1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 4 * 5 * Swap reorganised 29.12.95, Stephen Tweedie. 6 * kswapd added: 7.1.96 sct 7 * Removed kswapd_ctl limits, and swap out as many pages as needed 8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 9 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 10 * Multiqueue VM started 5.8.00, Rik van Riel. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 15 #include <linux/mm.h> 16 #include <linux/sched/mm.h> 17 #include <linux/module.h> 18 #include <linux/gfp.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/swap.h> 21 #include <linux/pagemap.h> 22 #include <linux/init.h> 23 #include <linux/highmem.h> 24 #include <linux/vmpressure.h> 25 #include <linux/vmstat.h> 26 #include <linux/file.h> 27 #include <linux/writeback.h> 28 #include <linux/blkdev.h> 29 #include <linux/buffer_head.h> /* for buffer_heads_over_limit */ 30 #include <linux/mm_inline.h> 31 #include <linux/backing-dev.h> 32 #include <linux/rmap.h> 33 #include <linux/topology.h> 34 #include <linux/cpu.h> 35 #include <linux/cpuset.h> 36 #include <linux/compaction.h> 37 #include <linux/notifier.h> 38 #include <linux/delay.h> 39 #include <linux/kthread.h> 40 #include <linux/freezer.h> 41 #include <linux/memcontrol.h> 42 #include <linux/migrate.h> 43 #include <linux/delayacct.h> 44 #include <linux/sysctl.h> 45 #include <linux/memory-tiers.h> 46 #include <linux/oom.h> 47 #include <linux/pagevec.h> 48 #include <linux/prefetch.h> 49 #include <linux/printk.h> 50 #include <linux/dax.h> 51 #include <linux/psi.h> 52 #include <linux/pagewalk.h> 53 #include <linux/shmem_fs.h> 54 #include <linux/ctype.h> 55 #include <linux/debugfs.h> 56 #include <linux/khugepaged.h> 57 #include <linux/rculist_nulls.h> 58 #include <linux/random.h> 59 #include <linux/mmu_notifier.h> 60 61 #include <asm/tlbflush.h> 62 #include <asm/div64.h> 63 64 #include <linux/swapops.h> 65 #include <linux/balloon_compaction.h> 66 #include <linux/sched/sysctl.h> 67 68 #include "internal.h" 69 #include "swap.h" 70 71 #define CREATE_TRACE_POINTS 72 #include <trace/events/vmscan.h> 73 74 struct scan_control { 75 /* How many pages shrink_list() should reclaim */ 76 unsigned long nr_to_reclaim; 77 78 /* 79 * Nodemask of nodes allowed by the caller. If NULL, all nodes 80 * are scanned. 81 */ 82 nodemask_t *nodemask; 83 84 /* 85 * The memory cgroup that hit its limit and as a result is the 86 * primary target of this reclaim invocation. 87 */ 88 struct mem_cgroup *target_mem_cgroup; 89 90 /* 91 * Scan pressure balancing between anon and file LRUs 92 */ 93 unsigned long anon_cost; 94 unsigned long file_cost; 95 96 #ifdef CONFIG_MEMCG 97 /* Swappiness value for proactive reclaim. Always use sc_swappiness()! */ 98 int *proactive_swappiness; 99 #endif 100 101 /* Can active folios be deactivated as part of reclaim? */ 102 #define DEACTIVATE_ANON 1 103 #define DEACTIVATE_FILE 2 104 unsigned int may_deactivate:2; 105 unsigned int force_deactivate:1; 106 unsigned int skipped_deactivate:1; 107 108 /* Writepage batching in laptop mode; RECLAIM_WRITE */ 109 unsigned int may_writepage:1; 110 111 /* Can mapped folios be reclaimed? */ 112 unsigned int may_unmap:1; 113 114 /* Can folios be swapped as part of reclaim? */ 115 unsigned int may_swap:1; 116 117 /* Not allow cache_trim_mode to be turned on as part of reclaim? */ 118 unsigned int no_cache_trim_mode:1; 119 120 /* Has cache_trim_mode failed at least once? */ 121 unsigned int cache_trim_mode_failed:1; 122 123 /* Proactive reclaim invoked by userspace through memory.reclaim */ 124 unsigned int proactive:1; 125 126 /* 127 * Cgroup memory below memory.low is protected as long as we 128 * don't threaten to OOM. If any cgroup is reclaimed at 129 * reduced force or passed over entirely due to its memory.low 130 * setting (memcg_low_skipped), and nothing is reclaimed as a 131 * result, then go back for one more cycle that reclaims the protected 132 * memory (memcg_low_reclaim) to avert OOM. 133 */ 134 unsigned int memcg_low_reclaim:1; 135 unsigned int memcg_low_skipped:1; 136 137 /* Shared cgroup tree walk failed, rescan the whole tree */ 138 unsigned int memcg_full_walk:1; 139 140 unsigned int hibernation_mode:1; 141 142 /* One of the zones is ready for compaction */ 143 unsigned int compaction_ready:1; 144 145 /* There is easily reclaimable cold cache in the current node */ 146 unsigned int cache_trim_mode:1; 147 148 /* The file folios on the current node are dangerously low */ 149 unsigned int file_is_tiny:1; 150 151 /* Always discard instead of demoting to lower tier memory */ 152 unsigned int no_demotion:1; 153 154 /* Allocation order */ 155 s8 order; 156 157 /* Scan (total_size >> priority) pages at once */ 158 s8 priority; 159 160 /* The highest zone to isolate folios for reclaim from */ 161 s8 reclaim_idx; 162 163 /* This context's GFP mask */ 164 gfp_t gfp_mask; 165 166 /* Incremented by the number of inactive pages that were scanned */ 167 unsigned long nr_scanned; 168 169 /* Number of pages freed so far during a call to shrink_zones() */ 170 unsigned long nr_reclaimed; 171 172 struct { 173 unsigned int dirty; 174 unsigned int unqueued_dirty; 175 unsigned int congested; 176 unsigned int writeback; 177 unsigned int immediate; 178 unsigned int file_taken; 179 unsigned int taken; 180 } nr; 181 182 /* for recording the reclaimed slab by now */ 183 struct reclaim_state reclaim_state; 184 }; 185 186 #ifdef ARCH_HAS_PREFETCHW 187 #define prefetchw_prev_lru_folio(_folio, _base, _field) \ 188 do { \ 189 if ((_folio)->lru.prev != _base) { \ 190 struct folio *prev; \ 191 \ 192 prev = lru_to_folio(&(_folio->lru)); \ 193 prefetchw(&prev->_field); \ 194 } \ 195 } while (0) 196 #else 197 #define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0) 198 #endif 199 200 /* 201 * From 0 .. MAX_SWAPPINESS. Higher means more swappy. 202 */ 203 int vm_swappiness = 60; 204 205 #ifdef CONFIG_MEMCG 206 207 /* Returns true for reclaim through cgroup limits or cgroup interfaces. */ 208 static bool cgroup_reclaim(struct scan_control *sc) 209 { 210 return sc->target_mem_cgroup; 211 } 212 213 /* 214 * Returns true for reclaim on the root cgroup. This is true for direct 215 * allocator reclaim and reclaim through cgroup interfaces on the root cgroup. 216 */ 217 static bool root_reclaim(struct scan_control *sc) 218 { 219 return !sc->target_mem_cgroup || mem_cgroup_is_root(sc->target_mem_cgroup); 220 } 221 222 /** 223 * writeback_throttling_sane - is the usual dirty throttling mechanism available? 224 * @sc: scan_control in question 225 * 226 * The normal page dirty throttling mechanism in balance_dirty_pages() is 227 * completely broken with the legacy memcg and direct stalling in 228 * shrink_folio_list() is used for throttling instead, which lacks all the 229 * niceties such as fairness, adaptive pausing, bandwidth proportional 230 * allocation and configurability. 231 * 232 * This function tests whether the vmscan currently in progress can assume 233 * that the normal dirty throttling mechanism is operational. 234 */ 235 static bool writeback_throttling_sane(struct scan_control *sc) 236 { 237 if (!cgroup_reclaim(sc)) 238 return true; 239 #ifdef CONFIG_CGROUP_WRITEBACK 240 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 241 return true; 242 #endif 243 return false; 244 } 245 246 static int sc_swappiness(struct scan_control *sc, struct mem_cgroup *memcg) 247 { 248 if (sc->proactive && sc->proactive_swappiness) 249 return *sc->proactive_swappiness; 250 return mem_cgroup_swappiness(memcg); 251 } 252 #else 253 static bool cgroup_reclaim(struct scan_control *sc) 254 { 255 return false; 256 } 257 258 static bool root_reclaim(struct scan_control *sc) 259 { 260 return true; 261 } 262 263 static bool writeback_throttling_sane(struct scan_control *sc) 264 { 265 return true; 266 } 267 268 static int sc_swappiness(struct scan_control *sc, struct mem_cgroup *memcg) 269 { 270 return READ_ONCE(vm_swappiness); 271 } 272 #endif 273 274 /* for_each_managed_zone_pgdat - helper macro to iterate over all managed zones in a pgdat up to 275 * and including the specified highidx 276 * @zone: The current zone in the iterator 277 * @pgdat: The pgdat which node_zones are being iterated 278 * @idx: The index variable 279 * @highidx: The index of the highest zone to return 280 * 281 * This macro iterates through all managed zones up to and including the specified highidx. 282 * The zone iterator enters an invalid state after macro call and must be reinitialized 283 * before it can be used again. 284 */ 285 #define for_each_managed_zone_pgdat(zone, pgdat, idx, highidx) \ 286 for ((idx) = 0, (zone) = (pgdat)->node_zones; \ 287 (idx) <= (highidx); \ 288 (idx)++, (zone)++) \ 289 if (!managed_zone(zone)) \ 290 continue; \ 291 else 292 293 static void set_task_reclaim_state(struct task_struct *task, 294 struct reclaim_state *rs) 295 { 296 /* Check for an overwrite */ 297 WARN_ON_ONCE(rs && task->reclaim_state); 298 299 /* Check for the nulling of an already-nulled member */ 300 WARN_ON_ONCE(!rs && !task->reclaim_state); 301 302 task->reclaim_state = rs; 303 } 304 305 /* 306 * flush_reclaim_state(): add pages reclaimed outside of LRU-based reclaim to 307 * scan_control->nr_reclaimed. 308 */ 309 static void flush_reclaim_state(struct scan_control *sc) 310 { 311 /* 312 * Currently, reclaim_state->reclaimed includes three types of pages 313 * freed outside of vmscan: 314 * (1) Slab pages. 315 * (2) Clean file pages from pruned inodes (on highmem systems). 316 * (3) XFS freed buffer pages. 317 * 318 * For all of these cases, we cannot universally link the pages to a 319 * single memcg. For example, a memcg-aware shrinker can free one object 320 * charged to the target memcg, causing an entire page to be freed. 321 * If we count the entire page as reclaimed from the memcg, we end up 322 * overestimating the reclaimed amount (potentially under-reclaiming). 323 * 324 * Only count such pages for global reclaim to prevent under-reclaiming 325 * from the target memcg; preventing unnecessary retries during memcg 326 * charging and false positives from proactive reclaim. 327 * 328 * For uncommon cases where the freed pages were actually mostly 329 * charged to the target memcg, we end up underestimating the reclaimed 330 * amount. This should be fine. The freed pages will be uncharged 331 * anyway, even if they are not counted here properly, and we will be 332 * able to make forward progress in charging (which is usually in a 333 * retry loop). 334 * 335 * We can go one step further, and report the uncharged objcg pages in 336 * memcg reclaim, to make reporting more accurate and reduce 337 * underestimation, but it's probably not worth the complexity for now. 338 */ 339 if (current->reclaim_state && root_reclaim(sc)) { 340 sc->nr_reclaimed += current->reclaim_state->reclaimed; 341 current->reclaim_state->reclaimed = 0; 342 } 343 } 344 345 static bool can_demote(int nid, struct scan_control *sc) 346 { 347 if (!numa_demotion_enabled) 348 return false; 349 if (sc && sc->no_demotion) 350 return false; 351 if (next_demotion_node(nid) == NUMA_NO_NODE) 352 return false; 353 354 return true; 355 } 356 357 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg, 358 int nid, 359 struct scan_control *sc) 360 { 361 if (memcg == NULL) { 362 /* 363 * For non-memcg reclaim, is there 364 * space in any swap device? 365 */ 366 if (get_nr_swap_pages() > 0) 367 return true; 368 } else { 369 /* Is the memcg below its swap limit? */ 370 if (mem_cgroup_get_nr_swap_pages(memcg) > 0) 371 return true; 372 } 373 374 /* 375 * The page can not be swapped. 376 * 377 * Can it be reclaimed from this node via demotion? 378 */ 379 return can_demote(nid, sc); 380 } 381 382 /* 383 * This misses isolated folios which are not accounted for to save counters. 384 * As the data only determines if reclaim or compaction continues, it is 385 * not expected that isolated folios will be a dominating factor. 386 */ 387 unsigned long zone_reclaimable_pages(struct zone *zone) 388 { 389 unsigned long nr; 390 391 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) + 392 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE); 393 if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL)) 394 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) + 395 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON); 396 /* 397 * If there are no reclaimable file-backed or anonymous pages, 398 * ensure zones with sufficient free pages are not skipped. 399 * This prevents zones like DMA32 from being ignored in reclaim 400 * scenarios where they can still help alleviate memory pressure. 401 */ 402 if (nr == 0) 403 nr = zone_page_state_snapshot(zone, NR_FREE_PAGES); 404 return nr; 405 } 406 407 /** 408 * lruvec_lru_size - Returns the number of pages on the given LRU list. 409 * @lruvec: lru vector 410 * @lru: lru to use 411 * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list) 412 */ 413 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, 414 int zone_idx) 415 { 416 unsigned long size = 0; 417 int zid; 418 struct zone *zone; 419 420 for_each_managed_zone_pgdat(zone, lruvec_pgdat(lruvec), zid, zone_idx) { 421 if (!mem_cgroup_disabled()) 422 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid); 423 else 424 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru); 425 } 426 return size; 427 } 428 429 static unsigned long drop_slab_node(int nid) 430 { 431 unsigned long freed = 0; 432 struct mem_cgroup *memcg = NULL; 433 434 memcg = mem_cgroup_iter(NULL, NULL, NULL); 435 do { 436 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0); 437 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 438 439 return freed; 440 } 441 442 void drop_slab(void) 443 { 444 int nid; 445 int shift = 0; 446 unsigned long freed; 447 448 do { 449 freed = 0; 450 for_each_online_node(nid) { 451 if (fatal_signal_pending(current)) 452 return; 453 454 freed += drop_slab_node(nid); 455 } 456 } while ((freed >> shift++) > 1); 457 } 458 459 static int reclaimer_offset(void) 460 { 461 BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD != 462 PGDEMOTE_DIRECT - PGDEMOTE_KSWAPD); 463 BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD != 464 PGDEMOTE_KHUGEPAGED - PGDEMOTE_KSWAPD); 465 BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD != 466 PGSCAN_DIRECT - PGSCAN_KSWAPD); 467 BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD != 468 PGSCAN_KHUGEPAGED - PGSCAN_KSWAPD); 469 470 if (current_is_kswapd()) 471 return 0; 472 if (current_is_khugepaged()) 473 return PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD; 474 return PGSTEAL_DIRECT - PGSTEAL_KSWAPD; 475 } 476 477 static inline int is_page_cache_freeable(struct folio *folio) 478 { 479 /* 480 * A freeable page cache folio is referenced only by the caller 481 * that isolated the folio, the page cache and optional filesystem 482 * private data at folio->private. 483 */ 484 return folio_ref_count(folio) - folio_test_private(folio) == 485 1 + folio_nr_pages(folio); 486 } 487 488 /* 489 * We detected a synchronous write error writing a folio out. Probably 490 * -ENOSPC. We need to propagate that into the address_space for a subsequent 491 * fsync(), msync() or close(). 492 * 493 * The tricky part is that after writepage we cannot touch the mapping: nothing 494 * prevents it from being freed up. But we have a ref on the folio and once 495 * that folio is locked, the mapping is pinned. 496 * 497 * We're allowed to run sleeping folio_lock() here because we know the caller has 498 * __GFP_FS. 499 */ 500 static void handle_write_error(struct address_space *mapping, 501 struct folio *folio, int error) 502 { 503 folio_lock(folio); 504 if (folio_mapping(folio) == mapping) 505 mapping_set_error(mapping, error); 506 folio_unlock(folio); 507 } 508 509 static bool skip_throttle_noprogress(pg_data_t *pgdat) 510 { 511 int reclaimable = 0, write_pending = 0; 512 int i; 513 struct zone *zone; 514 /* 515 * If kswapd is disabled, reschedule if necessary but do not 516 * throttle as the system is likely near OOM. 517 */ 518 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 519 return true; 520 521 /* 522 * If there are a lot of dirty/writeback folios then do not 523 * throttle as throttling will occur when the folios cycle 524 * towards the end of the LRU if still under writeback. 525 */ 526 for_each_managed_zone_pgdat(zone, pgdat, i, MAX_NR_ZONES - 1) { 527 reclaimable += zone_reclaimable_pages(zone); 528 write_pending += zone_page_state_snapshot(zone, 529 NR_ZONE_WRITE_PENDING); 530 } 531 if (2 * write_pending <= reclaimable) 532 return true; 533 534 return false; 535 } 536 537 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason) 538 { 539 wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason]; 540 long timeout, ret; 541 DEFINE_WAIT(wait); 542 543 /* 544 * Do not throttle user workers, kthreads other than kswapd or 545 * workqueues. They may be required for reclaim to make 546 * forward progress (e.g. journalling workqueues or kthreads). 547 */ 548 if (!current_is_kswapd() && 549 current->flags & (PF_USER_WORKER|PF_KTHREAD)) { 550 cond_resched(); 551 return; 552 } 553 554 /* 555 * These figures are pulled out of thin air. 556 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many 557 * parallel reclaimers which is a short-lived event so the timeout is 558 * short. Failing to make progress or waiting on writeback are 559 * potentially long-lived events so use a longer timeout. This is shaky 560 * logic as a failure to make progress could be due to anything from 561 * writeback to a slow device to excessive referenced folios at the tail 562 * of the inactive LRU. 563 */ 564 switch(reason) { 565 case VMSCAN_THROTTLE_WRITEBACK: 566 timeout = HZ/10; 567 568 if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) { 569 WRITE_ONCE(pgdat->nr_reclaim_start, 570 node_page_state(pgdat, NR_THROTTLED_WRITTEN)); 571 } 572 573 break; 574 case VMSCAN_THROTTLE_CONGESTED: 575 fallthrough; 576 case VMSCAN_THROTTLE_NOPROGRESS: 577 if (skip_throttle_noprogress(pgdat)) { 578 cond_resched(); 579 return; 580 } 581 582 timeout = 1; 583 584 break; 585 case VMSCAN_THROTTLE_ISOLATED: 586 timeout = HZ/50; 587 break; 588 default: 589 WARN_ON_ONCE(1); 590 timeout = HZ; 591 break; 592 } 593 594 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE); 595 ret = schedule_timeout(timeout); 596 finish_wait(wqh, &wait); 597 598 if (reason == VMSCAN_THROTTLE_WRITEBACK) 599 atomic_dec(&pgdat->nr_writeback_throttled); 600 601 trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout), 602 jiffies_to_usecs(timeout - ret), 603 reason); 604 } 605 606 /* 607 * Account for folios written if tasks are throttled waiting on dirty 608 * folios to clean. If enough folios have been cleaned since throttling 609 * started then wakeup the throttled tasks. 610 */ 611 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio, 612 int nr_throttled) 613 { 614 unsigned long nr_written; 615 616 node_stat_add_folio(folio, NR_THROTTLED_WRITTEN); 617 618 /* 619 * This is an inaccurate read as the per-cpu deltas may not 620 * be synchronised. However, given that the system is 621 * writeback throttled, it is not worth taking the penalty 622 * of getting an accurate count. At worst, the throttle 623 * timeout guarantees forward progress. 624 */ 625 nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) - 626 READ_ONCE(pgdat->nr_reclaim_start); 627 628 if (nr_written > SWAP_CLUSTER_MAX * nr_throttled) 629 wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]); 630 } 631 632 /* possible outcome of pageout() */ 633 typedef enum { 634 /* failed to write folio out, folio is locked */ 635 PAGE_KEEP, 636 /* move folio to the active list, folio is locked */ 637 PAGE_ACTIVATE, 638 /* folio has been sent to the disk successfully, folio is unlocked */ 639 PAGE_SUCCESS, 640 /* folio is clean and locked */ 641 PAGE_CLEAN, 642 } pageout_t; 643 644 /* 645 * pageout is called by shrink_folio_list() for each dirty folio. 646 * Calls ->writepage(). 647 */ 648 static pageout_t pageout(struct folio *folio, struct address_space *mapping, 649 struct swap_iocb **plug, struct list_head *folio_list) 650 { 651 /* 652 * If the folio is dirty, only perform writeback if that write 653 * will be non-blocking. To prevent this allocation from being 654 * stalled by pagecache activity. But note that there may be 655 * stalls if we need to run get_block(). We could test 656 * PagePrivate for that. 657 * 658 * If this process is currently in __generic_file_write_iter() against 659 * this folio's queue, we can perform writeback even if that 660 * will block. 661 * 662 * If the folio is swapcache, write it back even if that would 663 * block, for some throttling. This happens by accident, because 664 * swap_backing_dev_info is bust: it doesn't reflect the 665 * congestion state of the swapdevs. Easy to fix, if needed. 666 */ 667 if (!is_page_cache_freeable(folio)) 668 return PAGE_KEEP; 669 if (!mapping) { 670 /* 671 * Some data journaling orphaned folios can have 672 * folio->mapping == NULL while being dirty with clean buffers. 673 */ 674 if (folio_test_private(folio)) { 675 if (try_to_free_buffers(folio)) { 676 folio_clear_dirty(folio); 677 pr_info("%s: orphaned folio\n", __func__); 678 return PAGE_CLEAN; 679 } 680 } 681 return PAGE_KEEP; 682 } 683 if (mapping->a_ops->writepage == NULL) 684 return PAGE_ACTIVATE; 685 686 if (folio_clear_dirty_for_io(folio)) { 687 int res; 688 struct writeback_control wbc = { 689 .sync_mode = WB_SYNC_NONE, 690 .nr_to_write = SWAP_CLUSTER_MAX, 691 .range_start = 0, 692 .range_end = LLONG_MAX, 693 .for_reclaim = 1, 694 .swap_plug = plug, 695 }; 696 697 /* 698 * The large shmem folio can be split if CONFIG_THP_SWAP is 699 * not enabled or contiguous swap entries are failed to 700 * allocate. 701 */ 702 if (shmem_mapping(mapping) && folio_test_large(folio)) 703 wbc.list = folio_list; 704 705 folio_set_reclaim(folio); 706 res = mapping->a_ops->writepage(&folio->page, &wbc); 707 if (res < 0) 708 handle_write_error(mapping, folio, res); 709 if (res == AOP_WRITEPAGE_ACTIVATE) { 710 folio_clear_reclaim(folio); 711 return PAGE_ACTIVATE; 712 } 713 714 if (!folio_test_writeback(folio)) { 715 /* synchronous write or broken a_ops? */ 716 folio_clear_reclaim(folio); 717 } 718 trace_mm_vmscan_write_folio(folio); 719 node_stat_add_folio(folio, NR_VMSCAN_WRITE); 720 return PAGE_SUCCESS; 721 } 722 723 return PAGE_CLEAN; 724 } 725 726 /* 727 * Same as remove_mapping, but if the folio is removed from the mapping, it 728 * gets returned with a refcount of 0. 729 */ 730 static int __remove_mapping(struct address_space *mapping, struct folio *folio, 731 bool reclaimed, struct mem_cgroup *target_memcg) 732 { 733 int refcount; 734 void *shadow = NULL; 735 736 BUG_ON(!folio_test_locked(folio)); 737 BUG_ON(mapping != folio_mapping(folio)); 738 739 if (!folio_test_swapcache(folio)) 740 spin_lock(&mapping->host->i_lock); 741 xa_lock_irq(&mapping->i_pages); 742 /* 743 * The non racy check for a busy folio. 744 * 745 * Must be careful with the order of the tests. When someone has 746 * a ref to the folio, it may be possible that they dirty it then 747 * drop the reference. So if the dirty flag is tested before the 748 * refcount here, then the following race may occur: 749 * 750 * get_user_pages(&page); 751 * [user mapping goes away] 752 * write_to(page); 753 * !folio_test_dirty(folio) [good] 754 * folio_set_dirty(folio); 755 * folio_put(folio); 756 * !refcount(folio) [good, discard it] 757 * 758 * [oops, our write_to data is lost] 759 * 760 * Reversing the order of the tests ensures such a situation cannot 761 * escape unnoticed. The smp_rmb is needed to ensure the folio->flags 762 * load is not satisfied before that of folio->_refcount. 763 * 764 * Note that if the dirty flag is always set via folio_mark_dirty, 765 * and thus under the i_pages lock, then this ordering is not required. 766 */ 767 refcount = 1 + folio_nr_pages(folio); 768 if (!folio_ref_freeze(folio, refcount)) 769 goto cannot_free; 770 /* note: atomic_cmpxchg in folio_ref_freeze provides the smp_rmb */ 771 if (unlikely(folio_test_dirty(folio))) { 772 folio_ref_unfreeze(folio, refcount); 773 goto cannot_free; 774 } 775 776 if (folio_test_swapcache(folio)) { 777 swp_entry_t swap = folio->swap; 778 779 if (reclaimed && !mapping_exiting(mapping)) 780 shadow = workingset_eviction(folio, target_memcg); 781 __delete_from_swap_cache(folio, swap, shadow); 782 memcg1_swapout(folio, swap); 783 xa_unlock_irq(&mapping->i_pages); 784 put_swap_folio(folio, swap); 785 } else { 786 void (*free_folio)(struct folio *); 787 788 free_folio = mapping->a_ops->free_folio; 789 /* 790 * Remember a shadow entry for reclaimed file cache in 791 * order to detect refaults, thus thrashing, later on. 792 * 793 * But don't store shadows in an address space that is 794 * already exiting. This is not just an optimization, 795 * inode reclaim needs to empty out the radix tree or 796 * the nodes are lost. Don't plant shadows behind its 797 * back. 798 * 799 * We also don't store shadows for DAX mappings because the 800 * only page cache folios found in these are zero pages 801 * covering holes, and because we don't want to mix DAX 802 * exceptional entries and shadow exceptional entries in the 803 * same address_space. 804 */ 805 if (reclaimed && folio_is_file_lru(folio) && 806 !mapping_exiting(mapping) && !dax_mapping(mapping)) 807 shadow = workingset_eviction(folio, target_memcg); 808 __filemap_remove_folio(folio, shadow); 809 xa_unlock_irq(&mapping->i_pages); 810 if (mapping_shrinkable(mapping)) 811 inode_add_lru(mapping->host); 812 spin_unlock(&mapping->host->i_lock); 813 814 if (free_folio) 815 free_folio(folio); 816 } 817 818 return 1; 819 820 cannot_free: 821 xa_unlock_irq(&mapping->i_pages); 822 if (!folio_test_swapcache(folio)) 823 spin_unlock(&mapping->host->i_lock); 824 return 0; 825 } 826 827 /** 828 * remove_mapping() - Attempt to remove a folio from its mapping. 829 * @mapping: The address space. 830 * @folio: The folio to remove. 831 * 832 * If the folio is dirty, under writeback or if someone else has a ref 833 * on it, removal will fail. 834 * Return: The number of pages removed from the mapping. 0 if the folio 835 * could not be removed. 836 * Context: The caller should have a single refcount on the folio and 837 * hold its lock. 838 */ 839 long remove_mapping(struct address_space *mapping, struct folio *folio) 840 { 841 if (__remove_mapping(mapping, folio, false, NULL)) { 842 /* 843 * Unfreezing the refcount with 1 effectively 844 * drops the pagecache ref for us without requiring another 845 * atomic operation. 846 */ 847 folio_ref_unfreeze(folio, 1); 848 return folio_nr_pages(folio); 849 } 850 return 0; 851 } 852 853 /** 854 * folio_putback_lru - Put previously isolated folio onto appropriate LRU list. 855 * @folio: Folio to be returned to an LRU list. 856 * 857 * Add previously isolated @folio to appropriate LRU list. 858 * The folio may still be unevictable for other reasons. 859 * 860 * Context: lru_lock must not be held, interrupts must be enabled. 861 */ 862 void folio_putback_lru(struct folio *folio) 863 { 864 folio_add_lru(folio); 865 folio_put(folio); /* drop ref from isolate */ 866 } 867 868 enum folio_references { 869 FOLIOREF_RECLAIM, 870 FOLIOREF_RECLAIM_CLEAN, 871 FOLIOREF_KEEP, 872 FOLIOREF_ACTIVATE, 873 }; 874 875 #ifdef CONFIG_LRU_GEN 876 /* 877 * Only used on a mapped folio in the eviction (rmap walk) path, where promotion 878 * needs to be done by taking the folio off the LRU list and then adding it back 879 * with PG_active set. In contrast, the aging (page table walk) path uses 880 * folio_update_gen(). 881 */ 882 static bool lru_gen_set_refs(struct folio *folio) 883 { 884 /* see the comment on LRU_REFS_FLAGS */ 885 if (!folio_test_referenced(folio) && !folio_test_workingset(folio)) { 886 set_mask_bits(&folio->flags, LRU_REFS_MASK, BIT(PG_referenced)); 887 return false; 888 } 889 890 set_mask_bits(&folio->flags, LRU_REFS_FLAGS, BIT(PG_workingset)); 891 return true; 892 } 893 #else 894 static bool lru_gen_set_refs(struct folio *folio) 895 { 896 return false; 897 } 898 #endif /* CONFIG_LRU_GEN */ 899 900 static enum folio_references folio_check_references(struct folio *folio, 901 struct scan_control *sc) 902 { 903 int referenced_ptes, referenced_folio; 904 unsigned long vm_flags; 905 906 referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup, 907 &vm_flags); 908 909 /* 910 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma. 911 * Let the folio, now marked Mlocked, be moved to the unevictable list. 912 */ 913 if (vm_flags & VM_LOCKED) 914 return FOLIOREF_ACTIVATE; 915 916 /* 917 * There are two cases to consider. 918 * 1) Rmap lock contention: rotate. 919 * 2) Skip the non-shared swapbacked folio mapped solely by 920 * the exiting or OOM-reaped process. 921 */ 922 if (referenced_ptes == -1) 923 return FOLIOREF_KEEP; 924 925 if (lru_gen_enabled()) { 926 if (!referenced_ptes) 927 return FOLIOREF_RECLAIM; 928 929 return lru_gen_set_refs(folio) ? FOLIOREF_ACTIVATE : FOLIOREF_KEEP; 930 } 931 932 referenced_folio = folio_test_clear_referenced(folio); 933 934 if (referenced_ptes) { 935 /* 936 * All mapped folios start out with page table 937 * references from the instantiating fault, so we need 938 * to look twice if a mapped file/anon folio is used more 939 * than once. 940 * 941 * Mark it and spare it for another trip around the 942 * inactive list. Another page table reference will 943 * lead to its activation. 944 * 945 * Note: the mark is set for activated folios as well 946 * so that recently deactivated but used folios are 947 * quickly recovered. 948 */ 949 folio_set_referenced(folio); 950 951 if (referenced_folio || referenced_ptes > 1) 952 return FOLIOREF_ACTIVATE; 953 954 /* 955 * Activate file-backed executable folios after first usage. 