xref: /linux/mm/vmscan.c (revision a8fe58cec351c25e09c393bf46117c0c47b5a17c)
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13 
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h>	/* for try_to_release_page(),
30 					buffer_heads_over_limit */
31 #include <linux/mm_inline.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rmap.h>
34 #include <linux/topology.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/compaction.h>
38 #include <linux/notifier.h>
39 #include <linux/rwsem.h>
40 #include <linux/delay.h>
41 #include <linux/kthread.h>
42 #include <linux/freezer.h>
43 #include <linux/memcontrol.h>
44 #include <linux/delayacct.h>
45 #include <linux/sysctl.h>
46 #include <linux/oom.h>
47 #include <linux/prefetch.h>
48 #include <linux/printk.h>
49 #include <linux/dax.h>
50 
51 #include <asm/tlbflush.h>
52 #include <asm/div64.h>
53 
54 #include <linux/swapops.h>
55 #include <linux/balloon_compaction.h>
56 
57 #include "internal.h"
58 
59 #define CREATE_TRACE_POINTS
60 #include <trace/events/vmscan.h>
61 
62 struct scan_control {
63 	/* How many pages shrink_list() should reclaim */
64 	unsigned long nr_to_reclaim;
65 
66 	/* This context's GFP mask */
67 	gfp_t gfp_mask;
68 
69 	/* Allocation order */
70 	int order;
71 
72 	/*
73 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
74 	 * are scanned.
75 	 */
76 	nodemask_t	*nodemask;
77 
78 	/*
79 	 * The memory cgroup that hit its limit and as a result is the
80 	 * primary target of this reclaim invocation.
81 	 */
82 	struct mem_cgroup *target_mem_cgroup;
83 
84 	/* Scan (total_size >> priority) pages at once */
85 	int priority;
86 
87 	unsigned int may_writepage:1;
88 
89 	/* Can mapped pages be reclaimed? */
90 	unsigned int may_unmap:1;
91 
92 	/* Can pages be swapped as part of reclaim? */
93 	unsigned int may_swap:1;
94 
95 	/* Can cgroups be reclaimed below their normal consumption range? */
96 	unsigned int may_thrash:1;
97 
98 	unsigned int hibernation_mode:1;
99 
100 	/* One of the zones is ready for compaction */
101 	unsigned int compaction_ready:1;
102 
103 	/* Incremented by the number of inactive pages that were scanned */
104 	unsigned long nr_scanned;
105 
106 	/* Number of pages freed so far during a call to shrink_zones() */
107 	unsigned long nr_reclaimed;
108 };
109 
110 #ifdef ARCH_HAS_PREFETCH
111 #define prefetch_prev_lru_page(_page, _base, _field)			\
112 	do {								\
113 		if ((_page)->lru.prev != _base) {			\
114 			struct page *prev;				\
115 									\
116 			prev = lru_to_page(&(_page->lru));		\
117 			prefetch(&prev->_field);			\
118 		}							\
119 	} while (0)
120 #else
121 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
122 #endif
123 
124 #ifdef ARCH_HAS_PREFETCHW
125 #define prefetchw_prev_lru_page(_page, _base, _field)			\
126 	do {								\
127 		if ((_page)->lru.prev != _base) {			\
128 			struct page *prev;				\
129 									\
130 			prev = lru_to_page(&(_page->lru));		\
131 			prefetchw(&prev->_field);			\
132 		}							\
133 	} while (0)
134 #else
135 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
136 #endif
137 
138 /*
139  * From 0 .. 100.  Higher means more swappy.
140  */
141 int vm_swappiness = 60;
142 /*
143  * The total number of pages which are beyond the high watermark within all
144  * zones.
145  */
146 unsigned long vm_total_pages;
147 
148 static LIST_HEAD(shrinker_list);
149 static DECLARE_RWSEM(shrinker_rwsem);
150 
151 #ifdef CONFIG_MEMCG
152 static bool global_reclaim(struct scan_control *sc)
153 {
154 	return !sc->target_mem_cgroup;
155 }
156 
157 /**
158  * sane_reclaim - is the usual dirty throttling mechanism operational?
159  * @sc: scan_control in question
160  *
161  * The normal page dirty throttling mechanism in balance_dirty_pages() is
162  * completely broken with the legacy memcg and direct stalling in
163  * shrink_page_list() is used for throttling instead, which lacks all the
164  * niceties such as fairness, adaptive pausing, bandwidth proportional
165  * allocation and configurability.
166  *
167  * This function tests whether the vmscan currently in progress can assume
168  * that the normal dirty throttling mechanism is operational.
169  */
170 static bool sane_reclaim(struct scan_control *sc)
171 {
172 	struct mem_cgroup *memcg = sc->target_mem_cgroup;
173 
174 	if (!memcg)
175 		return true;
176 #ifdef CONFIG_CGROUP_WRITEBACK
177 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
178 		return true;
179 #endif
180 	return false;
181 }
182 #else
183 static bool global_reclaim(struct scan_control *sc)
184 {
185 	return true;
186 }
187 
188 static bool sane_reclaim(struct scan_control *sc)
189 {
190 	return true;
191 }
192 #endif
193 
194 static unsigned long zone_reclaimable_pages(struct zone *zone)
195 {
196 	unsigned long nr;
197 
198 	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
199 	     zone_page_state(zone, NR_INACTIVE_FILE) +
200 	     zone_page_state(zone, NR_ISOLATED_FILE);
201 
202 	if (get_nr_swap_pages() > 0)
203 		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
204 		      zone_page_state(zone, NR_INACTIVE_ANON) +
205 		      zone_page_state(zone, NR_ISOLATED_ANON);
206 
207 	return nr;
208 }
209 
210 bool zone_reclaimable(struct zone *zone)
211 {
212 	return zone_page_state(zone, NR_PAGES_SCANNED) <
213 		zone_reclaimable_pages(zone) * 6;
214 }
215 
216 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
217 {
218 	if (!mem_cgroup_disabled())
219 		return mem_cgroup_get_lru_size(lruvec, lru);
220 
221 	return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
222 }
223 
224 /*
225  * Add a shrinker callback to be called from the vm.
226  */
227 int register_shrinker(struct shrinker *shrinker)
228 {
229 	size_t size = sizeof(*shrinker->nr_deferred);
230 
231 	/*
232 	 * If we only have one possible node in the system anyway, save
233 	 * ourselves the trouble and disable NUMA aware behavior. This way we
234 	 * will save memory and some small loop time later.
235 	 */
236 	if (nr_node_ids == 1)
237 		shrinker->flags &= ~SHRINKER_NUMA_AWARE;
238 
239 	if (shrinker->flags & SHRINKER_NUMA_AWARE)
240 		size *= nr_node_ids;
241 
242 	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
243 	if (!shrinker->nr_deferred)
244 		return -ENOMEM;
245 
246 	down_write(&shrinker_rwsem);
247 	list_add_tail(&shrinker->list, &shrinker_list);
248 	up_write(&shrinker_rwsem);
249 	return 0;
250 }
251 EXPORT_SYMBOL(register_shrinker);
252 
253 /*
254  * Remove one
255  */
256 void unregister_shrinker(struct shrinker *shrinker)
257 {
258 	down_write(&shrinker_rwsem);
259 	list_del(&shrinker->list);
260 	up_write(&shrinker_rwsem);
261 	kfree(shrinker->nr_deferred);
262 }
263 EXPORT_SYMBOL(unregister_shrinker);
264 
265 #define SHRINK_BATCH 128
266 
267 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
268 				    struct shrinker *shrinker,
269 				    unsigned long nr_scanned,
270 				    unsigned long nr_eligible)
271 {
272 	unsigned long freed = 0;
273 	unsigned long long delta;
274 	long total_scan;
275 	long freeable;
276 	long nr;
277 	long new_nr;
278 	int nid = shrinkctl->nid;
279 	long batch_size = shrinker->batch ? shrinker->batch
280 					  : SHRINK_BATCH;
281 
282 	freeable = shrinker->count_objects(shrinker, shrinkctl);
283 	if (freeable == 0)
284 		return 0;
285 
286 	/*
287 	 * copy the current shrinker scan count into a local variable
288 	 * and zero it so that other concurrent shrinker invocations
289 	 * don't also do this scanning work.
290 	 */
291 	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
292 
293 	total_scan = nr;
294 	delta = (4 * nr_scanned) / shrinker->seeks;
295 	delta *= freeable;
296 	do_div(delta, nr_eligible + 1);
297 	total_scan += delta;
298 	if (total_scan < 0) {
299 		pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
300 		       shrinker->scan_objects, total_scan);
301 		total_scan = freeable;
302 	}
303 
304 	/*
305 	 * We need to avoid excessive windup on filesystem shrinkers
306 	 * due to large numbers of GFP_NOFS allocations causing the
307 	 * shrinkers to return -1 all the time. This results in a large
308 	 * nr being built up so when a shrink that can do some work
309 	 * comes along it empties the entire cache due to nr >>>
310 	 * freeable. This is bad for sustaining a working set in
311 	 * memory.
312 	 *
313 	 * Hence only allow the shrinker to scan the entire cache when
314 	 * a large delta change is calculated directly.
315 	 */
316 	if (delta < freeable / 4)
317 		total_scan = min(total_scan, freeable / 2);
318 
319 	/*
320 	 * Avoid risking looping forever due to too large nr value:
321 	 * never try to free more than twice the estimate number of
322 	 * freeable entries.
323 	 */
324 	if (total_scan > freeable * 2)
325 		total_scan = freeable * 2;
326 
327 	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
328 				   nr_scanned, nr_eligible,
329 				   freeable, delta, total_scan);
330 
331 	/*
332 	 * Normally, we should not scan less than batch_size objects in one
333 	 * pass to avoid too frequent shrinker calls, but if the slab has less
334 	 * than batch_size objects in total and we are really tight on memory,
335 	 * we will try to reclaim all available objects, otherwise we can end
336 	 * up failing allocations although there are plenty of reclaimable
337 	 * objects spread over several slabs with usage less than the
338 	 * batch_size.
339 	 *
340 	 * We detect the "tight on memory" situations by looking at the total
341 	 * number of objects we want to scan (total_scan). If it is greater
342 	 * than the total number of objects on slab (freeable), we must be
343 	 * scanning at high prio and therefore should try to reclaim as much as
344 	 * possible.
345 	 */
346 	while (total_scan >= batch_size ||
347 	       total_scan >= freeable) {
348 		unsigned long ret;
349 		unsigned long nr_to_scan = min(batch_size, total_scan);
350 
351 		shrinkctl->nr_to_scan = nr_to_scan;
352 		ret = shrinker->scan_objects(shrinker, shrinkctl);
353 		if (ret == SHRINK_STOP)
354 			break;
355 		freed += ret;
356 
357 		count_vm_events(SLABS_SCANNED, nr_to_scan);
358 		total_scan -= nr_to_scan;
359 
360 		cond_resched();
361 	}
362 
363 	/*
364 	 * move the unused scan count back into the shrinker in a
365 	 * manner that handles concurrent updates. If we exhausted the
366 	 * scan, there is no need to do an update.
367 	 */
368 	if (total_scan > 0)
369 		new_nr = atomic_long_add_return(total_scan,
370 						&shrinker->nr_deferred[nid]);
371 	else
372 		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
373 
374 	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
375 	return freed;
376 }
377 
378 /**
379  * shrink_slab - shrink slab caches
380  * @gfp_mask: allocation context
381  * @nid: node whose slab caches to target
382  * @memcg: memory cgroup whose slab caches to target
383  * @nr_scanned: pressure numerator
384  * @nr_eligible: pressure denominator
385  *
386  * Call the shrink functions to age shrinkable caches.
387  *
388  * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
389  * unaware shrinkers will receive a node id of 0 instead.
390  *
391  * @memcg specifies the memory cgroup to target. If it is not NULL,
392  * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
393  * objects from the memory cgroup specified. Otherwise all shrinkers
394  * are called, and memcg aware shrinkers are supposed to scan the
395  * global list then.
396  *
397  * @nr_scanned and @nr_eligible form a ratio that indicate how much of
398  * the available objects should be scanned.  Page reclaim for example
399  * passes the number of pages scanned and the number of pages on the
400  * LRU lists that it considered on @nid, plus a bias in @nr_scanned
401  * when it encountered mapped pages.  The ratio is further biased by
402  * the ->seeks setting of the shrink function, which indicates the
403  * cost to recreate an object relative to that of an LRU page.
404  *
405  * Returns the number of reclaimed slab objects.
406  */
407 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
408 				 struct mem_cgroup *memcg,
409 				 unsigned long nr_scanned,
410 				 unsigned long nr_eligible)
411 {
412 	struct shrinker *shrinker;
413 	unsigned long freed = 0;
414 
415 	if (memcg && !memcg_kmem_online(memcg))
416 		return 0;
417 
418 	if (nr_scanned == 0)
419 		nr_scanned = SWAP_CLUSTER_MAX;
420 
421 	if (!down_read_trylock(&shrinker_rwsem)) {
422 		/*
423 		 * If we would return 0, our callers would understand that we
424 		 * have nothing else to shrink and give up trying. By returning
425 		 * 1 we keep it going and assume we'll be able to shrink next
426 		 * time.
427 		 */
428 		freed = 1;
429 		goto out;
430 	}
431 
432 	list_for_each_entry(shrinker, &shrinker_list, list) {
433 		struct shrink_control sc = {
434 			.gfp_mask = gfp_mask,
435 			.nid = nid,
436 			.memcg = memcg,
437 		};
438 
439 		if (memcg && !(shrinker->flags & SHRINKER_MEMCG_AWARE))
440 			continue;
441 
442 		if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
443 			sc.nid = 0;
444 
445 		freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
446 	}
447 
448 	up_read(&shrinker_rwsem);
449 out:
450 	cond_resched();
451 	return freed;
452 }
453 
454 void drop_slab_node(int nid)
455 {
456 	unsigned long freed;
457 
458 	do {
459 		struct mem_cgroup *memcg = NULL;
460 
461 		freed = 0;
462 		do {
463 			freed += shrink_slab(GFP_KERNEL, nid, memcg,
464 					     1000, 1000);
465 		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
466 	} while (freed > 10);
467 }
468 
469 void drop_slab(void)
470 {
471 	int nid;
472 
473 	for_each_online_node(nid)
474 		drop_slab_node(nid);
475 }
476 
477 static inline int is_page_cache_freeable(struct page *page)
478 {
479 	/*
480 	 * A freeable page cache page is referenced only by the caller
481 	 * that isolated the page, the page cache radix tree and
482 	 * optional buffer heads at page->private.
483 	 */
484 	return page_count(page) - page_has_private(page) == 2;
485 }
486 
487 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
488 {
489 	if (current->flags & PF_SWAPWRITE)
490 		return 1;
491 	if (!inode_write_congested(inode))
492 		return 1;
493 	if (inode_to_bdi(inode) == current->backing_dev_info)
494 		return 1;
495 	return 0;
496 }
497 
498 /*
499  * We detected a synchronous write error writing a page out.  Probably
500  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
501  * fsync(), msync() or close().
502  *
503  * The tricky part is that after writepage we cannot touch the mapping: nothing
504  * prevents it from being freed up.  But we have a ref on the page and once
505  * that page is locked, the mapping is pinned.
506  *
507  * We're allowed to run sleeping lock_page() here because we know the caller has
508  * __GFP_FS.
509  */
510 static void handle_write_error(struct address_space *mapping,
511 				struct page *page, int error)
512 {
513 	lock_page(page);
514 	if (page_mapping(page) == mapping)
515 		mapping_set_error(mapping, error);
516 	unlock_page(page);
517 }
518 
519 /* possible outcome of pageout() */
520 typedef enum {
521 	/* failed to write page out, page is locked */
522 	PAGE_KEEP,
523 	/* move page to the active list, page is locked */
524 	PAGE_ACTIVATE,
525 	/* page has been sent to the disk successfully, page is unlocked */
526 	PAGE_SUCCESS,
527 	/* page is clean and locked */
528 	PAGE_CLEAN,
529 } pageout_t;
530 
531 /*
532  * pageout is called by shrink_page_list() for each dirty page.
533  * Calls ->writepage().
534  */
535 static pageout_t pageout(struct page *page, struct address_space *mapping,
536 			 struct scan_control *sc)
537 {
538 	/*
539 	 * If the page is dirty, only perform writeback if that write
540 	 * will be non-blocking.  To prevent this allocation from being
541 	 * stalled by pagecache activity.  But note that there may be
542 	 * stalls if we need to run get_block().  We could test
543 	 * PagePrivate for that.
544 	 *
545 	 * If this process is currently in __generic_file_write_iter() against
546 	 * this page's queue, we can perform writeback even if that
547 	 * will block.
548 	 *
549 	 * If the page is swapcache, write it back even if that would
550 	 * block, for some throttling. This happens by accident, because
551 	 * swap_backing_dev_info is bust: it doesn't reflect the
552 	 * congestion state of the swapdevs.  Easy to fix, if needed.
