1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 4 * 5 * Swap reorganised 29.12.95, Stephen Tweedie. 6 * kswapd added: 7.1.96 sct 7 * Removed kswapd_ctl limits, and swap out as many pages as needed 8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 9 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 10 * Multiqueue VM started 5.8.00, Rik van Riel. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 15 #include <linux/mm.h> 16 #include <linux/sched/mm.h> 17 #include <linux/module.h> 18 #include <linux/gfp.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/swap.h> 21 #include <linux/pagemap.h> 22 #include <linux/init.h> 23 #include <linux/highmem.h> 24 #include <linux/vmpressure.h> 25 #include <linux/vmstat.h> 26 #include <linux/file.h> 27 #include <linux/writeback.h> 28 #include <linux/blkdev.h> 29 #include <linux/buffer_head.h> /* for buffer_heads_over_limit */ 30 #include <linux/mm_inline.h> 31 #include <linux/backing-dev.h> 32 #include <linux/rmap.h> 33 #include <linux/topology.h> 34 #include <linux/cpu.h> 35 #include <linux/cpuset.h> 36 #include <linux/compaction.h> 37 #include <linux/notifier.h> 38 #include <linux/delay.h> 39 #include <linux/kthread.h> 40 #include <linux/freezer.h> 41 #include <linux/memcontrol.h> 42 #include <linux/migrate.h> 43 #include <linux/delayacct.h> 44 #include <linux/sysctl.h> 45 #include <linux/memory-tiers.h> 46 #include <linux/oom.h> 47 #include <linux/pagevec.h> 48 #include <linux/prefetch.h> 49 #include <linux/printk.h> 50 #include <linux/dax.h> 51 #include <linux/psi.h> 52 #include <linux/pagewalk.h> 53 #include <linux/shmem_fs.h> 54 #include <linux/ctype.h> 55 #include <linux/debugfs.h> 56 #include <linux/khugepaged.h> 57 #include <linux/rculist_nulls.h> 58 #include <linux/random.h> 59 #include <linux/mmu_notifier.h> 60 #include <linux/parser.h> 61 62 #include <asm/tlbflush.h> 63 #include <asm/div64.h> 64 65 #include <linux/swapops.h> 66 #include <linux/balloon_compaction.h> 67 #include <linux/sched/sysctl.h> 68 69 #include "internal.h" 70 #include "swap.h" 71 72 #define CREATE_TRACE_POINTS 73 #include <trace/events/vmscan.h> 74 75 struct scan_control { 76 /* How many pages shrink_list() should reclaim */ 77 unsigned long nr_to_reclaim; 78 79 /* 80 * Nodemask of nodes allowed by the caller. If NULL, all nodes 81 * are scanned. 82 */ 83 nodemask_t *nodemask; 84 85 /* 86 * The memory cgroup that hit its limit and as a result is the 87 * primary target of this reclaim invocation. 88 */ 89 struct mem_cgroup *target_mem_cgroup; 90 91 /* 92 * Scan pressure balancing between anon and file LRUs 93 */ 94 unsigned long anon_cost; 95 unsigned long file_cost; 96 97 /* Swappiness value for proactive reclaim. Always use sc_swappiness()! */ 98 int *proactive_swappiness; 99 100 /* Can active folios be deactivated as part of reclaim? */ 101 #define DEACTIVATE_ANON 1 102 #define DEACTIVATE_FILE 2 103 unsigned int may_deactivate:2; 104 unsigned int force_deactivate:1; 105 unsigned int skipped_deactivate:1; 106 107 /* Writepage batching in laptop mode; RECLAIM_WRITE */ 108 unsigned int may_writepage:1; 109 110 /* Can mapped folios be reclaimed? */ 111 unsigned int may_unmap:1; 112 113 /* Can folios be swapped as part of reclaim? */ 114 unsigned int may_swap:1; 115 116 /* Not allow cache_trim_mode to be turned on as part of reclaim? */ 117 unsigned int no_cache_trim_mode:1; 118 119 /* Has cache_trim_mode failed at least once? */ 120 unsigned int cache_trim_mode_failed:1; 121 122 /* Proactive reclaim invoked by userspace */ 123 unsigned int proactive:1; 124 125 /* 126 * Cgroup memory below memory.low is protected as long as we 127 * don't threaten to OOM. If any cgroup is reclaimed at 128 * reduced force or passed over entirely due to its memory.low 129 * setting (memcg_low_skipped), and nothing is reclaimed as a 130 * result, then go back for one more cycle that reclaims the protected 131 * memory (memcg_low_reclaim) to avert OOM. 132 */ 133 unsigned int memcg_low_reclaim:1; 134 unsigned int memcg_low_skipped:1; 135 136 /* Shared cgroup tree walk failed, rescan the whole tree */ 137 unsigned int memcg_full_walk:1; 138 139 unsigned int hibernation_mode:1; 140 141 /* One of the zones is ready for compaction */ 142 unsigned int compaction_ready:1; 143 144 /* There is easily reclaimable cold cache in the current node */ 145 unsigned int cache_trim_mode:1; 146 147 /* The file folios on the current node are dangerously low */ 148 unsigned int file_is_tiny:1; 149 150 /* Always discard instead of demoting to lower tier memory */ 151 unsigned int no_demotion:1; 152 153 /* Allocation order */ 154 s8 order; 155 156 /* Scan (total_size >> priority) pages at once */ 157 s8 priority; 158 159 /* The highest zone to isolate folios for reclaim from */ 160 s8 reclaim_idx; 161 162 /* This context's GFP mask */ 163 gfp_t gfp_mask; 164 165 /* Incremented by the number of inactive pages that were scanned */ 166 unsigned long nr_scanned; 167 168 /* Number of pages freed so far during a call to shrink_zones() */ 169 unsigned long nr_reclaimed; 170 171 struct { 172 unsigned int dirty; 173 unsigned int unqueued_dirty; 174 unsigned int congested; 175 unsigned int writeback; 176 unsigned int immediate; 177 unsigned int file_taken; 178 unsigned int taken; 179 } nr; 180 181 /* for recording the reclaimed slab by now */ 182 struct reclaim_state reclaim_state; 183 }; 184 185 #ifdef ARCH_HAS_PREFETCHW 186 #define prefetchw_prev_lru_folio(_folio, _base, _field) \ 187 do { \ 188 if ((_folio)->lru.prev != _base) { \ 189 struct folio *prev; \ 190 \ 191 prev = lru_to_folio(&(_folio->lru)); \ 192 prefetchw(&prev->_field); \ 193 } \ 194 } while (0) 195 #else 196 #define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0) 197 #endif 198 199 /* 200 * From 0 .. MAX_SWAPPINESS. Higher means more swappy. 201 */ 202 int vm_swappiness = 60; 203 204 #ifdef CONFIG_MEMCG 205 206 /* Returns true for reclaim through cgroup limits or cgroup interfaces. */ 207 static bool cgroup_reclaim(struct scan_control *sc) 208 { 209 return sc->target_mem_cgroup; 210 } 211 212 /* 213 * Returns true for reclaim on the root cgroup. This is true for direct 214 * allocator reclaim and reclaim through cgroup interfaces on the root cgroup. 215 */ 216 static bool root_reclaim(struct scan_control *sc) 217 { 218 return !sc->target_mem_cgroup || mem_cgroup_is_root(sc->target_mem_cgroup); 219 } 220 221 /** 222 * writeback_throttling_sane - is the usual dirty throttling mechanism available? 223 * @sc: scan_control in question 224 * 225 * The normal page dirty throttling mechanism in balance_dirty_pages() is 226 * completely broken with the legacy memcg and direct stalling in 227 * shrink_folio_list() is used for throttling instead, which lacks all the 228 * niceties such as fairness, adaptive pausing, bandwidth proportional 229 * allocation and configurability. 230 * 231 * This function tests whether the vmscan currently in progress can assume 232 * that the normal dirty throttling mechanism is operational. 233 */ 234 static bool writeback_throttling_sane(struct scan_control *sc) 235 { 236 if (!cgroup_reclaim(sc)) 237 return true; 238 #ifdef CONFIG_CGROUP_WRITEBACK 239 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 240 return true; 241 #endif 242 return false; 243 } 244 245 static int sc_swappiness(struct scan_control *sc, struct mem_cgroup *memcg) 246 { 247 if (sc->proactive && sc->proactive_swappiness) 248 return *sc->proactive_swappiness; 249 return mem_cgroup_swappiness(memcg); 250 } 251 #else 252 static bool cgroup_reclaim(struct scan_control *sc) 253 { 254 return false; 255 } 256 257 static bool root_reclaim(struct scan_control *sc) 258 { 259 return true; 260 } 261 262 static bool writeback_throttling_sane(struct scan_control *sc) 263 { 264 return true; 265 } 266 267 static int sc_swappiness(struct scan_control *sc, struct mem_cgroup *memcg) 268 { 269 return READ_ONCE(vm_swappiness); 270 } 271 #endif 272 273 /* for_each_managed_zone_pgdat - helper macro to iterate over all managed zones in a pgdat up to 274 * and including the specified highidx 275 * @zone: The current zone in the iterator 276 * @pgdat: The pgdat which node_zones are being iterated 277 * @idx: The index variable 278 * @highidx: The index of the highest zone to return 279 * 280 * This macro iterates through all managed zones up to and including the specified highidx. 281 * The zone iterator enters an invalid state after macro call and must be reinitialized 282 * before it can be used again. 283 */ 284 #define for_each_managed_zone_pgdat(zone, pgdat, idx, highidx) \ 285 for ((idx) = 0, (zone) = (pgdat)->node_zones; \ 286 (idx) <= (highidx); \ 287 (idx)++, (zone)++) \ 288 if (!managed_zone(zone)) \ 289 continue; \ 290 else 291 292 static void set_task_reclaim_state(struct task_struct *task, 293 struct reclaim_state *rs) 294 { 295 /* Check for an overwrite */ 296 WARN_ON_ONCE(rs && task->reclaim_state); 297 298 /* Check for the nulling of an already-nulled member */ 299 WARN_ON_ONCE(!rs && !task->reclaim_state); 300 301 task->reclaim_state = rs; 302 } 303 304 /* 305 * flush_reclaim_state(): add pages reclaimed outside of LRU-based reclaim to 306 * scan_control->nr_reclaimed. 307 */ 308 static void flush_reclaim_state(struct scan_control *sc) 309 { 310 /* 311 * Currently, reclaim_state->reclaimed includes three types of pages 312 * freed outside of vmscan: 313 * (1) Slab pages. 314 * (2) Clean file pages from pruned inodes (on highmem systems). 315 * (3) XFS freed buffer pages. 316 * 317 * For all of these cases, we cannot universally link the pages to a 318 * single memcg. For example, a memcg-aware shrinker can free one object 319 * charged to the target memcg, causing an entire page to be freed. 320 * If we count the entire page as reclaimed from the memcg, we end up 321 * overestimating the reclaimed amount (potentially under-reclaiming). 322 * 323 * Only count such pages for global reclaim to prevent under-reclaiming 324 * from the target memcg; preventing unnecessary retries during memcg 325 * charging and false positives from proactive reclaim. 326 * 327 * For uncommon cases where the freed pages were actually mostly 328 * charged to the target memcg, we end up underestimating the reclaimed 329 * amount. This should be fine. The freed pages will be uncharged 330 * anyway, even if they are not counted here properly, and we will be 331 * able to make forward progress in charging (which is usually in a 332 * retry loop). 333 * 334 * We can go one step further, and report the uncharged objcg pages in 335 * memcg reclaim, to make reporting more accurate and reduce 336 * underestimation, but it's probably not worth the complexity for now. 337 */ 338 if (current->reclaim_state && root_reclaim(sc)) { 339 sc->nr_reclaimed += current->reclaim_state->reclaimed; 340 current->reclaim_state->reclaimed = 0; 341 } 342 } 343 344 static bool can_demote(int nid, struct scan_control *sc, 345 struct mem_cgroup *memcg) 346 { 347 int demotion_nid; 348 349 if (!numa_demotion_enabled) 350 return false; 351 if (sc && sc->no_demotion) 352 return false; 353 354 demotion_nid = next_demotion_node(nid); 355 if (demotion_nid == NUMA_NO_NODE) 356 return false; 357 358 /* If demotion node isn't in the cgroup's mems_allowed, fall back */ 359 return mem_cgroup_node_allowed(memcg, demotion_nid); 360 } 361 362 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg, 363 int nid, 364 struct scan_control *sc) 365 { 366 if (memcg == NULL) { 367 /* 368 * For non-memcg reclaim, is there 369 * space in any swap device? 370 */ 371 if (get_nr_swap_pages() > 0) 372 return true; 373 } else { 374 /* Is the memcg below its swap limit? */ 375 if (mem_cgroup_get_nr_swap_pages(memcg) > 0) 376 return true; 377 } 378 379 /* 380 * The page can not be swapped. 381 * 382 * Can it be reclaimed from this node via demotion? 383 */ 384 return can_demote(nid, sc, memcg); 385 } 386 387 /* 388 * This misses isolated folios which are not accounted for to save counters. 389 * As the data only determines if reclaim or compaction continues, it is 390 * not expected that isolated folios will be a dominating factor. 391 */ 392 unsigned long zone_reclaimable_pages(struct zone *zone) 393 { 394 unsigned long nr; 395 396 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) + 397 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE); 398 if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL)) 399 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) + 400 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON); 401 402 return nr; 403 } 404 405 /** 406 * lruvec_lru_size - Returns the number of pages on the given LRU list. 407 * @lruvec: lru vector 408 * @lru: lru to use 409 * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list) 410 */ 411 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, 412 int zone_idx) 413 { 414 unsigned long size = 0; 415 int zid; 416 struct zone *zone; 417 418 for_each_managed_zone_pgdat(zone, lruvec_pgdat(lruvec), zid, zone_idx) { 419 if (!mem_cgroup_disabled()) 420 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid); 421 else 422 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru); 423 } 424 return size; 425 } 426 427 static unsigned long drop_slab_node(int nid) 428 { 429 unsigned long freed = 0; 430 struct mem_cgroup *memcg = NULL; 431 432 memcg = mem_cgroup_iter(NULL, NULL, NULL); 433 do { 434 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0); 435 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 436 437 return freed; 438 } 439 440 void drop_slab(void) 441 { 442 int nid; 443 int shift = 0; 444 unsigned long freed; 445 446 do { 447 freed = 0; 448 for_each_online_node(nid) { 449 if (fatal_signal_pending(current)) 450 return; 451 452 freed += drop_slab_node(nid); 453 } 454 } while ((freed >> shift++) > 1); 455 } 456 457 #define CHECK_RECLAIMER_OFFSET(type) \ 458 do { \ 459 BUILD_BUG_ON(PGSTEAL_##type - PGSTEAL_KSWAPD != \ 460 PGDEMOTE_##type - PGDEMOTE_KSWAPD); \ 461 BUILD_BUG_ON(PGSTEAL_##type - PGSTEAL_KSWAPD != \ 462 PGSCAN_##type - PGSCAN_KSWAPD); \ 463 } while (0) 464 465 static int reclaimer_offset(struct scan_control *sc) 466 { 467 CHECK_RECLAIMER_OFFSET(DIRECT); 468 CHECK_RECLAIMER_OFFSET(KHUGEPAGED); 469 CHECK_RECLAIMER_OFFSET(PROACTIVE); 470 471 if (current_is_kswapd()) 472 return 0; 473 if (current_is_khugepaged()) 474 return PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD; 475 if (sc->proactive) 476 return PGSTEAL_PROACTIVE - PGSTEAL_KSWAPD; 477 return PGSTEAL_DIRECT - PGSTEAL_KSWAPD; 478 } 479 480 static inline int is_page_cache_freeable(struct folio *folio) 481 { 482 /* 483 * A freeable page cache folio is referenced only by the caller 484 * that isolated the folio, the page cache and optional filesystem 485 * private data at folio->private. 486 */ 487 return folio_ref_count(folio) - folio_test_private(folio) == 488 1 + folio_nr_pages(folio); 489 } 490 491 /* 492 * We detected a synchronous write error writing a folio out. Probably 493 * -ENOSPC. We need to propagate that into the address_space for a subsequent 494 * fsync(), msync() or close(). 495 * 496 * The tricky part is that after writepage we cannot touch the mapping: nothing 497 * prevents it from being freed up. But we have a ref on the folio and once 498 * that folio is locked, the mapping is pinned. 499 * 500 * We're allowed to run sleeping folio_lock() here because we know the caller has 501 * __GFP_FS. 502 */ 503 static void handle_write_error(struct address_space *mapping, 504 struct folio *folio, int error) 505 { 506 folio_lock(folio); 507 if (folio_mapping(folio) == mapping) 508 mapping_set_error(mapping, error); 509 folio_unlock(folio); 510 } 511 512 static bool skip_throttle_noprogress(pg_data_t *pgdat) 513 { 514 int reclaimable = 0, write_pending = 0; 515 int i; 516 struct zone *zone; 517 /* 518 * If kswapd is disabled, reschedule if necessary but do not 519 * throttle as the system is likely near OOM. 520 */ 521 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 522 return true; 523 524 /* 525 * If there are a lot of dirty/writeback folios then do not 526 * throttle as throttling will occur when the folios cycle 527 * towards the end of the LRU if still under writeback. 528 */ 529 for_each_managed_zone_pgdat(zone, pgdat, i, MAX_NR_ZONES - 1) { 530 reclaimable += zone_reclaimable_pages(zone); 531 write_pending += zone_page_state_snapshot(zone, 532 NR_ZONE_WRITE_PENDING); 533 } 534 if (2 * write_pending <= reclaimable) 535 return true; 536 537 return false; 538 } 539 540 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason) 541 { 542 wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason]; 543 long timeout, ret; 544 DEFINE_WAIT(wait); 545 546 /* 547 * Do not throttle user workers, kthreads other than kswapd or 548 * workqueues. They may be required for reclaim to make 549 * forward progress (e.g. journalling workqueues or kthreads). 550 */ 551 if (!current_is_kswapd() && 552 current->flags & (PF_USER_WORKER|PF_KTHREAD)) { 553 cond_resched(); 554 return; 555 } 556 557 /* 558 * These figures are pulled out of thin air. 559 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many 560 * parallel reclaimers which is a short-lived event so the timeout is 561 * short. Failing to make progress or waiting on writeback are 562 * potentially long-lived events so use a longer timeout. This is shaky 563 * logic as a failure to make progress could be due to anything from 564 * writeback to a slow device to excessive referenced folios at the tail 565 * of the inactive LRU. 566 */ 567 switch(reason) { 568 case VMSCAN_THROTTLE_WRITEBACK: 569 timeout = HZ/10; 570 571 if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) { 572 WRITE_ONCE(pgdat->nr_reclaim_start, 573 node_page_state(pgdat, NR_THROTTLED_WRITTEN)); 574 } 575 576 break; 577 case VMSCAN_THROTTLE_CONGESTED: 578 fallthrough; 579 case VMSCAN_THROTTLE_NOPROGRESS: 580 if (skip_throttle_noprogress(pgdat)) { 581 cond_resched(); 582 return; 583 } 584 585 timeout = 1; 586 587 break; 588 case VMSCAN_THROTTLE_ISOLATED: 589 timeout = HZ/50; 590 break; 591 default: 592 WARN_ON_ONCE(1); 593 timeout = HZ; 594 break; 595 } 596 597 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE); 598 ret = schedule_timeout(timeout); 599 finish_wait(wqh, &wait); 600 601 if (reason == VMSCAN_THROTTLE_WRITEBACK) 602 atomic_dec(&pgdat->nr_writeback_throttled); 603 604 trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout), 605 jiffies_to_usecs(timeout - ret), 606 reason); 607 } 608 609 /* 610 * Account for folios written if tasks are throttled waiting on dirty 611 * folios to clean. If enough folios have been cleaned since throttling 612 * started then wakeup the throttled tasks. 613 */ 614 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio, 615 int nr_throttled) 616 { 617 unsigned long nr_written; 618 619 node_stat_add_folio(folio, NR_THROTTLED_WRITTEN); 620 621 /* 622 * This is an inaccurate read as the per-cpu deltas may not 623 * be synchronised. However, given that the system is 624 * writeback throttled, it is not worth taking the penalty 625 * of getting an accurate count. At worst, the throttle 626 * timeout guarantees forward progress. 627 */ 628 nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) - 629 READ_ONCE(pgdat->nr_reclaim_start); 630 631 if (nr_written > SWAP_CLUSTER_MAX * nr_throttled) 632 wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]); 633 } 634 635 /* possible outcome of pageout() */ 636 typedef enum { 637 /* failed to write folio out, folio is locked */ 638 PAGE_KEEP, 639 /* move folio to the active list, folio is locked */ 640 PAGE_ACTIVATE, 641 /* folio has been sent to the disk successfully, folio is unlocked */ 642 PAGE_SUCCESS, 643 /* folio is clean and locked */ 644 PAGE_CLEAN, 645 } pageout_t; 646 647 static pageout_t writeout(struct folio *folio, struct address_space *mapping, 648 struct swap_iocb **plug, struct list_head *folio_list) 649 { 650 int res; 651 652 folio_set_reclaim(folio); 653 654 /* 655 * The large shmem folio can be split if CONFIG_THP_SWAP is not enabled 656 * or we failed to allocate contiguous swap entries, in which case 657 * the split out folios get added back to folio_list. 658 */ 659 if (shmem_mapping(mapping)) 660 res = shmem_writeout(folio, plug, folio_list); 661 else 662 res = swap_writeout(folio, plug); 663 664 if (res < 0) 665 handle_write_error(mapping, folio, res); 666 if (res == AOP_WRITEPAGE_ACTIVATE) { 667 folio_clear_reclaim(folio); 668 return PAGE_ACTIVATE; 669 } 670 671 /* synchronous write? */ 672 if (!folio_test_writeback(folio)) 673 folio_clear_reclaim(folio); 674 675 trace_mm_vmscan_write_folio(folio); 676 node_stat_add_folio(folio, NR_VMSCAN_WRITE); 677 return PAGE_SUCCESS; 678 } 679 680 /* 681 * pageout is called by shrink_folio_list() for each dirty folio. 682 */ 683 static pageout_t pageout(struct folio *folio, struct address_space *mapping, 684 struct swap_iocb **plug, struct list_head *folio_list) 685 { 686 /* 687 * We no longer attempt to writeback filesystem folios here, other 688 * than tmpfs/shmem. That's taken care of in page-writeback. 689 * If we find a dirty filesystem folio at the end of the LRU list, 690 * typically that means the filesystem is saturating the storage 691 * with contiguous writes and telling it to write a folio here 692 * would only make the situation worse by injecting an element 693 * of random access. 694 * 695 * If the folio is swapcache, write it back even if that would 696 * block, for some throttling. This happens by accident, because 697 * swap_backing_dev_info is bust: it doesn't reflect the 698 * congestion state of the swapdevs. Easy to fix, if needed. 699 */ 700 if (!is_page_cache_freeable(folio)) 701 return PAGE_KEEP; 702 if (!mapping) { 703 /* 704 * Some data journaling orphaned folios can have 705 * folio->mapping == NULL while being dirty with clean buffers. 706 */ 707 if (folio_test_private(folio)) { 708 if (try_to_free_buffers(folio)) { 709 folio_clear_dirty(folio); 710 pr_info("%s: orphaned folio\n", __func__); 711 return PAGE_CLEAN; 712 } 713 } 714 return PAGE_KEEP; 715 } 716 717 if (!shmem_mapping(mapping) && !folio_test_anon(folio)) 718 return PAGE_ACTIVATE; 719 if (!folio_clear_dirty_for_io(folio)) 720 return PAGE_CLEAN; 721 return writeout(folio, mapping, plug, folio_list); 722 } 723 724 /* 725 * Same as remove_mapping, but if the folio is removed from the mapping, it 726 * gets returned with a refcount of 0. 727 */ 728 static int __remove_mapping(struct address_space *mapping, struct folio *folio, 729 bool reclaimed, struct mem_cgroup *target_memcg) 730 { 731 int refcount; 732 void *shadow = NULL; 733 734 BUG_ON(!folio_test_locked(folio)); 735 BUG_ON(mapping != folio_mapping(folio)); 736 737 if (!folio_test_swapcache(folio)) 738 spin_lock(&mapping->host->i_lock); 739 xa_lock_irq(&mapping->i_pages); 740 /* 741 * The non racy check for a busy folio. 742 * 743 * Must be careful with the order of the tests. When someone has 744 * a ref to the folio, it may be possible that they dirty it then 745 * drop the reference. So if the dirty flag is tested before the 746 * refcount here, then the following race may occur: 747 * 748 * get_user_pages(&page); 749 * [user mapping goes away] 750 * write_to(page); 751 * !folio_test_dirty(folio) [good] 752 * folio_set_dirty(folio); 753 * folio_put(folio); 754 * !refcount(folio) [good, discard it] 755 * 756 * [oops, our write_to data is lost] 757 * 758 * Reversing the order of the tests ensures such a situation cannot 759 * escape unnoticed. The smp_rmb is needed to ensure the folio->flags 760 * load is not satisfied before that of folio->_refcount. 761 * 762 * Note that if the dirty flag is always set via folio_mark_dirty, 763 * and thus under the i_pages lock, then this ordering is not required. 764 */ 765 refcount = 1 + folio_nr_pages(folio); 766 if (!folio_ref_freeze(folio, refcount)) 767 goto cannot_free; 768 /* note: atomic_cmpxchg in folio_ref_freeze provides the smp_rmb */ 769 if (unlikely(folio_test_dirty(folio))) { 770 folio_ref_unfreeze(folio, refcount); 771 goto cannot_free; 772 } 773 774 if (folio_test_swapcache(folio)) { 775 swp_entry_t swap = folio->swap; 776 777 if (reclaimed && !mapping_exiting(mapping)) 778 shadow = workingset_eviction(folio, target_memcg); 779 __delete_from_swap_cache(folio, swap, shadow); 780 memcg1_swapout(folio, swap); 781 xa_unlock_irq(&mapping->i_pages); 782 put_swap_folio(folio, swap); 783 } else { 784 void (*free_folio)(struct folio *); 785 786 free_folio = mapping->a_ops->free_folio; 787 /* 788 * Remember a shadow entry for reclaimed file cache in 789 * order to detect refaults, thus thrashing, later on. 790 * 791 * But don't store shadows in an address space that is 792 * already exiting. This is not just an optimization, 793 * inode reclaim needs to empty out the radix tree or 794 * the nodes are lost. Don't plant shadows behind its 795 * back. 796 * 797 * We also don't store shadows for DAX mappings because the 798 * only page cache folios found in these are zero pages 799 * covering holes, and because we don't want to mix DAX 800 * exceptional entries and shadow exceptional entries in the 801 * same address_space. 802 */ 803 if (reclaimed && folio_is_file_lru(folio) && 804 !mapping_exiting(mapping) && !dax_mapping(mapping)) 805 shadow = workingset_eviction(folio, target_memcg); 806 __filemap_remove_folio(folio, shadow); 807 xa_unlock_irq(&mapping->i_pages); 808 if (mapping_shrinkable(mapping)) 809 inode_add_lru(mapping->host); 810 spin_unlock(&mapping->host->i_lock); 811 812 if (free_folio) 813 free_folio(folio); 814 } 815 816 return 1; 817 818 cannot_free: 819 xa_unlock_irq(&mapping->i_pages); 820 if (!folio_test_swapcache(folio)) 821 spin_unlock(&mapping->host->i_lock); 822 return 0; 823 } 824 825 /** 826 * remove_mapping() - Attempt to remove a folio from its mapping. 827 * @mapping: The address space. 828 * @folio: The folio to remove. 829 * 830 * If the folio is dirty, under writeback or if someone else has a ref 831 * on it, removal will fail. 832 * Return: The number of pages removed from the mapping. 0 if the folio 833 * could not be removed. 834 * Context: The caller should have a single refcount on the folio and 835 * hold its lock. 836 */ 837 long remove_mapping(struct address_space *mapping, struct folio *folio) 838 { 839 if (__remove_mapping(mapping, folio, false, NULL)) { 840 /* 841 * Unfreezing the refcount with 1 effectively 842 * drops the pagecache ref for us without requiring another 843 * atomic operation. 844 */ 845 folio_ref_unfreeze(folio, 1); 846 return folio_nr_pages(folio); 847 } 848 return 0; 849 } 850 851 /** 852 * folio_putback_lru - Put previously isolated folio onto appropriate LRU list. 853 * @folio: Folio to be returned to an LRU list. 854 * 855 * Add previously isolated @folio to appropriate LRU list. 856 * The folio may still be unevictable for other reasons. 857 * 858 * Context: lru_lock must not be held, interrupts must be enabled. 859 */ 860 void folio_putback_lru(struct folio *folio) 861 { 862 folio_add_lru(folio); 863 folio_put(folio); /* drop ref from isolate */ 864 } 865 866 enum folio_references { 867 FOLIOREF_RECLAIM, 868 FOLIOREF_RECLAIM_CLEAN, 869 FOLIOREF_KEEP, 870 FOLIOREF_ACTIVATE, 871 }; 872 873 #ifdef CONFIG_LRU_GEN 874 /* 875 * Only used on a mapped folio in the eviction (rmap walk) path, where promotion 876 * needs to be done by taking the folio off the LRU list and then adding it back 877 * with PG_active set. In contrast, the aging (page table walk) path uses 878 * folio_update_gen(). 879 */ 880 static bool lru_gen_set_refs(struct folio *folio) 881 { 882 /* see the comment on LRU_REFS_FLAGS */ 883 if (!folio_test_referenced(folio) && !folio_test_workingset(folio)) { 884 set_mask_bits(&folio->flags.f, LRU_REFS_MASK, BIT(PG_referenced)); 885 return false; 886 } 887 888 set_mask_bits(&folio->flags.f, LRU_REFS_FLAGS, BIT(PG_workingset)); 889 return true; 890 } 891 #else 892 static bool lru_gen_set_refs(struct folio *folio) 893 { 894 return false; 895 } 896 #endif /* CONFIG_LRU_GEN */ 897 898 static enum folio_references folio_check_references(struct folio *folio, 899 struct scan_control *sc) 900 { 901 int referenced_ptes, referenced_folio; 902 vm_flags_t vm_flags; 903 904 referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup, 905 &vm_flags); 906 907 /* 908 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma. 909 * Let the folio, now marked Mlocked, be moved to the unevictable list. 910 */ 911 if (vm_flags & VM_LOCKED) 912 return FOLIOREF_ACTIVATE; 913 914 /* 915 * There are two cases to consider. 916 * 1) Rmap lock contention: rotate. 917 * 2) Skip the non-shared swapbacked folio mapped solely by 918 * the exiting or OOM-reaped process. 919 */ 920 if (referenced_ptes == -1) 921 return FOLIOREF_KEEP; 922 923 if (lru_gen_enabled()) { 924 if (!referenced_ptes) 925 return FOLIOREF_RECLAIM; 926 927 return lru_gen_set_refs(folio) ? FOLIOREF_ACTIVATE : FOLIOREF_KEEP; 928 } 929 930 referenced_folio = folio_test_clear_referenced(folio); 931 932 if (referenced_ptes) { 933 /* 934 * All mapped folios start out with page table 935 * references from the instantiating fault, so we need 936 * to look twice if a mapped file/anon folio is used more 937 * than once. 938 * 939 * Mark it and spare it for another trip around the 940 * inactive list. Another page table reference will 941 * lead to its activation. 942 * 943 * Note: the mark is set for activated folios as well 944 * so that recently deactivated but used folios are 945 * quickly recovered. 946 */ 947 folio_set_referenced(folio); 948 949 if (referenced_folio || referenced_ptes > 1) 950 return FOLIOREF_ACTIVATE; 951 952 /* 953 * Activate file-backed executable folios after first usage. 954 */ 955 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) 956 return FOLIOREF_ACTIVATE; 957 958 return FOLIOREF_KEEP; 959 } 960 961 /* Reclaim if clean, defer dirty folios to writeback */ 962 if (referenced_folio && folio_is_file_lru(folio)) 963 return FOLIOREF_RECLAIM_CLEAN; 964 965 return FOLIOREF_RECLAIM; 966 } 967 968 /* Check if a folio is dirty or under writeback */ 969 static void folio_check_dirty_writeback(struct folio *folio, 970 bool *dirty, bool *writeback) 971 { 972 struct address_space *mapping; 973 974 /* 975 * Anonymous folios are not handled by flushers and must be written 976 * from reclaim context. Do not stall reclaim based on them. 977 * MADV_FREE anonymous folios are put into inactive file list too. 978 * They could be mistakenly treated as file lru. So further anon 979 * test is needed. 