956 */ 957 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) 958 return FOLIOREF_ACTIVATE; 959 960 return FOLIOREF_KEEP; 961 } 962 963 /* Reclaim if clean, defer dirty folios to writeback */ 964 if (referenced_folio && folio_is_file_lru(folio)) 965 return FOLIOREF_RECLAIM_CLEAN; 966 967 return FOLIOREF_RECLAIM; 968 } 969 970 /* Check if a folio is dirty or under writeback */ 971 static void folio_check_dirty_writeback(struct folio *folio, 972 bool *dirty, bool *writeback) 973 { 974 struct address_space *mapping; 975 976 /* 977 * Anonymous folios are not handled by flushers and must be written 978 * from reclaim context. Do not stall reclaim based on them. 979 * MADV_FREE anonymous folios are put into inactive file list too. 980 * They could be mistakenly treated as file lru. So further anon 981 * test is needed. 982 */ 983 if (!folio_is_file_lru(folio) || 984 (folio_test_anon(folio) && !folio_test_swapbacked(folio))) { 985 *dirty = false; 986 *writeback = false; 987 return; 988 } 989 990 /* By default assume that the folio flags are accurate */ 991 *dirty = folio_test_dirty(folio); 992 *writeback = folio_test_writeback(folio); 993 994 /* Verify dirty/writeback state if the filesystem supports it */ 995 if (!folio_test_private(folio)) 996 return; 997 998 mapping = folio_mapping(folio); 999 if (mapping && mapping->a_ops->is_dirty_writeback) 1000 mapping->a_ops->is_dirty_writeback(folio, dirty, writeback); 1001 } 1002 1003 struct folio *alloc_migrate_folio(struct folio *src, unsigned long private) 1004 { 1005 struct folio *dst; 1006 nodemask_t *allowed_mask; 1007 struct migration_target_control *mtc; 1008 1009 mtc = (struct migration_target_control *)private; 1010 1011 allowed_mask = mtc->nmask; 1012 /* 1013 * make sure we allocate from the target node first also trying to 1014 * demote or reclaim pages from the target node via kswapd if we are 1015 * low on free memory on target node. If we don't do this and if 1016 * we have free memory on the slower(lower) memtier, we would start 1017 * allocating pages from slower(lower) memory tiers without even forcing 1018 * a demotion of cold pages from the target memtier. This can result 1019 * in the kernel placing hot pages in slower(lower) memory tiers. 1020 */ 1021 mtc->nmask = NULL; 1022 mtc->gfp_mask |= __GFP_THISNODE; 1023 dst = alloc_migration_target(src, (unsigned long)mtc); 1024 if (dst) 1025 return dst; 1026 1027 mtc->gfp_mask &= ~__GFP_THISNODE; 1028 mtc->nmask = allowed_mask; 1029 1030 return alloc_migration_target(src, (unsigned long)mtc); 1031 } 1032 1033 /* 1034 * Take folios on @demote_folios and attempt to demote them to another node. 1035 * Folios which are not demoted are left on @demote_folios. 1036 */ 1037 static unsigned int demote_folio_list(struct list_head *demote_folios, 1038 struct pglist_data *pgdat) 1039 { 1040 int target_nid = next_demotion_node(pgdat->node_id); 1041 unsigned int nr_succeeded; 1042 nodemask_t allowed_mask; 1043 1044 struct migration_target_control mtc = { 1045 /* 1046 * Allocate from 'node', or fail quickly and quietly. 1047 * When this happens, 'page' will likely just be discarded 1048 * instead of migrated. 1049 */ 1050 .gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | __GFP_NOWARN | 1051 __GFP_NOMEMALLOC | GFP_NOWAIT, 1052 .nid = target_nid, 1053 .nmask = &allowed_mask, 1054 .reason = MR_DEMOTION, 1055 }; 1056 1057 if (list_empty(demote_folios)) 1058 return 0; 1059 1060 if (target_nid == NUMA_NO_NODE) 1061 return 0; 1062 1063 node_get_allowed_targets(pgdat, &allowed_mask); 1064 1065 /* Demotion ignores all cpuset and mempolicy settings */ 1066 migrate_pages(demote_folios, alloc_migrate_folio, NULL, 1067 (unsigned long)&mtc, MIGRATE_ASYNC, MR_DEMOTION, 1068 &nr_succeeded); 1069 1070 return nr_succeeded; 1071 } 1072 1073 static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask) 1074 { 1075 if (gfp_mask & __GFP_FS) 1076 return true; 1077 if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO)) 1078 return false; 1079 /* 1080 * We can "enter_fs" for swap-cache with only __GFP_IO 1081 * providing this isn't SWP_FS_OPS. 1082 * ->flags can be updated non-atomicially (scan_swap_map_slots), 1083 * but that will never affect SWP_FS_OPS, so the data_race 1084 * is safe. 1085 */ 1086 return !data_race(folio_swap_flags(folio) & SWP_FS_OPS); 1087 } 1088 1089 /* 1090 * shrink_folio_list() returns the number of reclaimed pages 1091 */ 1092 static unsigned int shrink_folio_list(struct list_head *folio_list, 1093 struct pglist_data *pgdat, struct scan_control *sc, 1094 struct reclaim_stat *stat, bool ignore_references) 1095 { 1096 struct folio_batch free_folios; 1097 LIST_HEAD(ret_folios); 1098 LIST_HEAD(demote_folios); 1099 unsigned int nr_reclaimed = 0, nr_demoted = 0; 1100 unsigned int pgactivate = 0; 1101 bool do_demote_pass; 1102 struct swap_iocb *plug = NULL; 1103 1104 folio_batch_init(&free_folios); 1105 memset(stat, 0, sizeof(*stat)); 1106 cond_resched(); 1107 do_demote_pass = can_demote(pgdat->node_id, sc); 1108 1109 retry: 1110 while (!list_empty(folio_list)) { 1111 struct address_space *mapping; 1112 struct folio *folio; 1113 enum folio_references references = FOLIOREF_RECLAIM; 1114 bool dirty, writeback; 1115 unsigned int nr_pages; 1116 1117 cond_resched(); 1118 1119 folio = lru_to_folio(folio_list); 1120 list_del(&folio->lru); 1121 1122 if (!folio_trylock(folio)) 1123 goto keep; 1124 1125 VM_BUG_ON_FOLIO(folio_test_active(folio), folio); 1126 1127 nr_pages = folio_nr_pages(folio); 1128 1129 /* Account the number of base pages */ 1130 sc->nr_scanned += nr_pages; 1131 1132 if (unlikely(!folio_evictable(folio))) 1133 goto activate_locked; 1134 1135 if (!sc->may_unmap && folio_mapped(folio)) 1136 goto keep_locked; 1137 1138 /* 1139 * The number of dirty pages determines if a node is marked 1140 * reclaim_congested. kswapd will stall and start writing 1141 * folios if the tail of the LRU is all dirty unqueued folios. 1142 */ 1143 folio_check_dirty_writeback(folio, &dirty, &writeback); 1144 if (dirty || writeback) 1145 stat->nr_dirty += nr_pages; 1146 1147 if (dirty && !writeback) 1148 stat->nr_unqueued_dirty += nr_pages; 1149 1150 /* 1151 * Treat this folio as congested if folios are cycling 1152 * through the LRU so quickly that the folios marked 1153 * for immediate reclaim are making it to the end of 1154 * the LRU a second time. 1155 */ 1156 if (writeback && folio_test_reclaim(folio)) 1157 stat->nr_congested += nr_pages; 1158 1159 /* 1160 * If a folio at the tail of the LRU is under writeback, there 1161 * are three cases to consider. 1162 * 1163 * 1) If reclaim is encountering an excessive number 1164 * of folios under writeback and this folio has both 1165 * the writeback and reclaim flags set, then it 1166 * indicates that folios are being queued for I/O but 1167 * are being recycled through the LRU before the I/O 1168 * can complete. Waiting on the folio itself risks an 1169 * indefinite stall if it is impossible to writeback 1170 * the folio due to I/O error or disconnected storage 1171 * so instead note that the LRU is being scanned too 1172 * quickly and the caller can stall after the folio 1173 * list has been processed. 1174 * 1175 * 2) Global or new memcg reclaim encounters a folio that is 1176 * not marked for immediate reclaim, or the caller does not 1177 * have __GFP_FS (or __GFP_IO if it's simply going to swap, 1178 * not to fs). In this case mark the folio for immediate 1179 * reclaim and continue scanning. 1180 * 1181 * Require may_enter_fs() because we would wait on fs, which 1182 * may not have submitted I/O yet. And the loop driver might 1183 * enter reclaim, and deadlock if it waits on a folio for 1184 * which it is needed to do the write (loop masks off 1185 * __GFP_IO|__GFP_FS for this reason); but more thought 1186 * would probably show more reasons. 1187 * 1188 * 3) Legacy memcg encounters a folio that already has the 1189 * reclaim flag set. memcg does not have any dirty folio 1190 * throttling so we could easily OOM just because too many 1191 * folios are in writeback and there is nothing else to 1192 * reclaim. Wait for the writeback to complete. 1193 * 1194 * In cases 1) and 2) we activate the folios to get them out of 1195 * the way while we continue scanning for clean folios on the 1196 * inactive list and refilling from the active list. The 1197 * observation here is that waiting for disk writes is more 1198 * expensive than potentially causing reloads down the line. 1199 * Since they're marked for immediate reclaim, they won't put 1200 * memory pressure on the cache working set any longer than it 1201 * takes to write them to disk. 1202 */ 1203 if (folio_test_writeback(folio)) { 1204 /* Case 1 above */ 1205 if (current_is_kswapd() && 1206 folio_test_reclaim(folio) && 1207 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) { 1208 stat->nr_immediate += nr_pages; 1209 goto activate_locked; 1210 1211 /* Case 2 above */ 1212 } else if (writeback_throttling_sane(sc) || 1213 !folio_test_reclaim(folio) || 1214 !may_enter_fs(folio, sc->gfp_mask)) { 1215 /* 1216 * This is slightly racy - 1217 * folio_end_writeback() might have 1218 * just cleared the reclaim flag, then 1219 * setting the reclaim flag here ends up 1220 * interpreted as the readahead flag - but 1221 * that does not matter enough to care. 1222 * What we do want is for this folio to 1223 * have the reclaim flag set next time 1224 * memcg reclaim reaches the tests above, 1225 * so it will then wait for writeback to 1226 * avoid OOM; and it's also appropriate 1227 * in global reclaim. 1228 */ 1229 folio_set_reclaim(folio); 1230 stat->nr_writeback += nr_pages; 1231 goto activate_locked; 1232 1233 /* Case 3 above */ 1234 } else { 1235 folio_unlock(folio); 1236 folio_wait_writeback(folio); 1237 /* then go back and try same folio again */ 1238 list_add_tail(&folio->lru, folio_list); 1239 continue; 1240 } 1241 } 1242 1243 if (!ignore_references) 1244 references = folio_check_references(folio, sc); 1245 1246 switch (references) { 1247 case FOLIOREF_ACTIVATE: 1248 goto activate_locked; 1249 case FOLIOREF_KEEP: 1250 stat->nr_ref_keep += nr_pages; 1251 goto keep_locked; 1252 case FOLIOREF_RECLAIM: 1253 case FOLIOREF_RECLAIM_CLEAN: 1254 ; /* try to reclaim the folio below */ 1255 } 1256 1257 /* 1258 * Before reclaiming the folio, try to relocate 1259 * its contents to another node. 1260 */ 1261 if (do_demote_pass && 1262 (thp_migration_supported() || !folio_test_large(folio))) { 1263 list_add(&folio->lru, &demote_folios); 1264 folio_unlock(folio); 1265 continue; 1266 } 1267 1268 /* 1269 * Anonymous process memory has backing store? 1270 * Try to allocate it some swap space here. 1271 * Lazyfree folio could be freed directly 1272 */ 1273 if (folio_test_anon(folio) && folio_test_swapbacked(folio)) { 1274 if (!folio_test_swapcache(folio)) { 1275 if (!(sc->gfp_mask & __GFP_IO)) 1276 goto keep_locked; 1277 if (folio_maybe_dma_pinned(folio)) 1278 goto keep_locked; 1279 if (folio_test_large(folio)) { 1280 /* cannot split folio, skip it */ 1281 if (!can_split_folio(folio, 1, NULL)) 1282 goto activate_locked; 1283 /* 1284 * Split partially mapped folios right away. 1285 * We can free the unmapped pages without IO. 1286 */ 1287 if (data_race(!list_empty(&folio->_deferred_list) && 1288 folio_test_partially_mapped(folio)) && 1289 split_folio_to_list(folio, folio_list)) 1290 goto activate_locked; 1291 } 1292 if (folio_alloc_swap(folio, __GFP_HIGH | __GFP_NOWARN)) { 1293 int __maybe_unused order = folio_order(folio); 1294 1295 if (!folio_test_large(folio)) 1296 goto activate_locked_split; 1297 /* Fallback to swap normal pages */ 1298 if (split_folio_to_list(folio, folio_list)) 1299 goto activate_locked; 1300 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1301 if (nr_pages >= HPAGE_PMD_NR) { 1302 count_memcg_folio_events(folio, 1303 THP_SWPOUT_FALLBACK, 1); 1304 count_vm_event(THP_SWPOUT_FALLBACK); 1305 } 1306 #endif 1307 count_mthp_stat(order, MTHP_STAT_SWPOUT_FALLBACK); 1308 if (folio_alloc_swap(folio, __GFP_HIGH | __GFP_NOWARN)) 1309 goto activate_locked_split; 1310 } 1311 /* 1312 * Normally the folio will be dirtied in unmap because its 1313 * pte should be dirty. A special case is MADV_FREE page. The 1314 * page's pte could have dirty bit cleared but the folio's 1315 * SwapBacked flag is still set because clearing the dirty bit 1316 * and SwapBacked flag has no lock protected. For such folio, 1317 * unmap will not set dirty bit for it, so folio reclaim will 1318 * not write the folio out. This can cause data corruption when 1319 * the folio is swapped in later. Always setting the dirty flag 1320 * for the folio solves the problem. 1321 */ 1322 folio_mark_dirty(folio); 1323 } 1324 } 1325 1326 /* 1327 * If the folio was split above, the tail pages will make 1328 * their own pass through this function and be accounted 1329 * then. 1330 */ 1331 if ((nr_pages > 1) && !folio_test_large(folio)) { 1332 sc->nr_scanned -= (nr_pages - 1); 1333 nr_pages = 1; 1334 } 1335 1336 /* 1337 * The folio is mapped into the page tables of one or more 1338 * processes. Try to unmap it here. 1339 */ 1340 if (folio_mapped(folio)) { 1341 enum ttu_flags flags = TTU_BATCH_FLUSH; 1342 bool was_swapbacked = folio_test_swapbacked(folio); 1343 1344 if (folio_test_pmd_mappable(folio)) 1345 flags |= TTU_SPLIT_HUGE_PMD; 1346 /* 1347 * Without TTU_SYNC, try_to_unmap will only begin to 1348 * hold PTL from the first present PTE within a large 1349 * folio. Some initial PTEs might be skipped due to 1350 * races with parallel PTE writes in which PTEs can be 1351 * cleared temporarily before being written new present 1352 * values. This will lead to a large folio is still 1353 * mapped while some subpages have been partially 1354 * unmapped after try_to_unmap; TTU_SYNC helps 1355 * try_to_unmap acquire PTL from the first PTE, 1356 * eliminating the influence of temporary PTE values. 1357 */ 1358 if (folio_test_large(folio)) 1359 flags |= TTU_SYNC; 1360 1361 try_to_unmap(folio, flags); 1362 if (folio_mapped(folio)) { 1363 stat->nr_unmap_fail += nr_pages; 1364 if (!was_swapbacked && 1365 folio_test_swapbacked(folio)) 1366 stat->nr_lazyfree_fail += nr_pages; 1367 goto activate_locked; 1368 } 1369 } 1370 1371 /* 1372 * Folio is unmapped now so it cannot be newly pinned anymore. 1373 * No point in trying to reclaim folio if it is pinned. 1374 * Furthermore we don't want to reclaim underlying fs metadata 1375 * if the folio is pinned and thus potentially modified by the 1376 * pinning process as that may upset the filesystem. 1377 */ 1378 if (folio_maybe_dma_pinned(folio)) 1379 goto activate_locked; 1380 1381 mapping = folio_mapping(folio); 1382 if (folio_test_dirty(folio)) { 1383 /* 1384 * Only kswapd can writeback filesystem folios 1385 * to avoid risk of stack overflow. But avoid 1386 * injecting inefficient single-folio I/O into 1387 * flusher writeback as much as possible: only 1388 * write folios when we've encountered many 1389 * dirty folios, and when we've already scanned 1390 * the rest of the LRU for clean folios and see 1391 * the same dirty folios again (with the reclaim 1392 * flag set). 1393 */ 1394 if (folio_is_file_lru(folio) && 1395 (!current_is_kswapd() || 1396 !folio_test_reclaim(folio) || 1397 !test_bit(PGDAT_DIRTY, &pgdat->flags))) { 1398 /* 1399 * Immediately reclaim when written back. 1400 * Similar in principle to folio_deactivate() 1401 * except we already have the folio isolated 1402 * and know it's dirty 1403 */ 1404 node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE, 1405 nr_pages); 1406 folio_set_reclaim(folio); 1407 1408 goto activate_locked; 1409 } 1410 1411 if (references == FOLIOREF_RECLAIM_CLEAN) 1412 goto keep_locked; 1413 if (!may_enter_fs(folio, sc->gfp_mask)) 1414 goto keep_locked; 1415 if (!sc->may_writepage) 1416 goto keep_locked; 1417 1418 /* 1419 * Folio is dirty. Flush the TLB if a writable entry 1420 * potentially exists to avoid CPU writes after I/O 1421 * starts and then write it out here. 1422 */ 1423 try_to_unmap_flush_dirty(); 1424 switch (pageout(folio, mapping, &plug, folio_list)) { 1425 case PAGE_KEEP: 1426 goto keep_locked; 1427 case PAGE_ACTIVATE: 1428 /* 1429 * If shmem folio is split when writeback to swap, 1430 * the tail pages will make their own pass through 1431 * this function and be accounted then. 1432 */ 1433 if (nr_pages > 1 && !folio_test_large(folio)) { 1434 sc->nr_scanned -= (nr_pages - 1); 1435 nr_pages = 1; 1436 } 1437 goto activate_locked; 1438 case PAGE_SUCCESS: 1439 if (nr_pages > 1 && !folio_test_large(folio)) { 1440 sc->nr_scanned -= (nr_pages - 1); 1441 nr_pages = 1; 1442 } 1443 stat->nr_pageout += nr_pages; 1444 1445 if (folio_test_writeback(folio)) 1446 goto keep; 1447 if (folio_test_dirty(folio)) 1448 goto keep; 1449 1450 /* 1451 * A synchronous write - probably a ramdisk. Go 1452 * ahead and try to reclaim the folio. 1453 */ 1454 if (!folio_trylock(folio)) 1455 goto keep; 1456 if (folio_test_dirty(folio) || 1457 folio_test_writeback(folio)) 1458 goto keep_locked; 1459 mapping = folio_mapping(folio); 1460 fallthrough; 1461 case PAGE_CLEAN: 1462 ; /* try to free the folio below */ 1463 } 1464 } 1465 1466 /* 1467 * If the folio has buffers, try to free the buffer 1468 * mappings associated with this folio. If we succeed 1469 * we try to free the folio as well. 1470 * 1471 * We do this even if the folio is dirty. 1472 * filemap_release_folio() does not perform I/O, but it 1473 * is possible for a folio to have the dirty flag set, 1474 * but it is actually clean (all its buffers are clean). 1475 * This happens if the buffers were written out directly, 1476 * with submit_bh(). ext3 will do this, as well as 1477 * the blockdev mapping. filemap_release_folio() will 1478 * discover that cleanness and will drop the buffers 1479 * and mark the folio clean - it can be freed. 1480 * 1481 * Rarely, folios can have buffers and no ->mapping. 1482 * These are the folios which were not successfully 1483 * invalidated in truncate_cleanup_folio(). We try to 1484 * drop those buffers here and if that worked, and the 1485 * folio is no longer mapped into process address space 1486 * (refcount == 1) it can be freed. Otherwise, leave 1487 * the folio on the LRU so it is swappable. 1488 */ 1489 if (folio_needs_release(folio)) { 1490 if (!filemap_release_folio(folio, sc->gfp_mask)) 1491 goto activate_locked; 1492 if (!mapping && folio_ref_count(folio) == 1) { 1493 folio_unlock(folio); 1494 if (folio_put_testzero(folio)) 1495 goto free_it; 1496 else { 1497 /* 1498 * rare race with speculative reference. 1499 * the speculative reference will free 1500 * this folio shortly, so we may 1501 * increment nr_reclaimed here (and 1502 * leave it off the LRU). 1503 */ 1504 nr_reclaimed += nr_pages; 1505 continue; 1506 } 1507 } 1508 } 1509 1510 if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) { 1511 /* follow __remove_mapping for reference */ 1512 if (!folio_ref_freeze(folio, 1)) 1513 goto keep_locked; 1514 /* 1515 * The folio has only one reference left, which is 1516 * from the isolation. After the caller puts the 1517 * folio back on the lru and drops the reference, the 1518 * folio will be freed anyway. It doesn't matter 1519 * which lru it goes on. So we don't bother checking 1520 * the dirty flag here. 1521 */ 1522 count_vm_events(PGLAZYFREED, nr_pages); 1523 count_memcg_folio_events(folio, PGLAZYFREED, nr_pages); 1524 } else if (!mapping || !__remove_mapping(mapping, folio, true, 1525 sc->target_mem_cgroup)) 1526 goto keep_locked; 1527 1528 folio_unlock(folio); 1529 free_it: 1530 /* 1531 * Folio may get swapped out as a whole, need to account 1532 * all pages in it. 1533 */ 1534 nr_reclaimed += nr_pages; 1535 1536 folio_unqueue_deferred_split(folio); 1537 if (folio_batch_add(&free_folios, folio) == 0) { 1538 mem_cgroup_uncharge_folios(&free_folios); 1539 try_to_unmap_flush(); 1540 free_unref_folios(&free_folios); 1541 } 1542 continue; 1543 1544 activate_locked_split: 1545 /* 1546 * The tail pages that are failed to add into swap cache 1547 * reach here. Fixup nr_scanned and nr_pages. 1548 */ 1549 if (nr_pages > 1) { 1550 sc->nr_scanned -= (nr_pages - 1); 1551 nr_pages = 1; 1552 } 1553 activate_locked: 1554 /* Not a candidate for swapping, so reclaim swap space. */ 1555 if (folio_test_swapcache(folio) && 1556 (mem_cgroup_swap_full(folio) || folio_test_mlocked(folio))) 1557 folio_free_swap(folio); 1558 VM_BUG_ON_FOLIO(folio_test_active(folio), folio); 1559 if (!folio_test_mlocked(folio)) { 1560 int type = folio_is_file_lru(folio); 1561 folio_set_active(folio); 1562 stat->nr_activate[type] += nr_pages; 1563 count_memcg_folio_events(folio, PGACTIVATE, nr_pages); 1564 } 1565 keep_locked: 1566 folio_unlock(folio); 1567 keep: 1568 list_add(&folio->lru, &ret_folios); 1569 VM_BUG_ON_FOLIO(folio_test_lru(folio) || 1570 folio_test_unevictable(folio), folio); 1571 } 1572 /* 'folio_list' is always empty here */ 1573 1574 /* Migrate folios selected for demotion */ 1575 nr_demoted = demote_folio_list(&demote_folios, pgdat); 1576 nr_reclaimed += nr_demoted; 1577 stat->nr_demoted += nr_demoted; 1578 /* Folios that could not be demoted are still in @demote_folios */ 1579 if (!list_empty(&demote_folios)) { 1580 /* Folios which weren't demoted go back on @folio_list */ 1581 list_splice_init(&demote_folios, folio_list); 1582 1583 /* 1584 * goto retry to reclaim the undemoted folios in folio_list if 1585 * desired. 1586 * 1587 * Reclaiming directly from top tier nodes is not often desired 1588 * due to it breaking the LRU ordering: in general memory 1589 * should be reclaimed from lower tier nodes and demoted from 1590 * top tier nodes. 1591 * 1592 * However, disabling reclaim from top tier nodes entirely 1593 * would cause ooms in edge scenarios where lower tier memory 1594 * is unreclaimable for whatever reason, eg memory being 1595 * mlocked or too hot to reclaim. We can disable reclaim 1596 * from top tier nodes in proactive reclaim though as that is 1597 * not real memory pressure. 1598 */ 1599 if (!sc->proactive) { 1600 do_demote_pass = false; 1601 goto retry; 1602 } 1603 } 1604 1605 pgactivate = stat->nr_activate[0] + stat->nr_activate[1]; 1606 1607 mem_cgroup_uncharge_folios(&free_folios); 1608 try_to_unmap_flush(); 1609 free_unref_folios(&free_folios); 1610 1611 list_splice(&ret_folios, folio_list); 1612 count_vm_events(PGACTIVATE, pgactivate); 1613 1614 if (plug) 1615 swap_write_unplug(plug); 1616 return nr_reclaimed; 1617 } 1618 1619 unsigned int reclaim_clean_pages_from_list(struct zone *zone, 1620 struct list_head *folio_list) 1621 { 1622 struct scan_control sc = { 1623 .gfp_mask = GFP_KERNEL, 1624 .may_unmap = 1, 1625 }; 1626 struct reclaim_stat stat; 1627 unsigned int nr_reclaimed; 1628 struct folio *folio, *next; 1629 LIST_HEAD(clean_folios); 1630 unsigned int noreclaim_flag; 1631 1632 list_for_each_entry_safe(folio, next, folio_list, lru) { 1633 if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) && 1634 !folio_test_dirty(folio) && !__folio_test_movable(folio) && 1635 !folio_test_unevictable(folio)) { 1636 folio_clear_active(folio); 1637 list_move(&folio->lru, &clean_folios); 1638 } 1639 } 1640 1641 /* 1642 * We should be safe here since we are only dealing with file pages and 1643 * we are not kswapd and therefore cannot write dirty file pages. But 1644 * call memalloc_noreclaim_save() anyway, just in case these conditions 1645 * change in the future. 1646 */ 1647 noreclaim_flag = memalloc_noreclaim_save(); 1648 nr_reclaimed = shrink_folio_list(&clean_folios, zone->zone_pgdat, &sc, 1649 &stat, true); 1650 memalloc_noreclaim_restore(noreclaim_flag); 1651 1652 list_splice(&clean_folios, folio_list); 1653 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, 1654 -(long)nr_reclaimed); 1655 /* 1656 * Since lazyfree pages are isolated from file LRU from the beginning, 1657 * they will rotate back to anonymous LRU in the end if it failed to 1658 * discard so isolated count will be mismatched. 1659 * Compensate the isolated count for both LRU lists. 1660 */ 1661 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON, 1662 stat.nr_lazyfree_fail); 1663 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, 1664 -(long)stat.nr_lazyfree_fail); 1665 return nr_reclaimed; 1666 } 1667 1668 /* 1669 * Update LRU sizes after isolating pages. The LRU size updates must 1670 * be complete before mem_cgroup_update_lru_size due to a sanity check. 1671 */ 1672 static __always_inline void update_lru_sizes(struct lruvec *lruvec, 1673 enum lru_list lru, unsigned long *nr_zone_taken) 1674 { 1675 int zid; 1676 1677 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1678 if (!nr_zone_taken[zid]) 1679 continue; 1680 1681 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 1682 } 1683 1684 } 1685 1686 /* 1687 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times. 1688 * 1689 * lruvec->lru_lock is heavily contended. Some of the functions that 1690 * shrink the lists perform better by taking out a batch of pages 1691 * and working on them outside the LRU lock. 1692 * 1693 * For pagecache intensive workloads, this function is the hottest 1694 * spot in the kernel (apart from copy_*_user functions). 1695 * 1696 * Lru_lock must be held before calling this function. 1697 * 1698 * @nr_to_scan: The number of eligible pages to look through on the list. 1699 * @lruvec: The LRU vector to pull pages from. 1700 * @dst: The temp list to put pages on to. 1701 * @nr_scanned: The number of pages that were scanned. 1702 * @sc: The scan_control struct for this reclaim session 1703 * @lru: LRU list id for isolating 1704 * 1705 * returns how many pages were moved onto *@dst. 1706 */ 1707 static unsigned long isolate_lru_folios(unsigned long nr_to_scan, 1708 struct lruvec *lruvec, struct list_head *dst, 1709 unsigned long *nr_scanned, struct scan_control *sc, 1710 enum lru_list lru) 1711 { 1712 struct list_head *src = &lruvec->lists[lru]; 1713 unsigned long nr_taken = 0; 1714 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 }; 1715 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, }; 1716 unsigned long skipped = 0; 1717 unsigned long scan, total_scan, nr_pages; 1718 unsigned long max_nr_skipped = 0; 1719 LIST_HEAD(folios_skipped); 1720 1721 total_scan = 0; 1722 scan = 0; 1723 while (scan < nr_to_scan && !list_empty(src)) { 1724 struct list_head *move_to = src; 1725 struct folio *folio; 1726 1727 folio = lru_to_folio(src); 1728 prefetchw_prev_lru_folio(folio, src, flags); 1729 1730 nr_pages = folio_nr_pages(folio); 1731 total_scan += nr_pages; 1732 1733 /* Using max_nr_skipped to prevent hard LOCKUP*/ 1734 if (max_nr_skipped < SWAP_CLUSTER_MAX_SKIPPED && 1735 (folio_zonenum(folio) > sc->reclaim_idx)) { 1736 nr_skipped[folio_zonenum(folio)] += nr_pages; 1737 move_to = &folios_skipped; 1738 max_nr_skipped++; 1739 goto move; 1740 } 1741 1742 /* 1743 * Do not count skipped folios because that makes the function 1744 * return with no isolated folios if the LRU mostly contains 1745 * ineligible folios. This causes the VM to not reclaim any 1746 * folios, triggering a premature OOM. 1747 * Account all pages in a folio. 1748 */ 1749 scan += nr_pages; 1750 1751 if (!folio_test_lru(folio)) 1752 goto move; 1753 if (!sc->may_unmap && folio_mapped(folio)) 1754 goto move; 1755 1756 /* 1757 * Be careful not to clear the lru flag until after we're 1758 * sure the folio is not being freed elsewhere -- the 1759 * folio release code relies on it. 1760 */ 1761 if (unlikely(!folio_try_get(folio))) 1762 goto move; 1763 1764 if (!folio_test_clear_lru(folio)) { 1765 /* Another thread is already isolating this folio */ 1766 folio_put(folio); 1767 goto move; 1768 } 1769 1770 nr_taken += nr_pages; 1771 nr_zone_taken[folio_zonenum(folio)] += nr_pages; 1772 move_to = dst; 1773 move: 1774 list_move(&folio->lru, move_to); 1775 } 1776 1777 /* 1778 * Splice any skipped folios to the start of the LRU list. Note that 1779 * this disrupts the LRU order when reclaiming for lower zones but 1780 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX 1781 * scanning would soon rescan the same folios to skip and waste lots 1782 * of cpu cycles. 1783 */ 1784 if (!list_empty(&folios_skipped)) { 1785 int zid; 1786 1787 list_splice(&folios_skipped, src); 1788 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1789 if (!nr_skipped[zid]) 1790 continue; 1791 1792 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]); 1793 skipped += nr_skipped[zid]; 1794 } 1795 } 1796 *nr_scanned = total_scan; 1797 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, 1798 total_scan, skipped, nr_taken, lru); 1799 update_lru_sizes(lruvec, lru, nr_zone_taken); 1800 return nr_taken; 1801 } 1802 1803 /** 1804 * folio_isolate_lru() - Try to isolate a folio from its LRU list. 1805 * @folio: Folio to isolate from its LRU list. 1806 * 1807 * Isolate a @folio from an LRU list and adjust the vmstat statistic 1808 * corresponding to whatever LRU list the folio was on. 1809 * 1810 * The folio will have its LRU flag cleared. If it was found on the 1811 * active list, it will have the Active flag set. If it was found on the 1812 * unevictable list, it will have the Unevictable flag set. These flags 1813 * may need to be cleared by the caller before letting the page go. 1814 * 1815 * Context: 1816 * 1817 * (1) Must be called with an elevated refcount on the folio. This is a 1818 * fundamental difference from isolate_lru_folios() (which is called 1819 * without a stable reference). 1820 * (2) The lru_lock must not be held. 1821 * (3) Interrupts must be enabled. 