xref: /linux/mm/vmscan.c (revision 9cfc5c90ad38c8fc11bfd39de42a107da00871ba)
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13 
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h>	/* for try_to_release_page(),
30 					buffer_heads_over_limit */
31 #include <linux/mm_inline.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rmap.h>
34 #include <linux/topology.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/compaction.h>
38 #include <linux/notifier.h>
39 #include <linux/rwsem.h>
40 #include <linux/delay.h>
41 #include <linux/kthread.h>
42 #include <linux/freezer.h>
43 #include <linux/memcontrol.h>
44 #include <linux/delayacct.h>
45 #include <linux/sysctl.h>
46 #include <linux/oom.h>
47 #include <linux/prefetch.h>
48 #include <linux/printk.h>
49 
50 #include <asm/tlbflush.h>
51 #include <asm/div64.h>
52 
53 #include <linux/swapops.h>
54 #include <linux/balloon_compaction.h>
55 
56 #include "internal.h"
57 
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/vmscan.h>
60 
61 struct scan_control {
62 	/* How many pages shrink_list() should reclaim */
63 	unsigned long nr_to_reclaim;
64 
65 	/* This context's GFP mask */
66 	gfp_t gfp_mask;
67 
68 	/* Allocation order */
69 	int order;
70 
71 	/*
72 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
73 	 * are scanned.
74 	 */
75 	nodemask_t	*nodemask;
76 
77 	/*
78 	 * The memory cgroup that hit its limit and as a result is the
79 	 * primary target of this reclaim invocation.
80 	 */
81 	struct mem_cgroup *target_mem_cgroup;
82 
83 	/* Scan (total_size >> priority) pages at once */
84 	int priority;
85 
86 	unsigned int may_writepage:1;
87 
88 	/* Can mapped pages be reclaimed? */
89 	unsigned int may_unmap:1;
90 
91 	/* Can pages be swapped as part of reclaim? */
92 	unsigned int may_swap:1;
93 
94 	/* Can cgroups be reclaimed below their normal consumption range? */
95 	unsigned int may_thrash:1;
96 
97 	unsigned int hibernation_mode:1;
98 
99 	/* One of the zones is ready for compaction */
100 	unsigned int compaction_ready:1;
101 
102 	/* Incremented by the number of inactive pages that were scanned */
103 	unsigned long nr_scanned;
104 
105 	/* Number of pages freed so far during a call to shrink_zones() */
106 	unsigned long nr_reclaimed;
107 };
108 
109 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
110 
111 #ifdef ARCH_HAS_PREFETCH
112 #define prefetch_prev_lru_page(_page, _base, _field)			\
113 	do {								\
114 		if ((_page)->lru.prev != _base) {			\
115 			struct page *prev;				\
116 									\
117 			prev = lru_to_page(&(_page->lru));		\
118 			prefetch(&prev->_field);			\
119 		}							\
120 	} while (0)
121 #else
122 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
123 #endif
124 
125 #ifdef ARCH_HAS_PREFETCHW
126 #define prefetchw_prev_lru_page(_page, _base, _field)			\
127 	do {								\
128 		if ((_page)->lru.prev != _base) {			\
129 			struct page *prev;				\
130 									\
131 			prev = lru_to_page(&(_page->lru));		\
132 			prefetchw(&prev->_field);			\
133 		}							\
134 	} while (0)
135 #else
136 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
137 #endif
138 
139 /*
140  * From 0 .. 100.  Higher means more swappy.
141  */
142 int vm_swappiness = 60;
143 /*
144  * The total number of pages which are beyond the high watermark within all
145  * zones.
146  */
147 unsigned long vm_total_pages;
148 
149 static LIST_HEAD(shrinker_list);
150 static DECLARE_RWSEM(shrinker_rwsem);
151 
152 #ifdef CONFIG_MEMCG
153 static bool global_reclaim(struct scan_control *sc)
154 {
155 	return !sc->target_mem_cgroup;
156 }
157 
158 /**
159  * sane_reclaim - is the usual dirty throttling mechanism operational?
160  * @sc: scan_control in question
161  *
162  * The normal page dirty throttling mechanism in balance_dirty_pages() is
163  * completely broken with the legacy memcg and direct stalling in
164  * shrink_page_list() is used for throttling instead, which lacks all the
165  * niceties such as fairness, adaptive pausing, bandwidth proportional
166  * allocation and configurability.
167  *
168  * This function tests whether the vmscan currently in progress can assume
169  * that the normal dirty throttling mechanism is operational.
170  */
171 static bool sane_reclaim(struct scan_control *sc)
172 {
173 	struct mem_cgroup *memcg = sc->target_mem_cgroup;
174 
175 	if (!memcg)
176 		return true;
177 #ifdef CONFIG_CGROUP_WRITEBACK
178 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
179 		return true;
180 #endif
181 	return false;
182 }
183 #else
184 static bool global_reclaim(struct scan_control *sc)
185 {
186 	return true;
187 }
188 
189 static bool sane_reclaim(struct scan_control *sc)
190 {
191 	return true;
192 }
193 #endif
194 
195 static unsigned long zone_reclaimable_pages(struct zone *zone)
196 {
197 	unsigned long nr;
198 
199 	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
200 	     zone_page_state(zone, NR_INACTIVE_FILE);
201 
202 	if (get_nr_swap_pages() > 0)
203 		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
204 		      zone_page_state(zone, NR_INACTIVE_ANON);
205 
206 	return nr;
207 }
208 
209 bool zone_reclaimable(struct zone *zone)
210 {
211 	return zone_page_state(zone, NR_PAGES_SCANNED) <
212 		zone_reclaimable_pages(zone) * 6;
213 }
214 
215 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
216 {
217 	if (!mem_cgroup_disabled())
218 		return mem_cgroup_get_lru_size(lruvec, lru);
219 
220 	return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
221 }
222 
223 /*
224  * Add a shrinker callback to be called from the vm.
225  */
226 int register_shrinker(struct shrinker *shrinker)
227 {
228 	size_t size = sizeof(*shrinker->nr_deferred);
229 
230 	/*
231 	 * If we only have one possible node in the system anyway, save
232 	 * ourselves the trouble and disable NUMA aware behavior. This way we
233 	 * will save memory and some small loop time later.
234 	 */
235 	if (nr_node_ids == 1)
236 		shrinker->flags &= ~SHRINKER_NUMA_AWARE;
237 
238 	if (shrinker->flags & SHRINKER_NUMA_AWARE)
239 		size *= nr_node_ids;
240 
241 	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
242 	if (!shrinker->nr_deferred)
243 		return -ENOMEM;
244 
245 	down_write(&shrinker_rwsem);
246 	list_add_tail(&shrinker->list, &shrinker_list);
247 	up_write(&shrinker_rwsem);
248 	return 0;
249 }
250 EXPORT_SYMBOL(register_shrinker);
251 
252 /*
253  * Remove one
254  */
255 void unregister_shrinker(struct shrinker *shrinker)
256 {
257 	down_write(&shrinker_rwsem);
258 	list_del(&shrinker->list);
259 	up_write(&shrinker_rwsem);
260 	kfree(shrinker->nr_deferred);
261 }
262 EXPORT_SYMBOL(unregister_shrinker);
263 
264 #define SHRINK_BATCH 128
265 
266 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
267 				    struct shrinker *shrinker,
268 				    unsigned long nr_scanned,
269 				    unsigned long nr_eligible)
270 {
271 	unsigned long freed = 0;
272 	unsigned long long delta;
273 	long total_scan;
274 	long freeable;
275 	long nr;
276 	long new_nr;
277 	int nid = shrinkctl->nid;
278 	long batch_size = shrinker->batch ? shrinker->batch
279 					  : SHRINK_BATCH;
280 
281 	freeable = shrinker->count_objects(shrinker, shrinkctl);
282 	if (freeable == 0)
283 		return 0;
284 
285 	/*
286 	 * copy the current shrinker scan count into a local variable
287 	 * and zero it so that other concurrent shrinker invocations
288 	 * don't also do this scanning work.
289 	 */
290 	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
291 
292 	total_scan = nr;
293 	delta = (4 * nr_scanned) / shrinker->seeks;
294 	delta *= freeable;
295 	do_div(delta, nr_eligible + 1);
296 	total_scan += delta;
297 	if (total_scan < 0) {
298 		pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
299 		       shrinker->scan_objects, total_scan);
300 		total_scan = freeable;
301 	}
302 
303 	/*
304 	 * We need to avoid excessive windup on filesystem shrinkers
305 	 * due to large numbers of GFP_NOFS allocations causing the
306 	 * shrinkers to return -1 all the time. This results in a large
307 	 * nr being built up so when a shrink that can do some work
308 	 * comes along it empties the entire cache due to nr >>>
309 	 * freeable. This is bad for sustaining a working set in
310 	 * memory.
311 	 *
312 	 * Hence only allow the shrinker to scan the entire cache when
313 	 * a large delta change is calculated directly.
314 	 */
315 	if (delta < freeable / 4)
316 		total_scan = min(total_scan, freeable / 2);
317 
318 	/*
319 	 * Avoid risking looping forever due to too large nr value:
320 	 * never try to free more than twice the estimate number of
321 	 * freeable entries.
322 	 */
323 	if (total_scan > freeable * 2)
324 		total_scan = freeable * 2;
325 
326 	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
327 				   nr_scanned, nr_eligible,
328 				   freeable, delta, total_scan);
329 
330 	/*
331 	 * Normally, we should not scan less than batch_size objects in one
332 	 * pass to avoid too frequent shrinker calls, but if the slab has less
333 	 * than batch_size objects in total and we are really tight on memory,
334 	 * we will try to reclaim all available objects, otherwise we can end
335 	 * up failing allocations although there are plenty of reclaimable
336 	 * objects spread over several slabs with usage less than the
337 	 * batch_size.
338 	 *
339 	 * We detect the "tight on memory" situations by looking at the total
340 	 * number of objects we want to scan (total_scan). If it is greater
341 	 * than the total number of objects on slab (freeable), we must be
342 	 * scanning at high prio and therefore should try to reclaim as much as
343 	 * possible.
344 	 */
345 	while (total_scan >= batch_size ||
346 	       total_scan >= freeable) {
347 		unsigned long ret;
348 		unsigned long nr_to_scan = min(batch_size, total_scan);
349 
350 		shrinkctl->nr_to_scan = nr_to_scan;
351 		ret = shrinker->scan_objects(shrinker, shrinkctl);
352 		if (ret == SHRINK_STOP)
353 			break;
354 		freed += ret;
355 
356 		count_vm_events(SLABS_SCANNED, nr_to_scan);
357 		total_scan -= nr_to_scan;
358 
359 		cond_resched();
360 	}
361 
362 	/*
363 	 * move the unused scan count back into the shrinker in a
364 	 * manner that handles concurrent updates. If we exhausted the
365 	 * scan, there is no need to do an update.
366 	 */
367 	if (total_scan > 0)
368 		new_nr = atomic_long_add_return(total_scan,
369 						&shrinker->nr_deferred[nid]);
370 	else
371 		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
372 
373 	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
374 	return freed;
375 }
376 
377 /**
378  * shrink_slab - shrink slab caches
379  * @gfp_mask: allocation context
380  * @nid: node whose slab caches to target
381  * @memcg: memory cgroup whose slab caches to target
382  * @nr_scanned: pressure numerator
383  * @nr_eligible: pressure denominator
384  *
385  * Call the shrink functions to age shrinkable caches.
386  *
387  * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
388  * unaware shrinkers will receive a node id of 0 instead.
389  *
390  * @memcg specifies the memory cgroup to target. If it is not NULL,
391  * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
392  * objects from the memory cgroup specified. Otherwise all shrinkers
393  * are called, and memcg aware shrinkers are supposed to scan the
394  * global list then.
395  *
396  * @nr_scanned and @nr_eligible form a ratio that indicate how much of
397  * the available objects should be scanned.  Page reclaim for example
398  * passes the number of pages scanned and the number of pages on the
399  * LRU lists that it considered on @nid, plus a bias in @nr_scanned
400  * when it encountered mapped pages.  The ratio is further biased by
401  * the ->seeks setting of the shrink function, which indicates the
402  * cost to recreate an object relative to that of an LRU page.
403  *
404  * Returns the number of reclaimed slab objects.
405  */
406 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
407 				 struct mem_cgroup *memcg,
408 				 unsigned long nr_scanned,
409 				 unsigned long nr_eligible)
410 {
411 	struct shrinker *shrinker;
412 	unsigned long freed = 0;
413 
414 	if (memcg && !memcg_kmem_is_active(memcg))
415 		return 0;
416 
417 	if (nr_scanned == 0)
418 		nr_scanned = SWAP_CLUSTER_MAX;
419 
420 	if (!down_read_trylock(&shrinker_rwsem)) {
421 		/*
422 		 * If we would return 0, our callers would understand that we
423 		 * have nothing else to shrink and give up trying. By returning
424 		 * 1 we keep it going and assume we'll be able to shrink next
425 		 * time.
426 		 */
427 		freed = 1;
428 		goto out;
429 	}
430 
431 	list_for_each_entry(shrinker, &shrinker_list, list) {
432 		struct shrink_control sc = {
433 			.gfp_mask = gfp_mask,
434 			.nid = nid,
435 			.memcg = memcg,
436 		};
437 
438 		if (memcg && !(shrinker->flags & SHRINKER_MEMCG_AWARE))
439 			continue;
440 
441 		if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
442 			sc.nid = 0;
443 
444 		freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
445 	}
446 
447 	up_read(&shrinker_rwsem);
448 out:
449 	cond_resched();
450 	return freed;
451 }
452 
453 void drop_slab_node(int nid)
454 {
455 	unsigned long freed;
456 
457 	do {
458 		struct mem_cgroup *memcg = NULL;
459 
460 		freed = 0;
461 		do {
462 			freed += shrink_slab(GFP_KERNEL, nid, memcg,
463 					     1000, 1000);
464 		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
465 	} while (freed > 10);
466 }
467 
468 void drop_slab(void)
469 {
470 	int nid;
471 
472 	for_each_online_node(nid)
473 		drop_slab_node(nid);
474 }
475 
476 static inline int is_page_cache_freeable(struct page *page)
477 {
478 	/*
479 	 * A freeable page cache page is referenced only by the caller
480 	 * that isolated the page, the page cache radix tree and
481 	 * optional buffer heads at page->private.
482 	 */
483 	return page_count(page) - page_has_private(page) == 2;
484 }
485 
486 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
487 {
488 	if (current->flags & PF_SWAPWRITE)
489 		return 1;
490 	if (!inode_write_congested(inode))
491 		return 1;
492 	if (inode_to_bdi(inode) == current->backing_dev_info)
493 		return 1;
494 	return 0;
495 }
496 
497 /*
498  * We detected a synchronous write error writing a page out.  Probably
499  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
500  * fsync(), msync() or close().
501  *
502  * The tricky part is that after writepage we cannot touch the mapping: nothing
503  * prevents it from being freed up.  But we have a ref on the page and once
504  * that page is locked, the mapping is pinned.
505  *
506  * We're allowed to run sleeping lock_page() here because we know the caller has
507  * __GFP_FS.
508  */
509 static void handle_write_error(struct address_space *mapping,
510 				struct page *page, int error)
511 {
512 	lock_page(page);
513 	if (page_mapping(page) == mapping)
514 		mapping_set_error(mapping, error);
515 	unlock_page(page);
516 }
517 
518 /* possible outcome of pageout() */
519 typedef enum {
520 	/* failed to write page out, page is locked */
521 	PAGE_KEEP,
522 	/* move page to the active list, page is locked */
523 	PAGE_ACTIVATE,
524 	/* page has been sent to the disk successfully, page is unlocked */
525 	PAGE_SUCCESS,
526 	/* page is clean and locked */
527 	PAGE_CLEAN,
528 } pageout_t;
529 
530 /*
531  * pageout is called by shrink_page_list() for each dirty page.
532  * Calls ->writepage().
533  */
534 static pageout_t pageout(struct page *page, struct address_space *mapping,
535 			 struct scan_control *sc)
536 {
537 	/*
538 	 * If the page is dirty, only perform writeback if that write
539 	 * will be non-blocking.  To prevent this allocation from being
540 	 * stalled by pagecache activity.  But note that there may be
541 	 * stalls if we need to run get_block().  We could test
542 	 * PagePrivate for that.
543 	 *
544 	 * If this process is currently in __generic_file_write_iter() against
545 	 * this page's queue, we can perform writeback even if that
546 	 * will block.
547 	 *
548 	 * If the page is swapcache, write it back even if that would
549 	 * block, for some throttling. This happens by accident, because
550 	 * swap_backing_dev_info is bust: it doesn't reflect the
551 	 * congestion state of the swapdevs.  Easy to fix, if needed.
