xref: /linux/mm/vmscan.c (revision 9e4d52a00a0217857fa40dc998971a375f861a61)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
4  *
5  *  Swap reorganised 29.12.95, Stephen Tweedie.
6  *  kswapd added: 7.1.96  sct
7  *  Removed kswapd_ctl limits, and swap out as many pages as needed
8  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
9  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
10  *  Multiqueue VM started 5.8.00, Rik van Riel.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/mm.h>
16 #include <linux/sched/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h>	/* for try_to_release_page(),
30 					buffer_heads_over_limit */
31 #include <linux/mm_inline.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rmap.h>
34 #include <linux/topology.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/compaction.h>
38 #include <linux/notifier.h>
39 #include <linux/rwsem.h>
40 #include <linux/delay.h>
41 #include <linux/kthread.h>
42 #include <linux/freezer.h>
43 #include <linux/memcontrol.h>
44 #include <linux/migrate.h>
45 #include <linux/delayacct.h>
46 #include <linux/sysctl.h>
47 #include <linux/oom.h>
48 #include <linux/pagevec.h>
49 #include <linux/prefetch.h>
50 #include <linux/printk.h>
51 #include <linux/dax.h>
52 #include <linux/psi.h>
53 
54 #include <asm/tlbflush.h>
55 #include <asm/div64.h>
56 
57 #include <linux/swapops.h>
58 #include <linux/balloon_compaction.h>
59 
60 #include "internal.h"
61 
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/vmscan.h>
64 
65 struct scan_control {
66 	/* How many pages shrink_list() should reclaim */
67 	unsigned long nr_to_reclaim;
68 
69 	/*
70 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
71 	 * are scanned.
72 	 */
73 	nodemask_t	*nodemask;
74 
75 	/*
76 	 * The memory cgroup that hit its limit and as a result is the
77 	 * primary target of this reclaim invocation.
78 	 */
79 	struct mem_cgroup *target_mem_cgroup;
80 
81 	/*
82 	 * Scan pressure balancing between anon and file LRUs
83 	 */
84 	unsigned long	anon_cost;
85 	unsigned long	file_cost;
86 
87 	/* Can active pages be deactivated as part of reclaim? */
88 #define DEACTIVATE_ANON 1
89 #define DEACTIVATE_FILE 2
90 	unsigned int may_deactivate:2;
91 	unsigned int force_deactivate:1;
92 	unsigned int skipped_deactivate:1;
93 
94 	/* Writepage batching in laptop mode; RECLAIM_WRITE */
95 	unsigned int may_writepage:1;
96 
97 	/* Can mapped pages be reclaimed? */
98 	unsigned int may_unmap:1;
99 
100 	/* Can pages be swapped as part of reclaim? */
101 	unsigned int may_swap:1;
102 
103 	/*
104 	 * Cgroup memory below memory.low is protected as long as we
105 	 * don't threaten to OOM. If any cgroup is reclaimed at
106 	 * reduced force or passed over entirely due to its memory.low
107 	 * setting (memcg_low_skipped), and nothing is reclaimed as a
108 	 * result, then go back for one more cycle that reclaims the protected
109 	 * memory (memcg_low_reclaim) to avert OOM.
110 	 */
111 	unsigned int memcg_low_reclaim:1;
112 	unsigned int memcg_low_skipped:1;
113 
114 	unsigned int hibernation_mode:1;
115 
116 	/* One of the zones is ready for compaction */
117 	unsigned int compaction_ready:1;
118 
119 	/* There is easily reclaimable cold cache in the current node */
120 	unsigned int cache_trim_mode:1;
121 
122 	/* The file pages on the current node are dangerously low */
123 	unsigned int file_is_tiny:1;
124 
125 	/* Always discard instead of demoting to lower tier memory */
126 	unsigned int no_demotion:1;
127 
128 	/* Allocation order */
129 	s8 order;
130 
131 	/* Scan (total_size >> priority) pages at once */
132 	s8 priority;
133 
134 	/* The highest zone to isolate pages for reclaim from */
135 	s8 reclaim_idx;
136 
137 	/* This context's GFP mask */
138 	gfp_t gfp_mask;
139 
140 	/* Incremented by the number of inactive pages that were scanned */
141 	unsigned long nr_scanned;
142 
143 	/* Number of pages freed so far during a call to shrink_zones() */
144 	unsigned long nr_reclaimed;
145 
146 	struct {
147 		unsigned int dirty;
148 		unsigned int unqueued_dirty;
149 		unsigned int congested;
150 		unsigned int writeback;
151 		unsigned int immediate;
152 		unsigned int file_taken;
153 		unsigned int taken;
154 	} nr;
155 
156 	/* for recording the reclaimed slab by now */
157 	struct reclaim_state reclaim_state;
158 };
159 
160 #ifdef ARCH_HAS_PREFETCHW
161 #define prefetchw_prev_lru_page(_page, _base, _field)			\
162 	do {								\
163 		if ((_page)->lru.prev != _base) {			\
164 			struct page *prev;				\
165 									\
166 			prev = lru_to_page(&(_page->lru));		\
167 			prefetchw(&prev->_field);			\
168 		}							\
169 	} while (0)
170 #else
171 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
172 #endif
173 
174 /*
175  * From 0 .. 200.  Higher means more swappy.
176  */
177 int vm_swappiness = 60;
178 
179 static void set_task_reclaim_state(struct task_struct *task,
180 				   struct reclaim_state *rs)
181 {
182 	/* Check for an overwrite */
183 	WARN_ON_ONCE(rs && task->reclaim_state);
184 
185 	/* Check for the nulling of an already-nulled member */
186 	WARN_ON_ONCE(!rs && !task->reclaim_state);
187 
188 	task->reclaim_state = rs;
189 }
190 
191 static LIST_HEAD(shrinker_list);
192 static DECLARE_RWSEM(shrinker_rwsem);
193 
194 #ifdef CONFIG_MEMCG
195 static int shrinker_nr_max;
196 
197 /* The shrinker_info is expanded in a batch of BITS_PER_LONG */
198 static inline int shrinker_map_size(int nr_items)
199 {
200 	return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long));
201 }
202 
203 static inline int shrinker_defer_size(int nr_items)
204 {
205 	return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t));
206 }
207 
208 static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg,
209 						     int nid)
210 {
211 	return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info,
212 					 lockdep_is_held(&shrinker_rwsem));
213 }
214 
215 static int expand_one_shrinker_info(struct mem_cgroup *memcg,
216 				    int map_size, int defer_size,
217 				    int old_map_size, int old_defer_size)
218 {
219 	struct shrinker_info *new, *old;
220 	struct mem_cgroup_per_node *pn;
221 	int nid;
222 	int size = map_size + defer_size;
223 
224 	for_each_node(nid) {
225 		pn = memcg->nodeinfo[nid];
226 		old = shrinker_info_protected(memcg, nid);
227 		/* Not yet online memcg */
228 		if (!old)
229 			return 0;
230 
231 		new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
232 		if (!new)
233 			return -ENOMEM;
234 
235 		new->nr_deferred = (atomic_long_t *)(new + 1);
236 		new->map = (void *)new->nr_deferred + defer_size;
237 
238 		/* map: set all old bits, clear all new bits */
239 		memset(new->map, (int)0xff, old_map_size);
240 		memset((void *)new->map + old_map_size, 0, map_size - old_map_size);
241 		/* nr_deferred: copy old values, clear all new values */
242 		memcpy(new->nr_deferred, old->nr_deferred, old_defer_size);
243 		memset((void *)new->nr_deferred + old_defer_size, 0,
244 		       defer_size - old_defer_size);
245 
246 		rcu_assign_pointer(pn->shrinker_info, new);
247 		kvfree_rcu(old, rcu);
248 	}
249 
250 	return 0;
251 }
252 
253 void free_shrinker_info(struct mem_cgroup *memcg)
254 {
255 	struct mem_cgroup_per_node *pn;
256 	struct shrinker_info *info;
257 	int nid;
258 
259 	for_each_node(nid) {
260 		pn = memcg->nodeinfo[nid];
261 		info = rcu_dereference_protected(pn->shrinker_info, true);
262 		kvfree(info);
263 		rcu_assign_pointer(pn->shrinker_info, NULL);
264 	}
265 }
266 
267 int alloc_shrinker_info(struct mem_cgroup *memcg)
268 {
269 	struct shrinker_info *info;
270 	int nid, size, ret = 0;
271 	int map_size, defer_size = 0;
272 
273 	down_write(&shrinker_rwsem);
274 	map_size = shrinker_map_size(shrinker_nr_max);
275 	defer_size = shrinker_defer_size(shrinker_nr_max);
276 	size = map_size + defer_size;
277 	for_each_node(nid) {
278 		info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid);
279 		if (!info) {
280 			free_shrinker_info(memcg);
281 			ret = -ENOMEM;
282 			break;
283 		}
284 		info->nr_deferred = (atomic_long_t *)(info + 1);
285 		info->map = (void *)info->nr_deferred + defer_size;
286 		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info);
287 	}
288 	up_write(&shrinker_rwsem);
289 
290 	return ret;
291 }
292 
293 static inline bool need_expand(int nr_max)
294 {
295 	return round_up(nr_max, BITS_PER_LONG) >
296 	       round_up(shrinker_nr_max, BITS_PER_LONG);
297 }
298 
299 static int expand_shrinker_info(int new_id)
300 {
301 	int ret = 0;
302 	int new_nr_max = new_id + 1;
303 	int map_size, defer_size = 0;
304 	int old_map_size, old_defer_size = 0;
305 	struct mem_cgroup *memcg;
306 
307 	if (!need_expand(new_nr_max))
308 		goto out;
309 
310 	if (!root_mem_cgroup)
311 		goto out;
312 
313 	lockdep_assert_held(&shrinker_rwsem);
314 
315 	map_size = shrinker_map_size(new_nr_max);
316 	defer_size = shrinker_defer_size(new_nr_max);
317 	old_map_size = shrinker_map_size(shrinker_nr_max);
318 	old_defer_size = shrinker_defer_size(shrinker_nr_max);
319 
320 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
321 	do {
322 		ret = expand_one_shrinker_info(memcg, map_size, defer_size,
323 					       old_map_size, old_defer_size);
324 		if (ret) {
325 			mem_cgroup_iter_break(NULL, memcg);
326 			goto out;
327 		}
328 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
329 out:
330 	if (!ret)
331 		shrinker_nr_max = new_nr_max;
332 
333 	return ret;
334 }
335 
336 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
337 {
338 	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
339 		struct shrinker_info *info;
340 
341 		rcu_read_lock();
342 		info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info);
343 		/* Pairs with smp mb in shrink_slab() */
344 		smp_mb__before_atomic();
345 		set_bit(shrinker_id, info->map);
346 		rcu_read_unlock();
347 	}
348 }
349 
350 static DEFINE_IDR(shrinker_idr);
351 
352 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
353 {
354 	int id, ret = -ENOMEM;
355 
356 	if (mem_cgroup_disabled())
357 		return -ENOSYS;
358 
359 	down_write(&shrinker_rwsem);
360 	/* This may call shrinker, so it must use down_read_trylock() */
361 	id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL);
362 	if (id < 0)
363 		goto unlock;
364 
365 	if (id >= shrinker_nr_max) {
366 		if (expand_shrinker_info(id)) {
367 			idr_remove(&shrinker_idr, id);
368 			goto unlock;
369 		}
370 	}
371 	shrinker->id = id;
372 	ret = 0;
373 unlock:
374 	up_write(&shrinker_rwsem);
375 	return ret;
376 }
377 
378 static void unregister_memcg_shrinker(struct shrinker *shrinker)
379 {
380 	int id = shrinker->id;
381 
382 	BUG_ON(id < 0);
383 
384 	lockdep_assert_held(&shrinker_rwsem);
385 
386 	idr_remove(&shrinker_idr, id);
387 }
388 
389 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
390 				   struct mem_cgroup *memcg)
391 {
392 	struct shrinker_info *info;
393 
394 	info = shrinker_info_protected(memcg, nid);
395 	return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0);
396 }
397 
398 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
399 				  struct mem_cgroup *memcg)
400 {
401 	struct shrinker_info *info;
402 
403 	info = shrinker_info_protected(memcg, nid);
404 	return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]);
405 }
406 
407 void reparent_shrinker_deferred(struct mem_cgroup *memcg)
408 {
409 	int i, nid;
410 	long nr;
411 	struct mem_cgroup *parent;
412 	struct shrinker_info *child_info, *parent_info;
413 
414 	parent = parent_mem_cgroup(memcg);
415 	if (!parent)
416 		parent = root_mem_cgroup;
417 
418 	/* Prevent from concurrent shrinker_info expand */
419 	down_read(&shrinker_rwsem);
420 	for_each_node(nid) {
421 		child_info = shrinker_info_protected(memcg, nid);
422 		parent_info = shrinker_info_protected(parent, nid);
423 		for (i = 0; i < shrinker_nr_max; i++) {
424 			nr = atomic_long_read(&child_info->nr_deferred[i]);
425 			atomic_long_add(nr, &parent_info->nr_deferred[i]);
426 		}
427 	}
428 	up_read(&shrinker_rwsem);
429 }
430 
431 static bool cgroup_reclaim(struct scan_control *sc)
432 {
433 	return sc->target_mem_cgroup;
434 }
435 
436 /**
437  * writeback_throttling_sane - is the usual dirty throttling mechanism available?
438  * @sc: scan_control in question
439  *
440  * The normal page dirty throttling mechanism in balance_dirty_pages() is
441  * completely broken with the legacy memcg and direct stalling in
442  * shrink_page_list() is used for throttling instead, which lacks all the
443  * niceties such as fairness, adaptive pausing, bandwidth proportional
444  * allocation and configurability.
445  *
446  * This function tests whether the vmscan currently in progress can assume
447  * that the normal dirty throttling mechanism is operational.
448  */
449 static bool writeback_throttling_sane(struct scan_control *sc)
450 {
451 	if (!cgroup_reclaim(sc))
452 		return true;
453 #ifdef CONFIG_CGROUP_WRITEBACK
454 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
455 		return true;
456 #endif
457 	return false;
458 }
459 #else
460 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
461 {
462 	return -ENOSYS;
463 }
464 
465 static void unregister_memcg_shrinker(struct shrinker *shrinker)
466 {
467 }
468 
469 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
470 				   struct mem_cgroup *memcg)
471 {
472 	return 0;
473 }
474 
475 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
476 				  struct mem_cgroup *memcg)
477 {
478 	return 0;
479 }
480 
481 static bool cgroup_reclaim(struct scan_control *sc)
482 {
483 	return false;
484 }
485 
486 static bool writeback_throttling_sane(struct scan_control *sc)
487 {
488 	return true;
489 }
490 #endif
491 
492 static long xchg_nr_deferred(struct shrinker *shrinker,
493 			     struct shrink_control *sc)
494 {
495 	int nid = sc->nid;
496 
497 	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
498 		nid = 0;
499 
500 	if (sc->memcg &&
501 	    (shrinker->flags & SHRINKER_MEMCG_AWARE))
502 		return xchg_nr_deferred_memcg(nid, shrinker,
503 					      sc->memcg);
504 
505 	return atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
506 }
507 
508 
509 static long add_nr_deferred(long nr, struct shrinker *shrinker,
510 			    struct shrink_control *sc)
511 {
512 	int nid = sc->nid;
513 
514 	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
515 		nid = 0;
516 
517 	if (sc->memcg &&
518 	    (shrinker->flags & SHRINKER_MEMCG_AWARE))
519 		return add_nr_deferred_memcg(nr, nid, shrinker,
520 					     sc->memcg);
521 
522 	return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]);
523 }
524 
525 static bool can_demote(int nid, struct scan_control *sc)
526 {
527 	if (!numa_demotion_enabled)
528 		return false;
529 	if (sc) {
530 		if (sc->no_demotion)
531 			return false;
532 		/* It is pointless to do demotion in memcg reclaim */
533 		if (cgroup_reclaim(sc))
534 			return false;
535 	}
536 	if (next_demotion_node(nid) == NUMA_NO_NODE)
537 		return false;
538 
539 	return true;
540 }
541 
542 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
543 					  int nid,
544 					  struct scan_control *sc)
545 {
546 	if (memcg == NULL) {
547 		/*
548 		 * For non-memcg reclaim, is there
549 		 * space in any swap device?
550 		 */
551 		if (get_nr_swap_pages() > 0)
552 			return true;
553 	} else {
554 		/* Is the memcg below its swap limit? */
555 		if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
556 			return true;
557 	}
558 
559 	/*
560 	 * The page can not be swapped.
561 	 *
562 	 * Can it be reclaimed from this node via demotion?
563 	 */
564 	return can_demote(nid, sc);
565 }
566 
567 /*
568  * This misses isolated pages which are not accounted for to save counters.
569  * As the data only determines if reclaim or compaction continues, it is
570  * not expected that isolated pages will be a dominating factor.
571  */
572 unsigned long zone_reclaimable_pages(struct zone *zone)
573 {
574 	unsigned long nr;
575 
576 	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
577 		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
578 	if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
579 		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
580 			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
581 
582 	return nr;
583 }
584 
585 /**
586  * lruvec_lru_size -  Returns the number of pages on the given LRU list.
587  * @lruvec: lru vector
588  * @lru: lru to use
589  * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
590  */
591 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
592 				     int zone_idx)
593 {
594 	unsigned long size = 0;
595 	int zid;
596 
597 	for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) {
598 		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
599 
600 		if (!managed_zone(zone))
601 			continue;
602 
603 		if (!mem_cgroup_disabled())
604 			size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
605 		else
606 			size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
607 	}
608 	return size;
609 }
610 
611 /*
612  * Add a shrinker callback to be called from the vm.
613  */
614 int prealloc_shrinker(struct shrinker *shrinker)
615 {
616 	unsigned int size;
617 	int err;
618 
619 	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
620 		err = prealloc_memcg_shrinker(shrinker);
621 		if (err != -ENOSYS)
622 			return err;
623 
624 		shrinker->flags &= ~SHRINKER_MEMCG_AWARE;
625 	}
626 
627 	size = sizeof(*shrinker->nr_deferred);
628 	if (shrinker->flags & SHRINKER_NUMA_AWARE)
629 		size *= nr_node_ids;
630 
631 	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
632 	if (!shrinker->nr_deferred)
633 		return -ENOMEM;
634 
635 	return 0;
636 }
637 
638 void free_prealloced_shrinker(struct shrinker *shrinker)
639 {
640 	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
641 		down_write(&shrinker_rwsem);
642 		unregister_memcg_shrinker(shrinker);
643 		up_write(&shrinker_rwsem);
644 		return;
645 	}
646 
647 	kfree(shrinker->nr_deferred);
648 	shrinker->nr_deferred = NULL;
649 }
650 
651 void register_shrinker_prepared(struct shrinker *shrinker)
652 {
653 	down_write(&shrinker_rwsem);
654 	list_add_tail(&shrinker->list, &shrinker_list);
655 	shrinker->flags |= SHRINKER_REGISTERED;
656 	up_write(&shrinker_rwsem);
657 }
658 
659 int register_shrinker(struct shrinker *shrinker)
660 {
661 	int err = prealloc_shrinker(shrinker);
662 
663 	if (err)
664 		return err;
665 	register_shrinker_prepared(shrinker);
666 	return 0;
667 }
668 EXPORT_SYMBOL(register_shrinker);
669 
670 /*
671  * Remove one
672  */
673 void unregister_shrinker(struct shrinker *shrinker)
674 {
675 	if (!(shrinker->flags & SHRINKER_REGISTERED))
676 		return;
677 
678 	down_write(&shrinker_rwsem);
679 	list_del(&shrinker->list);
680 	shrinker->flags &= ~SHRINKER_REGISTERED;
681 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
682 		unregister_memcg_shrinker(shrinker);
683 	up_write(&shrinker_rwsem);
684 
685 	kfree(shrinker->nr_deferred);
686 	shrinker->nr_deferred = NULL;
687 }
688 EXPORT_SYMBOL(unregister_shrinker);
689 
690 /**
691  * synchronize_shrinkers - Wait for all running shrinkers to complete.
692  *
693  * This is equivalent to calling unregister_shrink() and register_shrinker(),
694  * but atomically and with less overhead. This is useful to guarantee that all
695  * shrinker invocations have seen an update, before freeing memory, similar to
696  * rcu.