1822 * 1823 * Return: true if the folio was removed from an LRU list. 1824 * false if the folio was not on an LRU list. 1825 */ 1826 bool folio_isolate_lru(struct folio *folio) 1827 { 1828 bool ret = false; 1829 1830 VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio); 1831 1832 if (folio_test_clear_lru(folio)) { 1833 struct lruvec *lruvec; 1834 1835 folio_get(folio); 1836 lruvec = folio_lruvec_lock_irq(folio); 1837 lruvec_del_folio(lruvec, folio); 1838 unlock_page_lruvec_irq(lruvec); 1839 ret = true; 1840 } 1841 1842 return ret; 1843 } 1844 1845 /* 1846 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 1847 * then get rescheduled. When there are massive number of tasks doing page 1848 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 1849 * the LRU list will go small and be scanned faster than necessary, leading to 1850 * unnecessary swapping, thrashing and OOM. 1851 */ 1852 static bool too_many_isolated(struct pglist_data *pgdat, int file, 1853 struct scan_control *sc) 1854 { 1855 unsigned long inactive, isolated; 1856 bool too_many; 1857 1858 if (current_is_kswapd()) 1859 return false; 1860 1861 if (!writeback_throttling_sane(sc)) 1862 return false; 1863 1864 if (file) { 1865 inactive = node_page_state(pgdat, NR_INACTIVE_FILE); 1866 isolated = node_page_state(pgdat, NR_ISOLATED_FILE); 1867 } else { 1868 inactive = node_page_state(pgdat, NR_INACTIVE_ANON); 1869 isolated = node_page_state(pgdat, NR_ISOLATED_ANON); 1870 } 1871 1872 /* 1873 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 1874 * won't get blocked by normal direct-reclaimers, forming a circular 1875 * deadlock. 1876 */ 1877 if (gfp_has_io_fs(sc->gfp_mask)) 1878 inactive >>= 3; 1879 1880 too_many = isolated > inactive; 1881 1882 /* Wake up tasks throttled due to too_many_isolated. */ 1883 if (!too_many) 1884 wake_throttle_isolated(pgdat); 1885 1886 return too_many; 1887 } 1888 1889 /* 1890 * move_folios_to_lru() moves folios from private @list to appropriate LRU list. 1891 * 1892 * Returns the number of pages moved to the given lruvec. 1893 */ 1894 static unsigned int move_folios_to_lru(struct lruvec *lruvec, 1895 struct list_head *list) 1896 { 1897 int nr_pages, nr_moved = 0; 1898 struct folio_batch free_folios; 1899 1900 folio_batch_init(&free_folios); 1901 while (!list_empty(list)) { 1902 struct folio *folio = lru_to_folio(list); 1903 1904 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 1905 list_del(&folio->lru); 1906 if (unlikely(!folio_evictable(folio))) { 1907 spin_unlock_irq(&lruvec->lru_lock); 1908 folio_putback_lru(folio); 1909 spin_lock_irq(&lruvec->lru_lock); 1910 continue; 1911 } 1912 1913 /* 1914 * The folio_set_lru needs to be kept here for list integrity. 1915 * Otherwise: 1916 * #0 move_folios_to_lru #1 release_pages 1917 * if (!folio_put_testzero()) 1918 * if (folio_put_testzero()) 1919 * !lru //skip lru_lock 1920 * folio_set_lru() 1921 * list_add(&folio->lru,) 1922 * list_add(&folio->lru,) 1923 */ 1924 folio_set_lru(folio); 1925 1926 if (unlikely(folio_put_testzero(folio))) { 1927 __folio_clear_lru_flags(folio); 1928 1929 folio_unqueue_deferred_split(folio); 1930 if (folio_batch_add(&free_folios, folio) == 0) { 1931 spin_unlock_irq(&lruvec->lru_lock); 1932 mem_cgroup_uncharge_folios(&free_folios); 1933 free_unref_folios(&free_folios); 1934 spin_lock_irq(&lruvec->lru_lock); 1935 } 1936 1937 continue; 1938 } 1939 1940 /* 1941 * All pages were isolated from the same lruvec (and isolation 1942 * inhibits memcg migration). 1943 */ 1944 VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio); 1945 lruvec_add_folio(lruvec, folio); 1946 nr_pages = folio_nr_pages(folio); 1947 nr_moved += nr_pages; 1948 if (folio_test_active(folio)) 1949 workingset_age_nonresident(lruvec, nr_pages); 1950 } 1951 1952 if (free_folios.nr) { 1953 spin_unlock_irq(&lruvec->lru_lock); 1954 mem_cgroup_uncharge_folios(&free_folios); 1955 free_unref_folios(&free_folios); 1956 spin_lock_irq(&lruvec->lru_lock); 1957 } 1958 1959 return nr_moved; 1960 } 1961 1962 /* 1963 * If a kernel thread (such as nfsd for loop-back mounts) services a backing 1964 * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case 1965 * we should not throttle. Otherwise it is safe to do so. 1966 */ 1967 static int current_may_throttle(void) 1968 { 1969 return !(current->flags & PF_LOCAL_THROTTLE); 1970 } 1971 1972 /* 1973 * shrink_inactive_list() is a helper for shrink_node(). It returns the number 1974 * of reclaimed pages 1975 */ 1976 static unsigned long shrink_inactive_list(unsigned long nr_to_scan, 1977 struct lruvec *lruvec, struct scan_control *sc, 1978 enum lru_list lru) 1979 { 1980 LIST_HEAD(folio_list); 1981 unsigned long nr_scanned; 1982 unsigned int nr_reclaimed = 0; 1983 unsigned long nr_taken; 1984 struct reclaim_stat stat; 1985 bool file = is_file_lru(lru); 1986 enum vm_event_item item; 1987 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1988 bool stalled = false; 1989 1990 while (unlikely(too_many_isolated(pgdat, file, sc))) { 1991 if (stalled) 1992 return 0; 1993 1994 /* wait a bit for the reclaimer. */ 1995 stalled = true; 1996 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED); 1997 1998 /* We are about to die and free our memory. Return now. */ 1999 if (fatal_signal_pending(current)) 2000 return SWAP_CLUSTER_MAX; 2001 } 2002 2003 lru_add_drain(); 2004 2005 spin_lock_irq(&lruvec->lru_lock); 2006 2007 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &folio_list, 2008 &nr_scanned, sc, lru); 2009 2010 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2011 item = PGSCAN_KSWAPD + reclaimer_offset(); 2012 if (!cgroup_reclaim(sc)) 2013 __count_vm_events(item, nr_scanned); 2014 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned); 2015 __count_vm_events(PGSCAN_ANON + file, nr_scanned); 2016 2017 spin_unlock_irq(&lruvec->lru_lock); 2018 2019 if (nr_taken == 0) 2020 return 0; 2021 2022 nr_reclaimed = shrink_folio_list(&folio_list, pgdat, sc, &stat, false); 2023 2024 spin_lock_irq(&lruvec->lru_lock); 2025 move_folios_to_lru(lruvec, &folio_list); 2026 2027 __mod_lruvec_state(lruvec, PGDEMOTE_KSWAPD + reclaimer_offset(), 2028 stat.nr_demoted); 2029 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2030 item = PGSTEAL_KSWAPD + reclaimer_offset(); 2031 if (!cgroup_reclaim(sc)) 2032 __count_vm_events(item, nr_reclaimed); 2033 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed); 2034 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed); 2035 spin_unlock_irq(&lruvec->lru_lock); 2036 2037 lru_note_cost(lruvec, file, stat.nr_pageout, nr_scanned - nr_reclaimed); 2038 2039 /* 2040 * If dirty folios are scanned that are not queued for IO, it 2041 * implies that flushers are not doing their job. This can 2042 * happen when memory pressure pushes dirty folios to the end of 2043 * the LRU before the dirty limits are breached and the dirty 2044 * data has expired. It can also happen when the proportion of 2045 * dirty folios grows not through writes but through memory 2046 * pressure reclaiming all the clean cache. And in some cases, 2047 * the flushers simply cannot keep up with the allocation 2048 * rate. Nudge the flusher threads in case they are asleep. 2049 */ 2050 if (stat.nr_unqueued_dirty == nr_taken) { 2051 wakeup_flusher_threads(WB_REASON_VMSCAN); 2052 /* 2053 * For cgroupv1 dirty throttling is achieved by waking up 2054 * the kernel flusher here and later waiting on folios 2055 * which are in writeback to finish (see shrink_folio_list()). 2056 * 2057 * Flusher may not be able to issue writeback quickly 2058 * enough for cgroupv1 writeback throttling to work 2059 * on a large system. 2060 */ 2061 if (!writeback_throttling_sane(sc)) 2062 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK); 2063 } 2064 2065 sc->nr.dirty += stat.nr_dirty; 2066 sc->nr.congested += stat.nr_congested; 2067 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty; 2068 sc->nr.writeback += stat.nr_writeback; 2069 sc->nr.immediate += stat.nr_immediate; 2070 sc->nr.taken += nr_taken; 2071 if (file) 2072 sc->nr.file_taken += nr_taken; 2073 2074 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 2075 nr_scanned, nr_reclaimed, &stat, sc->priority, file); 2076 return nr_reclaimed; 2077 } 2078 2079 /* 2080 * shrink_active_list() moves folios from the active LRU to the inactive LRU. 2081 * 2082 * We move them the other way if the folio is referenced by one or more 2083 * processes. 2084 * 2085 * If the folios are mostly unmapped, the processing is fast and it is 2086 * appropriate to hold lru_lock across the whole operation. But if 2087 * the folios are mapped, the processing is slow (folio_referenced()), so 2088 * we should drop lru_lock around each folio. It's impossible to balance 2089 * this, so instead we remove the folios from the LRU while processing them. 2090 * It is safe to rely on the active flag against the non-LRU folios in here 2091 * because nobody will play with that bit on a non-LRU folio. 2092 * 2093 * The downside is that we have to touch folio->_refcount against each folio. 2094 * But we had to alter folio->flags anyway. 2095 */ 2096 static void shrink_active_list(unsigned long nr_to_scan, 2097 struct lruvec *lruvec, 2098 struct scan_control *sc, 2099 enum lru_list lru) 2100 { 2101 unsigned long nr_taken; 2102 unsigned long nr_scanned; 2103 unsigned long vm_flags; 2104 LIST_HEAD(l_hold); /* The folios which were snipped off */ 2105 LIST_HEAD(l_active); 2106 LIST_HEAD(l_inactive); 2107 unsigned nr_deactivate, nr_activate; 2108 unsigned nr_rotated = 0; 2109 bool file = is_file_lru(lru); 2110 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2111 2112 lru_add_drain(); 2113 2114 spin_lock_irq(&lruvec->lru_lock); 2115 2116 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &l_hold, 2117 &nr_scanned, sc, lru); 2118 2119 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2120 2121 if (!cgroup_reclaim(sc)) 2122 __count_vm_events(PGREFILL, nr_scanned); 2123 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned); 2124 2125 spin_unlock_irq(&lruvec->lru_lock); 2126 2127 while (!list_empty(&l_hold)) { 2128 struct folio *folio; 2129 2130 cond_resched(); 2131 folio = lru_to_folio(&l_hold); 2132 list_del(&folio->lru); 2133 2134 if (unlikely(!folio_evictable(folio))) { 2135 folio_putback_lru(folio); 2136 continue; 2137 } 2138 2139 if (unlikely(buffer_heads_over_limit)) { 2140 if (folio_needs_release(folio) && 2141 folio_trylock(folio)) { 2142 filemap_release_folio(folio, 0); 2143 folio_unlock(folio); 2144 } 2145 } 2146 2147 /* Referenced or rmap lock contention: rotate */ 2148 if (folio_referenced(folio, 0, sc->target_mem_cgroup, 2149 &vm_flags) != 0) { 2150 /* 2151 * Identify referenced, file-backed active folios and 2152 * give them one more trip around the active list. So 2153 * that executable code get better chances to stay in 2154 * memory under moderate memory pressure. Anon folios 2155 * are not likely to be evicted by use-once streaming 2156 * IO, plus JVM can create lots of anon VM_EXEC folios, 2157 * so we ignore them here. 2158 */ 2159 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) { 2160 nr_rotated += folio_nr_pages(folio); 2161 list_add(&folio->lru, &l_active); 2162 continue; 2163 } 2164 } 2165 2166 folio_clear_active(folio); /* we are de-activating */ 2167 folio_set_workingset(folio); 2168 list_add(&folio->lru, &l_inactive); 2169 } 2170 2171 /* 2172 * Move folios back to the lru list. 2173 */ 2174 spin_lock_irq(&lruvec->lru_lock); 2175 2176 nr_activate = move_folios_to_lru(lruvec, &l_active); 2177 nr_deactivate = move_folios_to_lru(lruvec, &l_inactive); 2178 2179 __count_vm_events(PGDEACTIVATE, nr_deactivate); 2180 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate); 2181 2182 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2183 spin_unlock_irq(&lruvec->lru_lock); 2184 2185 if (nr_rotated) 2186 lru_note_cost(lruvec, file, 0, nr_rotated); 2187 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate, 2188 nr_deactivate, nr_rotated, sc->priority, file); 2189 } 2190 2191 static unsigned int reclaim_folio_list(struct list_head *folio_list, 2192 struct pglist_data *pgdat) 2193 { 2194 struct reclaim_stat stat; 2195 unsigned int nr_reclaimed; 2196 struct folio *folio; 2197 struct scan_control sc = { 2198 .gfp_mask = GFP_KERNEL, 2199 .may_writepage = 1, 2200 .may_unmap = 1, 2201 .may_swap = 1, 2202 .no_demotion = 1, 2203 }; 2204 2205 nr_reclaimed = shrink_folio_list(folio_list, pgdat, &sc, &stat, true); 2206 while (!list_empty(folio_list)) { 2207 folio = lru_to_folio(folio_list); 2208 list_del(&folio->lru); 2209 folio_putback_lru(folio); 2210 } 2211 trace_mm_vmscan_reclaim_pages(pgdat->node_id, sc.nr_scanned, nr_reclaimed, &stat); 2212 2213 return nr_reclaimed; 2214 } 2215 2216 unsigned long reclaim_pages(struct list_head *folio_list) 2217 { 2218 int nid; 2219 unsigned int nr_reclaimed = 0; 2220 LIST_HEAD(node_folio_list); 2221 unsigned int noreclaim_flag; 2222 2223 if (list_empty(folio_list)) 2224 return nr_reclaimed; 2225 2226 noreclaim_flag = memalloc_noreclaim_save(); 2227 2228 nid = folio_nid(lru_to_folio(folio_list)); 2229 do { 2230 struct folio *folio = lru_to_folio(folio_list); 2231 2232 if (nid == folio_nid(folio)) { 2233 folio_clear_active(folio); 2234 list_move(&folio->lru, &node_folio_list); 2235 continue; 2236 } 2237 2238 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid)); 2239 nid = folio_nid(lru_to_folio(folio_list)); 2240 } while (!list_empty(folio_list)); 2241 2242 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid)); 2243 2244 memalloc_noreclaim_restore(noreclaim_flag); 2245 2246 return nr_reclaimed; 2247 } 2248 2249 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 2250 struct lruvec *lruvec, struct scan_control *sc) 2251 { 2252 if (is_active_lru(lru)) { 2253 if (sc->may_deactivate & (1 << is_file_lru(lru))) 2254 shrink_active_list(nr_to_scan, lruvec, sc, lru); 2255 else 2256 sc->skipped_deactivate = 1; 2257 return 0; 2258 } 2259 2260 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 2261 } 2262 2263 /* 2264 * The inactive anon list should be small enough that the VM never has 2265 * to do too much work. 2266 * 2267 * The inactive file list should be small enough to leave most memory 2268 * to the established workingset on the scan-resistant active list, 2269 * but large enough to avoid thrashing the aggregate readahead window. 2270 * 2271 * Both inactive lists should also be large enough that each inactive 2272 * folio has a chance to be referenced again before it is reclaimed. 2273 * 2274 * If that fails and refaulting is observed, the inactive list grows. 2275 * 2276 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE folios 2277 * on this LRU, maintained by the pageout code. An inactive_ratio 2278 * of 3 means 3:1 or 25% of the folios are kept on the inactive list. 2279 * 2280 * total target max 2281 * memory ratio inactive 2282 * ------------------------------------- 2283 * 10MB 1 5MB 2284 * 100MB 1 50MB 2285 * 1GB 3 250MB 2286 * 10GB 10 0.9GB 2287 * 100GB 31 3GB 2288 * 1TB 101 10GB 2289 * 10TB 320 32GB 2290 */ 2291 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru) 2292 { 2293 enum lru_list active_lru = inactive_lru + LRU_ACTIVE; 2294 unsigned long inactive, active; 2295 unsigned long inactive_ratio; 2296 unsigned long gb; 2297 2298 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru); 2299 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru); 2300 2301 gb = (inactive + active) >> (30 - PAGE_SHIFT); 2302 if (gb) 2303 inactive_ratio = int_sqrt(10 * gb); 2304 else 2305 inactive_ratio = 1; 2306 2307 return inactive * inactive_ratio < active; 2308 } 2309 2310 enum scan_balance { 2311 SCAN_EQUAL, 2312 SCAN_FRACT, 2313 SCAN_ANON, 2314 SCAN_FILE, 2315 }; 2316 2317 static void prepare_scan_control(pg_data_t *pgdat, struct scan_control *sc) 2318 { 2319 unsigned long file; 2320 struct lruvec *target_lruvec; 2321 2322 if (lru_gen_enabled()) 2323 return; 2324 2325 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat); 2326 2327 /* 2328 * Flush the memory cgroup stats in rate-limited way as we don't need 2329 * most accurate stats here. We may switch to regular stats flushing 2330 * in the future once it is cheap enough. 2331 */ 2332 mem_cgroup_flush_stats_ratelimited(sc->target_mem_cgroup); 2333 2334 /* 2335 * Determine the scan balance between anon and file LRUs. 2336 */ 2337 spin_lock_irq(&target_lruvec->lru_lock); 2338 sc->anon_cost = target_lruvec->anon_cost; 2339 sc->file_cost = target_lruvec->file_cost; 2340 spin_unlock_irq(&target_lruvec->lru_lock); 2341 2342 /* 2343 * Target desirable inactive:active list ratios for the anon 2344 * and file LRU lists. 2345 */ 2346 if (!sc->force_deactivate) { 2347 unsigned long refaults; 2348 2349 /* 2350 * When refaults are being observed, it means a new 2351 * workingset is being established. Deactivate to get 2352 * rid of any stale active pages quickly. 2353 */ 2354 refaults = lruvec_page_state(target_lruvec, 2355 WORKINGSET_ACTIVATE_ANON); 2356 if (refaults != target_lruvec->refaults[WORKINGSET_ANON] || 2357 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON)) 2358 sc->may_deactivate |= DEACTIVATE_ANON; 2359 else 2360 sc->may_deactivate &= ~DEACTIVATE_ANON; 2361 2362 refaults = lruvec_page_state(target_lruvec, 2363 WORKINGSET_ACTIVATE_FILE); 2364 if (refaults != target_lruvec->refaults[WORKINGSET_FILE] || 2365 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE)) 2366 sc->may_deactivate |= DEACTIVATE_FILE; 2367 else 2368 sc->may_deactivate &= ~DEACTIVATE_FILE; 2369 } else 2370 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE; 2371 2372 /* 2373 * If we have plenty of inactive file pages that aren't 2374 * thrashing, try to reclaim those first before touching 2375 * anonymous pages. 2376 */ 2377 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE); 2378 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE) && 2379 !sc->no_cache_trim_mode) 2380 sc->cache_trim_mode = 1; 2381 else 2382 sc->cache_trim_mode = 0; 2383 2384 /* 2385 * Prevent the reclaimer from falling into the cache trap: as 2386 * cache pages start out inactive, every cache fault will tip 2387 * the scan balance towards the file LRU. And as the file LRU 2388 * shrinks, so does the window for rotation from references. 2389 * This means we have a runaway feedback loop where a tiny 2390 * thrashing file LRU becomes infinitely more attractive than 2391 * anon pages. Try to detect this based on file LRU size. 2392 */ 2393 if (!cgroup_reclaim(sc)) { 2394 unsigned long total_high_wmark = 0; 2395 unsigned long free, anon; 2396 int z; 2397 struct zone *zone; 2398 2399 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES); 2400 file = node_page_state(pgdat, NR_ACTIVE_FILE) + 2401 node_page_state(pgdat, NR_INACTIVE_FILE); 2402 2403 for_each_managed_zone_pgdat(zone, pgdat, z, MAX_NR_ZONES - 1) { 2404 total_high_wmark += high_wmark_pages(zone); 2405 } 2406 2407 /* 2408 * Consider anon: if that's low too, this isn't a 2409 * runaway file reclaim problem, but rather just 2410 * extreme pressure. Reclaim as per usual then. 2411 */ 2412 anon = node_page_state(pgdat, NR_INACTIVE_ANON); 2413 2414 sc->file_is_tiny = 2415 file + free <= total_high_wmark && 2416 !(sc->may_deactivate & DEACTIVATE_ANON) && 2417 anon >> sc->priority; 2418 } 2419 } 2420 2421 static inline void calculate_pressure_balance(struct scan_control *sc, 2422 int swappiness, u64 *fraction, u64 *denominator) 2423 { 2424 unsigned long anon_cost, file_cost, total_cost; 2425 unsigned long ap, fp; 2426 2427 /* 2428 * Calculate the pressure balance between anon and file pages. 2429 * 2430 * The amount of pressure we put on each LRU is inversely 2431 * proportional to the cost of reclaiming each list, as 2432 * determined by the share of pages that are refaulting, times 2433 * the relative IO cost of bringing back a swapped out 2434 * anonymous page vs reloading a filesystem page (swappiness). 2435 * 2436 * Although we limit that influence to ensure no list gets 2437 * left behind completely: at least a third of the pressure is 2438 * applied, before swappiness. 2439 * 2440 * With swappiness at 100, anon and file have equal IO cost. 2441 */ 2442 total_cost = sc->anon_cost + sc->file_cost; 2443 anon_cost = total_cost + sc->anon_cost; 2444 file_cost = total_cost + sc->file_cost; 2445 total_cost = anon_cost + file_cost; 2446 2447 ap = swappiness * (total_cost + 1); 2448 ap /= anon_cost + 1; 2449 2450 fp = (MAX_SWAPPINESS - swappiness) * (total_cost + 1); 2451 fp /= file_cost + 1; 2452 2453 fraction[WORKINGSET_ANON] = ap; 2454 fraction[WORKINGSET_FILE] = fp; 2455 *denominator = ap + fp; 2456 } 2457 2458 /* 2459 * Determine how aggressively the anon and file LRU lists should be 2460 * scanned. 2461 * 2462 * nr[0] = anon inactive folios to scan; nr[1] = anon active folios to scan 2463 * nr[2] = file inactive folios to scan; nr[3] = file active folios to scan 2464 */ 2465 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc, 2466 unsigned long *nr) 2467 { 2468 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2469 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 2470 int swappiness = sc_swappiness(sc, memcg); 2471 u64 fraction[ANON_AND_FILE]; 2472 u64 denominator = 0; /* gcc */ 2473 enum scan_balance scan_balance; 2474 enum lru_list lru; 2475 2476 /* If we have no swap space, do not bother scanning anon folios. */ 2477 if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) { 2478 scan_balance = SCAN_FILE; 2479 goto out; 2480 } 2481 2482 /* 2483 * Global reclaim will swap to prevent OOM even with no 2484 * swappiness, but memcg users want to use this knob to 2485 * disable swapping for individual groups completely when 2486 * using the memory controller's swap limit feature would be 2487 * too expensive. 2488 */ 2489 if (cgroup_reclaim(sc) && !swappiness) { 2490 scan_balance = SCAN_FILE; 2491 goto out; 2492 } 2493 2494 /* 2495 * Do not apply any pressure balancing cleverness when the 2496 * system is close to OOM, scan both anon and file equally 2497 * (unless the swappiness setting disagrees with swapping). 2498 */ 2499 if (!sc->priority && swappiness) { 2500 scan_balance = SCAN_EQUAL; 2501 goto out; 2502 } 2503 2504 /* 2505 * If the system is almost out of file pages, force-scan anon. 2506 */ 2507 if (sc->file_is_tiny) { 2508 scan_balance = SCAN_ANON; 2509 goto out; 2510 } 2511 2512 /* 2513 * If there is enough inactive page cache, we do not reclaim 2514 * anything from the anonymous working right now. 2515 */ 2516 if (sc->cache_trim_mode) { 2517 scan_balance = SCAN_FILE; 2518 goto out; 2519 } 2520 2521 scan_balance = SCAN_FRACT; 2522 calculate_pressure_balance(sc, swappiness, fraction, &denominator); 2523 2524 out: 2525 for_each_evictable_lru(lru) { 2526 bool file = is_file_lru(lru); 2527 unsigned long lruvec_size; 2528 unsigned long low, min; 2529 unsigned long scan; 2530 2531 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx); 2532 mem_cgroup_protection(sc->target_mem_cgroup, memcg, 2533 &min, &low); 2534 2535 if (min || low) { 2536 /* 2537 * Scale a cgroup's reclaim pressure by proportioning 2538 * its current usage to its memory.low or memory.min 2539 * setting. 2540 * 2541 * This is important, as otherwise scanning aggression 2542 * becomes extremely binary -- from nothing as we 2543 * approach the memory protection threshold, to totally 2544 * nominal as we exceed it. This results in requiring 2545 * setting extremely liberal protection thresholds. It 2546 * also means we simply get no protection at all if we 2547 * set it too low, which is not ideal. 2548 * 2549 * If there is any protection in place, we reduce scan 2550 * pressure by how much of the total memory used is 2551 * within protection thresholds. 2552 * 2553 * There is one special case: in the first reclaim pass, 2554 * we skip over all groups that are within their low 2555 * protection. If that fails to reclaim enough pages to 2556 * satisfy the reclaim goal, we come back and override 2557 * the best-effort low protection. However, we still 2558 * ideally want to honor how well-behaved groups are in 2559 * that case instead of simply punishing them all 2560 * equally. As such, we reclaim them based on how much 2561 * memory they are using, reducing the scan pressure 2562 * again by how much of the total memory used is under 2563 * hard protection. 2564 */ 2565 unsigned long cgroup_size = mem_cgroup_size(memcg); 2566 unsigned long protection; 2567 2568 /* memory.low scaling, make sure we retry before OOM */ 2569 if (!sc->memcg_low_reclaim && low > min) { 2570 protection = low; 2571 sc->memcg_low_skipped = 1; 2572 } else { 2573 protection = min; 2574 } 2575 2576 /* Avoid TOCTOU with earlier protection check */ 2577 cgroup_size = max(cgroup_size, protection); 2578 2579 scan = lruvec_size - lruvec_size * protection / 2580 (cgroup_size + 1); 2581 2582 /* 2583 * Minimally target SWAP_CLUSTER_MAX pages to keep 2584 * reclaim moving forwards, avoiding decrementing 2585 * sc->priority further than desirable. 2586 */ 2587 scan = max(scan, SWAP_CLUSTER_MAX); 2588 } else { 2589 scan = lruvec_size; 2590 } 2591 2592 scan >>= sc->priority; 2593 2594 /* 2595 * If the cgroup's already been deleted, make sure to 2596 * scrape out the remaining cache. 2597 */ 2598 if (!scan && !mem_cgroup_online(memcg)) 2599 scan = min(lruvec_size, SWAP_CLUSTER_MAX); 2600 2601 switch (scan_balance) { 2602 case SCAN_EQUAL: 2603 /* Scan lists relative to size */ 2604 break; 2605 case SCAN_FRACT: 2606 /* 2607 * Scan types proportional to swappiness and 2608 * their relative recent reclaim efficiency. 2609 * Make sure we don't miss the last page on 2610 * the offlined memory cgroups because of a 2611 * round-off error. 2612 */ 2613 scan = mem_cgroup_online(memcg) ? 2614 div64_u64(scan * fraction[file], denominator) : 2615 DIV64_U64_ROUND_UP(scan * fraction[file], 2616 denominator); 2617 break; 2618 case SCAN_FILE: 2619 case SCAN_ANON: 2620 /* Scan one type exclusively */ 2621 if ((scan_balance == SCAN_FILE) != file) 2622 scan = 0; 2623 break; 2624 default: 2625 /* Look ma, no brain */ 2626 BUG(); 2627 } 2628 2629 nr[lru] = scan; 2630 } 2631 } 2632 2633 /* 2634 * Anonymous LRU management is a waste if there is 2635 * ultimately no way to reclaim the memory. 2636 */ 2637 static bool can_age_anon_pages(struct pglist_data *pgdat, 2638 struct scan_control *sc) 2639 { 2640 /* Aging the anon LRU is valuable if swap is present: */ 2641 if (total_swap_pages > 0) 2642 return true; 2643 2644 /* Also valuable if anon pages can be demoted: */ 2645 return can_demote(pgdat->node_id, sc); 2646 } 2647 2648 #ifdef CONFIG_LRU_GEN 2649 2650 #ifdef CONFIG_LRU_GEN_ENABLED 2651 DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS); 2652 #define get_cap(cap) static_branch_likely(&lru_gen_caps[cap]) 2653 #else 2654 DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS); 2655 #define get_cap(cap) static_branch_unlikely(&lru_gen_caps[cap]) 2656 #endif 2657 2658 static bool should_walk_mmu(void) 2659 { 2660 return arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK); 2661 } 2662 2663 static bool should_clear_pmd_young(void) 2664 { 2665 return arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG); 2666 } 2667 2668 /****************************************************************************** 2669 * shorthand helpers 2670 ******************************************************************************/ 2671 2672 #define DEFINE_MAX_SEQ(lruvec) \ 2673 unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq) 2674 2675 #define DEFINE_MIN_SEQ(lruvec) \ 2676 unsigned long min_seq[ANON_AND_FILE] = { \ 2677 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]), \ 2678 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]), \ 2679 } 2680 2681 #define evictable_min_seq(min_seq, swappiness) \ 2682 min((min_seq)[!(swappiness)], (min_seq)[(swappiness) <= MAX_SWAPPINESS]) 2683 2684 #define for_each_gen_type_zone(gen, type, zone) \ 2685 for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++) \ 2686 for ((type) = 0; (type) < ANON_AND_FILE; (type)++) \ 2687 for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++) 2688 2689 #define for_each_evictable_type(type, swappiness) \ 2690 for ((type) = !(swappiness); (type) <= ((swappiness) <= MAX_SWAPPINESS); (type)++) 2691 2692 #define get_memcg_gen(seq) ((seq) % MEMCG_NR_GENS) 2693 #define get_memcg_bin(bin) ((bin) % MEMCG_NR_BINS) 2694 2695 static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid) 2696 { 2697 struct pglist_data *pgdat = NODE_DATA(nid); 2698 2699 #ifdef CONFIG_MEMCG 2700 if (memcg) { 2701 struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec; 2702 2703 /* see the comment in mem_cgroup_lruvec() */ 2704 if (!lruvec->pgdat) 2705 lruvec->pgdat = pgdat; 2706 2707 return lruvec; 2708 } 2709 #endif 2710 VM_WARN_ON_ONCE(!mem_cgroup_disabled()); 2711 2712 return &pgdat->__lruvec; 2713 } 2714 2715 static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc) 2716 { 2717 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 2718 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2719 2720 if (!sc->may_swap) 2721 return 0; 2722 2723 if (!can_demote(pgdat->node_id, sc) && 2724 mem_cgroup_get_nr_swap_pages(memcg) < MIN_LRU_BATCH) 2725 return 0; 2726 2727 return sc_swappiness(sc, memcg); 2728 } 2729 2730 static int get_nr_gens(struct lruvec *lruvec, int type) 2731 { 2732 return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1; 2733 } 2734 2735 static bool __maybe_unused seq_is_valid(struct lruvec *lruvec) 2736 { 2737 int type; 2738 2739 for (type = 0; type < ANON_AND_FILE; type++) { 2740 int n = get_nr_gens(lruvec, type); 2741 2742 if (n < MIN_NR_GENS || n > MAX_NR_GENS) 2743 return false; 2744 } 2745 2746 return true; 2747 } 2748 2749 /****************************************************************************** 2750 * Bloom filters 2751 ******************************************************************************/ 2752 2753 /* 2754 * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when 2755 * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of 2756 * bits in a bitmap, k is the number of hash functions and n is the number of 2757 * inserted items. 2758 * 2759 * Page table walkers use one of the two filters to reduce their search space. 