xref: /linux/mm/vmscan.c (revision 9e56ff53b4115875667760445b028357848b4748)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
4  *
5  *  Swap reorganised 29.12.95, Stephen Tweedie.
6  *  kswapd added: 7.1.96  sct
7  *  Removed kswapd_ctl limits, and swap out as many pages as needed
8  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
9  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
10  *  Multiqueue VM started 5.8.00, Rik van Riel.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/mm.h>
16 #include <linux/sched/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h>	/* for buffer_heads_over_limit */
30 #include <linux/mm_inline.h>
31 #include <linux/backing-dev.h>
32 #include <linux/rmap.h>
33 #include <linux/topology.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/compaction.h>
37 #include <linux/notifier.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/migrate.h>
43 #include <linux/delayacct.h>
44 #include <linux/sysctl.h>
45 #include <linux/memory-tiers.h>
46 #include <linux/oom.h>
47 #include <linux/pagevec.h>
48 #include <linux/prefetch.h>
49 #include <linux/printk.h>
50 #include <linux/dax.h>
51 #include <linux/psi.h>
52 #include <linux/pagewalk.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/ctype.h>
55 #include <linux/debugfs.h>
56 #include <linux/khugepaged.h>
57 #include <linux/rculist_nulls.h>
58 #include <linux/random.h>
59 
60 #include <asm/tlbflush.h>
61 #include <asm/div64.h>
62 
63 #include <linux/swapops.h>
64 #include <linux/balloon_compaction.h>
65 #include <linux/sched/sysctl.h>
66 
67 #include "internal.h"
68 #include "swap.h"
69 
70 #define CREATE_TRACE_POINTS
71 #include <trace/events/vmscan.h>
72 
73 struct scan_control {
74 	/* How many pages shrink_list() should reclaim */
75 	unsigned long nr_to_reclaim;
76 
77 	/*
78 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
79 	 * are scanned.
80 	 */
81 	nodemask_t	*nodemask;
82 
83 	/*
84 	 * The memory cgroup that hit its limit and as a result is the
85 	 * primary target of this reclaim invocation.
86 	 */
87 	struct mem_cgroup *target_mem_cgroup;
88 
89 	/*
90 	 * Scan pressure balancing between anon and file LRUs
91 	 */
92 	unsigned long	anon_cost;
93 	unsigned long	file_cost;
94 
95 	/* Can active folios be deactivated as part of reclaim? */
96 #define DEACTIVATE_ANON 1
97 #define DEACTIVATE_FILE 2
98 	unsigned int may_deactivate:2;
99 	unsigned int force_deactivate:1;
100 	unsigned int skipped_deactivate:1;
101 
102 	/* Writepage batching in laptop mode; RECLAIM_WRITE */
103 	unsigned int may_writepage:1;
104 
105 	/* Can mapped folios be reclaimed? */
106 	unsigned int may_unmap:1;
107 
108 	/* Can folios be swapped as part of reclaim? */
109 	unsigned int may_swap:1;
110 
111 	/* Proactive reclaim invoked by userspace through memory.reclaim */
112 	unsigned int proactive:1;
113 
114 	/*
115 	 * Cgroup memory below memory.low is protected as long as we
116 	 * don't threaten to OOM. If any cgroup is reclaimed at
117 	 * reduced force or passed over entirely due to its memory.low
118 	 * setting (memcg_low_skipped), and nothing is reclaimed as a
119 	 * result, then go back for one more cycle that reclaims the protected
120 	 * memory (memcg_low_reclaim) to avert OOM.
121 	 */
122 	unsigned int memcg_low_reclaim:1;
123 	unsigned int memcg_low_skipped:1;
124 
125 	unsigned int hibernation_mode:1;
126 
127 	/* One of the zones is ready for compaction */
128 	unsigned int compaction_ready:1;
129 
130 	/* There is easily reclaimable cold cache in the current node */
131 	unsigned int cache_trim_mode:1;
132 
133 	/* The file folios on the current node are dangerously low */
134 	unsigned int file_is_tiny:1;
135 
136 	/* Always discard instead of demoting to lower tier memory */
137 	unsigned int no_demotion:1;
138 
139 	/* Allocation order */
140 	s8 order;
141 
142 	/* Scan (total_size >> priority) pages at once */
143 	s8 priority;
144 
145 	/* The highest zone to isolate folios for reclaim from */
146 	s8 reclaim_idx;
147 
148 	/* This context's GFP mask */
149 	gfp_t gfp_mask;
150 
151 	/* Incremented by the number of inactive pages that were scanned */
152 	unsigned long nr_scanned;
153 
154 	/* Number of pages freed so far during a call to shrink_zones() */
155 	unsigned long nr_reclaimed;
156 
157 	struct {
158 		unsigned int dirty;
159 		unsigned int unqueued_dirty;
160 		unsigned int congested;
161 		unsigned int writeback;
162 		unsigned int immediate;
163 		unsigned int file_taken;
164 		unsigned int taken;
165 	} nr;
166 
167 	/* for recording the reclaimed slab by now */
168 	struct reclaim_state reclaim_state;
169 };
170 
171 #ifdef ARCH_HAS_PREFETCHW
172 #define prefetchw_prev_lru_folio(_folio, _base, _field)			\
173 	do {								\
174 		if ((_folio)->lru.prev != _base) {			\
175 			struct folio *prev;				\
176 									\
177 			prev = lru_to_folio(&(_folio->lru));		\
178 			prefetchw(&prev->_field);			\
179 		}							\
180 	} while (0)
181 #else
182 #define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0)
183 #endif
184 
185 /*
186  * From 0 .. 200.  Higher means more swappy.
187  */
188 int vm_swappiness = 60;
189 
190 #ifdef CONFIG_MEMCG
191 
192 /* Returns true for reclaim through cgroup limits or cgroup interfaces. */
193 static bool cgroup_reclaim(struct scan_control *sc)
194 {
195 	return sc->target_mem_cgroup;
196 }
197 
198 /*
199  * Returns true for reclaim on the root cgroup. This is true for direct
200  * allocator reclaim and reclaim through cgroup interfaces on the root cgroup.
201  */
202 static bool root_reclaim(struct scan_control *sc)
203 {
204 	return !sc->target_mem_cgroup || mem_cgroup_is_root(sc->target_mem_cgroup);
205 }
206 
207 /**
208  * writeback_throttling_sane - is the usual dirty throttling mechanism available?
209  * @sc: scan_control in question
210  *
211  * The normal page dirty throttling mechanism in balance_dirty_pages() is
212  * completely broken with the legacy memcg and direct stalling in
213  * shrink_folio_list() is used for throttling instead, which lacks all the
214  * niceties such as fairness, adaptive pausing, bandwidth proportional
215  * allocation and configurability.
216  *
217  * This function tests whether the vmscan currently in progress can assume
218  * that the normal dirty throttling mechanism is operational.
219  */
220 static bool writeback_throttling_sane(struct scan_control *sc)
221 {
222 	if (!cgroup_reclaim(sc))
223 		return true;
224 #ifdef CONFIG_CGROUP_WRITEBACK
225 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
226 		return true;
227 #endif
228 	return false;
229 }
230 #else
231 static bool cgroup_reclaim(struct scan_control *sc)
232 {
233 	return false;
234 }
235 
236 static bool root_reclaim(struct scan_control *sc)
237 {
238 	return true;
239 }
240 
241 static bool writeback_throttling_sane(struct scan_control *sc)
242 {
243 	return true;
244 }
245 #endif
246 
247 static void set_task_reclaim_state(struct task_struct *task,
248 				   struct reclaim_state *rs)
249 {
250 	/* Check for an overwrite */
251 	WARN_ON_ONCE(rs && task->reclaim_state);
252 
253 	/* Check for the nulling of an already-nulled member */
254 	WARN_ON_ONCE(!rs && !task->reclaim_state);
255 
256 	task->reclaim_state = rs;
257 }
258 
259 /*
260  * flush_reclaim_state(): add pages reclaimed outside of LRU-based reclaim to
261  * scan_control->nr_reclaimed.
262  */
263 static void flush_reclaim_state(struct scan_control *sc)
264 {
265 	/*
266 	 * Currently, reclaim_state->reclaimed includes three types of pages
267 	 * freed outside of vmscan:
268 	 * (1) Slab pages.
269 	 * (2) Clean file pages from pruned inodes (on highmem systems).
270 	 * (3) XFS freed buffer pages.
271 	 *
272 	 * For all of these cases, we cannot universally link the pages to a
273 	 * single memcg. For example, a memcg-aware shrinker can free one object
274 	 * charged to the target memcg, causing an entire page to be freed.
275 	 * If we count the entire page as reclaimed from the memcg, we end up
276 	 * overestimating the reclaimed amount (potentially under-reclaiming).
277 	 *
278 	 * Only count such pages for global reclaim to prevent under-reclaiming
279 	 * from the target memcg; preventing unnecessary retries during memcg
280 	 * charging and false positives from proactive reclaim.
281 	 *
282 	 * For uncommon cases where the freed pages were actually mostly
283 	 * charged to the target memcg, we end up underestimating the reclaimed
284 	 * amount. This should be fine. The freed pages will be uncharged
285 	 * anyway, even if they are not counted here properly, and we will be
286 	 * able to make forward progress in charging (which is usually in a
287 	 * retry loop).
288 	 *
289 	 * We can go one step further, and report the uncharged objcg pages in
290 	 * memcg reclaim, to make reporting more accurate and reduce
291 	 * underestimation, but it's probably not worth the complexity for now.
292 	 */
293 	if (current->reclaim_state && root_reclaim(sc)) {
294 		sc->nr_reclaimed += current->reclaim_state->reclaimed;
295 		current->reclaim_state->reclaimed = 0;
296 	}
297 }
298 
299 static bool can_demote(int nid, struct scan_control *sc)
300 {
301 	if (!numa_demotion_enabled)
302 		return false;
303 	if (sc && sc->no_demotion)
304 		return false;
305 	if (next_demotion_node(nid) == NUMA_NO_NODE)
306 		return false;
307 
308 	return true;
309 }
310 
311 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
312 					  int nid,
313 					  struct scan_control *sc)
314 {
315 	if (memcg == NULL) {
316 		/*
317 		 * For non-memcg reclaim, is there
318 		 * space in any swap device?
319 		 */
320 		if (get_nr_swap_pages() > 0)
321 			return true;
322 	} else {
323 		/* Is the memcg below its swap limit? */
324 		if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
325 			return true;
326 	}
327 
328 	/*
329 	 * The page can not be swapped.
330 	 *
331 	 * Can it be reclaimed from this node via demotion?
332 	 */
333 	return can_demote(nid, sc);
334 }
335 
336 /*
337  * This misses isolated folios which are not accounted for to save counters.
338  * As the data only determines if reclaim or compaction continues, it is
339  * not expected that isolated folios will be a dominating factor.
340  */
341 unsigned long zone_reclaimable_pages(struct zone *zone)
342 {
343 	unsigned long nr;
344 
345 	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
346 		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
347 	if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
348 		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
349 			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
350 
351 	return nr;
352 }
353 
354 /**
355  * lruvec_lru_size -  Returns the number of pages on the given LRU list.
356  * @lruvec: lru vector
357  * @lru: lru to use
358  * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list)
359  */
360 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
361 				     int zone_idx)
362 {
363 	unsigned long size = 0;
364 	int zid;
365 
366 	for (zid = 0; zid <= zone_idx; zid++) {
367 		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
368 
369 		if (!managed_zone(zone))
370 			continue;
371 
372 		if (!mem_cgroup_disabled())
373 			size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
374 		else
375 			size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
376 	}
377 	return size;
378 }
379 
380 static unsigned long drop_slab_node(int nid)
381 {
382 	unsigned long freed = 0;
383 	struct mem_cgroup *memcg = NULL;
384 
385 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
386 	do {
387 		freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
388 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
389 
390 	return freed;
391 }
392 
393 void drop_slab(void)
394 {
395 	int nid;
396 	int shift = 0;
397 	unsigned long freed;
398 
399 	do {
400 		freed = 0;
401 		for_each_online_node(nid) {
402 			if (fatal_signal_pending(current))
403 				return;
404 
405 			freed += drop_slab_node(nid);
406 		}
407 	} while ((freed >> shift++) > 1);
408 }
409 
410 static int reclaimer_offset(void)
411 {
412 	BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD !=
413 			PGDEMOTE_DIRECT - PGDEMOTE_KSWAPD);
414 	BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD !=
415 			PGDEMOTE_KHUGEPAGED - PGDEMOTE_KSWAPD);
416 	BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD !=
417 			PGSCAN_DIRECT - PGSCAN_KSWAPD);
418 	BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD !=
419 			PGSCAN_KHUGEPAGED - PGSCAN_KSWAPD);
420 
421 	if (current_is_kswapd())
422 		return 0;
423 	if (current_is_khugepaged())
424 		return PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD;
425 	return PGSTEAL_DIRECT - PGSTEAL_KSWAPD;
426 }
427 
428 static inline int is_page_cache_freeable(struct folio *folio)
429 {
430 	/*
431 	 * A freeable page cache folio is referenced only by the caller
432 	 * that isolated the folio, the page cache and optional filesystem
433 	 * private data at folio->private.
434 	 */
435 	return folio_ref_count(folio) - folio_test_private(folio) ==
436 		1 + folio_nr_pages(folio);
437 }
438 
439 /*
440  * We detected a synchronous write error writing a folio out.  Probably
441  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
442  * fsync(), msync() or close().
443  *
444  * The tricky part is that after writepage we cannot touch the mapping: nothing
445  * prevents it from being freed up.  But we have a ref on the folio and once
446  * that folio is locked, the mapping is pinned.
447  *
448  * We're allowed to run sleeping folio_lock() here because we know the caller has
449  * __GFP_FS.
450  */
451 static void handle_write_error(struct address_space *mapping,
452 				struct folio *folio, int error)
453 {
454 	folio_lock(folio);
455 	if (folio_mapping(folio) == mapping)
456 		mapping_set_error(mapping, error);
457 	folio_unlock(folio);
458 }
459 
460 static bool skip_throttle_noprogress(pg_data_t *pgdat)
461 {
462 	int reclaimable = 0, write_pending = 0;
463 	int i;
464 
465 	/*
466 	 * If kswapd is disabled, reschedule if necessary but do not
467 	 * throttle as the system is likely near OOM.
468 	 */
469 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
470 		return true;
471 
472 	/*
473 	 * If there are a lot of dirty/writeback folios then do not
474 	 * throttle as throttling will occur when the folios cycle
475 	 * towards the end of the LRU if still under writeback.
476 	 */
477 	for (i = 0; i < MAX_NR_ZONES; i++) {
478 		struct zone *zone = pgdat->node_zones + i;
479 
480 		if (!managed_zone(zone))
481 			continue;
482 
483 		reclaimable += zone_reclaimable_pages(zone);
484 		write_pending += zone_page_state_snapshot(zone,
485 						  NR_ZONE_WRITE_PENDING);
486 	}
487 	if (2 * write_pending <= reclaimable)
488 		return true;
489 
490 	return false;
491 }
492 
493 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
494 {
495 	wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason];
496 	long timeout, ret;
497 	DEFINE_WAIT(wait);
498 
499 	/*
500 	 * Do not throttle user workers, kthreads other than kswapd or
501 	 * workqueues. They may be required for reclaim to make
502 	 * forward progress (e.g. journalling workqueues or kthreads).
503 	 */
504 	if (!current_is_kswapd() &&
505 	    current->flags & (PF_USER_WORKER|PF_KTHREAD)) {
506 		cond_resched();
507 		return;
508 	}
509 
510 	/*
511 	 * These figures are pulled out of thin air.
512 	 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
513 	 * parallel reclaimers which is a short-lived event so the timeout is
514 	 * short. Failing to make progress or waiting on writeback are
515 	 * potentially long-lived events so use a longer timeout. This is shaky
516 	 * logic as a failure to make progress could be due to anything from
517 	 * writeback to a slow device to excessive referenced folios at the tail
518 	 * of the inactive LRU.
519 	 */
520 	switch(reason) {
521 	case VMSCAN_THROTTLE_WRITEBACK:
522 		timeout = HZ/10;
523 
524 		if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) {
525 			WRITE_ONCE(pgdat->nr_reclaim_start,
526 				node_page_state(pgdat, NR_THROTTLED_WRITTEN));
527 		}
528 
529 		break;
530 	case VMSCAN_THROTTLE_CONGESTED:
531 		fallthrough;
532 	case VMSCAN_THROTTLE_NOPROGRESS:
533 		if (skip_throttle_noprogress(pgdat)) {
534 			cond_resched();
535 			return;
536 		}
537 
538 		timeout = 1;
539 
540 		break;
541 	case VMSCAN_THROTTLE_ISOLATED:
542 		timeout = HZ/50;
543 		break;
544 	default:
545 		WARN_ON_ONCE(1);
546 		timeout = HZ;
547 		break;
548 	}
549 
550 	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
551 	ret = schedule_timeout(timeout);
552 	finish_wait(wqh, &wait);
553 
554 	if (reason == VMSCAN_THROTTLE_WRITEBACK)
555 		atomic_dec(&pgdat->nr_writeback_throttled);
556 
557 	trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout),
558 				jiffies_to_usecs(timeout - ret),
559 				reason);
560 }
561 
562 /*
563  * Account for folios written if tasks are throttled waiting on dirty
564  * folios to clean. If enough folios have been cleaned since throttling
565  * started then wakeup the throttled tasks.
566  */
567 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
568 							int nr_throttled)
569 {
570 	unsigned long nr_written;
571 
572 	node_stat_add_folio(folio, NR_THROTTLED_WRITTEN);
573 
574 	/*
575 	 * This is an inaccurate read as the per-cpu deltas may not
576 	 * be synchronised. However, given that the system is
577 	 * writeback throttled, it is not worth taking the penalty
578 	 * of getting an accurate count. At worst, the throttle
579 	 * timeout guarantees forward progress.
580 	 */
581 	nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) -
582 		READ_ONCE(pgdat->nr_reclaim_start);
583 
584 	if (nr_written > SWAP_CLUSTER_MAX * nr_throttled)
585 		wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]);
586 }
587 
588 /* possible outcome of pageout() */
589 typedef enum {
590 	/* failed to write folio out, folio is locked */
591 	PAGE_KEEP,
592 	/* move folio to the active list, folio is locked */
593 	PAGE_ACTIVATE,
594 	/* folio has been sent to the disk successfully, folio is unlocked */
595 	PAGE_SUCCESS,
596 	/* folio is clean and locked */
597 	PAGE_CLEAN,
598 } pageout_t;
599 
600 /*
601  * pageout is called by shrink_folio_list() for each dirty folio.
602  * Calls ->writepage().
603  */
604 static pageout_t pageout(struct folio *folio, struct address_space *mapping,
605 			 struct swap_iocb **plug)
606 {
607 	/*
608 	 * If the folio is dirty, only perform writeback if that write
609 	 * will be non-blocking.  To prevent this allocation from being
610 	 * stalled by pagecache activity.  But note that there may be
611 	 * stalls if we need to run get_block().  We could test
612 	 * PagePrivate for that.
613 	 *
614 	 * If this process is currently in __generic_file_write_iter() against
615 	 * this folio's queue, we can perform writeback even if that
616 	 * will block.
617 	 *
618 	 * If the folio is swapcache, write it back even if that would
619 	 * block, for some throttling. This happens by accident, because
620 	 * swap_backing_dev_info is bust: it doesn't reflect the
621 	 * congestion state of the swapdevs.  Easy to fix, if needed.
622 	 */
623 	if (!is_page_cache_freeable(folio))
624 		return PAGE_KEEP;
625 	if (!mapping) {
626 		/*
627 		 * Some data journaling orphaned folios can have
628 		 * folio->mapping == NULL while being dirty with clean buffers.
629 		 */
630 		if (folio_test_private(folio)) {
631 			if (try_to_free_buffers(folio)) {
632 				folio_clear_dirty(folio);
633 				pr_info("%s: orphaned folio\n", __func__);
634 				return PAGE_CLEAN;
635 			}
636 		}
637 		return PAGE_KEEP;
638 	}
639 	if (mapping->a_ops->writepage == NULL)
640 		return PAGE_ACTIVATE;
641 
642 	if (folio_clear_dirty_for_io(folio)) {
643 		int res;
644 		struct writeback_control wbc = {
645 			.sync_mode = WB_SYNC_NONE,
646 			.nr_to_write = SWAP_CLUSTER_MAX,
647 			.range_start = 0,
648 			.range_end = LLONG_MAX,
649 			.for_reclaim = 1,
650 			.swap_plug = plug,
651 		};
652 
653 		folio_set_reclaim(folio);
654 		res = mapping->a_ops->writepage(&folio->page, &wbc);
655 		if (res < 0)
656 			handle_write_error(mapping, folio, res);
657 		if (res == AOP_WRITEPAGE_ACTIVATE) {
658 			folio_clear_reclaim(folio);
659 			return PAGE_ACTIVATE;
660 		}
661 
662 		if (!folio_test_writeback(folio)) {
663 			/* synchronous write or broken a_ops? */
664 			folio_clear_reclaim(folio);
665 		}
666 		trace_mm_vmscan_write_folio(folio);
667 		node_stat_add_folio(folio, NR_VMSCAN_WRITE);
668 		return PAGE_SUCCESS;
669 	}
670 
671 	return PAGE_CLEAN;
672 }
673 
674 /*
675  * Same as remove_mapping, but if the folio is removed from the mapping, it
676  * gets returned with a refcount of 0.
677  */
678 static int __remove_mapping(struct address_space *mapping, struct folio *folio,
679 			    bool reclaimed, struct mem_cgroup *target_memcg)
680 {
681 	int refcount;
682 	void *shadow = NULL;
683 
684 	BUG_ON(!folio_test_locked(folio));
685 	BUG_ON(mapping != folio_mapping(folio));
686 
687 	if (!folio_test_swapcache(folio))
688 		spin_lock(&mapping->host->i_lock);
689 	xa_lock_irq(&mapping->i_pages);
690 	/*
691 	 * The non racy check for a busy folio.
692 	 *
693 	 * Must be careful with the order of the tests. When someone has
694 	 * a ref to the folio, it may be possible that they dirty it then
695 	 * drop the reference. So if the dirty flag is tested before the
696 	 * refcount here, then the following race may occur:
697 	 *
698 	 * get_user_pages(&page);
699 	 * [user mapping goes away]
700 	 * write_to(page);
701 	 *				!folio_test_dirty(folio)    [good]
702 	 * folio_set_dirty(folio);
703 	 * folio_put(folio);
704 	 *				!refcount(folio)   [good, discard it]
705 	 *
706 	 * [oops, our write_to data is lost]
707 	 *
708 	 * Reversing the order of the tests ensures such a situation cannot
709 	 * escape unnoticed. The smp_rmb is needed to ensure the folio->flags
710 	 * load is not satisfied before that of folio->_refcount.
711 	 *
712 	 * Note that if the dirty flag is always set via folio_mark_dirty,
713 	 * and thus under the i_pages lock, then this ordering is not required.
714 	 */
715 	refcount = 1 + folio_nr_pages(folio);
716 	if (!folio_ref_freeze(folio, refcount))
717 		goto cannot_free;
718 	/* note: atomic_cmpxchg in folio_ref_freeze provides the smp_rmb */
719 	if (unlikely(folio_test_dirty(folio))) {
720 		folio_ref_unfreeze(folio, refcount);
721 		goto cannot_free;
722 	}
723 
724 	if (folio_test_swapcache(folio)) {
725 		swp_entry_t swap = folio->swap;
726 
727 		if (reclaimed && !mapping_exiting(mapping))
728 			shadow = workingset_eviction(folio, target_memcg);
729 		__delete_from_swap_cache(folio, swap, shadow);
730 		mem_cgroup_swapout(folio, swap);
731 		xa_unlock_irq(&mapping->i_pages);
732 		put_swap_folio(folio, swap);
733 	} else {
734 		void (*free_folio)(struct folio *);
735 
736 		free_folio = mapping->a_ops->free_folio;
737 		/*
738 		 * Remember a shadow entry for reclaimed file cache in
739 		 * order to detect refaults, thus thrashing, later on.
740 		 *
741 		 * But don't store shadows in an address space that is
742 		 * already exiting.  This is not just an optimization,
743 		 * inode reclaim needs to empty out the radix tree or
744 		 * the nodes are lost.  Don't plant shadows behind its
745 		 * back.
746 		 *
747 		 * We also don't store shadows for DAX mappings because the
748 		 * only page cache folios found in these are zero pages
749 		 * covering holes, and because we don't want to mix DAX
750 		 * exceptional entries and shadow exceptional entries in the
751 		 * same address_space.
752 		 */
753 		if (reclaimed && folio_is_file_lru(folio) &&
754 		    !mapping_exiting(mapping) && !dax_mapping(mapping))
755 			shadow = workingset_eviction(folio, target_memcg);
756 		__filemap_remove_folio(folio, shadow);
757 		xa_unlock_irq(&mapping->i_pages);
758 		if (mapping_shrinkable(mapping))
759 			inode_add_lru(mapping->host);
760 		spin_unlock(&mapping->host->i_lock);
761 
762 		if (free_folio)
763 			free_folio(folio);
764 	}
765 
766 	return 1;
767 
768 cannot_free:
769 	xa_unlock_irq(&mapping->i_pages);
770 	if (!folio_test_swapcache(folio))
771 		spin_unlock(&mapping->host->i_lock);
772 	return 0;
773 }
774 
775 /**
776  * remove_mapping() - Attempt to remove a folio from its mapping.
777  * @mapping: The address space.
778  * @folio: The folio to remove.
779  *
780  * If the folio is dirty, under writeback or if someone else has a ref
781  * on it, removal will fail.
782  * Return: The number of pages removed from the mapping.  0 if the folio
783  * could not be removed.
784  * Context: The caller should have a single refcount on the folio and
785  * hold its lock.
786  */
787 long remove_mapping(struct address_space *mapping, struct folio *folio)
788 {
789 	if (__remove_mapping(mapping, folio, false, NULL)) {
790 		/*
791 		 * Unfreezing the refcount with 1 effectively
792 		 * drops the pagecache ref for us without requiring another
793 		 * atomic operation.
794 		 */
795 		folio_ref_unfreeze(folio, 1);
796 		return folio_nr_pages(folio);
797 	}
798 	return 0;
799 }
800 
801 /**
802  * folio_putback_lru - Put previously isolated folio onto appropriate LRU list.
803  * @folio: Folio to be returned to an LRU list.
804  *
805  * Add previously isolated @folio to appropriate LRU list.
806  * The folio may still be unevictable for other reasons.
807  *
808  * Context: lru_lock must not be held, interrupts must be enabled.
809  */
810 void folio_putback_lru(struct folio *folio)
811 {
812 	folio_add_lru(folio);
813 	folio_put(folio);		/* drop ref from isolate */
814 }
815 
816 enum folio_references {
817 	FOLIOREF_RECLAIM,
818 	FOLIOREF_RECLAIM_CLEAN,
819 	FOLIOREF_KEEP,
820 	FOLIOREF_ACTIVATE,
821 };
822 
823 static enum folio_references folio_check_references(struct folio *folio,
824 						  struct scan_control *sc)
825 {
826 	int referenced_ptes, referenced_folio;
827 	unsigned long vm_flags;
828 
829 	referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup,
830 					   &vm_flags);
831 	referenced_folio = folio_test_clear_referenced(folio);
832 
833 	/*
834 	 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma.
835 	 * Let the folio, now marked Mlocked, be moved to the unevictable list.
836 	 */
837 	if (vm_flags & VM_LOCKED)
838 		return FOLIOREF_ACTIVATE;
839 
840 	/* rmap lock contention: rotate */
841 	if (referenced_ptes == -1)
842 		return FOLIOREF_KEEP;
843 
844 	if (referenced_ptes) {
845 		/*
846 		 * All mapped folios start out with page table
847 		 * references from the instantiating fault, so we need
848 		 * to look twice if a mapped file/anon folio is used more
849 		 * than once.
850 		 *
851 		 * Mark it and spare it for another trip around the
852 		 * inactive list.  Another page table reference will
853 		 * lead to its activation.
854 		 *
855 		 * Note: the mark is set for activated folios as well
856 		 * so that recently deactivated but used folios are
857 		 * quickly recovered.
858 		 */
859 		folio_set_referenced(folio);
860 
861 		if (referenced_folio || referenced_ptes > 1)
862 			return FOLIOREF_ACTIVATE;
863 
864 		/*
865 		 * Activate file-backed executable folios after first usage.
866 		 */
867 		if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio))
868 			return FOLIOREF_ACTIVATE;
869 
870 		return FOLIOREF_KEEP;
871 	}
872 
873 	/* Reclaim if clean, defer dirty folios to writeback */
874 	if (referenced_folio && folio_is_file_lru(folio))
875 		return FOLIOREF_RECLAIM_CLEAN;
876 
877 	return FOLIOREF_RECLAIM;
878 }
879 
880 /* Check if a folio is dirty or under writeback */
881 static void folio_check_dirty_writeback(struct folio *folio,
882 				       bool *dirty, bool *writeback)
883 {
884 	struct address_space *mapping;
885 
886 	/*
887 	 * Anonymous folios are not handled by flushers and must be written
888 	 * from reclaim context. Do not stall reclaim based on them.
889 	 * MADV_FREE anonymous folios are put into inactive file list too.
890 	 * They could be mistakenly treated as file lru. So further anon
891 	 * test is needed.
892 	 */
893 	if (!folio_is_file_lru(folio) ||
894 	    (folio_test_anon(folio) && !folio_test_swapbacked(folio))) {
895 		*dirty = false;
896 		*writeback = false;
897 		return;
898 	}
899 
900 	/* By default assume that the folio flags are accurate */
901 	*dirty = folio_test_dirty(folio);
902 	*writeback = folio_test_writeback(folio);
903 
904 	/* Verify dirty/writeback state if the filesystem supports it */
905 	if (!folio_test_private(folio))
906 		return;
907 
908 	mapping = folio_mapping(folio);
909 	if (mapping && mapping->a_ops->is_dirty_writeback)
910 		mapping->a_ops->is_dirty_writeback(folio, dirty, writeback);
911 }
912 
913 static struct folio *alloc_demote_folio(struct folio *src,
914 		unsigned long private)
915 {
916 	struct folio *dst;
917 	nodemask_t *allowed_mask;
918 	struct migration_target_control *mtc;
919 
920 	mtc = (struct migration_target_control *)private;
921 
922 	allowed_mask = mtc->nmask;
923 	/*
924 	 * make sure we allocate from the target node first also trying to
925 	 * demote or reclaim pages from the target node via kswapd if we are
926 	 * low on free memory on target node. If we don't do this and if
927 	 * we have free memory on the slower(lower) memtier, we would start
928 	 * allocating pages from slower(lower) memory tiers without even forcing
929 	 * a demotion of cold pages from the target memtier. This can result
930 	 * in the kernel placing hot pages in slower(lower) memory tiers.
931 	 */
932 	mtc->nmask = NULL;
933 	mtc->gfp_mask |= __GFP_THISNODE;
934 	dst = alloc_migration_target(src, (unsigned long)mtc);
935 	if (dst)
936 		return dst;
937 
938 	mtc->gfp_mask &= ~__GFP_THISNODE;
939 	mtc->nmask = allowed_mask;
940 
941 	return alloc_migration_target(src, (unsigned long)mtc);
942 }
943 
944 /*
945  * Take folios on @demote_folios and attempt to demote them to another node.
946  * Folios which are not demoted are left on @demote_folios.
947  */
948 static unsigned int demote_folio_list(struct list_head *demote_folios,
949 				     struct pglist_data *pgdat)
950 {
951 	int target_nid = next_demotion_node(pgdat->node_id);
952 	unsigned int nr_succeeded;
953 	nodemask_t allowed_mask;
954 
955 	struct migration_target_control mtc = {
956 		/*
957 		 * Allocate from 'node', or fail quickly and quietly.
958 		 * When this happens, 'page' will likely just be discarded
959 		 * instead of migrated.
960 		 */
961 		.gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | __GFP_NOWARN |
962 			__GFP_NOMEMALLOC | GFP_NOWAIT,
963 		.nid = target_nid,
964 		.nmask = &allowed_mask
965 	};
966 
967 	if (list_empty(demote_folios))
968 		return 0;
969 
970 	if (target_nid == NUMA_NO_NODE)
971 		return 0;
972 
973 	node_get_allowed_targets(pgdat, &allowed_mask);
974 
975 	/* Demotion ignores all cpuset and mempolicy settings */
976 	migrate_pages(demote_folios, alloc_demote_folio, NULL,
977 		      (unsigned long)&mtc, MIGRATE_ASYNC, MR_DEMOTION,
978 		      &nr_succeeded);
979 
980 	mod_node_page_state(pgdat, PGDEMOTE_KSWAPD + reclaimer_offset(),
981 			    nr_succeeded);
982 
983 	return nr_succeeded;
984 }
985 
986 static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask)
987 {
988 	if (gfp_mask & __GFP_FS)
989 		return true;
990 	if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO))
991 		return false;
992 	/*
993 	 * We can "enter_fs" for swap-cache with only __GFP_IO
994 	 * providing this isn't SWP_FS_OPS.
