1 /* 2 * linux/mm/vmscan.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * 6 * Swap reorganised 29.12.95, Stephen Tweedie. 7 * kswapd added: 7.1.96 sct 8 * Removed kswapd_ctl limits, and swap out as many pages as needed 9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 11 * Multiqueue VM started 5.8.00, Rik van Riel. 12 */ 13 14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 15 16 #include <linux/mm.h> 17 #include <linux/module.h> 18 #include <linux/gfp.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/swap.h> 21 #include <linux/pagemap.h> 22 #include <linux/init.h> 23 #include <linux/highmem.h> 24 #include <linux/vmpressure.h> 25 #include <linux/vmstat.h> 26 #include <linux/file.h> 27 #include <linux/writeback.h> 28 #include <linux/blkdev.h> 29 #include <linux/buffer_head.h> /* for try_to_release_page(), 30 buffer_heads_over_limit */ 31 #include <linux/mm_inline.h> 32 #include <linux/backing-dev.h> 33 #include <linux/rmap.h> 34 #include <linux/topology.h> 35 #include <linux/cpu.h> 36 #include <linux/cpuset.h> 37 #include <linux/compaction.h> 38 #include <linux/notifier.h> 39 #include <linux/rwsem.h> 40 #include <linux/delay.h> 41 #include <linux/kthread.h> 42 #include <linux/freezer.h> 43 #include <linux/memcontrol.h> 44 #include <linux/delayacct.h> 45 #include <linux/sysctl.h> 46 #include <linux/oom.h> 47 #include <linux/prefetch.h> 48 #include <linux/printk.h> 49 50 #include <asm/tlbflush.h> 51 #include <asm/div64.h> 52 53 #include <linux/swapops.h> 54 #include <linux/balloon_compaction.h> 55 56 #include "internal.h" 57 58 #define CREATE_TRACE_POINTS 59 #include <trace/events/vmscan.h> 60 61 struct scan_control { 62 /* How many pages shrink_list() should reclaim */ 63 unsigned long nr_to_reclaim; 64 65 /* This context's GFP mask */ 66 gfp_t gfp_mask; 67 68 /* Allocation order */ 69 int order; 70 71 /* 72 * Nodemask of nodes allowed by the caller. If NULL, all nodes 73 * are scanned. 74 */ 75 nodemask_t *nodemask; 76 77 /* 78 * The memory cgroup that hit its limit and as a result is the 79 * primary target of this reclaim invocation. 80 */ 81 struct mem_cgroup *target_mem_cgroup; 82 83 /* Scan (total_size >> priority) pages at once */ 84 int priority; 85 86 unsigned int may_writepage:1; 87 88 /* Can mapped pages be reclaimed? */ 89 unsigned int may_unmap:1; 90 91 /* Can pages be swapped as part of reclaim? */ 92 unsigned int may_swap:1; 93 94 /* Can cgroups be reclaimed below their normal consumption range? */ 95 unsigned int may_thrash:1; 96 97 unsigned int hibernation_mode:1; 98 99 /* One of the zones is ready for compaction */ 100 unsigned int compaction_ready:1; 101 102 /* Incremented by the number of inactive pages that were scanned */ 103 unsigned long nr_scanned; 104 105 /* Number of pages freed so far during a call to shrink_zones() */ 106 unsigned long nr_reclaimed; 107 }; 108 109 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru)) 110 111 #ifdef ARCH_HAS_PREFETCH 112 #define prefetch_prev_lru_page(_page, _base, _field) \ 113 do { \ 114 if ((_page)->lru.prev != _base) { \ 115 struct page *prev; \ 116 \ 117 prev = lru_to_page(&(_page->lru)); \ 118 prefetch(&prev->_field); \ 119 } \ 120 } while (0) 121 #else 122 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0) 123 #endif 124 125 #ifdef ARCH_HAS_PREFETCHW 126 #define prefetchw_prev_lru_page(_page, _base, _field) \ 127 do { \ 128 if ((_page)->lru.prev != _base) { \ 129 struct page *prev; \ 130 \ 131 prev = lru_to_page(&(_page->lru)); \ 132 prefetchw(&prev->_field); \ 133 } \ 134 } while (0) 135 #else 136 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 137 #endif 138 139 /* 140 * From 0 .. 100. Higher means more swappy. 141 */ 142 int vm_swappiness = 60; 143 /* 144 * The total number of pages which are beyond the high watermark within all 145 * zones. 146 */ 147 unsigned long vm_total_pages; 148 149 static LIST_HEAD(shrinker_list); 150 static DECLARE_RWSEM(shrinker_rwsem); 151 152 #ifdef CONFIG_MEMCG 153 static bool global_reclaim(struct scan_control *sc) 154 { 155 return !sc->target_mem_cgroup; 156 } 157 158 /** 159 * sane_reclaim - is the usual dirty throttling mechanism operational? 160 * @sc: scan_control in question 161 * 162 * The normal page dirty throttling mechanism in balance_dirty_pages() is 163 * completely broken with the legacy memcg and direct stalling in 164 * shrink_page_list() is used for throttling instead, which lacks all the 165 * niceties such as fairness, adaptive pausing, bandwidth proportional 166 * allocation and configurability. 167 * 168 * This function tests whether the vmscan currently in progress can assume 169 * that the normal dirty throttling mechanism is operational. 170 */ 171 static bool sane_reclaim(struct scan_control *sc) 172 { 173 struct mem_cgroup *memcg = sc->target_mem_cgroup; 174 175 if (!memcg) 176 return true; 177 #ifdef CONFIG_CGROUP_WRITEBACK 178 if (cgroup_on_dfl(mem_cgroup_css(memcg)->cgroup)) 179 return true; 180 #endif 181 return false; 182 } 183 #else 184 static bool global_reclaim(struct scan_control *sc) 185 { 186 return true; 187 } 188 189 static bool sane_reclaim(struct scan_control *sc) 190 { 191 return true; 192 } 193 #endif 194 195 static unsigned long zone_reclaimable_pages(struct zone *zone) 196 { 197 int nr; 198 199 nr = zone_page_state(zone, NR_ACTIVE_FILE) + 200 zone_page_state(zone, NR_INACTIVE_FILE); 201 202 if (get_nr_swap_pages() > 0) 203 nr += zone_page_state(zone, NR_ACTIVE_ANON) + 204 zone_page_state(zone, NR_INACTIVE_ANON); 205 206 return nr; 207 } 208 209 bool zone_reclaimable(struct zone *zone) 210 { 211 return zone_page_state(zone, NR_PAGES_SCANNED) < 212 zone_reclaimable_pages(zone) * 6; 213 } 214 215 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru) 216 { 217 if (!mem_cgroup_disabled()) 218 return mem_cgroup_get_lru_size(lruvec, lru); 219 220 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru); 221 } 222 223 /* 224 * Add a shrinker callback to be called from the vm. 225 */ 226 int register_shrinker(struct shrinker *shrinker) 227 { 228 size_t size = sizeof(*shrinker->nr_deferred); 229 230 /* 231 * If we only have one possible node in the system anyway, save 232 * ourselves the trouble and disable NUMA aware behavior. This way we 233 * will save memory and some small loop time later. 234 */ 235 if (nr_node_ids == 1) 236 shrinker->flags &= ~SHRINKER_NUMA_AWARE; 237 238 if (shrinker->flags & SHRINKER_NUMA_AWARE) 239 size *= nr_node_ids; 240 241 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); 242 if (!shrinker->nr_deferred) 243 return -ENOMEM; 244 245 down_write(&shrinker_rwsem); 246 list_add_tail(&shrinker->list, &shrinker_list); 247 up_write(&shrinker_rwsem); 248 return 0; 249 } 250 EXPORT_SYMBOL(register_shrinker); 251 252 /* 253 * Remove one 254 */ 255 void unregister_shrinker(struct shrinker *shrinker) 256 { 257 down_write(&shrinker_rwsem); 258 list_del(&shrinker->list); 259 up_write(&shrinker_rwsem); 260 kfree(shrinker->nr_deferred); 261 } 262 EXPORT_SYMBOL(unregister_shrinker); 263 264 #define SHRINK_BATCH 128 265 266 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl, 267 struct shrinker *shrinker, 268 unsigned long nr_scanned, 269 unsigned long nr_eligible) 270 { 271 unsigned long freed = 0; 272 unsigned long long delta; 273 long total_scan; 274 long freeable; 275 long nr; 276 long new_nr; 277 int nid = shrinkctl->nid; 278 long batch_size = shrinker->batch ? shrinker->batch 279 : SHRINK_BATCH; 280 281 freeable = shrinker->count_objects(shrinker, shrinkctl); 282 if (freeable == 0) 283 return 0; 284 285 /* 286 * copy the current shrinker scan count into a local variable 287 * and zero it so that other concurrent shrinker invocations 288 * don't also do this scanning work. 289 */ 290 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0); 291 292 total_scan = nr; 293 delta = (4 * nr_scanned) / shrinker->seeks; 294 delta *= freeable; 295 do_div(delta, nr_eligible + 1); 296 total_scan += delta; 297 if (total_scan < 0) { 298 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n", 299 shrinker->scan_objects, total_scan); 300 total_scan = freeable; 301 } 302 303 /* 304 * We need to avoid excessive windup on filesystem shrinkers 305 * due to large numbers of GFP_NOFS allocations causing the 306 * shrinkers to return -1 all the time. This results in a large 307 * nr being built up so when a shrink that can do some work 308 * comes along it empties the entire cache due to nr >>> 309 * freeable. This is bad for sustaining a working set in 310 * memory. 311 * 312 * Hence only allow the shrinker to scan the entire cache when 313 * a large delta change is calculated directly. 314 */ 315 if (delta < freeable / 4) 316 total_scan = min(total_scan, freeable / 2); 317 318 /* 319 * Avoid risking looping forever due to too large nr value: 320 * never try to free more than twice the estimate number of 321 * freeable entries. 322 */ 323 if (total_scan > freeable * 2) 324 total_scan = freeable * 2; 325 326 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, 327 nr_scanned, nr_eligible, 328 freeable, delta, total_scan); 329 330 /* 331 * Normally, we should not scan less than batch_size objects in one 332 * pass to avoid too frequent shrinker calls, but if the slab has less 333 * than batch_size objects in total and we are really tight on memory, 334 * we will try to reclaim all available objects, otherwise we can end 335 * up failing allocations although there are plenty of reclaimable 336 * objects spread over several slabs with usage less than the 337 * batch_size. 338 * 339 * We detect the "tight on memory" situations by looking at the total 340 * number of objects we want to scan (total_scan). If it is greater 341 * than the total number of objects on slab (freeable), we must be 342 * scanning at high prio and therefore should try to reclaim as much as 343 * possible. 344 */ 345 while (total_scan >= batch_size || 346 total_scan >= freeable) { 347 unsigned long ret; 348 unsigned long nr_to_scan = min(batch_size, total_scan); 349 350 shrinkctl->nr_to_scan = nr_to_scan; 351 ret = shrinker->scan_objects(shrinker, shrinkctl); 352 if (ret == SHRINK_STOP) 353 break; 354 freed += ret; 355 356 count_vm_events(SLABS_SCANNED, nr_to_scan); 357 total_scan -= nr_to_scan; 358 359 cond_resched(); 360 } 361 362 /* 363 * move the unused scan count back into the shrinker in a 364 * manner that handles concurrent updates. If we exhausted the 365 * scan, there is no need to do an update. 366 */ 367 if (total_scan > 0) 368 new_nr = atomic_long_add_return(total_scan, 369 &shrinker->nr_deferred[nid]); 370 else 371 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]); 372 373 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan); 374 return freed; 375 } 376 377 /** 378 * shrink_slab - shrink slab caches 379 * @gfp_mask: allocation context 380 * @nid: node whose slab caches to target 381 * @memcg: memory cgroup whose slab caches to target 382 * @nr_scanned: pressure numerator 383 * @nr_eligible: pressure denominator 384 * 385 * Call the shrink functions to age shrinkable caches. 386 * 387 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set, 388 * unaware shrinkers will receive a node id of 0 instead. 389 * 390 * @memcg specifies the memory cgroup to target. If it is not NULL, 391 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan 392 * objects from the memory cgroup specified. Otherwise all shrinkers 393 * are called, and memcg aware shrinkers are supposed to scan the 394 * global list then. 395 * 396 * @nr_scanned and @nr_eligible form a ratio that indicate how much of 397 * the available objects should be scanned. Page reclaim for example 398 * passes the number of pages scanned and the number of pages on the 399 * LRU lists that it considered on @nid, plus a bias in @nr_scanned 400 * when it encountered mapped pages. The ratio is further biased by 401 * the ->seeks setting of the shrink function, which indicates the 402 * cost to recreate an object relative to that of an LRU page. 403 * 404 * Returns the number of reclaimed slab objects. 405 */ 406 static unsigned long shrink_slab(gfp_t gfp_mask, int nid, 407 struct mem_cgroup *memcg, 408 unsigned long nr_scanned, 409 unsigned long nr_eligible) 410 { 411 struct shrinker *shrinker; 412 unsigned long freed = 0; 413 414 if (memcg && !memcg_kmem_is_active(memcg)) 415 return 0; 416 417 if (nr_scanned == 0) 418 nr_scanned = SWAP_CLUSTER_MAX; 419 420 if (!down_read_trylock(&shrinker_rwsem)) { 421 /* 422 * If we would return 0, our callers would understand that we 423 * have nothing else to shrink and give up trying. By returning 424 * 1 we keep it going and assume we'll be able to shrink next 425 * time. 426 */ 427 freed = 1; 428 goto out; 429 } 430 431 list_for_each_entry(shrinker, &shrinker_list, list) { 432 struct shrink_control sc = { 433 .gfp_mask = gfp_mask, 434 .nid = nid, 435 .memcg = memcg, 436 }; 437 438 if (memcg && !(shrinker->flags & SHRINKER_MEMCG_AWARE)) 439 continue; 440 441 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 442 sc.nid = 0; 443 444 freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible); 445 } 446 447 up_read(&shrinker_rwsem); 448 out: 449 cond_resched(); 450 return freed; 451 } 452 453 void drop_slab_node(int nid) 454 { 455 unsigned long freed; 456 457 do { 458 struct mem_cgroup *memcg = NULL; 459 460 freed = 0; 461 do { 462 freed += shrink_slab(GFP_KERNEL, nid, memcg, 463 1000, 1000); 464 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 465 } while (freed > 10); 466 } 467 468 void drop_slab(void) 469 { 470 int nid; 471 472 for_each_online_node(nid) 473 drop_slab_node(nid); 474 } 475 476 static inline int is_page_cache_freeable(struct page *page) 477 { 478 /* 479 * A freeable page cache page is referenced only by the caller 480 * that isolated the page, the page cache radix tree and 481 * optional buffer heads at page->private. 482 */ 483 return page_count(page) - page_has_private(page) == 2; 484 } 485 486 static int may_write_to_inode(struct inode *inode, struct scan_control *sc) 487 { 488 if (current->flags & PF_SWAPWRITE) 489 return 1; 490 if (!inode_write_congested(inode)) 491 return 1; 492 if (inode_to_bdi(inode) == current->backing_dev_info) 493 return 1; 494 return 0; 495 } 496 497 /* 498 * We detected a synchronous write error writing a page out. Probably 499 * -ENOSPC. We need to propagate that into the address_space for a subsequent 500 * fsync(), msync() or close(). 501 * 502 * The tricky part is that after writepage we cannot touch the mapping: nothing 503 * prevents it from being freed up. But we have a ref on the page and once 504 * that page is locked, the mapping is pinned. 505 * 506 * We're allowed to run sleeping lock_page() here because we know the caller has 507 * __GFP_FS. 508 */ 509 static void handle_write_error(struct address_space *mapping, 510 struct page *page, int error) 511 { 512 lock_page(page); 513 if (page_mapping(page) == mapping) 514 mapping_set_error(mapping, error); 515 unlock_page(page); 516 } 517 518 /* possible outcome of pageout() */ 519 typedef enum { 520 /* failed to write page out, page is locked */ 521 PAGE_KEEP, 522 /* move page to the active list, page is locked */ 523 PAGE_ACTIVATE, 524 /* page has been sent to the disk successfully, page is unlocked */ 525 PAGE_SUCCESS, 526 /* page is clean and locked */ 527 PAGE_CLEAN, 528 } pageout_t; 529 530 /* 531 * pageout is called by shrink_page_list() for each dirty page. 532 * Calls ->writepage(). 