1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/vmscan.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * 7 * Swap reorganised 29.12.95, Stephen Tweedie. 8 * kswapd added: 7.1.96 sct 9 * Removed kswapd_ctl limits, and swap out as many pages as needed 10 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 11 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 12 * Multiqueue VM started 5.8.00, Rik van Riel. 13 */ 14 15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 16 17 #include <linux/mm.h> 18 #include <linux/sched/mm.h> 19 #include <linux/module.h> 20 #include <linux/gfp.h> 21 #include <linux/kernel_stat.h> 22 #include <linux/swap.h> 23 #include <linux/pagemap.h> 24 #include <linux/init.h> 25 #include <linux/highmem.h> 26 #include <linux/vmpressure.h> 27 #include <linux/vmstat.h> 28 #include <linux/file.h> 29 #include <linux/writeback.h> 30 #include <linux/blkdev.h> 31 #include <linux/buffer_head.h> /* for try_to_release_page(), 32 buffer_heads_over_limit */ 33 #include <linux/mm_inline.h> 34 #include <linux/backing-dev.h> 35 #include <linux/rmap.h> 36 #include <linux/topology.h> 37 #include <linux/cpu.h> 38 #include <linux/cpuset.h> 39 #include <linux/compaction.h> 40 #include <linux/notifier.h> 41 #include <linux/rwsem.h> 42 #include <linux/delay.h> 43 #include <linux/kthread.h> 44 #include <linux/freezer.h> 45 #include <linux/memcontrol.h> 46 #include <linux/delayacct.h> 47 #include <linux/sysctl.h> 48 #include <linux/oom.h> 49 #include <linux/pagevec.h> 50 #include <linux/prefetch.h> 51 #include <linux/printk.h> 52 #include <linux/dax.h> 53 #include <linux/psi.h> 54 55 #include <asm/tlbflush.h> 56 #include <asm/div64.h> 57 58 #include <linux/swapops.h> 59 #include <linux/balloon_compaction.h> 60 61 #include "internal.h" 62 63 #define CREATE_TRACE_POINTS 64 #include <trace/events/vmscan.h> 65 66 struct scan_control { 67 /* How many pages shrink_list() should reclaim */ 68 unsigned long nr_to_reclaim; 69 70 /* 71 * Nodemask of nodes allowed by the caller. If NULL, all nodes 72 * are scanned. 73 */ 74 nodemask_t *nodemask; 75 76 /* 77 * The memory cgroup that hit its limit and as a result is the 78 * primary target of this reclaim invocation. 79 */ 80 struct mem_cgroup *target_mem_cgroup; 81 82 /* Writepage batching in laptop mode; RECLAIM_WRITE */ 83 unsigned int may_writepage:1; 84 85 /* Can mapped pages be reclaimed? */ 86 unsigned int may_unmap:1; 87 88 /* Can pages be swapped as part of reclaim? */ 89 unsigned int may_swap:1; 90 91 /* e.g. boosted watermark reclaim leaves slabs alone */ 92 unsigned int may_shrinkslab:1; 93 94 /* 95 * Cgroups are not reclaimed below their configured memory.low, 96 * unless we threaten to OOM. If any cgroups are skipped due to 97 * memory.low and nothing was reclaimed, go back for memory.low. 98 */ 99 unsigned int memcg_low_reclaim:1; 100 unsigned int memcg_low_skipped:1; 101 102 unsigned int hibernation_mode:1; 103 104 /* One of the zones is ready for compaction */ 105 unsigned int compaction_ready:1; 106 107 /* Allocation order */ 108 s8 order; 109 110 /* Scan (total_size >> priority) pages at once */ 111 s8 priority; 112 113 /* The highest zone to isolate pages for reclaim from */ 114 s8 reclaim_idx; 115 116 /* This context's GFP mask */ 117 gfp_t gfp_mask; 118 119 /* Incremented by the number of inactive pages that were scanned */ 120 unsigned long nr_scanned; 121 122 /* Number of pages freed so far during a call to shrink_zones() */ 123 unsigned long nr_reclaimed; 124 125 struct { 126 unsigned int dirty; 127 unsigned int unqueued_dirty; 128 unsigned int congested; 129 unsigned int writeback; 130 unsigned int immediate; 131 unsigned int file_taken; 132 unsigned int taken; 133 } nr; 134 }; 135 136 #ifdef ARCH_HAS_PREFETCH 137 #define prefetch_prev_lru_page(_page, _base, _field) \ 138 do { \ 139 if ((_page)->lru.prev != _base) { \ 140 struct page *prev; \ 141 \ 142 prev = lru_to_page(&(_page->lru)); \ 143 prefetch(&prev->_field); \ 144 } \ 145 } while (0) 146 #else 147 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0) 148 #endif 149 150 #ifdef ARCH_HAS_PREFETCHW 151 #define prefetchw_prev_lru_page(_page, _base, _field) \ 152 do { \ 153 if ((_page)->lru.prev != _base) { \ 154 struct page *prev; \ 155 \ 156 prev = lru_to_page(&(_page->lru)); \ 157 prefetchw(&prev->_field); \ 158 } \ 159 } while (0) 160 #else 161 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 162 #endif 163 164 /* 165 * From 0 .. 100. Higher means more swappy. 166 */ 167 int vm_swappiness = 60; 168 /* 169 * The total number of pages which are beyond the high watermark within all 170 * zones. 171 */ 172 unsigned long vm_total_pages; 173 174 static LIST_HEAD(shrinker_list); 175 static DECLARE_RWSEM(shrinker_rwsem); 176 177 #ifdef CONFIG_MEMCG_KMEM 178 179 /* 180 * We allow subsystems to populate their shrinker-related 181 * LRU lists before register_shrinker_prepared() is called 182 * for the shrinker, since we don't want to impose 183 * restrictions on their internal registration order. 184 * In this case shrink_slab_memcg() may find corresponding 185 * bit is set in the shrinkers map. 186 * 187 * This value is used by the function to detect registering 188 * shrinkers and to skip do_shrink_slab() calls for them. 189 */ 190 #define SHRINKER_REGISTERING ((struct shrinker *)~0UL) 191 192 static DEFINE_IDR(shrinker_idr); 193 static int shrinker_nr_max; 194 195 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 196 { 197 int id, ret = -ENOMEM; 198 199 down_write(&shrinker_rwsem); 200 /* This may call shrinker, so it must use down_read_trylock() */ 201 id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL); 202 if (id < 0) 203 goto unlock; 204 205 if (id >= shrinker_nr_max) { 206 if (memcg_expand_shrinker_maps(id)) { 207 idr_remove(&shrinker_idr, id); 208 goto unlock; 209 } 210 211 shrinker_nr_max = id + 1; 212 } 213 shrinker->id = id; 214 ret = 0; 215 unlock: 216 up_write(&shrinker_rwsem); 217 return ret; 218 } 219 220 static void unregister_memcg_shrinker(struct shrinker *shrinker) 221 { 222 int id = shrinker->id; 223 224 BUG_ON(id < 0); 225 226 down_write(&shrinker_rwsem); 227 idr_remove(&shrinker_idr, id); 228 up_write(&shrinker_rwsem); 229 } 230 #else /* CONFIG_MEMCG_KMEM */ 231 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 232 { 233 return 0; 234 } 235 236 static void unregister_memcg_shrinker(struct shrinker *shrinker) 237 { 238 } 239 #endif /* CONFIG_MEMCG_KMEM */ 240 241 #ifdef CONFIG_MEMCG 242 static bool global_reclaim(struct scan_control *sc) 243 { 244 return !sc->target_mem_cgroup; 245 } 246 247 /** 248 * sane_reclaim - is the usual dirty throttling mechanism operational? 249 * @sc: scan_control in question 250 * 251 * The normal page dirty throttling mechanism in balance_dirty_pages() is 252 * completely broken with the legacy memcg and direct stalling in 253 * shrink_page_list() is used for throttling instead, which lacks all the 254 * niceties such as fairness, adaptive pausing, bandwidth proportional 255 * allocation and configurability. 256 * 257 * This function tests whether the vmscan currently in progress can assume 258 * that the normal dirty throttling mechanism is operational. 259 */ 260 static bool sane_reclaim(struct scan_control *sc) 261 { 262 struct mem_cgroup *memcg = sc->target_mem_cgroup; 263 264 if (!memcg) 265 return true; 266 #ifdef CONFIG_CGROUP_WRITEBACK 267 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 268 return true; 269 #endif 270 return false; 271 } 272 273 static void set_memcg_congestion(pg_data_t *pgdat, 274 struct mem_cgroup *memcg, 275 bool congested) 276 { 277 struct mem_cgroup_per_node *mn; 278 279 if (!memcg) 280 return; 281 282 mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id); 283 WRITE_ONCE(mn->congested, congested); 284 } 285 286 static bool memcg_congested(pg_data_t *pgdat, 287 struct mem_cgroup *memcg) 288 { 289 struct mem_cgroup_per_node *mn; 290 291 mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id); 292 return READ_ONCE(mn->congested); 293 294 } 295 #else 296 static bool global_reclaim(struct scan_control *sc) 297 { 298 return true; 299 } 300 301 static bool sane_reclaim(struct scan_control *sc) 302 { 303 return true; 304 } 305 306 static inline void set_memcg_congestion(struct pglist_data *pgdat, 307 struct mem_cgroup *memcg, bool congested) 308 { 309 } 310 311 static inline bool memcg_congested(struct pglist_data *pgdat, 312 struct mem_cgroup *memcg) 313 { 314 return false; 315 316 } 317 #endif 318 319 /* 320 * This misses isolated pages which are not accounted for to save counters. 321 * As the data only determines if reclaim or compaction continues, it is 322 * not expected that isolated pages will be a dominating factor. 323 */ 324 unsigned long zone_reclaimable_pages(struct zone *zone) 325 { 326 unsigned long nr; 327 328 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) + 329 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE); 330 if (get_nr_swap_pages() > 0) 331 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) + 332 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON); 333 334 return nr; 335 } 336 337 /** 338 * lruvec_lru_size - Returns the number of pages on the given LRU list. 339 * @lruvec: lru vector 340 * @lru: lru to use 341 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list) 342 */ 343 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx) 344 { 345 unsigned long lru_size; 346 int zid; 347 348 if (!mem_cgroup_disabled()) 349 lru_size = mem_cgroup_get_lru_size(lruvec, lru); 350 else 351 lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru); 352 353 for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) { 354 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid]; 355 unsigned long size; 356 357 if (!managed_zone(zone)) 358 continue; 359 360 if (!mem_cgroup_disabled()) 361 size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid); 362 else 363 size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid], 364 NR_ZONE_LRU_BASE + lru); 365 lru_size -= min(size, lru_size); 366 } 367 368 return lru_size; 369 370 } 371 372 /* 373 * Add a shrinker callback to be called from the vm. 374 */ 375 int prealloc_shrinker(struct shrinker *shrinker) 376 { 377 size_t size = sizeof(*shrinker->nr_deferred); 378 379 if (shrinker->flags & SHRINKER_NUMA_AWARE) 380 size *= nr_node_ids; 381 382 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); 383 if (!shrinker->nr_deferred) 384 return -ENOMEM; 385 386 if (shrinker->flags & SHRINKER_MEMCG_AWARE) { 387 if (prealloc_memcg_shrinker(shrinker)) 388 goto free_deferred; 389 } 390 391 return 0; 392 393 free_deferred: 394 kfree(shrinker->nr_deferred); 395 shrinker->nr_deferred = NULL; 396 return -ENOMEM; 397 } 398 399 void free_prealloced_shrinker(struct shrinker *shrinker) 400 { 401 if (!shrinker->nr_deferred) 402 return; 403 404 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 405 unregister_memcg_shrinker(shrinker); 406 407 kfree(shrinker->nr_deferred); 408 shrinker->nr_deferred = NULL; 409 } 410 411 void register_shrinker_prepared(struct shrinker *shrinker) 412 { 413 down_write(&shrinker_rwsem); 414 list_add_tail(&shrinker->list, &shrinker_list); 415 #ifdef CONFIG_MEMCG_KMEM 416 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 417 idr_replace(&shrinker_idr, shrinker, shrinker->id); 418 #endif 419 up_write(&shrinker_rwsem); 420 } 421 422 int register_shrinker(struct shrinker *shrinker) 423 { 424 int err = prealloc_shrinker(shrinker); 425 426 if (err) 427 return err; 428 register_shrinker_prepared(shrinker); 429 return 0; 430 } 431 EXPORT_SYMBOL(register_shrinker); 432 433 /* 434 * Remove one 435 */ 436 void unregister_shrinker(struct shrinker *shrinker) 437 { 438 if (!shrinker->nr_deferred) 439 return; 440 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 441 unregister_memcg_shrinker(shrinker); 442 down_write(&shrinker_rwsem); 443 list_del(&shrinker->list); 444 up_write(&shrinker_rwsem); 445 kfree(shrinker->nr_deferred); 446 shrinker->nr_deferred = NULL; 447 } 448 EXPORT_SYMBOL(unregister_shrinker); 449 450 #define SHRINK_BATCH 128 451 452 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl, 453 struct shrinker *shrinker, int priority) 454 { 455 unsigned long freed = 0; 456 unsigned long long delta; 457 long total_scan; 458 long freeable; 459 long nr; 460 long new_nr; 461 int nid = shrinkctl->nid; 462 long batch_size = shrinker->batch ? shrinker->batch 463 : SHRINK_BATCH; 464 long scanned = 0, next_deferred; 465 466 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 467 nid = 0; 468 469 freeable = shrinker->count_objects(shrinker, shrinkctl); 470 if (freeable == 0 || freeable == SHRINK_EMPTY) 471 return freeable; 472 473 /* 474 * copy the current shrinker scan count into a local variable 475 * and zero it so that other concurrent shrinker invocations 476 * don't also do this scanning work. 477 */ 478 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0); 479 480 total_scan = nr; 481 if (shrinker->seeks) { 482 delta = freeable >> priority; 483 delta *= 4; 484 do_div(delta, shrinker->seeks); 485 } else { 486 /* 487 * These objects don't require any IO to create. Trim 488 * them aggressively under memory pressure to keep 489 * them from causing refetches in the IO caches. 490 */ 491 delta = freeable / 2; 492 } 493 494 total_scan += delta; 495 if (total_scan < 0) { 496 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n", 497 shrinker->scan_objects, total_scan); 498 total_scan = freeable; 499 next_deferred = nr; 500 } else 501 next_deferred = total_scan; 502 503 /* 504 * We need to avoid excessive windup on filesystem shrinkers 505 * due to large numbers of GFP_NOFS allocations causing the 506 * shrinkers to return -1 all the time. This results in a large 507 * nr being built up so when a shrink that can do some work 508 * comes along it empties the entire cache due to nr >>> 509 * freeable. This is bad for sustaining a working set in 510 * memory. 511 * 512 * Hence only allow the shrinker to scan the entire cache when 513 * a large delta change is calculated directly. 514 */ 515 if (delta < freeable / 4) 516 total_scan = min(total_scan, freeable / 2); 517 518 /* 519 * Avoid risking looping forever due to too large nr value: 520 * never try to free more than twice the estimate number of 521 * freeable entries. 522 */ 523 if (total_scan > freeable * 2) 524 total_scan = freeable * 2; 525 526 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, 527 freeable, delta, total_scan, priority); 528 529 /* 530 * Normally, we should not scan less than batch_size objects in one 531 * pass to avoid too frequent shrinker calls, but if the slab has less 532 * than batch_size objects in total and we are really tight on memory, 533 * we will try to reclaim all available objects, otherwise we can end 534 * up failing allocations although there are plenty of reclaimable 535 * objects spread over several slabs with usage less than the 536 * batch_size. 537 * 538 * We detect the "tight on memory" situations by looking at the total 539 * number of objects we want to scan (total_scan). If it is greater 540 * than the total number of objects on slab (freeable), we must be 541 * scanning at high prio and therefore should try to reclaim as much as 542 * possible. 543 */ 544 while (total_scan >= batch_size || 545 total_scan >= freeable) { 546 unsigned long ret; 547 unsigned long nr_to_scan = min(batch_size, total_scan); 548 549 shrinkctl->nr_to_scan = nr_to_scan; 550 shrinkctl->nr_scanned = nr_to_scan; 551 ret = shrinker->scan_objects(shrinker, shrinkctl); 552 if (ret == SHRINK_STOP) 553 break; 554 freed += ret; 555 556 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned); 557 total_scan -= shrinkctl->nr_scanned; 558 scanned += shrinkctl->nr_scanned; 559 560 cond_resched(); 561 } 562 563 if (next_deferred >= scanned) 564 next_deferred -= scanned; 565 else 566 next_deferred = 0; 567 /* 568 * move the unused scan count back into the shrinker in a 569 * manner that handles concurrent updates. If we exhausted the 570 * scan, there is no need to do an update. 571 */ 572 if (next_deferred > 0) 573 new_nr = atomic_long_add_return(next_deferred, 574 &shrinker->nr_deferred[nid]); 575 else 576 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]); 577 578 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan); 579 return freed; 580 } 581 582 #ifdef CONFIG_MEMCG_KMEM 583 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 584 struct mem_cgroup *memcg, int priority) 585 { 586 struct memcg_shrinker_map *map; 587 unsigned long ret, freed = 0; 588 int i; 589 590 if (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)) 591 return 0; 592 593 if (!down_read_trylock(&shrinker_rwsem)) 594 return 0; 595 596 map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map, 597 true); 598 if (unlikely(!map)) 599 goto unlock; 600 601 for_each_set_bit(i, map->map, shrinker_nr_max) { 602 struct shrink_control sc = { 603 .gfp_mask = gfp_mask, 604 .nid = nid, 605 .memcg = memcg, 606 }; 607 struct shrinker *shrinker; 608 609 shrinker = idr_find(&shrinker_idr, i); 610 if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) { 611 if (!shrinker) 612 clear_bit(i, map->map); 613 continue; 614 } 615 616 ret = do_shrink_slab(&sc, shrinker, priority); 617 if (ret == SHRINK_EMPTY) { 618 clear_bit(i, map->map); 619 /* 620 * After the shrinker reported that it had no objects to 621 * free, but before we cleared the corresponding bit in 622 * the memcg shrinker map, a new object might have been 623 * added. To make sure, we have the bit set in this 624 * case, we invoke the shrinker one more time and reset 625 * the bit if it reports that it is not empty anymore. 