553 	 */
554 	if (!is_page_cache_freeable(page))
555 		return PAGE_KEEP;
556 	if (!mapping) {
557 		/*
558 		 * Some data journaling orphaned pages can have
559 		 * page->mapping == NULL while being dirty with clean buffers.
560 		 */
561 		if (page_has_private(page)) {
562 			if (try_to_free_buffers(page)) {
563 				ClearPageDirty(page);
564 				pr_info("%s: orphaned page\n", __func__);
565 				return PAGE_CLEAN;
566 			}
567 		}
568 		return PAGE_KEEP;
569 	}
570 	if (mapping->a_ops->writepage == NULL)
571 		return PAGE_ACTIVATE;
572 	if (!may_write_to_inode(mapping->host, sc))
573 		return PAGE_KEEP;
574 
575 	if (clear_page_dirty_for_io(page)) {
576 		int res;
577 		struct writeback_control wbc = {
578 			.sync_mode = WB_SYNC_NONE,
579 			.nr_to_write = SWAP_CLUSTER_MAX,
580 			.range_start = 0,
581 			.range_end = LLONG_MAX,
582 			.for_reclaim = 1,
583 		};
584 
585 		SetPageReclaim(page);
586 		res = mapping->a_ops->writepage(page, &wbc);
587 		if (res < 0)
588 			handle_write_error(mapping, page, res);
589 		if (res == AOP_WRITEPAGE_ACTIVATE) {
590 			ClearPageReclaim(page);
591 			return PAGE_ACTIVATE;
592 		}
593 
594 		if (!PageWriteback(page)) {
595 			/* synchronous write or broken a_ops? */
596 			ClearPageReclaim(page);
597 		}
598 		trace_mm_vmscan_writepage(page);
599 		inc_zone_page_state(page, NR_VMSCAN_WRITE);
600 		return PAGE_SUCCESS;
601 	}
602 
603 	return PAGE_CLEAN;
604 }
605 
606 /*
607  * Same as remove_mapping, but if the page is removed from the mapping, it
608  * gets returned with a refcount of 0.
609  */
610 static int __remove_mapping(struct address_space *mapping, struct page *page,
611 			    bool reclaimed)
612 {
613 	unsigned long flags;
614 	struct mem_cgroup *memcg;
615 
616 	BUG_ON(!PageLocked(page));
617 	BUG_ON(mapping != page_mapping(page));
618 
619 	memcg = mem_cgroup_begin_page_stat(page);
620 	spin_lock_irqsave(&mapping->tree_lock, flags);
621 	/*
622 	 * The non racy check for a busy page.
623 	 *
624 	 * Must be careful with the order of the tests. When someone has
625 	 * a ref to the page, it may be possible that they dirty it then
626 	 * drop the reference. So if PageDirty is tested before page_count
627 	 * here, then the following race may occur:
628 	 *
629 	 * get_user_pages(&page);
630 	 * [user mapping goes away]
631 	 * write_to(page);
632 	 *				!PageDirty(page)    [good]
633 	 * SetPageDirty(page);
634 	 * put_page(page);
635 	 *				!page_count(page)   [good, discard it]
636 	 *
637 	 * [oops, our write_to data is lost]
638 	 *
639 	 * Reversing the order of the tests ensures such a situation cannot
640 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
641 	 * load is not satisfied before that of page->_count.
642 	 *
643 	 * Note that if SetPageDirty is always performed via set_page_dirty,
644 	 * and thus under tree_lock, then this ordering is not required.
645 	 */
646 	if (!page_freeze_refs(page, 2))
647 		goto cannot_free;
648 	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
649 	if (unlikely(PageDirty(page))) {
650 		page_unfreeze_refs(page, 2);
651 		goto cannot_free;
652 	}
653 
654 	if (PageSwapCache(page)) {
655 		swp_entry_t swap = { .val = page_private(page) };
656 		mem_cgroup_swapout(page, swap);
657 		__delete_from_swap_cache(page);
658 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
659 		mem_cgroup_end_page_stat(memcg);
660 		swapcache_free(swap);
661 	} else {
662 		void (*freepage)(struct page *);
663 		void *shadow = NULL;
664 
665 		freepage = mapping->a_ops->freepage;
666 		/*
667 		 * Remember a shadow entry for reclaimed file cache in
668 		 * order to detect refaults, thus thrashing, later on.
669 		 *
670 		 * But don't store shadows in an address space that is
671 		 * already exiting.  This is not just an optizimation,
672 		 * inode reclaim needs to empty out the radix tree or
673 		 * the nodes are lost.  Don't plant shadows behind its
674 		 * back.
675 		 *
676 		 * We also don't store shadows for DAX mappings because the
677 		 * only page cache pages found in these are zero pages
678 		 * covering holes, and because we don't want to mix DAX
679 		 * exceptional entries and shadow exceptional entries in the
680 		 * same page_tree.
681 		 */
682 		if (reclaimed && page_is_file_cache(page) &&
683 		    !mapping_exiting(mapping) && !dax_mapping(mapping))
684 			shadow = workingset_eviction(mapping, page);
685 		__delete_from_page_cache(page, shadow, memcg);
686 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
687 		mem_cgroup_end_page_stat(memcg);
688 
689 		if (freepage != NULL)
690 			freepage(page);
691 	}
692 
693 	return 1;
694 
695 cannot_free:
696 	spin_unlock_irqrestore(&mapping->tree_lock, flags);
697 	mem_cgroup_end_page_stat(memcg);
698 	return 0;
699 }
700 
701 /*
702  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
703  * someone else has a ref on the page, abort and return 0.  If it was
704  * successfully detached, return 1.  Assumes the caller has a single ref on
705  * this page.
706  */
707 int remove_mapping(struct address_space *mapping, struct page *page)
708 {
709 	if (__remove_mapping(mapping, page, false)) {
710 		/*
711 		 * Unfreezing the refcount with 1 rather than 2 effectively
712 		 * drops the pagecache ref for us without requiring another
713 		 * atomic operation.
714 		 */
715 		page_unfreeze_refs(page, 1);
716 		return 1;
717 	}
718 	return 0;
719 }
720 
721 /**
722  * putback_lru_page - put previously isolated page onto appropriate LRU list
723  * @page: page to be put back to appropriate lru list
724  *
725  * Add previously isolated @page to appropriate LRU list.
726  * Page may still be unevictable for other reasons.
727  *
728  * lru_lock must not be held, interrupts must be enabled.
729  */
730 void putback_lru_page(struct page *page)
731 {
732 	bool is_unevictable;
733 	int was_unevictable = PageUnevictable(page);
734 
735 	VM_BUG_ON_PAGE(PageLRU(page), page);
736 
737 redo:
738 	ClearPageUnevictable(page);
739 
740 	if (page_evictable(page)) {
741 		/*
742 		 * For evictable pages, we can use the cache.
743 		 * In event of a race, worst case is we end up with an
744 		 * unevictable page on [in]active list.
745 		 * We know how to handle that.
746 		 */
747 		is_unevictable = false;
748 		lru_cache_add(page);
749 	} else {
750 		/*
751 		 * Put unevictable pages directly on zone's unevictable
752 		 * list.
753 		 */
754 		is_unevictable = true;
755 		add_page_to_unevictable_list(page);
756 		/*
757 		 * When racing with an mlock or AS_UNEVICTABLE clearing
758 		 * (page is unlocked) make sure that if the other thread
759 		 * does not observe our setting of PG_lru and fails
760 		 * isolation/check_move_unevictable_pages,
761 		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
762 		 * the page back to the evictable list.
763 		 *
764 		 * The other side is TestClearPageMlocked() or shmem_lock().
765 		 */
766 		smp_mb();
767 	}
768 
769 	/*
770 	 * page's status can change while we move it among lru. If an evictable
771 	 * page is on unevictable list, it never be freed. To avoid that,
772 	 * check after we added it to the list, again.
773 	 */
774 	if (is_unevictable && page_evictable(page)) {
775 		if (!isolate_lru_page(page)) {
776 			put_page(page);
777 			goto redo;
778 		}
779 		/* This means someone else dropped this page from LRU
780 		 * So, it will be freed or putback to LRU again. There is
781 		 * nothing to do here.
782 		 */
783 	}
784 
785 	if (was_unevictable && !is_unevictable)
786 		count_vm_event(UNEVICTABLE_PGRESCUED);
787 	else if (!was_unevictable && is_unevictable)
788 		count_vm_event(UNEVICTABLE_PGCULLED);
789 
790 	put_page(page);		/* drop ref from isolate */
791 }
792 
793 enum page_references {
794 	PAGEREF_RECLAIM,
795 	PAGEREF_RECLAIM_CLEAN,
796 	PAGEREF_KEEP,
797 	PAGEREF_ACTIVATE,
798 };
799 
800 static enum page_references page_check_references(struct page *page,
801 						  struct scan_control *sc)
802 {
803 	int referenced_ptes, referenced_page;
804 	unsigned long vm_flags;
805 
806 	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
807 					  &vm_flags);
808 	referenced_page = TestClearPageReferenced(page);
809 
810 	/*
811 	 * Mlock lost the isolation race with us.  Let try_to_unmap()
812 	 * move the page to the unevictable list.
813 	 */
814 	if (vm_flags & VM_LOCKED)
815 		return PAGEREF_RECLAIM;
816 
817 	if (referenced_ptes) {
818 		if (PageSwapBacked(page))
819 			return PAGEREF_ACTIVATE;
820 		/*
821 		 * All mapped pages start out with page table
822 		 * references from the instantiating fault, so we need
823 		 * to look twice if a mapped file page is used more
824 		 * than once.
825 		 *
826 		 * Mark it and spare it for another trip around the
827 		 * inactive list.  Another page table reference will
828 		 * lead to its activation.
829 		 *
830 		 * Note: the mark is set for activated pages as well
831 		 * so that recently deactivated but used pages are
832 		 * quickly recovered.
833 		 */
834 		SetPageReferenced(page);
835 
836 		if (referenced_page || referenced_ptes > 1)
837 			return PAGEREF_ACTIVATE;
838 
839 		/*
840 		 * Activate file-backed executable pages after first usage.
841 		 */
842 		if (vm_flags & VM_EXEC)
843 			return PAGEREF_ACTIVATE;
844 
845 		return PAGEREF_KEEP;
846 	}
847 
848 	/* Reclaim if clean, defer dirty pages to writeback */
849 	if (referenced_page && !PageSwapBacked(page))
850 		return PAGEREF_RECLAIM_CLEAN;
851 
852 	return PAGEREF_RECLAIM;
853 }
854 
855 /* Check if a page is dirty or under writeback */
856 static void page_check_dirty_writeback(struct page *page,
857 				       bool *dirty, bool *writeback)
858 {
859 	struct address_space *mapping;
860 
861 	/*
862 	 * Anonymous pages are not handled by flushers and must be written
863 	 * from reclaim context. Do not stall reclaim based on them
864 	 */
865 	if (!page_is_file_cache(page)) {
866 		*dirty = false;
867 		*writeback = false;
868 		return;
869 	}
870 
871 	/* By default assume that the page flags are accurate */
872 	*dirty = PageDirty(page);
873 	*writeback = PageWriteback(page);
874 
875 	/* Verify dirty/writeback state if the filesystem supports it */
876 	if (!page_has_private(page))
877 		return;
878 
879 	mapping = page_mapping(page);
880 	if (mapping && mapping->a_ops->is_dirty_writeback)
881 		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
882 }
883 
884 /*
885  * shrink_page_list() returns the number of reclaimed pages
886  */
887 static unsigned long shrink_page_list(struct list_head *page_list,
888 				      struct zone *zone,
889 				      struct scan_control *sc,
890 				      enum ttu_flags ttu_flags,
891 				      unsigned long *ret_nr_dirty,
892 				      unsigned long *ret_nr_unqueued_dirty,
893 				      unsigned long *ret_nr_congested,
894 				      unsigned long *ret_nr_writeback,
895 				      unsigned long *ret_nr_immediate,
896 				      bool force_reclaim)
897 {
898 	LIST_HEAD(ret_pages);
899 	LIST_HEAD(free_pages);
900 	int pgactivate = 0;
901 	unsigned long nr_unqueued_dirty = 0;
902 	unsigned long nr_dirty = 0;
903 	unsigned long nr_congested = 0;
904 	unsigned long nr_reclaimed = 0;
905 	unsigned long nr_writeback = 0;
906 	unsigned long nr_immediate = 0;
907 
908 	cond_resched();
909 
910 	while (!list_empty(page_list)) {
911 		struct address_space *mapping;
912 		struct page *page;
913 		int may_enter_fs;
914 		enum page_references references = PAGEREF_RECLAIM_CLEAN;
915 		bool dirty, writeback;
916 		bool lazyfree = false;
917 		int ret = SWAP_SUCCESS;
918 
919 		cond_resched();
920 
921 		page = lru_to_page(page_list);
922 		list_del(&page->lru);
923 
924 		if (!trylock_page(page))
925 			goto keep;
926 
927 		VM_BUG_ON_PAGE(PageActive(page), page);
928 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
929 
930 		sc->nr_scanned++;
931 
932 		if (unlikely(!page_evictable(page)))
933 			goto cull_mlocked;
934 
935 		if (!sc->may_unmap && page_mapped(page))
936 			goto keep_locked;
937 
938 		/* Double the slab pressure for mapped and swapcache pages */
939 		if (page_mapped(page) || PageSwapCache(page))
940 			sc->nr_scanned++;
941 
942 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
943 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
944 
945 		/*
946 		 * The number of dirty pages determines if a zone is marked
947 		 * reclaim_congested which affects wait_iff_congested. kswapd
948 		 * will stall and start writing pages if the tail of the LRU
949 		 * is all dirty unqueued pages.
950 		 */
951 		page_check_dirty_writeback(page, &dirty, &writeback);
952 		if (dirty || writeback)
953 			nr_dirty++;
954 
955 		if (dirty && !writeback)
956 			nr_unqueued_dirty++;
957 
958 		/*
959 		 * Treat this page as congested if the underlying BDI is or if
960 		 * pages are cycling through the LRU so quickly that the
961 		 * pages marked for immediate reclaim are making it to the
962 		 * end of the LRU a second time.
963 		 */
964 		mapping = page_mapping(page);
965 		if (((dirty || writeback) && mapping &&
966 		     inode_write_congested(mapping->host)) ||
967 		    (writeback && PageReclaim(page)))
968 			nr_congested++;
969 
970 		/*
971 		 * If a page at the tail of the LRU is under writeback, there
972 		 * are three cases to consider.
973 		 *
974 		 * 1) If reclaim is encountering an excessive number of pages
975 		 *    under writeback and this page is both under writeback and
976 		 *    PageReclaim then it indicates that pages are being queued
977 		 *    for IO but are being recycled through the LRU before the
978 		 *    IO can complete. Waiting on the page itself risks an
979 		 *    indefinite stall if it is impossible to writeback the
980 		 *    page due to IO error or disconnected storage so instead
981 		 *    note that the LRU is being scanned too quickly and the
982 		 *    caller can stall after page list has been processed.
983 		 *
984 		 * 2) Global or new memcg reclaim encounters a page that is
985 		 *    not marked for immediate reclaim, or the caller does not
986 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
987 		 *    not to fs). In this case mark the page for immediate
988 		 *    reclaim and continue scanning.
989 		 *
990 		 *    Require may_enter_fs because we would wait on fs, which
991 		 *    may not have submitted IO yet. And the loop driver might
992 		 *    enter reclaim, and deadlock if it waits on a page for
993 		 *    which it is needed to do the write (loop masks off
994 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
995 		 *    would probably show more reasons.
996 		 *
997 		 * 3) Legacy memcg encounters a page that is already marked
998 		 *    PageReclaim. memcg does not have any dirty pages
999 		 *    throttling so we could easily OOM just because too many
1000 		 *    pages are in writeback and there is nothing else to
1001 		 *    reclaim. Wait for the writeback to complete.
1002 		 */
1003 		if (PageWriteback(page)) {
1004 			/* Case 1 above */
1005 			if (current_is_kswapd() &&
1006 			    PageReclaim(page) &&
1007 			    test_bit(ZONE_WRITEBACK, &zone->flags)) {
1008 				nr_immediate++;
1009 				goto keep_locked;
1010 
1011 			/* Case 2 above */
1012 			} else if (sane_reclaim(sc) ||
1013 			    !PageReclaim(page) || !may_enter_fs) {
1014 				/*
1015 				 * This is slightly racy - end_page_writeback()
1016 				 * might have just cleared PageReclaim, then
1017 				 * setting PageReclaim here end up interpreted
1018 				 * as PageReadahead - but that does not matter
1019 				 * enough to care.  What we do want is for this
1020 				 * page to have PageReclaim set next time memcg
1021 				 * reclaim reaches the tests above, so it will
1022 				 * then wait_on_page_writeback() to avoid OOM;
1023 				 * and it's also appropriate in global reclaim.
