xref: /linux/mm/vmscan.c (revision c7e1e3ccfbd153c890240a391f258efaedfa94d0)
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13 
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h>	/* for try_to_release_page(),
30 					buffer_heads_over_limit */
31 #include <linux/mm_inline.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rmap.h>
34 #include <linux/topology.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/compaction.h>
38 #include <linux/notifier.h>
39 #include <linux/rwsem.h>
40 #include <linux/delay.h>
41 #include <linux/kthread.h>
42 #include <linux/freezer.h>
43 #include <linux/memcontrol.h>
44 #include <linux/delayacct.h>
45 #include <linux/sysctl.h>
46 #include <linux/oom.h>
47 #include <linux/prefetch.h>
48 #include <linux/printk.h>
49 
50 #include <asm/tlbflush.h>
51 #include <asm/div64.h>
52 
53 #include <linux/swapops.h>
54 #include <linux/balloon_compaction.h>
55 
56 #include "internal.h"
57 
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/vmscan.h>
60 
61 struct scan_control {
62 	/* How many pages shrink_list() should reclaim */
63 	unsigned long nr_to_reclaim;
64 
65 	/* This context's GFP mask */
66 	gfp_t gfp_mask;
67 
68 	/* Allocation order */
69 	int order;
70 
71 	/*
72 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
73 	 * are scanned.
74 	 */
75 	nodemask_t	*nodemask;
76 
77 	/*
78 	 * The memory cgroup that hit its limit and as a result is the
79 	 * primary target of this reclaim invocation.
80 	 */
81 	struct mem_cgroup *target_mem_cgroup;
82 
83 	/* Scan (total_size >> priority) pages at once */
84 	int priority;
85 
86 	unsigned int may_writepage:1;
87 
88 	/* Can mapped pages be reclaimed? */
89 	unsigned int may_unmap:1;
90 
91 	/* Can pages be swapped as part of reclaim? */
92 	unsigned int may_swap:1;
93 
94 	/* Can cgroups be reclaimed below their normal consumption range? */
95 	unsigned int may_thrash:1;
96 
97 	unsigned int hibernation_mode:1;
98 
99 	/* One of the zones is ready for compaction */
100 	unsigned int compaction_ready:1;
101 
102 	/* Incremented by the number of inactive pages that were scanned */
103 	unsigned long nr_scanned;
104 
105 	/* Number of pages freed so far during a call to shrink_zones() */
106 	unsigned long nr_reclaimed;
107 };
108 
109 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
110 
111 #ifdef ARCH_HAS_PREFETCH
112 #define prefetch_prev_lru_page(_page, _base, _field)			\
113 	do {								\
114 		if ((_page)->lru.prev != _base) {			\
115 			struct page *prev;				\
116 									\
117 			prev = lru_to_page(&(_page->lru));		\
118 			prefetch(&prev->_field);			\
119 		}							\
120 	} while (0)
121 #else
122 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
123 #endif
124 
125 #ifdef ARCH_HAS_PREFETCHW
126 #define prefetchw_prev_lru_page(_page, _base, _field)			\
127 	do {								\
128 		if ((_page)->lru.prev != _base) {			\
129 			struct page *prev;				\
130 									\
131 			prev = lru_to_page(&(_page->lru));		\
132 			prefetchw(&prev->_field);			\
133 		}							\
134 	} while (0)
135 #else
136 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
137 #endif
138 
139 /*
140  * From 0 .. 100.  Higher means more swappy.
141  */
142 int vm_swappiness = 60;
143 /*
144  * The total number of pages which are beyond the high watermark within all
145  * zones.
146  */
147 unsigned long vm_total_pages;
148 
149 static LIST_HEAD(shrinker_list);
150 static DECLARE_RWSEM(shrinker_rwsem);
151 
152 #ifdef CONFIG_MEMCG
153 static bool global_reclaim(struct scan_control *sc)
154 {
155 	return !sc->target_mem_cgroup;
156 }
157 
158 /**
159  * sane_reclaim - is the usual dirty throttling mechanism operational?
160  * @sc: scan_control in question
161  *
162  * The normal page dirty throttling mechanism in balance_dirty_pages() is
163  * completely broken with the legacy memcg and direct stalling in
164  * shrink_page_list() is used for throttling instead, which lacks all the
165  * niceties such as fairness, adaptive pausing, bandwidth proportional
166  * allocation and configurability.
167  *
168  * This function tests whether the vmscan currently in progress can assume
169  * that the normal dirty throttling mechanism is operational.
170  */
171 static bool sane_reclaim(struct scan_control *sc)
172 {
173 	struct mem_cgroup *memcg = sc->target_mem_cgroup;
174 
175 	if (!memcg)
176 		return true;
177 #ifdef CONFIG_CGROUP_WRITEBACK
178 	if (cgroup_on_dfl(mem_cgroup_css(memcg)->cgroup))
179 		return true;
180 #endif
181 	return false;
182 }
183 #else
184 static bool global_reclaim(struct scan_control *sc)
185 {
186 	return true;
187 }
188 
189 static bool sane_reclaim(struct scan_control *sc)
190 {
191 	return true;
192 }
193 #endif
194 
195 static unsigned long zone_reclaimable_pages(struct zone *zone)
196 {
197 	int nr;
198 
199 	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
200 	     zone_page_state(zone, NR_INACTIVE_FILE);
201 
202 	if (get_nr_swap_pages() > 0)
203 		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
204 		      zone_page_state(zone, NR_INACTIVE_ANON);
205 
206 	return nr;
207 }
208 
209 bool zone_reclaimable(struct zone *zone)
210 {
211 	return zone_page_state(zone, NR_PAGES_SCANNED) <
212 		zone_reclaimable_pages(zone) * 6;
213 }
214 
215 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
216 {
217 	if (!mem_cgroup_disabled())
218 		return mem_cgroup_get_lru_size(lruvec, lru);
219 
220 	return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
221 }
222 
223 /*
224  * Add a shrinker callback to be called from the vm.
225  */
226 int register_shrinker(struct shrinker *shrinker)
227 {
228 	size_t size = sizeof(*shrinker->nr_deferred);
229 
230 	/*
231 	 * If we only have one possible node in the system anyway, save
232 	 * ourselves the trouble and disable NUMA aware behavior. This way we
233 	 * will save memory and some small loop time later.
234 	 */
235 	if (nr_node_ids == 1)
236 		shrinker->flags &= ~SHRINKER_NUMA_AWARE;
237 
238 	if (shrinker->flags & SHRINKER_NUMA_AWARE)
239 		size *= nr_node_ids;
240 
241 	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
242 	if (!shrinker->nr_deferred)
243 		return -ENOMEM;
244 
245 	down_write(&shrinker_rwsem);
246 	list_add_tail(&shrinker->list, &shrinker_list);
247 	up_write(&shrinker_rwsem);
248 	return 0;
249 }
250 EXPORT_SYMBOL(register_shrinker);
251 
252 /*
253  * Remove one
254  */
255 void unregister_shrinker(struct shrinker *shrinker)
256 {
257 	down_write(&shrinker_rwsem);
258 	list_del(&shrinker->list);
259 	up_write(&shrinker_rwsem);
260 	kfree(shrinker->nr_deferred);
261 }
262 EXPORT_SYMBOL(unregister_shrinker);
263 
264 #define SHRINK_BATCH 128
265 
266 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
267 				    struct shrinker *shrinker,
268 				    unsigned long nr_scanned,
269 				    unsigned long nr_eligible)
270 {
271 	unsigned long freed = 0;
272 	unsigned long long delta;
273 	long total_scan;
274 	long freeable;
275 	long nr;
276 	long new_nr;
277 	int nid = shrinkctl->nid;
278 	long batch_size = shrinker->batch ? shrinker->batch
279 					  : SHRINK_BATCH;
280 
281 	freeable = shrinker->count_objects(shrinker, shrinkctl);
282 	if (freeable == 0)
283 		return 0;
284 
285 	/*
286 	 * copy the current shrinker scan count into a local variable
287 	 * and zero it so that other concurrent shrinker invocations
288 	 * don't also do this scanning work.
289 	 */
290 	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
291 
292 	total_scan = nr;
293 	delta = (4 * nr_scanned) / shrinker->seeks;
294 	delta *= freeable;
295 	do_div(delta, nr_eligible + 1);
296 	total_scan += delta;
297 	if (total_scan < 0) {
298 		pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
299 		       shrinker->scan_objects, total_scan);
300 		total_scan = freeable;
301 	}
302 
303 	/*
304 	 * We need to avoid excessive windup on filesystem shrinkers
305 	 * due to large numbers of GFP_NOFS allocations causing the
306 	 * shrinkers to return -1 all the time. This results in a large
307 	 * nr being built up so when a shrink that can do some work
308 	 * comes along it empties the entire cache due to nr >>>
309 	 * freeable. This is bad for sustaining a working set in
310 	 * memory.
311 	 *
312 	 * Hence only allow the shrinker to scan the entire cache when
313 	 * a large delta change is calculated directly.
314 	 */
315 	if (delta < freeable / 4)
316 		total_scan = min(total_scan, freeable / 2);
317 
318 	/*
319 	 * Avoid risking looping forever due to too large nr value:
320 	 * never try to free more than twice the estimate number of
321 	 * freeable entries.
322 	 */
323 	if (total_scan > freeable * 2)
324 		total_scan = freeable * 2;
325 
326 	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
327 				   nr_scanned, nr_eligible,
328 				   freeable, delta, total_scan);
329 
330 	/*
331 	 * Normally, we should not scan less than batch_size objects in one
332 	 * pass to avoid too frequent shrinker calls, but if the slab has less
333 	 * than batch_size objects in total and we are really tight on memory,
334 	 * we will try to reclaim all available objects, otherwise we can end
335 	 * up failing allocations although there are plenty of reclaimable
336 	 * objects spread over several slabs with usage less than the
337 	 * batch_size.
338 	 *
339 	 * We detect the "tight on memory" situations by looking at the total
340 	 * number of objects we want to scan (total_scan). If it is greater
341 	 * than the total number of objects on slab (freeable), we must be
342 	 * scanning at high prio and therefore should try to reclaim as much as
343 	 * possible.
344 	 */
345 	while (total_scan >= batch_size ||
346 	       total_scan >= freeable) {
347 		unsigned long ret;
348 		unsigned long nr_to_scan = min(batch_size, total_scan);
349 
350 		shrinkctl->nr_to_scan = nr_to_scan;
351 		ret = shrinker->scan_objects(shrinker, shrinkctl);
352 		if (ret == SHRINK_STOP)
353 			break;
354 		freed += ret;
355 
356 		count_vm_events(SLABS_SCANNED, nr_to_scan);
357 		total_scan -= nr_to_scan;
358 
359 		cond_resched();
360 	}
361 
362 	/*
363 	 * move the unused scan count back into the shrinker in a
364 	 * manner that handles concurrent updates. If we exhausted the
365 	 * scan, there is no need to do an update.
366 	 */
367 	if (total_scan > 0)
368 		new_nr = atomic_long_add_return(total_scan,
369 						&shrinker->nr_deferred[nid]);
370 	else
371 		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
372 
373 	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
374 	return freed;
375 }
376 
377 /**
378  * shrink_slab - shrink slab caches
379  * @gfp_mask: allocation context
380  * @nid: node whose slab caches to target
381  * @memcg: memory cgroup whose slab caches to target
382  * @nr_scanned: pressure numerator
383  * @nr_eligible: pressure denominator
384  *
385  * Call the shrink functions to age shrinkable caches.
386  *
387  * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
388  * unaware shrinkers will receive a node id of 0 instead.
389  *
390  * @memcg specifies the memory cgroup to target. If it is not NULL,
391  * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
392  * objects from the memory cgroup specified. Otherwise all shrinkers
393  * are called, and memcg aware shrinkers are supposed to scan the
394  * global list then.
395  *
396  * @nr_scanned and @nr_eligible form a ratio that indicate how much of
397  * the available objects should be scanned.  Page reclaim for example
398  * passes the number of pages scanned and the number of pages on the
399  * LRU lists that it considered on @nid, plus a bias in @nr_scanned
400  * when it encountered mapped pages.  The ratio is further biased by
401  * the ->seeks setting of the shrink function, which indicates the
402  * cost to recreate an object relative to that of an LRU page.
403  *
404  * Returns the number of reclaimed slab objects.
405  */
406 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
407 				 struct mem_cgroup *memcg,
408 				 unsigned long nr_scanned,
409 				 unsigned long nr_eligible)
410 {
411 	struct shrinker *shrinker;
412 	unsigned long freed = 0;
413 
414 	if (memcg && !memcg_kmem_is_active(memcg))
415 		return 0;
416 
417 	if (nr_scanned == 0)
418 		nr_scanned = SWAP_CLUSTER_MAX;
419 
420 	if (!down_read_trylock(&shrinker_rwsem)) {
421 		/*
422 		 * If we would return 0, our callers would understand that we
423 		 * have nothing else to shrink and give up trying. By returning
424 		 * 1 we keep it going and assume we'll be able to shrink next
425 		 * time.
426 		 */
427 		freed = 1;
428 		goto out;
429 	}
430 
431 	list_for_each_entry(shrinker, &shrinker_list, list) {
432 		struct shrink_control sc = {
433 			.gfp_mask = gfp_mask,
434 			.nid = nid,
435 			.memcg = memcg,
436 		};
437 
438 		if (memcg && !(shrinker->flags & SHRINKER_MEMCG_AWARE))
439 			continue;
440 
441 		if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
442 			sc.nid = 0;
443 
444 		freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
445 	}
446 
447 	up_read(&shrinker_rwsem);
448 out:
449 	cond_resched();
450 	return freed;
451 }
452 
453 void drop_slab_node(int nid)
454 {
455 	unsigned long freed;
456 
457 	do {
458 		struct mem_cgroup *memcg = NULL;
459 
460 		freed = 0;
461 		do {
462 			freed += shrink_slab(GFP_KERNEL, nid, memcg,
463 					     1000, 1000);
464 		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
465 	} while (freed > 10);
466 }
467 
468 void drop_slab(void)
469 {
470 	int nid;
471 
472 	for_each_online_node(nid)
473 		drop_slab_node(nid);
474 }
475 
476 static inline int is_page_cache_freeable(struct page *page)
477 {
478 	/*
479 	 * A freeable page cache page is referenced only by the caller
480 	 * that isolated the page, the page cache radix tree and
481 	 * optional buffer heads at page->private.
482 	 */
483 	return page_count(page) - page_has_private(page) == 2;
484 }
485 
486 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
487 {
488 	if (current->flags & PF_SWAPWRITE)
489 		return 1;
490 	if (!inode_write_congested(inode))
491 		return 1;
492 	if (inode_to_bdi(inode) == current->backing_dev_info)
493 		return 1;
494 	return 0;
495 }
496 
497 /*
498  * We detected a synchronous write error writing a page out.  Probably
499  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
500  * fsync(), msync() or close().
501  *
502  * The tricky part is that after writepage we cannot touch the mapping: nothing
503  * prevents it from being freed up.  But we have a ref on the page and once
504  * that page is locked, the mapping is pinned.
505  *
506  * We're allowed to run sleeping lock_page() here because we know the caller has
507  * __GFP_FS.
508  */
509 static void handle_write_error(struct address_space *mapping,
510 				struct page *page, int error)
511 {
512 	lock_page(page);
513 	if (page_mapping(page) == mapping)
514 		mapping_set_error(mapping, error);
515 	unlock_page(page);
516 }
517 
518 /* possible outcome of pageout() */
519 typedef enum {
520 	/* failed to write page out, page is locked */
521 	PAGE_KEEP,
522 	/* move page to the active list, page is locked */
523 	PAGE_ACTIVATE,
524 	/* page has been sent to the disk successfully, page is unlocked */
525 	PAGE_SUCCESS,
526 	/* page is clean and locked */
527 	PAGE_CLEAN,
528 } pageout_t;
529 
530 /*
531  * pageout is called by shrink_page_list() for each dirty page.
532  * Calls ->writepage().
533  */
534 static pageout_t pageout(struct page *page, struct address_space *mapping,
535 			 struct scan_control *sc)
536 {
537 	/*
538 	 * If the page is dirty, only perform writeback if that write
539 	 * will be non-blocking.  To prevent this allocation from being
540 	 * stalled by pagecache activity.  But note that there may be
541 	 * stalls if we need to run get_block().  We could test
542 	 * PagePrivate for that.
543 	 *
544 	 * If this process is currently in __generic_file_write_iter() against
545 	 * this page's queue, we can perform writeback even if that
546 	 * will block.
547 	 *
548 	 * If the page is swapcache, write it back even if that would
549 	 * block, for some throttling. This happens by accident, because
550 	 * swap_backing_dev_info is bust: it doesn't reflect the
551 	 * congestion state of the swapdevs.  Easy to fix, if needed.