2760 * To get rid of non-leaf entries that no longer have enough leaf entries, the 2761 * aging uses the double-buffering technique to flip to the other filter each 2762 * time it produces a new generation. For non-leaf entries that have enough 2763 * leaf entries, the aging carries them over to the next generation in 2764 * walk_pmd_range(); the eviction also report them when walking the rmap 2765 * in lru_gen_look_around(). 2766 * 2767 * For future optimizations: 2768 * 1. It's not necessary to keep both filters all the time. The spare one can be 2769 * freed after the RCU grace period and reallocated if needed again. 2770 * 2. And when reallocating, it's worth scaling its size according to the number 2771 * of inserted entries in the other filter, to reduce the memory overhead on 2772 * small systems and false positives on large systems. 2773 * 3. Jenkins' hash function is an alternative to Knuth's. 2774 */ 2775 #define BLOOM_FILTER_SHIFT 15 2776 2777 static inline int filter_gen_from_seq(unsigned long seq) 2778 { 2779 return seq % NR_BLOOM_FILTERS; 2780 } 2781 2782 static void get_item_key(void *item, int *key) 2783 { 2784 u32 hash = hash_ptr(item, BLOOM_FILTER_SHIFT * 2); 2785 2786 BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32)); 2787 2788 key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1); 2789 key[1] = hash >> BLOOM_FILTER_SHIFT; 2790 } 2791 2792 static bool test_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq, 2793 void *item) 2794 { 2795 int key[2]; 2796 unsigned long *filter; 2797 int gen = filter_gen_from_seq(seq); 2798 2799 filter = READ_ONCE(mm_state->filters[gen]); 2800 if (!filter) 2801 return true; 2802 2803 get_item_key(item, key); 2804 2805 return test_bit(key[0], filter) && test_bit(key[1], filter); 2806 } 2807 2808 static void update_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq, 2809 void *item) 2810 { 2811 int key[2]; 2812 unsigned long *filter; 2813 int gen = filter_gen_from_seq(seq); 2814 2815 filter = READ_ONCE(mm_state->filters[gen]); 2816 if (!filter) 2817 return; 2818 2819 get_item_key(item, key); 2820 2821 if (!test_bit(key[0], filter)) 2822 set_bit(key[0], filter); 2823 if (!test_bit(key[1], filter)) 2824 set_bit(key[1], filter); 2825 } 2826 2827 static void reset_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq) 2828 { 2829 unsigned long *filter; 2830 int gen = filter_gen_from_seq(seq); 2831 2832 filter = mm_state->filters[gen]; 2833 if (filter) { 2834 bitmap_clear(filter, 0, BIT(BLOOM_FILTER_SHIFT)); 2835 return; 2836 } 2837 2838 filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT), 2839 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN); 2840 WRITE_ONCE(mm_state->filters[gen], filter); 2841 } 2842 2843 /****************************************************************************** 2844 * mm_struct list 2845 ******************************************************************************/ 2846 2847 #ifdef CONFIG_LRU_GEN_WALKS_MMU 2848 2849 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg) 2850 { 2851 static struct lru_gen_mm_list mm_list = { 2852 .fifo = LIST_HEAD_INIT(mm_list.fifo), 2853 .lock = __SPIN_LOCK_UNLOCKED(mm_list.lock), 2854 }; 2855 2856 #ifdef CONFIG_MEMCG 2857 if (memcg) 2858 return &memcg->mm_list; 2859 #endif 2860 VM_WARN_ON_ONCE(!mem_cgroup_disabled()); 2861 2862 return &mm_list; 2863 } 2864 2865 static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec) 2866 { 2867 return &lruvec->mm_state; 2868 } 2869 2870 static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk) 2871 { 2872 int key; 2873 struct mm_struct *mm; 2874 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 2875 struct lru_gen_mm_state *mm_state = get_mm_state(walk->lruvec); 2876 2877 mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list); 2878 key = pgdat->node_id % BITS_PER_TYPE(mm->lru_gen.bitmap); 2879 2880 if (!walk->force_scan && !test_bit(key, &mm->lru_gen.bitmap)) 2881 return NULL; 2882 2883 clear_bit(key, &mm->lru_gen.bitmap); 2884 2885 return mmget_not_zero(mm) ? mm : NULL; 2886 } 2887 2888 void lru_gen_add_mm(struct mm_struct *mm) 2889 { 2890 int nid; 2891 struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm); 2892 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 2893 2894 VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list)); 2895 #ifdef CONFIG_MEMCG 2896 VM_WARN_ON_ONCE(mm->lru_gen.memcg); 2897 mm->lru_gen.memcg = memcg; 2898 #endif 2899 spin_lock(&mm_list->lock); 2900 2901 for_each_node_state(nid, N_MEMORY) { 2902 struct lruvec *lruvec = get_lruvec(memcg, nid); 2903 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 2904 2905 /* the first addition since the last iteration */ 2906 if (mm_state->tail == &mm_list->fifo) 2907 mm_state->tail = &mm->lru_gen.list; 2908 } 2909 2910 list_add_tail(&mm->lru_gen.list, &mm_list->fifo); 2911 2912 spin_unlock(&mm_list->lock); 2913 } 2914 2915 void lru_gen_del_mm(struct mm_struct *mm) 2916 { 2917 int nid; 2918 struct lru_gen_mm_list *mm_list; 2919 struct mem_cgroup *memcg = NULL; 2920 2921 if (list_empty(&mm->lru_gen.list)) 2922 return; 2923 2924 #ifdef CONFIG_MEMCG 2925 memcg = mm->lru_gen.memcg; 2926 #endif 2927 mm_list = get_mm_list(memcg); 2928 2929 spin_lock(&mm_list->lock); 2930 2931 for_each_node(nid) { 2932 struct lruvec *lruvec = get_lruvec(memcg, nid); 2933 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 2934 2935 /* where the current iteration continues after */ 2936 if (mm_state->head == &mm->lru_gen.list) 2937 mm_state->head = mm_state->head->prev; 2938 2939 /* where the last iteration ended before */ 2940 if (mm_state->tail == &mm->lru_gen.list) 2941 mm_state->tail = mm_state->tail->next; 2942 } 2943 2944 list_del_init(&mm->lru_gen.list); 2945 2946 spin_unlock(&mm_list->lock); 2947 2948 #ifdef CONFIG_MEMCG 2949 mem_cgroup_put(mm->lru_gen.memcg); 2950 mm->lru_gen.memcg = NULL; 2951 #endif 2952 } 2953 2954 #ifdef CONFIG_MEMCG 2955 void lru_gen_migrate_mm(struct mm_struct *mm) 2956 { 2957 struct mem_cgroup *memcg; 2958 struct task_struct *task = rcu_dereference_protected(mm->owner, true); 2959 2960 VM_WARN_ON_ONCE(task->mm != mm); 2961 lockdep_assert_held(&task->alloc_lock); 2962 2963 /* for mm_update_next_owner() */ 2964 if (mem_cgroup_disabled()) 2965 return; 2966 2967 /* migration can happen before addition */ 2968 if (!mm->lru_gen.memcg) 2969 return; 2970 2971 rcu_read_lock(); 2972 memcg = mem_cgroup_from_task(task); 2973 rcu_read_unlock(); 2974 if (memcg == mm->lru_gen.memcg) 2975 return; 2976 2977 VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list)); 2978 2979 lru_gen_del_mm(mm); 2980 lru_gen_add_mm(mm); 2981 } 2982 #endif 2983 2984 #else /* !CONFIG_LRU_GEN_WALKS_MMU */ 2985 2986 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg) 2987 { 2988 return NULL; 2989 } 2990 2991 static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec) 2992 { 2993 return NULL; 2994 } 2995 2996 static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk) 2997 { 2998 return NULL; 2999 } 3000 3001 #endif 3002 3003 static void reset_mm_stats(struct lru_gen_mm_walk *walk, bool last) 3004 { 3005 int i; 3006 int hist; 3007 struct lruvec *lruvec = walk->lruvec; 3008 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 3009 3010 lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock); 3011 3012 hist = lru_hist_from_seq(walk->seq); 3013 3014 for (i = 0; i < NR_MM_STATS; i++) { 3015 WRITE_ONCE(mm_state->stats[hist][i], 3016 mm_state->stats[hist][i] + walk->mm_stats[i]); 3017 walk->mm_stats[i] = 0; 3018 } 3019 3020 if (NR_HIST_GENS > 1 && last) { 3021 hist = lru_hist_from_seq(walk->seq + 1); 3022 3023 for (i = 0; i < NR_MM_STATS; i++) 3024 WRITE_ONCE(mm_state->stats[hist][i], 0); 3025 } 3026 } 3027 3028 static bool iterate_mm_list(struct lru_gen_mm_walk *walk, struct mm_struct **iter) 3029 { 3030 bool first = false; 3031 bool last = false; 3032 struct mm_struct *mm = NULL; 3033 struct lruvec *lruvec = walk->lruvec; 3034 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 3035 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 3036 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 3037 3038 /* 3039 * mm_state->seq is incremented after each iteration of mm_list. There 3040 * are three interesting cases for this page table walker: 3041 * 1. It tries to start a new iteration with a stale max_seq: there is 3042 * nothing left to do. 3043 * 2. It started the next iteration: it needs to reset the Bloom filter 3044 * so that a fresh set of PTE tables can be recorded. 3045 * 3. It ended the current iteration: it needs to reset the mm stats 3046 * counters and tell its caller to increment max_seq. 3047 */ 3048 spin_lock(&mm_list->lock); 3049 3050 VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->seq); 3051 3052 if (walk->seq <= mm_state->seq) 3053 goto done; 3054 3055 if (!mm_state->head) 3056 mm_state->head = &mm_list->fifo; 3057 3058 if (mm_state->head == &mm_list->fifo) 3059 first = true; 3060 3061 do { 3062 mm_state->head = mm_state->head->next; 3063 if (mm_state->head == &mm_list->fifo) { 3064 WRITE_ONCE(mm_state->seq, mm_state->seq + 1); 3065 last = true; 3066 break; 3067 } 3068 3069 /* force scan for those added after the last iteration */ 3070 if (!mm_state->tail || mm_state->tail == mm_state->head) { 3071 mm_state->tail = mm_state->head->next; 3072 walk->force_scan = true; 3073 } 3074 } while (!(mm = get_next_mm(walk))); 3075 done: 3076 if (*iter || last) 3077 reset_mm_stats(walk, last); 3078 3079 spin_unlock(&mm_list->lock); 3080 3081 if (mm && first) 3082 reset_bloom_filter(mm_state, walk->seq + 1); 3083 3084 if (*iter) 3085 mmput_async(*iter); 3086 3087 *iter = mm; 3088 3089 return last; 3090 } 3091 3092 static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long seq) 3093 { 3094 bool success = false; 3095 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 3096 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 3097 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 3098 3099 spin_lock(&mm_list->lock); 3100 3101 VM_WARN_ON_ONCE(mm_state->seq + 1 < seq); 3102 3103 if (seq > mm_state->seq) { 3104 mm_state->head = NULL; 3105 mm_state->tail = NULL; 3106 WRITE_ONCE(mm_state->seq, mm_state->seq + 1); 3107 success = true; 3108 } 3109 3110 spin_unlock(&mm_list->lock); 3111 3112 return success; 3113 } 3114 3115 /****************************************************************************** 3116 * PID controller 3117 ******************************************************************************/ 3118 3119 /* 3120 * A feedback loop based on Proportional-Integral-Derivative (PID) controller. 3121 * 3122 * The P term is refaulted/(evicted+protected) from a tier in the generation 3123 * currently being evicted; the I term is the exponential moving average of the 3124 * P term over the generations previously evicted, using the smoothing factor 3125 * 1/2; the D term isn't supported. 3126 * 3127 * The setpoint (SP) is always the first tier of one type; the process variable 3128 * (PV) is either any tier of the other type or any other tier of the same 3129 * type. 3130 * 3131 * The error is the difference between the SP and the PV; the correction is to 3132 * turn off protection when SP>PV or turn on protection when SP<PV. 3133 * 3134 * For future optimizations: 3135 * 1. The D term may discount the other two terms over time so that long-lived 3136 * generations can resist stale information. 3137 */ 3138 struct ctrl_pos { 3139 unsigned long refaulted; 3140 unsigned long total; 3141 int gain; 3142 }; 3143 3144 static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain, 3145 struct ctrl_pos *pos) 3146 { 3147 int i; 3148 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3149 int hist = lru_hist_from_seq(lrugen->min_seq[type]); 3150 3151 pos->gain = gain; 3152 pos->refaulted = pos->total = 0; 3153 3154 for (i = tier % MAX_NR_TIERS; i <= min(tier, MAX_NR_TIERS - 1); i++) { 3155 pos->refaulted += lrugen->avg_refaulted[type][i] + 3156 atomic_long_read(&lrugen->refaulted[hist][type][i]); 3157 pos->total += lrugen->avg_total[type][i] + 3158 lrugen->protected[hist][type][i] + 3159 atomic_long_read(&lrugen->evicted[hist][type][i]); 3160 } 3161 } 3162 3163 static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover) 3164 { 3165 int hist, tier; 3166 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3167 bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1; 3168 unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1; 3169 3170 lockdep_assert_held(&lruvec->lru_lock); 3171 3172 if (!carryover && !clear) 3173 return; 3174 3175 hist = lru_hist_from_seq(seq); 3176 3177 for (tier = 0; tier < MAX_NR_TIERS; tier++) { 3178 if (carryover) { 3179 unsigned long sum; 3180 3181 sum = lrugen->avg_refaulted[type][tier] + 3182 atomic_long_read(&lrugen->refaulted[hist][type][tier]); 3183 WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2); 3184 3185 sum = lrugen->avg_total[type][tier] + 3186 lrugen->protected[hist][type][tier] + 3187 atomic_long_read(&lrugen->evicted[hist][type][tier]); 3188 WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2); 3189 } 3190 3191 if (clear) { 3192 atomic_long_set(&lrugen->refaulted[hist][type][tier], 0); 3193 atomic_long_set(&lrugen->evicted[hist][type][tier], 0); 3194 WRITE_ONCE(lrugen->protected[hist][type][tier], 0); 3195 } 3196 } 3197 } 3198 3199 static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv) 3200 { 3201 /* 3202 * Return true if the PV has a limited number of refaults or a lower 3203 * refaulted/total than the SP. 3204 */ 3205 return pv->refaulted < MIN_LRU_BATCH || 3206 pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <= 3207 (sp->refaulted + 1) * pv->total * pv->gain; 3208 } 3209 3210 /****************************************************************************** 3211 * the aging 3212 ******************************************************************************/ 3213 3214 /* promote pages accessed through page tables */ 3215 static int folio_update_gen(struct folio *folio, int gen) 3216 { 3217 unsigned long new_flags, old_flags = READ_ONCE(folio->flags); 3218 3219 VM_WARN_ON_ONCE(gen >= MAX_NR_GENS); 3220 3221 /* see the comment on LRU_REFS_FLAGS */ 3222 if (!folio_test_referenced(folio) && !folio_test_workingset(folio)) { 3223 set_mask_bits(&folio->flags, LRU_REFS_MASK, BIT(PG_referenced)); 3224 return -1; 3225 } 3226 3227 do { 3228 /* lru_gen_del_folio() has isolated this page? */ 3229 if (!(old_flags & LRU_GEN_MASK)) 3230 return -1; 3231 3232 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_FLAGS); 3233 new_flags |= ((gen + 1UL) << LRU_GEN_PGOFF) | BIT(PG_workingset); 3234 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags)); 3235 3236 return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1; 3237 } 3238 3239 /* protect pages accessed multiple times through file descriptors */ 3240 static int folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming) 3241 { 3242 int type = folio_is_file_lru(folio); 3243 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3244 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]); 3245 unsigned long new_flags, old_flags = READ_ONCE(folio->flags); 3246 3247 VM_WARN_ON_ONCE_FOLIO(!(old_flags & LRU_GEN_MASK), folio); 3248 3249 do { 3250 new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1; 3251 /* folio_update_gen() has promoted this page? */ 3252 if (new_gen >= 0 && new_gen != old_gen) 3253 return new_gen; 3254 3255 new_gen = (old_gen + 1) % MAX_NR_GENS; 3256 3257 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_FLAGS); 3258 new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF; 3259 /* for folio_end_writeback() */ 3260 if (reclaiming) 3261 new_flags |= BIT(PG_reclaim); 3262 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags)); 3263 3264 lru_gen_update_size(lruvec, folio, old_gen, new_gen); 3265 3266 return new_gen; 3267 } 3268 3269 static void update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio, 3270 int old_gen, int new_gen) 3271 { 3272 int type = folio_is_file_lru(folio); 3273 int zone = folio_zonenum(folio); 3274 int delta = folio_nr_pages(folio); 3275 3276 VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS); 3277 VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS); 3278 3279 walk->batched++; 3280 3281 walk->nr_pages[old_gen][type][zone] -= delta; 3282 walk->nr_pages[new_gen][type][zone] += delta; 3283 } 3284 3285 static void reset_batch_size(struct lru_gen_mm_walk *walk) 3286 { 3287 int gen, type, zone; 3288 struct lruvec *lruvec = walk->lruvec; 3289 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3290 3291 walk->batched = 0; 3292 3293 for_each_gen_type_zone(gen, type, zone) { 3294 enum lru_list lru = type * LRU_INACTIVE_FILE; 3295 int delta = walk->nr_pages[gen][type][zone]; 3296 3297 if (!delta) 3298 continue; 3299 3300 walk->nr_pages[gen][type][zone] = 0; 3301 WRITE_ONCE(lrugen->nr_pages[gen][type][zone], 3302 lrugen->nr_pages[gen][type][zone] + delta); 3303 3304 if (lru_gen_is_active(lruvec, gen)) 3305 lru += LRU_ACTIVE; 3306 __update_lru_size(lruvec, lru, zone, delta); 3307 } 3308 } 3309 3310 static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args) 3311 { 3312 struct address_space *mapping; 3313 struct vm_area_struct *vma = args->vma; 3314 struct lru_gen_mm_walk *walk = args->private; 3315 3316 if (!vma_is_accessible(vma)) 3317 return true; 3318 3319 if (is_vm_hugetlb_page(vma)) 3320 return true; 3321 3322 if (!vma_has_recency(vma)) 3323 return true; 3324 3325 if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) 3326 return true; 3327 3328 if (vma == get_gate_vma(vma->vm_mm)) 3329 return true; 3330 3331 if (vma_is_anonymous(vma)) 3332 return !walk->swappiness; 3333 3334 if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping)) 3335 return true; 3336 3337 mapping = vma->vm_file->f_mapping; 3338 if (mapping_unevictable(mapping)) 3339 return true; 3340 3341 if (shmem_mapping(mapping)) 3342 return !walk->swappiness; 3343 3344 if (walk->swappiness > MAX_SWAPPINESS) 3345 return true; 3346 3347 /* to exclude special mappings like dax, etc. */ 3348 return !mapping->a_ops->read_folio; 3349 } 3350 3351 /* 3352 * Some userspace memory allocators map many single-page VMAs. Instead of 3353 * returning back to the PGD table for each of such VMAs, finish an entire PMD 3354 * table to reduce zigzags and improve cache performance. 3355 */ 3356 static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args, 3357 unsigned long *vm_start, unsigned long *vm_end) 3358 { 3359 unsigned long start = round_up(*vm_end, size); 3360 unsigned long end = (start | ~mask) + 1; 3361 VMA_ITERATOR(vmi, args->mm, start); 3362 3363 VM_WARN_ON_ONCE(mask & size); 3364 VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask)); 3365 3366 for_each_vma(vmi, args->vma) { 3367 if (end && end <= args->vma->vm_start) 3368 return false; 3369 3370 if (should_skip_vma(args->vma->vm_start, args->vma->vm_end, args)) 3371 continue; 3372 3373 *vm_start = max(start, args->vma->vm_start); 3374 *vm_end = min(end - 1, args->vma->vm_end - 1) + 1; 3375 3376 return true; 3377 } 3378 3379 return false; 3380 } 3381 3382 static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr, 3383 struct pglist_data *pgdat) 3384 { 3385 unsigned long pfn = pte_pfn(pte); 3386 3387 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end); 3388 3389 if (!pte_present(pte) || is_zero_pfn(pfn)) 3390 return -1; 3391 3392 if (WARN_ON_ONCE(pte_devmap(pte) || pte_special(pte))) 3393 return -1; 3394 3395 if (!pte_young(pte) && !mm_has_notifiers(vma->vm_mm)) 3396 return -1; 3397 3398 if (WARN_ON_ONCE(!pfn_valid(pfn))) 3399 return -1; 3400 3401 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat)) 3402 return -1; 3403 3404 return pfn; 3405 } 3406 3407 static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr, 3408 struct pglist_data *pgdat) 3409 { 3410 unsigned long pfn = pmd_pfn(pmd); 3411 3412 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end); 3413 3414 if (!pmd_present(pmd) || is_huge_zero_pmd(pmd)) 3415 return -1; 3416 3417 if (WARN_ON_ONCE(pmd_devmap(pmd))) 3418 return -1; 3419 3420 if (!pmd_young(pmd) && !mm_has_notifiers(vma->vm_mm)) 3421 return -1; 3422 3423 if (WARN_ON_ONCE(!pfn_valid(pfn))) 3424 return -1; 3425 3426 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat)) 3427 return -1; 3428 3429 return pfn; 3430 } 3431 3432 static struct folio *get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg, 3433 struct pglist_data *pgdat) 3434 { 3435 struct folio *folio = pfn_folio(pfn); 3436 3437 if (folio_lru_gen(folio) < 0) 3438 return NULL; 3439 3440 if (folio_nid(folio) != pgdat->node_id) 3441 return NULL; 3442 3443 if (folio_memcg(folio) != memcg) 3444 return NULL; 3445 3446 return folio; 3447 } 3448 3449 static bool suitable_to_scan(int total, int young) 3450 { 3451 int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8); 3452 3453 /* suitable if the average number of young PTEs per cacheline is >=1 */ 3454 return young * n >= total; 3455 } 3456 3457 static void walk_update_folio(struct lru_gen_mm_walk *walk, struct folio *folio, 3458 int new_gen, bool dirty) 3459 { 3460 int old_gen; 3461 3462 if (!folio) 3463 return; 3464 3465 if (dirty && !folio_test_dirty(folio) && 3466 !(folio_test_anon(folio) && folio_test_swapbacked(folio) && 3467 !folio_test_swapcache(folio))) 3468 folio_mark_dirty(folio); 3469 3470 if (walk) { 3471 old_gen = folio_update_gen(folio, new_gen); 3472 if (old_gen >= 0 && old_gen != new_gen) 3473 update_batch_size(walk, folio, old_gen, new_gen); 3474 } else if (lru_gen_set_refs(folio)) { 3475 old_gen = folio_lru_gen(folio); 3476 if (old_gen >= 0 && old_gen != new_gen) 3477 folio_activate(folio); 3478 } 3479 } 3480 3481 static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end, 3482 struct mm_walk *args) 3483 { 3484 int i; 3485 bool dirty; 3486 pte_t *pte; 3487 spinlock_t *ptl; 3488 unsigned long addr; 3489 int total = 0; 3490 int young = 0; 3491 struct folio *last = NULL; 3492 struct lru_gen_mm_walk *walk = args->private; 3493 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec); 3494 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 3495 DEFINE_MAX_SEQ(walk->lruvec); 3496 int gen = lru_gen_from_seq(max_seq); 3497 pmd_t pmdval; 3498 3499 pte = pte_offset_map_rw_nolock(args->mm, pmd, start & PMD_MASK, &pmdval, &ptl); 3500 if (!pte) 3501 return false; 3502 3503 if (!spin_trylock(ptl)) { 3504 pte_unmap(pte); 3505 return true; 3506 } 3507 3508 if (unlikely(!pmd_same(pmdval, pmdp_get_lockless(pmd)))) { 3509 pte_unmap_unlock(pte, ptl); 3510 return false; 3511 } 3512 3513 arch_enter_lazy_mmu_mode(); 3514 restart: 3515 for (i = pte_index(start), addr = start; addr != end; i++, addr += PAGE_SIZE) { 3516 unsigned long pfn; 3517 struct folio *folio; 3518 pte_t ptent = ptep_get(pte + i); 3519 3520 total++; 3521 walk->mm_stats[MM_LEAF_TOTAL]++; 3522 3523 pfn = get_pte_pfn(ptent, args->vma, addr, pgdat); 3524 if (pfn == -1) 3525 continue; 3526 3527 folio = get_pfn_folio(pfn, memcg, pgdat); 3528 if (!folio) 3529 continue; 3530 3531 if (!ptep_clear_young_notify(args->vma, addr, pte + i)) 3532 continue; 3533 3534 if (last != folio) { 3535 walk_update_folio(walk, last, gen, dirty); 3536 3537 last = folio; 3538 dirty = false; 3539 } 3540 3541 if (pte_dirty(ptent)) 3542 dirty = true; 3543 3544 young++; 3545 walk->mm_stats[MM_LEAF_YOUNG]++; 3546 } 3547 3548 walk_update_folio(walk, last, gen, dirty); 3549 last = NULL; 3550 3551 if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, &start, &end)) 3552 goto restart; 3553 3554 arch_leave_lazy_mmu_mode(); 3555 pte_unmap_unlock(pte, ptl); 3556 3557 return suitable_to_scan(total, young); 3558 } 3559 3560 static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma, 3561 struct mm_walk *args, unsigned long *bitmap, unsigned long *first) 3562 { 3563 int i; 3564 bool dirty; 3565 pmd_t *pmd; 3566 spinlock_t *ptl; 3567 struct folio *last = NULL; 3568 struct lru_gen_mm_walk *walk = args->private; 3569 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec); 3570 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 3571 DEFINE_MAX_SEQ(walk->lruvec); 3572 int gen = lru_gen_from_seq(max_seq); 3573 3574 VM_WARN_ON_ONCE(pud_leaf(*pud)); 3575 3576 /* try to batch at most 1+MIN_LRU_BATCH+1 entries */ 3577 if (*first == -1) { 3578 *first = addr; 3579 bitmap_zero(bitmap, MIN_LRU_BATCH); 3580 return; 3581 } 3582 3583 i = addr == -1 ? 0 : pmd_index(addr) - pmd_index(*first); 3584 if (i && i <= MIN_LRU_BATCH) { 3585 __set_bit(i - 1, bitmap); 3586 return; 3587 } 3588 3589 pmd = pmd_offset(pud, *first); 3590 3591 ptl = pmd_lockptr(args->mm, pmd); 3592 if (!spin_trylock(ptl)) 3593 goto done; 3594 3595 arch_enter_lazy_mmu_mode(); 3596 3597 do { 3598 unsigned long pfn; 3599 struct folio *folio; 3600 3601 /* don't round down the first address */ 3602 addr = i ? (*first & PMD_MASK) + i * PMD_SIZE : *first; 3603 3604 if (!pmd_present(pmd[i])) 3605 goto next; 3606 3607 if (!pmd_trans_huge(pmd[i])) { 3608 if (!walk->force_scan && should_clear_pmd_young() && 3609 !mm_has_notifiers(args->mm)) 3610 pmdp_test_and_clear_young(vma, addr, pmd + i); 3611 goto next; 3612 } 3613 3614 pfn = get_pmd_pfn(pmd[i], vma, addr, pgdat); 3615 if (pfn == -1) 3616 goto next; 3617 3618 folio = get_pfn_folio(pfn, memcg, pgdat); 3619 if (!folio) 3620 goto next; 3621 3622 if (!pmdp_clear_young_notify(vma, addr, pmd + i)) 3623 goto next; 3624 3625 if (last != folio) { 3626 walk_update_folio(walk, last, gen, dirty); 3627 3628 last = folio; 3629 dirty = false; 3630 } 3631 3632 if (pmd_dirty(pmd[i])) 3633 dirty = true; 3634 3635 walk->mm_stats[MM_LEAF_YOUNG]++; 3636 next: 3637 i = i > MIN_LRU_BATCH ? 0 : find_next_bit(bitmap, MIN_LRU_BATCH, i) + 1; 3638 } while (i <= MIN_LRU_BATCH); 3639 3640 walk_update_folio(walk, last, gen, dirty); 3641 3642 arch_leave_lazy_mmu_mode(); 3643 spin_unlock(ptl); 3644 done: 3645 *first = -1; 3646 } 3647 3648 static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end, 3649 struct mm_walk *args) 3650 { 3651 int i; 3652 pmd_t *pmd; 3653 unsigned long next; 3654 unsigned long addr; 3655 struct vm_area_struct *vma; 3656 DECLARE_BITMAP(bitmap, MIN_LRU_BATCH); 3657 unsigned long first = -1; 3658 struct lru_gen_mm_walk *walk = args->private; 3659 struct lru_gen_mm_state *mm_state = get_mm_state(walk->lruvec); 3660 3661 VM_WARN_ON_ONCE(pud_leaf(*pud)); 3662 3663 /* 3664 * Finish an entire PMD in two passes: the first only reaches to PTE 3665 * tables to avoid taking the PMD lock; the second, if necessary, takes 3666 * the PMD lock to clear the accessed bit in PMD entries. 3667 */ 3668 pmd = pmd_offset(pud, start & PUD_MASK); 3669 restart: 3670 /* walk_pte_range() may call get_next_vma() */ 3671 vma = args->vma; 3672 for (i = pmd_index(start), addr = start; addr != end; i++, addr = next) { 3673 pmd_t val = pmdp_get_lockless(pmd + i); 3674 3675 next = pmd_addr_end(addr, end); 3676 3677 if (!pmd_present(val) || is_huge_zero_pmd(val)) { 3678 walk->mm_stats[MM_LEAF_TOTAL]++; 3679 continue; 3680 } 3681 3682 if (pmd_trans_huge(val)) { 3683 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 3684 unsigned long pfn = get_pmd_pfn(val, vma, addr, pgdat); 3685 3686 walk->mm_stats[MM_LEAF_TOTAL]++; 3687 3688 if (pfn != -1) 3689 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first); 3690 continue; 3691 } 3692 3693 if (!walk->force_scan && should_clear_pmd_young() && 3694 !mm_has_notifiers(args->mm)) { 3695 if (!pmd_young(val)) 3696 continue; 3697 3698 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first); 3699 } 3700 3701 if (!walk->force_scan && !test_bloom_filter(mm_state, walk->seq, pmd + i)) 3702 continue; 3703 3704 walk->mm_stats[MM_NONLEAF_FOUND]++; 3705 3706 if (!walk_pte_range(&val, addr, next, args)) 3707 continue; 3708 3709 walk->mm_stats[MM_NONLEAF_ADDED]++; 3710 3711 /* carry over to the next generation */ 3712 update_bloom_filter(mm_state, walk->seq + 1, pmd + i); 3713 } 3714 3715 walk_pmd_range_locked(pud, -1, vma, args, bitmap, &first); 3716 3717 if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, &start, &end)) 3718 goto restart; 3719 } 3720 3721 static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end, 3722 struct mm_walk *args) 3723 { 3724 int i; 3725 pud_t *pud; 3726 unsigned long addr; 3727 unsigned long next; 3728 struct lru_gen_mm_walk *walk = args->private; 3729 3730 VM_WARN_ON_ONCE(p4d_leaf(*p4d)); 3731 3732 pud = pud_offset(p4d, start & P4D_MASK); 3733 restart: 3734 for (i = pud_index(start), addr = start; addr != end; i++, addr = next) { 3735 pud_t val = READ_ONCE(pud[i]); 3736 3737 next = pud_addr_end(addr, end); 3738 3739 if (!pud_present(val) || WARN_ON_ONCE(pud_leaf(val))) 3740 continue; 3741 3742 walk_pmd_range(&val, addr, next, args); 3743 3744 if (need_resched() || walk->batched >= MAX_LRU_BATCH) { 3745 end = (addr | ~PUD_MASK) + 1; 3746 goto done; 3747 } 3748 } 3749 3750 if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, &start, &end)) 3751 goto restart; 3752 3753 end = round_up(end, P4D_SIZE); 3754 done: 3755 if (!end || !args->vma) 3756 return 1; 3757 3758 walk->next_addr = max(end, args->vma->vm_start); 3759 3760 return -EAGAIN; 3761 } 3762 3763 static void walk_mm(struct mm_struct *mm, struct lru_gen_mm_walk *walk) 3764 { 3765 static const struct mm_walk_ops mm_walk_ops = { 3766 .test_walk = should_skip_vma, 3767 .p4d_entry = walk_pud_range, 3768 .walk_lock = PGWALK_RDLOCK, 3769 }; 3770 int err; 3771 struct lruvec *lruvec = walk->lruvec; 3772 3773 walk->next_addr = FIRST_USER_ADDRESS; 3774 3775 do { 3776 DEFINE_MAX_SEQ(lruvec); 3777 3778 err = -EBUSY; 3779 3780 /* another thread might have called inc_max_seq() */ 3781 if (walk->seq != max_seq) 3782 break; 3783 3784 /* the caller might be holding the lock for write */ 3785 if (mmap_read_trylock(mm)) { 3786 err = walk_page_range(mm, walk->next_addr, ULONG_MAX, &mm_walk_ops, walk); 3787 3788 mmap_read_unlock(mm); 3789 } 3790 3791 if (walk->batched) { 3792 spin_lock_irq(&lruvec->lru_lock); 3793 reset_batch_size(walk); 3794 spin_unlock_irq(&lruvec->lru_lock); 3795 } 3796 3797 cond_resched(); 3798 } while (err == -EAGAIN); 3799 } 3800 3801 static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat, bool force_alloc) 3802 { 3803 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk; 3804 3805 if (pgdat && current_is_kswapd()) { 3806 VM_WARN_ON_ONCE(walk); 3807 3808 walk = &pgdat->mm_walk; 3809 } else if (!walk && force_alloc) { 3810 VM_WARN_ON_ONCE(current_is_kswapd()); 3811 3812 walk = kzalloc(sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN); 3813 } 3814 3815 current->reclaim_state->mm_walk = walk; 3816 3817 return walk; 3818 } 3819 3820 static void clear_mm_walk(void) 3821 { 3822 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk; 3823 3824 VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages))); 3825 VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats))); 3826 3827 current->reclaim_state->mm_walk = NULL; 3828 3829 if (!current_is_kswapd()) 3830 kfree(walk); 3831 } 3832 3833 static bool inc_min_seq(struct lruvec *lruvec, int type, int swappiness) 3834 { 3835 int zone; 3836 int remaining = MAX_LRU_BATCH; 3837 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3838 int hist = lru_hist_from_seq(lrugen->min_seq[type]); 3839 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]); 3840 3841 if (type ? swappiness > MAX_SWAPPINESS : !swappiness) 3842 goto done; 3843 3844 /* prevent cold/hot inversion if the type is evictable */ 3845 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 3846 struct list_head *head = &lrugen->folios[old_gen][type][zone]; 3847 3848 while (!list_empty(head)) { 3849 struct folio *folio = lru_to_folio(head); 3850 int refs = folio_lru_refs(folio); 3851 bool workingset = folio_test_workingset(folio); 3852 3853 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 3854 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio); 3855 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 3856 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio); 3857 3858 new_gen = folio_inc_gen(lruvec, folio, false); 3859 list_move_tail(&folio->lru, &lrugen->folios[new_gen][type][zone]); 3860 3861 /* don't count the workingset being lazily promoted */ 3862 if (refs + workingset != BIT(LRU_REFS_WIDTH) + 1) { 3863 int tier = lru_tier_from_refs(refs, workingset); 3864 int delta = folio_nr_pages(folio); 3865 3866 WRITE_ONCE(lrugen->protected[hist][type][tier], 3867 lrugen->protected[hist][type][tier] + delta); 3868 } 3869 3870 if (!