1024 				 */
1025 				SetPageReclaim(page);
1026 				nr_writeback++;
1027 				goto keep_locked;
1028 
1029 			/* Case 3 above */
1030 			} else {
1031 				unlock_page(page);
1032 				wait_on_page_writeback(page);
1033 				/* then go back and try same page again */
1034 				list_add_tail(&page->lru, page_list);
1035 				continue;
1036 			}
1037 		}
1038 
1039 		if (!force_reclaim)
1040 			references = page_check_references(page, sc);
1041 
1042 		switch (references) {
1043 		case PAGEREF_ACTIVATE:
1044 			goto activate_locked;
1045 		case PAGEREF_KEEP:
1046 			goto keep_locked;
1047 		case PAGEREF_RECLAIM:
1048 		case PAGEREF_RECLAIM_CLEAN:
1049 			; /* try to reclaim the page below */
1050 		}
1051 
1052 		/*
1053 		 * Anonymous process memory has backing store?
1054 		 * Try to allocate it some swap space here.
1055 		 */
1056 		if (PageAnon(page) && !PageSwapCache(page)) {
1057 			if (!(sc->gfp_mask & __GFP_IO))
1058 				goto keep_locked;
1059 			if (!add_to_swap(page, page_list))
1060 				goto activate_locked;
1061 			lazyfree = true;
1062 			may_enter_fs = 1;
1063 
1064 			/* Adding to swap updated mapping */
1065 			mapping = page_mapping(page);
1066 		}
1067 
1068 		/*
1069 		 * The page is mapped into the page tables of one or more
1070 		 * processes. Try to unmap it here.
1071 		 */
1072 		if (page_mapped(page) && mapping) {
1073 			switch (ret = try_to_unmap(page, lazyfree ?
1074 				(ttu_flags | TTU_BATCH_FLUSH | TTU_LZFREE) :
1075 				(ttu_flags | TTU_BATCH_FLUSH))) {
1076 			case SWAP_FAIL:
1077 				goto activate_locked;
1078 			case SWAP_AGAIN:
1079 				goto keep_locked;
1080 			case SWAP_MLOCK:
1081 				goto cull_mlocked;
1082 			case SWAP_LZFREE:
1083 				goto lazyfree;
1084 			case SWAP_SUCCESS:
1085 				; /* try to free the page below */
1086 			}
1087 		}
1088 
1089 		if (PageDirty(page)) {
1090 			/*
1091 			 * Only kswapd can writeback filesystem pages to
1092 			 * avoid risk of stack overflow but only writeback
1093 			 * if many dirty pages have been encountered.
1094 			 */
1095 			if (page_is_file_cache(page) &&
1096 					(!current_is_kswapd() ||
1097 					 !test_bit(ZONE_DIRTY, &zone->flags))) {
1098 				/*
1099 				 * Immediately reclaim when written back.
1100 				 * Similar in principal to deactivate_page()
1101 				 * except we already have the page isolated
1102 				 * and know it's dirty
1103 				 */
1104 				inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
1105 				SetPageReclaim(page);
1106 
1107 				goto keep_locked;
1108 			}
1109 
1110 			if (references == PAGEREF_RECLAIM_CLEAN)
1111 				goto keep_locked;
1112 			if (!may_enter_fs)
1113 				goto keep_locked;
1114 			if (!sc->may_writepage)
1115 				goto keep_locked;
1116 
1117 			/*
1118 			 * Page is dirty. Flush the TLB if a writable entry
1119 			 * potentially exists to avoid CPU writes after IO
1120 			 * starts and then write it out here.
1121 			 */
1122 			try_to_unmap_flush_dirty();
1123 			switch (pageout(page, mapping, sc)) {
1124 			case PAGE_KEEP:
1125 				goto keep_locked;
1126 			case PAGE_ACTIVATE:
1127 				goto activate_locked;
1128 			case PAGE_SUCCESS:
1129 				if (PageWriteback(page))
1130 					goto keep;
1131 				if (PageDirty(page))
1132 					goto keep;
1133 
1134 				/*
1135 				 * A synchronous write - probably a ramdisk.  Go
1136 				 * ahead and try to reclaim the page.
1137 				 */
1138 				if (!trylock_page(page))
1139 					goto keep;
1140 				if (PageDirty(page) || PageWriteback(page))
1141 					goto keep_locked;
1142 				mapping = page_mapping(page);
1143 			case PAGE_CLEAN:
1144 				; /* try to free the page below */
1145 			}
1146 		}
1147 
1148 		/*
1149 		 * If the page has buffers, try to free the buffer mappings
1150 		 * associated with this page. If we succeed we try to free
1151 		 * the page as well.
1152 		 *
1153 		 * We do this even if the page is PageDirty().
1154 		 * try_to_release_page() does not perform I/O, but it is
1155 		 * possible for a page to have PageDirty set, but it is actually
1156 		 * clean (all its buffers are clean).  This happens if the
1157 		 * buffers were written out directly, with submit_bh(). ext3
1158 		 * will do this, as well as the blockdev mapping.
1159 		 * try_to_release_page() will discover that cleanness and will
1160 		 * drop the buffers and mark the page clean - it can be freed.
1161 		 *
1162 		 * Rarely, pages can have buffers and no ->mapping.  These are
1163 		 * the pages which were not successfully invalidated in
1164 		 * truncate_complete_page().  We try to drop those buffers here
1165 		 * and if that worked, and the page is no longer mapped into
1166 		 * process address space (page_count == 1) it can be freed.
1167 		 * Otherwise, leave the page on the LRU so it is swappable.
1168 		 */
1169 		if (page_has_private(page)) {
1170 			if (!try_to_release_page(page, sc->gfp_mask))
1171 				goto activate_locked;
1172 			if (!mapping && page_count(page) == 1) {
1173 				unlock_page(page);
1174 				if (put_page_testzero(page))
1175 					goto free_it;
1176 				else {
1177 					/*
1178 					 * rare race with speculative reference.
1179 					 * the speculative reference will free
1180 					 * this page shortly, so we may
1181 					 * increment nr_reclaimed here (and
1182 					 * leave it off the LRU).
1183 					 */
1184 					nr_reclaimed++;
1185 					continue;
1186 				}
1187 			}
1188 		}
1189 
1190 lazyfree:
1191 		if (!mapping || !__remove_mapping(mapping, page, true))
1192 			goto keep_locked;
1193 
1194 		/*
1195 		 * At this point, we have no other references and there is
1196 		 * no way to pick any more up (removed from LRU, removed
1197 		 * from pagecache). Can use non-atomic bitops now (and
1198 		 * we obviously don't have to worry about waking up a process
1199 		 * waiting on the page lock, because there are no references.
1200 		 */
1201 		__ClearPageLocked(page);
1202 free_it:
1203 		if (ret == SWAP_LZFREE)
1204 			count_vm_event(PGLAZYFREED);
1205 
1206 		nr_reclaimed++;
1207 
1208 		/*
1209 		 * Is there need to periodically free_page_list? It would
1210 		 * appear not as the counts should be low
1211 		 */
1212 		list_add(&page->lru, &free_pages);
1213 		continue;
1214 
1215 cull_mlocked:
1216 		if (PageSwapCache(page))
1217 			try_to_free_swap(page);
1218 		unlock_page(page);
1219 		list_add(&page->lru, &ret_pages);
1220 		continue;
1221 
1222 activate_locked:
1223 		/* Not a candidate for swapping, so reclaim swap space. */
1224 		if (PageSwapCache(page) && mem_cgroup_swap_full(page))
1225 			try_to_free_swap(page);
1226 		VM_BUG_ON_PAGE(PageActive(page), page);
1227 		SetPageActive(page);
1228 		pgactivate++;
1229 keep_locked:
1230 		unlock_page(page);
1231 keep:
1232 		list_add(&page->lru, &ret_pages);
1233 		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1234 	}
1235 
1236 	mem_cgroup_uncharge_list(&free_pages);
1237 	try_to_unmap_flush();
1238 	free_hot_cold_page_list(&free_pages, true);
1239 
1240 	list_splice(&ret_pages, page_list);
1241 	count_vm_events(PGACTIVATE, pgactivate);
1242 
1243 	*ret_nr_dirty += nr_dirty;
1244 	*ret_nr_congested += nr_congested;
1245 	*ret_nr_unqueued_dirty += nr_unqueued_dirty;
1246 	*ret_nr_writeback += nr_writeback;
1247 	*ret_nr_immediate += nr_immediate;
1248 	return nr_reclaimed;
1249 }
1250 
1251 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1252 					    struct list_head *page_list)
1253 {
1254 	struct scan_control sc = {
1255 		.gfp_mask = GFP_KERNEL,
1256 		.priority = DEF_PRIORITY,
1257 		.may_unmap = 1,
1258 	};
1259 	unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1260 	struct page *page, *next;
1261 	LIST_HEAD(clean_pages);
1262 
1263 	list_for_each_entry_safe(page, next, page_list, lru) {
1264 		if (page_is_file_cache(page) && !PageDirty(page) &&
1265 		    !isolated_balloon_page(page)) {
1266 			ClearPageActive(page);
1267 			list_move(&page->lru, &clean_pages);
1268 		}
1269 	}
1270 
1271 	ret = shrink_page_list(&clean_pages, zone, &sc,
1272 			TTU_UNMAP|TTU_IGNORE_ACCESS,
1273 			&dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1274 	list_splice(&clean_pages, page_list);
1275 	mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
1276 	return ret;
1277 }
1278 
1279 /*
1280  * Attempt to remove the specified page from its LRU.  Only take this page
1281  * if it is of the appropriate PageActive status.  Pages which are being
1282  * freed elsewhere are also ignored.
1283  *
1284  * page:	page to consider
1285  * mode:	one of the LRU isolation modes defined above
1286  *
1287  * returns 0 on success, -ve errno on failure.
1288  */
1289 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1290 {
1291 	int ret = -EINVAL;
1292 
1293 	/* Only take pages on the LRU. */
1294 	if (!PageLRU(page))
1295 		return ret;
1296 
1297 	/* Compaction should not handle unevictable pages but CMA can do so */
1298 	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1299 		return ret;
1300 
1301 	ret = -EBUSY;
1302 
1303 	/*
1304 	 * To minimise LRU disruption, the caller can indicate that it only
1305 	 * wants to isolate pages it will be able to operate on without
1306 	 * blocking - clean pages for the most part.
1307 	 *
1308 	 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1309 	 * is used by reclaim when it is cannot write to backing storage
1310 	 *
1311 	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1312 	 * that it is possible to migrate without blocking
1313 	 */
1314 	if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1315 		/* All the caller can do on PageWriteback is block */
1316 		if (PageWriteback(page))
1317 			return ret;
1318 
1319 		if (PageDirty(page)) {
1320 			struct address_space *mapping;
1321 
1322 			/* ISOLATE_CLEAN means only clean pages */
1323 			if (mode & ISOLATE_CLEAN)
1324 				return ret;
1325 
1326 			/*
1327 			 * Only pages without mappings or that have a
1328 			 * ->migratepage callback are possible to migrate
1329 			 * without blocking
1330 			 */
1331 			mapping = page_mapping(page);
1332 			if (mapping && !mapping->a_ops->migratepage)
1333 				return ret;
1334 		}
1335 	}
1336 
1337 	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1338 		return ret;
1339 
1340 	if (likely(get_page_unless_zero(page))) {
1341 		/*
1342 		 * Be careful not to clear PageLRU until after we're
1343 		 * sure the page is not being freed elsewhere -- the
1344 		 * page release code relies on it.
1345 		 */
1346 		ClearPageLRU(page);
1347 		ret = 0;
1348 	}
1349 
1350 	return ret;
1351 }
1352 
1353 /*
1354  * zone->lru_lock is heavily contended.  Some of the functions that
1355  * shrink the lists perform better by taking out a batch of pages
1356  * and working on them outside the LRU lock.
1357  *
1358  * For pagecache intensive workloads, this function is the hottest
1359  * spot in the kernel (apart from copy_*_user functions).
1360  *
1361  * Appropriate locks must be held before calling this function.
1362  *
1363  * @nr_to_scan:	The number of pages to look through on the list.
1364  * @lruvec:	The LRU vector to pull pages from.
1365  * @dst:	The temp list to put pages on to.
1366  * @nr_scanned:	The number of pages that were scanned.
1367  * @sc:		The scan_control struct for this reclaim session
1368  * @mode:	One of the LRU isolation modes
1369  * @lru:	LRU list id for isolating
1370  *
1371  * returns how many pages were moved onto *@dst.
1372  */
1373 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1374 		struct lruvec *lruvec, struct list_head *dst,
1375 		unsigned long *nr_scanned, struct scan_control *sc,
1376 		isolate_mode_t mode, enum lru_list lru)
1377 {
1378 	struct list_head *src = &lruvec->lists[lru];
1379 	unsigned long nr_taken = 0;
1380 	unsigned long scan;
1381 
1382 	for (scan = 0; scan < nr_to_scan && nr_taken < nr_to_scan &&
1383 					!list_empty(src); scan++) {
1384 		struct page *page;
1385 		int nr_pages;
1386 
1387 		page = lru_to_page(src);
1388 		prefetchw_prev_lru_page(page, src, flags);
1389 
1390 		VM_BUG_ON_PAGE(!PageLRU(page), page);
1391 
1392 		switch (__isolate_lru_page(page, mode)) {
1393 		case 0:
1394 			nr_pages = hpage_nr_pages(page);
1395 			mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
1396 			list_move(&page->lru, dst);
1397 			nr_taken += nr_pages;
1398 			break;
1399 
1400 		case -EBUSY:
1401 			/* else it is being freed elsewhere */
1402 			list_move(&page->lru, src);
1403 			continue;
1404 
1405 		default:
1406 			BUG();
1407 		}
1408 	}
1409 
1410 	*nr_scanned = scan;
1411 	trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1412 				    nr_taken, mode, is_file_lru(lru));
1413 	return nr_taken;
1414 }
1415 
1416 /**
1417  * isolate_lru_page - tries to isolate a page from its LRU list
1418  * @page: page to isolate from its LRU list
1419  *
1420  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1421  * vmstat statistic corresponding to whatever LRU list the page was on.
1422  *
1423  * Returns 0 if the page was removed from an LRU list.
1424  * Returns -EBUSY if the page was not on an LRU list.
1425  *
1426  * The returned page will have PageLRU() cleared.  If it was found on
1427  * the active list, it will have PageActive set.  If it was found on
1428  * the unevictable list, it will have the PageUnevictable bit set. That flag
1429  * may need to be cleared by the caller before letting the page go.
1430  *
1431  * The vmstat statistic corresponding to the list on which the page was
1432  * found will be decremented.
1433  *
1434  * Restrictions:
1435  * (1) Must be called with an elevated refcount on the page. This is a
1436  *     fundamentnal difference from isolate_lru_pages (which is called
1437  *     without a stable reference).
1438  * (2) the lru_lock must not be held.
1439  * (3) interrupts must be enabled.
1440  */
1441 int isolate_lru_page(struct page *page)
1442 {
1443 	int ret = -EBUSY;
1444 
1445 	VM_BUG_ON_PAGE(!page_count(page), page);
1446 	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1447 
1448 	if (PageLRU(page)) {
1449 		struct zone *zone = page_zone(page);
1450 		struct lruvec *lruvec;
1451 
1452 		spin_lock_irq(&zone->lru_lock);
1453 		lruvec = mem_cgroup_page_lruvec(page, zone);
1454 		if (PageLRU(page)) {
1455 			int lru = page_lru(page);
1456 			get_page(page);
1457 			ClearPageLRU(page);
1458 			del_page_from_lru_list(page, lruvec, lru);
1459 			ret = 0;
1460 		}
1461 		spin_unlock_irq(&zone->lru_lock);
1462 	}
1463 	return ret;
1464 }
1465 
1466 /*
1467  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1468  * then get resheduled. When there are massive number of tasks doing page
1469  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1470  * the LRU list will go small and be scanned faster than necessary, leading to
1471  * unnecessary swapping, thrashing and OOM.
1472  */
1473 static int too_many_isolated(struct zone *zone, int file,
1474 		struct scan_control *sc)
1475 {
1476 	unsigned long inactive, isolated;
1477 
1478 	if (current_is_kswapd())
1479 		return 0;
1480 
1481 	if (!sane_reclaim(sc))
1482 		return 0;
1483 
1484 	if (file) {
1485 		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1486 		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1487 	} else {
1488 		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1489 		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1490 	}
1491 
1492 	/*
1493 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1494 	 * won't get blocked by normal direct-reclaimers, forming a circular
1495 	 * deadlock.
1496 	 */
1497 	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1498 		inactive >>= 3;
1499 
1500 	return isolated > inactive;
1501 }
1502 
1503 static noinline_for_stack void
1504 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1505 {
1506 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1507 	struct zone *zone = lruvec_zone(lruvec);
1508 	LIST_HEAD(pages_to_free);
1509 
1510 	/*
1511 	 * Put back any unfreeable pages.