697  */
698 void synchronize_shrinkers(void)
699 {
700 	down_write(&shrinker_rwsem);
701 	up_write(&shrinker_rwsem);
702 }
703 EXPORT_SYMBOL(synchronize_shrinkers);
704 
705 #define SHRINK_BATCH 128
706 
707 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
708 				    struct shrinker *shrinker, int priority)
709 {
710 	unsigned long freed = 0;
711 	unsigned long long delta;
712 	long total_scan;
713 	long freeable;
714 	long nr;
715 	long new_nr;
716 	long batch_size = shrinker->batch ? shrinker->batch
717 					  : SHRINK_BATCH;
718 	long scanned = 0, next_deferred;
719 
720 	freeable = shrinker->count_objects(shrinker, shrinkctl);
721 	if (freeable == 0 || freeable == SHRINK_EMPTY)
722 		return freeable;
723 
724 	/*
725 	 * copy the current shrinker scan count into a local variable
726 	 * and zero it so that other concurrent shrinker invocations
727 	 * don't also do this scanning work.
728 	 */
729 	nr = xchg_nr_deferred(shrinker, shrinkctl);
730 
731 	if (shrinker->seeks) {
732 		delta = freeable >> priority;
733 		delta *= 4;
734 		do_div(delta, shrinker->seeks);
735 	} else {
736 		/*
737 		 * These objects don't require any IO to create. Trim
738 		 * them aggressively under memory pressure to keep
739 		 * them from causing refetches in the IO caches.
740 		 */
741 		delta = freeable / 2;
742 	}
743 
744 	total_scan = nr >> priority;
745 	total_scan += delta;
746 	total_scan = min(total_scan, (2 * freeable));
747 
748 	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
749 				   freeable, delta, total_scan, priority);
750 
751 	/*
752 	 * Normally, we should not scan less than batch_size objects in one
753 	 * pass to avoid too frequent shrinker calls, but if the slab has less
754 	 * than batch_size objects in total and we are really tight on memory,
755 	 * we will try to reclaim all available objects, otherwise we can end
756 	 * up failing allocations although there are plenty of reclaimable
757 	 * objects spread over several slabs with usage less than the
758 	 * batch_size.
759 	 *
760 	 * We detect the "tight on memory" situations by looking at the total
761 	 * number of objects we want to scan (total_scan). If it is greater
762 	 * than the total number of objects on slab (freeable), we must be
763 	 * scanning at high prio and therefore should try to reclaim as much as
764 	 * possible.
765 	 */
766 	while (total_scan >= batch_size ||
767 	       total_scan >= freeable) {
768 		unsigned long ret;
769 		unsigned long nr_to_scan = min(batch_size, total_scan);
770 
771 		shrinkctl->nr_to_scan = nr_to_scan;
772 		shrinkctl->nr_scanned = nr_to_scan;
773 		ret = shrinker->scan_objects(shrinker, shrinkctl);
774 		if (ret == SHRINK_STOP)
775 			break;
776 		freed += ret;
777 
778 		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
779 		total_scan -= shrinkctl->nr_scanned;
780 		scanned += shrinkctl->nr_scanned;
781 
782 		cond_resched();
783 	}
784 
785 	/*
786 	 * The deferred work is increased by any new work (delta) that wasn't
787 	 * done, decreased by old deferred work that was done now.
788 	 *
789 	 * And it is capped to two times of the freeable items.
790 	 */
791 	next_deferred = max_t(long, (nr + delta - scanned), 0);
792 	next_deferred = min(next_deferred, (2 * freeable));
793 
794 	/*
795 	 * move the unused scan count back into the shrinker in a
796 	 * manner that handles concurrent updates.
797 	 */
798 	new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl);
799 
800 	trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan);
801 	return freed;
802 }
803 
804 #ifdef CONFIG_MEMCG
805 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
806 			struct mem_cgroup *memcg, int priority)
807 {
808 	struct shrinker_info *info;
809 	unsigned long ret, freed = 0;
810 	int i;
811 
812 	if (!mem_cgroup_online(memcg))
813 		return 0;
814 
815 	if (!down_read_trylock(&shrinker_rwsem))
816 		return 0;
817 
818 	info = shrinker_info_protected(memcg, nid);
819 	if (unlikely(!info))
820 		goto unlock;
821 
822 	for_each_set_bit(i, info->map, shrinker_nr_max) {
823 		struct shrink_control sc = {
824 			.gfp_mask = gfp_mask,
825 			.nid = nid,
826 			.memcg = memcg,
827 		};
828 		struct shrinker *shrinker;
829 
830 		shrinker = idr_find(&shrinker_idr, i);
831 		if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) {
832 			if (!shrinker)
833 				clear_bit(i, info->map);
834 			continue;
835 		}
836 
837 		/* Call non-slab shrinkers even though kmem is disabled */
838 		if (!memcg_kmem_enabled() &&
839 		    !(shrinker->flags & SHRINKER_NONSLAB))
840 			continue;
841 
842 		ret = do_shrink_slab(&sc, shrinker, priority);
843 		if (ret == SHRINK_EMPTY) {
844 			clear_bit(i, info->map);
845 			/*
846 			 * After the shrinker reported that it had no objects to
847 			 * free, but before we cleared the corresponding bit in
848 			 * the memcg shrinker map, a new object might have been
849 			 * added. To make sure, we have the bit set in this
850 			 * case, we invoke the shrinker one more time and reset
851 			 * the bit if it reports that it is not empty anymore.
852 			 * The memory barrier here pairs with the barrier in
853 			 * set_shrinker_bit():
854 			 *
855 			 * list_lru_add()     shrink_slab_memcg()
856 			 *   list_add_tail()    clear_bit()
857 			 *   <MB>               <MB>
858 			 *   set_bit()          do_shrink_slab()
859 			 */
860 			smp_mb__after_atomic();
861 			ret = do_shrink_slab(&sc, shrinker, priority);
862 			if (ret == SHRINK_EMPTY)
863 				ret = 0;
864 			else
865 				set_shrinker_bit(memcg, nid, i);
866 		}
867 		freed += ret;
868 
869 		if (rwsem_is_contended(&shrinker_rwsem)) {
870 			freed = freed ? : 1;
871 			break;
872 		}
873 	}
874 unlock:
875 	up_read(&shrinker_rwsem);
876 	return freed;
877 }
878 #else /* CONFIG_MEMCG */
879 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
880 			struct mem_cgroup *memcg, int priority)
881 {
882 	return 0;
883 }
884 #endif /* CONFIG_MEMCG */
885 
886 /**
887  * shrink_slab - shrink slab caches
888  * @gfp_mask: allocation context
889  * @nid: node whose slab caches to target
890  * @memcg: memory cgroup whose slab caches to target
891  * @priority: the reclaim priority
892  *
893  * Call the shrink functions to age shrinkable caches.
894  *
895  * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
896  * unaware shrinkers will receive a node id of 0 instead.
897  *
898  * @memcg specifies the memory cgroup to target. Unaware shrinkers
899  * are called only if it is the root cgroup.
900  *
901  * @priority is sc->priority, we take the number of objects and >> by priority
902  * in order to get the scan target.
903  *
904  * Returns the number of reclaimed slab objects.
905  */
906 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
907 				 struct mem_cgroup *memcg,
908 				 int priority)
909 {
910 	unsigned long ret, freed = 0;
911 	struct shrinker *shrinker;
912 
913 	/*
914 	 * The root memcg might be allocated even though memcg is disabled
915 	 * via "cgroup_disable=memory" boot parameter.  This could make
916 	 * mem_cgroup_is_root() return false, then just run memcg slab
917 	 * shrink, but skip global shrink.  This may result in premature
918 	 * oom.
919 	 */
920 	if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
921 		return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
922 
923 	if (!down_read_trylock(&shrinker_rwsem))
924 		goto out;
925 
926 	list_for_each_entry(shrinker, &shrinker_list, list) {
927 		struct shrink_control sc = {
928 			.gfp_mask = gfp_mask,
929 			.nid = nid,
930 			.memcg = memcg,
931 		};
932 
933 		ret = do_shrink_slab(&sc, shrinker, priority);
934 		if (ret == SHRINK_EMPTY)
935 			ret = 0;
936 		freed += ret;
937 		/*
938 		 * Bail out if someone want to register a new shrinker to
939 		 * prevent the registration from being stalled for long periods
940 		 * by parallel ongoing shrinking.
941 		 */
942 		if (rwsem_is_contended(&shrinker_rwsem)) {
943 			freed = freed ? : 1;
944 			break;
945 		}
946 	}
947 
948 	up_read(&shrinker_rwsem);
949 out:
950 	cond_resched();
951 	return freed;
952 }
953 
954 void drop_slab_node(int nid)
955 {
956 	unsigned long freed;
957 	int shift = 0;
958 
959 	do {
960 		struct mem_cgroup *memcg = NULL;
961 
962 		if (fatal_signal_pending(current))
963 			return;
964 
965 		freed = 0;
966 		memcg = mem_cgroup_iter(NULL, NULL, NULL);
967 		do {
968 			freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
969 		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
970 	} while ((freed >> shift++) > 1);
971 }
972 
973 void drop_slab(void)
974 {
975 	int nid;
976 
977 	for_each_online_node(nid)
978 		drop_slab_node(nid);
979 }
980 
981 static inline int is_page_cache_freeable(struct page *page)
982 {
983 	/*
984 	 * A freeable page cache page is referenced only by the caller
985 	 * that isolated the page, the page cache and optional buffer
986 	 * heads at page->private.
987 	 */
988 	int page_cache_pins = thp_nr_pages(page);
989 	return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
990 }
991 
992 static int may_write_to_inode(struct inode *inode)
993 {
994 	if (current->flags & PF_SWAPWRITE)
995 		return 1;
996 	if (!inode_write_congested(inode))
997 		return 1;
998 	if (inode_to_bdi(inode) == current->backing_dev_info)
999 		return 1;
1000 	return 0;
1001 }
1002 
1003 /*
1004  * We detected a synchronous write error writing a page out.  Probably
1005  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
1006  * fsync(), msync() or close().
1007  *
1008  * The tricky part is that after writepage we cannot touch the mapping: nothing
1009  * prevents it from being freed up.  But we have a ref on the page and once
1010  * that page is locked, the mapping is pinned.
1011  *
1012  * We're allowed to run sleeping lock_page() here because we know the caller has
1013  * __GFP_FS.
1014  */
1015 static void handle_write_error(struct address_space *mapping,
1016 				struct page *page, int error)
1017 {
1018 	lock_page(page);
1019 	if (page_mapping(page) == mapping)
1020 		mapping_set_error(mapping, error);
1021 	unlock_page(page);
1022 }
1023 
1024 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
1025 {
1026 	wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason];
1027 	long timeout, ret;
1028 	DEFINE_WAIT(wait);
1029 
1030 	/*
1031 	 * Do not throttle IO workers, kthreads other than kswapd or
1032 	 * workqueues. They may be required for reclaim to make
1033 	 * forward progress (e.g. journalling workqueues or kthreads).
1034 	 */
1035 	if (!current_is_kswapd() &&
1036 	    current->flags & (PF_IO_WORKER|PF_KTHREAD))
1037 		return;
1038 
1039 	/*
1040 	 * These figures are pulled out of thin air.
1041 	 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
1042 	 * parallel reclaimers which is a short-lived event so the timeout is
1043 	 * short. Failing to make progress or waiting on writeback are
1044 	 * potentially long-lived events so use a longer timeout. This is shaky
1045 	 * logic as a failure to make progress could be due to anything from
1046 	 * writeback to a slow device to excessive references pages at the tail
1047 	 * of the inactive LRU.
1048 	 */
1049 	switch(reason) {
1050 	case VMSCAN_THROTTLE_WRITEBACK:
1051 		timeout = HZ/10;
1052 
1053 		if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) {
1054 			WRITE_ONCE(pgdat->nr_reclaim_start,
1055 				node_page_state(pgdat, NR_THROTTLED_WRITTEN));
1056 		}
1057 
1058 		break;
1059 	case VMSCAN_THROTTLE_NOPROGRESS:
1060 		timeout = HZ/2;
1061 		break;
1062 	case VMSCAN_THROTTLE_ISOLATED:
1063 		timeout = HZ/50;
1064 		break;
1065 	default:
1066 		WARN_ON_ONCE(1);
1067 		timeout = HZ;
1068 		break;
1069 	}
1070 
1071 	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1072 	ret = schedule_timeout(timeout);
1073 	finish_wait(wqh, &wait);
1074 
1075 	if (reason == VMSCAN_THROTTLE_WRITEBACK)
1076 		atomic_dec(&pgdat->nr_writeback_throttled);
1077 
1078 	trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout),
1079 				jiffies_to_usecs(timeout - ret),
1080 				reason);
1081 }
1082 
1083 /*
1084  * Account for pages written if tasks are throttled waiting on dirty
1085  * pages to clean. If enough pages have been cleaned since throttling
1086  * started then wakeup the throttled tasks.
1087  */
1088 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
1089 							int nr_throttled)
1090 {
1091 	unsigned long nr_written;
1092 
1093 	node_stat_add_folio(folio, NR_THROTTLED_WRITTEN);
1094 
1095 	/*
1096 	 * This is an inaccurate read as the per-cpu deltas may not
1097 	 * be synchronised. However, given that the system is
1098 	 * writeback throttled, it is not worth taking the penalty
1099 	 * of getting an accurate count. At worst, the throttle
1100 	 * timeout guarantees forward progress.
1101 	 */
1102 	nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) -
1103 		READ_ONCE(pgdat->nr_reclaim_start);
1104 
1105 	if (nr_written > SWAP_CLUSTER_MAX * nr_throttled)
1106 		wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]);
1107 }
1108 
1109 /* possible outcome of pageout() */
1110 typedef enum {
1111 	/* failed to write page out, page is locked */
1112 	PAGE_KEEP,
1113 	/* move page to the active list, page is locked */
1114 	PAGE_ACTIVATE,
1115 	/* page has been sent to the disk successfully, page is unlocked */
1116 	PAGE_SUCCESS,
1117 	/* page is clean and locked */
1118 	PAGE_CLEAN,
1119 } pageout_t;
1120 
1121 /*
1122  * pageout is called by shrink_page_list() for each dirty page.
1123  * Calls ->writepage().
1124  */
1125 static pageout_t pageout(struct page *page, struct address_space *mapping)
1126 {
1127 	/*
1128 	 * If the page is dirty, only perform writeback if that write
1129 	 * will be non-blocking.  To prevent this allocation from being
1130 	 * stalled by pagecache activity.  But note that there may be
1131 	 * stalls if we need to run get_block().  We could test
1132 	 * PagePrivate for that.
1133 	 *
1134 	 * If this process is currently in __generic_file_write_iter() against
1135 	 * this page's queue, we can perform writeback even if that
1136 	 * will block.
1137 	 *
1138 	 * If the page is swapcache, write it back even if that would
1139 	 * block, for some throttling. This happens by accident, because
1140 	 * swap_backing_dev_info is bust: it doesn't reflect the
1141 	 * congestion state of the swapdevs.  Easy to fix, if needed.
1142 	 */
1143 	if (!is_page_cache_freeable(page))
1144 		return PAGE_KEEP;
1145 	if (!mapping) {
1146 		/*
1147 		 * Some data journaling orphaned pages can have
1148 		 * page->mapping == NULL while being dirty with clean buffers.
1149 		 */
1150 		if (page_has_private(page)) {
1151 			if (try_to_free_buffers(page)) {
1152 				ClearPageDirty(page);
1153 				pr_info("%s: orphaned page\n", __func__);
1154 				return PAGE_CLEAN;
1155 			}
1156 		}
1157 		return PAGE_KEEP;
1158 	}
1159 	if (mapping->a_ops->writepage == NULL)
1160 		return PAGE_ACTIVATE;
1161 	if (!may_write_to_inode(mapping->host))
1162 		return PAGE_KEEP;
1163 
1164 	if (clear_page_dirty_for_io(page)) {
1165 		int res;
1166 		struct writeback_control wbc = {
1167 			.sync_mode = WB_SYNC_NONE,
1168 			.nr_to_write = SWAP_CLUSTER_MAX,
1169 			.range_start = 0,
1170 			.range_end = LLONG_MAX,
1171 			.for_reclaim = 1,
1172 		};
1173 
1174 		SetPageReclaim(page);
1175 		res = mapping->a_ops->writepage(page, &wbc);
1176 		if (res < 0)
1177 			handle_write_error(mapping, page, res);
1178 		if (res == AOP_WRITEPAGE_ACTIVATE) {
1179 			ClearPageReclaim(page);
1180 			return PAGE_ACTIVATE;
1181 		}
1182 
1183 		if (!PageWriteback(page)) {
1184 			/* synchronous write or broken a_ops? */
1185 			ClearPageReclaim(page);
1186 		}
1187 		trace_mm_vmscan_writepage(page);
1188 		inc_node_page_state(page, NR_VMSCAN_WRITE);
1189 		return PAGE_SUCCESS;
1190 	}
1191 
1192 	return PAGE_CLEAN;
1193 }
1194 
1195 /*
1196  * Same as remove_mapping, but if the page is removed from the mapping, it
1197  * gets returned with a refcount of 0.
1198  */
1199 static int __remove_mapping(struct address_space *mapping, struct page *page,
1200 			    bool reclaimed, struct mem_cgroup *target_memcg)
1201 {
1202 	int refcount;
1203 	void *shadow = NULL;
1204 
1205 	BUG_ON(!PageLocked(page));
1206 	BUG_ON(mapping != page_mapping(page));
1207 
1208 	if (!PageSwapCache(page))
1209 		spin_lock(&mapping->host->i_lock);
1210 	xa_lock_irq(&mapping->i_pages);
1211 	/*
1212 	 * The non racy check for a busy page.
1213 	 *
1214 	 * Must be careful with the order of the tests. When someone has
1215 	 * a ref to the page, it may be possible that they dirty it then
1216 	 * drop the reference. So if PageDirty is tested before page_count
1217 	 * here, then the following race may occur:
1218 	 *
1219 	 * get_user_pages(&page);
1220 	 * [user mapping goes away]
1221 	 * write_to(page);
1222 	 *				!PageDirty(page)    [good]
1223 	 * SetPageDirty(page);
1224 	 * put_page(page);
1225 	 *				!page_count(page)   [good, discard it]
1226 	 *
1227 	 * [oops, our write_to data is lost]
1228 	 *
1229 	 * Reversing the order of the tests ensures such a situation cannot
1230 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
1231 	 * load is not satisfied before that of page->_refcount.
1232 	 *
1233 	 * Note that if SetPageDirty is always performed via set_page_dirty,
1234 	 * and thus under the i_pages lock, then this ordering is not required.
1235 	 */
1236 	refcount = 1 + compound_nr(page);
1237 	if (!page_ref_freeze(page, refcount))
1238 		goto cannot_free;
1239 	/* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
1240 	if (unlikely(PageDirty(page))) {
1241 		page_ref_unfreeze(page, refcount);
1242 		goto cannot_free;
1243 	}
1244 
1245 	if (PageSwapCache(page)) {
1246 		swp_entry_t swap = { .val = page_private(page) };
1247 		mem_cgroup_swapout(page, swap);
1248 		if (reclaimed && !mapping_exiting(mapping))
1249 			shadow = workingset_eviction(page, target_memcg);
1250 		__delete_from_swap_cache(page, swap, shadow);
1251 		xa_unlock_irq(&mapping->i_pages);
1252 		put_swap_page(page, swap);
1253 	} else {
1254 		void (*freepage)(struct page *);
1255 
1256 		freepage = mapping->a_ops->freepage;
1257 		/*
1258 		 * Remember a shadow entry for reclaimed file cache in
1259 		 * order to detect refaults, thus thrashing, later on.
1260 		 *
1261 		 * But don't store shadows in an address space that is
1262 		 * already exiting.  This is not just an optimization,
1263 		 * inode reclaim needs to empty out the radix tree or
1264 		 * the nodes are lost.  Don't plant shadows behind its
1265 		 * back.
1266 		 *
1267 		 * We also don't store shadows for DAX mappings because the
1268 		 * only page cache pages found in these are zero pages
1269 		 * covering holes, and because we don't want to mix DAX
1270 		 * exceptional entries and shadow exceptional entries in the
1271 		 * same address_space.
1272 		 */
1273 		if (reclaimed && page_is_file_lru(page) &&
1274 		    !mapping_exiting(mapping) && !dax_mapping(mapping))
1275 			shadow = workingset_eviction(page, target_memcg);
1276 		__delete_from_page_cache(page, shadow);
1277 		xa_unlock_irq(&mapping->i_pages);
1278 		if (mapping_shrinkable(mapping))
1279 			inode_add_lru(mapping->host);
1280 		spin_unlock(&mapping->host->i_lock);
1281 
1282 		if (freepage != NULL)
1283 			freepage(page);
1284 	}
1285 
1286 	return 1;
1287 
1288 cannot_free:
1289 	xa_unlock_irq(&mapping->i_pages);
1290 	if (!PageSwapCache(page))
1291 		spin_unlock(&mapping->host->i_lock);
1292 	return 0;
1293 }
1294 
1295 /*
1296  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
1297  * someone else has a ref on the page, abort and return 0.  If it was
1298  * successfully detached, return 1.  Assumes the caller has a single ref on
1299  * this page.