533 */ 534 static pageout_t pageout(struct page *page, struct address_space *mapping, 535 struct scan_control *sc) 536 { 537 /* 538 * If the page is dirty, only perform writeback if that write 539 * will be non-blocking. To prevent this allocation from being 540 * stalled by pagecache activity. But note that there may be 541 * stalls if we need to run get_block(). We could test 542 * PagePrivate for that. 543 * 544 * If this process is currently in __generic_file_write_iter() against 545 * this page's queue, we can perform writeback even if that 546 * will block. 547 * 548 * If the page is swapcache, write it back even if that would 549 * block, for some throttling. This happens by accident, because 550 * swap_backing_dev_info is bust: it doesn't reflect the 551 * congestion state of the swapdevs. Easy to fix, if needed. 552 */ 553 if (!is_page_cache_freeable(page)) 554 return PAGE_KEEP; 555 if (!mapping) { 556 /* 557 * Some data journaling orphaned pages can have 558 * page->mapping == NULL while being dirty with clean buffers. 559 */ 560 if (page_has_private(page)) { 561 if (try_to_free_buffers(page)) { 562 ClearPageDirty(page); 563 pr_info("%s: orphaned page\n", __func__); 564 return PAGE_CLEAN; 565 } 566 } 567 return PAGE_KEEP; 568 } 569 if (mapping->a_ops->writepage == NULL) 570 return PAGE_ACTIVATE; 571 if (!may_write_to_inode(mapping->host, sc)) 572 return PAGE_KEEP; 573 574 if (clear_page_dirty_for_io(page)) { 575 int res; 576 struct writeback_control wbc = { 577 .sync_mode = WB_SYNC_NONE, 578 .nr_to_write = SWAP_CLUSTER_MAX, 579 .range_start = 0, 580 .range_end = LLONG_MAX, 581 .for_reclaim = 1, 582 }; 583 584 SetPageReclaim(page); 585 res = mapping->a_ops->writepage(page, &wbc); 586 if (res < 0) 587 handle_write_error(mapping, page, res); 588 if (res == AOP_WRITEPAGE_ACTIVATE) { 589 ClearPageReclaim(page); 590 return PAGE_ACTIVATE; 591 } 592 593 if (!PageWriteback(page)) { 594 /* synchronous write or broken a_ops? */ 595 ClearPageReclaim(page); 596 } 597 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page)); 598 inc_zone_page_state(page, NR_VMSCAN_WRITE); 599 return PAGE_SUCCESS; 600 } 601 602 return PAGE_CLEAN; 603 } 604 605 /* 606 * Same as remove_mapping, but if the page is removed from the mapping, it 607 * gets returned with a refcount of 0. 608 */ 609 static int __remove_mapping(struct address_space *mapping, struct page *page, 610 bool reclaimed) 611 { 612 unsigned long flags; 613 struct mem_cgroup *memcg; 614 615 BUG_ON(!PageLocked(page)); 616 BUG_ON(mapping != page_mapping(page)); 617 618 memcg = mem_cgroup_begin_page_stat(page); 619 spin_lock_irqsave(&mapping->tree_lock, flags); 620 /* 621 * The non racy check for a busy page. 622 * 623 * Must be careful with the order of the tests. When someone has 624 * a ref to the page, it may be possible that they dirty it then 625 * drop the reference. So if PageDirty is tested before page_count 626 * here, then the following race may occur: 627 * 628 * get_user_pages(&page); 629 * [user mapping goes away] 630 * write_to(page); 631 * !PageDirty(page) [good] 632 * SetPageDirty(page); 633 * put_page(page); 634 * !page_count(page) [good, discard it] 635 * 636 * [oops, our write_to data is lost] 637 * 638 * Reversing the order of the tests ensures such a situation cannot 639 * escape unnoticed. The smp_rmb is needed to ensure the page->flags 640 * load is not satisfied before that of page->_count. 641 * 642 * Note that if SetPageDirty is always performed via set_page_dirty, 643 * and thus under tree_lock, then this ordering is not required. 644 */ 645 if (!page_freeze_refs(page, 2)) 646 goto cannot_free; 647 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */ 648 if (unlikely(PageDirty(page))) { 649 page_unfreeze_refs(page, 2); 650 goto cannot_free; 651 } 652 653 if (PageSwapCache(page)) { 654 swp_entry_t swap = { .val = page_private(page) }; 655 mem_cgroup_swapout(page, swap); 656 __delete_from_swap_cache(page); 657 spin_unlock_irqrestore(&mapping->tree_lock, flags); 658 mem_cgroup_end_page_stat(memcg); 659 swapcache_free(swap); 660 } else { 661 void (*freepage)(struct page *); 662 void *shadow = NULL; 663 664 freepage = mapping->a_ops->freepage; 665 /* 666 * Remember a shadow entry for reclaimed file cache in 667 * order to detect refaults, thus thrashing, later on. 668 * 669 * But don't store shadows in an address space that is 670 * already exiting. This is not just an optizimation, 671 * inode reclaim needs to empty out the radix tree or 672 * the nodes are lost. Don't plant shadows behind its 673 * back. 674 */ 675 if (reclaimed && page_is_file_cache(page) && 676 !mapping_exiting(mapping)) 677 shadow = workingset_eviction(mapping, page); 678 __delete_from_page_cache(page, shadow, memcg); 679 spin_unlock_irqrestore(&mapping->tree_lock, flags); 680 mem_cgroup_end_page_stat(memcg); 681 682 if (freepage != NULL) 683 freepage(page); 684 } 685 686 return 1; 687 688 cannot_free: 689 spin_unlock_irqrestore(&mapping->tree_lock, flags); 690 mem_cgroup_end_page_stat(memcg); 691 return 0; 692 } 693 694 /* 695 * Attempt to detach a locked page from its ->mapping. If it is dirty or if 696 * someone else has a ref on the page, abort and return 0. If it was 697 * successfully detached, return 1. Assumes the caller has a single ref on 698 * this page. 699 */ 700 int remove_mapping(struct address_space *mapping, struct page *page) 701 { 702 if (__remove_mapping(mapping, page, false)) { 703 /* 704 * Unfreezing the refcount with 1 rather than 2 effectively 705 * drops the pagecache ref for us without requiring another 706 * atomic operation. 707 */ 708 page_unfreeze_refs(page, 1); 709 return 1; 710 } 711 return 0; 712 } 713 714 /** 715 * putback_lru_page - put previously isolated page onto appropriate LRU list 716 * @page: page to be put back to appropriate lru list 717 * 718 * Add previously isolated @page to appropriate LRU list. 719 * Page may still be unevictable for other reasons. 720 * 721 * lru_lock must not be held, interrupts must be enabled. 722 */ 723 void putback_lru_page(struct page *page) 724 { 725 bool is_unevictable; 726 int was_unevictable = PageUnevictable(page); 727 728 VM_BUG_ON_PAGE(PageLRU(page), page); 729 730 redo: 731 ClearPageUnevictable(page); 732 733 if (page_evictable(page)) { 734 /* 735 * For evictable pages, we can use the cache. 736 * In event of a race, worst case is we end up with an 737 * unevictable page on [in]active list. 738 * We know how to handle that. 739 */ 740 is_unevictable = false; 741 lru_cache_add(page); 742 } else { 743 /* 744 * Put unevictable pages directly on zone's unevictable 745 * list. 746 */ 747 is_unevictable = true; 748 add_page_to_unevictable_list(page); 749 /* 750 * When racing with an mlock or AS_UNEVICTABLE clearing 751 * (page is unlocked) make sure that if the other thread 752 * does not observe our setting of PG_lru and fails 753 * isolation/check_move_unevictable_pages, 754 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move 755 * the page back to the evictable list. 756 * 757 * The other side is TestClearPageMlocked() or shmem_lock(). 758 */ 759 smp_mb(); 760 } 761 762 /* 763 * page's status can change while we move it among lru. If an evictable 764 * page is on unevictable list, it never be freed. To avoid that, 765 * check after we added it to the list, again. 766 */ 767 if (is_unevictable && page_evictable(page)) { 768 if (!isolate_lru_page(page)) { 769 put_page(page); 770 goto redo; 771 } 772 /* This means someone else dropped this page from LRU 773 * So, it will be freed or putback to LRU again. There is 774 * nothing to do here. 775 */ 776 } 777 778 if (was_unevictable && !is_unevictable) 779 count_vm_event(UNEVICTABLE_PGRESCUED); 780 else if (!was_unevictable && is_unevictable) 781 count_vm_event(UNEVICTABLE_PGCULLED); 782 783 put_page(page); /* drop ref from isolate */ 784 } 785 786 enum page_references { 787 PAGEREF_RECLAIM, 788 PAGEREF_RECLAIM_CLEAN, 789 PAGEREF_KEEP, 790 PAGEREF_ACTIVATE, 791 }; 792 793 static enum page_references page_check_references(struct page *page, 794 struct scan_control *sc) 795 { 796 int referenced_ptes, referenced_page; 797 unsigned long vm_flags; 798 799 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup, 800 &vm_flags); 801 referenced_page = TestClearPageReferenced(page); 802 803 /* 804 * Mlock lost the isolation race with us. Let try_to_unmap() 805 * move the page to the unevictable list. 806 */ 807 if (vm_flags & VM_LOCKED) 808 return PAGEREF_RECLAIM; 809 810 if (referenced_ptes) { 811 if (PageSwapBacked(page)) 812 return PAGEREF_ACTIVATE; 813 /* 814 * All mapped pages start out with page table 815 * references from the instantiating fault, so we need 816 * to look twice if a mapped file page is used more 817 * than once. 818 * 819 * Mark it and spare it for another trip around the 820 * inactive list. Another page table reference will 821 * lead to its activation. 822 * 823 * Note: the mark is set for activated pages as well 824 * so that recently deactivated but used pages are 825 * quickly recovered. 826 */ 827 SetPageReferenced(page); 828 829 if (referenced_page || referenced_ptes > 1) 830 return PAGEREF_ACTIVATE; 831 832 /* 833 * Activate file-backed executable pages after first usage. 834 */ 835 if (vm_flags & VM_EXEC) 836 return PAGEREF_ACTIVATE; 837 838 return PAGEREF_KEEP; 839 } 840 841 /* Reclaim if clean, defer dirty pages to writeback */ 842 if (referenced_page && !PageSwapBacked(page)) 843 return PAGEREF_RECLAIM_CLEAN; 844 845 return PAGEREF_RECLAIM; 846 } 847 848 /* Check if a page is dirty or under writeback */ 849 static void page_check_dirty_writeback(struct page *page, 850 bool *dirty, bool *writeback) 851 { 852 struct address_space *mapping; 853 854 /* 855 * Anonymous pages are not handled by flushers and must be written 856 * from reclaim context. Do not stall reclaim based on them 857 */ 858 if (!page_is_file_cache(page)) { 859 *dirty = false; 860 *writeback = false; 861 return; 862 } 863 864 /* By default assume that the page flags are accurate */ 865 *dirty = PageDirty(page); 866 *writeback = PageWriteback(page); 867 868 /* Verify dirty/writeback state if the filesystem supports it */ 869 if (!page_has_private(page)) 870 return; 871 872 mapping = page_mapping(page); 873 if (mapping && mapping->a_ops->is_dirty_writeback) 874 mapping->a_ops->is_dirty_writeback(page, dirty, writeback); 875 } 876 877 /* 878 * shrink_page_list() returns the number of reclaimed pages 879 */ 880 static unsigned long shrink_page_list(struct list_head *page_list, 881 struct zone *zone, 882 struct scan_control *sc, 883 enum ttu_flags ttu_flags, 884 unsigned long *ret_nr_dirty, 885 unsigned long *ret_nr_unqueued_dirty, 886 unsigned long *ret_nr_congested, 887 unsigned long *ret_nr_writeback, 888 unsigned long *ret_nr_immediate, 889 bool force_reclaim) 890 { 891 LIST_HEAD(ret_pages); 892 LIST_HEAD(free_pages); 893 int pgactivate = 0; 894 unsigned long nr_unqueued_dirty = 0; 895 unsigned long nr_dirty = 0; 896 unsigned long nr_congested = 0; 897 unsigned long nr_reclaimed = 0; 898 unsigned long nr_writeback = 0; 899 unsigned long nr_immediate = 0; 900 901 cond_resched(); 902 903 while (!list_empty(page_list)) { 904 struct address_space *mapping; 905 struct page *page; 906 int may_enter_fs; 907 enum page_references references = PAGEREF_RECLAIM_CLEAN; 908 bool dirty, writeback; 909 910 cond_resched(); 911 912 page = lru_to_page(page_list); 913 list_del(&page->lru); 914 915 if (!trylock_page(page)) 916 goto keep; 917 918 VM_BUG_ON_PAGE(PageActive(page), page); 919 VM_BUG_ON_PAGE(page_zone(page) != zone, page); 920 921 sc->nr_scanned++; 922 923 if (unlikely(!page_evictable(page))) 924 goto cull_mlocked; 925 926 if (!sc->may_unmap && page_mapped(page)) 927 goto keep_locked; 928 929 /* Double the slab pressure for mapped and swapcache pages */ 930 if (page_mapped(page) || PageSwapCache(page)) 931 sc->nr_scanned++; 932 933 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 934 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 935 936 /* 937 * The number of dirty pages determines if a zone is marked 938 * reclaim_congested which affects wait_iff_congested. kswapd 939 * will stall and start writing pages if the tail of the LRU 940 * is all dirty unqueued pages. 941 */ 942 page_check_dirty_writeback(page, &dirty, &writeback); 943 if (dirty || writeback) 944 nr_dirty++; 945 946 if (dirty && !writeback) 947 nr_unqueued_dirty++; 948 949 /* 950 * Treat this page as congested if the underlying BDI is or if 951 * pages are cycling through the LRU so quickly that the 952 * pages marked for immediate reclaim are making it to the 953 * end of the LRU a second time. 954 */ 955 mapping = page_mapping(page); 956 if (((dirty || writeback) && mapping && 957 inode_write_congested(mapping->host)) || 958 (writeback && PageReclaim(page))) 959 nr_congested++; 960 961 /* 962 * If a page at the tail of the LRU is under writeback, there 963 * are three cases to consider. 964 * 965 * 1) If reclaim is encountering an excessive number of pages 966 * under writeback and this page is both under writeback and 967 * PageReclaim then it indicates that pages are being queued 968 * for IO but are being recycled through the LRU before the 969 * IO can complete. Waiting on the page itself risks an 970 * indefinite stall if it is impossible to writeback the 971 * page due to IO error or disconnected storage so instead 972 * note that the LRU is being scanned too quickly and the 973 * caller can stall after page list has been processed. 974 * 975 * 2) Global or new memcg reclaim encounters a page that is 976 * not marked for immediate reclaim, or the caller does not 977 * have __GFP_FS (or __GFP_IO if it's simply going to swap, 978 * not to fs). In this case mark the page for immediate 979 * reclaim and continue scanning. 980 * 981 * Require may_enter_fs because we would wait on fs, which 982 * may not have submitted IO yet. And the loop driver might 983 * enter reclaim, and deadlock if it waits on a page for 984 * which it is needed to do the write (loop masks off 985 * __GFP_IO|__GFP_FS for this reason); but more thought 986 * would probably show more reasons. 987 * 988 * 3) Legacy memcg encounters a page that is not already marked 989 * PageReclaim. memcg does not have any dirty pages 990 * throttling so we could easily OOM just because too many 991 * pages are in writeback and there is nothing else to 992 * reclaim. Wait for the writeback to complete. 993 */ 994 if (PageWriteback(page)) { 995 /* Case 1 above */ 996 if (current_is_kswapd() && 997 PageReclaim(page) && 998 test_bit(ZONE_WRITEBACK, &zone->flags)) { 999 nr_immediate++; 1000 goto keep_locked; 1001 1002 /* Case 2 above */ 1003 } else if (sane_reclaim(sc) || 1004 !PageReclaim(page) || !may_enter_fs) { 1005 /* 1006 * This is slightly racy - end_page_writeback() 1007 * might have just cleared PageReclaim, then 1008 * setting PageReclaim here end up interpreted 1009 * as PageReadahead - but that does not matter 1010 * enough to care. What we do want is for this 1011 * page to have PageReclaim set next time memcg 1012 * reclaim reaches the tests above, so it will 1013 * then wait_on_page_writeback() to avoid OOM; 1014 * and it's also appropriate in global reclaim. 