980 */ 981 if (!folio_is_file_lru(folio) || 982 (folio_test_anon(folio) && !folio_test_swapbacked(folio))) { 983 *dirty = false; 984 *writeback = false; 985 return; 986 } 987 988 /* By default assume that the folio flags are accurate */ 989 *dirty = folio_test_dirty(folio); 990 *writeback = folio_test_writeback(folio); 991 992 /* Verify dirty/writeback state if the filesystem supports it */ 993 if (!folio_test_private(folio)) 994 return; 995 996 mapping = folio_mapping(folio); 997 if (mapping && mapping->a_ops->is_dirty_writeback) 998 mapping->a_ops->is_dirty_writeback(folio, dirty, writeback); 999 } 1000 1001 static struct folio *alloc_demote_folio(struct folio *src, 1002 unsigned long private) 1003 { 1004 struct folio *dst; 1005 nodemask_t *allowed_mask; 1006 struct migration_target_control *mtc; 1007 1008 mtc = (struct migration_target_control *)private; 1009 1010 allowed_mask = mtc->nmask; 1011 /* 1012 * make sure we allocate from the target node first also trying to 1013 * demote or reclaim pages from the target node via kswapd if we are 1014 * low on free memory on target node. If we don't do this and if 1015 * we have free memory on the slower(lower) memtier, we would start 1016 * allocating pages from slower(lower) memory tiers without even forcing 1017 * a demotion of cold pages from the target memtier. This can result 1018 * in the kernel placing hot pages in slower(lower) memory tiers. 1019 */ 1020 mtc->nmask = NULL; 1021 mtc->gfp_mask |= __GFP_THISNODE; 1022 dst = alloc_migration_target(src, (unsigned long)mtc); 1023 if (dst) 1024 return dst; 1025 1026 mtc->gfp_mask &= ~__GFP_THISNODE; 1027 mtc->nmask = allowed_mask; 1028 1029 return alloc_migration_target(src, (unsigned long)mtc); 1030 } 1031 1032 /* 1033 * Take folios on @demote_folios and attempt to demote them to another node. 1034 * Folios which are not demoted are left on @demote_folios. 1035 */ 1036 static unsigned int demote_folio_list(struct list_head *demote_folios, 1037 struct pglist_data *pgdat) 1038 { 1039 int target_nid = next_demotion_node(pgdat->node_id); 1040 unsigned int nr_succeeded; 1041 nodemask_t allowed_mask; 1042 1043 struct migration_target_control mtc = { 1044 /* 1045 * Allocate from 'node', or fail quickly and quietly. 1046 * When this happens, 'page' will likely just be discarded 1047 * instead of migrated. 1048 */ 1049 .gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | __GFP_NOWARN | 1050 __GFP_NOMEMALLOC | GFP_NOWAIT, 1051 .nid = target_nid, 1052 .nmask = &allowed_mask, 1053 .reason = MR_DEMOTION, 1054 }; 1055 1056 if (list_empty(demote_folios)) 1057 return 0; 1058 1059 if (target_nid == NUMA_NO_NODE) 1060 return 0; 1061 1062 node_get_allowed_targets(pgdat, &allowed_mask); 1063 1064 /* Demotion ignores all cpuset and mempolicy settings */ 1065 migrate_pages(demote_folios, alloc_demote_folio, NULL, 1066 (unsigned long)&mtc, MIGRATE_ASYNC, MR_DEMOTION, 1067 &nr_succeeded); 1068 1069 return nr_succeeded; 1070 } 1071 1072 static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask) 1073 { 1074 if (gfp_mask & __GFP_FS) 1075 return true; 1076 if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO)) 1077 return false; 1078 /* 1079 * We can "enter_fs" for swap-cache with only __GFP_IO 1080 * providing this isn't SWP_FS_OPS. 1081 * ->flags can be updated non-atomicially (scan_swap_map_slots), 1082 * but that will never affect SWP_FS_OPS, so the data_race 1083 * is safe. 1084 */ 1085 return !data_race(folio_swap_flags(folio) & SWP_FS_OPS); 1086 } 1087 1088 /* 1089 * shrink_folio_list() returns the number of reclaimed pages 1090 */ 1091 static unsigned int shrink_folio_list(struct list_head *folio_list, 1092 struct pglist_data *pgdat, struct scan_control *sc, 1093 struct reclaim_stat *stat, bool ignore_references, 1094 struct mem_cgroup *memcg) 1095 { 1096 struct folio_batch free_folios; 1097 LIST_HEAD(ret_folios); 1098 LIST_HEAD(demote_folios); 1099 unsigned int nr_reclaimed = 0, nr_demoted = 0; 1100 unsigned int pgactivate = 0; 1101 bool do_demote_pass; 1102 struct swap_iocb *plug = NULL; 1103 1104 folio_batch_init(&free_folios); 1105 memset(stat, 0, sizeof(*stat)); 1106 cond_resched(); 1107 do_demote_pass = can_demote(pgdat->node_id, sc, memcg); 1108 1109 retry: 1110 while (!list_empty(folio_list)) { 1111 struct address_space *mapping; 1112 struct folio *folio; 1113 enum folio_references references = FOLIOREF_RECLAIM; 1114 bool dirty, writeback; 1115 unsigned int nr_pages; 1116 1117 cond_resched(); 1118 1119 folio = lru_to_folio(folio_list); 1120 list_del(&folio->lru); 1121 1122 if (!folio_trylock(folio)) 1123 goto keep; 1124 1125 if (folio_contain_hwpoisoned_page(folio)) { 1126 /* 1127 * unmap_poisoned_folio() can't handle large 1128 * folio, just skip it. memory_failure() will 1129 * handle it if the UCE is triggered again. 1130 */ 1131 if (folio_test_large(folio)) 1132 goto keep_locked; 1133 1134 unmap_poisoned_folio(folio, folio_pfn(folio), false); 1135 folio_unlock(folio); 1136 folio_put(folio); 1137 continue; 1138 } 1139 1140 VM_BUG_ON_FOLIO(folio_test_active(folio), folio); 1141 1142 nr_pages = folio_nr_pages(folio); 1143 1144 /* Account the number of base pages */ 1145 sc->nr_scanned += nr_pages; 1146 1147 if (unlikely(!folio_evictable(folio))) 1148 goto activate_locked; 1149 1150 if (!sc->may_unmap && folio_mapped(folio)) 1151 goto keep_locked; 1152 1153 /* 1154 * The number of dirty pages determines if a node is marked 1155 * reclaim_congested. kswapd will stall and start writing 1156 * folios if the tail of the LRU is all dirty unqueued folios. 1157 */ 1158 folio_check_dirty_writeback(folio, &dirty, &writeback); 1159 if (dirty || writeback) 1160 stat->nr_dirty += nr_pages; 1161 1162 if (dirty && !writeback) 1163 stat->nr_unqueued_dirty += nr_pages; 1164 1165 /* 1166 * Treat this folio as congested if folios are cycling 1167 * through the LRU so quickly that the folios marked 1168 * for immediate reclaim are making it to the end of 1169 * the LRU a second time. 1170 */ 1171 if (writeback && folio_test_reclaim(folio)) 1172 stat->nr_congested += nr_pages; 1173 1174 /* 1175 * If a folio at the tail of the LRU is under writeback, there 1176 * are three cases to consider. 1177 * 1178 * 1) If reclaim is encountering an excessive number 1179 * of folios under writeback and this folio has both 1180 * the writeback and reclaim flags set, then it 1181 * indicates that folios are being queued for I/O but 1182 * are being recycled through the LRU before the I/O 1183 * can complete. Waiting on the folio itself risks an 1184 * indefinite stall if it is impossible to writeback 1185 * the folio due to I/O error or disconnected storage 1186 * so instead note that the LRU is being scanned too 1187 * quickly and the caller can stall after the folio 1188 * list has been processed. 1189 * 1190 * 2) Global or new memcg reclaim encounters a folio that is 1191 * not marked for immediate reclaim, or the caller does not 1192 * have __GFP_FS (or __GFP_IO if it's simply going to swap, 1193 * not to fs), or the folio belongs to a mapping where 1194 * waiting on writeback during reclaim may lead to a deadlock. 1195 * In this case mark the folio for immediate reclaim and 1196 * continue scanning. 1197 * 1198 * Require may_enter_fs() because we would wait on fs, which 1199 * may not have submitted I/O yet. And the loop driver might 1200 * enter reclaim, and deadlock if it waits on a folio for 1201 * which it is needed to do the write (loop masks off 1202 * __GFP_IO|__GFP_FS for this reason); but more thought 1203 * would probably show more reasons. 1204 * 1205 * 3) Legacy memcg encounters a folio that already has the 1206 * reclaim flag set. memcg does not have any dirty folio 1207 * throttling so we could easily OOM just because too many 1208 * folios are in writeback and there is nothing else to 1209 * reclaim. Wait for the writeback to complete. 1210 * 1211 * In cases 1) and 2) we activate the folios to get them out of 1212 * the way while we continue scanning for clean folios on the 1213 * inactive list and refilling from the active list. The 1214 * observation here is that waiting for disk writes is more 1215 * expensive than potentially causing reloads down the line. 1216 * Since they're marked for immediate reclaim, they won't put 1217 * memory pressure on the cache working set any longer than it 1218 * takes to write them to disk. 1219 */ 1220 if (folio_test_writeback(folio)) { 1221 mapping = folio_mapping(folio); 1222 1223 /* Case 1 above */ 1224 if (current_is_kswapd() && 1225 folio_test_reclaim(folio) && 1226 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) { 1227 stat->nr_immediate += nr_pages; 1228 goto activate_locked; 1229 1230 /* Case 2 above */ 1231 } else if (writeback_throttling_sane(sc) || 1232 !folio_test_reclaim(folio) || 1233 !may_enter_fs(folio, sc->gfp_mask) || 1234 (mapping && 1235 mapping_writeback_may_deadlock_on_reclaim(mapping))) { 1236 /* 1237 * This is slightly racy - 1238 * folio_end_writeback() might have 1239 * just cleared the reclaim flag, then 1240 * setting the reclaim flag here ends up 1241 * interpreted as the readahead flag - but 1242 * that does not matter enough to care. 1243 * What we do want is for this folio to 1244 * have the reclaim flag set next time 1245 * memcg reclaim reaches the tests above, 1246 * so it will then wait for writeback to 1247 * avoid OOM; and it's also appropriate 1248 * in global reclaim. 1249 */ 1250 folio_set_reclaim(folio); 1251 stat->nr_writeback += nr_pages; 1252 goto activate_locked; 1253 1254 /* Case 3 above */ 1255 } else { 1256 folio_unlock(folio); 1257 folio_wait_writeback(folio); 1258 /* then go back and try same folio again */ 1259 list_add_tail(&folio->lru, folio_list); 1260 continue; 1261 } 1262 } 1263 1264 if (!ignore_references) 1265 references = folio_check_references(folio, sc); 1266 1267 switch (references) { 1268 case FOLIOREF_ACTIVATE: 1269 goto activate_locked; 1270 case FOLIOREF_KEEP: 1271 stat->nr_ref_keep += nr_pages; 1272 goto keep_locked; 1273 case FOLIOREF_RECLAIM: 1274 case FOLIOREF_RECLAIM_CLEAN: 1275 ; /* try to reclaim the folio below */ 1276 } 1277 1278 /* 1279 * Before reclaiming the folio, try to relocate 1280 * its contents to another node. 1281 */ 1282 if (do_demote_pass && 1283 (thp_migration_supported() || !folio_test_large(folio))) { 1284 list_add(&folio->lru, &demote_folios); 1285 folio_unlock(folio); 1286 continue; 1287 } 1288 1289 /* 1290 * Anonymous process memory has backing store? 1291 * Try to allocate it some swap space here. 1292 * Lazyfree folio could be freed directly 1293 */ 1294 if (folio_test_anon(folio) && folio_test_swapbacked(folio)) { 1295 if (!folio_test_swapcache(folio)) { 1296 if (!(sc->gfp_mask & __GFP_IO)) 1297 goto keep_locked; 1298 if (folio_maybe_dma_pinned(folio)) 1299 goto keep_locked; 1300 if (folio_test_large(folio)) { 1301 /* cannot split folio, skip it */ 1302 if (!can_split_folio(folio, 1, NULL)) 1303 goto activate_locked; 1304 /* 1305 * Split partially mapped folios right away. 1306 * We can free the unmapped pages without IO. 1307 */ 1308 if (data_race(!list_empty(&folio->_deferred_list) && 1309 folio_test_partially_mapped(folio)) && 1310 split_folio_to_list(folio, folio_list)) 1311 goto activate_locked; 1312 } 1313 if (folio_alloc_swap(folio, __GFP_HIGH | __GFP_NOWARN)) { 1314 int __maybe_unused order = folio_order(folio); 1315 1316 if (!folio_test_large(folio)) 1317 goto activate_locked_split; 1318 /* Fallback to swap normal pages */ 1319 if (split_folio_to_list(folio, folio_list)) 1320 goto activate_locked; 1321 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1322 if (nr_pages >= HPAGE_PMD_NR) { 1323 count_memcg_folio_events(folio, 1324 THP_SWPOUT_FALLBACK, 1); 1325 count_vm_event(THP_SWPOUT_FALLBACK); 1326 } 1327 #endif 1328 count_mthp_stat(order, MTHP_STAT_SWPOUT_FALLBACK); 1329 if (folio_alloc_swap(folio, __GFP_HIGH | __GFP_NOWARN)) 1330 goto activate_locked_split; 1331 } 1332 /* 1333 * Normally the folio will be dirtied in unmap because its 1334 * pte should be dirty. A special case is MADV_FREE page. The 1335 * page's pte could have dirty bit cleared but the folio's 1336 * SwapBacked flag is still set because clearing the dirty bit 1337 * and SwapBacked flag has no lock protected. For such folio, 1338 * unmap will not set dirty bit for it, so folio reclaim will 1339 * not write the folio out. This can cause data corruption when 1340 * the folio is swapped in later. Always setting the dirty flag 1341 * for the folio solves the problem. 1342 */ 1343 folio_mark_dirty(folio); 1344 } 1345 } 1346 1347 /* 1348 * If the folio was split above, the tail pages will make 1349 * their own pass through this function and be accounted 1350 * then. 1351 */ 1352 if ((nr_pages > 1) && !folio_test_large(folio)) { 1353 sc->nr_scanned -= (nr_pages - 1); 1354 nr_pages = 1; 1355 } 1356 1357 /* 1358 * The folio is mapped into the page tables of one or more 1359 * processes. Try to unmap it here. 1360 */ 1361 if (folio_mapped(folio)) { 1362 enum ttu_flags flags = TTU_BATCH_FLUSH; 1363 bool was_swapbacked = folio_test_swapbacked(folio); 1364 1365 if (folio_test_pmd_mappable(folio)) 1366 flags |= TTU_SPLIT_HUGE_PMD; 1367 /* 1368 * Without TTU_SYNC, try_to_unmap will only begin to 1369 * hold PTL from the first present PTE within a large 1370 * folio. Some initial PTEs might be skipped due to 1371 * races with parallel PTE writes in which PTEs can be 1372 * cleared temporarily before being written new present 1373 * values. This will lead to a large folio is still 1374 * mapped while some subpages have been partially 1375 * unmapped after try_to_unmap; TTU_SYNC helps 1376 * try_to_unmap acquire PTL from the first PTE, 1377 * eliminating the influence of temporary PTE values. 1378 */ 1379 if (folio_test_large(folio)) 1380 flags |= TTU_SYNC; 1381 1382 try_to_unmap(folio, flags); 1383 if (folio_mapped(folio)) { 1384 stat->nr_unmap_fail += nr_pages; 1385 if (!was_swapbacked && 1386 folio_test_swapbacked(folio)) 1387 stat->nr_lazyfree_fail += nr_pages; 1388 goto activate_locked; 1389 } 1390 } 1391 1392 /* 1393 * Folio is unmapped now so it cannot be newly pinned anymore. 1394 * No point in trying to reclaim folio if it is pinned. 1395 * Furthermore we don't want to reclaim underlying fs metadata 1396 * if the folio is pinned and thus potentially modified by the 1397 * pinning process as that may upset the filesystem. 1398 */ 1399 if (folio_maybe_dma_pinned(folio)) 1400 goto activate_locked; 1401 1402 mapping = folio_mapping(folio); 1403 if (folio_test_dirty(folio)) { 1404 /* 1405 * Only kswapd can writeback filesystem folios 1406 * to avoid risk of stack overflow. But avoid 1407 * injecting inefficient single-folio I/O into 1408 * flusher writeback as much as possible: only 1409 * write folios when we've encountered many 1410 * dirty folios, and when we've already scanned 1411 * the rest of the LRU for clean folios and see 1412 * the same dirty folios again (with the reclaim 1413 * flag set). 1414 */ 1415 if (folio_is_file_lru(folio) && 1416 (!current_is_kswapd() || 1417 !folio_test_reclaim(folio) || 1418 !test_bit(PGDAT_DIRTY, &pgdat->flags))) { 1419 /* 1420 * Immediately reclaim when written back. 1421 * Similar in principle to folio_deactivate() 1422 * except we already have the folio isolated 1423 * and know it's dirty 1424 */ 1425 node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE, 1426 nr_pages); 1427 folio_set_reclaim(folio); 1428 1429 goto activate_locked; 1430 } 1431 1432 if (references == FOLIOREF_RECLAIM_CLEAN) 1433 goto keep_locked; 1434 if (!may_enter_fs(folio, sc->gfp_mask)) 1435 goto keep_locked; 1436 if (!sc->may_writepage) 1437 goto keep_locked; 1438 1439 /* 1440 * Folio is dirty. Flush the TLB if a writable entry 1441 * potentially exists to avoid CPU writes after I/O 1442 * starts and then write it out here. 1443 */ 1444 try_to_unmap_flush_dirty(); 1445 switch (pageout(folio, mapping, &plug, folio_list)) { 1446 case PAGE_KEEP: 1447 goto keep_locked; 1448 case PAGE_ACTIVATE: 1449 /* 1450 * If shmem folio is split when writeback to swap, 1451 * the tail pages will make their own pass through 1452 * this function and be accounted then. 1453 */ 1454 if (nr_pages > 1 && !folio_test_large(folio)) { 1455 sc->nr_scanned -= (nr_pages - 1); 1456 nr_pages = 1; 1457 } 1458 goto activate_locked; 1459 case PAGE_SUCCESS: 1460 if (nr_pages > 1 && !folio_test_large(folio)) { 1461 sc->nr_scanned -= (nr_pages - 1); 1462 nr_pages = 1; 1463 } 1464 stat->nr_pageout += nr_pages; 1465 1466 if (folio_test_writeback(folio)) 1467 goto keep; 1468 if (folio_test_dirty(folio)) 1469 goto keep; 1470 1471 /* 1472 * A synchronous write - probably a ramdisk. Go 1473 * ahead and try to reclaim the folio. 1474 */ 1475 if (!folio_trylock(folio)) 1476 goto keep; 1477 if (folio_test_dirty(folio) || 1478 folio_test_writeback(folio)) 1479 goto keep_locked; 1480 mapping = folio_mapping(folio); 1481 fallthrough; 1482 case PAGE_CLEAN: 1483 ; /* try to free the folio below */ 1484 } 1485 } 1486 1487 /* 1488 * If the folio has buffers, try to free the buffer 1489 * mappings associated with this folio. If we succeed 1490 * we try to free the folio as well. 1491 * 1492 * We do this even if the folio is dirty. 1493 * filemap_release_folio() does not perform I/O, but it 1494 * is possible for a folio to have the dirty flag set, 1495 * but it is actually clean (all its buffers are clean). 1496 * This happens if the buffers were written out directly, 1497 * with submit_bh(). ext3 will do this, as well as 1498 * the blockdev mapping. filemap_release_folio() will 1499 * discover that cleanness and will drop the buffers 1500 * and mark the folio clean - it can be freed. 1501 * 1502 * Rarely, folios can have buffers and no ->mapping. 1503 * These are the folios which were not successfully 1504 * invalidated in truncate_cleanup_folio(). We try to 1505 * drop those buffers here and if that worked, and the 1506 * folio is no longer mapped into process address space 1507 * (refcount == 1) it can be freed. Otherwise, leave 1508 * the folio on the LRU so it is swappable. 1509 */ 1510 if (folio_needs_release(folio)) { 1511 if (!filemap_release_folio(folio, sc->gfp_mask)) 1512 goto activate_locked; 1513 if (!mapping && folio_ref_count(folio) == 1) { 1514 folio_unlock(folio); 1515 if (folio_put_testzero(folio)) 1516 goto free_it; 1517 else { 1518 /* 1519 * rare race with speculative reference. 1520 * the speculative reference will free 1521 * this folio shortly, so we may 1522 * increment nr_reclaimed here (and 1523 * leave it off the LRU). 1524 */ 1525 nr_reclaimed += nr_pages; 1526 continue; 1527 } 1528 } 1529 } 1530 1531 if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) { 1532 /* follow __remove_mapping for reference */ 1533 if (!folio_ref_freeze(folio, 1)) 1534 goto keep_locked; 1535 /* 1536 * The folio has only one reference left, which is 1537 * from the isolation. After the caller puts the 1538 * folio back on the lru and drops the reference, the 1539 * folio will be freed anyway. It doesn't matter 1540 * which lru it goes on. So we don't bother checking 1541 * the dirty flag here. 1542 */ 1543 count_vm_events(PGLAZYFREED, nr_pages); 1544 count_memcg_folio_events(folio, PGLAZYFREED, nr_pages); 1545 } else if (!mapping || !__remove_mapping(mapping, folio, true, 1546 sc->target_mem_cgroup)) 1547 goto keep_locked; 1548 1549 folio_unlock(folio); 1550 free_it: 1551 /* 1552 * Folio may get swapped out as a whole, need to account 1553 * all pages in it. 1554 */ 1555 nr_reclaimed += nr_pages; 1556 1557 folio_unqueue_deferred_split(folio); 1558 if (folio_batch_add(&free_folios, folio) == 0) { 1559 mem_cgroup_uncharge_folios(&free_folios); 1560 try_to_unmap_flush(); 1561 free_unref_folios(&free_folios); 1562 } 1563 continue; 1564 1565 activate_locked_split: 1566 /* 1567 * The tail pages that are failed to add into swap cache 1568 * reach here. Fixup nr_scanned and nr_pages. 1569 */ 1570 if (nr_pages > 1) { 1571 sc->nr_scanned -= (nr_pages - 1); 1572 nr_pages = 1; 1573 } 1574 activate_locked: 1575 /* Not a candidate for swapping, so reclaim swap space. */ 1576 if (folio_test_swapcache(folio) && 1577 (mem_cgroup_swap_full(folio) || folio_test_mlocked(folio))) 1578 folio_free_swap(folio); 1579 VM_BUG_ON_FOLIO(folio_test_active(folio), folio); 1580 if (!folio_test_mlocked(folio)) { 1581 int type = folio_is_file_lru(folio); 1582 folio_set_active(folio); 1583 stat->nr_activate[type] += nr_pages; 1584 count_memcg_folio_events(folio, PGACTIVATE, nr_pages); 1585 } 1586 keep_locked: 1587 folio_unlock(folio); 1588 keep: 1589 list_add(&folio->lru, &ret_folios); 1590 VM_BUG_ON_FOLIO(folio_test_lru(folio) || 1591 folio_test_unevictable(folio), folio); 1592 } 1593 /* 'folio_list' is always empty here */ 1594 1595 /* Migrate folios selected for demotion */ 1596 nr_demoted = demote_folio_list(&demote_folios, pgdat); 1597 nr_reclaimed += nr_demoted; 1598 stat->nr_demoted += nr_demoted; 1599 /* Folios that could not be demoted are still in @demote_folios */ 1600 if (!list_empty(&demote_folios)) { 1601 /* Folios which weren't demoted go back on @folio_list */ 1602 list_splice_init(&demote_folios, folio_list); 1603 1604 /* 1605 * goto retry to reclaim the undemoted folios in folio_list if 1606 * desired. 1607 * 1608 * Reclaiming directly from top tier nodes is not often desired 1609 * due to it breaking the LRU ordering: in general memory 1610 * should be reclaimed from lower tier nodes and demoted from 1611 * top tier nodes. 1612 * 1613 * However, disabling reclaim from top tier nodes entirely 1614 * would cause ooms in edge scenarios where lower tier memory 1615 * is unreclaimable for whatever reason, eg memory being 1616 * mlocked or too hot to reclaim. We can disable reclaim 1617 * from top tier nodes in proactive reclaim though as that is 1618 * not real memory pressure. 1619 */ 1620 if (!sc->proactive) { 1621 do_demote_pass = false; 1622 goto retry; 1623 } 1624 } 1625 1626 pgactivate = stat->nr_activate[0] + stat->nr_activate[1]; 1627 1628 mem_cgroup_uncharge_folios(&free_folios); 1629 try_to_unmap_flush(); 1630 free_unref_folios(&free_folios); 1631 1632 list_splice(&ret_folios, folio_list); 1633 count_vm_events(PGACTIVATE, pgactivate); 1634 1635 if (plug) 1636 swap_write_unplug(plug); 1637 return nr_reclaimed; 1638 } 1639 1640 unsigned int reclaim_clean_pages_from_list(struct zone *zone, 1641 struct list_head *folio_list) 1642 { 1643 struct scan_control sc = { 1644 .gfp_mask = GFP_KERNEL, 1645 .may_unmap = 1, 1646 }; 1647 struct reclaim_stat stat; 1648 unsigned int nr_reclaimed; 1649 struct folio *folio, *next; 1650 LIST_HEAD(clean_folios); 1651 unsigned int noreclaim_flag; 1652 1653 list_for_each_entry_safe(folio, next, folio_list, lru) { 1654 /* TODO: these pages should not even appear in this list. */ 1655 if (page_has_movable_ops(&folio->page)) 1656 continue; 1657 if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) && 1658 !folio_test_dirty(folio) && !folio_test_unevictable(folio)) { 1659 folio_clear_active(folio); 1660 list_move(&folio->lru, &clean_folios); 1661 } 1662 } 1663 1664 /* 1665 * We should be safe here since we are only dealing with file pages and 1666 * we are not kswapd and therefore cannot write dirty file pages. But 1667 * call memalloc_noreclaim_save() anyway, just in case these conditions 1668 * change in the future. 1669 */ 1670 noreclaim_flag = memalloc_noreclaim_save(); 1671 nr_reclaimed = shrink_folio_list(&clean_folios, zone->zone_pgdat, &sc, 1672 &stat, true, NULL); 1673 memalloc_noreclaim_restore(noreclaim_flag); 1674 1675 list_splice(&clean_folios, folio_list); 1676 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, 1677 -(long)nr_reclaimed); 1678 /* 1679 * Since lazyfree pages are isolated from file LRU from the beginning, 1680 * they will rotate back to anonymous LRU in the end if it failed to 1681 * discard so isolated count will be mismatched. 1682 * Compensate the isolated count for both LRU lists. 1683 */ 1684 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON, 1685 stat.nr_lazyfree_fail); 1686 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, 1687 -(long)stat.nr_lazyfree_fail); 1688 return nr_reclaimed; 1689 } 1690 1691 /* 1692 * Update LRU sizes after isolating pages. The LRU size updates must 1693 * be complete before mem_cgroup_update_lru_size due to a sanity check. 1694 */ 1695 static __always_inline void update_lru_sizes(struct lruvec *lruvec, 1696 enum lru_list lru, unsigned long *nr_zone_taken) 1697 { 1698 int zid; 1699 1700 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1701 if (!nr_zone_taken[zid]) 1702 continue; 1703 1704 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 1705 } 1706 1707 } 1708 1709 /* 1710 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times. 1711 * 1712 * lruvec->lru_lock is heavily contended. Some of the functions that 1713 * shrink the lists perform better by taking out a batch of pages 1714 * and working on them outside the LRU lock. 1715 * 1716 * For pagecache intensive workloads, this function is the hottest 1717 * spot in the kernel (apart from copy_*_user functions). 1718 * 1719 * Lru_lock must be held before calling this function. 1720 * 1721 * @nr_to_scan: The number of eligible pages to look through on the list. 1722 * @lruvec: The LRU vector to pull pages from. 1723 * @dst: The temp list to put pages on to. 1724 * @nr_scanned: The number of pages that were scanned. 1725 * @sc: The scan_control struct for this reclaim session 1726 * @lru: LRU list id for isolating 1727 * 1728 * returns how many pages were moved onto *@dst. 1729 */ 1730 static unsigned long isolate_lru_folios(unsigned long nr_to_scan, 1731 struct lruvec *lruvec, struct list_head *dst, 1732 unsigned long *nr_scanned, struct scan_control *sc, 1733 enum lru_list lru) 1734 { 1735 struct list_head *src = &lruvec->lists[lru]; 1736 unsigned long nr_taken = 0; 1737 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 }; 1738 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, }; 1739 unsigned long skipped = 0, total_scan = 0, scan = 0; 1740 unsigned long nr_pages; 1741 unsigned long max_nr_skipped = 0; 1742 LIST_HEAD(folios_skipped); 1743 1744 while (scan < nr_to_scan && !list_empty(src)) { 1745 struct list_head *move_to = src; 1746 struct folio *folio; 1747 1748 folio = lru_to_folio(src); 1749 prefetchw_prev_lru_folio(folio, src, flags); 1750 1751 nr_pages = folio_nr_pages(folio); 1752 total_scan += nr_pages; 1753 1754 /* Using max_nr_skipped to prevent hard LOCKUP*/ 1755 if (max_nr_skipped < SWAP_CLUSTER_MAX_SKIPPED && 1756 (folio_zonenum(folio) > sc->reclaim_idx)) { 1757 nr_skipped[folio_zonenum(folio)] += nr_pages; 1758 move_to = &folios_skipped; 1759 max_nr_skipped++; 1760 goto move; 1761 } 1762 1763 /* 1764 * Do not count skipped folios because that makes the function 1765 * return with no isolated folios if the LRU mostly contains 1766 * ineligible folios. This causes the VM to not reclaim any 1767 * folios, triggering a premature OOM. 1768 * Account all pages in a folio. 1769 */ 1770 scan += nr_pages; 1771 1772 if (!folio_test_lru(folio)) 1773 goto move; 1774 if (!sc->may_unmap && folio_mapped(folio)) 1775 goto move; 1776 1777 /* 1778 * Be careful not to clear the lru flag until after we're 1779 * sure the folio is not being freed elsewhere -- the 1780 * folio release code relies on it. 1781 */ 1782 if (unlikely(!folio_try_get(folio))) 1783 goto move; 1784 1785 if (!folio_test_clear_lru(folio)) { 1786 /* Another thread is already isolating this folio */ 1787 folio_put(folio); 1788 goto move; 1789 } 1790 1791 nr_taken += nr_pages; 1792 nr_zone_taken[folio_zonenum(folio)] += nr_pages; 1793 move_to = dst; 1794 move: 1795 list_move(&folio->lru, move_to); 1796 } 1797 1798 /* 1799 * Splice any skipped folios to the start of the LRU list. Note that 1800 * this disrupts the LRU order when reclaiming for lower zones but 1801 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX 1802 * scanning would soon rescan the same folios to skip and waste lots 1803 * of cpu cycles. 1804 */ 1805 if (!list_empty(&folios_skipped)) { 1806 int zid; 1807 1808 list_splice(&folios_skipped, src); 1809 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1810 if (!nr_skipped[zid]) 1811 continue; 1812 1813 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]); 1814 skipped += nr_skipped[zid]; 1815 } 1816 } 1817 *nr_scanned = total_scan; 1818 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, 1819 total_scan, skipped, nr_taken, lru); 1820 update_lru_sizes(lruvec, lru, nr_zone_taken); 1821 return nr_taken; 1822 } 1823 1824 /** 1825 * folio_isolate_lru() - Try to isolate a folio from its LRU list. 1826 * @folio: Folio to isolate from its LRU list. 1827 * 1828 * Isolate a @folio from an LRU list and adjust the vmstat statistic 1829 * corresponding to whatever LRU list the folio was on. 1830 * 1831 * The folio will have its LRU flag cleared. If it was found on the 1832 * active list, it will have the Active flag set. If it was found on the 1833 * unevictable list, it will have the Unevictable flag set. These flags 1834 * may need to be cleared by the caller before letting the page go. 1835 * 1836 * Context: 1837 * 1838 * (1) Must be called with an elevated refcount on the folio. This is a 1839 * fundamental difference from isolate_lru_folios() (which is called 1840 * without a stable reference). 1841 * (2) The lru_lock must not be held. 1842 * (3) Interrupts must be enabled. 1843 * 1844 * Return: true if the folio was removed from an LRU list. 1845 * false if the folio was not on an LRU list. 1846 */ 1847 bool folio_isolate_lru(struct folio *folio) 1848 { 1849 bool ret = false; 1850 1851 VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio); 1852 1853 if (folio_test_clear_lru(folio)) { 1854 struct lruvec *lruvec; 1855 1856 folio_get(folio); 1857 lruvec = folio_lruvec_lock_irq(folio); 1858 lruvec_del_folio(lruvec, folio); 1859 unlock_page_lruvec_irq(lruvec); 1860 ret = true; 1861 } 1862 1863 return ret; 1864 } 1865 1866 /* 1867 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 1868 * then get rescheduled. When there are massive number of tasks doing page 1869 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 1870 * the LRU list will go small and be scanned faster than necessary, leading to 1871 * unnecessary swapping, thrashing and OOM. 1872 */ 1873 static bool too_many_isolated(struct pglist_data *pgdat, int file, 1874 struct scan_control *sc) 1875 { 1876 unsigned long inactive, isolated; 1877 bool too_many; 1878 1879 if (current_is_kswapd()) 1880 return false; 1881 1882 if (!writeback_throttling_sane(sc)) 1883 return false; 1884 1885 if (file) { 1886 inactive = node_page_state(pgdat, NR_INACTIVE_FILE); 1887 isolated = node_page_state(pgdat, NR_ISOLATED_FILE); 1888 } else { 1889 inactive = node_page_state(pgdat, NR_INACTIVE_ANON); 1890 isolated = node_page_state(pgdat, NR_ISOLATED_ANON); 1891 } 1892 1893 /* 1894 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 1895 * won't get blocked by normal direct-reclaimers, forming a circular 1896 * deadlock. 