1300  */
1301 int remove_mapping(struct address_space *mapping, struct page *page)
1302 {
1303 	if (__remove_mapping(mapping, page, false, NULL)) {
1304 		/*
1305 		 * Unfreezing the refcount with 1 rather than 2 effectively
1306 		 * drops the pagecache ref for us without requiring another
1307 		 * atomic operation.
1308 		 */
1309 		page_ref_unfreeze(page, 1);
1310 		return 1;
1311 	}
1312 	return 0;
1313 }
1314 
1315 /**
1316  * putback_lru_page - put previously isolated page onto appropriate LRU list
1317  * @page: page to be put back to appropriate lru list
1318  *
1319  * Add previously isolated @page to appropriate LRU list.
1320  * Page may still be unevictable for other reasons.
1321  *
1322  * lru_lock must not be held, interrupts must be enabled.
1323  */
1324 void putback_lru_page(struct page *page)
1325 {
1326 	lru_cache_add(page);
1327 	put_page(page);		/* drop ref from isolate */
1328 }
1329 
1330 enum page_references {
1331 	PAGEREF_RECLAIM,
1332 	PAGEREF_RECLAIM_CLEAN,
1333 	PAGEREF_KEEP,
1334 	PAGEREF_ACTIVATE,
1335 };
1336 
1337 static enum page_references page_check_references(struct page *page,
1338 						  struct scan_control *sc)
1339 {
1340 	int referenced_ptes, referenced_page;
1341 	unsigned long vm_flags;
1342 
1343 	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
1344 					  &vm_flags);
1345 	referenced_page = TestClearPageReferenced(page);
1346 
1347 	/*
1348 	 * Mlock lost the isolation race with us.  Let try_to_unmap()
1349 	 * move the page to the unevictable list.
1350 	 */
1351 	if (vm_flags & VM_LOCKED)
1352 		return PAGEREF_RECLAIM;
1353 
1354 	if (referenced_ptes) {
1355 		/*
1356 		 * All mapped pages start out with page table
1357 		 * references from the instantiating fault, so we need
1358 		 * to look twice if a mapped file page is used more
1359 		 * than once.
1360 		 *
1361 		 * Mark it and spare it for another trip around the
1362 		 * inactive list.  Another page table reference will
1363 		 * lead to its activation.
1364 		 *
1365 		 * Note: the mark is set for activated pages as well
1366 		 * so that recently deactivated but used pages are
1367 		 * quickly recovered.
1368 		 */
1369 		SetPageReferenced(page);
1370 
1371 		if (referenced_page || referenced_ptes > 1)
1372 			return PAGEREF_ACTIVATE;
1373 
1374 		/*
1375 		 * Activate file-backed executable pages after first usage.
1376 		 */
1377 		if ((vm_flags & VM_EXEC) && !PageSwapBacked(page))
1378 			return PAGEREF_ACTIVATE;
1379 
1380 		return PAGEREF_KEEP;
1381 	}
1382 
1383 	/* Reclaim if clean, defer dirty pages to writeback */
1384 	if (referenced_page && !PageSwapBacked(page))
1385 		return PAGEREF_RECLAIM_CLEAN;
1386 
1387 	return PAGEREF_RECLAIM;
1388 }
1389 
1390 /* Check if a page is dirty or under writeback */
1391 static void page_check_dirty_writeback(struct page *page,
1392 				       bool *dirty, bool *writeback)
1393 {
1394 	struct address_space *mapping;
1395 
1396 	/*
1397 	 * Anonymous pages are not handled by flushers and must be written
1398 	 * from reclaim context. Do not stall reclaim based on them
1399 	 */
1400 	if (!page_is_file_lru(page) ||
1401 	    (PageAnon(page) && !PageSwapBacked(page))) {
1402 		*dirty = false;
1403 		*writeback = false;
1404 		return;
1405 	}
1406 
1407 	/* By default assume that the page flags are accurate */
1408 	*dirty = PageDirty(page);
1409 	*writeback = PageWriteback(page);
1410 
1411 	/* Verify dirty/writeback state if the filesystem supports it */
1412 	if (!page_has_private(page))
1413 		return;
1414 
1415 	mapping = page_mapping(page);
1416 	if (mapping && mapping->a_ops->is_dirty_writeback)
1417 		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1418 }
1419 
1420 static struct page *alloc_demote_page(struct page *page, unsigned long node)
1421 {
1422 	struct migration_target_control mtc = {
1423 		/*
1424 		 * Allocate from 'node', or fail quickly and quietly.
1425 		 * When this happens, 'page' will likely just be discarded
1426 		 * instead of migrated.
1427 		 */
1428 		.gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) |
1429 			    __GFP_THISNODE  | __GFP_NOWARN |
1430 			    __GFP_NOMEMALLOC | GFP_NOWAIT,
1431 		.nid = node
1432 	};
1433 
1434 	return alloc_migration_target(page, (unsigned long)&mtc);
1435 }
1436 
1437 /*
1438  * Take pages on @demote_list and attempt to demote them to
1439  * another node.  Pages which are not demoted are left on
1440  * @demote_pages.
1441  */
1442 static unsigned int demote_page_list(struct list_head *demote_pages,
1443 				     struct pglist_data *pgdat)
1444 {
1445 	int target_nid = next_demotion_node(pgdat->node_id);
1446 	unsigned int nr_succeeded;
1447 
1448 	if (list_empty(demote_pages))
1449 		return 0;
1450 
1451 	if (target_nid == NUMA_NO_NODE)
1452 		return 0;
1453 
1454 	/* Demotion ignores all cpuset and mempolicy settings */
1455 	migrate_pages(demote_pages, alloc_demote_page, NULL,
1456 			    target_nid, MIGRATE_ASYNC, MR_DEMOTION,
1457 			    &nr_succeeded);
1458 
1459 	if (current_is_kswapd())
1460 		__count_vm_events(PGDEMOTE_KSWAPD, nr_succeeded);
1461 	else
1462 		__count_vm_events(PGDEMOTE_DIRECT, nr_succeeded);
1463 
1464 	return nr_succeeded;
1465 }
1466 
1467 /*
1468  * shrink_page_list() returns the number of reclaimed pages
1469  */
1470 static unsigned int shrink_page_list(struct list_head *page_list,
1471 				     struct pglist_data *pgdat,
1472 				     struct scan_control *sc,
1473 				     struct reclaim_stat *stat,
1474 				     bool ignore_references)
1475 {
1476 	LIST_HEAD(ret_pages);
1477 	LIST_HEAD(free_pages);
1478 	LIST_HEAD(demote_pages);
1479 	unsigned int nr_reclaimed = 0;
1480 	unsigned int pgactivate = 0;
1481 	bool do_demote_pass;
1482 
1483 	memset(stat, 0, sizeof(*stat));
1484 	cond_resched();
1485 	do_demote_pass = can_demote(pgdat->node_id, sc);
1486 
1487 retry:
1488 	while (!list_empty(page_list)) {
1489 		struct address_space *mapping;
1490 		struct page *page;
1491 		enum page_references references = PAGEREF_RECLAIM;
1492 		bool dirty, writeback, may_enter_fs;
1493 		unsigned int nr_pages;
1494 
1495 		cond_resched();
1496 
1497 		page = lru_to_page(page_list);
1498 		list_del(&page->lru);
1499 
1500 		if (!trylock_page(page))
1501 			goto keep;
1502 
1503 		VM_BUG_ON_PAGE(PageActive(page), page);
1504 
1505 		nr_pages = compound_nr(page);
1506 
1507 		/* Account the number of base pages even though THP */
1508 		sc->nr_scanned += nr_pages;
1509 
1510 		if (unlikely(!page_evictable(page)))
1511 			goto activate_locked;
1512 
1513 		if (!sc->may_unmap && page_mapped(page))
1514 			goto keep_locked;
1515 
1516 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1517 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1518 
1519 		/*
1520 		 * The number of dirty pages determines if a node is marked
1521 		 * reclaim_congested. kswapd will stall and start writing
1522 		 * pages if the tail of the LRU is all dirty unqueued pages.
1523 		 */
1524 		page_check_dirty_writeback(page, &dirty, &writeback);
1525 		if (dirty || writeback)
1526 			stat->nr_dirty++;
1527 
1528 		if (dirty && !writeback)
1529 			stat->nr_unqueued_dirty++;
1530 
1531 		/*
1532 		 * Treat this page as congested if the underlying BDI is or if
1533 		 * pages are cycling through the LRU so quickly that the
1534 		 * pages marked for immediate reclaim are making it to the
1535 		 * end of the LRU a second time.
1536 		 */
1537 		mapping = page_mapping(page);
1538 		if (((dirty || writeback) && mapping &&
1539 		     inode_write_congested(mapping->host)) ||
1540 		    (writeback && PageReclaim(page)))
1541 			stat->nr_congested++;
1542 
1543 		/*
1544 		 * If a page at the tail of the LRU is under writeback, there
1545 		 * are three cases to consider.
1546 		 *
1547 		 * 1) If reclaim is encountering an excessive number of pages
1548 		 *    under writeback and this page is both under writeback and
1549 		 *    PageReclaim then it indicates that pages are being queued
1550 		 *    for IO but are being recycled through the LRU before the
1551 		 *    IO can complete. Waiting on the page itself risks an
1552 		 *    indefinite stall if it is impossible to writeback the
1553 		 *    page due to IO error or disconnected storage so instead
1554 		 *    note that the LRU is being scanned too quickly and the
1555 		 *    caller can stall after page list has been processed.
1556 		 *
1557 		 * 2) Global or new memcg reclaim encounters a page that is
1558 		 *    not marked for immediate reclaim, or the caller does not
1559 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1560 		 *    not to fs). In this case mark the page for immediate
1561 		 *    reclaim and continue scanning.
1562 		 *
1563 		 *    Require may_enter_fs because we would wait on fs, which
1564 		 *    may not have submitted IO yet. And the loop driver might
1565 		 *    enter reclaim, and deadlock if it waits on a page for
1566 		 *    which it is needed to do the write (loop masks off
1567 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1568 		 *    would probably show more reasons.
1569 		 *
1570 		 * 3) Legacy memcg encounters a page that is already marked
1571 		 *    PageReclaim. memcg does not have any dirty pages
1572 		 *    throttling so we could easily OOM just because too many
1573 		 *    pages are in writeback and there is nothing else to
1574 		 *    reclaim. Wait for the writeback to complete.
1575 		 *
1576 		 * In cases 1) and 2) we activate the pages to get them out of
1577 		 * the way while we continue scanning for clean pages on the
1578 		 * inactive list and refilling from the active list. The
1579 		 * observation here is that waiting for disk writes is more
1580 		 * expensive than potentially causing reloads down the line.
1581 		 * Since they're marked for immediate reclaim, they won't put
1582 		 * memory pressure on the cache working set any longer than it
1583 		 * takes to write them to disk.
1584 		 */
1585 		if (PageWriteback(page)) {
1586 			/* Case 1 above */
1587 			if (current_is_kswapd() &&
1588 			    PageReclaim(page) &&
1589 			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1590 				stat->nr_immediate++;
1591 				goto activate_locked;
1592 
1593 			/* Case 2 above */
1594 			} else if (writeback_throttling_sane(sc) ||
1595 			    !PageReclaim(page) || !may_enter_fs) {
1596 				/*
1597 				 * This is slightly racy - end_page_writeback()
1598 				 * might have just cleared PageReclaim, then
1599 				 * setting PageReclaim here end up interpreted
1600 				 * as PageReadahead - but that does not matter
1601 				 * enough to care.  What we do want is for this
1602 				 * page to have PageReclaim set next time memcg
1603 				 * reclaim reaches the tests above, so it will
1604 				 * then wait_on_page_writeback() to avoid OOM;
1605 				 * and it's also appropriate in global reclaim.
1606 				 */
1607 				SetPageReclaim(page);
1608 				stat->nr_writeback++;
1609 				goto activate_locked;
1610 
1611 			/* Case 3 above */
1612 			} else {
1613 				unlock_page(page);
1614 				wait_on_page_writeback(page);
1615 				/* then go back and try same page again */
1616 				list_add_tail(&page->lru, page_list);
1617 				continue;
1618 			}
1619 		}
1620 
1621 		if (!ignore_references)
1622 			references = page_check_references(page, sc);
1623 
1624 		switch (references) {
1625 		case PAGEREF_ACTIVATE:
1626 			goto activate_locked;
1627 		case PAGEREF_KEEP:
1628 			stat->nr_ref_keep += nr_pages;
1629 			goto keep_locked;
1630 		case PAGEREF_RECLAIM:
1631 		case PAGEREF_RECLAIM_CLEAN:
1632 			; /* try to reclaim the page below */
1633 		}
1634 
1635 		/*
1636 		 * Before reclaiming the page, try to relocate
1637 		 * its contents to another node.
1638 		 */
1639 		if (do_demote_pass &&
1640 		    (thp_migration_supported() || !PageTransHuge(page))) {
1641 			list_add(&page->lru, &demote_pages);
1642 			unlock_page(page);
1643 			continue;
1644 		}
1645 
1646 		/*
1647 		 * Anonymous process memory has backing store?
1648 		 * Try to allocate it some swap space here.
1649 		 * Lazyfree page could be freed directly
1650 		 */
1651 		if (PageAnon(page) && PageSwapBacked(page)) {
1652 			if (!PageSwapCache(page)) {
1653 				if (!(sc->gfp_mask & __GFP_IO))
1654 					goto keep_locked;
1655 				if (page_maybe_dma_pinned(page))
1656 					goto keep_locked;
1657 				if (PageTransHuge(page)) {
1658 					/* cannot split THP, skip it */
1659 					if (!can_split_huge_page(page, NULL))
1660 						goto activate_locked;
1661 					/*
1662 					 * Split pages without a PMD map right
1663 					 * away. Chances are some or all of the
1664 					 * tail pages can be freed without IO.
1665 					 */
1666 					if (!compound_mapcount(page) &&
1667 					    split_huge_page_to_list(page,
1668 								    page_list))
1669 						goto activate_locked;
1670 				}
1671 				if (!add_to_swap(page)) {
1672 					if (!PageTransHuge(page))
1673 						goto activate_locked_split;
1674 					/* Fallback to swap normal pages */
1675 					if (split_huge_page_to_list(page,
1676 								    page_list))
1677 						goto activate_locked;
1678 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1679 					count_vm_event(THP_SWPOUT_FALLBACK);
1680 #endif
1681 					if (!add_to_swap(page))
1682 						goto activate_locked_split;
1683 				}
1684 
1685 				may_enter_fs = true;
1686 
1687 				/* Adding to swap updated mapping */
1688 				mapping = page_mapping(page);
1689 			}
1690 		} else if (unlikely(PageTransHuge(page))) {
1691 			/* Split file THP */
1692 			if (split_huge_page_to_list(page, page_list))
1693 				goto keep_locked;
1694 		}
1695 
1696 		/*
1697 		 * THP may get split above, need minus tail pages and update
1698 		 * nr_pages to avoid accounting tail pages twice.
1699 		 *
1700 		 * The tail pages that are added into swap cache successfully
1701 		 * reach here.
1702 		 */
1703 		if ((nr_pages > 1) && !PageTransHuge(page)) {
1704 			sc->nr_scanned -= (nr_pages - 1);
1705 			nr_pages = 1;
1706 		}
1707 
1708 		/*
1709 		 * The page is mapped into the page tables of one or more
1710 		 * processes. Try to unmap it here.
1711 		 */
1712 		if (page_mapped(page)) {
1713 			enum ttu_flags flags = TTU_BATCH_FLUSH;
1714 			bool was_swapbacked = PageSwapBacked(page);
1715 
1716 			if (unlikely(PageTransHuge(page)))
1717 				flags |= TTU_SPLIT_HUGE_PMD;
1718 
1719 			try_to_unmap(page, flags);
1720 			if (page_mapped(page)) {
1721 				stat->nr_unmap_fail += nr_pages;
1722 				if (!was_swapbacked && PageSwapBacked(page))
1723 					stat->nr_lazyfree_fail += nr_pages;
1724 				goto activate_locked;
1725 			}
1726 		}
1727 
1728 		if (PageDirty(page)) {
1729 			/*
1730 			 * Only kswapd can writeback filesystem pages
1731 			 * to avoid risk of stack overflow. But avoid
1732 			 * injecting inefficient single-page IO into
1733 			 * flusher writeback as much as possible: only
1734 			 * write pages when we've encountered many
1735 			 * dirty pages, and when we've already scanned
1736 			 * the rest of the LRU for clean pages and see
1737 			 * the same dirty pages again (PageReclaim).
1738 			 */
1739 			if (page_is_file_lru(page) &&
1740 			    (!current_is_kswapd() || !PageReclaim(page) ||
1741 			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1742 				/*
1743 				 * Immediately reclaim when written back.
1744 				 * Similar in principal to deactivate_page()
1745 				 * except we already have the page isolated
1746 				 * and know it's dirty
1747 				 */
1748 				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1749 				SetPageReclaim(page);
1750 
1751 				goto activate_locked;
1752 			}
1753 
1754 			if (references == PAGEREF_RECLAIM_CLEAN)
1755 				goto keep_locked;
1756 			if (!may_enter_fs)
1757 				goto keep_locked;
1758 			if (!sc->may_writepage)
1759 				goto keep_locked;
1760 
1761 			/*
1762 			 * Page is dirty. Flush the TLB if a writable entry
1763 			 * potentially exists to avoid CPU writes after IO
1764 			 * starts and then write it out here.
1765 			 */
1766 			try_to_unmap_flush_dirty();
1767 			switch (pageout(page, mapping)) {
1768 			case PAGE_KEEP:
1769 				goto keep_locked;
1770 			case PAGE_ACTIVATE:
1771 				goto activate_locked;
1772 			case PAGE_SUCCESS:
1773 				stat->nr_pageout += thp_nr_pages(page);
1774 
1775 				if (PageWriteback(page))
1776 					goto keep;
1777 				if (PageDirty(page))
1778 					goto keep;
1779 
1780 				/*
1781 				 * A synchronous write - probably a ramdisk.  Go
1782 				 * ahead and try to reclaim the page.
1783 				 */
1784 				if (!trylock_page(page))
1785 					goto keep;
1786 				if (PageDirty(page) || PageWriteback(page))
1787 					goto keep_locked;
1788 				mapping = page_mapping(page);
1789 				fallthrough;
1790 			case PAGE_CLEAN:
1791 				; /* try to free the page below */
1792 			}
1793 		}
1794 
1795 		/*
1796 		 * If the page has buffers, try to free the buffer mappings
1797 		 * associated with this page. If we succeed we try to free
1798 		 * the page as well.
1799 		 *
1800 		 * We do this even if the page is PageDirty().
1801 		 * try_to_release_page() does not perform I/O, but it is
1802 		 * possible for a page to have PageDirty set, but it is actually
1803 		 * clean (all its buffers are clean).  This happens if the
1804 		 * buffers were written out directly, with submit_bh(). ext3
1805 		 * will do this, as well as the blockdev mapping.
1806 		 * try_to_release_page() will discover that cleanness and will
1807 		 * drop the buffers and mark the page clean - it can be freed.
1808 		 *
1809 		 * Rarely, pages can have buffers and no ->mapping.  These are
1810 		 * the pages which were not successfully invalidated in
1811 		 * truncate_cleanup_page().  We try to drop those buffers here
1812 		 * and if that worked, and the page is no longer mapped into
1813 		 * process address space (page_count == 1) it can be freed.
1814 		 * Otherwise, leave the page on the LRU so it is swappable.
1815 		 */
1816 		if (page_has_private(page)) {
1817 			if (!try_to_release_page(page, sc->gfp_mask))
1818 				goto activate_locked;
1819 			if (!mapping && page_count(page) == 1) {
1820 				unlock_page(page);
1821 				if (put_page_testzero(page))
1822 					goto free_it;
1823 				else {
1824 					/*
1825 					 * rare race with speculative reference.
1826 					 * the speculative reference will free
1827 					 * this page shortly, so we may
1828 					 * increment nr_reclaimed here (and
1829 					 * leave it off the LRU).
1830 					 */
1831 					nr_reclaimed++;
1832 					continue;
1833 				}
1834 			}
1835 		}
1836 
1837 		if (PageAnon(page) && !PageSwapBacked(page)) {
1838 			/* follow __remove_mapping for reference */
1839 			if (!page_ref_freeze(page, 1))
1840 				goto keep_locked;
1841 			/*
1842 			 * The page has only one reference left, which is
1843 			 * from the isolation. After the caller puts the
1844 			 * page back on lru and drops the reference, the
1845 			 * page will be freed anyway. It doesn't matter
1846 			 * which lru it goes. So we don't bother checking
1847 			 * PageDirty here.
