xref: /linux/mm/vmscan.c (revision b0148a98ec5151fec82064d95f11eb9efbc628ea)
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13 
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h>	/* for try_to_release_page(),
27 					buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 
41 #include <asm/tlbflush.h>
42 #include <asm/div64.h>
43 
44 #include <linux/swapops.h>
45 
46 #include "internal.h"
47 
48 struct scan_control {
49 	/* Incremented by the number of inactive pages that were scanned */
50 	unsigned long nr_scanned;
51 
52 	/* This context's GFP mask */
53 	gfp_t gfp_mask;
54 
55 	int may_writepage;
56 
57 	/* Can pages be swapped as part of reclaim? */
58 	int may_swap;
59 
60 	/* This context's SWAP_CLUSTER_MAX. If freeing memory for
61 	 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
62 	 * In this context, it doesn't matter that we scan the
63 	 * whole list at once. */
64 	int swap_cluster_max;
65 
66 	int swappiness;
67 
68 	int all_unreclaimable;
69 };
70 
71 /*
72  * The list of shrinker callbacks used by to apply pressure to
73  * ageable caches.
74  */
75 struct shrinker {
76 	shrinker_t		shrinker;
77 	struct list_head	list;
78 	int			seeks;	/* seeks to recreate an obj */
79 	long			nr;	/* objs pending delete */
80 };
81 
82 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
83 
84 #ifdef ARCH_HAS_PREFETCH
85 #define prefetch_prev_lru_page(_page, _base, _field)			\
86 	do {								\
87 		if ((_page)->lru.prev != _base) {			\
88 			struct page *prev;				\
89 									\
90 			prev = lru_to_page(&(_page->lru));		\
91 			prefetch(&prev->_field);			\
92 		}							\
93 	} while (0)
94 #else
95 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
96 #endif
97 
98 #ifdef ARCH_HAS_PREFETCHW
99 #define prefetchw_prev_lru_page(_page, _base, _field)			\
100 	do {								\
101 		if ((_page)->lru.prev != _base) {			\
102 			struct page *prev;				\
103 									\
104 			prev = lru_to_page(&(_page->lru));		\
105 			prefetchw(&prev->_field);			\
106 		}							\
107 	} while (0)
108 #else
109 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
110 #endif
111 
112 /*
113  * From 0 .. 100.  Higher means more swappy.
114  */
115 int vm_swappiness = 60;
116 long vm_total_pages;	/* The total number of pages which the VM controls */
117 
118 static LIST_HEAD(shrinker_list);
119 static DECLARE_RWSEM(shrinker_rwsem);
120 
121 /*
122  * Add a shrinker callback to be called from the vm
123  */
124 struct shrinker *set_shrinker(int seeks, shrinker_t theshrinker)
125 {
126         struct shrinker *shrinker;
127 
128         shrinker = kmalloc(sizeof(*shrinker), GFP_KERNEL);
129         if (shrinker) {
130 	        shrinker->shrinker = theshrinker;
131 	        shrinker->seeks = seeks;
132 	        shrinker->nr = 0;
133 	        down_write(&shrinker_rwsem);
134 	        list_add_tail(&shrinker->list, &shrinker_list);
135 	        up_write(&shrinker_rwsem);
136 	}
137 	return shrinker;
138 }
139 EXPORT_SYMBOL(set_shrinker);
140 
141 /*
142  * Remove one
143  */
144 void remove_shrinker(struct shrinker *shrinker)
145 {
146 	down_write(&shrinker_rwsem);
147 	list_del(&shrinker->list);
148 	up_write(&shrinker_rwsem);
149 	kfree(shrinker);
150 }
151 EXPORT_SYMBOL(remove_shrinker);
152 
153 #define SHRINK_BATCH 128
154 /*
155  * Call the shrink functions to age shrinkable caches
156  *
157  * Here we assume it costs one seek to replace a lru page and that it also
158  * takes a seek to recreate a cache object.  With this in mind we age equal
159  * percentages of the lru and ageable caches.  This should balance the seeks
160  * generated by these structures.
161  *
162  * If the vm encounted mapped pages on the LRU it increase the pressure on
163  * slab to avoid swapping.
164  *
165  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
166  *
167  * `lru_pages' represents the number of on-LRU pages in all the zones which
168  * are eligible for the caller's allocation attempt.  It is used for balancing
169  * slab reclaim versus page reclaim.
170  *
171  * Returns the number of slab objects which we shrunk.
172  */
173 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
174 			unsigned long lru_pages)
175 {
176 	struct shrinker *shrinker;
177 	unsigned long ret = 0;
178 
179 	if (scanned == 0)
180 		scanned = SWAP_CLUSTER_MAX;
181 
182 	if (!down_read_trylock(&shrinker_rwsem))
183 		return 1;	/* Assume we'll be able to shrink next time */
184 
185 	list_for_each_entry(shrinker, &shrinker_list, list) {
186 		unsigned long long delta;
187 		unsigned long total_scan;
188 		unsigned long max_pass = (*shrinker->shrinker)(0, gfp_mask);
189 
190 		delta = (4 * scanned) / shrinker->seeks;
191 		delta *= max_pass;
192 		do_div(delta, lru_pages + 1);
193 		shrinker->nr += delta;
194 		if (shrinker->nr < 0) {
195 			printk(KERN_ERR "%s: nr=%ld\n",
196 					__FUNCTION__, shrinker->nr);
197 			shrinker->nr = max_pass;
198 		}
199 
200 		/*
201 		 * Avoid risking looping forever due to too large nr value:
202 		 * never try to free more than twice the estimate number of
203 		 * freeable entries.
204 		 */
205 		if (shrinker->nr > max_pass * 2)
206 			shrinker->nr = max_pass * 2;
207 
208 		total_scan = shrinker->nr;
209 		shrinker->nr = 0;
210 
211 		while (total_scan >= SHRINK_BATCH) {
212 			long this_scan = SHRINK_BATCH;
213 			int shrink_ret;
214 			int nr_before;
215 
216 			nr_before = (*shrinker->shrinker)(0, gfp_mask);
217 			shrink_ret = (*shrinker->shrinker)(this_scan, gfp_mask);
218 			if (shrink_ret == -1)
219 				break;
220 			if (shrink_ret < nr_before)
221 				ret += nr_before - shrink_ret;
222 			count_vm_events(SLABS_SCANNED, this_scan);
223 			total_scan -= this_scan;
224 
225 			cond_resched();
226 		}
227 
228 		shrinker->nr += total_scan;
229 	}
230 	up_read(&shrinker_rwsem);
231 	return ret;
232 }
233 
234 /* Called without lock on whether page is mapped, so answer is unstable */
235 static inline int page_mapping_inuse(struct page *page)
236 {
237 	struct address_space *mapping;
238 
239 	/* Page is in somebody's page tables. */
240 	if (page_mapped(page))
241 		return 1;
242 
243 	/* Be more reluctant to reclaim swapcache than pagecache */
244 	if (PageSwapCache(page))
245 		return 1;
246 
247 	mapping = page_mapping(page);
248 	if (!mapping)
249 		return 0;
250 
251 	/* File is mmap'd by somebody? */
252 	return mapping_mapped(mapping);
253 }
254 
255 static inline int is_page_cache_freeable(struct page *page)
256 {
257 	return page_count(page) - !!PagePrivate(page) == 2;
258 }
259 
260 static int may_write_to_queue(struct backing_dev_info *bdi)
261 {
262 	if (current->flags & PF_SWAPWRITE)
263 		return 1;
264 	if (!bdi_write_congested(bdi))
265 		return 1;
266 	if (bdi == current->backing_dev_info)
267 		return 1;
268 	return 0;
269 }
270 
271 /*
272  * We detected a synchronous write error writing a page out.  Probably
273  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
274  * fsync(), msync() or close().
