1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 4 * 5 * Swap reorganised 29.12.95, Stephen Tweedie. 6 * kswapd added: 7.1.96 sct 7 * Removed kswapd_ctl limits, and swap out as many pages as needed 8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 9 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 10 * Multiqueue VM started 5.8.00, Rik van Riel. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 15 #include <linux/mm.h> 16 #include <linux/sched/mm.h> 17 #include <linux/module.h> 18 #include <linux/gfp.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/swap.h> 21 #include <linux/pagemap.h> 22 #include <linux/init.h> 23 #include <linux/highmem.h> 24 #include <linux/vmpressure.h> 25 #include <linux/vmstat.h> 26 #include <linux/file.h> 27 #include <linux/writeback.h> 28 #include <linux/blkdev.h> 29 #include <linux/buffer_head.h> /* for try_to_release_page(), 30 buffer_heads_over_limit */ 31 #include <linux/mm_inline.h> 32 #include <linux/backing-dev.h> 33 #include <linux/rmap.h> 34 #include <linux/topology.h> 35 #include <linux/cpu.h> 36 #include <linux/cpuset.h> 37 #include <linux/compaction.h> 38 #include <linux/notifier.h> 39 #include <linux/rwsem.h> 40 #include <linux/delay.h> 41 #include <linux/kthread.h> 42 #include <linux/freezer.h> 43 #include <linux/memcontrol.h> 44 #include <linux/delayacct.h> 45 #include <linux/sysctl.h> 46 #include <linux/oom.h> 47 #include <linux/pagevec.h> 48 #include <linux/prefetch.h> 49 #include <linux/printk.h> 50 #include <linux/dax.h> 51 #include <linux/psi.h> 52 53 #include <asm/tlbflush.h> 54 #include <asm/div64.h> 55 56 #include <linux/swapops.h> 57 #include <linux/balloon_compaction.h> 58 59 #include "internal.h" 60 61 #define CREATE_TRACE_POINTS 62 #include <trace/events/vmscan.h> 63 64 struct scan_control { 65 /* How many pages shrink_list() should reclaim */ 66 unsigned long nr_to_reclaim; 67 68 /* 69 * Nodemask of nodes allowed by the caller. If NULL, all nodes 70 * are scanned. 71 */ 72 nodemask_t *nodemask; 73 74 /* 75 * The memory cgroup that hit its limit and as a result is the 76 * primary target of this reclaim invocation. 77 */ 78 struct mem_cgroup *target_mem_cgroup; 79 80 /* 81 * Scan pressure balancing between anon and file LRUs 82 */ 83 unsigned long anon_cost; 84 unsigned long file_cost; 85 86 /* Can active pages be deactivated as part of reclaim? */ 87 #define DEACTIVATE_ANON 1 88 #define DEACTIVATE_FILE 2 89 unsigned int may_deactivate:2; 90 unsigned int force_deactivate:1; 91 unsigned int skipped_deactivate:1; 92 93 /* Writepage batching in laptop mode; RECLAIM_WRITE */ 94 unsigned int may_writepage:1; 95 96 /* Can mapped pages be reclaimed? */ 97 unsigned int may_unmap:1; 98 99 /* Can pages be swapped as part of reclaim? */ 100 unsigned int may_swap:1; 101 102 /* 103 * Cgroups are not reclaimed below their configured memory.low, 104 * unless we threaten to OOM. If any cgroups are skipped due to 105 * memory.low and nothing was reclaimed, go back for memory.low. 106 */ 107 unsigned int memcg_low_reclaim:1; 108 unsigned int memcg_low_skipped:1; 109 110 unsigned int hibernation_mode:1; 111 112 /* One of the zones is ready for compaction */ 113 unsigned int compaction_ready:1; 114 115 /* There is easily reclaimable cold cache in the current node */ 116 unsigned int cache_trim_mode:1; 117 118 /* The file pages on the current node are dangerously low */ 119 unsigned int file_is_tiny:1; 120 121 /* Allocation order */ 122 s8 order; 123 124 /* Scan (total_size >> priority) pages at once */ 125 s8 priority; 126 127 /* The highest zone to isolate pages for reclaim from */ 128 s8 reclaim_idx; 129 130 /* This context's GFP mask */ 131 gfp_t gfp_mask; 132 133 /* Incremented by the number of inactive pages that were scanned */ 134 unsigned long nr_scanned; 135 136 /* Number of pages freed so far during a call to shrink_zones() */ 137 unsigned long nr_reclaimed; 138 139 struct { 140 unsigned int dirty; 141 unsigned int unqueued_dirty; 142 unsigned int congested; 143 unsigned int writeback; 144 unsigned int immediate; 145 unsigned int file_taken; 146 unsigned int taken; 147 } nr; 148 149 /* for recording the reclaimed slab by now */ 150 struct reclaim_state reclaim_state; 151 }; 152 153 #ifdef ARCH_HAS_PREFETCHW 154 #define prefetchw_prev_lru_page(_page, _base, _field) \ 155 do { \ 156 if ((_page)->lru.prev != _base) { \ 157 struct page *prev; \ 158 \ 159 prev = lru_to_page(&(_page->lru)); \ 160 prefetchw(&prev->_field); \ 161 } \ 162 } while (0) 163 #else 164 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 165 #endif 166 167 /* 168 * From 0 .. 200. Higher means more swappy. 169 */ 170 int vm_swappiness = 60; 171 172 static void set_task_reclaim_state(struct task_struct *task, 173 struct reclaim_state *rs) 174 { 175 /* Check for an overwrite */ 176 WARN_ON_ONCE(rs && task->reclaim_state); 177 178 /* Check for the nulling of an already-nulled member */ 179 WARN_ON_ONCE(!rs && !task->reclaim_state); 180 181 task->reclaim_state = rs; 182 } 183 184 static LIST_HEAD(shrinker_list); 185 static DECLARE_RWSEM(shrinker_rwsem); 186 187 #ifdef CONFIG_MEMCG 188 static int shrinker_nr_max; 189 190 /* The shrinker_info is expanded in a batch of BITS_PER_LONG */ 191 static inline int shrinker_map_size(int nr_items) 192 { 193 return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long)); 194 } 195 196 static inline int shrinker_defer_size(int nr_items) 197 { 198 return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t)); 199 } 200 201 static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg, 202 int nid) 203 { 204 return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info, 205 lockdep_is_held(&shrinker_rwsem)); 206 } 207 208 static int expand_one_shrinker_info(struct mem_cgroup *memcg, 209 int map_size, int defer_size, 210 int old_map_size, int old_defer_size) 211 { 212 struct shrinker_info *new, *old; 213 struct mem_cgroup_per_node *pn; 214 int nid; 215 int size = map_size + defer_size; 216 217 for_each_node(nid) { 218 pn = memcg->nodeinfo[nid]; 219 old = shrinker_info_protected(memcg, nid); 220 /* Not yet online memcg */ 221 if (!old) 222 return 0; 223 224 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid); 225 if (!new) 226 return -ENOMEM; 227 228 new->nr_deferred = (atomic_long_t *)(new + 1); 229 new->map = (void *)new->nr_deferred + defer_size; 230 231 /* map: set all old bits, clear all new bits */ 232 memset(new->map, (int)0xff, old_map_size); 233 memset((void *)new->map + old_map_size, 0, map_size - old_map_size); 234 /* nr_deferred: copy old values, clear all new values */ 235 memcpy(new->nr_deferred, old->nr_deferred, old_defer_size); 236 memset((void *)new->nr_deferred + old_defer_size, 0, 237 defer_size - old_defer_size); 238 239 rcu_assign_pointer(pn->shrinker_info, new); 240 kvfree_rcu(old, rcu); 241 } 242 243 return 0; 244 } 245 246 void free_shrinker_info(struct mem_cgroup *memcg) 247 { 248 struct mem_cgroup_per_node *pn; 249 struct shrinker_info *info; 250 int nid; 251 252 for_each_node(nid) { 253 pn = memcg->nodeinfo[nid]; 254 info = rcu_dereference_protected(pn->shrinker_info, true); 255 kvfree(info); 256 rcu_assign_pointer(pn->shrinker_info, NULL); 257 } 258 } 259 260 int alloc_shrinker_info(struct mem_cgroup *memcg) 261 { 262 struct shrinker_info *info; 263 int nid, size, ret = 0; 264 int map_size, defer_size = 0; 265 266 down_write(&shrinker_rwsem); 267 map_size = shrinker_map_size(shrinker_nr_max); 268 defer_size = shrinker_defer_size(shrinker_nr_max); 269 size = map_size + defer_size; 270 for_each_node(nid) { 271 info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid); 272 if (!info) { 273 free_shrinker_info(memcg); 274 ret = -ENOMEM; 275 break; 276 } 277 info->nr_deferred = (atomic_long_t *)(info + 1); 278 info->map = (void *)info->nr_deferred + defer_size; 279 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info); 280 } 281 up_write(&shrinker_rwsem); 282 283 return ret; 284 } 285 286 static inline bool need_expand(int nr_max) 287 { 288 return round_up(nr_max, BITS_PER_LONG) > 289 round_up(shrinker_nr_max, BITS_PER_LONG); 290 } 291 292 static int expand_shrinker_info(int new_id) 293 { 294 int ret = 0; 295 int new_nr_max = new_id + 1; 296 int map_size, defer_size = 0; 297 int old_map_size, old_defer_size = 0; 298 struct mem_cgroup *memcg; 299 300 if (!need_expand(new_nr_max)) 301 goto out; 302 303 if (!root_mem_cgroup) 304 goto out; 305 306 lockdep_assert_held(&shrinker_rwsem); 307 308 map_size = shrinker_map_size(new_nr_max); 309 defer_size = shrinker_defer_size(new_nr_max); 310 old_map_size = shrinker_map_size(shrinker_nr_max); 311 old_defer_size = shrinker_defer_size(shrinker_nr_max); 312 313 memcg = mem_cgroup_iter(NULL, NULL, NULL); 314 do { 315 ret = expand_one_shrinker_info(memcg, map_size, defer_size, 316 old_map_size, old_defer_size); 317 if (ret) { 318 mem_cgroup_iter_break(NULL, memcg); 319 goto out; 320 } 321 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 322 out: 323 if (!ret) 324 shrinker_nr_max = new_nr_max; 325 326 return ret; 327 } 328 329 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id) 330 { 331 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) { 332 struct shrinker_info *info; 333 334 rcu_read_lock(); 335 info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info); 336 /* Pairs with smp mb in shrink_slab() */ 337 smp_mb__before_atomic(); 338 set_bit(shrinker_id, info->map); 339 rcu_read_unlock(); 340 } 341 } 342 343 static DEFINE_IDR(shrinker_idr); 344 345 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 346 { 347 int id, ret = -ENOMEM; 348 349 if (mem_cgroup_disabled()) 350 return -ENOSYS; 351 352 down_write(&shrinker_rwsem); 353 /* This may call shrinker, so it must use down_read_trylock() */ 354 id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL); 355 if (id < 0) 356 goto unlock; 357 358 if (id >= shrinker_nr_max) { 359 if (expand_shrinker_info(id)) { 360 idr_remove(&shrinker_idr, id); 361 goto unlock; 362 } 363 } 364 shrinker->id = id; 365 ret = 0; 366 unlock: 367 up_write(&shrinker_rwsem); 368 return ret; 369 } 370 371 static void unregister_memcg_shrinker(struct shrinker *shrinker) 372 { 373 int id = shrinker->id; 374 375 BUG_ON(id < 0); 376 377 lockdep_assert_held(&shrinker_rwsem); 378 379 idr_remove(&shrinker_idr, id); 380 } 381 382 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker, 383 struct mem_cgroup *memcg) 384 { 385 struct shrinker_info *info; 386 387 info = shrinker_info_protected(memcg, nid); 388 return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0); 389 } 390 391 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker, 392 struct mem_cgroup *memcg) 393 { 394 struct shrinker_info *info; 395 396 info = shrinker_info_protected(memcg, nid); 397 return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]); 398 } 399 400 void reparent_shrinker_deferred(struct mem_cgroup *memcg) 401 { 402 int i, nid; 403 long nr; 404 struct mem_cgroup *parent; 405 struct shrinker_info *child_info, *parent_info; 406 407 parent = parent_mem_cgroup(memcg); 408 if (!parent) 409 parent = root_mem_cgroup; 410 411 /* Prevent from concurrent shrinker_info expand */ 412 down_read(&shrinker_rwsem); 413 for_each_node(nid) { 414 child_info = shrinker_info_protected(memcg, nid); 415 parent_info = shrinker_info_protected(parent, nid); 416 for (i = 0; i < shrinker_nr_max; i++) { 417 nr = atomic_long_read(&child_info->nr_deferred[i]); 418 atomic_long_add(nr, &parent_info->nr_deferred[i]); 419 } 420 } 421 up_read(&shrinker_rwsem); 422 } 423 424 static bool cgroup_reclaim(struct scan_control *sc) 425 { 426 return sc->target_mem_cgroup; 427 } 428 429 /** 430 * writeback_throttling_sane - is the usual dirty throttling mechanism available? 431 * @sc: scan_control in question 432 * 433 * The normal page dirty throttling mechanism in balance_dirty_pages() is 434 * completely broken with the legacy memcg and direct stalling in 435 * shrink_page_list() is used for throttling instead, which lacks all the 436 * niceties such as fairness, adaptive pausing, bandwidth proportional 437 * allocation and configurability. 438 * 439 * This function tests whether the vmscan currently in progress can assume 440 * that the normal dirty throttling mechanism is operational. 441 */ 442 static bool writeback_throttling_sane(struct scan_control *sc) 443 { 444 if (!cgroup_reclaim(sc)) 445 return true; 446 #ifdef CONFIG_CGROUP_WRITEBACK 447 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 448 return true; 449 #endif 450 return false; 451 } 452 #else 453 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 454 { 455 return -ENOSYS; 456 } 457 458 static void unregister_memcg_shrinker(struct shrinker *shrinker) 459 { 460 } 461 462 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker, 463 struct mem_cgroup *memcg) 464 { 465 return 0; 466 } 467 468 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker, 469 struct mem_cgroup *memcg) 470 { 471 return 0; 472 } 473 474 static bool cgroup_reclaim(struct scan_control *sc) 475 { 476 return false; 477 } 478 479 static bool writeback_throttling_sane(struct scan_control *sc) 480 { 481 return true; 482 } 483 #endif 484 485 static long xchg_nr_deferred(struct shrinker *shrinker, 486 struct shrink_control *sc) 487 { 488 int nid = sc->nid; 489 490 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 491 nid = 0; 492 493 if (sc->memcg && 494 (shrinker->flags & SHRINKER_MEMCG_AWARE)) 495 return xchg_nr_deferred_memcg(nid, shrinker, 496 sc->memcg); 497 498 return atomic_long_xchg(&shrinker->nr_deferred[nid], 0); 499 } 500 501 502 static long add_nr_deferred(long nr, struct shrinker *shrinker, 503 struct shrink_control *sc) 504 { 505 int nid = sc->nid; 506 507 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 508 nid = 0; 509 510 if (sc->memcg && 511 (shrinker->flags & SHRINKER_MEMCG_AWARE)) 512 return add_nr_deferred_memcg(nr, nid, shrinker, 513 sc->memcg); 514 515 return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]); 516 } 517 518 /* 519 * This misses isolated pages which are not accounted for to save counters. 520 * As the data only determines if reclaim or compaction continues, it is 521 * not expected that isolated pages will be a dominating factor. 522 */ 523 unsigned long zone_reclaimable_pages(struct zone *zone) 524 { 525 unsigned long nr; 526 527 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) + 528 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE); 529 if (get_nr_swap_pages() > 0) 530 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) + 531 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON); 532 533 return nr; 534 } 535 536 /** 537 * lruvec_lru_size - Returns the number of pages on the given LRU list. 538 * @lruvec: lru vector 539 * @lru: lru to use 540 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list) 541 */ 542 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, 543 int zone_idx) 544 { 545 unsigned long size = 0; 546 int zid; 547 548 for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) { 549 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid]; 550 551 if (!managed_zone(zone)) 552 continue; 553 554 if (!mem_cgroup_disabled()) 555 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid); 556 else 557 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru); 558 } 559 return size; 560 } 561 562 /* 563 * Add a shrinker callback to be called from the vm. 564 */ 565 int prealloc_shrinker(struct shrinker *shrinker) 566 { 567 unsigned int size; 568 int err; 569 570 if (shrinker->flags & SHRINKER_MEMCG_AWARE) { 571 err = prealloc_memcg_shrinker(shrinker); 572 if (err != -ENOSYS) 573 return err; 574 575 shrinker->flags &= ~SHRINKER_MEMCG_AWARE; 576 } 577 578 size = sizeof(*shrinker->nr_deferred); 579 if (shrinker->flags & SHRINKER_NUMA_AWARE) 580 size *= nr_node_ids; 581 582 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); 583 if (!shrinker->nr_deferred) 584 return -ENOMEM; 585 586 return 0; 587 } 588 589 void free_prealloced_shrinker(struct shrinker *shrinker) 590 { 591 if (shrinker->flags & SHRINKER_MEMCG_AWARE) { 592 down_write(&shrinker_rwsem); 593 unregister_memcg_shrinker(shrinker); 594 up_write(&shrinker_rwsem); 595 return; 596 } 597 598 kfree(shrinker->nr_deferred); 599 shrinker->nr_deferred = NULL; 600 } 601 602 void register_shrinker_prepared(struct shrinker *shrinker) 603 { 604 down_write(&shrinker_rwsem); 605 list_add_tail(&shrinker->list, &shrinker_list); 606 shrinker->flags |= SHRINKER_REGISTERED; 607 up_write(&shrinker_rwsem); 608 } 609 610 int register_shrinker(struct shrinker *shrinker) 611 { 612 int err = prealloc_shrinker(shrinker); 613 614 if (err) 615 return err; 616 register_shrinker_prepared(shrinker); 617 return 0; 618 } 619 EXPORT_SYMBOL(register_shrinker); 620 621 /* 622 * Remove one 623 */ 624 void unregister_shrinker(struct shrinker *shrinker) 625 { 626 if (!