552 	 */
553 	if (!is_page_cache_freeable(page))
554 		return PAGE_KEEP;
555 	if (!mapping) {
556 		/*
557 		 * Some data journaling orphaned pages can have
558 		 * page->mapping == NULL while being dirty with clean buffers.
559 		 */
560 		if (page_has_private(page)) {
561 			if (try_to_free_buffers(page)) {
562 				ClearPageDirty(page);
563 				pr_info("%s: orphaned page\n", __func__);
564 				return PAGE_CLEAN;
565 			}
566 		}
567 		return PAGE_KEEP;
568 	}
569 	if (mapping->a_ops->writepage == NULL)
570 		return PAGE_ACTIVATE;
571 	if (!may_write_to_inode(mapping->host, sc))
572 		return PAGE_KEEP;
573 
574 	if (clear_page_dirty_for_io(page)) {
575 		int res;
576 		struct writeback_control wbc = {
577 			.sync_mode = WB_SYNC_NONE,
578 			.nr_to_write = SWAP_CLUSTER_MAX,
579 			.range_start = 0,
580 			.range_end = LLONG_MAX,
581 			.for_reclaim = 1,
582 		};
583 
584 		SetPageReclaim(page);
585 		res = mapping->a_ops->writepage(page, &wbc);
586 		if (res < 0)
587 			handle_write_error(mapping, page, res);
588 		if (res == AOP_WRITEPAGE_ACTIVATE) {
589 			ClearPageReclaim(page);
590 			return PAGE_ACTIVATE;
591 		}
592 
593 		if (!PageWriteback(page)) {
594 			/* synchronous write or broken a_ops? */
595 			ClearPageReclaim(page);
596 		}
597 		trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
598 		inc_zone_page_state(page, NR_VMSCAN_WRITE);
599 		return PAGE_SUCCESS;
600 	}
601 
602 	return PAGE_CLEAN;
603 }
604 
605 /*
606  * Same as remove_mapping, but if the page is removed from the mapping, it
607  * gets returned with a refcount of 0.
608  */
609 static int __remove_mapping(struct address_space *mapping, struct page *page,
610 			    bool reclaimed)
611 {
612 	unsigned long flags;
613 	struct mem_cgroup *memcg;
614 
615 	BUG_ON(!PageLocked(page));
616 	BUG_ON(mapping != page_mapping(page));
617 
618 	memcg = mem_cgroup_begin_page_stat(page);
619 	spin_lock_irqsave(&mapping->tree_lock, flags);
620 	/*
621 	 * The non racy check for a busy page.
622 	 *
623 	 * Must be careful with the order of the tests. When someone has
624 	 * a ref to the page, it may be possible that they dirty it then
625 	 * drop the reference. So if PageDirty is tested before page_count
626 	 * here, then the following race may occur:
627 	 *
628 	 * get_user_pages(&page);
629 	 * [user mapping goes away]
630 	 * write_to(page);
631 	 *				!PageDirty(page)    [good]
632 	 * SetPageDirty(page);
633 	 * put_page(page);
634 	 *				!page_count(page)   [good, discard it]
635 	 *
636 	 * [oops, our write_to data is lost]
637 	 *
638 	 * Reversing the order of the tests ensures such a situation cannot
639 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
640 	 * load is not satisfied before that of page->_count.
641 	 *
642 	 * Note that if SetPageDirty is always performed via set_page_dirty,
643 	 * and thus under tree_lock, then this ordering is not required.
644 	 */
645 	if (!page_freeze_refs(page, 2))
646 		goto cannot_free;
647 	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
648 	if (unlikely(PageDirty(page))) {
649 		page_unfreeze_refs(page, 2);
650 		goto cannot_free;
651 	}
652 
653 	if (PageSwapCache(page)) {
654 		swp_entry_t swap = { .val = page_private(page) };
655 		mem_cgroup_swapout(page, swap);
656 		__delete_from_swap_cache(page);
657 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
658 		mem_cgroup_end_page_stat(memcg);
659 		swapcache_free(swap);
660 	} else {
661 		void (*freepage)(struct page *);
662 		void *shadow = NULL;
663 
664 		freepage = mapping->a_ops->freepage;
665 		/*
666 		 * Remember a shadow entry for reclaimed file cache in
667 		 * order to detect refaults, thus thrashing, later on.
668 		 *
669 		 * But don't store shadows in an address space that is
670 		 * already exiting.  This is not just an optizimation,
671 		 * inode reclaim needs to empty out the radix tree or
672 		 * the nodes are lost.  Don't plant shadows behind its
673 		 * back.
674 		 */
675 		if (reclaimed && page_is_file_cache(page) &&
676 		    !mapping_exiting(mapping))
677 			shadow = workingset_eviction(mapping, page);
678 		__delete_from_page_cache(page, shadow, memcg);
679 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
680 		mem_cgroup_end_page_stat(memcg);
681 
682 		if (freepage != NULL)
683 			freepage(page);
684 	}
685 
686 	return 1;
687 
688 cannot_free:
689 	spin_unlock_irqrestore(&mapping->tree_lock, flags);
690 	mem_cgroup_end_page_stat(memcg);
691 	return 0;
692 }
693 
694 /*
695  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
696  * someone else has a ref on the page, abort and return 0.  If it was
697  * successfully detached, return 1.  Assumes the caller has a single ref on
698  * this page.
699  */
700 int remove_mapping(struct address_space *mapping, struct page *page)
701 {
702 	if (__remove_mapping(mapping, page, false)) {
703 		/*
704 		 * Unfreezing the refcount with 1 rather than 2 effectively
705 		 * drops the pagecache ref for us without requiring another
706 		 * atomic operation.
707 		 */
708 		page_unfreeze_refs(page, 1);
709 		return 1;
710 	}
711 	return 0;
712 }
713 
714 /**
715  * putback_lru_page - put previously isolated page onto appropriate LRU list
716  * @page: page to be put back to appropriate lru list
717  *
718  * Add previously isolated @page to appropriate LRU list.
719  * Page may still be unevictable for other reasons.
720  *
721  * lru_lock must not be held, interrupts must be enabled.
722  */
723 void putback_lru_page(struct page *page)
724 {
725 	bool is_unevictable;
726 	int was_unevictable = PageUnevictable(page);
727 
728 	VM_BUG_ON_PAGE(PageLRU(page), page);
729 
730 redo:
731 	ClearPageUnevictable(page);
732 
733 	if (page_evictable(page)) {
734 		/*
735 		 * For evictable pages, we can use the cache.
736 		 * In event of a race, worst case is we end up with an
737 		 * unevictable page on [in]active list.
738 		 * We know how to handle that.
739 		 */
740 		is_unevictable = false;
741 		lru_cache_add(page);
742 	} else {
743 		/*
744 		 * Put unevictable pages directly on zone's unevictable
745 		 * list.
746 		 */
747 		is_unevictable = true;
748 		add_page_to_unevictable_list(page);
749 		/*
750 		 * When racing with an mlock or AS_UNEVICTABLE clearing
751 		 * (page is unlocked) make sure that if the other thread
752 		 * does not observe our setting of PG_lru and fails
753 		 * isolation/check_move_unevictable_pages,
754 		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
755 		 * the page back to the evictable list.
756 		 *
757 		 * The other side is TestClearPageMlocked() or shmem_lock().
758 		 */
759 		smp_mb();
760 	}
761 
762 	/*
763 	 * page's status can change while we move it among lru. If an evictable
764 	 * page is on unevictable list, it never be freed. To avoid that,
765 	 * check after we added it to the list, again.
766 	 */
767 	if (is_unevictable && page_evictable(page)) {
768 		if (!isolate_lru_page(page)) {
769 			put_page(page);
770 			goto redo;
771 		}
772 		/* This means someone else dropped this page from LRU
773 		 * So, it will be freed or putback to LRU again. There is
774 		 * nothing to do here.
775 		 */
776 	}
777 
778 	if (was_unevictable && !is_unevictable)
779 		count_vm_event(UNEVICTABLE_PGRESCUED);
780 	else if (!was_unevictable && is_unevictable)
781 		count_vm_event(UNEVICTABLE_PGCULLED);
782 
783 	put_page(page);		/* drop ref from isolate */
784 }
785 
786 enum page_references {
787 	PAGEREF_RECLAIM,
788 	PAGEREF_RECLAIM_CLEAN,
789 	PAGEREF_KEEP,
790 	PAGEREF_ACTIVATE,
791 };
792 
793 static enum page_references page_check_references(struct page *page,
794 						  struct scan_control *sc)
795 {
796 	int referenced_ptes, referenced_page;
797 	unsigned long vm_flags;
798 
799 	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
800 					  &vm_flags);
801 	referenced_page = TestClearPageReferenced(page);
802 
803 	/*
804 	 * Mlock lost the isolation race with us.  Let try_to_unmap()
805 	 * move the page to the unevictable list.
806 	 */
807 	if (vm_flags & VM_LOCKED)
808 		return PAGEREF_RECLAIM;
809 
810 	if (referenced_ptes) {
811 		if (PageSwapBacked(page))
812 			return PAGEREF_ACTIVATE;
813 		/*
814 		 * All mapped pages start out with page table
815 		 * references from the instantiating fault, so we need
816 		 * to look twice if a mapped file page is used more
817 		 * than once.
818 		 *
819 		 * Mark it and spare it for another trip around the
820 		 * inactive list.  Another page table reference will
821 		 * lead to its activation.
822 		 *
823 		 * Note: the mark is set for activated pages as well
824 		 * so that recently deactivated but used pages are
825 		 * quickly recovered.
826 		 */
827 		SetPageReferenced(page);
828 
829 		if (referenced_page || referenced_ptes > 1)
830 			return PAGEREF_ACTIVATE;
831 
832 		/*
833 		 * Activate file-backed executable pages after first usage.
834 		 */
835 		if (vm_flags & VM_EXEC)
836 			return PAGEREF_ACTIVATE;
837 
838 		return PAGEREF_KEEP;
839 	}
840 
841 	/* Reclaim if clean, defer dirty pages to writeback */
842 	if (referenced_page && !PageSwapBacked(page))
843 		return PAGEREF_RECLAIM_CLEAN;
844 
845 	return PAGEREF_RECLAIM;
846 }
847 
848 /* Check if a page is dirty or under writeback */
849 static void page_check_dirty_writeback(struct page *page,
850 				       bool *dirty, bool *writeback)
851 {
852 	struct address_space *mapping;
853 
854 	/*
855 	 * Anonymous pages are not handled by flushers and must be written
856 	 * from reclaim context. Do not stall reclaim based on them
857 	 */
858 	if (!page_is_file_cache(page)) {
859 		*dirty = false;
860 		*writeback = false;
861 		return;
862 	}
863 
864 	/* By default assume that the page flags are accurate */
865 	*dirty = PageDirty(page);
866 	*writeback = PageWriteback(page);
867 
868 	/* Verify dirty/writeback state if the filesystem supports it */
869 	if (!page_has_private(page))
870 		return;
871 
872 	mapping = page_mapping(page);
873 	if (mapping && mapping->a_ops->is_dirty_writeback)
874 		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
875 }
876 
877 /*
878  * shrink_page_list() returns the number of reclaimed pages
879  */
880 static unsigned long shrink_page_list(struct list_head *page_list,
881 				      struct zone *zone,
882 				      struct scan_control *sc,
883 				      enum ttu_flags ttu_flags,
884 				      unsigned long *ret_nr_dirty,
885 				      unsigned long *ret_nr_unqueued_dirty,
886 				      unsigned long *ret_nr_congested,
887 				      unsigned long *ret_nr_writeback,
888 				      unsigned long *ret_nr_immediate,
889 				      bool force_reclaim)
890 {
891 	LIST_HEAD(ret_pages);
892 	LIST_HEAD(free_pages);
893 	int pgactivate = 0;
894 	unsigned long nr_unqueued_dirty = 0;
895 	unsigned long nr_dirty = 0;
896 	unsigned long nr_congested = 0;
897 	unsigned long nr_reclaimed = 0;
898 	unsigned long nr_writeback = 0;
899 	unsigned long nr_immediate = 0;
900 
901 	cond_resched();
902 
903 	while (!list_empty(page_list)) {
904 		struct address_space *mapping;
905 		struct page *page;
906 		int may_enter_fs;
907 		enum page_references references = PAGEREF_RECLAIM_CLEAN;
908 		bool dirty, writeback;
909 
910 		cond_resched();
911 
912 		page = lru_to_page(page_list);
913 		list_del(&page->lru);
914 
915 		if (!trylock_page(page))
916 			goto keep;
917 
918 		VM_BUG_ON_PAGE(PageActive(page), page);
919 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
920 
921 		sc->nr_scanned++;
922 
923 		if (unlikely(!page_evictable(page)))
924 			goto cull_mlocked;
925 
926 		if (!sc->may_unmap && page_mapped(page))
927 			goto keep_locked;
928 
929 		/* Double the slab pressure for mapped and swapcache pages */
930 		if (page_mapped(page) || PageSwapCache(page))
931 			sc->nr_scanned++;
932 
933 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
934 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
935 
936 		/*
937 		 * The number of dirty pages determines if a zone is marked
938 		 * reclaim_congested which affects wait_iff_congested. kswapd
939 		 * will stall and start writing pages if the tail of the LRU
940 		 * is all dirty unqueued pages.
941 		 */
942 		page_check_dirty_writeback(page, &dirty, &writeback);
943 		if (dirty || writeback)
944 			nr_dirty++;
945 
946 		if (dirty && !writeback)
947 			nr_unqueued_dirty++;
948 
949 		/*
950 		 * Treat this page as congested if the underlying BDI is or if
951 		 * pages are cycling through the LRU so quickly that the
952 		 * pages marked for immediate reclaim are making it to the
953 		 * end of the LRU a second time.
954 		 */
955 		mapping = page_mapping(page);
956 		if (((dirty || writeback) && mapping &&
957 		     inode_write_congested(mapping->host)) ||
958 		    (writeback && PageReclaim(page)))
959 			nr_congested++;
960 
961 		/*
962 		 * If a page at the tail of the LRU is under writeback, there
963 		 * are three cases to consider.
964 		 *
965 		 * 1) If reclaim is encountering an excessive number of pages
966 		 *    under writeback and this page is both under writeback and
967 		 *    PageReclaim then it indicates that pages are being queued
968 		 *    for IO but are being recycled through the LRU before the
969 		 *    IO can complete. Waiting on the page itself risks an
970 		 *    indefinite stall if it is impossible to writeback the
971 		 *    page due to IO error or disconnected storage so instead
972 		 *    note that the LRU is being scanned too quickly and the
973 		 *    caller can stall after page list has been processed.
974 		 *
975 		 * 2) Global or new memcg reclaim encounters a page that is
976 		 *    not marked for immediate reclaim, or the caller does not
977 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
978 		 *    not to fs). In this case mark the page for immediate
979 		 *    reclaim and continue scanning.
980 		 *
981 		 *    Require may_enter_fs because we would wait on fs, which
982 		 *    may not have submitted IO yet. And the loop driver might
983 		 *    enter reclaim, and deadlock if it waits on a page for
984 		 *    which it is needed to do the write (loop masks off
985 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
986 		 *    would probably show more reasons.
987 		 *
988 		 * 3) Legacy memcg encounters a page that is not already marked
989 		 *    PageReclaim. memcg does not have any dirty pages
990 		 *    throttling so we could easily OOM just because too many
991 		 *    pages are in writeback and there is nothing else to
992 		 *    reclaim. Wait for the writeback to complete.
993 		 */
994 		if (PageWriteback(page)) {
995 			/* Case 1 above */
996 			if (current_is_kswapd() &&
997 			    PageReclaim(page) &&
998 			    test_bit(ZONE_WRITEBACK, &zone->flags)) {
999 				nr_immediate++;
1000 				goto keep_locked;
1001 
1002 			/* Case 2 above */
1003 			} else if (sane_reclaim(sc) ||
1004 			    !PageReclaim(page) || !may_enter_fs) {
1005 				/*
1006 				 * This is slightly racy - end_page_writeback()
1007 				 * might have just cleared PageReclaim, then
1008 				 * setting PageReclaim here end up interpreted
1009 				 * as PageReadahead - but that does not matter
1010 				 * enough to care.  What we do want is for this
1011 				 * page to have PageReclaim set next time memcg
1012 				 * reclaim reaches the tests above, so it will
1013 				 * then wait_on_page_writeback() to avoid OOM;
1014 				 * and it's also appropriate in global reclaim.
