_pages = 0; 3050 return 0; 3051 } 3052 3053 #ifdef CONFIG_NUMA 3054 /* 3055 * per node 'scan_unevictable_pages' attribute. On demand re-scan of 3056 * a specified node's per zone unevictable lists for evictable pages. 3057 */ 3058 3059 static ssize_t read_scan_unevictable_node(struct sys_device *dev, 3060 struct sysdev_attribute *attr, 3061 char *buf) 3062 { 3063 return sprintf(buf, "0\n"); /* always zero; should fit... */ 3064 } 3065 3066 static ssize_t write_scan_unevictable_node(struct sys_device *dev, 3067 struct sysdev_attribute *attr, 3068 const char *buf, size_t count) 3069 { 3070 struct zone *node_zones = NODE_DATA(dev->id)->node_zones; 3071 struct zone *zone; 3072 unsigned long res; 3073 unsigned long req = strict_strtoul(buf, 10, &res); 3074 3075 if (!req) 3076 return 1; /* zero is no-op */ 3077 3078 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) { 3079 if (!populated_zone(zone)) 3080 continue; 3081 scan_zone_unevictable_pages(zone); 3082 } 3083 return 1; 3084 } 3085 3086 3087 static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR, 3088 read_scan_unevictable_node, 3089 write_scan_unevictable_node); 3090 3091 int scan_unevictable_register_node(struct node *node) 3092 { 3093 return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages); 3094 } 3095 3096 void scan_unevictable_unregister_node(struct node *node) 3097 { 3098 sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages); 3099 } 3100 #endif 3101