552 	 */
553 	if (!is_page_cache_freeable(page))
554 		return PAGE_KEEP;
555 	if (!mapping) {
556 		/*
557 		 * Some data journaling orphaned pages can have
558 		 * page->mapping == NULL while being dirty with clean buffers.
559 		 */
560 		if (page_has_private(page)) {
561 			if (try_to_free_buffers(page)) {
562 				ClearPageDirty(page);
563 				pr_info("%s: orphaned page\n", __func__);
564 				return PAGE_CLEAN;
565 			}
566 		}
567 		return PAGE_KEEP;
568 	}
569 	if (mapping->a_ops->writepage == NULL)
570 		return PAGE_ACTIVATE;
571 	if (!may_write_to_inode(mapping->host, sc))
572 		return PAGE_KEEP;
573 
574 	if (clear_page_dirty_for_io(page)) {
575 		int res;
576 		struct writeback_control wbc = {
577 			.sync_mode = WB_SYNC_NONE,
578 			.nr_to_write = SWAP_CLUSTER_MAX,
579 			.range_start = 0,
580 			.range_end = LLONG_MAX,
581 			.for_reclaim = 1,
582 		};
583 
584 		SetPageReclaim(page);
585 		res = mapping->a_ops->writepage(page, &wbc);
586 		if (res < 0)
587 			handle_write_error(mapping, page, res);
588 		if (res == AOP_WRITEPAGE_ACTIVATE) {
589 			ClearPageReclaim(page);
590 			return PAGE_ACTIVATE;
591 		}
592 
593 		if (!PageWriteback(page)) {
594 			/* synchronous write or broken a_ops? */
595 			ClearPageReclaim(page);
596 		}
597 		trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
598 		inc_zone_page_state(page, NR_VMSCAN_WRITE);
599 		return PAGE_SUCCESS;
600 	}
601 
602 	return PAGE_CLEAN;
603 }
604 
605 /*
606  * Same as remove_mapping, but if the page is removed from the mapping, it
607  * gets returned with a refcount of 0.
608  */
609 static int __remove_mapping(struct address_space *mapping, struct page *page,
610 			    bool reclaimed)
611 {
612 	unsigned long flags;
613 	struct mem_cgroup *memcg;
614 
615 	BUG_ON(!PageLocked(page));
616 	BUG_ON(mapping != page_mapping(page));
617 
618 	memcg = mem_cgroup_begin_page_stat(page);
619 	spin_lock_irqsave(&mapping->tree_lock, flags);
620 	/*
621 	 * The non racy check for a busy page.
622 	 *
623 	 * Must be careful with the order of the tests. When someone has
624 	 * a ref to the page, it may be possible that they dirty it then
625 	 * drop the reference. So if PageDirty is tested before page_count
626 	 * here, then the following race may occur:
627 	 *
628 	 * get_user_pages(&page);
629 	 * [user mapping goes away]
630 	 * write_to(page);
631 	 *				!PageDirty(page)    [good]
632 	 * SetPageDirty(page);
633 	 * put_page(page);
634 	 *				!page_count(page)   [good, discard it]
635 	 *
636 	 * [oops, our write_to data is lost]
637 	 *
638 	 * Reversing the order of the tests ensures such a situation cannot
639 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
640 	 * load is not satisfied before that of page->_count.
641 	 *
642 	 * Note that if SetPageDirty is always performed via set_page_dirty,
643 	 * and thus under tree_lock, then this ordering is not required.
644 	 */
645 	if (!page_freeze_refs(page, 2))
646 		goto cannot_free;
647 	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
648 	if (unlikely(PageDirty(page))) {
649 		page_unfreeze_refs(page, 2);
650 		goto cannot_free;
651 	}
652 
653 	if (PageSwapCache(page)) {
654 		swp_entry_t swap = { .val = page_private(page) };
655 		mem_cgroup_swapout(page, swap);
656 		__delete_from_swap_cache(page);
657 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
658 		mem_cgroup_end_page_stat(memcg);
659 		swapcache_free(swap);
660 	} else {
661 		void (*freepage)(struct page *);
662 		void *shadow = NULL;
663 
664 		freepage = mapping->a_ops->freepage;
665 		/*
666 		 * Remember a shadow entry for reclaimed file cache in
667 		 * order to detect refaults, thus thrashing, later on.
668 		 *
669 		 * But don't store shadows in an address space that is
670 		 * already exiting.  This is not just an optizimation,
671 		 * inode reclaim needs to empty out the radix tree or
672 		 * the nodes are lost.  Don't plant shadows behind its
673 		 * back.
674 		 */
675 		if (reclaimed && page_is_file_cache(page) &&
676 		    !mapping_exiting(mapping))
677 			shadow = workingset_eviction(mapping, page);
678 		__delete_from_page_cache(page, shadow, memcg);
679 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
680 		mem_cgroup_end_page_stat(memcg);
681 
682 		if (freepage != NULL)
683 			freepage(page);
684 	}
685 
686 	return 1;
687 
688 cannot_free:
689 	spin_unlock_irqrestore(&mapping->tree_lock, flags);
690 	mem_cgroup_end_page_stat(memcg);
691 	return 0;
692 }
693 
694 /*
695  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
696  * someone else has a ref on the page, abort and return 0.  If it was
697  * successfully detached, return 1.  Assumes the caller has a single ref on
698  * this page.
699  */
700 int remove_mapping(struct address_space *mapping, struct page *page)
701 {
702 	if (__remove_mapping(mapping, page, false)) {
703 		/*
704 		 * Unfreezing the refcount with 1 rather than 2 effectively
705 		 * drops the pagecache ref for us without requiring another
706 		 * atomic operation.
707 		 */
708 		page_unfreeze_refs(page, 1);
709 		return 1;
710 	}
711 	return 0;
712 }
713 
714 /**
715  * putback_lru_page - put previously isolated page onto appropriate LRU list
716  * @page: page to be put back to appropriate lru list
717  *
718  * Add previously isolated @page to appropriate LRU list.
719  * Page may still be unevictable for other reasons.
720  *
721  * lru_lock must not be held, interrupts must be enabled.
722  */
723 void putback_lru_page(struct page *page)
724 {
725 	bool is_unevictable;
726 	int was_unevictable = PageUnevictable(page);
727 
728 	VM_BUG_ON_PAGE(PageLRU(page), page);
729 
730 redo:
731 	ClearPageUnevictable(page);
732 
733 	if (page_evictable(page)) {
734 		/*
735 		 * For evictable pages, we can use the cache.
736 		 * In event of a race, worst case is we end up with an
737 		 * unevictable page on [in]active list.
738 		 * We know how to handle that.
739 		 */
740 		is_unevictable = false;
741 		lru_cache_add(page);
742 	} else {
743 		/*
744 		 * Put unevictable pages directly on zone's unevictable
745 		 * list.
746 		 */
747 		is_unevictable = true;
748 		add_page_to_unevictable_list(page);
749 		/*
750 		 * When racing with an mlock or AS_UNEVICTABLE clearing
751 		 * (page is unlocked) make sure that if the other thread
752 		 * does not observe our setting of PG_lru and fails
753 		 * isolation/check_move_unevictable_pages,
754 		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
755 		 * the page back to the evictable list.
756 		 *
757 		 * The other side is TestClearPageMlocked() or shmem_lock().
758 		 */
759 		smp_mb();
760 	}
761 
762 	/*
763 	 * page's status can change while we move it among lru. If an evictable
764 	 * page is on unevictable list, it never be freed. To avoid that,
765 	 * check after we added it to the list, again.
766 	 */
767 	if (is_unevictable && page_evictable(page)) {
768 		if (!isolate_lru_page(page)) {
769 			put_page(page);
770 			goto redo;
771 		}
772 		/* This means someone else dropped this page from LRU
773 		 * So, it will be freed or putback to LRU again. There is
774 		 * nothing to do here.
775 		 */
776 	}
777 
778 	if (was_unevictable && !is_unevictable)
779 		count_vm_event(UNEVICTABLE_PGRESCUED);
780 	else if (!was_unevictable && is_unevictable)
781 		count_vm_event(UNEVICTABLE_PGCULLED);
782 
783 	put_page(page);		/* drop ref from isolate */
784 }
785 
786 enum page_references {
787 	PAGEREF_RECLAIM,
788 	PAGEREF_RECLAIM_CLEAN,
789 	PAGEREF_KEEP,
790 	PAGEREF_ACTIVATE,
791 };
792 
793 static enum page_references page_check_references(struct page *page,
794 						  struct scan_control *sc)
795 {
796 	int referenced_ptes, referenced_page;
797 	unsigned long vm_flags;
798 
799 	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
800 					  &vm_flags);
801 	referenced_page = TestClearPageReferenced(page);
802 
803 	/*
804 	 * Mlock lost the isolation race with us.  Let try_to_unmap()
805 	 * move the page to the unevictable list.
806 	 */
807 	if (vm_flags & VM_LOCKED)
808 		return PAGEREF_RECLAIM;
809 
810 	if (referenced_ptes) {
811 		if (PageSwapBacked(page))
812 			return PAGEREF_ACTIVATE;
813 		/*
814 		 * All mapped pages start out with page table
815 		 * references from the instantiating fault, so we need
816 		 * to look twice if a mapped file page is used more
817 		 * than once.
818 		 *
819 		 * Mark it and spare it for another trip around the
820 		 * inactive list.  Another page table reference will
821 		 * lead to its activation.
822 		 *
823 		 * Note: the mark is set for activated pages as well
824 		 * so that recently deactivated but used pages are
825 		 * quickly recovered.
826 		 */
827 		SetPageReferenced(page);
828 
829 		if (referenced_page || referenced_ptes > 1)
830 			return PAGEREF_ACTIVATE;
831 
832 		/*
833 		 * Activate file-backed executable pages after first usage.
834 		 */
835 		if (vm_flags & VM_EXEC)
836 			return PAGEREF_ACTIVATE;
837 
838 		return PAGEREF_KEEP;
839 	}
840 
841 	/* Reclaim if clean, defer dirty pages to writeback */
842 	if (referenced_page && !PageSwapBacked(page))
843 		return PAGEREF_RECLAIM_CLEAN;
844 
845 	return PAGEREF_RECLAIM;
846 }
847 
848 /* Check if a page is dirty or under writeback */
849 static void page_check_dirty_writeback(struct page *page,
850 				       bool *dirty, bool *writeback)
851 {
852 	struct address_space *mapping;
853 
854 	/*
855 	 * Anonymous pages are not handled by flushers and must be written
856 	 * from reclaim context. Do not stall reclaim based on them
857 	 */
858 	if (!page_is_file_cache(page)) {
859 		*dirty = false;
860 		*writeback = false;
861 		return;
862 	}
863 
864 	/* By default assume that the page flags are accurate */
865 	*dirty = PageDirty(page);
866 	*writeback = PageWriteback(page);
867 
868 	/* Verify dirty/writeback state if the filesystem supports it */
869 	if (!page_has_private(page))
870 		return;
871 
872 	mapping = page_mapping(page);
873 	if (mapping && mapping->a_ops->is_dirty_writeback)
874 		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
875 }
876 
877 /*
878  * shrink_page_list() returns the number of reclaimed pages
879  */
880 static unsigned long shrink_page_list(struct list_head *page_list,
881 				      struct zone *zone,
882 				      struct scan_control *sc,
883 				      enum ttu_flags ttu_flags,
884 				      unsigned long *ret_nr_dirty,
885 				      unsigned long *ret_nr_unqueued_dirty,
886 				      unsigned long *ret_nr_congested,
887 				      unsigned long *ret_nr_writeback,
888 				      unsigned long *ret_nr_immediate,
889 				      bool force_reclaim)
890 {
891 	LIST_HEAD(ret_pages);
892 	LIST_HEAD(free_pages);
893 	int pgactivate = 0;
894 	unsigned long nr_unqueued_dirty = 0;
895 	unsigned long nr_dirty = 0;
896 	unsigned long nr_congested = 0;
897 	unsigned long nr_reclaimed = 0;
898 	unsigned long nr_writeback = 0;
899 	unsigned long nr_immediate = 0;
900 
901 	cond_resched();
902 
903 	while (!list_empty(page_list)) {
904 		struct address_space *mapping;
905 		struct page *page;
906 		int may_enter_fs;
907 		enum page_references references = PAGEREF_RECLAIM_CLEAN;
908 		bool dirty, writeback;
909 
910 		cond_resched();
911 
912 		page = lru_to_page(page_list);
913 		list_del(&page->lru);
914 
915 		if (!trylock_page(page))
916 			goto keep;
917 
918 		VM_BUG_ON_PAGE(PageActive(page), page);
919 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
920 
921 		sc->nr_scanned++;
922 
923 		if (unlikely(!page_evictable(page)))
924 			goto cull_mlocked;
925 
926 		if (!sc->may_unmap && page_mapped(page))
927 			goto keep_locked;
928 
929 		/* Double the slab pressure for mapped and swapcache pages */
930 		if (page_mapped(page) || PageSwapCache(page))
931 			sc->nr_scanned++;
932 
933 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
934 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
935 
936 		/*
937 		 * The number of dirty pages determines if a zone is marked
938 		 * reclaim_congested which affects wait_iff_congested. kswapd
939 		 * will stall and start writing pages if the tail of the LRU
940 		 * is all dirty unqueued pages.
941 		 */
942 		page_check_dirty_writeback(page, &dirty, &writeback);
943 		if (dirty || writeback)
944 			nr_dirty++;
945 
946 		if (dirty && !writeback)
947 			nr_unqueued_dirty++;
948 
949 		/*
950 		 * Treat this page as congested if the underlying BDI is or if
951 		 * pages are cycling through the LRU so quickly that the
952 		 * pages marked for immediate reclaim are making it to the
953 		 * end of the LRU a second time.
954 		 */
955 		mapping = page_mapping(page);
956 		if (((dirty || writeback) && mapping &&
957 		     inode_write_congested(mapping->host)) ||
958 		    (writeback && PageReclaim(page)))
959 			nr_congested++;
960 
961 		/*
962 		 * If a page at the tail of the LRU is under writeback, there
963 		 * are three cases to consider.
964 		 *
965 		 * 1) If reclaim is encountering an excessive number of pages
966 		 *    under writeback and this page is both under writeback and
967 		 *    PageReclaim then it indicates that pages are being queued
968 		 *    for IO but are being recycled through the LRU before the
969 		 *    IO can complete. Waiting on the page itself risks an
970 		 *    indefinite stall if it is impossible to writeback the
971 		 *    page due to IO error or disconnected storage so instead
972 		 *    note that the LRU is being scanned too quickly and the
973 		 *    caller can stall after page list has been processed.
974 		 *
975 		 * 2) Global or new memcg reclaim encounters a page that is
976 		 *    not marked for immediate reclaim, or the caller does not
977 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
978 		 *    not to fs). In this case mark the page for immediate
979 		 *    reclaim and continue scanning.
980 		 *
981 		 *    Require may_enter_fs because we would wait on fs, which
982 		 *    may not have submitted IO yet. And the loop driver might
983 		 *    enter reclaim, and deadlock if it waits on a page for
984 		 *    which it is needed to do the write (loop masks off
985 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
986 		 *    would probably show more reasons.
987 		 *
988 		 * 3) Legacy memcg encounters a page that is already marked
989 		 *    PageReclaim. memcg does not have any dirty pages
990 		 *    throttling so we could easily OOM just because too many
991 		 *    pages are in writeback and there is nothing else to
992 		 *    reclaim. Wait for the writeback to complete.
993 		 */
994 		if (PageWriteback(page)) {
995 			/* Case 1 above */
996 			if (current_is_kswapd() &&
997 			    PageReclaim(page) &&
998 			    test_bit(ZONE_WRITEBACK, &zone->flags)) {
999 				nr_immediate++;
1000 				goto keep_locked;
1001 
1002 			/* Case 2 above */
1003 			} else if (sane_reclaim(sc) ||
1004 			    !PageReclaim(page) || !may_enter_fs) {
1005 				/*
1006 				 * This is slightly racy - end_page_writeback()
1007 				 * might have just cleared PageReclaim, then
1008 				 * setting PageReclaim here end up interpreted
1009 				 * as PageReadahead - but that does not matter
1010 				 * enough to care.  What we do want is for this
1011 				 * page to have PageReclaim set next time memcg
1012 				 * reclaim reaches the tests above, so it will
1013 				 * then wait_on_page_writeback() to avoid OOM;
1014 				 * and it's also appropriate in global reclaim.
