1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 4 * 5 * Swap reorganised 29.12.95, Stephen Tweedie. 6 * kswapd added: 7.1.96 sct 7 * Removed kswapd_ctl limits, and swap out as many pages as needed 8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 9 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 10 * Multiqueue VM started 5.8.00, Rik van Riel. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 15 #include <linux/mm.h> 16 #include <linux/sched/mm.h> 17 #include <linux/module.h> 18 #include <linux/gfp.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/swap.h> 21 #include <linux/pagemap.h> 22 #include <linux/init.h> 23 #include <linux/highmem.h> 24 #include <linux/vmpressure.h> 25 #include <linux/vmstat.h> 26 #include <linux/file.h> 27 #include <linux/writeback.h> 28 #include <linux/blkdev.h> 29 #include <linux/buffer_head.h> /* for try_to_release_page(), 30 buffer_heads_over_limit */ 31 #include <linux/mm_inline.h> 32 #include <linux/backing-dev.h> 33 #include <linux/rmap.h> 34 #include <linux/topology.h> 35 #include <linux/cpu.h> 36 #include <linux/cpuset.h> 37 #include <linux/compaction.h> 38 #include <linux/notifier.h> 39 #include <linux/rwsem.h> 40 #include <linux/delay.h> 41 #include <linux/kthread.h> 42 #include <linux/freezer.h> 43 #include <linux/memcontrol.h> 44 #include <linux/delayacct.h> 45 #include <linux/sysctl.h> 46 #include <linux/oom.h> 47 #include <linux/pagevec.h> 48 #include <linux/prefetch.h> 49 #include <linux/printk.h> 50 #include <linux/dax.h> 51 #include <linux/psi.h> 52 53 #include <asm/tlbflush.h> 54 #include <asm/div64.h> 55 56 #include <linux/swapops.h> 57 #include <linux/balloon_compaction.h> 58 59 #include "internal.h" 60 61 #define CREATE_TRACE_POINTS 62 #include <trace/events/vmscan.h> 63 64 struct scan_control { 65 /* How many pages shrink_list() should reclaim */ 66 unsigned long nr_to_reclaim; 67 68 /* 69 * Nodemask of nodes allowed by the caller. If NULL, all nodes 70 * are scanned. 71 */ 72 nodemask_t *nodemask; 73 74 /* 75 * The memory cgroup that hit its limit and as a result is the 76 * primary target of this reclaim invocation. 77 */ 78 struct mem_cgroup *target_mem_cgroup; 79 80 /* 81 * Scan pressure balancing between anon and file LRUs 82 */ 83 unsigned long anon_cost; 84 unsigned long file_cost; 85 86 /* Can active pages be deactivated as part of reclaim? */ 87 #define DEACTIVATE_ANON 1 88 #define DEACTIVATE_FILE 2 89 unsigned int may_deactivate:2; 90 unsigned int force_deactivate:1; 91 unsigned int skipped_deactivate:1; 92 93 /* Writepage batching in laptop mode; RECLAIM_WRITE */ 94 unsigned int may_writepage:1; 95 96 /* Can mapped pages be reclaimed? */ 97 unsigned int may_unmap:1; 98 99 /* Can pages be swapped as part of reclaim? */ 100 unsigned int may_swap:1; 101 102 /* 103 * Cgroups are not reclaimed below their configured memory.low, 104 * unless we threaten to OOM. If any cgroups are skipped due to 105 * memory.low and nothing was reclaimed, go back for memory.low. 106 */ 107 unsigned int memcg_low_reclaim:1; 108 unsigned int memcg_low_skipped:1; 109 110 unsigned int hibernation_mode:1; 111 112 /* One of the zones is ready for compaction */ 113 unsigned int compaction_ready:1; 114 115 /* There is easily reclaimable cold cache in the current node */ 116 unsigned int cache_trim_mode:1; 117 118 /* The file pages on the current node are dangerously low */ 119 unsigned int file_is_tiny:1; 120 121 /* Allocation order */ 122 s8 order; 123 124 /* Scan (total_size >> priority) pages at once */ 125 s8 priority; 126 127 /* The highest zone to isolate pages for reclaim from */ 128 s8 reclaim_idx; 129 130 /* This context's GFP mask */ 131 gfp_t gfp_mask; 132 133 /* Incremented by the number of inactive pages that were scanned */ 134 unsigned long nr_scanned; 135 136 /* Number of pages freed so far during a call to shrink_zones() */ 137 unsigned long nr_reclaimed; 138 139 struct { 140 unsigned int dirty; 141 unsigned int unqueued_dirty; 142 unsigned int congested; 143 unsigned int writeback; 144 unsigned int immediate; 145 unsigned int file_taken; 146 unsigned int taken; 147 } nr; 148 149 /* for recording the reclaimed slab by now */ 150 struct reclaim_state reclaim_state; 151 }; 152 153 #ifdef ARCH_HAS_PREFETCHW 154 #define prefetchw_prev_lru_page(_page, _base, _field) \ 155 do { \ 156 if ((_page)->lru.prev != _base) { \ 157 struct page *prev; \ 158 \ 159 prev = lru_to_page(&(_page->lru)); \ 160 prefetchw(&prev->_field); \ 161 } \ 162 } while (0) 163 #else 164 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 165 #endif 166 167 /* 168 * From 0 .. 200. Higher means more swappy. 169 */ 170 int vm_swappiness = 60; 171 172 static void set_task_reclaim_state(struct task_struct *task, 173 struct reclaim_state *rs) 174 { 175 /* Check for an overwrite */ 176 WARN_ON_ONCE(rs && task->reclaim_state); 177 178 /* Check for the nulling of an already-nulled member */ 179 WARN_ON_ONCE(!rs && !task->reclaim_state); 180 181 task->reclaim_state = rs; 182 } 183 184 static LIST_HEAD(shrinker_list); 185 static DECLARE_RWSEM(shrinker_rwsem); 186 187 #ifdef CONFIG_MEMCG 188 /* 189 * We allow subsystems to populate their shrinker-related 190 * LRU lists before register_shrinker_prepared() is called 191 * for the shrinker, since we don't want to impose 192 * restrictions on their internal registration order. 193 * In this case shrink_slab_memcg() may find corresponding 194 * bit is set in the shrinkers map. 195 * 196 * This value is used by the function to detect registering 197 * shrinkers and to skip do_shrink_slab() calls for them. 198 */ 199 #define SHRINKER_REGISTERING ((struct shrinker *)~0UL) 200 201 static DEFINE_IDR(shrinker_idr); 202 static int shrinker_nr_max; 203 204 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 205 { 206 int id, ret = -ENOMEM; 207 208 down_write(&shrinker_rwsem); 209 /* This may call shrinker, so it must use down_read_trylock() */ 210 id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL); 211 if (id < 0) 212 goto unlock; 213 214 if (id >= shrinker_nr_max) { 215 if (memcg_expand_shrinker_maps(id)) { 216 idr_remove(&shrinker_idr, id); 217 goto unlock; 218 } 219 220 shrinker_nr_max = id + 1; 221 } 222 shrinker->id = id; 223 ret = 0; 224 unlock: 225 up_write(&shrinker_rwsem); 226 return ret; 227 } 228 229 static void unregister_memcg_shrinker(struct shrinker *shrinker) 230 { 231 int id = shrinker->id; 232 233 BUG_ON(id < 0); 234 235 down_write(&shrinker_rwsem); 236 idr_remove(&shrinker_idr, id); 237 up_write(&shrinker_rwsem); 238 } 239 240 static bool cgroup_reclaim(struct scan_control *sc) 241 { 242 return sc->target_mem_cgroup; 243 } 244 245 /** 246 * writeback_throttling_sane - is the usual dirty throttling mechanism available? 247 * @sc: scan_control in question 248 * 249 * The normal page dirty throttling mechanism in balance_dirty_pages() is 250 * completely broken with the legacy memcg and direct stalling in 251 * shrink_page_list() is used for throttling instead, which lacks all the 252 * niceties such as fairness, adaptive pausing, bandwidth proportional 253 * allocation and configurability. 254 * 255 * This function tests whether the vmscan currently in progress can assume 256 * that the normal dirty throttling mechanism is operational. 257 */ 258 static bool writeback_throttling_sane(struct scan_control *sc) 259 { 260 if (!cgroup_reclaim(sc)) 261 return true; 262 #ifdef CONFIG_CGROUP_WRITEBACK 263 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 264 return true; 265 #endif 266 return false; 267 } 268 #else 269 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 270 { 271 return 0; 272 } 273 274 static void unregister_memcg_shrinker(struct shrinker *shrinker) 275 { 276 } 277 278 static bool cgroup_reclaim(struct scan_control *sc) 279 { 280 return false; 281 } 282 283 static bool writeback_throttling_sane(struct scan_control *sc) 284 { 285 return true; 286 } 287 #endif 288 289 /* 290 * This misses isolated pages which are not accounted for to save counters. 291 * As the data only determines if reclaim or compaction continues, it is 292 * not expected that isolated pages will be a dominating factor. 293 */ 294 unsigned long zone_reclaimable_pages(struct zone *zone) 295 { 296 unsigned long nr; 297 298 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) + 299 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE); 300 if (get_nr_swap_pages() > 0) 301 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) + 302 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON); 303 304 return nr; 305 } 306 307 /** 308 * lruvec_lru_size - Returns the number of pages on the given LRU list. 309 * @lruvec: lru vector 310 * @lru: lru to use 311 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list) 312 */ 313 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, 314 int zone_idx) 315 { 316 unsigned long size = 0; 317 int zid; 318 319 for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) { 320 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid]; 321 322 if (!managed_zone(zone)) 323 continue; 324 325 if (!mem_cgroup_disabled()) 326 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid); 327 else 328 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru); 329 } 330 return size; 331 } 332 333 /* 334 * Add a shrinker callback to be called from the vm. 335 */ 336 int prealloc_shrinker(struct shrinker *shrinker) 337 { 338 unsigned int size = sizeof(*shrinker->nr_deferred); 339 340 if (shrinker->flags & SHRINKER_NUMA_AWARE) 341 size *= nr_node_ids; 342 343 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); 344 if (!shrinker->nr_deferred) 345 return -ENOMEM; 346 347 if (shrinker->flags & SHRINKER_MEMCG_AWARE) { 348 if (prealloc_memcg_shrinker(shrinker)) 349 goto free_deferred; 350 } 351 352 return 0; 353 354 free_deferred: 355 kfree(shrinker->nr_deferred); 356 shrinker->nr_deferred = NULL; 357 return -ENOMEM; 358 } 359 360 void free_prealloced_shrinker(struct shrinker *shrinker) 361 { 362 if (!shrinker->nr_deferred) 363 return; 364 365 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 366 unregister_memcg_shrinker(shrinker); 367 368 kfree(shrinker->nr_deferred); 369 shrinker->nr_deferred = NULL; 370 } 371 372 void register_shrinker_prepared(struct shrinker *shrinker) 373 { 374 down_write(&shrinker_rwsem); 375 list_add_tail(&shrinker->list, &shrinker_list); 376 #ifdef CONFIG_MEMCG 377 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 378 idr_replace(&shrinker_idr, shrinker, shrinker->id); 379 #endif 380 up_write(&shrinker_rwsem); 381 } 382 383 int register_shrinker(struct shrinker *shrinker) 384 { 385 int err = prealloc_shrinker(shrinker); 386 387 if (err) 388 return err; 389 register_shrinker_prepared(shrinker); 390 return 0; 391 } 392 EXPORT_SYMBOL(register_shrinker); 393 394 /* 395 * Remove one 396 */ 397 void unregister_shrinker(struct shrinker *shrinker) 398 { 399 if (!shrinker->nr_deferred) 400 return; 401 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 402 unregister_memcg_shrinker(shrinker); 403 down_write(&shrinker_rwsem); 404 list_del(&shrinker->list); 405 up_write(&shrinker_rwsem); 406 kfree(shrinker->nr_deferred); 407 shrinker->nr_deferred = NULL; 408 } 409 EXPORT_SYMBOL(unregister_shrinker); 410 411 #define SHRINK_BATCH 128 412 413 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl, 414 struct shrinker *shrinker, int priority) 415 { 416 unsigned long freed = 0; 417 unsigned long long delta; 418 long total_scan; 419 long freeable; 420 long nr; 421 long new_nr; 422 int nid = shrinkctl->nid; 423 long batch_size = shrinker->batch ? shrinker->batch 424 : SHRINK_BATCH; 425 long scanned = 0, next_deferred; 426 427 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 428 nid = 0; 429 430 freeable = shrinker->count_objects(shrinker, shrinkctl); 431 if (freeable == 0 || freeable == SHRINK_EMPTY) 432 return freeable; 433 434 /* 435 * copy the current shrinker scan count into a local variable 436 * and zero it so that other concurrent shrinker invocations 437 * don't also do this scanning work. 438 */ 439 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0); 440 441 total_scan = nr; 442 if (shrinker->seeks) { 443 delta = freeable >> priority; 444 delta *= 4; 445 do_div(delta, shrinker->seeks); 446 } else { 447 /* 448 * These objects don't require any IO to create. Trim 449 * them aggressively under memory pressure to keep 450 * them from causing refetches in the IO caches. 451 */ 452 delta = freeable / 2; 453 } 454 455 total_scan += delta; 456 if (total_scan < 0) { 457 pr_err("shrink_slab: %pS negative objects to delete nr=%ld\n", 458 shrinker->scan_objects, total_scan); 459 total_scan = freeable; 460 next_deferred = nr; 461 } else 462 next_deferred = total_scan; 463 464 /* 465 * We need to avoid excessive windup on filesystem shrinkers 466 * due to large numbers of GFP_NOFS allocations causing the 467 * shrinkers to return -1 all the time. This results in a large 468 * nr being built up so when a shrink that can do some work 469 * comes along it empties the entire cache due to nr >>> 470 * freeable. This is bad for sustaining a working set in 471 * memory. 472 * 473 * Hence only allow the shrinker to scan the entire cache when 474 * a large delta change is calculated directly. 475 */ 476 if (delta < freeable / 4) 477 total_scan = min(total_scan, freeable / 2); 478 479 /* 480 * Avoid risking looping forever due to too large nr value: 481 * never try to free more than twice the estimate number of 482 * freeable entries. 483 */ 484 if (total_scan > freeable * 2) 485 total_scan = freeable * 2; 486 487 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, 488 freeable, delta, total_scan, priority); 489 490 /* 491 * Normally, we should not scan less than batch_size objects in one 492 * pass to avoid too frequent shrinker calls, but if the slab has less 493 * than batch_size objects in total and we are really tight on memory, 494 * we will try to reclaim all available objects, otherwise we can end 495 * up failing allocations although there are plenty of reclaimable 496 * objects spread over several slabs with usage less than the 497 * batch_size. 498 * 499 * We detect the "tight on memory" situations by looking at the total 500 * number of objects we want to scan (total_scan). If it is greater 501 * than the total number of objects on slab (freeable), we must be 502 * scanning at high prio and therefore should try to reclaim as much as 503 * possible. 504 */ 505 while (total_scan >= batch_size || 506 total_scan >= freeable) { 507 unsigned long ret; 508 unsigned long nr_to_scan = min(batch_size, total_scan); 509 510 shrinkctl->nr_to_scan = nr_to_scan; 511 shrinkctl->nr_scanned = nr_to_scan; 512 ret = shrinker->scan_objects(shrinker, shrinkctl); 513 if (ret == SHRINK_STOP) 514 break; 515 freed += ret; 516 517 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned); 518 total_scan -= shrinkctl->nr_scanned; 519 scanned += shrinkctl->nr_scanned; 520 521 cond_resched(); 522 } 523 524 if (next_deferred >= scanned) 525 next_deferred -= scanned; 526 else 527 next_deferred = 0; 528 /* 529 * move the unused scan count back into the shrinker in a 530 * manner that handles concurrent updates. If we exhausted the 531 * scan, there is no need to do an update. 532 */ 533 if (next_deferred > 0) 534 new_nr = atomic_long_add_return(next_deferred, 535 &shrinker->nr_deferred[nid]); 536 else 537 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]); 538 539 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan); 540 return freed; 541 } 542 543 #ifdef CONFIG_MEMCG 544 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 545 struct mem_cgroup *memcg, int priority) 546 { 547 struct memcg_shrinker_map *map; 548 unsigned long ret, freed = 0; 549 int i; 550 551 if (!mem_cgroup_online(memcg)) 552 return 0; 553 554 if (!down_read_trylock(&shrinker_rwsem)) 555 return 0; 556 557 map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map, 558 true); 559 if (unlikely(!map)) 560 goto unlock; 561 562 for_each_set_bit(i, map->map, shrinker_nr_max) { 563 struct shrink_control sc = { 564 .gfp_mask = gfp_mask, 565 .nid = nid, 566 .memcg = memcg, 567 }; 568 struct shrinker *shrinker; 569 570 shrinker = idr_find(&shrinker_idr, i); 571 if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) { 572 if (!shrinker) 573 clear_bit(i, map->map); 574 continue; 575 } 576 577 /* Call non-slab shrinkers even though kmem is disabled */ 578 if (!memcg_kmem_enabled() && 579 !(shrinker->flags & SHRINKER_NONSLAB)) 580 continue; 581 582 ret = do_shrink_slab(&sc, shrinker, priority); 583 if (ret == SHRINK_EMPTY) { 584 clear_bit(i, map->map); 585 /* 586 * After the shrinker reported that it had no objects to 587 * free, but before we cleared the corresponding bit in 588 * the memcg shrinker map, a new object might have been 589 * added. To make sure, we have the bit set in this 590 * case, we invoke the shrinker one more time and reset 591 * the bit if it reports that it is not empty anymore. 