xref: /linux/mm/vmscan.c (revision b8bb76713ec50df2f11efee386e16f93d51e1076)
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13 
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h>	/* for try_to_release_page(),
27 					buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41 #include <linux/delayacct.h>
42 #include <linux/sysctl.h>
43 
44 #include <asm/tlbflush.h>
45 #include <asm/div64.h>
46 
47 #include <linux/swapops.h>
48 
49 #include "internal.h"
50 
51 struct scan_control {
52 	/* Incremented by the number of inactive pages that were scanned */
53 	unsigned long nr_scanned;
54 
55 	/* Number of pages freed so far during a call to shrink_zones() */
56 	unsigned long nr_reclaimed;
57 
58 	/* This context's GFP mask */
59 	gfp_t gfp_mask;
60 
61 	int may_writepage;
62 
63 	/* Can mapped pages be reclaimed? */
64 	int may_unmap;
65 
66 	/* This context's SWAP_CLUSTER_MAX. If freeing memory for
67 	 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
68 	 * In this context, it doesn't matter that we scan the
69 	 * whole list at once. */
70 	int swap_cluster_max;
71 
72 	int swappiness;
73 
74 	int all_unreclaimable;
75 
76 	int order;
77 
78 	/* Which cgroup do we reclaim from */
79 	struct mem_cgroup *mem_cgroup;
80 
81 	/*
82 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
83 	 * are scanned.
84 	 */
85 	nodemask_t	*nodemask;
86 
87 	/* Pluggable isolate pages callback */
88 	unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst,
89 			unsigned long *scanned, int order, int mode,
90 			struct zone *z, struct mem_cgroup *mem_cont,
91 			int active, int file);
92 };
93 
94 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
95 
96 #ifdef ARCH_HAS_PREFETCH
97 #define prefetch_prev_lru_page(_page, _base, _field)			\
98 	do {								\
99 		if ((_page)->lru.prev != _base) {			\
100 			struct page *prev;				\
101 									\
102 			prev = lru_to_page(&(_page->lru));		\
103 			prefetch(&prev->_field);			\
104 		}							\
105 	} while (0)
106 #else
107 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
108 #endif
109 
110 #ifdef ARCH_HAS_PREFETCHW
111 #define prefetchw_prev_lru_page(_page, _base, _field)			\
112 	do {								\
113 		if ((_page)->lru.prev != _base) {			\
114 			struct page *prev;				\
115 									\
116 			prev = lru_to_page(&(_page->lru));		\
117 			prefetchw(&prev->_field);			\
118 		}							\
119 	} while (0)
120 #else
121 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
122 #endif
123 
124 /*
125  * From 0 .. 100.  Higher means more swappy.
126  */
127 int vm_swappiness = 60;
128 long vm_total_pages;	/* The total number of pages which the VM controls */
129 
130 static LIST_HEAD(shrinker_list);
131 static DECLARE_RWSEM(shrinker_rwsem);
132 
133 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
134 #define scanning_global_lru(sc)	(!(sc)->mem_cgroup)
135 #else
136 #define scanning_global_lru(sc)	(1)
137 #endif
138 
139 static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
140 						  struct scan_control *sc)
141 {
142 	if (!scanning_global_lru(sc))
143 		return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
144 
145 	return &zone->reclaim_stat;
146 }
147 
148 static unsigned long zone_nr_pages(struct zone *zone, struct scan_control *sc,
149 				   enum lru_list lru)
150 {
151 	if (!scanning_global_lru(sc))
152 		return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru);
153 
154 	return zone_page_state(zone, NR_LRU_BASE + lru);
155 }
156 
157 
158 /*
159  * Add a shrinker callback to be called from the vm
160  */
161 void register_shrinker(struct shrinker *shrinker)
162 {
163 	shrinker->nr = 0;
164 	down_write(&shrinker_rwsem);
165 	list_add_tail(&shrinker->list, &shrinker_list);
166 	up_write(&shrinker_rwsem);
167 }
168 EXPORT_SYMBOL(register_shrinker);
169 
170 /*
171  * Remove one
172  */
173 void unregister_shrinker(struct shrinker *shrinker)
174 {
175 	down_write(&shrinker_rwsem);
176 	list_del(&shrinker->list);
177 	up_write(&shrinker_rwsem);
178 }
179 EXPORT_SYMBOL(unregister_shrinker);
180 
181 #define SHRINK_BATCH 128
182 /*
183  * Call the shrink functions to age shrinkable caches
184  *
185  * Here we assume it costs one seek to replace a lru page and that it also
186  * takes a seek to recreate a cache object.  With this in mind we age equal
187  * percentages of the lru and ageable caches.  This should balance the seeks
188  * generated by these structures.
189  *
190  * If the vm encountered mapped pages on the LRU it increase the pressure on
191  * slab to avoid swapping.
192  *
193  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
194  *
195  * `lru_pages' represents the number of on-LRU pages in all the zones which
196  * are eligible for the caller's allocation attempt.  It is used for balancing
197  * slab reclaim versus page reclaim.
198  *
199  * Returns the number of slab objects which we shrunk.
200  */
201 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
202 			unsigned long lru_pages)
203 {
204 	struct shrinker *shrinker;
205 	unsigned long ret = 0;
206 
207 	if (scanned == 0)
208 		scanned = SWAP_CLUSTER_MAX;
209 
210 	if (!down_read_trylock(&shrinker_rwsem))
211 		return 1;	/* Assume we'll be able to shrink next time */
212 
213 	list_for_each_entry(shrinker, &shrinker_list, list) {
214 		unsigned long long delta;
215 		unsigned long total_scan;
216 		unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask);
217 
218 		delta = (4 * scanned) / shrinker->seeks;
219 		delta *= max_pass;
220 		do_div(delta, lru_pages + 1);
221 		shrinker->nr += delta;
222 		if (shrinker->nr < 0) {
223 			printk(KERN_ERR "shrink_slab: %pF negative objects to "
224 			       "delete nr=%ld\n",
225 			       shrinker->shrink, shrinker->nr);
226 			shrinker->nr = max_pass;
227 		}
228 
229 		/*
230 		 * Avoid risking looping forever due to too large nr value:
231 		 * never try to free more than twice the estimate number of
232 		 * freeable entries.
233 		 */
234 		if (shrinker->nr > max_pass * 2)
235 			shrinker->nr = max_pass * 2;
236 
237 		total_scan = shrinker->nr;
238 		shrinker->nr = 0;
239 
240 		while (total_scan >= SHRINK_BATCH) {
241 			long this_scan = SHRINK_BATCH;
242 			int shrink_ret;
243 			int nr_before;
244 
245 			nr_before = (*shrinker->shrink)(0, gfp_mask);
246 			shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask);
247 			if (shrink_ret == -1)
248 				break;
249 			if (shrink_ret < nr_before)
250 				ret += nr_before - shrink_ret;
251 			count_vm_events(SLABS_SCANNED, this_scan);
252 			total_scan -= this_scan;
253 
254 			cond_resched();
255 		}
256 
257 		shrinker->nr += total_scan;
258 	}
259 	up_read(&shrinker_rwsem);
260 	return ret;
261 }
262 
263 /* Called without lock on whether page is mapped, so answer is unstable */
264 static inline int page_mapping_inuse(struct page *page)
265 {
266 	struct address_space *mapping;
267 
268 	/* Page is in somebody's page tables. */
269 	if (page_mapped(page))
270 		return 1;
271 
272 	/* Be more reluctant to reclaim swapcache than pagecache */
273 	if (PageSwapCache(page))
274 		return 1;
275 
276 	mapping = page_mapping(page);
277 	if (!mapping)
278 		return 0;
279 
280 	/* File is mmap'd by somebody? */
281 	return mapping_mapped(mapping);
282 }
283 
284 static inline int is_page_cache_freeable(struct page *page)
285 {
286 	return page_count(page) - !!PagePrivate(page) == 2;
287 }
288 
289 static int may_write_to_queue(struct backing_dev_info *bdi)
290 {
291 	if (current->flags & PF_SWAPWRITE)
292 		return 1;
293 	if (!bdi_write_congested(bdi))
294 		return 1;
295 	if (bdi == current->backing_dev_info)
296 		return 1;
297 	return 0;
298 }
299 
300 /*
301  * We detected a synchronous write error writing a page out.  Probably
302  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
303  * fsync(), msync() or close().
304  *
305  * The tricky part is that after writepage we cannot touch the mapping: nothing
306  * prevents it from being freed up.  But we have a ref on the page and once
307  * that page is locked, the mapping is pinned.
308  *
309  * We're allowed to run sleeping lock_page() here because we know the caller has
310  * __GFP_FS.
311  */
312 static void handle_write_error(struct address_space *mapping,
313 				struct page *page, int error)
314 {
315 	lock_page(page);
316 	if (page_mapping(page) == mapping)
317 		mapping_set_error(mapping, error);
318 	unlock_page(page);
319 }
320 
321 /* Request for sync pageout. */
322 enum pageout_io {
323 	PAGEOUT_IO_ASYNC,
324 	PAGEOUT_IO_SYNC,
325 };
326 
327 /* possible outcome of pageout() */
328 typedef enum {
329 	/* failed to write page out, page is locked */
330 	PAGE_KEEP,
331 	/* move page to the active list, page is locked */
332 	PAGE_ACTIVATE,
333 	/* page has been sent to the disk successfully, page is unlocked */
334 	PAGE_SUCCESS,
335 	/* page is clean and locked */
336 	PAGE_CLEAN,
337 } pageout_t;
338 
339 /*
340  * pageout is called by shrink_page_list() for each dirty page.
341  * Calls ->writepage().
342  */
343 static pageout_t pageout(struct page *page, struct address_space *mapping,
344 						enum pageout_io sync_writeback)
345 {
346 	/*
347 	 * If the page is dirty, only perform writeback if that write
348 	 * will be non-blocking.  To prevent this allocation from being
349 	 * stalled by pagecache activity.  But note that there may be
350 	 * stalls if we need to run get_block().  We could test
351 	 * PagePrivate for that.
352 	 *
353 	 * If this process is currently in generic_file_write() against
354 	 * this page's queue, we can perform writeback even if that
355 	 * will block.
356 	 *
357 	 * If the page is swapcache, write it back even if that would
358 	 * block, for some throttling. This happens by accident, because
359 	 * swap_backing_dev_info is bust: it doesn't reflect the
360 	 * congestion state of the swapdevs.  Easy to fix, if needed.
361 	 * See swapfile.c:page_queue_congested().
362 	 */
363 	if (!is_page_cache_freeable(page))
364 		return PAGE_KEEP;
365 	if (!mapping) {
366 		/*
367 		 * Some data journaling orphaned pages can have
368 		 * page->mapping == NULL while being dirty with clean buffers.
369 		 */
370 		if (PagePrivate(page)) {
371 			if (try_to_free_buffers(page)) {
372 				ClearPageDirty(page);
373 				printk("%s: orphaned page\n", __func__);
374 				return PAGE_CLEAN;
375 			}
376 		}
377 		return PAGE_KEEP;
378 	}
379 	if (mapping->a_ops->writepage == NULL)
380 		return PAGE_ACTIVATE;
381 	if (!may_write_to_queue(mapping->backing_dev_info))
382 		return PAGE_KEEP;
383 
384 	if (clear_page_dirty_for_io(page)) {
385 		int res;
386 		struct writeback_control wbc = {
387 			.sync_mode = WB_SYNC_NONE,
388 			.nr_to_write = SWAP_CLUSTER_MAX,
389 			.range_start = 0,
390 			.range_end = LLONG_MAX,
391 			.nonblocking = 1,
392 			.for_reclaim = 1,
393 		};
394 
395 		SetPageReclaim(page);
396 		res = mapping->a_ops->writepage(page, &wbc);
397 		if (res < 0)
398 			handle_write_error(mapping, page, res);
399 		if (res == AOP_WRITEPAGE_ACTIVATE) {
400 			ClearPageReclaim(page);
401 			return PAGE_ACTIVATE;
402 		}
403 
404 		/*
405 		 * Wait on writeback if requested to. This happens when
406 		 * direct reclaiming a large contiguous area and the
407 		 * first attempt to free a range of pages fails.
