1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/vmscan.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * 7 * Swap reorganised 29.12.95, Stephen Tweedie. 8 * kswapd added: 7.1.96 sct 9 * Removed kswapd_ctl limits, and swap out as many pages as needed 10 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 11 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 12 * Multiqueue VM started 5.8.00, Rik van Riel. 13 */ 14 15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 16 17 #include <linux/mm.h> 18 #include <linux/sched/mm.h> 19 #include <linux/module.h> 20 #include <linux/gfp.h> 21 #include <linux/kernel_stat.h> 22 #include <linux/swap.h> 23 #include <linux/pagemap.h> 24 #include <linux/init.h> 25 #include <linux/highmem.h> 26 #include <linux/vmpressure.h> 27 #include <linux/vmstat.h> 28 #include <linux/file.h> 29 #include <linux/writeback.h> 30 #include <linux/blkdev.h> 31 #include <linux/buffer_head.h> /* for try_to_release_page(), 32 buffer_heads_over_limit */ 33 #include <linux/mm_inline.h> 34 #include <linux/backing-dev.h> 35 #include <linux/rmap.h> 36 #include <linux/topology.h> 37 #include <linux/cpu.h> 38 #include <linux/cpuset.h> 39 #include <linux/compaction.h> 40 #include <linux/notifier.h> 41 #include <linux/rwsem.h> 42 #include <linux/delay.h> 43 #include <linux/kthread.h> 44 #include <linux/freezer.h> 45 #include <linux/memcontrol.h> 46 #include <linux/delayacct.h> 47 #include <linux/sysctl.h> 48 #include <linux/oom.h> 49 #include <linux/prefetch.h> 50 #include <linux/printk.h> 51 #include <linux/dax.h> 52 53 #include <asm/tlbflush.h> 54 #include <asm/div64.h> 55 56 #include <linux/swapops.h> 57 #include <linux/balloon_compaction.h> 58 59 #include "internal.h" 60 61 #define CREATE_TRACE_POINTS 62 #include <trace/events/vmscan.h> 63 64 struct scan_control { 65 /* How many pages shrink_list() should reclaim */ 66 unsigned long nr_to_reclaim; 67 68 /* 69 * Nodemask of nodes allowed by the caller. If NULL, all nodes 70 * are scanned. 71 */ 72 nodemask_t *nodemask; 73 74 /* 75 * The memory cgroup that hit its limit and as a result is the 76 * primary target of this reclaim invocation. 77 */ 78 struct mem_cgroup *target_mem_cgroup; 79 80 /* Writepage batching in laptop mode; RECLAIM_WRITE */ 81 unsigned int may_writepage:1; 82 83 /* Can mapped pages be reclaimed? */ 84 unsigned int may_unmap:1; 85 86 /* Can pages be swapped as part of reclaim? */ 87 unsigned int may_swap:1; 88 89 /* 90 * Cgroups are not reclaimed below their configured memory.low, 91 * unless we threaten to OOM. If any cgroups are skipped due to 92 * memory.low and nothing was reclaimed, go back for memory.low. 93 */ 94 unsigned int memcg_low_reclaim:1; 95 unsigned int memcg_low_skipped:1; 96 97 unsigned int hibernation_mode:1; 98 99 /* One of the zones is ready for compaction */ 100 unsigned int compaction_ready:1; 101 102 /* Allocation order */ 103 s8 order; 104 105 /* Scan (total_size >> priority) pages at once */ 106 s8 priority; 107 108 /* The highest zone to isolate pages for reclaim from */ 109 s8 reclaim_idx; 110 111 /* This context's GFP mask */ 112 gfp_t gfp_mask; 113 114 /* Incremented by the number of inactive pages that were scanned */ 115 unsigned long nr_scanned; 116 117 /* Number of pages freed so far during a call to shrink_zones() */ 118 unsigned long nr_reclaimed; 119 120 struct { 121 unsigned int dirty; 122 unsigned int unqueued_dirty; 123 unsigned int congested; 124 unsigned int writeback; 125 unsigned int immediate; 126 unsigned int file_taken; 127 unsigned int taken; 128 } nr; 129 }; 130 131 #ifdef ARCH_HAS_PREFETCH 132 #define prefetch_prev_lru_page(_page, _base, _field) \ 133 do { \ 134 if ((_page)->lru.prev != _base) { \ 135 struct page *prev; \ 136 \ 137 prev = lru_to_page(&(_page->lru)); \ 138 prefetch(&prev->_field); \ 139 } \ 140 } while (0) 141 #else 142 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0) 143 #endif 144 145 #ifdef ARCH_HAS_PREFETCHW 146 #define prefetchw_prev_lru_page(_page, _base, _field) \ 147 do { \ 148 if ((_page)->lru.prev != _base) { \ 149 struct page *prev; \ 150 \ 151 prev = lru_to_page(&(_page->lru)); \ 152 prefetchw(&prev->_field); \ 153 } \ 154 } while (0) 155 #else 156 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 157 #endif 158 159 /* 160 * From 0 .. 100. Higher means more swappy. 161 */ 162 int vm_swappiness = 60; 163 /* 164 * The total number of pages which are beyond the high watermark within all 165 * zones. 166 */ 167 unsigned long vm_total_pages; 168 169 static LIST_HEAD(shrinker_list); 170 static DECLARE_RWSEM(shrinker_rwsem); 171 172 #ifdef CONFIG_MEMCG_KMEM 173 174 /* 175 * We allow subsystems to populate their shrinker-related 176 * LRU lists before register_shrinker_prepared() is called 177 * for the shrinker, since we don't want to impose 178 * restrictions on their internal registration order. 179 * In this case shrink_slab_memcg() may find corresponding 180 * bit is set in the shrinkers map. 181 * 182 * This value is used by the function to detect registering 183 * shrinkers and to skip do_shrink_slab() calls for them. 184 */ 185 #define SHRINKER_REGISTERING ((struct shrinker *)~0UL) 186 187 static DEFINE_IDR(shrinker_idr); 188 static int shrinker_nr_max; 189 190 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 191 { 192 int id, ret = -ENOMEM; 193 194 down_write(&shrinker_rwsem); 195 /* This may call shrinker, so it must use down_read_trylock() */ 196 id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL); 197 if (id < 0) 198 goto unlock; 199 200 if (id >= shrinker_nr_max) { 201 if (memcg_expand_shrinker_maps(id)) { 202 idr_remove(&shrinker_idr, id); 203 goto unlock; 204 } 205 206 shrinker_nr_max = id + 1; 207 } 208 shrinker->id = id; 209 ret = 0; 210 unlock: 211 up_write(&shrinker_rwsem); 212 return ret; 213 } 214 215 static void unregister_memcg_shrinker(struct shrinker *shrinker) 216 { 217 int id = shrinker->id; 218 219 BUG_ON(id < 0); 220 221 down_write(&shrinker_rwsem); 222 idr_remove(&shrinker_idr, id); 223 up_write(&shrinker_rwsem); 224 } 225 #else /* CONFIG_MEMCG_KMEM */ 226 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 227 { 228 return 0; 229 } 230 231 static void unregister_memcg_shrinker(struct shrinker *shrinker) 232 { 233 } 234 #endif /* CONFIG_MEMCG_KMEM */ 235 236 #ifdef CONFIG_MEMCG 237 static bool global_reclaim(struct scan_control *sc) 238 { 239 return !sc->target_mem_cgroup; 240 } 241 242 /** 243 * sane_reclaim - is the usual dirty throttling mechanism operational? 244 * @sc: scan_control in question 245 * 246 * The normal page dirty throttling mechanism in balance_dirty_pages() is 247 * completely broken with the legacy memcg and direct stalling in 248 * shrink_page_list() is used for throttling instead, which lacks all the 249 * niceties such as fairness, adaptive pausing, bandwidth proportional 250 * allocation and configurability. 251 * 252 * This function tests whether the vmscan currently in progress can assume 253 * that the normal dirty throttling mechanism is operational. 254 */ 255 static bool sane_reclaim(struct scan_control *sc) 256 { 257 struct mem_cgroup *memcg = sc->target_mem_cgroup; 258 259 if (!memcg) 260 return true; 261 #ifdef CONFIG_CGROUP_WRITEBACK 262 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 263 return true; 264 #endif 265 return false; 266 } 267 268 static void set_memcg_congestion(pg_data_t *pgdat, 269 struct mem_cgroup *memcg, 270 bool congested) 271 { 272 struct mem_cgroup_per_node *mn; 273 274 if (!memcg) 275 return; 276 277 mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id); 278 WRITE_ONCE(mn->congested, congested); 279 } 280 281 static bool memcg_congested(pg_data_t *pgdat, 282 struct mem_cgroup *memcg) 283 { 284 struct mem_cgroup_per_node *mn; 285 286 mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id); 287 return READ_ONCE(mn->congested); 288 289 } 290 #else 291 static bool global_reclaim(struct scan_control *sc) 292 { 293 return true; 294 } 295 296 static bool sane_reclaim(struct scan_control *sc) 297 { 298 return true; 299 } 300 301 static inline void set_memcg_congestion(struct pglist_data *pgdat, 302 struct mem_cgroup *memcg, bool congested) 303 { 304 } 305 306 static inline bool memcg_congested(struct pglist_data *pgdat, 307 struct mem_cgroup *memcg) 308 { 309 return false; 310 311 } 312 #endif 313 314 /* 315 * This misses isolated pages which are not accounted for to save counters. 316 * As the data only determines if reclaim or compaction continues, it is 317 * not expected that isolated pages will be a dominating factor. 318 */ 319 unsigned long zone_reclaimable_pages(struct zone *zone) 320 { 321 unsigned long nr; 322 323 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) + 324 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE); 325 if (get_nr_swap_pages() > 0) 326 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) + 327 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON); 328 329 return nr; 330 } 331 332 /** 333 * lruvec_lru_size - Returns the number of pages on the given LRU list. 334 * @lruvec: lru vector 335 * @lru: lru to use 336 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list) 337 */ 338 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx) 339 { 340 unsigned long lru_size; 341 int zid; 342 343 if (!mem_cgroup_disabled()) 344 lru_size = mem_cgroup_get_lru_size(lruvec, lru); 345 else 346 lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru); 347 348 for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) { 349 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid]; 350 unsigned long size; 351 352 if (!managed_zone(zone)) 353 continue; 354 355 if (!mem_cgroup_disabled()) 356 size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid); 357 else 358 size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid], 359 NR_ZONE_LRU_BASE + lru); 360 lru_size -= min(size, lru_size); 361 } 362 363 return lru_size; 364 365 } 366 367 /* 368 * Add a shrinker callback to be called from the vm. 369 */ 370 int prealloc_shrinker(struct shrinker *shrinker) 371 { 372 size_t size = sizeof(*shrinker->nr_deferred); 373 374 if (shrinker->flags & SHRINKER_NUMA_AWARE) 375 size *= nr_node_ids; 376 377 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); 378 if (!shrinker->nr_deferred) 379 return -ENOMEM; 380 381 if (shrinker->flags & SHRINKER_MEMCG_AWARE) { 382 if (prealloc_memcg_shrinker(shrinker)) 383 goto free_deferred; 384 } 385 386 return 0; 387 388 free_deferred: 389 kfree(shrinker->nr_deferred); 390 shrinker->nr_deferred = NULL; 391 return -ENOMEM; 392 } 393 394 void free_prealloced_shrinker(struct shrinker *shrinker) 395 { 396 if (!shrinker->nr_deferred) 397 return; 398 399 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 400 unregister_memcg_shrinker(shrinker); 401 402 kfree(shrinker->nr_deferred); 403 shrinker->nr_deferred = NULL; 404 } 405 406 void register_shrinker_prepared(struct shrinker *shrinker) 407 { 408 down_write(&shrinker_rwsem); 409 list_add_tail(&shrinker->list, &shrinker_list); 410 #ifdef CONFIG_MEMCG_KMEM 411 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 412 idr_replace(&shrinker_idr, shrinker, shrinker->id); 413 #endif 414 up_write(&shrinker_rwsem); 415 } 416 417 int register_shrinker(struct shrinker *shrinker) 418 { 419 int err = prealloc_shrinker(shrinker); 420 421 if (err) 422 return err; 423 register_shrinker_prepared(shrinker); 424 return 0; 425 } 426 EXPORT_SYMBOL(register_shrinker); 427 428 /* 429 * Remove one 430 */ 431 void unregister_shrinker(struct shrinker *shrinker) 432 { 433 if (!shrinker->nr_deferred) 434 return; 435 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 436 unregister_memcg_shrinker(shrinker); 437 down_write(&shrinker_rwsem); 438 list_del(&shrinker->list); 439 up_write(&shrinker_rwsem); 440 kfree(shrinker->nr_deferred); 441 shrinker->nr_deferred = NULL; 442 } 443 EXPORT_SYMBOL(unregister_shrinker); 444 445 #define SHRINK_BATCH 128 446 447 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl, 448 struct shrinker *shrinker, int priority) 449 { 450 unsigned long freed = 0; 451 unsigned long long delta; 452 long total_scan; 453 long freeable; 454 long nr; 455 long new_nr; 456 int nid = shrinkctl->nid; 457 long batch_size = shrinker->batch ? shrinker->batch 458 : SHRINK_BATCH; 459 long scanned = 0, next_deferred; 460 461 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 462 nid = 0; 463 464 freeable = shrinker->count_objects(shrinker, shrinkctl); 465 if (freeable == 0 || freeable == SHRINK_EMPTY) 466 return freeable; 467 468 /* 469 * copy the current shrinker scan count into a local variable 470 * and zero it so that other concurrent shrinker invocations 471 * don't also do this scanning work. 472 */ 473 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0); 474 475 total_scan = nr; 476 delta = freeable >> priority; 477 delta *= 4; 478 do_div(delta, shrinker->seeks); 479 480 /* 481 * Make sure we apply some minimal pressure on default priority 482 * even on small cgroups. Stale objects are not only consuming memory 483 * by themselves, but can also hold a reference to a dying cgroup, 484 * preventing it from being reclaimed. A dying cgroup with all 485 * corresponding structures like per-cpu stats and kmem caches 486 * can be really big, so it may lead to a significant waste of memory. 487 */ 488 delta = max_t(unsigned long long, delta, min(freeable, batch_size)); 489 490 total_scan += delta; 491 if (total_scan < 0) { 492 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n", 493 shrinker->scan_objects, total_scan); 494 total_scan = freeable; 495 next_deferred = nr; 496 } else 497 next_deferred = total_scan; 498 499 /* 500 * We need to avoid excessive windup on filesystem shrinkers 501 * due to large numbers of GFP_NOFS allocations causing the 502 * shrinkers to return -1 all the time. This results in a large 503 * nr being built up so when a shrink that can do some work 504 * comes along it empties the entire cache due to nr >>> 505 * freeable. This is bad for sustaining a working set in 506 * memory. 507 * 508 * Hence only allow the shrinker to scan the entire cache when 509 * a large delta change is calculated directly. 510 */ 511 if (delta < freeable / 4) 512 total_scan = min(total_scan, freeable / 2); 513 514 /* 515 * Avoid risking looping forever due to too large nr value: 516 * never try to free more than twice the estimate number of 517 * freeable entries. 518 */ 519 if (total_scan > freeable * 2) 520 total_scan = freeable * 2; 521 522 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, 523 freeable, delta, total_scan, priority); 524 525 /* 526 * Normally, we should not scan less than batch_size objects in one 527 * pass to avoid too frequent shrinker calls, but if the slab has less 528 * than batch_size objects in total and we are really tight on memory, 529 * we will try to reclaim all available objects, otherwise we can end 530 * up failing allocations although there are plenty of reclaimable 531 * objects spread over several slabs with usage less than the 532 * batch_size. 533 * 534 * We detect the "tight on memory" situations by looking at the total 535 * number of objects we want to scan (total_scan). If it is greater 536 * than the total number of objects on slab (freeable), we must be 537 * scanning at high prio and therefore should try to reclaim as much as 538 * possible. 539 */ 540 while (total_scan >= batch_size || 541 total_scan >= freeable) { 542 unsigned long ret; 543 unsigned long nr_to_scan = min(batch_size, total_scan); 544 545 shrinkctl->nr_to_scan = nr_to_scan; 546 shrinkctl->nr_scanned = nr_to_scan; 547 ret = shrinker->scan_objects(shrinker, shrinkctl); 548 if (ret == SHRINK_STOP) 549 break; 550 freed += ret; 551 552 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned); 553 total_scan -= shrinkctl->nr_scanned; 554 scanned += shrinkctl->nr_scanned; 555 556 cond_resched(); 557 } 558 559 if (next_deferred >= scanned) 560 next_deferred -= scanned; 561 else 562 next_deferred = 0; 563 /* 564 * move the unused scan count back into the shrinker in a 565 * manner that handles concurrent updates. If we exhausted the 566 * scan, there is no need to do an update. 