1897 */ 1898 if (gfp_has_io_fs(sc->gfp_mask)) 1899 inactive >>= 3; 1900 1901 too_many = isolated > inactive; 1902 1903 /* Wake up tasks throttled due to too_many_isolated. */ 1904 if (!too_many) 1905 wake_throttle_isolated(pgdat); 1906 1907 return too_many; 1908 } 1909 1910 /* 1911 * move_folios_to_lru() moves folios from private @list to appropriate LRU list. 1912 * 1913 * Returns the number of pages moved to the given lruvec. 1914 */ 1915 static unsigned int move_folios_to_lru(struct lruvec *lruvec, 1916 struct list_head *list) 1917 { 1918 int nr_pages, nr_moved = 0; 1919 struct folio_batch free_folios; 1920 1921 folio_batch_init(&free_folios); 1922 while (!list_empty(list)) { 1923 struct folio *folio = lru_to_folio(list); 1924 1925 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 1926 list_del(&folio->lru); 1927 if (unlikely(!folio_evictable(folio))) { 1928 spin_unlock_irq(&lruvec->lru_lock); 1929 folio_putback_lru(folio); 1930 spin_lock_irq(&lruvec->lru_lock); 1931 continue; 1932 } 1933 1934 /* 1935 * The folio_set_lru needs to be kept here for list integrity. 1936 * Otherwise: 1937 * #0 move_folios_to_lru #1 release_pages 1938 * if (!folio_put_testzero()) 1939 * if (folio_put_testzero()) 1940 * !lru //skip lru_lock 1941 * folio_set_lru() 1942 * list_add(&folio->lru,) 1943 * list_add(&folio->lru,) 1944 */ 1945 folio_set_lru(folio); 1946 1947 if (unlikely(folio_put_testzero(folio))) { 1948 __folio_clear_lru_flags(folio); 1949 1950 folio_unqueue_deferred_split(folio); 1951 if (folio_batch_add(&free_folios, folio) == 0) { 1952 spin_unlock_irq(&lruvec->lru_lock); 1953 mem_cgroup_uncharge_folios(&free_folios); 1954 free_unref_folios(&free_folios); 1955 spin_lock_irq(&lruvec->lru_lock); 1956 } 1957 1958 continue; 1959 } 1960 1961 /* 1962 * All pages were isolated from the same lruvec (and isolation 1963 * inhibits memcg migration). 1964 */ 1965 VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio); 1966 lruvec_add_folio(lruvec, folio); 1967 nr_pages = folio_nr_pages(folio); 1968 nr_moved += nr_pages; 1969 if (folio_test_active(folio)) 1970 workingset_age_nonresident(lruvec, nr_pages); 1971 } 1972 1973 if (free_folios.nr) { 1974 spin_unlock_irq(&lruvec->lru_lock); 1975 mem_cgroup_uncharge_folios(&free_folios); 1976 free_unref_folios(&free_folios); 1977 spin_lock_irq(&lruvec->lru_lock); 1978 } 1979 1980 return nr_moved; 1981 } 1982 1983 /* 1984 * If a kernel thread (such as nfsd for loop-back mounts) services a backing 1985 * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case 1986 * we should not throttle. Otherwise it is safe to do so. 1987 */ 1988 static int current_may_throttle(void) 1989 { 1990 return !(current->flags & PF_LOCAL_THROTTLE); 1991 } 1992 1993 /* 1994 * shrink_inactive_list() is a helper for shrink_node(). It returns the number 1995 * of reclaimed pages 1996 */ 1997 static unsigned long shrink_inactive_list(unsigned long nr_to_scan, 1998 struct lruvec *lruvec, struct scan_control *sc, 1999 enum lru_list lru) 2000 { 2001 LIST_HEAD(folio_list); 2002 unsigned long nr_scanned; 2003 unsigned int nr_reclaimed = 0; 2004 unsigned long nr_taken; 2005 struct reclaim_stat stat; 2006 bool file = is_file_lru(lru); 2007 enum vm_event_item item; 2008 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2009 bool stalled = false; 2010 2011 while (unlikely(too_many_isolated(pgdat, file, sc))) { 2012 if (stalled) 2013 return 0; 2014 2015 /* wait a bit for the reclaimer. */ 2016 stalled = true; 2017 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED); 2018 2019 /* We are about to die and free our memory. Return now. */ 2020 if (fatal_signal_pending(current)) 2021 return SWAP_CLUSTER_MAX; 2022 } 2023 2024 lru_add_drain(); 2025 2026 spin_lock_irq(&lruvec->lru_lock); 2027 2028 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &folio_list, 2029 &nr_scanned, sc, lru); 2030 2031 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2032 item = PGSCAN_KSWAPD + reclaimer_offset(sc); 2033 if (!cgroup_reclaim(sc)) 2034 __count_vm_events(item, nr_scanned); 2035 count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned); 2036 __count_vm_events(PGSCAN_ANON + file, nr_scanned); 2037 2038 spin_unlock_irq(&lruvec->lru_lock); 2039 2040 if (nr_taken == 0) 2041 return 0; 2042 2043 nr_reclaimed = shrink_folio_list(&folio_list, pgdat, sc, &stat, false, 2044 lruvec_memcg(lruvec)); 2045 2046 spin_lock_irq(&lruvec->lru_lock); 2047 move_folios_to_lru(lruvec, &folio_list); 2048 2049 __mod_lruvec_state(lruvec, PGDEMOTE_KSWAPD + reclaimer_offset(sc), 2050 stat.nr_demoted); 2051 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2052 item = PGSTEAL_KSWAPD + reclaimer_offset(sc); 2053 if (!cgroup_reclaim(sc)) 2054 __count_vm_events(item, nr_reclaimed); 2055 count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed); 2056 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed); 2057 2058 lru_note_cost_unlock_irq(lruvec, file, stat.nr_pageout, 2059 nr_scanned - nr_reclaimed); 2060 2061 /* 2062 * If dirty folios are scanned that are not queued for IO, it 2063 * implies that flushers are not doing their job. This can 2064 * happen when memory pressure pushes dirty folios to the end of 2065 * the LRU before the dirty limits are breached and the dirty 2066 * data has expired. It can also happen when the proportion of 2067 * dirty folios grows not through writes but through memory 2068 * pressure reclaiming all the clean cache. And in some cases, 2069 * the flushers simply cannot keep up with the allocation 2070 * rate. Nudge the flusher threads in case they are asleep. 2071 */ 2072 if (stat.nr_unqueued_dirty == nr_taken) { 2073 wakeup_flusher_threads(WB_REASON_VMSCAN); 2074 /* 2075 * For cgroupv1 dirty throttling is achieved by waking up 2076 * the kernel flusher here and later waiting on folios 2077 * which are in writeback to finish (see shrink_folio_list()). 2078 * 2079 * Flusher may not be able to issue writeback quickly 2080 * enough for cgroupv1 writeback throttling to work 2081 * on a large system. 2082 */ 2083 if (!writeback_throttling_sane(sc)) 2084 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK); 2085 } 2086 2087 sc->nr.dirty += stat.nr_dirty; 2088 sc->nr.congested += stat.nr_congested; 2089 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty; 2090 sc->nr.writeback += stat.nr_writeback; 2091 sc->nr.immediate += stat.nr_immediate; 2092 sc->nr.taken += nr_taken; 2093 if (file) 2094 sc->nr.file_taken += nr_taken; 2095 2096 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 2097 nr_scanned, nr_reclaimed, &stat, sc->priority, file); 2098 return nr_reclaimed; 2099 } 2100 2101 /* 2102 * shrink_active_list() moves folios from the active LRU to the inactive LRU. 2103 * 2104 * We move them the other way if the folio is referenced by one or more 2105 * processes. 2106 * 2107 * If the folios are mostly unmapped, the processing is fast and it is 2108 * appropriate to hold lru_lock across the whole operation. But if 2109 * the folios are mapped, the processing is slow (folio_referenced()), so 2110 * we should drop lru_lock around each folio. It's impossible to balance 2111 * this, so instead we remove the folios from the LRU while processing them. 2112 * It is safe to rely on the active flag against the non-LRU folios in here 2113 * because nobody will play with that bit on a non-LRU folio. 2114 * 2115 * The downside is that we have to touch folio->_refcount against each folio. 2116 * But we had to alter folio->flags anyway. 2117 */ 2118 static void shrink_active_list(unsigned long nr_to_scan, 2119 struct lruvec *lruvec, 2120 struct scan_control *sc, 2121 enum lru_list lru) 2122 { 2123 unsigned long nr_taken; 2124 unsigned long nr_scanned; 2125 vm_flags_t vm_flags; 2126 LIST_HEAD(l_hold); /* The folios which were snipped off */ 2127 LIST_HEAD(l_active); 2128 LIST_HEAD(l_inactive); 2129 unsigned nr_deactivate, nr_activate; 2130 unsigned nr_rotated = 0; 2131 bool file = is_file_lru(lru); 2132 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2133 2134 lru_add_drain(); 2135 2136 spin_lock_irq(&lruvec->lru_lock); 2137 2138 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &l_hold, 2139 &nr_scanned, sc, lru); 2140 2141 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2142 2143 if (!cgroup_reclaim(sc)) 2144 __count_vm_events(PGREFILL, nr_scanned); 2145 count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned); 2146 2147 spin_unlock_irq(&lruvec->lru_lock); 2148 2149 while (!list_empty(&l_hold)) { 2150 struct folio *folio; 2151 2152 cond_resched(); 2153 folio = lru_to_folio(&l_hold); 2154 list_del(&folio->lru); 2155 2156 if (unlikely(!folio_evictable(folio))) { 2157 folio_putback_lru(folio); 2158 continue; 2159 } 2160 2161 if (unlikely(buffer_heads_over_limit)) { 2162 if (folio_needs_release(folio) && 2163 folio_trylock(folio)) { 2164 filemap_release_folio(folio, 0); 2165 folio_unlock(folio); 2166 } 2167 } 2168 2169 /* Referenced or rmap lock contention: rotate */ 2170 if (folio_referenced(folio, 0, sc->target_mem_cgroup, 2171 &vm_flags) != 0) { 2172 /* 2173 * Identify referenced, file-backed active folios and 2174 * give them one more trip around the active list. So 2175 * that executable code get better chances to stay in 2176 * memory under moderate memory pressure. Anon folios 2177 * are not likely to be evicted by use-once streaming 2178 * IO, plus JVM can create lots of anon VM_EXEC folios, 2179 * so we ignore them here. 2180 */ 2181 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) { 2182 nr_rotated += folio_nr_pages(folio); 2183 list_add(&folio->lru, &l_active); 2184 continue; 2185 } 2186 } 2187 2188 folio_clear_active(folio); /* we are de-activating */ 2189 folio_set_workingset(folio); 2190 list_add(&folio->lru, &l_inactive); 2191 } 2192 2193 /* 2194 * Move folios back to the lru list. 2195 */ 2196 spin_lock_irq(&lruvec->lru_lock); 2197 2198 nr_activate = move_folios_to_lru(lruvec, &l_active); 2199 nr_deactivate = move_folios_to_lru(lruvec, &l_inactive); 2200 2201 __count_vm_events(PGDEACTIVATE, nr_deactivate); 2202 count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate); 2203 2204 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2205 2206 lru_note_cost_unlock_irq(lruvec, file, 0, nr_rotated); 2207 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate, 2208 nr_deactivate, nr_rotated, sc->priority, file); 2209 } 2210 2211 static unsigned int reclaim_folio_list(struct list_head *folio_list, 2212 struct pglist_data *pgdat) 2213 { 2214 struct reclaim_stat stat; 2215 unsigned int nr_reclaimed; 2216 struct folio *folio; 2217 struct scan_control sc = { 2218 .gfp_mask = GFP_KERNEL, 2219 .may_writepage = 1, 2220 .may_unmap = 1, 2221 .may_swap = 1, 2222 .no_demotion = 1, 2223 }; 2224 2225 nr_reclaimed = shrink_folio_list(folio_list, pgdat, &sc, &stat, true, NULL); 2226 while (!list_empty(folio_list)) { 2227 folio = lru_to_folio(folio_list); 2228 list_del(&folio->lru); 2229 folio_putback_lru(folio); 2230 } 2231 trace_mm_vmscan_reclaim_pages(pgdat->node_id, sc.nr_scanned, nr_reclaimed, &stat); 2232 2233 return nr_reclaimed; 2234 } 2235 2236 unsigned long reclaim_pages(struct list_head *folio_list) 2237 { 2238 int nid; 2239 unsigned int nr_reclaimed = 0; 2240 LIST_HEAD(node_folio_list); 2241 unsigned int noreclaim_flag; 2242 2243 if (list_empty(folio_list)) 2244 return nr_reclaimed; 2245 2246 noreclaim_flag = memalloc_noreclaim_save(); 2247 2248 nid = folio_nid(lru_to_folio(folio_list)); 2249 do { 2250 struct folio *folio = lru_to_folio(folio_list); 2251 2252 if (nid == folio_nid(folio)) { 2253 folio_clear_active(folio); 2254 list_move(&folio->lru, &node_folio_list); 2255 continue; 2256 } 2257 2258 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid)); 2259 nid = folio_nid(lru_to_folio(folio_list)); 2260 } while (!list_empty(folio_list)); 2261 2262 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid)); 2263 2264 memalloc_noreclaim_restore(noreclaim_flag); 2265 2266 return nr_reclaimed; 2267 } 2268 2269 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 2270 struct lruvec *lruvec, struct scan_control *sc) 2271 { 2272 if (is_active_lru(lru)) { 2273 if (sc->may_deactivate & (1 << is_file_lru(lru))) 2274 shrink_active_list(nr_to_scan, lruvec, sc, lru); 2275 else 2276 sc->skipped_deactivate = 1; 2277 return 0; 2278 } 2279 2280 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 2281 } 2282 2283 /* 2284 * The inactive anon list should be small enough that the VM never has 2285 * to do too much work. 2286 * 2287 * The inactive file list should be small enough to leave most memory 2288 * to the established workingset on the scan-resistant active list, 2289 * but large enough to avoid thrashing the aggregate readahead window. 2290 * 2291 * Both inactive lists should also be large enough that each inactive 2292 * folio has a chance to be referenced again before it is reclaimed. 2293 * 2294 * If that fails and refaulting is observed, the inactive list grows. 2295 * 2296 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE folios 2297 * on this LRU, maintained by the pageout code. An inactive_ratio 2298 * of 3 means 3:1 or 25% of the folios are kept on the inactive list. 2299 * 2300 * total target max 2301 * memory ratio inactive 2302 * ------------------------------------- 2303 * 10MB 1 5MB 2304 * 100MB 1 50MB 2305 * 1GB 3 250MB 2306 * 10GB 10 0.9GB 2307 * 100GB 31 3GB 2308 * 1TB 101 10GB 2309 * 10TB 320 32GB 2310 */ 2311 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru) 2312 { 2313 enum lru_list active_lru = inactive_lru + LRU_ACTIVE; 2314 unsigned long inactive, active; 2315 unsigned long inactive_ratio; 2316 unsigned long gb; 2317 2318 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru); 2319 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru); 2320 2321 gb = (inactive + active) >> (30 - PAGE_SHIFT); 2322 if (gb) 2323 inactive_ratio = int_sqrt(10 * gb); 2324 else 2325 inactive_ratio = 1; 2326 2327 return inactive * inactive_ratio < active; 2328 } 2329 2330 enum scan_balance { 2331 SCAN_EQUAL, 2332 SCAN_FRACT, 2333 SCAN_ANON, 2334 SCAN_FILE, 2335 }; 2336 2337 static void prepare_scan_control(pg_data_t *pgdat, struct scan_control *sc) 2338 { 2339 unsigned long file; 2340 struct lruvec *target_lruvec; 2341 2342 if (lru_gen_enabled()) 2343 return; 2344 2345 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat); 2346 2347 /* 2348 * Flush the memory cgroup stats in rate-limited way as we don't need 2349 * most accurate stats here. We may switch to regular stats flushing 2350 * in the future once it is cheap enough. 2351 */ 2352 mem_cgroup_flush_stats_ratelimited(sc->target_mem_cgroup); 2353 2354 /* 2355 * Determine the scan balance between anon and file LRUs. 2356 */ 2357 spin_lock_irq(&target_lruvec->lru_lock); 2358 sc->anon_cost = target_lruvec->anon_cost; 2359 sc->file_cost = target_lruvec->file_cost; 2360 spin_unlock_irq(&target_lruvec->lru_lock); 2361 2362 /* 2363 * Target desirable inactive:active list ratios for the anon 2364 * and file LRU lists. 2365 */ 2366 if (!sc->force_deactivate) { 2367 unsigned long refaults; 2368 2369 /* 2370 * When refaults are being observed, it means a new 2371 * workingset is being established. Deactivate to get 2372 * rid of any stale active pages quickly. 2373 */ 2374 refaults = lruvec_page_state(target_lruvec, 2375 WORKINGSET_ACTIVATE_ANON); 2376 if (refaults != target_lruvec->refaults[WORKINGSET_ANON] || 2377 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON)) 2378 sc->may_deactivate |= DEACTIVATE_ANON; 2379 else 2380 sc->may_deactivate &= ~DEACTIVATE_ANON; 2381 2382 refaults = lruvec_page_state(target_lruvec, 2383 WORKINGSET_ACTIVATE_FILE); 2384 if (refaults != target_lruvec->refaults[WORKINGSET_FILE] || 2385 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE)) 2386 sc->may_deactivate |= DEACTIVATE_FILE; 2387 else 2388 sc->may_deactivate &= ~DEACTIVATE_FILE; 2389 } else 2390 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE; 2391 2392 /* 2393 * If we have plenty of inactive file pages that aren't 2394 * thrashing, try to reclaim those first before touching 2395 * anonymous pages. 2396 */ 2397 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE); 2398 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE) && 2399 !sc->no_cache_trim_mode) 2400 sc->cache_trim_mode = 1; 2401 else 2402 sc->cache_trim_mode = 0; 2403 2404 /* 2405 * Prevent the reclaimer from falling into the cache trap: as 2406 * cache pages start out inactive, every cache fault will tip 2407 * the scan balance towards the file LRU. And as the file LRU 2408 * shrinks, so does the window for rotation from references. 2409 * This means we have a runaway feedback loop where a tiny 2410 * thrashing file LRU becomes infinitely more attractive than 2411 * anon pages. Try to detect this based on file LRU size. 2412 */ 2413 if (!cgroup_reclaim(sc)) { 2414 unsigned long total_high_wmark = 0; 2415 unsigned long free, anon; 2416 int z; 2417 struct zone *zone; 2418 2419 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES); 2420 file = node_page_state(pgdat, NR_ACTIVE_FILE) + 2421 node_page_state(pgdat, NR_INACTIVE_FILE); 2422 2423 for_each_managed_zone_pgdat(zone, pgdat, z, MAX_NR_ZONES - 1) { 2424 total_high_wmark += high_wmark_pages(zone); 2425 } 2426 2427 /* 2428 * Consider anon: if that's low too, this isn't a 2429 * runaway file reclaim problem, but rather just 2430 * extreme pressure. Reclaim as per usual then. 2431 */ 2432 anon = node_page_state(pgdat, NR_INACTIVE_ANON); 2433 2434 sc->file_is_tiny = 2435 file + free <= total_high_wmark && 2436 !(sc->may_deactivate & DEACTIVATE_ANON) && 2437 anon >> sc->priority; 2438 } 2439 } 2440 2441 static inline void calculate_pressure_balance(struct scan_control *sc, 2442 int swappiness, u64 *fraction, u64 *denominator) 2443 { 2444 unsigned long anon_cost, file_cost, total_cost; 2445 unsigned long ap, fp; 2446 2447 /* 2448 * Calculate the pressure balance between anon and file pages. 2449 * 2450 * The amount of pressure we put on each LRU is inversely 2451 * proportional to the cost of reclaiming each list, as 2452 * determined by the share of pages that are refaulting, times 2453 * the relative IO cost of bringing back a swapped out 2454 * anonymous page vs reloading a filesystem page (swappiness). 2455 * 2456 * Although we limit that influence to ensure no list gets 2457 * left behind completely: at least a third of the pressure is 2458 * applied, before swappiness. 2459 * 2460 * With swappiness at 100, anon and file have equal IO cost. 2461 */ 2462 total_cost = sc->anon_cost + sc->file_cost; 2463 anon_cost = total_cost + sc->anon_cost; 2464 file_cost = total_cost + sc->file_cost; 2465 total_cost = anon_cost + file_cost; 2466 2467 ap = swappiness * (total_cost + 1); 2468 ap /= anon_cost + 1; 2469 2470 fp = (MAX_SWAPPINESS - swappiness) * (total_cost + 1); 2471 fp /= file_cost + 1; 2472 2473 fraction[WORKINGSET_ANON] = ap; 2474 fraction[WORKINGSET_FILE] = fp; 2475 *denominator = ap + fp; 2476 } 2477 2478 static unsigned long apply_proportional_protection(struct mem_cgroup *memcg, 2479 struct scan_control *sc, unsigned long scan) 2480 { 2481 unsigned long min, low; 2482 2483 mem_cgroup_protection(sc->target_mem_cgroup, memcg, &min, &low); 2484 2485 if (min || low) { 2486 /* 2487 * Scale a cgroup's reclaim pressure by proportioning 2488 * its current usage to its memory.low or memory.min 2489 * setting. 2490 * 2491 * This is important, as otherwise scanning aggression 2492 * becomes extremely binary -- from nothing as we 2493 * approach the memory protection threshold, to totally 2494 * nominal as we exceed it. This results in requiring 2495 * setting extremely liberal protection thresholds. It 2496 * also means we simply get no protection at all if we 2497 * set it too low, which is not ideal. 2498 * 2499 * If there is any protection in place, we reduce scan 2500 * pressure by how much of the total memory used is 2501 * within protection thresholds. 2502 * 2503 * There is one special case: in the first reclaim pass, 2504 * we skip over all groups that are within their low 2505 * protection. If that fails to reclaim enough pages to 2506 * satisfy the reclaim goal, we come back and override 2507 * the best-effort low protection. However, we still 2508 * ideally want to honor how well-behaved groups are in 2509 * that case instead of simply punishing them all 2510 * equally. As such, we reclaim them based on how much 2511 * memory they are using, reducing the scan pressure 2512 * again by how much of the total memory used is under 2513 * hard protection. 2514 */ 2515 unsigned long cgroup_size = mem_cgroup_size(memcg); 2516 unsigned long protection; 2517 2518 /* memory.low scaling, make sure we retry before OOM */ 2519 if (!sc->memcg_low_reclaim && low > min) { 2520 protection = low; 2521 sc->memcg_low_skipped = 1; 2522 } else { 2523 protection = min; 2524 } 2525 2526 /* Avoid TOCTOU with earlier protection check */ 2527 cgroup_size = max(cgroup_size, protection); 2528 2529 scan -= scan * protection / (cgroup_size + 1); 2530 2531 /* 2532 * Minimally target SWAP_CLUSTER_MAX pages to keep 2533 * reclaim moving forwards, avoiding decrementing 2534 * sc->priority further than desirable. 2535 */ 2536 scan = max(scan, SWAP_CLUSTER_MAX); 2537 } 2538 return scan; 2539 } 2540 2541 /* 2542 * Determine how aggressively the anon and file LRU lists should be 2543 * scanned. 2544 * 2545 * nr[0] = anon inactive folios to scan; nr[1] = anon active folios to scan 2546 * nr[2] = file inactive folios to scan; nr[3] = file active folios to scan 2547 */ 2548 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc, 2549 unsigned long *nr) 2550 { 2551 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2552 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 2553 int swappiness = sc_swappiness(sc, memcg); 2554 u64 fraction[ANON_AND_FILE]; 2555 u64 denominator = 0; /* gcc */ 2556 enum scan_balance scan_balance; 2557 enum lru_list lru; 2558 2559 /* If we have no swap space, do not bother scanning anon folios. */ 2560 if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) { 2561 scan_balance = SCAN_FILE; 2562 goto out; 2563 } 2564 2565 /* 2566 * Global reclaim will swap to prevent OOM even with no 2567 * swappiness, but memcg users want to use this knob to 2568 * disable swapping for individual groups completely when 2569 * using the memory controller's swap limit feature would be 2570 * too expensive. 2571 */ 2572 if (cgroup_reclaim(sc) && !swappiness) { 2573 scan_balance = SCAN_FILE; 2574 goto out; 2575 } 2576 2577 /* Proactive reclaim initiated by userspace for anonymous memory only */ 2578 if (swappiness == SWAPPINESS_ANON_ONLY) { 2579 WARN_ON_ONCE(!sc->proactive); 2580 scan_balance = SCAN_ANON; 2581 goto out; 2582 } 2583 2584 /* 2585 * Do not apply any pressure balancing cleverness when the 2586 * system is close to OOM, scan both anon and file equally 2587 * (unless the swappiness setting disagrees with swapping). 2588 */ 2589 if (!sc->priority && swappiness) { 2590 scan_balance = SCAN_EQUAL; 2591 goto out; 2592 } 2593 2594 /* 2595 * If the system is almost out of file pages, force-scan anon. 2596 */ 2597 if (sc->file_is_tiny) { 2598 scan_balance = SCAN_ANON; 2599 goto out; 2600 } 2601 2602 /* 2603 * If there is enough inactive page cache, we do not reclaim 2604 * anything from the anonymous working right now to make sure 2605 * a streaming file access pattern doesn't cause swapping. 2606 */ 2607 if (sc->cache_trim_mode) { 2608 scan_balance = SCAN_FILE; 2609 goto out; 2610 } 2611 2612 scan_balance = SCAN_FRACT; 2613 calculate_pressure_balance(sc, swappiness, fraction, &denominator); 2614 2615 out: 2616 for_each_evictable_lru(lru) { 2617 bool file = is_file_lru(lru); 2618 unsigned long lruvec_size; 2619 unsigned long scan; 2620 2621 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx); 2622 scan = apply_proportional_protection(memcg, sc, lruvec_size); 2623 scan >>= sc->priority; 2624 2625 /* 2626 * If the cgroup's already been deleted, make sure to 2627 * scrape out the remaining cache. 2628 */ 2629 if (!scan && !mem_cgroup_online(memcg)) 2630 scan = min(lruvec_size, SWAP_CLUSTER_MAX); 2631 2632 switch (scan_balance) { 2633 case SCAN_EQUAL: 2634 /* Scan lists relative to size */ 2635 break; 2636 case SCAN_FRACT: 2637 /* 2638 * Scan types proportional to swappiness and 2639 * their relative recent reclaim efficiency. 2640 * Make sure we don't miss the last page on 2641 * the offlined memory cgroups because of a 2642 * round-off error. 2643 */ 2644 scan = mem_cgroup_online(memcg) ? 2645 div64_u64(scan * fraction[file], denominator) : 2646 DIV64_U64_ROUND_UP(scan * fraction[file], 2647 denominator); 2648 break; 2649 case SCAN_FILE: 2650 case SCAN_ANON: 2651 /* Scan one type exclusively */ 2652 if ((scan_balance == SCAN_FILE) != file) 2653 scan = 0; 2654 break; 2655 default: 2656 /* Look ma, no brain */ 2657 BUG(); 2658 } 2659 2660 nr[lru] = scan; 2661 } 2662 } 2663 2664 /* 2665 * Anonymous LRU management is a waste if there is 2666 * ultimately no way to reclaim the memory. 2667 */ 2668 static bool can_age_anon_pages(struct lruvec *lruvec, 2669 struct scan_control *sc) 2670 { 2671 /* Aging the anon LRU is valuable if swap is present: */ 2672 if (total_swap_pages > 0) 2673 return true; 2674 2675 /* Also valuable if anon pages can be demoted: */ 2676 return can_demote(lruvec_pgdat(lruvec)->node_id, sc, 2677 lruvec_memcg(lruvec)); 2678 } 2679 2680 #ifdef CONFIG_LRU_GEN 2681 2682 #ifdef CONFIG_LRU_GEN_ENABLED 2683 DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS); 2684 #define get_cap(cap) static_branch_likely(&lru_gen_caps[cap]) 2685 #else 2686 DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS); 2687 #define get_cap(cap) static_branch_unlikely(&lru_gen_caps[cap]) 2688 #endif 2689 2690 static bool should_walk_mmu(void) 2691 { 2692 return arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK); 2693 } 2694 2695 static bool should_clear_pmd_young(void) 2696 { 2697 return arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG); 2698 } 2699 2700 /****************************************************************************** 2701 * shorthand helpers 2702 ******************************************************************************/ 2703 2704 #define DEFINE_MAX_SEQ(lruvec) \ 2705 unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq) 2706 2707 #define DEFINE_MIN_SEQ(lruvec) \ 2708 unsigned long min_seq[ANON_AND_FILE] = { \ 2709 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]), \ 2710 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]), \ 2711 } 2712 2713 /* Get the min/max evictable type based on swappiness */ 2714 #define min_type(swappiness) (!(swappiness)) 2715 #define max_type(swappiness) ((swappiness) < SWAPPINESS_ANON_ONLY) 2716 2717 #define evictable_min_seq(min_seq, swappiness) \ 2718 min((min_seq)[min_type(swappiness)], (min_seq)[max_type(swappiness)]) 2719 2720 #define for_each_gen_type_zone(gen, type, zone) \ 2721 for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++) \ 2722 for ((type) = 0; (type) < ANON_AND_FILE; (type)++) \ 2723 for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++) 2724 2725 #define for_each_evictable_type(type, swappiness) \ 2726 for ((type) = min_type(swappiness); (type) <= max_type(swappiness); (type)++) 2727 2728 #define get_memcg_gen(seq) ((seq) % MEMCG_NR_GENS) 2729 #define get_memcg_bin(bin) ((bin) % MEMCG_NR_BINS) 2730 2731 static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid) 2732 { 2733 struct pglist_data *pgdat = NODE_DATA(nid); 2734 2735 #ifdef CONFIG_MEMCG 2736 if (memcg) { 2737 struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec; 2738 2739 /* see the comment in mem_cgroup_lruvec() */ 2740 if (!lruvec->pgdat) 2741 lruvec->pgdat = pgdat; 2742 2743 return lruvec; 2744 } 2745 #endif 2746 VM_WARN_ON_ONCE(!mem_cgroup_disabled()); 2747 2748 return &pgdat->__lruvec; 2749 } 2750 2751 static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc) 2752 { 2753 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 2754 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2755 2756 if (!sc->may_swap) 2757 return 0; 2758 2759 if (!can_demote(pgdat->node_id, sc, memcg) && 2760 mem_cgroup_get_nr_swap_pages(memcg) < MIN_LRU_BATCH) 2761 return 0; 2762 2763 return sc_swappiness(sc, memcg); 2764 } 2765 2766 static int get_nr_gens(struct lruvec *lruvec, int type) 2767 { 2768 return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1; 2769 } 2770 2771 static bool __maybe_unused seq_is_valid(struct lruvec *lruvec) 2772 { 2773 int type; 2774 2775 for (type = 0; type < ANON_AND_FILE; type++) { 2776 int n = get_nr_gens(lruvec, type); 2777 2778 if (n < MIN_NR_GENS || n > MAX_NR_GENS) 2779 return false; 2780 } 2781 2782 return true; 2783 } 2784 2785 /****************************************************************************** 2786 * Bloom filters 2787 ******************************************************************************/ 2788 2789 /* 2790 * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when 2791 * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of 2792 * bits in a bitmap, k is the number of hash functions and n is the number of 2793 * inserted items. 2794 * 2795 * Page table walkers use one of the two filters to reduce their search space. 2796 * To get rid of non-leaf entries that no longer have enough leaf entries, the 2797 * aging uses the double-buffering technique to flip to the other filter each 2798 * time it produces a new generation. For non-leaf entries that have enough 2799 * leaf entries, the aging carries them over to the next generation in 2800 * walk_pmd_range(); the eviction also report them when walking the rmap 2801 * in lru_gen_look_around(). 2802 * 2803 * For future optimizations: 2804 * 1. It's not necessary to keep both filters all the time. The spare one can be 2805 * freed after the RCU grace period and reallocated if needed again. 2806 * 2. And when reallocating, it's worth scaling its size according to the number 2807 * of inserted entries in the other filter, to reduce the memory overhead on 2808 * small systems and false positives on large systems. 