1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 4 * 5 * Swap reorganised 29.12.95, Stephen Tweedie. 6 * kswapd added: 7.1.96 sct 7 * Removed kswapd_ctl limits, and swap out as many pages as needed 8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 9 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 10 * Multiqueue VM started 5.8.00, Rik van Riel. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 15 #include <linux/mm.h> 16 #include <linux/sched/mm.h> 17 #include <linux/module.h> 18 #include <linux/gfp.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/swap.h> 21 #include <linux/pagemap.h> 22 #include <linux/init.h> 23 #include <linux/highmem.h> 24 #include <linux/vmpressure.h> 25 #include <linux/vmstat.h> 26 #include <linux/file.h> 27 #include <linux/writeback.h> 28 #include <linux/blkdev.h> 29 #include <linux/buffer_head.h> /* for buffer_heads_over_limit */ 30 #include <linux/mm_inline.h> 31 #include <linux/backing-dev.h> 32 #include <linux/rmap.h> 33 #include <linux/topology.h> 34 #include <linux/cpu.h> 35 #include <linux/cpuset.h> 36 #include <linux/compaction.h> 37 #include <linux/notifier.h> 38 #include <linux/delay.h> 39 #include <linux/kthread.h> 40 #include <linux/freezer.h> 41 #include <linux/memcontrol.h> 42 #include <linux/migrate.h> 43 #include <linux/delayacct.h> 44 #include <linux/sysctl.h> 45 #include <linux/memory-tiers.h> 46 #include <linux/oom.h> 47 #include <linux/pagevec.h> 48 #include <linux/prefetch.h> 49 #include <linux/printk.h> 50 #include <linux/dax.h> 51 #include <linux/psi.h> 52 #include <linux/pagewalk.h> 53 #include <linux/shmem_fs.h> 54 #include <linux/ctype.h> 55 #include <linux/debugfs.h> 56 #include <linux/khugepaged.h> 57 #include <linux/rculist_nulls.h> 58 #include <linux/random.h> 59 #include <linux/mmu_notifier.h> 60 61 #include <asm/tlbflush.h> 62 #include <asm/div64.h> 63 64 #include <linux/swapops.h> 65 #include <linux/balloon_compaction.h> 66 #include <linux/sched/sysctl.h> 67 68 #include "internal.h" 69 #include "swap.h" 70 71 #define CREATE_TRACE_POINTS 72 #include <trace/events/vmscan.h> 73 74 struct scan_control { 75 /* How many pages shrink_list() should reclaim */ 76 unsigned long nr_to_reclaim; 77 78 /* 79 * Nodemask of nodes allowed by the caller. If NULL, all nodes 80 * are scanned. 81 */ 82 nodemask_t *nodemask; 83 84 /* 85 * The memory cgroup that hit its limit and as a result is the 86 * primary target of this reclaim invocation. 87 */ 88 struct mem_cgroup *target_mem_cgroup; 89 90 /* 91 * Scan pressure balancing between anon and file LRUs 92 */ 93 unsigned long anon_cost; 94 unsigned long file_cost; 95 96 #ifdef CONFIG_MEMCG 97 /* Swappiness value for proactive reclaim. Always use sc_swappiness()! */ 98 int *proactive_swappiness; 99 #endif 100 101 /* Can active folios be deactivated as part of reclaim? */ 102 #define DEACTIVATE_ANON 1 103 #define DEACTIVATE_FILE 2 104 unsigned int may_deactivate:2; 105 unsigned int force_deactivate:1; 106 unsigned int skipped_deactivate:1; 107 108 /* Writepage batching in laptop mode; RECLAIM_WRITE */ 109 unsigned int may_writepage:1; 110 111 /* Can mapped folios be reclaimed? */ 112 unsigned int may_unmap:1; 113 114 /* Can folios be swapped as part of reclaim? */ 115 unsigned int may_swap:1; 116 117 /* Not allow cache_trim_mode to be turned on as part of reclaim? */ 118 unsigned int no_cache_trim_mode:1; 119 120 /* Has cache_trim_mode failed at least once? */ 121 unsigned int cache_trim_mode_failed:1; 122 123 /* Proactive reclaim invoked by userspace through memory.reclaim */ 124 unsigned int proactive:1; 125 126 /* 127 * Cgroup memory below memory.low is protected as long as we 128 * don't threaten to OOM. If any cgroup is reclaimed at 129 * reduced force or passed over entirely due to its memory.low 130 * setting (memcg_low_skipped), and nothing is reclaimed as a 131 * result, then go back for one more cycle that reclaims the protected 132 * memory (memcg_low_reclaim) to avert OOM. 133 */ 134 unsigned int memcg_low_reclaim:1; 135 unsigned int memcg_low_skipped:1; 136 137 /* Shared cgroup tree walk failed, rescan the whole tree */ 138 unsigned int memcg_full_walk:1; 139 140 unsigned int hibernation_mode:1; 141 142 /* One of the zones is ready for compaction */ 143 unsigned int compaction_ready:1; 144 145 /* There is easily reclaimable cold cache in the current node */ 146 unsigned int cache_trim_mode:1; 147 148 /* The file folios on the current node are dangerously low */ 149 unsigned int file_is_tiny:1; 150 151 /* Always discard instead of demoting to lower tier memory */ 152 unsigned int no_demotion:1; 153 154 /* Allocation order */ 155 s8 order; 156 157 /* Scan (total_size >> priority) pages at once */ 158 s8 priority; 159 160 /* The highest zone to isolate folios for reclaim from */ 161 s8 reclaim_idx; 162 163 /* This context's GFP mask */ 164 gfp_t gfp_mask; 165 166 /* Incremented by the number of inactive pages that were scanned */ 167 unsigned long nr_scanned; 168 169 /* Number of pages freed so far during a call to shrink_zones() */ 170 unsigned long nr_reclaimed; 171 172 struct { 173 unsigned int dirty; 174 unsigned int unqueued_dirty; 175 unsigned int congested; 176 unsigned int writeback; 177 unsigned int immediate; 178 unsigned int file_taken; 179 unsigned int taken; 180 } nr; 181 182 /* for recording the reclaimed slab by now */ 183 struct reclaim_state reclaim_state; 184 }; 185 186 #ifdef ARCH_HAS_PREFETCHW 187 #define prefetchw_prev_lru_folio(_folio, _base, _field) \ 188 do { \ 189 if ((_folio)->lru.prev != _base) { \ 190 struct folio *prev; \ 191 \ 192 prev = lru_to_folio(&(_folio->lru)); \ 193 prefetchw(&prev->_field); \ 194 } \ 195 } while (0) 196 #else 197 #define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0) 198 #endif 199 200 /* 201 * From 0 .. MAX_SWAPPINESS. Higher means more swappy. 202 */ 203 int vm_swappiness = 60; 204 205 #ifdef CONFIG_MEMCG 206 207 /* Returns true for reclaim through cgroup limits or cgroup interfaces. */ 208 static bool cgroup_reclaim(struct scan_control *sc) 209 { 210 return sc->target_mem_cgroup; 211 } 212 213 /* 214 * Returns true for reclaim on the root cgroup. This is true for direct 215 * allocator reclaim and reclaim through cgroup interfaces on the root cgroup. 216 */ 217 static bool root_reclaim(struct scan_control *sc) 218 { 219 return !sc->target_mem_cgroup || mem_cgroup_is_root(sc->target_mem_cgroup); 220 } 221 222 /** 223 * writeback_throttling_sane - is the usual dirty throttling mechanism available? 224 * @sc: scan_control in question 225 * 226 * The normal page dirty throttling mechanism in balance_dirty_pages() is 227 * completely broken with the legacy memcg and direct stalling in 228 * shrink_folio_list() is used for throttling instead, which lacks all the 229 * niceties such as fairness, adaptive pausing, bandwidth proportional 230 * allocation and configurability. 231 * 232 * This function tests whether the vmscan currently in progress can assume 233 * that the normal dirty throttling mechanism is operational. 234 */ 235 static bool writeback_throttling_sane(struct scan_control *sc) 236 { 237 if (!cgroup_reclaim(sc)) 238 return true; 239 #ifdef CONFIG_CGROUP_WRITEBACK 240 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 241 return true; 242 #endif 243 return false; 244 } 245 246 static int sc_swappiness(struct scan_control *sc, struct mem_cgroup *memcg) 247 { 248 if (sc->proactive && sc->proactive_swappiness) 249 return *sc->proactive_swappiness; 250 return mem_cgroup_swappiness(memcg); 251 } 252 #else 253 static bool cgroup_reclaim(struct scan_control *sc) 254 { 255 return false; 256 } 257 258 static bool root_reclaim(struct scan_control *sc) 259 { 260 return true; 261 } 262 263 static bool writeback_throttling_sane(struct scan_control *sc) 264 { 265 return true; 266 } 267 268 static int sc_swappiness(struct scan_control *sc, struct mem_cgroup *memcg) 269 { 270 return READ_ONCE(vm_swappiness); 271 } 272 #endif 273 274 static void set_task_reclaim_state(struct task_struct *task, 275 struct reclaim_state *rs) 276 { 277 /* Check for an overwrite */ 278 WARN_ON_ONCE(rs && task->reclaim_state); 279 280 /* Check for the nulling of an already-nulled member */ 281 WARN_ON_ONCE(!rs && !task->reclaim_state); 282 283 task->reclaim_state = rs; 284 } 285 286 /* 287 * flush_reclaim_state(): add pages reclaimed outside of LRU-based reclaim to 288 * scan_control->nr_reclaimed. 289 */ 290 static void flush_reclaim_state(struct scan_control *sc) 291 { 292 /* 293 * Currently, reclaim_state->reclaimed includes three types of pages 294 * freed outside of vmscan: 295 * (1) Slab pages. 296 * (2) Clean file pages from pruned inodes (on highmem systems). 297 * (3) XFS freed buffer pages. 298 * 299 * For all of these cases, we cannot universally link the pages to a 300 * single memcg. For example, a memcg-aware shrinker can free one object 301 * charged to the target memcg, causing an entire page to be freed. 302 * If we count the entire page as reclaimed from the memcg, we end up 303 * overestimating the reclaimed amount (potentially under-reclaiming). 304 * 305 * Only count such pages for global reclaim to prevent under-reclaiming 306 * from the target memcg; preventing unnecessary retries during memcg 307 * charging and false positives from proactive reclaim. 308 * 309 * For uncommon cases where the freed pages were actually mostly 310 * charged to the target memcg, we end up underestimating the reclaimed 311 * amount. This should be fine. The freed pages will be uncharged 312 * anyway, even if they are not counted here properly, and we will be 313 * able to make forward progress in charging (which is usually in a 314 * retry loop). 315 * 316 * We can go one step further, and report the uncharged objcg pages in 317 * memcg reclaim, to make reporting more accurate and reduce 318 * underestimation, but it's probably not worth the complexity for now. 319 */ 320 if (current->reclaim_state && root_reclaim(sc)) { 321 sc->nr_reclaimed += current->reclaim_state->reclaimed; 322 current->reclaim_state->reclaimed = 0; 323 } 324 } 325 326 static bool can_demote(int nid, struct scan_control *sc) 327 { 328 if (!numa_demotion_enabled) 329 return false; 330 if (sc && sc->no_demotion) 331 return false; 332 if (next_demotion_node(nid) == NUMA_NO_NODE) 333 return false; 334 335 return true; 336 } 337 338 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg, 339 int nid, 340 struct scan_control *sc) 341 { 342 if (memcg == NULL) { 343 /* 344 * For non-memcg reclaim, is there 345 * space in any swap device? 346 */ 347 if (get_nr_swap_pages() > 0) 348 return true; 349 } else { 350 /* Is the memcg below its swap limit? */ 351 if (mem_cgroup_get_nr_swap_pages(memcg) > 0) 352 return true; 353 } 354 355 /* 356 * The page can not be swapped. 357 * 358 * Can it be reclaimed from this node via demotion? 359 */ 360 return can_demote(nid, sc); 361 } 362 363 /* 364 * This misses isolated folios which are not accounted for to save counters. 365 * As the data only determines if reclaim or compaction continues, it is 366 * not expected that isolated folios will be a dominating factor. 367 */ 368 unsigned long zone_reclaimable_pages(struct zone *zone) 369 { 370 unsigned long nr; 371 372 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) + 373 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE); 374 if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL)) 375 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) + 376 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON); 377 /* 378 * If there are no reclaimable file-backed or anonymous pages, 379 * ensure zones with sufficient free pages are not skipped. 380 * This prevents zones like DMA32 from being ignored in reclaim 381 * scenarios where they can still help alleviate memory pressure. 382 */ 383 if (nr == 0) 384 nr = zone_page_state_snapshot(zone, NR_FREE_PAGES); 385 return nr; 386 } 387 388 /** 389 * lruvec_lru_size - Returns the number of pages on the given LRU list. 390 * @lruvec: lru vector 391 * @lru: lru to use 392 * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list) 393 */ 394 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, 395 int zone_idx) 396 { 397 unsigned long size = 0; 398 int zid; 399 400 for (zid = 0; zid <= zone_idx; zid++) { 401 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid]; 402 403 if (!managed_zone(zone)) 404 continue; 405 406 if (!mem_cgroup_disabled()) 407 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid); 408 else 409 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru); 410 } 411 return size; 412 } 413 414 static unsigned long drop_slab_node(int nid) 415 { 416 unsigned long freed = 0; 417 struct mem_cgroup *memcg = NULL; 418 419 memcg = mem_cgroup_iter(NULL, NULL, NULL); 420 do { 421 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0); 422 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 423 424 return freed; 425 } 426 427 void drop_slab(void) 428 { 429 int nid; 430 int shift = 0; 431 unsigned long freed; 432 433 do { 434 freed = 0; 435 for_each_online_node(nid) { 436 if (fatal_signal_pending(current)) 437 return; 438 439 freed += drop_slab_node(nid); 440 } 441 } while ((freed >> shift++) > 1); 442 } 443 444 static int reclaimer_offset(void) 445 { 446 BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD != 447 PGDEMOTE_DIRECT - PGDEMOTE_KSWAPD); 448 BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD != 449 PGDEMOTE_KHUGEPAGED - PGDEMOTE_KSWAPD); 450 BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD != 451 PGSCAN_DIRECT - PGSCAN_KSWAPD); 452 BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD != 453 PGSCAN_KHUGEPAGED - PGSCAN_KSWAPD); 454 455 if (current_is_kswapd()) 456 return 0; 457 if (current_is_khugepaged()) 458 return PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD; 459 return PGSTEAL_DIRECT - PGSTEAL_KSWAPD; 460 } 461 462 static inline int is_page_cache_freeable(struct folio *folio) 463 { 464 /* 465 * A freeable page cache folio is referenced only by the caller 466 * that isolated the folio, the page cache and optional filesystem 467 * private data at folio->private. 468 */ 469 return folio_ref_count(folio) - folio_test_private(folio) == 470 1 + folio_nr_pages(folio); 471 } 472 473 /* 474 * We detected a synchronous write error writing a folio out. Probably 475 * -ENOSPC. We need to propagate that into the address_space for a subsequent 476 * fsync(), msync() or close(). 477 * 478 * The tricky part is that after writepage we cannot touch the mapping: nothing 479 * prevents it from being freed up. But we have a ref on the folio and once 480 * that folio is locked, the mapping is pinned. 481 * 482 * We're allowed to run sleeping folio_lock() here because we know the caller has 483 * __GFP_FS. 484 */ 485 static void handle_write_error(struct address_space *mapping, 486 struct folio *folio, int error) 487 { 488 folio_lock(folio); 489 if (folio_mapping(folio) == mapping) 490 mapping_set_error(mapping, error); 491 folio_unlock(folio); 492 } 493 494 static bool skip_throttle_noprogress(pg_data_t *pgdat) 495 { 496 int reclaimable = 0, write_pending = 0; 497 int i; 498 499 /* 500 * If kswapd is disabled, reschedule if necessary but do not 501 * throttle as the system is likely near OOM. 502 */ 503 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 504 return true; 505 506 /* 507 * If there are a lot of dirty/writeback folios then do not 508 * throttle as throttling will occur when the folios cycle 509 * towards the end of the LRU if still under writeback. 510 */ 511 for (i = 0; i < MAX_NR_ZONES; i++) { 512 struct zone *zone = pgdat->node_zones + i; 513 514 if (!managed_zone(zone)) 515 continue; 516 517 reclaimable += zone_reclaimable_pages(zone); 518 write_pending += zone_page_state_snapshot(zone, 519 NR_ZONE_WRITE_PENDING); 520 } 521 if (2 * write_pending <= reclaimable) 522 return true; 523 524 return false; 525 } 526 527 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason) 528 { 529 wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason]; 530 long timeout, ret; 531 DEFINE_WAIT(wait); 532 533 /* 534 * Do not throttle user workers, kthreads other than kswapd or 535 * workqueues. They may be required for reclaim to make 536 * forward progress (e.g. journalling workqueues or kthreads). 537 */ 538 if (!current_is_kswapd() && 539 current->flags & (PF_USER_WORKER|PF_KTHREAD)) { 540 cond_resched(); 541 return; 542 } 543 544 /* 545 * These figures are pulled out of thin air. 546 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many 547 * parallel reclaimers which is a short-lived event so the timeout is 548 * short. Failing to make progress or waiting on writeback are 549 * potentially long-lived events so use a longer timeout. This is shaky 550 * logic as a failure to make progress could be due to anything from 551 * writeback to a slow device to excessive referenced folios at the tail 552 * of the inactive LRU. 553 */ 554 switch(reason) { 555 case VMSCAN_THROTTLE_WRITEBACK: 556 timeout = HZ/10; 557 558 if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) { 559 WRITE_ONCE(pgdat->nr_reclaim_start, 560 node_page_state(pgdat, NR_THROTTLED_WRITTEN)); 561 } 562 563 break; 564 case VMSCAN_THROTTLE_CONGESTED: 565 fallthrough; 566 case VMSCAN_THROTTLE_NOPROGRESS: 567 if (skip_throttle_noprogress(pgdat)) { 568 cond_resched(); 569 return; 570 } 571 572 timeout = 1; 573 574 break; 575 case VMSCAN_THROTTLE_ISOLATED: 576 timeout = HZ/50; 577 break; 578 default: 579 WARN_ON_ONCE(1); 580 timeout = HZ; 581 break; 582 } 583 584 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE); 585 ret = schedule_timeout(timeout); 586 finish_wait(wqh, &wait); 587 588 if (reason == VMSCAN_THROTTLE_WRITEBACK) 589 atomic_dec(&pgdat->nr_writeback_throttled); 590 591 trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout), 592 jiffies_to_usecs(timeout - ret), 593 reason); 594 } 595 596 /* 597 * Account for folios written if tasks are throttled waiting on dirty 598 * folios to clean. If enough folios have been cleaned since throttling 599 * started then wakeup the throttled tasks. 600 */ 601 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio, 602 int nr_throttled) 603 { 604 unsigned long nr_written; 605 606 node_stat_add_folio(folio, NR_THROTTLED_WRITTEN); 607 608 /* 609 * This is an inaccurate read as the per-cpu deltas may not 610 * be synchronised. However, given that the system is 611 * writeback throttled, it is not worth taking the penalty 612 * of getting an accurate count. At worst, the throttle 613 * timeout guarantees forward progress. 614 */ 615 nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) - 616 READ_ONCE(pgdat->nr_reclaim_start); 617 618 if (nr_written > SWAP_CLUSTER_MAX * nr_throttled) 619 wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]); 620 } 621 622 /* possible outcome of pageout() */ 623 typedef enum { 624 /* failed to write folio out, folio is locked */ 625 PAGE_KEEP, 626 /* move folio to the active list, folio is locked */ 627 PAGE_ACTIVATE, 628 /* folio has been sent to the disk successfully, folio is unlocked */ 629 PAGE_SUCCESS, 630 /* folio is clean and locked */ 631 PAGE_CLEAN, 632 } pageout_t; 633 634 /* 635 * pageout is called by shrink_folio_list() for each dirty folio. 636 * Calls ->writepage(). 637 */ 638 static pageout_t pageout(struct folio *folio, struct address_space *mapping, 639 struct swap_iocb **plug, struct list_head *folio_list) 640 { 641 /* 642 * If the folio is dirty, only perform writeback if that write 643 * will be non-blocking. To prevent this allocation from being 644 * stalled by pagecache activity. But note that there may be 645 * stalls if we need to run get_block(). We could test 646 * PagePrivate for that. 647 * 648 * If this process is currently in __generic_file_write_iter() against 649 * this folio's queue, we can perform writeback even if that 650 * will block. 651 * 652 * If the folio is swapcache, write it back even if that would 653 * block, for some throttling. This happens by accident, because 654 * swap_backing_dev_info is bust: it doesn't reflect the 655 * congestion state of the swapdevs. Easy to fix, if needed. 656 */ 657 if (!is_page_cache_freeable(folio)) 658 return PAGE_KEEP; 659 if (!mapping) { 660 /* 661 * Some data journaling orphaned folios can have 662 * folio->mapping == NULL while being dirty with clean buffers. 663 */ 664 if (folio_test_private(folio)) { 665 if (try_to_free_buffers(folio)) { 666 folio_clear_dirty(folio); 667 pr_info("%s: orphaned folio\n", __func__); 668 return PAGE_CLEAN; 669 } 670 } 671 return PAGE_KEEP; 672 } 673 if (mapping->a_ops->writepage == NULL) 674 return PAGE_ACTIVATE; 675 676 if (folio_clear_dirty_for_io(folio)) { 677 int res; 678 struct writeback_control wbc = { 679 .sync_mode = WB_SYNC_NONE, 680 .nr_to_write = SWAP_CLUSTER_MAX, 681 .range_start = 0, 682 .range_end = LLONG_MAX, 683 .for_reclaim = 1, 684 .swap_plug = plug, 685 }; 686 687 /* 688 * The large shmem folio can be split if CONFIG_THP_SWAP is 689 * not enabled or contiguous swap entries are failed to 690 * allocate. 691 */ 692 if (shmem_mapping(mapping) && folio_test_large(folio)) 693 wbc.list = folio_list; 694 695 folio_set_reclaim(folio); 696 res = mapping->a_ops->writepage(&folio->page, &wbc); 697 if (res < 0) 698 handle_write_error(mapping, folio, res); 699 if (res == AOP_WRITEPAGE_ACTIVATE) { 700 folio_clear_reclaim(folio); 701 return PAGE_ACTIVATE; 702 } 703 704 if (!folio_test_writeback(folio)) { 705 /* synchronous write or broken a_ops? */ 706 folio_clear_reclaim(folio); 707 } 708 trace_mm_vmscan_write_folio(folio); 709 node_stat_add_folio(folio, NR_VMSCAN_WRITE); 710 return PAGE_SUCCESS; 711 } 712 713 return PAGE_CLEAN; 714 } 715 716 /* 717 * Same as remove_mapping, but if the folio is removed from the mapping, it 718 * gets returned with a refcount of 0. 719 */ 720 static int __remove_mapping(struct address_space *mapping, struct folio *folio, 721 bool reclaimed, struct mem_cgroup *target_memcg) 722 { 723 int refcount; 724 void *shadow = NULL; 725 726 BUG_ON(!folio_test_locked(folio)); 727 BUG_ON(mapping != folio_mapping(folio)); 728 729 if (!folio_test_swapcache(folio)) 730 spin_lock(&mapping->host->i_lock); 731 xa_lock_irq(&mapping->i_pages); 732 /* 733 * The non racy check for a busy folio. 734 * 735 * Must be careful with the order of the tests. When someone has 736 * a ref to the folio, it may be possible that they dirty it then 737 * drop the reference. So if the dirty flag is tested before the 738 * refcount here, then the following race may occur: 739 * 740 * get_user_pages(&page); 741 * [user mapping goes away] 742 * write_to(page); 743 * !folio_test_dirty(folio) [good] 744 * folio_set_dirty(folio); 745 * folio_put(folio); 746 * !refcount(folio) [good, discard it] 747 * 748 * [oops, our write_to data is lost] 749 * 750 * Reversing the order of the tests ensures such a situation cannot 751 * escape unnoticed. The smp_rmb is needed to ensure the folio->flags 752 * load is not satisfied before that of folio->_refcount. 753 * 754 * Note that if the dirty flag is always set via folio_mark_dirty, 755 * and thus under the i_pages lock, then this ordering is not required. 756 */ 757 refcount = 1 + folio_nr_pages(folio); 758 if (!folio_ref_freeze(folio, refcount)) 759 goto cannot_free; 760 /* note: atomic_cmpxchg in folio_ref_freeze provides the smp_rmb */ 761 if (unlikely(folio_test_dirty(folio))) { 762 folio_ref_unfreeze(folio, refcount); 763 goto cannot_free; 764 } 765 766 if (folio_test_swapcache(folio)) { 767 swp_entry_t swap = folio->swap; 768 769 if (reclaimed && !mapping_exiting(mapping)) 770 shadow = workingset_eviction(folio, target_memcg); 771 __delete_from_swap_cache(folio, swap, shadow); 772 mem_cgroup_swapout(folio, swap); 773 xa_unlock_irq(&mapping->i_pages); 774 put_swap_folio(folio, swap); 775 } else { 776 void (*free_folio)(struct folio *); 777 778 free_folio = mapping->a_ops->free_folio; 779 /* 780 * Remember a shadow entry for reclaimed file cache in 781 * order to detect refaults, thus thrashing, later on. 782 * 783 * But don't store shadows in an address space that is 784 * already exiting. This is not just an optimization, 785 * inode reclaim needs to empty out the radix tree or 786 * the nodes are lost. Don't plant shadows behind its 787 * back. 788 * 789 * We also don't store shadows for DAX mappings because the 790 * only page cache folios found in these are zero pages 791 * covering holes, and because we don't want to mix DAX 792 * exceptional entries and shadow exceptional entries in the 793 * same address_space. 794 */ 795 if (reclaimed && folio_is_file_lru(folio) && 796 !mapping_exiting(mapping) && !dax_mapping(mapping)) 797 shadow = workingset_eviction(folio, target_memcg); 798 __filemap_remove_folio(folio, shadow); 799 xa_unlock_irq(&mapping->i_pages); 800 if (mapping_shrinkable(mapping)) 801 inode_add_lru(mapping->host); 802 spin_unlock(&mapping->host->i_lock); 803 804 if (free_folio) 805 free_folio(folio); 806 } 807 808 return 1; 809 810 cannot_free: 811 xa_unlock_irq(&mapping->i_pages); 812 if (!folio_test_swapcache(folio)) 813 spin_unlock(&mapping->host->i_lock); 814 return 0; 815 } 816 817 /** 818 * remove_mapping() - Attempt to remove a folio from its mapping. 819 * @mapping: The address space. 820 * @folio: The folio to remove. 821 * 822 * If the folio is dirty, under writeback or if someone else has a ref 823 * on it, removal will fail. 824 * Return: The number of pages removed from the mapping. 0 if the folio 825 * could not be removed. 826 * Context: The caller should have a single refcount on the folio and 827 * hold its lock. 828 */ 829 long remove_mapping(struct address_space *mapping, struct folio *folio) 830 { 831 if (__remove_mapping(mapping, folio, false, NULL)) { 832 /* 833 * Unfreezing the refcount with 1 effectively 834 * drops the pagecache ref for us without requiring another 835 * atomic operation. 836 */ 837 folio_ref_unfreeze(folio, 1); 838 return folio_nr_pages(folio); 839 } 840 return 0; 841 } 842 843 /** 844 * folio_putback_lru - Put previously isolated folio onto appropriate LRU list. 845 * @folio: Folio to be returned to an LRU list. 846 * 847 * Add previously isolated @folio to appropriate LRU list. 848 * The folio may still be unevictable for other reasons. 849 * 850 * Context: lru_lock must not be held, interrupts must be enabled. 851 */ 852 void folio_putback_lru(struct folio *folio) 853 { 854 folio_add_lru(folio); 855 folio_put(folio); /* drop ref from isolate */ 856 } 857 858 enum folio_references { 859 FOLIOREF_RECLAIM, 860 FOLIOREF_RECLAIM_CLEAN, 861 FOLIOREF_KEEP, 862 FOLIOREF_ACTIVATE, 863 }; 864 865 #ifdef CONFIG_LRU_GEN 866 /* 867 * Only used on a mapped folio in the eviction (rmap walk) path, where promotion 868 * needs to be done by taking the folio off the LRU list and then adding it back 869 * with PG_active set. In contrast, the aging (page table walk) path uses 870 * folio_update_gen(). 871 */ 872 static bool lru_gen_set_refs(struct folio *folio) 873 { 874 /* see the comment on LRU_REFS_FLAGS */ 875 if (!folio_test_referenced(folio) && !folio_test_workingset(folio)) { 876 set_mask_bits(&folio->flags, LRU_REFS_MASK, BIT(PG_referenced)); 877 return false; 878 } 879 880 set_mask_bits(&folio->flags, LRU_REFS_FLAGS, BIT(PG_workingset)); 881 return true; 882 } 883 #else 884 static bool lru_gen_set_refs(struct folio *folio) 885 { 886 return false; 887 } 888 #endif /* CONFIG_LRU_GEN */ 889 890 static enum folio_references folio_check_references(struct folio *folio, 891 struct scan_control *sc) 892 { 893 int referenced_ptes, referenced_folio; 894 unsigned long vm_flags; 895 896 referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup, 897 &vm_flags); 898 899 /* 900 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma. 901 * Let the folio, now marked Mlocked, be moved to the unevictable list. 902 */ 903 if (vm_flags & VM_LOCKED) 904 return FOLIOREF_ACTIVATE; 905 906 /* 907 * There are two cases to consider. 908 * 1) Rmap lock contention: rotate. 909 * 2) Skip the non-shared swapbacked folio mapped solely by 910 * the exiting or OOM-reaped process. 911 */ 912 if (referenced_ptes == -1) 913 return FOLIOREF_KEEP; 914 915 if (lru_gen_enabled()) { 916 if (!referenced_ptes) 917 return FOLIOREF_RECLAIM; 918 919 return lru_gen_set_refs(folio) ? FOLIOREF_ACTIVATE : FOLIOREF_KEEP; 920 } 921 922 referenced_folio = folio_test_clear_referenced(folio); 923 924 if (referenced_ptes) { 925 /* 926 * All mapped folios start out with page table 927 * references from the instantiating fault, so we need 928 * to look twice if a mapped file/anon folio is used more 929 * than once. 930 * 931 * Mark it and spare it for another trip around the 932 * inactive list. Another page table reference will 933 * lead to its activation. 934 * 935 * Note: the mark is set for activated folios as well 936 * so that recently deactivated but used folios are 937 * quickly recovered. 938 */ 939 folio_set_referenced(folio); 940 941 if (referenced_folio || referenced_ptes > 1) 942 return FOLIOREF_ACTIVATE; 943 944 /* 945 * Activate file-backed executable folios after first usage. 946 */ 947 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) 948 return FOLIOREF_ACTIVATE; 949 950 return FOLIOREF_KEEP; 951 } 952 953 /* Reclaim if clean, defer dirty folios to writeback */ 954 if (referenced_folio && folio_is_file_lru(folio)) 955 return FOLIOREF_RECLAIM_CLEAN; 956 957 return FOLIOREF_RECLAIM; 958 } 959 960 /* Check if a folio is dirty or under writeback */ 961 static void folio_check_dirty_writeback(struct folio *folio, 962 bool *dirty, bool *writeback) 963 { 964 struct address_space *mapping; 965 966 /* 967 * Anonymous folios are not handled by flushers and must be written 968 * from reclaim context. Do not stall reclaim based on them. 969 * MADV_FREE anonymous folios are put into inactive file list too. 970 * They could be mistakenly treated as file lru. So further anon 971 * test is needed. 