xref: /linux/mm/vmscan.c (revision b96cd8b05ead8939b972192c4f4ac2fc2dffceb7)
1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
4   *
5   *  Swap reorganised 29.12.95, Stephen Tweedie.
6   *  kswapd added: 7.1.96  sct
7   *  Removed kswapd_ctl limits, and swap out as many pages as needed
8   *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
9   *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
10   *  Multiqueue VM started 5.8.00, Rik van Riel.
11   */
12  
13  #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14  
15  #include <linux/mm.h>
16  #include <linux/sched/mm.h>
17  #include <linux/module.h>
18  #include <linux/gfp.h>
19  #include <linux/kernel_stat.h>
20  #include <linux/swap.h>
21  #include <linux/pagemap.h>
22  #include <linux/init.h>
23  #include <linux/highmem.h>
24  #include <linux/vmpressure.h>
25  #include <linux/vmstat.h>
26  #include <linux/file.h>
27  #include <linux/writeback.h>
28  #include <linux/blkdev.h>
29  #include <linux/buffer_head.h>	/* for try_to_release_page(),
30  					buffer_heads_over_limit */
31  #include <linux/mm_inline.h>
32  #include <linux/backing-dev.h>
33  #include <linux/rmap.h>
34  #include <linux/topology.h>
35  #include <linux/cpu.h>
36  #include <linux/cpuset.h>
37  #include <linux/compaction.h>
38  #include <linux/notifier.h>
39  #include <linux/rwsem.h>
40  #include <linux/delay.h>
41  #include <linux/kthread.h>
42  #include <linux/freezer.h>
43  #include <linux/memcontrol.h>
44  #include <linux/migrate.h>
45  #include <linux/delayacct.h>
46  #include <linux/sysctl.h>
47  #include <linux/oom.h>
48  #include <linux/pagevec.h>
49  #include <linux/prefetch.h>
50  #include <linux/printk.h>
51  #include <linux/dax.h>
52  #include <linux/psi.h>
53  
54  #include <asm/tlbflush.h>
55  #include <asm/div64.h>
56  
57  #include <linux/swapops.h>
58  #include <linux/balloon_compaction.h>
59  #include <linux/sched/sysctl.h>
60  
61  #include "internal.h"
62  
63  #define CREATE_TRACE_POINTS
64  #include <trace/events/vmscan.h>
65  
66  struct scan_control {
67  	/* How many pages shrink_list() should reclaim */
68  	unsigned long nr_to_reclaim;
69  
70  	/*
71  	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
72  	 * are scanned.
73  	 */
74  	nodemask_t	*nodemask;
75  
76  	/*
77  	 * The memory cgroup that hit its limit and as a result is the
78  	 * primary target of this reclaim invocation.
79  	 */
80  	struct mem_cgroup *target_mem_cgroup;
81  
82  	/*
83  	 * Scan pressure balancing between anon and file LRUs
84  	 */
85  	unsigned long	anon_cost;
86  	unsigned long	file_cost;
87  
88  	/* Can active pages be deactivated as part of reclaim? */
89  #define DEACTIVATE_ANON 1
90  #define DEACTIVATE_FILE 2
91  	unsigned int may_deactivate:2;
92  	unsigned int force_deactivate:1;
93  	unsigned int skipped_deactivate:1;
94  
95  	/* Writepage batching in laptop mode; RECLAIM_WRITE */
96  	unsigned int may_writepage:1;
97  
98  	/* Can mapped pages be reclaimed? */
99  	unsigned int may_unmap:1;
100  
101  	/* Can pages be swapped as part of reclaim? */
102  	unsigned int may_swap:1;
103  
104  	/*
105  	 * Cgroup memory below memory.low is protected as long as we
106  	 * don't threaten to OOM. If any cgroup is reclaimed at
107  	 * reduced force or passed over entirely due to its memory.low
108  	 * setting (memcg_low_skipped), and nothing is reclaimed as a
109  	 * result, then go back for one more cycle that reclaims the protected
110  	 * memory (memcg_low_reclaim) to avert OOM.
111  	 */
112  	unsigned int memcg_low_reclaim:1;
113  	unsigned int memcg_low_skipped:1;
114  
115  	unsigned int hibernation_mode:1;
116  
117  	/* One of the zones is ready for compaction */
118  	unsigned int compaction_ready:1;
119  
120  	/* There is easily reclaimable cold cache in the current node */
121  	unsigned int cache_trim_mode:1;
122  
123  	/* The file pages on the current node are dangerously low */
124  	unsigned int file_is_tiny:1;
125  
126  	/* Always discard instead of demoting to lower tier memory */
127  	unsigned int no_demotion:1;
128  
129  	/* Allocation order */
130  	s8 order;
131  
132  	/* Scan (total_size >> priority) pages at once */
133  	s8 priority;
134  
135  	/* The highest zone to isolate pages for reclaim from */
136  	s8 reclaim_idx;
137  
138  	/* This context's GFP mask */
139  	gfp_t gfp_mask;
140  
141  	/* Incremented by the number of inactive pages that were scanned */
142  	unsigned long nr_scanned;
143  
144  	/* Number of pages freed so far during a call to shrink_zones() */
145  	unsigned long nr_reclaimed;
146  
147  	struct {
148  		unsigned int dirty;
149  		unsigned int unqueued_dirty;
150  		unsigned int congested;
151  		unsigned int writeback;
152  		unsigned int immediate;
153  		unsigned int file_taken;
154  		unsigned int taken;
155  	} nr;
156  
157  	/* for recording the reclaimed slab by now */
158  	struct reclaim_state reclaim_state;
159  };
160  
161  #ifdef ARCH_HAS_PREFETCHW
162  #define prefetchw_prev_lru_page(_page, _base, _field)			\
163  	do {								\
164  		if ((_page)->lru.prev != _base) {			\
165  			struct page *prev;				\
166  									\
167  			prev = lru_to_page(&(_page->lru));		\
168  			prefetchw(&prev->_field);			\
169  		}							\
170  	} while (0)
171  #else
172  #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
173  #endif
174  
175  /*
176   * From 0 .. 200.  Higher means more swappy.
177   */
178  int vm_swappiness = 60;
179  
180  static void set_task_reclaim_state(struct task_struct *task,
181  				   struct reclaim_state *rs)
182  {
183  	/* Check for an overwrite */
184  	WARN_ON_ONCE(rs && task->reclaim_state);
185  
186  	/* Check for the nulling of an already-nulled member */
187  	WARN_ON_ONCE(!rs && !task->reclaim_state);
188  
189  	task->reclaim_state = rs;
190  }
191  
192  static LIST_HEAD(shrinker_list);
193  static DECLARE_RWSEM(shrinker_rwsem);
194  
195  #ifdef CONFIG_MEMCG
196  static int shrinker_nr_max;
197  
198  /* The shrinker_info is expanded in a batch of BITS_PER_LONG */
199  static inline int shrinker_map_size(int nr_items)
200  {
201  	return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long));
202  }
203  
204  static inline int shrinker_defer_size(int nr_items)
205  {
206  	return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t));
207  }
208  
209  static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg,
210  						     int nid)
211  {
212  	return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info,
213  					 lockdep_is_held(&shrinker_rwsem));
214  }
215  
216  static int expand_one_shrinker_info(struct mem_cgroup *memcg,
217  				    int map_size, int defer_size,
218  				    int old_map_size, int old_defer_size)
219  {
220  	struct shrinker_info *new, *old;
221  	struct mem_cgroup_per_node *pn;
222  	int nid;
223  	int size = map_size + defer_size;
224  
225  	for_each_node(nid) {
226  		pn = memcg->nodeinfo[nid];
227  		old = shrinker_info_protected(memcg, nid);
228  		/* Not yet online memcg */
229  		if (!old)
230  			return 0;
231  
232  		new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
233  		if (!new)
234  			return -ENOMEM;
235  
236  		new->nr_deferred = (atomic_long_t *)(new + 1);
237  		new->map = (void *)new->nr_deferred + defer_size;
238  
239  		/* map: set all old bits, clear all new bits */
240  		memset(new->map, (int)0xff, old_map_size);
241  		memset((void *)new->map + old_map_size, 0, map_size - old_map_size);
242  		/* nr_deferred: copy old values, clear all new values */
243  		memcpy(new->nr_deferred, old->nr_deferred, old_defer_size);
244  		memset((void *)new->nr_deferred + old_defer_size, 0,
245  		       defer_size - old_defer_size);
246  
247  		rcu_assign_pointer(pn->shrinker_info, new);
248  		kvfree_rcu(old, rcu);
249  	}
250  
251  	return 0;
252  }
253  
254  void free_shrinker_info(struct mem_cgroup *memcg)
255  {
256  	struct mem_cgroup_per_node *pn;
257  	struct shrinker_info *info;
258  	int nid;
259  
260  	for_each_node(nid) {
261  		pn = memcg->nodeinfo[nid];
262  		info = rcu_dereference_protected(pn->shrinker_info, true);
263  		kvfree(info);
264  		rcu_assign_pointer(pn->shrinker_info, NULL);
265  	}
266  }
267  
268  int alloc_shrinker_info(struct mem_cgroup *memcg)
269  {
270  	struct shrinker_info *info;
271  	int nid, size, ret = 0;
272  	int map_size, defer_size = 0;
273  
274  	down_write(&shrinker_rwsem);
275  	map_size = shrinker_map_size(shrinker_nr_max);
276  	defer_size = shrinker_defer_size(shrinker_nr_max);
277  	size = map_size + defer_size;
278  	for_each_node(nid) {
279  		info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid);
280  		if (!info) {
281  			free_shrinker_info(memcg);
282  			ret = -ENOMEM;
283  			break;
284  		}
285  		info->nr_deferred = (atomic_long_t *)(info + 1);
286  		info->map = (void *)info->nr_deferred + defer_size;
287  		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info);
288  	}
289  	up_write(&shrinker_rwsem);
290  
291  	return ret;
292  }
293  
294  static inline bool need_expand(int nr_max)
295  {
296  	return round_up(nr_max, BITS_PER_LONG) >
297  	       round_up(shrinker_nr_max, BITS_PER_LONG);
298  }
299  
300  static int expand_shrinker_info(int new_id)
301  {
302  	int ret = 0;
303  	int new_nr_max = new_id + 1;
304  	int map_size, defer_size = 0;
305  	int old_map_size, old_defer_size = 0;
306  	struct mem_cgroup *memcg;
307  
308  	if (!need_expand(new_nr_max))
309  		goto out;
310  
311  	if (!root_mem_cgroup)
312  		goto out;
313  
314  	lockdep_assert_held(&shrinker_rwsem);
315  
316  	map_size = shrinker_map_size(new_nr_max);
317  	defer_size = shrinker_defer_size(new_nr_max);
318  	old_map_size = shrinker_map_size(shrinker_nr_max);
319  	old_defer_size = shrinker_defer_size(shrinker_nr_max);
320  
321  	memcg = mem_cgroup_iter(NULL, NULL, NULL);
322  	do {
323  		ret = expand_one_shrinker_info(memcg, map_size, defer_size,
324  					       old_map_size, old_defer_size);
325  		if (ret) {
326  			mem_cgroup_iter_break(NULL, memcg);
327  			goto out;
328  		}
329  	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
330  out:
331  	if (!ret)
332  		shrinker_nr_max = new_nr_max;
333  
334  	return ret;
335  }
336  
337  void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
338  {
339  	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
340  		struct shrinker_info *info;
341  
342  		rcu_read_lock();
343  		info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info);
344  		/* Pairs with smp mb in shrink_slab() */
345  		smp_mb__before_atomic();
346  		set_bit(shrinker_id, info->map);
347  		rcu_read_unlock();
348  	}
349  }
350  
351  static DEFINE_IDR(shrinker_idr);
352  
353  static int prealloc_memcg_shrinker(struct shrinker *shrinker)
354  {
355  	int id, ret = -ENOMEM;
356  
357  	if (mem_cgroup_disabled())
358  		return -ENOSYS;
359  
360  	down_write(&shrinker_rwsem);
361  	/* This may call shrinker, so it must use down_read_trylock() */
362  	id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL);
363  	if (id < 0)
364  		goto unlock;
365  
366  	if (id >= shrinker_nr_max) {
367  		if (expand_shrinker_info(id)) {
368  			idr_remove(&shrinker_idr, id);
369  			goto unlock;
370  		}
371  	}
372  	shrinker->id = id;
373  	ret = 0;
374  unlock:
375  	up_write(&shrinker_rwsem);
376  	return ret;
377  }
378  
379  static void unregister_memcg_shrinker(struct shrinker *shrinker)
380  {
381  	int id = shrinker->id;
382  
383  	BUG_ON(id < 0);
384  
385  	lockdep_assert_held(&shrinker_rwsem);
386  
387  	idr_remove(&shrinker_idr, id);
388  }
389  
390  static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
391  				   struct mem_cgroup *memcg)
392  {
393  	struct shrinker_info *info;
394  
395  	info = shrinker_info_protected(memcg, nid);
396  	return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0);
397  }
398  
399  static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
400  				  struct mem_cgroup *memcg)
401  {
402  	struct shrinker_info *info;
403  
404  	info = shrinker_info_protected(memcg, nid);
405  	return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]);
406  }
407  
408  void reparent_shrinker_deferred(struct mem_cgroup *memcg)
409  {
410  	int i, nid;
411  	long nr;
412  	struct mem_cgroup *parent;
413  	struct shrinker_info *child_info, *parent_info;
414  
415  	parent = parent_mem_cgroup(memcg);
416  	if (!parent)
417  		parent = root_mem_cgroup;
418  
419  	/* Prevent from concurrent shrinker_info expand */
420  	down_read(&shrinker_rwsem);
421  	for_each_node(nid) {
422  		child_info = shrinker_info_protected(memcg, nid);
423  		parent_info = shrinker_info_protected(parent, nid);
424  		for (i = 0; i < shrinker_nr_max; i++) {
425  			nr = atomic_long_read(&child_info->nr_deferred[i]);
426  			atomic_long_add(nr, &parent_info->nr_deferred[i]);
427  		}
428  	}
429  	up_read(&shrinker_rwsem);
430  }
431  
432  static bool cgroup_reclaim(struct scan_control *sc)
433  {
434  	return sc->target_mem_cgroup;
435  }
436  
437  /**
438   * writeback_throttling_sane - is the usual dirty throttling mechanism available?
439   * @sc: scan_control in question
440   *
441   * The normal page dirty throttling mechanism in balance_dirty_pages() is
442   * completely broken with the legacy memcg and direct stalling in
443   * shrink_page_list() is used for throttling instead, which lacks all the
444   * niceties such as fairness, adaptive pausing, bandwidth proportional
445   * allocation and configurability.
446   *
447   * This function tests whether the vmscan currently in progress can assume
448   * that the normal dirty throttling mechanism is operational.
449   */
450  static bool writeback_throttling_sane(struct scan_control *sc)
451  {
452  	if (!cgroup_reclaim(sc))
453  		return true;
454  #ifdef CONFIG_CGROUP_WRITEBACK
455  	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
456  		return true;
457  #endif
458  	return false;
459  }
460  #else
461  static int prealloc_memcg_shrinker(struct shrinker *shrinker)
462  {
463  	return -ENOSYS;
464  }
465  
466  static void unregister_memcg_shrinker(struct shrinker *shrinker)
467  {
468  }
469  
470  static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
471  				   struct mem_cgroup *memcg)
472  {
473  	return 0;
474  }
475  
476  static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
477  				  struct mem_cgroup *memcg)
478  {
479  	return 0;
480  }
481  
482  static bool cgroup_reclaim(struct scan_control *sc)
483  {
484  	return false;
485  }
486  
487  static bool writeback_throttling_sane(struct scan_control *sc)
488  {
489  	return true;
490  }
491  #endif
492  
493  static long xchg_nr_deferred(struct shrinker *shrinker,
494  			     struct shrink_control *sc)
495  {
496  	int nid = sc->nid;
497  
498  	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
499  		nid = 0;
500  
501  	if (sc->memcg &&
502  	    (shrinker->flags & SHRINKER_MEMCG_AWARE))
503  		return xchg_nr_deferred_memcg(nid, shrinker,
504  					      sc->memcg);
505  
506  	return atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
507  }
508  
509  
510  static long add_nr_deferred(long nr, struct shrinker *shrinker,
511  			    struct shrink_control *sc)
512  {
513  	int nid = sc->nid;
514  
515  	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
516  		nid = 0;
517  
518  	if (sc->memcg &&
519  	    (shrinker->flags & SHRINKER_MEMCG_AWARE))
520  		return add_nr_deferred_memcg(nr, nid, shrinker,
521  					     sc->memcg);
522  
523  	return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]);
524  }
525  
526  static bool can_demote(int nid, struct scan_control *sc)
527  {
528  	if (!numa_demotion_enabled)
529  		return false;
530  	if (sc) {
531  		if (sc->no_demotion)
532  			return false;
533  		/* It is pointless to do demotion in memcg reclaim */
534  		if (cgroup_reclaim(sc))
535  			return false;
536  	}
537  	if (next_demotion_node(nid) == NUMA_NO_NODE)
538  		return false;
539  
540  	return true;
541  }
542  
543  static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
544  					  int nid,
545  					  struct scan_control *sc)
546  {
547  	if (memcg == NULL) {
548  		/*
549  		 * For non-memcg reclaim, is there
550  		 * space in any swap device?
551  		 */
552  		if (get_nr_swap_pages() > 0)
553  			return true;
554  	} else {
555  		/* Is the memcg below its swap limit? */
556  		if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
557  			return true;
558  	}
559  
560  	/*
561  	 * The page can not be swapped.
562  	 *
563  	 * Can it be reclaimed from this node via demotion?
564  	 */
565  	return can_demote(nid, sc);
566  }
567  
568  /*
569   * This misses isolated pages which are not accounted for to save counters.
570   * As the data only determines if reclaim or compaction continues, it is
571   * not expected that isolated pages will be a dominating factor.
572   */
573  unsigned long zone_reclaimable_pages(struct zone *zone)
574  {
575  	unsigned long nr;
576  
577  	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
578  		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
579  	if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
580  		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
581  			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
582  
583  	return nr;
584  }
585  
586  /**
587   * lruvec_lru_size -  Returns the number of pages on the given LRU list.
588   * @lruvec: lru vector
589   * @lru: lru to use
590   * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
591   */
592  static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
593  				     int zone_idx)
594  {
595  	unsigned long size = 0;
596  	int zid;
597  
598  	for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) {
599  		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
600  
601  		if (!managed_zone(zone))
602  			continue;
603  
604  		if (!mem_cgroup_disabled())
605  			size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
606  		else
607  			size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
608  	}
609  	return size;
610  }
611  
612  /*
613   * Add a shrinker callback to be called from the vm.
614   */
615  int prealloc_shrinker(struct shrinker *shrinker)
616  {
617  	unsigned int size;
618  	int err;
619  
620  	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
621  		err = prealloc_memcg_shrinker(shrinker);
622  		if (err != -ENOSYS)
623  			return err;
624  
625  		shrinker->flags &= ~SHRINKER_MEMCG_AWARE;
626  	}
627  
628  	size = sizeof(*shrinker->nr_deferred);
629  	if (shrinker->flags & SHRINKER_NUMA_AWARE)
630  		size *= nr_node_ids;
631  
632  	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
633  	if (!shrinker->nr_deferred)
634  		return -ENOMEM;
635  
636  	return 0;
637  }
638  
639  void free_prealloced_shrinker(struct shrinker *shrinker)
640  {
641  	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
642  		down_write(&shrinker_rwsem);
643  		unregister_memcg_shrinker(shrinker);
644  		up_write(&shrinker_rwsem);
645  		return;
646  	}
647  
648  	kfree(shrinker->nr_deferred);
649  	shrinker->nr_deferred = NULL;
650  }
651  
652  void register_shrinker_prepared(struct shrinker *shrinker)
653  {
654  	down_write(&shrinker_rwsem);
655  	list_add_tail(&shrinker->list, &shrinker_list);
656  	shrinker->flags |= SHRINKER_REGISTERED;
657  	up_write(&shrinker_rwsem);
658  }
659  
660  int register_shrinker(struct shrinker *shrinker)
661  {
662  	int err = prealloc_shrinker(shrinker);
663  
664  	if (err)
665  		return err;
666  	register_shrinker_prepared(shrinker);
667  	return 0;
668  }
669  EXPORT_SYMBOL(register_shrinker);
670  
671  /*
672   * Remove one
673   */
674  void unregister_shrinker(struct shrinker *shrinker)
675  {
676  	if (!(shrinker->flags & SHRINKER_REGISTERED))
677  		return;
678  
679  	down_write(&shrinker_rwsem);
680  	list_del(&shrinker->list);
681  	shrinker->flags &= ~SHRINKER_REGISTERED;
682  	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
683  		unregister_memcg_shrinker(shrinker);
684  	up_write(&shrinker_rwsem);
685  
686  	kfree(shrinker->nr_deferred);
687  	shrinker->nr_deferred = NULL;
688  }
689  EXPORT_SYMBOL(unregister_shrinker);
690  
691  /**
692   * synchronize_shrinkers - Wait for all running shrinkers to complete.