408 		 */
409 		if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
410 			wait_on_page_writeback(page);
411 
412 		if (!PageWriteback(page)) {
413 			/* synchronous write or broken a_ops? */
414 			ClearPageReclaim(page);
415 		}
416 		inc_zone_page_state(page, NR_VMSCAN_WRITE);
417 		return PAGE_SUCCESS;
418 	}
419 
420 	return PAGE_CLEAN;
421 }
422 
423 /*
424  * Same as remove_mapping, but if the page is removed from the mapping, it
425  * gets returned with a refcount of 0.
426  */
427 static int __remove_mapping(struct address_space *mapping, struct page *page)
428 {
429 	BUG_ON(!PageLocked(page));
430 	BUG_ON(mapping != page_mapping(page));
431 
432 	spin_lock_irq(&mapping->tree_lock);
433 	/*
434 	 * The non racy check for a busy page.
435 	 *
436 	 * Must be careful with the order of the tests. When someone has
437 	 * a ref to the page, it may be possible that they dirty it then
438 	 * drop the reference. So if PageDirty is tested before page_count
439 	 * here, then the following race may occur:
440 	 *
441 	 * get_user_pages(&page);
442 	 * [user mapping goes away]
443 	 * write_to(page);
444 	 *				!PageDirty(page)    [good]
445 	 * SetPageDirty(page);
446 	 * put_page(page);
447 	 *				!page_count(page)   [good, discard it]
448 	 *
449 	 * [oops, our write_to data is lost]
450 	 *
451 	 * Reversing the order of the tests ensures such a situation cannot
452 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
453 	 * load is not satisfied before that of page->_count.
454 	 *
455 	 * Note that if SetPageDirty is always performed via set_page_dirty,
456 	 * and thus under tree_lock, then this ordering is not required.
457 	 */
458 	if (!page_freeze_refs(page, 2))
459 		goto cannot_free;
460 	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
461 	if (unlikely(PageDirty(page))) {
462 		page_unfreeze_refs(page, 2);
463 		goto cannot_free;
464 	}
465 
466 	if (PageSwapCache(page)) {
467 		swp_entry_t swap = { .val = page_private(page) };
468 		__delete_from_swap_cache(page);
469 		spin_unlock_irq(&mapping->tree_lock);
470 		swap_free(swap);
471 	} else {
472 		__remove_from_page_cache(page);
473 		spin_unlock_irq(&mapping->tree_lock);
474 	}
475 
476 	return 1;
477 
478 cannot_free:
479 	spin_unlock_irq(&mapping->tree_lock);
480 	return 0;
481 }
482 
483 /*
484  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
485  * someone else has a ref on the page, abort and return 0.  If it was
486  * successfully detached, return 1.  Assumes the caller has a single ref on
487  * this page.
488  */
489 int remove_mapping(struct address_space *mapping, struct page *page)
490 {
491 	if (__remove_mapping(mapping, page)) {
492 		/*
493 		 * Unfreezing the refcount with 1 rather than 2 effectively
494 		 * drops the pagecache ref for us without requiring another
495 		 * atomic operation.
496 		 */
497 		page_unfreeze_refs(page, 1);
498 		return 1;
499 	}
500 	return 0;
501 }
502 
503 /**
504  * putback_lru_page - put previously isolated page onto appropriate LRU list
505  * @page: page to be put back to appropriate lru list
506  *
507  * Add previously isolated @page to appropriate LRU list.
508  * Page may still be unevictable for other reasons.
509  *
510  * lru_lock must not be held, interrupts must be enabled.
511  */
512 #ifdef CONFIG_UNEVICTABLE_LRU
513 void putback_lru_page(struct page *page)
514 {
515 	int lru;
516 	int active = !!TestClearPageActive(page);
517 	int was_unevictable = PageUnevictable(page);
518 
519 	VM_BUG_ON(PageLRU(page));
520 
521 redo:
522 	ClearPageUnevictable(page);
523 
524 	if (page_evictable(page, NULL)) {
525 		/*
526 		 * For evictable pages, we can use the cache.
527 		 * In event of a race, worst case is we end up with an
528 		 * unevictable page on [in]active list.
529 		 * We know how to handle that.
530 		 */
531 		lru = active + page_is_file_cache(page);
532 		lru_cache_add_lru(page, lru);
533 	} else {
534 		/*
535 		 * Put unevictable pages directly on zone's unevictable
536 		 * list.
537 		 */
538 		lru = LRU_UNEVICTABLE;
539 		add_page_to_unevictable_list(page);
540 	}
541 
542 	/*
543 	 * page's status can change while we move it among lru. If an evictable
544 	 * page is on unevictable list, it never be freed. To avoid that,
545 	 * check after we added it to the list, again.
546 	 */
547 	if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
548 		if (!isolate_lru_page(page)) {
549 			put_page(page);
550 			goto redo;
551 		}
552 		/* This means someone else dropped this page from LRU
553 		 * So, it will be freed or putback to LRU again. There is
554 		 * nothing to do here.
555 		 */
556 	}
557 
558 	if (was_unevictable && lru != LRU_UNEVICTABLE)
559 		count_vm_event(UNEVICTABLE_PGRESCUED);
560 	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
561 		count_vm_event(UNEVICTABLE_PGCULLED);
562 
563 	put_page(page);		/* drop ref from isolate */
564 }
565 
566 #else /* CONFIG_UNEVICTABLE_LRU */
567 
568 void putback_lru_page(struct page *page)
569 {
570 	int lru;
571 	VM_BUG_ON(PageLRU(page));
572 
573 	lru = !!TestClearPageActive(page) + page_is_file_cache(page);
574 	lru_cache_add_lru(page, lru);
575 	put_page(page);
576 }
577 #endif /* CONFIG_UNEVICTABLE_LRU */
578 
579 
580 /*
581  * shrink_page_list() returns the number of reclaimed pages
582  */
583 static unsigned long shrink_page_list(struct list_head *page_list,
584 					struct scan_control *sc,
585 					enum pageout_io sync_writeback)
586 {
587 	LIST_HEAD(ret_pages);
588 	struct pagevec freed_pvec;
589 	int pgactivate = 0;
590 	unsigned long nr_reclaimed = 0;
591 
592 	cond_resched();
593 
594 	pagevec_init(&freed_pvec, 1);
595 	while (!list_empty(page_list)) {
596 		struct address_space *mapping;
597 		struct page *page;
598 		int may_enter_fs;
599 		int referenced;
600 
601 		cond_resched();
602 
603 		page = lru_to_page(page_list);
604 		list_del(&page->lru);
605 
606 		if (!trylock_page(page))
607 			goto keep;
608 
609 		VM_BUG_ON(PageActive(page));
610 
611 		sc->nr_scanned++;
612 
613 		if (unlikely(!page_evictable(page, NULL)))
614 			goto cull_mlocked;
615 
616 		if (!sc->may_unmap && page_mapped(page))
617 			goto keep_locked;
618 
619 		/* Double the slab pressure for mapped and swapcache pages */
620 		if (page_mapped(page) || PageSwapCache(page))
621 			sc->nr_scanned++;
622 
623 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
624 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
625 
626 		if (PageWriteback(page)) {
627 			/*
628 			 * Synchronous reclaim is performed in two passes,
629 			 * first an asynchronous pass over the list to
630 			 * start parallel writeback, and a second synchronous
631 			 * pass to wait for the IO to complete.  Wait here
632 			 * for any page for which writeback has already
633 			 * started.
634 			 */
635 			if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
636 				wait_on_page_writeback(page);
637 			else
638 				goto keep_locked;
639 		}
640 
641 		referenced = page_referenced(page, 1, sc->mem_cgroup);
642 		/* In active use or really unfreeable?  Activate it. */
643 		if (sc->order <= PAGE_ALLOC_COSTLY_ORDER &&
644 					referenced && page_mapping_inuse(page))
645 			goto activate_locked;
646 
647 		/*
648 		 * Anonymous process memory has backing store?
649 		 * Try to allocate it some swap space here.
650 		 */
651 		if (PageAnon(page) && !PageSwapCache(page)) {
652 			if (!(sc->gfp_mask & __GFP_IO))
653 				goto keep_locked;
654 			if (!add_to_swap(page))
655 				goto activate_locked;
656 			may_enter_fs = 1;
657 		}
658 
659 		mapping = page_mapping(page);
660 
661 		/*
662 		 * The page is mapped into the page tables of one or more
663 		 * processes. Try to unmap it here.
664 		 */
665 		if (page_mapped(page) && mapping) {
666 			switch (try_to_unmap(page, 0)) {
667 			case SWAP_FAIL:
668 				goto activate_locked;
669 			case SWAP_AGAIN:
670 				goto keep_locked;
671 			case SWAP_MLOCK:
672 				goto cull_mlocked;
673 			case SWAP_SUCCESS:
674 				; /* try to free the page below */
675 			}
676 		}
677 
678 		if (PageDirty(page)) {
679 			if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && referenced)
680 				goto keep_locked;
681 			if (!may_enter_fs)
682 				goto keep_locked;
683 			if (!sc->may_writepage)
684 				goto keep_locked;
685 
686 			/* Page is dirty, try to write it out here */
687 			switch (pageout(page, mapping, sync_writeback)) {
688 			case PAGE_KEEP:
689 				goto keep_locked;
690 			case PAGE_ACTIVATE:
691 				goto activate_locked;
692 			case PAGE_SUCCESS:
693 				if (PageWriteback(page) || PageDirty(page))
694 					goto keep;
695 				/*
696 				 * A synchronous write - probably a ramdisk.  Go
697 				 * ahead and try to reclaim the page.
698 				 */
699 				if (!trylock_page(page))
700 					goto keep;
701 				if (PageDirty(page) || PageWriteback(page))
702 					goto keep_locked;
703 				mapping = page_mapping(page);
704 			case PAGE_CLEAN:
705 				; /* try to free the page below */
706 			}
707 		}
708 
709 		/*
710 		 * If the page has buffers, try to free the buffer mappings
711 		 * associated with this page. If we succeed we try to free
712 		 * the page as well.
713 		 *
714 		 * We do this even if the page is PageDirty().
715 		 * try_to_release_page() does not perform I/O, but it is
716 		 * possible for a page to have PageDirty set, but it is actually
717 		 * clean (all its buffers are clean).  This happens if the
718 		 * buffers were written out directly, with submit_bh(). ext3
719 		 * will do this, as well as the blockdev mapping.
720 		 * try_to_release_page() will discover that cleanness and will
721 		 * drop the buffers and mark the page clean - it can be freed.
722 		 *
723 		 * Rarely, pages can have buffers and no ->mapping.  These are
724 		 * the pages which were not successfully invalidated in
725 		 * truncate_complete_page().  We try to drop those buffers here
726 		 * and if that worked, and the page is no longer mapped into
727 		 * process address space (page_count == 1) it can be freed.
728 		 * Otherwise, leave the page on the LRU so it is swappable.
729 		 */
730 		if (PagePrivate(page)) {
731 			if (!try_to_release_page(page, sc->gfp_mask))
732 				goto activate_locked;
733 			if (!mapping && page_count(page) == 1) {
734 				unlock_page(page);
735 				if (put_page_testzero(page))
736 					goto free_it;
737 				else {
738 					/*
739 					 * rare race with speculative reference.