972 */ 973 if (!folio_is_file_lru(folio) || 974 (folio_test_anon(folio) && !folio_test_swapbacked(folio))) { 975 *dirty = false; 976 *writeback = false; 977 return; 978 } 979 980 /* By default assume that the folio flags are accurate */ 981 *dirty = folio_test_dirty(folio); 982 *writeback = folio_test_writeback(folio); 983 984 /* Verify dirty/writeback state if the filesystem supports it */ 985 if (!folio_test_private(folio)) 986 return; 987 988 mapping = folio_mapping(folio); 989 if (mapping && mapping->a_ops->is_dirty_writeback) 990 mapping->a_ops->is_dirty_writeback(folio, dirty, writeback); 991 } 992 993 struct folio *alloc_migrate_folio(struct folio *src, unsigned long private) 994 { 995 struct folio *dst; 996 nodemask_t *allowed_mask; 997 struct migration_target_control *mtc; 998 999 mtc = (struct migration_target_control *)private; 1000 1001 allowed_mask = mtc->nmask; 1002 /* 1003 * make sure we allocate from the target node first also trying to 1004 * demote or reclaim pages from the target node via kswapd if we are 1005 * low on free memory on target node. If we don't do this and if 1006 * we have free memory on the slower(lower) memtier, we would start 1007 * allocating pages from slower(lower) memory tiers without even forcing 1008 * a demotion of cold pages from the target memtier. This can result 1009 * in the kernel placing hot pages in slower(lower) memory tiers. 1010 */ 1011 mtc->nmask = NULL; 1012 mtc->gfp_mask |= __GFP_THISNODE; 1013 dst = alloc_migration_target(src, (unsigned long)mtc); 1014 if (dst) 1015 return dst; 1016 1017 mtc->gfp_mask &= ~__GFP_THISNODE; 1018 mtc->nmask = allowed_mask; 1019 1020 return alloc_migration_target(src, (unsigned long)mtc); 1021 } 1022 1023 /* 1024 * Take folios on @demote_folios and attempt to demote them to another node. 1025 * Folios which are not demoted are left on @demote_folios. 1026 */ 1027 static unsigned int demote_folio_list(struct list_head *demote_folios, 1028 struct pglist_data *pgdat) 1029 { 1030 int target_nid = next_demotion_node(pgdat->node_id); 1031 unsigned int nr_succeeded; 1032 nodemask_t allowed_mask; 1033 1034 struct migration_target_control mtc = { 1035 /* 1036 * Allocate from 'node', or fail quickly and quietly. 1037 * When this happens, 'page' will likely just be discarded 1038 * instead of migrated. 1039 */ 1040 .gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | __GFP_NOWARN | 1041 __GFP_NOMEMALLOC | GFP_NOWAIT, 1042 .nid = target_nid, 1043 .nmask = &allowed_mask, 1044 .reason = MR_DEMOTION, 1045 }; 1046 1047 if (list_empty(demote_folios)) 1048 return 0; 1049 1050 if (target_nid == NUMA_NO_NODE) 1051 return 0; 1052 1053 node_get_allowed_targets(pgdat, &allowed_mask); 1054 1055 /* Demotion ignores all cpuset and mempolicy settings */ 1056 migrate_pages(demote_folios, alloc_migrate_folio, NULL, 1057 (unsigned long)&mtc, MIGRATE_ASYNC, MR_DEMOTION, 1058 &nr_succeeded); 1059 1060 return nr_succeeded; 1061 } 1062 1063 static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask) 1064 { 1065 if (gfp_mask & __GFP_FS) 1066 return true; 1067 if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO)) 1068 return false; 1069 /* 1070 * We can "enter_fs" for swap-cache with only __GFP_IO 1071 * providing this isn't SWP_FS_OPS. 1072 * ->flags can be updated non-atomicially (scan_swap_map_slots), 1073 * but that will never affect SWP_FS_OPS, so the data_race 1074 * is safe. 1075 */ 1076 return !data_race(folio_swap_flags(folio) & SWP_FS_OPS); 1077 } 1078 1079 /* 1080 * shrink_folio_list() returns the number of reclaimed pages 1081 */ 1082 static unsigned int shrink_folio_list(struct list_head *folio_list, 1083 struct pglist_data *pgdat, struct scan_control *sc, 1084 struct reclaim_stat *stat, bool ignore_references) 1085 { 1086 struct folio_batch free_folios; 1087 LIST_HEAD(ret_folios); 1088 LIST_HEAD(demote_folios); 1089 unsigned int nr_reclaimed = 0; 1090 unsigned int pgactivate = 0; 1091 bool do_demote_pass; 1092 struct swap_iocb *plug = NULL; 1093 1094 folio_batch_init(&free_folios); 1095 memset(stat, 0, sizeof(*stat)); 1096 cond_resched(); 1097 do_demote_pass = can_demote(pgdat->node_id, sc); 1098 1099 retry: 1100 while (!list_empty(folio_list)) { 1101 struct address_space *mapping; 1102 struct folio *folio; 1103 enum folio_references references = FOLIOREF_RECLAIM; 1104 bool dirty, writeback; 1105 unsigned int nr_pages; 1106 1107 cond_resched(); 1108 1109 folio = lru_to_folio(folio_list); 1110 list_del(&folio->lru); 1111 1112 if (!folio_trylock(folio)) 1113 goto keep; 1114 1115 VM_BUG_ON_FOLIO(folio_test_active(folio), folio); 1116 1117 nr_pages = folio_nr_pages(folio); 1118 1119 /* Account the number of base pages */ 1120 sc->nr_scanned += nr_pages; 1121 1122 if (unlikely(!folio_evictable(folio))) 1123 goto activate_locked; 1124 1125 if (!sc->may_unmap && folio_mapped(folio)) 1126 goto keep_locked; 1127 1128 /* 1129 * The number of dirty pages determines if a node is marked 1130 * reclaim_congested. kswapd will stall and start writing 1131 * folios if the tail of the LRU is all dirty unqueued folios. 1132 */ 1133 folio_check_dirty_writeback(folio, &dirty, &writeback); 1134 if (dirty || writeback) 1135 stat->nr_dirty += nr_pages; 1136 1137 if (dirty && !writeback) 1138 stat->nr_unqueued_dirty += nr_pages; 1139 1140 /* 1141 * Treat this folio as congested if folios are cycling 1142 * through the LRU so quickly that the folios marked 1143 * for immediate reclaim are making it to the end of 1144 * the LRU a second time. 1145 */ 1146 if (writeback && folio_test_reclaim(folio)) 1147 stat->nr_congested += nr_pages; 1148 1149 /* 1150 * If a folio at the tail of the LRU is under writeback, there 1151 * are three cases to consider. 1152 * 1153 * 1) If reclaim is encountering an excessive number 1154 * of folios under writeback and this folio has both 1155 * the writeback and reclaim flags set, then it 1156 * indicates that folios are being queued for I/O but 1157 * are being recycled through the LRU before the I/O 1158 * can complete. Waiting on the folio itself risks an 1159 * indefinite stall if it is impossible to writeback 1160 * the folio due to I/O error or disconnected storage 1161 * so instead note that the LRU is being scanned too 1162 * quickly and the caller can stall after the folio 1163 * list has been processed. 1164 * 1165 * 2) Global or new memcg reclaim encounters a folio that is 1166 * not marked for immediate reclaim, or the caller does not 1167 * have __GFP_FS (or __GFP_IO if it's simply going to swap, 1168 * not to fs). In this case mark the folio for immediate 1169 * reclaim and continue scanning. 1170 * 1171 * Require may_enter_fs() because we would wait on fs, which 1172 * may not have submitted I/O yet. And the loop driver might 1173 * enter reclaim, and deadlock if it waits on a folio for 1174 * which it is needed to do the write (loop masks off 1175 * __GFP_IO|__GFP_FS for this reason); but more thought 1176 * would probably show more reasons. 1177 * 1178 * 3) Legacy memcg encounters a folio that already has the 1179 * reclaim flag set. memcg does not have any dirty folio 1180 * throttling so we could easily OOM just because too many 1181 * folios are in writeback and there is nothing else to 1182 * reclaim. Wait for the writeback to complete. 1183 * 1184 * In cases 1) and 2) we activate the folios to get them out of 1185 * the way while we continue scanning for clean folios on the 1186 * inactive list and refilling from the active list. The 1187 * observation here is that waiting for disk writes is more 1188 * expensive than potentially causing reloads down the line. 1189 * Since they're marked for immediate reclaim, they won't put 1190 * memory pressure on the cache working set any longer than it 1191 * takes to write them to disk. 1192 */ 1193 if (folio_test_writeback(folio)) { 1194 /* Case 1 above */ 1195 if (current_is_kswapd() && 1196 folio_test_reclaim(folio) && 1197 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) { 1198 stat->nr_immediate += nr_pages; 1199 goto activate_locked; 1200 1201 /* Case 2 above */ 1202 } else if (writeback_throttling_sane(sc) || 1203 !folio_test_reclaim(folio) || 1204 !may_enter_fs(folio, sc->gfp_mask)) { 1205 /* 1206 * This is slightly racy - 1207 * folio_end_writeback() might have 1208 * just cleared the reclaim flag, then 1209 * setting the reclaim flag here ends up 1210 * interpreted as the readahead flag - but 1211 * that does not matter enough to care. 1212 * What we do want is for this folio to 1213 * have the reclaim flag set next time 1214 * memcg reclaim reaches the tests above, 1215 * so it will then wait for writeback to 1216 * avoid OOM; and it's also appropriate 1217 * in global reclaim. 1218 */ 1219 folio_set_reclaim(folio); 1220 stat->nr_writeback += nr_pages; 1221 goto activate_locked; 1222 1223 /* Case 3 above */ 1224 } else { 1225 folio_unlock(folio); 1226 folio_wait_writeback(folio); 1227 /* then go back and try same folio again */ 1228 list_add_tail(&folio->lru, folio_list); 1229 continue; 1230 } 1231 } 1232 1233 if (!ignore_references) 1234 references = folio_check_references(folio, sc); 1235 1236 switch (references) { 1237 case FOLIOREF_ACTIVATE: 1238 goto activate_locked; 1239 case FOLIOREF_KEEP: 1240 stat->nr_ref_keep += nr_pages; 1241 goto keep_locked; 1242 case FOLIOREF_RECLAIM: 1243 case FOLIOREF_RECLAIM_CLEAN: 1244 ; /* try to reclaim the folio below */ 1245 } 1246 1247 /* 1248 * Before reclaiming the folio, try to relocate 1249 * its contents to another node. 1250 */ 1251 if (do_demote_pass && 1252 (thp_migration_supported() || !folio_test_large(folio))) { 1253 list_add(&folio->lru, &demote_folios); 1254 folio_unlock(folio); 1255 continue; 1256 } 1257 1258 /* 1259 * Anonymous process memory has backing store? 1260 * Try to allocate it some swap space here. 1261 * Lazyfree folio could be freed directly 1262 */ 1263 if (folio_test_anon(folio) && folio_test_swapbacked(folio)) { 1264 if (!folio_test_swapcache(folio)) { 1265 if (!(sc->gfp_mask & __GFP_IO)) 1266 goto keep_locked; 1267 if (folio_maybe_dma_pinned(folio)) 1268 goto keep_locked; 1269 if (folio_test_large(folio)) { 1270 /* cannot split folio, skip it */ 1271 if (!can_split_folio(folio, 1, NULL)) 1272 goto activate_locked; 1273 /* 1274 * Split partially mapped folios right away. 1275 * We can free the unmapped pages without IO. 1276 */ 1277 if (data_race(!list_empty(&folio->_deferred_list) && 1278 folio_test_partially_mapped(folio)) && 1279 split_folio_to_list(folio, folio_list)) 1280 goto activate_locked; 1281 } 1282 if (!add_to_swap(folio)) { 1283 int __maybe_unused order = folio_order(folio); 1284 1285 if (!folio_test_large(folio)) 1286 goto activate_locked_split; 1287 /* Fallback to swap normal pages */ 1288 if (split_folio_to_list(folio, folio_list)) 1289 goto activate_locked; 1290 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1291 if (nr_pages >= HPAGE_PMD_NR) { 1292 count_memcg_folio_events(folio, 1293 THP_SWPOUT_FALLBACK, 1); 1294 count_vm_event(THP_SWPOUT_FALLBACK); 1295 } 1296 #endif 1297 count_mthp_stat(order, MTHP_STAT_SWPOUT_FALLBACK); 1298 if (!add_to_swap(folio)) 1299 goto activate_locked_split; 1300 } 1301 } 1302 } 1303 1304 /* 1305 * If the folio was split above, the tail pages will make 1306 * their own pass through this function and be accounted 1307 * then. 1308 */ 1309 if ((nr_pages > 1) && !folio_test_large(folio)) { 1310 sc->nr_scanned -= (nr_pages - 1); 1311 nr_pages = 1; 1312 } 1313 1314 /* 1315 * The folio is mapped into the page tables of one or more 1316 * processes. Try to unmap it here. 1317 */ 1318 if (folio_mapped(folio)) { 1319 enum ttu_flags flags = TTU_BATCH_FLUSH; 1320 bool was_swapbacked = folio_test_swapbacked(folio); 1321 1322 if (folio_test_pmd_mappable(folio)) 1323 flags |= TTU_SPLIT_HUGE_PMD; 1324 /* 1325 * Without TTU_SYNC, try_to_unmap will only begin to 1326 * hold PTL from the first present PTE within a large 1327 * folio. Some initial PTEs might be skipped due to 1328 * races with parallel PTE writes in which PTEs can be 1329 * cleared temporarily before being written new present 1330 * values. This will lead to a large folio is still 1331 * mapped while some subpages have been partially 1332 * unmapped after try_to_unmap; TTU_SYNC helps 1333 * try_to_unmap acquire PTL from the first PTE, 1334 * eliminating the influence of temporary PTE values. 1335 */ 1336 if (folio_test_large(folio)) 1337 flags |= TTU_SYNC; 1338 1339 try_to_unmap(folio, flags); 1340 if (folio_mapped(folio)) { 1341 stat->nr_unmap_fail += nr_pages; 1342 if (!was_swapbacked && 1343 folio_test_swapbacked(folio)) 1344 stat->nr_lazyfree_fail += nr_pages; 1345 goto activate_locked; 1346 } 1347 } 1348 1349 /* 1350 * Folio is unmapped now so it cannot be newly pinned anymore. 1351 * No point in trying to reclaim folio if it is pinned. 1352 * Furthermore we don't want to reclaim underlying fs metadata 1353 * if the folio is pinned and thus potentially modified by the 1354 * pinning process as that may upset the filesystem. 1355 */ 1356 if (folio_maybe_dma_pinned(folio)) 1357 goto activate_locked; 1358 1359 mapping = folio_mapping(folio); 1360 if (folio_test_dirty(folio)) { 1361 /* 1362 * Only kswapd can writeback filesystem folios 1363 * to avoid risk of stack overflow. But avoid 1364 * injecting inefficient single-folio I/O into 1365 * flusher writeback as much as possible: only 1366 * write folios when we've encountered many 1367 * dirty folios, and when we've already scanned 1368 * the rest of the LRU for clean folios and see 1369 * the same dirty folios again (with the reclaim 1370 * flag set). 1371 */ 1372 if (folio_is_file_lru(folio) && 1373 (!current_is_kswapd() || 1374 !folio_test_reclaim(folio) || 1375 !test_bit(PGDAT_DIRTY, &pgdat->flags))) { 1376 /* 1377 * Immediately reclaim when written back. 1378 * Similar in principle to folio_deactivate() 1379 * except we already have the folio isolated 1380 * and know it's dirty 1381 */ 1382 node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE, 1383 nr_pages); 1384 folio_set_reclaim(folio); 1385 1386 goto activate_locked; 1387 } 1388 1389 if (references == FOLIOREF_RECLAIM_CLEAN) 1390 goto keep_locked; 1391 if (!may_enter_fs(folio, sc->gfp_mask)) 1392 goto keep_locked; 1393 if (!sc->may_writepage) 1394 goto keep_locked; 1395 1396 /* 1397 * Folio is dirty. Flush the TLB if a writable entry 1398 * potentially exists to avoid CPU writes after I/O 1399 * starts and then write it out here. 1400 */ 1401 try_to_unmap_flush_dirty(); 1402 switch (pageout(folio, mapping, &plug, folio_list)) { 1403 case PAGE_KEEP: 1404 goto keep_locked; 1405 case PAGE_ACTIVATE: 1406 /* 1407 * If shmem folio is split when writeback to swap, 1408 * the tail pages will make their own pass through 1409 * this function and be accounted then. 1410 */ 1411 if (nr_pages > 1 && !folio_test_large(folio)) { 1412 sc->nr_scanned -= (nr_pages - 1); 1413 nr_pages = 1; 1414 } 1415 goto activate_locked; 1416 case PAGE_SUCCESS: 1417 if (nr_pages > 1 && !folio_test_large(folio)) { 1418 sc->nr_scanned -= (nr_pages - 1); 1419 nr_pages = 1; 1420 } 1421 stat->nr_pageout += nr_pages; 1422 1423 if (folio_test_writeback(folio)) 1424 goto keep; 1425 if (folio_test_dirty(folio)) 1426 goto keep; 1427 1428 /* 1429 * A synchronous write - probably a ramdisk. Go 1430 * ahead and try to reclaim the folio. 1431 */ 1432 if (!folio_trylock(folio)) 1433 goto keep; 1434 if (folio_test_dirty(folio) || 1435 folio_test_writeback(folio)) 1436 goto keep_locked; 1437 mapping = folio_mapping(folio); 1438 fallthrough; 1439 case PAGE_CLEAN: 1440 ; /* try to free the folio below */ 1441 } 1442 } 1443 1444 /* 1445 * If the folio has buffers, try to free the buffer 1446 * mappings associated with this folio. If we succeed 1447 * we try to free the folio as well. 1448 * 1449 * We do this even if the folio is dirty. 1450 * filemap_release_folio() does not perform I/O, but it 1451 * is possible for a folio to have the dirty flag set, 1452 * but it is actually clean (all its buffers are clean). 1453 * This happens if the buffers were written out directly, 1454 * with submit_bh(). ext3 will do this, as well as 1455 * the blockdev mapping. filemap_release_folio() will 1456 * discover that cleanness and will drop the buffers 1457 * and mark the folio clean - it can be freed. 1458 * 1459 * Rarely, folios can have buffers and no ->mapping. 1460 * These are the folios which were not successfully 1461 * invalidated in truncate_cleanup_folio(). We try to 1462 * drop those buffers here and if that worked, and the 1463 * folio is no longer mapped into process address space 1464 * (refcount == 1) it can be freed. Otherwise, leave 1465 * the folio on the LRU so it is swappable. 1466 */ 1467 if (folio_needs_release(folio)) { 1468 if (!filemap_release_folio(folio, sc->gfp_mask)) 1469 goto activate_locked; 1470 if (!mapping && folio_ref_count(folio) == 1) { 1471 folio_unlock(folio); 1472 if (folio_put_testzero(folio)) 1473 goto free_it; 1474 else { 1475 /* 1476 * rare race with speculative reference. 1477 * the speculative reference will free 1478 * this folio shortly, so we may 1479 * increment nr_reclaimed here (and 1480 * leave it off the LRU). 1481 */ 1482 nr_reclaimed += nr_pages; 1483 continue; 1484 } 1485 } 1486 } 1487 1488 if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) { 1489 /* follow __remove_mapping for reference */ 1490 if (!folio_ref_freeze(folio, 1)) 1491 goto keep_locked; 1492 /* 1493 * The folio has only one reference left, which is 1494 * from the isolation. After the caller puts the 1495 * folio back on the lru and drops the reference, the 1496 * folio will be freed anyway. It doesn't matter 1497 * which lru it goes on. So we don't bother checking 1498 * the dirty flag here. 1499 */ 1500 count_vm_events(PGLAZYFREED, nr_pages); 1501 count_memcg_folio_events(folio, PGLAZYFREED, nr_pages); 1502 } else if (!mapping || !__remove_mapping(mapping, folio, true, 1503 sc->target_mem_cgroup)) 1504 goto keep_locked; 1505 1506 folio_unlock(folio); 1507 free_it: 1508 /* 1509 * Folio may get swapped out as a whole, need to account 1510 * all pages in it. 1511 */ 1512 nr_reclaimed += nr_pages; 1513 1514 folio_unqueue_deferred_split(folio); 1515 if (folio_batch_add(&free_folios, folio) == 0) { 1516 mem_cgroup_uncharge_folios(&free_folios); 1517 try_to_unmap_flush(); 1518 free_unref_folios(&free_folios); 1519 } 1520 continue; 1521 1522 activate_locked_split: 1523 /* 1524 * The tail pages that are failed to add into swap cache 1525 * reach here. Fixup nr_scanned and nr_pages. 1526 */ 1527 if (nr_pages > 1) { 1528 sc->nr_scanned -= (nr_pages - 1); 1529 nr_pages = 1; 1530 } 1531 activate_locked: 1532 /* Not a candidate for swapping, so reclaim swap space. */ 1533 if (folio_test_swapcache(folio) && 1534 (mem_cgroup_swap_full(folio) || folio_test_mlocked(folio))) 1535 folio_free_swap(folio); 1536 VM_BUG_ON_FOLIO(folio_test_active(folio), folio); 1537 if (!folio_test_mlocked(folio)) { 1538 int type = folio_is_file_lru(folio); 1539 folio_set_active(folio); 1540 stat->nr_activate[type] += nr_pages; 1541 count_memcg_folio_events(folio, PGACTIVATE, nr_pages); 1542 } 1543 keep_locked: 1544 folio_unlock(folio); 1545 keep: 1546 list_add(&folio->lru, &ret_folios); 1547 VM_BUG_ON_FOLIO(folio_test_lru(folio) || 1548 folio_test_unevictable(folio), folio); 1549 } 1550 /* 'folio_list' is always empty here */ 1551 1552 /* Migrate folios selected for demotion */ 1553 stat->nr_demoted = demote_folio_list(&demote_folios, pgdat); 1554 nr_reclaimed += stat->nr_demoted; 1555 /* Folios that could not be demoted are still in @demote_folios */ 1556 if (!list_empty(&demote_folios)) { 1557 /* Folios which weren't demoted go back on @folio_list */ 1558 list_splice_init(&demote_folios, folio_list); 1559 1560 /* 1561 * goto retry to reclaim the undemoted folios in folio_list if 1562 * desired. 1563 * 1564 * Reclaiming directly from top tier nodes is not often desired 1565 * due to it breaking the LRU ordering: in general memory 1566 * should be reclaimed from lower tier nodes and demoted from 1567 * top tier nodes. 1568 * 1569 * However, disabling reclaim from top tier nodes entirely 1570 * would cause ooms in edge scenarios where lower tier memory 1571 * is unreclaimable for whatever reason, eg memory being 1572 * mlocked or too hot to reclaim. We can disable reclaim 1573 * from top tier nodes in proactive reclaim though as that is 1574 * not real memory pressure. 1575 */ 1576 if (!sc->proactive) { 1577 do_demote_pass = false; 1578 goto retry; 1579 } 1580 } 1581 1582 pgactivate = stat->nr_activate[0] + stat->nr_activate[1]; 1583 1584 mem_cgroup_uncharge_folios(&free_folios); 1585 try_to_unmap_flush(); 1586 free_unref_folios(&free_folios); 1587 1588 list_splice(&ret_folios, folio_list); 1589 count_vm_events(PGACTIVATE, pgactivate); 1590 1591 if (plug) 1592 swap_write_unplug(plug); 1593 return nr_reclaimed; 1594 } 1595 1596 unsigned int reclaim_clean_pages_from_list(struct zone *zone, 1597 struct list_head *folio_list) 1598 { 1599 struct scan_control sc = { 1600 .gfp_mask = GFP_KERNEL, 1601 .may_unmap = 1, 1602 }; 1603 struct reclaim_stat stat; 1604 unsigned int nr_reclaimed; 1605 struct folio *folio, *next; 1606 LIST_HEAD(clean_folios); 1607 unsigned int noreclaim_flag; 1608 1609 list_for_each_entry_safe(folio, next, folio_list, lru) { 1610 if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) && 1611 !folio_test_dirty(folio) && !__folio_test_movable(folio) && 1612 !folio_test_unevictable(folio)) { 1613 folio_clear_active(folio); 1614 list_move(&folio->lru, &clean_folios); 1615 } 1616 } 1617 1618 /* 1619 * We should be safe here since we are only dealing with file pages and 1620 * we are not kswapd and therefore cannot write dirty file pages. But 1621 * call memalloc_noreclaim_save() anyway, just in case these conditions 1622 * change in the future. 1623 */ 1624 noreclaim_flag = memalloc_noreclaim_save(); 1625 nr_reclaimed = shrink_folio_list(&clean_folios, zone->zone_pgdat, &sc, 1626 &stat, true); 1627 memalloc_noreclaim_restore(noreclaim_flag); 1628 1629 list_splice(&clean_folios, folio_list); 1630 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, 1631 -(long)nr_reclaimed); 1632 /* 1633 * Since lazyfree pages are isolated from file LRU from the beginning, 1634 * they will rotate back to anonymous LRU in the end if it failed to 1635 * discard so isolated count will be mismatched. 1636 * Compensate the isolated count for both LRU lists. 1637 */ 1638 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON, 1639 stat.nr_lazyfree_fail); 1640 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, 1641 -(long)stat.nr_lazyfree_fail); 1642 return nr_reclaimed; 1643 } 1644 1645 /* 1646 * Update LRU sizes after isolating pages. The LRU size updates must 1647 * be complete before mem_cgroup_update_lru_size due to a sanity check. 1648 */ 1649 static __always_inline void update_lru_sizes(struct lruvec *lruvec, 1650 enum lru_list lru, unsigned long *nr_zone_taken) 1651 { 1652 int zid; 1653 1654 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1655 if (!nr_zone_taken[zid]) 1656 continue; 1657 1658 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 1659 } 1660 1661 } 1662 1663 /* 1664 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times. 1665 * 1666 * lruvec->lru_lock is heavily contended. Some of the functions that 1667 * shrink the lists perform better by taking out a batch of pages 1668 * and working on them outside the LRU lock. 1669 * 1670 * For pagecache intensive workloads, this function is the hottest 1671 * spot in the kernel (apart from copy_*_user functions). 1672 * 1673 * Lru_lock must be held before calling this function. 1674 * 1675 * @nr_to_scan: The number of eligible pages to look through on the list. 1676 * @lruvec: The LRU vector to pull pages from. 1677 * @dst: The temp list to put pages on to. 1678 * @nr_scanned: The number of pages that were scanned. 1679 * @sc: The scan_control struct for this reclaim session 1680 * @lru: LRU list id for isolating 1681 * 1682 * returns how many pages were moved onto *@dst. 1683 */ 1684 static unsigned long isolate_lru_folios(unsigned long nr_to_scan, 1685 struct lruvec *lruvec, struct list_head *dst, 1686 unsigned long *nr_scanned, struct scan_control *sc, 1687 enum lru_list lru) 1688 { 1689 struct list_head *src = &lruvec->lists[lru]; 1690 unsigned long nr_taken = 0; 1691 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 }; 1692 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, }; 1693 unsigned long skipped = 0; 1694 unsigned long scan, total_scan, nr_pages; 1695 LIST_HEAD(folios_skipped); 1696 1697 total_scan = 0; 1698 scan = 0; 1699 while (scan < nr_to_scan && !list_empty(src)) { 1700 struct list_head *move_to = src; 1701 struct folio *folio; 1702 1703 folio = lru_to_folio(src); 1704 prefetchw_prev_lru_folio(folio, src, flags); 1705 1706 nr_pages = folio_nr_pages(folio); 1707 total_scan += nr_pages; 1708 1709 if (folio_zonenum(folio) > sc->reclaim_idx) { 1710 nr_skipped[folio_zonenum(folio)] += nr_pages; 1711 move_to = &folios_skipped; 1712 goto move; 1713 } 1714 1715 /* 1716 * Do not count skipped folios because that makes the function 1717 * return with no isolated folios if the LRU mostly contains 1718 * ineligible folios. This causes the VM to not reclaim any 1719 * folios, triggering a premature OOM. 1720 * Account all pages in a folio. 1721 */ 1722 scan += nr_pages; 1723 1724 if (!folio_test_lru(folio)) 1725 goto move; 1726 if (!sc->may_unmap && folio_mapped(folio)) 1727 goto move; 1728 1729 /* 1730 * Be careful not to clear the lru flag until after we're 1731 * sure the folio is not being freed elsewhere -- the 1732 * folio release code relies on it. 1733 */ 1734 if (unlikely(!folio_try_get(folio))) 1735 goto move; 1736 1737 if (!folio_test_clear_lru(folio)) { 1738 /* Another thread is already isolating this folio */ 1739 folio_put(folio); 1740 goto move; 1741 } 1742 1743 nr_taken += nr_pages; 1744 nr_zone_taken[folio_zonenum(folio)] += nr_pages; 1745 move_to = dst; 1746 move: 1747 list_move(&folio->lru, move_to); 1748 } 1749 1750 /* 1751 * Splice any skipped folios to the start of the LRU list. Note that 1752 * this disrupts the LRU order when reclaiming for lower zones but 1753 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX 1754 * scanning would soon rescan the same folios to skip and waste lots 1755 * of cpu cycles. 1756 */ 1757 if (!list_empty(&folios_skipped)) { 1758 int zid; 1759 1760 list_splice(&folios_skipped, src); 1761 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1762 if (!nr_skipped[zid]) 1763 continue; 1764 1765 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]); 1766 skipped += nr_skipped[zid]; 1767 } 1768 } 1769 *nr_scanned = total_scan; 1770 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, 1771 total_scan, skipped, nr_taken, lru); 1772 update_lru_sizes(lruvec, lru, nr_zone_taken); 1773 return nr_taken; 1774 } 1775 1776 /** 1777 * folio_isolate_lru() - Try to isolate a folio from its LRU list. 1778 * @folio: Folio to isolate from its LRU list. 1779 * 1780 * Isolate a @folio from an LRU list and adjust the vmstat statistic 1781 * corresponding to whatever LRU list the folio was on. 1782 * 1783 * The folio will have its LRU flag cleared. If it was found on the 1784 * active list, it will have the Active flag set. If it was found on the 1785 * unevictable list, it will have the Unevictable flag set. These flags 1786 * may need to be cleared by the caller before letting the page go. 1787 * 1788 * Context: 1789 * 1790 * (1) Must be called with an elevated refcount on the folio. This is a 1791 * fundamental difference from isolate_lru_folios() (which is called 1792 * without a stable reference). 1793 * (2) The lru_lock must not be held. 1794 * (3) Interrupts must be enabled. 1795 * 1796 * Return: true if the folio was removed from an LRU list. 1797 * false if the folio was not on an LRU list. 1798 */ 1799 bool folio_isolate_lru(struct folio *folio) 1800 { 1801 bool ret = false; 1802 1803 VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio); 1804 1805 if (folio_test_clear_lru(folio)) { 1806 struct lruvec *lruvec; 1807 1808 folio_get(folio); 1809 lruvec = folio_lruvec_lock_irq(folio); 1810 lruvec_del_folio(lruvec, folio); 1811 unlock_page_lruvec_irq(lruvec); 1812 ret = true; 1813 } 1814 1815 return ret; 1816 } 1817 1818 /* 1819 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 1820 * then get rescheduled. When there are massive number of tasks doing page 1821 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 1822 * the LRU list will go small and be scanned faster than necessary, leading to 1823 * unnecessary swapping, thrashing and OOM. 1824 */ 1825 static bool too_many_isolated(struct pglist_data *pgdat, int file, 1826 struct scan_control *sc) 1827 { 1828 unsigned long inactive, isolated; 1829 bool too_many; 1830 1831 if (current_is_kswapd()) 1832 return false; 1833 1834 if (!writeback_throttling_sane(sc)) 1835 return false; 1836 1837 if (file) { 1838 inactive = node_page_state(pgdat, NR_INACTIVE_FILE); 1839 isolated = node_page_state(pgdat, NR_ISOLATED_FILE); 1840 } else { 1841 inactive = node_page_state(pgdat, NR_INACTIVE_ANON); 1842 isolated = node_page_state(pgdat, NR_ISOLATED_ANON); 1843 } 1844 1845 /* 1846 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 1847 * won't get blocked by normal direct-reclaimers, forming a circular 1848 * deadlock. 