995 	 * ->flags can be updated non-atomicially (scan_swap_map_slots),
996 	 * but that will never affect SWP_FS_OPS, so the data_race
997 	 * is safe.
998 	 */
999 	return !data_race(folio_swap_flags(folio) & SWP_FS_OPS);
1000 }
1001 
1002 /*
1003  * shrink_folio_list() returns the number of reclaimed pages
1004  */
1005 static unsigned int shrink_folio_list(struct list_head *folio_list,
1006 		struct pglist_data *pgdat, struct scan_control *sc,
1007 		struct reclaim_stat *stat, bool ignore_references)
1008 {
1009 	LIST_HEAD(ret_folios);
1010 	LIST_HEAD(free_folios);
1011 	LIST_HEAD(demote_folios);
1012 	unsigned int nr_reclaimed = 0;
1013 	unsigned int pgactivate = 0;
1014 	bool do_demote_pass;
1015 	struct swap_iocb *plug = NULL;
1016 
1017 	memset(stat, 0, sizeof(*stat));
1018 	cond_resched();
1019 	do_demote_pass = can_demote(pgdat->node_id, sc);
1020 
1021 retry:
1022 	while (!list_empty(folio_list)) {
1023 		struct address_space *mapping;
1024 		struct folio *folio;
1025 		enum folio_references references = FOLIOREF_RECLAIM;
1026 		bool dirty, writeback;
1027 		unsigned int nr_pages;
1028 
1029 		cond_resched();
1030 
1031 		folio = lru_to_folio(folio_list);
1032 		list_del(&folio->lru);
1033 
1034 		if (!folio_trylock(folio))
1035 			goto keep;
1036 
1037 		VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1038 
1039 		nr_pages = folio_nr_pages(folio);
1040 
1041 		/* Account the number of base pages */
1042 		sc->nr_scanned += nr_pages;
1043 
1044 		if (unlikely(!folio_evictable(folio)))
1045 			goto activate_locked;
1046 
1047 		if (!sc->may_unmap && folio_mapped(folio))
1048 			goto keep_locked;
1049 
1050 		/* folio_update_gen() tried to promote this page? */
1051 		if (lru_gen_enabled() && !ignore_references &&
1052 		    folio_mapped(folio) && folio_test_referenced(folio))
1053 			goto keep_locked;
1054 
1055 		/*
1056 		 * The number of dirty pages determines if a node is marked
1057 		 * reclaim_congested. kswapd will stall and start writing
1058 		 * folios if the tail of the LRU is all dirty unqueued folios.
1059 		 */
1060 		folio_check_dirty_writeback(folio, &dirty, &writeback);
1061 		if (dirty || writeback)
1062 			stat->nr_dirty += nr_pages;
1063 
1064 		if (dirty && !writeback)
1065 			stat->nr_unqueued_dirty += nr_pages;
1066 
1067 		/*
1068 		 * Treat this folio as congested if folios are cycling
1069 		 * through the LRU so quickly that the folios marked
1070 		 * for immediate reclaim are making it to the end of
1071 		 * the LRU a second time.
1072 		 */
1073 		if (writeback && folio_test_reclaim(folio))
1074 			stat->nr_congested += nr_pages;
1075 
1076 		/*
1077 		 * If a folio at the tail of the LRU is under writeback, there
1078 		 * are three cases to consider.
1079 		 *
1080 		 * 1) If reclaim is encountering an excessive number
1081 		 *    of folios under writeback and this folio has both
1082 		 *    the writeback and reclaim flags set, then it
1083 		 *    indicates that folios are being queued for I/O but
1084 		 *    are being recycled through the LRU before the I/O
1085 		 *    can complete. Waiting on the folio itself risks an
1086 		 *    indefinite stall if it is impossible to writeback
1087 		 *    the folio due to I/O error or disconnected storage
1088 		 *    so instead note that the LRU is being scanned too
1089 		 *    quickly and the caller can stall after the folio
1090 		 *    list has been processed.
1091 		 *
1092 		 * 2) Global or new memcg reclaim encounters a folio that is
1093 		 *    not marked for immediate reclaim, or the caller does not
1094 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1095 		 *    not to fs). In this case mark the folio for immediate
1096 		 *    reclaim and continue scanning.
1097 		 *
1098 		 *    Require may_enter_fs() because we would wait on fs, which
1099 		 *    may not have submitted I/O yet. And the loop driver might
1100 		 *    enter reclaim, and deadlock if it waits on a folio for
1101 		 *    which it is needed to do the write (loop masks off
1102 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1103 		 *    would probably show more reasons.
1104 		 *
1105 		 * 3) Legacy memcg encounters a folio that already has the
1106 		 *    reclaim flag set. memcg does not have any dirty folio
1107 		 *    throttling so we could easily OOM just because too many
1108 		 *    folios are in writeback and there is nothing else to
1109 		 *    reclaim. Wait for the writeback to complete.
1110 		 *
1111 		 * In cases 1) and 2) we activate the folios to get them out of
1112 		 * the way while we continue scanning for clean folios on the
1113 		 * inactive list and refilling from the active list. The
1114 		 * observation here is that waiting for disk writes is more
1115 		 * expensive than potentially causing reloads down the line.
1116 		 * Since they're marked for immediate reclaim, they won't put
1117 		 * memory pressure on the cache working set any longer than it
1118 		 * takes to write them to disk.
1119 		 */
1120 		if (folio_test_writeback(folio)) {
1121 			/* Case 1 above */
1122 			if (current_is_kswapd() &&
1123 			    folio_test_reclaim(folio) &&
1124 			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1125 				stat->nr_immediate += nr_pages;
1126 				goto activate_locked;
1127 
1128 			/* Case 2 above */
1129 			} else if (writeback_throttling_sane(sc) ||
1130 			    !folio_test_reclaim(folio) ||
1131 			    !may_enter_fs(folio, sc->gfp_mask)) {
1132 				/*
1133 				 * This is slightly racy -
1134 				 * folio_end_writeback() might have
1135 				 * just cleared the reclaim flag, then
1136 				 * setting the reclaim flag here ends up
1137 				 * interpreted as the readahead flag - but
1138 				 * that does not matter enough to care.
1139 				 * What we do want is for this folio to
1140 				 * have the reclaim flag set next time
1141 				 * memcg reclaim reaches the tests above,
1142 				 * so it will then wait for writeback to
1143 				 * avoid OOM; and it's also appropriate
1144 				 * in global reclaim.
1145 				 */
1146 				folio_set_reclaim(folio);
1147 				stat->nr_writeback += nr_pages;
1148 				goto activate_locked;
1149 
1150 			/* Case 3 above */
1151 			} else {
1152 				folio_unlock(folio);
1153 				folio_wait_writeback(folio);
1154 				/* then go back and try same folio again */
1155 				list_add_tail(&folio->lru, folio_list);
1156 				continue;
1157 			}
1158 		}
1159 
1160 		if (!ignore_references)
1161 			references = folio_check_references(folio, sc);
1162 
1163 		switch (references) {
1164 		case FOLIOREF_ACTIVATE:
1165 			goto activate_locked;
1166 		case FOLIOREF_KEEP:
1167 			stat->nr_ref_keep += nr_pages;
1168 			goto keep_locked;
1169 		case FOLIOREF_RECLAIM:
1170 		case FOLIOREF_RECLAIM_CLEAN:
1171 			; /* try to reclaim the folio below */
1172 		}
1173 
1174 		/*
1175 		 * Before reclaiming the folio, try to relocate
1176 		 * its contents to another node.
1177 		 */
1178 		if (do_demote_pass &&
1179 		    (thp_migration_supported() || !folio_test_large(folio))) {
1180 			list_add(&folio->lru, &demote_folios);
1181 			folio_unlock(folio);
1182 			continue;
1183 		}
1184 
1185 		/*
1186 		 * Anonymous process memory has backing store?
1187 		 * Try to allocate it some swap space here.
1188 		 * Lazyfree folio could be freed directly
1189 		 */
1190 		if (folio_test_anon(folio) && folio_test_swapbacked(folio)) {
1191 			if (!folio_test_swapcache(folio)) {
1192 				if (!(sc->gfp_mask & __GFP_IO))
1193 					goto keep_locked;
1194 				if (folio_maybe_dma_pinned(folio))
1195 					goto keep_locked;
1196 				if (folio_test_large(folio)) {
1197 					/* cannot split folio, skip it */
1198 					if (!can_split_folio(folio, NULL))
1199 						goto activate_locked;
1200 					/*
1201 					 * Split folios without a PMD map right
1202 					 * away. Chances are some or all of the
1203 					 * tail pages can be freed without IO.
1204 					 */
1205 					if (!folio_entire_mapcount(folio) &&
1206 					    split_folio_to_list(folio,
1207 								folio_list))
1208 						goto activate_locked;
1209 				}
1210 				if (!add_to_swap(folio)) {
1211 					if (!folio_test_large(folio))
1212 						goto activate_locked_split;
1213 					/* Fallback to swap normal pages */
1214 					if (split_folio_to_list(folio,
1215 								folio_list))
1216 						goto activate_locked;
1217 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1218 					count_memcg_folio_events(folio, THP_SWPOUT_FALLBACK, 1);
1219 					count_vm_event(THP_SWPOUT_FALLBACK);
1220 #endif
1221 					if (!add_to_swap(folio))
1222 						goto activate_locked_split;
1223 				}
1224 			}
1225 		} else if (folio_test_swapbacked(folio) &&
1226 			   folio_test_large(folio)) {
1227 			/* Split shmem folio */
1228 			if (split_folio_to_list(folio, folio_list))
1229 				goto keep_locked;
1230 		}
1231 
1232 		/*
1233 		 * If the folio was split above, the tail pages will make
1234 		 * their own pass through this function and be accounted
1235 		 * then.
1236 		 */
1237 		if ((nr_pages > 1) && !folio_test_large(folio)) {
1238 			sc->nr_scanned -= (nr_pages - 1);
1239 			nr_pages = 1;
1240 		}
1241 
1242 		/*
1243 		 * The folio is mapped into the page tables of one or more
1244 		 * processes. Try to unmap it here.
1245 		 */
1246 		if (folio_mapped(folio)) {
1247 			enum ttu_flags flags = TTU_BATCH_FLUSH;
1248 			bool was_swapbacked = folio_test_swapbacked(folio);
1249 
1250 			if (folio_test_pmd_mappable(folio))
1251 				flags |= TTU_SPLIT_HUGE_PMD;
1252 
1253 			try_to_unmap(folio, flags);
1254 			if (folio_mapped(folio)) {
1255 				stat->nr_unmap_fail += nr_pages;
1256 				if (!was_swapbacked &&
1257 				    folio_test_swapbacked(folio))
1258 					stat->nr_lazyfree_fail += nr_pages;
1259 				goto activate_locked;
1260 			}
1261 		}
1262 
1263 		/*
1264 		 * Folio is unmapped now so it cannot be newly pinned anymore.
1265 		 * No point in trying to reclaim folio if it is pinned.
1266 		 * Furthermore we don't want to reclaim underlying fs metadata
1267 		 * if the folio is pinned and thus potentially modified by the
1268 		 * pinning process as that may upset the filesystem.
1269 		 */
1270 		if (folio_maybe_dma_pinned(folio))
1271 			goto activate_locked;
1272 
1273 		mapping = folio_mapping(folio);
1274 		if (folio_test_dirty(folio)) {
1275 			/*
1276 			 * Only kswapd can writeback filesystem folios
1277 			 * to avoid risk of stack overflow. But avoid
1278 			 * injecting inefficient single-folio I/O into
1279 			 * flusher writeback as much as possible: only
1280 			 * write folios when we've encountered many
1281 			 * dirty folios, and when we've already scanned
1282 			 * the rest of the LRU for clean folios and see
1283 			 * the same dirty folios again (with the reclaim
1284 			 * flag set).
1285 			 */
1286 			if (folio_is_file_lru(folio) &&
1287 			    (!current_is_kswapd() ||
1288 			     !folio_test_reclaim(folio) ||
1289 			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1290 				/*
1291 				 * Immediately reclaim when written back.
1292 				 * Similar in principle to folio_deactivate()
1293 				 * except we already have the folio isolated
1294 				 * and know it's dirty
1295 				 */
1296 				node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE,
1297 						nr_pages);
1298 				folio_set_reclaim(folio);
1299 
1300 				goto activate_locked;
1301 			}
1302 
1303 			if (references == FOLIOREF_RECLAIM_CLEAN)
1304 				goto keep_locked;
1305 			if (!may_enter_fs(folio, sc->gfp_mask))
1306 				goto keep_locked;
1307 			if (!sc->may_writepage)
1308 				goto keep_locked;
1309 
1310 			/*
1311 			 * Folio is dirty. Flush the TLB if a writable entry
1312 			 * potentially exists to avoid CPU writes after I/O
1313 			 * starts and then write it out here.
1314 			 */
1315 			try_to_unmap_flush_dirty();
1316 			switch (pageout(folio, mapping, &plug)) {
1317 			case PAGE_KEEP:
1318 				goto keep_locked;
1319 			case PAGE_ACTIVATE:
1320 				goto activate_locked;
1321 			case PAGE_SUCCESS:
1322 				stat->nr_pageout += nr_pages;
1323 
1324 				if (folio_test_writeback(folio))
1325 					goto keep;
1326 				if (folio_test_dirty(folio))
1327 					goto keep;
1328 
1329 				/*
1330 				 * A synchronous write - probably a ramdisk.  Go
1331 				 * ahead and try to reclaim the folio.
1332 				 */
1333 				if (!folio_trylock(folio))
1334 					goto keep;
1335 				if (folio_test_dirty(folio) ||
1336 				    folio_test_writeback(folio))
1337 					goto keep_locked;
1338 				mapping = folio_mapping(folio);
1339 				fallthrough;
1340 			case PAGE_CLEAN:
1341 				; /* try to free the folio below */
1342 			}
1343 		}
1344 
1345 		/*
1346 		 * If the folio has buffers, try to free the buffer
1347 		 * mappings associated with this folio. If we succeed
1348 		 * we try to free the folio as well.
1349 		 *
1350 		 * We do this even if the folio is dirty.
1351 		 * filemap_release_folio() does not perform I/O, but it
1352 		 * is possible for a folio to have the dirty flag set,
1353 		 * but it is actually clean (all its buffers are clean).
1354 		 * This happens if the buffers were written out directly,
1355 		 * with submit_bh(). ext3 will do this, as well as
1356 		 * the blockdev mapping.  filemap_release_folio() will
1357 		 * discover that cleanness and will drop the buffers
1358 		 * and mark the folio clean - it can be freed.
1359 		 *
1360 		 * Rarely, folios can have buffers and no ->mapping.
1361 		 * These are the folios which were not successfully
1362 		 * invalidated in truncate_cleanup_folio().  We try to
1363 		 * drop those buffers here and if that worked, and the
1364 		 * folio is no longer mapped into process address space
1365 		 * (refcount == 1) it can be freed.  Otherwise, leave
1366 		 * the folio on the LRU so it is swappable.
1367 		 */
1368 		if (folio_needs_release(folio)) {
1369 			if (!filemap_release_folio(folio, sc->gfp_mask))
1370 				goto activate_locked;
1371 			if (!mapping && folio_ref_count(folio) == 1) {
1372 				folio_unlock(folio);
1373 				if (folio_put_testzero(folio))
1374 					goto free_it;
1375 				else {
1376 					/*
1377 					 * rare race with speculative reference.
1378 					 * the speculative reference will free
1379 					 * this folio shortly, so we may
1380 					 * increment nr_reclaimed here (and
1381 					 * leave it off the LRU).
1382 					 */
1383 					nr_reclaimed += nr_pages;
1384 					continue;
1385 				}
1386 			}
1387 		}
1388 
1389 		if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) {
1390 			/* follow __remove_mapping for reference */
1391 			if (!folio_ref_freeze(folio, 1))
1392 				goto keep_locked;
1393 			/*
1394 			 * The folio has only one reference left, which is
1395 			 * from the isolation. After the caller puts the
1396 			 * folio back on the lru and drops the reference, the
1397 			 * folio will be freed anyway. It doesn't matter
1398 			 * which lru it goes on. So we don't bother checking
1399 			 * the dirty flag here.
1400 			 */
1401 			count_vm_events(PGLAZYFREED, nr_pages);
1402 			count_memcg_folio_events(folio, PGLAZYFREED, nr_pages);
1403 		} else if (!mapping || !__remove_mapping(mapping, folio, true,
1404 							 sc->target_mem_cgroup))
1405 			goto keep_locked;
1406 
1407 		folio_unlock(folio);
1408 free_it:
1409 		/*
1410 		 * Folio may get swapped out as a whole, need to account
1411 		 * all pages in it.
1412 		 */
1413 		nr_reclaimed += nr_pages;
1414 
1415 		/*
1416 		 * Is there need to periodically free_folio_list? It would
1417 		 * appear not as the counts should be low
1418 		 */
1419 		if (unlikely(folio_test_large(folio)))
1420 			destroy_large_folio(folio);
1421 		else
1422 			list_add(&folio->lru, &free_folios);
1423 		continue;
1424 
1425 activate_locked_split:
1426 		/*
1427 		 * The tail pages that are failed to add into swap cache
1428 		 * reach here.  Fixup nr_scanned and nr_pages.
1429 		 */
1430 		if (nr_pages > 1) {
1431 			sc->nr_scanned -= (nr_pages - 1);
1432 			nr_pages = 1;
1433 		}
1434 activate_locked:
1435 		/* Not a candidate for swapping, so reclaim swap space. */
1436 		if (folio_test_swapcache(folio) &&
1437 		    (mem_cgroup_swap_full(folio) || folio_test_mlocked(folio)))
1438 			folio_free_swap(folio);
1439 		VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1440 		if (!folio_test_mlocked(folio)) {
1441 			int type = folio_is_file_lru(folio);
1442 			folio_set_active(folio);
1443 			stat->nr_activate[type] += nr_pages;
1444 			count_memcg_folio_events(folio, PGACTIVATE, nr_pages);
1445 		}
1446 keep_locked:
1447 		folio_unlock(folio);
1448 keep:
1449 		list_add(&folio->lru, &ret_folios);
1450 		VM_BUG_ON_FOLIO(folio_test_lru(folio) ||
1451 				folio_test_unevictable(folio), folio);
1452 	}
1453 	/* 'folio_list' is always empty here */
1454 
1455 	/* Migrate folios selected for demotion */
1456 	nr_reclaimed += demote_folio_list(&demote_folios, pgdat);
1457 	/* Folios that could not be demoted are still in @demote_folios */
1458 	if (!list_empty(&demote_folios)) {
1459 		/* Folios which weren't demoted go back on @folio_list */
1460 		list_splice_init(&demote_folios, folio_list);
1461 
1462 		/*
1463 		 * goto retry to reclaim the undemoted folios in folio_list if
1464 		 * desired.
1465 		 *
1466 		 * Reclaiming directly from top tier nodes is not often desired
1467 		 * due to it breaking the LRU ordering: in general memory
1468 		 * should be reclaimed from lower tier nodes and demoted from
1469 		 * top tier nodes.
1470 		 *
1471 		 * However, disabling reclaim from top tier nodes entirely
1472 		 * would cause ooms in edge scenarios where lower tier memory
1473 		 * is unreclaimable for whatever reason, eg memory being
1474 		 * mlocked or too hot to reclaim. We can disable reclaim
1475 		 * from top tier nodes in proactive reclaim though as that is
1476 		 * not real memory pressure.
1477 		 */
1478 		if (!sc->proactive) {
1479 			do_demote_pass = false;
1480 			goto retry;
1481 		}
1482 	}
1483 
1484 	pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1485 
1486 	mem_cgroup_uncharge_list(&free_folios);
1487 	try_to_unmap_flush();
1488 	free_unref_page_list(&free_folios);
1489 
1490 	list_splice(&ret_folios, folio_list);
1491 	count_vm_events(PGACTIVATE, pgactivate);
1492 
1493 	if (plug)
1494 		swap_write_unplug(plug);
1495 	return nr_reclaimed;
1496 }
1497 
1498 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1499 					   struct list_head *folio_list)
1500 {
1501 	struct scan_control sc = {
1502 		.gfp_mask = GFP_KERNEL,
1503 		.may_unmap = 1,
1504 	};
1505 	struct reclaim_stat stat;
1506 	unsigned int nr_reclaimed;
1507 	struct folio *folio, *next;
1508 	LIST_HEAD(clean_folios);
1509 	unsigned int noreclaim_flag;
1510 
1511 	list_for_each_entry_safe(folio, next, folio_list, lru) {
1512 		if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) &&
1513 		    !folio_test_dirty(folio) && !__folio_test_movable(folio) &&
1514 		    !folio_test_unevictable(folio)) {
1515 			folio_clear_active(folio);
1516 			list_move(&folio->lru, &clean_folios);
1517 		}
1518 	}
1519 
1520 	/*
1521 	 * We should be safe here since we are only dealing with file pages and
1522 	 * we are not kswapd and therefore cannot write dirty file pages. But
1523 	 * call memalloc_noreclaim_save() anyway, just in case these conditions
1524 	 * change in the future.
1525 	 */
1526 	noreclaim_flag = memalloc_noreclaim_save();
1527 	nr_reclaimed = shrink_folio_list(&clean_folios, zone->zone_pgdat, &sc,
1528 					&stat, true);
1529 	memalloc_noreclaim_restore(noreclaim_flag);
1530 
1531 	list_splice(&clean_folios, folio_list);
1532 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1533 			    -(long)nr_reclaimed);
1534 	/*
1535 	 * Since lazyfree pages are isolated from file LRU from the beginning,
1536 	 * they will rotate back to anonymous LRU in the end if it failed to
1537 	 * discard so isolated count will be mismatched.
1538 	 * Compensate the isolated count for both LRU lists.
1539 	 */
1540 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
1541 			    stat.nr_lazyfree_fail);
1542 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1543 			    -(long)stat.nr_lazyfree_fail);
1544 	return nr_reclaimed;
1545 }
1546 
1547 /*
1548  * Update LRU sizes after isolating pages. The LRU size updates must
1549  * be complete before mem_cgroup_update_lru_size due to a sanity check.
1550  */
1551 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1552 			enum lru_list lru, unsigned long *nr_zone_taken)
1553 {
1554 	int zid;
1555 
1556 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1557 		if (!nr_zone_taken[zid])
1558 			continue;
1559 
1560 		update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1561 	}
1562 
1563 }
1564 
1565 #ifdef CONFIG_CMA
1566 /*
1567  * It is waste of effort to scan and reclaim CMA pages if it is not available
1568  * for current allocation context. Kswapd can not be enrolled as it can not
1569  * distinguish this scenario by using sc->gfp_mask = GFP_KERNEL
1570  */
1571 static bool skip_cma(struct folio *folio, struct scan_control *sc)
1572 {
1573 	return !current_is_kswapd() &&
1574 			gfp_migratetype(sc->gfp_mask) != MIGRATE_MOVABLE &&
1575 			folio_migratetype(folio) == MIGRATE_CMA;
1576 }
1577 #else
1578 static bool skip_cma(struct folio *folio, struct scan_control *sc)
1579 {
1580 	return false;
1581 }
1582 #endif
1583 
1584 /*
1585  * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
1586  *
1587  * lruvec->lru_lock is heavily contended.  Some of the functions that
1588  * shrink the lists perform better by taking out a batch of pages
1589  * and working on them outside the LRU lock.
1590  *
1591  * For pagecache intensive workloads, this function is the hottest
1592  * spot in the kernel (apart from copy_*_user functions).
1593  *
1594  * Lru_lock must be held before calling this function.
1595  *
1596  * @nr_to_scan:	The number of eligible pages to look through on the list.
1597  * @lruvec:	The LRU vector to pull pages from.
1598  * @dst:	The temp list to put pages on to.
1599  * @nr_scanned:	The number of pages that were scanned.
1600  * @sc:		The scan_control struct for this reclaim session
1601  * @lru:	LRU list id for isolating
1602  *
1603  * returns how many pages were moved onto *@dst.
1604  */
1605 static unsigned long isolate_lru_folios(unsigned long nr_to_scan,
1606 		struct lruvec *lruvec, struct list_head *dst,
1607 		unsigned long *nr_scanned, struct scan_control *sc,
1608 		enum lru_list lru)
1609 {
1610 	struct list_head *src = &lruvec->lists[lru];
1611 	unsigned long nr_taken = 0;
1612 	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1613 	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1614 	unsigned long skipped = 0;
1615 	unsigned long scan, total_scan, nr_pages;
1616 	LIST_HEAD(folios_skipped);
1617 
1618 	total_scan = 0;
1619 	scan = 0;
1620 	while (scan < nr_to_scan && !list_empty(src)) {
1621 		struct list_head *move_to = src;
1622 		struct folio *folio;
1623 
1624 		folio = lru_to_folio(src);
1625 		prefetchw_prev_lru_folio(folio, src, flags);
1626 
1627 		nr_pages = folio_nr_pages(folio);
1628 		total_scan += nr_pages;
1629 
1630 		if (folio_zonenum(folio) > sc->reclaim_idx ||
1631 				skip_cma(folio, sc)) {
1632 			nr_skipped[folio_zonenum(folio)] += nr_pages;
1633 			move_to = &folios_skipped;
1634 			goto move;
1635 		}
1636 
1637 		/*
1638 		 * Do not count skipped folios because that makes the function
1639 		 * return with no isolated folios if the LRU mostly contains
1640 		 * ineligible folios.  This causes the VM to not reclaim any
1641 		 * folios, triggering a premature OOM.
1642 		 * Account all pages in a folio.
1643 		 */
1644 		scan += nr_pages;
1645 
1646 		if (!folio_test_lru(folio))
1647 			goto move;
1648 		if (!sc->may_unmap && folio_mapped(folio))
1649 			goto move;
1650 
1651 		/*
1652 		 * Be careful not to clear the lru flag until after we're
1653 		 * sure the folio is not being freed elsewhere -- the
1654 		 * folio release code relies on it.
1655 		 */
1656 		if (unlikely(!folio_try_get(folio)))
1657 			goto move;
1658 
1659 		if (!folio_test_clear_lru(folio)) {
1660 			/* Another thread is already isolating this folio */
1661 			folio_put(folio);
1662 			goto move;
1663 		}
1664 
1665 		nr_taken += nr_pages;
1666 		nr_zone_taken[folio_zonenum(folio)] += nr_pages;
1667 		move_to = dst;
1668 move:
1669 		list_move(&folio->lru, move_to);
1670 	}
1671 
1672 	/*
1673 	 * Splice any skipped folios to the start of the LRU list. Note that
1674 	 * this disrupts the LRU order when reclaiming for lower zones but
1675 	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1676 	 * scanning would soon rescan the same folios to skip and waste lots
1677 	 * of cpu cycles.
1678 	 */
1679 	if (!list_empty(&folios_skipped)) {
1680 		int zid;
1681 
1682 		list_splice(&folios_skipped, src);
1683 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1684 			if (!nr_skipped[zid])
1685 				continue;
1686 
1687 			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1688 			skipped += nr_skipped[zid];
1689 		}
1690 	}
1691 	*nr_scanned = total_scan;
1692 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1693 				    total_scan, skipped, nr_taken, lru);
1694 	update_lru_sizes(lruvec, lru, nr_zone_taken);
1695 	return nr_taken;
1696 }
1697 
1698 /**
1699  * folio_isolate_lru() - Try to isolate a folio from its LRU list.
1700  * @folio: Folio to isolate from its LRU list.
1701  *
1702  * Isolate a @folio from an LRU list and adjust the vmstat statistic
1703  * corresponding to whatever LRU list the folio was on.
1704  *
1705  * The folio will have its LRU flag cleared.  If it was found on the
1706  * active list, it will have the Active flag set.  If it was found on the
1707  * unevictable list, it will have the Unevictable flag set.  These flags
1708  * may need to be cleared by the caller before letting the page go.
1709  *
1710  * Context:
1711  *
1712  * (1) Must be called with an elevated refcount on the folio. This is a
1713  *     fundamental difference from isolate_lru_folios() (which is called
1714  *     without a stable reference).
1715  * (2) The lru_lock must not be held.
1716  * (3) Interrupts must be enabled.
1717  *
1718  * Return: true if the folio was removed from an LRU list.
1719  * false if the folio was not on an LRU list.
1720  */
1721 bool folio_isolate_lru(struct folio *folio)
1722 {
1723 	bool ret = false;
1724 
1725 	VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio);
1726 
1727 	if (folio_test_clear_lru(folio)) {
1728 		struct lruvec *lruvec;
1729 
1730 		folio_get(folio);
1731 		lruvec = folio_lruvec_lock_irq(folio);
1732 		lruvec_del_folio(lruvec, folio);
1733 		unlock_page_lruvec_irq(lruvec);
1734 		ret = true;
1735 	}
1736 
1737 	return ret;
1738 }
1739 
1740 /*
1741  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1742  * then get rescheduled. When there are massive number of tasks doing page
1743  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1744  * the LRU list will go small and be scanned faster than necessary, leading to
1745  * unnecessary swapping, thrashing and OOM.
1746  */
1747 static int too_many_isolated(struct pglist_data *pgdat, int file,
1748 		struct scan_control *sc)
1749 {
1750 	unsigned long inactive, isolated;
1751 	bool too_many;
1752 
1753 	if (current_is_kswapd())
1754 		return 0;
1755 
1756 	if (!writeback_throttling_sane(sc))
1757 		return 0;
1758 
1759 	if (file) {
1760 		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1761 		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1762 	} else {
1763 		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1764 		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1765 	}
1766 
1767 	/*
1768 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1769 	 * won't get blocked by normal direct-reclaimers, forming a circular
1770 	 * deadlock.
1771 	 */
1772 	if (gfp_has_io_fs(sc->gfp_mask))
1773 		inactive >>= 3;
1774 
1775 	too_many = isolated > inactive;
1776 
1777 	/* Wake up tasks throttled due to too_many_isolated. */
1778 	if (!too_many)
1779 		wake_throttle_isolated(pgdat);
1780 
1781 	return too_many;
1782 }
1783 
1784 /*
1785  * move_folios_to_lru() moves folios from private @list to appropriate LRU list.
1786  * On return, @list is reused as a list of folios to be freed by the caller.
1787  *
1788  * Returns the number of pages moved to the given lruvec.
1789  */
1790 static unsigned int move_folios_to_lru(struct lruvec *lruvec,
1791 		struct list_head *list)
1792 {
1793 	int nr_pages, nr_moved = 0;
1794 	LIST_HEAD(folios_to_free);
1795 
1796 	while (!list_empty(list)) {
1797 		struct folio *folio = lru_to_folio(list);
1798 
1799 		VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
1800 		list_del(&folio->lru);
1801 		if (unlikely(!folio_evictable(folio))) {
1802 			spin_unlock_irq(&lruvec->lru_lock);
1803 			folio_putback_lru(folio);
1804 			spin_lock_irq(&lruvec->lru_lock);
1805 			continue;
1806 		}
1807 
1808 		/*
1809 		 * The folio_set_lru needs to be kept here for list integrity.
1810 		 * Otherwise:
1811 		 *   #0 move_folios_to_lru             #1 release_pages
1812 		 *   if (!folio_put_testzero())
1813 		 *				      if (folio_put_testzero())
1814 		 *				        !lru //skip lru_lock
1815 		 *     folio_set_lru()
1816 		 *     list_add(&folio->lru,)
1817 		 *                                        list_add(&folio->lru,)
1818 		 */
1819 		folio_set_lru(folio);
1820 
1821 		if (unlikely(folio_put_testzero(folio))) {
1822 			__folio_clear_lru_flags(folio);
1823 
1824 			if (unlikely(folio_test_large(folio))) {
1825 				spin_unlock_irq(&lruvec->lru_lock);
1826 				destroy_large_folio(folio);
1827 				spin_lock_irq(&lruvec->lru_lock);
1828 			} else
1829 				list_add(&folio->lru, &folios_to_free);
1830 
1831 			continue;
1832 		}
1833 
1834 		/*
1835 		 * All pages were isolated from the same lruvec (and isolation
1836 		 * inhibits memcg migration).