2809 * 3. Jenkins' hash function is an alternative to Knuth's. 2810 */ 2811 #define BLOOM_FILTER_SHIFT 15 2812 2813 static inline int filter_gen_from_seq(unsigned long seq) 2814 { 2815 return seq % NR_BLOOM_FILTERS; 2816 } 2817 2818 static void get_item_key(void *item, int *key) 2819 { 2820 u32 hash = hash_ptr(item, BLOOM_FILTER_SHIFT * 2); 2821 2822 BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32)); 2823 2824 key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1); 2825 key[1] = hash >> BLOOM_FILTER_SHIFT; 2826 } 2827 2828 static bool test_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq, 2829 void *item) 2830 { 2831 int key[2]; 2832 unsigned long *filter; 2833 int gen = filter_gen_from_seq(seq); 2834 2835 filter = READ_ONCE(mm_state->filters[gen]); 2836 if (!filter) 2837 return true; 2838 2839 get_item_key(item, key); 2840 2841 return test_bit(key[0], filter) && test_bit(key[1], filter); 2842 } 2843 2844 static void update_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq, 2845 void *item) 2846 { 2847 int key[2]; 2848 unsigned long *filter; 2849 int gen = filter_gen_from_seq(seq); 2850 2851 filter = READ_ONCE(mm_state->filters[gen]); 2852 if (!filter) 2853 return; 2854 2855 get_item_key(item, key); 2856 2857 if (!test_bit(key[0], filter)) 2858 set_bit(key[0], filter); 2859 if (!test_bit(key[1], filter)) 2860 set_bit(key[1], filter); 2861 } 2862 2863 static void reset_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq) 2864 { 2865 unsigned long *filter; 2866 int gen = filter_gen_from_seq(seq); 2867 2868 filter = mm_state->filters[gen]; 2869 if (filter) { 2870 bitmap_clear(filter, 0, BIT(BLOOM_FILTER_SHIFT)); 2871 return; 2872 } 2873 2874 filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT), 2875 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN); 2876 WRITE_ONCE(mm_state->filters[gen], filter); 2877 } 2878 2879 /****************************************************************************** 2880 * mm_struct list 2881 ******************************************************************************/ 2882 2883 #ifdef CONFIG_LRU_GEN_WALKS_MMU 2884 2885 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg) 2886 { 2887 static struct lru_gen_mm_list mm_list = { 2888 .fifo = LIST_HEAD_INIT(mm_list.fifo), 2889 .lock = __SPIN_LOCK_UNLOCKED(mm_list.lock), 2890 }; 2891 2892 #ifdef CONFIG_MEMCG 2893 if (memcg) 2894 return &memcg->mm_list; 2895 #endif 2896 VM_WARN_ON_ONCE(!mem_cgroup_disabled()); 2897 2898 return &mm_list; 2899 } 2900 2901 static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec) 2902 { 2903 return &lruvec->mm_state; 2904 } 2905 2906 static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk) 2907 { 2908 int key; 2909 struct mm_struct *mm; 2910 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 2911 struct lru_gen_mm_state *mm_state = get_mm_state(walk->lruvec); 2912 2913 mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list); 2914 key = pgdat->node_id % BITS_PER_TYPE(mm->lru_gen.bitmap); 2915 2916 if (!walk->force_scan && !test_bit(key, &mm->lru_gen.bitmap)) 2917 return NULL; 2918 2919 clear_bit(key, &mm->lru_gen.bitmap); 2920 2921 return mmget_not_zero(mm) ? mm : NULL; 2922 } 2923 2924 void lru_gen_add_mm(struct mm_struct *mm) 2925 { 2926 int nid; 2927 struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm); 2928 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 2929 2930 VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list)); 2931 #ifdef CONFIG_MEMCG 2932 VM_WARN_ON_ONCE(mm->lru_gen.memcg); 2933 mm->lru_gen.memcg = memcg; 2934 #endif 2935 spin_lock(&mm_list->lock); 2936 2937 for_each_node_state(nid, N_MEMORY) { 2938 struct lruvec *lruvec = get_lruvec(memcg, nid); 2939 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 2940 2941 /* the first addition since the last iteration */ 2942 if (mm_state->tail == &mm_list->fifo) 2943 mm_state->tail = &mm->lru_gen.list; 2944 } 2945 2946 list_add_tail(&mm->lru_gen.list, &mm_list->fifo); 2947 2948 spin_unlock(&mm_list->lock); 2949 } 2950 2951 void lru_gen_del_mm(struct mm_struct *mm) 2952 { 2953 int nid; 2954 struct lru_gen_mm_list *mm_list; 2955 struct mem_cgroup *memcg = NULL; 2956 2957 if (list_empty(&mm->lru_gen.list)) 2958 return; 2959 2960 #ifdef CONFIG_MEMCG 2961 memcg = mm->lru_gen.memcg; 2962 #endif 2963 mm_list = get_mm_list(memcg); 2964 2965 spin_lock(&mm_list->lock); 2966 2967 for_each_node(nid) { 2968 struct lruvec *lruvec = get_lruvec(memcg, nid); 2969 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 2970 2971 /* where the current iteration continues after */ 2972 if (mm_state->head == &mm->lru_gen.list) 2973 mm_state->head = mm_state->head->prev; 2974 2975 /* where the last iteration ended before */ 2976 if (mm_state->tail == &mm->lru_gen.list) 2977 mm_state->tail = mm_state->tail->next; 2978 } 2979 2980 list_del_init(&mm->lru_gen.list); 2981 2982 spin_unlock(&mm_list->lock); 2983 2984 #ifdef CONFIG_MEMCG 2985 mem_cgroup_put(mm->lru_gen.memcg); 2986 mm->lru_gen.memcg = NULL; 2987 #endif 2988 } 2989 2990 #ifdef CONFIG_MEMCG 2991 void lru_gen_migrate_mm(struct mm_struct *mm) 2992 { 2993 struct mem_cgroup *memcg; 2994 struct task_struct *task = rcu_dereference_protected(mm->owner, true); 2995 2996 VM_WARN_ON_ONCE(task->mm != mm); 2997 lockdep_assert_held(&task->alloc_lock); 2998 2999 /* for mm_update_next_owner() */ 3000 if (mem_cgroup_disabled()) 3001 return; 3002 3003 /* migration can happen before addition */ 3004 if (!mm->lru_gen.memcg) 3005 return; 3006 3007 rcu_read_lock(); 3008 memcg = mem_cgroup_from_task(task); 3009 rcu_read_unlock(); 3010 if (memcg == mm->lru_gen.memcg) 3011 return; 3012 3013 VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list)); 3014 3015 lru_gen_del_mm(mm); 3016 lru_gen_add_mm(mm); 3017 } 3018 #endif 3019 3020 #else /* !CONFIG_LRU_GEN_WALKS_MMU */ 3021 3022 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg) 3023 { 3024 return NULL; 3025 } 3026 3027 static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec) 3028 { 3029 return NULL; 3030 } 3031 3032 static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk) 3033 { 3034 return NULL; 3035 } 3036 3037 #endif 3038 3039 static void reset_mm_stats(struct lru_gen_mm_walk *walk, bool last) 3040 { 3041 int i; 3042 int hist; 3043 struct lruvec *lruvec = walk->lruvec; 3044 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 3045 3046 lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock); 3047 3048 hist = lru_hist_from_seq(walk->seq); 3049 3050 for (i = 0; i < NR_MM_STATS; i++) { 3051 WRITE_ONCE(mm_state->stats[hist][i], 3052 mm_state->stats[hist][i] + walk->mm_stats[i]); 3053 walk->mm_stats[i] = 0; 3054 } 3055 3056 if (NR_HIST_GENS > 1 && last) { 3057 hist = lru_hist_from_seq(walk->seq + 1); 3058 3059 for (i = 0; i < NR_MM_STATS; i++) 3060 WRITE_ONCE(mm_state->stats[hist][i], 0); 3061 } 3062 } 3063 3064 static bool iterate_mm_list(struct lru_gen_mm_walk *walk, struct mm_struct **iter) 3065 { 3066 bool first = false; 3067 bool last = false; 3068 struct mm_struct *mm = NULL; 3069 struct lruvec *lruvec = walk->lruvec; 3070 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 3071 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 3072 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 3073 3074 /* 3075 * mm_state->seq is incremented after each iteration of mm_list. There 3076 * are three interesting cases for this page table walker: 3077 * 1. It tries to start a new iteration with a stale max_seq: there is 3078 * nothing left to do. 3079 * 2. It started the next iteration: it needs to reset the Bloom filter 3080 * so that a fresh set of PTE tables can be recorded. 3081 * 3. It ended the current iteration: it needs to reset the mm stats 3082 * counters and tell its caller to increment max_seq. 3083 */ 3084 spin_lock(&mm_list->lock); 3085 3086 VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->seq); 3087 3088 if (walk->seq <= mm_state->seq) 3089 goto done; 3090 3091 if (!mm_state->head) 3092 mm_state->head = &mm_list->fifo; 3093 3094 if (mm_state->head == &mm_list->fifo) 3095 first = true; 3096 3097 do { 3098 mm_state->head = mm_state->head->next; 3099 if (mm_state->head == &mm_list->fifo) { 3100 WRITE_ONCE(mm_state->seq, mm_state->seq + 1); 3101 last = true; 3102 break; 3103 } 3104 3105 /* force scan for those added after the last iteration */ 3106 if (!mm_state->tail || mm_state->tail == mm_state->head) { 3107 mm_state->tail = mm_state->head->next; 3108 walk->force_scan = true; 3109 } 3110 } while (!(mm = get_next_mm(walk))); 3111 done: 3112 if (*iter || last) 3113 reset_mm_stats(walk, last); 3114 3115 spin_unlock(&mm_list->lock); 3116 3117 if (mm && first) 3118 reset_bloom_filter(mm_state, walk->seq + 1); 3119 3120 if (*iter) 3121 mmput_async(*iter); 3122 3123 *iter = mm; 3124 3125 return last; 3126 } 3127 3128 static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long seq) 3129 { 3130 bool success = false; 3131 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 3132 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 3133 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 3134 3135 spin_lock(&mm_list->lock); 3136 3137 VM_WARN_ON_ONCE(mm_state->seq + 1 < seq); 3138 3139 if (seq > mm_state->seq) { 3140 mm_state->head = NULL; 3141 mm_state->tail = NULL; 3142 WRITE_ONCE(mm_state->seq, mm_state->seq + 1); 3143 success = true; 3144 } 3145 3146 spin_unlock(&mm_list->lock); 3147 3148 return success; 3149 } 3150 3151 /****************************************************************************** 3152 * PID controller 3153 ******************************************************************************/ 3154 3155 /* 3156 * A feedback loop based on Proportional-Integral-Derivative (PID) controller. 3157 * 3158 * The P term is refaulted/(evicted+protected) from a tier in the generation 3159 * currently being evicted; the I term is the exponential moving average of the 3160 * P term over the generations previously evicted, using the smoothing factor 3161 * 1/2; the D term isn't supported. 3162 * 3163 * The setpoint (SP) is always the first tier of one type; the process variable 3164 * (PV) is either any tier of the other type or any other tier of the same 3165 * type. 3166 * 3167 * The error is the difference between the SP and the PV; the correction is to 3168 * turn off protection when SP>PV or turn on protection when SP<PV. 3169 * 3170 * For future optimizations: 3171 * 1. The D term may discount the other two terms over time so that long-lived 3172 * generations can resist stale information. 3173 */ 3174 struct ctrl_pos { 3175 unsigned long refaulted; 3176 unsigned long total; 3177 int gain; 3178 }; 3179 3180 static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain, 3181 struct ctrl_pos *pos) 3182 { 3183 int i; 3184 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3185 int hist = lru_hist_from_seq(lrugen->min_seq[type]); 3186 3187 pos->gain = gain; 3188 pos->refaulted = pos->total = 0; 3189 3190 for (i = tier % MAX_NR_TIERS; i <= min(tier, MAX_NR_TIERS - 1); i++) { 3191 pos->refaulted += lrugen->avg_refaulted[type][i] + 3192 atomic_long_read(&lrugen->refaulted[hist][type][i]); 3193 pos->total += lrugen->avg_total[type][i] + 3194 lrugen->protected[hist][type][i] + 3195 atomic_long_read(&lrugen->evicted[hist][type][i]); 3196 } 3197 } 3198 3199 static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover) 3200 { 3201 int hist, tier; 3202 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3203 bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1; 3204 unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1; 3205 3206 lockdep_assert_held(&lruvec->lru_lock); 3207 3208 if (!carryover && !clear) 3209 return; 3210 3211 hist = lru_hist_from_seq(seq); 3212 3213 for (tier = 0; tier < MAX_NR_TIERS; tier++) { 3214 if (carryover) { 3215 unsigned long sum; 3216 3217 sum = lrugen->avg_refaulted[type][tier] + 3218 atomic_long_read(&lrugen->refaulted[hist][type][tier]); 3219 WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2); 3220 3221 sum = lrugen->avg_total[type][tier] + 3222 lrugen->protected[hist][type][tier] + 3223 atomic_long_read(&lrugen->evicted[hist][type][tier]); 3224 WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2); 3225 } 3226 3227 if (clear) { 3228 atomic_long_set(&lrugen->refaulted[hist][type][tier], 0); 3229 atomic_long_set(&lrugen->evicted[hist][type][tier], 0); 3230 WRITE_ONCE(lrugen->protected[hist][type][tier], 0); 3231 } 3232 } 3233 } 3234 3235 static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv) 3236 { 3237 /* 3238 * Return true if the PV has a limited number of refaults or a lower 3239 * refaulted/total than the SP. 3240 */ 3241 return pv->refaulted < MIN_LRU_BATCH || 3242 pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <= 3243 (sp->refaulted + 1) * pv->total * pv->gain; 3244 } 3245 3246 /****************************************************************************** 3247 * the aging 3248 ******************************************************************************/ 3249 3250 /* promote pages accessed through page tables */ 3251 static int folio_update_gen(struct folio *folio, int gen) 3252 { 3253 unsigned long new_flags, old_flags = READ_ONCE(folio->flags.f); 3254 3255 VM_WARN_ON_ONCE(gen >= MAX_NR_GENS); 3256 3257 /* see the comment on LRU_REFS_FLAGS */ 3258 if (!folio_test_referenced(folio) && !folio_test_workingset(folio)) { 3259 set_mask_bits(&folio->flags.f, LRU_REFS_MASK, BIT(PG_referenced)); 3260 return -1; 3261 } 3262 3263 do { 3264 /* lru_gen_del_folio() has isolated this page? */ 3265 if (!(old_flags & LRU_GEN_MASK)) 3266 return -1; 3267 3268 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_FLAGS); 3269 new_flags |= ((gen + 1UL) << LRU_GEN_PGOFF) | BIT(PG_workingset); 3270 } while (!try_cmpxchg(&folio->flags.f, &old_flags, new_flags)); 3271 3272 return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1; 3273 } 3274 3275 /* protect pages accessed multiple times through file descriptors */ 3276 static int folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming) 3277 { 3278 int type = folio_is_file_lru(folio); 3279 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3280 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]); 3281 unsigned long new_flags, old_flags = READ_ONCE(folio->flags.f); 3282 3283 VM_WARN_ON_ONCE_FOLIO(!(old_flags & LRU_GEN_MASK), folio); 3284 3285 do { 3286 new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1; 3287 /* folio_update_gen() has promoted this page? */ 3288 if (new_gen >= 0 && new_gen != old_gen) 3289 return new_gen; 3290 3291 new_gen = (old_gen + 1) % MAX_NR_GENS; 3292 3293 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_FLAGS); 3294 new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF; 3295 /* for folio_end_writeback() */ 3296 if (reclaiming) 3297 new_flags |= BIT(PG_reclaim); 3298 } while (!try_cmpxchg(&folio->flags.f, &old_flags, new_flags)); 3299 3300 lru_gen_update_size(lruvec, folio, old_gen, new_gen); 3301 3302 return new_gen; 3303 } 3304 3305 static void update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio, 3306 int old_gen, int new_gen) 3307 { 3308 int type = folio_is_file_lru(folio); 3309 int zone = folio_zonenum(folio); 3310 int delta = folio_nr_pages(folio); 3311 3312 VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS); 3313 VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS); 3314 3315 walk->batched++; 3316 3317 walk->nr_pages[old_gen][type][zone] -= delta; 3318 walk->nr_pages[new_gen][type][zone] += delta; 3319 } 3320 3321 static void reset_batch_size(struct lru_gen_mm_walk *walk) 3322 { 3323 int gen, type, zone; 3324 struct lruvec *lruvec = walk->lruvec; 3325 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3326 3327 walk->batched = 0; 3328 3329 for_each_gen_type_zone(gen, type, zone) { 3330 enum lru_list lru = type * LRU_INACTIVE_FILE; 3331 int delta = walk->nr_pages[gen][type][zone]; 3332 3333 if (!delta) 3334 continue; 3335 3336 walk->nr_pages[gen][type][zone] = 0; 3337 WRITE_ONCE(lrugen->nr_pages[gen][type][zone], 3338 lrugen->nr_pages[gen][type][zone] + delta); 3339 3340 if (lru_gen_is_active(lruvec, gen)) 3341 lru += LRU_ACTIVE; 3342 __update_lru_size(lruvec, lru, zone, delta); 3343 } 3344 } 3345 3346 static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args) 3347 { 3348 struct address_space *mapping; 3349 struct vm_area_struct *vma = args->vma; 3350 struct lru_gen_mm_walk *walk = args->private; 3351 3352 if (!vma_is_accessible(vma)) 3353 return true; 3354 3355 if (is_vm_hugetlb_page(vma)) 3356 return true; 3357 3358 if (!vma_has_recency(vma)) 3359 return true; 3360 3361 if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) 3362 return true; 3363 3364 if (vma == get_gate_vma(vma->vm_mm)) 3365 return true; 3366 3367 if (vma_is_anonymous(vma)) 3368 return !walk->swappiness; 3369 3370 if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping)) 3371 return true; 3372 3373 mapping = vma->vm_file->f_mapping; 3374 if (mapping_unevictable(mapping)) 3375 return true; 3376 3377 if (shmem_mapping(mapping)) 3378 return !walk->swappiness; 3379 3380 if (walk->swappiness > MAX_SWAPPINESS) 3381 return true; 3382 3383 /* to exclude special mappings like dax, etc. */ 3384 return !mapping->a_ops->read_folio; 3385 } 3386 3387 /* 3388 * Some userspace memory allocators map many single-page VMAs. Instead of 3389 * returning back to the PGD table for each of such VMAs, finish an entire PMD 3390 * table to reduce zigzags and improve cache performance. 3391 */ 3392 static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args, 3393 unsigned long *vm_start, unsigned long *vm_end) 3394 { 3395 unsigned long start = round_up(*vm_end, size); 3396 unsigned long end = (start | ~mask) + 1; 3397 VMA_ITERATOR(vmi, args->mm, start); 3398 3399 VM_WARN_ON_ONCE(mask & size); 3400 VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask)); 3401 3402 for_each_vma(vmi, args->vma) { 3403 if (end && end <= args->vma->vm_start) 3404 return false; 3405 3406 if (should_skip_vma(args->vma->vm_start, args->vma->vm_end, args)) 3407 continue; 3408 3409 *vm_start = max(start, args->vma->vm_start); 3410 *vm_end = min(end - 1, args->vma->vm_end - 1) + 1; 3411 3412 return true; 3413 } 3414 3415 return false; 3416 } 3417 3418 static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr, 3419 struct pglist_data *pgdat) 3420 { 3421 unsigned long pfn = pte_pfn(pte); 3422 3423 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end); 3424 3425 if (!pte_present(pte) || is_zero_pfn(pfn)) 3426 return -1; 3427 3428 if (WARN_ON_ONCE(pte_special(pte))) 3429 return -1; 3430 3431 if (!pte_young(pte) && !mm_has_notifiers(vma->vm_mm)) 3432 return -1; 3433 3434 if (WARN_ON_ONCE(!pfn_valid(pfn))) 3435 return -1; 3436 3437 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat)) 3438 return -1; 3439 3440 return pfn; 3441 } 3442 3443 static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr, 3444 struct pglist_data *pgdat) 3445 { 3446 unsigned long pfn = pmd_pfn(pmd); 3447 3448 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end); 3449 3450 if (!pmd_present(pmd) || is_huge_zero_pmd(pmd)) 3451 return -1; 3452 3453 if (!pmd_young(pmd) && !mm_has_notifiers(vma->vm_mm)) 3454 return -1; 3455 3456 if (WARN_ON_ONCE(!pfn_valid(pfn))) 3457 return -1; 3458 3459 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat)) 3460 return -1; 3461 3462 return pfn; 3463 } 3464 3465 static struct folio *get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg, 3466 struct pglist_data *pgdat) 3467 { 3468 struct folio *folio = pfn_folio(pfn); 3469 3470 if (folio_lru_gen(folio) < 0) 3471 return NULL; 3472 3473 if (folio_nid(folio) != pgdat->node_id) 3474 return NULL; 3475 3476 if (folio_memcg(folio) != memcg) 3477 return NULL; 3478 3479 return folio; 3480 } 3481 3482 static bool suitable_to_scan(int total, int young) 3483 { 3484 int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8); 3485 3486 /* suitable if the average number of young PTEs per cacheline is >=1 */ 3487 return young * n >= total; 3488 } 3489 3490 static void walk_update_folio(struct lru_gen_mm_walk *walk, struct folio *folio, 3491 int new_gen, bool dirty) 3492 { 3493 int old_gen; 3494 3495 if (!folio) 3496 return; 3497 3498 if (dirty && !folio_test_dirty(folio) && 3499 !(folio_test_anon(folio) && folio_test_swapbacked(folio) && 3500 !folio_test_swapcache(folio))) 3501 folio_mark_dirty(folio); 3502 3503 if (walk) { 3504 old_gen = folio_update_gen(folio, new_gen); 3505 if (old_gen >= 0 && old_gen != new_gen) 3506 update_batch_size(walk, folio, old_gen, new_gen); 3507 } else if (lru_gen_set_refs(folio)) { 3508 old_gen = folio_lru_gen(folio); 3509 if (old_gen >= 0 && old_gen != new_gen) 3510 folio_activate(folio); 3511 } 3512 } 3513 3514 static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end, 3515 struct mm_walk *args) 3516 { 3517 int i; 3518 bool dirty; 3519 pte_t *pte; 3520 spinlock_t *ptl; 3521 unsigned long addr; 3522 int total = 0; 3523 int young = 0; 3524 struct folio *last = NULL; 3525 struct lru_gen_mm_walk *walk = args->private; 3526 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec); 3527 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 3528 DEFINE_MAX_SEQ(walk->lruvec); 3529 int gen = lru_gen_from_seq(max_seq); 3530 pmd_t pmdval; 3531 3532 pte = pte_offset_map_rw_nolock(args->mm, pmd, start & PMD_MASK, &pmdval, &ptl); 3533 if (!pte) 3534 return false; 3535 3536 if (!spin_trylock(ptl)) { 3537 pte_unmap(pte); 3538 return true; 3539 } 3540 3541 if (unlikely(!pmd_same(pmdval, pmdp_get_lockless(pmd)))) { 3542 pte_unmap_unlock(pte, ptl); 3543 return false; 3544 } 3545 3546 arch_enter_lazy_mmu_mode(); 3547 restart: 3548 for (i = pte_index(start), addr = start; addr != end; i++, addr += PAGE_SIZE) { 3549 unsigned long pfn; 3550 struct folio *folio; 3551 pte_t ptent = ptep_get(pte + i); 3552 3553 total++; 3554 walk->mm_stats[MM_LEAF_TOTAL]++; 3555 3556 pfn = get_pte_pfn(ptent, args->vma, addr, pgdat); 3557 if (pfn == -1) 3558 continue; 3559 3560 folio = get_pfn_folio(pfn, memcg, pgdat); 3561 if (!folio) 3562 continue; 3563 3564 if (!ptep_clear_young_notify(args->vma, addr, pte + i)) 3565 continue; 3566 3567 if (last != folio) { 3568 walk_update_folio(walk, last, gen, dirty); 3569 3570 last = folio; 3571 dirty = false; 3572 } 3573 3574 if (pte_dirty(ptent)) 3575 dirty = true; 3576 3577 young++; 3578 walk->mm_stats[MM_LEAF_YOUNG]++; 3579 } 3580 3581 walk_update_folio(walk, last, gen, dirty); 3582 last = NULL; 3583 3584 if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, &start, &end)) 3585 goto restart; 3586 3587 arch_leave_lazy_mmu_mode(); 3588 pte_unmap_unlock(pte, ptl); 3589 3590 return suitable_to_scan(total, young); 3591 } 3592 3593 static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma, 3594 struct mm_walk *args, unsigned long *bitmap, unsigned long *first) 3595 { 3596 int i; 3597 bool dirty; 3598 pmd_t *pmd; 3599 spinlock_t *ptl; 3600 struct folio *last = NULL; 3601 struct lru_gen_mm_walk *walk = args->private; 3602 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec); 3603 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 3604 DEFINE_MAX_SEQ(walk->lruvec); 3605 int gen = lru_gen_from_seq(max_seq); 3606 3607 VM_WARN_ON_ONCE(pud_leaf(*pud)); 3608 3609 /* try to batch at most 1+MIN_LRU_BATCH+1 entries */ 3610 if (*first == -1) { 3611 *first = addr; 3612 bitmap_zero(bitmap, MIN_LRU_BATCH); 3613 return; 3614 } 3615 3616 i = addr == -1 ? 0 : pmd_index(addr) - pmd_index(*first); 3617 if (i && i <= MIN_LRU_BATCH) { 3618 __set_bit(i - 1, bitmap); 3619 return; 3620 } 3621 3622 pmd = pmd_offset(pud, *first); 3623 3624 ptl = pmd_lockptr(args->mm, pmd); 3625 if (!spin_trylock(ptl)) 3626 goto done; 3627 3628 arch_enter_lazy_mmu_mode(); 3629 3630 do { 3631 unsigned long pfn; 3632 struct folio *folio; 3633 3634 /* don't round down the first address */ 3635 addr = i ? (*first & PMD_MASK) + i * PMD_SIZE : *first; 3636 3637 if (!pmd_present(pmd[i])) 3638 goto next; 3639 3640 if (!pmd_trans_huge(pmd[i])) { 3641 if (!walk->force_scan && should_clear_pmd_young() && 3642 !mm_has_notifiers(args->mm)) 3643 pmdp_test_and_clear_young(vma, addr, pmd + i); 3644 goto next; 3645 } 3646 3647 pfn = get_pmd_pfn(pmd[i], vma, addr, pgdat); 3648 if (pfn == -1) 3649 goto next; 3650 3651 folio = get_pfn_folio(pfn, memcg, pgdat); 3652 if (!folio) 3653 goto next; 3654 3655 if (!pmdp_clear_young_notify(vma, addr, pmd + i)) 3656 goto next; 3657 3658 if (last != folio) { 3659 walk_update_folio(walk, last, gen, dirty); 3660 3661 last = folio; 3662 dirty = false; 3663 } 3664 3665 if (pmd_dirty(pmd[i])) 3666 dirty = true; 3667 3668 walk->mm_stats[MM_LEAF_YOUNG]++; 3669 next: 3670 i = i > MIN_LRU_BATCH ? 0 : find_next_bit(bitmap, MIN_LRU_BATCH, i) + 1; 3671 } while (i <= MIN_LRU_BATCH); 3672 3673 walk_update_folio(walk, last, gen, dirty); 3674 3675 arch_leave_lazy_mmu_mode(); 3676 spin_unlock(ptl); 3677 done: 3678 *first = -1; 3679 } 3680 3681 static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end, 3682 struct mm_walk *args) 3683 { 3684 int i; 3685 pmd_t *pmd; 3686 unsigned long next; 3687 unsigned long addr; 3688 struct vm_area_struct *vma; 3689 DECLARE_BITMAP(bitmap, MIN_LRU_BATCH); 3690 unsigned long first = -1; 3691 struct lru_gen_mm_walk *walk = args->private; 3692 struct lru_gen_mm_state *mm_state = get_mm_state(walk->lruvec); 3693 3694 VM_WARN_ON_ONCE(pud_leaf(*pud)); 3695 3696 /* 3697 * Finish an entire PMD in two passes: the first only reaches to PTE 3698 * tables to avoid taking the PMD lock; the second, if necessary, takes 3699 * the PMD lock to clear the accessed bit in PMD entries. 3700 */ 3701 pmd = pmd_offset(pud, start & PUD_MASK); 3702 restart: 3703 /* walk_pte_range() may call get_next_vma() */ 3704 vma = args->vma; 3705 for (i = pmd_index(start), addr = start; addr != end; i++, addr = next) { 3706 pmd_t val = pmdp_get_lockless(pmd + i); 3707 3708 next = pmd_addr_end(addr, end); 3709 3710 if (!pmd_present(val) || is_huge_zero_pmd(val)) { 3711 walk->mm_stats[MM_LEAF_TOTAL]++; 3712 continue; 3713 } 3714 3715 if (pmd_trans_huge(val)) { 3716 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 3717 unsigned long pfn = get_pmd_pfn(val, vma, addr, pgdat); 3718 3719 walk->mm_stats[MM_LEAF_TOTAL]++; 3720 3721 if (pfn != -1) 3722 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first); 3723 continue; 3724 } 3725 3726 if (!walk->force_scan && should_clear_pmd_young() && 3727 !mm_has_notifiers(args->mm)) { 3728 if (!pmd_young(val)) 3729 continue; 3730 3731 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first); 3732 } 3733 3734 if (!walk->force_scan && !test_bloom_filter(mm_state, walk->seq, pmd + i)) 3735 continue; 3736 3737 walk->mm_stats[MM_NONLEAF_FOUND]++; 3738 3739 if (!walk_pte_range(&val, addr, next, args)) 3740 continue; 3741 3742 walk->mm_stats[MM_NONLEAF_ADDED]++; 3743 3744 /* carry over to the next generation */ 3745 update_bloom_filter(mm_state, walk->seq + 1, pmd + i); 3746 } 3747 3748 walk_pmd_range_locked(pud, -1, vma, args, bitmap, &first); 3749 3750 if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, &start, &end)) 3751 goto restart; 3752 } 3753 3754 static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end, 3755 struct mm_walk *args) 3756 { 3757 int i; 3758 pud_t *pud; 3759 unsigned long addr; 3760 unsigned long next; 3761 struct lru_gen_mm_walk *walk = args->private; 3762 3763 VM_WARN_ON_ONCE(p4d_leaf(*p4d)); 3764 3765 pud = pud_offset(p4d, start & P4D_MASK); 3766 restart: 3767 for (i = pud_index(start), addr = start; addr != end; i++, addr = next) { 3768 pud_t val = READ_ONCE(pud[i]); 3769 3770 next = pud_addr_end(addr, end); 3771 3772 if (!pud_present(val) || WARN_ON_ONCE(pud_leaf(val))) 3773 continue; 3774 3775 walk_pmd_range(&val, addr, next, args); 3776 3777 if (need_resched() || walk->batched >= MAX_LRU_BATCH) { 3778 end = (addr | ~PUD_MASK) + 1; 3779 goto done; 3780 } 3781 } 3782 3783 if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, &start, &end)) 3784 goto restart; 3785 3786 end = round_up(end, P4D_SIZE); 3787 done: 3788 if (!end || !args->vma) 3789 return 1; 3790 3791 walk->next_addr = max(end, args->vma->vm_start); 3792 3793 return -EAGAIN; 3794 } 3795 3796 static void walk_mm(struct mm_struct *mm, struct lru_gen_mm_walk *walk) 3797 { 3798 static const struct mm_walk_ops mm_walk_ops = { 3799 .test_walk = should_skip_vma, 3800 .p4d_entry = walk_pud_range, 3801 .walk_lock = PGWALK_RDLOCK, 3802 }; 3803 int err; 3804 struct lruvec *lruvec = walk->lruvec; 3805 3806 walk->next_addr = FIRST_USER_ADDRESS; 3807 3808 do { 3809 DEFINE_MAX_SEQ(lruvec); 3810 3811 err = -EBUSY; 3812 3813 /* another thread might have called inc_max_seq() */ 3814 if (walk->seq != max_seq) 3815 break; 3816 3817 /* the caller might be holding the lock for write */ 3818 if (mmap_read_trylock(mm)) { 3819 err = walk_page_range(mm, walk->next_addr, ULONG_MAX, &mm_walk_ops, walk); 3820 3821 mmap_read_unlock(mm); 3822 } 3823 3824 if (walk->batched) { 3825 spin_lock_irq(&lruvec->lru_lock); 3826 reset_batch_size(walk); 3827 spin_unlock_irq(&lruvec->lru_lock); 3828 } 3829 3830 cond_resched(); 3831 } while (err == -EAGAIN); 3832 } 3833 3834 static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat, bool force_alloc) 3835 { 3836 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk; 3837 3838 if (pgdat && current_is_kswapd()) { 3839 VM_WARN_ON_ONCE(walk); 3840 3841 walk = &pgdat->mm_walk; 3842 } else if (!walk && force_alloc) { 3843 VM_WARN_ON_ONCE(current_is_kswapd()); 3844 3845 walk = kzalloc(sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN); 3846 } 3847 3848 current->reclaim_state->mm_walk = walk; 3849 3850 return walk; 3851 } 3852 3853 static void clear_mm_walk(void) 3854 { 3855 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk; 3856 3857 VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages))); 3858 VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats))); 3859 3860 current->reclaim_state->mm_walk = NULL; 3861 3862 if (!current_is_kswapd()) 3863 kfree(walk); 3864 } 3865 3866 static bool inc_min_seq(struct lruvec *lruvec, int type, int swappiness) 3867 { 3868 int zone; 3869 int remaining = MAX_LRU_BATCH; 3870 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3871 int hist = lru_hist_from_seq(lrugen->min_seq[type]); 3872 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]); 3873 3874 /* For file type, skip the check if swappiness is anon only */ 3875 if (type && (swappiness == SWAPPINESS_ANON_ONLY)) 3876 goto done; 3877 3878 /* For anon type, skip the check if swappiness is zero (file only) */ 3879 if (!type && !swappiness) 3880 goto done; 3881 3882 /* prevent cold/hot inversion if the type is evictable */ 3883 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 3884 struct list_head *head = &lrugen->folios[old_gen][type][zone]; 3885 3886 while (!list_empty(head)) { 3887 struct folio *folio = lru_to_folio(head); 3888 int refs = folio_lru_refs(folio); 3889 bool workingset = folio_test_workingset(folio); 3890 3891 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 3892 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio); 3893 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 3894 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio); 3895 3896 new_gen = folio_inc_gen(lruvec, folio, false); 3897 list_move_tail(&folio->lru, &lrugen->folios[new_gen][type][zone]); 3898 3899 /* don't count the workingset being lazily promoted */ 3900 if (refs + workingset != BIT(LRU_REFS_WIDTH) + 1) { 3901 int tier = lru_tier_from_refs(refs, workingset); 3902 int delta = folio_nr_pages(folio); 3903 3904 WRITE_ONCE(lrugen->protected[hist][type][tier], 3905 lrugen->protected[hist][type][tier] + delta); 3906 } 3907 3908 if (!