1015 				 */
1016 				SetPageReclaim(page);
1017 				nr_writeback++;
1018 
1019 				goto keep_locked;
1020 
1021 			/* Case 3 above */
1022 			} else {
1023 				wait_on_page_writeback(page);
1024 			}
1025 		}
1026 
1027 		if (!force_reclaim)
1028 			references = page_check_references(page, sc);
1029 
1030 		switch (references) {
1031 		case PAGEREF_ACTIVATE:
1032 			goto activate_locked;
1033 		case PAGEREF_KEEP:
1034 			goto keep_locked;
1035 		case PAGEREF_RECLAIM:
1036 		case PAGEREF_RECLAIM_CLEAN:
1037 			; /* try to reclaim the page below */
1038 		}
1039 
1040 		/*
1041 		 * Anonymous process memory has backing store?
1042 		 * Try to allocate it some swap space here.
1043 		 */
1044 		if (PageAnon(page) && !PageSwapCache(page)) {
1045 			if (!(sc->gfp_mask & __GFP_IO))
1046 				goto keep_locked;
1047 			if (!add_to_swap(page, page_list))
1048 				goto activate_locked;
1049 			may_enter_fs = 1;
1050 
1051 			/* Adding to swap updated mapping */
1052 			mapping = page_mapping(page);
1053 		}
1054 
1055 		/*
1056 		 * The page is mapped into the page tables of one or more
1057 		 * processes. Try to unmap it here.
1058 		 */
1059 		if (page_mapped(page) && mapping) {
1060 			switch (try_to_unmap(page,
1061 					ttu_flags|TTU_BATCH_FLUSH)) {
1062 			case SWAP_FAIL:
1063 				goto activate_locked;
1064 			case SWAP_AGAIN:
1065 				goto keep_locked;
1066 			case SWAP_MLOCK:
1067 				goto cull_mlocked;
1068 			case SWAP_SUCCESS:
1069 				; /* try to free the page below */
1070 			}
1071 		}
1072 
1073 		if (PageDirty(page)) {
1074 			/*
1075 			 * Only kswapd can writeback filesystem pages to
1076 			 * avoid risk of stack overflow but only writeback
1077 			 * if many dirty pages have been encountered.
1078 			 */
1079 			if (page_is_file_cache(page) &&
1080 					(!current_is_kswapd() ||
1081 					 !test_bit(ZONE_DIRTY, &zone->flags))) {
1082 				/*
1083 				 * Immediately reclaim when written back.
1084 				 * Similar in principal to deactivate_page()
1085 				 * except we already have the page isolated
1086 				 * and know it's dirty
1087 				 */
1088 				inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
1089 				SetPageReclaim(page);
1090 
1091 				goto keep_locked;
1092 			}
1093 
1094 			if (references == PAGEREF_RECLAIM_CLEAN)
1095 				goto keep_locked;
1096 			if (!may_enter_fs)
1097 				goto keep_locked;
1098 			if (!sc->may_writepage)
1099 				goto keep_locked;
1100 
1101 			/*
1102 			 * Page is dirty. Flush the TLB if a writable entry
1103 			 * potentially exists to avoid CPU writes after IO
1104 			 * starts and then write it out here.
1105 			 */
1106 			try_to_unmap_flush_dirty();
1107 			switch (pageout(page, mapping, sc)) {
1108 			case PAGE_KEEP:
1109 				goto keep_locked;
1110 			case PAGE_ACTIVATE:
1111 				goto activate_locked;
1112 			case PAGE_SUCCESS:
1113 				if (PageWriteback(page))
1114 					goto keep;
1115 				if (PageDirty(page))
1116 					goto keep;
1117 
1118 				/*
1119 				 * A synchronous write - probably a ramdisk.  Go
1120 				 * ahead and try to reclaim the page.
1121 				 */
1122 				if (!trylock_page(page))
1123 					goto keep;
1124 				if (PageDirty(page) || PageWriteback(page))
1125 					goto keep_locked;
1126 				mapping = page_mapping(page);
1127 			case PAGE_CLEAN:
1128 				; /* try to free the page below */
1129 			}
1130 		}
1131 
1132 		/*
1133 		 * If the page has buffers, try to free the buffer mappings
1134 		 * associated with this page. If we succeed we try to free
1135 		 * the page as well.
1136 		 *
1137 		 * We do this even if the page is PageDirty().
1138 		 * try_to_release_page() does not perform I/O, but it is
1139 		 * possible for a page to have PageDirty set, but it is actually
1140 		 * clean (all its buffers are clean).  This happens if the
1141 		 * buffers were written out directly, with submit_bh(). ext3
1142 		 * will do this, as well as the blockdev mapping.
1143 		 * try_to_release_page() will discover that cleanness and will
1144 		 * drop the buffers and mark the page clean - it can be freed.
1145 		 *
1146 		 * Rarely, pages can have buffers and no ->mapping.  These are
1147 		 * the pages which were not successfully invalidated in
1148 		 * truncate_complete_page().  We try to drop those buffers here
1149 		 * and if that worked, and the page is no longer mapped into
1150 		 * process address space (page_count == 1) it can be freed.
1151 		 * Otherwise, leave the page on the LRU so it is swappable.
1152 		 */
1153 		if (page_has_private(page)) {
1154 			if (!try_to_release_page(page, sc->gfp_mask))
1155 				goto activate_locked;
1156 			if (!mapping && page_count(page) == 1) {
1157 				unlock_page(page);
1158 				if (put_page_testzero(page))
1159 					goto free_it;
1160 				else {
1161 					/*
1162 					 * rare race with speculative reference.
1163 					 * the speculative reference will free
1164 					 * this page shortly, so we may
1165 					 * increment nr_reclaimed here (and
1166 					 * leave it off the LRU).
1167 					 */
1168 					nr_reclaimed++;
1169 					continue;
1170 				}
1171 			}
1172 		}
1173 
1174 		if (!mapping || !__remove_mapping(mapping, page, true))
1175 			goto keep_locked;
1176 
1177 		/*
1178 		 * At this point, we have no other references and there is
1179 		 * no way to pick any more up (removed from LRU, removed
1180 		 * from pagecache). Can use non-atomic bitops now (and
1181 		 * we obviously don't have to worry about waking up a process
1182 		 * waiting on the page lock, because there are no references.
1183 		 */
1184 		__clear_page_locked(page);
1185 free_it:
1186 		nr_reclaimed++;
1187 
1188 		/*
1189 		 * Is there need to periodically free_page_list? It would
1190 		 * appear not as the counts should be low
1191 		 */
1192 		list_add(&page->lru, &free_pages);
1193 		continue;
1194 
1195 cull_mlocked:
1196 		if (PageSwapCache(page))
1197 			try_to_free_swap(page);
1198 		unlock_page(page);
1199 		putback_lru_page(page);
1200 		continue;
1201 
1202 activate_locked:
1203 		/* Not a candidate for swapping, so reclaim swap space. */
1204 		if (PageSwapCache(page) && vm_swap_full())
1205 			try_to_free_swap(page);
1206 		VM_BUG_ON_PAGE(PageActive(page), page);
1207 		SetPageActive(page);
1208 		pgactivate++;
1209 keep_locked:
1210 		unlock_page(page);
1211 keep:
1212 		list_add(&page->lru, &ret_pages);
1213 		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1214 	}
1215 
1216 	mem_cgroup_uncharge_list(&free_pages);
1217 	try_to_unmap_flush();
1218 	free_hot_cold_page_list(&free_pages, true);
1219 
1220 	list_splice(&ret_pages, page_list);
1221 	count_vm_events(PGACTIVATE, pgactivate);
1222 
1223 	*ret_nr_dirty += nr_dirty;
1224 	*ret_nr_congested += nr_congested;
1225 	*ret_nr_unqueued_dirty += nr_unqueued_dirty;
1226 	*ret_nr_writeback += nr_writeback;
1227 	*ret_nr_immediate += nr_immediate;
1228 	return nr_reclaimed;
1229 }
1230 
1231 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1232 					    struct list_head *page_list)
1233 {
1234 	struct scan_control sc = {
1235 		.gfp_mask = GFP_KERNEL,
1236 		.priority = DEF_PRIORITY,
1237 		.may_unmap = 1,
1238 	};
1239 	unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1240 	struct page *page, *next;
1241 	LIST_HEAD(clean_pages);
1242 
1243 	list_for_each_entry_safe(page, next, page_list, lru) {
1244 		if (page_is_file_cache(page) && !PageDirty(page) &&
1245 		    !isolated_balloon_page(page)) {
1246 			ClearPageActive(page);
1247 			list_move(&page->lru, &clean_pages);
1248 		}
1249 	}
1250 
1251 	ret = shrink_page_list(&clean_pages, zone, &sc,
1252 			TTU_UNMAP|TTU_IGNORE_ACCESS,
1253 			&dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1254 	list_splice(&clean_pages, page_list);
1255 	mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
1256 	return ret;
1257 }
1258 
1259 /*
1260  * Attempt to remove the specified page from its LRU.  Only take this page
1261  * if it is of the appropriate PageActive status.  Pages which are being
1262  * freed elsewhere are also ignored.
1263  *
1264  * page:	page to consider
1265  * mode:	one of the LRU isolation modes defined above
1266  *
1267  * returns 0 on success, -ve errno on failure.
1268  */
1269 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1270 {
1271 	int ret = -EINVAL;
1272 
1273 	/* Only take pages on the LRU. */
1274 	if (!PageLRU(page))
1275 		return ret;
1276 
1277 	/* Compaction should not handle unevictable pages but CMA can do so */
1278 	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1279 		return ret;
1280 
1281 	ret = -EBUSY;
1282 
1283 	/*
1284 	 * To minimise LRU disruption, the caller can indicate that it only
1285 	 * wants to isolate pages it will be able to operate on without
1286 	 * blocking - clean pages for the most part.
1287 	 *
1288 	 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1289 	 * is used by reclaim when it is cannot write to backing storage
1290 	 *
1291 	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1292 	 * that it is possible to migrate without blocking
1293 	 */
1294 	if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1295 		/* All the caller can do on PageWriteback is block */
1296 		if (PageWriteback(page))
1297 			return ret;
1298 
1299 		if (PageDirty(page)) {
1300 			struct address_space *mapping;
1301 
1302 			/* ISOLATE_CLEAN means only clean pages */
1303 			if (mode & ISOLATE_CLEAN)
1304 				return ret;
1305 
1306 			/*
1307 			 * Only pages without mappings or that have a
1308 			 * ->migratepage callback are possible to migrate
1309 			 * without blocking
1310 			 */
1311 			mapping = page_mapping(page);
1312 			if (mapping && !mapping->a_ops->migratepage)
1313 				return ret;
1314 		}
1315 	}
1316 
1317 	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1318 		return ret;
1319 
1320 	if (likely(get_page_unless_zero(page))) {
1321 		/*
1322 		 * Be careful not to clear PageLRU until after we're
1323 		 * sure the page is not being freed elsewhere -- the
1324 		 * page release code relies on it.
1325 		 */
1326 		ClearPageLRU(page);
1327 		ret = 0;
1328 	}
1329 
1330 	return ret;
1331 }
1332 
1333 /*
1334  * zone->lru_lock is heavily contended.  Some of the functions that
1335  * shrink the lists perform better by taking out a batch of pages
1336  * and working on them outside the LRU lock.
1337  *
1338  * For pagecache intensive workloads, this function is the hottest
1339  * spot in the kernel (apart from copy_*_user functions).
1340  *
1341  * Appropriate locks must be held before calling this function.
1342  *
1343  * @nr_to_scan:	The number of pages to look through on the list.
1344  * @lruvec:	The LRU vector to pull pages from.
1345  * @dst:	The temp list to put pages on to.
1346  * @nr_scanned:	The number of pages that were scanned.
1347  * @sc:		The scan_control struct for this reclaim session
1348  * @mode:	One of the LRU isolation modes
1349  * @lru:	LRU list id for isolating
1350  *
1351  * returns how many pages were moved onto *@dst.
1352  */
1353 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1354 		struct lruvec *lruvec, struct list_head *dst,
1355 		unsigned long *nr_scanned, struct scan_control *sc,
1356 		isolate_mode_t mode, enum lru_list lru)
1357 {
1358 	struct list_head *src = &lruvec->lists[lru];
1359 	unsigned long nr_taken = 0;
1360 	unsigned long scan;
1361 
1362 	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1363 		struct page *page;
1364 		int nr_pages;
1365 
1366 		page = lru_to_page(src);
1367 		prefetchw_prev_lru_page(page, src, flags);
1368 
1369 		VM_BUG_ON_PAGE(!PageLRU(page), page);
1370 
1371 		switch (__isolate_lru_page(page, mode)) {
1372 		case 0:
1373 			nr_pages = hpage_nr_pages(page);
1374 			mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
1375 			list_move(&page->lru, dst);
1376 			nr_taken += nr_pages;
1377 			break;
1378 
1379 		case -EBUSY:
1380 			/* else it is being freed elsewhere */
1381 			list_move(&page->lru, src);
1382 			continue;
1383 
1384 		default:
1385 			BUG();
1386 		}
1387 	}
1388 
1389 	*nr_scanned = scan;
1390 	trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1391 				    nr_taken, mode, is_file_lru(lru));
1392 	return nr_taken;
1393 }
1394 
1395 /**
1396  * isolate_lru_page - tries to isolate a page from its LRU list
1397  * @page: page to isolate from its LRU list
1398  *
1399  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1400  * vmstat statistic corresponding to whatever LRU list the page was on.
1401  *
1402  * Returns 0 if the page was removed from an LRU list.
1403  * Returns -EBUSY if the page was not on an LRU list.
1404  *
1405  * The returned page will have PageLRU() cleared.  If it was found on
1406  * the active list, it will have PageActive set.  If it was found on
1407  * the unevictable list, it will have the PageUnevictable bit set. That flag
1408  * may need to be cleared by the caller before letting the page go.
1409  *
1410  * The vmstat statistic corresponding to the list on which the page was
1411  * found will be decremented.
1412  *
1413  * Restrictions:
1414  * (1) Must be called with an elevated refcount on the page. This is a
1415  *     fundamentnal difference from isolate_lru_pages (which is called
1416  *     without a stable reference).
1417  * (2) the lru_lock must not be held.
1418  * (3) interrupts must be enabled.
1419  */
1420 int isolate_lru_page(struct page *page)
1421 {
1422 	int ret = -EBUSY;
1423 
1424 	VM_BUG_ON_PAGE(!page_count(page), page);
1425 
1426 	if (PageLRU(page)) {
1427 		struct zone *zone = page_zone(page);
1428 		struct lruvec *lruvec;
1429 
1430 		spin_lock_irq(&zone->lru_lock);
1431 		lruvec = mem_cgroup_page_lruvec(page, zone);
1432 		if (PageLRU(page)) {
1433 			int lru = page_lru(page);
1434 			get_page(page);
1435 			ClearPageLRU(page);
1436 			del_page_from_lru_list(page, lruvec, lru);
1437 			ret = 0;
1438 		}
1439 		spin_unlock_irq(&zone->lru_lock);
1440 	}
1441 	return ret;
1442 }
1443 
1444 /*
1445  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1446  * then get resheduled. When there are massive number of tasks doing page
1447  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1448  * the LRU list will go small and be scanned faster than necessary, leading to
1449  * unnecessary swapping, thrashing and OOM.
1450  */
1451 static int too_many_isolated(struct zone *zone, int file,
1452 		struct scan_control *sc)
1453 {
1454 	unsigned long inactive, isolated;
1455 
1456 	if (current_is_kswapd())
1457 		return 0;
1458 
1459 	if (!sane_reclaim(sc))
1460 		return 0;
1461 
1462 	if (file) {
1463 		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1464 		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1465 	} else {
1466 		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1467 		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1468 	}
1469 
1470 	/*
1471 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1472 	 * won't get blocked by normal direct-reclaimers, forming a circular
1473 	 * deadlock.
1474 	 */
1475 	if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
1476 		inactive >>= 3;
1477 
1478 	return isolated > inactive;
1479 }
1480 
1481 static noinline_for_stack void
1482 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1483 {
1484 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1485 	struct zone *zone = lruvec_zone(lruvec);
1486 	LIST_HEAD(pages_to_free);
1487 
1488 	/*
1489 	 * Put back any unfreeable pages.
