xref: /linux/mm/vmscan.c (revision a634dda26186cf9a51567020fcce52bcba5e1e59)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
4  *
5  *  Swap reorganised 29.12.95, Stephen Tweedie.
6  *  kswapd added: 7.1.96  sct
7  *  Removed kswapd_ctl limits, and swap out as many pages as needed
8  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
9  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
10  *  Multiqueue VM started 5.8.00, Rik van Riel.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/mm.h>
16 #include <linux/sched/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h>	/* for buffer_heads_over_limit */
30 #include <linux/mm_inline.h>
31 #include <linux/backing-dev.h>
32 #include <linux/rmap.h>
33 #include <linux/topology.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/compaction.h>
37 #include <linux/notifier.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/migrate.h>
43 #include <linux/delayacct.h>
44 #include <linux/sysctl.h>
45 #include <linux/memory-tiers.h>
46 #include <linux/oom.h>
47 #include <linux/pagevec.h>
48 #include <linux/prefetch.h>
49 #include <linux/printk.h>
50 #include <linux/dax.h>
51 #include <linux/psi.h>
52 #include <linux/pagewalk.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/ctype.h>
55 #include <linux/debugfs.h>
56 #include <linux/khugepaged.h>
57 #include <linux/rculist_nulls.h>
58 #include <linux/random.h>
59 #include <linux/mmu_notifier.h>
60 
61 #include <asm/tlbflush.h>
62 #include <asm/div64.h>
63 
64 #include <linux/swapops.h>
65 #include <linux/balloon_compaction.h>
66 #include <linux/sched/sysctl.h>
67 
68 #include "internal.h"
69 #include "swap.h"
70 
71 #define CREATE_TRACE_POINTS
72 #include <trace/events/vmscan.h>
73 
74 struct scan_control {
75 	/* How many pages shrink_list() should reclaim */
76 	unsigned long nr_to_reclaim;
77 
78 	/*
79 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
80 	 * are scanned.
81 	 */
82 	nodemask_t	*nodemask;
83 
84 	/*
85 	 * The memory cgroup that hit its limit and as a result is the
86 	 * primary target of this reclaim invocation.
87 	 */
88 	struct mem_cgroup *target_mem_cgroup;
89 
90 	/*
91 	 * Scan pressure balancing between anon and file LRUs
92 	 */
93 	unsigned long	anon_cost;
94 	unsigned long	file_cost;
95 
96 #ifdef CONFIG_MEMCG
97 	/* Swappiness value for proactive reclaim. Always use sc_swappiness()! */
98 	int *proactive_swappiness;
99 #endif
100 
101 	/* Can active folios be deactivated as part of reclaim? */
102 #define DEACTIVATE_ANON 1
103 #define DEACTIVATE_FILE 2
104 	unsigned int may_deactivate:2;
105 	unsigned int force_deactivate:1;
106 	unsigned int skipped_deactivate:1;
107 
108 	/* Writepage batching in laptop mode; RECLAIM_WRITE */
109 	unsigned int may_writepage:1;
110 
111 	/* Can mapped folios be reclaimed? */
112 	unsigned int may_unmap:1;
113 
114 	/* Can folios be swapped as part of reclaim? */
115 	unsigned int may_swap:1;
116 
117 	/* Not allow cache_trim_mode to be turned on as part of reclaim? */
118 	unsigned int no_cache_trim_mode:1;
119 
120 	/* Has cache_trim_mode failed at least once? */
121 	unsigned int cache_trim_mode_failed:1;
122 
123 	/* Proactive reclaim invoked by userspace through memory.reclaim */
124 	unsigned int proactive:1;
125 
126 	/*
127 	 * Cgroup memory below memory.low is protected as long as we
128 	 * don't threaten to OOM. If any cgroup is reclaimed at
129 	 * reduced force or passed over entirely due to its memory.low
130 	 * setting (memcg_low_skipped), and nothing is reclaimed as a
131 	 * result, then go back for one more cycle that reclaims the protected
132 	 * memory (memcg_low_reclaim) to avert OOM.
133 	 */
134 	unsigned int memcg_low_reclaim:1;
135 	unsigned int memcg_low_skipped:1;
136 
137 	/* Shared cgroup tree walk failed, rescan the whole tree */
138 	unsigned int memcg_full_walk:1;
139 
140 	unsigned int hibernation_mode:1;
141 
142 	/* One of the zones is ready for compaction */
143 	unsigned int compaction_ready:1;
144 
145 	/* There is easily reclaimable cold cache in the current node */
146 	unsigned int cache_trim_mode:1;
147 
148 	/* The file folios on the current node are dangerously low */
149 	unsigned int file_is_tiny:1;
150 
151 	/* Always discard instead of demoting to lower tier memory */
152 	unsigned int no_demotion:1;
153 
154 	/* Allocation order */
155 	s8 order;
156 
157 	/* Scan (total_size >> priority) pages at once */
158 	s8 priority;
159 
160 	/* The highest zone to isolate folios for reclaim from */
161 	s8 reclaim_idx;
162 
163 	/* This context's GFP mask */
164 	gfp_t gfp_mask;
165 
166 	/* Incremented by the number of inactive pages that were scanned */
167 	unsigned long nr_scanned;
168 
169 	/* Number of pages freed so far during a call to shrink_zones() */
170 	unsigned long nr_reclaimed;
171 
172 	struct {
173 		unsigned int dirty;
174 		unsigned int unqueued_dirty;
175 		unsigned int congested;
176 		unsigned int writeback;
177 		unsigned int immediate;
178 		unsigned int file_taken;
179 		unsigned int taken;
180 	} nr;
181 
182 	/* for recording the reclaimed slab by now */
183 	struct reclaim_state reclaim_state;
184 };
185 
186 #ifdef ARCH_HAS_PREFETCHW
187 #define prefetchw_prev_lru_folio(_folio, _base, _field)			\
188 	do {								\
189 		if ((_folio)->lru.prev != _base) {			\
190 			struct folio *prev;				\
191 									\
192 			prev = lru_to_folio(&(_folio->lru));		\
193 			prefetchw(&prev->_field);			\
194 		}							\
195 	} while (0)
196 #else
197 #define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0)
198 #endif
199 
200 /*
201  * From 0 .. MAX_SWAPPINESS.  Higher means more swappy.
202  */
203 int vm_swappiness = 60;
204 
205 #ifdef CONFIG_MEMCG
206 
207 /* Returns true for reclaim through cgroup limits or cgroup interfaces. */
208 static bool cgroup_reclaim(struct scan_control *sc)
209 {
210 	return sc->target_mem_cgroup;
211 }
212 
213 /*
214  * Returns true for reclaim on the root cgroup. This is true for direct
215  * allocator reclaim and reclaim through cgroup interfaces on the root cgroup.
216  */
217 static bool root_reclaim(struct scan_control *sc)
218 {
219 	return !sc->target_mem_cgroup || mem_cgroup_is_root(sc->target_mem_cgroup);
220 }
221 
222 /**
223  * writeback_throttling_sane - is the usual dirty throttling mechanism available?
224  * @sc: scan_control in question
225  *
226  * The normal page dirty throttling mechanism in balance_dirty_pages() is
227  * completely broken with the legacy memcg and direct stalling in
228  * shrink_folio_list() is used for throttling instead, which lacks all the
229  * niceties such as fairness, adaptive pausing, bandwidth proportional
230  * allocation and configurability.
231  *
232  * This function tests whether the vmscan currently in progress can assume
233  * that the normal dirty throttling mechanism is operational.
234  */
235 static bool writeback_throttling_sane(struct scan_control *sc)
236 {
237 	if (!cgroup_reclaim(sc))
238 		return true;
239 #ifdef CONFIG_CGROUP_WRITEBACK
240 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
241 		return true;
242 #endif
243 	return false;
244 }
245 
246 static int sc_swappiness(struct scan_control *sc, struct mem_cgroup *memcg)
247 {
248 	if (sc->proactive && sc->proactive_swappiness)
249 		return *sc->proactive_swappiness;
250 	return mem_cgroup_swappiness(memcg);
251 }
252 #else
253 static bool cgroup_reclaim(struct scan_control *sc)
254 {
255 	return false;
256 }
257 
258 static bool root_reclaim(struct scan_control *sc)
259 {
260 	return true;
261 }
262 
263 static bool writeback_throttling_sane(struct scan_control *sc)
264 {
265 	return true;
266 }
267 
268 static int sc_swappiness(struct scan_control *sc, struct mem_cgroup *memcg)
269 {
270 	return READ_ONCE(vm_swappiness);
271 }
272 #endif
273 
274 static void set_task_reclaim_state(struct task_struct *task,
275 				   struct reclaim_state *rs)
276 {
277 	/* Check for an overwrite */
278 	WARN_ON_ONCE(rs && task->reclaim_state);
279 
280 	/* Check for the nulling of an already-nulled member */
281 	WARN_ON_ONCE(!rs && !task->reclaim_state);
282 
283 	task->reclaim_state = rs;
284 }
285 
286 /*
287  * flush_reclaim_state(): add pages reclaimed outside of LRU-based reclaim to
288  * scan_control->nr_reclaimed.
289  */
290 static void flush_reclaim_state(struct scan_control *sc)
291 {
292 	/*
293 	 * Currently, reclaim_state->reclaimed includes three types of pages
294 	 * freed outside of vmscan:
295 	 * (1) Slab pages.
296 	 * (2) Clean file pages from pruned inodes (on highmem systems).
297 	 * (3) XFS freed buffer pages.
298 	 *
299 	 * For all of these cases, we cannot universally link the pages to a
300 	 * single memcg. For example, a memcg-aware shrinker can free one object
301 	 * charged to the target memcg, causing an entire page to be freed.
302 	 * If we count the entire page as reclaimed from the memcg, we end up
303 	 * overestimating the reclaimed amount (potentially under-reclaiming).
304 	 *
305 	 * Only count such pages for global reclaim to prevent under-reclaiming
306 	 * from the target memcg; preventing unnecessary retries during memcg
307 	 * charging and false positives from proactive reclaim.
308 	 *
309 	 * For uncommon cases where the freed pages were actually mostly
310 	 * charged to the target memcg, we end up underestimating the reclaimed
311 	 * amount. This should be fine. The freed pages will be uncharged
312 	 * anyway, even if they are not counted here properly, and we will be
313 	 * able to make forward progress in charging (which is usually in a
314 	 * retry loop).
315 	 *
316 	 * We can go one step further, and report the uncharged objcg pages in
317 	 * memcg reclaim, to make reporting more accurate and reduce
318 	 * underestimation, but it's probably not worth the complexity for now.
319 	 */
320 	if (current->reclaim_state && root_reclaim(sc)) {
321 		sc->nr_reclaimed += current->reclaim_state->reclaimed;
322 		current->reclaim_state->reclaimed = 0;
323 	}
324 }
325 
326 static bool can_demote(int nid, struct scan_control *sc)
327 {
328 	if (!numa_demotion_enabled)
329 		return false;
330 	if (sc && sc->no_demotion)
331 		return false;
332 	if (next_demotion_node(nid) == NUMA_NO_NODE)
333 		return false;
334 
335 	return true;
336 }
337 
338 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
339 					  int nid,
340 					  struct scan_control *sc)
341 {
342 	if (memcg == NULL) {
343 		/*
344 		 * For non-memcg reclaim, is there
345 		 * space in any swap device?
346 		 */
347 		if (get_nr_swap_pages() > 0)
348 			return true;
349 	} else {
350 		/* Is the memcg below its swap limit? */
351 		if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
352 			return true;
353 	}
354 
355 	/*
356 	 * The page can not be swapped.
357 	 *
358 	 * Can it be reclaimed from this node via demotion?
359 	 */
360 	return can_demote(nid, sc);
361 }
362 
363 /*
364  * This misses isolated folios which are not accounted for to save counters.
365  * As the data only determines if reclaim or compaction continues, it is
366  * not expected that isolated folios will be a dominating factor.
367  */
368 unsigned long zone_reclaimable_pages(struct zone *zone)
369 {
370 	unsigned long nr;
371 
372 	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
373 		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
374 	if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
375 		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
376 			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
377 	/*
378 	 * If there are no reclaimable file-backed or anonymous pages,
379 	 * ensure zones with sufficient free pages are not skipped.
380 	 * This prevents zones like DMA32 from being ignored in reclaim
381 	 * scenarios where they can still help alleviate memory pressure.
382 	 */
383 	if (nr == 0)
384 		nr = zone_page_state_snapshot(zone, NR_FREE_PAGES);
385 	return nr;
386 }
387 
388 /**
389  * lruvec_lru_size -  Returns the number of pages on the given LRU list.
390  * @lruvec: lru vector
391  * @lru: lru to use
392  * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list)
393  */
394 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
395 				     int zone_idx)
396 {
397 	unsigned long size = 0;
398 	int zid;
399 
400 	for (zid = 0; zid <= zone_idx; zid++) {
401 		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
402 
403 		if (!managed_zone(zone))
404 			continue;
405 
406 		if (!mem_cgroup_disabled())
407 			size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
408 		else
409 			size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
410 	}
411 	return size;
412 }
413 
414 static unsigned long drop_slab_node(int nid)
415 {
416 	unsigned long freed = 0;
417 	struct mem_cgroup *memcg = NULL;
418 
419 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
420 	do {
421 		freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
422 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
423 
424 	return freed;
425 }
426 
427 void drop_slab(void)
428 {
429 	int nid;
430 	int shift = 0;
431 	unsigned long freed;
432 
433 	do {
434 		freed = 0;
435 		for_each_online_node(nid) {
436 			if (fatal_signal_pending(current))
437 				return;
438 
439 			freed += drop_slab_node(nid);
440 		}
441 	} while ((freed >> shift++) > 1);
442 }
443 
444 static int reclaimer_offset(void)
445 {
446 	BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD !=
447 			PGDEMOTE_DIRECT - PGDEMOTE_KSWAPD);
448 	BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD !=
449 			PGDEMOTE_KHUGEPAGED - PGDEMOTE_KSWAPD);
450 	BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD !=
451 			PGSCAN_DIRECT - PGSCAN_KSWAPD);
452 	BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD !=
453 			PGSCAN_KHUGEPAGED - PGSCAN_KSWAPD);
454 
455 	if (current_is_kswapd())
456 		return 0;
457 	if (current_is_khugepaged())
458 		return PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD;
459 	return PGSTEAL_DIRECT - PGSTEAL_KSWAPD;
460 }
461 
462 static inline int is_page_cache_freeable(struct folio *folio)
463 {
464 	/*
465 	 * A freeable page cache folio is referenced only by the caller
466 	 * that isolated the folio, the page cache and optional filesystem
467 	 * private data at folio->private.
468 	 */
469 	return folio_ref_count(folio) - folio_test_private(folio) ==
470 		1 + folio_nr_pages(folio);
471 }
472 
473 /*
474  * We detected a synchronous write error writing a folio out.  Probably
475  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
476  * fsync(), msync() or close().
477  *
478  * The tricky part is that after writepage we cannot touch the mapping: nothing
479  * prevents it from being freed up.  But we have a ref on the folio and once
480  * that folio is locked, the mapping is pinned.
481  *
482  * We're allowed to run sleeping folio_lock() here because we know the caller has
483  * __GFP_FS.
484  */
485 static void handle_write_error(struct address_space *mapping,
486 				struct folio *folio, int error)
487 {
488 	folio_lock(folio);
489 	if (folio_mapping(folio) == mapping)
490 		mapping_set_error(mapping, error);
491 	folio_unlock(folio);
492 }
493 
494 static bool skip_throttle_noprogress(pg_data_t *pgdat)
495 {
496 	int reclaimable = 0, write_pending = 0;
497 	int i;
498 
499 	/*
500 	 * If kswapd is disabled, reschedule if necessary but do not
501 	 * throttle as the system is likely near OOM.
502 	 */
503 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
504 		return true;
505 
506 	/*
507 	 * If there are a lot of dirty/writeback folios then do not
508 	 * throttle as throttling will occur when the folios cycle
509 	 * towards the end of the LRU if still under writeback.
510 	 */
511 	for (i = 0; i < MAX_NR_ZONES; i++) {
512 		struct zone *zone = pgdat->node_zones + i;
513 
514 		if (!managed_zone(zone))
515 			continue;
516 
517 		reclaimable += zone_reclaimable_pages(zone);
518 		write_pending += zone_page_state_snapshot(zone,
519 						  NR_ZONE_WRITE_PENDING);
520 	}
521 	if (2 * write_pending <= reclaimable)
522 		return true;
523 
524 	return false;
525 }
526 
527 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
528 {
529 	wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason];
530 	long timeout, ret;
531 	DEFINE_WAIT(wait);
532 
533 	/*
534 	 * Do not throttle user workers, kthreads other than kswapd or
535 	 * workqueues. They may be required for reclaim to make
536 	 * forward progress (e.g. journalling workqueues or kthreads).
537 	 */
538 	if (!current_is_kswapd() &&
539 	    current->flags & (PF_USER_WORKER|PF_KTHREAD)) {
540 		cond_resched();
541 		return;
542 	}
543 
544 	/*
545 	 * These figures are pulled out of thin air.
546 	 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
547 	 * parallel reclaimers which is a short-lived event so the timeout is
548 	 * short. Failing to make progress or waiting on writeback are
549 	 * potentially long-lived events so use a longer timeout. This is shaky
550 	 * logic as a failure to make progress could be due to anything from
551 	 * writeback to a slow device to excessive referenced folios at the tail
552 	 * of the inactive LRU.
553 	 */
554 	switch(reason) {
555 	case VMSCAN_THROTTLE_WRITEBACK:
556 		timeout = HZ/10;
557 
558 		if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) {
559 			WRITE_ONCE(pgdat->nr_reclaim_start,
560 				node_page_state(pgdat, NR_THROTTLED_WRITTEN));
561 		}
562 
563 		break;
564 	case VMSCAN_THROTTLE_CONGESTED:
565 		fallthrough;
566 	case VMSCAN_THROTTLE_NOPROGRESS:
567 		if (skip_throttle_noprogress(pgdat)) {
568 			cond_resched();
569 			return;
570 		}
571 
572 		timeout = 1;
573 
574 		break;
575 	case VMSCAN_THROTTLE_ISOLATED:
576 		timeout = HZ/50;
577 		break;
578 	default:
579 		WARN_ON_ONCE(1);
580 		timeout = HZ;
581 		break;
582 	}
583 
584 	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
585 	ret = schedule_timeout(timeout);
586 	finish_wait(wqh, &wait);
587 
588 	if (reason == VMSCAN_THROTTLE_WRITEBACK)
589 		atomic_dec(&pgdat->nr_writeback_throttled);
590 
591 	trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout),
592 				jiffies_to_usecs(timeout - ret),
593 				reason);
594 }
595 
596 /*
597  * Account for folios written if tasks are throttled waiting on dirty
598  * folios to clean. If enough folios have been cleaned since throttling
599  * started then wakeup the throttled tasks.
600  */
601 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
602 							int nr_throttled)
603 {
604 	unsigned long nr_written;
605 
606 	node_stat_add_folio(folio, NR_THROTTLED_WRITTEN);
607 
608 	/*
609 	 * This is an inaccurate read as the per-cpu deltas may not
610 	 * be synchronised. However, given that the system is
611 	 * writeback throttled, it is not worth taking the penalty
612 	 * of getting an accurate count. At worst, the throttle
613 	 * timeout guarantees forward progress.
614 	 */
615 	nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) -
616 		READ_ONCE(pgdat->nr_reclaim_start);
617 
618 	if (nr_written > SWAP_CLUSTER_MAX * nr_throttled)
619 		wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]);
620 }
621 
622 /* possible outcome of pageout() */
623 typedef enum {
624 	/* failed to write folio out, folio is locked */
625 	PAGE_KEEP,
626 	/* move folio to the active list, folio is locked */
627 	PAGE_ACTIVATE,
628 	/* folio has been sent to the disk successfully, folio is unlocked */
629 	PAGE_SUCCESS,
630 	/* folio is clean and locked */
631 	PAGE_CLEAN,
632 } pageout_t;
633 
634 /*
635  * pageout is called by shrink_folio_list() for each dirty folio.
636  * Calls ->writepage().
637  */
638 static pageout_t pageout(struct folio *folio, struct address_space *mapping,
639 			 struct swap_iocb **plug, struct list_head *folio_list)
640 {
641 	/*
642 	 * If the folio is dirty, only perform writeback if that write
643 	 * will be non-blocking.  To prevent this allocation from being
644 	 * stalled by pagecache activity.  But note that there may be
645 	 * stalls if we need to run get_block().  We could test
646 	 * PagePrivate for that.
647 	 *
648 	 * If this process is currently in __generic_file_write_iter() against
649 	 * this folio's queue, we can perform writeback even if that
650 	 * will block.
651 	 *
652 	 * If the folio is swapcache, write it back even if that would
653 	 * block, for some throttling. This happens by accident, because
654 	 * swap_backing_dev_info is bust: it doesn't reflect the
655 	 * congestion state of the swapdevs.  Easy to fix, if needed.
656 	 */
657 	if (!is_page_cache_freeable(folio))
658 		return PAGE_KEEP;
659 	if (!mapping) {
660 		/*
661 		 * Some data journaling orphaned folios can have
662 		 * folio->mapping == NULL while being dirty with clean buffers.
663 		 */
664 		if (folio_test_private(folio)) {
665 			if (try_to_free_buffers(folio)) {
666 				folio_clear_dirty(folio);
667 				pr_info("%s: orphaned folio\n", __func__);
668 				return PAGE_CLEAN;
669 			}
670 		}
671 		return PAGE_KEEP;
672 	}
673 	if (mapping->a_ops->writepage == NULL)
674 		return PAGE_ACTIVATE;
675 
676 	if (folio_clear_dirty_for_io(folio)) {
677 		int res;
678 		struct writeback_control wbc = {
679 			.sync_mode = WB_SYNC_NONE,
680 			.nr_to_write = SWAP_CLUSTER_MAX,
681 			.range_start = 0,
682 			.range_end = LLONG_MAX,
683 			.for_reclaim = 1,
684 			.swap_plug = plug,
685 		};
686 
687 		/*
688 		 * The large shmem folio can be split if CONFIG_THP_SWAP is
689 		 * not enabled or contiguous swap entries are failed to
690 		 * allocate.
691 		 */
692 		if (shmem_mapping(mapping) && folio_test_large(folio))
693 			wbc.list = folio_list;
694 
695 		folio_set_reclaim(folio);
696 		res = mapping->a_ops->writepage(&folio->page, &wbc);
697 		if (res < 0)
698 			handle_write_error(mapping, folio, res);
699 		if (res == AOP_WRITEPAGE_ACTIVATE) {
700 			folio_clear_reclaim(folio);
701 			return PAGE_ACTIVATE;
702 		}
703 
704 		if (!folio_test_writeback(folio)) {
705 			/* synchronous write or broken a_ops? */
706 			folio_clear_reclaim(folio);
707 		}
708 		trace_mm_vmscan_write_folio(folio);
709 		node_stat_add_folio(folio, NR_VMSCAN_WRITE);
710 		return PAGE_SUCCESS;
711 	}
712 
713 	return PAGE_CLEAN;
714 }
715 
716 /*
717  * Same as remove_mapping, but if the folio is removed from the mapping, it
718  * gets returned with a refcount of 0.
719  */
720 static int __remove_mapping(struct address_space *mapping, struct folio *folio,
721 			    bool reclaimed, struct mem_cgroup *target_memcg)
722 {
723 	int refcount;
724 	void *shadow = NULL;
725 
726 	BUG_ON(!folio_test_locked(folio));
727 	BUG_ON(mapping != folio_mapping(folio));
728 
729 	if (!folio_test_swapcache(folio))
730 		spin_lock(&mapping->host->i_lock);
731 	xa_lock_irq(&mapping->i_pages);
732 	/*
733 	 * The non racy check for a busy folio.
734 	 *
735 	 * Must be careful with the order of the tests. When someone has
736 	 * a ref to the folio, it may be possible that they dirty it then
737 	 * drop the reference. So if the dirty flag is tested before the
738 	 * refcount here, then the following race may occur:
739 	 *
740 	 * get_user_pages(&page);
741 	 * [user mapping goes away]
742 	 * write_to(page);
743 	 *				!folio_test_dirty(folio)    [good]
744 	 * folio_set_dirty(folio);
745 	 * folio_put(folio);
746 	 *				!refcount(folio)   [good, discard it]
747 	 *
748 	 * [oops, our write_to data is lost]
749 	 *
750 	 * Reversing the order of the tests ensures such a situation cannot
751 	 * escape unnoticed. The smp_rmb is needed to ensure the folio->flags
752 	 * load is not satisfied before that of folio->_refcount.
753 	 *
754 	 * Note that if the dirty flag is always set via folio_mark_dirty,
755 	 * and thus under the i_pages lock, then this ordering is not required.
756 	 */
757 	refcount = 1 + folio_nr_pages(folio);
758 	if (!folio_ref_freeze(folio, refcount))
759 		goto cannot_free;
760 	/* note: atomic_cmpxchg in folio_ref_freeze provides the smp_rmb */
761 	if (unlikely(folio_test_dirty(folio))) {
762 		folio_ref_unfreeze(folio, refcount);
763 		goto cannot_free;
764 	}
765 
766 	if (folio_test_swapcache(folio)) {
767 		swp_entry_t swap = folio->swap;
768 
769 		if (reclaimed && !mapping_exiting(mapping))
770 			shadow = workingset_eviction(folio, target_memcg);
771 		__delete_from_swap_cache(folio, swap, shadow);
772 		mem_cgroup_swapout(folio, swap);
773 		xa_unlock_irq(&mapping->i_pages);
774 		put_swap_folio(folio, swap);
775 	} else {
776 		void (*free_folio)(struct folio *);
777 
778 		free_folio = mapping->a_ops->free_folio;
779 		/*
780 		 * Remember a shadow entry for reclaimed file cache in
781 		 * order to detect refaults, thus thrashing, later on.
782 		 *
783 		 * But don't store shadows in an address space that is
784 		 * already exiting.  This is not just an optimization,
785 		 * inode reclaim needs to empty out the radix tree or
786 		 * the nodes are lost.  Don't plant shadows behind its
787 		 * back.
788 		 *
789 		 * We also don't store shadows for DAX mappings because the
790 		 * only page cache folios found in these are zero pages
791 		 * covering holes, and because we don't want to mix DAX
792 		 * exceptional entries and shadow exceptional entries in the
793 		 * same address_space.
794 		 */
795 		if (reclaimed && folio_is_file_lru(folio) &&
796 		    !mapping_exiting(mapping) && !dax_mapping(mapping))
797 			shadow = workingset_eviction(folio, target_memcg);
798 		__filemap_remove_folio(folio, shadow);
799 		xa_unlock_irq(&mapping->i_pages);
800 		if (mapping_shrinkable(mapping))
801 			inode_add_lru(mapping->host);
802 		spin_unlock(&mapping->host->i_lock);
803 
804 		if (free_folio)
805 			free_folio(folio);
806 	}
807 
808 	return 1;
809 
810 cannot_free:
811 	xa_unlock_irq(&mapping->i_pages);
812 	if (!folio_test_swapcache(folio))
813 		spin_unlock(&mapping->host->i_lock);
814 	return 0;
815 }
816 
817 /**
818  * remove_mapping() - Attempt to remove a folio from its mapping.
819  * @mapping: The address space.
820  * @folio: The folio to remove.
821  *
822  * If the folio is dirty, under writeback or if someone else has a ref
823  * on it, removal will fail.
824  * Return: The number of pages removed from the mapping.  0 if the folio
825  * could not be removed.
826  * Context: The caller should have a single refcount on the folio and
827  * hold its lock.
828  */
829 long remove_mapping(struct address_space *mapping, struct folio *folio)
830 {
831 	if (__remove_mapping(mapping, folio, false, NULL)) {
832 		/*
833 		 * Unfreezing the refcount with 1 effectively
834 		 * drops the pagecache ref for us without requiring another
835 		 * atomic operation.
836 		 */
837 		folio_ref_unfreeze(folio, 1);
838 		return folio_nr_pages(folio);
839 	}
840 	return 0;
841 }
842 
843 /**
844  * folio_putback_lru - Put previously isolated folio onto appropriate LRU list.
845  * @folio: Folio to be returned to an LRU list.
846  *
847  * Add previously isolated @folio to appropriate LRU list.
848  * The folio may still be unevictable for other reasons.
849  *
850  * Context: lru_lock must not be held, interrupts must be enabled.
851  */
852 void folio_putback_lru(struct folio *folio)
853 {
854 	folio_add_lru(folio);
855 	folio_put(folio);		/* drop ref from isolate */
856 }
857 
858 enum folio_references {
859 	FOLIOREF_RECLAIM,
860 	FOLIOREF_RECLAIM_CLEAN,
861 	FOLIOREF_KEEP,
862 	FOLIOREF_ACTIVATE,
863 };
864 
865 static enum folio_references folio_check_references(struct folio *folio,
866 						  struct scan_control *sc)
867 {
868 	int referenced_ptes, referenced_folio;
869 	unsigned long vm_flags;
870 
871 	referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup,
872 					   &vm_flags);
873 	referenced_folio = folio_test_clear_referenced(folio);
874 
875 	/*
876 	 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma.
877 	 * Let the folio, now marked Mlocked, be moved to the unevictable list.
878 	 */
879 	if (vm_flags & VM_LOCKED)
880 		return FOLIOREF_ACTIVATE;
881 
882 	/*
883 	 * There are two cases to consider.
884 	 * 1) Rmap lock contention: rotate.
885 	 * 2) Skip the non-shared swapbacked folio mapped solely by
886 	 *    the exiting or OOM-reaped process.
887 	 */
888 	if (referenced_ptes == -1)
889 		return FOLIOREF_KEEP;
890 
891 	if (referenced_ptes) {
892 		/*
893 		 * All mapped folios start out with page table
894 		 * references from the instantiating fault, so we need
895 		 * to look twice if a mapped file/anon folio is used more
896 		 * than once.
897 		 *
898 		 * Mark it and spare it for another trip around the
899 		 * inactive list.  Another page table reference will
900 		 * lead to its activation.
901 		 *
902 		 * Note: the mark is set for activated folios as well
903 		 * so that recently deactivated but used folios are
904 		 * quickly recovered.
905 		 */
906 		folio_set_referenced(folio);
907 
908 		if (referenced_folio || referenced_ptes > 1)
909 			return FOLIOREF_ACTIVATE;
910 
911 		/*
912 		 * Activate file-backed executable folios after first usage.
913 		 */
914 		if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio))
915 			return FOLIOREF_ACTIVATE;
916 
917 		return FOLIOREF_KEEP;
918 	}
919 
920 	/* Reclaim if clean, defer dirty folios to writeback */
921 	if (referenced_folio && folio_is_file_lru(folio))
922 		return FOLIOREF_RECLAIM_CLEAN;
923 
924 	return FOLIOREF_RECLAIM;
925 }
926 
927 /* Check if a folio is dirty or under writeback */
928 static void folio_check_dirty_writeback(struct folio *folio,
929 				       bool *dirty, bool *writeback)
930 {
931 	struct address_space *mapping;
932 
933 	/*
934 	 * Anonymous folios are not handled by flushers and must be written
935 	 * from reclaim context. Do not stall reclaim based on them.
936 	 * MADV_FREE anonymous folios are put into inactive file list too.
937 	 * They could be mistakenly treated as file lru. So further anon
938 	 * test is needed.
939 	 */
940 	if (!folio_is_file_lru(folio) ||
941 	    (folio_test_anon(folio) && !folio_test_swapbacked(folio))) {
942 		*dirty = false;
943 		*writeback = false;
944 		return;
945 	}
946 
947 	/* By default assume that the folio flags are accurate */
948 	*dirty = folio_test_dirty(folio);
949 	*writeback = folio_test_writeback(folio);
950 
951 	/* Verify dirty/writeback state if the filesystem supports it */
952 	if (!folio_test_private(folio))
953 		return;
954 
955 	mapping = folio_mapping(folio);
956 	if (mapping && mapping->a_ops->is_dirty_writeback)
957 		mapping->a_ops->is_dirty_writeback(folio, dirty, writeback);
958 }
959 
960 struct folio *alloc_migrate_folio(struct folio *src, unsigned long private)
961 {
962 	struct folio *dst;
963 	nodemask_t *allowed_mask;
964 	struct migration_target_control *mtc;
965 
966 	mtc = (struct migration_target_control *)private;
967 
968 	allowed_mask = mtc->nmask;
969 	/*
970 	 * make sure we allocate from the target node first also trying to
971 	 * demote or reclaim pages from the target node via kswapd if we are
972 	 * low on free memory on target node. If we don't do this and if
973 	 * we have free memory on the slower(lower) memtier, we would start
974 	 * allocating pages from slower(lower) memory tiers without even forcing
975 	 * a demotion of cold pages from the target memtier. This can result
976 	 * in the kernel placing hot pages in slower(lower) memory tiers.
977 	 */
978 	mtc->nmask = NULL;
979 	mtc->gfp_mask |= __GFP_THISNODE;
980 	dst = alloc_migration_target(src, (unsigned long)mtc);
981 	if (dst)
982 		return dst;
983 
984 	mtc->gfp_mask &= ~__GFP_THISNODE;
985 	mtc->nmask = allowed_mask;
986 
987 	return alloc_migration_target(src, (unsigned long)mtc);
988 }
989 
990 /*
991  * Take folios on @demote_folios and attempt to demote them to another node.
992  * Folios which are not demoted are left on @demote_folios.