1849 */ 1850 if (gfp_has_io_fs(sc->gfp_mask)) 1851 inactive >>= 3; 1852 1853 too_many = isolated > inactive; 1854 1855 /* Wake up tasks throttled due to too_many_isolated. */ 1856 if (!too_many) 1857 wake_throttle_isolated(pgdat); 1858 1859 return too_many; 1860 } 1861 1862 /* 1863 * move_folios_to_lru() moves folios from private @list to appropriate LRU list. 1864 * 1865 * Returns the number of pages moved to the given lruvec. 1866 */ 1867 static unsigned int move_folios_to_lru(struct lruvec *lruvec, 1868 struct list_head *list) 1869 { 1870 int nr_pages, nr_moved = 0; 1871 struct folio_batch free_folios; 1872 1873 folio_batch_init(&free_folios); 1874 while (!list_empty(list)) { 1875 struct folio *folio = lru_to_folio(list); 1876 1877 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 1878 list_del(&folio->lru); 1879 if (unlikely(!folio_evictable(folio))) { 1880 spin_unlock_irq(&lruvec->lru_lock); 1881 folio_putback_lru(folio); 1882 spin_lock_irq(&lruvec->lru_lock); 1883 continue; 1884 } 1885 1886 /* 1887 * The folio_set_lru needs to be kept here for list integrity. 1888 * Otherwise: 1889 * #0 move_folios_to_lru #1 release_pages 1890 * if (!folio_put_testzero()) 1891 * if (folio_put_testzero()) 1892 * !lru //skip lru_lock 1893 * folio_set_lru() 1894 * list_add(&folio->lru,) 1895 * list_add(&folio->lru,) 1896 */ 1897 folio_set_lru(folio); 1898 1899 if (unlikely(folio_put_testzero(folio))) { 1900 __folio_clear_lru_flags(folio); 1901 1902 folio_unqueue_deferred_split(folio); 1903 if (folio_batch_add(&free_folios, folio) == 0) { 1904 spin_unlock_irq(&lruvec->lru_lock); 1905 mem_cgroup_uncharge_folios(&free_folios); 1906 free_unref_folios(&free_folios); 1907 spin_lock_irq(&lruvec->lru_lock); 1908 } 1909 1910 continue; 1911 } 1912 1913 /* 1914 * All pages were isolated from the same lruvec (and isolation 1915 * inhibits memcg migration). 1916 */ 1917 VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio); 1918 lruvec_add_folio(lruvec, folio); 1919 nr_pages = folio_nr_pages(folio); 1920 nr_moved += nr_pages; 1921 if (folio_test_active(folio)) 1922 workingset_age_nonresident(lruvec, nr_pages); 1923 } 1924 1925 if (free_folios.nr) { 1926 spin_unlock_irq(&lruvec->lru_lock); 1927 mem_cgroup_uncharge_folios(&free_folios); 1928 free_unref_folios(&free_folios); 1929 spin_lock_irq(&lruvec->lru_lock); 1930 } 1931 1932 return nr_moved; 1933 } 1934 1935 /* 1936 * If a kernel thread (such as nfsd for loop-back mounts) services a backing 1937 * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case 1938 * we should not throttle. Otherwise it is safe to do so. 1939 */ 1940 static int current_may_throttle(void) 1941 { 1942 return !(current->flags & PF_LOCAL_THROTTLE); 1943 } 1944 1945 /* 1946 * shrink_inactive_list() is a helper for shrink_node(). It returns the number 1947 * of reclaimed pages 1948 */ 1949 static unsigned long shrink_inactive_list(unsigned long nr_to_scan, 1950 struct lruvec *lruvec, struct scan_control *sc, 1951 enum lru_list lru) 1952 { 1953 LIST_HEAD(folio_list); 1954 unsigned long nr_scanned; 1955 unsigned int nr_reclaimed = 0; 1956 unsigned long nr_taken; 1957 struct reclaim_stat stat; 1958 bool file = is_file_lru(lru); 1959 enum vm_event_item item; 1960 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1961 bool stalled = false; 1962 1963 while (unlikely(too_many_isolated(pgdat, file, sc))) { 1964 if (stalled) 1965 return 0; 1966 1967 /* wait a bit for the reclaimer. */ 1968 stalled = true; 1969 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED); 1970 1971 /* We are about to die and free our memory. Return now. */ 1972 if (fatal_signal_pending(current)) 1973 return SWAP_CLUSTER_MAX; 1974 } 1975 1976 lru_add_drain(); 1977 1978 spin_lock_irq(&lruvec->lru_lock); 1979 1980 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &folio_list, 1981 &nr_scanned, sc, lru); 1982 1983 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 1984 item = PGSCAN_KSWAPD + reclaimer_offset(); 1985 if (!cgroup_reclaim(sc)) 1986 __count_vm_events(item, nr_scanned); 1987 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned); 1988 __count_vm_events(PGSCAN_ANON + file, nr_scanned); 1989 1990 spin_unlock_irq(&lruvec->lru_lock); 1991 1992 if (nr_taken == 0) 1993 return 0; 1994 1995 nr_reclaimed = shrink_folio_list(&folio_list, pgdat, sc, &stat, false); 1996 1997 spin_lock_irq(&lruvec->lru_lock); 1998 move_folios_to_lru(lruvec, &folio_list); 1999 2000 __mod_lruvec_state(lruvec, PGDEMOTE_KSWAPD + reclaimer_offset(), 2001 stat.nr_demoted); 2002 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2003 item = PGSTEAL_KSWAPD + reclaimer_offset(); 2004 if (!cgroup_reclaim(sc)) 2005 __count_vm_events(item, nr_reclaimed); 2006 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed); 2007 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed); 2008 spin_unlock_irq(&lruvec->lru_lock); 2009 2010 lru_note_cost(lruvec, file, stat.nr_pageout, nr_scanned - nr_reclaimed); 2011 2012 /* 2013 * If dirty folios are scanned that are not queued for IO, it 2014 * implies that flushers are not doing their job. This can 2015 * happen when memory pressure pushes dirty folios to the end of 2016 * the LRU before the dirty limits are breached and the dirty 2017 * data has expired. It can also happen when the proportion of 2018 * dirty folios grows not through writes but through memory 2019 * pressure reclaiming all the clean cache. And in some cases, 2020 * the flushers simply cannot keep up with the allocation 2021 * rate. Nudge the flusher threads in case they are asleep. 2022 */ 2023 if (stat.nr_unqueued_dirty == nr_taken) { 2024 wakeup_flusher_threads(WB_REASON_VMSCAN); 2025 /* 2026 * For cgroupv1 dirty throttling is achieved by waking up 2027 * the kernel flusher here and later waiting on folios 2028 * which are in writeback to finish (see shrink_folio_list()). 2029 * 2030 * Flusher may not be able to issue writeback quickly 2031 * enough for cgroupv1 writeback throttling to work 2032 * on a large system. 2033 */ 2034 if (!writeback_throttling_sane(sc)) 2035 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK); 2036 } 2037 2038 sc->nr.dirty += stat.nr_dirty; 2039 sc->nr.congested += stat.nr_congested; 2040 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty; 2041 sc->nr.writeback += stat.nr_writeback; 2042 sc->nr.immediate += stat.nr_immediate; 2043 sc->nr.taken += nr_taken; 2044 if (file) 2045 sc->nr.file_taken += nr_taken; 2046 2047 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 2048 nr_scanned, nr_reclaimed, &stat, sc->priority, file); 2049 return nr_reclaimed; 2050 } 2051 2052 /* 2053 * shrink_active_list() moves folios from the active LRU to the inactive LRU. 2054 * 2055 * We move them the other way if the folio is referenced by one or more 2056 * processes. 2057 * 2058 * If the folios are mostly unmapped, the processing is fast and it is 2059 * appropriate to hold lru_lock across the whole operation. But if 2060 * the folios are mapped, the processing is slow (folio_referenced()), so 2061 * we should drop lru_lock around each folio. It's impossible to balance 2062 * this, so instead we remove the folios from the LRU while processing them. 2063 * It is safe to rely on the active flag against the non-LRU folios in here 2064 * because nobody will play with that bit on a non-LRU folio. 2065 * 2066 * The downside is that we have to touch folio->_refcount against each folio. 2067 * But we had to alter folio->flags anyway. 2068 */ 2069 static void shrink_active_list(unsigned long nr_to_scan, 2070 struct lruvec *lruvec, 2071 struct scan_control *sc, 2072 enum lru_list lru) 2073 { 2074 unsigned long nr_taken; 2075 unsigned long nr_scanned; 2076 unsigned long vm_flags; 2077 LIST_HEAD(l_hold); /* The folios which were snipped off */ 2078 LIST_HEAD(l_active); 2079 LIST_HEAD(l_inactive); 2080 unsigned nr_deactivate, nr_activate; 2081 unsigned nr_rotated = 0; 2082 bool file = is_file_lru(lru); 2083 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2084 2085 lru_add_drain(); 2086 2087 spin_lock_irq(&lruvec->lru_lock); 2088 2089 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &l_hold, 2090 &nr_scanned, sc, lru); 2091 2092 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2093 2094 if (!cgroup_reclaim(sc)) 2095 __count_vm_events(PGREFILL, nr_scanned); 2096 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned); 2097 2098 spin_unlock_irq(&lruvec->lru_lock); 2099 2100 while (!list_empty(&l_hold)) { 2101 struct folio *folio; 2102 2103 cond_resched(); 2104 folio = lru_to_folio(&l_hold); 2105 list_del(&folio->lru); 2106 2107 if (unlikely(!folio_evictable(folio))) { 2108 folio_putback_lru(folio); 2109 continue; 2110 } 2111 2112 if (unlikely(buffer_heads_over_limit)) { 2113 if (folio_needs_release(folio) && 2114 folio_trylock(folio)) { 2115 filemap_release_folio(folio, 0); 2116 folio_unlock(folio); 2117 } 2118 } 2119 2120 /* Referenced or rmap lock contention: rotate */ 2121 if (folio_referenced(folio, 0, sc->target_mem_cgroup, 2122 &vm_flags) != 0) { 2123 /* 2124 * Identify referenced, file-backed active folios and 2125 * give them one more trip around the active list. So 2126 * that executable code get better chances to stay in 2127 * memory under moderate memory pressure. Anon folios 2128 * are not likely to be evicted by use-once streaming 2129 * IO, plus JVM can create lots of anon VM_EXEC folios, 2130 * so we ignore them here. 2131 */ 2132 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) { 2133 nr_rotated += folio_nr_pages(folio); 2134 list_add(&folio->lru, &l_active); 2135 continue; 2136 } 2137 } 2138 2139 folio_clear_active(folio); /* we are de-activating */ 2140 folio_set_workingset(folio); 2141 list_add(&folio->lru, &l_inactive); 2142 } 2143 2144 /* 2145 * Move folios back to the lru list. 2146 */ 2147 spin_lock_irq(&lruvec->lru_lock); 2148 2149 nr_activate = move_folios_to_lru(lruvec, &l_active); 2150 nr_deactivate = move_folios_to_lru(lruvec, &l_inactive); 2151 2152 __count_vm_events(PGDEACTIVATE, nr_deactivate); 2153 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate); 2154 2155 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2156 spin_unlock_irq(&lruvec->lru_lock); 2157 2158 if (nr_rotated) 2159 lru_note_cost(lruvec, file, 0, nr_rotated); 2160 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate, 2161 nr_deactivate, nr_rotated, sc->priority, file); 2162 } 2163 2164 static unsigned int reclaim_folio_list(struct list_head *folio_list, 2165 struct pglist_data *pgdat) 2166 { 2167 struct reclaim_stat stat; 2168 unsigned int nr_reclaimed; 2169 struct folio *folio; 2170 struct scan_control sc = { 2171 .gfp_mask = GFP_KERNEL, 2172 .may_writepage = 1, 2173 .may_unmap = 1, 2174 .may_swap = 1, 2175 .no_demotion = 1, 2176 }; 2177 2178 nr_reclaimed = shrink_folio_list(folio_list, pgdat, &sc, &stat, true); 2179 while (!list_empty(folio_list)) { 2180 folio = lru_to_folio(folio_list); 2181 list_del(&folio->lru); 2182 folio_putback_lru(folio); 2183 } 2184 trace_mm_vmscan_reclaim_pages(pgdat->node_id, sc.nr_scanned, nr_reclaimed, &stat); 2185 2186 return nr_reclaimed; 2187 } 2188 2189 unsigned long reclaim_pages(struct list_head *folio_list) 2190 { 2191 int nid; 2192 unsigned int nr_reclaimed = 0; 2193 LIST_HEAD(node_folio_list); 2194 unsigned int noreclaim_flag; 2195 2196 if (list_empty(folio_list)) 2197 return nr_reclaimed; 2198 2199 noreclaim_flag = memalloc_noreclaim_save(); 2200 2201 nid = folio_nid(lru_to_folio(folio_list)); 2202 do { 2203 struct folio *folio = lru_to_folio(folio_list); 2204 2205 if (nid == folio_nid(folio)) { 2206 folio_clear_active(folio); 2207 list_move(&folio->lru, &node_folio_list); 2208 continue; 2209 } 2210 2211 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid)); 2212 nid = folio_nid(lru_to_folio(folio_list)); 2213 } while (!list_empty(folio_list)); 2214 2215 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid)); 2216 2217 memalloc_noreclaim_restore(noreclaim_flag); 2218 2219 return nr_reclaimed; 2220 } 2221 2222 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 2223 struct lruvec *lruvec, struct scan_control *sc) 2224 { 2225 if (is_active_lru(lru)) { 2226 if (sc->may_deactivate & (1 << is_file_lru(lru))) 2227 shrink_active_list(nr_to_scan, lruvec, sc, lru); 2228 else 2229 sc->skipped_deactivate = 1; 2230 return 0; 2231 } 2232 2233 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 2234 } 2235 2236 /* 2237 * The inactive anon list should be small enough that the VM never has 2238 * to do too much work. 2239 * 2240 * The inactive file list should be small enough to leave most memory 2241 * to the established workingset on the scan-resistant active list, 2242 * but large enough to avoid thrashing the aggregate readahead window. 2243 * 2244 * Both inactive lists should also be large enough that each inactive 2245 * folio has a chance to be referenced again before it is reclaimed. 2246 * 2247 * If that fails and refaulting is observed, the inactive list grows. 2248 * 2249 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE folios 2250 * on this LRU, maintained by the pageout code. An inactive_ratio 2251 * of 3 means 3:1 or 25% of the folios are kept on the inactive list. 2252 * 2253 * total target max 2254 * memory ratio inactive 2255 * ------------------------------------- 2256 * 10MB 1 5MB 2257 * 100MB 1 50MB 2258 * 1GB 3 250MB 2259 * 10GB 10 0.9GB 2260 * 100GB 31 3GB 2261 * 1TB 101 10GB 2262 * 10TB 320 32GB 2263 */ 2264 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru) 2265 { 2266 enum lru_list active_lru = inactive_lru + LRU_ACTIVE; 2267 unsigned long inactive, active; 2268 unsigned long inactive_ratio; 2269 unsigned long gb; 2270 2271 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru); 2272 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru); 2273 2274 gb = (inactive + active) >> (30 - PAGE_SHIFT); 2275 if (gb) 2276 inactive_ratio = int_sqrt(10 * gb); 2277 else 2278 inactive_ratio = 1; 2279 2280 return inactive * inactive_ratio < active; 2281 } 2282 2283 enum scan_balance { 2284 SCAN_EQUAL, 2285 SCAN_FRACT, 2286 SCAN_ANON, 2287 SCAN_FILE, 2288 }; 2289 2290 static void prepare_scan_control(pg_data_t *pgdat, struct scan_control *sc) 2291 { 2292 unsigned long file; 2293 struct lruvec *target_lruvec; 2294 2295 if (lru_gen_enabled()) 2296 return; 2297 2298 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat); 2299 2300 /* 2301 * Flush the memory cgroup stats in rate-limited way as we don't need 2302 * most accurate stats here. We may switch to regular stats flushing 2303 * in the future once it is cheap enough. 2304 */ 2305 mem_cgroup_flush_stats_ratelimited(sc->target_mem_cgroup); 2306 2307 /* 2308 * Determine the scan balance between anon and file LRUs. 2309 */ 2310 spin_lock_irq(&target_lruvec->lru_lock); 2311 sc->anon_cost = target_lruvec->anon_cost; 2312 sc->file_cost = target_lruvec->file_cost; 2313 spin_unlock_irq(&target_lruvec->lru_lock); 2314 2315 /* 2316 * Target desirable inactive:active list ratios for the anon 2317 * and file LRU lists. 2318 */ 2319 if (!sc->force_deactivate) { 2320 unsigned long refaults; 2321 2322 /* 2323 * When refaults are being observed, it means a new 2324 * workingset is being established. Deactivate to get 2325 * rid of any stale active pages quickly. 2326 */ 2327 refaults = lruvec_page_state(target_lruvec, 2328 WORKINGSET_ACTIVATE_ANON); 2329 if (refaults != target_lruvec->refaults[WORKINGSET_ANON] || 2330 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON)) 2331 sc->may_deactivate |= DEACTIVATE_ANON; 2332 else 2333 sc->may_deactivate &= ~DEACTIVATE_ANON; 2334 2335 refaults = lruvec_page_state(target_lruvec, 2336 WORKINGSET_ACTIVATE_FILE); 2337 if (refaults != target_lruvec->refaults[WORKINGSET_FILE] || 2338 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE)) 2339 sc->may_deactivate |= DEACTIVATE_FILE; 2340 else 2341 sc->may_deactivate &= ~DEACTIVATE_FILE; 2342 } else 2343 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE; 2344 2345 /* 2346 * If we have plenty of inactive file pages that aren't 2347 * thrashing, try to reclaim those first before touching 2348 * anonymous pages. 2349 */ 2350 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE); 2351 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE) && 2352 !sc->no_cache_trim_mode) 2353 sc->cache_trim_mode = 1; 2354 else 2355 sc->cache_trim_mode = 0; 2356 2357 /* 2358 * Prevent the reclaimer from falling into the cache trap: as 2359 * cache pages start out inactive, every cache fault will tip 2360 * the scan balance towards the file LRU. And as the file LRU 2361 * shrinks, so does the window for rotation from references. 2362 * This means we have a runaway feedback loop where a tiny 2363 * thrashing file LRU becomes infinitely more attractive than 2364 * anon pages. Try to detect this based on file LRU size. 2365 */ 2366 if (!cgroup_reclaim(sc)) { 2367 unsigned long total_high_wmark = 0; 2368 unsigned long free, anon; 2369 int z; 2370 2371 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES); 2372 file = node_page_state(pgdat, NR_ACTIVE_FILE) + 2373 node_page_state(pgdat, NR_INACTIVE_FILE); 2374 2375 for (z = 0; z < MAX_NR_ZONES; z++) { 2376 struct zone *zone = &pgdat->node_zones[z]; 2377 2378 if (!managed_zone(zone)) 2379 continue; 2380 2381 total_high_wmark += high_wmark_pages(zone); 2382 } 2383 2384 /* 2385 * Consider anon: if that's low too, this isn't a 2386 * runaway file reclaim problem, but rather just 2387 * extreme pressure. Reclaim as per usual then. 2388 */ 2389 anon = node_page_state(pgdat, NR_INACTIVE_ANON); 2390 2391 sc->file_is_tiny = 2392 file + free <= total_high_wmark && 2393 !(sc->may_deactivate & DEACTIVATE_ANON) && 2394 anon >> sc->priority; 2395 } 2396 } 2397 2398 /* 2399 * Determine how aggressively the anon and file LRU lists should be 2400 * scanned. 2401 * 2402 * nr[0] = anon inactive folios to scan; nr[1] = anon active folios to scan 2403 * nr[2] = file inactive folios to scan; nr[3] = file active folios to scan 2404 */ 2405 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc, 2406 unsigned long *nr) 2407 { 2408 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2409 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 2410 unsigned long anon_cost, file_cost, total_cost; 2411 int swappiness = sc_swappiness(sc, memcg); 2412 u64 fraction[ANON_AND_FILE]; 2413 u64 denominator = 0; /* gcc */ 2414 enum scan_balance scan_balance; 2415 unsigned long ap, fp; 2416 enum lru_list lru; 2417 2418 /* If we have no swap space, do not bother scanning anon folios. */ 2419 if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) { 2420 scan_balance = SCAN_FILE; 2421 goto out; 2422 } 2423 2424 /* 2425 * Global reclaim will swap to prevent OOM even with no 2426 * swappiness, but memcg users want to use this knob to 2427 * disable swapping for individual groups completely when 2428 * using the memory controller's swap limit feature would be 2429 * too expensive. 2430 */ 2431 if (cgroup_reclaim(sc) && !swappiness) { 2432 scan_balance = SCAN_FILE; 2433 goto out; 2434 } 2435 2436 /* 2437 * Do not apply any pressure balancing cleverness when the 2438 * system is close to OOM, scan both anon and file equally 2439 * (unless the swappiness setting disagrees with swapping). 2440 */ 2441 if (!sc->priority && swappiness) { 2442 scan_balance = SCAN_EQUAL; 2443 goto out; 2444 } 2445 2446 /* 2447 * If the system is almost out of file pages, force-scan anon. 2448 */ 2449 if (sc->file_is_tiny) { 2450 scan_balance = SCAN_ANON; 2451 goto out; 2452 } 2453 2454 /* 2455 * If there is enough inactive page cache, we do not reclaim 2456 * anything from the anonymous working right now. 2457 */ 2458 if (sc->cache_trim_mode) { 2459 scan_balance = SCAN_FILE; 2460 goto out; 2461 } 2462 2463 scan_balance = SCAN_FRACT; 2464 /* 2465 * Calculate the pressure balance between anon and file pages. 2466 * 2467 * The amount of pressure we put on each LRU is inversely 2468 * proportional to the cost of reclaiming each list, as 2469 * determined by the share of pages that are refaulting, times 2470 * the relative IO cost of bringing back a swapped out 2471 * anonymous page vs reloading a filesystem page (swappiness). 2472 * 2473 * Although we limit that influence to ensure no list gets 2474 * left behind completely: at least a third of the pressure is 2475 * applied, before swappiness. 2476 * 2477 * With swappiness at 100, anon and file have equal IO cost. 2478 */ 2479 total_cost = sc->anon_cost + sc->file_cost; 2480 anon_cost = total_cost + sc->anon_cost; 2481 file_cost = total_cost + sc->file_cost; 2482 total_cost = anon_cost + file_cost; 2483 2484 ap = swappiness * (total_cost + 1); 2485 ap /= anon_cost + 1; 2486 2487 fp = (MAX_SWAPPINESS - swappiness) * (total_cost + 1); 2488 fp /= file_cost + 1; 2489 2490 fraction[0] = ap; 2491 fraction[1] = fp; 2492 denominator = ap + fp; 2493 out: 2494 for_each_evictable_lru(lru) { 2495 bool file = is_file_lru(lru); 2496 unsigned long lruvec_size; 2497 unsigned long low, min; 2498 unsigned long scan; 2499 2500 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx); 2501 mem_cgroup_protection(sc->target_mem_cgroup, memcg, 2502 &min, &low); 2503 2504 if (min || low) { 2505 /* 2506 * Scale a cgroup's reclaim pressure by proportioning 2507 * its current usage to its memory.low or memory.min 2508 * setting. 2509 * 2510 * This is important, as otherwise scanning aggression 2511 * becomes extremely binary -- from nothing as we 2512 * approach the memory protection threshold, to totally 2513 * nominal as we exceed it. This results in requiring 2514 * setting extremely liberal protection thresholds. It 2515 * also means we simply get no protection at all if we 2516 * set it too low, which is not ideal. 2517 * 2518 * If there is any protection in place, we reduce scan 2519 * pressure by how much of the total memory used is 2520 * within protection thresholds. 2521 * 2522 * There is one special case: in the first reclaim pass, 2523 * we skip over all groups that are within their low 2524 * protection. If that fails to reclaim enough pages to 2525 * satisfy the reclaim goal, we come back and override 2526 * the best-effort low protection. However, we still 2527 * ideally want to honor how well-behaved groups are in 2528 * that case instead of simply punishing them all 2529 * equally. As such, we reclaim them based on how much 2530 * memory they are using, reducing the scan pressure 2531 * again by how much of the total memory used is under 2532 * hard protection. 2533 */ 2534 unsigned long cgroup_size = mem_cgroup_size(memcg); 2535 unsigned long protection; 2536 2537 /* memory.low scaling, make sure we retry before OOM */ 2538 if (!sc->memcg_low_reclaim && low > min) { 2539 protection = low; 2540 sc->memcg_low_skipped = 1; 2541 } else { 2542 protection = min; 2543 } 2544 2545 /* Avoid TOCTOU with earlier protection check */ 2546 cgroup_size = max(cgroup_size, protection); 2547 2548 scan = lruvec_size - lruvec_size * protection / 2549 (cgroup_size + 1); 2550 2551 /* 2552 * Minimally target SWAP_CLUSTER_MAX pages to keep 2553 * reclaim moving forwards, avoiding decrementing 2554 * sc->priority further than desirable. 2555 */ 2556 scan = max(scan, SWAP_CLUSTER_MAX); 2557 } else { 2558 scan = lruvec_size; 2559 } 2560 2561 scan >>= sc->priority; 2562 2563 /* 2564 * If the cgroup's already been deleted, make sure to 2565 * scrape out the remaining cache. 2566 */ 2567 if (!scan && !mem_cgroup_online(memcg)) 2568 scan = min(lruvec_size, SWAP_CLUSTER_MAX); 2569 2570 switch (scan_balance) { 2571 case SCAN_EQUAL: 2572 /* Scan lists relative to size */ 2573 break; 2574 case SCAN_FRACT: 2575 /* 2576 * Scan types proportional to swappiness and 2577 * their relative recent reclaim efficiency. 2578 * Make sure we don't miss the last page on 2579 * the offlined memory cgroups because of a 2580 * round-off error. 2581 */ 2582 scan = mem_cgroup_online(memcg) ? 2583 div64_u64(scan * fraction[file], denominator) : 2584 DIV64_U64_ROUND_UP(scan * fraction[file], 2585 denominator); 2586 break; 2587 case SCAN_FILE: 2588 case SCAN_ANON: 2589 /* Scan one type exclusively */ 2590 if ((scan_balance == SCAN_FILE) != file) 2591 scan = 0; 2592 break; 2593 default: 2594 /* Look ma, no brain */ 2595 BUG(); 2596 } 2597 2598 nr[lru] = scan; 2599 } 2600 } 2601 2602 /* 2603 * Anonymous LRU management is a waste if there is 2604 * ultimately no way to reclaim the memory. 2605 */ 2606 static bool can_age_anon_pages(struct pglist_data *pgdat, 2607 struct scan_control *sc) 2608 { 2609 /* Aging the anon LRU is valuable if swap is present: */ 2610 if (total_swap_pages > 0) 2611 return true; 2612 2613 /* Also valuable if anon pages can be demoted: */ 2614 return can_demote(pgdat->node_id, sc); 2615 } 2616 2617 #ifdef CONFIG_LRU_GEN 2618 2619 #ifdef CONFIG_LRU_GEN_ENABLED 2620 DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS); 2621 #define get_cap(cap) static_branch_likely(&lru_gen_caps[cap]) 2622 #else 2623 DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS); 2624 #define get_cap(cap) static_branch_unlikely(&lru_gen_caps[cap]) 2625 #endif 2626 2627 static bool should_walk_mmu(void) 2628 { 2629 return arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK); 2630 } 2631 2632 static bool should_clear_pmd_young(void) 2633 { 2634 return arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG); 2635 } 2636 2637 /****************************************************************************** 2638 * shorthand helpers 2639 ******************************************************************************/ 2640 2641 #define DEFINE_MAX_SEQ(lruvec) \ 2642 unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq) 2643 2644 #define DEFINE_MIN_SEQ(lruvec) \ 2645 unsigned long min_seq[ANON_AND_FILE] = { \ 2646 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]), \ 2647 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]), \ 2648 } 2649 2650 #define evictable_min_seq(min_seq, swappiness) \ 2651 min((min_seq)[!(swappiness)], (min_seq)[(swappiness) <= MAX_SWAPPINESS]) 2652 2653 #define for_each_gen_type_zone(gen, type, zone) \ 2654 for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++) \ 2655 for ((type) = 0; (type) < ANON_AND_FILE; (type)++) \ 2656 for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++) 2657 2658 #define for_each_evictable_type(type, swappiness) \ 2659 for ((type) = !(swappiness); (type) <= ((swappiness) <= MAX_SWAPPINESS); (type)++) 2660 2661 #define get_memcg_gen(seq) ((seq) % MEMCG_NR_GENS) 2662 #define get_memcg_bin(bin) ((bin) % MEMCG_NR_BINS) 2663 2664 static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid) 2665 { 2666 struct pglist_data *pgdat = NODE_DATA(nid); 2667 2668 #ifdef CONFIG_MEMCG 2669 if (memcg) { 2670 struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec; 2671 2672 /* see the comment in mem_cgroup_lruvec() */ 2673 if (!lruvec->pgdat) 2674 lruvec->pgdat = pgdat; 2675 2676 return lruvec; 2677 } 2678 #endif 2679 VM_WARN_ON_ONCE(!mem_cgroup_disabled()); 2680 2681 return &pgdat->__lruvec; 2682 } 2683 2684 static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc) 2685 { 2686 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 2687 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2688 2689 if (!sc->may_swap) 2690 return 0; 2691 2692 if (!can_demote(pgdat->node_id, sc) && 2693 mem_cgroup_get_nr_swap_pages(memcg) < MIN_LRU_BATCH) 2694 return 0; 2695 2696 return sc_swappiness(sc, memcg); 2697 } 2698 2699 static int get_nr_gens(struct lruvec *lruvec, int type) 2700 { 2701 return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1; 2702 } 2703 2704 static bool __maybe_unused seq_is_valid(struct lruvec *lruvec) 2705 { 2706 int type; 2707 2708 for (type = 0; type < ANON_AND_FILE; type++) { 2709 int n = get_nr_gens(lruvec, type); 2710 2711 if (n < MIN_NR_GENS || n > MAX_NR_GENS) 2712 return false; 2713 } 2714 2715 return true; 2716 } 2717 2718 /****************************************************************************** 2719 * Bloom filters 2720 ******************************************************************************/ 2721 2722 /* 2723 * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when 2724 * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of 2725 * bits in a bitmap, k is the number of hash functions and n is the number of 2726 * inserted items. 2727 * 2728 * Page table walkers use one of the two filters to reduce their search space. 2729 * To get rid of non-leaf entries that no longer have enough leaf entries, the 2730 * aging uses the double-buffering technique to flip to the other filter each 2731 * time it produces a new generation. For non-leaf entries that have enough 2732 * leaf entries, the aging carries them over to the next generation in 2733 * walk_pmd_range(); the eviction also report them when walking the rmap 2734 * in lru_gen_look_around(). 2735 * 2736 * For future optimizations: 2737 * 1. It's not necessary to keep both filters all the time. The spare one can be 2738 * freed after the RCU grace period and reallocated if needed again. 2739 * 2. And when reallocating, it's worth scaling its size according to the number 2740 * of inserted entries in the other filter, to reduce the memory overhead on 2741 * small systems and false positives on large systems. 