567 */ 568 if (next_deferred > 0) 569 new_nr = atomic_long_add_return(next_deferred, 570 &shrinker->nr_deferred[nid]); 571 else 572 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]); 573 574 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan); 575 return freed; 576 } 577 578 #ifdef CONFIG_MEMCG_KMEM 579 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 580 struct mem_cgroup *memcg, int priority) 581 { 582 struct memcg_shrinker_map *map; 583 unsigned long ret, freed = 0; 584 int i; 585 586 if (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)) 587 return 0; 588 589 if (!down_read_trylock(&shrinker_rwsem)) 590 return 0; 591 592 map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map, 593 true); 594 if (unlikely(!map)) 595 goto unlock; 596 597 for_each_set_bit(i, map->map, shrinker_nr_max) { 598 struct shrink_control sc = { 599 .gfp_mask = gfp_mask, 600 .nid = nid, 601 .memcg = memcg, 602 }; 603 struct shrinker *shrinker; 604 605 shrinker = idr_find(&shrinker_idr, i); 606 if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) { 607 if (!shrinker) 608 clear_bit(i, map->map); 609 continue; 610 } 611 612 ret = do_shrink_slab(&sc, shrinker, priority); 613 if (ret == SHRINK_EMPTY) { 614 clear_bit(i, map->map); 615 /* 616 * After the shrinker reported that it had no objects to 617 * free, but before we cleared the corresponding bit in 618 * the memcg shrinker map, a new object might have been 619 * added. To make sure, we have the bit set in this 620 * case, we invoke the shrinker one more time and reset 621 * the bit if it reports that it is not empty anymore. 622 * The memory barrier here pairs with the barrier in 623 * memcg_set_shrinker_bit(): 624 * 625 * list_lru_add() shrink_slab_memcg() 626 * list_add_tail() clear_bit() 627 * <MB> <MB> 628 * set_bit() do_shrink_slab() 629 */ 630 smp_mb__after_atomic(); 631 ret = do_shrink_slab(&sc, shrinker, priority); 632 if (ret == SHRINK_EMPTY) 633 ret = 0; 634 else 635 memcg_set_shrinker_bit(memcg, nid, i); 636 } 637 freed += ret; 638 639 if (rwsem_is_contended(&shrinker_rwsem)) { 640 freed = freed ? : 1; 641 break; 642 } 643 } 644 unlock: 645 up_read(&shrinker_rwsem); 646 return freed; 647 } 648 #else /* CONFIG_MEMCG_KMEM */ 649 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 650 struct mem_cgroup *memcg, int priority) 651 { 652 return 0; 653 } 654 #endif /* CONFIG_MEMCG_KMEM */ 655 656 /** 657 * shrink_slab - shrink slab caches 658 * @gfp_mask: allocation context 659 * @nid: node whose slab caches to target 660 * @memcg: memory cgroup whose slab caches to target 661 * @priority: the reclaim priority 662 * 663 * Call the shrink functions to age shrinkable caches. 664 * 665 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set, 666 * unaware shrinkers will receive a node id of 0 instead. 667 * 668 * @memcg specifies the memory cgroup to target. Unaware shrinkers 669 * are called only if it is the root cgroup. 670 * 671 * @priority is sc->priority, we take the number of objects and >> by priority 672 * in order to get the scan target. 673 * 674 * Returns the number of reclaimed slab objects. 675 */ 676 static unsigned long shrink_slab(gfp_t gfp_mask, int nid, 677 struct mem_cgroup *memcg, 678 int priority) 679 { 680 unsigned long ret, freed = 0; 681 struct shrinker *shrinker; 682 683 if (!mem_cgroup_is_root(memcg)) 684 return shrink_slab_memcg(gfp_mask, nid, memcg, priority); 685 686 if (!down_read_trylock(&shrinker_rwsem)) 687 goto out; 688 689 list_for_each_entry(shrinker, &shrinker_list, list) { 690 struct shrink_control sc = { 691 .gfp_mask = gfp_mask, 692 .nid = nid, 693 .memcg = memcg, 694 }; 695 696 ret = do_shrink_slab(&sc, shrinker, priority); 697 if (ret == SHRINK_EMPTY) 698 ret = 0; 699 freed += ret; 700 /* 701 * Bail out if someone want to register a new shrinker to 702 * prevent the regsitration from being stalled for long periods 703 * by parallel ongoing shrinking. 704 */ 705 if (rwsem_is_contended(&shrinker_rwsem)) { 706 freed = freed ? : 1; 707 break; 708 } 709 } 710 711 up_read(&shrinker_rwsem); 712 out: 713 cond_resched(); 714 return freed; 715 } 716 717 void drop_slab_node(int nid) 718 { 719 unsigned long freed; 720 721 do { 722 struct mem_cgroup *memcg = NULL; 723 724 freed = 0; 725 memcg = mem_cgroup_iter(NULL, NULL, NULL); 726 do { 727 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0); 728 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 729 } while (freed > 10); 730 } 731 732 void drop_slab(void) 733 { 734 int nid; 735 736 for_each_online_node(nid) 737 drop_slab_node(nid); 738 } 739 740 static inline int is_page_cache_freeable(struct page *page) 741 { 742 /* 743 * A freeable page cache page is referenced only by the caller 744 * that isolated the page, the page cache radix tree and 745 * optional buffer heads at page->private. 746 */ 747 int radix_pins = PageTransHuge(page) && PageSwapCache(page) ? 748 HPAGE_PMD_NR : 1; 749 return page_count(page) - page_has_private(page) == 1 + radix_pins; 750 } 751 752 static int may_write_to_inode(struct inode *inode, struct scan_control *sc) 753 { 754 if (current->flags & PF_SWAPWRITE) 755 return 1; 756 if (!inode_write_congested(inode)) 757 return 1; 758 if (inode_to_bdi(inode) == current->backing_dev_info) 759 return 1; 760 return 0; 761 } 762 763 /* 764 * We detected a synchronous write error writing a page out. Probably 765 * -ENOSPC. We need to propagate that into the address_space for a subsequent 766 * fsync(), msync() or close(). 767 * 768 * The tricky part is that after writepage we cannot touch the mapping: nothing 769 * prevents it from being freed up. But we have a ref on the page and once 770 * that page is locked, the mapping is pinned. 771 * 772 * We're allowed to run sleeping lock_page() here because we know the caller has 773 * __GFP_FS. 774 */ 775 static void handle_write_error(struct address_space *mapping, 776 struct page *page, int error) 777 { 778 lock_page(page); 779 if (page_mapping(page) == mapping) 780 mapping_set_error(mapping, error); 781 unlock_page(page); 782 } 783 784 /* possible outcome of pageout() */ 785 typedef enum { 786 /* failed to write page out, page is locked */ 787 PAGE_KEEP, 788 /* move page to the active list, page is locked */ 789 PAGE_ACTIVATE, 790 /* page has been sent to the disk successfully, page is unlocked */ 791 PAGE_SUCCESS, 792 /* page is clean and locked */ 793 PAGE_CLEAN, 794 } pageout_t; 795 796 /* 797 * pageout is called by shrink_page_list() for each dirty page. 798 * Calls ->writepage(). 799 */ 800 static pageout_t pageout(struct page *page, struct address_space *mapping, 801 struct scan_control *sc) 802 { 803 /* 804 * If the page is dirty, only perform writeback if that write 805 * will be non-blocking. To prevent this allocation from being 806 * stalled by pagecache activity. But note that there may be 807 * stalls if we need to run get_block(). We could test 808 * PagePrivate for that. 809 * 810 * If this process is currently in __generic_file_write_iter() against 811 * this page's queue, we can perform writeback even if that 812 * will block. 813 * 814 * If the page is swapcache, write it back even if that would 815 * block, for some throttling. This happens by accident, because 816 * swap_backing_dev_info is bust: it doesn't reflect the 817 * congestion state of the swapdevs. Easy to fix, if needed. 818 */ 819 if (!is_page_cache_freeable(page)) 820 return PAGE_KEEP; 821 if (!mapping) { 822 /* 823 * Some data journaling orphaned pages can have 824 * page->mapping == NULL while being dirty with clean buffers. 825 */ 826 if (page_has_private(page)) { 827 if (try_to_free_buffers(page)) { 828 ClearPageDirty(page); 829 pr_info("%s: orphaned page\n", __func__); 830 return PAGE_CLEAN; 831 } 832 } 833 return PAGE_KEEP; 834 } 835 if (mapping->a_ops->writepage == NULL) 836 return PAGE_ACTIVATE; 837 if (!may_write_to_inode(mapping->host, sc)) 838 return PAGE_KEEP; 839 840 if (clear_page_dirty_for_io(page)) { 841 int res; 842 struct writeback_control wbc = { 843 .sync_mode = WB_SYNC_NONE, 844 .nr_to_write = SWAP_CLUSTER_MAX, 845 .range_start = 0, 846 .range_end = LLONG_MAX, 847 .for_reclaim = 1, 848 }; 849 850 SetPageReclaim(page); 851 res = mapping->a_ops->writepage(page, &wbc); 852 if (res < 0) 853 handle_write_error(mapping, page, res); 854 if (res == AOP_WRITEPAGE_ACTIVATE) { 855 ClearPageReclaim(page); 856 return PAGE_ACTIVATE; 857 } 858 859 if (!PageWriteback(page)) { 860 /* synchronous write or broken a_ops? */ 861 ClearPageReclaim(page); 862 } 863 trace_mm_vmscan_writepage(page); 864 inc_node_page_state(page, NR_VMSCAN_WRITE); 865 return PAGE_SUCCESS; 866 } 867 868 return PAGE_CLEAN; 869 } 870 871 /* 872 * Same as remove_mapping, but if the page is removed from the mapping, it 873 * gets returned with a refcount of 0. 874 */ 875 static int __remove_mapping(struct address_space *mapping, struct page *page, 876 bool reclaimed) 877 { 878 unsigned long flags; 879 int refcount; 880 881 BUG_ON(!PageLocked(page)); 882 BUG_ON(mapping != page_mapping(page)); 883 884 xa_lock_irqsave(&mapping->i_pages, flags); 885 /* 886 * The non racy check for a busy page. 887 * 888 * Must be careful with the order of the tests. When someone has 889 * a ref to the page, it may be possible that they dirty it then 890 * drop the reference. So if PageDirty is tested before page_count 891 * here, then the following race may occur: 892 * 893 * get_user_pages(&page); 894 * [user mapping goes away] 895 * write_to(page); 896 * !PageDirty(page) [good] 897 * SetPageDirty(page); 898 * put_page(page); 899 * !page_count(page) [good, discard it] 900 * 901 * [oops, our write_to data is lost] 902 * 903 * Reversing the order of the tests ensures such a situation cannot 904 * escape unnoticed. The smp_rmb is needed to ensure the page->flags 905 * load is not satisfied before that of page->_refcount. 906 * 907 * Note that if SetPageDirty is always performed via set_page_dirty, 908 * and thus under the i_pages lock, then this ordering is not required. 909 */ 910 if (unlikely(PageTransHuge(page)) && PageSwapCache(page)) 911 refcount = 1 + HPAGE_PMD_NR; 912 else 913 refcount = 2; 914 if (!page_ref_freeze(page, refcount)) 915 goto cannot_free; 916 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */ 917 if (unlikely(PageDirty(page))) { 918 page_ref_unfreeze(page, refcount); 919 goto cannot_free; 920 } 921 922 if (PageSwapCache(page)) { 923 swp_entry_t swap = { .val = page_private(page) }; 924 mem_cgroup_swapout(page, swap); 925 __delete_from_swap_cache(page); 926 xa_unlock_irqrestore(&mapping->i_pages, flags); 927 put_swap_page(page, swap); 928 } else { 929 void (*freepage)(struct page *); 930 void *shadow = NULL; 931 932 freepage = mapping->a_ops->freepage; 933 /* 934 * Remember a shadow entry for reclaimed file cache in 935 * order to detect refaults, thus thrashing, later on. 936 * 937 * But don't store shadows in an address space that is 938 * already exiting. This is not just an optizimation, 939 * inode reclaim needs to empty out the radix tree or 940 * the nodes are lost. Don't plant shadows behind its 941 * back. 942 * 943 * We also don't store shadows for DAX mappings because the 944 * only page cache pages found in these are zero pages 945 * covering holes, and because we don't want to mix DAX 946 * exceptional entries and shadow exceptional entries in the 947 * same address_space. 948 */ 949 if (reclaimed && page_is_file_cache(page) && 950 !mapping_exiting(mapping) && !dax_mapping(mapping)) 951 shadow = workingset_eviction(mapping, page); 952 __delete_from_page_cache(page, shadow); 953 xa_unlock_irqrestore(&mapping->i_pages, flags); 954 955 if (freepage != NULL) 956 freepage(page); 957 } 958 959 return 1; 960 961 cannot_free: 962 xa_unlock_irqrestore(&mapping->i_pages, flags); 963 return 0; 964 } 965 966 /* 967 * Attempt to detach a locked page from its ->mapping. If it is dirty or if 968 * someone else has a ref on the page, abort and return 0. If it was 969 * successfully detached, return 1. Assumes the caller has a single ref on 970 * this page. 971 */ 972 int remove_mapping(struct address_space *mapping, struct page *page) 973 { 974 if (__remove_mapping(mapping, page, false)) { 975 /* 976 * Unfreezing the refcount with 1 rather than 2 effectively 977 * drops the pagecache ref for us without requiring another 978 * atomic operation. 979 */ 980 page_ref_unfreeze(page, 1); 981 return 1; 982 } 983 return 0; 984 } 985 986 /** 987 * putback_lru_page - put previously isolated page onto appropriate LRU list 988 * @page: page to be put back to appropriate lru list 989 * 990 * Add previously isolated @page to appropriate LRU list. 991 * Page may still be unevictable for other reasons. 992 * 993 * lru_lock must not be held, interrupts must be enabled. 994 */ 995 void putback_lru_page(struct page *page) 996 { 997 lru_cache_add(page); 998 put_page(page); /* drop ref from isolate */ 999 } 1000 1001 enum page_references { 1002 PAGEREF_RECLAIM, 1003 PAGEREF_RECLAIM_CLEAN, 1004 PAGEREF_KEEP, 1005 PAGEREF_ACTIVATE, 1006 }; 1007 1008 static enum page_references page_check_references(struct page *page, 1009 struct scan_control *sc) 1010 { 1011 int referenced_ptes, referenced_page; 1012 unsigned long vm_flags; 1013 1014 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup, 1015 &vm_flags); 1016 referenced_page = TestClearPageReferenced(page); 1017 1018 /* 1019 * Mlock lost the isolation race with us. Let try_to_unmap() 1020 * move the page to the unevictable list. 1021 */ 1022 if (vm_flags & VM_LOCKED) 1023 return PAGEREF_RECLAIM; 1024 1025 if (referenced_ptes) { 1026 if (PageSwapBacked(page)) 1027 return PAGEREF_ACTIVATE; 1028 /* 1029 * All mapped pages start out with page table 1030 * references from the instantiating fault, so we need 1031 * to look twice if a mapped file page is used more 1032 * than once. 1033 * 1034 * Mark it and spare it for another trip around the 1035 * inactive list. Another page table reference will 1036 * lead to its activation. 1037 * 1038 * Note: the mark is set for activated pages as well 1039 * so that recently deactivated but used pages are 1040 * quickly recovered. 1041 */ 1042 SetPageReferenced(page); 1043 1044 if (referenced_page || referenced_ptes > 1) 1045 return PAGEREF_ACTIVATE; 1046 1047 /* 1048 * Activate file-backed executable pages after first usage. 1049 */ 1050 if (vm_flags & VM_EXEC) 1051 return PAGEREF_ACTIVATE; 1052 1053 return PAGEREF_KEEP; 1054 } 1055 1056 /* Reclaim if clean, defer dirty pages to writeback */ 1057 if (referenced_page && !PageSwapBacked(page)) 1058 return PAGEREF_RECLAIM_CLEAN; 1059 1060 return PAGEREF_RECLAIM; 1061 } 1062 1063 /* Check if a page is dirty or under writeback */ 1064 static void page_check_dirty_writeback(struct page *page, 1065 bool *dirty, bool *writeback) 1066 { 1067 struct address_space *mapping; 1068 1069 /* 1070 * Anonymous pages are not handled by flushers and must be written 1071 * from reclaim context. Do not stall reclaim based on them 1072 */ 1073 if (!page_is_file_cache(page) || 1074 (PageAnon(page) && !PageSwapBacked(page))) { 1075 *dirty = false; 1076 *writeback = false; 1077 return; 1078 } 1079 1080 /* By default assume that the page flags are accurate */ 1081 *dirty = PageDirty(page); 1082 *writeback = PageWriteback(page); 1083 1084 /* Verify dirty/writeback state if the filesystem supports it */ 1085 if (!page_has_private(page)) 1086 return; 1087 1088 mapping = page_mapping(page); 1089 if (mapping && mapping->a_ops->is_dirty_writeback) 1090 mapping->a_ops->is_dirty_writeback(page, dirty, writeback); 1091 } 1092 1093 /* 1094 * shrink_page_list() returns the number of reclaimed pages 1095 */ 1096 static unsigned long shrink_page_list(struct list_head *page_list, 1097 struct pglist_data *pgdat, 1098 struct scan_control *sc, 1099 enum ttu_flags ttu_flags, 1100 struct reclaim_stat *stat, 1101 bool force_reclaim) 1102 { 1103 LIST_HEAD(ret_pages); 1104 LIST_HEAD(free_pages); 1105 int pgactivate = 0; 1106 unsigned nr_unqueued_dirty = 0; 1107 unsigned nr_dirty = 0; 1108 unsigned nr_congested = 0; 1109 unsigned nr_reclaimed = 0; 1110 unsigned nr_writeback = 0; 1111 unsigned nr_immediate = 0; 1112 unsigned nr_ref_keep = 0; 1113 unsigned nr_unmap_fail = 0; 1114 1115 cond_resched(); 1116 1117 while (!list_empty(page_list)) { 1118 struct address_space *mapping; 1119 struct page *page; 1120 int may_enter_fs; 1121 enum page_references references = PAGEREF_RECLAIM_CLEAN; 1122 bool dirty, writeback; 1123 1124 cond_resched(); 1125 1126 page = lru_to_page(page_list); 1127 list_del(&page->lru); 1128 1129 if (!trylock_page(page)) 1130 goto keep; 1131 1132 VM_BUG_ON_PAGE(PageActive(page), page); 1133 1134 sc->nr_scanned++; 1135 1136 if (unlikely(!page_evictable(page))) 1137 goto activate_locked; 1138 1139 if (!sc->may_unmap && page_mapped(page)) 1140 goto keep_locked; 1141 1142 /* Double the slab pressure for mapped and swapcache pages */ 1143 if ((page_mapped(page) || PageSwapCache(page)) && 1144 !(PageAnon(page) && !PageSwapBacked(page))) 1145 sc->nr_scanned++; 1146 1147 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 1148 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 1149 1150 /* 1151 * The number of dirty pages determines if a node is marked 1152 * reclaim_congested which affects wait_iff_congested. kswapd 1153 * will stall and start writing pages if the tail of the LRU 1154 * is all dirty unqueued pages. 