1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 4 * 5 * Swap reorganised 29.12.95, Stephen Tweedie. 6 * kswapd added: 7.1.96 sct 7 * Removed kswapd_ctl limits, and swap out as many pages as needed 8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 9 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 10 * Multiqueue VM started 5.8.00, Rik van Riel. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 15 #include <linux/mm.h> 16 #include <linux/sched/mm.h> 17 #include <linux/module.h> 18 #include <linux/gfp.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/swap.h> 21 #include <linux/pagemap.h> 22 #include <linux/init.h> 23 #include <linux/highmem.h> 24 #include <linux/vmpressure.h> 25 #include <linux/vmstat.h> 26 #include <linux/file.h> 27 #include <linux/writeback.h> 28 #include <linux/blkdev.h> 29 #include <linux/buffer_head.h> /* for buffer_heads_over_limit */ 30 #include <linux/mm_inline.h> 31 #include <linux/backing-dev.h> 32 #include <linux/rmap.h> 33 #include <linux/topology.h> 34 #include <linux/cpu.h> 35 #include <linux/cpuset.h> 36 #include <linux/compaction.h> 37 #include <linux/notifier.h> 38 #include <linux/delay.h> 39 #include <linux/kthread.h> 40 #include <linux/freezer.h> 41 #include <linux/memcontrol.h> 42 #include <linux/migrate.h> 43 #include <linux/delayacct.h> 44 #include <linux/sysctl.h> 45 #include <linux/memory-tiers.h> 46 #include <linux/oom.h> 47 #include <linux/pagevec.h> 48 #include <linux/prefetch.h> 49 #include <linux/printk.h> 50 #include <linux/dax.h> 51 #include <linux/psi.h> 52 #include <linux/pagewalk.h> 53 #include <linux/shmem_fs.h> 54 #include <linux/ctype.h> 55 #include <linux/debugfs.h> 56 #include <linux/khugepaged.h> 57 #include <linux/rculist_nulls.h> 58 #include <linux/random.h> 59 60 #include <asm/tlbflush.h> 61 #include <asm/div64.h> 62 63 #include <linux/swapops.h> 64 #include <linux/balloon_compaction.h> 65 #include <linux/sched/sysctl.h> 66 67 #include "internal.h" 68 #include "swap.h" 69 70 #define CREATE_TRACE_POINTS 71 #include <trace/events/vmscan.h> 72 73 struct scan_control { 74 /* How many pages shrink_list() should reclaim */ 75 unsigned long nr_to_reclaim; 76 77 /* 78 * Nodemask of nodes allowed by the caller. If NULL, all nodes 79 * are scanned. 80 */ 81 nodemask_t *nodemask; 82 83 /* 84 * The memory cgroup that hit its limit and as a result is the 85 * primary target of this reclaim invocation. 86 */ 87 struct mem_cgroup *target_mem_cgroup; 88 89 /* 90 * Scan pressure balancing between anon and file LRUs 91 */ 92 unsigned long anon_cost; 93 unsigned long file_cost; 94 95 /* Can active folios be deactivated as part of reclaim? */ 96 #define DEACTIVATE_ANON 1 97 #define DEACTIVATE_FILE 2 98 unsigned int may_deactivate:2; 99 unsigned int force_deactivate:1; 100 unsigned int skipped_deactivate:1; 101 102 /* Writepage batching in laptop mode; RECLAIM_WRITE */ 103 unsigned int may_writepage:1; 104 105 /* Can mapped folios be reclaimed? */ 106 unsigned int may_unmap:1; 107 108 /* Can folios be swapped as part of reclaim? */ 109 unsigned int may_swap:1; 110 111 /* Proactive reclaim invoked by userspace through memory.reclaim */ 112 unsigned int proactive:1; 113 114 /* 115 * Cgroup memory below memory.low is protected as long as we 116 * don't threaten to OOM. If any cgroup is reclaimed at 117 * reduced force or passed over entirely due to its memory.low 118 * setting (memcg_low_skipped), and nothing is reclaimed as a 119 * result, then go back for one more cycle that reclaims the protected 120 * memory (memcg_low_reclaim) to avert OOM. 121 */ 122 unsigned int memcg_low_reclaim:1; 123 unsigned int memcg_low_skipped:1; 124 125 unsigned int hibernation_mode:1; 126 127 /* One of the zones is ready for compaction */ 128 unsigned int compaction_ready:1; 129 130 /* There is easily reclaimable cold cache in the current node */ 131 unsigned int cache_trim_mode:1; 132 133 /* The file folios on the current node are dangerously low */ 134 unsigned int file_is_tiny:1; 135 136 /* Always discard instead of demoting to lower tier memory */ 137 unsigned int no_demotion:1; 138 139 /* Allocation order */ 140 s8 order; 141 142 /* Scan (total_size >> priority) pages at once */ 143 s8 priority; 144 145 /* The highest zone to isolate folios for reclaim from */ 146 s8 reclaim_idx; 147 148 /* This context's GFP mask */ 149 gfp_t gfp_mask; 150 151 /* Incremented by the number of inactive pages that were scanned */ 152 unsigned long nr_scanned; 153 154 /* Number of pages freed so far during a call to shrink_zones() */ 155 unsigned long nr_reclaimed; 156 157 struct { 158 unsigned int dirty; 159 unsigned int unqueued_dirty; 160 unsigned int congested; 161 unsigned int writeback; 162 unsigned int immediate; 163 unsigned int file_taken; 164 unsigned int taken; 165 } nr; 166 167 /* for recording the reclaimed slab by now */ 168 struct reclaim_state reclaim_state; 169 }; 170 171 #ifdef ARCH_HAS_PREFETCHW 172 #define prefetchw_prev_lru_folio(_folio, _base, _field) \ 173 do { \ 174 if ((_folio)->lru.prev != _base) { \ 175 struct folio *prev; \ 176 \ 177 prev = lru_to_folio(&(_folio->lru)); \ 178 prefetchw(&prev->_field); \ 179 } \ 180 } while (0) 181 #else 182 #define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0) 183 #endif 184 185 /* 186 * From 0 .. 200. Higher means more swappy. 187 */ 188 int vm_swappiness = 60; 189 190 #ifdef CONFIG_MEMCG 191 192 /* Returns true for reclaim through cgroup limits or cgroup interfaces. */ 193 static bool cgroup_reclaim(struct scan_control *sc) 194 { 195 return sc->target_mem_cgroup; 196 } 197 198 /* 199 * Returns true for reclaim on the root cgroup. This is true for direct 200 * allocator reclaim and reclaim through cgroup interfaces on the root cgroup. 201 */ 202 static bool root_reclaim(struct scan_control *sc) 203 { 204 return !sc->target_mem_cgroup || mem_cgroup_is_root(sc->target_mem_cgroup); 205 } 206 207 /** 208 * writeback_throttling_sane - is the usual dirty throttling mechanism available? 209 * @sc: scan_control in question 210 * 211 * The normal page dirty throttling mechanism in balance_dirty_pages() is 212 * completely broken with the legacy memcg and direct stalling in 213 * shrink_folio_list() is used for throttling instead, which lacks all the 214 * niceties such as fairness, adaptive pausing, bandwidth proportional 215 * allocation and configurability. 216 * 217 * This function tests whether the vmscan currently in progress can assume 218 * that the normal dirty throttling mechanism is operational. 219 */ 220 static bool writeback_throttling_sane(struct scan_control *sc) 221 { 222 if (!cgroup_reclaim(sc)) 223 return true; 224 #ifdef CONFIG_CGROUP_WRITEBACK 225 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 226 return true; 227 #endif 228 return false; 229 } 230 #else 231 static bool cgroup_reclaim(struct scan_control *sc) 232 { 233 return false; 234 } 235 236 static bool root_reclaim(struct scan_control *sc) 237 { 238 return true; 239 } 240 241 static bool writeback_throttling_sane(struct scan_control *sc) 242 { 243 return true; 244 } 245 #endif 246 247 static void set_task_reclaim_state(struct task_struct *task, 248 struct reclaim_state *rs) 249 { 250 /* Check for an overwrite */ 251 WARN_ON_ONCE(rs && task->reclaim_state); 252 253 /* Check for the nulling of an already-nulled member */ 254 WARN_ON_ONCE(!rs && !task->reclaim_state); 255 256 task->reclaim_state = rs; 257 } 258 259 /* 260 * flush_reclaim_state(): add pages reclaimed outside of LRU-based reclaim to 261 * scan_control->nr_reclaimed. 262 */ 263 static void flush_reclaim_state(struct scan_control *sc) 264 { 265 /* 266 * Currently, reclaim_state->reclaimed includes three types of pages 267 * freed outside of vmscan: 268 * (1) Slab pages. 269 * (2) Clean file pages from pruned inodes (on highmem systems). 270 * (3) XFS freed buffer pages. 271 * 272 * For all of these cases, we cannot universally link the pages to a 273 * single memcg. For example, a memcg-aware shrinker can free one object 274 * charged to the target memcg, causing an entire page to be freed. 275 * If we count the entire page as reclaimed from the memcg, we end up 276 * overestimating the reclaimed amount (potentially under-reclaiming). 277 * 278 * Only count such pages for global reclaim to prevent under-reclaiming 279 * from the target memcg; preventing unnecessary retries during memcg 280 * charging and false positives from proactive reclaim. 281 * 282 * For uncommon cases where the freed pages were actually mostly 283 * charged to the target memcg, we end up underestimating the reclaimed 284 * amount. This should be fine. The freed pages will be uncharged 285 * anyway, even if they are not counted here properly, and we will be 286 * able to make forward progress in charging (which is usually in a 287 * retry loop). 288 * 289 * We can go one step further, and report the uncharged objcg pages in 290 * memcg reclaim, to make reporting more accurate and reduce 291 * underestimation, but it's probably not worth the complexity for now. 292 */ 293 if (current->reclaim_state && root_reclaim(sc)) { 294 sc->nr_reclaimed += current->reclaim_state->reclaimed; 295 current->reclaim_state->reclaimed = 0; 296 } 297 } 298 299 static bool can_demote(int nid, struct scan_control *sc) 300 { 301 if (!numa_demotion_enabled) 302 return false; 303 if (sc && sc->no_demotion) 304 return false; 305 if (next_demotion_node(nid) == NUMA_NO_NODE) 306 return false; 307 308 return true; 309 } 310 311 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg, 312 int nid, 313 struct scan_control *sc) 314 { 315 if (memcg == NULL) { 316 /* 317 * For non-memcg reclaim, is there 318 * space in any swap device? 319 */ 320 if (get_nr_swap_pages() > 0) 321 return true; 322 } else { 323 /* Is the memcg below its swap limit? */ 324 if (mem_cgroup_get_nr_swap_pages(memcg) > 0) 325 return true; 326 } 327 328 /* 329 * The page can not be swapped. 330 * 331 * Can it be reclaimed from this node via demotion? 332 */ 333 return can_demote(nid, sc); 334 } 335 336 /* 337 * This misses isolated folios which are not accounted for to save counters. 338 * As the data only determines if reclaim or compaction continues, it is 339 * not expected that isolated folios will be a dominating factor. 340 */ 341 unsigned long zone_reclaimable_pages(struct zone *zone) 342 { 343 unsigned long nr; 344 345 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) + 346 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE); 347 if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL)) 348 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) + 349 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON); 350 351 return nr; 352 } 353 354 /** 355 * lruvec_lru_size - Returns the number of pages on the given LRU list. 356 * @lruvec: lru vector 357 * @lru: lru to use 358 * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list) 359 */ 360 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, 361 int zone_idx) 362 { 363 unsigned long size = 0; 364 int zid; 365 366 for (zid = 0; zid <= zone_idx; zid++) { 367 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid]; 368 369 if (!managed_zone(zone)) 370 continue; 371 372 if (!mem_cgroup_disabled()) 373 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid); 374 else 375 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru); 376 } 377 return size; 378 } 379 380 static unsigned long drop_slab_node(int nid) 381 { 382 unsigned long freed = 0; 383 struct mem_cgroup *memcg = NULL; 384 385 memcg = mem_cgroup_iter(NULL, NULL, NULL); 386 do { 387 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0); 388 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 389 390 return freed; 391 } 392 393 void drop_slab(void) 394 { 395 int nid; 396 int shift = 0; 397 unsigned long freed; 398 399 do { 400 freed = 0; 401 for_each_online_node(nid) { 402 if (fatal_signal_pending(current)) 403 return; 404 405 freed += drop_slab_node(nid); 406 } 407 } while ((freed >> shift++) > 1); 408 } 409 410 static int reclaimer_offset(void) 411 { 412 BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD != 413 PGDEMOTE_DIRECT - PGDEMOTE_KSWAPD); 414 BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD != 415 PGDEMOTE_KHUGEPAGED - PGDEMOTE_KSWAPD); 416 BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD != 417 PGSCAN_DIRECT - PGSCAN_KSWAPD); 418 BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD != 419 PGSCAN_KHUGEPAGED - PGSCAN_KSWAPD); 420 421 if (current_is_kswapd()) 422 return 0; 423 if (current_is_khugepaged()) 424 return PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD; 425 return PGSTEAL_DIRECT - PGSTEAL_KSWAPD; 426 } 427 428 static inline int is_page_cache_freeable(struct folio *folio) 429 { 430 /* 431 * A freeable page cache folio is referenced only by the caller 432 * that isolated the folio, the page cache and optional filesystem 433 * private data at folio->private. 434 */ 435 return folio_ref_count(folio) - folio_test_private(folio) == 436 1 + folio_nr_pages(folio); 437 } 438 439 /* 440 * We detected a synchronous write error writing a folio out. Probably 441 * -ENOSPC. We need to propagate that into the address_space for a subsequent 442 * fsync(), msync() or close(). 443 * 444 * The tricky part is that after writepage we cannot touch the mapping: nothing 445 * prevents it from being freed up. But we have a ref on the folio and once 446 * that folio is locked, the mapping is pinned. 447 * 448 * We're allowed to run sleeping folio_lock() here because we know the caller has 449 * __GFP_FS. 450 */ 451 static void handle_write_error(struct address_space *mapping, 452 struct folio *folio, int error) 453 { 454 folio_lock(folio); 455 if (folio_mapping(folio) == mapping) 456 mapping_set_error(mapping, error); 457 folio_unlock(folio); 458 } 459 460 static bool skip_throttle_noprogress(pg_data_t *pgdat) 461 { 462 int reclaimable = 0, write_pending = 0; 463 int i; 464 465 /* 466 * If kswapd is disabled, reschedule if necessary but do not 467 * throttle as the system is likely near OOM. 468 */ 469 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 470 return true; 471 472 /* 473 * If there are a lot of dirty/writeback folios then do not 474 * throttle as throttling will occur when the folios cycle 475 * towards the end of the LRU if still under writeback. 476 */ 477 for (i = 0; i < MAX_NR_ZONES; i++) { 478 struct zone *zone = pgdat->node_zones + i; 479 480 if (!managed_zone(zone)) 481 continue; 482 483 reclaimable += zone_reclaimable_pages(zone); 484 write_pending += zone_page_state_snapshot(zone, 485 NR_ZONE_WRITE_PENDING); 486 } 487 if (2 * write_pending <= reclaimable) 488 return true; 489 490 return false; 491 } 492 493 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason) 494 { 495 wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason]; 496 long timeout, ret; 497 DEFINE_WAIT(wait); 498 499 /* 500 * Do not throttle user workers, kthreads other than kswapd or 501 * workqueues. They may be required for reclaim to make 502 * forward progress (e.g. journalling workqueues or kthreads). 503 */ 504 if (!current_is_kswapd() && 505 current->flags & (PF_USER_WORKER|PF_KTHREAD)) { 506 cond_resched(); 507 return; 508 } 509 510 /* 511 * These figures are pulled out of thin air. 512 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many 513 * parallel reclaimers which is a short-lived event so the timeout is 514 * short. Failing to make progress or waiting on writeback are 515 * potentially long-lived events so use a longer timeout. This is shaky 516 * logic as a failure to make progress could be due to anything from 517 * writeback to a slow device to excessive referenced folios at the tail 518 * of the inactive LRU. 519 */ 520 switch(reason) { 521 case VMSCAN_THROTTLE_WRITEBACK: 522 timeout = HZ/10; 523 524 if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) { 525 WRITE_ONCE(pgdat->nr_reclaim_start, 526 node_page_state(pgdat, NR_THROTTLED_WRITTEN)); 527 } 528 529 break; 530 case VMSCAN_THROTTLE_CONGESTED: 531 fallthrough; 532 case VMSCAN_THROTTLE_NOPROGRESS: 533 if (skip_throttle_noprogress(pgdat)) { 534 cond_resched(); 535 return; 536 } 537 538 timeout = 1; 539 540 break; 541 case VMSCAN_THROTTLE_ISOLATED: 542 timeout = HZ/50; 543 break; 544 default: 545 WARN_ON_ONCE(1); 546 timeout = HZ; 547 break; 548 } 549 550 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE); 551 ret = schedule_timeout(timeout); 552 finish_wait(wqh, &wait); 553 554 if (reason == VMSCAN_THROTTLE_WRITEBACK) 555 atomic_dec(&pgdat->nr_writeback_throttled); 556 557 trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout), 558 jiffies_to_usecs(timeout - ret), 559 reason); 560 } 561 562 /* 563 * Account for folios written if tasks are throttled waiting on dirty 564 * folios to clean. If enough folios have been cleaned since throttling 565 * started then wakeup the throttled tasks. 566 */ 567 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio, 568 int nr_throttled) 569 { 570 unsigned long nr_written; 571 572 node_stat_add_folio(folio, NR_THROTTLED_WRITTEN); 573 574 /* 575 * This is an inaccurate read as the per-cpu deltas may not 576 * be synchronised. However, given that the system is 577 * writeback throttled, it is not worth taking the penalty 578 * of getting an accurate count. At worst, the throttle 579 * timeout guarantees forward progress. 580 */ 581 nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) - 582 READ_ONCE(pgdat->nr_reclaim_start); 583 584 if (nr_written > SWAP_CLUSTER_MAX * nr_throttled) 585 wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]); 586 } 587 588 /* possible outcome of pageout() */ 589 typedef enum { 590 /* failed to write folio out, folio is locked */ 591 PAGE_KEEP, 592 /* move folio to the active list, folio is locked */ 593 PAGE_ACTIVATE, 594 /* folio has been sent to the disk successfully, folio is unlocked */ 595 PAGE_SUCCESS, 596 /* folio is clean and locked */ 597 PAGE_CLEAN, 598 } pageout_t; 599 600 /* 601 * pageout is called by shrink_folio_list() for each dirty folio. 602 * Calls ->writepage(). 603 */ 604 static pageout_t pageout(struct folio *folio, struct address_space *mapping, 605 struct swap_iocb **plug) 606 { 607 /* 608 * If the folio is dirty, only perform writeback if that write 609 * will be non-blocking. To prevent this allocation from being 610 * stalled by pagecache activity. But note that there may be 611 * stalls if we need to run get_block(). We could test 612 * PagePrivate for that. 613 * 614 * If this process is currently in __generic_file_write_iter() against 615 * this folio's queue, we can perform writeback even if that 616 * will block. 617 * 618 * If the folio is swapcache, write it back even if that would 619 * block, for some throttling. This happens by accident, because 620 * swap_backing_dev_info is bust: it doesn't reflect the 621 * congestion state of the swapdevs. Easy to fix, if needed. 622 */ 623 if (!is_page_cache_freeable(folio)) 624 return PAGE_KEEP; 625 if (!mapping) { 626 /* 627 * Some data journaling orphaned folios can have 628 * folio->mapping == NULL while being dirty with clean buffers. 629 */ 630 if (folio_test_private(folio)) { 631 if (try_to_free_buffers(folio)) { 632 folio_clear_dirty(folio); 633 pr_info("%s: orphaned folio\n", __func__); 634 return PAGE_CLEAN; 635 } 636 } 637 return PAGE_KEEP; 638 } 639 if (mapping->a_ops->writepage == NULL) 640 return PAGE_ACTIVATE; 641 642 if (folio_clear_dirty_for_io(folio)) { 643 int res; 644 struct writeback_control wbc = { 645 .sync_mode = WB_SYNC_NONE, 646 .nr_to_write = SWAP_CLUSTER_MAX, 647 .range_start = 0, 648 .range_end = LLONG_MAX, 649 .for_reclaim = 1, 650 .swap_plug = plug, 651 }; 652 653 folio_set_reclaim(folio); 654 res = mapping->a_ops->writepage(&folio->page, &wbc); 655 if (res < 0) 656 handle_write_error(mapping, folio, res); 657 if (res == AOP_WRITEPAGE_ACTIVATE) { 658 folio_clear_reclaim(folio); 659 return PAGE_ACTIVATE; 660 } 661 662 if (!folio_test_writeback(folio)) { 663 /* synchronous write or broken a_ops? */ 664 folio_clear_reclaim(folio); 665 } 666 trace_mm_vmscan_write_folio(folio); 667 node_stat_add_folio(folio, NR_VMSCAN_WRITE); 668 return PAGE_SUCCESS; 669 } 670 671 return PAGE_CLEAN; 672 } 673 674 /* 675 * Same as remove_mapping, but if the folio is removed from the mapping, it 676 * gets returned with a refcount of 0. 677 */ 678 static int __remove_mapping(struct address_space *mapping, struct folio *folio, 679 bool reclaimed, struct mem_cgroup *target_memcg) 680 { 681 int refcount; 682 void *shadow = NULL; 683 684 BUG_ON(!folio_test_locked(folio)); 685 BUG_ON(mapping != folio_mapping(folio)); 686 687 if (!folio_test_swapcache(folio)) 688 spin_lock(&mapping->host->i_lock); 689 xa_lock_irq(&mapping->i_pages); 690 /* 691 * The non racy check for a busy folio. 692 * 693 * Must be careful with the order of the tests. When someone has 694 * a ref to the folio, it may be possible that they dirty it then 695 * drop the reference. So if the dirty flag is tested before the 696 * refcount here, then the following race may occur: 697 * 698 * get_user_pages(&page); 699 * [user mapping goes away] 700 * write_to(page); 701 * !folio_test_dirty(folio) [good] 702 * folio_set_dirty(folio); 703 * folio_put(folio); 704 * !refcount(folio) [good, discard it] 705 * 706 * [oops, our write_to data is lost] 707 * 708 * Reversing the order of the tests ensures such a situation cannot 709 * escape unnoticed. The smp_rmb is needed to ensure the folio->flags 710 * load is not satisfied before that of folio->_refcount. 711 * 712 * Note that if the dirty flag is always set via folio_mark_dirty, 713 * and thus under the i_pages lock, then this ordering is not required. 714 */ 715 refcount = 1 + folio_nr_pages(folio); 716 if (!folio_ref_freeze(folio, refcount)) 717 goto cannot_free; 718 /* note: atomic_cmpxchg in folio_ref_freeze provides the smp_rmb */ 719 if (unlikely(folio_test_dirty(folio))) { 720 folio_ref_unfreeze(folio, refcount); 721 goto cannot_free; 722 } 723 724 if (folio_test_swapcache(folio)) { 725 swp_entry_t swap = folio->swap; 726 727 if (reclaimed && !mapping_exiting(mapping)) 728 shadow = workingset_eviction(folio, target_memcg); 729 __delete_from_swap_cache(folio, swap, shadow); 730 mem_cgroup_swapout(folio, swap); 731 xa_unlock_irq(&mapping->i_pages); 732 put_swap_folio(folio, swap); 733 } else { 734 void (*free_folio)(struct folio *); 735 736 free_folio = mapping->a_ops->free_folio; 737 /* 738 * Remember a shadow entry for reclaimed file cache in 739 * order to detect refaults, thus thrashing, later on. 740 * 741 * But don't store shadows in an address space that is 742 * already exiting. This is not just an optimization, 743 * inode reclaim needs to empty out the radix tree or 744 * the nodes are lost. Don't plant shadows behind its 745 * back. 746 * 747 * We also don't store shadows for DAX mappings because the 748 * only page cache folios found in these are zero pages 749 * covering holes, and because we don't want to mix DAX 750 * exceptional entries and shadow exceptional entries in the 751 * same address_space. 752 */ 753 if (reclaimed && folio_is_file_lru(folio) && 754 !mapping_exiting(mapping) && !dax_mapping(mapping)) 755 shadow = workingset_eviction(folio, target_memcg); 756 __filemap_remove_folio(folio, shadow); 757 xa_unlock_irq(&mapping->i_pages); 758 if (mapping_shrinkable(mapping)) 759 inode_add_lru(mapping->host); 760 spin_unlock(&mapping->host->i_lock); 761 762 if (free_folio) 763 free_folio(folio); 764 } 765 766 return 1; 767 768 cannot_free: 769 xa_unlock_irq(&mapping->i_pages); 770 if (!folio_test_swapcache(folio)) 771 spin_unlock(&mapping->host->i_lock); 772 return 0; 773 } 774 775 /** 776 * remove_mapping() - Attempt to remove a folio from its mapping. 777 * @mapping: The address space. 778 * @folio: The folio to remove. 779 * 780 * If the folio is dirty, under writeback or if someone else has a ref 781 * on it, removal will fail. 782 * Return: The number of pages removed from the mapping. 0 if the folio 783 * could not be removed. 784 * Context: The caller should have a single refcount on the folio and 785 * hold its lock. 786 */ 787 long remove_mapping(struct address_space *mapping, struct folio *folio) 788 { 789 if (__remove_mapping(mapping, folio, false, NULL)) { 790 /* 791 * Unfreezing the refcount with 1 effectively 792 * drops the pagecache ref for us without requiring another 793 * atomic operation. 794 */ 795 folio_ref_unfreeze(folio, 1); 796 return folio_nr_pages(folio); 797 } 798 return 0; 799 } 800 801 /** 802 * folio_putback_lru - Put previously isolated folio onto appropriate LRU list. 803 * @folio: Folio to be returned to an LRU list. 804 * 805 * Add previously isolated @folio to appropriate LRU list. 806 * The folio may still be unevictable for other reasons. 807 * 808 * Context: lru_lock must not be held, interrupts must be enabled. 809 */ 810 void folio_putback_lru(struct folio *folio) 811 { 812 folio_add_lru(folio); 813 folio_put(folio); /* drop ref from isolate */ 814 } 815 816 enum folio_references { 817 FOLIOREF_RECLAIM, 818 FOLIOREF_RECLAIM_CLEAN, 819 FOLIOREF_KEEP, 820 FOLIOREF_ACTIVATE, 821 }; 822 823 static enum folio_references folio_check_references(struct folio *folio, 824 struct scan_control *sc) 825 { 826 int referenced_ptes, referenced_folio; 827 unsigned long vm_flags; 828 829 referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup, 830 &vm_flags); 831 referenced_folio = folio_test_clear_referenced(folio); 832 833 /* 834 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma. 835 * Let the folio, now marked Mlocked, be moved to the unevictable list. 836 */ 837 if (vm_flags & VM_LOCKED) 838 return FOLIOREF_ACTIVATE; 839 840 /* rmap lock contention: rotate */ 841 if (referenced_ptes == -1) 842 return FOLIOREF_KEEP; 843 844 if (referenced_ptes) { 845 /* 846 * All mapped folios start out with page table 847 * references from the instantiating fault, so we need 848 * to look twice if a mapped file/anon folio is used more 849 * than once. 850 * 851 * Mark it and spare it for another trip around the 852 * inactive list. Another page table reference will 853 * lead to its activation. 854 * 855 * Note: the mark is set for activated folios as well 856 * so that recently deactivated but used folios are 857 * quickly recovered. 858 */ 859 folio_set_referenced(folio); 860 861 if (referenced_folio || referenced_ptes > 1) 862 return FOLIOREF_ACTIVATE; 863 864 /* 865 * Activate file-backed executable folios after first usage. 866 */ 867 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) 868 return FOLIOREF_ACTIVATE; 869 870 return FOLIOREF_KEEP; 871 } 872 873 /* Reclaim if clean, defer dirty folios to writeback */ 874 if (referenced_folio && folio_is_file_lru(folio)) 875 return FOLIOREF_RECLAIM_CLEAN; 876 877 return FOLIOREF_RECLAIM; 878 } 879 880 /* Check if a folio is dirty or under writeback */ 881 static void folio_check_dirty_writeback(struct folio *folio, 882 bool *dirty, bool *writeback) 883 { 884 struct address_space *mapping; 885 886 /* 887 * Anonymous folios are not handled by flushers and must be written 888 * from reclaim context. Do not stall reclaim based on them. 889 * MADV_FREE anonymous folios are put into inactive file list too. 890 * They could be mistakenly treated as file lru. So further anon 891 * test is needed. 892 */ 893 if (!folio_is_file_lru(folio) || 894 (folio_test_anon(folio) && !folio_test_swapbacked(folio))) { 895 *dirty = false; 896 *writeback = false; 897 return; 898 } 899 900 /* By default assume that the folio flags are accurate */ 901 *dirty = folio_test_dirty(folio); 902 *writeback = folio_test_writeback(folio); 903 904 /* Verify dirty/writeback state if the filesystem supports it */ 905 if (!folio_test_private(folio)) 906 return; 907 908 mapping = folio_mapping(folio); 909 if (mapping && mapping->a_ops->is_dirty_writeback) 910 mapping->a_ops->is_dirty_writeback(folio, dirty, writeback); 911 } 912 913 static struct folio *alloc_demote_folio(struct folio *src, 914 unsigned long private) 915 { 916 struct folio *dst; 917 nodemask_t *allowed_mask; 918 struct migration_target_control *mtc; 919 920 mtc = (struct migration_target_control *)private; 921 922 allowed_mask = mtc->nmask; 923 /* 924 * make sure we allocate from the target node first also trying to 925 * demote or reclaim pages from the target node via kswapd if we are 926 * low on free memory on target node. If we don't do this and if 927 * we have free memory on the slower(lower) memtier, we would start 928 * allocating pages from slower(lower) memory tiers without even forcing 929 * a demotion of cold pages from the target memtier. This can result 930 * in the kernel placing hot pages in slower(lower) memory tiers. 931 */ 932 mtc->nmask = NULL; 933 mtc->gfp_mask |= __GFP_THISNODE; 934 dst = alloc_migration_target(src, (unsigned long)mtc); 935 if (dst) 936 return dst; 937 938 mtc->gfp_mask &= ~__GFP_THISNODE; 939 mtc->nmask = allowed_mask; 940 941 return alloc_migration_target(src, (unsigned long)mtc); 942 } 943 944 /* 945 * Take folios on @demote_folios and attempt to demote them to another node. 946 * Folios which are not demoted are left on @demote_folios. 