2742 * 3. Jenkins' hash function is an alternative to Knuth's. 2743 */ 2744 #define BLOOM_FILTER_SHIFT 15 2745 2746 static inline int filter_gen_from_seq(unsigned long seq) 2747 { 2748 return seq % NR_BLOOM_FILTERS; 2749 } 2750 2751 static void get_item_key(void *item, int *key) 2752 { 2753 u32 hash = hash_ptr(item, BLOOM_FILTER_SHIFT * 2); 2754 2755 BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32)); 2756 2757 key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1); 2758 key[1] = hash >> BLOOM_FILTER_SHIFT; 2759 } 2760 2761 static bool test_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq, 2762 void *item) 2763 { 2764 int key[2]; 2765 unsigned long *filter; 2766 int gen = filter_gen_from_seq(seq); 2767 2768 filter = READ_ONCE(mm_state->filters[gen]); 2769 if (!filter) 2770 return true; 2771 2772 get_item_key(item, key); 2773 2774 return test_bit(key[0], filter) && test_bit(key[1], filter); 2775 } 2776 2777 static void update_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq, 2778 void *item) 2779 { 2780 int key[2]; 2781 unsigned long *filter; 2782 int gen = filter_gen_from_seq(seq); 2783 2784 filter = READ_ONCE(mm_state->filters[gen]); 2785 if (!filter) 2786 return; 2787 2788 get_item_key(item, key); 2789 2790 if (!test_bit(key[0], filter)) 2791 set_bit(key[0], filter); 2792 if (!test_bit(key[1], filter)) 2793 set_bit(key[1], filter); 2794 } 2795 2796 static void reset_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq) 2797 { 2798 unsigned long *filter; 2799 int gen = filter_gen_from_seq(seq); 2800 2801 filter = mm_state->filters[gen]; 2802 if (filter) { 2803 bitmap_clear(filter, 0, BIT(BLOOM_FILTER_SHIFT)); 2804 return; 2805 } 2806 2807 filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT), 2808 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN); 2809 WRITE_ONCE(mm_state->filters[gen], filter); 2810 } 2811 2812 /****************************************************************************** 2813 * mm_struct list 2814 ******************************************************************************/ 2815 2816 #ifdef CONFIG_LRU_GEN_WALKS_MMU 2817 2818 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg) 2819 { 2820 static struct lru_gen_mm_list mm_list = { 2821 .fifo = LIST_HEAD_INIT(mm_list.fifo), 2822 .lock = __SPIN_LOCK_UNLOCKED(mm_list.lock), 2823 }; 2824 2825 #ifdef CONFIG_MEMCG 2826 if (memcg) 2827 return &memcg->mm_list; 2828 #endif 2829 VM_WARN_ON_ONCE(!mem_cgroup_disabled()); 2830 2831 return &mm_list; 2832 } 2833 2834 static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec) 2835 { 2836 return &lruvec->mm_state; 2837 } 2838 2839 static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk) 2840 { 2841 int key; 2842 struct mm_struct *mm; 2843 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 2844 struct lru_gen_mm_state *mm_state = get_mm_state(walk->lruvec); 2845 2846 mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list); 2847 key = pgdat->node_id % BITS_PER_TYPE(mm->lru_gen.bitmap); 2848 2849 if (!walk->force_scan && !test_bit(key, &mm->lru_gen.bitmap)) 2850 return NULL; 2851 2852 clear_bit(key, &mm->lru_gen.bitmap); 2853 2854 return mmget_not_zero(mm) ? mm : NULL; 2855 } 2856 2857 void lru_gen_add_mm(struct mm_struct *mm) 2858 { 2859 int nid; 2860 struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm); 2861 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 2862 2863 VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list)); 2864 #ifdef CONFIG_MEMCG 2865 VM_WARN_ON_ONCE(mm->lru_gen.memcg); 2866 mm->lru_gen.memcg = memcg; 2867 #endif 2868 spin_lock(&mm_list->lock); 2869 2870 for_each_node_state(nid, N_MEMORY) { 2871 struct lruvec *lruvec = get_lruvec(memcg, nid); 2872 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 2873 2874 /* the first addition since the last iteration */ 2875 if (mm_state->tail == &mm_list->fifo) 2876 mm_state->tail = &mm->lru_gen.list; 2877 } 2878 2879 list_add_tail(&mm->lru_gen.list, &mm_list->fifo); 2880 2881 spin_unlock(&mm_list->lock); 2882 } 2883 2884 void lru_gen_del_mm(struct mm_struct *mm) 2885 { 2886 int nid; 2887 struct lru_gen_mm_list *mm_list; 2888 struct mem_cgroup *memcg = NULL; 2889 2890 if (list_empty(&mm->lru_gen.list)) 2891 return; 2892 2893 #ifdef CONFIG_MEMCG 2894 memcg = mm->lru_gen.memcg; 2895 #endif 2896 mm_list = get_mm_list(memcg); 2897 2898 spin_lock(&mm_list->lock); 2899 2900 for_each_node(nid) { 2901 struct lruvec *lruvec = get_lruvec(memcg, nid); 2902 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 2903 2904 /* where the current iteration continues after */ 2905 if (mm_state->head == &mm->lru_gen.list) 2906 mm_state->head = mm_state->head->prev; 2907 2908 /* where the last iteration ended before */ 2909 if (mm_state->tail == &mm->lru_gen.list) 2910 mm_state->tail = mm_state->tail->next; 2911 } 2912 2913 list_del_init(&mm->lru_gen.list); 2914 2915 spin_unlock(&mm_list->lock); 2916 2917 #ifdef CONFIG_MEMCG 2918 mem_cgroup_put(mm->lru_gen.memcg); 2919 mm->lru_gen.memcg = NULL; 2920 #endif 2921 } 2922 2923 #ifdef CONFIG_MEMCG 2924 void lru_gen_migrate_mm(struct mm_struct *mm) 2925 { 2926 struct mem_cgroup *memcg; 2927 struct task_struct *task = rcu_dereference_protected(mm->owner, true); 2928 2929 VM_WARN_ON_ONCE(task->mm != mm); 2930 lockdep_assert_held(&task->alloc_lock); 2931 2932 /* for mm_update_next_owner() */ 2933 if (mem_cgroup_disabled()) 2934 return; 2935 2936 /* migration can happen before addition */ 2937 if (!mm->lru_gen.memcg) 2938 return; 2939 2940 rcu_read_lock(); 2941 memcg = mem_cgroup_from_task(task); 2942 rcu_read_unlock(); 2943 if (memcg == mm->lru_gen.memcg) 2944 return; 2945 2946 VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list)); 2947 2948 lru_gen_del_mm(mm); 2949 lru_gen_add_mm(mm); 2950 } 2951 #endif 2952 2953 #else /* !CONFIG_LRU_GEN_WALKS_MMU */ 2954 2955 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg) 2956 { 2957 return NULL; 2958 } 2959 2960 static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec) 2961 { 2962 return NULL; 2963 } 2964 2965 static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk) 2966 { 2967 return NULL; 2968 } 2969 2970 #endif 2971 2972 static void reset_mm_stats(struct lru_gen_mm_walk *walk, bool last) 2973 { 2974 int i; 2975 int hist; 2976 struct lruvec *lruvec = walk->lruvec; 2977 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 2978 2979 lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock); 2980 2981 hist = lru_hist_from_seq(walk->seq); 2982 2983 for (i = 0; i < NR_MM_STATS; i++) { 2984 WRITE_ONCE(mm_state->stats[hist][i], 2985 mm_state->stats[hist][i] + walk->mm_stats[i]); 2986 walk->mm_stats[i] = 0; 2987 } 2988 2989 if (NR_HIST_GENS > 1 && last) { 2990 hist = lru_hist_from_seq(walk->seq + 1); 2991 2992 for (i = 0; i < NR_MM_STATS; i++) 2993 WRITE_ONCE(mm_state->stats[hist][i], 0); 2994 } 2995 } 2996 2997 static bool iterate_mm_list(struct lru_gen_mm_walk *walk, struct mm_struct **iter) 2998 { 2999 bool first = false; 3000 bool last = false; 3001 struct mm_struct *mm = NULL; 3002 struct lruvec *lruvec = walk->lruvec; 3003 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 3004 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 3005 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 3006 3007 /* 3008 * mm_state->seq is incremented after each iteration of mm_list. There 3009 * are three interesting cases for this page table walker: 3010 * 1. It tries to start a new iteration with a stale max_seq: there is 3011 * nothing left to do. 3012 * 2. It started the next iteration: it needs to reset the Bloom filter 3013 * so that a fresh set of PTE tables can be recorded. 3014 * 3. It ended the current iteration: it needs to reset the mm stats 3015 * counters and tell its caller to increment max_seq. 3016 */ 3017 spin_lock(&mm_list->lock); 3018 3019 VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->seq); 3020 3021 if (walk->seq <= mm_state->seq) 3022 goto done; 3023 3024 if (!mm_state->head) 3025 mm_state->head = &mm_list->fifo; 3026 3027 if (mm_state->head == &mm_list->fifo) 3028 first = true; 3029 3030 do { 3031 mm_state->head = mm_state->head->next; 3032 if (mm_state->head == &mm_list->fifo) { 3033 WRITE_ONCE(mm_state->seq, mm_state->seq + 1); 3034 last = true; 3035 break; 3036 } 3037 3038 /* force scan for those added after the last iteration */ 3039 if (!mm_state->tail || mm_state->tail == mm_state->head) { 3040 mm_state->tail = mm_state->head->next; 3041 walk->force_scan = true; 3042 } 3043 } while (!(mm = get_next_mm(walk))); 3044 done: 3045 if (*iter || last) 3046 reset_mm_stats(walk, last); 3047 3048 spin_unlock(&mm_list->lock); 3049 3050 if (mm && first) 3051 reset_bloom_filter(mm_state, walk->seq + 1); 3052 3053 if (*iter) 3054 mmput_async(*iter); 3055 3056 *iter = mm; 3057 3058 return last; 3059 } 3060 3061 static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long seq) 3062 { 3063 bool success = false; 3064 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 3065 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 3066 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 3067 3068 spin_lock(&mm_list->lock); 3069 3070 VM_WARN_ON_ONCE(mm_state->seq + 1 < seq); 3071 3072 if (seq > mm_state->seq) { 3073 mm_state->head = NULL; 3074 mm_state->tail = NULL; 3075 WRITE_ONCE(mm_state->seq, mm_state->seq + 1); 3076 success = true; 3077 } 3078 3079 spin_unlock(&mm_list->lock); 3080 3081 return success; 3082 } 3083 3084 /****************************************************************************** 3085 * PID controller 3086 ******************************************************************************/ 3087 3088 /* 3089 * A feedback loop based on Proportional-Integral-Derivative (PID) controller. 3090 * 3091 * The P term is refaulted/(evicted+protected) from a tier in the generation 3092 * currently being evicted; the I term is the exponential moving average of the 3093 * P term over the generations previously evicted, using the smoothing factor 3094 * 1/2; the D term isn't supported. 3095 * 3096 * The setpoint (SP) is always the first tier of one type; the process variable 3097 * (PV) is either any tier of the other type or any other tier of the same 3098 * type. 3099 * 3100 * The error is the difference between the SP and the PV; the correction is to 3101 * turn off protection when SP>PV or turn on protection when SP<PV. 3102 * 3103 * For future optimizations: 3104 * 1. The D term may discount the other two terms over time so that long-lived 3105 * generations can resist stale information. 3106 */ 3107 struct ctrl_pos { 3108 unsigned long refaulted; 3109 unsigned long total; 3110 int gain; 3111 }; 3112 3113 static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain, 3114 struct ctrl_pos *pos) 3115 { 3116 int i; 3117 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3118 int hist = lru_hist_from_seq(lrugen->min_seq[type]); 3119 3120 pos->gain = gain; 3121 pos->refaulted = pos->total = 0; 3122 3123 for (i = tier % MAX_NR_TIERS; i <= min(tier, MAX_NR_TIERS - 1); i++) { 3124 pos->refaulted += lrugen->avg_refaulted[type][i] + 3125 atomic_long_read(&lrugen->refaulted[hist][type][i]); 3126 pos->total += lrugen->avg_total[type][i] + 3127 lrugen->protected[hist][type][i] + 3128 atomic_long_read(&lrugen->evicted[hist][type][i]); 3129 } 3130 } 3131 3132 static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover) 3133 { 3134 int hist, tier; 3135 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3136 bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1; 3137 unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1; 3138 3139 lockdep_assert_held(&lruvec->lru_lock); 3140 3141 if (!carryover && !clear) 3142 return; 3143 3144 hist = lru_hist_from_seq(seq); 3145 3146 for (tier = 0; tier < MAX_NR_TIERS; tier++) { 3147 if (carryover) { 3148 unsigned long sum; 3149 3150 sum = lrugen->avg_refaulted[type][tier] + 3151 atomic_long_read(&lrugen->refaulted[hist][type][tier]); 3152 WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2); 3153 3154 sum = lrugen->avg_total[type][tier] + 3155 lrugen->protected[hist][type][tier] + 3156 atomic_long_read(&lrugen->evicted[hist][type][tier]); 3157 WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2); 3158 } 3159 3160 if (clear) { 3161 atomic_long_set(&lrugen->refaulted[hist][type][tier], 0); 3162 atomic_long_set(&lrugen->evicted[hist][type][tier], 0); 3163 WRITE_ONCE(lrugen->protected[hist][type][tier], 0); 3164 } 3165 } 3166 } 3167 3168 static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv) 3169 { 3170 /* 3171 * Return true if the PV has a limited number of refaults or a lower 3172 * refaulted/total than the SP. 3173 */ 3174 return pv->refaulted < MIN_LRU_BATCH || 3175 pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <= 3176 (sp->refaulted + 1) * pv->total * pv->gain; 3177 } 3178 3179 /****************************************************************************** 3180 * the aging 3181 ******************************************************************************/ 3182 3183 /* promote pages accessed through page tables */ 3184 static int folio_update_gen(struct folio *folio, int gen) 3185 { 3186 unsigned long new_flags, old_flags = READ_ONCE(folio->flags); 3187 3188 VM_WARN_ON_ONCE(gen >= MAX_NR_GENS); 3189 3190 /* see the comment on LRU_REFS_FLAGS */ 3191 if (!folio_test_referenced(folio) && !folio_test_workingset(folio)) { 3192 set_mask_bits(&folio->flags, LRU_REFS_MASK, BIT(PG_referenced)); 3193 return -1; 3194 } 3195 3196 do { 3197 /* lru_gen_del_folio() has isolated this page? */ 3198 if (!(old_flags & LRU_GEN_MASK)) 3199 return -1; 3200 3201 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_FLAGS); 3202 new_flags |= ((gen + 1UL) << LRU_GEN_PGOFF) | BIT(PG_workingset); 3203 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags)); 3204 3205 return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1; 3206 } 3207 3208 /* protect pages accessed multiple times through file descriptors */ 3209 static int folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming) 3210 { 3211 int type = folio_is_file_lru(folio); 3212 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3213 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]); 3214 unsigned long new_flags, old_flags = READ_ONCE(folio->flags); 3215 3216 VM_WARN_ON_ONCE_FOLIO(!(old_flags & LRU_GEN_MASK), folio); 3217 3218 do { 3219 new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1; 3220 /* folio_update_gen() has promoted this page? */ 3221 if (new_gen >= 0 && new_gen != old_gen) 3222 return new_gen; 3223 3224 new_gen = (old_gen + 1) % MAX_NR_GENS; 3225 3226 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_FLAGS); 3227 new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF; 3228 /* for folio_end_writeback() */ 3229 if (reclaiming) 3230 new_flags |= BIT(PG_reclaim); 3231 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags)); 3232 3233 lru_gen_update_size(lruvec, folio, old_gen, new_gen); 3234 3235 return new_gen; 3236 } 3237 3238 static void update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio, 3239 int old_gen, int new_gen) 3240 { 3241 int type = folio_is_file_lru(folio); 3242 int zone = folio_zonenum(folio); 3243 int delta = folio_nr_pages(folio); 3244 3245 VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS); 3246 VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS); 3247 3248 walk->batched++; 3249 3250 walk->nr_pages[old_gen][type][zone] -= delta; 3251 walk->nr_pages[new_gen][type][zone] += delta; 3252 } 3253 3254 static void reset_batch_size(struct lru_gen_mm_walk *walk) 3255 { 3256 int gen, type, zone; 3257 struct lruvec *lruvec = walk->lruvec; 3258 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3259 3260 walk->batched = 0; 3261 3262 for_each_gen_type_zone(gen, type, zone) { 3263 enum lru_list lru = type * LRU_INACTIVE_FILE; 3264 int delta = walk->nr_pages[gen][type][zone]; 3265 3266 if (!delta) 3267 continue; 3268 3269 walk->nr_pages[gen][type][zone] = 0; 3270 WRITE_ONCE(lrugen->nr_pages[gen][type][zone], 3271 lrugen->nr_pages[gen][type][zone] + delta); 3272 3273 if (lru_gen_is_active(lruvec, gen)) 3274 lru += LRU_ACTIVE; 3275 __update_lru_size(lruvec, lru, zone, delta); 3276 } 3277 } 3278 3279 static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args) 3280 { 3281 struct address_space *mapping; 3282 struct vm_area_struct *vma = args->vma; 3283 struct lru_gen_mm_walk *walk = args->private; 3284 3285 if (!vma_is_accessible(vma)) 3286 return true; 3287 3288 if (is_vm_hugetlb_page(vma)) 3289 return true; 3290 3291 if (!vma_has_recency(vma)) 3292 return true; 3293 3294 if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) 3295 return true; 3296 3297 if (vma == get_gate_vma(vma->vm_mm)) 3298 return true; 3299 3300 if (vma_is_anonymous(vma)) 3301 return !walk->swappiness; 3302 3303 if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping)) 3304 return true; 3305 3306 mapping = vma->vm_file->f_mapping; 3307 if (mapping_unevictable(mapping)) 3308 return true; 3309 3310 if (shmem_mapping(mapping)) 3311 return !walk->swappiness; 3312 3313 if (walk->swappiness > MAX_SWAPPINESS) 3314 return true; 3315 3316 /* to exclude special mappings like dax, etc. */ 3317 return !mapping->a_ops->read_folio; 3318 } 3319 3320 /* 3321 * Some userspace memory allocators map many single-page VMAs. Instead of 3322 * returning back to the PGD table for each of such VMAs, finish an entire PMD 3323 * table to reduce zigzags and improve cache performance. 3324 */ 3325 static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args, 3326 unsigned long *vm_start, unsigned long *vm_end) 3327 { 3328 unsigned long start = round_up(*vm_end, size); 3329 unsigned long end = (start | ~mask) + 1; 3330 VMA_ITERATOR(vmi, args->mm, start); 3331 3332 VM_WARN_ON_ONCE(mask & size); 3333 VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask)); 3334 3335 for_each_vma(vmi, args->vma) { 3336 if (end && end <= args->vma->vm_start) 3337 return false; 3338 3339 if (should_skip_vma(args->vma->vm_start, args->vma->vm_end, args)) 3340 continue; 3341 3342 *vm_start = max(start, args->vma->vm_start); 3343 *vm_end = min(end - 1, args->vma->vm_end - 1) + 1; 3344 3345 return true; 3346 } 3347 3348 return false; 3349 } 3350 3351 static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr, 3352 struct pglist_data *pgdat) 3353 { 3354 unsigned long pfn = pte_pfn(pte); 3355 3356 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end); 3357 3358 if (!pte_present(pte) || is_zero_pfn(pfn)) 3359 return -1; 3360 3361 if (WARN_ON_ONCE(pte_devmap(pte) || pte_special(pte))) 3362 return -1; 3363 3364 if (!pte_young(pte) && !mm_has_notifiers(vma->vm_mm)) 3365 return -1; 3366 3367 if (WARN_ON_ONCE(!pfn_valid(pfn))) 3368 return -1; 3369 3370 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat)) 3371 return -1; 3372 3373 return pfn; 3374 } 3375 3376 static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr, 3377 struct pglist_data *pgdat) 3378 { 3379 unsigned long pfn = pmd_pfn(pmd); 3380 3381 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end); 3382 3383 if (!pmd_present(pmd) || is_huge_zero_pmd(pmd)) 3384 return -1; 3385 3386 if (WARN_ON_ONCE(pmd_devmap(pmd))) 3387 return -1; 3388 3389 if (!pmd_young(pmd) && !mm_has_notifiers(vma->vm_mm)) 3390 return -1; 3391 3392 if (WARN_ON_ONCE(!pfn_valid(pfn))) 3393 return -1; 3394 3395 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat)) 3396 return -1; 3397 3398 return pfn; 3399 } 3400 3401 static struct folio *get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg, 3402 struct pglist_data *pgdat) 3403 { 3404 struct folio *folio = pfn_folio(pfn); 3405 3406 if (folio_lru_gen(folio) < 0) 3407 return NULL; 3408 3409 if (folio_nid(folio) != pgdat->node_id) 3410 return NULL; 3411 3412 if (folio_memcg(folio) != memcg) 3413 return NULL; 3414 3415 return folio; 3416 } 3417 3418 static bool suitable_to_scan(int total, int young) 3419 { 3420 int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8); 3421 3422 /* suitable if the average number of young PTEs per cacheline is >=1 */ 3423 return young * n >= total; 3424 } 3425 3426 static void walk_update_folio(struct lru_gen_mm_walk *walk, struct folio *folio, 3427 int new_gen, bool dirty) 3428 { 3429 int old_gen; 3430 3431 if (!folio) 3432 return; 3433 3434 if (dirty && !folio_test_dirty(folio) && 3435 !(folio_test_anon(folio) && folio_test_swapbacked(folio) && 3436 !folio_test_swapcache(folio))) 3437 folio_mark_dirty(folio); 3438 3439 if (walk) { 3440 old_gen = folio_update_gen(folio, new_gen); 3441 if (old_gen >= 0 && old_gen != new_gen) 3442 update_batch_size(walk, folio, old_gen, new_gen); 3443 } else if (lru_gen_set_refs(folio)) { 3444 old_gen = folio_lru_gen(folio); 3445 if (old_gen >= 0 && old_gen != new_gen) 3446 folio_activate(folio); 3447 } 3448 } 3449 3450 static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end, 3451 struct mm_walk *args) 3452 { 3453 int i; 3454 bool dirty; 3455 pte_t *pte; 3456 spinlock_t *ptl; 3457 unsigned long addr; 3458 int total = 0; 3459 int young = 0; 3460 struct folio *last = NULL; 3461 struct lru_gen_mm_walk *walk = args->private; 3462 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec); 3463 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 3464 DEFINE_MAX_SEQ(walk->lruvec); 3465 int gen = lru_gen_from_seq(max_seq); 3466 pmd_t pmdval; 3467 3468 pte = pte_offset_map_rw_nolock(args->mm, pmd, start & PMD_MASK, &pmdval, &ptl); 3469 if (!pte) 3470 return false; 3471 3472 if (!spin_trylock(ptl)) { 3473 pte_unmap(pte); 3474 return true; 3475 } 3476 3477 if (unlikely(!pmd_same(pmdval, pmdp_get_lockless(pmd)))) { 3478 pte_unmap_unlock(pte, ptl); 3479 return false; 3480 } 3481 3482 arch_enter_lazy_mmu_mode(); 3483 restart: 3484 for (i = pte_index(start), addr = start; addr != end; i++, addr += PAGE_SIZE) { 3485 unsigned long pfn; 3486 struct folio *folio; 3487 pte_t ptent = ptep_get(pte + i); 3488 3489 total++; 3490 walk->mm_stats[MM_LEAF_TOTAL]++; 3491 3492 pfn = get_pte_pfn(ptent, args->vma, addr, pgdat); 3493 if (pfn == -1) 3494 continue; 3495 3496 folio = get_pfn_folio(pfn, memcg, pgdat); 3497 if (!folio) 3498 continue; 3499 3500 if (!ptep_clear_young_notify(args->vma, addr, pte + i)) 3501 continue; 3502 3503 if (last != folio) { 3504 walk_update_folio(walk, last, gen, dirty); 3505 3506 last = folio; 3507 dirty = false; 3508 } 3509 3510 if (pte_dirty(ptent)) 3511 dirty = true; 3512 3513 young++; 3514 walk->mm_stats[MM_LEAF_YOUNG]++; 3515 } 3516 3517 walk_update_folio(walk, last, gen, dirty); 3518 last = NULL; 3519 3520 if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, &start, &end)) 3521 goto restart; 3522 3523 arch_leave_lazy_mmu_mode(); 3524 pte_unmap_unlock(pte, ptl); 3525 3526 return suitable_to_scan(total, young); 3527 } 3528 3529 static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma, 3530 struct mm_walk *args, unsigned long *bitmap, unsigned long *first) 3531 { 3532 int i; 3533 bool dirty; 3534 pmd_t *pmd; 3535 spinlock_t *ptl; 3536 struct folio *last = NULL; 3537 struct lru_gen_mm_walk *walk = args->private; 3538 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec); 3539 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 3540 DEFINE_MAX_SEQ(walk->lruvec); 3541 int gen = lru_gen_from_seq(max_seq); 3542 3543 VM_WARN_ON_ONCE(pud_leaf(*pud)); 3544 3545 /* try to batch at most 1+MIN_LRU_BATCH+1 entries */ 3546 if (*first == -1) { 3547 *first = addr; 3548 bitmap_zero(bitmap, MIN_LRU_BATCH); 3549 return; 3550 } 3551 3552 i = addr == -1 ? 0 : pmd_index(addr) - pmd_index(*first); 3553 if (i && i <= MIN_LRU_BATCH) { 3554 __set_bit(i - 1, bitmap); 3555 return; 3556 } 3557 3558 pmd = pmd_offset(pud, *first); 3559 3560 ptl = pmd_lockptr(args->mm, pmd); 3561 if (!spin_trylock(ptl)) 3562 goto done; 3563 3564 arch_enter_lazy_mmu_mode(); 3565 3566 do { 3567 unsigned long pfn; 3568 struct folio *folio; 3569 3570 /* don't round down the first address */ 3571 addr = i ? (*first & PMD_MASK) + i * PMD_SIZE : *first; 3572 3573 if (!pmd_present(pmd[i])) 3574 goto next; 3575 3576 if (!pmd_trans_huge(pmd[i])) { 3577 if (!walk->force_scan && should_clear_pmd_young() && 3578 !mm_has_notifiers(args->mm)) 3579 pmdp_test_and_clear_young(vma, addr, pmd + i); 3580 goto next; 3581 } 3582 3583 pfn = get_pmd_pfn(pmd[i], vma, addr, pgdat); 3584 if (pfn == -1) 3585 goto next; 3586 3587 folio = get_pfn_folio(pfn, memcg, pgdat); 3588 if (!folio) 3589 goto next; 3590 3591 if (!pmdp_clear_young_notify(vma, addr, pmd + i)) 3592 goto next; 3593 3594 if (last != folio) { 3595 walk_update_folio(walk, last, gen, dirty); 3596 3597 last = folio; 3598 dirty = false; 3599 } 3600 3601 if (pmd_dirty(pmd[i])) 3602 dirty = true; 3603 3604 walk->mm_stats[MM_LEAF_YOUNG]++; 3605 next: 3606 i = i > MIN_LRU_BATCH ? 0 : find_next_bit(bitmap, MIN_LRU_BATCH, i) + 1; 3607 } while (i <= MIN_LRU_BATCH); 3608 3609 walk_update_folio(walk, last, gen, dirty); 3610 3611 arch_leave_lazy_mmu_mode(); 3612 spin_unlock(ptl); 3613 done: 3614 *first = -1; 3615 } 3616 3617 static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end, 3618 struct mm_walk *args) 3619 { 3620 int i; 3621 pmd_t *pmd; 3622 unsigned long next; 3623 unsigned long addr; 3624 struct vm_area_struct *vma; 3625 DECLARE_BITMAP(bitmap, MIN_LRU_BATCH); 3626 unsigned long first = -1; 3627 struct lru_gen_mm_walk *walk = args->private; 3628 struct lru_gen_mm_state *mm_state = get_mm_state(walk->lruvec); 3629 3630 VM_WARN_ON_ONCE(pud_leaf(*pud)); 3631 3632 /* 3633 * Finish an entire PMD in two passes: the first only reaches to PTE 3634 * tables to avoid taking the PMD lock; the second, if necessary, takes 3635 * the PMD lock to clear the accessed bit in PMD entries. 3636 */ 3637 pmd = pmd_offset(pud, start & PUD_MASK); 3638 restart: 3639 /* walk_pte_range() may call get_next_vma() */ 3640 vma = args->vma; 3641 for (i = pmd_index(start), addr = start; addr != end; i++, addr = next) { 3642 pmd_t val = pmdp_get_lockless(pmd + i); 3643 3644 next = pmd_addr_end(addr, end); 3645 3646 if (!pmd_present(val) || is_huge_zero_pmd(val)) { 3647 walk->mm_stats[MM_LEAF_TOTAL]++; 3648 continue; 3649 } 3650 3651 if (pmd_trans_huge(val)) { 3652 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 3653 unsigned long pfn = get_pmd_pfn(val, vma, addr, pgdat); 3654 3655 walk->mm_stats[MM_LEAF_TOTAL]++; 3656 3657 if (pfn != -1) 3658 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first); 3659 continue; 3660 } 3661 3662 if (!walk->force_scan && should_clear_pmd_young() && 3663 !mm_has_notifiers(args->mm)) { 3664 if (!pmd_young(val)) 3665 continue; 3666 3667 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first); 3668 } 3669 3670 if (!walk->force_scan && !test_bloom_filter(mm_state, walk->seq, pmd + i)) 3671 continue; 3672 3673 walk->mm_stats[MM_NONLEAF_FOUND]++; 3674 3675 if (!walk_pte_range(&val, addr, next, args)) 3676 continue; 3677 3678 walk->mm_stats[MM_NONLEAF_ADDED]++; 3679 3680 /* carry over to the next generation */ 3681 update_bloom_filter(mm_state, walk->seq + 1, pmd + i); 3682 } 3683 3684 walk_pmd_range_locked(pud, -1, vma, args, bitmap, &first); 3685 3686 if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, &start, &end)) 3687 goto restart; 3688 } 3689 3690 static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end, 3691 struct mm_walk *args) 3692 { 3693 int i; 3694 pud_t *pud; 3695 unsigned long addr; 3696 unsigned long next; 3697 struct lru_gen_mm_walk *walk = args->private; 3698 3699 VM_WARN_ON_ONCE(p4d_leaf(*p4d)); 3700 3701 pud = pud_offset(p4d, start & P4D_MASK); 3702 restart: 3703 for (i = pud_index(start), addr = start; addr != end; i++, addr = next) { 3704 pud_t val = READ_ONCE(pud[i]); 3705 3706 next = pud_addr_end(addr, end); 3707 3708 if (!pud_present(val) || WARN_ON_ONCE(pud_leaf(val))) 3709 continue; 3710 3711 walk_pmd_range(&val, addr, next, args); 3712 3713 if (need_resched() || walk->batched >= MAX_LRU_BATCH) { 3714 end = (addr | ~PUD_MASK) + 1; 3715 goto done; 3716 } 3717 } 3718 3719 if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, &start, &end)) 3720 goto restart; 3721 3722 end = round_up(end, P4D_SIZE); 3723 done: 3724 if (!end || !args->vma) 3725 return 1; 3726 3727 walk->next_addr = max(end, args->vma->vm_start); 3728 3729 return -EAGAIN; 3730 } 3731 3732 static void walk_mm(struct mm_struct *mm, struct lru_gen_mm_walk *walk) 3733 { 3734 static const struct mm_walk_ops mm_walk_ops = { 3735 .test_walk = should_skip_vma, 3736 .p4d_entry = walk_pud_range, 3737 .walk_lock = PGWALK_RDLOCK, 3738 }; 3739 int err; 3740 struct lruvec *lruvec = walk->lruvec; 3741 3742 walk->next_addr = FIRST_USER_ADDRESS; 3743 3744 do { 3745 DEFINE_MAX_SEQ(lruvec); 3746 3747 err = -EBUSY; 3748 3749 /* another thread might have called inc_max_seq() */ 3750 if (walk->seq != max_seq) 3751 break; 3752 3753 /* the caller might be holding the lock for write */ 3754 if (mmap_read_trylock(mm)) { 3755 err = walk_page_range(mm, walk->next_addr, ULONG_MAX, &mm_walk_ops, walk); 3756 3757 mmap_read_unlock(mm); 3758 } 3759 3760 if (walk->batched) { 3761 spin_lock_irq(&lruvec->lru_lock); 3762 reset_batch_size(walk); 3763 spin_unlock_irq(&lruvec->lru_lock); 3764 } 3765 3766 cond_resched(); 3767 } while (err == -EAGAIN); 3768 } 3769 3770 static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat, bool force_alloc) 3771 { 3772 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk; 3773 3774 if (pgdat && current_is_kswapd()) { 3775 VM_WARN_ON_ONCE(walk); 3776 3777 walk = &pgdat->mm_walk; 3778 } else if (!walk && force_alloc) { 3779 VM_WARN_ON_ONCE(current_is_kswapd()); 3780 3781 walk = kzalloc(sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN); 3782 } 3783 3784 current->reclaim_state->mm_walk = walk; 3785 3786 return walk; 3787 } 3788 3789 static void clear_mm_walk(void) 3790 { 3791 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk; 3792 3793 VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages))); 3794 VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats))); 3795 3796 current->reclaim_state->mm_walk = NULL; 3797 3798 if (!current_is_kswapd()) 3799 kfree(walk); 3800 } 3801 3802 static bool inc_min_seq(struct lruvec *lruvec, int type, int swappiness) 3803 { 3804 int zone; 3805 int remaining = MAX_LRU_BATCH; 3806 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3807 int hist = lru_hist_from_seq(lrugen->min_seq[type]); 3808 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]); 3809 3810 if (type ? swappiness > MAX_SWAPPINESS : !swappiness) 3811 goto done; 3812 3813 /* prevent cold/hot inversion if the type is evictable */ 3814 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 3815 struct list_head *head = &lrugen->folios[old_gen][type][zone]; 3816 3817 while (!list_empty(head)) { 3818 struct folio *folio = lru_to_folio(head); 3819 int refs = folio_lru_refs(folio); 3820 bool workingset = folio_test_workingset(folio); 3821 3822 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 3823 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio); 3824 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 3825 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio); 3826 3827 new_gen = folio_inc_gen(lruvec, folio, false); 3828 list_move_tail(&folio->lru, &lrugen->folios[new_gen][type][zone]); 3829 3830 /* don't count the workingset being lazily promoted */ 3831 if (refs + workingset != BIT(LRU_REFS_WIDTH) + 1) { 3832 int tier = lru_tier_from_refs(refs, workingset); 3833 int delta = folio_nr_pages(folio); 3834 3835 WRITE_ONCE(lrugen->protected[hist][type][tier], 3836 lrugen->protected[hist][type][tier] + delta); 3837 } 3838 3839 if (!