993  */
994 static unsigned int demote_folio_list(struct list_head *demote_folios,
995 				     struct pglist_data *pgdat)
996 {
997 	int target_nid = next_demotion_node(pgdat->node_id);
998 	unsigned int nr_succeeded;
999 	nodemask_t allowed_mask;
1000 
1001 	struct migration_target_control mtc = {
1002 		/*
1003 		 * Allocate from 'node', or fail quickly and quietly.
1004 		 * When this happens, 'page' will likely just be discarded
1005 		 * instead of migrated.
1006 		 */
1007 		.gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | __GFP_NOWARN |
1008 			__GFP_NOMEMALLOC | GFP_NOWAIT,
1009 		.nid = target_nid,
1010 		.nmask = &allowed_mask,
1011 		.reason = MR_DEMOTION,
1012 	};
1013 
1014 	if (list_empty(demote_folios))
1015 		return 0;
1016 
1017 	if (target_nid == NUMA_NO_NODE)
1018 		return 0;
1019 
1020 	node_get_allowed_targets(pgdat, &allowed_mask);
1021 
1022 	/* Demotion ignores all cpuset and mempolicy settings */
1023 	migrate_pages(demote_folios, alloc_migrate_folio, NULL,
1024 		      (unsigned long)&mtc, MIGRATE_ASYNC, MR_DEMOTION,
1025 		      &nr_succeeded);
1026 
1027 	return nr_succeeded;
1028 }
1029 
1030 static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask)
1031 {
1032 	if (gfp_mask & __GFP_FS)
1033 		return true;
1034 	if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO))
1035 		return false;
1036 	/*
1037 	 * We can "enter_fs" for swap-cache with only __GFP_IO
1038 	 * providing this isn't SWP_FS_OPS.
1039 	 * ->flags can be updated non-atomicially (scan_swap_map_slots),
1040 	 * but that will never affect SWP_FS_OPS, so the data_race
1041 	 * is safe.
1042 	 */
1043 	return !data_race(folio_swap_flags(folio) & SWP_FS_OPS);
1044 }
1045 
1046 /*
1047  * shrink_folio_list() returns the number of reclaimed pages
1048  */
1049 static unsigned int shrink_folio_list(struct list_head *folio_list,
1050 		struct pglist_data *pgdat, struct scan_control *sc,
1051 		struct reclaim_stat *stat, bool ignore_references)
1052 {
1053 	struct folio_batch free_folios;
1054 	LIST_HEAD(ret_folios);
1055 	LIST_HEAD(demote_folios);
1056 	unsigned int nr_reclaimed = 0;
1057 	unsigned int pgactivate = 0;
1058 	bool do_demote_pass;
1059 	struct swap_iocb *plug = NULL;
1060 
1061 	folio_batch_init(&free_folios);
1062 	memset(stat, 0, sizeof(*stat));
1063 	cond_resched();
1064 	do_demote_pass = can_demote(pgdat->node_id, sc);
1065 
1066 retry:
1067 	while (!list_empty(folio_list)) {
1068 		struct address_space *mapping;
1069 		struct folio *folio;
1070 		enum folio_references references = FOLIOREF_RECLAIM;
1071 		bool dirty, writeback;
1072 		unsigned int nr_pages;
1073 
1074 		cond_resched();
1075 
1076 		folio = lru_to_folio(folio_list);
1077 		list_del(&folio->lru);
1078 
1079 		if (!folio_trylock(folio))
1080 			goto keep;
1081 
1082 		VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1083 
1084 		nr_pages = folio_nr_pages(folio);
1085 
1086 		/* Account the number of base pages */
1087 		sc->nr_scanned += nr_pages;
1088 
1089 		if (unlikely(!folio_evictable(folio)))
1090 			goto activate_locked;
1091 
1092 		if (!sc->may_unmap && folio_mapped(folio))
1093 			goto keep_locked;
1094 
1095 		/* folio_update_gen() tried to promote this page? */
1096 		if (lru_gen_enabled() && !ignore_references &&
1097 		    folio_mapped(folio) && folio_test_referenced(folio))
1098 			goto keep_locked;
1099 
1100 		/*
1101 		 * The number of dirty pages determines if a node is marked
1102 		 * reclaim_congested. kswapd will stall and start writing
1103 		 * folios if the tail of the LRU is all dirty unqueued folios.
1104 		 */
1105 		folio_check_dirty_writeback(folio, &dirty, &writeback);
1106 		if (dirty || writeback)
1107 			stat->nr_dirty += nr_pages;
1108 
1109 		if (dirty && !writeback)
1110 			stat->nr_unqueued_dirty += nr_pages;
1111 
1112 		/*
1113 		 * Treat this folio as congested if folios are cycling
1114 		 * through the LRU so quickly that the folios marked
1115 		 * for immediate reclaim are making it to the end of
1116 		 * the LRU a second time.
1117 		 */
1118 		if (writeback && folio_test_reclaim(folio))
1119 			stat->nr_congested += nr_pages;
1120 
1121 		/*
1122 		 * If a folio at the tail of the LRU is under writeback, there
1123 		 * are three cases to consider.
1124 		 *
1125 		 * 1) If reclaim is encountering an excessive number
1126 		 *    of folios under writeback and this folio has both
1127 		 *    the writeback and reclaim flags set, then it
1128 		 *    indicates that folios are being queued for I/O but
1129 		 *    are being recycled through the LRU before the I/O
1130 		 *    can complete. Waiting on the folio itself risks an
1131 		 *    indefinite stall if it is impossible to writeback
1132 		 *    the folio due to I/O error or disconnected storage
1133 		 *    so instead note that the LRU is being scanned too
1134 		 *    quickly and the caller can stall after the folio
1135 		 *    list has been processed.
1136 		 *
1137 		 * 2) Global or new memcg reclaim encounters a folio that is
1138 		 *    not marked for immediate reclaim, or the caller does not
1139 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1140 		 *    not to fs). In this case mark the folio for immediate
1141 		 *    reclaim and continue scanning.
1142 		 *
1143 		 *    Require may_enter_fs() because we would wait on fs, which
1144 		 *    may not have submitted I/O yet. And the loop driver might
1145 		 *    enter reclaim, and deadlock if it waits on a folio for
1146 		 *    which it is needed to do the write (loop masks off
1147 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1148 		 *    would probably show more reasons.
1149 		 *
1150 		 * 3) Legacy memcg encounters a folio that already has the
1151 		 *    reclaim flag set. memcg does not have any dirty folio
1152 		 *    throttling so we could easily OOM just because too many
1153 		 *    folios are in writeback and there is nothing else to
1154 		 *    reclaim. Wait for the writeback to complete.
1155 		 *
1156 		 * In cases 1) and 2) we activate the folios to get them out of
1157 		 * the way while we continue scanning for clean folios on the
1158 		 * inactive list and refilling from the active list. The
1159 		 * observation here is that waiting for disk writes is more
1160 		 * expensive than potentially causing reloads down the line.
1161 		 * Since they're marked for immediate reclaim, they won't put
1162 		 * memory pressure on the cache working set any longer than it
1163 		 * takes to write them to disk.
1164 		 */
1165 		if (folio_test_writeback(folio)) {
1166 			/* Case 1 above */
1167 			if (current_is_kswapd() &&
1168 			    folio_test_reclaim(folio) &&
1169 			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1170 				stat->nr_immediate += nr_pages;
1171 				goto activate_locked;
1172 
1173 			/* Case 2 above */
1174 			} else if (writeback_throttling_sane(sc) ||
1175 			    !folio_test_reclaim(folio) ||
1176 			    !may_enter_fs(folio, sc->gfp_mask)) {
1177 				/*
1178 				 * This is slightly racy -
1179 				 * folio_end_writeback() might have
1180 				 * just cleared the reclaim flag, then
1181 				 * setting the reclaim flag here ends up
1182 				 * interpreted as the readahead flag - but
1183 				 * that does not matter enough to care.
1184 				 * What we do want is for this folio to
1185 				 * have the reclaim flag set next time
1186 				 * memcg reclaim reaches the tests above,
1187 				 * so it will then wait for writeback to
1188 				 * avoid OOM; and it's also appropriate
1189 				 * in global reclaim.
1190 				 */
1191 				folio_set_reclaim(folio);
1192 				stat->nr_writeback += nr_pages;
1193 				goto activate_locked;
1194 
1195 			/* Case 3 above */
1196 			} else {
1197 				folio_unlock(folio);
1198 				folio_wait_writeback(folio);
1199 				/* then go back and try same folio again */
1200 				list_add_tail(&folio->lru, folio_list);
1201 				continue;
1202 			}
1203 		}
1204 
1205 		if (!ignore_references)
1206 			references = folio_check_references(folio, sc);
1207 
1208 		switch (references) {
1209 		case FOLIOREF_ACTIVATE:
1210 			goto activate_locked;
1211 		case FOLIOREF_KEEP:
1212 			stat->nr_ref_keep += nr_pages;
1213 			goto keep_locked;
1214 		case FOLIOREF_RECLAIM:
1215 		case FOLIOREF_RECLAIM_CLEAN:
1216 			; /* try to reclaim the folio below */
1217 		}
1218 
1219 		/*
1220 		 * Before reclaiming the folio, try to relocate
1221 		 * its contents to another node.
1222 		 */
1223 		if (do_demote_pass &&
1224 		    (thp_migration_supported() || !folio_test_large(folio))) {
1225 			list_add(&folio->lru, &demote_folios);
1226 			folio_unlock(folio);
1227 			continue;
1228 		}
1229 
1230 		/*
1231 		 * Anonymous process memory has backing store?
1232 		 * Try to allocate it some swap space here.
1233 		 * Lazyfree folio could be freed directly
1234 		 */
1235 		if (folio_test_anon(folio) && folio_test_swapbacked(folio)) {
1236 			if (!folio_test_swapcache(folio)) {
1237 				if (!(sc->gfp_mask & __GFP_IO))
1238 					goto keep_locked;
1239 				if (folio_maybe_dma_pinned(folio))
1240 					goto keep_locked;
1241 				if (folio_test_large(folio)) {
1242 					/* cannot split folio, skip it */
1243 					if (!can_split_folio(folio, 1, NULL))
1244 						goto activate_locked;
1245 					/*
1246 					 * Split partially mapped folios right away.
1247 					 * We can free the unmapped pages without IO.
1248 					 */
1249 					if (data_race(!list_empty(&folio->_deferred_list) &&
1250 					    folio_test_partially_mapped(folio)) &&
1251 					    split_folio_to_list(folio, folio_list))
1252 						goto activate_locked;
1253 				}
1254 				if (!add_to_swap(folio)) {
1255 					int __maybe_unused order = folio_order(folio);
1256 
1257 					if (!folio_test_large(folio))
1258 						goto activate_locked_split;
1259 					/* Fallback to swap normal pages */
1260 					if (split_folio_to_list(folio, folio_list))
1261 						goto activate_locked;
1262 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1263 					if (nr_pages >= HPAGE_PMD_NR) {
1264 						count_memcg_folio_events(folio,
1265 							THP_SWPOUT_FALLBACK, 1);
1266 						count_vm_event(THP_SWPOUT_FALLBACK);
1267 					}
1268 #endif
1269 					count_mthp_stat(order, MTHP_STAT_SWPOUT_FALLBACK);
1270 					if (!add_to_swap(folio))
1271 						goto activate_locked_split;
1272 				}
1273 			}
1274 		}
1275 
1276 		/*
1277 		 * If the folio was split above, the tail pages will make
1278 		 * their own pass through this function and be accounted
1279 		 * then.
1280 		 */
1281 		if ((nr_pages > 1) && !folio_test_large(folio)) {
1282 			sc->nr_scanned -= (nr_pages - 1);
1283 			nr_pages = 1;
1284 		}
1285 
1286 		/*
1287 		 * The folio is mapped into the page tables of one or more
1288 		 * processes. Try to unmap it here.
1289 		 */
1290 		if (folio_mapped(folio)) {
1291 			enum ttu_flags flags = TTU_BATCH_FLUSH;
1292 			bool was_swapbacked = folio_test_swapbacked(folio);
1293 
1294 			if (folio_test_pmd_mappable(folio))
1295 				flags |= TTU_SPLIT_HUGE_PMD;
1296 			/*
1297 			 * Without TTU_SYNC, try_to_unmap will only begin to
1298 			 * hold PTL from the first present PTE within a large
1299 			 * folio. Some initial PTEs might be skipped due to
1300 			 * races with parallel PTE writes in which PTEs can be
1301 			 * cleared temporarily before being written new present
1302 			 * values. This will lead to a large folio is still
1303 			 * mapped while some subpages have been partially
1304 			 * unmapped after try_to_unmap; TTU_SYNC helps
1305 			 * try_to_unmap acquire PTL from the first PTE,
1306 			 * eliminating the influence of temporary PTE values.
1307 			 */
1308 			if (folio_test_large(folio))
1309 				flags |= TTU_SYNC;
1310 
1311 			try_to_unmap(folio, flags);
1312 			if (folio_mapped(folio)) {
1313 				stat->nr_unmap_fail += nr_pages;
1314 				if (!was_swapbacked &&
1315 				    folio_test_swapbacked(folio))
1316 					stat->nr_lazyfree_fail += nr_pages;
1317 				goto activate_locked;
1318 			}
1319 		}
1320 
1321 		/*
1322 		 * Folio is unmapped now so it cannot be newly pinned anymore.
1323 		 * No point in trying to reclaim folio if it is pinned.
1324 		 * Furthermore we don't want to reclaim underlying fs metadata
1325 		 * if the folio is pinned and thus potentially modified by the
1326 		 * pinning process as that may upset the filesystem.
1327 		 */
1328 		if (folio_maybe_dma_pinned(folio))
1329 			goto activate_locked;
1330 
1331 		mapping = folio_mapping(folio);
1332 		if (folio_test_dirty(folio)) {
1333 			/*
1334 			 * Only kswapd can writeback filesystem folios
1335 			 * to avoid risk of stack overflow. But avoid
1336 			 * injecting inefficient single-folio I/O into
1337 			 * flusher writeback as much as possible: only
1338 			 * write folios when we've encountered many
1339 			 * dirty folios, and when we've already scanned
1340 			 * the rest of the LRU for clean folios and see
1341 			 * the same dirty folios again (with the reclaim
1342 			 * flag set).
1343 			 */
1344 			if (folio_is_file_lru(folio) &&
1345 			    (!current_is_kswapd() ||
1346 			     !folio_test_reclaim(folio) ||
1347 			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1348 				/*
1349 				 * Immediately reclaim when written back.
1350 				 * Similar in principle to folio_deactivate()
1351 				 * except we already have the folio isolated
1352 				 * and know it's dirty
1353 				 */
1354 				node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE,
1355 						nr_pages);
1356 				folio_set_reclaim(folio);
1357 
1358 				goto activate_locked;
1359 			}
1360 
1361 			if (references == FOLIOREF_RECLAIM_CLEAN)
1362 				goto keep_locked;
1363 			if (!may_enter_fs(folio, sc->gfp_mask))
1364 				goto keep_locked;
1365 			if (!sc->may_writepage)
1366 				goto keep_locked;
1367 
1368 			/*
1369 			 * Folio is dirty. Flush the TLB if a writable entry
1370 			 * potentially exists to avoid CPU writes after I/O
1371 			 * starts and then write it out here.
1372 			 */
1373 			try_to_unmap_flush_dirty();
1374 			switch (pageout(folio, mapping, &plug, folio_list)) {
1375 			case PAGE_KEEP:
1376 				goto keep_locked;
1377 			case PAGE_ACTIVATE:
1378 				/*
1379 				 * If shmem folio is split when writeback to swap,
1380 				 * the tail pages will make their own pass through
1381 				 * this function and be accounted then.
1382 				 */
1383 				if (nr_pages > 1 && !folio_test_large(folio)) {
1384 					sc->nr_scanned -= (nr_pages - 1);
1385 					nr_pages = 1;
1386 				}
1387 				goto activate_locked;
1388 			case PAGE_SUCCESS:
1389 				if (nr_pages > 1 && !folio_test_large(folio)) {
1390 					sc->nr_scanned -= (nr_pages - 1);
1391 					nr_pages = 1;
1392 				}
1393 				stat->nr_pageout += nr_pages;
1394 
1395 				if (folio_test_writeback(folio))
1396 					goto keep;
1397 				if (folio_test_dirty(folio))
1398 					goto keep;
1399 
1400 				/*
1401 				 * A synchronous write - probably a ramdisk.  Go
1402 				 * ahead and try to reclaim the folio.
1403 				 */
1404 				if (!folio_trylock(folio))
1405 					goto keep;
1406 				if (folio_test_dirty(folio) ||
1407 				    folio_test_writeback(folio))
1408 					goto keep_locked;
1409 				mapping = folio_mapping(folio);
1410 				fallthrough;
1411 			case PAGE_CLEAN:
1412 				; /* try to free the folio below */
1413 			}
1414 		}
1415 
1416 		/*
1417 		 * If the folio has buffers, try to free the buffer
1418 		 * mappings associated with this folio. If we succeed
1419 		 * we try to free the folio as well.
1420 		 *
1421 		 * We do this even if the folio is dirty.
1422 		 * filemap_release_folio() does not perform I/O, but it
1423 		 * is possible for a folio to have the dirty flag set,
1424 		 * but it is actually clean (all its buffers are clean).
1425 		 * This happens if the buffers were written out directly,
1426 		 * with submit_bh(). ext3 will do this, as well as
1427 		 * the blockdev mapping.  filemap_release_folio() will
1428 		 * discover that cleanness and will drop the buffers
1429 		 * and mark the folio clean - it can be freed.
1430 		 *
1431 		 * Rarely, folios can have buffers and no ->mapping.
1432 		 * These are the folios which were not successfully
1433 		 * invalidated in truncate_cleanup_folio().  We try to
1434 		 * drop those buffers here and if that worked, and the
1435 		 * folio is no longer mapped into process address space
1436 		 * (refcount == 1) it can be freed.  Otherwise, leave
1437 		 * the folio on the LRU so it is swappable.
1438 		 */
1439 		if (folio_needs_release(folio)) {
1440 			if (!filemap_release_folio(folio, sc->gfp_mask))
1441 				goto activate_locked;
1442 			if (!mapping && folio_ref_count(folio) == 1) {
1443 				folio_unlock(folio);
1444 				if (folio_put_testzero(folio))
1445 					goto free_it;
1446 				else {
1447 					/*
1448 					 * rare race with speculative reference.
1449 					 * the speculative reference will free
1450 					 * this folio shortly, so we may
1451 					 * increment nr_reclaimed here (and
1452 					 * leave it off the LRU).
1453 					 */
1454 					nr_reclaimed += nr_pages;
1455 					continue;
1456 				}
1457 			}
1458 		}
1459 
1460 		if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) {
1461 			/* follow __remove_mapping for reference */
1462 			if (!folio_ref_freeze(folio, 1))
1463 				goto keep_locked;
1464 			/*
1465 			 * The folio has only one reference left, which is
1466 			 * from the isolation. After the caller puts the
1467 			 * folio back on the lru and drops the reference, the
1468 			 * folio will be freed anyway. It doesn't matter
1469 			 * which lru it goes on. So we don't bother checking
1470 			 * the dirty flag here.
1471 			 */
1472 			count_vm_events(PGLAZYFREED, nr_pages);
1473 			count_memcg_folio_events(folio, PGLAZYFREED, nr_pages);
1474 		} else if (!mapping || !__remove_mapping(mapping, folio, true,
1475 							 sc->target_mem_cgroup))
1476 			goto keep_locked;
1477 
1478 		folio_unlock(folio);
1479 free_it:
1480 		/*
1481 		 * Folio may get swapped out as a whole, need to account
1482 		 * all pages in it.
1483 		 */
1484 		nr_reclaimed += nr_pages;
1485 
1486 		folio_unqueue_deferred_split(folio);
1487 		if (folio_batch_add(&free_folios, folio) == 0) {
1488 			mem_cgroup_uncharge_folios(&free_folios);
1489 			try_to_unmap_flush();
1490 			free_unref_folios(&free_folios);
1491 		}
1492 		continue;
1493 
1494 activate_locked_split:
1495 		/*
1496 		 * The tail pages that are failed to add into swap cache
1497 		 * reach here.  Fixup nr_scanned and nr_pages.
1498 		 */
1499 		if (nr_pages > 1) {
1500 			sc->nr_scanned -= (nr_pages - 1);
1501 			nr_pages = 1;
1502 		}
1503 activate_locked:
1504 		/* Not a candidate for swapping, so reclaim swap space. */
1505 		if (folio_test_swapcache(folio) &&
1506 		    (mem_cgroup_swap_full(folio) || folio_test_mlocked(folio)))
1507 			folio_free_swap(folio);
1508 		VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1509 		if (!folio_test_mlocked(folio)) {
1510 			int type = folio_is_file_lru(folio);
1511 			folio_set_active(folio);
1512 			stat->nr_activate[type] += nr_pages;
1513 			count_memcg_folio_events(folio, PGACTIVATE, nr_pages);
1514 		}
1515 keep_locked:
1516 		folio_unlock(folio);
1517 keep:
1518 		list_add(&folio->lru, &ret_folios);
1519 		VM_BUG_ON_FOLIO(folio_test_lru(folio) ||
1520 				folio_test_unevictable(folio), folio);
1521 	}
1522 	/* 'folio_list' is always empty here */
1523 
1524 	/* Migrate folios selected for demotion */
1525 	stat->nr_demoted = demote_folio_list(&demote_folios, pgdat);
1526 	nr_reclaimed += stat->nr_demoted;
1527 	/* Folios that could not be demoted are still in @demote_folios */
1528 	if (!list_empty(&demote_folios)) {
1529 		/* Folios which weren't demoted go back on @folio_list */
1530 		list_splice_init(&demote_folios, folio_list);
1531 
1532 		/*
1533 		 * goto retry to reclaim the undemoted folios in folio_list if
1534 		 * desired.
1535 		 *
1536 		 * Reclaiming directly from top tier nodes is not often desired
1537 		 * due to it breaking the LRU ordering: in general memory
1538 		 * should be reclaimed from lower tier nodes and demoted from
1539 		 * top tier nodes.
1540 		 *
1541 		 * However, disabling reclaim from top tier nodes entirely
1542 		 * would cause ooms in edge scenarios where lower tier memory
1543 		 * is unreclaimable for whatever reason, eg memory being
1544 		 * mlocked or too hot to reclaim. We can disable reclaim
1545 		 * from top tier nodes in proactive reclaim though as that is
1546 		 * not real memory pressure.
1547 		 */
1548 		if (!sc->proactive) {
1549 			do_demote_pass = false;
1550 			goto retry;
1551 		}
1552 	}
1553 
1554 	pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1555 
1556 	mem_cgroup_uncharge_folios(&free_folios);
1557 	try_to_unmap_flush();
1558 	free_unref_folios(&free_folios);
1559 
1560 	list_splice(&ret_folios, folio_list);
1561 	count_vm_events(PGACTIVATE, pgactivate);
1562 
1563 	if (plug)
1564 		swap_write_unplug(plug);
1565 	return nr_reclaimed;
1566 }
1567 
1568 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1569 					   struct list_head *folio_list)
1570 {
1571 	struct scan_control sc = {
1572 		.gfp_mask = GFP_KERNEL,
1573 		.may_unmap = 1,
1574 	};
1575 	struct reclaim_stat stat;
1576 	unsigned int nr_reclaimed;
1577 	struct folio *folio, *next;
1578 	LIST_HEAD(clean_folios);
1579 	unsigned int noreclaim_flag;
1580 
1581 	list_for_each_entry_safe(folio, next, folio_list, lru) {
1582 		if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) &&
1583 		    !folio_test_dirty(folio) && !__folio_test_movable(folio) &&
1584 		    !folio_test_unevictable(folio)) {
1585 			folio_clear_active(folio);
1586 			list_move(&folio->lru, &clean_folios);
1587 		}
1588 	}
1589 
1590 	/*
1591 	 * We should be safe here since we are only dealing with file pages and
1592 	 * we are not kswapd and therefore cannot write dirty file pages. But
1593 	 * call memalloc_noreclaim_save() anyway, just in case these conditions
1594 	 * change in the future.
1595 	 */
1596 	noreclaim_flag = memalloc_noreclaim_save();
1597 	nr_reclaimed = shrink_folio_list(&clean_folios, zone->zone_pgdat, &sc,
1598 					&stat, true);
1599 	memalloc_noreclaim_restore(noreclaim_flag);
1600 
1601 	list_splice(&clean_folios, folio_list);
1602 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1603 			    -(long)nr_reclaimed);
1604 	/*
1605 	 * Since lazyfree pages are isolated from file LRU from the beginning,
1606 	 * they will rotate back to anonymous LRU in the end if it failed to
1607 	 * discard so isolated count will be mismatched.
1608 	 * Compensate the isolated count for both LRU lists.
1609 	 */
1610 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
1611 			    stat.nr_lazyfree_fail);
1612 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1613 			    -(long)stat.nr_lazyfree_fail);
1614 	return nr_reclaimed;
1615 }
1616 
1617 /*
1618  * Update LRU sizes after isolating pages. The LRU size updates must
1619  * be complete before mem_cgroup_update_lru_size due to a sanity check.
1620  */
1621 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1622 			enum lru_list lru, unsigned long *nr_zone_taken)
1623 {
1624 	int zid;
1625 
1626 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1627 		if (!nr_zone_taken[zid])
1628 			continue;
1629 
1630 		update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1631 	}
1632 
1633 }
1634 
1635 /*
1636  * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
1637  *
1638  * lruvec->lru_lock is heavily contended.  Some of the functions that
1639  * shrink the lists perform better by taking out a batch of pages
1640  * and working on them outside the LRU lock.
1641  *
1642  * For pagecache intensive workloads, this function is the hottest
1643  * spot in the kernel (apart from copy_*_user functions).
1644  *
1645  * Lru_lock must be held before calling this function.
1646  *
1647  * @nr_to_scan:	The number of eligible pages to look through on the list.
1648  * @lruvec:	The LRU vector to pull pages from.
1649  * @dst:	The temp list to put pages on to.
1650  * @nr_scanned:	The number of pages that were scanned.
1651  * @sc:		The scan_control struct for this reclaim session
1652  * @lru:	LRU list id for isolating
1653  *
1654  * returns how many pages were moved onto *@dst.
1655  */
1656 static unsigned long isolate_lru_folios(unsigned long nr_to_scan,
1657 		struct lruvec *lruvec, struct list_head *dst,
1658 		unsigned long *nr_scanned, struct scan_control *sc,
1659 		enum lru_list lru)
1660 {
1661 	struct list_head *src = &lruvec->lists[lru];
1662 	unsigned long nr_taken = 0;
1663 	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1664 	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1665 	unsigned long skipped = 0;
1666 	unsigned long scan, total_scan, nr_pages;
1667 	LIST_HEAD(folios_skipped);
1668 
1669 	total_scan = 0;
1670 	scan = 0;
1671 	while (scan < nr_to_scan && !list_empty(src)) {
1672 		struct list_head *move_to = src;
1673 		struct folio *folio;
1674 
1675 		folio = lru_to_folio(src);
1676 		prefetchw_prev_lru_folio(folio, src, flags);
1677 
1678 		nr_pages = folio_nr_pages(folio);
1679 		total_scan += nr_pages;
1680 
1681 		if (folio_zonenum(folio) > sc->reclaim_idx) {
1682 			nr_skipped[folio_zonenum(folio)] += nr_pages;
1683 			move_to = &folios_skipped;
1684 			goto move;
1685 		}
1686 
1687 		/*
1688 		 * Do not count skipped folios because that makes the function
1689 		 * return with no isolated folios if the LRU mostly contains
1690 		 * ineligible folios.  This causes the VM to not reclaim any
1691 		 * folios, triggering a premature OOM.
1692 		 * Account all pages in a folio.
1693 		 */
1694 		scan += nr_pages;
1695 
1696 		if (!folio_test_lru(folio))
1697 			goto move;
1698 		if (!sc->may_unmap && folio_mapped(folio))
1699 			goto move;
1700 
1701 		/*
1702 		 * Be careful not to clear the lru flag until after we're
1703 		 * sure the folio is not being freed elsewhere -- the
1704 		 * folio release code relies on it.
1705 		 */
1706 		if (unlikely(!folio_try_get(folio)))
1707 			goto move;
1708 
1709 		if (!folio_test_clear_lru(folio)) {
1710 			/* Another thread is already isolating this folio */
1711 			folio_put(folio);
1712 			goto move;
1713 		}
1714 
1715 		nr_taken += nr_pages;
1716 		nr_zone_taken[folio_zonenum(folio)] += nr_pages;
1717 		move_to = dst;
1718 move:
1719 		list_move(&folio->lru, move_to);
1720 	}
1721 
1722 	/*
1723 	 * Splice any skipped folios to the start of the LRU list. Note that
1724 	 * this disrupts the LRU order when reclaiming for lower zones but
1725 	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1726 	 * scanning would soon rescan the same folios to skip and waste lots
1727 	 * of cpu cycles.
1728 	 */
1729 	if (!list_empty(&folios_skipped)) {
1730 		int zid;
1731 
1732 		list_splice(&folios_skipped, src);
1733 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1734 			if (!nr_skipped[zid])
1735 				continue;
1736 
1737 			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1738 			skipped += nr_skipped[zid];
1739 		}
1740 	}
1741 	*nr_scanned = total_scan;
1742 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1743 				    total_scan, skipped, nr_taken, lru);
1744 	update_lru_sizes(lruvec, lru, nr_zone_taken);
1745 	return nr_taken;
1746 }
1747 
1748 /**
1749  * folio_isolate_lru() - Try to isolate a folio from its LRU list.
1750  * @folio: Folio to isolate from its LRU list.
1751  *
1752  * Isolate a @folio from an LRU list and adjust the vmstat statistic
1753  * corresponding to whatever LRU list the folio was on.
1754  *
1755  * The folio will have its LRU flag cleared.  If it was found on the
1756  * active list, it will have the Active flag set.  If it was found on the
1757  * unevictable list, it will have the Unevictable flag set.  These flags
1758  * may need to be cleared by the caller before letting the page go.
1759  *
1760  * Context:
1761  *
1762  * (1) Must be called with an elevated refcount on the folio. This is a
1763  *     fundamental difference from isolate_lru_folios() (which is called
1764  *     without a stable reference).
1765  * (2) The lru_lock must not be held.
1766  * (3) Interrupts must be enabled.
1767  *
1768  * Return: true if the folio was removed from an LRU list.
1769  * false if the folio was not on an LRU list.
1770  */
1771 bool folio_isolate_lru(struct folio *folio)
1772 {
1773 	bool ret = false;
1774 
1775 	VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio);
1776 
1777 	if (folio_test_clear_lru(folio)) {
1778 		struct lruvec *lruvec;
1779 
1780 		folio_get(folio);
1781 		lruvec = folio_lruvec_lock_irq(folio);
1782 		lruvec_del_folio(lruvec, folio);
1783 		unlock_page_lruvec_irq(lruvec);
1784 		ret = true;
1785 	}
1786 
1787 	return ret;
1788 }
1789 
1790 /*
1791  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1792  * then get rescheduled. When there are massive number of tasks doing page
1793  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1794  * the LRU list will go small and be scanned faster than necessary, leading to
1795  * unnecessary swapping, thrashing and OOM.
1796  */
1797 static bool too_many_isolated(struct pglist_data *pgdat, int file,
1798 		struct scan_control *sc)
1799 {
1800 	unsigned long inactive, isolated;
1801 	bool too_many;
1802 
1803 	if (current_is_kswapd())
1804 		return false;
1805 
1806 	if (!writeback_throttling_sane(sc))
1807 		return false;
1808 
1809 	if (file) {
1810 		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1811 		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1812 	} else {
1813 		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1814 		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1815 	}
1816 
1817 	/*
1818 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1819 	 * won't get blocked by normal direct-reclaimers, forming a circular
1820 	 * deadlock.
1821 	 */
1822 	if (gfp_has_io_fs(sc->gfp_mask))
1823 		inactive >>= 3;
1824 
1825 	too_many = isolated > inactive;
1826 
1827 	/* Wake up tasks throttled due to too_many_isolated. */
1828 	if (!too_many)
1829 		wake_throttle_isolated(pgdat);
1830 
1831 	return too_many;
1832 }
1833 
1834 /*
1835  * move_folios_to_lru() moves folios from private @list to appropriate LRU list.
1836  *
1837  * Returns the number of pages moved to the given lruvec.
1838  */
1839 static unsigned int move_folios_to_lru(struct lruvec *lruvec,
1840 		struct list_head *list)
1841 {
1842 	int nr_pages, nr_moved = 0;
1843 	struct folio_batch free_folios;
1844 
1845 	folio_batch_init(&free_folios);
1846 	while (!list_empty(list)) {
1847 		struct folio *folio = lru_to_folio(list);
1848 
1849 		VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
1850 		list_del(&folio->lru);
1851 		if (unlikely(!folio_evictable(folio))) {
1852 			spin_unlock_irq(&lruvec->lru_lock);
1853 			folio_putback_lru(folio);
1854 			spin_lock_irq(&lruvec->lru_lock);
1855 			continue;
1856 		}
1857 
1858 		/*
1859 		 * The folio_set_lru needs to be kept here for list integrity.