1512 	 */
1513 	while (!list_empty(page_list)) {
1514 		struct page *page = lru_to_page(page_list);
1515 		int lru;
1516 
1517 		VM_BUG_ON_PAGE(PageLRU(page), page);
1518 		list_del(&page->lru);
1519 		if (unlikely(!page_evictable(page))) {
1520 			spin_unlock_irq(&zone->lru_lock);
1521 			putback_lru_page(page);
1522 			spin_lock_irq(&zone->lru_lock);
1523 			continue;
1524 		}
1525 
1526 		lruvec = mem_cgroup_page_lruvec(page, zone);
1527 
1528 		SetPageLRU(page);
1529 		lru = page_lru(page);
1530 		add_page_to_lru_list(page, lruvec, lru);
1531 
1532 		if (is_active_lru(lru)) {
1533 			int file = is_file_lru(lru);
1534 			int numpages = hpage_nr_pages(page);
1535 			reclaim_stat->recent_rotated[file] += numpages;
1536 		}
1537 		if (put_page_testzero(page)) {
1538 			__ClearPageLRU(page);
1539 			__ClearPageActive(page);
1540 			del_page_from_lru_list(page, lruvec, lru);
1541 
1542 			if (unlikely(PageCompound(page))) {
1543 				spin_unlock_irq(&zone->lru_lock);
1544 				mem_cgroup_uncharge(page);
1545 				(*get_compound_page_dtor(page))(page);
1546 				spin_lock_irq(&zone->lru_lock);
1547 			} else
1548 				list_add(&page->lru, &pages_to_free);
1549 		}
1550 	}
1551 
1552 	/*
1553 	 * To save our caller's stack, now use input list for pages to free.
1554 	 */
1555 	list_splice(&pages_to_free, page_list);
1556 }
1557 
1558 /*
1559  * If a kernel thread (such as nfsd for loop-back mounts) services
1560  * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1561  * In that case we should only throttle if the backing device it is
1562  * writing to is congested.  In other cases it is safe to throttle.
1563  */
1564 static int current_may_throttle(void)
1565 {
1566 	return !(current->flags & PF_LESS_THROTTLE) ||
1567 		current->backing_dev_info == NULL ||
1568 		bdi_write_congested(current->backing_dev_info);
1569 }
1570 
1571 /*
1572  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1573  * of reclaimed pages
1574  */
1575 static noinline_for_stack unsigned long
1576 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1577 		     struct scan_control *sc, enum lru_list lru)
1578 {
1579 	LIST_HEAD(page_list);
1580 	unsigned long nr_scanned;
1581 	unsigned long nr_reclaimed = 0;
1582 	unsigned long nr_taken;
1583 	unsigned long nr_dirty = 0;
1584 	unsigned long nr_congested = 0;
1585 	unsigned long nr_unqueued_dirty = 0;
1586 	unsigned long nr_writeback = 0;
1587 	unsigned long nr_immediate = 0;
1588 	isolate_mode_t isolate_mode = 0;
1589 	int file = is_file_lru(lru);
1590 	struct zone *zone = lruvec_zone(lruvec);
1591 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1592 
1593 	while (unlikely(too_many_isolated(zone, file, sc))) {
1594 		congestion_wait(BLK_RW_ASYNC, HZ/10);
1595 
1596 		/* We are about to die and free our memory. Return now. */
1597 		if (fatal_signal_pending(current))
1598 			return SWAP_CLUSTER_MAX;
1599 	}
1600 
1601 	lru_add_drain();
1602 
1603 	if (!sc->may_unmap)
1604 		isolate_mode |= ISOLATE_UNMAPPED;
1605 	if (!sc->may_writepage)
1606 		isolate_mode |= ISOLATE_CLEAN;
1607 
1608 	spin_lock_irq(&zone->lru_lock);
1609 
1610 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1611 				     &nr_scanned, sc, isolate_mode, lru);
1612 
1613 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1614 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1615 
1616 	if (global_reclaim(sc)) {
1617 		__mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
1618 		if (current_is_kswapd())
1619 			__count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1620 		else
1621 			__count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1622 	}
1623 	spin_unlock_irq(&zone->lru_lock);
1624 
1625 	if (nr_taken == 0)
1626 		return 0;
1627 
1628 	nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1629 				&nr_dirty, &nr_unqueued_dirty, &nr_congested,
1630 				&nr_writeback, &nr_immediate,
1631 				false);
1632 
1633 	spin_lock_irq(&zone->lru_lock);
1634 
1635 	reclaim_stat->recent_scanned[file] += nr_taken;
1636 
1637 	if (global_reclaim(sc)) {
1638 		if (current_is_kswapd())
1639 			__count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1640 					       nr_reclaimed);
1641 		else
1642 			__count_zone_vm_events(PGSTEAL_DIRECT, zone,
1643 					       nr_reclaimed);
1644 	}
1645 
1646 	putback_inactive_pages(lruvec, &page_list);
1647 
1648 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1649 
1650 	spin_unlock_irq(&zone->lru_lock);
1651 
1652 	mem_cgroup_uncharge_list(&page_list);
1653 	free_hot_cold_page_list(&page_list, true);
1654 
1655 	/*
1656 	 * If reclaim is isolating dirty pages under writeback, it implies
1657 	 * that the long-lived page allocation rate is exceeding the page
1658 	 * laundering rate. Either the global limits are not being effective
1659 	 * at throttling processes due to the page distribution throughout
1660 	 * zones or there is heavy usage of a slow backing device. The
1661 	 * only option is to throttle from reclaim context which is not ideal
1662 	 * as there is no guarantee the dirtying process is throttled in the
1663 	 * same way balance_dirty_pages() manages.
1664 	 *
1665 	 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1666 	 * of pages under pages flagged for immediate reclaim and stall if any
1667 	 * are encountered in the nr_immediate check below.
1668 	 */
1669 	if (nr_writeback && nr_writeback == nr_taken)
1670 		set_bit(ZONE_WRITEBACK, &zone->flags);
1671 
1672 	/*
1673 	 * Legacy memcg will stall in page writeback so avoid forcibly
1674 	 * stalling here.
1675 	 */
1676 	if (sane_reclaim(sc)) {
1677 		/*
1678 		 * Tag a zone as congested if all the dirty pages scanned were
1679 		 * backed by a congested BDI and wait_iff_congested will stall.
1680 		 */
1681 		if (nr_dirty && nr_dirty == nr_congested)
1682 			set_bit(ZONE_CONGESTED, &zone->flags);
1683 
1684 		/*
1685 		 * If dirty pages are scanned that are not queued for IO, it
1686 		 * implies that flushers are not keeping up. In this case, flag
1687 		 * the zone ZONE_DIRTY and kswapd will start writing pages from
1688 		 * reclaim context.
1689 		 */
1690 		if (nr_unqueued_dirty == nr_taken)
1691 			set_bit(ZONE_DIRTY, &zone->flags);
1692 
1693 		/*
1694 		 * If kswapd scans pages marked marked for immediate
1695 		 * reclaim and under writeback (nr_immediate), it implies
1696 		 * that pages are cycling through the LRU faster than
1697 		 * they are written so also forcibly stall.
1698 		 */
1699 		if (nr_immediate && current_may_throttle())
1700 			congestion_wait(BLK_RW_ASYNC, HZ/10);
1701 	}
1702 
1703 	/*
1704 	 * Stall direct reclaim for IO completions if underlying BDIs or zone
1705 	 * is congested. Allow kswapd to continue until it starts encountering
1706 	 * unqueued dirty pages or cycling through the LRU too quickly.
1707 	 */
1708 	if (!sc->hibernation_mode && !current_is_kswapd() &&
1709 	    current_may_throttle())
1710 		wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1711 
1712 	trace_mm_vmscan_lru_shrink_inactive(zone, nr_scanned, nr_reclaimed,
1713 			sc->priority, file);
1714 	return nr_reclaimed;
1715 }
1716 
1717 /*
1718  * This moves pages from the active list to the inactive list.
1719  *
1720  * We move them the other way if the page is referenced by one or more
1721  * processes, from rmap.
1722  *
1723  * If the pages are mostly unmapped, the processing is fast and it is
1724  * appropriate to hold zone->lru_lock across the whole operation.  But if
1725  * the pages are mapped, the processing is slow (page_referenced()) so we
1726  * should drop zone->lru_lock around each page.  It's impossible to balance
1727  * this, so instead we remove the pages from the LRU while processing them.
1728  * It is safe to rely on PG_active against the non-LRU pages in here because
1729  * nobody will play with that bit on a non-LRU page.
1730  *
1731  * The downside is that we have to touch page->_count against each page.
1732  * But we had to alter page->flags anyway.
1733  */
1734 
1735 static void move_active_pages_to_lru(struct lruvec *lruvec,
1736 				     struct list_head *list,
1737 				     struct list_head *pages_to_free,
1738 				     enum lru_list lru)
1739 {
1740 	struct zone *zone = lruvec_zone(lruvec);
1741 	unsigned long pgmoved = 0;
1742 	struct page *page;
1743 	int nr_pages;
1744 
1745 	while (!list_empty(list)) {
1746 		page = lru_to_page(list);
1747 		lruvec = mem_cgroup_page_lruvec(page, zone);
1748 
1749 		VM_BUG_ON_PAGE(PageLRU(page), page);
1750 		SetPageLRU(page);
1751 
1752 		nr_pages = hpage_nr_pages(page);
1753 		mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1754 		list_move(&page->lru, &lruvec->lists[lru]);
1755 		pgmoved += nr_pages;
1756 
1757 		if (put_page_testzero(page)) {
1758 			__ClearPageLRU(page);
1759 			__ClearPageActive(page);
1760 			del_page_from_lru_list(page, lruvec, lru);
1761 
1762 			if (unlikely(PageCompound(page))) {
1763 				spin_unlock_irq(&zone->lru_lock);
1764 				mem_cgroup_uncharge(page);
1765 				(*get_compound_page_dtor(page))(page);
1766 				spin_lock_irq(&zone->lru_lock);
1767 			} else
1768 				list_add(&page->lru, pages_to_free);
1769 		}
1770 	}
1771 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1772 	if (!is_active_lru(lru))
1773 		__count_vm_events(PGDEACTIVATE, pgmoved);
1774 }
1775 
1776 static void shrink_active_list(unsigned long nr_to_scan,
1777 			       struct lruvec *lruvec,
1778 			       struct scan_control *sc,
1779 			       enum lru_list lru)
1780 {
1781 	unsigned long nr_taken;
1782 	unsigned long nr_scanned;
1783 	unsigned long vm_flags;
1784 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1785 	LIST_HEAD(l_active);
1786 	LIST_HEAD(l_inactive);
1787 	struct page *page;
1788 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1789 	unsigned long nr_rotated = 0;
1790 	isolate_mode_t isolate_mode = 0;
1791 	int file = is_file_lru(lru);
1792 	struct zone *zone = lruvec_zone(lruvec);
1793 
1794 	lru_add_drain();
1795 
1796 	if (!sc->may_unmap)
1797 		isolate_mode |= ISOLATE_UNMAPPED;
1798 	if (!sc->may_writepage)
1799 		isolate_mode |= ISOLATE_CLEAN;
1800 
1801 	spin_lock_irq(&zone->lru_lock);
1802 
1803 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1804 				     &nr_scanned, sc, isolate_mode, lru);
1805 	if (global_reclaim(sc))
1806 		__mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
1807 
1808 	reclaim_stat->recent_scanned[file] += nr_taken;
1809 
1810 	__count_zone_vm_events(PGREFILL, zone, nr_scanned);
1811 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1812 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1813 	spin_unlock_irq(&zone->lru_lock);
1814 
1815 	while (!list_empty(&l_hold)) {
1816 		cond_resched();
1817 		page = lru_to_page(&l_hold);
1818 		list_del(&page->lru);
1819 
1820 		if (unlikely(!page_evictable(page))) {
1821 			putback_lru_page(page);
1822 			continue;
1823 		}
1824 
1825 		if (unlikely(buffer_heads_over_limit)) {
1826 			if (page_has_private(page) && trylock_page(page)) {
1827 				if (page_has_private(page))
1828 					try_to_release_page(page, 0);
1829 				unlock_page(page);
1830 			}
1831 		}
1832 
1833 		if (page_referenced(page, 0, sc->target_mem_cgroup,
1834 				    &vm_flags)) {
1835 			nr_rotated += hpage_nr_pages(page);
1836 			/*
1837 			 * Identify referenced, file-backed active pages and
1838 			 * give them one more trip around the active list. So
1839 			 * that executable code get better chances to stay in
1840 			 * memory under moderate memory pressure.  Anon pages
1841 			 * are not likely to be evicted by use-once streaming
1842 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
1843 			 * so we ignore them here.
1844 			 */
1845 			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1846 				list_add(&page->lru, &l_active);
1847 				continue;
1848 			}
1849 		}
1850 
1851 		ClearPageActive(page);	/* we are de-activating */
1852 		list_add(&page->lru, &l_inactive);
1853 	}
1854 
1855 	/*
1856 	 * Move pages back to the lru list.
1857 	 */
1858 	spin_lock_irq(&zone->lru_lock);
1859 	/*
1860 	 * Count referenced pages from currently used mappings as rotated,
1861 	 * even though only some of them are actually re-activated.  This
1862 	 * helps balance scan pressure between file and anonymous pages in
1863 	 * get_scan_count.
1864 	 */
1865 	reclaim_stat->recent_rotated[file] += nr_rotated;
1866 
1867 	move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1868 	move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1869 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1870 	spin_unlock_irq(&zone->lru_lock);
1871 
1872 	mem_cgroup_uncharge_list(&l_hold);
1873 	free_hot_cold_page_list(&l_hold, true);
1874 }
1875 
1876 #ifdef CONFIG_SWAP
1877 static bool inactive_anon_is_low_global(struct zone *zone)
1878 {
1879 	unsigned long active, inactive;
1880 
1881 	active = zone_page_state(zone, NR_ACTIVE_ANON);
1882 	inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1883 
1884 	return inactive * zone->inactive_ratio < active;
1885 }
1886 
1887 /**
1888  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1889  * @lruvec: LRU vector to check
1890  *
1891  * Returns true if the zone does not have enough inactive anon pages,
1892  * meaning some active anon pages need to be deactivated.
1893  */
1894 static bool inactive_anon_is_low(struct lruvec *lruvec)
1895 {
1896 	/*
1897 	 * If we don't have swap space, anonymous page deactivation
1898 	 * is pointless.
1899 	 */
1900 	if (!total_swap_pages)
1901 		return false;
1902 
1903 	if (!mem_cgroup_disabled())
1904 		return mem_cgroup_inactive_anon_is_low(lruvec);
1905 
1906 	return inactive_anon_is_low_global(lruvec_zone(lruvec));
1907 }
1908 #else
1909 static inline bool inactive_anon_is_low(struct lruvec *lruvec)
1910 {
1911 	return false;
1912 }
1913 #endif
1914 
1915 /**
1916  * inactive_file_is_low - check if file pages need to be deactivated
1917  * @lruvec: LRU vector to check
1918  *
1919  * When the system is doing streaming IO, memory pressure here
1920  * ensures that active file pages get deactivated, until more
1921  * than half of the file pages are on the inactive list.
1922  *
1923  * Once we get to that situation, protect the system's working
1924  * set from being evicted by disabling active file page aging.
1925  *
1926  * This uses a different ratio than the anonymous pages, because
1927  * the page cache uses a use-once replacement algorithm.
1928  */
1929 static bool inactive_file_is_low(struct lruvec *lruvec)
1930 {
1931 	unsigned long inactive;
1932 	unsigned long active;
1933 
1934 	inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1935 	active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1936 
1937 	return active > inactive;
1938 }
1939 
1940 static bool inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1941 {
1942 	if (is_file_lru(lru))
1943 		return inactive_file_is_low(lruvec);
1944 	else
1945 		return inactive_anon_is_low(lruvec);
1946 }
1947 
1948 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1949 				 struct lruvec *lruvec, struct scan_control *sc)
1950 {
1951 	if (is_active_lru(lru)) {
1952 		if (inactive_list_is_low(lruvec, lru))
1953 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
1954 		return 0;
1955 	}
1956 
1957 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1958 }
1959 
1960 enum scan_balance {
1961 	SCAN_EQUAL,
1962 	SCAN_FRACT,
1963 	SCAN_ANON,
1964 	SCAN_FILE,
1965 };
1966 
1967 /*
1968  * Determine how aggressively the anon and file LRU lists should be
1969  * scanned.  The relative value of each set of LRU lists is determined
1970  * by looking at the fraction of the pages scanned we did rotate back
1971  * onto the active list instead of evict.