1015 */ 1016 SetPageReclaim(page); 1017 nr_writeback++; 1018 1019 goto keep_locked; 1020 1021 /* Case 3 above */ 1022 } else { 1023 wait_on_page_writeback(page); 1024 } 1025 } 1026 1027 if (!force_reclaim) 1028 references = page_check_references(page, sc); 1029 1030 switch (references) { 1031 case PAGEREF_ACTIVATE: 1032 goto activate_locked; 1033 case PAGEREF_KEEP: 1034 goto keep_locked; 1035 case PAGEREF_RECLAIM: 1036 case PAGEREF_RECLAIM_CLEAN: 1037 ; /* try to reclaim the page below */ 1038 } 1039 1040 /* 1041 * Anonymous process memory has backing store? 1042 * Try to allocate it some swap space here. 1043 */ 1044 if (PageAnon(page) && !PageSwapCache(page)) { 1045 if (!(sc->gfp_mask & __GFP_IO)) 1046 goto keep_locked; 1047 if (!add_to_swap(page, page_list)) 1048 goto activate_locked; 1049 may_enter_fs = 1; 1050 1051 /* Adding to swap updated mapping */ 1052 mapping = page_mapping(page); 1053 } 1054 1055 /* 1056 * The page is mapped into the page tables of one or more 1057 * processes. Try to unmap it here. 1058 */ 1059 if (page_mapped(page) && mapping) { 1060 switch (try_to_unmap(page, 1061 ttu_flags|TTU_BATCH_FLUSH)) { 1062 case SWAP_FAIL: 1063 goto activate_locked; 1064 case SWAP_AGAIN: 1065 goto keep_locked; 1066 case SWAP_MLOCK: 1067 goto cull_mlocked; 1068 case SWAP_SUCCESS: 1069 ; /* try to free the page below */ 1070 } 1071 } 1072 1073 if (PageDirty(page)) { 1074 /* 1075 * Only kswapd can writeback filesystem pages to 1076 * avoid risk of stack overflow but only writeback 1077 * if many dirty pages have been encountered. 1078 */ 1079 if (page_is_file_cache(page) && 1080 (!current_is_kswapd() || 1081 !test_bit(ZONE_DIRTY, &zone->flags))) { 1082 /* 1083 * Immediately reclaim when written back. 1084 * Similar in principal to deactivate_page() 1085 * except we already have the page isolated 1086 * and know it's dirty 1087 */ 1088 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE); 1089 SetPageReclaim(page); 1090 1091 goto keep_locked; 1092 } 1093 1094 if (references == PAGEREF_RECLAIM_CLEAN) 1095 goto keep_locked; 1096 if (!may_enter_fs) 1097 goto keep_locked; 1098 if (!sc->may_writepage) 1099 goto keep_locked; 1100 1101 /* 1102 * Page is dirty. Flush the TLB if a writable entry 1103 * potentially exists to avoid CPU writes after IO 1104 * starts and then write it out here. 1105 */ 1106 try_to_unmap_flush_dirty(); 1107 switch (pageout(page, mapping, sc)) { 1108 case PAGE_KEEP: 1109 goto keep_locked; 1110 case PAGE_ACTIVATE: 1111 goto activate_locked; 1112 case PAGE_SUCCESS: 1113 if (PageWriteback(page)) 1114 goto keep; 1115 if (PageDirty(page)) 1116 goto keep; 1117 1118 /* 1119 * A synchronous write - probably a ramdisk. Go 1120 * ahead and try to reclaim the page. 1121 */ 1122 if (!trylock_page(page)) 1123 goto keep; 1124 if (PageDirty(page) || PageWriteback(page)) 1125 goto keep_locked; 1126 mapping = page_mapping(page); 1127 case PAGE_CLEAN: 1128 ; /* try to free the page below */ 1129 } 1130 } 1131 1132 /* 1133 * If the page has buffers, try to free the buffer mappings 1134 * associated with this page. If we succeed we try to free 1135 * the page as well. 1136 * 1137 * We do this even if the page is PageDirty(). 1138 * try_to_release_page() does not perform I/O, but it is 1139 * possible for a page to have PageDirty set, but it is actually 1140 * clean (all its buffers are clean). This happens if the 1141 * buffers were written out directly, with submit_bh(). ext3 1142 * will do this, as well as the blockdev mapping. 1143 * try_to_release_page() will discover that cleanness and will 1144 * drop the buffers and mark the page clean - it can be freed. 1145 * 1146 * Rarely, pages can have buffers and no ->mapping. These are 1147 * the pages which were not successfully invalidated in 1148 * truncate_complete_page(). We try to drop those buffers here 1149 * and if that worked, and the page is no longer mapped into 1150 * process address space (page_count == 1) it can be freed. 1151 * Otherwise, leave the page on the LRU so it is swappable. 1152 */ 1153 if (page_has_private(page)) { 1154 if (!try_to_release_page(page, sc->gfp_mask)) 1155 goto activate_locked; 1156 if (!mapping && page_count(page) == 1) { 1157 unlock_page(page); 1158 if (put_page_testzero(page)) 1159 goto free_it; 1160 else { 1161 /* 1162 * rare race with speculative reference. 1163 * the speculative reference will free 1164 * this page shortly, so we may 1165 * increment nr_reclaimed here (and 1166 * leave it off the LRU). 1167 */ 1168 nr_reclaimed++; 1169 continue; 1170 } 1171 } 1172 } 1173 1174 if (!mapping || !__remove_mapping(mapping, page, true)) 1175 goto keep_locked; 1176 1177 /* 1178 * At this point, we have no other references and there is 1179 * no way to pick any more up (removed from LRU, removed 1180 * from pagecache). Can use non-atomic bitops now (and 1181 * we obviously don't have to worry about waking up a process 1182 * waiting on the page lock, because there are no references. 1183 */ 1184 __clear_page_locked(page); 1185 free_it: 1186 nr_reclaimed++; 1187 1188 /* 1189 * Is there need to periodically free_page_list? It would 1190 * appear not as the counts should be low 1191 */ 1192 list_add(&page->lru, &free_pages); 1193 continue; 1194 1195 cull_mlocked: 1196 if (PageSwapCache(page)) 1197 try_to_free_swap(page); 1198 unlock_page(page); 1199 putback_lru_page(page); 1200 continue; 1201 1202 activate_locked: 1203 /* Not a candidate for swapping, so reclaim swap space. */ 1204 if (PageSwapCache(page) && vm_swap_full()) 1205 try_to_free_swap(page); 1206 VM_BUG_ON_PAGE(PageActive(page), page); 1207 SetPageActive(page); 1208 pgactivate++; 1209 keep_locked: 1210 unlock_page(page); 1211 keep: 1212 list_add(&page->lru, &ret_pages); 1213 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page); 1214 } 1215 1216 mem_cgroup_uncharge_list(&free_pages); 1217 try_to_unmap_flush(); 1218 free_hot_cold_page_list(&free_pages, true); 1219 1220 list_splice(&ret_pages, page_list); 1221 count_vm_events(PGACTIVATE, pgactivate); 1222 1223 *ret_nr_dirty += nr_dirty; 1224 *ret_nr_congested += nr_congested; 1225 *ret_nr_unqueued_dirty += nr_unqueued_dirty; 1226 *ret_nr_writeback += nr_writeback; 1227 *ret_nr_immediate += nr_immediate; 1228 return nr_reclaimed; 1229 } 1230 1231 unsigned long reclaim_clean_pages_from_list(struct zone *zone, 1232 struct list_head *page_list) 1233 { 1234 struct scan_control sc = { 1235 .gfp_mask = GFP_KERNEL, 1236 .priority = DEF_PRIORITY, 1237 .may_unmap = 1, 1238 }; 1239 unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5; 1240 struct page *page, *next; 1241 LIST_HEAD(clean_pages); 1242 1243 list_for_each_entry_safe(page, next, page_list, lru) { 1244 if (page_is_file_cache(page) && !PageDirty(page) && 1245 !isolated_balloon_page(page)) { 1246 ClearPageActive(page); 1247 list_move(&page->lru, &clean_pages); 1248 } 1249 } 1250 1251 ret = shrink_page_list(&clean_pages, zone, &sc, 1252 TTU_UNMAP|TTU_IGNORE_ACCESS, 1253 &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true); 1254 list_splice(&clean_pages, page_list); 1255 mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret); 1256 return ret; 1257 } 1258 1259 /* 1260 * Attempt to remove the specified page from its LRU. Only take this page 1261 * if it is of the appropriate PageActive status. Pages which are being 1262 * freed elsewhere are also ignored. 1263 * 1264 * page: page to consider 1265 * mode: one of the LRU isolation modes defined above 1266 * 1267 * returns 0 on success, -ve errno on failure. 1268 */ 1269 int __isolate_lru_page(struct page *page, isolate_mode_t mode) 1270 { 1271 int ret = -EINVAL; 1272 1273 /* Only take pages on the LRU. */ 1274 if (!PageLRU(page)) 1275 return ret; 1276 1277 /* Compaction should not handle unevictable pages but CMA can do so */ 1278 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE)) 1279 return ret; 1280 1281 ret = -EBUSY; 1282 1283 /* 1284 * To minimise LRU disruption, the caller can indicate that it only 1285 * wants to isolate pages it will be able to operate on without 1286 * blocking - clean pages for the most part. 1287 * 1288 * ISOLATE_CLEAN means that only clean pages should be isolated. This 1289 * is used by reclaim when it is cannot write to backing storage 1290 * 1291 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages 1292 * that it is possible to migrate without blocking 1293 */ 1294 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) { 1295 /* All the caller can do on PageWriteback is block */ 1296 if (PageWriteback(page)) 1297 return ret; 1298 1299 if (PageDirty(page)) { 1300 struct address_space *mapping; 1301 1302 /* ISOLATE_CLEAN means only clean pages */ 1303 if (mode & ISOLATE_CLEAN) 1304 return ret; 1305 1306 /* 1307 * Only pages without mappings or that have a 1308 * ->migratepage callback are possible to migrate 1309 * without blocking 1310 */ 1311 mapping = page_mapping(page); 1312 if (mapping && !mapping->a_ops->migratepage) 1313 return ret; 1314 } 1315 } 1316 1317 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page)) 1318 return ret; 1319 1320 if (likely(get_page_unless_zero(page))) { 1321 /* 1322 * Be careful not to clear PageLRU until after we're 1323 * sure the page is not being freed elsewhere -- the 1324 * page release code relies on it. 1325 */ 1326 ClearPageLRU(page); 1327 ret = 0; 1328 } 1329 1330 return ret; 1331 } 1332 1333 /* 1334 * zone->lru_lock is heavily contended. Some of the functions that 1335 * shrink the lists perform better by taking out a batch of pages 1336 * and working on them outside the LRU lock. 1337 * 1338 * For pagecache intensive workloads, this function is the hottest 1339 * spot in the kernel (apart from copy_*_user functions). 1340 * 1341 * Appropriate locks must be held before calling this function. 1342 * 1343 * @nr_to_scan: The number of pages to look through on the list. 1344 * @lruvec: The LRU vector to pull pages from. 1345 * @dst: The temp list to put pages on to. 1346 * @nr_scanned: The number of pages that were scanned. 1347 * @sc: The scan_control struct for this reclaim session 1348 * @mode: One of the LRU isolation modes 1349 * @lru: LRU list id for isolating 1350 * 1351 * returns how many pages were moved onto *@dst. 1352 */ 1353 static unsigned long isolate_lru_pages(unsigned long nr_to_scan, 1354 struct lruvec *lruvec, struct list_head *dst, 1355 unsigned long *nr_scanned, struct scan_control *sc, 1356 isolate_mode_t mode, enum lru_list lru) 1357 { 1358 struct list_head *src = &lruvec->lists[lru]; 1359 unsigned long nr_taken = 0; 1360 unsigned long scan; 1361 1362 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) { 1363 struct page *page; 1364 int nr_pages; 1365 1366 page = lru_to_page(src); 1367 prefetchw_prev_lru_page(page, src, flags); 1368 1369 VM_BUG_ON_PAGE(!PageLRU(page), page); 1370 1371 switch (__isolate_lru_page(page, mode)) { 1372 case 0: 1373 nr_pages = hpage_nr_pages(page); 1374 mem_cgroup_update_lru_size(lruvec, lru, -nr_pages); 1375 list_move(&page->lru, dst); 1376 nr_taken += nr_pages; 1377 break; 1378 1379 case -EBUSY: 1380 /* else it is being freed elsewhere */ 1381 list_move(&page->lru, src); 1382 continue; 1383 1384 default: 1385 BUG(); 1386 } 1387 } 1388 1389 *nr_scanned = scan; 1390 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan, 1391 nr_taken, mode, is_file_lru(lru)); 1392 return nr_taken; 1393 } 1394 1395 /** 1396 * isolate_lru_page - tries to isolate a page from its LRU list 1397 * @page: page to isolate from its LRU list 1398 * 1399 * Isolates a @page from an LRU list, clears PageLRU and adjusts the 1400 * vmstat statistic corresponding to whatever LRU list the page was on. 1401 * 1402 * Returns 0 if the page was removed from an LRU list. 1403 * Returns -EBUSY if the page was not on an LRU list. 1404 * 1405 * The returned page will have PageLRU() cleared. If it was found on 1406 * the active list, it will have PageActive set. If it was found on 1407 * the unevictable list, it will have the PageUnevictable bit set. That flag 1408 * may need to be cleared by the caller before letting the page go. 1409 * 1410 * The vmstat statistic corresponding to the list on which the page was 1411 * found will be decremented. 1412 * 1413 * Restrictions: 1414 * (1) Must be called with an elevated refcount on the page. This is a 1415 * fundamentnal difference from isolate_lru_pages (which is called 1416 * without a stable reference). 1417 * (2) the lru_lock must not be held. 1418 * (3) interrupts must be enabled. 1419 */ 1420 int isolate_lru_page(struct page *page) 1421 { 1422 int ret = -EBUSY; 1423 1424 VM_BUG_ON_PAGE(!page_count(page), page); 1425 1426 if (PageLRU(page)) { 1427 struct zone *zone = page_zone(page); 1428 struct lruvec *lruvec; 1429 1430 spin_lock_irq(&zone->lru_lock); 1431 lruvec = mem_cgroup_page_lruvec(page, zone); 1432 if (PageLRU(page)) { 1433 int lru = page_lru(page); 1434 get_page(page); 1435 ClearPageLRU(page); 1436 del_page_from_lru_list(page, lruvec, lru); 1437 ret = 0; 1438 } 1439 spin_unlock_irq(&zone->lru_lock); 1440 } 1441 return ret; 1442 } 1443 1444 /* 1445 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 1446 * then get resheduled. When there are massive number of tasks doing page 1447 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 1448 * the LRU list will go small and be scanned faster than necessary, leading to 1449 * unnecessary swapping, thrashing and OOM. 1450 */ 1451 static int too_many_isolated(struct zone *zone, int file, 1452 struct scan_control *sc) 1453 { 1454 unsigned long inactive, isolated; 1455 1456 if (current_is_kswapd()) 1457 return 0; 1458 1459 if (!sane_reclaim(sc)) 1460 return 0; 1461 1462 if (file) { 1463 inactive = zone_page_state(zone, NR_INACTIVE_FILE); 1464 isolated = zone_page_state(zone, NR_ISOLATED_FILE); 1465 } else { 1466 inactive = zone_page_state(zone, NR_INACTIVE_ANON); 1467 isolated = zone_page_state(zone, NR_ISOLATED_ANON); 1468 } 1469 1470 /* 1471 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 1472 * won't get blocked by normal direct-reclaimers, forming a circular 1473 * deadlock. 1474 */ 1475 if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS) 1476 inactive >>= 3; 1477 1478 return isolated > inactive; 1479 } 1480 1481 static noinline_for_stack void 1482 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list) 1483 { 1484 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1485 struct zone *zone = lruvec_zone(lruvec); 1486 LIST_HEAD(pages_to_free); 1487 1488 /* 1489 * Put back any unfreeable pages. 1490 */ 1491 while (!list_empty(page_list)) { 1492 struct page *page = lru_to_page(page_list); 1493 int lru; 1494 1495 VM_BUG_ON_PAGE(PageLRU(page), page); 1496 list_del(&page->lru); 1497 if (unlikely(!page_evictable(page))) { 1498 spin_unlock_irq(&zone->lru_lock); 1499 putback_lru_page(page); 1500 spin_lock_irq(&zone->lru_lock); 1501 continue; 1502 } 1503 1504 lruvec = mem_cgroup_page_lruvec(page, zone); 1505 1506 SetPageLRU(page); 1507 lru = page_lru(page); 1508 add_page_to_lru_list(page, lruvec, lru); 1509 1510 if (is_active_lru(lru)) { 1511 int file = is_file_lru(lru); 1512 int numpages = hpage_nr_pages(page); 1513 reclaim_stat->recent_rotated[file] += numpages; 1514 } 1515 if (put_page_testzero(page)) { 1516 __ClearPageLRU(page); 1517 __ClearPageActive(page); 1518 del_page_from_lru_list(page, lruvec, lru); 1519 1520 if (unlikely(PageCompound(page))) { 1521 spin_unlock_irq(&zone->lru_lock); 1522 mem_cgroup_uncharge(page); 1523 (*get_compound_page_dtor(page))(page); 1524 spin_lock_irq(&zone->lru_lock); 1525 } else 1526 list_add(&page->lru, &pages_to_free); 1527 } 1528 } 1529 1530 /* 1531 * To save our caller's stack, now use input list for pages to free. 1532 */ 1533 list_splice(&pages_to_free, page_list); 1534 } 1535 1536 /* 1537 * If a kernel thread (such as nfsd for loop-back mounts) services 1538 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE. 1539 * In that case we should only throttle if the backing device it is 1540 * writing to is congested. In other cases it is safe to throttle. 