1837 		 */
1838 		VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio);
1839 		lruvec_add_folio(lruvec, folio);
1840 		nr_pages = folio_nr_pages(folio);
1841 		nr_moved += nr_pages;
1842 		if (folio_test_active(folio))
1843 			workingset_age_nonresident(lruvec, nr_pages);
1844 	}
1845 
1846 	/*
1847 	 * To save our caller's stack, now use input list for pages to free.
1848 	 */
1849 	list_splice(&folios_to_free, list);
1850 
1851 	return nr_moved;
1852 }
1853 
1854 /*
1855  * If a kernel thread (such as nfsd for loop-back mounts) services a backing
1856  * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case
1857  * we should not throttle.  Otherwise it is safe to do so.
1858  */
1859 static int current_may_throttle(void)
1860 {
1861 	return !(current->flags & PF_LOCAL_THROTTLE);
1862 }
1863 
1864 /*
1865  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
1866  * of reclaimed pages
1867  */
1868 static unsigned long shrink_inactive_list(unsigned long nr_to_scan,
1869 		struct lruvec *lruvec, struct scan_control *sc,
1870 		enum lru_list lru)
1871 {
1872 	LIST_HEAD(folio_list);
1873 	unsigned long nr_scanned;
1874 	unsigned int nr_reclaimed = 0;
1875 	unsigned long nr_taken;
1876 	struct reclaim_stat stat;
1877 	bool file = is_file_lru(lru);
1878 	enum vm_event_item item;
1879 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1880 	bool stalled = false;
1881 
1882 	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1883 		if (stalled)
1884 			return 0;
1885 
1886 		/* wait a bit for the reclaimer. */
1887 		stalled = true;
1888 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
1889 
1890 		/* We are about to die and free our memory. Return now. */
1891 		if (fatal_signal_pending(current))
1892 			return SWAP_CLUSTER_MAX;
1893 	}
1894 
1895 	lru_add_drain();
1896 
1897 	spin_lock_irq(&lruvec->lru_lock);
1898 
1899 	nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &folio_list,
1900 				     &nr_scanned, sc, lru);
1901 
1902 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1903 	item = PGSCAN_KSWAPD + reclaimer_offset();
1904 	if (!cgroup_reclaim(sc))
1905 		__count_vm_events(item, nr_scanned);
1906 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
1907 	__count_vm_events(PGSCAN_ANON + file, nr_scanned);
1908 
1909 	spin_unlock_irq(&lruvec->lru_lock);
1910 
1911 	if (nr_taken == 0)
1912 		return 0;
1913 
1914 	nr_reclaimed = shrink_folio_list(&folio_list, pgdat, sc, &stat, false);
1915 
1916 	spin_lock_irq(&lruvec->lru_lock);
1917 	move_folios_to_lru(lruvec, &folio_list);
1918 
1919 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1920 	item = PGSTEAL_KSWAPD + reclaimer_offset();
1921 	if (!cgroup_reclaim(sc))
1922 		__count_vm_events(item, nr_reclaimed);
1923 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
1924 	__count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
1925 	spin_unlock_irq(&lruvec->lru_lock);
1926 
1927 	lru_note_cost(lruvec, file, stat.nr_pageout, nr_scanned - nr_reclaimed);
1928 	mem_cgroup_uncharge_list(&folio_list);
1929 	free_unref_page_list(&folio_list);
1930 
1931 	/*
1932 	 * If dirty folios are scanned that are not queued for IO, it
1933 	 * implies that flushers are not doing their job. This can
1934 	 * happen when memory pressure pushes dirty folios to the end of
1935 	 * the LRU before the dirty limits are breached and the dirty
1936 	 * data has expired. It can also happen when the proportion of
1937 	 * dirty folios grows not through writes but through memory
1938 	 * pressure reclaiming all the clean cache. And in some cases,
1939 	 * the flushers simply cannot keep up with the allocation
1940 	 * rate. Nudge the flusher threads in case they are asleep.
1941 	 */
1942 	if (stat.nr_unqueued_dirty == nr_taken) {
1943 		wakeup_flusher_threads(WB_REASON_VMSCAN);
1944 		/*
1945 		 * For cgroupv1 dirty throttling is achieved by waking up
1946 		 * the kernel flusher here and later waiting on folios
1947 		 * which are in writeback to finish (see shrink_folio_list()).
1948 		 *
1949 		 * Flusher may not be able to issue writeback quickly
1950 		 * enough for cgroupv1 writeback throttling to work
1951 		 * on a large system.
1952 		 */
1953 		if (!writeback_throttling_sane(sc))
1954 			reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
1955 	}
1956 
1957 	sc->nr.dirty += stat.nr_dirty;
1958 	sc->nr.congested += stat.nr_congested;
1959 	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
1960 	sc->nr.writeback += stat.nr_writeback;
1961 	sc->nr.immediate += stat.nr_immediate;
1962 	sc->nr.taken += nr_taken;
1963 	if (file)
1964 		sc->nr.file_taken += nr_taken;
1965 
1966 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1967 			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
1968 	return nr_reclaimed;
1969 }
1970 
1971 /*
1972  * shrink_active_list() moves folios from the active LRU to the inactive LRU.
1973  *
1974  * We move them the other way if the folio is referenced by one or more
1975  * processes.
1976  *
1977  * If the folios are mostly unmapped, the processing is fast and it is
1978  * appropriate to hold lru_lock across the whole operation.  But if
1979  * the folios are mapped, the processing is slow (folio_referenced()), so
1980  * we should drop lru_lock around each folio.  It's impossible to balance
1981  * this, so instead we remove the folios from the LRU while processing them.
1982  * It is safe to rely on the active flag against the non-LRU folios in here
1983  * because nobody will play with that bit on a non-LRU folio.
1984  *
1985  * The downside is that we have to touch folio->_refcount against each folio.
1986  * But we had to alter folio->flags anyway.
1987  */
1988 static void shrink_active_list(unsigned long nr_to_scan,
1989 			       struct lruvec *lruvec,
1990 			       struct scan_control *sc,
1991 			       enum lru_list lru)
1992 {
1993 	unsigned long nr_taken;
1994 	unsigned long nr_scanned;
1995 	unsigned long vm_flags;
1996 	LIST_HEAD(l_hold);	/* The folios which were snipped off */
1997 	LIST_HEAD(l_active);
1998 	LIST_HEAD(l_inactive);
1999 	unsigned nr_deactivate, nr_activate;
2000 	unsigned nr_rotated = 0;
2001 	int file = is_file_lru(lru);
2002 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2003 
2004 	lru_add_drain();
2005 
2006 	spin_lock_irq(&lruvec->lru_lock);
2007 
2008 	nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &l_hold,
2009 				     &nr_scanned, sc, lru);
2010 
2011 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2012 
2013 	if (!cgroup_reclaim(sc))
2014 		__count_vm_events(PGREFILL, nr_scanned);
2015 	__count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2016 
2017 	spin_unlock_irq(&lruvec->lru_lock);
2018 
2019 	while (!list_empty(&l_hold)) {
2020 		struct folio *folio;
2021 
2022 		cond_resched();
2023 		folio = lru_to_folio(&l_hold);
2024 		list_del(&folio->lru);
2025 
2026 		if (unlikely(!folio_evictable(folio))) {
2027 			folio_putback_lru(folio);
2028 			continue;
2029 		}
2030 
2031 		if (unlikely(buffer_heads_over_limit)) {
2032 			if (folio_needs_release(folio) &&
2033 			    folio_trylock(folio)) {
2034 				filemap_release_folio(folio, 0);
2035 				folio_unlock(folio);
2036 			}
2037 		}
2038 
2039 		/* Referenced or rmap lock contention: rotate */
2040 		if (folio_referenced(folio, 0, sc->target_mem_cgroup,
2041 				     &vm_flags) != 0) {
2042 			/*
2043 			 * Identify referenced, file-backed active folios and
2044 			 * give them one more trip around the active list. So
2045 			 * that executable code get better chances to stay in
2046 			 * memory under moderate memory pressure.  Anon folios
2047 			 * are not likely to be evicted by use-once streaming
2048 			 * IO, plus JVM can create lots of anon VM_EXEC folios,
2049 			 * so we ignore them here.
2050 			 */
2051 			if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) {
2052 				nr_rotated += folio_nr_pages(folio);
2053 				list_add(&folio->lru, &l_active);
2054 				continue;
2055 			}
2056 		}
2057 
2058 		folio_clear_active(folio);	/* we are de-activating */
2059 		folio_set_workingset(folio);
2060 		list_add(&folio->lru, &l_inactive);
2061 	}
2062 
2063 	/*
2064 	 * Move folios back to the lru list.
2065 	 */
2066 	spin_lock_irq(&lruvec->lru_lock);
2067 
2068 	nr_activate = move_folios_to_lru(lruvec, &l_active);
2069 	nr_deactivate = move_folios_to_lru(lruvec, &l_inactive);
2070 	/* Keep all free folios in l_active list */
2071 	list_splice(&l_inactive, &l_active);
2072 
2073 	__count_vm_events(PGDEACTIVATE, nr_deactivate);
2074 	__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2075 
2076 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2077 	spin_unlock_irq(&lruvec->lru_lock);
2078 
2079 	if (nr_rotated)
2080 		lru_note_cost(lruvec, file, 0, nr_rotated);
2081 	mem_cgroup_uncharge_list(&l_active);
2082 	free_unref_page_list(&l_active);
2083 	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2084 			nr_deactivate, nr_rotated, sc->priority, file);
2085 }
2086 
2087 static unsigned int reclaim_folio_list(struct list_head *folio_list,
2088 				      struct pglist_data *pgdat)
2089 {
2090 	struct reclaim_stat dummy_stat;
2091 	unsigned int nr_reclaimed;
2092 	struct folio *folio;
2093 	struct scan_control sc = {
2094 		.gfp_mask = GFP_KERNEL,
2095 		.may_writepage = 1,
2096 		.may_unmap = 1,
2097 		.may_swap = 1,
2098 		.no_demotion = 1,
2099 	};
2100 
2101 	nr_reclaimed = shrink_folio_list(folio_list, pgdat, &sc, &dummy_stat, false);
2102 	while (!list_empty(folio_list)) {
2103 		folio = lru_to_folio(folio_list);
2104 		list_del(&folio->lru);
2105 		folio_putback_lru(folio);
2106 	}
2107 
2108 	return nr_reclaimed;
2109 }
2110 
2111 unsigned long reclaim_pages(struct list_head *folio_list)
2112 {
2113 	int nid;
2114 	unsigned int nr_reclaimed = 0;
2115 	LIST_HEAD(node_folio_list);
2116 	unsigned int noreclaim_flag;
2117 
2118 	if (list_empty(folio_list))
2119 		return nr_reclaimed;
2120 
2121 	noreclaim_flag = memalloc_noreclaim_save();
2122 
2123 	nid = folio_nid(lru_to_folio(folio_list));
2124 	do {
2125 		struct folio *folio = lru_to_folio(folio_list);
2126 
2127 		if (nid == folio_nid(folio)) {
2128 			folio_clear_active(folio);
2129 			list_move(&folio->lru, &node_folio_list);
2130 			continue;
2131 		}
2132 
2133 		nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2134 		nid = folio_nid(lru_to_folio(folio_list));
2135 	} while (!list_empty(folio_list));
2136 
2137 	nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2138 
2139 	memalloc_noreclaim_restore(noreclaim_flag);
2140 
2141 	return nr_reclaimed;
2142 }
2143 
2144 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2145 				 struct lruvec *lruvec, struct scan_control *sc)
2146 {
2147 	if (is_active_lru(lru)) {
2148 		if (sc->may_deactivate & (1 << is_file_lru(lru)))
2149 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2150 		else
2151 			sc->skipped_deactivate = 1;
2152 		return 0;
2153 	}
2154 
2155 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2156 }
2157 
2158 /*
2159  * The inactive anon list should be small enough that the VM never has
2160  * to do too much work.
2161  *
2162  * The inactive file list should be small enough to leave most memory
2163  * to the established workingset on the scan-resistant active list,
2164  * but large enough to avoid thrashing the aggregate readahead window.
2165  *
2166  * Both inactive lists should also be large enough that each inactive
2167  * folio has a chance to be referenced again before it is reclaimed.
2168  *
2169  * If that fails and refaulting is observed, the inactive list grows.
2170  *
2171  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE folios
2172  * on this LRU, maintained by the pageout code. An inactive_ratio
2173  * of 3 means 3:1 or 25% of the folios are kept on the inactive list.
2174  *
2175  * total     target    max
2176  * memory    ratio     inactive
2177  * -------------------------------------
2178  *   10MB       1         5MB
2179  *  100MB       1        50MB
2180  *    1GB       3       250MB
2181  *   10GB      10       0.9GB
2182  *  100GB      31         3GB
2183  *    1TB     101        10GB
2184  *   10TB     320        32GB
2185  */
2186 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2187 {
2188 	enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2189 	unsigned long inactive, active;
2190 	unsigned long inactive_ratio;
2191 	unsigned long gb;
2192 
2193 	inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2194 	active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2195 
2196 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
2197 	if (gb)
2198 		inactive_ratio = int_sqrt(10 * gb);
2199 	else
2200 		inactive_ratio = 1;
2201 
2202 	return inactive * inactive_ratio < active;
2203 }
2204 
2205 enum scan_balance {
2206 	SCAN_EQUAL,
2207 	SCAN_FRACT,
2208 	SCAN_ANON,
2209 	SCAN_FILE,
2210 };
2211 
2212 static void prepare_scan_control(pg_data_t *pgdat, struct scan_control *sc)
2213 {
2214 	unsigned long file;
2215 	struct lruvec *target_lruvec;
2216 
2217 	if (lru_gen_enabled())
2218 		return;
2219 
2220 	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2221 
2222 	/*
2223 	 * Flush the memory cgroup stats, so that we read accurate per-memcg
2224 	 * lruvec stats for heuristics.
2225 	 */
2226 	mem_cgroup_flush_stats(sc->target_mem_cgroup);
2227 
2228 	/*
2229 	 * Determine the scan balance between anon and file LRUs.
2230 	 */
2231 	spin_lock_irq(&target_lruvec->lru_lock);
2232 	sc->anon_cost = target_lruvec->anon_cost;
2233 	sc->file_cost = target_lruvec->file_cost;
2234 	spin_unlock_irq(&target_lruvec->lru_lock);
2235 
2236 	/*
2237 	 * Target desirable inactive:active list ratios for the anon
2238 	 * and file LRU lists.
2239 	 */
2240 	if (!sc->force_deactivate) {
2241 		unsigned long refaults;
2242 
2243 		/*
2244 		 * When refaults are being observed, it means a new
2245 		 * workingset is being established. Deactivate to get
2246 		 * rid of any stale active pages quickly.
2247 		 */
2248 		refaults = lruvec_page_state(target_lruvec,
2249 				WORKINGSET_ACTIVATE_ANON);
2250 		if (refaults != target_lruvec->refaults[WORKINGSET_ANON] ||
2251 			inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2252 			sc->may_deactivate |= DEACTIVATE_ANON;
2253 		else
2254 			sc->may_deactivate &= ~DEACTIVATE_ANON;
2255 
2256 		refaults = lruvec_page_state(target_lruvec,
2257 				WORKINGSET_ACTIVATE_FILE);
2258 		if (refaults != target_lruvec->refaults[WORKINGSET_FILE] ||
2259 		    inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2260 			sc->may_deactivate |= DEACTIVATE_FILE;
2261 		else
2262 			sc->may_deactivate &= ~DEACTIVATE_FILE;
2263 	} else
2264 		sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2265 
2266 	/*
2267 	 * If we have plenty of inactive file pages that aren't
2268 	 * thrashing, try to reclaim those first before touching
2269 	 * anonymous pages.
2270 	 */
2271 	file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2272 	if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
2273 		sc->cache_trim_mode = 1;
2274 	else
2275 		sc->cache_trim_mode = 0;
2276 
2277 	/*
2278 	 * Prevent the reclaimer from falling into the cache trap: as
2279 	 * cache pages start out inactive, every cache fault will tip
2280 	 * the scan balance towards the file LRU.  And as the file LRU
2281 	 * shrinks, so does the window for rotation from references.
2282 	 * This means we have a runaway feedback loop where a tiny
2283 	 * thrashing file LRU becomes infinitely more attractive than
2284 	 * anon pages.  Try to detect this based on file LRU size.
2285 	 */
2286 	if (!cgroup_reclaim(sc)) {
2287 		unsigned long total_high_wmark = 0;
2288 		unsigned long free, anon;
2289 		int z;
2290 
2291 		free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2292 		file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2293 			   node_page_state(pgdat, NR_INACTIVE_FILE);
2294 
2295 		for (z = 0; z < MAX_NR_ZONES; z++) {
2296 			struct zone *zone = &pgdat->node_zones[z];
2297 
2298 			if (!managed_zone(zone))
2299 				continue;
2300 
2301 			total_high_wmark += high_wmark_pages(zone);
2302 		}
2303 
2304 		/*
2305 		 * Consider anon: if that's low too, this isn't a
2306 		 * runaway file reclaim problem, but rather just
2307 		 * extreme pressure. Reclaim as per usual then.
2308 		 */
2309 		anon = node_page_state(pgdat, NR_INACTIVE_ANON);
2310 
2311 		sc->file_is_tiny =
2312 			file + free <= total_high_wmark &&
2313 			!(sc->may_deactivate & DEACTIVATE_ANON) &&
2314 			anon >> sc->priority;
2315 	}
2316 }
2317 
2318 /*
2319  * Determine how aggressively the anon and file LRU lists should be
2320  * scanned.
2321  *
2322  * nr[0] = anon inactive folios to scan; nr[1] = anon active folios to scan
2323  * nr[2] = file inactive folios to scan; nr[3] = file active folios to scan
2324  */
2325 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2326 			   unsigned long *nr)
2327 {
2328 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2329 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2330 	unsigned long anon_cost, file_cost, total_cost;
2331 	int swappiness = mem_cgroup_swappiness(memcg);
2332 	u64 fraction[ANON_AND_FILE];
2333 	u64 denominator = 0;	/* gcc */
2334 	enum scan_balance scan_balance;
2335 	unsigned long ap, fp;
2336 	enum lru_list lru;
2337 
2338 	/* If we have no swap space, do not bother scanning anon folios. */
2339 	if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
2340 		scan_balance = SCAN_FILE;
2341 		goto out;
2342 	}
2343 
2344 	/*
2345 	 * Global reclaim will swap to prevent OOM even with no
2346 	 * swappiness, but memcg users want to use this knob to
2347 	 * disable swapping for individual groups completely when
2348 	 * using the memory controller's swap limit feature would be
2349 	 * too expensive.
2350 	 */
2351 	if (cgroup_reclaim(sc) && !swappiness) {
2352 		scan_balance = SCAN_FILE;
2353 		goto out;
2354 	}
2355 
2356 	/*
2357 	 * Do not apply any pressure balancing cleverness when the
2358 	 * system is close to OOM, scan both anon and file equally
2359 	 * (unless the swappiness setting disagrees with swapping).
2360 	 */
2361 	if (!sc->priority && swappiness) {
2362 		scan_balance = SCAN_EQUAL;
2363 		goto out;
2364 	}
2365 
2366 	/*
2367 	 * If the system is almost out of file pages, force-scan anon.
2368 	 */
2369 	if (sc->file_is_tiny) {
2370 		scan_balance = SCAN_ANON;
2371 		goto out;
2372 	}
2373 
2374 	/*
2375 	 * If there is enough inactive page cache, we do not reclaim
2376 	 * anything from the anonymous working right now.
2377 	 */
2378 	if (sc->cache_trim_mode) {
2379 		scan_balance = SCAN_FILE;
2380 		goto out;
2381 	}
2382 
2383 	scan_balance = SCAN_FRACT;
2384 	/*
2385 	 * Calculate the pressure balance between anon and file pages.
2386 	 *
2387 	 * The amount of pressure we put on each LRU is inversely
2388 	 * proportional to the cost of reclaiming each list, as
2389 	 * determined by the share of pages that are refaulting, times
2390 	 * the relative IO cost of bringing back a swapped out
2391 	 * anonymous page vs reloading a filesystem page (swappiness).
2392 	 *
2393 	 * Although we limit that influence to ensure no list gets
2394 	 * left behind completely: at least a third of the pressure is
2395 	 * applied, before swappiness.
2396 	 *
2397 	 * With swappiness at 100, anon and file have equal IO cost.
2398 	 */
2399 	total_cost = sc->anon_cost + sc->file_cost;
2400 	anon_cost = total_cost + sc->anon_cost;
2401 	file_cost = total_cost + sc->file_cost;
2402 	total_cost = anon_cost + file_cost;
2403 
2404 	ap = swappiness * (total_cost + 1);
2405 	ap /= anon_cost + 1;
2406 
2407 	fp = (200 - swappiness) * (total_cost + 1);
2408 	fp /= file_cost + 1;
2409 
2410 	fraction[0] = ap;
2411 	fraction[1] = fp;
2412 	denominator = ap + fp;
2413 out:
2414 	for_each_evictable_lru(lru) {
2415 		int file = is_file_lru(lru);
2416 		unsigned long lruvec_size;
2417 		unsigned long low, min;
2418 		unsigned long scan;
2419 
2420 		lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2421 		mem_cgroup_protection(sc->target_mem_cgroup, memcg,
2422 				      &min, &low);
2423 
2424 		if (min || low) {
2425 			/*
2426 			 * Scale a cgroup's reclaim pressure by proportioning
2427 			 * its current usage to its memory.low or memory.min
2428 			 * setting.
2429 			 *
2430 			 * This is important, as otherwise scanning aggression
2431 			 * becomes extremely binary -- from nothing as we
2432 			 * approach the memory protection threshold, to totally
2433 			 * nominal as we exceed it.  This results in requiring
2434 			 * setting extremely liberal protection thresholds. It
2435 			 * also means we simply get no protection at all if we
2436 			 * set it too low, which is not ideal.
2437 			 *
2438 			 * If there is any protection in place, we reduce scan
2439 			 * pressure by how much of the total memory used is
2440 			 * within protection thresholds.
2441 			 *
2442 			 * There is one special case: in the first reclaim pass,
2443 			 * we skip over all groups that are within their low
2444 			 * protection. If that fails to reclaim enough pages to
2445 			 * satisfy the reclaim goal, we come back and override
2446 			 * the best-effort low protection. However, we still
2447 			 * ideally want to honor how well-behaved groups are in
2448 			 * that case instead of simply punishing them all
2449 			 * equally. As such, we reclaim them based on how much
2450 			 * memory they are using, reducing the scan pressure
2451 			 * again by how much of the total memory used is under
2452 			 * hard protection.
2453 			 */
2454 			unsigned long cgroup_size = mem_cgroup_size(memcg);
2455 			unsigned long protection;
2456 
2457 			/* memory.low scaling, make sure we retry before OOM */
2458 			if (!sc->memcg_low_reclaim && low > min) {
2459 				protection = low;
2460 				sc->memcg_low_skipped = 1;
2461 			} else {
2462 				protection = min;
2463 			}
2464 
2465 			/* Avoid TOCTOU with earlier protection check */
2466 			cgroup_size = max(cgroup_size, protection);
2467 
2468 			scan = lruvec_size - lruvec_size * protection /
2469 				(cgroup_size + 1);
2470 
2471 			/*
2472 			 * Minimally target SWAP_CLUSTER_MAX pages to keep
2473 			 * reclaim moving forwards, avoiding decrementing
2474 			 * sc->priority further than desirable.
2475 			 */
2476 			scan = max(scan, SWAP_CLUSTER_MAX);
2477 		} else {
2478 			scan = lruvec_size;
2479 		}
2480 
2481 		scan >>= sc->priority;
2482 
2483 		/*
2484 		 * If the cgroup's already been deleted, make sure to
2485 		 * scrape out the remaining cache.
2486 		 */
2487 		if (!scan && !mem_cgroup_online(memcg))
2488 			scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2489 
2490 		switch (scan_balance) {
2491 		case SCAN_EQUAL:
2492 			/* Scan lists relative to size */
2493 			break;
2494 		case SCAN_FRACT:
2495 			/*
2496 			 * Scan types proportional to swappiness and
2497 			 * their relative recent reclaim efficiency.
2498 			 * Make sure we don't miss the last page on
2499 			 * the offlined memory cgroups because of a
2500 			 * round-off error.
2501 			 */
2502 			scan = mem_cgroup_online(memcg) ?
2503 			       div64_u64(scan * fraction[file], denominator) :
2504 			       DIV64_U64_ROUND_UP(scan * fraction[file],
2505 						  denominator);
2506 			break;
2507 		case SCAN_FILE:
2508 		case SCAN_ANON:
2509 			/* Scan one type exclusively */
2510 			if ((scan_balance == SCAN_FILE) != file)
2511 				scan = 0;
2512 			break;
2513 		default:
2514 			/* Look ma, no brain */
2515 			BUG();
2516 		}
2517 
2518 		nr[lru] = scan;
2519 	}
2520 }
2521 
2522 /*
2523  * Anonymous LRU management is a waste if there is
2524  * ultimately no way to reclaim the memory.
2525  */
2526 static bool can_age_anon_pages(struct pglist_data *pgdat,
2527 			       struct scan_control *sc)
2528 {
2529 	/* Aging the anon LRU is valuable if swap is present: */
2530 	if (total_swap_pages > 0)
2531 		return true;
2532 
2533 	/* Also valuable if anon pages can be demoted: */
2534 	return can_demote(pgdat->node_id, sc);
2535 }
2536 
2537 #ifdef CONFIG_LRU_GEN
2538 
2539 #ifdef CONFIG_LRU_GEN_ENABLED
2540 DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS);
2541 #define get_cap(cap)	static_branch_likely(&lru_gen_caps[cap])
2542 #else
2543 DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS);
2544 #define get_cap(cap)	static_branch_unlikely(&lru_gen_caps[cap])
2545 #endif
2546 
2547 static bool should_walk_mmu(void)
2548 {
2549 	return arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK);
2550 }
2551 
2552 static bool should_clear_pmd_young(void)
2553 {
2554 	return arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG);
2555 }
2556 
2557 /******************************************************************************
2558  *                          shorthand helpers
2559  ******************************************************************************/
2560 
2561 #define LRU_REFS_FLAGS	(BIT(PG_referenced) | BIT(PG_workingset))
2562 
2563 #define DEFINE_MAX_SEQ(lruvec)						\
2564 	unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq)
2565 
2566 #define DEFINE_MIN_SEQ(lruvec)						\
2567 	unsigned long min_seq[ANON_AND_FILE] = {			\
2568 		READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]),	\
2569 		READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]),	\
2570 	}
2571 
2572 #define for_each_gen_type_zone(gen, type, zone)				\
2573 	for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++)			\
2574 		for ((type) = 0; (type) < ANON_AND_FILE; (type)++)	\
2575 			for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++)
2576 
2577 #define get_memcg_gen(seq)	((seq) % MEMCG_NR_GENS)
2578 #define get_memcg_bin(bin)	((bin) % MEMCG_NR_BINS)
2579 
2580 static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid)
2581 {
2582 	struct pglist_data *pgdat = NODE_DATA(nid);
2583 
2584 #ifdef CONFIG_MEMCG
2585 	if (memcg) {
2586 		struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec;
2587 
2588 		/* see the comment in mem_cgroup_lruvec() */
2589 		if (!lruvec->pgdat)
2590 			lruvec->pgdat = pgdat;
2591 
2592 		return lruvec;
2593 	}
2594 #endif
2595 	VM_WARN_ON_ONCE(!mem_cgroup_disabled());
2596 
2597 	return &pgdat->__lruvec;
2598 }
2599 
2600 static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc)
2601 {
2602 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2603 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2604 
2605 	if (!sc->may_swap)
2606 		return 0;
2607 
2608 	if (!can_demote(pgdat->node_id, sc) &&
2609 	    mem_cgroup_get_nr_swap_pages(memcg) < MIN_LRU_BATCH)
2610 		return 0;
2611 
2612 	return mem_cgroup_swappiness(memcg);
2613 }
2614 
2615 static int get_nr_gens(struct lruvec *lruvec, int type)
2616 {
2617 	return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1;
2618 }
2619 
2620 static bool __maybe_unused seq_is_valid(struct lruvec *lruvec)
2621 {
2622 	/* see the comment on lru_gen_folio */
2623 	return get_nr_gens(lruvec, LRU_GEN_FILE) >= MIN_NR_GENS &&
2624 	       get_nr_gens(lruvec, LRU_GEN_FILE) <= get_nr_gens(lruvec, LRU_GEN_ANON) &&
2625 	       get_nr_gens(lruvec, LRU_GEN_ANON) <= MAX_NR_GENS;
2626 }
2627 
2628 /******************************************************************************
2629  *                          Bloom filters
2630  ******************************************************************************/
2631 
2632 /*
2633  * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when
2634  * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of
2635  * bits in a bitmap, k is the number of hash functions and n is the number of
2636  * inserted items.
2637  *
2638  * Page table walkers use one of the two filters to reduce their search space.
2639  * To get rid of non-leaf entries that no longer have enough leaf entries, the
2640  * aging uses the double-buffering technique to flip to the other filter each
2641  * time it produces a new generation. For non-leaf entries that have enough
2642  * leaf entries, the aging carries them over to the next generation in
2643  * walk_pmd_range(); the eviction also report them when walking the rmap
2644  * in lru_gen_look_around().
2645  *
2646  * For future optimizations:
2647  * 1. It's not necessary to keep both filters all the time. The spare one can be
2648  *    freed after the RCU grace period and reallocated if needed again.
2649  * 2. And when reallocating, it's worth scaling its size according to the number
2650  *    of inserted entries in the other filter, to reduce the memory overhead on
2651  *    small systems and false positives on large systems.
2652  * 3. Jenkins' hash function is an alternative to Knuth's.