--remaining) 3840 return false; 3841 } 3842 } 3843 done: 3844 reset_ctrl_pos(lruvec, type, true); 3845 WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1); 3846 3847 return true; 3848 } 3849 3850 static bool try_to_inc_min_seq(struct lruvec *lruvec, int swappiness) 3851 { 3852 int gen, type, zone; 3853 bool success = false; 3854 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3855 DEFINE_MIN_SEQ(lruvec); 3856 3857 VM_WARN_ON_ONCE(!seq_is_valid(lruvec)); 3858 3859 /* find the oldest populated generation */ 3860 for_each_evictable_type(type, swappiness) { 3861 while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) { 3862 gen = lru_gen_from_seq(min_seq[type]); 3863 3864 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 3865 if (!list_empty(&lrugen->folios[gen][type][zone])) 3866 goto next; 3867 } 3868 3869 min_seq[type]++; 3870 } 3871 next: 3872 ; 3873 } 3874 3875 /* see the comment on lru_gen_folio */ 3876 if (swappiness && swappiness <= MAX_SWAPPINESS) { 3877 unsigned long seq = lrugen->max_seq - MIN_NR_GENS; 3878 3879 if (min_seq[LRU_GEN_ANON] > seq && min_seq[LRU_GEN_FILE] < seq) 3880 min_seq[LRU_GEN_ANON] = seq; 3881 else if (min_seq[LRU_GEN_FILE] > seq && min_seq[LRU_GEN_ANON] < seq) 3882 min_seq[LRU_GEN_FILE] = seq; 3883 } 3884 3885 for_each_evictable_type(type, swappiness) { 3886 if (min_seq[type] <= lrugen->min_seq[type]) 3887 continue; 3888 3889 reset_ctrl_pos(lruvec, type, true); 3890 WRITE_ONCE(lrugen->min_seq[type], min_seq[type]); 3891 success = true; 3892 } 3893 3894 return success; 3895 } 3896 3897 static bool inc_max_seq(struct lruvec *lruvec, unsigned long seq, int swappiness) 3898 { 3899 bool success; 3900 int prev, next; 3901 int type, zone; 3902 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3903 restart: 3904 if (seq < READ_ONCE(lrugen->max_seq)) 3905 return false; 3906 3907 spin_lock_irq(&lruvec->lru_lock); 3908 3909 VM_WARN_ON_ONCE(!seq_is_valid(lruvec)); 3910 3911 success = seq == lrugen->max_seq; 3912 if (!success) 3913 goto unlock; 3914 3915 for (type = 0; type < ANON_AND_FILE; type++) { 3916 if (get_nr_gens(lruvec, type) != MAX_NR_GENS) 3917 continue; 3918 3919 if (inc_min_seq(lruvec, type, swappiness)) 3920 continue; 3921 3922 spin_unlock_irq(&lruvec->lru_lock); 3923 cond_resched(); 3924 goto restart; 3925 } 3926 3927 /* 3928 * Update the active/inactive LRU sizes for compatibility. Both sides of 3929 * the current max_seq need to be covered, since max_seq+1 can overlap 3930 * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do 3931 * overlap, cold/hot inversion happens. 3932 */ 3933 prev = lru_gen_from_seq(lrugen->max_seq - 1); 3934 next = lru_gen_from_seq(lrugen->max_seq + 1); 3935 3936 for (type = 0; type < ANON_AND_FILE; type++) { 3937 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 3938 enum lru_list lru = type * LRU_INACTIVE_FILE; 3939 long delta = lrugen->nr_pages[prev][type][zone] - 3940 lrugen->nr_pages[next][type][zone]; 3941 3942 if (!delta) 3943 continue; 3944 3945 __update_lru_size(lruvec, lru, zone, delta); 3946 __update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta); 3947 } 3948 } 3949 3950 for (type = 0; type < ANON_AND_FILE; type++) 3951 reset_ctrl_pos(lruvec, type, false); 3952 3953 WRITE_ONCE(lrugen->timestamps[next], jiffies); 3954 /* make sure preceding modifications appear */ 3955 smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1); 3956 unlock: 3957 spin_unlock_irq(&lruvec->lru_lock); 3958 3959 return success; 3960 } 3961 3962 static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long seq, 3963 int swappiness, bool force_scan) 3964 { 3965 bool success; 3966 struct lru_gen_mm_walk *walk; 3967 struct mm_struct *mm = NULL; 3968 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3969 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 3970 3971 VM_WARN_ON_ONCE(seq > READ_ONCE(lrugen->max_seq)); 3972 3973 if (!mm_state) 3974 return inc_max_seq(lruvec, seq, swappiness); 3975 3976 /* see the comment in iterate_mm_list() */ 3977 if (seq <= READ_ONCE(mm_state->seq)) 3978 return false; 3979 3980 /* 3981 * If the hardware doesn't automatically set the accessed bit, fallback 3982 * to lru_gen_look_around(), which only clears the accessed bit in a 3983 * handful of PTEs. Spreading the work out over a period of time usually 3984 * is less efficient, but it avoids bursty page faults. 3985 */ 3986 if (!should_walk_mmu()) { 3987 success = iterate_mm_list_nowalk(lruvec, seq); 3988 goto done; 3989 } 3990 3991 walk = set_mm_walk(NULL, true); 3992 if (!walk) { 3993 success = iterate_mm_list_nowalk(lruvec, seq); 3994 goto done; 3995 } 3996 3997 walk->lruvec = lruvec; 3998 walk->seq = seq; 3999 walk->swappiness = swappiness; 4000 walk->force_scan = force_scan; 4001 4002 do { 4003 success = iterate_mm_list(walk, &mm); 4004 if (mm) 4005 walk_mm(mm, walk); 4006 } while (mm); 4007 done: 4008 if (success) { 4009 success = inc_max_seq(lruvec, seq, swappiness); 4010 WARN_ON_ONCE(!success); 4011 } 4012 4013 return success; 4014 } 4015 4016 /****************************************************************************** 4017 * working set protection 4018 ******************************************************************************/ 4019 4020 static void set_initial_priority(struct pglist_data *pgdat, struct scan_control *sc) 4021 { 4022 int priority; 4023 unsigned long reclaimable; 4024 4025 if (sc->priority != DEF_PRIORITY || sc->nr_to_reclaim < MIN_LRU_BATCH) 4026 return; 4027 /* 4028 * Determine the initial priority based on 4029 * (total >> priority) * reclaimed_to_scanned_ratio = nr_to_reclaim, 4030 * where reclaimed_to_scanned_ratio = inactive / total. 4031 */ 4032 reclaimable = node_page_state(pgdat, NR_INACTIVE_FILE); 4033 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc)) 4034 reclaimable += node_page_state(pgdat, NR_INACTIVE_ANON); 4035 4036 /* round down reclaimable and round up sc->nr_to_reclaim */ 4037 priority = fls_long(reclaimable) - 1 - fls_long(sc->nr_to_reclaim - 1); 4038 4039 /* 4040 * The estimation is based on LRU pages only, so cap it to prevent 4041 * overshoots of shrinker objects by large margins. 4042 */ 4043 sc->priority = clamp(priority, DEF_PRIORITY / 2, DEF_PRIORITY); 4044 } 4045 4046 static bool lruvec_is_sizable(struct lruvec *lruvec, struct scan_control *sc) 4047 { 4048 int gen, type, zone; 4049 unsigned long total = 0; 4050 int swappiness = get_swappiness(lruvec, sc); 4051 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4052 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4053 DEFINE_MAX_SEQ(lruvec); 4054 DEFINE_MIN_SEQ(lruvec); 4055 4056 for_each_evictable_type(type, swappiness) { 4057 unsigned long seq; 4058 4059 for (seq = min_seq[type]; seq <= max_seq; seq++) { 4060 gen = lru_gen_from_seq(seq); 4061 4062 for (zone = 0; zone < MAX_NR_ZONES; zone++) 4063 total += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L); 4064 } 4065 } 4066 4067 /* whether the size is big enough to be helpful */ 4068 return mem_cgroup_online(memcg) ? (total >> sc->priority) : total; 4069 } 4070 4071 static bool lruvec_is_reclaimable(struct lruvec *lruvec, struct scan_control *sc, 4072 unsigned long min_ttl) 4073 { 4074 int gen; 4075 unsigned long birth; 4076 int swappiness = get_swappiness(lruvec, sc); 4077 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4078 DEFINE_MIN_SEQ(lruvec); 4079 4080 if (mem_cgroup_below_min(NULL, memcg)) 4081 return false; 4082 4083 if (!lruvec_is_sizable(lruvec, sc)) 4084 return false; 4085 4086 gen = lru_gen_from_seq(evictable_min_seq(min_seq, swappiness)); 4087 birth = READ_ONCE(lruvec->lrugen.timestamps[gen]); 4088 4089 return time_is_before_jiffies(birth + min_ttl); 4090 } 4091 4092 /* to protect the working set of the last N jiffies */ 4093 static unsigned long lru_gen_min_ttl __read_mostly; 4094 4095 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc) 4096 { 4097 struct mem_cgroup *memcg; 4098 unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl); 4099 bool reclaimable = !min_ttl; 4100 4101 VM_WARN_ON_ONCE(!current_is_kswapd()); 4102 4103 set_initial_priority(pgdat, sc); 4104 4105 memcg = mem_cgroup_iter(NULL, NULL, NULL); 4106 do { 4107 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 4108 4109 mem_cgroup_calculate_protection(NULL, memcg); 4110 4111 if (!reclaimable) 4112 reclaimable = lruvec_is_reclaimable(lruvec, sc, min_ttl); 4113 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL))); 4114 4115 /* 4116 * The main goal is to OOM kill if every generation from all memcgs is 4117 * younger than min_ttl. However, another possibility is all memcgs are 4118 * either too small or below min. 4119 */ 4120 if (!reclaimable && mutex_trylock(&oom_lock)) { 4121 struct oom_control oc = { 4122 .gfp_mask = sc->gfp_mask, 4123 }; 4124 4125 out_of_memory(&oc); 4126 4127 mutex_unlock(&oom_lock); 4128 } 4129 } 4130 4131 /****************************************************************************** 4132 * rmap/PT walk feedback 4133 ******************************************************************************/ 4134 4135 /* 4136 * This function exploits spatial locality when shrink_folio_list() walks the 4137 * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If 4138 * the scan was done cacheline efficiently, it adds the PMD entry pointing to 4139 * the PTE table to the Bloom filter. This forms a feedback loop between the 4140 * eviction and the aging. 4141 */ 4142 bool lru_gen_look_around(struct page_vma_mapped_walk *pvmw) 4143 { 4144 int i; 4145 bool dirty; 4146 unsigned long start; 4147 unsigned long end; 4148 struct lru_gen_mm_walk *walk; 4149 struct folio *last = NULL; 4150 int young = 1; 4151 pte_t *pte = pvmw->pte; 4152 unsigned long addr = pvmw->address; 4153 struct vm_area_struct *vma = pvmw->vma; 4154 struct folio *folio = pfn_folio(pvmw->pfn); 4155 struct mem_cgroup *memcg = folio_memcg(folio); 4156 struct pglist_data *pgdat = folio_pgdat(folio); 4157 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 4158 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 4159 DEFINE_MAX_SEQ(lruvec); 4160 int gen = lru_gen_from_seq(max_seq); 4161 4162 lockdep_assert_held(pvmw->ptl); 4163 VM_WARN_ON_ONCE_FOLIO(folio_test_lru(folio), folio); 4164 4165 if (!ptep_clear_young_notify(vma, addr, pte)) 4166 return false; 4167 4168 if (spin_is_contended(pvmw->ptl)) 4169 return true; 4170 4171 /* exclude special VMAs containing anon pages from COW */ 4172 if (vma->vm_flags & VM_SPECIAL) 4173 return true; 4174 4175 /* avoid taking the LRU lock under the PTL when possible */ 4176 walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL; 4177 4178 start = max(addr & PMD_MASK, vma->vm_start); 4179 end = min(addr | ~PMD_MASK, vma->vm_end - 1) + 1; 4180 4181 if (end - start == PAGE_SIZE) 4182 return true; 4183 4184 if (end - start > MIN_LRU_BATCH * PAGE_SIZE) { 4185 if (addr - start < MIN_LRU_BATCH * PAGE_SIZE / 2) 4186 end = start + MIN_LRU_BATCH * PAGE_SIZE; 4187 else if (end - addr < MIN_LRU_BATCH * PAGE_SIZE / 2) 4188 start = end - MIN_LRU_BATCH * PAGE_SIZE; 4189 else { 4190 start = addr - MIN_LRU_BATCH * PAGE_SIZE / 2; 4191 end = addr + MIN_LRU_BATCH * PAGE_SIZE / 2; 4192 } 4193 } 4194 4195 arch_enter_lazy_mmu_mode(); 4196 4197 pte -= (addr - start) / PAGE_SIZE; 4198 4199 for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) { 4200 unsigned long pfn; 4201 pte_t ptent = ptep_get(pte + i); 4202 4203 pfn = get_pte_pfn(ptent, vma, addr, pgdat); 4204 if (pfn == -1) 4205 continue; 4206 4207 folio = get_pfn_folio(pfn, memcg, pgdat); 4208 if (!folio) 4209 continue; 4210 4211 if (!ptep_clear_young_notify(vma, addr, pte + i)) 4212 continue; 4213 4214 if (last != folio) { 4215 walk_update_folio(walk, last, gen, dirty); 4216 4217 last = folio; 4218 dirty = false; 4219 } 4220 4221 if (pte_dirty(ptent)) 4222 dirty = true; 4223 4224 young++; 4225 } 4226 4227 walk_update_folio(walk, last, gen, dirty); 4228 4229 arch_leave_lazy_mmu_mode(); 4230 4231 /* feedback from rmap walkers to page table walkers */ 4232 if (mm_state && suitable_to_scan(i, young)) 4233 update_bloom_filter(mm_state, max_seq, pvmw->pmd); 4234 4235 return true; 4236 } 4237 4238 /****************************************************************************** 4239 * memcg LRU 4240 ******************************************************************************/ 4241 4242 /* see the comment on MEMCG_NR_GENS */ 4243 enum { 4244 MEMCG_LRU_NOP, 4245 MEMCG_LRU_HEAD, 4246 MEMCG_LRU_TAIL, 4247 MEMCG_LRU_OLD, 4248 MEMCG_LRU_YOUNG, 4249 }; 4250 4251 static void lru_gen_rotate_memcg(struct lruvec *lruvec, int op) 4252 { 4253 int seg; 4254 int old, new; 4255 unsigned long flags; 4256 int bin = get_random_u32_below(MEMCG_NR_BINS); 4257 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 4258 4259 spin_lock_irqsave(&pgdat->memcg_lru.lock, flags); 4260 4261 VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list)); 4262 4263 seg = 0; 4264 new = old = lruvec->lrugen.gen; 4265 4266 /* see the comment on MEMCG_NR_GENS */ 4267 if (op == MEMCG_LRU_HEAD) 4268 seg = MEMCG_LRU_HEAD; 4269 else if (op == MEMCG_LRU_TAIL) 4270 seg = MEMCG_LRU_TAIL; 4271 else if (op == MEMCG_LRU_OLD) 4272 new = get_memcg_gen(pgdat->memcg_lru.seq); 4273 else if (op == MEMCG_LRU_YOUNG) 4274 new = get_memcg_gen(pgdat->memcg_lru.seq + 1); 4275 else 4276 VM_WARN_ON_ONCE(true); 4277 4278 WRITE_ONCE(lruvec->lrugen.seg, seg); 4279 WRITE_ONCE(lruvec->lrugen.gen, new); 4280 4281 hlist_nulls_del_rcu(&lruvec->lrugen.list); 4282 4283 if (op == MEMCG_LRU_HEAD || op == MEMCG_LRU_OLD) 4284 hlist_nulls_add_head_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]); 4285 else 4286 hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]); 4287 4288 pgdat->memcg_lru.nr_memcgs[old]--; 4289 pgdat->memcg_lru.nr_memcgs[new]++; 4290 4291 if (!pgdat->memcg_lru.nr_memcgs[old] && old == get_memcg_gen(pgdat->memcg_lru.seq)) 4292 WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1); 4293 4294 spin_unlock_irqrestore(&pgdat->memcg_lru.lock, flags); 4295 } 4296 4297 #ifdef CONFIG_MEMCG 4298 4299 void lru_gen_online_memcg(struct mem_cgroup *memcg) 4300 { 4301 int gen; 4302 int nid; 4303 int bin = get_random_u32_below(MEMCG_NR_BINS); 4304 4305 for_each_node(nid) { 4306 struct pglist_data *pgdat = NODE_DATA(nid); 4307 struct lruvec *lruvec = get_lruvec(memcg, nid); 4308 4309 spin_lock_irq(&pgdat->memcg_lru.lock); 4310 4311 VM_WARN_ON_ONCE(!hlist_nulls_unhashed(&lruvec->lrugen.list)); 4312 4313 gen = get_memcg_gen(pgdat->memcg_lru.seq); 4314 4315 lruvec->lrugen.gen = gen; 4316 4317 hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[gen][bin]); 4318 pgdat->memcg_lru.nr_memcgs[gen]++; 4319 4320 spin_unlock_irq(&pgdat->memcg_lru.lock); 4321 } 4322 } 4323 4324 void lru_gen_offline_memcg(struct mem_cgroup *memcg) 4325 { 4326 int nid; 4327 4328 for_each_node(nid) { 4329 struct lruvec *lruvec = get_lruvec(memcg, nid); 4330 4331 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_OLD); 4332 } 4333 } 4334 4335 void lru_gen_release_memcg(struct mem_cgroup *memcg) 4336 { 4337 int gen; 4338 int nid; 4339 4340 for_each_node(nid) { 4341 struct pglist_data *pgdat = NODE_DATA(nid); 4342 struct lruvec *lruvec = get_lruvec(memcg, nid); 4343 4344 spin_lock_irq(&pgdat->memcg_lru.lock); 4345 4346 if (hlist_nulls_unhashed(&lruvec->lrugen.list)) 4347 goto unlock; 4348 4349 gen = lruvec->lrugen.gen; 4350 4351 hlist_nulls_del_init_rcu(&lruvec->lrugen.list); 4352 pgdat->memcg_lru.nr_memcgs[gen]--; 4353 4354 if (!pgdat->memcg_lru.nr_memcgs[gen] && gen == get_memcg_gen(pgdat->memcg_lru.seq)) 4355 WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1); 4356 unlock: 4357 spin_unlock_irq(&pgdat->memcg_lru.lock); 4358 } 4359 } 4360 4361 void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid) 4362 { 4363 struct lruvec *lruvec = get_lruvec(memcg, nid); 4364 4365 /* see the comment on MEMCG_NR_GENS */ 4366 if (READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_HEAD) 4367 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_HEAD); 4368 } 4369 4370 #endif /* CONFIG_MEMCG */ 4371 4372 /****************************************************************************** 4373 * the eviction 4374 ******************************************************************************/ 4375 4376 static bool sort_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc, 4377 int tier_idx) 4378 { 4379 bool success; 4380 bool dirty, writeback; 4381 int gen = folio_lru_gen(folio); 4382 int type = folio_is_file_lru(folio); 4383 int zone = folio_zonenum(folio); 4384 int delta = folio_nr_pages(folio); 4385 int refs = folio_lru_refs(folio); 4386 bool workingset = folio_test_workingset(folio); 4387 int tier = lru_tier_from_refs(refs, workingset); 4388 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4389 4390 VM_WARN_ON_ONCE_FOLIO(gen >= MAX_NR_GENS, folio); 4391 4392 /* unevictable */ 4393 if (!folio_evictable(folio)) { 4394 success = lru_gen_del_folio(lruvec, folio, true); 4395 VM_WARN_ON_ONCE_FOLIO(!success, folio); 4396 folio_set_unevictable(folio); 4397 lruvec_add_folio(lruvec, folio); 4398 __count_vm_events(UNEVICTABLE_PGCULLED, delta); 4399 return true; 4400 } 4401 4402 /* promoted */ 4403 if (gen != lru_gen_from_seq(lrugen->min_seq[type])) { 4404 list_move(&folio->lru, &lrugen->folios[gen][type][zone]); 4405 return true; 4406 } 4407 4408 /* protected */ 4409 if (tier > tier_idx || refs + workingset == BIT(LRU_REFS_WIDTH) + 1) { 4410 gen = folio_inc_gen(lruvec, folio, false); 4411 list_move(&folio->lru, &lrugen->folios[gen][type][zone]); 4412 4413 /* don't count the workingset being lazily promoted */ 4414 if (refs + workingset != BIT(LRU_REFS_WIDTH) + 1) { 4415 int hist = lru_hist_from_seq(lrugen->min_seq[type]); 4416 4417 WRITE_ONCE(lrugen->protected[hist][type][tier], 4418 lrugen->protected[hist][type][tier] + delta); 4419 } 4420 return true; 4421 } 4422 4423 /* ineligible */ 4424 if (!folio_test_lru(folio) || zone > sc->reclaim_idx) { 4425 gen = folio_inc_gen(lruvec, folio, false); 4426 list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]); 4427 return true; 4428 } 4429 4430 dirty = folio_test_dirty(folio); 4431 writeback = folio_test_writeback(folio); 4432 if (type == LRU_GEN_FILE && dirty) { 4433 sc->nr.file_taken += delta; 4434 if (!writeback) 4435 sc->nr.unqueued_dirty += delta; 4436 } 4437 4438 /* waiting for writeback */ 4439 if (writeback || (type == LRU_GEN_FILE && dirty)) { 4440 gen = folio_inc_gen(lruvec, folio, true); 4441 list_move(&folio->lru, &lrugen->folios[gen][type][zone]); 4442 return true; 4443 } 4444 4445 return false; 4446 } 4447 4448 static bool isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc) 4449 { 4450 bool success; 4451 4452 /* swap constrained */ 4453 if (!(sc->gfp_mask & __GFP_IO) && 4454 (folio_test_dirty(folio) || 4455 (folio_test_anon(folio) && !folio_test_swapcache(folio)))) 4456 return false; 4457 4458 /* raced with release_pages() */ 4459 if (!folio_try_get(folio)) 4460 return false; 4461 4462 /* raced with another isolation */ 4463 if (!folio_test_clear_lru(folio)) { 4464 folio_put(folio); 4465 return false; 4466 } 4467 4468 /* see the comment on LRU_REFS_FLAGS */ 4469 if (!folio_test_referenced(folio)) 4470 set_mask_bits(&folio->flags, LRU_REFS_MASK, 0); 4471 4472 /* for shrink_folio_list() */ 4473 folio_clear_reclaim(folio); 4474 4475 success = lru_gen_del_folio(lruvec, folio, true); 4476 VM_WARN_ON_ONCE_FOLIO(!success, folio); 4477 4478 return true; 4479 } 4480 4481 static int scan_folios(struct lruvec *lruvec, struct scan_control *sc, 4482 int type, int tier, struct list_head *list) 4483 { 4484 int i; 4485 int gen; 4486 enum vm_event_item item; 4487 int sorted = 0; 4488 int scanned = 0; 4489 int isolated = 0; 4490 int skipped = 0; 4491 int remaining = MAX_LRU_BATCH; 4492 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4493 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4494 4495 VM_WARN_ON_ONCE(!list_empty(list)); 4496 4497 if (get_nr_gens(lruvec, type) == MIN_NR_GENS) 4498 return 0; 4499 4500 gen = lru_gen_from_seq(lrugen->min_seq[type]); 4501 4502 for (i = MAX_NR_ZONES; i > 0; i--) { 4503 LIST_HEAD(moved); 4504 int skipped_zone = 0; 4505 int zone = (sc->reclaim_idx + i) % MAX_NR_ZONES; 4506 struct list_head *head = &lrugen->folios[gen][type][zone]; 4507 4508 while (!list_empty(head)) { 4509 struct folio *folio = lru_to_folio(head); 4510 int delta = folio_nr_pages(folio); 4511 4512 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 4513 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio); 4514 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 4515 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio); 4516 4517 scanned += delta; 4518 4519 if (sort_folio(lruvec, folio, sc, tier)) 4520 sorted += delta; 4521 else if (isolate_folio(lruvec, folio, sc)) { 4522 list_add(&folio->lru, list); 4523 isolated += delta; 4524 } else { 4525 list_move(&folio->lru, &moved); 4526 skipped_zone += delta; 4527 } 4528 4529 if (!--remaining || max(isolated, skipped_zone) >= MIN_LRU_BATCH) 4530 break; 4531 } 4532 4533 if (skipped_zone) { 4534 list_splice(&moved, head); 4535 __count_zid_vm_events(PGSCAN_SKIP, zone, skipped_zone); 4536 skipped += skipped_zone; 4537 } 4538 4539 if (!remaining || isolated >= MIN_LRU_BATCH) 4540 break; 4541 } 4542 4543 item = PGSCAN_KSWAPD + reclaimer_offset(); 4544 if (!cgroup_reclaim(sc)) { 4545 __count_vm_events(item, isolated); 4546 __count_vm_events(PGREFILL, sorted); 4547 } 4548 __count_memcg_events(memcg, item, isolated); 4549 __count_memcg_events(memcg, PGREFILL, sorted); 4550 __count_vm_events(PGSCAN_ANON + type, isolated); 4551 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, MAX_LRU_BATCH, 4552 scanned, skipped, isolated, 4553 type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON); 4554 if (type == LRU_GEN_FILE) 4555 sc->nr.file_taken += isolated; 4556 /* 4557 * There might not be eligible folios due to reclaim_idx. Check the 4558 * remaining to prevent livelock if it's not making progress. 4559 */ 4560 return isolated || !remaining ? scanned : 0; 4561 } 4562 4563 static int get_tier_idx(struct lruvec *lruvec, int type) 4564 { 4565 int tier; 4566 struct ctrl_pos sp, pv; 4567 4568 /* 4569 * To leave a margin for fluctuations, use a larger gain factor (2:3). 4570 * This value is chosen because any other tier would have at least twice 4571 * as many refaults as the first tier. 4572 */ 4573 read_ctrl_pos(lruvec, type, 0, 2, &sp); 4574 for (tier = 1; tier < MAX_NR_TIERS; tier++) { 4575 read_ctrl_pos(lruvec, type, tier, 3, &pv); 4576 if (!positive_ctrl_err(&sp, &pv)) 4577 break; 4578 } 4579 4580 return tier - 1; 4581 } 4582 4583 static int get_type_to_scan(struct lruvec *lruvec, int swappiness) 4584 { 4585 struct ctrl_pos sp, pv; 4586 4587 if (swappiness <= MIN_SWAPPINESS + 1) 4588 return LRU_GEN_FILE; 4589 4590 if (swappiness >= MAX_SWAPPINESS) 4591 return LRU_GEN_ANON; 4592 /* 4593 * Compare the sum of all tiers of anon with that of file to determine 4594 * which type to scan. 4595 */ 4596 read_ctrl_pos(lruvec, LRU_GEN_ANON, MAX_NR_TIERS, swappiness, &sp); 4597 read_ctrl_pos(lruvec, LRU_GEN_FILE, MAX_NR_TIERS, MAX_SWAPPINESS - swappiness, &pv); 4598 4599 return positive_ctrl_err(&sp, &pv); 4600 } 4601 4602 static int isolate_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness, 4603 int *type_scanned, struct list_head *list) 4604 { 4605 int i; 4606 int type = get_type_to_scan(lruvec, swappiness); 4607 4608 for_each_evictable_type(i, swappiness) { 4609 int scanned; 4610 int tier = get_tier_idx(lruvec, type); 4611 4612 *type_scanned = type; 4613 4614 scanned = scan_folios(lruvec, sc, type, tier, list); 4615 if (scanned) 4616 return scanned; 4617 4618 type = !type; 4619 } 4620 4621 return 0; 4622 } 4623 4624 static int evict_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness) 4625 { 4626 int type; 4627 int scanned; 4628 int reclaimed; 4629 LIST_HEAD(list); 4630 LIST_HEAD(clean); 4631 struct folio *folio; 4632 struct folio *next; 4633 enum vm_event_item item; 4634 struct reclaim_stat stat; 4635 struct lru_gen_mm_walk *walk; 4636 bool skip_retry = false; 4637 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4638 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4639 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 4640 4641 spin_lock_irq(&lruvec->lru_lock); 4642 4643 scanned = isolate_folios(lruvec, sc, swappiness, &type, &list); 4644 4645 scanned += try_to_inc_min_seq(lruvec, swappiness); 4646 4647 if (evictable_min_seq(lrugen->min_seq, swappiness) + MIN_NR_GENS > lrugen->max_seq) 4648 scanned = 0; 4649 4650 spin_unlock_irq(&lruvec->lru_lock); 4651 4652 if (list_empty(&list)) 4653 return scanned; 4654 retry: 4655 reclaimed = shrink_folio_list(&list, pgdat, sc, &stat, false); 4656 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty; 4657 sc->nr_reclaimed += reclaimed; 4658 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 4659 scanned, reclaimed, &stat, sc->priority, 4660 type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON); 4661 4662 list_for_each_entry_safe_reverse(folio, next, &list, lru) { 4663 DEFINE_MIN_SEQ(lruvec); 4664 4665 if (!folio_evictable(folio)) { 4666 list_del(&folio->lru); 4667 folio_putback_lru(folio); 4668 continue; 4669 } 4670 4671 /* retry folios that may have missed folio_rotate_reclaimable() */ 4672 if (!skip_retry && !folio_test_active(folio) && !folio_mapped(folio) && 4673 !folio_test_dirty(folio) && !folio_test_writeback(folio)) { 4674 list_move(&folio->lru, &clean); 4675 continue; 4676 } 4677 4678 /* don't add rejected folios to the oldest generation */ 4679 if (lru_gen_folio_seq(lruvec, folio, false) == min_seq[type]) 4680 set_mask_bits(&folio->flags, LRU_REFS_FLAGS, BIT(PG_active)); 4681 } 4682 4683 spin_lock_irq(&lruvec->lru_lock); 4684 4685 move_folios_to_lru(lruvec, &list); 4686 4687 walk = current->reclaim_state->mm_walk; 4688 if (walk && walk->batched) { 4689 walk->lruvec = lruvec; 4690 reset_batch_size(walk); 4691 } 4692 4693 __mod_lruvec_state(lruvec, PGDEMOTE_KSWAPD + reclaimer_offset(), 4694 stat.nr_demoted); 4695 4696 item = PGSTEAL_KSWAPD + reclaimer_offset(); 4697 if (!cgroup_reclaim(sc)) 4698 __count_vm_events(item, reclaimed); 4699 __count_memcg_events(memcg, item, reclaimed); 4700 __count_vm_events(PGSTEAL_ANON + type, reclaimed); 4701 4702 spin_unlock_irq(&lruvec->lru_lock); 4703 4704 list_splice_init(&clean, &list); 4705 4706 if (!list_empty(&list)) { 4707 skip_retry = true; 4708 goto retry; 4709 } 4710 4711 return scanned; 4712 } 4713 4714 static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq, 4715 int swappiness, unsigned long *nr_to_scan) 4716 { 4717 int gen, type, zone; 4718 unsigned long size = 0; 4719 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4720 DEFINE_MIN_SEQ(lruvec); 4721 4722 *nr_to_scan = 0; 4723 /* have to run aging, since eviction is not possible anymore */ 4724 if (evictable_min_seq(min_seq, swappiness) + MIN_NR_GENS > max_seq) 4725 return true; 4726 4727 for_each_evictable_type(type, swappiness) { 4728 unsigned long seq; 4729 4730 for (seq = min_seq[type]; seq <= max_seq; seq++) { 4731 gen = lru_gen_from_seq(seq); 4732 4733 for (zone = 0; zone < MAX_NR_ZONES; zone++) 4734 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L); 4735 } 4736 } 4737 4738 *nr_to_scan = size; 4739 /* better to run aging even though eviction is still possible */ 4740 return evictable_min_seq(min_seq, swappiness) + MIN_NR_GENS == max_seq; 4741 } 4742 4743 /* 4744 * For future optimizations: 4745 * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg 4746 * reclaim. 4747 */ 4748 static long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc, int swappiness) 4749 { 4750 bool success; 4751 unsigned long nr_to_scan; 4752 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4753 DEFINE_MAX_SEQ(lruvec); 4754 4755 if (mem_cgroup_below_min(sc->target_mem_cgroup, memcg)) 4756 return -1; 4757 4758 success = should_run_aging(lruvec, max_seq, swappiness, &nr_to_scan); 4759 4760 /* try to scrape all its memory if this memcg was deleted */ 4761 if (nr_to_scan && !mem_cgroup_online(memcg)) 4762 return nr_to_scan; 4763 4764 /* try to get away with not aging at the default priority */ 4765 if (!success || sc->priority == DEF_PRIORITY) 4766 return nr_to_scan >> sc->priority; 4767 4768 /* stop scanning this lruvec as it's low on cold folios */ 4769 return try_to_inc_max_seq(lruvec, max_seq, swappiness, false) ? -1 : 0; 4770 } 4771 4772 static bool should_abort_scan(struct lruvec *lruvec, struct scan_control *sc) 4773 { 4774 int i; 4775 enum zone_watermarks mark; 4776 4777 /* don't abort memcg reclaim to ensure fairness */ 4778 if (!root_reclaim(sc)) 4779 return false; 4780 4781 if (sc->nr_reclaimed >= max(sc->nr_to_reclaim, compact_gap(sc->order))) 4782 return true; 4783 4784 /* check the order to exclude compaction-induced reclaim */ 4785 if (!current_is_kswapd() || sc->order) 4786 return false; 4787 4788 mark = sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ? 