(shrinker->flags & SHRINKER_REGISTERED)) 627 return; 628 629 down_write(&shrinker_rwsem); 630 list_del(&shrinker->list); 631 shrinker->flags &= ~SHRINKER_REGISTERED; 632 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 633 unregister_memcg_shrinker(shrinker); 634 up_write(&shrinker_rwsem); 635 636 kfree(shrinker->nr_deferred); 637 shrinker->nr_deferred = NULL; 638 } 639 EXPORT_SYMBOL(unregister_shrinker); 640 641 #define SHRINK_BATCH 128 642 643 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl, 644 struct shrinker *shrinker, int priority) 645 { 646 unsigned long freed = 0; 647 unsigned long long delta; 648 long total_scan; 649 long freeable; 650 long nr; 651 long new_nr; 652 long batch_size = shrinker->batch ? shrinker->batch 653 : SHRINK_BATCH; 654 long scanned = 0, next_deferred; 655 656 freeable = shrinker->count_objects(shrinker, shrinkctl); 657 if (freeable == 0 || freeable == SHRINK_EMPTY) 658 return freeable; 659 660 /* 661 * copy the current shrinker scan count into a local variable 662 * and zero it so that other concurrent shrinker invocations 663 * don't also do this scanning work. 664 */ 665 nr = xchg_nr_deferred(shrinker, shrinkctl); 666 667 if (shrinker->seeks) { 668 delta = freeable >> priority; 669 delta *= 4; 670 do_div(delta, shrinker->seeks); 671 } else { 672 /* 673 * These objects don't require any IO to create. Trim 674 * them aggressively under memory pressure to keep 675 * them from causing refetches in the IO caches. 676 */ 677 delta = freeable / 2; 678 } 679 680 total_scan = nr >> priority; 681 total_scan += delta; 682 total_scan = min(total_scan, (2 * freeable)); 683 684 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, 685 freeable, delta, total_scan, priority); 686 687 /* 688 * Normally, we should not scan less than batch_size objects in one 689 * pass to avoid too frequent shrinker calls, but if the slab has less 690 * than batch_size objects in total and we are really tight on memory, 691 * we will try to reclaim all available objects, otherwise we can end 692 * up failing allocations although there are plenty of reclaimable 693 * objects spread over several slabs with usage less than the 694 * batch_size. 695 * 696 * We detect the "tight on memory" situations by looking at the total 697 * number of objects we want to scan (total_scan). If it is greater 698 * than the total number of objects on slab (freeable), we must be 699 * scanning at high prio and therefore should try to reclaim as much as 700 * possible. 701 */ 702 while (total_scan >= batch_size || 703 total_scan >= freeable) { 704 unsigned long ret; 705 unsigned long nr_to_scan = min(batch_size, total_scan); 706 707 shrinkctl->nr_to_scan = nr_to_scan; 708 shrinkctl->nr_scanned = nr_to_scan; 709 ret = shrinker->scan_objects(shrinker, shrinkctl); 710 if (ret == SHRINK_STOP) 711 break; 712 freed += ret; 713 714 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned); 715 total_scan -= shrinkctl->nr_scanned; 716 scanned += shrinkctl->nr_scanned; 717 718 cond_resched(); 719 } 720 721 /* 722 * The deferred work is increased by any new work (delta) that wasn't 723 * done, decreased by old deferred work that was done now. 724 * 725 * And it is capped to two times of the freeable items. 726 */ 727 next_deferred = max_t(long, (nr + delta - scanned), 0); 728 next_deferred = min(next_deferred, (2 * freeable)); 729 730 /* 731 * move the unused scan count back into the shrinker in a 732 * manner that handles concurrent updates. 733 */ 734 new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl); 735 736 trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan); 737 return freed; 738 } 739 740 #ifdef CONFIG_MEMCG 741 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 742 struct mem_cgroup *memcg, int priority) 743 { 744 struct shrinker_info *info; 745 unsigned long ret, freed = 0; 746 int i; 747 748 if (!mem_cgroup_online(memcg)) 749 return 0; 750 751 if (!down_read_trylock(&shrinker_rwsem)) 752 return 0; 753 754 info = shrinker_info_protected(memcg, nid); 755 if (unlikely(!info)) 756 goto unlock; 757 758 for_each_set_bit(i, info->map, shrinker_nr_max) { 759 struct shrink_control sc = { 760 .gfp_mask = gfp_mask, 761 .nid = nid, 762 .memcg = memcg, 763 }; 764 struct shrinker *shrinker; 765 766 shrinker = idr_find(&shrinker_idr, i); 767 if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) { 768 if (!shrinker) 769 clear_bit(i, info->map); 770 continue; 771 } 772 773 /* Call non-slab shrinkers even though kmem is disabled */ 774 if (!memcg_kmem_enabled() && 775 !(shrinker->flags & SHRINKER_NONSLAB)) 776 continue; 777 778 ret = do_shrink_slab(&sc, shrinker, priority); 779 if (ret == SHRINK_EMPTY) { 780 clear_bit(i, info->map); 781 /* 782 * After the shrinker reported that it had no objects to 783 * free, but before we cleared the corresponding bit in 784 * the memcg shrinker map, a new object might have been 785 * added. To make sure, we have the bit set in this 786 * case, we invoke the shrinker one more time and reset 787 * the bit if it reports that it is not empty anymore. 788 * The memory barrier here pairs with the barrier in 789 * set_shrinker_bit(): 790 * 791 * list_lru_add() shrink_slab_memcg() 792 * list_add_tail() clear_bit() 793 * <MB> <MB> 794 * set_bit() do_shrink_slab() 795 */ 796 smp_mb__after_atomic(); 797 ret = do_shrink_slab(&sc, shrinker, priority); 798 if (ret == SHRINK_EMPTY) 799 ret = 0; 800 else 801 set_shrinker_bit(memcg, nid, i); 802 } 803 freed += ret; 804 805 if (rwsem_is_contended(&shrinker_rwsem)) { 806 freed = freed ? : 1; 807 break; 808 } 809 } 810 unlock: 811 up_read(&shrinker_rwsem); 812 return freed; 813 } 814 #else /* CONFIG_MEMCG */ 815 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 816 struct mem_cgroup *memcg, int priority) 817 { 818 return 0; 819 } 820 #endif /* CONFIG_MEMCG */ 821 822 /** 823 * shrink_slab - shrink slab caches 824 * @gfp_mask: allocation context 825 * @nid: node whose slab caches to target 826 * @memcg: memory cgroup whose slab caches to target 827 * @priority: the reclaim priority 828 * 829 * Call the shrink functions to age shrinkable caches. 830 * 831 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set, 832 * unaware shrinkers will receive a node id of 0 instead. 833 * 834 * @memcg specifies the memory cgroup to target. Unaware shrinkers 835 * are called only if it is the root cgroup. 836 * 837 * @priority is sc->priority, we take the number of objects and >> by priority 838 * in order to get the scan target. 839 * 840 * Returns the number of reclaimed slab objects. 841 */ 842 static unsigned long shrink_slab(gfp_t gfp_mask, int nid, 843 struct mem_cgroup *memcg, 844 int priority) 845 { 846 unsigned long ret, freed = 0; 847 struct shrinker *shrinker; 848 849 /* 850 * The root memcg might be allocated even though memcg is disabled 851 * via "cgroup_disable=memory" boot parameter. This could make 852 * mem_cgroup_is_root() return false, then just run memcg slab 853 * shrink, but skip global shrink. This may result in premature 854 * oom. 855 */ 856 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg)) 857 return shrink_slab_memcg(gfp_mask, nid, memcg, priority); 858 859 if (!down_read_trylock(&shrinker_rwsem)) 860 goto out; 861 862 list_for_each_entry(shrinker, &shrinker_list, list) { 863 struct shrink_control sc = { 864 .gfp_mask = gfp_mask, 865 .nid = nid, 866 .memcg = memcg, 867 }; 868 869 ret = do_shrink_slab(&sc, shrinker, priority); 870 if (ret == SHRINK_EMPTY) 871 ret = 0; 872 freed += ret; 873 /* 874 * Bail out if someone want to register a new shrinker to 875 * prevent the registration from being stalled for long periods 876 * by parallel ongoing shrinking. 877 */ 878 if (rwsem_is_contended(&shrinker_rwsem)) { 879 freed = freed ? : 1; 880 break; 881 } 882 } 883 884 up_read(&shrinker_rwsem); 885 out: 886 cond_resched(); 887 return freed; 888 } 889 890 void drop_slab_node(int nid) 891 { 892 unsigned long freed; 893 894 do { 895 struct mem_cgroup *memcg = NULL; 896 897 if (fatal_signal_pending(current)) 898 return; 899 900 freed = 0; 901 memcg = mem_cgroup_iter(NULL, NULL, NULL); 902 do { 903 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0); 904 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 905 } while (freed > 10); 906 } 907 908 void drop_slab(void) 909 { 910 int nid; 911 912 for_each_online_node(nid) 913 drop_slab_node(nid); 914 } 915 916 static inline int is_page_cache_freeable(struct page *page) 917 { 918 /* 919 * A freeable page cache page is referenced only by the caller 920 * that isolated the page, the page cache and optional buffer 921 * heads at page->private. 922 */ 923 int page_cache_pins = thp_nr_pages(page); 924 return page_count(page) - page_has_private(page) == 1 + page_cache_pins; 925 } 926 927 static int may_write_to_inode(struct inode *inode) 928 { 929 if (current->flags & PF_SWAPWRITE) 930 return 1; 931 if (!inode_write_congested(inode)) 932 return 1; 933 if (inode_to_bdi(inode) == current->backing_dev_info) 934 return 1; 935 return 0; 936 } 937 938 /* 939 * We detected a synchronous write error writing a page out. Probably 940 * -ENOSPC. We need to propagate that into the address_space for a subsequent 941 * fsync(), msync() or close(). 942 * 943 * The tricky part is that after writepage we cannot touch the mapping: nothing 944 * prevents it from being freed up. But we have a ref on the page and once 945 * that page is locked, the mapping is pinned. 946 * 947 * We're allowed to run sleeping lock_page() here because we know the caller has 948 * __GFP_FS. 949 */ 950 static void handle_write_error(struct address_space *mapping, 951 struct page *page, int error) 952 { 953 lock_page(page); 954 if (page_mapping(page) == mapping) 955 mapping_set_error(mapping, error); 956 unlock_page(page); 957 } 958 959 /* possible outcome of pageout() */ 960 typedef enum { 961 /* failed to write page out, page is locked */ 962 PAGE_KEEP, 963 /* move page to the active list, page is locked */ 964 PAGE_ACTIVATE, 965 /* page has been sent to the disk successfully, page is unlocked */ 966 PAGE_SUCCESS, 967 /* page is clean and locked */ 968 PAGE_CLEAN, 969 } pageout_t; 970 971 /* 972 * pageout is called by shrink_page_list() for each dirty page. 973 * Calls ->writepage(). 974 */ 975 static pageout_t pageout(struct page *page, struct address_space *mapping) 976 { 977 /* 978 * If the page is dirty, only perform writeback if that write 979 * will be non-blocking. To prevent this allocation from being 980 * stalled by pagecache activity. But note that there may be 981 * stalls if we need to run get_block(). We could test 982 * PagePrivate for that. 983 * 984 * If this process is currently in __generic_file_write_iter() against 985 * this page's queue, we can perform writeback even if that 986 * will block. 987 * 988 * If the page is swapcache, write it back even if that would 989 * block, for some throttling. This happens by accident, because 990 * swap_backing_dev_info is bust: it doesn't reflect the 991 * congestion state of the swapdevs. Easy to fix, if needed. 992 */ 993 if (!is_page_cache_freeable(page)) 994 return PAGE_KEEP; 995 if (!mapping) { 996 /* 997 * Some data journaling orphaned pages can have 998 * page->mapping == NULL while being dirty with clean buffers. 999 */ 1000 if (page_has_private(page)) { 1001 if (try_to_free_buffers(page)) { 1002 ClearPageDirty(page); 1003 pr_info("%s: orphaned page\n", __func__); 1004 return PAGE_CLEAN; 1005 } 1006 } 1007 return PAGE_KEEP; 1008 } 1009 if (mapping->a_ops->writepage == NULL) 1010 return PAGE_ACTIVATE; 1011 if (!may_write_to_inode(mapping->host)) 1012 return PAGE_KEEP; 1013 1014 if (clear_page_dirty_for_io(page)) { 1015 int res; 1016 struct writeback_control wbc = { 1017 .sync_mode = WB_SYNC_NONE, 1018 .nr_to_write = SWAP_CLUSTER_MAX, 1019 .range_start = 0, 1020 .range_end = LLONG_MAX, 1021 .for_reclaim = 1, 1022 }; 1023 1024 SetPageReclaim(page); 1025 res = mapping->a_ops->writepage(page, &wbc); 1026 if (res < 0) 1027 handle_write_error(mapping, page, res); 1028 if (res == AOP_WRITEPAGE_ACTIVATE) { 1029 ClearPageReclaim(page); 1030 return PAGE_ACTIVATE; 1031 } 1032 1033 if (!PageWriteback(page)) { 1034 /* synchronous write or broken a_ops? */ 1035 ClearPageReclaim(page); 1036 } 1037 trace_mm_vmscan_writepage(page); 1038 inc_node_page_state(page, NR_VMSCAN_WRITE); 1039 return PAGE_SUCCESS; 1040 } 1041 1042 return PAGE_CLEAN; 1043 } 1044 1045 /* 1046 * Same as remove_mapping, but if the page is removed from the mapping, it 1047 * gets returned with a refcount of 0. 1048 */ 1049 static int __remove_mapping(struct address_space *mapping, struct page *page, 1050 bool reclaimed, struct mem_cgroup *target_memcg) 1051 { 1052 unsigned long flags; 1053 int refcount; 1054 void *shadow = NULL; 1055 1056 BUG_ON(!PageLocked(page)); 1057 BUG_ON(mapping != page_mapping(page)); 1058 1059 xa_lock_irqsave(&mapping->i_pages, flags); 1060 /* 1061 * The non racy check for a busy page. 1062 * 1063 * Must be careful with the order of the tests. When someone has 1064 * a ref to the page, it may be possible that they dirty it then 1065 * drop the reference. So if PageDirty is tested before page_count 1066 * here, then the following race may occur: 1067 * 1068 * get_user_pages(&page); 1069 * [user mapping goes away] 1070 * write_to(page); 1071 * !PageDirty(page) [good] 1072 * SetPageDirty(page); 1073 * put_page(page); 1074 * !page_count(page) [good, discard it] 1075 * 1076 * [oops, our write_to data is lost] 1077 * 1078 * Reversing the order of the tests ensures such a situation cannot 1079 * escape unnoticed. The smp_rmb is needed to ensure the page->flags 1080 * load is not satisfied before that of page->_refcount. 1081 * 1082 * Note that if SetPageDirty is always performed via set_page_dirty, 1083 * and thus under the i_pages lock, then this ordering is not required. 1084 */ 1085 refcount = 1 + compound_nr(page); 1086 if (!page_ref_freeze(page, refcount)) 1087 goto cannot_free; 1088 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */ 1089 if (unlikely(PageDirty(page))) { 1090 page_ref_unfreeze(page, refcount); 1091 goto cannot_free; 1092 } 1093 1094 if (PageSwapCache(page)) { 1095 swp_entry_t swap = { .val = page_private(page) }; 1096 mem_cgroup_swapout(page, swap); 1097 if (reclaimed && !mapping_exiting(mapping)) 1098 shadow = workingset_eviction(page, target_memcg); 1099 __delete_from_swap_cache(page, swap, shadow); 1100 xa_unlock_irqrestore(&mapping->i_pages, flags); 1101 put_swap_page(page, swap); 1102 } else { 1103 void (*freepage)(struct page *); 1104 1105 freepage = mapping->a_ops->freepage; 1106 /* 1107 * Remember a shadow entry for reclaimed file cache in 1108 * order to detect refaults, thus thrashing, later on. 1109 * 1110 * But don't store shadows in an address space that is 1111 * already exiting. This is not just an optimization, 1112 * inode reclaim needs to empty out the radix tree or 1113 * the nodes are lost. Don't plant shadows behind its 1114 * back. 1115 * 1116 * We also don't store shadows for DAX mappings because the 1117 * only page cache pages found in these are zero pages 1118 * covering holes, and because we don't want to mix DAX 1119 * exceptional entries and shadow exceptional entries in the 1120 * same address_space. 1121 */ 1122 if (reclaimed && page_is_file_lru(page) && 1123 !mapping_exiting(mapping) && !dax_mapping(mapping)) 1124 shadow = workingset_eviction(page, target_memcg); 1125 __delete_from_page_cache(page, shadow); 1126 xa_unlock_irqrestore(&mapping->i_pages, flags); 1127 1128 if (freepage != NULL) 1129 freepage(page); 1130 } 1131 1132 return 1; 1133 1134 cannot_free: 1135 xa_unlock_irqrestore(&mapping->i_pages, flags); 1136 return 0; 1137 } 1138 1139 /* 1140 * Attempt to detach a locked page from its ->mapping. If it is dirty or if 1141 * someone else has a ref on the page, abort and return 0. If it was 1142 * successfully detached, return 1. Assumes the caller has a single ref on 1143 * this page. 1144 */ 1145 int remove_mapping(struct address_space *mapping, struct page *page) 1146 { 1147 if (__remove_mapping(mapping, page, false, NULL)) { 1148 /* 1149 * Unfreezing the refcount with 1 rather than 2 effectively 1150 * drops the pagecache ref for us without requiring another 1151 * atomic operation. 