1155 */ 1156 page_check_dirty_writeback(page, &dirty, &writeback); 1157 if (dirty || writeback) 1158 nr_dirty++; 1159 1160 if (dirty && !writeback) 1161 nr_unqueued_dirty++; 1162 1163 /* 1164 * Treat this page as congested if the underlying BDI is or if 1165 * pages are cycling through the LRU so quickly that the 1166 * pages marked for immediate reclaim are making it to the 1167 * end of the LRU a second time. 1168 */ 1169 mapping = page_mapping(page); 1170 if (((dirty || writeback) && mapping && 1171 inode_write_congested(mapping->host)) || 1172 (writeback && PageReclaim(page))) 1173 nr_congested++; 1174 1175 /* 1176 * If a page at the tail of the LRU is under writeback, there 1177 * are three cases to consider. 1178 * 1179 * 1) If reclaim is encountering an excessive number of pages 1180 * under writeback and this page is both under writeback and 1181 * PageReclaim then it indicates that pages are being queued 1182 * for IO but are being recycled through the LRU before the 1183 * IO can complete. Waiting on the page itself risks an 1184 * indefinite stall if it is impossible to writeback the 1185 * page due to IO error or disconnected storage so instead 1186 * note that the LRU is being scanned too quickly and the 1187 * caller can stall after page list has been processed. 1188 * 1189 * 2) Global or new memcg reclaim encounters a page that is 1190 * not marked for immediate reclaim, or the caller does not 1191 * have __GFP_FS (or __GFP_IO if it's simply going to swap, 1192 * not to fs). In this case mark the page for immediate 1193 * reclaim and continue scanning. 1194 * 1195 * Require may_enter_fs because we would wait on fs, which 1196 * may not have submitted IO yet. And the loop driver might 1197 * enter reclaim, and deadlock if it waits on a page for 1198 * which it is needed to do the write (loop masks off 1199 * __GFP_IO|__GFP_FS for this reason); but more thought 1200 * would probably show more reasons. 1201 * 1202 * 3) Legacy memcg encounters a page that is already marked 1203 * PageReclaim. memcg does not have any dirty pages 1204 * throttling so we could easily OOM just because too many 1205 * pages are in writeback and there is nothing else to 1206 * reclaim. Wait for the writeback to complete. 1207 * 1208 * In cases 1) and 2) we activate the pages to get them out of 1209 * the way while we continue scanning for clean pages on the 1210 * inactive list and refilling from the active list. The 1211 * observation here is that waiting for disk writes is more 1212 * expensive than potentially causing reloads down the line. 1213 * Since they're marked for immediate reclaim, they won't put 1214 * memory pressure on the cache working set any longer than it 1215 * takes to write them to disk. 1216 */ 1217 if (PageWriteback(page)) { 1218 /* Case 1 above */ 1219 if (current_is_kswapd() && 1220 PageReclaim(page) && 1221 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) { 1222 nr_immediate++; 1223 goto activate_locked; 1224 1225 /* Case 2 above */ 1226 } else if (sane_reclaim(sc) || 1227 !PageReclaim(page) || !may_enter_fs) { 1228 /* 1229 * This is slightly racy - end_page_writeback() 1230 * might have just cleared PageReclaim, then 1231 * setting PageReclaim here end up interpreted 1232 * as PageReadahead - but that does not matter 1233 * enough to care. What we do want is for this 1234 * page to have PageReclaim set next time memcg 1235 * reclaim reaches the tests above, so it will 1236 * then wait_on_page_writeback() to avoid OOM; 1237 * and it's also appropriate in global reclaim. 1238 */ 1239 SetPageReclaim(page); 1240 nr_writeback++; 1241 goto activate_locked; 1242 1243 /* Case 3 above */ 1244 } else { 1245 unlock_page(page); 1246 wait_on_page_writeback(page); 1247 /* then go back and try same page again */ 1248 list_add_tail(&page->lru, page_list); 1249 continue; 1250 } 1251 } 1252 1253 if (!force_reclaim) 1254 references = page_check_references(page, sc); 1255 1256 switch (references) { 1257 case PAGEREF_ACTIVATE: 1258 goto activate_locked; 1259 case PAGEREF_KEEP: 1260 nr_ref_keep++; 1261 goto keep_locked; 1262 case PAGEREF_RECLAIM: 1263 case PAGEREF_RECLAIM_CLEAN: 1264 ; /* try to reclaim the page below */ 1265 } 1266 1267 /* 1268 * Anonymous process memory has backing store? 1269 * Try to allocate it some swap space here. 1270 * Lazyfree page could be freed directly 1271 */ 1272 if (PageAnon(page) && PageSwapBacked(page)) { 1273 if (!PageSwapCache(page)) { 1274 if (!(sc->gfp_mask & __GFP_IO)) 1275 goto keep_locked; 1276 if (PageTransHuge(page)) { 1277 /* cannot split THP, skip it */ 1278 if (!can_split_huge_page(page, NULL)) 1279 goto activate_locked; 1280 /* 1281 * Split pages without a PMD map right 1282 * away. Chances are some or all of the 1283 * tail pages can be freed without IO. 1284 */ 1285 if (!compound_mapcount(page) && 1286 split_huge_page_to_list(page, 1287 page_list)) 1288 goto activate_locked; 1289 } 1290 if (!add_to_swap(page)) { 1291 if (!PageTransHuge(page)) 1292 goto activate_locked; 1293 /* Fallback to swap normal pages */ 1294 if (split_huge_page_to_list(page, 1295 page_list)) 1296 goto activate_locked; 1297 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1298 count_vm_event(THP_SWPOUT_FALLBACK); 1299 #endif 1300 if (!add_to_swap(page)) 1301 goto activate_locked; 1302 } 1303 1304 may_enter_fs = 1; 1305 1306 /* Adding to swap updated mapping */ 1307 mapping = page_mapping(page); 1308 } 1309 } else if (unlikely(PageTransHuge(page))) { 1310 /* Split file THP */ 1311 if (split_huge_page_to_list(page, page_list)) 1312 goto keep_locked; 1313 } 1314 1315 /* 1316 * The page is mapped into the page tables of one or more 1317 * processes. Try to unmap it here. 1318 */ 1319 if (page_mapped(page)) { 1320 enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH; 1321 1322 if (unlikely(PageTransHuge(page))) 1323 flags |= TTU_SPLIT_HUGE_PMD; 1324 if (!try_to_unmap(page, flags)) { 1325 nr_unmap_fail++; 1326 goto activate_locked; 1327 } 1328 } 1329 1330 if (PageDirty(page)) { 1331 /* 1332 * Only kswapd can writeback filesystem pages 1333 * to avoid risk of stack overflow. But avoid 1334 * injecting inefficient single-page IO into 1335 * flusher writeback as much as possible: only 1336 * write pages when we've encountered many 1337 * dirty pages, and when we've already scanned 1338 * the rest of the LRU for clean pages and see 1339 * the same dirty pages again (PageReclaim). 1340 */ 1341 if (page_is_file_cache(page) && 1342 (!current_is_kswapd() || !PageReclaim(page) || 1343 !test_bit(PGDAT_DIRTY, &pgdat->flags))) { 1344 /* 1345 * Immediately reclaim when written back. 1346 * Similar in principal to deactivate_page() 1347 * except we already have the page isolated 1348 * and know it's dirty 1349 */ 1350 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE); 1351 SetPageReclaim(page); 1352 1353 goto activate_locked; 1354 } 1355 1356 if (references == PAGEREF_RECLAIM_CLEAN) 1357 goto keep_locked; 1358 if (!may_enter_fs) 1359 goto keep_locked; 1360 if (!sc->may_writepage) 1361 goto keep_locked; 1362 1363 /* 1364 * Page is dirty. Flush the TLB if a writable entry 1365 * potentially exists to avoid CPU writes after IO 1366 * starts and then write it out here. 1367 */ 1368 try_to_unmap_flush_dirty(); 1369 switch (pageout(page, mapping, sc)) { 1370 case PAGE_KEEP: 1371 goto keep_locked; 1372 case PAGE_ACTIVATE: 1373 goto activate_locked; 1374 case PAGE_SUCCESS: 1375 if (PageWriteback(page)) 1376 goto keep; 1377 if (PageDirty(page)) 1378 goto keep; 1379 1380 /* 1381 * A synchronous write - probably a ramdisk. Go 1382 * ahead and try to reclaim the page. 1383 */ 1384 if (!trylock_page(page)) 1385 goto keep; 1386 if (PageDirty(page) || PageWriteback(page)) 1387 goto keep_locked; 1388 mapping = page_mapping(page); 1389 case PAGE_CLEAN: 1390 ; /* try to free the page below */ 1391 } 1392 } 1393 1394 /* 1395 * If the page has buffers, try to free the buffer mappings 1396 * associated with this page. If we succeed we try to free 1397 * the page as well. 1398 * 1399 * We do this even if the page is PageDirty(). 1400 * try_to_release_page() does not perform I/O, but it is 1401 * possible for a page to have PageDirty set, but it is actually 1402 * clean (all its buffers are clean). This happens if the 1403 * buffers were written out directly, with submit_bh(). ext3 1404 * will do this, as well as the blockdev mapping. 1405 * try_to_release_page() will discover that cleanness and will 1406 * drop the buffers and mark the page clean - it can be freed. 1407 * 1408 * Rarely, pages can have buffers and no ->mapping. These are 1409 * the pages which were not successfully invalidated in 1410 * truncate_complete_page(). We try to drop those buffers here 1411 * and if that worked, and the page is no longer mapped into 1412 * process address space (page_count == 1) it can be freed. 1413 * Otherwise, leave the page on the LRU so it is swappable. 1414 */ 1415 if (page_has_private(page)) { 1416 if (!try_to_release_page(page, sc->gfp_mask)) 1417 goto activate_locked; 1418 if (!mapping && page_count(page) == 1) { 1419 unlock_page(page); 1420 if (put_page_testzero(page)) 1421 goto free_it; 1422 else { 1423 /* 1424 * rare race with speculative reference. 1425 * the speculative reference will free 1426 * this page shortly, so we may 1427 * increment nr_reclaimed here (and 1428 * leave it off the LRU). 1429 */ 1430 nr_reclaimed++; 1431 continue; 1432 } 1433 } 1434 } 1435 1436 if (PageAnon(page) && !PageSwapBacked(page)) { 1437 /* follow __remove_mapping for reference */ 1438 if (!page_ref_freeze(page, 1)) 1439 goto keep_locked; 1440 if (PageDirty(page)) { 1441 page_ref_unfreeze(page, 1); 1442 goto keep_locked; 1443 } 1444 1445 count_vm_event(PGLAZYFREED); 1446 count_memcg_page_event(page, PGLAZYFREED); 1447 } else if (!mapping || !__remove_mapping(mapping, page, true)) 1448 goto keep_locked; 1449 /* 1450 * At this point, we have no other references and there is 1451 * no way to pick any more up (removed from LRU, removed 1452 * from pagecache). Can use non-atomic bitops now (and 1453 * we obviously don't have to worry about waking up a process 1454 * waiting on the page lock, because there are no references. 1455 */ 1456 __ClearPageLocked(page); 1457 free_it: 1458 nr_reclaimed++; 1459 1460 /* 1461 * Is there need to periodically free_page_list? It would 1462 * appear not as the counts should be low 1463 */ 1464 if (unlikely(PageTransHuge(page))) { 1465 mem_cgroup_uncharge(page); 1466 (*get_compound_page_dtor(page))(page); 1467 } else 1468 list_add(&page->lru, &free_pages); 1469 continue; 1470 1471 activate_locked: 1472 /* Not a candidate for swapping, so reclaim swap space. */ 1473 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) || 1474 PageMlocked(page))) 1475 try_to_free_swap(page); 1476 VM_BUG_ON_PAGE(PageActive(page), page); 1477 if (!PageMlocked(page)) { 1478 SetPageActive(page); 1479 pgactivate++; 1480 count_memcg_page_event(page, PGACTIVATE); 1481 } 1482 keep_locked: 1483 unlock_page(page); 1484 keep: 1485 list_add(&page->lru, &ret_pages); 1486 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page); 1487 } 1488 1489 mem_cgroup_uncharge_list(&free_pages); 1490 try_to_unmap_flush(); 1491 free_unref_page_list(&free_pages); 1492 1493 list_splice(&ret_pages, page_list); 1494 count_vm_events(PGACTIVATE, pgactivate); 1495 1496 if (stat) { 1497 stat->nr_dirty = nr_dirty; 1498 stat->nr_congested = nr_congested; 1499 stat->nr_unqueued_dirty = nr_unqueued_dirty; 1500 stat->nr_writeback = nr_writeback; 1501 stat->nr_immediate = nr_immediate; 1502 stat->nr_activate = pgactivate; 1503 stat->nr_ref_keep = nr_ref_keep; 1504 stat->nr_unmap_fail = nr_unmap_fail; 1505 } 1506 return nr_reclaimed; 1507 } 1508 1509 unsigned long reclaim_clean_pages_from_list(struct zone *zone, 1510 struct list_head *page_list) 1511 { 1512 struct scan_control sc = { 1513 .gfp_mask = GFP_KERNEL, 1514 .priority = DEF_PRIORITY, 1515 .may_unmap = 1, 1516 }; 1517 unsigned long ret; 1518 struct page *page, *next; 1519 LIST_HEAD(clean_pages); 1520 1521 list_for_each_entry_safe(page, next, page_list, lru) { 1522 if (page_is_file_cache(page) && !PageDirty(page) && 1523 !__PageMovable(page)) { 1524 ClearPageActive(page); 1525 list_move(&page->lru, &clean_pages); 1526 } 1527 } 1528 1529 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc, 1530 TTU_IGNORE_ACCESS, NULL, true); 1531 list_splice(&clean_pages, page_list); 1532 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret); 1533 return ret; 1534 } 1535 1536 /* 1537 * Attempt to remove the specified page from its LRU. Only take this page 1538 * if it is of the appropriate PageActive status. Pages which are being 1539 * freed elsewhere are also ignored. 1540 * 1541 * page: page to consider 1542 * mode: one of the LRU isolation modes defined above 1543 * 1544 * returns 0 on success, -ve errno on failure. 1545 */ 1546 int __isolate_lru_page(struct page *page, isolate_mode_t mode) 1547 { 1548 int ret = -EINVAL; 1549 1550 /* Only take pages on the LRU. */ 1551 if (!PageLRU(page)) 1552 return ret; 1553 1554 /* Compaction should not handle unevictable pages but CMA can do so */ 1555 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE)) 1556 return ret; 1557 1558 ret = -EBUSY; 1559 1560 /* 1561 * To minimise LRU disruption, the caller can indicate that it only 1562 * wants to isolate pages it will be able to operate on without 1563 * blocking - clean pages for the most part. 1564 * 1565 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages 1566 * that it is possible to migrate without blocking 1567 */ 1568 if (mode & ISOLATE_ASYNC_MIGRATE) { 1569 /* All the caller can do on PageWriteback is block */ 1570 if (PageWriteback(page)) 1571 return ret; 1572 1573 if (PageDirty(page)) { 1574 struct address_space *mapping; 1575 bool migrate_dirty; 1576 1577 /* 1578 * Only pages without mappings or that have a 1579 * ->migratepage callback are possible to migrate 1580 * without blocking. However, we can be racing with 1581 * truncation so it's necessary to lock the page 1582 * to stabilise the mapping as truncation holds 1583 * the page lock until after the page is removed 1584 * from the page cache. 1585 */ 1586 if (!trylock_page(page)) 1587 return ret; 1588 1589 mapping = page_mapping(page); 1590 migrate_dirty = !mapping || mapping->a_ops->migratepage; 1591 unlock_page(page); 1592 if (!migrate_dirty) 1593 return ret; 1594 } 1595 } 1596 1597 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page)) 1598 return ret; 1599 1600 if (likely(get_page_unless_zero(page))) { 1601 /* 1602 * Be careful not to clear PageLRU until after we're 1603 * sure the page is not being freed elsewhere -- the 1604 * page release code relies on it. 1605 */ 1606 ClearPageLRU(page); 1607 ret = 0; 1608 } 1609 1610 return ret; 1611 } 1612 1613 1614 /* 1615 * Update LRU sizes after isolating pages. The LRU size updates must 1616 * be complete before mem_cgroup_update_lru_size due to a santity check. 1617 */ 1618 static __always_inline void update_lru_sizes(struct lruvec *lruvec, 1619 enum lru_list lru, unsigned long *nr_zone_taken) 1620 { 1621 int zid; 1622 1623 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1624 if (!nr_zone_taken[zid]) 1625 continue; 1626 1627 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 1628 #ifdef CONFIG_MEMCG 1629 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 1630 #endif 1631 } 1632 1633 } 1634 1635 /* 1636 * zone_lru_lock is heavily contended. Some of the functions that 1637 * shrink the lists perform better by taking out a batch of pages 1638 * and working on them outside the LRU lock. 1639 * 1640 * For pagecache intensive workloads, this function is the hottest 1641 * spot in the kernel (apart from copy_*_user functions). 1642 * 1643 * Appropriate locks must be held before calling this function. 1644 * 1645 * @nr_to_scan: The number of eligible pages to look through on the list. 1646 * @lruvec: The LRU vector to pull pages from. 1647 * @dst: The temp list to put pages on to. 1648 * @nr_scanned: The number of pages that were scanned. 