693   *
694   * This is equivalent to calling unregister_shrink() and register_shrinker(),
695   * but atomically and with less overhead. This is useful to guarantee that all
696   * shrinker invocations have seen an update, before freeing memory, similar to
697   * rcu.
698   */
699  void synchronize_shrinkers(void)
700  {
701  	down_write(&shrinker_rwsem);
702  	up_write(&shrinker_rwsem);
703  }
704  EXPORT_SYMBOL(synchronize_shrinkers);
705  
706  #define SHRINK_BATCH 128
707  
708  static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
709  				    struct shrinker *shrinker, int priority)
710  {
711  	unsigned long freed = 0;
712  	unsigned long long delta;
713  	long total_scan;
714  	long freeable;
715  	long nr;
716  	long new_nr;
717  	long batch_size = shrinker->batch ? shrinker->batch
718  					  : SHRINK_BATCH;
719  	long scanned = 0, next_deferred;
720  
721  	freeable = shrinker->count_objects(shrinker, shrinkctl);
722  	if (freeable == 0 || freeable == SHRINK_EMPTY)
723  		return freeable;
724  
725  	/*
726  	 * copy the current shrinker scan count into a local variable
727  	 * and zero it so that other concurrent shrinker invocations
728  	 * don't also do this scanning work.
729  	 */
730  	nr = xchg_nr_deferred(shrinker, shrinkctl);
731  
732  	if (shrinker->seeks) {
733  		delta = freeable >> priority;
734  		delta *= 4;
735  		do_div(delta, shrinker->seeks);
736  	} else {
737  		/*
738  		 * These objects don't require any IO to create. Trim
739  		 * them aggressively under memory pressure to keep
740  		 * them from causing refetches in the IO caches.
741  		 */
742  		delta = freeable / 2;
743  	}
744  
745  	total_scan = nr >> priority;
746  	total_scan += delta;
747  	total_scan = min(total_scan, (2 * freeable));
748  
749  	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
750  				   freeable, delta, total_scan, priority);
751  
752  	/*
753  	 * Normally, we should not scan less than batch_size objects in one
754  	 * pass to avoid too frequent shrinker calls, but if the slab has less
755  	 * than batch_size objects in total and we are really tight on memory,
756  	 * we will try to reclaim all available objects, otherwise we can end
757  	 * up failing allocations although there are plenty of reclaimable
758  	 * objects spread over several slabs with usage less than the
759  	 * batch_size.
760  	 *
761  	 * We detect the "tight on memory" situations by looking at the total
762  	 * number of objects we want to scan (total_scan). If it is greater
763  	 * than the total number of objects on slab (freeable), we must be
764  	 * scanning at high prio and therefore should try to reclaim as much as
765  	 * possible.
766  	 */
767  	while (total_scan >= batch_size ||
768  	       total_scan >= freeable) {
769  		unsigned long ret;
770  		unsigned long nr_to_scan = min(batch_size, total_scan);
771  
772  		shrinkctl->nr_to_scan = nr_to_scan;
773  		shrinkctl->nr_scanned = nr_to_scan;
774  		ret = shrinker->scan_objects(shrinker, shrinkctl);
775  		if (ret == SHRINK_STOP)
776  			break;
777  		freed += ret;
778  
779  		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
780  		total_scan -= shrinkctl->nr_scanned;
781  		scanned += shrinkctl->nr_scanned;
782  
783  		cond_resched();
784  	}
785  
786  	/*
787  	 * The deferred work is increased by any new work (delta) that wasn't
788  	 * done, decreased by old deferred work that was done now.
789  	 *
790  	 * And it is capped to two times of the freeable items.
791  	 */
792  	next_deferred = max_t(long, (nr + delta - scanned), 0);
793  	next_deferred = min(next_deferred, (2 * freeable));
794  
795  	/*
796  	 * move the unused scan count back into the shrinker in a
797  	 * manner that handles concurrent updates.
798  	 */
799  	new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl);
800  
801  	trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan);
802  	return freed;
803  }
804  
805  #ifdef CONFIG_MEMCG
806  static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
807  			struct mem_cgroup *memcg, int priority)
808  {
809  	struct shrinker_info *info;
810  	unsigned long ret, freed = 0;
811  	int i;
812  
813  	if (!mem_cgroup_online(memcg))
814  		return 0;
815  
816  	if (!down_read_trylock(&shrinker_rwsem))
817  		return 0;
818  
819  	info = shrinker_info_protected(memcg, nid);
820  	if (unlikely(!info))
821  		goto unlock;
822  
823  	for_each_set_bit(i, info->map, shrinker_nr_max) {
824  		struct shrink_control sc = {
825  			.gfp_mask = gfp_mask,
826  			.nid = nid,
827  			.memcg = memcg,
828  		};
829  		struct shrinker *shrinker;
830  
831  		shrinker = idr_find(&shrinker_idr, i);
832  		if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) {
833  			if (!shrinker)
834  				clear_bit(i, info->map);
835  			continue;
836  		}
837  
838  		/* Call non-slab shrinkers even though kmem is disabled */
839  		if (!memcg_kmem_enabled() &&
840  		    !(shrinker->flags & SHRINKER_NONSLAB))
841  			continue;
842  
843  		ret = do_shrink_slab(&sc, shrinker, priority);
844  		if (ret == SHRINK_EMPTY) {
845  			clear_bit(i, info->map);
846  			/*
847  			 * After the shrinker reported that it had no objects to
848  			 * free, but before we cleared the corresponding bit in
849  			 * the memcg shrinker map, a new object might have been
850  			 * added. To make sure, we have the bit set in this
851  			 * case, we invoke the shrinker one more time and reset
852  			 * the bit if it reports that it is not empty anymore.
853  			 * The memory barrier here pairs with the barrier in
854  			 * set_shrinker_bit():
855  			 *
856  			 * list_lru_add()     shrink_slab_memcg()
857  			 *   list_add_tail()    clear_bit()
858  			 *   <MB>               <MB>
859  			 *   set_bit()          do_shrink_slab()
860  			 */
861  			smp_mb__after_atomic();
862  			ret = do_shrink_slab(&sc, shrinker, priority);
863  			if (ret == SHRINK_EMPTY)
864  				ret = 0;
865  			else
866  				set_shrinker_bit(memcg, nid, i);
867  		}
868  		freed += ret;
869  
870  		if (rwsem_is_contended(&shrinker_rwsem)) {
871  			freed = freed ? : 1;
872  			break;
873  		}
874  	}
875  unlock:
876  	up_read(&shrinker_rwsem);
877  	return freed;
878  }
879  #else /* CONFIG_MEMCG */
880  static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
881  			struct mem_cgroup *memcg, int priority)
882  {
883  	return 0;
884  }
885  #endif /* CONFIG_MEMCG */
886  
887  /**
888   * shrink_slab - shrink slab caches
889   * @gfp_mask: allocation context
890   * @nid: node whose slab caches to target
891   * @memcg: memory cgroup whose slab caches to target
892   * @priority: the reclaim priority
893   *
894   * Call the shrink functions to age shrinkable caches.
895   *
896   * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
897   * unaware shrinkers will receive a node id of 0 instead.
898   *
899   * @memcg specifies the memory cgroup to target. Unaware shrinkers
900   * are called only if it is the root cgroup.
901   *
902   * @priority is sc->priority, we take the number of objects and >> by priority
903   * in order to get the scan target.
904   *
905   * Returns the number of reclaimed slab objects.
906   */
907  static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
908  				 struct mem_cgroup *memcg,
909  				 int priority)
910  {
911  	unsigned long ret, freed = 0;
912  	struct shrinker *shrinker;
913  
914  	/*
915  	 * The root memcg might be allocated even though memcg is disabled
916  	 * via "cgroup_disable=memory" boot parameter.  This could make
917  	 * mem_cgroup_is_root() return false, then just run memcg slab
918  	 * shrink, but skip global shrink.  This may result in premature
919  	 * oom.
920  	 */
921  	if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
922  		return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
923  
924  	if (!down_read_trylock(&shrinker_rwsem))
925  		goto out;
926  
927  	list_for_each_entry(shrinker, &shrinker_list, list) {
928  		struct shrink_control sc = {
929  			.gfp_mask = gfp_mask,
930  			.nid = nid,
931  			.memcg = memcg,
932  		};
933  
934  		ret = do_shrink_slab(&sc, shrinker, priority);
935  		if (ret == SHRINK_EMPTY)
936  			ret = 0;
937  		freed += ret;
938  		/*
939  		 * Bail out if someone want to register a new shrinker to
940  		 * prevent the registration from being stalled for long periods
941  		 * by parallel ongoing shrinking.
942  		 */
943  		if (rwsem_is_contended(&shrinker_rwsem)) {
944  			freed = freed ? : 1;
945  			break;
946  		}
947  	}
948  
949  	up_read(&shrinker_rwsem);
950  out:
951  	cond_resched();
952  	return freed;
953  }
954  
955  static void drop_slab_node(int nid)
956  {
957  	unsigned long freed;
958  	int shift = 0;
959  
960  	do {
961  		struct mem_cgroup *memcg = NULL;
962  
963  		if (fatal_signal_pending(current))
964  			return;
965  
966  		freed = 0;
967  		memcg = mem_cgroup_iter(NULL, NULL, NULL);
968  		do {
969  			freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
970  		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
971  	} while ((freed >> shift++) > 1);
972  }
973  
974  void drop_slab(void)
975  {
976  	int nid;
977  
978  	for_each_online_node(nid)
979  		drop_slab_node(nid);
980  }
981  
982  static inline int is_page_cache_freeable(struct folio *folio)
983  {
984  	/*
985  	 * A freeable page cache page is referenced only by the caller
986  	 * that isolated the page, the page cache and optional buffer
987  	 * heads at page->private.
988  	 */
989  	return folio_ref_count(folio) - folio_test_private(folio) ==
990  		1 + folio_nr_pages(folio);
991  }
992  
993  /*
994   * We detected a synchronous write error writing a folio out.  Probably
995   * -ENOSPC.  We need to propagate that into the address_space for a subsequent
996   * fsync(), msync() or close().
997   *
998   * The tricky part is that after writepage we cannot touch the mapping: nothing
999   * prevents it from being freed up.  But we have a ref on the folio and once
1000   * that folio is locked, the mapping is pinned.
1001   *
1002   * We're allowed to run sleeping folio_lock() here because we know the caller has
1003   * __GFP_FS.
1004   */
1005  static void handle_write_error(struct address_space *mapping,
1006  				struct folio *folio, int error)
1007  {
1008  	folio_lock(folio);
1009  	if (folio_mapping(folio) == mapping)
1010  		mapping_set_error(mapping, error);
1011  	folio_unlock(folio);
1012  }
1013  
1014  static bool skip_throttle_noprogress(pg_data_t *pgdat)
1015  {
1016  	int reclaimable = 0, write_pending = 0;
1017  	int i;
1018  
1019  	/*
1020  	 * If kswapd is disabled, reschedule if necessary but do not
1021  	 * throttle as the system is likely near OOM.
1022  	 */
1023  	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
1024  		return true;
1025  
1026  	/*
1027  	 * If there are a lot of dirty/writeback pages then do not
1028  	 * throttle as throttling will occur when the pages cycle
1029  	 * towards the end of the LRU if still under writeback.
1030  	 */
1031  	for (i = 0; i < MAX_NR_ZONES; i++) {
1032  		struct zone *zone = pgdat->node_zones + i;
1033  
1034  		if (!populated_zone(zone))
1035  			continue;
1036  
1037  		reclaimable += zone_reclaimable_pages(zone);
1038  		write_pending += zone_page_state_snapshot(zone,
1039  						  NR_ZONE_WRITE_PENDING);
1040  	}
1041  	if (2 * write_pending <= reclaimable)
1042  		return true;
1043  
1044  	return false;
1045  }
1046  
1047  void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
1048  {
1049  	wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason];
1050  	long timeout, ret;
1051  	DEFINE_WAIT(wait);
1052  
1053  	/*
1054  	 * Do not throttle IO workers, kthreads other than kswapd or
1055  	 * workqueues. They may be required for reclaim to make
1056  	 * forward progress (e.g. journalling workqueues or kthreads).
1057  	 */
1058  	if (!current_is_kswapd() &&
1059  	    current->flags & (PF_IO_WORKER|PF_KTHREAD)) {
1060  		cond_resched();
1061  		return;
1062  	}
1063  
1064  	/*
1065  	 * These figures are pulled out of thin air.
1066  	 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
1067  	 * parallel reclaimers which is a short-lived event so the timeout is
1068  	 * short. Failing to make progress or waiting on writeback are
1069  	 * potentially long-lived events so use a longer timeout. This is shaky
1070  	 * logic as a failure to make progress could be due to anything from
1071  	 * writeback to a slow device to excessive references pages at the tail
1072  	 * of the inactive LRU.
1073  	 */
1074  	switch(reason) {
1075  	case VMSCAN_THROTTLE_WRITEBACK:
1076  		timeout = HZ/10;
1077  
1078  		if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) {
1079  			WRITE_ONCE(pgdat->nr_reclaim_start,
1080  				node_page_state(pgdat, NR_THROTTLED_WRITTEN));
1081  		}
1082  
1083  		break;
1084  	case VMSCAN_THROTTLE_CONGESTED:
1085  		fallthrough;
1086  	case VMSCAN_THROTTLE_NOPROGRESS:
1087  		if (skip_throttle_noprogress(pgdat)) {
1088  			cond_resched();
1089  			return;
1090  		}
1091  
1092  		timeout = 1;
1093  
1094  		break;
1095  	case VMSCAN_THROTTLE_ISOLATED:
1096  		timeout = HZ/50;
1097  		break;
1098  	default:
1099  		WARN_ON_ONCE(1);
1100  		timeout = HZ;
1101  		break;
1102  	}
1103  
1104  	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1105  	ret = schedule_timeout(timeout);
1106  	finish_wait(wqh, &wait);
1107  
1108  	if (reason == VMSCAN_THROTTLE_WRITEBACK)
1109  		atomic_dec(&pgdat->nr_writeback_throttled);
1110  
1111  	trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout),
1112  				jiffies_to_usecs(timeout - ret),
1113  				reason);
1114  }
1115  
1116  /*
1117   * Account for pages written if tasks are throttled waiting on dirty
1118   * pages to clean. If enough pages have been cleaned since throttling
1119   * started then wakeup the throttled tasks.
1120   */
1121  void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
1122  							int nr_throttled)
1123  {
1124  	unsigned long nr_written;
1125  
1126  	node_stat_add_folio(folio, NR_THROTTLED_WRITTEN);
1127  
1128  	/*
1129  	 * This is an inaccurate read as the per-cpu deltas may not
1130  	 * be synchronised. However, given that the system is
1131  	 * writeback throttled, it is not worth taking the penalty
1132  	 * of getting an accurate count. At worst, the throttle
1133  	 * timeout guarantees forward progress.
1134  	 */
1135  	nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) -
1136  		READ_ONCE(pgdat->nr_reclaim_start);
1137  
1138  	if (nr_written > SWAP_CLUSTER_MAX * nr_throttled)
1139  		wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]);
1140  }
1141  
1142  /* possible outcome of pageout() */
1143  typedef enum {
1144  	/* failed to write page out, page is locked */
1145  	PAGE_KEEP,
1146  	/* move page to the active list, page is locked */
1147  	PAGE_ACTIVATE,
1148  	/* page has been sent to the disk successfully, page is unlocked */
1149  	PAGE_SUCCESS,
1150  	/* page is clean and locked */
1151  	PAGE_CLEAN,
1152  } pageout_t;
1153  
1154  /*
1155   * pageout is called by shrink_page_list() for each dirty page.
1156   * Calls ->writepage().
1157   */
1158  static pageout_t pageout(struct folio *folio, struct address_space *mapping)
1159  {
1160  	/*
1161  	 * If the folio is dirty, only perform writeback if that write
1162  	 * will be non-blocking.  To prevent this allocation from being
1163  	 * stalled by pagecache activity.  But note that there may be
1164  	 * stalls if we need to run get_block().  We could test
1165  	 * PagePrivate for that.
1166  	 *
1167  	 * If this process is currently in __generic_file_write_iter() against
1168  	 * this folio's queue, we can perform writeback even if that
1169  	 * will block.
1170  	 *
1171  	 * If the folio is swapcache, write it back even if that would
1172  	 * block, for some throttling. This happens by accident, because
1173  	 * swap_backing_dev_info is bust: it doesn't reflect the
1174  	 * congestion state of the swapdevs.  Easy to fix, if needed.
1175  	 */
1176  	if (!is_page_cache_freeable(folio))
1177  		return PAGE_KEEP;
1178  	if (!mapping) {
1179  		/*
1180  		 * Some data journaling orphaned folios can have
1181  		 * folio->mapping == NULL while being dirty with clean buffers.
1182  		 */
1183  		if (folio_test_private(folio)) {
1184  			if (try_to_free_buffers(&folio->page)) {
1185  				folio_clear_dirty(folio);
1186  				pr_info("%s: orphaned folio\n", __func__);
1187  				return PAGE_CLEAN;
1188  			}
1189  		}
1190  		return PAGE_KEEP;
1191  	}
1192  	if (mapping->a_ops->writepage == NULL)
1193  		return PAGE_ACTIVATE;
1194  
1195  	if (folio_clear_dirty_for_io(folio)) {
1196  		int res;
1197  		struct writeback_control wbc = {
1198  			.sync_mode = WB_SYNC_NONE,
1199  			.nr_to_write = SWAP_CLUSTER_MAX,
1200  			.range_start = 0,
1201  			.range_end = LLONG_MAX,
1202  			.for_reclaim = 1,
1203  		};
1204  
1205  		folio_set_reclaim(folio);
1206  		res = mapping->a_ops->writepage(&folio->page, &wbc);
1207  		if (res < 0)
1208  			handle_write_error(mapping, folio, res);
1209  		if (res == AOP_WRITEPAGE_ACTIVATE) {
1210  			folio_clear_reclaim(folio);
1211  			return PAGE_ACTIVATE;
1212  		}
1213  
1214  		if (!folio_test_writeback(folio)) {
1215  			/* synchronous write or broken a_ops? */
1216  			folio_clear_reclaim(folio);
1217  		}
1218  		trace_mm_vmscan_write_folio(folio);
1219  		node_stat_add_folio(folio, NR_VMSCAN_WRITE);
1220  		return PAGE_SUCCESS;
1221  	}
1222  
1223  	return PAGE_CLEAN;
1224  }
1225  
1226  /*
1227   * Same as remove_mapping, but if the page is removed from the mapping, it
1228   * gets returned with a refcount of 0.
1229   */
1230  static int __remove_mapping(struct address_space *mapping, struct folio *folio,
1231  			    bool reclaimed, struct mem_cgroup *target_memcg)
1232  {
1233  	int refcount;
1234  	void *shadow = NULL;
1235  
1236  	BUG_ON(!folio_test_locked(folio));
1237  	BUG_ON(mapping != folio_mapping(folio));
1238  
1239  	if (!folio_test_swapcache(folio))
1240  		spin_lock(&mapping->host->i_lock);
1241  	xa_lock_irq(&mapping->i_pages);
1242  	/*
1243  	 * The non racy check for a busy page.
1244  	 *
1245  	 * Must be careful with the order of the tests. When someone has
1246  	 * a ref to the page, it may be possible that they dirty it then
1247  	 * drop the reference. So if PageDirty is tested before page_count
1248  	 * here, then the following race may occur:
1249  	 *
1250  	 * get_user_pages(&page);
1251  	 * [user mapping goes away]
1252  	 * write_to(page);
1253  	 *				!PageDirty(page)    [good]
1254  	 * SetPageDirty(page);
1255  	 * put_page(page);
1256  	 *				!page_count(page)   [good, discard it]
1257  	 *
1258  	 * [oops, our write_to data is lost]
1259  	 *
1260  	 * Reversing the order of the tests ensures such a situation cannot
1261  	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
1262  	 * load is not satisfied before that of page->_refcount.
1263  	 *
1264  	 * Note that if SetPageDirty is always performed via set_page_dirty,
1265  	 * and thus under the i_pages lock, then this ordering is not required.
1266  	 */
1267  	refcount = 1 + folio_nr_pages(folio);
1268  	if (!folio_ref_freeze(folio, refcount))
1269  		goto cannot_free;
1270  	/* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
1271  	if (unlikely(folio_test_dirty(folio))) {
1272  		folio_ref_unfreeze(folio, refcount);
1273  		goto cannot_free;
1274  	}
1275  
1276  	if (folio_test_swapcache(folio)) {
1277  		swp_entry_t swap = folio_swap_entry(folio);
1278  		mem_cgroup_swapout(folio, swap);
1279  		if (reclaimed && !mapping_exiting(mapping))
1280  			shadow = workingset_eviction(folio, target_memcg);
1281  		__delete_from_swap_cache(&folio->page, swap, shadow);
1282  		xa_unlock_irq(&mapping->i_pages);
1283  		put_swap_page(&folio->page, swap);
1284  	} else {
1285  		void (*freepage)(struct page *);
1286  
1287  		freepage = mapping->a_ops->freepage;
1288  		/*
1289  		 * Remember a shadow entry for reclaimed file cache in
1290  		 * order to detect refaults, thus thrashing, later on.