592 * The memory barrier here pairs with the barrier in 593 * memcg_set_shrinker_bit(): 594 * 595 * list_lru_add() shrink_slab_memcg() 596 * list_add_tail() clear_bit() 597 * <MB> <MB> 598 * set_bit() do_shrink_slab() 599 */ 600 smp_mb__after_atomic(); 601 ret = do_shrink_slab(&sc, shrinker, priority); 602 if (ret == SHRINK_EMPTY) 603 ret = 0; 604 else 605 memcg_set_shrinker_bit(memcg, nid, i); 606 } 607 freed += ret; 608 609 if (rwsem_is_contended(&shrinker_rwsem)) { 610 freed = freed ? : 1; 611 break; 612 } 613 } 614 unlock: 615 up_read(&shrinker_rwsem); 616 return freed; 617 } 618 #else /* CONFIG_MEMCG */ 619 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 620 struct mem_cgroup *memcg, int priority) 621 { 622 return 0; 623 } 624 #endif /* CONFIG_MEMCG */ 625 626 /** 627 * shrink_slab - shrink slab caches 628 * @gfp_mask: allocation context 629 * @nid: node whose slab caches to target 630 * @memcg: memory cgroup whose slab caches to target 631 * @priority: the reclaim priority 632 * 633 * Call the shrink functions to age shrinkable caches. 634 * 635 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set, 636 * unaware shrinkers will receive a node id of 0 instead. 637 * 638 * @memcg specifies the memory cgroup to target. Unaware shrinkers 639 * are called only if it is the root cgroup. 640 * 641 * @priority is sc->priority, we take the number of objects and >> by priority 642 * in order to get the scan target. 643 * 644 * Returns the number of reclaimed slab objects. 645 */ 646 static unsigned long shrink_slab(gfp_t gfp_mask, int nid, 647 struct mem_cgroup *memcg, 648 int priority) 649 { 650 unsigned long ret, freed = 0; 651 struct shrinker *shrinker; 652 653 /* 654 * The root memcg might be allocated even though memcg is disabled 655 * via "cgroup_disable=memory" boot parameter. This could make 656 * mem_cgroup_is_root() return false, then just run memcg slab 657 * shrink, but skip global shrink. This may result in premature 658 * oom. 659 */ 660 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg)) 661 return shrink_slab_memcg(gfp_mask, nid, memcg, priority); 662 663 if (!down_read_trylock(&shrinker_rwsem)) 664 goto out; 665 666 list_for_each_entry(shrinker, &shrinker_list, list) { 667 struct shrink_control sc = { 668 .gfp_mask = gfp_mask, 669 .nid = nid, 670 .memcg = memcg, 671 }; 672 673 ret = do_shrink_slab(&sc, shrinker, priority); 674 if (ret == SHRINK_EMPTY) 675 ret = 0; 676 freed += ret; 677 /* 678 * Bail out if someone want to register a new shrinker to 679 * prevent the registration from being stalled for long periods 680 * by parallel ongoing shrinking. 681 */ 682 if (rwsem_is_contended(&shrinker_rwsem)) { 683 freed = freed ? : 1; 684 break; 685 } 686 } 687 688 up_read(&shrinker_rwsem); 689 out: 690 cond_resched(); 691 return freed; 692 } 693 694 void drop_slab_node(int nid) 695 { 696 unsigned long freed; 697 698 do { 699 struct mem_cgroup *memcg = NULL; 700 701 if (fatal_signal_pending(current)) 702 return; 703 704 freed = 0; 705 memcg = mem_cgroup_iter(NULL, NULL, NULL); 706 do { 707 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0); 708 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 709 } while (freed > 10); 710 } 711 712 void drop_slab(void) 713 { 714 int nid; 715 716 for_each_online_node(nid) 717 drop_slab_node(nid); 718 } 719 720 static inline int is_page_cache_freeable(struct page *page) 721 { 722 /* 723 * A freeable page cache page is referenced only by the caller 724 * that isolated the page, the page cache and optional buffer 725 * heads at page->private. 726 */ 727 int page_cache_pins = thp_nr_pages(page); 728 return page_count(page) - page_has_private(page) == 1 + page_cache_pins; 729 } 730 731 static int may_write_to_inode(struct inode *inode) 732 { 733 if (current->flags & PF_SWAPWRITE) 734 return 1; 735 if (!inode_write_congested(inode)) 736 return 1; 737 if (inode_to_bdi(inode) == current->backing_dev_info) 738 return 1; 739 return 0; 740 } 741 742 /* 743 * We detected a synchronous write error writing a page out. Probably 744 * -ENOSPC. We need to propagate that into the address_space for a subsequent 745 * fsync(), msync() or close(). 746 * 747 * The tricky part is that after writepage we cannot touch the mapping: nothing 748 * prevents it from being freed up. But we have a ref on the page and once 749 * that page is locked, the mapping is pinned. 750 * 751 * We're allowed to run sleeping lock_page() here because we know the caller has 752 * __GFP_FS. 753 */ 754 static void handle_write_error(struct address_space *mapping, 755 struct page *page, int error) 756 { 757 lock_page(page); 758 if (page_mapping(page) == mapping) 759 mapping_set_error(mapping, error); 760 unlock_page(page); 761 } 762 763 /* possible outcome of pageout() */ 764 typedef enum { 765 /* failed to write page out, page is locked */ 766 PAGE_KEEP, 767 /* move page to the active list, page is locked */ 768 PAGE_ACTIVATE, 769 /* page has been sent to the disk successfully, page is unlocked */ 770 PAGE_SUCCESS, 771 /* page is clean and locked */ 772 PAGE_CLEAN, 773 } pageout_t; 774 775 /* 776 * pageout is called by shrink_page_list() for each dirty page. 777 * Calls ->writepage(). 778 */ 779 static pageout_t pageout(struct page *page, struct address_space *mapping) 780 { 781 /* 782 * If the page is dirty, only perform writeback if that write 783 * will be non-blocking. To prevent this allocation from being 784 * stalled by pagecache activity. But note that there may be 785 * stalls if we need to run get_block(). We could test 786 * PagePrivate for that. 787 * 788 * If this process is currently in __generic_file_write_iter() against 789 * this page's queue, we can perform writeback even if that 790 * will block. 791 * 792 * If the page is swapcache, write it back even if that would 793 * block, for some throttling. This happens by accident, because 794 * swap_backing_dev_info is bust: it doesn't reflect the 795 * congestion state of the swapdevs. Easy to fix, if needed. 796 */ 797 if (!is_page_cache_freeable(page)) 798 return PAGE_KEEP; 799 if (!mapping) { 800 /* 801 * Some data journaling orphaned pages can have 802 * page->mapping == NULL while being dirty with clean buffers. 803 */ 804 if (page_has_private(page)) { 805 if (try_to_free_buffers(page)) { 806 ClearPageDirty(page); 807 pr_info("%s: orphaned page\n", __func__); 808 return PAGE_CLEAN; 809 } 810 } 811 return PAGE_KEEP; 812 } 813 if (mapping->a_ops->writepage == NULL) 814 return PAGE_ACTIVATE; 815 if (!may_write_to_inode(mapping->host)) 816 return PAGE_KEEP; 817 818 if (clear_page_dirty_for_io(page)) { 819 int res; 820 struct writeback_control wbc = { 821 .sync_mode = WB_SYNC_NONE, 822 .nr_to_write = SWAP_CLUSTER_MAX, 823 .range_start = 0, 824 .range_end = LLONG_MAX, 825 .for_reclaim = 1, 826 }; 827 828 SetPageReclaim(page); 829 res = mapping->a_ops->writepage(page, &wbc); 830 if (res < 0) 831 handle_write_error(mapping, page, res); 832 if (res == AOP_WRITEPAGE_ACTIVATE) { 833 ClearPageReclaim(page); 834 return PAGE_ACTIVATE; 835 } 836 837 if (!PageWriteback(page)) { 838 /* synchronous write or broken a_ops? */ 839 ClearPageReclaim(page); 840 } 841 trace_mm_vmscan_writepage(page); 842 inc_node_page_state(page, NR_VMSCAN_WRITE); 843 return PAGE_SUCCESS; 844 } 845 846 return PAGE_CLEAN; 847 } 848 849 /* 850 * Same as remove_mapping, but if the page is removed from the mapping, it 851 * gets returned with a refcount of 0. 852 */ 853 static int __remove_mapping(struct address_space *mapping, struct page *page, 854 bool reclaimed, struct mem_cgroup *target_memcg) 855 { 856 unsigned long flags; 857 int refcount; 858 void *shadow = NULL; 859 860 BUG_ON(!PageLocked(page)); 861 BUG_ON(mapping != page_mapping(page)); 862 863 xa_lock_irqsave(&mapping->i_pages, flags); 864 /* 865 * The non racy check for a busy page. 866 * 867 * Must be careful with the order of the tests. When someone has 868 * a ref to the page, it may be possible that they dirty it then 869 * drop the reference. So if PageDirty is tested before page_count 870 * here, then the following race may occur: 871 * 872 * get_user_pages(&page); 873 * [user mapping goes away] 874 * write_to(page); 875 * !PageDirty(page) [good] 876 * SetPageDirty(page); 877 * put_page(page); 878 * !page_count(page) [good, discard it] 879 * 880 * [oops, our write_to data is lost] 881 * 882 * Reversing the order of the tests ensures such a situation cannot 883 * escape unnoticed. The smp_rmb is needed to ensure the page->flags 884 * load is not satisfied before that of page->_refcount. 885 * 886 * Note that if SetPageDirty is always performed via set_page_dirty, 887 * and thus under the i_pages lock, then this ordering is not required. 888 */ 889 refcount = 1 + compound_nr(page); 890 if (!page_ref_freeze(page, refcount)) 891 goto cannot_free; 892 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */ 893 if (unlikely(PageDirty(page))) { 894 page_ref_unfreeze(page, refcount); 895 goto cannot_free; 896 } 897 898 if (PageSwapCache(page)) { 899 swp_entry_t swap = { .val = page_private(page) }; 900 mem_cgroup_swapout(page, swap); 901 if (reclaimed && !mapping_exiting(mapping)) 902 shadow = workingset_eviction(page, target_memcg); 903 __delete_from_swap_cache(page, swap, shadow); 904 xa_unlock_irqrestore(&mapping->i_pages, flags); 905 put_swap_page(page, swap); 906 } else { 907 void (*freepage)(struct page *); 908 909 freepage = mapping->a_ops->freepage; 910 /* 911 * Remember a shadow entry for reclaimed file cache in 912 * order to detect refaults, thus thrashing, later on. 913 * 914 * But don't store shadows in an address space that is 915 * already exiting. This is not just an optimization, 916 * inode reclaim needs to empty out the radix tree or 917 * the nodes are lost. Don't plant shadows behind its 918 * back. 919 * 920 * We also don't store shadows for DAX mappings because the 921 * only page cache pages found in these are zero pages 922 * covering holes, and because we don't want to mix DAX 923 * exceptional entries and shadow exceptional entries in the 924 * same address_space. 925 */ 926 if (reclaimed && page_is_file_lru(page) && 927 !mapping_exiting(mapping) && !dax_mapping(mapping)) 928 shadow = workingset_eviction(page, target_memcg); 929 __delete_from_page_cache(page, shadow); 930 xa_unlock_irqrestore(&mapping->i_pages, flags); 931 932 if (freepage != NULL) 933 freepage(page); 934 } 935 936 return 1; 937 938 cannot_free: 939 xa_unlock_irqrestore(&mapping->i_pages, flags); 940 return 0; 941 } 942 943 /* 944 * Attempt to detach a locked page from its ->mapping. If it is dirty or if 945 * someone else has a ref on the page, abort and return 0. If it was 946 * successfully detached, return 1. Assumes the caller has a single ref on 947 * this page. 948 */ 949 int remove_mapping(struct address_space *mapping, struct page *page) 950 { 951 if (__remove_mapping(mapping, page, false, NULL)) { 952 /* 953 * Unfreezing the refcount with 1 rather than 2 effectively 954 * drops the pagecache ref for us without requiring another 955 * atomic operation. 956 */ 957 page_ref_unfreeze(page, 1); 958 return 1; 959 } 960 return 0; 961 } 962 963 /** 964 * putback_lru_page - put previously isolated page onto appropriate LRU list 965 * @page: page to be put back to appropriate lru list 966 * 967 * Add previously isolated @page to appropriate LRU list. 968 * Page may still be unevictable for other reasons. 969 * 970 * lru_lock must not be held, interrupts must be enabled. 971 */ 972 void putback_lru_page(struct page *page) 973 { 974 lru_cache_add(page); 975 put_page(page); /* drop ref from isolate */ 976 } 977 978 enum page_references { 979 PAGEREF_RECLAIM, 980 PAGEREF_RECLAIM_CLEAN, 981 PAGEREF_KEEP, 982 PAGEREF_ACTIVATE, 983 }; 984 985 static enum page_references page_check_references(struct page *page, 986 struct scan_control *sc) 987 { 988 int referenced_ptes, referenced_page; 989 unsigned long vm_flags; 990 991 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup, 992 &vm_flags); 993 referenced_page = TestClearPageReferenced(page); 994 995 /* 996 * Mlock lost the isolation race with us. Let try_to_unmap() 997 * move the page to the unevictable list. 998 */ 999 if (vm_flags & VM_LOCKED) 1000 return PAGEREF_RECLAIM; 1001 1002 if (referenced_ptes) { 1003 /* 1004 * All mapped pages start out with page table 1005 * references from the instantiating fault, so we need 1006 * to look twice if a mapped file page is used more 1007 * than once. 1008 * 1009 * Mark it and spare it for another trip around the 1010 * inactive list. Another page table reference will 1011 * lead to its activation. 1012 * 1013 * Note: the mark is set for activated pages as well 1014 * so that recently deactivated but used pages are 1015 * quickly recovered. 1016 */ 1017 SetPageReferenced(page); 1018 1019 if (referenced_page || referenced_ptes > 1) 1020 return PAGEREF_ACTIVATE; 1021 1022 /* 1023 * Activate file-backed executable pages after first usage. 1024 */ 1025 if ((vm_flags & VM_EXEC) && !PageSwapBacked(page)) 1026 return PAGEREF_ACTIVATE; 1027 1028 return PAGEREF_KEEP; 1029 } 1030 1031 /* Reclaim if clean, defer dirty pages to writeback */ 1032 if (referenced_page && !PageSwapBacked(page)) 1033 return PAGEREF_RECLAIM_CLEAN; 1034 1035 return PAGEREF_RECLAIM; 1036 } 1037 1038 /* Check if a page is dirty or under writeback */ 1039 static void page_check_dirty_writeback(struct page *page, 1040 bool *dirty, bool *writeback) 1041 { 1042 struct address_space *mapping; 1043 1044 /* 1045 * Anonymous pages are not handled by flushers and must be written 1046 * from reclaim context. Do not stall reclaim based on them 1047 */ 1048 if (!page_is_file_lru(page) || 1049 (PageAnon(page) && !PageSwapBacked(page))) { 1050 *dirty = false; 1051 *writeback = false; 1052 return; 1053 } 1054 1055 /* By default assume that the page flags are accurate */ 1056 *dirty = PageDirty(page); 1057 *writeback = PageWriteback(page); 1058 1059 /* Verify dirty/writeback state if the filesystem supports it */ 1060 if (!page_has_private(page)) 1061 return; 1062 1063 mapping = page_mapping(page); 1064 if (mapping && mapping->a_ops->is_dirty_writeback) 1065 mapping->a_ops->is_dirty_writeback(page, dirty, writeback); 1066 } 1067 1068 /* 1069 * shrink_page_list() returns the number of reclaimed pages 1070 */ 1071 static unsigned int shrink_page_list(struct list_head *page_list, 1072 struct pglist_data *pgdat, 1073 struct scan_control *sc, 1074 struct reclaim_stat *stat, 1075 bool ignore_references) 1076 { 1077 LIST_HEAD(ret_pages); 1078 LIST_HEAD(free_pages); 1079 unsigned int nr_reclaimed = 0; 1080 unsigned int pgactivate = 0; 1081 1082 memset(stat, 0, sizeof(*stat)); 1083 cond_resched(); 1084 1085 while (!list_empty(page_list)) { 1086 struct address_space *mapping; 1087 struct page *page; 1088 enum page_references references = PAGEREF_RECLAIM; 1089 bool dirty, writeback, may_enter_fs; 1090 unsigned int nr_pages; 1091 1092 cond_resched(); 1093 1094 page = lru_to_page(page_list); 1095 list_del(&page->lru); 1096 1097 if (!trylock_page(page)) 1098 goto keep; 1099 1100 VM_BUG_ON_PAGE(PageActive(page), page); 1101 1102 nr_pages = compound_nr(page); 1103 1104 /* Account the number of base pages even though THP */ 1105 sc->nr_scanned += nr_pages; 1106 1107 if (unlikely(!page_evictable(page))) 1108 goto activate_locked; 1109 1110 if (!sc->may_unmap && page_mapped(page)) 1111 goto keep_locked; 1112 1113 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 1114 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 1115 1116 /* 1117 * The number of dirty pages determines if a node is marked 1118 * reclaim_congested which affects wait_iff_congested. kswapd 1119 * will stall and start writing pages if the tail of the LRU 1120 * is all dirty unqueued pages. 1121 */ 1122 page_check_dirty_writeback(page, &dirty, &writeback); 1123 if (dirty || writeback) 1124 stat->nr_dirty++; 1125 1126 if (dirty && !writeback) 1127 stat->nr_unqueued_dirty++; 1128 1129 /* 1130 * Treat this page as congested if the underlying BDI is or if 1131 * pages are cycling through the LRU so quickly that the 1132 * pages marked for immediate reclaim are making it to the 1133 * end of the LRU a second time. 1134 */ 1135 mapping = page_mapping(page); 1136 if (((dirty || writeback) && mapping && 1137 inode_write_congested(mapping->host)) || 1138 (writeback && PageReclaim(page))) 1139 stat->nr_congested++; 1140 1141 /* 1142 * If a page at the tail of the LRU is under writeback, there 1143 * are three cases to consider. 1144 * 1145 * 1) If reclaim is encountering an excessive number of pages 1146 * under writeback and this page is both under writeback and 1147 * PageReclaim then it indicates that pages are being queued 1148 * for IO but are being recycled through the LRU before the 1149 * IO can complete. Waiting on the page itself risks an 1150 * indefinite stall if it is impossible to writeback the 1151 * page due to IO error or disconnected storage so instead 1152 * note that the LRU is being scanned too quickly and the 1153 * caller can stall after page list has been processed. 1154 * 1155 * 2) Global or new memcg reclaim encounters a page that is 1156 * not marked for immediate reclaim, or the caller does not 1157 * have __GFP_FS (or __GFP_IO if it's simply going to swap, 1158 * not to fs). In this case mark the page for immediate 1159 * reclaim and continue scanning. 