1972  *
1973  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1974  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1975  */
1976 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
1977 			   struct scan_control *sc, unsigned long *nr,
1978 			   unsigned long *lru_pages)
1979 {
1980 	int swappiness = mem_cgroup_swappiness(memcg);
1981 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1982 	u64 fraction[2];
1983 	u64 denominator = 0;	/* gcc */
1984 	struct zone *zone = lruvec_zone(lruvec);
1985 	unsigned long anon_prio, file_prio;
1986 	enum scan_balance scan_balance;
1987 	unsigned long anon, file;
1988 	bool force_scan = false;
1989 	unsigned long ap, fp;
1990 	enum lru_list lru;
1991 	bool some_scanned;
1992 	int pass;
1993 
1994 	/*
1995 	 * If the zone or memcg is small, nr[l] can be 0.  This
1996 	 * results in no scanning on this priority and a potential
1997 	 * priority drop.  Global direct reclaim can go to the next
1998 	 * zone and tends to have no problems. Global kswapd is for
1999 	 * zone balancing and it needs to scan a minimum amount. When
2000 	 * reclaiming for a memcg, a priority drop can cause high
2001 	 * latencies, so it's better to scan a minimum amount there as
2002 	 * well.
2003 	 */
2004 	if (current_is_kswapd()) {
2005 		if (!zone_reclaimable(zone))
2006 			force_scan = true;
2007 		if (!mem_cgroup_online(memcg))
2008 			force_scan = true;
2009 	}
2010 	if (!global_reclaim(sc))
2011 		force_scan = true;
2012 
2013 	/* If we have no swap space, do not bother scanning anon pages. */
2014 	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2015 		scan_balance = SCAN_FILE;
2016 		goto out;
2017 	}
2018 
2019 	/*
2020 	 * Global reclaim will swap to prevent OOM even with no
2021 	 * swappiness, but memcg users want to use this knob to
2022 	 * disable swapping for individual groups completely when
2023 	 * using the memory controller's swap limit feature would be
2024 	 * too expensive.
2025 	 */
2026 	if (!global_reclaim(sc) && !swappiness) {
2027 		scan_balance = SCAN_FILE;
2028 		goto out;
2029 	}
2030 
2031 	/*
2032 	 * Do not apply any pressure balancing cleverness when the
2033 	 * system is close to OOM, scan both anon and file equally
2034 	 * (unless the swappiness setting disagrees with swapping).
2035 	 */
2036 	if (!sc->priority && swappiness) {
2037 		scan_balance = SCAN_EQUAL;
2038 		goto out;
2039 	}
2040 
2041 	/*
2042 	 * Prevent the reclaimer from falling into the cache trap: as
2043 	 * cache pages start out inactive, every cache fault will tip
2044 	 * the scan balance towards the file LRU.  And as the file LRU
2045 	 * shrinks, so does the window for rotation from references.
2046 	 * This means we have a runaway feedback loop where a tiny
2047 	 * thrashing file LRU becomes infinitely more attractive than
2048 	 * anon pages.  Try to detect this based on file LRU size.
2049 	 */
2050 	if (global_reclaim(sc)) {
2051 		unsigned long zonefile;
2052 		unsigned long zonefree;
2053 
2054 		zonefree = zone_page_state(zone, NR_FREE_PAGES);
2055 		zonefile = zone_page_state(zone, NR_ACTIVE_FILE) +
2056 			   zone_page_state(zone, NR_INACTIVE_FILE);
2057 
2058 		if (unlikely(zonefile + zonefree <= high_wmark_pages(zone))) {
2059 			scan_balance = SCAN_ANON;
2060 			goto out;
2061 		}
2062 	}
2063 
2064 	/*
2065 	 * If there is enough inactive page cache, i.e. if the size of the
2066 	 * inactive list is greater than that of the active list *and* the
2067 	 * inactive list actually has some pages to scan on this priority, we
2068 	 * do not reclaim anything from the anonymous working set right now.
2069 	 * Without the second condition we could end up never scanning an
2070 	 * lruvec even if it has plenty of old anonymous pages unless the
2071 	 * system is under heavy pressure.
2072 	 */
2073 	if (!inactive_file_is_low(lruvec) &&
2074 	    get_lru_size(lruvec, LRU_INACTIVE_FILE) >> sc->priority) {
2075 		scan_balance = SCAN_FILE;
2076 		goto out;
2077 	}
2078 
2079 	scan_balance = SCAN_FRACT;
2080 
2081 	/*
2082 	 * With swappiness at 100, anonymous and file have the same priority.
2083 	 * This scanning priority is essentially the inverse of IO cost.
2084 	 */
2085 	anon_prio = swappiness;
2086 	file_prio = 200 - anon_prio;
2087 
2088 	/*
2089 	 * OK, so we have swap space and a fair amount of page cache
2090 	 * pages.  We use the recently rotated / recently scanned
2091 	 * ratios to determine how valuable each cache is.
2092 	 *
2093 	 * Because workloads change over time (and to avoid overflow)
2094 	 * we keep these statistics as a floating average, which ends
2095 	 * up weighing recent references more than old ones.
2096 	 *
2097 	 * anon in [0], file in [1]
2098 	 */
2099 
2100 	anon  = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
2101 		get_lru_size(lruvec, LRU_INACTIVE_ANON);
2102 	file  = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
2103 		get_lru_size(lruvec, LRU_INACTIVE_FILE);
2104 
2105 	spin_lock_irq(&zone->lru_lock);
2106 	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2107 		reclaim_stat->recent_scanned[0] /= 2;
2108 		reclaim_stat->recent_rotated[0] /= 2;
2109 	}
2110 
2111 	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2112 		reclaim_stat->recent_scanned[1] /= 2;
2113 		reclaim_stat->recent_rotated[1] /= 2;
2114 	}
2115 
2116 	/*
2117 	 * The amount of pressure on anon vs file pages is inversely
2118 	 * proportional to the fraction of recently scanned pages on
2119 	 * each list that were recently referenced and in active use.
2120 	 */
2121 	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2122 	ap /= reclaim_stat->recent_rotated[0] + 1;
2123 
2124 	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2125 	fp /= reclaim_stat->recent_rotated[1] + 1;
2126 	spin_unlock_irq(&zone->lru_lock);
2127 
2128 	fraction[0] = ap;
2129 	fraction[1] = fp;
2130 	denominator = ap + fp + 1;
2131 out:
2132 	some_scanned = false;
2133 	/* Only use force_scan on second pass. */
2134 	for (pass = 0; !some_scanned && pass < 2; pass++) {
2135 		*lru_pages = 0;
2136 		for_each_evictable_lru(lru) {
2137 			int file = is_file_lru(lru);
2138 			unsigned long size;
2139 			unsigned long scan;
2140 
2141 			size = get_lru_size(lruvec, lru);
2142 			scan = size >> sc->priority;
2143 
2144 			if (!scan && pass && force_scan)
2145 				scan = min(size, SWAP_CLUSTER_MAX);
2146 
2147 			switch (scan_balance) {
2148 			case SCAN_EQUAL:
2149 				/* Scan lists relative to size */
2150 				break;
2151 			case SCAN_FRACT:
2152 				/*
2153 				 * Scan types proportional to swappiness and
2154 				 * their relative recent reclaim efficiency.
2155 				 */
2156 				scan = div64_u64(scan * fraction[file],
2157 							denominator);
2158 				break;
2159 			case SCAN_FILE:
2160 			case SCAN_ANON:
2161 				/* Scan one type exclusively */
2162 				if ((scan_balance == SCAN_FILE) != file) {
2163 					size = 0;
2164 					scan = 0;
2165 				}
2166 				break;
2167 			default:
2168 				/* Look ma, no brain */
2169 				BUG();
2170 			}
2171 
2172 			*lru_pages += size;
2173 			nr[lru] = scan;
2174 
2175 			/*
2176 			 * Skip the second pass and don't force_scan,
2177 			 * if we found something to scan.
2178 			 */
2179 			some_scanned |= !!scan;
2180 		}
2181 	}
2182 }
2183 
2184 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
2185 static void init_tlb_ubc(void)
2186 {
2187 	/*
2188 	 * This deliberately does not clear the cpumask as it's expensive
2189 	 * and unnecessary. If there happens to be data in there then the
2190 	 * first SWAP_CLUSTER_MAX pages will send an unnecessary IPI and
2191 	 * then will be cleared.
2192 	 */
2193 	current->tlb_ubc.flush_required = false;
2194 }
2195 #else
2196 static inline void init_tlb_ubc(void)
2197 {
2198 }
2199 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
2200 
2201 /*
2202  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
2203  */
2204 static void shrink_zone_memcg(struct zone *zone, struct mem_cgroup *memcg,
2205 			      struct scan_control *sc, unsigned long *lru_pages)
2206 {
2207 	struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2208 	unsigned long nr[NR_LRU_LISTS];
2209 	unsigned long targets[NR_LRU_LISTS];
2210 	unsigned long nr_to_scan;
2211 	enum lru_list lru;
2212 	unsigned long nr_reclaimed = 0;
2213 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2214 	struct blk_plug plug;
2215 	bool scan_adjusted;
2216 
2217 	get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2218 
2219 	/* Record the original scan target for proportional adjustments later */
2220 	memcpy(targets, nr, sizeof(nr));
2221 
2222 	/*
2223 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2224 	 * event that can occur when there is little memory pressure e.g.
2225 	 * multiple streaming readers/writers. Hence, we do not abort scanning
2226 	 * when the requested number of pages are reclaimed when scanning at
2227 	 * DEF_PRIORITY on the assumption that the fact we are direct
2228 	 * reclaiming implies that kswapd is not keeping up and it is best to
2229 	 * do a batch of work at once. For memcg reclaim one check is made to
2230 	 * abort proportional reclaim if either the file or anon lru has already
2231 	 * dropped to zero at the first pass.
2232 	 */
2233 	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2234 			 sc->priority == DEF_PRIORITY);
2235 
2236 	init_tlb_ubc();
2237 
2238 	blk_start_plug(&plug);
2239 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2240 					nr[LRU_INACTIVE_FILE]) {
2241 		unsigned long nr_anon, nr_file, percentage;
2242 		unsigned long nr_scanned;
2243 
2244 		for_each_evictable_lru(lru) {
2245 			if (nr[lru]) {
2246 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2247 				nr[lru] -= nr_to_scan;
2248 
2249 				nr_reclaimed += shrink_list(lru, nr_to_scan,
2250 							    lruvec, sc);
2251 			}
2252 		}
2253 
2254 		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2255 			continue;
2256 
2257 		/*
2258 		 * For kswapd and memcg, reclaim at least the number of pages
2259 		 * requested. Ensure that the anon and file LRUs are scanned
2260 		 * proportionally what was requested by get_scan_count(). We
2261 		 * stop reclaiming one LRU and reduce the amount scanning
2262 		 * proportional to the original scan target.
2263 		 */
2264 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2265 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2266 
2267 		/*
2268 		 * It's just vindictive to attack the larger once the smaller
2269 		 * has gone to zero.  And given the way we stop scanning the
2270 		 * smaller below, this makes sure that we only make one nudge
2271 		 * towards proportionality once we've got nr_to_reclaim.
2272 		 */
2273 		if (!nr_file || !nr_anon)
2274 			break;
2275 
2276 		if (nr_file > nr_anon) {
2277 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2278 						targets[LRU_ACTIVE_ANON] + 1;
2279 			lru = LRU_BASE;
2280 			percentage = nr_anon * 100 / scan_target;
2281 		} else {
2282 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2283 						targets[LRU_ACTIVE_FILE] + 1;
2284 			lru = LRU_FILE;
2285 			percentage = nr_file * 100 / scan_target;
2286 		}
2287 
2288 		/* Stop scanning the smaller of the LRU */
2289 		nr[lru] = 0;
2290 		nr[lru + LRU_ACTIVE] = 0;
2291 
2292 		/*
2293 		 * Recalculate the other LRU scan count based on its original
2294 		 * scan target and the percentage scanning already complete
2295 		 */
2296 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2297 		nr_scanned = targets[lru] - nr[lru];
2298 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2299 		nr[lru] -= min(nr[lru], nr_scanned);
2300 
2301 		lru += LRU_ACTIVE;
2302 		nr_scanned = targets[lru] - nr[lru];
2303 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2304 		nr[lru] -= min(nr[lru], nr_scanned);
2305 
2306 		scan_adjusted = true;
2307 	}
2308 	blk_finish_plug(&plug);
2309 	sc->nr_reclaimed += nr_reclaimed;
2310 
2311 	/*
2312 	 * Even if we did not try to evict anon pages at all, we want to
2313 	 * rebalance the anon lru active/inactive ratio.
2314 	 */
2315 	if (inactive_anon_is_low(lruvec))
2316 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2317 				   sc, LRU_ACTIVE_ANON);
2318 
2319 	throttle_vm_writeout(sc->gfp_mask);
2320 }
2321 
2322 /* Use reclaim/compaction for costly allocs or under memory pressure */
2323 static bool in_reclaim_compaction(struct scan_control *sc)
2324 {
2325 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2326 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2327 			 sc->priority < DEF_PRIORITY - 2))
2328 		return true;
2329 
2330 	return false;
2331 }
2332 
2333 /*
2334  * Reclaim/compaction is used for high-order allocation requests. It reclaims
2335  * order-0 pages before compacting the zone. should_continue_reclaim() returns
2336  * true if more pages should be reclaimed such that when the page allocator
2337  * calls try_to_compact_zone() that it will have enough free pages to succeed.
2338  * It will give up earlier than that if there is difficulty reclaiming pages.
2339  */
2340 static inline bool should_continue_reclaim(struct zone *zone,
2341 					unsigned long nr_reclaimed,
2342 					unsigned long nr_scanned,
2343 					struct scan_control *sc)
2344 {
2345 	unsigned long pages_for_compaction;
2346 	unsigned long inactive_lru_pages;
2347 
2348 	/* If not in reclaim/compaction mode, stop */
2349 	if (!in_reclaim_compaction(sc))
2350 		return false;
2351 
2352 	/* Consider stopping depending on scan and reclaim activity */
2353 	if (sc->gfp_mask & __GFP_REPEAT) {
2354 		/*
2355 		 * For __GFP_REPEAT allocations, stop reclaiming if the
2356 		 * full LRU list has been scanned and we are still failing
2357 		 * to reclaim pages. This full LRU scan is potentially
2358 		 * expensive but a __GFP_REPEAT caller really wants to succeed
2359 		 */
2360 		if (!nr_reclaimed && !nr_scanned)
2361 			return false;
2362 	} else {
2363 		/*
2364 		 * For non-__GFP_REPEAT allocations which can presumably
2365 		 * fail without consequence, stop if we failed to reclaim
2366 		 * any pages from the last SWAP_CLUSTER_MAX number of
2367 		 * pages that were scanned. This will return to the
2368 		 * caller faster at the risk reclaim/compaction and
2369 		 * the resulting allocation attempt fails
2370 		 */
2371 		if (!nr_reclaimed)
2372 			return false;
2373 	}
2374 
2375 	/*
2376 	 * If we have not reclaimed enough pages for compaction and the
2377 	 * inactive lists are large enough, continue reclaiming
2378 	 */
2379 	pages_for_compaction = (2UL << sc->order);
2380 	inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2381 	if (get_nr_swap_pages() > 0)
2382 		inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2383 	if (sc->nr_reclaimed < pages_for_compaction &&
2384 			inactive_lru_pages > pages_for_compaction)
2385 		return true;
2386 
2387 	/* If compaction would go ahead or the allocation would succeed, stop */
2388 	switch (compaction_suitable(zone, sc->order, 0, 0)) {
2389 	case COMPACT_PARTIAL:
2390 	case COMPACT_CONTINUE:
2391 		return false;
2392 	default:
2393 		return true;
2394 	}
2395 }
2396 
2397 static bool shrink_zone(struct zone *zone, struct scan_control *sc,
2398 			bool is_classzone)
2399 {
2400 	struct reclaim_state *reclaim_state = current->reclaim_state;
2401 	unsigned long nr_reclaimed, nr_scanned;
2402 	bool reclaimable = false;
2403 
2404 	do {
2405 		struct mem_cgroup *root = sc->target_mem_cgroup;
2406 		struct mem_cgroup_reclaim_cookie reclaim = {
2407 			.zone = zone,
2408 			.priority = sc->priority,
2409 		};
2410 		unsigned long zone_lru_pages = 0;
2411 		struct mem_cgroup *memcg;
2412 
2413 		nr_reclaimed = sc->nr_reclaimed;
2414 		nr_scanned = sc->nr_scanned;
2415 
2416 		memcg = mem_cgroup_iter(root, NULL, &reclaim);
2417 		do {
2418 			unsigned long lru_pages;
2419 			unsigned long reclaimed;
2420 			unsigned long scanned;
2421 
2422 			if (mem_cgroup_low(root, memcg)) {
2423 				if (!sc->may_thrash)
2424 					continue;
2425 				mem_cgroup_events(memcg, MEMCG_LOW, 1);
2426 			}
2427 
2428 			reclaimed = sc->nr_reclaimed;
2429 			scanned = sc->nr_scanned;
2430 
2431 			shrink_zone_memcg(zone, memcg, sc, &lru_pages);
2432 			zone_lru_pages += lru_pages;
2433 
2434 			if (memcg && is_classzone)
2435 				shrink_slab(sc->gfp_mask, zone_to_nid(zone),
2436 					    memcg, sc->nr_scanned - scanned,
2437 					    lru_pages);
2438 
2439 			/* Record the group's reclaim efficiency */
2440 			vmpressure(sc->gfp_mask, memcg, false,
2441 				   sc->nr_scanned - scanned,
2442 				   sc->nr_reclaimed - reclaimed);
2443 
2444 			/*
2445 			 * Direct reclaim and kswapd have to scan all memory
2446 			 * cgroups to fulfill the overall scan target for the
2447 			 * zone.