1015 				 */
1016 				SetPageReclaim(page);
1017 				nr_writeback++;
1018 				goto keep_locked;
1019 
1020 			/* Case 3 above */
1021 			} else {
1022 				unlock_page(page);
1023 				wait_on_page_writeback(page);
1024 				/* then go back and try same page again */
1025 				list_add_tail(&page->lru, page_list);
1026 				continue;
1027 			}
1028 		}
1029 
1030 		if (!force_reclaim)
1031 			references = page_check_references(page, sc);
1032 
1033 		switch (references) {
1034 		case PAGEREF_ACTIVATE:
1035 			goto activate_locked;
1036 		case PAGEREF_KEEP:
1037 			goto keep_locked;
1038 		case PAGEREF_RECLAIM:
1039 		case PAGEREF_RECLAIM_CLEAN:
1040 			; /* try to reclaim the page below */
1041 		}
1042 
1043 		/*
1044 		 * Anonymous process memory has backing store?
1045 		 * Try to allocate it some swap space here.
1046 		 */
1047 		if (PageAnon(page) && !PageSwapCache(page)) {
1048 			if (!(sc->gfp_mask & __GFP_IO))
1049 				goto keep_locked;
1050 			if (!add_to_swap(page, page_list))
1051 				goto activate_locked;
1052 			may_enter_fs = 1;
1053 
1054 			/* Adding to swap updated mapping */
1055 			mapping = page_mapping(page);
1056 		}
1057 
1058 		/*
1059 		 * The page is mapped into the page tables of one or more
1060 		 * processes. Try to unmap it here.
1061 		 */
1062 		if (page_mapped(page) && mapping) {
1063 			switch (try_to_unmap(page,
1064 					ttu_flags|TTU_BATCH_FLUSH)) {
1065 			case SWAP_FAIL:
1066 				goto activate_locked;
1067 			case SWAP_AGAIN:
1068 				goto keep_locked;
1069 			case SWAP_MLOCK:
1070 				goto cull_mlocked;
1071 			case SWAP_SUCCESS:
1072 				; /* try to free the page below */
1073 			}
1074 		}
1075 
1076 		if (PageDirty(page)) {
1077 			/*
1078 			 * Only kswapd can writeback filesystem pages to
1079 			 * avoid risk of stack overflow but only writeback
1080 			 * if many dirty pages have been encountered.
1081 			 */
1082 			if (page_is_file_cache(page) &&
1083 					(!current_is_kswapd() ||
1084 					 !test_bit(ZONE_DIRTY, &zone->flags))) {
1085 				/*
1086 				 * Immediately reclaim when written back.
1087 				 * Similar in principal to deactivate_page()
1088 				 * except we already have the page isolated
1089 				 * and know it's dirty
1090 				 */
1091 				inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
1092 				SetPageReclaim(page);
1093 
1094 				goto keep_locked;
1095 			}
1096 
1097 			if (references == PAGEREF_RECLAIM_CLEAN)
1098 				goto keep_locked;
1099 			if (!may_enter_fs)
1100 				goto keep_locked;
1101 			if (!sc->may_writepage)
1102 				goto keep_locked;
1103 
1104 			/*
1105 			 * Page is dirty. Flush the TLB if a writable entry
1106 			 * potentially exists to avoid CPU writes after IO
1107 			 * starts and then write it out here.
1108 			 */
1109 			try_to_unmap_flush_dirty();
1110 			switch (pageout(page, mapping, sc)) {
1111 			case PAGE_KEEP:
1112 				goto keep_locked;
1113 			case PAGE_ACTIVATE:
1114 				goto activate_locked;
1115 			case PAGE_SUCCESS:
1116 				if (PageWriteback(page))
1117 					goto keep;
1118 				if (PageDirty(page))
1119 					goto keep;
1120 
1121 				/*
1122 				 * A synchronous write - probably a ramdisk.  Go
1123 				 * ahead and try to reclaim the page.
1124 				 */
1125 				if (!trylock_page(page))
1126 					goto keep;
1127 				if (PageDirty(page) || PageWriteback(page))
1128 					goto keep_locked;
1129 				mapping = page_mapping(page);
1130 			case PAGE_CLEAN:
1131 				; /* try to free the page below */
1132 			}
1133 		}
1134 
1135 		/*
1136 		 * If the page has buffers, try to free the buffer mappings
1137 		 * associated with this page. If we succeed we try to free
1138 		 * the page as well.
1139 		 *
1140 		 * We do this even if the page is PageDirty().
1141 		 * try_to_release_page() does not perform I/O, but it is
1142 		 * possible for a page to have PageDirty set, but it is actually
1143 		 * clean (all its buffers are clean).  This happens if the
1144 		 * buffers were written out directly, with submit_bh(). ext3
1145 		 * will do this, as well as the blockdev mapping.
1146 		 * try_to_release_page() will discover that cleanness and will
1147 		 * drop the buffers and mark the page clean - it can be freed.
1148 		 *
1149 		 * Rarely, pages can have buffers and no ->mapping.  These are
1150 		 * the pages which were not successfully invalidated in
1151 		 * truncate_complete_page().  We try to drop those buffers here
1152 		 * and if that worked, and the page is no longer mapped into
1153 		 * process address space (page_count == 1) it can be freed.
1154 		 * Otherwise, leave the page on the LRU so it is swappable.
1155 		 */
1156 		if (page_has_private(page)) {
1157 			if (!try_to_release_page(page, sc->gfp_mask))
1158 				goto activate_locked;
1159 			if (!mapping && page_count(page) == 1) {
1160 				unlock_page(page);
1161 				if (put_page_testzero(page))
1162 					goto free_it;
1163 				else {
1164 					/*
1165 					 * rare race with speculative reference.
1166 					 * the speculative reference will free
1167 					 * this page shortly, so we may
1168 					 * increment nr_reclaimed here (and
1169 					 * leave it off the LRU).
1170 					 */
1171 					nr_reclaimed++;
1172 					continue;
1173 				}
1174 			}
1175 		}
1176 
1177 		if (!mapping || !__remove_mapping(mapping, page, true))
1178 			goto keep_locked;
1179 
1180 		/*
1181 		 * At this point, we have no other references and there is
1182 		 * no way to pick any more up (removed from LRU, removed
1183 		 * from pagecache). Can use non-atomic bitops now (and
1184 		 * we obviously don't have to worry about waking up a process
1185 		 * waiting on the page lock, because there are no references.
1186 		 */
1187 		__clear_page_locked(page);
1188 free_it:
1189 		nr_reclaimed++;
1190 
1191 		/*
1192 		 * Is there need to periodically free_page_list? It would
1193 		 * appear not as the counts should be low
1194 		 */
1195 		list_add(&page->lru, &free_pages);
1196 		continue;
1197 
1198 cull_mlocked:
1199 		if (PageSwapCache(page))
1200 			try_to_free_swap(page);
1201 		unlock_page(page);
1202 		list_add(&page->lru, &ret_pages);
1203 		continue;
1204 
1205 activate_locked:
1206 		/* Not a candidate for swapping, so reclaim swap space. */
1207 		if (PageSwapCache(page) && vm_swap_full())
1208 			try_to_free_swap(page);
1209 		VM_BUG_ON_PAGE(PageActive(page), page);
1210 		SetPageActive(page);
1211 		pgactivate++;
1212 keep_locked:
1213 		unlock_page(page);
1214 keep:
1215 		list_add(&page->lru, &ret_pages);
1216 		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1217 	}
1218 
1219 	mem_cgroup_uncharge_list(&free_pages);
1220 	try_to_unmap_flush();
1221 	free_hot_cold_page_list(&free_pages, true);
1222 
1223 	list_splice(&ret_pages, page_list);
1224 	count_vm_events(PGACTIVATE, pgactivate);
1225 
1226 	*ret_nr_dirty += nr_dirty;
1227 	*ret_nr_congested += nr_congested;
1228 	*ret_nr_unqueued_dirty += nr_unqueued_dirty;
1229 	*ret_nr_writeback += nr_writeback;
1230 	*ret_nr_immediate += nr_immediate;
1231 	return nr_reclaimed;
1232 }
1233 
1234 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1235 					    struct list_head *page_list)
1236 {
1237 	struct scan_control sc = {
1238 		.gfp_mask = GFP_KERNEL,
1239 		.priority = DEF_PRIORITY,
1240 		.may_unmap = 1,
1241 	};
1242 	unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1243 	struct page *page, *next;
1244 	LIST_HEAD(clean_pages);
1245 
1246 	list_for_each_entry_safe(page, next, page_list, lru) {
1247 		if (page_is_file_cache(page) && !PageDirty(page) &&
1248 		    !isolated_balloon_page(page)) {
1249 			ClearPageActive(page);
1250 			list_move(&page->lru, &clean_pages);
1251 		}
1252 	}
1253 
1254 	ret = shrink_page_list(&clean_pages, zone, &sc,
1255 			TTU_UNMAP|TTU_IGNORE_ACCESS,
1256 			&dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1257 	list_splice(&clean_pages, page_list);
1258 	mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
1259 	return ret;
1260 }
1261 
1262 /*
1263  * Attempt to remove the specified page from its LRU.  Only take this page
1264  * if it is of the appropriate PageActive status.  Pages which are being
1265  * freed elsewhere are also ignored.
1266  *
1267  * page:	page to consider
1268  * mode:	one of the LRU isolation modes defined above
1269  *
1270  * returns 0 on success, -ve errno on failure.
1271  */
1272 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1273 {
1274 	int ret = -EINVAL;
1275 
1276 	/* Only take pages on the LRU. */
1277 	if (!PageLRU(page))
1278 		return ret;
1279 
1280 	/* Compaction should not handle unevictable pages but CMA can do so */
1281 	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1282 		return ret;
1283 
1284 	ret = -EBUSY;
1285 
1286 	/*
1287 	 * To minimise LRU disruption, the caller can indicate that it only
1288 	 * wants to isolate pages it will be able to operate on without
1289 	 * blocking - clean pages for the most part.
1290 	 *
1291 	 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1292 	 * is used by reclaim when it is cannot write to backing storage
1293 	 *
1294 	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1295 	 * that it is possible to migrate without blocking
1296 	 */
1297 	if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1298 		/* All the caller can do on PageWriteback is block */
1299 		if (PageWriteback(page))
1300 			return ret;
1301 
1302 		if (PageDirty(page)) {
1303 			struct address_space *mapping;
1304 
1305 			/* ISOLATE_CLEAN means only clean pages */
1306 			if (mode & ISOLATE_CLEAN)
1307 				return ret;
1308 
1309 			/*
1310 			 * Only pages without mappings or that have a
1311 			 * ->migratepage callback are possible to migrate
1312 			 * without blocking
1313 			 */
1314 			mapping = page_mapping(page);
1315 			if (mapping && !mapping->a_ops->migratepage)
1316 				return ret;
1317 		}
1318 	}
1319 
1320 	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1321 		return ret;
1322 
1323 	if (likely(get_page_unless_zero(page))) {
1324 		/*
1325 		 * Be careful not to clear PageLRU until after we're
1326 		 * sure the page is not being freed elsewhere -- the
1327 		 * page release code relies on it.
1328 		 */
1329 		ClearPageLRU(page);
1330 		ret = 0;
1331 	}
1332 
1333 	return ret;
1334 }
1335 
1336 /*
1337  * zone->lru_lock is heavily contended.  Some of the functions that
1338  * shrink the lists perform better by taking out a batch of pages
1339  * and working on them outside the LRU lock.
1340  *
1341  * For pagecache intensive workloads, this function is the hottest
1342  * spot in the kernel (apart from copy_*_user functions).
1343  *
1344  * Appropriate locks must be held before calling this function.
1345  *
1346  * @nr_to_scan:	The number of pages to look through on the list.
1347  * @lruvec:	The LRU vector to pull pages from.
1348  * @dst:	The temp list to put pages on to.
1349  * @nr_scanned:	The number of pages that were scanned.
1350  * @sc:		The scan_control struct for this reclaim session
1351  * @mode:	One of the LRU isolation modes
1352  * @lru:	LRU list id for isolating
1353  *
1354  * returns how many pages were moved onto *@dst.
1355  */
1356 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1357 		struct lruvec *lruvec, struct list_head *dst,
1358 		unsigned long *nr_scanned, struct scan_control *sc,
1359 		isolate_mode_t mode, enum lru_list lru)
1360 {
1361 	struct list_head *src = &lruvec->lists[lru];
1362 	unsigned long nr_taken = 0;
1363 	unsigned long scan;
1364 
1365 	for (scan = 0; scan < nr_to_scan && nr_taken < nr_to_scan &&
1366 					!list_empty(src); scan++) {
1367 		struct page *page;
1368 		int nr_pages;
1369 
1370 		page = lru_to_page(src);
1371 		prefetchw_prev_lru_page(page, src, flags);
1372 
1373 		VM_BUG_ON_PAGE(!PageLRU(page), page);
1374 
1375 		switch (__isolate_lru_page(page, mode)) {
1376 		case 0:
1377 			nr_pages = hpage_nr_pages(page);
1378 			mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
1379 			list_move(&page->lru, dst);
1380 			nr_taken += nr_pages;
1381 			break;
1382 
1383 		case -EBUSY:
1384 			/* else it is being freed elsewhere */
1385 			list_move(&page->lru, src);
1386 			continue;
1387 
1388 		default:
1389 			BUG();
1390 		}
1391 	}
1392 
1393 	*nr_scanned = scan;
1394 	trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1395 				    nr_taken, mode, is_file_lru(lru));
1396 	return nr_taken;
1397 }
1398 
1399 /**
1400  * isolate_lru_page - tries to isolate a page from its LRU list
1401  * @page: page to isolate from its LRU list
1402  *
1403  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1404  * vmstat statistic corresponding to whatever LRU list the page was on.
1405  *
1406  * Returns 0 if the page was removed from an LRU list.
1407  * Returns -EBUSY if the page was not on an LRU list.
1408  *
1409  * The returned page will have PageLRU() cleared.  If it was found on
1410  * the active list, it will have PageActive set.  If it was found on
1411  * the unevictable list, it will have the PageUnevictable bit set. That flag
1412  * may need to be cleared by the caller before letting the page go.
1413  *
1414  * The vmstat statistic corresponding to the list on which the page was
1415  * found will be decremented.
1416  *
1417  * Restrictions:
1418  * (1) Must be called with an elevated refcount on the page. This is a
1419  *     fundamentnal difference from isolate_lru_pages (which is called
1420  *     without a stable reference).
1421  * (2) the lru_lock must not be held.
1422  * (3) interrupts must be enabled.
1423  */
1424 int isolate_lru_page(struct page *page)
1425 {
1426 	int ret = -EBUSY;
1427 
1428 	VM_BUG_ON_PAGE(!page_count(page), page);
1429 
1430 	if (PageLRU(page)) {
1431 		struct zone *zone = page_zone(page);
1432 		struct lruvec *lruvec;
1433 
1434 		spin_lock_irq(&zone->lru_lock);
1435 		lruvec = mem_cgroup_page_lruvec(page, zone);
1436 		if (PageLRU(page)) {
1437 			int lru = page_lru(page);
1438 			get_page(page);
1439 			ClearPageLRU(page);
1440 			del_page_from_lru_list(page, lruvec, lru);
1441 			ret = 0;
1442 		}
1443 		spin_unlock_irq(&zone->lru_lock);
1444 	}
1445 	return ret;
1446 }
1447 
1448 /*
1449  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1450  * then get resheduled. When there are massive number of tasks doing page
1451  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1452  * the LRU list will go small and be scanned faster than necessary, leading to
1453  * unnecessary swapping, thrashing and OOM.
1454  */
1455 static int too_many_isolated(struct zone *zone, int file,
1456 		struct scan_control *sc)
1457 {
1458 	unsigned long inactive, isolated;
1459 
1460 	if (current_is_kswapd())
1461 		return 0;
1462 
1463 	if (!sane_reclaim(sc))
1464 		return 0;
1465 
1466 	if (file) {
1467 		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1468 		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1469 	} else {
1470 		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1471 		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1472 	}
1473 
1474 	/*
1475 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1476 	 * won't get blocked by normal direct-reclaimers, forming a circular
1477 	 * deadlock.
1478 	 */
1479 	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1480 		inactive >>= 3;
1481 
1482 	return isolated > inactive;
1483 }
1484 
1485 static noinline_for_stack void
1486 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1487 {
1488 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1489 	struct zone *zone = lruvec_zone(lruvec);
1490 	LIST_HEAD(pages_to_free);
1491 
1492 	/*
1493 	 * Put back any unfreeable pages.