1860 		 * Otherwise:
1861 		 *   #0 move_folios_to_lru             #1 release_pages
1862 		 *   if (!folio_put_testzero())
1863 		 *				      if (folio_put_testzero())
1864 		 *				        !lru //skip lru_lock
1865 		 *     folio_set_lru()
1866 		 *     list_add(&folio->lru,)
1867 		 *                                        list_add(&folio->lru,)
1868 		 */
1869 		folio_set_lru(folio);
1870 
1871 		if (unlikely(folio_put_testzero(folio))) {
1872 			__folio_clear_lru_flags(folio);
1873 
1874 			folio_unqueue_deferred_split(folio);
1875 			if (folio_batch_add(&free_folios, folio) == 0) {
1876 				spin_unlock_irq(&lruvec->lru_lock);
1877 				mem_cgroup_uncharge_folios(&free_folios);
1878 				free_unref_folios(&free_folios);
1879 				spin_lock_irq(&lruvec->lru_lock);
1880 			}
1881 
1882 			continue;
1883 		}
1884 
1885 		/*
1886 		 * All pages were isolated from the same lruvec (and isolation
1887 		 * inhibits memcg migration).
1888 		 */
1889 		VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio);
1890 		lruvec_add_folio(lruvec, folio);
1891 		nr_pages = folio_nr_pages(folio);
1892 		nr_moved += nr_pages;
1893 		if (folio_test_active(folio))
1894 			workingset_age_nonresident(lruvec, nr_pages);
1895 	}
1896 
1897 	if (free_folios.nr) {
1898 		spin_unlock_irq(&lruvec->lru_lock);
1899 		mem_cgroup_uncharge_folios(&free_folios);
1900 		free_unref_folios(&free_folios);
1901 		spin_lock_irq(&lruvec->lru_lock);
1902 	}
1903 
1904 	return nr_moved;
1905 }
1906 
1907 /*
1908  * If a kernel thread (such as nfsd for loop-back mounts) services a backing
1909  * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case
1910  * we should not throttle.  Otherwise it is safe to do so.
1911  */
1912 static int current_may_throttle(void)
1913 {
1914 	return !(current->flags & PF_LOCAL_THROTTLE);
1915 }
1916 
1917 /*
1918  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
1919  * of reclaimed pages
1920  */
1921 static unsigned long shrink_inactive_list(unsigned long nr_to_scan,
1922 		struct lruvec *lruvec, struct scan_control *sc,
1923 		enum lru_list lru)
1924 {
1925 	LIST_HEAD(folio_list);
1926 	unsigned long nr_scanned;
1927 	unsigned int nr_reclaimed = 0;
1928 	unsigned long nr_taken;
1929 	struct reclaim_stat stat;
1930 	bool file = is_file_lru(lru);
1931 	enum vm_event_item item;
1932 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1933 	bool stalled = false;
1934 
1935 	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1936 		if (stalled)
1937 			return 0;
1938 
1939 		/* wait a bit for the reclaimer. */
1940 		stalled = true;
1941 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
1942 
1943 		/* We are about to die and free our memory. Return now. */
1944 		if (fatal_signal_pending(current))
1945 			return SWAP_CLUSTER_MAX;
1946 	}
1947 
1948 	lru_add_drain();
1949 
1950 	spin_lock_irq(&lruvec->lru_lock);
1951 
1952 	nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &folio_list,
1953 				     &nr_scanned, sc, lru);
1954 
1955 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1956 	item = PGSCAN_KSWAPD + reclaimer_offset();
1957 	if (!cgroup_reclaim(sc))
1958 		__count_vm_events(item, nr_scanned);
1959 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
1960 	__count_vm_events(PGSCAN_ANON + file, nr_scanned);
1961 
1962 	spin_unlock_irq(&lruvec->lru_lock);
1963 
1964 	if (nr_taken == 0)
1965 		return 0;
1966 
1967 	nr_reclaimed = shrink_folio_list(&folio_list, pgdat, sc, &stat, false);
1968 
1969 	spin_lock_irq(&lruvec->lru_lock);
1970 	move_folios_to_lru(lruvec, &folio_list);
1971 
1972 	__mod_lruvec_state(lruvec, PGDEMOTE_KSWAPD + reclaimer_offset(),
1973 					stat.nr_demoted);
1974 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1975 	item = PGSTEAL_KSWAPD + reclaimer_offset();
1976 	if (!cgroup_reclaim(sc))
1977 		__count_vm_events(item, nr_reclaimed);
1978 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
1979 	__count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
1980 	spin_unlock_irq(&lruvec->lru_lock);
1981 
1982 	lru_note_cost(lruvec, file, stat.nr_pageout, nr_scanned - nr_reclaimed);
1983 
1984 	/*
1985 	 * If dirty folios are scanned that are not queued for IO, it
1986 	 * implies that flushers are not doing their job. This can
1987 	 * happen when memory pressure pushes dirty folios to the end of
1988 	 * the LRU before the dirty limits are breached and the dirty
1989 	 * data has expired. It can also happen when the proportion of
1990 	 * dirty folios grows not through writes but through memory
1991 	 * pressure reclaiming all the clean cache. And in some cases,
1992 	 * the flushers simply cannot keep up with the allocation
1993 	 * rate. Nudge the flusher threads in case they are asleep.
1994 	 */
1995 	if (stat.nr_unqueued_dirty == nr_taken) {
1996 		wakeup_flusher_threads(WB_REASON_VMSCAN);
1997 		/*
1998 		 * For cgroupv1 dirty throttling is achieved by waking up
1999 		 * the kernel flusher here and later waiting on folios
2000 		 * which are in writeback to finish (see shrink_folio_list()).
2001 		 *
2002 		 * Flusher may not be able to issue writeback quickly
2003 		 * enough for cgroupv1 writeback throttling to work
2004 		 * on a large system.
2005 		 */
2006 		if (!writeback_throttling_sane(sc))
2007 			reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
2008 	}
2009 
2010 	sc->nr.dirty += stat.nr_dirty;
2011 	sc->nr.congested += stat.nr_congested;
2012 	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2013 	sc->nr.writeback += stat.nr_writeback;
2014 	sc->nr.immediate += stat.nr_immediate;
2015 	sc->nr.taken += nr_taken;
2016 	if (file)
2017 		sc->nr.file_taken += nr_taken;
2018 
2019 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2020 			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2021 	return nr_reclaimed;
2022 }
2023 
2024 /*
2025  * shrink_active_list() moves folios from the active LRU to the inactive LRU.
2026  *
2027  * We move them the other way if the folio is referenced by one or more
2028  * processes.
2029  *
2030  * If the folios are mostly unmapped, the processing is fast and it is
2031  * appropriate to hold lru_lock across the whole operation.  But if
2032  * the folios are mapped, the processing is slow (folio_referenced()), so
2033  * we should drop lru_lock around each folio.  It's impossible to balance
2034  * this, so instead we remove the folios from the LRU while processing them.
2035  * It is safe to rely on the active flag against the non-LRU folios in here
2036  * because nobody will play with that bit on a non-LRU folio.
2037  *
2038  * The downside is that we have to touch folio->_refcount against each folio.
2039  * But we had to alter folio->flags anyway.
2040  */
2041 static void shrink_active_list(unsigned long nr_to_scan,
2042 			       struct lruvec *lruvec,
2043 			       struct scan_control *sc,
2044 			       enum lru_list lru)
2045 {
2046 	unsigned long nr_taken;
2047 	unsigned long nr_scanned;
2048 	unsigned long vm_flags;
2049 	LIST_HEAD(l_hold);	/* The folios which were snipped off */
2050 	LIST_HEAD(l_active);
2051 	LIST_HEAD(l_inactive);
2052 	unsigned nr_deactivate, nr_activate;
2053 	unsigned nr_rotated = 0;
2054 	bool file = is_file_lru(lru);
2055 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2056 
2057 	lru_add_drain();
2058 
2059 	spin_lock_irq(&lruvec->lru_lock);
2060 
2061 	nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &l_hold,
2062 				     &nr_scanned, sc, lru);
2063 
2064 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2065 
2066 	if (!cgroup_reclaim(sc))
2067 		__count_vm_events(PGREFILL, nr_scanned);
2068 	__count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2069 
2070 	spin_unlock_irq(&lruvec->lru_lock);
2071 
2072 	while (!list_empty(&l_hold)) {
2073 		struct folio *folio;
2074 
2075 		cond_resched();
2076 		folio = lru_to_folio(&l_hold);
2077 		list_del(&folio->lru);
2078 
2079 		if (unlikely(!folio_evictable(folio))) {
2080 			folio_putback_lru(folio);
2081 			continue;
2082 		}
2083 
2084 		if (unlikely(buffer_heads_over_limit)) {
2085 			if (folio_needs_release(folio) &&
2086 			    folio_trylock(folio)) {
2087 				filemap_release_folio(folio, 0);
2088 				folio_unlock(folio);
2089 			}
2090 		}
2091 
2092 		/* Referenced or rmap lock contention: rotate */
2093 		if (folio_referenced(folio, 0, sc->target_mem_cgroup,
2094 				     &vm_flags) != 0) {
2095 			/*
2096 			 * Identify referenced, file-backed active folios and
2097 			 * give them one more trip around the active list. So
2098 			 * that executable code get better chances to stay in
2099 			 * memory under moderate memory pressure.  Anon folios
2100 			 * are not likely to be evicted by use-once streaming
2101 			 * IO, plus JVM can create lots of anon VM_EXEC folios,
2102 			 * so we ignore them here.
2103 			 */
2104 			if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) {
2105 				nr_rotated += folio_nr_pages(folio);
2106 				list_add(&folio->lru, &l_active);
2107 				continue;
2108 			}
2109 		}
2110 
2111 		folio_clear_active(folio);	/* we are de-activating */
2112 		folio_set_workingset(folio);
2113 		list_add(&folio->lru, &l_inactive);
2114 	}
2115 
2116 	/*
2117 	 * Move folios back to the lru list.
2118 	 */
2119 	spin_lock_irq(&lruvec->lru_lock);
2120 
2121 	nr_activate = move_folios_to_lru(lruvec, &l_active);
2122 	nr_deactivate = move_folios_to_lru(lruvec, &l_inactive);
2123 
2124 	__count_vm_events(PGDEACTIVATE, nr_deactivate);
2125 	__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2126 
2127 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2128 	spin_unlock_irq(&lruvec->lru_lock);
2129 
2130 	if (nr_rotated)
2131 		lru_note_cost(lruvec, file, 0, nr_rotated);
2132 	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2133 			nr_deactivate, nr_rotated, sc->priority, file);
2134 }
2135 
2136 static unsigned int reclaim_folio_list(struct list_head *folio_list,
2137 				      struct pglist_data *pgdat)
2138 {
2139 	struct reclaim_stat stat;
2140 	unsigned int nr_reclaimed;
2141 	struct folio *folio;
2142 	struct scan_control sc = {
2143 		.gfp_mask = GFP_KERNEL,
2144 		.may_writepage = 1,
2145 		.may_unmap = 1,
2146 		.may_swap = 1,
2147 		.no_demotion = 1,
2148 	};
2149 
2150 	nr_reclaimed = shrink_folio_list(folio_list, pgdat, &sc, &stat, true);
2151 	while (!list_empty(folio_list)) {
2152 		folio = lru_to_folio(folio_list);
2153 		list_del(&folio->lru);
2154 		folio_putback_lru(folio);
2155 	}
2156 	trace_mm_vmscan_reclaim_pages(pgdat->node_id, sc.nr_scanned, nr_reclaimed, &stat);
2157 
2158 	return nr_reclaimed;
2159 }
2160 
2161 unsigned long reclaim_pages(struct list_head *folio_list)
2162 {
2163 	int nid;
2164 	unsigned int nr_reclaimed = 0;
2165 	LIST_HEAD(node_folio_list);
2166 	unsigned int noreclaim_flag;
2167 
2168 	if (list_empty(folio_list))
2169 		return nr_reclaimed;
2170 
2171 	noreclaim_flag = memalloc_noreclaim_save();
2172 
2173 	nid = folio_nid(lru_to_folio(folio_list));
2174 	do {
2175 		struct folio *folio = lru_to_folio(folio_list);
2176 
2177 		if (nid == folio_nid(folio)) {
2178 			folio_clear_active(folio);
2179 			list_move(&folio->lru, &node_folio_list);
2180 			continue;
2181 		}
2182 
2183 		nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2184 		nid = folio_nid(lru_to_folio(folio_list));
2185 	} while (!list_empty(folio_list));
2186 
2187 	nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2188 
2189 	memalloc_noreclaim_restore(noreclaim_flag);
2190 
2191 	return nr_reclaimed;
2192 }
2193 
2194 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2195 				 struct lruvec *lruvec, struct scan_control *sc)
2196 {
2197 	if (is_active_lru(lru)) {
2198 		if (sc->may_deactivate & (1 << is_file_lru(lru)))
2199 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2200 		else
2201 			sc->skipped_deactivate = 1;
2202 		return 0;
2203 	}
2204 
2205 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2206 }
2207 
2208 /*
2209  * The inactive anon list should be small enough that the VM never has
2210  * to do too much work.
2211  *
2212  * The inactive file list should be small enough to leave most memory
2213  * to the established workingset on the scan-resistant active list,
2214  * but large enough to avoid thrashing the aggregate readahead window.
2215  *
2216  * Both inactive lists should also be large enough that each inactive
2217  * folio has a chance to be referenced again before it is reclaimed.
2218  *
2219  * If that fails and refaulting is observed, the inactive list grows.
2220  *
2221  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE folios
2222  * on this LRU, maintained by the pageout code. An inactive_ratio
2223  * of 3 means 3:1 or 25% of the folios are kept on the inactive list.
2224  *
2225  * total     target    max
2226  * memory    ratio     inactive
2227  * -------------------------------------
2228  *   10MB       1         5MB
2229  *  100MB       1        50MB
2230  *    1GB       3       250MB
2231  *   10GB      10       0.9GB
2232  *  100GB      31         3GB
2233  *    1TB     101        10GB
2234  *   10TB     320        32GB
2235  */
2236 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2237 {
2238 	enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2239 	unsigned long inactive, active;
2240 	unsigned long inactive_ratio;
2241 	unsigned long gb;
2242 
2243 	inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2244 	active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2245 
2246 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
2247 	if (gb)
2248 		inactive_ratio = int_sqrt(10 * gb);
2249 	else
2250 		inactive_ratio = 1;
2251 
2252 	return inactive * inactive_ratio < active;
2253 }
2254 
2255 enum scan_balance {
2256 	SCAN_EQUAL,
2257 	SCAN_FRACT,
2258 	SCAN_ANON,
2259 	SCAN_FILE,
2260 };
2261 
2262 static void prepare_scan_control(pg_data_t *pgdat, struct scan_control *sc)
2263 {
2264 	unsigned long file;
2265 	struct lruvec *target_lruvec;
2266 
2267 	if (lru_gen_enabled())
2268 		return;
2269 
2270 	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2271 
2272 	/*
2273 	 * Flush the memory cgroup stats in rate-limited way as we don't need
2274 	 * most accurate stats here. We may switch to regular stats flushing
2275 	 * in the future once it is cheap enough.
2276 	 */
2277 	mem_cgroup_flush_stats_ratelimited(sc->target_mem_cgroup);
2278 
2279 	/*
2280 	 * Determine the scan balance between anon and file LRUs.
2281 	 */
2282 	spin_lock_irq(&target_lruvec->lru_lock);
2283 	sc->anon_cost = target_lruvec->anon_cost;
2284 	sc->file_cost = target_lruvec->file_cost;
2285 	spin_unlock_irq(&target_lruvec->lru_lock);
2286 
2287 	/*
2288 	 * Target desirable inactive:active list ratios for the anon
2289 	 * and file LRU lists.
2290 	 */
2291 	if (!sc->force_deactivate) {
2292 		unsigned long refaults;
2293 
2294 		/*
2295 		 * When refaults are being observed, it means a new
2296 		 * workingset is being established. Deactivate to get
2297 		 * rid of any stale active pages quickly.
2298 		 */
2299 		refaults = lruvec_page_state(target_lruvec,
2300 				WORKINGSET_ACTIVATE_ANON);
2301 		if (refaults != target_lruvec->refaults[WORKINGSET_ANON] ||
2302 			inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2303 			sc->may_deactivate |= DEACTIVATE_ANON;
2304 		else
2305 			sc->may_deactivate &= ~DEACTIVATE_ANON;
2306 
2307 		refaults = lruvec_page_state(target_lruvec,
2308 				WORKINGSET_ACTIVATE_FILE);
2309 		if (refaults != target_lruvec->refaults[WORKINGSET_FILE] ||
2310 		    inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2311 			sc->may_deactivate |= DEACTIVATE_FILE;
2312 		else
2313 			sc->may_deactivate &= ~DEACTIVATE_FILE;
2314 	} else
2315 		sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2316 
2317 	/*
2318 	 * If we have plenty of inactive file pages that aren't
2319 	 * thrashing, try to reclaim those first before touching
2320 	 * anonymous pages.
2321 	 */
2322 	file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2323 	if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE) &&
2324 	    !sc->no_cache_trim_mode)
2325 		sc->cache_trim_mode = 1;
2326 	else
2327 		sc->cache_trim_mode = 0;
2328 
2329 	/*
2330 	 * Prevent the reclaimer from falling into the cache trap: as
2331 	 * cache pages start out inactive, every cache fault will tip
2332 	 * the scan balance towards the file LRU.  And as the file LRU
2333 	 * shrinks, so does the window for rotation from references.
2334 	 * This means we have a runaway feedback loop where a tiny
2335 	 * thrashing file LRU becomes infinitely more attractive than
2336 	 * anon pages.  Try to detect this based on file LRU size.
2337 	 */
2338 	if (!cgroup_reclaim(sc)) {
2339 		unsigned long total_high_wmark = 0;
2340 		unsigned long free, anon;
2341 		int z;
2342 
2343 		free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2344 		file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2345 			   node_page_state(pgdat, NR_INACTIVE_FILE);
2346 
2347 		for (z = 0; z < MAX_NR_ZONES; z++) {
2348 			struct zone *zone = &pgdat->node_zones[z];
2349 
2350 			if (!managed_zone(zone))
2351 				continue;
2352 
2353 			total_high_wmark += high_wmark_pages(zone);
2354 		}
2355 
2356 		/*
2357 		 * Consider anon: if that's low too, this isn't a
2358 		 * runaway file reclaim problem, but rather just
2359 		 * extreme pressure. Reclaim as per usual then.
2360 		 */
2361 		anon = node_page_state(pgdat, NR_INACTIVE_ANON);
2362 
2363 		sc->file_is_tiny =
2364 			file + free <= total_high_wmark &&
2365 			!(sc->may_deactivate & DEACTIVATE_ANON) &&
2366 			anon >> sc->priority;
2367 	}
2368 }
2369 
2370 /*
2371  * Determine how aggressively the anon and file LRU lists should be
2372  * scanned.
2373  *
2374  * nr[0] = anon inactive folios to scan; nr[1] = anon active folios to scan
2375  * nr[2] = file inactive folios to scan; nr[3] = file active folios to scan
2376  */
2377 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2378 			   unsigned long *nr)
2379 {
2380 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2381 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2382 	unsigned long anon_cost, file_cost, total_cost;
2383 	int swappiness = sc_swappiness(sc, memcg);
2384 	u64 fraction[ANON_AND_FILE];
2385 	u64 denominator = 0;	/* gcc */
2386 	enum scan_balance scan_balance;
2387 	unsigned long ap, fp;
2388 	enum lru_list lru;
2389 
2390 	/* If we have no swap space, do not bother scanning anon folios. */
2391 	if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
2392 		scan_balance = SCAN_FILE;
2393 		goto out;
2394 	}
2395 
2396 	/*
2397 	 * Global reclaim will swap to prevent OOM even with no
2398 	 * swappiness, but memcg users want to use this knob to
2399 	 * disable swapping for individual groups completely when
2400 	 * using the memory controller's swap limit feature would be
2401 	 * too expensive.
2402 	 */
2403 	if (cgroup_reclaim(sc) && !swappiness) {
2404 		scan_balance = SCAN_FILE;
2405 		goto out;
2406 	}
2407 
2408 	/*
2409 	 * Do not apply any pressure balancing cleverness when the
2410 	 * system is close to OOM, scan both anon and file equally
2411 	 * (unless the swappiness setting disagrees with swapping).
2412 	 */
2413 	if (!sc->priority && swappiness) {
2414 		scan_balance = SCAN_EQUAL;
2415 		goto out;
2416 	}
2417 
2418 	/*
2419 	 * If the system is almost out of file pages, force-scan anon.
2420 	 */
2421 	if (sc->file_is_tiny) {
2422 		scan_balance = SCAN_ANON;
2423 		goto out;
2424 	}
2425 
2426 	/*
2427 	 * If there is enough inactive page cache, we do not reclaim
2428 	 * anything from the anonymous working right now.
2429 	 */
2430 	if (sc->cache_trim_mode) {
2431 		scan_balance = SCAN_FILE;
2432 		goto out;
2433 	}
2434 
2435 	scan_balance = SCAN_FRACT;
2436 	/*
2437 	 * Calculate the pressure balance between anon and file pages.
2438 	 *
2439 	 * The amount of pressure we put on each LRU is inversely
2440 	 * proportional to the cost of reclaiming each list, as
2441 	 * determined by the share of pages that are refaulting, times
2442 	 * the relative IO cost of bringing back a swapped out
2443 	 * anonymous page vs reloading a filesystem page (swappiness).
2444 	 *
2445 	 * Although we limit that influence to ensure no list gets
2446 	 * left behind completely: at least a third of the pressure is
2447 	 * applied, before swappiness.
2448 	 *
2449 	 * With swappiness at 100, anon and file have equal IO cost.
2450 	 */
2451 	total_cost = sc->anon_cost + sc->file_cost;
2452 	anon_cost = total_cost + sc->anon_cost;
2453 	file_cost = total_cost + sc->file_cost;
2454 	total_cost = anon_cost + file_cost;
2455 
2456 	ap = swappiness * (total_cost + 1);
2457 	ap /= anon_cost + 1;
2458 
2459 	fp = (MAX_SWAPPINESS - swappiness) * (total_cost + 1);
2460 	fp /= file_cost + 1;
2461 
2462 	fraction[0] = ap;
2463 	fraction[1] = fp;
2464 	denominator = ap + fp;
2465 out:
2466 	for_each_evictable_lru(lru) {
2467 		bool file = is_file_lru(lru);
2468 		unsigned long lruvec_size;
2469 		unsigned long low, min;
2470 		unsigned long scan;
2471 
2472 		lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2473 		mem_cgroup_protection(sc->target_mem_cgroup, memcg,
2474 				      &min, &low);
2475 
2476 		if (min || low) {
2477 			/*
2478 			 * Scale a cgroup's reclaim pressure by proportioning
2479 			 * its current usage to its memory.low or memory.min
2480 			 * setting.
2481 			 *
2482 			 * This is important, as otherwise scanning aggression
2483 			 * becomes extremely binary -- from nothing as we
2484 			 * approach the memory protection threshold, to totally
2485 			 * nominal as we exceed it.  This results in requiring
2486 			 * setting extremely liberal protection thresholds. It
2487 			 * also means we simply get no protection at all if we
2488 			 * set it too low, which is not ideal.
2489 			 *
2490 			 * If there is any protection in place, we reduce scan
2491 			 * pressure by how much of the total memory used is
2492 			 * within protection thresholds.
2493 			 *
2494 			 * There is one special case: in the first reclaim pass,
2495 			 * we skip over all groups that are within their low
2496 			 * protection. If that fails to reclaim enough pages to
2497 			 * satisfy the reclaim goal, we come back and override
2498 			 * the best-effort low protection. However, we still
2499 			 * ideally want to honor how well-behaved groups are in
2500 			 * that case instead of simply punishing them all
2501 			 * equally. As such, we reclaim them based on how much
2502 			 * memory they are using, reducing the scan pressure
2503 			 * again by how much of the total memory used is under
2504 			 * hard protection.
2505 			 */
2506 			unsigned long cgroup_size = mem_cgroup_size(memcg);
2507 			unsigned long protection;
2508 
2509 			/* memory.low scaling, make sure we retry before OOM */
2510 			if (!sc->memcg_low_reclaim && low > min) {
2511 				protection = low;
2512 				sc->memcg_low_skipped = 1;
2513 			} else {
2514 				protection = min;
2515 			}
2516 
2517 			/* Avoid TOCTOU with earlier protection check */
2518 			cgroup_size = max(cgroup_size, protection);
2519 
2520 			scan = lruvec_size - lruvec_size * protection /
2521 				(cgroup_size + 1);
2522 
2523 			/*
2524 			 * Minimally target SWAP_CLUSTER_MAX pages to keep
2525 			 * reclaim moving forwards, avoiding decrementing
2526 			 * sc->priority further than desirable.
2527 			 */
2528 			scan = max(scan, SWAP_CLUSTER_MAX);
2529 		} else {
2530 			scan = lruvec_size;
2531 		}
2532 
2533 		scan >>= sc->priority;
2534 
2535 		/*
2536 		 * If the cgroup's already been deleted, make sure to
2537 		 * scrape out the remaining cache.
2538 		 */
2539 		if (!scan && !mem_cgroup_online(memcg))
2540 			scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2541 
2542 		switch (scan_balance) {
2543 		case SCAN_EQUAL:
2544 			/* Scan lists relative to size */
2545 			break;
2546 		case SCAN_FRACT:
2547 			/*
2548 			 * Scan types proportional to swappiness and
2549 			 * their relative recent reclaim efficiency.
2550 			 * Make sure we don't miss the last page on
2551 			 * the offlined memory cgroups because of a
2552 			 * round-off error.
2553 			 */
2554 			scan = mem_cgroup_online(memcg) ?
2555 			       div64_u64(scan * fraction[file], denominator) :
2556 			       DIV64_U64_ROUND_UP(scan * fraction[file],
2557 						  denominator);
2558 			break;
2559 		case SCAN_FILE:
2560 		case SCAN_ANON:
2561 			/* Scan one type exclusively */
2562 			if ((scan_balance == SCAN_FILE) != file)
2563 				scan = 0;
2564 			break;
2565 		default:
2566 			/* Look ma, no brain */
2567 			BUG();
2568 		}
2569 
2570 		nr[lru] = scan;
2571 	}
2572 }
2573 
2574 /*
2575  * Anonymous LRU management is a waste if there is
2576  * ultimately no way to reclaim the memory.
2577  */
2578 static bool can_age_anon_pages(struct pglist_data *pgdat,
2579 			       struct scan_control *sc)
2580 {
2581 	/* Aging the anon LRU is valuable if swap is present: */
2582 	if (total_swap_pages > 0)
2583 		return true;
2584 
2585 	/* Also valuable if anon pages can be demoted: */
2586 	return can_demote(pgdat->node_id, sc);
2587 }
2588 
2589 #ifdef CONFIG_LRU_GEN
2590 
2591 #ifdef CONFIG_LRU_GEN_ENABLED
2592 DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS);
2593 #define get_cap(cap)	static_branch_likely(&lru_gen_caps[cap])
2594 #else
2595 DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS);
2596 #define get_cap(cap)	static_branch_unlikely(&lru_gen_caps[cap])
2597 #endif
2598 
2599 static bool should_walk_mmu(void)
2600 {
2601 	return arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK);
2602 }
2603 
2604 static bool should_clear_pmd_young(void)
2605 {
2606 	return arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG);
2607 }
2608 
2609 /******************************************************************************
2610  *                          shorthand helpers
2611  ******************************************************************************/
2612 
2613 #define DEFINE_MAX_SEQ(lruvec)						\
2614 	unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq)
2615 
2616 #define DEFINE_MIN_SEQ(lruvec)						\
2617 	unsigned long min_seq[ANON_AND_FILE] = {			\
2618 		READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]),	\
2619 		READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]),	\
2620 	}
2621 
2622 #define for_each_gen_type_zone(gen, type, zone)				\
2623 	for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++)			\
2624 		for ((type) = 0; (type) < ANON_AND_FILE; (type)++)	\
2625 			for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++)
2626 
2627 #define get_memcg_gen(seq)	((seq) % MEMCG_NR_GENS)
2628 #define get_memcg_bin(bin)	((bin) % MEMCG_NR_BINS)
2629 
2630 static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid)
2631 {
2632 	struct pglist_data *pgdat = NODE_DATA(nid);
2633 
2634 #ifdef CONFIG_MEMCG
2635 	if (memcg) {
2636 		struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec;
2637 
2638 		/* see the comment in mem_cgroup_lruvec() */
2639 		if (!lruvec->pgdat)
2640 			lruvec->pgdat = pgdat;
2641 
2642 		return lruvec;
2643 	}
2644 #endif
2645 	VM_WARN_ON_ONCE(!mem_cgroup_disabled());
2646 
2647 	return &pgdat->__lruvec;
2648 }
2649 
2650 static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc)
2651 {
2652 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2653 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2654 
2655 	if (!sc->may_swap)
2656 		return 0;
2657 
2658 	if (!can_demote(pgdat->node_id, sc) &&
2659 	    mem_cgroup_get_nr_swap_pages(memcg) < MIN_LRU_BATCH)
2660 		return 0;
2661 
2662 	return sc_swappiness(sc, memcg);
2663 }
2664 
2665 static int get_nr_gens(struct lruvec *lruvec, int type)
2666 {
2667 	return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1;
2668 }
2669 
2670 static bool __maybe_unused seq_is_valid(struct lruvec *lruvec)
2671 {
2672 	/* see the comment on lru_gen_folio */
2673 	return get_nr_gens(lruvec, LRU_GEN_FILE) >= MIN_NR_GENS &&
2674 	       get_nr_gens(lruvec, LRU_GEN_FILE) <= get_nr_gens(lruvec, LRU_GEN_ANON) &&
2675 	       get_nr_gens(lruvec, LRU_GEN_ANON) <= MAX_NR_GENS;
2676 }
2677 
2678 /******************************************************************************
2679  *                          Bloom filters
2680  ******************************************************************************/
2681 
2682 /*
2683  * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when
2684  * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of
2685  * bits in a bitmap, k is the number of hash functions and n is the number of
2686  * inserted items.
2687  *
2688  * Page table walkers use one of the two filters to reduce their search space.
2689  * To get rid of non-leaf entries that no longer have enough leaf entries, the
2690  * aging uses the double-buffering technique to flip to the other filter each
2691  * time it produces a new generation. For non-leaf entries that have enough
2692  * leaf entries, the aging carries them over to the next generation in
2693  * walk_pmd_range(); the eviction also report them when walking the rmap
2694  * in lru_gen_look_around().
2695  *
2696  * For future optimizations:
2697  * 1. It's not necessary to keep both filters all the time. The spare one can be
2698  *    freed after the RCU grace period and reallocated if needed again.
2699  * 2. And when reallocating, it's worth scaling its size according to the number
2700  *    of inserted entries in the other filter, to reduce the memory overhead on
2701  *    small systems and false positives on large systems.
2702  * 3. Jenkins' hash function is an alternative to Knuth's.