740 					 * the speculative reference will free
741 					 * this page shortly, so we may
742 					 * increment nr_reclaimed here (and
743 					 * leave it off the LRU).
744 					 */
745 					nr_reclaimed++;
746 					continue;
747 				}
748 			}
749 		}
750 
751 		if (!mapping || !__remove_mapping(mapping, page))
752 			goto keep_locked;
753 
754 		/*
755 		 * At this point, we have no other references and there is
756 		 * no way to pick any more up (removed from LRU, removed
757 		 * from pagecache). Can use non-atomic bitops now (and
758 		 * we obviously don't have to worry about waking up a process
759 		 * waiting on the page lock, because there are no references.
760 		 */
761 		__clear_page_locked(page);
762 free_it:
763 		nr_reclaimed++;
764 		if (!pagevec_add(&freed_pvec, page)) {
765 			__pagevec_free(&freed_pvec);
766 			pagevec_reinit(&freed_pvec);
767 		}
768 		continue;
769 
770 cull_mlocked:
771 		if (PageSwapCache(page))
772 			try_to_free_swap(page);
773 		unlock_page(page);
774 		putback_lru_page(page);
775 		continue;
776 
777 activate_locked:
778 		/* Not a candidate for swapping, so reclaim swap space. */
779 		if (PageSwapCache(page) && vm_swap_full())
780 			try_to_free_swap(page);
781 		VM_BUG_ON(PageActive(page));
782 		SetPageActive(page);
783 		pgactivate++;
784 keep_locked:
785 		unlock_page(page);
786 keep:
787 		list_add(&page->lru, &ret_pages);
788 		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
789 	}
790 	list_splice(&ret_pages, page_list);
791 	if (pagevec_count(&freed_pvec))
792 		__pagevec_free(&freed_pvec);
793 	count_vm_events(PGACTIVATE, pgactivate);
794 	return nr_reclaimed;
795 }
796 
797 /* LRU Isolation modes. */
798 #define ISOLATE_INACTIVE 0	/* Isolate inactive pages. */
799 #define ISOLATE_ACTIVE 1	/* Isolate active pages. */
800 #define ISOLATE_BOTH 2		/* Isolate both active and inactive pages. */
801 
802 /*
803  * Attempt to remove the specified page from its LRU.  Only take this page
804  * if it is of the appropriate PageActive status.  Pages which are being
805  * freed elsewhere are also ignored.
806  *
807  * page:	page to consider
808  * mode:	one of the LRU isolation modes defined above
809  *
810  * returns 0 on success, -ve errno on failure.
811  */
812 int __isolate_lru_page(struct page *page, int mode, int file)
813 {
814 	int ret = -EINVAL;
815 
816 	/* Only take pages on the LRU. */
817 	if (!PageLRU(page))
818 		return ret;
819 
820 	/*
821 	 * When checking the active state, we need to be sure we are
822 	 * dealing with comparible boolean values.  Take the logical not
823 	 * of each.
824 	 */
825 	if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
826 		return ret;
827 
828 	if (mode != ISOLATE_BOTH && (!page_is_file_cache(page) != !file))
829 		return ret;
830 
831 	/*
832 	 * When this function is being called for lumpy reclaim, we
833 	 * initially look into all LRU pages, active, inactive and
834 	 * unevictable; only give shrink_page_list evictable pages.
835 	 */
836 	if (PageUnevictable(page))
837 		return ret;
838 
839 	ret = -EBUSY;
840 
841 	if (likely(get_page_unless_zero(page))) {
842 		/*
843 		 * Be careful not to clear PageLRU until after we're
844 		 * sure the page is not being freed elsewhere -- the
845 		 * page release code relies on it.
846 		 */
847 		ClearPageLRU(page);
848 		ret = 0;
849 		mem_cgroup_del_lru(page);
850 	}
851 
852 	return ret;
853 }
854 
855 /*
856  * zone->lru_lock is heavily contended.  Some of the functions that
857  * shrink the lists perform better by taking out a batch of pages
858  * and working on them outside the LRU lock.
859  *
860  * For pagecache intensive workloads, this function is the hottest
861  * spot in the kernel (apart from copy_*_user functions).
862  *
863  * Appropriate locks must be held before calling this function.
864  *
865  * @nr_to_scan:	The number of pages to look through on the list.
866  * @src:	The LRU list to pull pages off.
867  * @dst:	The temp list to put pages on to.
868  * @scanned:	The number of pages that were scanned.
869  * @order:	The caller's attempted allocation order
870  * @mode:	One of the LRU isolation modes
871  * @file:	True [1] if isolating file [!anon] pages
872  *
873  * returns how many pages were moved onto *@dst.
874  */
875 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
876 		struct list_head *src, struct list_head *dst,
877 		unsigned long *scanned, int order, int mode, int file)
878 {
879 	unsigned long nr_taken = 0;
880 	unsigned long scan;
881 
882 	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
883 		struct page *page;
884 		unsigned long pfn;
885 		unsigned long end_pfn;
886 		unsigned long page_pfn;
887 		int zone_id;
888 
889 		page = lru_to_page(src);
890 		prefetchw_prev_lru_page(page, src, flags);
891 
892 		VM_BUG_ON(!PageLRU(page));
893 
894 		switch (__isolate_lru_page(page, mode, file)) {
895 		case 0:
896 			list_move(&page->lru, dst);
897 			nr_taken++;
898 			break;
899 
900 		case -EBUSY:
901 			/* else it is being freed elsewhere */
902 			list_move(&page->lru, src);
903 			continue;
904 
905 		default:
906 			BUG();
907 		}
908 
909 		if (!order)
910 			continue;
911 
912 		/*
913 		 * Attempt to take all pages in the order aligned region
914 		 * surrounding the tag page.  Only take those pages of
915 		 * the same active state as that tag page.  We may safely
916 		 * round the target page pfn down to the requested order
917 		 * as the mem_map is guarenteed valid out to MAX_ORDER,
918 		 * where that page is in a different zone we will detect
919 		 * it from its zone id and abort this block scan.
920 		 */
921 		zone_id = page_zone_id(page);
922 		page_pfn = page_to_pfn(page);
923 		pfn = page_pfn & ~((1 << order) - 1);
924 		end_pfn = pfn + (1 << order);
925 		for (; pfn < end_pfn; pfn++) {
926 			struct page *cursor_page;
927 
928 			/* The target page is in the block, ignore it. */
929 			if (unlikely(pfn == page_pfn))
930 				continue;
931 
932 			/* Avoid holes within the zone. */
933 			if (unlikely(!pfn_valid_within(pfn)))
934 				break;
935 
936 			cursor_page = pfn_to_page(pfn);
937 
938 			/* Check that we have not crossed a zone boundary. */
939 			if (unlikely(page_zone_id(cursor_page) != zone_id))
940 				continue;
941 			switch (__isolate_lru_page(cursor_page, mode, file)) {
942 			case 0:
943 				list_move(&cursor_page->lru, dst);
944 				nr_taken++;
945 				scan++;
946 				break;
947 
948 			case -EBUSY:
949 				/* else it is being freed elsewhere */
950 				list_move(&cursor_page->lru, src);
951 			default:
952 				break;	/* ! on LRU or wrong list */
953 			}
954 		}
955 	}
956 
957 	*scanned = scan;
958 	return nr_taken;
959 }
960 
961 static unsigned long isolate_pages_global(unsigned long nr,
962 					struct list_head *dst,
963 					unsigned long *scanned, int order,
964 					int mode, struct zone *z,
965 					struct mem_cgroup *mem_cont,
966 					int active, int file)
967 {
968 	int lru = LRU_BASE;
969 	if (active)
970 		lru += LRU_ACTIVE;
971 	if (file)
972 		lru += LRU_FILE;
973 	return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
974 								mode, !!file);
975 }
976 
977 /*
978  * clear_active_flags() is a helper for shrink_active_list(), clearing
979  * any active bits from the pages in the list.
980  */
981 static unsigned long clear_active_flags(struct list_head *page_list,
982 					unsigned int *count)
983 {
984 	int nr_active = 0;
985 	int lru;
986 	struct page *page;
987 
988 	list_for_each_entry(page, page_list, lru) {
989 		lru = page_is_file_cache(page);
990 		if (PageActive(page)) {
991 			lru += LRU_ACTIVE;
992 			ClearPageActive(page);
993 			nr_active++;
994 		}
995 		count[lru]++;
996 	}
997 
998 	return nr_active;
999 }
1000 
1001 /**
1002  * isolate_lru_page - tries to isolate a page from its LRU list
1003  * @page: page to isolate from its LRU list
1004  *
1005  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1006  * vmstat statistic corresponding to whatever LRU list the page was on.
1007  *
1008  * Returns 0 if the page was removed from an LRU list.
1009  * Returns -EBUSY if the page was not on an LRU list.
1010  *
1011  * The returned page will have PageLRU() cleared.  If it was found on
1012  * the active list, it will have PageActive set.  If it was found on
1013  * the unevictable list, it will have the PageUnevictable bit set. That flag
1014  * may need to be cleared by the caller before letting the page go.
1015  *
1016  * The vmstat statistic corresponding to the list on which the page was
1017  * found will be decremented.
1018  *
1019  * Restrictions:
1020  * (1) Must be called with an elevated refcount on the page. This is a
1021  *     fundamentnal difference from isolate_lru_pages (which is called
1022  *     without a stable reference).
1023  * (2) the lru_lock must not be held.
1024  * (3) interrupts must be enabled.
1025  */
1026 int isolate_lru_page(struct page *page)
1027 {
1028 	int ret = -EBUSY;
1029 
1030 	if (PageLRU(page)) {
1031 		struct zone *zone = page_zone(page);
1032 
1033 		spin_lock_irq(&zone->lru_lock);
1034 		if (PageLRU(page) && get_page_unless_zero(page)) {
1035 			int lru = page_lru(page);
1036 			ret = 0;
1037 			ClearPageLRU(page);
1038 
1039 			del_page_from_lru_list(zone, page, lru);
1040 		}
1041 		spin_unlock_irq(&zone->lru_lock);
1042 	}
1043 	return ret;
1044 }
1045 
1046 /*
1047  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1048  * of reclaimed pages
1049  */
1050 static unsigned long shrink_inactive_list(unsigned long max_scan,
1051 			struct zone *zone, struct scan_control *sc,
1052 			int priority, int file)
1053 {
1054 	LIST_HEAD(page_list);
1055 	struct pagevec pvec;
1056 	unsigned long nr_scanned = 0;
1057 	unsigned long nr_reclaimed = 0;
1058 	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1059 
1060 	pagevec_init(&pvec, 1);
1061 
1062 	lru_add_drain();
1063 	spin_lock_irq(&zone->lru_lock);
1064 	do {
1065 		struct page *page;
1066 		unsigned long nr_taken;
1067 		unsigned long nr_scan;
1068 		unsigned long nr_freed;
1069 		unsigned long nr_active;
1070 		unsigned int count[NR_LRU_LISTS] = { 0, };
1071 		int mode = ISOLATE_INACTIVE;
1072 
1073 		/*
1074 		 * If we need a large contiguous chunk of memory, or have
1075 		 * trouble getting a small set of contiguous pages, we
1076 		 * will reclaim both active and inactive pages.
1077 		 *
1078 		 * We use the same threshold as pageout congestion_wait below.