275  *
276  * The tricky part is that after writepage we cannot touch the mapping: nothing
277  * prevents it from being freed up.  But we have a ref on the page and once
278  * that page is locked, the mapping is pinned.
279  *
280  * We're allowed to run sleeping lock_page() here because we know the caller has
281  * __GFP_FS.
282  */
283 static void handle_write_error(struct address_space *mapping,
284 				struct page *page, int error)
285 {
286 	lock_page(page);
287 	if (page_mapping(page) == mapping) {
288 		if (error == -ENOSPC)
289 			set_bit(AS_ENOSPC, &mapping->flags);
290 		else
291 			set_bit(AS_EIO, &mapping->flags);
292 	}
293 	unlock_page(page);
294 }
295 
296 /* possible outcome of pageout() */
297 typedef enum {
298 	/* failed to write page out, page is locked */
299 	PAGE_KEEP,
300 	/* move page to the active list, page is locked */
301 	PAGE_ACTIVATE,
302 	/* page has been sent to the disk successfully, page is unlocked */
303 	PAGE_SUCCESS,
304 	/* page is clean and locked */
305 	PAGE_CLEAN,
306 } pageout_t;
307 
308 /*
309  * pageout is called by shrink_page_list() for each dirty page.
310  * Calls ->writepage().
311  */
312 static pageout_t pageout(struct page *page, struct address_space *mapping)
313 {
314 	/*
315 	 * If the page is dirty, only perform writeback if that write
316 	 * will be non-blocking.  To prevent this allocation from being
317 	 * stalled by pagecache activity.  But note that there may be
318 	 * stalls if we need to run get_block().  We could test
319 	 * PagePrivate for that.
320 	 *
321 	 * If this process is currently in generic_file_write() against
322 	 * this page's queue, we can perform writeback even if that
323 	 * will block.
324 	 *
325 	 * If the page is swapcache, write it back even if that would
326 	 * block, for some throttling. This happens by accident, because
327 	 * swap_backing_dev_info is bust: it doesn't reflect the
328 	 * congestion state of the swapdevs.  Easy to fix, if needed.
329 	 * See swapfile.c:page_queue_congested().
330 	 */
331 	if (!is_page_cache_freeable(page))
332 		return PAGE_KEEP;
333 	if (!mapping) {
334 		/*
335 		 * Some data journaling orphaned pages can have
336 		 * page->mapping == NULL while being dirty with clean buffers.
337 		 */
338 		if (PagePrivate(page)) {
339 			if (try_to_free_buffers(page)) {
340 				ClearPageDirty(page);
341 				printk("%s: orphaned page\n", __FUNCTION__);
342 				return PAGE_CLEAN;
343 			}
344 		}
345 		return PAGE_KEEP;
346 	}
347 	if (mapping->a_ops->writepage == NULL)
348 		return PAGE_ACTIVATE;
349 	if (!may_write_to_queue(mapping->backing_dev_info))
350 		return PAGE_KEEP;
351 
352 	if (clear_page_dirty_for_io(page)) {
353 		int res;
354 		struct writeback_control wbc = {
355 			.sync_mode = WB_SYNC_NONE,
356 			.nr_to_write = SWAP_CLUSTER_MAX,
357 			.range_start = 0,
358 			.range_end = LLONG_MAX,
359 			.nonblocking = 1,
360 			.for_reclaim = 1,
361 		};
362 
363 		SetPageReclaim(page);
364 		res = mapping->a_ops->writepage(page, &wbc);
365 		if (res < 0)
366 			handle_write_error(mapping, page, res);
367 		if (res == AOP_WRITEPAGE_ACTIVATE) {
368 			ClearPageReclaim(page);
369 			return PAGE_ACTIVATE;
370 		}
371 		if (!PageWriteback(page)) {
372 			/* synchronous write or broken a_ops? */
373 			ClearPageReclaim(page);
374 		}
375 		inc_zone_page_state(page, NR_VMSCAN_WRITE);
376 		return PAGE_SUCCESS;
377 	}
378 
379 	return PAGE_CLEAN;
380 }
381 
382 /*
383  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
384  * someone else has a ref on the page, abort and return 0.  If it was
385  * successfully detached, return 1.  Assumes the caller has a single ref on
386  * this page.
387  */
388 int remove_mapping(struct address_space *mapping, struct page *page)
389 {
390 	BUG_ON(!PageLocked(page));
391 	BUG_ON(mapping != page_mapping(page));
392 
393 	write_lock_irq(&mapping->tree_lock);
394 	/*
395 	 * The non racy check for a busy page.
396 	 *
397 	 * Must be careful with the order of the tests. When someone has
398 	 * a ref to the page, it may be possible that they dirty it then
399 	 * drop the reference. So if PageDirty is tested before page_count
400 	 * here, then the following race may occur:
401 	 *
402 	 * get_user_pages(&page);
403 	 * [user mapping goes away]
404 	 * write_to(page);
405 	 *				!PageDirty(page)    [good]
406 	 * SetPageDirty(page);
407 	 * put_page(page);
408 	 *				!page_count(page)   [good, discard it]
409 	 *
410 	 * [oops, our write_to data is lost]
411 	 *
412 	 * Reversing the order of the tests ensures such a situation cannot
413 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
414 	 * load is not satisfied before that of page->_count.
415 	 *
416 	 * Note that if SetPageDirty is always performed via set_page_dirty,
417 	 * and thus under tree_lock, then this ordering is not required.
418 	 */
419 	if (unlikely(page_count(page) != 2))
420 		goto cannot_free;
421 	smp_rmb();
422 	if (unlikely(PageDirty(page)))
423 		goto cannot_free;
424 
425 	if (PageSwapCache(page)) {
426 		swp_entry_t swap = { .val = page_private(page) };
427 		__delete_from_swap_cache(page);
428 		write_unlock_irq(&mapping->tree_lock);
429 		swap_free(swap);
430 		__put_page(page);	/* The pagecache ref */
431 		return 1;
432 	}
433 
434 	__remove_from_page_cache(page);
435 	write_unlock_irq(&mapping->tree_lock);
436 	__put_page(page);
437 	return 1;
438 
439 cannot_free:
440 	write_unlock_irq(&mapping->tree_lock);
441 	return 0;
442 }
443 
444 /*
445  * shrink_page_list() returns the number of reclaimed pages
446  */
447 static unsigned long shrink_page_list(struct list_head *page_list,
448 					struct scan_control *sc)
449 {
450 	LIST_HEAD(ret_pages);
451 	struct pagevec freed_pvec;
452 	int pgactivate = 0;
453 	unsigned long nr_reclaimed = 0;
454 
455 	cond_resched();
456 
457 	pagevec_init(&freed_pvec, 1);
458 	while (!list_empty(page_list)) {
459 		struct address_space *mapping;
460 		struct page *page;
461 		int may_enter_fs;
462 		int referenced;
463 
464 		cond_resched();
465 
466 		page = lru_to_page(page_list);
467 		list_del(&page->lru);
468 
469 		if (TestSetPageLocked(page))
470 			goto keep;
471 
472 		VM_BUG_ON(PageActive(page));
473 
474 		sc->nr_scanned++;
475 
476 		if (!sc->may_swap && page_mapped(page))
477 			goto keep_locked;
478 
479 		/* Double the slab pressure for mapped and swapcache pages */
480 		if (page_mapped(page) || PageSwapCache(page))
481 			sc->nr_scanned++;
482 
483 		if (PageWriteback(page))
484 			goto keep_locked;
485 
486 		referenced = page_referenced(page, 1);
487 		/* In active use or really unfreeable?  Activate it. */
488 		if (referenced && page_mapping_inuse(page))
489 			goto activate_locked;
490 
491 #ifdef CONFIG_SWAP
492 		/*
493 		 * Anonymous process memory has backing store?