2703  */
2704 #define BLOOM_FILTER_SHIFT	15
2705 
2706 static inline int filter_gen_from_seq(unsigned long seq)
2707 {
2708 	return seq % NR_BLOOM_FILTERS;
2709 }
2710 
2711 static void get_item_key(void *item, int *key)
2712 {
2713 	u32 hash = hash_ptr(item, BLOOM_FILTER_SHIFT * 2);
2714 
2715 	BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32));
2716 
2717 	key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1);
2718 	key[1] = hash >> BLOOM_FILTER_SHIFT;
2719 }
2720 
2721 static bool test_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq,
2722 			      void *item)
2723 {
2724 	int key[2];
2725 	unsigned long *filter;
2726 	int gen = filter_gen_from_seq(seq);
2727 
2728 	filter = READ_ONCE(mm_state->filters[gen]);
2729 	if (!filter)
2730 		return true;
2731 
2732 	get_item_key(item, key);
2733 
2734 	return test_bit(key[0], filter) && test_bit(key[1], filter);
2735 }
2736 
2737 static void update_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq,
2738 				void *item)
2739 {
2740 	int key[2];
2741 	unsigned long *filter;
2742 	int gen = filter_gen_from_seq(seq);
2743 
2744 	filter = READ_ONCE(mm_state->filters[gen]);
2745 	if (!filter)
2746 		return;
2747 
2748 	get_item_key(item, key);
2749 
2750 	if (!test_bit(key[0], filter))
2751 		set_bit(key[0], filter);
2752 	if (!test_bit(key[1], filter))
2753 		set_bit(key[1], filter);
2754 }
2755 
2756 static void reset_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq)
2757 {
2758 	unsigned long *filter;
2759 	int gen = filter_gen_from_seq(seq);
2760 
2761 	filter = mm_state->filters[gen];
2762 	if (filter) {
2763 		bitmap_clear(filter, 0, BIT(BLOOM_FILTER_SHIFT));
2764 		return;
2765 	}
2766 
2767 	filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT),
2768 			       __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
2769 	WRITE_ONCE(mm_state->filters[gen], filter);
2770 }
2771 
2772 /******************************************************************************
2773  *                          mm_struct list
2774  ******************************************************************************/
2775 
2776 #ifdef CONFIG_LRU_GEN_WALKS_MMU
2777 
2778 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
2779 {
2780 	static struct lru_gen_mm_list mm_list = {
2781 		.fifo = LIST_HEAD_INIT(mm_list.fifo),
2782 		.lock = __SPIN_LOCK_UNLOCKED(mm_list.lock),
2783 	};
2784 
2785 #ifdef CONFIG_MEMCG
2786 	if (memcg)
2787 		return &memcg->mm_list;
2788 #endif
2789 	VM_WARN_ON_ONCE(!mem_cgroup_disabled());
2790 
2791 	return &mm_list;
2792 }
2793 
2794 static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec)
2795 {
2796 	return &lruvec->mm_state;
2797 }
2798 
2799 static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk)
2800 {
2801 	int key;
2802 	struct mm_struct *mm;
2803 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
2804 	struct lru_gen_mm_state *mm_state = get_mm_state(walk->lruvec);
2805 
2806 	mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list);
2807 	key = pgdat->node_id % BITS_PER_TYPE(mm->lru_gen.bitmap);
2808 
2809 	if (!walk->force_scan && !test_bit(key, &mm->lru_gen.bitmap))
2810 		return NULL;
2811 
2812 	clear_bit(key, &mm->lru_gen.bitmap);
2813 
2814 	return mmget_not_zero(mm) ? mm : NULL;
2815 }
2816 
2817 void lru_gen_add_mm(struct mm_struct *mm)
2818 {
2819 	int nid;
2820 	struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm);
2821 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
2822 
2823 	VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list));
2824 #ifdef CONFIG_MEMCG
2825 	VM_WARN_ON_ONCE(mm->lru_gen.memcg);
2826 	mm->lru_gen.memcg = memcg;
2827 #endif
2828 	spin_lock(&mm_list->lock);
2829 
2830 	for_each_node_state(nid, N_MEMORY) {
2831 		struct lruvec *lruvec = get_lruvec(memcg, nid);
2832 		struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
2833 
2834 		/* the first addition since the last iteration */
2835 		if (mm_state->tail == &mm_list->fifo)
2836 			mm_state->tail = &mm->lru_gen.list;
2837 	}
2838 
2839 	list_add_tail(&mm->lru_gen.list, &mm_list->fifo);
2840 
2841 	spin_unlock(&mm_list->lock);
2842 }
2843 
2844 void lru_gen_del_mm(struct mm_struct *mm)
2845 {
2846 	int nid;
2847 	struct lru_gen_mm_list *mm_list;
2848 	struct mem_cgroup *memcg = NULL;
2849 
2850 	if (list_empty(&mm->lru_gen.list))
2851 		return;
2852 
2853 #ifdef CONFIG_MEMCG
2854 	memcg = mm->lru_gen.memcg;
2855 #endif
2856 	mm_list = get_mm_list(memcg);
2857 
2858 	spin_lock(&mm_list->lock);
2859 
2860 	for_each_node(nid) {
2861 		struct lruvec *lruvec = get_lruvec(memcg, nid);
2862 		struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
2863 
2864 		/* where the current iteration continues after */
2865 		if (mm_state->head == &mm->lru_gen.list)
2866 			mm_state->head = mm_state->head->prev;
2867 
2868 		/* where the last iteration ended before */
2869 		if (mm_state->tail == &mm->lru_gen.list)
2870 			mm_state->tail = mm_state->tail->next;
2871 	}
2872 
2873 	list_del_init(&mm->lru_gen.list);
2874 
2875 	spin_unlock(&mm_list->lock);
2876 
2877 #ifdef CONFIG_MEMCG
2878 	mem_cgroup_put(mm->lru_gen.memcg);
2879 	mm->lru_gen.memcg = NULL;
2880 #endif
2881 }
2882 
2883 #ifdef CONFIG_MEMCG
2884 void lru_gen_migrate_mm(struct mm_struct *mm)
2885 {
2886 	struct mem_cgroup *memcg;
2887 	struct task_struct *task = rcu_dereference_protected(mm->owner, true);
2888 
2889 	VM_WARN_ON_ONCE(task->mm != mm);
2890 	lockdep_assert_held(&task->alloc_lock);
2891 
2892 	/* for mm_update_next_owner() */
2893 	if (mem_cgroup_disabled())
2894 		return;
2895 
2896 	/* migration can happen before addition */
2897 	if (!mm->lru_gen.memcg)
2898 		return;
2899 
2900 	rcu_read_lock();
2901 	memcg = mem_cgroup_from_task(task);
2902 	rcu_read_unlock();
2903 	if (memcg == mm->lru_gen.memcg)
2904 		return;
2905 
2906 	VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list));
2907 
2908 	lru_gen_del_mm(mm);
2909 	lru_gen_add_mm(mm);
2910 }
2911 #endif
2912 
2913 #else /* !CONFIG_LRU_GEN_WALKS_MMU */
2914 
2915 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
2916 {
2917 	return NULL;
2918 }
2919 
2920 static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec)
2921 {
2922 	return NULL;
2923 }
2924 
2925 static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk)
2926 {
2927 	return NULL;
2928 }
2929 
2930 #endif
2931 
2932 static void reset_mm_stats(struct lru_gen_mm_walk *walk, bool last)
2933 {
2934 	int i;
2935 	int hist;
2936 	struct lruvec *lruvec = walk->lruvec;
2937 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
2938 
2939 	lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock);
2940 
2941 	hist = lru_hist_from_seq(walk->seq);
2942 
2943 	for (i = 0; i < NR_MM_STATS; i++) {
2944 		WRITE_ONCE(mm_state->stats[hist][i],
2945 			   mm_state->stats[hist][i] + walk->mm_stats[i]);
2946 		walk->mm_stats[i] = 0;
2947 	}
2948 
2949 	if (NR_HIST_GENS > 1 && last) {
2950 		hist = lru_hist_from_seq(walk->seq + 1);
2951 
2952 		for (i = 0; i < NR_MM_STATS; i++)
2953 			WRITE_ONCE(mm_state->stats[hist][i], 0);
2954 	}
2955 }
2956 
2957 static bool iterate_mm_list(struct lru_gen_mm_walk *walk, struct mm_struct **iter)
2958 {
2959 	bool first = false;
2960 	bool last = false;
2961 	struct mm_struct *mm = NULL;
2962 	struct lruvec *lruvec = walk->lruvec;
2963 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2964 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
2965 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
2966 
2967 	/*
2968 	 * mm_state->seq is incremented after each iteration of mm_list. There
2969 	 * are three interesting cases for this page table walker:
2970 	 * 1. It tries to start a new iteration with a stale max_seq: there is
2971 	 *    nothing left to do.
2972 	 * 2. It started the next iteration: it needs to reset the Bloom filter
2973 	 *    so that a fresh set of PTE tables can be recorded.
2974 	 * 3. It ended the current iteration: it needs to reset the mm stats
2975 	 *    counters and tell its caller to increment max_seq.
2976 	 */
2977 	spin_lock(&mm_list->lock);
2978 
2979 	VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->seq);
2980 
2981 	if (walk->seq <= mm_state->seq)
2982 		goto done;
2983 
2984 	if (!mm_state->head)
2985 		mm_state->head = &mm_list->fifo;
2986 
2987 	if (mm_state->head == &mm_list->fifo)
2988 		first = true;
2989 
2990 	do {
2991 		mm_state->head = mm_state->head->next;
2992 		if (mm_state->head == &mm_list->fifo) {
2993 			WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
2994 			last = true;
2995 			break;
2996 		}
2997 
2998 		/* force scan for those added after the last iteration */
2999 		if (!mm_state->tail || mm_state->tail == mm_state->head) {
3000 			mm_state->tail = mm_state->head->next;
3001 			walk->force_scan = true;
3002 		}
3003 	} while (!(mm = get_next_mm(walk)));
3004 done:
3005 	if (*iter || last)
3006 		reset_mm_stats(walk, last);
3007 
3008 	spin_unlock(&mm_list->lock);
3009 
3010 	if (mm && first)
3011 		reset_bloom_filter(mm_state, walk->seq + 1);
3012 
3013 	if (*iter)
3014 		mmput_async(*iter);
3015 
3016 	*iter = mm;
3017 
3018 	return last;
3019 }
3020 
3021 static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long seq)
3022 {
3023 	bool success = false;
3024 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3025 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3026 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
3027 
3028 	spin_lock(&mm_list->lock);
3029 
3030 	VM_WARN_ON_ONCE(mm_state->seq + 1 < seq);
3031 
3032 	if (seq > mm_state->seq) {
3033 		mm_state->head = NULL;
3034 		mm_state->tail = NULL;
3035 		WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3036 		success = true;
3037 	}
3038 
3039 	spin_unlock(&mm_list->lock);
3040 
3041 	return success;
3042 }
3043 
3044 /******************************************************************************
3045  *                          PID controller
3046  ******************************************************************************/
3047 
3048 /*
3049  * A feedback loop based on Proportional-Integral-Derivative (PID) controller.
3050  *
3051  * The P term is refaulted/(evicted+protected) from a tier in the generation
3052  * currently being evicted; the I term is the exponential moving average of the
3053  * P term over the generations previously evicted, using the smoothing factor
3054  * 1/2; the D term isn't supported.
3055  *
3056  * The setpoint (SP) is always the first tier of one type; the process variable
3057  * (PV) is either any tier of the other type or any other tier of the same
3058  * type.
3059  *
3060  * The error is the difference between the SP and the PV; the correction is to
3061  * turn off protection when SP>PV or turn on protection when SP<PV.
3062  *
3063  * For future optimizations:
3064  * 1. The D term may discount the other two terms over time so that long-lived
3065  *    generations can resist stale information.
3066  */
3067 struct ctrl_pos {
3068 	unsigned long refaulted;
3069 	unsigned long total;
3070 	int gain;
3071 };
3072 
3073 static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain,
3074 			  struct ctrl_pos *pos)
3075 {
3076 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3077 	int hist = lru_hist_from_seq(lrugen->min_seq[type]);
3078 
3079 	pos->refaulted = lrugen->avg_refaulted[type][tier] +
3080 			 atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3081 	pos->total = lrugen->avg_total[type][tier] +
3082 		     atomic_long_read(&lrugen->evicted[hist][type][tier]);
3083 	if (tier)
3084 		pos->total += lrugen->protected[hist][type][tier - 1];
3085 	pos->gain = gain;
3086 }
3087 
3088 static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover)
3089 {
3090 	int hist, tier;
3091 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3092 	bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1;
3093 	unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1;
3094 
3095 	lockdep_assert_held(&lruvec->lru_lock);
3096 
3097 	if (!carryover && !clear)
3098 		return;
3099 
3100 	hist = lru_hist_from_seq(seq);
3101 
3102 	for (tier = 0; tier < MAX_NR_TIERS; tier++) {
3103 		if (carryover) {
3104 			unsigned long sum;
3105 
3106 			sum = lrugen->avg_refaulted[type][tier] +
3107 			      atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3108 			WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2);
3109 
3110 			sum = lrugen->avg_total[type][tier] +
3111 			      atomic_long_read(&lrugen->evicted[hist][type][tier]);
3112 			if (tier)
3113 				sum += lrugen->protected[hist][type][tier - 1];
3114 			WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2);
3115 		}
3116 
3117 		if (clear) {
3118 			atomic_long_set(&lrugen->refaulted[hist][type][tier], 0);
3119 			atomic_long_set(&lrugen->evicted[hist][type][tier], 0);
3120 			if (tier)
3121 				WRITE_ONCE(lrugen->protected[hist][type][tier - 1], 0);
3122 		}
3123 	}
3124 }
3125 
3126 static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv)
3127 {
3128 	/*
3129 	 * Return true if the PV has a limited number of refaults or a lower
3130 	 * refaulted/total than the SP.
3131 	 */
3132 	return pv->refaulted < MIN_LRU_BATCH ||
3133 	       pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <=
3134 	       (sp->refaulted + 1) * pv->total * pv->gain;
3135 }
3136 
3137 /******************************************************************************
3138  *                          the aging
3139  ******************************************************************************/
3140 
3141 /* promote pages accessed through page tables */
3142 static int folio_update_gen(struct folio *folio, int gen)
3143 {
3144 	unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3145 
3146 	VM_WARN_ON_ONCE(gen >= MAX_NR_GENS);
3147 
3148 	do {
3149 		/* lru_gen_del_folio() has isolated this page? */
3150 		if (!(old_flags & LRU_GEN_MASK)) {
3151 			/* for shrink_folio_list() */
3152 			new_flags = old_flags | BIT(PG_referenced);
3153 			continue;
3154 		}
3155 
3156 		new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3157 		new_flags |= (gen + 1UL) << LRU_GEN_PGOFF;
3158 	} while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3159 
3160 	return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3161 }
3162 
3163 /* protect pages accessed multiple times through file descriptors */
3164 static int folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming)
3165 {
3166 	int type = folio_is_file_lru(folio);
3167 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3168 	int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
3169 	unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3170 
3171 	VM_WARN_ON_ONCE_FOLIO(!(old_flags & LRU_GEN_MASK), folio);
3172 
3173 	do {
3174 		new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3175 		/* folio_update_gen() has promoted this page? */
3176 		if (new_gen >= 0 && new_gen != old_gen)
3177 			return new_gen;
3178 
3179 		new_gen = (old_gen + 1) % MAX_NR_GENS;
3180 
3181 		new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3182 		new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF;
3183 		/* for folio_end_writeback() */
3184 		if (reclaiming)
3185 			new_flags |= BIT(PG_reclaim);
3186 	} while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3187 
3188 	lru_gen_update_size(lruvec, folio, old_gen, new_gen);
3189 
3190 	return new_gen;
3191 }
3192 
3193 static void update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio,
3194 			      int old_gen, int new_gen)
3195 {
3196 	int type = folio_is_file_lru(folio);
3197 	int zone = folio_zonenum(folio);
3198 	int delta = folio_nr_pages(folio);
3199 
3200 	VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS);
3201 	VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS);
3202 
3203 	walk->batched++;
3204 
3205 	walk->nr_pages[old_gen][type][zone] -= delta;
3206 	walk->nr_pages[new_gen][type][zone] += delta;
3207 }
3208 
3209 static void reset_batch_size(struct lru_gen_mm_walk *walk)
3210 {
3211 	int gen, type, zone;
3212 	struct lruvec *lruvec = walk->lruvec;
3213 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3214 
3215 	walk->batched = 0;
3216 
3217 	for_each_gen_type_zone(gen, type, zone) {
3218 		enum lru_list lru = type * LRU_INACTIVE_FILE;
3219 		int delta = walk->nr_pages[gen][type][zone];
3220 
3221 		if (!delta)
3222 			continue;
3223 
3224 		walk->nr_pages[gen][type][zone] = 0;
3225 		WRITE_ONCE(lrugen->nr_pages[gen][type][zone],
3226 			   lrugen->nr_pages[gen][type][zone] + delta);
3227 
3228 		if (lru_gen_is_active(lruvec, gen))
3229 			lru += LRU_ACTIVE;
3230 		__update_lru_size(lruvec, lru, zone, delta);
3231 	}
3232 }
3233 
3234 static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args)
3235 {
3236 	struct address_space *mapping;
3237 	struct vm_area_struct *vma = args->vma;
3238 	struct lru_gen_mm_walk *walk = args->private;
3239 
3240 	if (!vma_is_accessible(vma))
3241 		return true;
3242 
3243 	if (is_vm_hugetlb_page(vma))
3244 		return true;
3245 
3246 	if (!vma_has_recency(vma))
3247 		return true;
3248 
3249 	if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL))
3250 		return true;
3251 
3252 	if (vma == get_gate_vma(vma->vm_mm))
3253 		return true;
3254 
3255 	if (vma_is_anonymous(vma))
3256 		return !walk->can_swap;
3257 
3258 	if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping))
3259 		return true;
3260 
3261 	mapping = vma->vm_file->f_mapping;
3262 	if (mapping_unevictable(mapping))
3263 		return true;
3264 
3265 	if (shmem_mapping(mapping))
3266 		return !walk->can_swap;
3267 
3268 	/* to exclude special mappings like dax, etc. */
3269 	return !mapping->a_ops->read_folio;
3270 }
3271 
3272 /*
3273  * Some userspace memory allocators map many single-page VMAs. Instead of
3274  * returning back to the PGD table for each of such VMAs, finish an entire PMD
3275  * table to reduce zigzags and improve cache performance.
3276  */
3277 static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args,
3278 			 unsigned long *vm_start, unsigned long *vm_end)
3279 {
3280 	unsigned long start = round_up(*vm_end, size);
3281 	unsigned long end = (start | ~mask) + 1;
3282 	VMA_ITERATOR(vmi, args->mm, start);
3283 
3284 	VM_WARN_ON_ONCE(mask & size);
3285 	VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask));
3286 
3287 	for_each_vma(vmi, args->vma) {
3288 		if (end && end <= args->vma->vm_start)
3289 			return false;
3290 
3291 		if (should_skip_vma(args->vma->vm_start, args->vma->vm_end, args))
3292 			continue;
3293 
3294 		*vm_start = max(start, args->vma->vm_start);
3295 		*vm_end = min(end - 1, args->vma->vm_end - 1) + 1;
3296 
3297 		return true;
3298 	}
3299 
3300 	return false;
3301 }
3302 
3303 static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr,
3304 				 struct pglist_data *pgdat)
3305 {
3306 	unsigned long pfn = pte_pfn(pte);
3307 
3308 	VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3309 
3310 	if (!pte_present(pte) || is_zero_pfn(pfn))
3311 		return -1;
3312 
3313 	if (WARN_ON_ONCE(pte_devmap(pte) || pte_special(pte)))
3314 		return -1;
3315 
3316 	if (!pte_young(pte) && !mm_has_notifiers(vma->vm_mm))
3317 		return -1;
3318 
3319 	if (WARN_ON_ONCE(!pfn_valid(pfn)))
3320 		return -1;
3321 
3322 	if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
3323 		return -1;
3324 
3325 	return pfn;
3326 }
3327 
3328 static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr,
3329 				 struct pglist_data *pgdat)
3330 {
3331 	unsigned long pfn = pmd_pfn(pmd);
3332 
3333 	VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3334 
3335 	if (!pmd_present(pmd) || is_huge_zero_pmd(pmd))
3336 		return -1;
3337 
3338 	if (WARN_ON_ONCE(pmd_devmap(pmd)))
3339 		return -1;
3340 
3341 	if (!pmd_young(pmd) && !mm_has_notifiers(vma->vm_mm))
3342 		return -1;
3343 
3344 	if (WARN_ON_ONCE(!pfn_valid(pfn)))
3345 		return -1;
3346 
3347 	if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
3348 		return -1;
3349 
3350 	return pfn;
3351 }
3352 
3353 static struct folio *get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg,
3354 				   struct pglist_data *pgdat, bool can_swap)
3355 {
3356 	struct folio *folio;
3357 
3358 	folio = pfn_folio(pfn);
3359 	if (folio_nid(folio) != pgdat->node_id)
3360 		return NULL;
3361 
3362 	if (folio_memcg(folio) != memcg)
3363 		return NULL;
3364 
3365 	/* file VMAs can contain anon pages from COW */
3366 	if (!folio_is_file_lru(folio) && !can_swap)
3367 		return NULL;
3368 
3369 	return folio;
3370 }
3371 
3372 static bool suitable_to_scan(int total, int young)
3373 {
3374 	int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8);
3375 
3376 	/* suitable if the average number of young PTEs per cacheline is >=1 */
3377 	return young * n >= total;
3378 }
3379 
3380 static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end,
3381 			   struct mm_walk *args)
3382 {
3383 	int i;
3384 	pte_t *pte;
3385 	spinlock_t *ptl;
3386 	unsigned long addr;
3387 	int total = 0;
3388 	int young = 0;
3389 	struct lru_gen_mm_walk *walk = args->private;
3390 	struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3391 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3392 	DEFINE_MAX_SEQ(walk->lruvec);
3393 	int old_gen, new_gen = lru_gen_from_seq(max_seq);
3394 	pmd_t pmdval;
3395 
3396 	pte = pte_offset_map_rw_nolock(args->mm, pmd, start & PMD_MASK, &pmdval,
3397 				       &ptl);
3398 	if (!pte)
3399 		return false;
3400 	if (!spin_trylock(ptl)) {
3401 		pte_unmap(pte);
3402 		return false;
3403 	}
3404 
3405 	if (unlikely(!pmd_same(pmdval, pmdp_get_lockless(pmd)))) {
3406 		pte_unmap_unlock(pte, ptl);
3407 		return false;
3408 	}
3409 
3410 	arch_enter_lazy_mmu_mode();
3411 restart:
3412 	for (i = pte_index(start), addr = start; addr != end; i++, addr += PAGE_SIZE) {
3413 		unsigned long pfn;
3414 		struct folio *folio;
3415 		pte_t ptent = ptep_get(pte + i);
3416 
3417 		total++;
3418 		walk->mm_stats[MM_LEAF_TOTAL]++;
3419 
3420 		pfn = get_pte_pfn(ptent, args->vma, addr, pgdat);
3421 		if (pfn == -1)
3422 			continue;
3423 
3424 		folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
3425 		if (!folio)
3426 			continue;
3427 
3428 		if (!ptep_clear_young_notify(args->vma, addr, pte + i))
3429 			continue;
3430 
3431 		young++;
3432 		walk->mm_stats[MM_LEAF_YOUNG]++;
3433 
3434 		if (pte_dirty(ptent) && !folio_test_dirty(folio) &&
3435 		    !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
3436 		      !folio_test_swapcache(folio)))
3437 			folio_mark_dirty(folio);
3438 
3439 		old_gen = folio_update_gen(folio, new_gen);
3440 		if (old_gen >= 0 && old_gen != new_gen)
3441 			update_batch_size(walk, folio, old_gen, new_gen);
3442 	}
3443 
3444 	if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, &start, &end))
3445 		goto restart;
3446 
3447 	arch_leave_lazy_mmu_mode();
3448 	pte_unmap_unlock(pte, ptl);
3449 
3450 	return suitable_to_scan(total, young);
3451 }
3452 
3453 static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma,
3454 				  struct mm_walk *args, unsigned long *bitmap, unsigned long *first)
3455 {
3456 	int i;
3457 	pmd_t *pmd;
3458 	spinlock_t *ptl;
3459 	struct lru_gen_mm_walk *walk = args->private;
3460 	struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3461 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3462 	DEFINE_MAX_SEQ(walk->lruvec);
3463 	int old_gen, new_gen = lru_gen_from_seq(max_seq);
3464 
3465 	VM_WARN_ON_ONCE(pud_leaf(*pud));
3466 
3467 	/* try to batch at most 1+MIN_LRU_BATCH+1 entries */
3468 	if (*first == -1) {
3469 		*first = addr;
3470 		bitmap_zero(bitmap, MIN_LRU_BATCH);
3471 		return;
3472 	}
3473 
3474 	i = addr == -1 ? 0 : pmd_index(addr) - pmd_index(*first);
3475 	if (i && i <= MIN_LRU_BATCH) {
3476 		__set_bit(i - 1, bitmap);
3477 		return;
3478 	}
3479 
3480 	pmd = pmd_offset(pud, *first);
3481 
3482 	ptl = pmd_lockptr(args->mm, pmd);
3483 	if (!spin_trylock(ptl))
3484 		goto done;
3485 
3486 	arch_enter_lazy_mmu_mode();
3487 
3488 	do {
3489 		unsigned long pfn;
3490 		struct folio *folio;
3491 
3492 		/* don't round down the first address */
3493 		addr = i ? (*first & PMD_MASK) + i * PMD_SIZE : *first;
3494 
3495 		if (!pmd_present(pmd[i]))
3496 			goto next;
3497 
3498 		if (!pmd_trans_huge(pmd[i])) {
3499 			if (!walk->force_scan && should_clear_pmd_young() &&
3500 			    !mm_has_notifiers(args->mm))
3501 				pmdp_test_and_clear_young(vma, addr, pmd + i);
3502 			goto next;
3503 		}
3504 
3505 		pfn = get_pmd_pfn(pmd[i], vma, addr, pgdat);
3506 		if (pfn == -1)
3507 			goto next;
3508 
3509 		folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
3510 		if (!folio)
3511 			goto next;
3512 
3513 		if (!pmdp_clear_young_notify(vma, addr, pmd + i))
3514 			goto next;
3515 
3516 		walk->mm_stats[MM_LEAF_YOUNG]++;
3517 
3518 		if (pmd_dirty(pmd[i]) && !folio_test_dirty(folio) &&
3519 		    !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
3520 		      !folio_test_swapcache(folio)))
3521 			folio_mark_dirty(folio);
3522 
3523 		old_gen = folio_update_gen(folio, new_gen);
3524 		if (old_gen >= 0 && old_gen != new_gen)
3525 			update_batch_size(walk, folio, old_gen, new_gen);
3526 next:
3527 		i = i > MIN_LRU_BATCH ? 0 : find_next_bit(bitmap, MIN_LRU_BATCH, i) + 1;
3528 	} while (i <= MIN_LRU_BATCH);
3529 
3530 	arch_leave_lazy_mmu_mode();
3531 	spin_unlock(ptl);
3532 done:
3533 	*first = -1;
3534 }
3535 
3536 static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end,
3537 			   struct mm_walk *args)
3538 {
3539 	int i;
3540 	pmd_t *pmd;
3541 	unsigned long next;
3542 	unsigned long addr;
3543 	struct vm_area_struct *vma;
3544 	DECLARE_BITMAP(bitmap, MIN_LRU_BATCH);
3545 	unsigned long first = -1;
3546 	struct lru_gen_mm_walk *walk = args->private;
3547 	struct lru_gen_mm_state *mm_state = get_mm_state(walk->lruvec);
3548 
3549 	VM_WARN_ON_ONCE(pud_leaf(*pud));
3550 
3551 	/*
3552 	 * Finish an entire PMD in two passes: the first only reaches to PTE
3553 	 * tables to avoid taking the PMD lock; the second, if necessary, takes
3554 	 * the PMD lock to clear the accessed bit in PMD entries.
3555 	 */
3556 	pmd = pmd_offset(pud, start & PUD_MASK);
3557 restart:
3558 	/* walk_pte_range() may call get_next_vma() */
3559 	vma = args->vma;
3560 	for (i = pmd_index(start), addr = start; addr != end; i++, addr = next) {
3561 		pmd_t val = pmdp_get_lockless(pmd + i);
3562 
3563 		next = pmd_addr_end(addr, end);
3564 
3565 		if (!pmd_present(val) || is_huge_zero_pmd(val)) {
3566 			walk->mm_stats[MM_LEAF_TOTAL]++;
3567 			continue;
3568 		}
3569 
3570 		if (pmd_trans_huge(val)) {
3571 			struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3572 			unsigned long pfn = get_pmd_pfn(val, vma, addr, pgdat);
3573 
3574 			walk->mm_stats[MM_LEAF_TOTAL]++;
3575 
3576 			if (pfn != -1)
3577 				walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
3578 			continue;
3579 		}
3580 
3581 		if (!walk->force_scan && should_clear_pmd_young() &&
3582 		    !mm_has_notifiers(args->mm)) {
3583 			if (!pmd_young(val))
3584 				continue;
3585 
3586 			walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
3587 		}
3588 
3589 		if (!walk->force_scan && !test_bloom_filter(mm_state, walk->seq, pmd + i))
3590 			continue;
3591 
3592 		walk->mm_stats[MM_NONLEAF_FOUND]++;
3593 
3594 		if (!walk_pte_range(&val, addr, next, args))
3595 			continue;
3596 
3597 		walk->mm_stats[MM_NONLEAF_ADDED]++;
3598 
3599 		/* carry over to the next generation */
3600 		update_bloom_filter(mm_state, walk->seq + 1, pmd + i);
3601 	}
3602 
3603 	walk_pmd_range_locked(pud, -1, vma, args, bitmap, &first);
3604 
3605 	if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, &start, &end))
3606 		goto restart;
3607 }
3608 
3609 static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end,
3610 			  struct mm_walk *args)
3611 {
3612 	int i;
3613 	pud_t *pud;
3614 	unsigned long addr;
3615 	unsigned long next;
3616 	struct lru_gen_mm_walk *walk = args->private;
3617 
3618 	VM_WARN_ON_ONCE(p4d_leaf(*p4d));
3619 
3620 	pud = pud_offset(p4d, start & P4D_MASK);
3621 restart:
3622 	for (i = pud_index(start), addr = start; addr != end; i++, addr = next) {
3623 		pud_t val = READ_ONCE(pud[i]);
3624 
3625 		next = pud_addr_end(addr, end);
3626 
3627 		if (!pud_present(val) || WARN_ON_ONCE(pud_leaf(val)))
3628 			continue;
3629 
3630 		walk_pmd_range(&val, addr, next, args);
3631 
3632 		if (need_resched() || walk->batched >= MAX_LRU_BATCH) {
3633 			end = (addr | ~PUD_MASK) + 1;
3634 			goto done;
3635 		}
3636 	}
3637 
3638 	if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, &start, &end))
3639 		goto restart;
3640 
3641 	end = round_up(end, P4D_SIZE);
3642 done:
3643 	if (!end || !args->vma)
3644 		return 1;
3645 
3646 	walk->next_addr = max(end, args->vma->vm_start);
3647 
3648 	return -EAGAIN;
3649 }
3650 
3651 static void walk_mm(struct mm_struct *mm, struct lru_gen_mm_walk *walk)
3652 {
3653 	static const struct mm_walk_ops mm_walk_ops = {
3654 		.test_walk = should_skip_vma,
3655 		.p4d_entry = walk_pud_range,
3656 		.walk_lock = PGWALK_RDLOCK,
3657 	};
3658 	int err;
3659 	struct lruvec *lruvec = walk->lruvec;
3660 
3661 	walk->next_addr = FIRST_USER_ADDRESS;
3662 
3663 	do {
3664 		DEFINE_MAX_SEQ(lruvec);
3665 
3666 		err = -EBUSY;
3667 
3668 		/* another thread might have called inc_max_seq() */
3669 		if (walk->seq != max_seq)
3670 			break;
3671 
3672 		/* the caller might be holding the lock for write */
3673 		if (mmap_read_trylock(mm)) {
3674 			err = walk_page_range(mm, walk->next_addr, ULONG_MAX, &mm_walk_ops, walk);
3675 
3676 			mmap_read_unlock(mm);
3677 		}
3678 
3679 		if (walk->batched) {
3680 			spin_lock_irq(&lruvec->lru_lock);
3681 			reset_batch_size(walk);
3682 			spin_unlock_irq(&lruvec->lru_lock);
3683 		}
3684 
3685 		cond_resched();
3686 	} while (err == -EAGAIN);
3687 }
3688 
3689 static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat, bool force_alloc)
3690 {
3691 	struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
3692 
3693 	if (pgdat && current_is_kswapd()) {
3694 		VM_WARN_ON_ONCE(walk);
3695 
3696 		walk = &pgdat->mm_walk;
3697 	} else if (!walk && force_alloc) {
3698 		VM_WARN_ON_ONCE(current_is_kswapd());
3699 
3700 		walk = kzalloc(sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
3701 	}
3702 
3703 	current->reclaim_state->mm_walk = walk;
3704 
3705 	return walk;
3706 }
3707 
3708 static void clear_mm_walk(void)
3709 {
3710 	struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
3711 
3712 	VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages)));
3713 	VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats)));
3714 
3715 	current->reclaim_state->mm_walk = NULL;
3716 
3717 	if (!current_is_kswapd())
3718 		kfree(walk);
3719 }
3720 
3721 static bool inc_min_seq(struct lruvec *lruvec, int type, bool can_swap)
3722 {
3723 	int zone;
3724 	int remaining = MAX_LRU_BATCH;
3725 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3726 	int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
3727 
3728 	if (type == LRU_GEN_ANON && !can_swap)
3729 		goto done;
3730 
3731 	/* prevent cold/hot inversion if force_scan is true */
3732 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3733 		struct list_head *head = &lrugen->folios[old_gen][type][zone];
3734 
3735 		while (!list_empty(head)) {
3736 			struct folio *folio = lru_to_folio(head);
3737 
3738 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
3739 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
3740 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
3741 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
3742 
3743 			new_gen = folio_inc_gen(lruvec, folio, false);
3744 			list_move_tail(&folio->lru, &lrugen->folios[new_gen][type][zone]);
3745 
3746 			if (!--remaining)
3747 				return false;
3748 		}
3749 	}
3750 done:
3751 	reset_ctrl_pos(lruvec, type, true);
3752 	WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1);
3753 
3754 	return true;
3755 }
3756 
3757 static bool try_to_inc_min_seq(struct lruvec *lruvec, bool can_swap)
3758 {
3759 	int gen, type, zone;
3760 	bool success = false;
3761 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3762 	DEFINE_MIN_SEQ(lruvec);
3763 
3764 	VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
3765 
3766 	/* find the oldest populated generation */
3767 	for (type = !can_swap; type < ANON_AND_FILE; type++) {
3768 		while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) {
3769 			gen = lru_gen_from_seq(min_seq[type]);
3770 
3771 			for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3772 				if (!list_empty(&lrugen->folios[gen][type][zone]))
3773 					goto next;
3774 			}
3775 
3776 			min_seq[type]++;
3777 		}
3778 next:
3779 		;
3780 	}
3781 
3782 	/* see the comment on lru_gen_folio */
3783 	if (can_swap) {
3784 		min_seq[LRU_GEN_ANON] = min(min_seq[LRU_GEN_ANON], min_seq[LRU_GEN_FILE]);
3785 		min_seq[LRU_GEN_FILE] = max(min_seq[LRU_GEN_ANON], lrugen->min_seq[LRU_GEN_FILE]);
3786 	}
3787 
3788 	for (type = !can_swap; type < ANON_AND_FILE; type++) {
3789 		if (min_seq[type] == lrugen->min_seq[type])
3790 			continue;
3791 
3792 		reset_ctrl_pos(lruvec, type, true);
3793 		WRITE_ONCE(lrugen->min_seq[type], min_seq[type]);
3794 		success = true;
3795 	}
3796 
3797 	return success;
3798 }
3799 
3800 static bool inc_max_seq(struct lruvec *lruvec, unsigned long seq,
3801 			bool can_swap, bool force_scan)
3802 {
3803 	bool success;
3804 	int prev, next;
3805 	int type, zone;
3806 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3807 restart:
3808 	if (seq < READ_ONCE(lrugen->max_seq))
3809 		return false;
3810 
3811 	spin_lock_irq(&lruvec->lru_lock);
3812 
3813 	VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
3814 
3815 	success = seq == lrugen->max_seq;
3816 	if (!success)
3817 		goto unlock;
3818 
3819 	for (type = ANON_AND_FILE - 1; type >= 0; type--) {
3820 		if (get_nr_gens(lruvec, type) != MAX_NR_GENS)
3821 			continue;
3822 
3823 		VM_WARN_ON_ONCE(!force_scan && (type == LRU_GEN_FILE || can_swap));
3824 
3825 		if (inc_min_seq(lruvec, type, can_swap))
3826 			continue;
3827 
3828 		spin_unlock_irq(&lruvec->lru_lock);
3829 		cond_resched();
3830 		goto restart;
3831 	}
3832 
3833 	/*
3834 	 * Update the active/inactive LRU sizes for compatibility. Both sides of
3835 	 * the current max_seq need to be covered, since max_seq+1 can overlap
3836 	 * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do
3837 	 * overlap, cold/hot inversion happens.