626 * The memory barrier here pairs with the barrier in 627 * memcg_set_shrinker_bit(): 628 * 629 * list_lru_add() shrink_slab_memcg() 630 * list_add_tail() clear_bit() 631 * <MB> <MB> 632 * set_bit() do_shrink_slab() 633 */ 634 smp_mb__after_atomic(); 635 ret = do_shrink_slab(&sc, shrinker, priority); 636 if (ret == SHRINK_EMPTY) 637 ret = 0; 638 else 639 memcg_set_shrinker_bit(memcg, nid, i); 640 } 641 freed += ret; 642 643 if (rwsem_is_contended(&shrinker_rwsem)) { 644 freed = freed ? : 1; 645 break; 646 } 647 } 648 unlock: 649 up_read(&shrinker_rwsem); 650 return freed; 651 } 652 #else /* CONFIG_MEMCG_KMEM */ 653 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 654 struct mem_cgroup *memcg, int priority) 655 { 656 return 0; 657 } 658 #endif /* CONFIG_MEMCG_KMEM */ 659 660 /** 661 * shrink_slab - shrink slab caches 662 * @gfp_mask: allocation context 663 * @nid: node whose slab caches to target 664 * @memcg: memory cgroup whose slab caches to target 665 * @priority: the reclaim priority 666 * 667 * Call the shrink functions to age shrinkable caches. 668 * 669 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set, 670 * unaware shrinkers will receive a node id of 0 instead. 671 * 672 * @memcg specifies the memory cgroup to target. Unaware shrinkers 673 * are called only if it is the root cgroup. 674 * 675 * @priority is sc->priority, we take the number of objects and >> by priority 676 * in order to get the scan target. 677 * 678 * Returns the number of reclaimed slab objects. 679 */ 680 static unsigned long shrink_slab(gfp_t gfp_mask, int nid, 681 struct mem_cgroup *memcg, 682 int priority) 683 { 684 unsigned long ret, freed = 0; 685 struct shrinker *shrinker; 686 687 if (!mem_cgroup_is_root(memcg)) 688 return shrink_slab_memcg(gfp_mask, nid, memcg, priority); 689 690 if (!down_read_trylock(&shrinker_rwsem)) 691 goto out; 692 693 list_for_each_entry(shrinker, &shrinker_list, list) { 694 struct shrink_control sc = { 695 .gfp_mask = gfp_mask, 696 .nid = nid, 697 .memcg = memcg, 698 }; 699 700 ret = do_shrink_slab(&sc, shrinker, priority); 701 if (ret == SHRINK_EMPTY) 702 ret = 0; 703 freed += ret; 704 /* 705 * Bail out if someone want to register a new shrinker to 706 * prevent the regsitration from being stalled for long periods 707 * by parallel ongoing shrinking. 708 */ 709 if (rwsem_is_contended(&shrinker_rwsem)) { 710 freed = freed ? : 1; 711 break; 712 } 713 } 714 715 up_read(&shrinker_rwsem); 716 out: 717 cond_resched(); 718 return freed; 719 } 720 721 void drop_slab_node(int nid) 722 { 723 unsigned long freed; 724 725 do { 726 struct mem_cgroup *memcg = NULL; 727 728 freed = 0; 729 memcg = mem_cgroup_iter(NULL, NULL, NULL); 730 do { 731 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0); 732 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 733 } while (freed > 10); 734 } 735 736 void drop_slab(void) 737 { 738 int nid; 739 740 for_each_online_node(nid) 741 drop_slab_node(nid); 742 } 743 744 static inline int is_page_cache_freeable(struct page *page) 745 { 746 /* 747 * A freeable page cache page is referenced only by the caller 748 * that isolated the page, the page cache and optional buffer 749 * heads at page->private. 750 */ 751 int page_cache_pins = PageTransHuge(page) && PageSwapCache(page) ? 752 HPAGE_PMD_NR : 1; 753 return page_count(page) - page_has_private(page) == 1 + page_cache_pins; 754 } 755 756 static int may_write_to_inode(struct inode *inode, struct scan_control *sc) 757 { 758 if (current->flags & PF_SWAPWRITE) 759 return 1; 760 if (!inode_write_congested(inode)) 761 return 1; 762 if (inode_to_bdi(inode) == current->backing_dev_info) 763 return 1; 764 return 0; 765 } 766 767 /* 768 * We detected a synchronous write error writing a page out. Probably 769 * -ENOSPC. We need to propagate that into the address_space for a subsequent 770 * fsync(), msync() or close(). 771 * 772 * The tricky part is that after writepage we cannot touch the mapping: nothing 773 * prevents it from being freed up. But we have a ref on the page and once 774 * that page is locked, the mapping is pinned. 775 * 776 * We're allowed to run sleeping lock_page() here because we know the caller has 777 * __GFP_FS. 778 */ 779 static void handle_write_error(struct address_space *mapping, 780 struct page *page, int error) 781 { 782 lock_page(page); 783 if (page_mapping(page) == mapping) 784 mapping_set_error(mapping, error); 785 unlock_page(page); 786 } 787 788 /* possible outcome of pageout() */ 789 typedef enum { 790 /* failed to write page out, page is locked */ 791 PAGE_KEEP, 792 /* move page to the active list, page is locked */ 793 PAGE_ACTIVATE, 794 /* page has been sent to the disk successfully, page is unlocked */ 795 PAGE_SUCCESS, 796 /* page is clean and locked */ 797 PAGE_CLEAN, 798 } pageout_t; 799 800 /* 801 * pageout is called by shrink_page_list() for each dirty page. 802 * Calls ->writepage(). 803 */ 804 static pageout_t pageout(struct page *page, struct address_space *mapping, 805 struct scan_control *sc) 806 { 807 /* 808 * If the page is dirty, only perform writeback if that write 809 * will be non-blocking. To prevent this allocation from being 810 * stalled by pagecache activity. But note that there may be 811 * stalls if we need to run get_block(). We could test 812 * PagePrivate for that. 813 * 814 * If this process is currently in __generic_file_write_iter() against 815 * this page's queue, we can perform writeback even if that 816 * will block. 817 * 818 * If the page is swapcache, write it back even if that would 819 * block, for some throttling. This happens by accident, because 820 * swap_backing_dev_info is bust: it doesn't reflect the 821 * congestion state of the swapdevs. Easy to fix, if needed. 822 */ 823 if (!is_page_cache_freeable(page)) 824 return PAGE_KEEP; 825 if (!mapping) { 826 /* 827 * Some data journaling orphaned pages can have 828 * page->mapping == NULL while being dirty with clean buffers. 829 */ 830 if (page_has_private(page)) { 831 if (try_to_free_buffers(page)) { 832 ClearPageDirty(page); 833 pr_info("%s: orphaned page\n", __func__); 834 return PAGE_CLEAN; 835 } 836 } 837 return PAGE_KEEP; 838 } 839 if (mapping->a_ops->writepage == NULL) 840 return PAGE_ACTIVATE; 841 if (!may_write_to_inode(mapping->host, sc)) 842 return PAGE_KEEP; 843 844 if (clear_page_dirty_for_io(page)) { 845 int res; 846 struct writeback_control wbc = { 847 .sync_mode = WB_SYNC_NONE, 848 .nr_to_write = SWAP_CLUSTER_MAX, 849 .range_start = 0, 850 .range_end = LLONG_MAX, 851 .for_reclaim = 1, 852 }; 853 854 SetPageReclaim(page); 855 res = mapping->a_ops->writepage(page, &wbc); 856 if (res < 0) 857 handle_write_error(mapping, page, res); 858 if (res == AOP_WRITEPAGE_ACTIVATE) { 859 ClearPageReclaim(page); 860 return PAGE_ACTIVATE; 861 } 862 863 if (!PageWriteback(page)) { 864 /* synchronous write or broken a_ops? */ 865 ClearPageReclaim(page); 866 } 867 trace_mm_vmscan_writepage(page); 868 inc_node_page_state(page, NR_VMSCAN_WRITE); 869 return PAGE_SUCCESS; 870 } 871 872 return PAGE_CLEAN; 873 } 874 875 /* 876 * Same as remove_mapping, but if the page is removed from the mapping, it 877 * gets returned with a refcount of 0. 878 */ 879 static int __remove_mapping(struct address_space *mapping, struct page *page, 880 bool reclaimed) 881 { 882 unsigned long flags; 883 int refcount; 884 885 BUG_ON(!PageLocked(page)); 886 BUG_ON(mapping != page_mapping(page)); 887 888 xa_lock_irqsave(&mapping->i_pages, flags); 889 /* 890 * The non racy check for a busy page. 891 * 892 * Must be careful with the order of the tests. When someone has 893 * a ref to the page, it may be possible that they dirty it then 894 * drop the reference. So if PageDirty is tested before page_count 895 * here, then the following race may occur: 896 * 897 * get_user_pages(&page); 898 * [user mapping goes away] 899 * write_to(page); 900 * !PageDirty(page) [good] 901 * SetPageDirty(page); 902 * put_page(page); 903 * !page_count(page) [good, discard it] 904 * 905 * [oops, our write_to data is lost] 906 * 907 * Reversing the order of the tests ensures such a situation cannot 908 * escape unnoticed. The smp_rmb is needed to ensure the page->flags 909 * load is not satisfied before that of page->_refcount. 910 * 911 * Note that if SetPageDirty is always performed via set_page_dirty, 912 * and thus under the i_pages lock, then this ordering is not required. 913 */ 914 if (unlikely(PageTransHuge(page)) && PageSwapCache(page)) 915 refcount = 1 + HPAGE_PMD_NR; 916 else 917 refcount = 2; 918 if (!page_ref_freeze(page, refcount)) 919 goto cannot_free; 920 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */ 921 if (unlikely(PageDirty(page))) { 922 page_ref_unfreeze(page, refcount); 923 goto cannot_free; 924 } 925 926 if (PageSwapCache(page)) { 927 swp_entry_t swap = { .val = page_private(page) }; 928 mem_cgroup_swapout(page, swap); 929 __delete_from_swap_cache(page, swap); 930 xa_unlock_irqrestore(&mapping->i_pages, flags); 931 put_swap_page(page, swap); 932 } else { 933 void (*freepage)(struct page *); 934 void *shadow = NULL; 935 936 freepage = mapping->a_ops->freepage; 937 /* 938 * Remember a shadow entry for reclaimed file cache in 939 * order to detect refaults, thus thrashing, later on. 940 * 941 * But don't store shadows in an address space that is 942 * already exiting. This is not just an optizimation, 943 * inode reclaim needs to empty out the radix tree or 944 * the nodes are lost. Don't plant shadows behind its 945 * back. 946 * 947 * We also don't store shadows for DAX mappings because the 948 * only page cache pages found in these are zero pages 949 * covering holes, and because we don't want to mix DAX 950 * exceptional entries and shadow exceptional entries in the 951 * same address_space. 952 */ 953 if (reclaimed && page_is_file_cache(page) && 954 !mapping_exiting(mapping) && !dax_mapping(mapping)) 955 shadow = workingset_eviction(mapping, page); 956 __delete_from_page_cache(page, shadow); 957 xa_unlock_irqrestore(&mapping->i_pages, flags); 958 959 if (freepage != NULL) 960 freepage(page); 961 } 962 963 return 1; 964 965 cannot_free: 966 xa_unlock_irqrestore(&mapping->i_pages, flags); 967 return 0; 968 } 969 970 /* 971 * Attempt to detach a locked page from its ->mapping. If it is dirty or if 972 * someone else has a ref on the page, abort and return 0. If it was 973 * successfully detached, return 1. Assumes the caller has a single ref on 974 * this page. 975 */ 976 int remove_mapping(struct address_space *mapping, struct page *page) 977 { 978 if (__remove_mapping(mapping, page, false)) { 979 /* 980 * Unfreezing the refcount with 1 rather than 2 effectively 981 * drops the pagecache ref for us without requiring another 982 * atomic operation. 983 */ 984 page_ref_unfreeze(page, 1); 985 return 1; 986 } 987 return 0; 988 } 989 990 /** 991 * putback_lru_page - put previously isolated page onto appropriate LRU list 992 * @page: page to be put back to appropriate lru list 993 * 994 * Add previously isolated @page to appropriate LRU list. 995 * Page may still be unevictable for other reasons. 996 * 997 * lru_lock must not be held, interrupts must be enabled. 998 */ 999 void putback_lru_page(struct page *page) 1000 { 1001 lru_cache_add(page); 1002 put_page(page); /* drop ref from isolate */ 1003 } 1004 1005 enum page_references { 1006 PAGEREF_RECLAIM, 1007 PAGEREF_RECLAIM_CLEAN, 1008 PAGEREF_KEEP, 1009 PAGEREF_ACTIVATE, 1010 }; 1011 1012 static enum page_references page_check_references(struct page *page, 1013 struct scan_control *sc) 1014 { 1015 int referenced_ptes, referenced_page; 1016 unsigned long vm_flags; 1017 1018 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup, 1019 &vm_flags); 1020 referenced_page = TestClearPageReferenced(page); 1021 1022 /* 1023 * Mlock lost the isolation race with us. Let try_to_unmap() 1024 * move the page to the unevictable list. 1025 */ 1026 if (vm_flags & VM_LOCKED) 1027 return PAGEREF_RECLAIM; 1028 1029 if (referenced_ptes) { 1030 if (PageSwapBacked(page)) 1031 return PAGEREF_ACTIVATE; 1032 /* 1033 * All mapped pages start out with page table 1034 * references from the instantiating fault, so we need 1035 * to look twice if a mapped file page is used more 1036 * than once. 1037 * 1038 * Mark it and spare it for another trip around the 1039 * inactive list. Another page table reference will 1040 * lead to its activation. 1041 * 1042 * Note: the mark is set for activated pages as well 1043 * so that recently deactivated but used pages are 1044 * quickly recovered. 1045 */ 1046 SetPageReferenced(page); 1047 1048 if (referenced_page || referenced_ptes > 1) 1049 return PAGEREF_ACTIVATE; 1050 1051 /* 1052 * Activate file-backed executable pages after first usage. 1053 */ 1054 if (vm_flags & VM_EXEC) 1055 return PAGEREF_ACTIVATE; 1056 1057 return PAGEREF_KEEP; 1058 } 1059 1060 /* Reclaim if clean, defer dirty pages to writeback */ 1061 if (referenced_page && !PageSwapBacked(page)) 1062 return PAGEREF_RECLAIM_CLEAN; 1063 1064 return PAGEREF_RECLAIM; 1065 } 1066 1067 /* Check if a page is dirty or under writeback */ 1068 static void page_check_dirty_writeback(struct page *page, 1069 bool *dirty, bool *writeback) 1070 { 1071 struct address_space *mapping; 1072 1073 /* 1074 * Anonymous pages are not handled by flushers and must be written 1075 * from reclaim context. Do not stall reclaim based on them 1076 */ 1077 if (!page_is_file_cache(page) || 1078 (PageAnon(page) && !PageSwapBacked(page))) { 1079 *dirty = false; 1080 *writeback = false; 1081 return; 1082 } 1083 1084 /* By default assume that the page flags are accurate */ 1085 *dirty = PageDirty(page); 1086 *writeback = PageWriteback(page); 1087 1088 /* Verify dirty/writeback state if the filesystem supports it */ 1089 if (!page_has_private(page)) 1090 return; 1091 1092 mapping = page_mapping(page); 1093 if (mapping && mapping->a_ops->is_dirty_writeback) 1094 mapping->a_ops->is_dirty_writeback(page, dirty, writeback); 1095 } 1096 1097 /* 1098 * shrink_page_list() returns the number of reclaimed pages 1099 */ 1100 static unsigned long shrink_page_list(struct list_head *page_list, 1101 struct pglist_data *pgdat, 1102 struct scan_control *sc, 1103 enum ttu_flags ttu_flags, 1104 struct reclaim_stat *stat, 1105 bool force_reclaim) 1106 { 1107 LIST_HEAD(ret_pages); 1108 LIST_HEAD(free_pages); 1109 int pgactivate = 0; 1110 unsigned nr_unqueued_dirty = 0; 1111 unsigned nr_dirty = 0; 1112 unsigned nr_congested = 0; 1113 unsigned nr_reclaimed = 0; 1114 unsigned nr_writeback = 0; 1115 unsigned nr_immediate = 0; 1116 unsigned nr_ref_keep = 0; 1117 unsigned nr_unmap_fail = 0; 1118 1119 cond_resched(); 1120 1121 while (!list_empty(page_list)) { 1122 struct address_space *mapping; 1123 struct page *page; 1124 int may_enter_fs; 1125 enum page_references references = PAGEREF_RECLAIM_CLEAN; 1126 bool dirty, writeback; 1127 1128 cond_resched(); 1129 1130 page = lru_to_page(page_list); 1131 list_del(&page->lru); 1132 1133 if (!trylock_page(page)) 1134 goto keep; 1135 1136 VM_BUG_ON_PAGE(PageActive(page), page); 1137 1138 sc->nr_scanned++; 1139 1140 if (unlikely(!page_evictable(page))) 1141 goto activate_locked; 1142 1143 if (!sc->may_unmap && page_mapped(page)) 1144 goto keep_locked; 1145 1146 /* Double the slab pressure for mapped and swapcache pages */ 1147 if ((page_mapped(page) || PageSwapCache(page)) && 1148 !(PageAnon(page) && !PageSwapBacked(page))) 1149 sc->nr_scanned++; 1150 1151 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 1152 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 1153 1154 /* 1155 * The number of dirty pages determines if a node is marked 1156 * reclaim_congested which affects wait_iff_congested. kswapd 1157 * will stall and start writing pages if the tail of the LRU 1158 * is all dirty unqueued pages. 1159 */ 1160 page_check_dirty_writeback(page, &dirty, &writeback); 1161 if (dirty || writeback) 1162 nr_dirty++; 1163 1164 if (dirty && !writeback) 1165 nr_unqueued_dirty++; 1166 1167 /* 1168 * Treat this page as congested if the underlying BDI is or if 1169 * pages are cycling through the LRU so quickly that the 1170 * pages marked for immediate reclaim are making it to the 1171 * end of the LRU a second time. 1172 */ 1173 mapping = page_mapping(page); 1174 if (((dirty || writeback) && mapping && 1175 inode_write_congested(mapping->host)) || 1176 (writeback && PageReclaim(page))) 1177 nr_congested++; 1178 1179 /* 1180 * If a page at the tail of the LRU is under writeback, there 1181 * are three cases to consider. 