1848 			 */
1849 			count_vm_event(PGLAZYFREED);
1850 			count_memcg_page_event(page, PGLAZYFREED);
1851 		} else if (!mapping || !__remove_mapping(mapping, page, true,
1852 							 sc->target_mem_cgroup))
1853 			goto keep_locked;
1854 
1855 		unlock_page(page);
1856 free_it:
1857 		/*
1858 		 * THP may get swapped out in a whole, need account
1859 		 * all base pages.
1860 		 */
1861 		nr_reclaimed += nr_pages;
1862 
1863 		/*
1864 		 * Is there need to periodically free_page_list? It would
1865 		 * appear not as the counts should be low
1866 		 */
1867 		if (unlikely(PageTransHuge(page)))
1868 			destroy_compound_page(page);
1869 		else
1870 			list_add(&page->lru, &free_pages);
1871 		continue;
1872 
1873 activate_locked_split:
1874 		/*
1875 		 * The tail pages that are failed to add into swap cache
1876 		 * reach here.  Fixup nr_scanned and nr_pages.
1877 		 */
1878 		if (nr_pages > 1) {
1879 			sc->nr_scanned -= (nr_pages - 1);
1880 			nr_pages = 1;
1881 		}
1882 activate_locked:
1883 		/* Not a candidate for swapping, so reclaim swap space. */
1884 		if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1885 						PageMlocked(page)))
1886 			try_to_free_swap(page);
1887 		VM_BUG_ON_PAGE(PageActive(page), page);
1888 		if (!PageMlocked(page)) {
1889 			int type = page_is_file_lru(page);
1890 			SetPageActive(page);
1891 			stat->nr_activate[type] += nr_pages;
1892 			count_memcg_page_event(page, PGACTIVATE);
1893 		}
1894 keep_locked:
1895 		unlock_page(page);
1896 keep:
1897 		list_add(&page->lru, &ret_pages);
1898 		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1899 	}
1900 	/* 'page_list' is always empty here */
1901 
1902 	/* Migrate pages selected for demotion */
1903 	nr_reclaimed += demote_page_list(&demote_pages, pgdat);
1904 	/* Pages that could not be demoted are still in @demote_pages */
1905 	if (!list_empty(&demote_pages)) {
1906 		/* Pages which failed to demoted go back on @page_list for retry: */
1907 		list_splice_init(&demote_pages, page_list);
1908 		do_demote_pass = false;
1909 		goto retry;
1910 	}
1911 
1912 	pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1913 
1914 	mem_cgroup_uncharge_list(&free_pages);
1915 	try_to_unmap_flush();
1916 	free_unref_page_list(&free_pages);
1917 
1918 	list_splice(&ret_pages, page_list);
1919 	count_vm_events(PGACTIVATE, pgactivate);
1920 
1921 	return nr_reclaimed;
1922 }
1923 
1924 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1925 					    struct list_head *page_list)
1926 {
1927 	struct scan_control sc = {
1928 		.gfp_mask = GFP_KERNEL,
1929 		.may_unmap = 1,
1930 	};
1931 	struct reclaim_stat stat;
1932 	unsigned int nr_reclaimed;
1933 	struct page *page, *next;
1934 	LIST_HEAD(clean_pages);
1935 	unsigned int noreclaim_flag;
1936 
1937 	list_for_each_entry_safe(page, next, page_list, lru) {
1938 		if (!PageHuge(page) && page_is_file_lru(page) &&
1939 		    !PageDirty(page) && !__PageMovable(page) &&
1940 		    !PageUnevictable(page)) {
1941 			ClearPageActive(page);
1942 			list_move(&page->lru, &clean_pages);
1943 		}
1944 	}
1945 
1946 	/*
1947 	 * We should be safe here since we are only dealing with file pages and
1948 	 * we are not kswapd and therefore cannot write dirty file pages. But
1949 	 * call memalloc_noreclaim_save() anyway, just in case these conditions
1950 	 * change in the future.
1951 	 */
1952 	noreclaim_flag = memalloc_noreclaim_save();
1953 	nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1954 					&stat, true);
1955 	memalloc_noreclaim_restore(noreclaim_flag);
1956 
1957 	list_splice(&clean_pages, page_list);
1958 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1959 			    -(long)nr_reclaimed);
1960 	/*
1961 	 * Since lazyfree pages are isolated from file LRU from the beginning,
1962 	 * they will rotate back to anonymous LRU in the end if it failed to
1963 	 * discard so isolated count will be mismatched.
1964 	 * Compensate the isolated count for both LRU lists.
1965 	 */
1966 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
1967 			    stat.nr_lazyfree_fail);
1968 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1969 			    -(long)stat.nr_lazyfree_fail);
1970 	return nr_reclaimed;
1971 }
1972 
1973 /*
1974  * Attempt to remove the specified page from its LRU.  Only take this page
1975  * if it is of the appropriate PageActive status.  Pages which are being
1976  * freed elsewhere are also ignored.
1977  *
1978  * page:	page to consider
1979  * mode:	one of the LRU isolation modes defined above
1980  *
1981  * returns true on success, false on failure.
1982  */
1983 bool __isolate_lru_page_prepare(struct page *page, isolate_mode_t mode)
1984 {
1985 	/* Only take pages on the LRU. */
1986 	if (!PageLRU(page))
1987 		return false;
1988 
1989 	/* Compaction should not handle unevictable pages but CMA can do so */
1990 	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1991 		return false;
1992 
1993 	/*
1994 	 * To minimise LRU disruption, the caller can indicate that it only
1995 	 * wants to isolate pages it will be able to operate on without
1996 	 * blocking - clean pages for the most part.
1997 	 *
1998 	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1999 	 * that it is possible to migrate without blocking
2000 	 */
2001 	if (mode & ISOLATE_ASYNC_MIGRATE) {
2002 		/* All the caller can do on PageWriteback is block */
2003 		if (PageWriteback(page))
2004 			return false;
2005 
2006 		if (PageDirty(page)) {
2007 			struct address_space *mapping;
2008 			bool migrate_dirty;
2009 
2010 			/*
2011 			 * Only pages without mappings or that have a
2012 			 * ->migratepage callback are possible to migrate
2013 			 * without blocking. However, we can be racing with
2014 			 * truncation so it's necessary to lock the page
2015 			 * to stabilise the mapping as truncation holds
2016 			 * the page lock until after the page is removed
2017 			 * from the page cache.
2018 			 */
2019 			if (!trylock_page(page))
2020 				return false;
2021 
2022 			mapping = page_mapping(page);
2023 			migrate_dirty = !mapping || mapping->a_ops->migratepage;
2024 			unlock_page(page);
2025 			if (!migrate_dirty)
2026 				return false;
2027 		}
2028 	}
2029 
2030 	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
2031 		return false;
2032 
2033 	return true;
2034 }
2035 
2036 /*
2037  * Update LRU sizes after isolating pages. The LRU size updates must
2038  * be complete before mem_cgroup_update_lru_size due to a sanity check.
2039  */
2040 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
2041 			enum lru_list lru, unsigned long *nr_zone_taken)
2042 {
2043 	int zid;
2044 
2045 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2046 		if (!nr_zone_taken[zid])
2047 			continue;
2048 
2049 		update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
2050 	}
2051 
2052 }
2053 
2054 /*
2055  * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
2056  *
2057  * lruvec->lru_lock is heavily contended.  Some of the functions that
2058  * shrink the lists perform better by taking out a batch of pages
2059  * and working on them outside the LRU lock.
2060  *
2061  * For pagecache intensive workloads, this function is the hottest
2062  * spot in the kernel (apart from copy_*_user functions).
2063  *
2064  * Lru_lock must be held before calling this function.
2065  *
2066  * @nr_to_scan:	The number of eligible pages to look through on the list.
2067  * @lruvec:	The LRU vector to pull pages from.
2068  * @dst:	The temp list to put pages on to.
2069  * @nr_scanned:	The number of pages that were scanned.
2070  * @sc:		The scan_control struct for this reclaim session
2071  * @lru:	LRU list id for isolating
2072  *
2073  * returns how many pages were moved onto *@dst.
2074  */
2075 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
2076 		struct lruvec *lruvec, struct list_head *dst,
2077 		unsigned long *nr_scanned, struct scan_control *sc,
2078 		enum lru_list lru)
2079 {
2080 	struct list_head *src = &lruvec->lists[lru];
2081 	unsigned long nr_taken = 0;
2082 	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
2083 	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
2084 	unsigned long skipped = 0;
2085 	unsigned long scan, total_scan, nr_pages;
2086 	LIST_HEAD(pages_skipped);
2087 	isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
2088 
2089 	total_scan = 0;
2090 	scan = 0;
2091 	while (scan < nr_to_scan && !list_empty(src)) {
2092 		struct page *page;
2093 
2094 		page = lru_to_page(src);
2095 		prefetchw_prev_lru_page(page, src, flags);
2096 
2097 		nr_pages = compound_nr(page);
2098 		total_scan += nr_pages;
2099 
2100 		if (page_zonenum(page) > sc->reclaim_idx) {
2101 			list_move(&page->lru, &pages_skipped);
2102 			nr_skipped[page_zonenum(page)] += nr_pages;
2103 			continue;
2104 		}
2105 
2106 		/*
2107 		 * Do not count skipped pages because that makes the function
2108 		 * return with no isolated pages if the LRU mostly contains
2109 		 * ineligible pages.  This causes the VM to not reclaim any
2110 		 * pages, triggering a premature OOM.
2111 		 *
2112 		 * Account all tail pages of THP.  This would not cause
2113 		 * premature OOM since __isolate_lru_page() returns -EBUSY
2114 		 * only when the page is being freed somewhere else.
2115 		 */
2116 		scan += nr_pages;
2117 		if (!__isolate_lru_page_prepare(page, mode)) {
2118 			/* It is being freed elsewhere */
2119 			list_move(&page->lru, src);
2120 			continue;
2121 		}
2122 		/*
2123 		 * Be careful not to clear PageLRU until after we're
2124 		 * sure the page is not being freed elsewhere -- the
2125 		 * page release code relies on it.
2126 		 */
2127 		if (unlikely(!get_page_unless_zero(page))) {
2128 			list_move(&page->lru, src);
2129 			continue;
2130 		}
2131 
2132 		if (!TestClearPageLRU(page)) {
2133 			/* Another thread is already isolating this page */
2134 			put_page(page);
2135 			list_move(&page->lru, src);
2136 			continue;
2137 		}
2138 
2139 		nr_taken += nr_pages;
2140 		nr_zone_taken[page_zonenum(page)] += nr_pages;
2141 		list_move(&page->lru, dst);
2142 	}
2143 
2144 	/*
2145 	 * Splice any skipped pages to the start of the LRU list. Note that
2146 	 * this disrupts the LRU order when reclaiming for lower zones but
2147 	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
2148 	 * scanning would soon rescan the same pages to skip and put the
2149 	 * system at risk of premature OOM.
2150 	 */
2151 	if (!list_empty(&pages_skipped)) {
2152 		int zid;
2153 
2154 		list_splice(&pages_skipped, src);
2155 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2156 			if (!nr_skipped[zid])
2157 				continue;
2158 
2159 			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
2160 			skipped += nr_skipped[zid];
2161 		}
2162 	}
2163 	*nr_scanned = total_scan;
2164 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
2165 				    total_scan, skipped, nr_taken, mode, lru);
2166 	update_lru_sizes(lruvec, lru, nr_zone_taken);
2167 	return nr_taken;
2168 }
2169 
2170 /**
2171  * isolate_lru_page - tries to isolate a page from its LRU list
2172  * @page: page to isolate from its LRU list
2173  *
2174  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
2175  * vmstat statistic corresponding to whatever LRU list the page was on.
2176  *
2177  * Returns 0 if the page was removed from an LRU list.
2178  * Returns -EBUSY if the page was not on an LRU list.
2179  *
2180  * The returned page will have PageLRU() cleared.  If it was found on
2181  * the active list, it will have PageActive set.  If it was found on
2182  * the unevictable list, it will have the PageUnevictable bit set. That flag
2183  * may need to be cleared by the caller before letting the page go.
2184  *
2185  * The vmstat statistic corresponding to the list on which the page was
2186  * found will be decremented.
2187  *
2188  * Restrictions:
2189  *
2190  * (1) Must be called with an elevated refcount on the page. This is a
2191  *     fundamental difference from isolate_lru_pages (which is called
2192  *     without a stable reference).
2193  * (2) the lru_lock must not be held.
2194  * (3) interrupts must be enabled.
2195  */
2196 int isolate_lru_page(struct page *page)
2197 {
2198 	struct folio *folio = page_folio(page);
2199 	int ret = -EBUSY;
2200 
2201 	VM_BUG_ON_PAGE(!page_count(page), page);
2202 	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
2203 
2204 	if (TestClearPageLRU(page)) {
2205 		struct lruvec *lruvec;
2206 
2207 		get_page(page);
2208 		lruvec = folio_lruvec_lock_irq(folio);
2209 		del_page_from_lru_list(page, lruvec);
2210 		unlock_page_lruvec_irq(lruvec);
2211 		ret = 0;
2212 	}
2213 
2214 	return ret;
2215 }
2216 
2217 /*
2218  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
2219  * then get rescheduled. When there are massive number of tasks doing page
2220  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
2221  * the LRU list will go small and be scanned faster than necessary, leading to
2222  * unnecessary swapping, thrashing and OOM.
2223  */
2224 static int too_many_isolated(struct pglist_data *pgdat, int file,
2225 		struct scan_control *sc)
2226 {
2227 	unsigned long inactive, isolated;
2228 	bool too_many;
2229 
2230 	if (current_is_kswapd())
2231 		return 0;
2232 
2233 	if (!writeback_throttling_sane(sc))
2234 		return 0;
2235 
2236 	if (file) {
2237 		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
2238 		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
2239 	} else {
2240 		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
2241 		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
2242 	}
2243 
2244 	/*
2245 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
2246 	 * won't get blocked by normal direct-reclaimers, forming a circular
2247 	 * deadlock.
2248 	 */
2249 	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
2250 		inactive >>= 3;
2251 
2252 	too_many = isolated > inactive;
2253 
2254 	/* Wake up tasks throttled due to too_many_isolated. */
2255 	if (!too_many)
2256 		wake_throttle_isolated(pgdat);
2257 
2258 	return too_many;
2259 }
2260 
2261 /*
2262  * move_pages_to_lru() moves pages from private @list to appropriate LRU list.
2263  * On return, @list is reused as a list of pages to be freed by the caller.
2264  *
2265  * Returns the number of pages moved to the given lruvec.
2266  */
2267 static unsigned int move_pages_to_lru(struct lruvec *lruvec,
2268 				      struct list_head *list)
2269 {
2270 	int nr_pages, nr_moved = 0;
2271 	LIST_HEAD(pages_to_free);
2272 	struct page *page;
2273 
2274 	while (!list_empty(list)) {
2275 		page = lru_to_page(list);
2276 		VM_BUG_ON_PAGE(PageLRU(page), page);
2277 		list_del(&page->lru);
2278 		if (unlikely(!page_evictable(page))) {
2279 			spin_unlock_irq(&lruvec->lru_lock);
2280 			putback_lru_page(page);
2281 			spin_lock_irq(&lruvec->lru_lock);
2282 			continue;
2283 		}
2284 
2285 		/*
2286 		 * The SetPageLRU needs to be kept here for list integrity.
2287 		 * Otherwise:
2288 		 *   #0 move_pages_to_lru             #1 release_pages
2289 		 *   if !put_page_testzero
2290 		 *				      if (put_page_testzero())
2291 		 *				        !PageLRU //skip lru_lock
2292 		 *     SetPageLRU()
2293 		 *     list_add(&page->lru,)
2294 		 *                                        list_add(&page->lru,)
2295 		 */
2296 		SetPageLRU(page);
2297 
2298 		if (unlikely(put_page_testzero(page))) {
2299 			__clear_page_lru_flags(page);
2300 
2301 			if (unlikely(PageCompound(page))) {
2302 				spin_unlock_irq(&lruvec->lru_lock);
2303 				destroy_compound_page(page);
2304 				spin_lock_irq(&lruvec->lru_lock);
2305 			} else
2306 				list_add(&page->lru, &pages_to_free);
2307 
2308 			continue;
2309 		}
2310 
2311 		/*
2312 		 * All pages were isolated from the same lruvec (and isolation
2313 		 * inhibits memcg migration).
2314 		 */
2315 		VM_BUG_ON_PAGE(!folio_matches_lruvec(page_folio(page), lruvec), page);
2316 		add_page_to_lru_list(page, lruvec);
2317 		nr_pages = thp_nr_pages(page);
2318 		nr_moved += nr_pages;
2319 		if (PageActive(page))
2320 			workingset_age_nonresident(lruvec, nr_pages);
2321 	}
2322 
2323 	/*
2324 	 * To save our caller's stack, now use input list for pages to free.
2325 	 */
2326 	list_splice(&pages_to_free, list);
2327 
2328 	return nr_moved;
2329 }
2330 
2331 /*
2332  * If a kernel thread (such as nfsd for loop-back mounts) services
2333  * a backing device by writing to the page cache it sets PF_LOCAL_THROTTLE.
2334  * In that case we should only throttle if the backing device it is
2335  * writing to is congested.  In other cases it is safe to throttle.
2336  */
2337 static int current_may_throttle(void)
2338 {
2339 	return !(current->flags & PF_LOCAL_THROTTLE) ||
2340 		current->backing_dev_info == NULL ||
2341 		bdi_write_congested(current->backing_dev_info);
2342 }
2343 
2344 /*
2345  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
2346  * of reclaimed pages
2347  */
2348 static unsigned long
2349 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
2350 		     struct scan_control *sc, enum lru_list lru)
2351 {
2352 	LIST_HEAD(page_list);
2353 	unsigned long nr_scanned;
2354 	unsigned int nr_reclaimed = 0;
2355 	unsigned long nr_taken;
2356 	struct reclaim_stat stat;
2357 	bool file = is_file_lru(lru);
2358 	enum vm_event_item item;
2359 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2360 	bool stalled = false;
2361 
2362 	while (unlikely(too_many_isolated(pgdat, file, sc))) {
2363 		if (stalled)
2364 			return 0;
2365 
2366 		/* wait a bit for the reclaimer. */
2367 		stalled = true;
2368 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
2369 
2370 		/* We are about to die and free our memory. Return now. */
2371 		if (fatal_signal_pending(current))
2372 			return SWAP_CLUSTER_MAX;
2373 	}
2374 
2375 	lru_add_drain();
2376 
2377 	spin_lock_irq(&lruvec->lru_lock);
2378 
2379 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
2380 				     &nr_scanned, sc, lru);
2381 
2382 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2383 	item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
2384 	if (!cgroup_reclaim(sc))
2385 		__count_vm_events(item, nr_scanned);
2386 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
2387 	__count_vm_events(PGSCAN_ANON + file, nr_scanned);
2388 
2389 	spin_unlock_irq(&lruvec->lru_lock);
2390 
2391 	if (nr_taken == 0)
2392 		return 0;
2393 
2394 	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, &stat, false);
2395 
2396 	spin_lock_irq(&lruvec->lru_lock);
2397 	move_pages_to_lru(lruvec, &page_list);
2398 
2399 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2400 	item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
2401 	if (!cgroup_reclaim(sc))
2402 		__count_vm_events(item, nr_reclaimed);
2403 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
2404 	__count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
2405 	spin_unlock_irq(&lruvec->lru_lock);
2406 
2407 	lru_note_cost(lruvec, file, stat.nr_pageout);
2408 	mem_cgroup_uncharge_list(&page_list);
2409 	free_unref_page_list(&page_list);
2410 
2411 	/*
2412 	 * If dirty pages are scanned that are not queued for IO, it
2413 	 * implies that flushers are not doing their job. This can
2414 	 * happen when memory pressure pushes dirty pages to the end of
2415 	 * the LRU before the dirty limits are breached and the dirty
2416 	 * data has expired. It can also happen when the proportion of
2417 	 * dirty pages grows not through writes but through memory
2418 	 * pressure reclaiming all the clean cache. And in some cases,
2419 	 * the flushers simply cannot keep up with the allocation
2420 	 * rate. Nudge the flusher threads in case they are asleep.