--remaining) 3909 return false; 3910 } 3911 } 3912 done: 3913 reset_ctrl_pos(lruvec, type, true); 3914 WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1); 3915 3916 return true; 3917 } 3918 3919 static bool try_to_inc_min_seq(struct lruvec *lruvec, int swappiness) 3920 { 3921 int gen, type, zone; 3922 bool success = false; 3923 bool seq_inc_flag = false; 3924 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3925 DEFINE_MIN_SEQ(lruvec); 3926 3927 VM_WARN_ON_ONCE(!seq_is_valid(lruvec)); 3928 3929 /* find the oldest populated generation */ 3930 for_each_evictable_type(type, swappiness) { 3931 while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) { 3932 gen = lru_gen_from_seq(min_seq[type]); 3933 3934 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 3935 if (!list_empty(&lrugen->folios[gen][type][zone])) 3936 goto next; 3937 } 3938 3939 min_seq[type]++; 3940 seq_inc_flag = true; 3941 } 3942 next: 3943 ; 3944 } 3945 3946 /* 3947 * If min_seq[type] of both anonymous and file is not increased, 3948 * we can directly return false to avoid unnecessary checking 3949 * overhead later. 3950 */ 3951 if (!seq_inc_flag) 3952 return success; 3953 3954 /* see the comment on lru_gen_folio */ 3955 if (swappiness && swappiness <= MAX_SWAPPINESS) { 3956 unsigned long seq = lrugen->max_seq - MIN_NR_GENS; 3957 3958 if (min_seq[LRU_GEN_ANON] > seq && min_seq[LRU_GEN_FILE] < seq) 3959 min_seq[LRU_GEN_ANON] = seq; 3960 else if (min_seq[LRU_GEN_FILE] > seq && min_seq[LRU_GEN_ANON] < seq) 3961 min_seq[LRU_GEN_FILE] = seq; 3962 } 3963 3964 for_each_evictable_type(type, swappiness) { 3965 if (min_seq[type] <= lrugen->min_seq[type]) 3966 continue; 3967 3968 reset_ctrl_pos(lruvec, type, true); 3969 WRITE_ONCE(lrugen->min_seq[type], min_seq[type]); 3970 success = true; 3971 } 3972 3973 return success; 3974 } 3975 3976 static bool inc_max_seq(struct lruvec *lruvec, unsigned long seq, int swappiness) 3977 { 3978 bool success; 3979 int prev, next; 3980 int type, zone; 3981 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3982 restart: 3983 if (seq < READ_ONCE(lrugen->max_seq)) 3984 return false; 3985 3986 spin_lock_irq(&lruvec->lru_lock); 3987 3988 VM_WARN_ON_ONCE(!seq_is_valid(lruvec)); 3989 3990 success = seq == lrugen->max_seq; 3991 if (!success) 3992 goto unlock; 3993 3994 for (type = 0; type < ANON_AND_FILE; type++) { 3995 if (get_nr_gens(lruvec, type) != MAX_NR_GENS) 3996 continue; 3997 3998 if (inc_min_seq(lruvec, type, swappiness)) 3999 continue; 4000 4001 spin_unlock_irq(&lruvec->lru_lock); 4002 cond_resched(); 4003 goto restart; 4004 } 4005 4006 /* 4007 * Update the active/inactive LRU sizes for compatibility. Both sides of 4008 * the current max_seq need to be covered, since max_seq+1 can overlap 4009 * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do 4010 * overlap, cold/hot inversion happens. 4011 */ 4012 prev = lru_gen_from_seq(lrugen->max_seq - 1); 4013 next = lru_gen_from_seq(lrugen->max_seq + 1); 4014 4015 for (type = 0; type < ANON_AND_FILE; type++) { 4016 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 4017 enum lru_list lru = type * LRU_INACTIVE_FILE; 4018 long delta = lrugen->nr_pages[prev][type][zone] - 4019 lrugen->nr_pages[next][type][zone]; 4020 4021 if (!delta) 4022 continue; 4023 4024 __update_lru_size(lruvec, lru, zone, delta); 4025 __update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta); 4026 } 4027 } 4028 4029 for (type = 0; type < ANON_AND_FILE; type++) 4030 reset_ctrl_pos(lruvec, type, false); 4031 4032 WRITE_ONCE(lrugen->timestamps[next], jiffies); 4033 /* make sure preceding modifications appear */ 4034 smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1); 4035 unlock: 4036 spin_unlock_irq(&lruvec->lru_lock); 4037 4038 return success; 4039 } 4040 4041 static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long seq, 4042 int swappiness, bool force_scan) 4043 { 4044 bool success; 4045 struct lru_gen_mm_walk *walk; 4046 struct mm_struct *mm = NULL; 4047 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4048 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 4049 4050 VM_WARN_ON_ONCE(seq > READ_ONCE(lrugen->max_seq)); 4051 4052 if (!mm_state) 4053 return inc_max_seq(lruvec, seq, swappiness); 4054 4055 /* see the comment in iterate_mm_list() */ 4056 if (seq <= READ_ONCE(mm_state->seq)) 4057 return false; 4058 4059 /* 4060 * If the hardware doesn't automatically set the accessed bit, fallback 4061 * to lru_gen_look_around(), which only clears the accessed bit in a 4062 * handful of PTEs. Spreading the work out over a period of time usually 4063 * is less efficient, but it avoids bursty page faults. 4064 */ 4065 if (!should_walk_mmu()) { 4066 success = iterate_mm_list_nowalk(lruvec, seq); 4067 goto done; 4068 } 4069 4070 walk = set_mm_walk(NULL, true); 4071 if (!walk) { 4072 success = iterate_mm_list_nowalk(lruvec, seq); 4073 goto done; 4074 } 4075 4076 walk->lruvec = lruvec; 4077 walk->seq = seq; 4078 walk->swappiness = swappiness; 4079 walk->force_scan = force_scan; 4080 4081 do { 4082 success = iterate_mm_list(walk, &mm); 4083 if (mm) 4084 walk_mm(mm, walk); 4085 } while (mm); 4086 done: 4087 if (success) { 4088 success = inc_max_seq(lruvec, seq, swappiness); 4089 WARN_ON_ONCE(!success); 4090 } 4091 4092 return success; 4093 } 4094 4095 /****************************************************************************** 4096 * working set protection 4097 ******************************************************************************/ 4098 4099 static void set_initial_priority(struct pglist_data *pgdat, struct scan_control *sc) 4100 { 4101 int priority; 4102 unsigned long reclaimable; 4103 4104 if (sc->priority != DEF_PRIORITY || sc->nr_to_reclaim < MIN_LRU_BATCH) 4105 return; 4106 /* 4107 * Determine the initial priority based on 4108 * (total >> priority) * reclaimed_to_scanned_ratio = nr_to_reclaim, 4109 * where reclaimed_to_scanned_ratio = inactive / total. 4110 */ 4111 reclaimable = node_page_state(pgdat, NR_INACTIVE_FILE); 4112 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc)) 4113 reclaimable += node_page_state(pgdat, NR_INACTIVE_ANON); 4114 4115 /* round down reclaimable and round up sc->nr_to_reclaim */ 4116 priority = fls_long(reclaimable) - 1 - fls_long(sc->nr_to_reclaim - 1); 4117 4118 /* 4119 * The estimation is based on LRU pages only, so cap it to prevent 4120 * overshoots of shrinker objects by large margins. 4121 */ 4122 sc->priority = clamp(priority, DEF_PRIORITY / 2, DEF_PRIORITY); 4123 } 4124 4125 static bool lruvec_is_sizable(struct lruvec *lruvec, struct scan_control *sc) 4126 { 4127 int gen, type, zone; 4128 unsigned long total = 0; 4129 int swappiness = get_swappiness(lruvec, sc); 4130 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4131 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4132 DEFINE_MAX_SEQ(lruvec); 4133 DEFINE_MIN_SEQ(lruvec); 4134 4135 for_each_evictable_type(type, swappiness) { 4136 unsigned long seq; 4137 4138 for (seq = min_seq[type]; seq <= max_seq; seq++) { 4139 gen = lru_gen_from_seq(seq); 4140 4141 for (zone = 0; zone < MAX_NR_ZONES; zone++) 4142 total += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L); 4143 } 4144 } 4145 4146 /* whether the size is big enough to be helpful */ 4147 return mem_cgroup_online(memcg) ? (total >> sc->priority) : total; 4148 } 4149 4150 static bool lruvec_is_reclaimable(struct lruvec *lruvec, struct scan_control *sc, 4151 unsigned long min_ttl) 4152 { 4153 int gen; 4154 unsigned long birth; 4155 int swappiness = get_swappiness(lruvec, sc); 4156 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4157 DEFINE_MIN_SEQ(lruvec); 4158 4159 if (mem_cgroup_below_min(NULL, memcg)) 4160 return false; 4161 4162 if (!lruvec_is_sizable(lruvec, sc)) 4163 return false; 4164 4165 gen = lru_gen_from_seq(evictable_min_seq(min_seq, swappiness)); 4166 birth = READ_ONCE(lruvec->lrugen.timestamps[gen]); 4167 4168 return time_is_before_jiffies(birth + min_ttl); 4169 } 4170 4171 /* to protect the working set of the last N jiffies */ 4172 static unsigned long lru_gen_min_ttl __read_mostly; 4173 4174 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc) 4175 { 4176 struct mem_cgroup *memcg; 4177 unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl); 4178 bool reclaimable = !min_ttl; 4179 4180 VM_WARN_ON_ONCE(!current_is_kswapd()); 4181 4182 set_initial_priority(pgdat, sc); 4183 4184 memcg = mem_cgroup_iter(NULL, NULL, NULL); 4185 do { 4186 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 4187 4188 mem_cgroup_calculate_protection(NULL, memcg); 4189 4190 if (!reclaimable) 4191 reclaimable = lruvec_is_reclaimable(lruvec, sc, min_ttl); 4192 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL))); 4193 4194 /* 4195 * The main goal is to OOM kill if every generation from all memcgs is 4196 * younger than min_ttl. However, another possibility is all memcgs are 4197 * either too small or below min. 4198 */ 4199 if (!reclaimable && mutex_trylock(&oom_lock)) { 4200 struct oom_control oc = { 4201 .gfp_mask = sc->gfp_mask, 4202 }; 4203 4204 out_of_memory(&oc); 4205 4206 mutex_unlock(&oom_lock); 4207 } 4208 } 4209 4210 /****************************************************************************** 4211 * rmap/PT walk feedback 4212 ******************************************************************************/ 4213 4214 /* 4215 * This function exploits spatial locality when shrink_folio_list() walks the 4216 * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If 4217 * the scan was done cacheline efficiently, it adds the PMD entry pointing to 4218 * the PTE table to the Bloom filter. This forms a feedback loop between the 4219 * eviction and the aging. 4220 */ 4221 bool lru_gen_look_around(struct page_vma_mapped_walk *pvmw) 4222 { 4223 int i; 4224 bool dirty; 4225 unsigned long start; 4226 unsigned long end; 4227 struct lru_gen_mm_walk *walk; 4228 struct folio *last = NULL; 4229 int young = 1; 4230 pte_t *pte = pvmw->pte; 4231 unsigned long addr = pvmw->address; 4232 struct vm_area_struct *vma = pvmw->vma; 4233 struct folio *folio = pfn_folio(pvmw->pfn); 4234 struct mem_cgroup *memcg = folio_memcg(folio); 4235 struct pglist_data *pgdat = folio_pgdat(folio); 4236 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 4237 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 4238 DEFINE_MAX_SEQ(lruvec); 4239 int gen = lru_gen_from_seq(max_seq); 4240 4241 lockdep_assert_held(pvmw->ptl); 4242 VM_WARN_ON_ONCE_FOLIO(folio_test_lru(folio), folio); 4243 4244 if (!ptep_clear_young_notify(vma, addr, pte)) 4245 return false; 4246 4247 if (spin_is_contended(pvmw->ptl)) 4248 return true; 4249 4250 /* exclude special VMAs containing anon pages from COW */ 4251 if (vma->vm_flags & VM_SPECIAL) 4252 return true; 4253 4254 /* avoid taking the LRU lock under the PTL when possible */ 4255 walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL; 4256 4257 start = max(addr & PMD_MASK, vma->vm_start); 4258 end = min(addr | ~PMD_MASK, vma->vm_end - 1) + 1; 4259 4260 if (end - start == PAGE_SIZE) 4261 return true; 4262 4263 if (end - start > MIN_LRU_BATCH * PAGE_SIZE) { 4264 if (addr - start < MIN_LRU_BATCH * PAGE_SIZE / 2) 4265 end = start + MIN_LRU_BATCH * PAGE_SIZE; 4266 else if (end - addr < MIN_LRU_BATCH * PAGE_SIZE / 2) 4267 start = end - MIN_LRU_BATCH * PAGE_SIZE; 4268 else { 4269 start = addr - MIN_LRU_BATCH * PAGE_SIZE / 2; 4270 end = addr + MIN_LRU_BATCH * PAGE_SIZE / 2; 4271 } 4272 } 4273 4274 arch_enter_lazy_mmu_mode(); 4275 4276 pte -= (addr - start) / PAGE_SIZE; 4277 4278 for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) { 4279 unsigned long pfn; 4280 pte_t ptent = ptep_get(pte + i); 4281 4282 pfn = get_pte_pfn(ptent, vma, addr, pgdat); 4283 if (pfn == -1) 4284 continue; 4285 4286 folio = get_pfn_folio(pfn, memcg, pgdat); 4287 if (!folio) 4288 continue; 4289 4290 if (!ptep_clear_young_notify(vma, addr, pte + i)) 4291 continue; 4292 4293 if (last != folio) { 4294 walk_update_folio(walk, last, gen, dirty); 4295 4296 last = folio; 4297 dirty = false; 4298 } 4299 4300 if (pte_dirty(ptent)) 4301 dirty = true; 4302 4303 young++; 4304 } 4305 4306 walk_update_folio(walk, last, gen, dirty); 4307 4308 arch_leave_lazy_mmu_mode(); 4309 4310 /* feedback from rmap walkers to page table walkers */ 4311 if (mm_state && suitable_to_scan(i, young)) 4312 update_bloom_filter(mm_state, max_seq, pvmw->pmd); 4313 4314 return true; 4315 } 4316 4317 /****************************************************************************** 4318 * memcg LRU 4319 ******************************************************************************/ 4320 4321 /* see the comment on MEMCG_NR_GENS */ 4322 enum { 4323 MEMCG_LRU_NOP, 4324 MEMCG_LRU_HEAD, 4325 MEMCG_LRU_TAIL, 4326 MEMCG_LRU_OLD, 4327 MEMCG_LRU_YOUNG, 4328 }; 4329 4330 static void lru_gen_rotate_memcg(struct lruvec *lruvec, int op) 4331 { 4332 int seg; 4333 int old, new; 4334 unsigned long flags; 4335 int bin = get_random_u32_below(MEMCG_NR_BINS); 4336 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 4337 4338 spin_lock_irqsave(&pgdat->memcg_lru.lock, flags); 4339 4340 VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list)); 4341 4342 seg = 0; 4343 new = old = lruvec->lrugen.gen; 4344 4345 /* see the comment on MEMCG_NR_GENS */ 4346 if (op == MEMCG_LRU_HEAD) 4347 seg = MEMCG_LRU_HEAD; 4348 else if (op == MEMCG_LRU_TAIL) 4349 seg = MEMCG_LRU_TAIL; 4350 else if (op == MEMCG_LRU_OLD) 4351 new = get_memcg_gen(pgdat->memcg_lru.seq); 4352 else if (op == MEMCG_LRU_YOUNG) 4353 new = get_memcg_gen(pgdat->memcg_lru.seq + 1); 4354 else 4355 VM_WARN_ON_ONCE(true); 4356 4357 WRITE_ONCE(lruvec->lrugen.seg, seg); 4358 WRITE_ONCE(lruvec->lrugen.gen, new); 4359 4360 hlist_nulls_del_rcu(&lruvec->lrugen.list); 4361 4362 if (op == MEMCG_LRU_HEAD || op == MEMCG_LRU_OLD) 4363 hlist_nulls_add_head_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]); 4364 else 4365 hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]); 4366 4367 pgdat->memcg_lru.nr_memcgs[old]--; 4368 pgdat->memcg_lru.nr_memcgs[new]++; 4369 4370 if (!pgdat->memcg_lru.nr_memcgs[old] && old == get_memcg_gen(pgdat->memcg_lru.seq)) 4371 WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1); 4372 4373 spin_unlock_irqrestore(&pgdat->memcg_lru.lock, flags); 4374 } 4375 4376 #ifdef CONFIG_MEMCG 4377 4378 void lru_gen_online_memcg(struct mem_cgroup *memcg) 4379 { 4380 int gen; 4381 int nid; 4382 int bin = get_random_u32_below(MEMCG_NR_BINS); 4383 4384 for_each_node(nid) { 4385 struct pglist_data *pgdat = NODE_DATA(nid); 4386 struct lruvec *lruvec = get_lruvec(memcg, nid); 4387 4388 spin_lock_irq(&pgdat->memcg_lru.lock); 4389 4390 VM_WARN_ON_ONCE(!hlist_nulls_unhashed(&lruvec->lrugen.list)); 4391 4392 gen = get_memcg_gen(pgdat->memcg_lru.seq); 4393 4394 lruvec->lrugen.gen = gen; 4395 4396 hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[gen][bin]); 4397 pgdat->memcg_lru.nr_memcgs[gen]++; 4398 4399 spin_unlock_irq(&pgdat->memcg_lru.lock); 4400 } 4401 } 4402 4403 void lru_gen_offline_memcg(struct mem_cgroup *memcg) 4404 { 4405 int nid; 4406 4407 for_each_node(nid) { 4408 struct lruvec *lruvec = get_lruvec(memcg, nid); 4409 4410 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_OLD); 4411 } 4412 } 4413 4414 void lru_gen_release_memcg(struct mem_cgroup *memcg) 4415 { 4416 int gen; 4417 int nid; 4418 4419 for_each_node(nid) { 4420 struct pglist_data *pgdat = NODE_DATA(nid); 4421 struct lruvec *lruvec = get_lruvec(memcg, nid); 4422 4423 spin_lock_irq(&pgdat->memcg_lru.lock); 4424 4425 if (hlist_nulls_unhashed(&lruvec->lrugen.list)) 4426 goto unlock; 4427 4428 gen = lruvec->lrugen.gen; 4429 4430 hlist_nulls_del_init_rcu(&lruvec->lrugen.list); 4431 pgdat->memcg_lru.nr_memcgs[gen]--; 4432 4433 if (!pgdat->memcg_lru.nr_memcgs[gen] && gen == get_memcg_gen(pgdat->memcg_lru.seq)) 4434 WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1); 4435 unlock: 4436 spin_unlock_irq(&pgdat->memcg_lru.lock); 4437 } 4438 } 4439 4440 void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid) 4441 { 4442 struct lruvec *lruvec = get_lruvec(memcg, nid); 4443 4444 /* see the comment on MEMCG_NR_GENS */ 4445 if (READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_HEAD) 4446 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_HEAD); 4447 } 4448 4449 #endif /* CONFIG_MEMCG */ 4450 4451 /****************************************************************************** 4452 * the eviction 4453 ******************************************************************************/ 4454 4455 static bool sort_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc, 4456 int tier_idx) 4457 { 4458 bool success; 4459 bool dirty, writeback; 4460 int gen = folio_lru_gen(folio); 4461 int type = folio_is_file_lru(folio); 4462 int zone = folio_zonenum(folio); 4463 int delta = folio_nr_pages(folio); 4464 int refs = folio_lru_refs(folio); 4465 bool workingset = folio_test_workingset(folio); 4466 int tier = lru_tier_from_refs(refs, workingset); 4467 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4468 4469 VM_WARN_ON_ONCE_FOLIO(gen >= MAX_NR_GENS, folio); 4470 4471 /* unevictable */ 4472 if (!folio_evictable(folio)) { 4473 success = lru_gen_del_folio(lruvec, folio, true); 4474 VM_WARN_ON_ONCE_FOLIO(!success, folio); 4475 folio_set_unevictable(folio); 4476 lruvec_add_folio(lruvec, folio); 4477 __count_vm_events(UNEVICTABLE_PGCULLED, delta); 4478 return true; 4479 } 4480 4481 /* promoted */ 4482 if (gen != lru_gen_from_seq(lrugen->min_seq[type])) { 4483 list_move(&folio->lru, &lrugen->folios[gen][type][zone]); 4484 return true; 4485 } 4486 4487 /* protected */ 4488 if (tier > tier_idx || refs + workingset == BIT(LRU_REFS_WIDTH) + 1) { 4489 gen = folio_inc_gen(lruvec, folio, false); 4490 list_move(&folio->lru, &lrugen->folios[gen][type][zone]); 4491 4492 /* don't count the workingset being lazily promoted */ 4493 if (refs + workingset != BIT(LRU_REFS_WIDTH) + 1) { 4494 int hist = lru_hist_from_seq(lrugen->min_seq[type]); 4495 4496 WRITE_ONCE(lrugen->protected[hist][type][tier], 4497 lrugen->protected[hist][type][tier] + delta); 4498 } 4499 return true; 4500 } 4501 4502 /* ineligible */ 4503 if (!folio_test_lru(folio) || zone > sc->reclaim_idx) { 4504 gen = folio_inc_gen(lruvec, folio, false); 4505 list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]); 4506 return true; 4507 } 4508 4509 dirty = folio_test_dirty(folio); 4510 writeback = folio_test_writeback(folio); 4511 if (type == LRU_GEN_FILE && dirty) { 4512 sc->nr.file_taken += delta; 4513 if (!writeback) 4514 sc->nr.unqueued_dirty += delta; 4515 } 4516 4517 /* waiting for writeback */ 4518 if (writeback || (type == LRU_GEN_FILE && dirty)) { 4519 gen = folio_inc_gen(lruvec, folio, true); 4520 list_move(&folio->lru, &lrugen->folios[gen][type][zone]); 4521 return true; 4522 } 4523 4524 return false; 4525 } 4526 4527 static bool isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc) 4528 { 4529 bool success; 4530 4531 /* swap constrained */ 4532 if (!(sc->gfp_mask & __GFP_IO) && 4533 (folio_test_dirty(folio) || 4534 (folio_test_anon(folio) && !folio_test_swapcache(folio)))) 4535 return false; 4536 4537 /* raced with release_pages() */ 4538 if (!folio_try_get(folio)) 4539 return false; 4540 4541 /* raced with another isolation */ 4542 if (!folio_test_clear_lru(folio)) { 4543 folio_put(folio); 4544 return false; 4545 } 4546 4547 /* see the comment on LRU_REFS_FLAGS */ 4548 if (!folio_test_referenced(folio)) 4549 set_mask_bits(&folio->flags.f, LRU_REFS_MASK, 0); 4550 4551 /* for shrink_folio_list() */ 4552 folio_clear_reclaim(folio); 4553 4554 success = lru_gen_del_folio(lruvec, folio, true); 4555 VM_WARN_ON_ONCE_FOLIO(!success, folio); 4556 4557 return true; 4558 } 4559 4560 static int scan_folios(unsigned long nr_to_scan, struct lruvec *lruvec, 4561 struct scan_control *sc, int type, int tier, 4562 struct list_head *list) 4563 { 4564 int i; 4565 int gen; 4566 enum vm_event_item item; 4567 int sorted = 0; 4568 int scanned = 0; 4569 int isolated = 0; 4570 int skipped = 0; 4571 int remaining = min(nr_to_scan, MAX_LRU_BATCH); 4572 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4573 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4574 4575 VM_WARN_ON_ONCE(!list_empty(list)); 4576 4577 if (get_nr_gens(lruvec, type) == MIN_NR_GENS) 4578 return 0; 4579 4580 gen = lru_gen_from_seq(lrugen->min_seq[type]); 4581 4582 for (i = MAX_NR_ZONES; i > 0; i--) { 4583 LIST_HEAD(moved); 4584 int skipped_zone = 0; 4585 int zone = (sc->reclaim_idx + i) % MAX_NR_ZONES; 4586 struct list_head *head = &lrugen->folios[gen][type][zone]; 4587 4588 while (!list_empty(head)) { 4589 struct folio *folio = lru_to_folio(head); 4590 int delta = folio_nr_pages(folio); 4591 4592 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 4593 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio); 4594 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 4595 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio); 4596 4597 scanned += delta; 4598 4599 if (sort_folio(lruvec, folio, sc, tier)) 4600 sorted += delta; 4601 else if (isolate_folio(lruvec, folio, sc)) { 4602 list_add(&folio->lru, list); 4603 isolated += delta; 4604 } else { 4605 list_move(&folio->lru, &moved); 4606 skipped_zone += delta; 4607 } 4608 4609 if (!--remaining || max(isolated, skipped_zone) >= MIN_LRU_BATCH) 4610 break; 4611 } 4612 4613 if (skipped_zone) { 4614 list_splice(&moved, head); 4615 __count_zid_vm_events(PGSCAN_SKIP, zone, skipped_zone); 4616 skipped += skipped_zone; 4617 } 4618 4619 if (!remaining || isolated >= MIN_LRU_BATCH) 4620 break; 4621 } 4622 4623 item = PGSCAN_KSWAPD + reclaimer_offset(sc); 4624 if (!cgroup_reclaim(sc)) { 4625 __count_vm_events(item, isolated); 4626 __count_vm_events(PGREFILL, sorted); 4627 } 4628 count_memcg_events(memcg, item, isolated); 4629 count_memcg_events(memcg, PGREFILL, sorted); 4630 __count_vm_events(PGSCAN_ANON + type, isolated); 4631 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, MAX_LRU_BATCH, 4632 scanned, skipped, isolated, 4633 type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON); 4634 if (type == LRU_GEN_FILE) 4635 sc->nr.file_taken += isolated; 4636 /* 4637 * There might not be eligible folios due to reclaim_idx. Check the 4638 * remaining to prevent livelock if it's not making progress. 4639 */ 4640 return isolated || !remaining ? scanned : 0; 4641 } 4642 4643 static int get_tier_idx(struct lruvec *lruvec, int type) 4644 { 4645 int tier; 4646 struct ctrl_pos sp, pv; 4647 4648 /* 4649 * To leave a margin for fluctuations, use a larger gain factor (2:3). 4650 * This value is chosen because any other tier would have at least twice 4651 * as many refaults as the first tier. 4652 */ 4653 read_ctrl_pos(lruvec, type, 0, 2, &sp); 4654 for (tier = 1; tier < MAX_NR_TIERS; tier++) { 4655 read_ctrl_pos(lruvec, type, tier, 3, &pv); 4656 if (!positive_ctrl_err(&sp, &pv)) 4657 break; 4658 } 4659 4660 return tier - 1; 4661 } 4662 4663 static int get_type_to_scan(struct lruvec *lruvec, int swappiness) 4664 { 4665 struct ctrl_pos sp, pv; 4666 4667 if (swappiness <= MIN_SWAPPINESS + 1) 4668 return LRU_GEN_FILE; 4669 4670 if (swappiness >= MAX_SWAPPINESS) 4671 return LRU_GEN_ANON; 4672 /* 4673 * Compare the sum of all tiers of anon with that of file to determine 4674 * which type to scan. 4675 */ 4676 read_ctrl_pos(lruvec, LRU_GEN_ANON, MAX_NR_TIERS, swappiness, &sp); 4677 read_ctrl_pos(lruvec, LRU_GEN_FILE, MAX_NR_TIERS, MAX_SWAPPINESS - swappiness, &pv); 4678 4679 return positive_ctrl_err(&sp, &pv); 4680 } 4681 4682 static int isolate_folios(unsigned long nr_to_scan, struct lruvec *lruvec, 4683 struct scan_control *sc, int swappiness, 4684 int *type_scanned, struct list_head *list) 4685 { 4686 int i; 4687 int type = get_type_to_scan(lruvec, swappiness); 4688 4689 for_each_evictable_type(i, swappiness) { 4690 int scanned; 4691 int tier = get_tier_idx(lruvec, type); 4692 4693 *type_scanned = type; 4694 4695 scanned = scan_folios(nr_to_scan, lruvec, sc, type, tier, list); 4696 if (scanned) 4697 return scanned; 4698 4699 type = !type; 4700 } 4701 4702 return 0; 4703 } 4704 4705 static int evict_folios(unsigned long nr_to_scan, struct lruvec *lruvec, 4706 struct scan_control *sc, int swappiness) 4707 { 4708 int type; 4709 int scanned; 4710 int reclaimed; 4711 LIST_HEAD(list); 4712 LIST_HEAD(clean); 4713 struct folio *folio; 4714 struct folio *next; 4715 enum vm_event_item item; 4716 struct reclaim_stat stat; 4717 struct lru_gen_mm_walk *walk; 4718 bool skip_retry = false; 4719 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4720 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4721 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 4722 4723 spin_lock_irq(&lruvec->lru_lock); 4724 4725 scanned = isolate_folios(nr_to_scan, lruvec, sc, swappiness, &type, &list); 4726 4727 scanned += try_to_inc_min_seq(lruvec, swappiness); 4728 4729 if (evictable_min_seq(lrugen->min_seq, swappiness) + MIN_NR_GENS > lrugen->max_seq) 4730 scanned = 0; 4731 4732 spin_unlock_irq(&lruvec->lru_lock); 4733 4734 if (list_empty(&list)) 4735 return scanned; 4736 retry: 4737 reclaimed = shrink_folio_list(&list, pgdat, sc, &stat, false, memcg); 4738 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty; 4739 sc->nr_reclaimed += reclaimed; 4740 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 4741 scanned, reclaimed, &stat, sc->priority, 4742 type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON); 4743 4744 list_for_each_entry_safe_reverse(folio, next, &list, lru) { 4745 DEFINE_MIN_SEQ(lruvec); 4746 4747 if (!folio_evictable(folio)) { 4748 list_del(&folio->lru); 4749 folio_putback_lru(folio); 4750 continue; 4751 } 4752 4753 /* retry folios that may have missed folio_rotate_reclaimable() */ 4754 if (!skip_retry && !folio_test_active(folio) && !folio_mapped(folio) && 4755 !folio_test_dirty(folio) && !folio_test_writeback(folio)) { 4756 list_move(&folio->lru, &clean); 4757 continue; 4758 } 4759 4760 /* don't add rejected folios to the oldest generation */ 4761 if (lru_gen_folio_seq(lruvec, folio, false) == min_seq[type]) 4762 set_mask_bits(&folio->flags.f, LRU_REFS_FLAGS, BIT(PG_active)); 4763 } 4764 4765 spin_lock_irq(&lruvec->lru_lock); 4766 4767 move_folios_to_lru(lruvec, &list); 4768 4769 walk = current->reclaim_state->mm_walk; 4770 if (walk && walk->batched) { 4771 walk->lruvec = lruvec; 4772 reset_batch_size(walk); 4773 } 4774 4775 __mod_lruvec_state(lruvec, PGDEMOTE_KSWAPD + reclaimer_offset(sc), 4776 stat.nr_demoted); 4777 4778 item = PGSTEAL_KSWAPD + reclaimer_offset(sc); 4779 if (!cgroup_reclaim(sc)) 4780 __count_vm_events(item, reclaimed); 4781 count_memcg_events(memcg, item, reclaimed); 4782 __count_vm_events(PGSTEAL_ANON + type, reclaimed); 4783 4784 spin_unlock_irq(&lruvec->lru_lock); 4785 4786 list_splice_init(&clean, &list); 4787 4788 if (!list_empty(&list)) { 4789 skip_retry = true; 4790 goto retry; 4791 } 4792 4793 return scanned; 4794 } 4795 4796 static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq, 4797 int swappiness, unsigned long *nr_to_scan) 4798 { 4799 int gen, type, zone; 4800 unsigned long size = 0; 4801 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4802 DEFINE_MIN_SEQ(lruvec); 4803 4804 *nr_to_scan = 0; 4805 /* have to run aging, since eviction is not possible anymore */ 4806 if (evictable_min_seq(min_seq, swappiness) + MIN_NR_GENS > max_seq) 4807 return true; 4808 4809 for_each_evictable_type(type, swappiness) { 4810 unsigned long seq; 4811 4812 for (seq = min_seq[type]; seq <= max_seq; seq++) { 4813 gen = lru_gen_from_seq(seq); 4814 4815 for (zone = 0; zone < MAX_NR_ZONES; zone++) 4816 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L); 4817 } 4818 } 4819 4820 *nr_to_scan = size; 4821 /* better to run aging even though eviction is still possible */ 4822 return evictable_min_seq(min_seq, swappiness) + MIN_NR_GENS == max_seq; 4823 } 4824 4825 /* 4826 * For future optimizations: 4827 * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg 4828 * reclaim. 4829 */ 4830 static long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc, int swappiness) 4831 { 4832 bool success; 4833 unsigned long nr_to_scan; 4834 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4835 DEFINE_MAX_SEQ(lruvec); 4836 4837 if (mem_cgroup_below_min(sc->target_mem_cgroup, memcg)) 4838 return -1; 4839 4840 success = should_run_aging(lruvec, max_seq, swappiness, &nr_to_scan); 4841 4842 /* try to scrape all its memory if this memcg was deleted */ 4843 if (nr_to_scan && !mem_cgroup_online(memcg)) 4844 return nr_to_scan; 4845 4846 nr_to_scan = apply_proportional_protection(memcg, sc, nr_to_scan); 4847 4848 /* try to get away with not aging at the default priority */ 4849 if (!success || sc->priority == DEF_PRIORITY) 4850 return nr_to_scan >> sc->priority; 4851 4852 /* stop scanning this lruvec as it's low on cold folios */ 4853 return try_to_inc_max_seq(lruvec, max_seq, swappiness, false) ? -1 : 0; 4854 } 4855 4856 static bool should_abort_scan(struct lruvec *lruvec, struct scan_control *sc) 4857 { 4858 int i; 4859 enum zone_watermarks mark; 4860 4861 /* don't abort memcg reclaim to ensure fairness */ 4862 if (!root_reclaim(sc)) 4863 return false; 4864 4865 if (sc->nr_reclaimed >= max(sc->nr_to_reclaim, compact_gap(sc->order))) 4866 return true; 4867 4868 /* check the order to exclude compaction-induced reclaim */ 4869 if (!current_is_kswapd() || sc->order) 4870 return false; 4871 4872 mark = sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ? 4873 WMARK_PROMO : WMARK_HIGH; 4874 4875 for (i = 0; i <= sc->reclaim_idx; i++) { 4876 struct zone *zone = lruvec_pgdat(lruvec)->node_zones + i; 4877 unsigned long size = wmark_pages(zone, mark) + MIN_LRU_BATCH; 4878 4879 if (managed_zone(zone) && !zone_watermark_ok(zone, 0, size, sc->reclaim_idx, 0)) 4880 return false; 4881 } 4882 4883 /* kswapd should abort if all eligible zones are safe */ 4884 return true; 4885 } 4886 4887 static bool try_to_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 4888 { 4889 long nr_to_scan; 4890 unsigned long scanned = 0; 4891 int swappiness = get_swappiness(lruvec, sc); 4892 4893 while (true) { 4894 int delta; 4895 4896 nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness); 4897 if (nr_to_scan <= 0) 4898 break; 4899 4900 delta = evict_folios(nr_to_scan, lruvec, sc, swappiness); 4901 if (!delta) 4902 break; 4903 4904 scanned += delta; 4905 if (scanned >= nr_to_scan) 4906 break; 4907 4908 if (should_abort_scan(lruvec, sc)) 4909 break; 4910 4911 cond_resched(); 4912 } 4913 4914 /* 4915 * If too many file cache in the coldest generation can't be evicted 4916 * due to being dirty, wake up the flusher. 