1494 	 */
1495 	while (!list_empty(page_list)) {
1496 		struct page *page = lru_to_page(page_list);
1497 		int lru;
1498 
1499 		VM_BUG_ON_PAGE(PageLRU(page), page);
1500 		list_del(&page->lru);
1501 		if (unlikely(!page_evictable(page))) {
1502 			spin_unlock_irq(&zone->lru_lock);
1503 			putback_lru_page(page);
1504 			spin_lock_irq(&zone->lru_lock);
1505 			continue;
1506 		}
1507 
1508 		lruvec = mem_cgroup_page_lruvec(page, zone);
1509 
1510 		SetPageLRU(page);
1511 		lru = page_lru(page);
1512 		add_page_to_lru_list(page, lruvec, lru);
1513 
1514 		if (is_active_lru(lru)) {
1515 			int file = is_file_lru(lru);
1516 			int numpages = hpage_nr_pages(page);
1517 			reclaim_stat->recent_rotated[file] += numpages;
1518 		}
1519 		if (put_page_testzero(page)) {
1520 			__ClearPageLRU(page);
1521 			__ClearPageActive(page);
1522 			del_page_from_lru_list(page, lruvec, lru);
1523 
1524 			if (unlikely(PageCompound(page))) {
1525 				spin_unlock_irq(&zone->lru_lock);
1526 				mem_cgroup_uncharge(page);
1527 				(*get_compound_page_dtor(page))(page);
1528 				spin_lock_irq(&zone->lru_lock);
1529 			} else
1530 				list_add(&page->lru, &pages_to_free);
1531 		}
1532 	}
1533 
1534 	/*
1535 	 * To save our caller's stack, now use input list for pages to free.
1536 	 */
1537 	list_splice(&pages_to_free, page_list);
1538 }
1539 
1540 /*
1541  * If a kernel thread (such as nfsd for loop-back mounts) services
1542  * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1543  * In that case we should only throttle if the backing device it is
1544  * writing to is congested.  In other cases it is safe to throttle.
1545  */
1546 static int current_may_throttle(void)
1547 {
1548 	return !(current->flags & PF_LESS_THROTTLE) ||
1549 		current->backing_dev_info == NULL ||
1550 		bdi_write_congested(current->backing_dev_info);
1551 }
1552 
1553 /*
1554  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1555  * of reclaimed pages
1556  */
1557 static noinline_for_stack unsigned long
1558 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1559 		     struct scan_control *sc, enum lru_list lru)
1560 {
1561 	LIST_HEAD(page_list);
1562 	unsigned long nr_scanned;
1563 	unsigned long nr_reclaimed = 0;
1564 	unsigned long nr_taken;
1565 	unsigned long nr_dirty = 0;
1566 	unsigned long nr_congested = 0;
1567 	unsigned long nr_unqueued_dirty = 0;
1568 	unsigned long nr_writeback = 0;
1569 	unsigned long nr_immediate = 0;
1570 	isolate_mode_t isolate_mode = 0;
1571 	int file = is_file_lru(lru);
1572 	struct zone *zone = lruvec_zone(lruvec);
1573 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1574 
1575 	while (unlikely(too_many_isolated(zone, file, sc))) {
1576 		congestion_wait(BLK_RW_ASYNC, HZ/10);
1577 
1578 		/* We are about to die and free our memory. Return now. */
1579 		if (fatal_signal_pending(current))
1580 			return SWAP_CLUSTER_MAX;
1581 	}
1582 
1583 	lru_add_drain();
1584 
1585 	if (!sc->may_unmap)
1586 		isolate_mode |= ISOLATE_UNMAPPED;
1587 	if (!sc->may_writepage)
1588 		isolate_mode |= ISOLATE_CLEAN;
1589 
1590 	spin_lock_irq(&zone->lru_lock);
1591 
1592 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1593 				     &nr_scanned, sc, isolate_mode, lru);
1594 
1595 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1596 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1597 
1598 	if (global_reclaim(sc)) {
1599 		__mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
1600 		if (current_is_kswapd())
1601 			__count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1602 		else
1603 			__count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1604 	}
1605 	spin_unlock_irq(&zone->lru_lock);
1606 
1607 	if (nr_taken == 0)
1608 		return 0;
1609 
1610 	nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1611 				&nr_dirty, &nr_unqueued_dirty, &nr_congested,
1612 				&nr_writeback, &nr_immediate,
1613 				false);
1614 
1615 	spin_lock_irq(&zone->lru_lock);
1616 
1617 	reclaim_stat->recent_scanned[file] += nr_taken;
1618 
1619 	if (global_reclaim(sc)) {
1620 		if (current_is_kswapd())
1621 			__count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1622 					       nr_reclaimed);
1623 		else
1624 			__count_zone_vm_events(PGSTEAL_DIRECT, zone,
1625 					       nr_reclaimed);
1626 	}
1627 
1628 	putback_inactive_pages(lruvec, &page_list);
1629 
1630 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1631 
1632 	spin_unlock_irq(&zone->lru_lock);
1633 
1634 	mem_cgroup_uncharge_list(&page_list);
1635 	free_hot_cold_page_list(&page_list, true);
1636 
1637 	/*
1638 	 * If reclaim is isolating dirty pages under writeback, it implies
1639 	 * that the long-lived page allocation rate is exceeding the page
1640 	 * laundering rate. Either the global limits are not being effective
1641 	 * at throttling processes due to the page distribution throughout
1642 	 * zones or there is heavy usage of a slow backing device. The
1643 	 * only option is to throttle from reclaim context which is not ideal
1644 	 * as there is no guarantee the dirtying process is throttled in the
1645 	 * same way balance_dirty_pages() manages.
1646 	 *
1647 	 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1648 	 * of pages under pages flagged for immediate reclaim and stall if any
1649 	 * are encountered in the nr_immediate check below.
1650 	 */
1651 	if (nr_writeback && nr_writeback == nr_taken)
1652 		set_bit(ZONE_WRITEBACK, &zone->flags);
1653 
1654 	/*
1655 	 * Legacy memcg will stall in page writeback so avoid forcibly
1656 	 * stalling here.
1657 	 */
1658 	if (sane_reclaim(sc)) {
1659 		/*
1660 		 * Tag a zone as congested if all the dirty pages scanned were
1661 		 * backed by a congested BDI and wait_iff_congested will stall.
1662 		 */
1663 		if (nr_dirty && nr_dirty == nr_congested)
1664 			set_bit(ZONE_CONGESTED, &zone->flags);
1665 
1666 		/*
1667 		 * If dirty pages are scanned that are not queued for IO, it
1668 		 * implies that flushers are not keeping up. In this case, flag
1669 		 * the zone ZONE_DIRTY and kswapd will start writing pages from
1670 		 * reclaim context.
1671 		 */
1672 		if (nr_unqueued_dirty == nr_taken)
1673 			set_bit(ZONE_DIRTY, &zone->flags);
1674 
1675 		/*
1676 		 * If kswapd scans pages marked marked for immediate
1677 		 * reclaim and under writeback (nr_immediate), it implies
1678 		 * that pages are cycling through the LRU faster than
1679 		 * they are written so also forcibly stall.
1680 		 */
1681 		if (nr_immediate && current_may_throttle())
1682 			congestion_wait(BLK_RW_ASYNC, HZ/10);
1683 	}
1684 
1685 	/*
1686 	 * Stall direct reclaim for IO completions if underlying BDIs or zone
1687 	 * is congested. Allow kswapd to continue until it starts encountering
1688 	 * unqueued dirty pages or cycling through the LRU too quickly.
1689 	 */
1690 	if (!sc->hibernation_mode && !current_is_kswapd() &&
1691 	    current_may_throttle())
1692 		wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1693 
1694 	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1695 		zone_idx(zone),
1696 		nr_scanned, nr_reclaimed,
1697 		sc->priority,
1698 		trace_shrink_flags(file));
1699 	return nr_reclaimed;
1700 }
1701 
1702 /*
1703  * This moves pages from the active list to the inactive list.
1704  *
1705  * We move them the other way if the page is referenced by one or more
1706  * processes, from rmap.
1707  *
1708  * If the pages are mostly unmapped, the processing is fast and it is
1709  * appropriate to hold zone->lru_lock across the whole operation.  But if
1710  * the pages are mapped, the processing is slow (page_referenced()) so we
1711  * should drop zone->lru_lock around each page.  It's impossible to balance
1712  * this, so instead we remove the pages from the LRU while processing them.
1713  * It is safe to rely on PG_active against the non-LRU pages in here because
1714  * nobody will play with that bit on a non-LRU page.
1715  *
1716  * The downside is that we have to touch page->_count against each page.
1717  * But we had to alter page->flags anyway.
1718  */
1719 
1720 static void move_active_pages_to_lru(struct lruvec *lruvec,
1721 				     struct list_head *list,
1722 				     struct list_head *pages_to_free,
1723 				     enum lru_list lru)
1724 {
1725 	struct zone *zone = lruvec_zone(lruvec);
1726 	unsigned long pgmoved = 0;
1727 	struct page *page;
1728 	int nr_pages;
1729 
1730 	while (!list_empty(list)) {
1731 		page = lru_to_page(list);
1732 		lruvec = mem_cgroup_page_lruvec(page, zone);
1733 
1734 		VM_BUG_ON_PAGE(PageLRU(page), page);
1735 		SetPageLRU(page);
1736 
1737 		nr_pages = hpage_nr_pages(page);
1738 		mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1739 		list_move(&page->lru, &lruvec->lists[lru]);
1740 		pgmoved += nr_pages;
1741 
1742 		if (put_page_testzero(page)) {
1743 			__ClearPageLRU(page);
1744 			__ClearPageActive(page);
1745 			del_page_from_lru_list(page, lruvec, lru);
1746 
1747 			if (unlikely(PageCompound(page))) {
1748 				spin_unlock_irq(&zone->lru_lock);
1749 				mem_cgroup_uncharge(page);
1750 				(*get_compound_page_dtor(page))(page);
1751 				spin_lock_irq(&zone->lru_lock);
1752 			} else
1753 				list_add(&page->lru, pages_to_free);
1754 		}
1755 	}
1756 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1757 	if (!is_active_lru(lru))
1758 		__count_vm_events(PGDEACTIVATE, pgmoved);
1759 }
1760 
1761 static void shrink_active_list(unsigned long nr_to_scan,
1762 			       struct lruvec *lruvec,
1763 			       struct scan_control *sc,
1764 			       enum lru_list lru)
1765 {
1766 	unsigned long nr_taken;
1767 	unsigned long nr_scanned;
1768 	unsigned long vm_flags;
1769 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1770 	LIST_HEAD(l_active);
1771 	LIST_HEAD(l_inactive);
1772 	struct page *page;
1773 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1774 	unsigned long nr_rotated = 0;
1775 	isolate_mode_t isolate_mode = 0;
1776 	int file = is_file_lru(lru);
1777 	struct zone *zone = lruvec_zone(lruvec);
1778 
1779 	lru_add_drain();
1780 
1781 	if (!sc->may_unmap)
1782 		isolate_mode |= ISOLATE_UNMAPPED;
1783 	if (!sc->may_writepage)
1784 		isolate_mode |= ISOLATE_CLEAN;
1785 
1786 	spin_lock_irq(&zone->lru_lock);
1787 
1788 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1789 				     &nr_scanned, sc, isolate_mode, lru);
1790 	if (global_reclaim(sc))
1791 		__mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
1792 
1793 	reclaim_stat->recent_scanned[file] += nr_taken;
1794 
1795 	__count_zone_vm_events(PGREFILL, zone, nr_scanned);
1796 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1797 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1798 	spin_unlock_irq(&zone->lru_lock);
1799 
1800 	while (!list_empty(&l_hold)) {
1801 		cond_resched();
1802 		page = lru_to_page(&l_hold);
1803 		list_del(&page->lru);
1804 
1805 		if (unlikely(!page_evictable(page))) {
1806 			putback_lru_page(page);
1807 			continue;
1808 		}
1809 
1810 		if (unlikely(buffer_heads_over_limit)) {
1811 			if (page_has_private(page) && trylock_page(page)) {
1812 				if (page_has_private(page))
1813 					try_to_release_page(page, 0);
1814 				unlock_page(page);
1815 			}
1816 		}
1817 
1818 		if (page_referenced(page, 0, sc->target_mem_cgroup,
1819 				    &vm_flags)) {
1820 			nr_rotated += hpage_nr_pages(page);
1821 			/*
1822 			 * Identify referenced, file-backed active pages and
1823 			 * give them one more trip around the active list. So
1824 			 * that executable code get better chances to stay in
1825 			 * memory under moderate memory pressure.  Anon pages
1826 			 * are not likely to be evicted by use-once streaming
1827 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
1828 			 * so we ignore them here.
1829 			 */
1830 			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1831 				list_add(&page->lru, &l_active);
1832 				continue;
1833 			}
1834 		}
1835 
1836 		ClearPageActive(page);	/* we are de-activating */
1837 		list_add(&page->lru, &l_inactive);
1838 	}
1839 
1840 	/*
1841 	 * Move pages back to the lru list.
1842 	 */
1843 	spin_lock_irq(&zone->lru_lock);
1844 	/*
1845 	 * Count referenced pages from currently used mappings as rotated,
1846 	 * even though only some of them are actually re-activated.  This
1847 	 * helps balance scan pressure between file and anonymous pages in
1848 	 * get_scan_count.
1849 	 */
1850 	reclaim_stat->recent_rotated[file] += nr_rotated;
1851 
1852 	move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1853 	move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1854 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1855 	spin_unlock_irq(&zone->lru_lock);
1856 
1857 	mem_cgroup_uncharge_list(&l_hold);
1858 	free_hot_cold_page_list(&l_hold, true);
1859 }
1860 
1861 #ifdef CONFIG_SWAP
1862 static bool inactive_anon_is_low_global(struct zone *zone)
1863 {
1864 	unsigned long active, inactive;
1865 
1866 	active = zone_page_state(zone, NR_ACTIVE_ANON);
1867 	inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1868 
1869 	return inactive * zone->inactive_ratio < active;
1870 }
1871 
1872 /**
1873  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1874  * @lruvec: LRU vector to check
1875  *
1876  * Returns true if the zone does not have enough inactive anon pages,
1877  * meaning some active anon pages need to be deactivated.
1878  */
1879 static bool inactive_anon_is_low(struct lruvec *lruvec)
1880 {
1881 	/*
1882 	 * If we don't have swap space, anonymous page deactivation
1883 	 * is pointless.
1884 	 */
1885 	if (!total_swap_pages)
1886 		return false;
1887 
1888 	if (!mem_cgroup_disabled())
1889 		return mem_cgroup_inactive_anon_is_low(lruvec);
1890 
1891 	return inactive_anon_is_low_global(lruvec_zone(lruvec));
1892 }
1893 #else
1894 static inline bool inactive_anon_is_low(struct lruvec *lruvec)
1895 {
1896 	return false;
1897 }
1898 #endif
1899 
1900 /**
1901  * inactive_file_is_low - check if file pages need to be deactivated
1902  * @lruvec: LRU vector to check
1903  *
1904  * When the system is doing streaming IO, memory pressure here
1905  * ensures that active file pages get deactivated, until more
1906  * than half of the file pages are on the inactive list.
1907  *
1908  * Once we get to that situation, protect the system's working
1909  * set from being evicted by disabling active file page aging.
1910  *
1911  * This uses a different ratio than the anonymous pages, because
1912  * the page cache uses a use-once replacement algorithm.
1913  */
1914 static bool inactive_file_is_low(struct lruvec *lruvec)
1915 {
1916 	unsigned long inactive;
1917 	unsigned long active;
1918 
1919 	inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1920 	active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1921 
1922 	return active > inactive;
1923 }
1924 
1925 static bool inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1926 {
1927 	if (is_file_lru(lru))
1928 		return inactive_file_is_low(lruvec);
1929 	else
1930 		return inactive_anon_is_low(lruvec);
1931 }
1932 
1933 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1934 				 struct lruvec *lruvec, struct scan_control *sc)
1935 {
1936 	if (is_active_lru(lru)) {
1937 		if (inactive_list_is_low(lruvec, lru))
1938 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
1939 		return 0;
1940 	}
1941 
1942 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1943 }
1944 
1945 enum scan_balance {
1946 	SCAN_EQUAL,
1947 	SCAN_FRACT,
1948 	SCAN_ANON,
1949 	SCAN_FILE,
1950 };
1951 
1952 /*
1953  * Determine how aggressively the anon and file LRU lists should be
1954  * scanned.  The relative value of each set of LRU lists is determined
1955  * by looking at the fraction of the pages scanned we did rotate back
1956  * onto the active list instead of evict.