947 */ 948 static unsigned int demote_folio_list(struct list_head *demote_folios, 949 struct pglist_data *pgdat) 950 { 951 int target_nid = next_demotion_node(pgdat->node_id); 952 unsigned int nr_succeeded; 953 nodemask_t allowed_mask; 954 955 struct migration_target_control mtc = { 956 /* 957 * Allocate from 'node', or fail quickly and quietly. 958 * When this happens, 'page' will likely just be discarded 959 * instead of migrated. 960 */ 961 .gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | __GFP_NOWARN | 962 __GFP_NOMEMALLOC | GFP_NOWAIT, 963 .nid = target_nid, 964 .nmask = &allowed_mask 965 }; 966 967 if (list_empty(demote_folios)) 968 return 0; 969 970 if (target_nid == NUMA_NO_NODE) 971 return 0; 972 973 node_get_allowed_targets(pgdat, &allowed_mask); 974 975 /* Demotion ignores all cpuset and mempolicy settings */ 976 migrate_pages(demote_folios, alloc_demote_folio, NULL, 977 (unsigned long)&mtc, MIGRATE_ASYNC, MR_DEMOTION, 978 &nr_succeeded); 979 980 mod_node_page_state(pgdat, PGDEMOTE_KSWAPD + reclaimer_offset(), 981 nr_succeeded); 982 983 return nr_succeeded; 984 } 985 986 static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask) 987 { 988 if (gfp_mask & __GFP_FS) 989 return true; 990 if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO)) 991 return false; 992 /* 993 * We can "enter_fs" for swap-cache with only __GFP_IO 994 * providing this isn't SWP_FS_OPS. 995 * ->flags can be updated non-atomicially (scan_swap_map_slots), 996 * but that will never affect SWP_FS_OPS, so the data_race 997 * is safe. 998 */ 999 return !data_race(folio_swap_flags(folio) & SWP_FS_OPS); 1000 } 1001 1002 /* 1003 * shrink_folio_list() returns the number of reclaimed pages 1004 */ 1005 static unsigned int shrink_folio_list(struct list_head *folio_list, 1006 struct pglist_data *pgdat, struct scan_control *sc, 1007 struct reclaim_stat *stat, bool ignore_references) 1008 { 1009 LIST_HEAD(ret_folios); 1010 LIST_HEAD(free_folios); 1011 LIST_HEAD(demote_folios); 1012 unsigned int nr_reclaimed = 0; 1013 unsigned int pgactivate = 0; 1014 bool do_demote_pass; 1015 struct swap_iocb *plug = NULL; 1016 1017 memset(stat, 0, sizeof(*stat)); 1018 cond_resched(); 1019 do_demote_pass = can_demote(pgdat->node_id, sc); 1020 1021 retry: 1022 while (!list_empty(folio_list)) { 1023 struct address_space *mapping; 1024 struct folio *folio; 1025 enum folio_references references = FOLIOREF_RECLAIM; 1026 bool dirty, writeback; 1027 unsigned int nr_pages; 1028 1029 cond_resched(); 1030 1031 folio = lru_to_folio(folio_list); 1032 list_del(&folio->lru); 1033 1034 if (!folio_trylock(folio)) 1035 goto keep; 1036 1037 VM_BUG_ON_FOLIO(folio_test_active(folio), folio); 1038 1039 nr_pages = folio_nr_pages(folio); 1040 1041 /* Account the number of base pages */ 1042 sc->nr_scanned += nr_pages; 1043 1044 if (unlikely(!folio_evictable(folio))) 1045 goto activate_locked; 1046 1047 if (!sc->may_unmap && folio_mapped(folio)) 1048 goto keep_locked; 1049 1050 /* folio_update_gen() tried to promote this page? */ 1051 if (lru_gen_enabled() && !ignore_references && 1052 folio_mapped(folio) && folio_test_referenced(folio)) 1053 goto keep_locked; 1054 1055 /* 1056 * The number of dirty pages determines if a node is marked 1057 * reclaim_congested. kswapd will stall and start writing 1058 * folios if the tail of the LRU is all dirty unqueued folios. 1059 */ 1060 folio_check_dirty_writeback(folio, &dirty, &writeback); 1061 if (dirty || writeback) 1062 stat->nr_dirty += nr_pages; 1063 1064 if (dirty && !writeback) 1065 stat->nr_unqueued_dirty += nr_pages; 1066 1067 /* 1068 * Treat this folio as congested if folios are cycling 1069 * through the LRU so quickly that the folios marked 1070 * for immediate reclaim are making it to the end of 1071 * the LRU a second time. 1072 */ 1073 if (writeback && folio_test_reclaim(folio)) 1074 stat->nr_congested += nr_pages; 1075 1076 /* 1077 * If a folio at the tail of the LRU is under writeback, there 1078 * are three cases to consider. 1079 * 1080 * 1) If reclaim is encountering an excessive number 1081 * of folios under writeback and this folio has both 1082 * the writeback and reclaim flags set, then it 1083 * indicates that folios are being queued for I/O but 1084 * are being recycled through the LRU before the I/O 1085 * can complete. Waiting on the folio itself risks an 1086 * indefinite stall if it is impossible to writeback 1087 * the folio due to I/O error or disconnected storage 1088 * so instead note that the LRU is being scanned too 1089 * quickly and the caller can stall after the folio 1090 * list has been processed. 1091 * 1092 * 2) Global or new memcg reclaim encounters a folio that is 1093 * not marked for immediate reclaim, or the caller does not 1094 * have __GFP_FS (or __GFP_IO if it's simply going to swap, 1095 * not to fs). In this case mark the folio for immediate 1096 * reclaim and continue scanning. 1097 * 1098 * Require may_enter_fs() because we would wait on fs, which 1099 * may not have submitted I/O yet. And the loop driver might 1100 * enter reclaim, and deadlock if it waits on a folio for 1101 * which it is needed to do the write (loop masks off 1102 * __GFP_IO|__GFP_FS for this reason); but more thought 1103 * would probably show more reasons. 1104 * 1105 * 3) Legacy memcg encounters a folio that already has the 1106 * reclaim flag set. memcg does not have any dirty folio 1107 * throttling so we could easily OOM just because too many 1108 * folios are in writeback and there is nothing else to 1109 * reclaim. Wait for the writeback to complete. 1110 * 1111 * In cases 1) and 2) we activate the folios to get them out of 1112 * the way while we continue scanning for clean folios on the 1113 * inactive list and refilling from the active list. The 1114 * observation here is that waiting for disk writes is more 1115 * expensive than potentially causing reloads down the line. 1116 * Since they're marked for immediate reclaim, they won't put 1117 * memory pressure on the cache working set any longer than it 1118 * takes to write them to disk. 1119 */ 1120 if (folio_test_writeback(folio)) { 1121 /* Case 1 above */ 1122 if (current_is_kswapd() && 1123 folio_test_reclaim(folio) && 1124 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) { 1125 stat->nr_immediate += nr_pages; 1126 goto activate_locked; 1127 1128 /* Case 2 above */ 1129 } else if (writeback_throttling_sane(sc) || 1130 !folio_test_reclaim(folio) || 1131 !may_enter_fs(folio, sc->gfp_mask)) { 1132 /* 1133 * This is slightly racy - 1134 * folio_end_writeback() might have 1135 * just cleared the reclaim flag, then 1136 * setting the reclaim flag here ends up 1137 * interpreted as the readahead flag - but 1138 * that does not matter enough to care. 1139 * What we do want is for this folio to 1140 * have the reclaim flag set next time 1141 * memcg reclaim reaches the tests above, 1142 * so it will then wait for writeback to 1143 * avoid OOM; and it's also appropriate 1144 * in global reclaim. 1145 */ 1146 folio_set_reclaim(folio); 1147 stat->nr_writeback += nr_pages; 1148 goto activate_locked; 1149 1150 /* Case 3 above */ 1151 } else { 1152 folio_unlock(folio); 1153 folio_wait_writeback(folio); 1154 /* then go back and try same folio again */ 1155 list_add_tail(&folio->lru, folio_list); 1156 continue; 1157 } 1158 } 1159 1160 if (!ignore_references) 1161 references = folio_check_references(folio, sc); 1162 1163 switch (references) { 1164 case FOLIOREF_ACTIVATE: 1165 goto activate_locked; 1166 case FOLIOREF_KEEP: 1167 stat->nr_ref_keep += nr_pages; 1168 goto keep_locked; 1169 case FOLIOREF_RECLAIM: 1170 case FOLIOREF_RECLAIM_CLEAN: 1171 ; /* try to reclaim the folio below */ 1172 } 1173 1174 /* 1175 * Before reclaiming the folio, try to relocate 1176 * its contents to another node. 1177 */ 1178 if (do_demote_pass && 1179 (thp_migration_supported() || !folio_test_large(folio))) { 1180 list_add(&folio->lru, &demote_folios); 1181 folio_unlock(folio); 1182 continue; 1183 } 1184 1185 /* 1186 * Anonymous process memory has backing store? 1187 * Try to allocate it some swap space here. 1188 * Lazyfree folio could be freed directly 1189 */ 1190 if (folio_test_anon(folio) && folio_test_swapbacked(folio)) { 1191 if (!folio_test_swapcache(folio)) { 1192 if (!(sc->gfp_mask & __GFP_IO)) 1193 goto keep_locked; 1194 if (folio_maybe_dma_pinned(folio)) 1195 goto keep_locked; 1196 if (folio_test_large(folio)) { 1197 /* cannot split folio, skip it */ 1198 if (!can_split_folio(folio, NULL)) 1199 goto activate_locked; 1200 /* 1201 * Split folios without a PMD map right 1202 * away. Chances are some or all of the 1203 * tail pages can be freed without IO. 1204 */ 1205 if (!folio_entire_mapcount(folio) && 1206 split_folio_to_list(folio, 1207 folio_list)) 1208 goto activate_locked; 1209 } 1210 if (!add_to_swap(folio)) { 1211 if (!folio_test_large(folio)) 1212 goto activate_locked_split; 1213 /* Fallback to swap normal pages */ 1214 if (split_folio_to_list(folio, 1215 folio_list)) 1216 goto activate_locked; 1217 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1218 count_memcg_folio_events(folio, THP_SWPOUT_FALLBACK, 1); 1219 count_vm_event(THP_SWPOUT_FALLBACK); 1220 #endif 1221 if (!add_to_swap(folio)) 1222 goto activate_locked_split; 1223 } 1224 } 1225 } else if (folio_test_swapbacked(folio) && 1226 folio_test_large(folio)) { 1227 /* Split shmem folio */ 1228 if (split_folio_to_list(folio, folio_list)) 1229 goto keep_locked; 1230 } 1231 1232 /* 1233 * If the folio was split above, the tail pages will make 1234 * their own pass through this function and be accounted 1235 * then. 1236 */ 1237 if ((nr_pages > 1) && !folio_test_large(folio)) { 1238 sc->nr_scanned -= (nr_pages - 1); 1239 nr_pages = 1; 1240 } 1241 1242 /* 1243 * The folio is mapped into the page tables of one or more 1244 * processes. Try to unmap it here. 1245 */ 1246 if (folio_mapped(folio)) { 1247 enum ttu_flags flags = TTU_BATCH_FLUSH; 1248 bool was_swapbacked = folio_test_swapbacked(folio); 1249 1250 if (folio_test_pmd_mappable(folio)) 1251 flags |= TTU_SPLIT_HUGE_PMD; 1252 1253 try_to_unmap(folio, flags); 1254 if (folio_mapped(folio)) { 1255 stat->nr_unmap_fail += nr_pages; 1256 if (!was_swapbacked && 1257 folio_test_swapbacked(folio)) 1258 stat->nr_lazyfree_fail += nr_pages; 1259 goto activate_locked; 1260 } 1261 } 1262 1263 /* 1264 * Folio is unmapped now so it cannot be newly pinned anymore. 1265 * No point in trying to reclaim folio if it is pinned. 1266 * Furthermore we don't want to reclaim underlying fs metadata 1267 * if the folio is pinned and thus potentially modified by the 1268 * pinning process as that may upset the filesystem. 1269 */ 1270 if (folio_maybe_dma_pinned(folio)) 1271 goto activate_locked; 1272 1273 mapping = folio_mapping(folio); 1274 if (folio_test_dirty(folio)) { 1275 /* 1276 * Only kswapd can writeback filesystem folios 1277 * to avoid risk of stack overflow. But avoid 1278 * injecting inefficient single-folio I/O into 1279 * flusher writeback as much as possible: only 1280 * write folios when we've encountered many 1281 * dirty folios, and when we've already scanned 1282 * the rest of the LRU for clean folios and see 1283 * the same dirty folios again (with the reclaim 1284 * flag set). 1285 */ 1286 if (folio_is_file_lru(folio) && 1287 (!current_is_kswapd() || 1288 !folio_test_reclaim(folio) || 1289 !test_bit(PGDAT_DIRTY, &pgdat->flags))) { 1290 /* 1291 * Immediately reclaim when written back. 1292 * Similar in principle to folio_deactivate() 1293 * except we already have the folio isolated 1294 * and know it's dirty 1295 */ 1296 node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE, 1297 nr_pages); 1298 folio_set_reclaim(folio); 1299 1300 goto activate_locked; 1301 } 1302 1303 if (references == FOLIOREF_RECLAIM_CLEAN) 1304 goto keep_locked; 1305 if (!may_enter_fs(folio, sc->gfp_mask)) 1306 goto keep_locked; 1307 if (!sc->may_writepage) 1308 goto keep_locked; 1309 1310 /* 1311 * Folio is dirty. Flush the TLB if a writable entry 1312 * potentially exists to avoid CPU writes after I/O 1313 * starts and then write it out here. 1314 */ 1315 try_to_unmap_flush_dirty(); 1316 switch (pageout(folio, mapping, &plug)) { 1317 case PAGE_KEEP: 1318 goto keep_locked; 1319 case PAGE_ACTIVATE: 1320 goto activate_locked; 1321 case PAGE_SUCCESS: 1322 stat->nr_pageout += nr_pages; 1323 1324 if (folio_test_writeback(folio)) 1325 goto keep; 1326 if (folio_test_dirty(folio)) 1327 goto keep; 1328 1329 /* 1330 * A synchronous write - probably a ramdisk. Go 1331 * ahead and try to reclaim the folio. 1332 */ 1333 if (!folio_trylock(folio)) 1334 goto keep; 1335 if (folio_test_dirty(folio) || 1336 folio_test_writeback(folio)) 1337 goto keep_locked; 1338 mapping = folio_mapping(folio); 1339 fallthrough; 1340 case PAGE_CLEAN: 1341 ; /* try to free the folio below */ 1342 } 1343 } 1344 1345 /* 1346 * If the folio has buffers, try to free the buffer 1347 * mappings associated with this folio. If we succeed 1348 * we try to free the folio as well. 1349 * 1350 * We do this even if the folio is dirty. 1351 * filemap_release_folio() does not perform I/O, but it 1352 * is possible for a folio to have the dirty flag set, 1353 * but it is actually clean (all its buffers are clean). 1354 * This happens if the buffers were written out directly, 1355 * with submit_bh(). ext3 will do this, as well as 1356 * the blockdev mapping. filemap_release_folio() will 1357 * discover that cleanness and will drop the buffers 1358 * and mark the folio clean - it can be freed. 1359 * 1360 * Rarely, folios can have buffers and no ->mapping. 1361 * These are the folios which were not successfully 1362 * invalidated in truncate_cleanup_folio(). We try to 1363 * drop those buffers here and if that worked, and the 1364 * folio is no longer mapped into process address space 1365 * (refcount == 1) it can be freed. Otherwise, leave 1366 * the folio on the LRU so it is swappable. 1367 */ 1368 if (folio_needs_release(folio)) { 1369 if (!filemap_release_folio(folio, sc->gfp_mask)) 1370 goto activate_locked; 1371 if (!mapping && folio_ref_count(folio) == 1) { 1372 folio_unlock(folio); 1373 if (folio_put_testzero(folio)) 1374 goto free_it; 1375 else { 1376 /* 1377 * rare race with speculative reference. 1378 * the speculative reference will free 1379 * this folio shortly, so we may 1380 * increment nr_reclaimed here (and 1381 * leave it off the LRU). 1382 */ 1383 nr_reclaimed += nr_pages; 1384 continue; 1385 } 1386 } 1387 } 1388 1389 if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) { 1390 /* follow __remove_mapping for reference */ 1391 if (!folio_ref_freeze(folio, 1)) 1392 goto keep_locked; 1393 /* 1394 * The folio has only one reference left, which is 1395 * from the isolation. After the caller puts the 1396 * folio back on the lru and drops the reference, the 1397 * folio will be freed anyway. It doesn't matter 1398 * which lru it goes on. So we don't bother checking 1399 * the dirty flag here. 1400 */ 1401 count_vm_events(PGLAZYFREED, nr_pages); 1402 count_memcg_folio_events(folio, PGLAZYFREED, nr_pages); 1403 } else if (!mapping || !__remove_mapping(mapping, folio, true, 1404 sc->target_mem_cgroup)) 1405 goto keep_locked; 1406 1407 folio_unlock(folio); 1408 free_it: 1409 /* 1410 * Folio may get swapped out as a whole, need to account 1411 * all pages in it. 1412 */ 1413 nr_reclaimed += nr_pages; 1414 1415 /* 1416 * Is there need to periodically free_folio_list? It would 1417 * appear not as the counts should be low 1418 */ 1419 if (unlikely(folio_test_large(folio))) 1420 destroy_large_folio(folio); 1421 else 1422 list_add(&folio->lru, &free_folios); 1423 continue; 1424 1425 activate_locked_split: 1426 /* 1427 * The tail pages that are failed to add into swap cache 1428 * reach here. Fixup nr_scanned and nr_pages. 1429 */ 1430 if (nr_pages > 1) { 1431 sc->nr_scanned -= (nr_pages - 1); 1432 nr_pages = 1; 1433 } 1434 activate_locked: 1435 /* Not a candidate for swapping, so reclaim swap space. */ 1436 if (folio_test_swapcache(folio) && 1437 (mem_cgroup_swap_full(folio) || folio_test_mlocked(folio))) 1438 folio_free_swap(folio); 1439 VM_BUG_ON_FOLIO(folio_test_active(folio), folio); 1440 if (!folio_test_mlocked(folio)) { 1441 int type = folio_is_file_lru(folio); 1442 folio_set_active(folio); 1443 stat->nr_activate[type] += nr_pages; 1444 count_memcg_folio_events(folio, PGACTIVATE, nr_pages); 1445 } 1446 keep_locked: 1447 folio_unlock(folio); 1448 keep: 1449 list_add(&folio->lru, &ret_folios); 1450 VM_BUG_ON_FOLIO(folio_test_lru(folio) || 1451 folio_test_unevictable(folio), folio); 1452 } 1453 /* 'folio_list' is always empty here */ 1454 1455 /* Migrate folios selected for demotion */ 1456 nr_reclaimed += demote_folio_list(&demote_folios, pgdat); 1457 /* Folios that could not be demoted are still in @demote_folios */ 1458 if (!list_empty(&demote_folios)) { 1459 /* Folios which weren't demoted go back on @folio_list */ 1460 list_splice_init(&demote_folios, folio_list); 1461 1462 /* 1463 * goto retry to reclaim the undemoted folios in folio_list if 1464 * desired. 1465 * 1466 * Reclaiming directly from top tier nodes is not often desired 1467 * due to it breaking the LRU ordering: in general memory 1468 * should be reclaimed from lower tier nodes and demoted from 1469 * top tier nodes. 1470 * 1471 * However, disabling reclaim from top tier nodes entirely 1472 * would cause ooms in edge scenarios where lower tier memory 1473 * is unreclaimable for whatever reason, eg memory being 1474 * mlocked or too hot to reclaim. We can disable reclaim 1475 * from top tier nodes in proactive reclaim though as that is 1476 * not real memory pressure. 1477 */ 1478 if (!sc->proactive) { 1479 do_demote_pass = false; 1480 goto retry; 1481 } 1482 } 1483 1484 pgactivate = stat->nr_activate[0] + stat->nr_activate[1]; 1485 1486 mem_cgroup_uncharge_list(&free_folios); 1487 try_to_unmap_flush(); 1488 free_unref_page_list(&free_folios); 1489 1490 list_splice(&ret_folios, folio_list); 1491 count_vm_events(PGACTIVATE, pgactivate); 1492 1493 if (plug) 1494 swap_write_unplug(plug); 1495 return nr_reclaimed; 1496 } 1497 1498 unsigned int reclaim_clean_pages_from_list(struct zone *zone, 1499 struct list_head *folio_list) 1500 { 1501 struct scan_control sc = { 1502 .gfp_mask = GFP_KERNEL, 1503 .may_unmap = 1, 1504 }; 1505 struct reclaim_stat stat; 1506 unsigned int nr_reclaimed; 1507 struct folio *folio, *next; 1508 LIST_HEAD(clean_folios); 1509 unsigned int noreclaim_flag; 1510 1511 list_for_each_entry_safe(folio, next, folio_list, lru) { 1512 if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) && 1513 !folio_test_dirty(folio) && !__folio_test_movable(folio) && 1514 !folio_test_unevictable(folio)) { 1515 folio_clear_active(folio); 1516 list_move(&folio->lru, &clean_folios); 1517 } 1518 } 1519 1520 /* 1521 * We should be safe here since we are only dealing with file pages and 1522 * we are not kswapd and therefore cannot write dirty file pages. But 1523 * call memalloc_noreclaim_save() anyway, just in case these conditions 1524 * change in the future. 1525 */ 1526 noreclaim_flag = memalloc_noreclaim_save(); 1527 nr_reclaimed = shrink_folio_list(&clean_folios, zone->zone_pgdat, &sc, 1528 &stat, true); 1529 memalloc_noreclaim_restore(noreclaim_flag); 1530 1531 list_splice(&clean_folios, folio_list); 1532 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, 1533 -(long)nr_reclaimed); 1534 /* 1535 * Since lazyfree pages are isolated from file LRU from the beginning, 1536 * they will rotate back to anonymous LRU in the end if it failed to 1537 * discard so isolated count will be mismatched. 1538 * Compensate the isolated count for both LRU lists. 1539 */ 1540 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON, 1541 stat.nr_lazyfree_fail); 1542 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, 1543 -(long)stat.nr_lazyfree_fail); 1544 return nr_reclaimed; 1545 } 1546 1547 /* 1548 * Update LRU sizes after isolating pages. The LRU size updates must 1549 * be complete before mem_cgroup_update_lru_size due to a sanity check. 1550 */ 1551 static __always_inline void update_lru_sizes(struct lruvec *lruvec, 1552 enum lru_list lru, unsigned long *nr_zone_taken) 1553 { 1554 int zid; 1555 1556 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1557 if (!nr_zone_taken[zid]) 1558 continue; 1559 1560 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 1561 } 1562 1563 } 1564 1565 #ifdef CONFIG_CMA 1566 /* 1567 * It is waste of effort to scan and reclaim CMA pages if it is not available 1568 * for current allocation context. Kswapd can not be enrolled as it can not 1569 * distinguish this scenario by using sc->gfp_mask = GFP_KERNEL 1570 */ 1571 static bool skip_cma(struct folio *folio, struct scan_control *sc) 1572 { 1573 return !current_is_kswapd() && 1574 gfp_migratetype(sc->gfp_mask) != MIGRATE_MOVABLE && 1575 folio_migratetype(folio) == MIGRATE_CMA; 1576 } 1577 #else 1578 static bool skip_cma(struct folio *folio, struct scan_control *sc) 1579 { 1580 return false; 1581 } 1582 #endif 1583 1584 /* 1585 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times. 1586 * 1587 * lruvec->lru_lock is heavily contended. Some of the functions that 1588 * shrink the lists perform better by taking out a batch of pages 1589 * and working on them outside the LRU lock. 1590 * 1591 * For pagecache intensive workloads, this function is the hottest 1592 * spot in the kernel (apart from copy_*_user functions). 1593 * 1594 * Lru_lock must be held before calling this function. 1595 * 1596 * @nr_to_scan: The number of eligible pages to look through on the list. 1597 * @lruvec: The LRU vector to pull pages from. 1598 * @dst: The temp list to put pages on to. 1599 * @nr_scanned: The number of pages that were scanned. 1600 * @sc: The scan_control struct for this reclaim session 1601 * @lru: LRU list id for isolating 1602 * 1603 * returns how many pages were moved onto *@dst. 1604 */ 1605 static unsigned long isolate_lru_folios(unsigned long nr_to_scan, 1606 struct lruvec *lruvec, struct list_head *dst, 1607 unsigned long *nr_scanned, struct scan_control *sc, 1608 enum lru_list lru) 1609 { 1610 struct list_head *src = &lruvec->lists[lru]; 1611 unsigned long nr_taken = 0; 1612 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 }; 1613 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, }; 1614 unsigned long skipped = 0; 1615 unsigned long scan, total_scan, nr_pages; 1616 LIST_HEAD(folios_skipped); 1617 1618 total_scan = 0; 1619 scan = 0; 1620 while (scan < nr_to_scan && !list_empty(src)) { 1621 struct list_head *move_to = src; 1622 struct folio *folio; 1623 1624 folio = lru_to_folio(src); 1625 prefetchw_prev_lru_folio(folio, src, flags); 1626 1627 nr_pages = folio_nr_pages(folio); 1628 total_scan += nr_pages; 1629 1630 if (folio_zonenum(folio) > sc->reclaim_idx || 1631 skip_cma(folio, sc)) { 1632 nr_skipped[folio_zonenum(folio)] += nr_pages; 1633 move_to = &folios_skipped; 1634 goto move; 1635 } 1636 1637 /* 1638 * Do not count skipped folios because that makes the function 1639 * return with no isolated folios if the LRU mostly contains 1640 * ineligible folios. This causes the VM to not reclaim any 1641 * folios, triggering a premature OOM. 1642 * Account all pages in a folio. 1643 */ 1644 scan += nr_pages; 1645 1646 if (!folio_test_lru(folio)) 1647 goto move; 1648 if (!sc->may_unmap && folio_mapped(folio)) 1649 goto move; 1650 1651 /* 1652 * Be careful not to clear the lru flag until after we're 1653 * sure the folio is not being freed elsewhere -- the 1654 * folio release code relies on it. 1655 */ 1656 if (unlikely(!folio_try_get(folio))) 1657 goto move; 1658 1659 if (!folio_test_clear_lru(folio)) { 1660 /* Another thread is already isolating this folio */ 1661 folio_put(folio); 1662 goto move; 1663 } 1664 1665 nr_taken += nr_pages; 1666 nr_zone_taken[folio_zonenum(folio)] += nr_pages; 1667 move_to = dst; 1668 move: 1669 list_move(&folio->lru, move_to); 1670 } 1671 1672 /* 1673 * Splice any skipped folios to the start of the LRU list. Note that 1674 * this disrupts the LRU order when reclaiming for lower zones but 1675 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX 1676 * scanning would soon rescan the same folios to skip and waste lots 1677 * of cpu cycles. 1678 */ 1679 if (!list_empty(&folios_skipped)) { 1680 int zid; 1681 1682 list_splice(&folios_skipped, src); 1683 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1684 if (!nr_skipped[zid]) 1685 continue; 1686 1687 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]); 1688 skipped += nr_skipped[zid]; 1689 } 1690 } 1691 *nr_scanned = total_scan; 1692 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, 1693 total_scan, skipped, nr_taken, lru); 1694 update_lru_sizes(lruvec, lru, nr_zone_taken); 1695 return nr_taken; 1696 } 1697 1698 /** 1699 * folio_isolate_lru() - Try to isolate a folio from its LRU list. 1700 * @folio: Folio to isolate from its LRU list. 1701 * 1702 * Isolate a @folio from an LRU list and adjust the vmstat statistic 1703 * corresponding to whatever LRU list the folio was on. 1704 * 1705 * The folio will have its LRU flag cleared. If it was found on the 1706 * active list, it will have the Active flag set. If it was found on the 1707 * unevictable list, it will have the Unevictable flag set. These flags 1708 * may need to be cleared by the caller before letting the page go. 1709 * 1710 * Context: 1711 * 1712 * (1) Must be called with an elevated refcount on the folio. This is a 1713 * fundamental difference from isolate_lru_folios() (which is called 1714 * without a stable reference). 1715 * (2) The lru_lock must not be held. 1716 * (3) Interrupts must be enabled. 1717 * 1718 * Return: true if the folio was removed from an LRU list. 1719 * false if the folio was not on an LRU list. 1720 */ 1721 bool folio_isolate_lru(struct folio *folio) 1722 { 1723 bool ret = false; 1724 1725 VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio); 1726 1727 if (folio_test_clear_lru(folio)) { 1728 struct lruvec *lruvec; 1729 1730 folio_get(folio); 1731 lruvec = folio_lruvec_lock_irq(folio); 1732 lruvec_del_folio(lruvec, folio); 1733 unlock_page_lruvec_irq(lruvec); 1734 ret = true; 1735 } 1736 1737 return ret; 1738 } 1739 1740 /* 1741 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 1742 * then get rescheduled. When there are massive number of tasks doing page 1743 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 1744 * the LRU list will go small and be scanned faster than necessary, leading to 1745 * unnecessary swapping, thrashing and OOM. 1746 */ 1747 static int too_many_isolated(struct pglist_data *pgdat, int file, 1748 struct scan_control *sc) 1749 { 1750 unsigned long inactive, isolated; 1751 bool too_many; 1752 1753 if (current_is_kswapd()) 1754 return 0; 1755 1756 if (!writeback_throttling_sane(sc)) 1757 return 0; 1758 1759 if (file) { 1760 inactive = node_page_state(pgdat, NR_INACTIVE_FILE); 1761 isolated = node_page_state(pgdat, NR_ISOLATED_FILE); 1762 } else { 1763 inactive = node_page_state(pgdat, NR_INACTIVE_ANON); 1764 isolated = node_page_state(pgdat, NR_ISOLATED_ANON); 1765 } 1766 1767 /* 1768 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 1769 * won't get blocked by normal direct-reclaimers, forming a circular 1770 * deadlock. 1771 */ 1772 if (gfp_has_io_fs(sc->gfp_mask)) 1773 inactive >>= 3; 1774 1775 too_many = isolated > inactive; 1776 1777 /* Wake up tasks throttled due to too_many_isolated. */ 1778 if (!too_many) 1779 wake_throttle_isolated(pgdat); 1780 1781 return too_many; 1782 } 1783 1784 /* 1785 * move_folios_to_lru() moves folios from private @list to appropriate LRU list. 1786 * On return, @list is reused as a list of folios to be freed by the caller. 1787 * 1788 * Returns the number of pages moved to the given lruvec. 1789 */ 1790 static unsigned int move_folios_to_lru(struct lruvec *lruvec, 1791 struct list_head *list) 1792 { 1793 int nr_pages, nr_moved = 0; 1794 LIST_HEAD(folios_to_free); 1795 1796 while (!list_empty(list)) { 1797 struct folio *folio = lru_to_folio(list); 1798 1799 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 1800 list_del(&folio->lru); 1801 if (unlikely(!folio_evictable(folio))) { 1802 spin_unlock_irq(&lruvec->lru_lock); 1803 folio_putback_lru(folio); 1804 spin_lock_irq(&lruvec->lru_lock); 1805 continue; 1806 } 1807 1808 /* 1809 * The folio_set_lru needs to be kept here for list integrity. 1810 * Otherwise: 1811 * #0 move_folios_to_lru #1 release_pages 1812 * if (!folio_put_testzero()) 1813 * if (folio_put_testzero()) 1814 * !lru //skip lru_lock 1815 * folio_set_lru() 1816 * list_add(&folio->lru,) 1817 * list_add(&folio->lru,) 1818 */ 1819 folio_set_lru(folio); 1820 1821 if (unlikely(folio_put_testzero(folio))) { 1822 __folio_clear_lru_flags(folio); 1823 1824 if (unlikely(folio_test_large(folio))) { 1825 spin_unlock_irq(&lruvec->lru_lock); 1826 destroy_large_folio(folio); 1827 spin_lock_irq(&lruvec->lru_lock); 1828 } else 1829 list_add(&folio->lru, &folios_to_free); 1830 1831 continue; 1832 } 1833 1834 /* 1835 * All pages were isolated from the same lruvec (and isolation 1836 * inhibits memcg migration). 