1490 	 */
1491 	while (!list_empty(page_list)) {
1492 		struct page *page = lru_to_page(page_list);
1493 		int lru;
1494 
1495 		VM_BUG_ON_PAGE(PageLRU(page), page);
1496 		list_del(&page->lru);
1497 		if (unlikely(!page_evictable(page))) {
1498 			spin_unlock_irq(&zone->lru_lock);
1499 			putback_lru_page(page);
1500 			spin_lock_irq(&zone->lru_lock);
1501 			continue;
1502 		}
1503 
1504 		lruvec = mem_cgroup_page_lruvec(page, zone);
1505 
1506 		SetPageLRU(page);
1507 		lru = page_lru(page);
1508 		add_page_to_lru_list(page, lruvec, lru);
1509 
1510 		if (is_active_lru(lru)) {
1511 			int file = is_file_lru(lru);
1512 			int numpages = hpage_nr_pages(page);
1513 			reclaim_stat->recent_rotated[file] += numpages;
1514 		}
1515 		if (put_page_testzero(page)) {
1516 			__ClearPageLRU(page);
1517 			__ClearPageActive(page);
1518 			del_page_from_lru_list(page, lruvec, lru);
1519 
1520 			if (unlikely(PageCompound(page))) {
1521 				spin_unlock_irq(&zone->lru_lock);
1522 				mem_cgroup_uncharge(page);
1523 				(*get_compound_page_dtor(page))(page);
1524 				spin_lock_irq(&zone->lru_lock);
1525 			} else
1526 				list_add(&page->lru, &pages_to_free);
1527 		}
1528 	}
1529 
1530 	/*
1531 	 * To save our caller's stack, now use input list for pages to free.
1532 	 */
1533 	list_splice(&pages_to_free, page_list);
1534 }
1535 
1536 /*
1537  * If a kernel thread (such as nfsd for loop-back mounts) services
1538  * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1539  * In that case we should only throttle if the backing device it is
1540  * writing to is congested.  In other cases it is safe to throttle.
1541  */
1542 static int current_may_throttle(void)
1543 {
1544 	return !(current->flags & PF_LESS_THROTTLE) ||
1545 		current->backing_dev_info == NULL ||
1546 		bdi_write_congested(current->backing_dev_info);
1547 }
1548 
1549 /*
1550  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1551  * of reclaimed pages
1552  */
1553 static noinline_for_stack unsigned long
1554 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1555 		     struct scan_control *sc, enum lru_list lru)
1556 {
1557 	LIST_HEAD(page_list);
1558 	unsigned long nr_scanned;
1559 	unsigned long nr_reclaimed = 0;
1560 	unsigned long nr_taken;
1561 	unsigned long nr_dirty = 0;
1562 	unsigned long nr_congested = 0;
1563 	unsigned long nr_unqueued_dirty = 0;
1564 	unsigned long nr_writeback = 0;
1565 	unsigned long nr_immediate = 0;
1566 	isolate_mode_t isolate_mode = 0;
1567 	int file = is_file_lru(lru);
1568 	struct zone *zone = lruvec_zone(lruvec);
1569 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1570 
1571 	while (unlikely(too_many_isolated(zone, file, sc))) {
1572 		congestion_wait(BLK_RW_ASYNC, HZ/10);
1573 
1574 		/* We are about to die and free our memory. Return now. */
1575 		if (fatal_signal_pending(current))
1576 			return SWAP_CLUSTER_MAX;
1577 	}
1578 
1579 	lru_add_drain();
1580 
1581 	if (!sc->may_unmap)
1582 		isolate_mode |= ISOLATE_UNMAPPED;
1583 	if (!sc->may_writepage)
1584 		isolate_mode |= ISOLATE_CLEAN;
1585 
1586 	spin_lock_irq(&zone->lru_lock);
1587 
1588 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1589 				     &nr_scanned, sc, isolate_mode, lru);
1590 
1591 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1592 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1593 
1594 	if (global_reclaim(sc)) {
1595 		__mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
1596 		if (current_is_kswapd())
1597 			__count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1598 		else
1599 			__count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1600 	}
1601 	spin_unlock_irq(&zone->lru_lock);
1602 
1603 	if (nr_taken == 0)
1604 		return 0;
1605 
1606 	nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1607 				&nr_dirty, &nr_unqueued_dirty, &nr_congested,
1608 				&nr_writeback, &nr_immediate,
1609 				false);
1610 
1611 	spin_lock_irq(&zone->lru_lock);
1612 
1613 	reclaim_stat->recent_scanned[file] += nr_taken;
1614 
1615 	if (global_reclaim(sc)) {
1616 		if (current_is_kswapd())
1617 			__count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1618 					       nr_reclaimed);
1619 		else
1620 			__count_zone_vm_events(PGSTEAL_DIRECT, zone,
1621 					       nr_reclaimed);
1622 	}
1623 
1624 	putback_inactive_pages(lruvec, &page_list);
1625 
1626 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1627 
1628 	spin_unlock_irq(&zone->lru_lock);
1629 
1630 	mem_cgroup_uncharge_list(&page_list);
1631 	free_hot_cold_page_list(&page_list, true);
1632 
1633 	/*
1634 	 * If reclaim is isolating dirty pages under writeback, it implies
1635 	 * that the long-lived page allocation rate is exceeding the page
1636 	 * laundering rate. Either the global limits are not being effective
1637 	 * at throttling processes due to the page distribution throughout
1638 	 * zones or there is heavy usage of a slow backing device. The
1639 	 * only option is to throttle from reclaim context which is not ideal
1640 	 * as there is no guarantee the dirtying process is throttled in the
1641 	 * same way balance_dirty_pages() manages.
1642 	 *
1643 	 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1644 	 * of pages under pages flagged for immediate reclaim and stall if any
1645 	 * are encountered in the nr_immediate check below.
1646 	 */
1647 	if (nr_writeback && nr_writeback == nr_taken)
1648 		set_bit(ZONE_WRITEBACK, &zone->flags);
1649 
1650 	/*
1651 	 * Legacy memcg will stall in page writeback so avoid forcibly
1652 	 * stalling here.
1653 	 */
1654 	if (sane_reclaim(sc)) {
1655 		/*
1656 		 * Tag a zone as congested if all the dirty pages scanned were
1657 		 * backed by a congested BDI and wait_iff_congested will stall.
1658 		 */
1659 		if (nr_dirty && nr_dirty == nr_congested)
1660 			set_bit(ZONE_CONGESTED, &zone->flags);
1661 
1662 		/*
1663 		 * If dirty pages are scanned that are not queued for IO, it
1664 		 * implies that flushers are not keeping up. In this case, flag
1665 		 * the zone ZONE_DIRTY and kswapd will start writing pages from
1666 		 * reclaim context.
1667 		 */
1668 		if (nr_unqueued_dirty == nr_taken)
1669 			set_bit(ZONE_DIRTY, &zone->flags);
1670 
1671 		/*
1672 		 * If kswapd scans pages marked marked for immediate
1673 		 * reclaim and under writeback (nr_immediate), it implies
1674 		 * that pages are cycling through the LRU faster than
1675 		 * they are written so also forcibly stall.
1676 		 */
1677 		if (nr_immediate && current_may_throttle())
1678 			congestion_wait(BLK_RW_ASYNC, HZ/10);
1679 	}
1680 
1681 	/*
1682 	 * Stall direct reclaim for IO completions if underlying BDIs or zone
1683 	 * is congested. Allow kswapd to continue until it starts encountering
1684 	 * unqueued dirty pages or cycling through the LRU too quickly.
1685 	 */
1686 	if (!sc->hibernation_mode && !current_is_kswapd() &&
1687 	    current_may_throttle())
1688 		wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1689 
1690 	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1691 		zone_idx(zone),
1692 		nr_scanned, nr_reclaimed,
1693 		sc->priority,
1694 		trace_shrink_flags(file));
1695 	return nr_reclaimed;
1696 }
1697 
1698 /*
1699  * This moves pages from the active list to the inactive list.
1700  *
1701  * We move them the other way if the page is referenced by one or more
1702  * processes, from rmap.
1703  *
1704  * If the pages are mostly unmapped, the processing is fast and it is
1705  * appropriate to hold zone->lru_lock across the whole operation.  But if
1706  * the pages are mapped, the processing is slow (page_referenced()) so we
1707  * should drop zone->lru_lock around each page.  It's impossible to balance
1708  * this, so instead we remove the pages from the LRU while processing them.
1709  * It is safe to rely on PG_active against the non-LRU pages in here because
1710  * nobody will play with that bit on a non-LRU page.
1711  *
1712  * The downside is that we have to touch page->_count against each page.
1713  * But we had to alter page->flags anyway.
1714  */
1715 
1716 static void move_active_pages_to_lru(struct lruvec *lruvec,
1717 				     struct list_head *list,
1718 				     struct list_head *pages_to_free,
1719 				     enum lru_list lru)
1720 {
1721 	struct zone *zone = lruvec_zone(lruvec);
1722 	unsigned long pgmoved = 0;
1723 	struct page *page;
1724 	int nr_pages;
1725 
1726 	while (!list_empty(list)) {
1727 		page = lru_to_page(list);
1728 		lruvec = mem_cgroup_page_lruvec(page, zone);
1729 
1730 		VM_BUG_ON_PAGE(PageLRU(page), page);
1731 		SetPageLRU(page);
1732 
1733 		nr_pages = hpage_nr_pages(page);
1734 		mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1735 		list_move(&page->lru, &lruvec->lists[lru]);
1736 		pgmoved += nr_pages;
1737 
1738 		if (put_page_testzero(page)) {
1739 			__ClearPageLRU(page);
1740 			__ClearPageActive(page);
1741 			del_page_from_lru_list(page, lruvec, lru);
1742 
1743 			if (unlikely(PageCompound(page))) {
1744 				spin_unlock_irq(&zone->lru_lock);
1745 				mem_cgroup_uncharge(page);
1746 				(*get_compound_page_dtor(page))(page);
1747 				spin_lock_irq(&zone->lru_lock);
1748 			} else
1749 				list_add(&page->lru, pages_to_free);
1750 		}
1751 	}
1752 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1753 	if (!is_active_lru(lru))
1754 		__count_vm_events(PGDEACTIVATE, pgmoved);
1755 }
1756 
1757 static void shrink_active_list(unsigned long nr_to_scan,
1758 			       struct lruvec *lruvec,
1759 			       struct scan_control *sc,
1760 			       enum lru_list lru)
1761 {
1762 	unsigned long nr_taken;
1763 	unsigned long nr_scanned;
1764 	unsigned long vm_flags;
1765 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1766 	LIST_HEAD(l_active);
1767 	LIST_HEAD(l_inactive);
1768 	struct page *page;
1769 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1770 	unsigned long nr_rotated = 0;
1771 	isolate_mode_t isolate_mode = 0;
1772 	int file = is_file_lru(lru);
1773 	struct zone *zone = lruvec_zone(lruvec);
1774 
1775 	lru_add_drain();
1776 
1777 	if (!sc->may_unmap)
1778 		isolate_mode |= ISOLATE_UNMAPPED;
1779 	if (!sc->may_writepage)
1780 		isolate_mode |= ISOLATE_CLEAN;
1781 
1782 	spin_lock_irq(&zone->lru_lock);
1783 
1784 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1785 				     &nr_scanned, sc, isolate_mode, lru);
1786 	if (global_reclaim(sc))
1787 		__mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
1788 
1789 	reclaim_stat->recent_scanned[file] += nr_taken;
1790 
1791 	__count_zone_vm_events(PGREFILL, zone, nr_scanned);
1792 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1793 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1794 	spin_unlock_irq(&zone->lru_lock);
1795 
1796 	while (!list_empty(&l_hold)) {
1797 		cond_resched();
1798 		page = lru_to_page(&l_hold);
1799 		list_del(&page->lru);
1800 
1801 		if (unlikely(!page_evictable(page))) {
1802 			putback_lru_page(page);
1803 			continue;
1804 		}
1805 
1806 		if (unlikely(buffer_heads_over_limit)) {
1807 			if (page_has_private(page) && trylock_page(page)) {
1808 				if (page_has_private(page))
1809 					try_to_release_page(page, 0);
1810 				unlock_page(page);
1811 			}
1812 		}
1813 
1814 		if (page_referenced(page, 0, sc->target_mem_cgroup,
1815 				    &vm_flags)) {
1816 			nr_rotated += hpage_nr_pages(page);
1817 			/*
1818 			 * Identify referenced, file-backed active pages and
1819 			 * give them one more trip around the active list. So
1820 			 * that executable code get better chances to stay in
1821 			 * memory under moderate memory pressure.  Anon pages
1822 			 * are not likely to be evicted by use-once streaming
1823 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
1824 			 * so we ignore them here.
1825 			 */
1826 			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1827 				list_add(&page->lru, &l_active);
1828 				continue;
1829 			}
1830 		}
1831 
1832 		ClearPageActive(page);	/* we are de-activating */
1833 		list_add(&page->lru, &l_inactive);
1834 	}
1835 
1836 	/*
1837 	 * Move pages back to the lru list.
1838 	 */
1839 	spin_lock_irq(&zone->lru_lock);
1840 	/*
1841 	 * Count referenced pages from currently used mappings as rotated,
1842 	 * even though only some of them are actually re-activated.  This
1843 	 * helps balance scan pressure between file and anonymous pages in
1844 	 * get_scan_count.
1845 	 */
1846 	reclaim_stat->recent_rotated[file] += nr_rotated;
1847 
1848 	move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1849 	move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1850 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1851 	spin_unlock_irq(&zone->lru_lock);
1852 
1853 	mem_cgroup_uncharge_list(&l_hold);
1854 	free_hot_cold_page_list(&l_hold, true);
1855 }
1856 
1857 #ifdef CONFIG_SWAP
1858 static int inactive_anon_is_low_global(struct zone *zone)
1859 {
1860 	unsigned long active, inactive;
1861 
1862 	active = zone_page_state(zone, NR_ACTIVE_ANON);
1863 	inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1864 
1865 	if (inactive * zone->inactive_ratio < active)
1866 		return 1;
1867 
1868 	return 0;
1869 }
1870 
1871 /**
1872  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1873  * @lruvec: LRU vector to check
1874  *
1875  * Returns true if the zone does not have enough inactive anon pages,
1876  * meaning some active anon pages need to be deactivated.
1877  */
1878 static int inactive_anon_is_low(struct lruvec *lruvec)
1879 {
1880 	/*
1881 	 * If we don't have swap space, anonymous page deactivation
1882 	 * is pointless.
1883 	 */
1884 	if (!total_swap_pages)
1885 		return 0;
1886 
1887 	if (!mem_cgroup_disabled())
1888 		return mem_cgroup_inactive_anon_is_low(lruvec);
1889 
1890 	return inactive_anon_is_low_global(lruvec_zone(lruvec));
1891 }
1892 #else
1893 static inline int inactive_anon_is_low(struct lruvec *lruvec)
1894 {
1895 	return 0;
1896 }
1897 #endif
1898 
1899 /**
1900  * inactive_file_is_low - check if file pages need to be deactivated
1901  * @lruvec: LRU vector to check
1902  *
1903  * When the system is doing streaming IO, memory pressure here
1904  * ensures that active file pages get deactivated, until more
1905  * than half of the file pages are on the inactive list.
1906  *
1907  * Once we get to that situation, protect the system's working
1908  * set from being evicted by disabling active file page aging.
1909  *
1910  * This uses a different ratio than the anonymous pages, because
1911  * the page cache uses a use-once replacement algorithm.
1912  */
1913 static int inactive_file_is_low(struct lruvec *lruvec)
1914 {
1915 	unsigned long inactive;
1916 	unsigned long active;
1917 
1918 	inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1919 	active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1920 
1921 	return active > inactive;
1922 }
1923 
1924 static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1925 {
1926 	if (is_file_lru(lru))
1927 		return inactive_file_is_low(lruvec);
1928 	else
1929 		return inactive_anon_is_low(lruvec);
1930 }
1931 
1932 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1933 				 struct lruvec *lruvec, struct scan_control *sc)
1934 {
1935 	if (is_active_lru(lru)) {
1936 		if (inactive_list_is_low(lruvec, lru))
1937 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
1938 		return 0;
1939 	}
1940 
1941 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1942 }
1943 
1944 enum scan_balance {
1945 	SCAN_EQUAL,
1946 	SCAN_FRACT,
1947 	SCAN_ANON,
1948 	SCAN_FILE,
1949 };
1950 
1951 /*
1952  * Determine how aggressively the anon and file LRU lists should be
1953  * scanned.  The relative value of each set of LRU lists is determined
1954  * by looking at the fraction of the pages scanned we did rotate back
1955  * onto the active list instead of evict.