1182 * 1183 * 1) If reclaim is encountering an excessive number of pages 1184 * under writeback and this page is both under writeback and 1185 * PageReclaim then it indicates that pages are being queued 1186 * for IO but are being recycled through the LRU before the 1187 * IO can complete. Waiting on the page itself risks an 1188 * indefinite stall if it is impossible to writeback the 1189 * page due to IO error or disconnected storage so instead 1190 * note that the LRU is being scanned too quickly and the 1191 * caller can stall after page list has been processed. 1192 * 1193 * 2) Global or new memcg reclaim encounters a page that is 1194 * not marked for immediate reclaim, or the caller does not 1195 * have __GFP_FS (or __GFP_IO if it's simply going to swap, 1196 * not to fs). In this case mark the page for immediate 1197 * reclaim and continue scanning. 1198 * 1199 * Require may_enter_fs because we would wait on fs, which 1200 * may not have submitted IO yet. And the loop driver might 1201 * enter reclaim, and deadlock if it waits on a page for 1202 * which it is needed to do the write (loop masks off 1203 * __GFP_IO|__GFP_FS for this reason); but more thought 1204 * would probably show more reasons. 1205 * 1206 * 3) Legacy memcg encounters a page that is already marked 1207 * PageReclaim. memcg does not have any dirty pages 1208 * throttling so we could easily OOM just because too many 1209 * pages are in writeback and there is nothing else to 1210 * reclaim. Wait for the writeback to complete. 1211 * 1212 * In cases 1) and 2) we activate the pages to get them out of 1213 * the way while we continue scanning for clean pages on the 1214 * inactive list and refilling from the active list. The 1215 * observation here is that waiting for disk writes is more 1216 * expensive than potentially causing reloads down the line. 1217 * Since they're marked for immediate reclaim, they won't put 1218 * memory pressure on the cache working set any longer than it 1219 * takes to write them to disk. 1220 */ 1221 if (PageWriteback(page)) { 1222 /* Case 1 above */ 1223 if (current_is_kswapd() && 1224 PageReclaim(page) && 1225 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) { 1226 nr_immediate++; 1227 goto activate_locked; 1228 1229 /* Case 2 above */ 1230 } else if (sane_reclaim(sc) || 1231 !PageReclaim(page) || !may_enter_fs) { 1232 /* 1233 * This is slightly racy - end_page_writeback() 1234 * might have just cleared PageReclaim, then 1235 * setting PageReclaim here end up interpreted 1236 * as PageReadahead - but that does not matter 1237 * enough to care. What we do want is for this 1238 * page to have PageReclaim set next time memcg 1239 * reclaim reaches the tests above, so it will 1240 * then wait_on_page_writeback() to avoid OOM; 1241 * and it's also appropriate in global reclaim. 1242 */ 1243 SetPageReclaim(page); 1244 nr_writeback++; 1245 goto activate_locked; 1246 1247 /* Case 3 above */ 1248 } else { 1249 unlock_page(page); 1250 wait_on_page_writeback(page); 1251 /* then go back and try same page again */ 1252 list_add_tail(&page->lru, page_list); 1253 continue; 1254 } 1255 } 1256 1257 if (!force_reclaim) 1258 references = page_check_references(page, sc); 1259 1260 switch (references) { 1261 case PAGEREF_ACTIVATE: 1262 goto activate_locked; 1263 case PAGEREF_KEEP: 1264 nr_ref_keep++; 1265 goto keep_locked; 1266 case PAGEREF_RECLAIM: 1267 case PAGEREF_RECLAIM_CLEAN: 1268 ; /* try to reclaim the page below */ 1269 } 1270 1271 /* 1272 * Anonymous process memory has backing store? 1273 * Try to allocate it some swap space here. 1274 * Lazyfree page could be freed directly 1275 */ 1276 if (PageAnon(page) && PageSwapBacked(page)) { 1277 if (!PageSwapCache(page)) { 1278 if (!(sc->gfp_mask & __GFP_IO)) 1279 goto keep_locked; 1280 if (PageTransHuge(page)) { 1281 /* cannot split THP, skip it */ 1282 if (!can_split_huge_page(page, NULL)) 1283 goto activate_locked; 1284 /* 1285 * Split pages without a PMD map right 1286 * away. Chances are some or all of the 1287 * tail pages can be freed without IO. 1288 */ 1289 if (!compound_mapcount(page) && 1290 split_huge_page_to_list(page, 1291 page_list)) 1292 goto activate_locked; 1293 } 1294 if (!add_to_swap(page)) { 1295 if (!PageTransHuge(page)) 1296 goto activate_locked; 1297 /* Fallback to swap normal pages */ 1298 if (split_huge_page_to_list(page, 1299 page_list)) 1300 goto activate_locked; 1301 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1302 count_vm_event(THP_SWPOUT_FALLBACK); 1303 #endif 1304 if (!add_to_swap(page)) 1305 goto activate_locked; 1306 } 1307 1308 may_enter_fs = 1; 1309 1310 /* Adding to swap updated mapping */ 1311 mapping = page_mapping(page); 1312 } 1313 } else if (unlikely(PageTransHuge(page))) { 1314 /* Split file THP */ 1315 if (split_huge_page_to_list(page, page_list)) 1316 goto keep_locked; 1317 } 1318 1319 /* 1320 * The page is mapped into the page tables of one or more 1321 * processes. Try to unmap it here. 1322 */ 1323 if (page_mapped(page)) { 1324 enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH; 1325 1326 if (unlikely(PageTransHuge(page))) 1327 flags |= TTU_SPLIT_HUGE_PMD; 1328 if (!try_to_unmap(page, flags)) { 1329 nr_unmap_fail++; 1330 goto activate_locked; 1331 } 1332 } 1333 1334 if (PageDirty(page)) { 1335 /* 1336 * Only kswapd can writeback filesystem pages 1337 * to avoid risk of stack overflow. But avoid 1338 * injecting inefficient single-page IO into 1339 * flusher writeback as much as possible: only 1340 * write pages when we've encountered many 1341 * dirty pages, and when we've already scanned 1342 * the rest of the LRU for clean pages and see 1343 * the same dirty pages again (PageReclaim). 1344 */ 1345 if (page_is_file_cache(page) && 1346 (!current_is_kswapd() || !PageReclaim(page) || 1347 !test_bit(PGDAT_DIRTY, &pgdat->flags))) { 1348 /* 1349 * Immediately reclaim when written back. 1350 * Similar in principal to deactivate_page() 1351 * except we already have the page isolated 1352 * and know it's dirty 1353 */ 1354 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE); 1355 SetPageReclaim(page); 1356 1357 goto activate_locked; 1358 } 1359 1360 if (references == PAGEREF_RECLAIM_CLEAN) 1361 goto keep_locked; 1362 if (!may_enter_fs) 1363 goto keep_locked; 1364 if (!sc->may_writepage) 1365 goto keep_locked; 1366 1367 /* 1368 * Page is dirty. Flush the TLB if a writable entry 1369 * potentially exists to avoid CPU writes after IO 1370 * starts and then write it out here. 1371 */ 1372 try_to_unmap_flush_dirty(); 1373 switch (pageout(page, mapping, sc)) { 1374 case PAGE_KEEP: 1375 goto keep_locked; 1376 case PAGE_ACTIVATE: 1377 goto activate_locked; 1378 case PAGE_SUCCESS: 1379 if (PageWriteback(page)) 1380 goto keep; 1381 if (PageDirty(page)) 1382 goto keep; 1383 1384 /* 1385 * A synchronous write - probably a ramdisk. Go 1386 * ahead and try to reclaim the page. 1387 */ 1388 if (!trylock_page(page)) 1389 goto keep; 1390 if (PageDirty(page) || PageWriteback(page)) 1391 goto keep_locked; 1392 mapping = page_mapping(page); 1393 case PAGE_CLEAN: 1394 ; /* try to free the page below */ 1395 } 1396 } 1397 1398 /* 1399 * If the page has buffers, try to free the buffer mappings 1400 * associated with this page. If we succeed we try to free 1401 * the page as well. 1402 * 1403 * We do this even if the page is PageDirty(). 1404 * try_to_release_page() does not perform I/O, but it is 1405 * possible for a page to have PageDirty set, but it is actually 1406 * clean (all its buffers are clean). This happens if the 1407 * buffers were written out directly, with submit_bh(). ext3 1408 * will do this, as well as the blockdev mapping. 1409 * try_to_release_page() will discover that cleanness and will 1410 * drop the buffers and mark the page clean - it can be freed. 1411 * 1412 * Rarely, pages can have buffers and no ->mapping. These are 1413 * the pages which were not successfully invalidated in 1414 * truncate_complete_page(). We try to drop those buffers here 1415 * and if that worked, and the page is no longer mapped into 1416 * process address space (page_count == 1) it can be freed. 1417 * Otherwise, leave the page on the LRU so it is swappable. 1418 */ 1419 if (page_has_private(page)) { 1420 if (!try_to_release_page(page, sc->gfp_mask)) 1421 goto activate_locked; 1422 if (!mapping && page_count(page) == 1) { 1423 unlock_page(page); 1424 if (put_page_testzero(page)) 1425 goto free_it; 1426 else { 1427 /* 1428 * rare race with speculative reference. 1429 * the speculative reference will free 1430 * this page shortly, so we may 1431 * increment nr_reclaimed here (and 1432 * leave it off the LRU). 1433 */ 1434 nr_reclaimed++; 1435 continue; 1436 } 1437 } 1438 } 1439 1440 if (PageAnon(page) && !PageSwapBacked(page)) { 1441 /* follow __remove_mapping for reference */ 1442 if (!page_ref_freeze(page, 1)) 1443 goto keep_locked; 1444 if (PageDirty(page)) { 1445 page_ref_unfreeze(page, 1); 1446 goto keep_locked; 1447 } 1448 1449 count_vm_event(PGLAZYFREED); 1450 count_memcg_page_event(page, PGLAZYFREED); 1451 } else if (!mapping || !__remove_mapping(mapping, page, true)) 1452 goto keep_locked; 1453 1454 unlock_page(page); 1455 free_it: 1456 nr_reclaimed++; 1457 1458 /* 1459 * Is there need to periodically free_page_list? It would 1460 * appear not as the counts should be low 1461 */ 1462 if (unlikely(PageTransHuge(page))) { 1463 mem_cgroup_uncharge(page); 1464 (*get_compound_page_dtor(page))(page); 1465 } else 1466 list_add(&page->lru, &free_pages); 1467 continue; 1468 1469 activate_locked: 1470 /* Not a candidate for swapping, so reclaim swap space. */ 1471 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) || 1472 PageMlocked(page))) 1473 try_to_free_swap(page); 1474 VM_BUG_ON_PAGE(PageActive(page), page); 1475 if (!PageMlocked(page)) { 1476 SetPageActive(page); 1477 pgactivate++; 1478 count_memcg_page_event(page, PGACTIVATE); 1479 } 1480 keep_locked: 1481 unlock_page(page); 1482 keep: 1483 list_add(&page->lru, &ret_pages); 1484 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page); 1485 } 1486 1487 mem_cgroup_uncharge_list(&free_pages); 1488 try_to_unmap_flush(); 1489 free_unref_page_list(&free_pages); 1490 1491 list_splice(&ret_pages, page_list); 1492 count_vm_events(PGACTIVATE, pgactivate); 1493 1494 if (stat) { 1495 stat->nr_dirty = nr_dirty; 1496 stat->nr_congested = nr_congested; 1497 stat->nr_unqueued_dirty = nr_unqueued_dirty; 1498 stat->nr_writeback = nr_writeback; 1499 stat->nr_immediate = nr_immediate; 1500 stat->nr_activate = pgactivate; 1501 stat->nr_ref_keep = nr_ref_keep; 1502 stat->nr_unmap_fail = nr_unmap_fail; 1503 } 1504 return nr_reclaimed; 1505 } 1506 1507 unsigned long reclaim_clean_pages_from_list(struct zone *zone, 1508 struct list_head *page_list) 1509 { 1510 struct scan_control sc = { 1511 .gfp_mask = GFP_KERNEL, 1512 .priority = DEF_PRIORITY, 1513 .may_unmap = 1, 1514 }; 1515 unsigned long ret; 1516 struct page *page, *next; 1517 LIST_HEAD(clean_pages); 1518 1519 list_for_each_entry_safe(page, next, page_list, lru) { 1520 if (page_is_file_cache(page) && !PageDirty(page) && 1521 !__PageMovable(page)) { 1522 ClearPageActive(page); 1523 list_move(&page->lru, &clean_pages); 1524 } 1525 } 1526 1527 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc, 1528 TTU_IGNORE_ACCESS, NULL, true); 1529 list_splice(&clean_pages, page_list); 1530 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret); 1531 return ret; 1532 } 1533 1534 /* 1535 * Attempt to remove the specified page from its LRU. Only take this page 1536 * if it is of the appropriate PageActive status. Pages which are being 1537 * freed elsewhere are also ignored. 1538 * 1539 * page: page to consider 1540 * mode: one of the LRU isolation modes defined above 1541 * 1542 * returns 0 on success, -ve errno on failure. 1543 */ 1544 int __isolate_lru_page(struct page *page, isolate_mode_t mode) 1545 { 1546 int ret = -EINVAL; 1547 1548 /* Only take pages on the LRU. */ 1549 if (!PageLRU(page)) 1550 return ret; 1551 1552 /* Compaction should not handle unevictable pages but CMA can do so */ 1553 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE)) 1554 return ret; 1555 1556 ret = -EBUSY; 1557 1558 /* 1559 * To minimise LRU disruption, the caller can indicate that it only 1560 * wants to isolate pages it will be able to operate on without 1561 * blocking - clean pages for the most part. 1562 * 1563 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages 1564 * that it is possible to migrate without blocking 1565 */ 1566 if (mode & ISOLATE_ASYNC_MIGRATE) { 1567 /* All the caller can do on PageWriteback is block */ 1568 if (PageWriteback(page)) 1569 return ret; 1570 1571 if (PageDirty(page)) { 1572 struct address_space *mapping; 1573 bool migrate_dirty; 1574 1575 /* 1576 * Only pages without mappings or that have a 1577 * ->migratepage callback are possible to migrate 1578 * without blocking. However, we can be racing with 1579 * truncation so it's necessary to lock the page 1580 * to stabilise the mapping as truncation holds 1581 * the page lock until after the page is removed 1582 * from the page cache. 1583 */ 1584 if (!trylock_page(page)) 1585 return ret; 1586 1587 mapping = page_mapping(page); 1588 migrate_dirty = !mapping || mapping->a_ops->migratepage; 1589 unlock_page(page); 1590 if (!migrate_dirty) 1591 return ret; 1592 } 1593 } 1594 1595 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page)) 1596 return ret; 1597 1598 if (likely(get_page_unless_zero(page))) { 1599 /* 1600 * Be careful not to clear PageLRU until after we're 1601 * sure the page is not being freed elsewhere -- the 1602 * page release code relies on it. 1603 */ 1604 ClearPageLRU(page); 1605 ret = 0; 1606 } 1607 1608 return ret; 1609 } 1610 1611 1612 /* 1613 * Update LRU sizes after isolating pages. The LRU size updates must 1614 * be complete before mem_cgroup_update_lru_size due to a santity check. 1615 */ 1616 static __always_inline void update_lru_sizes(struct lruvec *lruvec, 1617 enum lru_list lru, unsigned long *nr_zone_taken) 1618 { 1619 int zid; 1620 1621 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1622 if (!nr_zone_taken[zid]) 1623 continue; 1624 1625 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 1626 #ifdef CONFIG_MEMCG 1627 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 1628 #endif 1629 } 1630 1631 } 1632 1633 /* 1634 * zone_lru_lock is heavily contended. Some of the functions that 1635 * shrink the lists perform better by taking out a batch of pages 1636 * and working on them outside the LRU lock. 1637 * 1638 * For pagecache intensive workloads, this function is the hottest 1639 * spot in the kernel (apart from copy_*_user functions). 1640 * 1641 * Appropriate locks must be held before calling this function. 1642 * 1643 * @nr_to_scan: The number of eligible pages to look through on the list. 1644 * @lruvec: The LRU vector to pull pages from. 1645 * @dst: The temp list to put pages on to. 1646 * @nr_scanned: The number of pages that were scanned. 1647 * @sc: The scan_control struct for this reclaim session 1648 * @mode: One of the LRU isolation modes 1649 * @lru: LRU list id for isolating 1650 * 1651 * returns how many pages were moved onto *@dst. 1652 */ 1653 static unsigned long isolate_lru_pages(unsigned long nr_to_scan, 1654 struct lruvec *lruvec, struct list_head *dst, 1655 unsigned long *nr_scanned, struct scan_control *sc, 1656 isolate_mode_t mode, enum lru_list lru) 1657 { 1658 struct list_head *src = &lruvec->lists[lru]; 1659 unsigned long nr_taken = 0; 1660 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 }; 1661 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, }; 1662 unsigned long skipped = 0; 1663 unsigned long scan, total_scan, nr_pages; 1664 LIST_HEAD(pages_skipped); 1665 1666 scan = 0; 1667 for (total_scan = 0; 1668 scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src); 1669 total_scan++) { 1670 struct page *page; 1671 1672 page = lru_to_page(src); 1673 prefetchw_prev_lru_page(page, src, flags); 1674 1675 VM_BUG_ON_PAGE(!PageLRU(page), page); 1676 1677 if (page_zonenum(page) > sc->reclaim_idx) { 1678 list_move(&page->lru, &pages_skipped); 1679 nr_skipped[page_zonenum(page)]++; 1680 continue; 1681 } 1682 1683 /* 1684 * Do not count skipped pages because that makes the function 1685 * return with no isolated pages if the LRU mostly contains 1686 * ineligible pages. This causes the VM to not reclaim any 1687 * pages, triggering a premature OOM. 1688 */ 1689 scan++; 1690 switch (__isolate_lru_page(page, mode)) { 1691 case 0: 1692 nr_pages = hpage_nr_pages(page); 1693 nr_taken += nr_pages; 1694 nr_zone_taken[page_zonenum(page)] += nr_pages; 1695 list_move(&page->lru, dst); 1696 break; 1697 1698 case -EBUSY: 1699 /* else it is being freed elsewhere */ 1700 list_move(&page->lru, src); 1701 continue; 1702 1703 default: 1704 BUG(); 1705 } 1706 } 1707 1708 /* 1709 * Splice any skipped pages to the start of the LRU list. Note that 1710 * this disrupts the LRU order when reclaiming for lower zones but 1711 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX 1712 * scanning would soon rescan the same pages to skip and put the 1713 * system at risk of premature OOM. 1714 */ 1715 if (!list_empty(&pages_skipped)) { 1716 int zid; 1717 1718 list_splice(&pages_skipped, src); 1719 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1720 if (!nr_skipped[zid]) 1721 continue; 1722 1723 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]); 1724 skipped += nr_skipped[zid]; 1725 } 1726 } 1727 *nr_scanned = total_scan; 1728 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, 1729 total_scan, skipped, nr_taken, mode, lru); 1730 update_lru_sizes(lruvec, lru, nr_zone_taken); 1731 return nr_taken; 1732 } 1733 1734 /** 1735 * isolate_lru_page - tries to isolate a page from its LRU list 1736 * @page: page to isolate from its LRU list 1737 * 1738 * Isolates a @page from an LRU list, clears PageLRU and adjusts the 1739 * vmstat statistic corresponding to whatever LRU list the page was on. 1740 * 1741 * Returns 0 if the page was removed from an LRU list. 1742 * Returns -EBUSY if the page was not on an LRU list. 1743 * 1744 * The returned page will have PageLRU() cleared. If it was found on 1745 * the active list, it will have PageActive set. If it was found on 1746 * the unevictable list, it will have the PageUnevictable bit set. That flag 1747 * may need to be cleared by the caller before letting the page go. 1748 * 1749 * The vmstat statistic corresponding to the list on which the page was 1750 * found will be decremented. 