1649 * @sc: The scan_control struct for this reclaim session 1650 * @mode: One of the LRU isolation modes 1651 * @lru: LRU list id for isolating 1652 * 1653 * returns how many pages were moved onto *@dst. 1654 */ 1655 static unsigned long isolate_lru_pages(unsigned long nr_to_scan, 1656 struct lruvec *lruvec, struct list_head *dst, 1657 unsigned long *nr_scanned, struct scan_control *sc, 1658 isolate_mode_t mode, enum lru_list lru) 1659 { 1660 struct list_head *src = &lruvec->lists[lru]; 1661 unsigned long nr_taken = 0; 1662 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 }; 1663 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, }; 1664 unsigned long skipped = 0; 1665 unsigned long scan, total_scan, nr_pages; 1666 LIST_HEAD(pages_skipped); 1667 1668 scan = 0; 1669 for (total_scan = 0; 1670 scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src); 1671 total_scan++) { 1672 struct page *page; 1673 1674 page = lru_to_page(src); 1675 prefetchw_prev_lru_page(page, src, flags); 1676 1677 VM_BUG_ON_PAGE(!PageLRU(page), page); 1678 1679 if (page_zonenum(page) > sc->reclaim_idx) { 1680 list_move(&page->lru, &pages_skipped); 1681 nr_skipped[page_zonenum(page)]++; 1682 continue; 1683 } 1684 1685 /* 1686 * Do not count skipped pages because that makes the function 1687 * return with no isolated pages if the LRU mostly contains 1688 * ineligible pages. This causes the VM to not reclaim any 1689 * pages, triggering a premature OOM. 1690 */ 1691 scan++; 1692 switch (__isolate_lru_page(page, mode)) { 1693 case 0: 1694 nr_pages = hpage_nr_pages(page); 1695 nr_taken += nr_pages; 1696 nr_zone_taken[page_zonenum(page)] += nr_pages; 1697 list_move(&page->lru, dst); 1698 break; 1699 1700 case -EBUSY: 1701 /* else it is being freed elsewhere */ 1702 list_move(&page->lru, src); 1703 continue; 1704 1705 default: 1706 BUG(); 1707 } 1708 } 1709 1710 /* 1711 * Splice any skipped pages to the start of the LRU list. Note that 1712 * this disrupts the LRU order when reclaiming for lower zones but 1713 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX 1714 * scanning would soon rescan the same pages to skip and put the 1715 * system at risk of premature OOM. 1716 */ 1717 if (!list_empty(&pages_skipped)) { 1718 int zid; 1719 1720 list_splice(&pages_skipped, src); 1721 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1722 if (!nr_skipped[zid]) 1723 continue; 1724 1725 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]); 1726 skipped += nr_skipped[zid]; 1727 } 1728 } 1729 *nr_scanned = total_scan; 1730 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, 1731 total_scan, skipped, nr_taken, mode, lru); 1732 update_lru_sizes(lruvec, lru, nr_zone_taken); 1733 return nr_taken; 1734 } 1735 1736 /** 1737 * isolate_lru_page - tries to isolate a page from its LRU list 1738 * @page: page to isolate from its LRU list 1739 * 1740 * Isolates a @page from an LRU list, clears PageLRU and adjusts the 1741 * vmstat statistic corresponding to whatever LRU list the page was on. 1742 * 1743 * Returns 0 if the page was removed from an LRU list. 1744 * Returns -EBUSY if the page was not on an LRU list. 1745 * 1746 * The returned page will have PageLRU() cleared. If it was found on 1747 * the active list, it will have PageActive set. If it was found on 1748 * the unevictable list, it will have the PageUnevictable bit set. That flag 1749 * may need to be cleared by the caller before letting the page go. 1750 * 1751 * The vmstat statistic corresponding to the list on which the page was 1752 * found will be decremented. 1753 * 1754 * Restrictions: 1755 * 1756 * (1) Must be called with an elevated refcount on the page. This is a 1757 * fundamentnal difference from isolate_lru_pages (which is called 1758 * without a stable reference). 1759 * (2) the lru_lock must not be held. 1760 * (3) interrupts must be enabled. 1761 */ 1762 int isolate_lru_page(struct page *page) 1763 { 1764 int ret = -EBUSY; 1765 1766 VM_BUG_ON_PAGE(!page_count(page), page); 1767 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page"); 1768 1769 if (PageLRU(page)) { 1770 struct zone *zone = page_zone(page); 1771 struct lruvec *lruvec; 1772 1773 spin_lock_irq(zone_lru_lock(zone)); 1774 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat); 1775 if (PageLRU(page)) { 1776 int lru = page_lru(page); 1777 get_page(page); 1778 ClearPageLRU(page); 1779 del_page_from_lru_list(page, lruvec, lru); 1780 ret = 0; 1781 } 1782 spin_unlock_irq(zone_lru_lock(zone)); 1783 } 1784 return ret; 1785 } 1786 1787 /* 1788 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 1789 * then get resheduled. When there are massive number of tasks doing page 1790 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 1791 * the LRU list will go small and be scanned faster than necessary, leading to 1792 * unnecessary swapping, thrashing and OOM. 1793 */ 1794 static int too_many_isolated(struct pglist_data *pgdat, int file, 1795 struct scan_control *sc) 1796 { 1797 unsigned long inactive, isolated; 1798 1799 if (current_is_kswapd()) 1800 return 0; 1801 1802 if (!sane_reclaim(sc)) 1803 return 0; 1804 1805 if (file) { 1806 inactive = node_page_state(pgdat, NR_INACTIVE_FILE); 1807 isolated = node_page_state(pgdat, NR_ISOLATED_FILE); 1808 } else { 1809 inactive = node_page_state(pgdat, NR_INACTIVE_ANON); 1810 isolated = node_page_state(pgdat, NR_ISOLATED_ANON); 1811 } 1812 1813 /* 1814 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 1815 * won't get blocked by normal direct-reclaimers, forming a circular 1816 * deadlock. 1817 */ 1818 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 1819 inactive >>= 3; 1820 1821 return isolated > inactive; 1822 } 1823 1824 static noinline_for_stack void 1825 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list) 1826 { 1827 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1828 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1829 LIST_HEAD(pages_to_free); 1830 1831 /* 1832 * Put back any unfreeable pages. 1833 */ 1834 while (!list_empty(page_list)) { 1835 struct page *page = lru_to_page(page_list); 1836 int lru; 1837 1838 VM_BUG_ON_PAGE(PageLRU(page), page); 1839 list_del(&page->lru); 1840 if (unlikely(!page_evictable(page))) { 1841 spin_unlock_irq(&pgdat->lru_lock); 1842 putback_lru_page(page); 1843 spin_lock_irq(&pgdat->lru_lock); 1844 continue; 1845 } 1846 1847 lruvec = mem_cgroup_page_lruvec(page, pgdat); 1848 1849 SetPageLRU(page); 1850 lru = page_lru(page); 1851 add_page_to_lru_list(page, lruvec, lru); 1852 1853 if (is_active_lru(lru)) { 1854 int file = is_file_lru(lru); 1855 int numpages = hpage_nr_pages(page); 1856 reclaim_stat->recent_rotated[file] += numpages; 1857 } 1858 if (put_page_testzero(page)) { 1859 __ClearPageLRU(page); 1860 __ClearPageActive(page); 1861 del_page_from_lru_list(page, lruvec, lru); 1862 1863 if (unlikely(PageCompound(page))) { 1864 spin_unlock_irq(&pgdat->lru_lock); 1865 mem_cgroup_uncharge(page); 1866 (*get_compound_page_dtor(page))(page); 1867 spin_lock_irq(&pgdat->lru_lock); 1868 } else 1869 list_add(&page->lru, &pages_to_free); 1870 } 1871 } 1872 1873 /* 1874 * To save our caller's stack, now use input list for pages to free. 1875 */ 1876 list_splice(&pages_to_free, page_list); 1877 } 1878 1879 /* 1880 * If a kernel thread (such as nfsd for loop-back mounts) services 1881 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE. 1882 * In that case we should only throttle if the backing device it is 1883 * writing to is congested. In other cases it is safe to throttle. 1884 */ 1885 static int current_may_throttle(void) 1886 { 1887 return !(current->flags & PF_LESS_THROTTLE) || 1888 current->backing_dev_info == NULL || 1889 bdi_write_congested(current->backing_dev_info); 1890 } 1891 1892 /* 1893 * shrink_inactive_list() is a helper for shrink_node(). It returns the number 1894 * of reclaimed pages 1895 */ 1896 static noinline_for_stack unsigned long 1897 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, 1898 struct scan_control *sc, enum lru_list lru) 1899 { 1900 LIST_HEAD(page_list); 1901 unsigned long nr_scanned; 1902 unsigned long nr_reclaimed = 0; 1903 unsigned long nr_taken; 1904 struct reclaim_stat stat = {}; 1905 isolate_mode_t isolate_mode = 0; 1906 int file = is_file_lru(lru); 1907 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1908 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1909 bool stalled = false; 1910 1911 while (unlikely(too_many_isolated(pgdat, file, sc))) { 1912 if (stalled) 1913 return 0; 1914 1915 /* wait a bit for the reclaimer. */ 1916 msleep(100); 1917 stalled = true; 1918 1919 /* We are about to die and free our memory. Return now. */ 1920 if (fatal_signal_pending(current)) 1921 return SWAP_CLUSTER_MAX; 1922 } 1923 1924 lru_add_drain(); 1925 1926 if (!sc->may_unmap) 1927 isolate_mode |= ISOLATE_UNMAPPED; 1928 1929 spin_lock_irq(&pgdat->lru_lock); 1930 1931 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list, 1932 &nr_scanned, sc, isolate_mode, lru); 1933 1934 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 1935 reclaim_stat->recent_scanned[file] += nr_taken; 1936 1937 if (current_is_kswapd()) { 1938 if (global_reclaim(sc)) 1939 __count_vm_events(PGSCAN_KSWAPD, nr_scanned); 1940 count_memcg_events(lruvec_memcg(lruvec), PGSCAN_KSWAPD, 1941 nr_scanned); 1942 } else { 1943 if (global_reclaim(sc)) 1944 __count_vm_events(PGSCAN_DIRECT, nr_scanned); 1945 count_memcg_events(lruvec_memcg(lruvec), PGSCAN_DIRECT, 1946 nr_scanned); 1947 } 1948 spin_unlock_irq(&pgdat->lru_lock); 1949 1950 if (nr_taken == 0) 1951 return 0; 1952 1953 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0, 1954 &stat, false); 1955 1956 spin_lock_irq(&pgdat->lru_lock); 1957 1958 if (current_is_kswapd()) { 1959 if (global_reclaim(sc)) 1960 __count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed); 1961 count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_KSWAPD, 1962 nr_reclaimed); 1963 } else { 1964 if (global_reclaim(sc)) 1965 __count_vm_events(PGSTEAL_DIRECT, nr_reclaimed); 1966 count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_DIRECT, 1967 nr_reclaimed); 1968 } 1969 1970 putback_inactive_pages(lruvec, &page_list); 1971 1972 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 1973 1974 spin_unlock_irq(&pgdat->lru_lock); 1975 1976 mem_cgroup_uncharge_list(&page_list); 1977 free_unref_page_list(&page_list); 1978 1979 /* 1980 * If dirty pages are scanned that are not queued for IO, it 1981 * implies that flushers are not doing their job. This can 1982 * happen when memory pressure pushes dirty pages to the end of 1983 * the LRU before the dirty limits are breached and the dirty 1984 * data has expired. It can also happen when the proportion of 1985 * dirty pages grows not through writes but through memory 1986 * pressure reclaiming all the clean cache. And in some cases, 1987 * the flushers simply cannot keep up with the allocation 1988 * rate. Nudge the flusher threads in case they are asleep. 1989 */ 1990 if (stat.nr_unqueued_dirty == nr_taken) 1991 wakeup_flusher_threads(WB_REASON_VMSCAN); 1992 1993 sc->nr.dirty += stat.nr_dirty; 1994 sc->nr.congested += stat.nr_congested; 1995 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty; 1996 sc->nr.writeback += stat.nr_writeback; 1997 sc->nr.immediate += stat.nr_immediate; 1998 sc->nr.taken += nr_taken; 1999 if (file) 2000 sc->nr.file_taken += nr_taken; 2001 2002 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 2003 nr_scanned, nr_reclaimed, &stat, sc->priority, file); 2004 return nr_reclaimed; 2005 } 2006 2007 /* 2008 * This moves pages from the active list to the inactive list. 2009 * 2010 * We move them the other way if the page is referenced by one or more 2011 * processes, from rmap. 2012 * 2013 * If the pages are mostly unmapped, the processing is fast and it is 2014 * appropriate to hold zone_lru_lock across the whole operation. But if 2015 * the pages are mapped, the processing is slow (page_referenced()) so we 2016 * should drop zone_lru_lock around each page. It's impossible to balance 2017 * this, so instead we remove the pages from the LRU while processing them. 2018 * It is safe to rely on PG_active against the non-LRU pages in here because 2019 * nobody will play with that bit on a non-LRU page. 2020 * 2021 * The downside is that we have to touch page->_refcount against each page. 2022 * But we had to alter page->flags anyway. 2023 * 2024 * Returns the number of pages moved to the given lru. 2025 */ 2026 2027 static unsigned move_active_pages_to_lru(struct lruvec *lruvec, 2028 struct list_head *list, 2029 struct list_head *pages_to_free, 2030 enum lru_list lru) 2031 { 2032 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2033 struct page *page; 2034 int nr_pages; 2035 int nr_moved = 0; 2036 2037 while (!list_empty(list)) { 2038 page = lru_to_page(list); 2039 lruvec = mem_cgroup_page_lruvec(page, pgdat); 2040 2041 VM_BUG_ON_PAGE(PageLRU(page), page); 2042 SetPageLRU(page); 2043 2044 nr_pages = hpage_nr_pages(page); 2045 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages); 2046 list_move(&page->lru, &lruvec->lists[lru]); 2047 2048 if (put_page_testzero(page)) { 2049 __ClearPageLRU(page); 2050 __ClearPageActive(page); 2051 del_page_from_lru_list(page, lruvec, lru); 2052 2053 if (unlikely(PageCompound(page))) { 2054 spin_unlock_irq(&pgdat->lru_lock); 2055 mem_cgroup_uncharge(page); 2056 (*get_compound_page_dtor(page))(page); 2057 spin_lock_irq(&pgdat->lru_lock); 2058 } else 2059 list_add(&page->lru, pages_to_free); 2060 } else { 2061 nr_moved += nr_pages; 2062 } 2063 } 2064 2065 if (!is_active_lru(lru)) { 2066 __count_vm_events(PGDEACTIVATE, nr_moved); 2067 count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, 2068 nr_moved); 2069 } 2070 2071 return nr_moved; 2072 } 2073 2074 static void shrink_active_list(unsigned long nr_to_scan, 2075 struct lruvec *lruvec, 2076 struct scan_control *sc, 2077 enum lru_list lru) 2078 { 2079 unsigned long nr_taken; 2080 unsigned long nr_scanned; 2081 unsigned long vm_flags; 2082 LIST_HEAD(l_hold); /* The pages which were snipped off */ 2083 LIST_HEAD(l_active); 2084 LIST_HEAD(l_inactive); 2085 struct page *page; 2086 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 2087 unsigned nr_deactivate, nr_activate; 2088 unsigned nr_rotated = 0; 2089 isolate_mode_t isolate_mode = 0; 2090 int file = is_file_lru(lru); 2091 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2092 2093 lru_add_drain(); 2094 2095 if (!sc->may_unmap) 2096 isolate_mode |= ISOLATE_UNMAPPED; 2097 2098 spin_lock_irq(&pgdat->lru_lock); 2099 2100 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold, 2101 &nr_scanned, sc, isolate_mode, lru); 2102 2103 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2104 reclaim_stat->recent_scanned[file] += nr_taken; 2105 2106 __count_vm_events(PGREFILL, nr_scanned); 2107 count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned); 2108 2109 spin_unlock_irq(&pgdat->lru_lock); 2110 2111 while (!list_empty(&l_hold)) { 2112 cond_resched(); 2113 page = lru_to_page(&l_hold); 2114 list_del(&page->lru); 2115 2116 if (unlikely(!page_evictable(page))) { 2117 putback_lru_page(page); 2118 continue; 2119 } 2120 2121 if (unlikely(buffer_heads_over_limit)) { 2122 if (page_has_private(page) && trylock_page(page)) { 2123 if (page_has_private(page)) 2124 try_to_release_page(page, 0); 2125 unlock_page(page); 2126 } 2127 } 2128 2129 if (page_referenced(page, 0, sc->target_mem_cgroup, 2130 &vm_flags)) { 2131 nr_rotated += hpage_nr_pages(page); 2132 /* 2133 * Identify referenced, file-backed active pages and 2134 * give them one more trip around the active list. So 2135 * that executable code get better chances to stay in 2136 * memory under moderate memory pressure. Anon pages 2137 * are not likely to be evicted by use-once streaming 2138 * IO, plus JVM can create lots of anon VM_EXEC pages, 2139 * so we ignore them here. 2140 */ 2141 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) { 2142 list_add(&page->lru, &l_active); 2143 continue; 2144 } 2145 } 2146 2147 ClearPageActive(page); /* we are de-activating */ 2148 SetPageWorkingset(page); 2149 list_add(&page->lru, &l_inactive); 2150 } 2151 2152 /* 2153 * Move pages back to the lru list. 2154 */ 2155 spin_lock_irq(&pgdat->lru_lock); 2156 /* 2157 * Count referenced pages from currently used mappings as rotated, 2158 * even though only some of them are actually re-activated. This 2159 * helps balance scan pressure between file and anonymous pages in 2160 * get_scan_count. 2161 */ 2162 reclaim_stat->recent_rotated[file] += nr_rotated; 2163 2164 nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru); 2165 nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE); 2166 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2167 spin_unlock_irq(&pgdat->lru_lock); 2168 2169 mem_cgroup_uncharge_list(&l_hold); 2170 free_unref_page_list(&l_hold); 2171 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate, 2172 nr_deactivate, nr_rotated, sc->priority, file); 2173 } 2174 2175 /* 2176 * The inactive anon list should be small enough that the VM never has 2177 * to do too much work. 2178 * 2179 * The inactive file list should be small enough to leave most memory 2180 * to the established workingset on the scan-resistant active list, 2181 * but large enough to avoid thrashing the aggregate readahead window. 2182 * 2183 * Both inactive lists should also be large enough that each inactive 2184 * page has a chance to be referenced again before it is reclaimed. 