1837 */ 1838 VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio); 1839 lruvec_add_folio(lruvec, folio); 1840 nr_pages = folio_nr_pages(folio); 1841 nr_moved += nr_pages; 1842 if (folio_test_active(folio)) 1843 workingset_age_nonresident(lruvec, nr_pages); 1844 } 1845 1846 /* 1847 * To save our caller's stack, now use input list for pages to free. 1848 */ 1849 list_splice(&folios_to_free, list); 1850 1851 return nr_moved; 1852 } 1853 1854 /* 1855 * If a kernel thread (such as nfsd for loop-back mounts) services a backing 1856 * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case 1857 * we should not throttle. Otherwise it is safe to do so. 1858 */ 1859 static int current_may_throttle(void) 1860 { 1861 return !(current->flags & PF_LOCAL_THROTTLE); 1862 } 1863 1864 /* 1865 * shrink_inactive_list() is a helper for shrink_node(). It returns the number 1866 * of reclaimed pages 1867 */ 1868 static unsigned long shrink_inactive_list(unsigned long nr_to_scan, 1869 struct lruvec *lruvec, struct scan_control *sc, 1870 enum lru_list lru) 1871 { 1872 LIST_HEAD(folio_list); 1873 unsigned long nr_scanned; 1874 unsigned int nr_reclaimed = 0; 1875 unsigned long nr_taken; 1876 struct reclaim_stat stat; 1877 bool file = is_file_lru(lru); 1878 enum vm_event_item item; 1879 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1880 bool stalled = false; 1881 1882 while (unlikely(too_many_isolated(pgdat, file, sc))) { 1883 if (stalled) 1884 return 0; 1885 1886 /* wait a bit for the reclaimer. */ 1887 stalled = true; 1888 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED); 1889 1890 /* We are about to die and free our memory. Return now. */ 1891 if (fatal_signal_pending(current)) 1892 return SWAP_CLUSTER_MAX; 1893 } 1894 1895 lru_add_drain(); 1896 1897 spin_lock_irq(&lruvec->lru_lock); 1898 1899 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &folio_list, 1900 &nr_scanned, sc, lru); 1901 1902 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 1903 item = PGSCAN_KSWAPD + reclaimer_offset(); 1904 if (!cgroup_reclaim(sc)) 1905 __count_vm_events(item, nr_scanned); 1906 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned); 1907 __count_vm_events(PGSCAN_ANON + file, nr_scanned); 1908 1909 spin_unlock_irq(&lruvec->lru_lock); 1910 1911 if (nr_taken == 0) 1912 return 0; 1913 1914 nr_reclaimed = shrink_folio_list(&folio_list, pgdat, sc, &stat, false); 1915 1916 spin_lock_irq(&lruvec->lru_lock); 1917 move_folios_to_lru(lruvec, &folio_list); 1918 1919 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 1920 item = PGSTEAL_KSWAPD + reclaimer_offset(); 1921 if (!cgroup_reclaim(sc)) 1922 __count_vm_events(item, nr_reclaimed); 1923 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed); 1924 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed); 1925 spin_unlock_irq(&lruvec->lru_lock); 1926 1927 lru_note_cost(lruvec, file, stat.nr_pageout, nr_scanned - nr_reclaimed); 1928 mem_cgroup_uncharge_list(&folio_list); 1929 free_unref_page_list(&folio_list); 1930 1931 /* 1932 * If dirty folios are scanned that are not queued for IO, it 1933 * implies that flushers are not doing their job. This can 1934 * happen when memory pressure pushes dirty folios to the end of 1935 * the LRU before the dirty limits are breached and the dirty 1936 * data has expired. It can also happen when the proportion of 1937 * dirty folios grows not through writes but through memory 1938 * pressure reclaiming all the clean cache. And in some cases, 1939 * the flushers simply cannot keep up with the allocation 1940 * rate. Nudge the flusher threads in case they are asleep. 1941 */ 1942 if (stat.nr_unqueued_dirty == nr_taken) { 1943 wakeup_flusher_threads(WB_REASON_VMSCAN); 1944 /* 1945 * For cgroupv1 dirty throttling is achieved by waking up 1946 * the kernel flusher here and later waiting on folios 1947 * which are in writeback to finish (see shrink_folio_list()). 1948 * 1949 * Flusher may not be able to issue writeback quickly 1950 * enough for cgroupv1 writeback throttling to work 1951 * on a large system. 1952 */ 1953 if (!writeback_throttling_sane(sc)) 1954 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK); 1955 } 1956 1957 sc->nr.dirty += stat.nr_dirty; 1958 sc->nr.congested += stat.nr_congested; 1959 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty; 1960 sc->nr.writeback += stat.nr_writeback; 1961 sc->nr.immediate += stat.nr_immediate; 1962 sc->nr.taken += nr_taken; 1963 if (file) 1964 sc->nr.file_taken += nr_taken; 1965 1966 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 1967 nr_scanned, nr_reclaimed, &stat, sc->priority, file); 1968 return nr_reclaimed; 1969 } 1970 1971 /* 1972 * shrink_active_list() moves folios from the active LRU to the inactive LRU. 1973 * 1974 * We move them the other way if the folio is referenced by one or more 1975 * processes. 1976 * 1977 * If the folios are mostly unmapped, the processing is fast and it is 1978 * appropriate to hold lru_lock across the whole operation. But if 1979 * the folios are mapped, the processing is slow (folio_referenced()), so 1980 * we should drop lru_lock around each folio. It's impossible to balance 1981 * this, so instead we remove the folios from the LRU while processing them. 1982 * It is safe to rely on the active flag against the non-LRU folios in here 1983 * because nobody will play with that bit on a non-LRU folio. 1984 * 1985 * The downside is that we have to touch folio->_refcount against each folio. 1986 * But we had to alter folio->flags anyway. 1987 */ 1988 static void shrink_active_list(unsigned long nr_to_scan, 1989 struct lruvec *lruvec, 1990 struct scan_control *sc, 1991 enum lru_list lru) 1992 { 1993 unsigned long nr_taken; 1994 unsigned long nr_scanned; 1995 unsigned long vm_flags; 1996 LIST_HEAD(l_hold); /* The folios which were snipped off */ 1997 LIST_HEAD(l_active); 1998 LIST_HEAD(l_inactive); 1999 unsigned nr_deactivate, nr_activate; 2000 unsigned nr_rotated = 0; 2001 int file = is_file_lru(lru); 2002 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2003 2004 lru_add_drain(); 2005 2006 spin_lock_irq(&lruvec->lru_lock); 2007 2008 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &l_hold, 2009 &nr_scanned, sc, lru); 2010 2011 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2012 2013 if (!cgroup_reclaim(sc)) 2014 __count_vm_events(PGREFILL, nr_scanned); 2015 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned); 2016 2017 spin_unlock_irq(&lruvec->lru_lock); 2018 2019 while (!list_empty(&l_hold)) { 2020 struct folio *folio; 2021 2022 cond_resched(); 2023 folio = lru_to_folio(&l_hold); 2024 list_del(&folio->lru); 2025 2026 if (unlikely(!folio_evictable(folio))) { 2027 folio_putback_lru(folio); 2028 continue; 2029 } 2030 2031 if (unlikely(buffer_heads_over_limit)) { 2032 if (folio_needs_release(folio) && 2033 folio_trylock(folio)) { 2034 filemap_release_folio(folio, 0); 2035 folio_unlock(folio); 2036 } 2037 } 2038 2039 /* Referenced or rmap lock contention: rotate */ 2040 if (folio_referenced(folio, 0, sc->target_mem_cgroup, 2041 &vm_flags) != 0) { 2042 /* 2043 * Identify referenced, file-backed active folios and 2044 * give them one more trip around the active list. So 2045 * that executable code get better chances to stay in 2046 * memory under moderate memory pressure. Anon folios 2047 * are not likely to be evicted by use-once streaming 2048 * IO, plus JVM can create lots of anon VM_EXEC folios, 2049 * so we ignore them here. 2050 */ 2051 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) { 2052 nr_rotated += folio_nr_pages(folio); 2053 list_add(&folio->lru, &l_active); 2054 continue; 2055 } 2056 } 2057 2058 folio_clear_active(folio); /* we are de-activating */ 2059 folio_set_workingset(folio); 2060 list_add(&folio->lru, &l_inactive); 2061 } 2062 2063 /* 2064 * Move folios back to the lru list. 2065 */ 2066 spin_lock_irq(&lruvec->lru_lock); 2067 2068 nr_activate = move_folios_to_lru(lruvec, &l_active); 2069 nr_deactivate = move_folios_to_lru(lruvec, &l_inactive); 2070 /* Keep all free folios in l_active list */ 2071 list_splice(&l_inactive, &l_active); 2072 2073 __count_vm_events(PGDEACTIVATE, nr_deactivate); 2074 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate); 2075 2076 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2077 spin_unlock_irq(&lruvec->lru_lock); 2078 2079 if (nr_rotated) 2080 lru_note_cost(lruvec, file, 0, nr_rotated); 2081 mem_cgroup_uncharge_list(&l_active); 2082 free_unref_page_list(&l_active); 2083 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate, 2084 nr_deactivate, nr_rotated, sc->priority, file); 2085 } 2086 2087 static unsigned int reclaim_folio_list(struct list_head *folio_list, 2088 struct pglist_data *pgdat) 2089 { 2090 struct reclaim_stat dummy_stat; 2091 unsigned int nr_reclaimed; 2092 struct folio *folio; 2093 struct scan_control sc = { 2094 .gfp_mask = GFP_KERNEL, 2095 .may_writepage = 1, 2096 .may_unmap = 1, 2097 .may_swap = 1, 2098 .no_demotion = 1, 2099 }; 2100 2101 nr_reclaimed = shrink_folio_list(folio_list, pgdat, &sc, &dummy_stat, false); 2102 while (!list_empty(folio_list)) { 2103 folio = lru_to_folio(folio_list); 2104 list_del(&folio->lru); 2105 folio_putback_lru(folio); 2106 } 2107 2108 return nr_reclaimed; 2109 } 2110 2111 unsigned long reclaim_pages(struct list_head *folio_list) 2112 { 2113 int nid; 2114 unsigned int nr_reclaimed = 0; 2115 LIST_HEAD(node_folio_list); 2116 unsigned int noreclaim_flag; 2117 2118 if (list_empty(folio_list)) 2119 return nr_reclaimed; 2120 2121 noreclaim_flag = memalloc_noreclaim_save(); 2122 2123 nid = folio_nid(lru_to_folio(folio_list)); 2124 do { 2125 struct folio *folio = lru_to_folio(folio_list); 2126 2127 if (nid == folio_nid(folio)) { 2128 folio_clear_active(folio); 2129 list_move(&folio->lru, &node_folio_list); 2130 continue; 2131 } 2132 2133 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid)); 2134 nid = folio_nid(lru_to_folio(folio_list)); 2135 } while (!list_empty(folio_list)); 2136 2137 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid)); 2138 2139 memalloc_noreclaim_restore(noreclaim_flag); 2140 2141 return nr_reclaimed; 2142 } 2143 2144 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 2145 struct lruvec *lruvec, struct scan_control *sc) 2146 { 2147 if (is_active_lru(lru)) { 2148 if (sc->may_deactivate & (1 << is_file_lru(lru))) 2149 shrink_active_list(nr_to_scan, lruvec, sc, lru); 2150 else 2151 sc->skipped_deactivate = 1; 2152 return 0; 2153 } 2154 2155 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 2156 } 2157 2158 /* 2159 * The inactive anon list should be small enough that the VM never has 2160 * to do too much work. 2161 * 2162 * The inactive file list should be small enough to leave most memory 2163 * to the established workingset on the scan-resistant active list, 2164 * but large enough to avoid thrashing the aggregate readahead window. 2165 * 2166 * Both inactive lists should also be large enough that each inactive 2167 * folio has a chance to be referenced again before it is reclaimed. 2168 * 2169 * If that fails and refaulting is observed, the inactive list grows. 2170 * 2171 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE folios 2172 * on this LRU, maintained by the pageout code. An inactive_ratio 2173 * of 3 means 3:1 or 25% of the folios are kept on the inactive list. 2174 * 2175 * total target max 2176 * memory ratio inactive 2177 * ------------------------------------- 2178 * 10MB 1 5MB 2179 * 100MB 1 50MB 2180 * 1GB 3 250MB 2181 * 10GB 10 0.9GB 2182 * 100GB 31 3GB 2183 * 1TB 101 10GB 2184 * 10TB 320 32GB 2185 */ 2186 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru) 2187 { 2188 enum lru_list active_lru = inactive_lru + LRU_ACTIVE; 2189 unsigned long inactive, active; 2190 unsigned long inactive_ratio; 2191 unsigned long gb; 2192 2193 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru); 2194 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru); 2195 2196 gb = (inactive + active) >> (30 - PAGE_SHIFT); 2197 if (gb) 2198 inactive_ratio = int_sqrt(10 * gb); 2199 else 2200 inactive_ratio = 1; 2201 2202 return inactive * inactive_ratio < active; 2203 } 2204 2205 enum scan_balance { 2206 SCAN_EQUAL, 2207 SCAN_FRACT, 2208 SCAN_ANON, 2209 SCAN_FILE, 2210 }; 2211 2212 static void prepare_scan_control(pg_data_t *pgdat, struct scan_control *sc) 2213 { 2214 unsigned long file; 2215 struct lruvec *target_lruvec; 2216 2217 if (lru_gen_enabled()) 2218 return; 2219 2220 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat); 2221 2222 /* 2223 * Flush the memory cgroup stats, so that we read accurate per-memcg 2224 * lruvec stats for heuristics. 2225 */ 2226 mem_cgroup_flush_stats(sc->target_mem_cgroup); 2227 2228 /* 2229 * Determine the scan balance between anon and file LRUs. 2230 */ 2231 spin_lock_irq(&target_lruvec->lru_lock); 2232 sc->anon_cost = target_lruvec->anon_cost; 2233 sc->file_cost = target_lruvec->file_cost; 2234 spin_unlock_irq(&target_lruvec->lru_lock); 2235 2236 /* 2237 * Target desirable inactive:active list ratios for the anon 2238 * and file LRU lists. 2239 */ 2240 if (!sc->force_deactivate) { 2241 unsigned long refaults; 2242 2243 /* 2244 * When refaults are being observed, it means a new 2245 * workingset is being established. Deactivate to get 2246 * rid of any stale active pages quickly. 2247 */ 2248 refaults = lruvec_page_state(target_lruvec, 2249 WORKINGSET_ACTIVATE_ANON); 2250 if (refaults != target_lruvec->refaults[WORKINGSET_ANON] || 2251 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON)) 2252 sc->may_deactivate |= DEACTIVATE_ANON; 2253 else 2254 sc->may_deactivate &= ~DEACTIVATE_ANON; 2255 2256 refaults = lruvec_page_state(target_lruvec, 2257 WORKINGSET_ACTIVATE_FILE); 2258 if (refaults != target_lruvec->refaults[WORKINGSET_FILE] || 2259 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE)) 2260 sc->may_deactivate |= DEACTIVATE_FILE; 2261 else 2262 sc->may_deactivate &= ~DEACTIVATE_FILE; 2263 } else 2264 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE; 2265 2266 /* 2267 * If we have plenty of inactive file pages that aren't 2268 * thrashing, try to reclaim those first before touching 2269 * anonymous pages. 2270 */ 2271 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE); 2272 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE)) 2273 sc->cache_trim_mode = 1; 2274 else 2275 sc->cache_trim_mode = 0; 2276 2277 /* 2278 * Prevent the reclaimer from falling into the cache trap: as 2279 * cache pages start out inactive, every cache fault will tip 2280 * the scan balance towards the file LRU. And as the file LRU 2281 * shrinks, so does the window for rotation from references. 2282 * This means we have a runaway feedback loop where a tiny 2283 * thrashing file LRU becomes infinitely more attractive than 2284 * anon pages. Try to detect this based on file LRU size. 2285 */ 2286 if (!cgroup_reclaim(sc)) { 2287 unsigned long total_high_wmark = 0; 2288 unsigned long free, anon; 2289 int z; 2290 2291 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES); 2292 file = node_page_state(pgdat, NR_ACTIVE_FILE) + 2293 node_page_state(pgdat, NR_INACTIVE_FILE); 2294 2295 for (z = 0; z < MAX_NR_ZONES; z++) { 2296 struct zone *zone = &pgdat->node_zones[z]; 2297 2298 if (!managed_zone(zone)) 2299 continue; 2300 2301 total_high_wmark += high_wmark_pages(zone); 2302 } 2303 2304 /* 2305 * Consider anon: if that's low too, this isn't a 2306 * runaway file reclaim problem, but rather just 2307 * extreme pressure. Reclaim as per usual then. 2308 */ 2309 anon = node_page_state(pgdat, NR_INACTIVE_ANON); 2310 2311 sc->file_is_tiny = 2312 file + free <= total_high_wmark && 2313 !(sc->may_deactivate & DEACTIVATE_ANON) && 2314 anon >> sc->priority; 2315 } 2316 } 2317 2318 /* 2319 * Determine how aggressively the anon and file LRU lists should be 2320 * scanned. 2321 * 2322 * nr[0] = anon inactive folios to scan; nr[1] = anon active folios to scan 2323 * nr[2] = file inactive folios to scan; nr[3] = file active folios to scan 2324 */ 2325 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc, 2326 unsigned long *nr) 2327 { 2328 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2329 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 2330 unsigned long anon_cost, file_cost, total_cost; 2331 int swappiness = mem_cgroup_swappiness(memcg); 2332 u64 fraction[ANON_AND_FILE]; 2333 u64 denominator = 0; /* gcc */ 2334 enum scan_balance scan_balance; 2335 unsigned long ap, fp; 2336 enum lru_list lru; 2337 2338 /* If we have no swap space, do not bother scanning anon folios. */ 2339 if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) { 2340 scan_balance = SCAN_FILE; 2341 goto out; 2342 } 2343 2344 /* 2345 * Global reclaim will swap to prevent OOM even with no 2346 * swappiness, but memcg users want to use this knob to 2347 * disable swapping for individual groups completely when 2348 * using the memory controller's swap limit feature would be 2349 * too expensive. 2350 */ 2351 if (cgroup_reclaim(sc) && !swappiness) { 2352 scan_balance = SCAN_FILE; 2353 goto out; 2354 } 2355 2356 /* 2357 * Do not apply any pressure balancing cleverness when the 2358 * system is close to OOM, scan both anon and file equally 2359 * (unless the swappiness setting disagrees with swapping). 2360 */ 2361 if (!sc->priority && swappiness) { 2362 scan_balance = SCAN_EQUAL; 2363 goto out; 2364 } 2365 2366 /* 2367 * If the system is almost out of file pages, force-scan anon. 2368 */ 2369 if (sc->file_is_tiny) { 2370 scan_balance = SCAN_ANON; 2371 goto out; 2372 } 2373 2374 /* 2375 * If there is enough inactive page cache, we do not reclaim 2376 * anything from the anonymous working right now. 2377 */ 2378 if (sc->cache_trim_mode) { 2379 scan_balance = SCAN_FILE; 2380 goto out; 2381 } 2382 2383 scan_balance = SCAN_FRACT; 2384 /* 2385 * Calculate the pressure balance between anon and file pages. 2386 * 2387 * The amount of pressure we put on each LRU is inversely 2388 * proportional to the cost of reclaiming each list, as 2389 * determined by the share of pages that are refaulting, times 2390 * the relative IO cost of bringing back a swapped out 2391 * anonymous page vs reloading a filesystem page (swappiness). 2392 * 2393 * Although we limit that influence to ensure no list gets 2394 * left behind completely: at least a third of the pressure is 2395 * applied, before swappiness. 2396 * 2397 * With swappiness at 100, anon and file have equal IO cost. 2398 */ 2399 total_cost = sc->anon_cost + sc->file_cost; 2400 anon_cost = total_cost + sc->anon_cost; 2401 file_cost = total_cost + sc->file_cost; 2402 total_cost = anon_cost + file_cost; 2403 2404 ap = swappiness * (total_cost + 1); 2405 ap /= anon_cost + 1; 2406 2407 fp = (200 - swappiness) * (total_cost + 1); 2408 fp /= file_cost + 1; 2409 2410 fraction[0] = ap; 2411 fraction[1] = fp; 2412 denominator = ap + fp; 2413 out: 2414 for_each_evictable_lru(lru) { 2415 int file = is_file_lru(lru); 2416 unsigned long lruvec_size; 2417 unsigned long low, min; 2418 unsigned long scan; 2419 2420 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx); 2421 mem_cgroup_protection(sc->target_mem_cgroup, memcg, 2422 &min, &low); 2423 2424 if (min || low) { 2425 /* 2426 * Scale a cgroup's reclaim pressure by proportioning 2427 * its current usage to its memory.low or memory.min 2428 * setting. 2429 * 2430 * This is important, as otherwise scanning aggression 2431 * becomes extremely binary -- from nothing as we 2432 * approach the memory protection threshold, to totally 2433 * nominal as we exceed it. This results in requiring 2434 * setting extremely liberal protection thresholds. It 2435 * also means we simply get no protection at all if we 2436 * set it too low, which is not ideal. 2437 * 2438 * If there is any protection in place, we reduce scan 2439 * pressure by how much of the total memory used is 2440 * within protection thresholds. 2441 * 2442 * There is one special case: in the first reclaim pass, 2443 * we skip over all groups that are within their low 2444 * protection. If that fails to reclaim enough pages to 2445 * satisfy the reclaim goal, we come back and override 2446 * the best-effort low protection. However, we still 2447 * ideally want to honor how well-behaved groups are in 2448 * that case instead of simply punishing them all 2449 * equally. As such, we reclaim them based on how much 2450 * memory they are using, reducing the scan pressure 2451 * again by how much of the total memory used is under 2452 * hard protection. 2453 */ 2454 unsigned long cgroup_size = mem_cgroup_size(memcg); 2455 unsigned long protection; 2456 2457 /* memory.low scaling, make sure we retry before OOM */ 2458 if (!sc->memcg_low_reclaim && low > min) { 2459 protection = low; 2460 sc->memcg_low_skipped = 1; 2461 } else { 2462 protection = min; 2463 } 2464 2465 /* Avoid TOCTOU with earlier protection check */ 2466 cgroup_size = max(cgroup_size, protection); 2467 2468 scan = lruvec_size - lruvec_size * protection / 2469 (cgroup_size + 1); 2470 2471 /* 2472 * Minimally target SWAP_CLUSTER_MAX pages to keep 2473 * reclaim moving forwards, avoiding decrementing 2474 * sc->priority further than desirable. 2475 */ 2476 scan = max(scan, SWAP_CLUSTER_MAX); 2477 } else { 2478 scan = lruvec_size; 2479 } 2480 2481 scan >>= sc->priority; 2482 2483 /* 2484 * If the cgroup's already been deleted, make sure to 2485 * scrape out the remaining cache. 2486 */ 2487 if (!scan && !mem_cgroup_online(memcg)) 2488 scan = min(lruvec_size, SWAP_CLUSTER_MAX); 2489 2490 switch (scan_balance) { 2491 case SCAN_EQUAL: 2492 /* Scan lists relative to size */ 2493 break; 2494 case SCAN_FRACT: 2495 /* 2496 * Scan types proportional to swappiness and 2497 * their relative recent reclaim efficiency. 2498 * Make sure we don't miss the last page on 2499 * the offlined memory cgroups because of a 2500 * round-off error. 2501 */ 2502 scan = mem_cgroup_online(memcg) ? 2503 div64_u64(scan * fraction[file], denominator) : 2504 DIV64_U64_ROUND_UP(scan * fraction[file], 2505 denominator); 2506 break; 2507 case SCAN_FILE: 2508 case SCAN_ANON: 2509 /* Scan one type exclusively */ 2510 if ((scan_balance == SCAN_FILE) != file) 2511 scan = 0; 2512 break; 2513 default: 2514 /* Look ma, no brain */ 2515 BUG(); 2516 } 2517 2518 nr[lru] = scan; 2519 } 2520 } 2521 2522 /* 2523 * Anonymous LRU management is a waste if there is 2524 * ultimately no way to reclaim the memory. 2525 */ 2526 static bool can_age_anon_pages(struct pglist_data *pgdat, 2527 struct scan_control *sc) 2528 { 2529 /* Aging the anon LRU is valuable if swap is present: */ 2530 if (total_swap_pages > 0) 2531 return true; 2532 2533 /* Also valuable if anon pages can be demoted: */ 2534 return can_demote(pgdat->node_id, sc); 2535 } 2536 2537 #ifdef CONFIG_LRU_GEN 2538 2539 #ifdef CONFIG_LRU_GEN_ENABLED 2540 DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS); 2541 #define get_cap(cap) static_branch_likely(&lru_gen_caps[cap]) 2542 #else 2543 DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS); 2544 #define get_cap(cap) static_branch_unlikely(&lru_gen_caps[cap]) 2545 #endif 2546 2547 static bool should_walk_mmu(void) 2548 { 2549 return arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK); 2550 } 2551 2552 static bool should_clear_pmd_young(void) 2553 { 2554 return arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG); 2555 } 2556 2557 /****************************************************************************** 2558 * shorthand helpers 2559 ******************************************************************************/ 2560 2561 #define LRU_REFS_FLAGS (BIT(PG_referenced) | BIT(PG_workingset)) 2562 2563 #define DEFINE_MAX_SEQ(lruvec) \ 2564 unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq) 2565 2566 #define DEFINE_MIN_SEQ(lruvec) \ 2567 unsigned long min_seq[ANON_AND_FILE] = { \ 2568 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]), \ 2569 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]), \ 2570 } 2571 2572 #define for_each_gen_type_zone(gen, type, zone) \ 2573 for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++) \ 2574 for ((type) = 0; (type) < ANON_AND_FILE; (type)++) \ 2575 for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++) 2576 2577 #define get_memcg_gen(seq) ((seq) % MEMCG_NR_GENS) 2578 #define get_memcg_bin(bin) ((bin) % MEMCG_NR_BINS) 2579 2580 static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid) 2581 { 2582 struct pglist_data *pgdat = NODE_DATA(nid); 2583 2584 #ifdef CONFIG_MEMCG 2585 if (memcg) { 2586 struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec; 2587 2588 /* see the comment in mem_cgroup_lruvec() */ 2589 if (!lruvec->pgdat) 2590 lruvec->pgdat = pgdat; 2591 2592 return lruvec; 2593 } 2594 #endif 2595 VM_WARN_ON_ONCE(!mem_cgroup_disabled()); 2596 2597 return &pgdat->__lruvec; 2598 } 2599 2600 static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc) 2601 { 2602 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 2603 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2604 2605 if (!sc->may_swap) 2606 return 0; 2607 2608 if (!can_demote(pgdat->node_id, sc) && 2609 mem_cgroup_get_nr_swap_pages(memcg) < MIN_LRU_BATCH) 2610 return 0; 2611 2612 return mem_cgroup_swappiness(memcg); 2613 } 2614 2615 static int get_nr_gens(struct lruvec *lruvec, int type) 2616 { 2617 return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1; 2618 } 2619 2620 static bool __maybe_unused seq_is_valid(struct lruvec *lruvec) 2621 { 2622 /* see the comment on lru_gen_folio */ 2623 return get_nr_gens(lruvec, LRU_GEN_FILE) >= MIN_NR_GENS && 2624 get_nr_gens(lruvec, LRU_GEN_FILE) <= get_nr_gens(lruvec, LRU_GEN_ANON) && 2625 get_nr_gens(lruvec, LRU_GEN_ANON) <= MAX_NR_GENS; 2626 } 2627 2628 /****************************************************************************** 2629 * Bloom filters 2630 ******************************************************************************/ 2631 2632 /* 2633 * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when 2634 * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of 2635 * bits in a bitmap, k is the number of hash functions and n is the number of 2636 * inserted items. 2637 * 2638 * Page table walkers use one of the two filters to reduce their search space. 2639 * To get rid of non-leaf entries that no longer have enough leaf entries, the 2640 * aging uses the double-buffering technique to flip to the other filter each 2641 * time it produces a new generation. For non-leaf entries that have enough 2642 * leaf entries, the aging carries them over to the next generation in 2643 * walk_pmd_range(); the eviction also report them when walking the rmap 2644 * in lru_gen_look_around(). 2645 * 2646 * For future optimizations: 2647 * 1. It's not necessary to keep both filters all the time. The spare one can be 2648 * freed after the RCU grace period and reallocated if needed again. 2649 * 2. And when reallocating, it's worth scaling its size according to the number 2650 * of inserted entries in the other filter, to reduce the memory overhead on 2651 * small systems and false positives on large systems. 