1152 */ 1153 page_ref_unfreeze(page, 1); 1154 return 1; 1155 } 1156 return 0; 1157 } 1158 1159 /** 1160 * putback_lru_page - put previously isolated page onto appropriate LRU list 1161 * @page: page to be put back to appropriate lru list 1162 * 1163 * Add previously isolated @page to appropriate LRU list. 1164 * Page may still be unevictable for other reasons. 1165 * 1166 * lru_lock must not be held, interrupts must be enabled. 1167 */ 1168 void putback_lru_page(struct page *page) 1169 { 1170 lru_cache_add(page); 1171 put_page(page); /* drop ref from isolate */ 1172 } 1173 1174 enum page_references { 1175 PAGEREF_RECLAIM, 1176 PAGEREF_RECLAIM_CLEAN, 1177 PAGEREF_KEEP, 1178 PAGEREF_ACTIVATE, 1179 }; 1180 1181 static enum page_references page_check_references(struct page *page, 1182 struct scan_control *sc) 1183 { 1184 int referenced_ptes, referenced_page; 1185 unsigned long vm_flags; 1186 1187 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup, 1188 &vm_flags); 1189 referenced_page = TestClearPageReferenced(page); 1190 1191 /* 1192 * Mlock lost the isolation race with us. Let try_to_unmap() 1193 * move the page to the unevictable list. 1194 */ 1195 if (vm_flags & VM_LOCKED) 1196 return PAGEREF_RECLAIM; 1197 1198 if (referenced_ptes) { 1199 /* 1200 * All mapped pages start out with page table 1201 * references from the instantiating fault, so we need 1202 * to look twice if a mapped file page is used more 1203 * than once. 1204 * 1205 * Mark it and spare it for another trip around the 1206 * inactive list. Another page table reference will 1207 * lead to its activation. 1208 * 1209 * Note: the mark is set for activated pages as well 1210 * so that recently deactivated but used pages are 1211 * quickly recovered. 1212 */ 1213 SetPageReferenced(page); 1214 1215 if (referenced_page || referenced_ptes > 1) 1216 return PAGEREF_ACTIVATE; 1217 1218 /* 1219 * Activate file-backed executable pages after first usage. 1220 */ 1221 if ((vm_flags & VM_EXEC) && !PageSwapBacked(page)) 1222 return PAGEREF_ACTIVATE; 1223 1224 return PAGEREF_KEEP; 1225 } 1226 1227 /* Reclaim if clean, defer dirty pages to writeback */ 1228 if (referenced_page && !PageSwapBacked(page)) 1229 return PAGEREF_RECLAIM_CLEAN; 1230 1231 return PAGEREF_RECLAIM; 1232 } 1233 1234 /* Check if a page is dirty or under writeback */ 1235 static void page_check_dirty_writeback(struct page *page, 1236 bool *dirty, bool *writeback) 1237 { 1238 struct address_space *mapping; 1239 1240 /* 1241 * Anonymous pages are not handled by flushers and must be written 1242 * from reclaim context. Do not stall reclaim based on them 1243 */ 1244 if (!page_is_file_lru(page) || 1245 (PageAnon(page) && !PageSwapBacked(page))) { 1246 *dirty = false; 1247 *writeback = false; 1248 return; 1249 } 1250 1251 /* By default assume that the page flags are accurate */ 1252 *dirty = PageDirty(page); 1253 *writeback = PageWriteback(page); 1254 1255 /* Verify dirty/writeback state if the filesystem supports it */ 1256 if (!page_has_private(page)) 1257 return; 1258 1259 mapping = page_mapping(page); 1260 if (mapping && mapping->a_ops->is_dirty_writeback) 1261 mapping->a_ops->is_dirty_writeback(page, dirty, writeback); 1262 } 1263 1264 /* 1265 * shrink_page_list() returns the number of reclaimed pages 1266 */ 1267 static unsigned int shrink_page_list(struct list_head *page_list, 1268 struct pglist_data *pgdat, 1269 struct scan_control *sc, 1270 struct reclaim_stat *stat, 1271 bool ignore_references) 1272 { 1273 LIST_HEAD(ret_pages); 1274 LIST_HEAD(free_pages); 1275 unsigned int nr_reclaimed = 0; 1276 unsigned int pgactivate = 0; 1277 1278 memset(stat, 0, sizeof(*stat)); 1279 cond_resched(); 1280 1281 while (!list_empty(page_list)) { 1282 struct address_space *mapping; 1283 struct page *page; 1284 enum page_references references = PAGEREF_RECLAIM; 1285 bool dirty, writeback, may_enter_fs; 1286 unsigned int nr_pages; 1287 1288 cond_resched(); 1289 1290 page = lru_to_page(page_list); 1291 list_del(&page->lru); 1292 1293 if (!trylock_page(page)) 1294 goto keep; 1295 1296 VM_BUG_ON_PAGE(PageActive(page), page); 1297 1298 nr_pages = compound_nr(page); 1299 1300 /* Account the number of base pages even though THP */ 1301 sc->nr_scanned += nr_pages; 1302 1303 if (unlikely(!page_evictable(page))) 1304 goto activate_locked; 1305 1306 if (!sc->may_unmap && page_mapped(page)) 1307 goto keep_locked; 1308 1309 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 1310 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 1311 1312 /* 1313 * The number of dirty pages determines if a node is marked 1314 * reclaim_congested which affects wait_iff_congested. kswapd 1315 * will stall and start writing pages if the tail of the LRU 1316 * is all dirty unqueued pages. 1317 */ 1318 page_check_dirty_writeback(page, &dirty, &writeback); 1319 if (dirty || writeback) 1320 stat->nr_dirty++; 1321 1322 if (dirty && !writeback) 1323 stat->nr_unqueued_dirty++; 1324 1325 /* 1326 * Treat this page as congested if the underlying BDI is or if 1327 * pages are cycling through the LRU so quickly that the 1328 * pages marked for immediate reclaim are making it to the 1329 * end of the LRU a second time. 1330 */ 1331 mapping = page_mapping(page); 1332 if (((dirty || writeback) && mapping && 1333 inode_write_congested(mapping->host)) || 1334 (writeback && PageReclaim(page))) 1335 stat->nr_congested++; 1336 1337 /* 1338 * If a page at the tail of the LRU is under writeback, there 1339 * are three cases to consider. 1340 * 1341 * 1) If reclaim is encountering an excessive number of pages 1342 * under writeback and this page is both under writeback and 1343 * PageReclaim then it indicates that pages are being queued 1344 * for IO but are being recycled through the LRU before the 1345 * IO can complete. Waiting on the page itself risks an 1346 * indefinite stall if it is impossible to writeback the 1347 * page due to IO error or disconnected storage so instead 1348 * note that the LRU is being scanned too quickly and the 1349 * caller can stall after page list has been processed. 1350 * 1351 * 2) Global or new memcg reclaim encounters a page that is 1352 * not marked for immediate reclaim, or the caller does not 1353 * have __GFP_FS (or __GFP_IO if it's simply going to swap, 1354 * not to fs). In this case mark the page for immediate 1355 * reclaim and continue scanning. 1356 * 1357 * Require may_enter_fs because we would wait on fs, which 1358 * may not have submitted IO yet. And the loop driver might 1359 * enter reclaim, and deadlock if it waits on a page for 1360 * which it is needed to do the write (loop masks off 1361 * __GFP_IO|__GFP_FS for this reason); but more thought 1362 * would probably show more reasons. 1363 * 1364 * 3) Legacy memcg encounters a page that is already marked 1365 * PageReclaim. memcg does not have any dirty pages 1366 * throttling so we could easily OOM just because too many 1367 * pages are in writeback and there is nothing else to 1368 * reclaim. Wait for the writeback to complete. 1369 * 1370 * In cases 1) and 2) we activate the pages to get them out of 1371 * the way while we continue scanning for clean pages on the 1372 * inactive list and refilling from the active list. The 1373 * observation here is that waiting for disk writes is more 1374 * expensive than potentially causing reloads down the line. 1375 * Since they're marked for immediate reclaim, they won't put 1376 * memory pressure on the cache working set any longer than it 1377 * takes to write them to disk. 1378 */ 1379 if (PageWriteback(page)) { 1380 /* Case 1 above */ 1381 if (current_is_kswapd() && 1382 PageReclaim(page) && 1383 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) { 1384 stat->nr_immediate++; 1385 goto activate_locked; 1386 1387 /* Case 2 above */ 1388 } else if (writeback_throttling_sane(sc) || 1389 !PageReclaim(page) || !may_enter_fs) { 1390 /* 1391 * This is slightly racy - end_page_writeback() 1392 * might have just cleared PageReclaim, then 1393 * setting PageReclaim here end up interpreted 1394 * as PageReadahead - but that does not matter 1395 * enough to care. What we do want is for this 1396 * page to have PageReclaim set next time memcg 1397 * reclaim reaches the tests above, so it will 1398 * then wait_on_page_writeback() to avoid OOM; 1399 * and it's also appropriate in global reclaim. 1400 */ 1401 SetPageReclaim(page); 1402 stat->nr_writeback++; 1403 goto activate_locked; 1404 1405 /* Case 3 above */ 1406 } else { 1407 unlock_page(page); 1408 wait_on_page_writeback(page); 1409 /* then go back and try same page again */ 1410 list_add_tail(&page->lru, page_list); 1411 continue; 1412 } 1413 } 1414 1415 if (!ignore_references) 1416 references = page_check_references(page, sc); 1417 1418 switch (references) { 1419 case PAGEREF_ACTIVATE: 1420 goto activate_locked; 1421 case PAGEREF_KEEP: 1422 stat->nr_ref_keep += nr_pages; 1423 goto keep_locked; 1424 case PAGEREF_RECLAIM: 1425 case PAGEREF_RECLAIM_CLEAN: 1426 ; /* try to reclaim the page below */ 1427 } 1428 1429 /* 1430 * Anonymous process memory has backing store? 1431 * Try to allocate it some swap space here. 1432 * Lazyfree page could be freed directly 1433 */ 1434 if (PageAnon(page) && PageSwapBacked(page)) { 1435 if (!PageSwapCache(page)) { 1436 if (!(sc->gfp_mask & __GFP_IO)) 1437 goto keep_locked; 1438 if (page_maybe_dma_pinned(page)) 1439 goto keep_locked; 1440 if (PageTransHuge(page)) { 1441 /* cannot split THP, skip it */ 1442 if (!can_split_huge_page(page, NULL)) 1443 goto activate_locked; 1444 /* 1445 * Split pages without a PMD map right 1446 * away. Chances are some or all of the 1447 * tail pages can be freed without IO. 1448 */ 1449 if (!compound_mapcount(page) && 1450 split_huge_page_to_list(page, 1451 page_list)) 1452 goto activate_locked; 1453 } 1454 if (!add_to_swap(page)) { 1455 if (!PageTransHuge(page)) 1456 goto activate_locked_split; 1457 /* Fallback to swap normal pages */ 1458 if (split_huge_page_to_list(page, 1459 page_list)) 1460 goto activate_locked; 1461 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1462 count_vm_event(THP_SWPOUT_FALLBACK); 1463 #endif 1464 if (!add_to_swap(page)) 1465 goto activate_locked_split; 1466 } 1467 1468 may_enter_fs = true; 1469 1470 /* Adding to swap updated mapping */ 1471 mapping = page_mapping(page); 1472 } 1473 } else if (unlikely(PageTransHuge(page))) { 1474 /* Split file THP */ 1475 if (split_huge_page_to_list(page, page_list)) 1476 goto keep_locked; 1477 } 1478 1479 /* 1480 * THP may get split above, need minus tail pages and update 1481 * nr_pages to avoid accounting tail pages twice. 1482 * 1483 * The tail pages that are added into swap cache successfully 1484 * reach here. 1485 */ 1486 if ((nr_pages > 1) && !PageTransHuge(page)) { 1487 sc->nr_scanned -= (nr_pages - 1); 1488 nr_pages = 1; 1489 } 1490 1491 /* 1492 * The page is mapped into the page tables of one or more 1493 * processes. Try to unmap it here. 1494 */ 1495 if (page_mapped(page)) { 1496 enum ttu_flags flags = TTU_BATCH_FLUSH; 1497 bool was_swapbacked = PageSwapBacked(page); 1498 1499 if (unlikely(PageTransHuge(page))) 1500 flags |= TTU_SPLIT_HUGE_PMD; 1501 1502 try_to_unmap(page, flags); 1503 if (page_mapped(page)) { 1504 stat->nr_unmap_fail += nr_pages; 1505 if (!was_swapbacked && PageSwapBacked(page)) 1506 stat->nr_lazyfree_fail += nr_pages; 1507 goto activate_locked; 1508 } 1509 } 1510 1511 if (PageDirty(page)) { 1512 /* 1513 * Only kswapd can writeback filesystem pages 1514 * to avoid risk of stack overflow. But avoid 1515 * injecting inefficient single-page IO into 1516 * flusher writeback as much as possible: only 1517 * write pages when we've encountered many 1518 * dirty pages, and when we've already scanned 1519 * the rest of the LRU for clean pages and see 1520 * the same dirty pages again (PageReclaim). 1521 */ 1522 if (page_is_file_lru(page) && 1523 (!current_is_kswapd() || !PageReclaim(page) || 1524 !test_bit(PGDAT_DIRTY, &pgdat->flags))) { 1525 /* 1526 * Immediately reclaim when written back. 1527 * Similar in principal to deactivate_page() 1528 * except we already have the page isolated 1529 * and know it's dirty 1530 */ 1531 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE); 1532 SetPageReclaim(page); 1533 1534 goto activate_locked; 1535 } 1536 1537 if (references == PAGEREF_RECLAIM_CLEAN) 1538 goto keep_locked; 1539 if (!may_enter_fs) 1540 goto keep_locked; 1541 if (!sc->may_writepage) 1542 goto keep_locked; 1543 1544 /* 1545 * Page is dirty. Flush the TLB if a writable entry 1546 * potentially exists to avoid CPU writes after IO 1547 * starts and then write it out here. 1548 */ 1549 try_to_unmap_flush_dirty(); 1550 switch (pageout(page, mapping)) { 1551 case PAGE_KEEP: 1552 goto keep_locked; 1553 case PAGE_ACTIVATE: 1554 goto activate_locked; 1555 case PAGE_SUCCESS: 1556 stat->nr_pageout += thp_nr_pages(page); 1557 1558 if (PageWriteback(page)) 1559 goto keep; 1560 if (PageDirty(page)) 1561 goto keep; 1562 1563 /* 1564 * A synchronous write - probably a ramdisk. Go 1565 * ahead and try to reclaim the page. 1566 */ 1567 if (!trylock_page(page)) 1568 goto keep; 1569 if (PageDirty(page) || PageWriteback(page)) 1570 goto keep_locked; 1571 mapping = page_mapping(page); 1572 fallthrough; 1573 case PAGE_CLEAN: 1574 ; /* try to free the page below */ 1575 } 1576 } 1577 1578 /* 1579 * If the page has buffers, try to free the buffer mappings 1580 * associated with this page. If we succeed we try to free 1581 * the page as well. 1582 * 1583 * We do this even if the page is PageDirty(). 1584 * try_to_release_page() does not perform I/O, but it is 1585 * possible for a page to have PageDirty set, but it is actually 1586 * clean (all its buffers are clean). This happens if the 1587 * buffers were written out directly, with submit_bh(). ext3 1588 * will do this, as well as the blockdev mapping. 1589 * try_to_release_page() will discover that cleanness and will 1590 * drop the buffers and mark the page clean - it can be freed. 1591 * 1592 * Rarely, pages can have buffers and no ->mapping. These are 1593 * the pages which were not successfully invalidated in 1594 * truncate_cleanup_page(). We try to drop those buffers here 1595 * and if that worked, and the page is no longer mapped into 1596 * process address space (page_count == 1) it can be freed. 1597 * Otherwise, leave the page on the LRU so it is swappable. 1598 */ 1599 if (page_has_private(page)) { 1600 if (!try_to_release_page(page, sc->gfp_mask)) 1601 goto activate_locked; 1602 if (!mapping && page_count(page) == 1) { 1603 unlock_page(page); 1604 if (put_page_testzero(page)) 1605 goto free_it; 1606 else { 1607 /* 1608 * rare race with speculative reference. 1609 * the speculative reference will free 1610 * this page shortly, so we may 1611 * increment nr_reclaimed here (and 1612 * leave it off the LRU). 1613 */ 1614 nr_reclaimed++; 1615 continue; 1616 } 1617 } 1618 } 1619 1620 if (PageAnon(page) && !PageSwapBacked(page)) { 1621 /* follow __remove_mapping for reference */ 1622 if (!page_ref_freeze(page, 1)) 1623 goto keep_locked; 1624 if (PageDirty(page)) { 1625 page_ref_unfreeze(page, 1); 1626 goto keep_locked; 1627 } 1628 1629 count_vm_event(PGLAZYFREED); 1630 count_memcg_page_event(page, PGLAZYFREED); 1631 } else if (!mapping || !__remove_mapping(mapping, page, true, 1632 sc->target_mem_cgroup)) 1633 goto keep_locked; 1634 1635 unlock_page(page); 1636 free_it: 1637 /* 1638 * THP may get swapped out in a whole, need account 1639 * all base pages. 1640 */ 1641 nr_reclaimed += nr_pages; 1642 1643 /* 1644 * Is there need to periodically free_page_list? It would 1645 * appear not as the counts should be low 1646 */ 1647 if (unlikely(PageTransHuge(page))) 1648 destroy_compound_page(page); 1649 else 1650 list_add(&page->lru, &free_pages); 1651 continue; 1652 1653 activate_locked_split: 1654 /* 1655 * The tail pages that are failed to add into swap cache 1656 * reach here. Fixup nr_scanned and nr_pages. 