2448 			 *
2449 			 * Limit reclaim, on the other hand, only cares about
2450 			 * nr_to_reclaim pages to be reclaimed and it will
2451 			 * retry with decreasing priority if one round over the
2452 			 * whole hierarchy is not sufficient.
2453 			 */
2454 			if (!global_reclaim(sc) &&
2455 					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2456 				mem_cgroup_iter_break(root, memcg);
2457 				break;
2458 			}
2459 		} while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2460 
2461 		/*
2462 		 * Shrink the slab caches in the same proportion that
2463 		 * the eligible LRU pages were scanned.
2464 		 */
2465 		if (global_reclaim(sc) && is_classzone)
2466 			shrink_slab(sc->gfp_mask, zone_to_nid(zone), NULL,
2467 				    sc->nr_scanned - nr_scanned,
2468 				    zone_lru_pages);
2469 
2470 		if (reclaim_state) {
2471 			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2472 			reclaim_state->reclaimed_slab = 0;
2473 		}
2474 
2475 		/* Record the subtree's reclaim efficiency */
2476 		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2477 			   sc->nr_scanned - nr_scanned,
2478 			   sc->nr_reclaimed - nr_reclaimed);
2479 
2480 		if (sc->nr_reclaimed - nr_reclaimed)
2481 			reclaimable = true;
2482 
2483 	} while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2484 					 sc->nr_scanned - nr_scanned, sc));
2485 
2486 	return reclaimable;
2487 }
2488 
2489 /*
2490  * Returns true if compaction should go ahead for a high-order request, or
2491  * the high-order allocation would succeed without compaction.
2492  */
2493 static inline bool compaction_ready(struct zone *zone, int order)
2494 {
2495 	unsigned long balance_gap, watermark;
2496 	bool watermark_ok;
2497 
2498 	/*
2499 	 * Compaction takes time to run and there are potentially other
2500 	 * callers using the pages just freed. Continue reclaiming until
2501 	 * there is a buffer of free pages available to give compaction
2502 	 * a reasonable chance of completing and allocating the page
2503 	 */
2504 	balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
2505 			zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
2506 	watermark = high_wmark_pages(zone) + balance_gap + (2UL << order);
2507 	watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0);
2508 
2509 	/*
2510 	 * If compaction is deferred, reclaim up to a point where
2511 	 * compaction will have a chance of success when re-enabled
2512 	 */
2513 	if (compaction_deferred(zone, order))
2514 		return watermark_ok;
2515 
2516 	/*
2517 	 * If compaction is not ready to start and allocation is not likely
2518 	 * to succeed without it, then keep reclaiming.
2519 	 */
2520 	if (compaction_suitable(zone, order, 0, 0) == COMPACT_SKIPPED)
2521 		return false;
2522 
2523 	return watermark_ok;
2524 }
2525 
2526 /*
2527  * This is the direct reclaim path, for page-allocating processes.  We only
2528  * try to reclaim pages from zones which will satisfy the caller's allocation
2529  * request.
2530  *
2531  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2532  * Because:
2533  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2534  *    allocation or
2535  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2536  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2537  *    zone defense algorithm.
2538  *
2539  * If a zone is deemed to be full of pinned pages then just give it a light
2540  * scan then give up on it.
2541  *
2542  * Returns true if a zone was reclaimable.
2543  */
2544 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2545 {
2546 	struct zoneref *z;
2547 	struct zone *zone;
2548 	unsigned long nr_soft_reclaimed;
2549 	unsigned long nr_soft_scanned;
2550 	gfp_t orig_mask;
2551 	enum zone_type requested_highidx = gfp_zone(sc->gfp_mask);
2552 	bool reclaimable = false;
2553 
2554 	/*
2555 	 * If the number of buffer_heads in the machine exceeds the maximum
2556 	 * allowed level, force direct reclaim to scan the highmem zone as
2557 	 * highmem pages could be pinning lowmem pages storing buffer_heads
2558 	 */
2559 	orig_mask = sc->gfp_mask;
2560 	if (buffer_heads_over_limit)
2561 		sc->gfp_mask |= __GFP_HIGHMEM;
2562 
2563 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2564 					requested_highidx, sc->nodemask) {
2565 		enum zone_type classzone_idx;
2566 
2567 		if (!populated_zone(zone))
2568 			continue;
2569 
2570 		classzone_idx = requested_highidx;
2571 		while (!populated_zone(zone->zone_pgdat->node_zones +
2572 							classzone_idx))
2573 			classzone_idx--;
2574 
2575 		/*
2576 		 * Take care memory controller reclaiming has small influence
2577 		 * to global LRU.
2578 		 */
2579 		if (global_reclaim(sc)) {
2580 			if (!cpuset_zone_allowed(zone,
2581 						 GFP_KERNEL | __GFP_HARDWALL))
2582 				continue;
2583 
2584 			if (sc->priority != DEF_PRIORITY &&
2585 			    !zone_reclaimable(zone))
2586 				continue;	/* Let kswapd poll it */
2587 
2588 			/*
2589 			 * If we already have plenty of memory free for
2590 			 * compaction in this zone, don't free any more.
2591 			 * Even though compaction is invoked for any
2592 			 * non-zero order, only frequent costly order
2593 			 * reclamation is disruptive enough to become a
2594 			 * noticeable problem, like transparent huge
2595 			 * page allocations.
2596 			 */
2597 			if (IS_ENABLED(CONFIG_COMPACTION) &&
2598 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2599 			    zonelist_zone_idx(z) <= requested_highidx &&
2600 			    compaction_ready(zone, sc->order)) {
2601 				sc->compaction_ready = true;
2602 				continue;
2603 			}
2604 
2605 			/*
2606 			 * This steals pages from memory cgroups over softlimit
2607 			 * and returns the number of reclaimed pages and
2608 			 * scanned pages. This works for global memory pressure
2609 			 * and balancing, not for a memcg's limit.
2610 			 */
2611 			nr_soft_scanned = 0;
2612 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2613 						sc->order, sc->gfp_mask,
2614 						&nr_soft_scanned);
2615 			sc->nr_reclaimed += nr_soft_reclaimed;
2616 			sc->nr_scanned += nr_soft_scanned;
2617 			if (nr_soft_reclaimed)
2618 				reclaimable = true;
2619 			/* need some check for avoid more shrink_zone() */
2620 		}
2621 
2622 		if (shrink_zone(zone, sc, zone_idx(zone) == classzone_idx))
2623 			reclaimable = true;
2624 
2625 		if (global_reclaim(sc) &&
2626 		    !reclaimable && zone_reclaimable(zone))
2627 			reclaimable = true;
2628 	}
2629 
2630 	/*
2631 	 * Restore to original mask to avoid the impact on the caller if we
2632 	 * promoted it to __GFP_HIGHMEM.
2633 	 */
2634 	sc->gfp_mask = orig_mask;
2635 
2636 	return reclaimable;
2637 }
2638 
2639 /*
2640  * This is the main entry point to direct page reclaim.
2641  *
2642  * If a full scan of the inactive list fails to free enough memory then we
2643  * are "out of memory" and something needs to be killed.
2644  *
2645  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2646  * high - the zone may be full of dirty or under-writeback pages, which this
2647  * caller can't do much about.  We kick the writeback threads and take explicit
2648  * naps in the hope that some of these pages can be written.  But if the
2649  * allocating task holds filesystem locks which prevent writeout this might not
2650  * work, and the allocation attempt will fail.
2651  *
2652  * returns:	0, if no pages reclaimed
2653  * 		else, the number of pages reclaimed
2654  */
2655 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2656 					  struct scan_control *sc)
2657 {
2658 	int initial_priority = sc->priority;
2659 	unsigned long total_scanned = 0;
2660 	unsigned long writeback_threshold;
2661 	bool zones_reclaimable;
2662 retry:
2663 	delayacct_freepages_start();
2664 
2665 	if (global_reclaim(sc))
2666 		count_vm_event(ALLOCSTALL);
2667 
2668 	do {
2669 		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2670 				sc->priority);
2671 		sc->nr_scanned = 0;
2672 		zones_reclaimable = shrink_zones(zonelist, sc);
2673 
2674 		total_scanned += sc->nr_scanned;
2675 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2676 			break;
2677 
2678 		if (sc->compaction_ready)
2679 			break;
2680 
2681 		/*
2682 		 * If we're getting trouble reclaiming, start doing
2683 		 * writepage even in laptop mode.
2684 		 */
2685 		if (sc->priority < DEF_PRIORITY - 2)
2686 			sc->may_writepage = 1;
2687 
2688 		/*
2689 		 * Try to write back as many pages as we just scanned.  This
2690 		 * tends to cause slow streaming writers to write data to the
2691 		 * disk smoothly, at the dirtying rate, which is nice.   But
2692 		 * that's undesirable in laptop mode, where we *want* lumpy
2693 		 * writeout.  So in laptop mode, write out the whole world.
2694 		 */
2695 		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2696 		if (total_scanned > writeback_threshold) {
2697 			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2698 						WB_REASON_TRY_TO_FREE_PAGES);
2699 			sc->may_writepage = 1;
2700 		}
2701 	} while (--sc->priority >= 0);
2702 
2703 	delayacct_freepages_end();
2704 
2705 	if (sc->nr_reclaimed)
2706 		return sc->nr_reclaimed;
2707 
2708 	/* Aborted reclaim to try compaction? don't OOM, then */
2709 	if (sc->compaction_ready)
2710 		return 1;
2711 
2712 	/* Untapped cgroup reserves?  Don't OOM, retry. */
2713 	if (!sc->may_thrash) {
2714 		sc->priority = initial_priority;
2715 		sc->may_thrash = 1;
2716 		goto retry;
2717 	}
2718 
2719 	/* Any of the zones still reclaimable?  Don't OOM. */
2720 	if (zones_reclaimable)
2721 		return 1;
2722 
2723 	return 0;
2724 }
2725 
2726 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2727 {
2728 	struct zone *zone;
2729 	unsigned long pfmemalloc_reserve = 0;
2730 	unsigned long free_pages = 0;
2731 	int i;
2732 	bool wmark_ok;
2733 
2734 	for (i = 0; i <= ZONE_NORMAL; i++) {
2735 		zone = &pgdat->node_zones[i];
2736 		if (!populated_zone(zone) ||
2737 		    zone_reclaimable_pages(zone) == 0)
2738 			continue;
2739 
2740 		pfmemalloc_reserve += min_wmark_pages(zone);
2741 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
2742 	}
2743 
2744 	/* If there are no reserves (unexpected config) then do not throttle */
2745 	if (!pfmemalloc_reserve)
2746 		return true;
2747 
2748 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
2749 
2750 	/* kswapd must be awake if processes are being throttled */
2751 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2752 		pgdat->classzone_idx = min(pgdat->classzone_idx,
2753 						(enum zone_type)ZONE_NORMAL);
2754 		wake_up_interruptible(&pgdat->kswapd_wait);
2755 	}
2756 
2757 	return wmark_ok;
2758 }
2759 
2760 /*
2761  * Throttle direct reclaimers if backing storage is backed by the network
2762  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2763  * depleted. kswapd will continue to make progress and wake the processes
2764  * when the low watermark is reached.
2765  *
2766  * Returns true if a fatal signal was delivered during throttling. If this
2767  * happens, the page allocator should not consider triggering the OOM killer.
2768  */
2769 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2770 					nodemask_t *nodemask)
2771 {
2772 	struct zoneref *z;
2773 	struct zone *zone;
2774 	pg_data_t *pgdat = NULL;
2775 
2776 	/*
2777 	 * Kernel threads should not be throttled as they may be indirectly
2778 	 * responsible for cleaning pages necessary for reclaim to make forward
2779 	 * progress. kjournald for example may enter direct reclaim while
2780 	 * committing a transaction where throttling it could forcing other
2781 	 * processes to block on log_wait_commit().
2782 	 */
2783 	if (current->flags & PF_KTHREAD)
2784 		goto out;
2785 
2786 	/*
2787 	 * If a fatal signal is pending, this process should not throttle.
2788 	 * It should return quickly so it can exit and free its memory
2789 	 */
2790 	if (fatal_signal_pending(current))
2791 		goto out;
2792 
2793 	/*
2794 	 * Check if the pfmemalloc reserves are ok by finding the first node
2795 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2796 	 * GFP_KERNEL will be required for allocating network buffers when
2797 	 * swapping over the network so ZONE_HIGHMEM is unusable.
2798 	 *
2799 	 * Throttling is based on the first usable node and throttled processes
2800 	 * wait on a queue until kswapd makes progress and wakes them. There
2801 	 * is an affinity then between processes waking up and where reclaim
2802 	 * progress has been made assuming the process wakes on the same node.
2803 	 * More importantly, processes running on remote nodes will not compete
2804 	 * for remote pfmemalloc reserves and processes on different nodes
2805 	 * should make reasonable progress.
2806 	 */
2807 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2808 					gfp_zone(gfp_mask), nodemask) {
2809 		if (zone_idx(zone) > ZONE_NORMAL)
2810 			continue;
2811 
2812 		/* Throttle based on the first usable node */
2813 		pgdat = zone->zone_pgdat;
2814 		if (pfmemalloc_watermark_ok(pgdat))
2815 			goto out;
2816 		break;
2817 	}
2818 
2819 	/* If no zone was usable by the allocation flags then do not throttle */
2820 	if (!pgdat)
2821 		goto out;
2822 
2823 	/* Account for the throttling */
2824 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
2825 
2826 	/*
2827 	 * If the caller cannot enter the filesystem, it's possible that it
2828 	 * is due to the caller holding an FS lock or performing a journal
2829 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
2830 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
2831 	 * blocked waiting on the same lock. Instead, throttle for up to a
2832 	 * second before continuing.
2833 	 */
2834 	if (!(gfp_mask & __GFP_FS)) {
2835 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2836 			pfmemalloc_watermark_ok(pgdat), HZ);
2837 
2838 		goto check_pending;
2839 	}
2840 
2841 	/* Throttle until kswapd wakes the process */
2842 	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2843 		pfmemalloc_watermark_ok(pgdat));
2844 
2845 check_pending:
2846 	if (fatal_signal_pending(current))
2847 		return true;
2848 
2849 out:
2850 	return false;
2851 }
2852 
2853 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2854 				gfp_t gfp_mask, nodemask_t *nodemask)
2855 {
2856 	unsigned long nr_reclaimed;
2857 	struct scan_control sc = {
2858 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2859 		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2860 		.order = order,
2861 		.nodemask = nodemask,
2862 		.priority = DEF_PRIORITY,
2863 		.may_writepage = !laptop_mode,
2864 		.may_unmap = 1,
2865 		.may_swap = 1,
2866 	};
2867 
2868 	/*
2869 	 * Do not enter reclaim if fatal signal was delivered while throttled.
2870 	 * 1 is returned so that the page allocator does not OOM kill at this
2871 	 * point.
2872 	 */
2873 	if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2874 		return 1;
2875 
2876 	trace_mm_vmscan_direct_reclaim_begin(order,
2877 				sc.may_writepage,
2878 				gfp_mask);
2879 
2880 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2881 
2882 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2883 
2884 	return nr_reclaimed;
2885 }
2886 
2887 #ifdef CONFIG_MEMCG
2888 
2889 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2890 						gfp_t gfp_mask, bool noswap,
2891 						struct zone *zone,
2892 						unsigned long *nr_scanned)
2893 {
2894 	struct scan_control sc = {
2895 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2896 		.target_mem_cgroup = memcg,
2897 		.may_writepage = !laptop_mode,
2898 		.may_unmap = 1,
2899 		.may_swap = !noswap,
2900 	};
2901 	unsigned long lru_pages;
2902 
2903 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2904 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2905 
2906 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2907 						      sc.may_writepage,
2908 						      sc.gfp_mask);
2909 
2910 	/*
2911 	 * NOTE: Although we can get the priority field, using it
2912 	 * here is not a good idea, since it limits the pages we can scan.
2913 	 * if we don't reclaim here, the shrink_zone from balance_pgdat
2914 	 * will pick up pages from other mem cgroup's as well. We hack
2915 	 * the priority and make it zero.