2653  */
2654 #define BLOOM_FILTER_SHIFT	15
2655 
2656 static inline int filter_gen_from_seq(unsigned long seq)
2657 {
2658 	return seq % NR_BLOOM_FILTERS;
2659 }
2660 
2661 static void get_item_key(void *item, int *key)
2662 {
2663 	u32 hash = hash_ptr(item, BLOOM_FILTER_SHIFT * 2);
2664 
2665 	BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32));
2666 
2667 	key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1);
2668 	key[1] = hash >> BLOOM_FILTER_SHIFT;
2669 }
2670 
2671 static bool test_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq,
2672 			      void *item)
2673 {
2674 	int key[2];
2675 	unsigned long *filter;
2676 	int gen = filter_gen_from_seq(seq);
2677 
2678 	filter = READ_ONCE(mm_state->filters[gen]);
2679 	if (!filter)
2680 		return true;
2681 
2682 	get_item_key(item, key);
2683 
2684 	return test_bit(key[0], filter) && test_bit(key[1], filter);
2685 }
2686 
2687 static void update_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq,
2688 				void *item)
2689 {
2690 	int key[2];
2691 	unsigned long *filter;
2692 	int gen = filter_gen_from_seq(seq);
2693 
2694 	filter = READ_ONCE(mm_state->filters[gen]);
2695 	if (!filter)
2696 		return;
2697 
2698 	get_item_key(item, key);
2699 
2700 	if (!test_bit(key[0], filter))
2701 		set_bit(key[0], filter);
2702 	if (!test_bit(key[1], filter))
2703 		set_bit(key[1], filter);
2704 }
2705 
2706 static void reset_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq)
2707 {
2708 	unsigned long *filter;
2709 	int gen = filter_gen_from_seq(seq);
2710 
2711 	filter = mm_state->filters[gen];
2712 	if (filter) {
2713 		bitmap_clear(filter, 0, BIT(BLOOM_FILTER_SHIFT));
2714 		return;
2715 	}
2716 
2717 	filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT),
2718 			       __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
2719 	WRITE_ONCE(mm_state->filters[gen], filter);
2720 }
2721 
2722 /******************************************************************************
2723  *                          mm_struct list
2724  ******************************************************************************/
2725 
2726 #ifdef CONFIG_LRU_GEN_WALKS_MMU
2727 
2728 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
2729 {
2730 	static struct lru_gen_mm_list mm_list = {
2731 		.fifo = LIST_HEAD_INIT(mm_list.fifo),
2732 		.lock = __SPIN_LOCK_UNLOCKED(mm_list.lock),
2733 	};
2734 
2735 #ifdef CONFIG_MEMCG
2736 	if (memcg)
2737 		return &memcg->mm_list;
2738 #endif
2739 	VM_WARN_ON_ONCE(!mem_cgroup_disabled());
2740 
2741 	return &mm_list;
2742 }
2743 
2744 static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec)
2745 {
2746 	return &lruvec->mm_state;
2747 }
2748 
2749 static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk)
2750 {
2751 	int key;
2752 	struct mm_struct *mm;
2753 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
2754 	struct lru_gen_mm_state *mm_state = get_mm_state(walk->lruvec);
2755 
2756 	mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list);
2757 	key = pgdat->node_id % BITS_PER_TYPE(mm->lru_gen.bitmap);
2758 
2759 	if (!walk->force_scan && !test_bit(key, &mm->lru_gen.bitmap))
2760 		return NULL;
2761 
2762 	clear_bit(key, &mm->lru_gen.bitmap);
2763 
2764 	return mmget_not_zero(mm) ? mm : NULL;
2765 }
2766 
2767 void lru_gen_add_mm(struct mm_struct *mm)
2768 {
2769 	int nid;
2770 	struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm);
2771 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
2772 
2773 	VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list));
2774 #ifdef CONFIG_MEMCG
2775 	VM_WARN_ON_ONCE(mm->lru_gen.memcg);
2776 	mm->lru_gen.memcg = memcg;
2777 #endif
2778 	spin_lock(&mm_list->lock);
2779 
2780 	for_each_node_state(nid, N_MEMORY) {
2781 		struct lruvec *lruvec = get_lruvec(memcg, nid);
2782 		struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
2783 
2784 		/* the first addition since the last iteration */
2785 		if (mm_state->tail == &mm_list->fifo)
2786 			mm_state->tail = &mm->lru_gen.list;
2787 	}
2788 
2789 	list_add_tail(&mm->lru_gen.list, &mm_list->fifo);
2790 
2791 	spin_unlock(&mm_list->lock);
2792 }
2793 
2794 void lru_gen_del_mm(struct mm_struct *mm)
2795 {
2796 	int nid;
2797 	struct lru_gen_mm_list *mm_list;
2798 	struct mem_cgroup *memcg = NULL;
2799 
2800 	if (list_empty(&mm->lru_gen.list))
2801 		return;
2802 
2803 #ifdef CONFIG_MEMCG
2804 	memcg = mm->lru_gen.memcg;
2805 #endif
2806 	mm_list = get_mm_list(memcg);
2807 
2808 	spin_lock(&mm_list->lock);
2809 
2810 	for_each_node(nid) {
2811 		struct lruvec *lruvec = get_lruvec(memcg, nid);
2812 		struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
2813 
2814 		/* where the current iteration continues after */
2815 		if (mm_state->head == &mm->lru_gen.list)
2816 			mm_state->head = mm_state->head->prev;
2817 
2818 		/* where the last iteration ended before */
2819 		if (mm_state->tail == &mm->lru_gen.list)
2820 			mm_state->tail = mm_state->tail->next;
2821 	}
2822 
2823 	list_del_init(&mm->lru_gen.list);
2824 
2825 	spin_unlock(&mm_list->lock);
2826 
2827 #ifdef CONFIG_MEMCG
2828 	mem_cgroup_put(mm->lru_gen.memcg);
2829 	mm->lru_gen.memcg = NULL;
2830 #endif
2831 }
2832 
2833 #ifdef CONFIG_MEMCG
2834 void lru_gen_migrate_mm(struct mm_struct *mm)
2835 {
2836 	struct mem_cgroup *memcg;
2837 	struct task_struct *task = rcu_dereference_protected(mm->owner, true);
2838 
2839 	VM_WARN_ON_ONCE(task->mm != mm);
2840 	lockdep_assert_held(&task->alloc_lock);
2841 
2842 	/* for mm_update_next_owner() */
2843 	if (mem_cgroup_disabled())
2844 		return;
2845 
2846 	/* migration can happen before addition */
2847 	if (!mm->lru_gen.memcg)
2848 		return;
2849 
2850 	rcu_read_lock();
2851 	memcg = mem_cgroup_from_task(task);
2852 	rcu_read_unlock();
2853 	if (memcg == mm->lru_gen.memcg)
2854 		return;
2855 
2856 	VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list));
2857 
2858 	lru_gen_del_mm(mm);
2859 	lru_gen_add_mm(mm);
2860 }
2861 #endif
2862 
2863 #else /* !CONFIG_LRU_GEN_WALKS_MMU */
2864 
2865 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
2866 {
2867 	return NULL;
2868 }
2869 
2870 static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec)
2871 {
2872 	return NULL;
2873 }
2874 
2875 static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk)
2876 {
2877 	return NULL;
2878 }
2879 
2880 #endif
2881 
2882 static void reset_mm_stats(struct lruvec *lruvec, struct lru_gen_mm_walk *walk, bool last)
2883 {
2884 	int i;
2885 	int hist;
2886 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
2887 
2888 	lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock);
2889 
2890 	if (walk) {
2891 		hist = lru_hist_from_seq(walk->max_seq);
2892 
2893 		for (i = 0; i < NR_MM_STATS; i++) {
2894 			WRITE_ONCE(mm_state->stats[hist][i],
2895 				   mm_state->stats[hist][i] + walk->mm_stats[i]);
2896 			walk->mm_stats[i] = 0;
2897 		}
2898 	}
2899 
2900 	if (NR_HIST_GENS > 1 && last) {
2901 		hist = lru_hist_from_seq(mm_state->seq + 1);
2902 
2903 		for (i = 0; i < NR_MM_STATS; i++)
2904 			WRITE_ONCE(mm_state->stats[hist][i], 0);
2905 	}
2906 }
2907 
2908 static bool iterate_mm_list(struct lruvec *lruvec, struct lru_gen_mm_walk *walk,
2909 			    struct mm_struct **iter)
2910 {
2911 	bool first = false;
2912 	bool last = false;
2913 	struct mm_struct *mm = NULL;
2914 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2915 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
2916 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
2917 
2918 	/*
2919 	 * mm_state->seq is incremented after each iteration of mm_list. There
2920 	 * are three interesting cases for this page table walker:
2921 	 * 1. It tries to start a new iteration with a stale max_seq: there is
2922 	 *    nothing left to do.
2923 	 * 2. It started the next iteration: it needs to reset the Bloom filter
2924 	 *    so that a fresh set of PTE tables can be recorded.
2925 	 * 3. It ended the current iteration: it needs to reset the mm stats
2926 	 *    counters and tell its caller to increment max_seq.
2927 	 */
2928 	spin_lock(&mm_list->lock);
2929 
2930 	VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->max_seq);
2931 
2932 	if (walk->max_seq <= mm_state->seq)
2933 		goto done;
2934 
2935 	if (!mm_state->head)
2936 		mm_state->head = &mm_list->fifo;
2937 
2938 	if (mm_state->head == &mm_list->fifo)
2939 		first = true;
2940 
2941 	do {
2942 		mm_state->head = mm_state->head->next;
2943 		if (mm_state->head == &mm_list->fifo) {
2944 			WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
2945 			last = true;
2946 			break;
2947 		}
2948 
2949 		/* force scan for those added after the last iteration */
2950 		if (!mm_state->tail || mm_state->tail == mm_state->head) {
2951 			mm_state->tail = mm_state->head->next;
2952 			walk->force_scan = true;
2953 		}
2954 	} while (!(mm = get_next_mm(walk)));
2955 done:
2956 	if (*iter || last)
2957 		reset_mm_stats(lruvec, walk, last);
2958 
2959 	spin_unlock(&mm_list->lock);
2960 
2961 	if (mm && first)
2962 		reset_bloom_filter(mm_state, walk->max_seq + 1);
2963 
2964 	if (*iter)
2965 		mmput_async(*iter);
2966 
2967 	*iter = mm;
2968 
2969 	return last;
2970 }
2971 
2972 static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long max_seq)
2973 {
2974 	bool success = false;
2975 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2976 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
2977 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
2978 
2979 	spin_lock(&mm_list->lock);
2980 
2981 	VM_WARN_ON_ONCE(mm_state->seq + 1 < max_seq);
2982 
2983 	if (max_seq > mm_state->seq) {
2984 		mm_state->head = NULL;
2985 		mm_state->tail = NULL;
2986 		WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
2987 		reset_mm_stats(lruvec, NULL, true);
2988 		success = true;
2989 	}
2990 
2991 	spin_unlock(&mm_list->lock);
2992 
2993 	return success;
2994 }
2995 
2996 /******************************************************************************
2997  *                          PID controller
2998  ******************************************************************************/
2999 
3000 /*
3001  * A feedback loop based on Proportional-Integral-Derivative (PID) controller.
3002  *
3003  * The P term is refaulted/(evicted+protected) from a tier in the generation
3004  * currently being evicted; the I term is the exponential moving average of the
3005  * P term over the generations previously evicted, using the smoothing factor
3006  * 1/2; the D term isn't supported.
3007  *
3008  * The setpoint (SP) is always the first tier of one type; the process variable
3009  * (PV) is either any tier of the other type or any other tier of the same
3010  * type.
3011  *
3012  * The error is the difference between the SP and the PV; the correction is to
3013  * turn off protection when SP>PV or turn on protection when SP<PV.
3014  *
3015  * For future optimizations:
3016  * 1. The D term may discount the other two terms over time so that long-lived
3017  *    generations can resist stale information.
3018  */
3019 struct ctrl_pos {
3020 	unsigned long refaulted;
3021 	unsigned long total;
3022 	int gain;
3023 };
3024 
3025 static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain,
3026 			  struct ctrl_pos *pos)
3027 {
3028 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3029 	int hist = lru_hist_from_seq(lrugen->min_seq[type]);
3030 
3031 	pos->refaulted = lrugen->avg_refaulted[type][tier] +
3032 			 atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3033 	pos->total = lrugen->avg_total[type][tier] +
3034 		     atomic_long_read(&lrugen->evicted[hist][type][tier]);
3035 	if (tier)
3036 		pos->total += lrugen->protected[hist][type][tier - 1];
3037 	pos->gain = gain;
3038 }
3039 
3040 static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover)
3041 {
3042 	int hist, tier;
3043 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3044 	bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1;
3045 	unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1;
3046 
3047 	lockdep_assert_held(&lruvec->lru_lock);
3048 
3049 	if (!carryover && !clear)
3050 		return;
3051 
3052 	hist = lru_hist_from_seq(seq);
3053 
3054 	for (tier = 0; tier < MAX_NR_TIERS; tier++) {
3055 		if (carryover) {
3056 			unsigned long sum;
3057 
3058 			sum = lrugen->avg_refaulted[type][tier] +
3059 			      atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3060 			WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2);
3061 
3062 			sum = lrugen->avg_total[type][tier] +
3063 			      atomic_long_read(&lrugen->evicted[hist][type][tier]);
3064 			if (tier)
3065 				sum += lrugen->protected[hist][type][tier - 1];
3066 			WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2);
3067 		}
3068 
3069 		if (clear) {
3070 			atomic_long_set(&lrugen->refaulted[hist][type][tier], 0);
3071 			atomic_long_set(&lrugen->evicted[hist][type][tier], 0);
3072 			if (tier)
3073 				WRITE_ONCE(lrugen->protected[hist][type][tier - 1], 0);
3074 		}
3075 	}
3076 }
3077 
3078 static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv)
3079 {
3080 	/*
3081 	 * Return true if the PV has a limited number of refaults or a lower
3082 	 * refaulted/total than the SP.
3083 	 */
3084 	return pv->refaulted < MIN_LRU_BATCH ||
3085 	       pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <=
3086 	       (sp->refaulted + 1) * pv->total * pv->gain;
3087 }
3088 
3089 /******************************************************************************
3090  *                          the aging
3091  ******************************************************************************/
3092 
3093 /* promote pages accessed through page tables */
3094 static int folio_update_gen(struct folio *folio, int gen)
3095 {
3096 	unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3097 
3098 	VM_WARN_ON_ONCE(gen >= MAX_NR_GENS);
3099 	VM_WARN_ON_ONCE(!rcu_read_lock_held());
3100 
3101 	do {
3102 		/* lru_gen_del_folio() has isolated this page? */
3103 		if (!(old_flags & LRU_GEN_MASK)) {
3104 			/* for shrink_folio_list() */
3105 			new_flags = old_flags | BIT(PG_referenced);
3106 			continue;
3107 		}
3108 
3109 		new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3110 		new_flags |= (gen + 1UL) << LRU_GEN_PGOFF;
3111 	} while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3112 
3113 	return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3114 }
3115 
3116 /* protect pages accessed multiple times through file descriptors */
3117 static int folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming)
3118 {
3119 	int type = folio_is_file_lru(folio);
3120 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3121 	int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
3122 	unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3123 
3124 	VM_WARN_ON_ONCE_FOLIO(!(old_flags & LRU_GEN_MASK), folio);
3125 
3126 	do {
3127 		new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3128 		/* folio_update_gen() has promoted this page? */
3129 		if (new_gen >= 0 && new_gen != old_gen)
3130 			return new_gen;
3131 
3132 		new_gen = (old_gen + 1) % MAX_NR_GENS;
3133 
3134 		new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3135 		new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF;
3136 		/* for folio_end_writeback() */
3137 		if (reclaiming)
3138 			new_flags |= BIT(PG_reclaim);
3139 	} while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3140 
3141 	lru_gen_update_size(lruvec, folio, old_gen, new_gen);
3142 
3143 	return new_gen;
3144 }
3145 
3146 static void update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio,
3147 			      int old_gen, int new_gen)
3148 {
3149 	int type = folio_is_file_lru(folio);
3150 	int zone = folio_zonenum(folio);
3151 	int delta = folio_nr_pages(folio);
3152 
3153 	VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS);
3154 	VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS);
3155 
3156 	walk->batched++;
3157 
3158 	walk->nr_pages[old_gen][type][zone] -= delta;
3159 	walk->nr_pages[new_gen][type][zone] += delta;
3160 }
3161 
3162 static void reset_batch_size(struct lruvec *lruvec, struct lru_gen_mm_walk *walk)
3163 {
3164 	int gen, type, zone;
3165 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3166 
3167 	walk->batched = 0;
3168 
3169 	for_each_gen_type_zone(gen, type, zone) {
3170 		enum lru_list lru = type * LRU_INACTIVE_FILE;
3171 		int delta = walk->nr_pages[gen][type][zone];
3172 
3173 		if (!delta)
3174 			continue;
3175 
3176 		walk->nr_pages[gen][type][zone] = 0;
3177 		WRITE_ONCE(lrugen->nr_pages[gen][type][zone],
3178 			   lrugen->nr_pages[gen][type][zone] + delta);
3179 
3180 		if (lru_gen_is_active(lruvec, gen))
3181 			lru += LRU_ACTIVE;
3182 		__update_lru_size(lruvec, lru, zone, delta);
3183 	}
3184 }
3185 
3186 static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args)
3187 {
3188 	struct address_space *mapping;
3189 	struct vm_area_struct *vma = args->vma;
3190 	struct lru_gen_mm_walk *walk = args->private;
3191 
3192 	if (!vma_is_accessible(vma))
3193 		return true;
3194 
3195 	if (is_vm_hugetlb_page(vma))
3196 		return true;
3197 
3198 	if (!vma_has_recency(vma))
3199 		return true;
3200 
3201 	if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL))
3202 		return true;
3203 
3204 	if (vma == get_gate_vma(vma->vm_mm))
3205 		return true;
3206 
3207 	if (vma_is_anonymous(vma))
3208 		return !walk->can_swap;
3209 
3210 	if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping))
3211 		return true;
3212 
3213 	mapping = vma->vm_file->f_mapping;
3214 	if (mapping_unevictable(mapping))
3215 		return true;
3216 
3217 	if (shmem_mapping(mapping))
3218 		return !walk->can_swap;
3219 
3220 	/* to exclude special mappings like dax, etc. */
3221 	return !mapping->a_ops->read_folio;
3222 }
3223 
3224 /*
3225  * Some userspace memory allocators map many single-page VMAs. Instead of
3226  * returning back to the PGD table for each of such VMAs, finish an entire PMD
3227  * table to reduce zigzags and improve cache performance.
3228  */
3229 static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args,
3230 			 unsigned long *vm_start, unsigned long *vm_end)
3231 {
3232 	unsigned long start = round_up(*vm_end, size);
3233 	unsigned long end = (start | ~mask) + 1;
3234 	VMA_ITERATOR(vmi, args->mm, start);
3235 
3236 	VM_WARN_ON_ONCE(mask & size);
3237 	VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask));
3238 
3239 	for_each_vma(vmi, args->vma) {
3240 		if (end && end <= args->vma->vm_start)
3241 			return false;
3242 
3243 		if (should_skip_vma(args->vma->vm_start, args->vma->vm_end, args))
3244 			continue;
3245 
3246 		*vm_start = max(start, args->vma->vm_start);
3247 		*vm_end = min(end - 1, args->vma->vm_end - 1) + 1;
3248 
3249 		return true;
3250 	}
3251 
3252 	return false;
3253 }
3254 
3255 static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr)
3256 {
3257 	unsigned long pfn = pte_pfn(pte);
3258 
3259 	VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3260 
3261 	if (!pte_present(pte) || is_zero_pfn(pfn))
3262 		return -1;
3263 
3264 	if (WARN_ON_ONCE(pte_devmap(pte) || pte_special(pte)))
3265 		return -1;
3266 
3267 	if (WARN_ON_ONCE(!pfn_valid(pfn)))
3268 		return -1;
3269 
3270 	return pfn;
3271 }
3272 
3273 static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr)
3274 {
3275 	unsigned long pfn = pmd_pfn(pmd);
3276 
3277 	VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3278 
3279 	if (!pmd_present(pmd) || is_huge_zero_pmd(pmd))
3280 		return -1;
3281 
3282 	if (WARN_ON_ONCE(pmd_devmap(pmd)))
3283 		return -1;
3284 
3285 	if (WARN_ON_ONCE(!pfn_valid(pfn)))
3286 		return -1;
3287 
3288 	return pfn;
3289 }
3290 
3291 static struct folio *get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg,
3292 				   struct pglist_data *pgdat, bool can_swap)
3293 {
3294 	struct folio *folio;
3295 
3296 	/* try to avoid unnecessary memory loads */
3297 	if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
3298 		return NULL;
3299 
3300 	folio = pfn_folio(pfn);
3301 	if (folio_nid(folio) != pgdat->node_id)
3302 		return NULL;
3303 
3304 	if (folio_memcg_rcu(folio) != memcg)
3305 		return NULL;
3306 
3307 	/* file VMAs can contain anon pages from COW */
3308 	if (!folio_is_file_lru(folio) && !can_swap)
3309 		return NULL;
3310 
3311 	return folio;
3312 }
3313 
3314 static bool suitable_to_scan(int total, int young)
3315 {
3316 	int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8);
3317 
3318 	/* suitable if the average number of young PTEs per cacheline is >=1 */
3319 	return young * n >= total;
3320 }
3321 
3322 static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end,
3323 			   struct mm_walk *args)
3324 {
3325 	int i;
3326 	pte_t *pte;
3327 	spinlock_t *ptl;
3328 	unsigned long addr;
3329 	int total = 0;
3330 	int young = 0;
3331 	struct lru_gen_mm_walk *walk = args->private;
3332 	struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3333 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3334 	int old_gen, new_gen = lru_gen_from_seq(walk->max_seq);
3335 
3336 	pte = pte_offset_map_nolock(args->mm, pmd, start & PMD_MASK, &ptl);
3337 	if (!pte)
3338 		return false;
3339 	if (!spin_trylock(ptl)) {
3340 		pte_unmap(pte);
3341 		return false;
3342 	}
3343 
3344 	arch_enter_lazy_mmu_mode();
3345 restart:
3346 	for (i = pte_index(start), addr = start; addr != end; i++, addr += PAGE_SIZE) {
3347 		unsigned long pfn;
3348 		struct folio *folio;
3349 		pte_t ptent = ptep_get(pte + i);
3350 
3351 		total++;
3352 		walk->mm_stats[MM_LEAF_TOTAL]++;
3353 
3354 		pfn = get_pte_pfn(ptent, args->vma, addr);
3355 		if (pfn == -1)
3356 			continue;
3357 
3358 		if (!pte_young(ptent)) {
3359 			walk->mm_stats[MM_LEAF_OLD]++;
3360 			continue;
3361 		}
3362 
3363 		folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
3364 		if (!folio)
3365 			continue;
3366 
3367 		if (!ptep_test_and_clear_young(args->vma, addr, pte + i))
3368 			VM_WARN_ON_ONCE(true);
3369 
3370 		young++;
3371 		walk->mm_stats[MM_LEAF_YOUNG]++;
3372 
3373 		if (pte_dirty(ptent) && !folio_test_dirty(folio) &&
3374 		    !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
3375 		      !folio_test_swapcache(folio)))
3376 			folio_mark_dirty(folio);
3377 
3378 		old_gen = folio_update_gen(folio, new_gen);
3379 		if (old_gen >= 0 && old_gen != new_gen)
3380 			update_batch_size(walk, folio, old_gen, new_gen);
3381 	}
3382 
3383 	if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, &start, &end))
3384 		goto restart;
3385 
3386 	arch_leave_lazy_mmu_mode();
3387 	pte_unmap_unlock(pte, ptl);
3388 
3389 	return suitable_to_scan(total, young);
3390 }
3391 
3392 static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma,
3393 				  struct mm_walk *args, unsigned long *bitmap, unsigned long *first)
3394 {
3395 	int i;
3396 	pmd_t *pmd;
3397 	spinlock_t *ptl;
3398 	struct lru_gen_mm_walk *walk = args->private;
3399 	struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3400 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3401 	int old_gen, new_gen = lru_gen_from_seq(walk->max_seq);
3402 
3403 	VM_WARN_ON_ONCE(pud_leaf(*pud));
3404 
3405 	/* try to batch at most 1+MIN_LRU_BATCH+1 entries */
3406 	if (*first == -1) {
3407 		*first = addr;
3408 		bitmap_zero(bitmap, MIN_LRU_BATCH);
3409 		return;
3410 	}
3411 
3412 	i = addr == -1 ? 0 : pmd_index(addr) - pmd_index(*first);
3413 	if (i && i <= MIN_LRU_BATCH) {
3414 		__set_bit(i - 1, bitmap);
3415 		return;
3416 	}
3417 
3418 	pmd = pmd_offset(pud, *first);
3419 
3420 	ptl = pmd_lockptr(args->mm, pmd);
3421 	if (!spin_trylock(ptl))
3422 		goto done;
3423 
3424 	arch_enter_lazy_mmu_mode();
3425 
3426 	do {
3427 		unsigned long pfn;
3428 		struct folio *folio;
3429 
3430 		/* don't round down the first address */
3431 		addr = i ? (*first & PMD_MASK) + i * PMD_SIZE : *first;
3432 
3433 		pfn = get_pmd_pfn(pmd[i], vma, addr);
3434 		if (pfn == -1)
3435 			goto next;
3436 
3437 		if (!pmd_trans_huge(pmd[i])) {
3438 			if (should_clear_pmd_young())
3439 				pmdp_test_and_clear_young(vma, addr, pmd + i);
3440 			goto next;
3441 		}
3442 
3443 		folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
3444 		if (!folio)
3445 			goto next;
3446 
3447 		if (!pmdp_test_and_clear_young(vma, addr, pmd + i))
3448 			goto next;
3449 
3450 		walk->mm_stats[MM_LEAF_YOUNG]++;
3451 
3452 		if (pmd_dirty(pmd[i]) && !folio_test_dirty(folio) &&
3453 		    !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
3454 		      !folio_test_swapcache(folio)))
3455 			folio_mark_dirty(folio);
3456 
3457 		old_gen = folio_update_gen(folio, new_gen);
3458 		if (old_gen >= 0 && old_gen != new_gen)
3459 			update_batch_size(walk, folio, old_gen, new_gen);
3460 next:
3461 		i = i > MIN_LRU_BATCH ? 0 : find_next_bit(bitmap, MIN_LRU_BATCH, i) + 1;
3462 	} while (i <= MIN_LRU_BATCH);
3463 
3464 	arch_leave_lazy_mmu_mode();
3465 	spin_unlock(ptl);
3466 done:
3467 	*first = -1;
3468 }
3469 
3470 static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end,
3471 			   struct mm_walk *args)
3472 {
3473 	int i;
3474 	pmd_t *pmd;
3475 	unsigned long next;
3476 	unsigned long addr;
3477 	struct vm_area_struct *vma;
3478 	DECLARE_BITMAP(bitmap, MIN_LRU_BATCH);
3479 	unsigned long first = -1;
3480 	struct lru_gen_mm_walk *walk = args->private;
3481 	struct lru_gen_mm_state *mm_state = get_mm_state(walk->lruvec);
3482 
3483 	VM_WARN_ON_ONCE(pud_leaf(*pud));
3484 
3485 	/*
3486 	 * Finish an entire PMD in two passes: the first only reaches to PTE
3487 	 * tables to avoid taking the PMD lock; the second, if necessary, takes
3488 	 * the PMD lock to clear the accessed bit in PMD entries.
3489 	 */
3490 	pmd = pmd_offset(pud, start & PUD_MASK);
3491 restart:
3492 	/* walk_pte_range() may call get_next_vma() */
3493 	vma = args->vma;
3494 	for (i = pmd_index(start), addr = start; addr != end; i++, addr = next) {
3495 		pmd_t val = pmdp_get_lockless(pmd + i);
3496 
3497 		next = pmd_addr_end(addr, end);
3498 
3499 		if (!pmd_present(val) || is_huge_zero_pmd(val)) {
3500 			walk->mm_stats[MM_LEAF_TOTAL]++;
3501 			continue;
3502 		}
3503 
3504 		if (pmd_trans_huge(val)) {
3505 			unsigned long pfn = pmd_pfn(val);
3506 			struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3507 
3508 			walk->mm_stats[MM_LEAF_TOTAL]++;
3509 
3510 			if (!pmd_young(val)) {
3511 				walk->mm_stats[MM_LEAF_OLD]++;
3512 				continue;
3513 			}
3514 
3515 			/* try to avoid unnecessary memory loads */
3516 			if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
3517 				continue;
3518 
3519 			walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
3520 			continue;
3521 		}
3522 
3523 		walk->mm_stats[MM_NONLEAF_TOTAL]++;
3524 
3525 		if (should_clear_pmd_young()) {
3526 			if (!pmd_young(val))
3527 				continue;
3528 
3529 			walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
3530 		}
3531 
3532 		if (!walk->force_scan && !test_bloom_filter(mm_state, walk->max_seq, pmd + i))
3533 			continue;
3534 
3535 		walk->mm_stats[MM_NONLEAF_FOUND]++;
3536 
3537 		if (!walk_pte_range(&val, addr, next, args))
3538 			continue;
3539 
3540 		walk->mm_stats[MM_NONLEAF_ADDED]++;
3541 
3542 		/* carry over to the next generation */
3543 		update_bloom_filter(mm_state, walk->max_seq + 1, pmd + i);
3544 	}
3545 
3546 	walk_pmd_range_locked(pud, -1, vma, args, bitmap, &first);
3547 
3548 	if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, &start, &end))
3549 		goto restart;
3550 }
3551 
3552 static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end,
3553 			  struct mm_walk *args)
3554 {
3555 	int i;
3556 	pud_t *pud;
3557 	unsigned long addr;
3558 	unsigned long next;
3559 	struct lru_gen_mm_walk *walk = args->private;
3560 
3561 	VM_WARN_ON_ONCE(p4d_leaf(*p4d));
3562 
3563 	pud = pud_offset(p4d, start & P4D_MASK);
3564 restart:
3565 	for (i = pud_index(start), addr = start; addr != end; i++, addr = next) {
3566 		pud_t val = READ_ONCE(pud[i]);
3567 
3568 		next = pud_addr_end(addr, end);
3569 
3570 		if (!pud_present(val) || WARN_ON_ONCE(pud_leaf(val)))
3571 			continue;
3572 
3573 		walk_pmd_range(&val, addr, next, args);
3574 
3575 		if (need_resched() || walk->batched >= MAX_LRU_BATCH) {
3576 			end = (addr | ~PUD_MASK) + 1;
3577 			goto done;
3578 		}
3579 	}
3580 
3581 	if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, &start, &end))
3582 		goto restart;
3583 
3584 	end = round_up(end, P4D_SIZE);
3585 done:
3586 	if (!end || !args->vma)
3587 		return 1;
3588 
3589 	walk->next_addr = max(end, args->vma->vm_start);
3590 
3591 	return -EAGAIN;
3592 }
3593 
3594 static void walk_mm(struct lruvec *lruvec, struct mm_struct *mm, struct lru_gen_mm_walk *walk)
3595 {
3596 	static const struct mm_walk_ops mm_walk_ops = {
3597 		.test_walk = should_skip_vma,
3598 		.p4d_entry = walk_pud_range,
3599 		.walk_lock = PGWALK_RDLOCK,
3600 	};
3601 
3602 	int err;
3603 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3604 
3605 	walk->next_addr = FIRST_USER_ADDRESS;
3606 
3607 	do {
3608 		DEFINE_MAX_SEQ(lruvec);
3609 
3610 		err = -EBUSY;
3611 
3612 		/* another thread might have called inc_max_seq() */
3613 		if (walk->max_seq != max_seq)
3614 			break;
3615 
3616 		/* folio_update_gen() requires stable folio_memcg() */
3617 		if (!mem_cgroup_trylock_pages(memcg))
3618 			break;
3619 
3620 		/* the caller might be holding the lock for write */
3621 		if (mmap_read_trylock(mm)) {
3622 			err = walk_page_range(mm, walk->next_addr, ULONG_MAX, &mm_walk_ops, walk);
3623 
3624 			mmap_read_unlock(mm);
3625 		}
3626 
3627 		mem_cgroup_unlock_pages();
3628 
3629 		if (walk->batched) {
3630 			spin_lock_irq(&lruvec->lru_lock);
3631 			reset_batch_size(lruvec, walk);
3632 			spin_unlock_irq(&lruvec->lru_lock);
3633 		}
3634 
3635 		cond_resched();
3636 	} while (err == -EAGAIN);
3637 }
3638 
3639 static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat, bool force_alloc)
3640 {
3641 	struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
3642 
3643 	if (pgdat && current_is_kswapd()) {
3644 		VM_WARN_ON_ONCE(walk);
3645 
3646 		walk = &pgdat->mm_walk;
3647 	} else if (!walk && force_alloc) {
3648 		VM_WARN_ON_ONCE(current_is_kswapd());
3649 
3650 		walk = kzalloc(sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
3651 	}
3652 
3653 	current->reclaim_state->mm_walk = walk;
3654 
3655 	return walk;
3656 }
3657 
3658 static void clear_mm_walk(void)
3659 {
3660 	struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
3661 
3662 	VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages)));
3663 	VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats)));
3664 
3665 	current->reclaim_state->mm_walk = NULL;
3666 
3667 	if (!current_is_kswapd())
3668 		kfree(walk);
3669 }
3670 
3671 static bool inc_min_seq(struct lruvec *lruvec, int type, bool can_swap)
3672 {
3673 	int zone;
3674 	int remaining = MAX_LRU_BATCH;
3675 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3676 	int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
3677 
3678 	if (type == LRU_GEN_ANON && !can_swap)
3679 		goto done;
3680 
3681 	/* prevent cold/hot inversion if force_scan is true */
3682 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3683 		struct list_head *head = &lrugen->folios[old_gen][type][zone];
3684 
3685 		while (!list_empty(head)) {
3686 			struct folio *folio = lru_to_folio(head);
3687 
3688 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
3689 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
3690 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
3691 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
3692 
3693 			new_gen = folio_inc_gen(lruvec, folio, false);
3694 			list_move_tail(&folio->lru, &lrugen->folios[new_gen][type][zone]);
3695 
3696 			if (!--remaining)
3697 				return false;
3698 		}
3699 	}
3700 done:
3701 	reset_ctrl_pos(lruvec, type, true);
3702 	WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1);
3703 
3704 	return true;
3705 }
3706 
3707 static bool try_to_inc_min_seq(struct lruvec *lruvec, bool can_swap)
3708 {
3709 	int gen, type, zone;
3710 	bool success = false;
3711 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3712 	DEFINE_MIN_SEQ(lruvec);
3713 
3714 	VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
3715 
3716 	/* find the oldest populated generation */
3717 	for (type = !can_swap; type < ANON_AND_FILE; type++) {
3718 		while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) {
3719 			gen = lru_gen_from_seq(min_seq[type]);
3720 
3721 			for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3722 				if (!list_empty(&lrugen->folios[gen][type][zone]))
3723 					goto next;
3724 			}
3725 
3726 			min_seq[type]++;
3727 		}
3728 next:
3729 		;
3730 	}
3731 
3732 	/* see the comment on lru_gen_folio */
3733 	if (can_swap) {
3734 		min_seq[LRU_GEN_ANON] = min(min_seq[LRU_GEN_ANON], min_seq[LRU_GEN_FILE]);
3735 		min_seq[LRU_GEN_FILE] = max(min_seq[LRU_GEN_ANON], lrugen->min_seq[LRU_GEN_FILE]);
3736 	}
3737 
3738 	for (type = !can_swap; type < ANON_AND_FILE; type++) {
3739 		if (min_seq[type] == lrugen->min_seq[type])
3740 			continue;
3741 
3742 		reset_ctrl_pos(lruvec, type, true);
3743 		WRITE_ONCE(lrugen->min_seq[type], min_seq[type]);
3744 		success = true;
3745 	}
3746 
3747 	return success;
3748 }
3749 
3750 static bool inc_max_seq(struct lruvec *lruvec, unsigned long max_seq,
3751 			bool can_swap, bool force_scan)
3752 {
3753 	bool success;
3754 	int prev, next;
3755 	int type, zone;
3756 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3757 restart:
3758 	if (max_seq < READ_ONCE(lrugen->max_seq))
3759 		return false;
3760 
3761 	spin_lock_irq(&lruvec->lru_lock);
3762 
3763 	VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
3764 
3765 	success = max_seq == lrugen->max_seq;
3766 	if (!success)
3767 		goto unlock;
3768 
3769 	for (type = ANON_AND_FILE - 1; type >= 0; type--) {
3770 		if (get_nr_gens(lruvec, type) != MAX_NR_GENS)
3771 			continue;
3772 
3773 		VM_WARN_ON_ONCE(!force_scan && (type == LRU_GEN_FILE || can_swap));
3774 
3775 		if (inc_min_seq(lruvec, type, can_swap))
3776 			continue;
3777 
3778 		spin_unlock_irq(&lruvec->lru_lock);
3779 		cond_resched();
3780 		goto restart;
3781 	}
3782 
3783 	/*
3784 	 * Update the active/inactive LRU sizes for compatibility. Both sides of
3785 	 * the current max_seq need to be covered, since max_seq+1 can overlap
3786 	 * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do
3787 	 * overlap, cold/hot inversion happens.