1079 		 */
1080 		if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1081 			mode = ISOLATE_BOTH;
1082 		else if (sc->order && priority < DEF_PRIORITY - 2)
1083 			mode = ISOLATE_BOTH;
1084 
1085 		nr_taken = sc->isolate_pages(sc->swap_cluster_max,
1086 			     &page_list, &nr_scan, sc->order, mode,
1087 				zone, sc->mem_cgroup, 0, file);
1088 		nr_active = clear_active_flags(&page_list, count);
1089 		__count_vm_events(PGDEACTIVATE, nr_active);
1090 
1091 		__mod_zone_page_state(zone, NR_ACTIVE_FILE,
1092 						-count[LRU_ACTIVE_FILE]);
1093 		__mod_zone_page_state(zone, NR_INACTIVE_FILE,
1094 						-count[LRU_INACTIVE_FILE]);
1095 		__mod_zone_page_state(zone, NR_ACTIVE_ANON,
1096 						-count[LRU_ACTIVE_ANON]);
1097 		__mod_zone_page_state(zone, NR_INACTIVE_ANON,
1098 						-count[LRU_INACTIVE_ANON]);
1099 
1100 		if (scanning_global_lru(sc))
1101 			zone->pages_scanned += nr_scan;
1102 
1103 		reclaim_stat->recent_scanned[0] += count[LRU_INACTIVE_ANON];
1104 		reclaim_stat->recent_scanned[0] += count[LRU_ACTIVE_ANON];
1105 		reclaim_stat->recent_scanned[1] += count[LRU_INACTIVE_FILE];
1106 		reclaim_stat->recent_scanned[1] += count[LRU_ACTIVE_FILE];
1107 
1108 		spin_unlock_irq(&zone->lru_lock);
1109 
1110 		nr_scanned += nr_scan;
1111 		nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);
1112 
1113 		/*
1114 		 * If we are direct reclaiming for contiguous pages and we do
1115 		 * not reclaim everything in the list, try again and wait
1116 		 * for IO to complete. This will stall high-order allocations
1117 		 * but that should be acceptable to the caller
1118 		 */
1119 		if (nr_freed < nr_taken && !current_is_kswapd() &&
1120 					sc->order > PAGE_ALLOC_COSTLY_ORDER) {
1121 			congestion_wait(WRITE, HZ/10);
1122 
1123 			/*
1124 			 * The attempt at page out may have made some
1125 			 * of the pages active, mark them inactive again.
1126 			 */
1127 			nr_active = clear_active_flags(&page_list, count);
1128 			count_vm_events(PGDEACTIVATE, nr_active);
1129 
1130 			nr_freed += shrink_page_list(&page_list, sc,
1131 							PAGEOUT_IO_SYNC);
1132 		}
1133 
1134 		nr_reclaimed += nr_freed;
1135 		local_irq_disable();
1136 		if (current_is_kswapd()) {
1137 			__count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scan);
1138 			__count_vm_events(KSWAPD_STEAL, nr_freed);
1139 		} else if (scanning_global_lru(sc))
1140 			__count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scan);
1141 
1142 		__count_zone_vm_events(PGSTEAL, zone, nr_freed);
1143 
1144 		if (nr_taken == 0)
1145 			goto done;
1146 
1147 		spin_lock(&zone->lru_lock);
1148 		/*
1149 		 * Put back any unfreeable pages.
1150 		 */
1151 		while (!list_empty(&page_list)) {
1152 			int lru;
1153 			page = lru_to_page(&page_list);
1154 			VM_BUG_ON(PageLRU(page));
1155 			list_del(&page->lru);
1156 			if (unlikely(!page_evictable(page, NULL))) {
1157 				spin_unlock_irq(&zone->lru_lock);
1158 				putback_lru_page(page);
1159 				spin_lock_irq(&zone->lru_lock);
1160 				continue;
1161 			}
1162 			SetPageLRU(page);
1163 			lru = page_lru(page);
1164 			add_page_to_lru_list(zone, page, lru);
1165 			if (PageActive(page)) {
1166 				int file = !!page_is_file_cache(page);
1167 				reclaim_stat->recent_rotated[file]++;
1168 			}
1169 			if (!pagevec_add(&pvec, page)) {
1170 				spin_unlock_irq(&zone->lru_lock);
1171 				__pagevec_release(&pvec);
1172 				spin_lock_irq(&zone->lru_lock);
1173 			}
1174 		}
1175   	} while (nr_scanned < max_scan);
1176 	spin_unlock(&zone->lru_lock);
1177 done:
1178 	local_irq_enable();
1179 	pagevec_release(&pvec);
1180 	return nr_reclaimed;
1181 }
1182 
1183 /*
1184  * We are about to scan this zone at a certain priority level.  If that priority
1185  * level is smaller (ie: more urgent) than the previous priority, then note
1186  * that priority level within the zone.  This is done so that when the next
1187  * process comes in to scan this zone, it will immediately start out at this
1188  * priority level rather than having to build up its own scanning priority.
1189  * Here, this priority affects only the reclaim-mapped threshold.
1190  */
1191 static inline void note_zone_scanning_priority(struct zone *zone, int priority)
1192 {
1193 	if (priority < zone->prev_priority)
1194 		zone->prev_priority = priority;
1195 }
1196 
1197 /*
1198  * This moves pages from the active list to the inactive list.
1199  *
1200  * We move them the other way if the page is referenced by one or more
1201  * processes, from rmap.
1202  *
1203  * If the pages are mostly unmapped, the processing is fast and it is
1204  * appropriate to hold zone->lru_lock across the whole operation.  But if
1205  * the pages are mapped, the processing is slow (page_referenced()) so we
1206  * should drop zone->lru_lock around each page.  It's impossible to balance
1207  * this, so instead we remove the pages from the LRU while processing them.
1208  * It is safe to rely on PG_active against the non-LRU pages in here because
1209  * nobody will play with that bit on a non-LRU page.
1210  *
1211  * The downside is that we have to touch page->_count against each page.
1212  * But we had to alter page->flags anyway.
1213  */
1214 
1215 
1216 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1217 			struct scan_control *sc, int priority, int file)
1218 {
1219 	unsigned long pgmoved;
1220 	int pgdeactivate = 0;
1221 	unsigned long pgscanned;
1222 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1223 	LIST_HEAD(l_inactive);
1224 	struct page *page;
1225 	struct pagevec pvec;
1226 	enum lru_list lru;
1227 	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1228 
1229 	lru_add_drain();
1230 	spin_lock_irq(&zone->lru_lock);
1231 	pgmoved = sc->isolate_pages(nr_pages, &l_hold, &pgscanned, sc->order,
1232 					ISOLATE_ACTIVE, zone,
1233 					sc->mem_cgroup, 1, file);
1234 	/*
1235 	 * zone->pages_scanned is used for detect zone's oom
1236 	 * mem_cgroup remembers nr_scan by itself.
1237 	 */
1238 	if (scanning_global_lru(sc)) {
1239 		zone->pages_scanned += pgscanned;
1240 	}
1241 	reclaim_stat->recent_scanned[!!file] += pgmoved;
1242 
1243 	if (file)
1244 		__mod_zone_page_state(zone, NR_ACTIVE_FILE, -pgmoved);
1245 	else
1246 		__mod_zone_page_state(zone, NR_ACTIVE_ANON, -pgmoved);
1247 	spin_unlock_irq(&zone->lru_lock);
1248 
1249 	pgmoved = 0;
1250 	while (!list_empty(&l_hold)) {
1251 		cond_resched();
1252 		page = lru_to_page(&l_hold);
1253 		list_del(&page->lru);
1254 
1255 		if (unlikely(!page_evictable(page, NULL))) {
1256 			putback_lru_page(page);
1257 			continue;
1258 		}
1259 
1260 		/* page_referenced clears PageReferenced */
1261 		if (page_mapping_inuse(page) &&
1262 		    page_referenced(page, 0, sc->mem_cgroup))
1263 			pgmoved++;
1264 
1265 		list_add(&page->lru, &l_inactive);
1266 	}
1267 
1268 	/*
1269 	 * Move the pages to the [file or anon] inactive list.
1270 	 */
1271 	pagevec_init(&pvec, 1);
1272 	lru = LRU_BASE + file * LRU_FILE;
1273 
1274 	spin_lock_irq(&zone->lru_lock);
1275 	/*
1276 	 * Count referenced pages from currently used mappings as
1277 	 * rotated, even though they are moved to the inactive list.
1278 	 * This helps balance scan pressure between file and anonymous
1279 	 * pages in get_scan_ratio.
1280 	 */
1281 	reclaim_stat->recent_rotated[!!file] += pgmoved;
1282 
1283 	pgmoved = 0;
1284 	while (!list_empty(&l_inactive)) {
1285 		page = lru_to_page(&l_inactive);
1286 		prefetchw_prev_lru_page(page, &l_inactive, flags);
1287 		VM_BUG_ON(PageLRU(page));
1288 		SetPageLRU(page);
1289 		VM_BUG_ON(!PageActive(page));
1290 		ClearPageActive(page);
1291 
1292 		list_move(&page->lru, &zone->lru[lru].list);
1293 		mem_cgroup_add_lru_list(page, lru);
1294 		pgmoved++;
1295 		if (!pagevec_add(&pvec, page)) {
1296 			__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1297 			spin_unlock_irq(&zone->lru_lock);
1298 			pgdeactivate += pgmoved;
1299 			pgmoved = 0;
1300 			if (buffer_heads_over_limit)
1301 				pagevec_strip(&pvec);
1302 			__pagevec_release(&pvec);
1303 			spin_lock_irq(&zone->lru_lock);
1304 		}
1305 	}
1306 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1307 	pgdeactivate += pgmoved;
1308 	__count_zone_vm_events(PGREFILL, zone, pgscanned);
1309 	__count_vm_events(PGDEACTIVATE, pgdeactivate);
1310 	spin_unlock_irq(&zone->lru_lock);
1311 	if (buffer_heads_over_limit)
1312 		pagevec_strip(&pvec);
1313 	pagevec_release(&pvec);
1314 }
1315 
1316 static int inactive_anon_is_low_global(struct zone *zone)
1317 {
1318 	unsigned long active, inactive;
1319 
1320 	active = zone_page_state(zone, NR_ACTIVE_ANON);
1321 	inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1322 
1323 	if (inactive * zone->inactive_ratio < active)
1324 		return 1;
1325 
1326 	return 0;
1327 }
1328 
1329 /**
1330  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1331  * @zone: zone to check
1332  * @sc:   scan control of this context
1333  *
1334  * Returns true if the zone does not have enough inactive anon pages,
1335  * meaning some active anon pages need to be deactivated.
1336  */
1337 static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1338 {
1339 	int low;
1340 
1341 	if (scanning_global_lru(sc))
1342 		low = inactive_anon_is_low_global(zone);
1343 	else
1344 		low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1345 	return low;
1346 }
1347 
1348 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1349 	struct zone *zone, struct scan_control *sc, int priority)
1350 {
1351 	int file = is_file_lru(lru);
1352 
1353 	if (lru == LRU_ACTIVE_FILE) {
1354 		shrink_active_list(nr_to_scan, zone, sc, priority, file);
1355 		return 0;
1356 	}
1357 
1358 	if (lru == LRU_ACTIVE_ANON && inactive_anon_is_low(zone, sc)) {
1359 		shrink_active_list(nr_to_scan, zone, sc, priority, file);
1360 		return 0;
1361 	}
1362 	return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1363 }
1364 
1365 /*
1366  * Determine how aggressively the anon and file LRU lists should be
1367  * scanned.  The relative value of each set of LRU lists is determined
1368  * by looking at the fraction of the pages scanned we did rotate back
1369  * onto the active list instead of evict.
1370  *
1371  * percent[0] specifies how much pressure to put on ram/swap backed
1372  * memory, while percent[1] determines pressure on the file LRUs.