1657 */ 1658 if (nr_pages > 1) { 1659 sc->nr_scanned -= (nr_pages - 1); 1660 nr_pages = 1; 1661 } 1662 activate_locked: 1663 /* Not a candidate for swapping, so reclaim swap space. */ 1664 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) || 1665 PageMlocked(page))) 1666 try_to_free_swap(page); 1667 VM_BUG_ON_PAGE(PageActive(page), page); 1668 if (!PageMlocked(page)) { 1669 int type = page_is_file_lru(page); 1670 SetPageActive(page); 1671 stat->nr_activate[type] += nr_pages; 1672 count_memcg_page_event(page, PGACTIVATE); 1673 } 1674 keep_locked: 1675 unlock_page(page); 1676 keep: 1677 list_add(&page->lru, &ret_pages); 1678 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page); 1679 } 1680 1681 pgactivate = stat->nr_activate[0] + stat->nr_activate[1]; 1682 1683 mem_cgroup_uncharge_list(&free_pages); 1684 try_to_unmap_flush(); 1685 free_unref_page_list(&free_pages); 1686 1687 list_splice(&ret_pages, page_list); 1688 count_vm_events(PGACTIVATE, pgactivate); 1689 1690 return nr_reclaimed; 1691 } 1692 1693 unsigned int reclaim_clean_pages_from_list(struct zone *zone, 1694 struct list_head *page_list) 1695 { 1696 struct scan_control sc = { 1697 .gfp_mask = GFP_KERNEL, 1698 .priority = DEF_PRIORITY, 1699 .may_unmap = 1, 1700 }; 1701 struct reclaim_stat stat; 1702 unsigned int nr_reclaimed; 1703 struct page *page, *next; 1704 LIST_HEAD(clean_pages); 1705 unsigned int noreclaim_flag; 1706 1707 list_for_each_entry_safe(page, next, page_list, lru) { 1708 if (!PageHuge(page) && page_is_file_lru(page) && 1709 !PageDirty(page) && !__PageMovable(page) && 1710 !PageUnevictable(page)) { 1711 ClearPageActive(page); 1712 list_move(&page->lru, &clean_pages); 1713 } 1714 } 1715 1716 /* 1717 * We should be safe here since we are only dealing with file pages and 1718 * we are not kswapd and therefore cannot write dirty file pages. But 1719 * call memalloc_noreclaim_save() anyway, just in case these conditions 1720 * change in the future. 1721 */ 1722 noreclaim_flag = memalloc_noreclaim_save(); 1723 nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc, 1724 &stat, true); 1725 memalloc_noreclaim_restore(noreclaim_flag); 1726 1727 list_splice(&clean_pages, page_list); 1728 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, 1729 -(long)nr_reclaimed); 1730 /* 1731 * Since lazyfree pages are isolated from file LRU from the beginning, 1732 * they will rotate back to anonymous LRU in the end if it failed to 1733 * discard so isolated count will be mismatched. 1734 * Compensate the isolated count for both LRU lists. 1735 */ 1736 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON, 1737 stat.nr_lazyfree_fail); 1738 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, 1739 -(long)stat.nr_lazyfree_fail); 1740 return nr_reclaimed; 1741 } 1742 1743 /* 1744 * Attempt to remove the specified page from its LRU. Only take this page 1745 * if it is of the appropriate PageActive status. Pages which are being 1746 * freed elsewhere are also ignored. 1747 * 1748 * page: page to consider 1749 * mode: one of the LRU isolation modes defined above 1750 * 1751 * returns true on success, false on failure. 1752 */ 1753 bool __isolate_lru_page_prepare(struct page *page, isolate_mode_t mode) 1754 { 1755 /* Only take pages on the LRU. */ 1756 if (!PageLRU(page)) 1757 return false; 1758 1759 /* Compaction should not handle unevictable pages but CMA can do so */ 1760 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE)) 1761 return false; 1762 1763 /* 1764 * To minimise LRU disruption, the caller can indicate that it only 1765 * wants to isolate pages it will be able to operate on without 1766 * blocking - clean pages for the most part. 1767 * 1768 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages 1769 * that it is possible to migrate without blocking 1770 */ 1771 if (mode & ISOLATE_ASYNC_MIGRATE) { 1772 /* All the caller can do on PageWriteback is block */ 1773 if (PageWriteback(page)) 1774 return false; 1775 1776 if (PageDirty(page)) { 1777 struct address_space *mapping; 1778 bool migrate_dirty; 1779 1780 /* 1781 * Only pages without mappings or that have a 1782 * ->migratepage callback are possible to migrate 1783 * without blocking. However, we can be racing with 1784 * truncation so it's necessary to lock the page 1785 * to stabilise the mapping as truncation holds 1786 * the page lock until after the page is removed 1787 * from the page cache. 1788 */ 1789 if (!trylock_page(page)) 1790 return false; 1791 1792 mapping = page_mapping(page); 1793 migrate_dirty = !mapping || mapping->a_ops->migratepage; 1794 unlock_page(page); 1795 if (!migrate_dirty) 1796 return false; 1797 } 1798 } 1799 1800 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page)) 1801 return false; 1802 1803 return true; 1804 } 1805 1806 /* 1807 * Update LRU sizes after isolating pages. The LRU size updates must 1808 * be complete before mem_cgroup_update_lru_size due to a sanity check. 1809 */ 1810 static __always_inline void update_lru_sizes(struct lruvec *lruvec, 1811 enum lru_list lru, unsigned long *nr_zone_taken) 1812 { 1813 int zid; 1814 1815 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1816 if (!nr_zone_taken[zid]) 1817 continue; 1818 1819 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 1820 } 1821 1822 } 1823 1824 /* 1825 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times. 1826 * 1827 * lruvec->lru_lock is heavily contended. Some of the functions that 1828 * shrink the lists perform better by taking out a batch of pages 1829 * and working on them outside the LRU lock. 1830 * 1831 * For pagecache intensive workloads, this function is the hottest 1832 * spot in the kernel (apart from copy_*_user functions). 1833 * 1834 * Lru_lock must be held before calling this function. 1835 * 1836 * @nr_to_scan: The number of eligible pages to look through on the list. 1837 * @lruvec: The LRU vector to pull pages from. 1838 * @dst: The temp list to put pages on to. 1839 * @nr_scanned: The number of pages that were scanned. 1840 * @sc: The scan_control struct for this reclaim session 1841 * @lru: LRU list id for isolating 1842 * 1843 * returns how many pages were moved onto *@dst. 1844 */ 1845 static unsigned long isolate_lru_pages(unsigned long nr_to_scan, 1846 struct lruvec *lruvec, struct list_head *dst, 1847 unsigned long *nr_scanned, struct scan_control *sc, 1848 enum lru_list lru) 1849 { 1850 struct list_head *src = &lruvec->lists[lru]; 1851 unsigned long nr_taken = 0; 1852 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 }; 1853 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, }; 1854 unsigned long skipped = 0; 1855 unsigned long scan, total_scan, nr_pages; 1856 LIST_HEAD(pages_skipped); 1857 isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED); 1858 1859 total_scan = 0; 1860 scan = 0; 1861 while (scan < nr_to_scan && !list_empty(src)) { 1862 struct page *page; 1863 1864 page = lru_to_page(src); 1865 prefetchw_prev_lru_page(page, src, flags); 1866 1867 nr_pages = compound_nr(page); 1868 total_scan += nr_pages; 1869 1870 if (page_zonenum(page) > sc->reclaim_idx) { 1871 list_move(&page->lru, &pages_skipped); 1872 nr_skipped[page_zonenum(page)] += nr_pages; 1873 continue; 1874 } 1875 1876 /* 1877 * Do not count skipped pages because that makes the function 1878 * return with no isolated pages if the LRU mostly contains 1879 * ineligible pages. This causes the VM to not reclaim any 1880 * pages, triggering a premature OOM. 1881 * 1882 * Account all tail pages of THP. This would not cause 1883 * premature OOM since __isolate_lru_page() returns -EBUSY 1884 * only when the page is being freed somewhere else. 1885 */ 1886 scan += nr_pages; 1887 if (!__isolate_lru_page_prepare(page, mode)) { 1888 /* It is being freed elsewhere */ 1889 list_move(&page->lru, src); 1890 continue; 1891 } 1892 /* 1893 * Be careful not to clear PageLRU until after we're 1894 * sure the page is not being freed elsewhere -- the 1895 * page release code relies on it. 1896 */ 1897 if (unlikely(!get_page_unless_zero(page))) { 1898 list_move(&page->lru, src); 1899 continue; 1900 } 1901 1902 if (!TestClearPageLRU(page)) { 1903 /* Another thread is already isolating this page */ 1904 put_page(page); 1905 list_move(&page->lru, src); 1906 continue; 1907 } 1908 1909 nr_taken += nr_pages; 1910 nr_zone_taken[page_zonenum(page)] += nr_pages; 1911 list_move(&page->lru, dst); 1912 } 1913 1914 /* 1915 * Splice any skipped pages to the start of the LRU list. Note that 1916 * this disrupts the LRU order when reclaiming for lower zones but 1917 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX 1918 * scanning would soon rescan the same pages to skip and put the 1919 * system at risk of premature OOM. 1920 */ 1921 if (!list_empty(&pages_skipped)) { 1922 int zid; 1923 1924 list_splice(&pages_skipped, src); 1925 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1926 if (!nr_skipped[zid]) 1927 continue; 1928 1929 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]); 1930 skipped += nr_skipped[zid]; 1931 } 1932 } 1933 *nr_scanned = total_scan; 1934 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, 1935 total_scan, skipped, nr_taken, mode, lru); 1936 update_lru_sizes(lruvec, lru, nr_zone_taken); 1937 return nr_taken; 1938 } 1939 1940 /** 1941 * isolate_lru_page - tries to isolate a page from its LRU list 1942 * @page: page to isolate from its LRU list 1943 * 1944 * Isolates a @page from an LRU list, clears PageLRU and adjusts the 1945 * vmstat statistic corresponding to whatever LRU list the page was on. 1946 * 1947 * Returns 0 if the page was removed from an LRU list. 1948 * Returns -EBUSY if the page was not on an LRU list. 1949 * 1950 * The returned page will have PageLRU() cleared. If it was found on 1951 * the active list, it will have PageActive set. If it was found on 1952 * the unevictable list, it will have the PageUnevictable bit set. That flag 1953 * may need to be cleared by the caller before letting the page go. 1954 * 1955 * The vmstat statistic corresponding to the list on which the page was 1956 * found will be decremented. 1957 * 1958 * Restrictions: 1959 * 1960 * (1) Must be called with an elevated refcount on the page. This is a 1961 * fundamental difference from isolate_lru_pages (which is called 1962 * without a stable reference). 1963 * (2) the lru_lock must not be held. 1964 * (3) interrupts must be enabled. 1965 */ 1966 int isolate_lru_page(struct page *page) 1967 { 1968 int ret = -EBUSY; 1969 1970 VM_BUG_ON_PAGE(!page_count(page), page); 1971 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page"); 1972 1973 if (TestClearPageLRU(page)) { 1974 struct lruvec *lruvec; 1975 1976 get_page(page); 1977 lruvec = lock_page_lruvec_irq(page); 1978 del_page_from_lru_list(page, lruvec); 1979 unlock_page_lruvec_irq(lruvec); 1980 ret = 0; 1981 } 1982 1983 return ret; 1984 } 1985 1986 /* 1987 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 1988 * then get rescheduled. When there are massive number of tasks doing page 1989 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 1990 * the LRU list will go small and be scanned faster than necessary, leading to 1991 * unnecessary swapping, thrashing and OOM. 1992 */ 1993 static int too_many_isolated(struct pglist_data *pgdat, int file, 1994 struct scan_control *sc) 1995 { 1996 unsigned long inactive, isolated; 1997 1998 if (current_is_kswapd()) 1999 return 0; 2000 2001 if (!writeback_throttling_sane(sc)) 2002 return 0; 2003 2004 if (file) { 2005 inactive = node_page_state(pgdat, NR_INACTIVE_FILE); 2006 isolated = node_page_state(pgdat, NR_ISOLATED_FILE); 2007 } else { 2008 inactive = node_page_state(pgdat, NR_INACTIVE_ANON); 2009 isolated = node_page_state(pgdat, NR_ISOLATED_ANON); 2010 } 2011 2012 /* 2013 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 2014 * won't get blocked by normal direct-reclaimers, forming a circular 2015 * deadlock. 2016 */ 2017 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 2018 inactive >>= 3; 2019 2020 return isolated > inactive; 2021 } 2022 2023 /* 2024 * move_pages_to_lru() moves pages from private @list to appropriate LRU list. 2025 * On return, @list is reused as a list of pages to be freed by the caller. 2026 * 2027 * Returns the number of pages moved to the given lruvec. 2028 */ 2029 static unsigned int move_pages_to_lru(struct lruvec *lruvec, 2030 struct list_head *list) 2031 { 2032 int nr_pages, nr_moved = 0; 2033 LIST_HEAD(pages_to_free); 2034 struct page *page; 2035 2036 while (!list_empty(list)) { 2037 page = lru_to_page(list); 2038 VM_BUG_ON_PAGE(PageLRU(page), page); 2039 list_del(&page->lru); 2040 if (unlikely(!page_evictable(page))) { 2041 spin_unlock_irq(&lruvec->lru_lock); 2042 putback_lru_page(page); 2043 spin_lock_irq(&lruvec->lru_lock); 2044 continue; 2045 } 2046 2047 /* 2048 * The SetPageLRU needs to be kept here for list integrity. 2049 * Otherwise: 2050 * #0 move_pages_to_lru #1 release_pages 2051 * if !put_page_testzero 2052 * if (put_page_testzero()) 2053 * !PageLRU //skip lru_lock 2054 * SetPageLRU() 2055 * list_add(&page->lru,) 2056 * list_add(&page->lru,) 2057 */ 2058 SetPageLRU(page); 2059 2060 if (unlikely(put_page_testzero(page))) { 2061 __clear_page_lru_flags(page); 2062 2063 if (unlikely(PageCompound(page))) { 2064 spin_unlock_irq(&lruvec->lru_lock); 2065 destroy_compound_page(page); 2066 spin_lock_irq(&lruvec->lru_lock); 2067 } else 2068 list_add(&page->lru, &pages_to_free); 2069 2070 continue; 2071 } 2072 2073 /* 2074 * All pages were isolated from the same lruvec (and isolation 2075 * inhibits memcg migration). 2076 */ 2077 VM_BUG_ON_PAGE(!page_matches_lruvec(page, lruvec), page); 2078 add_page_to_lru_list(page, lruvec); 2079 nr_pages = thp_nr_pages(page); 2080 nr_moved += nr_pages; 2081 if (PageActive(page)) 2082 workingset_age_nonresident(lruvec, nr_pages); 2083 } 2084 2085 /* 2086 * To save our caller's stack, now use input list for pages to free. 2087 */ 2088 list_splice(&pages_to_free, list); 2089 2090 return nr_moved; 2091 } 2092 2093 /* 2094 * If a kernel thread (such as nfsd for loop-back mounts) services 2095 * a backing device by writing to the page cache it sets PF_LOCAL_THROTTLE. 2096 * In that case we should only throttle if the backing device it is 2097 * writing to is congested. In other cases it is safe to throttle. 2098 */ 2099 static int current_may_throttle(void) 2100 { 2101 return !(current->flags & PF_LOCAL_THROTTLE) || 2102 current->backing_dev_info == NULL || 2103 bdi_write_congested(current->backing_dev_info); 2104 } 2105 2106 /* 2107 * shrink_inactive_list() is a helper for shrink_node(). It returns the number 2108 * of reclaimed pages 2109 */ 2110 static unsigned long 2111 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, 2112 struct scan_control *sc, enum lru_list lru) 2113 { 2114 LIST_HEAD(page_list); 2115 unsigned long nr_scanned; 2116 unsigned int nr_reclaimed = 0; 2117 unsigned long nr_taken; 2118 struct reclaim_stat stat; 2119 bool file = is_file_lru(lru); 2120 enum vm_event_item item; 2121 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2122 bool stalled = false; 2123 2124 while (unlikely(too_many_isolated(pgdat, file, sc))) { 2125 if (stalled) 2126 return 0; 2127 2128 /* wait a bit for the reclaimer. */ 2129 msleep(100); 2130 stalled = true; 2131 2132 /* We are about to die and free our memory. Return now. */ 2133 if (fatal_signal_pending(current)) 2134 return SWAP_CLUSTER_MAX; 2135 } 2136 2137 lru_add_drain(); 2138 2139 spin_lock_irq(&lruvec->lru_lock); 2140 2141 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list, 2142 &nr_scanned, sc, lru); 2143 2144 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2145 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT; 2146 if (!cgroup_reclaim(sc)) 2147 __count_vm_events(item, nr_scanned); 2148 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned); 2149 __count_vm_events(PGSCAN_ANON + file, nr_scanned); 2150 2151 spin_unlock_irq(&lruvec->lru_lock); 2152 2153 if (nr_taken == 0) 2154 return 0; 2155 2156 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, &stat, false); 2157 2158 spin_lock_irq(&lruvec->lru_lock); 2159 move_pages_to_lru(lruvec, &page_list); 2160 2161 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2162 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT; 2163 if (!cgroup_reclaim(sc)) 2164 __count_vm_events(item, nr_reclaimed); 2165 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed); 2166 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed); 2167 spin_unlock_irq(&lruvec->lru_lock); 2168 2169 lru_note_cost(lruvec, file, stat.nr_pageout); 2170 mem_cgroup_uncharge_list(&page_list); 2171 free_unref_page_list(&page_list); 2172 2173 /* 2174 * If dirty pages are scanned that are not queued for IO, it 2175 * implies that flushers are not doing their job. This can 2176 * happen when memory pressure pushes dirty pages to the end of 2177 * the LRU before the dirty limits are breached and the dirty 2178 * data has expired. It can also happen when the proportion of 2179 * dirty pages grows not through writes but through memory 2180 * pressure reclaiming all the clean cache. And in some cases, 2181 * the flushers simply cannot keep up with the allocation 2182 * rate. Nudge the flusher threads in case they are asleep. 