4789 WMARK_PROMO : WMARK_HIGH; 4790 4791 for (i = 0; i <= sc->reclaim_idx; i++) { 4792 struct zone *zone = lruvec_pgdat(lruvec)->node_zones + i; 4793 unsigned long size = wmark_pages(zone, mark) + MIN_LRU_BATCH; 4794 4795 if (managed_zone(zone) && !zone_watermark_ok(zone, 0, size, sc->reclaim_idx, 0)) 4796 return false; 4797 } 4798 4799 /* kswapd should abort if all eligible zones are safe */ 4800 return true; 4801 } 4802 4803 static bool try_to_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 4804 { 4805 long nr_to_scan; 4806 unsigned long scanned = 0; 4807 int swappiness = get_swappiness(lruvec, sc); 4808 4809 while (true) { 4810 int delta; 4811 4812 nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness); 4813 if (nr_to_scan <= 0) 4814 break; 4815 4816 delta = evict_folios(lruvec, sc, swappiness); 4817 if (!delta) 4818 break; 4819 4820 scanned += delta; 4821 if (scanned >= nr_to_scan) 4822 break; 4823 4824 if (should_abort_scan(lruvec, sc)) 4825 break; 4826 4827 cond_resched(); 4828 } 4829 4830 /* 4831 * If too many file cache in the coldest generation can't be evicted 4832 * due to being dirty, wake up the flusher. 4833 */ 4834 if (sc->nr.unqueued_dirty && sc->nr.unqueued_dirty == sc->nr.file_taken) 4835 wakeup_flusher_threads(WB_REASON_VMSCAN); 4836 4837 /* whether this lruvec should be rotated */ 4838 return nr_to_scan < 0; 4839 } 4840 4841 static int shrink_one(struct lruvec *lruvec, struct scan_control *sc) 4842 { 4843 bool success; 4844 unsigned long scanned = sc->nr_scanned; 4845 unsigned long reclaimed = sc->nr_reclaimed; 4846 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4847 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 4848 4849 /* lru_gen_age_node() called mem_cgroup_calculate_protection() */ 4850 if (mem_cgroup_below_min(NULL, memcg)) 4851 return MEMCG_LRU_YOUNG; 4852 4853 if (mem_cgroup_below_low(NULL, memcg)) { 4854 /* see the comment on MEMCG_NR_GENS */ 4855 if (READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_TAIL) 4856 return MEMCG_LRU_TAIL; 4857 4858 memcg_memory_event(memcg, MEMCG_LOW); 4859 } 4860 4861 success = try_to_shrink_lruvec(lruvec, sc); 4862 4863 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, sc->priority); 4864 4865 if (!sc->proactive) 4866 vmpressure(sc->gfp_mask, memcg, false, sc->nr_scanned - scanned, 4867 sc->nr_reclaimed - reclaimed); 4868 4869 flush_reclaim_state(sc); 4870 4871 if (success && mem_cgroup_online(memcg)) 4872 return MEMCG_LRU_YOUNG; 4873 4874 if (!success && lruvec_is_sizable(lruvec, sc)) 4875 return 0; 4876 4877 /* one retry if offlined or too small */ 4878 return READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_TAIL ? 4879 MEMCG_LRU_TAIL : MEMCG_LRU_YOUNG; 4880 } 4881 4882 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc) 4883 { 4884 int op; 4885 int gen; 4886 int bin; 4887 int first_bin; 4888 struct lruvec *lruvec; 4889 struct lru_gen_folio *lrugen; 4890 struct mem_cgroup *memcg; 4891 struct hlist_nulls_node *pos; 4892 4893 gen = get_memcg_gen(READ_ONCE(pgdat->memcg_lru.seq)); 4894 bin = first_bin = get_random_u32_below(MEMCG_NR_BINS); 4895 restart: 4896 op = 0; 4897 memcg = NULL; 4898 4899 rcu_read_lock(); 4900 4901 hlist_nulls_for_each_entry_rcu(lrugen, pos, &pgdat->memcg_lru.fifo[gen][bin], list) { 4902 if (op) { 4903 lru_gen_rotate_memcg(lruvec, op); 4904 op = 0; 4905 } 4906 4907 mem_cgroup_put(memcg); 4908 memcg = NULL; 4909 4910 if (gen != READ_ONCE(lrugen->gen)) 4911 continue; 4912 4913 lruvec = container_of(lrugen, struct lruvec, lrugen); 4914 memcg = lruvec_memcg(lruvec); 4915 4916 if (!mem_cgroup_tryget(memcg)) { 4917 lru_gen_release_memcg(memcg); 4918 memcg = NULL; 4919 continue; 4920 } 4921 4922 rcu_read_unlock(); 4923 4924 op = shrink_one(lruvec, sc); 4925 4926 rcu_read_lock(); 4927 4928 if (should_abort_scan(lruvec, sc)) 4929 break; 4930 } 4931 4932 rcu_read_unlock(); 4933 4934 if (op) 4935 lru_gen_rotate_memcg(lruvec, op); 4936 4937 mem_cgroup_put(memcg); 4938 4939 if (!is_a_nulls(pos)) 4940 return; 4941 4942 /* restart if raced with lru_gen_rotate_memcg() */ 4943 if (gen != get_nulls_value(pos)) 4944 goto restart; 4945 4946 /* try the rest of the bins of the current generation */ 4947 bin = get_memcg_bin(bin + 1); 4948 if (bin != first_bin) 4949 goto restart; 4950 } 4951 4952 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 4953 { 4954 struct blk_plug plug; 4955 4956 VM_WARN_ON_ONCE(root_reclaim(sc)); 4957 VM_WARN_ON_ONCE(!sc->may_writepage || !sc->may_unmap); 4958 4959 lru_add_drain(); 4960 4961 blk_start_plug(&plug); 4962 4963 set_mm_walk(NULL, sc->proactive); 4964 4965 if (try_to_shrink_lruvec(lruvec, sc)) 4966 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_YOUNG); 4967 4968 clear_mm_walk(); 4969 4970 blk_finish_plug(&plug); 4971 } 4972 4973 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc) 4974 { 4975 struct blk_plug plug; 4976 unsigned long reclaimed = sc->nr_reclaimed; 4977 4978 VM_WARN_ON_ONCE(!root_reclaim(sc)); 4979 4980 /* 4981 * Unmapped clean folios are already prioritized. Scanning for more of 4982 * them is likely futile and can cause high reclaim latency when there 4983 * is a large number of memcgs. 4984 */ 4985 if (!sc->may_writepage || !sc->may_unmap) 4986 goto done; 4987 4988 lru_add_drain(); 4989 4990 blk_start_plug(&plug); 4991 4992 set_mm_walk(pgdat, sc->proactive); 4993 4994 set_initial_priority(pgdat, sc); 4995 4996 if (current_is_kswapd()) 4997 sc->nr_reclaimed = 0; 4998 4999 if (mem_cgroup_disabled()) 5000 shrink_one(&pgdat->__lruvec, sc); 5001 else 5002 shrink_many(pgdat, sc); 5003 5004 if (current_is_kswapd()) 5005 sc->nr_reclaimed += reclaimed; 5006 5007 clear_mm_walk(); 5008 5009 blk_finish_plug(&plug); 5010 done: 5011 if (sc->nr_reclaimed > reclaimed) 5012 pgdat->kswapd_failures = 0; 5013 } 5014 5015 /****************************************************************************** 5016 * state change 5017 ******************************************************************************/ 5018 5019 static bool __maybe_unused state_is_valid(struct lruvec *lruvec) 5020 { 5021 struct lru_gen_folio *lrugen = &lruvec->lrugen; 5022 5023 if (lrugen->enabled) { 5024 enum lru_list lru; 5025 5026 for_each_evictable_lru(lru) { 5027 if (!list_empty(&lruvec->lists[lru])) 5028 return false; 5029 } 5030 } else { 5031 int gen, type, zone; 5032 5033 for_each_gen_type_zone(gen, type, zone) { 5034 if (!list_empty(&lrugen->folios[gen][type][zone])) 5035 return false; 5036 } 5037 } 5038 5039 return true; 5040 } 5041 5042 static bool fill_evictable(struct lruvec *lruvec) 5043 { 5044 enum lru_list lru; 5045 int remaining = MAX_LRU_BATCH; 5046 5047 for_each_evictable_lru(lru) { 5048 int type = is_file_lru(lru); 5049 bool active = is_active_lru(lru); 5050 struct list_head *head = &lruvec->lists[lru]; 5051 5052 while (!list_empty(head)) { 5053 bool success; 5054 struct folio *folio = lru_to_folio(head); 5055 5056 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 5057 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio) != active, folio); 5058 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 5059 VM_WARN_ON_ONCE_FOLIO(folio_lru_gen(folio) != -1, folio); 5060 5061 lruvec_del_folio(lruvec, folio); 5062 success = lru_gen_add_folio(lruvec, folio, false); 5063 VM_WARN_ON_ONCE(!success); 5064 5065 if (!--remaining) 5066 return false; 5067 } 5068 } 5069 5070 return true; 5071 } 5072 5073 static bool drain_evictable(struct lruvec *lruvec) 5074 { 5075 int gen, type, zone; 5076 int remaining = MAX_LRU_BATCH; 5077 5078 for_each_gen_type_zone(gen, type, zone) { 5079 struct list_head *head = &lruvec->lrugen.folios[gen][type][zone]; 5080 5081 while (!list_empty(head)) { 5082 bool success; 5083 struct folio *folio = lru_to_folio(head); 5084 5085 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 5086 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio); 5087 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 5088 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio); 5089 5090 success = lru_gen_del_folio(lruvec, folio, false); 5091 VM_WARN_ON_ONCE(!success); 5092 lruvec_add_folio(lruvec, folio); 5093 5094 if (!--remaining) 5095 return false; 5096 } 5097 } 5098 5099 return true; 5100 } 5101 5102 static void lru_gen_change_state(bool enabled) 5103 { 5104 static DEFINE_MUTEX(state_mutex); 5105 5106 struct mem_cgroup *memcg; 5107 5108 cgroup_lock(); 5109 cpus_read_lock(); 5110 get_online_mems(); 5111 mutex_lock(&state_mutex); 5112 5113 if (enabled == lru_gen_enabled()) 5114 goto unlock; 5115 5116 if (enabled) 5117 static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]); 5118 else 5119 static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]); 5120 5121 memcg = mem_cgroup_iter(NULL, NULL, NULL); 5122 do { 5123 int nid; 5124 5125 for_each_node(nid) { 5126 struct lruvec *lruvec = get_lruvec(memcg, nid); 5127 5128 spin_lock_irq(&lruvec->lru_lock); 5129 5130 VM_WARN_ON_ONCE(!seq_is_valid(lruvec)); 5131 VM_WARN_ON_ONCE(!state_is_valid(lruvec)); 5132 5133 lruvec->lrugen.enabled = enabled; 5134 5135 while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) { 5136 spin_unlock_irq(&lruvec->lru_lock); 5137 cond_resched(); 5138 spin_lock_irq(&lruvec->lru_lock); 5139 } 5140 5141 spin_unlock_irq(&lruvec->lru_lock); 5142 } 5143 5144 cond_resched(); 5145 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL))); 5146 unlock: 5147 mutex_unlock(&state_mutex); 5148 put_online_mems(); 5149 cpus_read_unlock(); 5150 cgroup_unlock(); 5151 } 5152 5153 /****************************************************************************** 5154 * sysfs interface 5155 ******************************************************************************/ 5156 5157 static ssize_t min_ttl_ms_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) 5158 { 5159 return sysfs_emit(buf, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl))); 5160 } 5161 5162 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5163 static ssize_t min_ttl_ms_store(struct kobject *kobj, struct kobj_attribute *attr, 5164 const char *buf, size_t len) 5165 { 5166 unsigned int msecs; 5167 5168 if (kstrtouint(buf, 0, &msecs)) 5169 return -EINVAL; 5170 5171 WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs)); 5172 5173 return len; 5174 } 5175 5176 static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR_RW(min_ttl_ms); 5177 5178 static ssize_t enabled_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) 5179 { 5180 unsigned int caps = 0; 5181 5182 if (get_cap(LRU_GEN_CORE)) 5183 caps |= BIT(LRU_GEN_CORE); 5184 5185 if (should_walk_mmu()) 5186 caps |= BIT(LRU_GEN_MM_WALK); 5187 5188 if (should_clear_pmd_young()) 5189 caps |= BIT(LRU_GEN_NONLEAF_YOUNG); 5190 5191 return sysfs_emit(buf, "0x%04x\n", caps); 5192 } 5193 5194 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5195 static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr, 5196 const char *buf, size_t len) 5197 { 5198 int i; 5199 unsigned int caps; 5200 5201 if (tolower(*buf) == 'n') 5202 caps = 0; 5203 else if (tolower(*buf) == 'y') 5204 caps = -1; 5205 else if (kstrtouint(buf, 0, &caps)) 5206 return -EINVAL; 5207 5208 for (i = 0; i < NR_LRU_GEN_CAPS; i++) { 5209 bool enabled = caps & BIT(i); 5210 5211 if (i == LRU_GEN_CORE) 5212 lru_gen_change_state(enabled); 5213 else if (enabled) 5214 static_branch_enable(&lru_gen_caps[i]); 5215 else 5216 static_branch_disable(&lru_gen_caps[i]); 5217 } 5218 5219 return len; 5220 } 5221 5222 static struct kobj_attribute lru_gen_enabled_attr = __ATTR_RW(enabled); 5223 5224 static struct attribute *lru_gen_attrs[] = { 5225 &lru_gen_min_ttl_attr.attr, 5226 &lru_gen_enabled_attr.attr, 5227 NULL 5228 }; 5229 5230 static const struct attribute_group lru_gen_attr_group = { 5231 .name = "lru_gen", 5232 .attrs = lru_gen_attrs, 5233 }; 5234 5235 /****************************************************************************** 5236 * debugfs interface 5237 ******************************************************************************/ 5238 5239 static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos) 5240 { 5241 struct mem_cgroup *memcg; 5242 loff_t nr_to_skip = *pos; 5243 5244 m->private = kvmalloc(PATH_MAX, GFP_KERNEL); 5245 if (!m->private) 5246 return ERR_PTR(-ENOMEM); 5247 5248 memcg = mem_cgroup_iter(NULL, NULL, NULL); 5249 do { 5250 int nid; 5251 5252 for_each_node_state(nid, N_MEMORY) { 5253 if (!nr_to_skip--) 5254 return get_lruvec(memcg, nid); 5255 } 5256 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL))); 5257 5258 return NULL; 5259 } 5260 5261 static void lru_gen_seq_stop(struct seq_file *m, void *v) 5262 { 5263 if (!IS_ERR_OR_NULL(v)) 5264 mem_cgroup_iter_break(NULL, lruvec_memcg(v)); 5265 5266 kvfree(m->private); 5267 m->private = NULL; 5268 } 5269 5270 static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos) 5271 { 5272 int nid = lruvec_pgdat(v)->node_id; 5273 struct mem_cgroup *memcg = lruvec_memcg(v); 5274 5275 ++*pos; 5276 5277 nid = next_memory_node(nid); 5278 if (nid == MAX_NUMNODES) { 5279 memcg = mem_cgroup_iter(NULL, memcg, NULL); 5280 if (!memcg) 5281 return NULL; 5282 5283 nid = first_memory_node; 5284 } 5285 5286 return get_lruvec(memcg, nid); 5287 } 5288 5289 static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec, 5290 unsigned long max_seq, unsigned long *min_seq, 5291 unsigned long seq) 5292 { 5293 int i; 5294 int type, tier; 5295 int hist = lru_hist_from_seq(seq); 5296 struct lru_gen_folio *lrugen = &lruvec->lrugen; 5297 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 5298 5299 for (tier = 0; tier < MAX_NR_TIERS; tier++) { 5300 seq_printf(m, " %10d", tier); 5301 for (type = 0; type < ANON_AND_FILE; type++) { 5302 const char *s = "xxx"; 5303 unsigned long n[3] = {}; 5304 5305 if (seq == max_seq) { 5306 s = "RTx"; 5307 n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]); 5308 n[1] = READ_ONCE(lrugen->avg_total[type][tier]); 5309 } else if (seq == min_seq[type] || NR_HIST_GENS > 1) { 5310 s = "rep"; 5311 n[0] = atomic_long_read(&lrugen->refaulted[hist][type][tier]); 5312 n[1] = atomic_long_read(&lrugen->evicted[hist][type][tier]); 5313 n[2] = READ_ONCE(lrugen->protected[hist][type][tier]); 5314 } 5315 5316 for (i = 0; i < 3; i++) 5317 seq_printf(m, " %10lu%c", n[i], s[i]); 5318 } 5319 seq_putc(m, '\n'); 5320 } 5321 5322 if (!mm_state) 5323 return; 5324 5325 seq_puts(m, " "); 5326 for (i = 0; i < NR_MM_STATS; i++) { 5327 const char *s = "xxxx"; 5328 unsigned long n = 0; 5329 5330 if (seq == max_seq && NR_HIST_GENS == 1) { 5331 s = "TYFA"; 5332 n = READ_ONCE(mm_state->stats[hist][i]); 5333 } else if (seq != max_seq && NR_HIST_GENS > 1) { 5334 s = "tyfa"; 5335 n = READ_ONCE(mm_state->stats[hist][i]); 5336 } 5337 5338 seq_printf(m, " %10lu%c", n, s[i]); 5339 } 5340 seq_putc(m, '\n'); 5341 } 5342 5343 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5344 static int lru_gen_seq_show(struct seq_file *m, void *v) 5345 { 5346 unsigned long seq; 5347 bool full = !debugfs_real_fops(m->file)->write; 5348 struct lruvec *lruvec = v; 5349 struct lru_gen_folio *lrugen = &lruvec->lrugen; 5350 int nid = lruvec_pgdat(lruvec)->node_id; 5351 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 5352 DEFINE_MAX_SEQ(lruvec); 5353 DEFINE_MIN_SEQ(lruvec); 5354 5355 if (nid == first_memory_node) { 5356 const char *path = memcg ? m->private : ""; 5357 5358 #ifdef CONFIG_MEMCG 5359 if (memcg) 5360 cgroup_path(memcg->css.cgroup, m->private, PATH_MAX); 5361 #endif 5362 seq_printf(m, "memcg %5hu %s\n", mem_cgroup_id(memcg), path); 5363 } 5364 5365 seq_printf(m, " node %5d\n", nid); 5366 5367 if (!full) 5368 seq = evictable_min_seq(min_seq, MAX_SWAPPINESS / 2); 5369 else if (max_seq >= MAX_NR_GENS) 5370 seq = max_seq - MAX_NR_GENS + 1; 5371 else 5372 seq = 0; 5373 5374 for (; seq <= max_seq; seq++) { 5375 int type, zone; 5376 int gen = lru_gen_from_seq(seq); 5377 unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]); 5378 5379 seq_printf(m, " %10lu %10u", seq, jiffies_to_msecs(jiffies - birth)); 5380 5381 for (type = 0; type < ANON_AND_FILE; type++) { 5382 unsigned long size = 0; 5383 char mark = full && seq < min_seq[type] ? 'x' : ' '; 5384 5385 for (zone = 0; zone < MAX_NR_ZONES; zone++) 5386 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L); 5387 5388 seq_printf(m, " %10lu%c", size, mark); 5389 } 5390 5391 seq_putc(m, '\n'); 5392 5393 if (full) 5394 lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq); 5395 } 5396 5397 return 0; 5398 } 5399 5400 static const struct seq_operations lru_gen_seq_ops = { 5401 .start = lru_gen_seq_start, 5402 .stop = lru_gen_seq_stop, 5403 .next = lru_gen_seq_next, 5404 .show = lru_gen_seq_show, 5405 }; 5406 5407 static int run_aging(struct lruvec *lruvec, unsigned long seq, 5408 int swappiness, bool force_scan) 5409 { 5410 DEFINE_MAX_SEQ(lruvec); 5411 5412 if (seq > max_seq) 5413 return -EINVAL; 5414 5415 return try_to_inc_max_seq(lruvec, max_seq, swappiness, force_scan) ? 0 : -EEXIST; 5416 } 5417 5418 static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc, 5419 int swappiness, unsigned long nr_to_reclaim) 5420 { 5421 DEFINE_MAX_SEQ(lruvec); 5422 5423 if (seq + MIN_NR_GENS > max_seq) 5424 return -EINVAL; 5425 5426 sc->nr_reclaimed = 0; 5427 5428 while (!signal_pending(current)) { 5429 DEFINE_MIN_SEQ(lruvec); 5430 5431 if (seq < evictable_min_seq(min_seq, swappiness)) 5432 return 0; 5433 5434 if (sc->nr_reclaimed >= nr_to_reclaim) 5435 return 0; 5436 5437 if (!evict_folios(lruvec, sc, swappiness)) 5438 return 0; 5439 5440 cond_resched(); 5441 } 5442 5443 return -EINTR; 5444 } 5445 5446 static int run_cmd(char cmd, int memcg_id, int nid, unsigned long seq, 5447 struct scan_control *sc, int swappiness, unsigned long opt) 5448 { 5449 struct lruvec *lruvec; 5450 int err = -EINVAL; 5451 struct mem_cgroup *memcg = NULL; 5452 5453 if (nid < 0 || nid >= MAX_NUMNODES || !node_state(nid, N_MEMORY)) 5454 return -EINVAL; 5455 5456 if (!mem_cgroup_disabled()) { 5457 rcu_read_lock(); 5458 5459 memcg = mem_cgroup_from_id(memcg_id); 5460 if (!mem_cgroup_tryget(memcg)) 5461 memcg = NULL; 5462 5463 rcu_read_unlock(); 5464 5465 if (!memcg) 5466 return -EINVAL; 5467 } 5468 5469 if (memcg_id != mem_cgroup_id(memcg)) 5470 goto done; 5471 5472 lruvec = get_lruvec(memcg, nid); 5473 5474 if (swappiness < MIN_SWAPPINESS) 5475 swappiness = get_swappiness(lruvec, sc); 5476 else if (swappiness > MAX_SWAPPINESS + 1) 5477 goto done; 5478 5479 switch (cmd) { 5480 case '+': 5481 err = run_aging(lruvec, seq, swappiness, opt); 5482 break; 5483 case '-': 5484 err = run_eviction(lruvec, seq, sc, swappiness, opt); 5485 break; 5486 } 5487 done: 5488 mem_cgroup_put(memcg); 5489 5490 return err; 5491 } 5492 5493 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5494 static ssize_t lru_gen_seq_write(struct file *file, const char __user *src, 5495 size_t len, loff_t *pos) 5496 { 5497 void *buf; 5498 char *cur, *next; 5499 unsigned int flags; 5500 struct blk_plug plug; 5501 int err = -EINVAL; 5502 struct scan_control sc = { 5503 .may_writepage = true, 5504 .may_unmap = true, 5505 .may_swap = true, 5506 .reclaim_idx = MAX_NR_ZONES - 1, 5507 .gfp_mask = GFP_KERNEL, 5508 }; 5509 5510 buf = kvmalloc(len + 1, GFP_KERNEL); 5511 if (!buf) 5512 return -ENOMEM; 5513 5514 if (copy_from_user(buf, src, len)) { 5515 kvfree(buf); 5516 return -EFAULT; 5517 } 5518 5519 set_task_reclaim_state(current, &sc.reclaim_state); 5520 flags = memalloc_noreclaim_save(); 5521 blk_start_plug(&plug); 5522 if (!set_mm_walk(NULL, true)) { 5523 err = -ENOMEM; 5524 goto done; 5525 } 5526 5527 next = buf; 5528 next[len] = '\0'; 5529 5530 while ((cur = strsep(&next, ",;\n"))) { 5531 int n; 5532 int end; 5533 char cmd; 5534 unsigned int memcg_id; 5535 unsigned int nid; 5536 unsigned long seq; 5537 unsigned int swappiness = -1; 5538 unsigned long opt = -1; 5539 5540 cur = skip_spaces(cur); 5541 if (!*cur) 5542 continue; 5543 5544 n = sscanf(cur, "%c %u %u %lu %n %u %n %lu %n", &cmd, &memcg_id, &nid, 5545 &seq, &end, &swappiness, &end, &opt, &end); 5546 if (n < 4 || cur[end]) { 5547 err = -EINVAL; 5548 break; 5549 } 5550 5551 err = run_cmd(cmd, memcg_id, nid, seq, &sc, swappiness, opt); 5552 if (err) 5553 break; 5554 } 5555 done: 5556 clear_mm_walk(); 5557 blk_finish_plug(&plug); 5558 memalloc_noreclaim_restore(flags); 5559 set_task_reclaim_state(current, NULL); 5560 5561 kvfree(buf); 5562 5563 return err ? : len; 5564 } 5565 5566 static int lru_gen_seq_open(struct inode *inode, struct file *file) 5567 { 5568 return seq_open(file, &lru_gen_seq_ops); 5569 } 5570 5571 static const struct file_operations lru_gen_rw_fops = { 5572 .open = lru_gen_seq_open, 5573 .read = seq_read, 5574 .write = lru_gen_seq_write, 5575 .llseek = seq_lseek, 5576 .release = seq_release, 5577 }; 5578 5579 static const struct file_operations lru_gen_ro_fops = { 5580 .open = lru_gen_seq_open, 5581 .read = seq_read, 5582 .llseek = seq_lseek, 5583 .release = seq_release, 5584 }; 5585 5586 /****************************************************************************** 5587 * initialization 5588 ******************************************************************************/ 5589 5590 void lru_gen_init_pgdat(struct pglist_data *pgdat) 5591 { 5592 int i, j; 5593 5594 spin_lock_init(&pgdat->memcg_lru.lock); 5595 5596 for (i = 0; i < MEMCG_NR_GENS; i++) { 5597 for (j = 0; j < MEMCG_NR_BINS; j++) 5598 INIT_HLIST_NULLS_HEAD(&pgdat->memcg_lru.fifo[i][j], i); 5599 } 5600 } 5601 5602 void lru_gen_init_lruvec(struct lruvec *lruvec) 5603 { 5604 int i; 5605 int gen, type, zone; 5606 struct lru_gen_folio *lrugen = &lruvec->lrugen; 5607 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 5608 5609 lrugen->max_seq = MIN_NR_GENS + 1; 5610 lrugen->enabled = lru_gen_enabled(); 5611 5612 for (i = 0; i <= MIN_NR_GENS + 1; i++) 5613 lrugen->timestamps[i] = jiffies; 5614 5615 for_each_gen_type_zone(gen, type, zone) 5616 INIT_LIST_HEAD(&lrugen->folios[gen][type][zone]); 5617 5618 if (mm_state) 5619 mm_state->seq = MIN_NR_GENS; 5620 } 5621 5622 #ifdef CONFIG_MEMCG 5623 5624 void lru_gen_init_memcg(struct mem_cgroup *memcg) 5625 { 5626 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 5627 5628 if (!mm_list) 5629 return; 5630 5631 INIT_LIST_HEAD(&mm_list->fifo); 5632 spin_lock_init(&mm_list->lock); 5633 } 5634 5635 void lru_gen_exit_memcg(struct mem_cgroup *memcg) 5636 { 5637 int i; 5638 int nid; 5639 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 5640 5641 VM_WARN_ON_ONCE(mm_list && !list_empty(&mm_list->fifo)); 5642 5643 for_each_node(nid) { 5644 struct lruvec *lruvec = get_lruvec(memcg, nid); 5645 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 5646 5647 VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0, 5648 sizeof(lruvec->lrugen.nr_pages))); 5649 5650 lruvec->lrugen.list.next = LIST_POISON1; 5651 5652 if (!mm_state) 5653 continue; 5654 5655 for (i = 0; i < NR_BLOOM_FILTERS; i++) { 5656 bitmap_free(mm_state->filters[i]); 5657 mm_state->filters[i] = NULL; 5658 } 5659 } 5660 } 5661 5662 #endif /* CONFIG_MEMCG */ 5663 5664 static int __init init_lru_gen(void) 5665 { 5666 BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS); 5667 BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS); 5668 5669 if (sysfs_create_group(mm_kobj, &lru_gen_attr_group)) 5670 pr_err("lru_gen: failed to create sysfs group\n"); 5671 5672 debugfs_create_file("lru_gen", 0644, NULL, NULL, &lru_gen_rw_fops); 5673 debugfs_create_file("lru_gen_full", 0444, NULL, NULL, &lru_gen_ro_fops); 5674 5675 return 0; 5676 }; 5677 late_initcall(init_lru_gen); 5678 5679 #else /* !CONFIG_LRU_GEN */ 5680 5681 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc) 5682 { 5683 BUILD_BUG(); 5684 } 5685 5686 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 5687 { 5688 BUILD_BUG(); 5689 } 5690 5691 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc) 5692 { 5693 BUILD_BUG(); 5694 } 5695 5696 #endif /* CONFIG_LRU_GEN */ 5697 5698 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 5699 { 5700 unsigned long nr[NR_LRU_LISTS]; 5701 unsigned long targets[NR_LRU_LISTS]; 5702 unsigned long nr_to_scan; 5703 enum lru_list lru; 5704 unsigned long nr_reclaimed = 0; 5705 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 5706 bool proportional_reclaim; 5707 struct blk_plug plug; 5708 5709 if (lru_gen_enabled() && !root_reclaim(sc)) { 5710 lru_gen_shrink_lruvec(lruvec, sc); 5711 return; 5712 } 5713 5714 get_scan_count(lruvec, sc, nr); 5715 5716 /* Record the original scan target for proportional adjustments later */ 5717 memcpy(targets, nr, sizeof(nr)); 5718 5719 /* 5720 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal 5721 * event that can occur when there is little memory pressure e.g. 5722 * multiple streaming readers/writers. Hence, we do not abort scanning 5723 * when the requested number of pages are reclaimed when scanning at 5724 * DEF_PRIORITY on the assumption that the fact we are direct 5725 * reclaiming implies that kswapd is not keeping up and it is best to 5726 * do a batch of work at once. For memcg reclaim one check is made to 5727 * abort proportional reclaim if either the file or anon lru has already 5728 * dropped to zero at the first pass. 5729 */ 5730 proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() && 5731 sc->priority == DEF_PRIORITY); 5732 5733 blk_start_plug(&plug); 5734 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 5735 nr[LRU_INACTIVE_FILE]) { 5736 unsigned long nr_anon, nr_file, percentage; 5737 unsigned long nr_scanned; 5738 5739 for_each_evictable_lru(lru) { 5740 if (nr[lru]) { 5741 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 5742 nr[lru] -= nr_to_scan; 5743 5744 nr_reclaimed += shrink_list(lru, nr_to_scan, 5745 lruvec, sc); 5746 } 5747 } 5748 5749 cond_resched(); 5750 5751 if (nr_reclaimed < nr_to_reclaim || proportional_reclaim) 5752 continue; 5753 5754 /* 5755 * For kswapd and memcg, reclaim at least the number of pages 5756 * requested. Ensure that the anon and file LRUs are scanned 5757 * proportionally what was requested by get_scan_count(). We 5758 * stop reclaiming one LRU and reduce the amount scanning 5759 * proportional to the original scan target. 5760 */ 5761 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 5762 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 5763 5764 /* 5765 * It's just vindictive to attack the larger once the smaller 5766 * has gone to zero. And given the way we stop scanning the 5767 * smaller below, this makes sure that we only make one nudge 5768 * towards proportionality once we've got nr_to_reclaim. 5769 */ 5770 if (!nr_file || !nr_anon) 5771 break; 5772 5773 if (nr_file > nr_anon) { 5774 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 5775 targets[LRU_ACTIVE_ANON] + 1; 5776 lru = LRU_BASE; 5777 percentage = nr_anon * 100 / scan_target; 5778 } else { 5779 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 5780 targets[LRU_ACTIVE_FILE] + 1; 5781 lru = LRU_FILE; 5782 percentage = nr_file * 100 / scan_target; 5783 } 5784 5785 /* Stop scanning the smaller of the LRU */ 5786 nr[lru] = 0; 5787 nr[lru + LRU_ACTIVE] = 0; 5788 5789 /* 5790 * Recalculate the other LRU scan count based on its original 5791 * scan target and the percentage scanning already complete 5792 */ 5793 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 5794 nr_scanned = targets[lru] - nr[lru]; 5795 nr[lru] = targets[lru] * (100 - percentage) / 100; 5796 nr[lru] -= min(nr[lru], nr_scanned); 5797 5798 lru += LRU_ACTIVE; 5799 nr_scanned = targets[lru] - nr[lru]; 5800 nr[lru] = targets[lru] * (100 - percentage) / 100; 5801 nr[lru] -= min(nr[lru], nr_scanned); 5802 } 5803 blk_finish_plug(&plug); 5804 sc->nr_reclaimed += nr_reclaimed; 5805 5806 /* 5807 * Even if we did not try to evict anon pages at all, we want to 5808 * rebalance the anon lru active/inactive ratio. 5809 */ 5810 if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) && 5811 inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 5812 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 5813 sc, LRU_ACTIVE_ANON); 5814 } 5815 5816 /* Use reclaim/compaction for costly allocs or under memory pressure */ 5817 static bool in_reclaim_compaction(struct scan_control *sc) 5818 { 5819 if (gfp_compaction_allowed(sc->gfp_mask) && sc->order && 5820 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 5821 sc->priority < DEF_PRIORITY - 2)) 5822 return true; 5823 5824 return false; 5825 } 5826 5827 /* 5828 * Reclaim/compaction is used for high-order allocation requests. It reclaims 5829 * order-0 pages before compacting the zone. should_continue_reclaim() returns 5830 * true if more pages should be reclaimed such that when the page allocator 5831 * calls try_to_compact_pages() that it will have enough free pages to succeed. 5832 * It will give up earlier than that if there is difficulty reclaiming pages. 