1957  *
1958  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1959  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1960  */
1961 static void get_scan_count(struct lruvec *lruvec, int swappiness,
1962 			   struct scan_control *sc, unsigned long *nr,
1963 			   unsigned long *lru_pages)
1964 {
1965 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1966 	u64 fraction[2];
1967 	u64 denominator = 0;	/* gcc */
1968 	struct zone *zone = lruvec_zone(lruvec);
1969 	unsigned long anon_prio, file_prio;
1970 	enum scan_balance scan_balance;
1971 	unsigned long anon, file;
1972 	bool force_scan = false;
1973 	unsigned long ap, fp;
1974 	enum lru_list lru;
1975 	bool some_scanned;
1976 	int pass;
1977 
1978 	/*
1979 	 * If the zone or memcg is small, nr[l] can be 0.  This
1980 	 * results in no scanning on this priority and a potential
1981 	 * priority drop.  Global direct reclaim can go to the next
1982 	 * zone and tends to have no problems. Global kswapd is for
1983 	 * zone balancing and it needs to scan a minimum amount. When
1984 	 * reclaiming for a memcg, a priority drop can cause high
1985 	 * latencies, so it's better to scan a minimum amount there as
1986 	 * well.
1987 	 */
1988 	if (current_is_kswapd()) {
1989 		if (!zone_reclaimable(zone))
1990 			force_scan = true;
1991 		if (!mem_cgroup_lruvec_online(lruvec))
1992 			force_scan = true;
1993 	}
1994 	if (!global_reclaim(sc))
1995 		force_scan = true;
1996 
1997 	/* If we have no swap space, do not bother scanning anon pages. */
1998 	if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
1999 		scan_balance = SCAN_FILE;
2000 		goto out;
2001 	}
2002 
2003 	/*
2004 	 * Global reclaim will swap to prevent OOM even with no
2005 	 * swappiness, but memcg users want to use this knob to
2006 	 * disable swapping for individual groups completely when
2007 	 * using the memory controller's swap limit feature would be
2008 	 * too expensive.
2009 	 */
2010 	if (!global_reclaim(sc) && !swappiness) {
2011 		scan_balance = SCAN_FILE;
2012 		goto out;
2013 	}
2014 
2015 	/*
2016 	 * Do not apply any pressure balancing cleverness when the
2017 	 * system is close to OOM, scan both anon and file equally
2018 	 * (unless the swappiness setting disagrees with swapping).
2019 	 */
2020 	if (!sc->priority && swappiness) {
2021 		scan_balance = SCAN_EQUAL;
2022 		goto out;
2023 	}
2024 
2025 	/*
2026 	 * Prevent the reclaimer from falling into the cache trap: as
2027 	 * cache pages start out inactive, every cache fault will tip
2028 	 * the scan balance towards the file LRU.  And as the file LRU
2029 	 * shrinks, so does the window for rotation from references.
2030 	 * This means we have a runaway feedback loop where a tiny
2031 	 * thrashing file LRU becomes infinitely more attractive than
2032 	 * anon pages.  Try to detect this based on file LRU size.
2033 	 */
2034 	if (global_reclaim(sc)) {
2035 		unsigned long zonefile;
2036 		unsigned long zonefree;
2037 
2038 		zonefree = zone_page_state(zone, NR_FREE_PAGES);
2039 		zonefile = zone_page_state(zone, NR_ACTIVE_FILE) +
2040 			   zone_page_state(zone, NR_INACTIVE_FILE);
2041 
2042 		if (unlikely(zonefile + zonefree <= high_wmark_pages(zone))) {
2043 			scan_balance = SCAN_ANON;
2044 			goto out;
2045 		}
2046 	}
2047 
2048 	/*
2049 	 * There is enough inactive page cache, do not reclaim
2050 	 * anything from the anonymous working set right now.
2051 	 */
2052 	if (!inactive_file_is_low(lruvec)) {
2053 		scan_balance = SCAN_FILE;
2054 		goto out;
2055 	}
2056 
2057 	scan_balance = SCAN_FRACT;
2058 
2059 	/*
2060 	 * With swappiness at 100, anonymous and file have the same priority.
2061 	 * This scanning priority is essentially the inverse of IO cost.
2062 	 */
2063 	anon_prio = swappiness;
2064 	file_prio = 200 - anon_prio;
2065 
2066 	/*
2067 	 * OK, so we have swap space and a fair amount of page cache
2068 	 * pages.  We use the recently rotated / recently scanned
2069 	 * ratios to determine how valuable each cache is.
2070 	 *
2071 	 * Because workloads change over time (and to avoid overflow)
2072 	 * we keep these statistics as a floating average, which ends
2073 	 * up weighing recent references more than old ones.
2074 	 *
2075 	 * anon in [0], file in [1]
2076 	 */
2077 
2078 	anon  = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
2079 		get_lru_size(lruvec, LRU_INACTIVE_ANON);
2080 	file  = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
2081 		get_lru_size(lruvec, LRU_INACTIVE_FILE);
2082 
2083 	spin_lock_irq(&zone->lru_lock);
2084 	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2085 		reclaim_stat->recent_scanned[0] /= 2;
2086 		reclaim_stat->recent_rotated[0] /= 2;
2087 	}
2088 
2089 	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2090 		reclaim_stat->recent_scanned[1] /= 2;
2091 		reclaim_stat->recent_rotated[1] /= 2;
2092 	}
2093 
2094 	/*
2095 	 * The amount of pressure on anon vs file pages is inversely
2096 	 * proportional to the fraction of recently scanned pages on
2097 	 * each list that were recently referenced and in active use.
2098 	 */
2099 	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2100 	ap /= reclaim_stat->recent_rotated[0] + 1;
2101 
2102 	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2103 	fp /= reclaim_stat->recent_rotated[1] + 1;
2104 	spin_unlock_irq(&zone->lru_lock);
2105 
2106 	fraction[0] = ap;
2107 	fraction[1] = fp;
2108 	denominator = ap + fp + 1;
2109 out:
2110 	some_scanned = false;
2111 	/* Only use force_scan on second pass. */
2112 	for (pass = 0; !some_scanned && pass < 2; pass++) {
2113 		*lru_pages = 0;
2114 		for_each_evictable_lru(lru) {
2115 			int file = is_file_lru(lru);
2116 			unsigned long size;
2117 			unsigned long scan;
2118 
2119 			size = get_lru_size(lruvec, lru);
2120 			scan = size >> sc->priority;
2121 
2122 			if (!scan && pass && force_scan)
2123 				scan = min(size, SWAP_CLUSTER_MAX);
2124 
2125 			switch (scan_balance) {
2126 			case SCAN_EQUAL:
2127 				/* Scan lists relative to size */
2128 				break;
2129 			case SCAN_FRACT:
2130 				/*
2131 				 * Scan types proportional to swappiness and
2132 				 * their relative recent reclaim efficiency.
2133 				 */
2134 				scan = div64_u64(scan * fraction[file],
2135 							denominator);
2136 				break;
2137 			case SCAN_FILE:
2138 			case SCAN_ANON:
2139 				/* Scan one type exclusively */
2140 				if ((scan_balance == SCAN_FILE) != file) {
2141 					size = 0;
2142 					scan = 0;
2143 				}
2144 				break;
2145 			default:
2146 				/* Look ma, no brain */
2147 				BUG();
2148 			}
2149 
2150 			*lru_pages += size;
2151 			nr[lru] = scan;
2152 
2153 			/*
2154 			 * Skip the second pass and don't force_scan,
2155 			 * if we found something to scan.
2156 			 */
2157 			some_scanned |= !!scan;
2158 		}
2159 	}
2160 }
2161 
2162 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
2163 static void init_tlb_ubc(void)
2164 {
2165 	/*
2166 	 * This deliberately does not clear the cpumask as it's expensive
2167 	 * and unnecessary. If there happens to be data in there then the
2168 	 * first SWAP_CLUSTER_MAX pages will send an unnecessary IPI and
2169 	 * then will be cleared.
2170 	 */
2171 	current->tlb_ubc.flush_required = false;
2172 }
2173 #else
2174 static inline void init_tlb_ubc(void)
2175 {
2176 }
2177 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
2178 
2179 /*
2180  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
2181  */
2182 static void shrink_lruvec(struct lruvec *lruvec, int swappiness,
2183 			  struct scan_control *sc, unsigned long *lru_pages)
2184 {
2185 	unsigned long nr[NR_LRU_LISTS];
2186 	unsigned long targets[NR_LRU_LISTS];
2187 	unsigned long nr_to_scan;
2188 	enum lru_list lru;
2189 	unsigned long nr_reclaimed = 0;
2190 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2191 	struct blk_plug plug;
2192 	bool scan_adjusted;
2193 
2194 	get_scan_count(lruvec, swappiness, sc, nr, lru_pages);
2195 
2196 	/* Record the original scan target for proportional adjustments later */
2197 	memcpy(targets, nr, sizeof(nr));
2198 
2199 	/*
2200 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2201 	 * event that can occur when there is little memory pressure e.g.
2202 	 * multiple streaming readers/writers. Hence, we do not abort scanning
2203 	 * when the requested number of pages are reclaimed when scanning at
2204 	 * DEF_PRIORITY on the assumption that the fact we are direct
2205 	 * reclaiming implies that kswapd is not keeping up and it is best to
2206 	 * do a batch of work at once. For memcg reclaim one check is made to
2207 	 * abort proportional reclaim if either the file or anon lru has already
2208 	 * dropped to zero at the first pass.
2209 	 */
2210 	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2211 			 sc->priority == DEF_PRIORITY);
2212 
2213 	init_tlb_ubc();
2214 
2215 	blk_start_plug(&plug);
2216 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2217 					nr[LRU_INACTIVE_FILE]) {
2218 		unsigned long nr_anon, nr_file, percentage;
2219 		unsigned long nr_scanned;
2220 
2221 		for_each_evictable_lru(lru) {
2222 			if (nr[lru]) {
2223 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2224 				nr[lru] -= nr_to_scan;
2225 
2226 				nr_reclaimed += shrink_list(lru, nr_to_scan,
2227 							    lruvec, sc);
2228 			}
2229 		}
2230 
2231 		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2232 			continue;
2233 
2234 		/*
2235 		 * For kswapd and memcg, reclaim at least the number of pages
2236 		 * requested. Ensure that the anon and file LRUs are scanned
2237 		 * proportionally what was requested by get_scan_count(). We
2238 		 * stop reclaiming one LRU and reduce the amount scanning
2239 		 * proportional to the original scan target.
2240 		 */
2241 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2242 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2243 
2244 		/*
2245 		 * It's just vindictive to attack the larger once the smaller
2246 		 * has gone to zero.  And given the way we stop scanning the
2247 		 * smaller below, this makes sure that we only make one nudge
2248 		 * towards proportionality once we've got nr_to_reclaim.
2249 		 */
2250 		if (!nr_file || !nr_anon)
2251 			break;
2252 
2253 		if (nr_file > nr_anon) {
2254 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2255 						targets[LRU_ACTIVE_ANON] + 1;
2256 			lru = LRU_BASE;
2257 			percentage = nr_anon * 100 / scan_target;
2258 		} else {
2259 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2260 						targets[LRU_ACTIVE_FILE] + 1;
2261 			lru = LRU_FILE;
2262 			percentage = nr_file * 100 / scan_target;
2263 		}
2264 
2265 		/* Stop scanning the smaller of the LRU */
2266 		nr[lru] = 0;
2267 		nr[lru + LRU_ACTIVE] = 0;
2268 
2269 		/*
2270 		 * Recalculate the other LRU scan count based on its original
2271 		 * scan target and the percentage scanning already complete
2272 		 */
2273 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2274 		nr_scanned = targets[lru] - nr[lru];
2275 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2276 		nr[lru] -= min(nr[lru], nr_scanned);
2277 
2278 		lru += LRU_ACTIVE;
2279 		nr_scanned = targets[lru] - nr[lru];
2280 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2281 		nr[lru] -= min(nr[lru], nr_scanned);
2282 
2283 		scan_adjusted = true;
2284 	}
2285 	blk_finish_plug(&plug);
2286 	sc->nr_reclaimed += nr_reclaimed;
2287 
2288 	/*
2289 	 * Even if we did not try to evict anon pages at all, we want to
2290 	 * rebalance the anon lru active/inactive ratio.
2291 	 */
2292 	if (inactive_anon_is_low(lruvec))
2293 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2294 				   sc, LRU_ACTIVE_ANON);
2295 
2296 	throttle_vm_writeout(sc->gfp_mask);
2297 }
2298 
2299 /* Use reclaim/compaction for costly allocs or under memory pressure */
2300 static bool in_reclaim_compaction(struct scan_control *sc)
2301 {
2302 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2303 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2304 			 sc->priority < DEF_PRIORITY - 2))
2305 		return true;
2306 
2307 	return false;
2308 }
2309 
2310 /*
2311  * Reclaim/compaction is used for high-order allocation requests. It reclaims
2312  * order-0 pages before compacting the zone. should_continue_reclaim() returns
2313  * true if more pages should be reclaimed such that when the page allocator
2314  * calls try_to_compact_zone() that it will have enough free pages to succeed.
2315  * It will give up earlier than that if there is difficulty reclaiming pages.
2316  */
2317 static inline bool should_continue_reclaim(struct zone *zone,
2318 					unsigned long nr_reclaimed,
2319 					unsigned long nr_scanned,
2320 					struct scan_control *sc)
2321 {
2322 	unsigned long pages_for_compaction;
2323 	unsigned long inactive_lru_pages;
2324 
2325 	/* If not in reclaim/compaction mode, stop */
2326 	if (!in_reclaim_compaction(sc))
2327 		return false;
2328 
2329 	/* Consider stopping depending on scan and reclaim activity */
2330 	if (sc->gfp_mask & __GFP_REPEAT) {
2331 		/*
2332 		 * For __GFP_REPEAT allocations, stop reclaiming if the
2333 		 * full LRU list has been scanned and we are still failing
2334 		 * to reclaim pages. This full LRU scan is potentially
2335 		 * expensive but a __GFP_REPEAT caller really wants to succeed
2336 		 */
2337 		if (!nr_reclaimed && !nr_scanned)
2338 			return false;
2339 	} else {
2340 		/*
2341 		 * For non-__GFP_REPEAT allocations which can presumably
2342 		 * fail without consequence, stop if we failed to reclaim
2343 		 * any pages from the last SWAP_CLUSTER_MAX number of
2344 		 * pages that were scanned. This will return to the
2345 		 * caller faster at the risk reclaim/compaction and
2346 		 * the resulting allocation attempt fails
2347 		 */
2348 		if (!nr_reclaimed)
2349 			return false;
2350 	}
2351 
2352 	/*
2353 	 * If we have not reclaimed enough pages for compaction and the
2354 	 * inactive lists are large enough, continue reclaiming
2355 	 */
2356 	pages_for_compaction = (2UL << sc->order);
2357 	inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2358 	if (get_nr_swap_pages() > 0)
2359 		inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2360 	if (sc->nr_reclaimed < pages_for_compaction &&
2361 			inactive_lru_pages > pages_for_compaction)
2362 		return true;
2363 
2364 	/* If compaction would go ahead or the allocation would succeed, stop */
2365 	switch (compaction_suitable(zone, sc->order, 0, 0)) {
2366 	case COMPACT_PARTIAL:
2367 	case COMPACT_CONTINUE:
2368 		return false;
2369 	default:
2370 		return true;
2371 	}
2372 }
2373 
2374 static bool shrink_zone(struct zone *zone, struct scan_control *sc,
2375 			bool is_classzone)
2376 {
2377 	struct reclaim_state *reclaim_state = current->reclaim_state;
2378 	unsigned long nr_reclaimed, nr_scanned;
2379 	bool reclaimable = false;
2380 
2381 	do {
2382 		struct mem_cgroup *root = sc->target_mem_cgroup;
2383 		struct mem_cgroup_reclaim_cookie reclaim = {
2384 			.zone = zone,
2385 			.priority = sc->priority,
2386 		};
2387 		unsigned long zone_lru_pages = 0;
2388 		struct mem_cgroup *memcg;
2389 
2390 		nr_reclaimed = sc->nr_reclaimed;
2391 		nr_scanned = sc->nr_scanned;
2392 
2393 		memcg = mem_cgroup_iter(root, NULL, &reclaim);
2394 		do {
2395 			unsigned long lru_pages;
2396 			unsigned long scanned;
2397 			struct lruvec *lruvec;
2398 			int swappiness;
2399 
2400 			if (mem_cgroup_low(root, memcg)) {
2401 				if (!sc->may_thrash)
2402 					continue;
2403 				mem_cgroup_events(memcg, MEMCG_LOW, 1);
2404 			}
2405 
2406 			lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2407 			swappiness = mem_cgroup_swappiness(memcg);
2408 			scanned = sc->nr_scanned;
2409 
2410 			shrink_lruvec(lruvec, swappiness, sc, &lru_pages);
2411 			zone_lru_pages += lru_pages;
2412 
2413 			if (memcg && is_classzone)
2414 				shrink_slab(sc->gfp_mask, zone_to_nid(zone),
2415 					    memcg, sc->nr_scanned - scanned,
2416 					    lru_pages);
2417 
2418 			/*
2419 			 * Direct reclaim and kswapd have to scan all memory
2420 			 * cgroups to fulfill the overall scan target for the
2421 			 * zone.