2421 	 */
2422 	if (stat.nr_unqueued_dirty == nr_taken)
2423 		wakeup_flusher_threads(WB_REASON_VMSCAN);
2424 
2425 	sc->nr.dirty += stat.nr_dirty;
2426 	sc->nr.congested += stat.nr_congested;
2427 	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2428 	sc->nr.writeback += stat.nr_writeback;
2429 	sc->nr.immediate += stat.nr_immediate;
2430 	sc->nr.taken += nr_taken;
2431 	if (file)
2432 		sc->nr.file_taken += nr_taken;
2433 
2434 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2435 			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2436 	return nr_reclaimed;
2437 }
2438 
2439 /*
2440  * shrink_active_list() moves pages from the active LRU to the inactive LRU.
2441  *
2442  * We move them the other way if the page is referenced by one or more
2443  * processes.
2444  *
2445  * If the pages are mostly unmapped, the processing is fast and it is
2446  * appropriate to hold lru_lock across the whole operation.  But if
2447  * the pages are mapped, the processing is slow (page_referenced()), so
2448  * we should drop lru_lock around each page.  It's impossible to balance
2449  * this, so instead we remove the pages from the LRU while processing them.
2450  * It is safe to rely on PG_active against the non-LRU pages in here because
2451  * nobody will play with that bit on a non-LRU page.
2452  *
2453  * The downside is that we have to touch page->_refcount against each page.
2454  * But we had to alter page->flags anyway.
2455  */
2456 static void shrink_active_list(unsigned long nr_to_scan,
2457 			       struct lruvec *lruvec,
2458 			       struct scan_control *sc,
2459 			       enum lru_list lru)
2460 {
2461 	unsigned long nr_taken;
2462 	unsigned long nr_scanned;
2463 	unsigned long vm_flags;
2464 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
2465 	LIST_HEAD(l_active);
2466 	LIST_HEAD(l_inactive);
2467 	struct page *page;
2468 	unsigned nr_deactivate, nr_activate;
2469 	unsigned nr_rotated = 0;
2470 	int file = is_file_lru(lru);
2471 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2472 
2473 	lru_add_drain();
2474 
2475 	spin_lock_irq(&lruvec->lru_lock);
2476 
2477 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2478 				     &nr_scanned, sc, lru);
2479 
2480 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2481 
2482 	if (!cgroup_reclaim(sc))
2483 		__count_vm_events(PGREFILL, nr_scanned);
2484 	__count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2485 
2486 	spin_unlock_irq(&lruvec->lru_lock);
2487 
2488 	while (!list_empty(&l_hold)) {
2489 		cond_resched();
2490 		page = lru_to_page(&l_hold);
2491 		list_del(&page->lru);
2492 
2493 		if (unlikely(!page_evictable(page))) {
2494 			putback_lru_page(page);
2495 			continue;
2496 		}
2497 
2498 		if (unlikely(buffer_heads_over_limit)) {
2499 			if (page_has_private(page) && trylock_page(page)) {
2500 				if (page_has_private(page))
2501 					try_to_release_page(page, 0);
2502 				unlock_page(page);
2503 			}
2504 		}
2505 
2506 		if (page_referenced(page, 0, sc->target_mem_cgroup,
2507 				    &vm_flags)) {
2508 			/*
2509 			 * Identify referenced, file-backed active pages and
2510 			 * give them one more trip around the active list. So
2511 			 * that executable code get better chances to stay in
2512 			 * memory under moderate memory pressure.  Anon pages
2513 			 * are not likely to be evicted by use-once streaming
2514 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
2515 			 * so we ignore them here.
2516 			 */
2517 			if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) {
2518 				nr_rotated += thp_nr_pages(page);
2519 				list_add(&page->lru, &l_active);
2520 				continue;
2521 			}
2522 		}
2523 
2524 		ClearPageActive(page);	/* we are de-activating */
2525 		SetPageWorkingset(page);
2526 		list_add(&page->lru, &l_inactive);
2527 	}
2528 
2529 	/*
2530 	 * Move pages back to the lru list.
2531 	 */
2532 	spin_lock_irq(&lruvec->lru_lock);
2533 
2534 	nr_activate = move_pages_to_lru(lruvec, &l_active);
2535 	nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
2536 	/* Keep all free pages in l_active list */
2537 	list_splice(&l_inactive, &l_active);
2538 
2539 	__count_vm_events(PGDEACTIVATE, nr_deactivate);
2540 	__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2541 
2542 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2543 	spin_unlock_irq(&lruvec->lru_lock);
2544 
2545 	mem_cgroup_uncharge_list(&l_active);
2546 	free_unref_page_list(&l_active);
2547 	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2548 			nr_deactivate, nr_rotated, sc->priority, file);
2549 }
2550 
2551 unsigned long reclaim_pages(struct list_head *page_list)
2552 {
2553 	int nid = NUMA_NO_NODE;
2554 	unsigned int nr_reclaimed = 0;
2555 	LIST_HEAD(node_page_list);
2556 	struct reclaim_stat dummy_stat;
2557 	struct page *page;
2558 	unsigned int noreclaim_flag;
2559 	struct scan_control sc = {
2560 		.gfp_mask = GFP_KERNEL,
2561 		.may_writepage = 1,
2562 		.may_unmap = 1,
2563 		.may_swap = 1,
2564 		.no_demotion = 1,
2565 	};
2566 
2567 	noreclaim_flag = memalloc_noreclaim_save();
2568 
2569 	while (!list_empty(page_list)) {
2570 		page = lru_to_page(page_list);
2571 		if (nid == NUMA_NO_NODE) {
2572 			nid = page_to_nid(page);
2573 			INIT_LIST_HEAD(&node_page_list);
2574 		}
2575 
2576 		if (nid == page_to_nid(page)) {
2577 			ClearPageActive(page);
2578 			list_move(&page->lru, &node_page_list);
2579 			continue;
2580 		}
2581 
2582 		nr_reclaimed += shrink_page_list(&node_page_list,
2583 						NODE_DATA(nid),
2584 						&sc, &dummy_stat, false);
2585 		while (!list_empty(&node_page_list)) {
2586 			page = lru_to_page(&node_page_list);
2587 			list_del(&page->lru);
2588 			putback_lru_page(page);
2589 		}
2590 
2591 		nid = NUMA_NO_NODE;
2592 	}
2593 
2594 	if (!list_empty(&node_page_list)) {
2595 		nr_reclaimed += shrink_page_list(&node_page_list,
2596 						NODE_DATA(nid),
2597 						&sc, &dummy_stat, false);
2598 		while (!list_empty(&node_page_list)) {
2599 			page = lru_to_page(&node_page_list);
2600 			list_del(&page->lru);
2601 			putback_lru_page(page);
2602 		}
2603 	}
2604 
2605 	memalloc_noreclaim_restore(noreclaim_flag);
2606 
2607 	return nr_reclaimed;
2608 }
2609 
2610 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2611 				 struct lruvec *lruvec, struct scan_control *sc)
2612 {
2613 	if (is_active_lru(lru)) {
2614 		if (sc->may_deactivate & (1 << is_file_lru(lru)))
2615 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2616 		else
2617 			sc->skipped_deactivate = 1;
2618 		return 0;
2619 	}
2620 
2621 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2622 }
2623 
2624 /*
2625  * The inactive anon list should be small enough that the VM never has
2626  * to do too much work.
2627  *
2628  * The inactive file list should be small enough to leave most memory
2629  * to the established workingset on the scan-resistant active list,
2630  * but large enough to avoid thrashing the aggregate readahead window.
2631  *
2632  * Both inactive lists should also be large enough that each inactive
2633  * page has a chance to be referenced again before it is reclaimed.
2634  *
2635  * If that fails and refaulting is observed, the inactive list grows.
2636  *
2637  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2638  * on this LRU, maintained by the pageout code. An inactive_ratio
2639  * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2640  *
2641  * total     target    max
2642  * memory    ratio     inactive
2643  * -------------------------------------
2644  *   10MB       1         5MB
2645  *  100MB       1        50MB
2646  *    1GB       3       250MB
2647  *   10GB      10       0.9GB
2648  *  100GB      31         3GB
2649  *    1TB     101        10GB
2650  *   10TB     320        32GB
2651  */
2652 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2653 {
2654 	enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2655 	unsigned long inactive, active;
2656 	unsigned long inactive_ratio;
2657 	unsigned long gb;
2658 
2659 	inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2660 	active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2661 
2662 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
2663 	if (gb)
2664 		inactive_ratio = int_sqrt(10 * gb);
2665 	else
2666 		inactive_ratio = 1;
2667 
2668 	return inactive * inactive_ratio < active;
2669 }
2670 
2671 enum scan_balance {
2672 	SCAN_EQUAL,
2673 	SCAN_FRACT,
2674 	SCAN_ANON,
2675 	SCAN_FILE,
2676 };
2677 
2678 /*
2679  * Determine how aggressively the anon and file LRU lists should be
2680  * scanned.  The relative value of each set of LRU lists is determined
2681  * by looking at the fraction of the pages scanned we did rotate back
2682  * onto the active list instead of evict.
2683  *
2684  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2685  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2686  */
2687 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2688 			   unsigned long *nr)
2689 {
2690 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2691 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2692 	unsigned long anon_cost, file_cost, total_cost;
2693 	int swappiness = mem_cgroup_swappiness(memcg);
2694 	u64 fraction[ANON_AND_FILE];
2695 	u64 denominator = 0;	/* gcc */
2696 	enum scan_balance scan_balance;
2697 	unsigned long ap, fp;
2698 	enum lru_list lru;
2699 
2700 	/* If we have no swap space, do not bother scanning anon pages. */
2701 	if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
2702 		scan_balance = SCAN_FILE;
2703 		goto out;
2704 	}
2705 
2706 	/*
2707 	 * Global reclaim will swap to prevent OOM even with no
2708 	 * swappiness, but memcg users want to use this knob to
2709 	 * disable swapping for individual groups completely when
2710 	 * using the memory controller's swap limit feature would be
2711 	 * too expensive.
2712 	 */
2713 	if (cgroup_reclaim(sc) && !swappiness) {
2714 		scan_balance = SCAN_FILE;
2715 		goto out;
2716 	}
2717 
2718 	/*
2719 	 * Do not apply any pressure balancing cleverness when the
2720 	 * system is close to OOM, scan both anon and file equally
2721 	 * (unless the swappiness setting disagrees with swapping).
2722 	 */
2723 	if (!sc->priority && swappiness) {
2724 		scan_balance = SCAN_EQUAL;
2725 		goto out;
2726 	}
2727 
2728 	/*
2729 	 * If the system is almost out of file pages, force-scan anon.
2730 	 */
2731 	if (sc->file_is_tiny) {
2732 		scan_balance = SCAN_ANON;
2733 		goto out;
2734 	}
2735 
2736 	/*
2737 	 * If there is enough inactive page cache, we do not reclaim
2738 	 * anything from the anonymous working right now.
2739 	 */
2740 	if (sc->cache_trim_mode) {
2741 		scan_balance = SCAN_FILE;
2742 		goto out;
2743 	}
2744 
2745 	scan_balance = SCAN_FRACT;
2746 	/*
2747 	 * Calculate the pressure balance between anon and file pages.
2748 	 *
2749 	 * The amount of pressure we put on each LRU is inversely
2750 	 * proportional to the cost of reclaiming each list, as
2751 	 * determined by the share of pages that are refaulting, times
2752 	 * the relative IO cost of bringing back a swapped out
2753 	 * anonymous page vs reloading a filesystem page (swappiness).
2754 	 *
2755 	 * Although we limit that influence to ensure no list gets
2756 	 * left behind completely: at least a third of the pressure is
2757 	 * applied, before swappiness.
2758 	 *
2759 	 * With swappiness at 100, anon and file have equal IO cost.
2760 	 */
2761 	total_cost = sc->anon_cost + sc->file_cost;
2762 	anon_cost = total_cost + sc->anon_cost;
2763 	file_cost = total_cost + sc->file_cost;
2764 	total_cost = anon_cost + file_cost;
2765 
2766 	ap = swappiness * (total_cost + 1);
2767 	ap /= anon_cost + 1;
2768 
2769 	fp = (200 - swappiness) * (total_cost + 1);
2770 	fp /= file_cost + 1;
2771 
2772 	fraction[0] = ap;
2773 	fraction[1] = fp;
2774 	denominator = ap + fp;
2775 out:
2776 	for_each_evictable_lru(lru) {
2777 		int file = is_file_lru(lru);
2778 		unsigned long lruvec_size;
2779 		unsigned long low, min;
2780 		unsigned long scan;
2781 
2782 		lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2783 		mem_cgroup_protection(sc->target_mem_cgroup, memcg,
2784 				      &min, &low);
2785 
2786 		if (min || low) {
2787 			/*
2788 			 * Scale a cgroup's reclaim pressure by proportioning
2789 			 * its current usage to its memory.low or memory.min
2790 			 * setting.
2791 			 *
2792 			 * This is important, as otherwise scanning aggression
2793 			 * becomes extremely binary -- from nothing as we
2794 			 * approach the memory protection threshold, to totally
2795 			 * nominal as we exceed it.  This results in requiring
2796 			 * setting extremely liberal protection thresholds. It
2797 			 * also means we simply get no protection at all if we
2798 			 * set it too low, which is not ideal.
2799 			 *
2800 			 * If there is any protection in place, we reduce scan
2801 			 * pressure by how much of the total memory used is
2802 			 * within protection thresholds.
2803 			 *
2804 			 * There is one special case: in the first reclaim pass,
2805 			 * we skip over all groups that are within their low
2806 			 * protection. If that fails to reclaim enough pages to
2807 			 * satisfy the reclaim goal, we come back and override
2808 			 * the best-effort low protection. However, we still
2809 			 * ideally want to honor how well-behaved groups are in
2810 			 * that case instead of simply punishing them all
2811 			 * equally. As such, we reclaim them based on how much
2812 			 * memory they are using, reducing the scan pressure
2813 			 * again by how much of the total memory used is under
2814 			 * hard protection.
2815 			 */
2816 			unsigned long cgroup_size = mem_cgroup_size(memcg);
2817 			unsigned long protection;
2818 
2819 			/* memory.low scaling, make sure we retry before OOM */
2820 			if (!sc->memcg_low_reclaim && low > min) {
2821 				protection = low;
2822 				sc->memcg_low_skipped = 1;
2823 			} else {
2824 				protection = min;
2825 			}
2826 
2827 			/* Avoid TOCTOU with earlier protection check */
2828 			cgroup_size = max(cgroup_size, protection);
2829 
2830 			scan = lruvec_size - lruvec_size * protection /
2831 				(cgroup_size + 1);
2832 
2833 			/*
2834 			 * Minimally target SWAP_CLUSTER_MAX pages to keep
2835 			 * reclaim moving forwards, avoiding decrementing
2836 			 * sc->priority further than desirable.
2837 			 */
2838 			scan = max(scan, SWAP_CLUSTER_MAX);
2839 		} else {
2840 			scan = lruvec_size;
2841 		}
2842 
2843 		scan >>= sc->priority;
2844 
2845 		/*
2846 		 * If the cgroup's already been deleted, make sure to
2847 		 * scrape out the remaining cache.
2848 		 */
2849 		if (!scan && !mem_cgroup_online(memcg))
2850 			scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2851 
2852 		switch (scan_balance) {
2853 		case SCAN_EQUAL:
2854 			/* Scan lists relative to size */
2855 			break;
2856 		case SCAN_FRACT:
2857 			/*
2858 			 * Scan types proportional to swappiness and
2859 			 * their relative recent reclaim efficiency.
2860 			 * Make sure we don't miss the last page on
2861 			 * the offlined memory cgroups because of a
2862 			 * round-off error.
2863 			 */
2864 			scan = mem_cgroup_online(memcg) ?
2865 			       div64_u64(scan * fraction[file], denominator) :
2866 			       DIV64_U64_ROUND_UP(scan * fraction[file],
2867 						  denominator);
2868 			break;
2869 		case SCAN_FILE:
2870 		case SCAN_ANON:
2871 			/* Scan one type exclusively */
2872 			if ((scan_balance == SCAN_FILE) != file)
2873 				scan = 0;
2874 			break;
2875 		default:
2876 			/* Look ma, no brain */
2877 			BUG();
2878 		}
2879 
2880 		nr[lru] = scan;
2881 	}
2882 }
2883 
2884 /*
2885  * Anonymous LRU management is a waste if there is
2886  * ultimately no way to reclaim the memory.
2887  */
2888 static bool can_age_anon_pages(struct pglist_data *pgdat,
2889 			       struct scan_control *sc)
2890 {
2891 	/* Aging the anon LRU is valuable if swap is present: */
2892 	if (total_swap_pages > 0)
2893 		return true;
2894 
2895 	/* Also valuable if anon pages can be demoted: */
2896 	return can_demote(pgdat->node_id, sc);
2897 }
2898 
2899 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
2900 {
2901 	unsigned long nr[NR_LRU_LISTS];
2902 	unsigned long targets[NR_LRU_LISTS];
2903 	unsigned long nr_to_scan;
2904 	enum lru_list lru;
2905 	unsigned long nr_reclaimed = 0;
2906 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2907 	struct blk_plug plug;
2908 	bool scan_adjusted;
2909 
2910 	get_scan_count(lruvec, sc, nr);
2911 
2912 	/* Record the original scan target for proportional adjustments later */
2913 	memcpy(targets, nr, sizeof(nr));
2914 
2915 	/*
2916 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2917 	 * event that can occur when there is little memory pressure e.g.
2918 	 * multiple streaming readers/writers. Hence, we do not abort scanning
2919 	 * when the requested number of pages are reclaimed when scanning at
2920 	 * DEF_PRIORITY on the assumption that the fact we are direct
2921 	 * reclaiming implies that kswapd is not keeping up and it is best to
2922 	 * do a batch of work at once. For memcg reclaim one check is made to
2923 	 * abort proportional reclaim if either the file or anon lru has already
2924 	 * dropped to zero at the first pass.
2925 	 */
2926 	scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
2927 			 sc->priority == DEF_PRIORITY);
2928 
2929 	blk_start_plug(&plug);
2930 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2931 					nr[LRU_INACTIVE_FILE]) {
2932 		unsigned long nr_anon, nr_file, percentage;
2933 		unsigned long nr_scanned;
2934 
2935 		for_each_evictable_lru(lru) {
2936 			if (nr[lru]) {
2937 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2938 				nr[lru] -= nr_to_scan;
2939 
2940 				nr_reclaimed += shrink_list(lru, nr_to_scan,
2941 							    lruvec, sc);
2942 			}
2943 		}
2944 
2945 		cond_resched();
2946 
2947 		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2948 			continue;
2949 
2950 		/*
2951 		 * For kswapd and memcg, reclaim at least the number of pages
2952 		 * requested. Ensure that the anon and file LRUs are scanned
2953 		 * proportionally what was requested by get_scan_count(). We
2954 		 * stop reclaiming one LRU and reduce the amount scanning
2955 		 * proportional to the original scan target.
2956 		 */
2957 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2958 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2959 
2960 		/*
2961 		 * It's just vindictive to attack the larger once the smaller
2962 		 * has gone to zero.  And given the way we stop scanning the
2963 		 * smaller below, this makes sure that we only make one nudge
2964 		 * towards proportionality once we've got nr_to_reclaim.
2965 		 */
2966 		if (!nr_file || !nr_anon)
2967 			break;
2968 
2969 		if (nr_file > nr_anon) {
2970 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2971 						targets[LRU_ACTIVE_ANON] + 1;
2972 			lru = LRU_BASE;
2973 			percentage = nr_anon * 100 / scan_target;
2974 		} else {
2975 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2976 						targets[LRU_ACTIVE_FILE] + 1;
2977 			lru = LRU_FILE;
2978 			percentage = nr_file * 100 / scan_target;
2979 		}
2980 
2981 		/* Stop scanning the smaller of the LRU */
2982 		nr[lru] = 0;
2983 		nr[lru + LRU_ACTIVE] = 0;
2984 
2985 		/*
2986 		 * Recalculate the other LRU scan count based on its original
2987 		 * scan target and the percentage scanning already complete
2988 		 */
2989 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2990 		nr_scanned = targets[lru] - nr[lru];
2991 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2992 		nr[lru] -= min(nr[lru], nr_scanned);
2993 
2994 		lru += LRU_ACTIVE;
2995 		nr_scanned = targets[lru] - nr[lru];
2996 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2997 		nr[lru] -= min(nr[lru], nr_scanned);
2998 
2999 		scan_adjusted = true;
3000 	}
3001 	blk_finish_plug(&plug);
3002 	sc->nr_reclaimed += nr_reclaimed;
3003 
3004 	/*
3005 	 * Even if we did not try to evict anon pages at all, we want to
3006 	 * rebalance the anon lru active/inactive ratio.