3838 	 */
3839 	prev = lru_gen_from_seq(lrugen->max_seq - 1);
3840 	next = lru_gen_from_seq(lrugen->max_seq + 1);
3841 
3842 	for (type = 0; type < ANON_AND_FILE; type++) {
3843 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3844 			enum lru_list lru = type * LRU_INACTIVE_FILE;
3845 			long delta = lrugen->nr_pages[prev][type][zone] -
3846 				     lrugen->nr_pages[next][type][zone];
3847 
3848 			if (!delta)
3849 				continue;
3850 
3851 			__update_lru_size(lruvec, lru, zone, delta);
3852 			__update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta);
3853 		}
3854 	}
3855 
3856 	for (type = 0; type < ANON_AND_FILE; type++)
3857 		reset_ctrl_pos(lruvec, type, false);
3858 
3859 	WRITE_ONCE(lrugen->timestamps[next], jiffies);
3860 	/* make sure preceding modifications appear */
3861 	smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1);
3862 unlock:
3863 	spin_unlock_irq(&lruvec->lru_lock);
3864 
3865 	return success;
3866 }
3867 
3868 static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long seq,
3869 			       bool can_swap, bool force_scan)
3870 {
3871 	bool success;
3872 	struct lru_gen_mm_walk *walk;
3873 	struct mm_struct *mm = NULL;
3874 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3875 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
3876 
3877 	VM_WARN_ON_ONCE(seq > READ_ONCE(lrugen->max_seq));
3878 
3879 	if (!mm_state)
3880 		return inc_max_seq(lruvec, seq, can_swap, force_scan);
3881 
3882 	/* see the comment in iterate_mm_list() */
3883 	if (seq <= READ_ONCE(mm_state->seq))
3884 		return false;
3885 
3886 	/*
3887 	 * If the hardware doesn't automatically set the accessed bit, fallback
3888 	 * to lru_gen_look_around(), which only clears the accessed bit in a
3889 	 * handful of PTEs. Spreading the work out over a period of time usually
3890 	 * is less efficient, but it avoids bursty page faults.
3891 	 */
3892 	if (!should_walk_mmu()) {
3893 		success = iterate_mm_list_nowalk(lruvec, seq);
3894 		goto done;
3895 	}
3896 
3897 	walk = set_mm_walk(NULL, true);
3898 	if (!walk) {
3899 		success = iterate_mm_list_nowalk(lruvec, seq);
3900 		goto done;
3901 	}
3902 
3903 	walk->lruvec = lruvec;
3904 	walk->seq = seq;
3905 	walk->can_swap = can_swap;
3906 	walk->force_scan = force_scan;
3907 
3908 	do {
3909 		success = iterate_mm_list(walk, &mm);
3910 		if (mm)
3911 			walk_mm(mm, walk);
3912 	} while (mm);
3913 done:
3914 	if (success) {
3915 		success = inc_max_seq(lruvec, seq, can_swap, force_scan);
3916 		WARN_ON_ONCE(!success);
3917 	}
3918 
3919 	return success;
3920 }
3921 
3922 /******************************************************************************
3923  *                          working set protection
3924  ******************************************************************************/
3925 
3926 static void set_initial_priority(struct pglist_data *pgdat, struct scan_control *sc)
3927 {
3928 	int priority;
3929 	unsigned long reclaimable;
3930 
3931 	if (sc->priority != DEF_PRIORITY || sc->nr_to_reclaim < MIN_LRU_BATCH)
3932 		return;
3933 	/*
3934 	 * Determine the initial priority based on
3935 	 * (total >> priority) * reclaimed_to_scanned_ratio = nr_to_reclaim,
3936 	 * where reclaimed_to_scanned_ratio = inactive / total.
3937 	 */
3938 	reclaimable = node_page_state(pgdat, NR_INACTIVE_FILE);
3939 	if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
3940 		reclaimable += node_page_state(pgdat, NR_INACTIVE_ANON);
3941 
3942 	/* round down reclaimable and round up sc->nr_to_reclaim */
3943 	priority = fls_long(reclaimable) - 1 - fls_long(sc->nr_to_reclaim - 1);
3944 
3945 	/*
3946 	 * The estimation is based on LRU pages only, so cap it to prevent
3947 	 * overshoots of shrinker objects by large margins.
3948 	 */
3949 	sc->priority = clamp(priority, DEF_PRIORITY / 2, DEF_PRIORITY);
3950 }
3951 
3952 static bool lruvec_is_sizable(struct lruvec *lruvec, struct scan_control *sc)
3953 {
3954 	int gen, type, zone;
3955 	unsigned long total = 0;
3956 	bool can_swap = get_swappiness(lruvec, sc);
3957 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3958 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3959 	DEFINE_MAX_SEQ(lruvec);
3960 	DEFINE_MIN_SEQ(lruvec);
3961 
3962 	for (type = !can_swap; type < ANON_AND_FILE; type++) {
3963 		unsigned long seq;
3964 
3965 		for (seq = min_seq[type]; seq <= max_seq; seq++) {
3966 			gen = lru_gen_from_seq(seq);
3967 
3968 			for (zone = 0; zone < MAX_NR_ZONES; zone++)
3969 				total += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
3970 		}
3971 	}
3972 
3973 	/* whether the size is big enough to be helpful */
3974 	return mem_cgroup_online(memcg) ? (total >> sc->priority) : total;
3975 }
3976 
3977 static bool lruvec_is_reclaimable(struct lruvec *lruvec, struct scan_control *sc,
3978 				  unsigned long min_ttl)
3979 {
3980 	int gen;
3981 	unsigned long birth;
3982 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3983 	DEFINE_MIN_SEQ(lruvec);
3984 
3985 	if (mem_cgroup_below_min(NULL, memcg))
3986 		return false;
3987 
3988 	if (!lruvec_is_sizable(lruvec, sc))
3989 		return false;
3990 
3991 	/* see the comment on lru_gen_folio */
3992 	gen = lru_gen_from_seq(min_seq[LRU_GEN_FILE]);
3993 	birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
3994 
3995 	return time_is_before_jiffies(birth + min_ttl);
3996 }
3997 
3998 /* to protect the working set of the last N jiffies */
3999 static unsigned long lru_gen_min_ttl __read_mostly;
4000 
4001 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
4002 {
4003 	struct mem_cgroup *memcg;
4004 	unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl);
4005 	bool reclaimable = !min_ttl;
4006 
4007 	VM_WARN_ON_ONCE(!current_is_kswapd());
4008 
4009 	set_initial_priority(pgdat, sc);
4010 
4011 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
4012 	do {
4013 		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4014 
4015 		mem_cgroup_calculate_protection(NULL, memcg);
4016 
4017 		if (!reclaimable)
4018 			reclaimable = lruvec_is_reclaimable(lruvec, sc, min_ttl);
4019 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
4020 
4021 	/*
4022 	 * The main goal is to OOM kill if every generation from all memcgs is
4023 	 * younger than min_ttl. However, another possibility is all memcgs are
4024 	 * either too small or below min.
4025 	 */
4026 	if (!reclaimable && mutex_trylock(&oom_lock)) {
4027 		struct oom_control oc = {
4028 			.gfp_mask = sc->gfp_mask,
4029 		};
4030 
4031 		out_of_memory(&oc);
4032 
4033 		mutex_unlock(&oom_lock);
4034 	}
4035 }
4036 
4037 /******************************************************************************
4038  *                          rmap/PT walk feedback
4039  ******************************************************************************/
4040 
4041 /*
4042  * This function exploits spatial locality when shrink_folio_list() walks the
4043  * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If
4044  * the scan was done cacheline efficiently, it adds the PMD entry pointing to
4045  * the PTE table to the Bloom filter. This forms a feedback loop between the
4046  * eviction and the aging.
4047  */
4048 bool lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
4049 {
4050 	int i;
4051 	unsigned long start;
4052 	unsigned long end;
4053 	struct lru_gen_mm_walk *walk;
4054 	int young = 1;
4055 	pte_t *pte = pvmw->pte;
4056 	unsigned long addr = pvmw->address;
4057 	struct vm_area_struct *vma = pvmw->vma;
4058 	struct folio *folio = pfn_folio(pvmw->pfn);
4059 	bool can_swap = !folio_is_file_lru(folio);
4060 	struct mem_cgroup *memcg = folio_memcg(folio);
4061 	struct pglist_data *pgdat = folio_pgdat(folio);
4062 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4063 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
4064 	DEFINE_MAX_SEQ(lruvec);
4065 	int old_gen, new_gen = lru_gen_from_seq(max_seq);
4066 
4067 	lockdep_assert_held(pvmw->ptl);
4068 	VM_WARN_ON_ONCE_FOLIO(folio_test_lru(folio), folio);
4069 
4070 	if (!ptep_clear_young_notify(vma, addr, pte))
4071 		return false;
4072 
4073 	if (spin_is_contended(pvmw->ptl))
4074 		return true;
4075 
4076 	/* exclude special VMAs containing anon pages from COW */
4077 	if (vma->vm_flags & VM_SPECIAL)
4078 		return true;
4079 
4080 	/* avoid taking the LRU lock under the PTL when possible */
4081 	walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL;
4082 
4083 	start = max(addr & PMD_MASK, vma->vm_start);
4084 	end = min(addr | ~PMD_MASK, vma->vm_end - 1) + 1;
4085 
4086 	if (end - start == PAGE_SIZE)
4087 		return true;
4088 
4089 	if (end - start > MIN_LRU_BATCH * PAGE_SIZE) {
4090 		if (addr - start < MIN_LRU_BATCH * PAGE_SIZE / 2)
4091 			end = start + MIN_LRU_BATCH * PAGE_SIZE;
4092 		else if (end - addr < MIN_LRU_BATCH * PAGE_SIZE / 2)
4093 			start = end - MIN_LRU_BATCH * PAGE_SIZE;
4094 		else {
4095 			start = addr - MIN_LRU_BATCH * PAGE_SIZE / 2;
4096 			end = addr + MIN_LRU_BATCH * PAGE_SIZE / 2;
4097 		}
4098 	}
4099 
4100 	arch_enter_lazy_mmu_mode();
4101 
4102 	pte -= (addr - start) / PAGE_SIZE;
4103 
4104 	for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) {
4105 		unsigned long pfn;
4106 		pte_t ptent = ptep_get(pte + i);
4107 
4108 		pfn = get_pte_pfn(ptent, vma, addr, pgdat);
4109 		if (pfn == -1)
4110 			continue;
4111 
4112 		folio = get_pfn_folio(pfn, memcg, pgdat, can_swap);
4113 		if (!folio)
4114 			continue;
4115 
4116 		if (!ptep_clear_young_notify(vma, addr, pte + i))
4117 			continue;
4118 
4119 		young++;
4120 
4121 		if (pte_dirty(ptent) && !folio_test_dirty(folio) &&
4122 		    !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
4123 		      !folio_test_swapcache(folio)))
4124 			folio_mark_dirty(folio);
4125 
4126 		if (walk) {
4127 			old_gen = folio_update_gen(folio, new_gen);
4128 			if (old_gen >= 0 && old_gen != new_gen)
4129 				update_batch_size(walk, folio, old_gen, new_gen);
4130 
4131 			continue;
4132 		}
4133 
4134 		old_gen = folio_lru_gen(folio);
4135 		if (old_gen < 0)
4136 			folio_set_referenced(folio);
4137 		else if (old_gen != new_gen) {
4138 			folio_clear_lru_refs(folio);
4139 			folio_activate(folio);
4140 		}
4141 	}
4142 
4143 	arch_leave_lazy_mmu_mode();
4144 
4145 	/* feedback from rmap walkers to page table walkers */
4146 	if (mm_state && suitable_to_scan(i, young))
4147 		update_bloom_filter(mm_state, max_seq, pvmw->pmd);
4148 
4149 	return true;
4150 }
4151 
4152 /******************************************************************************
4153  *                          memcg LRU
4154  ******************************************************************************/
4155 
4156 /* see the comment on MEMCG_NR_GENS */
4157 enum {
4158 	MEMCG_LRU_NOP,
4159 	MEMCG_LRU_HEAD,
4160 	MEMCG_LRU_TAIL,
4161 	MEMCG_LRU_OLD,
4162 	MEMCG_LRU_YOUNG,
4163 };
4164 
4165 static void lru_gen_rotate_memcg(struct lruvec *lruvec, int op)
4166 {
4167 	int seg;
4168 	int old, new;
4169 	unsigned long flags;
4170 	int bin = get_random_u32_below(MEMCG_NR_BINS);
4171 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4172 
4173 	spin_lock_irqsave(&pgdat->memcg_lru.lock, flags);
4174 
4175 	VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list));
4176 
4177 	seg = 0;
4178 	new = old = lruvec->lrugen.gen;
4179 
4180 	/* see the comment on MEMCG_NR_GENS */
4181 	if (op == MEMCG_LRU_HEAD)
4182 		seg = MEMCG_LRU_HEAD;
4183 	else if (op == MEMCG_LRU_TAIL)
4184 		seg = MEMCG_LRU_TAIL;
4185 	else if (op == MEMCG_LRU_OLD)
4186 		new = get_memcg_gen(pgdat->memcg_lru.seq);
4187 	else if (op == MEMCG_LRU_YOUNG)
4188 		new = get_memcg_gen(pgdat->memcg_lru.seq + 1);
4189 	else
4190 		VM_WARN_ON_ONCE(true);
4191 
4192 	WRITE_ONCE(lruvec->lrugen.seg, seg);
4193 	WRITE_ONCE(lruvec->lrugen.gen, new);
4194 
4195 	hlist_nulls_del_rcu(&lruvec->lrugen.list);
4196 
4197 	if (op == MEMCG_LRU_HEAD || op == MEMCG_LRU_OLD)
4198 		hlist_nulls_add_head_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
4199 	else
4200 		hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
4201 
4202 	pgdat->memcg_lru.nr_memcgs[old]--;
4203 	pgdat->memcg_lru.nr_memcgs[new]++;
4204 
4205 	if (!pgdat->memcg_lru.nr_memcgs[old] && old == get_memcg_gen(pgdat->memcg_lru.seq))
4206 		WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
4207 
4208 	spin_unlock_irqrestore(&pgdat->memcg_lru.lock, flags);
4209 }
4210 
4211 #ifdef CONFIG_MEMCG
4212 
4213 void lru_gen_online_memcg(struct mem_cgroup *memcg)
4214 {
4215 	int gen;
4216 	int nid;
4217 	int bin = get_random_u32_below(MEMCG_NR_BINS);
4218 
4219 	for_each_node(nid) {
4220 		struct pglist_data *pgdat = NODE_DATA(nid);
4221 		struct lruvec *lruvec = get_lruvec(memcg, nid);
4222 
4223 		spin_lock_irq(&pgdat->memcg_lru.lock);
4224 
4225 		VM_WARN_ON_ONCE(!hlist_nulls_unhashed(&lruvec->lrugen.list));
4226 
4227 		gen = get_memcg_gen(pgdat->memcg_lru.seq);
4228 
4229 		lruvec->lrugen.gen = gen;
4230 
4231 		hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[gen][bin]);
4232 		pgdat->memcg_lru.nr_memcgs[gen]++;
4233 
4234 		spin_unlock_irq(&pgdat->memcg_lru.lock);
4235 	}
4236 }
4237 
4238 void lru_gen_offline_memcg(struct mem_cgroup *memcg)
4239 {
4240 	int nid;
4241 
4242 	for_each_node(nid) {
4243 		struct lruvec *lruvec = get_lruvec(memcg, nid);
4244 
4245 		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_OLD);
4246 	}
4247 }
4248 
4249 void lru_gen_release_memcg(struct mem_cgroup *memcg)
4250 {
4251 	int gen;
4252 	int nid;
4253 
4254 	for_each_node(nid) {
4255 		struct pglist_data *pgdat = NODE_DATA(nid);
4256 		struct lruvec *lruvec = get_lruvec(memcg, nid);
4257 
4258 		spin_lock_irq(&pgdat->memcg_lru.lock);
4259 
4260 		if (hlist_nulls_unhashed(&lruvec->lrugen.list))
4261 			goto unlock;
4262 
4263 		gen = lruvec->lrugen.gen;
4264 
4265 		hlist_nulls_del_init_rcu(&lruvec->lrugen.list);
4266 		pgdat->memcg_lru.nr_memcgs[gen]--;
4267 
4268 		if (!pgdat->memcg_lru.nr_memcgs[gen] && gen == get_memcg_gen(pgdat->memcg_lru.seq))
4269 			WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
4270 unlock:
4271 		spin_unlock_irq(&pgdat->memcg_lru.lock);
4272 	}
4273 }
4274 
4275 void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid)
4276 {
4277 	struct lruvec *lruvec = get_lruvec(memcg, nid);
4278 
4279 	/* see the comment on MEMCG_NR_GENS */
4280 	if (READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_HEAD)
4281 		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_HEAD);
4282 }
4283 
4284 #endif /* CONFIG_MEMCG */
4285 
4286 /******************************************************************************
4287  *                          the eviction
4288  ******************************************************************************/
4289 
4290 static bool sort_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc,
4291 		       int tier_idx)
4292 {
4293 	bool success;
4294 	bool dirty, writeback;
4295 	int gen = folio_lru_gen(folio);
4296 	int type = folio_is_file_lru(folio);
4297 	int zone = folio_zonenum(folio);
4298 	int delta = folio_nr_pages(folio);
4299 	int refs = folio_lru_refs(folio);
4300 	int tier = lru_tier_from_refs(refs);
4301 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4302 
4303 	VM_WARN_ON_ONCE_FOLIO(gen >= MAX_NR_GENS, folio);
4304 
4305 	/* unevictable */
4306 	if (!folio_evictable(folio)) {
4307 		success = lru_gen_del_folio(lruvec, folio, true);
4308 		VM_WARN_ON_ONCE_FOLIO(!success, folio);
4309 		folio_set_unevictable(folio);
4310 		lruvec_add_folio(lruvec, folio);
4311 		__count_vm_events(UNEVICTABLE_PGCULLED, delta);
4312 		return true;
4313 	}
4314 
4315 	/* promoted */
4316 	if (gen != lru_gen_from_seq(lrugen->min_seq[type])) {
4317 		list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4318 		return true;
4319 	}
4320 
4321 	/* protected */
4322 	if (tier > tier_idx || refs == BIT(LRU_REFS_WIDTH)) {
4323 		int hist = lru_hist_from_seq(lrugen->min_seq[type]);
4324 
4325 		gen = folio_inc_gen(lruvec, folio, false);
4326 		list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]);
4327 
4328 		WRITE_ONCE(lrugen->protected[hist][type][tier - 1],
4329 			   lrugen->protected[hist][type][tier - 1] + delta);
4330 		return true;
4331 	}
4332 
4333 	/* ineligible */
4334 	if (!folio_test_lru(folio) || zone > sc->reclaim_idx) {
4335 		gen = folio_inc_gen(lruvec, folio, false);
4336 		list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]);
4337 		return true;
4338 	}
4339 
4340 	dirty = folio_test_dirty(folio);
4341 	writeback = folio_test_writeback(folio);
4342 	if (type == LRU_GEN_FILE && dirty) {
4343 		sc->nr.file_taken += delta;
4344 		if (!writeback)
4345 			sc->nr.unqueued_dirty += delta;
4346 	}
4347 
4348 	/* waiting for writeback */
4349 	if (folio_test_locked(folio) || writeback ||
4350 	    (type == LRU_GEN_FILE && dirty)) {
4351 		gen = folio_inc_gen(lruvec, folio, true);
4352 		list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4353 		return true;
4354 	}
4355 
4356 	return false;
4357 }
4358 
4359 static bool isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc)
4360 {
4361 	bool success;
4362 
4363 	/* swap constrained */
4364 	if (!(sc->gfp_mask & __GFP_IO) &&
4365 	    (folio_test_dirty(folio) ||
4366 	     (folio_test_anon(folio) && !folio_test_swapcache(folio))))
4367 		return false;
4368 
4369 	/* raced with release_pages() */
4370 	if (!folio_try_get(folio))
4371 		return false;
4372 
4373 	/* raced with another isolation */
4374 	if (!folio_test_clear_lru(folio)) {
4375 		folio_put(folio);
4376 		return false;
4377 	}
4378 
4379 	/* see the comment on MAX_NR_TIERS */
4380 	if (!folio_test_referenced(folio))
4381 		folio_clear_lru_refs(folio);
4382 
4383 	/* for shrink_folio_list() */
4384 	folio_clear_reclaim(folio);
4385 	folio_clear_referenced(folio);
4386 
4387 	success = lru_gen_del_folio(lruvec, folio, true);
4388 	VM_WARN_ON_ONCE_FOLIO(!success, folio);
4389 
4390 	return true;
4391 }
4392 
4393 static int scan_folios(struct lruvec *lruvec, struct scan_control *sc,
4394 		       int type, int tier, struct list_head *list)
4395 {
4396 	int i;
4397 	int gen;
4398 	enum vm_event_item item;
4399 	int sorted = 0;
4400 	int scanned = 0;
4401 	int isolated = 0;
4402 	int skipped = 0;
4403 	int remaining = MAX_LRU_BATCH;
4404 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4405 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4406 
4407 	VM_WARN_ON_ONCE(!list_empty(list));
4408 
4409 	if (get_nr_gens(lruvec, type) == MIN_NR_GENS)
4410 		return 0;
4411 
4412 	gen = lru_gen_from_seq(lrugen->min_seq[type]);
4413 
4414 	for (i = MAX_NR_ZONES; i > 0; i--) {
4415 		LIST_HEAD(moved);
4416 		int skipped_zone = 0;
4417 		int zone = (sc->reclaim_idx + i) % MAX_NR_ZONES;
4418 		struct list_head *head = &lrugen->folios[gen][type][zone];
4419 
4420 		while (!list_empty(head)) {
4421 			struct folio *folio = lru_to_folio(head);
4422 			int delta = folio_nr_pages(folio);
4423 
4424 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
4425 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
4426 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
4427 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
4428 
4429 			scanned += delta;
4430 
4431 			if (sort_folio(lruvec, folio, sc, tier))
4432 				sorted += delta;
4433 			else if (isolate_folio(lruvec, folio, sc)) {
4434 				list_add(&folio->lru, list);
4435 				isolated += delta;
4436 			} else {
4437 				list_move(&folio->lru, &moved);
4438 				skipped_zone += delta;
4439 			}
4440 
4441 			if (!--remaining || max(isolated, skipped_zone) >= MIN_LRU_BATCH)
4442 				break;
4443 		}
4444 
4445 		if (skipped_zone) {
4446 			list_splice(&moved, head);
4447 			__count_zid_vm_events(PGSCAN_SKIP, zone, skipped_zone);
4448 			skipped += skipped_zone;
4449 		}
4450 
4451 		if (!remaining || isolated >= MIN_LRU_BATCH)
4452 			break;
4453 	}
4454 
4455 	item = PGSCAN_KSWAPD + reclaimer_offset();
4456 	if (!cgroup_reclaim(sc)) {
4457 		__count_vm_events(item, isolated);
4458 		__count_vm_events(PGREFILL, sorted);
4459 	}
4460 	__count_memcg_events(memcg, item, isolated);
4461 	__count_memcg_events(memcg, PGREFILL, sorted);
4462 	__count_vm_events(PGSCAN_ANON + type, isolated);
4463 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, MAX_LRU_BATCH,
4464 				scanned, skipped, isolated,
4465 				type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON);
4466 	if (type == LRU_GEN_FILE)
4467 		sc->nr.file_taken += isolated;
4468 	/*
4469 	 * There might not be eligible folios due to reclaim_idx. Check the
4470 	 * remaining to prevent livelock if it's not making progress.
4471 	 */
4472 	return isolated || !remaining ? scanned : 0;
4473 }
4474 
4475 static int get_tier_idx(struct lruvec *lruvec, int type)
4476 {
4477 	int tier;
4478 	struct ctrl_pos sp, pv;
4479 
4480 	/*
4481 	 * To leave a margin for fluctuations, use a larger gain factor (1:2).
4482 	 * This value is chosen because any other tier would have at least twice
4483 	 * as many refaults as the first tier.
4484 	 */
4485 	read_ctrl_pos(lruvec, type, 0, 1, &sp);
4486 	for (tier = 1; tier < MAX_NR_TIERS; tier++) {
4487 		read_ctrl_pos(lruvec, type, tier, 2, &pv);
4488 		if (!positive_ctrl_err(&sp, &pv))
4489 			break;
4490 	}
4491 
4492 	return tier - 1;
4493 }
4494 
4495 static int get_type_to_scan(struct lruvec *lruvec, int swappiness, int *tier_idx)
4496 {
4497 	int type, tier;
4498 	struct ctrl_pos sp, pv;
4499 	int gain[ANON_AND_FILE] = { swappiness, MAX_SWAPPINESS - swappiness };
4500 
4501 	/*
4502 	 * Compare the first tier of anon with that of file to determine which
4503 	 * type to scan. Also need to compare other tiers of the selected type
4504 	 * with the first tier of the other type to determine the last tier (of
4505 	 * the selected type) to evict.
4506 	 */
4507 	read_ctrl_pos(lruvec, LRU_GEN_ANON, 0, gain[LRU_GEN_ANON], &sp);
4508 	read_ctrl_pos(lruvec, LRU_GEN_FILE, 0, gain[LRU_GEN_FILE], &pv);
4509 	type = positive_ctrl_err(&sp, &pv);
4510 
4511 	read_ctrl_pos(lruvec, !type, 0, gain[!type], &sp);
4512 	for (tier = 1; tier < MAX_NR_TIERS; tier++) {
4513 		read_ctrl_pos(lruvec, type, tier, gain[type], &pv);
4514 		if (!positive_ctrl_err(&sp, &pv))
4515 			break;
4516 	}
4517 
4518 	*tier_idx = tier - 1;
4519 
4520 	return type;
4521 }
4522 
4523 static int isolate_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness,
4524 			  int *type_scanned, struct list_head *list)
4525 {
4526 	int i;
4527 	int type;
4528 	int scanned;
4529 	int tier = -1;
4530 	DEFINE_MIN_SEQ(lruvec);
4531 
4532 	/*
4533 	 * Try to make the obvious choice first, and if anon and file are both
4534 	 * available from the same generation,
4535 	 * 1. Interpret swappiness 1 as file first and MAX_SWAPPINESS as anon
4536 	 *    first.
4537 	 * 2. If !__GFP_IO, file first since clean pagecache is more likely to
4538 	 *    exist than clean swapcache.
4539 	 */
4540 	if (!swappiness)
4541 		type = LRU_GEN_FILE;
4542 	else if (min_seq[LRU_GEN_ANON] < min_seq[LRU_GEN_FILE])
4543 		type = LRU_GEN_ANON;
4544 	else if (swappiness == 1)
4545 		type = LRU_GEN_FILE;
4546 	else if (swappiness == MAX_SWAPPINESS)
4547 		type = LRU_GEN_ANON;
4548 	else if (!(sc->gfp_mask & __GFP_IO))
4549 		type = LRU_GEN_FILE;
4550 	else
4551 		type = get_type_to_scan(lruvec, swappiness, &tier);
4552 
4553 	for (i = !swappiness; i < ANON_AND_FILE; i++) {
4554 		if (tier < 0)
4555 			tier = get_tier_idx(lruvec, type);
4556 
4557 		scanned = scan_folios(lruvec, sc, type, tier, list);
4558 		if (scanned)
4559 			break;
4560 
4561 		type = !type;
4562 		tier = -1;
4563 	}
4564 
4565 	*type_scanned = type;
4566 
4567 	return scanned;
4568 }
4569 
4570 static int evict_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness)
4571 {
4572 	int type;
4573 	int scanned;
4574 	int reclaimed;
4575 	LIST_HEAD(list);
4576 	LIST_HEAD(clean);
4577 	struct folio *folio;
4578 	struct folio *next;
4579 	enum vm_event_item item;
4580 	struct reclaim_stat stat;
4581 	struct lru_gen_mm_walk *walk;
4582 	bool skip_retry = false;
4583 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4584 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4585 
4586 	spin_lock_irq(&lruvec->lru_lock);
4587 
4588 	scanned = isolate_folios(lruvec, sc, swappiness, &type, &list);
4589 
4590 	scanned += try_to_inc_min_seq(lruvec, swappiness);
4591 
4592 	if (get_nr_gens(lruvec, !swappiness) == MIN_NR_GENS)
4593 		scanned = 0;
4594 
4595 	spin_unlock_irq(&lruvec->lru_lock);
4596 
4597 	if (list_empty(&list))
4598 		return scanned;
4599 retry:
4600 	reclaimed = shrink_folio_list(&list, pgdat, sc, &stat, false);
4601 	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
4602 	sc->nr_reclaimed += reclaimed;
4603 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
4604 			scanned, reclaimed, &stat, sc->priority,
4605 			type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON);
4606 
4607 	list_for_each_entry_safe_reverse(folio, next, &list, lru) {
4608 		if (!folio_evictable(folio)) {
4609 			list_del(&folio->lru);
4610 			folio_putback_lru(folio);
4611 			continue;
4612 		}
4613 
4614 		if (folio_test_reclaim(folio) &&
4615 		    (folio_test_dirty(folio) || folio_test_writeback(folio))) {
4616 			/* restore LRU_REFS_FLAGS cleared by isolate_folio() */
4617 			if (folio_test_workingset(folio))
4618 				folio_set_referenced(folio);
4619 			continue;
4620 		}
4621 
4622 		if (skip_retry || folio_test_active(folio) || folio_test_referenced(folio) ||
4623 		    folio_mapped(folio) || folio_test_locked(folio) ||
4624 		    folio_test_dirty(folio) || folio_test_writeback(folio)) {
4625 			/* don't add rejected folios to the oldest generation */
4626 			set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS,
4627 				      BIT(PG_active));
4628 			continue;
4629 		}
4630 
4631 		/* retry folios that may have missed folio_rotate_reclaimable() */
4632 		list_move(&folio->lru, &clean);
4633 	}
4634 
4635 	spin_lock_irq(&lruvec->lru_lock);
4636 
4637 	move_folios_to_lru(lruvec, &list);
4638 
4639 	walk = current->reclaim_state->mm_walk;
4640 	if (walk && walk->batched) {
4641 		walk->lruvec = lruvec;
4642 		reset_batch_size(walk);
4643 	}
4644 
4645 	__mod_lruvec_state(lruvec, PGDEMOTE_KSWAPD + reclaimer_offset(),
4646 					stat.nr_demoted);
4647 
4648 	item = PGSTEAL_KSWAPD + reclaimer_offset();
4649 	if (!cgroup_reclaim(sc))
4650 		__count_vm_events(item, reclaimed);
4651 	__count_memcg_events(memcg, item, reclaimed);
4652 	__count_vm_events(PGSTEAL_ANON + type, reclaimed);
4653 
4654 	spin_unlock_irq(&lruvec->lru_lock);
4655 
4656 	list_splice_init(&clean, &list);
4657 
4658 	if (!list_empty(&list)) {
4659 		skip_retry = true;
4660 		goto retry;
4661 	}
4662 
4663 	return scanned;
4664 }
4665 
4666 static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq,
4667 			     bool can_swap, unsigned long *nr_to_scan)
4668 {
4669 	int gen, type, zone;
4670 	unsigned long old = 0;
4671 	unsigned long young = 0;
4672 	unsigned long total = 0;
4673 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4674 	DEFINE_MIN_SEQ(lruvec);
4675 
4676 	/* whether this lruvec is completely out of cold folios */
4677 	if (min_seq[!can_swap] + MIN_NR_GENS > max_seq) {
4678 		*nr_to_scan = 0;
4679 		return true;
4680 	}
4681 
4682 	for (type = !can_swap; type < ANON_AND_FILE; type++) {
4683 		unsigned long seq;
4684 
4685 		for (seq = min_seq[type]; seq <= max_seq; seq++) {
4686 			unsigned long size = 0;
4687 
4688 			gen = lru_gen_from_seq(seq);
4689 
4690 			for (zone = 0; zone < MAX_NR_ZONES; zone++)
4691 				size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
4692 
4693 			total += size;
4694 			if (seq == max_seq)
4695 				young += size;
4696 			else if (seq + MIN_NR_GENS == max_seq)
4697 				old += size;
4698 		}
4699 	}
4700 
4701 	*nr_to_scan = total;
4702 
4703 	/*
4704 	 * The aging tries to be lazy to reduce the overhead, while the eviction
4705 	 * stalls when the number of generations reaches MIN_NR_GENS. Hence, the
4706 	 * ideal number of generations is MIN_NR_GENS+1.