--remaining) 3871 return false; 3872 } 3873 } 3874 done: 3875 reset_ctrl_pos(lruvec, type, true); 3876 WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1); 3877 3878 return true; 3879 } 3880 3881 static bool try_to_inc_min_seq(struct lruvec *lruvec, int swappiness) 3882 { 3883 int gen, type, zone; 3884 bool success = false; 3885 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3886 DEFINE_MIN_SEQ(lruvec); 3887 3888 VM_WARN_ON_ONCE(!seq_is_valid(lruvec)); 3889 3890 /* find the oldest populated generation */ 3891 for_each_evictable_type(type, swappiness) { 3892 while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) { 3893 gen = lru_gen_from_seq(min_seq[type]); 3894 3895 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 3896 if (!list_empty(&lrugen->folios[gen][type][zone])) 3897 goto next; 3898 } 3899 3900 min_seq[type]++; 3901 } 3902 next: 3903 ; 3904 } 3905 3906 /* see the comment on lru_gen_folio */ 3907 if (swappiness && swappiness <= MAX_SWAPPINESS) { 3908 unsigned long seq = lrugen->max_seq - MIN_NR_GENS; 3909 3910 if (min_seq[LRU_GEN_ANON] > seq && min_seq[LRU_GEN_FILE] < seq) 3911 min_seq[LRU_GEN_ANON] = seq; 3912 else if (min_seq[LRU_GEN_FILE] > seq && min_seq[LRU_GEN_ANON] < seq) 3913 min_seq[LRU_GEN_FILE] = seq; 3914 } 3915 3916 for_each_evictable_type(type, swappiness) { 3917 if (min_seq[type] <= lrugen->min_seq[type]) 3918 continue; 3919 3920 reset_ctrl_pos(lruvec, type, true); 3921 WRITE_ONCE(lrugen->min_seq[type], min_seq[type]); 3922 success = true; 3923 } 3924 3925 return success; 3926 } 3927 3928 static bool inc_max_seq(struct lruvec *lruvec, unsigned long seq, int swappiness) 3929 { 3930 bool success; 3931 int prev, next; 3932 int type, zone; 3933 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3934 restart: 3935 if (seq < READ_ONCE(lrugen->max_seq)) 3936 return false; 3937 3938 spin_lock_irq(&lruvec->lru_lock); 3939 3940 VM_WARN_ON_ONCE(!seq_is_valid(lruvec)); 3941 3942 success = seq == lrugen->max_seq; 3943 if (!success) 3944 goto unlock; 3945 3946 for (type = 0; type < ANON_AND_FILE; type++) { 3947 if (get_nr_gens(lruvec, type) != MAX_NR_GENS) 3948 continue; 3949 3950 if (inc_min_seq(lruvec, type, swappiness)) 3951 continue; 3952 3953 spin_unlock_irq(&lruvec->lru_lock); 3954 cond_resched(); 3955 goto restart; 3956 } 3957 3958 /* 3959 * Update the active/inactive LRU sizes for compatibility. Both sides of 3960 * the current max_seq need to be covered, since max_seq+1 can overlap 3961 * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do 3962 * overlap, cold/hot inversion happens. 3963 */ 3964 prev = lru_gen_from_seq(lrugen->max_seq - 1); 3965 next = lru_gen_from_seq(lrugen->max_seq + 1); 3966 3967 for (type = 0; type < ANON_AND_FILE; type++) { 3968 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 3969 enum lru_list lru = type * LRU_INACTIVE_FILE; 3970 long delta = lrugen->nr_pages[prev][type][zone] - 3971 lrugen->nr_pages[next][type][zone]; 3972 3973 if (!delta) 3974 continue; 3975 3976 __update_lru_size(lruvec, lru, zone, delta); 3977 __update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta); 3978 } 3979 } 3980 3981 for (type = 0; type < ANON_AND_FILE; type++) 3982 reset_ctrl_pos(lruvec, type, false); 3983 3984 WRITE_ONCE(lrugen->timestamps[next], jiffies); 3985 /* make sure preceding modifications appear */ 3986 smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1); 3987 unlock: 3988 spin_unlock_irq(&lruvec->lru_lock); 3989 3990 return success; 3991 } 3992 3993 static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long seq, 3994 int swappiness, bool force_scan) 3995 { 3996 bool success; 3997 struct lru_gen_mm_walk *walk; 3998 struct mm_struct *mm = NULL; 3999 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4000 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 4001 4002 VM_WARN_ON_ONCE(seq > READ_ONCE(lrugen->max_seq)); 4003 4004 if (!mm_state) 4005 return inc_max_seq(lruvec, seq, swappiness); 4006 4007 /* see the comment in iterate_mm_list() */ 4008 if (seq <= READ_ONCE(mm_state->seq)) 4009 return false; 4010 4011 /* 4012 * If the hardware doesn't automatically set the accessed bit, fallback 4013 * to lru_gen_look_around(), which only clears the accessed bit in a 4014 * handful of PTEs. Spreading the work out over a period of time usually 4015 * is less efficient, but it avoids bursty page faults. 4016 */ 4017 if (!should_walk_mmu()) { 4018 success = iterate_mm_list_nowalk(lruvec, seq); 4019 goto done; 4020 } 4021 4022 walk = set_mm_walk(NULL, true); 4023 if (!walk) { 4024 success = iterate_mm_list_nowalk(lruvec, seq); 4025 goto done; 4026 } 4027 4028 walk->lruvec = lruvec; 4029 walk->seq = seq; 4030 walk->swappiness = swappiness; 4031 walk->force_scan = force_scan; 4032 4033 do { 4034 success = iterate_mm_list(walk, &mm); 4035 if (mm) 4036 walk_mm(mm, walk); 4037 } while (mm); 4038 done: 4039 if (success) { 4040 success = inc_max_seq(lruvec, seq, swappiness); 4041 WARN_ON_ONCE(!success); 4042 } 4043 4044 return success; 4045 } 4046 4047 /****************************************************************************** 4048 * working set protection 4049 ******************************************************************************/ 4050 4051 static void set_initial_priority(struct pglist_data *pgdat, struct scan_control *sc) 4052 { 4053 int priority; 4054 unsigned long reclaimable; 4055 4056 if (sc->priority != DEF_PRIORITY || sc->nr_to_reclaim < MIN_LRU_BATCH) 4057 return; 4058 /* 4059 * Determine the initial priority based on 4060 * (total >> priority) * reclaimed_to_scanned_ratio = nr_to_reclaim, 4061 * where reclaimed_to_scanned_ratio = inactive / total. 4062 */ 4063 reclaimable = node_page_state(pgdat, NR_INACTIVE_FILE); 4064 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc)) 4065 reclaimable += node_page_state(pgdat, NR_INACTIVE_ANON); 4066 4067 /* round down reclaimable and round up sc->nr_to_reclaim */ 4068 priority = fls_long(reclaimable) - 1 - fls_long(sc->nr_to_reclaim - 1); 4069 4070 /* 4071 * The estimation is based on LRU pages only, so cap it to prevent 4072 * overshoots of shrinker objects by large margins. 4073 */ 4074 sc->priority = clamp(priority, DEF_PRIORITY / 2, DEF_PRIORITY); 4075 } 4076 4077 static bool lruvec_is_sizable(struct lruvec *lruvec, struct scan_control *sc) 4078 { 4079 int gen, type, zone; 4080 unsigned long total = 0; 4081 int swappiness = get_swappiness(lruvec, sc); 4082 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4083 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4084 DEFINE_MAX_SEQ(lruvec); 4085 DEFINE_MIN_SEQ(lruvec); 4086 4087 for_each_evictable_type(type, swappiness) { 4088 unsigned long seq; 4089 4090 for (seq = min_seq[type]; seq <= max_seq; seq++) { 4091 gen = lru_gen_from_seq(seq); 4092 4093 for (zone = 0; zone < MAX_NR_ZONES; zone++) 4094 total += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L); 4095 } 4096 } 4097 4098 /* whether the size is big enough to be helpful */ 4099 return mem_cgroup_online(memcg) ? (total >> sc->priority) : total; 4100 } 4101 4102 static bool lruvec_is_reclaimable(struct lruvec *lruvec, struct scan_control *sc, 4103 unsigned long min_ttl) 4104 { 4105 int gen; 4106 unsigned long birth; 4107 int swappiness = get_swappiness(lruvec, sc); 4108 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4109 DEFINE_MIN_SEQ(lruvec); 4110 4111 if (mem_cgroup_below_min(NULL, memcg)) 4112 return false; 4113 4114 if (!lruvec_is_sizable(lruvec, sc)) 4115 return false; 4116 4117 gen = lru_gen_from_seq(evictable_min_seq(min_seq, swappiness)); 4118 birth = READ_ONCE(lruvec->lrugen.timestamps[gen]); 4119 4120 return time_is_before_jiffies(birth + min_ttl); 4121 } 4122 4123 /* to protect the working set of the last N jiffies */ 4124 static unsigned long lru_gen_min_ttl __read_mostly; 4125 4126 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc) 4127 { 4128 struct mem_cgroup *memcg; 4129 unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl); 4130 bool reclaimable = !min_ttl; 4131 4132 VM_WARN_ON_ONCE(!current_is_kswapd()); 4133 4134 set_initial_priority(pgdat, sc); 4135 4136 memcg = mem_cgroup_iter(NULL, NULL, NULL); 4137 do { 4138 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 4139 4140 mem_cgroup_calculate_protection(NULL, memcg); 4141 4142 if (!reclaimable) 4143 reclaimable = lruvec_is_reclaimable(lruvec, sc, min_ttl); 4144 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL))); 4145 4146 /* 4147 * The main goal is to OOM kill if every generation from all memcgs is 4148 * younger than min_ttl. However, another possibility is all memcgs are 4149 * either too small or below min. 4150 */ 4151 if (!reclaimable && mutex_trylock(&oom_lock)) { 4152 struct oom_control oc = { 4153 .gfp_mask = sc->gfp_mask, 4154 }; 4155 4156 out_of_memory(&oc); 4157 4158 mutex_unlock(&oom_lock); 4159 } 4160 } 4161 4162 /****************************************************************************** 4163 * rmap/PT walk feedback 4164 ******************************************************************************/ 4165 4166 /* 4167 * This function exploits spatial locality when shrink_folio_list() walks the 4168 * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If 4169 * the scan was done cacheline efficiently, it adds the PMD entry pointing to 4170 * the PTE table to the Bloom filter. This forms a feedback loop between the 4171 * eviction and the aging. 4172 */ 4173 bool lru_gen_look_around(struct page_vma_mapped_walk *pvmw) 4174 { 4175 int i; 4176 bool dirty; 4177 unsigned long start; 4178 unsigned long end; 4179 struct lru_gen_mm_walk *walk; 4180 struct folio *last = NULL; 4181 int young = 1; 4182 pte_t *pte = pvmw->pte; 4183 unsigned long addr = pvmw->address; 4184 struct vm_area_struct *vma = pvmw->vma; 4185 struct folio *folio = pfn_folio(pvmw->pfn); 4186 struct mem_cgroup *memcg = folio_memcg(folio); 4187 struct pglist_data *pgdat = folio_pgdat(folio); 4188 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 4189 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 4190 DEFINE_MAX_SEQ(lruvec); 4191 int gen = lru_gen_from_seq(max_seq); 4192 4193 lockdep_assert_held(pvmw->ptl); 4194 VM_WARN_ON_ONCE_FOLIO(folio_test_lru(folio), folio); 4195 4196 if (!ptep_clear_young_notify(vma, addr, pte)) 4197 return false; 4198 4199 if (spin_is_contended(pvmw->ptl)) 4200 return true; 4201 4202 /* exclude special VMAs containing anon pages from COW */ 4203 if (vma->vm_flags & VM_SPECIAL) 4204 return true; 4205 4206 /* avoid taking the LRU lock under the PTL when possible */ 4207 walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL; 4208 4209 start = max(addr & PMD_MASK, vma->vm_start); 4210 end = min(addr | ~PMD_MASK, vma->vm_end - 1) + 1; 4211 4212 if (end - start == PAGE_SIZE) 4213 return true; 4214 4215 if (end - start > MIN_LRU_BATCH * PAGE_SIZE) { 4216 if (addr - start < MIN_LRU_BATCH * PAGE_SIZE / 2) 4217 end = start + MIN_LRU_BATCH * PAGE_SIZE; 4218 else if (end - addr < MIN_LRU_BATCH * PAGE_SIZE / 2) 4219 start = end - MIN_LRU_BATCH * PAGE_SIZE; 4220 else { 4221 start = addr - MIN_LRU_BATCH * PAGE_SIZE / 2; 4222 end = addr + MIN_LRU_BATCH * PAGE_SIZE / 2; 4223 } 4224 } 4225 4226 arch_enter_lazy_mmu_mode(); 4227 4228 pte -= (addr - start) / PAGE_SIZE; 4229 4230 for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) { 4231 unsigned long pfn; 4232 pte_t ptent = ptep_get(pte + i); 4233 4234 pfn = get_pte_pfn(ptent, vma, addr, pgdat); 4235 if (pfn == -1) 4236 continue; 4237 4238 folio = get_pfn_folio(pfn, memcg, pgdat); 4239 if (!folio) 4240 continue; 4241 4242 if (!ptep_clear_young_notify(vma, addr, pte + i)) 4243 continue; 4244 4245 if (last != folio) { 4246 walk_update_folio(walk, last, gen, dirty); 4247 4248 last = folio; 4249 dirty = false; 4250 } 4251 4252 if (pte_dirty(ptent)) 4253 dirty = true; 4254 4255 young++; 4256 } 4257 4258 walk_update_folio(walk, last, gen, dirty); 4259 4260 arch_leave_lazy_mmu_mode(); 4261 4262 /* feedback from rmap walkers to page table walkers */ 4263 if (mm_state && suitable_to_scan(i, young)) 4264 update_bloom_filter(mm_state, max_seq, pvmw->pmd); 4265 4266 return true; 4267 } 4268 4269 /****************************************************************************** 4270 * memcg LRU 4271 ******************************************************************************/ 4272 4273 /* see the comment on MEMCG_NR_GENS */ 4274 enum { 4275 MEMCG_LRU_NOP, 4276 MEMCG_LRU_HEAD, 4277 MEMCG_LRU_TAIL, 4278 MEMCG_LRU_OLD, 4279 MEMCG_LRU_YOUNG, 4280 }; 4281 4282 static void lru_gen_rotate_memcg(struct lruvec *lruvec, int op) 4283 { 4284 int seg; 4285 int old, new; 4286 unsigned long flags; 4287 int bin = get_random_u32_below(MEMCG_NR_BINS); 4288 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 4289 4290 spin_lock_irqsave(&pgdat->memcg_lru.lock, flags); 4291 4292 VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list)); 4293 4294 seg = 0; 4295 new = old = lruvec->lrugen.gen; 4296 4297 /* see the comment on MEMCG_NR_GENS */ 4298 if (op == MEMCG_LRU_HEAD) 4299 seg = MEMCG_LRU_HEAD; 4300 else if (op == MEMCG_LRU_TAIL) 4301 seg = MEMCG_LRU_TAIL; 4302 else if (op == MEMCG_LRU_OLD) 4303 new = get_memcg_gen(pgdat->memcg_lru.seq); 4304 else if (op == MEMCG_LRU_YOUNG) 4305 new = get_memcg_gen(pgdat->memcg_lru.seq + 1); 4306 else 4307 VM_WARN_ON_ONCE(true); 4308 4309 WRITE_ONCE(lruvec->lrugen.seg, seg); 4310 WRITE_ONCE(lruvec->lrugen.gen, new); 4311 4312 hlist_nulls_del_rcu(&lruvec->lrugen.list); 4313 4314 if (op == MEMCG_LRU_HEAD || op == MEMCG_LRU_OLD) 4315 hlist_nulls_add_head_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]); 4316 else 4317 hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]); 4318 4319 pgdat->memcg_lru.nr_memcgs[old]--; 4320 pgdat->memcg_lru.nr_memcgs[new]++; 4321 4322 if (!pgdat->memcg_lru.nr_memcgs[old] && old == get_memcg_gen(pgdat->memcg_lru.seq)) 4323 WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1); 4324 4325 spin_unlock_irqrestore(&pgdat->memcg_lru.lock, flags); 4326 } 4327 4328 #ifdef CONFIG_MEMCG 4329 4330 void lru_gen_online_memcg(struct mem_cgroup *memcg) 4331 { 4332 int gen; 4333 int nid; 4334 int bin = get_random_u32_below(MEMCG_NR_BINS); 4335 4336 for_each_node(nid) { 4337 struct pglist_data *pgdat = NODE_DATA(nid); 4338 struct lruvec *lruvec = get_lruvec(memcg, nid); 4339 4340 spin_lock_irq(&pgdat->memcg_lru.lock); 4341 4342 VM_WARN_ON_ONCE(!hlist_nulls_unhashed(&lruvec->lrugen.list)); 4343 4344 gen = get_memcg_gen(pgdat->memcg_lru.seq); 4345 4346 lruvec->lrugen.gen = gen; 4347 4348 hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[gen][bin]); 4349 pgdat->memcg_lru.nr_memcgs[gen]++; 4350 4351 spin_unlock_irq(&pgdat->memcg_lru.lock); 4352 } 4353 } 4354 4355 void lru_gen_offline_memcg(struct mem_cgroup *memcg) 4356 { 4357 int nid; 4358 4359 for_each_node(nid) { 4360 struct lruvec *lruvec = get_lruvec(memcg, nid); 4361 4362 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_OLD); 4363 } 4364 } 4365 4366 void lru_gen_release_memcg(struct mem_cgroup *memcg) 4367 { 4368 int gen; 4369 int nid; 4370 4371 for_each_node(nid) { 4372 struct pglist_data *pgdat = NODE_DATA(nid); 4373 struct lruvec *lruvec = get_lruvec(memcg, nid); 4374 4375 spin_lock_irq(&pgdat->memcg_lru.lock); 4376 4377 if (hlist_nulls_unhashed(&lruvec->lrugen.list)) 4378 goto unlock; 4379 4380 gen = lruvec->lrugen.gen; 4381 4382 hlist_nulls_del_init_rcu(&lruvec->lrugen.list); 4383 pgdat->memcg_lru.nr_memcgs[gen]--; 4384 4385 if (!pgdat->memcg_lru.nr_memcgs[gen] && gen == get_memcg_gen(pgdat->memcg_lru.seq)) 4386 WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1); 4387 unlock: 4388 spin_unlock_irq(&pgdat->memcg_lru.lock); 4389 } 4390 } 4391 4392 void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid) 4393 { 4394 struct lruvec *lruvec = get_lruvec(memcg, nid); 4395 4396 /* see the comment on MEMCG_NR_GENS */ 4397 if (READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_HEAD) 4398 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_HEAD); 4399 } 4400 4401 #endif /* CONFIG_MEMCG */ 4402 4403 /****************************************************************************** 4404 * the eviction 4405 ******************************************************************************/ 4406 4407 static bool sort_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc, 4408 int tier_idx) 4409 { 4410 bool success; 4411 bool dirty, writeback; 4412 int gen = folio_lru_gen(folio); 4413 int type = folio_is_file_lru(folio); 4414 int zone = folio_zonenum(folio); 4415 int delta = folio_nr_pages(folio); 4416 int refs = folio_lru_refs(folio); 4417 bool workingset = folio_test_workingset(folio); 4418 int tier = lru_tier_from_refs(refs, workingset); 4419 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4420 4421 VM_WARN_ON_ONCE_FOLIO(gen >= MAX_NR_GENS, folio); 4422 4423 /* unevictable */ 4424 if (!folio_evictable(folio)) { 4425 success = lru_gen_del_folio(lruvec, folio, true); 4426 VM_WARN_ON_ONCE_FOLIO(!success, folio); 4427 folio_set_unevictable(folio); 4428 lruvec_add_folio(lruvec, folio); 4429 __count_vm_events(UNEVICTABLE_PGCULLED, delta); 4430 return true; 4431 } 4432 4433 /* promoted */ 4434 if (gen != lru_gen_from_seq(lrugen->min_seq[type])) { 4435 list_move(&folio->lru, &lrugen->folios[gen][type][zone]); 4436 return true; 4437 } 4438 4439 /* protected */ 4440 if (tier > tier_idx || refs + workingset == BIT(LRU_REFS_WIDTH) + 1) { 4441 gen = folio_inc_gen(lruvec, folio, false); 4442 list_move(&folio->lru, &lrugen->folios[gen][type][zone]); 4443 4444 /* don't count the workingset being lazily promoted */ 4445 if (refs + workingset != BIT(LRU_REFS_WIDTH) + 1) { 4446 int hist = lru_hist_from_seq(lrugen->min_seq[type]); 4447 4448 WRITE_ONCE(lrugen->protected[hist][type][tier], 4449 lrugen->protected[hist][type][tier] + delta); 4450 } 4451 return true; 4452 } 4453 4454 /* ineligible */ 4455 if (!folio_test_lru(folio) || zone > sc->reclaim_idx) { 4456 gen = folio_inc_gen(lruvec, folio, false); 4457 list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]); 4458 return true; 4459 } 4460 4461 dirty = folio_test_dirty(folio); 4462 writeback = folio_test_writeback(folio); 4463 if (type == LRU_GEN_FILE && dirty) { 4464 sc->nr.file_taken += delta; 4465 if (!writeback) 4466 sc->nr.unqueued_dirty += delta; 4467 } 4468 4469 /* waiting for writeback */ 4470 if (writeback || (type == LRU_GEN_FILE && dirty)) { 4471 gen = folio_inc_gen(lruvec, folio, true); 4472 list_move(&folio->lru, &lrugen->folios[gen][type][zone]); 4473 return true; 4474 } 4475 4476 return false; 4477 } 4478 4479 static bool isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc) 4480 { 4481 bool success; 4482 4483 /* swap constrained */ 4484 if (!(sc->gfp_mask & __GFP_IO) && 4485 (folio_test_dirty(folio) || 4486 (folio_test_anon(folio) && !folio_test_swapcache(folio)))) 4487 return false; 4488 4489 /* raced with release_pages() */ 4490 if (!folio_try_get(folio)) 4491 return false; 4492 4493 /* raced with another isolation */ 4494 if (!folio_test_clear_lru(folio)) { 4495 folio_put(folio); 4496 return false; 4497 } 4498 4499 /* see the comment on LRU_REFS_FLAGS */ 4500 if (!folio_test_referenced(folio)) 4501 set_mask_bits(&folio->flags, LRU_REFS_MASK, 0); 4502 4503 /* for shrink_folio_list() */ 4504 folio_clear_reclaim(folio); 4505 4506 success = lru_gen_del_folio(lruvec, folio, true); 4507 VM_WARN_ON_ONCE_FOLIO(!success, folio); 4508 4509 return true; 4510 } 4511 4512 static int scan_folios(struct lruvec *lruvec, struct scan_control *sc, 4513 int type, int tier, struct list_head *list) 4514 { 4515 int i; 4516 int gen; 4517 enum vm_event_item item; 4518 int sorted = 0; 4519 int scanned = 0; 4520 int isolated = 0; 4521 int skipped = 0; 4522 int remaining = MAX_LRU_BATCH; 4523 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4524 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4525 4526 VM_WARN_ON_ONCE(!list_empty(list)); 4527 4528 if (get_nr_gens(lruvec, type) == MIN_NR_GENS) 4529 return 0; 4530 4531 gen = lru_gen_from_seq(lrugen->min_seq[type]); 4532 4533 for (i = MAX_NR_ZONES; i > 0; i--) { 4534 LIST_HEAD(moved); 4535 int skipped_zone = 0; 4536 int zone = (sc->reclaim_idx + i) % MAX_NR_ZONES; 4537 struct list_head *head = &lrugen->folios[gen][type][zone]; 4538 4539 while (!list_empty(head)) { 4540 struct folio *folio = lru_to_folio(head); 4541 int delta = folio_nr_pages(folio); 4542 4543 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 4544 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio); 4545 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 4546 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio); 4547 4548 scanned += delta; 4549 4550 if (sort_folio(lruvec, folio, sc, tier)) 4551 sorted += delta; 4552 else if (isolate_folio(lruvec, folio, sc)) { 4553 list_add(&folio->lru, list); 4554 isolated += delta; 4555 } else { 4556 list_move(&folio->lru, &moved); 4557 skipped_zone += delta; 4558 } 4559 4560 if (!--remaining || max(isolated, skipped_zone) >= MIN_LRU_BATCH) 4561 break; 4562 } 4563 4564 if (skipped_zone) { 4565 list_splice(&moved, head); 4566 __count_zid_vm_events(PGSCAN_SKIP, zone, skipped_zone); 4567 skipped += skipped_zone; 4568 } 4569 4570 if (!remaining || isolated >= MIN_LRU_BATCH) 4571 break; 4572 } 4573 4574 item = PGSCAN_KSWAPD + reclaimer_offset(); 4575 if (!cgroup_reclaim(sc)) { 4576 __count_vm_events(item, isolated); 4577 __count_vm_events(PGREFILL, sorted); 4578 } 4579 __count_memcg_events(memcg, item, isolated); 4580 __count_memcg_events(memcg, PGREFILL, sorted); 4581 __count_vm_events(PGSCAN_ANON + type, isolated); 4582 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, MAX_LRU_BATCH, 4583 scanned, skipped, isolated, 4584 type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON); 4585 if (type == LRU_GEN_FILE) 4586 sc->nr.file_taken += isolated; 4587 /* 4588 * There might not be eligible folios due to reclaim_idx. Check the 4589 * remaining to prevent livelock if it's not making progress. 4590 */ 4591 return isolated || !remaining ? scanned : 0; 4592 } 4593 4594 static int get_tier_idx(struct lruvec *lruvec, int type) 4595 { 4596 int tier; 4597 struct ctrl_pos sp, pv; 4598 4599 /* 4600 * To leave a margin for fluctuations, use a larger gain factor (2:3). 4601 * This value is chosen because any other tier would have at least twice 4602 * as many refaults as the first tier. 4603 */ 4604 read_ctrl_pos(lruvec, type, 0, 2, &sp); 4605 for (tier = 1; tier < MAX_NR_TIERS; tier++) { 4606 read_ctrl_pos(lruvec, type, tier, 3, &pv); 4607 if (!positive_ctrl_err(&sp, &pv)) 4608 break; 4609 } 4610 4611 return tier - 1; 4612 } 4613 4614 static int get_type_to_scan(struct lruvec *lruvec, int swappiness) 4615 { 4616 struct ctrl_pos sp, pv; 4617 4618 if (swappiness <= MIN_SWAPPINESS + 1) 4619 return LRU_GEN_FILE; 4620 4621 if (swappiness >= MAX_SWAPPINESS) 4622 return LRU_GEN_ANON; 4623 /* 4624 * Compare the sum of all tiers of anon with that of file to determine 4625 * which type to scan. 4626 */ 4627 read_ctrl_pos(lruvec, LRU_GEN_ANON, MAX_NR_TIERS, swappiness, &sp); 4628 read_ctrl_pos(lruvec, LRU_GEN_FILE, MAX_NR_TIERS, MAX_SWAPPINESS - swappiness, &pv); 4629 4630 return positive_ctrl_err(&sp, &pv); 4631 } 4632 4633 static int isolate_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness, 4634 int *type_scanned, struct list_head *list) 4635 { 4636 int i; 4637 int type = get_type_to_scan(lruvec, swappiness); 4638 4639 for_each_evictable_type(i, swappiness) { 4640 int scanned; 4641 int tier = get_tier_idx(lruvec, type); 4642 4643 *type_scanned = type; 4644 4645 scanned = scan_folios(lruvec, sc, type, tier, list); 4646 if (scanned) 4647 return scanned; 4648 4649 type = !type; 4650 } 4651 4652 return 0; 4653 } 4654 4655 static int evict_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness) 4656 { 4657 int type; 4658 int scanned; 4659 int reclaimed; 4660 LIST_HEAD(list); 4661 LIST_HEAD(clean); 4662 struct folio *folio; 4663 struct folio *next; 4664 enum vm_event_item item; 4665 struct reclaim_stat stat; 4666 struct lru_gen_mm_walk *walk; 4667 bool skip_retry = false; 4668 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4669 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4670 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 4671 4672 spin_lock_irq(&lruvec->lru_lock); 4673 4674 scanned = isolate_folios(lruvec, sc, swappiness, &type, &list); 4675 4676 scanned += try_to_inc_min_seq(lruvec, swappiness); 4677 4678 if (evictable_min_seq(lrugen->min_seq, swappiness) + MIN_NR_GENS > lrugen->max_seq) 4679 scanned = 0; 4680 4681 spin_unlock_irq(&lruvec->lru_lock); 4682 4683 if (list_empty(&list)) 4684 return scanned; 4685 retry: 4686 reclaimed = shrink_folio_list(&list, pgdat, sc, &stat, false); 4687 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty; 4688 sc->nr_reclaimed += reclaimed; 4689 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 4690 scanned, reclaimed, &stat, sc->priority, 4691 type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON); 4692 4693 list_for_each_entry_safe_reverse(folio, next, &list, lru) { 4694 DEFINE_MIN_SEQ(lruvec); 4695 4696 if (!folio_evictable(folio)) { 4697 list_del(&folio->lru); 4698 folio_putback_lru(folio); 4699 continue; 4700 } 4701 4702 /* retry folios that may have missed folio_rotate_reclaimable() */ 4703 if (!skip_retry && !folio_test_active(folio) && !folio_mapped(folio) && 4704 !folio_test_dirty(folio) && !folio_test_writeback(folio)) { 4705 list_move(&folio->lru, &clean); 4706 continue; 4707 } 4708 4709 /* don't add rejected folios to the oldest generation */ 4710 if (lru_gen_folio_seq(lruvec, folio, false) == min_seq[type]) 4711 set_mask_bits(&folio->flags, LRU_REFS_FLAGS, BIT(PG_active)); 4712 } 4713 4714 spin_lock_irq(&lruvec->lru_lock); 4715 4716 move_folios_to_lru(lruvec, &list); 4717 4718 walk = current->reclaim_state->mm_walk; 4719 if (walk && walk->batched) { 4720 walk->lruvec = lruvec; 4721 reset_batch_size(walk); 4722 } 4723 4724 __mod_lruvec_state(lruvec, PGDEMOTE_KSWAPD + reclaimer_offset(), 4725 stat.nr_demoted); 4726 4727 item = PGSTEAL_KSWAPD + reclaimer_offset(); 4728 if (!cgroup_reclaim(sc)) 4729 __count_vm_events(item, reclaimed); 4730 __count_memcg_events(memcg, item, reclaimed); 4731 __count_vm_events(PGSTEAL_ANON + type, reclaimed); 4732 4733 spin_unlock_irq(&lruvec->lru_lock); 4734 4735 list_splice_init(&clean, &list); 4736 4737 if (!list_empty(&list)) { 4738 skip_retry = true; 4739 goto retry; 4740 } 4741 4742 return scanned; 4743 } 4744 4745 static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq, 4746 int swappiness, unsigned long *nr_to_scan) 4747 { 4748 int gen, type, zone; 4749 unsigned long size = 0; 4750 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4751 DEFINE_MIN_SEQ(lruvec); 4752 4753 *nr_to_scan = 0; 4754 /* have to run aging, since eviction is not possible anymore */ 4755 if (evictable_min_seq(min_seq, swappiness) + MIN_NR_GENS > max_seq) 4756 return true; 4757 4758 for_each_evictable_type(type, swappiness) { 4759 unsigned long seq; 4760 4761 for (seq = min_seq[type]; seq <= max_seq; seq++) { 4762 gen = lru_gen_from_seq(seq); 4763 4764 for (zone = 0; zone < MAX_NR_ZONES; zone++) 4765 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L); 4766 } 4767 } 4768 4769 *nr_to_scan = size; 4770 /* better to run aging even though eviction is still possible */ 4771 return evictable_min_seq(min_seq, swappiness) + MIN_NR_GENS == max_seq; 4772 } 4773 4774 /* 4775 * For future optimizations: 4776 * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg 4777 * reclaim. 