1291  		 *
1292  		 * But don't store shadows in an address space that is
1293  		 * already exiting.  This is not just an optimization,
1294  		 * inode reclaim needs to empty out the radix tree or
1295  		 * the nodes are lost.  Don't plant shadows behind its
1296  		 * back.
1297  		 *
1298  		 * We also don't store shadows for DAX mappings because the
1299  		 * only page cache pages found in these are zero pages
1300  		 * covering holes, and because we don't want to mix DAX
1301  		 * exceptional entries and shadow exceptional entries in the
1302  		 * same address_space.
1303  		 */
1304  		if (reclaimed && folio_is_file_lru(folio) &&
1305  		    !mapping_exiting(mapping) && !dax_mapping(mapping))
1306  			shadow = workingset_eviction(folio, target_memcg);
1307  		__filemap_remove_folio(folio, shadow);
1308  		xa_unlock_irq(&mapping->i_pages);
1309  		if (mapping_shrinkable(mapping))
1310  			inode_add_lru(mapping->host);
1311  		spin_unlock(&mapping->host->i_lock);
1312  
1313  		if (freepage != NULL)
1314  			freepage(&folio->page);
1315  	}
1316  
1317  	return 1;
1318  
1319  cannot_free:
1320  	xa_unlock_irq(&mapping->i_pages);
1321  	if (!folio_test_swapcache(folio))
1322  		spin_unlock(&mapping->host->i_lock);
1323  	return 0;
1324  }
1325  
1326  /**
1327   * remove_mapping() - Attempt to remove a folio from its mapping.
1328   * @mapping: The address space.
1329   * @folio: The folio to remove.
1330   *
1331   * If the folio is dirty, under writeback or if someone else has a ref
1332   * on it, removal will fail.
1333   * Return: The number of pages removed from the mapping.  0 if the folio
1334   * could not be removed.
1335   * Context: The caller should have a single refcount on the folio and
1336   * hold its lock.
1337   */
1338  long remove_mapping(struct address_space *mapping, struct folio *folio)
1339  {
1340  	if (__remove_mapping(mapping, folio, false, NULL)) {
1341  		/*
1342  		 * Unfreezing the refcount with 1 effectively
1343  		 * drops the pagecache ref for us without requiring another
1344  		 * atomic operation.
1345  		 */
1346  		folio_ref_unfreeze(folio, 1);
1347  		return folio_nr_pages(folio);
1348  	}
1349  	return 0;
1350  }
1351  
1352  /**
1353   * folio_putback_lru - Put previously isolated folio onto appropriate LRU list.
1354   * @folio: Folio to be returned to an LRU list.
1355   *
1356   * Add previously isolated @folio to appropriate LRU list.
1357   * The folio may still be unevictable for other reasons.
1358   *
1359   * Context: lru_lock must not be held, interrupts must be enabled.
1360   */
1361  void folio_putback_lru(struct folio *folio)
1362  {
1363  	folio_add_lru(folio);
1364  	folio_put(folio);		/* drop ref from isolate */
1365  }
1366  
1367  enum page_references {
1368  	PAGEREF_RECLAIM,
1369  	PAGEREF_RECLAIM_CLEAN,
1370  	PAGEREF_KEEP,
1371  	PAGEREF_ACTIVATE,
1372  };
1373  
1374  static enum page_references folio_check_references(struct folio *folio,
1375  						  struct scan_control *sc)
1376  {
1377  	int referenced_ptes, referenced_folio;
1378  	unsigned long vm_flags;
1379  
1380  	referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup,
1381  					   &vm_flags);
1382  	referenced_folio = folio_test_clear_referenced(folio);
1383  
1384  	/*
1385  	 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma.
1386  	 * Let the folio, now marked Mlocked, be moved to the unevictable list.
1387  	 */
1388  	if (vm_flags & VM_LOCKED)
1389  		return PAGEREF_ACTIVATE;
1390  
1391  	if (referenced_ptes) {
1392  		/*
1393  		 * All mapped folios start out with page table
1394  		 * references from the instantiating fault, so we need
1395  		 * to look twice if a mapped file/anon folio is used more
1396  		 * than once.
1397  		 *
1398  		 * Mark it and spare it for another trip around the
1399  		 * inactive list.  Another page table reference will
1400  		 * lead to its activation.
1401  		 *
1402  		 * Note: the mark is set for activated folios as well
1403  		 * so that recently deactivated but used folios are
1404  		 * quickly recovered.
1405  		 */
1406  		folio_set_referenced(folio);
1407  
1408  		if (referenced_folio || referenced_ptes > 1)
1409  			return PAGEREF_ACTIVATE;
1410  
1411  		/*
1412  		 * Activate file-backed executable folios after first usage.
1413  		 */
1414  		if ((vm_flags & VM_EXEC) && !folio_test_swapbacked(folio))
1415  			return PAGEREF_ACTIVATE;
1416  
1417  		return PAGEREF_KEEP;
1418  	}
1419  
1420  	/* Reclaim if clean, defer dirty folios to writeback */
1421  	if (referenced_folio && !folio_test_swapbacked(folio))
1422  		return PAGEREF_RECLAIM_CLEAN;
1423  
1424  	return PAGEREF_RECLAIM;
1425  }
1426  
1427  /* Check if a page is dirty or under writeback */
1428  static void folio_check_dirty_writeback(struct folio *folio,
1429  				       bool *dirty, bool *writeback)
1430  {
1431  	struct address_space *mapping;
1432  
1433  	/*
1434  	 * Anonymous pages are not handled by flushers and must be written
1435  	 * from reclaim context. Do not stall reclaim based on them
1436  	 */
1437  	if (!folio_is_file_lru(folio) ||
1438  	    (folio_test_anon(folio) && !folio_test_swapbacked(folio))) {
1439  		*dirty = false;
1440  		*writeback = false;
1441  		return;
1442  	}
1443  
1444  	/* By default assume that the folio flags are accurate */
1445  	*dirty = folio_test_dirty(folio);
1446  	*writeback = folio_test_writeback(folio);
1447  
1448  	/* Verify dirty/writeback state if the filesystem supports it */
1449  	if (!folio_test_private(folio))
1450  		return;
1451  
1452  	mapping = folio_mapping(folio);
1453  	if (mapping && mapping->a_ops->is_dirty_writeback)
1454  		mapping->a_ops->is_dirty_writeback(&folio->page, dirty, writeback);
1455  }
1456  
1457  static struct page *alloc_demote_page(struct page *page, unsigned long node)
1458  {
1459  	struct migration_target_control mtc = {
1460  		/*
1461  		 * Allocate from 'node', or fail quickly and quietly.
1462  		 * When this happens, 'page' will likely just be discarded
1463  		 * instead of migrated.
1464  		 */
1465  		.gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) |
1466  			    __GFP_THISNODE  | __GFP_NOWARN |
1467  			    __GFP_NOMEMALLOC | GFP_NOWAIT,
1468  		.nid = node
1469  	};
1470  
1471  	return alloc_migration_target(page, (unsigned long)&mtc);
1472  }
1473  
1474  /*
1475   * Take pages on @demote_list and attempt to demote them to
1476   * another node.  Pages which are not demoted are left on
1477   * @demote_pages.
1478   */
1479  static unsigned int demote_page_list(struct list_head *demote_pages,
1480  				     struct pglist_data *pgdat)
1481  {
1482  	int target_nid = next_demotion_node(pgdat->node_id);
1483  	unsigned int nr_succeeded;
1484  
1485  	if (list_empty(demote_pages))
1486  		return 0;
1487  
1488  	if (target_nid == NUMA_NO_NODE)
1489  		return 0;
1490  
1491  	/* Demotion ignores all cpuset and mempolicy settings */
1492  	migrate_pages(demote_pages, alloc_demote_page, NULL,
1493  			    target_nid, MIGRATE_ASYNC, MR_DEMOTION,
1494  			    &nr_succeeded);
1495  
1496  	if (current_is_kswapd())
1497  		__count_vm_events(PGDEMOTE_KSWAPD, nr_succeeded);
1498  	else
1499  		__count_vm_events(PGDEMOTE_DIRECT, nr_succeeded);
1500  
1501  	return nr_succeeded;
1502  }
1503  
1504  /*
1505   * shrink_page_list() returns the number of reclaimed pages
1506   */
1507  static unsigned int shrink_page_list(struct list_head *page_list,
1508  				     struct pglist_data *pgdat,
1509  				     struct scan_control *sc,
1510  				     struct reclaim_stat *stat,
1511  				     bool ignore_references)
1512  {
1513  	LIST_HEAD(ret_pages);
1514  	LIST_HEAD(free_pages);
1515  	LIST_HEAD(demote_pages);
1516  	unsigned int nr_reclaimed = 0;
1517  	unsigned int pgactivate = 0;
1518  	bool do_demote_pass;
1519  
1520  	memset(stat, 0, sizeof(*stat));
1521  	cond_resched();
1522  	do_demote_pass = can_demote(pgdat->node_id, sc);
1523  
1524  retry:
1525  	while (!list_empty(page_list)) {
1526  		struct address_space *mapping;
1527  		struct page *page;
1528  		struct folio *folio;
1529  		enum page_references references = PAGEREF_RECLAIM;
1530  		bool dirty, writeback, may_enter_fs;
1531  		unsigned int nr_pages;
1532  
1533  		cond_resched();
1534  
1535  		folio = lru_to_folio(page_list);
1536  		list_del(&folio->lru);
1537  		page = &folio->page;
1538  
1539  		if (!trylock_page(page))
1540  			goto keep;
1541  
1542  		VM_BUG_ON_PAGE(PageActive(page), page);
1543  
1544  		nr_pages = compound_nr(page);
1545  
1546  		/* Account the number of base pages even though THP */
1547  		sc->nr_scanned += nr_pages;
1548  
1549  		if (unlikely(!page_evictable(page)))
1550  			goto activate_locked;
1551  
1552  		if (!sc->may_unmap && page_mapped(page))
1553  			goto keep_locked;
1554  
1555  		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1556  			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1557  
1558  		/*
1559  		 * The number of dirty pages determines if a node is marked
1560  		 * reclaim_congested. kswapd will stall and start writing
1561  		 * pages if the tail of the LRU is all dirty unqueued pages.
1562  		 */
1563  		folio_check_dirty_writeback(folio, &dirty, &writeback);
1564  		if (dirty || writeback)
1565  			stat->nr_dirty += nr_pages;
1566  
1567  		if (dirty && !writeback)
1568  			stat->nr_unqueued_dirty += nr_pages;
1569  
1570  		/*
1571  		 * Treat this page as congested if the underlying BDI is or if
1572  		 * pages are cycling through the LRU so quickly that the
1573  		 * pages marked for immediate reclaim are making it to the
1574  		 * end of the LRU a second time.
1575  		 */
1576  		mapping = page_mapping(page);
1577  		if (writeback && PageReclaim(page))
1578  			stat->nr_congested += nr_pages;
1579  
1580  		/*
1581  		 * If a page at the tail of the LRU is under writeback, there
1582  		 * are three cases to consider.
1583  		 *
1584  		 * 1) If reclaim is encountering an excessive number of pages
1585  		 *    under writeback and this page is both under writeback and
1586  		 *    PageReclaim then it indicates that pages are being queued
1587  		 *    for IO but are being recycled through the LRU before the
1588  		 *    IO can complete. Waiting on the page itself risks an
1589  		 *    indefinite stall if it is impossible to writeback the
1590  		 *    page due to IO error or disconnected storage so instead
1591  		 *    note that the LRU is being scanned too quickly and the
1592  		 *    caller can stall after page list has been processed.
1593  		 *
1594  		 * 2) Global or new memcg reclaim encounters a page that is
1595  		 *    not marked for immediate reclaim, or the caller does not
1596  		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1597  		 *    not to fs). In this case mark the page for immediate
1598  		 *    reclaim and continue scanning.
1599  		 *
1600  		 *    Require may_enter_fs because we would wait on fs, which
1601  		 *    may not have submitted IO yet. And the loop driver might
1602  		 *    enter reclaim, and deadlock if it waits on a page for
1603  		 *    which it is needed to do the write (loop masks off
1604  		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1605  		 *    would probably show more reasons.
1606  		 *
1607  		 * 3) Legacy memcg encounters a page that is already marked
1608  		 *    PageReclaim. memcg does not have any dirty pages
1609  		 *    throttling so we could easily OOM just because too many
1610  		 *    pages are in writeback and there is nothing else to
1611  		 *    reclaim. Wait for the writeback to complete.
1612  		 *
1613  		 * In cases 1) and 2) we activate the pages to get them out of
1614  		 * the way while we continue scanning for clean pages on the
1615  		 * inactive list and refilling from the active list. The
1616  		 * observation here is that waiting for disk writes is more
1617  		 * expensive than potentially causing reloads down the line.
1618  		 * Since they're marked for immediate reclaim, they won't put
1619  		 * memory pressure on the cache working set any longer than it
1620  		 * takes to write them to disk.
1621  		 */
1622  		if (PageWriteback(page)) {
1623  			/* Case 1 above */
1624  			if (current_is_kswapd() &&
1625  			    PageReclaim(page) &&
1626  			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1627  				stat->nr_immediate += nr_pages;
1628  				goto activate_locked;
1629  
1630  			/* Case 2 above */
1631  			} else if (writeback_throttling_sane(sc) ||
1632  			    !PageReclaim(page) || !may_enter_fs) {
1633  				/*
1634  				 * This is slightly racy - end_page_writeback()
1635  				 * might have just cleared PageReclaim, then
1636  				 * setting PageReclaim here end up interpreted
1637  				 * as PageReadahead - but that does not matter
1638  				 * enough to care.  What we do want is for this
1639  				 * page to have PageReclaim set next time memcg
1640  				 * reclaim reaches the tests above, so it will
1641  				 * then wait_on_page_writeback() to avoid OOM;
1642  				 * and it's also appropriate in global reclaim.
1643  				 */
1644  				SetPageReclaim(page);
1645  				stat->nr_writeback += nr_pages;
1646  				goto activate_locked;
1647  
1648  			/* Case 3 above */
1649  			} else {
1650  				unlock_page(page);
1651  				wait_on_page_writeback(page);
1652  				/* then go back and try same page again */
1653  				list_add_tail(&page->lru, page_list);
1654  				continue;
1655  			}
1656  		}
1657  
1658  		if (!ignore_references)
1659  			references = folio_check_references(folio, sc);
1660  
1661  		switch (references) {
1662  		case PAGEREF_ACTIVATE:
1663  			goto activate_locked;
1664  		case PAGEREF_KEEP:
1665  			stat->nr_ref_keep += nr_pages;
1666  			goto keep_locked;
1667  		case PAGEREF_RECLAIM:
1668  		case PAGEREF_RECLAIM_CLEAN:
1669  			; /* try to reclaim the page below */
1670  		}
1671  
1672  		/*
1673  		 * Before reclaiming the page, try to relocate
1674  		 * its contents to another node.
1675  		 */
1676  		if (do_demote_pass &&
1677  		    (thp_migration_supported() || !PageTransHuge(page))) {
1678  			list_add(&page->lru, &demote_pages);
1679  			unlock_page(page);
1680  			continue;
1681  		}
1682  
1683  		/*
1684  		 * Anonymous process memory has backing store?
1685  		 * Try to allocate it some swap space here.
1686  		 * Lazyfree page could be freed directly
1687  		 */
1688  		if (PageAnon(page) && PageSwapBacked(page)) {
1689  			if (!PageSwapCache(page)) {
1690  				if (!(sc->gfp_mask & __GFP_IO))
1691  					goto keep_locked;
1692  				if (folio_maybe_dma_pinned(folio))
1693  					goto keep_locked;
1694  				if (PageTransHuge(page)) {
1695  					/* cannot split THP, skip it */
1696  					if (!can_split_folio(folio, NULL))
1697  						goto activate_locked;
1698  					/*
1699  					 * Split pages without a PMD map right
1700  					 * away. Chances are some or all of the
1701  					 * tail pages can be freed without IO.
1702  					 */
1703  					if (!folio_entire_mapcount(folio) &&
1704  					    split_folio_to_list(folio,
1705  								page_list))
1706  						goto activate_locked;
1707  				}
1708  				if (!add_to_swap(page)) {
1709  					if (!PageTransHuge(page))
1710  						goto activate_locked_split;
1711  					/* Fallback to swap normal pages */
1712  					if (split_folio_to_list(folio,
1713  								page_list))
1714  						goto activate_locked;
1715  #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1716  					count_vm_event(THP_SWPOUT_FALLBACK);
1717  #endif
1718  					if (!add_to_swap(page))
1719  						goto activate_locked_split;
1720  				}
1721  
1722  				may_enter_fs = true;
1723  
1724  				/* Adding to swap updated mapping */
1725  				mapping = page_mapping(page);
1726  			}
1727  		} else if (PageSwapBacked(page) && PageTransHuge(page)) {
1728  			/* Split shmem THP */
1729  			if (split_folio_to_list(folio, page_list))
1730  				goto keep_locked;
1731  		}
1732  
1733  		/*
1734  		 * THP may get split above, need minus tail pages and update
1735  		 * nr_pages to avoid accounting tail pages twice.
1736  		 *
1737  		 * The tail pages that are added into swap cache successfully
1738  		 * reach here.
1739  		 */
1740  		if ((nr_pages > 1) && !PageTransHuge(page)) {
1741  			sc->nr_scanned -= (nr_pages - 1);
1742  			nr_pages = 1;
1743  		}
1744  
1745  		/*
1746  		 * The page is mapped into the page tables of one or more
1747  		 * processes. Try to unmap it here.
1748  		 */
1749  		if (page_mapped(page)) {
1750  			enum ttu_flags flags = TTU_BATCH_FLUSH;
1751  			bool was_swapbacked = PageSwapBacked(page);
1752  
1753  			if (PageTransHuge(page) &&
1754  					thp_order(page) >= HPAGE_PMD_ORDER)
1755  				flags |= TTU_SPLIT_HUGE_PMD;
1756  
1757  			try_to_unmap(folio, flags);
1758  			if (page_mapped(page)) {
1759  				stat->nr_unmap_fail += nr_pages;
1760  				if (!was_swapbacked && PageSwapBacked(page))
1761  					stat->nr_lazyfree_fail += nr_pages;
1762  				goto activate_locked;
1763  			}
1764  		}
1765  
1766  		if (PageDirty(page)) {
1767  			/*
1768  			 * Only kswapd can writeback filesystem pages
1769  			 * to avoid risk of stack overflow. But avoid
1770  			 * injecting inefficient single-page IO into
1771  			 * flusher writeback as much as possible: only
1772  			 * write pages when we've encountered many
1773  			 * dirty pages, and when we've already scanned
1774  			 * the rest of the LRU for clean pages and see
1775  			 * the same dirty pages again (PageReclaim).
1776  			 */
1777  			if (page_is_file_lru(page) &&
1778  			    (!current_is_kswapd() || !PageReclaim(page) ||
1779  			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1780  				/*
1781  				 * Immediately reclaim when written back.
1782  				 * Similar in principal to deactivate_page()
1783  				 * except we already have the page isolated
1784  				 * and know it's dirty
1785  				 */
1786  				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1787  				SetPageReclaim(page);
1788  
1789  				goto activate_locked;
1790  			}
1791  
1792  			if (references == PAGEREF_RECLAIM_CLEAN)
1793  				goto keep_locked;
1794  			if (!may_enter_fs)
1795  				goto keep_locked;
1796  			if (!sc->may_writepage)
1797  				goto keep_locked;
1798  
1799  			/*
1800  			 * Page is dirty. Flush the TLB if a writable entry
1801  			 * potentially exists to avoid CPU writes after IO
1802  			 * starts and then write it out here.
1803  			 */
1804  			try_to_unmap_flush_dirty();
1805  			switch (pageout(folio, mapping)) {
1806  			case PAGE_KEEP:
1807  				goto keep_locked;
1808  			case PAGE_ACTIVATE:
1809  				goto activate_locked;
1810  			case PAGE_SUCCESS:
1811  				stat->nr_pageout += nr_pages;
1812  
1813  				if (PageWriteback(page))
1814  					goto keep;
1815  				if (PageDirty(page))
1816  					goto keep;
1817  
1818  				/*
1819  				 * A synchronous write - probably a ramdisk.  Go
1820  				 * ahead and try to reclaim the page.
1821  				 */
1822  				if (!trylock_page(page))
1823  					goto keep;
1824  				if (PageDirty(page) || PageWriteback(page))
1825  					goto keep_locked;
1826  				mapping = page_mapping(page);
1827  				fallthrough;
1828  			case PAGE_CLEAN:
1829  				; /* try to free the page below */
1830  			}
1831  		}
1832  
1833  		/*
1834  		 * If the page has buffers, try to free the buffer mappings
1835  		 * associated with this page. If we succeed we try to free
1836  		 * the page as well.