1373  */
1374 static void get_scan_ratio(struct zone *zone, struct scan_control *sc,
1375 					unsigned long *percent)
1376 {
1377 	unsigned long anon, file, free;
1378 	unsigned long anon_prio, file_prio;
1379 	unsigned long ap, fp;
1380 	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1381 
1382 	/* If we have no swap space, do not bother scanning anon pages. */
1383 	if (nr_swap_pages <= 0) {
1384 		percent[0] = 0;
1385 		percent[1] = 100;
1386 		return;
1387 	}
1388 
1389 	anon  = zone_nr_pages(zone, sc, LRU_ACTIVE_ANON) +
1390 		zone_nr_pages(zone, sc, LRU_INACTIVE_ANON);
1391 	file  = zone_nr_pages(zone, sc, LRU_ACTIVE_FILE) +
1392 		zone_nr_pages(zone, sc, LRU_INACTIVE_FILE);
1393 
1394 	if (scanning_global_lru(sc)) {
1395 		free  = zone_page_state(zone, NR_FREE_PAGES);
1396 		/* If we have very few page cache pages,
1397 		   force-scan anon pages. */
1398 		if (unlikely(file + free <= zone->pages_high)) {
1399 			percent[0] = 100;
1400 			percent[1] = 0;
1401 			return;
1402 		}
1403 	}
1404 
1405 	/*
1406 	 * OK, so we have swap space and a fair amount of page cache
1407 	 * pages.  We use the recently rotated / recently scanned
1408 	 * ratios to determine how valuable each cache is.
1409 	 *
1410 	 * Because workloads change over time (and to avoid overflow)
1411 	 * we keep these statistics as a floating average, which ends
1412 	 * up weighing recent references more than old ones.
1413 	 *
1414 	 * anon in [0], file in [1]
1415 	 */
1416 	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1417 		spin_lock_irq(&zone->lru_lock);
1418 		reclaim_stat->recent_scanned[0] /= 2;
1419 		reclaim_stat->recent_rotated[0] /= 2;
1420 		spin_unlock_irq(&zone->lru_lock);
1421 	}
1422 
1423 	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1424 		spin_lock_irq(&zone->lru_lock);
1425 		reclaim_stat->recent_scanned[1] /= 2;
1426 		reclaim_stat->recent_rotated[1] /= 2;
1427 		spin_unlock_irq(&zone->lru_lock);
1428 	}
1429 
1430 	/*
1431 	 * With swappiness at 100, anonymous and file have the same priority.
1432 	 * This scanning priority is essentially the inverse of IO cost.
1433 	 */
1434 	anon_prio = sc->swappiness;
1435 	file_prio = 200 - sc->swappiness;
1436 
1437 	/*
1438 	 * The amount of pressure on anon vs file pages is inversely
1439 	 * proportional to the fraction of recently scanned pages on
1440 	 * each list that were recently referenced and in active use.
1441 	 */
1442 	ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1443 	ap /= reclaim_stat->recent_rotated[0] + 1;
1444 
1445 	fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1446 	fp /= reclaim_stat->recent_rotated[1] + 1;
1447 
1448 	/* Normalize to percentages */
1449 	percent[0] = 100 * ap / (ap + fp + 1);
1450 	percent[1] = 100 - percent[0];
1451 }
1452 
1453 
1454 /*
1455  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1456  */
1457 static void shrink_zone(int priority, struct zone *zone,
1458 				struct scan_control *sc)
1459 {
1460 	unsigned long nr[NR_LRU_LISTS];
1461 	unsigned long nr_to_scan;
1462 	unsigned long percent[2];	/* anon @ 0; file @ 1 */
1463 	enum lru_list l;
1464 	unsigned long nr_reclaimed = sc->nr_reclaimed;
1465 	unsigned long swap_cluster_max = sc->swap_cluster_max;
1466 
1467 	get_scan_ratio(zone, sc, percent);
1468 
1469 	for_each_evictable_lru(l) {
1470 		int file = is_file_lru(l);
1471 		int scan;
1472 
1473 		scan = zone_nr_pages(zone, sc, l);
1474 		if (priority) {
1475 			scan >>= priority;
1476 			scan = (scan * percent[file]) / 100;
1477 		}
1478 		if (scanning_global_lru(sc)) {
1479 			zone->lru[l].nr_scan += scan;
1480 			nr[l] = zone->lru[l].nr_scan;
1481 			if (nr[l] >= swap_cluster_max)
1482 				zone->lru[l].nr_scan = 0;
1483 			else
1484 				nr[l] = 0;
1485 		} else
1486 			nr[l] = scan;
1487 	}
1488 
1489 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1490 					nr[LRU_INACTIVE_FILE]) {
1491 		for_each_evictable_lru(l) {
1492 			if (nr[l]) {
1493 				nr_to_scan = min(nr[l], swap_cluster_max);
1494 				nr[l] -= nr_to_scan;
1495 
1496 				nr_reclaimed += shrink_list(l, nr_to_scan,
1497 							    zone, sc, priority);
1498 			}
1499 		}
1500 		/*
1501 		 * On large memory systems, scan >> priority can become
1502 		 * really large. This is fine for the starting priority;
1503 		 * we want to put equal scanning pressure on each zone.
1504 		 * However, if the VM has a harder time of freeing pages,
1505 		 * with multiple processes reclaiming pages, the total
1506 		 * freeing target can get unreasonably large.
1507 		 */
1508 		if (nr_reclaimed > swap_cluster_max &&
1509 			priority < DEF_PRIORITY && !current_is_kswapd())
1510 			break;
1511 	}
1512 
1513 	sc->nr_reclaimed = nr_reclaimed;
1514 
1515 	/*
1516 	 * Even if we did not try to evict anon pages at all, we want to
1517 	 * rebalance the anon lru active/inactive ratio.
1518 	 */
1519 	if (inactive_anon_is_low(zone, sc))
1520 		shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1521 
1522 	throttle_vm_writeout(sc->gfp_mask);
1523 }
1524 
1525 /*
1526  * This is the direct reclaim path, for page-allocating processes.  We only
1527  * try to reclaim pages from zones which will satisfy the caller's allocation
1528  * request.
1529  *
1530  * We reclaim from a zone even if that zone is over pages_high.  Because:
1531  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1532  *    allocation or
1533  * b) The zones may be over pages_high but they must go *over* pages_high to
1534  *    satisfy the `incremental min' zone defense algorithm.
1535  *
1536  * If a zone is deemed to be full of pinned pages then just give it a light
1537  * scan then give up on it.
1538  */
1539 static void shrink_zones(int priority, struct zonelist *zonelist,
1540 					struct scan_control *sc)
1541 {
1542 	enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1543 	struct zoneref *z;
1544 	struct zone *zone;
1545 
1546 	sc->all_unreclaimable = 1;
1547 	for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
1548 					sc->nodemask) {
1549 		if (!populated_zone(zone))
1550 			continue;
1551 		/*
1552 		 * Take care memory controller reclaiming has small influence
1553 		 * to global LRU.
1554 		 */
1555 		if (scanning_global_lru(sc)) {
1556 			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1557 				continue;
1558 			note_zone_scanning_priority(zone, priority);
1559 
1560 			if (zone_is_all_unreclaimable(zone) &&
1561 						priority != DEF_PRIORITY)
1562 				continue;	/* Let kswapd poll it */
1563 			sc->all_unreclaimable = 0;
1564 		} else {
1565 			/*
1566 			 * Ignore cpuset limitation here. We just want to reduce
1567 			 * # of used pages by us regardless of memory shortage.
1568 			 */
1569 			sc->all_unreclaimable = 0;
1570 			mem_cgroup_note_reclaim_priority(sc->mem_cgroup,
1571 							priority);
1572 		}
1573 
1574 		shrink_zone(priority, zone, sc);
1575 	}
1576 }
1577 
1578 /*
1579  * This is the main entry point to direct page reclaim.
1580  *
1581  * If a full scan of the inactive list fails to free enough memory then we
1582  * are "out of memory" and something needs to be killed.
1583  *
1584  * If the caller is !__GFP_FS then the probability of a failure is reasonably
1585  * high - the zone may be full of dirty or under-writeback pages, which this
1586  * caller can't do much about.  We kick pdflush and take explicit naps in the
1587  * hope that some of these pages can be written.  But if the allocating task
1588  * holds filesystem locks which prevent writeout this might not work, and the
1589  * allocation attempt will fail.
1590  *
1591  * returns:	0, if no pages reclaimed
1592  * 		else, the number of pages reclaimed
1593  */
1594 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
1595 					struct scan_control *sc)
1596 {
1597 	int priority;
1598 	unsigned long ret = 0;
1599 	unsigned long total_scanned = 0;
1600 	struct reclaim_state *reclaim_state = current->reclaim_state;
1601 	unsigned long lru_pages = 0;
1602 	struct zoneref *z;
1603 	struct zone *zone;
1604 	enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1605 
1606 	delayacct_freepages_start();
1607 
1608 	if (scanning_global_lru(sc))
1609 		count_vm_event(ALLOCSTALL);
1610 	/*
1611 	 * mem_cgroup will not do shrink_slab.
1612 	 */
1613 	if (scanning_global_lru(sc)) {
1614 		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1615 
1616 			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1617 				continue;
1618 
1619 			lru_pages += zone_lru_pages(zone);
1620 		}
1621 	}
1622 
1623 	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1624 		sc->nr_scanned = 0;
1625 		if (!priority)
1626 			disable_swap_token();
1627 		shrink_zones(priority, zonelist, sc);
1628 		/*
1629 		 * Don't shrink slabs when reclaiming memory from
1630 		 * over limit cgroups
1631 		 */
1632 		if (scanning_global_lru(sc)) {
1633 			shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
1634 			if (reclaim_state) {
1635 				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
1636 				reclaim_state->reclaimed_slab = 0;
1637 			}
1638 		}
1639 		total_scanned += sc->nr_scanned;
1640 		if (sc->nr_reclaimed >= sc->swap_cluster_max) {
1641 			ret = sc->nr_reclaimed;
1642 			goto out;
1643 		}
1644 
1645 		/*
1646 		 * Try to write back as many pages as we just scanned.  This
1647 		 * tends to cause slow streaming writers to write data to the
1648 		 * disk smoothly, at the dirtying rate, which is nice.   But
1649 		 * that's undesirable in laptop mode, where we *want* lumpy
1650 		 * writeout.  So in laptop mode, write out the whole world.
1651 		 */
1652 		if (total_scanned > sc->swap_cluster_max +
1653 					sc->swap_cluster_max / 2) {
1654 			wakeup_pdflush(laptop_mode ? 0 : total_scanned);
1655 			sc->may_writepage = 1;
1656 		}
1657 
1658 		/* Take a nap, wait for some writeback to complete */
1659 		if (sc->nr_scanned && priority < DEF_PRIORITY - 2)
1660 			congestion_wait(WRITE, HZ/10);
1661 	}
1662 	/* top priority shrink_zones still had more to do? don't OOM, then */
1663 	if (!sc->all_unreclaimable && scanning_global_lru(sc))
1664 		ret = sc->nr_reclaimed;
1665 out:
1666 	/*
1667 	 * Now that we've scanned all the zones at this priority level, note
1668 	 * that level within the zone so that the next thread which performs
1669 	 * scanning of this zone will immediately start out at this priority
1670 	 * level.  This affects only the decision whether or not to bring
1671 	 * mapped pages onto the inactive list.