3788 	 */
3789 	prev = lru_gen_from_seq(lrugen->max_seq - 1);
3790 	next = lru_gen_from_seq(lrugen->max_seq + 1);
3791 
3792 	for (type = 0; type < ANON_AND_FILE; type++) {
3793 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3794 			enum lru_list lru = type * LRU_INACTIVE_FILE;
3795 			long delta = lrugen->nr_pages[prev][type][zone] -
3796 				     lrugen->nr_pages[next][type][zone];
3797 
3798 			if (!delta)
3799 				continue;
3800 
3801 			__update_lru_size(lruvec, lru, zone, delta);
3802 			__update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta);
3803 		}
3804 	}
3805 
3806 	for (type = 0; type < ANON_AND_FILE; type++)
3807 		reset_ctrl_pos(lruvec, type, false);
3808 
3809 	WRITE_ONCE(lrugen->timestamps[next], jiffies);
3810 	/* make sure preceding modifications appear */
3811 	smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1);
3812 unlock:
3813 	spin_unlock_irq(&lruvec->lru_lock);
3814 
3815 	return success;
3816 }
3817 
3818 static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long max_seq,
3819 			       struct scan_control *sc, bool can_swap, bool force_scan)
3820 {
3821 	bool success;
3822 	struct lru_gen_mm_walk *walk;
3823 	struct mm_struct *mm = NULL;
3824 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3825 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
3826 
3827 	VM_WARN_ON_ONCE(max_seq > READ_ONCE(lrugen->max_seq));
3828 
3829 	if (!mm_state)
3830 		return inc_max_seq(lruvec, max_seq, can_swap, force_scan);
3831 
3832 	/* see the comment in iterate_mm_list() */
3833 	if (max_seq <= READ_ONCE(mm_state->seq))
3834 		return false;
3835 
3836 	/*
3837 	 * If the hardware doesn't automatically set the accessed bit, fallback
3838 	 * to lru_gen_look_around(), which only clears the accessed bit in a
3839 	 * handful of PTEs. Spreading the work out over a period of time usually
3840 	 * is less efficient, but it avoids bursty page faults.
3841 	 */
3842 	if (!should_walk_mmu()) {
3843 		success = iterate_mm_list_nowalk(lruvec, max_seq);
3844 		goto done;
3845 	}
3846 
3847 	walk = set_mm_walk(NULL, true);
3848 	if (!walk) {
3849 		success = iterate_mm_list_nowalk(lruvec, max_seq);
3850 		goto done;
3851 	}
3852 
3853 	walk->lruvec = lruvec;
3854 	walk->max_seq = max_seq;
3855 	walk->can_swap = can_swap;
3856 	walk->force_scan = force_scan;
3857 
3858 	do {
3859 		success = iterate_mm_list(lruvec, walk, &mm);
3860 		if (mm)
3861 			walk_mm(lruvec, mm, walk);
3862 	} while (mm);
3863 done:
3864 	if (success) {
3865 		success = inc_max_seq(lruvec, max_seq, can_swap, force_scan);
3866 		WARN_ON_ONCE(!success);
3867 	}
3868 
3869 	return success;
3870 }
3871 
3872 /******************************************************************************
3873  *                          working set protection
3874  ******************************************************************************/
3875 
3876 static bool lruvec_is_sizable(struct lruvec *lruvec, struct scan_control *sc)
3877 {
3878 	int gen, type, zone;
3879 	unsigned long total = 0;
3880 	bool can_swap = get_swappiness(lruvec, sc);
3881 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3882 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3883 	DEFINE_MAX_SEQ(lruvec);
3884 	DEFINE_MIN_SEQ(lruvec);
3885 
3886 	for (type = !can_swap; type < ANON_AND_FILE; type++) {
3887 		unsigned long seq;
3888 
3889 		for (seq = min_seq[type]; seq <= max_seq; seq++) {
3890 			gen = lru_gen_from_seq(seq);
3891 
3892 			for (zone = 0; zone < MAX_NR_ZONES; zone++)
3893 				total += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
3894 		}
3895 	}
3896 
3897 	/* whether the size is big enough to be helpful */
3898 	return mem_cgroup_online(memcg) ? (total >> sc->priority) : total;
3899 }
3900 
3901 static bool lruvec_is_reclaimable(struct lruvec *lruvec, struct scan_control *sc,
3902 				  unsigned long min_ttl)
3903 {
3904 	int gen;
3905 	unsigned long birth;
3906 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3907 	DEFINE_MIN_SEQ(lruvec);
3908 
3909 	/* see the comment on lru_gen_folio */
3910 	gen = lru_gen_from_seq(min_seq[LRU_GEN_FILE]);
3911 	birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
3912 
3913 	if (time_is_after_jiffies(birth + min_ttl))
3914 		return false;
3915 
3916 	if (!lruvec_is_sizable(lruvec, sc))
3917 		return false;
3918 
3919 	mem_cgroup_calculate_protection(NULL, memcg);
3920 
3921 	return !mem_cgroup_below_min(NULL, memcg);
3922 }
3923 
3924 /* to protect the working set of the last N jiffies */
3925 static unsigned long lru_gen_min_ttl __read_mostly;
3926 
3927 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
3928 {
3929 	struct mem_cgroup *memcg;
3930 	unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl);
3931 
3932 	VM_WARN_ON_ONCE(!current_is_kswapd());
3933 
3934 	/* check the order to exclude compaction-induced reclaim */
3935 	if (!min_ttl || sc->order || sc->priority == DEF_PRIORITY)
3936 		return;
3937 
3938 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
3939 	do {
3940 		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3941 
3942 		if (lruvec_is_reclaimable(lruvec, sc, min_ttl)) {
3943 			mem_cgroup_iter_break(NULL, memcg);
3944 			return;
3945 		}
3946 
3947 		cond_resched();
3948 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
3949 
3950 	/*
3951 	 * The main goal is to OOM kill if every generation from all memcgs is
3952 	 * younger than min_ttl. However, another possibility is all memcgs are
3953 	 * either too small or below min.
3954 	 */
3955 	if (mutex_trylock(&oom_lock)) {
3956 		struct oom_control oc = {
3957 			.gfp_mask = sc->gfp_mask,
3958 		};
3959 
3960 		out_of_memory(&oc);
3961 
3962 		mutex_unlock(&oom_lock);
3963 	}
3964 }
3965 
3966 /******************************************************************************
3967  *                          rmap/PT walk feedback
3968  ******************************************************************************/
3969 
3970 /*
3971  * This function exploits spatial locality when shrink_folio_list() walks the
3972  * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If
3973  * the scan was done cacheline efficiently, it adds the PMD entry pointing to
3974  * the PTE table to the Bloom filter. This forms a feedback loop between the
3975  * eviction and the aging.
3976  */
3977 void lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
3978 {
3979 	int i;
3980 	unsigned long start;
3981 	unsigned long end;
3982 	struct lru_gen_mm_walk *walk;
3983 	int young = 0;
3984 	pte_t *pte = pvmw->pte;
3985 	unsigned long addr = pvmw->address;
3986 	struct vm_area_struct *vma = pvmw->vma;
3987 	struct folio *folio = pfn_folio(pvmw->pfn);
3988 	bool can_swap = !folio_is_file_lru(folio);
3989 	struct mem_cgroup *memcg = folio_memcg(folio);
3990 	struct pglist_data *pgdat = folio_pgdat(folio);
3991 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3992 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
3993 	DEFINE_MAX_SEQ(lruvec);
3994 	int old_gen, new_gen = lru_gen_from_seq(max_seq);
3995 
3996 	lockdep_assert_held(pvmw->ptl);
3997 	VM_WARN_ON_ONCE_FOLIO(folio_test_lru(folio), folio);
3998 
3999 	if (spin_is_contended(pvmw->ptl))
4000 		return;
4001 
4002 	/* exclude special VMAs containing anon pages from COW */
4003 	if (vma->vm_flags & VM_SPECIAL)
4004 		return;
4005 
4006 	/* avoid taking the LRU lock under the PTL when possible */
4007 	walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL;
4008 
4009 	start = max(addr & PMD_MASK, vma->vm_start);
4010 	end = min(addr | ~PMD_MASK, vma->vm_end - 1) + 1;
4011 
4012 	if (end - start > MIN_LRU_BATCH * PAGE_SIZE) {
4013 		if (addr - start < MIN_LRU_BATCH * PAGE_SIZE / 2)
4014 			end = start + MIN_LRU_BATCH * PAGE_SIZE;
4015 		else if (end - addr < MIN_LRU_BATCH * PAGE_SIZE / 2)
4016 			start = end - MIN_LRU_BATCH * PAGE_SIZE;
4017 		else {
4018 			start = addr - MIN_LRU_BATCH * PAGE_SIZE / 2;
4019 			end = addr + MIN_LRU_BATCH * PAGE_SIZE / 2;
4020 		}
4021 	}
4022 
4023 	/* folio_update_gen() requires stable folio_memcg() */
4024 	if (!mem_cgroup_trylock_pages(memcg))
4025 		return;
4026 
4027 	arch_enter_lazy_mmu_mode();
4028 
4029 	pte -= (addr - start) / PAGE_SIZE;
4030 
4031 	for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) {
4032 		unsigned long pfn;
4033 		pte_t ptent = ptep_get(pte + i);
4034 
4035 		pfn = get_pte_pfn(ptent, vma, addr);
4036 		if (pfn == -1)
4037 			continue;
4038 
4039 		if (!pte_young(ptent))
4040 			continue;
4041 
4042 		folio = get_pfn_folio(pfn, memcg, pgdat, can_swap);
4043 		if (!folio)
4044 			continue;
4045 
4046 		if (!ptep_test_and_clear_young(vma, addr, pte + i))
4047 			VM_WARN_ON_ONCE(true);
4048 
4049 		young++;
4050 
4051 		if (pte_dirty(ptent) && !folio_test_dirty(folio) &&
4052 		    !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
4053 		      !folio_test_swapcache(folio)))
4054 			folio_mark_dirty(folio);
4055 
4056 		if (walk) {
4057 			old_gen = folio_update_gen(folio, new_gen);
4058 			if (old_gen >= 0 && old_gen != new_gen)
4059 				update_batch_size(walk, folio, old_gen, new_gen);
4060 
4061 			continue;
4062 		}
4063 
4064 		old_gen = folio_lru_gen(folio);
4065 		if (old_gen < 0)
4066 			folio_set_referenced(folio);
4067 		else if (old_gen != new_gen)
4068 			folio_activate(folio);
4069 	}
4070 
4071 	arch_leave_lazy_mmu_mode();
4072 	mem_cgroup_unlock_pages();
4073 
4074 	/* feedback from rmap walkers to page table walkers */
4075 	if (mm_state && suitable_to_scan(i, young))
4076 		update_bloom_filter(mm_state, max_seq, pvmw->pmd);
4077 }
4078 
4079 /******************************************************************************
4080  *                          memcg LRU
4081  ******************************************************************************/
4082 
4083 /* see the comment on MEMCG_NR_GENS */
4084 enum {
4085 	MEMCG_LRU_NOP,
4086 	MEMCG_LRU_HEAD,
4087 	MEMCG_LRU_TAIL,
4088 	MEMCG_LRU_OLD,
4089 	MEMCG_LRU_YOUNG,
4090 };
4091 
4092 static void lru_gen_rotate_memcg(struct lruvec *lruvec, int op)
4093 {
4094 	int seg;
4095 	int old, new;
4096 	unsigned long flags;
4097 	int bin = get_random_u32_below(MEMCG_NR_BINS);
4098 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4099 
4100 	spin_lock_irqsave(&pgdat->memcg_lru.lock, flags);
4101 
4102 	VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list));
4103 
4104 	seg = 0;
4105 	new = old = lruvec->lrugen.gen;
4106 
4107 	/* see the comment on MEMCG_NR_GENS */
4108 	if (op == MEMCG_LRU_HEAD)
4109 		seg = MEMCG_LRU_HEAD;
4110 	else if (op == MEMCG_LRU_TAIL)
4111 		seg = MEMCG_LRU_TAIL;
4112 	else if (op == MEMCG_LRU_OLD)
4113 		new = get_memcg_gen(pgdat->memcg_lru.seq);
4114 	else if (op == MEMCG_LRU_YOUNG)
4115 		new = get_memcg_gen(pgdat->memcg_lru.seq + 1);
4116 	else
4117 		VM_WARN_ON_ONCE(true);
4118 
4119 	WRITE_ONCE(lruvec->lrugen.seg, seg);
4120 	WRITE_ONCE(lruvec->lrugen.gen, new);
4121 
4122 	hlist_nulls_del_rcu(&lruvec->lrugen.list);
4123 
4124 	if (op == MEMCG_LRU_HEAD || op == MEMCG_LRU_OLD)
4125 		hlist_nulls_add_head_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
4126 	else
4127 		hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
4128 
4129 	pgdat->memcg_lru.nr_memcgs[old]--;
4130 	pgdat->memcg_lru.nr_memcgs[new]++;
4131 
4132 	if (!pgdat->memcg_lru.nr_memcgs[old] && old == get_memcg_gen(pgdat->memcg_lru.seq))
4133 		WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
4134 
4135 	spin_unlock_irqrestore(&pgdat->memcg_lru.lock, flags);
4136 }
4137 
4138 #ifdef CONFIG_MEMCG
4139 
4140 void lru_gen_online_memcg(struct mem_cgroup *memcg)
4141 {
4142 	int gen;
4143 	int nid;
4144 	int bin = get_random_u32_below(MEMCG_NR_BINS);
4145 
4146 	for_each_node(nid) {
4147 		struct pglist_data *pgdat = NODE_DATA(nid);
4148 		struct lruvec *lruvec = get_lruvec(memcg, nid);
4149 
4150 		spin_lock_irq(&pgdat->memcg_lru.lock);
4151 
4152 		VM_WARN_ON_ONCE(!hlist_nulls_unhashed(&lruvec->lrugen.list));
4153 
4154 		gen = get_memcg_gen(pgdat->memcg_lru.seq);
4155 
4156 		lruvec->lrugen.gen = gen;
4157 
4158 		hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[gen][bin]);
4159 		pgdat->memcg_lru.nr_memcgs[gen]++;
4160 
4161 		spin_unlock_irq(&pgdat->memcg_lru.lock);
4162 	}
4163 }
4164 
4165 void lru_gen_offline_memcg(struct mem_cgroup *memcg)
4166 {
4167 	int nid;
4168 
4169 	for_each_node(nid) {
4170 		struct lruvec *lruvec = get_lruvec(memcg, nid);
4171 
4172 		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_OLD);
4173 	}
4174 }
4175 
4176 void lru_gen_release_memcg(struct mem_cgroup *memcg)
4177 {
4178 	int gen;
4179 	int nid;
4180 
4181 	for_each_node(nid) {
4182 		struct pglist_data *pgdat = NODE_DATA(nid);
4183 		struct lruvec *lruvec = get_lruvec(memcg, nid);
4184 
4185 		spin_lock_irq(&pgdat->memcg_lru.lock);
4186 
4187 		if (hlist_nulls_unhashed(&lruvec->lrugen.list))
4188 			goto unlock;
4189 
4190 		gen = lruvec->lrugen.gen;
4191 
4192 		hlist_nulls_del_init_rcu(&lruvec->lrugen.list);
4193 		pgdat->memcg_lru.nr_memcgs[gen]--;
4194 
4195 		if (!pgdat->memcg_lru.nr_memcgs[gen] && gen == get_memcg_gen(pgdat->memcg_lru.seq))
4196 			WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
4197 unlock:
4198 		spin_unlock_irq(&pgdat->memcg_lru.lock);
4199 	}
4200 }
4201 
4202 void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid)
4203 {
4204 	struct lruvec *lruvec = get_lruvec(memcg, nid);
4205 
4206 	/* see the comment on MEMCG_NR_GENS */
4207 	if (READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_HEAD)
4208 		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_HEAD);
4209 }
4210 
4211 #endif /* CONFIG_MEMCG */
4212 
4213 /******************************************************************************
4214  *                          the eviction
4215  ******************************************************************************/
4216 
4217 static bool sort_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc,
4218 		       int tier_idx)
4219 {
4220 	bool success;
4221 	int gen = folio_lru_gen(folio);
4222 	int type = folio_is_file_lru(folio);
4223 	int zone = folio_zonenum(folio);
4224 	int delta = folio_nr_pages(folio);
4225 	int refs = folio_lru_refs(folio);
4226 	int tier = lru_tier_from_refs(refs);
4227 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4228 
4229 	VM_WARN_ON_ONCE_FOLIO(gen >= MAX_NR_GENS, folio);
4230 
4231 	/* unevictable */
4232 	if (!folio_evictable(folio)) {
4233 		success = lru_gen_del_folio(lruvec, folio, true);
4234 		VM_WARN_ON_ONCE_FOLIO(!success, folio);
4235 		folio_set_unevictable(folio);
4236 		lruvec_add_folio(lruvec, folio);
4237 		__count_vm_events(UNEVICTABLE_PGCULLED, delta);
4238 		return true;
4239 	}
4240 
4241 	/* dirty lazyfree */
4242 	if (type == LRU_GEN_FILE && folio_test_anon(folio) && folio_test_dirty(folio)) {
4243 		success = lru_gen_del_folio(lruvec, folio, true);
4244 		VM_WARN_ON_ONCE_FOLIO(!success, folio);
4245 		folio_set_swapbacked(folio);
4246 		lruvec_add_folio_tail(lruvec, folio);
4247 		return true;
4248 	}
4249 
4250 	/* promoted */
4251 	if (gen != lru_gen_from_seq(lrugen->min_seq[type])) {
4252 		list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4253 		return true;
4254 	}
4255 
4256 	/* protected */
4257 	if (tier > tier_idx || refs == BIT(LRU_REFS_WIDTH)) {
4258 		int hist = lru_hist_from_seq(lrugen->min_seq[type]);
4259 
4260 		gen = folio_inc_gen(lruvec, folio, false);
4261 		list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]);
4262 
4263 		WRITE_ONCE(lrugen->protected[hist][type][tier - 1],
4264 			   lrugen->protected[hist][type][tier - 1] + delta);
4265 		return true;
4266 	}
4267 
4268 	/* ineligible */
4269 	if (zone > sc->reclaim_idx || skip_cma(folio, sc)) {
4270 		gen = folio_inc_gen(lruvec, folio, false);
4271 		list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]);
4272 		return true;
4273 	}
4274 
4275 	/* waiting for writeback */
4276 	if (folio_test_locked(folio) || folio_test_writeback(folio) ||
4277 	    (type == LRU_GEN_FILE && folio_test_dirty(folio))) {
4278 		gen = folio_inc_gen(lruvec, folio, true);
4279 		list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4280 		return true;
4281 	}
4282 
4283 	return false;
4284 }
4285 
4286 static bool isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc)
4287 {
4288 	bool success;
4289 
4290 	/* swapping inhibited */
4291 	if (!(sc->gfp_mask & __GFP_IO) &&
4292 	    (folio_test_dirty(folio) ||
4293 	     (folio_test_anon(folio) && !folio_test_swapcache(folio))))
4294 		return false;
4295 
4296 	/* raced with release_pages() */
4297 	if (!folio_try_get(folio))
4298 		return false;
4299 
4300 	/* raced with another isolation */
4301 	if (!folio_test_clear_lru(folio)) {
4302 		folio_put(folio);
4303 		return false;
4304 	}
4305 
4306 	/* see the comment on MAX_NR_TIERS */
4307 	if (!folio_test_referenced(folio))
4308 		set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS, 0);
4309 
4310 	/* for shrink_folio_list() */
4311 	folio_clear_reclaim(folio);
4312 	folio_clear_referenced(folio);
4313 
4314 	success = lru_gen_del_folio(lruvec, folio, true);
4315 	VM_WARN_ON_ONCE_FOLIO(!success, folio);
4316 
4317 	return true;
4318 }
4319 
4320 static int scan_folios(struct lruvec *lruvec, struct scan_control *sc,
4321 		       int type, int tier, struct list_head *list)
4322 {
4323 	int i;
4324 	int gen;
4325 	enum vm_event_item item;
4326 	int sorted = 0;
4327 	int scanned = 0;
4328 	int isolated = 0;
4329 	int skipped = 0;
4330 	int remaining = MAX_LRU_BATCH;
4331 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4332 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4333 
4334 	VM_WARN_ON_ONCE(!list_empty(list));
4335 
4336 	if (get_nr_gens(lruvec, type) == MIN_NR_GENS)
4337 		return 0;
4338 
4339 	gen = lru_gen_from_seq(lrugen->min_seq[type]);
4340 
4341 	for (i = MAX_NR_ZONES; i > 0; i--) {
4342 		LIST_HEAD(moved);
4343 		int skipped_zone = 0;
4344 		int zone = (sc->reclaim_idx + i) % MAX_NR_ZONES;
4345 		struct list_head *head = &lrugen->folios[gen][type][zone];
4346 
4347 		while (!list_empty(head)) {
4348 			struct folio *folio = lru_to_folio(head);
4349 			int delta = folio_nr_pages(folio);
4350 
4351 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
4352 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
4353 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
4354 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
4355 
4356 			scanned += delta;
4357 
4358 			if (sort_folio(lruvec, folio, sc, tier))
4359 				sorted += delta;
4360 			else if (isolate_folio(lruvec, folio, sc)) {
4361 				list_add(&folio->lru, list);
4362 				isolated += delta;
4363 			} else {
4364 				list_move(&folio->lru, &moved);
4365 				skipped_zone += delta;
4366 			}
4367 
4368 			if (!--remaining || max(isolated, skipped_zone) >= MIN_LRU_BATCH)
4369 				break;
4370 		}
4371 
4372 		if (skipped_zone) {
4373 			list_splice(&moved, head);
4374 			__count_zid_vm_events(PGSCAN_SKIP, zone, skipped_zone);
4375 			skipped += skipped_zone;
4376 		}
4377 
4378 		if (!remaining || isolated >= MIN_LRU_BATCH)
4379 			break;
4380 	}
4381 
4382 	item = PGSCAN_KSWAPD + reclaimer_offset();
4383 	if (!cgroup_reclaim(sc)) {
4384 		__count_vm_events(item, isolated);
4385 		__count_vm_events(PGREFILL, sorted);
4386 	}
4387 	__count_memcg_events(memcg, item, isolated);
4388 	__count_memcg_events(memcg, PGREFILL, sorted);
4389 	__count_vm_events(PGSCAN_ANON + type, isolated);
4390 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, MAX_LRU_BATCH,
4391 				scanned, skipped, isolated,
4392 				type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON);
4393 
4394 	/*
4395 	 * There might not be eligible folios due to reclaim_idx. Check the
4396 	 * remaining to prevent livelock if it's not making progress.
4397 	 */
4398 	return isolated || !remaining ? scanned : 0;
4399 }
4400 
4401 static int get_tier_idx(struct lruvec *lruvec, int type)
4402 {
4403 	int tier;
4404 	struct ctrl_pos sp, pv;
4405 
4406 	/*
4407 	 * To leave a margin for fluctuations, use a larger gain factor (1:2).
4408 	 * This value is chosen because any other tier would have at least twice
4409 	 * as many refaults as the first tier.
4410 	 */
4411 	read_ctrl_pos(lruvec, type, 0, 1, &sp);
4412 	for (tier = 1; tier < MAX_NR_TIERS; tier++) {
4413 		read_ctrl_pos(lruvec, type, tier, 2, &pv);
4414 		if (!positive_ctrl_err(&sp, &pv))
4415 			break;
4416 	}
4417 
4418 	return tier - 1;
4419 }
4420 
4421 static int get_type_to_scan(struct lruvec *lruvec, int swappiness, int *tier_idx)
4422 {
4423 	int type, tier;
4424 	struct ctrl_pos sp, pv;
4425 	int gain[ANON_AND_FILE] = { swappiness, 200 - swappiness };
4426 
4427 	/*
4428 	 * Compare the first tier of anon with that of file to determine which
4429 	 * type to scan. Also need to compare other tiers of the selected type
4430 	 * with the first tier of the other type to determine the last tier (of
4431 	 * the selected type) to evict.
4432 	 */
4433 	read_ctrl_pos(lruvec, LRU_GEN_ANON, 0, gain[LRU_GEN_ANON], &sp);
4434 	read_ctrl_pos(lruvec, LRU_GEN_FILE, 0, gain[LRU_GEN_FILE], &pv);
4435 	type = positive_ctrl_err(&sp, &pv);
4436 
4437 	read_ctrl_pos(lruvec, !type, 0, gain[!type], &sp);
4438 	for (tier = 1; tier < MAX_NR_TIERS; tier++) {
4439 		read_ctrl_pos(lruvec, type, tier, gain[type], &pv);
4440 		if (!positive_ctrl_err(&sp, &pv))
4441 			break;
4442 	}
4443 
4444 	*tier_idx = tier - 1;
4445 
4446 	return type;
4447 }
4448 
4449 static int isolate_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness,
4450 			  int *type_scanned, struct list_head *list)
4451 {
4452 	int i;
4453 	int type;
4454 	int scanned;
4455 	int tier = -1;
4456 	DEFINE_MIN_SEQ(lruvec);
4457 
4458 	/*
4459 	 * Try to make the obvious choice first. When anon and file are both
4460 	 * available from the same generation, interpret swappiness 1 as file
4461 	 * first and 200 as anon first.
4462 	 */
4463 	if (!swappiness)
4464 		type = LRU_GEN_FILE;
4465 	else if (min_seq[LRU_GEN_ANON] < min_seq[LRU_GEN_FILE])
4466 		type = LRU_GEN_ANON;
4467 	else if (swappiness == 1)
4468 		type = LRU_GEN_FILE;
4469 	else if (swappiness == 200)
4470 		type = LRU_GEN_ANON;
4471 	else
4472 		type = get_type_to_scan(lruvec, swappiness, &tier);
4473 
4474 	for (i = !swappiness; i < ANON_AND_FILE; i++) {
4475 		if (tier < 0)
4476 			tier = get_tier_idx(lruvec, type);
4477 
4478 		scanned = scan_folios(lruvec, sc, type, tier, list);
4479 		if (scanned)
4480 			break;
4481 
4482 		type = !type;
4483 		tier = -1;
4484 	}
4485 
4486 	*type_scanned = type;
4487 
4488 	return scanned;
4489 }
4490 
4491 static int evict_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness)
4492 {
4493 	int type;
4494 	int scanned;
4495 	int reclaimed;
4496 	LIST_HEAD(list);
4497 	LIST_HEAD(clean);
4498 	struct folio *folio;
4499 	struct folio *next;
4500 	enum vm_event_item item;
4501 	struct reclaim_stat stat;
4502 	struct lru_gen_mm_walk *walk;
4503 	bool skip_retry = false;
4504 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4505 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4506 
4507 	spin_lock_irq(&lruvec->lru_lock);
4508 
4509 	scanned = isolate_folios(lruvec, sc, swappiness, &type, &list);
4510 
4511 	scanned += try_to_inc_min_seq(lruvec, swappiness);
4512 
4513 	if (get_nr_gens(lruvec, !swappiness) == MIN_NR_GENS)
4514 		scanned = 0;
4515 
4516 	spin_unlock_irq(&lruvec->lru_lock);
4517 
4518 	if (list_empty(&list))
4519 		return scanned;
4520 retry:
4521 	reclaimed = shrink_folio_list(&list, pgdat, sc, &stat, false);
4522 	sc->nr_reclaimed += reclaimed;
4523 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
4524 			scanned, reclaimed, &stat, sc->priority,
4525 			type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON);
4526 
4527 	list_for_each_entry_safe_reverse(folio, next, &list, lru) {
4528 		if (!folio_evictable(folio)) {
4529 			list_del(&folio->lru);
4530 			folio_putback_lru(folio);
4531 			continue;
4532 		}
4533 
4534 		if (folio_test_reclaim(folio) &&
4535 		    (folio_test_dirty(folio) || folio_test_writeback(folio))) {
4536 			/* restore LRU_REFS_FLAGS cleared by isolate_folio() */
4537 			if (folio_test_workingset(folio))
4538 				folio_set_referenced(folio);
4539 			continue;
4540 		}
4541 
4542 		if (skip_retry || folio_test_active(folio) || folio_test_referenced(folio) ||
4543 		    folio_mapped(folio) || folio_test_locked(folio) ||
4544 		    folio_test_dirty(folio) || folio_test_writeback(folio)) {
4545 			/* don't add rejected folios to the oldest generation */
4546 			set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS,
4547 				      BIT(PG_active));
4548 			continue;
4549 		}
4550 
4551 		/* retry folios that may have missed folio_rotate_reclaimable() */
4552 		list_move(&folio->lru, &clean);
4553 		sc->nr_scanned -= folio_nr_pages(folio);
4554 	}
4555 
4556 	spin_lock_irq(&lruvec->lru_lock);
4557 
4558 	move_folios_to_lru(lruvec, &list);
4559 
4560 	walk = current->reclaim_state->mm_walk;
4561 	if (walk && walk->batched)
4562 		reset_batch_size(lruvec, walk);
4563 
4564 	item = PGSTEAL_KSWAPD + reclaimer_offset();
4565 	if (!cgroup_reclaim(sc))
4566 		__count_vm_events(item, reclaimed);
4567 	__count_memcg_events(memcg, item, reclaimed);
4568 	__count_vm_events(PGSTEAL_ANON + type, reclaimed);
4569 
4570 	spin_unlock_irq(&lruvec->lru_lock);
4571 
4572 	mem_cgroup_uncharge_list(&list);
4573 	free_unref_page_list(&list);
4574 
4575 	INIT_LIST_HEAD(&list);
4576 	list_splice_init(&clean, &list);
4577 
4578 	if (!list_empty(&list)) {
4579 		skip_retry = true;
4580 		goto retry;
4581 	}
4582 
4583 	return scanned;
4584 }
4585 
4586 static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq,
4587 			     struct scan_control *sc, bool can_swap, unsigned long *nr_to_scan)
4588 {
4589 	int gen, type, zone;
4590 	unsigned long old = 0;
4591 	unsigned long young = 0;
4592 	unsigned long total = 0;
4593 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4594 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4595 	DEFINE_MIN_SEQ(lruvec);
4596 
4597 	/* whether this lruvec is completely out of cold folios */
4598 	if (min_seq[!can_swap] + MIN_NR_GENS > max_seq) {
4599 		*nr_to_scan = 0;
4600 		return true;
4601 	}
4602 
4603 	for (type = !can_swap; type < ANON_AND_FILE; type++) {
4604 		unsigned long seq;
4605 
4606 		for (seq = min_seq[type]; seq <= max_seq; seq++) {
4607 			unsigned long size = 0;
4608 
4609 			gen = lru_gen_from_seq(seq);
4610 
4611 			for (zone = 0; zone < MAX_NR_ZONES; zone++)
4612 				size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
4613 
4614 			total += size;
4615 			if (seq == max_seq)
4616 				young += size;
4617 			else if (seq + MIN_NR_GENS == max_seq)
4618 				old += size;
4619 		}
4620 	}
4621 
4622 	/* try to scrape all its memory if this memcg was deleted */
4623 	if (!mem_cgroup_online(memcg)) {
4624 		*nr_to_scan = total;
4625 		return false;
4626 	}
4627 
4628 	*nr_to_scan = total >> sc->priority;
4629 
4630 	/*
4631 	 * The aging tries to be lazy to reduce the overhead, while the eviction
4632 	 * stalls when the number of generations reaches MIN_NR_GENS. Hence, the
4633 	 * ideal number of generations is MIN_NR_GENS+1.