2185 * 2186 * If that fails and refaulting is observed, the inactive list grows. 2187 * 2188 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages 2189 * on this LRU, maintained by the pageout code. An inactive_ratio 2190 * of 3 means 3:1 or 25% of the pages are kept on the inactive list. 2191 * 2192 * total target max 2193 * memory ratio inactive 2194 * ------------------------------------- 2195 * 10MB 1 5MB 2196 * 100MB 1 50MB 2197 * 1GB 3 250MB 2198 * 10GB 10 0.9GB 2199 * 100GB 31 3GB 2200 * 1TB 101 10GB 2201 * 10TB 320 32GB 2202 */ 2203 static bool inactive_list_is_low(struct lruvec *lruvec, bool file, 2204 struct mem_cgroup *memcg, 2205 struct scan_control *sc, bool actual_reclaim) 2206 { 2207 enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE; 2208 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2209 enum lru_list inactive_lru = file * LRU_FILE; 2210 unsigned long inactive, active; 2211 unsigned long inactive_ratio; 2212 unsigned long refaults; 2213 unsigned long gb; 2214 2215 /* 2216 * If we don't have swap space, anonymous page deactivation 2217 * is pointless. 2218 */ 2219 if (!file && !total_swap_pages) 2220 return false; 2221 2222 inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx); 2223 active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx); 2224 2225 if (memcg) 2226 refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE); 2227 else 2228 refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE); 2229 2230 /* 2231 * When refaults are being observed, it means a new workingset 2232 * is being established. Disable active list protection to get 2233 * rid of the stale workingset quickly. 2234 */ 2235 if (file && actual_reclaim && lruvec->refaults != refaults) { 2236 inactive_ratio = 0; 2237 } else { 2238 gb = (inactive + active) >> (30 - PAGE_SHIFT); 2239 if (gb) 2240 inactive_ratio = int_sqrt(10 * gb); 2241 else 2242 inactive_ratio = 1; 2243 } 2244 2245 if (actual_reclaim) 2246 trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx, 2247 lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive, 2248 lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active, 2249 inactive_ratio, file); 2250 2251 return inactive * inactive_ratio < active; 2252 } 2253 2254 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 2255 struct lruvec *lruvec, struct mem_cgroup *memcg, 2256 struct scan_control *sc) 2257 { 2258 if (is_active_lru(lru)) { 2259 if (inactive_list_is_low(lruvec, is_file_lru(lru), 2260 memcg, sc, true)) 2261 shrink_active_list(nr_to_scan, lruvec, sc, lru); 2262 return 0; 2263 } 2264 2265 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 2266 } 2267 2268 enum scan_balance { 2269 SCAN_EQUAL, 2270 SCAN_FRACT, 2271 SCAN_ANON, 2272 SCAN_FILE, 2273 }; 2274 2275 /* 2276 * Determine how aggressively the anon and file LRU lists should be 2277 * scanned. The relative value of each set of LRU lists is determined 2278 * by looking at the fraction of the pages scanned we did rotate back 2279 * onto the active list instead of evict. 2280 * 2281 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan 2282 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan 2283 */ 2284 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg, 2285 struct scan_control *sc, unsigned long *nr, 2286 unsigned long *lru_pages) 2287 { 2288 int swappiness = mem_cgroup_swappiness(memcg); 2289 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 2290 u64 fraction[2]; 2291 u64 denominator = 0; /* gcc */ 2292 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2293 unsigned long anon_prio, file_prio; 2294 enum scan_balance scan_balance; 2295 unsigned long anon, file; 2296 unsigned long ap, fp; 2297 enum lru_list lru; 2298 2299 /* If we have no swap space, do not bother scanning anon pages. */ 2300 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) { 2301 scan_balance = SCAN_FILE; 2302 goto out; 2303 } 2304 2305 /* 2306 * Global reclaim will swap to prevent OOM even with no 2307 * swappiness, but memcg users want to use this knob to 2308 * disable swapping for individual groups completely when 2309 * using the memory controller's swap limit feature would be 2310 * too expensive. 2311 */ 2312 if (!global_reclaim(sc) && !swappiness) { 2313 scan_balance = SCAN_FILE; 2314 goto out; 2315 } 2316 2317 /* 2318 * Do not apply any pressure balancing cleverness when the 2319 * system is close to OOM, scan both anon and file equally 2320 * (unless the swappiness setting disagrees with swapping). 2321 */ 2322 if (!sc->priority && swappiness) { 2323 scan_balance = SCAN_EQUAL; 2324 goto out; 2325 } 2326 2327 /* 2328 * Prevent the reclaimer from falling into the cache trap: as 2329 * cache pages start out inactive, every cache fault will tip 2330 * the scan balance towards the file LRU. And as the file LRU 2331 * shrinks, so does the window for rotation from references. 2332 * This means we have a runaway feedback loop where a tiny 2333 * thrashing file LRU becomes infinitely more attractive than 2334 * anon pages. Try to detect this based on file LRU size. 2335 */ 2336 if (global_reclaim(sc)) { 2337 unsigned long pgdatfile; 2338 unsigned long pgdatfree; 2339 int z; 2340 unsigned long total_high_wmark = 0; 2341 2342 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES); 2343 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) + 2344 node_page_state(pgdat, NR_INACTIVE_FILE); 2345 2346 for (z = 0; z < MAX_NR_ZONES; z++) { 2347 struct zone *zone = &pgdat->node_zones[z]; 2348 if (!managed_zone(zone)) 2349 continue; 2350 2351 total_high_wmark += high_wmark_pages(zone); 2352 } 2353 2354 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) { 2355 /* 2356 * Force SCAN_ANON if there are enough inactive 2357 * anonymous pages on the LRU in eligible zones. 2358 * Otherwise, the small LRU gets thrashed. 2359 */ 2360 if (!inactive_list_is_low(lruvec, false, memcg, sc, false) && 2361 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx) 2362 >> sc->priority) { 2363 scan_balance = SCAN_ANON; 2364 goto out; 2365 } 2366 } 2367 } 2368 2369 /* 2370 * If there is enough inactive page cache, i.e. if the size of the 2371 * inactive list is greater than that of the active list *and* the 2372 * inactive list actually has some pages to scan on this priority, we 2373 * do not reclaim anything from the anonymous working set right now. 2374 * Without the second condition we could end up never scanning an 2375 * lruvec even if it has plenty of old anonymous pages unless the 2376 * system is under heavy pressure. 2377 */ 2378 if (!inactive_list_is_low(lruvec, true, memcg, sc, false) && 2379 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) { 2380 scan_balance = SCAN_FILE; 2381 goto out; 2382 } 2383 2384 scan_balance = SCAN_FRACT; 2385 2386 /* 2387 * With swappiness at 100, anonymous and file have the same priority. 2388 * This scanning priority is essentially the inverse of IO cost. 2389 */ 2390 anon_prio = swappiness; 2391 file_prio = 200 - anon_prio; 2392 2393 /* 2394 * OK, so we have swap space and a fair amount of page cache 2395 * pages. We use the recently rotated / recently scanned 2396 * ratios to determine how valuable each cache is. 2397 * 2398 * Because workloads change over time (and to avoid overflow) 2399 * we keep these statistics as a floating average, which ends 2400 * up weighing recent references more than old ones. 2401 * 2402 * anon in [0], file in [1] 2403 */ 2404 2405 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) + 2406 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES); 2407 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) + 2408 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES); 2409 2410 spin_lock_irq(&pgdat->lru_lock); 2411 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) { 2412 reclaim_stat->recent_scanned[0] /= 2; 2413 reclaim_stat->recent_rotated[0] /= 2; 2414 } 2415 2416 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) { 2417 reclaim_stat->recent_scanned[1] /= 2; 2418 reclaim_stat->recent_rotated[1] /= 2; 2419 } 2420 2421 /* 2422 * The amount of pressure on anon vs file pages is inversely 2423 * proportional to the fraction of recently scanned pages on 2424 * each list that were recently referenced and in active use. 2425 */ 2426 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1); 2427 ap /= reclaim_stat->recent_rotated[0] + 1; 2428 2429 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1); 2430 fp /= reclaim_stat->recent_rotated[1] + 1; 2431 spin_unlock_irq(&pgdat->lru_lock); 2432 2433 fraction[0] = ap; 2434 fraction[1] = fp; 2435 denominator = ap + fp + 1; 2436 out: 2437 *lru_pages = 0; 2438 for_each_evictable_lru(lru) { 2439 int file = is_file_lru(lru); 2440 unsigned long size; 2441 unsigned long scan; 2442 2443 size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx); 2444 scan = size >> sc->priority; 2445 /* 2446 * If the cgroup's already been deleted, make sure to 2447 * scrape out the remaining cache. 2448 */ 2449 if (!scan && !mem_cgroup_online(memcg)) 2450 scan = min(size, SWAP_CLUSTER_MAX); 2451 2452 switch (scan_balance) { 2453 case SCAN_EQUAL: 2454 /* Scan lists relative to size */ 2455 break; 2456 case SCAN_FRACT: 2457 /* 2458 * Scan types proportional to swappiness and 2459 * their relative recent reclaim efficiency. 2460 * Make sure we don't miss the last page 2461 * because of a round-off error. 2462 */ 2463 scan = DIV64_U64_ROUND_UP(scan * fraction[file], 2464 denominator); 2465 break; 2466 case SCAN_FILE: 2467 case SCAN_ANON: 2468 /* Scan one type exclusively */ 2469 if ((scan_balance == SCAN_FILE) != file) { 2470 size = 0; 2471 scan = 0; 2472 } 2473 break; 2474 default: 2475 /* Look ma, no brain */ 2476 BUG(); 2477 } 2478 2479 *lru_pages += size; 2480 nr[lru] = scan; 2481 } 2482 } 2483 2484 /* 2485 * This is a basic per-node page freer. Used by both kswapd and direct reclaim. 2486 */ 2487 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg, 2488 struct scan_control *sc, unsigned long *lru_pages) 2489 { 2490 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg); 2491 unsigned long nr[NR_LRU_LISTS]; 2492 unsigned long targets[NR_LRU_LISTS]; 2493 unsigned long nr_to_scan; 2494 enum lru_list lru; 2495 unsigned long nr_reclaimed = 0; 2496 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 2497 struct blk_plug plug; 2498 bool scan_adjusted; 2499 2500 get_scan_count(lruvec, memcg, sc, nr, lru_pages); 2501 2502 /* Record the original scan target for proportional adjustments later */ 2503 memcpy(targets, nr, sizeof(nr)); 2504 2505 /* 2506 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal 2507 * event that can occur when there is little memory pressure e.g. 2508 * multiple streaming readers/writers. Hence, we do not abort scanning 2509 * when the requested number of pages are reclaimed when scanning at 2510 * DEF_PRIORITY on the assumption that the fact we are direct 2511 * reclaiming implies that kswapd is not keeping up and it is best to 2512 * do a batch of work at once. For memcg reclaim one check is made to 2513 * abort proportional reclaim if either the file or anon lru has already 2514 * dropped to zero at the first pass. 2515 */ 2516 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() && 2517 sc->priority == DEF_PRIORITY); 2518 2519 blk_start_plug(&plug); 2520 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 2521 nr[LRU_INACTIVE_FILE]) { 2522 unsigned long nr_anon, nr_file, percentage; 2523 unsigned long nr_scanned; 2524 2525 for_each_evictable_lru(lru) { 2526 if (nr[lru]) { 2527 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 2528 nr[lru] -= nr_to_scan; 2529 2530 nr_reclaimed += shrink_list(lru, nr_to_scan, 2531 lruvec, memcg, sc); 2532 } 2533 } 2534 2535 cond_resched(); 2536 2537 if (nr_reclaimed < nr_to_reclaim || scan_adjusted) 2538 continue; 2539 2540 /* 2541 * For kswapd and memcg, reclaim at least the number of pages 2542 * requested. Ensure that the anon and file LRUs are scanned 2543 * proportionally what was requested by get_scan_count(). We 2544 * stop reclaiming one LRU and reduce the amount scanning 2545 * proportional to the original scan target. 2546 */ 2547 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 2548 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 2549 2550 /* 2551 * It's just vindictive to attack the larger once the smaller 2552 * has gone to zero. And given the way we stop scanning the 2553 * smaller below, this makes sure that we only make one nudge 2554 * towards proportionality once we've got nr_to_reclaim. 2555 */ 2556 if (!nr_file || !nr_anon) 2557 break; 2558 2559 if (nr_file > nr_anon) { 2560 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 2561 targets[LRU_ACTIVE_ANON] + 1; 2562 lru = LRU_BASE; 2563 percentage = nr_anon * 100 / scan_target; 2564 } else { 2565 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 2566 targets[LRU_ACTIVE_FILE] + 1; 2567 lru = LRU_FILE; 2568 percentage = nr_file * 100 / scan_target; 2569 } 2570 2571 /* Stop scanning the smaller of the LRU */ 2572 nr[lru] = 0; 2573 nr[lru + LRU_ACTIVE] = 0; 2574 2575 /* 2576 * Recalculate the other LRU scan count based on its original 2577 * scan target and the percentage scanning already complete 2578 */ 2579 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 2580 nr_scanned = targets[lru] - nr[lru]; 2581 nr[lru] = targets[lru] * (100 - percentage) / 100; 2582 nr[lru] -= min(nr[lru], nr_scanned); 2583 2584 lru += LRU_ACTIVE; 2585 nr_scanned = targets[lru] - nr[lru]; 2586 nr[lru] = targets[lru] * (100 - percentage) / 100; 2587 nr[lru] -= min(nr[lru], nr_scanned); 2588 2589 scan_adjusted = true; 2590 } 2591 blk_finish_plug(&plug); 2592 sc->nr_reclaimed += nr_reclaimed; 2593 2594 /* 2595 * Even if we did not try to evict anon pages at all, we want to 2596 * rebalance the anon lru active/inactive ratio. 2597 */ 2598 if (inactive_list_is_low(lruvec, false, memcg, sc, true)) 2599 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 2600 sc, LRU_ACTIVE_ANON); 2601 } 2602 2603 /* Use reclaim/compaction for costly allocs or under memory pressure */ 2604 static bool in_reclaim_compaction(struct scan_control *sc) 2605 { 2606 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 2607 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 2608 sc->priority < DEF_PRIORITY - 2)) 2609 return true; 2610 2611 return false; 2612 } 2613 2614 /* 2615 * Reclaim/compaction is used for high-order allocation requests. It reclaims 2616 * order-0 pages before compacting the zone. should_continue_reclaim() returns 2617 * true if more pages should be reclaimed such that when the page allocator 2618 * calls try_to_compact_zone() that it will have enough free pages to succeed. 2619 * It will give up earlier than that if there is difficulty reclaiming pages. 2620 */ 2621 static inline bool should_continue_reclaim(struct pglist_data *pgdat, 2622 unsigned long nr_reclaimed, 2623 unsigned long nr_scanned, 2624 struct scan_control *sc) 2625 { 2626 unsigned long pages_for_compaction; 2627 unsigned long inactive_lru_pages; 2628 int z; 2629 2630 /* If not in reclaim/compaction mode, stop */ 2631 if (!in_reclaim_compaction(sc)) 2632 return false; 2633 2634 /* Consider stopping depending on scan and reclaim activity */ 2635 if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) { 2636 /* 2637 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the 2638 * full LRU list has been scanned and we are still failing 2639 * to reclaim pages. This full LRU scan is potentially 2640 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed 2641 */ 2642 if (!nr_reclaimed && !nr_scanned) 2643 return false; 2644 } else { 2645 /* 2646 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably 2647 * fail without consequence, stop if we failed to reclaim 2648 * any pages from the last SWAP_CLUSTER_MAX number of 2649 * pages that were scanned. This will return to the 2650 * caller faster at the risk reclaim/compaction and 2651 * the resulting allocation attempt fails 2652 */ 2653 if (!nr_reclaimed) 2654 return false; 2655 } 2656 2657 /* 2658 * If we have not reclaimed enough pages for compaction and the 2659 * inactive lists are large enough, continue reclaiming 2660 */ 2661 pages_for_compaction = compact_gap(sc->order); 2662 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE); 2663 if (get_nr_swap_pages() > 0) 2664 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON); 2665 if (sc->nr_reclaimed < pages_for_compaction && 2666 inactive_lru_pages > pages_for_compaction) 2667 return true; 2668 2669 /* If compaction would go ahead or the allocation would succeed, stop */ 2670 for (z = 0; z <= sc->reclaim_idx; z++) { 2671 struct zone *zone = &pgdat->node_zones[z]; 2672 if (!managed_zone(zone)) 2673 continue; 2674 2675 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) { 2676 case COMPACT_SUCCESS: 2677 case COMPACT_CONTINUE: 2678 return false; 2679 default: 2680 /* check next zone */ 2681 ; 2682 } 2683 } 2684 return true; 2685 } 2686 2687 static bool pgdat_memcg_congested(pg_data_t *pgdat, struct mem_cgroup *memcg) 2688 { 2689 return test_bit(PGDAT_CONGESTED, &pgdat->flags) || 2690 (memcg && memcg_congested(pgdat, memcg)); 2691 } 2692 2693 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc) 2694 { 2695 struct reclaim_state *reclaim_state = current->reclaim_state; 2696 unsigned long nr_reclaimed, nr_scanned; 2697 bool reclaimable = false; 2698 2699 do { 2700 struct mem_cgroup *root = sc->target_mem_cgroup; 2701 struct mem_cgroup_reclaim_cookie reclaim = { 2702 .pgdat = pgdat, 2703 .priority = sc->priority, 2704 }; 2705 unsigned long node_lru_pages = 0; 2706 struct mem_cgroup *memcg; 2707 2708 memset(&sc->nr, 0, sizeof(sc->nr)); 2709 2710 nr_reclaimed = sc->nr_reclaimed; 2711 nr_scanned = sc->nr_scanned; 2712 2713 memcg = mem_cgroup_iter(root, NULL, &reclaim); 2714 do { 2715 unsigned long lru_pages; 2716 unsigned long reclaimed; 2717 unsigned long scanned; 2718 2719 switch (mem_cgroup_protected(root, memcg)) { 2720 case MEMCG_PROT_MIN: 2721 /* 2722 * Hard protection. 