494 		 * Try to allocate it some swap space here.
495 		 */
496 		if (PageAnon(page) && !PageSwapCache(page))
497 			if (!add_to_swap(page, GFP_ATOMIC))
498 				goto activate_locked;
499 #endif /* CONFIG_SWAP */
500 
501 		mapping = page_mapping(page);
502 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
503 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
504 
505 		/*
506 		 * The page is mapped into the page tables of one or more
507 		 * processes. Try to unmap it here.
508 		 */
509 		if (page_mapped(page) && mapping) {
510 			switch (try_to_unmap(page, 0)) {
511 			case SWAP_FAIL:
512 				goto activate_locked;
513 			case SWAP_AGAIN:
514 				goto keep_locked;
515 			case SWAP_SUCCESS:
516 				; /* try to free the page below */
517 			}
518 		}
519 
520 		if (PageDirty(page)) {
521 			if (referenced)
522 				goto keep_locked;
523 			if (!may_enter_fs)
524 				goto keep_locked;
525 			if (!sc->may_writepage)
526 				goto keep_locked;
527 
528 			/* Page is dirty, try to write it out here */
529 			switch(pageout(page, mapping)) {
530 			case PAGE_KEEP:
531 				goto keep_locked;
532 			case PAGE_ACTIVATE:
533 				goto activate_locked;
534 			case PAGE_SUCCESS:
535 				if (PageWriteback(page) || PageDirty(page))
536 					goto keep;
537 				/*
538 				 * A synchronous write - probably a ramdisk.  Go
539 				 * ahead and try to reclaim the page.
540 				 */
541 				if (TestSetPageLocked(page))
542 					goto keep;
543 				if (PageDirty(page) || PageWriteback(page))
544 					goto keep_locked;
545 				mapping = page_mapping(page);
546 			case PAGE_CLEAN:
547 				; /* try to free the page below */
548 			}
549 		}
550 
551 		/*
552 		 * If the page has buffers, try to free the buffer mappings
553 		 * associated with this page. If we succeed we try to free
554 		 * the page as well.
555 		 *
556 		 * We do this even if the page is PageDirty().
557 		 * try_to_release_page() does not perform I/O, but it is
558 		 * possible for a page to have PageDirty set, but it is actually
559 		 * clean (all its buffers are clean).  This happens if the
560 		 * buffers were written out directly, with submit_bh(). ext3
561 		 * will do this, as well as the blockdev mapping.
562 		 * try_to_release_page() will discover that cleanness and will
563 		 * drop the buffers and mark the page clean - it can be freed.
564 		 *
565 		 * Rarely, pages can have buffers and no ->mapping.  These are
566 		 * the pages which were not successfully invalidated in
567 		 * truncate_complete_page().  We try to drop those buffers here
568 		 * and if that worked, and the page is no longer mapped into
569 		 * process address space (page_count == 1) it can be freed.
570 		 * Otherwise, leave the page on the LRU so it is swappable.
571 		 */
572 		if (PagePrivate(page)) {
573 			if (!try_to_release_page(page, sc->gfp_mask))
574 				goto activate_locked;
575 			if (!mapping && page_count(page) == 1)
576 				goto free_it;
577 		}
578 
579 		if (!mapping || !remove_mapping(mapping, page))
580 			goto keep_locked;
581 
582 free_it:
583 		unlock_page(page);
584 		nr_reclaimed++;
585 		if (!pagevec_add(&freed_pvec, page))
586 			__pagevec_release_nonlru(&freed_pvec);
587 		continue;
588 
589 activate_locked:
590 		SetPageActive(page);
591 		pgactivate++;
592 keep_locked:
593 		unlock_page(page);
594 keep:
595 		list_add(&page->lru, &ret_pages);
596 		VM_BUG_ON(PageLRU(page));
597 	}
598 	list_splice(&ret_pages, page_list);
599 	if (pagevec_count(&freed_pvec))
600 		__pagevec_release_nonlru(&freed_pvec);
601 	count_vm_events(PGACTIVATE, pgactivate);
602 	return nr_reclaimed;
603 }
604 
605 /*
606  * zone->lru_lock is heavily contended.  Some of the functions that
607  * shrink the lists perform better by taking out a batch of pages
608  * and working on them outside the LRU lock.
609  *
610  * For pagecache intensive workloads, this function is the hottest
611  * spot in the kernel (apart from copy_*_user functions).
612  *
613  * Appropriate locks must be held before calling this function.
614  *
615  * @nr_to_scan:	The number of pages to look through on the list.
616  * @src:	The LRU list to pull pages off.
617  * @dst:	The temp list to put pages on to.
618  * @scanned:	The number of pages that were scanned.
619  *
620  * returns how many pages were moved onto *@dst.
621  */
622 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
623 		struct list_head *src, struct list_head *dst,
624 		unsigned long *scanned)
625 {
626 	unsigned long nr_taken = 0;
627 	struct page *page;
628 	unsigned long scan;
629 
630 	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
631 		struct list_head *target;
632 		page = lru_to_page(src);
633 		prefetchw_prev_lru_page(page, src, flags);
634 
635 		VM_BUG_ON(!PageLRU(page));
636 
637 		list_del(&page->lru);
638 		target = src;
639 		if (likely(get_page_unless_zero(page))) {
640 			/*
641 			 * Be careful not to clear PageLRU until after we're
642 			 * sure the page is not being freed elsewhere -- the
643 			 * page release code relies on it.
644 			 */
645 			ClearPageLRU(page);
646 			target = dst;
647 			nr_taken++;
648 		} /* else it is being freed elsewhere */
649 
650 		list_add(&page->lru, target);
651 	}
652 
653 	*scanned = scan;
654 	return nr_taken;
655 }
656 
657 /*
658  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
659  * of reclaimed pages
660  */
661 static unsigned long shrink_inactive_list(unsigned long max_scan,
662 				struct zone *zone, struct scan_control *sc)
663 {
664 	LIST_HEAD(page_list);
665 	struct pagevec pvec;
666 	unsigned long nr_scanned = 0;
667 	unsigned long nr_reclaimed = 0;
668 
669 	pagevec_init(&pvec, 1);
670 
671 	lru_add_drain();
672 	spin_lock_irq(&zone->lru_lock);
673 	do {
674 		struct page *page;
675 		unsigned long nr_taken;
676 		unsigned long nr_scan;
677 		unsigned long nr_freed;
678 
679 		nr_taken = isolate_lru_pages(sc->swap_cluster_max,
680 					     &zone->inactive_list,
681 					     &page_list, &nr_scan);
682 		zone->nr_inactive -= nr_taken;
683 		zone->pages_scanned += nr_scan;
684 		spin_unlock_irq(&zone->lru_lock);
685 
686 		nr_scanned += nr_scan;
687 		nr_freed = shrink_page_list(&page_list, sc);
688 		nr_reclaimed += nr_freed;
689 		local_irq_disable();
690 		if (current_is_kswapd()) {
691 			__count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scan);
692 			__count_vm_events(KSWAPD_STEAL, nr_freed);
693 		} else
694 			__count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scan);
695 		__count_zone_vm_events(PGSTEAL, zone, nr_freed);
696 
697 		if (nr_taken == 0)
698 			goto done;
699 
700 		spin_lock(&zone->lru_lock);
701 		/*
702 		 * Put back any unfreeable pages.