1837  		 *
1838  		 * We do this even if the page is PageDirty().
1839  		 * try_to_release_page() does not perform I/O, but it is
1840  		 * possible for a page to have PageDirty set, but it is actually
1841  		 * clean (all its buffers are clean).  This happens if the
1842  		 * buffers were written out directly, with submit_bh(). ext3
1843  		 * will do this, as well as the blockdev mapping.
1844  		 * try_to_release_page() will discover that cleanness and will
1845  		 * drop the buffers and mark the page clean - it can be freed.
1846  		 *
1847  		 * Rarely, pages can have buffers and no ->mapping.  These are
1848  		 * the pages which were not successfully invalidated in
1849  		 * truncate_cleanup_page().  We try to drop those buffers here
1850  		 * and if that worked, and the page is no longer mapped into
1851  		 * process address space (page_count == 1) it can be freed.
1852  		 * Otherwise, leave the page on the LRU so it is swappable.
1853  		 */
1854  		if (page_has_private(page)) {
1855  			if (!try_to_release_page(page, sc->gfp_mask))
1856  				goto activate_locked;
1857  			if (!mapping && page_count(page) == 1) {
1858  				unlock_page(page);
1859  				if (put_page_testzero(page))
1860  					goto free_it;
1861  				else {
1862  					/*
1863  					 * rare race with speculative reference.
1864  					 * the speculative reference will free
1865  					 * this page shortly, so we may
1866  					 * increment nr_reclaimed here (and
1867  					 * leave it off the LRU).
1868  					 */
1869  					nr_reclaimed++;
1870  					continue;
1871  				}
1872  			}
1873  		}
1874  
1875  		if (PageAnon(page) && !PageSwapBacked(page)) {
1876  			/* follow __remove_mapping for reference */
1877  			if (!page_ref_freeze(page, 1))
1878  				goto keep_locked;
1879  			/*
1880  			 * The page has only one reference left, which is
1881  			 * from the isolation. After the caller puts the
1882  			 * page back on lru and drops the reference, the
1883  			 * page will be freed anyway. It doesn't matter
1884  			 * which lru it goes. So we don't bother checking
1885  			 * PageDirty here.
1886  			 */
1887  			count_vm_event(PGLAZYFREED);
1888  			count_memcg_page_event(page, PGLAZYFREED);
1889  		} else if (!mapping || !__remove_mapping(mapping, folio, true,
1890  							 sc->target_mem_cgroup))
1891  			goto keep_locked;
1892  
1893  		unlock_page(page);
1894  free_it:
1895  		/*
1896  		 * THP may get swapped out in a whole, need account
1897  		 * all base pages.
1898  		 */
1899  		nr_reclaimed += nr_pages;
1900  
1901  		/*
1902  		 * Is there need to periodically free_page_list? It would
1903  		 * appear not as the counts should be low
1904  		 */
1905  		if (unlikely(PageTransHuge(page)))
1906  			destroy_compound_page(page);
1907  		else
1908  			list_add(&page->lru, &free_pages);
1909  		continue;
1910  
1911  activate_locked_split:
1912  		/*
1913  		 * The tail pages that are failed to add into swap cache
1914  		 * reach here.  Fixup nr_scanned and nr_pages.
1915  		 */
1916  		if (nr_pages > 1) {
1917  			sc->nr_scanned -= (nr_pages - 1);
1918  			nr_pages = 1;
1919  		}
1920  activate_locked:
1921  		/* Not a candidate for swapping, so reclaim swap space. */
1922  		if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1923  						PageMlocked(page)))
1924  			try_to_free_swap(page);
1925  		VM_BUG_ON_PAGE(PageActive(page), page);
1926  		if (!PageMlocked(page)) {
1927  			int type = page_is_file_lru(page);
1928  			SetPageActive(page);
1929  			stat->nr_activate[type] += nr_pages;
1930  			count_memcg_page_event(page, PGACTIVATE);
1931  		}
1932  keep_locked:
1933  		unlock_page(page);
1934  keep:
1935  		list_add(&page->lru, &ret_pages);
1936  		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1937  	}
1938  	/* 'page_list' is always empty here */
1939  
1940  	/* Migrate pages selected for demotion */
1941  	nr_reclaimed += demote_page_list(&demote_pages, pgdat);
1942  	/* Pages that could not be demoted are still in @demote_pages */
1943  	if (!list_empty(&demote_pages)) {
1944  		/* Pages which failed to demoted go back on @page_list for retry: */
1945  		list_splice_init(&demote_pages, page_list);
1946  		do_demote_pass = false;
1947  		goto retry;
1948  	}
1949  
1950  	pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1951  
1952  	mem_cgroup_uncharge_list(&free_pages);
1953  	try_to_unmap_flush();
1954  	free_unref_page_list(&free_pages);
1955  
1956  	list_splice(&ret_pages, page_list);
1957  	count_vm_events(PGACTIVATE, pgactivate);
1958  
1959  	return nr_reclaimed;
1960  }
1961  
1962  unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1963  					    struct list_head *page_list)
1964  {
1965  	struct scan_control sc = {
1966  		.gfp_mask = GFP_KERNEL,
1967  		.may_unmap = 1,
1968  	};
1969  	struct reclaim_stat stat;
1970  	unsigned int nr_reclaimed;
1971  	struct page *page, *next;
1972  	LIST_HEAD(clean_pages);
1973  	unsigned int noreclaim_flag;
1974  
1975  	list_for_each_entry_safe(page, next, page_list, lru) {
1976  		if (!PageHuge(page) && page_is_file_lru(page) &&
1977  		    !PageDirty(page) && !__PageMovable(page) &&
1978  		    !PageUnevictable(page)) {
1979  			ClearPageActive(page);
1980  			list_move(&page->lru, &clean_pages);
1981  		}
1982  	}
1983  
1984  	/*
1985  	 * We should be safe here since we are only dealing with file pages and
1986  	 * we are not kswapd and therefore cannot write dirty file pages. But
1987  	 * call memalloc_noreclaim_save() anyway, just in case these conditions
1988  	 * change in the future.
1989  	 */
1990  	noreclaim_flag = memalloc_noreclaim_save();
1991  	nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1992  					&stat, true);
1993  	memalloc_noreclaim_restore(noreclaim_flag);
1994  
1995  	list_splice(&clean_pages, page_list);
1996  	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1997  			    -(long)nr_reclaimed);
1998  	/*
1999  	 * Since lazyfree pages are isolated from file LRU from the beginning,
2000  	 * they will rotate back to anonymous LRU in the end if it failed to
2001  	 * discard so isolated count will be mismatched.
2002  	 * Compensate the isolated count for both LRU lists.
2003  	 */
2004  	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
2005  			    stat.nr_lazyfree_fail);
2006  	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2007  			    -(long)stat.nr_lazyfree_fail);
2008  	return nr_reclaimed;
2009  }
2010  
2011  /*
2012   * Update LRU sizes after isolating pages. The LRU size updates must
2013   * be complete before mem_cgroup_update_lru_size due to a sanity check.
2014   */
2015  static __always_inline void update_lru_sizes(struct lruvec *lruvec,
2016  			enum lru_list lru, unsigned long *nr_zone_taken)
2017  {
2018  	int zid;
2019  
2020  	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2021  		if (!nr_zone_taken[zid])
2022  			continue;
2023  
2024  		update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
2025  	}
2026  
2027  }
2028  
2029  /*
2030   * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
2031   *
2032   * lruvec->lru_lock is heavily contended.  Some of the functions that
2033   * shrink the lists perform better by taking out a batch of pages
2034   * and working on them outside the LRU lock.
2035   *
2036   * For pagecache intensive workloads, this function is the hottest
2037   * spot in the kernel (apart from copy_*_user functions).
2038   *
2039   * Lru_lock must be held before calling this function.
2040   *
2041   * @nr_to_scan:	The number of eligible pages to look through on the list.
2042   * @lruvec:	The LRU vector to pull pages from.
2043   * @dst:	The temp list to put pages on to.
2044   * @nr_scanned:	The number of pages that were scanned.
2045   * @sc:		The scan_control struct for this reclaim session
2046   * @lru:	LRU list id for isolating
2047   *
2048   * returns how many pages were moved onto *@dst.
2049   */
2050  static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
2051  		struct lruvec *lruvec, struct list_head *dst,
2052  		unsigned long *nr_scanned, struct scan_control *sc,
2053  		enum lru_list lru)
2054  {
2055  	struct list_head *src = &lruvec->lists[lru];
2056  	unsigned long nr_taken = 0;
2057  	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
2058  	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
2059  	unsigned long skipped = 0;
2060  	unsigned long scan, total_scan, nr_pages;
2061  	LIST_HEAD(pages_skipped);
2062  
2063  	total_scan = 0;
2064  	scan = 0;
2065  	while (scan < nr_to_scan && !list_empty(src)) {
2066  		struct list_head *move_to = src;
2067  		struct page *page;
2068  
2069  		page = lru_to_page(src);
2070  		prefetchw_prev_lru_page(page, src, flags);
2071  
2072  		nr_pages = compound_nr(page);
2073  		total_scan += nr_pages;
2074  
2075  		if (page_zonenum(page) > sc->reclaim_idx) {
2076  			nr_skipped[page_zonenum(page)] += nr_pages;
2077  			move_to = &pages_skipped;
2078  			goto move;
2079  		}
2080  
2081  		/*
2082  		 * Do not count skipped pages because that makes the function
2083  		 * return with no isolated pages if the LRU mostly contains
2084  		 * ineligible pages.  This causes the VM to not reclaim any
2085  		 * pages, triggering a premature OOM.
2086  		 * Account all tail pages of THP.
2087  		 */
2088  		scan += nr_pages;
2089  
2090  		if (!PageLRU(page))
2091  			goto move;
2092  		if (!sc->may_unmap && page_mapped(page))
2093  			goto move;
2094  
2095  		/*
2096  		 * Be careful not to clear PageLRU until after we're
2097  		 * sure the page is not being freed elsewhere -- the
2098  		 * page release code relies on it.
2099  		 */
2100  		if (unlikely(!get_page_unless_zero(page)))
2101  			goto move;
2102  
2103  		if (!TestClearPageLRU(page)) {
2104  			/* Another thread is already isolating this page */
2105  			put_page(page);
2106  			goto move;
2107  		}
2108  
2109  		nr_taken += nr_pages;
2110  		nr_zone_taken[page_zonenum(page)] += nr_pages;
2111  		move_to = dst;
2112  move:
2113  		list_move(&page->lru, move_to);
2114  	}
2115  
2116  	/*
2117  	 * Splice any skipped pages to the start of the LRU list. Note that
2118  	 * this disrupts the LRU order when reclaiming for lower zones but
2119  	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
2120  	 * scanning would soon rescan the same pages to skip and put the
2121  	 * system at risk of premature OOM.
2122  	 */
2123  	if (!list_empty(&pages_skipped)) {
2124  		int zid;
2125  
2126  		list_splice(&pages_skipped, src);
2127  		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2128  			if (!nr_skipped[zid])
2129  				continue;
2130  
2131  			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
2132  			skipped += nr_skipped[zid];
2133  		}
2134  	}
2135  	*nr_scanned = total_scan;
2136  	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
2137  				    total_scan, skipped, nr_taken,
2138  				    sc->may_unmap ? 0 : ISOLATE_UNMAPPED, lru);
2139  	update_lru_sizes(lruvec, lru, nr_zone_taken);
2140  	return nr_taken;
2141  }
2142  
2143  /**
2144   * folio_isolate_lru() - Try to isolate a folio from its LRU list.
2145   * @folio: Folio to isolate from its LRU list.
2146   *
2147   * Isolate a @folio from an LRU list and adjust the vmstat statistic
2148   * corresponding to whatever LRU list the folio was on.
2149   *
2150   * The folio will have its LRU flag cleared.  If it was found on the
2151   * active list, it will have the Active flag set.  If it was found on the
2152   * unevictable list, it will have the Unevictable flag set.  These flags
2153   * may need to be cleared by the caller before letting the page go.
2154   *
2155   * Context:
2156   *
2157   * (1) Must be called with an elevated refcount on the page. This is a
2158   *     fundamental difference from isolate_lru_pages() (which is called
2159   *     without a stable reference).
2160   * (2) The lru_lock must not be held.
2161   * (3) Interrupts must be enabled.
2162   *
2163   * Return: 0 if the folio was removed from an LRU list.
2164   * -EBUSY if the folio was not on an LRU list.
2165   */
2166  int folio_isolate_lru(struct folio *folio)
2167  {
2168  	int ret = -EBUSY;
2169  
2170  	VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio);
2171  
2172  	if (folio_test_clear_lru(folio)) {
2173  		struct lruvec *lruvec;
2174  
2175  		folio_get(folio);
2176  		lruvec = folio_lruvec_lock_irq(folio);
2177  		lruvec_del_folio(lruvec, folio);
2178  		unlock_page_lruvec_irq(lruvec);
2179  		ret = 0;
2180  	}
2181  
2182  	return ret;
2183  }
2184  
2185  /*
2186   * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
2187   * then get rescheduled. When there are massive number of tasks doing page
2188   * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
2189   * the LRU list will go small and be scanned faster than necessary, leading to
2190   * unnecessary swapping, thrashing and OOM.
2191   */
2192  static int too_many_isolated(struct pglist_data *pgdat, int file,
2193  		struct scan_control *sc)
2194  {
2195  	unsigned long inactive, isolated;
2196  	bool too_many;
2197  
2198  	if (current_is_kswapd())
2199  		return 0;
2200  
2201  	if (!writeback_throttling_sane(sc))
2202  		return 0;
2203  
2204  	if (file) {
2205  		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
2206  		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
2207  	} else {
2208  		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
2209  		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
2210  	}
2211  
2212  	/*
2213  	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
2214  	 * won't get blocked by normal direct-reclaimers, forming a circular
2215  	 * deadlock.
2216  	 */
2217  	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
2218  		inactive >>= 3;
2219  
2220  	too_many = isolated > inactive;
2221  
2222  	/* Wake up tasks throttled due to too_many_isolated. */
2223  	if (!too_many)
2224  		wake_throttle_isolated(pgdat);
2225  
2226  	return too_many;
2227  }
2228  
2229  /*
2230   * move_pages_to_lru() moves pages from private @list to appropriate LRU list.
2231   * On return, @list is reused as a list of pages to be freed by the caller.
2232   *
2233   * Returns the number of pages moved to the given lruvec.
2234   */
2235  static unsigned int move_pages_to_lru(struct lruvec *lruvec,
2236  				      struct list_head *list)
2237  {
2238  	int nr_pages, nr_moved = 0;
2239  	LIST_HEAD(pages_to_free);
2240  	struct page *page;
2241  
2242  	while (!list_empty(list)) {
2243  		page = lru_to_page(list);
2244  		VM_BUG_ON_PAGE(PageLRU(page), page);
2245  		list_del(&page->lru);
2246  		if (unlikely(!page_evictable(page))) {
2247  			spin_unlock_irq(&lruvec->lru_lock);
2248  			putback_lru_page(page);
2249  			spin_lock_irq(&lruvec->lru_lock);
2250  			continue;
2251  		}
2252  
2253  		/*
2254  		 * The SetPageLRU needs to be kept here for list integrity.
2255  		 * Otherwise:
2256  		 *   #0 move_pages_to_lru             #1 release_pages
2257  		 *   if !put_page_testzero
2258  		 *				      if (put_page_testzero())
2259  		 *				        !PageLRU //skip lru_lock
2260  		 *     SetPageLRU()
2261  		 *     list_add(&page->lru,)
2262  		 *                                        list_add(&page->lru,)
2263  		 */
2264  		SetPageLRU(page);
2265  
2266  		if (unlikely(put_page_testzero(page))) {
2267  			__clear_page_lru_flags(page);
2268  
2269  			if (unlikely(PageCompound(page))) {
2270  				spin_unlock_irq(&lruvec->lru_lock);
2271  				destroy_compound_page(page);
2272  				spin_lock_irq(&lruvec->lru_lock);
2273  			} else
2274  				list_add(&page->lru, &pages_to_free);
2275  
2276  			continue;
2277  		}
2278  
2279  		/*
2280  		 * All pages were isolated from the same lruvec (and isolation
2281  		 * inhibits memcg migration).
2282  		 */
2283  		VM_BUG_ON_PAGE(!folio_matches_lruvec(page_folio(page), lruvec), page);
2284  		add_page_to_lru_list(page, lruvec);
2285  		nr_pages = thp_nr_pages(page);
2286  		nr_moved += nr_pages;
2287  		if (PageActive(page))
2288  			workingset_age_nonresident(lruvec, nr_pages);
2289  	}
2290  
2291  	/*
2292  	 * To save our caller's stack, now use input list for pages to free.
2293  	 */
2294  	list_splice(&pages_to_free, list);
2295  
2296  	return nr_moved;
2297  }
2298  
2299  /*
2300   * If a kernel thread (such as nfsd for loop-back mounts) services
2301   * a backing device by writing to the page cache it sets PF_LOCAL_THROTTLE.
2302   * In that case we should only throttle if the backing device it is
2303   * writing to is congested.  In other cases it is safe to throttle.
2304   */
2305  static int current_may_throttle(void)
2306  {
2307  	return !(current->flags & PF_LOCAL_THROTTLE);
2308  }
2309  
2310  /*
2311   * shrink_inactive_list() is a helper for shrink_node().  It returns the number
2312   * of reclaimed pages
2313   */
2314  static unsigned long
2315  shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
2316  		     struct scan_control *sc, enum lru_list lru)
2317  {
2318  	LIST_HEAD(page_list);
2319  	unsigned long nr_scanned;
2320  	unsigned int nr_reclaimed = 0;
2321  	unsigned long nr_taken;
2322  	struct reclaim_stat stat;
2323  	bool file = is_file_lru(lru);
2324  	enum vm_event_item item;
2325  	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2326  	bool stalled = false;
2327  
2328  	while (unlikely(too_many_isolated(pgdat, file, sc))) {
2329  		if (stalled)
2330  			return 0;
2331  
2332  		/* wait a bit for the reclaimer. */
2333  		stalled = true;
2334  		reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
2335  
2336  		/* We are about to die and free our memory. Return now. */
2337  		if (fatal_signal_pending(current))
2338  			return SWAP_CLUSTER_MAX;
2339  	}
2340  
2341  	lru_add_drain();
2342  
2343  	spin_lock_irq(&lruvec->lru_lock);
2344  
2345  	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
2346  				     &nr_scanned, sc, lru);
2347  
2348  	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2349  	item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
2350  	if (!cgroup_reclaim(sc))
2351  		__count_vm_events(item, nr_scanned);
2352  	__count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
2353  	__count_vm_events(PGSCAN_ANON + file, nr_scanned);
2354  
2355  	spin_unlock_irq(&lruvec->lru_lock);
2356  
2357  	if (nr_taken == 0)
2358  		return 0;
2359  
2360  	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, &stat, false);
2361  
2362  	spin_lock_irq(&lruvec->lru_lock);
2363  	move_pages_to_lru(lruvec, &page_list);
2364  
2365  	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2366  	item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
2367  	if (!cgroup_reclaim(sc))
2368  		__count_vm_events(item, nr_reclaimed);
2369  	__count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
2370  	__count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
2371  	spin_unlock_irq(&lruvec->lru_lock);
2372  
2373  	lru_note_cost(lruvec, file, stat.nr_pageout);
2374  	mem_cgroup_uncharge_list(&page_list);
2375  	free_unref_page_list(&page_list);
2376  
2377  	/*
2378  	 * If dirty pages are scanned that are not queued for IO, it
2379  	 * implies that flushers are not doing their job. This can
2380  	 * happen when memory pressure pushes dirty pages to the end of
2381  	 * the LRU before the dirty limits are breached and the dirty
2382  	 * data has expired. It can also happen when the proportion of
2383  	 * dirty pages grows not through writes but through memory
2384  	 * pressure reclaiming all the clean cache. And in some cases,
2385  	 * the flushers simply cannot keep up with the allocation
2386  	 * rate. Nudge the flusher threads in case they are asleep.
2387  	 */
2388  	if (stat.nr_unqueued_dirty == nr_taken)
2389  		wakeup_flusher_threads(WB_REASON_VMSCAN);
2390  
2391  	sc->nr.dirty += stat.nr_dirty;
2392  	sc->nr.congested += stat.nr_congested;
2393  	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2394  	sc->nr.writeback += stat.nr_writeback;
2395  	sc->nr.immediate += stat.nr_immediate;
2396  	sc->nr.taken += nr_taken;
2397  	if (file)
2398  		sc->nr.file_taken += nr_taken;
2399  
2400  	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2401  			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2402  	return nr_reclaimed;
2403  }
2404  
2405  /*
2406   * shrink_active_list() moves pages from the active LRU to the inactive LRU.
2407   *
2408   * We move them the other way if the page is referenced by one or more
2409   * processes.