2422 			 *
2423 			 * Limit reclaim, on the other hand, only cares about
2424 			 * nr_to_reclaim pages to be reclaimed and it will
2425 			 * retry with decreasing priority if one round over the
2426 			 * whole hierarchy is not sufficient.
2427 			 */
2428 			if (!global_reclaim(sc) &&
2429 					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2430 				mem_cgroup_iter_break(root, memcg);
2431 				break;
2432 			}
2433 		} while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2434 
2435 		/*
2436 		 * Shrink the slab caches in the same proportion that
2437 		 * the eligible LRU pages were scanned.
2438 		 */
2439 		if (global_reclaim(sc) && is_classzone)
2440 			shrink_slab(sc->gfp_mask, zone_to_nid(zone), NULL,
2441 				    sc->nr_scanned - nr_scanned,
2442 				    zone_lru_pages);
2443 
2444 		if (reclaim_state) {
2445 			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2446 			reclaim_state->reclaimed_slab = 0;
2447 		}
2448 
2449 		vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
2450 			   sc->nr_scanned - nr_scanned,
2451 			   sc->nr_reclaimed - nr_reclaimed);
2452 
2453 		if (sc->nr_reclaimed - nr_reclaimed)
2454 			reclaimable = true;
2455 
2456 	} while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2457 					 sc->nr_scanned - nr_scanned, sc));
2458 
2459 	return reclaimable;
2460 }
2461 
2462 /*
2463  * Returns true if compaction should go ahead for a high-order request, or
2464  * the high-order allocation would succeed without compaction.
2465  */
2466 static inline bool compaction_ready(struct zone *zone, int order)
2467 {
2468 	unsigned long balance_gap, watermark;
2469 	bool watermark_ok;
2470 
2471 	/*
2472 	 * Compaction takes time to run and there are potentially other
2473 	 * callers using the pages just freed. Continue reclaiming until
2474 	 * there is a buffer of free pages available to give compaction
2475 	 * a reasonable chance of completing and allocating the page
2476 	 */
2477 	balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
2478 			zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
2479 	watermark = high_wmark_pages(zone) + balance_gap + (2UL << order);
2480 	watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0);
2481 
2482 	/*
2483 	 * If compaction is deferred, reclaim up to a point where
2484 	 * compaction will have a chance of success when re-enabled
2485 	 */
2486 	if (compaction_deferred(zone, order))
2487 		return watermark_ok;
2488 
2489 	/*
2490 	 * If compaction is not ready to start and allocation is not likely
2491 	 * to succeed without it, then keep reclaiming.
2492 	 */
2493 	if (compaction_suitable(zone, order, 0, 0) == COMPACT_SKIPPED)
2494 		return false;
2495 
2496 	return watermark_ok;
2497 }
2498 
2499 /*
2500  * This is the direct reclaim path, for page-allocating processes.  We only
2501  * try to reclaim pages from zones which will satisfy the caller's allocation
2502  * request.
2503  *
2504  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2505  * Because:
2506  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2507  *    allocation or
2508  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2509  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2510  *    zone defense algorithm.
2511  *
2512  * If a zone is deemed to be full of pinned pages then just give it a light
2513  * scan then give up on it.
2514  *
2515  * Returns true if a zone was reclaimable.
2516  */
2517 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2518 {
2519 	struct zoneref *z;
2520 	struct zone *zone;
2521 	unsigned long nr_soft_reclaimed;
2522 	unsigned long nr_soft_scanned;
2523 	gfp_t orig_mask;
2524 	enum zone_type requested_highidx = gfp_zone(sc->gfp_mask);
2525 	bool reclaimable = false;
2526 
2527 	/*
2528 	 * If the number of buffer_heads in the machine exceeds the maximum
2529 	 * allowed level, force direct reclaim to scan the highmem zone as
2530 	 * highmem pages could be pinning lowmem pages storing buffer_heads
2531 	 */
2532 	orig_mask = sc->gfp_mask;
2533 	if (buffer_heads_over_limit)
2534 		sc->gfp_mask |= __GFP_HIGHMEM;
2535 
2536 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2537 					requested_highidx, sc->nodemask) {
2538 		enum zone_type classzone_idx;
2539 
2540 		if (!populated_zone(zone))
2541 			continue;
2542 
2543 		classzone_idx = requested_highidx;
2544 		while (!populated_zone(zone->zone_pgdat->node_zones +
2545 							classzone_idx))
2546 			classzone_idx--;
2547 
2548 		/*
2549 		 * Take care memory controller reclaiming has small influence
2550 		 * to global LRU.
2551 		 */
2552 		if (global_reclaim(sc)) {
2553 			if (!cpuset_zone_allowed(zone,
2554 						 GFP_KERNEL | __GFP_HARDWALL))
2555 				continue;
2556 
2557 			if (sc->priority != DEF_PRIORITY &&
2558 			    !zone_reclaimable(zone))
2559 				continue;	/* Let kswapd poll it */
2560 
2561 			/*
2562 			 * If we already have plenty of memory free for
2563 			 * compaction in this zone, don't free any more.
2564 			 * Even though compaction is invoked for any
2565 			 * non-zero order, only frequent costly order
2566 			 * reclamation is disruptive enough to become a
2567 			 * noticeable problem, like transparent huge
2568 			 * page allocations.
2569 			 */
2570 			if (IS_ENABLED(CONFIG_COMPACTION) &&
2571 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2572 			    zonelist_zone_idx(z) <= requested_highidx &&
2573 			    compaction_ready(zone, sc->order)) {
2574 				sc->compaction_ready = true;
2575 				continue;
2576 			}
2577 
2578 			/*
2579 			 * This steals pages from memory cgroups over softlimit
2580 			 * and returns the number of reclaimed pages and
2581 			 * scanned pages. This works for global memory pressure
2582 			 * and balancing, not for a memcg's limit.
2583 			 */
2584 			nr_soft_scanned = 0;
2585 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2586 						sc->order, sc->gfp_mask,
2587 						&nr_soft_scanned);
2588 			sc->nr_reclaimed += nr_soft_reclaimed;
2589 			sc->nr_scanned += nr_soft_scanned;
2590 			if (nr_soft_reclaimed)
2591 				reclaimable = true;
2592 			/* need some check for avoid more shrink_zone() */
2593 		}
2594 
2595 		if (shrink_zone(zone, sc, zone_idx(zone) == classzone_idx))
2596 			reclaimable = true;
2597 
2598 		if (global_reclaim(sc) &&
2599 		    !reclaimable && zone_reclaimable(zone))
2600 			reclaimable = true;
2601 	}
2602 
2603 	/*
2604 	 * Restore to original mask to avoid the impact on the caller if we
2605 	 * promoted it to __GFP_HIGHMEM.
2606 	 */
2607 	sc->gfp_mask = orig_mask;
2608 
2609 	return reclaimable;
2610 }
2611 
2612 /*
2613  * This is the main entry point to direct page reclaim.
2614  *
2615  * If a full scan of the inactive list fails to free enough memory then we
2616  * are "out of memory" and something needs to be killed.
2617  *
2618  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2619  * high - the zone may be full of dirty or under-writeback pages, which this
2620  * caller can't do much about.  We kick the writeback threads and take explicit
2621  * naps in the hope that some of these pages can be written.  But if the
2622  * allocating task holds filesystem locks which prevent writeout this might not
2623  * work, and the allocation attempt will fail.
2624  *
2625  * returns:	0, if no pages reclaimed
2626  * 		else, the number of pages reclaimed
2627  */
2628 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2629 					  struct scan_control *sc)
2630 {
2631 	int initial_priority = sc->priority;
2632 	unsigned long total_scanned = 0;
2633 	unsigned long writeback_threshold;
2634 	bool zones_reclaimable;
2635 retry:
2636 	delayacct_freepages_start();
2637 
2638 	if (global_reclaim(sc))
2639 		count_vm_event(ALLOCSTALL);
2640 
2641 	do {
2642 		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2643 				sc->priority);
2644 		sc->nr_scanned = 0;
2645 		zones_reclaimable = shrink_zones(zonelist, sc);
2646 
2647 		total_scanned += sc->nr_scanned;
2648 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2649 			break;
2650 
2651 		if (sc->compaction_ready)
2652 			break;
2653 
2654 		/*
2655 		 * If we're getting trouble reclaiming, start doing
2656 		 * writepage even in laptop mode.
2657 		 */
2658 		if (sc->priority < DEF_PRIORITY - 2)
2659 			sc->may_writepage = 1;
2660 
2661 		/*
2662 		 * Try to write back as many pages as we just scanned.  This
2663 		 * tends to cause slow streaming writers to write data to the
2664 		 * disk smoothly, at the dirtying rate, which is nice.   But
2665 		 * that's undesirable in laptop mode, where we *want* lumpy
2666 		 * writeout.  So in laptop mode, write out the whole world.
2667 		 */
2668 		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2669 		if (total_scanned > writeback_threshold) {
2670 			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2671 						WB_REASON_TRY_TO_FREE_PAGES);
2672 			sc->may_writepage = 1;
2673 		}
2674 	} while (--sc->priority >= 0);
2675 
2676 	delayacct_freepages_end();
2677 
2678 	if (sc->nr_reclaimed)
2679 		return sc->nr_reclaimed;
2680 
2681 	/* Aborted reclaim to try compaction? don't OOM, then */
2682 	if (sc->compaction_ready)
2683 		return 1;
2684 
2685 	/* Untapped cgroup reserves?  Don't OOM, retry. */
2686 	if (!sc->may_thrash) {
2687 		sc->priority = initial_priority;
2688 		sc->may_thrash = 1;
2689 		goto retry;
2690 	}
2691 
2692 	/* Any of the zones still reclaimable?  Don't OOM. */
2693 	if (zones_reclaimable)
2694 		return 1;
2695 
2696 	return 0;
2697 }
2698 
2699 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2700 {
2701 	struct zone *zone;
2702 	unsigned long pfmemalloc_reserve = 0;
2703 	unsigned long free_pages = 0;
2704 	int i;
2705 	bool wmark_ok;
2706 
2707 	for (i = 0; i <= ZONE_NORMAL; i++) {
2708 		zone = &pgdat->node_zones[i];
2709 		if (!populated_zone(zone) ||
2710 		    zone_reclaimable_pages(zone) == 0)
2711 			continue;
2712 
2713 		pfmemalloc_reserve += min_wmark_pages(zone);
2714 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
2715 	}
2716 
2717 	/* If there are no reserves (unexpected config) then do not throttle */
2718 	if (!pfmemalloc_reserve)
2719 		return true;
2720 
2721 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
2722 
2723 	/* kswapd must be awake if processes are being throttled */
2724 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2725 		pgdat->classzone_idx = min(pgdat->classzone_idx,
2726 						(enum zone_type)ZONE_NORMAL);
2727 		wake_up_interruptible(&pgdat->kswapd_wait);
2728 	}
2729 
2730 	return wmark_ok;
2731 }
2732 
2733 /*
2734  * Throttle direct reclaimers if backing storage is backed by the network
2735  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2736  * depleted. kswapd will continue to make progress and wake the processes
2737  * when the low watermark is reached.
2738  *
2739  * Returns true if a fatal signal was delivered during throttling. If this
2740  * happens, the page allocator should not consider triggering the OOM killer.
2741  */
2742 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2743 					nodemask_t *nodemask)
2744 {
2745 	struct zoneref *z;
2746 	struct zone *zone;
2747 	pg_data_t *pgdat = NULL;
2748 
2749 	/*
2750 	 * Kernel threads should not be throttled as they may be indirectly
2751 	 * responsible for cleaning pages necessary for reclaim to make forward
2752 	 * progress. kjournald for example may enter direct reclaim while
2753 	 * committing a transaction where throttling it could forcing other
2754 	 * processes to block on log_wait_commit().
2755 	 */
2756 	if (current->flags & PF_KTHREAD)
2757 		goto out;
2758 
2759 	/*
2760 	 * If a fatal signal is pending, this process should not throttle.
2761 	 * It should return quickly so it can exit and free its memory
2762 	 */
2763 	if (fatal_signal_pending(current))
2764 		goto out;
2765 
2766 	/*
2767 	 * Check if the pfmemalloc reserves are ok by finding the first node
2768 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2769 	 * GFP_KERNEL will be required for allocating network buffers when
2770 	 * swapping over the network so ZONE_HIGHMEM is unusable.
2771 	 *
2772 	 * Throttling is based on the first usable node and throttled processes
2773 	 * wait on a queue until kswapd makes progress and wakes them. There
2774 	 * is an affinity then between processes waking up and where reclaim
2775 	 * progress has been made assuming the process wakes on the same node.
2776 	 * More importantly, processes running on remote nodes will not compete
2777 	 * for remote pfmemalloc reserves and processes on different nodes
2778 	 * should make reasonable progress.
2779 	 */
2780 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2781 					gfp_zone(gfp_mask), nodemask) {
2782 		if (zone_idx(zone) > ZONE_NORMAL)
2783 			continue;
2784 
2785 		/* Throttle based on the first usable node */
2786 		pgdat = zone->zone_pgdat;
2787 		if (pfmemalloc_watermark_ok(pgdat))
2788 			goto out;
2789 		break;
2790 	}
2791 
2792 	/* If no zone was usable by the allocation flags then do not throttle */
2793 	if (!pgdat)
2794 		goto out;
2795 
2796 	/* Account for the throttling */
2797 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
2798 
2799 	/*
2800 	 * If the caller cannot enter the filesystem, it's possible that it
2801 	 * is due to the caller holding an FS lock or performing a journal
2802 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
2803 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
2804 	 * blocked waiting on the same lock. Instead, throttle for up to a
2805 	 * second before continuing.
2806 	 */
2807 	if (!(gfp_mask & __GFP_FS)) {
2808 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2809 			pfmemalloc_watermark_ok(pgdat), HZ);
2810 
2811 		goto check_pending;
2812 	}
2813 
2814 	/* Throttle until kswapd wakes the process */
2815 	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2816 		pfmemalloc_watermark_ok(pgdat));
2817 
2818 check_pending:
2819 	if (fatal_signal_pending(current))
2820 		return true;
2821 
2822 out:
2823 	return false;
2824 }
2825 
2826 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2827 				gfp_t gfp_mask, nodemask_t *nodemask)
2828 {
2829 	unsigned long nr_reclaimed;
2830 	struct scan_control sc = {
2831 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2832 		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2833 		.order = order,
2834 		.nodemask = nodemask,
2835 		.priority = DEF_PRIORITY,
2836 		.may_writepage = !laptop_mode,
2837 		.may_unmap = 1,
2838 		.may_swap = 1,
2839 	};
2840 
2841 	/*
2842 	 * Do not enter reclaim if fatal signal was delivered while throttled.
2843 	 * 1 is returned so that the page allocator does not OOM kill at this
2844 	 * point.
2845 	 */
2846 	if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2847 		return 1;
2848 
2849 	trace_mm_vmscan_direct_reclaim_begin(order,
2850 				sc.may_writepage,
2851 				gfp_mask);
2852 
2853 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2854 
2855 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2856 
2857 	return nr_reclaimed;
2858 }
2859 
2860 #ifdef CONFIG_MEMCG
2861 
2862 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2863 						gfp_t gfp_mask, bool noswap,
2864 						struct zone *zone,
2865 						unsigned long *nr_scanned)
2866 {
2867 	struct scan_control sc = {
2868 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2869 		.target_mem_cgroup = memcg,
2870 		.may_writepage = !laptop_mode,
2871 		.may_unmap = 1,
2872 		.may_swap = !noswap,
2873 	};
2874 	struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2875 	int swappiness = mem_cgroup_swappiness(memcg);
2876 	unsigned long lru_pages;
2877 
2878 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2879 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2880 
2881 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2882 						      sc.may_writepage,
2883 						      sc.gfp_mask);
2884 
2885 	/*
2886 	 * NOTE: Although we can get the priority field, using it
2887 	 * here is not a good idea, since it limits the pages we can scan.
2888 	 * if we don't reclaim here, the shrink_zone from balance_pgdat
2889 	 * will pick up pages from other mem cgroup's as well. We hack
2890 	 * the priority and make it zero.