4707 	 */
4708 	if (min_seq[!can_swap] + MIN_NR_GENS < max_seq)
4709 		return false;
4710 
4711 	/*
4712 	 * It's also ideal to spread pages out evenly, i.e., 1/(MIN_NR_GENS+1)
4713 	 * of the total number of pages for each generation. A reasonable range
4714 	 * for this average portion is [1/MIN_NR_GENS, 1/(MIN_NR_GENS+2)]. The
4715 	 * aging cares about the upper bound of hot pages, while the eviction
4716 	 * cares about the lower bound of cold pages.
4717 	 */
4718 	if (young * MIN_NR_GENS > total)
4719 		return true;
4720 	if (old * (MIN_NR_GENS + 2) < total)
4721 		return true;
4722 
4723 	return false;
4724 }
4725 
4726 /*
4727  * For future optimizations:
4728  * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg
4729  *    reclaim.
4730  */
4731 static long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc, bool can_swap)
4732 {
4733 	bool success;
4734 	unsigned long nr_to_scan;
4735 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4736 	DEFINE_MAX_SEQ(lruvec);
4737 
4738 	if (mem_cgroup_below_min(sc->target_mem_cgroup, memcg))
4739 		return -1;
4740 
4741 	success = should_run_aging(lruvec, max_seq, can_swap, &nr_to_scan);
4742 
4743 	/* try to scrape all its memory if this memcg was deleted */
4744 	if (nr_to_scan && !mem_cgroup_online(memcg))
4745 		return nr_to_scan;
4746 
4747 	/* try to get away with not aging at the default priority */
4748 	if (!success || sc->priority == DEF_PRIORITY)
4749 		return nr_to_scan >> sc->priority;
4750 
4751 	/* stop scanning this lruvec as it's low on cold folios */
4752 	return try_to_inc_max_seq(lruvec, max_seq, can_swap, false) ? -1 : 0;
4753 }
4754 
4755 static bool should_abort_scan(struct lruvec *lruvec, struct scan_control *sc)
4756 {
4757 	int i;
4758 	enum zone_watermarks mark;
4759 
4760 	/* don't abort memcg reclaim to ensure fairness */
4761 	if (!root_reclaim(sc))
4762 		return false;
4763 
4764 	if (sc->nr_reclaimed >= max(sc->nr_to_reclaim, compact_gap(sc->order)))
4765 		return true;
4766 
4767 	/* check the order to exclude compaction-induced reclaim */
4768 	if (!current_is_kswapd() || sc->order)
4769 		return false;
4770 
4771 	mark = sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ?
4772 	       WMARK_PROMO : WMARK_HIGH;
4773 
4774 	for (i = 0; i <= sc->reclaim_idx; i++) {
4775 		struct zone *zone = lruvec_pgdat(lruvec)->node_zones + i;
4776 		unsigned long size = wmark_pages(zone, mark) + MIN_LRU_BATCH;
4777 
4778 		if (managed_zone(zone) && !zone_watermark_ok(zone, 0, size, sc->reclaim_idx, 0))
4779 			return false;
4780 	}
4781 
4782 	/* kswapd should abort if all eligible zones are safe */
4783 	return true;
4784 }
4785 
4786 static bool try_to_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
4787 {
4788 	long nr_to_scan;
4789 	unsigned long scanned = 0;
4790 	int swappiness = get_swappiness(lruvec, sc);
4791 
4792 	while (true) {
4793 		int delta;
4794 
4795 		nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness);
4796 		if (nr_to_scan <= 0)
4797 			break;
4798 
4799 		delta = evict_folios(lruvec, sc, swappiness);
4800 		if (!delta)
4801 			break;
4802 
4803 		scanned += delta;
4804 		if (scanned >= nr_to_scan)
4805 			break;
4806 
4807 		if (should_abort_scan(lruvec, sc))
4808 			break;
4809 
4810 		cond_resched();
4811 	}
4812 
4813 	/*
4814 	 * If too many file cache in the coldest generation can't be evicted
4815 	 * due to being dirty, wake up the flusher.
4816 	 */
4817 	if (sc->nr.unqueued_dirty && sc->nr.unqueued_dirty == sc->nr.file_taken)
4818 		wakeup_flusher_threads(WB_REASON_VMSCAN);
4819 
4820 	/* whether this lruvec should be rotated */
4821 	return nr_to_scan < 0;
4822 }
4823 
4824 static int shrink_one(struct lruvec *lruvec, struct scan_control *sc)
4825 {
4826 	bool success;
4827 	unsigned long scanned = sc->nr_scanned;
4828 	unsigned long reclaimed = sc->nr_reclaimed;
4829 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4830 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4831 
4832 	/* lru_gen_age_node() called mem_cgroup_calculate_protection() */
4833 	if (mem_cgroup_below_min(NULL, memcg))
4834 		return MEMCG_LRU_YOUNG;
4835 
4836 	if (mem_cgroup_below_low(NULL, memcg)) {
4837 		/* see the comment on MEMCG_NR_GENS */
4838 		if (READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_TAIL)
4839 			return MEMCG_LRU_TAIL;
4840 
4841 		memcg_memory_event(memcg, MEMCG_LOW);
4842 	}
4843 
4844 	success = try_to_shrink_lruvec(lruvec, sc);
4845 
4846 	shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, sc->priority);
4847 
4848 	if (!sc->proactive)
4849 		vmpressure(sc->gfp_mask, memcg, false, sc->nr_scanned - scanned,
4850 			   sc->nr_reclaimed - reclaimed);
4851 
4852 	flush_reclaim_state(sc);
4853 
4854 	if (success && mem_cgroup_online(memcg))
4855 		return MEMCG_LRU_YOUNG;
4856 
4857 	if (!success && lruvec_is_sizable(lruvec, sc))
4858 		return 0;
4859 
4860 	/* one retry if offlined or too small */
4861 	return READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_TAIL ?
4862 	       MEMCG_LRU_TAIL : MEMCG_LRU_YOUNG;
4863 }
4864 
4865 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc)
4866 {
4867 	int op;
4868 	int gen;
4869 	int bin;
4870 	int first_bin;
4871 	struct lruvec *lruvec;
4872 	struct lru_gen_folio *lrugen;
4873 	struct mem_cgroup *memcg;
4874 	struct hlist_nulls_node *pos;
4875 
4876 	gen = get_memcg_gen(READ_ONCE(pgdat->memcg_lru.seq));
4877 	bin = first_bin = get_random_u32_below(MEMCG_NR_BINS);
4878 restart:
4879 	op = 0;
4880 	memcg = NULL;
4881 
4882 	rcu_read_lock();
4883 
4884 	hlist_nulls_for_each_entry_rcu(lrugen, pos, &pgdat->memcg_lru.fifo[gen][bin], list) {
4885 		if (op) {
4886 			lru_gen_rotate_memcg(lruvec, op);
4887 			op = 0;
4888 		}
4889 
4890 		mem_cgroup_put(memcg);
4891 		memcg = NULL;
4892 
4893 		if (gen != READ_ONCE(lrugen->gen))
4894 			continue;
4895 
4896 		lruvec = container_of(lrugen, struct lruvec, lrugen);
4897 		memcg = lruvec_memcg(lruvec);
4898 
4899 		if (!mem_cgroup_tryget(memcg)) {
4900 			lru_gen_release_memcg(memcg);
4901 			memcg = NULL;
4902 			continue;
4903 		}
4904 
4905 		rcu_read_unlock();
4906 
4907 		op = shrink_one(lruvec, sc);
4908 
4909 		rcu_read_lock();
4910 
4911 		if (should_abort_scan(lruvec, sc))
4912 			break;
4913 	}
4914 
4915 	rcu_read_unlock();
4916 
4917 	if (op)
4918 		lru_gen_rotate_memcg(lruvec, op);
4919 
4920 	mem_cgroup_put(memcg);
4921 
4922 	if (!is_a_nulls(pos))
4923 		return;
4924 
4925 	/* restart if raced with lru_gen_rotate_memcg() */
4926 	if (gen != get_nulls_value(pos))
4927 		goto restart;
4928 
4929 	/* try the rest of the bins of the current generation */
4930 	bin = get_memcg_bin(bin + 1);
4931 	if (bin != first_bin)
4932 		goto restart;
4933 }
4934 
4935 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
4936 {
4937 	struct blk_plug plug;
4938 
4939 	VM_WARN_ON_ONCE(root_reclaim(sc));
4940 	VM_WARN_ON_ONCE(!sc->may_writepage || !sc->may_unmap);
4941 
4942 	lru_add_drain();
4943 
4944 	blk_start_plug(&plug);
4945 
4946 	set_mm_walk(NULL, sc->proactive);
4947 
4948 	if (try_to_shrink_lruvec(lruvec, sc))
4949 		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_YOUNG);
4950 
4951 	clear_mm_walk();
4952 
4953 	blk_finish_plug(&plug);
4954 }
4955 
4956 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
4957 {
4958 	struct blk_plug plug;
4959 	unsigned long reclaimed = sc->nr_reclaimed;
4960 
4961 	VM_WARN_ON_ONCE(!root_reclaim(sc));
4962 
4963 	/*
4964 	 * Unmapped clean folios are already prioritized. Scanning for more of
4965 	 * them is likely futile and can cause high reclaim latency when there
4966 	 * is a large number of memcgs.
4967 	 */
4968 	if (!sc->may_writepage || !sc->may_unmap)
4969 		goto done;
4970 
4971 	lru_add_drain();
4972 
4973 	blk_start_plug(&plug);
4974 
4975 	set_mm_walk(pgdat, sc->proactive);
4976 
4977 	set_initial_priority(pgdat, sc);
4978 
4979 	if (current_is_kswapd())
4980 		sc->nr_reclaimed = 0;
4981 
4982 	if (mem_cgroup_disabled())
4983 		shrink_one(&pgdat->__lruvec, sc);
4984 	else
4985 		shrink_many(pgdat, sc);
4986 
4987 	if (current_is_kswapd())
4988 		sc->nr_reclaimed += reclaimed;
4989 
4990 	clear_mm_walk();
4991 
4992 	blk_finish_plug(&plug);
4993 done:
4994 	if (sc->nr_reclaimed > reclaimed)
4995 		pgdat->kswapd_failures = 0;
4996 }
4997 
4998 /******************************************************************************
4999  *                          state change
5000  ******************************************************************************/
5001 
5002 static bool __maybe_unused state_is_valid(struct lruvec *lruvec)
5003 {
5004 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5005 
5006 	if (lrugen->enabled) {
5007 		enum lru_list lru;
5008 
5009 		for_each_evictable_lru(lru) {
5010 			if (!list_empty(&lruvec->lists[lru]))
5011 				return false;
5012 		}
5013 	} else {
5014 		int gen, type, zone;
5015 
5016 		for_each_gen_type_zone(gen, type, zone) {
5017 			if (!list_empty(&lrugen->folios[gen][type][zone]))
5018 				return false;
5019 		}
5020 	}
5021 
5022 	return true;
5023 }
5024 
5025 static bool fill_evictable(struct lruvec *lruvec)
5026 {
5027 	enum lru_list lru;
5028 	int remaining = MAX_LRU_BATCH;
5029 
5030 	for_each_evictable_lru(lru) {
5031 		int type = is_file_lru(lru);
5032 		bool active = is_active_lru(lru);
5033 		struct list_head *head = &lruvec->lists[lru];
5034 
5035 		while (!list_empty(head)) {
5036 			bool success;
5037 			struct folio *folio = lru_to_folio(head);
5038 
5039 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5040 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio) != active, folio);
5041 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5042 			VM_WARN_ON_ONCE_FOLIO(folio_lru_gen(folio) != -1, folio);
5043 
5044 			lruvec_del_folio(lruvec, folio);
5045 			success = lru_gen_add_folio(lruvec, folio, false);
5046 			VM_WARN_ON_ONCE(!success);
5047 
5048 			if (!--remaining)
5049 				return false;
5050 		}
5051 	}
5052 
5053 	return true;
5054 }
5055 
5056 static bool drain_evictable(struct lruvec *lruvec)
5057 {
5058 	int gen, type, zone;
5059 	int remaining = MAX_LRU_BATCH;
5060 
5061 	for_each_gen_type_zone(gen, type, zone) {
5062 		struct list_head *head = &lruvec->lrugen.folios[gen][type][zone];
5063 
5064 		while (!list_empty(head)) {
5065 			bool success;
5066 			struct folio *folio = lru_to_folio(head);
5067 
5068 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5069 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
5070 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5071 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
5072 
5073 			success = lru_gen_del_folio(lruvec, folio, false);
5074 			VM_WARN_ON_ONCE(!success);
5075 			lruvec_add_folio(lruvec, folio);
5076 
5077 			if (!--remaining)
5078 				return false;
5079 		}
5080 	}
5081 
5082 	return true;
5083 }
5084 
5085 static void lru_gen_change_state(bool enabled)
5086 {
5087 	static DEFINE_MUTEX(state_mutex);
5088 
5089 	struct mem_cgroup *memcg;
5090 
5091 	cgroup_lock();
5092 	cpus_read_lock();
5093 	get_online_mems();
5094 	mutex_lock(&state_mutex);
5095 
5096 	if (enabled == lru_gen_enabled())
5097 		goto unlock;
5098 
5099 	if (enabled)
5100 		static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5101 	else
5102 		static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5103 
5104 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
5105 	do {
5106 		int nid;
5107 
5108 		for_each_node(nid) {
5109 			struct lruvec *lruvec = get_lruvec(memcg, nid);
5110 
5111 			spin_lock_irq(&lruvec->lru_lock);
5112 
5113 			VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
5114 			VM_WARN_ON_ONCE(!state_is_valid(lruvec));
5115 
5116 			lruvec->lrugen.enabled = enabled;
5117 
5118 			while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) {
5119 				spin_unlock_irq(&lruvec->lru_lock);
5120 				cond_resched();
5121 				spin_lock_irq(&lruvec->lru_lock);
5122 			}
5123 
5124 			spin_unlock_irq(&lruvec->lru_lock);
5125 		}
5126 
5127 		cond_resched();
5128 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5129 unlock:
5130 	mutex_unlock(&state_mutex);
5131 	put_online_mems();
5132 	cpus_read_unlock();
5133 	cgroup_unlock();
5134 }
5135 
5136 /******************************************************************************
5137  *                          sysfs interface
5138  ******************************************************************************/
5139 
5140 static ssize_t min_ttl_ms_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5141 {
5142 	return sysfs_emit(buf, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl)));
5143 }
5144 
5145 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5146 static ssize_t min_ttl_ms_store(struct kobject *kobj, struct kobj_attribute *attr,
5147 				const char *buf, size_t len)
5148 {
5149 	unsigned int msecs;
5150 
5151 	if (kstrtouint(buf, 0, &msecs))
5152 		return -EINVAL;
5153 
5154 	WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs));
5155 
5156 	return len;
5157 }
5158 
5159 static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR_RW(min_ttl_ms);
5160 
5161 static ssize_t enabled_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5162 {
5163 	unsigned int caps = 0;
5164 
5165 	if (get_cap(LRU_GEN_CORE))
5166 		caps |= BIT(LRU_GEN_CORE);
5167 
5168 	if (should_walk_mmu())
5169 		caps |= BIT(LRU_GEN_MM_WALK);
5170 
5171 	if (should_clear_pmd_young())
5172 		caps |= BIT(LRU_GEN_NONLEAF_YOUNG);
5173 
5174 	return sysfs_emit(buf, "0x%04x\n", caps);
5175 }
5176 
5177 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5178 static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr,
5179 			     const char *buf, size_t len)
5180 {
5181 	int i;
5182 	unsigned int caps;
5183 
5184 	if (tolower(*buf) == 'n')
5185 		caps = 0;
5186 	else if (tolower(*buf) == 'y')
5187 		caps = -1;
5188 	else if (kstrtouint(buf, 0, &caps))
5189 		return -EINVAL;
5190 
5191 	for (i = 0; i < NR_LRU_GEN_CAPS; i++) {
5192 		bool enabled = caps & BIT(i);
5193 
5194 		if (i == LRU_GEN_CORE)
5195 			lru_gen_change_state(enabled);
5196 		else if (enabled)
5197 			static_branch_enable(&lru_gen_caps[i]);
5198 		else
5199 			static_branch_disable(&lru_gen_caps[i]);
5200 	}
5201 
5202 	return len;
5203 }
5204 
5205 static struct kobj_attribute lru_gen_enabled_attr = __ATTR_RW(enabled);
5206 
5207 static struct attribute *lru_gen_attrs[] = {
5208 	&lru_gen_min_ttl_attr.attr,
5209 	&lru_gen_enabled_attr.attr,
5210 	NULL
5211 };
5212 
5213 static const struct attribute_group lru_gen_attr_group = {
5214 	.name = "lru_gen",
5215 	.attrs = lru_gen_attrs,
5216 };
5217 
5218 /******************************************************************************
5219  *                          debugfs interface
5220  ******************************************************************************/
5221 
5222 static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos)
5223 {
5224 	struct mem_cgroup *memcg;
5225 	loff_t nr_to_skip = *pos;
5226 
5227 	m->private = kvmalloc(PATH_MAX, GFP_KERNEL);
5228 	if (!m->private)
5229 		return ERR_PTR(-ENOMEM);
5230 
5231 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
5232 	do {
5233 		int nid;
5234 
5235 		for_each_node_state(nid, N_MEMORY) {
5236 			if (!nr_to_skip--)
5237 				return get_lruvec(memcg, nid);
5238 		}
5239 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5240 
5241 	return NULL;
5242 }
5243 
5244 static void lru_gen_seq_stop(struct seq_file *m, void *v)
5245 {
5246 	if (!IS_ERR_OR_NULL(v))
5247 		mem_cgroup_iter_break(NULL, lruvec_memcg(v));
5248 
5249 	kvfree(m->private);
5250 	m->private = NULL;
5251 }
5252 
5253 static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos)
5254 {
5255 	int nid = lruvec_pgdat(v)->node_id;
5256 	struct mem_cgroup *memcg = lruvec_memcg(v);
5257 
5258 	++*pos;
5259 
5260 	nid = next_memory_node(nid);
5261 	if (nid == MAX_NUMNODES) {
5262 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
5263 		if (!memcg)
5264 			return NULL;
5265 
5266 		nid = first_memory_node;
5267 	}
5268 
5269 	return get_lruvec(memcg, nid);
5270 }
5271 
5272 static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec,
5273 				  unsigned long max_seq, unsigned long *min_seq,
5274 				  unsigned long seq)
5275 {
5276 	int i;
5277 	int type, tier;
5278 	int hist = lru_hist_from_seq(seq);
5279 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5280 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
5281 
5282 	for (tier = 0; tier < MAX_NR_TIERS; tier++) {
5283 		seq_printf(m, "            %10d", tier);
5284 		for (type = 0; type < ANON_AND_FILE; type++) {
5285 			const char *s = "xxx";
5286 			unsigned long n[3] = {};
5287 
5288 			if (seq == max_seq) {
5289 				s = "RTx";
5290 				n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]);
5291 				n[1] = READ_ONCE(lrugen->avg_total[type][tier]);
5292 			} else if (seq == min_seq[type] || NR_HIST_GENS > 1) {
5293 				s = "rep";
5294 				n[0] = atomic_long_read(&lrugen->refaulted[hist][type][tier]);
5295 				n[1] = atomic_long_read(&lrugen->evicted[hist][type][tier]);
5296 				if (tier)
5297 					n[2] = READ_ONCE(lrugen->protected[hist][type][tier - 1]);
5298 			}
5299 
5300 			for (i = 0; i < 3; i++)
5301 				seq_printf(m, " %10lu%c", n[i], s[i]);
5302 		}
5303 		seq_putc(m, '\n');
5304 	}
5305 
5306 	if (!mm_state)
5307 		return;
5308 
5309 	seq_puts(m, "                      ");
5310 	for (i = 0; i < NR_MM_STATS; i++) {
5311 		const char *s = "xxxx";
5312 		unsigned long n = 0;
5313 
5314 		if (seq == max_seq && NR_HIST_GENS == 1) {
5315 			s = "TYFA";
5316 			n = READ_ONCE(mm_state->stats[hist][i]);
5317 		} else if (seq != max_seq && NR_HIST_GENS > 1) {
5318 			s = "tyfa";
5319 			n = READ_ONCE(mm_state->stats[hist][i]);
5320 		}
5321 
5322 		seq_printf(m, " %10lu%c", n, s[i]);
5323 	}
5324 	seq_putc(m, '\n');
5325 }
5326 
5327 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5328 static int lru_gen_seq_show(struct seq_file *m, void *v)
5329 {
5330 	unsigned long seq;
5331 	bool full = !debugfs_real_fops(m->file)->write;
5332 	struct lruvec *lruvec = v;
5333 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5334 	int nid = lruvec_pgdat(lruvec)->node_id;
5335 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5336 	DEFINE_MAX_SEQ(lruvec);
5337 	DEFINE_MIN_SEQ(lruvec);
5338 
5339 	if (nid == first_memory_node) {
5340 		const char *path = memcg ? m->private : "";
5341 
5342 #ifdef CONFIG_MEMCG
5343 		if (memcg)
5344 			cgroup_path(memcg->css.cgroup, m->private, PATH_MAX);
5345 #endif
5346 		seq_printf(m, "memcg %5hu %s\n", mem_cgroup_id(memcg), path);
5347 	}
5348 
5349 	seq_printf(m, " node %5d\n", nid);
5350 
5351 	if (!full)
5352 		seq = min_seq[LRU_GEN_ANON];
5353 	else if (max_seq >= MAX_NR_GENS)
5354 		seq = max_seq - MAX_NR_GENS + 1;
5355 	else
5356 		seq = 0;
5357 
5358 	for (; seq <= max_seq; seq++) {
5359 		int type, zone;
5360 		int gen = lru_gen_from_seq(seq);
5361 		unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
5362 
5363 		seq_printf(m, " %10lu %10u", seq, jiffies_to_msecs(jiffies - birth));
5364 
5365 		for (type = 0; type < ANON_AND_FILE; type++) {
5366 			unsigned long size = 0;
5367 			char mark = full && seq < min_seq[type] ? 'x' : ' ';
5368 
5369 			for (zone = 0; zone < MAX_NR_ZONES; zone++)
5370 				size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
5371 
5372 			seq_printf(m, " %10lu%c", size, mark);
5373 		}
5374 
5375 		seq_putc(m, '\n');
5376 
5377 		if (full)
5378 			lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq);
5379 	}
5380 
5381 	return 0;
5382 }
5383 
5384 static const struct seq_operations lru_gen_seq_ops = {
5385 	.start = lru_gen_seq_start,
5386 	.stop = lru_gen_seq_stop,
5387 	.next = lru_gen_seq_next,
5388 	.show = lru_gen_seq_show,
5389 };
5390 
5391 static int run_aging(struct lruvec *lruvec, unsigned long seq,
5392 		     bool can_swap, bool force_scan)
5393 {
5394 	DEFINE_MAX_SEQ(lruvec);
5395 	DEFINE_MIN_SEQ(lruvec);
5396 
5397 	if (seq < max_seq)
5398 		return 0;
5399 
5400 	if (seq > max_seq)
5401 		return -EINVAL;
5402 
5403 	if (!force_scan && min_seq[!can_swap] + MAX_NR_GENS - 1 <= max_seq)
5404 		return -ERANGE;
5405 
5406 	try_to_inc_max_seq(lruvec, max_seq, can_swap, force_scan);
5407 
5408 	return 0;
5409 }
5410 
5411 static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
5412 			int swappiness, unsigned long nr_to_reclaim)
5413 {
5414 	DEFINE_MAX_SEQ(lruvec);
5415 
5416 	if (seq + MIN_NR_GENS > max_seq)
5417 		return -EINVAL;
5418 
5419 	sc->nr_reclaimed = 0;
5420 
5421 	while (!signal_pending(current)) {
5422 		DEFINE_MIN_SEQ(lruvec);
5423 
5424 		if (seq < min_seq[!swappiness])
5425 			return 0;
5426 
5427 		if (sc->nr_reclaimed >= nr_to_reclaim)
5428 			return 0;
5429 
5430 		if (!evict_folios(lruvec, sc, swappiness))
5431 			return 0;
5432 
5433 		cond_resched();
5434 	}
5435 
5436 	return -EINTR;
5437 }
5438 
5439 static int run_cmd(char cmd, int memcg_id, int nid, unsigned long seq,
5440 		   struct scan_control *sc, int swappiness, unsigned long opt)
5441 {
5442 	struct lruvec *lruvec;
5443 	int err = -EINVAL;
5444 	struct mem_cgroup *memcg = NULL;
5445 
5446 	if (nid < 0 || nid >= MAX_NUMNODES || !node_state(nid, N_MEMORY))
5447 		return -EINVAL;
5448 
5449 	if (!mem_cgroup_disabled()) {
5450 		rcu_read_lock();
5451 
5452 		memcg = mem_cgroup_from_id(memcg_id);
5453 		if (!mem_cgroup_tryget(memcg))
5454 			memcg = NULL;
5455 
5456 		rcu_read_unlock();
5457 
5458 		if (!memcg)
5459 			return -EINVAL;
5460 	}
5461 
5462 	if (memcg_id != mem_cgroup_id(memcg))
5463 		goto done;
5464 
5465 	lruvec = get_lruvec(memcg, nid);
5466 
5467 	if (swappiness < MIN_SWAPPINESS)
5468 		swappiness = get_swappiness(lruvec, sc);
5469 	else if (swappiness > MAX_SWAPPINESS)
5470 		goto done;
5471 
5472 	switch (cmd) {
5473 	case '+':
5474 		err = run_aging(lruvec, seq, swappiness, opt);
5475 		break;
5476 	case '-':
5477 		err = run_eviction(lruvec, seq, sc, swappiness, opt);
5478 		break;
5479 	}
5480 done:
5481 	mem_cgroup_put(memcg);
5482 
5483 	return err;
5484 }
5485 
5486 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5487 static ssize_t lru_gen_seq_write(struct file *file, const char __user *src,
5488 				 size_t len, loff_t *pos)
5489 {
5490 	void *buf;
5491 	char *cur, *next;
5492 	unsigned int flags;
5493 	struct blk_plug plug;
5494 	int err = -EINVAL;
5495 	struct scan_control sc = {
5496 		.may_writepage = true,
5497 		.may_unmap = true,
5498 		.may_swap = true,
5499 		.reclaim_idx = MAX_NR_ZONES - 1,
5500 		.gfp_mask = GFP_KERNEL,
5501 	};
5502 
5503 	buf = kvmalloc(len + 1, GFP_KERNEL);
5504 	if (!buf)
5505 		return -ENOMEM;
5506 
5507 	if (copy_from_user(buf, src, len)) {
5508 		kvfree(buf);
5509 		return -EFAULT;
5510 	}
5511 
5512 	set_task_reclaim_state(current, &sc.reclaim_state);
5513 	flags = memalloc_noreclaim_save();
5514 	blk_start_plug(&plug);
5515 	if (!set_mm_walk(NULL, true)) {
5516 		err = -ENOMEM;
5517 		goto done;
5518 	}
5519 
5520 	next = buf;
5521 	next[len] = '\0';
5522 
5523 	while ((cur = strsep(&next, ",;\n"))) {
5524 		int n;
5525 		int end;
5526 		char cmd;
5527 		unsigned int memcg_id;
5528 		unsigned int nid;
5529 		unsigned long seq;
5530 		unsigned int swappiness = -1;
5531 		unsigned long opt = -1;
5532 
5533 		cur = skip_spaces(cur);
5534 		if (!*cur)
5535 			continue;
5536 
5537 		n = sscanf(cur, "%c %u %u %lu %n %u %n %lu %n", &cmd, &memcg_id, &nid,
5538 			   &seq, &end, &swappiness, &end, &opt, &end);
5539 		if (n < 4 || cur[end]) {
5540 			err = -EINVAL;
5541 			break;
5542 		}
5543 
5544 		err = run_cmd(cmd, memcg_id, nid, seq, &sc, swappiness, opt);
5545 		if (err)
5546 			break;
5547 	}
5548 done:
5549 	clear_mm_walk();
5550 	blk_finish_plug(&plug);
5551 	memalloc_noreclaim_restore(flags);
5552 	set_task_reclaim_state(current, NULL);
5553 
5554 	kvfree(buf);
5555 
5556 	return err ? : len;
5557 }
5558 
5559 static int lru_gen_seq_open(struct inode *inode, struct file *file)
5560 {
5561 	return seq_open(file, &lru_gen_seq_ops);
5562 }
5563 
5564 static const struct file_operations lru_gen_rw_fops = {
5565 	.open = lru_gen_seq_open,
5566 	.read = seq_read,
5567 	.write = lru_gen_seq_write,
5568 	.llseek = seq_lseek,
5569 	.release = seq_release,
5570 };
5571 
5572 static const struct file_operations lru_gen_ro_fops = {
5573 	.open = lru_gen_seq_open,
5574 	.read = seq_read,
5575 	.llseek = seq_lseek,
5576 	.release = seq_release,
5577 };
5578 
5579 /******************************************************************************
5580  *                          initialization
5581  ******************************************************************************/
5582 
5583 void lru_gen_init_pgdat(struct pglist_data *pgdat)
5584 {
5585 	int i, j;
5586 
5587 	spin_lock_init(&pgdat->memcg_lru.lock);
5588 
5589 	for (i = 0; i < MEMCG_NR_GENS; i++) {
5590 		for (j = 0; j < MEMCG_NR_BINS; j++)
5591 			INIT_HLIST_NULLS_HEAD(&pgdat->memcg_lru.fifo[i][j], i);
5592 	}
5593 }
5594 
5595 void lru_gen_init_lruvec(struct lruvec *lruvec)
5596 {
5597 	int i;
5598 	int gen, type, zone;
5599 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5600 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
5601 
5602 	lrugen->max_seq = MIN_NR_GENS + 1;
5603 	lrugen->enabled = lru_gen_enabled();
5604 
5605 	for (i = 0; i <= MIN_NR_GENS + 1; i++)
5606 		lrugen->timestamps[i] = jiffies;
5607 
5608 	for_each_gen_type_zone(gen, type, zone)
5609 		INIT_LIST_HEAD(&lrugen->folios[gen][type][zone]);
5610 
5611 	if (mm_state)
5612 		mm_state->seq = MIN_NR_GENS;
5613 }
5614 
5615 #ifdef CONFIG_MEMCG
5616 
5617 void lru_gen_init_memcg(struct mem_cgroup *memcg)
5618 {
5619 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
5620 
5621 	if (!mm_list)
5622 		return;
5623 
5624 	INIT_LIST_HEAD(&mm_list->fifo);
5625 	spin_lock_init(&mm_list->lock);
5626 }
5627 
5628 void lru_gen_exit_memcg(struct mem_cgroup *memcg)
5629 {
5630 	int i;
5631 	int nid;
5632 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
5633 
5634 	VM_WARN_ON_ONCE(mm_list && !list_empty(&mm_list->fifo));
5635 
5636 	for_each_node(nid) {
5637 		struct lruvec *lruvec = get_lruvec(memcg, nid);
5638 		struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
5639 
5640 		VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0,
5641 					   sizeof(lruvec->lrugen.nr_pages)));
5642 
5643 		lruvec->lrugen.list.next = LIST_POISON1;
5644 
5645 		if (!mm_state)
5646 			continue;
5647 
5648 		for (i = 0; i < NR_BLOOM_FILTERS; i++) {
5649 			bitmap_free(mm_state->filters[i]);
5650 			mm_state->filters[i] = NULL;
5651 		}
5652 	}
5653 }
5654 
5655 #endif /* CONFIG_MEMCG */
5656 
5657 static int __init init_lru_gen(void)
5658 {
5659 	BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS);
5660 	BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS);
5661 
5662 	if (sysfs_create_group(mm_kobj, &lru_gen_attr_group))
5663 		pr_err("lru_gen: failed to create sysfs group\n");
5664 
5665 	debugfs_create_file("lru_gen", 0644, NULL, NULL, &lru_gen_rw_fops);
5666 	debugfs_create_file("lru_gen_full", 0444, NULL, NULL, &lru_gen_ro_fops);
5667 
5668 	return 0;
5669 };
5670 late_initcall(init_lru_gen);
5671 
5672 #else /* !CONFIG_LRU_GEN */
5673 
5674 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
5675 {
5676 	BUILD_BUG();
5677 }
5678 
5679 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5680 {
5681 	BUILD_BUG();
5682 }
5683 
5684 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
5685 {
5686 	BUILD_BUG();
5687 }
5688 
5689 #endif /* CONFIG_LRU_GEN */
5690 
5691 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5692 {
5693 	unsigned long nr[NR_LRU_LISTS];
5694 	unsigned long targets[NR_LRU_LISTS];
5695 	unsigned long nr_to_scan;
5696 	enum lru_list lru;
5697 	unsigned long nr_reclaimed = 0;
5698 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
5699 	bool proportional_reclaim;
5700 	struct blk_plug plug;
5701 
5702 	if (lru_gen_enabled() && !root_reclaim(sc)) {
5703 		lru_gen_shrink_lruvec(lruvec, sc);
5704 		return;
5705 	}
5706 
5707 	get_scan_count(lruvec, sc, nr);
5708 
5709 	/* Record the original scan target for proportional adjustments later */
5710 	memcpy(targets, nr, sizeof(nr));
5711 
5712 	/*
5713 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
5714 	 * event that can occur when there is little memory pressure e.g.