2916 	 */
2917 	shrink_zone_memcg(zone, memcg, &sc, &lru_pages);
2918 
2919 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2920 
2921 	*nr_scanned = sc.nr_scanned;
2922 	return sc.nr_reclaimed;
2923 }
2924 
2925 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2926 					   unsigned long nr_pages,
2927 					   gfp_t gfp_mask,
2928 					   bool may_swap)
2929 {
2930 	struct zonelist *zonelist;
2931 	unsigned long nr_reclaimed;
2932 	int nid;
2933 	struct scan_control sc = {
2934 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
2935 		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2936 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2937 		.target_mem_cgroup = memcg,
2938 		.priority = DEF_PRIORITY,
2939 		.may_writepage = !laptop_mode,
2940 		.may_unmap = 1,
2941 		.may_swap = may_swap,
2942 	};
2943 
2944 	/*
2945 	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2946 	 * take care of from where we get pages. So the node where we start the
2947 	 * scan does not need to be the current node.
2948 	 */
2949 	nid = mem_cgroup_select_victim_node(memcg);
2950 
2951 	zonelist = NODE_DATA(nid)->node_zonelists;
2952 
2953 	trace_mm_vmscan_memcg_reclaim_begin(0,
2954 					    sc.may_writepage,
2955 					    sc.gfp_mask);
2956 
2957 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2958 
2959 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2960 
2961 	return nr_reclaimed;
2962 }
2963 #endif
2964 
2965 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2966 {
2967 	struct mem_cgroup *memcg;
2968 
2969 	if (!total_swap_pages)
2970 		return;
2971 
2972 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
2973 	do {
2974 		struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2975 
2976 		if (inactive_anon_is_low(lruvec))
2977 			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2978 					   sc, LRU_ACTIVE_ANON);
2979 
2980 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
2981 	} while (memcg);
2982 }
2983 
2984 static bool zone_balanced(struct zone *zone, int order,
2985 			  unsigned long balance_gap, int classzone_idx)
2986 {
2987 	if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2988 				    balance_gap, classzone_idx))
2989 		return false;
2990 
2991 	if (IS_ENABLED(CONFIG_COMPACTION) && order && compaction_suitable(zone,
2992 				order, 0, classzone_idx) == COMPACT_SKIPPED)
2993 		return false;
2994 
2995 	return true;
2996 }
2997 
2998 /*
2999  * pgdat_balanced() is used when checking if a node is balanced.
3000  *
3001  * For order-0, all zones must be balanced!
3002  *
3003  * For high-order allocations only zones that meet watermarks and are in a
3004  * zone allowed by the callers classzone_idx are added to balanced_pages. The
3005  * total of balanced pages must be at least 25% of the zones allowed by
3006  * classzone_idx for the node to be considered balanced. Forcing all zones to
3007  * be balanced for high orders can cause excessive reclaim when there are
3008  * imbalanced zones.
3009  * The choice of 25% is due to
3010  *   o a 16M DMA zone that is balanced will not balance a zone on any
3011  *     reasonable sized machine
3012  *   o On all other machines, the top zone must be at least a reasonable
3013  *     percentage of the middle zones. For example, on 32-bit x86, highmem
3014  *     would need to be at least 256M for it to be balance a whole node.
3015  *     Similarly, on x86-64 the Normal zone would need to be at least 1G
3016  *     to balance a node on its own. These seemed like reasonable ratios.
3017  */
3018 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3019 {
3020 	unsigned long managed_pages = 0;
3021 	unsigned long balanced_pages = 0;
3022 	int i;
3023 
3024 	/* Check the watermark levels */
3025 	for (i = 0; i <= classzone_idx; i++) {
3026 		struct zone *zone = pgdat->node_zones + i;
3027 
3028 		if (!populated_zone(zone))
3029 			continue;
3030 
3031 		managed_pages += zone->managed_pages;
3032 
3033 		/*
3034 		 * A special case here:
3035 		 *
3036 		 * balance_pgdat() skips over all_unreclaimable after
3037 		 * DEF_PRIORITY. Effectively, it considers them balanced so
3038 		 * they must be considered balanced here as well!
3039 		 */
3040 		if (!zone_reclaimable(zone)) {
3041 			balanced_pages += zone->managed_pages;
3042 			continue;
3043 		}
3044 
3045 		if (zone_balanced(zone, order, 0, i))
3046 			balanced_pages += zone->managed_pages;
3047 		else if (!order)
3048 			return false;
3049 	}
3050 
3051 	if (order)
3052 		return balanced_pages >= (managed_pages >> 2);
3053 	else
3054 		return true;
3055 }
3056 
3057 /*
3058  * Prepare kswapd for sleeping. This verifies that there are no processes
3059  * waiting in throttle_direct_reclaim() and that watermarks have been met.
3060  *
3061  * Returns true if kswapd is ready to sleep
3062  */
3063 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
3064 					int classzone_idx)
3065 {
3066 	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
3067 	if (remaining)
3068 		return false;
3069 
3070 	/*
3071 	 * The throttled processes are normally woken up in balance_pgdat() as
3072 	 * soon as pfmemalloc_watermark_ok() is true. But there is a potential
3073 	 * race between when kswapd checks the watermarks and a process gets
3074 	 * throttled. There is also a potential race if processes get
3075 	 * throttled, kswapd wakes, a large process exits thereby balancing the
3076 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
3077 	 * the wake up checks. If kswapd is going to sleep, no process should
3078 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3079 	 * the wake up is premature, processes will wake kswapd and get
3080 	 * throttled again. The difference from wake ups in balance_pgdat() is
3081 	 * that here we are under prepare_to_wait().
3082 	 */
3083 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
3084 		wake_up_all(&pgdat->pfmemalloc_wait);
3085 
3086 	return pgdat_balanced(pgdat, order, classzone_idx);
3087 }
3088 
3089 /*
3090  * kswapd shrinks the zone by the number of pages required to reach
3091  * the high watermark.
3092  *
3093  * Returns true if kswapd scanned at least the requested number of pages to
3094  * reclaim or if the lack of progress was due to pages under writeback.
3095  * This is used to determine if the scanning priority needs to be raised.
3096  */
3097 static bool kswapd_shrink_zone(struct zone *zone,
3098 			       int classzone_idx,
3099 			       struct scan_control *sc,
3100 			       unsigned long *nr_attempted)
3101 {
3102 	int testorder = sc->order;
3103 	unsigned long balance_gap;
3104 	bool lowmem_pressure;
3105 
3106 	/* Reclaim above the high watermark. */
3107 	sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
3108 
3109 	/*
3110 	 * Kswapd reclaims only single pages with compaction enabled. Trying
3111 	 * too hard to reclaim until contiguous free pages have become
3112 	 * available can hurt performance by evicting too much useful data
3113 	 * from memory. Do not reclaim more than needed for compaction.
3114 	 */
3115 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
3116 			compaction_suitable(zone, sc->order, 0, classzone_idx)
3117 							!= COMPACT_SKIPPED)
3118 		testorder = 0;
3119 
3120 	/*
3121 	 * We put equal pressure on every zone, unless one zone has way too
3122 	 * many pages free already. The "too many pages" is defined as the
3123 	 * high wmark plus a "gap" where the gap is either the low
3124 	 * watermark or 1% of the zone, whichever is smaller.
3125 	 */
3126 	balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
3127 			zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
3128 
3129 	/*
3130 	 * If there is no low memory pressure or the zone is balanced then no
3131 	 * reclaim is necessary
3132 	 */
3133 	lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
3134 	if (!lowmem_pressure && zone_balanced(zone, testorder,
3135 						balance_gap, classzone_idx))
3136 		return true;
3137 
3138 	shrink_zone(zone, sc, zone_idx(zone) == classzone_idx);
3139 
3140 	/* Account for the number of pages attempted to reclaim */
3141 	*nr_attempted += sc->nr_to_reclaim;
3142 
3143 	clear_bit(ZONE_WRITEBACK, &zone->flags);
3144 
3145 	/*
3146 	 * If a zone reaches its high watermark, consider it to be no longer
3147 	 * congested. It's possible there are dirty pages backed by congested
3148 	 * BDIs but as pressure is relieved, speculatively avoid congestion
3149 	 * waits.
3150 	 */
3151 	if (zone_reclaimable(zone) &&
3152 	    zone_balanced(zone, testorder, 0, classzone_idx)) {
3153 		clear_bit(ZONE_CONGESTED, &zone->flags);
3154 		clear_bit(ZONE_DIRTY, &zone->flags);
3155 	}
3156 
3157 	return sc->nr_scanned >= sc->nr_to_reclaim;
3158 }
3159 
3160 /*
3161  * For kswapd, balance_pgdat() will work across all this node's zones until
3162  * they are all at high_wmark_pages(zone).
3163  *
3164  * Returns the final order kswapd was reclaiming at
3165  *
3166  * There is special handling here for zones which are full of pinned pages.
3167  * This can happen if the pages are all mlocked, or if they are all used by
3168  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
3169  * What we do is to detect the case where all pages in the zone have been
3170  * scanned twice and there has been zero successful reclaim.  Mark the zone as
3171  * dead and from now on, only perform a short scan.  Basically we're polling
3172  * the zone for when the problem goes away.
3173  *
3174  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3175  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3176  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
3177  * lower zones regardless of the number of free pages in the lower zones. This
3178  * interoperates with the page allocator fallback scheme to ensure that aging
3179  * of pages is balanced across the zones.
3180  */
3181 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
3182 							int *classzone_idx)
3183 {
3184 	int i;
3185 	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
3186 	unsigned long nr_soft_reclaimed;
3187 	unsigned long nr_soft_scanned;
3188 	struct scan_control sc = {
3189 		.gfp_mask = GFP_KERNEL,
3190 		.order = order,
3191 		.priority = DEF_PRIORITY,
3192 		.may_writepage = !laptop_mode,
3193 		.may_unmap = 1,
3194 		.may_swap = 1,
3195 	};
3196 	count_vm_event(PAGEOUTRUN);
3197 
3198 	do {
3199 		unsigned long nr_attempted = 0;
3200 		bool raise_priority = true;
3201 		bool pgdat_needs_compaction = (order > 0);
3202 
3203 		sc.nr_reclaimed = 0;
3204 
3205 		/*
3206 		 * Scan in the highmem->dma direction for the highest
3207 		 * zone which needs scanning
3208 		 */
3209 		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
3210 			struct zone *zone = pgdat->node_zones + i;
3211 
3212 			if (!populated_zone(zone))
3213 				continue;
3214 
3215 			if (sc.priority != DEF_PRIORITY &&
3216 			    !zone_reclaimable(zone))
3217 				continue;
3218 
3219 			/*
3220 			 * Do some background aging of the anon list, to give
3221 			 * pages a chance to be referenced before reclaiming.
3222 			 */
3223 			age_active_anon(zone, &sc);
3224 
3225 			/*
3226 			 * If the number of buffer_heads in the machine
3227 			 * exceeds the maximum allowed level and this node
3228 			 * has a highmem zone, force kswapd to reclaim from
3229 			 * it to relieve lowmem pressure.
3230 			 */
3231 			if (buffer_heads_over_limit && is_highmem_idx(i)) {
3232 				end_zone = i;
3233 				break;
3234 			}
3235 
3236 			if (!zone_balanced(zone, order, 0, 0)) {
3237 				end_zone = i;
3238 				break;
3239 			} else {
3240 				/*
3241 				 * If balanced, clear the dirty and congested
3242 				 * flags
3243 				 */
3244 				clear_bit(ZONE_CONGESTED, &zone->flags);
3245 				clear_bit(ZONE_DIRTY, &zone->flags);
3246 			}
3247 		}
3248 
3249 		if (i < 0)
3250 			goto out;
3251 
3252 		for (i = 0; i <= end_zone; i++) {
3253 			struct zone *zone = pgdat->node_zones + i;
3254 
3255 			if (!populated_zone(zone))
3256 				continue;
3257 
3258 			/*
3259 			 * If any zone is currently balanced then kswapd will
3260 			 * not call compaction as it is expected that the
3261 			 * necessary pages are already available.
3262 			 */
3263 			if (pgdat_needs_compaction &&
3264 					zone_watermark_ok(zone, order,
3265 						low_wmark_pages(zone),
3266 						*classzone_idx, 0))
3267 				pgdat_needs_compaction = false;
3268 		}
3269 
3270 		/*
3271 		 * If we're getting trouble reclaiming, start doing writepage
3272 		 * even in laptop mode.
3273 		 */
3274 		if (sc.priority < DEF_PRIORITY - 2)
3275 			sc.may_writepage = 1;
3276 
3277 		/*
3278 		 * Now scan the zone in the dma->highmem direction, stopping
3279 		 * at the last zone which needs scanning.
3280 		 *
3281 		 * We do this because the page allocator works in the opposite
3282 		 * direction.  This prevents the page allocator from allocating
3283 		 * pages behind kswapd's direction of progress, which would
3284 		 * cause too much scanning of the lower zones.
3285 		 */
3286 		for (i = 0; i <= end_zone; i++) {
3287 			struct zone *zone = pgdat->node_zones + i;
3288 
3289 			if (!populated_zone(zone))
3290 				continue;
3291 
3292 			if (sc.priority != DEF_PRIORITY &&
3293 			    !zone_reclaimable(zone))
3294 				continue;
3295 
3296 			sc.nr_scanned = 0;
3297 
3298 			nr_soft_scanned = 0;
3299 			/*
3300 			 * Call soft limit reclaim before calling shrink_zone.
3301 			 */
3302 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
3303 							order, sc.gfp_mask,
3304 							&nr_soft_scanned);
3305 			sc.nr_reclaimed += nr_soft_reclaimed;
3306 
3307 			/*
3308 			 * There should be no need to raise the scanning
3309 			 * priority if enough pages are already being scanned
3310 			 * that that high watermark would be met at 100%
3311 			 * efficiency.
3312 			 */
3313 			if (kswapd_shrink_zone(zone, end_zone,
3314 					       &sc, &nr_attempted))
3315 				raise_priority = false;
3316 		}
3317 
3318 		/*
3319 		 * If the low watermark is met there is no need for processes
3320 		 * to be throttled on pfmemalloc_wait as they should not be
3321 		 * able to safely make forward progress. Wake them
3322 		 */
3323 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3324 				pfmemalloc_watermark_ok(pgdat))
3325 			wake_up_all(&pgdat->pfmemalloc_wait);
3326 
3327 		/*
3328 		 * Fragmentation may mean that the system cannot be rebalanced
3329 		 * for high-order allocations in all zones. If twice the
3330 		 * allocation size has been reclaimed and the zones are still
3331 		 * not balanced then recheck the watermarks at order-0 to
3332 		 * prevent kswapd reclaiming excessively. Assume that a
3333 		 * process requested a high-order can direct reclaim/compact.
3334 		 */
3335 		if (order && sc.nr_reclaimed >= 2UL << order)
3336 			order = sc.order = 0;
3337 
3338 		/* Check if kswapd should be suspending */
3339 		if (try_to_freeze() || kthread_should_stop())
3340 			break;
3341 
3342 		/*
3343 		 * Compact if necessary and kswapd is reclaiming at least the
3344 		 * high watermark number of pages as requsted
3345 		 */
3346 		if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
3347 			compact_pgdat(pgdat, order);
3348 
3349 		/*
3350 		 * Raise priority if scanning rate is too low or there was no
3351 		 * progress in reclaiming pages
3352 		 */
3353 		if (raise_priority || !sc.nr_reclaimed)
3354 			sc.priority--;
3355 	} while (sc.priority >= 1 &&
3356 		 !pgdat_balanced(pgdat, order, *classzone_idx));
3357 
3358 out:
3359 	/*
3360 	 * Return the order we were reclaiming at so prepare_kswapd_sleep()
3361 	 * makes a decision on the order we were last reclaiming at. However,
3362 	 * if another caller entered the allocator slow path while kswapd
3363 	 * was awake, order will remain at the higher level
3364 	 */
3365 	*classzone_idx = end_zone;
3366 	return order;
3367 }
3368 
3369 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3370 {
3371 	long remaining = 0;
3372 	DEFINE_WAIT(wait);
3373 
3374 	if (freezing(current) || kthread_should_stop())
3375 		return;
3376 
3377 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3378 
3379 	/* Try to sleep for a short interval */
3380 	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3381 		remaining = schedule_timeout(HZ/10);
3382 		finish_wait(&pgdat->kswapd_wait, &wait);
3383 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3384 	}
3385 
3386 	/*
3387 	 * After a short sleep, check if it was a premature sleep. If not, then
3388 	 * go fully to sleep until explicitly woken up.
3389 	 */
3390 	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3391 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3392 
3393 		/*
3394 		 * vmstat counters are not perfectly accurate and the estimated
3395 		 * value for counters such as NR_FREE_PAGES can deviate from the
3396 		 * true value by nr_online_cpus * threshold. To avoid the zone
3397 		 * watermarks being breached while under pressure, we reduce the
3398 		 * per-cpu vmstat threshold while kswapd is awake and restore
3399 		 * them before going back to sleep.