2891 	 */
2892 	shrink_lruvec(lruvec, swappiness, &sc, &lru_pages);
2893 
2894 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2895 
2896 	*nr_scanned = sc.nr_scanned;
2897 	return sc.nr_reclaimed;
2898 }
2899 
2900 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2901 					   unsigned long nr_pages,
2902 					   gfp_t gfp_mask,
2903 					   bool may_swap)
2904 {
2905 	struct zonelist *zonelist;
2906 	unsigned long nr_reclaimed;
2907 	int nid;
2908 	struct scan_control sc = {
2909 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
2910 		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2911 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2912 		.target_mem_cgroup = memcg,
2913 		.priority = DEF_PRIORITY,
2914 		.may_writepage = !laptop_mode,
2915 		.may_unmap = 1,
2916 		.may_swap = may_swap,
2917 	};
2918 
2919 	/*
2920 	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2921 	 * take care of from where we get pages. So the node where we start the
2922 	 * scan does not need to be the current node.
2923 	 */
2924 	nid = mem_cgroup_select_victim_node(memcg);
2925 
2926 	zonelist = NODE_DATA(nid)->node_zonelists;
2927 
2928 	trace_mm_vmscan_memcg_reclaim_begin(0,
2929 					    sc.may_writepage,
2930 					    sc.gfp_mask);
2931 
2932 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2933 
2934 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2935 
2936 	return nr_reclaimed;
2937 }
2938 #endif
2939 
2940 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2941 {
2942 	struct mem_cgroup *memcg;
2943 
2944 	if (!total_swap_pages)
2945 		return;
2946 
2947 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
2948 	do {
2949 		struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2950 
2951 		if (inactive_anon_is_low(lruvec))
2952 			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2953 					   sc, LRU_ACTIVE_ANON);
2954 
2955 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
2956 	} while (memcg);
2957 }
2958 
2959 static bool zone_balanced(struct zone *zone, int order,
2960 			  unsigned long balance_gap, int classzone_idx)
2961 {
2962 	if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2963 				    balance_gap, classzone_idx))
2964 		return false;
2965 
2966 	if (IS_ENABLED(CONFIG_COMPACTION) && order && compaction_suitable(zone,
2967 				order, 0, classzone_idx) == COMPACT_SKIPPED)
2968 		return false;
2969 
2970 	return true;
2971 }
2972 
2973 /*
2974  * pgdat_balanced() is used when checking if a node is balanced.
2975  *
2976  * For order-0, all zones must be balanced!
2977  *
2978  * For high-order allocations only zones that meet watermarks and are in a
2979  * zone allowed by the callers classzone_idx are added to balanced_pages. The
2980  * total of balanced pages must be at least 25% of the zones allowed by
2981  * classzone_idx for the node to be considered balanced. Forcing all zones to
2982  * be balanced for high orders can cause excessive reclaim when there are
2983  * imbalanced zones.
2984  * The choice of 25% is due to
2985  *   o a 16M DMA zone that is balanced will not balance a zone on any
2986  *     reasonable sized machine
2987  *   o On all other machines, the top zone must be at least a reasonable
2988  *     percentage of the middle zones. For example, on 32-bit x86, highmem
2989  *     would need to be at least 256M for it to be balance a whole node.
2990  *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2991  *     to balance a node on its own. These seemed like reasonable ratios.
2992  */
2993 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
2994 {
2995 	unsigned long managed_pages = 0;
2996 	unsigned long balanced_pages = 0;
2997 	int i;
2998 
2999 	/* Check the watermark levels */
3000 	for (i = 0; i <= classzone_idx; i++) {
3001 		struct zone *zone = pgdat->node_zones + i;
3002 
3003 		if (!populated_zone(zone))
3004 			continue;
3005 
3006 		managed_pages += zone->managed_pages;
3007 
3008 		/*
3009 		 * A special case here:
3010 		 *
3011 		 * balance_pgdat() skips over all_unreclaimable after
3012 		 * DEF_PRIORITY. Effectively, it considers them balanced so
3013 		 * they must be considered balanced here as well!
3014 		 */
3015 		if (!zone_reclaimable(zone)) {
3016 			balanced_pages += zone->managed_pages;
3017 			continue;
3018 		}
3019 
3020 		if (zone_balanced(zone, order, 0, i))
3021 			balanced_pages += zone->managed_pages;
3022 		else if (!order)
3023 			return false;
3024 	}
3025 
3026 	if (order)
3027 		return balanced_pages >= (managed_pages >> 2);
3028 	else
3029 		return true;
3030 }
3031 
3032 /*
3033  * Prepare kswapd for sleeping. This verifies that there are no processes
3034  * waiting in throttle_direct_reclaim() and that watermarks have been met.
3035  *
3036  * Returns true if kswapd is ready to sleep
3037  */
3038 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
3039 					int classzone_idx)
3040 {
3041 	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
3042 	if (remaining)
3043 		return false;
3044 
3045 	/*
3046 	 * The throttled processes are normally woken up in balance_pgdat() as
3047 	 * soon as pfmemalloc_watermark_ok() is true. But there is a potential
3048 	 * race between when kswapd checks the watermarks and a process gets
3049 	 * throttled. There is also a potential race if processes get
3050 	 * throttled, kswapd wakes, a large process exits thereby balancing the
3051 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
3052 	 * the wake up checks. If kswapd is going to sleep, no process should
3053 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3054 	 * the wake up is premature, processes will wake kswapd and get
3055 	 * throttled again. The difference from wake ups in balance_pgdat() is
3056 	 * that here we are under prepare_to_wait().
3057 	 */
3058 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
3059 		wake_up_all(&pgdat->pfmemalloc_wait);
3060 
3061 	return pgdat_balanced(pgdat, order, classzone_idx);
3062 }
3063 
3064 /*
3065  * kswapd shrinks the zone by the number of pages required to reach
3066  * the high watermark.
3067  *
3068  * Returns true if kswapd scanned at least the requested number of pages to
3069  * reclaim or if the lack of progress was due to pages under writeback.
3070  * This is used to determine if the scanning priority needs to be raised.
3071  */
3072 static bool kswapd_shrink_zone(struct zone *zone,
3073 			       int classzone_idx,
3074 			       struct scan_control *sc,
3075 			       unsigned long *nr_attempted)
3076 {
3077 	int testorder = sc->order;
3078 	unsigned long balance_gap;
3079 	bool lowmem_pressure;
3080 
3081 	/* Reclaim above the high watermark. */
3082 	sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
3083 
3084 	/*
3085 	 * Kswapd reclaims only single pages with compaction enabled. Trying
3086 	 * too hard to reclaim until contiguous free pages have become
3087 	 * available can hurt performance by evicting too much useful data
3088 	 * from memory. Do not reclaim more than needed for compaction.
3089 	 */
3090 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
3091 			compaction_suitable(zone, sc->order, 0, classzone_idx)
3092 							!= COMPACT_SKIPPED)
3093 		testorder = 0;
3094 
3095 	/*
3096 	 * We put equal pressure on every zone, unless one zone has way too
3097 	 * many pages free already. The "too many pages" is defined as the
3098 	 * high wmark plus a "gap" where the gap is either the low
3099 	 * watermark or 1% of the zone, whichever is smaller.
3100 	 */
3101 	balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
3102 			zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
3103 
3104 	/*
3105 	 * If there is no low memory pressure or the zone is balanced then no
3106 	 * reclaim is necessary
3107 	 */
3108 	lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
3109 	if (!lowmem_pressure && zone_balanced(zone, testorder,
3110 						balance_gap, classzone_idx))
3111 		return true;
3112 
3113 	shrink_zone(zone, sc, zone_idx(zone) == classzone_idx);
3114 
3115 	/* Account for the number of pages attempted to reclaim */
3116 	*nr_attempted += sc->nr_to_reclaim;
3117 
3118 	clear_bit(ZONE_WRITEBACK, &zone->flags);
3119 
3120 	/*
3121 	 * If a zone reaches its high watermark, consider it to be no longer
3122 	 * congested. It's possible there are dirty pages backed by congested
3123 	 * BDIs but as pressure is relieved, speculatively avoid congestion
3124 	 * waits.
3125 	 */
3126 	if (zone_reclaimable(zone) &&
3127 	    zone_balanced(zone, testorder, 0, classzone_idx)) {
3128 		clear_bit(ZONE_CONGESTED, &zone->flags);
3129 		clear_bit(ZONE_DIRTY, &zone->flags);
3130 	}
3131 
3132 	return sc->nr_scanned >= sc->nr_to_reclaim;
3133 }
3134 
3135 /*
3136  * For kswapd, balance_pgdat() will work across all this node's zones until
3137  * they are all at high_wmark_pages(zone).
3138  *
3139  * Returns the final order kswapd was reclaiming at
3140  *
3141  * There is special handling here for zones which are full of pinned pages.
3142  * This can happen if the pages are all mlocked, or if they are all used by
3143  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
3144  * What we do is to detect the case where all pages in the zone have been
3145  * scanned twice and there has been zero successful reclaim.  Mark the zone as
3146  * dead and from now on, only perform a short scan.  Basically we're polling
3147  * the zone for when the problem goes away.
3148  *
3149  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3150  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3151  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
3152  * lower zones regardless of the number of free pages in the lower zones. This
3153  * interoperates with the page allocator fallback scheme to ensure that aging
3154  * of pages is balanced across the zones.
3155  */
3156 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
3157 							int *classzone_idx)
3158 {
3159 	int i;
3160 	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
3161 	unsigned long nr_soft_reclaimed;
3162 	unsigned long nr_soft_scanned;
3163 	struct scan_control sc = {
3164 		.gfp_mask = GFP_KERNEL,
3165 		.order = order,
3166 		.priority = DEF_PRIORITY,
3167 		.may_writepage = !laptop_mode,
3168 		.may_unmap = 1,
3169 		.may_swap = 1,
3170 	};
3171 	count_vm_event(PAGEOUTRUN);
3172 
3173 	do {
3174 		unsigned long nr_attempted = 0;
3175 		bool raise_priority = true;
3176 		bool pgdat_needs_compaction = (order > 0);
3177 
3178 		sc.nr_reclaimed = 0;
3179 
3180 		/*
3181 		 * Scan in the highmem->dma direction for the highest
3182 		 * zone which needs scanning
3183 		 */
3184 		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
3185 			struct zone *zone = pgdat->node_zones + i;
3186 
3187 			if (!populated_zone(zone))
3188 				continue;
3189 
3190 			if (sc.priority != DEF_PRIORITY &&
3191 			    !zone_reclaimable(zone))
3192 				continue;
3193 
3194 			/*
3195 			 * Do some background aging of the anon list, to give
3196 			 * pages a chance to be referenced before reclaiming.
3197 			 */
3198 			age_active_anon(zone, &sc);
3199 
3200 			/*
3201 			 * If the number of buffer_heads in the machine
3202 			 * exceeds the maximum allowed level and this node
3203 			 * has a highmem zone, force kswapd to reclaim from
3204 			 * it to relieve lowmem pressure.
3205 			 */
3206 			if (buffer_heads_over_limit && is_highmem_idx(i)) {
3207 				end_zone = i;
3208 				break;
3209 			}
3210 
3211 			if (!zone_balanced(zone, order, 0, 0)) {
3212 				end_zone = i;
3213 				break;
3214 			} else {
3215 				/*
3216 				 * If balanced, clear the dirty and congested
3217 				 * flags
3218 				 */
3219 				clear_bit(ZONE_CONGESTED, &zone->flags);
3220 				clear_bit(ZONE_DIRTY, &zone->flags);
3221 			}
3222 		}
3223 
3224 		if (i < 0)
3225 			goto out;
3226 
3227 		for (i = 0; i <= end_zone; i++) {
3228 			struct zone *zone = pgdat->node_zones + i;
3229 
3230 			if (!populated_zone(zone))
3231 				continue;
3232 
3233 			/*
3234 			 * If any zone is currently balanced then kswapd will
3235 			 * not call compaction as it is expected that the
3236 			 * necessary pages are already available.
3237 			 */
3238 			if (pgdat_needs_compaction &&
3239 					zone_watermark_ok(zone, order,
3240 						low_wmark_pages(zone),
3241 						*classzone_idx, 0))
3242 				pgdat_needs_compaction = false;
3243 		}
3244 
3245 		/*
3246 		 * If we're getting trouble reclaiming, start doing writepage
3247 		 * even in laptop mode.
3248 		 */
3249 		if (sc.priority < DEF_PRIORITY - 2)
3250 			sc.may_writepage = 1;
3251 
3252 		/*
3253 		 * Now scan the zone in the dma->highmem direction, stopping
3254 		 * at the last zone which needs scanning.
3255 		 *
3256 		 * We do this because the page allocator works in the opposite
3257 		 * direction.  This prevents the page allocator from allocating
3258 		 * pages behind kswapd's direction of progress, which would
3259 		 * cause too much scanning of the lower zones.
3260 		 */
3261 		for (i = 0; i <= end_zone; i++) {
3262 			struct zone *zone = pgdat->node_zones + i;
3263 
3264 			if (!populated_zone(zone))
3265 				continue;
3266 
3267 			if (sc.priority != DEF_PRIORITY &&
3268 			    !zone_reclaimable(zone))
3269 				continue;
3270 
3271 			sc.nr_scanned = 0;
3272 
3273 			nr_soft_scanned = 0;
3274 			/*
3275 			 * Call soft limit reclaim before calling shrink_zone.
3276 			 */
3277 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
3278 							order, sc.gfp_mask,
3279 							&nr_soft_scanned);
3280 			sc.nr_reclaimed += nr_soft_reclaimed;
3281 
3282 			/*
3283 			 * There should be no need to raise the scanning
3284 			 * priority if enough pages are already being scanned
3285 			 * that that high watermark would be met at 100%
3286 			 * efficiency.
3287 			 */
3288 			if (kswapd_shrink_zone(zone, end_zone,
3289 					       &sc, &nr_attempted))
3290 				raise_priority = false;
3291 		}
3292 
3293 		/*
3294 		 * If the low watermark is met there is no need for processes
3295 		 * to be throttled on pfmemalloc_wait as they should not be
3296 		 * able to safely make forward progress. Wake them
3297 		 */
3298 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3299 				pfmemalloc_watermark_ok(pgdat))
3300 			wake_up_all(&pgdat->pfmemalloc_wait);
3301 
3302 		/*
3303 		 * Fragmentation may mean that the system cannot be rebalanced
3304 		 * for high-order allocations in all zones. If twice the
3305 		 * allocation size has been reclaimed and the zones are still
3306 		 * not balanced then recheck the watermarks at order-0 to
3307 		 * prevent kswapd reclaiming excessively. Assume that a
3308 		 * process requested a high-order can direct reclaim/compact.
3309 		 */
3310 		if (order && sc.nr_reclaimed >= 2UL << order)
3311 			order = sc.order = 0;
3312 
3313 		/* Check if kswapd should be suspending */
3314 		if (try_to_freeze() || kthread_should_stop())
3315 			break;
3316 
3317 		/*
3318 		 * Compact if necessary and kswapd is reclaiming at least the
3319 		 * high watermark number of pages as requsted
3320 		 */
3321 		if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
3322 			compact_pgdat(pgdat, order);
3323 
3324 		/*
3325 		 * Raise priority if scanning rate is too low or there was no
3326 		 * progress in reclaiming pages
3327 		 */
3328 		if (raise_priority || !sc.nr_reclaimed)
3329 			sc.priority--;
3330 	} while (sc.priority >= 1 &&
3331 		 !pgdat_balanced(pgdat, order, *classzone_idx));
3332 
3333 out:
3334 	/*
3335 	 * Return the order we were reclaiming at so prepare_kswapd_sleep()
3336 	 * makes a decision on the order we were last reclaiming at. However,
3337 	 * if another caller entered the allocator slow path while kswapd
3338 	 * was awake, order will remain at the higher level
3339 	 */
3340 	*classzone_idx = end_zone;
3341 	return order;
3342 }
3343 
3344 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3345 {
3346 	long remaining = 0;
3347 	DEFINE_WAIT(wait);
3348 
3349 	if (freezing(current) || kthread_should_stop())
3350 		return;
3351 
3352 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3353 
3354 	/* Try to sleep for a short interval */
3355 	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3356 		remaining = schedule_timeout(HZ/10);
3357 		finish_wait(&pgdat->kswapd_wait, &wait);
3358 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3359 	}
3360 
3361 	/*
3362 	 * After a short sleep, check if it was a premature sleep. If not, then
3363 	 * go fully to sleep until explicitly woken up.
3364 	 */
3365 	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3366 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3367 
3368 		/*
3369 		 * vmstat counters are not perfectly accurate and the estimated
3370 		 * value for counters such as NR_FREE_PAGES can deviate from the
3371 		 * true value by nr_online_cpus * threshold. To avoid the zone
3372 		 * watermarks being breached while under pressure, we reduce the
3373 		 * per-cpu vmstat threshold while kswapd is awake and restore
3374 		 * them before going back to sleep.
3375 		 */
3376 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3377 
3378 		/*
3379 		 * Compaction records what page blocks it recently failed to
3380 		 * isolate pages from and skips them in the future scanning.