2652 * 3. Jenkins' hash function is an alternative to Knuth's. 2653 */ 2654 #define BLOOM_FILTER_SHIFT 15 2655 2656 static inline int filter_gen_from_seq(unsigned long seq) 2657 { 2658 return seq % NR_BLOOM_FILTERS; 2659 } 2660 2661 static void get_item_key(void *item, int *key) 2662 { 2663 u32 hash = hash_ptr(item, BLOOM_FILTER_SHIFT * 2); 2664 2665 BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32)); 2666 2667 key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1); 2668 key[1] = hash >> BLOOM_FILTER_SHIFT; 2669 } 2670 2671 static bool test_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq, 2672 void *item) 2673 { 2674 int key[2]; 2675 unsigned long *filter; 2676 int gen = filter_gen_from_seq(seq); 2677 2678 filter = READ_ONCE(mm_state->filters[gen]); 2679 if (!filter) 2680 return true; 2681 2682 get_item_key(item, key); 2683 2684 return test_bit(key[0], filter) && test_bit(key[1], filter); 2685 } 2686 2687 static void update_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq, 2688 void *item) 2689 { 2690 int key[2]; 2691 unsigned long *filter; 2692 int gen = filter_gen_from_seq(seq); 2693 2694 filter = READ_ONCE(mm_state->filters[gen]); 2695 if (!filter) 2696 return; 2697 2698 get_item_key(item, key); 2699 2700 if (!test_bit(key[0], filter)) 2701 set_bit(key[0], filter); 2702 if (!test_bit(key[1], filter)) 2703 set_bit(key[1], filter); 2704 } 2705 2706 static void reset_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq) 2707 { 2708 unsigned long *filter; 2709 int gen = filter_gen_from_seq(seq); 2710 2711 filter = mm_state->filters[gen]; 2712 if (filter) { 2713 bitmap_clear(filter, 0, BIT(BLOOM_FILTER_SHIFT)); 2714 return; 2715 } 2716 2717 filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT), 2718 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN); 2719 WRITE_ONCE(mm_state->filters[gen], filter); 2720 } 2721 2722 /****************************************************************************** 2723 * mm_struct list 2724 ******************************************************************************/ 2725 2726 #ifdef CONFIG_LRU_GEN_WALKS_MMU 2727 2728 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg) 2729 { 2730 static struct lru_gen_mm_list mm_list = { 2731 .fifo = LIST_HEAD_INIT(mm_list.fifo), 2732 .lock = __SPIN_LOCK_UNLOCKED(mm_list.lock), 2733 }; 2734 2735 #ifdef CONFIG_MEMCG 2736 if (memcg) 2737 return &memcg->mm_list; 2738 #endif 2739 VM_WARN_ON_ONCE(!mem_cgroup_disabled()); 2740 2741 return &mm_list; 2742 } 2743 2744 static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec) 2745 { 2746 return &lruvec->mm_state; 2747 } 2748 2749 static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk) 2750 { 2751 int key; 2752 struct mm_struct *mm; 2753 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 2754 struct lru_gen_mm_state *mm_state = get_mm_state(walk->lruvec); 2755 2756 mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list); 2757 key = pgdat->node_id % BITS_PER_TYPE(mm->lru_gen.bitmap); 2758 2759 if (!walk->force_scan && !test_bit(key, &mm->lru_gen.bitmap)) 2760 return NULL; 2761 2762 clear_bit(key, &mm->lru_gen.bitmap); 2763 2764 return mmget_not_zero(mm) ? mm : NULL; 2765 } 2766 2767 void lru_gen_add_mm(struct mm_struct *mm) 2768 { 2769 int nid; 2770 struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm); 2771 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 2772 2773 VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list)); 2774 #ifdef CONFIG_MEMCG 2775 VM_WARN_ON_ONCE(mm->lru_gen.memcg); 2776 mm->lru_gen.memcg = memcg; 2777 #endif 2778 spin_lock(&mm_list->lock); 2779 2780 for_each_node_state(nid, N_MEMORY) { 2781 struct lruvec *lruvec = get_lruvec(memcg, nid); 2782 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 2783 2784 /* the first addition since the last iteration */ 2785 if (mm_state->tail == &mm_list->fifo) 2786 mm_state->tail = &mm->lru_gen.list; 2787 } 2788 2789 list_add_tail(&mm->lru_gen.list, &mm_list->fifo); 2790 2791 spin_unlock(&mm_list->lock); 2792 } 2793 2794 void lru_gen_del_mm(struct mm_struct *mm) 2795 { 2796 int nid; 2797 struct lru_gen_mm_list *mm_list; 2798 struct mem_cgroup *memcg = NULL; 2799 2800 if (list_empty(&mm->lru_gen.list)) 2801 return; 2802 2803 #ifdef CONFIG_MEMCG 2804 memcg = mm->lru_gen.memcg; 2805 #endif 2806 mm_list = get_mm_list(memcg); 2807 2808 spin_lock(&mm_list->lock); 2809 2810 for_each_node(nid) { 2811 struct lruvec *lruvec = get_lruvec(memcg, nid); 2812 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 2813 2814 /* where the current iteration continues after */ 2815 if (mm_state->head == &mm->lru_gen.list) 2816 mm_state->head = mm_state->head->prev; 2817 2818 /* where the last iteration ended before */ 2819 if (mm_state->tail == &mm->lru_gen.list) 2820 mm_state->tail = mm_state->tail->next; 2821 } 2822 2823 list_del_init(&mm->lru_gen.list); 2824 2825 spin_unlock(&mm_list->lock); 2826 2827 #ifdef CONFIG_MEMCG 2828 mem_cgroup_put(mm->lru_gen.memcg); 2829 mm->lru_gen.memcg = NULL; 2830 #endif 2831 } 2832 2833 #ifdef CONFIG_MEMCG 2834 void lru_gen_migrate_mm(struct mm_struct *mm) 2835 { 2836 struct mem_cgroup *memcg; 2837 struct task_struct *task = rcu_dereference_protected(mm->owner, true); 2838 2839 VM_WARN_ON_ONCE(task->mm != mm); 2840 lockdep_assert_held(&task->alloc_lock); 2841 2842 /* for mm_update_next_owner() */ 2843 if (mem_cgroup_disabled()) 2844 return; 2845 2846 /* migration can happen before addition */ 2847 if (!mm->lru_gen.memcg) 2848 return; 2849 2850 rcu_read_lock(); 2851 memcg = mem_cgroup_from_task(task); 2852 rcu_read_unlock(); 2853 if (memcg == mm->lru_gen.memcg) 2854 return; 2855 2856 VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list)); 2857 2858 lru_gen_del_mm(mm); 2859 lru_gen_add_mm(mm); 2860 } 2861 #endif 2862 2863 #else /* !CONFIG_LRU_GEN_WALKS_MMU */ 2864 2865 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg) 2866 { 2867 return NULL; 2868 } 2869 2870 static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec) 2871 { 2872 return NULL; 2873 } 2874 2875 static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk) 2876 { 2877 return NULL; 2878 } 2879 2880 #endif 2881 2882 static void reset_mm_stats(struct lruvec *lruvec, struct lru_gen_mm_walk *walk, bool last) 2883 { 2884 int i; 2885 int hist; 2886 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 2887 2888 lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock); 2889 2890 if (walk) { 2891 hist = lru_hist_from_seq(walk->max_seq); 2892 2893 for (i = 0; i < NR_MM_STATS; i++) { 2894 WRITE_ONCE(mm_state->stats[hist][i], 2895 mm_state->stats[hist][i] + walk->mm_stats[i]); 2896 walk->mm_stats[i] = 0; 2897 } 2898 } 2899 2900 if (NR_HIST_GENS > 1 && last) { 2901 hist = lru_hist_from_seq(mm_state->seq + 1); 2902 2903 for (i = 0; i < NR_MM_STATS; i++) 2904 WRITE_ONCE(mm_state->stats[hist][i], 0); 2905 } 2906 } 2907 2908 static bool iterate_mm_list(struct lruvec *lruvec, struct lru_gen_mm_walk *walk, 2909 struct mm_struct **iter) 2910 { 2911 bool first = false; 2912 bool last = false; 2913 struct mm_struct *mm = NULL; 2914 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 2915 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 2916 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 2917 2918 /* 2919 * mm_state->seq is incremented after each iteration of mm_list. There 2920 * are three interesting cases for this page table walker: 2921 * 1. It tries to start a new iteration with a stale max_seq: there is 2922 * nothing left to do. 2923 * 2. It started the next iteration: it needs to reset the Bloom filter 2924 * so that a fresh set of PTE tables can be recorded. 2925 * 3. It ended the current iteration: it needs to reset the mm stats 2926 * counters and tell its caller to increment max_seq. 2927 */ 2928 spin_lock(&mm_list->lock); 2929 2930 VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->max_seq); 2931 2932 if (walk->max_seq <= mm_state->seq) 2933 goto done; 2934 2935 if (!mm_state->head) 2936 mm_state->head = &mm_list->fifo; 2937 2938 if (mm_state->head == &mm_list->fifo) 2939 first = true; 2940 2941 do { 2942 mm_state->head = mm_state->head->next; 2943 if (mm_state->head == &mm_list->fifo) { 2944 WRITE_ONCE(mm_state->seq, mm_state->seq + 1); 2945 last = true; 2946 break; 2947 } 2948 2949 /* force scan for those added after the last iteration */ 2950 if (!mm_state->tail || mm_state->tail == mm_state->head) { 2951 mm_state->tail = mm_state->head->next; 2952 walk->force_scan = true; 2953 } 2954 } while (!(mm = get_next_mm(walk))); 2955 done: 2956 if (*iter || last) 2957 reset_mm_stats(lruvec, walk, last); 2958 2959 spin_unlock(&mm_list->lock); 2960 2961 if (mm && first) 2962 reset_bloom_filter(mm_state, walk->max_seq + 1); 2963 2964 if (*iter) 2965 mmput_async(*iter); 2966 2967 *iter = mm; 2968 2969 return last; 2970 } 2971 2972 static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long max_seq) 2973 { 2974 bool success = false; 2975 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 2976 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 2977 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 2978 2979 spin_lock(&mm_list->lock); 2980 2981 VM_WARN_ON_ONCE(mm_state->seq + 1 < max_seq); 2982 2983 if (max_seq > mm_state->seq) { 2984 mm_state->head = NULL; 2985 mm_state->tail = NULL; 2986 WRITE_ONCE(mm_state->seq, mm_state->seq + 1); 2987 reset_mm_stats(lruvec, NULL, true); 2988 success = true; 2989 } 2990 2991 spin_unlock(&mm_list->lock); 2992 2993 return success; 2994 } 2995 2996 /****************************************************************************** 2997 * PID controller 2998 ******************************************************************************/ 2999 3000 /* 3001 * A feedback loop based on Proportional-Integral-Derivative (PID) controller. 3002 * 3003 * The P term is refaulted/(evicted+protected) from a tier in the generation 3004 * currently being evicted; the I term is the exponential moving average of the 3005 * P term over the generations previously evicted, using the smoothing factor 3006 * 1/2; the D term isn't supported. 3007 * 3008 * The setpoint (SP) is always the first tier of one type; the process variable 3009 * (PV) is either any tier of the other type or any other tier of the same 3010 * type. 3011 * 3012 * The error is the difference between the SP and the PV; the correction is to 3013 * turn off protection when SP>PV or turn on protection when SP<PV. 3014 * 3015 * For future optimizations: 3016 * 1. The D term may discount the other two terms over time so that long-lived 3017 * generations can resist stale information. 3018 */ 3019 struct ctrl_pos { 3020 unsigned long refaulted; 3021 unsigned long total; 3022 int gain; 3023 }; 3024 3025 static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain, 3026 struct ctrl_pos *pos) 3027 { 3028 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3029 int hist = lru_hist_from_seq(lrugen->min_seq[type]); 3030 3031 pos->refaulted = lrugen->avg_refaulted[type][tier] + 3032 atomic_long_read(&lrugen->refaulted[hist][type][tier]); 3033 pos->total = lrugen->avg_total[type][tier] + 3034 atomic_long_read(&lrugen->evicted[hist][type][tier]); 3035 if (tier) 3036 pos->total += lrugen->protected[hist][type][tier - 1]; 3037 pos->gain = gain; 3038 } 3039 3040 static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover) 3041 { 3042 int hist, tier; 3043 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3044 bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1; 3045 unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1; 3046 3047 lockdep_assert_held(&lruvec->lru_lock); 3048 3049 if (!carryover && !clear) 3050 return; 3051 3052 hist = lru_hist_from_seq(seq); 3053 3054 for (tier = 0; tier < MAX_NR_TIERS; tier++) { 3055 if (carryover) { 3056 unsigned long sum; 3057 3058 sum = lrugen->avg_refaulted[type][tier] + 3059 atomic_long_read(&lrugen->refaulted[hist][type][tier]); 3060 WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2); 3061 3062 sum = lrugen->avg_total[type][tier] + 3063 atomic_long_read(&lrugen->evicted[hist][type][tier]); 3064 if (tier) 3065 sum += lrugen->protected[hist][type][tier - 1]; 3066 WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2); 3067 } 3068 3069 if (clear) { 3070 atomic_long_set(&lrugen->refaulted[hist][type][tier], 0); 3071 atomic_long_set(&lrugen->evicted[hist][type][tier], 0); 3072 if (tier) 3073 WRITE_ONCE(lrugen->protected[hist][type][tier - 1], 0); 3074 } 3075 } 3076 } 3077 3078 static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv) 3079 { 3080 /* 3081 * Return true if the PV has a limited number of refaults or a lower 3082 * refaulted/total than the SP. 3083 */ 3084 return pv->refaulted < MIN_LRU_BATCH || 3085 pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <= 3086 (sp->refaulted + 1) * pv->total * pv->gain; 3087 } 3088 3089 /****************************************************************************** 3090 * the aging 3091 ******************************************************************************/ 3092 3093 /* promote pages accessed through page tables */ 3094 static int folio_update_gen(struct folio *folio, int gen) 3095 { 3096 unsigned long new_flags, old_flags = READ_ONCE(folio->flags); 3097 3098 VM_WARN_ON_ONCE(gen >= MAX_NR_GENS); 3099 VM_WARN_ON_ONCE(!rcu_read_lock_held()); 3100 3101 do { 3102 /* lru_gen_del_folio() has isolated this page? */ 3103 if (!(old_flags & LRU_GEN_MASK)) { 3104 /* for shrink_folio_list() */ 3105 new_flags = old_flags | BIT(PG_referenced); 3106 continue; 3107 } 3108 3109 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS); 3110 new_flags |= (gen + 1UL) << LRU_GEN_PGOFF; 3111 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags)); 3112 3113 return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1; 3114 } 3115 3116 /* protect pages accessed multiple times through file descriptors */ 3117 static int folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming) 3118 { 3119 int type = folio_is_file_lru(folio); 3120 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3121 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]); 3122 unsigned long new_flags, old_flags = READ_ONCE(folio->flags); 3123 3124 VM_WARN_ON_ONCE_FOLIO(!(old_flags & LRU_GEN_MASK), folio); 3125 3126 do { 3127 new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1; 3128 /* folio_update_gen() has promoted this page? */ 3129 if (new_gen >= 0 && new_gen != old_gen) 3130 return new_gen; 3131 3132 new_gen = (old_gen + 1) % MAX_NR_GENS; 3133 3134 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS); 3135 new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF; 3136 /* for folio_end_writeback() */ 3137 if (reclaiming) 3138 new_flags |= BIT(PG_reclaim); 3139 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags)); 3140 3141 lru_gen_update_size(lruvec, folio, old_gen, new_gen); 3142 3143 return new_gen; 3144 } 3145 3146 static void update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio, 3147 int old_gen, int new_gen) 3148 { 3149 int type = folio_is_file_lru(folio); 3150 int zone = folio_zonenum(folio); 3151 int delta = folio_nr_pages(folio); 3152 3153 VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS); 3154 VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS); 3155 3156 walk->batched++; 3157 3158 walk->nr_pages[old_gen][type][zone] -= delta; 3159 walk->nr_pages[new_gen][type][zone] += delta; 3160 } 3161 3162 static void reset_batch_size(struct lruvec *lruvec, struct lru_gen_mm_walk *walk) 3163 { 3164 int gen, type, zone; 3165 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3166 3167 walk->batched = 0; 3168 3169 for_each_gen_type_zone(gen, type, zone) { 3170 enum lru_list lru = type * LRU_INACTIVE_FILE; 3171 int delta = walk->nr_pages[gen][type][zone]; 3172 3173 if (!delta) 3174 continue; 3175 3176 walk->nr_pages[gen][type][zone] = 0; 3177 WRITE_ONCE(lrugen->nr_pages[gen][type][zone], 3178 lrugen->nr_pages[gen][type][zone] + delta); 3179 3180 if (lru_gen_is_active(lruvec, gen)) 3181 lru += LRU_ACTIVE; 3182 __update_lru_size(lruvec, lru, zone, delta); 3183 } 3184 } 3185 3186 static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args) 3187 { 3188 struct address_space *mapping; 3189 struct vm_area_struct *vma = args->vma; 3190 struct lru_gen_mm_walk *walk = args->private; 3191 3192 if (!vma_is_accessible(vma)) 3193 return true; 3194 3195 if (is_vm_hugetlb_page(vma)) 3196 return true; 3197 3198 if (!vma_has_recency(vma)) 3199 return true; 3200 3201 if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) 3202 return true; 3203 3204 if (vma == get_gate_vma(vma->vm_mm)) 3205 return true; 3206 3207 if (vma_is_anonymous(vma)) 3208 return !walk->can_swap; 3209 3210 if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping)) 3211 return true; 3212 3213 mapping = vma->vm_file->f_mapping; 3214 if (mapping_unevictable(mapping)) 3215 return true; 3216 3217 if (shmem_mapping(mapping)) 3218 return !walk->can_swap; 3219 3220 /* to exclude special mappings like dax, etc. */ 3221 return !mapping->a_ops->read_folio; 3222 } 3223 3224 /* 3225 * Some userspace memory allocators map many single-page VMAs. Instead of 3226 * returning back to the PGD table for each of such VMAs, finish an entire PMD 3227 * table to reduce zigzags and improve cache performance. 3228 */ 3229 static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args, 3230 unsigned long *vm_start, unsigned long *vm_end) 3231 { 3232 unsigned long start = round_up(*vm_end, size); 3233 unsigned long end = (start | ~mask) + 1; 3234 VMA_ITERATOR(vmi, args->mm, start); 3235 3236 VM_WARN_ON_ONCE(mask & size); 3237 VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask)); 3238 3239 for_each_vma(vmi, args->vma) { 3240 if (end && end <= args->vma->vm_start) 3241 return false; 3242 3243 if (should_skip_vma(args->vma->vm_start, args->vma->vm_end, args)) 3244 continue; 3245 3246 *vm_start = max(start, args->vma->vm_start); 3247 *vm_end = min(end - 1, args->vma->vm_end - 1) + 1; 3248 3249 return true; 3250 } 3251 3252 return false; 3253 } 3254 3255 static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr) 3256 { 3257 unsigned long pfn = pte_pfn(pte); 3258 3259 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end); 3260 3261 if (!pte_present(pte) || is_zero_pfn(pfn)) 3262 return -1; 3263 3264 if (WARN_ON_ONCE(pte_devmap(pte) || pte_special(pte))) 3265 return -1; 3266 3267 if (WARN_ON_ONCE(!pfn_valid(pfn))) 3268 return -1; 3269 3270 return pfn; 3271 } 3272 3273 static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr) 3274 { 3275 unsigned long pfn = pmd_pfn(pmd); 3276 3277 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end); 3278 3279 if (!pmd_present(pmd) || is_huge_zero_pmd(pmd)) 3280 return -1; 3281 3282 if (WARN_ON_ONCE(pmd_devmap(pmd))) 3283 return -1; 3284 3285 if (WARN_ON_ONCE(!pfn_valid(pfn))) 3286 return -1; 3287 3288 return pfn; 3289 } 3290 3291 static struct folio *get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg, 3292 struct pglist_data *pgdat, bool can_swap) 3293 { 3294 struct folio *folio; 3295 3296 /* try to avoid unnecessary memory loads */ 3297 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat)) 3298 return NULL; 3299 3300 folio = pfn_folio(pfn); 3301 if (folio_nid(folio) != pgdat->node_id) 3302 return NULL; 3303 3304 if (folio_memcg_rcu(folio) != memcg) 3305 return NULL; 3306 3307 /* file VMAs can contain anon pages from COW */ 3308 if (!folio_is_file_lru(folio) && !can_swap) 3309 return NULL; 3310 3311 return folio; 3312 } 3313 3314 static bool suitable_to_scan(int total, int young) 3315 { 3316 int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8); 3317 3318 /* suitable if the average number of young PTEs per cacheline is >=1 */ 3319 return young * n >= total; 3320 } 3321 3322 static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end, 3323 struct mm_walk *args) 3324 { 3325 int i; 3326 pte_t *pte; 3327 spinlock_t *ptl; 3328 unsigned long addr; 3329 int total = 0; 3330 int young = 0; 3331 struct lru_gen_mm_walk *walk = args->private; 3332 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec); 3333 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 3334 int old_gen, new_gen = lru_gen_from_seq(walk->max_seq); 3335 3336 pte = pte_offset_map_nolock(args->mm, pmd, start & PMD_MASK, &ptl); 3337 if (!pte) 3338 return false; 3339 if (!spin_trylock(ptl)) { 3340 pte_unmap(pte); 3341 return false; 3342 } 3343 3344 arch_enter_lazy_mmu_mode(); 3345 restart: 3346 for (i = pte_index(start), addr = start; addr != end; i++, addr += PAGE_SIZE) { 3347 unsigned long pfn; 3348 struct folio *folio; 3349 pte_t ptent = ptep_get(pte + i); 3350 3351 total++; 3352 walk->mm_stats[MM_LEAF_TOTAL]++; 3353 3354 pfn = get_pte_pfn(ptent, args->vma, addr); 3355 if (pfn == -1) 3356 continue; 3357 3358 if (!pte_young(ptent)) { 3359 walk->mm_stats[MM_LEAF_OLD]++; 3360 continue; 3361 } 3362 3363 folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap); 3364 if (!folio) 3365 continue; 3366 3367 if (!ptep_test_and_clear_young(args->vma, addr, pte + i)) 3368 VM_WARN_ON_ONCE(true); 3369 3370 young++; 3371 walk->mm_stats[MM_LEAF_YOUNG]++; 3372 3373 if (pte_dirty(ptent) && !folio_test_dirty(folio) && 3374 !(folio_test_anon(folio) && folio_test_swapbacked(folio) && 3375 !folio_test_swapcache(folio))) 3376 folio_mark_dirty(folio); 3377 3378 old_gen = folio_update_gen(folio, new_gen); 3379 if (old_gen >= 0 && old_gen != new_gen) 3380 update_batch_size(walk, folio, old_gen, new_gen); 3381 } 3382 3383 if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, &start, &end)) 3384 goto restart; 3385 3386 arch_leave_lazy_mmu_mode(); 3387 pte_unmap_unlock(pte, ptl); 3388 3389 return suitable_to_scan(total, young); 3390 } 3391 3392 static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma, 3393 struct mm_walk *args, unsigned long *bitmap, unsigned long *first) 3394 { 3395 int i; 3396 pmd_t *pmd; 3397 spinlock_t *ptl; 3398 struct lru_gen_mm_walk *walk = args->private; 3399 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec); 3400 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 3401 int old_gen, new_gen = lru_gen_from_seq(walk->max_seq); 3402 3403 VM_WARN_ON_ONCE(pud_leaf(*pud)); 3404 3405 /* try to batch at most 1+MIN_LRU_BATCH+1 entries */ 3406 if (*first == -1) { 3407 *first = addr; 3408 bitmap_zero(bitmap, MIN_LRU_BATCH); 3409 return; 3410 } 3411 3412 i = addr == -1 ? 0 : pmd_index(addr) - pmd_index(*first); 3413 if (i && i <= MIN_LRU_BATCH) { 3414 __set_bit(i - 1, bitmap); 3415 return; 3416 } 3417 3418 pmd = pmd_offset(pud, *first); 3419 3420 ptl = pmd_lockptr(args->mm, pmd); 3421 if (!spin_trylock(ptl)) 3422 goto done; 3423 3424 arch_enter_lazy_mmu_mode(); 3425 3426 do { 3427 unsigned long pfn; 3428 struct folio *folio; 3429 3430 /* don't round down the first address */ 3431 addr = i ? (*first & PMD_MASK) + i * PMD_SIZE : *first; 3432 3433 pfn = get_pmd_pfn(pmd[i], vma, addr); 3434 if (pfn == -1) 3435 goto next; 3436 3437 if (!pmd_trans_huge(pmd[i])) { 3438 if (should_clear_pmd_young()) 3439 pmdp_test_and_clear_young(vma, addr, pmd + i); 3440 goto next; 3441 } 3442 3443 folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap); 3444 if (!folio) 3445 goto next; 3446 3447 if (!pmdp_test_and_clear_young(vma, addr, pmd + i)) 3448 goto next; 3449 3450 walk->mm_stats[MM_LEAF_YOUNG]++; 3451 3452 if (pmd_dirty(pmd[i]) && !folio_test_dirty(folio) && 3453 !(folio_test_anon(folio) && folio_test_swapbacked(folio) && 3454 !folio_test_swapcache(folio))) 3455 folio_mark_dirty(folio); 3456 3457 old_gen = folio_update_gen(folio, new_gen); 3458 if (old_gen >= 0 && old_gen != new_gen) 3459 update_batch_size(walk, folio, old_gen, new_gen); 3460 next: 3461 i = i > MIN_LRU_BATCH ? 0 : find_next_bit(bitmap, MIN_LRU_BATCH, i) + 1; 3462 } while (i <= MIN_LRU_BATCH); 3463 3464 arch_leave_lazy_mmu_mode(); 3465 spin_unlock(ptl); 3466 done: 3467 *first = -1; 3468 } 3469 3470 static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end, 3471 struct mm_walk *args) 3472 { 3473 int i; 3474 pmd_t *pmd; 3475 unsigned long next; 3476 unsigned long addr; 3477 struct vm_area_struct *vma; 3478 DECLARE_BITMAP(bitmap, MIN_LRU_BATCH); 3479 unsigned long first = -1; 3480 struct lru_gen_mm_walk *walk = args->private; 3481 struct lru_gen_mm_state *mm_state = get_mm_state(walk->lruvec); 3482 3483 VM_WARN_ON_ONCE(pud_leaf(*pud)); 3484 3485 /* 3486 * Finish an entire PMD in two passes: the first only reaches to PTE 3487 * tables to avoid taking the PMD lock; the second, if necessary, takes 3488 * the PMD lock to clear the accessed bit in PMD entries. 3489 */ 3490 pmd = pmd_offset(pud, start & PUD_MASK); 3491 restart: 3492 /* walk_pte_range() may call get_next_vma() */ 3493 vma = args->vma; 3494 for (i = pmd_index(start), addr = start; addr != end; i++, addr = next) { 3495 pmd_t val = pmdp_get_lockless(pmd + i); 3496 3497 next = pmd_addr_end(addr, end); 3498 3499 if (!pmd_present(val) || is_huge_zero_pmd(val)) { 3500 walk->mm_stats[MM_LEAF_TOTAL]++; 3501 continue; 3502 } 3503 3504 if (pmd_trans_huge(val)) { 3505 unsigned long pfn = pmd_pfn(val); 3506 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 3507 3508 walk->mm_stats[MM_LEAF_TOTAL]++; 3509 3510 if (!pmd_young(val)) { 3511 walk->mm_stats[MM_LEAF_OLD]++; 3512 continue; 3513 } 3514 3515 /* try to avoid unnecessary memory loads */ 3516 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat)) 3517 continue; 3518 3519 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first); 3520 continue; 3521 } 3522 3523 walk->mm_stats[MM_NONLEAF_TOTAL]++; 3524 3525 if (should_clear_pmd_young()) { 3526 if (!pmd_young(val)) 3527 continue; 3528 3529 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first); 3530 } 3531 3532 if (!walk->force_scan && !test_bloom_filter(mm_state, walk->max_seq, pmd + i)) 3533 continue; 3534 3535 walk->mm_stats[MM_NONLEAF_FOUND]++; 3536 3537 if (!walk_pte_range(&val, addr, next, args)) 3538 continue; 3539 3540 walk->mm_stats[MM_NONLEAF_ADDED]++; 3541 3542 /* carry over to the next generation */ 3543 update_bloom_filter(mm_state, walk->max_seq + 1, pmd + i); 3544 } 3545 3546 walk_pmd_range_locked(pud, -1, vma, args, bitmap, &first); 3547 3548 if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, &start, &end)) 3549 goto restart; 3550 } 3551 3552 static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end, 3553 struct mm_walk *args) 3554 { 3555 int i; 3556 pud_t *pud; 3557 unsigned long addr; 3558 unsigned long next; 3559 struct lru_gen_mm_walk *walk = args->private; 3560 3561 VM_WARN_ON_ONCE(p4d_leaf(*p4d)); 3562 3563 pud = pud_offset(p4d, start & P4D_MASK); 3564 restart: 3565 for (i = pud_index(start), addr = start; addr != end; i++, addr = next) { 3566 pud_t val = READ_ONCE(pud[i]); 3567 3568 next = pud_addr_end(addr, end); 3569 3570 if (!pud_present(val) || WARN_ON_ONCE(pud_leaf(val))) 3571 continue; 3572 3573 walk_pmd_range(&val, addr, next, args); 3574 3575 if (need_resched() || walk->batched >= MAX_LRU_BATCH) { 3576 end = (addr | ~PUD_MASK) + 1; 3577 goto done; 3578 } 3579 } 3580 3581 if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, &start, &end)) 3582 goto restart; 3583 3584 end = round_up(end, P4D_SIZE); 3585 done: 3586 if (!end || !args->vma) 3587 return 1; 3588 3589 walk->next_addr = max(end, args->vma->vm_start); 3590 3591 return -EAGAIN; 3592 } 3593 3594 static void walk_mm(struct lruvec *lruvec, struct mm_struct *mm, struct lru_gen_mm_walk *walk) 3595 { 3596 static const struct mm_walk_ops mm_walk_ops = { 3597 .test_walk = should_skip_vma, 3598 .p4d_entry = walk_pud_range, 3599 .walk_lock = PGWALK_RDLOCK, 3600 }; 3601 3602 int err; 3603 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 3604 3605 walk->next_addr = FIRST_USER_ADDRESS; 3606 3607 do { 3608 DEFINE_MAX_SEQ(lruvec); 3609 3610 err = -EBUSY; 3611 3612 /* another thread might have called inc_max_seq() */ 3613 if (walk->max_seq != max_seq) 3614 break; 3615 3616 /* folio_update_gen() requires stable folio_memcg() */ 3617 if (!mem_cgroup_trylock_pages(memcg)) 3618 break; 3619 3620 /* the caller might be holding the lock for write */ 3621 if (mmap_read_trylock(mm)) { 3622 err = walk_page_range(mm, walk->next_addr, ULONG_MAX, &mm_walk_ops, walk); 3623 3624 mmap_read_unlock(mm); 3625 } 3626 3627 mem_cgroup_unlock_pages(); 3628 3629 if (walk->batched) { 3630 spin_lock_irq(&lruvec->lru_lock); 3631 reset_batch_size(lruvec, walk); 3632 spin_unlock_irq(&lruvec->lru_lock); 3633 } 3634 3635 cond_resched(); 3636 } while (err == -EAGAIN); 3637 } 3638 3639 static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat, bool force_alloc) 3640 { 3641 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk; 3642 3643 if (pgdat && current_is_kswapd()) { 3644 VM_WARN_ON_ONCE(walk); 3645 3646 walk = &pgdat->mm_walk; 3647 } else if (!walk && force_alloc) { 3648 VM_WARN_ON_ONCE(current_is_kswapd()); 3649 3650 walk = kzalloc(sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN); 3651 } 3652 3653 current->reclaim_state->mm_walk = walk; 3654 3655 return walk; 3656 } 3657 3658 static void clear_mm_walk(void) 3659 { 3660 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk; 3661 3662 VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages))); 3663 VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats))); 3664 3665 current->reclaim_state->mm_walk = NULL; 3666 3667 if (!current_is_kswapd()) 3668 kfree(walk); 3669 } 3670 3671 static bool inc_min_seq(struct lruvec *lruvec, int type, bool can_swap) 3672 { 3673 int zone; 3674 int remaining = MAX_LRU_BATCH; 3675 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3676 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]); 3677 3678 if (type == LRU_GEN_ANON && !can_swap) 3679 goto done; 3680 3681 /* prevent cold/hot inversion if force_scan is true */ 3682 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 3683 struct list_head *head = &lrugen->folios[old_gen][type][zone]; 3684 3685 while (!list_empty(head)) { 3686 struct folio *folio = lru_to_folio(head); 3687 3688 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 3689 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio); 3690 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 3691 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio); 3692 3693 new_gen = folio_inc_gen(lruvec, folio, false); 3694 list_move_tail(&folio->lru, &lrugen->folios[new_gen][type][zone]); 3695 3696 if (!