4634 	 */
4635 	if (min_seq[!can_swap] + MIN_NR_GENS < max_seq)
4636 		return false;
4637 
4638 	/*
4639 	 * It's also ideal to spread pages out evenly, i.e., 1/(MIN_NR_GENS+1)
4640 	 * of the total number of pages for each generation. A reasonable range
4641 	 * for this average portion is [1/MIN_NR_GENS, 1/(MIN_NR_GENS+2)]. The
4642 	 * aging cares about the upper bound of hot pages, while the eviction
4643 	 * cares about the lower bound of cold pages.
4644 	 */
4645 	if (young * MIN_NR_GENS > total)
4646 		return true;
4647 	if (old * (MIN_NR_GENS + 2) < total)
4648 		return true;
4649 
4650 	return false;
4651 }
4652 
4653 /*
4654  * For future optimizations:
4655  * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg
4656  *    reclaim.
4657  */
4658 static long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc, bool can_swap)
4659 {
4660 	unsigned long nr_to_scan;
4661 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4662 	DEFINE_MAX_SEQ(lruvec);
4663 
4664 	if (mem_cgroup_below_min(sc->target_mem_cgroup, memcg))
4665 		return -1;
4666 
4667 	if (!should_run_aging(lruvec, max_seq, sc, can_swap, &nr_to_scan))
4668 		return nr_to_scan;
4669 
4670 	/* skip the aging path at the default priority */
4671 	if (sc->priority == DEF_PRIORITY)
4672 		return nr_to_scan;
4673 
4674 	/* skip this lruvec as it's low on cold folios */
4675 	return try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, false) ? -1 : 0;
4676 }
4677 
4678 static bool should_abort_scan(struct lruvec *lruvec, struct scan_control *sc)
4679 {
4680 	int i;
4681 	enum zone_watermarks mark;
4682 
4683 	/* don't abort memcg reclaim to ensure fairness */
4684 	if (!root_reclaim(sc))
4685 		return false;
4686 
4687 	if (sc->nr_reclaimed >= max(sc->nr_to_reclaim, compact_gap(sc->order)))
4688 		return true;
4689 
4690 	/* check the order to exclude compaction-induced reclaim */
4691 	if (!current_is_kswapd() || sc->order)
4692 		return false;
4693 
4694 	mark = sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ?
4695 	       WMARK_PROMO : WMARK_HIGH;
4696 
4697 	for (i = 0; i <= sc->reclaim_idx; i++) {
4698 		struct zone *zone = lruvec_pgdat(lruvec)->node_zones + i;
4699 		unsigned long size = wmark_pages(zone, mark) + MIN_LRU_BATCH;
4700 
4701 		if (managed_zone(zone) && !zone_watermark_ok(zone, 0, size, sc->reclaim_idx, 0))
4702 			return false;
4703 	}
4704 
4705 	/* kswapd should abort if all eligible zones are safe */
4706 	return true;
4707 }
4708 
4709 static bool try_to_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
4710 {
4711 	long nr_to_scan;
4712 	unsigned long scanned = 0;
4713 	int swappiness = get_swappiness(lruvec, sc);
4714 
4715 	/* clean file folios are more likely to exist */
4716 	if (swappiness && !(sc->gfp_mask & __GFP_IO))
4717 		swappiness = 1;
4718 
4719 	while (true) {
4720 		int delta;
4721 
4722 		nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness);
4723 		if (nr_to_scan <= 0)
4724 			break;
4725 
4726 		delta = evict_folios(lruvec, sc, swappiness);
4727 		if (!delta)
4728 			break;
4729 
4730 		scanned += delta;
4731 		if (scanned >= nr_to_scan)
4732 			break;
4733 
4734 		if (should_abort_scan(lruvec, sc))
4735 			break;
4736 
4737 		cond_resched();
4738 	}
4739 
4740 	/* whether this lruvec should be rotated */
4741 	return nr_to_scan < 0;
4742 }
4743 
4744 static int shrink_one(struct lruvec *lruvec, struct scan_control *sc)
4745 {
4746 	bool success;
4747 	unsigned long scanned = sc->nr_scanned;
4748 	unsigned long reclaimed = sc->nr_reclaimed;
4749 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4750 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4751 
4752 	mem_cgroup_calculate_protection(NULL, memcg);
4753 
4754 	if (mem_cgroup_below_min(NULL, memcg))
4755 		return MEMCG_LRU_YOUNG;
4756 
4757 	if (mem_cgroup_below_low(NULL, memcg)) {
4758 		/* see the comment on MEMCG_NR_GENS */
4759 		if (READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_TAIL)
4760 			return MEMCG_LRU_TAIL;
4761 
4762 		memcg_memory_event(memcg, MEMCG_LOW);
4763 	}
4764 
4765 	success = try_to_shrink_lruvec(lruvec, sc);
4766 
4767 	shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, sc->priority);
4768 
4769 	if (!sc->proactive)
4770 		vmpressure(sc->gfp_mask, memcg, false, sc->nr_scanned - scanned,
4771 			   sc->nr_reclaimed - reclaimed);
4772 
4773 	flush_reclaim_state(sc);
4774 
4775 	if (success && mem_cgroup_online(memcg))
4776 		return MEMCG_LRU_YOUNG;
4777 
4778 	if (!success && lruvec_is_sizable(lruvec, sc))
4779 		return 0;
4780 
4781 	/* one retry if offlined or too small */
4782 	return READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_TAIL ?
4783 	       MEMCG_LRU_TAIL : MEMCG_LRU_YOUNG;
4784 }
4785 
4786 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc)
4787 {
4788 	int op;
4789 	int gen;
4790 	int bin;
4791 	int first_bin;
4792 	struct lruvec *lruvec;
4793 	struct lru_gen_folio *lrugen;
4794 	struct mem_cgroup *memcg;
4795 	struct hlist_nulls_node *pos;
4796 
4797 	gen = get_memcg_gen(READ_ONCE(pgdat->memcg_lru.seq));
4798 	bin = first_bin = get_random_u32_below(MEMCG_NR_BINS);
4799 restart:
4800 	op = 0;
4801 	memcg = NULL;
4802 
4803 	rcu_read_lock();
4804 
4805 	hlist_nulls_for_each_entry_rcu(lrugen, pos, &pgdat->memcg_lru.fifo[gen][bin], list) {
4806 		if (op) {
4807 			lru_gen_rotate_memcg(lruvec, op);
4808 			op = 0;
4809 		}
4810 
4811 		mem_cgroup_put(memcg);
4812 		memcg = NULL;
4813 
4814 		if (gen != READ_ONCE(lrugen->gen))
4815 			continue;
4816 
4817 		lruvec = container_of(lrugen, struct lruvec, lrugen);
4818 		memcg = lruvec_memcg(lruvec);
4819 
4820 		if (!mem_cgroup_tryget(memcg)) {
4821 			lru_gen_release_memcg(memcg);
4822 			memcg = NULL;
4823 			continue;
4824 		}
4825 
4826 		rcu_read_unlock();
4827 
4828 		op = shrink_one(lruvec, sc);
4829 
4830 		rcu_read_lock();
4831 
4832 		if (should_abort_scan(lruvec, sc))
4833 			break;
4834 	}
4835 
4836 	rcu_read_unlock();
4837 
4838 	if (op)
4839 		lru_gen_rotate_memcg(lruvec, op);
4840 
4841 	mem_cgroup_put(memcg);
4842 
4843 	if (!is_a_nulls(pos))
4844 		return;
4845 
4846 	/* restart if raced with lru_gen_rotate_memcg() */
4847 	if (gen != get_nulls_value(pos))
4848 		goto restart;
4849 
4850 	/* try the rest of the bins of the current generation */
4851 	bin = get_memcg_bin(bin + 1);
4852 	if (bin != first_bin)
4853 		goto restart;
4854 }
4855 
4856 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
4857 {
4858 	struct blk_plug plug;
4859 
4860 	VM_WARN_ON_ONCE(root_reclaim(sc));
4861 	VM_WARN_ON_ONCE(!sc->may_writepage || !sc->may_unmap);
4862 
4863 	lru_add_drain();
4864 
4865 	blk_start_plug(&plug);
4866 
4867 	set_mm_walk(NULL, sc->proactive);
4868 
4869 	if (try_to_shrink_lruvec(lruvec, sc))
4870 		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_YOUNG);
4871 
4872 	clear_mm_walk();
4873 
4874 	blk_finish_plug(&plug);
4875 }
4876 
4877 static void set_initial_priority(struct pglist_data *pgdat, struct scan_control *sc)
4878 {
4879 	int priority;
4880 	unsigned long reclaimable;
4881 	struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
4882 
4883 	if (sc->priority != DEF_PRIORITY || sc->nr_to_reclaim < MIN_LRU_BATCH)
4884 		return;
4885 	/*
4886 	 * Determine the initial priority based on
4887 	 * (total >> priority) * reclaimed_to_scanned_ratio = nr_to_reclaim,
4888 	 * where reclaimed_to_scanned_ratio = inactive / total.
4889 	 */
4890 	reclaimable = node_page_state(pgdat, NR_INACTIVE_FILE);
4891 	if (get_swappiness(lruvec, sc))
4892 		reclaimable += node_page_state(pgdat, NR_INACTIVE_ANON);
4893 
4894 	/* round down reclaimable and round up sc->nr_to_reclaim */
4895 	priority = fls_long(reclaimable) - 1 - fls_long(sc->nr_to_reclaim - 1);
4896 
4897 	sc->priority = clamp(priority, 0, DEF_PRIORITY);
4898 }
4899 
4900 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
4901 {
4902 	struct blk_plug plug;
4903 	unsigned long reclaimed = sc->nr_reclaimed;
4904 
4905 	VM_WARN_ON_ONCE(!root_reclaim(sc));
4906 
4907 	/*
4908 	 * Unmapped clean folios are already prioritized. Scanning for more of
4909 	 * them is likely futile and can cause high reclaim latency when there
4910 	 * is a large number of memcgs.
4911 	 */
4912 	if (!sc->may_writepage || !sc->may_unmap)
4913 		goto done;
4914 
4915 	lru_add_drain();
4916 
4917 	blk_start_plug(&plug);
4918 
4919 	set_mm_walk(pgdat, sc->proactive);
4920 
4921 	set_initial_priority(pgdat, sc);
4922 
4923 	if (current_is_kswapd())
4924 		sc->nr_reclaimed = 0;
4925 
4926 	if (mem_cgroup_disabled())
4927 		shrink_one(&pgdat->__lruvec, sc);
4928 	else
4929 		shrink_many(pgdat, sc);
4930 
4931 	if (current_is_kswapd())
4932 		sc->nr_reclaimed += reclaimed;
4933 
4934 	clear_mm_walk();
4935 
4936 	blk_finish_plug(&plug);
4937 done:
4938 	/* kswapd should never fail */
4939 	pgdat->kswapd_failures = 0;
4940 }
4941 
4942 /******************************************************************************
4943  *                          state change
4944  ******************************************************************************/
4945 
4946 static bool __maybe_unused state_is_valid(struct lruvec *lruvec)
4947 {
4948 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4949 
4950 	if (lrugen->enabled) {
4951 		enum lru_list lru;
4952 
4953 		for_each_evictable_lru(lru) {
4954 			if (!list_empty(&lruvec->lists[lru]))
4955 				return false;
4956 		}
4957 	} else {
4958 		int gen, type, zone;
4959 
4960 		for_each_gen_type_zone(gen, type, zone) {
4961 			if (!list_empty(&lrugen->folios[gen][type][zone]))
4962 				return false;
4963 		}
4964 	}
4965 
4966 	return true;
4967 }
4968 
4969 static bool fill_evictable(struct lruvec *lruvec)
4970 {
4971 	enum lru_list lru;
4972 	int remaining = MAX_LRU_BATCH;
4973 
4974 	for_each_evictable_lru(lru) {
4975 		int type = is_file_lru(lru);
4976 		bool active = is_active_lru(lru);
4977 		struct list_head *head = &lruvec->lists[lru];
4978 
4979 		while (!list_empty(head)) {
4980 			bool success;
4981 			struct folio *folio = lru_to_folio(head);
4982 
4983 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
4984 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio) != active, folio);
4985 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
4986 			VM_WARN_ON_ONCE_FOLIO(folio_lru_gen(folio) != -1, folio);
4987 
4988 			lruvec_del_folio(lruvec, folio);
4989 			success = lru_gen_add_folio(lruvec, folio, false);
4990 			VM_WARN_ON_ONCE(!success);
4991 
4992 			if (!--remaining)
4993 				return false;
4994 		}
4995 	}
4996 
4997 	return true;
4998 }
4999 
5000 static bool drain_evictable(struct lruvec *lruvec)
5001 {
5002 	int gen, type, zone;
5003 	int remaining = MAX_LRU_BATCH;
5004 
5005 	for_each_gen_type_zone(gen, type, zone) {
5006 		struct list_head *head = &lruvec->lrugen.folios[gen][type][zone];
5007 
5008 		while (!list_empty(head)) {
5009 			bool success;
5010 			struct folio *folio = lru_to_folio(head);
5011 
5012 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5013 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
5014 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5015 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
5016 
5017 			success = lru_gen_del_folio(lruvec, folio, false);
5018 			VM_WARN_ON_ONCE(!success);
5019 			lruvec_add_folio(lruvec, folio);
5020 
5021 			if (!--remaining)
5022 				return false;
5023 		}
5024 	}
5025 
5026 	return true;
5027 }
5028 
5029 static void lru_gen_change_state(bool enabled)
5030 {
5031 	static DEFINE_MUTEX(state_mutex);
5032 
5033 	struct mem_cgroup *memcg;
5034 
5035 	cgroup_lock();
5036 	cpus_read_lock();
5037 	get_online_mems();
5038 	mutex_lock(&state_mutex);
5039 
5040 	if (enabled == lru_gen_enabled())
5041 		goto unlock;
5042 
5043 	if (enabled)
5044 		static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5045 	else
5046 		static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5047 
5048 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
5049 	do {
5050 		int nid;
5051 
5052 		for_each_node(nid) {
5053 			struct lruvec *lruvec = get_lruvec(memcg, nid);
5054 
5055 			spin_lock_irq(&lruvec->lru_lock);
5056 
5057 			VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
5058 			VM_WARN_ON_ONCE(!state_is_valid(lruvec));
5059 
5060 			lruvec->lrugen.enabled = enabled;
5061 
5062 			while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) {
5063 				spin_unlock_irq(&lruvec->lru_lock);
5064 				cond_resched();
5065 				spin_lock_irq(&lruvec->lru_lock);
5066 			}
5067 
5068 			spin_unlock_irq(&lruvec->lru_lock);
5069 		}
5070 
5071 		cond_resched();
5072 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5073 unlock:
5074 	mutex_unlock(&state_mutex);
5075 	put_online_mems();
5076 	cpus_read_unlock();
5077 	cgroup_unlock();
5078 }
5079 
5080 /******************************************************************************
5081  *                          sysfs interface
5082  ******************************************************************************/
5083 
5084 static ssize_t min_ttl_ms_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5085 {
5086 	return sysfs_emit(buf, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl)));
5087 }
5088 
5089 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5090 static ssize_t min_ttl_ms_store(struct kobject *kobj, struct kobj_attribute *attr,
5091 				const char *buf, size_t len)
5092 {
5093 	unsigned int msecs;
5094 
5095 	if (kstrtouint(buf, 0, &msecs))
5096 		return -EINVAL;
5097 
5098 	WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs));
5099 
5100 	return len;
5101 }
5102 
5103 static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR_RW(min_ttl_ms);
5104 
5105 static ssize_t enabled_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5106 {
5107 	unsigned int caps = 0;
5108 
5109 	if (get_cap(LRU_GEN_CORE))
5110 		caps |= BIT(LRU_GEN_CORE);
5111 
5112 	if (should_walk_mmu())
5113 		caps |= BIT(LRU_GEN_MM_WALK);
5114 
5115 	if (should_clear_pmd_young())
5116 		caps |= BIT(LRU_GEN_NONLEAF_YOUNG);
5117 
5118 	return sysfs_emit(buf, "0x%04x\n", caps);
5119 }
5120 
5121 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5122 static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr,
5123 			     const char *buf, size_t len)
5124 {
5125 	int i;
5126 	unsigned int caps;
5127 
5128 	if (tolower(*buf) == 'n')
5129 		caps = 0;
5130 	else if (tolower(*buf) == 'y')
5131 		caps = -1;
5132 	else if (kstrtouint(buf, 0, &caps))
5133 		return -EINVAL;
5134 
5135 	for (i = 0; i < NR_LRU_GEN_CAPS; i++) {
5136 		bool enabled = caps & BIT(i);
5137 
5138 		if (i == LRU_GEN_CORE)
5139 			lru_gen_change_state(enabled);
5140 		else if (enabled)
5141 			static_branch_enable(&lru_gen_caps[i]);
5142 		else
5143 			static_branch_disable(&lru_gen_caps[i]);
5144 	}
5145 
5146 	return len;
5147 }
5148 
5149 static struct kobj_attribute lru_gen_enabled_attr = __ATTR_RW(enabled);
5150 
5151 static struct attribute *lru_gen_attrs[] = {
5152 	&lru_gen_min_ttl_attr.attr,
5153 	&lru_gen_enabled_attr.attr,
5154 	NULL
5155 };
5156 
5157 static const struct attribute_group lru_gen_attr_group = {
5158 	.name = "lru_gen",
5159 	.attrs = lru_gen_attrs,
5160 };
5161 
5162 /******************************************************************************
5163  *                          debugfs interface
5164  ******************************************************************************/
5165 
5166 static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos)
5167 {
5168 	struct mem_cgroup *memcg;
5169 	loff_t nr_to_skip = *pos;
5170 
5171 	m->private = kvmalloc(PATH_MAX, GFP_KERNEL);
5172 	if (!m->private)
5173 		return ERR_PTR(-ENOMEM);
5174 
5175 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
5176 	do {
5177 		int nid;
5178 
5179 		for_each_node_state(nid, N_MEMORY) {
5180 			if (!nr_to_skip--)
5181 				return get_lruvec(memcg, nid);
5182 		}
5183 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5184 
5185 	return NULL;
5186 }
5187 
5188 static void lru_gen_seq_stop(struct seq_file *m, void *v)
5189 {
5190 	if (!IS_ERR_OR_NULL(v))
5191 		mem_cgroup_iter_break(NULL, lruvec_memcg(v));
5192 
5193 	kvfree(m->private);
5194 	m->private = NULL;
5195 }
5196 
5197 static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos)
5198 {
5199 	int nid = lruvec_pgdat(v)->node_id;
5200 	struct mem_cgroup *memcg = lruvec_memcg(v);
5201 
5202 	++*pos;
5203 
5204 	nid = next_memory_node(nid);
5205 	if (nid == MAX_NUMNODES) {
5206 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
5207 		if (!memcg)
5208 			return NULL;
5209 
5210 		nid = first_memory_node;
5211 	}
5212 
5213 	return get_lruvec(memcg, nid);
5214 }
5215 
5216 static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec,
5217 				  unsigned long max_seq, unsigned long *min_seq,
5218 				  unsigned long seq)
5219 {
5220 	int i;
5221 	int type, tier;
5222 	int hist = lru_hist_from_seq(seq);
5223 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5224 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
5225 
5226 	for (tier = 0; tier < MAX_NR_TIERS; tier++) {
5227 		seq_printf(m, "            %10d", tier);
5228 		for (type = 0; type < ANON_AND_FILE; type++) {
5229 			const char *s = "   ";
5230 			unsigned long n[3] = {};
5231 
5232 			if (seq == max_seq) {
5233 				s = "RT ";
5234 				n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]);
5235 				n[1] = READ_ONCE(lrugen->avg_total[type][tier]);
5236 			} else if (seq == min_seq[type] || NR_HIST_GENS > 1) {
5237 				s = "rep";
5238 				n[0] = atomic_long_read(&lrugen->refaulted[hist][type][tier]);
5239 				n[1] = atomic_long_read(&lrugen->evicted[hist][type][tier]);
5240 				if (tier)
5241 					n[2] = READ_ONCE(lrugen->protected[hist][type][tier - 1]);
5242 			}
5243 
5244 			for (i = 0; i < 3; i++)
5245 				seq_printf(m, " %10lu%c", n[i], s[i]);
5246 		}
5247 		seq_putc(m, '\n');
5248 	}
5249 
5250 	if (!mm_state)
5251 		return;
5252 
5253 	seq_puts(m, "                      ");
5254 	for (i = 0; i < NR_MM_STATS; i++) {
5255 		const char *s = "      ";
5256 		unsigned long n = 0;
5257 
5258 		if (seq == max_seq && NR_HIST_GENS == 1) {
5259 			s = "LOYNFA";
5260 			n = READ_ONCE(mm_state->stats[hist][i]);
5261 		} else if (seq != max_seq && NR_HIST_GENS > 1) {
5262 			s = "loynfa";
5263 			n = READ_ONCE(mm_state->stats[hist][i]);
5264 		}
5265 
5266 		seq_printf(m, " %10lu%c", n, s[i]);
5267 	}
5268 	seq_putc(m, '\n');
5269 }
5270 
5271 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5272 static int lru_gen_seq_show(struct seq_file *m, void *v)
5273 {
5274 	unsigned long seq;
5275 	bool full = !debugfs_real_fops(m->file)->write;
5276 	struct lruvec *lruvec = v;
5277 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5278 	int nid = lruvec_pgdat(lruvec)->node_id;
5279 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5280 	DEFINE_MAX_SEQ(lruvec);
5281 	DEFINE_MIN_SEQ(lruvec);
5282 
5283 	if (nid == first_memory_node) {
5284 		const char *path = memcg ? m->private : "";
5285 
5286 #ifdef CONFIG_MEMCG
5287 		if (memcg)
5288 			cgroup_path(memcg->css.cgroup, m->private, PATH_MAX);
5289 #endif
5290 		seq_printf(m, "memcg %5hu %s\n", mem_cgroup_id(memcg), path);
5291 	}
5292 
5293 	seq_printf(m, " node %5d\n", nid);
5294 
5295 	if (!full)
5296 		seq = min_seq[LRU_GEN_ANON];
5297 	else if (max_seq >= MAX_NR_GENS)
5298 		seq = max_seq - MAX_NR_GENS + 1;
5299 	else
5300 		seq = 0;
5301 
5302 	for (; seq <= max_seq; seq++) {
5303 		int type, zone;
5304 		int gen = lru_gen_from_seq(seq);
5305 		unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
5306 
5307 		seq_printf(m, " %10lu %10u", seq, jiffies_to_msecs(jiffies - birth));
5308 
5309 		for (type = 0; type < ANON_AND_FILE; type++) {
5310 			unsigned long size = 0;
5311 			char mark = full && seq < min_seq[type] ? 'x' : ' ';
5312 
5313 			for (zone = 0; zone < MAX_NR_ZONES; zone++)
5314 				size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
5315 
5316 			seq_printf(m, " %10lu%c", size, mark);
5317 		}
5318 
5319 		seq_putc(m, '\n');
5320 
5321 		if (full)
5322 			lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq);
5323 	}
5324 
5325 	return 0;
5326 }
5327 
5328 static const struct seq_operations lru_gen_seq_ops = {
5329 	.start = lru_gen_seq_start,
5330 	.stop = lru_gen_seq_stop,
5331 	.next = lru_gen_seq_next,
5332 	.show = lru_gen_seq_show,
5333 };
5334 
5335 static int run_aging(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
5336 		     bool can_swap, bool force_scan)
5337 {
5338 	DEFINE_MAX_SEQ(lruvec);
5339 	DEFINE_MIN_SEQ(lruvec);
5340 
5341 	if (seq < max_seq)
5342 		return 0;
5343 
5344 	if (seq > max_seq)
5345 		return -EINVAL;
5346 
5347 	if (!force_scan && min_seq[!can_swap] + MAX_NR_GENS - 1 <= max_seq)
5348 		return -ERANGE;
5349 
5350 	try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, force_scan);
5351 
5352 	return 0;
5353 }
5354 
5355 static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
5356 			int swappiness, unsigned long nr_to_reclaim)
5357 {
5358 	DEFINE_MAX_SEQ(lruvec);
5359 
5360 	if (seq + MIN_NR_GENS > max_seq)
5361 		return -EINVAL;
5362 
5363 	sc->nr_reclaimed = 0;
5364 
5365 	while (!signal_pending(current)) {
5366 		DEFINE_MIN_SEQ(lruvec);
5367 
5368 		if (seq < min_seq[!swappiness])
5369 			return 0;
5370 
5371 		if (sc->nr_reclaimed >= nr_to_reclaim)
5372 			return 0;
5373 
5374 		if (!evict_folios(lruvec, sc, swappiness))
5375 			return 0;
5376 
5377 		cond_resched();
5378 	}
5379 
5380 	return -EINTR;
5381 }
5382 
5383 static int run_cmd(char cmd, int memcg_id, int nid, unsigned long seq,
5384 		   struct scan_control *sc, int swappiness, unsigned long opt)
5385 {
5386 	struct lruvec *lruvec;
5387 	int err = -EINVAL;
5388 	struct mem_cgroup *memcg = NULL;
5389 
5390 	if (nid < 0 || nid >= MAX_NUMNODES || !node_state(nid, N_MEMORY))
5391 		return -EINVAL;
5392 
5393 	if (!mem_cgroup_disabled()) {
5394 		rcu_read_lock();
5395 
5396 		memcg = mem_cgroup_from_id(memcg_id);
5397 		if (!mem_cgroup_tryget(memcg))
5398 			memcg = NULL;
5399 
5400 		rcu_read_unlock();
5401 
5402 		if (!memcg)
5403 			return -EINVAL;
5404 	}
5405 
5406 	if (memcg_id != mem_cgroup_id(memcg))
5407 		goto done;
5408 
5409 	lruvec = get_lruvec(memcg, nid);
5410 
5411 	if (swappiness < 0)
5412 		swappiness = get_swappiness(lruvec, sc);
5413 	else if (swappiness > 200)
5414 		goto done;
5415 
5416 	switch (cmd) {
5417 	case '+':
5418 		err = run_aging(lruvec, seq, sc, swappiness, opt);
5419 		break;
5420 	case '-':
5421 		err = run_eviction(lruvec, seq, sc, swappiness, opt);
5422 		break;
5423 	}
5424 done:
5425 	mem_cgroup_put(memcg);
5426 
5427 	return err;
5428 }
5429 
5430 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5431 static ssize_t lru_gen_seq_write(struct file *file, const char __user *src,
5432 				 size_t len, loff_t *pos)
5433 {
5434 	void *buf;
5435 	char *cur, *next;
5436 	unsigned int flags;
5437 	struct blk_plug plug;
5438 	int err = -EINVAL;
5439 	struct scan_control sc = {
5440 		.may_writepage = true,
5441 		.may_unmap = true,
5442 		.may_swap = true,
5443 		.reclaim_idx = MAX_NR_ZONES - 1,
5444 		.gfp_mask = GFP_KERNEL,
5445 	};
5446 
5447 	buf = kvmalloc(len + 1, GFP_KERNEL);
5448 	if (!buf)
5449 		return -ENOMEM;
5450 
5451 	if (copy_from_user(buf, src, len)) {
5452 		kvfree(buf);
5453 		return -EFAULT;
5454 	}
5455 
5456 	set_task_reclaim_state(current, &sc.reclaim_state);
5457 	flags = memalloc_noreclaim_save();
5458 	blk_start_plug(&plug);
5459 	if (!set_mm_walk(NULL, true)) {
5460 		err = -ENOMEM;
5461 		goto done;
5462 	}
5463 
5464 	next = buf;
5465 	next[len] = '\0';
5466 
5467 	while ((cur = strsep(&next, ",;\n"))) {
5468 		int n;
5469 		int end;
5470 		char cmd;
5471 		unsigned int memcg_id;
5472 		unsigned int nid;
5473 		unsigned long seq;
5474 		unsigned int swappiness = -1;
5475 		unsigned long opt = -1;
5476 
5477 		cur = skip_spaces(cur);
5478 		if (!*cur)
5479 			continue;
5480 
5481 		n = sscanf(cur, "%c %u %u %lu %n %u %n %lu %n", &cmd, &memcg_id, &nid,
5482 			   &seq, &end, &swappiness, &end, &opt, &end);
5483 		if (n < 4 || cur[end]) {
5484 			err = -EINVAL;
5485 			break;
5486 		}
5487 
5488 		err = run_cmd(cmd, memcg_id, nid, seq, &sc, swappiness, opt);
5489 		if (err)
5490 			break;
5491 	}
5492 done:
5493 	clear_mm_walk();
5494 	blk_finish_plug(&plug);
5495 	memalloc_noreclaim_restore(flags);
5496 	set_task_reclaim_state(current, NULL);
5497 
5498 	kvfree(buf);
5499 
5500 	return err ? : len;
5501 }
5502 
5503 static int lru_gen_seq_open(struct inode *inode, struct file *file)
5504 {
5505 	return seq_open(file, &lru_gen_seq_ops);
5506 }
5507 
5508 static const struct file_operations lru_gen_rw_fops = {
5509 	.open = lru_gen_seq_open,
5510 	.read = seq_read,
5511 	.write = lru_gen_seq_write,
5512 	.llseek = seq_lseek,
5513 	.release = seq_release,
5514 };
5515 
5516 static const struct file_operations lru_gen_ro_fops = {
5517 	.open = lru_gen_seq_open,
5518 	.read = seq_read,
5519 	.llseek = seq_lseek,
5520 	.release = seq_release,
5521 };
5522 
5523 /******************************************************************************
5524  *                          initialization
5525  ******************************************************************************/
5526 
5527 void lru_gen_init_pgdat(struct pglist_data *pgdat)
5528 {
5529 	int i, j;
5530 
5531 	spin_lock_init(&pgdat->memcg_lru.lock);
5532 
5533 	for (i = 0; i < MEMCG_NR_GENS; i++) {
5534 		for (j = 0; j < MEMCG_NR_BINS; j++)
5535 			INIT_HLIST_NULLS_HEAD(&pgdat->memcg_lru.fifo[i][j], i);
5536 	}
5537 }
5538 
5539 void lru_gen_init_lruvec(struct lruvec *lruvec)
5540 {
5541 	int i;
5542 	int gen, type, zone;
5543 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5544 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
5545 
5546 	lrugen->max_seq = MIN_NR_GENS + 1;
5547 	lrugen->enabled = lru_gen_enabled();
5548 
5549 	for (i = 0; i <= MIN_NR_GENS + 1; i++)
5550 		lrugen->timestamps[i] = jiffies;
5551 
5552 	for_each_gen_type_zone(gen, type, zone)
5553 		INIT_LIST_HEAD(&lrugen->folios[gen][type][zone]);
5554 
5555 	if (mm_state)
5556 		mm_state->seq = MIN_NR_GENS;
5557 }
5558 
5559 #ifdef CONFIG_MEMCG
5560 
5561 void lru_gen_init_memcg(struct mem_cgroup *memcg)
5562 {
5563 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
5564 
5565 	if (!mm_list)
5566 		return;
5567 
5568 	INIT_LIST_HEAD(&mm_list->fifo);
5569 	spin_lock_init(&mm_list->lock);
5570 }
5571 
5572 void lru_gen_exit_memcg(struct mem_cgroup *memcg)
5573 {
5574 	int i;
5575 	int nid;
5576 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
5577 
5578 	VM_WARN_ON_ONCE(mm_list && !list_empty(&mm_list->fifo));
5579 
5580 	for_each_node(nid) {
5581 		struct lruvec *lruvec = get_lruvec(memcg, nid);
5582 		struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
5583 
5584 		VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0,
5585 					   sizeof(lruvec->lrugen.nr_pages)));
5586 
5587 		lruvec->lrugen.list.next = LIST_POISON1;
5588 
5589 		if (!mm_state)
5590 			continue;
5591 
5592 		for (i = 0; i < NR_BLOOM_FILTERS; i++) {
5593 			bitmap_free(mm_state->filters[i]);
5594 			mm_state->filters[i] = NULL;
5595 		}
5596 	}
5597 }
5598 
5599 #endif /* CONFIG_MEMCG */
5600 
5601 static int __init init_lru_gen(void)
5602 {
5603 	BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS);
5604 	BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS);
5605 
5606 	if (sysfs_create_group(mm_kobj, &lru_gen_attr_group))
5607 		pr_err("lru_gen: failed to create sysfs group\n");
5608 
5609 	debugfs_create_file("lru_gen", 0644, NULL, NULL, &lru_gen_rw_fops);
5610 	debugfs_create_file("lru_gen_full", 0444, NULL, NULL, &lru_gen_ro_fops);
5611 
5612 	return 0;
5613 };
5614 late_initcall(init_lru_gen);
5615 
5616 #else /* !CONFIG_LRU_GEN */
5617 
5618 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
5619 {
5620 	BUILD_BUG();
5621 }
5622 
5623 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5624 {
5625 	BUILD_BUG();
5626 }
5627 
5628 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
5629 {
5630 	BUILD_BUG();
5631 }
5632 
5633 #endif /* CONFIG_LRU_GEN */
5634 
5635 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5636 {
5637 	unsigned long nr[NR_LRU_LISTS];
5638 	unsigned long targets[NR_LRU_LISTS];
5639 	unsigned long nr_to_scan;
5640 	enum lru_list lru;
5641 	unsigned long nr_reclaimed = 0;
5642 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
5643 	bool proportional_reclaim;
5644 	struct blk_plug plug;
5645 
5646 	if (lru_gen_enabled() && !root_reclaim(sc)) {
5647 		lru_gen_shrink_lruvec(lruvec, sc);
5648 		return;
5649 	}
5650 
5651 	get_scan_count(lruvec, sc, nr);
5652 
5653 	/* Record the original scan target for proportional adjustments later */
5654 	memcpy(targets, nr, sizeof(nr));
5655 
5656 	/*
5657 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
5658 	 * event that can occur when there is little memory pressure e.g.