703 		 */
704 		while (!list_empty(&page_list)) {
705 			page = lru_to_page(&page_list);
706 			VM_BUG_ON(PageLRU(page));
707 			SetPageLRU(page);
708 			list_del(&page->lru);
709 			if (PageActive(page))
710 				add_page_to_active_list(zone, page);
711 			else
712 				add_page_to_inactive_list(zone, page);
713 			if (!pagevec_add(&pvec, page)) {
714 				spin_unlock_irq(&zone->lru_lock);
715 				__pagevec_release(&pvec);
716 				spin_lock_irq(&zone->lru_lock);
717 			}
718 		}
719   	} while (nr_scanned < max_scan);
720 	spin_unlock(&zone->lru_lock);
721 done:
722 	local_irq_enable();
723 	pagevec_release(&pvec);
724 	return nr_reclaimed;
725 }
726 
727 /*
728  * We are about to scan this zone at a certain priority level.  If that priority
729  * level is smaller (ie: more urgent) than the previous priority, then note
730  * that priority level within the zone.  This is done so that when the next
731  * process comes in to scan this zone, it will immediately start out at this
732  * priority level rather than having to build up its own scanning priority.
733  * Here, this priority affects only the reclaim-mapped threshold.
734  */
735 static inline void note_zone_scanning_priority(struct zone *zone, int priority)
736 {
737 	if (priority < zone->prev_priority)
738 		zone->prev_priority = priority;
739 }
740 
741 static inline int zone_is_near_oom(struct zone *zone)
742 {
743 	return zone->pages_scanned >= (zone->nr_active + zone->nr_inactive)*3;
744 }
745 
746 /*
747  * This moves pages from the active list to the inactive list.
748  *
749  * We move them the other way if the page is referenced by one or more
750  * processes, from rmap.
751  *
752  * If the pages are mostly unmapped, the processing is fast and it is
753  * appropriate to hold zone->lru_lock across the whole operation.  But if
754  * the pages are mapped, the processing is slow (page_referenced()) so we
755  * should drop zone->lru_lock around each page.  It's impossible to balance
756  * this, so instead we remove the pages from the LRU while processing them.
757  * It is safe to rely on PG_active against the non-LRU pages in here because
758  * nobody will play with that bit on a non-LRU page.
759  *
760  * The downside is that we have to touch page->_count against each page.
761  * But we had to alter page->flags anyway.
762  */
763 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
764 				struct scan_control *sc, int priority)
765 {
766 	unsigned long pgmoved;
767 	int pgdeactivate = 0;
768 	unsigned long pgscanned;
769 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
770 	LIST_HEAD(l_inactive);	/* Pages to go onto the inactive_list */
771 	LIST_HEAD(l_active);	/* Pages to go onto the active_list */
772 	struct page *page;
773 	struct pagevec pvec;
774 	int reclaim_mapped = 0;
775 
776 	if (sc->may_swap) {
777 		long mapped_ratio;
778 		long distress;
779 		long swap_tendency;
780 
781 		if (zone_is_near_oom(zone))
782 			goto force_reclaim_mapped;
783 
784 		/*
785 		 * `distress' is a measure of how much trouble we're having
786 		 * reclaiming pages.  0 -> no problems.  100 -> great trouble.
787 		 */
788 		distress = 100 >> min(zone->prev_priority, priority);
789 
790 		/*
791 		 * The point of this algorithm is to decide when to start
792 		 * reclaiming mapped memory instead of just pagecache.  Work out
793 		 * how much memory
794 		 * is mapped.
795 		 */
796 		mapped_ratio = ((global_page_state(NR_FILE_MAPPED) +
797 				global_page_state(NR_ANON_PAGES)) * 100) /
798 					vm_total_pages;
799 
800 		/*
801 		 * Now decide how much we really want to unmap some pages.  The
802 		 * mapped ratio is downgraded - just because there's a lot of
803 		 * mapped memory doesn't necessarily mean that page reclaim
804 		 * isn't succeeding.
805 		 *
806 		 * The distress ratio is important - we don't want to start
807 		 * going oom.
808 		 *
809 		 * A 100% value of vm_swappiness overrides this algorithm
810 		 * altogether.
811 		 */
812 		swap_tendency = mapped_ratio / 2 + distress + sc->swappiness;
813 
814 		/*
815 		 * Now use this metric to decide whether to start moving mapped
816 		 * memory onto the inactive list.
817 		 */
818 		if (swap_tendency >= 100)
819 force_reclaim_mapped:
820 			reclaim_mapped = 1;
821 	}
822 
823 	lru_add_drain();
824 	spin_lock_irq(&zone->lru_lock);
825 	pgmoved = isolate_lru_pages(nr_pages, &zone->active_list,
826 				    &l_hold, &pgscanned);
827 	zone->pages_scanned += pgscanned;
828 	zone->nr_active -= pgmoved;
829 	spin_unlock_irq(&zone->lru_lock);
830 
831 	while (!list_empty(&l_hold)) {
832 		cond_resched();
833 		page = lru_to_page(&l_hold);
834 		list_del(&page->lru);
835 		if (page_mapped(page)) {
836 			if (!reclaim_mapped ||
837 			    (total_swap_pages == 0 && PageAnon(page)) ||
838 			    page_referenced(page, 0)) {
839 				list_add(&page->lru, &l_active);
840 				continue;
841 			}
842 		}
843 		list_add(&page->lru, &l_inactive);
844 	}
845 
846 	pagevec_init(&pvec, 1);
847 	pgmoved = 0;
848 	spin_lock_irq(&zone->lru_lock);
849 	while (!list_empty(&l_inactive)) {
850 		page = lru_to_page(&l_inactive);
851 		prefetchw_prev_lru_page(page, &l_inactive, flags);
852 		VM_BUG_ON(PageLRU(page));
853 		SetPageLRU(page);
854 		VM_BUG_ON(!PageActive(page));
855 		ClearPageActive(page);
856 
857 		list_move(&page->lru, &zone->inactive_list);
858 		pgmoved++;
859 		if (!pagevec_add(&pvec, page)) {
860 			zone->nr_inactive += pgmoved;
861 			spin_unlock_irq(&zone->lru_lock);
862 			pgdeactivate += pgmoved;
863 			pgmoved = 0;
864 			if (buffer_heads_over_limit)
865 				pagevec_strip(&pvec);
866 			__pagevec_release(&pvec);
867 			spin_lock_irq(&zone->lru_lock);
868 		}
869 	}
870 	zone->nr_inactive += pgmoved;
871 	pgdeactivate += pgmoved;
872 	if (buffer_heads_over_limit) {
873 		spin_unlock_irq(&zone->lru_lock);
874 		pagevec_strip(&pvec);
875 		spin_lock_irq(&zone->lru_lock);
876 	}
877 
878 	pgmoved = 0;
879 	while (!list_empty(&l_active)) {
880 		page = lru_to_page(&l_active);
881 		prefetchw_prev_lru_page(page, &l_active, flags);
882 		VM_BUG_ON(PageLRU(page));
883 		SetPageLRU(page);
884 		VM_BUG_ON(!PageActive(page));
885 		list_move(&page->lru, &zone->active_list);
886 		pgmoved++;
887 		if (!pagevec_add(&pvec, page)) {
888 			zone->nr_active += pgmoved;
889 			pgmoved = 0;
890 			spin_unlock_irq(&zone->lru_lock);
891 			__pagevec_release(&pvec);
892 			spin_lock_irq(&zone->lru_lock);
893 		}
894 	}
895 	zone->nr_active += pgmoved;
896 
897 	__count_zone_vm_events(PGREFILL, zone, pgscanned);
898 	__count_vm_events(PGDEACTIVATE, pgdeactivate);
899 	spin_unlock_irq(&zone->lru_lock);
900 
901 	pagevec_release(&pvec);
902 }
903 
904 /*
905  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
906  */
907 static unsigned long shrink_zone(int priority, struct zone *zone,
908 				struct scan_control *sc)
909 {
910 	unsigned long nr_active;
911 	unsigned long nr_inactive;
912 	unsigned long nr_to_scan;
913 	unsigned long nr_reclaimed = 0;
914 
915 	atomic_inc(&zone->reclaim_in_progress);
916 
917 	/*
918 	 * Add one to `nr_to_scan' just to make sure that the kernel will
919 	 * slowly sift through the active list.