4778 */ 4779 static long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc, int swappiness) 4780 { 4781 bool success; 4782 unsigned long nr_to_scan; 4783 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4784 DEFINE_MAX_SEQ(lruvec); 4785 4786 if (mem_cgroup_below_min(sc->target_mem_cgroup, memcg)) 4787 return -1; 4788 4789 success = should_run_aging(lruvec, max_seq, swappiness, &nr_to_scan); 4790 4791 /* try to scrape all its memory if this memcg was deleted */ 4792 if (nr_to_scan && !mem_cgroup_online(memcg)) 4793 return nr_to_scan; 4794 4795 /* try to get away with not aging at the default priority */ 4796 if (!success || sc->priority == DEF_PRIORITY) 4797 return nr_to_scan >> sc->priority; 4798 4799 /* stop scanning this lruvec as it's low on cold folios */ 4800 return try_to_inc_max_seq(lruvec, max_seq, swappiness, false) ? -1 : 0; 4801 } 4802 4803 static bool should_abort_scan(struct lruvec *lruvec, struct scan_control *sc) 4804 { 4805 int i; 4806 enum zone_watermarks mark; 4807 4808 /* don't abort memcg reclaim to ensure fairness */ 4809 if (!root_reclaim(sc)) 4810 return false; 4811 4812 if (sc->nr_reclaimed >= max(sc->nr_to_reclaim, compact_gap(sc->order))) 4813 return true; 4814 4815 /* check the order to exclude compaction-induced reclaim */ 4816 if (!current_is_kswapd() || sc->order) 4817 return false; 4818 4819 mark = sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ? 4820 WMARK_PROMO : WMARK_HIGH; 4821 4822 for (i = 0; i <= sc->reclaim_idx; i++) { 4823 struct zone *zone = lruvec_pgdat(lruvec)->node_zones + i; 4824 unsigned long size = wmark_pages(zone, mark) + MIN_LRU_BATCH; 4825 4826 if (managed_zone(zone) && !zone_watermark_ok(zone, 0, size, sc->reclaim_idx, 0)) 4827 return false; 4828 } 4829 4830 /* kswapd should abort if all eligible zones are safe */ 4831 return true; 4832 } 4833 4834 static bool try_to_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 4835 { 4836 long nr_to_scan; 4837 unsigned long scanned = 0; 4838 int swappiness = get_swappiness(lruvec, sc); 4839 4840 while (true) { 4841 int delta; 4842 4843 nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness); 4844 if (nr_to_scan <= 0) 4845 break; 4846 4847 delta = evict_folios(lruvec, sc, swappiness); 4848 if (!delta) 4849 break; 4850 4851 scanned += delta; 4852 if (scanned >= nr_to_scan) 4853 break; 4854 4855 if (should_abort_scan(lruvec, sc)) 4856 break; 4857 4858 cond_resched(); 4859 } 4860 4861 /* 4862 * If too many file cache in the coldest generation can't be evicted 4863 * due to being dirty, wake up the flusher. 4864 */ 4865 if (sc->nr.unqueued_dirty && sc->nr.unqueued_dirty == sc->nr.file_taken) 4866 wakeup_flusher_threads(WB_REASON_VMSCAN); 4867 4868 /* whether this lruvec should be rotated */ 4869 return nr_to_scan < 0; 4870 } 4871 4872 static int shrink_one(struct lruvec *lruvec, struct scan_control *sc) 4873 { 4874 bool success; 4875 unsigned long scanned = sc->nr_scanned; 4876 unsigned long reclaimed = sc->nr_reclaimed; 4877 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4878 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 4879 4880 /* lru_gen_age_node() called mem_cgroup_calculate_protection() */ 4881 if (mem_cgroup_below_min(NULL, memcg)) 4882 return MEMCG_LRU_YOUNG; 4883 4884 if (mem_cgroup_below_low(NULL, memcg)) { 4885 /* see the comment on MEMCG_NR_GENS */ 4886 if (READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_TAIL) 4887 return MEMCG_LRU_TAIL; 4888 4889 memcg_memory_event(memcg, MEMCG_LOW); 4890 } 4891 4892 success = try_to_shrink_lruvec(lruvec, sc); 4893 4894 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, sc->priority); 4895 4896 if (!sc->proactive) 4897 vmpressure(sc->gfp_mask, memcg, false, sc->nr_scanned - scanned, 4898 sc->nr_reclaimed - reclaimed); 4899 4900 flush_reclaim_state(sc); 4901 4902 if (success && mem_cgroup_online(memcg)) 4903 return MEMCG_LRU_YOUNG; 4904 4905 if (!success && lruvec_is_sizable(lruvec, sc)) 4906 return 0; 4907 4908 /* one retry if offlined or too small */ 4909 return READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_TAIL ? 4910 MEMCG_LRU_TAIL : MEMCG_LRU_YOUNG; 4911 } 4912 4913 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc) 4914 { 4915 int op; 4916 int gen; 4917 int bin; 4918 int first_bin; 4919 struct lruvec *lruvec; 4920 struct lru_gen_folio *lrugen; 4921 struct mem_cgroup *memcg; 4922 struct hlist_nulls_node *pos; 4923 4924 gen = get_memcg_gen(READ_ONCE(pgdat->memcg_lru.seq)); 4925 bin = first_bin = get_random_u32_below(MEMCG_NR_BINS); 4926 restart: 4927 op = 0; 4928 memcg = NULL; 4929 4930 rcu_read_lock(); 4931 4932 hlist_nulls_for_each_entry_rcu(lrugen, pos, &pgdat->memcg_lru.fifo[gen][bin], list) { 4933 if (op) { 4934 lru_gen_rotate_memcg(lruvec, op); 4935 op = 0; 4936 } 4937 4938 mem_cgroup_put(memcg); 4939 memcg = NULL; 4940 4941 if (gen != READ_ONCE(lrugen->gen)) 4942 continue; 4943 4944 lruvec = container_of(lrugen, struct lruvec, lrugen); 4945 memcg = lruvec_memcg(lruvec); 4946 4947 if (!mem_cgroup_tryget(memcg)) { 4948 lru_gen_release_memcg(memcg); 4949 memcg = NULL; 4950 continue; 4951 } 4952 4953 rcu_read_unlock(); 4954 4955 op = shrink_one(lruvec, sc); 4956 4957 rcu_read_lock(); 4958 4959 if (should_abort_scan(lruvec, sc)) 4960 break; 4961 } 4962 4963 rcu_read_unlock(); 4964 4965 if (op) 4966 lru_gen_rotate_memcg(lruvec, op); 4967 4968 mem_cgroup_put(memcg); 4969 4970 if (!is_a_nulls(pos)) 4971 return; 4972 4973 /* restart if raced with lru_gen_rotate_memcg() */ 4974 if (gen != get_nulls_value(pos)) 4975 goto restart; 4976 4977 /* try the rest of the bins of the current generation */ 4978 bin = get_memcg_bin(bin + 1); 4979 if (bin != first_bin) 4980 goto restart; 4981 } 4982 4983 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 4984 { 4985 struct blk_plug plug; 4986 4987 VM_WARN_ON_ONCE(root_reclaim(sc)); 4988 VM_WARN_ON_ONCE(!sc->may_writepage || !sc->may_unmap); 4989 4990 lru_add_drain(); 4991 4992 blk_start_plug(&plug); 4993 4994 set_mm_walk(NULL, sc->proactive); 4995 4996 if (try_to_shrink_lruvec(lruvec, sc)) 4997 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_YOUNG); 4998 4999 clear_mm_walk(); 5000 5001 blk_finish_plug(&plug); 5002 } 5003 5004 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc) 5005 { 5006 struct blk_plug plug; 5007 unsigned long reclaimed = sc->nr_reclaimed; 5008 5009 VM_WARN_ON_ONCE(!root_reclaim(sc)); 5010 5011 /* 5012 * Unmapped clean folios are already prioritized. Scanning for more of 5013 * them is likely futile and can cause high reclaim latency when there 5014 * is a large number of memcgs. 5015 */ 5016 if (!sc->may_writepage || !sc->may_unmap) 5017 goto done; 5018 5019 lru_add_drain(); 5020 5021 blk_start_plug(&plug); 5022 5023 set_mm_walk(pgdat, sc->proactive); 5024 5025 set_initial_priority(pgdat, sc); 5026 5027 if (current_is_kswapd()) 5028 sc->nr_reclaimed = 0; 5029 5030 if (mem_cgroup_disabled()) 5031 shrink_one(&pgdat->__lruvec, sc); 5032 else 5033 shrink_many(pgdat, sc); 5034 5035 if (current_is_kswapd()) 5036 sc->nr_reclaimed += reclaimed; 5037 5038 clear_mm_walk(); 5039 5040 blk_finish_plug(&plug); 5041 done: 5042 if (sc->nr_reclaimed > reclaimed) 5043 pgdat->kswapd_failures = 0; 5044 } 5045 5046 /****************************************************************************** 5047 * state change 5048 ******************************************************************************/ 5049 5050 static bool __maybe_unused state_is_valid(struct lruvec *lruvec) 5051 { 5052 struct lru_gen_folio *lrugen = &lruvec->lrugen; 5053 5054 if (lrugen->enabled) { 5055 enum lru_list lru; 5056 5057 for_each_evictable_lru(lru) { 5058 if (!list_empty(&lruvec->lists[lru])) 5059 return false; 5060 } 5061 } else { 5062 int gen, type, zone; 5063 5064 for_each_gen_type_zone(gen, type, zone) { 5065 if (!list_empty(&lrugen->folios[gen][type][zone])) 5066 return false; 5067 } 5068 } 5069 5070 return true; 5071 } 5072 5073 static bool fill_evictable(struct lruvec *lruvec) 5074 { 5075 enum lru_list lru; 5076 int remaining = MAX_LRU_BATCH; 5077 5078 for_each_evictable_lru(lru) { 5079 int type = is_file_lru(lru); 5080 bool active = is_active_lru(lru); 5081 struct list_head *head = &lruvec->lists[lru]; 5082 5083 while (!list_empty(head)) { 5084 bool success; 5085 struct folio *folio = lru_to_folio(head); 5086 5087 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 5088 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio) != active, folio); 5089 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 5090 VM_WARN_ON_ONCE_FOLIO(folio_lru_gen(folio) != -1, folio); 5091 5092 lruvec_del_folio(lruvec, folio); 5093 success = lru_gen_add_folio(lruvec, folio, false); 5094 VM_WARN_ON_ONCE(!success); 5095 5096 if (!--remaining) 5097 return false; 5098 } 5099 } 5100 5101 return true; 5102 } 5103 5104 static bool drain_evictable(struct lruvec *lruvec) 5105 { 5106 int gen, type, zone; 5107 int remaining = MAX_LRU_BATCH; 5108 5109 for_each_gen_type_zone(gen, type, zone) { 5110 struct list_head *head = &lruvec->lrugen.folios[gen][type][zone]; 5111 5112 while (!list_empty(head)) { 5113 bool success; 5114 struct folio *folio = lru_to_folio(head); 5115 5116 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 5117 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio); 5118 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 5119 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio); 5120 5121 success = lru_gen_del_folio(lruvec, folio, false); 5122 VM_WARN_ON_ONCE(!success); 5123 lruvec_add_folio(lruvec, folio); 5124 5125 if (!--remaining) 5126 return false; 5127 } 5128 } 5129 5130 return true; 5131 } 5132 5133 static void lru_gen_change_state(bool enabled) 5134 { 5135 static DEFINE_MUTEX(state_mutex); 5136 5137 struct mem_cgroup *memcg; 5138 5139 cgroup_lock(); 5140 cpus_read_lock(); 5141 get_online_mems(); 5142 mutex_lock(&state_mutex); 5143 5144 if (enabled == lru_gen_enabled()) 5145 goto unlock; 5146 5147 if (enabled) 5148 static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]); 5149 else 5150 static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]); 5151 5152 memcg = mem_cgroup_iter(NULL, NULL, NULL); 5153 do { 5154 int nid; 5155 5156 for_each_node(nid) { 5157 struct lruvec *lruvec = get_lruvec(memcg, nid); 5158 5159 spin_lock_irq(&lruvec->lru_lock); 5160 5161 VM_WARN_ON_ONCE(!seq_is_valid(lruvec)); 5162 VM_WARN_ON_ONCE(!state_is_valid(lruvec)); 5163 5164 lruvec->lrugen.enabled = enabled; 5165 5166 while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) { 5167 spin_unlock_irq(&lruvec->lru_lock); 5168 cond_resched(); 5169 spin_lock_irq(&lruvec->lru_lock); 5170 } 5171 5172 spin_unlock_irq(&lruvec->lru_lock); 5173 } 5174 5175 cond_resched(); 5176 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL))); 5177 unlock: 5178 mutex_unlock(&state_mutex); 5179 put_online_mems(); 5180 cpus_read_unlock(); 5181 cgroup_unlock(); 5182 } 5183 5184 /****************************************************************************** 5185 * sysfs interface 5186 ******************************************************************************/ 5187 5188 static ssize_t min_ttl_ms_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) 5189 { 5190 return sysfs_emit(buf, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl))); 5191 } 5192 5193 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5194 static ssize_t min_ttl_ms_store(struct kobject *kobj, struct kobj_attribute *attr, 5195 const char *buf, size_t len) 5196 { 5197 unsigned int msecs; 5198 5199 if (kstrtouint(buf, 0, &msecs)) 5200 return -EINVAL; 5201 5202 WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs)); 5203 5204 return len; 5205 } 5206 5207 static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR_RW(min_ttl_ms); 5208 5209 static ssize_t enabled_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) 5210 { 5211 unsigned int caps = 0; 5212 5213 if (get_cap(LRU_GEN_CORE)) 5214 caps |= BIT(LRU_GEN_CORE); 5215 5216 if (should_walk_mmu()) 5217 caps |= BIT(LRU_GEN_MM_WALK); 5218 5219 if (should_clear_pmd_young()) 5220 caps |= BIT(LRU_GEN_NONLEAF_YOUNG); 5221 5222 return sysfs_emit(buf, "0x%04x\n", caps); 5223 } 5224 5225 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5226 static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr, 5227 const char *buf, size_t len) 5228 { 5229 int i; 5230 unsigned int caps; 5231 5232 if (tolower(*buf) == 'n') 5233 caps = 0; 5234 else if (tolower(*buf) == 'y') 5235 caps = -1; 5236 else if (kstrtouint(buf, 0, &caps)) 5237 return -EINVAL; 5238 5239 for (i = 0; i < NR_LRU_GEN_CAPS; i++) { 5240 bool enabled = caps & BIT(i); 5241 5242 if (i == LRU_GEN_CORE) 5243 lru_gen_change_state(enabled); 5244 else if (enabled) 5245 static_branch_enable(&lru_gen_caps[i]); 5246 else 5247 static_branch_disable(&lru_gen_caps[i]); 5248 } 5249 5250 return len; 5251 } 5252 5253 static struct kobj_attribute lru_gen_enabled_attr = __ATTR_RW(enabled); 5254 5255 static struct attribute *lru_gen_attrs[] = { 5256 &lru_gen_min_ttl_attr.attr, 5257 &lru_gen_enabled_attr.attr, 5258 NULL 5259 }; 5260 5261 static const struct attribute_group lru_gen_attr_group = { 5262 .name = "lru_gen", 5263 .attrs = lru_gen_attrs, 5264 }; 5265 5266 /****************************************************************************** 5267 * debugfs interface 5268 ******************************************************************************/ 5269 5270 static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos) 5271 { 5272 struct mem_cgroup *memcg; 5273 loff_t nr_to_skip = *pos; 5274 5275 m->private = kvmalloc(PATH_MAX, GFP_KERNEL); 5276 if (!m->private) 5277 return ERR_PTR(-ENOMEM); 5278 5279 memcg = mem_cgroup_iter(NULL, NULL, NULL); 5280 do { 5281 int nid; 5282 5283 for_each_node_state(nid, N_MEMORY) { 5284 if (!nr_to_skip--) 5285 return get_lruvec(memcg, nid); 5286 } 5287 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL))); 5288 5289 return NULL; 5290 } 5291 5292 static void lru_gen_seq_stop(struct seq_file *m, void *v) 5293 { 5294 if (!IS_ERR_OR_NULL(v)) 5295 mem_cgroup_iter_break(NULL, lruvec_memcg(v)); 5296 5297 kvfree(m->private); 5298 m->private = NULL; 5299 } 5300 5301 static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos) 5302 { 5303 int nid = lruvec_pgdat(v)->node_id; 5304 struct mem_cgroup *memcg = lruvec_memcg(v); 5305 5306 ++*pos; 5307 5308 nid = next_memory_node(nid); 5309 if (nid == MAX_NUMNODES) { 5310 memcg = mem_cgroup_iter(NULL, memcg, NULL); 5311 if (!memcg) 5312 return NULL; 5313 5314 nid = first_memory_node; 5315 } 5316 5317 return get_lruvec(memcg, nid); 5318 } 5319 5320 static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec, 5321 unsigned long max_seq, unsigned long *min_seq, 5322 unsigned long seq) 5323 { 5324 int i; 5325 int type, tier; 5326 int hist = lru_hist_from_seq(seq); 5327 struct lru_gen_folio *lrugen = &lruvec->lrugen; 5328 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 5329 5330 for (tier = 0; tier < MAX_NR_TIERS; tier++) { 5331 seq_printf(m, " %10d", tier); 5332 for (type = 0; type < ANON_AND_FILE; type++) { 5333 const char *s = "xxx"; 5334 unsigned long n[3] = {}; 5335 5336 if (seq == max_seq) { 5337 s = "RTx"; 5338 n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]); 5339 n[1] = READ_ONCE(lrugen->avg_total[type][tier]); 5340 } else if (seq == min_seq[type] || NR_HIST_GENS > 1) { 5341 s = "rep"; 5342 n[0] = atomic_long_read(&lrugen->refaulted[hist][type][tier]); 5343 n[1] = atomic_long_read(&lrugen->evicted[hist][type][tier]); 5344 n[2] = READ_ONCE(lrugen->protected[hist][type][tier]); 5345 } 5346 5347 for (i = 0; i < 3; i++) 5348 seq_printf(m, " %10lu%c", n[i], s[i]); 5349 } 5350 seq_putc(m, '\n'); 5351 } 5352 5353 if (!mm_state) 5354 return; 5355 5356 seq_puts(m, " "); 5357 for (i = 0; i < NR_MM_STATS; i++) { 5358 const char *s = "xxxx"; 5359 unsigned long n = 0; 5360 5361 if (seq == max_seq && NR_HIST_GENS == 1) { 5362 s = "TYFA"; 5363 n = READ_ONCE(mm_state->stats[hist][i]); 5364 } else if (seq != max_seq && NR_HIST_GENS > 1) { 5365 s = "tyfa"; 5366 n = READ_ONCE(mm_state->stats[hist][i]); 5367 } 5368 5369 seq_printf(m, " %10lu%c", n, s[i]); 5370 } 5371 seq_putc(m, '\n'); 5372 } 5373 5374 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5375 static int lru_gen_seq_show(struct seq_file *m, void *v) 5376 { 5377 unsigned long seq; 5378 bool full = !debugfs_real_fops(m->file)->write; 5379 struct lruvec *lruvec = v; 5380 struct lru_gen_folio *lrugen = &lruvec->lrugen; 5381 int nid = lruvec_pgdat(lruvec)->node_id; 5382 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 5383 DEFINE_MAX_SEQ(lruvec); 5384 DEFINE_MIN_SEQ(lruvec); 5385 5386 if (nid == first_memory_node) { 5387 const char *path = memcg ? m->private : ""; 5388 5389 #ifdef CONFIG_MEMCG 5390 if (memcg) 5391 cgroup_path(memcg->css.cgroup, m->private, PATH_MAX); 5392 #endif 5393 seq_printf(m, "memcg %5hu %s\n", mem_cgroup_id(memcg), path); 5394 } 5395 5396 seq_printf(m, " node %5d\n", nid); 5397 5398 if (!full) 5399 seq = evictable_min_seq(min_seq, MAX_SWAPPINESS / 2); 5400 else if (max_seq >= MAX_NR_GENS) 5401 seq = max_seq - MAX_NR_GENS + 1; 5402 else 5403 seq = 0; 5404 5405 for (; seq <= max_seq; seq++) { 5406 int type, zone; 5407 int gen = lru_gen_from_seq(seq); 5408 unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]); 5409 5410 seq_printf(m, " %10lu %10u", seq, jiffies_to_msecs(jiffies - birth)); 5411 5412 for (type = 0; type < ANON_AND_FILE; type++) { 5413 unsigned long size = 0; 5414 char mark = full && seq < min_seq[type] ? 'x' : ' '; 5415 5416 for (zone = 0; zone < MAX_NR_ZONES; zone++) 5417 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L); 5418 5419 seq_printf(m, " %10lu%c", size, mark); 5420 } 5421 5422 seq_putc(m, '\n'); 5423 5424 if (full) 5425 lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq); 5426 } 5427 5428 return 0; 5429 } 5430 5431 static const struct seq_operations lru_gen_seq_ops = { 5432 .start = lru_gen_seq_start, 5433 .stop = lru_gen_seq_stop, 5434 .next = lru_gen_seq_next, 5435 .show = lru_gen_seq_show, 5436 }; 5437 5438 static int run_aging(struct lruvec *lruvec, unsigned long seq, 5439 int swappiness, bool force_scan) 5440 { 5441 DEFINE_MAX_SEQ(lruvec); 5442 5443 if (seq > max_seq) 5444 return -EINVAL; 5445 5446 return try_to_inc_max_seq(lruvec, max_seq, swappiness, force_scan) ? 0 : -EEXIST; 5447 } 5448 5449 static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc, 5450 int swappiness, unsigned long nr_to_reclaim) 5451 { 5452 DEFINE_MAX_SEQ(lruvec); 5453 5454 if (seq + MIN_NR_GENS > max_seq) 5455 return -EINVAL; 5456 5457 sc->nr_reclaimed = 0; 5458 5459 while (!signal_pending(current)) { 5460 DEFINE_MIN_SEQ(lruvec); 5461 5462 if (seq < evictable_min_seq(min_seq, swappiness)) 5463 return 0; 5464 5465 if (sc->nr_reclaimed >= nr_to_reclaim) 5466 return 0; 5467 5468 if (!evict_folios(lruvec, sc, swappiness)) 5469 return 0; 5470 5471 cond_resched(); 5472 } 5473 5474 return -EINTR; 5475 } 5476 5477 static int run_cmd(char cmd, int memcg_id, int nid, unsigned long seq, 5478 struct scan_control *sc, int swappiness, unsigned long opt) 5479 { 5480 struct lruvec *lruvec; 5481 int err = -EINVAL; 5482 struct mem_cgroup *memcg = NULL; 5483 5484 if (nid < 0 || nid >= MAX_NUMNODES || !node_state(nid, N_MEMORY)) 5485 return -EINVAL; 5486 5487 if (!mem_cgroup_disabled()) { 5488 rcu_read_lock(); 5489 5490 memcg = mem_cgroup_from_id(memcg_id); 5491 if (!mem_cgroup_tryget(memcg)) 5492 memcg = NULL; 5493 5494 rcu_read_unlock(); 5495 5496 if (!memcg) 5497 return -EINVAL; 5498 } 5499 5500 if (memcg_id != mem_cgroup_id(memcg)) 5501 goto done; 5502 5503 lruvec = get_lruvec(memcg, nid); 5504 5505 if (swappiness < MIN_SWAPPINESS) 5506 swappiness = get_swappiness(lruvec, sc); 5507 else if (swappiness > MAX_SWAPPINESS + 1) 5508 goto done; 5509 5510 switch (cmd) { 5511 case '+': 5512 err = run_aging(lruvec, seq, swappiness, opt); 5513 break; 5514 case '-': 5515 err = run_eviction(lruvec, seq, sc, swappiness, opt); 5516 break; 5517 } 5518 done: 5519 mem_cgroup_put(memcg); 5520 5521 return err; 5522 } 5523 5524 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5525 static ssize_t lru_gen_seq_write(struct file *file, const char __user *src, 5526 size_t len, loff_t *pos) 5527 { 5528 void *buf; 5529 char *cur, *next; 5530 unsigned int flags; 5531 struct blk_plug plug; 5532 int err = -EINVAL; 5533 struct scan_control sc = { 5534 .may_writepage = true, 5535 .may_unmap = true, 5536 .may_swap = true, 5537 .reclaim_idx = MAX_NR_ZONES - 1, 5538 .gfp_mask = GFP_KERNEL, 5539 }; 5540 5541 buf = kvmalloc(len + 1, GFP_KERNEL); 5542 if (!buf) 5543 return -ENOMEM; 5544 5545 if (copy_from_user(buf, src, len)) { 5546 kvfree(buf); 5547 return -EFAULT; 5548 } 5549 5550 set_task_reclaim_state(current, &sc.reclaim_state); 5551 flags = memalloc_noreclaim_save(); 5552 blk_start_plug(&plug); 5553 if (!set_mm_walk(NULL, true)) { 5554 err = -ENOMEM; 5555 goto done; 5556 } 5557 5558 next = buf; 5559 next[len] = '\0'; 5560 5561 while ((cur = strsep(&next, ",;\n"))) { 5562 int n; 5563 int end; 5564 char cmd; 5565 unsigned int memcg_id; 5566 unsigned int nid; 5567 unsigned long seq; 5568 unsigned int swappiness = -1; 5569 unsigned long opt = -1; 5570 5571 cur = skip_spaces(cur); 5572 if (!*cur) 5573 continue; 5574 5575 n = sscanf(cur, "%c %u %u %lu %n %u %n %lu %n", &cmd, &memcg_id, &nid, 5576 &seq, &end, &swappiness, &end, &opt, &end); 5577 if (n < 4 || cur[end]) { 5578 err = -EINVAL; 5579 break; 5580 } 5581 5582 err = run_cmd(cmd, memcg_id, nid, seq, &sc, swappiness, opt); 5583 if (err) 5584 break; 5585 } 5586 done: 5587 clear_mm_walk(); 5588 blk_finish_plug(&plug); 5589 memalloc_noreclaim_restore(flags); 5590 set_task_reclaim_state(current, NULL); 5591 5592 kvfree(buf); 5593 5594 return err ? : len; 5595 } 5596 5597 static int lru_gen_seq_open(struct inode *inode, struct file *file) 5598 { 5599 return seq_open(file, &lru_gen_seq_ops); 5600 } 5601 5602 static const struct file_operations lru_gen_rw_fops = { 5603 .open = lru_gen_seq_open, 5604 .read = seq_read, 5605 .write = lru_gen_seq_write, 5606 .llseek = seq_lseek, 5607 .release = seq_release, 5608 }; 5609 5610 static const struct file_operations lru_gen_ro_fops = { 5611 .open = lru_gen_seq_open, 5612 .read = seq_read, 5613 .llseek = seq_lseek, 5614 .release = seq_release, 5615 }; 5616 5617 /****************************************************************************** 5618 * initialization 5619 ******************************************************************************/ 5620 5621 void lru_gen_init_pgdat(struct pglist_data *pgdat) 5622 { 5623 int i, j; 5624 5625 spin_lock_init(&pgdat->memcg_lru.lock); 5626 5627 for (i = 0; i < MEMCG_NR_GENS; i++) { 5628 for (j = 0; j < MEMCG_NR_BINS; j++) 5629 INIT_HLIST_NULLS_HEAD(&pgdat->memcg_lru.fifo[i][j], i); 5630 } 5631 } 5632 5633 void lru_gen_init_lruvec(struct lruvec *lruvec) 5634 { 5635 int i; 5636 int gen, type, zone; 5637 struct lru_gen_folio *lrugen = &lruvec->lrugen; 5638 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 5639 5640 lrugen->max_seq = MIN_NR_GENS + 1; 5641 lrugen->enabled = lru_gen_enabled(); 5642 5643 for (i = 0; i <= MIN_NR_GENS + 1; i++) 5644 lrugen->timestamps[i] = jiffies; 5645 5646 for_each_gen_type_zone(gen, type, zone) 5647 INIT_LIST_HEAD(&lrugen->folios[gen][type][zone]); 5648 5649 if (mm_state) 5650 mm_state->seq = MIN_NR_GENS; 5651 } 5652 5653 #ifdef CONFIG_MEMCG 5654 5655 void lru_gen_init_memcg(struct mem_cgroup *memcg) 5656 { 5657 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 5658 5659 if (!mm_list) 5660 return; 5661 5662 INIT_LIST_HEAD(&mm_list->fifo); 5663 spin_lock_init(&mm_list->lock); 5664 } 5665 5666 void lru_gen_exit_memcg(struct mem_cgroup *memcg) 5667 { 5668 int i; 5669 int nid; 5670 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 5671 5672 VM_WARN_ON_ONCE(mm_list && !list_empty(&mm_list->fifo)); 5673 5674 for_each_node(nid) { 5675 struct lruvec *lruvec = get_lruvec(memcg, nid); 5676 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 5677 5678 VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0, 5679 sizeof(lruvec->lrugen.nr_pages))); 5680 5681 lruvec->lrugen.list.next = LIST_POISON1; 5682 5683 if (!mm_state) 5684 continue; 5685 5686 for (i = 0; i < NR_BLOOM_FILTERS; i++) { 5687 bitmap_free(mm_state->filters[i]); 5688 mm_state->filters[i] = NULL; 5689 } 5690 } 5691 } 5692 5693 #endif /* CONFIG_MEMCG */ 5694 5695 static int __init init_lru_gen(void) 5696 { 5697 BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS); 5698 BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS); 5699 5700 if (sysfs_create_group(mm_kobj, &lru_gen_attr_group)) 5701 pr_err("lru_gen: failed to create sysfs group\n"); 5702 5703 debugfs_create_file("lru_gen", 0644, NULL, NULL, &lru_gen_rw_fops); 5704 debugfs_create_file("lru_gen_full", 0444, NULL, NULL, &lru_gen_ro_fops); 5705 5706 return 0; 5707 }; 5708 late_initcall(init_lru_gen); 5709 5710 #else /* !CONFIG_LRU_GEN */ 5711 5712 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc) 5713 { 5714 BUILD_BUG(); 5715 } 5716 5717 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 5718 { 5719 BUILD_BUG(); 5720 } 5721 5722 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc) 5723 { 5724 BUILD_BUG(); 5725 } 5726 5727 #endif /* CONFIG_LRU_GEN */ 5728 5729 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 5730 { 5731 unsigned long nr[NR_LRU_LISTS]; 5732 unsigned long targets[NR_LRU_LISTS]; 5733 unsigned long nr_to_scan; 5734 enum lru_list lru; 5735 unsigned long nr_reclaimed = 0; 5736 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 5737 bool proportional_reclaim; 5738 struct blk_plug plug; 5739 5740 if (lru_gen_enabled() && !root_reclaim(sc)) { 5741 lru_gen_shrink_lruvec(lruvec, sc); 5742 return; 5743 } 5744 5745 get_scan_count(lruvec, sc, nr); 5746 5747 /* Record the original scan target for proportional adjustments later */ 5748 memcpy(targets, nr, sizeof(nr)); 5749 5750 /* 5751 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal 5752 * event that can occur when there is little memory pressure e.g. 5753 * multiple streaming readers/writers. Hence, we do not abort scanning 5754 * when the requested number of pages are reclaimed when scanning at 5755 * DEF_PRIORITY on the assumption that the fact we are direct 5756 * reclaiming implies that kswapd is not keeping up and it is best to 5757 * do a batch of work at once. For memcg reclaim one check is made to 5758 * abort proportional reclaim if either the file or anon lru has already 5759 * dropped to zero at the first pass. 5760 */ 5761 proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() && 5762 sc->priority == DEF_PRIORITY); 5763 5764 blk_start_plug(&plug); 5765 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 5766 nr[LRU_INACTIVE_FILE]) { 5767 unsigned long nr_anon, nr_file, percentage; 5768 unsigned long nr_scanned; 5769 5770 for_each_evictable_lru(lru) { 5771 if (nr[lru]) { 5772 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 5773 nr[lru] -= nr_to_scan; 5774 5775 nr_reclaimed += shrink_list(lru, nr_to_scan, 5776 lruvec, sc); 5777 } 5778 } 5779 5780 cond_resched(); 5781 5782 if (nr_reclaimed < nr_to_reclaim || proportional_reclaim) 5783 continue; 5784 5785 /* 5786 * For kswapd and memcg, reclaim at least the number of pages 5787 * requested. Ensure that the anon and file LRUs are scanned 5788 * proportionally what was requested by get_scan_count(). We 5789 * stop reclaiming one LRU and reduce the amount scanning 5790 * proportional to the original scan target. 5791 */ 5792 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 5793 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 5794 5795 /* 5796 * It's just vindictive to attack the larger once the smaller 5797 * has gone to zero. And given the way we stop scanning the 5798 * smaller below, this makes sure that we only make one nudge 5799 * towards proportionality once we've got nr_to_reclaim. 5800 */ 5801 if (!nr_file || !nr_anon) 5802 break; 5803 5804 if (nr_file > nr_anon) { 5805 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 5806 targets[LRU_ACTIVE_ANON] + 1; 5807 lru = LRU_BASE; 5808 percentage = nr_anon * 100 / scan_target; 5809 } else { 5810 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 5811 targets[LRU_ACTIVE_FILE] + 1; 5812 lru = LRU_FILE; 5813 percentage = nr_file * 100 / scan_target; 5814 } 5815 5816 /* Stop scanning the smaller of the LRU */ 5817 nr[lru] = 0; 5818 nr[lru + LRU_ACTIVE] = 0; 5819 5820 /* 5821 * Recalculate the other LRU scan count based on its original 5822 * scan target and the percentage scanning already complete 5823 */ 5824 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 5825 nr_scanned = targets[lru] - nr[lru]; 5826 nr[lru] = targets[lru] * (100 - percentage) / 100; 5827 nr[lru] -= min(nr[lru], nr_scanned); 5828 5829 lru += LRU_ACTIVE; 5830 nr_scanned = targets[lru] - nr[lru]; 5831 nr[lru] = targets[lru] * (100 - percentage) / 100; 5832 nr[lru] -= min(nr[lru], nr_scanned); 5833 } 5834 blk_finish_plug(&plug); 5835 sc->nr_reclaimed += nr_reclaimed; 5836 5837 /* 5838 * Even if we did not try to evict anon pages at all, we want to 5839 * rebalance the anon lru active/inactive ratio. 5840 */ 5841 if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) && 5842 inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 5843 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 5844 sc, LRU_ACTIVE_ANON); 5845 } 5846 5847 /* Use reclaim/compaction for costly allocs or under memory pressure */ 5848 static bool in_reclaim_compaction(struct scan_control *sc) 5849 { 5850 if (gfp_compaction_allowed(sc->gfp_mask) && sc->order && 5851 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 5852 sc->priority < DEF_PRIORITY - 2)) 5853 return true; 5854 5855 return false; 5856 } 5857 5858 /* 5859 * Reclaim/compaction is used for high-order allocation requests. It reclaims 5860 * order-0 pages before compacting the zone. should_continue_reclaim() returns 5861 * true if more pages should be reclaimed such that when the page allocator 5862 * calls try_to_compact_pages() that it will have enough free pages to succeed. 