--remaining) 3697 return false; 3698 } 3699 } 3700 done: 3701 reset_ctrl_pos(lruvec, type, true); 3702 WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1); 3703 3704 return true; 3705 } 3706 3707 static bool try_to_inc_min_seq(struct lruvec *lruvec, bool can_swap) 3708 { 3709 int gen, type, zone; 3710 bool success = false; 3711 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3712 DEFINE_MIN_SEQ(lruvec); 3713 3714 VM_WARN_ON_ONCE(!seq_is_valid(lruvec)); 3715 3716 /* find the oldest populated generation */ 3717 for (type = !can_swap; type < ANON_AND_FILE; type++) { 3718 while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) { 3719 gen = lru_gen_from_seq(min_seq[type]); 3720 3721 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 3722 if (!list_empty(&lrugen->folios[gen][type][zone])) 3723 goto next; 3724 } 3725 3726 min_seq[type]++; 3727 } 3728 next: 3729 ; 3730 } 3731 3732 /* see the comment on lru_gen_folio */ 3733 if (can_swap) { 3734 min_seq[LRU_GEN_ANON] = min(min_seq[LRU_GEN_ANON], min_seq[LRU_GEN_FILE]); 3735 min_seq[LRU_GEN_FILE] = max(min_seq[LRU_GEN_ANON], lrugen->min_seq[LRU_GEN_FILE]); 3736 } 3737 3738 for (type = !can_swap; type < ANON_AND_FILE; type++) { 3739 if (min_seq[type] == lrugen->min_seq[type]) 3740 continue; 3741 3742 reset_ctrl_pos(lruvec, type, true); 3743 WRITE_ONCE(lrugen->min_seq[type], min_seq[type]); 3744 success = true; 3745 } 3746 3747 return success; 3748 } 3749 3750 static bool inc_max_seq(struct lruvec *lruvec, unsigned long max_seq, 3751 bool can_swap, bool force_scan) 3752 { 3753 bool success; 3754 int prev, next; 3755 int type, zone; 3756 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3757 restart: 3758 if (max_seq < READ_ONCE(lrugen->max_seq)) 3759 return false; 3760 3761 spin_lock_irq(&lruvec->lru_lock); 3762 3763 VM_WARN_ON_ONCE(!seq_is_valid(lruvec)); 3764 3765 success = max_seq == lrugen->max_seq; 3766 if (!success) 3767 goto unlock; 3768 3769 for (type = ANON_AND_FILE - 1; type >= 0; type--) { 3770 if (get_nr_gens(lruvec, type) != MAX_NR_GENS) 3771 continue; 3772 3773 VM_WARN_ON_ONCE(!force_scan && (type == LRU_GEN_FILE || can_swap)); 3774 3775 if (inc_min_seq(lruvec, type, can_swap)) 3776 continue; 3777 3778 spin_unlock_irq(&lruvec->lru_lock); 3779 cond_resched(); 3780 goto restart; 3781 } 3782 3783 /* 3784 * Update the active/inactive LRU sizes for compatibility. Both sides of 3785 * the current max_seq need to be covered, since max_seq+1 can overlap 3786 * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do 3787 * overlap, cold/hot inversion happens. 3788 */ 3789 prev = lru_gen_from_seq(lrugen->max_seq - 1); 3790 next = lru_gen_from_seq(lrugen->max_seq + 1); 3791 3792 for (type = 0; type < ANON_AND_FILE; type++) { 3793 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 3794 enum lru_list lru = type * LRU_INACTIVE_FILE; 3795 long delta = lrugen->nr_pages[prev][type][zone] - 3796 lrugen->nr_pages[next][type][zone]; 3797 3798 if (!delta) 3799 continue; 3800 3801 __update_lru_size(lruvec, lru, zone, delta); 3802 __update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta); 3803 } 3804 } 3805 3806 for (type = 0; type < ANON_AND_FILE; type++) 3807 reset_ctrl_pos(lruvec, type, false); 3808 3809 WRITE_ONCE(lrugen->timestamps[next], jiffies); 3810 /* make sure preceding modifications appear */ 3811 smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1); 3812 unlock: 3813 spin_unlock_irq(&lruvec->lru_lock); 3814 3815 return success; 3816 } 3817 3818 static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long max_seq, 3819 struct scan_control *sc, bool can_swap, bool force_scan) 3820 { 3821 bool success; 3822 struct lru_gen_mm_walk *walk; 3823 struct mm_struct *mm = NULL; 3824 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3825 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 3826 3827 VM_WARN_ON_ONCE(max_seq > READ_ONCE(lrugen->max_seq)); 3828 3829 if (!mm_state) 3830 return inc_max_seq(lruvec, max_seq, can_swap, force_scan); 3831 3832 /* see the comment in iterate_mm_list() */ 3833 if (max_seq <= READ_ONCE(mm_state->seq)) 3834 return false; 3835 3836 /* 3837 * If the hardware doesn't automatically set the accessed bit, fallback 3838 * to lru_gen_look_around(), which only clears the accessed bit in a 3839 * handful of PTEs. Spreading the work out over a period of time usually 3840 * is less efficient, but it avoids bursty page faults. 3841 */ 3842 if (!should_walk_mmu()) { 3843 success = iterate_mm_list_nowalk(lruvec, max_seq); 3844 goto done; 3845 } 3846 3847 walk = set_mm_walk(NULL, true); 3848 if (!walk) { 3849 success = iterate_mm_list_nowalk(lruvec, max_seq); 3850 goto done; 3851 } 3852 3853 walk->lruvec = lruvec; 3854 walk->max_seq = max_seq; 3855 walk->can_swap = can_swap; 3856 walk->force_scan = force_scan; 3857 3858 do { 3859 success = iterate_mm_list(lruvec, walk, &mm); 3860 if (mm) 3861 walk_mm(lruvec, mm, walk); 3862 } while (mm); 3863 done: 3864 if (success) { 3865 success = inc_max_seq(lruvec, max_seq, can_swap, force_scan); 3866 WARN_ON_ONCE(!success); 3867 } 3868 3869 return success; 3870 } 3871 3872 /****************************************************************************** 3873 * working set protection 3874 ******************************************************************************/ 3875 3876 static bool lruvec_is_sizable(struct lruvec *lruvec, struct scan_control *sc) 3877 { 3878 int gen, type, zone; 3879 unsigned long total = 0; 3880 bool can_swap = get_swappiness(lruvec, sc); 3881 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3882 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 3883 DEFINE_MAX_SEQ(lruvec); 3884 DEFINE_MIN_SEQ(lruvec); 3885 3886 for (type = !can_swap; type < ANON_AND_FILE; type++) { 3887 unsigned long seq; 3888 3889 for (seq = min_seq[type]; seq <= max_seq; seq++) { 3890 gen = lru_gen_from_seq(seq); 3891 3892 for (zone = 0; zone < MAX_NR_ZONES; zone++) 3893 total += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L); 3894 } 3895 } 3896 3897 /* whether the size is big enough to be helpful */ 3898 return mem_cgroup_online(memcg) ? (total >> sc->priority) : total; 3899 } 3900 3901 static bool lruvec_is_reclaimable(struct lruvec *lruvec, struct scan_control *sc, 3902 unsigned long min_ttl) 3903 { 3904 int gen; 3905 unsigned long birth; 3906 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 3907 DEFINE_MIN_SEQ(lruvec); 3908 3909 /* see the comment on lru_gen_folio */ 3910 gen = lru_gen_from_seq(min_seq[LRU_GEN_FILE]); 3911 birth = READ_ONCE(lruvec->lrugen.timestamps[gen]); 3912 3913 if (time_is_after_jiffies(birth + min_ttl)) 3914 return false; 3915 3916 if (!lruvec_is_sizable(lruvec, sc)) 3917 return false; 3918 3919 mem_cgroup_calculate_protection(NULL, memcg); 3920 3921 return !mem_cgroup_below_min(NULL, memcg); 3922 } 3923 3924 /* to protect the working set of the last N jiffies */ 3925 static unsigned long lru_gen_min_ttl __read_mostly; 3926 3927 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc) 3928 { 3929 struct mem_cgroup *memcg; 3930 unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl); 3931 3932 VM_WARN_ON_ONCE(!current_is_kswapd()); 3933 3934 /* check the order to exclude compaction-induced reclaim */ 3935 if (!min_ttl || sc->order || sc->priority == DEF_PRIORITY) 3936 return; 3937 3938 memcg = mem_cgroup_iter(NULL, NULL, NULL); 3939 do { 3940 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 3941 3942 if (lruvec_is_reclaimable(lruvec, sc, min_ttl)) { 3943 mem_cgroup_iter_break(NULL, memcg); 3944 return; 3945 } 3946 3947 cond_resched(); 3948 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL))); 3949 3950 /* 3951 * The main goal is to OOM kill if every generation from all memcgs is 3952 * younger than min_ttl. However, another possibility is all memcgs are 3953 * either too small or below min. 3954 */ 3955 if (mutex_trylock(&oom_lock)) { 3956 struct oom_control oc = { 3957 .gfp_mask = sc->gfp_mask, 3958 }; 3959 3960 out_of_memory(&oc); 3961 3962 mutex_unlock(&oom_lock); 3963 } 3964 } 3965 3966 /****************************************************************************** 3967 * rmap/PT walk feedback 3968 ******************************************************************************/ 3969 3970 /* 3971 * This function exploits spatial locality when shrink_folio_list() walks the 3972 * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If 3973 * the scan was done cacheline efficiently, it adds the PMD entry pointing to 3974 * the PTE table to the Bloom filter. This forms a feedback loop between the 3975 * eviction and the aging. 3976 */ 3977 void lru_gen_look_around(struct page_vma_mapped_walk *pvmw) 3978 { 3979 int i; 3980 unsigned long start; 3981 unsigned long end; 3982 struct lru_gen_mm_walk *walk; 3983 int young = 0; 3984 pte_t *pte = pvmw->pte; 3985 unsigned long addr = pvmw->address; 3986 struct vm_area_struct *vma = pvmw->vma; 3987 struct folio *folio = pfn_folio(pvmw->pfn); 3988 bool can_swap = !folio_is_file_lru(folio); 3989 struct mem_cgroup *memcg = folio_memcg(folio); 3990 struct pglist_data *pgdat = folio_pgdat(folio); 3991 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 3992 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 3993 DEFINE_MAX_SEQ(lruvec); 3994 int old_gen, new_gen = lru_gen_from_seq(max_seq); 3995 3996 lockdep_assert_held(pvmw->ptl); 3997 VM_WARN_ON_ONCE_FOLIO(folio_test_lru(folio), folio); 3998 3999 if (spin_is_contended(pvmw->ptl)) 4000 return; 4001 4002 /* exclude special VMAs containing anon pages from COW */ 4003 if (vma->vm_flags & VM_SPECIAL) 4004 return; 4005 4006 /* avoid taking the LRU lock under the PTL when possible */ 4007 walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL; 4008 4009 start = max(addr & PMD_MASK, vma->vm_start); 4010 end = min(addr | ~PMD_MASK, vma->vm_end - 1) + 1; 4011 4012 if (end - start > MIN_LRU_BATCH * PAGE_SIZE) { 4013 if (addr - start < MIN_LRU_BATCH * PAGE_SIZE / 2) 4014 end = start + MIN_LRU_BATCH * PAGE_SIZE; 4015 else if (end - addr < MIN_LRU_BATCH * PAGE_SIZE / 2) 4016 start = end - MIN_LRU_BATCH * PAGE_SIZE; 4017 else { 4018 start = addr - MIN_LRU_BATCH * PAGE_SIZE / 2; 4019 end = addr + MIN_LRU_BATCH * PAGE_SIZE / 2; 4020 } 4021 } 4022 4023 /* folio_update_gen() requires stable folio_memcg() */ 4024 if (!mem_cgroup_trylock_pages(memcg)) 4025 return; 4026 4027 arch_enter_lazy_mmu_mode(); 4028 4029 pte -= (addr - start) / PAGE_SIZE; 4030 4031 for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) { 4032 unsigned long pfn; 4033 pte_t ptent = ptep_get(pte + i); 4034 4035 pfn = get_pte_pfn(ptent, vma, addr); 4036 if (pfn == -1) 4037 continue; 4038 4039 if (!pte_young(ptent)) 4040 continue; 4041 4042 folio = get_pfn_folio(pfn, memcg, pgdat, can_swap); 4043 if (!folio) 4044 continue; 4045 4046 if (!ptep_test_and_clear_young(vma, addr, pte + i)) 4047 VM_WARN_ON_ONCE(true); 4048 4049 young++; 4050 4051 if (pte_dirty(ptent) && !folio_test_dirty(folio) && 4052 !(folio_test_anon(folio) && folio_test_swapbacked(folio) && 4053 !folio_test_swapcache(folio))) 4054 folio_mark_dirty(folio); 4055 4056 if (walk) { 4057 old_gen = folio_update_gen(folio, new_gen); 4058 if (old_gen >= 0 && old_gen != new_gen) 4059 update_batch_size(walk, folio, old_gen, new_gen); 4060 4061 continue; 4062 } 4063 4064 old_gen = folio_lru_gen(folio); 4065 if (old_gen < 0) 4066 folio_set_referenced(folio); 4067 else if (old_gen != new_gen) 4068 folio_activate(folio); 4069 } 4070 4071 arch_leave_lazy_mmu_mode(); 4072 mem_cgroup_unlock_pages(); 4073 4074 /* feedback from rmap walkers to page table walkers */ 4075 if (mm_state && suitable_to_scan(i, young)) 4076 update_bloom_filter(mm_state, max_seq, pvmw->pmd); 4077 } 4078 4079 /****************************************************************************** 4080 * memcg LRU 4081 ******************************************************************************/ 4082 4083 /* see the comment on MEMCG_NR_GENS */ 4084 enum { 4085 MEMCG_LRU_NOP, 4086 MEMCG_LRU_HEAD, 4087 MEMCG_LRU_TAIL, 4088 MEMCG_LRU_OLD, 4089 MEMCG_LRU_YOUNG, 4090 }; 4091 4092 static void lru_gen_rotate_memcg(struct lruvec *lruvec, int op) 4093 { 4094 int seg; 4095 int old, new; 4096 unsigned long flags; 4097 int bin = get_random_u32_below(MEMCG_NR_BINS); 4098 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 4099 4100 spin_lock_irqsave(&pgdat->memcg_lru.lock, flags); 4101 4102 VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list)); 4103 4104 seg = 0; 4105 new = old = lruvec->lrugen.gen; 4106 4107 /* see the comment on MEMCG_NR_GENS */ 4108 if (op == MEMCG_LRU_HEAD) 4109 seg = MEMCG_LRU_HEAD; 4110 else if (op == MEMCG_LRU_TAIL) 4111 seg = MEMCG_LRU_TAIL; 4112 else if (op == MEMCG_LRU_OLD) 4113 new = get_memcg_gen(pgdat->memcg_lru.seq); 4114 else if (op == MEMCG_LRU_YOUNG) 4115 new = get_memcg_gen(pgdat->memcg_lru.seq + 1); 4116 else 4117 VM_WARN_ON_ONCE(true); 4118 4119 WRITE_ONCE(lruvec->lrugen.seg, seg); 4120 WRITE_ONCE(lruvec->lrugen.gen, new); 4121 4122 hlist_nulls_del_rcu(&lruvec->lrugen.list); 4123 4124 if (op == MEMCG_LRU_HEAD || op == MEMCG_LRU_OLD) 4125 hlist_nulls_add_head_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]); 4126 else 4127 hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]); 4128 4129 pgdat->memcg_lru.nr_memcgs[old]--; 4130 pgdat->memcg_lru.nr_memcgs[new]++; 4131 4132 if (!pgdat->memcg_lru.nr_memcgs[old] && old == get_memcg_gen(pgdat->memcg_lru.seq)) 4133 WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1); 4134 4135 spin_unlock_irqrestore(&pgdat->memcg_lru.lock, flags); 4136 } 4137 4138 #ifdef CONFIG_MEMCG 4139 4140 void lru_gen_online_memcg(struct mem_cgroup *memcg) 4141 { 4142 int gen; 4143 int nid; 4144 int bin = get_random_u32_below(MEMCG_NR_BINS); 4145 4146 for_each_node(nid) { 4147 struct pglist_data *pgdat = NODE_DATA(nid); 4148 struct lruvec *lruvec = get_lruvec(memcg, nid); 4149 4150 spin_lock_irq(&pgdat->memcg_lru.lock); 4151 4152 VM_WARN_ON_ONCE(!hlist_nulls_unhashed(&lruvec->lrugen.list)); 4153 4154 gen = get_memcg_gen(pgdat->memcg_lru.seq); 4155 4156 lruvec->lrugen.gen = gen; 4157 4158 hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[gen][bin]); 4159 pgdat->memcg_lru.nr_memcgs[gen]++; 4160 4161 spin_unlock_irq(&pgdat->memcg_lru.lock); 4162 } 4163 } 4164 4165 void lru_gen_offline_memcg(struct mem_cgroup *memcg) 4166 { 4167 int nid; 4168 4169 for_each_node(nid) { 4170 struct lruvec *lruvec = get_lruvec(memcg, nid); 4171 4172 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_OLD); 4173 } 4174 } 4175 4176 void lru_gen_release_memcg(struct mem_cgroup *memcg) 4177 { 4178 int gen; 4179 int nid; 4180 4181 for_each_node(nid) { 4182 struct pglist_data *pgdat = NODE_DATA(nid); 4183 struct lruvec *lruvec = get_lruvec(memcg, nid); 4184 4185 spin_lock_irq(&pgdat->memcg_lru.lock); 4186 4187 if (hlist_nulls_unhashed(&lruvec->lrugen.list)) 4188 goto unlock; 4189 4190 gen = lruvec->lrugen.gen; 4191 4192 hlist_nulls_del_init_rcu(&lruvec->lrugen.list); 4193 pgdat->memcg_lru.nr_memcgs[gen]--; 4194 4195 if (!pgdat->memcg_lru.nr_memcgs[gen] && gen == get_memcg_gen(pgdat->memcg_lru.seq)) 4196 WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1); 4197 unlock: 4198 spin_unlock_irq(&pgdat->memcg_lru.lock); 4199 } 4200 } 4201 4202 void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid) 4203 { 4204 struct lruvec *lruvec = get_lruvec(memcg, nid); 4205 4206 /* see the comment on MEMCG_NR_GENS */ 4207 if (READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_HEAD) 4208 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_HEAD); 4209 } 4210 4211 #endif /* CONFIG_MEMCG */ 4212 4213 /****************************************************************************** 4214 * the eviction 4215 ******************************************************************************/ 4216 4217 static bool sort_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc, 4218 int tier_idx) 4219 { 4220 bool success; 4221 int gen = folio_lru_gen(folio); 4222 int type = folio_is_file_lru(folio); 4223 int zone = folio_zonenum(folio); 4224 int delta = folio_nr_pages(folio); 4225 int refs = folio_lru_refs(folio); 4226 int tier = lru_tier_from_refs(refs); 4227 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4228 4229 VM_WARN_ON_ONCE_FOLIO(gen >= MAX_NR_GENS, folio); 4230 4231 /* unevictable */ 4232 if (!folio_evictable(folio)) { 4233 success = lru_gen_del_folio(lruvec, folio, true); 4234 VM_WARN_ON_ONCE_FOLIO(!success, folio); 4235 folio_set_unevictable(folio); 4236 lruvec_add_folio(lruvec, folio); 4237 __count_vm_events(UNEVICTABLE_PGCULLED, delta); 4238 return true; 4239 } 4240 4241 /* dirty lazyfree */ 4242 if (type == LRU_GEN_FILE && folio_test_anon(folio) && folio_test_dirty(folio)) { 4243 success = lru_gen_del_folio(lruvec, folio, true); 4244 VM_WARN_ON_ONCE_FOLIO(!success, folio); 4245 folio_set_swapbacked(folio); 4246 lruvec_add_folio_tail(lruvec, folio); 4247 return true; 4248 } 4249 4250 /* promoted */ 4251 if (gen != lru_gen_from_seq(lrugen->min_seq[type])) { 4252 list_move(&folio->lru, &lrugen->folios[gen][type][zone]); 4253 return true; 4254 } 4255 4256 /* protected */ 4257 if (tier > tier_idx || refs == BIT(LRU_REFS_WIDTH)) { 4258 int hist = lru_hist_from_seq(lrugen->min_seq[type]); 4259 4260 gen = folio_inc_gen(lruvec, folio, false); 4261 list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]); 4262 4263 WRITE_ONCE(lrugen->protected[hist][type][tier - 1], 4264 lrugen->protected[hist][type][tier - 1] + delta); 4265 return true; 4266 } 4267 4268 /* ineligible */ 4269 if (zone > sc->reclaim_idx || skip_cma(folio, sc)) { 4270 gen = folio_inc_gen(lruvec, folio, false); 4271 list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]); 4272 return true; 4273 } 4274 4275 /* waiting for writeback */ 4276 if (folio_test_locked(folio) || folio_test_writeback(folio) || 4277 (type == LRU_GEN_FILE && folio_test_dirty(folio))) { 4278 gen = folio_inc_gen(lruvec, folio, true); 4279 list_move(&folio->lru, &lrugen->folios[gen][type][zone]); 4280 return true; 4281 } 4282 4283 return false; 4284 } 4285 4286 static bool isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc) 4287 { 4288 bool success; 4289 4290 /* swapping inhibited */ 4291 if (!(sc->gfp_mask & __GFP_IO) && 4292 (folio_test_dirty(folio) || 4293 (folio_test_anon(folio) && !folio_test_swapcache(folio)))) 4294 return false; 4295 4296 /* raced with release_pages() */ 4297 if (!folio_try_get(folio)) 4298 return false; 4299 4300 /* raced with another isolation */ 4301 if (!folio_test_clear_lru(folio)) { 4302 folio_put(folio); 4303 return false; 4304 } 4305 4306 /* see the comment on MAX_NR_TIERS */ 4307 if (!folio_test_referenced(folio)) 4308 set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS, 0); 4309 4310 /* for shrink_folio_list() */ 4311 folio_clear_reclaim(folio); 4312 folio_clear_referenced(folio); 4313 4314 success = lru_gen_del_folio(lruvec, folio, true); 4315 VM_WARN_ON_ONCE_FOLIO(!success, folio); 4316 4317 return true; 4318 } 4319 4320 static int scan_folios(struct lruvec *lruvec, struct scan_control *sc, 4321 int type, int tier, struct list_head *list) 4322 { 4323 int i; 4324 int gen; 4325 enum vm_event_item item; 4326 int sorted = 0; 4327 int scanned = 0; 4328 int isolated = 0; 4329 int skipped = 0; 4330 int remaining = MAX_LRU_BATCH; 4331 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4332 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4333 4334 VM_WARN_ON_ONCE(!list_empty(list)); 4335 4336 if (get_nr_gens(lruvec, type) == MIN_NR_GENS) 4337 return 0; 4338 4339 gen = lru_gen_from_seq(lrugen->min_seq[type]); 4340 4341 for (i = MAX_NR_ZONES; i > 0; i--) { 4342 LIST_HEAD(moved); 4343 int skipped_zone = 0; 4344 int zone = (sc->reclaim_idx + i) % MAX_NR_ZONES; 4345 struct list_head *head = &lrugen->folios[gen][type][zone]; 4346 4347 while (!list_empty(head)) { 4348 struct folio *folio = lru_to_folio(head); 4349 int delta = folio_nr_pages(folio); 4350 4351 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 4352 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio); 4353 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 4354 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio); 4355 4356 scanned += delta; 4357 4358 if (sort_folio(lruvec, folio, sc, tier)) 4359 sorted += delta; 4360 else if (isolate_folio(lruvec, folio, sc)) { 4361 list_add(&folio->lru, list); 4362 isolated += delta; 4363 } else { 4364 list_move(&folio->lru, &moved); 4365 skipped_zone += delta; 4366 } 4367 4368 if (!--remaining || max(isolated, skipped_zone) >= MIN_LRU_BATCH) 4369 break; 4370 } 4371 4372 if (skipped_zone) { 4373 list_splice(&moved, head); 4374 __count_zid_vm_events(PGSCAN_SKIP, zone, skipped_zone); 4375 skipped += skipped_zone; 4376 } 4377 4378 if (!remaining || isolated >= MIN_LRU_BATCH) 4379 break; 4380 } 4381 4382 item = PGSCAN_KSWAPD + reclaimer_offset(); 4383 if (!cgroup_reclaim(sc)) { 4384 __count_vm_events(item, isolated); 4385 __count_vm_events(PGREFILL, sorted); 4386 } 4387 __count_memcg_events(memcg, item, isolated); 4388 __count_memcg_events(memcg, PGREFILL, sorted); 4389 __count_vm_events(PGSCAN_ANON + type, isolated); 4390 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, MAX_LRU_BATCH, 4391 scanned, skipped, isolated, 4392 type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON); 4393 4394 /* 4395 * There might not be eligible folios due to reclaim_idx. Check the 4396 * remaining to prevent livelock if it's not making progress. 4397 */ 4398 return isolated || !remaining ? scanned : 0; 4399 } 4400 4401 static int get_tier_idx(struct lruvec *lruvec, int type) 4402 { 4403 int tier; 4404 struct ctrl_pos sp, pv; 4405 4406 /* 4407 * To leave a margin for fluctuations, use a larger gain factor (1:2). 4408 * This value is chosen because any other tier would have at least twice 4409 * as many refaults as the first tier. 4410 */ 4411 read_ctrl_pos(lruvec, type, 0, 1, &sp); 4412 for (tier = 1; tier < MAX_NR_TIERS; tier++) { 4413 read_ctrl_pos(lruvec, type, tier, 2, &pv); 4414 if (!positive_ctrl_err(&sp, &pv)) 4415 break; 4416 } 4417 4418 return tier - 1; 4419 } 4420 4421 static int get_type_to_scan(struct lruvec *lruvec, int swappiness, int *tier_idx) 4422 { 4423 int type, tier; 4424 struct ctrl_pos sp, pv; 4425 int gain[ANON_AND_FILE] = { swappiness, 200 - swappiness }; 4426 4427 /* 4428 * Compare the first tier of anon with that of file to determine which 4429 * type to scan. Also need to compare other tiers of the selected type 4430 * with the first tier of the other type to determine the last tier (of 4431 * the selected type) to evict. 4432 */ 4433 read_ctrl_pos(lruvec, LRU_GEN_ANON, 0, gain[LRU_GEN_ANON], &sp); 4434 read_ctrl_pos(lruvec, LRU_GEN_FILE, 0, gain[LRU_GEN_FILE], &pv); 4435 type = positive_ctrl_err(&sp, &pv); 4436 4437 read_ctrl_pos(lruvec, !type, 0, gain[!type], &sp); 4438 for (tier = 1; tier < MAX_NR_TIERS; tier++) { 4439 read_ctrl_pos(lruvec, type, tier, gain[type], &pv); 4440 if (!positive_ctrl_err(&sp, &pv)) 4441 break; 4442 } 4443 4444 *tier_idx = tier - 1; 4445 4446 return type; 4447 } 4448 4449 static int isolate_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness, 4450 int *type_scanned, struct list_head *list) 4451 { 4452 int i; 4453 int type; 4454 int scanned; 4455 int tier = -1; 4456 DEFINE_MIN_SEQ(lruvec); 4457 4458 /* 4459 * Try to make the obvious choice first. When anon and file are both 4460 * available from the same generation, interpret swappiness 1 as file 4461 * first and 200 as anon first. 4462 */ 4463 if (!swappiness) 4464 type = LRU_GEN_FILE; 4465 else if (min_seq[LRU_GEN_ANON] < min_seq[LRU_GEN_FILE]) 4466 type = LRU_GEN_ANON; 4467 else if (swappiness == 1) 4468 type = LRU_GEN_FILE; 4469 else if (swappiness == 200) 4470 type = LRU_GEN_ANON; 4471 else 4472 type = get_type_to_scan(lruvec, swappiness, &tier); 4473 4474 for (i = !swappiness; i < ANON_AND_FILE; i++) { 4475 if (tier < 0) 4476 tier = get_tier_idx(lruvec, type); 4477 4478 scanned = scan_folios(lruvec, sc, type, tier, list); 4479 if (scanned) 4480 break; 4481 4482 type = !type; 4483 tier = -1; 4484 } 4485 4486 *type_scanned = type; 4487 4488 return scanned; 4489 } 4490 4491 static int evict_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness) 4492 { 4493 int type; 4494 int scanned; 4495 int reclaimed; 4496 LIST_HEAD(list); 4497 LIST_HEAD(clean); 4498 struct folio *folio; 4499 struct folio *next; 4500 enum vm_event_item item; 4501 struct reclaim_stat stat; 4502 struct lru_gen_mm_walk *walk; 4503 bool skip_retry = false; 4504 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4505 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 4506 4507 spin_lock_irq(&lruvec->lru_lock); 4508 4509 scanned = isolate_folios(lruvec, sc, swappiness, &type, &list); 4510 4511 scanned += try_to_inc_min_seq(lruvec, swappiness); 4512 4513 if (get_nr_gens(lruvec, !swappiness) == MIN_NR_GENS) 4514 scanned = 0; 4515 4516 spin_unlock_irq(&lruvec->lru_lock); 4517 4518 if (list_empty(&list)) 4519 return scanned; 4520 retry: 4521 reclaimed = shrink_folio_list(&list, pgdat, sc, &stat, false); 4522 sc->nr_reclaimed += reclaimed; 4523 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 4524 scanned, reclaimed, &stat, sc->priority, 4525 type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON); 4526 4527 list_for_each_entry_safe_reverse(folio, next, &list, lru) { 4528 if (!folio_evictable(folio)) { 4529 list_del(&folio->lru); 4530 folio_putback_lru(folio); 4531 continue; 4532 } 4533 4534 if (folio_test_reclaim(folio) && 4535 (folio_test_dirty(folio) || folio_test_writeback(folio))) { 4536 /* restore LRU_REFS_FLAGS cleared by isolate_folio() */ 4537 if (folio_test_workingset(folio)) 4538 folio_set_referenced(folio); 4539 continue; 4540 } 4541 4542 if (skip_retry || folio_test_active(folio) || folio_test_referenced(folio) || 4543 folio_mapped(folio) || folio_test_locked(folio) || 4544 folio_test_dirty(folio) || folio_test_writeback(folio)) { 4545 /* don't add rejected folios to the oldest generation */ 4546 set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS, 4547 BIT(PG_active)); 4548 continue; 4549 } 4550 4551 /* retry folios that may have missed folio_rotate_reclaimable() */ 4552 list_move(&folio->lru, &clean); 4553 sc->nr_scanned -= folio_nr_pages(folio); 4554 } 4555 4556 spin_lock_irq(&lruvec->lru_lock); 4557 4558 move_folios_to_lru(lruvec, &list); 4559 4560 walk = current->reclaim_state->mm_walk; 4561 if (walk && walk->batched) 4562 reset_batch_size(lruvec, walk); 4563 4564 item = PGSTEAL_KSWAPD + reclaimer_offset(); 4565 if (!cgroup_reclaim(sc)) 4566 __count_vm_events(item, reclaimed); 4567 __count_memcg_events(memcg, item, reclaimed); 4568 __count_vm_events(PGSTEAL_ANON + type, reclaimed); 4569 4570 spin_unlock_irq(&lruvec->lru_lock); 4571 4572 mem_cgroup_uncharge_list(&list); 4573 free_unref_page_list(&list); 4574 4575 INIT_LIST_HEAD(&list); 4576 list_splice_init(&clean, &list); 4577 4578 if (!list_empty(&list)) { 4579 skip_retry = true; 4580 goto retry; 4581 } 4582 4583 return scanned; 4584 } 4585 4586 static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq, 4587 struct scan_control *sc, bool can_swap, unsigned long *nr_to_scan) 4588 { 4589 int gen, type, zone; 4590 unsigned long old = 0; 4591 unsigned long young = 0; 4592 unsigned long total = 0; 4593 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4594 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4595 DEFINE_MIN_SEQ(lruvec); 4596 4597 /* whether this lruvec is completely out of cold folios */ 4598 if (min_seq[!can_swap] + MIN_NR_GENS > max_seq) { 4599 *nr_to_scan = 0; 4600 return true; 4601 } 4602 4603 for (type = !can_swap; type < ANON_AND_FILE; type++) { 4604 unsigned long seq; 4605 4606 for (seq = min_seq[type]; seq <= max_seq; seq++) { 4607 unsigned long size = 0; 4608 4609 gen = lru_gen_from_seq(seq); 4610 4611 for (zone = 0; zone < MAX_NR_ZONES; zone++) 4612 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L); 4613 4614 total += size; 4615 if (seq == max_seq) 4616 young += size; 4617 else if (seq + MIN_NR_GENS == max_seq) 4618 old += size; 4619 } 4620 } 4621 4622 /* try to scrape all its memory if this memcg was deleted */ 4623 if (!mem_cgroup_online(memcg)) { 4624 *nr_to_scan = total; 4625 return false; 4626 } 4627 4628 *nr_to_scan = total >> sc->priority; 4629 4630 /* 4631 * The aging tries to be lazy to reduce the overhead, while the eviction 4632 * stalls when the number of generations reaches MIN_NR_GENS. Hence, the 4633 * ideal number of generations is MIN_NR_GENS+1. 4634 */ 4635 if (min_seq[!can_swap] + MIN_NR_GENS < max_seq) 4636 return false; 4637 4638 /* 4639 * It's also ideal to spread pages out evenly, i.e., 1/(MIN_NR_GENS+1) 4640 * of the total number of pages for each generation. A reasonable range 4641 * for this average portion is [1/MIN_NR_GENS, 1/(MIN_NR_GENS+2)]. The 4642 * aging cares about the upper bound of hot pages, while the eviction 4643 * cares about the lower bound of cold pages. 4644 */ 4645 if (young * MIN_NR_GENS > total) 4646 return true; 4647 if (old * (MIN_NR_GENS + 2) < total) 4648 return true; 4649 4650 return false; 4651 } 4652 4653 /* 4654 * For future optimizations: 4655 * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg 4656 * reclaim. 4657 */ 4658 static long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc, bool can_swap) 4659 { 4660 unsigned long nr_to_scan; 4661 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4662 DEFINE_MAX_SEQ(lruvec); 4663 4664 if (mem_cgroup_below_min(sc->target_mem_cgroup, memcg)) 4665 return -1; 4666 4667 if (!should_run_aging(lruvec, max_seq, sc, can_swap, &nr_to_scan)) 4668 return nr_to_scan; 4669 4670 /* skip the aging path at the default priority */ 4671 if (sc->priority == DEF_PRIORITY) 4672 return nr_to_scan; 4673 4674 /* skip this lruvec as it's low on cold folios */ 4675 return try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, false) ? -1 : 0; 4676 } 4677 4678 static bool should_abort_scan(struct lruvec *lruvec, struct scan_control *sc) 4679 { 4680 int i; 4681 enum zone_watermarks mark; 4682 4683 /* don't abort memcg reclaim to ensure fairness */ 4684 if (!root_reclaim(sc)) 4685 return false; 4686 4687 if (sc->nr_reclaimed >= max(sc->nr_to_reclaim, compact_gap(sc->order))) 4688 return true; 4689 4690 /* check the order to exclude compaction-induced reclaim */ 4691 if (!current_is_kswapd() || sc->order) 4692 return false; 4693 4694 mark = sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ? 