5659 	 * multiple streaming readers/writers. Hence, we do not abort scanning
5660 	 * when the requested number of pages are reclaimed when scanning at
5661 	 * DEF_PRIORITY on the assumption that the fact we are direct
5662 	 * reclaiming implies that kswapd is not keeping up and it is best to
5663 	 * do a batch of work at once. For memcg reclaim one check is made to
5664 	 * abort proportional reclaim if either the file or anon lru has already
5665 	 * dropped to zero at the first pass.
5666 	 */
5667 	proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
5668 				sc->priority == DEF_PRIORITY);
5669 
5670 	blk_start_plug(&plug);
5671 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
5672 					nr[LRU_INACTIVE_FILE]) {
5673 		unsigned long nr_anon, nr_file, percentage;
5674 		unsigned long nr_scanned;
5675 
5676 		for_each_evictable_lru(lru) {
5677 			if (nr[lru]) {
5678 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
5679 				nr[lru] -= nr_to_scan;
5680 
5681 				nr_reclaimed += shrink_list(lru, nr_to_scan,
5682 							    lruvec, sc);
5683 			}
5684 		}
5685 
5686 		cond_resched();
5687 
5688 		if (nr_reclaimed < nr_to_reclaim || proportional_reclaim)
5689 			continue;
5690 
5691 		/*
5692 		 * For kswapd and memcg, reclaim at least the number of pages
5693 		 * requested. Ensure that the anon and file LRUs are scanned
5694 		 * proportionally what was requested by get_scan_count(). We
5695 		 * stop reclaiming one LRU and reduce the amount scanning
5696 		 * proportional to the original scan target.
5697 		 */
5698 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
5699 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
5700 
5701 		/*
5702 		 * It's just vindictive to attack the larger once the smaller
5703 		 * has gone to zero.  And given the way we stop scanning the
5704 		 * smaller below, this makes sure that we only make one nudge
5705 		 * towards proportionality once we've got nr_to_reclaim.
5706 		 */
5707 		if (!nr_file || !nr_anon)
5708 			break;
5709 
5710 		if (nr_file > nr_anon) {
5711 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
5712 						targets[LRU_ACTIVE_ANON] + 1;
5713 			lru = LRU_BASE;
5714 			percentage = nr_anon * 100 / scan_target;
5715 		} else {
5716 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
5717 						targets[LRU_ACTIVE_FILE] + 1;
5718 			lru = LRU_FILE;
5719 			percentage = nr_file * 100 / scan_target;
5720 		}
5721 
5722 		/* Stop scanning the smaller of the LRU */
5723 		nr[lru] = 0;
5724 		nr[lru + LRU_ACTIVE] = 0;
5725 
5726 		/*
5727 		 * Recalculate the other LRU scan count based on its original
5728 		 * scan target and the percentage scanning already complete
5729 		 */
5730 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
5731 		nr_scanned = targets[lru] - nr[lru];
5732 		nr[lru] = targets[lru] * (100 - percentage) / 100;
5733 		nr[lru] -= min(nr[lru], nr_scanned);
5734 
5735 		lru += LRU_ACTIVE;
5736 		nr_scanned = targets[lru] - nr[lru];
5737 		nr[lru] = targets[lru] * (100 - percentage) / 100;
5738 		nr[lru] -= min(nr[lru], nr_scanned);
5739 	}
5740 	blk_finish_plug(&plug);
5741 	sc->nr_reclaimed += nr_reclaimed;
5742 
5743 	/*
5744 	 * Even if we did not try to evict anon pages at all, we want to
5745 	 * rebalance the anon lru active/inactive ratio.
5746 	 */
5747 	if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) &&
5748 	    inactive_is_low(lruvec, LRU_INACTIVE_ANON))
5749 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
5750 				   sc, LRU_ACTIVE_ANON);
5751 }
5752 
5753 /* Use reclaim/compaction for costly allocs or under memory pressure */
5754 static bool in_reclaim_compaction(struct scan_control *sc)
5755 {
5756 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
5757 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
5758 			 sc->priority < DEF_PRIORITY - 2))
5759 		return true;
5760 
5761 	return false;
5762 }
5763 
5764 /*
5765  * Reclaim/compaction is used for high-order allocation requests. It reclaims
5766  * order-0 pages before compacting the zone. should_continue_reclaim() returns
5767  * true if more pages should be reclaimed such that when the page allocator
5768  * calls try_to_compact_pages() that it will have enough free pages to succeed.
5769  * It will give up earlier than that if there is difficulty reclaiming pages.
5770  */
5771 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
5772 					unsigned long nr_reclaimed,
5773 					struct scan_control *sc)
5774 {
5775 	unsigned long pages_for_compaction;
5776 	unsigned long inactive_lru_pages;
5777 	int z;
5778 
5779 	/* If not in reclaim/compaction mode, stop */
5780 	if (!in_reclaim_compaction(sc))
5781 		return false;
5782 
5783 	/*
5784 	 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
5785 	 * number of pages that were scanned. This will return to the caller
5786 	 * with the risk reclaim/compaction and the resulting allocation attempt
5787 	 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
5788 	 * allocations through requiring that the full LRU list has been scanned
5789 	 * first, by assuming that zero delta of sc->nr_scanned means full LRU
5790 	 * scan, but that approximation was wrong, and there were corner cases
5791 	 * where always a non-zero amount of pages were scanned.
5792 	 */
5793 	if (!nr_reclaimed)
5794 		return false;
5795 
5796 	/* If compaction would go ahead or the allocation would succeed, stop */
5797 	for (z = 0; z <= sc->reclaim_idx; z++) {
5798 		struct zone *zone = &pgdat->node_zones[z];
5799 		if (!managed_zone(zone))
5800 			continue;
5801 
5802 		/* Allocation can already succeed, nothing to do */
5803 		if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone),
5804 				      sc->reclaim_idx, 0))
5805 			return false;
5806 
5807 		if (compaction_suitable(zone, sc->order, sc->reclaim_idx))
5808 			return false;
5809 	}
5810 
5811 	/*
5812 	 * If we have not reclaimed enough pages for compaction and the
5813 	 * inactive lists are large enough, continue reclaiming
5814 	 */
5815 	pages_for_compaction = compact_gap(sc->order);
5816 	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
5817 	if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
5818 		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
5819 
5820 	return inactive_lru_pages > pages_for_compaction;
5821 }
5822 
5823 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
5824 {
5825 	struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
5826 	struct mem_cgroup *memcg;
5827 
5828 	memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
5829 	do {
5830 		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
5831 		unsigned long reclaimed;
5832 		unsigned long scanned;
5833 
5834 		/*
5835 		 * This loop can become CPU-bound when target memcgs
5836 		 * aren't eligible for reclaim - either because they
5837 		 * don't have any reclaimable pages, or because their
5838 		 * memory is explicitly protected. Avoid soft lockups.
5839 		 */
5840 		cond_resched();
5841 
5842 		mem_cgroup_calculate_protection(target_memcg, memcg);
5843 
5844 		if (mem_cgroup_below_min(target_memcg, memcg)) {
5845 			/*
5846 			 * Hard protection.
5847 			 * If there is no reclaimable memory, OOM.
5848 			 */
5849 			continue;
5850 		} else if (mem_cgroup_below_low(target_memcg, memcg)) {
5851 			/*
5852 			 * Soft protection.
5853 			 * Respect the protection only as long as
5854 			 * there is an unprotected supply
5855 			 * of reclaimable memory from other cgroups.
5856 			 */
5857 			if (!sc->memcg_low_reclaim) {
5858 				sc->memcg_low_skipped = 1;
5859 				continue;
5860 			}
5861 			memcg_memory_event(memcg, MEMCG_LOW);
5862 		}
5863 
5864 		reclaimed = sc->nr_reclaimed;
5865 		scanned = sc->nr_scanned;
5866 
5867 		shrink_lruvec(lruvec, sc);
5868 
5869 		shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
5870 			    sc->priority);
5871 
5872 		/* Record the group's reclaim efficiency */
5873 		if (!sc->proactive)
5874 			vmpressure(sc->gfp_mask, memcg, false,
5875 				   sc->nr_scanned - scanned,
5876 				   sc->nr_reclaimed - reclaimed);
5877 
5878 	} while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
5879 }
5880 
5881 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
5882 {
5883 	unsigned long nr_reclaimed, nr_scanned, nr_node_reclaimed;
5884 	struct lruvec *target_lruvec;
5885 	bool reclaimable = false;
5886 
5887 	if (lru_gen_enabled() && root_reclaim(sc)) {
5888 		lru_gen_shrink_node(pgdat, sc);
5889 		return;
5890 	}
5891 
5892 	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
5893 
5894 again:
5895 	memset(&sc->nr, 0, sizeof(sc->nr));
5896 
5897 	nr_reclaimed = sc->nr_reclaimed;
5898 	nr_scanned = sc->nr_scanned;
5899 
5900 	prepare_scan_control(pgdat, sc);
5901 
5902 	shrink_node_memcgs(pgdat, sc);
5903 
5904 	flush_reclaim_state(sc);
5905 
5906 	nr_node_reclaimed = sc->nr_reclaimed - nr_reclaimed;
5907 
5908 	/* Record the subtree's reclaim efficiency */
5909 	if (!sc->proactive)
5910 		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
5911 			   sc->nr_scanned - nr_scanned, nr_node_reclaimed);
5912 
5913 	if (nr_node_reclaimed)
5914 		reclaimable = true;
5915 
5916 	if (current_is_kswapd()) {
5917 		/*
5918 		 * If reclaim is isolating dirty pages under writeback,
5919 		 * it implies that the long-lived page allocation rate
5920 		 * is exceeding the page laundering rate. Either the
5921 		 * global limits are not being effective at throttling
5922 		 * processes due to the page distribution throughout
5923 		 * zones or there is heavy usage of a slow backing
5924 		 * device. The only option is to throttle from reclaim
5925 		 * context which is not ideal as there is no guarantee
5926 		 * the dirtying process is throttled in the same way
5927 		 * balance_dirty_pages() manages.
5928 		 *
5929 		 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
5930 		 * count the number of pages under pages flagged for
5931 		 * immediate reclaim and stall if any are encountered
5932 		 * in the nr_immediate check below.
5933 		 */
5934 		if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
5935 			set_bit(PGDAT_WRITEBACK, &pgdat->flags);
5936 
5937 		/* Allow kswapd to start writing pages during reclaim.*/
5938 		if (sc->nr.unqueued_dirty == sc->nr.file_taken)
5939 			set_bit(PGDAT_DIRTY, &pgdat->flags);
5940 
5941 		/*
5942 		 * If kswapd scans pages marked for immediate
5943 		 * reclaim and under writeback (nr_immediate), it
5944 		 * implies that pages are cycling through the LRU
5945 		 * faster than they are written so forcibly stall
5946 		 * until some pages complete writeback.
5947 		 */
5948 		if (sc->nr.immediate)
5949 			reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
5950 	}
5951 
5952 	/*
5953 	 * Tag a node/memcg as congested if all the dirty pages were marked
5954 	 * for writeback and immediate reclaim (counted in nr.congested).
5955 	 *
5956 	 * Legacy memcg will stall in page writeback so avoid forcibly
5957 	 * stalling in reclaim_throttle().
5958 	 */
5959 	if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested) {
5960 		if (cgroup_reclaim(sc) && writeback_throttling_sane(sc))
5961 			set_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags);
5962 
5963 		if (current_is_kswapd())
5964 			set_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags);
5965 	}
5966 
5967 	/*
5968 	 * Stall direct reclaim for IO completions if the lruvec is
5969 	 * node is congested. Allow kswapd to continue until it
5970 	 * starts encountering unqueued dirty pages or cycling through
5971 	 * the LRU too quickly.
5972 	 */
5973 	if (!current_is_kswapd() && current_may_throttle() &&
5974 	    !sc->hibernation_mode &&
5975 	    (test_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags) ||
5976 	     test_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags)))
5977 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED);
5978 
5979 	if (should_continue_reclaim(pgdat, nr_node_reclaimed, sc))
5980 		goto again;
5981 
5982 	/*
5983 	 * Kswapd gives up on balancing particular nodes after too
5984 	 * many failures to reclaim anything from them and goes to
5985 	 * sleep. On reclaim progress, reset the failure counter. A
5986 	 * successful direct reclaim run will revive a dormant kswapd.
5987 	 */
5988 	if (reclaimable)
5989 		pgdat->kswapd_failures = 0;
5990 }
5991 
5992 /*
5993  * Returns true if compaction should go ahead for a costly-order request, or
5994  * the allocation would already succeed without compaction. Return false if we
5995  * should reclaim first.
5996  */
5997 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
5998 {
5999 	unsigned long watermark;
6000 
6001 	/* Allocation can already succeed, nothing to do */
6002 	if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone),
6003 			      sc->reclaim_idx, 0))
6004 		return true;
6005 
6006 	/* Compaction cannot yet proceed. Do reclaim. */
6007 	if (!compaction_suitable(zone, sc->order, sc->reclaim_idx))
6008 		return false;
6009 
6010 	/*
6011 	 * Compaction is already possible, but it takes time to run and there
6012 	 * are potentially other callers using the pages just freed. So proceed
6013 	 * with reclaim to make a buffer of free pages available to give
6014 	 * compaction a reasonable chance of completing and allocating the page.
6015 	 * Note that we won't actually reclaim the whole buffer in one attempt
6016 	 * as the target watermark in should_continue_reclaim() is lower. But if
6017 	 * we are already above the high+gap watermark, don't reclaim at all.
6018 	 */
6019 	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
6020 
6021 	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
6022 }
6023 
6024 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
6025 {
6026 	/*
6027 	 * If reclaim is making progress greater than 12% efficiency then
6028 	 * wake all the NOPROGRESS throttled tasks.
6029 	 */
6030 	if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) {
6031 		wait_queue_head_t *wqh;
6032 
6033 		wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS];
6034 		if (waitqueue_active(wqh))
6035 			wake_up(wqh);
6036 
6037 		return;
6038 	}
6039 
6040 	/*
6041 	 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will
6042 	 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages
6043 	 * under writeback and marked for immediate reclaim at the tail of the
6044 	 * LRU.
6045 	 */
6046 	if (current_is_kswapd() || cgroup_reclaim(sc))
6047 		return;
6048 
6049 	/* Throttle if making no progress at high prioities. */
6050 	if (sc->priority == 1 && !sc->nr_reclaimed)
6051 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS);
6052 }
6053 
6054 /*
6055  * This is the direct reclaim path, for page-allocating processes.  We only
6056  * try to reclaim pages from zones which will satisfy the caller's allocation
6057  * request.
6058  *
6059  * If a zone is deemed to be full of pinned pages then just give it a light
6060  * scan then give up on it.
6061  */
6062 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
6063 {
6064 	struct zoneref *z;
6065 	struct zone *zone;
6066 	unsigned long nr_soft_reclaimed;
6067 	unsigned long nr_soft_scanned;
6068 	gfp_t orig_mask;
6069 	pg_data_t *last_pgdat = NULL;
6070 	pg_data_t *first_pgdat = NULL;
6071 
6072 	/*
6073 	 * If the number of buffer_heads in the machine exceeds the maximum
6074 	 * allowed level, force direct reclaim to scan the highmem zone as
6075 	 * highmem pages could be pinning lowmem pages storing buffer_heads
6076 	 */
6077 	orig_mask = sc->gfp_mask;
6078 	if (buffer_heads_over_limit) {
6079 		sc->gfp_mask |= __GFP_HIGHMEM;
6080 		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
6081 	}
6082 
6083 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6084 					sc->reclaim_idx, sc->nodemask) {
6085 		/*
6086 		 * Take care memory controller reclaiming has small influence
6087 		 * to global LRU.
6088 		 */
6089 		if (!cgroup_reclaim(sc)) {
6090 			if (!cpuset_zone_allowed(zone,
6091 						 GFP_KERNEL | __GFP_HARDWALL))
6092 				continue;
6093 
6094 			/*
6095 			 * If we already have plenty of memory free for
6096 			 * compaction in this zone, don't free any more.
6097 			 * Even though compaction is invoked for any
6098 			 * non-zero order, only frequent costly order
6099 			 * reclamation is disruptive enough to become a
6100 			 * noticeable problem, like transparent huge
6101 			 * page allocations.
6102 			 */
6103 			if (IS_ENABLED(CONFIG_COMPACTION) &&
6104 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
6105 			    compaction_ready(zone, sc)) {
6106 				sc->compaction_ready = true;
6107 				continue;
6108 			}
6109 
6110 			/*
6111 			 * Shrink each node in the zonelist once. If the
6112 			 * zonelist is ordered by zone (not the default) then a
6113 			 * node may be shrunk multiple times but in that case
6114 			 * the user prefers lower zones being preserved.
6115 			 */
6116 			if (zone->zone_pgdat == last_pgdat)
6117 				continue;
6118 
6119 			/*
6120 			 * This steals pages from memory cgroups over softlimit
6121 			 * and returns the number of reclaimed pages and
6122 			 * scanned pages. This works for global memory pressure
6123 			 * and balancing, not for a memcg's limit.
6124 			 */
6125 			nr_soft_scanned = 0;
6126 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
6127 						sc->order, sc->gfp_mask,
6128 						&nr_soft_scanned);
6129 			sc->nr_reclaimed += nr_soft_reclaimed;
6130 			sc->nr_scanned += nr_soft_scanned;
6131 			/* need some check for avoid more shrink_zone() */
6132 		}
6133 
6134 		if (!first_pgdat)
6135 			first_pgdat = zone->zone_pgdat;
6136 
6137 		/* See comment about same check for global reclaim above */
6138 		if (zone->zone_pgdat == last_pgdat)
6139 			continue;
6140 		last_pgdat = zone->zone_pgdat;
6141 		shrink_node(zone->zone_pgdat, sc);
6142 	}
6143 
6144 	if (first_pgdat)
6145 		consider_reclaim_throttle(first_pgdat, sc);
6146 
6147 	/*
6148 	 * Restore to original mask to avoid the impact on the caller if we
6149 	 * promoted it to __GFP_HIGHMEM.
6150 	 */
6151 	sc->gfp_mask = orig_mask;
6152 }
6153 
6154 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
6155 {
6156 	struct lruvec *target_lruvec;
6157 	unsigned long refaults;
6158 
6159 	if (lru_gen_enabled())
6160 		return;
6161 
6162 	target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
6163 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
6164 	target_lruvec->refaults[WORKINGSET_ANON] = refaults;
6165 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
6166 	target_lruvec->refaults[WORKINGSET_FILE] = refaults;
6167 }
6168 
6169 /*
6170  * This is the main entry point to direct page reclaim.
6171  *
6172  * If a full scan of the inactive list fails to free enough memory then we
6173  * are "out of memory" and something needs to be killed.
6174  *
6175  * If the caller is !__GFP_FS then the probability of a failure is reasonably
6176  * high - the zone may be full of dirty or under-writeback pages, which this
6177  * caller can't do much about.  We kick the writeback threads and take explicit
6178  * naps in the hope that some of these pages can be written.  But if the
6179  * allocating task holds filesystem locks which prevent writeout this might not
6180  * work, and the allocation attempt will fail.
6181  *
6182  * returns:	0, if no pages reclaimed
6183  * 		else, the number of pages reclaimed
6184  */
6185 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
6186 					  struct scan_control *sc)
6187 {
6188 	int initial_priority = sc->priority;
6189 	pg_data_t *last_pgdat;
6190 	struct zoneref *z;
6191 	struct zone *zone;
6192 retry:
6193 	delayacct_freepages_start();
6194 
6195 	if (!cgroup_reclaim(sc))
6196 		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
6197 
6198 	do {
6199 		if (!sc->proactive)
6200 			vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
6201 					sc->priority);
6202 		sc->nr_scanned = 0;
6203 		shrink_zones(zonelist, sc);
6204 
6205 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
6206 			break;
6207 
6208 		if (sc->compaction_ready)
6209 			break;
6210 
6211 		/*
6212 		 * If we're getting trouble reclaiming, start doing
6213 		 * writepage even in laptop mode.
6214 		 */
6215 		if (sc->priority < DEF_PRIORITY - 2)
6216 			sc->may_writepage = 1;
6217 	} while (--sc->priority >= 0);
6218 
6219 	last_pgdat = NULL;
6220 	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
6221 					sc->nodemask) {
6222 		if (zone->zone_pgdat == last_pgdat)
6223 			continue;
6224 		last_pgdat = zone->zone_pgdat;
6225 
6226 		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
6227 
6228 		if (cgroup_reclaim(sc)) {
6229 			struct lruvec *lruvec;
6230 
6231 			lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
6232 						   zone->zone_pgdat);
6233 			clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags);
6234 		}
6235 	}
6236 
6237 	delayacct_freepages_end();
6238 
6239 	if (sc->nr_reclaimed)
6240 		return sc->nr_reclaimed;
6241 
6242 	/* Aborted reclaim to try compaction? don't OOM, then */
6243 	if (sc->compaction_ready)
6244 		return 1;
6245 
6246 	/*
6247 	 * We make inactive:active ratio decisions based on the node's
6248 	 * composition of memory, but a restrictive reclaim_idx or a
6249 	 * memory.low cgroup setting can exempt large amounts of
6250 	 * memory from reclaim. Neither of which are very common, so
6251 	 * instead of doing costly eligibility calculations of the
6252 	 * entire cgroup subtree up front, we assume the estimates are
6253 	 * good, and retry with forcible deactivation if that fails.
6254 	 */
6255 	if (sc->skipped_deactivate) {
6256 		sc->priority = initial_priority;
6257 		sc->force_deactivate = 1;
6258 		sc->skipped_deactivate = 0;
6259 		goto retry;
6260 	}
6261 
6262 	/* Untapped cgroup reserves?  Don't OOM, retry. */
6263 	if (sc->memcg_low_skipped) {
6264 		sc->priority = initial_priority;
6265 		sc->force_deactivate = 0;
6266 		sc->memcg_low_reclaim = 1;
6267 		sc->memcg_low_skipped = 0;
6268 		goto retry;
6269 	}
6270 
6271 	return 0;
6272 }
6273 
6274 static bool allow_direct_reclaim(pg_data_t *pgdat)
6275 {
6276 	struct zone *zone;
6277 	unsigned long pfmemalloc_reserve = 0;
6278 	unsigned long free_pages = 0;
6279 	int i;
6280 	bool wmark_ok;
6281 
6282 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6283 		return true;
6284 
6285 	for (i = 0; i <= ZONE_NORMAL; i++) {
6286 		zone = &pgdat->node_zones[i];
6287 		if (!managed_zone(zone))
6288 			continue;
6289 
6290 		if (!zone_reclaimable_pages(zone))
6291 			continue;
6292 
6293 		pfmemalloc_reserve += min_wmark_pages(zone);
6294 		free_pages += zone_page_state_snapshot(zone, NR_FREE_PAGES);
6295 	}
6296 
6297 	/* If there are no reserves (unexpected config) then do not throttle */
6298 	if (!pfmemalloc_reserve)
6299 		return true;
6300 
6301 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
6302 
6303 	/* kswapd must be awake if processes are being throttled */
6304 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
6305 		if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
6306 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
6307 
6308 		wake_up_interruptible(&pgdat->kswapd_wait);
6309 	}
6310 
6311 	return wmark_ok;
6312 }
6313 
6314 /*
6315  * Throttle direct reclaimers if backing storage is backed by the network
6316  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
6317  * depleted. kswapd will continue to make progress and wake the processes
6318  * when the low watermark is reached.
6319  *
6320  * Returns true if a fatal signal was delivered during throttling. If this
6321  * happens, the page allocator should not consider triggering the OOM killer.
6322  */
6323 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
6324 					nodemask_t *nodemask)
6325 {
6326 	struct zoneref *z;
6327 	struct zone *zone;
6328 	pg_data_t *pgdat = NULL;
6329 
6330 	/*
6331 	 * Kernel threads should not be throttled as they may be indirectly
6332 	 * responsible for cleaning pages necessary for reclaim to make forward
6333 	 * progress. kjournald for example may enter direct reclaim while
6334 	 * committing a transaction where throttling it could forcing other
6335 	 * processes to block on log_wait_commit().
6336 	 */
6337 	if (current->flags & PF_KTHREAD)
6338 		goto out;
6339 
6340 	/*
6341 	 * If a fatal signal is pending, this process should not throttle.
6342 	 * It should return quickly so it can exit and free its memory
6343 	 */
6344 	if (fatal_signal_pending(current))
6345 		goto out;
6346 
6347 	/*
6348 	 * Check if the pfmemalloc reserves are ok by finding the first node
6349 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
6350 	 * GFP_KERNEL will be required for allocating network buffers when
6351 	 * swapping over the network so ZONE_HIGHMEM is unusable.
6352 	 *
6353 	 * Throttling is based on the first usable node and throttled processes
6354 	 * wait on a queue until kswapd makes progress and wakes them. There
6355 	 * is an affinity then between processes waking up and where reclaim
6356 	 * progress has been made assuming the process wakes on the same node.
6357 	 * More importantly, processes running on remote nodes will not compete
6358 	 * for remote pfmemalloc reserves and processes on different nodes
6359 	 * should make reasonable progress.
6360 	 */
6361 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6362 					gfp_zone(gfp_mask), nodemask) {
6363 		if (zone_idx(zone) > ZONE_NORMAL)
6364 			continue;
6365 
6366 		/* Throttle based on the first usable node */
6367 		pgdat = zone->zone_pgdat;
6368 		if (allow_direct_reclaim(pgdat))
6369 			goto out;
6370 		break;
6371 	}
6372 
6373 	/* If no zone was usable by the allocation flags then do not throttle */
6374 	if (!pgdat)
6375 		goto out;
6376 
6377 	/* Account for the throttling */
6378 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
6379 
6380 	/*
6381 	 * If the caller cannot enter the filesystem, it's possible that it
6382 	 * is due to the caller holding an FS lock or performing a journal
6383 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
6384 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
6385 	 * blocked waiting on the same lock. Instead, throttle for up to a
6386 	 * second before continuing.
6387 	 */
6388 	if (!(gfp_mask & __GFP_FS))
6389 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
6390 			allow_direct_reclaim(pgdat), HZ);
6391 	else
6392 		/* Throttle until kswapd wakes the process */
6393 		wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
6394 			allow_direct_reclaim(pgdat));
6395 
6396 	if (fatal_signal_pending(current))
6397 		return true;
6398 
6399 out:
6400 	return false;
6401 }
6402 
6403 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
6404 				gfp_t gfp_mask, nodemask_t *nodemask)
6405 {
6406 	unsigned long nr_reclaimed;
6407 	struct scan_control sc = {
6408 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
6409 		.gfp_mask = current_gfp_context(gfp_mask),
6410 		.reclaim_idx = gfp_zone(gfp_mask),
6411 		.order = order,
6412 		.nodemask = nodemask,
6413 		.priority = DEF_PRIORITY,
6414 		.may_writepage = !laptop_mode,
6415 		.may_unmap = 1,
6416 		.may_swap = 1,
6417 	};
6418 
6419 	/*
6420 	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
6421 	 * Confirm they are large enough for max values.
6422 	 */
6423 	BUILD_BUG_ON(MAX_PAGE_ORDER >= S8_MAX);
6424 	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
6425 	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
6426 
6427 	/*
6428 	 * Do not enter reclaim if fatal signal was delivered while throttled.
6429 	 * 1 is returned so that the page allocator does not OOM kill at this
6430 	 * point.
6431 	 */
6432 	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
6433 		return 1;
6434 
6435 	set_task_reclaim_state(current, &sc.reclaim_state);
6436 	trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
6437 
6438 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
6439 
6440 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
6441 	set_task_reclaim_state(current, NULL);
6442 
6443 	return nr_reclaimed;
6444 }
6445 
6446 #ifdef CONFIG_MEMCG
6447 
6448 /* Only used by soft limit reclaim. Do not reuse for anything else. */
6449 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
6450 						gfp_t gfp_mask, bool noswap,
6451 						pg_data_t *pgdat,
6452 						unsigned long *nr_scanned)
6453 {
6454 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
6455 	struct scan_control sc = {
6456 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
6457 		.target_mem_cgroup = memcg,
6458 		.may_writepage = !laptop_mode,
6459 		.may_unmap = 1,
6460 		.reclaim_idx = MAX_NR_ZONES - 1,
6461 		.may_swap = !noswap,
6462 	};
6463 
6464 	WARN_ON_ONCE(!current->reclaim_state);
6465 
6466 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
6467 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
6468 
6469 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
6470 						      sc.gfp_mask);
6471 
6472 	/*
6473 	 * NOTE: Although we can get the priority field, using it
6474 	 * here is not a good idea, since it limits the pages we can scan.
6475 	 * if we don't reclaim here, the shrink_node from balance_pgdat
6476 	 * will pick up pages from other mem cgroup's as well. We hack
6477 	 * the priority and make it zero.
6478 	 */
6479 	shrink_lruvec(lruvec, &sc);
6480 
6481 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
6482 
6483 	*nr_scanned = sc.nr_scanned;
6484 
6485 	return sc.nr_reclaimed;
6486 }
6487 
6488 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
6489 					   unsigned long nr_pages,
6490 					   gfp_t gfp_mask,
6491 					   unsigned int reclaim_options)
6492 {
6493 	unsigned long nr_reclaimed;
6494 	unsigned int noreclaim_flag;
6495 	struct scan_control sc = {
6496 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
6497 		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
6498 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
6499 		.reclaim_idx = MAX_NR_ZONES - 1,
6500 		.target_mem_cgroup = memcg,
6501 		.priority = DEF_PRIORITY,
6502 		.may_writepage = !laptop_mode,
6503 		.may_unmap = 1,
6504 		.may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP),
6505 		.proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE),
6506 	};
6507 	/*
6508 	 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
6509 	 * equal pressure on all the nodes. This is based on the assumption that
6510 	 * the reclaim does not bail out early.
6511 	 */
6512 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
6513 
6514 	set_task_reclaim_state(current, &sc.reclaim_state);
6515 	trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
6516 	noreclaim_flag = memalloc_noreclaim_save();
6517 
6518 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
6519 
6520 	memalloc_noreclaim_restore(noreclaim_flag);
6521 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
6522 	set_task_reclaim_state(current, NULL);
6523 
6524 	return nr_reclaimed;
6525 }
6526 #endif
6527 
6528 static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc)
6529 {
6530 	struct mem_cgroup *memcg;
6531 	struct lruvec *lruvec;
6532 
6533 	if (lru_gen_enabled()) {
6534 		lru_gen_age_node(pgdat, sc);
6535 		return;
6536 	}
6537 
6538 	if (!can_age_anon_pages(pgdat, sc))
6539 		return;
6540 
6541 	lruvec = mem_cgroup_lruvec(NULL, pgdat);
6542 	if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
6543 		return;
6544 
6545 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
6546 	do {
6547 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
6548 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
6549 				   sc, LRU_ACTIVE_ANON);
6550 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
6551 	} while (memcg);
6552 }
6553 
6554 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
6555 {
6556 	int i;
6557 	struct zone *zone;
6558 
6559 	/*
6560 	 * Check for watermark boosts top-down as the higher zones
6561 	 * are more likely to be boosted. Both watermarks and boosts
6562 	 * should not be checked at the same time as reclaim would
6563 	 * start prematurely when there is no boosting and a lower
6564 	 * zone is balanced.