1160 * 1161 * Require may_enter_fs because we would wait on fs, which 1162 * may not have submitted IO yet. And the loop driver might 1163 * enter reclaim, and deadlock if it waits on a page for 1164 * which it is needed to do the write (loop masks off 1165 * __GFP_IO|__GFP_FS for this reason); but more thought 1166 * would probably show more reasons. 1167 * 1168 * 3) Legacy memcg encounters a page that is already marked 1169 * PageReclaim. memcg does not have any dirty pages 1170 * throttling so we could easily OOM just because too many 1171 * pages are in writeback and there is nothing else to 1172 * reclaim. Wait for the writeback to complete. 1173 * 1174 * In cases 1) and 2) we activate the pages to get them out of 1175 * the way while we continue scanning for clean pages on the 1176 * inactive list and refilling from the active list. The 1177 * observation here is that waiting for disk writes is more 1178 * expensive than potentially causing reloads down the line. 1179 * Since they're marked for immediate reclaim, they won't put 1180 * memory pressure on the cache working set any longer than it 1181 * takes to write them to disk. 1182 */ 1183 if (PageWriteback(page)) { 1184 /* Case 1 above */ 1185 if (current_is_kswapd() && 1186 PageReclaim(page) && 1187 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) { 1188 stat->nr_immediate++; 1189 goto activate_locked; 1190 1191 /* Case 2 above */ 1192 } else if (writeback_throttling_sane(sc) || 1193 !PageReclaim(page) || !may_enter_fs) { 1194 /* 1195 * This is slightly racy - end_page_writeback() 1196 * might have just cleared PageReclaim, then 1197 * setting PageReclaim here end up interpreted 1198 * as PageReadahead - but that does not matter 1199 * enough to care. What we do want is for this 1200 * page to have PageReclaim set next time memcg 1201 * reclaim reaches the tests above, so it will 1202 * then wait_on_page_writeback() to avoid OOM; 1203 * and it's also appropriate in global reclaim. 1204 */ 1205 SetPageReclaim(page); 1206 stat->nr_writeback++; 1207 goto activate_locked; 1208 1209 /* Case 3 above */ 1210 } else { 1211 unlock_page(page); 1212 wait_on_page_writeback(page); 1213 /* then go back and try same page again */ 1214 list_add_tail(&page->lru, page_list); 1215 continue; 1216 } 1217 } 1218 1219 if (!ignore_references) 1220 references = page_check_references(page, sc); 1221 1222 switch (references) { 1223 case PAGEREF_ACTIVATE: 1224 goto activate_locked; 1225 case PAGEREF_KEEP: 1226 stat->nr_ref_keep += nr_pages; 1227 goto keep_locked; 1228 case PAGEREF_RECLAIM: 1229 case PAGEREF_RECLAIM_CLEAN: 1230 ; /* try to reclaim the page below */ 1231 } 1232 1233 /* 1234 * Anonymous process memory has backing store? 1235 * Try to allocate it some swap space here. 1236 * Lazyfree page could be freed directly 1237 */ 1238 if (PageAnon(page) && PageSwapBacked(page)) { 1239 if (!PageSwapCache(page)) { 1240 if (!(sc->gfp_mask & __GFP_IO)) 1241 goto keep_locked; 1242 if (page_maybe_dma_pinned(page)) 1243 goto keep_locked; 1244 if (PageTransHuge(page)) { 1245 /* cannot split THP, skip it */ 1246 if (!can_split_huge_page(page, NULL)) 1247 goto activate_locked; 1248 /* 1249 * Split pages without a PMD map right 1250 * away. Chances are some or all of the 1251 * tail pages can be freed without IO. 1252 */ 1253 if (!compound_mapcount(page) && 1254 split_huge_page_to_list(page, 1255 page_list)) 1256 goto activate_locked; 1257 } 1258 if (!add_to_swap(page)) { 1259 if (!PageTransHuge(page)) 1260 goto activate_locked_split; 1261 /* Fallback to swap normal pages */ 1262 if (split_huge_page_to_list(page, 1263 page_list)) 1264 goto activate_locked; 1265 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1266 count_vm_event(THP_SWPOUT_FALLBACK); 1267 #endif 1268 if (!add_to_swap(page)) 1269 goto activate_locked_split; 1270 } 1271 1272 may_enter_fs = true; 1273 1274 /* Adding to swap updated mapping */ 1275 mapping = page_mapping(page); 1276 } 1277 } else if (unlikely(PageTransHuge(page))) { 1278 /* Split file THP */ 1279 if (split_huge_page_to_list(page, page_list)) 1280 goto keep_locked; 1281 } 1282 1283 /* 1284 * THP may get split above, need minus tail pages and update 1285 * nr_pages to avoid accounting tail pages twice. 1286 * 1287 * The tail pages that are added into swap cache successfully 1288 * reach here. 1289 */ 1290 if ((nr_pages > 1) && !PageTransHuge(page)) { 1291 sc->nr_scanned -= (nr_pages - 1); 1292 nr_pages = 1; 1293 } 1294 1295 /* 1296 * The page is mapped into the page tables of one or more 1297 * processes. Try to unmap it here. 1298 */ 1299 if (page_mapped(page)) { 1300 enum ttu_flags flags = TTU_BATCH_FLUSH; 1301 bool was_swapbacked = PageSwapBacked(page); 1302 1303 if (unlikely(PageTransHuge(page))) 1304 flags |= TTU_SPLIT_HUGE_PMD; 1305 1306 if (!try_to_unmap(page, flags)) { 1307 stat->nr_unmap_fail += nr_pages; 1308 if (!was_swapbacked && PageSwapBacked(page)) 1309 stat->nr_lazyfree_fail += nr_pages; 1310 goto activate_locked; 1311 } 1312 } 1313 1314 if (PageDirty(page)) { 1315 /* 1316 * Only kswapd can writeback filesystem pages 1317 * to avoid risk of stack overflow. But avoid 1318 * injecting inefficient single-page IO into 1319 * flusher writeback as much as possible: only 1320 * write pages when we've encountered many 1321 * dirty pages, and when we've already scanned 1322 * the rest of the LRU for clean pages and see 1323 * the same dirty pages again (PageReclaim). 1324 */ 1325 if (page_is_file_lru(page) && 1326 (!current_is_kswapd() || !PageReclaim(page) || 1327 !test_bit(PGDAT_DIRTY, &pgdat->flags))) { 1328 /* 1329 * Immediately reclaim when written back. 1330 * Similar in principal to deactivate_page() 1331 * except we already have the page isolated 1332 * and know it's dirty 1333 */ 1334 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE); 1335 SetPageReclaim(page); 1336 1337 goto activate_locked; 1338 } 1339 1340 if (references == PAGEREF_RECLAIM_CLEAN) 1341 goto keep_locked; 1342 if (!may_enter_fs) 1343 goto keep_locked; 1344 if (!sc->may_writepage) 1345 goto keep_locked; 1346 1347 /* 1348 * Page is dirty. Flush the TLB if a writable entry 1349 * potentially exists to avoid CPU writes after IO 1350 * starts and then write it out here. 1351 */ 1352 try_to_unmap_flush_dirty(); 1353 switch (pageout(page, mapping)) { 1354 case PAGE_KEEP: 1355 goto keep_locked; 1356 case PAGE_ACTIVATE: 1357 goto activate_locked; 1358 case PAGE_SUCCESS: 1359 stat->nr_pageout += thp_nr_pages(page); 1360 1361 if (PageWriteback(page)) 1362 goto keep; 1363 if (PageDirty(page)) 1364 goto keep; 1365 1366 /* 1367 * A synchronous write - probably a ramdisk. Go 1368 * ahead and try to reclaim the page. 1369 */ 1370 if (!trylock_page(page)) 1371 goto keep; 1372 if (PageDirty(page) || PageWriteback(page)) 1373 goto keep_locked; 1374 mapping = page_mapping(page); 1375 fallthrough; 1376 case PAGE_CLEAN: 1377 ; /* try to free the page below */ 1378 } 1379 } 1380 1381 /* 1382 * If the page has buffers, try to free the buffer mappings 1383 * associated with this page. If we succeed we try to free 1384 * the page as well. 1385 * 1386 * We do this even if the page is PageDirty(). 1387 * try_to_release_page() does not perform I/O, but it is 1388 * possible for a page to have PageDirty set, but it is actually 1389 * clean (all its buffers are clean). This happens if the 1390 * buffers were written out directly, with submit_bh(). ext3 1391 * will do this, as well as the blockdev mapping. 1392 * try_to_release_page() will discover that cleanness and will 1393 * drop the buffers and mark the page clean - it can be freed. 1394 * 1395 * Rarely, pages can have buffers and no ->mapping. These are 1396 * the pages which were not successfully invalidated in 1397 * truncate_cleanup_page(). We try to drop those buffers here 1398 * and if that worked, and the page is no longer mapped into 1399 * process address space (page_count == 1) it can be freed. 1400 * Otherwise, leave the page on the LRU so it is swappable. 1401 */ 1402 if (page_has_private(page)) { 1403 if (!try_to_release_page(page, sc->gfp_mask)) 1404 goto activate_locked; 1405 if (!mapping && page_count(page) == 1) { 1406 unlock_page(page); 1407 if (put_page_testzero(page)) 1408 goto free_it; 1409 else { 1410 /* 1411 * rare race with speculative reference. 1412 * the speculative reference will free 1413 * this page shortly, so we may 1414 * increment nr_reclaimed here (and 1415 * leave it off the LRU). 1416 */ 1417 nr_reclaimed++; 1418 continue; 1419 } 1420 } 1421 } 1422 1423 if (PageAnon(page) && !PageSwapBacked(page)) { 1424 /* follow __remove_mapping for reference */ 1425 if (!page_ref_freeze(page, 1)) 1426 goto keep_locked; 1427 if (PageDirty(page)) { 1428 page_ref_unfreeze(page, 1); 1429 goto keep_locked; 1430 } 1431 1432 count_vm_event(PGLAZYFREED); 1433 count_memcg_page_event(page, PGLAZYFREED); 1434 } else if (!mapping || !__remove_mapping(mapping, page, true, 1435 sc->target_mem_cgroup)) 1436 goto keep_locked; 1437 1438 unlock_page(page); 1439 free_it: 1440 /* 1441 * THP may get swapped out in a whole, need account 1442 * all base pages. 1443 */ 1444 nr_reclaimed += nr_pages; 1445 1446 /* 1447 * Is there need to periodically free_page_list? It would 1448 * appear not as the counts should be low 1449 */ 1450 if (unlikely(PageTransHuge(page))) 1451 destroy_compound_page(page); 1452 else 1453 list_add(&page->lru, &free_pages); 1454 continue; 1455 1456 activate_locked_split: 1457 /* 1458 * The tail pages that are failed to add into swap cache 1459 * reach here. Fixup nr_scanned and nr_pages. 1460 */ 1461 if (nr_pages > 1) { 1462 sc->nr_scanned -= (nr_pages - 1); 1463 nr_pages = 1; 1464 } 1465 activate_locked: 1466 /* Not a candidate for swapping, so reclaim swap space. */ 1467 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) || 1468 PageMlocked(page))) 1469 try_to_free_swap(page); 1470 VM_BUG_ON_PAGE(PageActive(page), page); 1471 if (!PageMlocked(page)) { 1472 int type = page_is_file_lru(page); 1473 SetPageActive(page); 1474 stat->nr_activate[type] += nr_pages; 1475 count_memcg_page_event(page, PGACTIVATE); 1476 } 1477 keep_locked: 1478 unlock_page(page); 1479 keep: 1480 list_add(&page->lru, &ret_pages); 1481 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page); 1482 } 1483 1484 pgactivate = stat->nr_activate[0] + stat->nr_activate[1]; 1485 1486 mem_cgroup_uncharge_list(&free_pages); 1487 try_to_unmap_flush(); 1488 free_unref_page_list(&free_pages); 1489 1490 list_splice(&ret_pages, page_list); 1491 count_vm_events(PGACTIVATE, pgactivate); 1492 1493 return nr_reclaimed; 1494 } 1495 1496 unsigned int reclaim_clean_pages_from_list(struct zone *zone, 1497 struct list_head *page_list) 1498 { 1499 struct scan_control sc = { 1500 .gfp_mask = GFP_KERNEL, 1501 .priority = DEF_PRIORITY, 1502 .may_unmap = 1, 1503 }; 1504 struct reclaim_stat stat; 1505 unsigned int nr_reclaimed; 1506 struct page *page, *next; 1507 LIST_HEAD(clean_pages); 1508 1509 list_for_each_entry_safe(page, next, page_list, lru) { 1510 if (page_is_file_lru(page) && !PageDirty(page) && 1511 !__PageMovable(page) && !PageUnevictable(page)) { 1512 ClearPageActive(page); 1513 list_move(&page->lru, &clean_pages); 1514 } 1515 } 1516 1517 nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc, 1518 &stat, true); 1519 list_splice(&clean_pages, page_list); 1520 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, 1521 -(long)nr_reclaimed); 1522 /* 1523 * Since lazyfree pages are isolated from file LRU from the beginning, 1524 * they will rotate back to anonymous LRU in the end if it failed to 1525 * discard so isolated count will be mismatched. 1526 * Compensate the isolated count for both LRU lists. 1527 */ 1528 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON, 1529 stat.nr_lazyfree_fail); 1530 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, 1531 -(long)stat.nr_lazyfree_fail); 1532 return nr_reclaimed; 1533 } 1534 1535 /* 1536 * Attempt to remove the specified page from its LRU. Only take this page 1537 * if it is of the appropriate PageActive status. Pages which are being 1538 * freed elsewhere are also ignored. 1539 * 1540 * page: page to consider 1541 * mode: one of the LRU isolation modes defined above 1542 * 1543 * returns true on success, false on failure. 1544 */ 1545 bool __isolate_lru_page_prepare(struct page *page, isolate_mode_t mode) 1546 { 1547 /* Only take pages on the LRU. */ 1548 if (!PageLRU(page)) 1549 return false; 1550 1551 /* Compaction should not handle unevictable pages but CMA can do so */ 1552 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE)) 1553 return false; 1554 1555 /* 1556 * To minimise LRU disruption, the caller can indicate that it only 1557 * wants to isolate pages it will be able to operate on without 1558 * blocking - clean pages for the most part. 1559 * 1560 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages 1561 * that it is possible to migrate without blocking 1562 */ 1563 if (mode & ISOLATE_ASYNC_MIGRATE) { 1564 /* All the caller can do on PageWriteback is block */ 1565 if (PageWriteback(page)) 1566 return false; 1567 1568 if (PageDirty(page)) { 1569 struct address_space *mapping; 1570 bool migrate_dirty; 1571 1572 /* 1573 * Only pages without mappings or that have a 1574 * ->migratepage callback are possible to migrate 1575 * without blocking. However, we can be racing with 1576 * truncation so it's necessary to lock the page 1577 * to stabilise the mapping as truncation holds 1578 * the page lock until after the page is removed 1579 * from the page cache. 1580 */ 1581 if (!trylock_page(page)) 1582 return false; 1583 1584 mapping = page_mapping(page); 1585 migrate_dirty = !mapping || mapping->a_ops->migratepage; 1586 unlock_page(page); 1587 if (!migrate_dirty) 1588 return false; 1589 } 1590 } 1591 1592 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page)) 1593 return false; 1594 1595 return true; 1596 } 1597 1598 /* 1599 * Update LRU sizes after isolating pages. The LRU size updates must 1600 * be complete before mem_cgroup_update_lru_size due to a sanity check. 1601 */ 1602 static __always_inline void update_lru_sizes(struct lruvec *lruvec, 1603 enum lru_list lru, unsigned long *nr_zone_taken) 1604 { 1605 int zid; 1606 1607 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1608 if (!nr_zone_taken[zid]) 1609 continue; 1610 1611 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 1612 } 1613 1614 } 1615 1616 /** 1617 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times. 1618 * 1619 * lruvec->lru_lock is heavily contended. Some of the functions that 1620 * shrink the lists perform better by taking out a batch of pages 1621 * and working on them outside the LRU lock. 1622 * 1623 * For pagecache intensive workloads, this function is the hottest 1624 * spot in the kernel (apart from copy_*_user functions). 1625 * 1626 * Lru_lock must be held before calling this function. 1627 * 1628 * @nr_to_scan: The number of eligible pages to look through on the list. 1629 * @lruvec: The LRU vector to pull pages from. 1630 * @dst: The temp list to put pages on to. 1631 * @nr_scanned: The number of pages that were scanned. 1632 * @sc: The scan_control struct for this reclaim session 1633 * @lru: LRU list id for isolating 1634 * 1635 * returns how many pages were moved onto *@dst. 1636 */ 1637 static unsigned long isolate_lru_pages(unsigned long nr_to_scan, 1638 struct lruvec *lruvec, struct list_head *dst, 1639 unsigned long *nr_scanned, struct scan_control *sc, 1640 enum lru_list lru) 1641 { 1642 struct list_head *src = &lruvec->lists[lru]; 1643 unsigned long nr_taken = 0; 1644 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 }; 1645 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, }; 1646 unsigned long skipped = 0; 1647 unsigned long scan, total_scan, nr_pages; 1648 LIST_HEAD(pages_skipped); 1649 isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED); 1650 1651 total_scan = 0; 1652 scan = 0; 1653 while (scan < nr_to_scan && !list_empty(src)) { 1654 struct page *page; 1655 1656 page = lru_to_page(src); 1657 prefetchw_prev_lru_page(page, src, flags); 1658 1659 nr_pages = compound_nr(page); 1660 total_scan += nr_pages; 1661 1662 if (page_zonenum(page) > sc->reclaim_idx) { 1663 list_move(&page->lru, &pages_skipped); 1664 nr_skipped[page_zonenum(page)] += nr_pages; 1665 continue; 1666 } 1667 1668 /* 1669 * Do not count skipped pages because that makes the function 1670 * return with no isolated pages if the LRU mostly contains 1671 * ineligible pages. This causes the VM to not reclaim any 1672 * pages, triggering a premature OOM. 1673 * 1674 * Account all tail pages of THP. This would not cause 1675 * premature OOM since __isolate_lru_page() returns -EBUSY 1676 * only when the page is being freed somewhere else. 1677 */ 1678 scan += nr_pages; 1679 if (!