1751 * 1752 * Restrictions: 1753 * 1754 * (1) Must be called with an elevated refcount on the page. This is a 1755 * fundamentnal difference from isolate_lru_pages (which is called 1756 * without a stable reference). 1757 * (2) the lru_lock must not be held. 1758 * (3) interrupts must be enabled. 1759 */ 1760 int isolate_lru_page(struct page *page) 1761 { 1762 int ret = -EBUSY; 1763 1764 VM_BUG_ON_PAGE(!page_count(page), page); 1765 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page"); 1766 1767 if (PageLRU(page)) { 1768 struct zone *zone = page_zone(page); 1769 struct lruvec *lruvec; 1770 1771 spin_lock_irq(zone_lru_lock(zone)); 1772 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat); 1773 if (PageLRU(page)) { 1774 int lru = page_lru(page); 1775 get_page(page); 1776 ClearPageLRU(page); 1777 del_page_from_lru_list(page, lruvec, lru); 1778 ret = 0; 1779 } 1780 spin_unlock_irq(zone_lru_lock(zone)); 1781 } 1782 return ret; 1783 } 1784 1785 /* 1786 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 1787 * then get resheduled. When there are massive number of tasks doing page 1788 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 1789 * the LRU list will go small and be scanned faster than necessary, leading to 1790 * unnecessary swapping, thrashing and OOM. 1791 */ 1792 static int too_many_isolated(struct pglist_data *pgdat, int file, 1793 struct scan_control *sc) 1794 { 1795 unsigned long inactive, isolated; 1796 1797 if (current_is_kswapd()) 1798 return 0; 1799 1800 if (!sane_reclaim(sc)) 1801 return 0; 1802 1803 if (file) { 1804 inactive = node_page_state(pgdat, NR_INACTIVE_FILE); 1805 isolated = node_page_state(pgdat, NR_ISOLATED_FILE); 1806 } else { 1807 inactive = node_page_state(pgdat, NR_INACTIVE_ANON); 1808 isolated = node_page_state(pgdat, NR_ISOLATED_ANON); 1809 } 1810 1811 /* 1812 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 1813 * won't get blocked by normal direct-reclaimers, forming a circular 1814 * deadlock. 1815 */ 1816 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 1817 inactive >>= 3; 1818 1819 return isolated > inactive; 1820 } 1821 1822 static noinline_for_stack void 1823 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list) 1824 { 1825 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1826 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1827 LIST_HEAD(pages_to_free); 1828 1829 /* 1830 * Put back any unfreeable pages. 1831 */ 1832 while (!list_empty(page_list)) { 1833 struct page *page = lru_to_page(page_list); 1834 int lru; 1835 1836 VM_BUG_ON_PAGE(PageLRU(page), page); 1837 list_del(&page->lru); 1838 if (unlikely(!page_evictable(page))) { 1839 spin_unlock_irq(&pgdat->lru_lock); 1840 putback_lru_page(page); 1841 spin_lock_irq(&pgdat->lru_lock); 1842 continue; 1843 } 1844 1845 lruvec = mem_cgroup_page_lruvec(page, pgdat); 1846 1847 SetPageLRU(page); 1848 lru = page_lru(page); 1849 add_page_to_lru_list(page, lruvec, lru); 1850 1851 if (is_active_lru(lru)) { 1852 int file = is_file_lru(lru); 1853 int numpages = hpage_nr_pages(page); 1854 reclaim_stat->recent_rotated[file] += numpages; 1855 } 1856 if (put_page_testzero(page)) { 1857 __ClearPageLRU(page); 1858 __ClearPageActive(page); 1859 del_page_from_lru_list(page, lruvec, lru); 1860 1861 if (unlikely(PageCompound(page))) { 1862 spin_unlock_irq(&pgdat->lru_lock); 1863 mem_cgroup_uncharge(page); 1864 (*get_compound_page_dtor(page))(page); 1865 spin_lock_irq(&pgdat->lru_lock); 1866 } else 1867 list_add(&page->lru, &pages_to_free); 1868 } 1869 } 1870 1871 /* 1872 * To save our caller's stack, now use input list for pages to free. 1873 */ 1874 list_splice(&pages_to_free, page_list); 1875 } 1876 1877 /* 1878 * If a kernel thread (such as nfsd for loop-back mounts) services 1879 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE. 1880 * In that case we should only throttle if the backing device it is 1881 * writing to is congested. In other cases it is safe to throttle. 1882 */ 1883 static int current_may_throttle(void) 1884 { 1885 return !(current->flags & PF_LESS_THROTTLE) || 1886 current->backing_dev_info == NULL || 1887 bdi_write_congested(current->backing_dev_info); 1888 } 1889 1890 /* 1891 * shrink_inactive_list() is a helper for shrink_node(). It returns the number 1892 * of reclaimed pages 1893 */ 1894 static noinline_for_stack unsigned long 1895 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, 1896 struct scan_control *sc, enum lru_list lru) 1897 { 1898 LIST_HEAD(page_list); 1899 unsigned long nr_scanned; 1900 unsigned long nr_reclaimed = 0; 1901 unsigned long nr_taken; 1902 struct reclaim_stat stat = {}; 1903 isolate_mode_t isolate_mode = 0; 1904 int file = is_file_lru(lru); 1905 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1906 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1907 bool stalled = false; 1908 1909 while (unlikely(too_many_isolated(pgdat, file, sc))) { 1910 if (stalled) 1911 return 0; 1912 1913 /* wait a bit for the reclaimer. */ 1914 msleep(100); 1915 stalled = true; 1916 1917 /* We are about to die and free our memory. Return now. */ 1918 if (fatal_signal_pending(current)) 1919 return SWAP_CLUSTER_MAX; 1920 } 1921 1922 lru_add_drain(); 1923 1924 if (!sc->may_unmap) 1925 isolate_mode |= ISOLATE_UNMAPPED; 1926 1927 spin_lock_irq(&pgdat->lru_lock); 1928 1929 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list, 1930 &nr_scanned, sc, isolate_mode, lru); 1931 1932 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 1933 reclaim_stat->recent_scanned[file] += nr_taken; 1934 1935 if (current_is_kswapd()) { 1936 if (global_reclaim(sc)) 1937 __count_vm_events(PGSCAN_KSWAPD, nr_scanned); 1938 count_memcg_events(lruvec_memcg(lruvec), PGSCAN_KSWAPD, 1939 nr_scanned); 1940 } else { 1941 if (global_reclaim(sc)) 1942 __count_vm_events(PGSCAN_DIRECT, nr_scanned); 1943 count_memcg_events(lruvec_memcg(lruvec), PGSCAN_DIRECT, 1944 nr_scanned); 1945 } 1946 spin_unlock_irq(&pgdat->lru_lock); 1947 1948 if (nr_taken == 0) 1949 return 0; 1950 1951 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0, 1952 &stat, false); 1953 1954 spin_lock_irq(&pgdat->lru_lock); 1955 1956 if (current_is_kswapd()) { 1957 if (global_reclaim(sc)) 1958 __count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed); 1959 count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_KSWAPD, 1960 nr_reclaimed); 1961 } else { 1962 if (global_reclaim(sc)) 1963 __count_vm_events(PGSTEAL_DIRECT, nr_reclaimed); 1964 count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_DIRECT, 1965 nr_reclaimed); 1966 } 1967 1968 putback_inactive_pages(lruvec, &page_list); 1969 1970 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 1971 1972 spin_unlock_irq(&pgdat->lru_lock); 1973 1974 mem_cgroup_uncharge_list(&page_list); 1975 free_unref_page_list(&page_list); 1976 1977 /* 1978 * If dirty pages are scanned that are not queued for IO, it 1979 * implies that flushers are not doing their job. This can 1980 * happen when memory pressure pushes dirty pages to the end of 1981 * the LRU before the dirty limits are breached and the dirty 1982 * data has expired. It can also happen when the proportion of 1983 * dirty pages grows not through writes but through memory 1984 * pressure reclaiming all the clean cache. And in some cases, 1985 * the flushers simply cannot keep up with the allocation 1986 * rate. Nudge the flusher threads in case they are asleep. 1987 */ 1988 if (stat.nr_unqueued_dirty == nr_taken) 1989 wakeup_flusher_threads(WB_REASON_VMSCAN); 1990 1991 sc->nr.dirty += stat.nr_dirty; 1992 sc->nr.congested += stat.nr_congested; 1993 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty; 1994 sc->nr.writeback += stat.nr_writeback; 1995 sc->nr.immediate += stat.nr_immediate; 1996 sc->nr.taken += nr_taken; 1997 if (file) 1998 sc->nr.file_taken += nr_taken; 1999 2000 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 2001 nr_scanned, nr_reclaimed, &stat, sc->priority, file); 2002 return nr_reclaimed; 2003 } 2004 2005 /* 2006 * This moves pages from the active list to the inactive list. 2007 * 2008 * We move them the other way if the page is referenced by one or more 2009 * processes, from rmap. 2010 * 2011 * If the pages are mostly unmapped, the processing is fast and it is 2012 * appropriate to hold zone_lru_lock across the whole operation. But if 2013 * the pages are mapped, the processing is slow (page_referenced()) so we 2014 * should drop zone_lru_lock around each page. It's impossible to balance 2015 * this, so instead we remove the pages from the LRU while processing them. 2016 * It is safe to rely on PG_active against the non-LRU pages in here because 2017 * nobody will play with that bit on a non-LRU page. 2018 * 2019 * The downside is that we have to touch page->_refcount against each page. 2020 * But we had to alter page->flags anyway. 2021 * 2022 * Returns the number of pages moved to the given lru. 2023 */ 2024 2025 static unsigned move_active_pages_to_lru(struct lruvec *lruvec, 2026 struct list_head *list, 2027 struct list_head *pages_to_free, 2028 enum lru_list lru) 2029 { 2030 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2031 struct page *page; 2032 int nr_pages; 2033 int nr_moved = 0; 2034 2035 while (!list_empty(list)) { 2036 page = lru_to_page(list); 2037 lruvec = mem_cgroup_page_lruvec(page, pgdat); 2038 2039 VM_BUG_ON_PAGE(PageLRU(page), page); 2040 SetPageLRU(page); 2041 2042 nr_pages = hpage_nr_pages(page); 2043 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages); 2044 list_move(&page->lru, &lruvec->lists[lru]); 2045 2046 if (put_page_testzero(page)) { 2047 __ClearPageLRU(page); 2048 __ClearPageActive(page); 2049 del_page_from_lru_list(page, lruvec, lru); 2050 2051 if (unlikely(PageCompound(page))) { 2052 spin_unlock_irq(&pgdat->lru_lock); 2053 mem_cgroup_uncharge(page); 2054 (*get_compound_page_dtor(page))(page); 2055 spin_lock_irq(&pgdat->lru_lock); 2056 } else 2057 list_add(&page->lru, pages_to_free); 2058 } else { 2059 nr_moved += nr_pages; 2060 } 2061 } 2062 2063 if (!is_active_lru(lru)) { 2064 __count_vm_events(PGDEACTIVATE, nr_moved); 2065 count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, 2066 nr_moved); 2067 } 2068 2069 return nr_moved; 2070 } 2071 2072 static void shrink_active_list(unsigned long nr_to_scan, 2073 struct lruvec *lruvec, 2074 struct scan_control *sc, 2075 enum lru_list lru) 2076 { 2077 unsigned long nr_taken; 2078 unsigned long nr_scanned; 2079 unsigned long vm_flags; 2080 LIST_HEAD(l_hold); /* The pages which were snipped off */ 2081 LIST_HEAD(l_active); 2082 LIST_HEAD(l_inactive); 2083 struct page *page; 2084 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 2085 unsigned nr_deactivate, nr_activate; 2086 unsigned nr_rotated = 0; 2087 isolate_mode_t isolate_mode = 0; 2088 int file = is_file_lru(lru); 2089 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2090 2091 lru_add_drain(); 2092 2093 if (!sc->may_unmap) 2094 isolate_mode |= ISOLATE_UNMAPPED; 2095 2096 spin_lock_irq(&pgdat->lru_lock); 2097 2098 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold, 2099 &nr_scanned, sc, isolate_mode, lru); 2100 2101 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2102 reclaim_stat->recent_scanned[file] += nr_taken; 2103 2104 __count_vm_events(PGREFILL, nr_scanned); 2105 count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned); 2106 2107 spin_unlock_irq(&pgdat->lru_lock); 2108 2109 while (!list_empty(&l_hold)) { 2110 cond_resched(); 2111 page = lru_to_page(&l_hold); 2112 list_del(&page->lru); 2113 2114 if (unlikely(!page_evictable(page))) { 2115 putback_lru_page(page); 2116 continue; 2117 } 2118 2119 if (unlikely(buffer_heads_over_limit)) { 2120 if (page_has_private(page) && trylock_page(page)) { 2121 if (page_has_private(page)) 2122 try_to_release_page(page, 0); 2123 unlock_page(page); 2124 } 2125 } 2126 2127 if (page_referenced(page, 0, sc->target_mem_cgroup, 2128 &vm_flags)) { 2129 nr_rotated += hpage_nr_pages(page); 2130 /* 2131 * Identify referenced, file-backed active pages and 2132 * give them one more trip around the active list. So 2133 * that executable code get better chances to stay in 2134 * memory under moderate memory pressure. Anon pages 2135 * are not likely to be evicted by use-once streaming 2136 * IO, plus JVM can create lots of anon VM_EXEC pages, 2137 * so we ignore them here. 2138 */ 2139 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) { 2140 list_add(&page->lru, &l_active); 2141 continue; 2142 } 2143 } 2144 2145 ClearPageActive(page); /* we are de-activating */ 2146 SetPageWorkingset(page); 2147 list_add(&page->lru, &l_inactive); 2148 } 2149 2150 /* 2151 * Move pages back to the lru list. 2152 */ 2153 spin_lock_irq(&pgdat->lru_lock); 2154 /* 2155 * Count referenced pages from currently used mappings as rotated, 2156 * even though only some of them are actually re-activated. This 2157 * helps balance scan pressure between file and anonymous pages in 2158 * get_scan_count. 2159 */ 2160 reclaim_stat->recent_rotated[file] += nr_rotated; 2161 2162 nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru); 2163 nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE); 2164 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2165 spin_unlock_irq(&pgdat->lru_lock); 2166 2167 mem_cgroup_uncharge_list(&l_hold); 2168 free_unref_page_list(&l_hold); 2169 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate, 2170 nr_deactivate, nr_rotated, sc->priority, file); 2171 } 2172 2173 /* 2174 * The inactive anon list should be small enough that the VM never has 2175 * to do too much work. 2176 * 2177 * The inactive file list should be small enough to leave most memory 2178 * to the established workingset on the scan-resistant active list, 2179 * but large enough to avoid thrashing the aggregate readahead window. 2180 * 2181 * Both inactive lists should also be large enough that each inactive 2182 * page has a chance to be referenced again before it is reclaimed. 2183 * 2184 * If that fails and refaulting is observed, the inactive list grows. 2185 * 2186 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages 2187 * on this LRU, maintained by the pageout code. An inactive_ratio 2188 * of 3 means 3:1 or 25% of the pages are kept on the inactive list. 2189 * 2190 * total target max 2191 * memory ratio inactive 2192 * ------------------------------------- 2193 * 10MB 1 5MB 2194 * 100MB 1 50MB 2195 * 1GB 3 250MB 2196 * 10GB 10 0.9GB 2197 * 100GB 31 3GB 2198 * 1TB 101 10GB 2199 * 10TB 320 32GB 2200 */ 2201 static bool inactive_list_is_low(struct lruvec *lruvec, bool file, 2202 struct mem_cgroup *memcg, 2203 struct scan_control *sc, bool actual_reclaim) 2204 { 2205 enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE; 2206 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2207 enum lru_list inactive_lru = file * LRU_FILE; 2208 unsigned long inactive, active; 2209 unsigned long inactive_ratio; 2210 unsigned long refaults; 2211 unsigned long gb; 2212 2213 /* 2214 * If we don't have swap space, anonymous page deactivation 2215 * is pointless. 2216 */ 2217 if (!file && !total_swap_pages) 2218 return false; 2219 2220 inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx); 2221 active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx); 2222 2223 if (memcg) 2224 refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE); 2225 else 2226 refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE); 2227 2228 /* 2229 * When refaults are being observed, it means a new workingset 2230 * is being established. Disable active list protection to get 2231 * rid of the stale workingset quickly. 