5833 */ 5834 static inline bool should_continue_reclaim(struct pglist_data *pgdat, 5835 unsigned long nr_reclaimed, 5836 struct scan_control *sc) 5837 { 5838 unsigned long pages_for_compaction; 5839 unsigned long inactive_lru_pages; 5840 int z; 5841 5842 /* If not in reclaim/compaction mode, stop */ 5843 if (!in_reclaim_compaction(sc)) 5844 return false; 5845 5846 /* 5847 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX 5848 * number of pages that were scanned. This will return to the caller 5849 * with the risk reclaim/compaction and the resulting allocation attempt 5850 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL 5851 * allocations through requiring that the full LRU list has been scanned 5852 * first, by assuming that zero delta of sc->nr_scanned means full LRU 5853 * scan, but that approximation was wrong, and there were corner cases 5854 * where always a non-zero amount of pages were scanned. 5855 */ 5856 if (!nr_reclaimed) 5857 return false; 5858 5859 /* If compaction would go ahead or the allocation would succeed, stop */ 5860 for (z = 0; z <= sc->reclaim_idx; z++) { 5861 struct zone *zone = &pgdat->node_zones[z]; 5862 if (!managed_zone(zone)) 5863 continue; 5864 5865 /* Allocation can already succeed, nothing to do */ 5866 if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone), 5867 sc->reclaim_idx, 0)) 5868 return false; 5869 5870 if (compaction_suitable(zone, sc->order, sc->reclaim_idx)) 5871 return false; 5872 } 5873 5874 /* 5875 * If we have not reclaimed enough pages for compaction and the 5876 * inactive lists are large enough, continue reclaiming 5877 */ 5878 pages_for_compaction = compact_gap(sc->order); 5879 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE); 5880 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc)) 5881 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON); 5882 5883 return inactive_lru_pages > pages_for_compaction; 5884 } 5885 5886 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc) 5887 { 5888 struct mem_cgroup *target_memcg = sc->target_mem_cgroup; 5889 struct mem_cgroup_reclaim_cookie reclaim = { 5890 .pgdat = pgdat, 5891 }; 5892 struct mem_cgroup_reclaim_cookie *partial = &reclaim; 5893 struct mem_cgroup *memcg; 5894 5895 /* 5896 * In most cases, direct reclaimers can do partial walks 5897 * through the cgroup tree, using an iterator state that 5898 * persists across invocations. This strikes a balance between 5899 * fairness and allocation latency. 5900 * 5901 * For kswapd, reliable forward progress is more important 5902 * than a quick return to idle. Always do full walks. 5903 */ 5904 if (current_is_kswapd() || sc->memcg_full_walk) 5905 partial = NULL; 5906 5907 memcg = mem_cgroup_iter(target_memcg, NULL, partial); 5908 do { 5909 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 5910 unsigned long reclaimed; 5911 unsigned long scanned; 5912 5913 /* 5914 * This loop can become CPU-bound when target memcgs 5915 * aren't eligible for reclaim - either because they 5916 * don't have any reclaimable pages, or because their 5917 * memory is explicitly protected. Avoid soft lockups. 5918 */ 5919 cond_resched(); 5920 5921 mem_cgroup_calculate_protection(target_memcg, memcg); 5922 5923 if (mem_cgroup_below_min(target_memcg, memcg)) { 5924 /* 5925 * Hard protection. 5926 * If there is no reclaimable memory, OOM. 5927 */ 5928 continue; 5929 } else if (mem_cgroup_below_low(target_memcg, memcg)) { 5930 /* 5931 * Soft protection. 5932 * Respect the protection only as long as 5933 * there is an unprotected supply 5934 * of reclaimable memory from other cgroups. 5935 */ 5936 if (!sc->memcg_low_reclaim) { 5937 sc->memcg_low_skipped = 1; 5938 continue; 5939 } 5940 memcg_memory_event(memcg, MEMCG_LOW); 5941 } 5942 5943 reclaimed = sc->nr_reclaimed; 5944 scanned = sc->nr_scanned; 5945 5946 shrink_lruvec(lruvec, sc); 5947 5948 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, 5949 sc->priority); 5950 5951 /* Record the group's reclaim efficiency */ 5952 if (!sc->proactive) 5953 vmpressure(sc->gfp_mask, memcg, false, 5954 sc->nr_scanned - scanned, 5955 sc->nr_reclaimed - reclaimed); 5956 5957 /* If partial walks are allowed, bail once goal is reached */ 5958 if (partial && sc->nr_reclaimed >= sc->nr_to_reclaim) { 5959 mem_cgroup_iter_break(target_memcg, memcg); 5960 break; 5961 } 5962 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, partial))); 5963 } 5964 5965 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc) 5966 { 5967 unsigned long nr_reclaimed, nr_scanned, nr_node_reclaimed; 5968 struct lruvec *target_lruvec; 5969 bool reclaimable = false; 5970 5971 if (lru_gen_enabled() && root_reclaim(sc)) { 5972 memset(&sc->nr, 0, sizeof(sc->nr)); 5973 lru_gen_shrink_node(pgdat, sc); 5974 return; 5975 } 5976 5977 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat); 5978 5979 again: 5980 memset(&sc->nr, 0, sizeof(sc->nr)); 5981 5982 nr_reclaimed = sc->nr_reclaimed; 5983 nr_scanned = sc->nr_scanned; 5984 5985 prepare_scan_control(pgdat, sc); 5986 5987 shrink_node_memcgs(pgdat, sc); 5988 5989 flush_reclaim_state(sc); 5990 5991 nr_node_reclaimed = sc->nr_reclaimed - nr_reclaimed; 5992 5993 /* Record the subtree's reclaim efficiency */ 5994 if (!sc->proactive) 5995 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, 5996 sc->nr_scanned - nr_scanned, nr_node_reclaimed); 5997 5998 if (nr_node_reclaimed) 5999 reclaimable = true; 6000 6001 if (current_is_kswapd()) { 6002 /* 6003 * If reclaim is isolating dirty pages under writeback, 6004 * it implies that the long-lived page allocation rate 6005 * is exceeding the page laundering rate. Either the 6006 * global limits are not being effective at throttling 6007 * processes due to the page distribution throughout 6008 * zones or there is heavy usage of a slow backing 6009 * device. The only option is to throttle from reclaim 6010 * context which is not ideal as there is no guarantee 6011 * the dirtying process is throttled in the same way 6012 * balance_dirty_pages() manages. 6013 * 6014 * Once a node is flagged PGDAT_WRITEBACK, kswapd will 6015 * count the number of pages under pages flagged for 6016 * immediate reclaim and stall if any are encountered 6017 * in the nr_immediate check below. 6018 */ 6019 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken) 6020 set_bit(PGDAT_WRITEBACK, &pgdat->flags); 6021 6022 /* Allow kswapd to start writing pages during reclaim.*/ 6023 if (sc->nr.unqueued_dirty && 6024 sc->nr.unqueued_dirty == sc->nr.file_taken) 6025 set_bit(PGDAT_DIRTY, &pgdat->flags); 6026 6027 /* 6028 * If kswapd scans pages marked for immediate 6029 * reclaim and under writeback (nr_immediate), it 6030 * implies that pages are cycling through the LRU 6031 * faster than they are written so forcibly stall 6032 * until some pages complete writeback. 6033 */ 6034 if (sc->nr.immediate) 6035 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK); 6036 } 6037 6038 /* 6039 * Tag a node/memcg as congested if all the dirty pages were marked 6040 * for writeback and immediate reclaim (counted in nr.congested). 6041 * 6042 * Legacy memcg will stall in page writeback so avoid forcibly 6043 * stalling in reclaim_throttle(). 6044 */ 6045 if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested) { 6046 if (cgroup_reclaim(sc) && writeback_throttling_sane(sc)) 6047 set_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags); 6048 6049 if (current_is_kswapd()) 6050 set_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags); 6051 } 6052 6053 /* 6054 * Stall direct reclaim for IO completions if the lruvec is 6055 * node is congested. Allow kswapd to continue until it 6056 * starts encountering unqueued dirty pages or cycling through 6057 * the LRU too quickly. 6058 */ 6059 if (!current_is_kswapd() && current_may_throttle() && 6060 !sc->hibernation_mode && 6061 (test_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags) || 6062 test_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags))) 6063 reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED); 6064 6065 if (should_continue_reclaim(pgdat, nr_node_reclaimed, sc)) 6066 goto again; 6067 6068 /* 6069 * Kswapd gives up on balancing particular nodes after too 6070 * many failures to reclaim anything from them and goes to 6071 * sleep. On reclaim progress, reset the failure counter. A 6072 * successful direct reclaim run will revive a dormant kswapd. 6073 */ 6074 if (reclaimable) 6075 pgdat->kswapd_failures = 0; 6076 else if (sc->cache_trim_mode) 6077 sc->cache_trim_mode_failed = 1; 6078 } 6079 6080 /* 6081 * Returns true if compaction should go ahead for a costly-order request, or 6082 * the allocation would already succeed without compaction. Return false if we 6083 * should reclaim first. 6084 */ 6085 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) 6086 { 6087 unsigned long watermark; 6088 6089 if (!gfp_compaction_allowed(sc->gfp_mask)) 6090 return false; 6091 6092 /* Allocation can already succeed, nothing to do */ 6093 if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone), 6094 sc->reclaim_idx, 0)) 6095 return true; 6096 6097 /* Compaction cannot yet proceed. Do reclaim. */ 6098 if (!compaction_suitable(zone, sc->order, sc->reclaim_idx)) 6099 return false; 6100 6101 /* 6102 * Compaction is already possible, but it takes time to run and there 6103 * are potentially other callers using the pages just freed. So proceed 6104 * with reclaim to make a buffer of free pages available to give 6105 * compaction a reasonable chance of completing and allocating the page. 6106 * Note that we won't actually reclaim the whole buffer in one attempt 6107 * as the target watermark in should_continue_reclaim() is lower. But if 6108 * we are already above the high+gap watermark, don't reclaim at all. 6109 */ 6110 watermark = high_wmark_pages(zone) + compact_gap(sc->order); 6111 6112 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx); 6113 } 6114 6115 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc) 6116 { 6117 /* 6118 * If reclaim is making progress greater than 12% efficiency then 6119 * wake all the NOPROGRESS throttled tasks. 6120 */ 6121 if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) { 6122 wait_queue_head_t *wqh; 6123 6124 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS]; 6125 if (waitqueue_active(wqh)) 6126 wake_up(wqh); 6127 6128 return; 6129 } 6130 6131 /* 6132 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will 6133 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages 6134 * under writeback and marked for immediate reclaim at the tail of the 6135 * LRU. 6136 */ 6137 if (current_is_kswapd() || cgroup_reclaim(sc)) 6138 return; 6139 6140 /* Throttle if making no progress at high prioities. */ 6141 if (sc->priority == 1 && !sc->nr_reclaimed) 6142 reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS); 6143 } 6144 6145 /* 6146 * This is the direct reclaim path, for page-allocating processes. We only 6147 * try to reclaim pages from zones which will satisfy the caller's allocation 6148 * request. 6149 * 6150 * If a zone is deemed to be full of pinned pages then just give it a light 6151 * scan then give up on it. 6152 */ 6153 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 6154 { 6155 struct zoneref *z; 6156 struct zone *zone; 6157 unsigned long nr_soft_reclaimed; 6158 unsigned long nr_soft_scanned; 6159 gfp_t orig_mask; 6160 pg_data_t *last_pgdat = NULL; 6161 pg_data_t *first_pgdat = NULL; 6162 6163 /* 6164 * If the number of buffer_heads in the machine exceeds the maximum 6165 * allowed level, force direct reclaim to scan the highmem zone as 6166 * highmem pages could be pinning lowmem pages storing buffer_heads 6167 */ 6168 orig_mask = sc->gfp_mask; 6169 if (buffer_heads_over_limit) { 6170 sc->gfp_mask |= __GFP_HIGHMEM; 6171 sc->reclaim_idx = gfp_zone(sc->gfp_mask); 6172 } 6173 6174 for_each_zone_zonelist_nodemask(zone, z, zonelist, 6175 sc->reclaim_idx, sc->nodemask) { 6176 /* 6177 * Take care memory controller reclaiming has small influence 6178 * to global LRU. 6179 */ 6180 if (!cgroup_reclaim(sc)) { 6181 if (!cpuset_zone_allowed(zone, 6182 GFP_KERNEL | __GFP_HARDWALL)) 6183 continue; 6184 6185 /* 6186 * If we already have plenty of memory free for 6187 * compaction in this zone, don't free any more. 6188 * Even though compaction is invoked for any 6189 * non-zero order, only frequent costly order 6190 * reclamation is disruptive enough to become a 6191 * noticeable problem, like transparent huge 6192 * page allocations. 6193 */ 6194 if (IS_ENABLED(CONFIG_COMPACTION) && 6195 sc->order > PAGE_ALLOC_COSTLY_ORDER && 6196 compaction_ready(zone, sc)) { 6197 sc->compaction_ready = true; 6198 continue; 6199 } 6200 6201 /* 6202 * Shrink each node in the zonelist once. If the 6203 * zonelist is ordered by zone (not the default) then a 6204 * node may be shrunk multiple times but in that case 6205 * the user prefers lower zones being preserved. 6206 */ 6207 if (zone->zone_pgdat == last_pgdat) 6208 continue; 6209 6210 /* 6211 * This steals pages from memory cgroups over softlimit 6212 * and returns the number of reclaimed pages and 6213 * scanned pages. This works for global memory pressure 6214 * and balancing, not for a memcg's limit. 6215 */ 6216 nr_soft_scanned = 0; 6217 nr_soft_reclaimed = memcg1_soft_limit_reclaim(zone->zone_pgdat, 6218 sc->order, sc->gfp_mask, 6219 &nr_soft_scanned); 6220 sc->nr_reclaimed += nr_soft_reclaimed; 6221 sc->nr_scanned += nr_soft_scanned; 6222 /* need some check for avoid more shrink_zone() */ 6223 } 6224 6225 if (!first_pgdat) 6226 first_pgdat = zone->zone_pgdat; 6227 6228 /* See comment about same check for global reclaim above */ 6229 if (zone->zone_pgdat == last_pgdat) 6230 continue; 6231 last_pgdat = zone->zone_pgdat; 6232 shrink_node(zone->zone_pgdat, sc); 6233 } 6234 6235 if (first_pgdat) 6236 consider_reclaim_throttle(first_pgdat, sc); 6237 6238 /* 6239 * Restore to original mask to avoid the impact on the caller if we 6240 * promoted it to __GFP_HIGHMEM. 6241 */ 6242 sc->gfp_mask = orig_mask; 6243 } 6244 6245 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat) 6246 { 6247 struct lruvec *target_lruvec; 6248 unsigned long refaults; 6249 6250 if (lru_gen_enabled()) 6251 return; 6252 6253 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat); 6254 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON); 6255 target_lruvec->refaults[WORKINGSET_ANON] = refaults; 6256 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE); 6257 target_lruvec->refaults[WORKINGSET_FILE] = refaults; 6258 } 6259 6260 /* 6261 * This is the main entry point to direct page reclaim. 6262 * 6263 * If a full scan of the inactive list fails to free enough memory then we 6264 * are "out of memory" and something needs to be killed. 6265 * 6266 * If the caller is !__GFP_FS then the probability of a failure is reasonably 6267 * high - the zone may be full of dirty or under-writeback pages, which this 6268 * caller can't do much about. We kick the writeback threads and take explicit 6269 * naps in the hope that some of these pages can be written. But if the 6270 * allocating task holds filesystem locks which prevent writeout this might not 6271 * work, and the allocation attempt will fail. 6272 * 6273 * returns: 0, if no pages reclaimed 6274 * else, the number of pages reclaimed 6275 */ 6276 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 6277 struct scan_control *sc) 6278 { 6279 int initial_priority = sc->priority; 6280 pg_data_t *last_pgdat; 6281 struct zoneref *z; 6282 struct zone *zone; 6283 retry: 6284 delayacct_freepages_start(); 6285 6286 if (!cgroup_reclaim(sc)) 6287 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1); 6288 6289 do { 6290 if (!sc->proactive) 6291 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 6292 sc->priority); 6293 sc->nr_scanned = 0; 6294 shrink_zones(zonelist, sc); 6295 6296 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 6297 break; 6298 6299 if (sc->compaction_ready) 6300 break; 6301 6302 /* 6303 * If we're getting trouble reclaiming, start doing 6304 * writepage even in laptop mode. 6305 */ 6306 if (sc->priority < DEF_PRIORITY - 2) 6307 sc->may_writepage = 1; 6308 } while (--sc->priority >= 0); 6309 6310 last_pgdat = NULL; 6311 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx, 6312 sc->nodemask) { 6313 if (zone->zone_pgdat == last_pgdat) 6314 continue; 6315 last_pgdat = zone->zone_pgdat; 6316 6317 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat); 6318 6319 if (cgroup_reclaim(sc)) { 6320 struct lruvec *lruvec; 6321 6322 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, 6323 zone->zone_pgdat); 6324 clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags); 6325 } 6326 } 6327 6328 delayacct_freepages_end(); 6329 6330 if (sc->nr_reclaimed) 6331 return sc->nr_reclaimed; 6332 6333 /* Aborted reclaim to try compaction? don't OOM, then */ 6334 if (sc->compaction_ready) 6335 return 1; 6336 6337 /* 6338 * In most cases, direct reclaimers can do partial walks 6339 * through the cgroup tree to meet the reclaim goal while 6340 * keeping latency low. Since the iterator state is shared 6341 * among all direct reclaim invocations (to retain fairness 6342 * among cgroups), though, high concurrency can result in 6343 * individual threads not seeing enough cgroups to make 6344 * meaningful forward progress. Avoid false OOMs in this case. 6345 */ 6346 if (!sc->memcg_full_walk) { 6347 sc->priority = initial_priority; 6348 sc->memcg_full_walk = 1; 6349 goto retry; 6350 } 6351 6352 /* 6353 * We make inactive:active ratio decisions based on the node's 6354 * composition of memory, but a restrictive reclaim_idx or a 6355 * memory.low cgroup setting can exempt large amounts of 6356 * memory from reclaim. Neither of which are very common, so 6357 * instead of doing costly eligibility calculations of the 6358 * entire cgroup subtree up front, we assume the estimates are 6359 * good, and retry with forcible deactivation if that fails. 6360 */ 6361 if (sc->skipped_deactivate) { 6362 sc->priority = initial_priority; 6363 sc->force_deactivate = 1; 6364 sc->skipped_deactivate = 0; 6365 goto retry; 6366 } 6367 6368 /* Untapped cgroup reserves? Don't OOM, retry. */ 6369 if (sc->memcg_low_skipped) { 6370 sc->priority = initial_priority; 6371 sc->force_deactivate = 0; 6372 sc->memcg_low_reclaim = 1; 6373 sc->memcg_low_skipped = 0; 6374 goto retry; 6375 } 6376 6377 return 0; 6378 } 6379 6380 static bool allow_direct_reclaim(pg_data_t *pgdat) 6381 { 6382 struct zone *zone; 6383 unsigned long pfmemalloc_reserve = 0; 6384 unsigned long free_pages = 0; 6385 int i; 6386 bool wmark_ok; 6387 6388 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 6389 return true; 6390 6391 for (i = 0; i <= ZONE_NORMAL; i++) { 6392 zone = &pgdat->node_zones[i]; 6393 if (!managed_zone(zone)) 6394 continue; 6395 6396 if (!zone_reclaimable_pages(zone)) 6397 continue; 6398 6399 pfmemalloc_reserve += min_wmark_pages(zone); 6400 free_pages += zone_page_state_snapshot(zone, NR_FREE_PAGES); 6401 } 6402 6403 /* If there are no reserves (unexpected config) then do not throttle */ 6404 if (!pfmemalloc_reserve) 6405 return true; 6406 6407 wmark_ok = free_pages > pfmemalloc_reserve / 2; 6408 6409 /* kswapd must be awake if processes are being throttled */ 6410 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 6411 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL) 6412 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL); 6413 6414 wake_up_interruptible(&pgdat->kswapd_wait); 6415 } 6416 6417 return wmark_ok; 6418 } 6419 6420 /* 6421 * Throttle direct reclaimers if backing storage is backed by the network 6422 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 6423 * depleted. kswapd will continue to make progress and wake the processes 6424 * when the low watermark is reached. 6425 * 6426 * Returns true if a fatal signal was delivered during throttling. If this 6427 * happens, the page allocator should not consider triggering the OOM killer. 6428 */ 6429 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 6430 nodemask_t *nodemask) 6431 { 6432 struct zoneref *z; 6433 struct zone *zone; 6434 pg_data_t *pgdat = NULL; 6435 6436 /* 6437 * Kernel threads should not be throttled as they may be indirectly 6438 * responsible for cleaning pages necessary for reclaim to make forward 6439 * progress. kjournald for example may enter direct reclaim while 6440 * committing a transaction where throttling it could forcing other 6441 * processes to block on log_wait_commit(). 6442 */ 6443 if (current->flags & PF_KTHREAD) 6444 goto out; 6445 6446 /* 6447 * If a fatal signal is pending, this process should not throttle. 6448 * It should return quickly so it can exit and free its memory 6449 */ 6450 if (fatal_signal_pending(current)) 6451 goto out; 6452 6453 /* 6454 * Check if the pfmemalloc reserves are ok by finding the first node 6455 * with a usable ZONE_NORMAL or lower zone. The expectation is that 6456 * GFP_KERNEL will be required for allocating network buffers when 6457 * swapping over the network so ZONE_HIGHMEM is unusable. 6458 * 6459 * Throttling is based on the first usable node and throttled processes 6460 * wait on a queue until kswapd makes progress and wakes them. There 6461 * is an affinity then between processes waking up and where reclaim 6462 * progress has been made assuming the process wakes on the same node. 6463 * More importantly, processes running on remote nodes will not compete 6464 * for remote pfmemalloc reserves and processes on different nodes 6465 * should make reasonable progress. 6466 */ 6467 for_each_zone_zonelist_nodemask(zone, z, zonelist, 6468 gfp_zone(gfp_mask), nodemask) { 6469 if (zone_idx(zone) > ZONE_NORMAL) 6470 continue; 6471 6472 /* Throttle based on the first usable node */ 6473 pgdat = zone->zone_pgdat; 6474 if (allow_direct_reclaim(pgdat)) 6475 goto out; 6476 break; 6477 } 6478 6479 /* If no zone was usable by the allocation flags then do not throttle */ 6480 if (!pgdat) 6481 goto out; 6482 6483 /* Account for the throttling */ 6484 count_vm_event(PGSCAN_DIRECT_THROTTLE); 6485 6486 /* 6487 * If the caller cannot enter the filesystem, it's possible that it 6488 * is due to the caller holding an FS lock or performing a journal 6489 * transaction in the case of a filesystem like ext[3|4]. In this case, 6490 * it is not safe to block on pfmemalloc_wait as kswapd could be 6491 * blocked waiting on the same lock. Instead, throttle for up to a 6492 * second before continuing. 6493 */ 6494 if (!(gfp_mask & __GFP_FS)) 6495 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 6496 allow_direct_reclaim(pgdat), HZ); 6497 else 6498 /* Throttle until kswapd wakes the process */ 6499 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 6500 allow_direct_reclaim(pgdat)); 6501 6502 if (fatal_signal_pending(current)) 6503 return true; 6504 6505 out: 6506 return false; 6507 } 6508 6509 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 6510 gfp_t gfp_mask, nodemask_t *nodemask) 6511 { 6512 unsigned long nr_reclaimed; 6513 struct scan_control sc = { 6514 .nr_to_reclaim = SWAP_CLUSTER_MAX, 6515 .gfp_mask = current_gfp_context(gfp_mask), 6516 .reclaim_idx = gfp_zone(gfp_mask), 6517 .order = order, 6518 .nodemask = nodemask, 6519 .priority = DEF_PRIORITY, 6520 .may_writepage = !laptop_mode, 6521 .may_unmap = 1, 6522 .may_swap = 1, 6523 }; 6524 6525 /* 6526 * scan_control uses s8 fields for order, priority, and reclaim_idx. 6527 * Confirm they are large enough for max values. 6528 */ 6529 BUILD_BUG_ON(MAX_PAGE_ORDER >= S8_MAX); 6530 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX); 6531 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX); 6532 6533 /* 6534 * Do not enter reclaim if fatal signal was delivered while throttled. 6535 * 1 is returned so that the page allocator does not OOM kill at this 6536 * point. 6537 */ 6538 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask)) 6539 return 1; 6540 6541 set_task_reclaim_state(current, &sc.reclaim_state); 6542 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask); 6543 6544 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 6545 6546 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 6547 set_task_reclaim_state(current, NULL); 6548 6549 return nr_reclaimed; 6550 } 6551 6552 #ifdef CONFIG_MEMCG 6553 6554 /* Only used by soft limit reclaim. Do not reuse for anything else. */ 6555 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg, 6556 gfp_t gfp_mask, bool noswap, 6557 pg_data_t *pgdat, 6558 unsigned long *nr_scanned) 6559 { 6560 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 6561 struct scan_control sc = { 6562 .nr_to_reclaim = SWAP_CLUSTER_MAX, 6563 .target_mem_cgroup = memcg, 6564 .may_writepage = !laptop_mode, 6565 .may_unmap = 1, 6566 .reclaim_idx = MAX_NR_ZONES - 1, 6567 .may_swap = !noswap, 6568 }; 6569 6570 WARN_ON_ONCE(!current->reclaim_state); 6571 6572 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 6573 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 6574 6575 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 6576 sc.gfp_mask); 6577 6578 /* 6579 * NOTE: Although we can get the priority field, using it 6580 * here is not a good idea, since it limits the pages we can scan. 6581 * if we don't reclaim here, the shrink_node from balance_pgdat 6582 * will pick up pages from other mem cgroup's as well. We hack 6583 * the priority and make it zero. 6584 */ 6585 shrink_lruvec(lruvec, &sc); 6586 6587 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 6588 6589 *nr_scanned = sc.nr_scanned; 6590 6591 return sc.nr_reclaimed; 6592 } 6593 6594 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 6595 unsigned long nr_pages, 6596 gfp_t gfp_mask, 6597 unsigned int reclaim_options, 6598 int *swappiness) 6599 { 6600 unsigned long nr_reclaimed; 6601 unsigned int noreclaim_flag; 6602 struct scan_control sc = { 6603 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 6604 .proactive_swappiness = swappiness, 6605 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) | 6606 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 6607 .reclaim_idx = MAX_NR_ZONES - 1, 6608 .target_mem_cgroup = memcg, 6609 .priority = DEF_PRIORITY, 6610 .may_writepage = !laptop_mode, 6611 .may_unmap = 1, 6612 .may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP), 6613 .proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE), 6614 }; 6615 /* 6616 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put 6617 * equal pressure on all the nodes. This is based on the assumption that 6618 * the reclaim does not bail out early. 6619 */ 6620 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 6621 6622 set_task_reclaim_state(current, &sc.reclaim_state); 6623 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask); 6624 noreclaim_flag = memalloc_noreclaim_save(); 6625 6626 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 6627 6628 memalloc_noreclaim_restore(noreclaim_flag); 6629 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 6630 set_task_reclaim_state(current, NULL); 6631 6632 return nr_reclaimed; 6633 } 6634 #endif 6635 6636 static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc) 6637 { 6638 struct mem_cgroup *memcg; 6639 struct lruvec *lruvec; 6640 6641 if (lru_gen_enabled()) { 6642 lru_gen_age_node(pgdat, sc); 6643 return; 6644 } 6645 6646 if (!can_age_anon_pages(pgdat, sc)) 6647 return; 6648 6649 lruvec = mem_cgroup_lruvec(NULL, pgdat); 6650 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 6651 return; 6652 6653 memcg = mem_cgroup_iter(NULL, NULL, NULL); 6654 do { 6655 lruvec = mem_cgroup_lruvec(memcg, pgdat); 6656 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 6657 sc, LRU_ACTIVE_ANON); 6658 memcg = mem_cgroup_iter(NULL, memcg, NULL); 6659 } while (memcg); 6660 } 6661 6662 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx) 6663 { 6664 int i; 6665 struct zone *zone; 6666 6667 /* 6668 * Check for watermark boosts top-down as the higher zones 6669 * are more likely to be boosted. Both watermarks and boosts 6670 * should not be checked at the same time as reclaim would 6671 * start prematurely when there is no boosting and a lower 6672 * zone is balanced. 6673 */ 6674 for (i = highest_zoneidx; i >= 0; i--) { 6675 zone = pgdat->node_zones + i; 6676 if (!managed_zone(zone)) 6677 continue; 6678 6679 if (zone->watermark_boost) 6680 return true; 6681 } 6682 6683 return false; 6684 } 6685 6686 /* 6687 * Returns true if there is an eligible zone balanced for the request order 6688 * and highest_zoneidx 6689 */ 6690 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx) 6691 { 6692 int i; 6693 unsigned long mark = -1; 6694 struct zone *zone; 6695 6696 /* 6697 * Check watermarks bottom-up as lower zones are more likely to 6698 * meet watermarks. 6699 */ 6700 for (i = 0; i <= highest_zoneidx; i++) { 6701 zone = pgdat->node_zones + i; 6702 6703 if (!managed_zone(zone)) 6704 continue; 6705 6706 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) 6707 mark = promo_wmark_pages(zone); 6708 else 6709 mark = high_wmark_pages(zone); 6710 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx)) 6711 return true; 6712 } 6713 6714 /* 6715 * If a node has no managed zone within highest_zoneidx, it does not 6716 * need balancing by definition. This can happen if a zone-restricted 6717 * allocation tries to wake a remote kswapd. 