__isolate_lru_page_prepare(page, mode)) { 1680 /* It is being freed elsewhere */ 1681 list_move(&page->lru, src); 1682 continue; 1683 } 1684 /* 1685 * Be careful not to clear PageLRU until after we're 1686 * sure the page is not being freed elsewhere -- the 1687 * page release code relies on it. 1688 */ 1689 if (unlikely(!get_page_unless_zero(page))) { 1690 list_move(&page->lru, src); 1691 continue; 1692 } 1693 1694 if (!TestClearPageLRU(page)) { 1695 /* Another thread is already isolating this page */ 1696 put_page(page); 1697 list_move(&page->lru, src); 1698 continue; 1699 } 1700 1701 nr_taken += nr_pages; 1702 nr_zone_taken[page_zonenum(page)] += nr_pages; 1703 list_move(&page->lru, dst); 1704 } 1705 1706 /* 1707 * Splice any skipped pages to the start of the LRU list. Note that 1708 * this disrupts the LRU order when reclaiming for lower zones but 1709 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX 1710 * scanning would soon rescan the same pages to skip and put the 1711 * system at risk of premature OOM. 1712 */ 1713 if (!list_empty(&pages_skipped)) { 1714 int zid; 1715 1716 list_splice(&pages_skipped, src); 1717 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1718 if (!nr_skipped[zid]) 1719 continue; 1720 1721 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]); 1722 skipped += nr_skipped[zid]; 1723 } 1724 } 1725 *nr_scanned = total_scan; 1726 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, 1727 total_scan, skipped, nr_taken, mode, lru); 1728 update_lru_sizes(lruvec, lru, nr_zone_taken); 1729 return nr_taken; 1730 } 1731 1732 /** 1733 * isolate_lru_page - tries to isolate a page from its LRU list 1734 * @page: page to isolate from its LRU list 1735 * 1736 * Isolates a @page from an LRU list, clears PageLRU and adjusts the 1737 * vmstat statistic corresponding to whatever LRU list the page was on. 1738 * 1739 * Returns 0 if the page was removed from an LRU list. 1740 * Returns -EBUSY if the page was not on an LRU list. 1741 * 1742 * The returned page will have PageLRU() cleared. If it was found on 1743 * the active list, it will have PageActive set. If it was found on 1744 * the unevictable list, it will have the PageUnevictable bit set. That flag 1745 * may need to be cleared by the caller before letting the page go. 1746 * 1747 * The vmstat statistic corresponding to the list on which the page was 1748 * found will be decremented. 1749 * 1750 * Restrictions: 1751 * 1752 * (1) Must be called with an elevated refcount on the page. This is a 1753 * fundamental difference from isolate_lru_pages (which is called 1754 * without a stable reference). 1755 * (2) the lru_lock must not be held. 1756 * (3) interrupts must be enabled. 1757 */ 1758 int isolate_lru_page(struct page *page) 1759 { 1760 int ret = -EBUSY; 1761 1762 VM_BUG_ON_PAGE(!page_count(page), page); 1763 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page"); 1764 1765 if (TestClearPageLRU(page)) { 1766 struct lruvec *lruvec; 1767 1768 get_page(page); 1769 lruvec = lock_page_lruvec_irq(page); 1770 del_page_from_lru_list(page, lruvec); 1771 unlock_page_lruvec_irq(lruvec); 1772 ret = 0; 1773 } 1774 1775 return ret; 1776 } 1777 1778 /* 1779 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 1780 * then get rescheduled. When there are massive number of tasks doing page 1781 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 1782 * the LRU list will go small and be scanned faster than necessary, leading to 1783 * unnecessary swapping, thrashing and OOM. 1784 */ 1785 static int too_many_isolated(struct pglist_data *pgdat, int file, 1786 struct scan_control *sc) 1787 { 1788 unsigned long inactive, isolated; 1789 1790 if (current_is_kswapd()) 1791 return 0; 1792 1793 if (!writeback_throttling_sane(sc)) 1794 return 0; 1795 1796 if (file) { 1797 inactive = node_page_state(pgdat, NR_INACTIVE_FILE); 1798 isolated = node_page_state(pgdat, NR_ISOLATED_FILE); 1799 } else { 1800 inactive = node_page_state(pgdat, NR_INACTIVE_ANON); 1801 isolated = node_page_state(pgdat, NR_ISOLATED_ANON); 1802 } 1803 1804 /* 1805 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 1806 * won't get blocked by normal direct-reclaimers, forming a circular 1807 * deadlock. 1808 */ 1809 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 1810 inactive >>= 3; 1811 1812 return isolated > inactive; 1813 } 1814 1815 /* 1816 * move_pages_to_lru() moves pages from private @list to appropriate LRU list. 1817 * On return, @list is reused as a list of pages to be freed by the caller. 1818 * 1819 * Returns the number of pages moved to the given lruvec. 1820 */ 1821 static unsigned noinline_for_stack move_pages_to_lru(struct lruvec *lruvec, 1822 struct list_head *list) 1823 { 1824 int nr_pages, nr_moved = 0; 1825 LIST_HEAD(pages_to_free); 1826 struct page *page; 1827 1828 while (!list_empty(list)) { 1829 page = lru_to_page(list); 1830 VM_BUG_ON_PAGE(PageLRU(page), page); 1831 list_del(&page->lru); 1832 if (unlikely(!page_evictable(page))) { 1833 spin_unlock_irq(&lruvec->lru_lock); 1834 putback_lru_page(page); 1835 spin_lock_irq(&lruvec->lru_lock); 1836 continue; 1837 } 1838 1839 /* 1840 * The SetPageLRU needs to be kept here for list integrity. 1841 * Otherwise: 1842 * #0 move_pages_to_lru #1 release_pages 1843 * if !put_page_testzero 1844 * if (put_page_testzero()) 1845 * !PageLRU //skip lru_lock 1846 * SetPageLRU() 1847 * list_add(&page->lru,) 1848 * list_add(&page->lru,) 1849 */ 1850 SetPageLRU(page); 1851 1852 if (unlikely(put_page_testzero(page))) { 1853 __clear_page_lru_flags(page); 1854 1855 if (unlikely(PageCompound(page))) { 1856 spin_unlock_irq(&lruvec->lru_lock); 1857 destroy_compound_page(page); 1858 spin_lock_irq(&lruvec->lru_lock); 1859 } else 1860 list_add(&page->lru, &pages_to_free); 1861 1862 continue; 1863 } 1864 1865 /* 1866 * All pages were isolated from the same lruvec (and isolation 1867 * inhibits memcg migration). 1868 */ 1869 VM_BUG_ON_PAGE(!lruvec_holds_page_lru_lock(page, lruvec), page); 1870 add_page_to_lru_list(page, lruvec); 1871 nr_pages = thp_nr_pages(page); 1872 nr_moved += nr_pages; 1873 if (PageActive(page)) 1874 workingset_age_nonresident(lruvec, nr_pages); 1875 } 1876 1877 /* 1878 * To save our caller's stack, now use input list for pages to free. 1879 */ 1880 list_splice(&pages_to_free, list); 1881 1882 return nr_moved; 1883 } 1884 1885 /* 1886 * If a kernel thread (such as nfsd for loop-back mounts) services 1887 * a backing device by writing to the page cache it sets PF_LOCAL_THROTTLE. 1888 * In that case we should only throttle if the backing device it is 1889 * writing to is congested. In other cases it is safe to throttle. 1890 */ 1891 static int current_may_throttle(void) 1892 { 1893 return !(current->flags & PF_LOCAL_THROTTLE) || 1894 current->backing_dev_info == NULL || 1895 bdi_write_congested(current->backing_dev_info); 1896 } 1897 1898 /* 1899 * shrink_inactive_list() is a helper for shrink_node(). It returns the number 1900 * of reclaimed pages 1901 */ 1902 static noinline_for_stack unsigned long 1903 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, 1904 struct scan_control *sc, enum lru_list lru) 1905 { 1906 LIST_HEAD(page_list); 1907 unsigned long nr_scanned; 1908 unsigned int nr_reclaimed = 0; 1909 unsigned long nr_taken; 1910 struct reclaim_stat stat; 1911 bool file = is_file_lru(lru); 1912 enum vm_event_item item; 1913 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1914 bool stalled = false; 1915 1916 while (unlikely(too_many_isolated(pgdat, file, sc))) { 1917 if (stalled) 1918 return 0; 1919 1920 /* wait a bit for the reclaimer. */ 1921 msleep(100); 1922 stalled = true; 1923 1924 /* We are about to die and free our memory. Return now. */ 1925 if (fatal_signal_pending(current)) 1926 return SWAP_CLUSTER_MAX; 1927 } 1928 1929 lru_add_drain(); 1930 1931 spin_lock_irq(&lruvec->lru_lock); 1932 1933 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list, 1934 &nr_scanned, sc, lru); 1935 1936 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 1937 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT; 1938 if (!cgroup_reclaim(sc)) 1939 __count_vm_events(item, nr_scanned); 1940 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned); 1941 __count_vm_events(PGSCAN_ANON + file, nr_scanned); 1942 1943 spin_unlock_irq(&lruvec->lru_lock); 1944 1945 if (nr_taken == 0) 1946 return 0; 1947 1948 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, &stat, false); 1949 1950 spin_lock_irq(&lruvec->lru_lock); 1951 move_pages_to_lru(lruvec, &page_list); 1952 1953 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 1954 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT; 1955 if (!cgroup_reclaim(sc)) 1956 __count_vm_events(item, nr_reclaimed); 1957 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed); 1958 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed); 1959 spin_unlock_irq(&lruvec->lru_lock); 1960 1961 lru_note_cost(lruvec, file, stat.nr_pageout); 1962 mem_cgroup_uncharge_list(&page_list); 1963 free_unref_page_list(&page_list); 1964 1965 /* 1966 * If dirty pages are scanned that are not queued for IO, it 1967 * implies that flushers are not doing their job. This can 1968 * happen when memory pressure pushes dirty pages to the end of 1969 * the LRU before the dirty limits are breached and the dirty 1970 * data has expired. It can also happen when the proportion of 1971 * dirty pages grows not through writes but through memory 1972 * pressure reclaiming all the clean cache. And in some cases, 1973 * the flushers simply cannot keep up with the allocation 1974 * rate. Nudge the flusher threads in case they are asleep. 1975 */ 1976 if (stat.nr_unqueued_dirty == nr_taken) 1977 wakeup_flusher_threads(WB_REASON_VMSCAN); 1978 1979 sc->nr.dirty += stat.nr_dirty; 1980 sc->nr.congested += stat.nr_congested; 1981 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty; 1982 sc->nr.writeback += stat.nr_writeback; 1983 sc->nr.immediate += stat.nr_immediate; 1984 sc->nr.taken += nr_taken; 1985 if (file) 1986 sc->nr.file_taken += nr_taken; 1987 1988 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 1989 nr_scanned, nr_reclaimed, &stat, sc->priority, file); 1990 return nr_reclaimed; 1991 } 1992 1993 /* 1994 * shrink_active_list() moves pages from the active LRU to the inactive LRU. 1995 * 1996 * We move them the other way if the page is referenced by one or more 1997 * processes. 1998 * 1999 * If the pages are mostly unmapped, the processing is fast and it is 2000 * appropriate to hold lru_lock across the whole operation. But if 2001 * the pages are mapped, the processing is slow (page_referenced()), so 2002 * we should drop lru_lock around each page. It's impossible to balance 2003 * this, so instead we remove the pages from the LRU while processing them. 2004 * It is safe to rely on PG_active against the non-LRU pages in here because 2005 * nobody will play with that bit on a non-LRU page. 2006 * 2007 * The downside is that we have to touch page->_refcount against each page. 2008 * But we had to alter page->flags anyway. 2009 */ 2010 static void shrink_active_list(unsigned long nr_to_scan, 2011 struct lruvec *lruvec, 2012 struct scan_control *sc, 2013 enum lru_list lru) 2014 { 2015 unsigned long nr_taken; 2016 unsigned long nr_scanned; 2017 unsigned long vm_flags; 2018 LIST_HEAD(l_hold); /* The pages which were snipped off */ 2019 LIST_HEAD(l_active); 2020 LIST_HEAD(l_inactive); 2021 struct page *page; 2022 unsigned nr_deactivate, nr_activate; 2023 unsigned nr_rotated = 0; 2024 int file = is_file_lru(lru); 2025 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2026 2027 lru_add_drain(); 2028 2029 spin_lock_irq(&lruvec->lru_lock); 2030 2031 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold, 2032 &nr_scanned, sc, lru); 2033 2034 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2035 2036 if (!cgroup_reclaim(sc)) 2037 __count_vm_events(PGREFILL, nr_scanned); 2038 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned); 2039 2040 spin_unlock_irq(&lruvec->lru_lock); 2041 2042 while (!list_empty(&l_hold)) { 2043 cond_resched(); 2044 page = lru_to_page(&l_hold); 2045 list_del(&page->lru); 2046 2047 if (unlikely(!page_evictable(page))) { 2048 putback_lru_page(page); 2049 continue; 2050 } 2051 2052 if (unlikely(buffer_heads_over_limit)) { 2053 if (page_has_private(page) && trylock_page(page)) { 2054 if (page_has_private(page)) 2055 try_to_release_page(page, 0); 2056 unlock_page(page); 2057 } 2058 } 2059 2060 if (page_referenced(page, 0, sc->target_mem_cgroup, 2061 &vm_flags)) { 2062 /* 2063 * Identify referenced, file-backed active pages and 2064 * give them one more trip around the active list. So 2065 * that executable code get better chances to stay in 2066 * memory under moderate memory pressure. Anon pages 2067 * are not likely to be evicted by use-once streaming 2068 * IO, plus JVM can create lots of anon VM_EXEC pages, 2069 * so we ignore them here. 2070 */ 2071 if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) { 2072 nr_rotated += thp_nr_pages(page); 2073 list_add(&page->lru, &l_active); 2074 continue; 2075 } 2076 } 2077 2078 ClearPageActive(page); /* we are de-activating */ 2079 SetPageWorkingset(page); 2080 list_add(&page->lru, &l_inactive); 2081 } 2082 2083 /* 2084 * Move pages back to the lru list. 2085 */ 2086 spin_lock_irq(&lruvec->lru_lock); 2087 2088 nr_activate = move_pages_to_lru(lruvec, &l_active); 2089 nr_deactivate = move_pages_to_lru(lruvec, &l_inactive); 2090 /* Keep all free pages in l_active list */ 2091 list_splice(&l_inactive, &l_active); 2092 2093 __count_vm_events(PGDEACTIVATE, nr_deactivate); 2094 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate); 2095 2096 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2097 spin_unlock_irq(&lruvec->lru_lock); 2098 2099 mem_cgroup_uncharge_list(&l_active); 2100 free_unref_page_list(&l_active); 2101 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate, 2102 nr_deactivate, nr_rotated, sc->priority, file); 2103 } 2104 2105 unsigned long reclaim_pages(struct list_head *page_list) 2106 { 2107 int nid = NUMA_NO_NODE; 2108 unsigned int nr_reclaimed = 0; 2109 LIST_HEAD(node_page_list); 2110 struct reclaim_stat dummy_stat; 2111 struct page *page; 2112 struct scan_control sc = { 2113 .gfp_mask = GFP_KERNEL, 2114 .priority = DEF_PRIORITY, 2115 .may_writepage = 1, 2116 .may_unmap = 1, 2117 .may_swap = 1, 2118 }; 2119 2120 while (!list_empty(page_list)) { 2121 page = lru_to_page(page_list); 2122 if (nid == NUMA_NO_NODE) { 2123 nid = page_to_nid(page); 2124 INIT_LIST_HEAD(&node_page_list); 2125 } 2126 2127 if (nid == page_to_nid(page)) { 2128 ClearPageActive(page); 2129 list_move(&page->lru, &node_page_list); 2130 continue; 2131 } 2132 2133 nr_reclaimed += shrink_page_list(&node_page_list, 2134 NODE_DATA(nid), 2135 &sc, &dummy_stat, false); 2136 while (!list_empty(&node_page_list)) { 2137 page = lru_to_page(&node_page_list); 2138 list_del(&page->lru); 2139 putback_lru_page(page); 2140 } 2141 2142 nid = NUMA_NO_NODE; 2143 } 2144 2145 if (!list_empty(&node_page_list)) { 2146 nr_reclaimed += shrink_page_list(&node_page_list, 2147 NODE_DATA(nid), 2148 &sc, &dummy_stat, false); 2149 while (!list_empty(&node_page_list)) { 2150 page = lru_to_page(&node_page_list); 2151 list_del(&page->lru); 2152 putback_lru_page(page); 2153 } 2154 } 2155 2156 return nr_reclaimed; 2157 } 2158 2159 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 2160 struct lruvec *lruvec, struct scan_control *sc) 2161 { 2162 if (is_active_lru(lru)) { 2163 if (sc->may_deactivate & (1 << is_file_lru(lru))) 2164 shrink_active_list(nr_to_scan, lruvec, sc, lru); 2165 else 2166 sc->skipped_deactivate = 1; 2167 return 0; 2168 } 2169 2170 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 2171 } 2172 2173 /* 2174 * The inactive anon list should be small enough that the VM never has 2175 * to do too much work. 2176 * 2177 * The inactive file list should be small enough to leave most memory 2178 * to the established workingset on the scan-resistant active list, 2179 * but large enough to avoid thrashing the aggregate readahead window. 2180 * 2181 * Both inactive lists should also be large enough that each inactive 2182 * page has a chance to be referenced again before it is reclaimed. 2183 * 2184 * If that fails and refaulting is observed, the inactive list grows. 2185 * 2186 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages 2187 * on this LRU, maintained by the pageout code. An inactive_ratio 2188 * of 3 means 3:1 or 25% of the pages are kept on the inactive list. 2189 * 2190 * total target max 2191 * memory ratio inactive 2192 * ------------------------------------- 2193 * 10MB 1 5MB 2194 * 100MB 1 50MB 2195 * 1GB 3 250MB 2196 * 10GB 10 0.9GB 2197 * 100GB 31 3GB 2198 * 1TB 101 10GB 2199 * 10TB 320 32GB 2200 */ 2201 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru) 2202 { 2203 enum lru_list active_lru = inactive_lru + LRU_ACTIVE; 2204 unsigned long inactive, active; 2205 unsigned long inactive_ratio; 2206 unsigned long gb; 2207 2208 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru); 2209 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru); 2210 2211 gb = (inactive + active) >> (30 - PAGE_SHIFT); 2212 if (gb) 2213 inactive_ratio = int_sqrt(10 * gb); 2214 else 2215 inactive_ratio = 1; 2216 2217 return inactive * inactive_ratio < active; 2218 } 2219 2220 enum scan_balance { 2221 SCAN_EQUAL, 2222 SCAN_FRACT, 2223 SCAN_ANON, 2224 SCAN_FILE, 2225 }; 2226 2227 /* 2228 * Determine how aggressively the anon and file LRU lists should be 2229 * scanned. The relative value of each set of LRU lists is determined 2230 * by looking at the fraction of the pages scanned we did rotate back 2231 * onto the active list instead of evict. 