2232 */ 2233 if (file && actual_reclaim && lruvec->refaults != refaults) { 2234 inactive_ratio = 0; 2235 } else { 2236 gb = (inactive + active) >> (30 - PAGE_SHIFT); 2237 if (gb) 2238 inactive_ratio = int_sqrt(10 * gb); 2239 else 2240 inactive_ratio = 1; 2241 } 2242 2243 if (actual_reclaim) 2244 trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx, 2245 lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive, 2246 lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active, 2247 inactive_ratio, file); 2248 2249 return inactive * inactive_ratio < active; 2250 } 2251 2252 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 2253 struct lruvec *lruvec, struct mem_cgroup *memcg, 2254 struct scan_control *sc) 2255 { 2256 if (is_active_lru(lru)) { 2257 if (inactive_list_is_low(lruvec, is_file_lru(lru), 2258 memcg, sc, true)) 2259 shrink_active_list(nr_to_scan, lruvec, sc, lru); 2260 return 0; 2261 } 2262 2263 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 2264 } 2265 2266 enum scan_balance { 2267 SCAN_EQUAL, 2268 SCAN_FRACT, 2269 SCAN_ANON, 2270 SCAN_FILE, 2271 }; 2272 2273 /* 2274 * Determine how aggressively the anon and file LRU lists should be 2275 * scanned. The relative value of each set of LRU lists is determined 2276 * by looking at the fraction of the pages scanned we did rotate back 2277 * onto the active list instead of evict. 2278 * 2279 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan 2280 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan 2281 */ 2282 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg, 2283 struct scan_control *sc, unsigned long *nr, 2284 unsigned long *lru_pages) 2285 { 2286 int swappiness = mem_cgroup_swappiness(memcg); 2287 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 2288 u64 fraction[2]; 2289 u64 denominator = 0; /* gcc */ 2290 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2291 unsigned long anon_prio, file_prio; 2292 enum scan_balance scan_balance; 2293 unsigned long anon, file; 2294 unsigned long ap, fp; 2295 enum lru_list lru; 2296 2297 /* If we have no swap space, do not bother scanning anon pages. */ 2298 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) { 2299 scan_balance = SCAN_FILE; 2300 goto out; 2301 } 2302 2303 /* 2304 * Global reclaim will swap to prevent OOM even with no 2305 * swappiness, but memcg users want to use this knob to 2306 * disable swapping for individual groups completely when 2307 * using the memory controller's swap limit feature would be 2308 * too expensive. 2309 */ 2310 if (!global_reclaim(sc) && !swappiness) { 2311 scan_balance = SCAN_FILE; 2312 goto out; 2313 } 2314 2315 /* 2316 * Do not apply any pressure balancing cleverness when the 2317 * system is close to OOM, scan both anon and file equally 2318 * (unless the swappiness setting disagrees with swapping). 2319 */ 2320 if (!sc->priority && swappiness) { 2321 scan_balance = SCAN_EQUAL; 2322 goto out; 2323 } 2324 2325 /* 2326 * Prevent the reclaimer from falling into the cache trap: as 2327 * cache pages start out inactive, every cache fault will tip 2328 * the scan balance towards the file LRU. And as the file LRU 2329 * shrinks, so does the window for rotation from references. 2330 * This means we have a runaway feedback loop where a tiny 2331 * thrashing file LRU becomes infinitely more attractive than 2332 * anon pages. Try to detect this based on file LRU size. 2333 */ 2334 if (global_reclaim(sc)) { 2335 unsigned long pgdatfile; 2336 unsigned long pgdatfree; 2337 int z; 2338 unsigned long total_high_wmark = 0; 2339 2340 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES); 2341 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) + 2342 node_page_state(pgdat, NR_INACTIVE_FILE); 2343 2344 for (z = 0; z < MAX_NR_ZONES; z++) { 2345 struct zone *zone = &pgdat->node_zones[z]; 2346 if (!managed_zone(zone)) 2347 continue; 2348 2349 total_high_wmark += high_wmark_pages(zone); 2350 } 2351 2352 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) { 2353 /* 2354 * Force SCAN_ANON if there are enough inactive 2355 * anonymous pages on the LRU in eligible zones. 2356 * Otherwise, the small LRU gets thrashed. 2357 */ 2358 if (!inactive_list_is_low(lruvec, false, memcg, sc, false) && 2359 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx) 2360 >> sc->priority) { 2361 scan_balance = SCAN_ANON; 2362 goto out; 2363 } 2364 } 2365 } 2366 2367 /* 2368 * If there is enough inactive page cache, i.e. if the size of the 2369 * inactive list is greater than that of the active list *and* the 2370 * inactive list actually has some pages to scan on this priority, we 2371 * do not reclaim anything from the anonymous working set right now. 2372 * Without the second condition we could end up never scanning an 2373 * lruvec even if it has plenty of old anonymous pages unless the 2374 * system is under heavy pressure. 2375 */ 2376 if (!inactive_list_is_low(lruvec, true, memcg, sc, false) && 2377 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) { 2378 scan_balance = SCAN_FILE; 2379 goto out; 2380 } 2381 2382 scan_balance = SCAN_FRACT; 2383 2384 /* 2385 * With swappiness at 100, anonymous and file have the same priority. 2386 * This scanning priority is essentially the inverse of IO cost. 2387 */ 2388 anon_prio = swappiness; 2389 file_prio = 200 - anon_prio; 2390 2391 /* 2392 * OK, so we have swap space and a fair amount of page cache 2393 * pages. We use the recently rotated / recently scanned 2394 * ratios to determine how valuable each cache is. 2395 * 2396 * Because workloads change over time (and to avoid overflow) 2397 * we keep these statistics as a floating average, which ends 2398 * up weighing recent references more than old ones. 2399 * 2400 * anon in [0], file in [1] 2401 */ 2402 2403 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) + 2404 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES); 2405 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) + 2406 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES); 2407 2408 spin_lock_irq(&pgdat->lru_lock); 2409 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) { 2410 reclaim_stat->recent_scanned[0] /= 2; 2411 reclaim_stat->recent_rotated[0] /= 2; 2412 } 2413 2414 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) { 2415 reclaim_stat->recent_scanned[1] /= 2; 2416 reclaim_stat->recent_rotated[1] /= 2; 2417 } 2418 2419 /* 2420 * The amount of pressure on anon vs file pages is inversely 2421 * proportional to the fraction of recently scanned pages on 2422 * each list that were recently referenced and in active use. 2423 */ 2424 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1); 2425 ap /= reclaim_stat->recent_rotated[0] + 1; 2426 2427 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1); 2428 fp /= reclaim_stat->recent_rotated[1] + 1; 2429 spin_unlock_irq(&pgdat->lru_lock); 2430 2431 fraction[0] = ap; 2432 fraction[1] = fp; 2433 denominator = ap + fp + 1; 2434 out: 2435 *lru_pages = 0; 2436 for_each_evictable_lru(lru) { 2437 int file = is_file_lru(lru); 2438 unsigned long size; 2439 unsigned long scan; 2440 2441 size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx); 2442 scan = size >> sc->priority; 2443 /* 2444 * If the cgroup's already been deleted, make sure to 2445 * scrape out the remaining cache. 2446 */ 2447 if (!scan && !mem_cgroup_online(memcg)) 2448 scan = min(size, SWAP_CLUSTER_MAX); 2449 2450 switch (scan_balance) { 2451 case SCAN_EQUAL: 2452 /* Scan lists relative to size */ 2453 break; 2454 case SCAN_FRACT: 2455 /* 2456 * Scan types proportional to swappiness and 2457 * their relative recent reclaim efficiency. 2458 * Make sure we don't miss the last page 2459 * because of a round-off error. 2460 */ 2461 scan = DIV64_U64_ROUND_UP(scan * fraction[file], 2462 denominator); 2463 break; 2464 case SCAN_FILE: 2465 case SCAN_ANON: 2466 /* Scan one type exclusively */ 2467 if ((scan_balance == SCAN_FILE) != file) { 2468 size = 0; 2469 scan = 0; 2470 } 2471 break; 2472 default: 2473 /* Look ma, no brain */ 2474 BUG(); 2475 } 2476 2477 *lru_pages += size; 2478 nr[lru] = scan; 2479 } 2480 } 2481 2482 /* 2483 * This is a basic per-node page freer. Used by both kswapd and direct reclaim. 2484 */ 2485 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg, 2486 struct scan_control *sc, unsigned long *lru_pages) 2487 { 2488 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg); 2489 unsigned long nr[NR_LRU_LISTS]; 2490 unsigned long targets[NR_LRU_LISTS]; 2491 unsigned long nr_to_scan; 2492 enum lru_list lru; 2493 unsigned long nr_reclaimed = 0; 2494 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 2495 struct blk_plug plug; 2496 bool scan_adjusted; 2497 2498 get_scan_count(lruvec, memcg, sc, nr, lru_pages); 2499 2500 /* Record the original scan target for proportional adjustments later */ 2501 memcpy(targets, nr, sizeof(nr)); 2502 2503 /* 2504 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal 2505 * event that can occur when there is little memory pressure e.g. 2506 * multiple streaming readers/writers. Hence, we do not abort scanning 2507 * when the requested number of pages are reclaimed when scanning at 2508 * DEF_PRIORITY on the assumption that the fact we are direct 2509 * reclaiming implies that kswapd is not keeping up and it is best to 2510 * do a batch of work at once. For memcg reclaim one check is made to 2511 * abort proportional reclaim if either the file or anon lru has already 2512 * dropped to zero at the first pass. 2513 */ 2514 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() && 2515 sc->priority == DEF_PRIORITY); 2516 2517 blk_start_plug(&plug); 2518 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 2519 nr[LRU_INACTIVE_FILE]) { 2520 unsigned long nr_anon, nr_file, percentage; 2521 unsigned long nr_scanned; 2522 2523 for_each_evictable_lru(lru) { 2524 if (nr[lru]) { 2525 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 2526 nr[lru] -= nr_to_scan; 2527 2528 nr_reclaimed += shrink_list(lru, nr_to_scan, 2529 lruvec, memcg, sc); 2530 } 2531 } 2532 2533 cond_resched(); 2534 2535 if (nr_reclaimed < nr_to_reclaim || scan_adjusted) 2536 continue; 2537 2538 /* 2539 * For kswapd and memcg, reclaim at least the number of pages 2540 * requested. Ensure that the anon and file LRUs are scanned 2541 * proportionally what was requested by get_scan_count(). We 2542 * stop reclaiming one LRU and reduce the amount scanning 2543 * proportional to the original scan target. 2544 */ 2545 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 2546 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 2547 2548 /* 2549 * It's just vindictive to attack the larger once the smaller 2550 * has gone to zero. And given the way we stop scanning the 2551 * smaller below, this makes sure that we only make one nudge 2552 * towards proportionality once we've got nr_to_reclaim. 2553 */ 2554 if (!nr_file || !nr_anon) 2555 break; 2556 2557 if (nr_file > nr_anon) { 2558 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 2559 targets[LRU_ACTIVE_ANON] + 1; 2560 lru = LRU_BASE; 2561 percentage = nr_anon * 100 / scan_target; 2562 } else { 2563 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 2564 targets[LRU_ACTIVE_FILE] + 1; 2565 lru = LRU_FILE; 2566 percentage = nr_file * 100 / scan_target; 2567 } 2568 2569 /* Stop scanning the smaller of the LRU */ 2570 nr[lru] = 0; 2571 nr[lru + LRU_ACTIVE] = 0; 2572 2573 /* 2574 * Recalculate the other LRU scan count based on its original 2575 * scan target and the percentage scanning already complete 2576 */ 2577 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 2578 nr_scanned = targets[lru] - nr[lru]; 2579 nr[lru] = targets[lru] * (100 - percentage) / 100; 2580 nr[lru] -= min(nr[lru], nr_scanned); 2581 2582 lru += LRU_ACTIVE; 2583 nr_scanned = targets[lru] - nr[lru]; 2584 nr[lru] = targets[lru] * (100 - percentage) / 100; 2585 nr[lru] -= min(nr[lru], nr_scanned); 2586 2587 scan_adjusted = true; 2588 } 2589 blk_finish_plug(&plug); 2590 sc->nr_reclaimed += nr_reclaimed; 2591 2592 /* 2593 * Even if we did not try to evict anon pages at all, we want to 2594 * rebalance the anon lru active/inactive ratio. 2595 */ 2596 if (inactive_list_is_low(lruvec, false, memcg, sc, true)) 2597 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 2598 sc, LRU_ACTIVE_ANON); 2599 } 2600 2601 /* Use reclaim/compaction for costly allocs or under memory pressure */ 2602 static bool in_reclaim_compaction(struct scan_control *sc) 2603 { 2604 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 2605 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 2606 sc->priority < DEF_PRIORITY - 2)) 2607 return true; 2608 2609 return false; 2610 } 2611 2612 /* 2613 * Reclaim/compaction is used for high-order allocation requests. It reclaims 2614 * order-0 pages before compacting the zone. should_continue_reclaim() returns 2615 * true if more pages should be reclaimed such that when the page allocator 2616 * calls try_to_compact_zone() that it will have enough free pages to succeed. 2617 * It will give up earlier than that if there is difficulty reclaiming pages. 2618 */ 2619 static inline bool should_continue_reclaim(struct pglist_data *pgdat, 2620 unsigned long nr_reclaimed, 2621 unsigned long nr_scanned, 2622 struct scan_control *sc) 2623 { 2624 unsigned long pages_for_compaction; 2625 unsigned long inactive_lru_pages; 2626 int z; 2627 2628 /* If not in reclaim/compaction mode, stop */ 2629 if (!in_reclaim_compaction(sc)) 2630 return false; 2631 2632 /* Consider stopping depending on scan and reclaim activity */ 2633 if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) { 2634 /* 2635 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the 2636 * full LRU list has been scanned and we are still failing 2637 * to reclaim pages. This full LRU scan is potentially 2638 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed 2639 */ 2640 if (!nr_reclaimed && !nr_scanned) 2641 return false; 2642 } else { 2643 /* 2644 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably 2645 * fail without consequence, stop if we failed to reclaim 2646 * any pages from the last SWAP_CLUSTER_MAX number of 2647 * pages that were scanned. This will return to the 2648 * caller faster at the risk reclaim/compaction and 2649 * the resulting allocation attempt fails 2650 */ 2651 if (!nr_reclaimed) 2652 return false; 2653 } 2654 2655 /* 2656 * If we have not reclaimed enough pages for compaction and the 2657 * inactive lists are large enough, continue reclaiming 2658 */ 2659 pages_for_compaction = compact_gap(sc->order); 2660 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE); 2661 if (get_nr_swap_pages() > 0) 2662 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON); 2663 if (sc->nr_reclaimed < pages_for_compaction && 2664 inactive_lru_pages > pages_for_compaction) 2665 return true; 2666 2667 /* If compaction would go ahead or the allocation would succeed, stop */ 2668 for (z = 0; z <= sc->reclaim_idx; z++) { 2669 struct zone *zone = &pgdat->node_zones[z]; 2670 if (!managed_zone(zone)) 2671 continue; 2672 2673 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) { 2674 case COMPACT_SUCCESS: 2675 case COMPACT_CONTINUE: 2676 return false; 2677 default: 2678 /* check next zone */ 2679 ; 2680 } 2681 } 2682 return true; 2683 } 2684 2685 static bool pgdat_memcg_congested(pg_data_t *pgdat, struct mem_cgroup *memcg) 2686 { 2687 return test_bit(PGDAT_CONGESTED, &pgdat->flags) || 2688 (memcg && memcg_congested(pgdat, memcg)); 2689 } 2690 2691 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc) 2692 { 2693 struct reclaim_state *reclaim_state = current->reclaim_state; 2694 unsigned long nr_reclaimed, nr_scanned; 2695 bool reclaimable = false; 2696 2697 do { 2698 struct mem_cgroup *root = sc->target_mem_cgroup; 2699 struct mem_cgroup_reclaim_cookie reclaim = { 2700 .pgdat = pgdat, 2701 .priority = sc->priority, 2702 }; 2703 unsigned long node_lru_pages = 0; 2704 struct mem_cgroup *memcg; 2705 2706 memset(&sc->nr, 0, sizeof(sc->nr)); 2707 2708 nr_reclaimed = sc->nr_reclaimed; 2709 nr_scanned = sc->nr_scanned; 2710 2711 memcg = mem_cgroup_iter(root, NULL, &reclaim); 2712 do { 2713 unsigned long lru_pages; 2714 unsigned long reclaimed; 2715 unsigned long scanned; 2716 2717 switch (mem_cgroup_protected(root, memcg)) { 2718 case MEMCG_PROT_MIN: 2719 /* 2720 * Hard protection. 2721 * If there is no reclaimable memory, OOM. 2722 */ 2723 continue; 2724 case MEMCG_PROT_LOW: 2725 /* 2726 * Soft protection. 2727 * Respect the protection only as long as 2728 * there is an unprotected supply 2729 * of reclaimable memory from other cgroups. 2730 */ 2731 if (!sc->memcg_low_reclaim) { 2732 sc->memcg_low_skipped = 1; 2733 continue; 2734 } 2735 memcg_memory_event(memcg, MEMCG_LOW); 2736 break; 2737 case MEMCG_PROT_NONE: 2738 break; 2739 } 2740 2741 reclaimed = sc->nr_reclaimed; 2742 scanned = sc->nr_scanned; 2743 shrink_node_memcg(pgdat, memcg, sc, &lru_pages); 2744 node_lru_pages += lru_pages; 2745 2746 if (sc->may_shrinkslab) { 2747 shrink_slab(sc->gfp_mask, pgdat->node_id, 2748 memcg, sc->priority); 2749 } 2750 2751 /* Record the group's reclaim efficiency */ 2752 vmpressure(sc->gfp_mask, memcg, false, 2753 sc->nr_scanned - scanned, 2754 sc->nr_reclaimed - reclaimed); 2755 2756 /* 2757 * Direct reclaim and kswapd have to scan all memory 2758 * cgroups to fulfill the overall scan target for the 2759 * node. 2760 * 2761 * Limit reclaim, on the other hand, only cares about 2762 * nr_to_reclaim pages to be reclaimed and it will 2763 * retry with decreasing priority if one round over the 2764 * whole hierarchy is not sufficient. 