2183 */ 2184 if (stat.nr_unqueued_dirty == nr_taken) 2185 wakeup_flusher_threads(WB_REASON_VMSCAN); 2186 2187 sc->nr.dirty += stat.nr_dirty; 2188 sc->nr.congested += stat.nr_congested; 2189 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty; 2190 sc->nr.writeback += stat.nr_writeback; 2191 sc->nr.immediate += stat.nr_immediate; 2192 sc->nr.taken += nr_taken; 2193 if (file) 2194 sc->nr.file_taken += nr_taken; 2195 2196 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 2197 nr_scanned, nr_reclaimed, &stat, sc->priority, file); 2198 return nr_reclaimed; 2199 } 2200 2201 /* 2202 * shrink_active_list() moves pages from the active LRU to the inactive LRU. 2203 * 2204 * We move them the other way if the page is referenced by one or more 2205 * processes. 2206 * 2207 * If the pages are mostly unmapped, the processing is fast and it is 2208 * appropriate to hold lru_lock across the whole operation. But if 2209 * the pages are mapped, the processing is slow (page_referenced()), so 2210 * we should drop lru_lock around each page. It's impossible to balance 2211 * this, so instead we remove the pages from the LRU while processing them. 2212 * It is safe to rely on PG_active against the non-LRU pages in here because 2213 * nobody will play with that bit on a non-LRU page. 2214 * 2215 * The downside is that we have to touch page->_refcount against each page. 2216 * But we had to alter page->flags anyway. 2217 */ 2218 static void shrink_active_list(unsigned long nr_to_scan, 2219 struct lruvec *lruvec, 2220 struct scan_control *sc, 2221 enum lru_list lru) 2222 { 2223 unsigned long nr_taken; 2224 unsigned long nr_scanned; 2225 unsigned long vm_flags; 2226 LIST_HEAD(l_hold); /* The pages which were snipped off */ 2227 LIST_HEAD(l_active); 2228 LIST_HEAD(l_inactive); 2229 struct page *page; 2230 unsigned nr_deactivate, nr_activate; 2231 unsigned nr_rotated = 0; 2232 int file = is_file_lru(lru); 2233 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2234 2235 lru_add_drain(); 2236 2237 spin_lock_irq(&lruvec->lru_lock); 2238 2239 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold, 2240 &nr_scanned, sc, lru); 2241 2242 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2243 2244 if (!cgroup_reclaim(sc)) 2245 __count_vm_events(PGREFILL, nr_scanned); 2246 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned); 2247 2248 spin_unlock_irq(&lruvec->lru_lock); 2249 2250 while (!list_empty(&l_hold)) { 2251 cond_resched(); 2252 page = lru_to_page(&l_hold); 2253 list_del(&page->lru); 2254 2255 if (unlikely(!page_evictable(page))) { 2256 putback_lru_page(page); 2257 continue; 2258 } 2259 2260 if (unlikely(buffer_heads_over_limit)) { 2261 if (page_has_private(page) && trylock_page(page)) { 2262 if (page_has_private(page)) 2263 try_to_release_page(page, 0); 2264 unlock_page(page); 2265 } 2266 } 2267 2268 if (page_referenced(page, 0, sc->target_mem_cgroup, 2269 &vm_flags)) { 2270 /* 2271 * Identify referenced, file-backed active pages and 2272 * give them one more trip around the active list. So 2273 * that executable code get better chances to stay in 2274 * memory under moderate memory pressure. Anon pages 2275 * are not likely to be evicted by use-once streaming 2276 * IO, plus JVM can create lots of anon VM_EXEC pages, 2277 * so we ignore them here. 2278 */ 2279 if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) { 2280 nr_rotated += thp_nr_pages(page); 2281 list_add(&page->lru, &l_active); 2282 continue; 2283 } 2284 } 2285 2286 ClearPageActive(page); /* we are de-activating */ 2287 SetPageWorkingset(page); 2288 list_add(&page->lru, &l_inactive); 2289 } 2290 2291 /* 2292 * Move pages back to the lru list. 2293 */ 2294 spin_lock_irq(&lruvec->lru_lock); 2295 2296 nr_activate = move_pages_to_lru(lruvec, &l_active); 2297 nr_deactivate = move_pages_to_lru(lruvec, &l_inactive); 2298 /* Keep all free pages in l_active list */ 2299 list_splice(&l_inactive, &l_active); 2300 2301 __count_vm_events(PGDEACTIVATE, nr_deactivate); 2302 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate); 2303 2304 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2305 spin_unlock_irq(&lruvec->lru_lock); 2306 2307 mem_cgroup_uncharge_list(&l_active); 2308 free_unref_page_list(&l_active); 2309 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate, 2310 nr_deactivate, nr_rotated, sc->priority, file); 2311 } 2312 2313 unsigned long reclaim_pages(struct list_head *page_list) 2314 { 2315 int nid = NUMA_NO_NODE; 2316 unsigned int nr_reclaimed = 0; 2317 LIST_HEAD(node_page_list); 2318 struct reclaim_stat dummy_stat; 2319 struct page *page; 2320 unsigned int noreclaim_flag; 2321 struct scan_control sc = { 2322 .gfp_mask = GFP_KERNEL, 2323 .priority = DEF_PRIORITY, 2324 .may_writepage = 1, 2325 .may_unmap = 1, 2326 .may_swap = 1, 2327 }; 2328 2329 noreclaim_flag = memalloc_noreclaim_save(); 2330 2331 while (!list_empty(page_list)) { 2332 page = lru_to_page(page_list); 2333 if (nid == NUMA_NO_NODE) { 2334 nid = page_to_nid(page); 2335 INIT_LIST_HEAD(&node_page_list); 2336 } 2337 2338 if (nid == page_to_nid(page)) { 2339 ClearPageActive(page); 2340 list_move(&page->lru, &node_page_list); 2341 continue; 2342 } 2343 2344 nr_reclaimed += shrink_page_list(&node_page_list, 2345 NODE_DATA(nid), 2346 &sc, &dummy_stat, false); 2347 while (!list_empty(&node_page_list)) { 2348 page = lru_to_page(&node_page_list); 2349 list_del(&page->lru); 2350 putback_lru_page(page); 2351 } 2352 2353 nid = NUMA_NO_NODE; 2354 } 2355 2356 if (!list_empty(&node_page_list)) { 2357 nr_reclaimed += shrink_page_list(&node_page_list, 2358 NODE_DATA(nid), 2359 &sc, &dummy_stat, false); 2360 while (!list_empty(&node_page_list)) { 2361 page = lru_to_page(&node_page_list); 2362 list_del(&page->lru); 2363 putback_lru_page(page); 2364 } 2365 } 2366 2367 memalloc_noreclaim_restore(noreclaim_flag); 2368 2369 return nr_reclaimed; 2370 } 2371 2372 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 2373 struct lruvec *lruvec, struct scan_control *sc) 2374 { 2375 if (is_active_lru(lru)) { 2376 if (sc->may_deactivate & (1 << is_file_lru(lru))) 2377 shrink_active_list(nr_to_scan, lruvec, sc, lru); 2378 else 2379 sc->skipped_deactivate = 1; 2380 return 0; 2381 } 2382 2383 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 2384 } 2385 2386 /* 2387 * The inactive anon list should be small enough that the VM never has 2388 * to do too much work. 2389 * 2390 * The inactive file list should be small enough to leave most memory 2391 * to the established workingset on the scan-resistant active list, 2392 * but large enough to avoid thrashing the aggregate readahead window. 2393 * 2394 * Both inactive lists should also be large enough that each inactive 2395 * page has a chance to be referenced again before it is reclaimed. 2396 * 2397 * If that fails and refaulting is observed, the inactive list grows. 2398 * 2399 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages 2400 * on this LRU, maintained by the pageout code. An inactive_ratio 2401 * of 3 means 3:1 or 25% of the pages are kept on the inactive list. 2402 * 2403 * total target max 2404 * memory ratio inactive 2405 * ------------------------------------- 2406 * 10MB 1 5MB 2407 * 100MB 1 50MB 2408 * 1GB 3 250MB 2409 * 10GB 10 0.9GB 2410 * 100GB 31 3GB 2411 * 1TB 101 10GB 2412 * 10TB 320 32GB 2413 */ 2414 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru) 2415 { 2416 enum lru_list active_lru = inactive_lru + LRU_ACTIVE; 2417 unsigned long inactive, active; 2418 unsigned long inactive_ratio; 2419 unsigned long gb; 2420 2421 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru); 2422 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru); 2423 2424 gb = (inactive + active) >> (30 - PAGE_SHIFT); 2425 if (gb) 2426 inactive_ratio = int_sqrt(10 * gb); 2427 else 2428 inactive_ratio = 1; 2429 2430 return inactive * inactive_ratio < active; 2431 } 2432 2433 enum scan_balance { 2434 SCAN_EQUAL, 2435 SCAN_FRACT, 2436 SCAN_ANON, 2437 SCAN_FILE, 2438 }; 2439 2440 /* 2441 * Determine how aggressively the anon and file LRU lists should be 2442 * scanned. The relative value of each set of LRU lists is determined 2443 * by looking at the fraction of the pages scanned we did rotate back 2444 * onto the active list instead of evict. 2445 * 2446 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan 2447 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan 2448 */ 2449 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc, 2450 unsigned long *nr) 2451 { 2452 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 2453 unsigned long anon_cost, file_cost, total_cost; 2454 int swappiness = mem_cgroup_swappiness(memcg); 2455 u64 fraction[ANON_AND_FILE]; 2456 u64 denominator = 0; /* gcc */ 2457 enum scan_balance scan_balance; 2458 unsigned long ap, fp; 2459 enum lru_list lru; 2460 2461 /* If we have no swap space, do not bother scanning anon pages. */ 2462 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) { 2463 scan_balance = SCAN_FILE; 2464 goto out; 2465 } 2466 2467 /* 2468 * Global reclaim will swap to prevent OOM even with no 2469 * swappiness, but memcg users want to use this knob to 2470 * disable swapping for individual groups completely when 2471 * using the memory controller's swap limit feature would be 2472 * too expensive. 2473 */ 2474 if (cgroup_reclaim(sc) && !swappiness) { 2475 scan_balance = SCAN_FILE; 2476 goto out; 2477 } 2478 2479 /* 2480 * Do not apply any pressure balancing cleverness when the 2481 * system is close to OOM, scan both anon and file equally 2482 * (unless the swappiness setting disagrees with swapping). 2483 */ 2484 if (!sc->priority && swappiness) { 2485 scan_balance = SCAN_EQUAL; 2486 goto out; 2487 } 2488 2489 /* 2490 * If the system is almost out of file pages, force-scan anon. 2491 */ 2492 if (sc->file_is_tiny) { 2493 scan_balance = SCAN_ANON; 2494 goto out; 2495 } 2496 2497 /* 2498 * If there is enough inactive page cache, we do not reclaim 2499 * anything from the anonymous working right now. 2500 */ 2501 if (sc->cache_trim_mode) { 2502 scan_balance = SCAN_FILE; 2503 goto out; 2504 } 2505 2506 scan_balance = SCAN_FRACT; 2507 /* 2508 * Calculate the pressure balance between anon and file pages. 2509 * 2510 * The amount of pressure we put on each LRU is inversely 2511 * proportional to the cost of reclaiming each list, as 2512 * determined by the share of pages that are refaulting, times 2513 * the relative IO cost of bringing back a swapped out 2514 * anonymous page vs reloading a filesystem page (swappiness). 2515 * 2516 * Although we limit that influence to ensure no list gets 2517 * left behind completely: at least a third of the pressure is 2518 * applied, before swappiness. 2519 * 2520 * With swappiness at 100, anon and file have equal IO cost. 2521 */ 2522 total_cost = sc->anon_cost + sc->file_cost; 2523 anon_cost = total_cost + sc->anon_cost; 2524 file_cost = total_cost + sc->file_cost; 2525 total_cost = anon_cost + file_cost; 2526 2527 ap = swappiness * (total_cost + 1); 2528 ap /= anon_cost + 1; 2529 2530 fp = (200 - swappiness) * (total_cost + 1); 2531 fp /= file_cost + 1; 2532 2533 fraction[0] = ap; 2534 fraction[1] = fp; 2535 denominator = ap + fp; 2536 out: 2537 for_each_evictable_lru(lru) { 2538 int file = is_file_lru(lru); 2539 unsigned long lruvec_size; 2540 unsigned long scan; 2541 unsigned long protection; 2542 2543 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx); 2544 protection = mem_cgroup_protection(sc->target_mem_cgroup, 2545 memcg, 2546 sc->memcg_low_reclaim); 2547 2548 if (protection) { 2549 /* 2550 * Scale a cgroup's reclaim pressure by proportioning 2551 * its current usage to its memory.low or memory.min 2552 * setting. 2553 * 2554 * This is important, as otherwise scanning aggression 2555 * becomes extremely binary -- from nothing as we 2556 * approach the memory protection threshold, to totally 2557 * nominal as we exceed it. This results in requiring 2558 * setting extremely liberal protection thresholds. It 2559 * also means we simply get no protection at all if we 2560 * set it too low, which is not ideal. 2561 * 2562 * If there is any protection in place, we reduce scan 2563 * pressure by how much of the total memory used is 2564 * within protection thresholds. 2565 * 2566 * There is one special case: in the first reclaim pass, 2567 * we skip over all groups that are within their low 2568 * protection. If that fails to reclaim enough pages to 2569 * satisfy the reclaim goal, we come back and override 2570 * the best-effort low protection. However, we still 2571 * ideally want to honor how well-behaved groups are in 2572 * that case instead of simply punishing them all 2573 * equally. As such, we reclaim them based on how much 2574 * memory they are using, reducing the scan pressure 2575 * again by how much of the total memory used is under 2576 * hard protection. 2577 */ 2578 unsigned long cgroup_size = mem_cgroup_size(memcg); 2579 2580 /* Avoid TOCTOU with earlier protection check */ 2581 cgroup_size = max(cgroup_size, protection); 2582 2583 scan = lruvec_size - lruvec_size * protection / 2584 cgroup_size; 2585 2586 /* 2587 * Minimally target SWAP_CLUSTER_MAX pages to keep 2588 * reclaim moving forwards, avoiding decrementing 2589 * sc->priority further than desirable. 2590 */ 2591 scan = max(scan, SWAP_CLUSTER_MAX); 2592 } else { 2593 scan = lruvec_size; 2594 } 2595 2596 scan >>= sc->priority; 2597 2598 /* 2599 * If the cgroup's already been deleted, make sure to 2600 * scrape out the remaining cache. 2601 */ 2602 if (!scan && !mem_cgroup_online(memcg)) 2603 scan = min(lruvec_size, SWAP_CLUSTER_MAX); 2604 2605 switch (scan_balance) { 2606 case SCAN_EQUAL: 2607 /* Scan lists relative to size */ 2608 break; 2609 case SCAN_FRACT: 2610 /* 2611 * Scan types proportional to swappiness and 2612 * their relative recent reclaim efficiency. 2613 * Make sure we don't miss the last page on 2614 * the offlined memory cgroups because of a 2615 * round-off error. 2616 */ 2617 scan = mem_cgroup_online(memcg) ? 2618 div64_u64(scan * fraction[file], denominator) : 2619 DIV64_U64_ROUND_UP(scan * fraction[file], 2620 denominator); 2621 break; 2622 case SCAN_FILE: 2623 case SCAN_ANON: 2624 /* Scan one type exclusively */ 2625 if ((scan_balance == SCAN_FILE) != file) 2626 scan = 0; 2627 break; 2628 default: 2629 /* Look ma, no brain */ 2630 BUG(); 2631 } 2632 2633 nr[lru] = scan; 2634 } 2635 } 2636 2637 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 2638 { 2639 unsigned long nr[NR_LRU_LISTS]; 2640 unsigned long targets[NR_LRU_LISTS]; 2641 unsigned long nr_to_scan; 2642 enum lru_list lru; 2643 unsigned long nr_reclaimed = 0; 2644 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 2645 struct blk_plug plug; 2646 bool scan_adjusted; 2647 2648 get_scan_count(lruvec, sc, nr); 2649 2650 /* Record the original scan target for proportional adjustments later */ 2651 memcpy(targets, nr, sizeof(nr)); 2652 2653 /* 2654 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal 2655 * event that can occur when there is little memory pressure e.g. 2656 * multiple streaming readers/writers. Hence, we do not abort scanning 2657 * when the requested number of pages are reclaimed when scanning at 2658 * DEF_PRIORITY on the assumption that the fact we are direct 2659 * reclaiming implies that kswapd is not keeping up and it is best to 2660 * do a batch of work at once. For memcg reclaim one check is made to 2661 * abort proportional reclaim if either the file or anon lru has already 2662 * dropped to zero at the first pass. 2663 */ 2664 scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() && 2665 sc->priority == DEF_PRIORITY); 2666 2667 blk_start_plug(&plug); 2668 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 2669 nr[LRU_INACTIVE_FILE]) { 2670 unsigned long nr_anon, nr_file, percentage; 2671 unsigned long nr_scanned; 2672 2673 for_each_evictable_lru(lru) { 2674 if (nr[lru]) { 2675 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 2676 nr[lru] -= nr_to_scan; 2677 2678 nr_reclaimed += shrink_list(lru, nr_to_scan, 2679 lruvec, sc); 2680 } 2681 } 2682 2683 cond_resched(); 2684 2685 if (nr_reclaimed < nr_to_reclaim || scan_adjusted) 2686 continue; 2687 2688 /* 2689 * For kswapd and memcg, reclaim at least the number of pages 2690 * requested. Ensure that the anon and file LRUs are scanned 2691 * proportionally what was requested by get_scan_count(). We 2692 * stop reclaiming one LRU and reduce the amount scanning 2693 * proportional to the original scan target. 