2232 * 2233 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan 2234 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan 2235 */ 2236 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc, 2237 unsigned long *nr) 2238 { 2239 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 2240 unsigned long anon_cost, file_cost, total_cost; 2241 int swappiness = mem_cgroup_swappiness(memcg); 2242 u64 fraction[ANON_AND_FILE]; 2243 u64 denominator = 0; /* gcc */ 2244 enum scan_balance scan_balance; 2245 unsigned long ap, fp; 2246 enum lru_list lru; 2247 2248 /* If we have no swap space, do not bother scanning anon pages. */ 2249 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) { 2250 scan_balance = SCAN_FILE; 2251 goto out; 2252 } 2253 2254 /* 2255 * Global reclaim will swap to prevent OOM even with no 2256 * swappiness, but memcg users want to use this knob to 2257 * disable swapping for individual groups completely when 2258 * using the memory controller's swap limit feature would be 2259 * too expensive. 2260 */ 2261 if (cgroup_reclaim(sc) && !swappiness) { 2262 scan_balance = SCAN_FILE; 2263 goto out; 2264 } 2265 2266 /* 2267 * Do not apply any pressure balancing cleverness when the 2268 * system is close to OOM, scan both anon and file equally 2269 * (unless the swappiness setting disagrees with swapping). 2270 */ 2271 if (!sc->priority && swappiness) { 2272 scan_balance = SCAN_EQUAL; 2273 goto out; 2274 } 2275 2276 /* 2277 * If the system is almost out of file pages, force-scan anon. 2278 */ 2279 if (sc->file_is_tiny) { 2280 scan_balance = SCAN_ANON; 2281 goto out; 2282 } 2283 2284 /* 2285 * If there is enough inactive page cache, we do not reclaim 2286 * anything from the anonymous working right now. 2287 */ 2288 if (sc->cache_trim_mode) { 2289 scan_balance = SCAN_FILE; 2290 goto out; 2291 } 2292 2293 scan_balance = SCAN_FRACT; 2294 /* 2295 * Calculate the pressure balance between anon and file pages. 2296 * 2297 * The amount of pressure we put on each LRU is inversely 2298 * proportional to the cost of reclaiming each list, as 2299 * determined by the share of pages that are refaulting, times 2300 * the relative IO cost of bringing back a swapped out 2301 * anonymous page vs reloading a filesystem page (swappiness). 2302 * 2303 * Although we limit that influence to ensure no list gets 2304 * left behind completely: at least a third of the pressure is 2305 * applied, before swappiness. 2306 * 2307 * With swappiness at 100, anon and file have equal IO cost. 2308 */ 2309 total_cost = sc->anon_cost + sc->file_cost; 2310 anon_cost = total_cost + sc->anon_cost; 2311 file_cost = total_cost + sc->file_cost; 2312 total_cost = anon_cost + file_cost; 2313 2314 ap = swappiness * (total_cost + 1); 2315 ap /= anon_cost + 1; 2316 2317 fp = (200 - swappiness) * (total_cost + 1); 2318 fp /= file_cost + 1; 2319 2320 fraction[0] = ap; 2321 fraction[1] = fp; 2322 denominator = ap + fp; 2323 out: 2324 for_each_evictable_lru(lru) { 2325 int file = is_file_lru(lru); 2326 unsigned long lruvec_size; 2327 unsigned long scan; 2328 unsigned long protection; 2329 2330 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx); 2331 protection = mem_cgroup_protection(sc->target_mem_cgroup, 2332 memcg, 2333 sc->memcg_low_reclaim); 2334 2335 if (protection) { 2336 /* 2337 * Scale a cgroup's reclaim pressure by proportioning 2338 * its current usage to its memory.low or memory.min 2339 * setting. 2340 * 2341 * This is important, as otherwise scanning aggression 2342 * becomes extremely binary -- from nothing as we 2343 * approach the memory protection threshold, to totally 2344 * nominal as we exceed it. This results in requiring 2345 * setting extremely liberal protection thresholds. It 2346 * also means we simply get no protection at all if we 2347 * set it too low, which is not ideal. 2348 * 2349 * If there is any protection in place, we reduce scan 2350 * pressure by how much of the total memory used is 2351 * within protection thresholds. 2352 * 2353 * There is one special case: in the first reclaim pass, 2354 * we skip over all groups that are within their low 2355 * protection. If that fails to reclaim enough pages to 2356 * satisfy the reclaim goal, we come back and override 2357 * the best-effort low protection. However, we still 2358 * ideally want to honor how well-behaved groups are in 2359 * that case instead of simply punishing them all 2360 * equally. As such, we reclaim them based on how much 2361 * memory they are using, reducing the scan pressure 2362 * again by how much of the total memory used is under 2363 * hard protection. 2364 */ 2365 unsigned long cgroup_size = mem_cgroup_size(memcg); 2366 2367 /* Avoid TOCTOU with earlier protection check */ 2368 cgroup_size = max(cgroup_size, protection); 2369 2370 scan = lruvec_size - lruvec_size * protection / 2371 cgroup_size; 2372 2373 /* 2374 * Minimally target SWAP_CLUSTER_MAX pages to keep 2375 * reclaim moving forwards, avoiding decrementing 2376 * sc->priority further than desirable. 2377 */ 2378 scan = max(scan, SWAP_CLUSTER_MAX); 2379 } else { 2380 scan = lruvec_size; 2381 } 2382 2383 scan >>= sc->priority; 2384 2385 /* 2386 * If the cgroup's already been deleted, make sure to 2387 * scrape out the remaining cache. 2388 */ 2389 if (!scan && !mem_cgroup_online(memcg)) 2390 scan = min(lruvec_size, SWAP_CLUSTER_MAX); 2391 2392 switch (scan_balance) { 2393 case SCAN_EQUAL: 2394 /* Scan lists relative to size */ 2395 break; 2396 case SCAN_FRACT: 2397 /* 2398 * Scan types proportional to swappiness and 2399 * their relative recent reclaim efficiency. 2400 * Make sure we don't miss the last page on 2401 * the offlined memory cgroups because of a 2402 * round-off error. 2403 */ 2404 scan = mem_cgroup_online(memcg) ? 2405 div64_u64(scan * fraction[file], denominator) : 2406 DIV64_U64_ROUND_UP(scan * fraction[file], 2407 denominator); 2408 break; 2409 case SCAN_FILE: 2410 case SCAN_ANON: 2411 /* Scan one type exclusively */ 2412 if ((scan_balance == SCAN_FILE) != file) 2413 scan = 0; 2414 break; 2415 default: 2416 /* Look ma, no brain */ 2417 BUG(); 2418 } 2419 2420 nr[lru] = scan; 2421 } 2422 } 2423 2424 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 2425 { 2426 unsigned long nr[NR_LRU_LISTS]; 2427 unsigned long targets[NR_LRU_LISTS]; 2428 unsigned long nr_to_scan; 2429 enum lru_list lru; 2430 unsigned long nr_reclaimed = 0; 2431 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 2432 struct blk_plug plug; 2433 bool scan_adjusted; 2434 2435 get_scan_count(lruvec, sc, nr); 2436 2437 /* Record the original scan target for proportional adjustments later */ 2438 memcpy(targets, nr, sizeof(nr)); 2439 2440 /* 2441 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal 2442 * event that can occur when there is little memory pressure e.g. 2443 * multiple streaming readers/writers. Hence, we do not abort scanning 2444 * when the requested number of pages are reclaimed when scanning at 2445 * DEF_PRIORITY on the assumption that the fact we are direct 2446 * reclaiming implies that kswapd is not keeping up and it is best to 2447 * do a batch of work at once. For memcg reclaim one check is made to 2448 * abort proportional reclaim if either the file or anon lru has already 2449 * dropped to zero at the first pass. 2450 */ 2451 scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() && 2452 sc->priority == DEF_PRIORITY); 2453 2454 blk_start_plug(&plug); 2455 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 2456 nr[LRU_INACTIVE_FILE]) { 2457 unsigned long nr_anon, nr_file, percentage; 2458 unsigned long nr_scanned; 2459 2460 for_each_evictable_lru(lru) { 2461 if (nr[lru]) { 2462 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 2463 nr[lru] -= nr_to_scan; 2464 2465 nr_reclaimed += shrink_list(lru, nr_to_scan, 2466 lruvec, sc); 2467 } 2468 } 2469 2470 cond_resched(); 2471 2472 if (nr_reclaimed < nr_to_reclaim || scan_adjusted) 2473 continue; 2474 2475 /* 2476 * For kswapd and memcg, reclaim at least the number of pages 2477 * requested. Ensure that the anon and file LRUs are scanned 2478 * proportionally what was requested by get_scan_count(). We 2479 * stop reclaiming one LRU and reduce the amount scanning 2480 * proportional to the original scan target. 2481 */ 2482 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 2483 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 2484 2485 /* 2486 * It's just vindictive to attack the larger once the smaller 2487 * has gone to zero. And given the way we stop scanning the 2488 * smaller below, this makes sure that we only make one nudge 2489 * towards proportionality once we've got nr_to_reclaim. 2490 */ 2491 if (!nr_file || !nr_anon) 2492 break; 2493 2494 if (nr_file > nr_anon) { 2495 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 2496 targets[LRU_ACTIVE_ANON] + 1; 2497 lru = LRU_BASE; 2498 percentage = nr_anon * 100 / scan_target; 2499 } else { 2500 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 2501 targets[LRU_ACTIVE_FILE] + 1; 2502 lru = LRU_FILE; 2503 percentage = nr_file * 100 / scan_target; 2504 } 2505 2506 /* Stop scanning the smaller of the LRU */ 2507 nr[lru] = 0; 2508 nr[lru + LRU_ACTIVE] = 0; 2509 2510 /* 2511 * Recalculate the other LRU scan count based on its original 2512 * scan target and the percentage scanning already complete 2513 */ 2514 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 2515 nr_scanned = targets[lru] - nr[lru]; 2516 nr[lru] = targets[lru] * (100 - percentage) / 100; 2517 nr[lru] -= min(nr[lru], nr_scanned); 2518 2519 lru += LRU_ACTIVE; 2520 nr_scanned = targets[lru] - nr[lru]; 2521 nr[lru] = targets[lru] * (100 - percentage) / 100; 2522 nr[lru] -= min(nr[lru], nr_scanned); 2523 2524 scan_adjusted = true; 2525 } 2526 blk_finish_plug(&plug); 2527 sc->nr_reclaimed += nr_reclaimed; 2528 2529 /* 2530 * Even if we did not try to evict anon pages at all, we want to 2531 * rebalance the anon lru active/inactive ratio. 2532 */ 2533 if (total_swap_pages && inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 2534 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 2535 sc, LRU_ACTIVE_ANON); 2536 } 2537 2538 /* Use reclaim/compaction for costly allocs or under memory pressure */ 2539 static bool in_reclaim_compaction(struct scan_control *sc) 2540 { 2541 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 2542 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 2543 sc->priority < DEF_PRIORITY - 2)) 2544 return true; 2545 2546 return false; 2547 } 2548 2549 /* 2550 * Reclaim/compaction is used for high-order allocation requests. It reclaims 2551 * order-0 pages before compacting the zone. should_continue_reclaim() returns 2552 * true if more pages should be reclaimed such that when the page allocator 2553 * calls try_to_compact_pages() that it will have enough free pages to succeed. 2554 * It will give up earlier than that if there is difficulty reclaiming pages. 2555 */ 2556 static inline bool should_continue_reclaim(struct pglist_data *pgdat, 2557 unsigned long nr_reclaimed, 2558 struct scan_control *sc) 2559 { 2560 unsigned long pages_for_compaction; 2561 unsigned long inactive_lru_pages; 2562 int z; 2563 2564 /* If not in reclaim/compaction mode, stop */ 2565 if (!in_reclaim_compaction(sc)) 2566 return false; 2567 2568 /* 2569 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX 2570 * number of pages that were scanned. This will return to the caller 2571 * with the risk reclaim/compaction and the resulting allocation attempt 2572 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL 2573 * allocations through requiring that the full LRU list has been scanned 2574 * first, by assuming that zero delta of sc->nr_scanned means full LRU 2575 * scan, but that approximation was wrong, and there were corner cases 2576 * where always a non-zero amount of pages were scanned. 2577 */ 2578 if (!nr_reclaimed) 2579 return false; 2580 2581 /* If compaction would go ahead or the allocation would succeed, stop */ 2582 for (z = 0; z <= sc->reclaim_idx; z++) { 2583 struct zone *zone = &pgdat->node_zones[z]; 2584 if (!managed_zone(zone)) 2585 continue; 2586 2587 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) { 2588 case COMPACT_SUCCESS: 2589 case COMPACT_CONTINUE: 2590 return false; 2591 default: 2592 /* check next zone */ 2593 ; 2594 } 2595 } 2596 2597 /* 2598 * If we have not reclaimed enough pages for compaction and the 2599 * inactive lists are large enough, continue reclaiming 2600 */ 2601 pages_for_compaction = compact_gap(sc->order); 2602 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE); 2603 if (get_nr_swap_pages() > 0) 2604 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON); 2605 2606 return inactive_lru_pages > pages_for_compaction; 2607 } 2608 2609 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc) 2610 { 2611 struct mem_cgroup *target_memcg = sc->target_mem_cgroup; 2612 struct mem_cgroup *memcg; 2613 2614 memcg = mem_cgroup_iter(target_memcg, NULL, NULL); 2615 do { 2616 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 2617 unsigned long reclaimed; 2618 unsigned long scanned; 2619 2620 /* 2621 * This loop can become CPU-bound when target memcgs 2622 * aren't eligible for reclaim - either because they 2623 * don't have any reclaimable pages, or because their 2624 * memory is explicitly protected. Avoid soft lockups. 2625 */ 2626 cond_resched(); 2627 2628 mem_cgroup_calculate_protection(target_memcg, memcg); 2629 2630 if (mem_cgroup_below_min(memcg)) { 2631 /* 2632 * Hard protection. 2633 * If there is no reclaimable memory, OOM. 2634 */ 2635 continue; 2636 } else if (mem_cgroup_below_low(memcg)) { 2637 /* 2638 * Soft protection. 2639 * Respect the protection only as long as 2640 * there is an unprotected supply 2641 * of reclaimable memory from other cgroups. 2642 */ 2643 if (!sc->memcg_low_reclaim) { 2644 sc->memcg_low_skipped = 1; 2645 continue; 2646 } 2647 memcg_memory_event(memcg, MEMCG_LOW); 2648 } 2649 2650 reclaimed = sc->nr_reclaimed; 2651 scanned = sc->nr_scanned; 2652 2653 shrink_lruvec(lruvec, sc); 2654 2655 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, 2656 sc->priority); 2657 2658 /* Record the group's reclaim efficiency */ 2659 vmpressure(sc->gfp_mask, memcg, false, 2660 sc->nr_scanned - scanned, 2661 sc->nr_reclaimed - reclaimed); 2662 2663 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL))); 2664 } 2665 2666 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc) 2667 { 2668 struct reclaim_state *reclaim_state = current->reclaim_state; 2669 unsigned long nr_reclaimed, nr_scanned; 2670 struct lruvec *target_lruvec; 2671 bool reclaimable = false; 2672 unsigned long file; 2673 2674 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat); 2675 2676 again: 2677 memset(&sc->nr, 0, sizeof(sc->nr)); 2678 2679 nr_reclaimed = sc->nr_reclaimed; 2680 nr_scanned = sc->nr_scanned; 2681 2682 /* 2683 * Determine the scan balance between anon and file LRUs. 2684 */ 2685 spin_lock_irq(&target_lruvec->lru_lock); 2686 sc->anon_cost = target_lruvec->anon_cost; 2687 sc->file_cost = target_lruvec->file_cost; 2688 spin_unlock_irq(&target_lruvec->lru_lock); 2689 2690 /* 2691 * Target desirable inactive:active list ratios for the anon 2692 * and file LRU lists. 2693 */ 2694 if (!sc->force_deactivate) { 2695 unsigned long refaults; 2696 2697 refaults = lruvec_page_state(target_lruvec, 2698 WORKINGSET_ACTIVATE_ANON); 2699 if (refaults != target_lruvec->refaults[0] || 2700 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON)) 2701 sc->may_deactivate |= DEACTIVATE_ANON; 2702 else 2703 sc->may_deactivate &= ~DEACTIVATE_ANON; 2704 2705 /* 2706 * When refaults are being observed, it means a new 2707 * workingset is being established. Deactivate to get 2708 * rid of any stale active pages quickly. 2709 */ 2710 refaults = lruvec_page_state(target_lruvec, 2711 WORKINGSET_ACTIVATE_FILE); 2712 if (refaults != target_lruvec->refaults[1] || 2713 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE)) 2714 sc->may_deactivate |= DEACTIVATE_FILE; 2715 else 2716 sc->may_deactivate &= ~DEACTIVATE_FILE; 2717 } else 2718 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE; 2719 2720 /* 2721 * If we have plenty of inactive file pages that aren't 2722 * thrashing, try to reclaim those first before touching 2723 * anonymous pages. 2724 */ 2725 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE); 2726 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE)) 2727 sc->cache_trim_mode = 1; 2728 else 2729 sc->cache_trim_mode = 0; 2730 2731 /* 2732 * Prevent the reclaimer from falling into the cache trap: as 2733 * cache pages start out inactive, every cache fault will tip 2734 * the scan balance towards the file LRU. And as the file LRU 2735 * shrinks, so does the window for rotation from references. 