2765 */ 2766 if (!global_reclaim(sc) && 2767 sc->nr_reclaimed >= sc->nr_to_reclaim) { 2768 mem_cgroup_iter_break(root, memcg); 2769 break; 2770 } 2771 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim))); 2772 2773 if (reclaim_state) { 2774 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 2775 reclaim_state->reclaimed_slab = 0; 2776 } 2777 2778 /* Record the subtree's reclaim efficiency */ 2779 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, 2780 sc->nr_scanned - nr_scanned, 2781 sc->nr_reclaimed - nr_reclaimed); 2782 2783 if (sc->nr_reclaimed - nr_reclaimed) 2784 reclaimable = true; 2785 2786 if (current_is_kswapd()) { 2787 /* 2788 * If reclaim is isolating dirty pages under writeback, 2789 * it implies that the long-lived page allocation rate 2790 * is exceeding the page laundering rate. Either the 2791 * global limits are not being effective at throttling 2792 * processes due to the page distribution throughout 2793 * zones or there is heavy usage of a slow backing 2794 * device. The only option is to throttle from reclaim 2795 * context which is not ideal as there is no guarantee 2796 * the dirtying process is throttled in the same way 2797 * balance_dirty_pages() manages. 2798 * 2799 * Once a node is flagged PGDAT_WRITEBACK, kswapd will 2800 * count the number of pages under pages flagged for 2801 * immediate reclaim and stall if any are encountered 2802 * in the nr_immediate check below. 2803 */ 2804 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken) 2805 set_bit(PGDAT_WRITEBACK, &pgdat->flags); 2806 2807 /* 2808 * Tag a node as congested if all the dirty pages 2809 * scanned were backed by a congested BDI and 2810 * wait_iff_congested will stall. 2811 */ 2812 if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested) 2813 set_bit(PGDAT_CONGESTED, &pgdat->flags); 2814 2815 /* Allow kswapd to start writing pages during reclaim.*/ 2816 if (sc->nr.unqueued_dirty == sc->nr.file_taken) 2817 set_bit(PGDAT_DIRTY, &pgdat->flags); 2818 2819 /* 2820 * If kswapd scans pages marked marked for immediate 2821 * reclaim and under writeback (nr_immediate), it 2822 * implies that pages are cycling through the LRU 2823 * faster than they are written so also forcibly stall. 2824 */ 2825 if (sc->nr.immediate) 2826 congestion_wait(BLK_RW_ASYNC, HZ/10); 2827 } 2828 2829 /* 2830 * Legacy memcg will stall in page writeback so avoid forcibly 2831 * stalling in wait_iff_congested(). 2832 */ 2833 if (!global_reclaim(sc) && sane_reclaim(sc) && 2834 sc->nr.dirty && sc->nr.dirty == sc->nr.congested) 2835 set_memcg_congestion(pgdat, root, true); 2836 2837 /* 2838 * Stall direct reclaim for IO completions if underlying BDIs 2839 * and node is congested. Allow kswapd to continue until it 2840 * starts encountering unqueued dirty pages or cycling through 2841 * the LRU too quickly. 2842 */ 2843 if (!sc->hibernation_mode && !current_is_kswapd() && 2844 current_may_throttle() && pgdat_memcg_congested(pgdat, root)) 2845 wait_iff_congested(BLK_RW_ASYNC, HZ/10); 2846 2847 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed, 2848 sc->nr_scanned - nr_scanned, sc)); 2849 2850 /* 2851 * Kswapd gives up on balancing particular nodes after too 2852 * many failures to reclaim anything from them and goes to 2853 * sleep. On reclaim progress, reset the failure counter. A 2854 * successful direct reclaim run will revive a dormant kswapd. 2855 */ 2856 if (reclaimable) 2857 pgdat->kswapd_failures = 0; 2858 2859 return reclaimable; 2860 } 2861 2862 /* 2863 * Returns true if compaction should go ahead for a costly-order request, or 2864 * the allocation would already succeed without compaction. Return false if we 2865 * should reclaim first. 2866 */ 2867 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) 2868 { 2869 unsigned long watermark; 2870 enum compact_result suitable; 2871 2872 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx); 2873 if (suitable == COMPACT_SUCCESS) 2874 /* Allocation should succeed already. Don't reclaim. */ 2875 return true; 2876 if (suitable == COMPACT_SKIPPED) 2877 /* Compaction cannot yet proceed. Do reclaim. */ 2878 return false; 2879 2880 /* 2881 * Compaction is already possible, but it takes time to run and there 2882 * are potentially other callers using the pages just freed. So proceed 2883 * with reclaim to make a buffer of free pages available to give 2884 * compaction a reasonable chance of completing and allocating the page. 2885 * Note that we won't actually reclaim the whole buffer in one attempt 2886 * as the target watermark in should_continue_reclaim() is lower. But if 2887 * we are already above the high+gap watermark, don't reclaim at all. 2888 */ 2889 watermark = high_wmark_pages(zone) + compact_gap(sc->order); 2890 2891 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx); 2892 } 2893 2894 /* 2895 * This is the direct reclaim path, for page-allocating processes. We only 2896 * try to reclaim pages from zones which will satisfy the caller's allocation 2897 * request. 2898 * 2899 * If a zone is deemed to be full of pinned pages then just give it a light 2900 * scan then give up on it. 2901 */ 2902 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 2903 { 2904 struct zoneref *z; 2905 struct zone *zone; 2906 unsigned long nr_soft_reclaimed; 2907 unsigned long nr_soft_scanned; 2908 gfp_t orig_mask; 2909 pg_data_t *last_pgdat = NULL; 2910 2911 /* 2912 * If the number of buffer_heads in the machine exceeds the maximum 2913 * allowed level, force direct reclaim to scan the highmem zone as 2914 * highmem pages could be pinning lowmem pages storing buffer_heads 2915 */ 2916 orig_mask = sc->gfp_mask; 2917 if (buffer_heads_over_limit) { 2918 sc->gfp_mask |= __GFP_HIGHMEM; 2919 sc->reclaim_idx = gfp_zone(sc->gfp_mask); 2920 } 2921 2922 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2923 sc->reclaim_idx, sc->nodemask) { 2924 /* 2925 * Take care memory controller reclaiming has small influence 2926 * to global LRU. 2927 */ 2928 if (global_reclaim(sc)) { 2929 if (!cpuset_zone_allowed(zone, 2930 GFP_KERNEL | __GFP_HARDWALL)) 2931 continue; 2932 2933 /* 2934 * If we already have plenty of memory free for 2935 * compaction in this zone, don't free any more. 2936 * Even though compaction is invoked for any 2937 * non-zero order, only frequent costly order 2938 * reclamation is disruptive enough to become a 2939 * noticeable problem, like transparent huge 2940 * page allocations. 2941 */ 2942 if (IS_ENABLED(CONFIG_COMPACTION) && 2943 sc->order > PAGE_ALLOC_COSTLY_ORDER && 2944 compaction_ready(zone, sc)) { 2945 sc->compaction_ready = true; 2946 continue; 2947 } 2948 2949 /* 2950 * Shrink each node in the zonelist once. If the 2951 * zonelist is ordered by zone (not the default) then a 2952 * node may be shrunk multiple times but in that case 2953 * the user prefers lower zones being preserved. 2954 */ 2955 if (zone->zone_pgdat == last_pgdat) 2956 continue; 2957 2958 /* 2959 * This steals pages from memory cgroups over softlimit 2960 * and returns the number of reclaimed pages and 2961 * scanned pages. This works for global memory pressure 2962 * and balancing, not for a memcg's limit. 2963 */ 2964 nr_soft_scanned = 0; 2965 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat, 2966 sc->order, sc->gfp_mask, 2967 &nr_soft_scanned); 2968 sc->nr_reclaimed += nr_soft_reclaimed; 2969 sc->nr_scanned += nr_soft_scanned; 2970 /* need some check for avoid more shrink_zone() */ 2971 } 2972 2973 /* See comment about same check for global reclaim above */ 2974 if (zone->zone_pgdat == last_pgdat) 2975 continue; 2976 last_pgdat = zone->zone_pgdat; 2977 shrink_node(zone->zone_pgdat, sc); 2978 } 2979 2980 /* 2981 * Restore to original mask to avoid the impact on the caller if we 2982 * promoted it to __GFP_HIGHMEM. 2983 */ 2984 sc->gfp_mask = orig_mask; 2985 } 2986 2987 static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat) 2988 { 2989 struct mem_cgroup *memcg; 2990 2991 memcg = mem_cgroup_iter(root_memcg, NULL, NULL); 2992 do { 2993 unsigned long refaults; 2994 struct lruvec *lruvec; 2995 2996 if (memcg) 2997 refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE); 2998 else 2999 refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE); 3000 3001 lruvec = mem_cgroup_lruvec(pgdat, memcg); 3002 lruvec->refaults = refaults; 3003 } while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL))); 3004 } 3005 3006 /* 3007 * This is the main entry point to direct page reclaim. 3008 * 3009 * If a full scan of the inactive list fails to free enough memory then we 3010 * are "out of memory" and something needs to be killed. 3011 * 3012 * If the caller is !__GFP_FS then the probability of a failure is reasonably 3013 * high - the zone may be full of dirty or under-writeback pages, which this 3014 * caller can't do much about. We kick the writeback threads and take explicit 3015 * naps in the hope that some of these pages can be written. But if the 3016 * allocating task holds filesystem locks which prevent writeout this might not 3017 * work, and the allocation attempt will fail. 3018 * 3019 * returns: 0, if no pages reclaimed 3020 * else, the number of pages reclaimed 3021 */ 3022 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 3023 struct scan_control *sc) 3024 { 3025 int initial_priority = sc->priority; 3026 pg_data_t *last_pgdat; 3027 struct zoneref *z; 3028 struct zone *zone; 3029 retry: 3030 delayacct_freepages_start(); 3031 3032 if (global_reclaim(sc)) 3033 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1); 3034 3035 do { 3036 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 3037 sc->priority); 3038 sc->nr_scanned = 0; 3039 shrink_zones(zonelist, sc); 3040 3041 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 3042 break; 3043 3044 if (sc->compaction_ready) 3045 break; 3046 3047 /* 3048 * If we're getting trouble reclaiming, start doing 3049 * writepage even in laptop mode. 3050 */ 3051 if (sc->priority < DEF_PRIORITY - 2) 3052 sc->may_writepage = 1; 3053 } while (--sc->priority >= 0); 3054 3055 last_pgdat = NULL; 3056 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx, 3057 sc->nodemask) { 3058 if (zone->zone_pgdat == last_pgdat) 3059 continue; 3060 last_pgdat = zone->zone_pgdat; 3061 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat); 3062 set_memcg_congestion(last_pgdat, sc->target_mem_cgroup, false); 3063 } 3064 3065 delayacct_freepages_end(); 3066 3067 if (sc->nr_reclaimed) 3068 return sc->nr_reclaimed; 3069 3070 /* Aborted reclaim to try compaction? don't OOM, then */ 3071 if (sc->compaction_ready) 3072 return 1; 3073 3074 /* Untapped cgroup reserves? Don't OOM, retry. */ 3075 if (sc->memcg_low_skipped) { 3076 sc->priority = initial_priority; 3077 sc->memcg_low_reclaim = 1; 3078 sc->memcg_low_skipped = 0; 3079 goto retry; 3080 } 3081 3082 return 0; 3083 } 3084 3085 static bool allow_direct_reclaim(pg_data_t *pgdat) 3086 { 3087 struct zone *zone; 3088 unsigned long pfmemalloc_reserve = 0; 3089 unsigned long free_pages = 0; 3090 int i; 3091 bool wmark_ok; 3092 3093 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 3094 return true; 3095 3096 for (i = 0; i <= ZONE_NORMAL; i++) { 3097 zone = &pgdat->node_zones[i]; 3098 if (!managed_zone(zone)) 3099 continue; 3100 3101 if (!zone_reclaimable_pages(zone)) 3102 continue; 3103 3104 pfmemalloc_reserve += min_wmark_pages(zone); 3105 free_pages += zone_page_state(zone, NR_FREE_PAGES); 3106 } 3107 3108 /* If there are no reserves (unexpected config) then do not throttle */ 3109 if (!pfmemalloc_reserve) 3110 return true; 3111 3112 wmark_ok = free_pages > pfmemalloc_reserve / 2; 3113 3114 /* kswapd must be awake if processes are being throttled */ 3115 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 3116 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx, 3117 (enum zone_type)ZONE_NORMAL); 3118 wake_up_interruptible(&pgdat->kswapd_wait); 3119 } 3120 3121 return wmark_ok; 3122 } 3123 3124 /* 3125 * Throttle direct reclaimers if backing storage is backed by the network 3126 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 3127 * depleted. kswapd will continue to make progress and wake the processes 3128 * when the low watermark is reached. 3129 * 3130 * Returns true if a fatal signal was delivered during throttling. If this 3131 * happens, the page allocator should not consider triggering the OOM killer. 3132 */ 3133 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 3134 nodemask_t *nodemask) 3135 { 3136 struct zoneref *z; 3137 struct zone *zone; 3138 pg_data_t *pgdat = NULL; 3139 3140 /* 3141 * Kernel threads should not be throttled as they may be indirectly 3142 * responsible for cleaning pages necessary for reclaim to make forward 3143 * progress. kjournald for example may enter direct reclaim while 3144 * committing a transaction where throttling it could forcing other 3145 * processes to block on log_wait_commit(). 3146 */ 3147 if (current->flags & PF_KTHREAD) 3148 goto out; 3149 3150 /* 3151 * If a fatal signal is pending, this process should not throttle. 3152 * It should return quickly so it can exit and free its memory 3153 */ 3154 if (fatal_signal_pending(current)) 3155 goto out; 3156 3157 /* 3158 * Check if the pfmemalloc reserves are ok by finding the first node 3159 * with a usable ZONE_NORMAL or lower zone. The expectation is that 3160 * GFP_KERNEL will be required for allocating network buffers when 3161 * swapping over the network so ZONE_HIGHMEM is unusable. 3162 * 3163 * Throttling is based on the first usable node and throttled processes 3164 * wait on a queue until kswapd makes progress and wakes them. There 3165 * is an affinity then between processes waking up and where reclaim 3166 * progress has been made assuming the process wakes on the same node. 3167 * More importantly, processes running on remote nodes will not compete 3168 * for remote pfmemalloc reserves and processes on different nodes 3169 * should make reasonable progress. 3170 */ 3171 for_each_zone_zonelist_nodemask(zone, z, zonelist, 3172 gfp_zone(gfp_mask), nodemask) { 3173 if (zone_idx(zone) > ZONE_NORMAL) 3174 continue; 3175 3176 /* Throttle based on the first usable node */ 3177 pgdat = zone->zone_pgdat; 3178 if (allow_direct_reclaim(pgdat)) 3179 goto out; 3180 break; 3181 } 3182 3183 /* If no zone was usable by the allocation flags then do not throttle */ 3184 if (!pgdat) 3185 goto out; 3186 3187 /* Account for the throttling */ 3188 count_vm_event(PGSCAN_DIRECT_THROTTLE); 3189 3190 /* 3191 * If the caller cannot enter the filesystem, it's possible that it 3192 * is due to the caller holding an FS lock or performing a journal 3193 * transaction in the case of a filesystem like ext[3|4]. In this case, 3194 * it is not safe to block on pfmemalloc_wait as kswapd could be 3195 * blocked waiting on the same lock. Instead, throttle for up to a 3196 * second before continuing. 3197 */ 3198 if (!(gfp_mask & __GFP_FS)) { 3199 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 3200 allow_direct_reclaim(pgdat), HZ); 3201 3202 goto check_pending; 3203 } 3204 3205 /* Throttle until kswapd wakes the process */ 3206 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 3207 allow_direct_reclaim(pgdat)); 3208 3209 check_pending: 3210 if (fatal_signal_pending(current)) 3211 return true; 3212 3213 out: 3214 return false; 3215 } 3216 3217 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 3218 gfp_t gfp_mask, nodemask_t *nodemask) 3219 { 3220 unsigned long nr_reclaimed; 3221 struct scan_control sc = { 3222 .nr_to_reclaim = SWAP_CLUSTER_MAX, 3223 .gfp_mask = current_gfp_context(gfp_mask), 3224 .reclaim_idx = gfp_zone(gfp_mask), 3225 .order = order, 3226 .nodemask = nodemask, 3227 .priority = DEF_PRIORITY, 3228 .may_writepage = !laptop_mode, 3229 .may_unmap = 1, 3230 .may_swap = 1, 3231 .may_shrinkslab = 1, 3232 }; 3233 3234 /* 3235 * scan_control uses s8 fields for order, priority, and reclaim_idx. 3236 * Confirm they are large enough for max values. 3237 */ 3238 BUILD_BUG_ON(MAX_ORDER > S8_MAX); 3239 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX); 3240 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX); 3241 3242 /* 3243 * Do not enter reclaim if fatal signal was delivered while throttled. 3244 * 1 is returned so that the page allocator does not OOM kill at this 3245 * point. 