1672 	 */
1673 	if (priority < 0)
1674 		priority = 0;
1675 
1676 	if (scanning_global_lru(sc)) {
1677 		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1678 
1679 			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1680 				continue;
1681 
1682 			zone->prev_priority = priority;
1683 		}
1684 	} else
1685 		mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority);
1686 
1687 	delayacct_freepages_end();
1688 
1689 	return ret;
1690 }
1691 
1692 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
1693 				gfp_t gfp_mask, nodemask_t *nodemask)
1694 {
1695 	struct scan_control sc = {
1696 		.gfp_mask = gfp_mask,
1697 		.may_writepage = !laptop_mode,
1698 		.swap_cluster_max = SWAP_CLUSTER_MAX,
1699 		.may_unmap = 1,
1700 		.swappiness = vm_swappiness,
1701 		.order = order,
1702 		.mem_cgroup = NULL,
1703 		.isolate_pages = isolate_pages_global,
1704 		.nodemask = nodemask,
1705 	};
1706 
1707 	return do_try_to_free_pages(zonelist, &sc);
1708 }
1709 
1710 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1711 
1712 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
1713 					   gfp_t gfp_mask,
1714 					   bool noswap,
1715 					   unsigned int swappiness)
1716 {
1717 	struct scan_control sc = {
1718 		.may_writepage = !laptop_mode,
1719 		.may_unmap = 1,
1720 		.swap_cluster_max = SWAP_CLUSTER_MAX,
1721 		.swappiness = swappiness,
1722 		.order = 0,
1723 		.mem_cgroup = mem_cont,
1724 		.isolate_pages = mem_cgroup_isolate_pages,
1725 		.nodemask = NULL, /* we don't care the placement */
1726 	};
1727 	struct zonelist *zonelist;
1728 
1729 	if (noswap)
1730 		sc.may_unmap = 0;
1731 
1732 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
1733 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
1734 	zonelist = NODE_DATA(numa_node_id())->node_zonelists;
1735 	return do_try_to_free_pages(zonelist, &sc);
1736 }
1737 #endif
1738 
1739 /*
1740  * For kswapd, balance_pgdat() will work across all this node's zones until
1741  * they are all at pages_high.
1742  *
1743  * Returns the number of pages which were actually freed.
1744  *
1745  * There is special handling here for zones which are full of pinned pages.
1746  * This can happen if the pages are all mlocked, or if they are all used by
1747  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
1748  * What we do is to detect the case where all pages in the zone have been
1749  * scanned twice and there has been zero successful reclaim.  Mark the zone as
1750  * dead and from now on, only perform a short scan.  Basically we're polling
1751  * the zone for when the problem goes away.
1752  *
1753  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
1754  * zones which have free_pages > pages_high, but once a zone is found to have
1755  * free_pages <= pages_high, we scan that zone and the lower zones regardless
1756  * of the number of free pages in the lower zones.  This interoperates with
1757  * the page allocator fallback scheme to ensure that aging of pages is balanced
1758  * across the zones.
1759  */
1760 static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
1761 {
1762 	int all_zones_ok;
1763 	int priority;
1764 	int i;
1765 	unsigned long total_scanned;
1766 	struct reclaim_state *reclaim_state = current->reclaim_state;
1767 	struct scan_control sc = {
1768 		.gfp_mask = GFP_KERNEL,
1769 		.may_unmap = 1,
1770 		.swap_cluster_max = SWAP_CLUSTER_MAX,
1771 		.swappiness = vm_swappiness,
1772 		.order = order,
1773 		.mem_cgroup = NULL,
1774 		.isolate_pages = isolate_pages_global,
1775 	};
1776 	/*
1777 	 * temp_priority is used to remember the scanning priority at which
1778 	 * this zone was successfully refilled to free_pages == pages_high.
1779 	 */
1780 	int temp_priority[MAX_NR_ZONES];
1781 
1782 loop_again:
1783 	total_scanned = 0;
1784 	sc.nr_reclaimed = 0;
1785 	sc.may_writepage = !laptop_mode;
1786 	count_vm_event(PAGEOUTRUN);
1787 
1788 	for (i = 0; i < pgdat->nr_zones; i++)
1789 		temp_priority[i] = DEF_PRIORITY;
1790 
1791 	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1792 		int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
1793 		unsigned long lru_pages = 0;
1794 
1795 		/* The swap token gets in the way of swapout... */
1796 		if (!priority)
1797 			disable_swap_token();
1798 
1799 		all_zones_ok = 1;
1800 
1801 		/*
1802 		 * Scan in the highmem->dma direction for the highest
1803 		 * zone which needs scanning
1804 		 */
1805 		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1806 			struct zone *zone = pgdat->node_zones + i;
1807 
1808 			if (!populated_zone(zone))
1809 				continue;
1810 
1811 			if (zone_is_all_unreclaimable(zone) &&
1812 			    priority != DEF_PRIORITY)
1813 				continue;
1814 
1815 			/*
1816 			 * Do some background aging of the anon list, to give
1817 			 * pages a chance to be referenced before reclaiming.
1818 			 */
1819 			if (inactive_anon_is_low(zone, &sc))
1820 				shrink_active_list(SWAP_CLUSTER_MAX, zone,
1821 							&sc, priority, 0);
1822 
1823 			if (!zone_watermark_ok(zone, order, zone->pages_high,
1824 					       0, 0)) {
1825 				end_zone = i;
1826 				break;
1827 			}
1828 		}
1829 		if (i < 0)
1830 			goto out;
1831 
1832 		for (i = 0; i <= end_zone; i++) {
1833 			struct zone *zone = pgdat->node_zones + i;
1834 
1835 			lru_pages += zone_lru_pages(zone);
1836 		}
1837 
1838 		/*
1839 		 * Now scan the zone in the dma->highmem direction, stopping
1840 		 * at the last zone which needs scanning.
1841 		 *
1842 		 * We do this because the page allocator works in the opposite
1843 		 * direction.  This prevents the page allocator from allocating
1844 		 * pages behind kswapd's direction of progress, which would
1845 		 * cause too much scanning of the lower zones.
1846 		 */
1847 		for (i = 0; i <= end_zone; i++) {
1848 			struct zone *zone = pgdat->node_zones + i;
1849 			int nr_slab;
1850 
1851 			if (!populated_zone(zone))
1852 				continue;
1853 
1854 			if (zone_is_all_unreclaimable(zone) &&
1855 					priority != DEF_PRIORITY)
1856 				continue;
1857 
1858 			if (!zone_watermark_ok(zone, order, zone->pages_high,
1859 					       end_zone, 0))
1860 				all_zones_ok = 0;
1861 			temp_priority[i] = priority;
1862 			sc.nr_scanned = 0;
1863 			note_zone_scanning_priority(zone, priority);
1864 			/*
1865 			 * We put equal pressure on every zone, unless one
1866 			 * zone has way too many pages free already.
1867 			 */
1868 			if (!zone_watermark_ok(zone, order, 8*zone->pages_high,
1869 						end_zone, 0))
1870 				shrink_zone(priority, zone, &sc);
1871 			reclaim_state->reclaimed_slab = 0;
1872 			nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
1873 						lru_pages);
1874 			sc.nr_reclaimed += reclaim_state->reclaimed_slab;
1875 			total_scanned += sc.nr_scanned;
1876 			if (zone_is_all_unreclaimable(zone))
1877 				continue;
1878 			if (nr_slab == 0 && zone->pages_scanned >=
1879 						(zone_lru_pages(zone) * 6))
1880 					zone_set_flag(zone,
1881 						      ZONE_ALL_UNRECLAIMABLE);
1882 			/*
1883 			 * If we've done a decent amount of scanning and
1884 			 * the reclaim ratio is low, start doing writepage
1885 			 * even in laptop mode
1886 			 */
1887 			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
1888 			    total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
1889 				sc.may_writepage = 1;
1890 		}
1891 		if (all_zones_ok)
1892 			break;		/* kswapd: all done */
1893 		/*
1894 		 * OK, kswapd is getting into trouble.  Take a nap, then take
1895 		 * another pass across the zones.
1896 		 */
1897 		if (total_scanned && priority < DEF_PRIORITY - 2)
1898 			congestion_wait(WRITE, HZ/10);
1899 
1900 		/*
1901 		 * We do this so kswapd doesn't build up large priorities for
1902 		 * example when it is freeing in parallel with allocators. It
1903 		 * matches the direct reclaim path behaviour in terms of impact
1904 		 * on zone->*_priority.
1905 		 */
1906 		if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
1907 			break;
1908 	}
1909 out:
1910 	/*
1911 	 * Note within each zone the priority level at which this zone was
1912 	 * brought into a happy state.  So that the next thread which scans this
1913 	 * zone will start out at that priority level.
1914 	 */
1915 	for (i = 0; i < pgdat->nr_zones; i++) {
1916 		struct zone *zone = pgdat->node_zones + i;
1917 
1918 		zone->prev_priority = temp_priority[i];
1919 	}
1920 	if (!all_zones_ok) {
1921 		cond_resched();
1922 
1923 		try_to_freeze();
1924 
1925 		/*
1926 		 * Fragmentation may mean that the system cannot be
1927 		 * rebalanced for high-order allocations in all zones.
1928 		 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
1929 		 * it means the zones have been fully scanned and are still
1930 		 * not balanced. For high-order allocations, there is
1931 		 * little point trying all over again as kswapd may
1932 		 * infinite loop.
1933 		 *
1934 		 * Instead, recheck all watermarks at order-0 as they
1935 		 * are the most important. If watermarks are ok, kswapd will go
1936 		 * back to sleep. High-order users can still perform direct
1937 		 * reclaim if they wish.
1938 		 */
1939 		if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
1940 			order = sc.order = 0;
1941 
1942 		goto loop_again;
1943 	}
1944 
1945 	return sc.nr_reclaimed;
1946 }
1947 
1948 /*
1949  * The background pageout daemon, started as a kernel thread
1950  * from the init process.
1951  *
1952  * This basically trickles out pages so that we have _some_
1953  * free memory available even if there is no other activity
1954  * that frees anything up. This is needed for things like routing
1955  * etc, where we otherwise might have all activity going on in
1956  * asynchronous contexts that cannot page things out.
1957  *
1958  * If there are applications that are active memory-allocators
1959  * (most normal use), this basically shouldn't matter.
1960  */
1961 static int kswapd(void *p)
1962 {
1963 	unsigned long order;
1964 	pg_data_t *pgdat = (pg_data_t*)p;
1965 	struct task_struct *tsk = current;
1966 	DEFINE_WAIT(wait);
1967 	struct reclaim_state reclaim_state = {
1968 		.reclaimed_slab = 0,
1969 	};
1970 	node_to_cpumask_ptr(cpumask, pgdat->node_id);
1971 
1972 	lockdep_set_current_reclaim_state(GFP_KERNEL);
1973 
1974 	if (!cpumask_empty(cpumask))
1975 		set_cpus_allowed_ptr(tsk, cpumask);
1976 	current->reclaim_state = &reclaim_state;
1977 
1978 	/*
1979 	 * Tell the memory management that we're a "memory allocator",
1980 	 * and that if we need more memory we should get access to it
1981 	 * regardless (see "__alloc_pages()"). "kswapd" should
1982 	 * never get caught in the normal page freeing logic.
1983 	 *
1984 	 * (Kswapd normally doesn't need memory anyway, but sometimes
1985 	 * you need a small amount of memory in order to be able to
1986 	 * page out something else, and this flag essentially protects
1987 	 * us from recursively trying to free more memory as we're
1988 	 * trying to free the first piece of memory in the first place).