920 	 */
921 	zone->nr_scan_active += (zone->nr_active >> priority) + 1;
922 	nr_active = zone->nr_scan_active;
923 	if (nr_active >= sc->swap_cluster_max)
924 		zone->nr_scan_active = 0;
925 	else
926 		nr_active = 0;
927 
928 	zone->nr_scan_inactive += (zone->nr_inactive >> priority) + 1;
929 	nr_inactive = zone->nr_scan_inactive;
930 	if (nr_inactive >= sc->swap_cluster_max)
931 		zone->nr_scan_inactive = 0;
932 	else
933 		nr_inactive = 0;
934 
935 	while (nr_active || nr_inactive) {
936 		if (nr_active) {
937 			nr_to_scan = min(nr_active,
938 					(unsigned long)sc->swap_cluster_max);
939 			nr_active -= nr_to_scan;
940 			shrink_active_list(nr_to_scan, zone, sc, priority);
941 		}
942 
943 		if (nr_inactive) {
944 			nr_to_scan = min(nr_inactive,
945 					(unsigned long)sc->swap_cluster_max);
946 			nr_inactive -= nr_to_scan;
947 			nr_reclaimed += shrink_inactive_list(nr_to_scan, zone,
948 								sc);
949 		}
950 	}
951 
952 	throttle_vm_writeout();
953 
954 	atomic_dec(&zone->reclaim_in_progress);
955 	return nr_reclaimed;
956 }
957 
958 /*
959  * This is the direct reclaim path, for page-allocating processes.  We only
960  * try to reclaim pages from zones which will satisfy the caller's allocation
961  * request.
962  *
963  * We reclaim from a zone even if that zone is over pages_high.  Because:
964  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
965  *    allocation or
966  * b) The zones may be over pages_high but they must go *over* pages_high to
967  *    satisfy the `incremental min' zone defense algorithm.
968  *
969  * Returns the number of reclaimed pages.
970  *
971  * If a zone is deemed to be full of pinned pages then just give it a light
972  * scan then give up on it.
973  */
974 static unsigned long shrink_zones(int priority, struct zone **zones,
975 					struct scan_control *sc)
976 {
977 	unsigned long nr_reclaimed = 0;
978 	int i;
979 
980 	sc->all_unreclaimable = 1;
981 	for (i = 0; zones[i] != NULL; i++) {
982 		struct zone *zone = zones[i];
983 
984 		if (!populated_zone(zone))
985 			continue;
986 
987 		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
988 			continue;
989 
990 		note_zone_scanning_priority(zone, priority);
991 
992 		if (zone->all_unreclaimable && priority != DEF_PRIORITY)
993 			continue;	/* Let kswapd poll it */
994 
995 		sc->all_unreclaimable = 0;
996 
997 		nr_reclaimed += shrink_zone(priority, zone, sc);
998 	}
999 	return nr_reclaimed;
1000 }
1001 
1002 /*
1003  * This is the main entry point to direct page reclaim.
1004  *
1005  * If a full scan of the inactive list fails to free enough memory then we
1006  * are "out of memory" and something needs to be killed.
1007  *
1008  * If the caller is !__GFP_FS then the probability of a failure is reasonably
1009  * high - the zone may be full of dirty or under-writeback pages, which this
1010  * caller can't do much about.  We kick pdflush and take explicit naps in the
1011  * hope that some of these pages can be written.  But if the allocating task
1012  * holds filesystem locks which prevent writeout this might not work, and the
1013  * allocation attempt will fail.
1014  */
1015 unsigned long try_to_free_pages(struct zone **zones, gfp_t gfp_mask)
1016 {
1017 	int priority;
1018 	int ret = 0;
1019 	unsigned long total_scanned = 0;
1020 	unsigned long nr_reclaimed = 0;
1021 	struct reclaim_state *reclaim_state = current->reclaim_state;
1022 	unsigned long lru_pages = 0;
1023 	int i;
1024 	struct scan_control sc = {
1025 		.gfp_mask = gfp_mask,
1026 		.may_writepage = !laptop_mode,
1027 		.swap_cluster_max = SWAP_CLUSTER_MAX,
1028 		.may_swap = 1,
1029 		.swappiness = vm_swappiness,
1030 	};
1031 
1032 	count_vm_event(ALLOCSTALL);
1033 
1034 	for (i = 0; zones[i] != NULL; i++) {
1035 		struct zone *zone = zones[i];
1036 
1037 		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1038 			continue;
1039 
1040 		lru_pages += zone->nr_active + zone->nr_inactive;
1041 	}
1042 
1043 	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1044 		sc.nr_scanned = 0;
1045 		if (!priority)
1046 			disable_swap_token();
1047 		nr_reclaimed += shrink_zones(priority, zones, &sc);
1048 		shrink_slab(sc.nr_scanned, gfp_mask, lru_pages);
1049 		if (reclaim_state) {
1050 			nr_reclaimed += reclaim_state->reclaimed_slab;
1051 			reclaim_state->reclaimed_slab = 0;
1052 		}
1053 		total_scanned += sc.nr_scanned;
1054 		if (nr_reclaimed >= sc.swap_cluster_max) {
1055 			ret = 1;
1056 			goto out;
1057 		}
1058 
1059 		/*
1060 		 * Try to write back as many pages as we just scanned.  This
1061 		 * tends to cause slow streaming writers to write data to the
1062 		 * disk smoothly, at the dirtying rate, which is nice.   But
1063 		 * that's undesirable in laptop mode, where we *want* lumpy
1064 		 * writeout.  So in laptop mode, write out the whole world.
1065 		 */
1066 		if (total_scanned > sc.swap_cluster_max +
1067 					sc.swap_cluster_max / 2) {
1068 			wakeup_pdflush(laptop_mode ? 0 : total_scanned);
1069 			sc.may_writepage = 1;
1070 		}
1071 
1072 		/* Take a nap, wait for some writeback to complete */
1073 		if (sc.nr_scanned && priority < DEF_PRIORITY - 2)
1074 			congestion_wait(WRITE, HZ/10);
1075 	}
1076 	/* top priority shrink_caches still had more to do? don't OOM, then */
1077 	if (!sc.all_unreclaimable)
1078 		ret = 1;
1079 out:
1080 	/*
1081 	 * Now that we've scanned all the zones at this priority level, note
1082 	 * that level within the zone so that the next thread which performs
1083 	 * scanning of this zone will immediately start out at this priority
1084 	 * level.  This affects only the decision whether or not to bring
1085 	 * mapped pages onto the inactive list.
1086 	 */
1087 	if (priority < 0)
1088 		priority = 0;
1089 	for (i = 0; zones[i] != 0; i++) {
1090 		struct zone *zone = zones[i];
1091 
1092 		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1093 			continue;
1094 
1095 		zone->prev_priority = priority;
1096 	}
1097 	return ret;
1098 }
1099 
1100 /*
1101  * For kswapd, balance_pgdat() will work across all this node's zones until
1102  * they are all at pages_high.
1103  *
1104  * Returns the number of pages which were actually freed.
1105  *
1106  * There is special handling here for zones which are full of pinned pages.
1107  * This can happen if the pages are all mlocked, or if they are all used by
1108  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
1109  * What we do is to detect the case where all pages in the zone have been
1110  * scanned twice and there has been zero successful reclaim.  Mark the zone as
1111  * dead and from now on, only perform a short scan.  Basically we're polling
1112  * the zone for when the problem goes away.