3246 */ 3247 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask)) 3248 return 1; 3249 3250 trace_mm_vmscan_direct_reclaim_begin(order, 3251 sc.may_writepage, 3252 sc.gfp_mask, 3253 sc.reclaim_idx); 3254 3255 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3256 3257 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 3258 3259 return nr_reclaimed; 3260 } 3261 3262 #ifdef CONFIG_MEMCG 3263 3264 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg, 3265 gfp_t gfp_mask, bool noswap, 3266 pg_data_t *pgdat, 3267 unsigned long *nr_scanned) 3268 { 3269 struct scan_control sc = { 3270 .nr_to_reclaim = SWAP_CLUSTER_MAX, 3271 .target_mem_cgroup = memcg, 3272 .may_writepage = !laptop_mode, 3273 .may_unmap = 1, 3274 .reclaim_idx = MAX_NR_ZONES - 1, 3275 .may_swap = !noswap, 3276 .may_shrinkslab = 1, 3277 }; 3278 unsigned long lru_pages; 3279 3280 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 3281 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 3282 3283 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 3284 sc.may_writepage, 3285 sc.gfp_mask, 3286 sc.reclaim_idx); 3287 3288 /* 3289 * NOTE: Although we can get the priority field, using it 3290 * here is not a good idea, since it limits the pages we can scan. 3291 * if we don't reclaim here, the shrink_node from balance_pgdat 3292 * will pick up pages from other mem cgroup's as well. We hack 3293 * the priority and make it zero. 3294 */ 3295 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages); 3296 3297 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 3298 3299 *nr_scanned = sc.nr_scanned; 3300 return sc.nr_reclaimed; 3301 } 3302 3303 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 3304 unsigned long nr_pages, 3305 gfp_t gfp_mask, 3306 bool may_swap) 3307 { 3308 struct zonelist *zonelist; 3309 unsigned long nr_reclaimed; 3310 unsigned long pflags; 3311 int nid; 3312 unsigned int noreclaim_flag; 3313 struct scan_control sc = { 3314 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 3315 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) | 3316 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 3317 .reclaim_idx = MAX_NR_ZONES - 1, 3318 .target_mem_cgroup = memcg, 3319 .priority = DEF_PRIORITY, 3320 .may_writepage = !laptop_mode, 3321 .may_unmap = 1, 3322 .may_swap = may_swap, 3323 .may_shrinkslab = 1, 3324 }; 3325 3326 /* 3327 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't 3328 * take care of from where we get pages. So the node where we start the 3329 * scan does not need to be the current node. 3330 */ 3331 nid = mem_cgroup_select_victim_node(memcg); 3332 3333 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK]; 3334 3335 trace_mm_vmscan_memcg_reclaim_begin(0, 3336 sc.may_writepage, 3337 sc.gfp_mask, 3338 sc.reclaim_idx); 3339 3340 psi_memstall_enter(&pflags); 3341 noreclaim_flag = memalloc_noreclaim_save(); 3342 3343 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3344 3345 memalloc_noreclaim_restore(noreclaim_flag); 3346 psi_memstall_leave(&pflags); 3347 3348 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 3349 3350 return nr_reclaimed; 3351 } 3352 #endif 3353 3354 static void age_active_anon(struct pglist_data *pgdat, 3355 struct scan_control *sc) 3356 { 3357 struct mem_cgroup *memcg; 3358 3359 if (!total_swap_pages) 3360 return; 3361 3362 memcg = mem_cgroup_iter(NULL, NULL, NULL); 3363 do { 3364 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg); 3365 3366 if (inactive_list_is_low(lruvec, false, memcg, sc, true)) 3367 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 3368 sc, LRU_ACTIVE_ANON); 3369 3370 memcg = mem_cgroup_iter(NULL, memcg, NULL); 3371 } while (memcg); 3372 } 3373 3374 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int classzone_idx) 3375 { 3376 int i; 3377 struct zone *zone; 3378 3379 /* 3380 * Check for watermark boosts top-down as the higher zones 3381 * are more likely to be boosted. Both watermarks and boosts 3382 * should not be checked at the time time as reclaim would 3383 * start prematurely when there is no boosting and a lower 3384 * zone is balanced. 3385 */ 3386 for (i = classzone_idx; i >= 0; i--) { 3387 zone = pgdat->node_zones + i; 3388 if (!managed_zone(zone)) 3389 continue; 3390 3391 if (zone->watermark_boost) 3392 return true; 3393 } 3394 3395 return false; 3396 } 3397 3398 /* 3399 * Returns true if there is an eligible zone balanced for the request order 3400 * and classzone_idx 3401 */ 3402 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx) 3403 { 3404 int i; 3405 unsigned long mark = -1; 3406 struct zone *zone; 3407 3408 /* 3409 * Check watermarks bottom-up as lower zones are more likely to 3410 * meet watermarks. 3411 */ 3412 for (i = 0; i <= classzone_idx; i++) { 3413 zone = pgdat->node_zones + i; 3414 3415 if (!managed_zone(zone)) 3416 continue; 3417 3418 mark = high_wmark_pages(zone); 3419 if (zone_watermark_ok_safe(zone, order, mark, classzone_idx)) 3420 return true; 3421 } 3422 3423 /* 3424 * If a node has no populated zone within classzone_idx, it does not 3425 * need balancing by definition. This can happen if a zone-restricted 3426 * allocation tries to wake a remote kswapd. 3427 */ 3428 if (mark == -1) 3429 return true; 3430 3431 return false; 3432 } 3433 3434 /* Clear pgdat state for congested, dirty or under writeback. */ 3435 static void clear_pgdat_congested(pg_data_t *pgdat) 3436 { 3437 clear_bit(PGDAT_CONGESTED, &pgdat->flags); 3438 clear_bit(PGDAT_DIRTY, &pgdat->flags); 3439 clear_bit(PGDAT_WRITEBACK, &pgdat->flags); 3440 } 3441 3442 /* 3443 * Prepare kswapd for sleeping. This verifies that there are no processes 3444 * waiting in throttle_direct_reclaim() and that watermarks have been met. 3445 * 3446 * Returns true if kswapd is ready to sleep 3447 */ 3448 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx) 3449 { 3450 /* 3451 * The throttled processes are normally woken up in balance_pgdat() as 3452 * soon as allow_direct_reclaim() is true. But there is a potential 3453 * race between when kswapd checks the watermarks and a process gets 3454 * throttled. There is also a potential race if processes get 3455 * throttled, kswapd wakes, a large process exits thereby balancing the 3456 * zones, which causes kswapd to exit balance_pgdat() before reaching 3457 * the wake up checks. If kswapd is going to sleep, no process should 3458 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If 3459 * the wake up is premature, processes will wake kswapd and get 3460 * throttled again. The difference from wake ups in balance_pgdat() is 3461 * that here we are under prepare_to_wait(). 3462 */ 3463 if (waitqueue_active(&pgdat->pfmemalloc_wait)) 3464 wake_up_all(&pgdat->pfmemalloc_wait); 3465 3466 /* Hopeless node, leave it to direct reclaim */ 3467 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 3468 return true; 3469 3470 if (pgdat_balanced(pgdat, order, classzone_idx)) { 3471 clear_pgdat_congested(pgdat); 3472 return true; 3473 } 3474 3475 return false; 3476 } 3477 3478 /* 3479 * kswapd shrinks a node of pages that are at or below the highest usable 3480 * zone that is currently unbalanced. 3481 * 3482 * Returns true if kswapd scanned at least the requested number of pages to 3483 * reclaim or if the lack of progress was due to pages under writeback. 3484 * This is used to determine if the scanning priority needs to be raised. 3485 */ 3486 static bool kswapd_shrink_node(pg_data_t *pgdat, 3487 struct scan_control *sc) 3488 { 3489 struct zone *zone; 3490 int z; 3491 3492 /* Reclaim a number of pages proportional to the number of zones */ 3493 sc->nr_to_reclaim = 0; 3494 for (z = 0; z <= sc->reclaim_idx; z++) { 3495 zone = pgdat->node_zones + z; 3496 if (!managed_zone(zone)) 3497 continue; 3498 3499 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX); 3500 } 3501 3502 /* 3503 * Historically care was taken to put equal pressure on all zones but 3504 * now pressure is applied based on node LRU order. 3505 */ 3506 shrink_node(pgdat, sc); 3507 3508 /* 3509 * Fragmentation may mean that the system cannot be rebalanced for 3510 * high-order allocations. If twice the allocation size has been 3511 * reclaimed then recheck watermarks only at order-0 to prevent 3512 * excessive reclaim. Assume that a process requested a high-order 3513 * can direct reclaim/compact. 3514 */ 3515 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order)) 3516 sc->order = 0; 3517 3518 return sc->nr_scanned >= sc->nr_to_reclaim; 3519 } 3520 3521 /* 3522 * For kswapd, balance_pgdat() will reclaim pages across a node from zones 3523 * that are eligible for use by the caller until at least one zone is 3524 * balanced. 3525 * 3526 * Returns the order kswapd finished reclaiming at. 3527 * 3528 * kswapd scans the zones in the highmem->normal->dma direction. It skips 3529 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 3530 * found to have free_pages <= high_wmark_pages(zone), any page is that zone 3531 * or lower is eligible for reclaim until at least one usable zone is 3532 * balanced. 3533 */ 3534 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx) 3535 { 3536 int i; 3537 unsigned long nr_soft_reclaimed; 3538 unsigned long nr_soft_scanned; 3539 unsigned long pflags; 3540 unsigned long nr_boost_reclaim; 3541 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, }; 3542 bool boosted; 3543 struct zone *zone; 3544 struct scan_control sc = { 3545 .gfp_mask = GFP_KERNEL, 3546 .order = order, 3547 .may_unmap = 1, 3548 }; 3549 3550 psi_memstall_enter(&pflags); 3551 __fs_reclaim_acquire(); 3552 3553 count_vm_event(PAGEOUTRUN); 3554 3555 /* 3556 * Account for the reclaim boost. Note that the zone boost is left in 3557 * place so that parallel allocations that are near the watermark will 3558 * stall or direct reclaim until kswapd is finished. 3559 */ 3560 nr_boost_reclaim = 0; 3561 for (i = 0; i <= classzone_idx; i++) { 3562 zone = pgdat->node_zones + i; 3563 if (!managed_zone(zone)) 3564 continue; 3565 3566 nr_boost_reclaim += zone->watermark_boost; 3567 zone_boosts[i] = zone->watermark_boost; 3568 } 3569 boosted = nr_boost_reclaim; 3570 3571 restart: 3572 sc.priority = DEF_PRIORITY; 3573 do { 3574 unsigned long nr_reclaimed = sc.nr_reclaimed; 3575 bool raise_priority = true; 3576 bool balanced; 3577 bool ret; 3578 3579 sc.reclaim_idx = classzone_idx; 3580 3581 /* 3582 * If the number of buffer_heads exceeds the maximum allowed 3583 * then consider reclaiming from all zones. This has a dual 3584 * purpose -- on 64-bit systems it is expected that 3585 * buffer_heads are stripped during active rotation. On 32-bit 3586 * systems, highmem pages can pin lowmem memory and shrinking 3587 * buffers can relieve lowmem pressure. Reclaim may still not 3588 * go ahead if all eligible zones for the original allocation 3589 * request are balanced to avoid excessive reclaim from kswapd. 3590 */ 3591 if (buffer_heads_over_limit) { 3592 for (i = MAX_NR_ZONES - 1; i >= 0; i--) { 3593 zone = pgdat->node_zones + i; 3594 if (!managed_zone(zone)) 3595 continue; 3596 3597 sc.reclaim_idx = i; 3598 break; 3599 } 3600 } 3601 3602 /* 3603 * If the pgdat is imbalanced then ignore boosting and preserve 3604 * the watermarks for a later time and restart. Note that the 3605 * zone watermarks will be still reset at the end of balancing 3606 * on the grounds that the normal reclaim should be enough to 3607 * re-evaluate if boosting is required when kswapd next wakes. 3608 */ 3609 balanced = pgdat_balanced(pgdat, sc.order, classzone_idx); 3610 if (!balanced && nr_boost_reclaim) { 3611 nr_boost_reclaim = 0; 3612 goto restart; 3613 } 3614 3615 /* 3616 * If boosting is not active then only reclaim if there are no 3617 * eligible zones. Note that sc.reclaim_idx is not used as 3618 * buffer_heads_over_limit may have adjusted it. 3619 */ 3620 if (!nr_boost_reclaim && balanced) 3621 goto out; 3622 3623 /* Limit the priority of boosting to avoid reclaim writeback */ 3624 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2) 3625 raise_priority = false; 3626 3627 /* 3628 * Do not writeback or swap pages for boosted reclaim. The 3629 * intent is to relieve pressure not issue sub-optimal IO 3630 * from reclaim context. If no pages are reclaimed, the 3631 * reclaim will be aborted. 3632 */ 3633 sc.may_writepage = !laptop_mode && !nr_boost_reclaim; 3634 sc.may_swap = !nr_boost_reclaim; 3635 sc.may_shrinkslab = !nr_boost_reclaim; 3636 3637 /* 3638 * Do some background aging of the anon list, to give 3639 * pages a chance to be referenced before reclaiming. All 3640 * pages are rotated regardless of classzone as this is 3641 * about consistent aging. 3642 */ 3643 age_active_anon(pgdat, &sc); 3644 3645 /* 3646 * If we're getting trouble reclaiming, start doing writepage 3647 * even in laptop mode. 3648 */ 3649 if (sc.priority < DEF_PRIORITY - 2) 3650 sc.may_writepage = 1; 3651 3652 /* Call soft limit reclaim before calling shrink_node. */ 3653 sc.nr_scanned = 0; 3654 nr_soft_scanned = 0; 3655 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order, 3656 sc.gfp_mask, &nr_soft_scanned); 3657 sc.nr_reclaimed += nr_soft_reclaimed; 3658 3659 /* 3660 * There should be no need to raise the scanning priority if 3661 * enough pages are already being scanned that that high 3662 * watermark would be met at 100% efficiency. 3663 */ 3664 if (kswapd_shrink_node(pgdat, &sc)) 3665 raise_priority = false; 3666 3667 /* 3668 * If the low watermark is met there is no need for processes 3669 * to be throttled on pfmemalloc_wait as they should not be 3670 * able to safely make forward progress. Wake them 3671 */ 3672 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 3673 allow_direct_reclaim(pgdat)) 3674 wake_up_all(&pgdat->pfmemalloc_wait); 3675 3676 /* Check if kswapd should be suspending */ 3677 __fs_reclaim_release(); 3678 ret = try_to_freeze(); 3679 __fs_reclaim_acquire(); 3680 if (ret || kthread_should_stop()) 3681 break; 3682 3683 /* 3684 * Raise priority if scanning rate is too low or there was no 3685 * progress in reclaiming pages 3686 */ 3687 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed; 3688 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed); 3689 3690 /* 3691 * If reclaim made no progress for a boost, stop reclaim as 3692 * IO cannot be queued and it could be an infinite loop in 3693 * extreme circumstances. 3694 */ 3695 if (nr_boost_reclaim && !nr_reclaimed) 3696 break; 3697 3698 if (raise_priority || !nr_reclaimed) 3699 sc.priority--; 3700 } while (sc.priority >= 1); 3701 3702 if (!sc.nr_reclaimed) 3703 pgdat->kswapd_failures++; 3704 3705 out: 3706 /* If reclaim was boosted, account for the reclaim done in this pass */ 3707 if (boosted) { 3708 unsigned long flags; 3709 3710 for (i = 0; i <= classzone_idx; i++) { 3711 if (!zone_boosts[i]) 3712 continue; 3713 3714 /* Increments are under the zone lock */ 3715 zone = pgdat->node_zones + i; 3716 spin_lock_irqsave(&zone->lock, flags); 3717 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]); 3718 spin_unlock_irqrestore(&zone->lock, flags); 3719 } 3720 3721 /* 3722 * As there is now likely space, wakeup kcompact to defragment 3723 * pageblocks. 3724 */ 3725 wakeup_kcompactd(pgdat, pageblock_order, classzone_idx); 3726 } 3727 3728 snapshot_refaults(NULL, pgdat); 3729 __fs_reclaim_release(); 3730 psi_memstall_leave(&pflags); 3731 /* 3732 * Return the order kswapd stopped reclaiming at as 3733 * prepare_kswapd_sleep() takes it into account. If another caller 3734 * entered the allocator slow path while kswapd was awake, order will 3735 * remain at the higher level. 3736 */ 3737 return sc.order; 3738 } 3739 3740 /* 3741 * pgdat->kswapd_classzone_idx is the highest zone index that a recent 3742 * allocation request woke kswapd for. When kswapd has not woken recently, 3743 * the value is MAX_NR_ZONES which is not a valid index. This compares a 3744 * given classzone and returns it or the highest classzone index kswapd 3745 * was recently woke for. 3746 */ 3747 static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat, 3748 enum zone_type classzone_idx) 3749 { 3750 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES) 3751 return classzone_idx; 3752 3753 return max(pgdat->kswapd_classzone_idx, classzone_idx); 3754 } 3755 3756 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order, 3757 unsigned int classzone_idx) 3758 { 3759 long remaining = 0; 3760 DEFINE_WAIT(wait); 3761 3762 if (freezing(current) || kthread_should_stop()) 3763 return; 3764 3765 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3766 3767 /* 3768 * Try to sleep for a short interval. Note that kcompactd will only be 3769 * woken if it is possible to sleep for a short interval. This is 3770 * deliberate on the assumption that if reclaim cannot keep an 3771 * eligible zone balanced that it's also unlikely that compaction will 3772 * succeed. 3773 */ 3774 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) { 3775 /* 3776 * Compaction records what page blocks it recently failed to 3777 * isolate pages from and skips them in the future scanning. 3778 * When kswapd is going to sleep, it is reasonable to assume 3779 * that pages and compaction may succeed so reset the cache. 3780 */ 3781 reset_isolation_suitable(pgdat); 3782 3783 /* 3784 * We have freed the memory, now we should compact it to make 3785 * allocation of the requested order possible. 3786 */ 3787 wakeup_kcompactd(pgdat, alloc_order, classzone_idx); 3788 3789 remaining = schedule_timeout(HZ/10); 3790 3791 /* 3792 * If woken prematurely then reset kswapd_classzone_idx and 3793 * order. The values will either be from a wakeup request or 3794 * the previous request that slept prematurely. 