1989 	 */
1990 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
1991 	set_freezable();
1992 
1993 	order = 0;
1994 	for ( ; ; ) {
1995 		unsigned long new_order;
1996 
1997 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
1998 		new_order = pgdat->kswapd_max_order;
1999 		pgdat->kswapd_max_order = 0;
2000 		if (order < new_order) {
2001 			/*
2002 			 * Don't sleep if someone wants a larger 'order'
2003 			 * allocation
2004 			 */
2005 			order = new_order;
2006 		} else {
2007 			if (!freezing(current))
2008 				schedule();
2009 
2010 			order = pgdat->kswapd_max_order;
2011 		}
2012 		finish_wait(&pgdat->kswapd_wait, &wait);
2013 
2014 		if (!try_to_freeze()) {
2015 			/* We can speed up thawing tasks if we don't call
2016 			 * balance_pgdat after returning from the refrigerator
2017 			 */
2018 			balance_pgdat(pgdat, order);
2019 		}
2020 	}
2021 	return 0;
2022 }
2023 
2024 /*
2025  * A zone is low on free memory, so wake its kswapd task to service it.
2026  */
2027 void wakeup_kswapd(struct zone *zone, int order)
2028 {
2029 	pg_data_t *pgdat;
2030 
2031 	if (!populated_zone(zone))
2032 		return;
2033 
2034 	pgdat = zone->zone_pgdat;
2035 	if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0))
2036 		return;
2037 	if (pgdat->kswapd_max_order < order)
2038 		pgdat->kswapd_max_order = order;
2039 	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2040 		return;
2041 	if (!waitqueue_active(&pgdat->kswapd_wait))
2042 		return;
2043 	wake_up_interruptible(&pgdat->kswapd_wait);
2044 }
2045 
2046 unsigned long global_lru_pages(void)
2047 {
2048 	return global_page_state(NR_ACTIVE_ANON)
2049 		+ global_page_state(NR_ACTIVE_FILE)
2050 		+ global_page_state(NR_INACTIVE_ANON)
2051 		+ global_page_state(NR_INACTIVE_FILE);
2052 }
2053 
2054 #ifdef CONFIG_PM
2055 /*
2056  * Helper function for shrink_all_memory().  Tries to reclaim 'nr_pages' pages
2057  * from LRU lists system-wide, for given pass and priority.
2058  *
2059  * For pass > 3 we also try to shrink the LRU lists that contain a few pages
2060  */
2061 static void shrink_all_zones(unsigned long nr_pages, int prio,
2062 				      int pass, struct scan_control *sc)
2063 {
2064 	struct zone *zone;
2065 	unsigned long nr_reclaimed = 0;
2066 
2067 	for_each_populated_zone(zone) {
2068 		enum lru_list l;
2069 
2070 		if (zone_is_all_unreclaimable(zone) && prio != DEF_PRIORITY)
2071 			continue;
2072 
2073 		for_each_evictable_lru(l) {
2074 			enum zone_stat_item ls = NR_LRU_BASE + l;
2075 			unsigned long lru_pages = zone_page_state(zone, ls);
2076 
2077 			/* For pass = 0, we don't shrink the active list */
2078 			if (pass == 0 && (l == LRU_ACTIVE_ANON ||
2079 						l == LRU_ACTIVE_FILE))
2080 				continue;
2081 
2082 			zone->lru[l].nr_scan += (lru_pages >> prio) + 1;
2083 			if (zone->lru[l].nr_scan >= nr_pages || pass > 3) {
2084 				unsigned long nr_to_scan;
2085 
2086 				zone->lru[l].nr_scan = 0;
2087 				nr_to_scan = min(nr_pages, lru_pages);
2088 				nr_reclaimed += shrink_list(l, nr_to_scan, zone,
2089 								sc, prio);
2090 				if (nr_reclaimed >= nr_pages) {
2091 					sc->nr_reclaimed = nr_reclaimed;
2092 					return;
2093 				}
2094 			}
2095 		}
2096 	}
2097 	sc->nr_reclaimed = nr_reclaimed;
2098 }
2099 
2100 /*
2101  * Try to free `nr_pages' of memory, system-wide, and return the number of
2102  * freed pages.
2103  *
2104  * Rather than trying to age LRUs the aim is to preserve the overall
2105  * LRU order by reclaiming preferentially
2106  * inactive > active > active referenced > active mapped
2107  */
2108 unsigned long shrink_all_memory(unsigned long nr_pages)
2109 {
2110 	unsigned long lru_pages, nr_slab;
2111 	int pass;
2112 	struct reclaim_state reclaim_state;
2113 	struct scan_control sc = {
2114 		.gfp_mask = GFP_KERNEL,
2115 		.may_unmap = 0,
2116 		.may_writepage = 1,
2117 		.isolate_pages = isolate_pages_global,
2118 	};
2119 
2120 	current->reclaim_state = &reclaim_state;
2121 
2122 	lru_pages = global_lru_pages();
2123 	nr_slab = global_page_state(NR_SLAB_RECLAIMABLE);
2124 	/* If slab caches are huge, it's better to hit them first */
2125 	while (nr_slab >= lru_pages) {
2126 		reclaim_state.reclaimed_slab = 0;
2127 		shrink_slab(nr_pages, sc.gfp_mask, lru_pages);
2128 		if (!reclaim_state.reclaimed_slab)
2129 			break;
2130 
2131 		sc.nr_reclaimed += reclaim_state.reclaimed_slab;
2132 		if (sc.nr_reclaimed >= nr_pages)
2133 			goto out;
2134 
2135 		nr_slab -= reclaim_state.reclaimed_slab;
2136 	}
2137 
2138 	/*
2139 	 * We try to shrink LRUs in 5 passes:
2140 	 * 0 = Reclaim from inactive_list only
2141 	 * 1 = Reclaim from active list but don't reclaim mapped
2142 	 * 2 = 2nd pass of type 1
2143 	 * 3 = Reclaim mapped (normal reclaim)
2144 	 * 4 = 2nd pass of type 3
2145 	 */
2146 	for (pass = 0; pass < 5; pass++) {
2147 		int prio;
2148 
2149 		/* Force reclaiming mapped pages in the passes #3 and #4 */
2150 		if (pass > 2)
2151 			sc.may_unmap = 1;
2152 
2153 		for (prio = DEF_PRIORITY; prio >= 0; prio--) {
2154 			unsigned long nr_to_scan = nr_pages - sc.nr_reclaimed;
2155 
2156 			sc.nr_scanned = 0;
2157 			sc.swap_cluster_max = nr_to_scan;
2158 			shrink_all_zones(nr_to_scan, prio, pass, &sc);
2159 			if (sc.nr_reclaimed >= nr_pages)
2160 				goto out;
2161 
2162 			reclaim_state.reclaimed_slab = 0;
2163 			shrink_slab(sc.nr_scanned, sc.gfp_mask,
2164 					global_lru_pages());
2165 			sc.nr_reclaimed += reclaim_state.reclaimed_slab;
2166 			if (sc.nr_reclaimed >= nr_pages)
2167 				goto out;
2168 
2169 			if (sc.nr_scanned && prio < DEF_PRIORITY - 2)
2170 				congestion_wait(WRITE, HZ / 10);
2171 		}
2172 	}
2173 
2174 	/*
2175 	 * If sc.nr_reclaimed = 0, we could not shrink LRUs, but there may be
2176 	 * something in slab caches
2177 	 */
2178 	if (!sc.nr_reclaimed) {
2179 		do {
2180 			reclaim_state.reclaimed_slab = 0;
2181 			shrink_slab(nr_pages, sc.gfp_mask, global_lru_pages());
2182 			sc.nr_reclaimed += reclaim_state.reclaimed_slab;
2183 		} while (sc.nr_reclaimed < nr_pages &&
2184 				reclaim_state.reclaimed_slab > 0);
2185 	}
2186 
2187 
2188 out:
2189 	current->reclaim_state = NULL;
2190 
2191 	return sc.nr_reclaimed;
2192 }
2193 #endif
2194 
2195 /* It's optimal to keep kswapds on the same CPUs as their memory, but
2196    not required for correctness.  So if the last cpu in a node goes
2197    away, we get changed to run anywhere: as the first one comes back,
2198    restore their cpu bindings. */
2199 static int __devinit cpu_callback(struct notifier_block *nfb,
2200 				  unsigned long action, void *hcpu)
2201 {
2202 	int nid;
2203 
2204 	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2205 		for_each_node_state(nid, N_HIGH_MEMORY) {
2206 			pg_data_t *pgdat = NODE_DATA(nid);
2207 			node_to_cpumask_ptr(mask, pgdat->node_id);
2208 
2209 			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2210 				/* One of our CPUs online: restore mask */
2211 				set_cpus_allowed_ptr(pgdat->kswapd, mask);
2212 		}
2213 	}
2214 	return NOTIFY_OK;
2215 }
2216 
2217 /*
2218  * This kswapd start function will be called by init and node-hot-add.
2219  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2220  */
2221 int kswapd_run(int nid)
2222 {
2223 	pg_data_t *pgdat = NODE_DATA(nid);
2224 	int ret = 0;
2225 
2226 	if (pgdat->kswapd)
2227 		return 0;
2228 
2229 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2230 	if (IS_ERR(pgdat->kswapd)) {
2231 		/* failure at boot is fatal */
2232 		BUG_ON(system_state == SYSTEM_BOOTING);
2233 		printk("Failed to start kswapd on node %d\n",nid);
2234 		ret = -1;
2235 	}
2236 	return ret;
2237 }
2238 
2239 static int __init kswapd_init(void)
2240 {
2241 	int nid;
2242 
2243 	swap_setup();
2244 	for_each_node_state(nid, N_HIGH_MEMORY)
2245  		kswapd_run(nid);
2246 	hotcpu_notifier(cpu_callback, 0);
2247 	return 0;
2248 }
2249 
2250 module_init(kswapd_init)
2251 
2252 #ifdef CONFIG_NUMA
2253 /*
2254  * Zone reclaim mode
2255  *
2256  * If non-zero call zone_reclaim when the number of free pages falls below
2257  * the watermarks.
2258  */
2259 int zone_reclaim_mode __read_mostly;
2260 
2261 #define RECLAIM_OFF 0
2262 #define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
2263 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
2264 #define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
2265 
2266 /*
2267  * Priority for ZONE_RECLAIM. This determines the fraction of pages
2268  * of a node considered for each zone_reclaim. 4 scans 1/16th of
2269  * a zone.
2270  */
2271 #define ZONE_RECLAIM_PRIORITY 4
2272 
2273 /*
2274  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2275  * occur.
2276  */
2277 int sysctl_min_unmapped_ratio = 1;
2278 
2279 /*
2280  * If the number of slab pages in a zone grows beyond this percentage then
2281  * slab reclaim needs to occur.
2282  */
2283 int sysctl_min_slab_ratio = 5;
2284 
2285 /*
2286  * Try to free up some pages from this zone through reclaim.
2287  */
2288 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2289 {
2290 	/* Minimum pages needed in order to stay on node */
2291 	const unsigned long nr_pages = 1 << order;
2292 	struct task_struct *p = current;
2293 	struct reclaim_state reclaim_state;
2294 	int priority;
2295 	struct scan_control sc = {
2296 		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
2297 		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2298 		.swap_cluster_max = max_t(unsigned long, nr_pages,
2299 					SWAP_CLUSTER_MAX),
2300 		.gfp_mask = gfp_mask,
2301 		.swappiness = vm_swappiness,
2302 		.order = order,
2303 		.isolate_pages = isolate_pages_global,
2304 	};
2305 	unsigned long slab_reclaimable;
2306 
2307 	disable_swap_token();
2308 	cond_resched();
2309 	/*
2310 	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2311 	 * and we also need to be able to write out pages for RECLAIM_WRITE
2312 	 * and RECLAIM_SWAP.