3381 		 * When kswapd is going to sleep, it is reasonable to assume
3382 		 * that pages and compaction may succeed so reset the cache.
3383 		 */
3384 		reset_isolation_suitable(pgdat);
3385 
3386 		if (!kthread_should_stop())
3387 			schedule();
3388 
3389 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3390 	} else {
3391 		if (remaining)
3392 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3393 		else
3394 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3395 	}
3396 	finish_wait(&pgdat->kswapd_wait, &wait);
3397 }
3398 
3399 /*
3400  * The background pageout daemon, started as a kernel thread
3401  * from the init process.
3402  *
3403  * This basically trickles out pages so that we have _some_
3404  * free memory available even if there is no other activity
3405  * that frees anything up. This is needed for things like routing
3406  * etc, where we otherwise might have all activity going on in
3407  * asynchronous contexts that cannot page things out.
3408  *
3409  * If there are applications that are active memory-allocators
3410  * (most normal use), this basically shouldn't matter.
3411  */
3412 static int kswapd(void *p)
3413 {
3414 	unsigned long order, new_order;
3415 	unsigned balanced_order;
3416 	int classzone_idx, new_classzone_idx;
3417 	int balanced_classzone_idx;
3418 	pg_data_t *pgdat = (pg_data_t*)p;
3419 	struct task_struct *tsk = current;
3420 
3421 	struct reclaim_state reclaim_state = {
3422 		.reclaimed_slab = 0,
3423 	};
3424 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3425 
3426 	lockdep_set_current_reclaim_state(GFP_KERNEL);
3427 
3428 	if (!cpumask_empty(cpumask))
3429 		set_cpus_allowed_ptr(tsk, cpumask);
3430 	current->reclaim_state = &reclaim_state;
3431 
3432 	/*
3433 	 * Tell the memory management that we're a "memory allocator",
3434 	 * and that if we need more memory we should get access to it
3435 	 * regardless (see "__alloc_pages()"). "kswapd" should
3436 	 * never get caught in the normal page freeing logic.
3437 	 *
3438 	 * (Kswapd normally doesn't need memory anyway, but sometimes
3439 	 * you need a small amount of memory in order to be able to
3440 	 * page out something else, and this flag essentially protects
3441 	 * us from recursively trying to free more memory as we're
3442 	 * trying to free the first piece of memory in the first place).
3443 	 */
3444 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3445 	set_freezable();
3446 
3447 	order = new_order = 0;
3448 	balanced_order = 0;
3449 	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3450 	balanced_classzone_idx = classzone_idx;
3451 	for ( ; ; ) {
3452 		bool ret;
3453 
3454 		/*
3455 		 * If the last balance_pgdat was unsuccessful it's unlikely a
3456 		 * new request of a similar or harder type will succeed soon
3457 		 * so consider going to sleep on the basis we reclaimed at
3458 		 */
3459 		if (balanced_classzone_idx >= new_classzone_idx &&
3460 					balanced_order == new_order) {
3461 			new_order = pgdat->kswapd_max_order;
3462 			new_classzone_idx = pgdat->classzone_idx;
3463 			pgdat->kswapd_max_order =  0;
3464 			pgdat->classzone_idx = pgdat->nr_zones - 1;
3465 		}
3466 
3467 		if (order < new_order || classzone_idx > new_classzone_idx) {
3468 			/*
3469 			 * Don't sleep if someone wants a larger 'order'
3470 			 * allocation or has tigher zone constraints
3471 			 */
3472 			order = new_order;
3473 			classzone_idx = new_classzone_idx;
3474 		} else {
3475 			kswapd_try_to_sleep(pgdat, balanced_order,
3476 						balanced_classzone_idx);
3477 			order = pgdat->kswapd_max_order;
3478 			classzone_idx = pgdat->classzone_idx;
3479 			new_order = order;
3480 			new_classzone_idx = classzone_idx;
3481 			pgdat->kswapd_max_order = 0;
3482 			pgdat->classzone_idx = pgdat->nr_zones - 1;
3483 		}
3484 
3485 		ret = try_to_freeze();
3486 		if (kthread_should_stop())
3487 			break;
3488 
3489 		/*
3490 		 * We can speed up thawing tasks if we don't call balance_pgdat
3491 		 * after returning from the refrigerator
3492 		 */
3493 		if (!ret) {
3494 			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3495 			balanced_classzone_idx = classzone_idx;
3496 			balanced_order = balance_pgdat(pgdat, order,
3497 						&balanced_classzone_idx);
3498 		}
3499 	}
3500 
3501 	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3502 	current->reclaim_state = NULL;
3503 	lockdep_clear_current_reclaim_state();
3504 
3505 	return 0;
3506 }
3507 
3508 /*
3509  * A zone is low on free memory, so wake its kswapd task to service it.
3510  */
3511 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3512 {
3513 	pg_data_t *pgdat;
3514 
3515 	if (!populated_zone(zone))
3516 		return;
3517 
3518 	if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
3519 		return;
3520 	pgdat = zone->zone_pgdat;
3521 	if (pgdat->kswapd_max_order < order) {
3522 		pgdat->kswapd_max_order = order;
3523 		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3524 	}
3525 	if (!waitqueue_active(&pgdat->kswapd_wait))
3526 		return;
3527 	if (zone_balanced(zone, order, 0, 0))
3528 		return;
3529 
3530 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3531 	wake_up_interruptible(&pgdat->kswapd_wait);
3532 }
3533 
3534 #ifdef CONFIG_HIBERNATION
3535 /*
3536  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3537  * freed pages.
3538  *
3539  * Rather than trying to age LRUs the aim is to preserve the overall
3540  * LRU order by reclaiming preferentially
3541  * inactive > active > active referenced > active mapped
3542  */
3543 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3544 {
3545 	struct reclaim_state reclaim_state;
3546 	struct scan_control sc = {
3547 		.nr_to_reclaim = nr_to_reclaim,
3548 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3549 		.priority = DEF_PRIORITY,
3550 		.may_writepage = 1,
3551 		.may_unmap = 1,
3552 		.may_swap = 1,
3553 		.hibernation_mode = 1,
3554 	};
3555 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3556 	struct task_struct *p = current;
3557 	unsigned long nr_reclaimed;
3558 
3559 	p->flags |= PF_MEMALLOC;
3560 	lockdep_set_current_reclaim_state(sc.gfp_mask);
3561 	reclaim_state.reclaimed_slab = 0;
3562 	p->reclaim_state = &reclaim_state;
3563 
3564 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3565 
3566 	p->reclaim_state = NULL;
3567 	lockdep_clear_current_reclaim_state();
3568 	p->flags &= ~PF_MEMALLOC;
3569 
3570 	return nr_reclaimed;
3571 }
3572 #endif /* CONFIG_HIBERNATION */
3573 
3574 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3575    not required for correctness.  So if the last cpu in a node goes
3576    away, we get changed to run anywhere: as the first one comes back,
3577    restore their cpu bindings. */
3578 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3579 			void *hcpu)
3580 {
3581 	int nid;
3582 
3583 	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3584 		for_each_node_state(nid, N_MEMORY) {
3585 			pg_data_t *pgdat = NODE_DATA(nid);
3586 			const struct cpumask *mask;
3587 
3588 			mask = cpumask_of_node(pgdat->node_id);
3589 
3590 			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3591 				/* One of our CPUs online: restore mask */
3592 				set_cpus_allowed_ptr(pgdat->kswapd, mask);
3593 		}
3594 	}
3595 	return NOTIFY_OK;
3596 }
3597 
3598 /*
3599  * This kswapd start function will be called by init and node-hot-add.
3600  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3601  */
3602 int kswapd_run(int nid)
3603 {
3604 	pg_data_t *pgdat = NODE_DATA(nid);
3605 	int ret = 0;
3606 
3607 	if (pgdat->kswapd)
3608 		return 0;
3609 
3610 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3611 	if (IS_ERR(pgdat->kswapd)) {
3612 		/* failure at boot is fatal */
3613 		BUG_ON(system_state == SYSTEM_BOOTING);
3614 		pr_err("Failed to start kswapd on node %d\n", nid);
3615 		ret = PTR_ERR(pgdat->kswapd);
3616 		pgdat->kswapd = NULL;
3617 	}
3618 	return ret;
3619 }
3620 
3621 /*
3622  * Called by memory hotplug when all memory in a node is offlined.  Caller must
3623  * hold mem_hotplug_begin/end().
3624  */
3625 void kswapd_stop(int nid)
3626 {
3627 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3628 
3629 	if (kswapd) {
3630 		kthread_stop(kswapd);
3631 		NODE_DATA(nid)->kswapd = NULL;
3632 	}
3633 }
3634 
3635 static int __init kswapd_init(void)
3636 {
3637 	int nid;
3638 
3639 	swap_setup();
3640 	for_each_node_state(nid, N_MEMORY)
3641  		kswapd_run(nid);
3642 	hotcpu_notifier(cpu_callback, 0);
3643 	return 0;
3644 }
3645 
3646 module_init(kswapd_init)
3647 
3648 #ifdef CONFIG_NUMA
3649 /*
3650  * Zone reclaim mode
3651  *
3652  * If non-zero call zone_reclaim when the number of free pages falls below
3653  * the watermarks.
3654  */
3655 int zone_reclaim_mode __read_mostly;
3656 
3657 #define RECLAIM_OFF 0
3658 #define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3659 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3660 #define RECLAIM_UNMAP (1<<2)	/* Unmap pages during reclaim */
3661 
3662 /*
3663  * Priority for ZONE_RECLAIM. This determines the fraction of pages
3664  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3665  * a zone.
3666  */
3667 #define ZONE_RECLAIM_PRIORITY 4
3668 
3669 /*
3670  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3671  * occur.
3672  */
3673 int sysctl_min_unmapped_ratio = 1;
3674 
3675 /*
3676  * If the number of slab pages in a zone grows beyond this percentage then
3677  * slab reclaim needs to occur.
3678  */
3679 int sysctl_min_slab_ratio = 5;
3680 
3681 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3682 {
3683 	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3684 	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3685 		zone_page_state(zone, NR_ACTIVE_FILE);
3686 
3687 	/*
3688 	 * It's possible for there to be more file mapped pages than
3689 	 * accounted for by the pages on the file LRU lists because
3690 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3691 	 */
3692 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3693 }
3694 
3695 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3696 static unsigned long zone_pagecache_reclaimable(struct zone *zone)
3697 {
3698 	unsigned long nr_pagecache_reclaimable;
3699 	unsigned long delta = 0;
3700 
3701 	/*
3702 	 * If RECLAIM_UNMAP is set, then all file pages are considered
3703 	 * potentially reclaimable. Otherwise, we have to worry about
3704 	 * pages like swapcache and zone_unmapped_file_pages() provides
3705 	 * a better estimate
3706 	 */
3707 	if (zone_reclaim_mode & RECLAIM_UNMAP)
3708 		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3709 	else
3710 		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3711 
3712 	/* If we can't clean pages, remove dirty pages from consideration */
3713 	if (!(zone_reclaim_mode & RECLAIM_WRITE))
3714 		delta += zone_page_state(zone, NR_FILE_DIRTY);
3715 
3716 	/* Watch for any possible underflows due to delta */
3717 	if (unlikely(delta > nr_pagecache_reclaimable))
3718 		delta = nr_pagecache_reclaimable;
3719 
3720 	return nr_pagecache_reclaimable - delta;
3721 }
3722 
3723 /*
3724  * Try to free up some pages from this zone through reclaim.
3725  */
3726 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3727 {
3728 	/* Minimum pages needed in order to stay on node */
3729 	const unsigned long nr_pages = 1 << order;
3730 	struct task_struct *p = current;
3731 	struct reclaim_state reclaim_state;
3732 	struct scan_control sc = {
3733 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3734 		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3735 		.order = order,
3736 		.priority = ZONE_RECLAIM_PRIORITY,
3737 		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3738 		.may_unmap = !!(zone_reclaim_mode & RECLAIM_UNMAP),
3739 		.may_swap = 1,
3740 	};
3741 
3742 	cond_resched();
3743 	/*
3744 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3745 	 * and we also need to be able to write out pages for RECLAIM_WRITE
3746 	 * and RECLAIM_UNMAP.
3747 	 */
3748 	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3749 	lockdep_set_current_reclaim_state(gfp_mask);
3750 	reclaim_state.reclaimed_slab = 0;
3751 	p->reclaim_state = &reclaim_state;
3752 
3753 	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3754 		/*
3755 		 * Free memory by calling shrink zone with increasing
3756 		 * priorities until we have enough memory freed.
3757 		 */
3758 		do {
3759 			shrink_zone(zone, &sc, true);
3760 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3761 	}
3762 
3763 	p->reclaim_state = NULL;
3764 	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3765 	lockdep_clear_current_reclaim_state();
3766 	return sc.nr_reclaimed >= nr_pages;
3767 }
3768 
3769 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3770 {
3771 	int node_id;
3772 	int ret;
3773 
3774 	/*
3775 	 * Zone reclaim reclaims unmapped file backed pages and
3776 	 * slab pages if we are over the defined limits.
3777 	 *
3778 	 * A small portion of unmapped file backed pages is needed for
3779 	 * file I/O otherwise pages read by file I/O will be immediately
3780 	 * thrown out if the zone is overallocated. So we do not reclaim
3781 	 * if less than a specified percentage of the zone is used by
3782 	 * unmapped file backed pages.
3783 	 */
3784 	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3785 	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3786 		return ZONE_RECLAIM_FULL;
3787 
3788 	if (!zone_reclaimable(zone))
3789 		return ZONE_RECLAIM_FULL;
3790 
3791 	/*
3792 	 * Do not scan if the allocation should not be delayed.
3793 	 */
3794 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
3795 		return ZONE_RECLAIM_NOSCAN;
3796 
3797 	/*
3798 	 * Only run zone reclaim on the local zone or on zones that do not
3799 	 * have associated processors. This will favor the local processor
3800 	 * over remote processors and spread off node memory allocations
3801 	 * as wide as possible.
3802 	 */
3803 	node_id = zone_to_nid(zone);
3804 	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3805 		return ZONE_RECLAIM_NOSCAN;
3806 
3807 	if (test_and_set_bit(ZONE_RECLAIM_LOCKED, &zone->flags))
3808 		return ZONE_RECLAIM_NOSCAN;
3809 
3810 	ret = __zone_reclaim(zone, gfp_mask, order);
3811 	clear_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
3812 
3813 	if (!ret)
3814 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3815 
3816 	return ret;
3817 }
3818 #endif
3819 
3820 /*
3821  * page_evictable - test whether a page is evictable
3822  * @page: the page to test
3823  *
3824  * Test whether page is evictable--i.e., should be placed on active/inactive
3825  * lists vs unevictable list.
3826  *
3827  * Reasons page might not be evictable:
3828  * (1) page's mapping marked unevictable
3829  * (2) page is part of an mlocked VMA
3830  *
3831  */
3832 int page_evictable(struct page *page)
3833 {
3834 	return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3835 }
3836 
3837 #ifdef CONFIG_SHMEM
3838 /**
3839  * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3840  * @pages:	array of pages to check
3841  * @nr_pages:	number of pages to check
3842  *
3843  * Checks pages for evictability and moves them to the appropriate lru list.
3844  *
3845  * This function is only used for SysV IPC SHM_UNLOCK.
3846  */
3847 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3848 {
3849 	struct lruvec *lruvec;
3850 	struct zone *zone = NULL;
3851 	int pgscanned = 0;
3852 	int pgrescued = 0;
3853 	int i;
3854 
3855 	for (i = 0; i < nr_pages; i++) {
3856 		struct page *page = pages[i];
3857 		struct zone *pagezone;
3858 
3859 		pgscanned++;
3860 		pagezone = page_zone(page);
3861 		if (pagezone != zone) {
3862 			if (zone)
3863 				spin_unlock_irq(&zone->lru_lock);
3864 			zone = pagezone;
3865 			spin_lock_irq(&zone->lru_lock);
3866 		}
3867 		lruvec = mem_cgroup_page_lruvec(page, zone);
3868 
3869 		if (!PageLRU(page) || !PageUnevictable(page))
3870 			continue;
3871 
3872 		if (page_evictable(page)) {
3873 			enum lru_list lru = page_lru_base_type(page);
3874 
3875 			VM_BUG_ON_PAGE(PageActive(page), page);
3876 			ClearPageUnevictable(page);
3877 			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3878 			add_page_to_lru_list(page, lruvec, lru);
3879 			pgrescued++;
3880 		}
3881 	}
3882 
3883 	if (zone) {
3884 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3885 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3886 		spin_unlock_irq(&zone->lru_lock);
3887 	}
3888 }
3889 #endif /* CONFIG_SHMEM */
3890