4917 */ 4918 if (sc->nr.unqueued_dirty && sc->nr.unqueued_dirty == sc->nr.file_taken) 4919 wakeup_flusher_threads(WB_REASON_VMSCAN); 4920 4921 /* whether this lruvec should be rotated */ 4922 return nr_to_scan < 0; 4923 } 4924 4925 static int shrink_one(struct lruvec *lruvec, struct scan_control *sc) 4926 { 4927 bool success; 4928 unsigned long scanned = sc->nr_scanned; 4929 unsigned long reclaimed = sc->nr_reclaimed; 4930 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4931 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 4932 4933 /* lru_gen_age_node() called mem_cgroup_calculate_protection() */ 4934 if (mem_cgroup_below_min(NULL, memcg)) 4935 return MEMCG_LRU_YOUNG; 4936 4937 if (mem_cgroup_below_low(NULL, memcg)) { 4938 /* see the comment on MEMCG_NR_GENS */ 4939 if (READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_TAIL) 4940 return MEMCG_LRU_TAIL; 4941 4942 memcg_memory_event(memcg, MEMCG_LOW); 4943 } 4944 4945 success = try_to_shrink_lruvec(lruvec, sc); 4946 4947 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, sc->priority); 4948 4949 if (!sc->proactive) 4950 vmpressure(sc->gfp_mask, memcg, false, sc->nr_scanned - scanned, 4951 sc->nr_reclaimed - reclaimed); 4952 4953 flush_reclaim_state(sc); 4954 4955 if (success && mem_cgroup_online(memcg)) 4956 return MEMCG_LRU_YOUNG; 4957 4958 if (!success && lruvec_is_sizable(lruvec, sc)) 4959 return 0; 4960 4961 /* one retry if offlined or too small */ 4962 return READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_TAIL ? 4963 MEMCG_LRU_TAIL : MEMCG_LRU_YOUNG; 4964 } 4965 4966 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc) 4967 { 4968 int op; 4969 int gen; 4970 int bin; 4971 int first_bin; 4972 struct lruvec *lruvec; 4973 struct lru_gen_folio *lrugen; 4974 struct mem_cgroup *memcg; 4975 struct hlist_nulls_node *pos; 4976 4977 gen = get_memcg_gen(READ_ONCE(pgdat->memcg_lru.seq)); 4978 bin = first_bin = get_random_u32_below(MEMCG_NR_BINS); 4979 restart: 4980 op = 0; 4981 memcg = NULL; 4982 4983 rcu_read_lock(); 4984 4985 hlist_nulls_for_each_entry_rcu(lrugen, pos, &pgdat->memcg_lru.fifo[gen][bin], list) { 4986 if (op) { 4987 lru_gen_rotate_memcg(lruvec, op); 4988 op = 0; 4989 } 4990 4991 mem_cgroup_put(memcg); 4992 memcg = NULL; 4993 4994 if (gen != READ_ONCE(lrugen->gen)) 4995 continue; 4996 4997 lruvec = container_of(lrugen, struct lruvec, lrugen); 4998 memcg = lruvec_memcg(lruvec); 4999 5000 if (!mem_cgroup_tryget(memcg)) { 5001 lru_gen_release_memcg(memcg); 5002 memcg = NULL; 5003 continue; 5004 } 5005 5006 rcu_read_unlock(); 5007 5008 op = shrink_one(lruvec, sc); 5009 5010 rcu_read_lock(); 5011 5012 if (should_abort_scan(lruvec, sc)) 5013 break; 5014 } 5015 5016 rcu_read_unlock(); 5017 5018 if (op) 5019 lru_gen_rotate_memcg(lruvec, op); 5020 5021 mem_cgroup_put(memcg); 5022 5023 if (!is_a_nulls(pos)) 5024 return; 5025 5026 /* restart if raced with lru_gen_rotate_memcg() */ 5027 if (gen != get_nulls_value(pos)) 5028 goto restart; 5029 5030 /* try the rest of the bins of the current generation */ 5031 bin = get_memcg_bin(bin + 1); 5032 if (bin != first_bin) 5033 goto restart; 5034 } 5035 5036 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 5037 { 5038 struct blk_plug plug; 5039 5040 VM_WARN_ON_ONCE(root_reclaim(sc)); 5041 VM_WARN_ON_ONCE(!sc->may_writepage || !sc->may_unmap); 5042 5043 lru_add_drain(); 5044 5045 blk_start_plug(&plug); 5046 5047 set_mm_walk(NULL, sc->proactive); 5048 5049 if (try_to_shrink_lruvec(lruvec, sc)) 5050 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_YOUNG); 5051 5052 clear_mm_walk(); 5053 5054 blk_finish_plug(&plug); 5055 } 5056 5057 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc) 5058 { 5059 struct blk_plug plug; 5060 unsigned long reclaimed = sc->nr_reclaimed; 5061 5062 VM_WARN_ON_ONCE(!root_reclaim(sc)); 5063 5064 /* 5065 * Unmapped clean folios are already prioritized. Scanning for more of 5066 * them is likely futile and can cause high reclaim latency when there 5067 * is a large number of memcgs. 5068 */ 5069 if (!sc->may_writepage || !sc->may_unmap) 5070 goto done; 5071 5072 lru_add_drain(); 5073 5074 blk_start_plug(&plug); 5075 5076 set_mm_walk(pgdat, sc->proactive); 5077 5078 set_initial_priority(pgdat, sc); 5079 5080 if (current_is_kswapd()) 5081 sc->nr_reclaimed = 0; 5082 5083 if (mem_cgroup_disabled()) 5084 shrink_one(&pgdat->__lruvec, sc); 5085 else 5086 shrink_many(pgdat, sc); 5087 5088 if (current_is_kswapd()) 5089 sc->nr_reclaimed += reclaimed; 5090 5091 clear_mm_walk(); 5092 5093 blk_finish_plug(&plug); 5094 done: 5095 if (sc->nr_reclaimed > reclaimed) 5096 pgdat->kswapd_failures = 0; 5097 } 5098 5099 /****************************************************************************** 5100 * state change 5101 ******************************************************************************/ 5102 5103 static bool __maybe_unused state_is_valid(struct lruvec *lruvec) 5104 { 5105 struct lru_gen_folio *lrugen = &lruvec->lrugen; 5106 5107 if (lrugen->enabled) { 5108 enum lru_list lru; 5109 5110 for_each_evictable_lru(lru) { 5111 if (!list_empty(&lruvec->lists[lru])) 5112 return false; 5113 } 5114 } else { 5115 int gen, type, zone; 5116 5117 for_each_gen_type_zone(gen, type, zone) { 5118 if (!list_empty(&lrugen->folios[gen][type][zone])) 5119 return false; 5120 } 5121 } 5122 5123 return true; 5124 } 5125 5126 static bool fill_evictable(struct lruvec *lruvec) 5127 { 5128 enum lru_list lru; 5129 int remaining = MAX_LRU_BATCH; 5130 5131 for_each_evictable_lru(lru) { 5132 int type = is_file_lru(lru); 5133 bool active = is_active_lru(lru); 5134 struct list_head *head = &lruvec->lists[lru]; 5135 5136 while (!list_empty(head)) { 5137 bool success; 5138 struct folio *folio = lru_to_folio(head); 5139 5140 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 5141 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio) != active, folio); 5142 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 5143 VM_WARN_ON_ONCE_FOLIO(folio_lru_gen(folio) != -1, folio); 5144 5145 lruvec_del_folio(lruvec, folio); 5146 success = lru_gen_add_folio(lruvec, folio, false); 5147 VM_WARN_ON_ONCE(!success); 5148 5149 if (!--remaining) 5150 return false; 5151 } 5152 } 5153 5154 return true; 5155 } 5156 5157 static bool drain_evictable(struct lruvec *lruvec) 5158 { 5159 int gen, type, zone; 5160 int remaining = MAX_LRU_BATCH; 5161 5162 for_each_gen_type_zone(gen, type, zone) { 5163 struct list_head *head = &lruvec->lrugen.folios[gen][type][zone]; 5164 5165 while (!list_empty(head)) { 5166 bool success; 5167 struct folio *folio = lru_to_folio(head); 5168 5169 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 5170 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio); 5171 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 5172 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio); 5173 5174 success = lru_gen_del_folio(lruvec, folio, false); 5175 VM_WARN_ON_ONCE(!success); 5176 lruvec_add_folio(lruvec, folio); 5177 5178 if (!--remaining) 5179 return false; 5180 } 5181 } 5182 5183 return true; 5184 } 5185 5186 static void lru_gen_change_state(bool enabled) 5187 { 5188 static DEFINE_MUTEX(state_mutex); 5189 5190 struct mem_cgroup *memcg; 5191 5192 cgroup_lock(); 5193 cpus_read_lock(); 5194 get_online_mems(); 5195 mutex_lock(&state_mutex); 5196 5197 if (enabled == lru_gen_enabled()) 5198 goto unlock; 5199 5200 if (enabled) 5201 static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]); 5202 else 5203 static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]); 5204 5205 memcg = mem_cgroup_iter(NULL, NULL, NULL); 5206 do { 5207 int nid; 5208 5209 for_each_node(nid) { 5210 struct lruvec *lruvec = get_lruvec(memcg, nid); 5211 5212 spin_lock_irq(&lruvec->lru_lock); 5213 5214 VM_WARN_ON_ONCE(!seq_is_valid(lruvec)); 5215 VM_WARN_ON_ONCE(!state_is_valid(lruvec)); 5216 5217 lruvec->lrugen.enabled = enabled; 5218 5219 while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) { 5220 spin_unlock_irq(&lruvec->lru_lock); 5221 cond_resched(); 5222 spin_lock_irq(&lruvec->lru_lock); 5223 } 5224 5225 spin_unlock_irq(&lruvec->lru_lock); 5226 } 5227 5228 cond_resched(); 5229 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL))); 5230 unlock: 5231 mutex_unlock(&state_mutex); 5232 put_online_mems(); 5233 cpus_read_unlock(); 5234 cgroup_unlock(); 5235 } 5236 5237 /****************************************************************************** 5238 * sysfs interface 5239 ******************************************************************************/ 5240 5241 static ssize_t min_ttl_ms_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) 5242 { 5243 return sysfs_emit(buf, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl))); 5244 } 5245 5246 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5247 static ssize_t min_ttl_ms_store(struct kobject *kobj, struct kobj_attribute *attr, 5248 const char *buf, size_t len) 5249 { 5250 unsigned int msecs; 5251 5252 if (kstrtouint(buf, 0, &msecs)) 5253 return -EINVAL; 5254 5255 WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs)); 5256 5257 return len; 5258 } 5259 5260 static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR_RW(min_ttl_ms); 5261 5262 static ssize_t enabled_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) 5263 { 5264 unsigned int caps = 0; 5265 5266 if (get_cap(LRU_GEN_CORE)) 5267 caps |= BIT(LRU_GEN_CORE); 5268 5269 if (should_walk_mmu()) 5270 caps |= BIT(LRU_GEN_MM_WALK); 5271 5272 if (should_clear_pmd_young()) 5273 caps |= BIT(LRU_GEN_NONLEAF_YOUNG); 5274 5275 return sysfs_emit(buf, "0x%04x\n", caps); 5276 } 5277 5278 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5279 static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr, 5280 const char *buf, size_t len) 5281 { 5282 int i; 5283 unsigned int caps; 5284 5285 if (tolower(*buf) == 'n') 5286 caps = 0; 5287 else if (tolower(*buf) == 'y') 5288 caps = -1; 5289 else if (kstrtouint(buf, 0, &caps)) 5290 return -EINVAL; 5291 5292 for (i = 0; i < NR_LRU_GEN_CAPS; i++) { 5293 bool enabled = caps & BIT(i); 5294 5295 if (i == LRU_GEN_CORE) 5296 lru_gen_change_state(enabled); 5297 else if (enabled) 5298 static_branch_enable(&lru_gen_caps[i]); 5299 else 5300 static_branch_disable(&lru_gen_caps[i]); 5301 } 5302 5303 return len; 5304 } 5305 5306 static struct kobj_attribute lru_gen_enabled_attr = __ATTR_RW(enabled); 5307 5308 static struct attribute *lru_gen_attrs[] = { 5309 &lru_gen_min_ttl_attr.attr, 5310 &lru_gen_enabled_attr.attr, 5311 NULL 5312 }; 5313 5314 static const struct attribute_group lru_gen_attr_group = { 5315 .name = "lru_gen", 5316 .attrs = lru_gen_attrs, 5317 }; 5318 5319 /****************************************************************************** 5320 * debugfs interface 5321 ******************************************************************************/ 5322 5323 static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos) 5324 { 5325 struct mem_cgroup *memcg; 5326 loff_t nr_to_skip = *pos; 5327 5328 m->private = kvmalloc(PATH_MAX, GFP_KERNEL); 5329 if (!m->private) 5330 return ERR_PTR(-ENOMEM); 5331 5332 memcg = mem_cgroup_iter(NULL, NULL, NULL); 5333 do { 5334 int nid; 5335 5336 for_each_node_state(nid, N_MEMORY) { 5337 if (!nr_to_skip--) 5338 return get_lruvec(memcg, nid); 5339 } 5340 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL))); 5341 5342 return NULL; 5343 } 5344 5345 static void lru_gen_seq_stop(struct seq_file *m, void *v) 5346 { 5347 if (!IS_ERR_OR_NULL(v)) 5348 mem_cgroup_iter_break(NULL, lruvec_memcg(v)); 5349 5350 kvfree(m->private); 5351 m->private = NULL; 5352 } 5353 5354 static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos) 5355 { 5356 int nid = lruvec_pgdat(v)->node_id; 5357 struct mem_cgroup *memcg = lruvec_memcg(v); 5358 5359 ++*pos; 5360 5361 nid = next_memory_node(nid); 5362 if (nid == MAX_NUMNODES) { 5363 memcg = mem_cgroup_iter(NULL, memcg, NULL); 5364 if (!memcg) 5365 return NULL; 5366 5367 nid = first_memory_node; 5368 } 5369 5370 return get_lruvec(memcg, nid); 5371 } 5372 5373 static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec, 5374 unsigned long max_seq, unsigned long *min_seq, 5375 unsigned long seq) 5376 { 5377 int i; 5378 int type, tier; 5379 int hist = lru_hist_from_seq(seq); 5380 struct lru_gen_folio *lrugen = &lruvec->lrugen; 5381 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 5382 5383 for (tier = 0; tier < MAX_NR_TIERS; tier++) { 5384 seq_printf(m, " %10d", tier); 5385 for (type = 0; type < ANON_AND_FILE; type++) { 5386 const char *s = "xxx"; 5387 unsigned long n[3] = {}; 5388 5389 if (seq == max_seq) { 5390 s = "RTx"; 5391 n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]); 5392 n[1] = READ_ONCE(lrugen->avg_total[type][tier]); 5393 } else if (seq == min_seq[type] || NR_HIST_GENS > 1) { 5394 s = "rep"; 5395 n[0] = atomic_long_read(&lrugen->refaulted[hist][type][tier]); 5396 n[1] = atomic_long_read(&lrugen->evicted[hist][type][tier]); 5397 n[2] = READ_ONCE(lrugen->protected[hist][type][tier]); 5398 } 5399 5400 for (i = 0; i < 3; i++) 5401 seq_printf(m, " %10lu%c", n[i], s[i]); 5402 } 5403 seq_putc(m, '\n'); 5404 } 5405 5406 if (!mm_state) 5407 return; 5408 5409 seq_puts(m, " "); 5410 for (i = 0; i < NR_MM_STATS; i++) { 5411 const char *s = "xxxx"; 5412 unsigned long n = 0; 5413 5414 if (seq == max_seq && NR_HIST_GENS == 1) { 5415 s = "TYFA"; 5416 n = READ_ONCE(mm_state->stats[hist][i]); 5417 } else if (seq != max_seq && NR_HIST_GENS > 1) { 5418 s = "tyfa"; 5419 n = READ_ONCE(mm_state->stats[hist][i]); 5420 } 5421 5422 seq_printf(m, " %10lu%c", n, s[i]); 5423 } 5424 seq_putc(m, '\n'); 5425 } 5426 5427 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5428 static int lru_gen_seq_show(struct seq_file *m, void *v) 5429 { 5430 unsigned long seq; 5431 bool full = debugfs_get_aux_num(m->file); 5432 struct lruvec *lruvec = v; 5433 struct lru_gen_folio *lrugen = &lruvec->lrugen; 5434 int nid = lruvec_pgdat(lruvec)->node_id; 5435 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 5436 DEFINE_MAX_SEQ(lruvec); 5437 DEFINE_MIN_SEQ(lruvec); 5438 5439 if (nid == first_memory_node) { 5440 const char *path = memcg ? m->private : ""; 5441 5442 #ifdef CONFIG_MEMCG 5443 if (memcg) 5444 cgroup_path(memcg->css.cgroup, m->private, PATH_MAX); 5445 #endif 5446 seq_printf(m, "memcg %5hu %s\n", mem_cgroup_id(memcg), path); 5447 } 5448 5449 seq_printf(m, " node %5d\n", nid); 5450 5451 if (!full) 5452 seq = evictable_min_seq(min_seq, MAX_SWAPPINESS / 2); 5453 else if (max_seq >= MAX_NR_GENS) 5454 seq = max_seq - MAX_NR_GENS + 1; 5455 else 5456 seq = 0; 5457 5458 for (; seq <= max_seq; seq++) { 5459 int type, zone; 5460 int gen = lru_gen_from_seq(seq); 5461 unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]); 5462 5463 seq_printf(m, " %10lu %10u", seq, jiffies_to_msecs(jiffies - birth)); 5464 5465 for (type = 0; type < ANON_AND_FILE; type++) { 5466 unsigned long size = 0; 5467 char mark = full && seq < min_seq[type] ? 'x' : ' '; 5468 5469 for (zone = 0; zone < MAX_NR_ZONES; zone++) 5470 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L); 5471 5472 seq_printf(m, " %10lu%c", size, mark); 5473 } 5474 5475 seq_putc(m, '\n'); 5476 5477 if (full) 5478 lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq); 5479 } 5480 5481 return 0; 5482 } 5483 5484 static const struct seq_operations lru_gen_seq_ops = { 5485 .start = lru_gen_seq_start, 5486 .stop = lru_gen_seq_stop, 5487 .next = lru_gen_seq_next, 5488 .show = lru_gen_seq_show, 5489 }; 5490 5491 static int run_aging(struct lruvec *lruvec, unsigned long seq, 5492 int swappiness, bool force_scan) 5493 { 5494 DEFINE_MAX_SEQ(lruvec); 5495 5496 if (seq > max_seq) 5497 return -EINVAL; 5498 5499 return try_to_inc_max_seq(lruvec, max_seq, swappiness, force_scan) ? 0 : -EEXIST; 5500 } 5501 5502 static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc, 5503 int swappiness, unsigned long nr_to_reclaim) 5504 { 5505 DEFINE_MAX_SEQ(lruvec); 5506 5507 if (seq + MIN_NR_GENS > max_seq) 5508 return -EINVAL; 5509 5510 sc->nr_reclaimed = 0; 5511 5512 while (!signal_pending(current)) { 5513 DEFINE_MIN_SEQ(lruvec); 5514 5515 if (seq < evictable_min_seq(min_seq, swappiness)) 5516 return 0; 5517 5518 if (sc->nr_reclaimed >= nr_to_reclaim) 5519 return 0; 5520 5521 if (!evict_folios(nr_to_reclaim - sc->nr_reclaimed, lruvec, sc, 5522 swappiness)) 5523 return 0; 5524 5525 cond_resched(); 5526 } 5527 5528 return -EINTR; 5529 } 5530 5531 static int run_cmd(char cmd, int memcg_id, int nid, unsigned long seq, 5532 struct scan_control *sc, int swappiness, unsigned long opt) 5533 { 5534 struct lruvec *lruvec; 5535 int err = -EINVAL; 5536 struct mem_cgroup *memcg = NULL; 5537 5538 if (nid < 0 || nid >= MAX_NUMNODES || !node_state(nid, N_MEMORY)) 5539 return -EINVAL; 5540 5541 if (!mem_cgroup_disabled()) { 5542 rcu_read_lock(); 5543 5544 memcg = mem_cgroup_from_id(memcg_id); 5545 if (!mem_cgroup_tryget(memcg)) 5546 memcg = NULL; 5547 5548 rcu_read_unlock(); 5549 5550 if (!memcg) 5551 return -EINVAL; 5552 } 5553 5554 if (memcg_id != mem_cgroup_id(memcg)) 5555 goto done; 5556 5557 sc->target_mem_cgroup = memcg; 5558 lruvec = get_lruvec(memcg, nid); 5559 5560 if (swappiness < MIN_SWAPPINESS) 5561 swappiness = get_swappiness(lruvec, sc); 5562 else if (swappiness > SWAPPINESS_ANON_ONLY) 5563 goto done; 5564 5565 switch (cmd) { 5566 case '+': 5567 err = run_aging(lruvec, seq, swappiness, opt); 5568 break; 5569 case '-': 5570 err = run_eviction(lruvec, seq, sc, swappiness, opt); 5571 break; 5572 } 5573 done: 5574 mem_cgroup_put(memcg); 5575 5576 return err; 5577 } 5578 5579 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5580 static ssize_t lru_gen_seq_write(struct file *file, const char __user *src, 5581 size_t len, loff_t *pos) 5582 { 5583 void *buf; 5584 char *cur, *next; 5585 unsigned int flags; 5586 struct blk_plug plug; 5587 int err = -EINVAL; 5588 struct scan_control sc = { 5589 .may_writepage = true, 5590 .may_unmap = true, 5591 .may_swap = true, 5592 .reclaim_idx = MAX_NR_ZONES - 1, 5593 .gfp_mask = GFP_KERNEL, 5594 .proactive = true, 5595 }; 5596 5597 buf = kvmalloc(len + 1, GFP_KERNEL); 5598 if (!buf) 5599 return -ENOMEM; 5600 5601 if (copy_from_user(buf, src, len)) { 5602 kvfree(buf); 5603 return -EFAULT; 5604 } 5605 5606 set_task_reclaim_state(current, &sc.reclaim_state); 5607 flags = memalloc_noreclaim_save(); 5608 blk_start_plug(&plug); 5609 if (!set_mm_walk(NULL, true)) { 5610 err = -ENOMEM; 5611 goto done; 5612 } 5613 5614 next = buf; 5615 next[len] = '\0'; 5616 5617 while ((cur = strsep(&next, ",;\n"))) { 5618 int n; 5619 int end; 5620 char cmd, swap_string[5]; 5621 unsigned int memcg_id; 5622 unsigned int nid; 5623 unsigned long seq; 5624 unsigned int swappiness; 5625 unsigned long opt = -1; 5626 5627 cur = skip_spaces(cur); 5628 if (!*cur) 5629 continue; 5630 5631 n = sscanf(cur, "%c %u %u %lu %n %4s %n %lu %n", &cmd, &memcg_id, &nid, 5632 &seq, &end, swap_string, &end, &opt, &end); 5633 if (n < 4 || cur[end]) { 5634 err = -EINVAL; 5635 break; 5636 } 5637 5638 if (n == 4) { 5639 swappiness = -1; 5640 } else if (!strcmp("max", swap_string)) { 5641 /* set by userspace for anonymous memory only */ 5642 swappiness = SWAPPINESS_ANON_ONLY; 5643 } else { 5644 err = kstrtouint(swap_string, 0, &swappiness); 5645 if (err) 5646 break; 5647 } 5648 5649 err = run_cmd(cmd, memcg_id, nid, seq, &sc, swappiness, opt); 5650 if (err) 5651 break; 5652 } 5653 done: 5654 clear_mm_walk(); 5655 blk_finish_plug(&plug); 5656 memalloc_noreclaim_restore(flags); 5657 set_task_reclaim_state(current, NULL); 5658 5659 kvfree(buf); 5660 5661 return err ? : len; 5662 } 5663 5664 static int lru_gen_seq_open(struct inode *inode, struct file *file) 5665 { 5666 return seq_open(file, &lru_gen_seq_ops); 5667 } 5668 5669 static const struct file_operations lru_gen_rw_fops = { 5670 .open = lru_gen_seq_open, 5671 .read = seq_read, 5672 .write = lru_gen_seq_write, 5673 .llseek = seq_lseek, 5674 .release = seq_release, 5675 }; 5676 5677 static const struct file_operations lru_gen_ro_fops = { 5678 .open = lru_gen_seq_open, 5679 .read = seq_read, 5680 .llseek = seq_lseek, 5681 .release = seq_release, 5682 }; 5683 5684 /****************************************************************************** 5685 * initialization 5686 ******************************************************************************/ 5687 5688 void lru_gen_init_pgdat(struct pglist_data *pgdat) 5689 { 5690 int i, j; 5691 5692 spin_lock_init(&pgdat->memcg_lru.lock); 5693 5694 for (i = 0; i < MEMCG_NR_GENS; i++) { 5695 for (j = 0; j < MEMCG_NR_BINS; j++) 5696 INIT_HLIST_NULLS_HEAD(&pgdat->memcg_lru.fifo[i][j], i); 5697 } 5698 } 5699 5700 void lru_gen_init_lruvec(struct lruvec *lruvec) 5701 { 5702 int i; 5703 int gen, type, zone; 5704 struct lru_gen_folio *lrugen = &lruvec->lrugen; 5705 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 5706 5707 lrugen->max_seq = MIN_NR_GENS + 1; 5708 lrugen->enabled = lru_gen_enabled(); 5709 5710 for (i = 0; i <= MIN_NR_GENS + 1; i++) 5711 lrugen->timestamps[i] = jiffies; 5712 5713 for_each_gen_type_zone(gen, type, zone) 5714 INIT_LIST_HEAD(&lrugen->folios[gen][type][zone]); 5715 5716 if (mm_state) 5717 mm_state->seq = MIN_NR_GENS; 5718 } 5719 5720 #ifdef CONFIG_MEMCG 5721 5722 void lru_gen_init_memcg(struct mem_cgroup *memcg) 5723 { 5724 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 5725 5726 if (!mm_list) 5727 return; 5728 5729 INIT_LIST_HEAD(&mm_list->fifo); 5730 spin_lock_init(&mm_list->lock); 5731 } 5732 5733 void lru_gen_exit_memcg(struct mem_cgroup *memcg) 5734 { 5735 int i; 5736 int nid; 5737 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 5738 5739 VM_WARN_ON_ONCE(mm_list && !list_empty(&mm_list->fifo)); 5740 5741 for_each_node(nid) { 5742 struct lruvec *lruvec = get_lruvec(memcg, nid); 5743 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 5744 5745 VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0, 5746 sizeof(lruvec->lrugen.nr_pages))); 5747 5748 lruvec->lrugen.list.next = LIST_POISON1; 5749 5750 if (!mm_state) 5751 continue; 5752 5753 for (i = 0; i < NR_BLOOM_FILTERS; i++) { 5754 bitmap_free(mm_state->filters[i]); 5755 mm_state->filters[i] = NULL; 5756 } 5757 } 5758 } 5759 5760 #endif /* CONFIG_MEMCG */ 5761 5762 static int __init init_lru_gen(void) 5763 { 5764 BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS); 5765 BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS); 5766 5767 if (sysfs_create_group(mm_kobj, &lru_gen_attr_group)) 5768 pr_err("lru_gen: failed to create sysfs group\n"); 5769 5770 debugfs_create_file_aux_num("lru_gen", 0644, NULL, NULL, false, 5771 &lru_gen_rw_fops); 5772 debugfs_create_file_aux_num("lru_gen_full", 0444, NULL, NULL, true, 5773 &lru_gen_ro_fops); 5774 5775 return 0; 5776 }; 5777 late_initcall(init_lru_gen); 5778 5779 #else /* !CONFIG_LRU_GEN */ 5780 5781 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc) 5782 { 5783 BUILD_BUG(); 5784 } 5785 5786 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 5787 { 5788 BUILD_BUG(); 5789 } 5790 5791 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc) 5792 { 5793 BUILD_BUG(); 5794 } 5795 5796 #endif /* CONFIG_LRU_GEN */ 5797 5798 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 5799 { 5800 unsigned long nr[NR_LRU_LISTS]; 5801 unsigned long targets[NR_LRU_LISTS]; 5802 unsigned long nr_to_scan; 5803 enum lru_list lru; 5804 unsigned long nr_reclaimed = 0; 5805 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 5806 bool proportional_reclaim; 5807 struct blk_plug plug; 5808 5809 if (lru_gen_enabled() && !root_reclaim(sc)) { 5810 lru_gen_shrink_lruvec(lruvec, sc); 5811 return; 5812 } 5813 5814 get_scan_count(lruvec, sc, nr); 5815 5816 /* Record the original scan target for proportional adjustments later */ 5817 memcpy(targets, nr, sizeof(nr)); 5818 5819 /* 5820 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal 5821 * event that can occur when there is little memory pressure e.g. 5822 * multiple streaming readers/writers. Hence, we do not abort scanning 5823 * when the requested number of pages are reclaimed when scanning at 5824 * DEF_PRIORITY on the assumption that the fact we are direct 5825 * reclaiming implies that kswapd is not keeping up and it is best to 5826 * do a batch of work at once. For memcg reclaim one check is made to 5827 * abort proportional reclaim if either the file or anon lru has already 5828 * dropped to zero at the first pass. 5829 */ 5830 proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() && 5831 sc->priority == DEF_PRIORITY); 5832 5833 blk_start_plug(&plug); 5834 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 5835 nr[LRU_INACTIVE_FILE]) { 5836 unsigned long nr_anon, nr_file, percentage; 5837 unsigned long nr_scanned; 5838 5839 for_each_evictable_lru(lru) { 5840 if (nr[lru]) { 5841 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 5842 nr[lru] -= nr_to_scan; 5843 5844 nr_reclaimed += shrink_list(lru, nr_to_scan, 5845 lruvec, sc); 5846 } 5847 } 5848 5849 cond_resched(); 5850 5851 if (nr_reclaimed < nr_to_reclaim || proportional_reclaim) 5852 continue; 5853 5854 /* 5855 * For kswapd and memcg, reclaim at least the number of pages 5856 * requested. Ensure that the anon and file LRUs are scanned 5857 * proportionally what was requested by get_scan_count(). We 5858 * stop reclaiming one LRU and reduce the amount scanning 5859 * proportional to the original scan target. 5860 */ 5861 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 5862 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 5863 5864 /* 5865 * It's just vindictive to attack the larger once the smaller 5866 * has gone to zero. And given the way we stop scanning the 5867 * smaller below, this makes sure that we only make one nudge 5868 * towards proportionality once we've got nr_to_reclaim. 5869 */ 5870 if (!nr_file || !nr_anon) 5871 break; 5872 5873 if (nr_file > nr_anon) { 5874 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 5875 targets[LRU_ACTIVE_ANON] + 1; 5876 lru = LRU_BASE; 5877 percentage = nr_anon * 100 / scan_target; 5878 } else { 5879 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 5880 targets[LRU_ACTIVE_FILE] + 1; 5881 lru = LRU_FILE; 5882 percentage = nr_file * 100 / scan_target; 5883 } 5884 5885 /* Stop scanning the smaller of the LRU */ 5886 nr[lru] = 0; 5887 nr[lru + LRU_ACTIVE] = 0; 5888 5889 /* 5890 * Recalculate the other LRU scan count based on its original 5891 * scan target and the percentage scanning already complete 5892 */ 5893 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 5894 nr_scanned = targets[lru] - nr[lru]; 5895 nr[lru] = targets[lru] * (100 - percentage) / 100; 5896 nr[lru] -= min(nr[lru], nr_scanned); 5897 5898 lru += LRU_ACTIVE; 5899 nr_scanned = targets[lru] - nr[lru]; 5900 nr[lru] = targets[lru] * (100 - percentage) / 100; 5901 nr[lru] -= min(nr[lru], nr_scanned); 5902 } 5903 blk_finish_plug(&plug); 5904 sc->nr_reclaimed += nr_reclaimed; 5905 5906 /* 5907 * Even if we did not try to evict anon pages at all, we want to 5908 * rebalance the anon lru active/inactive ratio. 5909 */ 5910 if (can_age_anon_pages(lruvec, sc) && 5911 inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 5912 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 5913 sc, LRU_ACTIVE_ANON); 5914 } 5915 5916 /* Use reclaim/compaction for costly allocs or under memory pressure */ 5917 static bool in_reclaim_compaction(struct scan_control *sc) 5918 { 5919 if (gfp_compaction_allowed(sc->gfp_mask) && sc->order && 5920 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 5921 sc->priority < DEF_PRIORITY - 2)) 5922 return true; 5923 5924 return false; 5925 } 5926 5927 /* 5928 * Reclaim/compaction is used for high-order allocation requests. It reclaims 5929 * order-0 pages before compacting the zone. should_continue_reclaim() returns 5930 * true if more pages should be reclaimed such that when the page allocator 5931 * calls try_to_compact_pages() that it will have enough free pages to succeed. 5932 * It will give up earlier than that if there is difficulty reclaiming pages. 5933 */ 5934 static inline bool should_continue_reclaim(struct pglist_data *pgdat, 5935 unsigned long nr_reclaimed, 5936 struct scan_control *sc) 5937 { 5938 unsigned long pages_for_compaction; 5939 unsigned long inactive_lru_pages; 5940 int z; 5941 struct zone *zone; 5942 5943 /* If not in reclaim/compaction mode, stop */ 5944 if (!in_reclaim_compaction(sc)) 5945 return false; 5946 5947 /* 5948 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX 5949 * number of pages that were scanned. This will return to the caller 5950 * with the risk reclaim/compaction and the resulting allocation attempt 5951 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL 5952 * allocations through requiring that the full LRU list has been scanned 5953 * first, by assuming that zero delta of sc->nr_scanned means full LRU 5954 * scan, but that approximation was wrong, and there were corner cases 5955 * where always a non-zero amount of pages were scanned. 5956 */ 5957 if (!nr_reclaimed) 5958 return false; 5959 5960 /* If compaction would go ahead or the allocation would succeed, stop */ 5961 for_each_managed_zone_pgdat(zone, pgdat, z, sc->reclaim_idx) { 5962 unsigned long watermark = min_wmark_pages(zone); 5963 5964 /* Allocation can already succeed, nothing to do */ 5965 if (zone_watermark_ok(zone, sc->order, watermark, 5966 sc->reclaim_idx, 0)) 5967 return false; 5968 5969 if (compaction_suitable(zone, sc->order, watermark, 5970 sc->reclaim_idx)) 5971 return false; 5972 } 5973 5974 /* 5975 * If we have not reclaimed enough pages for compaction and the 5976 * inactive lists are large enough, continue reclaiming 5977 */ 5978 pages_for_compaction = compact_gap(sc->order); 5979 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE); 5980 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc)) 5981 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON); 5982 5983 return inactive_lru_pages > pages_for_compaction; 5984 } 5985 5986 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc) 5987 { 5988 struct mem_cgroup *target_memcg = sc->target_mem_cgroup; 5989 struct mem_cgroup_reclaim_cookie reclaim = { 5990 .pgdat = pgdat, 5991 }; 5992 struct mem_cgroup_reclaim_cookie *partial = &reclaim; 5993 struct mem_cgroup *memcg; 5994 5995 /* 5996 * In most cases, direct reclaimers can do partial walks 5997 * through the cgroup tree, using an iterator state that 5998 * persists across invocations. This strikes a balance between 5999 * fairness and allocation latency. 6000 * 6001 * For kswapd, reliable forward progress is more important 6002 * than a quick return to idle. Always do full walks. 6003 */ 6004 if (current_is_kswapd() || sc->memcg_full_walk) 6005 partial = NULL; 6006 6007 memcg = mem_cgroup_iter(target_memcg, NULL, partial); 6008 do { 6009 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 6010 unsigned long reclaimed; 6011 unsigned long scanned; 6012 6013 /* 6014 * This loop can become CPU-bound when target memcgs 6015 * aren't eligible for reclaim - either because they 6016 * don't have any reclaimable pages, or because their 6017 * memory is explicitly protected. Avoid soft lockups. 6018 */ 6019 cond_resched(); 6020 6021 mem_cgroup_calculate_protection(target_memcg, memcg); 6022 6023 if (mem_cgroup_below_min(target_memcg, memcg)) { 6024 /* 6025 * Hard protection. 6026 * If there is no reclaimable memory, OOM. 6027 */ 6028 continue; 6029 } else if (mem_cgroup_below_low(target_memcg, memcg)) { 6030 /* 6031 * Soft protection. 