1956  *
1957  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1958  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1959  */
1960 static void get_scan_count(struct lruvec *lruvec, int swappiness,
1961 			   struct scan_control *sc, unsigned long *nr,
1962 			   unsigned long *lru_pages)
1963 {
1964 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1965 	u64 fraction[2];
1966 	u64 denominator = 0;	/* gcc */
1967 	struct zone *zone = lruvec_zone(lruvec);
1968 	unsigned long anon_prio, file_prio;
1969 	enum scan_balance scan_balance;
1970 	unsigned long anon, file;
1971 	bool force_scan = false;
1972 	unsigned long ap, fp;
1973 	enum lru_list lru;
1974 	bool some_scanned;
1975 	int pass;
1976 
1977 	/*
1978 	 * If the zone or memcg is small, nr[l] can be 0.  This
1979 	 * results in no scanning on this priority and a potential
1980 	 * priority drop.  Global direct reclaim can go to the next
1981 	 * zone and tends to have no problems. Global kswapd is for
1982 	 * zone balancing and it needs to scan a minimum amount. When
1983 	 * reclaiming for a memcg, a priority drop can cause high
1984 	 * latencies, so it's better to scan a minimum amount there as
1985 	 * well.
1986 	 */
1987 	if (current_is_kswapd()) {
1988 		if (!zone_reclaimable(zone))
1989 			force_scan = true;
1990 		if (!mem_cgroup_lruvec_online(lruvec))
1991 			force_scan = true;
1992 	}
1993 	if (!global_reclaim(sc))
1994 		force_scan = true;
1995 
1996 	/* If we have no swap space, do not bother scanning anon pages. */
1997 	if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
1998 		scan_balance = SCAN_FILE;
1999 		goto out;
2000 	}
2001 
2002 	/*
2003 	 * Global reclaim will swap to prevent OOM even with no
2004 	 * swappiness, but memcg users want to use this knob to
2005 	 * disable swapping for individual groups completely when
2006 	 * using the memory controller's swap limit feature would be
2007 	 * too expensive.
2008 	 */
2009 	if (!global_reclaim(sc) && !swappiness) {
2010 		scan_balance = SCAN_FILE;
2011 		goto out;
2012 	}
2013 
2014 	/*
2015 	 * Do not apply any pressure balancing cleverness when the
2016 	 * system is close to OOM, scan both anon and file equally
2017 	 * (unless the swappiness setting disagrees with swapping).
2018 	 */
2019 	if (!sc->priority && swappiness) {
2020 		scan_balance = SCAN_EQUAL;
2021 		goto out;
2022 	}
2023 
2024 	/*
2025 	 * Prevent the reclaimer from falling into the cache trap: as
2026 	 * cache pages start out inactive, every cache fault will tip
2027 	 * the scan balance towards the file LRU.  And as the file LRU
2028 	 * shrinks, so does the window for rotation from references.
2029 	 * This means we have a runaway feedback loop where a tiny
2030 	 * thrashing file LRU becomes infinitely more attractive than
2031 	 * anon pages.  Try to detect this based on file LRU size.
2032 	 */
2033 	if (global_reclaim(sc)) {
2034 		unsigned long zonefile;
2035 		unsigned long zonefree;
2036 
2037 		zonefree = zone_page_state(zone, NR_FREE_PAGES);
2038 		zonefile = zone_page_state(zone, NR_ACTIVE_FILE) +
2039 			   zone_page_state(zone, NR_INACTIVE_FILE);
2040 
2041 		if (unlikely(zonefile + zonefree <= high_wmark_pages(zone))) {
2042 			scan_balance = SCAN_ANON;
2043 			goto out;
2044 		}
2045 	}
2046 
2047 	/*
2048 	 * There is enough inactive page cache, do not reclaim
2049 	 * anything from the anonymous working set right now.
2050 	 */
2051 	if (!inactive_file_is_low(lruvec)) {
2052 		scan_balance = SCAN_FILE;
2053 		goto out;
2054 	}
2055 
2056 	scan_balance = SCAN_FRACT;
2057 
2058 	/*
2059 	 * With swappiness at 100, anonymous and file have the same priority.
2060 	 * This scanning priority is essentially the inverse of IO cost.
2061 	 */
2062 	anon_prio = swappiness;
2063 	file_prio = 200 - anon_prio;
2064 
2065 	/*
2066 	 * OK, so we have swap space and a fair amount of page cache
2067 	 * pages.  We use the recently rotated / recently scanned
2068 	 * ratios to determine how valuable each cache is.
2069 	 *
2070 	 * Because workloads change over time (and to avoid overflow)
2071 	 * we keep these statistics as a floating average, which ends
2072 	 * up weighing recent references more than old ones.
2073 	 *
2074 	 * anon in [0], file in [1]
2075 	 */
2076 
2077 	anon  = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
2078 		get_lru_size(lruvec, LRU_INACTIVE_ANON);
2079 	file  = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
2080 		get_lru_size(lruvec, LRU_INACTIVE_FILE);
2081 
2082 	spin_lock_irq(&zone->lru_lock);
2083 	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2084 		reclaim_stat->recent_scanned[0] /= 2;
2085 		reclaim_stat->recent_rotated[0] /= 2;
2086 	}
2087 
2088 	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2089 		reclaim_stat->recent_scanned[1] /= 2;
2090 		reclaim_stat->recent_rotated[1] /= 2;
2091 	}
2092 
2093 	/*
2094 	 * The amount of pressure on anon vs file pages is inversely
2095 	 * proportional to the fraction of recently scanned pages on
2096 	 * each list that were recently referenced and in active use.
2097 	 */
2098 	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2099 	ap /= reclaim_stat->recent_rotated[0] + 1;
2100 
2101 	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2102 	fp /= reclaim_stat->recent_rotated[1] + 1;
2103 	spin_unlock_irq(&zone->lru_lock);
2104 
2105 	fraction[0] = ap;
2106 	fraction[1] = fp;
2107 	denominator = ap + fp + 1;
2108 out:
2109 	some_scanned = false;
2110 	/* Only use force_scan on second pass. */
2111 	for (pass = 0; !some_scanned && pass < 2; pass++) {
2112 		*lru_pages = 0;
2113 		for_each_evictable_lru(lru) {
2114 			int file = is_file_lru(lru);
2115 			unsigned long size;
2116 			unsigned long scan;
2117 
2118 			size = get_lru_size(lruvec, lru);
2119 			scan = size >> sc->priority;
2120 
2121 			if (!scan && pass && force_scan)
2122 				scan = min(size, SWAP_CLUSTER_MAX);
2123 
2124 			switch (scan_balance) {
2125 			case SCAN_EQUAL:
2126 				/* Scan lists relative to size */
2127 				break;
2128 			case SCAN_FRACT:
2129 				/*
2130 				 * Scan types proportional to swappiness and
2131 				 * their relative recent reclaim efficiency.
2132 				 */
2133 				scan = div64_u64(scan * fraction[file],
2134 							denominator);
2135 				break;
2136 			case SCAN_FILE:
2137 			case SCAN_ANON:
2138 				/* Scan one type exclusively */
2139 				if ((scan_balance == SCAN_FILE) != file) {
2140 					size = 0;
2141 					scan = 0;
2142 				}
2143 				break;
2144 			default:
2145 				/* Look ma, no brain */
2146 				BUG();
2147 			}
2148 
2149 			*lru_pages += size;
2150 			nr[lru] = scan;
2151 
2152 			/*
2153 			 * Skip the second pass and don't force_scan,
2154 			 * if we found something to scan.
2155 			 */
2156 			some_scanned |= !!scan;
2157 		}
2158 	}
2159 }
2160 
2161 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
2162 static void init_tlb_ubc(void)
2163 {
2164 	/*
2165 	 * This deliberately does not clear the cpumask as it's expensive
2166 	 * and unnecessary. If there happens to be data in there then the
2167 	 * first SWAP_CLUSTER_MAX pages will send an unnecessary IPI and
2168 	 * then will be cleared.
2169 	 */
2170 	current->tlb_ubc.flush_required = false;
2171 }
2172 #else
2173 static inline void init_tlb_ubc(void)
2174 {
2175 }
2176 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
2177 
2178 /*
2179  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
2180  */
2181 static void shrink_lruvec(struct lruvec *lruvec, int swappiness,
2182 			  struct scan_control *sc, unsigned long *lru_pages)
2183 {
2184 	unsigned long nr[NR_LRU_LISTS];
2185 	unsigned long targets[NR_LRU_LISTS];
2186 	unsigned long nr_to_scan;
2187 	enum lru_list lru;
2188 	unsigned long nr_reclaimed = 0;
2189 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2190 	struct blk_plug plug;
2191 	bool scan_adjusted;
2192 
2193 	get_scan_count(lruvec, swappiness, sc, nr, lru_pages);
2194 
2195 	/* Record the original scan target for proportional adjustments later */
2196 	memcpy(targets, nr, sizeof(nr));
2197 
2198 	/*
2199 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2200 	 * event that can occur when there is little memory pressure e.g.
2201 	 * multiple streaming readers/writers. Hence, we do not abort scanning
2202 	 * when the requested number of pages are reclaimed when scanning at
2203 	 * DEF_PRIORITY on the assumption that the fact we are direct
2204 	 * reclaiming implies that kswapd is not keeping up and it is best to
2205 	 * do a batch of work at once. For memcg reclaim one check is made to
2206 	 * abort proportional reclaim if either the file or anon lru has already
2207 	 * dropped to zero at the first pass.
2208 	 */
2209 	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2210 			 sc->priority == DEF_PRIORITY);
2211 
2212 	init_tlb_ubc();
2213 
2214 	blk_start_plug(&plug);
2215 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2216 					nr[LRU_INACTIVE_FILE]) {
2217 		unsigned long nr_anon, nr_file, percentage;
2218 		unsigned long nr_scanned;
2219 
2220 		for_each_evictable_lru(lru) {
2221 			if (nr[lru]) {
2222 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2223 				nr[lru] -= nr_to_scan;
2224 
2225 				nr_reclaimed += shrink_list(lru, nr_to_scan,
2226 							    lruvec, sc);
2227 			}
2228 		}
2229 
2230 		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2231 			continue;
2232 
2233 		/*
2234 		 * For kswapd and memcg, reclaim at least the number of pages
2235 		 * requested. Ensure that the anon and file LRUs are scanned
2236 		 * proportionally what was requested by get_scan_count(). We
2237 		 * stop reclaiming one LRU and reduce the amount scanning
2238 		 * proportional to the original scan target.
2239 		 */
2240 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2241 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2242 
2243 		/*
2244 		 * It's just vindictive to attack the larger once the smaller
2245 		 * has gone to zero.  And given the way we stop scanning the
2246 		 * smaller below, this makes sure that we only make one nudge
2247 		 * towards proportionality once we've got nr_to_reclaim.
2248 		 */
2249 		if (!nr_file || !nr_anon)
2250 			break;
2251 
2252 		if (nr_file > nr_anon) {
2253 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2254 						targets[LRU_ACTIVE_ANON] + 1;
2255 			lru = LRU_BASE;
2256 			percentage = nr_anon * 100 / scan_target;
2257 		} else {
2258 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2259 						targets[LRU_ACTIVE_FILE] + 1;
2260 			lru = LRU_FILE;
2261 			percentage = nr_file * 100 / scan_target;
2262 		}
2263 
2264 		/* Stop scanning the smaller of the LRU */
2265 		nr[lru] = 0;
2266 		nr[lru + LRU_ACTIVE] = 0;
2267 
2268 		/*
2269 		 * Recalculate the other LRU scan count based on its original
2270 		 * scan target and the percentage scanning already complete
2271 		 */
2272 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2273 		nr_scanned = targets[lru] - nr[lru];
2274 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2275 		nr[lru] -= min(nr[lru], nr_scanned);
2276 
2277 		lru += LRU_ACTIVE;
2278 		nr_scanned = targets[lru] - nr[lru];
2279 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2280 		nr[lru] -= min(nr[lru], nr_scanned);
2281 
2282 		scan_adjusted = true;
2283 	}
2284 	blk_finish_plug(&plug);
2285 	sc->nr_reclaimed += nr_reclaimed;
2286 
2287 	/*
2288 	 * Even if we did not try to evict anon pages at all, we want to
2289 	 * rebalance the anon lru active/inactive ratio.
2290 	 */
2291 	if (inactive_anon_is_low(lruvec))
2292 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2293 				   sc, LRU_ACTIVE_ANON);
2294 
2295 	throttle_vm_writeout(sc->gfp_mask);
2296 }
2297 
2298 /* Use reclaim/compaction for costly allocs or under memory pressure */
2299 static bool in_reclaim_compaction(struct scan_control *sc)
2300 {
2301 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2302 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2303 			 sc->priority < DEF_PRIORITY - 2))
2304 		return true;
2305 
2306 	return false;
2307 }
2308 
2309 /*
2310  * Reclaim/compaction is used for high-order allocation requests. It reclaims
2311  * order-0 pages before compacting the zone. should_continue_reclaim() returns
2312  * true if more pages should be reclaimed such that when the page allocator
2313  * calls try_to_compact_zone() that it will have enough free pages to succeed.
2314  * It will give up earlier than that if there is difficulty reclaiming pages.
2315  */
2316 static inline bool should_continue_reclaim(struct zone *zone,
2317 					unsigned long nr_reclaimed,
2318 					unsigned long nr_scanned,
2319 					struct scan_control *sc)
2320 {
2321 	unsigned long pages_for_compaction;
2322 	unsigned long inactive_lru_pages;
2323 
2324 	/* If not in reclaim/compaction mode, stop */
2325 	if (!in_reclaim_compaction(sc))
2326 		return false;
2327 
2328 	/* Consider stopping depending on scan and reclaim activity */
2329 	if (sc->gfp_mask & __GFP_REPEAT) {
2330 		/*
2331 		 * For __GFP_REPEAT allocations, stop reclaiming if the
2332 		 * full LRU list has been scanned and we are still failing
2333 		 * to reclaim pages. This full LRU scan is potentially
2334 		 * expensive but a __GFP_REPEAT caller really wants to succeed
2335 		 */
2336 		if (!nr_reclaimed && !nr_scanned)
2337 			return false;
2338 	} else {
2339 		/*
2340 		 * For non-__GFP_REPEAT allocations which can presumably
2341 		 * fail without consequence, stop if we failed to reclaim
2342 		 * any pages from the last SWAP_CLUSTER_MAX number of
2343 		 * pages that were scanned. This will return to the
2344 		 * caller faster at the risk reclaim/compaction and
2345 		 * the resulting allocation attempt fails
2346 		 */
2347 		if (!nr_reclaimed)
2348 			return false;
2349 	}
2350 
2351 	/*
2352 	 * If we have not reclaimed enough pages for compaction and the
2353 	 * inactive lists are large enough, continue reclaiming
2354 	 */
2355 	pages_for_compaction = (2UL << sc->order);
2356 	inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2357 	if (get_nr_swap_pages() > 0)
2358 		inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2359 	if (sc->nr_reclaimed < pages_for_compaction &&
2360 			inactive_lru_pages > pages_for_compaction)
2361 		return true;
2362 
2363 	/* If compaction would go ahead or the allocation would succeed, stop */
2364 	switch (compaction_suitable(zone, sc->order, 0, 0)) {
2365 	case COMPACT_PARTIAL:
2366 	case COMPACT_CONTINUE:
2367 		return false;
2368 	default:
2369 		return true;
2370 	}
2371 }
2372 
2373 static bool shrink_zone(struct zone *zone, struct scan_control *sc,
2374 			bool is_classzone)
2375 {
2376 	struct reclaim_state *reclaim_state = current->reclaim_state;
2377 	unsigned long nr_reclaimed, nr_scanned;
2378 	bool reclaimable = false;
2379 
2380 	do {
2381 		struct mem_cgroup *root = sc->target_mem_cgroup;
2382 		struct mem_cgroup_reclaim_cookie reclaim = {
2383 			.zone = zone,
2384 			.priority = sc->priority,
2385 		};
2386 		unsigned long zone_lru_pages = 0;
2387 		struct mem_cgroup *memcg;
2388 
2389 		nr_reclaimed = sc->nr_reclaimed;
2390 		nr_scanned = sc->nr_scanned;
2391 
2392 		memcg = mem_cgroup_iter(root, NULL, &reclaim);
2393 		do {
2394 			unsigned long lru_pages;
2395 			unsigned long scanned;
2396 			struct lruvec *lruvec;
2397 			int swappiness;
2398 
2399 			if (mem_cgroup_low(root, memcg)) {
2400 				if (!sc->may_thrash)
2401 					continue;
2402 				mem_cgroup_events(memcg, MEMCG_LOW, 1);
2403 			}
2404 
2405 			lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2406 			swappiness = mem_cgroup_swappiness(memcg);
2407 			scanned = sc->nr_scanned;
2408 
2409 			shrink_lruvec(lruvec, swappiness, sc, &lru_pages);
2410 			zone_lru_pages += lru_pages;
2411 
2412 			if (memcg && is_classzone)
2413 				shrink_slab(sc->gfp_mask, zone_to_nid(zone),
2414 					    memcg, sc->nr_scanned - scanned,
2415 					    lru_pages);
2416 
2417 			/*
2418 			 * Direct reclaim and kswapd have to scan all memory
2419 			 * cgroups to fulfill the overall scan target for the
2420 			 * zone.