2694 */ 2695 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 2696 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 2697 2698 /* 2699 * It's just vindictive to attack the larger once the smaller 2700 * has gone to zero. And given the way we stop scanning the 2701 * smaller below, this makes sure that we only make one nudge 2702 * towards proportionality once we've got nr_to_reclaim. 2703 */ 2704 if (!nr_file || !nr_anon) 2705 break; 2706 2707 if (nr_file > nr_anon) { 2708 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 2709 targets[LRU_ACTIVE_ANON] + 1; 2710 lru = LRU_BASE; 2711 percentage = nr_anon * 100 / scan_target; 2712 } else { 2713 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 2714 targets[LRU_ACTIVE_FILE] + 1; 2715 lru = LRU_FILE; 2716 percentage = nr_file * 100 / scan_target; 2717 } 2718 2719 /* Stop scanning the smaller of the LRU */ 2720 nr[lru] = 0; 2721 nr[lru + LRU_ACTIVE] = 0; 2722 2723 /* 2724 * Recalculate the other LRU scan count based on its original 2725 * scan target and the percentage scanning already complete 2726 */ 2727 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 2728 nr_scanned = targets[lru] - nr[lru]; 2729 nr[lru] = targets[lru] * (100 - percentage) / 100; 2730 nr[lru] -= min(nr[lru], nr_scanned); 2731 2732 lru += LRU_ACTIVE; 2733 nr_scanned = targets[lru] - nr[lru]; 2734 nr[lru] = targets[lru] * (100 - percentage) / 100; 2735 nr[lru] -= min(nr[lru], nr_scanned); 2736 2737 scan_adjusted = true; 2738 } 2739 blk_finish_plug(&plug); 2740 sc->nr_reclaimed += nr_reclaimed; 2741 2742 /* 2743 * Even if we did not try to evict anon pages at all, we want to 2744 * rebalance the anon lru active/inactive ratio. 2745 */ 2746 if (total_swap_pages && inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 2747 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 2748 sc, LRU_ACTIVE_ANON); 2749 } 2750 2751 /* Use reclaim/compaction for costly allocs or under memory pressure */ 2752 static bool in_reclaim_compaction(struct scan_control *sc) 2753 { 2754 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 2755 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 2756 sc->priority < DEF_PRIORITY - 2)) 2757 return true; 2758 2759 return false; 2760 } 2761 2762 /* 2763 * Reclaim/compaction is used for high-order allocation requests. It reclaims 2764 * order-0 pages before compacting the zone. should_continue_reclaim() returns 2765 * true if more pages should be reclaimed such that when the page allocator 2766 * calls try_to_compact_pages() that it will have enough free pages to succeed. 2767 * It will give up earlier than that if there is difficulty reclaiming pages. 2768 */ 2769 static inline bool should_continue_reclaim(struct pglist_data *pgdat, 2770 unsigned long nr_reclaimed, 2771 struct scan_control *sc) 2772 { 2773 unsigned long pages_for_compaction; 2774 unsigned long inactive_lru_pages; 2775 int z; 2776 2777 /* If not in reclaim/compaction mode, stop */ 2778 if (!in_reclaim_compaction(sc)) 2779 return false; 2780 2781 /* 2782 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX 2783 * number of pages that were scanned. This will return to the caller 2784 * with the risk reclaim/compaction and the resulting allocation attempt 2785 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL 2786 * allocations through requiring that the full LRU list has been scanned 2787 * first, by assuming that zero delta of sc->nr_scanned means full LRU 2788 * scan, but that approximation was wrong, and there were corner cases 2789 * where always a non-zero amount of pages were scanned. 2790 */ 2791 if (!nr_reclaimed) 2792 return false; 2793 2794 /* If compaction would go ahead or the allocation would succeed, stop */ 2795 for (z = 0; z <= sc->reclaim_idx; z++) { 2796 struct zone *zone = &pgdat->node_zones[z]; 2797 if (!managed_zone(zone)) 2798 continue; 2799 2800 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) { 2801 case COMPACT_SUCCESS: 2802 case COMPACT_CONTINUE: 2803 return false; 2804 default: 2805 /* check next zone */ 2806 ; 2807 } 2808 } 2809 2810 /* 2811 * If we have not reclaimed enough pages for compaction and the 2812 * inactive lists are large enough, continue reclaiming 2813 */ 2814 pages_for_compaction = compact_gap(sc->order); 2815 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE); 2816 if (get_nr_swap_pages() > 0) 2817 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON); 2818 2819 return inactive_lru_pages > pages_for_compaction; 2820 } 2821 2822 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc) 2823 { 2824 struct mem_cgroup *target_memcg = sc->target_mem_cgroup; 2825 struct mem_cgroup *memcg; 2826 2827 memcg = mem_cgroup_iter(target_memcg, NULL, NULL); 2828 do { 2829 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 2830 unsigned long reclaimed; 2831 unsigned long scanned; 2832 2833 /* 2834 * This loop can become CPU-bound when target memcgs 2835 * aren't eligible for reclaim - either because they 2836 * don't have any reclaimable pages, or because their 2837 * memory is explicitly protected. Avoid soft lockups. 2838 */ 2839 cond_resched(); 2840 2841 mem_cgroup_calculate_protection(target_memcg, memcg); 2842 2843 if (mem_cgroup_below_min(memcg)) { 2844 /* 2845 * Hard protection. 2846 * If there is no reclaimable memory, OOM. 2847 */ 2848 continue; 2849 } else if (mem_cgroup_below_low(memcg)) { 2850 /* 2851 * Soft protection. 2852 * Respect the protection only as long as 2853 * there is an unprotected supply 2854 * of reclaimable memory from other cgroups. 2855 */ 2856 if (!sc->memcg_low_reclaim) { 2857 sc->memcg_low_skipped = 1; 2858 continue; 2859 } 2860 memcg_memory_event(memcg, MEMCG_LOW); 2861 } 2862 2863 reclaimed = sc->nr_reclaimed; 2864 scanned = sc->nr_scanned; 2865 2866 shrink_lruvec(lruvec, sc); 2867 2868 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, 2869 sc->priority); 2870 2871 /* Record the group's reclaim efficiency */ 2872 vmpressure(sc->gfp_mask, memcg, false, 2873 sc->nr_scanned - scanned, 2874 sc->nr_reclaimed - reclaimed); 2875 2876 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL))); 2877 } 2878 2879 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc) 2880 { 2881 struct reclaim_state *reclaim_state = current->reclaim_state; 2882 unsigned long nr_reclaimed, nr_scanned; 2883 struct lruvec *target_lruvec; 2884 bool reclaimable = false; 2885 unsigned long file; 2886 2887 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat); 2888 2889 again: 2890 memset(&sc->nr, 0, sizeof(sc->nr)); 2891 2892 nr_reclaimed = sc->nr_reclaimed; 2893 nr_scanned = sc->nr_scanned; 2894 2895 /* 2896 * Determine the scan balance between anon and file LRUs. 2897 */ 2898 spin_lock_irq(&target_lruvec->lru_lock); 2899 sc->anon_cost = target_lruvec->anon_cost; 2900 sc->file_cost = target_lruvec->file_cost; 2901 spin_unlock_irq(&target_lruvec->lru_lock); 2902 2903 /* 2904 * Target desirable inactive:active list ratios for the anon 2905 * and file LRU lists. 2906 */ 2907 if (!sc->force_deactivate) { 2908 unsigned long refaults; 2909 2910 refaults = lruvec_page_state(target_lruvec, 2911 WORKINGSET_ACTIVATE_ANON); 2912 if (refaults != target_lruvec->refaults[0] || 2913 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON)) 2914 sc->may_deactivate |= DEACTIVATE_ANON; 2915 else 2916 sc->may_deactivate &= ~DEACTIVATE_ANON; 2917 2918 /* 2919 * When refaults are being observed, it means a new 2920 * workingset is being established. Deactivate to get 2921 * rid of any stale active pages quickly. 2922 */ 2923 refaults = lruvec_page_state(target_lruvec, 2924 WORKINGSET_ACTIVATE_FILE); 2925 if (refaults != target_lruvec->refaults[1] || 2926 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE)) 2927 sc->may_deactivate |= DEACTIVATE_FILE; 2928 else 2929 sc->may_deactivate &= ~DEACTIVATE_FILE; 2930 } else 2931 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE; 2932 2933 /* 2934 * If we have plenty of inactive file pages that aren't 2935 * thrashing, try to reclaim those first before touching 2936 * anonymous pages. 2937 */ 2938 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE); 2939 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE)) 2940 sc->cache_trim_mode = 1; 2941 else 2942 sc->cache_trim_mode = 0; 2943 2944 /* 2945 * Prevent the reclaimer from falling into the cache trap: as 2946 * cache pages start out inactive, every cache fault will tip 2947 * the scan balance towards the file LRU. And as the file LRU 2948 * shrinks, so does the window for rotation from references. 2949 * This means we have a runaway feedback loop where a tiny 2950 * thrashing file LRU becomes infinitely more attractive than 2951 * anon pages. Try to detect this based on file LRU size. 2952 */ 2953 if (!cgroup_reclaim(sc)) { 2954 unsigned long total_high_wmark = 0; 2955 unsigned long free, anon; 2956 int z; 2957 2958 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES); 2959 file = node_page_state(pgdat, NR_ACTIVE_FILE) + 2960 node_page_state(pgdat, NR_INACTIVE_FILE); 2961 2962 for (z = 0; z < MAX_NR_ZONES; z++) { 2963 struct zone *zone = &pgdat->node_zones[z]; 2964 if (!managed_zone(zone)) 2965 continue; 2966 2967 total_high_wmark += high_wmark_pages(zone); 2968 } 2969 2970 /* 2971 * Consider anon: if that's low too, this isn't a 2972 * runaway file reclaim problem, but rather just 2973 * extreme pressure. Reclaim as per usual then. 2974 */ 2975 anon = node_page_state(pgdat, NR_INACTIVE_ANON); 2976 2977 sc->file_is_tiny = 2978 file + free <= total_high_wmark && 2979 !(sc->may_deactivate & DEACTIVATE_ANON) && 2980 anon >> sc->priority; 2981 } 2982 2983 shrink_node_memcgs(pgdat, sc); 2984 2985 if (reclaim_state) { 2986 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 2987 reclaim_state->reclaimed_slab = 0; 2988 } 2989 2990 /* Record the subtree's reclaim efficiency */ 2991 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, 2992 sc->nr_scanned - nr_scanned, 2993 sc->nr_reclaimed - nr_reclaimed); 2994 2995 if (sc->nr_reclaimed - nr_reclaimed) 2996 reclaimable = true; 2997 2998 if (current_is_kswapd()) { 2999 /* 3000 * If reclaim is isolating dirty pages under writeback, 3001 * it implies that the long-lived page allocation rate 3002 * is exceeding the page laundering rate. Either the 3003 * global limits are not being effective at throttling 3004 * processes due to the page distribution throughout 3005 * zones or there is heavy usage of a slow backing 3006 * device. The only option is to throttle from reclaim 3007 * context which is not ideal as there is no guarantee 3008 * the dirtying process is throttled in the same way 3009 * balance_dirty_pages() manages. 3010 * 3011 * Once a node is flagged PGDAT_WRITEBACK, kswapd will 3012 * count the number of pages under pages flagged for 3013 * immediate reclaim and stall if any are encountered 3014 * in the nr_immediate check below. 3015 */ 3016 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken) 3017 set_bit(PGDAT_WRITEBACK, &pgdat->flags); 3018 3019 /* Allow kswapd to start writing pages during reclaim.*/ 3020 if (sc->nr.unqueued_dirty == sc->nr.file_taken) 3021 set_bit(PGDAT_DIRTY, &pgdat->flags); 3022 3023 /* 3024 * If kswapd scans pages marked for immediate 3025 * reclaim and under writeback (nr_immediate), it 3026 * implies that pages are cycling through the LRU 3027 * faster than they are written so also forcibly stall. 3028 */ 3029 if (sc->nr.immediate) 3030 congestion_wait(BLK_RW_ASYNC, HZ/10); 3031 } 3032 3033 /* 3034 * Tag a node/memcg as congested if all the dirty pages 3035 * scanned were backed by a congested BDI and 3036 * wait_iff_congested will stall. 3037 * 3038 * Legacy memcg will stall in page writeback so avoid forcibly 3039 * stalling in wait_iff_congested(). 3040 */ 3041 if ((current_is_kswapd() || 3042 (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) && 3043 sc->nr.dirty && sc->nr.dirty == sc->nr.congested) 3044 set_bit(LRUVEC_CONGESTED, &target_lruvec->flags); 3045 3046 /* 3047 * Stall direct reclaim for IO completions if underlying BDIs 3048 * and node is congested. Allow kswapd to continue until it 3049 * starts encountering unqueued dirty pages or cycling through 3050 * the LRU too quickly. 3051 */ 3052 if (!current_is_kswapd() && current_may_throttle() && 3053 !sc->hibernation_mode && 3054 test_bit(LRUVEC_CONGESTED, &target_lruvec->flags)) 3055 wait_iff_congested(BLK_RW_ASYNC, HZ/10); 3056 3057 if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed, 3058 sc)) 3059 goto again; 3060 3061 /* 3062 * Kswapd gives up on balancing particular nodes after too 3063 * many failures to reclaim anything from them and goes to 3064 * sleep. On reclaim progress, reset the failure counter. A 3065 * successful direct reclaim run will revive a dormant kswapd. 3066 */ 3067 if (reclaimable) 3068 pgdat->kswapd_failures = 0; 3069 } 3070 3071 /* 3072 * Returns true if compaction should go ahead for a costly-order request, or 3073 * the allocation would already succeed without compaction. Return false if we 3074 * should reclaim first. 3075 */ 3076 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) 3077 { 3078 unsigned long watermark; 3079 enum compact_result suitable; 3080 3081 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx); 3082 if (suitable == COMPACT_SUCCESS) 3083 /* Allocation should succeed already. Don't reclaim. */ 3084 return true; 3085 if (suitable == COMPACT_SKIPPED) 3086 /* Compaction cannot yet proceed. Do reclaim. */ 3087 return false; 3088 3089 /* 3090 * Compaction is already possible, but it takes time to run and there 3091 * are potentially other callers using the pages just freed. So proceed 3092 * with reclaim to make a buffer of free pages available to give 3093 * compaction a reasonable chance of completing and allocating the page. 3094 * Note that we won't actually reclaim the whole buffer in one attempt 3095 * as the target watermark in should_continue_reclaim() is lower. But if 3096 * we are already above the high+gap watermark, don't reclaim at all. 3097 */ 3098 watermark = high_wmark_pages(zone) + compact_gap(sc->order); 3099 3100 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx); 3101 } 3102 3103 /* 3104 * This is the direct reclaim path, for page-allocating processes. We only 3105 * try to reclaim pages from zones which will satisfy the caller's allocation 3106 * request. 3107 * 3108 * If a zone is deemed to be full of pinned pages then just give it a light 3109 * scan then give up on it. 3110 */ 3111 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 3112 { 3113 struct zoneref *z; 3114 struct zone *zone; 3115 unsigned long nr_soft_reclaimed; 3116 unsigned long nr_soft_scanned; 3117 gfp_t orig_mask; 3118 pg_data_t *last_pgdat = NULL; 3119 3120 /* 3121 * If the number of buffer_heads in the machine exceeds the maximum 3122 * allowed level, force direct reclaim to scan the highmem zone as 3123 * highmem pages could be pinning lowmem pages storing buffer_heads 3124 */ 3125 orig_mask = sc->gfp_mask; 3126 if (buffer_heads_over_limit) { 3127 sc->gfp_mask |= __GFP_HIGHMEM; 3128 sc->reclaim_idx = gfp_zone(sc->gfp_mask); 3129 } 3130 3131 for_each_zone_zonelist_nodemask(zone, z, zonelist, 3132 sc->reclaim_idx, sc->nodemask) { 3133 /* 3134 * Take care memory controller reclaiming has small influence 3135 * to global LRU. 3136 */ 3137 if (!cgroup_reclaim(sc)) { 3138 if (!cpuset_zone_allowed(zone, 3139 GFP_KERNEL | __GFP_HARDWALL)) 3140 continue; 3141 3142 /* 3143 * If we already have plenty of memory free for 3144 * compaction in this zone, don't free any more. 3145 * Even though compaction is invoked for any 3146 * non-zero order, only frequent costly order 3147 * reclamation is disruptive enough to become a 3148 * noticeable problem, like transparent huge 3149 * page allocations. 3150 */ 3151 if (IS_ENABLED(CONFIG_COMPACTION) && 3152 sc->order > PAGE_ALLOC_COSTLY_ORDER && 3153 compaction_ready(zone, sc)) { 3154 sc->compaction_ready = true; 3155 continue; 3156 } 3157 3158 /* 3159 * Shrink each node in the zonelist once. If the 3160 * zonelist is ordered by zone (not the default) then a 3161 * node may be shrunk multiple times but in that case 3162 * the user prefers lower zones being preserved. 