6032 * Respect the protection only as long as 6033 * there is an unprotected supply 6034 * of reclaimable memory from other cgroups. 6035 */ 6036 if (!sc->memcg_low_reclaim) { 6037 sc->memcg_low_skipped = 1; 6038 continue; 6039 } 6040 memcg_memory_event(memcg, MEMCG_LOW); 6041 } 6042 6043 reclaimed = sc->nr_reclaimed; 6044 scanned = sc->nr_scanned; 6045 6046 shrink_lruvec(lruvec, sc); 6047 6048 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, 6049 sc->priority); 6050 6051 /* Record the group's reclaim efficiency */ 6052 if (!sc->proactive) 6053 vmpressure(sc->gfp_mask, memcg, false, 6054 sc->nr_scanned - scanned, 6055 sc->nr_reclaimed - reclaimed); 6056 6057 /* If partial walks are allowed, bail once goal is reached */ 6058 if (partial && sc->nr_reclaimed >= sc->nr_to_reclaim) { 6059 mem_cgroup_iter_break(target_memcg, memcg); 6060 break; 6061 } 6062 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, partial))); 6063 } 6064 6065 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc) 6066 { 6067 unsigned long nr_reclaimed, nr_scanned, nr_node_reclaimed; 6068 struct lruvec *target_lruvec; 6069 bool reclaimable = false; 6070 6071 if (lru_gen_enabled() && root_reclaim(sc)) { 6072 memset(&sc->nr, 0, sizeof(sc->nr)); 6073 lru_gen_shrink_node(pgdat, sc); 6074 return; 6075 } 6076 6077 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat); 6078 6079 again: 6080 memset(&sc->nr, 0, sizeof(sc->nr)); 6081 6082 nr_reclaimed = sc->nr_reclaimed; 6083 nr_scanned = sc->nr_scanned; 6084 6085 prepare_scan_control(pgdat, sc); 6086 6087 shrink_node_memcgs(pgdat, sc); 6088 6089 flush_reclaim_state(sc); 6090 6091 nr_node_reclaimed = sc->nr_reclaimed - nr_reclaimed; 6092 6093 /* Record the subtree's reclaim efficiency */ 6094 if (!sc->proactive) 6095 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, 6096 sc->nr_scanned - nr_scanned, nr_node_reclaimed); 6097 6098 if (nr_node_reclaimed) 6099 reclaimable = true; 6100 6101 if (current_is_kswapd()) { 6102 /* 6103 * If reclaim is isolating dirty pages under writeback, 6104 * it implies that the long-lived page allocation rate 6105 * is exceeding the page laundering rate. Either the 6106 * global limits are not being effective at throttling 6107 * processes due to the page distribution throughout 6108 * zones or there is heavy usage of a slow backing 6109 * device. The only option is to throttle from reclaim 6110 * context which is not ideal as there is no guarantee 6111 * the dirtying process is throttled in the same way 6112 * balance_dirty_pages() manages. 6113 * 6114 * Once a node is flagged PGDAT_WRITEBACK, kswapd will 6115 * count the number of pages under pages flagged for 6116 * immediate reclaim and stall if any are encountered 6117 * in the nr_immediate check below. 6118 */ 6119 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken) 6120 set_bit(PGDAT_WRITEBACK, &pgdat->flags); 6121 6122 /* Allow kswapd to start writing pages during reclaim.*/ 6123 if (sc->nr.unqueued_dirty && 6124 sc->nr.unqueued_dirty == sc->nr.file_taken) 6125 set_bit(PGDAT_DIRTY, &pgdat->flags); 6126 6127 /* 6128 * If kswapd scans pages marked for immediate 6129 * reclaim and under writeback (nr_immediate), it 6130 * implies that pages are cycling through the LRU 6131 * faster than they are written so forcibly stall 6132 * until some pages complete writeback. 6133 */ 6134 if (sc->nr.immediate) 6135 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK); 6136 } 6137 6138 /* 6139 * Tag a node/memcg as congested if all the dirty pages were marked 6140 * for writeback and immediate reclaim (counted in nr.congested). 6141 * 6142 * Legacy memcg will stall in page writeback so avoid forcibly 6143 * stalling in reclaim_throttle(). 6144 */ 6145 if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested) { 6146 if (cgroup_reclaim(sc) && writeback_throttling_sane(sc)) 6147 set_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags); 6148 6149 if (current_is_kswapd()) 6150 set_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags); 6151 } 6152 6153 /* 6154 * Stall direct reclaim for IO completions if the lruvec is 6155 * node is congested. Allow kswapd to continue until it 6156 * starts encountering unqueued dirty pages or cycling through 6157 * the LRU too quickly. 6158 */ 6159 if (!current_is_kswapd() && current_may_throttle() && 6160 !sc->hibernation_mode && 6161 (test_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags) || 6162 test_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags))) 6163 reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED); 6164 6165 if (should_continue_reclaim(pgdat, nr_node_reclaimed, sc)) 6166 goto again; 6167 6168 /* 6169 * Kswapd gives up on balancing particular nodes after too 6170 * many failures to reclaim anything from them and goes to 6171 * sleep. On reclaim progress, reset the failure counter. A 6172 * successful direct reclaim run will revive a dormant kswapd. 6173 */ 6174 if (reclaimable) 6175 pgdat->kswapd_failures = 0; 6176 else if (sc->cache_trim_mode) 6177 sc->cache_trim_mode_failed = 1; 6178 } 6179 6180 /* 6181 * Returns true if compaction should go ahead for a costly-order request, or 6182 * the allocation would already succeed without compaction. Return false if we 6183 * should reclaim first. 6184 */ 6185 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) 6186 { 6187 unsigned long watermark; 6188 6189 if (!gfp_compaction_allowed(sc->gfp_mask)) 6190 return false; 6191 6192 /* Allocation can already succeed, nothing to do */ 6193 if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone), 6194 sc->reclaim_idx, 0)) 6195 return true; 6196 6197 /* 6198 * Direct reclaim usually targets the min watermark, but compaction 6199 * takes time to run and there are potentially other callers using the 6200 * pages just freed. So target a higher buffer to give compaction a 6201 * reasonable chance of completing and allocating the pages. 6202 * 6203 * Note that we won't actually reclaim the whole buffer in one attempt 6204 * as the target watermark in should_continue_reclaim() is lower. But if 6205 * we are already above the high+gap watermark, don't reclaim at all. 6206 */ 6207 watermark = high_wmark_pages(zone); 6208 if (compaction_suitable(zone, sc->order, watermark, sc->reclaim_idx)) 6209 return true; 6210 6211 return false; 6212 } 6213 6214 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc) 6215 { 6216 /* 6217 * If reclaim is making progress greater than 12% efficiency then 6218 * wake all the NOPROGRESS throttled tasks. 6219 */ 6220 if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) { 6221 wait_queue_head_t *wqh; 6222 6223 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS]; 6224 if (waitqueue_active(wqh)) 6225 wake_up(wqh); 6226 6227 return; 6228 } 6229 6230 /* 6231 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will 6232 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages 6233 * under writeback and marked for immediate reclaim at the tail of the 6234 * LRU. 6235 */ 6236 if (current_is_kswapd() || cgroup_reclaim(sc)) 6237 return; 6238 6239 /* Throttle if making no progress at high prioities. */ 6240 if (sc->priority == 1 && !sc->nr_reclaimed) 6241 reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS); 6242 } 6243 6244 /* 6245 * This is the direct reclaim path, for page-allocating processes. We only 6246 * try to reclaim pages from zones which will satisfy the caller's allocation 6247 * request. 6248 * 6249 * If a zone is deemed to be full of pinned pages then just give it a light 6250 * scan then give up on it. 6251 */ 6252 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 6253 { 6254 struct zoneref *z; 6255 struct zone *zone; 6256 unsigned long nr_soft_reclaimed; 6257 unsigned long nr_soft_scanned; 6258 gfp_t orig_mask; 6259 pg_data_t *last_pgdat = NULL; 6260 pg_data_t *first_pgdat = NULL; 6261 6262 /* 6263 * If the number of buffer_heads in the machine exceeds the maximum 6264 * allowed level, force direct reclaim to scan the highmem zone as 6265 * highmem pages could be pinning lowmem pages storing buffer_heads 6266 */ 6267 orig_mask = sc->gfp_mask; 6268 if (buffer_heads_over_limit) { 6269 sc->gfp_mask |= __GFP_HIGHMEM; 6270 sc->reclaim_idx = gfp_zone(sc->gfp_mask); 6271 } 6272 6273 for_each_zone_zonelist_nodemask(zone, z, zonelist, 6274 sc->reclaim_idx, sc->nodemask) { 6275 /* 6276 * Take care memory controller reclaiming has small influence 6277 * to global LRU. 6278 */ 6279 if (!cgroup_reclaim(sc)) { 6280 if (!cpuset_zone_allowed(zone, 6281 GFP_KERNEL | __GFP_HARDWALL)) 6282 continue; 6283 6284 /* 6285 * If we already have plenty of memory free for 6286 * compaction in this zone, don't free any more. 6287 * Even though compaction is invoked for any 6288 * non-zero order, only frequent costly order 6289 * reclamation is disruptive enough to become a 6290 * noticeable problem, like transparent huge 6291 * page allocations. 6292 */ 6293 if (IS_ENABLED(CONFIG_COMPACTION) && 6294 sc->order > PAGE_ALLOC_COSTLY_ORDER && 6295 compaction_ready(zone, sc)) { 6296 sc->compaction_ready = true; 6297 continue; 6298 } 6299 6300 /* 6301 * Shrink each node in the zonelist once. If the 6302 * zonelist is ordered by zone (not the default) then a 6303 * node may be shrunk multiple times but in that case 6304 * the user prefers lower zones being preserved. 6305 */ 6306 if (zone->zone_pgdat == last_pgdat) 6307 continue; 6308 6309 /* 6310 * This steals pages from memory cgroups over softlimit 6311 * and returns the number of reclaimed pages and 6312 * scanned pages. This works for global memory pressure 6313 * and balancing, not for a memcg's limit. 6314 */ 6315 nr_soft_scanned = 0; 6316 nr_soft_reclaimed = memcg1_soft_limit_reclaim(zone->zone_pgdat, 6317 sc->order, sc->gfp_mask, 6318 &nr_soft_scanned); 6319 sc->nr_reclaimed += nr_soft_reclaimed; 6320 sc->nr_scanned += nr_soft_scanned; 6321 /* need some check for avoid more shrink_zone() */ 6322 } 6323 6324 if (!first_pgdat) 6325 first_pgdat = zone->zone_pgdat; 6326 6327 /* See comment about same check for global reclaim above */ 6328 if (zone->zone_pgdat == last_pgdat) 6329 continue; 6330 last_pgdat = zone->zone_pgdat; 6331 shrink_node(zone->zone_pgdat, sc); 6332 } 6333 6334 if (first_pgdat) 6335 consider_reclaim_throttle(first_pgdat, sc); 6336 6337 /* 6338 * Restore to original mask to avoid the impact on the caller if we 6339 * promoted it to __GFP_HIGHMEM. 6340 */ 6341 sc->gfp_mask = orig_mask; 6342 } 6343 6344 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat) 6345 { 6346 struct lruvec *target_lruvec; 6347 unsigned long refaults; 6348 6349 if (lru_gen_enabled()) 6350 return; 6351 6352 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat); 6353 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON); 6354 target_lruvec->refaults[WORKINGSET_ANON] = refaults; 6355 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE); 6356 target_lruvec->refaults[WORKINGSET_FILE] = refaults; 6357 } 6358 6359 /* 6360 * This is the main entry point to direct page reclaim. 6361 * 6362 * If a full scan of the inactive list fails to free enough memory then we 6363 * are "out of memory" and something needs to be killed. 6364 * 6365 * If the caller is !__GFP_FS then the probability of a failure is reasonably 6366 * high - the zone may be full of dirty or under-writeback pages, which this 6367 * caller can't do much about. We kick the writeback threads and take explicit 6368 * naps in the hope that some of these pages can be written. But if the 6369 * allocating task holds filesystem locks which prevent writeout this might not 6370 * work, and the allocation attempt will fail. 6371 * 6372 * returns: 0, if no pages reclaimed 6373 * else, the number of pages reclaimed 6374 */ 6375 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 6376 struct scan_control *sc) 6377 { 6378 int initial_priority = sc->priority; 6379 pg_data_t *last_pgdat; 6380 struct zoneref *z; 6381 struct zone *zone; 6382 retry: 6383 delayacct_freepages_start(); 6384 6385 if (!cgroup_reclaim(sc)) 6386 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1); 6387 6388 do { 6389 if (!sc->proactive) 6390 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 6391 sc->priority); 6392 sc->nr_scanned = 0; 6393 shrink_zones(zonelist, sc); 6394 6395 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 6396 break; 6397 6398 if (sc->compaction_ready) 6399 break; 6400 6401 /* 6402 * If we're getting trouble reclaiming, start doing 6403 * writepage even in laptop mode. 6404 */ 6405 if (sc->priority < DEF_PRIORITY - 2) 6406 sc->may_writepage = 1; 6407 } while (--sc->priority >= 0); 6408 6409 last_pgdat = NULL; 6410 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx, 6411 sc->nodemask) { 6412 if (zone->zone_pgdat == last_pgdat) 6413 continue; 6414 last_pgdat = zone->zone_pgdat; 6415 6416 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat); 6417 6418 if (cgroup_reclaim(sc)) { 6419 struct lruvec *lruvec; 6420 6421 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, 6422 zone->zone_pgdat); 6423 clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags); 6424 } 6425 } 6426 6427 delayacct_freepages_end(); 6428 6429 if (sc->nr_reclaimed) 6430 return sc->nr_reclaimed; 6431 6432 /* Aborted reclaim to try compaction? don't OOM, then */ 6433 if (sc->compaction_ready) 6434 return 1; 6435 6436 /* 6437 * In most cases, direct reclaimers can do partial walks 6438 * through the cgroup tree to meet the reclaim goal while 6439 * keeping latency low. Since the iterator state is shared 6440 * among all direct reclaim invocations (to retain fairness 6441 * among cgroups), though, high concurrency can result in 6442 * individual threads not seeing enough cgroups to make 6443 * meaningful forward progress. Avoid false OOMs in this case. 6444 */ 6445 if (!sc->memcg_full_walk) { 6446 sc->priority = initial_priority; 6447 sc->memcg_full_walk = 1; 6448 goto retry; 6449 } 6450 6451 /* 6452 * We make inactive:active ratio decisions based on the node's 6453 * composition of memory, but a restrictive reclaim_idx or a 6454 * memory.low cgroup setting can exempt large amounts of 6455 * memory from reclaim. Neither of which are very common, so 6456 * instead of doing costly eligibility calculations of the 6457 * entire cgroup subtree up front, we assume the estimates are 6458 * good, and retry with forcible deactivation if that fails. 6459 */ 6460 if (sc->skipped_deactivate) { 6461 sc->priority = initial_priority; 6462 sc->force_deactivate = 1; 6463 sc->skipped_deactivate = 0; 6464 goto retry; 6465 } 6466 6467 /* Untapped cgroup reserves? Don't OOM, retry. */ 6468 if (sc->memcg_low_skipped) { 6469 sc->priority = initial_priority; 6470 sc->force_deactivate = 0; 6471 sc->memcg_low_reclaim = 1; 6472 sc->memcg_low_skipped = 0; 6473 goto retry; 6474 } 6475 6476 return 0; 6477 } 6478 6479 static bool allow_direct_reclaim(pg_data_t *pgdat) 6480 { 6481 struct zone *zone; 6482 unsigned long pfmemalloc_reserve = 0; 6483 unsigned long free_pages = 0; 6484 int i; 6485 bool wmark_ok; 6486 6487 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 6488 return true; 6489 6490 for_each_managed_zone_pgdat(zone, pgdat, i, ZONE_NORMAL) { 6491 if (!zone_reclaimable_pages(zone) && zone_page_state_snapshot(zone, NR_FREE_PAGES)) 6492 continue; 6493 6494 pfmemalloc_reserve += min_wmark_pages(zone); 6495 free_pages += zone_page_state_snapshot(zone, NR_FREE_PAGES); 6496 } 6497 6498 /* If there are no reserves (unexpected config) then do not throttle */ 6499 if (!pfmemalloc_reserve) 6500 return true; 6501 6502 wmark_ok = free_pages > pfmemalloc_reserve / 2; 6503 6504 /* kswapd must be awake if processes are being throttled */ 6505 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 6506 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL) 6507 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL); 6508 6509 wake_up_interruptible(&pgdat->kswapd_wait); 6510 } 6511 6512 return wmark_ok; 6513 } 6514 6515 /* 6516 * Throttle direct reclaimers if backing storage is backed by the network 6517 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 6518 * depleted. kswapd will continue to make progress and wake the processes 6519 * when the low watermark is reached. 6520 * 6521 * Returns true if a fatal signal was delivered during throttling. If this 6522 * happens, the page allocator should not consider triggering the OOM killer. 6523 */ 6524 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 6525 nodemask_t *nodemask) 6526 { 6527 struct zoneref *z; 6528 struct zone *zone; 6529 pg_data_t *pgdat = NULL; 6530 6531 /* 6532 * Kernel threads should not be throttled as they may be indirectly 6533 * responsible for cleaning pages necessary for reclaim to make forward 6534 * progress. kjournald for example may enter direct reclaim while 6535 * committing a transaction where throttling it could forcing other 6536 * processes to block on log_wait_commit(). 6537 */ 6538 if (current->flags & PF_KTHREAD) 6539 goto out; 6540 6541 /* 6542 * If a fatal signal is pending, this process should not throttle. 6543 * It should return quickly so it can exit and free its memory 6544 */ 6545 if (fatal_signal_pending(current)) 6546 goto out; 6547 6548 /* 6549 * Check if the pfmemalloc reserves are ok by finding the first node 6550 * with a usable ZONE_NORMAL or lower zone. The expectation is that 6551 * GFP_KERNEL will be required for allocating network buffers when 6552 * swapping over the network so ZONE_HIGHMEM is unusable. 6553 * 6554 * Throttling is based on the first usable node and throttled processes 6555 * wait on a queue until kswapd makes progress and wakes them. There 6556 * is an affinity then between processes waking up and where reclaim 6557 * progress has been made assuming the process wakes on the same node. 6558 * More importantly, processes running on remote nodes will not compete 6559 * for remote pfmemalloc reserves and processes on different nodes 6560 * should make reasonable progress. 6561 */ 6562 for_each_zone_zonelist_nodemask(zone, z, zonelist, 6563 gfp_zone(gfp_mask), nodemask) { 6564 if (zone_idx(zone) > ZONE_NORMAL) 6565 continue; 6566 6567 /* Throttle based on the first usable node */ 6568 pgdat = zone->zone_pgdat; 6569 if (allow_direct_reclaim(pgdat)) 6570 goto out; 6571 break; 6572 } 6573 6574 /* If no zone was usable by the allocation flags then do not throttle */ 6575 if (!pgdat) 6576 goto out; 6577 6578 /* Account for the throttling */ 6579 count_vm_event(PGSCAN_DIRECT_THROTTLE); 6580 6581 /* 6582 * If the caller cannot enter the filesystem, it's possible that it 6583 * is due to the caller holding an FS lock or performing a journal 6584 * transaction in the case of a filesystem like ext[3|4]. In this case, 6585 * it is not safe to block on pfmemalloc_wait as kswapd could be 6586 * blocked waiting on the same lock. Instead, throttle for up to a 6587 * second before continuing. 6588 */ 6589 if (!(gfp_mask & __GFP_FS)) 6590 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 6591 allow_direct_reclaim(pgdat), HZ); 6592 else 6593 /* Throttle until kswapd wakes the process */ 6594 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 6595 allow_direct_reclaim(pgdat)); 6596 6597 if (fatal_signal_pending(current)) 6598 return true; 6599 6600 out: 6601 return false; 6602 } 6603 6604 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 6605 gfp_t gfp_mask, nodemask_t *nodemask) 6606 { 6607 unsigned long nr_reclaimed; 6608 struct scan_control sc = { 6609 .nr_to_reclaim = SWAP_CLUSTER_MAX, 6610 .gfp_mask = current_gfp_context(gfp_mask), 6611 .reclaim_idx = gfp_zone(gfp_mask), 6612 .order = order, 6613 .nodemask = nodemask, 6614 .priority = DEF_PRIORITY, 6615 .may_writepage = !laptop_mode, 6616 .may_unmap = 1, 6617 .may_swap = 1, 6618 }; 6619 6620 /* 6621 * scan_control uses s8 fields for order, priority, and reclaim_idx. 6622 * Confirm they are large enough for max values. 6623 */ 6624 BUILD_BUG_ON(MAX_PAGE_ORDER >= S8_MAX); 6625 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX); 6626 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX); 6627 6628 /* 6629 * Do not enter reclaim if fatal signal was delivered while throttled. 6630 * 1 is returned so that the page allocator does not OOM kill at this 6631 * point. 6632 */ 6633 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask)) 6634 return 1; 6635 6636 set_task_reclaim_state(current, &sc.reclaim_state); 6637 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask); 6638 6639 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 6640 6641 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 6642 set_task_reclaim_state(current, NULL); 6643 6644 return nr_reclaimed; 6645 } 6646 6647 #ifdef CONFIG_MEMCG 6648 6649 /* Only used by soft limit reclaim. Do not reuse for anything else. */ 6650 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg, 6651 gfp_t gfp_mask, bool noswap, 6652 pg_data_t *pgdat, 6653 unsigned long *nr_scanned) 6654 { 6655 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 6656 struct scan_control sc = { 6657 .nr_to_reclaim = SWAP_CLUSTER_MAX, 6658 .target_mem_cgroup = memcg, 6659 .may_writepage = !laptop_mode, 6660 .may_unmap = 1, 6661 .reclaim_idx = MAX_NR_ZONES - 1, 6662 .may_swap = !noswap, 6663 }; 6664 6665 WARN_ON_ONCE(!current->reclaim_state); 6666 6667 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 6668 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 6669 6670 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 6671 sc.gfp_mask); 6672 6673 /* 6674 * NOTE: Although we can get the priority field, using it 6675 * here is not a good idea, since it limits the pages we can scan. 6676 * if we don't reclaim here, the shrink_node from balance_pgdat 6677 * will pick up pages from other mem cgroup's as well. We hack 6678 * the priority and make it zero. 6679 */ 6680 shrink_lruvec(lruvec, &sc); 6681 6682 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 6683 6684 *nr_scanned = sc.nr_scanned; 6685 6686 return sc.nr_reclaimed; 6687 } 6688 6689 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 6690 unsigned long nr_pages, 6691 gfp_t gfp_mask, 6692 unsigned int reclaim_options, 6693 int *swappiness) 6694 { 6695 unsigned long nr_reclaimed; 6696 unsigned int noreclaim_flag; 6697 struct scan_control sc = { 6698 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 6699 .proactive_swappiness = swappiness, 6700 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) | 6701 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 6702 .reclaim_idx = MAX_NR_ZONES - 1, 6703 .target_mem_cgroup = memcg, 6704 .priority = DEF_PRIORITY, 6705 .may_writepage = !laptop_mode, 6706 .may_unmap = 1, 6707 .may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP), 6708 .proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE), 6709 }; 6710 /* 6711 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put 6712 * equal pressure on all the nodes. This is based on the assumption that 6713 * the reclaim does not bail out early. 6714 */ 6715 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 6716 6717 set_task_reclaim_state(current, &sc.reclaim_state); 6718 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask); 6719 noreclaim_flag = memalloc_noreclaim_save(); 6720 6721 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 6722 6723 memalloc_noreclaim_restore(noreclaim_flag); 6724 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 6725 set_task_reclaim_state(current, NULL); 6726 6727 return nr_reclaimed; 6728 } 6729 #else 6730 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 6731 unsigned long nr_pages, 6732 gfp_t gfp_mask, 6733 unsigned int reclaim_options, 6734 int *swappiness) 6735 { 6736 return 0; 6737 } 6738 #endif 6739 6740 static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc) 6741 { 6742 struct mem_cgroup *memcg; 6743 struct lruvec *lruvec; 6744 6745 if (lru_gen_enabled()) { 6746 lru_gen_age_node(pgdat, sc); 6747 return; 6748 } 6749 6750 lruvec = mem_cgroup_lruvec(NULL, pgdat); 6751 if (!can_age_anon_pages(lruvec, sc)) 6752 return; 6753 6754 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 6755 return; 6756 6757 memcg = mem_cgroup_iter(NULL, NULL, NULL); 6758 do { 6759 lruvec = mem_cgroup_lruvec(memcg, pgdat); 6760 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 6761 sc, LRU_ACTIVE_ANON); 6762 memcg = mem_cgroup_iter(NULL, memcg, NULL); 6763 } while (memcg); 6764 } 6765 6766 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx) 6767 { 6768 int i; 6769 struct zone *zone; 6770 6771 /* 6772 * Check for watermark boosts top-down as the higher zones 6773 * are more likely to be boosted. Both watermarks and boosts 6774 * should not be checked at the same time as reclaim would 6775 * start prematurely when there is no boosting and a lower 6776 * zone is balanced. 6777 */ 6778 for (i = highest_zoneidx; i >= 0; i--) { 6779 zone = pgdat->node_zones + i; 6780 if (!managed_zone(zone)) 6781 continue; 6782 6783 if (zone->watermark_boost) 6784 return true; 6785 } 6786 6787 return false; 6788 } 6789 6790 /* 6791 * Returns true if there is an eligible zone balanced for the request order 6792 * and highest_zoneidx 6793 */ 6794 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx) 6795 { 6796 int i; 6797 unsigned long mark = -1; 6798 struct zone *zone; 6799 6800 /* 6801 * Check watermarks bottom-up as lower zones are more likely to 6802 * meet watermarks. 6803 */ 6804 for_each_managed_zone_pgdat(zone, pgdat, i, highest_zoneidx) { 6805 enum zone_stat_item item; 6806 unsigned long free_pages; 6807 6808 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) 6809 mark = promo_wmark_pages(zone); 6810 else 6811 mark = high_wmark_pages(zone); 6812 6813 /* 6814 * In defrag_mode, watermarks must be met in whole 6815 * blocks to avoid polluting allocator fallbacks. 6816 * 6817 * However, kswapd usually cannot accomplish this on 6818 * its own and needs kcompactd support. Once it's 6819 * reclaimed a compaction gap, and kswapd_shrink_node 6820 * has dropped order, simply ensure there are enough 6821 * base pages for compaction, wake kcompactd & sleep. 6822 */ 6823 if (defrag_mode && order) 6824 item = NR_FREE_PAGES_BLOCKS; 6825 else 6826 item = NR_FREE_PAGES; 6827 6828 /* 6829 * When there is a high number of CPUs in the system, 6830 * the cumulative error from the vmstat per-cpu cache 6831 * can blur the line between the watermarks. In that 6832 * case, be safe and get an accurate snapshot. 6833 * 6834 * TODO: NR_FREE_PAGES_BLOCKS moves in steps of 6835 * pageblock_nr_pages, while the vmstat pcp threshold 6836 * is limited to 125. On many configurations that 6837 * counter won't actually be per-cpu cached. But keep 6838 * things simple for now; revisit when somebody cares. 6839 */ 6840 free_pages = zone_page_state(zone, item); 6841 if (zone->percpu_drift_mark && free_pages < zone->percpu_drift_mark) 6842 free_pages = zone_page_state_snapshot(zone, item); 6843 6844 if (__zone_watermark_ok(zone, order, mark, highest_zoneidx, 6845 0, free_pages)) 6846 return true; 6847 } 6848 6849 /* 6850 * If a node has no managed zone within highest_zoneidx, it does not 6851 * need balancing by definition. This can happen if a zone-restricted 6852 * allocation tries to wake a remote kswapd. 6853 */ 6854 if (mark == -1) 6855 return true; 6856 6857 return false; 6858 } 6859 6860 /* Clear pgdat state for congested, dirty or under writeback. */ 6861 static void clear_pgdat_congested(pg_data_t *pgdat) 6862 { 6863 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat); 6864 6865 clear_bit(LRUVEC_NODE_CONGESTED, &lruvec->flags); 6866 clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags); 6867 clear_bit(PGDAT_DIRTY, &pgdat->flags); 6868 clear_bit(PGDAT_WRITEBACK, &pgdat->flags); 6869 } 6870 6871 /* 6872 * Prepare kswapd for sleeping. This verifies that there are no processes 6873 * waiting in throttle_direct_reclaim() and that watermarks have been met. 6874 * 6875 * Returns true if kswapd is ready to sleep 6876 */ 6877 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, 6878 int highest_zoneidx) 6879 { 6880 /* 6881 * The throttled processes are normally woken up in balance_pgdat() as 6882 * soon as allow_direct_reclaim() is true. But there is a potential 6883 * race between when kswapd checks the watermarks and a process gets 6884 * throttled. There is also a potential race if processes get 6885 * throttled, kswapd wakes, a large process exits thereby balancing the 6886 * zones, which causes kswapd to exit balance_pgdat() before reaching 6887 * the wake up checks. If kswapd is going to sleep, no process should 6888 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If 6889 * the wake up is premature, processes will wake kswapd and get 6890 * throttled again. The difference from wake ups in balance_pgdat() is 6891 * that here we are under prepare_to_wait(). 6892 */ 6893 if (waitqueue_active(&pgdat->pfmemalloc_wait)) 6894 wake_up_all(&pgdat->pfmemalloc_wait); 6895 6896 /* Hopeless node, leave it to direct reclaim */ 6897 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 6898 return true; 6899 6900 if (pgdat_balanced(pgdat, order, highest_zoneidx)) { 6901 clear_pgdat_congested(pgdat); 6902 return true; 6903 } 6904 6905 return false; 6906 } 6907 6908 /* 6909 * kswapd shrinks a node of pages that are at or below the highest usable 6910 * zone that is currently unbalanced. 6911 * 6912 * Returns true if kswapd scanned at least the requested number of pages to 6913 * reclaim or if the lack of progress was due to pages under writeback. 6914 * This is used to determine if the scanning priority needs to be raised. 6915 */ 6916 static bool kswapd_shrink_node(pg_data_t *pgdat, 6917 struct scan_control *sc) 6918 { 6919 struct zone *zone; 6920 int z; 6921 unsigned long nr_reclaimed = sc->nr_reclaimed; 6922 6923 /* Reclaim a number of pages proportional to the number of zones */ 6924 sc->nr_to_reclaim = 0; 6925 for_each_managed_zone_pgdat(zone, pgdat, z, sc->reclaim_idx) { 6926 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX); 6927 } 6928 6929 /* 6930 * Historically care was taken to put equal pressure on all zones but 6931 * now pressure is applied based on node LRU order. 6932 */ 6933 shrink_node(pgdat, sc); 6934 6935 /* 6936 * Fragmentation may mean that the system cannot be rebalanced for 6937 * high-order allocations. If twice the allocation size has been 6938 * reclaimed then recheck watermarks only at order-0 to prevent 6939 * excessive reclaim. Assume that a process requested a high-order 6940 * can direct reclaim/compact. 