4695 WMARK_PROMO : WMARK_HIGH; 4696 4697 for (i = 0; i <= sc->reclaim_idx; i++) { 4698 struct zone *zone = lruvec_pgdat(lruvec)->node_zones + i; 4699 unsigned long size = wmark_pages(zone, mark) + MIN_LRU_BATCH; 4700 4701 if (managed_zone(zone) && !zone_watermark_ok(zone, 0, size, sc->reclaim_idx, 0)) 4702 return false; 4703 } 4704 4705 /* kswapd should abort if all eligible zones are safe */ 4706 return true; 4707 } 4708 4709 static bool try_to_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 4710 { 4711 long nr_to_scan; 4712 unsigned long scanned = 0; 4713 int swappiness = get_swappiness(lruvec, sc); 4714 4715 /* clean file folios are more likely to exist */ 4716 if (swappiness && !(sc->gfp_mask & __GFP_IO)) 4717 swappiness = 1; 4718 4719 while (true) { 4720 int delta; 4721 4722 nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness); 4723 if (nr_to_scan <= 0) 4724 break; 4725 4726 delta = evict_folios(lruvec, sc, swappiness); 4727 if (!delta) 4728 break; 4729 4730 scanned += delta; 4731 if (scanned >= nr_to_scan) 4732 break; 4733 4734 if (should_abort_scan(lruvec, sc)) 4735 break; 4736 4737 cond_resched(); 4738 } 4739 4740 /* whether this lruvec should be rotated */ 4741 return nr_to_scan < 0; 4742 } 4743 4744 static int shrink_one(struct lruvec *lruvec, struct scan_control *sc) 4745 { 4746 bool success; 4747 unsigned long scanned = sc->nr_scanned; 4748 unsigned long reclaimed = sc->nr_reclaimed; 4749 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4750 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 4751 4752 mem_cgroup_calculate_protection(NULL, memcg); 4753 4754 if (mem_cgroup_below_min(NULL, memcg)) 4755 return MEMCG_LRU_YOUNG; 4756 4757 if (mem_cgroup_below_low(NULL, memcg)) { 4758 /* see the comment on MEMCG_NR_GENS */ 4759 if (READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_TAIL) 4760 return MEMCG_LRU_TAIL; 4761 4762 memcg_memory_event(memcg, MEMCG_LOW); 4763 } 4764 4765 success = try_to_shrink_lruvec(lruvec, sc); 4766 4767 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, sc->priority); 4768 4769 if (!sc->proactive) 4770 vmpressure(sc->gfp_mask, memcg, false, sc->nr_scanned - scanned, 4771 sc->nr_reclaimed - reclaimed); 4772 4773 flush_reclaim_state(sc); 4774 4775 if (success && mem_cgroup_online(memcg)) 4776 return MEMCG_LRU_YOUNG; 4777 4778 if (!success && lruvec_is_sizable(lruvec, sc)) 4779 return 0; 4780 4781 /* one retry if offlined or too small */ 4782 return READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_TAIL ? 4783 MEMCG_LRU_TAIL : MEMCG_LRU_YOUNG; 4784 } 4785 4786 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc) 4787 { 4788 int op; 4789 int gen; 4790 int bin; 4791 int first_bin; 4792 struct lruvec *lruvec; 4793 struct lru_gen_folio *lrugen; 4794 struct mem_cgroup *memcg; 4795 struct hlist_nulls_node *pos; 4796 4797 gen = get_memcg_gen(READ_ONCE(pgdat->memcg_lru.seq)); 4798 bin = first_bin = get_random_u32_below(MEMCG_NR_BINS); 4799 restart: 4800 op = 0; 4801 memcg = NULL; 4802 4803 rcu_read_lock(); 4804 4805 hlist_nulls_for_each_entry_rcu(lrugen, pos, &pgdat->memcg_lru.fifo[gen][bin], list) { 4806 if (op) { 4807 lru_gen_rotate_memcg(lruvec, op); 4808 op = 0; 4809 } 4810 4811 mem_cgroup_put(memcg); 4812 memcg = NULL; 4813 4814 if (gen != READ_ONCE(lrugen->gen)) 4815 continue; 4816 4817 lruvec = container_of(lrugen, struct lruvec, lrugen); 4818 memcg = lruvec_memcg(lruvec); 4819 4820 if (!mem_cgroup_tryget(memcg)) { 4821 lru_gen_release_memcg(memcg); 4822 memcg = NULL; 4823 continue; 4824 } 4825 4826 rcu_read_unlock(); 4827 4828 op = shrink_one(lruvec, sc); 4829 4830 rcu_read_lock(); 4831 4832 if (should_abort_scan(lruvec, sc)) 4833 break; 4834 } 4835 4836 rcu_read_unlock(); 4837 4838 if (op) 4839 lru_gen_rotate_memcg(lruvec, op); 4840 4841 mem_cgroup_put(memcg); 4842 4843 if (!is_a_nulls(pos)) 4844 return; 4845 4846 /* restart if raced with lru_gen_rotate_memcg() */ 4847 if (gen != get_nulls_value(pos)) 4848 goto restart; 4849 4850 /* try the rest of the bins of the current generation */ 4851 bin = get_memcg_bin(bin + 1); 4852 if (bin != first_bin) 4853 goto restart; 4854 } 4855 4856 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 4857 { 4858 struct blk_plug plug; 4859 4860 VM_WARN_ON_ONCE(root_reclaim(sc)); 4861 VM_WARN_ON_ONCE(!sc->may_writepage || !sc->may_unmap); 4862 4863 lru_add_drain(); 4864 4865 blk_start_plug(&plug); 4866 4867 set_mm_walk(NULL, sc->proactive); 4868 4869 if (try_to_shrink_lruvec(lruvec, sc)) 4870 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_YOUNG); 4871 4872 clear_mm_walk(); 4873 4874 blk_finish_plug(&plug); 4875 } 4876 4877 static void set_initial_priority(struct pglist_data *pgdat, struct scan_control *sc) 4878 { 4879 int priority; 4880 unsigned long reclaimable; 4881 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat); 4882 4883 if (sc->priority != DEF_PRIORITY || sc->nr_to_reclaim < MIN_LRU_BATCH) 4884 return; 4885 /* 4886 * Determine the initial priority based on 4887 * (total >> priority) * reclaimed_to_scanned_ratio = nr_to_reclaim, 4888 * where reclaimed_to_scanned_ratio = inactive / total. 4889 */ 4890 reclaimable = node_page_state(pgdat, NR_INACTIVE_FILE); 4891 if (get_swappiness(lruvec, sc)) 4892 reclaimable += node_page_state(pgdat, NR_INACTIVE_ANON); 4893 4894 /* round down reclaimable and round up sc->nr_to_reclaim */ 4895 priority = fls_long(reclaimable) - 1 - fls_long(sc->nr_to_reclaim - 1); 4896 4897 sc->priority = clamp(priority, 0, DEF_PRIORITY); 4898 } 4899 4900 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc) 4901 { 4902 struct blk_plug plug; 4903 unsigned long reclaimed = sc->nr_reclaimed; 4904 4905 VM_WARN_ON_ONCE(!root_reclaim(sc)); 4906 4907 /* 4908 * Unmapped clean folios are already prioritized. Scanning for more of 4909 * them is likely futile and can cause high reclaim latency when there 4910 * is a large number of memcgs. 4911 */ 4912 if (!sc->may_writepage || !sc->may_unmap) 4913 goto done; 4914 4915 lru_add_drain(); 4916 4917 blk_start_plug(&plug); 4918 4919 set_mm_walk(pgdat, sc->proactive); 4920 4921 set_initial_priority(pgdat, sc); 4922 4923 if (current_is_kswapd()) 4924 sc->nr_reclaimed = 0; 4925 4926 if (mem_cgroup_disabled()) 4927 shrink_one(&pgdat->__lruvec, sc); 4928 else 4929 shrink_many(pgdat, sc); 4930 4931 if (current_is_kswapd()) 4932 sc->nr_reclaimed += reclaimed; 4933 4934 clear_mm_walk(); 4935 4936 blk_finish_plug(&plug); 4937 done: 4938 /* kswapd should never fail */ 4939 pgdat->kswapd_failures = 0; 4940 } 4941 4942 /****************************************************************************** 4943 * state change 4944 ******************************************************************************/ 4945 4946 static bool __maybe_unused state_is_valid(struct lruvec *lruvec) 4947 { 4948 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4949 4950 if (lrugen->enabled) { 4951 enum lru_list lru; 4952 4953 for_each_evictable_lru(lru) { 4954 if (!list_empty(&lruvec->lists[lru])) 4955 return false; 4956 } 4957 } else { 4958 int gen, type, zone; 4959 4960 for_each_gen_type_zone(gen, type, zone) { 4961 if (!list_empty(&lrugen->folios[gen][type][zone])) 4962 return false; 4963 } 4964 } 4965 4966 return true; 4967 } 4968 4969 static bool fill_evictable(struct lruvec *lruvec) 4970 { 4971 enum lru_list lru; 4972 int remaining = MAX_LRU_BATCH; 4973 4974 for_each_evictable_lru(lru) { 4975 int type = is_file_lru(lru); 4976 bool active = is_active_lru(lru); 4977 struct list_head *head = &lruvec->lists[lru]; 4978 4979 while (!list_empty(head)) { 4980 bool success; 4981 struct folio *folio = lru_to_folio(head); 4982 4983 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 4984 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio) != active, folio); 4985 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 4986 VM_WARN_ON_ONCE_FOLIO(folio_lru_gen(folio) != -1, folio); 4987 4988 lruvec_del_folio(lruvec, folio); 4989 success = lru_gen_add_folio(lruvec, folio, false); 4990 VM_WARN_ON_ONCE(!success); 4991 4992 if (!--remaining) 4993 return false; 4994 } 4995 } 4996 4997 return true; 4998 } 4999 5000 static bool drain_evictable(struct lruvec *lruvec) 5001 { 5002 int gen, type, zone; 5003 int remaining = MAX_LRU_BATCH; 5004 5005 for_each_gen_type_zone(gen, type, zone) { 5006 struct list_head *head = &lruvec->lrugen.folios[gen][type][zone]; 5007 5008 while (!list_empty(head)) { 5009 bool success; 5010 struct folio *folio = lru_to_folio(head); 5011 5012 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 5013 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio); 5014 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 5015 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio); 5016 5017 success = lru_gen_del_folio(lruvec, folio, false); 5018 VM_WARN_ON_ONCE(!success); 5019 lruvec_add_folio(lruvec, folio); 5020 5021 if (!--remaining) 5022 return false; 5023 } 5024 } 5025 5026 return true; 5027 } 5028 5029 static void lru_gen_change_state(bool enabled) 5030 { 5031 static DEFINE_MUTEX(state_mutex); 5032 5033 struct mem_cgroup *memcg; 5034 5035 cgroup_lock(); 5036 cpus_read_lock(); 5037 get_online_mems(); 5038 mutex_lock(&state_mutex); 5039 5040 if (enabled == lru_gen_enabled()) 5041 goto unlock; 5042 5043 if (enabled) 5044 static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]); 5045 else 5046 static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]); 5047 5048 memcg = mem_cgroup_iter(NULL, NULL, NULL); 5049 do { 5050 int nid; 5051 5052 for_each_node(nid) { 5053 struct lruvec *lruvec = get_lruvec(memcg, nid); 5054 5055 spin_lock_irq(&lruvec->lru_lock); 5056 5057 VM_WARN_ON_ONCE(!seq_is_valid(lruvec)); 5058 VM_WARN_ON_ONCE(!state_is_valid(lruvec)); 5059 5060 lruvec->lrugen.enabled = enabled; 5061 5062 while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) { 5063 spin_unlock_irq(&lruvec->lru_lock); 5064 cond_resched(); 5065 spin_lock_irq(&lruvec->lru_lock); 5066 } 5067 5068 spin_unlock_irq(&lruvec->lru_lock); 5069 } 5070 5071 cond_resched(); 5072 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL))); 5073 unlock: 5074 mutex_unlock(&state_mutex); 5075 put_online_mems(); 5076 cpus_read_unlock(); 5077 cgroup_unlock(); 5078 } 5079 5080 /****************************************************************************** 5081 * sysfs interface 5082 ******************************************************************************/ 5083 5084 static ssize_t min_ttl_ms_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) 5085 { 5086 return sysfs_emit(buf, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl))); 5087 } 5088 5089 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5090 static ssize_t min_ttl_ms_store(struct kobject *kobj, struct kobj_attribute *attr, 5091 const char *buf, size_t len) 5092 { 5093 unsigned int msecs; 5094 5095 if (kstrtouint(buf, 0, &msecs)) 5096 return -EINVAL; 5097 5098 WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs)); 5099 5100 return len; 5101 } 5102 5103 static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR_RW(min_ttl_ms); 5104 5105 static ssize_t enabled_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) 5106 { 5107 unsigned int caps = 0; 5108 5109 if (get_cap(LRU_GEN_CORE)) 5110 caps |= BIT(LRU_GEN_CORE); 5111 5112 if (should_walk_mmu()) 5113 caps |= BIT(LRU_GEN_MM_WALK); 5114 5115 if (should_clear_pmd_young()) 5116 caps |= BIT(LRU_GEN_NONLEAF_YOUNG); 5117 5118 return sysfs_emit(buf, "0x%04x\n", caps); 5119 } 5120 5121 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5122 static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr, 5123 const char *buf, size_t len) 5124 { 5125 int i; 5126 unsigned int caps; 5127 5128 if (tolower(*buf) == 'n') 5129 caps = 0; 5130 else if (tolower(*buf) == 'y') 5131 caps = -1; 5132 else if (kstrtouint(buf, 0, &caps)) 5133 return -EINVAL; 5134 5135 for (i = 0; i < NR_LRU_GEN_CAPS; i++) { 5136 bool enabled = caps & BIT(i); 5137 5138 if (i == LRU_GEN_CORE) 5139 lru_gen_change_state(enabled); 5140 else if (enabled) 5141 static_branch_enable(&lru_gen_caps[i]); 5142 else 5143 static_branch_disable(&lru_gen_caps[i]); 5144 } 5145 5146 return len; 5147 } 5148 5149 static struct kobj_attribute lru_gen_enabled_attr = __ATTR_RW(enabled); 5150 5151 static struct attribute *lru_gen_attrs[] = { 5152 &lru_gen_min_ttl_attr.attr, 5153 &lru_gen_enabled_attr.attr, 5154 NULL 5155 }; 5156 5157 static const struct attribute_group lru_gen_attr_group = { 5158 .name = "lru_gen", 5159 .attrs = lru_gen_attrs, 5160 }; 5161 5162 /****************************************************************************** 5163 * debugfs interface 5164 ******************************************************************************/ 5165 5166 static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos) 5167 { 5168 struct mem_cgroup *memcg; 5169 loff_t nr_to_skip = *pos; 5170 5171 m->private = kvmalloc(PATH_MAX, GFP_KERNEL); 5172 if (!m->private) 5173 return ERR_PTR(-ENOMEM); 5174 5175 memcg = mem_cgroup_iter(NULL, NULL, NULL); 5176 do { 5177 int nid; 5178 5179 for_each_node_state(nid, N_MEMORY) { 5180 if (!nr_to_skip--) 5181 return get_lruvec(memcg, nid); 5182 } 5183 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL))); 5184 5185 return NULL; 5186 } 5187 5188 static void lru_gen_seq_stop(struct seq_file *m, void *v) 5189 { 5190 if (!IS_ERR_OR_NULL(v)) 5191 mem_cgroup_iter_break(NULL, lruvec_memcg(v)); 5192 5193 kvfree(m->private); 5194 m->private = NULL; 5195 } 5196 5197 static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos) 5198 { 5199 int nid = lruvec_pgdat(v)->node_id; 5200 struct mem_cgroup *memcg = lruvec_memcg(v); 5201 5202 ++*pos; 5203 5204 nid = next_memory_node(nid); 5205 if (nid == MAX_NUMNODES) { 5206 memcg = mem_cgroup_iter(NULL, memcg, NULL); 5207 if (!memcg) 5208 return NULL; 5209 5210 nid = first_memory_node; 5211 } 5212 5213 return get_lruvec(memcg, nid); 5214 } 5215 5216 static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec, 5217 unsigned long max_seq, unsigned long *min_seq, 5218 unsigned long seq) 5219 { 5220 int i; 5221 int type, tier; 5222 int hist = lru_hist_from_seq(seq); 5223 struct lru_gen_folio *lrugen = &lruvec->lrugen; 5224 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 5225 5226 for (tier = 0; tier < MAX_NR_TIERS; tier++) { 5227 seq_printf(m, " %10d", tier); 5228 for (type = 0; type < ANON_AND_FILE; type++) { 5229 const char *s = " "; 5230 unsigned long n[3] = {}; 5231 5232 if (seq == max_seq) { 5233 s = "RT "; 5234 n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]); 5235 n[1] = READ_ONCE(lrugen->avg_total[type][tier]); 5236 } else if (seq == min_seq[type] || NR_HIST_GENS > 1) { 5237 s = "rep"; 5238 n[0] = atomic_long_read(&lrugen->refaulted[hist][type][tier]); 5239 n[1] = atomic_long_read(&lrugen->evicted[hist][type][tier]); 5240 if (tier) 5241 n[2] = READ_ONCE(lrugen->protected[hist][type][tier - 1]); 5242 } 5243 5244 for (i = 0; i < 3; i++) 5245 seq_printf(m, " %10lu%c", n[i], s[i]); 5246 } 5247 seq_putc(m, '\n'); 5248 } 5249 5250 if (!mm_state) 5251 return; 5252 5253 seq_puts(m, " "); 5254 for (i = 0; i < NR_MM_STATS; i++) { 5255 const char *s = " "; 5256 unsigned long n = 0; 5257 5258 if (seq == max_seq && NR_HIST_GENS == 1) { 5259 s = "LOYNFA"; 5260 n = READ_ONCE(mm_state->stats[hist][i]); 5261 } else if (seq != max_seq && NR_HIST_GENS > 1) { 5262 s = "loynfa"; 5263 n = READ_ONCE(mm_state->stats[hist][i]); 5264 } 5265 5266 seq_printf(m, " %10lu%c", n, s[i]); 5267 } 5268 seq_putc(m, '\n'); 5269 } 5270 5271 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5272 static int lru_gen_seq_show(struct seq_file *m, void *v) 5273 { 5274 unsigned long seq; 5275 bool full = !debugfs_real_fops(m->file)->write; 5276 struct lruvec *lruvec = v; 5277 struct lru_gen_folio *lrugen = &lruvec->lrugen; 5278 int nid = lruvec_pgdat(lruvec)->node_id; 5279 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 5280 DEFINE_MAX_SEQ(lruvec); 5281 DEFINE_MIN_SEQ(lruvec); 5282 5283 if (nid == first_memory_node) { 5284 const char *path = memcg ? m->private : ""; 5285 5286 #ifdef CONFIG_MEMCG 5287 if (memcg) 5288 cgroup_path(memcg->css.cgroup, m->private, PATH_MAX); 5289 #endif 5290 seq_printf(m, "memcg %5hu %s\n", mem_cgroup_id(memcg), path); 5291 } 5292 5293 seq_printf(m, " node %5d\n", nid); 5294 5295 if (!full) 5296 seq = min_seq[LRU_GEN_ANON]; 5297 else if (max_seq >= MAX_NR_GENS) 5298 seq = max_seq - MAX_NR_GENS + 1; 5299 else 5300 seq = 0; 5301 5302 for (; seq <= max_seq; seq++) { 5303 int type, zone; 5304 int gen = lru_gen_from_seq(seq); 5305 unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]); 5306 5307 seq_printf(m, " %10lu %10u", seq, jiffies_to_msecs(jiffies - birth)); 5308 5309 for (type = 0; type < ANON_AND_FILE; type++) { 5310 unsigned long size = 0; 5311 char mark = full && seq < min_seq[type] ? 'x' : ' '; 5312 5313 for (zone = 0; zone < MAX_NR_ZONES; zone++) 5314 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L); 5315 5316 seq_printf(m, " %10lu%c", size, mark); 5317 } 5318 5319 seq_putc(m, '\n'); 5320 5321 if (full) 5322 lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq); 5323 } 5324 5325 return 0; 5326 } 5327 5328 static const struct seq_operations lru_gen_seq_ops = { 5329 .start = lru_gen_seq_start, 5330 .stop = lru_gen_seq_stop, 5331 .next = lru_gen_seq_next, 5332 .show = lru_gen_seq_show, 5333 }; 5334 5335 static int run_aging(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc, 5336 bool can_swap, bool force_scan) 5337 { 5338 DEFINE_MAX_SEQ(lruvec); 5339 DEFINE_MIN_SEQ(lruvec); 5340 5341 if (seq < max_seq) 5342 return 0; 5343 5344 if (seq > max_seq) 5345 return -EINVAL; 5346 5347 if (!force_scan && min_seq[!can_swap] + MAX_NR_GENS - 1 <= max_seq) 5348 return -ERANGE; 5349 5350 try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, force_scan); 5351 5352 return 0; 5353 } 5354 5355 static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc, 5356 int swappiness, unsigned long nr_to_reclaim) 5357 { 5358 DEFINE_MAX_SEQ(lruvec); 5359 5360 if (seq + MIN_NR_GENS > max_seq) 5361 return -EINVAL; 5362 5363 sc->nr_reclaimed = 0; 5364 5365 while (!signal_pending(current)) { 5366 DEFINE_MIN_SEQ(lruvec); 5367 5368 if (seq < min_seq[!swappiness]) 5369 return 0; 5370 5371 if (sc->nr_reclaimed >= nr_to_reclaim) 5372 return 0; 5373 5374 if (!evict_folios(lruvec, sc, swappiness)) 5375 return 0; 5376 5377 cond_resched(); 5378 } 5379 5380 return -EINTR; 5381 } 5382 5383 static int run_cmd(char cmd, int memcg_id, int nid, unsigned long seq, 5384 struct scan_control *sc, int swappiness, unsigned long opt) 5385 { 5386 struct lruvec *lruvec; 5387 int err = -EINVAL; 5388 struct mem_cgroup *memcg = NULL; 5389 5390 if (nid < 0 || nid >= MAX_NUMNODES || !node_state(nid, N_MEMORY)) 5391 return -EINVAL; 5392 5393 if (!mem_cgroup_disabled()) { 5394 rcu_read_lock(); 5395 5396 memcg = mem_cgroup_from_id(memcg_id); 5397 if (!mem_cgroup_tryget(memcg)) 5398 memcg = NULL; 5399 5400 rcu_read_unlock(); 5401 5402 if (!memcg) 5403 return -EINVAL; 5404 } 5405 5406 if (memcg_id != mem_cgroup_id(memcg)) 5407 goto done; 5408 5409 lruvec = get_lruvec(memcg, nid); 5410 5411 if (swappiness < 0) 5412 swappiness = get_swappiness(lruvec, sc); 5413 else if (swappiness > 200) 5414 goto done; 5415 5416 switch (cmd) { 5417 case '+': 5418 err = run_aging(lruvec, seq, sc, swappiness, opt); 5419 break; 5420 case '-': 5421 err = run_eviction(lruvec, seq, sc, swappiness, opt); 5422 break; 5423 } 5424 done: 5425 mem_cgroup_put(memcg); 5426 5427 return err; 5428 } 5429 5430 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5431 static ssize_t lru_gen_seq_write(struct file *file, const char __user *src, 5432 size_t len, loff_t *pos) 5433 { 5434 void *buf; 5435 char *cur, *next; 5436 unsigned int flags; 5437 struct blk_plug plug; 5438 int err = -EINVAL; 5439 struct scan_control sc = { 5440 .may_writepage = true, 5441 .may_unmap = true, 5442 .may_swap = true, 5443 .reclaim_idx = MAX_NR_ZONES - 1, 5444 .gfp_mask = GFP_KERNEL, 5445 }; 5446 5447 buf = kvmalloc(len + 1, GFP_KERNEL); 5448 if (!buf) 5449 return -ENOMEM; 5450 5451 if (copy_from_user(buf, src, len)) { 5452 kvfree(buf); 5453 return -EFAULT; 5454 } 5455 5456 set_task_reclaim_state(current, &sc.reclaim_state); 5457 flags = memalloc_noreclaim_save(); 5458 blk_start_plug(&plug); 5459 if (!set_mm_walk(NULL, true)) { 5460 err = -ENOMEM; 5461 goto done; 5462 } 5463 5464 next = buf; 5465 next[len] = '\0'; 5466 5467 while ((cur = strsep(&next, ",;\n"))) { 5468 int n; 5469 int end; 5470 char cmd; 5471 unsigned int memcg_id; 5472 unsigned int nid; 5473 unsigned long seq; 5474 unsigned int swappiness = -1; 5475 unsigned long opt = -1; 5476 5477 cur = skip_spaces(cur); 5478 if (!*cur) 5479 continue; 5480 5481 n = sscanf(cur, "%c %u %u %lu %n %u %n %lu %n", &cmd, &memcg_id, &nid, 5482 &seq, &end, &swappiness, &end, &opt, &end); 5483 if (n < 4 || cur[end]) { 5484 err = -EINVAL; 5485 break; 5486 } 5487 5488 err = run_cmd(cmd, memcg_id, nid, seq, &sc, swappiness, opt); 5489 if (err) 5490 break; 5491 } 5492 done: 5493 clear_mm_walk(); 5494 blk_finish_plug(&plug); 5495 memalloc_noreclaim_restore(flags); 5496 set_task_reclaim_state(current, NULL); 5497 5498 kvfree(buf); 5499 5500 return err ? : len; 5501 } 5502 5503 static int lru_gen_seq_open(struct inode *inode, struct file *file) 5504 { 5505 return seq_open(file, &lru_gen_seq_ops); 5506 } 5507 5508 static const struct file_operations lru_gen_rw_fops = { 5509 .open = lru_gen_seq_open, 5510 .read = seq_read, 5511 .write = lru_gen_seq_write, 5512 .llseek = seq_lseek, 5513 .release = seq_release, 5514 }; 5515 5516 static const struct file_operations lru_gen_ro_fops = { 5517 .open = lru_gen_seq_open, 5518 .read = seq_read, 5519 .llseek = seq_lseek, 5520 .release = seq_release, 5521 }; 5522 5523 /****************************************************************************** 5524 * initialization 5525 ******************************************************************************/ 5526 5527 void lru_gen_init_pgdat(struct pglist_data *pgdat) 5528 { 5529 int i, j; 5530 5531 spin_lock_init(&pgdat->memcg_lru.lock); 5532 5533 for (i = 0; i < MEMCG_NR_GENS; i++) { 5534 for (j = 0; j < MEMCG_NR_BINS; j++) 5535 INIT_HLIST_NULLS_HEAD(&pgdat->memcg_lru.fifo[i][j], i); 5536 } 5537 } 5538 5539 void lru_gen_init_lruvec(struct lruvec *lruvec) 5540 { 5541 int i; 5542 int gen, type, zone; 5543 struct lru_gen_folio *lrugen = &lruvec->lrugen; 5544 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 5545 5546 lrugen->max_seq = MIN_NR_GENS + 1; 5547 lrugen->enabled = lru_gen_enabled(); 5548 5549 for (i = 0; i <= MIN_NR_GENS + 1; i++) 5550 lrugen->timestamps[i] = jiffies; 5551 5552 for_each_gen_type_zone(gen, type, zone) 5553 INIT_LIST_HEAD(&lrugen->folios[gen][type][zone]); 5554 5555 if (mm_state) 5556 mm_state->seq = MIN_NR_GENS; 5557 } 5558 5559 #ifdef CONFIG_MEMCG 5560 5561 void lru_gen_init_memcg(struct mem_cgroup *memcg) 5562 { 5563 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 5564 5565 if (!mm_list) 5566 return; 5567 5568 INIT_LIST_HEAD(&mm_list->fifo); 5569 spin_lock_init(&mm_list->lock); 5570 } 5571 5572 void lru_gen_exit_memcg(struct mem_cgroup *memcg) 5573 { 5574 int i; 5575 int nid; 5576 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 5577 5578 VM_WARN_ON_ONCE(mm_list && !list_empty(&mm_list->fifo)); 5579 5580 for_each_node(nid) { 5581 struct lruvec *lruvec = get_lruvec(memcg, nid); 5582 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 5583 5584 VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0, 5585 sizeof(lruvec->lrugen.nr_pages))); 5586 5587 lruvec->lrugen.list.next = LIST_POISON1; 5588 5589 if (!mm_state) 5590 continue; 5591 5592 for (i = 0; i < NR_BLOOM_FILTERS; i++) { 5593 bitmap_free(mm_state->filters[i]); 5594 mm_state->filters[i] = NULL; 5595 } 5596 } 5597 } 5598 5599 #endif /* CONFIG_MEMCG */ 5600 5601 static int __init init_lru_gen(void) 5602 { 5603 BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS); 5604 BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS); 5605 5606 if (sysfs_create_group(mm_kobj, &lru_gen_attr_group)) 5607 pr_err("lru_gen: failed to create sysfs group\n"); 5608 5609 debugfs_create_file("lru_gen", 0644, NULL, NULL, &lru_gen_rw_fops); 5610 debugfs_create_file("lru_gen_full", 0444, NULL, NULL, &lru_gen_ro_fops); 5611 5612 return 0; 5613 }; 5614 late_initcall(init_lru_gen); 5615 5616 #else /* !CONFIG_LRU_GEN */ 5617 5618 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc) 5619 { 5620 BUILD_BUG(); 5621 } 5622 5623 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 5624 { 5625 BUILD_BUG(); 5626 } 5627 5628 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc) 5629 { 5630 BUILD_BUG(); 5631 } 5632 5633 #endif /* CONFIG_LRU_GEN */ 5634 5635 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 5636 { 5637 unsigned long nr[NR_LRU_LISTS]; 5638 unsigned long targets[NR_LRU_LISTS]; 5639 unsigned long nr_to_scan; 5640 enum lru_list lru; 5641 unsigned long nr_reclaimed = 0; 5642 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 5643 bool proportional_reclaim; 5644 struct blk_plug plug; 5645 5646 if (lru_gen_enabled() && !root_reclaim(sc)) { 5647 lru_gen_shrink_lruvec(lruvec, sc); 5648 return; 5649 } 5650 5651 get_scan_count(lruvec, sc, nr); 5652 5653 /* Record the original scan target for proportional adjustments later */ 5654 memcpy(targets, nr, sizeof(nr)); 5655 5656 /* 5657 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal 5658 * event that can occur when there is little memory pressure e.g. 5659 * multiple streaming readers/writers. Hence, we do not abort scanning 5660 * when the requested number of pages are reclaimed when scanning at 5661 * DEF_PRIORITY on the assumption that the fact we are direct 5662 * reclaiming implies that kswapd is not keeping up and it is best to 5663 * do a batch of work at once. For memcg reclaim one check is made to 5664 * abort proportional reclaim if either the file or anon lru has already 5665 * dropped to zero at the first pass. 5666 */ 5667 proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() && 5668 sc->priority == DEF_PRIORITY); 5669 5670 blk_start_plug(&plug); 5671 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 5672 nr[LRU_INACTIVE_FILE]) { 5673 unsigned long nr_anon, nr_file, percentage; 5674 unsigned long nr_scanned; 5675 5676 for_each_evictable_lru(lru) { 5677 if (nr[lru]) { 5678 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 5679 nr[lru] -= nr_to_scan; 5680 5681 nr_reclaimed += shrink_list(lru, nr_to_scan, 5682 lruvec, sc); 5683 } 5684 } 5685 5686 cond_resched(); 5687 5688 if (nr_reclaimed < nr_to_reclaim || proportional_reclaim) 5689 continue; 5690 5691 /* 5692 * For kswapd and memcg, reclaim at least the number of pages 5693 * requested. Ensure that the anon and file LRUs are scanned 5694 * proportionally what was requested by get_scan_count(). We 5695 * stop reclaiming one LRU and reduce the amount scanning 5696 * proportional to the original scan target. 5697 */ 5698 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 5699 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 5700 5701 /* 5702 * It's just vindictive to attack the larger once the smaller 5703 * has gone to zero. And given the way we stop scanning the 5704 * smaller below, this makes sure that we only make one nudge 5705 * towards proportionality once we've got nr_to_reclaim. 5706 */ 5707 if (!nr_file || !nr_anon) 5708 break; 5709 5710 if (nr_file > nr_anon) { 5711 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 5712 targets[LRU_ACTIVE_ANON] + 1; 5713 lru = LRU_BASE; 5714 percentage = nr_anon * 100 / scan_target; 5715 } else { 5716 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 5717 targets[LRU_ACTIVE_FILE] + 1; 5718 lru = LRU_FILE; 5719 percentage = nr_file * 100 / scan_target; 5720 } 5721 5722 /* Stop scanning the smaller of the LRU */ 5723 nr[lru] = 0; 5724 nr[lru + LRU_ACTIVE] = 0; 5725 5726 /* 5727 * Recalculate the other LRU scan count based on its original 5728 * scan target and the percentage scanning already complete 5729 */ 5730 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 5731 nr_scanned = targets[lru] - nr[lru]; 5732 nr[lru] = targets[lru] * (100 - percentage) / 100; 5733 nr[lru] -= min(nr[lru], nr_scanned); 5734 5735 lru += LRU_ACTIVE; 5736 nr_scanned = targets[lru] - nr[lru]; 5737 nr[lru] = targets[lru] * (100 - percentage) / 100; 5738 nr[lru] -= min(nr[lru], nr_scanned); 5739 } 5740 blk_finish_plug(&plug); 5741 sc->nr_reclaimed += nr_reclaimed; 5742 5743 /* 5744 * Even if we did not try to evict anon pages at all, we want to 5745 * rebalance the anon lru active/inactive ratio. 