2421 			 *
2422 			 * Limit reclaim, on the other hand, only cares about
2423 			 * nr_to_reclaim pages to be reclaimed and it will
2424 			 * retry with decreasing priority if one round over the
2425 			 * whole hierarchy is not sufficient.
2426 			 */
2427 			if (!global_reclaim(sc) &&
2428 					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2429 				mem_cgroup_iter_break(root, memcg);
2430 				break;
2431 			}
2432 		} while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2433 
2434 		/*
2435 		 * Shrink the slab caches in the same proportion that
2436 		 * the eligible LRU pages were scanned.
2437 		 */
2438 		if (global_reclaim(sc) && is_classzone)
2439 			shrink_slab(sc->gfp_mask, zone_to_nid(zone), NULL,
2440 				    sc->nr_scanned - nr_scanned,
2441 				    zone_lru_pages);
2442 
2443 		if (reclaim_state) {
2444 			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2445 			reclaim_state->reclaimed_slab = 0;
2446 		}
2447 
2448 		vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
2449 			   sc->nr_scanned - nr_scanned,
2450 			   sc->nr_reclaimed - nr_reclaimed);
2451 
2452 		if (sc->nr_reclaimed - nr_reclaimed)
2453 			reclaimable = true;
2454 
2455 	} while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2456 					 sc->nr_scanned - nr_scanned, sc));
2457 
2458 	return reclaimable;
2459 }
2460 
2461 /*
2462  * Returns true if compaction should go ahead for a high-order request, or
2463  * the high-order allocation would succeed without compaction.
2464  */
2465 static inline bool compaction_ready(struct zone *zone, int order)
2466 {
2467 	unsigned long balance_gap, watermark;
2468 	bool watermark_ok;
2469 
2470 	/*
2471 	 * Compaction takes time to run and there are potentially other
2472 	 * callers using the pages just freed. Continue reclaiming until
2473 	 * there is a buffer of free pages available to give compaction
2474 	 * a reasonable chance of completing and allocating the page
2475 	 */
2476 	balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
2477 			zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
2478 	watermark = high_wmark_pages(zone) + balance_gap + (2UL << order);
2479 	watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2480 
2481 	/*
2482 	 * If compaction is deferred, reclaim up to a point where
2483 	 * compaction will have a chance of success when re-enabled
2484 	 */
2485 	if (compaction_deferred(zone, order))
2486 		return watermark_ok;
2487 
2488 	/*
2489 	 * If compaction is not ready to start and allocation is not likely
2490 	 * to succeed without it, then keep reclaiming.
2491 	 */
2492 	if (compaction_suitable(zone, order, 0, 0) == COMPACT_SKIPPED)
2493 		return false;
2494 
2495 	return watermark_ok;
2496 }
2497 
2498 /*
2499  * This is the direct reclaim path, for page-allocating processes.  We only
2500  * try to reclaim pages from zones which will satisfy the caller's allocation
2501  * request.
2502  *
2503  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2504  * Because:
2505  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2506  *    allocation or
2507  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2508  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2509  *    zone defense algorithm.
2510  *
2511  * If a zone is deemed to be full of pinned pages then just give it a light
2512  * scan then give up on it.
2513  *
2514  * Returns true if a zone was reclaimable.
2515  */
2516 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2517 {
2518 	struct zoneref *z;
2519 	struct zone *zone;
2520 	unsigned long nr_soft_reclaimed;
2521 	unsigned long nr_soft_scanned;
2522 	gfp_t orig_mask;
2523 	enum zone_type requested_highidx = gfp_zone(sc->gfp_mask);
2524 	bool reclaimable = false;
2525 
2526 	/*
2527 	 * If the number of buffer_heads in the machine exceeds the maximum
2528 	 * allowed level, force direct reclaim to scan the highmem zone as
2529 	 * highmem pages could be pinning lowmem pages storing buffer_heads
2530 	 */
2531 	orig_mask = sc->gfp_mask;
2532 	if (buffer_heads_over_limit)
2533 		sc->gfp_mask |= __GFP_HIGHMEM;
2534 
2535 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2536 					requested_highidx, sc->nodemask) {
2537 		enum zone_type classzone_idx;
2538 
2539 		if (!populated_zone(zone))
2540 			continue;
2541 
2542 		classzone_idx = requested_highidx;
2543 		while (!populated_zone(zone->zone_pgdat->node_zones +
2544 							classzone_idx))
2545 			classzone_idx--;
2546 
2547 		/*
2548 		 * Take care memory controller reclaiming has small influence
2549 		 * to global LRU.
2550 		 */
2551 		if (global_reclaim(sc)) {
2552 			if (!cpuset_zone_allowed(zone,
2553 						 GFP_KERNEL | __GFP_HARDWALL))
2554 				continue;
2555 
2556 			if (sc->priority != DEF_PRIORITY &&
2557 			    !zone_reclaimable(zone))
2558 				continue;	/* Let kswapd poll it */
2559 
2560 			/*
2561 			 * If we already have plenty of memory free for
2562 			 * compaction in this zone, don't free any more.
2563 			 * Even though compaction is invoked for any
2564 			 * non-zero order, only frequent costly order
2565 			 * reclamation is disruptive enough to become a
2566 			 * noticeable problem, like transparent huge
2567 			 * page allocations.
2568 			 */
2569 			if (IS_ENABLED(CONFIG_COMPACTION) &&
2570 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2571 			    zonelist_zone_idx(z) <= requested_highidx &&
2572 			    compaction_ready(zone, sc->order)) {
2573 				sc->compaction_ready = true;
2574 				continue;
2575 			}
2576 
2577 			/*
2578 			 * This steals pages from memory cgroups over softlimit
2579 			 * and returns the number of reclaimed pages and
2580 			 * scanned pages. This works for global memory pressure
2581 			 * and balancing, not for a memcg's limit.
2582 			 */
2583 			nr_soft_scanned = 0;
2584 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2585 						sc->order, sc->gfp_mask,
2586 						&nr_soft_scanned);
2587 			sc->nr_reclaimed += nr_soft_reclaimed;
2588 			sc->nr_scanned += nr_soft_scanned;
2589 			if (nr_soft_reclaimed)
2590 				reclaimable = true;
2591 			/* need some check for avoid more shrink_zone() */
2592 		}
2593 
2594 		if (shrink_zone(zone, sc, zone_idx(zone) == classzone_idx))
2595 			reclaimable = true;
2596 
2597 		if (global_reclaim(sc) &&
2598 		    !reclaimable && zone_reclaimable(zone))
2599 			reclaimable = true;
2600 	}
2601 
2602 	/*
2603 	 * Restore to original mask to avoid the impact on the caller if we
2604 	 * promoted it to __GFP_HIGHMEM.
2605 	 */
2606 	sc->gfp_mask = orig_mask;
2607 
2608 	return reclaimable;
2609 }
2610 
2611 /*
2612  * This is the main entry point to direct page reclaim.
2613  *
2614  * If a full scan of the inactive list fails to free enough memory then we
2615  * are "out of memory" and something needs to be killed.
2616  *
2617  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2618  * high - the zone may be full of dirty or under-writeback pages, which this
2619  * caller can't do much about.  We kick the writeback threads and take explicit
2620  * naps in the hope that some of these pages can be written.  But if the
2621  * allocating task holds filesystem locks which prevent writeout this might not
2622  * work, and the allocation attempt will fail.
2623  *
2624  * returns:	0, if no pages reclaimed
2625  * 		else, the number of pages reclaimed
2626  */
2627 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2628 					  struct scan_control *sc)
2629 {
2630 	int initial_priority = sc->priority;
2631 	unsigned long total_scanned = 0;
2632 	unsigned long writeback_threshold;
2633 	bool zones_reclaimable;
2634 retry:
2635 	delayacct_freepages_start();
2636 
2637 	if (global_reclaim(sc))
2638 		count_vm_event(ALLOCSTALL);
2639 
2640 	do {
2641 		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2642 				sc->priority);
2643 		sc->nr_scanned = 0;
2644 		zones_reclaimable = shrink_zones(zonelist, sc);
2645 
2646 		total_scanned += sc->nr_scanned;
2647 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2648 			break;
2649 
2650 		if (sc->compaction_ready)
2651 			break;
2652 
2653 		/*
2654 		 * If we're getting trouble reclaiming, start doing
2655 		 * writepage even in laptop mode.
2656 		 */
2657 		if (sc->priority < DEF_PRIORITY - 2)
2658 			sc->may_writepage = 1;
2659 
2660 		/*
2661 		 * Try to write back as many pages as we just scanned.  This
2662 		 * tends to cause slow streaming writers to write data to the
2663 		 * disk smoothly, at the dirtying rate, which is nice.   But
2664 		 * that's undesirable in laptop mode, where we *want* lumpy
2665 		 * writeout.  So in laptop mode, write out the whole world.
2666 		 */
2667 		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2668 		if (total_scanned > writeback_threshold) {
2669 			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2670 						WB_REASON_TRY_TO_FREE_PAGES);
2671 			sc->may_writepage = 1;
2672 		}
2673 	} while (--sc->priority >= 0);
2674 
2675 	delayacct_freepages_end();
2676 
2677 	if (sc->nr_reclaimed)
2678 		return sc->nr_reclaimed;
2679 
2680 	/* Aborted reclaim to try compaction? don't OOM, then */
2681 	if (sc->compaction_ready)
2682 		return 1;
2683 
2684 	/* Untapped cgroup reserves?  Don't OOM, retry. */
2685 	if (!sc->may_thrash) {
2686 		sc->priority = initial_priority;
2687 		sc->may_thrash = 1;
2688 		goto retry;
2689 	}
2690 
2691 	/* Any of the zones still reclaimable?  Don't OOM. */
2692 	if (zones_reclaimable)
2693 		return 1;
2694 
2695 	return 0;
2696 }
2697 
2698 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2699 {
2700 	struct zone *zone;
2701 	unsigned long pfmemalloc_reserve = 0;
2702 	unsigned long free_pages = 0;
2703 	int i;
2704 	bool wmark_ok;
2705 
2706 	for (i = 0; i <= ZONE_NORMAL; i++) {
2707 		zone = &pgdat->node_zones[i];
2708 		if (!populated_zone(zone) ||
2709 		    zone_reclaimable_pages(zone) == 0)
2710 			continue;
2711 
2712 		pfmemalloc_reserve += min_wmark_pages(zone);
2713 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
2714 	}
2715 
2716 	/* If there are no reserves (unexpected config) then do not throttle */
2717 	if (!pfmemalloc_reserve)
2718 		return true;
2719 
2720 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
2721 
2722 	/* kswapd must be awake if processes are being throttled */
2723 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2724 		pgdat->classzone_idx = min(pgdat->classzone_idx,
2725 						(enum zone_type)ZONE_NORMAL);
2726 		wake_up_interruptible(&pgdat->kswapd_wait);
2727 	}
2728 
2729 	return wmark_ok;
2730 }
2731 
2732 /*
2733  * Throttle direct reclaimers if backing storage is backed by the network
2734  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2735  * depleted. kswapd will continue to make progress and wake the processes
2736  * when the low watermark is reached.
2737  *
2738  * Returns true if a fatal signal was delivered during throttling. If this
2739  * happens, the page allocator should not consider triggering the OOM killer.
2740  */
2741 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2742 					nodemask_t *nodemask)
2743 {
2744 	struct zoneref *z;
2745 	struct zone *zone;
2746 	pg_data_t *pgdat = NULL;
2747 
2748 	/*
2749 	 * Kernel threads should not be throttled as they may be indirectly
2750 	 * responsible for cleaning pages necessary for reclaim to make forward
2751 	 * progress. kjournald for example may enter direct reclaim while
2752 	 * committing a transaction where throttling it could forcing other
2753 	 * processes to block on log_wait_commit().
2754 	 */
2755 	if (current->flags & PF_KTHREAD)
2756 		goto out;
2757 
2758 	/*
2759 	 * If a fatal signal is pending, this process should not throttle.
2760 	 * It should return quickly so it can exit and free its memory
2761 	 */
2762 	if (fatal_signal_pending(current))
2763 		goto out;
2764 
2765 	/*
2766 	 * Check if the pfmemalloc reserves are ok by finding the first node
2767 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2768 	 * GFP_KERNEL will be required for allocating network buffers when
2769 	 * swapping over the network so ZONE_HIGHMEM is unusable.
2770 	 *
2771 	 * Throttling is based on the first usable node and throttled processes
2772 	 * wait on a queue until kswapd makes progress and wakes them. There
2773 	 * is an affinity then between processes waking up and where reclaim
2774 	 * progress has been made assuming the process wakes on the same node.
2775 	 * More importantly, processes running on remote nodes will not compete
2776 	 * for remote pfmemalloc reserves and processes on different nodes
2777 	 * should make reasonable progress.
2778 	 */
2779 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2780 					gfp_zone(gfp_mask), nodemask) {
2781 		if (zone_idx(zone) > ZONE_NORMAL)
2782 			continue;
2783 
2784 		/* Throttle based on the first usable node */
2785 		pgdat = zone->zone_pgdat;
2786 		if (pfmemalloc_watermark_ok(pgdat))
2787 			goto out;
2788 		break;
2789 	}
2790 
2791 	/* If no zone was usable by the allocation flags then do not throttle */
2792 	if (!pgdat)
2793 		goto out;
2794 
2795 	/* Account for the throttling */
2796 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
2797 
2798 	/*
2799 	 * If the caller cannot enter the filesystem, it's possible that it
2800 	 * is due to the caller holding an FS lock or performing a journal
2801 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
2802 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
2803 	 * blocked waiting on the same lock. Instead, throttle for up to a
2804 	 * second before continuing.
2805 	 */
2806 	if (!(gfp_mask & __GFP_FS)) {
2807 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2808 			pfmemalloc_watermark_ok(pgdat), HZ);
2809 
2810 		goto check_pending;
2811 	}
2812 
2813 	/* Throttle until kswapd wakes the process */
2814 	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2815 		pfmemalloc_watermark_ok(pgdat));
2816 
2817 check_pending:
2818 	if (fatal_signal_pending(current))
2819 		return true;
2820 
2821 out:
2822 	return false;
2823 }
2824 
2825 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2826 				gfp_t gfp_mask, nodemask_t *nodemask)
2827 {
2828 	unsigned long nr_reclaimed;
2829 	struct scan_control sc = {
2830 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2831 		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2832 		.order = order,
2833 		.nodemask = nodemask,
2834 		.priority = DEF_PRIORITY,
2835 		.may_writepage = !laptop_mode,
2836 		.may_unmap = 1,
2837 		.may_swap = 1,
2838 	};
2839 
2840 	/*
2841 	 * Do not enter reclaim if fatal signal was delivered while throttled.
2842 	 * 1 is returned so that the page allocator does not OOM kill at this
2843 	 * point.
2844 	 */
2845 	if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2846 		return 1;
2847 
2848 	trace_mm_vmscan_direct_reclaim_begin(order,
2849 				sc.may_writepage,
2850 				gfp_mask);
2851 
2852 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2853 
2854 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2855 
2856 	return nr_reclaimed;
2857 }
2858 
2859 #ifdef CONFIG_MEMCG
2860 
2861 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2862 						gfp_t gfp_mask, bool noswap,
2863 						struct zone *zone,
2864 						unsigned long *nr_scanned)
2865 {
2866 	struct scan_control sc = {
2867 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2868 		.target_mem_cgroup = memcg,
2869 		.may_writepage = !laptop_mode,
2870 		.may_unmap = 1,
2871 		.may_swap = !noswap,
2872 	};
2873 	struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2874 	int swappiness = mem_cgroup_swappiness(memcg);
2875 	unsigned long lru_pages;
2876 
2877 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2878 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2879 
2880 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2881 						      sc.may_writepage,
2882 						      sc.gfp_mask);
2883 
2884 	/*
2885 	 * NOTE: Although we can get the priority field, using it
2886 	 * here is not a good idea, since it limits the pages we can scan.
2887 	 * if we don't reclaim here, the shrink_zone from balance_pgdat
2888 	 * will pick up pages from other mem cgroup's as well. We hack
2889 	 * the priority and make it zero.