1541 */ 1542 static int current_may_throttle(void) 1543 { 1544 return !(current->flags & PF_LESS_THROTTLE) || 1545 current->backing_dev_info == NULL || 1546 bdi_write_congested(current->backing_dev_info); 1547 } 1548 1549 /* 1550 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number 1551 * of reclaimed pages 1552 */ 1553 static noinline_for_stack unsigned long 1554 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, 1555 struct scan_control *sc, enum lru_list lru) 1556 { 1557 LIST_HEAD(page_list); 1558 unsigned long nr_scanned; 1559 unsigned long nr_reclaimed = 0; 1560 unsigned long nr_taken; 1561 unsigned long nr_dirty = 0; 1562 unsigned long nr_congested = 0; 1563 unsigned long nr_unqueued_dirty = 0; 1564 unsigned long nr_writeback = 0; 1565 unsigned long nr_immediate = 0; 1566 isolate_mode_t isolate_mode = 0; 1567 int file = is_file_lru(lru); 1568 struct zone *zone = lruvec_zone(lruvec); 1569 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1570 1571 while (unlikely(too_many_isolated(zone, file, sc))) { 1572 congestion_wait(BLK_RW_ASYNC, HZ/10); 1573 1574 /* We are about to die and free our memory. Return now. */ 1575 if (fatal_signal_pending(current)) 1576 return SWAP_CLUSTER_MAX; 1577 } 1578 1579 lru_add_drain(); 1580 1581 if (!sc->may_unmap) 1582 isolate_mode |= ISOLATE_UNMAPPED; 1583 if (!sc->may_writepage) 1584 isolate_mode |= ISOLATE_CLEAN; 1585 1586 spin_lock_irq(&zone->lru_lock); 1587 1588 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list, 1589 &nr_scanned, sc, isolate_mode, lru); 1590 1591 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken); 1592 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken); 1593 1594 if (global_reclaim(sc)) { 1595 __mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned); 1596 if (current_is_kswapd()) 1597 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned); 1598 else 1599 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned); 1600 } 1601 spin_unlock_irq(&zone->lru_lock); 1602 1603 if (nr_taken == 0) 1604 return 0; 1605 1606 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP, 1607 &nr_dirty, &nr_unqueued_dirty, &nr_congested, 1608 &nr_writeback, &nr_immediate, 1609 false); 1610 1611 spin_lock_irq(&zone->lru_lock); 1612 1613 reclaim_stat->recent_scanned[file] += nr_taken; 1614 1615 if (global_reclaim(sc)) { 1616 if (current_is_kswapd()) 1617 __count_zone_vm_events(PGSTEAL_KSWAPD, zone, 1618 nr_reclaimed); 1619 else 1620 __count_zone_vm_events(PGSTEAL_DIRECT, zone, 1621 nr_reclaimed); 1622 } 1623 1624 putback_inactive_pages(lruvec, &page_list); 1625 1626 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken); 1627 1628 spin_unlock_irq(&zone->lru_lock); 1629 1630 mem_cgroup_uncharge_list(&page_list); 1631 free_hot_cold_page_list(&page_list, true); 1632 1633 /* 1634 * If reclaim is isolating dirty pages under writeback, it implies 1635 * that the long-lived page allocation rate is exceeding the page 1636 * laundering rate. Either the global limits are not being effective 1637 * at throttling processes due to the page distribution throughout 1638 * zones or there is heavy usage of a slow backing device. The 1639 * only option is to throttle from reclaim context which is not ideal 1640 * as there is no guarantee the dirtying process is throttled in the 1641 * same way balance_dirty_pages() manages. 1642 * 1643 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number 1644 * of pages under pages flagged for immediate reclaim and stall if any 1645 * are encountered in the nr_immediate check below. 1646 */ 1647 if (nr_writeback && nr_writeback == nr_taken) 1648 set_bit(ZONE_WRITEBACK, &zone->flags); 1649 1650 /* 1651 * Legacy memcg will stall in page writeback so avoid forcibly 1652 * stalling here. 1653 */ 1654 if (sane_reclaim(sc)) { 1655 /* 1656 * Tag a zone as congested if all the dirty pages scanned were 1657 * backed by a congested BDI and wait_iff_congested will stall. 1658 */ 1659 if (nr_dirty && nr_dirty == nr_congested) 1660 set_bit(ZONE_CONGESTED, &zone->flags); 1661 1662 /* 1663 * If dirty pages are scanned that are not queued for IO, it 1664 * implies that flushers are not keeping up. In this case, flag 1665 * the zone ZONE_DIRTY and kswapd will start writing pages from 1666 * reclaim context. 1667 */ 1668 if (nr_unqueued_dirty == nr_taken) 1669 set_bit(ZONE_DIRTY, &zone->flags); 1670 1671 /* 1672 * If kswapd scans pages marked marked for immediate 1673 * reclaim and under writeback (nr_immediate), it implies 1674 * that pages are cycling through the LRU faster than 1675 * they are written so also forcibly stall. 1676 */ 1677 if (nr_immediate && current_may_throttle()) 1678 congestion_wait(BLK_RW_ASYNC, HZ/10); 1679 } 1680 1681 /* 1682 * Stall direct reclaim for IO completions if underlying BDIs or zone 1683 * is congested. Allow kswapd to continue until it starts encountering 1684 * unqueued dirty pages or cycling through the LRU too quickly. 1685 */ 1686 if (!sc->hibernation_mode && !current_is_kswapd() && 1687 current_may_throttle()) 1688 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10); 1689 1690 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id, 1691 zone_idx(zone), 1692 nr_scanned, nr_reclaimed, 1693 sc->priority, 1694 trace_shrink_flags(file)); 1695 return nr_reclaimed; 1696 } 1697 1698 /* 1699 * This moves pages from the active list to the inactive list. 1700 * 1701 * We move them the other way if the page is referenced by one or more 1702 * processes, from rmap. 1703 * 1704 * If the pages are mostly unmapped, the processing is fast and it is 1705 * appropriate to hold zone->lru_lock across the whole operation. But if 1706 * the pages are mapped, the processing is slow (page_referenced()) so we 1707 * should drop zone->lru_lock around each page. It's impossible to balance 1708 * this, so instead we remove the pages from the LRU while processing them. 1709 * It is safe to rely on PG_active against the non-LRU pages in here because 1710 * nobody will play with that bit on a non-LRU page. 1711 * 1712 * The downside is that we have to touch page->_count against each page. 1713 * But we had to alter page->flags anyway. 1714 */ 1715 1716 static void move_active_pages_to_lru(struct lruvec *lruvec, 1717 struct list_head *list, 1718 struct list_head *pages_to_free, 1719 enum lru_list lru) 1720 { 1721 struct zone *zone = lruvec_zone(lruvec); 1722 unsigned long pgmoved = 0; 1723 struct page *page; 1724 int nr_pages; 1725 1726 while (!list_empty(list)) { 1727 page = lru_to_page(list); 1728 lruvec = mem_cgroup_page_lruvec(page, zone); 1729 1730 VM_BUG_ON_PAGE(PageLRU(page), page); 1731 SetPageLRU(page); 1732 1733 nr_pages = hpage_nr_pages(page); 1734 mem_cgroup_update_lru_size(lruvec, lru, nr_pages); 1735 list_move(&page->lru, &lruvec->lists[lru]); 1736 pgmoved += nr_pages; 1737 1738 if (put_page_testzero(page)) { 1739 __ClearPageLRU(page); 1740 __ClearPageActive(page); 1741 del_page_from_lru_list(page, lruvec, lru); 1742 1743 if (unlikely(PageCompound(page))) { 1744 spin_unlock_irq(&zone->lru_lock); 1745 mem_cgroup_uncharge(page); 1746 (*get_compound_page_dtor(page))(page); 1747 spin_lock_irq(&zone->lru_lock); 1748 } else 1749 list_add(&page->lru, pages_to_free); 1750 } 1751 } 1752 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved); 1753 if (!is_active_lru(lru)) 1754 __count_vm_events(PGDEACTIVATE, pgmoved); 1755 } 1756 1757 static void shrink_active_list(unsigned long nr_to_scan, 1758 struct lruvec *lruvec, 1759 struct scan_control *sc, 1760 enum lru_list lru) 1761 { 1762 unsigned long nr_taken; 1763 unsigned long nr_scanned; 1764 unsigned long vm_flags; 1765 LIST_HEAD(l_hold); /* The pages which were snipped off */ 1766 LIST_HEAD(l_active); 1767 LIST_HEAD(l_inactive); 1768 struct page *page; 1769 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1770 unsigned long nr_rotated = 0; 1771 isolate_mode_t isolate_mode = 0; 1772 int file = is_file_lru(lru); 1773 struct zone *zone = lruvec_zone(lruvec); 1774 1775 lru_add_drain(); 1776 1777 if (!sc->may_unmap) 1778 isolate_mode |= ISOLATE_UNMAPPED; 1779 if (!sc->may_writepage) 1780 isolate_mode |= ISOLATE_CLEAN; 1781 1782 spin_lock_irq(&zone->lru_lock); 1783 1784 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold, 1785 &nr_scanned, sc, isolate_mode, lru); 1786 if (global_reclaim(sc)) 1787 __mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned); 1788 1789 reclaim_stat->recent_scanned[file] += nr_taken; 1790 1791 __count_zone_vm_events(PGREFILL, zone, nr_scanned); 1792 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken); 1793 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken); 1794 spin_unlock_irq(&zone->lru_lock); 1795 1796 while (!list_empty(&l_hold)) { 1797 cond_resched(); 1798 page = lru_to_page(&l_hold); 1799 list_del(&page->lru); 1800 1801 if (unlikely(!page_evictable(page))) { 1802 putback_lru_page(page); 1803 continue; 1804 } 1805 1806 if (unlikely(buffer_heads_over_limit)) { 1807 if (page_has_private(page) && trylock_page(page)) { 1808 if (page_has_private(page)) 1809 try_to_release_page(page, 0); 1810 unlock_page(page); 1811 } 1812 } 1813 1814 if (page_referenced(page, 0, sc->target_mem_cgroup, 1815 &vm_flags)) { 1816 nr_rotated += hpage_nr_pages(page); 1817 /* 1818 * Identify referenced, file-backed active pages and 1819 * give them one more trip around the active list. So 1820 * that executable code get better chances to stay in 1821 * memory under moderate memory pressure. Anon pages 1822 * are not likely to be evicted by use-once streaming 1823 * IO, plus JVM can create lots of anon VM_EXEC pages, 1824 * so we ignore them here. 1825 */ 1826 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) { 1827 list_add(&page->lru, &l_active); 1828 continue; 1829 } 1830 } 1831 1832 ClearPageActive(page); /* we are de-activating */ 1833 list_add(&page->lru, &l_inactive); 1834 } 1835 1836 /* 1837 * Move pages back to the lru list. 1838 */ 1839 spin_lock_irq(&zone->lru_lock); 1840 /* 1841 * Count referenced pages from currently used mappings as rotated, 1842 * even though only some of them are actually re-activated. This 1843 * helps balance scan pressure between file and anonymous pages in 1844 * get_scan_count. 1845 */ 1846 reclaim_stat->recent_rotated[file] += nr_rotated; 1847 1848 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru); 1849 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE); 1850 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken); 1851 spin_unlock_irq(&zone->lru_lock); 1852 1853 mem_cgroup_uncharge_list(&l_hold); 1854 free_hot_cold_page_list(&l_hold, true); 1855 } 1856 1857 #ifdef CONFIG_SWAP 1858 static int inactive_anon_is_low_global(struct zone *zone) 1859 { 1860 unsigned long active, inactive; 1861 1862 active = zone_page_state(zone, NR_ACTIVE_ANON); 1863 inactive = zone_page_state(zone, NR_INACTIVE_ANON); 1864 1865 if (inactive * zone->inactive_ratio < active) 1866 return 1; 1867 1868 return 0; 1869 } 1870 1871 /** 1872 * inactive_anon_is_low - check if anonymous pages need to be deactivated 1873 * @lruvec: LRU vector to check 1874 * 1875 * Returns true if the zone does not have enough inactive anon pages, 1876 * meaning some active anon pages need to be deactivated. 1877 */ 1878 static int inactive_anon_is_low(struct lruvec *lruvec) 1879 { 1880 /* 1881 * If we don't have swap space, anonymous page deactivation 1882 * is pointless. 1883 */ 1884 if (!total_swap_pages) 1885 return 0; 1886 1887 if (!mem_cgroup_disabled()) 1888 return mem_cgroup_inactive_anon_is_low(lruvec); 1889 1890 return inactive_anon_is_low_global(lruvec_zone(lruvec)); 1891 } 1892 #else 1893 static inline int inactive_anon_is_low(struct lruvec *lruvec) 1894 { 1895 return 0; 1896 } 1897 #endif 1898 1899 /** 1900 * inactive_file_is_low - check if file pages need to be deactivated 1901 * @lruvec: LRU vector to check 1902 * 1903 * When the system is doing streaming IO, memory pressure here 1904 * ensures that active file pages get deactivated, until more 1905 * than half of the file pages are on the inactive list. 1906 * 1907 * Once we get to that situation, protect the system's working 1908 * set from being evicted by disabling active file page aging. 1909 * 1910 * This uses a different ratio than the anonymous pages, because 1911 * the page cache uses a use-once replacement algorithm. 1912 */ 1913 static int inactive_file_is_low(struct lruvec *lruvec) 1914 { 1915 unsigned long inactive; 1916 unsigned long active; 1917 1918 inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE); 1919 active = get_lru_size(lruvec, LRU_ACTIVE_FILE); 1920 1921 return active > inactive; 1922 } 1923 1924 static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru) 1925 { 1926 if (is_file_lru(lru)) 1927 return inactive_file_is_low(lruvec); 1928 else 1929 return inactive_anon_is_low(lruvec); 1930 } 1931 1932 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 1933 struct lruvec *lruvec, struct scan_control *sc) 1934 { 1935 if (is_active_lru(lru)) { 1936 if (inactive_list_is_low(lruvec, lru)) 1937 shrink_active_list(nr_to_scan, lruvec, sc, lru); 1938 return 0; 1939 } 1940 1941 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 1942 } 1943 1944 enum scan_balance { 1945 SCAN_EQUAL, 1946 SCAN_FRACT, 1947 SCAN_ANON, 1948 SCAN_FILE, 1949 }; 1950 1951 /* 1952 * Determine how aggressively the anon and file LRU lists should be 1953 * scanned. The relative value of each set of LRU lists is determined 1954 * by looking at the fraction of the pages scanned we did rotate back 1955 * onto the active list instead of evict. 1956 * 1957 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan 1958 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan 1959 */ 1960 static void get_scan_count(struct lruvec *lruvec, int swappiness, 1961 struct scan_control *sc, unsigned long *nr, 1962 unsigned long *lru_pages) 1963 { 1964 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1965 u64 fraction[2]; 1966 u64 denominator = 0; /* gcc */ 1967 struct zone *zone = lruvec_zone(lruvec); 1968 unsigned long anon_prio, file_prio; 1969 enum scan_balance scan_balance; 1970 unsigned long anon, file; 1971 bool force_scan = false; 1972 unsigned long ap, fp; 1973 enum lru_list lru; 1974 bool some_scanned; 1975 int pass; 1976 1977 /* 1978 * If the zone or memcg is small, nr[l] can be 0. This 1979 * results in no scanning on this priority and a potential 1980 * priority drop. Global direct reclaim can go to the next 1981 * zone and tends to have no problems. Global kswapd is for 1982 * zone balancing and it needs to scan a minimum amount. When 1983 * reclaiming for a memcg, a priority drop can cause high 1984 * latencies, so it's better to scan a minimum amount there as 1985 * well. 1986 */ 1987 if (current_is_kswapd()) { 1988 if (!zone_reclaimable(zone)) 1989 force_scan = true; 1990 if (!mem_cgroup_lruvec_online(lruvec)) 1991 force_scan = true; 1992 } 1993 if (!global_reclaim(sc)) 1994 force_scan = true; 1995 1996 /* If we have no swap space, do not bother scanning anon pages. */ 1997 if (!sc->may_swap || (get_nr_swap_pages() <= 0)) { 1998 scan_balance = SCAN_FILE; 1999 goto out; 2000 } 2001 2002 /* 2003 * Global reclaim will swap to prevent OOM even with no 2004 * swappiness, but memcg users want to use this knob to 2005 * disable swapping for individual groups completely when 2006 * using the memory controller's swap limit feature would be 2007 * too expensive. 