6718 */ 6719 if (mark == -1) 6720 return true; 6721 6722 return false; 6723 } 6724 6725 /* Clear pgdat state for congested, dirty or under writeback. */ 6726 static void clear_pgdat_congested(pg_data_t *pgdat) 6727 { 6728 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat); 6729 6730 clear_bit(LRUVEC_NODE_CONGESTED, &lruvec->flags); 6731 clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags); 6732 clear_bit(PGDAT_DIRTY, &pgdat->flags); 6733 clear_bit(PGDAT_WRITEBACK, &pgdat->flags); 6734 } 6735 6736 /* 6737 * Prepare kswapd for sleeping. This verifies that there are no processes 6738 * waiting in throttle_direct_reclaim() and that watermarks have been met. 6739 * 6740 * Returns true if kswapd is ready to sleep 6741 */ 6742 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, 6743 int highest_zoneidx) 6744 { 6745 /* 6746 * The throttled processes are normally woken up in balance_pgdat() as 6747 * soon as allow_direct_reclaim() is true. But there is a potential 6748 * race between when kswapd checks the watermarks and a process gets 6749 * throttled. There is also a potential race if processes get 6750 * throttled, kswapd wakes, a large process exits thereby balancing the 6751 * zones, which causes kswapd to exit balance_pgdat() before reaching 6752 * the wake up checks. If kswapd is going to sleep, no process should 6753 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If 6754 * the wake up is premature, processes will wake kswapd and get 6755 * throttled again. The difference from wake ups in balance_pgdat() is 6756 * that here we are under prepare_to_wait(). 6757 */ 6758 if (waitqueue_active(&pgdat->pfmemalloc_wait)) 6759 wake_up_all(&pgdat->pfmemalloc_wait); 6760 6761 /* Hopeless node, leave it to direct reclaim */ 6762 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 6763 return true; 6764 6765 if (pgdat_balanced(pgdat, order, highest_zoneidx)) { 6766 clear_pgdat_congested(pgdat); 6767 return true; 6768 } 6769 6770 return false; 6771 } 6772 6773 /* 6774 * kswapd shrinks a node of pages that are at or below the highest usable 6775 * zone that is currently unbalanced. 6776 * 6777 * Returns true if kswapd scanned at least the requested number of pages to 6778 * reclaim or if the lack of progress was due to pages under writeback. 6779 * This is used to determine if the scanning priority needs to be raised. 6780 */ 6781 static bool kswapd_shrink_node(pg_data_t *pgdat, 6782 struct scan_control *sc) 6783 { 6784 struct zone *zone; 6785 int z; 6786 unsigned long nr_reclaimed = sc->nr_reclaimed; 6787 6788 /* Reclaim a number of pages proportional to the number of zones */ 6789 sc->nr_to_reclaim = 0; 6790 for (z = 0; z <= sc->reclaim_idx; z++) { 6791 zone = pgdat->node_zones + z; 6792 if (!managed_zone(zone)) 6793 continue; 6794 6795 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX); 6796 } 6797 6798 /* 6799 * Historically care was taken to put equal pressure on all zones but 6800 * now pressure is applied based on node LRU order. 6801 */ 6802 shrink_node(pgdat, sc); 6803 6804 /* 6805 * Fragmentation may mean that the system cannot be rebalanced for 6806 * high-order allocations. If twice the allocation size has been 6807 * reclaimed then recheck watermarks only at order-0 to prevent 6808 * excessive reclaim. Assume that a process requested a high-order 6809 * can direct reclaim/compact. 6810 */ 6811 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order)) 6812 sc->order = 0; 6813 6814 /* account for progress from mm_account_reclaimed_pages() */ 6815 return max(sc->nr_scanned, sc->nr_reclaimed - nr_reclaimed) >= sc->nr_to_reclaim; 6816 } 6817 6818 /* Page allocator PCP high watermark is lowered if reclaim is active. */ 6819 static inline void 6820 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active) 6821 { 6822 int i; 6823 struct zone *zone; 6824 6825 for (i = 0; i <= highest_zoneidx; i++) { 6826 zone = pgdat->node_zones + i; 6827 6828 if (!managed_zone(zone)) 6829 continue; 6830 6831 if (active) 6832 set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags); 6833 else 6834 clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags); 6835 } 6836 } 6837 6838 static inline void 6839 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx) 6840 { 6841 update_reclaim_active(pgdat, highest_zoneidx, true); 6842 } 6843 6844 static inline void 6845 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx) 6846 { 6847 update_reclaim_active(pgdat, highest_zoneidx, false); 6848 } 6849 6850 /* 6851 * For kswapd, balance_pgdat() will reclaim pages across a node from zones 6852 * that are eligible for use by the caller until at least one zone is 6853 * balanced. 6854 * 6855 * Returns the order kswapd finished reclaiming at. 6856 * 6857 * kswapd scans the zones in the highmem->normal->dma direction. It skips 6858 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 6859 * found to have free_pages <= high_wmark_pages(zone), any page in that zone 6860 * or lower is eligible for reclaim until at least one usable zone is 6861 * balanced. 6862 */ 6863 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx) 6864 { 6865 int i; 6866 unsigned long nr_soft_reclaimed; 6867 unsigned long nr_soft_scanned; 6868 unsigned long pflags; 6869 unsigned long nr_boost_reclaim; 6870 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, }; 6871 bool boosted; 6872 struct zone *zone; 6873 struct scan_control sc = { 6874 .gfp_mask = GFP_KERNEL, 6875 .order = order, 6876 .may_unmap = 1, 6877 }; 6878 6879 set_task_reclaim_state(current, &sc.reclaim_state); 6880 psi_memstall_enter(&pflags); 6881 __fs_reclaim_acquire(_THIS_IP_); 6882 6883 count_vm_event(PAGEOUTRUN); 6884 6885 /* 6886 * Account for the reclaim boost. Note that the zone boost is left in 6887 * place so that parallel allocations that are near the watermark will 6888 * stall or direct reclaim until kswapd is finished. 6889 */ 6890 nr_boost_reclaim = 0; 6891 for (i = 0; i <= highest_zoneidx; i++) { 6892 zone = pgdat->node_zones + i; 6893 if (!managed_zone(zone)) 6894 continue; 6895 6896 nr_boost_reclaim += zone->watermark_boost; 6897 zone_boosts[i] = zone->watermark_boost; 6898 } 6899 boosted = nr_boost_reclaim; 6900 6901 restart: 6902 set_reclaim_active(pgdat, highest_zoneidx); 6903 sc.priority = DEF_PRIORITY; 6904 do { 6905 unsigned long nr_reclaimed = sc.nr_reclaimed; 6906 bool raise_priority = true; 6907 bool balanced; 6908 bool ret; 6909 bool was_frozen; 6910 6911 sc.reclaim_idx = highest_zoneidx; 6912 6913 /* 6914 * If the number of buffer_heads exceeds the maximum allowed 6915 * then consider reclaiming from all zones. This has a dual 6916 * purpose -- on 64-bit systems it is expected that 6917 * buffer_heads are stripped during active rotation. On 32-bit 6918 * systems, highmem pages can pin lowmem memory and shrinking 6919 * buffers can relieve lowmem pressure. Reclaim may still not 6920 * go ahead if all eligible zones for the original allocation 6921 * request are balanced to avoid excessive reclaim from kswapd. 6922 */ 6923 if (buffer_heads_over_limit) { 6924 for (i = MAX_NR_ZONES - 1; i >= 0; i--) { 6925 zone = pgdat->node_zones + i; 6926 if (!managed_zone(zone)) 6927 continue; 6928 6929 sc.reclaim_idx = i; 6930 break; 6931 } 6932 } 6933 6934 /* 6935 * If the pgdat is imbalanced then ignore boosting and preserve 6936 * the watermarks for a later time and restart. Note that the 6937 * zone watermarks will be still reset at the end of balancing 6938 * on the grounds that the normal reclaim should be enough to 6939 * re-evaluate if boosting is required when kswapd next wakes. 6940 */ 6941 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx); 6942 if (!balanced && nr_boost_reclaim) { 6943 nr_boost_reclaim = 0; 6944 goto restart; 6945 } 6946 6947 /* 6948 * If boosting is not active then only reclaim if there are no 6949 * eligible zones. Note that sc.reclaim_idx is not used as 6950 * buffer_heads_over_limit may have adjusted it. 6951 */ 6952 if (!nr_boost_reclaim && balanced) 6953 goto out; 6954 6955 /* Limit the priority of boosting to avoid reclaim writeback */ 6956 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2) 6957 raise_priority = false; 6958 6959 /* 6960 * Do not writeback or swap pages for boosted reclaim. The 6961 * intent is to relieve pressure not issue sub-optimal IO 6962 * from reclaim context. If no pages are reclaimed, the 6963 * reclaim will be aborted. 6964 */ 6965 sc.may_writepage = !laptop_mode && !nr_boost_reclaim; 6966 sc.may_swap = !nr_boost_reclaim; 6967 6968 /* 6969 * Do some background aging, to give pages a chance to be 6970 * referenced before reclaiming. All pages are rotated 6971 * regardless of classzone as this is about consistent aging. 6972 */ 6973 kswapd_age_node(pgdat, &sc); 6974 6975 /* 6976 * If we're getting trouble reclaiming, start doing writepage 6977 * even in laptop mode. 6978 */ 6979 if (sc.priority < DEF_PRIORITY - 2) 6980 sc.may_writepage = 1; 6981 6982 /* Call soft limit reclaim before calling shrink_node. */ 6983 sc.nr_scanned = 0; 6984 nr_soft_scanned = 0; 6985 nr_soft_reclaimed = memcg1_soft_limit_reclaim(pgdat, sc.order, 6986 sc.gfp_mask, &nr_soft_scanned); 6987 sc.nr_reclaimed += nr_soft_reclaimed; 6988 6989 /* 6990 * There should be no need to raise the scanning priority if 6991 * enough pages are already being scanned that that high 6992 * watermark would be met at 100% efficiency. 6993 */ 6994 if (kswapd_shrink_node(pgdat, &sc)) 6995 raise_priority = false; 6996 6997 /* 6998 * If the low watermark is met there is no need for processes 6999 * to be throttled on pfmemalloc_wait as they should not be 7000 * able to safely make forward progress. Wake them 7001 */ 7002 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 7003 allow_direct_reclaim(pgdat)) 7004 wake_up_all(&pgdat->pfmemalloc_wait); 7005 7006 /* Check if kswapd should be suspending */ 7007 __fs_reclaim_release(_THIS_IP_); 7008 ret = kthread_freezable_should_stop(&was_frozen); 7009 __fs_reclaim_acquire(_THIS_IP_); 7010 if (was_frozen || ret) 7011 break; 7012 7013 /* 7014 * Raise priority if scanning rate is too low or there was no 7015 * progress in reclaiming pages 7016 */ 7017 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed; 7018 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed); 7019 7020 /* 7021 * If reclaim made no progress for a boost, stop reclaim as 7022 * IO cannot be queued and it could be an infinite loop in 7023 * extreme circumstances. 7024 */ 7025 if (nr_boost_reclaim && !nr_reclaimed) 7026 break; 7027 7028 if (raise_priority || !nr_reclaimed) 7029 sc.priority--; 7030 } while (sc.priority >= 1); 7031 7032 /* 7033 * Restart only if it went through the priority loop all the way, 7034 * but cache_trim_mode didn't work. 7035 */ 7036 if (!sc.nr_reclaimed && sc.priority < 1 && 7037 !sc.no_cache_trim_mode && sc.cache_trim_mode_failed) { 7038 sc.no_cache_trim_mode = 1; 7039 goto restart; 7040 } 7041 7042 if (!sc.nr_reclaimed) 7043 pgdat->kswapd_failures++; 7044 7045 out: 7046 clear_reclaim_active(pgdat, highest_zoneidx); 7047 7048 /* If reclaim was boosted, account for the reclaim done in this pass */ 7049 if (boosted) { 7050 unsigned long flags; 7051 7052 for (i = 0; i <= highest_zoneidx; i++) { 7053 if (!zone_boosts[i]) 7054 continue; 7055 7056 /* Increments are under the zone lock */ 7057 zone = pgdat->node_zones + i; 7058 spin_lock_irqsave(&zone->lock, flags); 7059 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]); 7060 spin_unlock_irqrestore(&zone->lock, flags); 7061 } 7062 7063 /* 7064 * As there is now likely space, wakeup kcompact to defragment 7065 * pageblocks. 7066 */ 7067 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx); 7068 } 7069 7070 snapshot_refaults(NULL, pgdat); 7071 __fs_reclaim_release(_THIS_IP_); 7072 psi_memstall_leave(&pflags); 7073 set_task_reclaim_state(current, NULL); 7074 7075 /* 7076 * Return the order kswapd stopped reclaiming at as 7077 * prepare_kswapd_sleep() takes it into account. If another caller 7078 * entered the allocator slow path while kswapd was awake, order will 7079 * remain at the higher level. 7080 */ 7081 return sc.order; 7082 } 7083 7084 /* 7085 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to 7086 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is 7087 * not a valid index then either kswapd runs for first time or kswapd couldn't 7088 * sleep after previous reclaim attempt (node is still unbalanced). In that 7089 * case return the zone index of the previous kswapd reclaim cycle. 7090 */ 7091 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat, 7092 enum zone_type prev_highest_zoneidx) 7093 { 7094 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 7095 7096 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx; 7097 } 7098 7099 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order, 7100 unsigned int highest_zoneidx) 7101 { 7102 long remaining = 0; 7103 DEFINE_WAIT(wait); 7104 7105 if (freezing(current) || kthread_should_stop()) 7106 return; 7107 7108 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 7109 7110 /* 7111 * Try to sleep for a short interval. Note that kcompactd will only be 7112 * woken if it is possible to sleep for a short interval. This is 7113 * deliberate on the assumption that if reclaim cannot keep an 7114 * eligible zone balanced that it's also unlikely that compaction will 7115 * succeed. 7116 */ 7117 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 7118 /* 7119 * Compaction records what page blocks it recently failed to 7120 * isolate pages from and skips them in the future scanning. 7121 * When kswapd is going to sleep, it is reasonable to assume 7122 * that pages and compaction may succeed so reset the cache. 7123 */ 7124 reset_isolation_suitable(pgdat); 7125 7126 /* 7127 * We have freed the memory, now we should compact it to make 7128 * allocation of the requested order possible. 7129 */ 7130 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx); 7131 7132 remaining = schedule_timeout(HZ/10); 7133 7134 /* 7135 * If woken prematurely then reset kswapd_highest_zoneidx and 7136 * order. The values will either be from a wakeup request or 7137 * the previous request that slept prematurely. 7138 */ 7139 if (remaining) { 7140 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, 7141 kswapd_highest_zoneidx(pgdat, 7142 highest_zoneidx)); 7143 7144 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order) 7145 WRITE_ONCE(pgdat->kswapd_order, reclaim_order); 7146 } 7147 7148 finish_wait(&pgdat->kswapd_wait, &wait); 7149 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 7150 } 7151 7152 /* 7153 * After a short sleep, check if it was a premature sleep. If not, then 7154 * go fully to sleep until explicitly woken up. 7155 */ 7156 if (!remaining && 7157 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 7158 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 7159 7160 /* 7161 * vmstat counters are not perfectly accurate and the estimated 7162 * value for counters such as NR_FREE_PAGES can deviate from the 7163 * true value by nr_online_cpus * threshold. To avoid the zone 7164 * watermarks being breached while under pressure, we reduce the 7165 * per-cpu vmstat threshold while kswapd is awake and restore 7166 * them before going back to sleep. 7167 */ 7168 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 7169 7170 if (!kthread_should_stop()) 7171 schedule(); 7172 7173 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 7174 } else { 7175 if (remaining) 7176 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 7177 else 7178 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 7179 } 7180 finish_wait(&pgdat->kswapd_wait, &wait); 7181 } 7182 7183 /* 7184 * The background pageout daemon, started as a kernel thread 7185 * from the init process. 7186 * 7187 * This basically trickles out pages so that we have _some_ 7188 * free memory available even if there is no other activity 7189 * that frees anything up. This is needed for things like routing 7190 * etc, where we otherwise might have all activity going on in 7191 * asynchronous contexts that cannot page things out. 7192 * 7193 * If there are applications that are active memory-allocators 7194 * (most normal use), this basically shouldn't matter. 7195 */ 7196 static int kswapd(void *p) 7197 { 7198 unsigned int alloc_order, reclaim_order; 7199 unsigned int highest_zoneidx = MAX_NR_ZONES - 1; 7200 pg_data_t *pgdat = (pg_data_t *)p; 7201 struct task_struct *tsk = current; 7202 7203 /* 7204 * Tell the memory management that we're a "memory allocator", 7205 * and that if we need more memory we should get access to it 7206 * regardless (see "__alloc_pages()"). "kswapd" should 7207 * never get caught in the normal page freeing logic. 7208 * 7209 * (Kswapd normally doesn't need memory anyway, but sometimes 7210 * you need a small amount of memory in order to be able to 7211 * page out something else, and this flag essentially protects 7212 * us from recursively trying to free more memory as we're 7213 * trying to free the first piece of memory in the first place). 7214 */ 7215 tsk->flags |= PF_MEMALLOC | PF_KSWAPD; 7216 set_freezable(); 7217 7218 WRITE_ONCE(pgdat->kswapd_order, 0); 7219 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 7220 atomic_set(&pgdat->nr_writeback_throttled, 0); 7221 for ( ; ; ) { 7222 bool was_frozen; 7223 7224 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order); 7225 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 7226 highest_zoneidx); 7227 7228 kswapd_try_sleep: 7229 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order, 7230 highest_zoneidx); 7231 7232 /* Read the new order and highest_zoneidx */ 7233 alloc_order = READ_ONCE(pgdat->kswapd_order); 7234 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 7235 highest_zoneidx); 7236 WRITE_ONCE(pgdat->kswapd_order, 0); 7237 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 7238 7239 if (kthread_freezable_should_stop(&was_frozen)) 7240 break; 7241 7242 /* 7243 * We can speed up thawing tasks if we don't call balance_pgdat 7244 * after returning from the refrigerator 7245 */ 7246 if (was_frozen) 7247 continue; 7248 7249 /* 7250 * Reclaim begins at the requested order but if a high-order 7251 * reclaim fails then kswapd falls back to reclaiming for 7252 * order-0. If that happens, kswapd will consider sleeping 7253 * for the order it finished reclaiming at (reclaim_order) 7254 * but kcompactd is woken to compact for the original 7255 * request (alloc_order). 7256 */ 7257 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx, 7258 alloc_order); 7259 reclaim_order = balance_pgdat(pgdat, alloc_order, 7260 highest_zoneidx); 7261 if (reclaim_order < alloc_order) 7262 goto kswapd_try_sleep; 7263 } 7264 7265 tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD); 7266 7267 return 0; 7268 } 7269 7270 /* 7271 * A zone is low on free memory or too fragmented for high-order memory. If 7272 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's 7273 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim 7274 * has failed or is not needed, still wake up kcompactd if only compaction is 7275 * needed. 7276 */ 7277 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order, 7278 enum zone_type highest_zoneidx) 7279 { 7280 pg_data_t *pgdat; 7281 enum zone_type curr_idx; 7282 7283 if (!managed_zone(zone)) 7284 return; 7285 7286 if (!cpuset_zone_allowed(zone, gfp_flags)) 7287 return; 7288 7289 pgdat = zone->zone_pgdat; 7290 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 7291 7292 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx) 7293 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx); 7294 7295 if (READ_ONCE(pgdat->kswapd_order) < order) 7296 WRITE_ONCE(pgdat->kswapd_order, order); 7297 7298 if (!waitqueue_active(&pgdat->kswapd_wait)) 7299 return; 7300 7301 /* Hopeless node, leave it to direct reclaim if possible */ 7302 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES || 7303 (pgdat_balanced(pgdat, order, highest_zoneidx) && 7304 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) { 7305 /* 7306 * There may be plenty of free memory available, but it's too 7307 * fragmented for high-order allocations. Wake up kcompactd 7308 * and rely on compaction_suitable() to determine if it's 7309 * needed. If it fails, it will defer subsequent attempts to 7310 * ratelimit its work. 7311 */ 7312 if (!(gfp_flags & __GFP_DIRECT_RECLAIM)) 7313 wakeup_kcompactd(pgdat, order, highest_zoneidx); 7314 return; 7315 } 7316 7317 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order, 7318 gfp_flags); 7319 wake_up_interruptible(&pgdat->kswapd_wait); 7320 } 7321 7322 #ifdef CONFIG_HIBERNATION 7323 /* 7324 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 7325 * freed pages. 7326 * 7327 * Rather than trying to age LRUs the aim is to preserve the overall 7328 * LRU order by reclaiming preferentially 7329 * inactive > active > active referenced > active mapped 7330 */ 7331 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 7332 { 7333 struct scan_control sc = { 7334 .nr_to_reclaim = nr_to_reclaim, 7335 .gfp_mask = GFP_HIGHUSER_MOVABLE, 7336 .reclaim_idx = MAX_NR_ZONES - 1, 7337 .priority = DEF_PRIORITY, 7338 .may_writepage = 1, 7339 .may_unmap = 1, 7340 .may_swap = 1, 7341 .hibernation_mode = 1, 7342 }; 7343 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 7344 unsigned long nr_reclaimed; 7345 unsigned int noreclaim_flag; 7346 7347 fs_reclaim_acquire(sc.gfp_mask); 7348 noreclaim_flag = memalloc_noreclaim_save(); 7349 set_task_reclaim_state(current, &sc.reclaim_state); 7350 7351 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 7352 7353 set_task_reclaim_state(current, NULL); 7354 memalloc_noreclaim_restore(noreclaim_flag); 7355 fs_reclaim_release(sc.gfp_mask); 7356 7357 return nr_reclaimed; 7358 } 7359 #endif /* CONFIG_HIBERNATION */ 7360 7361 /* 7362 * This kswapd start function will be called by init and node-hot-add. 7363 */ 7364 void __meminit kswapd_run(int nid) 7365 { 7366 pg_data_t *pgdat = NODE_DATA(nid); 7367 7368 pgdat_kswapd_lock(pgdat); 7369 if (!pgdat->kswapd) { 7370 pgdat->kswapd = kthread_create_on_node(kswapd, pgdat, nid, "kswapd%d", nid); 7371 if (IS_ERR(pgdat->kswapd)) { 7372 /* failure at boot is fatal */ 7373 pr_err("Failed to start kswapd on node %d,ret=%ld\n", 7374 nid, PTR_ERR(pgdat->kswapd)); 7375 BUG_ON(system_state < SYSTEM_RUNNING); 7376 pgdat->kswapd = NULL; 7377 } else { 7378 wake_up_process(pgdat->kswapd); 7379 } 7380 } 7381 pgdat_kswapd_unlock(pgdat); 7382 } 7383 7384 /* 7385 * Called by memory hotplug when all memory in a node is offlined. Caller must 7386 * be holding mem_hotplug_begin/done(). 7387 */ 7388 void __meminit kswapd_stop(int nid) 7389 { 7390 pg_data_t *pgdat = NODE_DATA(nid); 7391 struct task_struct *kswapd; 7392 7393 pgdat_kswapd_lock(pgdat); 7394 kswapd = pgdat->kswapd; 7395 if (kswapd) { 7396 kthread_stop(kswapd); 7397 pgdat->kswapd = NULL; 7398 } 7399 pgdat_kswapd_unlock(pgdat); 7400 } 7401 7402 static int __init kswapd_init(void) 7403 { 7404 int nid; 7405 7406 swap_setup(); 7407 for_each_node_state(nid, N_MEMORY) 7408 kswapd_run(nid); 7409 return 0; 7410 } 7411 7412 module_init(kswapd_init) 7413 7414 #ifdef CONFIG_NUMA 7415 /* 7416 * Node reclaim mode 7417 * 7418 * If non-zero call node_reclaim when the number of free pages falls below 7419 * the watermarks. 7420 */ 7421 int node_reclaim_mode __read_mostly; 7422 7423 /* 7424 * Priority for NODE_RECLAIM. This determines the fraction of pages 7425 * of a node considered for each zone_reclaim. 4 scans 1/16th of 7426 * a zone. 7427 */ 7428 #define NODE_RECLAIM_PRIORITY 4 7429 7430 /* 7431 * Percentage of pages in a zone that must be unmapped for node_reclaim to 7432 * occur. 7433 */ 7434 int sysctl_min_unmapped_ratio = 1; 7435 7436 /* 7437 * If the number of slab pages in a zone grows beyond this percentage then 7438 * slab reclaim needs to occur. 7439 */ 7440 int sysctl_min_slab_ratio = 5; 7441 7442 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat) 7443 { 7444 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED); 7445 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) + 7446 node_page_state(pgdat, NR_ACTIVE_FILE); 7447 7448 /* 7449 * It's possible for there to be more file mapped pages than 7450 * accounted for by the pages on the file LRU lists because 7451 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 7452 */ 7453 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 7454 } 7455 7456 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 7457 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat) 7458 { 7459 unsigned long nr_pagecache_reclaimable; 7460 unsigned long delta = 0; 7461 7462 /* 7463 * If RECLAIM_UNMAP is set, then all file pages are considered 7464 * potentially reclaimable. Otherwise, we have to worry about 7465 * pages like swapcache and node_unmapped_file_pages() provides 7466 * a better estimate 7467 */ 7468 if (node_reclaim_mode & RECLAIM_UNMAP) 7469 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES); 7470 else 7471 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat); 7472 7473 /* If we can't clean pages, remove dirty pages from consideration */ 7474 if (!(node_reclaim_mode & RECLAIM_WRITE)) 7475 delta += node_page_state(pgdat, NR_FILE_DIRTY); 7476 7477 /* Watch for any possible underflows due to delta */ 7478 if (unlikely(delta > nr_pagecache_reclaimable)) 7479 delta = nr_pagecache_reclaimable; 7480 7481 return nr_pagecache_reclaimable - delta; 7482 } 7483 7484 /* 7485 * Try to free up some pages from this node through reclaim. 7486 */ 7487 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 7488 { 7489 /* Minimum pages needed in order to stay on node */ 7490 const unsigned long nr_pages = 1 << order; 7491 struct task_struct *p = current; 7492 unsigned int noreclaim_flag; 7493 struct scan_control sc = { 7494 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 7495 .gfp_mask = current_gfp_context(gfp_mask), 7496 .order = order, 7497 .priority = NODE_RECLAIM_PRIORITY, 7498 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE), 7499 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP), 7500 .may_swap = 1, 7501 .reclaim_idx = gfp_zone(gfp_mask), 7502 }; 7503 unsigned long pflags; 7504 7505 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order, 7506 sc.gfp_mask); 7507 7508 cond_resched(); 7509 psi_memstall_enter(&pflags); 7510 delayacct_freepages_start(); 7511 fs_reclaim_acquire(sc.gfp_mask); 7512 /* 7513 * We need to be able to allocate from the reserves for RECLAIM_UNMAP 7514 */ 7515 noreclaim_flag = memalloc_noreclaim_save(); 7516 set_task_reclaim_state(p, &sc.reclaim_state); 7517 7518 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages || 7519 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) { 7520 /* 7521 * Free memory by calling shrink node with increasing 7522 * priorities until we have enough memory freed. 7523 */ 7524 do { 7525 shrink_node(pgdat, &sc); 7526 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 7527 } 7528 7529 set_task_reclaim_state(p, NULL); 7530 memalloc_noreclaim_restore(noreclaim_flag); 7531 fs_reclaim_release(sc.gfp_mask); 7532 psi_memstall_leave(&pflags); 7533 delayacct_freepages_end(); 7534 7535 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed); 7536 7537 return sc.nr_reclaimed >= nr_pages; 7538 } 7539 7540 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 7541 { 7542 int ret; 7543 7544 /* 7545 * Node reclaim reclaims unmapped file backed pages and 7546 * slab pages if we are over the defined limits. 7547 * 7548 * A small portion of unmapped file backed pages is needed for 7549 * file I/O otherwise pages read by file I/O will be immediately 7550 * thrown out if the node is overallocated. So we do not reclaim 7551 * if less than a specified percentage of the node is used by 7552 * unmapped file backed pages. 7553 */ 7554 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages && 7555 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <= 7556 pgdat->min_slab_pages) 7557 return NODE_RECLAIM_FULL; 7558 7559 /* 7560 * Do not scan if the allocation should not be delayed. 7561 */ 7562 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) 7563 return NODE_RECLAIM_NOSCAN; 7564 7565 /* 7566 * Only run node reclaim on the local node or on nodes that do not 7567 * have associated processors. This will favor the local processor 7568 * over remote processors and spread off node memory allocations 7569 * as wide as possible. 7570 */ 7571 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id()) 7572 return NODE_RECLAIM_NOSCAN; 7573 7574 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags)) 7575 return NODE_RECLAIM_NOSCAN; 7576 7577 ret = __node_reclaim(pgdat, gfp_mask, order); 7578 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags); 7579 7580 if (ret) 7581 count_vm_event(PGSCAN_ZONE_RECLAIM_SUCCESS); 7582 else 7583 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 7584 7585 return ret; 7586 } 7587 #endif 7588 7589 /** 7590 * check_move_unevictable_folios - Move evictable folios to appropriate zone 7591 * lru list 7592 * @fbatch: Batch of lru folios to check. 7593 * 7594 * Checks folios for evictability, if an evictable folio is in the unevictable 7595 * lru list, moves it to the appropriate evictable lru list. This function 7596 * should be only used for lru folios. 7597 */ 7598 void check_move_unevictable_folios(struct folio_batch *fbatch) 7599 { 7600 struct lruvec *lruvec = NULL; 7601 int pgscanned = 0; 7602 int pgrescued = 0; 7603 int i; 7604 7605 for (i = 0; i < fbatch->nr; i++) { 7606 struct folio *folio = fbatch->folios[i]; 7607 int nr_pages = folio_nr_pages(folio); 7608 7609 pgscanned += nr_pages; 7610 7611 /* block memcg migration while the folio moves between lrus */ 7612 if (!folio_test_clear_lru(folio)) 7613 continue; 7614 7615 lruvec = folio_lruvec_relock_irq(folio, lruvec); 7616 if (folio_evictable(folio) && folio_test_unevictable(folio)) { 7617 lruvec_del_folio(lruvec, folio); 7618 folio_clear_unevictable(folio); 7619 lruvec_add_folio(lruvec, folio); 7620 pgrescued += nr_pages; 7621 } 7622 folio_set_lru(folio); 7623 } 7624 7625 if (lruvec) { 7626 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 7627 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 7628 unlock_page_lruvec_irq(lruvec); 7629 } else if (pgscanned) { 7630 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 7631 } 7632 } 7633 EXPORT_SYMBOL_GPL(check_move_unevictable_folios); 7634