5715 	 * multiple streaming readers/writers. Hence, we do not abort scanning
5716 	 * when the requested number of pages are reclaimed when scanning at
5717 	 * DEF_PRIORITY on the assumption that the fact we are direct
5718 	 * reclaiming implies that kswapd is not keeping up and it is best to
5719 	 * do a batch of work at once. For memcg reclaim one check is made to
5720 	 * abort proportional reclaim if either the file or anon lru has already
5721 	 * dropped to zero at the first pass.
5722 	 */
5723 	proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
5724 				sc->priority == DEF_PRIORITY);
5725 
5726 	blk_start_plug(&plug);
5727 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
5728 					nr[LRU_INACTIVE_FILE]) {
5729 		unsigned long nr_anon, nr_file, percentage;
5730 		unsigned long nr_scanned;
5731 
5732 		for_each_evictable_lru(lru) {
5733 			if (nr[lru]) {
5734 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
5735 				nr[lru] -= nr_to_scan;
5736 
5737 				nr_reclaimed += shrink_list(lru, nr_to_scan,
5738 							    lruvec, sc);
5739 			}
5740 		}
5741 
5742 		cond_resched();
5743 
5744 		if (nr_reclaimed < nr_to_reclaim || proportional_reclaim)
5745 			continue;
5746 
5747 		/*
5748 		 * For kswapd and memcg, reclaim at least the number of pages
5749 		 * requested. Ensure that the anon and file LRUs are scanned
5750 		 * proportionally what was requested by get_scan_count(). We
5751 		 * stop reclaiming one LRU and reduce the amount scanning
5752 		 * proportional to the original scan target.
5753 		 */
5754 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
5755 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
5756 
5757 		/*
5758 		 * It's just vindictive to attack the larger once the smaller
5759 		 * has gone to zero.  And given the way we stop scanning the
5760 		 * smaller below, this makes sure that we only make one nudge
5761 		 * towards proportionality once we've got nr_to_reclaim.
5762 		 */
5763 		if (!nr_file || !nr_anon)
5764 			break;
5765 
5766 		if (nr_file > nr_anon) {
5767 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
5768 						targets[LRU_ACTIVE_ANON] + 1;
5769 			lru = LRU_BASE;
5770 			percentage = nr_anon * 100 / scan_target;
5771 		} else {
5772 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
5773 						targets[LRU_ACTIVE_FILE] + 1;
5774 			lru = LRU_FILE;
5775 			percentage = nr_file * 100 / scan_target;
5776 		}
5777 
5778 		/* Stop scanning the smaller of the LRU */
5779 		nr[lru] = 0;
5780 		nr[lru + LRU_ACTIVE] = 0;
5781 
5782 		/*
5783 		 * Recalculate the other LRU scan count based on its original
5784 		 * scan target and the percentage scanning already complete
5785 		 */
5786 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
5787 		nr_scanned = targets[lru] - nr[lru];
5788 		nr[lru] = targets[lru] * (100 - percentage) / 100;
5789 		nr[lru] -= min(nr[lru], nr_scanned);
5790 
5791 		lru += LRU_ACTIVE;
5792 		nr_scanned = targets[lru] - nr[lru];
5793 		nr[lru] = targets[lru] * (100 - percentage) / 100;
5794 		nr[lru] -= min(nr[lru], nr_scanned);
5795 	}
5796 	blk_finish_plug(&plug);
5797 	sc->nr_reclaimed += nr_reclaimed;
5798 
5799 	/*
5800 	 * Even if we did not try to evict anon pages at all, we want to
5801 	 * rebalance the anon lru active/inactive ratio.
5802 	 */
5803 	if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) &&
5804 	    inactive_is_low(lruvec, LRU_INACTIVE_ANON))
5805 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
5806 				   sc, LRU_ACTIVE_ANON);
5807 }
5808 
5809 /* Use reclaim/compaction for costly allocs or under memory pressure */
5810 static bool in_reclaim_compaction(struct scan_control *sc)
5811 {
5812 	if (gfp_compaction_allowed(sc->gfp_mask) && sc->order &&
5813 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
5814 			 sc->priority < DEF_PRIORITY - 2))
5815 		return true;
5816 
5817 	return false;
5818 }
5819 
5820 /*
5821  * Reclaim/compaction is used for high-order allocation requests. It reclaims
5822  * order-0 pages before compacting the zone. should_continue_reclaim() returns
5823  * true if more pages should be reclaimed such that when the page allocator
5824  * calls try_to_compact_pages() that it will have enough free pages to succeed.
5825  * It will give up earlier than that if there is difficulty reclaiming pages.
5826  */
5827 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
5828 					unsigned long nr_reclaimed,
5829 					struct scan_control *sc)
5830 {
5831 	unsigned long pages_for_compaction;
5832 	unsigned long inactive_lru_pages;
5833 	int z;
5834 
5835 	/* If not in reclaim/compaction mode, stop */
5836 	if (!in_reclaim_compaction(sc))
5837 		return false;
5838 
5839 	/*
5840 	 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
5841 	 * number of pages that were scanned. This will return to the caller
5842 	 * with the risk reclaim/compaction and the resulting allocation attempt
5843 	 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
5844 	 * allocations through requiring that the full LRU list has been scanned
5845 	 * first, by assuming that zero delta of sc->nr_scanned means full LRU
5846 	 * scan, but that approximation was wrong, and there were corner cases
5847 	 * where always a non-zero amount of pages were scanned.
5848 	 */
5849 	if (!nr_reclaimed)
5850 		return false;
5851 
5852 	/* If compaction would go ahead or the allocation would succeed, stop */
5853 	for (z = 0; z <= sc->reclaim_idx; z++) {
5854 		struct zone *zone = &pgdat->node_zones[z];
5855 		if (!managed_zone(zone))
5856 			continue;
5857 
5858 		/* Allocation can already succeed, nothing to do */
5859 		if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone),
5860 				      sc->reclaim_idx, 0))
5861 			return false;
5862 
5863 		if (compaction_suitable(zone, sc->order, sc->reclaim_idx))
5864 			return false;
5865 	}
5866 
5867 	/*
5868 	 * If we have not reclaimed enough pages for compaction and the
5869 	 * inactive lists are large enough, continue reclaiming
5870 	 */
5871 	pages_for_compaction = compact_gap(sc->order);
5872 	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
5873 	if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
5874 		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
5875 
5876 	return inactive_lru_pages > pages_for_compaction;
5877 }
5878 
5879 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
5880 {
5881 	struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
5882 	struct mem_cgroup_reclaim_cookie reclaim = {
5883 		.pgdat = pgdat,
5884 	};
5885 	struct mem_cgroup_reclaim_cookie *partial = &reclaim;
5886 	struct mem_cgroup *memcg;
5887 
5888 	/*
5889 	 * In most cases, direct reclaimers can do partial walks
5890 	 * through the cgroup tree, using an iterator state that
5891 	 * persists across invocations. This strikes a balance between
5892 	 * fairness and allocation latency.
5893 	 *
5894 	 * For kswapd, reliable forward progress is more important
5895 	 * than a quick return to idle. Always do full walks.
5896 	 */
5897 	if (current_is_kswapd() || sc->memcg_full_walk)
5898 		partial = NULL;
5899 
5900 	memcg = mem_cgroup_iter(target_memcg, NULL, partial);
5901 	do {
5902 		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
5903 		unsigned long reclaimed;
5904 		unsigned long scanned;
5905 
5906 		/*
5907 		 * This loop can become CPU-bound when target memcgs
5908 		 * aren't eligible for reclaim - either because they
5909 		 * don't have any reclaimable pages, or because their
5910 		 * memory is explicitly protected. Avoid soft lockups.
5911 		 */
5912 		cond_resched();
5913 
5914 		mem_cgroup_calculate_protection(target_memcg, memcg);
5915 
5916 		if (mem_cgroup_below_min(target_memcg, memcg)) {
5917 			/*
5918 			 * Hard protection.
5919 			 * If there is no reclaimable memory, OOM.
5920 			 */
5921 			continue;
5922 		} else if (mem_cgroup_below_low(target_memcg, memcg)) {
5923 			/*
5924 			 * Soft protection.
5925 			 * Respect the protection only as long as
5926 			 * there is an unprotected supply
5927 			 * of reclaimable memory from other cgroups.
5928 			 */
5929 			if (!sc->memcg_low_reclaim) {
5930 				sc->memcg_low_skipped = 1;
5931 				continue;
5932 			}
5933 			memcg_memory_event(memcg, MEMCG_LOW);
5934 		}
5935 
5936 		reclaimed = sc->nr_reclaimed;
5937 		scanned = sc->nr_scanned;
5938 
5939 		shrink_lruvec(lruvec, sc);
5940 
5941 		shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
5942 			    sc->priority);
5943 
5944 		/* Record the group's reclaim efficiency */
5945 		if (!sc->proactive)
5946 			vmpressure(sc->gfp_mask, memcg, false,
5947 				   sc->nr_scanned - scanned,
5948 				   sc->nr_reclaimed - reclaimed);
5949 
5950 		/* If partial walks are allowed, bail once goal is reached */
5951 		if (partial && sc->nr_reclaimed >= sc->nr_to_reclaim) {
5952 			mem_cgroup_iter_break(target_memcg, memcg);
5953 			break;
5954 		}
5955 	} while ((memcg = mem_cgroup_iter(target_memcg, memcg, partial)));
5956 }
5957 
5958 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
5959 {
5960 	unsigned long nr_reclaimed, nr_scanned, nr_node_reclaimed;
5961 	struct lruvec *target_lruvec;
5962 	bool reclaimable = false;
5963 
5964 	if (lru_gen_enabled() && root_reclaim(sc)) {
5965 		memset(&sc->nr, 0, sizeof(sc->nr));
5966 		lru_gen_shrink_node(pgdat, sc);
5967 		return;
5968 	}
5969 
5970 	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
5971 
5972 again:
5973 	memset(&sc->nr, 0, sizeof(sc->nr));
5974 
5975 	nr_reclaimed = sc->nr_reclaimed;
5976 	nr_scanned = sc->nr_scanned;
5977 
5978 	prepare_scan_control(pgdat, sc);
5979 
5980 	shrink_node_memcgs(pgdat, sc);
5981 
5982 	flush_reclaim_state(sc);
5983 
5984 	nr_node_reclaimed = sc->nr_reclaimed - nr_reclaimed;
5985 
5986 	/* Record the subtree's reclaim efficiency */
5987 	if (!sc->proactive)
5988 		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
5989 			   sc->nr_scanned - nr_scanned, nr_node_reclaimed);
5990 
5991 	if (nr_node_reclaimed)
5992 		reclaimable = true;
5993 
5994 	if (current_is_kswapd()) {
5995 		/*
5996 		 * If reclaim is isolating dirty pages under writeback,
5997 		 * it implies that the long-lived page allocation rate
5998 		 * is exceeding the page laundering rate. Either the
5999 		 * global limits are not being effective at throttling
6000 		 * processes due to the page distribution throughout
6001 		 * zones or there is heavy usage of a slow backing
6002 		 * device. The only option is to throttle from reclaim
6003 		 * context which is not ideal as there is no guarantee
6004 		 * the dirtying process is throttled in the same way
6005 		 * balance_dirty_pages() manages.
6006 		 *
6007 		 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
6008 		 * count the number of pages under pages flagged for
6009 		 * immediate reclaim and stall if any are encountered
6010 		 * in the nr_immediate check below.
6011 		 */
6012 		if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
6013 			set_bit(PGDAT_WRITEBACK, &pgdat->flags);
6014 
6015 		/* Allow kswapd to start writing pages during reclaim.*/
6016 		if (sc->nr.unqueued_dirty &&
6017 			sc->nr.unqueued_dirty == sc->nr.file_taken)
6018 			set_bit(PGDAT_DIRTY, &pgdat->flags);
6019 
6020 		/*
6021 		 * If kswapd scans pages marked for immediate
6022 		 * reclaim and under writeback (nr_immediate), it
6023 		 * implies that pages are cycling through the LRU
6024 		 * faster than they are written so forcibly stall
6025 		 * until some pages complete writeback.
6026 		 */
6027 		if (sc->nr.immediate)
6028 			reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
6029 	}
6030 
6031 	/*
6032 	 * Tag a node/memcg as congested if all the dirty pages were marked
6033 	 * for writeback and immediate reclaim (counted in nr.congested).
6034 	 *
6035 	 * Legacy memcg will stall in page writeback so avoid forcibly
6036 	 * stalling in reclaim_throttle().
6037 	 */
6038 	if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested) {
6039 		if (cgroup_reclaim(sc) && writeback_throttling_sane(sc))
6040 			set_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags);
6041 
6042 		if (current_is_kswapd())
6043 			set_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags);
6044 	}
6045 
6046 	/*
6047 	 * Stall direct reclaim for IO completions if the lruvec is
6048 	 * node is congested. Allow kswapd to continue until it
6049 	 * starts encountering unqueued dirty pages or cycling through
6050 	 * the LRU too quickly.
6051 	 */
6052 	if (!current_is_kswapd() && current_may_throttle() &&
6053 	    !sc->hibernation_mode &&
6054 	    (test_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags) ||
6055 	     test_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags)))
6056 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED);
6057 
6058 	if (should_continue_reclaim(pgdat, nr_node_reclaimed, sc))
6059 		goto again;
6060 
6061 	/*
6062 	 * Kswapd gives up on balancing particular nodes after too
6063 	 * many failures to reclaim anything from them and goes to
6064 	 * sleep. On reclaim progress, reset the failure counter. A
6065 	 * successful direct reclaim run will revive a dormant kswapd.
6066 	 */
6067 	if (reclaimable)
6068 		pgdat->kswapd_failures = 0;
6069 	else if (sc->cache_trim_mode)
6070 		sc->cache_trim_mode_failed = 1;
6071 }
6072 
6073 /*
6074  * Returns true if compaction should go ahead for a costly-order request, or
6075  * the allocation would already succeed without compaction. Return false if we
6076  * should reclaim first.
6077  */
6078 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
6079 {
6080 	unsigned long watermark;
6081 
6082 	if (!gfp_compaction_allowed(sc->gfp_mask))
6083 		return false;
6084 
6085 	/* Allocation can already succeed, nothing to do */
6086 	if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone),
6087 			      sc->reclaim_idx, 0))
6088 		return true;
6089 
6090 	/* Compaction cannot yet proceed. Do reclaim. */
6091 	if (!compaction_suitable(zone, sc->order, sc->reclaim_idx))
6092 		return false;
6093 
6094 	/*
6095 	 * Compaction is already possible, but it takes time to run and there
6096 	 * are potentially other callers using the pages just freed. So proceed
6097 	 * with reclaim to make a buffer of free pages available to give
6098 	 * compaction a reasonable chance of completing and allocating the page.
6099 	 * Note that we won't actually reclaim the whole buffer in one attempt
6100 	 * as the target watermark in should_continue_reclaim() is lower. But if
6101 	 * we are already above the high+gap watermark, don't reclaim at all.
6102 	 */
6103 	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
6104 
6105 	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
6106 }
6107 
6108 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
6109 {
6110 	/*
6111 	 * If reclaim is making progress greater than 12% efficiency then
6112 	 * wake all the NOPROGRESS throttled tasks.
6113 	 */
6114 	if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) {
6115 		wait_queue_head_t *wqh;
6116 
6117 		wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS];
6118 		if (waitqueue_active(wqh))
6119 			wake_up(wqh);
6120 
6121 		return;
6122 	}
6123 
6124 	/*
6125 	 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will
6126 	 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages
6127 	 * under writeback and marked for immediate reclaim at the tail of the
6128 	 * LRU.
6129 	 */
6130 	if (current_is_kswapd() || cgroup_reclaim(sc))
6131 		return;
6132 
6133 	/* Throttle if making no progress at high prioities. */
6134 	if (sc->priority == 1 && !sc->nr_reclaimed)
6135 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS);
6136 }
6137 
6138 /*
6139  * This is the direct reclaim path, for page-allocating processes.  We only
6140  * try to reclaim pages from zones which will satisfy the caller's allocation
6141  * request.
6142  *
6143  * If a zone is deemed to be full of pinned pages then just give it a light
6144  * scan then give up on it.
6145  */
6146 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
6147 {
6148 	struct zoneref *z;
6149 	struct zone *zone;
6150 	unsigned long nr_soft_reclaimed;
6151 	unsigned long nr_soft_scanned;
6152 	gfp_t orig_mask;
6153 	pg_data_t *last_pgdat = NULL;
6154 	pg_data_t *first_pgdat = NULL;
6155 
6156 	/*
6157 	 * If the number of buffer_heads in the machine exceeds the maximum
6158 	 * allowed level, force direct reclaim to scan the highmem zone as
6159 	 * highmem pages could be pinning lowmem pages storing buffer_heads
6160 	 */
6161 	orig_mask = sc->gfp_mask;
6162 	if (buffer_heads_over_limit) {
6163 		sc->gfp_mask |= __GFP_HIGHMEM;
6164 		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
6165 	}
6166 
6167 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6168 					sc->reclaim_idx, sc->nodemask) {
6169 		/*
6170 		 * Take care memory controller reclaiming has small influence
6171 		 * to global LRU.
6172 		 */
6173 		if (!cgroup_reclaim(sc)) {
6174 			if (!cpuset_zone_allowed(zone,
6175 						 GFP_KERNEL | __GFP_HARDWALL))
6176 				continue;
6177 
6178 			/*
6179 			 * If we already have plenty of memory free for
6180 			 * compaction in this zone, don't free any more.
6181 			 * Even though compaction is invoked for any
6182 			 * non-zero order, only frequent costly order
6183 			 * reclamation is disruptive enough to become a
6184 			 * noticeable problem, like transparent huge
6185 			 * page allocations.
6186 			 */
6187 			if (IS_ENABLED(CONFIG_COMPACTION) &&
6188 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
6189 			    compaction_ready(zone, sc)) {
6190 				sc->compaction_ready = true;
6191 				continue;
6192 			}
6193 
6194 			/*
6195 			 * Shrink each node in the zonelist once. If the
6196 			 * zonelist is ordered by zone (not the default) then a
6197 			 * node may be shrunk multiple times but in that case
6198 			 * the user prefers lower zones being preserved.
6199 			 */
6200 			if (zone->zone_pgdat == last_pgdat)
6201 				continue;
6202 
6203 			/*
6204 			 * This steals pages from memory cgroups over softlimit
6205 			 * and returns the number of reclaimed pages and
6206 			 * scanned pages. This works for global memory pressure
6207 			 * and balancing, not for a memcg's limit.
6208 			 */
6209 			nr_soft_scanned = 0;
6210 			nr_soft_reclaimed = memcg1_soft_limit_reclaim(zone->zone_pgdat,
6211 								      sc->order, sc->gfp_mask,
6212 								      &nr_soft_scanned);
6213 			sc->nr_reclaimed += nr_soft_reclaimed;
6214 			sc->nr_scanned += nr_soft_scanned;
6215 			/* need some check for avoid more shrink_zone() */
6216 		}
6217 
6218 		if (!first_pgdat)
6219 			first_pgdat = zone->zone_pgdat;
6220 
6221 		/* See comment about same check for global reclaim above */
6222 		if (zone->zone_pgdat == last_pgdat)
6223 			continue;
6224 		last_pgdat = zone->zone_pgdat;
6225 		shrink_node(zone->zone_pgdat, sc);
6226 	}
6227 
6228 	if (first_pgdat)
6229 		consider_reclaim_throttle(first_pgdat, sc);
6230 
6231 	/*
6232 	 * Restore to original mask to avoid the impact on the caller if we
6233 	 * promoted it to __GFP_HIGHMEM.
6234 	 */
6235 	sc->gfp_mask = orig_mask;
6236 }
6237 
6238 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
6239 {
6240 	struct lruvec *target_lruvec;
6241 	unsigned long refaults;
6242 
6243 	if (lru_gen_enabled())
6244 		return;
6245 
6246 	target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
6247 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
6248 	target_lruvec->refaults[WORKINGSET_ANON] = refaults;
6249 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
6250 	target_lruvec->refaults[WORKINGSET_FILE] = refaults;
6251 }
6252 
6253 /*
6254  * This is the main entry point to direct page reclaim.
6255  *
6256  * If a full scan of the inactive list fails to free enough memory then we
6257  * are "out of memory" and something needs to be killed.
6258  *
6259  * If the caller is !__GFP_FS then the probability of a failure is reasonably
6260  * high - the zone may be full of dirty or under-writeback pages, which this
6261  * caller can't do much about.  We kick the writeback threads and take explicit
6262  * naps in the hope that some of these pages can be written.  But if the
6263  * allocating task holds filesystem locks which prevent writeout this might not
6264  * work, and the allocation attempt will fail.
6265  *
6266  * returns:	0, if no pages reclaimed
6267  * 		else, the number of pages reclaimed
6268  */
6269 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
6270 					  struct scan_control *sc)
6271 {
6272 	int initial_priority = sc->priority;
6273 	pg_data_t *last_pgdat;
6274 	struct zoneref *z;
6275 	struct zone *zone;
6276 retry:
6277 	delayacct_freepages_start();
6278 
6279 	if (!cgroup_reclaim(sc))
6280 		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
6281 
6282 	do {
6283 		if (!sc->proactive)
6284 			vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
6285 					sc->priority);
6286 		sc->nr_scanned = 0;
6287 		shrink_zones(zonelist, sc);
6288 
6289 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
6290 			break;
6291 
6292 		if (sc->compaction_ready)
6293 			break;
6294 
6295 		/*
6296 		 * If we're getting trouble reclaiming, start doing
6297 		 * writepage even in laptop mode.
6298 		 */
6299 		if (sc->priority < DEF_PRIORITY - 2)
6300 			sc->may_writepage = 1;
6301 	} while (--sc->priority >= 0);
6302 
6303 	last_pgdat = NULL;
6304 	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
6305 					sc->nodemask) {
6306 		if (zone->zone_pgdat == last_pgdat)
6307 			continue;
6308 		last_pgdat = zone->zone_pgdat;
6309 
6310 		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
6311 
6312 		if (cgroup_reclaim(sc)) {
6313 			struct lruvec *lruvec;
6314 
6315 			lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
6316 						   zone->zone_pgdat);
6317 			clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags);
6318 		}
6319 	}
6320 
6321 	delayacct_freepages_end();
6322 
6323 	if (sc->nr_reclaimed)
6324 		return sc->nr_reclaimed;
6325 
6326 	/* Aborted reclaim to try compaction? don't OOM, then */
6327 	if (sc->compaction_ready)
6328 		return 1;
6329 
6330 	/*
6331 	 * In most cases, direct reclaimers can do partial walks
6332 	 * through the cgroup tree to meet the reclaim goal while
6333 	 * keeping latency low. Since the iterator state is shared
6334 	 * among all direct reclaim invocations (to retain fairness
6335 	 * among cgroups), though, high concurrency can result in
6336 	 * individual threads not seeing enough cgroups to make
6337 	 * meaningful forward progress. Avoid false OOMs in this case.
6338 	 */
6339 	if (!sc->memcg_full_walk) {
6340 		sc->priority = initial_priority;
6341 		sc->memcg_full_walk = 1;
6342 		goto retry;
6343 	}
6344 
6345 	/*
6346 	 * We make inactive:active ratio decisions based on the node's
6347 	 * composition of memory, but a restrictive reclaim_idx or a
6348 	 * memory.low cgroup setting can exempt large amounts of
6349 	 * memory from reclaim. Neither of which are very common, so
6350 	 * instead of doing costly eligibility calculations of the
6351 	 * entire cgroup subtree up front, we assume the estimates are
6352 	 * good, and retry with forcible deactivation if that fails.
6353 	 */
6354 	if (sc->skipped_deactivate) {
6355 		sc->priority = initial_priority;
6356 		sc->force_deactivate = 1;
6357 		sc->skipped_deactivate = 0;
6358 		goto retry;
6359 	}
6360 
6361 	/* Untapped cgroup reserves?  Don't OOM, retry. */
6362 	if (sc->memcg_low_skipped) {
6363 		sc->priority = initial_priority;
6364 		sc->force_deactivate = 0;
6365 		sc->memcg_low_reclaim = 1;
6366 		sc->memcg_low_skipped = 0;
6367 		goto retry;
6368 	}
6369 
6370 	return 0;
6371 }
6372 
6373 static bool allow_direct_reclaim(pg_data_t *pgdat)
6374 {
6375 	struct zone *zone;
6376 	unsigned long pfmemalloc_reserve = 0;
6377 	unsigned long free_pages = 0;
6378 	int i;
6379 	bool wmark_ok;
6380 
6381 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6382 		return true;
6383 
6384 	for (i = 0; i <= ZONE_NORMAL; i++) {
6385 		zone = &pgdat->node_zones[i];
6386 		if (!managed_zone(zone))
6387 			continue;
6388 
6389 		if (!zone_reclaimable_pages(zone))
6390 			continue;
6391 
6392 		pfmemalloc_reserve += min_wmark_pages(zone);
6393 		free_pages += zone_page_state_snapshot(zone, NR_FREE_PAGES);
6394 	}
6395 
6396 	/* If there are no reserves (unexpected config) then do not throttle */
6397 	if (!pfmemalloc_reserve)
6398 		return true;
6399 
6400 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
6401 
6402 	/* kswapd must be awake if processes are being throttled */
6403 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
6404 		if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
6405 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
6406 
6407 		wake_up_interruptible(&pgdat->kswapd_wait);
6408 	}
6409 
6410 	return wmark_ok;
6411 }
6412 
6413 /*
6414  * Throttle direct reclaimers if backing storage is backed by the network
6415  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
6416  * depleted. kswapd will continue to make progress and wake the processes
6417  * when the low watermark is reached.
6418  *
6419  * Returns true if a fatal signal was delivered during throttling. If this
6420  * happens, the page allocator should not consider triggering the OOM killer.
6421  */
6422 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
6423 					nodemask_t *nodemask)
6424 {
6425 	struct zoneref *z;
6426 	struct zone *zone;
6427 	pg_data_t *pgdat = NULL;
6428 
6429 	/*
6430 	 * Kernel threads should not be throttled as they may be indirectly
6431 	 * responsible for cleaning pages necessary for reclaim to make forward
6432 	 * progress. kjournald for example may enter direct reclaim while
6433 	 * committing a transaction where throttling it could forcing other
6434 	 * processes to block on log_wait_commit().
6435 	 */
6436 	if (current->flags & PF_KTHREAD)
6437 		goto out;
6438 
6439 	/*
6440 	 * If a fatal signal is pending, this process should not throttle.
6441 	 * It should return quickly so it can exit and free its memory
6442 	 */
6443 	if (fatal_signal_pending(current))
6444 		goto out;
6445 
6446 	/*
6447 	 * Check if the pfmemalloc reserves are ok by finding the first node
6448 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
6449 	 * GFP_KERNEL will be required for allocating network buffers when
6450 	 * swapping over the network so ZONE_HIGHMEM is unusable.
6451 	 *
6452 	 * Throttling is based on the first usable node and throttled processes
6453 	 * wait on a queue until kswapd makes progress and wakes them. There
6454 	 * is an affinity then between processes waking up and where reclaim
6455 	 * progress has been made assuming the process wakes on the same node.
6456 	 * More importantly, processes running on remote nodes will not compete
6457 	 * for remote pfmemalloc reserves and processes on different nodes
6458 	 * should make reasonable progress.
6459 	 */
6460 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6461 					gfp_zone(gfp_mask), nodemask) {
6462 		if (zone_idx(zone) > ZONE_NORMAL)
6463 			continue;
6464 
6465 		/* Throttle based on the first usable node */
6466 		pgdat = zone->zone_pgdat;
6467 		if (allow_direct_reclaim(pgdat))
6468 			goto out;
6469 		break;
6470 	}
6471 
6472 	/* If no zone was usable by the allocation flags then do not throttle */
6473 	if (!pgdat)
6474 		goto out;
6475 
6476 	/* Account for the throttling */
6477 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
6478 
6479 	/*
6480 	 * If the caller cannot enter the filesystem, it's possible that it
6481 	 * is due to the caller holding an FS lock or performing a journal
6482 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
6483 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
6484 	 * blocked waiting on the same lock. Instead, throttle for up to a
6485 	 * second before continuing.
6486 	 */
6487 	if (!(gfp_mask & __GFP_FS))
6488 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
6489 			allow_direct_reclaim(pgdat), HZ);
6490 	else
6491 		/* Throttle until kswapd wakes the process */
6492 		wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
6493 			allow_direct_reclaim(pgdat));
6494 
6495 	if (fatal_signal_pending(current))
6496 		return true;
6497 
6498 out:
6499 	return false;
6500 }
6501 
6502 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
6503 				gfp_t gfp_mask, nodemask_t *nodemask)
6504 {
6505 	unsigned long nr_reclaimed;
6506 	struct scan_control sc = {
6507 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
6508 		.gfp_mask = current_gfp_context(gfp_mask),
6509 		.reclaim_idx = gfp_zone(gfp_mask),
6510 		.order = order,
6511 		.nodemask = nodemask,
6512 		.priority = DEF_PRIORITY,
6513 		.may_writepage = !laptop_mode,
6514 		.may_unmap = 1,
6515 		.may_swap = 1,
6516 	};
6517 
6518 	/*
6519 	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
6520 	 * Confirm they are large enough for max values.
6521 	 */
6522 	BUILD_BUG_ON(MAX_PAGE_ORDER >= S8_MAX);
6523 	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
6524 	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
6525 
6526 	/*
6527 	 * Do not enter reclaim if fatal signal was delivered while throttled.
6528 	 * 1 is returned so that the page allocator does not OOM kill at this
6529 	 * point.
6530 	 */
6531 	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
6532 		return 1;
6533 
6534 	set_task_reclaim_state(current, &sc.reclaim_state);
6535 	trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
6536 
6537 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
6538 
6539 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
6540 	set_task_reclaim_state(current, NULL);
6541 
6542 	return nr_reclaimed;
6543 }
6544 
6545 #ifdef CONFIG_MEMCG
6546 
6547 /* Only used by soft limit reclaim. Do not reuse for anything else. */
6548 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
6549 						gfp_t gfp_mask, bool noswap,
6550 						pg_data_t *pgdat,
6551 						unsigned long *nr_scanned)
6552 {
6553 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
6554 	struct scan_control sc = {
6555 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
6556 		.target_mem_cgroup = memcg,
6557 		.may_writepage = !laptop_mode,
6558 		.may_unmap = 1,
6559 		.reclaim_idx = MAX_NR_ZONES - 1,
6560 		.may_swap = !noswap,
6561 	};
6562 
6563 	WARN_ON_ONCE(!current->reclaim_state);
6564 
6565 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
6566 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
6567 
6568 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
6569 						      sc.gfp_mask);
6570 
6571 	/*
6572 	 * NOTE: Although we can get the priority field, using it
6573 	 * here is not a good idea, since it limits the pages we can scan.
6574 	 * if we don't reclaim here, the shrink_node from balance_pgdat
6575 	 * will pick up pages from other mem cgroup's as well. We hack
6576 	 * the priority and make it zero.
6577 	 */
6578 	shrink_lruvec(lruvec, &sc);
6579 
6580 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
6581 
6582 	*nr_scanned = sc.nr_scanned;
6583 
6584 	return sc.nr_reclaimed;
6585 }
6586 
6587 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
6588 					   unsigned long nr_pages,
6589 					   gfp_t gfp_mask,
6590 					   unsigned int reclaim_options,
6591 					   int *swappiness)
6592 {
6593 	unsigned long nr_reclaimed;
6594 	unsigned int noreclaim_flag;
6595 	struct scan_control sc = {
6596 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
6597 		.proactive_swappiness = swappiness,
6598 		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
6599 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
6600 		.reclaim_idx = MAX_NR_ZONES - 1,
6601 		.target_mem_cgroup = memcg,
6602 		.priority = DEF_PRIORITY,
6603 		.may_writepage = !laptop_mode,
6604 		.may_unmap = 1,
6605 		.may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP),
6606 		.proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE),
6607 	};
6608 	/*
6609 	 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
6610 	 * equal pressure on all the nodes. This is based on the assumption that
6611 	 * the reclaim does not bail out early.
6612 	 */
6613 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
6614 
6615 	set_task_reclaim_state(current, &sc.reclaim_state);
6616 	trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
6617 	noreclaim_flag = memalloc_noreclaim_save();
6618 
6619 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
6620 
6621 	memalloc_noreclaim_restore(noreclaim_flag);
6622 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
6623 	set_task_reclaim_state(current, NULL);
6624 
6625 	return nr_reclaimed;
6626 }
6627 #endif
6628 
6629 static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc)
6630 {
6631 	struct mem_cgroup *memcg;
6632 	struct lruvec *lruvec;
6633 
6634 	if (lru_gen_enabled()) {
6635 		lru_gen_age_node(pgdat, sc);
6636 		return;
6637 	}
6638 
6639 	if (!can_age_anon_pages(pgdat, sc))
6640 		return;
6641 
6642 	lruvec = mem_cgroup_lruvec(NULL, pgdat);
6643 	if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
6644 		return;
6645 
6646 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
6647 	do {
6648 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
6649 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
6650 				   sc, LRU_ACTIVE_ANON);
6651 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
6652 	} while (memcg);
6653 }
6654 
6655 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
6656 {
6657 	int i;
6658 	struct zone *zone;
6659 
6660 	/*
6661 	 * Check for watermark boosts top-down as the higher zones
6662 	 * are more likely to be boosted. Both watermarks and boosts
6663 	 * should not be checked at the same time as reclaim would
6664 	 * start prematurely when there is no boosting and a lower
6665 	 * zone is balanced.