1113  *
1114  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
1115  * zones which have free_pages > pages_high, but once a zone is found to have
1116  * free_pages <= pages_high, we scan that zone and the lower zones regardless
1117  * of the number of free pages in the lower zones.  This interoperates with
1118  * the page allocator fallback scheme to ensure that aging of pages is balanced
1119  * across the zones.
1120  */
1121 static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
1122 {
1123 	int all_zones_ok;
1124 	int priority;
1125 	int i;
1126 	unsigned long total_scanned;
1127 	unsigned long nr_reclaimed;
1128 	struct reclaim_state *reclaim_state = current->reclaim_state;
1129 	struct scan_control sc = {
1130 		.gfp_mask = GFP_KERNEL,
1131 		.may_swap = 1,
1132 		.swap_cluster_max = SWAP_CLUSTER_MAX,
1133 		.swappiness = vm_swappiness,
1134 	};
1135 	/*
1136 	 * temp_priority is used to remember the scanning priority at which
1137 	 * this zone was successfully refilled to free_pages == pages_high.
1138 	 */
1139 	int temp_priority[MAX_NR_ZONES];
1140 
1141 loop_again:
1142 	total_scanned = 0;
1143 	nr_reclaimed = 0;
1144 	sc.may_writepage = !laptop_mode;
1145 	count_vm_event(PAGEOUTRUN);
1146 
1147 	for (i = 0; i < pgdat->nr_zones; i++)
1148 		temp_priority[i] = DEF_PRIORITY;
1149 
1150 	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1151 		int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
1152 		unsigned long lru_pages = 0;
1153 
1154 		/* The swap token gets in the way of swapout... */
1155 		if (!priority)
1156 			disable_swap_token();
1157 
1158 		all_zones_ok = 1;
1159 
1160 		/*
1161 		 * Scan in the highmem->dma direction for the highest
1162 		 * zone which needs scanning
1163 		 */
1164 		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1165 			struct zone *zone = pgdat->node_zones + i;
1166 
1167 			if (!populated_zone(zone))
1168 				continue;
1169 
1170 			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1171 				continue;
1172 
1173 			if (!zone_watermark_ok(zone, order, zone->pages_high,
1174 					       0, 0)) {
1175 				end_zone = i;
1176 				break;
1177 			}
1178 		}
1179 		if (i < 0)
1180 			goto out;
1181 
1182 		for (i = 0; i <= end_zone; i++) {
1183 			struct zone *zone = pgdat->node_zones + i;
1184 
1185 			lru_pages += zone->nr_active + zone->nr_inactive;
1186 		}
1187 
1188 		/*
1189 		 * Now scan the zone in the dma->highmem direction, stopping
1190 		 * at the last zone which needs scanning.
1191 		 *
1192 		 * We do this because the page allocator works in the opposite
1193 		 * direction.  This prevents the page allocator from allocating
1194 		 * pages behind kswapd's direction of progress, which would
1195 		 * cause too much scanning of the lower zones.
1196 		 */
1197 		for (i = 0; i <= end_zone; i++) {
1198 			struct zone *zone = pgdat->node_zones + i;
1199 			int nr_slab;
1200 
1201 			if (!populated_zone(zone))
1202 				continue;
1203 
1204 			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1205 				continue;
1206 
1207 			if (!zone_watermark_ok(zone, order, zone->pages_high,
1208 					       end_zone, 0))
1209 				all_zones_ok = 0;
1210 			temp_priority[i] = priority;
1211 			sc.nr_scanned = 0;
1212 			note_zone_scanning_priority(zone, priority);
1213 			nr_reclaimed += shrink_zone(priority, zone, &sc);
1214 			reclaim_state->reclaimed_slab = 0;
1215 			nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
1216 						lru_pages);
1217 			nr_reclaimed += reclaim_state->reclaimed_slab;
1218 			total_scanned += sc.nr_scanned;
1219 			if (zone->all_unreclaimable)
1220 				continue;
1221 			if (nr_slab == 0 && zone->pages_scanned >=
1222 				    (zone->nr_active + zone->nr_inactive) * 6)
1223 				zone->all_unreclaimable = 1;
1224 			/*
1225 			 * If we've done a decent amount of scanning and
1226 			 * the reclaim ratio is low, start doing writepage
1227 			 * even in laptop mode
1228 			 */
1229 			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
1230 			    total_scanned > nr_reclaimed + nr_reclaimed / 2)
1231 				sc.may_writepage = 1;
1232 		}
1233 		if (all_zones_ok)
1234 			break;		/* kswapd: all done */
1235 		/*
1236 		 * OK, kswapd is getting into trouble.  Take a nap, then take
1237 		 * another pass across the zones.
1238 		 */
1239 		if (total_scanned && priority < DEF_PRIORITY - 2)
1240 			congestion_wait(WRITE, HZ/10);
1241 
1242 		/*
1243 		 * We do this so kswapd doesn't build up large priorities for
1244 		 * example when it is freeing in parallel with allocators. It
1245 		 * matches the direct reclaim path behaviour in terms of impact
1246 		 * on zone->*_priority.
1247 		 */
1248 		if (nr_reclaimed >= SWAP_CLUSTER_MAX)
1249 			break;
1250 	}
1251 out:
1252 	/*
1253 	 * Note within each zone the priority level at which this zone was
1254 	 * brought into a happy state.  So that the next thread which scans this
1255 	 * zone will start out at that priority level.
1256 	 */
1257 	for (i = 0; i < pgdat->nr_zones; i++) {
1258 		struct zone *zone = pgdat->node_zones + i;
1259 
1260 		zone->prev_priority = temp_priority[i];
1261 	}
1262 	if (!all_zones_ok) {
1263 		cond_resched();
1264 
1265 		try_to_freeze();
1266 
1267 		goto loop_again;
1268 	}
1269 
1270 	return nr_reclaimed;
1271 }
1272 
1273 /*
1274  * The background pageout daemon, started as a kernel thread
1275  * from the init process.
1276  *
1277  * This basically trickles out pages so that we have _some_
1278  * free memory available even if there is no other activity
1279  * that frees anything up. This is needed for things like routing
1280  * etc, where we otherwise might have all activity going on in
1281  * asynchronous contexts that cannot page things out.
1282  *
1283  * If there are applications that are active memory-allocators
1284  * (most normal use), this basically shouldn't matter.
1285  */
1286 static int kswapd(void *p)
1287 {
1288 	unsigned long order;
1289 	pg_data_t *pgdat = (pg_data_t*)p;
1290 	struct task_struct *tsk = current;
1291 	DEFINE_WAIT(wait);
1292 	struct reclaim_state reclaim_state = {
1293 		.reclaimed_slab = 0,
1294 	};
1295 	cpumask_t cpumask;
1296 
1297 	cpumask = node_to_cpumask(pgdat->node_id);
1298 	if (!cpus_empty(cpumask))
1299 		set_cpus_allowed(tsk, cpumask);
1300 	current->reclaim_state = &reclaim_state;
1301 
1302 	/*
1303 	 * Tell the memory management that we're a "memory allocator",
1304 	 * and that if we need more memory we should get access to it
1305 	 * regardless (see "__alloc_pages()"). "kswapd" should
1306 	 * never get caught in the normal page freeing logic.
1307 	 *
1308 	 * (Kswapd normally doesn't need memory anyway, but sometimes
1309 	 * you need a small amount of memory in order to be able to
1310 	 * page out something else, and this flag essentially protects
1311 	 * us from recursively trying to free more memory as we're
1312 	 * trying to free the first piece of memory in the first place).