2410   *
2411   * If the pages are mostly unmapped, the processing is fast and it is
2412   * appropriate to hold lru_lock across the whole operation.  But if
2413   * the pages are mapped, the processing is slow (folio_referenced()), so
2414   * we should drop lru_lock around each page.  It's impossible to balance
2415   * this, so instead we remove the pages from the LRU while processing them.
2416   * It is safe to rely on PG_active against the non-LRU pages in here because
2417   * nobody will play with that bit on a non-LRU page.
2418   *
2419   * The downside is that we have to touch page->_refcount against each page.
2420   * But we had to alter page->flags anyway.
2421   */
2422  static void shrink_active_list(unsigned long nr_to_scan,
2423  			       struct lruvec *lruvec,
2424  			       struct scan_control *sc,
2425  			       enum lru_list lru)
2426  {
2427  	unsigned long nr_taken;
2428  	unsigned long nr_scanned;
2429  	unsigned long vm_flags;
2430  	LIST_HEAD(l_hold);	/* The pages which were snipped off */
2431  	LIST_HEAD(l_active);
2432  	LIST_HEAD(l_inactive);
2433  	unsigned nr_deactivate, nr_activate;
2434  	unsigned nr_rotated = 0;
2435  	int file = is_file_lru(lru);
2436  	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2437  
2438  	lru_add_drain();
2439  
2440  	spin_lock_irq(&lruvec->lru_lock);
2441  
2442  	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2443  				     &nr_scanned, sc, lru);
2444  
2445  	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2446  
2447  	if (!cgroup_reclaim(sc))
2448  		__count_vm_events(PGREFILL, nr_scanned);
2449  	__count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2450  
2451  	spin_unlock_irq(&lruvec->lru_lock);
2452  
2453  	while (!list_empty(&l_hold)) {
2454  		struct folio *folio;
2455  		struct page *page;
2456  
2457  		cond_resched();
2458  		folio = lru_to_folio(&l_hold);
2459  		list_del(&folio->lru);
2460  		page = &folio->page;
2461  
2462  		if (unlikely(!page_evictable(page))) {
2463  			putback_lru_page(page);
2464  			continue;
2465  		}
2466  
2467  		if (unlikely(buffer_heads_over_limit)) {
2468  			if (page_has_private(page) && trylock_page(page)) {
2469  				if (page_has_private(page))
2470  					try_to_release_page(page, 0);
2471  				unlock_page(page);
2472  			}
2473  		}
2474  
2475  		if (folio_referenced(folio, 0, sc->target_mem_cgroup,
2476  				     &vm_flags)) {
2477  			/*
2478  			 * Identify referenced, file-backed active pages and
2479  			 * give them one more trip around the active list. So
2480  			 * that executable code get better chances to stay in
2481  			 * memory under moderate memory pressure.  Anon pages
2482  			 * are not likely to be evicted by use-once streaming
2483  			 * IO, plus JVM can create lots of anon VM_EXEC pages,
2484  			 * so we ignore them here.
2485  			 */
2486  			if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) {
2487  				nr_rotated += thp_nr_pages(page);
2488  				list_add(&page->lru, &l_active);
2489  				continue;
2490  			}
2491  		}
2492  
2493  		ClearPageActive(page);	/* we are de-activating */
2494  		SetPageWorkingset(page);
2495  		list_add(&page->lru, &l_inactive);
2496  	}
2497  
2498  	/*
2499  	 * Move pages back to the lru list.
2500  	 */
2501  	spin_lock_irq(&lruvec->lru_lock);
2502  
2503  	nr_activate = move_pages_to_lru(lruvec, &l_active);
2504  	nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
2505  	/* Keep all free pages in l_active list */
2506  	list_splice(&l_inactive, &l_active);
2507  
2508  	__count_vm_events(PGDEACTIVATE, nr_deactivate);
2509  	__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2510  
2511  	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2512  	spin_unlock_irq(&lruvec->lru_lock);
2513  
2514  	mem_cgroup_uncharge_list(&l_active);
2515  	free_unref_page_list(&l_active);
2516  	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2517  			nr_deactivate, nr_rotated, sc->priority, file);
2518  }
2519  
2520  unsigned long reclaim_pages(struct list_head *page_list)
2521  {
2522  	int nid = NUMA_NO_NODE;
2523  	unsigned int nr_reclaimed = 0;
2524  	LIST_HEAD(node_page_list);
2525  	struct reclaim_stat dummy_stat;
2526  	struct page *page;
2527  	unsigned int noreclaim_flag;
2528  	struct scan_control sc = {
2529  		.gfp_mask = GFP_KERNEL,
2530  		.may_writepage = 1,
2531  		.may_unmap = 1,
2532  		.may_swap = 1,
2533  		.no_demotion = 1,
2534  	};
2535  
2536  	noreclaim_flag = memalloc_noreclaim_save();
2537  
2538  	while (!list_empty(page_list)) {
2539  		page = lru_to_page(page_list);
2540  		if (nid == NUMA_NO_NODE) {
2541  			nid = page_to_nid(page);
2542  			INIT_LIST_HEAD(&node_page_list);
2543  		}
2544  
2545  		if (nid == page_to_nid(page)) {
2546  			ClearPageActive(page);
2547  			list_move(&page->lru, &node_page_list);
2548  			continue;
2549  		}
2550  
2551  		nr_reclaimed += shrink_page_list(&node_page_list,
2552  						NODE_DATA(nid),
2553  						&sc, &dummy_stat, false);
2554  		while (!list_empty(&node_page_list)) {
2555  			page = lru_to_page(&node_page_list);
2556  			list_del(&page->lru);
2557  			putback_lru_page(page);
2558  		}
2559  
2560  		nid = NUMA_NO_NODE;
2561  	}
2562  
2563  	if (!list_empty(&node_page_list)) {
2564  		nr_reclaimed += shrink_page_list(&node_page_list,
2565  						NODE_DATA(nid),
2566  						&sc, &dummy_stat, false);
2567  		while (!list_empty(&node_page_list)) {
2568  			page = lru_to_page(&node_page_list);
2569  			list_del(&page->lru);
2570  			putback_lru_page(page);
2571  		}
2572  	}
2573  
2574  	memalloc_noreclaim_restore(noreclaim_flag);
2575  
2576  	return nr_reclaimed;
2577  }
2578  
2579  static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2580  				 struct lruvec *lruvec, struct scan_control *sc)
2581  {
2582  	if (is_active_lru(lru)) {
2583  		if (sc->may_deactivate & (1 << is_file_lru(lru)))
2584  			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2585  		else
2586  			sc->skipped_deactivate = 1;
2587  		return 0;
2588  	}
2589  
2590  	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2591  }
2592  
2593  /*
2594   * The inactive anon list should be small enough that the VM never has
2595   * to do too much work.
2596   *
2597   * The inactive file list should be small enough to leave most memory
2598   * to the established workingset on the scan-resistant active list,
2599   * but large enough to avoid thrashing the aggregate readahead window.
2600   *
2601   * Both inactive lists should also be large enough that each inactive
2602   * page has a chance to be referenced again before it is reclaimed.
2603   *
2604   * If that fails and refaulting is observed, the inactive list grows.
2605   *
2606   * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2607   * on this LRU, maintained by the pageout code. An inactive_ratio
2608   * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2609   *
2610   * total     target    max
2611   * memory    ratio     inactive
2612   * -------------------------------------
2613   *   10MB       1         5MB
2614   *  100MB       1        50MB
2615   *    1GB       3       250MB
2616   *   10GB      10       0.9GB
2617   *  100GB      31         3GB
2618   *    1TB     101        10GB
2619   *   10TB     320        32GB
2620   */
2621  static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2622  {
2623  	enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2624  	unsigned long inactive, active;
2625  	unsigned long inactive_ratio;
2626  	unsigned long gb;
2627  
2628  	inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2629  	active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2630  
2631  	gb = (inactive + active) >> (30 - PAGE_SHIFT);
2632  	if (gb)
2633  		inactive_ratio = int_sqrt(10 * gb);
2634  	else
2635  		inactive_ratio = 1;
2636  
2637  	return inactive * inactive_ratio < active;
2638  }
2639  
2640  enum scan_balance {
2641  	SCAN_EQUAL,
2642  	SCAN_FRACT,
2643  	SCAN_ANON,
2644  	SCAN_FILE,
2645  };
2646  
2647  /*
2648   * Determine how aggressively the anon and file LRU lists should be
2649   * scanned.  The relative value of each set of LRU lists is determined
2650   * by looking at the fraction of the pages scanned we did rotate back
2651   * onto the active list instead of evict.
2652   *
2653   * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2654   * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2655   */
2656  static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2657  			   unsigned long *nr)
2658  {
2659  	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2660  	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2661  	unsigned long anon_cost, file_cost, total_cost;
2662  	int swappiness = mem_cgroup_swappiness(memcg);
2663  	u64 fraction[ANON_AND_FILE];
2664  	u64 denominator = 0;	/* gcc */
2665  	enum scan_balance scan_balance;
2666  	unsigned long ap, fp;
2667  	enum lru_list lru;
2668  
2669  	/* If we have no swap space, do not bother scanning anon pages. */
2670  	if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
2671  		scan_balance = SCAN_FILE;
2672  		goto out;
2673  	}
2674  
2675  	/*
2676  	 * Global reclaim will swap to prevent OOM even with no
2677  	 * swappiness, but memcg users want to use this knob to
2678  	 * disable swapping for individual groups completely when
2679  	 * using the memory controller's swap limit feature would be
2680  	 * too expensive.
2681  	 */
2682  	if (cgroup_reclaim(sc) && !swappiness) {
2683  		scan_balance = SCAN_FILE;
2684  		goto out;
2685  	}
2686  
2687  	/*
2688  	 * Do not apply any pressure balancing cleverness when the
2689  	 * system is close to OOM, scan both anon and file equally
2690  	 * (unless the swappiness setting disagrees with swapping).
2691  	 */
2692  	if (!sc->priority && swappiness) {
2693  		scan_balance = SCAN_EQUAL;
2694  		goto out;
2695  	}
2696  
2697  	/*
2698  	 * If the system is almost out of file pages, force-scan anon.
2699  	 */
2700  	if (sc->file_is_tiny) {
2701  		scan_balance = SCAN_ANON;
2702  		goto out;
2703  	}
2704  
2705  	/*
2706  	 * If there is enough inactive page cache, we do not reclaim
2707  	 * anything from the anonymous working right now.
2708  	 */
2709  	if (sc->cache_trim_mode) {
2710  		scan_balance = SCAN_FILE;
2711  		goto out;
2712  	}
2713  
2714  	scan_balance = SCAN_FRACT;
2715  	/*
2716  	 * Calculate the pressure balance between anon and file pages.
2717  	 *
2718  	 * The amount of pressure we put on each LRU is inversely
2719  	 * proportional to the cost of reclaiming each list, as
2720  	 * determined by the share of pages that are refaulting, times
2721  	 * the relative IO cost of bringing back a swapped out
2722  	 * anonymous page vs reloading a filesystem page (swappiness).
2723  	 *
2724  	 * Although we limit that influence to ensure no list gets
2725  	 * left behind completely: at least a third of the pressure is
2726  	 * applied, before swappiness.
2727  	 *
2728  	 * With swappiness at 100, anon and file have equal IO cost.
2729  	 */
2730  	total_cost = sc->anon_cost + sc->file_cost;
2731  	anon_cost = total_cost + sc->anon_cost;
2732  	file_cost = total_cost + sc->file_cost;
2733  	total_cost = anon_cost + file_cost;
2734  
2735  	ap = swappiness * (total_cost + 1);
2736  	ap /= anon_cost + 1;
2737  
2738  	fp = (200 - swappiness) * (total_cost + 1);
2739  	fp /= file_cost + 1;
2740  
2741  	fraction[0] = ap;
2742  	fraction[1] = fp;
2743  	denominator = ap + fp;
2744  out:
2745  	for_each_evictable_lru(lru) {
2746  		int file = is_file_lru(lru);
2747  		unsigned long lruvec_size;
2748  		unsigned long low, min;
2749  		unsigned long scan;
2750  
2751  		lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2752  		mem_cgroup_protection(sc->target_mem_cgroup, memcg,
2753  				      &min, &low);
2754  
2755  		if (min || low) {
2756  			/*
2757  			 * Scale a cgroup's reclaim pressure by proportioning
2758  			 * its current usage to its memory.low or memory.min
2759  			 * setting.
2760  			 *
2761  			 * This is important, as otherwise scanning aggression
2762  			 * becomes extremely binary -- from nothing as we
2763  			 * approach the memory protection threshold, to totally
2764  			 * nominal as we exceed it.  This results in requiring
2765  			 * setting extremely liberal protection thresholds. It
2766  			 * also means we simply get no protection at all if we
2767  			 * set it too low, which is not ideal.
2768  			 *
2769  			 * If there is any protection in place, we reduce scan
2770  			 * pressure by how much of the total memory used is
2771  			 * within protection thresholds.
2772  			 *
2773  			 * There is one special case: in the first reclaim pass,
2774  			 * we skip over all groups that are within their low
2775  			 * protection. If that fails to reclaim enough pages to
2776  			 * satisfy the reclaim goal, we come back and override
2777  			 * the best-effort low protection. However, we still
2778  			 * ideally want to honor how well-behaved groups are in
2779  			 * that case instead of simply punishing them all
2780  			 * equally. As such, we reclaim them based on how much
2781  			 * memory they are using, reducing the scan pressure
2782  			 * again by how much of the total memory used is under
2783  			 * hard protection.
2784  			 */
2785  			unsigned long cgroup_size = mem_cgroup_size(memcg);
2786  			unsigned long protection;
2787  
2788  			/* memory.low scaling, make sure we retry before OOM */
2789  			if (!sc->memcg_low_reclaim && low > min) {
2790  				protection = low;
2791  				sc->memcg_low_skipped = 1;
2792  			} else {
2793  				protection = min;
2794  			}
2795  
2796  			/* Avoid TOCTOU with earlier protection check */
2797  			cgroup_size = max(cgroup_size, protection);
2798  
2799  			scan = lruvec_size - lruvec_size * protection /
2800  				(cgroup_size + 1);
2801  
2802  			/*
2803  			 * Minimally target SWAP_CLUSTER_MAX pages to keep
2804  			 * reclaim moving forwards, avoiding decrementing
2805  			 * sc->priority further than desirable.
2806  			 */
2807  			scan = max(scan, SWAP_CLUSTER_MAX);
2808  		} else {
2809  			scan = lruvec_size;
2810  		}
2811  
2812  		scan >>= sc->priority;
2813  
2814  		/*
2815  		 * If the cgroup's already been deleted, make sure to
2816  		 * scrape out the remaining cache.
2817  		 */
2818  		if (!scan && !mem_cgroup_online(memcg))
2819  			scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2820  
2821  		switch (scan_balance) {
2822  		case SCAN_EQUAL:
2823  			/* Scan lists relative to size */
2824  			break;
2825  		case SCAN_FRACT:
2826  			/*
2827  			 * Scan types proportional to swappiness and
2828  			 * their relative recent reclaim efficiency.
2829  			 * Make sure we don't miss the last page on
2830  			 * the offlined memory cgroups because of a
2831  			 * round-off error.
2832  			 */
2833  			scan = mem_cgroup_online(memcg) ?
2834  			       div64_u64(scan * fraction[file], denominator) :
2835  			       DIV64_U64_ROUND_UP(scan * fraction[file],
2836  						  denominator);
2837  			break;
2838  		case SCAN_FILE:
2839  		case SCAN_ANON:
2840  			/* Scan one type exclusively */
2841  			if ((scan_balance == SCAN_FILE) != file)
2842  				scan = 0;
2843  			break;
2844  		default:
2845  			/* Look ma, no brain */
2846  			BUG();
2847  		}
2848  
2849  		nr[lru] = scan;
2850  	}
2851  }
2852  
2853  /*
2854   * Anonymous LRU management is a waste if there is
2855   * ultimately no way to reclaim the memory.
2856   */
2857  static bool can_age_anon_pages(struct pglist_data *pgdat,
2858  			       struct scan_control *sc)
2859  {
2860  	/* Aging the anon LRU is valuable if swap is present: */
2861  	if (total_swap_pages > 0)
2862  		return true;
2863  
2864  	/* Also valuable if anon pages can be demoted: */
2865  	return can_demote(pgdat->node_id, sc);
2866  }
2867  
2868  static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
2869  {
2870  	unsigned long nr[NR_LRU_LISTS];
2871  	unsigned long targets[NR_LRU_LISTS];
2872  	unsigned long nr_to_scan;
2873  	enum lru_list lru;
2874  	unsigned long nr_reclaimed = 0;
2875  	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2876  	struct blk_plug plug;
2877  	bool scan_adjusted;
2878  
2879  	get_scan_count(lruvec, sc, nr);
2880  
2881  	/* Record the original scan target for proportional adjustments later */
2882  	memcpy(targets, nr, sizeof(nr));
2883  
2884  	/*
2885  	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2886  	 * event that can occur when there is little memory pressure e.g.
2887  	 * multiple streaming readers/writers. Hence, we do not abort scanning
2888  	 * when the requested number of pages are reclaimed when scanning at
2889  	 * DEF_PRIORITY on the assumption that the fact we are direct
2890  	 * reclaiming implies that kswapd is not keeping up and it is best to
2891  	 * do a batch of work at once. For memcg reclaim one check is made to
2892  	 * abort proportional reclaim if either the file or anon lru has already
2893  	 * dropped to zero at the first pass.
2894  	 */
2895  	scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
2896  			 sc->priority == DEF_PRIORITY);
2897  
2898  	blk_start_plug(&plug);
2899  	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2900  					nr[LRU_INACTIVE_FILE]) {
2901  		unsigned long nr_anon, nr_file, percentage;
2902  		unsigned long nr_scanned;
2903  
2904  		for_each_evictable_lru(lru) {
2905  			if (nr[lru]) {
2906  				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2907  				nr[lru] -= nr_to_scan;
2908  
2909  				nr_reclaimed += shrink_list(lru, nr_to_scan,
2910  							    lruvec, sc);
2911  			}
2912  		}
2913  
2914  		cond_resched();
2915  
2916  		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2917  			continue;
2918  
2919  		/*
2920  		 * For kswapd and memcg, reclaim at least the number of pages
2921  		 * requested. Ensure that the anon and file LRUs are scanned
2922  		 * proportionally what was requested by get_scan_count(). We
2923  		 * stop reclaiming one LRU and reduce the amount scanning
2924  		 * proportional to the original scan target.
2925  		 */
2926  		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2927  		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2928  
2929  		/*
2930  		 * It's just vindictive to attack the larger once the smaller
2931  		 * has gone to zero.  And given the way we stop scanning the
2932  		 * smaller below, this makes sure that we only make one nudge
2933  		 * towards proportionality once we've got nr_to_reclaim.
2934  		 */
2935  		if (!nr_file || !nr_anon)
2936  			break;
2937  
2938  		if (nr_file > nr_anon) {
2939  			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2940  						targets[LRU_ACTIVE_ANON] + 1;
2941  			lru = LRU_BASE;
2942  			percentage = nr_anon * 100 / scan_target;
2943  		} else {
2944  			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2945  						targets[LRU_ACTIVE_FILE] + 1;
2946  			lru = LRU_FILE;
2947  			percentage = nr_file * 100 / scan_target;
2948  		}
2949  
2950  		/* Stop scanning the smaller of the LRU */
2951  		nr[lru] = 0;
2952  		nr[lru + LRU_ACTIVE] = 0;
2953  
2954  		/*
2955  		 * Recalculate the other LRU scan count based on its original
2956  		 * scan target and the percentage scanning already complete
2957  		 */
2958  		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2959  		nr_scanned = targets[lru] - nr[lru];
2960  		nr[lru] = targets[lru] * (100 - percentage) / 100;
2961  		nr[lru] -= min(nr[lru], nr_scanned);
2962  
2963  		lru += LRU_ACTIVE;
2964  		nr_scanned = targets[lru] - nr[lru];
2965  		nr[lru] = targets[lru] * (100 - percentage) / 100;
2966  		nr[lru] -= min(nr[lru], nr_scanned);
2967  
2968  		scan_adjusted = true;
2969  	}
2970  	blk_finish_plug(&plug);
2971  	sc->nr_reclaimed += nr_reclaimed;
2972  
2973  	/*
2974  	 * Even if we did not try to evict anon pages at all, we want to
2975  	 * rebalance the anon lru active/inactive ratio.
2976  	 */
2977  	if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) &&
2978  	    inactive_is_low(lruvec, LRU_INACTIVE_ANON))
2979  		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2980  				   sc, LRU_ACTIVE_ANON);
2981  }
2982  
2983  /* Use reclaim/compaction for costly allocs or under memory pressure */
2984  static bool in_reclaim_compaction(struct scan_control *sc)
2985  {
2986  	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2987  			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2988  			 sc->priority < DEF_PRIORITY - 2))
2989  		return true;
2990  
2991  	return false;
2992  }
2993  
2994  /*
2995   * Reclaim/compaction is used for high-order allocation requests. It reclaims
2996   * order-0 pages before compacting the zone. should_continue_reclaim() returns
2997   * true if more pages should be reclaimed such that when the page allocator
2998   * calls try_to_compact_pages() that it will have enough free pages to succeed.