2008 */ 2009 if (!global_reclaim(sc) && !swappiness) { 2010 scan_balance = SCAN_FILE; 2011 goto out; 2012 } 2013 2014 /* 2015 * Do not apply any pressure balancing cleverness when the 2016 * system is close to OOM, scan both anon and file equally 2017 * (unless the swappiness setting disagrees with swapping). 2018 */ 2019 if (!sc->priority && swappiness) { 2020 scan_balance = SCAN_EQUAL; 2021 goto out; 2022 } 2023 2024 /* 2025 * Prevent the reclaimer from falling into the cache trap: as 2026 * cache pages start out inactive, every cache fault will tip 2027 * the scan balance towards the file LRU. And as the file LRU 2028 * shrinks, so does the window for rotation from references. 2029 * This means we have a runaway feedback loop where a tiny 2030 * thrashing file LRU becomes infinitely more attractive than 2031 * anon pages. Try to detect this based on file LRU size. 2032 */ 2033 if (global_reclaim(sc)) { 2034 unsigned long zonefile; 2035 unsigned long zonefree; 2036 2037 zonefree = zone_page_state(zone, NR_FREE_PAGES); 2038 zonefile = zone_page_state(zone, NR_ACTIVE_FILE) + 2039 zone_page_state(zone, NR_INACTIVE_FILE); 2040 2041 if (unlikely(zonefile + zonefree <= high_wmark_pages(zone))) { 2042 scan_balance = SCAN_ANON; 2043 goto out; 2044 } 2045 } 2046 2047 /* 2048 * There is enough inactive page cache, do not reclaim 2049 * anything from the anonymous working set right now. 2050 */ 2051 if (!inactive_file_is_low(lruvec)) { 2052 scan_balance = SCAN_FILE; 2053 goto out; 2054 } 2055 2056 scan_balance = SCAN_FRACT; 2057 2058 /* 2059 * With swappiness at 100, anonymous and file have the same priority. 2060 * This scanning priority is essentially the inverse of IO cost. 2061 */ 2062 anon_prio = swappiness; 2063 file_prio = 200 - anon_prio; 2064 2065 /* 2066 * OK, so we have swap space and a fair amount of page cache 2067 * pages. We use the recently rotated / recently scanned 2068 * ratios to determine how valuable each cache is. 2069 * 2070 * Because workloads change over time (and to avoid overflow) 2071 * we keep these statistics as a floating average, which ends 2072 * up weighing recent references more than old ones. 2073 * 2074 * anon in [0], file in [1] 2075 */ 2076 2077 anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) + 2078 get_lru_size(lruvec, LRU_INACTIVE_ANON); 2079 file = get_lru_size(lruvec, LRU_ACTIVE_FILE) + 2080 get_lru_size(lruvec, LRU_INACTIVE_FILE); 2081 2082 spin_lock_irq(&zone->lru_lock); 2083 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) { 2084 reclaim_stat->recent_scanned[0] /= 2; 2085 reclaim_stat->recent_rotated[0] /= 2; 2086 } 2087 2088 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) { 2089 reclaim_stat->recent_scanned[1] /= 2; 2090 reclaim_stat->recent_rotated[1] /= 2; 2091 } 2092 2093 /* 2094 * The amount of pressure on anon vs file pages is inversely 2095 * proportional to the fraction of recently scanned pages on 2096 * each list that were recently referenced and in active use. 2097 */ 2098 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1); 2099 ap /= reclaim_stat->recent_rotated[0] + 1; 2100 2101 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1); 2102 fp /= reclaim_stat->recent_rotated[1] + 1; 2103 spin_unlock_irq(&zone->lru_lock); 2104 2105 fraction[0] = ap; 2106 fraction[1] = fp; 2107 denominator = ap + fp + 1; 2108 out: 2109 some_scanned = false; 2110 /* Only use force_scan on second pass. */ 2111 for (pass = 0; !some_scanned && pass < 2; pass++) { 2112 *lru_pages = 0; 2113 for_each_evictable_lru(lru) { 2114 int file = is_file_lru(lru); 2115 unsigned long size; 2116 unsigned long scan; 2117 2118 size = get_lru_size(lruvec, lru); 2119 scan = size >> sc->priority; 2120 2121 if (!scan && pass && force_scan) 2122 scan = min(size, SWAP_CLUSTER_MAX); 2123 2124 switch (scan_balance) { 2125 case SCAN_EQUAL: 2126 /* Scan lists relative to size */ 2127 break; 2128 case SCAN_FRACT: 2129 /* 2130 * Scan types proportional to swappiness and 2131 * their relative recent reclaim efficiency. 2132 */ 2133 scan = div64_u64(scan * fraction[file], 2134 denominator); 2135 break; 2136 case SCAN_FILE: 2137 case SCAN_ANON: 2138 /* Scan one type exclusively */ 2139 if ((scan_balance == SCAN_FILE) != file) { 2140 size = 0; 2141 scan = 0; 2142 } 2143 break; 2144 default: 2145 /* Look ma, no brain */ 2146 BUG(); 2147 } 2148 2149 *lru_pages += size; 2150 nr[lru] = scan; 2151 2152 /* 2153 * Skip the second pass and don't force_scan, 2154 * if we found something to scan. 2155 */ 2156 some_scanned |= !!scan; 2157 } 2158 } 2159 } 2160 2161 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 2162 static void init_tlb_ubc(void) 2163 { 2164 /* 2165 * This deliberately does not clear the cpumask as it's expensive 2166 * and unnecessary. If there happens to be data in there then the 2167 * first SWAP_CLUSTER_MAX pages will send an unnecessary IPI and 2168 * then will be cleared. 2169 */ 2170 current->tlb_ubc.flush_required = false; 2171 } 2172 #else 2173 static inline void init_tlb_ubc(void) 2174 { 2175 } 2176 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ 2177 2178 /* 2179 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim. 2180 */ 2181 static void shrink_lruvec(struct lruvec *lruvec, int swappiness, 2182 struct scan_control *sc, unsigned long *lru_pages) 2183 { 2184 unsigned long nr[NR_LRU_LISTS]; 2185 unsigned long targets[NR_LRU_LISTS]; 2186 unsigned long nr_to_scan; 2187 enum lru_list lru; 2188 unsigned long nr_reclaimed = 0; 2189 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 2190 struct blk_plug plug; 2191 bool scan_adjusted; 2192 2193 get_scan_count(lruvec, swappiness, sc, nr, lru_pages); 2194 2195 /* Record the original scan target for proportional adjustments later */ 2196 memcpy(targets, nr, sizeof(nr)); 2197 2198 /* 2199 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal 2200 * event that can occur when there is little memory pressure e.g. 2201 * multiple streaming readers/writers. Hence, we do not abort scanning 2202 * when the requested number of pages are reclaimed when scanning at 2203 * DEF_PRIORITY on the assumption that the fact we are direct 2204 * reclaiming implies that kswapd is not keeping up and it is best to 2205 * do a batch of work at once. For memcg reclaim one check is made to 2206 * abort proportional reclaim if either the file or anon lru has already 2207 * dropped to zero at the first pass. 2208 */ 2209 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() && 2210 sc->priority == DEF_PRIORITY); 2211 2212 init_tlb_ubc(); 2213 2214 blk_start_plug(&plug); 2215 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 2216 nr[LRU_INACTIVE_FILE]) { 2217 unsigned long nr_anon, nr_file, percentage; 2218 unsigned long nr_scanned; 2219 2220 for_each_evictable_lru(lru) { 2221 if (nr[lru]) { 2222 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 2223 nr[lru] -= nr_to_scan; 2224 2225 nr_reclaimed += shrink_list(lru, nr_to_scan, 2226 lruvec, sc); 2227 } 2228 } 2229 2230 if (nr_reclaimed < nr_to_reclaim || scan_adjusted) 2231 continue; 2232 2233 /* 2234 * For kswapd and memcg, reclaim at least the number of pages 2235 * requested. Ensure that the anon and file LRUs are scanned 2236 * proportionally what was requested by get_scan_count(). We 2237 * stop reclaiming one LRU and reduce the amount scanning 2238 * proportional to the original scan target. 2239 */ 2240 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 2241 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 2242 2243 /* 2244 * It's just vindictive to attack the larger once the smaller 2245 * has gone to zero. And given the way we stop scanning the 2246 * smaller below, this makes sure that we only make one nudge 2247 * towards proportionality once we've got nr_to_reclaim. 2248 */ 2249 if (!nr_file || !nr_anon) 2250 break; 2251 2252 if (nr_file > nr_anon) { 2253 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 2254 targets[LRU_ACTIVE_ANON] + 1; 2255 lru = LRU_BASE; 2256 percentage = nr_anon * 100 / scan_target; 2257 } else { 2258 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 2259 targets[LRU_ACTIVE_FILE] + 1; 2260 lru = LRU_FILE; 2261 percentage = nr_file * 100 / scan_target; 2262 } 2263 2264 /* Stop scanning the smaller of the LRU */ 2265 nr[lru] = 0; 2266 nr[lru + LRU_ACTIVE] = 0; 2267 2268 /* 2269 * Recalculate the other LRU scan count based on its original 2270 * scan target and the percentage scanning already complete 2271 */ 2272 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 2273 nr_scanned = targets[lru] - nr[lru]; 2274 nr[lru] = targets[lru] * (100 - percentage) / 100; 2275 nr[lru] -= min(nr[lru], nr_scanned); 2276 2277 lru += LRU_ACTIVE; 2278 nr_scanned = targets[lru] - nr[lru]; 2279 nr[lru] = targets[lru] * (100 - percentage) / 100; 2280 nr[lru] -= min(nr[lru], nr_scanned); 2281 2282 scan_adjusted = true; 2283 } 2284 blk_finish_plug(&plug); 2285 sc->nr_reclaimed += nr_reclaimed; 2286 2287 /* 2288 * Even if we did not try to evict anon pages at all, we want to 2289 * rebalance the anon lru active/inactive ratio. 2290 */ 2291 if (inactive_anon_is_low(lruvec)) 2292 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 2293 sc, LRU_ACTIVE_ANON); 2294 2295 throttle_vm_writeout(sc->gfp_mask); 2296 } 2297 2298 /* Use reclaim/compaction for costly allocs or under memory pressure */ 2299 static bool in_reclaim_compaction(struct scan_control *sc) 2300 { 2301 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 2302 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 2303 sc->priority < DEF_PRIORITY - 2)) 2304 return true; 2305 2306 return false; 2307 } 2308 2309 /* 2310 * Reclaim/compaction is used for high-order allocation requests. It reclaims 2311 * order-0 pages before compacting the zone. should_continue_reclaim() returns 2312 * true if more pages should be reclaimed such that when the page allocator 2313 * calls try_to_compact_zone() that it will have enough free pages to succeed. 2314 * It will give up earlier than that if there is difficulty reclaiming pages. 2315 */ 2316 static inline bool should_continue_reclaim(struct zone *zone, 2317 unsigned long nr_reclaimed, 2318 unsigned long nr_scanned, 2319 struct scan_control *sc) 2320 { 2321 unsigned long pages_for_compaction; 2322 unsigned long inactive_lru_pages; 2323 2324 /* If not in reclaim/compaction mode, stop */ 2325 if (!in_reclaim_compaction(sc)) 2326 return false; 2327 2328 /* Consider stopping depending on scan and reclaim activity */ 2329 if (sc->gfp_mask & __GFP_REPEAT) { 2330 /* 2331 * For __GFP_REPEAT allocations, stop reclaiming if the 2332 * full LRU list has been scanned and we are still failing 2333 * to reclaim pages. This full LRU scan is potentially 2334 * expensive but a __GFP_REPEAT caller really wants to succeed 2335 */ 2336 if (!nr_reclaimed && !nr_scanned) 2337 return false; 2338 } else { 2339 /* 2340 * For non-__GFP_REPEAT allocations which can presumably 2341 * fail without consequence, stop if we failed to reclaim 2342 * any pages from the last SWAP_CLUSTER_MAX number of 2343 * pages that were scanned. This will return to the 2344 * caller faster at the risk reclaim/compaction and 2345 * the resulting allocation attempt fails 2346 */ 2347 if (!nr_reclaimed) 2348 return false; 2349 } 2350 2351 /* 2352 * If we have not reclaimed enough pages for compaction and the 2353 * inactive lists are large enough, continue reclaiming 2354 */ 2355 pages_for_compaction = (2UL << sc->order); 2356 inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE); 2357 if (get_nr_swap_pages() > 0) 2358 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON); 2359 if (sc->nr_reclaimed < pages_for_compaction && 2360 inactive_lru_pages > pages_for_compaction) 2361 return true; 2362 2363 /* If compaction would go ahead or the allocation would succeed, stop */ 2364 switch (compaction_suitable(zone, sc->order, 0, 0)) { 2365 case COMPACT_PARTIAL: 2366 case COMPACT_CONTINUE: 2367 return false; 2368 default: 2369 return true; 2370 } 2371 } 2372 2373 static bool shrink_zone(struct zone *zone, struct scan_control *sc, 2374 bool is_classzone) 2375 { 2376 struct reclaim_state *reclaim_state = current->reclaim_state; 2377 unsigned long nr_reclaimed, nr_scanned; 2378 bool reclaimable = false; 2379 2380 do { 2381 struct mem_cgroup *root = sc->target_mem_cgroup; 2382 struct mem_cgroup_reclaim_cookie reclaim = { 2383 .zone = zone, 2384 .priority = sc->priority, 2385 }; 2386 unsigned long zone_lru_pages = 0; 2387 struct mem_cgroup *memcg; 2388 2389 nr_reclaimed = sc->nr_reclaimed; 2390 nr_scanned = sc->nr_scanned; 2391 2392 memcg = mem_cgroup_iter(root, NULL, &reclaim); 2393 do { 2394 unsigned long lru_pages; 2395 unsigned long scanned; 2396 struct lruvec *lruvec; 2397 int swappiness; 2398 2399 if (mem_cgroup_low(root, memcg)) { 2400 if (!sc->may_thrash) 2401 continue; 2402 mem_cgroup_events(memcg, MEMCG_LOW, 1); 2403 } 2404 2405 lruvec = mem_cgroup_zone_lruvec(zone, memcg); 2406 swappiness = mem_cgroup_swappiness(memcg); 2407 scanned = sc->nr_scanned; 2408 2409 shrink_lruvec(lruvec, swappiness, sc, &lru_pages); 2410 zone_lru_pages += lru_pages; 2411 2412 if (memcg && is_classzone) 2413 shrink_slab(sc->gfp_mask, zone_to_nid(zone), 2414 memcg, sc->nr_scanned - scanned, 2415 lru_pages); 2416 2417 /* 2418 * Direct reclaim and kswapd have to scan all memory 2419 * cgroups to fulfill the overall scan target for the 2420 * zone. 2421 * 2422 * Limit reclaim, on the other hand, only cares about 2423 * nr_to_reclaim pages to be reclaimed and it will 2424 * retry with decreasing priority if one round over the 2425 * whole hierarchy is not sufficient. 2426 */ 2427 if (!global_reclaim(sc) && 2428 sc->nr_reclaimed >= sc->nr_to_reclaim) { 2429 mem_cgroup_iter_break(root, memcg); 2430 break; 2431 } 2432 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim))); 2433 2434 /* 2435 * Shrink the slab caches in the same proportion that 2436 * the eligible LRU pages were scanned. 2437 */ 2438 if (global_reclaim(sc) && is_classzone) 2439 shrink_slab(sc->gfp_mask, zone_to_nid(zone), NULL, 2440 sc->nr_scanned - nr_scanned, 2441 zone_lru_pages); 2442 2443 if (reclaim_state) { 2444 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 2445 reclaim_state->reclaimed_slab = 0; 2446 } 2447 2448 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, 2449 sc->nr_scanned - nr_scanned, 2450 sc->nr_reclaimed - nr_reclaimed); 2451 2452 if (sc->nr_reclaimed - nr_reclaimed) 2453 reclaimable = true; 2454 2455 } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed, 2456 sc->nr_scanned - nr_scanned, sc)); 2457 2458 return reclaimable; 2459 } 2460 2461 /* 2462 * Returns true if compaction should go ahead for a high-order request, or 2463 * the high-order allocation would succeed without compaction. 