6666 	 */
6667 	for (i = highest_zoneidx; i >= 0; i--) {
6668 		zone = pgdat->node_zones + i;
6669 		if (!managed_zone(zone))
6670 			continue;
6671 
6672 		if (zone->watermark_boost)
6673 			return true;
6674 	}
6675 
6676 	return false;
6677 }
6678 
6679 /*
6680  * Returns true if there is an eligible zone balanced for the request order
6681  * and highest_zoneidx
6682  */
6683 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
6684 {
6685 	int i;
6686 	unsigned long mark = -1;
6687 	struct zone *zone;
6688 
6689 	/*
6690 	 * Check watermarks bottom-up as lower zones are more likely to
6691 	 * meet watermarks.
6692 	 */
6693 	for (i = 0; i <= highest_zoneidx; i++) {
6694 		zone = pgdat->node_zones + i;
6695 
6696 		if (!managed_zone(zone))
6697 			continue;
6698 
6699 		if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)
6700 			mark = promo_wmark_pages(zone);
6701 		else
6702 			mark = high_wmark_pages(zone);
6703 		if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
6704 			return true;
6705 	}
6706 
6707 	/*
6708 	 * If a node has no managed zone within highest_zoneidx, it does not
6709 	 * need balancing by definition. This can happen if a zone-restricted
6710 	 * allocation tries to wake a remote kswapd.
6711 	 */
6712 	if (mark == -1)
6713 		return true;
6714 
6715 	return false;
6716 }
6717 
6718 /* Clear pgdat state for congested, dirty or under writeback. */
6719 static void clear_pgdat_congested(pg_data_t *pgdat)
6720 {
6721 	struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
6722 
6723 	clear_bit(LRUVEC_NODE_CONGESTED, &lruvec->flags);
6724 	clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags);
6725 	clear_bit(PGDAT_DIRTY, &pgdat->flags);
6726 	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
6727 }
6728 
6729 /*
6730  * Prepare kswapd for sleeping. This verifies that there are no processes
6731  * waiting in throttle_direct_reclaim() and that watermarks have been met.
6732  *
6733  * Returns true if kswapd is ready to sleep
6734  */
6735 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
6736 				int highest_zoneidx)
6737 {
6738 	/*
6739 	 * The throttled processes are normally woken up in balance_pgdat() as
6740 	 * soon as allow_direct_reclaim() is true. But there is a potential
6741 	 * race between when kswapd checks the watermarks and a process gets
6742 	 * throttled. There is also a potential race if processes get
6743 	 * throttled, kswapd wakes, a large process exits thereby balancing the
6744 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
6745 	 * the wake up checks. If kswapd is going to sleep, no process should
6746 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
6747 	 * the wake up is premature, processes will wake kswapd and get
6748 	 * throttled again. The difference from wake ups in balance_pgdat() is
6749 	 * that here we are under prepare_to_wait().
6750 	 */
6751 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
6752 		wake_up_all(&pgdat->pfmemalloc_wait);
6753 
6754 	/* Hopeless node, leave it to direct reclaim */
6755 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6756 		return true;
6757 
6758 	if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
6759 		clear_pgdat_congested(pgdat);
6760 		return true;
6761 	}
6762 
6763 	return false;
6764 }
6765 
6766 /*
6767  * kswapd shrinks a node of pages that are at or below the highest usable
6768  * zone that is currently unbalanced.
6769  *
6770  * Returns true if kswapd scanned at least the requested number of pages to
6771  * reclaim or if the lack of progress was due to pages under writeback.
6772  * This is used to determine if the scanning priority needs to be raised.
6773  */
6774 static bool kswapd_shrink_node(pg_data_t *pgdat,
6775 			       struct scan_control *sc)
6776 {
6777 	struct zone *zone;
6778 	int z;
6779 	unsigned long nr_reclaimed = sc->nr_reclaimed;
6780 
6781 	/* Reclaim a number of pages proportional to the number of zones */
6782 	sc->nr_to_reclaim = 0;
6783 	for (z = 0; z <= sc->reclaim_idx; z++) {
6784 		zone = pgdat->node_zones + z;
6785 		if (!managed_zone(zone))
6786 			continue;
6787 
6788 		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
6789 	}
6790 
6791 	/*
6792 	 * Historically care was taken to put equal pressure on all zones but
6793 	 * now pressure is applied based on node LRU order.
6794 	 */
6795 	shrink_node(pgdat, sc);
6796 
6797 	/*
6798 	 * Fragmentation may mean that the system cannot be rebalanced for
6799 	 * high-order allocations. If twice the allocation size has been
6800 	 * reclaimed then recheck watermarks only at order-0 to prevent
6801 	 * excessive reclaim. Assume that a process requested a high-order
6802 	 * can direct reclaim/compact.
6803 	 */
6804 	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
6805 		sc->order = 0;
6806 
6807 	/* account for progress from mm_account_reclaimed_pages() */
6808 	return max(sc->nr_scanned, sc->nr_reclaimed - nr_reclaimed) >= sc->nr_to_reclaim;
6809 }
6810 
6811 /* Page allocator PCP high watermark is lowered if reclaim is active. */
6812 static inline void
6813 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
6814 {
6815 	int i;
6816 	struct zone *zone;
6817 
6818 	for (i = 0; i <= highest_zoneidx; i++) {
6819 		zone = pgdat->node_zones + i;
6820 
6821 		if (!managed_zone(zone))
6822 			continue;
6823 
6824 		if (active)
6825 			set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
6826 		else
6827 			clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
6828 	}
6829 }
6830 
6831 static inline void
6832 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
6833 {
6834 	update_reclaim_active(pgdat, highest_zoneidx, true);
6835 }
6836 
6837 static inline void
6838 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
6839 {
6840 	update_reclaim_active(pgdat, highest_zoneidx, false);
6841 }
6842 
6843 /*
6844  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
6845  * that are eligible for use by the caller until at least one zone is
6846  * balanced.
6847  *
6848  * Returns the order kswapd finished reclaiming at.
6849  *
6850  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
6851  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
6852  * found to have free_pages <= high_wmark_pages(zone), any page in that zone
6853  * or lower is eligible for reclaim until at least one usable zone is
6854  * balanced.
6855  */
6856 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
6857 {
6858 	int i;
6859 	unsigned long nr_soft_reclaimed;
6860 	unsigned long nr_soft_scanned;
6861 	unsigned long pflags;
6862 	unsigned long nr_boost_reclaim;
6863 	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
6864 	bool boosted;
6865 	struct zone *zone;
6866 	struct scan_control sc = {
6867 		.gfp_mask = GFP_KERNEL,
6868 		.order = order,
6869 		.may_unmap = 1,
6870 	};
6871 
6872 	set_task_reclaim_state(current, &sc.reclaim_state);
6873 	psi_memstall_enter(&pflags);
6874 	__fs_reclaim_acquire(_THIS_IP_);
6875 
6876 	count_vm_event(PAGEOUTRUN);
6877 
6878 	/*
6879 	 * Account for the reclaim boost. Note that the zone boost is left in
6880 	 * place so that parallel allocations that are near the watermark will
6881 	 * stall or direct reclaim until kswapd is finished.
6882 	 */
6883 	nr_boost_reclaim = 0;
6884 	for (i = 0; i <= highest_zoneidx; i++) {
6885 		zone = pgdat->node_zones + i;
6886 		if (!managed_zone(zone))
6887 			continue;
6888 
6889 		nr_boost_reclaim += zone->watermark_boost;
6890 		zone_boosts[i] = zone->watermark_boost;
6891 	}
6892 	boosted = nr_boost_reclaim;
6893 
6894 restart:
6895 	set_reclaim_active(pgdat, highest_zoneidx);
6896 	sc.priority = DEF_PRIORITY;
6897 	do {
6898 		unsigned long nr_reclaimed = sc.nr_reclaimed;
6899 		bool raise_priority = true;
6900 		bool balanced;
6901 		bool ret;
6902 		bool was_frozen;
6903 
6904 		sc.reclaim_idx = highest_zoneidx;
6905 
6906 		/*
6907 		 * If the number of buffer_heads exceeds the maximum allowed
6908 		 * then consider reclaiming from all zones. This has a dual
6909 		 * purpose -- on 64-bit systems it is expected that
6910 		 * buffer_heads are stripped during active rotation. On 32-bit
6911 		 * systems, highmem pages can pin lowmem memory and shrinking
6912 		 * buffers can relieve lowmem pressure. Reclaim may still not
6913 		 * go ahead if all eligible zones for the original allocation
6914 		 * request are balanced to avoid excessive reclaim from kswapd.
6915 		 */
6916 		if (buffer_heads_over_limit) {
6917 			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
6918 				zone = pgdat->node_zones + i;
6919 				if (!managed_zone(zone))
6920 					continue;
6921 
6922 				sc.reclaim_idx = i;
6923 				break;
6924 			}
6925 		}
6926 
6927 		/*
6928 		 * If the pgdat is imbalanced then ignore boosting and preserve
6929 		 * the watermarks for a later time and restart. Note that the
6930 		 * zone watermarks will be still reset at the end of balancing
6931 		 * on the grounds that the normal reclaim should be enough to
6932 		 * re-evaluate if boosting is required when kswapd next wakes.
6933 		 */
6934 		balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
6935 		if (!balanced && nr_boost_reclaim) {
6936 			nr_boost_reclaim = 0;
6937 			goto restart;
6938 		}
6939 
6940 		/*
6941 		 * If boosting is not active then only reclaim if there are no
6942 		 * eligible zones. Note that sc.reclaim_idx is not used as
6943 		 * buffer_heads_over_limit may have adjusted it.
6944 		 */
6945 		if (!nr_boost_reclaim && balanced)
6946 			goto out;
6947 
6948 		/* Limit the priority of boosting to avoid reclaim writeback */
6949 		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
6950 			raise_priority = false;
6951 
6952 		/*
6953 		 * Do not writeback or swap pages for boosted reclaim. The
6954 		 * intent is to relieve pressure not issue sub-optimal IO
6955 		 * from reclaim context. If no pages are reclaimed, the
6956 		 * reclaim will be aborted.
6957 		 */
6958 		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
6959 		sc.may_swap = !nr_boost_reclaim;
6960 
6961 		/*
6962 		 * Do some background aging, to give pages a chance to be
6963 		 * referenced before reclaiming. All pages are rotated
6964 		 * regardless of classzone as this is about consistent aging.
6965 		 */
6966 		kswapd_age_node(pgdat, &sc);
6967 
6968 		/*
6969 		 * If we're getting trouble reclaiming, start doing writepage
6970 		 * even in laptop mode.
6971 		 */
6972 		if (sc.priority < DEF_PRIORITY - 2)
6973 			sc.may_writepage = 1;
6974 
6975 		/* Call soft limit reclaim before calling shrink_node. */
6976 		sc.nr_scanned = 0;
6977 		nr_soft_scanned = 0;
6978 		nr_soft_reclaimed = memcg1_soft_limit_reclaim(pgdat, sc.order,
6979 							      sc.gfp_mask, &nr_soft_scanned);
6980 		sc.nr_reclaimed += nr_soft_reclaimed;
6981 
6982 		/*
6983 		 * There should be no need to raise the scanning priority if
6984 		 * enough pages are already being scanned that that high
6985 		 * watermark would be met at 100% efficiency.
6986 		 */
6987 		if (kswapd_shrink_node(pgdat, &sc))
6988 			raise_priority = false;
6989 
6990 		/*
6991 		 * If the low watermark is met there is no need for processes
6992 		 * to be throttled on pfmemalloc_wait as they should not be
6993 		 * able to safely make forward progress. Wake them
6994 		 */
6995 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
6996 				allow_direct_reclaim(pgdat))
6997 			wake_up_all(&pgdat->pfmemalloc_wait);
6998 
6999 		/* Check if kswapd should be suspending */
7000 		__fs_reclaim_release(_THIS_IP_);
7001 		ret = kthread_freezable_should_stop(&was_frozen);
7002 		__fs_reclaim_acquire(_THIS_IP_);
7003 		if (was_frozen || ret)
7004 			break;
7005 
7006 		/*
7007 		 * Raise priority if scanning rate is too low or there was no
7008 		 * progress in reclaiming pages
7009 		 */
7010 		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
7011 		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
7012 
7013 		/*
7014 		 * If reclaim made no progress for a boost, stop reclaim as
7015 		 * IO cannot be queued and it could be an infinite loop in
7016 		 * extreme circumstances.
7017 		 */
7018 		if (nr_boost_reclaim && !nr_reclaimed)
7019 			break;
7020 
7021 		if (raise_priority || !nr_reclaimed)
7022 			sc.priority--;
7023 	} while (sc.priority >= 1);
7024 
7025 	/*
7026 	 * Restart only if it went through the priority loop all the way,
7027 	 * but cache_trim_mode didn't work.
7028 	 */
7029 	if (!sc.nr_reclaimed && sc.priority < 1 &&
7030 	    !sc.no_cache_trim_mode && sc.cache_trim_mode_failed) {
7031 		sc.no_cache_trim_mode = 1;
7032 		goto restart;
7033 	}
7034 
7035 	if (!sc.nr_reclaimed)
7036 		pgdat->kswapd_failures++;
7037 
7038 out:
7039 	clear_reclaim_active(pgdat, highest_zoneidx);
7040 
7041 	/* If reclaim was boosted, account for the reclaim done in this pass */
7042 	if (boosted) {
7043 		unsigned long flags;
7044 
7045 		for (i = 0; i <= highest_zoneidx; i++) {
7046 			if (!zone_boosts[i])
7047 				continue;
7048 
7049 			/* Increments are under the zone lock */
7050 			zone = pgdat->node_zones + i;
7051 			spin_lock_irqsave(&zone->lock, flags);
7052 			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
7053 			spin_unlock_irqrestore(&zone->lock, flags);
7054 		}
7055 
7056 		/*
7057 		 * As there is now likely space, wakeup kcompact to defragment
7058 		 * pageblocks.
7059 		 */
7060 		wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
7061 	}
7062 
7063 	snapshot_refaults(NULL, pgdat);
7064 	__fs_reclaim_release(_THIS_IP_);
7065 	psi_memstall_leave(&pflags);
7066 	set_task_reclaim_state(current, NULL);
7067 
7068 	/*
7069 	 * Return the order kswapd stopped reclaiming at as
7070 	 * prepare_kswapd_sleep() takes it into account. If another caller
7071 	 * entered the allocator slow path while kswapd was awake, order will
7072 	 * remain at the higher level.
7073 	 */
7074 	return sc.order;
7075 }
7076 
7077 /*
7078  * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
7079  * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
7080  * not a valid index then either kswapd runs for first time or kswapd couldn't
7081  * sleep after previous reclaim attempt (node is still unbalanced). In that
7082  * case return the zone index of the previous kswapd reclaim cycle.
7083  */
7084 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
7085 					   enum zone_type prev_highest_zoneidx)
7086 {
7087 	enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7088 
7089 	return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
7090 }
7091 
7092 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
7093 				unsigned int highest_zoneidx)
7094 {
7095 	long remaining = 0;
7096 	DEFINE_WAIT(wait);
7097 
7098 	if (freezing(current) || kthread_should_stop())
7099 		return;
7100 
7101 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7102 
7103 	/*
7104 	 * Try to sleep for a short interval. Note that kcompactd will only be
7105 	 * woken if it is possible to sleep for a short interval. This is
7106 	 * deliberate on the assumption that if reclaim cannot keep an
7107 	 * eligible zone balanced that it's also unlikely that compaction will
7108 	 * succeed.
7109 	 */
7110 	if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7111 		/*
7112 		 * Compaction records what page blocks it recently failed to
7113 		 * isolate pages from and skips them in the future scanning.
7114 		 * When kswapd is going to sleep, it is reasonable to assume
7115 		 * that pages and compaction may succeed so reset the cache.
7116 		 */
7117 		reset_isolation_suitable(pgdat);
7118 
7119 		/*
7120 		 * We have freed the memory, now we should compact it to make
7121 		 * allocation of the requested order possible.
7122 		 */
7123 		wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
7124 
7125 		remaining = schedule_timeout(HZ/10);
7126 
7127 		/*
7128 		 * If woken prematurely then reset kswapd_highest_zoneidx and
7129 		 * order. The values will either be from a wakeup request or
7130 		 * the previous request that slept prematurely.
7131 		 */
7132 		if (remaining) {
7133 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
7134 					kswapd_highest_zoneidx(pgdat,
7135 							highest_zoneidx));
7136 
7137 			if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
7138 				WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
7139 		}
7140 
7141 		finish_wait(&pgdat->kswapd_wait, &wait);
7142 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7143 	}
7144 
7145 	/*
7146 	 * After a short sleep, check if it was a premature sleep. If not, then
7147 	 * go fully to sleep until explicitly woken up.
7148 	 */
7149 	if (!remaining &&
7150 	    prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7151 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
7152 
7153 		/*
7154 		 * vmstat counters are not perfectly accurate and the estimated
7155 		 * value for counters such as NR_FREE_PAGES can deviate from the
7156 		 * true value by nr_online_cpus * threshold. To avoid the zone
7157 		 * watermarks being breached while under pressure, we reduce the
7158 		 * per-cpu vmstat threshold while kswapd is awake and restore
7159 		 * them before going back to sleep.
7160 		 */
7161 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
7162 
7163 		if (!kthread_should_stop())
7164 			schedule();
7165 
7166 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
7167 	} else {
7168 		if (remaining)
7169 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
7170 		else
7171 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
7172 	}
7173 	finish_wait(&pgdat->kswapd_wait, &wait);
7174 }
7175 
7176 /*
7177  * The background pageout daemon, started as a kernel thread
7178  * from the init process.
7179  *
7180  * This basically trickles out pages so that we have _some_
7181  * free memory available even if there is no other activity
7182  * that frees anything up. This is needed for things like routing
7183  * etc, where we otherwise might have all activity going on in
7184  * asynchronous contexts that cannot page things out.
7185  *
7186  * If there are applications that are active memory-allocators
7187  * (most normal use), this basically shouldn't matter.
7188  */
7189 static int kswapd(void *p)
7190 {
7191 	unsigned int alloc_order, reclaim_order;
7192 	unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
7193 	pg_data_t *pgdat = (pg_data_t *)p;
7194 	struct task_struct *tsk = current;
7195 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7196 
7197 	if (!cpumask_empty(cpumask))
7198 		set_cpus_allowed_ptr(tsk, cpumask);
7199 
7200 	/*
7201 	 * Tell the memory management that we're a "memory allocator",
7202 	 * and that if we need more memory we should get access to it
7203 	 * regardless (see "__alloc_pages()"). "kswapd" should
7204 	 * never get caught in the normal page freeing logic.
7205 	 *
7206 	 * (Kswapd normally doesn't need memory anyway, but sometimes
7207 	 * you need a small amount of memory in order to be able to
7208 	 * page out something else, and this flag essentially protects
7209 	 * us from recursively trying to free more memory as we're
7210 	 * trying to free the first piece of memory in the first place).
7211 	 */
7212 	tsk->flags |= PF_MEMALLOC | PF_KSWAPD;
7213 	set_freezable();
7214 
7215 	WRITE_ONCE(pgdat->kswapd_order, 0);
7216 	WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7217 	atomic_set(&pgdat->nr_writeback_throttled, 0);
7218 	for ( ; ; ) {
7219 		bool was_frozen;
7220 
7221 		alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
7222 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7223 							highest_zoneidx);
7224 
7225 kswapd_try_sleep:
7226 		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
7227 					highest_zoneidx);
7228 
7229 		/* Read the new order and highest_zoneidx */
7230 		alloc_order = READ_ONCE(pgdat->kswapd_order);
7231 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7232 							highest_zoneidx);
7233 		WRITE_ONCE(pgdat->kswapd_order, 0);
7234 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7235 
7236 		if (kthread_freezable_should_stop(&was_frozen))
7237 			break;
7238 
7239 		/*
7240 		 * We can speed up thawing tasks if we don't call balance_pgdat
7241 		 * after returning from the refrigerator
7242 		 */
7243 		if (was_frozen)
7244 			continue;
7245 
7246 		/*
7247 		 * Reclaim begins at the requested order but if a high-order
7248 		 * reclaim fails then kswapd falls back to reclaiming for
7249 		 * order-0. If that happens, kswapd will consider sleeping
7250 		 * for the order it finished reclaiming at (reclaim_order)
7251 		 * but kcompactd is woken to compact for the original
7252 		 * request (alloc_order).
7253 		 */
7254 		trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
7255 						alloc_order);
7256 		reclaim_order = balance_pgdat(pgdat, alloc_order,
7257 						highest_zoneidx);
7258 		if (reclaim_order < alloc_order)
7259 			goto kswapd_try_sleep;
7260 	}
7261 
7262 	tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD);
7263 
7264 	return 0;
7265 }
7266 
7267 /*
7268  * A zone is low on free memory or too fragmented for high-order memory.  If
7269  * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
7270  * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
7271  * has failed or is not needed, still wake up kcompactd if only compaction is
7272  * needed.
7273  */
7274 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
7275 		   enum zone_type highest_zoneidx)
7276 {
7277 	pg_data_t *pgdat;
7278 	enum zone_type curr_idx;
7279 
7280 	if (!managed_zone(zone))
7281 		return;
7282 
7283 	if (!cpuset_zone_allowed(zone, gfp_flags))
7284 		return;
7285 
7286 	pgdat = zone->zone_pgdat;
7287 	curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7288 
7289 	if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
7290 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
7291 
7292 	if (READ_ONCE(pgdat->kswapd_order) < order)
7293 		WRITE_ONCE(pgdat->kswapd_order, order);
7294 
7295 	if (!waitqueue_active(&pgdat->kswapd_wait))
7296 		return;
7297 
7298 	/* Hopeless node, leave it to direct reclaim if possible */
7299 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
7300 	    (pgdat_balanced(pgdat, order, highest_zoneidx) &&
7301 	     !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
7302 		/*
7303 		 * There may be plenty of free memory available, but it's too
7304 		 * fragmented for high-order allocations.  Wake up kcompactd
7305 		 * and rely on compaction_suitable() to determine if it's
7306 		 * needed.  If it fails, it will defer subsequent attempts to
7307 		 * ratelimit its work.
7308 		 */
7309 		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
7310 			wakeup_kcompactd(pgdat, order, highest_zoneidx);
7311 		return;
7312 	}
7313 
7314 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
7315 				      gfp_flags);
7316 	wake_up_interruptible(&pgdat->kswapd_wait);
7317 }
7318 
7319 #ifdef CONFIG_HIBERNATION
7320 /*
7321  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
7322  * freed pages.
7323  *
7324  * Rather than trying to age LRUs the aim is to preserve the overall
7325  * LRU order by reclaiming preferentially
7326  * inactive > active > active referenced > active mapped
7327  */
7328 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
7329 {
7330 	struct scan_control sc = {
7331 		.nr_to_reclaim = nr_to_reclaim,
7332 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
7333 		.reclaim_idx = MAX_NR_ZONES - 1,
7334 		.priority = DEF_PRIORITY,
7335 		.may_writepage = 1,
7336 		.may_unmap = 1,
7337 		.may_swap = 1,
7338 		.hibernation_mode = 1,
7339 	};
7340 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7341 	unsigned long nr_reclaimed;
7342 	unsigned int noreclaim_flag;
7343 
7344 	fs_reclaim_acquire(sc.gfp_mask);
7345 	noreclaim_flag = memalloc_noreclaim_save();
7346 	set_task_reclaim_state(current, &sc.reclaim_state);
7347 
7348 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
7349 
7350 	set_task_reclaim_state(current, NULL);
7351 	memalloc_noreclaim_restore(noreclaim_flag);
7352 	fs_reclaim_release(sc.gfp_mask);
7353 
7354 	return nr_reclaimed;
7355 }
7356 #endif /* CONFIG_HIBERNATION */
7357 
7358 /*
7359  * This kswapd start function will be called by init and node-hot-add.
7360  */
7361 void __meminit kswapd_run(int nid)
7362 {
7363 	pg_data_t *pgdat = NODE_DATA(nid);
7364 
7365 	pgdat_kswapd_lock(pgdat);
7366 	if (!pgdat->kswapd) {
7367 		pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
7368 		if (IS_ERR(pgdat->kswapd)) {
7369 			/* failure at boot is fatal */
7370 			pr_err("Failed to start kswapd on node %d,ret=%ld\n",
7371 				   nid, PTR_ERR(pgdat->kswapd));
7372 			BUG_ON(system_state < SYSTEM_RUNNING);
7373 			pgdat->kswapd = NULL;
7374 		}
7375 	}
7376 	pgdat_kswapd_unlock(pgdat);
7377 }
7378 
7379 /*
7380  * Called by memory hotplug when all memory in a node is offlined.  Caller must
7381  * be holding mem_hotplug_begin/done().
7382  */
7383 void __meminit kswapd_stop(int nid)
7384 {
7385 	pg_data_t *pgdat = NODE_DATA(nid);
7386 	struct task_struct *kswapd;
7387 
7388 	pgdat_kswapd_lock(pgdat);
7389 	kswapd = pgdat->kswapd;
7390 	if (kswapd) {
7391 		kthread_stop(kswapd);
7392 		pgdat->kswapd = NULL;
7393 	}
7394 	pgdat_kswapd_unlock(pgdat);
7395 }
7396 
7397 static int __init kswapd_init(void)
7398 {
7399 	int nid;
7400 
7401 	swap_setup();
7402 	for_each_node_state(nid, N_MEMORY)
7403  		kswapd_run(nid);
7404 	return 0;
7405 }
7406 
7407 module_init(kswapd_init)
7408 
7409 #ifdef CONFIG_NUMA
7410 /*
7411  * Node reclaim mode
7412  *
7413  * If non-zero call node_reclaim when the number of free pages falls below
7414  * the watermarks.
7415  */
7416 int node_reclaim_mode __read_mostly;
7417 
7418 /*
7419  * Priority for NODE_RECLAIM. This determines the fraction of pages
7420  * of a node considered for each zone_reclaim. 4 scans 1/16th of
7421  * a zone.
7422  */
7423 #define NODE_RECLAIM_PRIORITY 4
7424 
7425 /*
7426  * Percentage of pages in a zone that must be unmapped for node_reclaim to
7427  * occur.
7428  */
7429 int sysctl_min_unmapped_ratio = 1;
7430 
7431 /*
7432  * If the number of slab pages in a zone grows beyond this percentage then
7433  * slab reclaim needs to occur.
7434  */
7435 int sysctl_min_slab_ratio = 5;
7436 
7437 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
7438 {
7439 	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
7440 	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
7441 		node_page_state(pgdat, NR_ACTIVE_FILE);
7442 
7443 	/*
7444 	 * It's possible for there to be more file mapped pages than
7445 	 * accounted for by the pages on the file LRU lists because
7446 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
7447 	 */
7448 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
7449 }
7450 
7451 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
7452 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
7453 {
7454 	unsigned long nr_pagecache_reclaimable;
7455 	unsigned long delta = 0;
7456 
7457 	/*
7458 	 * If RECLAIM_UNMAP is set, then all file pages are considered
7459 	 * potentially reclaimable. Otherwise, we have to worry about
7460 	 * pages like swapcache and node_unmapped_file_pages() provides
7461 	 * a better estimate
7462 	 */
7463 	if (node_reclaim_mode & RECLAIM_UNMAP)
7464 		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
7465 	else
7466 		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
7467 
7468 	/* If we can't clean pages, remove dirty pages from consideration */
7469 	if (!(node_reclaim_mode & RECLAIM_WRITE))
7470 		delta += node_page_state(pgdat, NR_FILE_DIRTY);
7471 
7472 	/* Watch for any possible underflows due to delta */
7473 	if (unlikely(delta > nr_pagecache_reclaimable))
7474 		delta = nr_pagecache_reclaimable;
7475 
7476 	return nr_pagecache_reclaimable - delta;
7477 }
7478 
7479 /*
7480  * Try to free up some pages from this node through reclaim.
7481  */
7482 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
7483 {
7484 	/* Minimum pages needed in order to stay on node */
7485 	const unsigned long nr_pages = 1 << order;
7486 	struct task_struct *p = current;
7487 	unsigned int noreclaim_flag;
7488 	struct scan_control sc = {
7489 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7490 		.gfp_mask = current_gfp_context(gfp_mask),
7491 		.order = order,
7492 		.priority = NODE_RECLAIM_PRIORITY,
7493 		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
7494 		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
7495 		.may_swap = 1,
7496 		.reclaim_idx = gfp_zone(gfp_mask),
7497 	};
7498 	unsigned long pflags;
7499 
7500 	trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
7501 					   sc.gfp_mask);
7502 
7503 	cond_resched();
7504 	psi_memstall_enter(&pflags);
7505 	delayacct_freepages_start();
7506 	fs_reclaim_acquire(sc.gfp_mask);
7507 	/*
7508 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
7509 	 */
7510 	noreclaim_flag = memalloc_noreclaim_save();
7511 	set_task_reclaim_state(p, &sc.reclaim_state);
7512 
7513 	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages ||
7514 	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) {
7515 		/*
7516 		 * Free memory by calling shrink node with increasing
7517 		 * priorities until we have enough memory freed.
7518 		 */
7519 		do {
7520 			shrink_node(pgdat, &sc);
7521 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
7522 	}
7523 
7524 	set_task_reclaim_state(p, NULL);
7525 	memalloc_noreclaim_restore(noreclaim_flag);
7526 	fs_reclaim_release(sc.gfp_mask);
7527 	psi_memstall_leave(&pflags);
7528 	delayacct_freepages_end();
7529 
7530 	trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
7531 
7532 	return sc.nr_reclaimed >= nr_pages;
7533 }
7534 
7535 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
7536 {
7537 	int ret;
7538 
7539 	/*
7540 	 * Node reclaim reclaims unmapped file backed pages and
7541 	 * slab pages if we are over the defined limits.
7542 	 *
7543 	 * A small portion of unmapped file backed pages is needed for
7544 	 * file I/O otherwise pages read by file I/O will be immediately
7545 	 * thrown out if the node is overallocated. So we do not reclaim
7546 	 * if less than a specified percentage of the node is used by
7547 	 * unmapped file backed pages.
7548 	 */
7549 	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
7550 	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
7551 	    pgdat->min_slab_pages)
7552 		return NODE_RECLAIM_FULL;
7553 
7554 	/*
7555 	 * Do not scan if the allocation should not be delayed.
7556 	 */
7557 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
7558 		return NODE_RECLAIM_NOSCAN;
7559 
7560 	/*
7561 	 * Only run node reclaim on the local node or on nodes that do not
7562 	 * have associated processors. This will favor the local processor
7563 	 * over remote processors and spread off node memory allocations
7564 	 * as wide as possible.
7565 	 */
7566 	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
7567 		return NODE_RECLAIM_NOSCAN;
7568 
7569 	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
7570 		return NODE_RECLAIM_NOSCAN;
7571 
7572 	ret = __node_reclaim(pgdat, gfp_mask, order);
7573 	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
7574 
7575 	if (ret)
7576 		count_vm_event(PGSCAN_ZONE_RECLAIM_SUCCESS);
7577 	else
7578 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
7579 
7580 	return ret;
7581 }
7582 #endif
7583 
7584 /**
7585  * check_move_unevictable_folios - Move evictable folios to appropriate zone
7586  * lru list
7587  * @fbatch: Batch of lru folios to check.
7588  *
7589  * Checks folios for evictability, if an evictable folio is in the unevictable
7590  * lru list, moves it to the appropriate evictable lru list. This function
7591  * should be only used for lru folios.
7592  */
7593 void check_move_unevictable_folios(struct folio_batch *fbatch)
7594 {
7595 	struct lruvec *lruvec = NULL;
7596 	int pgscanned = 0;
7597 	int pgrescued = 0;
7598 	int i;
7599 
7600 	for (i = 0; i < fbatch->nr; i++) {
7601 		struct folio *folio = fbatch->folios[i];
7602 		int nr_pages = folio_nr_pages(folio);
7603 
7604 		pgscanned += nr_pages;
7605 
7606 		/* block memcg migration while the folio moves between lrus */
7607 		if (!folio_test_clear_lru(folio))
7608 			continue;
7609 
7610 		lruvec = folio_lruvec_relock_irq(folio, lruvec);
7611 		if (folio_evictable(folio) && folio_test_unevictable(folio)) {
7612 			lruvec_del_folio(lruvec, folio);
7613 			folio_clear_unevictable(folio);
7614 			lruvec_add_folio(lruvec, folio);
7615 			pgrescued += nr_pages;
7616 		}
7617 		folio_set_lru(folio);
7618 	}
7619 
7620 	if (lruvec) {
7621 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
7622 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
7623 		unlock_page_lruvec_irq(lruvec);
7624 	} else if (pgscanned) {
7625 		count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
7626 	}
7627 }
7628 EXPORT_SYMBOL_GPL(check_move_unevictable_folios);
7629