3795 */ 3796 if (remaining) { 3797 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx); 3798 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order); 3799 } 3800 3801 finish_wait(&pgdat->kswapd_wait, &wait); 3802 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3803 } 3804 3805 /* 3806 * After a short sleep, check if it was a premature sleep. If not, then 3807 * go fully to sleep until explicitly woken up. 3808 */ 3809 if (!remaining && 3810 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) { 3811 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 3812 3813 /* 3814 * vmstat counters are not perfectly accurate and the estimated 3815 * value for counters such as NR_FREE_PAGES can deviate from the 3816 * true value by nr_online_cpus * threshold. To avoid the zone 3817 * watermarks being breached while under pressure, we reduce the 3818 * per-cpu vmstat threshold while kswapd is awake and restore 3819 * them before going back to sleep. 3820 */ 3821 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 3822 3823 if (!kthread_should_stop()) 3824 schedule(); 3825 3826 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 3827 } else { 3828 if (remaining) 3829 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 3830 else 3831 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 3832 } 3833 finish_wait(&pgdat->kswapd_wait, &wait); 3834 } 3835 3836 /* 3837 * The background pageout daemon, started as a kernel thread 3838 * from the init process. 3839 * 3840 * This basically trickles out pages so that we have _some_ 3841 * free memory available even if there is no other activity 3842 * that frees anything up. This is needed for things like routing 3843 * etc, where we otherwise might have all activity going on in 3844 * asynchronous contexts that cannot page things out. 3845 * 3846 * If there are applications that are active memory-allocators 3847 * (most normal use), this basically shouldn't matter. 3848 */ 3849 static int kswapd(void *p) 3850 { 3851 unsigned int alloc_order, reclaim_order; 3852 unsigned int classzone_idx = MAX_NR_ZONES - 1; 3853 pg_data_t *pgdat = (pg_data_t*)p; 3854 struct task_struct *tsk = current; 3855 3856 struct reclaim_state reclaim_state = { 3857 .reclaimed_slab = 0, 3858 }; 3859 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 3860 3861 if (!cpumask_empty(cpumask)) 3862 set_cpus_allowed_ptr(tsk, cpumask); 3863 current->reclaim_state = &reclaim_state; 3864 3865 /* 3866 * Tell the memory management that we're a "memory allocator", 3867 * and that if we need more memory we should get access to it 3868 * regardless (see "__alloc_pages()"). "kswapd" should 3869 * never get caught in the normal page freeing logic. 3870 * 3871 * (Kswapd normally doesn't need memory anyway, but sometimes 3872 * you need a small amount of memory in order to be able to 3873 * page out something else, and this flag essentially protects 3874 * us from recursively trying to free more memory as we're 3875 * trying to free the first piece of memory in the first place). 3876 */ 3877 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 3878 set_freezable(); 3879 3880 pgdat->kswapd_order = 0; 3881 pgdat->kswapd_classzone_idx = MAX_NR_ZONES; 3882 for ( ; ; ) { 3883 bool ret; 3884 3885 alloc_order = reclaim_order = pgdat->kswapd_order; 3886 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx); 3887 3888 kswapd_try_sleep: 3889 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order, 3890 classzone_idx); 3891 3892 /* Read the new order and classzone_idx */ 3893 alloc_order = reclaim_order = pgdat->kswapd_order; 3894 classzone_idx = kswapd_classzone_idx(pgdat, 0); 3895 pgdat->kswapd_order = 0; 3896 pgdat->kswapd_classzone_idx = MAX_NR_ZONES; 3897 3898 ret = try_to_freeze(); 3899 if (kthread_should_stop()) 3900 break; 3901 3902 /* 3903 * We can speed up thawing tasks if we don't call balance_pgdat 3904 * after returning from the refrigerator 3905 */ 3906 if (ret) 3907 continue; 3908 3909 /* 3910 * Reclaim begins at the requested order but if a high-order 3911 * reclaim fails then kswapd falls back to reclaiming for 3912 * order-0. If that happens, kswapd will consider sleeping 3913 * for the order it finished reclaiming at (reclaim_order) 3914 * but kcompactd is woken to compact for the original 3915 * request (alloc_order). 3916 */ 3917 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx, 3918 alloc_order); 3919 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx); 3920 if (reclaim_order < alloc_order) 3921 goto kswapd_try_sleep; 3922 } 3923 3924 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD); 3925 current->reclaim_state = NULL; 3926 3927 return 0; 3928 } 3929 3930 /* 3931 * A zone is low on free memory or too fragmented for high-order memory. If 3932 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's 3933 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim 3934 * has failed or is not needed, still wake up kcompactd if only compaction is 3935 * needed. 3936 */ 3937 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order, 3938 enum zone_type classzone_idx) 3939 { 3940 pg_data_t *pgdat; 3941 3942 if (!managed_zone(zone)) 3943 return; 3944 3945 if (!cpuset_zone_allowed(zone, gfp_flags)) 3946 return; 3947 pgdat = zone->zone_pgdat; 3948 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, 3949 classzone_idx); 3950 pgdat->kswapd_order = max(pgdat->kswapd_order, order); 3951 if (!waitqueue_active(&pgdat->kswapd_wait)) 3952 return; 3953 3954 /* Hopeless node, leave it to direct reclaim if possible */ 3955 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES || 3956 (pgdat_balanced(pgdat, order, classzone_idx) && 3957 !pgdat_watermark_boosted(pgdat, classzone_idx))) { 3958 /* 3959 * There may be plenty of free memory available, but it's too 3960 * fragmented for high-order allocations. Wake up kcompactd 3961 * and rely on compaction_suitable() to determine if it's 3962 * needed. If it fails, it will defer subsequent attempts to 3963 * ratelimit its work. 3964 */ 3965 if (!(gfp_flags & __GFP_DIRECT_RECLAIM)) 3966 wakeup_kcompactd(pgdat, order, classzone_idx); 3967 return; 3968 } 3969 3970 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order, 3971 gfp_flags); 3972 wake_up_interruptible(&pgdat->kswapd_wait); 3973 } 3974 3975 #ifdef CONFIG_HIBERNATION 3976 /* 3977 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 3978 * freed pages. 3979 * 3980 * Rather than trying to age LRUs the aim is to preserve the overall 3981 * LRU order by reclaiming preferentially 3982 * inactive > active > active referenced > active mapped 3983 */ 3984 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 3985 { 3986 struct reclaim_state reclaim_state; 3987 struct scan_control sc = { 3988 .nr_to_reclaim = nr_to_reclaim, 3989 .gfp_mask = GFP_HIGHUSER_MOVABLE, 3990 .reclaim_idx = MAX_NR_ZONES - 1, 3991 .priority = DEF_PRIORITY, 3992 .may_writepage = 1, 3993 .may_unmap = 1, 3994 .may_swap = 1, 3995 .hibernation_mode = 1, 3996 }; 3997 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 3998 struct task_struct *p = current; 3999 unsigned long nr_reclaimed; 4000 unsigned int noreclaim_flag; 4001 4002 fs_reclaim_acquire(sc.gfp_mask); 4003 noreclaim_flag = memalloc_noreclaim_save(); 4004 reclaim_state.reclaimed_slab = 0; 4005 p->reclaim_state = &reclaim_state; 4006 4007 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 4008 4009 p->reclaim_state = NULL; 4010 memalloc_noreclaim_restore(noreclaim_flag); 4011 fs_reclaim_release(sc.gfp_mask); 4012 4013 return nr_reclaimed; 4014 } 4015 #endif /* CONFIG_HIBERNATION */ 4016 4017 /* It's optimal to keep kswapds on the same CPUs as their memory, but 4018 not required for correctness. So if the last cpu in a node goes 4019 away, we get changed to run anywhere: as the first one comes back, 4020 restore their cpu bindings. */ 4021 static int kswapd_cpu_online(unsigned int cpu) 4022 { 4023 int nid; 4024 4025 for_each_node_state(nid, N_MEMORY) { 4026 pg_data_t *pgdat = NODE_DATA(nid); 4027 const struct cpumask *mask; 4028 4029 mask = cpumask_of_node(pgdat->node_id); 4030 4031 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 4032 /* One of our CPUs online: restore mask */ 4033 set_cpus_allowed_ptr(pgdat->kswapd, mask); 4034 } 4035 return 0; 4036 } 4037 4038 /* 4039 * This kswapd start function will be called by init and node-hot-add. 4040 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. 4041 */ 4042 int kswapd_run(int nid) 4043 { 4044 pg_data_t *pgdat = NODE_DATA(nid); 4045 int ret = 0; 4046 4047 if (pgdat->kswapd) 4048 return 0; 4049 4050 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 4051 if (IS_ERR(pgdat->kswapd)) { 4052 /* failure at boot is fatal */ 4053 BUG_ON(system_state < SYSTEM_RUNNING); 4054 pr_err("Failed to start kswapd on node %d\n", nid); 4055 ret = PTR_ERR(pgdat->kswapd); 4056 pgdat->kswapd = NULL; 4057 } 4058 return ret; 4059 } 4060 4061 /* 4062 * Called by memory hotplug when all memory in a node is offlined. Caller must 4063 * hold mem_hotplug_begin/end(). 4064 */ 4065 void kswapd_stop(int nid) 4066 { 4067 struct task_struct *kswapd = NODE_DATA(nid)->kswapd; 4068 4069 if (kswapd) { 4070 kthread_stop(kswapd); 4071 NODE_DATA(nid)->kswapd = NULL; 4072 } 4073 } 4074 4075 static int __init kswapd_init(void) 4076 { 4077 int nid, ret; 4078 4079 swap_setup(); 4080 for_each_node_state(nid, N_MEMORY) 4081 kswapd_run(nid); 4082 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, 4083 "mm/vmscan:online", kswapd_cpu_online, 4084 NULL); 4085 WARN_ON(ret < 0); 4086 return 0; 4087 } 4088 4089 module_init(kswapd_init) 4090 4091 #ifdef CONFIG_NUMA 4092 /* 4093 * Node reclaim mode 4094 * 4095 * If non-zero call node_reclaim when the number of free pages falls below 4096 * the watermarks. 4097 */ 4098 int node_reclaim_mode __read_mostly; 4099 4100 #define RECLAIM_OFF 0 4101 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */ 4102 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */ 4103 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */ 4104 4105 /* 4106 * Priority for NODE_RECLAIM. This determines the fraction of pages 4107 * of a node considered for each zone_reclaim. 4 scans 1/16th of 4108 * a zone. 4109 */ 4110 #define NODE_RECLAIM_PRIORITY 4 4111 4112 /* 4113 * Percentage of pages in a zone that must be unmapped for node_reclaim to 4114 * occur. 4115 */ 4116 int sysctl_min_unmapped_ratio = 1; 4117 4118 /* 4119 * If the number of slab pages in a zone grows beyond this percentage then 4120 * slab reclaim needs to occur. 4121 */ 4122 int sysctl_min_slab_ratio = 5; 4123 4124 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat) 4125 { 4126 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED); 4127 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) + 4128 node_page_state(pgdat, NR_ACTIVE_FILE); 4129 4130 /* 4131 * It's possible for there to be more file mapped pages than 4132 * accounted for by the pages on the file LRU lists because 4133 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 4134 */ 4135 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 4136 } 4137 4138 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 4139 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat) 4140 { 4141 unsigned long nr_pagecache_reclaimable; 4142 unsigned long delta = 0; 4143 4144 /* 4145 * If RECLAIM_UNMAP is set, then all file pages are considered 4146 * potentially reclaimable. Otherwise, we have to worry about 4147 * pages like swapcache and node_unmapped_file_pages() provides 4148 * a better estimate 4149 */ 4150 if (node_reclaim_mode & RECLAIM_UNMAP) 4151 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES); 4152 else 4153 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat); 4154 4155 /* If we can't clean pages, remove dirty pages from consideration */ 4156 if (!(node_reclaim_mode & RECLAIM_WRITE)) 4157 delta += node_page_state(pgdat, NR_FILE_DIRTY); 4158 4159 /* Watch for any possible underflows due to delta */ 4160 if (unlikely(delta > nr_pagecache_reclaimable)) 4161 delta = nr_pagecache_reclaimable; 4162 4163 return nr_pagecache_reclaimable - delta; 4164 } 4165 4166 /* 4167 * Try to free up some pages from this node through reclaim. 4168 */ 4169 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 4170 { 4171 /* Minimum pages needed in order to stay on node */ 4172 const unsigned long nr_pages = 1 << order; 4173 struct task_struct *p = current; 4174 struct reclaim_state reclaim_state; 4175 unsigned int noreclaim_flag; 4176 struct scan_control sc = { 4177 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 4178 .gfp_mask = current_gfp_context(gfp_mask), 4179 .order = order, 4180 .priority = NODE_RECLAIM_PRIORITY, 4181 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE), 4182 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP), 4183 .may_swap = 1, 4184 .reclaim_idx = gfp_zone(gfp_mask), 4185 }; 4186 4187 cond_resched(); 4188 fs_reclaim_acquire(sc.gfp_mask); 4189 /* 4190 * We need to be able to allocate from the reserves for RECLAIM_UNMAP 4191 * and we also need to be able to write out pages for RECLAIM_WRITE 4192 * and RECLAIM_UNMAP. 4193 */ 4194 noreclaim_flag = memalloc_noreclaim_save(); 4195 p->flags |= PF_SWAPWRITE; 4196 reclaim_state.reclaimed_slab = 0; 4197 p->reclaim_state = &reclaim_state; 4198 4199 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) { 4200 /* 4201 * Free memory by calling shrink node with increasing 4202 * priorities until we have enough memory freed. 4203 */ 4204 do { 4205 shrink_node(pgdat, &sc); 4206 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 4207 } 4208 4209 p->reclaim_state = NULL; 4210 current->flags &= ~PF_SWAPWRITE; 4211 memalloc_noreclaim_restore(noreclaim_flag); 4212 fs_reclaim_release(sc.gfp_mask); 4213 return sc.nr_reclaimed >= nr_pages; 4214 } 4215 4216 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 4217 { 4218 int ret; 4219 4220 /* 4221 * Node reclaim reclaims unmapped file backed pages and 4222 * slab pages if we are over the defined limits. 4223 * 4224 * A small portion of unmapped file backed pages is needed for 4225 * file I/O otherwise pages read by file I/O will be immediately 4226 * thrown out if the node is overallocated. So we do not reclaim 4227 * if less than a specified percentage of the node is used by 4228 * unmapped file backed pages. 4229 */ 4230 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages && 4231 node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages) 4232 return NODE_RECLAIM_FULL; 4233 4234 /* 4235 * Do not scan if the allocation should not be delayed. 4236 */ 4237 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) 4238 return NODE_RECLAIM_NOSCAN; 4239 4240 /* 4241 * Only run node reclaim on the local node or on nodes that do not 4242 * have associated processors. This will favor the local processor 4243 * over remote processors and spread off node memory allocations 4244 * as wide as possible. 4245 */ 4246 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id()) 4247 return NODE_RECLAIM_NOSCAN; 4248 4249 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags)) 4250 return NODE_RECLAIM_NOSCAN; 4251 4252 ret = __node_reclaim(pgdat, gfp_mask, order); 4253 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags); 4254 4255 if (!ret) 4256 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 4257 4258 return ret; 4259 } 4260 #endif 4261 4262 /* 4263 * page_evictable - test whether a page is evictable 4264 * @page: the page to test 4265 * 4266 * Test whether page is evictable--i.e., should be placed on active/inactive 4267 * lists vs unevictable list. 4268 * 4269 * Reasons page might not be evictable: 4270 * (1) page's mapping marked unevictable 4271 * (2) page is part of an mlocked VMA 4272 * 4273 */ 4274 int page_evictable(struct page *page) 4275 { 4276 int ret; 4277 4278 /* Prevent address_space of inode and swap cache from being freed */ 4279 rcu_read_lock(); 4280 ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page); 4281 rcu_read_unlock(); 4282 return ret; 4283 } 4284 4285 /** 4286 * check_move_unevictable_pages - check pages for evictability and move to 4287 * appropriate zone lru list 4288 * @pvec: pagevec with lru pages to check 4289 * 4290 * Checks pages for evictability, if an evictable page is in the unevictable 4291 * lru list, moves it to the appropriate evictable lru list. This function 4292 * should be only used for lru pages. 4293 */ 4294 void check_move_unevictable_pages(struct pagevec *pvec) 4295 { 4296 struct lruvec *lruvec; 4297 struct pglist_data *pgdat = NULL; 4298 int pgscanned = 0; 4299 int pgrescued = 0; 4300 int i; 4301 4302 for (i = 0; i < pvec->nr; i++) { 4303 struct page *page = pvec->pages[i]; 4304 struct pglist_data *pagepgdat = page_pgdat(page); 4305 4306 pgscanned++; 4307 if (pagepgdat != pgdat) { 4308 if (pgdat) 4309 spin_unlock_irq(&pgdat->lru_lock); 4310 pgdat = pagepgdat; 4311 spin_lock_irq(&pgdat->lru_lock); 4312 } 4313 lruvec = mem_cgroup_page_lruvec(page, pgdat); 4314 4315 if (!PageLRU(page) || !PageUnevictable(page)) 4316 continue; 4317 4318 if (page_evictable(page)) { 4319 enum lru_list lru = page_lru_base_type(page); 4320 4321 VM_BUG_ON_PAGE(PageActive(page), page); 4322 ClearPageUnevictable(page); 4323 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE); 4324 add_page_to_lru_list(page, lruvec, lru); 4325 pgrescued++; 4326 } 4327 } 4328 4329 if (pgdat) { 4330 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 4331 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 4332 spin_unlock_irq(&pgdat->lru_lock); 4333 } 4334 } 4335 EXPORT_SYMBOL_GPL(check_move_unevictable_pages); 4336