2464 */ 2465 static inline bool compaction_ready(struct zone *zone, int order) 2466 { 2467 unsigned long balance_gap, watermark; 2468 bool watermark_ok; 2469 2470 /* 2471 * Compaction takes time to run and there are potentially other 2472 * callers using the pages just freed. Continue reclaiming until 2473 * there is a buffer of free pages available to give compaction 2474 * a reasonable chance of completing and allocating the page 2475 */ 2476 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP( 2477 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO)); 2478 watermark = high_wmark_pages(zone) + balance_gap + (2UL << order); 2479 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0); 2480 2481 /* 2482 * If compaction is deferred, reclaim up to a point where 2483 * compaction will have a chance of success when re-enabled 2484 */ 2485 if (compaction_deferred(zone, order)) 2486 return watermark_ok; 2487 2488 /* 2489 * If compaction is not ready to start and allocation is not likely 2490 * to succeed without it, then keep reclaiming. 2491 */ 2492 if (compaction_suitable(zone, order, 0, 0) == COMPACT_SKIPPED) 2493 return false; 2494 2495 return watermark_ok; 2496 } 2497 2498 /* 2499 * This is the direct reclaim path, for page-allocating processes. We only 2500 * try to reclaim pages from zones which will satisfy the caller's allocation 2501 * request. 2502 * 2503 * We reclaim from a zone even if that zone is over high_wmark_pages(zone). 2504 * Because: 2505 * a) The caller may be trying to free *extra* pages to satisfy a higher-order 2506 * allocation or 2507 * b) The target zone may be at high_wmark_pages(zone) but the lower zones 2508 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min' 2509 * zone defense algorithm. 2510 * 2511 * If a zone is deemed to be full of pinned pages then just give it a light 2512 * scan then give up on it. 2513 * 2514 * Returns true if a zone was reclaimable. 2515 */ 2516 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 2517 { 2518 struct zoneref *z; 2519 struct zone *zone; 2520 unsigned long nr_soft_reclaimed; 2521 unsigned long nr_soft_scanned; 2522 gfp_t orig_mask; 2523 enum zone_type requested_highidx = gfp_zone(sc->gfp_mask); 2524 bool reclaimable = false; 2525 2526 /* 2527 * If the number of buffer_heads in the machine exceeds the maximum 2528 * allowed level, force direct reclaim to scan the highmem zone as 2529 * highmem pages could be pinning lowmem pages storing buffer_heads 2530 */ 2531 orig_mask = sc->gfp_mask; 2532 if (buffer_heads_over_limit) 2533 sc->gfp_mask |= __GFP_HIGHMEM; 2534 2535 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2536 requested_highidx, sc->nodemask) { 2537 enum zone_type classzone_idx; 2538 2539 if (!populated_zone(zone)) 2540 continue; 2541 2542 classzone_idx = requested_highidx; 2543 while (!populated_zone(zone->zone_pgdat->node_zones + 2544 classzone_idx)) 2545 classzone_idx--; 2546 2547 /* 2548 * Take care memory controller reclaiming has small influence 2549 * to global LRU. 2550 */ 2551 if (global_reclaim(sc)) { 2552 if (!cpuset_zone_allowed(zone, 2553 GFP_KERNEL | __GFP_HARDWALL)) 2554 continue; 2555 2556 if (sc->priority != DEF_PRIORITY && 2557 !zone_reclaimable(zone)) 2558 continue; /* Let kswapd poll it */ 2559 2560 /* 2561 * If we already have plenty of memory free for 2562 * compaction in this zone, don't free any more. 2563 * Even though compaction is invoked for any 2564 * non-zero order, only frequent costly order 2565 * reclamation is disruptive enough to become a 2566 * noticeable problem, like transparent huge 2567 * page allocations. 2568 */ 2569 if (IS_ENABLED(CONFIG_COMPACTION) && 2570 sc->order > PAGE_ALLOC_COSTLY_ORDER && 2571 zonelist_zone_idx(z) <= requested_highidx && 2572 compaction_ready(zone, sc->order)) { 2573 sc->compaction_ready = true; 2574 continue; 2575 } 2576 2577 /* 2578 * This steals pages from memory cgroups over softlimit 2579 * and returns the number of reclaimed pages and 2580 * scanned pages. This works for global memory pressure 2581 * and balancing, not for a memcg's limit. 2582 */ 2583 nr_soft_scanned = 0; 2584 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone, 2585 sc->order, sc->gfp_mask, 2586 &nr_soft_scanned); 2587 sc->nr_reclaimed += nr_soft_reclaimed; 2588 sc->nr_scanned += nr_soft_scanned; 2589 if (nr_soft_reclaimed) 2590 reclaimable = true; 2591 /* need some check for avoid more shrink_zone() */ 2592 } 2593 2594 if (shrink_zone(zone, sc, zone_idx(zone) == classzone_idx)) 2595 reclaimable = true; 2596 2597 if (global_reclaim(sc) && 2598 !reclaimable && zone_reclaimable(zone)) 2599 reclaimable = true; 2600 } 2601 2602 /* 2603 * Restore to original mask to avoid the impact on the caller if we 2604 * promoted it to __GFP_HIGHMEM. 2605 */ 2606 sc->gfp_mask = orig_mask; 2607 2608 return reclaimable; 2609 } 2610 2611 /* 2612 * This is the main entry point to direct page reclaim. 2613 * 2614 * If a full scan of the inactive list fails to free enough memory then we 2615 * are "out of memory" and something needs to be killed. 2616 * 2617 * If the caller is !__GFP_FS then the probability of a failure is reasonably 2618 * high - the zone may be full of dirty or under-writeback pages, which this 2619 * caller can't do much about. We kick the writeback threads and take explicit 2620 * naps in the hope that some of these pages can be written. But if the 2621 * allocating task holds filesystem locks which prevent writeout this might not 2622 * work, and the allocation attempt will fail. 2623 * 2624 * returns: 0, if no pages reclaimed 2625 * else, the number of pages reclaimed 2626 */ 2627 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 2628 struct scan_control *sc) 2629 { 2630 int initial_priority = sc->priority; 2631 unsigned long total_scanned = 0; 2632 unsigned long writeback_threshold; 2633 bool zones_reclaimable; 2634 retry: 2635 delayacct_freepages_start(); 2636 2637 if (global_reclaim(sc)) 2638 count_vm_event(ALLOCSTALL); 2639 2640 do { 2641 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 2642 sc->priority); 2643 sc->nr_scanned = 0; 2644 zones_reclaimable = shrink_zones(zonelist, sc); 2645 2646 total_scanned += sc->nr_scanned; 2647 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 2648 break; 2649 2650 if (sc->compaction_ready) 2651 break; 2652 2653 /* 2654 * If we're getting trouble reclaiming, start doing 2655 * writepage even in laptop mode. 2656 */ 2657 if (sc->priority < DEF_PRIORITY - 2) 2658 sc->may_writepage = 1; 2659 2660 /* 2661 * Try to write back as many pages as we just scanned. This 2662 * tends to cause slow streaming writers to write data to the 2663 * disk smoothly, at the dirtying rate, which is nice. But 2664 * that's undesirable in laptop mode, where we *want* lumpy 2665 * writeout. So in laptop mode, write out the whole world. 2666 */ 2667 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2; 2668 if (total_scanned > writeback_threshold) { 2669 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned, 2670 WB_REASON_TRY_TO_FREE_PAGES); 2671 sc->may_writepage = 1; 2672 } 2673 } while (--sc->priority >= 0); 2674 2675 delayacct_freepages_end(); 2676 2677 if (sc->nr_reclaimed) 2678 return sc->nr_reclaimed; 2679 2680 /* Aborted reclaim to try compaction? don't OOM, then */ 2681 if (sc->compaction_ready) 2682 return 1; 2683 2684 /* Untapped cgroup reserves? Don't OOM, retry. */ 2685 if (!sc->may_thrash) { 2686 sc->priority = initial_priority; 2687 sc->may_thrash = 1; 2688 goto retry; 2689 } 2690 2691 /* Any of the zones still reclaimable? Don't OOM. */ 2692 if (zones_reclaimable) 2693 return 1; 2694 2695 return 0; 2696 } 2697 2698 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat) 2699 { 2700 struct zone *zone; 2701 unsigned long pfmemalloc_reserve = 0; 2702 unsigned long free_pages = 0; 2703 int i; 2704 bool wmark_ok; 2705 2706 for (i = 0; i <= ZONE_NORMAL; i++) { 2707 zone = &pgdat->node_zones[i]; 2708 if (!populated_zone(zone) || 2709 zone_reclaimable_pages(zone) == 0) 2710 continue; 2711 2712 pfmemalloc_reserve += min_wmark_pages(zone); 2713 free_pages += zone_page_state(zone, NR_FREE_PAGES); 2714 } 2715 2716 /* If there are no reserves (unexpected config) then do not throttle */ 2717 if (!pfmemalloc_reserve) 2718 return true; 2719 2720 wmark_ok = free_pages > pfmemalloc_reserve / 2; 2721 2722 /* kswapd must be awake if processes are being throttled */ 2723 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 2724 pgdat->classzone_idx = min(pgdat->classzone_idx, 2725 (enum zone_type)ZONE_NORMAL); 2726 wake_up_interruptible(&pgdat->kswapd_wait); 2727 } 2728 2729 return wmark_ok; 2730 } 2731 2732 /* 2733 * Throttle direct reclaimers if backing storage is backed by the network 2734 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 2735 * depleted. kswapd will continue to make progress and wake the processes 2736 * when the low watermark is reached. 2737 * 2738 * Returns true if a fatal signal was delivered during throttling. If this 2739 * happens, the page allocator should not consider triggering the OOM killer. 2740 */ 2741 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 2742 nodemask_t *nodemask) 2743 { 2744 struct zoneref *z; 2745 struct zone *zone; 2746 pg_data_t *pgdat = NULL; 2747 2748 /* 2749 * Kernel threads should not be throttled as they may be indirectly 2750 * responsible for cleaning pages necessary for reclaim to make forward 2751 * progress. kjournald for example may enter direct reclaim while 2752 * committing a transaction where throttling it could forcing other 2753 * processes to block on log_wait_commit(). 2754 */ 2755 if (current->flags & PF_KTHREAD) 2756 goto out; 2757 2758 /* 2759 * If a fatal signal is pending, this process should not throttle. 2760 * It should return quickly so it can exit and free its memory 2761 */ 2762 if (fatal_signal_pending(current)) 2763 goto out; 2764 2765 /* 2766 * Check if the pfmemalloc reserves are ok by finding the first node 2767 * with a usable ZONE_NORMAL or lower zone. The expectation is that 2768 * GFP_KERNEL will be required for allocating network buffers when 2769 * swapping over the network so ZONE_HIGHMEM is unusable. 2770 * 2771 * Throttling is based on the first usable node and throttled processes 2772 * wait on a queue until kswapd makes progress and wakes them. There 2773 * is an affinity then between processes waking up and where reclaim 2774 * progress has been made assuming the process wakes on the same node. 2775 * More importantly, processes running on remote nodes will not compete 2776 * for remote pfmemalloc reserves and processes on different nodes 2777 * should make reasonable progress. 2778 */ 2779 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2780 gfp_zone(gfp_mask), nodemask) { 2781 if (zone_idx(zone) > ZONE_NORMAL) 2782 continue; 2783 2784 /* Throttle based on the first usable node */ 2785 pgdat = zone->zone_pgdat; 2786 if (pfmemalloc_watermark_ok(pgdat)) 2787 goto out; 2788 break; 2789 } 2790 2791 /* If no zone was usable by the allocation flags then do not throttle */ 2792 if (!pgdat) 2793 goto out; 2794 2795 /* Account for the throttling */ 2796 count_vm_event(PGSCAN_DIRECT_THROTTLE); 2797 2798 /* 2799 * If the caller cannot enter the filesystem, it's possible that it 2800 * is due to the caller holding an FS lock or performing a journal 2801 * transaction in the case of a filesystem like ext[3|4]. In this case, 2802 * it is not safe to block on pfmemalloc_wait as kswapd could be 2803 * blocked waiting on the same lock. Instead, throttle for up to a 2804 * second before continuing. 2805 */ 2806 if (!(gfp_mask & __GFP_FS)) { 2807 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 2808 pfmemalloc_watermark_ok(pgdat), HZ); 2809 2810 goto check_pending; 2811 } 2812 2813 /* Throttle until kswapd wakes the process */ 2814 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 2815 pfmemalloc_watermark_ok(pgdat)); 2816 2817 check_pending: 2818 if (fatal_signal_pending(current)) 2819 return true; 2820 2821 out: 2822 return false; 2823 } 2824 2825 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 2826 gfp_t gfp_mask, nodemask_t *nodemask) 2827 { 2828 unsigned long nr_reclaimed; 2829 struct scan_control sc = { 2830 .nr_to_reclaim = SWAP_CLUSTER_MAX, 2831 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)), 2832 .order = order, 2833 .nodemask = nodemask, 2834 .priority = DEF_PRIORITY, 2835 .may_writepage = !laptop_mode, 2836 .may_unmap = 1, 2837 .may_swap = 1, 2838 }; 2839 2840 /* 2841 * Do not enter reclaim if fatal signal was delivered while throttled. 2842 * 1 is returned so that the page allocator does not OOM kill at this 2843 * point. 2844 */ 2845 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask)) 2846 return 1; 2847 2848 trace_mm_vmscan_direct_reclaim_begin(order, 2849 sc.may_writepage, 2850 gfp_mask); 2851 2852 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 2853 2854 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 2855 2856 return nr_reclaimed; 2857 } 2858 2859 #ifdef CONFIG_MEMCG 2860 2861 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg, 2862 gfp_t gfp_mask, bool noswap, 2863 struct zone *zone, 2864 unsigned long *nr_scanned) 2865 { 2866 struct scan_control sc = { 2867 .nr_to_reclaim = SWAP_CLUSTER_MAX, 2868 .target_mem_cgroup = memcg, 2869 .may_writepage = !laptop_mode, 2870 .may_unmap = 1, 2871 .may_swap = !noswap, 2872 }; 2873 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg); 2874 int swappiness = mem_cgroup_swappiness(memcg); 2875 unsigned long lru_pages; 2876 2877 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 2878 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 2879 2880 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 2881 sc.may_writepage, 2882 sc.gfp_mask); 2883 2884 /* 2885 * NOTE: Although we can get the priority field, using it 2886 * here is not a good idea, since it limits the pages we can scan. 2887 * if we don't reclaim here, the shrink_zone from balance_pgdat 2888 * will pick up pages from other mem cgroup's as well. We hack 2889 * the priority and make it zero. 2890 */ 2891 shrink_lruvec(lruvec, swappiness, &sc, &lru_pages); 2892 2893 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 2894 2895 *nr_scanned = sc.nr_scanned; 2896 return sc.nr_reclaimed; 2897 } 2898 2899 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 2900 unsigned long nr_pages, 2901 gfp_t gfp_mask, 2902 bool may_swap) 2903 { 2904 struct zonelist *zonelist; 2905 unsigned long nr_reclaimed; 2906 int nid; 2907 struct scan_control sc = { 2908 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 2909 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 2910 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 2911 .target_mem_cgroup = memcg, 2912 .priority = DEF_PRIORITY, 2913 .may_writepage = !laptop_mode, 2914 .may_unmap = 1, 2915 .may_swap = may_swap, 2916 }; 2917 2918 /* 2919 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't 2920 * take care of from where we get pages. So the node where we start the 2921 * scan does not need to be the current node. 2922 */ 2923 nid = mem_cgroup_select_victim_node(memcg); 2924 2925 zonelist = NODE_DATA(nid)->node_zonelists; 2926 2927 trace_mm_vmscan_memcg_reclaim_begin(0, 2928 sc.may_writepage, 2929 sc.gfp_mask); 2930 2931 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 2932 2933 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 2934 2935 return nr_reclaimed; 2936 } 2937 #endif 2938 2939 static void age_active_anon(struct zone *zone, struct scan_control *sc) 2940 { 2941 struct mem_cgroup *memcg; 2942 2943 if (!total_swap_pages) 2944 return; 2945 2946 memcg = mem_cgroup_iter(NULL, NULL, NULL); 2947 do { 2948 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg); 2949 2950 if (inactive_anon_is_low(lruvec)) 2951 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 2952 sc, LRU_ACTIVE_ANON); 2953 2954 memcg = mem_cgroup_iter(NULL, memcg, NULL); 2955 } while (memcg); 2956 } 2957 2958 static bool zone_balanced(struct zone *zone, int order, 2959 unsigned long balance_gap, int classzone_idx) 2960 { 2961 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) + 2962 balance_gap, classzone_idx, 0)) 2963 return false; 2964 2965 if (IS_ENABLED(CONFIG_COMPACTION) && order && compaction_suitable(zone, 2966 order, 0, classzone_idx) == COMPACT_SKIPPED) 2967 return false; 2968 2969 return true; 2970 } 2971 2972 /* 2973 * pgdat_balanced() is used when checking if a node is balanced. 