3400 		 */
3401 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3402 
3403 		/*
3404 		 * Compaction records what page blocks it recently failed to
3405 		 * isolate pages from and skips them in the future scanning.
3406 		 * When kswapd is going to sleep, it is reasonable to assume
3407 		 * that pages and compaction may succeed so reset the cache.
3408 		 */
3409 		reset_isolation_suitable(pgdat);
3410 
3411 		if (!kthread_should_stop())
3412 			schedule();
3413 
3414 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3415 	} else {
3416 		if (remaining)
3417 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3418 		else
3419 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3420 	}
3421 	finish_wait(&pgdat->kswapd_wait, &wait);
3422 }
3423 
3424 /*
3425  * The background pageout daemon, started as a kernel thread
3426  * from the init process.
3427  *
3428  * This basically trickles out pages so that we have _some_
3429  * free memory available even if there is no other activity
3430  * that frees anything up. This is needed for things like routing
3431  * etc, where we otherwise might have all activity going on in
3432  * asynchronous contexts that cannot page things out.
3433  *
3434  * If there are applications that are active memory-allocators
3435  * (most normal use), this basically shouldn't matter.
3436  */
3437 static int kswapd(void *p)
3438 {
3439 	unsigned long order, new_order;
3440 	unsigned balanced_order;
3441 	int classzone_idx, new_classzone_idx;
3442 	int balanced_classzone_idx;
3443 	pg_data_t *pgdat = (pg_data_t*)p;
3444 	struct task_struct *tsk = current;
3445 
3446 	struct reclaim_state reclaim_state = {
3447 		.reclaimed_slab = 0,
3448 	};
3449 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3450 
3451 	lockdep_set_current_reclaim_state(GFP_KERNEL);
3452 
3453 	if (!cpumask_empty(cpumask))
3454 		set_cpus_allowed_ptr(tsk, cpumask);
3455 	current->reclaim_state = &reclaim_state;
3456 
3457 	/*
3458 	 * Tell the memory management that we're a "memory allocator",
3459 	 * and that if we need more memory we should get access to it
3460 	 * regardless (see "__alloc_pages()"). "kswapd" should
3461 	 * never get caught in the normal page freeing logic.
3462 	 *
3463 	 * (Kswapd normally doesn't need memory anyway, but sometimes
3464 	 * you need a small amount of memory in order to be able to
3465 	 * page out something else, and this flag essentially protects
3466 	 * us from recursively trying to free more memory as we're
3467 	 * trying to free the first piece of memory in the first place).
3468 	 */
3469 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3470 	set_freezable();
3471 
3472 	order = new_order = 0;
3473 	balanced_order = 0;
3474 	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3475 	balanced_classzone_idx = classzone_idx;
3476 	for ( ; ; ) {
3477 		bool ret;
3478 
3479 		/*
3480 		 * If the last balance_pgdat was unsuccessful it's unlikely a
3481 		 * new request of a similar or harder type will succeed soon
3482 		 * so consider going to sleep on the basis we reclaimed at
3483 		 */
3484 		if (balanced_classzone_idx >= new_classzone_idx &&
3485 					balanced_order == new_order) {
3486 			new_order = pgdat->kswapd_max_order;
3487 			new_classzone_idx = pgdat->classzone_idx;
3488 			pgdat->kswapd_max_order =  0;
3489 			pgdat->classzone_idx = pgdat->nr_zones - 1;
3490 		}
3491 
3492 		if (order < new_order || classzone_idx > new_classzone_idx) {
3493 			/*
3494 			 * Don't sleep if someone wants a larger 'order'
3495 			 * allocation or has tigher zone constraints
3496 			 */
3497 			order = new_order;
3498 			classzone_idx = new_classzone_idx;
3499 		} else {
3500 			kswapd_try_to_sleep(pgdat, balanced_order,
3501 						balanced_classzone_idx);
3502 			order = pgdat->kswapd_max_order;
3503 			classzone_idx = pgdat->classzone_idx;
3504 			new_order = order;
3505 			new_classzone_idx = classzone_idx;
3506 			pgdat->kswapd_max_order = 0;
3507 			pgdat->classzone_idx = pgdat->nr_zones - 1;
3508 		}
3509 
3510 		ret = try_to_freeze();
3511 		if (kthread_should_stop())
3512 			break;
3513 
3514 		/*
3515 		 * We can speed up thawing tasks if we don't call balance_pgdat
3516 		 * after returning from the refrigerator
3517 		 */
3518 		if (!ret) {
3519 			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3520 			balanced_classzone_idx = classzone_idx;
3521 			balanced_order = balance_pgdat(pgdat, order,
3522 						&balanced_classzone_idx);
3523 		}
3524 	}
3525 
3526 	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3527 	current->reclaim_state = NULL;
3528 	lockdep_clear_current_reclaim_state();
3529 
3530 	return 0;
3531 }
3532 
3533 /*
3534  * A zone is low on free memory, so wake its kswapd task to service it.
3535  */
3536 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3537 {
3538 	pg_data_t *pgdat;
3539 
3540 	if (!populated_zone(zone))
3541 		return;
3542 
3543 	if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
3544 		return;
3545 	pgdat = zone->zone_pgdat;
3546 	if (pgdat->kswapd_max_order < order) {
3547 		pgdat->kswapd_max_order = order;
3548 		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3549 	}
3550 	if (!waitqueue_active(&pgdat->kswapd_wait))
3551 		return;
3552 	if (zone_balanced(zone, order, 0, 0))
3553 		return;
3554 
3555 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3556 	wake_up_interruptible(&pgdat->kswapd_wait);
3557 }
3558 
3559 #ifdef CONFIG_HIBERNATION
3560 /*
3561  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3562  * freed pages.
3563  *
3564  * Rather than trying to age LRUs the aim is to preserve the overall
3565  * LRU order by reclaiming preferentially
3566  * inactive > active > active referenced > active mapped
3567  */
3568 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3569 {
3570 	struct reclaim_state reclaim_state;
3571 	struct scan_control sc = {
3572 		.nr_to_reclaim = nr_to_reclaim,
3573 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3574 		.priority = DEF_PRIORITY,
3575 		.may_writepage = 1,
3576 		.may_unmap = 1,
3577 		.may_swap = 1,
3578 		.hibernation_mode = 1,
3579 	};
3580 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3581 	struct task_struct *p = current;
3582 	unsigned long nr_reclaimed;
3583 
3584 	p->flags |= PF_MEMALLOC;
3585 	lockdep_set_current_reclaim_state(sc.gfp_mask);
3586 	reclaim_state.reclaimed_slab = 0;
3587 	p->reclaim_state = &reclaim_state;
3588 
3589 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3590 
3591 	p->reclaim_state = NULL;
3592 	lockdep_clear_current_reclaim_state();
3593 	p->flags &= ~PF_MEMALLOC;
3594 
3595 	return nr_reclaimed;
3596 }
3597 #endif /* CONFIG_HIBERNATION */
3598 
3599 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3600    not required for correctness.  So if the last cpu in a node goes
3601    away, we get changed to run anywhere: as the first one comes back,
3602    restore their cpu bindings. */
3603 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3604 			void *hcpu)
3605 {
3606 	int nid;
3607 
3608 	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3609 		for_each_node_state(nid, N_MEMORY) {
3610 			pg_data_t *pgdat = NODE_DATA(nid);
3611 			const struct cpumask *mask;
3612 
3613 			mask = cpumask_of_node(pgdat->node_id);
3614 
3615 			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3616 				/* One of our CPUs online: restore mask */
3617 				set_cpus_allowed_ptr(pgdat->kswapd, mask);
3618 		}
3619 	}
3620 	return NOTIFY_OK;
3621 }
3622 
3623 /*
3624  * This kswapd start function will be called by init and node-hot-add.
3625  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3626  */
3627 int kswapd_run(int nid)
3628 {
3629 	pg_data_t *pgdat = NODE_DATA(nid);
3630 	int ret = 0;
3631 
3632 	if (pgdat->kswapd)
3633 		return 0;
3634 
3635 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3636 	if (IS_ERR(pgdat->kswapd)) {
3637 		/* failure at boot is fatal */
3638 		BUG_ON(system_state == SYSTEM_BOOTING);
3639 		pr_err("Failed to start kswapd on node %d\n", nid);
3640 		ret = PTR_ERR(pgdat->kswapd);
3641 		pgdat->kswapd = NULL;
3642 	}
3643 	return ret;
3644 }
3645 
3646 /*
3647  * Called by memory hotplug when all memory in a node is offlined.  Caller must
3648  * hold mem_hotplug_begin/end().
3649  */
3650 void kswapd_stop(int nid)
3651 {
3652 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3653 
3654 	if (kswapd) {
3655 		kthread_stop(kswapd);
3656 		NODE_DATA(nid)->kswapd = NULL;
3657 	}
3658 }
3659 
3660 static int __init kswapd_init(void)
3661 {
3662 	int nid;
3663 
3664 	swap_setup();
3665 	for_each_node_state(nid, N_MEMORY)
3666  		kswapd_run(nid);
3667 	hotcpu_notifier(cpu_callback, 0);
3668 	return 0;
3669 }
3670 
3671 module_init(kswapd_init)
3672 
3673 #ifdef CONFIG_NUMA
3674 /*
3675  * Zone reclaim mode
3676  *
3677  * If non-zero call zone_reclaim when the number of free pages falls below
3678  * the watermarks.
3679  */
3680 int zone_reclaim_mode __read_mostly;
3681 
3682 #define RECLAIM_OFF 0
3683 #define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3684 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3685 #define RECLAIM_UNMAP (1<<2)	/* Unmap pages during reclaim */
3686 
3687 /*
3688  * Priority for ZONE_RECLAIM. This determines the fraction of pages
3689  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3690  * a zone.
3691  */
3692 #define ZONE_RECLAIM_PRIORITY 4
3693 
3694 /*
3695  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3696  * occur.
3697  */
3698 int sysctl_min_unmapped_ratio = 1;
3699 
3700 /*
3701  * If the number of slab pages in a zone grows beyond this percentage then
3702  * slab reclaim needs to occur.
3703  */
3704 int sysctl_min_slab_ratio = 5;
3705 
3706 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3707 {
3708 	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3709 	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3710 		zone_page_state(zone, NR_ACTIVE_FILE);
3711 
3712 	/*
3713 	 * It's possible for there to be more file mapped pages than
3714 	 * accounted for by the pages on the file LRU lists because
3715 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3716 	 */
3717 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3718 }
3719 
3720 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3721 static unsigned long zone_pagecache_reclaimable(struct zone *zone)
3722 {
3723 	unsigned long nr_pagecache_reclaimable;
3724 	unsigned long delta = 0;
3725 
3726 	/*
3727 	 * If RECLAIM_UNMAP is set, then all file pages are considered
3728 	 * potentially reclaimable. Otherwise, we have to worry about
3729 	 * pages like swapcache and zone_unmapped_file_pages() provides
3730 	 * a better estimate
3731 	 */
3732 	if (zone_reclaim_mode & RECLAIM_UNMAP)
3733 		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3734 	else
3735 		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3736 
3737 	/* If we can't clean pages, remove dirty pages from consideration */
3738 	if (!(zone_reclaim_mode & RECLAIM_WRITE))
3739 		delta += zone_page_state(zone, NR_FILE_DIRTY);
3740 
3741 	/* Watch for any possible underflows due to delta */
3742 	if (unlikely(delta > nr_pagecache_reclaimable))
3743 		delta = nr_pagecache_reclaimable;
3744 
3745 	return nr_pagecache_reclaimable - delta;
3746 }
3747 
3748 /*
3749  * Try to free up some pages from this zone through reclaim.
3750  */
3751 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3752 {
3753 	/* Minimum pages needed in order to stay on node */
3754 	const unsigned long nr_pages = 1 << order;
3755 	struct task_struct *p = current;
3756 	struct reclaim_state reclaim_state;
3757 	struct scan_control sc = {
3758 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3759 		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3760 		.order = order,
3761 		.priority = ZONE_RECLAIM_PRIORITY,
3762 		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3763 		.may_unmap = !!(zone_reclaim_mode & RECLAIM_UNMAP),
3764 		.may_swap = 1,
3765 	};
3766 
3767 	cond_resched();
3768 	/*
3769 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3770 	 * and we also need to be able to write out pages for RECLAIM_WRITE
3771 	 * and RECLAIM_UNMAP.
3772 	 */
3773 	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3774 	lockdep_set_current_reclaim_state(gfp_mask);
3775 	reclaim_state.reclaimed_slab = 0;
3776 	p->reclaim_state = &reclaim_state;
3777 
3778 	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3779 		/*
3780 		 * Free memory by calling shrink zone with increasing
3781 		 * priorities until we have enough memory freed.
3782 		 */
3783 		do {
3784 			shrink_zone(zone, &sc, true);
3785 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3786 	}
3787 
3788 	p->reclaim_state = NULL;
3789 	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3790 	lockdep_clear_current_reclaim_state();
3791 	return sc.nr_reclaimed >= nr_pages;
3792 }
3793 
3794 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3795 {
3796 	int node_id;
3797 	int ret;
3798 
3799 	/*
3800 	 * Zone reclaim reclaims unmapped file backed pages and
3801 	 * slab pages if we are over the defined limits.
3802 	 *
3803 	 * A small portion of unmapped file backed pages is needed for
3804 	 * file I/O otherwise pages read by file I/O will be immediately
3805 	 * thrown out if the zone is overallocated. So we do not reclaim
3806 	 * if less than a specified percentage of the zone is used by
3807 	 * unmapped file backed pages.
3808 	 */
3809 	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3810 	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3811 		return ZONE_RECLAIM_FULL;
3812 
3813 	if (!zone_reclaimable(zone))
3814 		return ZONE_RECLAIM_FULL;
3815 
3816 	/*
3817 	 * Do not scan if the allocation should not be delayed.
3818 	 */
3819 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
3820 		return ZONE_RECLAIM_NOSCAN;
3821 
3822 	/*
3823 	 * Only run zone reclaim on the local zone or on zones that do not
3824 	 * have associated processors. This will favor the local processor
3825 	 * over remote processors and spread off node memory allocations
3826 	 * as wide as possible.
3827 	 */
3828 	node_id = zone_to_nid(zone);
3829 	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3830 		return ZONE_RECLAIM_NOSCAN;
3831 
3832 	if (test_and_set_bit(ZONE_RECLAIM_LOCKED, &zone->flags))
3833 		return ZONE_RECLAIM_NOSCAN;
3834 
3835 	ret = __zone_reclaim(zone, gfp_mask, order);
3836 	clear_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
3837 
3838 	if (!ret)
3839 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3840 
3841 	return ret;
3842 }
3843 #endif
3844 
3845 /*
3846  * page_evictable - test whether a page is evictable
3847  * @page: the page to test
3848  *
3849  * Test whether page is evictable--i.e., should be placed on active/inactive
3850  * lists vs unevictable list.
3851  *
3852  * Reasons page might not be evictable:
3853  * (1) page's mapping marked unevictable
3854  * (2) page is part of an mlocked VMA
3855  *
3856  */
3857 int page_evictable(struct page *page)
3858 {
3859 	return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3860 }
3861 
3862 #ifdef CONFIG_SHMEM
3863 /**
3864  * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3865  * @pages:	array of pages to check
3866  * @nr_pages:	number of pages to check
3867  *
3868  * Checks pages for evictability and moves them to the appropriate lru list.
3869  *
3870  * This function is only used for SysV IPC SHM_UNLOCK.
3871  */
3872 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3873 {
3874 	struct lruvec *lruvec;
3875 	struct zone *zone = NULL;
3876 	int pgscanned = 0;
3877 	int pgrescued = 0;
3878 	int i;
3879 
3880 	for (i = 0; i < nr_pages; i++) {
3881 		struct page *page = pages[i];
3882 		struct zone *pagezone;
3883 
3884 		pgscanned++;
3885 		pagezone = page_zone(page);
3886 		if (pagezone != zone) {
3887 			if (zone)
3888 				spin_unlock_irq(&zone->lru_lock);
3889 			zone = pagezone;
3890 			spin_lock_irq(&zone->lru_lock);
3891 		}
3892 		lruvec = mem_cgroup_page_lruvec(page, zone);
3893 
3894 		if (!PageLRU(page) || !PageUnevictable(page))
3895 			continue;
3896 
3897 		if (page_evictable(page)) {
3898 			enum lru_list lru = page_lru_base_type(page);
3899 
3900 			VM_BUG_ON_PAGE(PageActive(page), page);
3901 			ClearPageUnevictable(page);
3902 			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3903 			add_page_to_lru_list(page, lruvec, lru);
3904 			pgrescued++;
3905 		}
3906 	}
3907 
3908 	if (zone) {
3909 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3910 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3911 		spin_unlock_irq(&zone->lru_lock);
3912 	}
3913 }
3914 #endif /* CONFIG_SHMEM */
3915