2736 * This means we have a runaway feedback loop where a tiny 2737 * thrashing file LRU becomes infinitely more attractive than 2738 * anon pages. Try to detect this based on file LRU size. 2739 */ 2740 if (!cgroup_reclaim(sc)) { 2741 unsigned long total_high_wmark = 0; 2742 unsigned long free, anon; 2743 int z; 2744 2745 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES); 2746 file = node_page_state(pgdat, NR_ACTIVE_FILE) + 2747 node_page_state(pgdat, NR_INACTIVE_FILE); 2748 2749 for (z = 0; z < MAX_NR_ZONES; z++) { 2750 struct zone *zone = &pgdat->node_zones[z]; 2751 if (!managed_zone(zone)) 2752 continue; 2753 2754 total_high_wmark += high_wmark_pages(zone); 2755 } 2756 2757 /* 2758 * Consider anon: if that's low too, this isn't a 2759 * runaway file reclaim problem, but rather just 2760 * extreme pressure. Reclaim as per usual then. 2761 */ 2762 anon = node_page_state(pgdat, NR_INACTIVE_ANON); 2763 2764 sc->file_is_tiny = 2765 file + free <= total_high_wmark && 2766 !(sc->may_deactivate & DEACTIVATE_ANON) && 2767 anon >> sc->priority; 2768 } 2769 2770 shrink_node_memcgs(pgdat, sc); 2771 2772 if (reclaim_state) { 2773 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 2774 reclaim_state->reclaimed_slab = 0; 2775 } 2776 2777 /* Record the subtree's reclaim efficiency */ 2778 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, 2779 sc->nr_scanned - nr_scanned, 2780 sc->nr_reclaimed - nr_reclaimed); 2781 2782 if (sc->nr_reclaimed - nr_reclaimed) 2783 reclaimable = true; 2784 2785 if (current_is_kswapd()) { 2786 /* 2787 * If reclaim is isolating dirty pages under writeback, 2788 * it implies that the long-lived page allocation rate 2789 * is exceeding the page laundering rate. Either the 2790 * global limits are not being effective at throttling 2791 * processes due to the page distribution throughout 2792 * zones or there is heavy usage of a slow backing 2793 * device. The only option is to throttle from reclaim 2794 * context which is not ideal as there is no guarantee 2795 * the dirtying process is throttled in the same way 2796 * balance_dirty_pages() manages. 2797 * 2798 * Once a node is flagged PGDAT_WRITEBACK, kswapd will 2799 * count the number of pages under pages flagged for 2800 * immediate reclaim and stall if any are encountered 2801 * in the nr_immediate check below. 2802 */ 2803 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken) 2804 set_bit(PGDAT_WRITEBACK, &pgdat->flags); 2805 2806 /* Allow kswapd to start writing pages during reclaim.*/ 2807 if (sc->nr.unqueued_dirty == sc->nr.file_taken) 2808 set_bit(PGDAT_DIRTY, &pgdat->flags); 2809 2810 /* 2811 * If kswapd scans pages marked for immediate 2812 * reclaim and under writeback (nr_immediate), it 2813 * implies that pages are cycling through the LRU 2814 * faster than they are written so also forcibly stall. 2815 */ 2816 if (sc->nr.immediate) 2817 congestion_wait(BLK_RW_ASYNC, HZ/10); 2818 } 2819 2820 /* 2821 * Tag a node/memcg as congested if all the dirty pages 2822 * scanned were backed by a congested BDI and 2823 * wait_iff_congested will stall. 2824 * 2825 * Legacy memcg will stall in page writeback so avoid forcibly 2826 * stalling in wait_iff_congested(). 2827 */ 2828 if ((current_is_kswapd() || 2829 (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) && 2830 sc->nr.dirty && sc->nr.dirty == sc->nr.congested) 2831 set_bit(LRUVEC_CONGESTED, &target_lruvec->flags); 2832 2833 /* 2834 * Stall direct reclaim for IO completions if underlying BDIs 2835 * and node is congested. Allow kswapd to continue until it 2836 * starts encountering unqueued dirty pages or cycling through 2837 * the LRU too quickly. 2838 */ 2839 if (!current_is_kswapd() && current_may_throttle() && 2840 !sc->hibernation_mode && 2841 test_bit(LRUVEC_CONGESTED, &target_lruvec->flags)) 2842 wait_iff_congested(BLK_RW_ASYNC, HZ/10); 2843 2844 if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed, 2845 sc)) 2846 goto again; 2847 2848 /* 2849 * Kswapd gives up on balancing particular nodes after too 2850 * many failures to reclaim anything from them and goes to 2851 * sleep. On reclaim progress, reset the failure counter. A 2852 * successful direct reclaim run will revive a dormant kswapd. 2853 */ 2854 if (reclaimable) 2855 pgdat->kswapd_failures = 0; 2856 } 2857 2858 /* 2859 * Returns true if compaction should go ahead for a costly-order request, or 2860 * the allocation would already succeed without compaction. Return false if we 2861 * should reclaim first. 2862 */ 2863 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) 2864 { 2865 unsigned long watermark; 2866 enum compact_result suitable; 2867 2868 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx); 2869 if (suitable == COMPACT_SUCCESS) 2870 /* Allocation should succeed already. Don't reclaim. */ 2871 return true; 2872 if (suitable == COMPACT_SKIPPED) 2873 /* Compaction cannot yet proceed. Do reclaim. */ 2874 return false; 2875 2876 /* 2877 * Compaction is already possible, but it takes time to run and there 2878 * are potentially other callers using the pages just freed. So proceed 2879 * with reclaim to make a buffer of free pages available to give 2880 * compaction a reasonable chance of completing and allocating the page. 2881 * Note that we won't actually reclaim the whole buffer in one attempt 2882 * as the target watermark in should_continue_reclaim() is lower. But if 2883 * we are already above the high+gap watermark, don't reclaim at all. 2884 */ 2885 watermark = high_wmark_pages(zone) + compact_gap(sc->order); 2886 2887 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx); 2888 } 2889 2890 /* 2891 * This is the direct reclaim path, for page-allocating processes. We only 2892 * try to reclaim pages from zones which will satisfy the caller's allocation 2893 * request. 2894 * 2895 * If a zone is deemed to be full of pinned pages then just give it a light 2896 * scan then give up on it. 2897 */ 2898 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 2899 { 2900 struct zoneref *z; 2901 struct zone *zone; 2902 unsigned long nr_soft_reclaimed; 2903 unsigned long nr_soft_scanned; 2904 gfp_t orig_mask; 2905 pg_data_t *last_pgdat = NULL; 2906 2907 /* 2908 * If the number of buffer_heads in the machine exceeds the maximum 2909 * allowed level, force direct reclaim to scan the highmem zone as 2910 * highmem pages could be pinning lowmem pages storing buffer_heads 2911 */ 2912 orig_mask = sc->gfp_mask; 2913 if (buffer_heads_over_limit) { 2914 sc->gfp_mask |= __GFP_HIGHMEM; 2915 sc->reclaim_idx = gfp_zone(sc->gfp_mask); 2916 } 2917 2918 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2919 sc->reclaim_idx, sc->nodemask) { 2920 /* 2921 * Take care memory controller reclaiming has small influence 2922 * to global LRU. 2923 */ 2924 if (!cgroup_reclaim(sc)) { 2925 if (!cpuset_zone_allowed(zone, 2926 GFP_KERNEL | __GFP_HARDWALL)) 2927 continue; 2928 2929 /* 2930 * If we already have plenty of memory free for 2931 * compaction in this zone, don't free any more. 2932 * Even though compaction is invoked for any 2933 * non-zero order, only frequent costly order 2934 * reclamation is disruptive enough to become a 2935 * noticeable problem, like transparent huge 2936 * page allocations. 2937 */ 2938 if (IS_ENABLED(CONFIG_COMPACTION) && 2939 sc->order > PAGE_ALLOC_COSTLY_ORDER && 2940 compaction_ready(zone, sc)) { 2941 sc->compaction_ready = true; 2942 continue; 2943 } 2944 2945 /* 2946 * Shrink each node in the zonelist once. If the 2947 * zonelist is ordered by zone (not the default) then a 2948 * node may be shrunk multiple times but in that case 2949 * the user prefers lower zones being preserved. 2950 */ 2951 if (zone->zone_pgdat == last_pgdat) 2952 continue; 2953 2954 /* 2955 * This steals pages from memory cgroups over softlimit 2956 * and returns the number of reclaimed pages and 2957 * scanned pages. This works for global memory pressure 2958 * and balancing, not for a memcg's limit. 2959 */ 2960 nr_soft_scanned = 0; 2961 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat, 2962 sc->order, sc->gfp_mask, 2963 &nr_soft_scanned); 2964 sc->nr_reclaimed += nr_soft_reclaimed; 2965 sc->nr_scanned += nr_soft_scanned; 2966 /* need some check for avoid more shrink_zone() */ 2967 } 2968 2969 /* See comment about same check for global reclaim above */ 2970 if (zone->zone_pgdat == last_pgdat) 2971 continue; 2972 last_pgdat = zone->zone_pgdat; 2973 shrink_node(zone->zone_pgdat, sc); 2974 } 2975 2976 /* 2977 * Restore to original mask to avoid the impact on the caller if we 2978 * promoted it to __GFP_HIGHMEM. 2979 */ 2980 sc->gfp_mask = orig_mask; 2981 } 2982 2983 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat) 2984 { 2985 struct lruvec *target_lruvec; 2986 unsigned long refaults; 2987 2988 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat); 2989 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON); 2990 target_lruvec->refaults[0] = refaults; 2991 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE); 2992 target_lruvec->refaults[1] = refaults; 2993 } 2994 2995 /* 2996 * This is the main entry point to direct page reclaim. 2997 * 2998 * If a full scan of the inactive list fails to free enough memory then we 2999 * are "out of memory" and something needs to be killed. 3000 * 3001 * If the caller is !__GFP_FS then the probability of a failure is reasonably 3002 * high - the zone may be full of dirty or under-writeback pages, which this 3003 * caller can't do much about. We kick the writeback threads and take explicit 3004 * naps in the hope that some of these pages can be written. But if the 3005 * allocating task holds filesystem locks which prevent writeout this might not 3006 * work, and the allocation attempt will fail. 3007 * 3008 * returns: 0, if no pages reclaimed 3009 * else, the number of pages reclaimed 3010 */ 3011 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 3012 struct scan_control *sc) 3013 { 3014 int initial_priority = sc->priority; 3015 pg_data_t *last_pgdat; 3016 struct zoneref *z; 3017 struct zone *zone; 3018 retry: 3019 delayacct_freepages_start(); 3020 3021 if (!cgroup_reclaim(sc)) 3022 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1); 3023 3024 do { 3025 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 3026 sc->priority); 3027 sc->nr_scanned = 0; 3028 shrink_zones(zonelist, sc); 3029 3030 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 3031 break; 3032 3033 if (sc->compaction_ready) 3034 break; 3035 3036 /* 3037 * If we're getting trouble reclaiming, start doing 3038 * writepage even in laptop mode. 3039 */ 3040 if (sc->priority < DEF_PRIORITY - 2) 3041 sc->may_writepage = 1; 3042 } while (--sc->priority >= 0); 3043 3044 last_pgdat = NULL; 3045 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx, 3046 sc->nodemask) { 3047 if (zone->zone_pgdat == last_pgdat) 3048 continue; 3049 last_pgdat = zone->zone_pgdat; 3050 3051 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat); 3052 3053 if (cgroup_reclaim(sc)) { 3054 struct lruvec *lruvec; 3055 3056 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, 3057 zone->zone_pgdat); 3058 clear_bit(LRUVEC_CONGESTED, &lruvec->flags); 3059 } 3060 } 3061 3062 delayacct_freepages_end(); 3063 3064 if (sc->nr_reclaimed) 3065 return sc->nr_reclaimed; 3066 3067 /* Aborted reclaim to try compaction? don't OOM, then */ 3068 if (sc->compaction_ready) 3069 return 1; 3070 3071 /* 3072 * We make inactive:active ratio decisions based on the node's 3073 * composition of memory, but a restrictive reclaim_idx or a 3074 * memory.low cgroup setting can exempt large amounts of 3075 * memory from reclaim. Neither of which are very common, so 3076 * instead of doing costly eligibility calculations of the 3077 * entire cgroup subtree up front, we assume the estimates are 3078 * good, and retry with forcible deactivation if that fails. 3079 */ 3080 if (sc->skipped_deactivate) { 3081 sc->priority = initial_priority; 3082 sc->force_deactivate = 1; 3083 sc->skipped_deactivate = 0; 3084 goto retry; 3085 } 3086 3087 /* Untapped cgroup reserves? Don't OOM, retry. */ 3088 if (sc->memcg_low_skipped) { 3089 sc->priority = initial_priority; 3090 sc->force_deactivate = 0; 3091 sc->memcg_low_reclaim = 1; 3092 sc->memcg_low_skipped = 0; 3093 goto retry; 3094 } 3095 3096 return 0; 3097 } 3098 3099 static bool allow_direct_reclaim(pg_data_t *pgdat) 3100 { 3101 struct zone *zone; 3102 unsigned long pfmemalloc_reserve = 0; 3103 unsigned long free_pages = 0; 3104 int i; 3105 bool wmark_ok; 3106 3107 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 3108 return true; 3109 3110 for (i = 0; i <= ZONE_NORMAL; i++) { 3111 zone = &pgdat->node_zones[i]; 3112 if (!managed_zone(zone)) 3113 continue; 3114 3115 if (!zone_reclaimable_pages(zone)) 3116 continue; 3117 3118 pfmemalloc_reserve += min_wmark_pages(zone); 3119 free_pages += zone_page_state(zone, NR_FREE_PAGES); 3120 } 3121 3122 /* If there are no reserves (unexpected config) then do not throttle */ 3123 if (!pfmemalloc_reserve) 3124 return true; 3125 3126 wmark_ok = free_pages > pfmemalloc_reserve / 2; 3127 3128 /* kswapd must be awake if processes are being throttled */ 3129 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 3130 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL) 3131 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL); 3132 3133 wake_up_interruptible(&pgdat->kswapd_wait); 3134 } 3135 3136 return wmark_ok; 3137 } 3138 3139 /* 3140 * Throttle direct reclaimers if backing storage is backed by the network 3141 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 3142 * depleted. kswapd will continue to make progress and wake the processes 3143 * when the low watermark is reached. 3144 * 3145 * Returns true if a fatal signal was delivered during throttling. If this 3146 * happens, the page allocator should not consider triggering the OOM killer. 3147 */ 3148 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 3149 nodemask_t *nodemask) 3150 { 3151 struct zoneref *z; 3152 struct zone *zone; 3153 pg_data_t *pgdat = NULL; 3154 3155 /* 3156 * Kernel threads should not be throttled as they may be indirectly 3157 * responsible for cleaning pages necessary for reclaim to make forward 3158 * progress. kjournald for example may enter direct reclaim while 3159 * committing a transaction where throttling it could forcing other 3160 * processes to block on log_wait_commit(). 3161 */ 3162 if (current->flags & PF_KTHREAD) 3163 goto out; 3164 3165 /* 3166 * If a fatal signal is pending, this process should not throttle. 3167 * It should return quickly so it can exit and free its memory 3168 */ 3169 if (fatal_signal_pending(current)) 3170 goto out; 3171 3172 /* 3173 * Check if the pfmemalloc reserves are ok by finding the first node 3174 * with a usable ZONE_NORMAL or lower zone. The expectation is that 3175 * GFP_KERNEL will be required for allocating network buffers when 3176 * swapping over the network so ZONE_HIGHMEM is unusable. 3177 * 3178 * Throttling is based on the first usable node and throttled processes 3179 * wait on a queue until kswapd makes progress and wakes them. There 3180 * is an affinity then between processes waking up and where reclaim 3181 * progress has been made assuming the process wakes on the same node. 3182 * More importantly, processes running on remote nodes will not compete 3183 * for remote pfmemalloc reserves and processes on different nodes 3184 * should make reasonable progress. 3185 */ 3186 for_each_zone_zonelist_nodemask(zone, z, zonelist, 3187 gfp_zone(gfp_mask), nodemask) { 3188 if (zone_idx(zone) > ZONE_NORMAL) 3189 continue; 3190 3191 /* Throttle based on the first usable node */ 3192 pgdat = zone->zone_pgdat; 3193 if (allow_direct_reclaim(pgdat)) 3194 goto out; 3195 break; 3196 } 3197 3198 /* If no zone was usable by the allocation flags then do not throttle */ 3199 if (!pgdat) 3200 goto out; 3201 3202 /* Account for the throttling */ 3203 count_vm_event(PGSCAN_DIRECT_THROTTLE); 3204 3205 /* 3206 * If the caller cannot enter the filesystem, it's possible that it 3207 * is due to the caller holding an FS lock or performing a journal 3208 * transaction in the case of a filesystem like ext[3|4]. In this case, 3209 * it is not safe to block on pfmemalloc_wait as kswapd could be 3210 * blocked waiting on the same lock. Instead, throttle for up to a 3211 * second before continuing. 3212 */ 3213 if (!(gfp_mask & __GFP_FS)) { 3214 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 3215 allow_direct_reclaim(pgdat), HZ); 3216 3217 goto check_pending; 3218 } 3219 3220 /* Throttle until kswapd wakes the process */ 3221 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 3222 allow_direct_reclaim(pgdat)); 3223 3224 check_pending: 3225 if (fatal_signal_pending(current)) 3226 return true; 3227 3228 out: 3229 return false; 3230 } 3231 3232 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 3233 gfp_t gfp_mask, nodemask_t *nodemask) 3234 { 3235 unsigned long nr_reclaimed; 3236 struct scan_control sc = { 3237 .nr_to_reclaim = SWAP_CLUSTER_MAX, 3238 .gfp_mask = current_gfp_context(gfp_mask), 3239 .reclaim_idx = gfp_zone(gfp_mask), 3240 .order = order, 3241 .nodemask = nodemask, 3242 .priority = DEF_PRIORITY, 3243 .may_writepage = !laptop_mode, 3244 .may_unmap = 1, 3245 .may_swap = 1, 3246 }; 3247 3248 /* 3249 * scan_control uses s8 fields for order, priority, and reclaim_idx. 3250 * Confirm they are large enough for max values. 3251 */ 3252 BUILD_BUG_ON(MAX_ORDER > S8_MAX); 3253 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX); 3254 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX); 3255 3256 /* 3257 * Do not enter reclaim if fatal signal was delivered while throttled. 