2974 * 2975 * For order-0, all zones must be balanced! 2976 * 2977 * For high-order allocations only zones that meet watermarks and are in a 2978 * zone allowed by the callers classzone_idx are added to balanced_pages. The 2979 * total of balanced pages must be at least 25% of the zones allowed by 2980 * classzone_idx for the node to be considered balanced. Forcing all zones to 2981 * be balanced for high orders can cause excessive reclaim when there are 2982 * imbalanced zones. 2983 * The choice of 25% is due to 2984 * o a 16M DMA zone that is balanced will not balance a zone on any 2985 * reasonable sized machine 2986 * o On all other machines, the top zone must be at least a reasonable 2987 * percentage of the middle zones. For example, on 32-bit x86, highmem 2988 * would need to be at least 256M for it to be balance a whole node. 2989 * Similarly, on x86-64 the Normal zone would need to be at least 1G 2990 * to balance a node on its own. These seemed like reasonable ratios. 2991 */ 2992 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx) 2993 { 2994 unsigned long managed_pages = 0; 2995 unsigned long balanced_pages = 0; 2996 int i; 2997 2998 /* Check the watermark levels */ 2999 for (i = 0; i <= classzone_idx; i++) { 3000 struct zone *zone = pgdat->node_zones + i; 3001 3002 if (!populated_zone(zone)) 3003 continue; 3004 3005 managed_pages += zone->managed_pages; 3006 3007 /* 3008 * A special case here: 3009 * 3010 * balance_pgdat() skips over all_unreclaimable after 3011 * DEF_PRIORITY. Effectively, it considers them balanced so 3012 * they must be considered balanced here as well! 3013 */ 3014 if (!zone_reclaimable(zone)) { 3015 balanced_pages += zone->managed_pages; 3016 continue; 3017 } 3018 3019 if (zone_balanced(zone, order, 0, i)) 3020 balanced_pages += zone->managed_pages; 3021 else if (!order) 3022 return false; 3023 } 3024 3025 if (order) 3026 return balanced_pages >= (managed_pages >> 2); 3027 else 3028 return true; 3029 } 3030 3031 /* 3032 * Prepare kswapd for sleeping. This verifies that there are no processes 3033 * waiting in throttle_direct_reclaim() and that watermarks have been met. 3034 * 3035 * Returns true if kswapd is ready to sleep 3036 */ 3037 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining, 3038 int classzone_idx) 3039 { 3040 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */ 3041 if (remaining) 3042 return false; 3043 3044 /* 3045 * The throttled processes are normally woken up in balance_pgdat() as 3046 * soon as pfmemalloc_watermark_ok() is true. But there is a potential 3047 * race between when kswapd checks the watermarks and a process gets 3048 * throttled. There is also a potential race if processes get 3049 * throttled, kswapd wakes, a large process exits thereby balancing the 3050 * zones, which causes kswapd to exit balance_pgdat() before reaching 3051 * the wake up checks. If kswapd is going to sleep, no process should 3052 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If 3053 * the wake up is premature, processes will wake kswapd and get 3054 * throttled again. The difference from wake ups in balance_pgdat() is 3055 * that here we are under prepare_to_wait(). 3056 */ 3057 if (waitqueue_active(&pgdat->pfmemalloc_wait)) 3058 wake_up_all(&pgdat->pfmemalloc_wait); 3059 3060 return pgdat_balanced(pgdat, order, classzone_idx); 3061 } 3062 3063 /* 3064 * kswapd shrinks the zone by the number of pages required to reach 3065 * the high watermark. 3066 * 3067 * Returns true if kswapd scanned at least the requested number of pages to 3068 * reclaim or if the lack of progress was due to pages under writeback. 3069 * This is used to determine if the scanning priority needs to be raised. 3070 */ 3071 static bool kswapd_shrink_zone(struct zone *zone, 3072 int classzone_idx, 3073 struct scan_control *sc, 3074 unsigned long *nr_attempted) 3075 { 3076 int testorder = sc->order; 3077 unsigned long balance_gap; 3078 bool lowmem_pressure; 3079 3080 /* Reclaim above the high watermark. */ 3081 sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone)); 3082 3083 /* 3084 * Kswapd reclaims only single pages with compaction enabled. Trying 3085 * too hard to reclaim until contiguous free pages have become 3086 * available can hurt performance by evicting too much useful data 3087 * from memory. Do not reclaim more than needed for compaction. 3088 */ 3089 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 3090 compaction_suitable(zone, sc->order, 0, classzone_idx) 3091 != COMPACT_SKIPPED) 3092 testorder = 0; 3093 3094 /* 3095 * We put equal pressure on every zone, unless one zone has way too 3096 * many pages free already. The "too many pages" is defined as the 3097 * high wmark plus a "gap" where the gap is either the low 3098 * watermark or 1% of the zone, whichever is smaller. 3099 */ 3100 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP( 3101 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO)); 3102 3103 /* 3104 * If there is no low memory pressure or the zone is balanced then no 3105 * reclaim is necessary 3106 */ 3107 lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone)); 3108 if (!lowmem_pressure && zone_balanced(zone, testorder, 3109 balance_gap, classzone_idx)) 3110 return true; 3111 3112 shrink_zone(zone, sc, zone_idx(zone) == classzone_idx); 3113 3114 /* Account for the number of pages attempted to reclaim */ 3115 *nr_attempted += sc->nr_to_reclaim; 3116 3117 clear_bit(ZONE_WRITEBACK, &zone->flags); 3118 3119 /* 3120 * If a zone reaches its high watermark, consider it to be no longer 3121 * congested. It's possible there are dirty pages backed by congested 3122 * BDIs but as pressure is relieved, speculatively avoid congestion 3123 * waits. 3124 */ 3125 if (zone_reclaimable(zone) && 3126 zone_balanced(zone, testorder, 0, classzone_idx)) { 3127 clear_bit(ZONE_CONGESTED, &zone->flags); 3128 clear_bit(ZONE_DIRTY, &zone->flags); 3129 } 3130 3131 return sc->nr_scanned >= sc->nr_to_reclaim; 3132 } 3133 3134 /* 3135 * For kswapd, balance_pgdat() will work across all this node's zones until 3136 * they are all at high_wmark_pages(zone). 3137 * 3138 * Returns the final order kswapd was reclaiming at 3139 * 3140 * There is special handling here for zones which are full of pinned pages. 3141 * This can happen if the pages are all mlocked, or if they are all used by 3142 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb. 3143 * What we do is to detect the case where all pages in the zone have been 3144 * scanned twice and there has been zero successful reclaim. Mark the zone as 3145 * dead and from now on, only perform a short scan. Basically we're polling 3146 * the zone for when the problem goes away. 3147 * 3148 * kswapd scans the zones in the highmem->normal->dma direction. It skips 3149 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 3150 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the 3151 * lower zones regardless of the number of free pages in the lower zones. This 3152 * interoperates with the page allocator fallback scheme to ensure that aging 3153 * of pages is balanced across the zones. 3154 */ 3155 static unsigned long balance_pgdat(pg_data_t *pgdat, int order, 3156 int *classzone_idx) 3157 { 3158 int i; 3159 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */ 3160 unsigned long nr_soft_reclaimed; 3161 unsigned long nr_soft_scanned; 3162 struct scan_control sc = { 3163 .gfp_mask = GFP_KERNEL, 3164 .order = order, 3165 .priority = DEF_PRIORITY, 3166 .may_writepage = !laptop_mode, 3167 .may_unmap = 1, 3168 .may_swap = 1, 3169 }; 3170 count_vm_event(PAGEOUTRUN); 3171 3172 do { 3173 unsigned long nr_attempted = 0; 3174 bool raise_priority = true; 3175 bool pgdat_needs_compaction = (order > 0); 3176 3177 sc.nr_reclaimed = 0; 3178 3179 /* 3180 * Scan in the highmem->dma direction for the highest 3181 * zone which needs scanning 3182 */ 3183 for (i = pgdat->nr_zones - 1; i >= 0; i--) { 3184 struct zone *zone = pgdat->node_zones + i; 3185 3186 if (!populated_zone(zone)) 3187 continue; 3188 3189 if (sc.priority != DEF_PRIORITY && 3190 !zone_reclaimable(zone)) 3191 continue; 3192 3193 /* 3194 * Do some background aging of the anon list, to give 3195 * pages a chance to be referenced before reclaiming. 3196 */ 3197 age_active_anon(zone, &sc); 3198 3199 /* 3200 * If the number of buffer_heads in the machine 3201 * exceeds the maximum allowed level and this node 3202 * has a highmem zone, force kswapd to reclaim from 3203 * it to relieve lowmem pressure. 3204 */ 3205 if (buffer_heads_over_limit && is_highmem_idx(i)) { 3206 end_zone = i; 3207 break; 3208 } 3209 3210 if (!zone_balanced(zone, order, 0, 0)) { 3211 end_zone = i; 3212 break; 3213 } else { 3214 /* 3215 * If balanced, clear the dirty and congested 3216 * flags 3217 */ 3218 clear_bit(ZONE_CONGESTED, &zone->flags); 3219 clear_bit(ZONE_DIRTY, &zone->flags); 3220 } 3221 } 3222 3223 if (i < 0) 3224 goto out; 3225 3226 for (i = 0; i <= end_zone; i++) { 3227 struct zone *zone = pgdat->node_zones + i; 3228 3229 if (!populated_zone(zone)) 3230 continue; 3231 3232 /* 3233 * If any zone is currently balanced then kswapd will 3234 * not call compaction as it is expected that the 3235 * necessary pages are already available. 3236 */ 3237 if (pgdat_needs_compaction && 3238 zone_watermark_ok(zone, order, 3239 low_wmark_pages(zone), 3240 *classzone_idx, 0)) 3241 pgdat_needs_compaction = false; 3242 } 3243 3244 /* 3245 * If we're getting trouble reclaiming, start doing writepage 3246 * even in laptop mode. 3247 */ 3248 if (sc.priority < DEF_PRIORITY - 2) 3249 sc.may_writepage = 1; 3250 3251 /* 3252 * Now scan the zone in the dma->highmem direction, stopping 3253 * at the last zone which needs scanning. 3254 * 3255 * We do this because the page allocator works in the opposite 3256 * direction. This prevents the page allocator from allocating 3257 * pages behind kswapd's direction of progress, which would 3258 * cause too much scanning of the lower zones. 3259 */ 3260 for (i = 0; i <= end_zone; i++) { 3261 struct zone *zone = pgdat->node_zones + i; 3262 3263 if (!populated_zone(zone)) 3264 continue; 3265 3266 if (sc.priority != DEF_PRIORITY && 3267 !zone_reclaimable(zone)) 3268 continue; 3269 3270 sc.nr_scanned = 0; 3271 3272 nr_soft_scanned = 0; 3273 /* 3274 * Call soft limit reclaim before calling shrink_zone. 3275 */ 3276 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone, 3277 order, sc.gfp_mask, 3278 &nr_soft_scanned); 3279 sc.nr_reclaimed += nr_soft_reclaimed; 3280 3281 /* 3282 * There should be no need to raise the scanning 3283 * priority if enough pages are already being scanned 3284 * that that high watermark would be met at 100% 3285 * efficiency. 3286 */ 3287 if (kswapd_shrink_zone(zone, end_zone, 3288 &sc, &nr_attempted)) 3289 raise_priority = false; 3290 } 3291 3292 /* 3293 * If the low watermark is met there is no need for processes 3294 * to be throttled on pfmemalloc_wait as they should not be 3295 * able to safely make forward progress. Wake them 3296 */ 3297 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 3298 pfmemalloc_watermark_ok(pgdat)) 3299 wake_up_all(&pgdat->pfmemalloc_wait); 3300 3301 /* 3302 * Fragmentation may mean that the system cannot be rebalanced 3303 * for high-order allocations in all zones. If twice the 3304 * allocation size has been reclaimed and the zones are still 3305 * not balanced then recheck the watermarks at order-0 to 3306 * prevent kswapd reclaiming excessively. Assume that a 3307 * process requested a high-order can direct reclaim/compact. 3308 */ 3309 if (order && sc.nr_reclaimed >= 2UL << order) 3310 order = sc.order = 0; 3311 3312 /* Check if kswapd should be suspending */ 3313 if (try_to_freeze() || kthread_should_stop()) 3314 break; 3315 3316 /* 3317 * Compact if necessary and kswapd is reclaiming at least the 3318 * high watermark number of pages as requsted 3319 */ 3320 if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted) 3321 compact_pgdat(pgdat, order); 3322 3323 /* 3324 * Raise priority if scanning rate is too low or there was no 3325 * progress in reclaiming pages 3326 */ 3327 if (raise_priority || !sc.nr_reclaimed) 3328 sc.priority--; 3329 } while (sc.priority >= 1 && 3330 !pgdat_balanced(pgdat, order, *classzone_idx)); 3331 3332 out: 3333 /* 3334 * Return the order we were reclaiming at so prepare_kswapd_sleep() 3335 * makes a decision on the order we were last reclaiming at. However, 3336 * if another caller entered the allocator slow path while kswapd 3337 * was awake, order will remain at the higher level 3338 */ 3339 *classzone_idx = end_zone; 3340 return order; 3341 } 3342 3343 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx) 3344 { 3345 long remaining = 0; 3346 DEFINE_WAIT(wait); 3347 3348 if (freezing(current) || kthread_should_stop()) 3349 return; 3350 3351 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3352 3353 /* Try to sleep for a short interval */ 3354 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) { 3355 remaining = schedule_timeout(HZ/10); 3356 finish_wait(&pgdat->kswapd_wait, &wait); 3357 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3358 } 3359 3360 /* 3361 * After a short sleep, check if it was a premature sleep. If not, then 3362 * go fully to sleep until explicitly woken up. 3363 */ 3364 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) { 3365 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 3366 3367 /* 3368 * vmstat counters are not perfectly accurate and the estimated 3369 * value for counters such as NR_FREE_PAGES can deviate from the 3370 * true value by nr_online_cpus * threshold. To avoid the zone 3371 * watermarks being breached while under pressure, we reduce the 3372 * per-cpu vmstat threshold while kswapd is awake and restore 3373 * them before going back to sleep. 3374 */ 3375 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 3376 3377 /* 3378 * Compaction records what page blocks it recently failed to 3379 * isolate pages from and skips them in the future scanning. 3380 * When kswapd is going to sleep, it is reasonable to assume 3381 * that pages and compaction may succeed so reset the cache. 3382 */ 3383 reset_isolation_suitable(pgdat); 3384 3385 if (!kthread_should_stop()) 3386 schedule(); 3387 3388 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 3389 } else { 3390 if (remaining) 3391 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 3392 else 3393 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 3394 } 3395 finish_wait(&pgdat->kswapd_wait, &wait); 3396 } 3397 3398 /* 3399 * The background pageout daemon, started as a kernel thread 3400 * from the init process. 