3163 */ 3164 if (zone->zone_pgdat == last_pgdat) 3165 continue; 3166 3167 /* 3168 * This steals pages from memory cgroups over softlimit 3169 * and returns the number of reclaimed pages and 3170 * scanned pages. This works for global memory pressure 3171 * and balancing, not for a memcg's limit. 3172 */ 3173 nr_soft_scanned = 0; 3174 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat, 3175 sc->order, sc->gfp_mask, 3176 &nr_soft_scanned); 3177 sc->nr_reclaimed += nr_soft_reclaimed; 3178 sc->nr_scanned += nr_soft_scanned; 3179 /* need some check for avoid more shrink_zone() */ 3180 } 3181 3182 /* See comment about same check for global reclaim above */ 3183 if (zone->zone_pgdat == last_pgdat) 3184 continue; 3185 last_pgdat = zone->zone_pgdat; 3186 shrink_node(zone->zone_pgdat, sc); 3187 } 3188 3189 /* 3190 * Restore to original mask to avoid the impact on the caller if we 3191 * promoted it to __GFP_HIGHMEM. 3192 */ 3193 sc->gfp_mask = orig_mask; 3194 } 3195 3196 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat) 3197 { 3198 struct lruvec *target_lruvec; 3199 unsigned long refaults; 3200 3201 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat); 3202 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON); 3203 target_lruvec->refaults[0] = refaults; 3204 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE); 3205 target_lruvec->refaults[1] = refaults; 3206 } 3207 3208 /* 3209 * This is the main entry point to direct page reclaim. 3210 * 3211 * If a full scan of the inactive list fails to free enough memory then we 3212 * are "out of memory" and something needs to be killed. 3213 * 3214 * If the caller is !__GFP_FS then the probability of a failure is reasonably 3215 * high - the zone may be full of dirty or under-writeback pages, which this 3216 * caller can't do much about. We kick the writeback threads and take explicit 3217 * naps in the hope that some of these pages can be written. But if the 3218 * allocating task holds filesystem locks which prevent writeout this might not 3219 * work, and the allocation attempt will fail. 3220 * 3221 * returns: 0, if no pages reclaimed 3222 * else, the number of pages reclaimed 3223 */ 3224 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 3225 struct scan_control *sc) 3226 { 3227 int initial_priority = sc->priority; 3228 pg_data_t *last_pgdat; 3229 struct zoneref *z; 3230 struct zone *zone; 3231 retry: 3232 delayacct_freepages_start(); 3233 3234 if (!cgroup_reclaim(sc)) 3235 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1); 3236 3237 do { 3238 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 3239 sc->priority); 3240 sc->nr_scanned = 0; 3241 shrink_zones(zonelist, sc); 3242 3243 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 3244 break; 3245 3246 if (sc->compaction_ready) 3247 break; 3248 3249 /* 3250 * If we're getting trouble reclaiming, start doing 3251 * writepage even in laptop mode. 3252 */ 3253 if (sc->priority < DEF_PRIORITY - 2) 3254 sc->may_writepage = 1; 3255 } while (--sc->priority >= 0); 3256 3257 last_pgdat = NULL; 3258 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx, 3259 sc->nodemask) { 3260 if (zone->zone_pgdat == last_pgdat) 3261 continue; 3262 last_pgdat = zone->zone_pgdat; 3263 3264 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat); 3265 3266 if (cgroup_reclaim(sc)) { 3267 struct lruvec *lruvec; 3268 3269 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, 3270 zone->zone_pgdat); 3271 clear_bit(LRUVEC_CONGESTED, &lruvec->flags); 3272 } 3273 } 3274 3275 delayacct_freepages_end(); 3276 3277 if (sc->nr_reclaimed) 3278 return sc->nr_reclaimed; 3279 3280 /* Aborted reclaim to try compaction? don't OOM, then */ 3281 if (sc->compaction_ready) 3282 return 1; 3283 3284 /* 3285 * We make inactive:active ratio decisions based on the node's 3286 * composition of memory, but a restrictive reclaim_idx or a 3287 * memory.low cgroup setting can exempt large amounts of 3288 * memory from reclaim. Neither of which are very common, so 3289 * instead of doing costly eligibility calculations of the 3290 * entire cgroup subtree up front, we assume the estimates are 3291 * good, and retry with forcible deactivation if that fails. 3292 */ 3293 if (sc->skipped_deactivate) { 3294 sc->priority = initial_priority; 3295 sc->force_deactivate = 1; 3296 sc->skipped_deactivate = 0; 3297 goto retry; 3298 } 3299 3300 /* Untapped cgroup reserves? Don't OOM, retry. */ 3301 if (sc->memcg_low_skipped) { 3302 sc->priority = initial_priority; 3303 sc->force_deactivate = 0; 3304 sc->memcg_low_reclaim = 1; 3305 sc->memcg_low_skipped = 0; 3306 goto retry; 3307 } 3308 3309 return 0; 3310 } 3311 3312 static bool allow_direct_reclaim(pg_data_t *pgdat) 3313 { 3314 struct zone *zone; 3315 unsigned long pfmemalloc_reserve = 0; 3316 unsigned long free_pages = 0; 3317 int i; 3318 bool wmark_ok; 3319 3320 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 3321 return true; 3322 3323 for (i = 0; i <= ZONE_NORMAL; i++) { 3324 zone = &pgdat->node_zones[i]; 3325 if (!managed_zone(zone)) 3326 continue; 3327 3328 if (!zone_reclaimable_pages(zone)) 3329 continue; 3330 3331 pfmemalloc_reserve += min_wmark_pages(zone); 3332 free_pages += zone_page_state(zone, NR_FREE_PAGES); 3333 } 3334 3335 /* If there are no reserves (unexpected config) then do not throttle */ 3336 if (!pfmemalloc_reserve) 3337 return true; 3338 3339 wmark_ok = free_pages > pfmemalloc_reserve / 2; 3340 3341 /* kswapd must be awake if processes are being throttled */ 3342 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 3343 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL) 3344 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL); 3345 3346 wake_up_interruptible(&pgdat->kswapd_wait); 3347 } 3348 3349 return wmark_ok; 3350 } 3351 3352 /* 3353 * Throttle direct reclaimers if backing storage is backed by the network 3354 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 3355 * depleted. kswapd will continue to make progress and wake the processes 3356 * when the low watermark is reached. 3357 * 3358 * Returns true if a fatal signal was delivered during throttling. If this 3359 * happens, the page allocator should not consider triggering the OOM killer. 3360 */ 3361 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 3362 nodemask_t *nodemask) 3363 { 3364 struct zoneref *z; 3365 struct zone *zone; 3366 pg_data_t *pgdat = NULL; 3367 3368 /* 3369 * Kernel threads should not be throttled as they may be indirectly 3370 * responsible for cleaning pages necessary for reclaim to make forward 3371 * progress. kjournald for example may enter direct reclaim while 3372 * committing a transaction where throttling it could forcing other 3373 * processes to block on log_wait_commit(). 3374 */ 3375 if (current->flags & PF_KTHREAD) 3376 goto out; 3377 3378 /* 3379 * If a fatal signal is pending, this process should not throttle. 3380 * It should return quickly so it can exit and free its memory 3381 */ 3382 if (fatal_signal_pending(current)) 3383 goto out; 3384 3385 /* 3386 * Check if the pfmemalloc reserves are ok by finding the first node 3387 * with a usable ZONE_NORMAL or lower zone. The expectation is that 3388 * GFP_KERNEL will be required for allocating network buffers when 3389 * swapping over the network so ZONE_HIGHMEM is unusable. 3390 * 3391 * Throttling is based on the first usable node and throttled processes 3392 * wait on a queue until kswapd makes progress and wakes them. There 3393 * is an affinity then between processes waking up and where reclaim 3394 * progress has been made assuming the process wakes on the same node. 3395 * More importantly, processes running on remote nodes will not compete 3396 * for remote pfmemalloc reserves and processes on different nodes 3397 * should make reasonable progress. 3398 */ 3399 for_each_zone_zonelist_nodemask(zone, z, zonelist, 3400 gfp_zone(gfp_mask), nodemask) { 3401 if (zone_idx(zone) > ZONE_NORMAL) 3402 continue; 3403 3404 /* Throttle based on the first usable node */ 3405 pgdat = zone->zone_pgdat; 3406 if (allow_direct_reclaim(pgdat)) 3407 goto out; 3408 break; 3409 } 3410 3411 /* If no zone was usable by the allocation flags then do not throttle */ 3412 if (!pgdat) 3413 goto out; 3414 3415 /* Account for the throttling */ 3416 count_vm_event(PGSCAN_DIRECT_THROTTLE); 3417 3418 /* 3419 * If the caller cannot enter the filesystem, it's possible that it 3420 * is due to the caller holding an FS lock or performing a journal 3421 * transaction in the case of a filesystem like ext[3|4]. In this case, 3422 * it is not safe to block on pfmemalloc_wait as kswapd could be 3423 * blocked waiting on the same lock. Instead, throttle for up to a 3424 * second before continuing. 3425 */ 3426 if (!(gfp_mask & __GFP_FS)) { 3427 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 3428 allow_direct_reclaim(pgdat), HZ); 3429 3430 goto check_pending; 3431 } 3432 3433 /* Throttle until kswapd wakes the process */ 3434 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 3435 allow_direct_reclaim(pgdat)); 3436 3437 check_pending: 3438 if (fatal_signal_pending(current)) 3439 return true; 3440 3441 out: 3442 return false; 3443 } 3444 3445 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 3446 gfp_t gfp_mask, nodemask_t *nodemask) 3447 { 3448 unsigned long nr_reclaimed; 3449 struct scan_control sc = { 3450 .nr_to_reclaim = SWAP_CLUSTER_MAX, 3451 .gfp_mask = current_gfp_context(gfp_mask), 3452 .reclaim_idx = gfp_zone(gfp_mask), 3453 .order = order, 3454 .nodemask = nodemask, 3455 .priority = DEF_PRIORITY, 3456 .may_writepage = !laptop_mode, 3457 .may_unmap = 1, 3458 .may_swap = 1, 3459 }; 3460 3461 /* 3462 * scan_control uses s8 fields for order, priority, and reclaim_idx. 3463 * Confirm they are large enough for max values. 3464 */ 3465 BUILD_BUG_ON(MAX_ORDER > S8_MAX); 3466 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX); 3467 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX); 3468 3469 /* 3470 * Do not enter reclaim if fatal signal was delivered while throttled. 3471 * 1 is returned so that the page allocator does not OOM kill at this 3472 * point. 3473 */ 3474 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask)) 3475 return 1; 3476 3477 set_task_reclaim_state(current, &sc.reclaim_state); 3478 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask); 3479 3480 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3481 3482 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 3483 set_task_reclaim_state(current, NULL); 3484 3485 return nr_reclaimed; 3486 } 3487 3488 #ifdef CONFIG_MEMCG 3489 3490 /* Only used by soft limit reclaim. Do not reuse for anything else. */ 3491 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg, 3492 gfp_t gfp_mask, bool noswap, 3493 pg_data_t *pgdat, 3494 unsigned long *nr_scanned) 3495 { 3496 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 3497 struct scan_control sc = { 3498 .nr_to_reclaim = SWAP_CLUSTER_MAX, 3499 .target_mem_cgroup = memcg, 3500 .may_writepage = !laptop_mode, 3501 .may_unmap = 1, 3502 .reclaim_idx = MAX_NR_ZONES - 1, 3503 .may_swap = !noswap, 3504 }; 3505 3506 WARN_ON_ONCE(!current->reclaim_state); 3507 3508 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 3509 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 3510 3511 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 3512 sc.gfp_mask); 3513 3514 /* 3515 * NOTE: Although we can get the priority field, using it 3516 * here is not a good idea, since it limits the pages we can scan. 3517 * if we don't reclaim here, the shrink_node from balance_pgdat 3518 * will pick up pages from other mem cgroup's as well. We hack 3519 * the priority and make it zero. 3520 */ 3521 shrink_lruvec(lruvec, &sc); 3522 3523 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 3524 3525 *nr_scanned = sc.nr_scanned; 3526 3527 return sc.nr_reclaimed; 3528 } 3529 3530 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 3531 unsigned long nr_pages, 3532 gfp_t gfp_mask, 3533 bool may_swap) 3534 { 3535 unsigned long nr_reclaimed; 3536 unsigned int noreclaim_flag; 3537 struct scan_control sc = { 3538 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 3539 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) | 3540 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 3541 .reclaim_idx = MAX_NR_ZONES - 1, 3542 .target_mem_cgroup = memcg, 3543 .priority = DEF_PRIORITY, 3544 .may_writepage = !laptop_mode, 3545 .may_unmap = 1, 3546 .may_swap = may_swap, 3547 }; 3548 /* 3549 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put 3550 * equal pressure on all the nodes. This is based on the assumption that 3551 * the reclaim does not bail out early. 3552 */ 3553 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 3554 3555 set_task_reclaim_state(current, &sc.reclaim_state); 3556 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask); 3557 noreclaim_flag = memalloc_noreclaim_save(); 3558 3559 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3560 3561 memalloc_noreclaim_restore(noreclaim_flag); 3562 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 3563 set_task_reclaim_state(current, NULL); 3564 3565 return nr_reclaimed; 3566 } 3567 #endif 3568 3569 static void age_active_anon(struct pglist_data *pgdat, 3570 struct scan_control *sc) 3571 { 3572 struct mem_cgroup *memcg; 3573 struct lruvec *lruvec; 3574 3575 if (!total_swap_pages) 3576 return; 3577 3578 lruvec = mem_cgroup_lruvec(NULL, pgdat); 3579 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 3580 return; 3581 3582 memcg = mem_cgroup_iter(NULL, NULL, NULL); 3583 do { 3584 lruvec = mem_cgroup_lruvec(memcg, pgdat); 3585 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 3586 sc, LRU_ACTIVE_ANON); 3587 memcg = mem_cgroup_iter(NULL, memcg, NULL); 3588 } while (memcg); 3589 } 3590 3591 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx) 3592 { 3593 int i; 3594 struct zone *zone; 3595 3596 /* 3597 * Check for watermark boosts top-down as the higher zones 3598 * are more likely to be boosted. Both watermarks and boosts 3599 * should not be checked at the same time as reclaim would 3600 * start prematurely when there is no boosting and a lower 3601 * zone is balanced. 3602 */ 3603 for (i = highest_zoneidx; i >= 0; i--) { 3604 zone = pgdat->node_zones + i; 3605 if (!managed_zone(zone)) 3606 continue; 3607 3608 if (zone->watermark_boost) 3609 return true; 3610 } 3611 3612 return false; 3613 } 3614 3615 /* 3616 * Returns true if there is an eligible zone balanced for the request order 3617 * and highest_zoneidx 3618 */ 3619 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx) 3620 { 3621 int i; 3622 unsigned long mark = -1; 3623 struct zone *zone; 3624 3625 /* 3626 * Check watermarks bottom-up as lower zones are more likely to 3627 * meet watermarks. 3628 */ 3629 for (i = 0; i <= highest_zoneidx; i++) { 3630 zone = pgdat->node_zones + i; 3631 3632 if (!managed_zone(zone)) 3633 continue; 3634 3635 mark = high_wmark_pages(zone); 3636 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx)) 3637 return true; 3638 } 3639 3640 /* 3641 * If a node has no populated zone within highest_zoneidx, it does not 3642 * need balancing by definition. This can happen if a zone-restricted 3643 * allocation tries to wake a remote kswapd. 3644 */ 3645 if (mark == -1) 3646 return true; 3647 3648 return false; 3649 } 3650 3651 /* Clear pgdat state for congested, dirty or under writeback. */ 3652 static void clear_pgdat_congested(pg_data_t *pgdat) 3653 { 3654 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat); 3655 3656 clear_bit(LRUVEC_CONGESTED, &lruvec->flags); 3657 clear_bit(PGDAT_DIRTY, &pgdat->flags); 3658 clear_bit(PGDAT_WRITEBACK, &pgdat->flags); 3659 } 3660 3661 /* 3662 * Prepare kswapd for sleeping. This verifies that there are no processes 3663 * waiting in throttle_direct_reclaim() and that watermarks have been met. 3664 * 3665 * Returns true if kswapd is ready to sleep 3666 */ 3667 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, 3668 int highest_zoneidx) 3669 { 3670 /* 3671 * The throttled processes are normally woken up in balance_pgdat() as 3672 * soon as allow_direct_reclaim() is true. But there is a potential 3673 * race between when kswapd checks the watermarks and a process gets 3674 * throttled. There is also a potential race if processes get 3675 * throttled, kswapd wakes, a large process exits thereby balancing the 3676 * zones, which causes kswapd to exit balance_pgdat() before reaching 3677 * the wake up checks. If kswapd is going to sleep, no process should 3678 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If 3679 * the wake up is premature, processes will wake kswapd and get 3680 * throttled again. The difference from wake ups in balance_pgdat() is 3681 * that here we are under prepare_to_wait(). 