1313 	 */
1314 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
1315 
1316 	order = 0;
1317 	for ( ; ; ) {
1318 		unsigned long new_order;
1319 
1320 		try_to_freeze();
1321 
1322 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
1323 		new_order = pgdat->kswapd_max_order;
1324 		pgdat->kswapd_max_order = 0;
1325 		if (order < new_order) {
1326 			/*
1327 			 * Don't sleep if someone wants a larger 'order'
1328 			 * allocation
1329 			 */
1330 			order = new_order;
1331 		} else {
1332 			schedule();
1333 			order = pgdat->kswapd_max_order;
1334 		}
1335 		finish_wait(&pgdat->kswapd_wait, &wait);
1336 
1337 		balance_pgdat(pgdat, order);
1338 	}
1339 	return 0;
1340 }
1341 
1342 /*
1343  * A zone is low on free memory, so wake its kswapd task to service it.
1344  */
1345 void wakeup_kswapd(struct zone *zone, int order)
1346 {
1347 	pg_data_t *pgdat;
1348 
1349 	if (!populated_zone(zone))
1350 		return;
1351 
1352 	pgdat = zone->zone_pgdat;
1353 	if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0))
1354 		return;
1355 	if (pgdat->kswapd_max_order < order)
1356 		pgdat->kswapd_max_order = order;
1357 	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1358 		return;
1359 	if (!waitqueue_active(&pgdat->kswapd_wait))
1360 		return;
1361 	wake_up_interruptible(&pgdat->kswapd_wait);
1362 }
1363 
1364 #ifdef CONFIG_PM
1365 /*
1366  * Helper function for shrink_all_memory().  Tries to reclaim 'nr_pages' pages
1367  * from LRU lists system-wide, for given pass and priority, and returns the
1368  * number of reclaimed pages
1369  *
1370  * For pass > 3 we also try to shrink the LRU lists that contain a few pages
1371  */
1372 static unsigned long shrink_all_zones(unsigned long nr_pages, int prio,
1373 				      int pass, struct scan_control *sc)
1374 {
1375 	struct zone *zone;
1376 	unsigned long nr_to_scan, ret = 0;
1377 
1378 	for_each_zone(zone) {
1379 
1380 		if (!populated_zone(zone))
1381 			continue;
1382 
1383 		if (zone->all_unreclaimable && prio != DEF_PRIORITY)
1384 			continue;
1385 
1386 		/* For pass = 0 we don't shrink the active list */
1387 		if (pass > 0) {
1388 			zone->nr_scan_active += (zone->nr_active >> prio) + 1;
1389 			if (zone->nr_scan_active >= nr_pages || pass > 3) {
1390 				zone->nr_scan_active = 0;
1391 				nr_to_scan = min(nr_pages, zone->nr_active);
1392 				shrink_active_list(nr_to_scan, zone, sc, prio);
1393 			}
1394 		}
1395 
1396 		zone->nr_scan_inactive += (zone->nr_inactive >> prio) + 1;
1397 		if (zone->nr_scan_inactive >= nr_pages || pass > 3) {
1398 			zone->nr_scan_inactive = 0;
1399 			nr_to_scan = min(nr_pages, zone->nr_inactive);
1400 			ret += shrink_inactive_list(nr_to_scan, zone, sc);
1401 			if (ret >= nr_pages)
1402 				return ret;
1403 		}
1404 	}
1405 
1406 	return ret;
1407 }
1408 
1409 static unsigned long count_lru_pages(void)
1410 {
1411 	struct zone *zone;
1412 	unsigned long ret = 0;
1413 
1414 	for_each_zone(zone)
1415 		ret += zone->nr_active + zone->nr_inactive;
1416 	return ret;
1417 }
1418 
1419 /*
1420  * Try to free `nr_pages' of memory, system-wide, and return the number of
1421  * freed pages.
1422  *
1423  * Rather than trying to age LRUs the aim is to preserve the overall
1424  * LRU order by reclaiming preferentially
1425  * inactive > active > active referenced > active mapped
1426  */
1427 unsigned long shrink_all_memory(unsigned long nr_pages)
1428 {
1429 	unsigned long lru_pages, nr_slab;
1430 	unsigned long ret = 0;
1431 	int pass;
1432 	struct reclaim_state reclaim_state;
1433 	struct scan_control sc = {
1434 		.gfp_mask = GFP_KERNEL,
1435 		.may_swap = 0,
1436 		.swap_cluster_max = nr_pages,
1437 		.may_writepage = 1,
1438 		.swappiness = vm_swappiness,
1439 	};
1440 
1441 	current->reclaim_state = &reclaim_state;
1442 
1443 	lru_pages = count_lru_pages();
1444 	nr_slab = global_page_state(NR_SLAB_RECLAIMABLE);
1445 	/* If slab caches are huge, it's better to hit them first */
1446 	while (nr_slab >= lru_pages) {
1447 		reclaim_state.reclaimed_slab = 0;
1448 		shrink_slab(nr_pages, sc.gfp_mask, lru_pages);
1449 		if (!reclaim_state.reclaimed_slab)
1450 			break;
1451 
1452 		ret += reclaim_state.reclaimed_slab;
1453 		if (ret >= nr_pages)
1454 			goto out;
1455 
1456 		nr_slab -= reclaim_state.reclaimed_slab;
1457 	}
1458 
1459 	/*
1460 	 * We try to shrink LRUs in 5 passes:
1461 	 * 0 = Reclaim from inactive_list only
1462 	 * 1 = Reclaim from active list but don't reclaim mapped
1463 	 * 2 = 2nd pass of type 1
1464 	 * 3 = Reclaim mapped (normal reclaim)
1465 	 * 4 = 2nd pass of type 3
1466 	 */
1467 	for (pass = 0; pass < 5; pass++) {
1468 		int prio;
1469 
1470 		/* Force reclaiming mapped pages in the passes #3 and #4 */
1471 		if (pass > 2) {
1472 			sc.may_swap = 1;
1473 			sc.swappiness = 100;
1474 		}
1475 
1476 		for (prio = DEF_PRIORITY; prio >= 0; prio--) {
1477 			unsigned long nr_to_scan = nr_pages - ret;
1478 
1479 			sc.nr_scanned = 0;
1480 			ret += shrink_all_zones(nr_to_scan, prio, pass, &sc);
1481 			if (ret >= nr_pages)
1482 				goto out;
1483 
1484 			reclaim_state.reclaimed_slab = 0;
1485 			shrink_slab(sc.nr_scanned, sc.gfp_mask,
1486 					count_lru_pages());
1487 			ret += reclaim_state.reclaimed_slab;
1488 			if (ret >= nr_pages)
1489 				goto out;
1490 
1491 			if (sc.nr_scanned && prio < DEF_PRIORITY - 2)
1492 				congestion_wait(WRITE, HZ / 10);
1493 		}
1494 	}
1495 
1496 	/*
1497 	 * If ret = 0, we could not shrink LRUs, but there may be something
1498 	 * in slab caches
1499 	 */
1500 	if (!ret) {
1501 		do {
1502 			reclaim_state.reclaimed_slab = 0;
1503 			shrink_slab(nr_pages, sc.gfp_mask, count_lru_pages());
1504 			ret += reclaim_state.reclaimed_slab;
1505 		} while (ret < nr_pages && reclaim_state.reclaimed_slab > 0);
1506 	}
1507 
1508 out:
1509 	current->reclaim_state = NULL;
1510 
1511 	return ret;
1512 }
1513 #endif
1514 
1515 /* It's optimal to keep kswapds on the same CPUs as their memory, but
1516    not required for correctness.  So if the last cpu in a node goes
1517    away, we get changed to run anywhere: as the first one comes back,
1518    restore their cpu bindings. */
1519 static int __devinit cpu_callback(struct notifier_block *nfb,
1520 				  unsigned long action, void *hcpu)
1521 {
1522 	pg_data_t *pgdat;
1523 	cpumask_t mask;
1524 
1525 	if (action == CPU_ONLINE) {
1526 		for_each_online_pgdat(pgdat) {
1527 			mask = node_to_cpumask(pgdat->node_id);
1528 			if (any_online_cpu(mask) != NR_CPUS)
1529 				/* One of our CPUs online: restore mask */
1530 				set_cpus_allowed(pgdat->kswapd, mask);
1531 		}
1532 	}
1533 	return NOTIFY_OK;
1534 }
1535 
1536 /*
1537  * This kswapd start function will be called by init and node-hot-add.