3258 * 1 is returned so that the page allocator does not OOM kill at this 3259 * point. 3260 */ 3261 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask)) 3262 return 1; 3263 3264 set_task_reclaim_state(current, &sc.reclaim_state); 3265 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask); 3266 3267 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3268 3269 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 3270 set_task_reclaim_state(current, NULL); 3271 3272 return nr_reclaimed; 3273 } 3274 3275 #ifdef CONFIG_MEMCG 3276 3277 /* Only used by soft limit reclaim. Do not reuse for anything else. */ 3278 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg, 3279 gfp_t gfp_mask, bool noswap, 3280 pg_data_t *pgdat, 3281 unsigned long *nr_scanned) 3282 { 3283 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 3284 struct scan_control sc = { 3285 .nr_to_reclaim = SWAP_CLUSTER_MAX, 3286 .target_mem_cgroup = memcg, 3287 .may_writepage = !laptop_mode, 3288 .may_unmap = 1, 3289 .reclaim_idx = MAX_NR_ZONES - 1, 3290 .may_swap = !noswap, 3291 }; 3292 3293 WARN_ON_ONCE(!current->reclaim_state); 3294 3295 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 3296 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 3297 3298 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 3299 sc.gfp_mask); 3300 3301 /* 3302 * NOTE: Although we can get the priority field, using it 3303 * here is not a good idea, since it limits the pages we can scan. 3304 * if we don't reclaim here, the shrink_node from balance_pgdat 3305 * will pick up pages from other mem cgroup's as well. We hack 3306 * the priority and make it zero. 3307 */ 3308 shrink_lruvec(lruvec, &sc); 3309 3310 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 3311 3312 *nr_scanned = sc.nr_scanned; 3313 3314 return sc.nr_reclaimed; 3315 } 3316 3317 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 3318 unsigned long nr_pages, 3319 gfp_t gfp_mask, 3320 bool may_swap) 3321 { 3322 unsigned long nr_reclaimed; 3323 unsigned int noreclaim_flag; 3324 struct scan_control sc = { 3325 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 3326 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) | 3327 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 3328 .reclaim_idx = MAX_NR_ZONES - 1, 3329 .target_mem_cgroup = memcg, 3330 .priority = DEF_PRIORITY, 3331 .may_writepage = !laptop_mode, 3332 .may_unmap = 1, 3333 .may_swap = may_swap, 3334 }; 3335 /* 3336 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put 3337 * equal pressure on all the nodes. This is based on the assumption that 3338 * the reclaim does not bail out early. 3339 */ 3340 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 3341 3342 set_task_reclaim_state(current, &sc.reclaim_state); 3343 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask); 3344 noreclaim_flag = memalloc_noreclaim_save(); 3345 3346 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3347 3348 memalloc_noreclaim_restore(noreclaim_flag); 3349 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 3350 set_task_reclaim_state(current, NULL); 3351 3352 return nr_reclaimed; 3353 } 3354 #endif 3355 3356 static void age_active_anon(struct pglist_data *pgdat, 3357 struct scan_control *sc) 3358 { 3359 struct mem_cgroup *memcg; 3360 struct lruvec *lruvec; 3361 3362 if (!total_swap_pages) 3363 return; 3364 3365 lruvec = mem_cgroup_lruvec(NULL, pgdat); 3366 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 3367 return; 3368 3369 memcg = mem_cgroup_iter(NULL, NULL, NULL); 3370 do { 3371 lruvec = mem_cgroup_lruvec(memcg, pgdat); 3372 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 3373 sc, LRU_ACTIVE_ANON); 3374 memcg = mem_cgroup_iter(NULL, memcg, NULL); 3375 } while (memcg); 3376 } 3377 3378 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx) 3379 { 3380 int i; 3381 struct zone *zone; 3382 3383 /* 3384 * Check for watermark boosts top-down as the higher zones 3385 * are more likely to be boosted. Both watermarks and boosts 3386 * should not be checked at the same time as reclaim would 3387 * start prematurely when there is no boosting and a lower 3388 * zone is balanced. 3389 */ 3390 for (i = highest_zoneidx; i >= 0; i--) { 3391 zone = pgdat->node_zones + i; 3392 if (!managed_zone(zone)) 3393 continue; 3394 3395 if (zone->watermark_boost) 3396 return true; 3397 } 3398 3399 return false; 3400 } 3401 3402 /* 3403 * Returns true if there is an eligible zone balanced for the request order 3404 * and highest_zoneidx 3405 */ 3406 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx) 3407 { 3408 int i; 3409 unsigned long mark = -1; 3410 struct zone *zone; 3411 3412 /* 3413 * Check watermarks bottom-up as lower zones are more likely to 3414 * meet watermarks. 3415 */ 3416 for (i = 0; i <= highest_zoneidx; i++) { 3417 zone = pgdat->node_zones + i; 3418 3419 if (!managed_zone(zone)) 3420 continue; 3421 3422 mark = high_wmark_pages(zone); 3423 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx)) 3424 return true; 3425 } 3426 3427 /* 3428 * If a node has no populated zone within highest_zoneidx, it does not 3429 * need balancing by definition. This can happen if a zone-restricted 3430 * allocation tries to wake a remote kswapd. 3431 */ 3432 if (mark == -1) 3433 return true; 3434 3435 return false; 3436 } 3437 3438 /* Clear pgdat state for congested, dirty or under writeback. */ 3439 static void clear_pgdat_congested(pg_data_t *pgdat) 3440 { 3441 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat); 3442 3443 clear_bit(LRUVEC_CONGESTED, &lruvec->flags); 3444 clear_bit(PGDAT_DIRTY, &pgdat->flags); 3445 clear_bit(PGDAT_WRITEBACK, &pgdat->flags); 3446 } 3447 3448 /* 3449 * Prepare kswapd for sleeping. This verifies that there are no processes 3450 * waiting in throttle_direct_reclaim() and that watermarks have been met. 3451 * 3452 * Returns true if kswapd is ready to sleep 3453 */ 3454 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, 3455 int highest_zoneidx) 3456 { 3457 /* 3458 * The throttled processes are normally woken up in balance_pgdat() as 3459 * soon as allow_direct_reclaim() is true. But there is a potential 3460 * race between when kswapd checks the watermarks and a process gets 3461 * throttled. There is also a potential race if processes get 3462 * throttled, kswapd wakes, a large process exits thereby balancing the 3463 * zones, which causes kswapd to exit balance_pgdat() before reaching 3464 * the wake up checks. If kswapd is going to sleep, no process should 3465 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If 3466 * the wake up is premature, processes will wake kswapd and get 3467 * throttled again. The difference from wake ups in balance_pgdat() is 3468 * that here we are under prepare_to_wait(). 3469 */ 3470 if (waitqueue_active(&pgdat->pfmemalloc_wait)) 3471 wake_up_all(&pgdat->pfmemalloc_wait); 3472 3473 /* Hopeless node, leave it to direct reclaim */ 3474 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 3475 return true; 3476 3477 if (pgdat_balanced(pgdat, order, highest_zoneidx)) { 3478 clear_pgdat_congested(pgdat); 3479 return true; 3480 } 3481 3482 return false; 3483 } 3484 3485 /* 3486 * kswapd shrinks a node of pages that are at or below the highest usable 3487 * zone that is currently unbalanced. 3488 * 3489 * Returns true if kswapd scanned at least the requested number of pages to 3490 * reclaim or if the lack of progress was due to pages under writeback. 3491 * This is used to determine if the scanning priority needs to be raised. 3492 */ 3493 static bool kswapd_shrink_node(pg_data_t *pgdat, 3494 struct scan_control *sc) 3495 { 3496 struct zone *zone; 3497 int z; 3498 3499 /* Reclaim a number of pages proportional to the number of zones */ 3500 sc->nr_to_reclaim = 0; 3501 for (z = 0; z <= sc->reclaim_idx; z++) { 3502 zone = pgdat->node_zones + z; 3503 if (!managed_zone(zone)) 3504 continue; 3505 3506 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX); 3507 } 3508 3509 /* 3510 * Historically care was taken to put equal pressure on all zones but 3511 * now pressure is applied based on node LRU order. 3512 */ 3513 shrink_node(pgdat, sc); 3514 3515 /* 3516 * Fragmentation may mean that the system cannot be rebalanced for 3517 * high-order allocations. If twice the allocation size has been 3518 * reclaimed then recheck watermarks only at order-0 to prevent 3519 * excessive reclaim. Assume that a process requested a high-order 3520 * can direct reclaim/compact. 3521 */ 3522 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order)) 3523 sc->order = 0; 3524 3525 return sc->nr_scanned >= sc->nr_to_reclaim; 3526 } 3527 3528 /* 3529 * For kswapd, balance_pgdat() will reclaim pages across a node from zones 3530 * that are eligible for use by the caller until at least one zone is 3531 * balanced. 3532 * 3533 * Returns the order kswapd finished reclaiming at. 3534 * 3535 * kswapd scans the zones in the highmem->normal->dma direction. It skips 3536 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 3537 * found to have free_pages <= high_wmark_pages(zone), any page in that zone 3538 * or lower is eligible for reclaim until at least one usable zone is 3539 * balanced. 3540 */ 3541 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx) 3542 { 3543 int i; 3544 unsigned long nr_soft_reclaimed; 3545 unsigned long nr_soft_scanned; 3546 unsigned long pflags; 3547 unsigned long nr_boost_reclaim; 3548 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, }; 3549 bool boosted; 3550 struct zone *zone; 3551 struct scan_control sc = { 3552 .gfp_mask = GFP_KERNEL, 3553 .order = order, 3554 .may_unmap = 1, 3555 }; 3556 3557 set_task_reclaim_state(current, &sc.reclaim_state); 3558 psi_memstall_enter(&pflags); 3559 __fs_reclaim_acquire(); 3560 3561 count_vm_event(PAGEOUTRUN); 3562 3563 /* 3564 * Account for the reclaim boost. Note that the zone boost is left in 3565 * place so that parallel allocations that are near the watermark will 3566 * stall or direct reclaim until kswapd is finished. 3567 */ 3568 nr_boost_reclaim = 0; 3569 for (i = 0; i <= highest_zoneidx; i++) { 3570 zone = pgdat->node_zones + i; 3571 if (!managed_zone(zone)) 3572 continue; 3573 3574 nr_boost_reclaim += zone->watermark_boost; 3575 zone_boosts[i] = zone->watermark_boost; 3576 } 3577 boosted = nr_boost_reclaim; 3578 3579 restart: 3580 sc.priority = DEF_PRIORITY; 3581 do { 3582 unsigned long nr_reclaimed = sc.nr_reclaimed; 3583 bool raise_priority = true; 3584 bool balanced; 3585 bool ret; 3586 3587 sc.reclaim_idx = highest_zoneidx; 3588 3589 /* 3590 * If the number of buffer_heads exceeds the maximum allowed 3591 * then consider reclaiming from all zones. This has a dual 3592 * purpose -- on 64-bit systems it is expected that 3593 * buffer_heads are stripped during active rotation. On 32-bit 3594 * systems, highmem pages can pin lowmem memory and shrinking 3595 * buffers can relieve lowmem pressure. Reclaim may still not 3596 * go ahead if all eligible zones for the original allocation 3597 * request are balanced to avoid excessive reclaim from kswapd. 3598 */ 3599 if (buffer_heads_over_limit) { 3600 for (i = MAX_NR_ZONES - 1; i >= 0; i--) { 3601 zone = pgdat->node_zones + i; 3602 if (!managed_zone(zone)) 3603 continue; 3604 3605 sc.reclaim_idx = i; 3606 break; 3607 } 3608 } 3609 3610 /* 3611 * If the pgdat is imbalanced then ignore boosting and preserve 3612 * the watermarks for a later time and restart. Note that the 3613 * zone watermarks will be still reset at the end of balancing 3614 * on the grounds that the normal reclaim should be enough to 3615 * re-evaluate if boosting is required when kswapd next wakes. 3616 */ 3617 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx); 3618 if (!balanced && nr_boost_reclaim) { 3619 nr_boost_reclaim = 0; 3620 goto restart; 3621 } 3622 3623 /* 3624 * If boosting is not active then only reclaim if there are no 3625 * eligible zones. Note that sc.reclaim_idx is not used as 3626 * buffer_heads_over_limit may have adjusted it. 3627 */ 3628 if (!nr_boost_reclaim && balanced) 3629 goto out; 3630 3631 /* Limit the priority of boosting to avoid reclaim writeback */ 3632 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2) 3633 raise_priority = false; 3634 3635 /* 3636 * Do not writeback or swap pages for boosted reclaim. The 3637 * intent is to relieve pressure not issue sub-optimal IO 3638 * from reclaim context. If no pages are reclaimed, the 3639 * reclaim will be aborted. 3640 */ 3641 sc.may_writepage = !laptop_mode && !nr_boost_reclaim; 3642 sc.may_swap = !nr_boost_reclaim; 3643 3644 /* 3645 * Do some background aging of the anon list, to give 3646 * pages a chance to be referenced before reclaiming. All 3647 * pages are rotated regardless of classzone as this is 3648 * about consistent aging. 3649 */ 3650 age_active_anon(pgdat, &sc); 3651 3652 /* 3653 * If we're getting trouble reclaiming, start doing writepage 3654 * even in laptop mode. 3655 */ 3656 if (sc.priority < DEF_PRIORITY - 2) 3657 sc.may_writepage = 1; 3658 3659 /* Call soft limit reclaim before calling shrink_node. */ 3660 sc.nr_scanned = 0; 3661 nr_soft_scanned = 0; 3662 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order, 3663 sc.gfp_mask, &nr_soft_scanned); 3664 sc.nr_reclaimed += nr_soft_reclaimed; 3665 3666 /* 3667 * There should be no need to raise the scanning priority if 3668 * enough pages are already being scanned that that high 3669 * watermark would be met at 100% efficiency. 3670 */ 3671 if (kswapd_shrink_node(pgdat, &sc)) 3672 raise_priority = false; 3673 3674 /* 3675 * If the low watermark is met there is no need for processes 3676 * to be throttled on pfmemalloc_wait as they should not be 3677 * able to safely make forward progress. Wake them 3678 */ 3679 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 3680 allow_direct_reclaim(pgdat)) 3681 wake_up_all(&pgdat->pfmemalloc_wait); 3682 3683 /* Check if kswapd should be suspending */ 3684 __fs_reclaim_release(); 3685 ret = try_to_freeze(); 3686 __fs_reclaim_acquire(); 3687 if (ret || kthread_should_stop()) 3688 break; 3689 3690 /* 3691 * Raise priority if scanning rate is too low or there was no 3692 * progress in reclaiming pages 3693 */ 3694 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed; 3695 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed); 3696 3697 /* 3698 * If reclaim made no progress for a boost, stop reclaim as 3699 * IO cannot be queued and it could be an infinite loop in 3700 * extreme circumstances. 3701 */ 3702 if (nr_boost_reclaim && !nr_reclaimed) 3703 break; 3704 3705 if (raise_priority || !nr_reclaimed) 3706 sc.priority--; 3707 } while (sc.priority >= 1); 3708 3709 if (!sc.nr_reclaimed) 3710 pgdat->kswapd_failures++; 3711 3712 out: 3713 /* If reclaim was boosted, account for the reclaim done in this pass */ 3714 if (boosted) { 3715 unsigned long flags; 3716 3717 for (i = 0; i <= highest_zoneidx; i++) { 3718 if (!zone_boosts[i]) 3719 continue; 3720 3721 /* Increments are under the zone lock */ 3722 zone = pgdat->node_zones + i; 3723 spin_lock_irqsave(&zone->lock, flags); 3724 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]); 3725 spin_unlock_irqrestore(&zone->lock, flags); 3726 } 3727 3728 /* 3729 * As there is now likely space, wakeup kcompact to defragment 3730 * pageblocks. 3731 */ 3732 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx); 3733 } 3734 3735 snapshot_refaults(NULL, pgdat); 3736 __fs_reclaim_release(); 3737 psi_memstall_leave(&pflags); 3738 set_task_reclaim_state(current, NULL); 3739 3740 /* 3741 * Return the order kswapd stopped reclaiming at as 3742 * prepare_kswapd_sleep() takes it into account. If another caller 3743 * entered the allocator slow path while kswapd was awake, order will 3744 * remain at the higher level. 3745 */ 3746 return sc.order; 3747 } 3748 3749 /* 3750 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to 3751 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is 3752 * not a valid index then either kswapd runs for first time or kswapd couldn't 3753 * sleep after previous reclaim attempt (node is still unbalanced). In that 3754 * case return the zone index of the previous kswapd reclaim cycle. 3755 */ 3756 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat, 3757 enum zone_type prev_highest_zoneidx) 3758 { 3759 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 3760 3761 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx; 3762 } 3763 3764 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order, 3765 unsigned int highest_zoneidx) 3766 { 3767 long remaining = 0; 3768 DEFINE_WAIT(wait); 3769 3770 if (freezing(current) || kthread_should_stop()) 3771 return; 3772 3773 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3774 3775 /* 3776 * Try to sleep for a short interval. Note that kcompactd will only be 3777 * woken if it is possible to sleep for a short interval. This is 3778 * deliberate on the assumption that if reclaim cannot keep an 3779 * eligible zone balanced that it's also unlikely that compaction will 3780 * succeed. 