2723 * If there is no reclaimable memory, OOM. 2724 */ 2725 continue; 2726 case MEMCG_PROT_LOW: 2727 /* 2728 * Soft protection. 2729 * Respect the protection only as long as 2730 * there is an unprotected supply 2731 * of reclaimable memory from other cgroups. 2732 */ 2733 if (!sc->memcg_low_reclaim) { 2734 sc->memcg_low_skipped = 1; 2735 continue; 2736 } 2737 memcg_memory_event(memcg, MEMCG_LOW); 2738 break; 2739 case MEMCG_PROT_NONE: 2740 break; 2741 } 2742 2743 reclaimed = sc->nr_reclaimed; 2744 scanned = sc->nr_scanned; 2745 shrink_node_memcg(pgdat, memcg, sc, &lru_pages); 2746 node_lru_pages += lru_pages; 2747 2748 shrink_slab(sc->gfp_mask, pgdat->node_id, 2749 memcg, sc->priority); 2750 2751 /* Record the group's reclaim efficiency */ 2752 vmpressure(sc->gfp_mask, memcg, false, 2753 sc->nr_scanned - scanned, 2754 sc->nr_reclaimed - reclaimed); 2755 2756 /* 2757 * Direct reclaim and kswapd have to scan all memory 2758 * cgroups to fulfill the overall scan target for the 2759 * node. 2760 * 2761 * Limit reclaim, on the other hand, only cares about 2762 * nr_to_reclaim pages to be reclaimed and it will 2763 * retry with decreasing priority if one round over the 2764 * whole hierarchy is not sufficient. 2765 */ 2766 if (!global_reclaim(sc) && 2767 sc->nr_reclaimed >= sc->nr_to_reclaim) { 2768 mem_cgroup_iter_break(root, memcg); 2769 break; 2770 } 2771 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim))); 2772 2773 if (reclaim_state) { 2774 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 2775 reclaim_state->reclaimed_slab = 0; 2776 } 2777 2778 /* Record the subtree's reclaim efficiency */ 2779 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, 2780 sc->nr_scanned - nr_scanned, 2781 sc->nr_reclaimed - nr_reclaimed); 2782 2783 if (sc->nr_reclaimed - nr_reclaimed) 2784 reclaimable = true; 2785 2786 if (current_is_kswapd()) { 2787 /* 2788 * If reclaim is isolating dirty pages under writeback, 2789 * it implies that the long-lived page allocation rate 2790 * is exceeding the page laundering rate. Either the 2791 * global limits are not being effective at throttling 2792 * processes due to the page distribution throughout 2793 * zones or there is heavy usage of a slow backing 2794 * device. The only option is to throttle from reclaim 2795 * context which is not ideal as there is no guarantee 2796 * the dirtying process is throttled in the same way 2797 * balance_dirty_pages() manages. 2798 * 2799 * Once a node is flagged PGDAT_WRITEBACK, kswapd will 2800 * count the number of pages under pages flagged for 2801 * immediate reclaim and stall if any are encountered 2802 * in the nr_immediate check below. 2803 */ 2804 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken) 2805 set_bit(PGDAT_WRITEBACK, &pgdat->flags); 2806 2807 /* 2808 * Tag a node as congested if all the dirty pages 2809 * scanned were backed by a congested BDI and 2810 * wait_iff_congested will stall. 2811 */ 2812 if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested) 2813 set_bit(PGDAT_CONGESTED, &pgdat->flags); 2814 2815 /* Allow kswapd to start writing pages during reclaim.*/ 2816 if (sc->nr.unqueued_dirty == sc->nr.file_taken) 2817 set_bit(PGDAT_DIRTY, &pgdat->flags); 2818 2819 /* 2820 * If kswapd scans pages marked marked for immediate 2821 * reclaim and under writeback (nr_immediate), it 2822 * implies that pages are cycling through the LRU 2823 * faster than they are written so also forcibly stall. 2824 */ 2825 if (sc->nr.immediate) 2826 congestion_wait(BLK_RW_ASYNC, HZ/10); 2827 } 2828 2829 /* 2830 * Legacy memcg will stall in page writeback so avoid forcibly 2831 * stalling in wait_iff_congested(). 2832 */ 2833 if (!global_reclaim(sc) && sane_reclaim(sc) && 2834 sc->nr.dirty && sc->nr.dirty == sc->nr.congested) 2835 set_memcg_congestion(pgdat, root, true); 2836 2837 /* 2838 * Stall direct reclaim for IO completions if underlying BDIs 2839 * and node is congested. Allow kswapd to continue until it 2840 * starts encountering unqueued dirty pages or cycling through 2841 * the LRU too quickly. 2842 */ 2843 if (!sc->hibernation_mode && !current_is_kswapd() && 2844 current_may_throttle() && pgdat_memcg_congested(pgdat, root)) 2845 wait_iff_congested(BLK_RW_ASYNC, HZ/10); 2846 2847 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed, 2848 sc->nr_scanned - nr_scanned, sc)); 2849 2850 /* 2851 * Kswapd gives up on balancing particular nodes after too 2852 * many failures to reclaim anything from them and goes to 2853 * sleep. On reclaim progress, reset the failure counter. A 2854 * successful direct reclaim run will revive a dormant kswapd. 2855 */ 2856 if (reclaimable) 2857 pgdat->kswapd_failures = 0; 2858 2859 return reclaimable; 2860 } 2861 2862 /* 2863 * Returns true if compaction should go ahead for a costly-order request, or 2864 * the allocation would already succeed without compaction. Return false if we 2865 * should reclaim first. 2866 */ 2867 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) 2868 { 2869 unsigned long watermark; 2870 enum compact_result suitable; 2871 2872 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx); 2873 if (suitable == COMPACT_SUCCESS) 2874 /* Allocation should succeed already. Don't reclaim. */ 2875 return true; 2876 if (suitable == COMPACT_SKIPPED) 2877 /* Compaction cannot yet proceed. Do reclaim. */ 2878 return false; 2879 2880 /* 2881 * Compaction is already possible, but it takes time to run and there 2882 * are potentially other callers using the pages just freed. So proceed 2883 * with reclaim to make a buffer of free pages available to give 2884 * compaction a reasonable chance of completing and allocating the page. 2885 * Note that we won't actually reclaim the whole buffer in one attempt 2886 * as the target watermark in should_continue_reclaim() is lower. But if 2887 * we are already above the high+gap watermark, don't reclaim at all. 2888 */ 2889 watermark = high_wmark_pages(zone) + compact_gap(sc->order); 2890 2891 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx); 2892 } 2893 2894 /* 2895 * This is the direct reclaim path, for page-allocating processes. We only 2896 * try to reclaim pages from zones which will satisfy the caller's allocation 2897 * request. 2898 * 2899 * If a zone is deemed to be full of pinned pages then just give it a light 2900 * scan then give up on it. 2901 */ 2902 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 2903 { 2904 struct zoneref *z; 2905 struct zone *zone; 2906 unsigned long nr_soft_reclaimed; 2907 unsigned long nr_soft_scanned; 2908 gfp_t orig_mask; 2909 pg_data_t *last_pgdat = NULL; 2910 2911 /* 2912 * If the number of buffer_heads in the machine exceeds the maximum 2913 * allowed level, force direct reclaim to scan the highmem zone as 2914 * highmem pages could be pinning lowmem pages storing buffer_heads 2915 */ 2916 orig_mask = sc->gfp_mask; 2917 if (buffer_heads_over_limit) { 2918 sc->gfp_mask |= __GFP_HIGHMEM; 2919 sc->reclaim_idx = gfp_zone(sc->gfp_mask); 2920 } 2921 2922 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2923 sc->reclaim_idx, sc->nodemask) { 2924 /* 2925 * Take care memory controller reclaiming has small influence 2926 * to global LRU. 2927 */ 2928 if (global_reclaim(sc)) { 2929 if (!cpuset_zone_allowed(zone, 2930 GFP_KERNEL | __GFP_HARDWALL)) 2931 continue; 2932 2933 /* 2934 * If we already have plenty of memory free for 2935 * compaction in this zone, don't free any more. 2936 * Even though compaction is invoked for any 2937 * non-zero order, only frequent costly order 2938 * reclamation is disruptive enough to become a 2939 * noticeable problem, like transparent huge 2940 * page allocations. 2941 */ 2942 if (IS_ENABLED(CONFIG_COMPACTION) && 2943 sc->order > PAGE_ALLOC_COSTLY_ORDER && 2944 compaction_ready(zone, sc)) { 2945 sc->compaction_ready = true; 2946 continue; 2947 } 2948 2949 /* 2950 * Shrink each node in the zonelist once. If the 2951 * zonelist is ordered by zone (not the default) then a 2952 * node may be shrunk multiple times but in that case 2953 * the user prefers lower zones being preserved. 2954 */ 2955 if (zone->zone_pgdat == last_pgdat) 2956 continue; 2957 2958 /* 2959 * This steals pages from memory cgroups over softlimit 2960 * and returns the number of reclaimed pages and 2961 * scanned pages. This works for global memory pressure 2962 * and balancing, not for a memcg's limit. 2963 */ 2964 nr_soft_scanned = 0; 2965 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat, 2966 sc->order, sc->gfp_mask, 2967 &nr_soft_scanned); 2968 sc->nr_reclaimed += nr_soft_reclaimed; 2969 sc->nr_scanned += nr_soft_scanned; 2970 /* need some check for avoid more shrink_zone() */ 2971 } 2972 2973 /* See comment about same check for global reclaim above */ 2974 if (zone->zone_pgdat == last_pgdat) 2975 continue; 2976 last_pgdat = zone->zone_pgdat; 2977 shrink_node(zone->zone_pgdat, sc); 2978 } 2979 2980 /* 2981 * Restore to original mask to avoid the impact on the caller if we 2982 * promoted it to __GFP_HIGHMEM. 2983 */ 2984 sc->gfp_mask = orig_mask; 2985 } 2986 2987 static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat) 2988 { 2989 struct mem_cgroup *memcg; 2990 2991 memcg = mem_cgroup_iter(root_memcg, NULL, NULL); 2992 do { 2993 unsigned long refaults; 2994 struct lruvec *lruvec; 2995 2996 if (memcg) 2997 refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE); 2998 else 2999 refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE); 3000 3001 lruvec = mem_cgroup_lruvec(pgdat, memcg); 3002 lruvec->refaults = refaults; 3003 } while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL))); 3004 } 3005 3006 /* 3007 * This is the main entry point to direct page reclaim. 3008 * 3009 * If a full scan of the inactive list fails to free enough memory then we 3010 * are "out of memory" and something needs to be killed. 3011 * 3012 * If the caller is !__GFP_FS then the probability of a failure is reasonably 3013 * high - the zone may be full of dirty or under-writeback pages, which this 3014 * caller can't do much about. We kick the writeback threads and take explicit 3015 * naps in the hope that some of these pages can be written. But if the 3016 * allocating task holds filesystem locks which prevent writeout this might not 3017 * work, and the allocation attempt will fail. 3018 * 3019 * returns: 0, if no pages reclaimed 3020 * else, the number of pages reclaimed 3021 */ 3022 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 3023 struct scan_control *sc) 3024 { 3025 int initial_priority = sc->priority; 3026 pg_data_t *last_pgdat; 3027 struct zoneref *z; 3028 struct zone *zone; 3029 retry: 3030 delayacct_freepages_start(); 3031 3032 if (global_reclaim(sc)) 3033 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1); 3034 3035 do { 3036 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 3037 sc->priority); 3038 sc->nr_scanned = 0; 3039 shrink_zones(zonelist, sc); 3040 3041 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 3042 break; 3043 3044 if (sc->compaction_ready) 3045 break; 3046 3047 /* 3048 * If we're getting trouble reclaiming, start doing 3049 * writepage even in laptop mode. 3050 */ 3051 if (sc->priority < DEF_PRIORITY - 2) 3052 sc->may_writepage = 1; 3053 } while (--sc->priority >= 0); 3054 3055 last_pgdat = NULL; 3056 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx, 3057 sc->nodemask) { 3058 if (zone->zone_pgdat == last_pgdat) 3059 continue; 3060 last_pgdat = zone->zone_pgdat; 3061 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat); 3062 set_memcg_congestion(last_pgdat, sc->target_mem_cgroup, false); 3063 } 3064 3065 delayacct_freepages_end(); 3066 3067 if (sc->nr_reclaimed) 3068 return sc->nr_reclaimed; 3069 3070 /* Aborted reclaim to try compaction? don't OOM, then */ 3071 if (sc->compaction_ready) 3072 return 1; 3073 3074 /* Untapped cgroup reserves? Don't OOM, retry. */ 3075 if (sc->memcg_low_skipped) { 3076 sc->priority = initial_priority; 3077 sc->memcg_low_reclaim = 1; 3078 sc->memcg_low_skipped = 0; 3079 goto retry; 3080 } 3081 3082 return 0; 3083 } 3084 3085 static bool allow_direct_reclaim(pg_data_t *pgdat) 3086 { 3087 struct zone *zone; 3088 unsigned long pfmemalloc_reserve = 0; 3089 unsigned long free_pages = 0; 3090 int i; 3091 bool wmark_ok; 3092 3093 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 3094 return true; 3095 3096 for (i = 0; i <= ZONE_NORMAL; i++) { 3097 zone = &pgdat->node_zones[i]; 3098 if (!managed_zone(zone)) 3099 continue; 3100 3101 if (!zone_reclaimable_pages(zone)) 3102 continue; 3103 3104 pfmemalloc_reserve += min_wmark_pages(zone); 3105 free_pages += zone_page_state(zone, NR_FREE_PAGES); 3106 } 3107 3108 /* If there are no reserves (unexpected config) then do not throttle */ 3109 if (!pfmemalloc_reserve) 3110 return true; 3111 3112 wmark_ok = free_pages > pfmemalloc_reserve / 2; 3113 3114 /* kswapd must be awake if processes are being throttled */ 3115 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 3116 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx, 3117 (enum zone_type)ZONE_NORMAL); 3118 wake_up_interruptible(&pgdat->kswapd_wait); 3119 } 3120 3121 return wmark_ok; 3122 } 3123 3124 /* 3125 * Throttle direct reclaimers if backing storage is backed by the network 3126 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 3127 * depleted. kswapd will continue to make progress and wake the processes 3128 * when the low watermark is reached. 3129 * 3130 * Returns true if a fatal signal was delivered during throttling. If this 3131 * happens, the page allocator should not consider triggering the OOM killer. 3132 */ 3133 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 3134 nodemask_t *nodemask) 3135 { 3136 struct zoneref *z; 3137 struct zone *zone; 3138 pg_data_t *pgdat = NULL; 3139 3140 /* 3141 * Kernel threads should not be throttled as they may be indirectly 3142 * responsible for cleaning pages necessary for reclaim to make forward 3143 * progress. kjournald for example may enter direct reclaim while 3144 * committing a transaction where throttling it could forcing other 3145 * processes to block on log_wait_commit(). 3146 */ 3147 if (current->flags & PF_KTHREAD) 3148 goto out; 3149 3150 /* 3151 * If a fatal signal is pending, this process should not throttle. 3152 * It should return quickly so it can exit and free its memory 3153 */ 3154 if (fatal_signal_pending(current)) 3155 goto out; 3156 3157 /* 3158 * Check if the pfmemalloc reserves are ok by finding the first node 3159 * with a usable ZONE_NORMAL or lower zone. The expectation is that 3160 * GFP_KERNEL will be required for allocating network buffers when 3161 * swapping over the network so ZONE_HIGHMEM is unusable. 3162 * 3163 * Throttling is based on the first usable node and throttled processes 3164 * wait on a queue until kswapd makes progress and wakes them. There 3165 * is an affinity then between processes waking up and where reclaim 3166 * progress has been made assuming the process wakes on the same node. 3167 * More importantly, processes running on remote nodes will not compete 3168 * for remote pfmemalloc reserves and processes on different nodes 3169 * should make reasonable progress. 