3401 * 3402 * This basically trickles out pages so that we have _some_ 3403 * free memory available even if there is no other activity 3404 * that frees anything up. This is needed for things like routing 3405 * etc, where we otherwise might have all activity going on in 3406 * asynchronous contexts that cannot page things out. 3407 * 3408 * If there are applications that are active memory-allocators 3409 * (most normal use), this basically shouldn't matter. 3410 */ 3411 static int kswapd(void *p) 3412 { 3413 unsigned long order, new_order; 3414 unsigned balanced_order; 3415 int classzone_idx, new_classzone_idx; 3416 int balanced_classzone_idx; 3417 pg_data_t *pgdat = (pg_data_t*)p; 3418 struct task_struct *tsk = current; 3419 3420 struct reclaim_state reclaim_state = { 3421 .reclaimed_slab = 0, 3422 }; 3423 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 3424 3425 lockdep_set_current_reclaim_state(GFP_KERNEL); 3426 3427 if (!cpumask_empty(cpumask)) 3428 set_cpus_allowed_ptr(tsk, cpumask); 3429 current->reclaim_state = &reclaim_state; 3430 3431 /* 3432 * Tell the memory management that we're a "memory allocator", 3433 * and that if we need more memory we should get access to it 3434 * regardless (see "__alloc_pages()"). "kswapd" should 3435 * never get caught in the normal page freeing logic. 3436 * 3437 * (Kswapd normally doesn't need memory anyway, but sometimes 3438 * you need a small amount of memory in order to be able to 3439 * page out something else, and this flag essentially protects 3440 * us from recursively trying to free more memory as we're 3441 * trying to free the first piece of memory in the first place). 3442 */ 3443 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 3444 set_freezable(); 3445 3446 order = new_order = 0; 3447 balanced_order = 0; 3448 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1; 3449 balanced_classzone_idx = classzone_idx; 3450 for ( ; ; ) { 3451 bool ret; 3452 3453 /* 3454 * If the last balance_pgdat was unsuccessful it's unlikely a 3455 * new request of a similar or harder type will succeed soon 3456 * so consider going to sleep on the basis we reclaimed at 3457 */ 3458 if (balanced_classzone_idx >= new_classzone_idx && 3459 balanced_order == new_order) { 3460 new_order = pgdat->kswapd_max_order; 3461 new_classzone_idx = pgdat->classzone_idx; 3462 pgdat->kswapd_max_order = 0; 3463 pgdat->classzone_idx = pgdat->nr_zones - 1; 3464 } 3465 3466 if (order < new_order || classzone_idx > new_classzone_idx) { 3467 /* 3468 * Don't sleep if someone wants a larger 'order' 3469 * allocation or has tigher zone constraints 3470 */ 3471 order = new_order; 3472 classzone_idx = new_classzone_idx; 3473 } else { 3474 kswapd_try_to_sleep(pgdat, balanced_order, 3475 balanced_classzone_idx); 3476 order = pgdat->kswapd_max_order; 3477 classzone_idx = pgdat->classzone_idx; 3478 new_order = order; 3479 new_classzone_idx = classzone_idx; 3480 pgdat->kswapd_max_order = 0; 3481 pgdat->classzone_idx = pgdat->nr_zones - 1; 3482 } 3483 3484 ret = try_to_freeze(); 3485 if (kthread_should_stop()) 3486 break; 3487 3488 /* 3489 * We can speed up thawing tasks if we don't call balance_pgdat 3490 * after returning from the refrigerator 3491 */ 3492 if (!ret) { 3493 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order); 3494 balanced_classzone_idx = classzone_idx; 3495 balanced_order = balance_pgdat(pgdat, order, 3496 &balanced_classzone_idx); 3497 } 3498 } 3499 3500 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD); 3501 current->reclaim_state = NULL; 3502 lockdep_clear_current_reclaim_state(); 3503 3504 return 0; 3505 } 3506 3507 /* 3508 * A zone is low on free memory, so wake its kswapd task to service it. 3509 */ 3510 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx) 3511 { 3512 pg_data_t *pgdat; 3513 3514 if (!populated_zone(zone)) 3515 return; 3516 3517 if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL)) 3518 return; 3519 pgdat = zone->zone_pgdat; 3520 if (pgdat->kswapd_max_order < order) { 3521 pgdat->kswapd_max_order = order; 3522 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx); 3523 } 3524 if (!waitqueue_active(&pgdat->kswapd_wait)) 3525 return; 3526 if (zone_balanced(zone, order, 0, 0)) 3527 return; 3528 3529 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order); 3530 wake_up_interruptible(&pgdat->kswapd_wait); 3531 } 3532 3533 #ifdef CONFIG_HIBERNATION 3534 /* 3535 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 3536 * freed pages. 3537 * 3538 * Rather than trying to age LRUs the aim is to preserve the overall 3539 * LRU order by reclaiming preferentially 3540 * inactive > active > active referenced > active mapped 3541 */ 3542 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 3543 { 3544 struct reclaim_state reclaim_state; 3545 struct scan_control sc = { 3546 .nr_to_reclaim = nr_to_reclaim, 3547 .gfp_mask = GFP_HIGHUSER_MOVABLE, 3548 .priority = DEF_PRIORITY, 3549 .may_writepage = 1, 3550 .may_unmap = 1, 3551 .may_swap = 1, 3552 .hibernation_mode = 1, 3553 }; 3554 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 3555 struct task_struct *p = current; 3556 unsigned long nr_reclaimed; 3557 3558 p->flags |= PF_MEMALLOC; 3559 lockdep_set_current_reclaim_state(sc.gfp_mask); 3560 reclaim_state.reclaimed_slab = 0; 3561 p->reclaim_state = &reclaim_state; 3562 3563 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3564 3565 p->reclaim_state = NULL; 3566 lockdep_clear_current_reclaim_state(); 3567 p->flags &= ~PF_MEMALLOC; 3568 3569 return nr_reclaimed; 3570 } 3571 #endif /* CONFIG_HIBERNATION */ 3572 3573 /* It's optimal to keep kswapds on the same CPUs as their memory, but 3574 not required for correctness. So if the last cpu in a node goes 3575 away, we get changed to run anywhere: as the first one comes back, 3576 restore their cpu bindings. */ 3577 static int cpu_callback(struct notifier_block *nfb, unsigned long action, 3578 void *hcpu) 3579 { 3580 int nid; 3581 3582 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) { 3583 for_each_node_state(nid, N_MEMORY) { 3584 pg_data_t *pgdat = NODE_DATA(nid); 3585 const struct cpumask *mask; 3586 3587 mask = cpumask_of_node(pgdat->node_id); 3588 3589 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 3590 /* One of our CPUs online: restore mask */ 3591 set_cpus_allowed_ptr(pgdat->kswapd, mask); 3592 } 3593 } 3594 return NOTIFY_OK; 3595 } 3596 3597 /* 3598 * This kswapd start function will be called by init and node-hot-add. 3599 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. 3600 */ 3601 int kswapd_run(int nid) 3602 { 3603 pg_data_t *pgdat = NODE_DATA(nid); 3604 int ret = 0; 3605 3606 if (pgdat->kswapd) 3607 return 0; 3608 3609 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 3610 if (IS_ERR(pgdat->kswapd)) { 3611 /* failure at boot is fatal */ 3612 BUG_ON(system_state == SYSTEM_BOOTING); 3613 pr_err("Failed to start kswapd on node %d\n", nid); 3614 ret = PTR_ERR(pgdat->kswapd); 3615 pgdat->kswapd = NULL; 3616 } 3617 return ret; 3618 } 3619 3620 /* 3621 * Called by memory hotplug when all memory in a node is offlined. Caller must 3622 * hold mem_hotplug_begin/end(). 3623 */ 3624 void kswapd_stop(int nid) 3625 { 3626 struct task_struct *kswapd = NODE_DATA(nid)->kswapd; 3627 3628 if (kswapd) { 3629 kthread_stop(kswapd); 3630 NODE_DATA(nid)->kswapd = NULL; 3631 } 3632 } 3633 3634 static int __init kswapd_init(void) 3635 { 3636 int nid; 3637 3638 swap_setup(); 3639 for_each_node_state(nid, N_MEMORY) 3640 kswapd_run(nid); 3641 hotcpu_notifier(cpu_callback, 0); 3642 return 0; 3643 } 3644 3645 module_init(kswapd_init) 3646 3647 #ifdef CONFIG_NUMA 3648 /* 3649 * Zone reclaim mode 3650 * 3651 * If non-zero call zone_reclaim when the number of free pages falls below 3652 * the watermarks. 3653 */ 3654 int zone_reclaim_mode __read_mostly; 3655 3656 #define RECLAIM_OFF 0 3657 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */ 3658 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */ 3659 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */ 3660 3661 /* 3662 * Priority for ZONE_RECLAIM. This determines the fraction of pages 3663 * of a node considered for each zone_reclaim. 4 scans 1/16th of 3664 * a zone. 3665 */ 3666 #define ZONE_RECLAIM_PRIORITY 4 3667 3668 /* 3669 * Percentage of pages in a zone that must be unmapped for zone_reclaim to 3670 * occur. 3671 */ 3672 int sysctl_min_unmapped_ratio = 1; 3673 3674 /* 3675 * If the number of slab pages in a zone grows beyond this percentage then 3676 * slab reclaim needs to occur. 3677 */ 3678 int sysctl_min_slab_ratio = 5; 3679 3680 static inline unsigned long zone_unmapped_file_pages(struct zone *zone) 3681 { 3682 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED); 3683 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) + 3684 zone_page_state(zone, NR_ACTIVE_FILE); 3685 3686 /* 3687 * It's possible for there to be more file mapped pages than 3688 * accounted for by the pages on the file LRU lists because 3689 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 3690 */ 3691 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 3692 } 3693 3694 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 3695 static long zone_pagecache_reclaimable(struct zone *zone) 3696 { 3697 long nr_pagecache_reclaimable; 3698 long delta = 0; 3699 3700 /* 3701 * If RECLAIM_UNMAP is set, then all file pages are considered 3702 * potentially reclaimable. Otherwise, we have to worry about 3703 * pages like swapcache and zone_unmapped_file_pages() provides 3704 * a better estimate 3705 */ 3706 if (zone_reclaim_mode & RECLAIM_UNMAP) 3707 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES); 3708 else 3709 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone); 3710 3711 /* If we can't clean pages, remove dirty pages from consideration */ 3712 if (!(zone_reclaim_mode & RECLAIM_WRITE)) 3713 delta += zone_page_state(zone, NR_FILE_DIRTY); 3714 3715 /* Watch for any possible underflows due to delta */ 3716 if (unlikely(delta > nr_pagecache_reclaimable)) 3717 delta = nr_pagecache_reclaimable; 3718 3719 return nr_pagecache_reclaimable - delta; 3720 } 3721 3722 /* 3723 * Try to free up some pages from this zone through reclaim. 3724 */ 3725 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) 3726 { 3727 /* Minimum pages needed in order to stay on node */ 3728 const unsigned long nr_pages = 1 << order; 3729 struct task_struct *p = current; 3730 struct reclaim_state reclaim_state; 3731 struct scan_control sc = { 3732 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 3733 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)), 3734 .order = order, 3735 .priority = ZONE_RECLAIM_PRIORITY, 3736 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE), 3737 .may_unmap = !!(zone_reclaim_mode & RECLAIM_UNMAP), 3738 .may_swap = 1, 3739 }; 3740 3741 cond_resched(); 3742 /* 3743 * We need to be able to allocate from the reserves for RECLAIM_UNMAP 3744 * and we also need to be able to write out pages for RECLAIM_WRITE 3745 * and RECLAIM_UNMAP. 3746 */ 3747 p->flags |= PF_MEMALLOC | PF_SWAPWRITE; 3748 lockdep_set_current_reclaim_state(gfp_mask); 3749 reclaim_state.reclaimed_slab = 0; 3750 p->reclaim_state = &reclaim_state; 3751 3752 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) { 3753 /* 3754 * Free memory by calling shrink zone with increasing 3755 * priorities until we have enough memory freed. 3756 */ 3757 do { 3758 shrink_zone(zone, &sc, true); 3759 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 3760 } 3761 3762 p->reclaim_state = NULL; 3763 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE); 3764 lockdep_clear_current_reclaim_state(); 3765 return sc.nr_reclaimed >= nr_pages; 3766 } 3767 3768 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) 3769 { 3770 int node_id; 3771 int ret; 3772 3773 /* 3774 * Zone reclaim reclaims unmapped file backed pages and 3775 * slab pages if we are over the defined limits. 3776 * 3777 * A small portion of unmapped file backed pages is needed for 3778 * file I/O otherwise pages read by file I/O will be immediately 3779 * thrown out if the zone is overallocated. So we do not reclaim 3780 * if less than a specified percentage of the zone is used by 3781 * unmapped file backed pages. 3782 */ 3783 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages && 3784 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages) 3785 return ZONE_RECLAIM_FULL; 3786 3787 if (!zone_reclaimable(zone)) 3788 return ZONE_RECLAIM_FULL; 3789 3790 /* 3791 * Do not scan if the allocation should not be delayed. 3792 */ 3793 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC)) 3794 return ZONE_RECLAIM_NOSCAN; 3795 3796 /* 3797 * Only run zone reclaim on the local zone or on zones that do not 3798 * have associated processors. This will favor the local processor 3799 * over remote processors and spread off node memory allocations 3800 * as wide as possible. 3801 */ 3802 node_id = zone_to_nid(zone); 3803 if (node_state(node_id, N_CPU) && node_id != numa_node_id()) 3804 return ZONE_RECLAIM_NOSCAN; 3805 3806 if (test_and_set_bit(ZONE_RECLAIM_LOCKED, &zone->flags)) 3807 return ZONE_RECLAIM_NOSCAN; 3808 3809 ret = __zone_reclaim(zone, gfp_mask, order); 3810 clear_bit(ZONE_RECLAIM_LOCKED, &zone->flags); 3811 3812 if (!ret) 3813 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 3814 3815 return ret; 3816 } 3817 #endif 3818 3819 /* 3820 * page_evictable - test whether a page is evictable 3821 * @page: the page to test 3822 * 3823 * Test whether page is evictable--i.e., should be placed on active/inactive 3824 * lists vs unevictable list. 3825 * 3826 * Reasons page might not be evictable: 3827 * (1) page's mapping marked unevictable 3828 * (2) page is part of an mlocked VMA 3829 * 3830 */ 3831 int page_evictable(struct page *page) 3832 { 3833 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page); 3834 } 3835 3836 #ifdef CONFIG_SHMEM 3837 /** 3838 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list 3839 * @pages: array of pages to check 3840 * @nr_pages: number of pages to check 3841 * 3842 * Checks pages for evictability and moves them to the appropriate lru list. 3843 * 3844 * This function is only used for SysV IPC SHM_UNLOCK. 3845 */ 3846 void check_move_unevictable_pages(struct page **pages, int nr_pages) 3847 { 3848 struct lruvec *lruvec; 3849 struct zone *zone = NULL; 3850 int pgscanned = 0; 3851 int pgrescued = 0; 3852 int i; 3853 3854 for (i = 0; i < nr_pages; i++) { 3855 struct page *page = pages[i]; 3856 struct zone *pagezone; 3857 3858 pgscanned++; 3859 pagezone = page_zone(page); 3860 if (pagezone != zone) { 3861 if (zone) 3862 spin_unlock_irq(&zone->lru_lock); 3863 zone = pagezone; 3864 spin_lock_irq(&zone->lru_lock); 3865 } 3866 lruvec = mem_cgroup_page_lruvec(page, zone); 3867 3868 if (!PageLRU(page) || !PageUnevictable(page)) 3869 continue; 3870 3871 if (page_evictable(page)) { 3872 enum lru_list lru = page_lru_base_type(page); 3873 3874 VM_BUG_ON_PAGE(PageActive(page), page); 3875 ClearPageUnevictable(page); 3876 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE); 3877 add_page_to_lru_list(page, lruvec, lru); 3878 pgrescued++; 3879 } 3880 } 3881 3882 if (zone) { 3883 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 3884 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 3885 spin_unlock_irq(&zone->lru_lock); 3886 } 3887 } 3888 #endif /* CONFIG_SHMEM */ 3889