5746 */ 5747 if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) && 5748 inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 5749 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 5750 sc, LRU_ACTIVE_ANON); 5751 } 5752 5753 /* Use reclaim/compaction for costly allocs or under memory pressure */ 5754 static bool in_reclaim_compaction(struct scan_control *sc) 5755 { 5756 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 5757 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 5758 sc->priority < DEF_PRIORITY - 2)) 5759 return true; 5760 5761 return false; 5762 } 5763 5764 /* 5765 * Reclaim/compaction is used for high-order allocation requests. It reclaims 5766 * order-0 pages before compacting the zone. should_continue_reclaim() returns 5767 * true if more pages should be reclaimed such that when the page allocator 5768 * calls try_to_compact_pages() that it will have enough free pages to succeed. 5769 * It will give up earlier than that if there is difficulty reclaiming pages. 5770 */ 5771 static inline bool should_continue_reclaim(struct pglist_data *pgdat, 5772 unsigned long nr_reclaimed, 5773 struct scan_control *sc) 5774 { 5775 unsigned long pages_for_compaction; 5776 unsigned long inactive_lru_pages; 5777 int z; 5778 5779 /* If not in reclaim/compaction mode, stop */ 5780 if (!in_reclaim_compaction(sc)) 5781 return false; 5782 5783 /* 5784 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX 5785 * number of pages that were scanned. This will return to the caller 5786 * with the risk reclaim/compaction and the resulting allocation attempt 5787 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL 5788 * allocations through requiring that the full LRU list has been scanned 5789 * first, by assuming that zero delta of sc->nr_scanned means full LRU 5790 * scan, but that approximation was wrong, and there were corner cases 5791 * where always a non-zero amount of pages were scanned. 5792 */ 5793 if (!nr_reclaimed) 5794 return false; 5795 5796 /* If compaction would go ahead or the allocation would succeed, stop */ 5797 for (z = 0; z <= sc->reclaim_idx; z++) { 5798 struct zone *zone = &pgdat->node_zones[z]; 5799 if (!managed_zone(zone)) 5800 continue; 5801 5802 /* Allocation can already succeed, nothing to do */ 5803 if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone), 5804 sc->reclaim_idx, 0)) 5805 return false; 5806 5807 if (compaction_suitable(zone, sc->order, sc->reclaim_idx)) 5808 return false; 5809 } 5810 5811 /* 5812 * If we have not reclaimed enough pages for compaction and the 5813 * inactive lists are large enough, continue reclaiming 5814 */ 5815 pages_for_compaction = compact_gap(sc->order); 5816 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE); 5817 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc)) 5818 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON); 5819 5820 return inactive_lru_pages > pages_for_compaction; 5821 } 5822 5823 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc) 5824 { 5825 struct mem_cgroup *target_memcg = sc->target_mem_cgroup; 5826 struct mem_cgroup *memcg; 5827 5828 memcg = mem_cgroup_iter(target_memcg, NULL, NULL); 5829 do { 5830 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 5831 unsigned long reclaimed; 5832 unsigned long scanned; 5833 5834 /* 5835 * This loop can become CPU-bound when target memcgs 5836 * aren't eligible for reclaim - either because they 5837 * don't have any reclaimable pages, or because their 5838 * memory is explicitly protected. Avoid soft lockups. 5839 */ 5840 cond_resched(); 5841 5842 mem_cgroup_calculate_protection(target_memcg, memcg); 5843 5844 if (mem_cgroup_below_min(target_memcg, memcg)) { 5845 /* 5846 * Hard protection. 5847 * If there is no reclaimable memory, OOM. 5848 */ 5849 continue; 5850 } else if (mem_cgroup_below_low(target_memcg, memcg)) { 5851 /* 5852 * Soft protection. 5853 * Respect the protection only as long as 5854 * there is an unprotected supply 5855 * of reclaimable memory from other cgroups. 5856 */ 5857 if (!sc->memcg_low_reclaim) { 5858 sc->memcg_low_skipped = 1; 5859 continue; 5860 } 5861 memcg_memory_event(memcg, MEMCG_LOW); 5862 } 5863 5864 reclaimed = sc->nr_reclaimed; 5865 scanned = sc->nr_scanned; 5866 5867 shrink_lruvec(lruvec, sc); 5868 5869 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, 5870 sc->priority); 5871 5872 /* Record the group's reclaim efficiency */ 5873 if (!sc->proactive) 5874 vmpressure(sc->gfp_mask, memcg, false, 5875 sc->nr_scanned - scanned, 5876 sc->nr_reclaimed - reclaimed); 5877 5878 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL))); 5879 } 5880 5881 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc) 5882 { 5883 unsigned long nr_reclaimed, nr_scanned, nr_node_reclaimed; 5884 struct lruvec *target_lruvec; 5885 bool reclaimable = false; 5886 5887 if (lru_gen_enabled() && root_reclaim(sc)) { 5888 lru_gen_shrink_node(pgdat, sc); 5889 return; 5890 } 5891 5892 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat); 5893 5894 again: 5895 memset(&sc->nr, 0, sizeof(sc->nr)); 5896 5897 nr_reclaimed = sc->nr_reclaimed; 5898 nr_scanned = sc->nr_scanned; 5899 5900 prepare_scan_control(pgdat, sc); 5901 5902 shrink_node_memcgs(pgdat, sc); 5903 5904 flush_reclaim_state(sc); 5905 5906 nr_node_reclaimed = sc->nr_reclaimed - nr_reclaimed; 5907 5908 /* Record the subtree's reclaim efficiency */ 5909 if (!sc->proactive) 5910 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, 5911 sc->nr_scanned - nr_scanned, nr_node_reclaimed); 5912 5913 if (nr_node_reclaimed) 5914 reclaimable = true; 5915 5916 if (current_is_kswapd()) { 5917 /* 5918 * If reclaim is isolating dirty pages under writeback, 5919 * it implies that the long-lived page allocation rate 5920 * is exceeding the page laundering rate. Either the 5921 * global limits are not being effective at throttling 5922 * processes due to the page distribution throughout 5923 * zones or there is heavy usage of a slow backing 5924 * device. The only option is to throttle from reclaim 5925 * context which is not ideal as there is no guarantee 5926 * the dirtying process is throttled in the same way 5927 * balance_dirty_pages() manages. 5928 * 5929 * Once a node is flagged PGDAT_WRITEBACK, kswapd will 5930 * count the number of pages under pages flagged for 5931 * immediate reclaim and stall if any are encountered 5932 * in the nr_immediate check below. 5933 */ 5934 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken) 5935 set_bit(PGDAT_WRITEBACK, &pgdat->flags); 5936 5937 /* Allow kswapd to start writing pages during reclaim.*/ 5938 if (sc->nr.unqueued_dirty == sc->nr.file_taken) 5939 set_bit(PGDAT_DIRTY, &pgdat->flags); 5940 5941 /* 5942 * If kswapd scans pages marked for immediate 5943 * reclaim and under writeback (nr_immediate), it 5944 * implies that pages are cycling through the LRU 5945 * faster than they are written so forcibly stall 5946 * until some pages complete writeback. 5947 */ 5948 if (sc->nr.immediate) 5949 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK); 5950 } 5951 5952 /* 5953 * Tag a node/memcg as congested if all the dirty pages were marked 5954 * for writeback and immediate reclaim (counted in nr.congested). 5955 * 5956 * Legacy memcg will stall in page writeback so avoid forcibly 5957 * stalling in reclaim_throttle(). 5958 */ 5959 if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested) { 5960 if (cgroup_reclaim(sc) && writeback_throttling_sane(sc)) 5961 set_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags); 5962 5963 if (current_is_kswapd()) 5964 set_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags); 5965 } 5966 5967 /* 5968 * Stall direct reclaim for IO completions if the lruvec is 5969 * node is congested. Allow kswapd to continue until it 5970 * starts encountering unqueued dirty pages or cycling through 5971 * the LRU too quickly. 5972 */ 5973 if (!current_is_kswapd() && current_may_throttle() && 5974 !sc->hibernation_mode && 5975 (test_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags) || 5976 test_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags))) 5977 reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED); 5978 5979 if (should_continue_reclaim(pgdat, nr_node_reclaimed, sc)) 5980 goto again; 5981 5982 /* 5983 * Kswapd gives up on balancing particular nodes after too 5984 * many failures to reclaim anything from them and goes to 5985 * sleep. On reclaim progress, reset the failure counter. A 5986 * successful direct reclaim run will revive a dormant kswapd. 5987 */ 5988 if (reclaimable) 5989 pgdat->kswapd_failures = 0; 5990 } 5991 5992 /* 5993 * Returns true if compaction should go ahead for a costly-order request, or 5994 * the allocation would already succeed without compaction. Return false if we 5995 * should reclaim first. 5996 */ 5997 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) 5998 { 5999 unsigned long watermark; 6000 6001 /* Allocation can already succeed, nothing to do */ 6002 if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone), 6003 sc->reclaim_idx, 0)) 6004 return true; 6005 6006 /* Compaction cannot yet proceed. Do reclaim. */ 6007 if (!compaction_suitable(zone, sc->order, sc->reclaim_idx)) 6008 return false; 6009 6010 /* 6011 * Compaction is already possible, but it takes time to run and there 6012 * are potentially other callers using the pages just freed. So proceed 6013 * with reclaim to make a buffer of free pages available to give 6014 * compaction a reasonable chance of completing and allocating the page. 6015 * Note that we won't actually reclaim the whole buffer in one attempt 6016 * as the target watermark in should_continue_reclaim() is lower. But if 6017 * we are already above the high+gap watermark, don't reclaim at all. 6018 */ 6019 watermark = high_wmark_pages(zone) + compact_gap(sc->order); 6020 6021 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx); 6022 } 6023 6024 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc) 6025 { 6026 /* 6027 * If reclaim is making progress greater than 12% efficiency then 6028 * wake all the NOPROGRESS throttled tasks. 6029 */ 6030 if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) { 6031 wait_queue_head_t *wqh; 6032 6033 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS]; 6034 if (waitqueue_active(wqh)) 6035 wake_up(wqh); 6036 6037 return; 6038 } 6039 6040 /* 6041 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will 6042 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages 6043 * under writeback and marked for immediate reclaim at the tail of the 6044 * LRU. 6045 */ 6046 if (current_is_kswapd() || cgroup_reclaim(sc)) 6047 return; 6048 6049 /* Throttle if making no progress at high prioities. */ 6050 if (sc->priority == 1 && !sc->nr_reclaimed) 6051 reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS); 6052 } 6053 6054 /* 6055 * This is the direct reclaim path, for page-allocating processes. We only 6056 * try to reclaim pages from zones which will satisfy the caller's allocation 6057 * request. 6058 * 6059 * If a zone is deemed to be full of pinned pages then just give it a light 6060 * scan then give up on it. 6061 */ 6062 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 6063 { 6064 struct zoneref *z; 6065 struct zone *zone; 6066 unsigned long nr_soft_reclaimed; 6067 unsigned long nr_soft_scanned; 6068 gfp_t orig_mask; 6069 pg_data_t *last_pgdat = NULL; 6070 pg_data_t *first_pgdat = NULL; 6071 6072 /* 6073 * If the number of buffer_heads in the machine exceeds the maximum 6074 * allowed level, force direct reclaim to scan the highmem zone as 6075 * highmem pages could be pinning lowmem pages storing buffer_heads 6076 */ 6077 orig_mask = sc->gfp_mask; 6078 if (buffer_heads_over_limit) { 6079 sc->gfp_mask |= __GFP_HIGHMEM; 6080 sc->reclaim_idx = gfp_zone(sc->gfp_mask); 6081 } 6082 6083 for_each_zone_zonelist_nodemask(zone, z, zonelist, 6084 sc->reclaim_idx, sc->nodemask) { 6085 /* 6086 * Take care memory controller reclaiming has small influence 6087 * to global LRU. 6088 */ 6089 if (!cgroup_reclaim(sc)) { 6090 if (!cpuset_zone_allowed(zone, 6091 GFP_KERNEL | __GFP_HARDWALL)) 6092 continue; 6093 6094 /* 6095 * If we already have plenty of memory free for 6096 * compaction in this zone, don't free any more. 6097 * Even though compaction is invoked for any 6098 * non-zero order, only frequent costly order 6099 * reclamation is disruptive enough to become a 6100 * noticeable problem, like transparent huge 6101 * page allocations. 6102 */ 6103 if (IS_ENABLED(CONFIG_COMPACTION) && 6104 sc->order > PAGE_ALLOC_COSTLY_ORDER && 6105 compaction_ready(zone, sc)) { 6106 sc->compaction_ready = true; 6107 continue; 6108 } 6109 6110 /* 6111 * Shrink each node in the zonelist once. If the 6112 * zonelist is ordered by zone (not the default) then a 6113 * node may be shrunk multiple times but in that case 6114 * the user prefers lower zones being preserved. 6115 */ 6116 if (zone->zone_pgdat == last_pgdat) 6117 continue; 6118 6119 /* 6120 * This steals pages from memory cgroups over softlimit 6121 * and returns the number of reclaimed pages and 6122 * scanned pages. This works for global memory pressure 6123 * and balancing, not for a memcg's limit. 6124 */ 6125 nr_soft_scanned = 0; 6126 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat, 6127 sc->order, sc->gfp_mask, 6128 &nr_soft_scanned); 6129 sc->nr_reclaimed += nr_soft_reclaimed; 6130 sc->nr_scanned += nr_soft_scanned; 6131 /* need some check for avoid more shrink_zone() */ 6132 } 6133 6134 if (!first_pgdat) 6135 first_pgdat = zone->zone_pgdat; 6136 6137 /* See comment about same check for global reclaim above */ 6138 if (zone->zone_pgdat == last_pgdat) 6139 continue; 6140 last_pgdat = zone->zone_pgdat; 6141 shrink_node(zone->zone_pgdat, sc); 6142 } 6143 6144 if (first_pgdat) 6145 consider_reclaim_throttle(first_pgdat, sc); 6146 6147 /* 6148 * Restore to original mask to avoid the impact on the caller if we 6149 * promoted it to __GFP_HIGHMEM. 6150 */ 6151 sc->gfp_mask = orig_mask; 6152 } 6153 6154 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat) 6155 { 6156 struct lruvec *target_lruvec; 6157 unsigned long refaults; 6158 6159 if (lru_gen_enabled()) 6160 return; 6161 6162 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat); 6163 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON); 6164 target_lruvec->refaults[WORKINGSET_ANON] = refaults; 6165 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE); 6166 target_lruvec->refaults[WORKINGSET_FILE] = refaults; 6167 } 6168 6169 /* 6170 * This is the main entry point to direct page reclaim. 6171 * 6172 * If a full scan of the inactive list fails to free enough memory then we 6173 * are "out of memory" and something needs to be killed. 6174 * 6175 * If the caller is !__GFP_FS then the probability of a failure is reasonably 6176 * high - the zone may be full of dirty or under-writeback pages, which this 6177 * caller can't do much about. We kick the writeback threads and take explicit 6178 * naps in the hope that some of these pages can be written. But if the 6179 * allocating task holds filesystem locks which prevent writeout this might not 6180 * work, and the allocation attempt will fail. 6181 * 6182 * returns: 0, if no pages reclaimed 6183 * else, the number of pages reclaimed 6184 */ 6185 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 6186 struct scan_control *sc) 6187 { 6188 int initial_priority = sc->priority; 6189 pg_data_t *last_pgdat; 6190 struct zoneref *z; 6191 struct zone *zone; 6192 retry: 6193 delayacct_freepages_start(); 6194 6195 if (!cgroup_reclaim(sc)) 6196 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1); 6197 6198 do { 6199 if (!sc->proactive) 6200 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 6201 sc->priority); 6202 sc->nr_scanned = 0; 6203 shrink_zones(zonelist, sc); 6204 6205 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 6206 break; 6207 6208 if (sc->compaction_ready) 6209 break; 6210 6211 /* 6212 * If we're getting trouble reclaiming, start doing 6213 * writepage even in laptop mode. 6214 */ 6215 if (sc->priority < DEF_PRIORITY - 2) 6216 sc->may_writepage = 1; 6217 } while (--sc->priority >= 0); 6218 6219 last_pgdat = NULL; 6220 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx, 6221 sc->nodemask) { 6222 if (zone->zone_pgdat == last_pgdat) 6223 continue; 6224 last_pgdat = zone->zone_pgdat; 6225 6226 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat); 6227 6228 if (cgroup_reclaim(sc)) { 6229 struct lruvec *lruvec; 6230 6231 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, 6232 zone->zone_pgdat); 6233 clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags); 6234 } 6235 } 6236 6237 delayacct_freepages_end(); 6238 6239 if (sc->nr_reclaimed) 6240 return sc->nr_reclaimed; 6241 6242 /* Aborted reclaim to try compaction? don't OOM, then */ 6243 if (sc->compaction_ready) 6244 return 1; 6245 6246 /* 6247 * We make inactive:active ratio decisions based on the node's 6248 * composition of memory, but a restrictive reclaim_idx or a 6249 * memory.low cgroup setting can exempt large amounts of 6250 * memory from reclaim. Neither of which are very common, so 6251 * instead of doing costly eligibility calculations of the 6252 * entire cgroup subtree up front, we assume the estimates are 6253 * good, and retry with forcible deactivation if that fails. 6254 */ 6255 if (sc->skipped_deactivate) { 6256 sc->priority = initial_priority; 6257 sc->force_deactivate = 1; 6258 sc->skipped_deactivate = 0; 6259 goto retry; 6260 } 6261 6262 /* Untapped cgroup reserves? Don't OOM, retry. */ 6263 if (sc->memcg_low_skipped) { 6264 sc->priority = initial_priority; 6265 sc->force_deactivate = 0; 6266 sc->memcg_low_reclaim = 1; 6267 sc->memcg_low_skipped = 0; 6268 goto retry; 6269 } 6270 6271 return 0; 6272 } 6273 6274 static bool allow_direct_reclaim(pg_data_t *pgdat) 6275 { 6276 struct zone *zone; 6277 unsigned long pfmemalloc_reserve = 0; 6278 unsigned long free_pages = 0; 6279 int i; 6280 bool wmark_ok; 6281 6282 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 6283 return true; 6284 6285 for (i = 0; i <= ZONE_NORMAL; i++) { 6286 zone = &pgdat->node_zones[i]; 6287 if (!managed_zone(zone)) 6288 continue; 6289 6290 if (!zone_reclaimable_pages(zone)) 6291 continue; 6292 6293 pfmemalloc_reserve += min_wmark_pages(zone); 6294 free_pages += zone_page_state_snapshot(zone, NR_FREE_PAGES); 6295 } 6296 6297 /* If there are no reserves (unexpected config) then do not throttle */ 6298 if (!pfmemalloc_reserve) 6299 return true; 6300 6301 wmark_ok = free_pages > pfmemalloc_reserve / 2; 6302 6303 /* kswapd must be awake if processes are being throttled */ 6304 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 6305 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL) 6306 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL); 6307 6308 wake_up_interruptible(&pgdat->kswapd_wait); 6309 } 6310 6311 return wmark_ok; 6312 } 6313 6314 /* 6315 * Throttle direct reclaimers if backing storage is backed by the network 6316 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 6317 * depleted. kswapd will continue to make progress and wake the processes 6318 * when the low watermark is reached. 6319 * 6320 * Returns true if a fatal signal was delivered during throttling. If this 6321 * happens, the page allocator should not consider triggering the OOM killer. 6322 */ 6323 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 6324 nodemask_t *nodemask) 6325 { 6326 struct zoneref *z; 6327 struct zone *zone; 6328 pg_data_t *pgdat = NULL; 6329 6330 /* 6331 * Kernel threads should not be throttled as they may be indirectly 6332 * responsible for cleaning pages necessary for reclaim to make forward 6333 * progress. kjournald for example may enter direct reclaim while 6334 * committing a transaction where throttling it could forcing other 6335 * processes to block on log_wait_commit(). 6336 */ 6337 if (current->flags & PF_KTHREAD) 6338 goto out; 6339 6340 /* 6341 * If a fatal signal is pending, this process should not throttle. 6342 * It should return quickly so it can exit and free its memory 6343 */ 6344 if (fatal_signal_pending(current)) 6345 goto out; 6346 6347 /* 6348 * Check if the pfmemalloc reserves are ok by finding the first node 6349 * with a usable ZONE_NORMAL or lower zone. The expectation is that 6350 * GFP_KERNEL will be required for allocating network buffers when 6351 * swapping over the network so ZONE_HIGHMEM is unusable. 6352 * 6353 * Throttling is based on the first usable node and throttled processes 6354 * wait on a queue until kswapd makes progress and wakes them. There 6355 * is an affinity then between processes waking up and where reclaim 6356 * progress has been made assuming the process wakes on the same node. 6357 * More importantly, processes running on remote nodes will not compete 6358 * for remote pfmemalloc reserves and processes on different nodes 6359 * should make reasonable progress. 6360 */ 6361 for_each_zone_zonelist_nodemask(zone, z, zonelist, 6362 gfp_zone(gfp_mask), nodemask) { 6363 if (zone_idx(zone) > ZONE_NORMAL) 6364 continue; 6365 6366 /* Throttle based on the first usable node */ 6367 pgdat = zone->zone_pgdat; 6368 if (allow_direct_reclaim(pgdat)) 6369 goto out; 6370 break; 6371 } 6372 6373 /* If no zone was usable by the allocation flags then do not throttle */ 6374 if (!pgdat) 6375 goto out; 6376 6377 /* Account for the throttling */ 6378 count_vm_event(PGSCAN_DIRECT_THROTTLE); 6379 6380 /* 6381 * If the caller cannot enter the filesystem, it's possible that it 6382 * is due to the caller holding an FS lock or performing a journal 6383 * transaction in the case of a filesystem like ext[3|4]. In this case, 6384 * it is not safe to block on pfmemalloc_wait as kswapd could be 6385 * blocked waiting on the same lock. Instead, throttle for up to a 6386 * second before continuing. 6387 */ 6388 if (!(gfp_mask & __GFP_FS)) 6389 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 6390 allow_direct_reclaim(pgdat), HZ); 6391 else 6392 /* Throttle until kswapd wakes the process */ 6393 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 6394 allow_direct_reclaim(pgdat)); 6395 6396 if (fatal_signal_pending(current)) 6397 return true; 6398 6399 out: 6400 return false; 6401 } 6402 6403 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 6404 gfp_t gfp_mask, nodemask_t *nodemask) 6405 { 6406 unsigned long nr_reclaimed; 6407 struct scan_control sc = { 6408 .nr_to_reclaim = SWAP_CLUSTER_MAX, 6409 .gfp_mask = current_gfp_context(gfp_mask), 6410 .reclaim_idx = gfp_zone(gfp_mask), 6411 .order = order, 6412 .nodemask = nodemask, 6413 .priority = DEF_PRIORITY, 6414 .may_writepage = !laptop_mode, 6415 .may_unmap = 1, 6416 .may_swap = 1, 6417 }; 6418 6419 /* 6420 * scan_control uses s8 fields for order, priority, and reclaim_idx. 6421 * Confirm they are large enough for max values. 6422 */ 6423 BUILD_BUG_ON(MAX_PAGE_ORDER >= S8_MAX); 6424 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX); 6425 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX); 6426 6427 /* 6428 * Do not enter reclaim if fatal signal was delivered while throttled. 6429 * 1 is returned so that the page allocator does not OOM kill at this 6430 * point. 6431 */ 6432 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask)) 6433 return 1; 6434 6435 set_task_reclaim_state(current, &sc.reclaim_state); 6436 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask); 6437 6438 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 6439 6440 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 6441 set_task_reclaim_state(current, NULL); 6442 6443 return nr_reclaimed; 6444 } 6445 6446 #ifdef CONFIG_MEMCG 6447 6448 /* Only used by soft limit reclaim. Do not reuse for anything else. */ 6449 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg, 6450 gfp_t gfp_mask, bool noswap, 6451 pg_data_t *pgdat, 6452 unsigned long *nr_scanned) 6453 { 6454 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 6455 struct scan_control sc = { 6456 .nr_to_reclaim = SWAP_CLUSTER_MAX, 6457 .target_mem_cgroup = memcg, 6458 .may_writepage = !laptop_mode, 6459 .may_unmap = 1, 6460 .reclaim_idx = MAX_NR_ZONES - 1, 6461 .may_swap = !noswap, 6462 }; 6463 6464 WARN_ON_ONCE(!current->reclaim_state); 6465 6466 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 6467 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 6468 6469 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 6470 sc.gfp_mask); 6471 6472 /* 6473 * NOTE: Although we can get the priority field, using it 6474 * here is not a good idea, since it limits the pages we can scan. 6475 * if we don't reclaim here, the shrink_node from balance_pgdat 6476 * will pick up pages from other mem cgroup's as well. We hack 6477 * the priority and make it zero. 6478 */ 6479 shrink_lruvec(lruvec, &sc); 6480 6481 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 6482 6483 *nr_scanned = sc.nr_scanned; 6484 6485 return sc.nr_reclaimed; 6486 } 6487 6488 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 6489 unsigned long nr_pages, 6490 gfp_t gfp_mask, 6491 unsigned int reclaim_options) 6492 { 6493 unsigned long nr_reclaimed; 6494 unsigned int noreclaim_flag; 6495 struct scan_control sc = { 6496 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 6497 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) | 6498 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 6499 .reclaim_idx = MAX_NR_ZONES - 1, 6500 .target_mem_cgroup = memcg, 6501 .priority = DEF_PRIORITY, 6502 .may_writepage = !laptop_mode, 6503 .may_unmap = 1, 6504 .may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP), 6505 .proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE), 6506 }; 6507 /* 6508 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put 6509 * equal pressure on all the nodes. This is based on the assumption that 6510 * the reclaim does not bail out early. 6511 */ 6512 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 6513 6514 set_task_reclaim_state(current, &sc.reclaim_state); 6515 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask); 6516 noreclaim_flag = memalloc_noreclaim_save(); 6517 6518 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 6519 6520 memalloc_noreclaim_restore(noreclaim_flag); 6521 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 6522 set_task_reclaim_state(current, NULL); 6523 6524 return nr_reclaimed; 6525 } 6526 #endif 6527 6528 static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc) 6529 { 6530 struct mem_cgroup *memcg; 6531 struct lruvec *lruvec; 6532 6533 if (lru_gen_enabled()) { 6534 lru_gen_age_node(pgdat, sc); 6535 return; 6536 } 6537 6538 if (!can_age_anon_pages(pgdat, sc)) 6539 return; 6540 6541 lruvec = mem_cgroup_lruvec(NULL, pgdat); 6542 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 6543 return; 6544 6545 memcg = mem_cgroup_iter(NULL, NULL, NULL); 6546 do { 6547 lruvec = mem_cgroup_lruvec(memcg, pgdat); 6548 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 6549 sc, LRU_ACTIVE_ANON); 6550 memcg = mem_cgroup_iter(NULL, memcg, NULL); 6551 } while (memcg); 6552 } 6553 6554 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx) 6555 { 6556 int i; 6557 struct zone *zone; 6558 6559 /* 6560 * Check for watermark boosts top-down as the higher zones 6561 * are more likely to be boosted. Both watermarks and boosts 6562 * should not be checked at the same time as reclaim would 6563 * start prematurely when there is no boosting and a lower 6564 * zone is balanced. 6565 */ 6566 for (i = highest_zoneidx; i >= 0; i--) { 6567 zone = pgdat->node_zones + i; 6568 if (!managed_zone(zone)) 6569 continue; 6570 6571 if (zone->watermark_boost) 6572 return true; 6573 } 6574 6575 return false; 6576 } 6577 6578 /* 6579 * Returns true if there is an eligible zone balanced for the request order 6580 * and highest_zoneidx 6581 */ 6582 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx) 6583 { 6584 int i; 6585 unsigned long mark = -1; 6586 struct zone *zone; 6587 6588 /* 6589 * Check watermarks bottom-up as lower zones are more likely to 6590 * meet watermarks. 6591 */ 6592 for (i = 0; i <= highest_zoneidx; i++) { 6593 zone = pgdat->node_zones + i; 6594 6595 if (!managed_zone(zone)) 6596 continue; 6597 6598 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) 6599 mark = wmark_pages(zone, WMARK_PROMO); 6600 else 6601 mark = high_wmark_pages(zone); 6602 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx)) 6603 return true; 6604 } 6605 6606 /* 6607 * If a node has no managed zone within highest_zoneidx, it does not 6608 * need balancing by definition. This can happen if a zone-restricted 6609 * allocation tries to wake a remote kswapd. 