1538  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
1539  */
1540 int kswapd_run(int nid)
1541 {
1542 	pg_data_t *pgdat = NODE_DATA(nid);
1543 	int ret = 0;
1544 
1545 	if (pgdat->kswapd)
1546 		return 0;
1547 
1548 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
1549 	if (IS_ERR(pgdat->kswapd)) {
1550 		/* failure at boot is fatal */
1551 		BUG_ON(system_state == SYSTEM_BOOTING);
1552 		printk("Failed to start kswapd on node %d\n",nid);
1553 		ret = -1;
1554 	}
1555 	return ret;
1556 }
1557 
1558 static int __init kswapd_init(void)
1559 {
1560 	int nid;
1561 
1562 	swap_setup();
1563 	for_each_online_node(nid)
1564  		kswapd_run(nid);
1565 	hotcpu_notifier(cpu_callback, 0);
1566 	return 0;
1567 }
1568 
1569 module_init(kswapd_init)
1570 
1571 #ifdef CONFIG_NUMA
1572 /*
1573  * Zone reclaim mode
1574  *
1575  * If non-zero call zone_reclaim when the number of free pages falls below
1576  * the watermarks.
1577  */
1578 int zone_reclaim_mode __read_mostly;
1579 
1580 #define RECLAIM_OFF 0
1581 #define RECLAIM_ZONE (1<<0)	/* Run shrink_cache on the zone */
1582 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
1583 #define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
1584 
1585 /*
1586  * Priority for ZONE_RECLAIM. This determines the fraction of pages
1587  * of a node considered for each zone_reclaim. 4 scans 1/16th of
1588  * a zone.
1589  */
1590 #define ZONE_RECLAIM_PRIORITY 4
1591 
1592 /*
1593  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
1594  * occur.
1595  */
1596 int sysctl_min_unmapped_ratio = 1;
1597 
1598 /*
1599  * If the number of slab pages in a zone grows beyond this percentage then
1600  * slab reclaim needs to occur.
1601  */
1602 int sysctl_min_slab_ratio = 5;
1603 
1604 /*
1605  * Try to free up some pages from this zone through reclaim.
1606  */
1607 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
1608 {
1609 	/* Minimum pages needed in order to stay on node */
1610 	const unsigned long nr_pages = 1 << order;
1611 	struct task_struct *p = current;
1612 	struct reclaim_state reclaim_state;
1613 	int priority;
1614 	unsigned long nr_reclaimed = 0;
1615 	struct scan_control sc = {
1616 		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
1617 		.may_swap = !!(zone_reclaim_mode & RECLAIM_SWAP),
1618 		.swap_cluster_max = max_t(unsigned long, nr_pages,
1619 					SWAP_CLUSTER_MAX),
1620 		.gfp_mask = gfp_mask,
1621 		.swappiness = vm_swappiness,
1622 	};
1623 	unsigned long slab_reclaimable;
1624 
1625 	disable_swap_token();
1626 	cond_resched();
1627 	/*
1628 	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
1629 	 * and we also need to be able to write out pages for RECLAIM_WRITE
1630 	 * and RECLAIM_SWAP.
1631 	 */
1632 	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
1633 	reclaim_state.reclaimed_slab = 0;
1634 	p->reclaim_state = &reclaim_state;
1635 
1636 	if (zone_page_state(zone, NR_FILE_PAGES) -
1637 		zone_page_state(zone, NR_FILE_MAPPED) >
1638 		zone->min_unmapped_pages) {
1639 		/*
1640 		 * Free memory by calling shrink zone with increasing
1641 		 * priorities until we have enough memory freed.
1642 		 */
1643 		priority = ZONE_RECLAIM_PRIORITY;
1644 		do {
1645 			note_zone_scanning_priority(zone, priority);
1646 			nr_reclaimed += shrink_zone(priority, zone, &sc);
1647 			priority--;
1648 		} while (priority >= 0 && nr_reclaimed < nr_pages);
1649 	}
1650 
1651 	slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
1652 	if (slab_reclaimable > zone->min_slab_pages) {
1653 		/*
1654 		 * shrink_slab() does not currently allow us to determine how
1655 		 * many pages were freed in this zone. So we take the current
1656 		 * number of slab pages and shake the slab until it is reduced
1657 		 * by the same nr_pages that we used for reclaiming unmapped
1658 		 * pages.
1659 		 *
1660 		 * Note that shrink_slab will free memory on all zones and may
1661 		 * take a long time.
1662 		 */
1663 		while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
1664 			zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
1665 				slab_reclaimable - nr_pages)
1666 			;
1667 
1668 		/*
1669 		 * Update nr_reclaimed by the number of slab pages we
1670 		 * reclaimed from this zone.
1671 		 */
1672 		nr_reclaimed += slab_reclaimable -
1673 			zone_page_state(zone, NR_SLAB_RECLAIMABLE);
1674 	}
1675 
1676 	p->reclaim_state = NULL;
1677 	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
1678 	return nr_reclaimed >= nr_pages;
1679 }
1680 
1681 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
1682 {
1683 	cpumask_t mask;
1684 	int node_id;
1685 
1686 	/*
1687 	 * Zone reclaim reclaims unmapped file backed pages and
1688 	 * slab pages if we are over the defined limits.
1689 	 *
1690 	 * A small portion of unmapped file backed pages is needed for
1691 	 * file I/O otherwise pages read by file I/O will be immediately
1692 	 * thrown out if the zone is overallocated. So we do not reclaim
1693 	 * if less than a specified percentage of the zone is used by
1694 	 * unmapped file backed pages.
1695 	 */
1696 	if (zone_page_state(zone, NR_FILE_PAGES) -
1697 	    zone_page_state(zone, NR_FILE_MAPPED) <= zone->min_unmapped_pages
1698 	    && zone_page_state(zone, NR_SLAB_RECLAIMABLE)
1699 			<= zone->min_slab_pages)
1700 		return 0;
1701 
1702 	/*
1703 	 * Avoid concurrent zone reclaims, do not reclaim in a zone that does
1704 	 * not have reclaimable pages and if we should not delay the allocation
1705 	 * then do not scan.
1706 	 */
1707 	if (!(gfp_mask & __GFP_WAIT) ||
1708 		zone->all_unreclaimable ||
1709 		atomic_read(&zone->reclaim_in_progress) > 0 ||
1710 		(current->flags & PF_MEMALLOC))
1711 			return 0;
1712 
1713 	/*
1714 	 * Only run zone reclaim on the local zone or on zones that do not
1715 	 * have associated processors. This will favor the local processor
1716 	 * over remote processors and spread off node memory allocations
1717 	 * as wide as possible.
1718 	 */
1719 	node_id = zone_to_nid(zone);
1720 	mask = node_to_cpumask(node_id);
1721 	if (!cpus_empty(mask) && node_id != numa_node_id())
1722 		return 0;
1723 	return __zone_reclaim(zone, gfp_mask, order);
1724 }
1725 #endif
1726