3170 */ 3171 for_each_zone_zonelist_nodemask(zone, z, zonelist, 3172 gfp_zone(gfp_mask), nodemask) { 3173 if (zone_idx(zone) > ZONE_NORMAL) 3174 continue; 3175 3176 /* Throttle based on the first usable node */ 3177 pgdat = zone->zone_pgdat; 3178 if (allow_direct_reclaim(pgdat)) 3179 goto out; 3180 break; 3181 } 3182 3183 /* If no zone was usable by the allocation flags then do not throttle */ 3184 if (!pgdat) 3185 goto out; 3186 3187 /* Account for the throttling */ 3188 count_vm_event(PGSCAN_DIRECT_THROTTLE); 3189 3190 /* 3191 * If the caller cannot enter the filesystem, it's possible that it 3192 * is due to the caller holding an FS lock or performing a journal 3193 * transaction in the case of a filesystem like ext[3|4]. In this case, 3194 * it is not safe to block on pfmemalloc_wait as kswapd could be 3195 * blocked waiting on the same lock. Instead, throttle for up to a 3196 * second before continuing. 3197 */ 3198 if (!(gfp_mask & __GFP_FS)) { 3199 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 3200 allow_direct_reclaim(pgdat), HZ); 3201 3202 goto check_pending; 3203 } 3204 3205 /* Throttle until kswapd wakes the process */ 3206 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 3207 allow_direct_reclaim(pgdat)); 3208 3209 check_pending: 3210 if (fatal_signal_pending(current)) 3211 return true; 3212 3213 out: 3214 return false; 3215 } 3216 3217 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 3218 gfp_t gfp_mask, nodemask_t *nodemask) 3219 { 3220 unsigned long nr_reclaimed; 3221 struct scan_control sc = { 3222 .nr_to_reclaim = SWAP_CLUSTER_MAX, 3223 .gfp_mask = current_gfp_context(gfp_mask), 3224 .reclaim_idx = gfp_zone(gfp_mask), 3225 .order = order, 3226 .nodemask = nodemask, 3227 .priority = DEF_PRIORITY, 3228 .may_writepage = !laptop_mode, 3229 .may_unmap = 1, 3230 .may_swap = 1, 3231 }; 3232 3233 /* 3234 * scan_control uses s8 fields for order, priority, and reclaim_idx. 3235 * Confirm they are large enough for max values. 3236 */ 3237 BUILD_BUG_ON(MAX_ORDER > S8_MAX); 3238 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX); 3239 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX); 3240 3241 /* 3242 * Do not enter reclaim if fatal signal was delivered while throttled. 3243 * 1 is returned so that the page allocator does not OOM kill at this 3244 * point. 3245 */ 3246 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask)) 3247 return 1; 3248 3249 trace_mm_vmscan_direct_reclaim_begin(order, 3250 sc.may_writepage, 3251 sc.gfp_mask, 3252 sc.reclaim_idx); 3253 3254 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3255 3256 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 3257 3258 return nr_reclaimed; 3259 } 3260 3261 #ifdef CONFIG_MEMCG 3262 3263 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg, 3264 gfp_t gfp_mask, bool noswap, 3265 pg_data_t *pgdat, 3266 unsigned long *nr_scanned) 3267 { 3268 struct scan_control sc = { 3269 .nr_to_reclaim = SWAP_CLUSTER_MAX, 3270 .target_mem_cgroup = memcg, 3271 .may_writepage = !laptop_mode, 3272 .may_unmap = 1, 3273 .reclaim_idx = MAX_NR_ZONES - 1, 3274 .may_swap = !noswap, 3275 }; 3276 unsigned long lru_pages; 3277 3278 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 3279 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 3280 3281 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 3282 sc.may_writepage, 3283 sc.gfp_mask, 3284 sc.reclaim_idx); 3285 3286 /* 3287 * NOTE: Although we can get the priority field, using it 3288 * here is not a good idea, since it limits the pages we can scan. 3289 * if we don't reclaim here, the shrink_node from balance_pgdat 3290 * will pick up pages from other mem cgroup's as well. We hack 3291 * the priority and make it zero. 3292 */ 3293 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages); 3294 3295 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 3296 3297 *nr_scanned = sc.nr_scanned; 3298 return sc.nr_reclaimed; 3299 } 3300 3301 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 3302 unsigned long nr_pages, 3303 gfp_t gfp_mask, 3304 bool may_swap) 3305 { 3306 struct zonelist *zonelist; 3307 unsigned long nr_reclaimed; 3308 int nid; 3309 unsigned int noreclaim_flag; 3310 struct scan_control sc = { 3311 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 3312 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) | 3313 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 3314 .reclaim_idx = MAX_NR_ZONES - 1, 3315 .target_mem_cgroup = memcg, 3316 .priority = DEF_PRIORITY, 3317 .may_writepage = !laptop_mode, 3318 .may_unmap = 1, 3319 .may_swap = may_swap, 3320 }; 3321 3322 /* 3323 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't 3324 * take care of from where we get pages. So the node where we start the 3325 * scan does not need to be the current node. 3326 */ 3327 nid = mem_cgroup_select_victim_node(memcg); 3328 3329 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK]; 3330 3331 trace_mm_vmscan_memcg_reclaim_begin(0, 3332 sc.may_writepage, 3333 sc.gfp_mask, 3334 sc.reclaim_idx); 3335 3336 noreclaim_flag = memalloc_noreclaim_save(); 3337 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3338 memalloc_noreclaim_restore(noreclaim_flag); 3339 3340 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 3341 3342 return nr_reclaimed; 3343 } 3344 #endif 3345 3346 static void age_active_anon(struct pglist_data *pgdat, 3347 struct scan_control *sc) 3348 { 3349 struct mem_cgroup *memcg; 3350 3351 if (!total_swap_pages) 3352 return; 3353 3354 memcg = mem_cgroup_iter(NULL, NULL, NULL); 3355 do { 3356 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg); 3357 3358 if (inactive_list_is_low(lruvec, false, memcg, sc, true)) 3359 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 3360 sc, LRU_ACTIVE_ANON); 3361 3362 memcg = mem_cgroup_iter(NULL, memcg, NULL); 3363 } while (memcg); 3364 } 3365 3366 /* 3367 * Returns true if there is an eligible zone balanced for the request order 3368 * and classzone_idx 3369 */ 3370 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx) 3371 { 3372 int i; 3373 unsigned long mark = -1; 3374 struct zone *zone; 3375 3376 for (i = 0; i <= classzone_idx; i++) { 3377 zone = pgdat->node_zones + i; 3378 3379 if (!managed_zone(zone)) 3380 continue; 3381 3382 mark = high_wmark_pages(zone); 3383 if (zone_watermark_ok_safe(zone, order, mark, classzone_idx)) 3384 return true; 3385 } 3386 3387 /* 3388 * If a node has no populated zone within classzone_idx, it does not 3389 * need balancing by definition. This can happen if a zone-restricted 3390 * allocation tries to wake a remote kswapd. 3391 */ 3392 if (mark == -1) 3393 return true; 3394 3395 return false; 3396 } 3397 3398 /* Clear pgdat state for congested, dirty or under writeback. */ 3399 static void clear_pgdat_congested(pg_data_t *pgdat) 3400 { 3401 clear_bit(PGDAT_CONGESTED, &pgdat->flags); 3402 clear_bit(PGDAT_DIRTY, &pgdat->flags); 3403 clear_bit(PGDAT_WRITEBACK, &pgdat->flags); 3404 } 3405 3406 /* 3407 * Prepare kswapd for sleeping. This verifies that there are no processes 3408 * waiting in throttle_direct_reclaim() and that watermarks have been met. 3409 * 3410 * Returns true if kswapd is ready to sleep 3411 */ 3412 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx) 3413 { 3414 /* 3415 * The throttled processes are normally woken up in balance_pgdat() as 3416 * soon as allow_direct_reclaim() is true. But there is a potential 3417 * race between when kswapd checks the watermarks and a process gets 3418 * throttled. There is also a potential race if processes get 3419 * throttled, kswapd wakes, a large process exits thereby balancing the 3420 * zones, which causes kswapd to exit balance_pgdat() before reaching 3421 * the wake up checks. If kswapd is going to sleep, no process should 3422 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If 3423 * the wake up is premature, processes will wake kswapd and get 3424 * throttled again. The difference from wake ups in balance_pgdat() is 3425 * that here we are under prepare_to_wait(). 3426 */ 3427 if (waitqueue_active(&pgdat->pfmemalloc_wait)) 3428 wake_up_all(&pgdat->pfmemalloc_wait); 3429 3430 /* Hopeless node, leave it to direct reclaim */ 3431 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 3432 return true; 3433 3434 if (pgdat_balanced(pgdat, order, classzone_idx)) { 3435 clear_pgdat_congested(pgdat); 3436 return true; 3437 } 3438 3439 return false; 3440 } 3441 3442 /* 3443 * kswapd shrinks a node of pages that are at or below the highest usable 3444 * zone that is currently unbalanced. 3445 * 3446 * Returns true if kswapd scanned at least the requested number of pages to 3447 * reclaim or if the lack of progress was due to pages under writeback. 3448 * This is used to determine if the scanning priority needs to be raised. 3449 */ 3450 static bool kswapd_shrink_node(pg_data_t *pgdat, 3451 struct scan_control *sc) 3452 { 3453 struct zone *zone; 3454 int z; 3455 3456 /* Reclaim a number of pages proportional to the number of zones */ 3457 sc->nr_to_reclaim = 0; 3458 for (z = 0; z <= sc->reclaim_idx; z++) { 3459 zone = pgdat->node_zones + z; 3460 if (!managed_zone(zone)) 3461 continue; 3462 3463 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX); 3464 } 3465 3466 /* 3467 * Historically care was taken to put equal pressure on all zones but 3468 * now pressure is applied based on node LRU order. 3469 */ 3470 shrink_node(pgdat, sc); 3471 3472 /* 3473 * Fragmentation may mean that the system cannot be rebalanced for 3474 * high-order allocations. If twice the allocation size has been 3475 * reclaimed then recheck watermarks only at order-0 to prevent 3476 * excessive reclaim. Assume that a process requested a high-order 3477 * can direct reclaim/compact. 3478 */ 3479 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order)) 3480 sc->order = 0; 3481 3482 return sc->nr_scanned >= sc->nr_to_reclaim; 3483 } 3484 3485 /* 3486 * For kswapd, balance_pgdat() will reclaim pages across a node from zones 3487 * that are eligible for use by the caller until at least one zone is 3488 * balanced. 3489 * 3490 * Returns the order kswapd finished reclaiming at. 3491 * 3492 * kswapd scans the zones in the highmem->normal->dma direction. It skips 3493 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 3494 * found to have free_pages <= high_wmark_pages(zone), any page is that zone 3495 * or lower is eligible for reclaim until at least one usable zone is 3496 * balanced. 3497 */ 3498 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx) 3499 { 3500 int i; 3501 unsigned long nr_soft_reclaimed; 3502 unsigned long nr_soft_scanned; 3503 struct zone *zone; 3504 struct scan_control sc = { 3505 .gfp_mask = GFP_KERNEL, 3506 .order = order, 3507 .priority = DEF_PRIORITY, 3508 .may_writepage = !laptop_mode, 3509 .may_unmap = 1, 3510 .may_swap = 1, 3511 }; 3512 3513 __fs_reclaim_acquire(); 3514 3515 count_vm_event(PAGEOUTRUN); 3516 3517 do { 3518 unsigned long nr_reclaimed = sc.nr_reclaimed; 3519 bool raise_priority = true; 3520 bool ret; 3521 3522 sc.reclaim_idx = classzone_idx; 3523 3524 /* 3525 * If the number of buffer_heads exceeds the maximum allowed 3526 * then consider reclaiming from all zones. This has a dual 3527 * purpose -- on 64-bit systems it is expected that 3528 * buffer_heads are stripped during active rotation. On 32-bit 3529 * systems, highmem pages can pin lowmem memory and shrinking 3530 * buffers can relieve lowmem pressure. Reclaim may still not 3531 * go ahead if all eligible zones for the original allocation 3532 * request are balanced to avoid excessive reclaim from kswapd. 3533 */ 3534 if (buffer_heads_over_limit) { 3535 for (i = MAX_NR_ZONES - 1; i >= 0; i--) { 3536 zone = pgdat->node_zones + i; 3537 if (!managed_zone(zone)) 3538 continue; 3539 3540 sc.reclaim_idx = i; 3541 break; 3542 } 3543 } 3544 3545 /* 3546 * Only reclaim if there are no eligible zones. Note that 3547 * sc.reclaim_idx is not used as buffer_heads_over_limit may 3548 * have adjusted it. 3549 */ 3550 if (pgdat_balanced(pgdat, sc.order, classzone_idx)) 3551 goto out; 3552 3553 /* 3554 * Do some background aging of the anon list, to give 3555 * pages a chance to be referenced before reclaiming. All 3556 * pages are rotated regardless of classzone as this is 3557 * about consistent aging. 3558 */ 3559 age_active_anon(pgdat, &sc); 3560 3561 /* 3562 * If we're getting trouble reclaiming, start doing writepage 3563 * even in laptop mode. 3564 */ 3565 if (sc.priority < DEF_PRIORITY - 2) 3566 sc.may_writepage = 1; 3567 3568 /* Call soft limit reclaim before calling shrink_node. */ 3569 sc.nr_scanned = 0; 3570 nr_soft_scanned = 0; 3571 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order, 3572 sc.gfp_mask, &nr_soft_scanned); 3573 sc.nr_reclaimed += nr_soft_reclaimed; 3574 3575 /* 3576 * There should be no need to raise the scanning priority if 3577 * enough pages are already being scanned that that high 3578 * watermark would be met at 100% efficiency. 3579 */ 3580 if (kswapd_shrink_node(pgdat, &sc)) 3581 raise_priority = false; 3582 3583 /* 3584 * If the low watermark is met there is no need for processes 3585 * to be throttled on pfmemalloc_wait as they should not be 3586 * able to safely make forward progress. Wake them 3587 */ 3588 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 3589 allow_direct_reclaim(pgdat)) 3590 wake_up_all(&pgdat->pfmemalloc_wait); 3591 3592 /* Check if kswapd should be suspending */ 3593 __fs_reclaim_release(); 3594 ret = try_to_freeze(); 3595 __fs_reclaim_acquire(); 3596 if (ret || kthread_should_stop()) 3597 break; 3598 3599 /* 3600 * Raise priority if scanning rate is too low or there was no 3601 * progress in reclaiming pages 3602 */ 3603 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed; 3604 if (raise_priority || !nr_reclaimed) 3605 sc.priority--; 3606 } while (sc.priority >= 1); 3607 3608 if (!sc.nr_reclaimed) 3609 pgdat->kswapd_failures++; 3610 3611 out: 3612 snapshot_refaults(NULL, pgdat); 3613 __fs_reclaim_release(); 3614 /* 3615 * Return the order kswapd stopped reclaiming at as 3616 * prepare_kswapd_sleep() takes it into account. If another caller 3617 * entered the allocator slow path while kswapd was awake, order will 3618 * remain at the higher level. 3619 */ 3620 return sc.order; 3621 } 3622 3623 /* 3624 * pgdat->kswapd_classzone_idx is the highest zone index that a recent 3625 * allocation request woke kswapd for. When kswapd has not woken recently, 3626 * the value is MAX_NR_ZONES which is not a valid index. This compares a 3627 * given classzone and returns it or the highest classzone index kswapd 3628 * was recently woke for. 3629 */ 3630 static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat, 3631 enum zone_type classzone_idx) 3632 { 3633 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES) 3634 return classzone_idx; 3635 3636 return max(pgdat->kswapd_classzone_idx, classzone_idx); 3637 } 3638 3639 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order, 3640 unsigned int classzone_idx) 3641 { 3642 long remaining = 0; 3643 DEFINE_WAIT(wait); 3644 3645 if (freezing(current) || kthread_should_stop()) 3646 return; 3647 3648 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3649 3650 /* 3651 * Try to sleep for a short interval. Note that kcompactd will only be 3652 * woken if it is possible to sleep for a short interval. This is 3653 * deliberate on the assumption that if reclaim cannot keep an 3654 * eligible zone balanced that it's also unlikely that compaction will 3655 * succeed. 3656 */ 3657 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) { 3658 /* 3659 * Compaction records what page blocks it recently failed to 3660 * isolate pages from and skips them in the future scanning. 3661 * When kswapd is going to sleep, it is reasonable to assume 3662 * that pages and compaction may succeed so reset the cache. 3663 */ 3664 reset_isolation_suitable(pgdat); 3665 3666 /* 3667 * We have freed the memory, now we should compact it to make 3668 * allocation of the requested order possible. 3669 */ 3670 wakeup_kcompactd(pgdat, alloc_order, classzone_idx); 3671 3672 remaining = schedule_timeout(HZ/10); 3673 3674 /* 3675 * If woken prematurely then reset kswapd_classzone_idx and 3676 * order. The values will either be from a wakeup request or 3677 * the previous request that slept prematurely. 3678 */ 3679 if (remaining) { 3680 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx); 3681 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order); 3682 } 3683 3684 finish_wait(&pgdat->kswapd_wait, &wait); 3685 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3686 } 3687 3688 /* 3689 * After a short sleep, check if it was a premature sleep. If not, then 3690 * go fully to sleep until explicitly woken up. 3691 */ 3692 if (!remaining && 3693 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) { 3694 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 3695 3696 /* 3697 * vmstat counters are not perfectly accurate and the estimated 3698 * value for counters such as NR_FREE_PAGES can deviate from the 3699 * true value by nr_online_cpus * threshold. To avoid the zone 3700 * watermarks being breached while under pressure, we reduce the 3701 * per-cpu vmstat threshold while kswapd is awake and restore 3702 * them before going back to sleep. 