6610 */ 6611 if (mark == -1) 6612 return true; 6613 6614 return false; 6615 } 6616 6617 /* Clear pgdat state for congested, dirty or under writeback. */ 6618 static void clear_pgdat_congested(pg_data_t *pgdat) 6619 { 6620 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat); 6621 6622 clear_bit(LRUVEC_NODE_CONGESTED, &lruvec->flags); 6623 clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags); 6624 clear_bit(PGDAT_DIRTY, &pgdat->flags); 6625 clear_bit(PGDAT_WRITEBACK, &pgdat->flags); 6626 } 6627 6628 /* 6629 * Prepare kswapd for sleeping. This verifies that there are no processes 6630 * waiting in throttle_direct_reclaim() and that watermarks have been met. 6631 * 6632 * Returns true if kswapd is ready to sleep 6633 */ 6634 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, 6635 int highest_zoneidx) 6636 { 6637 /* 6638 * The throttled processes are normally woken up in balance_pgdat() as 6639 * soon as allow_direct_reclaim() is true. But there is a potential 6640 * race between when kswapd checks the watermarks and a process gets 6641 * throttled. There is also a potential race if processes get 6642 * throttled, kswapd wakes, a large process exits thereby balancing the 6643 * zones, which causes kswapd to exit balance_pgdat() before reaching 6644 * the wake up checks. If kswapd is going to sleep, no process should 6645 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If 6646 * the wake up is premature, processes will wake kswapd and get 6647 * throttled again. The difference from wake ups in balance_pgdat() is 6648 * that here we are under prepare_to_wait(). 6649 */ 6650 if (waitqueue_active(&pgdat->pfmemalloc_wait)) 6651 wake_up_all(&pgdat->pfmemalloc_wait); 6652 6653 /* Hopeless node, leave it to direct reclaim */ 6654 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 6655 return true; 6656 6657 if (pgdat_balanced(pgdat, order, highest_zoneidx)) { 6658 clear_pgdat_congested(pgdat); 6659 return true; 6660 } 6661 6662 return false; 6663 } 6664 6665 /* 6666 * kswapd shrinks a node of pages that are at or below the highest usable 6667 * zone that is currently unbalanced. 6668 * 6669 * Returns true if kswapd scanned at least the requested number of pages to 6670 * reclaim or if the lack of progress was due to pages under writeback. 6671 * This is used to determine if the scanning priority needs to be raised. 6672 */ 6673 static bool kswapd_shrink_node(pg_data_t *pgdat, 6674 struct scan_control *sc) 6675 { 6676 struct zone *zone; 6677 int z; 6678 6679 /* Reclaim a number of pages proportional to the number of zones */ 6680 sc->nr_to_reclaim = 0; 6681 for (z = 0; z <= sc->reclaim_idx; z++) { 6682 zone = pgdat->node_zones + z; 6683 if (!managed_zone(zone)) 6684 continue; 6685 6686 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX); 6687 } 6688 6689 /* 6690 * Historically care was taken to put equal pressure on all zones but 6691 * now pressure is applied based on node LRU order. 6692 */ 6693 shrink_node(pgdat, sc); 6694 6695 /* 6696 * Fragmentation may mean that the system cannot be rebalanced for 6697 * high-order allocations. If twice the allocation size has been 6698 * reclaimed then recheck watermarks only at order-0 to prevent 6699 * excessive reclaim. Assume that a process requested a high-order 6700 * can direct reclaim/compact. 6701 */ 6702 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order)) 6703 sc->order = 0; 6704 6705 return sc->nr_scanned >= sc->nr_to_reclaim; 6706 } 6707 6708 /* Page allocator PCP high watermark is lowered if reclaim is active. */ 6709 static inline void 6710 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active) 6711 { 6712 int i; 6713 struct zone *zone; 6714 6715 for (i = 0; i <= highest_zoneidx; i++) { 6716 zone = pgdat->node_zones + i; 6717 6718 if (!managed_zone(zone)) 6719 continue; 6720 6721 if (active) 6722 set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags); 6723 else 6724 clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags); 6725 } 6726 } 6727 6728 static inline void 6729 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx) 6730 { 6731 update_reclaim_active(pgdat, highest_zoneidx, true); 6732 } 6733 6734 static inline void 6735 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx) 6736 { 6737 update_reclaim_active(pgdat, highest_zoneidx, false); 6738 } 6739 6740 /* 6741 * For kswapd, balance_pgdat() will reclaim pages across a node from zones 6742 * that are eligible for use by the caller until at least one zone is 6743 * balanced. 6744 * 6745 * Returns the order kswapd finished reclaiming at. 6746 * 6747 * kswapd scans the zones in the highmem->normal->dma direction. It skips 6748 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 6749 * found to have free_pages <= high_wmark_pages(zone), any page in that zone 6750 * or lower is eligible for reclaim until at least one usable zone is 6751 * balanced. 6752 */ 6753 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx) 6754 { 6755 int i; 6756 unsigned long nr_soft_reclaimed; 6757 unsigned long nr_soft_scanned; 6758 unsigned long pflags; 6759 unsigned long nr_boost_reclaim; 6760 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, }; 6761 bool boosted; 6762 struct zone *zone; 6763 struct scan_control sc = { 6764 .gfp_mask = GFP_KERNEL, 6765 .order = order, 6766 .may_unmap = 1, 6767 }; 6768 6769 set_task_reclaim_state(current, &sc.reclaim_state); 6770 psi_memstall_enter(&pflags); 6771 __fs_reclaim_acquire(_THIS_IP_); 6772 6773 count_vm_event(PAGEOUTRUN); 6774 6775 /* 6776 * Account for the reclaim boost. Note that the zone boost is left in 6777 * place so that parallel allocations that are near the watermark will 6778 * stall or direct reclaim until kswapd is finished. 6779 */ 6780 nr_boost_reclaim = 0; 6781 for (i = 0; i <= highest_zoneidx; i++) { 6782 zone = pgdat->node_zones + i; 6783 if (!managed_zone(zone)) 6784 continue; 6785 6786 nr_boost_reclaim += zone->watermark_boost; 6787 zone_boosts[i] = zone->watermark_boost; 6788 } 6789 boosted = nr_boost_reclaim; 6790 6791 restart: 6792 set_reclaim_active(pgdat, highest_zoneidx); 6793 sc.priority = DEF_PRIORITY; 6794 do { 6795 unsigned long nr_reclaimed = sc.nr_reclaimed; 6796 bool raise_priority = true; 6797 bool balanced; 6798 bool ret; 6799 6800 sc.reclaim_idx = highest_zoneidx; 6801 6802 /* 6803 * If the number of buffer_heads exceeds the maximum allowed 6804 * then consider reclaiming from all zones. This has a dual 6805 * purpose -- on 64-bit systems it is expected that 6806 * buffer_heads are stripped during active rotation. On 32-bit 6807 * systems, highmem pages can pin lowmem memory and shrinking 6808 * buffers can relieve lowmem pressure. Reclaim may still not 6809 * go ahead if all eligible zones for the original allocation 6810 * request are balanced to avoid excessive reclaim from kswapd. 6811 */ 6812 if (buffer_heads_over_limit) { 6813 for (i = MAX_NR_ZONES - 1; i >= 0; i--) { 6814 zone = pgdat->node_zones + i; 6815 if (!managed_zone(zone)) 6816 continue; 6817 6818 sc.reclaim_idx = i; 6819 break; 6820 } 6821 } 6822 6823 /* 6824 * If the pgdat is imbalanced then ignore boosting and preserve 6825 * the watermarks for a later time and restart. Note that the 6826 * zone watermarks will be still reset at the end of balancing 6827 * on the grounds that the normal reclaim should be enough to 6828 * re-evaluate if boosting is required when kswapd next wakes. 6829 */ 6830 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx); 6831 if (!balanced && nr_boost_reclaim) { 6832 nr_boost_reclaim = 0; 6833 goto restart; 6834 } 6835 6836 /* 6837 * If boosting is not active then only reclaim if there are no 6838 * eligible zones. Note that sc.reclaim_idx is not used as 6839 * buffer_heads_over_limit may have adjusted it. 6840 */ 6841 if (!nr_boost_reclaim && balanced) 6842 goto out; 6843 6844 /* Limit the priority of boosting to avoid reclaim writeback */ 6845 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2) 6846 raise_priority = false; 6847 6848 /* 6849 * Do not writeback or swap pages for boosted reclaim. The 6850 * intent is to relieve pressure not issue sub-optimal IO 6851 * from reclaim context. If no pages are reclaimed, the 6852 * reclaim will be aborted. 6853 */ 6854 sc.may_writepage = !laptop_mode && !nr_boost_reclaim; 6855 sc.may_swap = !nr_boost_reclaim; 6856 6857 /* 6858 * Do some background aging, to give pages a chance to be 6859 * referenced before reclaiming. All pages are rotated 6860 * regardless of classzone as this is about consistent aging. 6861 */ 6862 kswapd_age_node(pgdat, &sc); 6863 6864 /* 6865 * If we're getting trouble reclaiming, start doing writepage 6866 * even in laptop mode. 6867 */ 6868 if (sc.priority < DEF_PRIORITY - 2) 6869 sc.may_writepage = 1; 6870 6871 /* Call soft limit reclaim before calling shrink_node. */ 6872 sc.nr_scanned = 0; 6873 nr_soft_scanned = 0; 6874 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order, 6875 sc.gfp_mask, &nr_soft_scanned); 6876 sc.nr_reclaimed += nr_soft_reclaimed; 6877 6878 /* 6879 * There should be no need to raise the scanning priority if 6880 * enough pages are already being scanned that that high 6881 * watermark would be met at 100% efficiency. 6882 */ 6883 if (kswapd_shrink_node(pgdat, &sc)) 6884 raise_priority = false; 6885 6886 /* 6887 * If the low watermark is met there is no need for processes 6888 * to be throttled on pfmemalloc_wait as they should not be 6889 * able to safely make forward progress. Wake them 6890 */ 6891 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 6892 allow_direct_reclaim(pgdat)) 6893 wake_up_all(&pgdat->pfmemalloc_wait); 6894 6895 /* Check if kswapd should be suspending */ 6896 __fs_reclaim_release(_THIS_IP_); 6897 ret = try_to_freeze(); 6898 __fs_reclaim_acquire(_THIS_IP_); 6899 if (ret || kthread_should_stop()) 6900 break; 6901 6902 /* 6903 * Raise priority if scanning rate is too low or there was no 6904 * progress in reclaiming pages 6905 */ 6906 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed; 6907 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed); 6908 6909 /* 6910 * If reclaim made no progress for a boost, stop reclaim as 6911 * IO cannot be queued and it could be an infinite loop in 6912 * extreme circumstances. 6913 */ 6914 if (nr_boost_reclaim && !nr_reclaimed) 6915 break; 6916 6917 if (raise_priority || !nr_reclaimed) 6918 sc.priority--; 6919 } while (sc.priority >= 1); 6920 6921 if (!sc.nr_reclaimed) 6922 pgdat->kswapd_failures++; 6923 6924 out: 6925 clear_reclaim_active(pgdat, highest_zoneidx); 6926 6927 /* If reclaim was boosted, account for the reclaim done in this pass */ 6928 if (boosted) { 6929 unsigned long flags; 6930 6931 for (i = 0; i <= highest_zoneidx; i++) { 6932 if (!zone_boosts[i]) 6933 continue; 6934 6935 /* Increments are under the zone lock */ 6936 zone = pgdat->node_zones + i; 6937 spin_lock_irqsave(&zone->lock, flags); 6938 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]); 6939 spin_unlock_irqrestore(&zone->lock, flags); 6940 } 6941 6942 /* 6943 * As there is now likely space, wakeup kcompact to defragment 6944 * pageblocks. 6945 */ 6946 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx); 6947 } 6948 6949 snapshot_refaults(NULL, pgdat); 6950 __fs_reclaim_release(_THIS_IP_); 6951 psi_memstall_leave(&pflags); 6952 set_task_reclaim_state(current, NULL); 6953 6954 /* 6955 * Return the order kswapd stopped reclaiming at as 6956 * prepare_kswapd_sleep() takes it into account. If another caller 6957 * entered the allocator slow path while kswapd was awake, order will 6958 * remain at the higher level. 6959 */ 6960 return sc.order; 6961 } 6962 6963 /* 6964 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to 6965 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is 6966 * not a valid index then either kswapd runs for first time or kswapd couldn't 6967 * sleep after previous reclaim attempt (node is still unbalanced). In that 6968 * case return the zone index of the previous kswapd reclaim cycle. 6969 */ 6970 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat, 6971 enum zone_type prev_highest_zoneidx) 6972 { 6973 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 6974 6975 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx; 6976 } 6977 6978 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order, 6979 unsigned int highest_zoneidx) 6980 { 6981 long remaining = 0; 6982 DEFINE_WAIT(wait); 6983 6984 if (freezing(current) || kthread_should_stop()) 6985 return; 6986 6987 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 6988 6989 /* 6990 * Try to sleep for a short interval. Note that kcompactd will only be 6991 * woken if it is possible to sleep for a short interval. This is 6992 * deliberate on the assumption that if reclaim cannot keep an 6993 * eligible zone balanced that it's also unlikely that compaction will 6994 * succeed. 6995 */ 6996 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 6997 /* 6998 * Compaction records what page blocks it recently failed to 6999 * isolate pages from and skips them in the future scanning. 7000 * When kswapd is going to sleep, it is reasonable to assume 7001 * that pages and compaction may succeed so reset the cache. 7002 */ 7003 reset_isolation_suitable(pgdat); 7004 7005 /* 7006 * We have freed the memory, now we should compact it to make 7007 * allocation of the requested order possible. 7008 */ 7009 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx); 7010 7011 remaining = schedule_timeout(HZ/10); 7012 7013 /* 7014 * If woken prematurely then reset kswapd_highest_zoneidx and 7015 * order. The values will either be from a wakeup request or 7016 * the previous request that slept prematurely. 7017 */ 7018 if (remaining) { 7019 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, 7020 kswapd_highest_zoneidx(pgdat, 7021 highest_zoneidx)); 7022 7023 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order) 7024 WRITE_ONCE(pgdat->kswapd_order, reclaim_order); 7025 } 7026 7027 finish_wait(&pgdat->kswapd_wait, &wait); 7028 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 7029 } 7030 7031 /* 7032 * After a short sleep, check if it was a premature sleep. If not, then 7033 * go fully to sleep until explicitly woken up. 7034 */ 7035 if (!remaining && 7036 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 7037 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 7038 7039 /* 7040 * vmstat counters are not perfectly accurate and the estimated 7041 * value for counters such as NR_FREE_PAGES can deviate from the 7042 * true value by nr_online_cpus * threshold. To avoid the zone 7043 * watermarks being breached while under pressure, we reduce the 7044 * per-cpu vmstat threshold while kswapd is awake and restore 7045 * them before going back to sleep. 7046 */ 7047 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 7048 7049 if (!kthread_should_stop()) 7050 schedule(); 7051 7052 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 7053 } else { 7054 if (remaining) 7055 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 7056 else 7057 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 7058 } 7059 finish_wait(&pgdat->kswapd_wait, &wait); 7060 } 7061 7062 /* 7063 * The background pageout daemon, started as a kernel thread 7064 * from the init process. 7065 * 7066 * This basically trickles out pages so that we have _some_ 7067 * free memory available even if there is no other activity 7068 * that frees anything up. This is needed for things like routing 7069 * etc, where we otherwise might have all activity going on in 7070 * asynchronous contexts that cannot page things out. 7071 * 7072 * If there are applications that are active memory-allocators 7073 * (most normal use), this basically shouldn't matter. 7074 */ 7075 static int kswapd(void *p) 7076 { 7077 unsigned int alloc_order, reclaim_order; 7078 unsigned int highest_zoneidx = MAX_NR_ZONES - 1; 7079 pg_data_t *pgdat = (pg_data_t *)p; 7080 struct task_struct *tsk = current; 7081 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 7082 7083 if (!cpumask_empty(cpumask)) 7084 set_cpus_allowed_ptr(tsk, cpumask); 7085 7086 /* 7087 * Tell the memory management that we're a "memory allocator", 7088 * and that if we need more memory we should get access to it 7089 * regardless (see "__alloc_pages()"). "kswapd" should 7090 * never get caught in the normal page freeing logic. 7091 * 7092 * (Kswapd normally doesn't need memory anyway, but sometimes 7093 * you need a small amount of memory in order to be able to 7094 * page out something else, and this flag essentially protects 7095 * us from recursively trying to free more memory as we're 7096 * trying to free the first piece of memory in the first place). 7097 */ 7098 tsk->flags |= PF_MEMALLOC | PF_KSWAPD; 7099 set_freezable(); 7100 7101 WRITE_ONCE(pgdat->kswapd_order, 0); 7102 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 7103 atomic_set(&pgdat->nr_writeback_throttled, 0); 7104 for ( ; ; ) { 7105 bool ret; 7106 7107 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order); 7108 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 7109 highest_zoneidx); 7110 7111 kswapd_try_sleep: 7112 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order, 7113 highest_zoneidx); 7114 7115 /* Read the new order and highest_zoneidx */ 7116 alloc_order = READ_ONCE(pgdat->kswapd_order); 7117 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 7118 highest_zoneidx); 7119 WRITE_ONCE(pgdat->kswapd_order, 0); 7120 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 7121 7122 ret = try_to_freeze(); 7123 if (kthread_should_stop()) 7124 break; 7125 7126 /* 7127 * We can speed up thawing tasks if we don't call balance_pgdat 7128 * after returning from the refrigerator 7129 */ 7130 if (ret) 7131 continue; 7132 7133 /* 7134 * Reclaim begins at the requested order but if a high-order 7135 * reclaim fails then kswapd falls back to reclaiming for 7136 * order-0. If that happens, kswapd will consider sleeping 7137 * for the order it finished reclaiming at (reclaim_order) 7138 * but kcompactd is woken to compact for the original 7139 * request (alloc_order). 7140 */ 7141 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx, 7142 alloc_order); 7143 reclaim_order = balance_pgdat(pgdat, alloc_order, 7144 highest_zoneidx); 7145 if (reclaim_order < alloc_order) 7146 goto kswapd_try_sleep; 7147 } 7148 7149 tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD); 7150 7151 return 0; 7152 } 7153 7154 /* 7155 * A zone is low on free memory or too fragmented for high-order memory. If 7156 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's 7157 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim 7158 * has failed or is not needed, still wake up kcompactd if only compaction is 7159 * needed. 7160 */ 7161 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order, 7162 enum zone_type highest_zoneidx) 7163 { 7164 pg_data_t *pgdat; 7165 enum zone_type curr_idx; 7166 7167 if (!managed_zone(zone)) 7168 return; 7169 7170 if (!cpuset_zone_allowed(zone, gfp_flags)) 7171 return; 7172 7173 pgdat = zone->zone_pgdat; 7174 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 7175 7176 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx) 7177 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx); 7178 7179 if (READ_ONCE(pgdat->kswapd_order) < order) 7180 WRITE_ONCE(pgdat->kswapd_order, order); 7181 7182 if (!waitqueue_active(&pgdat->kswapd_wait)) 7183 return; 7184 7185 /* Hopeless node, leave it to direct reclaim if possible */ 7186 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES || 7187 (pgdat_balanced(pgdat, order, highest_zoneidx) && 7188 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) { 7189 /* 7190 * There may be plenty of free memory available, but it's too 7191 * fragmented for high-order allocations. Wake up kcompactd 7192 * and rely on compaction_suitable() to determine if it's 7193 * needed. If it fails, it will defer subsequent attempts to 7194 * ratelimit its work. 7195 */ 7196 if (!(gfp_flags & __GFP_DIRECT_RECLAIM)) 7197 wakeup_kcompactd(pgdat, order, highest_zoneidx); 7198 return; 7199 } 7200 7201 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order, 7202 gfp_flags); 7203 wake_up_interruptible(&pgdat->kswapd_wait); 7204 } 7205 7206 #ifdef CONFIG_HIBERNATION 7207 /* 7208 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 7209 * freed pages. 7210 * 7211 * Rather than trying to age LRUs the aim is to preserve the overall 7212 * LRU order by reclaiming preferentially 7213 * inactive > active > active referenced > active mapped 7214 */ 7215 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 7216 { 7217 struct scan_control sc = { 7218 .nr_to_reclaim = nr_to_reclaim, 7219 .gfp_mask = GFP_HIGHUSER_MOVABLE, 7220 .reclaim_idx = MAX_NR_ZONES - 1, 7221 .priority = DEF_PRIORITY, 7222 .may_writepage = 1, 7223 .may_unmap = 1, 7224 .may_swap = 1, 7225 .hibernation_mode = 1, 7226 }; 7227 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 7228 unsigned long nr_reclaimed; 7229 unsigned int noreclaim_flag; 7230 7231 fs_reclaim_acquire(sc.gfp_mask); 7232 noreclaim_flag = memalloc_noreclaim_save(); 7233 set_task_reclaim_state(current, &sc.reclaim_state); 7234 7235 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 7236 7237 set_task_reclaim_state(current, NULL); 7238 memalloc_noreclaim_restore(noreclaim_flag); 7239 fs_reclaim_release(sc.gfp_mask); 7240 7241 return nr_reclaimed; 7242 } 7243 #endif /* CONFIG_HIBERNATION */ 7244 7245 /* 7246 * This kswapd start function will be called by init and node-hot-add. 7247 */ 7248 void __meminit kswapd_run(int nid) 7249 { 7250 pg_data_t *pgdat = NODE_DATA(nid); 7251 7252 pgdat_kswapd_lock(pgdat); 7253 if (!pgdat->kswapd) { 7254 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 7255 if (IS_ERR(pgdat->kswapd)) { 7256 /* failure at boot is fatal */ 7257 pr_err("Failed to start kswapd on node %d,ret=%ld\n", 7258 nid, PTR_ERR(pgdat->kswapd)); 7259 BUG_ON(system_state < SYSTEM_RUNNING); 7260 pgdat->kswapd = NULL; 7261 } 7262 } 7263 pgdat_kswapd_unlock(pgdat); 7264 } 7265 7266 /* 7267 * Called by memory hotplug when all memory in a node is offlined. Caller must 7268 * be holding mem_hotplug_begin/done(). 7269 */ 7270 void __meminit kswapd_stop(int nid) 7271 { 7272 pg_data_t *pgdat = NODE_DATA(nid); 7273 struct task_struct *kswapd; 7274 7275 pgdat_kswapd_lock(pgdat); 7276 kswapd = pgdat->kswapd; 7277 if (kswapd) { 7278 kthread_stop(kswapd); 7279 pgdat->kswapd = NULL; 7280 } 7281 pgdat_kswapd_unlock(pgdat); 7282 } 7283 7284 static int __init kswapd_init(void) 7285 { 7286 int nid; 7287 7288 swap_setup(); 7289 for_each_node_state(nid, N_MEMORY) 7290 kswapd_run(nid); 7291 return 0; 7292 } 7293 7294 module_init(kswapd_init) 7295 7296 #ifdef CONFIG_NUMA 7297 /* 7298 * Node reclaim mode 7299 * 7300 * If non-zero call node_reclaim when the number of free pages falls below 7301 * the watermarks. 7302 */ 7303 int node_reclaim_mode __read_mostly; 7304 7305 /* 7306 * Priority for NODE_RECLAIM. This determines the fraction of pages 7307 * of a node considered for each zone_reclaim. 4 scans 1/16th of 7308 * a zone. 7309 */ 7310 #define NODE_RECLAIM_PRIORITY 4 7311 7312 /* 7313 * Percentage of pages in a zone that must be unmapped for node_reclaim to 7314 * occur. 7315 */ 7316 int sysctl_min_unmapped_ratio = 1; 7317 7318 /* 7319 * If the number of slab pages in a zone grows beyond this percentage then 7320 * slab reclaim needs to occur. 7321 */ 7322 int sysctl_min_slab_ratio = 5; 7323 7324 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat) 7325 { 7326 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED); 7327 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) + 7328 node_page_state(pgdat, NR_ACTIVE_FILE); 7329 7330 /* 7331 * It's possible for there to be more file mapped pages than 7332 * accounted for by the pages on the file LRU lists because 7333 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 7334 */ 7335 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 7336 } 7337 7338 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 7339 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat) 7340 { 7341 unsigned long nr_pagecache_reclaimable; 7342 unsigned long delta = 0; 7343 7344 /* 7345 * If RECLAIM_UNMAP is set, then all file pages are considered 7346 * potentially reclaimable. Otherwise, we have to worry about 7347 * pages like swapcache and node_unmapped_file_pages() provides 7348 * a better estimate 7349 */ 7350 if (node_reclaim_mode & RECLAIM_UNMAP) 7351 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES); 7352 else 7353 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat); 7354 7355 /* If we can't clean pages, remove dirty pages from consideration */ 7356 if (!(node_reclaim_mode & RECLAIM_WRITE)) 7357 delta += node_page_state(pgdat, NR_FILE_DIRTY); 7358 7359 /* Watch for any possible underflows due to delta */ 7360 if (unlikely(delta > nr_pagecache_reclaimable)) 7361 delta = nr_pagecache_reclaimable; 7362 7363 return nr_pagecache_reclaimable - delta; 7364 } 7365 7366 /* 7367 * Try to free up some pages from this node through reclaim. 7368 */ 7369 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 7370 { 7371 /* Minimum pages needed in order to stay on node */ 7372 const unsigned long nr_pages = 1 << order; 7373 struct task_struct *p = current; 7374 unsigned int noreclaim_flag; 7375 struct scan_control sc = { 7376 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 7377 .gfp_mask = current_gfp_context(gfp_mask), 7378 .order = order, 7379 .priority = NODE_RECLAIM_PRIORITY, 7380 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE), 7381 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP), 7382 .may_swap = 1, 7383 .reclaim_idx = gfp_zone(gfp_mask), 7384 }; 7385 unsigned long pflags; 7386 7387 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order, 7388 sc.gfp_mask); 7389 7390 cond_resched(); 7391 psi_memstall_enter(&pflags); 7392 delayacct_freepages_start(); 7393 fs_reclaim_acquire(sc.gfp_mask); 7394 /* 7395 * We need to be able to allocate from the reserves for RECLAIM_UNMAP 7396 */ 7397 noreclaim_flag = memalloc_noreclaim_save(); 7398 set_task_reclaim_state(p, &sc.reclaim_state); 7399 7400 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages || 7401 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) { 7402 /* 7403 * Free memory by calling shrink node with increasing 7404 * priorities until we have enough memory freed. 7405 */ 7406 do { 7407 shrink_node(pgdat, &sc); 7408 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 7409 } 7410 7411 set_task_reclaim_state(p, NULL); 7412 memalloc_noreclaim_restore(noreclaim_flag); 7413 fs_reclaim_release(sc.gfp_mask); 7414 psi_memstall_leave(&pflags); 7415 delayacct_freepages_end(); 7416 7417 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed); 7418 7419 return sc.nr_reclaimed >= nr_pages; 7420 } 7421 7422 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 7423 { 7424 int ret; 7425 7426 /* 7427 * Node reclaim reclaims unmapped file backed pages and 7428 * slab pages if we are over the defined limits. 7429 * 7430 * A small portion of unmapped file backed pages is needed for 7431 * file I/O otherwise pages read by file I/O will be immediately 7432 * thrown out if the node is overallocated. So we do not reclaim 7433 * if less than a specified percentage of the node is used by 7434 * unmapped file backed pages. 7435 */ 7436 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages && 7437 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <= 7438 pgdat->min_slab_pages) 7439 return NODE_RECLAIM_FULL; 7440 7441 /* 7442 * Do not scan if the allocation should not be delayed. 7443 */ 7444 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) 7445 return NODE_RECLAIM_NOSCAN; 7446 7447 /* 7448 * Only run node reclaim on the local node or on nodes that do not 7449 * have associated processors. This will favor the local processor 7450 * over remote processors and spread off node memory allocations 7451 * as wide as possible. 7452 */ 7453 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id()) 7454 return NODE_RECLAIM_NOSCAN; 7455 7456 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags)) 7457 return NODE_RECLAIM_NOSCAN; 7458 7459 ret = __node_reclaim(pgdat, gfp_mask, order); 7460 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags); 7461 7462 if (!ret) 7463 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 7464 7465 return ret; 7466 } 7467 #endif 7468 7469 /** 7470 * check_move_unevictable_folios - Move evictable folios to appropriate zone 7471 * lru list 7472 * @fbatch: Batch of lru folios to check. 7473 * 7474 * Checks folios for evictability, if an evictable folio is in the unevictable 7475 * lru list, moves it to the appropriate evictable lru list. This function 7476 * should be only used for lru folios. 7477 */ 7478 void check_move_unevictable_folios(struct folio_batch *fbatch) 7479 { 7480 struct lruvec *lruvec = NULL; 7481 int pgscanned = 0; 7482 int pgrescued = 0; 7483 int i; 7484 7485 for (i = 0; i < fbatch->nr; i++) { 7486 struct folio *folio = fbatch->folios[i]; 7487 int nr_pages = folio_nr_pages(folio); 7488 7489 pgscanned += nr_pages; 7490 7491 /* block memcg migration while the folio moves between lrus */ 7492 if (!folio_test_clear_lru(folio)) 7493 continue; 7494 7495 lruvec = folio_lruvec_relock_irq(folio, lruvec); 7496 if (folio_evictable(folio) && folio_test_unevictable(folio)) { 7497 lruvec_del_folio(lruvec, folio); 7498 folio_clear_unevictable(folio); 7499 lruvec_add_folio(lruvec, folio); 7500 pgrescued += nr_pages; 7501 } 7502 folio_set_lru(folio); 7503 } 7504 7505 if (lruvec) { 7506 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 7507 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 7508 unlock_page_lruvec_irq(lruvec); 7509 } else if (pgscanned) { 7510 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 7511 } 7512 } 7513 EXPORT_SYMBOL_GPL(check_move_unevictable_folios); 7514