5863 * It will give up earlier than that if there is difficulty reclaiming pages. 5864 */ 5865 static inline bool should_continue_reclaim(struct pglist_data *pgdat, 5866 unsigned long nr_reclaimed, 5867 struct scan_control *sc) 5868 { 5869 unsigned long pages_for_compaction; 5870 unsigned long inactive_lru_pages; 5871 int z; 5872 struct zone *zone; 5873 5874 /* If not in reclaim/compaction mode, stop */ 5875 if (!in_reclaim_compaction(sc)) 5876 return false; 5877 5878 /* 5879 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX 5880 * number of pages that were scanned. This will return to the caller 5881 * with the risk reclaim/compaction and the resulting allocation attempt 5882 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL 5883 * allocations through requiring that the full LRU list has been scanned 5884 * first, by assuming that zero delta of sc->nr_scanned means full LRU 5885 * scan, but that approximation was wrong, and there were corner cases 5886 * where always a non-zero amount of pages were scanned. 5887 */ 5888 if (!nr_reclaimed) 5889 return false; 5890 5891 /* If compaction would go ahead or the allocation would succeed, stop */ 5892 for_each_managed_zone_pgdat(zone, pgdat, z, sc->reclaim_idx) { 5893 /* Allocation can already succeed, nothing to do */ 5894 if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone), 5895 sc->reclaim_idx, 0)) 5896 return false; 5897 5898 if (compaction_suitable(zone, sc->order, sc->reclaim_idx)) 5899 return false; 5900 } 5901 5902 /* 5903 * If we have not reclaimed enough pages for compaction and the 5904 * inactive lists are large enough, continue reclaiming 5905 */ 5906 pages_for_compaction = compact_gap(sc->order); 5907 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE); 5908 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc)) 5909 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON); 5910 5911 return inactive_lru_pages > pages_for_compaction; 5912 } 5913 5914 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc) 5915 { 5916 struct mem_cgroup *target_memcg = sc->target_mem_cgroup; 5917 struct mem_cgroup_reclaim_cookie reclaim = { 5918 .pgdat = pgdat, 5919 }; 5920 struct mem_cgroup_reclaim_cookie *partial = &reclaim; 5921 struct mem_cgroup *memcg; 5922 5923 /* 5924 * In most cases, direct reclaimers can do partial walks 5925 * through the cgroup tree, using an iterator state that 5926 * persists across invocations. This strikes a balance between 5927 * fairness and allocation latency. 5928 * 5929 * For kswapd, reliable forward progress is more important 5930 * than a quick return to idle. Always do full walks. 5931 */ 5932 if (current_is_kswapd() || sc->memcg_full_walk) 5933 partial = NULL; 5934 5935 memcg = mem_cgroup_iter(target_memcg, NULL, partial); 5936 do { 5937 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 5938 unsigned long reclaimed; 5939 unsigned long scanned; 5940 5941 /* 5942 * This loop can become CPU-bound when target memcgs 5943 * aren't eligible for reclaim - either because they 5944 * don't have any reclaimable pages, or because their 5945 * memory is explicitly protected. Avoid soft lockups. 5946 */ 5947 cond_resched(); 5948 5949 mem_cgroup_calculate_protection(target_memcg, memcg); 5950 5951 if (mem_cgroup_below_min(target_memcg, memcg)) { 5952 /* 5953 * Hard protection. 5954 * If there is no reclaimable memory, OOM. 5955 */ 5956 continue; 5957 } else if (mem_cgroup_below_low(target_memcg, memcg)) { 5958 /* 5959 * Soft protection. 5960 * Respect the protection only as long as 5961 * there is an unprotected supply 5962 * of reclaimable memory from other cgroups. 5963 */ 5964 if (!sc->memcg_low_reclaim) { 5965 sc->memcg_low_skipped = 1; 5966 continue; 5967 } 5968 memcg_memory_event(memcg, MEMCG_LOW); 5969 } 5970 5971 reclaimed = sc->nr_reclaimed; 5972 scanned = sc->nr_scanned; 5973 5974 shrink_lruvec(lruvec, sc); 5975 5976 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, 5977 sc->priority); 5978 5979 /* Record the group's reclaim efficiency */ 5980 if (!sc->proactive) 5981 vmpressure(sc->gfp_mask, memcg, false, 5982 sc->nr_scanned - scanned, 5983 sc->nr_reclaimed - reclaimed); 5984 5985 /* If partial walks are allowed, bail once goal is reached */ 5986 if (partial && sc->nr_reclaimed >= sc->nr_to_reclaim) { 5987 mem_cgroup_iter_break(target_memcg, memcg); 5988 break; 5989 } 5990 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, partial))); 5991 } 5992 5993 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc) 5994 { 5995 unsigned long nr_reclaimed, nr_scanned, nr_node_reclaimed; 5996 struct lruvec *target_lruvec; 5997 bool reclaimable = false; 5998 5999 if (lru_gen_enabled() && root_reclaim(sc)) { 6000 memset(&sc->nr, 0, sizeof(sc->nr)); 6001 lru_gen_shrink_node(pgdat, sc); 6002 return; 6003 } 6004 6005 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat); 6006 6007 again: 6008 memset(&sc->nr, 0, sizeof(sc->nr)); 6009 6010 nr_reclaimed = sc->nr_reclaimed; 6011 nr_scanned = sc->nr_scanned; 6012 6013 prepare_scan_control(pgdat, sc); 6014 6015 shrink_node_memcgs(pgdat, sc); 6016 6017 flush_reclaim_state(sc); 6018 6019 nr_node_reclaimed = sc->nr_reclaimed - nr_reclaimed; 6020 6021 /* Record the subtree's reclaim efficiency */ 6022 if (!sc->proactive) 6023 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, 6024 sc->nr_scanned - nr_scanned, nr_node_reclaimed); 6025 6026 if (nr_node_reclaimed) 6027 reclaimable = true; 6028 6029 if (current_is_kswapd()) { 6030 /* 6031 * If reclaim is isolating dirty pages under writeback, 6032 * it implies that the long-lived page allocation rate 6033 * is exceeding the page laundering rate. Either the 6034 * global limits are not being effective at throttling 6035 * processes due to the page distribution throughout 6036 * zones or there is heavy usage of a slow backing 6037 * device. The only option is to throttle from reclaim 6038 * context which is not ideal as there is no guarantee 6039 * the dirtying process is throttled in the same way 6040 * balance_dirty_pages() manages. 6041 * 6042 * Once a node is flagged PGDAT_WRITEBACK, kswapd will 6043 * count the number of pages under pages flagged for 6044 * immediate reclaim and stall if any are encountered 6045 * in the nr_immediate check below. 6046 */ 6047 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken) 6048 set_bit(PGDAT_WRITEBACK, &pgdat->flags); 6049 6050 /* Allow kswapd to start writing pages during reclaim.*/ 6051 if (sc->nr.unqueued_dirty && 6052 sc->nr.unqueued_dirty == sc->nr.file_taken) 6053 set_bit(PGDAT_DIRTY, &pgdat->flags); 6054 6055 /* 6056 * If kswapd scans pages marked for immediate 6057 * reclaim and under writeback (nr_immediate), it 6058 * implies that pages are cycling through the LRU 6059 * faster than they are written so forcibly stall 6060 * until some pages complete writeback. 6061 */ 6062 if (sc->nr.immediate) 6063 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK); 6064 } 6065 6066 /* 6067 * Tag a node/memcg as congested if all the dirty pages were marked 6068 * for writeback and immediate reclaim (counted in nr.congested). 6069 * 6070 * Legacy memcg will stall in page writeback so avoid forcibly 6071 * stalling in reclaim_throttle(). 6072 */ 6073 if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested) { 6074 if (cgroup_reclaim(sc) && writeback_throttling_sane(sc)) 6075 set_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags); 6076 6077 if (current_is_kswapd()) 6078 set_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags); 6079 } 6080 6081 /* 6082 * Stall direct reclaim for IO completions if the lruvec is 6083 * node is congested. Allow kswapd to continue until it 6084 * starts encountering unqueued dirty pages or cycling through 6085 * the LRU too quickly. 6086 */ 6087 if (!current_is_kswapd() && current_may_throttle() && 6088 !sc->hibernation_mode && 6089 (test_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags) || 6090 test_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags))) 6091 reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED); 6092 6093 if (should_continue_reclaim(pgdat, nr_node_reclaimed, sc)) 6094 goto again; 6095 6096 /* 6097 * Kswapd gives up on balancing particular nodes after too 6098 * many failures to reclaim anything from them and goes to 6099 * sleep. On reclaim progress, reset the failure counter. A 6100 * successful direct reclaim run will revive a dormant kswapd. 6101 */ 6102 if (reclaimable) 6103 pgdat->kswapd_failures = 0; 6104 else if (sc->cache_trim_mode) 6105 sc->cache_trim_mode_failed = 1; 6106 } 6107 6108 /* 6109 * Returns true if compaction should go ahead for a costly-order request, or 6110 * the allocation would already succeed without compaction. Return false if we 6111 * should reclaim first. 6112 */ 6113 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) 6114 { 6115 unsigned long watermark; 6116 6117 if (!gfp_compaction_allowed(sc->gfp_mask)) 6118 return false; 6119 6120 /* Allocation can already succeed, nothing to do */ 6121 if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone), 6122 sc->reclaim_idx, 0)) 6123 return true; 6124 6125 /* Compaction cannot yet proceed. Do reclaim. */ 6126 if (!compaction_suitable(zone, sc->order, sc->reclaim_idx)) 6127 return false; 6128 6129 /* 6130 * Compaction is already possible, but it takes time to run and there 6131 * are potentially other callers using the pages just freed. So proceed 6132 * with reclaim to make a buffer of free pages available to give 6133 * compaction a reasonable chance of completing and allocating the page. 6134 * Note that we won't actually reclaim the whole buffer in one attempt 6135 * as the target watermark in should_continue_reclaim() is lower. But if 6136 * we are already above the high+gap watermark, don't reclaim at all. 6137 */ 6138 watermark = high_wmark_pages(zone) + compact_gap(sc->order); 6139 6140 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx); 6141 } 6142 6143 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc) 6144 { 6145 /* 6146 * If reclaim is making progress greater than 12% efficiency then 6147 * wake all the NOPROGRESS throttled tasks. 6148 */ 6149 if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) { 6150 wait_queue_head_t *wqh; 6151 6152 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS]; 6153 if (waitqueue_active(wqh)) 6154 wake_up(wqh); 6155 6156 return; 6157 } 6158 6159 /* 6160 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will 6161 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages 6162 * under writeback and marked for immediate reclaim at the tail of the 6163 * LRU. 6164 */ 6165 if (current_is_kswapd() || cgroup_reclaim(sc)) 6166 return; 6167 6168 /* Throttle if making no progress at high prioities. */ 6169 if (sc->priority == 1 && !sc->nr_reclaimed) 6170 reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS); 6171 } 6172 6173 /* 6174 * This is the direct reclaim path, for page-allocating processes. We only 6175 * try to reclaim pages from zones which will satisfy the caller's allocation 6176 * request. 6177 * 6178 * If a zone is deemed to be full of pinned pages then just give it a light 6179 * scan then give up on it. 6180 */ 6181 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 6182 { 6183 struct zoneref *z; 6184 struct zone *zone; 6185 unsigned long nr_soft_reclaimed; 6186 unsigned long nr_soft_scanned; 6187 gfp_t orig_mask; 6188 pg_data_t *last_pgdat = NULL; 6189 pg_data_t *first_pgdat = NULL; 6190 6191 /* 6192 * If the number of buffer_heads in the machine exceeds the maximum 6193 * allowed level, force direct reclaim to scan the highmem zone as 6194 * highmem pages could be pinning lowmem pages storing buffer_heads 6195 */ 6196 orig_mask = sc->gfp_mask; 6197 if (buffer_heads_over_limit) { 6198 sc->gfp_mask |= __GFP_HIGHMEM; 6199 sc->reclaim_idx = gfp_zone(sc->gfp_mask); 6200 } 6201 6202 for_each_zone_zonelist_nodemask(zone, z, zonelist, 6203 sc->reclaim_idx, sc->nodemask) { 6204 /* 6205 * Take care memory controller reclaiming has small influence 6206 * to global LRU. 6207 */ 6208 if (!cgroup_reclaim(sc)) { 6209 if (!cpuset_zone_allowed(zone, 6210 GFP_KERNEL | __GFP_HARDWALL)) 6211 continue; 6212 6213 /* 6214 * If we already have plenty of memory free for 6215 * compaction in this zone, don't free any more. 6216 * Even though compaction is invoked for any 6217 * non-zero order, only frequent costly order 6218 * reclamation is disruptive enough to become a 6219 * noticeable problem, like transparent huge 6220 * page allocations. 6221 */ 6222 if (IS_ENABLED(CONFIG_COMPACTION) && 6223 sc->order > PAGE_ALLOC_COSTLY_ORDER && 6224 compaction_ready(zone, sc)) { 6225 sc->compaction_ready = true; 6226 continue; 6227 } 6228 6229 /* 6230 * Shrink each node in the zonelist once. If the 6231 * zonelist is ordered by zone (not the default) then a 6232 * node may be shrunk multiple times but in that case 6233 * the user prefers lower zones being preserved. 6234 */ 6235 if (zone->zone_pgdat == last_pgdat) 6236 continue; 6237 6238 /* 6239 * This steals pages from memory cgroups over softlimit 6240 * and returns the number of reclaimed pages and 6241 * scanned pages. This works for global memory pressure 6242 * and balancing, not for a memcg's limit. 6243 */ 6244 nr_soft_scanned = 0; 6245 nr_soft_reclaimed = memcg1_soft_limit_reclaim(zone->zone_pgdat, 6246 sc->order, sc->gfp_mask, 6247 &nr_soft_scanned); 6248 sc->nr_reclaimed += nr_soft_reclaimed; 6249 sc->nr_scanned += nr_soft_scanned; 6250 /* need some check for avoid more shrink_zone() */ 6251 } 6252 6253 if (!first_pgdat) 6254 first_pgdat = zone->zone_pgdat; 6255 6256 /* See comment about same check for global reclaim above */ 6257 if (zone->zone_pgdat == last_pgdat) 6258 continue; 6259 last_pgdat = zone->zone_pgdat; 6260 shrink_node(zone->zone_pgdat, sc); 6261 } 6262 6263 if (first_pgdat) 6264 consider_reclaim_throttle(first_pgdat, sc); 6265 6266 /* 6267 * Restore to original mask to avoid the impact on the caller if we 6268 * promoted it to __GFP_HIGHMEM. 6269 */ 6270 sc->gfp_mask = orig_mask; 6271 } 6272 6273 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat) 6274 { 6275 struct lruvec *target_lruvec; 6276 unsigned long refaults; 6277 6278 if (lru_gen_enabled()) 6279 return; 6280 6281 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat); 6282 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON); 6283 target_lruvec->refaults[WORKINGSET_ANON] = refaults; 6284 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE); 6285 target_lruvec->refaults[WORKINGSET_FILE] = refaults; 6286 } 6287 6288 /* 6289 * This is the main entry point to direct page reclaim. 6290 * 6291 * If a full scan of the inactive list fails to free enough memory then we 6292 * are "out of memory" and something needs to be killed. 6293 * 6294 * If the caller is !__GFP_FS then the probability of a failure is reasonably 6295 * high - the zone may be full of dirty or under-writeback pages, which this 6296 * caller can't do much about. We kick the writeback threads and take explicit 6297 * naps in the hope that some of these pages can be written. But if the 6298 * allocating task holds filesystem locks which prevent writeout this might not 6299 * work, and the allocation attempt will fail. 6300 * 6301 * returns: 0, if no pages reclaimed 6302 * else, the number of pages reclaimed 6303 */ 6304 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 6305 struct scan_control *sc) 6306 { 6307 int initial_priority = sc->priority; 6308 pg_data_t *last_pgdat; 6309 struct zoneref *z; 6310 struct zone *zone; 6311 retry: 6312 delayacct_freepages_start(); 6313 6314 if (!cgroup_reclaim(sc)) 6315 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1); 6316 6317 do { 6318 if (!sc->proactive) 6319 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 6320 sc->priority); 6321 sc->nr_scanned = 0; 6322 shrink_zones(zonelist, sc); 6323 6324 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 6325 break; 6326 6327 if (sc->compaction_ready) 6328 break; 6329 6330 /* 6331 * If we're getting trouble reclaiming, start doing 6332 * writepage even in laptop mode. 6333 */ 6334 if (sc->priority < DEF_PRIORITY - 2) 6335 sc->may_writepage = 1; 6336 } while (--sc->priority >= 0); 6337 6338 last_pgdat = NULL; 6339 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx, 6340 sc->nodemask) { 6341 if (zone->zone_pgdat == last_pgdat) 6342 continue; 6343 last_pgdat = zone->zone_pgdat; 6344 6345 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat); 6346 6347 if (cgroup_reclaim(sc)) { 6348 struct lruvec *lruvec; 6349 6350 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, 6351 zone->zone_pgdat); 6352 clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags); 6353 } 6354 } 6355 6356 delayacct_freepages_end(); 6357 6358 if (sc->nr_reclaimed) 6359 return sc->nr_reclaimed; 6360 6361 /* Aborted reclaim to try compaction? don't OOM, then */ 6362 if (sc->compaction_ready) 6363 return 1; 6364 6365 /* 6366 * In most cases, direct reclaimers can do partial walks 6367 * through the cgroup tree to meet the reclaim goal while 6368 * keeping latency low. Since the iterator state is shared 6369 * among all direct reclaim invocations (to retain fairness 6370 * among cgroups), though, high concurrency can result in 6371 * individual threads not seeing enough cgroups to make 6372 * meaningful forward progress. Avoid false OOMs in this case. 6373 */ 6374 if (!sc->memcg_full_walk) { 6375 sc->priority = initial_priority; 6376 sc->memcg_full_walk = 1; 6377 goto retry; 6378 } 6379 6380 /* 6381 * We make inactive:active ratio decisions based on the node's 6382 * composition of memory, but a restrictive reclaim_idx or a 6383 * memory.low cgroup setting can exempt large amounts of 6384 * memory from reclaim. Neither of which are very common, so 6385 * instead of doing costly eligibility calculations of the 6386 * entire cgroup subtree up front, we assume the estimates are 6387 * good, and retry with forcible deactivation if that fails. 6388 */ 6389 if (sc->skipped_deactivate) { 6390 sc->priority = initial_priority; 6391 sc->force_deactivate = 1; 6392 sc->skipped_deactivate = 0; 6393 goto retry; 6394 } 6395 6396 /* Untapped cgroup reserves? Don't OOM, retry. */ 6397 if (sc->memcg_low_skipped) { 6398 sc->priority = initial_priority; 6399 sc->force_deactivate = 0; 6400 sc->memcg_low_reclaim = 1; 6401 sc->memcg_low_skipped = 0; 6402 goto retry; 6403 } 6404 6405 return 0; 6406 } 6407 6408 static bool allow_direct_reclaim(pg_data_t *pgdat) 6409 { 6410 struct zone *zone; 6411 unsigned long pfmemalloc_reserve = 0; 6412 unsigned long free_pages = 0; 6413 int i; 6414 bool wmark_ok; 6415 6416 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 6417 return true; 6418 6419 for_each_managed_zone_pgdat(zone, pgdat, i, ZONE_NORMAL) { 6420 if (!zone_reclaimable_pages(zone)) 6421 continue; 6422 6423 pfmemalloc_reserve += min_wmark_pages(zone); 6424 free_pages += zone_page_state_snapshot(zone, NR_FREE_PAGES); 6425 } 6426 6427 /* If there are no reserves (unexpected config) then do not throttle */ 6428 if (!pfmemalloc_reserve) 6429 return true; 6430 6431 wmark_ok = free_pages > pfmemalloc_reserve / 2; 6432 6433 /* kswapd must be awake if processes are being throttled */ 6434 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 6435 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL) 6436 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL); 6437 6438 wake_up_interruptible(&pgdat->kswapd_wait); 6439 } 6440 6441 return wmark_ok; 6442 } 6443 6444 /* 6445 * Throttle direct reclaimers if backing storage is backed by the network 6446 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 6447 * depleted. kswapd will continue to make progress and wake the processes 6448 * when the low watermark is reached. 6449 * 6450 * Returns true if a fatal signal was delivered during throttling. If this 6451 * happens, the page allocator should not consider triggering the OOM killer. 6452 */ 6453 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 6454 nodemask_t *nodemask) 6455 { 6456 struct zoneref *z; 6457 struct zone *zone; 6458 pg_data_t *pgdat = NULL; 6459 6460 /* 6461 * Kernel threads should not be throttled as they may be indirectly 6462 * responsible for cleaning pages necessary for reclaim to make forward 6463 * progress. kjournald for example may enter direct reclaim while 6464 * committing a transaction where throttling it could forcing other 6465 * processes to block on log_wait_commit(). 6466 */ 6467 if (current->flags & PF_KTHREAD) 6468 goto out; 6469 6470 /* 6471 * If a fatal signal is pending, this process should not throttle. 6472 * It should return quickly so it can exit and free its memory 6473 */ 6474 if (fatal_signal_pending(current)) 6475 goto out; 6476 6477 /* 6478 * Check if the pfmemalloc reserves are ok by finding the first node 6479 * with a usable ZONE_NORMAL or lower zone. The expectation is that 6480 * GFP_KERNEL will be required for allocating network buffers when 6481 * swapping over the network so ZONE_HIGHMEM is unusable. 6482 * 6483 * Throttling is based on the first usable node and throttled processes 6484 * wait on a queue until kswapd makes progress and wakes them. There 6485 * is an affinity then between processes waking up and where reclaim 6486 * progress has been made assuming the process wakes on the same node. 6487 * More importantly, processes running on remote nodes will not compete 6488 * for remote pfmemalloc reserves and processes on different nodes 6489 * should make reasonable progress. 6490 */ 6491 for_each_zone_zonelist_nodemask(zone, z, zonelist, 6492 gfp_zone(gfp_mask), nodemask) { 6493 if (zone_idx(zone) > ZONE_NORMAL) 6494 continue; 6495 6496 /* Throttle based on the first usable node */ 6497 pgdat = zone->zone_pgdat; 6498 if (allow_direct_reclaim(pgdat)) 6499 goto out; 6500 break; 6501 } 6502 6503 /* If no zone was usable by the allocation flags then do not throttle */ 6504 if (!pgdat) 6505 goto out; 6506 6507 /* Account for the throttling */ 6508 count_vm_event(PGSCAN_DIRECT_THROTTLE); 6509 6510 /* 6511 * If the caller cannot enter the filesystem, it's possible that it 6512 * is due to the caller holding an FS lock or performing a journal 6513 * transaction in the case of a filesystem like ext[3|4]. In this case, 6514 * it is not safe to block on pfmemalloc_wait as kswapd could be 6515 * blocked waiting on the same lock. Instead, throttle for up to a 6516 * second before continuing. 6517 */ 6518 if (!(gfp_mask & __GFP_FS)) 6519 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 6520 allow_direct_reclaim(pgdat), HZ); 6521 else 6522 /* Throttle until kswapd wakes the process */ 6523 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 6524 allow_direct_reclaim(pgdat)); 6525 6526 if (fatal_signal_pending(current)) 6527 return true; 6528 6529 out: 6530 return false; 6531 } 6532 6533 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 6534 gfp_t gfp_mask, nodemask_t *nodemask) 6535 { 6536 unsigned long nr_reclaimed; 6537 struct scan_control sc = { 6538 .nr_to_reclaim = SWAP_CLUSTER_MAX, 6539 .gfp_mask = current_gfp_context(gfp_mask), 6540 .reclaim_idx = gfp_zone(gfp_mask), 6541 .order = order, 6542 .nodemask = nodemask, 6543 .priority = DEF_PRIORITY, 6544 .may_writepage = !laptop_mode, 6545 .may_unmap = 1, 6546 .may_swap = 1, 6547 }; 6548 6549 /* 6550 * scan_control uses s8 fields for order, priority, and reclaim_idx. 6551 * Confirm they are large enough for max values. 6552 */ 6553 BUILD_BUG_ON(MAX_PAGE_ORDER >= S8_MAX); 6554 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX); 6555 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX); 6556 6557 /* 6558 * Do not enter reclaim if fatal signal was delivered while throttled. 6559 * 1 is returned so that the page allocator does not OOM kill at this 6560 * point. 6561 */ 6562 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask)) 6563 return 1; 6564 6565 set_task_reclaim_state(current, &sc.reclaim_state); 6566 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask); 6567 6568 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 6569 6570 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 6571 set_task_reclaim_state(current, NULL); 6572 6573 return nr_reclaimed; 6574 } 6575 6576 #ifdef CONFIG_MEMCG 6577 6578 /* Only used by soft limit reclaim. Do not reuse for anything else. */ 6579 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg, 6580 gfp_t gfp_mask, bool noswap, 6581 pg_data_t *pgdat, 6582 unsigned long *nr_scanned) 6583 { 6584 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 6585 struct scan_control sc = { 6586 .nr_to_reclaim = SWAP_CLUSTER_MAX, 6587 .target_mem_cgroup = memcg, 6588 .may_writepage = !laptop_mode, 6589 .may_unmap = 1, 6590 .reclaim_idx = MAX_NR_ZONES - 1, 6591 .may_swap = !noswap, 6592 }; 6593 6594 WARN_ON_ONCE(!current->reclaim_state); 6595 6596 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 6597 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 6598 6599 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 6600 sc.gfp_mask); 6601 6602 /* 6603 * NOTE: Although we can get the priority field, using it 6604 * here is not a good idea, since it limits the pages we can scan. 6605 * if we don't reclaim here, the shrink_node from balance_pgdat 6606 * will pick up pages from other mem cgroup's as well. We hack 6607 * the priority and make it zero. 6608 */ 6609 shrink_lruvec(lruvec, &sc); 6610 6611 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 6612 6613 *nr_scanned = sc.nr_scanned; 6614 6615 return sc.nr_reclaimed; 6616 } 6617 6618 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 6619 unsigned long nr_pages, 6620 gfp_t gfp_mask, 6621 unsigned int reclaim_options, 6622 int *swappiness) 6623 { 6624 unsigned long nr_reclaimed; 6625 unsigned int noreclaim_flag; 6626 struct scan_control sc = { 6627 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 6628 .proactive_swappiness = swappiness, 6629 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) | 6630 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 6631 .reclaim_idx = MAX_NR_ZONES - 1, 6632 .target_mem_cgroup = memcg, 6633 .priority = DEF_PRIORITY, 6634 .may_writepage = !laptop_mode, 6635 .may_unmap = 1, 6636 .may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP), 6637 .proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE), 6638 }; 6639 /* 6640 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put 6641 * equal pressure on all the nodes. This is based on the assumption that 6642 * the reclaim does not bail out early. 6643 */ 6644 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 6645 6646 set_task_reclaim_state(current, &sc.reclaim_state); 6647 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask); 6648 noreclaim_flag = memalloc_noreclaim_save(); 6649 6650 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 6651 6652 memalloc_noreclaim_restore(noreclaim_flag); 6653 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 6654 set_task_reclaim_state(current, NULL); 6655 6656 return nr_reclaimed; 6657 } 6658 #endif 6659 6660 static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc) 6661 { 6662 struct mem_cgroup *memcg; 6663 struct lruvec *lruvec; 6664 6665 if (lru_gen_enabled()) { 6666 lru_gen_age_node(pgdat, sc); 6667 return; 6668 } 6669 6670 if (!can_age_anon_pages(pgdat, sc)) 6671 return; 6672 6673 lruvec = mem_cgroup_lruvec(NULL, pgdat); 6674 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 6675 return; 6676 6677 memcg = mem_cgroup_iter(NULL, NULL, NULL); 6678 do { 6679 lruvec = mem_cgroup_lruvec(memcg, pgdat); 6680 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 6681 sc, LRU_ACTIVE_ANON); 6682 memcg = mem_cgroup_iter(NULL, memcg, NULL); 6683 } while (memcg); 6684 } 6685 6686 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx) 6687 { 6688 int i; 6689 struct zone *zone; 6690 6691 /* 6692 * Check for watermark boosts top-down as the higher zones 6693 * are more likely to be boosted. Both watermarks and boosts 6694 * should not be checked at the same time as reclaim would 6695 * start prematurely when there is no boosting and a lower 6696 * zone is balanced. 6697 */ 6698 for (i = highest_zoneidx; i >= 0; i--) { 6699 zone = pgdat->node_zones + i; 6700 if (!managed_zone(zone)) 6701 continue; 6702 6703 if (zone->watermark_boost) 6704 return true; 6705 } 6706 6707 return false; 6708 } 6709 6710 /* 6711 * Returns true if there is an eligible zone balanced for the request order 6712 * and highest_zoneidx 6713 */ 6714 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx) 6715 { 6716 int i; 6717 unsigned long mark = -1; 6718 struct zone *zone; 6719 6720 /* 6721 * Check watermarks bottom-up as lower zones are more likely to 6722 * meet watermarks. 6723 */ 6724 for_each_managed_zone_pgdat(zone, pgdat, i, highest_zoneidx) { 6725 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) 6726 mark = promo_wmark_pages(zone); 6727 else 6728 mark = high_wmark_pages(zone); 6729 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx)) 6730 return true; 6731 } 6732 6733 /* 6734 * If a node has no managed zone within highest_zoneidx, it does not 6735 * need balancing by definition. This can happen if a zone-restricted 6736 * allocation tries to wake a remote kswapd. 