3703 */ 3704 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 3705 3706 if (!kthread_should_stop()) 3707 schedule(); 3708 3709 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 3710 } else { 3711 if (remaining) 3712 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 3713 else 3714 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 3715 } 3716 finish_wait(&pgdat->kswapd_wait, &wait); 3717 } 3718 3719 /* 3720 * The background pageout daemon, started as a kernel thread 3721 * from the init process. 3722 * 3723 * This basically trickles out pages so that we have _some_ 3724 * free memory available even if there is no other activity 3725 * that frees anything up. This is needed for things like routing 3726 * etc, where we otherwise might have all activity going on in 3727 * asynchronous contexts that cannot page things out. 3728 * 3729 * If there are applications that are active memory-allocators 3730 * (most normal use), this basically shouldn't matter. 3731 */ 3732 static int kswapd(void *p) 3733 { 3734 unsigned int alloc_order, reclaim_order; 3735 unsigned int classzone_idx = MAX_NR_ZONES - 1; 3736 pg_data_t *pgdat = (pg_data_t*)p; 3737 struct task_struct *tsk = current; 3738 3739 struct reclaim_state reclaim_state = { 3740 .reclaimed_slab = 0, 3741 }; 3742 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 3743 3744 if (!cpumask_empty(cpumask)) 3745 set_cpus_allowed_ptr(tsk, cpumask); 3746 current->reclaim_state = &reclaim_state; 3747 3748 /* 3749 * Tell the memory management that we're a "memory allocator", 3750 * and that if we need more memory we should get access to it 3751 * regardless (see "__alloc_pages()"). "kswapd" should 3752 * never get caught in the normal page freeing logic. 3753 * 3754 * (Kswapd normally doesn't need memory anyway, but sometimes 3755 * you need a small amount of memory in order to be able to 3756 * page out something else, and this flag essentially protects 3757 * us from recursively trying to free more memory as we're 3758 * trying to free the first piece of memory in the first place). 3759 */ 3760 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 3761 set_freezable(); 3762 3763 pgdat->kswapd_order = 0; 3764 pgdat->kswapd_classzone_idx = MAX_NR_ZONES; 3765 for ( ; ; ) { 3766 bool ret; 3767 3768 alloc_order = reclaim_order = pgdat->kswapd_order; 3769 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx); 3770 3771 kswapd_try_sleep: 3772 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order, 3773 classzone_idx); 3774 3775 /* Read the new order and classzone_idx */ 3776 alloc_order = reclaim_order = pgdat->kswapd_order; 3777 classzone_idx = kswapd_classzone_idx(pgdat, 0); 3778 pgdat->kswapd_order = 0; 3779 pgdat->kswapd_classzone_idx = MAX_NR_ZONES; 3780 3781 ret = try_to_freeze(); 3782 if (kthread_should_stop()) 3783 break; 3784 3785 /* 3786 * We can speed up thawing tasks if we don't call balance_pgdat 3787 * after returning from the refrigerator 3788 */ 3789 if (ret) 3790 continue; 3791 3792 /* 3793 * Reclaim begins at the requested order but if a high-order 3794 * reclaim fails then kswapd falls back to reclaiming for 3795 * order-0. If that happens, kswapd will consider sleeping 3796 * for the order it finished reclaiming at (reclaim_order) 3797 * but kcompactd is woken to compact for the original 3798 * request (alloc_order). 3799 */ 3800 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx, 3801 alloc_order); 3802 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx); 3803 if (reclaim_order < alloc_order) 3804 goto kswapd_try_sleep; 3805 } 3806 3807 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD); 3808 current->reclaim_state = NULL; 3809 3810 return 0; 3811 } 3812 3813 /* 3814 * A zone is low on free memory or too fragmented for high-order memory. If 3815 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's 3816 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim 3817 * has failed or is not needed, still wake up kcompactd if only compaction is 3818 * needed. 3819 */ 3820 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order, 3821 enum zone_type classzone_idx) 3822 { 3823 pg_data_t *pgdat; 3824 3825 if (!managed_zone(zone)) 3826 return; 3827 3828 if (!cpuset_zone_allowed(zone, gfp_flags)) 3829 return; 3830 pgdat = zone->zone_pgdat; 3831 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, 3832 classzone_idx); 3833 pgdat->kswapd_order = max(pgdat->kswapd_order, order); 3834 if (!waitqueue_active(&pgdat->kswapd_wait)) 3835 return; 3836 3837 /* Hopeless node, leave it to direct reclaim if possible */ 3838 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES || 3839 pgdat_balanced(pgdat, order, classzone_idx)) { 3840 /* 3841 * There may be plenty of free memory available, but it's too 3842 * fragmented for high-order allocations. Wake up kcompactd 3843 * and rely on compaction_suitable() to determine if it's 3844 * needed. If it fails, it will defer subsequent attempts to 3845 * ratelimit its work. 3846 */ 3847 if (!(gfp_flags & __GFP_DIRECT_RECLAIM)) 3848 wakeup_kcompactd(pgdat, order, classzone_idx); 3849 return; 3850 } 3851 3852 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order, 3853 gfp_flags); 3854 wake_up_interruptible(&pgdat->kswapd_wait); 3855 } 3856 3857 #ifdef CONFIG_HIBERNATION 3858 /* 3859 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 3860 * freed pages. 3861 * 3862 * Rather than trying to age LRUs the aim is to preserve the overall 3863 * LRU order by reclaiming preferentially 3864 * inactive > active > active referenced > active mapped 3865 */ 3866 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 3867 { 3868 struct reclaim_state reclaim_state; 3869 struct scan_control sc = { 3870 .nr_to_reclaim = nr_to_reclaim, 3871 .gfp_mask = GFP_HIGHUSER_MOVABLE, 3872 .reclaim_idx = MAX_NR_ZONES - 1, 3873 .priority = DEF_PRIORITY, 3874 .may_writepage = 1, 3875 .may_unmap = 1, 3876 .may_swap = 1, 3877 .hibernation_mode = 1, 3878 }; 3879 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 3880 struct task_struct *p = current; 3881 unsigned long nr_reclaimed; 3882 unsigned int noreclaim_flag; 3883 3884 fs_reclaim_acquire(sc.gfp_mask); 3885 noreclaim_flag = memalloc_noreclaim_save(); 3886 reclaim_state.reclaimed_slab = 0; 3887 p->reclaim_state = &reclaim_state; 3888 3889 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3890 3891 p->reclaim_state = NULL; 3892 memalloc_noreclaim_restore(noreclaim_flag); 3893 fs_reclaim_release(sc.gfp_mask); 3894 3895 return nr_reclaimed; 3896 } 3897 #endif /* CONFIG_HIBERNATION */ 3898 3899 /* It's optimal to keep kswapds on the same CPUs as their memory, but 3900 not required for correctness. So if the last cpu in a node goes 3901 away, we get changed to run anywhere: as the first one comes back, 3902 restore their cpu bindings. */ 3903 static int kswapd_cpu_online(unsigned int cpu) 3904 { 3905 int nid; 3906 3907 for_each_node_state(nid, N_MEMORY) { 3908 pg_data_t *pgdat = NODE_DATA(nid); 3909 const struct cpumask *mask; 3910 3911 mask = cpumask_of_node(pgdat->node_id); 3912 3913 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 3914 /* One of our CPUs online: restore mask */ 3915 set_cpus_allowed_ptr(pgdat->kswapd, mask); 3916 } 3917 return 0; 3918 } 3919 3920 /* 3921 * This kswapd start function will be called by init and node-hot-add. 3922 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. 3923 */ 3924 int kswapd_run(int nid) 3925 { 3926 pg_data_t *pgdat = NODE_DATA(nid); 3927 int ret = 0; 3928 3929 if (pgdat->kswapd) 3930 return 0; 3931 3932 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 3933 if (IS_ERR(pgdat->kswapd)) { 3934 /* failure at boot is fatal */ 3935 BUG_ON(system_state < SYSTEM_RUNNING); 3936 pr_err("Failed to start kswapd on node %d\n", nid); 3937 ret = PTR_ERR(pgdat->kswapd); 3938 pgdat->kswapd = NULL; 3939 } 3940 return ret; 3941 } 3942 3943 /* 3944 * Called by memory hotplug when all memory in a node is offlined. Caller must 3945 * hold mem_hotplug_begin/end(). 3946 */ 3947 void kswapd_stop(int nid) 3948 { 3949 struct task_struct *kswapd = NODE_DATA(nid)->kswapd; 3950 3951 if (kswapd) { 3952 kthread_stop(kswapd); 3953 NODE_DATA(nid)->kswapd = NULL; 3954 } 3955 } 3956 3957 static int __init kswapd_init(void) 3958 { 3959 int nid, ret; 3960 3961 swap_setup(); 3962 for_each_node_state(nid, N_MEMORY) 3963 kswapd_run(nid); 3964 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, 3965 "mm/vmscan:online", kswapd_cpu_online, 3966 NULL); 3967 WARN_ON(ret < 0); 3968 return 0; 3969 } 3970 3971 module_init(kswapd_init) 3972 3973 #ifdef CONFIG_NUMA 3974 /* 3975 * Node reclaim mode 3976 * 3977 * If non-zero call node_reclaim when the number of free pages falls below 3978 * the watermarks. 3979 */ 3980 int node_reclaim_mode __read_mostly; 3981 3982 #define RECLAIM_OFF 0 3983 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */ 3984 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */ 3985 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */ 3986 3987 /* 3988 * Priority for NODE_RECLAIM. This determines the fraction of pages 3989 * of a node considered for each zone_reclaim. 4 scans 1/16th of 3990 * a zone. 3991 */ 3992 #define NODE_RECLAIM_PRIORITY 4 3993 3994 /* 3995 * Percentage of pages in a zone that must be unmapped for node_reclaim to 3996 * occur. 3997 */ 3998 int sysctl_min_unmapped_ratio = 1; 3999 4000 /* 4001 * If the number of slab pages in a zone grows beyond this percentage then 4002 * slab reclaim needs to occur. 4003 */ 4004 int sysctl_min_slab_ratio = 5; 4005 4006 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat) 4007 { 4008 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED); 4009 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) + 4010 node_page_state(pgdat, NR_ACTIVE_FILE); 4011 4012 /* 4013 * It's possible for there to be more file mapped pages than 4014 * accounted for by the pages on the file LRU lists because 4015 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 4016 */ 4017 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 4018 } 4019 4020 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 4021 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat) 4022 { 4023 unsigned long nr_pagecache_reclaimable; 4024 unsigned long delta = 0; 4025 4026 /* 4027 * If RECLAIM_UNMAP is set, then all file pages are considered 4028 * potentially reclaimable. Otherwise, we have to worry about 4029 * pages like swapcache and node_unmapped_file_pages() provides 4030 * a better estimate 4031 */ 4032 if (node_reclaim_mode & RECLAIM_UNMAP) 4033 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES); 4034 else 4035 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat); 4036 4037 /* If we can't clean pages, remove dirty pages from consideration */ 4038 if (!(node_reclaim_mode & RECLAIM_WRITE)) 4039 delta += node_page_state(pgdat, NR_FILE_DIRTY); 4040 4041 /* Watch for any possible underflows due to delta */ 4042 if (unlikely(delta > nr_pagecache_reclaimable)) 4043 delta = nr_pagecache_reclaimable; 4044 4045 return nr_pagecache_reclaimable - delta; 4046 } 4047 4048 /* 4049 * Try to free up some pages from this node through reclaim. 4050 */ 4051 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 4052 { 4053 /* Minimum pages needed in order to stay on node */ 4054 const unsigned long nr_pages = 1 << order; 4055 struct task_struct *p = current; 4056 struct reclaim_state reclaim_state; 4057 unsigned int noreclaim_flag; 4058 struct scan_control sc = { 4059 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 4060 .gfp_mask = current_gfp_context(gfp_mask), 4061 .order = order, 4062 .priority = NODE_RECLAIM_PRIORITY, 4063 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE), 4064 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP), 4065 .may_swap = 1, 4066 .reclaim_idx = gfp_zone(gfp_mask), 4067 }; 4068 4069 cond_resched(); 4070 fs_reclaim_acquire(sc.gfp_mask); 4071 /* 4072 * We need to be able to allocate from the reserves for RECLAIM_UNMAP 4073 * and we also need to be able to write out pages for RECLAIM_WRITE 4074 * and RECLAIM_UNMAP. 4075 */ 4076 noreclaim_flag = memalloc_noreclaim_save(); 4077 p->flags |= PF_SWAPWRITE; 4078 reclaim_state.reclaimed_slab = 0; 4079 p->reclaim_state = &reclaim_state; 4080 4081 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) { 4082 /* 4083 * Free memory by calling shrink node with increasing 4084 * priorities until we have enough memory freed. 4085 */ 4086 do { 4087 shrink_node(pgdat, &sc); 4088 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 4089 } 4090 4091 p->reclaim_state = NULL; 4092 current->flags &= ~PF_SWAPWRITE; 4093 memalloc_noreclaim_restore(noreclaim_flag); 4094 fs_reclaim_release(sc.gfp_mask); 4095 return sc.nr_reclaimed >= nr_pages; 4096 } 4097 4098 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 4099 { 4100 int ret; 4101 4102 /* 4103 * Node reclaim reclaims unmapped file backed pages and 4104 * slab pages if we are over the defined limits. 4105 * 4106 * A small portion of unmapped file backed pages is needed for 4107 * file I/O otherwise pages read by file I/O will be immediately 4108 * thrown out if the node is overallocated. So we do not reclaim 4109 * if less than a specified percentage of the node is used by 4110 * unmapped file backed pages. 4111 */ 4112 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages && 4113 node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages) 4114 return NODE_RECLAIM_FULL; 4115 4116 /* 4117 * Do not scan if the allocation should not be delayed. 4118 */ 4119 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) 4120 return NODE_RECLAIM_NOSCAN; 4121 4122 /* 4123 * Only run node reclaim on the local node or on nodes that do not 4124 * have associated processors. This will favor the local processor 4125 * over remote processors and spread off node memory allocations 4126 * as wide as possible. 4127 */ 4128 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id()) 4129 return NODE_RECLAIM_NOSCAN; 4130 4131 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags)) 4132 return NODE_RECLAIM_NOSCAN; 4133 4134 ret = __node_reclaim(pgdat, gfp_mask, order); 4135 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags); 4136 4137 if (!ret) 4138 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 4139 4140 return ret; 4141 } 4142 #endif 4143 4144 /* 4145 * page_evictable - test whether a page is evictable 4146 * @page: the page to test 4147 * 4148 * Test whether page is evictable--i.e., should be placed on active/inactive 4149 * lists vs unevictable list. 4150 * 4151 * Reasons page might not be evictable: 4152 * (1) page's mapping marked unevictable 4153 * (2) page is part of an mlocked VMA 4154 * 4155 */ 4156 int page_evictable(struct page *page) 4157 { 4158 int ret; 4159 4160 /* Prevent address_space of inode and swap cache from being freed */ 4161 rcu_read_lock(); 4162 ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page); 4163 rcu_read_unlock(); 4164 return ret; 4165 } 4166 4167 #ifdef CONFIG_SHMEM 4168 /** 4169 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list 4170 * @pages: array of pages to check 4171 * @nr_pages: number of pages to check 4172 * 4173 * Checks pages for evictability and moves them to the appropriate lru list. 4174 * 4175 * This function is only used for SysV IPC SHM_UNLOCK. 4176 */ 4177 void check_move_unevictable_pages(struct page **pages, int nr_pages) 4178 { 4179 struct lruvec *lruvec; 4180 struct pglist_data *pgdat = NULL; 4181 int pgscanned = 0; 4182 int pgrescued = 0; 4183 int i; 4184 4185 for (i = 0; i < nr_pages; i++) { 4186 struct page *page = pages[i]; 4187 struct pglist_data *pagepgdat = page_pgdat(page); 4188 4189 pgscanned++; 4190 if (pagepgdat != pgdat) { 4191 if (pgdat) 4192 spin_unlock_irq(&pgdat->lru_lock); 4193 pgdat = pagepgdat; 4194 spin_lock_irq(&pgdat->lru_lock); 4195 } 4196 lruvec = mem_cgroup_page_lruvec(page, pgdat); 4197 4198 if (!PageLRU(page) || !PageUnevictable(page)) 4199 continue; 4200 4201 if (page_evictable(page)) { 4202 enum lru_list lru = page_lru_base_type(page); 4203 4204 VM_BUG_ON_PAGE(PageActive(page), page); 4205 ClearPageUnevictable(page); 4206 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE); 4207 add_page_to_lru_list(page, lruvec, lru); 4208 pgrescued++; 4209 } 4210 } 4211 4212 if (pgdat) { 4213 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 4214 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 4215 spin_unlock_irq(&pgdat->lru_lock); 4216 } 4217 } 4218 #endif /* CONFIG_SHMEM */ 4219