2999   * It will give up earlier than that if there is difficulty reclaiming pages.
3000   */
3001  static inline bool should_continue_reclaim(struct pglist_data *pgdat,
3002  					unsigned long nr_reclaimed,
3003  					struct scan_control *sc)
3004  {
3005  	unsigned long pages_for_compaction;
3006  	unsigned long inactive_lru_pages;
3007  	int z;
3008  
3009  	/* If not in reclaim/compaction mode, stop */
3010  	if (!in_reclaim_compaction(sc))
3011  		return false;
3012  
3013  	/*
3014  	 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
3015  	 * number of pages that were scanned. This will return to the caller
3016  	 * with the risk reclaim/compaction and the resulting allocation attempt
3017  	 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
3018  	 * allocations through requiring that the full LRU list has been scanned
3019  	 * first, by assuming that zero delta of sc->nr_scanned means full LRU
3020  	 * scan, but that approximation was wrong, and there were corner cases
3021  	 * where always a non-zero amount of pages were scanned.
3022  	 */
3023  	if (!nr_reclaimed)
3024  		return false;
3025  
3026  	/* If compaction would go ahead or the allocation would succeed, stop */
3027  	for (z = 0; z <= sc->reclaim_idx; z++) {
3028  		struct zone *zone = &pgdat->node_zones[z];
3029  		if (!managed_zone(zone))
3030  			continue;
3031  
3032  		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
3033  		case COMPACT_SUCCESS:
3034  		case COMPACT_CONTINUE:
3035  			return false;
3036  		default:
3037  			/* check next zone */
3038  			;
3039  		}
3040  	}
3041  
3042  	/*
3043  	 * If we have not reclaimed enough pages for compaction and the
3044  	 * inactive lists are large enough, continue reclaiming
3045  	 */
3046  	pages_for_compaction = compact_gap(sc->order);
3047  	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
3048  	if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
3049  		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
3050  
3051  	return inactive_lru_pages > pages_for_compaction;
3052  }
3053  
3054  static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
3055  {
3056  	struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
3057  	struct mem_cgroup *memcg;
3058  
3059  	memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
3060  	do {
3061  		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3062  		unsigned long reclaimed;
3063  		unsigned long scanned;
3064  
3065  		/*
3066  		 * This loop can become CPU-bound when target memcgs
3067  		 * aren't eligible for reclaim - either because they
3068  		 * don't have any reclaimable pages, or because their
3069  		 * memory is explicitly protected. Avoid soft lockups.
3070  		 */
3071  		cond_resched();
3072  
3073  		mem_cgroup_calculate_protection(target_memcg, memcg);
3074  
3075  		if (mem_cgroup_below_min(memcg)) {
3076  			/*
3077  			 * Hard protection.
3078  			 * If there is no reclaimable memory, OOM.
3079  			 */
3080  			continue;
3081  		} else if (mem_cgroup_below_low(memcg)) {
3082  			/*
3083  			 * Soft protection.
3084  			 * Respect the protection only as long as
3085  			 * there is an unprotected supply
3086  			 * of reclaimable memory from other cgroups.
3087  			 */
3088  			if (!sc->memcg_low_reclaim) {
3089  				sc->memcg_low_skipped = 1;
3090  				continue;
3091  			}
3092  			memcg_memory_event(memcg, MEMCG_LOW);
3093  		}
3094  
3095  		reclaimed = sc->nr_reclaimed;
3096  		scanned = sc->nr_scanned;
3097  
3098  		shrink_lruvec(lruvec, sc);
3099  
3100  		shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
3101  			    sc->priority);
3102  
3103  		/* Record the group's reclaim efficiency */
3104  		vmpressure(sc->gfp_mask, memcg, false,
3105  			   sc->nr_scanned - scanned,
3106  			   sc->nr_reclaimed - reclaimed);
3107  
3108  	} while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
3109  }
3110  
3111  static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
3112  {
3113  	struct reclaim_state *reclaim_state = current->reclaim_state;
3114  	unsigned long nr_reclaimed, nr_scanned;
3115  	struct lruvec *target_lruvec;
3116  	bool reclaimable = false;
3117  	unsigned long file;
3118  
3119  	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
3120  
3121  again:
3122  	/*
3123  	 * Flush the memory cgroup stats, so that we read accurate per-memcg
3124  	 * lruvec stats for heuristics.
3125  	 */
3126  	mem_cgroup_flush_stats();
3127  
3128  	memset(&sc->nr, 0, sizeof(sc->nr));
3129  
3130  	nr_reclaimed = sc->nr_reclaimed;
3131  	nr_scanned = sc->nr_scanned;
3132  
3133  	/*
3134  	 * Determine the scan balance between anon and file LRUs.
3135  	 */
3136  	spin_lock_irq(&target_lruvec->lru_lock);
3137  	sc->anon_cost = target_lruvec->anon_cost;
3138  	sc->file_cost = target_lruvec->file_cost;
3139  	spin_unlock_irq(&target_lruvec->lru_lock);
3140  
3141  	/*
3142  	 * Target desirable inactive:active list ratios for the anon
3143  	 * and file LRU lists.
3144  	 */
3145  	if (!sc->force_deactivate) {
3146  		unsigned long refaults;
3147  
3148  		refaults = lruvec_page_state(target_lruvec,
3149  				WORKINGSET_ACTIVATE_ANON);
3150  		if (refaults != target_lruvec->refaults[0] ||
3151  			inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
3152  			sc->may_deactivate |= DEACTIVATE_ANON;
3153  		else
3154  			sc->may_deactivate &= ~DEACTIVATE_ANON;
3155  
3156  		/*
3157  		 * When refaults are being observed, it means a new
3158  		 * workingset is being established. Deactivate to get
3159  		 * rid of any stale active pages quickly.
3160  		 */
3161  		refaults = lruvec_page_state(target_lruvec,
3162  				WORKINGSET_ACTIVATE_FILE);
3163  		if (refaults != target_lruvec->refaults[1] ||
3164  		    inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
3165  			sc->may_deactivate |= DEACTIVATE_FILE;
3166  		else
3167  			sc->may_deactivate &= ~DEACTIVATE_FILE;
3168  	} else
3169  		sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
3170  
3171  	/*
3172  	 * If we have plenty of inactive file pages that aren't
3173  	 * thrashing, try to reclaim those first before touching
3174  	 * anonymous pages.
3175  	 */
3176  	file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
3177  	if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
3178  		sc->cache_trim_mode = 1;
3179  	else
3180  		sc->cache_trim_mode = 0;
3181  
3182  	/*
3183  	 * Prevent the reclaimer from falling into the cache trap: as
3184  	 * cache pages start out inactive, every cache fault will tip
3185  	 * the scan balance towards the file LRU.  And as the file LRU
3186  	 * shrinks, so does the window for rotation from references.
3187  	 * This means we have a runaway feedback loop where a tiny
3188  	 * thrashing file LRU becomes infinitely more attractive than
3189  	 * anon pages.  Try to detect this based on file LRU size.
3190  	 */
3191  	if (!cgroup_reclaim(sc)) {
3192  		unsigned long total_high_wmark = 0;
3193  		unsigned long free, anon;
3194  		int z;
3195  
3196  		free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
3197  		file = node_page_state(pgdat, NR_ACTIVE_FILE) +
3198  			   node_page_state(pgdat, NR_INACTIVE_FILE);
3199  
3200  		for (z = 0; z < MAX_NR_ZONES; z++) {
3201  			struct zone *zone = &pgdat->node_zones[z];
3202  			if (!managed_zone(zone))
3203  				continue;
3204  
3205  			total_high_wmark += high_wmark_pages(zone);
3206  		}
3207  
3208  		/*
3209  		 * Consider anon: if that's low too, this isn't a
3210  		 * runaway file reclaim problem, but rather just
3211  		 * extreme pressure. Reclaim as per usual then.
3212  		 */
3213  		anon = node_page_state(pgdat, NR_INACTIVE_ANON);
3214  
3215  		sc->file_is_tiny =
3216  			file + free <= total_high_wmark &&
3217  			!(sc->may_deactivate & DEACTIVATE_ANON) &&
3218  			anon >> sc->priority;
3219  	}
3220  
3221  	shrink_node_memcgs(pgdat, sc);
3222  
3223  	if (reclaim_state) {
3224  		sc->nr_reclaimed += reclaim_state->reclaimed_slab;
3225  		reclaim_state->reclaimed_slab = 0;
3226  	}
3227  
3228  	/* Record the subtree's reclaim efficiency */
3229  	vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
3230  		   sc->nr_scanned - nr_scanned,
3231  		   sc->nr_reclaimed - nr_reclaimed);
3232  
3233  	if (sc->nr_reclaimed - nr_reclaimed)
3234  		reclaimable = true;
3235  
3236  	if (current_is_kswapd()) {
3237  		/*
3238  		 * If reclaim is isolating dirty pages under writeback,
3239  		 * it implies that the long-lived page allocation rate
3240  		 * is exceeding the page laundering rate. Either the
3241  		 * global limits are not being effective at throttling
3242  		 * processes due to the page distribution throughout
3243  		 * zones or there is heavy usage of a slow backing
3244  		 * device. The only option is to throttle from reclaim
3245  		 * context which is not ideal as there is no guarantee
3246  		 * the dirtying process is throttled in the same way
3247  		 * balance_dirty_pages() manages.
3248  		 *
3249  		 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
3250  		 * count the number of pages under pages flagged for
3251  		 * immediate reclaim and stall if any are encountered
3252  		 * in the nr_immediate check below.
3253  		 */
3254  		if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
3255  			set_bit(PGDAT_WRITEBACK, &pgdat->flags);
3256  
3257  		/* Allow kswapd to start writing pages during reclaim.*/
3258  		if (sc->nr.unqueued_dirty == sc->nr.file_taken)
3259  			set_bit(PGDAT_DIRTY, &pgdat->flags);
3260  
3261  		/*
3262  		 * If kswapd scans pages marked for immediate
3263  		 * reclaim and under writeback (nr_immediate), it
3264  		 * implies that pages are cycling through the LRU
3265  		 * faster than they are written so forcibly stall
3266  		 * until some pages complete writeback.
3267  		 */
3268  		if (sc->nr.immediate)
3269  			reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
3270  	}
3271  
3272  	/*
3273  	 * Tag a node/memcg as congested if all the dirty pages were marked
3274  	 * for writeback and immediate reclaim (counted in nr.congested).
3275  	 *
3276  	 * Legacy memcg will stall in page writeback so avoid forcibly
3277  	 * stalling in reclaim_throttle().
3278  	 */
3279  	if ((current_is_kswapd() ||
3280  	     (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
3281  	    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
3282  		set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
3283  
3284  	/*
3285  	 * Stall direct reclaim for IO completions if the lruvec is
3286  	 * node is congested. Allow kswapd to continue until it
3287  	 * starts encountering unqueued dirty pages or cycling through
3288  	 * the LRU too quickly.
3289  	 */
3290  	if (!current_is_kswapd() && current_may_throttle() &&
3291  	    !sc->hibernation_mode &&
3292  	    test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
3293  		reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED);
3294  
3295  	if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
3296  				    sc))
3297  		goto again;
3298  
3299  	/*
3300  	 * Kswapd gives up on balancing particular nodes after too
3301  	 * many failures to reclaim anything from them and goes to
3302  	 * sleep. On reclaim progress, reset the failure counter. A
3303  	 * successful direct reclaim run will revive a dormant kswapd.
3304  	 */
3305  	if (reclaimable)
3306  		pgdat->kswapd_failures = 0;
3307  }
3308  
3309  /*
3310   * Returns true if compaction should go ahead for a costly-order request, or
3311   * the allocation would already succeed without compaction. Return false if we
3312   * should reclaim first.
3313   */
3314  static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
3315  {
3316  	unsigned long watermark;
3317  	enum compact_result suitable;
3318  
3319  	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
3320  	if (suitable == COMPACT_SUCCESS)
3321  		/* Allocation should succeed already. Don't reclaim. */
3322  		return true;
3323  	if (suitable == COMPACT_SKIPPED)
3324  		/* Compaction cannot yet proceed. Do reclaim. */
3325  		return false;
3326  
3327  	/*
3328  	 * Compaction is already possible, but it takes time to run and there
3329  	 * are potentially other callers using the pages just freed. So proceed
3330  	 * with reclaim to make a buffer of free pages available to give
3331  	 * compaction a reasonable chance of completing and allocating the page.
3332  	 * Note that we won't actually reclaim the whole buffer in one attempt
3333  	 * as the target watermark in should_continue_reclaim() is lower. But if
3334  	 * we are already above the high+gap watermark, don't reclaim at all.
3335  	 */
3336  	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
3337  
3338  	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
3339  }
3340  
3341  static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
3342  {
3343  	/*
3344  	 * If reclaim is making progress greater than 12% efficiency then
3345  	 * wake all the NOPROGRESS throttled tasks.
3346  	 */
3347  	if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) {
3348  		wait_queue_head_t *wqh;
3349  
3350  		wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS];
3351  		if (waitqueue_active(wqh))
3352  			wake_up(wqh);
3353  
3354  		return;
3355  	}
3356  
3357  	/*
3358  	 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will
3359  	 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages
3360  	 * under writeback and marked for immediate reclaim at the tail of the
3361  	 * LRU.
3362  	 */
3363  	if (current_is_kswapd() || cgroup_reclaim(sc))
3364  		return;
3365  
3366  	/* Throttle if making no progress at high prioities. */
3367  	if (sc->priority == 1 && !sc->nr_reclaimed)
3368  		reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS);
3369  }
3370  
3371  /*
3372   * This is the direct reclaim path, for page-allocating processes.  We only
3373   * try to reclaim pages from zones which will satisfy the caller's allocation
3374   * request.
3375   *
3376   * If a zone is deemed to be full of pinned pages then just give it a light
3377   * scan then give up on it.
3378   */
3379  static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
3380  {
3381  	struct zoneref *z;
3382  	struct zone *zone;
3383  	unsigned long nr_soft_reclaimed;
3384  	unsigned long nr_soft_scanned;
3385  	gfp_t orig_mask;
3386  	pg_data_t *last_pgdat = NULL;
3387  	pg_data_t *first_pgdat = NULL;
3388  
3389  	/*
3390  	 * If the number of buffer_heads in the machine exceeds the maximum
3391  	 * allowed level, force direct reclaim to scan the highmem zone as
3392  	 * highmem pages could be pinning lowmem pages storing buffer_heads
3393  	 */
3394  	orig_mask = sc->gfp_mask;
3395  	if (buffer_heads_over_limit) {
3396  		sc->gfp_mask |= __GFP_HIGHMEM;
3397  		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
3398  	}
3399  
3400  	for_each_zone_zonelist_nodemask(zone, z, zonelist,
3401  					sc->reclaim_idx, sc->nodemask) {
3402  		/*
3403  		 * Take care memory controller reclaiming has small influence
3404  		 * to global LRU.
3405  		 */
3406  		if (!cgroup_reclaim(sc)) {
3407  			if (!cpuset_zone_allowed(zone,
3408  						 GFP_KERNEL | __GFP_HARDWALL))
3409  				continue;
3410  
3411  			/*
3412  			 * If we already have plenty of memory free for
3413  			 * compaction in this zone, don't free any more.
3414  			 * Even though compaction is invoked for any
3415  			 * non-zero order, only frequent costly order
3416  			 * reclamation is disruptive enough to become a
3417  			 * noticeable problem, like transparent huge
3418  			 * page allocations.
3419  			 */
3420  			if (IS_ENABLED(CONFIG_COMPACTION) &&
3421  			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
3422  			    compaction_ready(zone, sc)) {
3423  				sc->compaction_ready = true;
3424  				continue;
3425  			}
3426  
3427  			/*
3428  			 * Shrink each node in the zonelist once. If the
3429  			 * zonelist is ordered by zone (not the default) then a
3430  			 * node may be shrunk multiple times but in that case
3431  			 * the user prefers lower zones being preserved.
3432  			 */
3433  			if (zone->zone_pgdat == last_pgdat)
3434  				continue;
3435  
3436  			/*
3437  			 * This steals pages from memory cgroups over softlimit
3438  			 * and returns the number of reclaimed pages and
3439  			 * scanned pages. This works for global memory pressure
3440  			 * and balancing, not for a memcg's limit.
3441  			 */
3442  			nr_soft_scanned = 0;
3443  			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
3444  						sc->order, sc->gfp_mask,
3445  						&nr_soft_scanned);
3446  			sc->nr_reclaimed += nr_soft_reclaimed;
3447  			sc->nr_scanned += nr_soft_scanned;
3448  			/* need some check for avoid more shrink_zone() */
3449  		}
3450  
3451  		if (!first_pgdat)
3452  			first_pgdat = zone->zone_pgdat;
3453  
3454  		/* See comment about same check for global reclaim above */
3455  		if (zone->zone_pgdat == last_pgdat)
3456  			continue;
3457  		last_pgdat = zone->zone_pgdat;
3458  		shrink_node(zone->zone_pgdat, sc);
3459  	}
3460  
3461  	if (first_pgdat)
3462  		consider_reclaim_throttle(first_pgdat, sc);
3463  
3464  	/*
3465  	 * Restore to original mask to avoid the impact on the caller if we
3466  	 * promoted it to __GFP_HIGHMEM.
3467  	 */
3468  	sc->gfp_mask = orig_mask;
3469  }
3470  
3471  static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
3472  {
3473  	struct lruvec *target_lruvec;
3474  	unsigned long refaults;
3475  
3476  	target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
3477  	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
3478  	target_lruvec->refaults[0] = refaults;
3479  	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
3480  	target_lruvec->refaults[1] = refaults;
3481  }
3482  
3483  /*
3484   * This is the main entry point to direct page reclaim.
3485   *
3486   * If a full scan of the inactive list fails to free enough memory then we
3487   * are "out of memory" and something needs to be killed.
3488   *
3489   * If the caller is !__GFP_FS then the probability of a failure is reasonably
3490   * high - the zone may be full of dirty or under-writeback pages, which this
3491   * caller can't do much about.  We kick the writeback threads and take explicit
3492   * naps in the hope that some of these pages can be written.  But if the
3493   * allocating task holds filesystem locks which prevent writeout this might not
3494   * work, and the allocation attempt will fail.
3495   *
3496   * returns:	0, if no pages reclaimed
3497   * 		else, the number of pages reclaimed
3498   */
3499  static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3500  					  struct scan_control *sc)
3501  {
3502  	int initial_priority = sc->priority;
3503  	pg_data_t *last_pgdat;
3504  	struct zoneref *z;
3505  	struct zone *zone;
3506  retry:
3507  	delayacct_freepages_start();
3508  
3509  	if (!cgroup_reclaim(sc))
3510  		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
3511  
3512  	do {
3513  		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3514  				sc->priority);
3515  		sc->nr_scanned = 0;
3516  		shrink_zones(zonelist, sc);
3517  
3518  		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3519  			break;
3520  
3521  		if (sc->compaction_ready)
3522  			break;
3523  
3524  		/*
3525  		 * If we're getting trouble reclaiming, start doing
3526  		 * writepage even in laptop mode.
3527  		 */
3528  		if (sc->priority < DEF_PRIORITY - 2)
3529  			sc->may_writepage = 1;
3530  	} while (--sc->priority >= 0);
3531  
3532  	last_pgdat = NULL;
3533  	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3534  					sc->nodemask) {
3535  		if (zone->zone_pgdat == last_pgdat)
3536  			continue;
3537  		last_pgdat = zone->zone_pgdat;
3538  
3539  		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3540  
3541  		if (cgroup_reclaim(sc)) {
3542  			struct lruvec *lruvec;
3543  
3544  			lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
3545  						   zone->zone_pgdat);
3546  			clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3547  		}
3548  	}
3549  
3550  	delayacct_freepages_end();
3551  
3552  	if (sc->nr_reclaimed)
3553  		return sc->nr_reclaimed;
3554  
3555  	/* Aborted reclaim to try compaction? don't OOM, then */
3556  	if (sc->compaction_ready)
3557  		return 1;
3558  
3559  	/*
3560  	 * We make inactive:active ratio decisions based on the node's
3561  	 * composition of memory, but a restrictive reclaim_idx or a
3562  	 * memory.low cgroup setting can exempt large amounts of
3563  	 * memory from reclaim. Neither of which are very common, so
3564  	 * instead of doing costly eligibility calculations of the
3565  	 * entire cgroup subtree up front, we assume the estimates are
3566  	 * good, and retry with forcible deactivation if that fails.