6565 	 */
6566 	for (i = highest_zoneidx; i >= 0; i--) {
6567 		zone = pgdat->node_zones + i;
6568 		if (!managed_zone(zone))
6569 			continue;
6570 
6571 		if (zone->watermark_boost)
6572 			return true;
6573 	}
6574 
6575 	return false;
6576 }
6577 
6578 /*
6579  * Returns true if there is an eligible zone balanced for the request order
6580  * and highest_zoneidx
6581  */
6582 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
6583 {
6584 	int i;
6585 	unsigned long mark = -1;
6586 	struct zone *zone;
6587 
6588 	/*
6589 	 * Check watermarks bottom-up as lower zones are more likely to
6590 	 * meet watermarks.
6591 	 */
6592 	for (i = 0; i <= highest_zoneidx; i++) {
6593 		zone = pgdat->node_zones + i;
6594 
6595 		if (!managed_zone(zone))
6596 			continue;
6597 
6598 		if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)
6599 			mark = wmark_pages(zone, WMARK_PROMO);
6600 		else
6601 			mark = high_wmark_pages(zone);
6602 		if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
6603 			return true;
6604 	}
6605 
6606 	/*
6607 	 * If a node has no managed zone within highest_zoneidx, it does not
6608 	 * need balancing by definition. This can happen if a zone-restricted
6609 	 * allocation tries to wake a remote kswapd.
6610 	 */
6611 	if (mark == -1)
6612 		return true;
6613 
6614 	return false;
6615 }
6616 
6617 /* Clear pgdat state for congested, dirty or under writeback. */
6618 static void clear_pgdat_congested(pg_data_t *pgdat)
6619 {
6620 	struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
6621 
6622 	clear_bit(LRUVEC_NODE_CONGESTED, &lruvec->flags);
6623 	clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags);
6624 	clear_bit(PGDAT_DIRTY, &pgdat->flags);
6625 	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
6626 }
6627 
6628 /*
6629  * Prepare kswapd for sleeping. This verifies that there are no processes
6630  * waiting in throttle_direct_reclaim() and that watermarks have been met.
6631  *
6632  * Returns true if kswapd is ready to sleep
6633  */
6634 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
6635 				int highest_zoneidx)
6636 {
6637 	/*
6638 	 * The throttled processes are normally woken up in balance_pgdat() as
6639 	 * soon as allow_direct_reclaim() is true. But there is a potential
6640 	 * race between when kswapd checks the watermarks and a process gets
6641 	 * throttled. There is also a potential race if processes get
6642 	 * throttled, kswapd wakes, a large process exits thereby balancing the
6643 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
6644 	 * the wake up checks. If kswapd is going to sleep, no process should
6645 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
6646 	 * the wake up is premature, processes will wake kswapd and get
6647 	 * throttled again. The difference from wake ups in balance_pgdat() is
6648 	 * that here we are under prepare_to_wait().
6649 	 */
6650 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
6651 		wake_up_all(&pgdat->pfmemalloc_wait);
6652 
6653 	/* Hopeless node, leave it to direct reclaim */
6654 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6655 		return true;
6656 
6657 	if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
6658 		clear_pgdat_congested(pgdat);
6659 		return true;
6660 	}
6661 
6662 	return false;
6663 }
6664 
6665 /*
6666  * kswapd shrinks a node of pages that are at or below the highest usable
6667  * zone that is currently unbalanced.
6668  *
6669  * Returns true if kswapd scanned at least the requested number of pages to
6670  * reclaim or if the lack of progress was due to pages under writeback.
6671  * This is used to determine if the scanning priority needs to be raised.
6672  */
6673 static bool kswapd_shrink_node(pg_data_t *pgdat,
6674 			       struct scan_control *sc)
6675 {
6676 	struct zone *zone;
6677 	int z;
6678 
6679 	/* Reclaim a number of pages proportional to the number of zones */
6680 	sc->nr_to_reclaim = 0;
6681 	for (z = 0; z <= sc->reclaim_idx; z++) {
6682 		zone = pgdat->node_zones + z;
6683 		if (!managed_zone(zone))
6684 			continue;
6685 
6686 		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
6687 	}
6688 
6689 	/*
6690 	 * Historically care was taken to put equal pressure on all zones but
6691 	 * now pressure is applied based on node LRU order.
6692 	 */
6693 	shrink_node(pgdat, sc);
6694 
6695 	/*
6696 	 * Fragmentation may mean that the system cannot be rebalanced for
6697 	 * high-order allocations. If twice the allocation size has been
6698 	 * reclaimed then recheck watermarks only at order-0 to prevent
6699 	 * excessive reclaim. Assume that a process requested a high-order
6700 	 * can direct reclaim/compact.
6701 	 */
6702 	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
6703 		sc->order = 0;
6704 
6705 	return sc->nr_scanned >= sc->nr_to_reclaim;
6706 }
6707 
6708 /* Page allocator PCP high watermark is lowered if reclaim is active. */
6709 static inline void
6710 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
6711 {
6712 	int i;
6713 	struct zone *zone;
6714 
6715 	for (i = 0; i <= highest_zoneidx; i++) {
6716 		zone = pgdat->node_zones + i;
6717 
6718 		if (!managed_zone(zone))
6719 			continue;
6720 
6721 		if (active)
6722 			set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
6723 		else
6724 			clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
6725 	}
6726 }
6727 
6728 static inline void
6729 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
6730 {
6731 	update_reclaim_active(pgdat, highest_zoneidx, true);
6732 }
6733 
6734 static inline void
6735 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
6736 {
6737 	update_reclaim_active(pgdat, highest_zoneidx, false);
6738 }
6739 
6740 /*
6741  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
6742  * that are eligible for use by the caller until at least one zone is
6743  * balanced.
6744  *
6745  * Returns the order kswapd finished reclaiming at.
6746  *
6747  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
6748  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
6749  * found to have free_pages <= high_wmark_pages(zone), any page in that zone
6750  * or lower is eligible for reclaim until at least one usable zone is
6751  * balanced.
6752  */
6753 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
6754 {
6755 	int i;
6756 	unsigned long nr_soft_reclaimed;
6757 	unsigned long nr_soft_scanned;
6758 	unsigned long pflags;
6759 	unsigned long nr_boost_reclaim;
6760 	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
6761 	bool boosted;
6762 	struct zone *zone;
6763 	struct scan_control sc = {
6764 		.gfp_mask = GFP_KERNEL,
6765 		.order = order,
6766 		.may_unmap = 1,
6767 	};
6768 
6769 	set_task_reclaim_state(current, &sc.reclaim_state);
6770 	psi_memstall_enter(&pflags);
6771 	__fs_reclaim_acquire(_THIS_IP_);
6772 
6773 	count_vm_event(PAGEOUTRUN);
6774 
6775 	/*
6776 	 * Account for the reclaim boost. Note that the zone boost is left in
6777 	 * place so that parallel allocations that are near the watermark will
6778 	 * stall or direct reclaim until kswapd is finished.
6779 	 */
6780 	nr_boost_reclaim = 0;
6781 	for (i = 0; i <= highest_zoneidx; i++) {
6782 		zone = pgdat->node_zones + i;
6783 		if (!managed_zone(zone))
6784 			continue;
6785 
6786 		nr_boost_reclaim += zone->watermark_boost;
6787 		zone_boosts[i] = zone->watermark_boost;
6788 	}
6789 	boosted = nr_boost_reclaim;
6790 
6791 restart:
6792 	set_reclaim_active(pgdat, highest_zoneidx);
6793 	sc.priority = DEF_PRIORITY;
6794 	do {
6795 		unsigned long nr_reclaimed = sc.nr_reclaimed;
6796 		bool raise_priority = true;
6797 		bool balanced;
6798 		bool ret;
6799 
6800 		sc.reclaim_idx = highest_zoneidx;
6801 
6802 		/*
6803 		 * If the number of buffer_heads exceeds the maximum allowed
6804 		 * then consider reclaiming from all zones. This has a dual
6805 		 * purpose -- on 64-bit systems it is expected that
6806 		 * buffer_heads are stripped during active rotation. On 32-bit
6807 		 * systems, highmem pages can pin lowmem memory and shrinking
6808 		 * buffers can relieve lowmem pressure. Reclaim may still not
6809 		 * go ahead if all eligible zones for the original allocation
6810 		 * request are balanced to avoid excessive reclaim from kswapd.
6811 		 */
6812 		if (buffer_heads_over_limit) {
6813 			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
6814 				zone = pgdat->node_zones + i;
6815 				if (!managed_zone(zone))
6816 					continue;
6817 
6818 				sc.reclaim_idx = i;
6819 				break;
6820 			}
6821 		}
6822 
6823 		/*
6824 		 * If the pgdat is imbalanced then ignore boosting and preserve
6825 		 * the watermarks for a later time and restart. Note that the
6826 		 * zone watermarks will be still reset at the end of balancing
6827 		 * on the grounds that the normal reclaim should be enough to
6828 		 * re-evaluate if boosting is required when kswapd next wakes.
6829 		 */
6830 		balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
6831 		if (!balanced && nr_boost_reclaim) {
6832 			nr_boost_reclaim = 0;
6833 			goto restart;
6834 		}
6835 
6836 		/*
6837 		 * If boosting is not active then only reclaim if there are no
6838 		 * eligible zones. Note that sc.reclaim_idx is not used as
6839 		 * buffer_heads_over_limit may have adjusted it.
6840 		 */
6841 		if (!nr_boost_reclaim && balanced)
6842 			goto out;
6843 
6844 		/* Limit the priority of boosting to avoid reclaim writeback */
6845 		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
6846 			raise_priority = false;
6847 
6848 		/*
6849 		 * Do not writeback or swap pages for boosted reclaim. The
6850 		 * intent is to relieve pressure not issue sub-optimal IO
6851 		 * from reclaim context. If no pages are reclaimed, the
6852 		 * reclaim will be aborted.
6853 		 */
6854 		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
6855 		sc.may_swap = !nr_boost_reclaim;
6856 
6857 		/*
6858 		 * Do some background aging, to give pages a chance to be
6859 		 * referenced before reclaiming. All pages are rotated
6860 		 * regardless of classzone as this is about consistent aging.
6861 		 */
6862 		kswapd_age_node(pgdat, &sc);
6863 
6864 		/*
6865 		 * If we're getting trouble reclaiming, start doing writepage
6866 		 * even in laptop mode.
6867 		 */
6868 		if (sc.priority < DEF_PRIORITY - 2)
6869 			sc.may_writepage = 1;
6870 
6871 		/* Call soft limit reclaim before calling shrink_node. */
6872 		sc.nr_scanned = 0;
6873 		nr_soft_scanned = 0;
6874 		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
6875 						sc.gfp_mask, &nr_soft_scanned);
6876 		sc.nr_reclaimed += nr_soft_reclaimed;
6877 
6878 		/*
6879 		 * There should be no need to raise the scanning priority if
6880 		 * enough pages are already being scanned that that high
6881 		 * watermark would be met at 100% efficiency.
6882 		 */
6883 		if (kswapd_shrink_node(pgdat, &sc))
6884 			raise_priority = false;
6885 
6886 		/*
6887 		 * If the low watermark is met there is no need for processes
6888 		 * to be throttled on pfmemalloc_wait as they should not be
6889 		 * able to safely make forward progress. Wake them
6890 		 */
6891 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
6892 				allow_direct_reclaim(pgdat))
6893 			wake_up_all(&pgdat->pfmemalloc_wait);
6894 
6895 		/* Check if kswapd should be suspending */
6896 		__fs_reclaim_release(_THIS_IP_);
6897 		ret = try_to_freeze();
6898 		__fs_reclaim_acquire(_THIS_IP_);
6899 		if (ret || kthread_should_stop())
6900 			break;
6901 
6902 		/*
6903 		 * Raise priority if scanning rate is too low or there was no
6904 		 * progress in reclaiming pages
6905 		 */
6906 		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
6907 		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
6908 
6909 		/*
6910 		 * If reclaim made no progress for a boost, stop reclaim as
6911 		 * IO cannot be queued and it could be an infinite loop in
6912 		 * extreme circumstances.
6913 		 */
6914 		if (nr_boost_reclaim && !nr_reclaimed)
6915 			break;
6916 
6917 		if (raise_priority || !nr_reclaimed)
6918 			sc.priority--;
6919 	} while (sc.priority >= 1);
6920 
6921 	if (!sc.nr_reclaimed)
6922 		pgdat->kswapd_failures++;
6923 
6924 out:
6925 	clear_reclaim_active(pgdat, highest_zoneidx);
6926 
6927 	/* If reclaim was boosted, account for the reclaim done in this pass */
6928 	if (boosted) {
6929 		unsigned long flags;
6930 
6931 		for (i = 0; i <= highest_zoneidx; i++) {
6932 			if (!zone_boosts[i])
6933 				continue;
6934 
6935 			/* Increments are under the zone lock */
6936 			zone = pgdat->node_zones + i;
6937 			spin_lock_irqsave(&zone->lock, flags);
6938 			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
6939 			spin_unlock_irqrestore(&zone->lock, flags);
6940 		}
6941 
6942 		/*
6943 		 * As there is now likely space, wakeup kcompact to defragment
6944 		 * pageblocks.
6945 		 */
6946 		wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
6947 	}
6948 
6949 	snapshot_refaults(NULL, pgdat);
6950 	__fs_reclaim_release(_THIS_IP_);
6951 	psi_memstall_leave(&pflags);
6952 	set_task_reclaim_state(current, NULL);
6953 
6954 	/*
6955 	 * Return the order kswapd stopped reclaiming at as
6956 	 * prepare_kswapd_sleep() takes it into account. If another caller
6957 	 * entered the allocator slow path while kswapd was awake, order will
6958 	 * remain at the higher level.
6959 	 */
6960 	return sc.order;
6961 }
6962 
6963 /*
6964  * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
6965  * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
6966  * not a valid index then either kswapd runs for first time or kswapd couldn't
6967  * sleep after previous reclaim attempt (node is still unbalanced). In that
6968  * case return the zone index of the previous kswapd reclaim cycle.
6969  */
6970 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
6971 					   enum zone_type prev_highest_zoneidx)
6972 {
6973 	enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
6974 
6975 	return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
6976 }
6977 
6978 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
6979 				unsigned int highest_zoneidx)
6980 {
6981 	long remaining = 0;
6982 	DEFINE_WAIT(wait);
6983 
6984 	if (freezing(current) || kthread_should_stop())
6985 		return;
6986 
6987 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
6988 
6989 	/*
6990 	 * Try to sleep for a short interval. Note that kcompactd will only be
6991 	 * woken if it is possible to sleep for a short interval. This is
6992 	 * deliberate on the assumption that if reclaim cannot keep an
6993 	 * eligible zone balanced that it's also unlikely that compaction will
6994 	 * succeed.
6995 	 */
6996 	if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
6997 		/*
6998 		 * Compaction records what page blocks it recently failed to
6999 		 * isolate pages from and skips them in the future scanning.
7000 		 * When kswapd is going to sleep, it is reasonable to assume
7001 		 * that pages and compaction may succeed so reset the cache.
7002 		 */
7003 		reset_isolation_suitable(pgdat);
7004 
7005 		/*
7006 		 * We have freed the memory, now we should compact it to make
7007 		 * allocation of the requested order possible.
7008 		 */
7009 		wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
7010 
7011 		remaining = schedule_timeout(HZ/10);
7012 
7013 		/*
7014 		 * If woken prematurely then reset kswapd_highest_zoneidx and
7015 		 * order. The values will either be from a wakeup request or
7016 		 * the previous request that slept prematurely.
7017 		 */
7018 		if (remaining) {
7019 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
7020 					kswapd_highest_zoneidx(pgdat,
7021 							highest_zoneidx));
7022 
7023 			if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
7024 				WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
7025 		}
7026 
7027 		finish_wait(&pgdat->kswapd_wait, &wait);
7028 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7029 	}
7030 
7031 	/*
7032 	 * After a short sleep, check if it was a premature sleep. If not, then
7033 	 * go fully to sleep until explicitly woken up.
7034 	 */
7035 	if (!remaining &&
7036 	    prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7037 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
7038 
7039 		/*
7040 		 * vmstat counters are not perfectly accurate and the estimated
7041 		 * value for counters such as NR_FREE_PAGES can deviate from the
7042 		 * true value by nr_online_cpus * threshold. To avoid the zone
7043 		 * watermarks being breached while under pressure, we reduce the
7044 		 * per-cpu vmstat threshold while kswapd is awake and restore
7045 		 * them before going back to sleep.
7046 		 */
7047 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
7048 
7049 		if (!kthread_should_stop())
7050 			schedule();
7051 
7052 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
7053 	} else {
7054 		if (remaining)
7055 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
7056 		else
7057 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
7058 	}
7059 	finish_wait(&pgdat->kswapd_wait, &wait);
7060 }
7061 
7062 /*
7063  * The background pageout daemon, started as a kernel thread
7064  * from the init process.
7065  *
7066  * This basically trickles out pages so that we have _some_
7067  * free memory available even if there is no other activity
7068  * that frees anything up. This is needed for things like routing
7069  * etc, where we otherwise might have all activity going on in
7070  * asynchronous contexts that cannot page things out.
7071  *
7072  * If there are applications that are active memory-allocators
7073  * (most normal use), this basically shouldn't matter.
7074  */
7075 static int kswapd(void *p)
7076 {
7077 	unsigned int alloc_order, reclaim_order;
7078 	unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
7079 	pg_data_t *pgdat = (pg_data_t *)p;
7080 	struct task_struct *tsk = current;
7081 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7082 
7083 	if (!cpumask_empty(cpumask))
7084 		set_cpus_allowed_ptr(tsk, cpumask);
7085 
7086 	/*
7087 	 * Tell the memory management that we're a "memory allocator",
7088 	 * and that if we need more memory we should get access to it
7089 	 * regardless (see "__alloc_pages()"). "kswapd" should
7090 	 * never get caught in the normal page freeing logic.
7091 	 *
7092 	 * (Kswapd normally doesn't need memory anyway, but sometimes
7093 	 * you need a small amount of memory in order to be able to
7094 	 * page out something else, and this flag essentially protects
7095 	 * us from recursively trying to free more memory as we're
7096 	 * trying to free the first piece of memory in the first place).
7097 	 */
7098 	tsk->flags |= PF_MEMALLOC | PF_KSWAPD;
7099 	set_freezable();
7100 
7101 	WRITE_ONCE(pgdat->kswapd_order, 0);
7102 	WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7103 	atomic_set(&pgdat->nr_writeback_throttled, 0);
7104 	for ( ; ; ) {
7105 		bool ret;
7106 
7107 		alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
7108 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7109 							highest_zoneidx);
7110 
7111 kswapd_try_sleep:
7112 		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
7113 					highest_zoneidx);
7114 
7115 		/* Read the new order and highest_zoneidx */
7116 		alloc_order = READ_ONCE(pgdat->kswapd_order);
7117 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7118 							highest_zoneidx);
7119 		WRITE_ONCE(pgdat->kswapd_order, 0);
7120 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7121 
7122 		ret = try_to_freeze();
7123 		if (kthread_should_stop())
7124 			break;
7125 
7126 		/*
7127 		 * We can speed up thawing tasks if we don't call balance_pgdat
7128 		 * after returning from the refrigerator
7129 		 */
7130 		if (ret)
7131 			continue;
7132 
7133 		/*
7134 		 * Reclaim begins at the requested order but if a high-order
7135 		 * reclaim fails then kswapd falls back to reclaiming for
7136 		 * order-0. If that happens, kswapd will consider sleeping
7137 		 * for the order it finished reclaiming at (reclaim_order)
7138 		 * but kcompactd is woken to compact for the original
7139 		 * request (alloc_order).
7140 		 */
7141 		trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
7142 						alloc_order);
7143 		reclaim_order = balance_pgdat(pgdat, alloc_order,
7144 						highest_zoneidx);
7145 		if (reclaim_order < alloc_order)
7146 			goto kswapd_try_sleep;
7147 	}
7148 
7149 	tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD);
7150 
7151 	return 0;
7152 }
7153 
7154 /*
7155  * A zone is low on free memory or too fragmented for high-order memory.  If
7156  * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
7157  * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
7158  * has failed or is not needed, still wake up kcompactd if only compaction is
7159  * needed.
7160  */
7161 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
7162 		   enum zone_type highest_zoneidx)
7163 {
7164 	pg_data_t *pgdat;
7165 	enum zone_type curr_idx;
7166 
7167 	if (!managed_zone(zone))
7168 		return;
7169 
7170 	if (!cpuset_zone_allowed(zone, gfp_flags))
7171 		return;
7172 
7173 	pgdat = zone->zone_pgdat;
7174 	curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7175 
7176 	if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
7177 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
7178 
7179 	if (READ_ONCE(pgdat->kswapd_order) < order)
7180 		WRITE_ONCE(pgdat->kswapd_order, order);
7181 
7182 	if (!waitqueue_active(&pgdat->kswapd_wait))
7183 		return;
7184 
7185 	/* Hopeless node, leave it to direct reclaim if possible */
7186 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
7187 	    (pgdat_balanced(pgdat, order, highest_zoneidx) &&
7188 	     !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
7189 		/*
7190 		 * There may be plenty of free memory available, but it's too
7191 		 * fragmented for high-order allocations.  Wake up kcompactd
7192 		 * and rely on compaction_suitable() to determine if it's
7193 		 * needed.  If it fails, it will defer subsequent attempts to
7194 		 * ratelimit its work.
7195 		 */
7196 		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
7197 			wakeup_kcompactd(pgdat, order, highest_zoneidx);
7198 		return;
7199 	}
7200 
7201 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
7202 				      gfp_flags);
7203 	wake_up_interruptible(&pgdat->kswapd_wait);
7204 }
7205 
7206 #ifdef CONFIG_HIBERNATION
7207 /*
7208  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
7209  * freed pages.
7210  *
7211  * Rather than trying to age LRUs the aim is to preserve the overall
7212  * LRU order by reclaiming preferentially
7213  * inactive > active > active referenced > active mapped
7214  */
7215 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
7216 {
7217 	struct scan_control sc = {
7218 		.nr_to_reclaim = nr_to_reclaim,
7219 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
7220 		.reclaim_idx = MAX_NR_ZONES - 1,
7221 		.priority = DEF_PRIORITY,
7222 		.may_writepage = 1,
7223 		.may_unmap = 1,
7224 		.may_swap = 1,
7225 		.hibernation_mode = 1,
7226 	};
7227 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7228 	unsigned long nr_reclaimed;
7229 	unsigned int noreclaim_flag;
7230 
7231 	fs_reclaim_acquire(sc.gfp_mask);
7232 	noreclaim_flag = memalloc_noreclaim_save();
7233 	set_task_reclaim_state(current, &sc.reclaim_state);
7234 
7235 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
7236 
7237 	set_task_reclaim_state(current, NULL);
7238 	memalloc_noreclaim_restore(noreclaim_flag);
7239 	fs_reclaim_release(sc.gfp_mask);
7240 
7241 	return nr_reclaimed;
7242 }
7243 #endif /* CONFIG_HIBERNATION */
7244 
7245 /*
7246  * This kswapd start function will be called by init and node-hot-add.
7247  */
7248 void __meminit kswapd_run(int nid)
7249 {
7250 	pg_data_t *pgdat = NODE_DATA(nid);
7251 
7252 	pgdat_kswapd_lock(pgdat);
7253 	if (!pgdat->kswapd) {
7254 		pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
7255 		if (IS_ERR(pgdat->kswapd)) {
7256 			/* failure at boot is fatal */
7257 			pr_err("Failed to start kswapd on node %d,ret=%ld\n",
7258 				   nid, PTR_ERR(pgdat->kswapd));
7259 			BUG_ON(system_state < SYSTEM_RUNNING);
7260 			pgdat->kswapd = NULL;
7261 		}
7262 	}
7263 	pgdat_kswapd_unlock(pgdat);
7264 }
7265 
7266 /*
7267  * Called by memory hotplug when all memory in a node is offlined.  Caller must
7268  * be holding mem_hotplug_begin/done().
7269  */
7270 void __meminit kswapd_stop(int nid)
7271 {
7272 	pg_data_t *pgdat = NODE_DATA(nid);
7273 	struct task_struct *kswapd;
7274 
7275 	pgdat_kswapd_lock(pgdat);
7276 	kswapd = pgdat->kswapd;
7277 	if (kswapd) {
7278 		kthread_stop(kswapd);
7279 		pgdat->kswapd = NULL;
7280 	}
7281 	pgdat_kswapd_unlock(pgdat);
7282 }
7283 
7284 static int __init kswapd_init(void)
7285 {
7286 	int nid;
7287 
7288 	swap_setup();
7289 	for_each_node_state(nid, N_MEMORY)
7290  		kswapd_run(nid);
7291 	return 0;
7292 }
7293 
7294 module_init(kswapd_init)
7295 
7296 #ifdef CONFIG_NUMA
7297 /*
7298  * Node reclaim mode
7299  *
7300  * If non-zero call node_reclaim when the number of free pages falls below
7301  * the watermarks.
7302  */
7303 int node_reclaim_mode __read_mostly;
7304 
7305 /*
7306  * Priority for NODE_RECLAIM. This determines the fraction of pages
7307  * of a node considered for each zone_reclaim. 4 scans 1/16th of
7308  * a zone.
7309  */
7310 #define NODE_RECLAIM_PRIORITY 4
7311 
7312 /*
7313  * Percentage of pages in a zone that must be unmapped for node_reclaim to
7314  * occur.
7315  */
7316 int sysctl_min_unmapped_ratio = 1;
7317 
7318 /*
7319  * If the number of slab pages in a zone grows beyond this percentage then
7320  * slab reclaim needs to occur.
7321  */
7322 int sysctl_min_slab_ratio = 5;
7323 
7324 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
7325 {
7326 	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
7327 	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
7328 		node_page_state(pgdat, NR_ACTIVE_FILE);
7329 
7330 	/*
7331 	 * It's possible for there to be more file mapped pages than
7332 	 * accounted for by the pages on the file LRU lists because
7333 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
7334 	 */
7335 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
7336 }
7337 
7338 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
7339 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
7340 {
7341 	unsigned long nr_pagecache_reclaimable;
7342 	unsigned long delta = 0;
7343 
7344 	/*
7345 	 * If RECLAIM_UNMAP is set, then all file pages are considered
7346 	 * potentially reclaimable. Otherwise, we have to worry about
7347 	 * pages like swapcache and node_unmapped_file_pages() provides
7348 	 * a better estimate
7349 	 */
7350 	if (node_reclaim_mode & RECLAIM_UNMAP)
7351 		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
7352 	else
7353 		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
7354 
7355 	/* If we can't clean pages, remove dirty pages from consideration */
7356 	if (!(node_reclaim_mode & RECLAIM_WRITE))
7357 		delta += node_page_state(pgdat, NR_FILE_DIRTY);
7358 
7359 	/* Watch for any possible underflows due to delta */
7360 	if (unlikely(delta > nr_pagecache_reclaimable))
7361 		delta = nr_pagecache_reclaimable;
7362 
7363 	return nr_pagecache_reclaimable - delta;
7364 }
7365 
7366 /*
7367  * Try to free up some pages from this node through reclaim.
7368  */
7369 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
7370 {
7371 	/* Minimum pages needed in order to stay on node */
7372 	const unsigned long nr_pages = 1 << order;
7373 	struct task_struct *p = current;
7374 	unsigned int noreclaim_flag;
7375 	struct scan_control sc = {
7376 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7377 		.gfp_mask = current_gfp_context(gfp_mask),
7378 		.order = order,
7379 		.priority = NODE_RECLAIM_PRIORITY,
7380 		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
7381 		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
7382 		.may_swap = 1,
7383 		.reclaim_idx = gfp_zone(gfp_mask),
7384 	};
7385 	unsigned long pflags;
7386 
7387 	trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
7388 					   sc.gfp_mask);
7389 
7390 	cond_resched();
7391 	psi_memstall_enter(&pflags);
7392 	delayacct_freepages_start();
7393 	fs_reclaim_acquire(sc.gfp_mask);
7394 	/*
7395 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
7396 	 */
7397 	noreclaim_flag = memalloc_noreclaim_save();
7398 	set_task_reclaim_state(p, &sc.reclaim_state);
7399 
7400 	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages ||
7401 	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) {
7402 		/*
7403 		 * Free memory by calling shrink node with increasing
7404 		 * priorities until we have enough memory freed.
7405 		 */
7406 		do {
7407 			shrink_node(pgdat, &sc);
7408 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
7409 	}
7410 
7411 	set_task_reclaim_state(p, NULL);
7412 	memalloc_noreclaim_restore(noreclaim_flag);
7413 	fs_reclaim_release(sc.gfp_mask);
7414 	psi_memstall_leave(&pflags);
7415 	delayacct_freepages_end();
7416 
7417 	trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
7418 
7419 	return sc.nr_reclaimed >= nr_pages;
7420 }
7421 
7422 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
7423 {
7424 	int ret;
7425 
7426 	/*
7427 	 * Node reclaim reclaims unmapped file backed pages and
7428 	 * slab pages if we are over the defined limits.
7429 	 *
7430 	 * A small portion of unmapped file backed pages is needed for
7431 	 * file I/O otherwise pages read by file I/O will be immediately
7432 	 * thrown out if the node is overallocated. So we do not reclaim
7433 	 * if less than a specified percentage of the node is used by
7434 	 * unmapped file backed pages.
7435 	 */
7436 	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
7437 	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
7438 	    pgdat->min_slab_pages)
7439 		return NODE_RECLAIM_FULL;
7440 
7441 	/*
7442 	 * Do not scan if the allocation should not be delayed.
7443 	 */
7444 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
7445 		return NODE_RECLAIM_NOSCAN;
7446 
7447 	/*
7448 	 * Only run node reclaim on the local node or on nodes that do not
7449 	 * have associated processors. This will favor the local processor
7450 	 * over remote processors and spread off node memory allocations
7451 	 * as wide as possible.
7452 	 */
7453 	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
7454 		return NODE_RECLAIM_NOSCAN;
7455 
7456 	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
7457 		return NODE_RECLAIM_NOSCAN;
7458 
7459 	ret = __node_reclaim(pgdat, gfp_mask, order);
7460 	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
7461 
7462 	if (!ret)
7463 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
7464 
7465 	return ret;
7466 }
7467 #endif
7468 
7469 /**
7470  * check_move_unevictable_folios - Move evictable folios to appropriate zone
7471  * lru list
7472  * @fbatch: Batch of lru folios to check.
7473  *
7474  * Checks folios for evictability, if an evictable folio is in the unevictable
7475  * lru list, moves it to the appropriate evictable lru list. This function
7476  * should be only used for lru folios.
7477  */
7478 void check_move_unevictable_folios(struct folio_batch *fbatch)
7479 {
7480 	struct lruvec *lruvec = NULL;
7481 	int pgscanned = 0;
7482 	int pgrescued = 0;
7483 	int i;
7484 
7485 	for (i = 0; i < fbatch->nr; i++) {
7486 		struct folio *folio = fbatch->folios[i];
7487 		int nr_pages = folio_nr_pages(folio);
7488 
7489 		pgscanned += nr_pages;
7490 
7491 		/* block memcg migration while the folio moves between lrus */
7492 		if (!folio_test_clear_lru(folio))
7493 			continue;
7494 
7495 		lruvec = folio_lruvec_relock_irq(folio, lruvec);
7496 		if (folio_evictable(folio) && folio_test_unevictable(folio)) {
7497 			lruvec_del_folio(lruvec, folio);
7498 			folio_clear_unevictable(folio);
7499 			lruvec_add_folio(lruvec, folio);
7500 			pgrescued += nr_pages;
7501 		}
7502 		folio_set_lru(folio);
7503 	}
7504 
7505 	if (lruvec) {
7506 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
7507 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
7508 		unlock_page_lruvec_irq(lruvec);
7509 	} else if (pgscanned) {
7510 		count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
7511 	}
7512 }
7513 EXPORT_SYMBOL_GPL(check_move_unevictable_folios);
7514