2313 	 */
2314 	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
2315 	reclaim_state.reclaimed_slab = 0;
2316 	p->reclaim_state = &reclaim_state;
2317 
2318 	if (zone_page_state(zone, NR_FILE_PAGES) -
2319 		zone_page_state(zone, NR_FILE_MAPPED) >
2320 		zone->min_unmapped_pages) {
2321 		/*
2322 		 * Free memory by calling shrink zone with increasing
2323 		 * priorities until we have enough memory freed.
2324 		 */
2325 		priority = ZONE_RECLAIM_PRIORITY;
2326 		do {
2327 			note_zone_scanning_priority(zone, priority);
2328 			shrink_zone(priority, zone, &sc);
2329 			priority--;
2330 		} while (priority >= 0 && sc.nr_reclaimed < nr_pages);
2331 	}
2332 
2333 	slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2334 	if (slab_reclaimable > zone->min_slab_pages) {
2335 		/*
2336 		 * shrink_slab() does not currently allow us to determine how
2337 		 * many pages were freed in this zone. So we take the current
2338 		 * number of slab pages and shake the slab until it is reduced
2339 		 * by the same nr_pages that we used for reclaiming unmapped
2340 		 * pages.
2341 		 *
2342 		 * Note that shrink_slab will free memory on all zones and may
2343 		 * take a long time.
2344 		 */
2345 		while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
2346 			zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
2347 				slab_reclaimable - nr_pages)
2348 			;
2349 
2350 		/*
2351 		 * Update nr_reclaimed by the number of slab pages we
2352 		 * reclaimed from this zone.
2353 		 */
2354 		sc.nr_reclaimed += slab_reclaimable -
2355 			zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2356 	}
2357 
2358 	p->reclaim_state = NULL;
2359 	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
2360 	return sc.nr_reclaimed >= nr_pages;
2361 }
2362 
2363 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2364 {
2365 	int node_id;
2366 	int ret;
2367 
2368 	/*
2369 	 * Zone reclaim reclaims unmapped file backed pages and
2370 	 * slab pages if we are over the defined limits.
2371 	 *
2372 	 * A small portion of unmapped file backed pages is needed for
2373 	 * file I/O otherwise pages read by file I/O will be immediately
2374 	 * thrown out if the zone is overallocated. So we do not reclaim
2375 	 * if less than a specified percentage of the zone is used by
2376 	 * unmapped file backed pages.
2377 	 */
2378 	if (zone_page_state(zone, NR_FILE_PAGES) -
2379 	    zone_page_state(zone, NR_FILE_MAPPED) <= zone->min_unmapped_pages
2380 	    && zone_page_state(zone, NR_SLAB_RECLAIMABLE)
2381 			<= zone->min_slab_pages)
2382 		return 0;
2383 
2384 	if (zone_is_all_unreclaimable(zone))
2385 		return 0;
2386 
2387 	/*
2388 	 * Do not scan if the allocation should not be delayed.
2389 	 */
2390 	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
2391 			return 0;
2392 
2393 	/*
2394 	 * Only run zone reclaim on the local zone or on zones that do not
2395 	 * have associated processors. This will favor the local processor
2396 	 * over remote processors and spread off node memory allocations
2397 	 * as wide as possible.
2398 	 */
2399 	node_id = zone_to_nid(zone);
2400 	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
2401 		return 0;
2402 
2403 	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
2404 		return 0;
2405 	ret = __zone_reclaim(zone, gfp_mask, order);
2406 	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
2407 
2408 	return ret;
2409 }
2410 #endif
2411 
2412 #ifdef CONFIG_UNEVICTABLE_LRU
2413 /*
2414  * page_evictable - test whether a page is evictable
2415  * @page: the page to test
2416  * @vma: the VMA in which the page is or will be mapped, may be NULL
2417  *
2418  * Test whether page is evictable--i.e., should be placed on active/inactive
2419  * lists vs unevictable list.  The vma argument is !NULL when called from the
2420  * fault path to determine how to instantate a new page.
2421  *
2422  * Reasons page might not be evictable:
2423  * (1) page's mapping marked unevictable
2424  * (2) page is part of an mlocked VMA
2425  *
2426  */
2427 int page_evictable(struct page *page, struct vm_area_struct *vma)
2428 {
2429 
2430 	if (mapping_unevictable(page_mapping(page)))
2431 		return 0;
2432 
2433 	if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
2434 		return 0;
2435 
2436 	return 1;
2437 }
2438 
2439 /**
2440  * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
2441  * @page: page to check evictability and move to appropriate lru list
2442  * @zone: zone page is in
2443  *
2444  * Checks a page for evictability and moves the page to the appropriate
2445  * zone lru list.
2446  *
2447  * Restrictions: zone->lru_lock must be held, page must be on LRU and must
2448  * have PageUnevictable set.
2449  */
2450 static void check_move_unevictable_page(struct page *page, struct zone *zone)
2451 {
2452 	VM_BUG_ON(PageActive(page));
2453 
2454 retry:
2455 	ClearPageUnevictable(page);
2456 	if (page_evictable(page, NULL)) {
2457 		enum lru_list l = LRU_INACTIVE_ANON + page_is_file_cache(page);
2458 
2459 		__dec_zone_state(zone, NR_UNEVICTABLE);
2460 		list_move(&page->lru, &zone->lru[l].list);
2461 		mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
2462 		__inc_zone_state(zone, NR_INACTIVE_ANON + l);
2463 		__count_vm_event(UNEVICTABLE_PGRESCUED);
2464 	} else {
2465 		/*
2466 		 * rotate unevictable list
2467 		 */
2468 		SetPageUnevictable(page);
2469 		list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
2470 		mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
2471 		if (page_evictable(page, NULL))
2472 			goto retry;
2473 	}
2474 }
2475 
2476 /**
2477  * scan_mapping_unevictable_pages - scan an address space for evictable pages
2478  * @mapping: struct address_space to scan for evictable pages
2479  *
2480  * Scan all pages in mapping.  Check unevictable pages for
2481  * evictability and move them to the appropriate zone lru list.
2482  */
2483 void scan_mapping_unevictable_pages(struct address_space *mapping)
2484 {
2485 	pgoff_t next = 0;
2486 	pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
2487 			 PAGE_CACHE_SHIFT;
2488 	struct zone *zone;
2489 	struct pagevec pvec;
2490 
2491 	if (mapping->nrpages == 0)
2492 		return;
2493 
2494 	pagevec_init(&pvec, 0);
2495 	while (next < end &&
2496 		pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
2497 		int i;
2498 		int pg_scanned = 0;
2499 
2500 		zone = NULL;
2501 
2502 		for (i = 0; i < pagevec_count(&pvec); i++) {
2503 			struct page *page = pvec.pages[i];
2504 			pgoff_t page_index = page->index;
2505 			struct zone *pagezone = page_zone(page);
2506 
2507 			pg_scanned++;
2508 			if (page_index > next)
2509 				next = page_index;
2510 			next++;
2511 
2512 			if (pagezone != zone) {
2513 				if (zone)
2514 					spin_unlock_irq(&zone->lru_lock);
2515 				zone = pagezone;
2516 				spin_lock_irq(&zone->lru_lock);
2517 			}
2518 
2519 			if (PageLRU(page) && PageUnevictable(page))
2520 				check_move_unevictable_page(page, zone);
2521 		}
2522 		if (zone)
2523 			spin_unlock_irq(&zone->lru_lock);
2524 		pagevec_release(&pvec);
2525 
2526 		count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
2527 	}
2528 
2529 }
2530 
2531 /**
2532  * scan_zone_unevictable_pages - check unevictable list for evictable pages
2533  * @zone - zone of which to scan the unevictable list
2534  *
2535  * Scan @zone's unevictable LRU lists to check for pages that have become
2536  * evictable.  Move those that have to @zone's inactive list where they
2537  * become candidates for reclaim, unless shrink_inactive_zone() decides
2538  * to reactivate them.  Pages that are still unevictable are rotated
2539  * back onto @zone's unevictable list.
2540  */
2541 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
2542 static void scan_zone_unevictable_pages(struct zone *zone)
2543 {
2544 	struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
2545 	unsigned long scan;
2546 	unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
2547 
2548 	while (nr_to_scan > 0) {
2549 		unsigned long batch_size = min(nr_to_scan,
2550 						SCAN_UNEVICTABLE_BATCH_SIZE);
2551 
2552 		spin_lock_irq(&zone->lru_lock);
2553 		for (scan = 0;  scan < batch_size; scan++) {
2554 			struct page *page = lru_to_page(l_unevictable);
2555 
2556 			if (!trylock_page(page))
2557 				continue;
2558 
2559 			prefetchw_prev_lru_page(page, l_unevictable, flags);
2560 
2561 			if (likely(PageLRU(page) && PageUnevictable(page)))
2562 				check_move_unevictable_page(page, zone);
2563 
2564 			unlock_page(page);
2565 		}
2566 		spin_unlock_irq(&zone->lru_lock);
2567 
2568 		nr_to_scan -= batch_size;
2569 	}
2570 }
2571 
2572 
2573 /**
2574  * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
2575  *
2576  * A really big hammer:  scan all zones' unevictable LRU lists to check for
2577  * pages that have become evictable.  Move those back to the zones'
2578  * inactive list where they become candidates for reclaim.
2579  * This occurs when, e.g., we have unswappable pages on the unevictable lists,
2580  * and we add swap to the system.  As such, it runs in the context of a task
2581  * that has possibly/probably made some previously unevictable pages
2582  * evictable.
2583  */
2584 static void scan_all_zones_unevictable_pages(void)
2585 {
2586 	struct zone *zone;
2587 
2588 	for_each_zone(zone) {
2589 		scan_zone_unevictable_pages(zone);
2590 	}
2591 }
2592 
2593 /*
2594  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
2595  * all nodes' unevictable lists for evictable pages
2596  */
2597 unsigned long scan_unevictable_pages;
2598 
2599 int scan_unevictable_handler(struct ctl_table *table, int write,
2600 			   struct file *file, void __user *buffer,
2601 			   size_t *length, loff_t *ppos)
2602 {
2603 	proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
2604 
2605 	if (write && *(unsigned long *)table->data)
2606 		scan_all_zones_unevictable_pages();
2607 
2608 	scan_unevictable_pages = 0;
2609 	return 0;
2610 }
2611 
2612 /*
2613  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
2614  * a specified node's per zone unevictable lists for evictable pages.
2615  */
2616 
2617 static ssize_t read_scan_unevictable_node(struct sys_device *dev,
2618 					  struct sysdev_attribute *attr,
2619 					  char *buf)
2620 {
2621 	return sprintf(buf, "0\n");	/* always zero; should fit... */
2622 }
2623 
2624 static ssize_t write_scan_unevictable_node(struct sys_device *dev,
2625 					   struct sysdev_attribute *attr,
2626 					const char *buf, size_t count)
2627 {
2628 	struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
2629 	struct zone *zone;
2630 	unsigned long res;
2631 	unsigned long req = strict_strtoul(buf, 10, &res);
2632 
2633 	if (!req)
2634 		return 1;	/* zero is no-op */
2635 
2636 	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2637 		if (!populated_zone(zone))
2638 			continue;
2639 		scan_zone_unevictable_pages(zone);
2640 	}
2641 	return 1;
2642 }
2643 
2644 
2645 static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
2646 			read_scan_unevictable_node,
2647 			write_scan_unevictable_node);
2648 
2649 int scan_unevictable_register_node(struct node *node)
2650 {
2651 	return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
2652 }
2653 
2654 void scan_unevictable_unregister_node(struct node *node)
2655 {
2656 	sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
2657 }
2658 
2659 #endif
2660