3567  	 */
3568  	if (sc->skipped_deactivate) {
3569  		sc->priority = initial_priority;
3570  		sc->force_deactivate = 1;
3571  		sc->skipped_deactivate = 0;
3572  		goto retry;
3573  	}
3574  
3575  	/* Untapped cgroup reserves?  Don't OOM, retry. */
3576  	if (sc->memcg_low_skipped) {
3577  		sc->priority = initial_priority;
3578  		sc->force_deactivate = 0;
3579  		sc->memcg_low_reclaim = 1;
3580  		sc->memcg_low_skipped = 0;
3581  		goto retry;
3582  	}
3583  
3584  	return 0;
3585  }
3586  
3587  static bool allow_direct_reclaim(pg_data_t *pgdat)
3588  {
3589  	struct zone *zone;
3590  	unsigned long pfmemalloc_reserve = 0;
3591  	unsigned long free_pages = 0;
3592  	int i;
3593  	bool wmark_ok;
3594  
3595  	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3596  		return true;
3597  
3598  	for (i = 0; i <= ZONE_NORMAL; i++) {
3599  		zone = &pgdat->node_zones[i];
3600  		if (!managed_zone(zone))
3601  			continue;
3602  
3603  		if (!zone_reclaimable_pages(zone))
3604  			continue;
3605  
3606  		pfmemalloc_reserve += min_wmark_pages(zone);
3607  		free_pages += zone_page_state(zone, NR_FREE_PAGES);
3608  	}
3609  
3610  	/* If there are no reserves (unexpected config) then do not throttle */
3611  	if (!pfmemalloc_reserve)
3612  		return true;
3613  
3614  	wmark_ok = free_pages > pfmemalloc_reserve / 2;
3615  
3616  	/* kswapd must be awake if processes are being throttled */
3617  	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3618  		if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
3619  			WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
3620  
3621  		wake_up_interruptible(&pgdat->kswapd_wait);
3622  	}
3623  
3624  	return wmark_ok;
3625  }
3626  
3627  /*
3628   * Throttle direct reclaimers if backing storage is backed by the network
3629   * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3630   * depleted. kswapd will continue to make progress and wake the processes
3631   * when the low watermark is reached.
3632   *
3633   * Returns true if a fatal signal was delivered during throttling. If this
3634   * happens, the page allocator should not consider triggering the OOM killer.
3635   */
3636  static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3637  					nodemask_t *nodemask)
3638  {
3639  	struct zoneref *z;
3640  	struct zone *zone;
3641  	pg_data_t *pgdat = NULL;
3642  
3643  	/*
3644  	 * Kernel threads should not be throttled as they may be indirectly
3645  	 * responsible for cleaning pages necessary for reclaim to make forward
3646  	 * progress. kjournald for example may enter direct reclaim while
3647  	 * committing a transaction where throttling it could forcing other
3648  	 * processes to block on log_wait_commit().
3649  	 */
3650  	if (current->flags & PF_KTHREAD)
3651  		goto out;
3652  
3653  	/*
3654  	 * If a fatal signal is pending, this process should not throttle.
3655  	 * It should return quickly so it can exit and free its memory
3656  	 */
3657  	if (fatal_signal_pending(current))
3658  		goto out;
3659  
3660  	/*
3661  	 * Check if the pfmemalloc reserves are ok by finding the first node
3662  	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3663  	 * GFP_KERNEL will be required for allocating network buffers when
3664  	 * swapping over the network so ZONE_HIGHMEM is unusable.
3665  	 *
3666  	 * Throttling is based on the first usable node and throttled processes
3667  	 * wait on a queue until kswapd makes progress and wakes them. There
3668  	 * is an affinity then between processes waking up and where reclaim
3669  	 * progress has been made assuming the process wakes on the same node.
3670  	 * More importantly, processes running on remote nodes will not compete
3671  	 * for remote pfmemalloc reserves and processes on different nodes
3672  	 * should make reasonable progress.
3673  	 */
3674  	for_each_zone_zonelist_nodemask(zone, z, zonelist,
3675  					gfp_zone(gfp_mask), nodemask) {
3676  		if (zone_idx(zone) > ZONE_NORMAL)
3677  			continue;
3678  
3679  		/* Throttle based on the first usable node */
3680  		pgdat = zone->zone_pgdat;
3681  		if (allow_direct_reclaim(pgdat))
3682  			goto out;
3683  		break;
3684  	}
3685  
3686  	/* If no zone was usable by the allocation flags then do not throttle */
3687  	if (!pgdat)
3688  		goto out;
3689  
3690  	/* Account for the throttling */
3691  	count_vm_event(PGSCAN_DIRECT_THROTTLE);
3692  
3693  	/*
3694  	 * If the caller cannot enter the filesystem, it's possible that it
3695  	 * is due to the caller holding an FS lock or performing a journal
3696  	 * transaction in the case of a filesystem like ext[3|4]. In this case,
3697  	 * it is not safe to block on pfmemalloc_wait as kswapd could be
3698  	 * blocked waiting on the same lock. Instead, throttle for up to a
3699  	 * second before continuing.
3700  	 */
3701  	if (!(gfp_mask & __GFP_FS))
3702  		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3703  			allow_direct_reclaim(pgdat), HZ);
3704  	else
3705  		/* Throttle until kswapd wakes the process */
3706  		wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3707  			allow_direct_reclaim(pgdat));
3708  
3709  	if (fatal_signal_pending(current))
3710  		return true;
3711  
3712  out:
3713  	return false;
3714  }
3715  
3716  unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3717  				gfp_t gfp_mask, nodemask_t *nodemask)
3718  {
3719  	unsigned long nr_reclaimed;
3720  	struct scan_control sc = {
3721  		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3722  		.gfp_mask = current_gfp_context(gfp_mask),
3723  		.reclaim_idx = gfp_zone(gfp_mask),
3724  		.order = order,
3725  		.nodemask = nodemask,
3726  		.priority = DEF_PRIORITY,
3727  		.may_writepage = !laptop_mode,
3728  		.may_unmap = 1,
3729  		.may_swap = 1,
3730  	};
3731  
3732  	/*
3733  	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3734  	 * Confirm they are large enough for max values.
3735  	 */
3736  	BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3737  	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3738  	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3739  
3740  	/*
3741  	 * Do not enter reclaim if fatal signal was delivered while throttled.
3742  	 * 1 is returned so that the page allocator does not OOM kill at this
3743  	 * point.
3744  	 */
3745  	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3746  		return 1;
3747  
3748  	set_task_reclaim_state(current, &sc.reclaim_state);
3749  	trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
3750  
3751  	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3752  
3753  	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3754  	set_task_reclaim_state(current, NULL);
3755  
3756  	return nr_reclaimed;
3757  }
3758  
3759  #ifdef CONFIG_MEMCG
3760  
3761  /* Only used by soft limit reclaim. Do not reuse for anything else. */
3762  unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3763  						gfp_t gfp_mask, bool noswap,
3764  						pg_data_t *pgdat,
3765  						unsigned long *nr_scanned)
3766  {
3767  	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3768  	struct scan_control sc = {
3769  		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3770  		.target_mem_cgroup = memcg,
3771  		.may_writepage = !laptop_mode,
3772  		.may_unmap = 1,
3773  		.reclaim_idx = MAX_NR_ZONES - 1,
3774  		.may_swap = !noswap,
3775  	};
3776  
3777  	WARN_ON_ONCE(!current->reclaim_state);
3778  
3779  	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3780  			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3781  
3782  	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3783  						      sc.gfp_mask);
3784  
3785  	/*
3786  	 * NOTE: Although we can get the priority field, using it
3787  	 * here is not a good idea, since it limits the pages we can scan.
3788  	 * if we don't reclaim here, the shrink_node from balance_pgdat
3789  	 * will pick up pages from other mem cgroup's as well. We hack
3790  	 * the priority and make it zero.
3791  	 */
3792  	shrink_lruvec(lruvec, &sc);
3793  
3794  	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3795  
3796  	*nr_scanned = sc.nr_scanned;
3797  
3798  	return sc.nr_reclaimed;
3799  }
3800  
3801  unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3802  					   unsigned long nr_pages,
3803  					   gfp_t gfp_mask,
3804  					   bool may_swap)
3805  {
3806  	unsigned long nr_reclaimed;
3807  	unsigned int noreclaim_flag;
3808  	struct scan_control sc = {
3809  		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3810  		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3811  				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3812  		.reclaim_idx = MAX_NR_ZONES - 1,
3813  		.target_mem_cgroup = memcg,
3814  		.priority = DEF_PRIORITY,
3815  		.may_writepage = !laptop_mode,
3816  		.may_unmap = 1,
3817  		.may_swap = may_swap,
3818  	};
3819  	/*
3820  	 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
3821  	 * equal pressure on all the nodes. This is based on the assumption that
3822  	 * the reclaim does not bail out early.
3823  	 */
3824  	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3825  
3826  	set_task_reclaim_state(current, &sc.reclaim_state);
3827  	trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
3828  	noreclaim_flag = memalloc_noreclaim_save();
3829  
3830  	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3831  
3832  	memalloc_noreclaim_restore(noreclaim_flag);
3833  	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3834  	set_task_reclaim_state(current, NULL);
3835  
3836  	return nr_reclaimed;
3837  }
3838  #endif
3839  
3840  static void age_active_anon(struct pglist_data *pgdat,
3841  				struct scan_control *sc)
3842  {
3843  	struct mem_cgroup *memcg;
3844  	struct lruvec *lruvec;
3845  
3846  	if (!can_age_anon_pages(pgdat, sc))
3847  		return;
3848  
3849  	lruvec = mem_cgroup_lruvec(NULL, pgdat);
3850  	if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
3851  		return;
3852  
3853  	memcg = mem_cgroup_iter(NULL, NULL, NULL);
3854  	do {
3855  		lruvec = mem_cgroup_lruvec(memcg, pgdat);
3856  		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3857  				   sc, LRU_ACTIVE_ANON);
3858  		memcg = mem_cgroup_iter(NULL, memcg, NULL);
3859  	} while (memcg);
3860  }
3861  
3862  static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
3863  {
3864  	int i;
3865  	struct zone *zone;
3866  
3867  	/*
3868  	 * Check for watermark boosts top-down as the higher zones
3869  	 * are more likely to be boosted. Both watermarks and boosts
3870  	 * should not be checked at the same time as reclaim would
3871  	 * start prematurely when there is no boosting and a lower
3872  	 * zone is balanced.
3873  	 */
3874  	for (i = highest_zoneidx; i >= 0; i--) {
3875  		zone = pgdat->node_zones + i;
3876  		if (!managed_zone(zone))
3877  			continue;
3878  
3879  		if (zone->watermark_boost)
3880  			return true;
3881  	}
3882  
3883  	return false;
3884  }
3885  
3886  /*
3887   * Returns true if there is an eligible zone balanced for the request order
3888   * and highest_zoneidx
3889   */
3890  static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
3891  {
3892  	int i;
3893  	unsigned long mark = -1;
3894  	struct zone *zone;
3895  
3896  	/*
3897  	 * Check watermarks bottom-up as lower zones are more likely to
3898  	 * meet watermarks.
3899  	 */
3900  	for (i = 0; i <= highest_zoneidx; i++) {
3901  		zone = pgdat->node_zones + i;
3902  
3903  		if (!managed_zone(zone))
3904  			continue;
3905  
3906  		if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)
3907  			mark = wmark_pages(zone, WMARK_PROMO);
3908  		else
3909  			mark = high_wmark_pages(zone);
3910  		if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
3911  			return true;
3912  	}
3913  
3914  	/*
3915  	 * If a node has no populated zone within highest_zoneidx, it does not
3916  	 * need balancing by definition. This can happen if a zone-restricted
3917  	 * allocation tries to wake a remote kswapd.
3918  	 */
3919  	if (mark == -1)
3920  		return true;
3921  
3922  	return false;
3923  }
3924  
3925  /* Clear pgdat state for congested, dirty or under writeback. */
3926  static void clear_pgdat_congested(pg_data_t *pgdat)
3927  {
3928  	struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
3929  
3930  	clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3931  	clear_bit(PGDAT_DIRTY, &pgdat->flags);
3932  	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3933  }
3934  
3935  /*
3936   * Prepare kswapd for sleeping. This verifies that there are no processes
3937   * waiting in throttle_direct_reclaim() and that watermarks have been met.
3938   *
3939   * Returns true if kswapd is ready to sleep
3940   */
3941  static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
3942  				int highest_zoneidx)
3943  {
3944  	/*
3945  	 * The throttled processes are normally woken up in balance_pgdat() as
3946  	 * soon as allow_direct_reclaim() is true. But there is a potential
3947  	 * race between when kswapd checks the watermarks and a process gets
3948  	 * throttled. There is also a potential race if processes get
3949  	 * throttled, kswapd wakes, a large process exits thereby balancing the
3950  	 * zones, which causes kswapd to exit balance_pgdat() before reaching
3951  	 * the wake up checks. If kswapd is going to sleep, no process should
3952  	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3953  	 * the wake up is premature, processes will wake kswapd and get
3954  	 * throttled again. The difference from wake ups in balance_pgdat() is
3955  	 * that here we are under prepare_to_wait().
3956  	 */
3957  	if (waitqueue_active(&pgdat->pfmemalloc_wait))
3958  		wake_up_all(&pgdat->pfmemalloc_wait);
3959  
3960  	/* Hopeless node, leave it to direct reclaim */
3961  	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3962  		return true;
3963  
3964  	if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
3965  		clear_pgdat_congested(pgdat);
3966  		return true;
3967  	}
3968  
3969  	return false;
3970  }
3971  
3972  /*
3973   * kswapd shrinks a node of pages that are at or below the highest usable
3974   * zone that is currently unbalanced.
3975   *
3976   * Returns true if kswapd scanned at least the requested number of pages to
3977   * reclaim or if the lack of progress was due to pages under writeback.
3978   * This is used to determine if the scanning priority needs to be raised.
3979   */
3980  static bool kswapd_shrink_node(pg_data_t *pgdat,
3981  			       struct scan_control *sc)
3982  {
3983  	struct zone *zone;
3984  	int z;
3985  
3986  	/* Reclaim a number of pages proportional to the number of zones */
3987  	sc->nr_to_reclaim = 0;
3988  	for (z = 0; z <= sc->reclaim_idx; z++) {
3989  		zone = pgdat->node_zones + z;
3990  		if (!managed_zone(zone))
3991  			continue;
3992  
3993  		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3994  	}
3995  
3996  	/*
3997  	 * Historically care was taken to put equal pressure on all zones but
3998  	 * now pressure is applied based on node LRU order.
3999  	 */
4000  	shrink_node(pgdat, sc);
4001  
4002  	/*
4003  	 * Fragmentation may mean that the system cannot be rebalanced for
4004  	 * high-order allocations. If twice the allocation size has been
4005  	 * reclaimed then recheck watermarks only at order-0 to prevent
4006  	 * excessive reclaim. Assume that a process requested a high-order
4007  	 * can direct reclaim/compact.
4008  	 */
4009  	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
4010  		sc->order = 0;
4011  
4012  	return sc->nr_scanned >= sc->nr_to_reclaim;
4013  }
4014  
4015  /* Page allocator PCP high watermark is lowered if reclaim is active. */
4016  static inline void
4017  update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
4018  {
4019  	int i;
4020  	struct zone *zone;
4021  
4022  	for (i = 0; i <= highest_zoneidx; i++) {
4023  		zone = pgdat->node_zones + i;
4024  
4025  		if (!managed_zone(zone))
4026  			continue;
4027  
4028  		if (active)
4029  			set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
4030  		else
4031  			clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
4032  	}
4033  }
4034  
4035  static inline void
4036  set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
4037  {
4038  	update_reclaim_active(pgdat, highest_zoneidx, true);
4039  }
4040  
4041  static inline void
4042  clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
4043  {
4044  	update_reclaim_active(pgdat, highest_zoneidx, false);
4045  }
4046  
4047  /*
4048   * For kswapd, balance_pgdat() will reclaim pages across a node from zones
4049   * that are eligible for use by the caller until at least one zone is
4050   * balanced.
4051   *
4052   * Returns the order kswapd finished reclaiming at.
4053   *
4054   * kswapd scans the zones in the highmem->normal->dma direction.  It skips
4055   * zones which have free_pages > high_wmark_pages(zone), but once a zone is
4056   * found to have free_pages <= high_wmark_pages(zone), any page in that zone
4057   * or lower is eligible for reclaim until at least one usable zone is
4058   * balanced.
4059   */
4060  static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
4061  {
4062  	int i;
4063  	unsigned long nr_soft_reclaimed;
4064  	unsigned long nr_soft_scanned;
4065  	unsigned long pflags;
4066  	unsigned long nr_boost_reclaim;
4067  	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
4068  	bool boosted;
4069  	struct zone *zone;
4070  	struct scan_control sc = {
4071  		.gfp_mask = GFP_KERNEL,
4072  		.order = order,
4073  		.may_unmap = 1,
4074  	};
4075  
4076  	set_task_reclaim_state(current, &sc.reclaim_state);
4077  	psi_memstall_enter(&pflags);
4078  	__fs_reclaim_acquire(_THIS_IP_);
4079  
4080  	count_vm_event(PAGEOUTRUN);
4081  
4082  	/*
4083  	 * Account for the reclaim boost. Note that the zone boost is left in
4084  	 * place so that parallel allocations that are near the watermark will
4085  	 * stall or direct reclaim until kswapd is finished.
4086  	 */
4087  	nr_boost_reclaim = 0;
4088  	for (i = 0; i <= highest_zoneidx; i++) {
4089  		zone = pgdat->node_zones + i;
4090  		if (!managed_zone(zone))
4091  			continue;
4092  
4093  		nr_boost_reclaim += zone->watermark_boost;
4094  		zone_boosts[i] = zone->watermark_boost;
4095  	}
4096  	boosted = nr_boost_reclaim;
4097  
4098  restart:
4099  	set_reclaim_active(pgdat, highest_zoneidx);
4100  	sc.priority = DEF_PRIORITY;
4101  	do {
4102  		unsigned long nr_reclaimed = sc.nr_reclaimed;
4103  		bool raise_priority = true;
4104  		bool balanced;
4105  		bool ret;
4106  
4107  		sc.reclaim_idx = highest_zoneidx;
4108  
4109  		/*
4110  		 * If the number of buffer_heads exceeds the maximum allowed
4111  		 * then consider reclaiming from all zones. This has a dual
4112  		 * purpose -- on 64-bit systems it is expected that
4113  		 * buffer_heads are stripped during active rotation. On 32-bit
4114  		 * systems, highmem pages can pin lowmem memory and shrinking
4115  		 * buffers can relieve lowmem pressure. Reclaim may still not
4116  		 * go ahead if all eligible zones for the original allocation
4117  		 * request are balanced to avoid excessive reclaim from kswapd.
4118  		 */
4119  		if (buffer_heads_over_limit) {
4120  			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
4121  				zone = pgdat->node_zones + i;
4122  				if (!managed_zone(zone))
4123  					continue;
4124  
4125  				sc.reclaim_idx = i;
4126  				break;
4127  			}
4128  		}
4129  
4130  		/*
4131  		 * If the pgdat is imbalanced then ignore boosting and preserve
4132  		 * the watermarks for a later time and restart. Note that the
4133  		 * zone watermarks will be still reset at the end of balancing
4134  		 * on the grounds that the normal reclaim should be enough to
4135  		 * re-evaluate if boosting is required when kswapd next wakes.
4136  		 */
4137  		balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
4138  		if (!balanced && nr_boost_reclaim) {
4139  			nr_boost_reclaim = 0;
4140  			goto restart;
4141  		}
4142  
4143  		/*
4144  		 * If boosting is not active then only reclaim if there are no
4145  		 * eligible zones. Note that sc.reclaim_idx is not used as
4146  		 * buffer_heads_over_limit may have adjusted it.
4147  		 */
4148  		if (!nr_boost_reclaim && balanced)
4149  			goto out;
4150  
4151  		/* Limit the priority of boosting to avoid reclaim writeback */
4152  		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
4153  			raise_priority = false;
4154  
4155  		/*
4156  		 * Do not writeback or swap pages for boosted reclaim. The
4157  		 * intent is to relieve pressure not issue sub-optimal IO
4158  		 * from reclaim context. If no pages are reclaimed, the
4159  		 * reclaim will be aborted.
4160  		 */
4161  		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
4162  		sc.may_swap = !nr_boost_reclaim;
4163  
4164  		/*
4165  		 * Do some background aging of the anon list, to give
4166  		 * pages a chance to be referenced before reclaiming. All
4167  		 * pages are rotated regardless of classzone as this is
4168  		 * about consistent aging.
4169  		 */
4170  		age_active_anon(pgdat, &sc);
4171  
4172  		/*
4173  		 * If we're getting trouble reclaiming, start doing writepage
4174  		 * even in laptop mode.
4175  		 */
4176  		if (sc.priority < DEF_PRIORITY - 2)
4177  			sc.may_writepage = 1;
4178  
4179  		/* Call soft limit reclaim before calling shrink_node. */
4180  		sc.nr_scanned = 0;
4181  		nr_soft_scanned = 0;
4182  		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
4183  						sc.gfp_mask, &nr_soft_scanned);
4184  		sc.nr_reclaimed += nr_soft_reclaimed;
4185  
4186  		/*
4187  		 * There should be no need to raise the scanning priority if
4188  		 * enough pages are already being scanned that that high
4189  		 * watermark would be met at 100% efficiency.