3781 */ 3782 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 3783 /* 3784 * Compaction records what page blocks it recently failed to 3785 * isolate pages from and skips them in the future scanning. 3786 * When kswapd is going to sleep, it is reasonable to assume 3787 * that pages and compaction may succeed so reset the cache. 3788 */ 3789 reset_isolation_suitable(pgdat); 3790 3791 /* 3792 * We have freed the memory, now we should compact it to make 3793 * allocation of the requested order possible. 3794 */ 3795 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx); 3796 3797 remaining = schedule_timeout(HZ/10); 3798 3799 /* 3800 * If woken prematurely then reset kswapd_highest_zoneidx and 3801 * order. The values will either be from a wakeup request or 3802 * the previous request that slept prematurely. 3803 */ 3804 if (remaining) { 3805 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, 3806 kswapd_highest_zoneidx(pgdat, 3807 highest_zoneidx)); 3808 3809 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order) 3810 WRITE_ONCE(pgdat->kswapd_order, reclaim_order); 3811 } 3812 3813 finish_wait(&pgdat->kswapd_wait, &wait); 3814 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3815 } 3816 3817 /* 3818 * After a short sleep, check if it was a premature sleep. If not, then 3819 * go fully to sleep until explicitly woken up. 3820 */ 3821 if (!remaining && 3822 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 3823 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 3824 3825 /* 3826 * vmstat counters are not perfectly accurate and the estimated 3827 * value for counters such as NR_FREE_PAGES can deviate from the 3828 * true value by nr_online_cpus * threshold. To avoid the zone 3829 * watermarks being breached while under pressure, we reduce the 3830 * per-cpu vmstat threshold while kswapd is awake and restore 3831 * them before going back to sleep. 3832 */ 3833 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 3834 3835 if (!kthread_should_stop()) 3836 schedule(); 3837 3838 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 3839 } else { 3840 if (remaining) 3841 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 3842 else 3843 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 3844 } 3845 finish_wait(&pgdat->kswapd_wait, &wait); 3846 } 3847 3848 /* 3849 * The background pageout daemon, started as a kernel thread 3850 * from the init process. 3851 * 3852 * This basically trickles out pages so that we have _some_ 3853 * free memory available even if there is no other activity 3854 * that frees anything up. This is needed for things like routing 3855 * etc, where we otherwise might have all activity going on in 3856 * asynchronous contexts that cannot page things out. 3857 * 3858 * If there are applications that are active memory-allocators 3859 * (most normal use), this basically shouldn't matter. 3860 */ 3861 static int kswapd(void *p) 3862 { 3863 unsigned int alloc_order, reclaim_order; 3864 unsigned int highest_zoneidx = MAX_NR_ZONES - 1; 3865 pg_data_t *pgdat = (pg_data_t*)p; 3866 struct task_struct *tsk = current; 3867 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 3868 3869 if (!cpumask_empty(cpumask)) 3870 set_cpus_allowed_ptr(tsk, cpumask); 3871 3872 /* 3873 * Tell the memory management that we're a "memory allocator", 3874 * and that if we need more memory we should get access to it 3875 * regardless (see "__alloc_pages()"). "kswapd" should 3876 * never get caught in the normal page freeing logic. 3877 * 3878 * (Kswapd normally doesn't need memory anyway, but sometimes 3879 * you need a small amount of memory in order to be able to 3880 * page out something else, and this flag essentially protects 3881 * us from recursively trying to free more memory as we're 3882 * trying to free the first piece of memory in the first place). 3883 */ 3884 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 3885 set_freezable(); 3886 3887 WRITE_ONCE(pgdat->kswapd_order, 0); 3888 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 3889 for ( ; ; ) { 3890 bool ret; 3891 3892 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order); 3893 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 3894 highest_zoneidx); 3895 3896 kswapd_try_sleep: 3897 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order, 3898 highest_zoneidx); 3899 3900 /* Read the new order and highest_zoneidx */ 3901 alloc_order = READ_ONCE(pgdat->kswapd_order); 3902 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 3903 highest_zoneidx); 3904 WRITE_ONCE(pgdat->kswapd_order, 0); 3905 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 3906 3907 ret = try_to_freeze(); 3908 if (kthread_should_stop()) 3909 break; 3910 3911 /* 3912 * We can speed up thawing tasks if we don't call balance_pgdat 3913 * after returning from the refrigerator 3914 */ 3915 if (ret) 3916 continue; 3917 3918 /* 3919 * Reclaim begins at the requested order but if a high-order 3920 * reclaim fails then kswapd falls back to reclaiming for 3921 * order-0. If that happens, kswapd will consider sleeping 3922 * for the order it finished reclaiming at (reclaim_order) 3923 * but kcompactd is woken to compact for the original 3924 * request (alloc_order). 3925 */ 3926 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx, 3927 alloc_order); 3928 reclaim_order = balance_pgdat(pgdat, alloc_order, 3929 highest_zoneidx); 3930 if (reclaim_order < alloc_order) 3931 goto kswapd_try_sleep; 3932 } 3933 3934 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD); 3935 3936 return 0; 3937 } 3938 3939 /* 3940 * A zone is low on free memory or too fragmented for high-order memory. If 3941 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's 3942 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim 3943 * has failed or is not needed, still wake up kcompactd if only compaction is 3944 * needed. 3945 */ 3946 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order, 3947 enum zone_type highest_zoneidx) 3948 { 3949 pg_data_t *pgdat; 3950 enum zone_type curr_idx; 3951 3952 if (!managed_zone(zone)) 3953 return; 3954 3955 if (!cpuset_zone_allowed(zone, gfp_flags)) 3956 return; 3957 3958 pgdat = zone->zone_pgdat; 3959 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 3960 3961 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx) 3962 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx); 3963 3964 if (READ_ONCE(pgdat->kswapd_order) < order) 3965 WRITE_ONCE(pgdat->kswapd_order, order); 3966 3967 if (!waitqueue_active(&pgdat->kswapd_wait)) 3968 return; 3969 3970 /* Hopeless node, leave it to direct reclaim if possible */ 3971 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES || 3972 (pgdat_balanced(pgdat, order, highest_zoneidx) && 3973 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) { 3974 /* 3975 * There may be plenty of free memory available, but it's too 3976 * fragmented for high-order allocations. Wake up kcompactd 3977 * and rely on compaction_suitable() to determine if it's 3978 * needed. If it fails, it will defer subsequent attempts to 3979 * ratelimit its work. 3980 */ 3981 if (!(gfp_flags & __GFP_DIRECT_RECLAIM)) 3982 wakeup_kcompactd(pgdat, order, highest_zoneidx); 3983 return; 3984 } 3985 3986 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order, 3987 gfp_flags); 3988 wake_up_interruptible(&pgdat->kswapd_wait); 3989 } 3990 3991 #ifdef CONFIG_HIBERNATION 3992 /* 3993 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 3994 * freed pages. 3995 * 3996 * Rather than trying to age LRUs the aim is to preserve the overall 3997 * LRU order by reclaiming preferentially 3998 * inactive > active > active referenced > active mapped 3999 */ 4000 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 4001 { 4002 struct scan_control sc = { 4003 .nr_to_reclaim = nr_to_reclaim, 4004 .gfp_mask = GFP_HIGHUSER_MOVABLE, 4005 .reclaim_idx = MAX_NR_ZONES - 1, 4006 .priority = DEF_PRIORITY, 4007 .may_writepage = 1, 4008 .may_unmap = 1, 4009 .may_swap = 1, 4010 .hibernation_mode = 1, 4011 }; 4012 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 4013 unsigned long nr_reclaimed; 4014 unsigned int noreclaim_flag; 4015 4016 fs_reclaim_acquire(sc.gfp_mask); 4017 noreclaim_flag = memalloc_noreclaim_save(); 4018 set_task_reclaim_state(current, &sc.reclaim_state); 4019 4020 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 4021 4022 set_task_reclaim_state(current, NULL); 4023 memalloc_noreclaim_restore(noreclaim_flag); 4024 fs_reclaim_release(sc.gfp_mask); 4025 4026 return nr_reclaimed; 4027 } 4028 #endif /* CONFIG_HIBERNATION */ 4029 4030 /* 4031 * This kswapd start function will be called by init and node-hot-add. 4032 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. 4033 */ 4034 int kswapd_run(int nid) 4035 { 4036 pg_data_t *pgdat = NODE_DATA(nid); 4037 int ret = 0; 4038 4039 if (pgdat->kswapd) 4040 return 0; 4041 4042 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 4043 if (IS_ERR(pgdat->kswapd)) { 4044 /* failure at boot is fatal */ 4045 BUG_ON(system_state < SYSTEM_RUNNING); 4046 pr_err("Failed to start kswapd on node %d\n", nid); 4047 ret = PTR_ERR(pgdat->kswapd); 4048 pgdat->kswapd = NULL; 4049 } 4050 return ret; 4051 } 4052 4053 /* 4054 * Called by memory hotplug when all memory in a node is offlined. Caller must 4055 * hold mem_hotplug_begin/end(). 4056 */ 4057 void kswapd_stop(int nid) 4058 { 4059 struct task_struct *kswapd = NODE_DATA(nid)->kswapd; 4060 4061 if (kswapd) { 4062 kthread_stop(kswapd); 4063 NODE_DATA(nid)->kswapd = NULL; 4064 } 4065 } 4066 4067 static int __init kswapd_init(void) 4068 { 4069 int nid; 4070 4071 swap_setup(); 4072 for_each_node_state(nid, N_MEMORY) 4073 kswapd_run(nid); 4074 return 0; 4075 } 4076 4077 module_init(kswapd_init) 4078 4079 #ifdef CONFIG_NUMA 4080 /* 4081 * Node reclaim mode 4082 * 4083 * If non-zero call node_reclaim when the number of free pages falls below 4084 * the watermarks. 4085 */ 4086 int node_reclaim_mode __read_mostly; 4087 4088 /* 4089 * These bit locations are exposed in the vm.zone_reclaim_mode sysctl 4090 * ABI. New bits are OK, but existing bits can never change. 4091 */ 4092 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */ 4093 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */ 4094 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */ 4095 4096 /* 4097 * Priority for NODE_RECLAIM. This determines the fraction of pages 4098 * of a node considered for each zone_reclaim. 4 scans 1/16th of 4099 * a zone. 4100 */ 4101 #define NODE_RECLAIM_PRIORITY 4 4102 4103 /* 4104 * Percentage of pages in a zone that must be unmapped for node_reclaim to 4105 * occur. 4106 */ 4107 int sysctl_min_unmapped_ratio = 1; 4108 4109 /* 4110 * If the number of slab pages in a zone grows beyond this percentage then 4111 * slab reclaim needs to occur. 4112 */ 4113 int sysctl_min_slab_ratio = 5; 4114 4115 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat) 4116 { 4117 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED); 4118 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) + 4119 node_page_state(pgdat, NR_ACTIVE_FILE); 4120 4121 /* 4122 * It's possible for there to be more file mapped pages than 4123 * accounted for by the pages on the file LRU lists because 4124 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 4125 */ 4126 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 4127 } 4128 4129 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 4130 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat) 4131 { 4132 unsigned long nr_pagecache_reclaimable; 4133 unsigned long delta = 0; 4134 4135 /* 4136 * If RECLAIM_UNMAP is set, then all file pages are considered 4137 * potentially reclaimable. Otherwise, we have to worry about 4138 * pages like swapcache and node_unmapped_file_pages() provides 4139 * a better estimate 4140 */ 4141 if (node_reclaim_mode & RECLAIM_UNMAP) 4142 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES); 4143 else 4144 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat); 4145 4146 /* If we can't clean pages, remove dirty pages from consideration */ 4147 if (!(node_reclaim_mode & RECLAIM_WRITE)) 4148 delta += node_page_state(pgdat, NR_FILE_DIRTY); 4149 4150 /* Watch for any possible underflows due to delta */ 4151 if (unlikely(delta > nr_pagecache_reclaimable)) 4152 delta = nr_pagecache_reclaimable; 4153 4154 return nr_pagecache_reclaimable - delta; 4155 } 4156 4157 /* 4158 * Try to free up some pages from this node through reclaim. 4159 */ 4160 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 4161 { 4162 /* Minimum pages needed in order to stay on node */ 4163 const unsigned long nr_pages = 1 << order; 4164 struct task_struct *p = current; 4165 unsigned int noreclaim_flag; 4166 struct scan_control sc = { 4167 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 4168 .gfp_mask = current_gfp_context(gfp_mask), 4169 .order = order, 4170 .priority = NODE_RECLAIM_PRIORITY, 4171 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE), 4172 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP), 4173 .may_swap = 1, 4174 .reclaim_idx = gfp_zone(gfp_mask), 4175 }; 4176 4177 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order, 4178 sc.gfp_mask); 4179 4180 cond_resched(); 4181 fs_reclaim_acquire(sc.gfp_mask); 4182 /* 4183 * We need to be able to allocate from the reserves for RECLAIM_UNMAP 4184 * and we also need to be able to write out pages for RECLAIM_WRITE 4185 * and RECLAIM_UNMAP. 4186 */ 4187 noreclaim_flag = memalloc_noreclaim_save(); 4188 p->flags |= PF_SWAPWRITE; 4189 set_task_reclaim_state(p, &sc.reclaim_state); 4190 4191 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) { 4192 /* 4193 * Free memory by calling shrink node with increasing 4194 * priorities until we have enough memory freed. 4195 */ 4196 do { 4197 shrink_node(pgdat, &sc); 4198 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 4199 } 4200 4201 set_task_reclaim_state(p, NULL); 4202 current->flags &= ~PF_SWAPWRITE; 4203 memalloc_noreclaim_restore(noreclaim_flag); 4204 fs_reclaim_release(sc.gfp_mask); 4205 4206 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed); 4207 4208 return sc.nr_reclaimed >= nr_pages; 4209 } 4210 4211 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 4212 { 4213 int ret; 4214 4215 /* 4216 * Node reclaim reclaims unmapped file backed pages and 4217 * slab pages if we are over the defined limits. 4218 * 4219 * A small portion of unmapped file backed pages is needed for 4220 * file I/O otherwise pages read by file I/O will be immediately 4221 * thrown out if the node is overallocated. So we do not reclaim 4222 * if less than a specified percentage of the node is used by 4223 * unmapped file backed pages. 4224 */ 4225 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages && 4226 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <= 4227 pgdat->min_slab_pages) 4228 return NODE_RECLAIM_FULL; 4229 4230 /* 4231 * Do not scan if the allocation should not be delayed. 4232 */ 4233 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) 4234 return NODE_RECLAIM_NOSCAN; 4235 4236 /* 4237 * Only run node reclaim on the local node or on nodes that do not 4238 * have associated processors. This will favor the local processor 4239 * over remote processors and spread off node memory allocations 4240 * as wide as possible. 4241 */ 4242 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id()) 4243 return NODE_RECLAIM_NOSCAN; 4244 4245 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags)) 4246 return NODE_RECLAIM_NOSCAN; 4247 4248 ret = __node_reclaim(pgdat, gfp_mask, order); 4249 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags); 4250 4251 if (!ret) 4252 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 4253 4254 return ret; 4255 } 4256 #endif 4257 4258 /** 4259 * check_move_unevictable_pages - check pages for evictability and move to 4260 * appropriate zone lru list 4261 * @pvec: pagevec with lru pages to check 4262 * 4263 * Checks pages for evictability, if an evictable page is in the unevictable 4264 * lru list, moves it to the appropriate evictable lru list. This function 4265 * should be only used for lru pages. 4266 */ 4267 void check_move_unevictable_pages(struct pagevec *pvec) 4268 { 4269 struct lruvec *lruvec = NULL; 4270 int pgscanned = 0; 4271 int pgrescued = 0; 4272 int i; 4273 4274 for (i = 0; i < pvec->nr; i++) { 4275 struct page *page = pvec->pages[i]; 4276 int nr_pages; 4277 4278 if (PageTransTail(page)) 4279 continue; 4280 4281 nr_pages = thp_nr_pages(page); 4282 pgscanned += nr_pages; 4283 4284 /* block memcg migration during page moving between lru */ 4285 if (!TestClearPageLRU(page)) 4286 continue; 4287 4288 lruvec = relock_page_lruvec_irq(page, lruvec); 4289 if (page_evictable(page) && PageUnevictable(page)) { 4290 del_page_from_lru_list(page, lruvec); 4291 ClearPageUnevictable(page); 4292 add_page_to_lru_list(page, lruvec); 4293 pgrescued += nr_pages; 4294 } 4295 SetPageLRU(page); 4296 } 4297 4298 if (lruvec) { 4299 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 4300 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 4301 unlock_page_lruvec_irq(lruvec); 4302 } else if (pgscanned) { 4303 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 4304 } 4305 } 4306 EXPORT_SYMBOL_GPL(check_move_unevictable_pages); 4307