3007 	 */
3008 	if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) &&
3009 	    inactive_is_low(lruvec, LRU_INACTIVE_ANON))
3010 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3011 				   sc, LRU_ACTIVE_ANON);
3012 }
3013 
3014 /* Use reclaim/compaction for costly allocs or under memory pressure */
3015 static bool in_reclaim_compaction(struct scan_control *sc)
3016 {
3017 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
3018 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
3019 			 sc->priority < DEF_PRIORITY - 2))
3020 		return true;
3021 
3022 	return false;
3023 }
3024 
3025 /*
3026  * Reclaim/compaction is used for high-order allocation requests. It reclaims
3027  * order-0 pages before compacting the zone. should_continue_reclaim() returns
3028  * true if more pages should be reclaimed such that when the page allocator
3029  * calls try_to_compact_pages() that it will have enough free pages to succeed.
3030  * It will give up earlier than that if there is difficulty reclaiming pages.
3031  */
3032 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
3033 					unsigned long nr_reclaimed,
3034 					struct scan_control *sc)
3035 {
3036 	unsigned long pages_for_compaction;
3037 	unsigned long inactive_lru_pages;
3038 	int z;
3039 
3040 	/* If not in reclaim/compaction mode, stop */
3041 	if (!in_reclaim_compaction(sc))
3042 		return false;
3043 
3044 	/*
3045 	 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
3046 	 * number of pages that were scanned. This will return to the caller
3047 	 * with the risk reclaim/compaction and the resulting allocation attempt
3048 	 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
3049 	 * allocations through requiring that the full LRU list has been scanned
3050 	 * first, by assuming that zero delta of sc->nr_scanned means full LRU
3051 	 * scan, but that approximation was wrong, and there were corner cases
3052 	 * where always a non-zero amount of pages were scanned.
3053 	 */
3054 	if (!nr_reclaimed)
3055 		return false;
3056 
3057 	/* If compaction would go ahead or the allocation would succeed, stop */
3058 	for (z = 0; z <= sc->reclaim_idx; z++) {
3059 		struct zone *zone = &pgdat->node_zones[z];
3060 		if (!managed_zone(zone))
3061 			continue;
3062 
3063 		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
3064 		case COMPACT_SUCCESS:
3065 		case COMPACT_CONTINUE:
3066 			return false;
3067 		default:
3068 			/* check next zone */
3069 			;
3070 		}
3071 	}
3072 
3073 	/*
3074 	 * If we have not reclaimed enough pages for compaction and the
3075 	 * inactive lists are large enough, continue reclaiming
3076 	 */
3077 	pages_for_compaction = compact_gap(sc->order);
3078 	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
3079 	if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
3080 		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
3081 
3082 	return inactive_lru_pages > pages_for_compaction;
3083 }
3084 
3085 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
3086 {
3087 	struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
3088 	struct mem_cgroup *memcg;
3089 
3090 	memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
3091 	do {
3092 		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3093 		unsigned long reclaimed;
3094 		unsigned long scanned;
3095 
3096 		/*
3097 		 * This loop can become CPU-bound when target memcgs
3098 		 * aren't eligible for reclaim - either because they
3099 		 * don't have any reclaimable pages, or because their
3100 		 * memory is explicitly protected. Avoid soft lockups.
3101 		 */
3102 		cond_resched();
3103 
3104 		mem_cgroup_calculate_protection(target_memcg, memcg);
3105 
3106 		if (mem_cgroup_below_min(memcg)) {
3107 			/*
3108 			 * Hard protection.
3109 			 * If there is no reclaimable memory, OOM.
3110 			 */
3111 			continue;
3112 		} else if (mem_cgroup_below_low(memcg)) {
3113 			/*
3114 			 * Soft protection.
3115 			 * Respect the protection only as long as
3116 			 * there is an unprotected supply
3117 			 * of reclaimable memory from other cgroups.
3118 			 */
3119 			if (!sc->memcg_low_reclaim) {
3120 				sc->memcg_low_skipped = 1;
3121 				continue;
3122 			}
3123 			memcg_memory_event(memcg, MEMCG_LOW);
3124 		}
3125 
3126 		reclaimed = sc->nr_reclaimed;
3127 		scanned = sc->nr_scanned;
3128 
3129 		shrink_lruvec(lruvec, sc);
3130 
3131 		shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
3132 			    sc->priority);
3133 
3134 		/* Record the group's reclaim efficiency */
3135 		vmpressure(sc->gfp_mask, memcg, false,
3136 			   sc->nr_scanned - scanned,
3137 			   sc->nr_reclaimed - reclaimed);
3138 
3139 	} while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
3140 }
3141 
3142 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
3143 {
3144 	struct reclaim_state *reclaim_state = current->reclaim_state;
3145 	unsigned long nr_reclaimed, nr_scanned;
3146 	struct lruvec *target_lruvec;
3147 	bool reclaimable = false;
3148 	unsigned long file;
3149 
3150 	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
3151 
3152 again:
3153 	/*
3154 	 * Flush the memory cgroup stats, so that we read accurate per-memcg
3155 	 * lruvec stats for heuristics.
3156 	 */
3157 	mem_cgroup_flush_stats();
3158 
3159 	memset(&sc->nr, 0, sizeof(sc->nr));
3160 
3161 	nr_reclaimed = sc->nr_reclaimed;
3162 	nr_scanned = sc->nr_scanned;
3163 
3164 	/*
3165 	 * Determine the scan balance between anon and file LRUs.
3166 	 */
3167 	spin_lock_irq(&target_lruvec->lru_lock);
3168 	sc->anon_cost = target_lruvec->anon_cost;
3169 	sc->file_cost = target_lruvec->file_cost;
3170 	spin_unlock_irq(&target_lruvec->lru_lock);
3171 
3172 	/*
3173 	 * Target desirable inactive:active list ratios for the anon
3174 	 * and file LRU lists.
3175 	 */
3176 	if (!sc->force_deactivate) {
3177 		unsigned long refaults;
3178 
3179 		refaults = lruvec_page_state(target_lruvec,
3180 				WORKINGSET_ACTIVATE_ANON);
3181 		if (refaults != target_lruvec->refaults[0] ||
3182 			inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
3183 			sc->may_deactivate |= DEACTIVATE_ANON;
3184 		else
3185 			sc->may_deactivate &= ~DEACTIVATE_ANON;
3186 
3187 		/*
3188 		 * When refaults are being observed, it means a new
3189 		 * workingset is being established. Deactivate to get
3190 		 * rid of any stale active pages quickly.
3191 		 */
3192 		refaults = lruvec_page_state(target_lruvec,
3193 				WORKINGSET_ACTIVATE_FILE);
3194 		if (refaults != target_lruvec->refaults[1] ||
3195 		    inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
3196 			sc->may_deactivate |= DEACTIVATE_FILE;
3197 		else
3198 			sc->may_deactivate &= ~DEACTIVATE_FILE;
3199 	} else
3200 		sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
3201 
3202 	/*
3203 	 * If we have plenty of inactive file pages that aren't
3204 	 * thrashing, try to reclaim those first before touching
3205 	 * anonymous pages.
3206 	 */
3207 	file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
3208 	if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
3209 		sc->cache_trim_mode = 1;
3210 	else
3211 		sc->cache_trim_mode = 0;
3212 
3213 	/*
3214 	 * Prevent the reclaimer from falling into the cache trap: as
3215 	 * cache pages start out inactive, every cache fault will tip
3216 	 * the scan balance towards the file LRU.  And as the file LRU
3217 	 * shrinks, so does the window for rotation from references.
3218 	 * This means we have a runaway feedback loop where a tiny
3219 	 * thrashing file LRU becomes infinitely more attractive than
3220 	 * anon pages.  Try to detect this based on file LRU size.
3221 	 */
3222 	if (!cgroup_reclaim(sc)) {
3223 		unsigned long total_high_wmark = 0;
3224 		unsigned long free, anon;
3225 		int z;
3226 
3227 		free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
3228 		file = node_page_state(pgdat, NR_ACTIVE_FILE) +
3229 			   node_page_state(pgdat, NR_INACTIVE_FILE);
3230 
3231 		for (z = 0; z < MAX_NR_ZONES; z++) {
3232 			struct zone *zone = &pgdat->node_zones[z];
3233 			if (!managed_zone(zone))
3234 				continue;
3235 
3236 			total_high_wmark += high_wmark_pages(zone);
3237 		}
3238 
3239 		/*
3240 		 * Consider anon: if that's low too, this isn't a
3241 		 * runaway file reclaim problem, but rather just
3242 		 * extreme pressure. Reclaim as per usual then.
3243 		 */
3244 		anon = node_page_state(pgdat, NR_INACTIVE_ANON);
3245 
3246 		sc->file_is_tiny =
3247 			file + free <= total_high_wmark &&
3248 			!(sc->may_deactivate & DEACTIVATE_ANON) &&
3249 			anon >> sc->priority;
3250 	}
3251 
3252 	shrink_node_memcgs(pgdat, sc);
3253 
3254 	if (reclaim_state) {
3255 		sc->nr_reclaimed += reclaim_state->reclaimed_slab;
3256 		reclaim_state->reclaimed_slab = 0;
3257 	}
3258 
3259 	/* Record the subtree's reclaim efficiency */
3260 	vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
3261 		   sc->nr_scanned - nr_scanned,
3262 		   sc->nr_reclaimed - nr_reclaimed);
3263 
3264 	if (sc->nr_reclaimed - nr_reclaimed)
3265 		reclaimable = true;
3266 
3267 	if (current_is_kswapd()) {
3268 		/*
3269 		 * If reclaim is isolating dirty pages under writeback,
3270 		 * it implies that the long-lived page allocation rate
3271 		 * is exceeding the page laundering rate. Either the
3272 		 * global limits are not being effective at throttling
3273 		 * processes due to the page distribution throughout
3274 		 * zones or there is heavy usage of a slow backing
3275 		 * device. The only option is to throttle from reclaim
3276 		 * context which is not ideal as there is no guarantee
3277 		 * the dirtying process is throttled in the same way
3278 		 * balance_dirty_pages() manages.
3279 		 *
3280 		 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
3281 		 * count the number of pages under pages flagged for
3282 		 * immediate reclaim and stall if any are encountered
3283 		 * in the nr_immediate check below.
3284 		 */
3285 		if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
3286 			set_bit(PGDAT_WRITEBACK, &pgdat->flags);
3287 
3288 		/* Allow kswapd to start writing pages during reclaim.*/
3289 		if (sc->nr.unqueued_dirty == sc->nr.file_taken)
3290 			set_bit(PGDAT_DIRTY, &pgdat->flags);
3291 
3292 		/*
3293 		 * If kswapd scans pages marked for immediate
3294 		 * reclaim and under writeback (nr_immediate), it
3295 		 * implies that pages are cycling through the LRU
3296 		 * faster than they are written so forcibly stall
3297 		 * until some pages complete writeback.
3298 		 */
3299 		if (sc->nr.immediate)
3300 			reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
3301 	}
3302 
3303 	/*
3304 	 * Tag a node/memcg as congested if all the dirty pages were marked
3305 	 * for writeback and immediate reclaim (counted in nr.congested).
3306 	 *
3307 	 * Legacy memcg will stall in page writeback so avoid forcibly
3308 	 * stalling in reclaim_throttle().
3309 	 */
3310 	if ((current_is_kswapd() ||
3311 	     (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
3312 	    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
3313 		set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
3314 
3315 	/*
3316 	 * Stall direct reclaim for IO completions if the lruvec is
3317 	 * node is congested. Allow kswapd to continue until it
3318 	 * starts encountering unqueued dirty pages or cycling through
3319 	 * the LRU too quickly.
3320 	 */
3321 	if (!current_is_kswapd() && current_may_throttle() &&
3322 	    !sc->hibernation_mode &&
3323 	    test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
3324 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
3325 
3326 	if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
3327 				    sc))
3328 		goto again;
3329 
3330 	/*
3331 	 * Kswapd gives up on balancing particular nodes after too
3332 	 * many failures to reclaim anything from them and goes to
3333 	 * sleep. On reclaim progress, reset the failure counter. A
3334 	 * successful direct reclaim run will revive a dormant kswapd.
3335 	 */
3336 	if (reclaimable)
3337 		pgdat->kswapd_failures = 0;
3338 }
3339 
3340 /*
3341  * Returns true if compaction should go ahead for a costly-order request, or
3342  * the allocation would already succeed without compaction. Return false if we
3343  * should reclaim first.
3344  */
3345 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
3346 {
3347 	unsigned long watermark;
3348 	enum compact_result suitable;
3349 
3350 	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
3351 	if (suitable == COMPACT_SUCCESS)
3352 		/* Allocation should succeed already. Don't reclaim. */
3353 		return true;
3354 	if (suitable == COMPACT_SKIPPED)
3355 		/* Compaction cannot yet proceed. Do reclaim. */
3356 		return false;
3357 
3358 	/*
3359 	 * Compaction is already possible, but it takes time to run and there
3360 	 * are potentially other callers using the pages just freed. So proceed
3361 	 * with reclaim to make a buffer of free pages available to give
3362 	 * compaction a reasonable chance of completing and allocating the page.
3363 	 * Note that we won't actually reclaim the whole buffer in one attempt
3364 	 * as the target watermark in should_continue_reclaim() is lower. But if
3365 	 * we are already above the high+gap watermark, don't reclaim at all.
3366 	 */
3367 	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
3368 
3369 	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
3370 }
3371 
3372 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
3373 {
3374 	/*
3375 	 * If reclaim is making progress greater than 12% efficiency then
3376 	 * wake all the NOPROGRESS throttled tasks.
3377 	 */
3378 	if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) {
3379 		wait_queue_head_t *wqh;
3380 
3381 		wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS];
3382 		if (waitqueue_active(wqh))
3383 			wake_up(wqh);
3384 
3385 		return;
3386 	}
3387 
3388 	/*
3389 	 * Do not throttle kswapd on NOPROGRESS as it will throttle on
3390 	 * VMSCAN_THROTTLE_WRITEBACK if there are too many pages under
3391 	 * writeback and marked for immediate reclaim at the tail of
3392 	 * the LRU.
3393 	 */
3394 	if (current_is_kswapd())
3395 		return;
3396 
3397 	/* Throttle if making no progress at high prioities. */
3398 	if (sc->priority < DEF_PRIORITY - 2)
3399 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS);
3400 }
3401 
3402 /*
3403  * This is the direct reclaim path, for page-allocating processes.  We only
3404  * try to reclaim pages from zones which will satisfy the caller's allocation
3405  * request.
3406  *
3407  * If a zone is deemed to be full of pinned pages then just give it a light
3408  * scan then give up on it.
3409  */
3410 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
3411 {
3412 	struct zoneref *z;
3413 	struct zone *zone;
3414 	unsigned long nr_soft_reclaimed;
3415 	unsigned long nr_soft_scanned;
3416 	gfp_t orig_mask;
3417 	pg_data_t *last_pgdat = NULL;
3418 
3419 	/*
3420 	 * If the number of buffer_heads in the machine exceeds the maximum
3421 	 * allowed level, force direct reclaim to scan the highmem zone as
3422 	 * highmem pages could be pinning lowmem pages storing buffer_heads
3423 	 */
3424 	orig_mask = sc->gfp_mask;
3425 	if (buffer_heads_over_limit) {
3426 		sc->gfp_mask |= __GFP_HIGHMEM;
3427 		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
3428 	}
3429 
3430 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
3431 					sc->reclaim_idx, sc->nodemask) {
3432 		/*
3433 		 * Take care memory controller reclaiming has small influence
3434 		 * to global LRU.
3435 		 */
3436 		if (!cgroup_reclaim(sc)) {
3437 			if (!cpuset_zone_allowed(zone,
3438 						 GFP_KERNEL | __GFP_HARDWALL))
3439 				continue;
3440 
3441 			/*
3442 			 * If we already have plenty of memory free for
3443 			 * compaction in this zone, don't free any more.
3444 			 * Even though compaction is invoked for any
3445 			 * non-zero order, only frequent costly order
3446 			 * reclamation is disruptive enough to become a
3447 			 * noticeable problem, like transparent huge
3448 			 * page allocations.
3449 			 */
3450 			if (IS_ENABLED(CONFIG_COMPACTION) &&
3451 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
3452 			    compaction_ready(zone, sc)) {
3453 				sc->compaction_ready = true;
3454 				continue;
3455 			}
3456 
3457 			/*
3458 			 * Shrink each node in the zonelist once. If the
3459 			 * zonelist is ordered by zone (not the default) then a
3460 			 * node may be shrunk multiple times but in that case
3461 			 * the user prefers lower zones being preserved.
3462 			 */
3463 			if (zone->zone_pgdat == last_pgdat)
3464 				continue;
3465 
3466 			/*
3467 			 * This steals pages from memory cgroups over softlimit
3468 			 * and returns the number of reclaimed pages and
3469 			 * scanned pages. This works for global memory pressure
3470 			 * and balancing, not for a memcg's limit.
3471 			 */
3472 			nr_soft_scanned = 0;
3473 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
3474 						sc->order, sc->gfp_mask,
3475 						&nr_soft_scanned);
3476 			sc->nr_reclaimed += nr_soft_reclaimed;
3477 			sc->nr_scanned += nr_soft_scanned;
3478 			/* need some check for avoid more shrink_zone() */
3479 		}
3480 
3481 		/* See comment about same check for global reclaim above */
3482 		if (zone->zone_pgdat == last_pgdat)
3483 			continue;
3484 		last_pgdat = zone->zone_pgdat;
3485 		shrink_node(zone->zone_pgdat, sc);
3486 		consider_reclaim_throttle(zone->zone_pgdat, sc);
3487 	}
3488 
3489 	/*
3490 	 * Restore to original mask to avoid the impact on the caller if we
3491 	 * promoted it to __GFP_HIGHMEM.
3492 	 */
3493 	sc->gfp_mask = orig_mask;
3494 }
3495 
3496 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
3497 {
3498 	struct lruvec *target_lruvec;
3499 	unsigned long refaults;
3500 
3501 	target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
3502 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
3503 	target_lruvec->refaults[0] = refaults;
3504 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
3505 	target_lruvec->refaults[1] = refaults;
3506 }
3507 
3508 /*
3509  * This is the main entry point to direct page reclaim.
3510  *
3511  * If a full scan of the inactive list fails to free enough memory then we
3512  * are "out of memory" and something needs to be killed.
3513  *
3514  * If the caller is !__GFP_FS then the probability of a failure is reasonably
3515  * high - the zone may be full of dirty or under-writeback pages, which this
3516  * caller can't do much about.  We kick the writeback threads and take explicit
3517  * naps in the hope that some of these pages can be written.  But if the
3518  * allocating task holds filesystem locks which prevent writeout this might not
3519  * work, and the allocation attempt will fail.
3520  *
3521  * returns:	0, if no pages reclaimed
3522  * 		else, the number of pages reclaimed
3523  */
3524 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3525 					  struct scan_control *sc)
3526 {
3527 	int initial_priority = sc->priority;
3528 	pg_data_t *last_pgdat;
3529 	struct zoneref *z;
3530 	struct zone *zone;
3531 retry:
3532 	delayacct_freepages_start();
3533 
3534 	if (!cgroup_reclaim(sc))
3535 		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
3536 
3537 	do {
3538 		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3539 				sc->priority);
3540 		sc->nr_scanned = 0;
3541 		shrink_zones(zonelist, sc);
3542 
3543 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3544 			break;
3545 
3546 		if (sc->compaction_ready)
3547 			break;
3548 
3549 		/*
3550 		 * If we're getting trouble reclaiming, start doing
3551 		 * writepage even in laptop mode.
3552 		 */
3553 		if (sc->priority < DEF_PRIORITY - 2)
3554 			sc->may_writepage = 1;
3555 	} while (--sc->priority >= 0);
3556 
3557 	last_pgdat = NULL;
3558 	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3559 					sc->nodemask) {
3560 		if (zone->zone_pgdat == last_pgdat)
3561 			continue;
3562 		last_pgdat = zone->zone_pgdat;
3563 
3564 		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3565 
3566 		if (cgroup_reclaim(sc)) {
3567 			struct lruvec *lruvec;
3568 
3569 			lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
3570 						   zone->zone_pgdat);
3571 			clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3572 		}
3573 	}
3574 
3575 	delayacct_freepages_end();
3576 
3577 	if (sc->nr_reclaimed)
3578 		return sc->nr_reclaimed;
3579 
3580 	/* Aborted reclaim to try compaction? don't OOM, then */
3581 	if (sc->compaction_ready)
3582 		return 1;
3583 
3584 	/*
3585 	 * We make inactive:active ratio decisions based on the node's
3586 	 * composition of memory, but a restrictive reclaim_idx or a
3587 	 * memory.low cgroup setting can exempt large amounts of
3588 	 * memory from reclaim. Neither of which are very common, so
3589 	 * instead of doing costly eligibility calculations of the
3590 	 * entire cgroup subtree up front, we assume the estimates are
3591 	 * good, and retry with forcible deactivation if that fails.