4190  		 */
4191  		if (kswapd_shrink_node(pgdat, &sc))
4192  			raise_priority = false;
4193  
4194  		/*
4195  		 * If the low watermark is met there is no need for processes
4196  		 * to be throttled on pfmemalloc_wait as they should not be
4197  		 * able to safely make forward progress. Wake them
4198  		 */
4199  		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
4200  				allow_direct_reclaim(pgdat))
4201  			wake_up_all(&pgdat->pfmemalloc_wait);
4202  
4203  		/* Check if kswapd should be suspending */
4204  		__fs_reclaim_release(_THIS_IP_);
4205  		ret = try_to_freeze();
4206  		__fs_reclaim_acquire(_THIS_IP_);
4207  		if (ret || kthread_should_stop())
4208  			break;
4209  
4210  		/*
4211  		 * Raise priority if scanning rate is too low or there was no
4212  		 * progress in reclaiming pages
4213  		 */
4214  		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
4215  		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
4216  
4217  		/*
4218  		 * If reclaim made no progress for a boost, stop reclaim as
4219  		 * IO cannot be queued and it could be an infinite loop in
4220  		 * extreme circumstances.
4221  		 */
4222  		if (nr_boost_reclaim && !nr_reclaimed)
4223  			break;
4224  
4225  		if (raise_priority || !nr_reclaimed)
4226  			sc.priority--;
4227  	} while (sc.priority >= 1);
4228  
4229  	if (!sc.nr_reclaimed)
4230  		pgdat->kswapd_failures++;
4231  
4232  out:
4233  	clear_reclaim_active(pgdat, highest_zoneidx);
4234  
4235  	/* If reclaim was boosted, account for the reclaim done in this pass */
4236  	if (boosted) {
4237  		unsigned long flags;
4238  
4239  		for (i = 0; i <= highest_zoneidx; i++) {
4240  			if (!zone_boosts[i])
4241  				continue;
4242  
4243  			/* Increments are under the zone lock */
4244  			zone = pgdat->node_zones + i;
4245  			spin_lock_irqsave(&zone->lock, flags);
4246  			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
4247  			spin_unlock_irqrestore(&zone->lock, flags);
4248  		}
4249  
4250  		/*
4251  		 * As there is now likely space, wakeup kcompact to defragment
4252  		 * pageblocks.
4253  		 */
4254  		wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
4255  	}
4256  
4257  	snapshot_refaults(NULL, pgdat);
4258  	__fs_reclaim_release(_THIS_IP_);
4259  	psi_memstall_leave(&pflags);
4260  	set_task_reclaim_state(current, NULL);
4261  
4262  	/*
4263  	 * Return the order kswapd stopped reclaiming at as
4264  	 * prepare_kswapd_sleep() takes it into account. If another caller
4265  	 * entered the allocator slow path while kswapd was awake, order will
4266  	 * remain at the higher level.
4267  	 */
4268  	return sc.order;
4269  }
4270  
4271  /*
4272   * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
4273   * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
4274   * not a valid index then either kswapd runs for first time or kswapd couldn't
4275   * sleep after previous reclaim attempt (node is still unbalanced). In that
4276   * case return the zone index of the previous kswapd reclaim cycle.
4277   */
4278  static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
4279  					   enum zone_type prev_highest_zoneidx)
4280  {
4281  	enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
4282  
4283  	return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
4284  }
4285  
4286  static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
4287  				unsigned int highest_zoneidx)
4288  {
4289  	long remaining = 0;
4290  	DEFINE_WAIT(wait);
4291  
4292  	if (freezing(current) || kthread_should_stop())
4293  		return;
4294  
4295  	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
4296  
4297  	/*
4298  	 * Try to sleep for a short interval. Note that kcompactd will only be
4299  	 * woken if it is possible to sleep for a short interval. This is
4300  	 * deliberate on the assumption that if reclaim cannot keep an
4301  	 * eligible zone balanced that it's also unlikely that compaction will
4302  	 * succeed.
4303  	 */
4304  	if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
4305  		/*
4306  		 * Compaction records what page blocks it recently failed to
4307  		 * isolate pages from and skips them in the future scanning.
4308  		 * When kswapd is going to sleep, it is reasonable to assume
4309  		 * that pages and compaction may succeed so reset the cache.
4310  		 */
4311  		reset_isolation_suitable(pgdat);
4312  
4313  		/*
4314  		 * We have freed the memory, now we should compact it to make
4315  		 * allocation of the requested order possible.
4316  		 */
4317  		wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
4318  
4319  		remaining = schedule_timeout(HZ/10);
4320  
4321  		/*
4322  		 * If woken prematurely then reset kswapd_highest_zoneidx and
4323  		 * order. The values will either be from a wakeup request or
4324  		 * the previous request that slept prematurely.
4325  		 */
4326  		if (remaining) {
4327  			WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
4328  					kswapd_highest_zoneidx(pgdat,
4329  							highest_zoneidx));
4330  
4331  			if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
4332  				WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
4333  		}
4334  
4335  		finish_wait(&pgdat->kswapd_wait, &wait);
4336  		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
4337  	}
4338  
4339  	/*
4340  	 * After a short sleep, check if it was a premature sleep. If not, then
4341  	 * go fully to sleep until explicitly woken up.
4342  	 */
4343  	if (!remaining &&
4344  	    prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
4345  		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
4346  
4347  		/*
4348  		 * vmstat counters are not perfectly accurate and the estimated
4349  		 * value for counters such as NR_FREE_PAGES can deviate from the
4350  		 * true value by nr_online_cpus * threshold. To avoid the zone
4351  		 * watermarks being breached while under pressure, we reduce the
4352  		 * per-cpu vmstat threshold while kswapd is awake and restore
4353  		 * them before going back to sleep.
4354  		 */
4355  		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
4356  
4357  		if (!kthread_should_stop())
4358  			schedule();
4359  
4360  		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
4361  	} else {
4362  		if (remaining)
4363  			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
4364  		else
4365  			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
4366  	}
4367  	finish_wait(&pgdat->kswapd_wait, &wait);
4368  }
4369  
4370  /*
4371   * The background pageout daemon, started as a kernel thread
4372   * from the init process.
4373   *
4374   * This basically trickles out pages so that we have _some_
4375   * free memory available even if there is no other activity
4376   * that frees anything up. This is needed for things like routing
4377   * etc, where we otherwise might have all activity going on in
4378   * asynchronous contexts that cannot page things out.
4379   *
4380   * If there are applications that are active memory-allocators
4381   * (most normal use), this basically shouldn't matter.
4382   */
4383  static int kswapd(void *p)
4384  {
4385  	unsigned int alloc_order, reclaim_order;
4386  	unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
4387  	pg_data_t *pgdat = (pg_data_t *)p;
4388  	struct task_struct *tsk = current;
4389  	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
4390  
4391  	if (!cpumask_empty(cpumask))
4392  		set_cpus_allowed_ptr(tsk, cpumask);
4393  
4394  	/*
4395  	 * Tell the memory management that we're a "memory allocator",
4396  	 * and that if we need more memory we should get access to it
4397  	 * regardless (see "__alloc_pages()"). "kswapd" should
4398  	 * never get caught in the normal page freeing logic.
4399  	 *
4400  	 * (Kswapd normally doesn't need memory anyway, but sometimes
4401  	 * you need a small amount of memory in order to be able to
4402  	 * page out something else, and this flag essentially protects
4403  	 * us from recursively trying to free more memory as we're
4404  	 * trying to free the first piece of memory in the first place).
4405  	 */
4406  	tsk->flags |= PF_MEMALLOC | PF_KSWAPD;
4407  	set_freezable();
4408  
4409  	WRITE_ONCE(pgdat->kswapd_order, 0);
4410  	WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
4411  	atomic_set(&pgdat->nr_writeback_throttled, 0);
4412  	for ( ; ; ) {
4413  		bool ret;
4414  
4415  		alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
4416  		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
4417  							highest_zoneidx);
4418  
4419  kswapd_try_sleep:
4420  		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
4421  					highest_zoneidx);
4422  
4423  		/* Read the new order and highest_zoneidx */
4424  		alloc_order = READ_ONCE(pgdat->kswapd_order);
4425  		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
4426  							highest_zoneidx);
4427  		WRITE_ONCE(pgdat->kswapd_order, 0);
4428  		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
4429  
4430  		ret = try_to_freeze();
4431  		if (kthread_should_stop())
4432  			break;
4433  
4434  		/*
4435  		 * We can speed up thawing tasks if we don't call balance_pgdat
4436  		 * after returning from the refrigerator
4437  		 */
4438  		if (ret)
4439  			continue;
4440  
4441  		/*
4442  		 * Reclaim begins at the requested order but if a high-order
4443  		 * reclaim fails then kswapd falls back to reclaiming for
4444  		 * order-0. If that happens, kswapd will consider sleeping
4445  		 * for the order it finished reclaiming at (reclaim_order)
4446  		 * but kcompactd is woken to compact for the original
4447  		 * request (alloc_order).
4448  		 */
4449  		trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
4450  						alloc_order);
4451  		reclaim_order = balance_pgdat(pgdat, alloc_order,
4452  						highest_zoneidx);
4453  		if (reclaim_order < alloc_order)
4454  			goto kswapd_try_sleep;
4455  	}
4456  
4457  	tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD);
4458  
4459  	return 0;
4460  }
4461  
4462  /*
4463   * A zone is low on free memory or too fragmented for high-order memory.  If
4464   * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
4465   * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
4466   * has failed or is not needed, still wake up kcompactd if only compaction is
4467   * needed.
4468   */
4469  void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
4470  		   enum zone_type highest_zoneidx)
4471  {
4472  	pg_data_t *pgdat;
4473  	enum zone_type curr_idx;
4474  
4475  	if (!managed_zone(zone))
4476  		return;
4477  
4478  	if (!cpuset_zone_allowed(zone, gfp_flags))
4479  		return;
4480  
4481  	pgdat = zone->zone_pgdat;
4482  	curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
4483  
4484  	if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
4485  		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
4486  
4487  	if (READ_ONCE(pgdat->kswapd_order) < order)
4488  		WRITE_ONCE(pgdat->kswapd_order, order);
4489  
4490  	if (!waitqueue_active(&pgdat->kswapd_wait))
4491  		return;
4492  
4493  	/* Hopeless node, leave it to direct reclaim if possible */
4494  	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
4495  	    (pgdat_balanced(pgdat, order, highest_zoneidx) &&
4496  	     !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
4497  		/*
4498  		 * There may be plenty of free memory available, but it's too
4499  		 * fragmented for high-order allocations.  Wake up kcompactd
4500  		 * and rely on compaction_suitable() to determine if it's
4501  		 * needed.  If it fails, it will defer subsequent attempts to
4502  		 * ratelimit its work.
4503  		 */
4504  		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
4505  			wakeup_kcompactd(pgdat, order, highest_zoneidx);
4506  		return;
4507  	}
4508  
4509  	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
4510  				      gfp_flags);
4511  	wake_up_interruptible(&pgdat->kswapd_wait);
4512  }
4513  
4514  #ifdef CONFIG_HIBERNATION
4515  /*
4516   * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
4517   * freed pages.
4518   *
4519   * Rather than trying to age LRUs the aim is to preserve the overall
4520   * LRU order by reclaiming preferentially
4521   * inactive > active > active referenced > active mapped
4522   */
4523  unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
4524  {
4525  	struct scan_control sc = {
4526  		.nr_to_reclaim = nr_to_reclaim,
4527  		.gfp_mask = GFP_HIGHUSER_MOVABLE,
4528  		.reclaim_idx = MAX_NR_ZONES - 1,
4529  		.priority = DEF_PRIORITY,
4530  		.may_writepage = 1,
4531  		.may_unmap = 1,
4532  		.may_swap = 1,
4533  		.hibernation_mode = 1,
4534  	};
4535  	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
4536  	unsigned long nr_reclaimed;
4537  	unsigned int noreclaim_flag;
4538  
4539  	fs_reclaim_acquire(sc.gfp_mask);
4540  	noreclaim_flag = memalloc_noreclaim_save();
4541  	set_task_reclaim_state(current, &sc.reclaim_state);
4542  
4543  	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
4544  
4545  	set_task_reclaim_state(current, NULL);
4546  	memalloc_noreclaim_restore(noreclaim_flag);
4547  	fs_reclaim_release(sc.gfp_mask);
4548  
4549  	return nr_reclaimed;
4550  }
4551  #endif /* CONFIG_HIBERNATION */
4552  
4553  /*
4554   * This kswapd start function will be called by init and node-hot-add.
4555   * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
4556   */
4557  void kswapd_run(int nid)
4558  {
4559  	pg_data_t *pgdat = NODE_DATA(nid);
4560  
4561  	if (pgdat->kswapd)
4562  		return;
4563  
4564  	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4565  	if (IS_ERR(pgdat->kswapd)) {
4566  		/* failure at boot is fatal */
4567  		BUG_ON(system_state < SYSTEM_RUNNING);
4568  		pr_err("Failed to start kswapd on node %d\n", nid);
4569  		pgdat->kswapd = NULL;
4570  	}
4571  }
4572  
4573  /*
4574   * Called by memory hotplug when all memory in a node is offlined.  Caller must
4575   * hold mem_hotplug_begin/end().
4576   */
4577  void kswapd_stop(int nid)
4578  {
4579  	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4580  
4581  	if (kswapd) {
4582  		kthread_stop(kswapd);
4583  		NODE_DATA(nid)->kswapd = NULL;
4584  	}
4585  }
4586  
4587  static int __init kswapd_init(void)
4588  {
4589  	int nid;
4590  
4591  	swap_setup();
4592  	for_each_node_state(nid, N_MEMORY)
4593   		kswapd_run(nid);
4594  	return 0;
4595  }
4596  
4597  module_init(kswapd_init)
4598  
4599  #ifdef CONFIG_NUMA
4600  /*
4601   * Node reclaim mode
4602   *
4603   * If non-zero call node_reclaim when the number of free pages falls below
4604   * the watermarks.
4605   */
4606  int node_reclaim_mode __read_mostly;
4607  
4608  /*
4609   * Priority for NODE_RECLAIM. This determines the fraction of pages
4610   * of a node considered for each zone_reclaim. 4 scans 1/16th of
4611   * a zone.
4612   */
4613  #define NODE_RECLAIM_PRIORITY 4
4614  
4615  /*
4616   * Percentage of pages in a zone that must be unmapped for node_reclaim to
4617   * occur.
4618   */
4619  int sysctl_min_unmapped_ratio = 1;
4620  
4621  /*
4622   * If the number of slab pages in a zone grows beyond this percentage then
4623   * slab reclaim needs to occur.
4624   */
4625  int sysctl_min_slab_ratio = 5;
4626  
4627  static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4628  {
4629  	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4630  	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4631  		node_page_state(pgdat, NR_ACTIVE_FILE);
4632  
4633  	/*
4634  	 * It's possible for there to be more file mapped pages than
4635  	 * accounted for by the pages on the file LRU lists because
4636  	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4637  	 */
4638  	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4639  }
4640  
4641  /* Work out how many page cache pages we can reclaim in this reclaim_mode */
4642  static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4643  {
4644  	unsigned long nr_pagecache_reclaimable;
4645  	unsigned long delta = 0;
4646  
4647  	/*
4648  	 * If RECLAIM_UNMAP is set, then all file pages are considered
4649  	 * potentially reclaimable. Otherwise, we have to worry about
4650  	 * pages like swapcache and node_unmapped_file_pages() provides
4651  	 * a better estimate
4652  	 */
4653  	if (node_reclaim_mode & RECLAIM_UNMAP)
4654  		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4655  	else
4656  		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4657  
4658  	/* If we can't clean pages, remove dirty pages from consideration */
4659  	if (!(node_reclaim_mode & RECLAIM_WRITE))
4660  		delta += node_page_state(pgdat, NR_FILE_DIRTY);
4661  
4662  	/* Watch for any possible underflows due to delta */
4663  	if (unlikely(delta > nr_pagecache_reclaimable))
4664  		delta = nr_pagecache_reclaimable;
4665  
4666  	return nr_pagecache_reclaimable - delta;
4667  }
4668  
4669  /*
4670   * Try to free up some pages from this node through reclaim.
4671   */
4672  static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4673  {
4674  	/* Minimum pages needed in order to stay on node */
4675  	const unsigned long nr_pages = 1 << order;
4676  	struct task_struct *p = current;
4677  	unsigned int noreclaim_flag;
4678  	struct scan_control sc = {
4679  		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4680  		.gfp_mask = current_gfp_context(gfp_mask),
4681  		.order = order,
4682  		.priority = NODE_RECLAIM_PRIORITY,
4683  		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4684  		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4685  		.may_swap = 1,
4686  		.reclaim_idx = gfp_zone(gfp_mask),
4687  	};
4688  	unsigned long pflags;
4689  
4690  	trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4691  					   sc.gfp_mask);
4692  
4693  	cond_resched();
4694  	psi_memstall_enter(&pflags);
4695  	fs_reclaim_acquire(sc.gfp_mask);
4696  	/*
4697  	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4698  	 */
4699  	noreclaim_flag = memalloc_noreclaim_save();
4700  	set_task_reclaim_state(p, &sc.reclaim_state);
4701  
4702  	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4703  		/*
4704  		 * Free memory by calling shrink node with increasing
4705  		 * priorities until we have enough memory freed.
4706  		 */
4707  		do {
4708  			shrink_node(pgdat, &sc);
4709  		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4710  	}
4711  
4712  	set_task_reclaim_state(p, NULL);
4713  	memalloc_noreclaim_restore(noreclaim_flag);
4714  	fs_reclaim_release(sc.gfp_mask);
4715  	psi_memstall_leave(&pflags);
4716  
4717  	trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4718  
4719  	return sc.nr_reclaimed >= nr_pages;
4720  }
4721  
4722  int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4723  {
4724  	int ret;
4725  
4726  	/*
4727  	 * Node reclaim reclaims unmapped file backed pages and
4728  	 * slab pages if we are over the defined limits.
4729  	 *
4730  	 * A small portion of unmapped file backed pages is needed for
4731  	 * file I/O otherwise pages read by file I/O will be immediately
4732  	 * thrown out if the node is overallocated. So we do not reclaim
4733  	 * if less than a specified percentage of the node is used by
4734  	 * unmapped file backed pages.
4735  	 */
4736  	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4737  	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
4738  	    pgdat->min_slab_pages)
4739  		return NODE_RECLAIM_FULL;
4740  
4741  	/*
4742  	 * Do not scan if the allocation should not be delayed.
4743  	 */
4744  	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4745  		return NODE_RECLAIM_NOSCAN;
4746  
4747  	/*
4748  	 * Only run node reclaim on the local node or on nodes that do not
4749  	 * have associated processors. This will favor the local processor
4750  	 * over remote processors and spread off node memory allocations
4751  	 * as wide as possible.
4752  	 */
4753  	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4754  		return NODE_RECLAIM_NOSCAN;
4755  
4756  	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4757  		return NODE_RECLAIM_NOSCAN;
4758  
4759  	ret = __node_reclaim(pgdat, gfp_mask, order);
4760  	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4761  
4762  	if (!ret)
4763  		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4764  
4765  	return ret;
4766  }
4767  #endif
4768  
4769  /**
4770   * check_move_unevictable_pages - check pages for evictability and move to
4771   * appropriate zone lru list
4772   * @pvec: pagevec with lru pages to check
4773   *
4774   * Checks pages for evictability, if an evictable page is in the unevictable
4775   * lru list, moves it to the appropriate evictable lru list. This function
4776   * should be only used for lru pages.
4777   */
4778  void check_move_unevictable_pages(struct pagevec *pvec)
4779  {
4780  	struct lruvec *lruvec = NULL;
4781  	int pgscanned = 0;
4782  	int pgrescued = 0;
4783  	int i;
4784  
4785  	for (i = 0; i < pvec->nr; i++) {
4786  		struct page *page = pvec->pages[i];
4787  		struct folio *folio = page_folio(page);
4788  		int nr_pages;
4789  
4790  		if (PageTransTail(page))
4791  			continue;
4792  
4793  		nr_pages = thp_nr_pages(page);
4794  		pgscanned += nr_pages;
4795  
4796  		/* block memcg migration during page moving between lru */
4797  		if (!TestClearPageLRU(page))
4798  			continue;
4799  
4800  		lruvec = folio_lruvec_relock_irq(folio, lruvec);
4801  		if (page_evictable(page) && PageUnevictable(page)) {
4802  			del_page_from_lru_list(page, lruvec);
4803  			ClearPageUnevictable(page);
4804  			add_page_to_lru_list(page, lruvec);
4805  			pgrescued += nr_pages;
4806  		}
4807  		SetPageLRU(page);
4808  	}
4809  
4810  	if (lruvec) {
4811  		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4812  		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4813  		unlock_page_lruvec_irq(lruvec);
4814  	} else if (pgscanned) {
4815  		count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4816  	}
4817  }
4818  EXPORT_SYMBOL_GPL(check_move_unevictable_pages);
4819