6941 */ 6942 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order)) 6943 sc->order = 0; 6944 6945 /* account for progress from mm_account_reclaimed_pages() */ 6946 return max(sc->nr_scanned, sc->nr_reclaimed - nr_reclaimed) >= sc->nr_to_reclaim; 6947 } 6948 6949 /* Page allocator PCP high watermark is lowered if reclaim is active. */ 6950 static inline void 6951 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active) 6952 { 6953 int i; 6954 struct zone *zone; 6955 6956 for_each_managed_zone_pgdat(zone, pgdat, i, highest_zoneidx) { 6957 if (active) 6958 set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags); 6959 else 6960 clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags); 6961 } 6962 } 6963 6964 static inline void 6965 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx) 6966 { 6967 update_reclaim_active(pgdat, highest_zoneidx, true); 6968 } 6969 6970 static inline void 6971 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx) 6972 { 6973 update_reclaim_active(pgdat, highest_zoneidx, false); 6974 } 6975 6976 /* 6977 * For kswapd, balance_pgdat() will reclaim pages across a node from zones 6978 * that are eligible for use by the caller until at least one zone is 6979 * balanced. 6980 * 6981 * Returns the order kswapd finished reclaiming at. 6982 * 6983 * kswapd scans the zones in the highmem->normal->dma direction. It skips 6984 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 6985 * found to have free_pages <= high_wmark_pages(zone), any page in that zone 6986 * or lower is eligible for reclaim until at least one usable zone is 6987 * balanced. 6988 */ 6989 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx) 6990 { 6991 int i; 6992 unsigned long nr_soft_reclaimed; 6993 unsigned long nr_soft_scanned; 6994 unsigned long pflags; 6995 unsigned long nr_boost_reclaim; 6996 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, }; 6997 bool boosted; 6998 struct zone *zone; 6999 struct scan_control sc = { 7000 .gfp_mask = GFP_KERNEL, 7001 .order = order, 7002 .may_unmap = 1, 7003 }; 7004 7005 set_task_reclaim_state(current, &sc.reclaim_state); 7006 psi_memstall_enter(&pflags); 7007 __fs_reclaim_acquire(_THIS_IP_); 7008 7009 count_vm_event(PAGEOUTRUN); 7010 7011 /* 7012 * Account for the reclaim boost. Note that the zone boost is left in 7013 * place so that parallel allocations that are near the watermark will 7014 * stall or direct reclaim until kswapd is finished. 7015 */ 7016 nr_boost_reclaim = 0; 7017 for_each_managed_zone_pgdat(zone, pgdat, i, highest_zoneidx) { 7018 nr_boost_reclaim += zone->watermark_boost; 7019 zone_boosts[i] = zone->watermark_boost; 7020 } 7021 boosted = nr_boost_reclaim; 7022 7023 restart: 7024 set_reclaim_active(pgdat, highest_zoneidx); 7025 sc.priority = DEF_PRIORITY; 7026 do { 7027 unsigned long nr_reclaimed = sc.nr_reclaimed; 7028 bool raise_priority = true; 7029 bool balanced; 7030 bool ret; 7031 bool was_frozen; 7032 7033 sc.reclaim_idx = highest_zoneidx; 7034 7035 /* 7036 * If the number of buffer_heads exceeds the maximum allowed 7037 * then consider reclaiming from all zones. This has a dual 7038 * purpose -- on 64-bit systems it is expected that 7039 * buffer_heads are stripped during active rotation. On 32-bit 7040 * systems, highmem pages can pin lowmem memory and shrinking 7041 * buffers can relieve lowmem pressure. Reclaim may still not 7042 * go ahead if all eligible zones for the original allocation 7043 * request are balanced to avoid excessive reclaim from kswapd. 7044 */ 7045 if (buffer_heads_over_limit) { 7046 for (i = MAX_NR_ZONES - 1; i >= 0; i--) { 7047 zone = pgdat->node_zones + i; 7048 if (!managed_zone(zone)) 7049 continue; 7050 7051 sc.reclaim_idx = i; 7052 break; 7053 } 7054 } 7055 7056 /* 7057 * If the pgdat is imbalanced then ignore boosting and preserve 7058 * the watermarks for a later time and restart. Note that the 7059 * zone watermarks will be still reset at the end of balancing 7060 * on the grounds that the normal reclaim should be enough to 7061 * re-evaluate if boosting is required when kswapd next wakes. 7062 */ 7063 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx); 7064 if (!balanced && nr_boost_reclaim) { 7065 nr_boost_reclaim = 0; 7066 goto restart; 7067 } 7068 7069 /* 7070 * If boosting is not active then only reclaim if there are no 7071 * eligible zones. Note that sc.reclaim_idx is not used as 7072 * buffer_heads_over_limit may have adjusted it. 7073 */ 7074 if (!nr_boost_reclaim && balanced) 7075 goto out; 7076 7077 /* Limit the priority of boosting to avoid reclaim writeback */ 7078 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2) 7079 raise_priority = false; 7080 7081 /* 7082 * Do not writeback or swap pages for boosted reclaim. The 7083 * intent is to relieve pressure not issue sub-optimal IO 7084 * from reclaim context. If no pages are reclaimed, the 7085 * reclaim will be aborted. 7086 */ 7087 sc.may_writepage = !laptop_mode && !nr_boost_reclaim; 7088 sc.may_swap = !nr_boost_reclaim; 7089 7090 /* 7091 * Do some background aging, to give pages a chance to be 7092 * referenced before reclaiming. All pages are rotated 7093 * regardless of classzone as this is about consistent aging. 7094 */ 7095 kswapd_age_node(pgdat, &sc); 7096 7097 /* 7098 * If we're getting trouble reclaiming, start doing writepage 7099 * even in laptop mode. 7100 */ 7101 if (sc.priority < DEF_PRIORITY - 2) 7102 sc.may_writepage = 1; 7103 7104 /* Call soft limit reclaim before calling shrink_node. */ 7105 sc.nr_scanned = 0; 7106 nr_soft_scanned = 0; 7107 nr_soft_reclaimed = memcg1_soft_limit_reclaim(pgdat, sc.order, 7108 sc.gfp_mask, &nr_soft_scanned); 7109 sc.nr_reclaimed += nr_soft_reclaimed; 7110 7111 /* 7112 * There should be no need to raise the scanning priority if 7113 * enough pages are already being scanned that that high 7114 * watermark would be met at 100% efficiency. 7115 */ 7116 if (kswapd_shrink_node(pgdat, &sc)) 7117 raise_priority = false; 7118 7119 /* 7120 * If the low watermark is met there is no need for processes 7121 * to be throttled on pfmemalloc_wait as they should not be 7122 * able to safely make forward progress. Wake them 7123 */ 7124 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 7125 allow_direct_reclaim(pgdat)) 7126 wake_up_all(&pgdat->pfmemalloc_wait); 7127 7128 /* Check if kswapd should be suspending */ 7129 __fs_reclaim_release(_THIS_IP_); 7130 ret = kthread_freezable_should_stop(&was_frozen); 7131 __fs_reclaim_acquire(_THIS_IP_); 7132 if (was_frozen || ret) 7133 break; 7134 7135 /* 7136 * Raise priority if scanning rate is too low or there was no 7137 * progress in reclaiming pages 7138 */ 7139 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed; 7140 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed); 7141 7142 /* 7143 * If reclaim made no progress for a boost, stop reclaim as 7144 * IO cannot be queued and it could be an infinite loop in 7145 * extreme circumstances. 7146 */ 7147 if (nr_boost_reclaim && !nr_reclaimed) 7148 break; 7149 7150 if (raise_priority || !nr_reclaimed) 7151 sc.priority--; 7152 } while (sc.priority >= 1); 7153 7154 /* 7155 * Restart only if it went through the priority loop all the way, 7156 * but cache_trim_mode didn't work. 7157 */ 7158 if (!sc.nr_reclaimed && sc.priority < 1 && 7159 !sc.no_cache_trim_mode && sc.cache_trim_mode_failed) { 7160 sc.no_cache_trim_mode = 1; 7161 goto restart; 7162 } 7163 7164 if (!sc.nr_reclaimed) 7165 pgdat->kswapd_failures++; 7166 7167 out: 7168 clear_reclaim_active(pgdat, highest_zoneidx); 7169 7170 /* If reclaim was boosted, account for the reclaim done in this pass */ 7171 if (boosted) { 7172 unsigned long flags; 7173 7174 for (i = 0; i <= highest_zoneidx; i++) { 7175 if (!zone_boosts[i]) 7176 continue; 7177 7178 /* Increments are under the zone lock */ 7179 zone = pgdat->node_zones + i; 7180 spin_lock_irqsave(&zone->lock, flags); 7181 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]); 7182 spin_unlock_irqrestore(&zone->lock, flags); 7183 } 7184 7185 /* 7186 * As there is now likely space, wakeup kcompact to defragment 7187 * pageblocks. 7188 */ 7189 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx); 7190 } 7191 7192 snapshot_refaults(NULL, pgdat); 7193 __fs_reclaim_release(_THIS_IP_); 7194 psi_memstall_leave(&pflags); 7195 set_task_reclaim_state(current, NULL); 7196 7197 /* 7198 * Return the order kswapd stopped reclaiming at as 7199 * prepare_kswapd_sleep() takes it into account. If another caller 7200 * entered the allocator slow path while kswapd was awake, order will 7201 * remain at the higher level. 7202 */ 7203 return sc.order; 7204 } 7205 7206 /* 7207 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to 7208 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is 7209 * not a valid index then either kswapd runs for first time or kswapd couldn't 7210 * sleep after previous reclaim attempt (node is still unbalanced). In that 7211 * case return the zone index of the previous kswapd reclaim cycle. 7212 */ 7213 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat, 7214 enum zone_type prev_highest_zoneidx) 7215 { 7216 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 7217 7218 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx; 7219 } 7220 7221 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order, 7222 unsigned int highest_zoneidx) 7223 { 7224 long remaining = 0; 7225 DEFINE_WAIT(wait); 7226 7227 if (freezing(current) || kthread_should_stop()) 7228 return; 7229 7230 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 7231 7232 /* 7233 * Try to sleep for a short interval. Note that kcompactd will only be 7234 * woken if it is possible to sleep for a short interval. This is 7235 * deliberate on the assumption that if reclaim cannot keep an 7236 * eligible zone balanced that it's also unlikely that compaction will 7237 * succeed. 7238 */ 7239 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 7240 /* 7241 * Compaction records what page blocks it recently failed to 7242 * isolate pages from and skips them in the future scanning. 7243 * When kswapd is going to sleep, it is reasonable to assume 7244 * that pages and compaction may succeed so reset the cache. 7245 */ 7246 reset_isolation_suitable(pgdat); 7247 7248 /* 7249 * We have freed the memory, now we should compact it to make 7250 * allocation of the requested order possible. 7251 */ 7252 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx); 7253 7254 remaining = schedule_timeout(HZ/10); 7255 7256 /* 7257 * If woken prematurely then reset kswapd_highest_zoneidx and 7258 * order. The values will either be from a wakeup request or 7259 * the previous request that slept prematurely. 7260 */ 7261 if (remaining) { 7262 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, 7263 kswapd_highest_zoneidx(pgdat, 7264 highest_zoneidx)); 7265 7266 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order) 7267 WRITE_ONCE(pgdat->kswapd_order, reclaim_order); 7268 } 7269 7270 finish_wait(&pgdat->kswapd_wait, &wait); 7271 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 7272 } 7273 7274 /* 7275 * After a short sleep, check if it was a premature sleep. If not, then 7276 * go fully to sleep until explicitly woken up. 7277 */ 7278 if (!remaining && 7279 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 7280 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 7281 7282 /* 7283 * vmstat counters are not perfectly accurate and the estimated 7284 * value for counters such as NR_FREE_PAGES can deviate from the 7285 * true value by nr_online_cpus * threshold. To avoid the zone 7286 * watermarks being breached while under pressure, we reduce the 7287 * per-cpu vmstat threshold while kswapd is awake and restore 7288 * them before going back to sleep. 7289 */ 7290 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 7291 7292 if (!kthread_should_stop()) 7293 schedule(); 7294 7295 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 7296 } else { 7297 if (remaining) 7298 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 7299 else 7300 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 7301 } 7302 finish_wait(&pgdat->kswapd_wait, &wait); 7303 } 7304 7305 /* 7306 * The background pageout daemon, started as a kernel thread 7307 * from the init process. 7308 * 7309 * This basically trickles out pages so that we have _some_ 7310 * free memory available even if there is no other activity 7311 * that frees anything up. This is needed for things like routing 7312 * etc, where we otherwise might have all activity going on in 7313 * asynchronous contexts that cannot page things out. 7314 * 7315 * If there are applications that are active memory-allocators 7316 * (most normal use), this basically shouldn't matter. 7317 */ 7318 static int kswapd(void *p) 7319 { 7320 unsigned int alloc_order, reclaim_order; 7321 unsigned int highest_zoneidx = MAX_NR_ZONES - 1; 7322 pg_data_t *pgdat = (pg_data_t *)p; 7323 struct task_struct *tsk = current; 7324 7325 /* 7326 * Tell the memory management that we're a "memory allocator", 7327 * and that if we need more memory we should get access to it 7328 * regardless (see "__alloc_pages()"). "kswapd" should 7329 * never get caught in the normal page freeing logic. 7330 * 7331 * (Kswapd normally doesn't need memory anyway, but sometimes 7332 * you need a small amount of memory in order to be able to 7333 * page out something else, and this flag essentially protects 7334 * us from recursively trying to free more memory as we're 7335 * trying to free the first piece of memory in the first place). 7336 */ 7337 tsk->flags |= PF_MEMALLOC | PF_KSWAPD; 7338 set_freezable(); 7339 7340 WRITE_ONCE(pgdat->kswapd_order, 0); 7341 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 7342 atomic_set(&pgdat->nr_writeback_throttled, 0); 7343 for ( ; ; ) { 7344 bool was_frozen; 7345 7346 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order); 7347 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 7348 highest_zoneidx); 7349 7350 kswapd_try_sleep: 7351 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order, 7352 highest_zoneidx); 7353 7354 /* Read the new order and highest_zoneidx */ 7355 alloc_order = READ_ONCE(pgdat->kswapd_order); 7356 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 7357 highest_zoneidx); 7358 WRITE_ONCE(pgdat->kswapd_order, 0); 7359 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 7360 7361 if (kthread_freezable_should_stop(&was_frozen)) 7362 break; 7363 7364 /* 7365 * We can speed up thawing tasks if we don't call balance_pgdat 7366 * after returning from the refrigerator 7367 */ 7368 if (was_frozen) 7369 continue; 7370 7371 /* 7372 * Reclaim begins at the requested order but if a high-order 7373 * reclaim fails then kswapd falls back to reclaiming for 7374 * order-0. If that happens, kswapd will consider sleeping 7375 * for the order it finished reclaiming at (reclaim_order) 7376 * but kcompactd is woken to compact for the original 7377 * request (alloc_order). 7378 */ 7379 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx, 7380 alloc_order); 7381 reclaim_order = balance_pgdat(pgdat, alloc_order, 7382 highest_zoneidx); 7383 if (reclaim_order < alloc_order) 7384 goto kswapd_try_sleep; 7385 } 7386 7387 tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD); 7388 7389 return 0; 7390 } 7391 7392 /* 7393 * A zone is low on free memory or too fragmented for high-order memory. If 7394 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's 7395 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim 7396 * has failed or is not needed, still wake up kcompactd if only compaction is 7397 * needed. 7398 */ 7399 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order, 7400 enum zone_type highest_zoneidx) 7401 { 7402 pg_data_t *pgdat; 7403 enum zone_type curr_idx; 7404 7405 if (!managed_zone(zone)) 7406 return; 7407 7408 if (!cpuset_zone_allowed(zone, gfp_flags)) 7409 return; 7410 7411 pgdat = zone->zone_pgdat; 7412 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 7413 7414 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx) 7415 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx); 7416 7417 if (READ_ONCE(pgdat->kswapd_order) < order) 7418 WRITE_ONCE(pgdat->kswapd_order, order); 7419 7420 if (!waitqueue_active(&pgdat->kswapd_wait)) 7421 return; 7422 7423 /* Hopeless node, leave it to direct reclaim if possible */ 7424 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES || 7425 (pgdat_balanced(pgdat, order, highest_zoneidx) && 7426 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) { 7427 /* 7428 * There may be plenty of free memory available, but it's too 7429 * fragmented for high-order allocations. Wake up kcompactd 7430 * and rely on compaction_suitable() to determine if it's 7431 * needed. If it fails, it will defer subsequent attempts to 7432 * ratelimit its work. 7433 */ 7434 if (!(gfp_flags & __GFP_DIRECT_RECLAIM)) 7435 wakeup_kcompactd(pgdat, order, highest_zoneidx); 7436 return; 7437 } 7438 7439 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order, 7440 gfp_flags); 7441 wake_up_interruptible(&pgdat->kswapd_wait); 7442 } 7443 7444 #ifdef CONFIG_HIBERNATION 7445 /* 7446 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 7447 * freed pages. 7448 * 7449 * Rather than trying to age LRUs the aim is to preserve the overall 7450 * LRU order by reclaiming preferentially 7451 * inactive > active > active referenced > active mapped 7452 */ 7453 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 7454 { 7455 struct scan_control sc = { 7456 .nr_to_reclaim = nr_to_reclaim, 7457 .gfp_mask = GFP_HIGHUSER_MOVABLE, 7458 .reclaim_idx = MAX_NR_ZONES - 1, 7459 .priority = DEF_PRIORITY, 7460 .may_writepage = 1, 7461 .may_unmap = 1, 7462 .may_swap = 1, 7463 .hibernation_mode = 1, 7464 }; 7465 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 7466 unsigned long nr_reclaimed; 7467 unsigned int noreclaim_flag; 7468 7469 fs_reclaim_acquire(sc.gfp_mask); 7470 noreclaim_flag = memalloc_noreclaim_save(); 7471 set_task_reclaim_state(current, &sc.reclaim_state); 7472 7473 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 7474 7475 set_task_reclaim_state(current, NULL); 7476 memalloc_noreclaim_restore(noreclaim_flag); 7477 fs_reclaim_release(sc.gfp_mask); 7478 7479 return nr_reclaimed; 7480 } 7481 #endif /* CONFIG_HIBERNATION */ 7482 7483 /* 7484 * This kswapd start function will be called by init and node-hot-add. 7485 */ 7486 void __meminit kswapd_run(int nid) 7487 { 7488 pg_data_t *pgdat = NODE_DATA(nid); 7489 7490 pgdat_kswapd_lock(pgdat); 7491 if (!pgdat->kswapd) { 7492 pgdat->kswapd = kthread_create_on_node(kswapd, pgdat, nid, "kswapd%d", nid); 7493 if (IS_ERR(pgdat->kswapd)) { 7494 /* failure at boot is fatal */ 7495 pr_err("Failed to start kswapd on node %d,ret=%ld\n", 7496 nid, PTR_ERR(pgdat->kswapd)); 7497 BUG_ON(system_state < SYSTEM_RUNNING); 7498 pgdat->kswapd = NULL; 7499 } else { 7500 wake_up_process(pgdat->kswapd); 7501 } 7502 } 7503 pgdat_kswapd_unlock(pgdat); 7504 } 7505 7506 /* 7507 * Called by memory hotplug when all memory in a node is offlined. Caller must 7508 * be holding mem_hotplug_begin/done(). 7509 */ 7510 void __meminit kswapd_stop(int nid) 7511 { 7512 pg_data_t *pgdat = NODE_DATA(nid); 7513 struct task_struct *kswapd; 7514 7515 pgdat_kswapd_lock(pgdat); 7516 kswapd = pgdat->kswapd; 7517 if (kswapd) { 7518 kthread_stop(kswapd); 7519 pgdat->kswapd = NULL; 7520 } 7521 pgdat_kswapd_unlock(pgdat); 7522 } 7523 7524 static const struct ctl_table vmscan_sysctl_table[] = { 7525 { 7526 .procname = "swappiness", 7527 .data = &vm_swappiness, 7528 .maxlen = sizeof(vm_swappiness), 7529 .mode = 0644, 7530 .proc_handler = proc_dointvec_minmax, 7531 .extra1 = SYSCTL_ZERO, 7532 .extra2 = SYSCTL_TWO_HUNDRED, 7533 }, 7534 #ifdef CONFIG_NUMA 7535 { 7536 .procname = "zone_reclaim_mode", 7537 .data = &node_reclaim_mode, 7538 .maxlen = sizeof(node_reclaim_mode), 7539 .mode = 0644, 7540 .proc_handler = proc_dointvec_minmax, 7541 .extra1 = SYSCTL_ZERO, 7542 } 7543 #endif 7544 }; 7545 7546 static int __init kswapd_init(void) 7547 { 7548 int nid; 7549 7550 swap_setup(); 7551 for_each_node_state(nid, N_MEMORY) 7552 kswapd_run(nid); 7553 register_sysctl_init("vm", vmscan_sysctl_table); 7554 return 0; 7555 } 7556 7557 module_init(kswapd_init) 7558 7559 #ifdef CONFIG_NUMA 7560 /* 7561 * Node reclaim mode 7562 * 7563 * If non-zero call node_reclaim when the number of free pages falls below 7564 * the watermarks. 7565 */ 7566 int node_reclaim_mode __read_mostly; 7567 7568 /* 7569 * Priority for NODE_RECLAIM. This determines the fraction of pages 7570 * of a node considered for each zone_reclaim. 4 scans 1/16th of 7571 * a zone. 7572 */ 7573 #define NODE_RECLAIM_PRIORITY 4 7574 7575 /* 7576 * Percentage of pages in a zone that must be unmapped for node_reclaim to 7577 * occur. 7578 */ 7579 int sysctl_min_unmapped_ratio = 1; 7580 7581 /* 7582 * If the number of slab pages in a zone grows beyond this percentage then 7583 * slab reclaim needs to occur. 7584 */ 7585 int sysctl_min_slab_ratio = 5; 7586 7587 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat) 7588 { 7589 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED); 7590 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) + 7591 node_page_state(pgdat, NR_ACTIVE_FILE); 7592 7593 /* 7594 * It's possible for there to be more file mapped pages than 7595 * accounted for by the pages on the file LRU lists because 7596 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 7597 */ 7598 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 7599 } 7600 7601 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 7602 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat) 7603 { 7604 unsigned long nr_pagecache_reclaimable; 7605 unsigned long delta = 0; 7606 7607 /* 7608 * If RECLAIM_UNMAP is set, then all file pages are considered 7609 * potentially reclaimable. Otherwise, we have to worry about 7610 * pages like swapcache and node_unmapped_file_pages() provides 7611 * a better estimate 7612 */ 7613 if (node_reclaim_mode & RECLAIM_UNMAP) 7614 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES); 7615 else 7616 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat); 7617 7618 /* If we can't clean pages, remove dirty pages from consideration */ 7619 if (!(node_reclaim_mode & RECLAIM_WRITE)) 7620 delta += node_page_state(pgdat, NR_FILE_DIRTY); 7621 7622 /* Watch for any possible underflows due to delta */ 7623 if (unlikely(delta > nr_pagecache_reclaimable)) 7624 delta = nr_pagecache_reclaimable; 7625 7626 return nr_pagecache_reclaimable - delta; 7627 } 7628 7629 /* 7630 * Try to free up some pages from this node through reclaim. 7631 */ 7632 static unsigned long __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, 7633 unsigned long nr_pages, 7634 struct scan_control *sc) 7635 { 7636 struct task_struct *p = current; 7637 unsigned int noreclaim_flag; 7638 unsigned long pflags; 7639 7640 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, sc->order, 7641 sc->gfp_mask); 7642 7643 cond_resched(); 7644 psi_memstall_enter(&pflags); 7645 delayacct_freepages_start(); 7646 fs_reclaim_acquire(sc->gfp_mask); 7647 /* 7648 * We need to be able to allocate from the reserves for RECLAIM_UNMAP 7649 */ 7650 noreclaim_flag = memalloc_noreclaim_save(); 7651 set_task_reclaim_state(p, &sc->reclaim_state); 7652 7653 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages || 7654 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) { 7655 /* 7656 * Free memory by calling shrink node with increasing 7657 * priorities until we have enough memory freed. 7658 */ 7659 do { 7660 shrink_node(pgdat, sc); 7661 } while (sc->nr_reclaimed < nr_pages && --sc->priority >= 0); 7662 } 7663 7664 set_task_reclaim_state(p, NULL); 7665 memalloc_noreclaim_restore(noreclaim_flag); 7666 fs_reclaim_release(sc->gfp_mask); 7667 delayacct_freepages_end(); 7668 psi_memstall_leave(&pflags); 7669 7670 trace_mm_vmscan_node_reclaim_end(sc->nr_reclaimed); 7671 7672 return sc->nr_reclaimed; 7673 } 7674 7675 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 7676 { 7677 int ret; 7678 /* Minimum pages needed in order to stay on node */ 7679 const unsigned long nr_pages = 1 << order; 7680 struct scan_control sc = { 7681 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 7682 .gfp_mask = current_gfp_context(gfp_mask), 7683 .order = order, 7684 .priority = NODE_RECLAIM_PRIORITY, 7685 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE), 7686 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP), 7687 .may_swap = 1, 7688 .reclaim_idx = gfp_zone(gfp_mask), 7689 }; 7690 7691 /* 7692 * Node reclaim reclaims unmapped file backed pages and 7693 * slab pages if we are over the defined limits. 7694 * 7695 * A small portion of unmapped file backed pages is needed for 7696 * file I/O otherwise pages read by file I/O will be immediately 7697 * thrown out if the node is overallocated. So we do not reclaim 7698 * if less than a specified percentage of the node is used by 7699 * unmapped file backed pages. 7700 */ 7701 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages && 7702 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <= 7703 pgdat->min_slab_pages) 7704 return NODE_RECLAIM_FULL; 7705 7706 /* 7707 * Do not scan if the allocation should not be delayed. 7708 */ 7709 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) 7710 return NODE_RECLAIM_NOSCAN; 7711 7712 /* 7713 * Only run node reclaim on the local node or on nodes that do not 7714 * have associated processors. This will favor the local processor 7715 * over remote processors and spread off node memory allocations 7716 * as wide as possible. 7717 */ 7718 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id()) 7719 return NODE_RECLAIM_NOSCAN; 7720 7721 if (test_and_set_bit_lock(PGDAT_RECLAIM_LOCKED, &pgdat->flags)) 7722 return NODE_RECLAIM_NOSCAN; 7723 7724 ret = __node_reclaim(pgdat, gfp_mask, nr_pages, &sc) >= nr_pages; 7725 clear_bit_unlock(PGDAT_RECLAIM_LOCKED, &pgdat->flags); 7726 7727 if (ret) 7728 count_vm_event(PGSCAN_ZONE_RECLAIM_SUCCESS); 7729 else 7730 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 7731 7732 return ret; 7733 } 7734 7735 enum { 7736 MEMORY_RECLAIM_SWAPPINESS = 0, 7737 MEMORY_RECLAIM_SWAPPINESS_MAX, 7738 MEMORY_RECLAIM_NULL, 7739 }; 7740 static const match_table_t tokens = { 7741 { MEMORY_RECLAIM_SWAPPINESS, "swappiness=%d"}, 7742 { MEMORY_RECLAIM_SWAPPINESS_MAX, "swappiness=max"}, 7743 { MEMORY_RECLAIM_NULL, NULL }, 7744 }; 7745 7746 int user_proactive_reclaim(char *buf, 7747 struct mem_cgroup *memcg, pg_data_t *pgdat) 7748 { 7749 unsigned int nr_retries = MAX_RECLAIM_RETRIES; 7750 unsigned long nr_to_reclaim, nr_reclaimed = 0; 7751 int swappiness = -1; 7752 char *old_buf, *start; 7753 substring_t args[MAX_OPT_ARGS]; 7754 gfp_t gfp_mask = GFP_KERNEL; 7755 7756 if (!buf || (!memcg && !pgdat) || (memcg && pgdat)) 7757 return -EINVAL; 7758 7759 buf = strstrip(buf); 7760 7761 old_buf = buf; 7762 nr_to_reclaim = memparse(buf, &buf) / PAGE_SIZE; 7763 if (buf == old_buf) 7764 return -EINVAL; 7765 7766 buf = strstrip(buf); 7767 7768 while ((start = strsep(&buf, " ")) != NULL) { 7769 if (!strlen(start)) 7770 continue; 7771 switch (match_token(start, tokens, args)) { 7772 case MEMORY_RECLAIM_SWAPPINESS: 7773 if (match_int(&args[0], &swappiness)) 7774 return -EINVAL; 7775 if (swappiness < MIN_SWAPPINESS || 7776 swappiness > MAX_SWAPPINESS) 7777 return -EINVAL; 7778 break; 7779 case MEMORY_RECLAIM_SWAPPINESS_MAX: 7780 swappiness = SWAPPINESS_ANON_ONLY; 7781 break; 7782 default: 7783 return -EINVAL; 7784 } 7785 } 7786 7787 while (nr_reclaimed < nr_to_reclaim) { 7788 /* Will converge on zero, but reclaim enforces a minimum */ 7789 unsigned long batch_size = (nr_to_reclaim - nr_reclaimed) / 4; 7790 unsigned long reclaimed; 7791 7792 if (signal_pending(current)) 7793 return -EINTR; 7794 7795 /* 7796 * This is the final attempt, drain percpu lru caches in the 7797 * hope of introducing more evictable pages. 7798 */ 7799 if (!nr_retries) 7800 lru_add_drain_all(); 7801 7802 if (memcg) { 7803 unsigned int reclaim_options; 7804 7805 reclaim_options = MEMCG_RECLAIM_MAY_SWAP | 7806 MEMCG_RECLAIM_PROACTIVE; 7807 reclaimed = try_to_free_mem_cgroup_pages(memcg, 7808 batch_size, gfp_mask, 7809 reclaim_options, 7810 swappiness == -1 ? NULL : &swappiness); 7811 } else { 7812 struct scan_control sc = { 7813 .gfp_mask = current_gfp_context(gfp_mask), 7814 .reclaim_idx = gfp_zone(gfp_mask), 7815 .proactive_swappiness = swappiness == -1 ? NULL : &swappiness, 7816 .priority = DEF_PRIORITY, 7817 .may_writepage = !laptop_mode, 7818 .nr_to_reclaim = max(batch_size, SWAP_CLUSTER_MAX), 7819 .may_unmap = 1, 7820 .may_swap = 1, 7821 .proactive = 1, 7822 }; 7823 7824 if (test_and_set_bit_lock(PGDAT_RECLAIM_LOCKED, 7825 &pgdat->flags)) 7826 return -EBUSY; 7827 7828 reclaimed = __node_reclaim(pgdat, gfp_mask, 7829 batch_size, &sc); 7830 clear_bit_unlock(PGDAT_RECLAIM_LOCKED, &pgdat->flags); 7831 } 7832 7833 if (!reclaimed && !nr_retries--) 7834 return -EAGAIN; 7835 7836 nr_reclaimed += reclaimed; 7837 } 7838 7839 return 0; 7840 } 7841 7842 #endif 7843 7844 /** 7845 * check_move_unevictable_folios - Move evictable folios to appropriate zone 7846 * lru list 7847 * @fbatch: Batch of lru folios to check. 7848 * 7849 * Checks folios for evictability, if an evictable folio is in the unevictable 7850 * lru list, moves it to the appropriate evictable lru list. This function 7851 * should be only used for lru folios. 7852 */ 7853 void check_move_unevictable_folios(struct folio_batch *fbatch) 7854 { 7855 struct lruvec *lruvec = NULL; 7856 int pgscanned = 0; 7857 int pgrescued = 0; 7858 int i; 7859 7860 for (i = 0; i < fbatch->nr; i++) { 7861 struct folio *folio = fbatch->folios[i]; 7862 int nr_pages = folio_nr_pages(folio); 7863 7864 pgscanned += nr_pages; 7865 7866 /* block memcg migration while the folio moves between lrus */ 7867 if (!folio_test_clear_lru(folio)) 7868 continue; 7869 7870 lruvec = folio_lruvec_relock_irq(folio, lruvec); 7871 if (folio_evictable(folio) && folio_test_unevictable(folio)) { 7872 lruvec_del_folio(lruvec, folio); 7873 folio_clear_unevictable(folio); 7874 lruvec_add_folio(lruvec, folio); 7875 pgrescued += nr_pages; 7876 } 7877 folio_set_lru(folio); 7878 } 7879 7880 if (lruvec) { 7881 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 7882 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 7883 unlock_page_lruvec_irq(lruvec); 7884 } else if (pgscanned) { 7885 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 7886 } 7887 } 7888 EXPORT_SYMBOL_GPL(check_move_unevictable_folios); 7889 7890 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA) 7891 static ssize_t reclaim_store(struct device *dev, 7892 struct device_attribute *attr, 7893 const char *buf, size_t count) 7894 { 7895 int ret, nid = dev->id; 7896 7897 ret = user_proactive_reclaim((char *)buf, NULL, NODE_DATA(nid)); 7898 return ret ? -EAGAIN : count; 7899 } 7900 7901 static DEVICE_ATTR_WO(reclaim); 7902 int reclaim_register_node(struct node *node) 7903 { 7904 return device_create_file(&node->dev, &dev_attr_reclaim); 7905 } 7906 7907 void reclaim_unregister_node(struct node *node) 7908 { 7909 return device_remove_file(&node->dev, &dev_attr_reclaim); 7910 } 7911 #endif 7912