3592 	 */
3593 	if (sc->skipped_deactivate) {
3594 		sc->priority = initial_priority;
3595 		sc->force_deactivate = 1;
3596 		sc->skipped_deactivate = 0;
3597 		goto retry;
3598 	}
3599 
3600 	/* Untapped cgroup reserves?  Don't OOM, retry. */
3601 	if (sc->memcg_low_skipped) {
3602 		sc->priority = initial_priority;
3603 		sc->force_deactivate = 0;
3604 		sc->memcg_low_reclaim = 1;
3605 		sc->memcg_low_skipped = 0;
3606 		goto retry;
3607 	}
3608 
3609 	return 0;
3610 }
3611 
3612 static bool allow_direct_reclaim(pg_data_t *pgdat)
3613 {
3614 	struct zone *zone;
3615 	unsigned long pfmemalloc_reserve = 0;
3616 	unsigned long free_pages = 0;
3617 	int i;
3618 	bool wmark_ok;
3619 
3620 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3621 		return true;
3622 
3623 	for (i = 0; i <= ZONE_NORMAL; i++) {
3624 		zone = &pgdat->node_zones[i];
3625 		if (!managed_zone(zone))
3626 			continue;
3627 
3628 		if (!zone_reclaimable_pages(zone))
3629 			continue;
3630 
3631 		pfmemalloc_reserve += min_wmark_pages(zone);
3632 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
3633 	}
3634 
3635 	/* If there are no reserves (unexpected config) then do not throttle */
3636 	if (!pfmemalloc_reserve)
3637 		return true;
3638 
3639 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
3640 
3641 	/* kswapd must be awake if processes are being throttled */
3642 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3643 		if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
3644 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
3645 
3646 		wake_up_interruptible(&pgdat->kswapd_wait);
3647 	}
3648 
3649 	return wmark_ok;
3650 }
3651 
3652 /*
3653  * Throttle direct reclaimers if backing storage is backed by the network
3654  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3655  * depleted. kswapd will continue to make progress and wake the processes
3656  * when the low watermark is reached.
3657  *
3658  * Returns true if a fatal signal was delivered during throttling. If this
3659  * happens, the page allocator should not consider triggering the OOM killer.
3660  */
3661 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3662 					nodemask_t *nodemask)
3663 {
3664 	struct zoneref *z;
3665 	struct zone *zone;
3666 	pg_data_t *pgdat = NULL;
3667 
3668 	/*
3669 	 * Kernel threads should not be throttled as they may be indirectly
3670 	 * responsible for cleaning pages necessary for reclaim to make forward
3671 	 * progress. kjournald for example may enter direct reclaim while
3672 	 * committing a transaction where throttling it could forcing other
3673 	 * processes to block on log_wait_commit().
3674 	 */
3675 	if (current->flags & PF_KTHREAD)
3676 		goto out;
3677 
3678 	/*
3679 	 * If a fatal signal is pending, this process should not throttle.
3680 	 * It should return quickly so it can exit and free its memory
3681 	 */
3682 	if (fatal_signal_pending(current))
3683 		goto out;
3684 
3685 	/*
3686 	 * Check if the pfmemalloc reserves are ok by finding the first node
3687 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3688 	 * GFP_KERNEL will be required for allocating network buffers when
3689 	 * swapping over the network so ZONE_HIGHMEM is unusable.
3690 	 *
3691 	 * Throttling is based on the first usable node and throttled processes
3692 	 * wait on a queue until kswapd makes progress and wakes them. There
3693 	 * is an affinity then between processes waking up and where reclaim
3694 	 * progress has been made assuming the process wakes on the same node.
3695 	 * More importantly, processes running on remote nodes will not compete
3696 	 * for remote pfmemalloc reserves and processes on different nodes
3697 	 * should make reasonable progress.
3698 	 */
3699 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
3700 					gfp_zone(gfp_mask), nodemask) {
3701 		if (zone_idx(zone) > ZONE_NORMAL)
3702 			continue;
3703 
3704 		/* Throttle based on the first usable node */
3705 		pgdat = zone->zone_pgdat;
3706 		if (allow_direct_reclaim(pgdat))
3707 			goto out;
3708 		break;
3709 	}
3710 
3711 	/* If no zone was usable by the allocation flags then do not throttle */
3712 	if (!pgdat)
3713 		goto out;
3714 
3715 	/* Account for the throttling */
3716 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
3717 
3718 	/*
3719 	 * If the caller cannot enter the filesystem, it's possible that it
3720 	 * is due to the caller holding an FS lock or performing a journal
3721 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
3722 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
3723 	 * blocked waiting on the same lock. Instead, throttle for up to a
3724 	 * second before continuing.
3725 	 */
3726 	if (!(gfp_mask & __GFP_FS))
3727 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3728 			allow_direct_reclaim(pgdat), HZ);
3729 	else
3730 		/* Throttle until kswapd wakes the process */
3731 		wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3732 			allow_direct_reclaim(pgdat));
3733 
3734 	if (fatal_signal_pending(current))
3735 		return true;
3736 
3737 out:
3738 	return false;
3739 }
3740 
3741 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3742 				gfp_t gfp_mask, nodemask_t *nodemask)
3743 {
3744 	unsigned long nr_reclaimed;
3745 	struct scan_control sc = {
3746 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3747 		.gfp_mask = current_gfp_context(gfp_mask),
3748 		.reclaim_idx = gfp_zone(gfp_mask),
3749 		.order = order,
3750 		.nodemask = nodemask,
3751 		.priority = DEF_PRIORITY,
3752 		.may_writepage = !laptop_mode,
3753 		.may_unmap = 1,
3754 		.may_swap = 1,
3755 	};
3756 
3757 	/*
3758 	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3759 	 * Confirm they are large enough for max values.
3760 	 */
3761 	BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3762 	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3763 	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3764 
3765 	/*
3766 	 * Do not enter reclaim if fatal signal was delivered while throttled.
3767 	 * 1 is returned so that the page allocator does not OOM kill at this
3768 	 * point.
3769 	 */
3770 	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3771 		return 1;
3772 
3773 	set_task_reclaim_state(current, &sc.reclaim_state);
3774 	trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
3775 
3776 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3777 
3778 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3779 	set_task_reclaim_state(current, NULL);
3780 
3781 	return nr_reclaimed;
3782 }
3783 
3784 #ifdef CONFIG_MEMCG
3785 
3786 /* Only used by soft limit reclaim. Do not reuse for anything else. */
3787 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3788 						gfp_t gfp_mask, bool noswap,
3789 						pg_data_t *pgdat,
3790 						unsigned long *nr_scanned)
3791 {
3792 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3793 	struct scan_control sc = {
3794 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3795 		.target_mem_cgroup = memcg,
3796 		.may_writepage = !laptop_mode,
3797 		.may_unmap = 1,
3798 		.reclaim_idx = MAX_NR_ZONES - 1,
3799 		.may_swap = !noswap,
3800 	};
3801 
3802 	WARN_ON_ONCE(!current->reclaim_state);
3803 
3804 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3805 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3806 
3807 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3808 						      sc.gfp_mask);
3809 
3810 	/*
3811 	 * NOTE: Although we can get the priority field, using it
3812 	 * here is not a good idea, since it limits the pages we can scan.
3813 	 * if we don't reclaim here, the shrink_node from balance_pgdat
3814 	 * will pick up pages from other mem cgroup's as well. We hack
3815 	 * the priority and make it zero.
3816 	 */
3817 	shrink_lruvec(lruvec, &sc);
3818 
3819 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3820 
3821 	*nr_scanned = sc.nr_scanned;
3822 
3823 	return sc.nr_reclaimed;
3824 }
3825 
3826 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3827 					   unsigned long nr_pages,
3828 					   gfp_t gfp_mask,
3829 					   bool may_swap)
3830 {
3831 	unsigned long nr_reclaimed;
3832 	unsigned int noreclaim_flag;
3833 	struct scan_control sc = {
3834 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3835 		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3836 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3837 		.reclaim_idx = MAX_NR_ZONES - 1,
3838 		.target_mem_cgroup = memcg,
3839 		.priority = DEF_PRIORITY,
3840 		.may_writepage = !laptop_mode,
3841 		.may_unmap = 1,
3842 		.may_swap = may_swap,
3843 	};
3844 	/*
3845 	 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
3846 	 * equal pressure on all the nodes. This is based on the assumption that
3847 	 * the reclaim does not bail out early.
3848 	 */
3849 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3850 
3851 	set_task_reclaim_state(current, &sc.reclaim_state);
3852 	trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
3853 	noreclaim_flag = memalloc_noreclaim_save();
3854 
3855 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3856 
3857 	memalloc_noreclaim_restore(noreclaim_flag);
3858 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3859 	set_task_reclaim_state(current, NULL);
3860 
3861 	return nr_reclaimed;
3862 }
3863 #endif
3864 
3865 static void age_active_anon(struct pglist_data *pgdat,
3866 				struct scan_control *sc)
3867 {
3868 	struct mem_cgroup *memcg;
3869 	struct lruvec *lruvec;
3870 
3871 	if (!can_age_anon_pages(pgdat, sc))
3872 		return;
3873 
3874 	lruvec = mem_cgroup_lruvec(NULL, pgdat);
3875 	if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
3876 		return;
3877 
3878 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
3879 	do {
3880 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
3881 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3882 				   sc, LRU_ACTIVE_ANON);
3883 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
3884 	} while (memcg);
3885 }
3886 
3887 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
3888 {
3889 	int i;
3890 	struct zone *zone;
3891 
3892 	/*
3893 	 * Check for watermark boosts top-down as the higher zones
3894 	 * are more likely to be boosted. Both watermarks and boosts
3895 	 * should not be checked at the same time as reclaim would
3896 	 * start prematurely when there is no boosting and a lower
3897 	 * zone is balanced.
3898 	 */
3899 	for (i = highest_zoneidx; i >= 0; i--) {
3900 		zone = pgdat->node_zones + i;
3901 		if (!managed_zone(zone))
3902 			continue;
3903 
3904 		if (zone->watermark_boost)
3905 			return true;
3906 	}
3907 
3908 	return false;
3909 }
3910 
3911 /*
3912  * Returns true if there is an eligible zone balanced for the request order
3913  * and highest_zoneidx
3914  */
3915 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
3916 {
3917 	int i;
3918 	unsigned long mark = -1;
3919 	struct zone *zone;
3920 
3921 	/*
3922 	 * Check watermarks bottom-up as lower zones are more likely to
3923 	 * meet watermarks.
3924 	 */
3925 	for (i = 0; i <= highest_zoneidx; i++) {
3926 		zone = pgdat->node_zones + i;
3927 
3928 		if (!managed_zone(zone))
3929 			continue;
3930 
3931 		mark = high_wmark_pages(zone);
3932 		if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
3933 			return true;
3934 	}
3935 
3936 	/*
3937 	 * If a node has no populated zone within highest_zoneidx, it does not
3938 	 * need balancing by definition. This can happen if a zone-restricted
3939 	 * allocation tries to wake a remote kswapd.
3940 	 */
3941 	if (mark == -1)
3942 		return true;
3943 
3944 	return false;
3945 }
3946 
3947 /* Clear pgdat state for congested, dirty or under writeback. */
3948 static void clear_pgdat_congested(pg_data_t *pgdat)
3949 {
3950 	struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
3951 
3952 	clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3953 	clear_bit(PGDAT_DIRTY, &pgdat->flags);
3954 	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3955 }
3956 
3957 /*
3958  * Prepare kswapd for sleeping. This verifies that there are no processes
3959  * waiting in throttle_direct_reclaim() and that watermarks have been met.
3960  *
3961  * Returns true if kswapd is ready to sleep
3962  */
3963 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
3964 				int highest_zoneidx)
3965 {
3966 	/*
3967 	 * The throttled processes are normally woken up in balance_pgdat() as
3968 	 * soon as allow_direct_reclaim() is true. But there is a potential
3969 	 * race between when kswapd checks the watermarks and a process gets
3970 	 * throttled. There is also a potential race if processes get
3971 	 * throttled, kswapd wakes, a large process exits thereby balancing the
3972 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
3973 	 * the wake up checks. If kswapd is going to sleep, no process should
3974 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3975 	 * the wake up is premature, processes will wake kswapd and get
3976 	 * throttled again. The difference from wake ups in balance_pgdat() is
3977 	 * that here we are under prepare_to_wait().
3978 	 */
3979 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
3980 		wake_up_all(&pgdat->pfmemalloc_wait);
3981 
3982 	/* Hopeless node, leave it to direct reclaim */
3983 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3984 		return true;
3985 
3986 	if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
3987 		clear_pgdat_congested(pgdat);
3988 		return true;
3989 	}
3990 
3991 	return false;
3992 }
3993 
3994 /*
3995  * kswapd shrinks a node of pages that are at or below the highest usable
3996  * zone that is currently unbalanced.
3997  *
3998  * Returns true if kswapd scanned at least the requested number of pages to
3999  * reclaim or if the lack of progress was due to pages under writeback.
4000  * This is used to determine if the scanning priority needs to be raised.
4001  */
4002 static bool kswapd_shrink_node(pg_data_t *pgdat,
4003 			       struct scan_control *sc)
4004 {
4005 	struct zone *zone;
4006 	int z;
4007 
4008 	/* Reclaim a number of pages proportional to the number of zones */
4009 	sc->nr_to_reclaim = 0;
4010 	for (z = 0; z <= sc->reclaim_idx; z++) {
4011 		zone = pgdat->node_zones + z;
4012 		if (!managed_zone(zone))
4013 			continue;
4014 
4015 		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
4016 	}
4017 
4018 	/*
4019 	 * Historically care was taken to put equal pressure on all zones but
4020 	 * now pressure is applied based on node LRU order.
4021 	 */
4022 	shrink_node(pgdat, sc);
4023 
4024 	/*
4025 	 * Fragmentation may mean that the system cannot be rebalanced for
4026 	 * high-order allocations. If twice the allocation size has been
4027 	 * reclaimed then recheck watermarks only at order-0 to prevent
4028 	 * excessive reclaim. Assume that a process requested a high-order
4029 	 * can direct reclaim/compact.
4030 	 */
4031 	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
4032 		sc->order = 0;
4033 
4034 	return sc->nr_scanned >= sc->nr_to_reclaim;
4035 }
4036 
4037 /* Page allocator PCP high watermark is lowered if reclaim is active. */
4038 static inline void
4039 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
4040 {
4041 	int i;
4042 	struct zone *zone;
4043 
4044 	for (i = 0; i <= highest_zoneidx; i++) {
4045 		zone = pgdat->node_zones + i;
4046 
4047 		if (!managed_zone(zone))
4048 			continue;
4049 
4050 		if (active)
4051 			set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
4052 		else
4053 			clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
4054 	}
4055 }
4056 
4057 static inline void
4058 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
4059 {
4060 	update_reclaim_active(pgdat, highest_zoneidx, true);
4061 }
4062 
4063 static inline void
4064 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
4065 {
4066 	update_reclaim_active(pgdat, highest_zoneidx, false);
4067 }
4068 
4069 /*
4070  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
4071  * that are eligible for use by the caller until at least one zone is
4072  * balanced.
4073  *
4074  * Returns the order kswapd finished reclaiming at.
4075  *
4076  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
4077  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
4078  * found to have free_pages <= high_wmark_pages(zone), any page in that zone
4079  * or lower is eligible for reclaim until at least one usable zone is
4080  * balanced.
4081  */
4082 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
4083 {
4084 	int i;
4085 	unsigned long nr_soft_reclaimed;
4086 	unsigned long nr_soft_scanned;
4087 	unsigned long pflags;
4088 	unsigned long nr_boost_reclaim;
4089 	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
4090 	bool boosted;
4091 	struct zone *zone;
4092 	struct scan_control sc = {
4093 		.gfp_mask = GFP_KERNEL,
4094 		.order = order,
4095 		.may_unmap = 1,
4096 	};
4097 
4098 	set_task_reclaim_state(current, &sc.reclaim_state);
4099 	psi_memstall_enter(&pflags);
4100 	__fs_reclaim_acquire(_THIS_IP_);
4101 
4102 	count_vm_event(PAGEOUTRUN);
4103 
4104 	/*
4105 	 * Account for the reclaim boost. Note that the zone boost is left in
4106 	 * place so that parallel allocations that are near the watermark will
4107 	 * stall or direct reclaim until kswapd is finished.
4108 	 */
4109 	nr_boost_reclaim = 0;
4110 	for (i = 0; i <= highest_zoneidx; i++) {
4111 		zone = pgdat->node_zones + i;
4112 		if (!managed_zone(zone))
4113 			continue;
4114 
4115 		nr_boost_reclaim += zone->watermark_boost;
4116 		zone_boosts[i] = zone->watermark_boost;
4117 	}
4118 	boosted = nr_boost_reclaim;
4119 
4120 restart:
4121 	set_reclaim_active(pgdat, highest_zoneidx);
4122 	sc.priority = DEF_PRIORITY;
4123 	do {
4124 		unsigned long nr_reclaimed = sc.nr_reclaimed;
4125 		bool raise_priority = true;
4126 		bool balanced;
4127 		bool ret;
4128 
4129 		sc.reclaim_idx = highest_zoneidx;
4130 
4131 		/*
4132 		 * If the number of buffer_heads exceeds the maximum allowed
4133 		 * then consider reclaiming from all zones. This has a dual
4134 		 * purpose -- on 64-bit systems it is expected that
4135 		 * buffer_heads are stripped during active rotation. On 32-bit
4136 		 * systems, highmem pages can pin lowmem memory and shrinking
4137 		 * buffers can relieve lowmem pressure. Reclaim may still not
4138 		 * go ahead if all eligible zones for the original allocation
4139 		 * request are balanced to avoid excessive reclaim from kswapd.
4140 		 */
4141 		if (buffer_heads_over_limit) {
4142 			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
4143 				zone = pgdat->node_zones + i;
4144 				if (!managed_zone(zone))
4145 					continue;
4146 
4147 				sc.reclaim_idx = i;
4148 				break;
4149 			}
4150 		}
4151 
4152 		/*
4153 		 * If the pgdat is imbalanced then ignore boosting and preserve
4154 		 * the watermarks for a later time and restart. Note that the
4155 		 * zone watermarks will be still reset at the end of balancing
4156 		 * on the grounds that the normal reclaim should be enough to
4157 		 * re-evaluate if boosting is required when kswapd next wakes.
4158 		 */
4159 		balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
4160 		if (!balanced && nr_boost_reclaim) {
4161 			nr_boost_reclaim = 0;
4162 			goto restart;
4163 		}
4164 
4165 		/*
4166 		 * If boosting is not active then only reclaim if there are no
4167 		 * eligible zones. Note that sc.reclaim_idx is not used as
4168 		 * buffer_heads_over_limit may have adjusted it.
4169 		 */
4170 		if (!nr_boost_reclaim && balanced)
4171 			goto out;
4172 
4173 		/* Limit the priority of boosting to avoid reclaim writeback */
4174 		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
4175 			raise_priority = false;
4176 
4177 		/*
4178 		 * Do not writeback or swap pages for boosted reclaim. The
4179 		 * intent is to relieve pressure not issue sub-optimal IO
4180 		 * from reclaim context. If no pages are reclaimed, the
4181 		 * reclaim will be aborted.
4182 		 */
4183 		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
4184 		sc.may_swap = !nr_boost_reclaim;
4185 
4186 		/*
4187 		 * Do some background aging of the anon list, to give
4188 		 * pages a chance to be referenced before reclaiming. All
4189 		 * pages are rotated regardless of classzone as this is
4190 		 * about consistent aging.
4191 		 */
4192 		age_active_anon(pgdat, &sc);
4193 
4194 		/*
4195 		 * If we're getting trouble reclaiming, start doing writepage
4196 		 * even in laptop mode.
4197 		 */
4198 		if (sc.priority < DEF_PRIORITY - 2)
4199 			sc.may_writepage = 1;
4200 
4201 		/* Call soft limit reclaim before calling shrink_node. */
4202 		sc.nr_scanned = 0;
4203 		nr_soft_scanned = 0;
4204 		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
4205 						sc.gfp_mask, &nr_soft_scanned);
4206 		sc.nr_reclaimed += nr_soft_reclaimed;
4207 
4208 		/*
4209 		 * There should be no need to raise the scanning priority if
4210 		 * enough pages are already being scanned that that high
4211 		 * watermark would be met at 100% efficiency.