2890 	 */
2891 	shrink_lruvec(lruvec, swappiness, &sc, &lru_pages);
2892 
2893 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2894 
2895 	*nr_scanned = sc.nr_scanned;
2896 	return sc.nr_reclaimed;
2897 }
2898 
2899 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2900 					   unsigned long nr_pages,
2901 					   gfp_t gfp_mask,
2902 					   bool may_swap)
2903 {
2904 	struct zonelist *zonelist;
2905 	unsigned long nr_reclaimed;
2906 	int nid;
2907 	struct scan_control sc = {
2908 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
2909 		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2910 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2911 		.target_mem_cgroup = memcg,
2912 		.priority = DEF_PRIORITY,
2913 		.may_writepage = !laptop_mode,
2914 		.may_unmap = 1,
2915 		.may_swap = may_swap,
2916 	};
2917 
2918 	/*
2919 	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2920 	 * take care of from where we get pages. So the node where we start the
2921 	 * scan does not need to be the current node.
2922 	 */
2923 	nid = mem_cgroup_select_victim_node(memcg);
2924 
2925 	zonelist = NODE_DATA(nid)->node_zonelists;
2926 
2927 	trace_mm_vmscan_memcg_reclaim_begin(0,
2928 					    sc.may_writepage,
2929 					    sc.gfp_mask);
2930 
2931 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2932 
2933 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2934 
2935 	return nr_reclaimed;
2936 }
2937 #endif
2938 
2939 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2940 {
2941 	struct mem_cgroup *memcg;
2942 
2943 	if (!total_swap_pages)
2944 		return;
2945 
2946 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
2947 	do {
2948 		struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2949 
2950 		if (inactive_anon_is_low(lruvec))
2951 			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2952 					   sc, LRU_ACTIVE_ANON);
2953 
2954 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
2955 	} while (memcg);
2956 }
2957 
2958 static bool zone_balanced(struct zone *zone, int order,
2959 			  unsigned long balance_gap, int classzone_idx)
2960 {
2961 	if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2962 				    balance_gap, classzone_idx, 0))
2963 		return false;
2964 
2965 	if (IS_ENABLED(CONFIG_COMPACTION) && order && compaction_suitable(zone,
2966 				order, 0, classzone_idx) == COMPACT_SKIPPED)
2967 		return false;
2968 
2969 	return true;
2970 }
2971 
2972 /*
2973  * pgdat_balanced() is used when checking if a node is balanced.
2974  *
2975  * For order-0, all zones must be balanced!
2976  *
2977  * For high-order allocations only zones that meet watermarks and are in a
2978  * zone allowed by the callers classzone_idx are added to balanced_pages. The
2979  * total of balanced pages must be at least 25% of the zones allowed by
2980  * classzone_idx for the node to be considered balanced. Forcing all zones to
2981  * be balanced for high orders can cause excessive reclaim when there are
2982  * imbalanced zones.
2983  * The choice of 25% is due to
2984  *   o a 16M DMA zone that is balanced will not balance a zone on any
2985  *     reasonable sized machine
2986  *   o On all other machines, the top zone must be at least a reasonable
2987  *     percentage of the middle zones. For example, on 32-bit x86, highmem
2988  *     would need to be at least 256M for it to be balance a whole node.
2989  *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2990  *     to balance a node on its own. These seemed like reasonable ratios.
2991  */
2992 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
2993 {
2994 	unsigned long managed_pages = 0;
2995 	unsigned long balanced_pages = 0;
2996 	int i;
2997 
2998 	/* Check the watermark levels */
2999 	for (i = 0; i <= classzone_idx; i++) {
3000 		struct zone *zone = pgdat->node_zones + i;
3001 
3002 		if (!populated_zone(zone))
3003 			continue;
3004 
3005 		managed_pages += zone->managed_pages;
3006 
3007 		/*
3008 		 * A special case here:
3009 		 *
3010 		 * balance_pgdat() skips over all_unreclaimable after
3011 		 * DEF_PRIORITY. Effectively, it considers them balanced so
3012 		 * they must be considered balanced here as well!
3013 		 */
3014 		if (!zone_reclaimable(zone)) {
3015 			balanced_pages += zone->managed_pages;
3016 			continue;
3017 		}
3018 
3019 		if (zone_balanced(zone, order, 0, i))
3020 			balanced_pages += zone->managed_pages;
3021 		else if (!order)
3022 			return false;
3023 	}
3024 
3025 	if (order)
3026 		return balanced_pages >= (managed_pages >> 2);
3027 	else
3028 		return true;
3029 }
3030 
3031 /*
3032  * Prepare kswapd for sleeping. This verifies that there are no processes
3033  * waiting in throttle_direct_reclaim() and that watermarks have been met.
3034  *
3035  * Returns true if kswapd is ready to sleep
3036  */
3037 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
3038 					int classzone_idx)
3039 {
3040 	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
3041 	if (remaining)
3042 		return false;
3043 
3044 	/*
3045 	 * The throttled processes are normally woken up in balance_pgdat() as
3046 	 * soon as pfmemalloc_watermark_ok() is true. But there is a potential
3047 	 * race between when kswapd checks the watermarks and a process gets
3048 	 * throttled. There is also a potential race if processes get
3049 	 * throttled, kswapd wakes, a large process exits thereby balancing the
3050 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
3051 	 * the wake up checks. If kswapd is going to sleep, no process should
3052 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3053 	 * the wake up is premature, processes will wake kswapd and get
3054 	 * throttled again. The difference from wake ups in balance_pgdat() is
3055 	 * that here we are under prepare_to_wait().
3056 	 */
3057 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
3058 		wake_up_all(&pgdat->pfmemalloc_wait);
3059 
3060 	return pgdat_balanced(pgdat, order, classzone_idx);
3061 }
3062 
3063 /*
3064  * kswapd shrinks the zone by the number of pages required to reach
3065  * the high watermark.
3066  *
3067  * Returns true if kswapd scanned at least the requested number of pages to
3068  * reclaim or if the lack of progress was due to pages under writeback.
3069  * This is used to determine if the scanning priority needs to be raised.
3070  */
3071 static bool kswapd_shrink_zone(struct zone *zone,
3072 			       int classzone_idx,
3073 			       struct scan_control *sc,
3074 			       unsigned long *nr_attempted)
3075 {
3076 	int testorder = sc->order;
3077 	unsigned long balance_gap;
3078 	bool lowmem_pressure;
3079 
3080 	/* Reclaim above the high watermark. */
3081 	sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
3082 
3083 	/*
3084 	 * Kswapd reclaims only single pages with compaction enabled. Trying
3085 	 * too hard to reclaim until contiguous free pages have become
3086 	 * available can hurt performance by evicting too much useful data
3087 	 * from memory. Do not reclaim more than needed for compaction.
3088 	 */
3089 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
3090 			compaction_suitable(zone, sc->order, 0, classzone_idx)
3091 							!= COMPACT_SKIPPED)
3092 		testorder = 0;
3093 
3094 	/*
3095 	 * We put equal pressure on every zone, unless one zone has way too
3096 	 * many pages free already. The "too many pages" is defined as the
3097 	 * high wmark plus a "gap" where the gap is either the low
3098 	 * watermark or 1% of the zone, whichever is smaller.
3099 	 */
3100 	balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
3101 			zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
3102 
3103 	/*
3104 	 * If there is no low memory pressure or the zone is balanced then no
3105 	 * reclaim is necessary
3106 	 */
3107 	lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
3108 	if (!lowmem_pressure && zone_balanced(zone, testorder,
3109 						balance_gap, classzone_idx))
3110 		return true;
3111 
3112 	shrink_zone(zone, sc, zone_idx(zone) == classzone_idx);
3113 
3114 	/* Account for the number of pages attempted to reclaim */
3115 	*nr_attempted += sc->nr_to_reclaim;
3116 
3117 	clear_bit(ZONE_WRITEBACK, &zone->flags);
3118 
3119 	/*
3120 	 * If a zone reaches its high watermark, consider it to be no longer
3121 	 * congested. It's possible there are dirty pages backed by congested
3122 	 * BDIs but as pressure is relieved, speculatively avoid congestion
3123 	 * waits.
3124 	 */
3125 	if (zone_reclaimable(zone) &&
3126 	    zone_balanced(zone, testorder, 0, classzone_idx)) {
3127 		clear_bit(ZONE_CONGESTED, &zone->flags);
3128 		clear_bit(ZONE_DIRTY, &zone->flags);
3129 	}
3130 
3131 	return sc->nr_scanned >= sc->nr_to_reclaim;
3132 }
3133 
3134 /*
3135  * For kswapd, balance_pgdat() will work across all this node's zones until
3136  * they are all at high_wmark_pages(zone).
3137  *
3138  * Returns the final order kswapd was reclaiming at
3139  *
3140  * There is special handling here for zones which are full of pinned pages.
3141  * This can happen if the pages are all mlocked, or if they are all used by
3142  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
3143  * What we do is to detect the case where all pages in the zone have been
3144  * scanned twice and there has been zero successful reclaim.  Mark the zone as
3145  * dead and from now on, only perform a short scan.  Basically we're polling
3146  * the zone for when the problem goes away.
3147  *
3148  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3149  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3150  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
3151  * lower zones regardless of the number of free pages in the lower zones. This
3152  * interoperates with the page allocator fallback scheme to ensure that aging
3153  * of pages is balanced across the zones.
3154  */
3155 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
3156 							int *classzone_idx)
3157 {
3158 	int i;
3159 	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
3160 	unsigned long nr_soft_reclaimed;
3161 	unsigned long nr_soft_scanned;
3162 	struct scan_control sc = {
3163 		.gfp_mask = GFP_KERNEL,
3164 		.order = order,
3165 		.priority = DEF_PRIORITY,
3166 		.may_writepage = !laptop_mode,
3167 		.may_unmap = 1,
3168 		.may_swap = 1,
3169 	};
3170 	count_vm_event(PAGEOUTRUN);
3171 
3172 	do {
3173 		unsigned long nr_attempted = 0;
3174 		bool raise_priority = true;
3175 		bool pgdat_needs_compaction = (order > 0);
3176 
3177 		sc.nr_reclaimed = 0;
3178 
3179 		/*
3180 		 * Scan in the highmem->dma direction for the highest
3181 		 * zone which needs scanning
3182 		 */
3183 		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
3184 			struct zone *zone = pgdat->node_zones + i;
3185 
3186 			if (!populated_zone(zone))
3187 				continue;
3188 
3189 			if (sc.priority != DEF_PRIORITY &&
3190 			    !zone_reclaimable(zone))
3191 				continue;
3192 
3193 			/*
3194 			 * Do some background aging of the anon list, to give
3195 			 * pages a chance to be referenced before reclaiming.
3196 			 */
3197 			age_active_anon(zone, &sc);
3198 
3199 			/*
3200 			 * If the number of buffer_heads in the machine
3201 			 * exceeds the maximum allowed level and this node
3202 			 * has a highmem zone, force kswapd to reclaim from
3203 			 * it to relieve lowmem pressure.
3204 			 */
3205 			if (buffer_heads_over_limit && is_highmem_idx(i)) {
3206 				end_zone = i;
3207 				break;
3208 			}
3209 
3210 			if (!zone_balanced(zone, order, 0, 0)) {
3211 				end_zone = i;
3212 				break;
3213 			} else {
3214 				/*
3215 				 * If balanced, clear the dirty and congested
3216 				 * flags
3217 				 */
3218 				clear_bit(ZONE_CONGESTED, &zone->flags);
3219 				clear_bit(ZONE_DIRTY, &zone->flags);
3220 			}
3221 		}
3222 
3223 		if (i < 0)
3224 			goto out;
3225 
3226 		for (i = 0; i <= end_zone; i++) {
3227 			struct zone *zone = pgdat->node_zones + i;
3228 
3229 			if (!populated_zone(zone))
3230 				continue;
3231 
3232 			/*
3233 			 * If any zone is currently balanced then kswapd will
3234 			 * not call compaction as it is expected that the
3235 			 * necessary pages are already available.
3236 			 */
3237 			if (pgdat_needs_compaction &&
3238 					zone_watermark_ok(zone, order,
3239 						low_wmark_pages(zone),
3240 						*classzone_idx, 0))
3241 				pgdat_needs_compaction = false;
3242 		}
3243 
3244 		/*
3245 		 * If we're getting trouble reclaiming, start doing writepage
3246 		 * even in laptop mode.
3247 		 */
3248 		if (sc.priority < DEF_PRIORITY - 2)
3249 			sc.may_writepage = 1;
3250 
3251 		/*
3252 		 * Now scan the zone in the dma->highmem direction, stopping
3253 		 * at the last zone which needs scanning.
3254 		 *
3255 		 * We do this because the page allocator works in the opposite
3256 		 * direction.  This prevents the page allocator from allocating
3257 		 * pages behind kswapd's direction of progress, which would
3258 		 * cause too much scanning of the lower zones.
3259 		 */
3260 		for (i = 0; i <= end_zone; i++) {
3261 			struct zone *zone = pgdat->node_zones + i;
3262 
3263 			if (!populated_zone(zone))
3264 				continue;
3265 
3266 			if (sc.priority != DEF_PRIORITY &&
3267 			    !zone_reclaimable(zone))
3268 				continue;
3269 
3270 			sc.nr_scanned = 0;
3271 
3272 			nr_soft_scanned = 0;
3273 			/*
3274 			 * Call soft limit reclaim before calling shrink_zone.
3275 			 */
3276 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
3277 							order, sc.gfp_mask,
3278 							&nr_soft_scanned);
3279 			sc.nr_reclaimed += nr_soft_reclaimed;
3280 
3281 			/*
3282 			 * There should be no need to raise the scanning
3283 			 * priority if enough pages are already being scanned
3284 			 * that that high watermark would be met at 100%
3285 			 * efficiency.
3286 			 */
3287 			if (kswapd_shrink_zone(zone, end_zone,
3288 					       &sc, &nr_attempted))
3289 				raise_priority = false;
3290 		}
3291 
3292 		/*
3293 		 * If the low watermark is met there is no need for processes
3294 		 * to be throttled on pfmemalloc_wait as they should not be
3295 		 * able to safely make forward progress. Wake them
3296 		 */
3297 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3298 				pfmemalloc_watermark_ok(pgdat))
3299 			wake_up_all(&pgdat->pfmemalloc_wait);
3300 
3301 		/*
3302 		 * Fragmentation may mean that the system cannot be rebalanced
3303 		 * for high-order allocations in all zones. If twice the
3304 		 * allocation size has been reclaimed and the zones are still
3305 		 * not balanced then recheck the watermarks at order-0 to
3306 		 * prevent kswapd reclaiming excessively. Assume that a
3307 		 * process requested a high-order can direct reclaim/compact.
3308 		 */
3309 		if (order && sc.nr_reclaimed >= 2UL << order)
3310 			order = sc.order = 0;
3311 
3312 		/* Check if kswapd should be suspending */
3313 		if (try_to_freeze() || kthread_should_stop())
3314 			break;
3315 
3316 		/*
3317 		 * Compact if necessary and kswapd is reclaiming at least the
3318 		 * high watermark number of pages as requsted
3319 		 */
3320 		if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
3321 			compact_pgdat(pgdat, order);
3322 
3323 		/*
3324 		 * Raise priority if scanning rate is too low or there was no
3325 		 * progress in reclaiming pages
3326 		 */
3327 		if (raise_priority || !sc.nr_reclaimed)
3328 			sc.priority--;
3329 	} while (sc.priority >= 1 &&
3330 		 !pgdat_balanced(pgdat, order, *classzone_idx));
3331 
3332 out:
3333 	/*
3334 	 * Return the order we were reclaiming at so prepare_kswapd_sleep()
3335 	 * makes a decision on the order we were last reclaiming at. However,
3336 	 * if another caller entered the allocator slow path while kswapd
3337 	 * was awake, order will remain at the higher level
3338 	 */
3339 	*classzone_idx = end_zone;
3340 	return order;
3341 }
3342 
3343 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3344 {
3345 	long remaining = 0;
3346 	DEFINE_WAIT(wait);
3347 
3348 	if (freezing(current) || kthread_should_stop())
3349 		return;
3350 
3351 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3352 
3353 	/* Try to sleep for a short interval */
3354 	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3355 		remaining = schedule_timeout(HZ/10);
3356 		finish_wait(&pgdat->kswapd_wait, &wait);
3357 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3358 	}
3359 
3360 	/*
3361 	 * After a short sleep, check if it was a premature sleep. If not, then
3362 	 * go fully to sleep until explicitly woken up.
3363 	 */
3364 	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3365 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3366 
3367 		/*
3368 		 * vmstat counters are not perfectly accurate and the estimated
3369 		 * value for counters such as NR_FREE_PAGES can deviate from the
3370 		 * true value by nr_online_cpus * threshold. To avoid the zone
3371 		 * watermarks being breached while under pressure, we reduce the
3372 		 * per-cpu vmstat threshold while kswapd is awake and restore
3373 		 * them before going back to sleep.
3374 		 */
3375 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3376 
3377 		/*
3378 		 * Compaction records what page blocks it recently failed to
3379 		 * isolate pages from and skips them in the future scanning.