6737 */ 6738 if (mark == -1) 6739 return true; 6740 6741 return false; 6742 } 6743 6744 /* Clear pgdat state for congested, dirty or under writeback. */ 6745 static void clear_pgdat_congested(pg_data_t *pgdat) 6746 { 6747 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat); 6748 6749 clear_bit(LRUVEC_NODE_CONGESTED, &lruvec->flags); 6750 clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags); 6751 clear_bit(PGDAT_DIRTY, &pgdat->flags); 6752 clear_bit(PGDAT_WRITEBACK, &pgdat->flags); 6753 } 6754 6755 /* 6756 * Prepare kswapd for sleeping. This verifies that there are no processes 6757 * waiting in throttle_direct_reclaim() and that watermarks have been met. 6758 * 6759 * Returns true if kswapd is ready to sleep 6760 */ 6761 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, 6762 int highest_zoneidx) 6763 { 6764 /* 6765 * The throttled processes are normally woken up in balance_pgdat() as 6766 * soon as allow_direct_reclaim() is true. But there is a potential 6767 * race between when kswapd checks the watermarks and a process gets 6768 * throttled. There is also a potential race if processes get 6769 * throttled, kswapd wakes, a large process exits thereby balancing the 6770 * zones, which causes kswapd to exit balance_pgdat() before reaching 6771 * the wake up checks. If kswapd is going to sleep, no process should 6772 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If 6773 * the wake up is premature, processes will wake kswapd and get 6774 * throttled again. The difference from wake ups in balance_pgdat() is 6775 * that here we are under prepare_to_wait(). 6776 */ 6777 if (waitqueue_active(&pgdat->pfmemalloc_wait)) 6778 wake_up_all(&pgdat->pfmemalloc_wait); 6779 6780 /* Hopeless node, leave it to direct reclaim */ 6781 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 6782 return true; 6783 6784 if (pgdat_balanced(pgdat, order, highest_zoneidx)) { 6785 clear_pgdat_congested(pgdat); 6786 return true; 6787 } 6788 6789 return false; 6790 } 6791 6792 /* 6793 * kswapd shrinks a node of pages that are at or below the highest usable 6794 * zone that is currently unbalanced. 6795 * 6796 * Returns true if kswapd scanned at least the requested number of pages to 6797 * reclaim or if the lack of progress was due to pages under writeback. 6798 * This is used to determine if the scanning priority needs to be raised. 6799 */ 6800 static bool kswapd_shrink_node(pg_data_t *pgdat, 6801 struct scan_control *sc) 6802 { 6803 struct zone *zone; 6804 int z; 6805 unsigned long nr_reclaimed = sc->nr_reclaimed; 6806 6807 /* Reclaim a number of pages proportional to the number of zones */ 6808 sc->nr_to_reclaim = 0; 6809 for_each_managed_zone_pgdat(zone, pgdat, z, sc->reclaim_idx) { 6810 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX); 6811 } 6812 6813 /* 6814 * Historically care was taken to put equal pressure on all zones but 6815 * now pressure is applied based on node LRU order. 6816 */ 6817 shrink_node(pgdat, sc); 6818 6819 /* 6820 * Fragmentation may mean that the system cannot be rebalanced for 6821 * high-order allocations. If twice the allocation size has been 6822 * reclaimed then recheck watermarks only at order-0 to prevent 6823 * excessive reclaim. Assume that a process requested a high-order 6824 * can direct reclaim/compact. 6825 */ 6826 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order)) 6827 sc->order = 0; 6828 6829 /* account for progress from mm_account_reclaimed_pages() */ 6830 return max(sc->nr_scanned, sc->nr_reclaimed - nr_reclaimed) >= sc->nr_to_reclaim; 6831 } 6832 6833 /* Page allocator PCP high watermark is lowered if reclaim is active. */ 6834 static inline void 6835 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active) 6836 { 6837 int i; 6838 struct zone *zone; 6839 6840 for_each_managed_zone_pgdat(zone, pgdat, i, highest_zoneidx) { 6841 if (active) 6842 set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags); 6843 else 6844 clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags); 6845 } 6846 } 6847 6848 static inline void 6849 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx) 6850 { 6851 update_reclaim_active(pgdat, highest_zoneidx, true); 6852 } 6853 6854 static inline void 6855 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx) 6856 { 6857 update_reclaim_active(pgdat, highest_zoneidx, false); 6858 } 6859 6860 /* 6861 * For kswapd, balance_pgdat() will reclaim pages across a node from zones 6862 * that are eligible for use by the caller until at least one zone is 6863 * balanced. 6864 * 6865 * Returns the order kswapd finished reclaiming at. 6866 * 6867 * kswapd scans the zones in the highmem->normal->dma direction. It skips 6868 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 6869 * found to have free_pages <= high_wmark_pages(zone), any page in that zone 6870 * or lower is eligible for reclaim until at least one usable zone is 6871 * balanced. 6872 */ 6873 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx) 6874 { 6875 int i; 6876 unsigned long nr_soft_reclaimed; 6877 unsigned long nr_soft_scanned; 6878 unsigned long pflags; 6879 unsigned long nr_boost_reclaim; 6880 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, }; 6881 bool boosted; 6882 struct zone *zone; 6883 struct scan_control sc = { 6884 .gfp_mask = GFP_KERNEL, 6885 .order = order, 6886 .may_unmap = 1, 6887 }; 6888 6889 set_task_reclaim_state(current, &sc.reclaim_state); 6890 psi_memstall_enter(&pflags); 6891 __fs_reclaim_acquire(_THIS_IP_); 6892 6893 count_vm_event(PAGEOUTRUN); 6894 6895 /* 6896 * Account for the reclaim boost. Note that the zone boost is left in 6897 * place so that parallel allocations that are near the watermark will 6898 * stall or direct reclaim until kswapd is finished. 6899 */ 6900 nr_boost_reclaim = 0; 6901 for_each_managed_zone_pgdat(zone, pgdat, i, highest_zoneidx) { 6902 nr_boost_reclaim += zone->watermark_boost; 6903 zone_boosts[i] = zone->watermark_boost; 6904 } 6905 boosted = nr_boost_reclaim; 6906 6907 restart: 6908 set_reclaim_active(pgdat, highest_zoneidx); 6909 sc.priority = DEF_PRIORITY; 6910 do { 6911 unsigned long nr_reclaimed = sc.nr_reclaimed; 6912 bool raise_priority = true; 6913 bool balanced; 6914 bool ret; 6915 bool was_frozen; 6916 6917 sc.reclaim_idx = highest_zoneidx; 6918 6919 /* 6920 * If the number of buffer_heads exceeds the maximum allowed 6921 * then consider reclaiming from all zones. This has a dual 6922 * purpose -- on 64-bit systems it is expected that 6923 * buffer_heads are stripped during active rotation. On 32-bit 6924 * systems, highmem pages can pin lowmem memory and shrinking 6925 * buffers can relieve lowmem pressure. Reclaim may still not 6926 * go ahead if all eligible zones for the original allocation 6927 * request are balanced to avoid excessive reclaim from kswapd. 6928 */ 6929 if (buffer_heads_over_limit) { 6930 for (i = MAX_NR_ZONES - 1; i >= 0; i--) { 6931 zone = pgdat->node_zones + i; 6932 if (!managed_zone(zone)) 6933 continue; 6934 6935 sc.reclaim_idx = i; 6936 break; 6937 } 6938 } 6939 6940 /* 6941 * If the pgdat is imbalanced then ignore boosting and preserve 6942 * the watermarks for a later time and restart. Note that the 6943 * zone watermarks will be still reset at the end of balancing 6944 * on the grounds that the normal reclaim should be enough to 6945 * re-evaluate if boosting is required when kswapd next wakes. 6946 */ 6947 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx); 6948 if (!balanced && nr_boost_reclaim) { 6949 nr_boost_reclaim = 0; 6950 goto restart; 6951 } 6952 6953 /* 6954 * If boosting is not active then only reclaim if there are no 6955 * eligible zones. Note that sc.reclaim_idx is not used as 6956 * buffer_heads_over_limit may have adjusted it. 6957 */ 6958 if (!nr_boost_reclaim && balanced) 6959 goto out; 6960 6961 /* Limit the priority of boosting to avoid reclaim writeback */ 6962 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2) 6963 raise_priority = false; 6964 6965 /* 6966 * Do not writeback or swap pages for boosted reclaim. The 6967 * intent is to relieve pressure not issue sub-optimal IO 6968 * from reclaim context. If no pages are reclaimed, the 6969 * reclaim will be aborted. 6970 */ 6971 sc.may_writepage = !laptop_mode && !nr_boost_reclaim; 6972 sc.may_swap = !nr_boost_reclaim; 6973 6974 /* 6975 * Do some background aging, to give pages a chance to be 6976 * referenced before reclaiming. All pages are rotated 6977 * regardless of classzone as this is about consistent aging. 6978 */ 6979 kswapd_age_node(pgdat, &sc); 6980 6981 /* 6982 * If we're getting trouble reclaiming, start doing writepage 6983 * even in laptop mode. 6984 */ 6985 if (sc.priority < DEF_PRIORITY - 2) 6986 sc.may_writepage = 1; 6987 6988 /* Call soft limit reclaim before calling shrink_node. */ 6989 sc.nr_scanned = 0; 6990 nr_soft_scanned = 0; 6991 nr_soft_reclaimed = memcg1_soft_limit_reclaim(pgdat, sc.order, 6992 sc.gfp_mask, &nr_soft_scanned); 6993 sc.nr_reclaimed += nr_soft_reclaimed; 6994 6995 /* 6996 * There should be no need to raise the scanning priority if 6997 * enough pages are already being scanned that that high 6998 * watermark would be met at 100% efficiency. 6999 */ 7000 if (kswapd_shrink_node(pgdat, &sc)) 7001 raise_priority = false; 7002 7003 /* 7004 * If the low watermark is met there is no need for processes 7005 * to be throttled on pfmemalloc_wait as they should not be 7006 * able to safely make forward progress. Wake them 7007 */ 7008 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 7009 allow_direct_reclaim(pgdat)) 7010 wake_up_all(&pgdat->pfmemalloc_wait); 7011 7012 /* Check if kswapd should be suspending */ 7013 __fs_reclaim_release(_THIS_IP_); 7014 ret = kthread_freezable_should_stop(&was_frozen); 7015 __fs_reclaim_acquire(_THIS_IP_); 7016 if (was_frozen || ret) 7017 break; 7018 7019 /* 7020 * Raise priority if scanning rate is too low or there was no 7021 * progress in reclaiming pages 7022 */ 7023 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed; 7024 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed); 7025 7026 /* 7027 * If reclaim made no progress for a boost, stop reclaim as 7028 * IO cannot be queued and it could be an infinite loop in 7029 * extreme circumstances. 7030 */ 7031 if (nr_boost_reclaim && !nr_reclaimed) 7032 break; 7033 7034 if (raise_priority || !nr_reclaimed) 7035 sc.priority--; 7036 } while (sc.priority >= 1); 7037 7038 /* 7039 * Restart only if it went through the priority loop all the way, 7040 * but cache_trim_mode didn't work. 7041 */ 7042 if (!sc.nr_reclaimed && sc.priority < 1 && 7043 !sc.no_cache_trim_mode && sc.cache_trim_mode_failed) { 7044 sc.no_cache_trim_mode = 1; 7045 goto restart; 7046 } 7047 7048 if (!sc.nr_reclaimed) 7049 pgdat->kswapd_failures++; 7050 7051 out: 7052 clear_reclaim_active(pgdat, highest_zoneidx); 7053 7054 /* If reclaim was boosted, account for the reclaim done in this pass */ 7055 if (boosted) { 7056 unsigned long flags; 7057 7058 for (i = 0; i <= highest_zoneidx; i++) { 7059 if (!zone_boosts[i]) 7060 continue; 7061 7062 /* Increments are under the zone lock */ 7063 zone = pgdat->node_zones + i; 7064 spin_lock_irqsave(&zone->lock, flags); 7065 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]); 7066 spin_unlock_irqrestore(&zone->lock, flags); 7067 } 7068 7069 /* 7070 * As there is now likely space, wakeup kcompact to defragment 7071 * pageblocks. 7072 */ 7073 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx); 7074 } 7075 7076 snapshot_refaults(NULL, pgdat); 7077 __fs_reclaim_release(_THIS_IP_); 7078 psi_memstall_leave(&pflags); 7079 set_task_reclaim_state(current, NULL); 7080 7081 /* 7082 * Return the order kswapd stopped reclaiming at as 7083 * prepare_kswapd_sleep() takes it into account. If another caller 7084 * entered the allocator slow path while kswapd was awake, order will 7085 * remain at the higher level. 7086 */ 7087 return sc.order; 7088 } 7089 7090 /* 7091 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to 7092 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is 7093 * not a valid index then either kswapd runs for first time or kswapd couldn't 7094 * sleep after previous reclaim attempt (node is still unbalanced). In that 7095 * case return the zone index of the previous kswapd reclaim cycle. 7096 */ 7097 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat, 7098 enum zone_type prev_highest_zoneidx) 7099 { 7100 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 7101 7102 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx; 7103 } 7104 7105 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order, 7106 unsigned int highest_zoneidx) 7107 { 7108 long remaining = 0; 7109 DEFINE_WAIT(wait); 7110 7111 if (freezing(current) || kthread_should_stop()) 7112 return; 7113 7114 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 7115 7116 /* 7117 * Try to sleep for a short interval. Note that kcompactd will only be 7118 * woken if it is possible to sleep for a short interval. This is 7119 * deliberate on the assumption that if reclaim cannot keep an 7120 * eligible zone balanced that it's also unlikely that compaction will 7121 * succeed. 7122 */ 7123 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 7124 /* 7125 * Compaction records what page blocks it recently failed to 7126 * isolate pages from and skips them in the future scanning. 7127 * When kswapd is going to sleep, it is reasonable to assume 7128 * that pages and compaction may succeed so reset the cache. 7129 */ 7130 reset_isolation_suitable(pgdat); 7131 7132 /* 7133 * We have freed the memory, now we should compact it to make 7134 * allocation of the requested order possible. 7135 */ 7136 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx); 7137 7138 remaining = schedule_timeout(HZ/10); 7139 7140 /* 7141 * If woken prematurely then reset kswapd_highest_zoneidx and 7142 * order. The values will either be from a wakeup request or 7143 * the previous request that slept prematurely. 7144 */ 7145 if (remaining) { 7146 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, 7147 kswapd_highest_zoneidx(pgdat, 7148 highest_zoneidx)); 7149 7150 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order) 7151 WRITE_ONCE(pgdat->kswapd_order, reclaim_order); 7152 } 7153 7154 finish_wait(&pgdat->kswapd_wait, &wait); 7155 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 7156 } 7157 7158 /* 7159 * After a short sleep, check if it was a premature sleep. If not, then 7160 * go fully to sleep until explicitly woken up. 7161 */ 7162 if (!remaining && 7163 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 7164 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 7165 7166 /* 7167 * vmstat counters are not perfectly accurate and the estimated 7168 * value for counters such as NR_FREE_PAGES can deviate from the 7169 * true value by nr_online_cpus * threshold. To avoid the zone 7170 * watermarks being breached while under pressure, we reduce the 7171 * per-cpu vmstat threshold while kswapd is awake and restore 7172 * them before going back to sleep. 7173 */ 7174 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 7175 7176 if (!kthread_should_stop()) 7177 schedule(); 7178 7179 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 7180 } else { 7181 if (remaining) 7182 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 7183 else 7184 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 7185 } 7186 finish_wait(&pgdat->kswapd_wait, &wait); 7187 } 7188 7189 /* 7190 * The background pageout daemon, started as a kernel thread 7191 * from the init process. 7192 * 7193 * This basically trickles out pages so that we have _some_ 7194 * free memory available even if there is no other activity 7195 * that frees anything up. This is needed for things like routing 7196 * etc, where we otherwise might have all activity going on in 7197 * asynchronous contexts that cannot page things out. 7198 * 7199 * If there are applications that are active memory-allocators 7200 * (most normal use), this basically shouldn't matter. 7201 */ 7202 static int kswapd(void *p) 7203 { 7204 unsigned int alloc_order, reclaim_order; 7205 unsigned int highest_zoneidx = MAX_NR_ZONES - 1; 7206 pg_data_t *pgdat = (pg_data_t *)p; 7207 struct task_struct *tsk = current; 7208 7209 /* 7210 * Tell the memory management that we're a "memory allocator", 7211 * and that if we need more memory we should get access to it 7212 * regardless (see "__alloc_pages()"). "kswapd" should 7213 * never get caught in the normal page freeing logic. 7214 * 7215 * (Kswapd normally doesn't need memory anyway, but sometimes 7216 * you need a small amount of memory in order to be able to 7217 * page out something else, and this flag essentially protects 7218 * us from recursively trying to free more memory as we're 7219 * trying to free the first piece of memory in the first place). 7220 */ 7221 tsk->flags |= PF_MEMALLOC | PF_KSWAPD; 7222 set_freezable(); 7223 7224 WRITE_ONCE(pgdat->kswapd_order, 0); 7225 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 7226 atomic_set(&pgdat->nr_writeback_throttled, 0); 7227 for ( ; ; ) { 7228 bool was_frozen; 7229 7230 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order); 7231 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 7232 highest_zoneidx); 7233 7234 kswapd_try_sleep: 7235 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order, 7236 highest_zoneidx); 7237 7238 /* Read the new order and highest_zoneidx */ 7239 alloc_order = READ_ONCE(pgdat->kswapd_order); 7240 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 7241 highest_zoneidx); 7242 WRITE_ONCE(pgdat->kswapd_order, 0); 7243 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 7244 7245 if (kthread_freezable_should_stop(&was_frozen)) 7246 break; 7247 7248 /* 7249 * We can speed up thawing tasks if we don't call balance_pgdat 7250 * after returning from the refrigerator 7251 */ 7252 if (was_frozen) 7253 continue; 7254 7255 /* 7256 * Reclaim begins at the requested order but if a high-order 7257 * reclaim fails then kswapd falls back to reclaiming for 7258 * order-0. If that happens, kswapd will consider sleeping 7259 * for the order it finished reclaiming at (reclaim_order) 7260 * but kcompactd is woken to compact for the original 7261 * request (alloc_order). 7262 */ 7263 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx, 7264 alloc_order); 7265 reclaim_order = balance_pgdat(pgdat, alloc_order, 7266 highest_zoneidx); 7267 if (reclaim_order < alloc_order) 7268 goto kswapd_try_sleep; 7269 } 7270 7271 tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD); 7272 7273 return 0; 7274 } 7275 7276 /* 7277 * A zone is low on free memory or too fragmented for high-order memory. If 7278 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's 7279 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim 7280 * has failed or is not needed, still wake up kcompactd if only compaction is 7281 * needed. 7282 */ 7283 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order, 7284 enum zone_type highest_zoneidx) 7285 { 7286 pg_data_t *pgdat; 7287 enum zone_type curr_idx; 7288 7289 if (!managed_zone(zone)) 7290 return; 7291 7292 if (!cpuset_zone_allowed(zone, gfp_flags)) 7293 return; 7294 7295 pgdat = zone->zone_pgdat; 7296 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 7297 7298 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx) 7299 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx); 7300 7301 if (READ_ONCE(pgdat->kswapd_order) < order) 7302 WRITE_ONCE(pgdat->kswapd_order, order); 7303 7304 if (!waitqueue_active(&pgdat->kswapd_wait)) 7305 return; 7306 7307 /* Hopeless node, leave it to direct reclaim if possible */ 7308 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES || 7309 (pgdat_balanced(pgdat, order, highest_zoneidx) && 7310 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) { 7311 /* 7312 * There may be plenty of free memory available, but it's too 7313 * fragmented for high-order allocations. Wake up kcompactd 7314 * and rely on compaction_suitable() to determine if it's 7315 * needed. If it fails, it will defer subsequent attempts to 7316 * ratelimit its work. 7317 */ 7318 if (!(gfp_flags & __GFP_DIRECT_RECLAIM)) 7319 wakeup_kcompactd(pgdat, order, highest_zoneidx); 7320 return; 7321 } 7322 7323 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order, 7324 gfp_flags); 7325 wake_up_interruptible(&pgdat->kswapd_wait); 7326 } 7327 7328 #ifdef CONFIG_HIBERNATION 7329 /* 7330 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 7331 * freed pages. 7332 * 7333 * Rather than trying to age LRUs the aim is to preserve the overall 7334 * LRU order by reclaiming preferentially 7335 * inactive > active > active referenced > active mapped 7336 */ 7337 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 7338 { 7339 struct scan_control sc = { 7340 .nr_to_reclaim = nr_to_reclaim, 7341 .gfp_mask = GFP_HIGHUSER_MOVABLE, 7342 .reclaim_idx = MAX_NR_ZONES - 1, 7343 .priority = DEF_PRIORITY, 7344 .may_writepage = 1, 7345 .may_unmap = 1, 7346 .may_swap = 1, 7347 .hibernation_mode = 1, 7348 }; 7349 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 7350 unsigned long nr_reclaimed; 7351 unsigned int noreclaim_flag; 7352 7353 fs_reclaim_acquire(sc.gfp_mask); 7354 noreclaim_flag = memalloc_noreclaim_save(); 7355 set_task_reclaim_state(current, &sc.reclaim_state); 7356 7357 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 7358 7359 set_task_reclaim_state(current, NULL); 7360 memalloc_noreclaim_restore(noreclaim_flag); 7361 fs_reclaim_release(sc.gfp_mask); 7362 7363 return nr_reclaimed; 7364 } 7365 #endif /* CONFIG_HIBERNATION */ 7366 7367 /* 7368 * This kswapd start function will be called by init and node-hot-add. 7369 */ 7370 void __meminit kswapd_run(int nid) 7371 { 7372 pg_data_t *pgdat = NODE_DATA(nid); 7373 7374 pgdat_kswapd_lock(pgdat); 7375 if (!pgdat->kswapd) { 7376 pgdat->kswapd = kthread_create_on_node(kswapd, pgdat, nid, "kswapd%d", nid); 7377 if (IS_ERR(pgdat->kswapd)) { 7378 /* failure at boot is fatal */ 7379 pr_err("Failed to start kswapd on node %d,ret=%ld\n", 7380 nid, PTR_ERR(pgdat->kswapd)); 7381 BUG_ON(system_state < SYSTEM_RUNNING); 7382 pgdat->kswapd = NULL; 7383 } else { 7384 wake_up_process(pgdat->kswapd); 7385 } 7386 } 7387 pgdat_kswapd_unlock(pgdat); 7388 } 7389 7390 /* 7391 * Called by memory hotplug when all memory in a node is offlined. Caller must 7392 * be holding mem_hotplug_begin/done(). 7393 */ 7394 void __meminit kswapd_stop(int nid) 7395 { 7396 pg_data_t *pgdat = NODE_DATA(nid); 7397 struct task_struct *kswapd; 7398 7399 pgdat_kswapd_lock(pgdat); 7400 kswapd = pgdat->kswapd; 7401 if (kswapd) { 7402 kthread_stop(kswapd); 7403 pgdat->kswapd = NULL; 7404 } 7405 pgdat_kswapd_unlock(pgdat); 7406 } 7407 7408 static int __init kswapd_init(void) 7409 { 7410 int nid; 7411 7412 swap_setup(); 7413 for_each_node_state(nid, N_MEMORY) 7414 kswapd_run(nid); 7415 return 0; 7416 } 7417 7418 module_init(kswapd_init) 7419 7420 #ifdef CONFIG_NUMA 7421 /* 7422 * Node reclaim mode 7423 * 7424 * If non-zero call node_reclaim when the number of free pages falls below 7425 * the watermarks. 7426 */ 7427 int node_reclaim_mode __read_mostly; 7428 7429 /* 7430 * Priority for NODE_RECLAIM. This determines the fraction of pages 7431 * of a node considered for each zone_reclaim. 4 scans 1/16th of 7432 * a zone. 7433 */ 7434 #define NODE_RECLAIM_PRIORITY 4 7435 7436 /* 7437 * Percentage of pages in a zone that must be unmapped for node_reclaim to 7438 * occur. 7439 */ 7440 int sysctl_min_unmapped_ratio = 1; 7441 7442 /* 7443 * If the number of slab pages in a zone grows beyond this percentage then 7444 * slab reclaim needs to occur. 7445 */ 7446 int sysctl_min_slab_ratio = 5; 7447 7448 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat) 7449 { 7450 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED); 7451 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) + 7452 node_page_state(pgdat, NR_ACTIVE_FILE); 7453 7454 /* 7455 * It's possible for there to be more file mapped pages than 7456 * accounted for by the pages on the file LRU lists because 7457 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 7458 */ 7459 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 7460 } 7461 7462 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 7463 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat) 7464 { 7465 unsigned long nr_pagecache_reclaimable; 7466 unsigned long delta = 0; 7467 7468 /* 7469 * If RECLAIM_UNMAP is set, then all file pages are considered 7470 * potentially reclaimable. Otherwise, we have to worry about 7471 * pages like swapcache and node_unmapped_file_pages() provides 7472 * a better estimate 7473 */ 7474 if (node_reclaim_mode & RECLAIM_UNMAP) 7475 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES); 7476 else 7477 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat); 7478 7479 /* If we can't clean pages, remove dirty pages from consideration */ 7480 if (!(node_reclaim_mode & RECLAIM_WRITE)) 7481 delta += node_page_state(pgdat, NR_FILE_DIRTY); 7482 7483 /* Watch for any possible underflows due to delta */ 7484 if (unlikely(delta > nr_pagecache_reclaimable)) 7485 delta = nr_pagecache_reclaimable; 7486 7487 return nr_pagecache_reclaimable - delta; 7488 } 7489 7490 /* 7491 * Try to free up some pages from this node through reclaim. 7492 */ 7493 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 7494 { 7495 /* Minimum pages needed in order to stay on node */ 7496 const unsigned long nr_pages = 1 << order; 7497 struct task_struct *p = current; 7498 unsigned int noreclaim_flag; 7499 struct scan_control sc = { 7500 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 7501 .gfp_mask = current_gfp_context(gfp_mask), 7502 .order = order, 7503 .priority = NODE_RECLAIM_PRIORITY, 7504 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE), 7505 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP), 7506 .may_swap = 1, 7507 .reclaim_idx = gfp_zone(gfp_mask), 7508 }; 7509 unsigned long pflags; 7510 7511 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order, 7512 sc.gfp_mask); 7513 7514 cond_resched(); 7515 psi_memstall_enter(&pflags); 7516 delayacct_freepages_start(); 7517 fs_reclaim_acquire(sc.gfp_mask); 7518 /* 7519 * We need to be able to allocate from the reserves for RECLAIM_UNMAP 7520 */ 7521 noreclaim_flag = memalloc_noreclaim_save(); 7522 set_task_reclaim_state(p, &sc.reclaim_state); 7523 7524 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages || 7525 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) { 7526 /* 7527 * Free memory by calling shrink node with increasing 7528 * priorities until we have enough memory freed. 7529 */ 7530 do { 7531 shrink_node(pgdat, &sc); 7532 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 7533 } 7534 7535 set_task_reclaim_state(p, NULL); 7536 memalloc_noreclaim_restore(noreclaim_flag); 7537 fs_reclaim_release(sc.gfp_mask); 7538 psi_memstall_leave(&pflags); 7539 delayacct_freepages_end(); 7540 7541 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed); 7542 7543 return sc.nr_reclaimed >= nr_pages; 7544 } 7545 7546 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 7547 { 7548 int ret; 7549 7550 /* 7551 * Node reclaim reclaims unmapped file backed pages and 7552 * slab pages if we are over the defined limits. 7553 * 7554 * A small portion of unmapped file backed pages is needed for 7555 * file I/O otherwise pages read by file I/O will be immediately 7556 * thrown out if the node is overallocated. So we do not reclaim 7557 * if less than a specified percentage of the node is used by 7558 * unmapped file backed pages. 7559 */ 7560 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages && 7561 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <= 7562 pgdat->min_slab_pages) 7563 return NODE_RECLAIM_FULL; 7564 7565 /* 7566 * Do not scan if the allocation should not be delayed. 7567 */ 7568 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) 7569 return NODE_RECLAIM_NOSCAN; 7570 7571 /* 7572 * Only run node reclaim on the local node or on nodes that do not 7573 * have associated processors. This will favor the local processor 7574 * over remote processors and spread off node memory allocations 7575 * as wide as possible. 7576 */ 7577 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id()) 7578 return NODE_RECLAIM_NOSCAN; 7579 7580 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags)) 7581 return NODE_RECLAIM_NOSCAN; 7582 7583 ret = __node_reclaim(pgdat, gfp_mask, order); 7584 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags); 7585 7586 if (ret) 7587 count_vm_event(PGSCAN_ZONE_RECLAIM_SUCCESS); 7588 else 7589 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 7590 7591 return ret; 7592 } 7593 #endif 7594 7595 /** 7596 * check_move_unevictable_folios - Move evictable folios to appropriate zone 7597 * lru list 7598 * @fbatch: Batch of lru folios to check. 7599 * 7600 * Checks folios for evictability, if an evictable folio is in the unevictable 7601 * lru list, moves it to the appropriate evictable lru list. This function 7602 * should be only used for lru folios. 7603 */ 7604 void check_move_unevictable_folios(struct folio_batch *fbatch) 7605 { 7606 struct lruvec *lruvec = NULL; 7607 int pgscanned = 0; 7608 int pgrescued = 0; 7609 int i; 7610 7611 for (i = 0; i < fbatch->nr; i++) { 7612 struct folio *folio = fbatch->folios[i]; 7613 int nr_pages = folio_nr_pages(folio); 7614 7615 pgscanned += nr_pages; 7616 7617 /* block memcg migration while the folio moves between lrus */ 7618 if (!folio_test_clear_lru(folio)) 7619 continue; 7620 7621 lruvec = folio_lruvec_relock_irq(folio, lruvec); 7622 if (folio_evictable(folio) && folio_test_unevictable(folio)) { 7623 lruvec_del_folio(lruvec, folio); 7624 folio_clear_unevictable(folio); 7625 lruvec_add_folio(lruvec, folio); 7626 pgrescued += nr_pages; 7627 } 7628 folio_set_lru(folio); 7629 } 7630 7631 if (lruvec) { 7632 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 7633 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 7634 unlock_page_lruvec_irq(lruvec); 7635 } else if (pgscanned) { 7636 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 7637 } 7638 } 7639 EXPORT_SYMBOL_GPL(check_move_unevictable_folios); 7640