4212 		 */
4213 		if (kswapd_shrink_node(pgdat, &sc))
4214 			raise_priority = false;
4215 
4216 		/*
4217 		 * If the low watermark is met there is no need for processes
4218 		 * to be throttled on pfmemalloc_wait as they should not be
4219 		 * able to safely make forward progress. Wake them
4220 		 */
4221 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
4222 				allow_direct_reclaim(pgdat))
4223 			wake_up_all(&pgdat->pfmemalloc_wait);
4224 
4225 		/* Check if kswapd should be suspending */
4226 		__fs_reclaim_release(_THIS_IP_);
4227 		ret = try_to_freeze();
4228 		__fs_reclaim_acquire(_THIS_IP_);
4229 		if (ret || kthread_should_stop())
4230 			break;
4231 
4232 		/*
4233 		 * Raise priority if scanning rate is too low or there was no
4234 		 * progress in reclaiming pages
4235 		 */
4236 		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
4237 		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
4238 
4239 		/*
4240 		 * If reclaim made no progress for a boost, stop reclaim as
4241 		 * IO cannot be queued and it could be an infinite loop in
4242 		 * extreme circumstances.
4243 		 */
4244 		if (nr_boost_reclaim && !nr_reclaimed)
4245 			break;
4246 
4247 		if (raise_priority || !nr_reclaimed)
4248 			sc.priority--;
4249 	} while (sc.priority >= 1);
4250 
4251 	if (!sc.nr_reclaimed)
4252 		pgdat->kswapd_failures++;
4253 
4254 out:
4255 	clear_reclaim_active(pgdat, highest_zoneidx);
4256 
4257 	/* If reclaim was boosted, account for the reclaim done in this pass */
4258 	if (boosted) {
4259 		unsigned long flags;
4260 
4261 		for (i = 0; i <= highest_zoneidx; i++) {
4262 			if (!zone_boosts[i])
4263 				continue;
4264 
4265 			/* Increments are under the zone lock */
4266 			zone = pgdat->node_zones + i;
4267 			spin_lock_irqsave(&zone->lock, flags);
4268 			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
4269 			spin_unlock_irqrestore(&zone->lock, flags);
4270 		}
4271 
4272 		/*
4273 		 * As there is now likely space, wakeup kcompact to defragment
4274 		 * pageblocks.
4275 		 */
4276 		wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
4277 	}
4278 
4279 	snapshot_refaults(NULL, pgdat);
4280 	__fs_reclaim_release(_THIS_IP_);
4281 	psi_memstall_leave(&pflags);
4282 	set_task_reclaim_state(current, NULL);
4283 
4284 	/*
4285 	 * Return the order kswapd stopped reclaiming at as
4286 	 * prepare_kswapd_sleep() takes it into account. If another caller
4287 	 * entered the allocator slow path while kswapd was awake, order will
4288 	 * remain at the higher level.
4289 	 */
4290 	return sc.order;
4291 }
4292 
4293 /*
4294  * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
4295  * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
4296  * not a valid index then either kswapd runs for first time or kswapd couldn't
4297  * sleep after previous reclaim attempt (node is still unbalanced). In that
4298  * case return the zone index of the previous kswapd reclaim cycle.
4299  */
4300 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
4301 					   enum zone_type prev_highest_zoneidx)
4302 {
4303 	enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
4304 
4305 	return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
4306 }
4307 
4308 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
4309 				unsigned int highest_zoneidx)
4310 {
4311 	long remaining = 0;
4312 	DEFINE_WAIT(wait);
4313 
4314 	if (freezing(current) || kthread_should_stop())
4315 		return;
4316 
4317 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
4318 
4319 	/*
4320 	 * Try to sleep for a short interval. Note that kcompactd will only be
4321 	 * woken if it is possible to sleep for a short interval. This is
4322 	 * deliberate on the assumption that if reclaim cannot keep an
4323 	 * eligible zone balanced that it's also unlikely that compaction will
4324 	 * succeed.
4325 	 */
4326 	if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
4327 		/*
4328 		 * Compaction records what page blocks it recently failed to
4329 		 * isolate pages from and skips them in the future scanning.
4330 		 * When kswapd is going to sleep, it is reasonable to assume
4331 		 * that pages and compaction may succeed so reset the cache.
4332 		 */
4333 		reset_isolation_suitable(pgdat);
4334 
4335 		/*
4336 		 * We have freed the memory, now we should compact it to make
4337 		 * allocation of the requested order possible.
4338 		 */
4339 		wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
4340 
4341 		remaining = schedule_timeout(HZ/10);
4342 
4343 		/*
4344 		 * If woken prematurely then reset kswapd_highest_zoneidx and
4345 		 * order. The values will either be from a wakeup request or
4346 		 * the previous request that slept prematurely.
4347 		 */
4348 		if (remaining) {
4349 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
4350 					kswapd_highest_zoneidx(pgdat,
4351 							highest_zoneidx));
4352 
4353 			if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
4354 				WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
4355 		}
4356 
4357 		finish_wait(&pgdat->kswapd_wait, &wait);
4358 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
4359 	}
4360 
4361 	/*
4362 	 * After a short sleep, check if it was a premature sleep. If not, then
4363 	 * go fully to sleep until explicitly woken up.
4364 	 */
4365 	if (!remaining &&
4366 	    prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
4367 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
4368 
4369 		/*
4370 		 * vmstat counters are not perfectly accurate and the estimated
4371 		 * value for counters such as NR_FREE_PAGES can deviate from the
4372 		 * true value by nr_online_cpus * threshold. To avoid the zone
4373 		 * watermarks being breached while under pressure, we reduce the
4374 		 * per-cpu vmstat threshold while kswapd is awake and restore
4375 		 * them before going back to sleep.
4376 		 */
4377 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
4378 
4379 		if (!kthread_should_stop())
4380 			schedule();
4381 
4382 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
4383 	} else {
4384 		if (remaining)
4385 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
4386 		else
4387 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
4388 	}
4389 	finish_wait(&pgdat->kswapd_wait, &wait);
4390 }
4391 
4392 /*
4393  * The background pageout daemon, started as a kernel thread
4394  * from the init process.
4395  *
4396  * This basically trickles out pages so that we have _some_
4397  * free memory available even if there is no other activity
4398  * that frees anything up. This is needed for things like routing
4399  * etc, where we otherwise might have all activity going on in
4400  * asynchronous contexts that cannot page things out.
4401  *
4402  * If there are applications that are active memory-allocators
4403  * (most normal use), this basically shouldn't matter.
4404  */
4405 static int kswapd(void *p)
4406 {
4407 	unsigned int alloc_order, reclaim_order;
4408 	unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
4409 	pg_data_t *pgdat = (pg_data_t *)p;
4410 	struct task_struct *tsk = current;
4411 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
4412 
4413 	if (!cpumask_empty(cpumask))
4414 		set_cpus_allowed_ptr(tsk, cpumask);
4415 
4416 	/*
4417 	 * Tell the memory management that we're a "memory allocator",
4418 	 * and that if we need more memory we should get access to it
4419 	 * regardless (see "__alloc_pages()"). "kswapd" should
4420 	 * never get caught in the normal page freeing logic.
4421 	 *
4422 	 * (Kswapd normally doesn't need memory anyway, but sometimes
4423 	 * you need a small amount of memory in order to be able to
4424 	 * page out something else, and this flag essentially protects
4425 	 * us from recursively trying to free more memory as we're
4426 	 * trying to free the first piece of memory in the first place).
4427 	 */
4428 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
4429 	set_freezable();
4430 
4431 	WRITE_ONCE(pgdat->kswapd_order, 0);
4432 	WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
4433 	atomic_set(&pgdat->nr_writeback_throttled, 0);
4434 	for ( ; ; ) {
4435 		bool ret;
4436 
4437 		alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
4438 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
4439 							highest_zoneidx);
4440 
4441 kswapd_try_sleep:
4442 		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
4443 					highest_zoneidx);
4444 
4445 		/* Read the new order and highest_zoneidx */
4446 		alloc_order = READ_ONCE(pgdat->kswapd_order);
4447 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
4448 							highest_zoneidx);
4449 		WRITE_ONCE(pgdat->kswapd_order, 0);
4450 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
4451 
4452 		ret = try_to_freeze();
4453 		if (kthread_should_stop())
4454 			break;
4455 
4456 		/*
4457 		 * We can speed up thawing tasks if we don't call balance_pgdat
4458 		 * after returning from the refrigerator
4459 		 */
4460 		if (ret)
4461 			continue;
4462 
4463 		/*
4464 		 * Reclaim begins at the requested order but if a high-order
4465 		 * reclaim fails then kswapd falls back to reclaiming for
4466 		 * order-0. If that happens, kswapd will consider sleeping
4467 		 * for the order it finished reclaiming at (reclaim_order)
4468 		 * but kcompactd is woken to compact for the original
4469 		 * request (alloc_order).
4470 		 */
4471 		trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
4472 						alloc_order);
4473 		reclaim_order = balance_pgdat(pgdat, alloc_order,
4474 						highest_zoneidx);
4475 		if (reclaim_order < alloc_order)
4476 			goto kswapd_try_sleep;
4477 	}
4478 
4479 	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
4480 
4481 	return 0;
4482 }
4483 
4484 /*
4485  * A zone is low on free memory or too fragmented for high-order memory.  If
4486  * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
4487  * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
4488  * has failed or is not needed, still wake up kcompactd if only compaction is
4489  * needed.
4490  */
4491 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
4492 		   enum zone_type highest_zoneidx)
4493 {
4494 	pg_data_t *pgdat;
4495 	enum zone_type curr_idx;
4496 
4497 	if (!managed_zone(zone))
4498 		return;
4499 
4500 	if (!cpuset_zone_allowed(zone, gfp_flags))
4501 		return;
4502 
4503 	pgdat = zone->zone_pgdat;
4504 	curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
4505 
4506 	if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
4507 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
4508 
4509 	if (READ_ONCE(pgdat->kswapd_order) < order)
4510 		WRITE_ONCE(pgdat->kswapd_order, order);
4511 
4512 	if (!waitqueue_active(&pgdat->kswapd_wait))
4513 		return;
4514 
4515 	/* Hopeless node, leave it to direct reclaim if possible */
4516 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
4517 	    (pgdat_balanced(pgdat, order, highest_zoneidx) &&
4518 	     !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
4519 		/*
4520 		 * There may be plenty of free memory available, but it's too
4521 		 * fragmented for high-order allocations.  Wake up kcompactd
4522 		 * and rely on compaction_suitable() to determine if it's
4523 		 * needed.  If it fails, it will defer subsequent attempts to
4524 		 * ratelimit its work.
4525 		 */
4526 		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
4527 			wakeup_kcompactd(pgdat, order, highest_zoneidx);
4528 		return;
4529 	}
4530 
4531 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
4532 				      gfp_flags);
4533 	wake_up_interruptible(&pgdat->kswapd_wait);
4534 }
4535 
4536 #ifdef CONFIG_HIBERNATION
4537 /*
4538  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
4539  * freed pages.
4540  *
4541  * Rather than trying to age LRUs the aim is to preserve the overall
4542  * LRU order by reclaiming preferentially
4543  * inactive > active > active referenced > active mapped
4544  */
4545 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
4546 {
4547 	struct scan_control sc = {
4548 		.nr_to_reclaim = nr_to_reclaim,
4549 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
4550 		.reclaim_idx = MAX_NR_ZONES - 1,
4551 		.priority = DEF_PRIORITY,
4552 		.may_writepage = 1,
4553 		.may_unmap = 1,
4554 		.may_swap = 1,
4555 		.hibernation_mode = 1,
4556 	};
4557 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
4558 	unsigned long nr_reclaimed;
4559 	unsigned int noreclaim_flag;
4560 
4561 	fs_reclaim_acquire(sc.gfp_mask);
4562 	noreclaim_flag = memalloc_noreclaim_save();
4563 	set_task_reclaim_state(current, &sc.reclaim_state);
4564 
4565 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
4566 
4567 	set_task_reclaim_state(current, NULL);
4568 	memalloc_noreclaim_restore(noreclaim_flag);
4569 	fs_reclaim_release(sc.gfp_mask);
4570 
4571 	return nr_reclaimed;
4572 }
4573 #endif /* CONFIG_HIBERNATION */
4574 
4575 /*
4576  * This kswapd start function will be called by init and node-hot-add.
4577  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
4578  */
4579 void kswapd_run(int nid)
4580 {
4581 	pg_data_t *pgdat = NODE_DATA(nid);
4582 
4583 	if (pgdat->kswapd)
4584 		return;
4585 
4586 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4587 	if (IS_ERR(pgdat->kswapd)) {
4588 		/* failure at boot is fatal */
4589 		BUG_ON(system_state < SYSTEM_RUNNING);
4590 		pr_err("Failed to start kswapd on node %d\n", nid);
4591 		pgdat->kswapd = NULL;
4592 	}
4593 }
4594 
4595 /*
4596  * Called by memory hotplug when all memory in a node is offlined.  Caller must
4597  * hold mem_hotplug_begin/end().
4598  */
4599 void kswapd_stop(int nid)
4600 {
4601 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4602 
4603 	if (kswapd) {
4604 		kthread_stop(kswapd);
4605 		NODE_DATA(nid)->kswapd = NULL;
4606 	}
4607 }
4608 
4609 static int __init kswapd_init(void)
4610 {
4611 	int nid;
4612 
4613 	swap_setup();
4614 	for_each_node_state(nid, N_MEMORY)
4615  		kswapd_run(nid);
4616 	return 0;
4617 }
4618 
4619 module_init(kswapd_init)
4620 
4621 #ifdef CONFIG_NUMA
4622 /*
4623  * Node reclaim mode
4624  *
4625  * If non-zero call node_reclaim when the number of free pages falls below
4626  * the watermarks.
4627  */
4628 int node_reclaim_mode __read_mostly;
4629 
4630 /*
4631  * Priority for NODE_RECLAIM. This determines the fraction of pages
4632  * of a node considered for each zone_reclaim. 4 scans 1/16th of
4633  * a zone.
4634  */
4635 #define NODE_RECLAIM_PRIORITY 4
4636 
4637 /*
4638  * Percentage of pages in a zone that must be unmapped for node_reclaim to
4639  * occur.
4640  */
4641 int sysctl_min_unmapped_ratio = 1;
4642 
4643 /*
4644  * If the number of slab pages in a zone grows beyond this percentage then
4645  * slab reclaim needs to occur.
4646  */
4647 int sysctl_min_slab_ratio = 5;
4648 
4649 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4650 {
4651 	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4652 	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4653 		node_page_state(pgdat, NR_ACTIVE_FILE);
4654 
4655 	/*
4656 	 * It's possible for there to be more file mapped pages than
4657 	 * accounted for by the pages on the file LRU lists because
4658 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4659 	 */
4660 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4661 }
4662 
4663 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
4664 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4665 {
4666 	unsigned long nr_pagecache_reclaimable;
4667 	unsigned long delta = 0;
4668 
4669 	/*
4670 	 * If RECLAIM_UNMAP is set, then all file pages are considered
4671 	 * potentially reclaimable. Otherwise, we have to worry about
4672 	 * pages like swapcache and node_unmapped_file_pages() provides
4673 	 * a better estimate
4674 	 */
4675 	if (node_reclaim_mode & RECLAIM_UNMAP)
4676 		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4677 	else
4678 		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4679 
4680 	/* If we can't clean pages, remove dirty pages from consideration */
4681 	if (!(node_reclaim_mode & RECLAIM_WRITE))
4682 		delta += node_page_state(pgdat, NR_FILE_DIRTY);
4683 
4684 	/* Watch for any possible underflows due to delta */
4685 	if (unlikely(delta > nr_pagecache_reclaimable))
4686 		delta = nr_pagecache_reclaimable;
4687 
4688 	return nr_pagecache_reclaimable - delta;
4689 }
4690 
4691 /*
4692  * Try to free up some pages from this node through reclaim.
4693  */
4694 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4695 {
4696 	/* Minimum pages needed in order to stay on node */
4697 	const unsigned long nr_pages = 1 << order;
4698 	struct task_struct *p = current;
4699 	unsigned int noreclaim_flag;
4700 	struct scan_control sc = {
4701 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4702 		.gfp_mask = current_gfp_context(gfp_mask),
4703 		.order = order,
4704 		.priority = NODE_RECLAIM_PRIORITY,
4705 		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4706 		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4707 		.may_swap = 1,
4708 		.reclaim_idx = gfp_zone(gfp_mask),
4709 	};
4710 	unsigned long pflags;
4711 
4712 	trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4713 					   sc.gfp_mask);
4714 
4715 	cond_resched();
4716 	psi_memstall_enter(&pflags);
4717 	fs_reclaim_acquire(sc.gfp_mask);
4718 	/*
4719 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4720 	 * and we also need to be able to write out pages for RECLAIM_WRITE
4721 	 * and RECLAIM_UNMAP.
4722 	 */
4723 	noreclaim_flag = memalloc_noreclaim_save();
4724 	p->flags |= PF_SWAPWRITE;
4725 	set_task_reclaim_state(p, &sc.reclaim_state);
4726 
4727 	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4728 		/*
4729 		 * Free memory by calling shrink node with increasing
4730 		 * priorities until we have enough memory freed.
4731 		 */
4732 		do {
4733 			shrink_node(pgdat, &sc);
4734 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4735 	}
4736 
4737 	set_task_reclaim_state(p, NULL);
4738 	current->flags &= ~PF_SWAPWRITE;
4739 	memalloc_noreclaim_restore(noreclaim_flag);
4740 	fs_reclaim_release(sc.gfp_mask);
4741 	psi_memstall_leave(&pflags);
4742 
4743 	trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4744 
4745 	return sc.nr_reclaimed >= nr_pages;
4746 }
4747 
4748 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4749 {
4750 	int ret;
4751 
4752 	/*
4753 	 * Node reclaim reclaims unmapped file backed pages and
4754 	 * slab pages if we are over the defined limits.
4755 	 *
4756 	 * A small portion of unmapped file backed pages is needed for
4757 	 * file I/O otherwise pages read by file I/O will be immediately
4758 	 * thrown out if the node is overallocated. So we do not reclaim
4759 	 * if less than a specified percentage of the node is used by
4760 	 * unmapped file backed pages.
4761 	 */
4762 	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4763 	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
4764 	    pgdat->min_slab_pages)
4765 		return NODE_RECLAIM_FULL;
4766 
4767 	/*
4768 	 * Do not scan if the allocation should not be delayed.
4769 	 */
4770 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4771 		return NODE_RECLAIM_NOSCAN;
4772 
4773 	/*
4774 	 * Only run node reclaim on the local node or on nodes that do not
4775 	 * have associated processors. This will favor the local processor
4776 	 * over remote processors and spread off node memory allocations
4777 	 * as wide as possible.
4778 	 */
4779 	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4780 		return NODE_RECLAIM_NOSCAN;
4781 
4782 	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4783 		return NODE_RECLAIM_NOSCAN;
4784 
4785 	ret = __node_reclaim(pgdat, gfp_mask, order);
4786 	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4787 
4788 	if (!ret)
4789 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4790 
4791 	return ret;
4792 }
4793 #endif
4794 
4795 /**
4796  * check_move_unevictable_pages - check pages for evictability and move to
4797  * appropriate zone lru list
4798  * @pvec: pagevec with lru pages to check
4799  *
4800  * Checks pages for evictability, if an evictable page is in the unevictable
4801  * lru list, moves it to the appropriate evictable lru list. This function
4802  * should be only used for lru pages.
4803  */
4804 void check_move_unevictable_pages(struct pagevec *pvec)
4805 {
4806 	struct lruvec *lruvec = NULL;
4807 	int pgscanned = 0;
4808 	int pgrescued = 0;
4809 	int i;
4810 
4811 	for (i = 0; i < pvec->nr; i++) {
4812 		struct page *page = pvec->pages[i];
4813 		struct folio *folio = page_folio(page);
4814 		int nr_pages;
4815 
4816 		if (PageTransTail(page))
4817 			continue;
4818 
4819 		nr_pages = thp_nr_pages(page);
4820 		pgscanned += nr_pages;
4821 
4822 		/* block memcg migration during page moving between lru */
4823 		if (!TestClearPageLRU(page))
4824 			continue;
4825 
4826 		lruvec = folio_lruvec_relock_irq(folio, lruvec);
4827 		if (page_evictable(page) && PageUnevictable(page)) {
4828 			del_page_from_lru_list(page, lruvec);
4829 			ClearPageUnevictable(page);
4830 			add_page_to_lru_list(page, lruvec);
4831 			pgrescued += nr_pages;
4832 		}
4833 		SetPageLRU(page);
4834 	}
4835 
4836 	if (lruvec) {
4837 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4838 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4839 		unlock_page_lruvec_irq(lruvec);
4840 	} else if (pgscanned) {
4841 		count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4842 	}
4843 }
4844 EXPORT_SYMBOL_GPL(check_move_unevictable_pages);
4845