3380 		 * When kswapd is going to sleep, it is reasonable to assume
3381 		 * that pages and compaction may succeed so reset the cache.
3382 		 */
3383 		reset_isolation_suitable(pgdat);
3384 
3385 		if (!kthread_should_stop())
3386 			schedule();
3387 
3388 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3389 	} else {
3390 		if (remaining)
3391 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3392 		else
3393 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3394 	}
3395 	finish_wait(&pgdat->kswapd_wait, &wait);
3396 }
3397 
3398 /*
3399  * The background pageout daemon, started as a kernel thread
3400  * from the init process.
3401  *
3402  * This basically trickles out pages so that we have _some_
3403  * free memory available even if there is no other activity
3404  * that frees anything up. This is needed for things like routing
3405  * etc, where we otherwise might have all activity going on in
3406  * asynchronous contexts that cannot page things out.
3407  *
3408  * If there are applications that are active memory-allocators
3409  * (most normal use), this basically shouldn't matter.
3410  */
3411 static int kswapd(void *p)
3412 {
3413 	unsigned long order, new_order;
3414 	unsigned balanced_order;
3415 	int classzone_idx, new_classzone_idx;
3416 	int balanced_classzone_idx;
3417 	pg_data_t *pgdat = (pg_data_t*)p;
3418 	struct task_struct *tsk = current;
3419 
3420 	struct reclaim_state reclaim_state = {
3421 		.reclaimed_slab = 0,
3422 	};
3423 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3424 
3425 	lockdep_set_current_reclaim_state(GFP_KERNEL);
3426 
3427 	if (!cpumask_empty(cpumask))
3428 		set_cpus_allowed_ptr(tsk, cpumask);
3429 	current->reclaim_state = &reclaim_state;
3430 
3431 	/*
3432 	 * Tell the memory management that we're a "memory allocator",
3433 	 * and that if we need more memory we should get access to it
3434 	 * regardless (see "__alloc_pages()"). "kswapd" should
3435 	 * never get caught in the normal page freeing logic.
3436 	 *
3437 	 * (Kswapd normally doesn't need memory anyway, but sometimes
3438 	 * you need a small amount of memory in order to be able to
3439 	 * page out something else, and this flag essentially protects
3440 	 * us from recursively trying to free more memory as we're
3441 	 * trying to free the first piece of memory in the first place).
3442 	 */
3443 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3444 	set_freezable();
3445 
3446 	order = new_order = 0;
3447 	balanced_order = 0;
3448 	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3449 	balanced_classzone_idx = classzone_idx;
3450 	for ( ; ; ) {
3451 		bool ret;
3452 
3453 		/*
3454 		 * If the last balance_pgdat was unsuccessful it's unlikely a
3455 		 * new request of a similar or harder type will succeed soon
3456 		 * so consider going to sleep on the basis we reclaimed at
3457 		 */
3458 		if (balanced_classzone_idx >= new_classzone_idx &&
3459 					balanced_order == new_order) {
3460 			new_order = pgdat->kswapd_max_order;
3461 			new_classzone_idx = pgdat->classzone_idx;
3462 			pgdat->kswapd_max_order =  0;
3463 			pgdat->classzone_idx = pgdat->nr_zones - 1;
3464 		}
3465 
3466 		if (order < new_order || classzone_idx > new_classzone_idx) {
3467 			/*
3468 			 * Don't sleep if someone wants a larger 'order'
3469 			 * allocation or has tigher zone constraints
3470 			 */
3471 			order = new_order;
3472 			classzone_idx = new_classzone_idx;
3473 		} else {
3474 			kswapd_try_to_sleep(pgdat, balanced_order,
3475 						balanced_classzone_idx);
3476 			order = pgdat->kswapd_max_order;
3477 			classzone_idx = pgdat->classzone_idx;
3478 			new_order = order;
3479 			new_classzone_idx = classzone_idx;
3480 			pgdat->kswapd_max_order = 0;
3481 			pgdat->classzone_idx = pgdat->nr_zones - 1;
3482 		}
3483 
3484 		ret = try_to_freeze();
3485 		if (kthread_should_stop())
3486 			break;
3487 
3488 		/*
3489 		 * We can speed up thawing tasks if we don't call balance_pgdat
3490 		 * after returning from the refrigerator
3491 		 */
3492 		if (!ret) {
3493 			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3494 			balanced_classzone_idx = classzone_idx;
3495 			balanced_order = balance_pgdat(pgdat, order,
3496 						&balanced_classzone_idx);
3497 		}
3498 	}
3499 
3500 	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3501 	current->reclaim_state = NULL;
3502 	lockdep_clear_current_reclaim_state();
3503 
3504 	return 0;
3505 }
3506 
3507 /*
3508  * A zone is low on free memory, so wake its kswapd task to service it.
3509  */
3510 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3511 {
3512 	pg_data_t *pgdat;
3513 
3514 	if (!populated_zone(zone))
3515 		return;
3516 
3517 	if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
3518 		return;
3519 	pgdat = zone->zone_pgdat;
3520 	if (pgdat->kswapd_max_order < order) {
3521 		pgdat->kswapd_max_order = order;
3522 		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3523 	}
3524 	if (!waitqueue_active(&pgdat->kswapd_wait))
3525 		return;
3526 	if (zone_balanced(zone, order, 0, 0))
3527 		return;
3528 
3529 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3530 	wake_up_interruptible(&pgdat->kswapd_wait);
3531 }
3532 
3533 #ifdef CONFIG_HIBERNATION
3534 /*
3535  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3536  * freed pages.
3537  *
3538  * Rather than trying to age LRUs the aim is to preserve the overall
3539  * LRU order by reclaiming preferentially
3540  * inactive > active > active referenced > active mapped
3541  */
3542 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3543 {
3544 	struct reclaim_state reclaim_state;
3545 	struct scan_control sc = {
3546 		.nr_to_reclaim = nr_to_reclaim,
3547 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3548 		.priority = DEF_PRIORITY,
3549 		.may_writepage = 1,
3550 		.may_unmap = 1,
3551 		.may_swap = 1,
3552 		.hibernation_mode = 1,
3553 	};
3554 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3555 	struct task_struct *p = current;
3556 	unsigned long nr_reclaimed;
3557 
3558 	p->flags |= PF_MEMALLOC;
3559 	lockdep_set_current_reclaim_state(sc.gfp_mask);
3560 	reclaim_state.reclaimed_slab = 0;
3561 	p->reclaim_state = &reclaim_state;
3562 
3563 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3564 
3565 	p->reclaim_state = NULL;
3566 	lockdep_clear_current_reclaim_state();
3567 	p->flags &= ~PF_MEMALLOC;
3568 
3569 	return nr_reclaimed;
3570 }
3571 #endif /* CONFIG_HIBERNATION */
3572 
3573 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3574    not required for correctness.  So if the last cpu in a node goes
3575    away, we get changed to run anywhere: as the first one comes back,
3576    restore their cpu bindings. */
3577 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3578 			void *hcpu)
3579 {
3580 	int nid;
3581 
3582 	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3583 		for_each_node_state(nid, N_MEMORY) {
3584 			pg_data_t *pgdat = NODE_DATA(nid);
3585 			const struct cpumask *mask;
3586 
3587 			mask = cpumask_of_node(pgdat->node_id);
3588 
3589 			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3590 				/* One of our CPUs online: restore mask */
3591 				set_cpus_allowed_ptr(pgdat->kswapd, mask);
3592 		}
3593 	}
3594 	return NOTIFY_OK;
3595 }
3596 
3597 /*
3598  * This kswapd start function will be called by init and node-hot-add.
3599  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3600  */
3601 int kswapd_run(int nid)
3602 {
3603 	pg_data_t *pgdat = NODE_DATA(nid);
3604 	int ret = 0;
3605 
3606 	if (pgdat->kswapd)
3607 		return 0;
3608 
3609 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3610 	if (IS_ERR(pgdat->kswapd)) {
3611 		/* failure at boot is fatal */
3612 		BUG_ON(system_state == SYSTEM_BOOTING);
3613 		pr_err("Failed to start kswapd on node %d\n", nid);
3614 		ret = PTR_ERR(pgdat->kswapd);
3615 		pgdat->kswapd = NULL;
3616 	}
3617 	return ret;
3618 }
3619 
3620 /*
3621  * Called by memory hotplug when all memory in a node is offlined.  Caller must
3622  * hold mem_hotplug_begin/end().
3623  */
3624 void kswapd_stop(int nid)
3625 {
3626 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3627 
3628 	if (kswapd) {
3629 		kthread_stop(kswapd);
3630 		NODE_DATA(nid)->kswapd = NULL;
3631 	}
3632 }
3633 
3634 static int __init kswapd_init(void)
3635 {
3636 	int nid;
3637 
3638 	swap_setup();
3639 	for_each_node_state(nid, N_MEMORY)
3640  		kswapd_run(nid);
3641 	hotcpu_notifier(cpu_callback, 0);
3642 	return 0;
3643 }
3644 
3645 module_init(kswapd_init)
3646 
3647 #ifdef CONFIG_NUMA
3648 /*
3649  * Zone reclaim mode
3650  *
3651  * If non-zero call zone_reclaim when the number of free pages falls below
3652  * the watermarks.
3653  */
3654 int zone_reclaim_mode __read_mostly;
3655 
3656 #define RECLAIM_OFF 0
3657 #define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3658 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3659 #define RECLAIM_UNMAP (1<<2)	/* Unmap pages during reclaim */
3660 
3661 /*
3662  * Priority for ZONE_RECLAIM. This determines the fraction of pages
3663  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3664  * a zone.
3665  */
3666 #define ZONE_RECLAIM_PRIORITY 4
3667 
3668 /*
3669  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3670  * occur.
3671  */
3672 int sysctl_min_unmapped_ratio = 1;
3673 
3674 /*
3675  * If the number of slab pages in a zone grows beyond this percentage then
3676  * slab reclaim needs to occur.
3677  */
3678 int sysctl_min_slab_ratio = 5;
3679 
3680 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3681 {
3682 	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3683 	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3684 		zone_page_state(zone, NR_ACTIVE_FILE);
3685 
3686 	/*
3687 	 * It's possible for there to be more file mapped pages than
3688 	 * accounted for by the pages on the file LRU lists because
3689 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3690 	 */
3691 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3692 }
3693 
3694 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3695 static long zone_pagecache_reclaimable(struct zone *zone)
3696 {
3697 	long nr_pagecache_reclaimable;
3698 	long delta = 0;
3699 
3700 	/*
3701 	 * If RECLAIM_UNMAP is set, then all file pages are considered
3702 	 * potentially reclaimable. Otherwise, we have to worry about
3703 	 * pages like swapcache and zone_unmapped_file_pages() provides
3704 	 * a better estimate
3705 	 */
3706 	if (zone_reclaim_mode & RECLAIM_UNMAP)
3707 		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3708 	else
3709 		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3710 
3711 	/* If we can't clean pages, remove dirty pages from consideration */
3712 	if (!(zone_reclaim_mode & RECLAIM_WRITE))
3713 		delta += zone_page_state(zone, NR_FILE_DIRTY);
3714 
3715 	/* Watch for any possible underflows due to delta */
3716 	if (unlikely(delta > nr_pagecache_reclaimable))
3717 		delta = nr_pagecache_reclaimable;
3718 
3719 	return nr_pagecache_reclaimable - delta;
3720 }
3721 
3722 /*
3723  * Try to free up some pages from this zone through reclaim.
3724  */
3725 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3726 {
3727 	/* Minimum pages needed in order to stay on node */
3728 	const unsigned long nr_pages = 1 << order;
3729 	struct task_struct *p = current;
3730 	struct reclaim_state reclaim_state;
3731 	struct scan_control sc = {
3732 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3733 		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3734 		.order = order,
3735 		.priority = ZONE_RECLAIM_PRIORITY,
3736 		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3737 		.may_unmap = !!(zone_reclaim_mode & RECLAIM_UNMAP),
3738 		.may_swap = 1,
3739 	};
3740 
3741 	cond_resched();
3742 	/*
3743 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3744 	 * and we also need to be able to write out pages for RECLAIM_WRITE
3745 	 * and RECLAIM_UNMAP.
3746 	 */
3747 	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3748 	lockdep_set_current_reclaim_state(gfp_mask);
3749 	reclaim_state.reclaimed_slab = 0;
3750 	p->reclaim_state = &reclaim_state;
3751 
3752 	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3753 		/*
3754 		 * Free memory by calling shrink zone with increasing
3755 		 * priorities until we have enough memory freed.
3756 		 */
3757 		do {
3758 			shrink_zone(zone, &sc, true);
3759 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3760 	}
3761 
3762 	p->reclaim_state = NULL;
3763 	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3764 	lockdep_clear_current_reclaim_state();
3765 	return sc.nr_reclaimed >= nr_pages;
3766 }
3767 
3768 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3769 {
3770 	int node_id;
3771 	int ret;
3772 
3773 	/*
3774 	 * Zone reclaim reclaims unmapped file backed pages and
3775 	 * slab pages if we are over the defined limits.
3776 	 *
3777 	 * A small portion of unmapped file backed pages is needed for
3778 	 * file I/O otherwise pages read by file I/O will be immediately
3779 	 * thrown out if the zone is overallocated. So we do not reclaim
3780 	 * if less than a specified percentage of the zone is used by
3781 	 * unmapped file backed pages.
3782 	 */
3783 	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3784 	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3785 		return ZONE_RECLAIM_FULL;
3786 
3787 	if (!zone_reclaimable(zone))
3788 		return ZONE_RECLAIM_FULL;
3789 
3790 	/*
3791 	 * Do not scan if the allocation should not be delayed.
3792 	 */
3793 	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3794 		return ZONE_RECLAIM_NOSCAN;
3795 
3796 	/*
3797 	 * Only run zone reclaim on the local zone or on zones that do not
3798 	 * have associated processors. This will favor the local processor
3799 	 * over remote processors and spread off node memory allocations
3800 	 * as wide as possible.
3801 	 */
3802 	node_id = zone_to_nid(zone);
3803 	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3804 		return ZONE_RECLAIM_NOSCAN;
3805 
3806 	if (test_and_set_bit(ZONE_RECLAIM_LOCKED, &zone->flags))
3807 		return ZONE_RECLAIM_NOSCAN;
3808 
3809 	ret = __zone_reclaim(zone, gfp_mask, order);
3810 	clear_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
3811 
3812 	if (!ret)
3813 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3814 
3815 	return ret;
3816 }
3817 #endif
3818 
3819 /*
3820  * page_evictable - test whether a page is evictable
3821  * @page: the page to test
3822  *
3823  * Test whether page is evictable--i.e., should be placed on active/inactive
3824  * lists vs unevictable list.
3825  *
3826  * Reasons page might not be evictable:
3827  * (1) page's mapping marked unevictable
3828  * (2) page is part of an mlocked VMA
3829  *
3830  */
3831 int page_evictable(struct page *page)
3832 {
3833 	return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3834 }
3835 
3836 #ifdef CONFIG_SHMEM
3837 /**
3838  * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3839  * @pages:	array of pages to check
3840  * @nr_pages:	number of pages to check
3841  *
3842  * Checks pages for evictability and moves them to the appropriate lru list.
3843  *
3844  * This function is only used for SysV IPC SHM_UNLOCK.
3845  */
3846 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3847 {
3848 	struct lruvec *lruvec;
3849 	struct zone *zone = NULL;
3850 	int pgscanned = 0;
3851 	int pgrescued = 0;
3852 	int i;
3853 
3854 	for (i = 0; i < nr_pages; i++) {
3855 		struct page *page = pages[i];
3856 		struct zone *pagezone;
3857 
3858 		pgscanned++;
3859 		pagezone = page_zone(page);
3860 		if (pagezone != zone) {
3861 			if (zone)
3862 				spin_unlock_irq(&zone->lru_lock);
3863 			zone = pagezone;
3864 			spin_lock_irq(&zone->lru_lock);
3865 		}
3866 		lruvec = mem_cgroup_page_lruvec(page, zone);
3867 
3868 		if (!PageLRU(page) || !PageUnevictable(page))
3869 			continue;
3870 
3871 		if (page_evictable(page)) {
3872 			enum lru_list lru = page_lru_base_type(page);
3873 
3874 			VM_BUG_ON_PAGE(PageActive(page), page);
3875 			ClearPageUnevictable(page);
3876 			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3877 			add_page_to_lru_list(page, lruvec, lru);
3878 			pgrescued++;
3879 		}
3880 	}
3881 
3882 	if (zone) {
3883 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3884 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3885 		spin_unlock_irq(&zone->lru_lock);
3886 	}
3887 }
3888 #endif /* CONFIG_SHMEM */
3889