3682 */ 3683 if (waitqueue_active(&pgdat->pfmemalloc_wait)) 3684 wake_up_all(&pgdat->pfmemalloc_wait); 3685 3686 /* Hopeless node, leave it to direct reclaim */ 3687 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 3688 return true; 3689 3690 if (pgdat_balanced(pgdat, order, highest_zoneidx)) { 3691 clear_pgdat_congested(pgdat); 3692 return true; 3693 } 3694 3695 return false; 3696 } 3697 3698 /* 3699 * kswapd shrinks a node of pages that are at or below the highest usable 3700 * zone that is currently unbalanced. 3701 * 3702 * Returns true if kswapd scanned at least the requested number of pages to 3703 * reclaim or if the lack of progress was due to pages under writeback. 3704 * This is used to determine if the scanning priority needs to be raised. 3705 */ 3706 static bool kswapd_shrink_node(pg_data_t *pgdat, 3707 struct scan_control *sc) 3708 { 3709 struct zone *zone; 3710 int z; 3711 3712 /* Reclaim a number of pages proportional to the number of zones */ 3713 sc->nr_to_reclaim = 0; 3714 for (z = 0; z <= sc->reclaim_idx; z++) { 3715 zone = pgdat->node_zones + z; 3716 if (!managed_zone(zone)) 3717 continue; 3718 3719 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX); 3720 } 3721 3722 /* 3723 * Historically care was taken to put equal pressure on all zones but 3724 * now pressure is applied based on node LRU order. 3725 */ 3726 shrink_node(pgdat, sc); 3727 3728 /* 3729 * Fragmentation may mean that the system cannot be rebalanced for 3730 * high-order allocations. If twice the allocation size has been 3731 * reclaimed then recheck watermarks only at order-0 to prevent 3732 * excessive reclaim. Assume that a process requested a high-order 3733 * can direct reclaim/compact. 3734 */ 3735 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order)) 3736 sc->order = 0; 3737 3738 return sc->nr_scanned >= sc->nr_to_reclaim; 3739 } 3740 3741 /* Page allocator PCP high watermark is lowered if reclaim is active. */ 3742 static inline void 3743 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active) 3744 { 3745 int i; 3746 struct zone *zone; 3747 3748 for (i = 0; i <= highest_zoneidx; i++) { 3749 zone = pgdat->node_zones + i; 3750 3751 if (!managed_zone(zone)) 3752 continue; 3753 3754 if (active) 3755 set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags); 3756 else 3757 clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags); 3758 } 3759 } 3760 3761 static inline void 3762 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx) 3763 { 3764 update_reclaim_active(pgdat, highest_zoneidx, true); 3765 } 3766 3767 static inline void 3768 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx) 3769 { 3770 update_reclaim_active(pgdat, highest_zoneidx, false); 3771 } 3772 3773 /* 3774 * For kswapd, balance_pgdat() will reclaim pages across a node from zones 3775 * that are eligible for use by the caller until at least one zone is 3776 * balanced. 3777 * 3778 * Returns the order kswapd finished reclaiming at. 3779 * 3780 * kswapd scans the zones in the highmem->normal->dma direction. It skips 3781 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 3782 * found to have free_pages <= high_wmark_pages(zone), any page in that zone 3783 * or lower is eligible for reclaim until at least one usable zone is 3784 * balanced. 3785 */ 3786 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx) 3787 { 3788 int i; 3789 unsigned long nr_soft_reclaimed; 3790 unsigned long nr_soft_scanned; 3791 unsigned long pflags; 3792 unsigned long nr_boost_reclaim; 3793 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, }; 3794 bool boosted; 3795 struct zone *zone; 3796 struct scan_control sc = { 3797 .gfp_mask = GFP_KERNEL, 3798 .order = order, 3799 .may_unmap = 1, 3800 }; 3801 3802 set_task_reclaim_state(current, &sc.reclaim_state); 3803 psi_memstall_enter(&pflags); 3804 __fs_reclaim_acquire(); 3805 3806 count_vm_event(PAGEOUTRUN); 3807 3808 /* 3809 * Account for the reclaim boost. Note that the zone boost is left in 3810 * place so that parallel allocations that are near the watermark will 3811 * stall or direct reclaim until kswapd is finished. 3812 */ 3813 nr_boost_reclaim = 0; 3814 for (i = 0; i <= highest_zoneidx; i++) { 3815 zone = pgdat->node_zones + i; 3816 if (!managed_zone(zone)) 3817 continue; 3818 3819 nr_boost_reclaim += zone->watermark_boost; 3820 zone_boosts[i] = zone->watermark_boost; 3821 } 3822 boosted = nr_boost_reclaim; 3823 3824 restart: 3825 set_reclaim_active(pgdat, highest_zoneidx); 3826 sc.priority = DEF_PRIORITY; 3827 do { 3828 unsigned long nr_reclaimed = sc.nr_reclaimed; 3829 bool raise_priority = true; 3830 bool balanced; 3831 bool ret; 3832 3833 sc.reclaim_idx = highest_zoneidx; 3834 3835 /* 3836 * If the number of buffer_heads exceeds the maximum allowed 3837 * then consider reclaiming from all zones. This has a dual 3838 * purpose -- on 64-bit systems it is expected that 3839 * buffer_heads are stripped during active rotation. On 32-bit 3840 * systems, highmem pages can pin lowmem memory and shrinking 3841 * buffers can relieve lowmem pressure. Reclaim may still not 3842 * go ahead if all eligible zones for the original allocation 3843 * request are balanced to avoid excessive reclaim from kswapd. 3844 */ 3845 if (buffer_heads_over_limit) { 3846 for (i = MAX_NR_ZONES - 1; i >= 0; i--) { 3847 zone = pgdat->node_zones + i; 3848 if (!managed_zone(zone)) 3849 continue; 3850 3851 sc.reclaim_idx = i; 3852 break; 3853 } 3854 } 3855 3856 /* 3857 * If the pgdat is imbalanced then ignore boosting and preserve 3858 * the watermarks for a later time and restart. Note that the 3859 * zone watermarks will be still reset at the end of balancing 3860 * on the grounds that the normal reclaim should be enough to 3861 * re-evaluate if boosting is required when kswapd next wakes. 3862 */ 3863 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx); 3864 if (!balanced && nr_boost_reclaim) { 3865 nr_boost_reclaim = 0; 3866 goto restart; 3867 } 3868 3869 /* 3870 * If boosting is not active then only reclaim if there are no 3871 * eligible zones. Note that sc.reclaim_idx is not used as 3872 * buffer_heads_over_limit may have adjusted it. 3873 */ 3874 if (!nr_boost_reclaim && balanced) 3875 goto out; 3876 3877 /* Limit the priority of boosting to avoid reclaim writeback */ 3878 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2) 3879 raise_priority = false; 3880 3881 /* 3882 * Do not writeback or swap pages for boosted reclaim. The 3883 * intent is to relieve pressure not issue sub-optimal IO 3884 * from reclaim context. If no pages are reclaimed, the 3885 * reclaim will be aborted. 3886 */ 3887 sc.may_writepage = !laptop_mode && !nr_boost_reclaim; 3888 sc.may_swap = !nr_boost_reclaim; 3889 3890 /* 3891 * Do some background aging of the anon list, to give 3892 * pages a chance to be referenced before reclaiming. All 3893 * pages are rotated regardless of classzone as this is 3894 * about consistent aging. 3895 */ 3896 age_active_anon(pgdat, &sc); 3897 3898 /* 3899 * If we're getting trouble reclaiming, start doing writepage 3900 * even in laptop mode. 3901 */ 3902 if (sc.priority < DEF_PRIORITY - 2) 3903 sc.may_writepage = 1; 3904 3905 /* Call soft limit reclaim before calling shrink_node. */ 3906 sc.nr_scanned = 0; 3907 nr_soft_scanned = 0; 3908 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order, 3909 sc.gfp_mask, &nr_soft_scanned); 3910 sc.nr_reclaimed += nr_soft_reclaimed; 3911 3912 /* 3913 * There should be no need to raise the scanning priority if 3914 * enough pages are already being scanned that that high 3915 * watermark would be met at 100% efficiency. 3916 */ 3917 if (kswapd_shrink_node(pgdat, &sc)) 3918 raise_priority = false; 3919 3920 /* 3921 * If the low watermark is met there is no need for processes 3922 * to be throttled on pfmemalloc_wait as they should not be 3923 * able to safely make forward progress. Wake them 3924 */ 3925 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 3926 allow_direct_reclaim(pgdat)) 3927 wake_up_all(&pgdat->pfmemalloc_wait); 3928 3929 /* Check if kswapd should be suspending */ 3930 __fs_reclaim_release(); 3931 ret = try_to_freeze(); 3932 __fs_reclaim_acquire(); 3933 if (ret || kthread_should_stop()) 3934 break; 3935 3936 /* 3937 * Raise priority if scanning rate is too low or there was no 3938 * progress in reclaiming pages 3939 */ 3940 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed; 3941 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed); 3942 3943 /* 3944 * If reclaim made no progress for a boost, stop reclaim as 3945 * IO cannot be queued and it could be an infinite loop in 3946 * extreme circumstances. 3947 */ 3948 if (nr_boost_reclaim && !nr_reclaimed) 3949 break; 3950 3951 if (raise_priority || !nr_reclaimed) 3952 sc.priority--; 3953 } while (sc.priority >= 1); 3954 3955 if (!sc.nr_reclaimed) 3956 pgdat->kswapd_failures++; 3957 3958 out: 3959 clear_reclaim_active(pgdat, highest_zoneidx); 3960 3961 /* If reclaim was boosted, account for the reclaim done in this pass */ 3962 if (boosted) { 3963 unsigned long flags; 3964 3965 for (i = 0; i <= highest_zoneidx; i++) { 3966 if (!zone_boosts[i]) 3967 continue; 3968 3969 /* Increments are under the zone lock */ 3970 zone = pgdat->node_zones + i; 3971 spin_lock_irqsave(&zone->lock, flags); 3972 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]); 3973 spin_unlock_irqrestore(&zone->lock, flags); 3974 } 3975 3976 /* 3977 * As there is now likely space, wakeup kcompact to defragment 3978 * pageblocks. 3979 */ 3980 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx); 3981 } 3982 3983 snapshot_refaults(NULL, pgdat); 3984 __fs_reclaim_release(); 3985 psi_memstall_leave(&pflags); 3986 set_task_reclaim_state(current, NULL); 3987 3988 /* 3989 * Return the order kswapd stopped reclaiming at as 3990 * prepare_kswapd_sleep() takes it into account. If another caller 3991 * entered the allocator slow path while kswapd was awake, order will 3992 * remain at the higher level. 3993 */ 3994 return sc.order; 3995 } 3996 3997 /* 3998 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to 3999 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is 4000 * not a valid index then either kswapd runs for first time or kswapd couldn't 4001 * sleep after previous reclaim attempt (node is still unbalanced). In that 4002 * case return the zone index of the previous kswapd reclaim cycle. 4003 */ 4004 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat, 4005 enum zone_type prev_highest_zoneidx) 4006 { 4007 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 4008 4009 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx; 4010 } 4011 4012 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order, 4013 unsigned int highest_zoneidx) 4014 { 4015 long remaining = 0; 4016 DEFINE_WAIT(wait); 4017 4018 if (freezing(current) || kthread_should_stop()) 4019 return; 4020 4021 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 4022 4023 /* 4024 * Try to sleep for a short interval. Note that kcompactd will only be 4025 * woken if it is possible to sleep for a short interval. This is 4026 * deliberate on the assumption that if reclaim cannot keep an 4027 * eligible zone balanced that it's also unlikely that compaction will 4028 * succeed. 4029 */ 4030 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 4031 /* 4032 * Compaction records what page blocks it recently failed to 4033 * isolate pages from and skips them in the future scanning. 4034 * When kswapd is going to sleep, it is reasonable to assume 4035 * that pages and compaction may succeed so reset the cache. 4036 */ 4037 reset_isolation_suitable(pgdat); 4038 4039 /* 4040 * We have freed the memory, now we should compact it to make 4041 * allocation of the requested order possible. 4042 */ 4043 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx); 4044 4045 remaining = schedule_timeout(HZ/10); 4046 4047 /* 4048 * If woken prematurely then reset kswapd_highest_zoneidx and 4049 * order. The values will either be from a wakeup request or 4050 * the previous request that slept prematurely. 4051 */ 4052 if (remaining) { 4053 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, 4054 kswapd_highest_zoneidx(pgdat, 4055 highest_zoneidx)); 4056 4057 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order) 4058 WRITE_ONCE(pgdat->kswapd_order, reclaim_order); 4059 } 4060 4061 finish_wait(&pgdat->kswapd_wait, &wait); 4062 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 4063 } 4064 4065 /* 4066 * After a short sleep, check if it was a premature sleep. If not, then 4067 * go fully to sleep until explicitly woken up. 4068 */ 4069 if (!remaining && 4070 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 4071 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 4072 4073 /* 4074 * vmstat counters are not perfectly accurate and the estimated 4075 * value for counters such as NR_FREE_PAGES can deviate from the 4076 * true value by nr_online_cpus * threshold. To avoid the zone 4077 * watermarks being breached while under pressure, we reduce the 4078 * per-cpu vmstat threshold while kswapd is awake and restore 4079 * them before going back to sleep. 4080 */ 4081 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 4082 4083 if (!kthread_should_stop()) 4084 schedule(); 4085 4086 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 4087 } else { 4088 if (remaining) 4089 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 4090 else 4091 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 4092 } 4093 finish_wait(&pgdat->kswapd_wait, &wait); 4094 } 4095 4096 /* 4097 * The background pageout daemon, started as a kernel thread 4098 * from the init process. 4099 * 4100 * This basically trickles out pages so that we have _some_ 4101 * free memory available even if there is no other activity 4102 * that frees anything up. This is needed for things like routing 4103 * etc, where we otherwise might have all activity going on in 4104 * asynchronous contexts that cannot page things out. 4105 * 4106 * If there are applications that are active memory-allocators 4107 * (most normal use), this basically shouldn't matter. 4108 */ 4109 static int kswapd(void *p) 4110 { 4111 unsigned int alloc_order, reclaim_order; 4112 unsigned int highest_zoneidx = MAX_NR_ZONES - 1; 4113 pg_data_t *pgdat = (pg_data_t *)p; 4114 struct task_struct *tsk = current; 4115 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 4116 4117 if (!cpumask_empty(cpumask)) 4118 set_cpus_allowed_ptr(tsk, cpumask); 4119 4120 /* 4121 * Tell the memory management that we're a "memory allocator", 4122 * and that if we need more memory we should get access to it 4123 * regardless (see "__alloc_pages()"). "kswapd" should 4124 * never get caught in the normal page freeing logic. 4125 * 4126 * (Kswapd normally doesn't need memory anyway, but sometimes 4127 * you need a small amount of memory in order to be able to 4128 * page out something else, and this flag essentially protects 4129 * us from recursively trying to free more memory as we're 4130 * trying to free the first piece of memory in the first place). 4131 */ 4132 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 4133 set_freezable(); 4134 4135 WRITE_ONCE(pgdat->kswapd_order, 0); 4136 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 4137 for ( ; ; ) { 4138 bool ret; 4139 4140 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order); 4141 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 4142 highest_zoneidx); 4143 4144 kswapd_try_sleep: 4145 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order, 4146 highest_zoneidx); 4147 4148 /* Read the new order and highest_zoneidx */ 4149 alloc_order = READ_ONCE(pgdat->kswapd_order); 4150 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 4151 highest_zoneidx); 4152 WRITE_ONCE(pgdat->kswapd_order, 0); 4153 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 4154 4155 ret = try_to_freeze(); 4156 if (kthread_should_stop()) 4157 break; 4158 4159 /* 4160 * We can speed up thawing tasks if we don't call balance_pgdat 4161 * after returning from the refrigerator 4162 */ 4163 if (ret) 4164 continue; 4165 4166 /* 4167 * Reclaim begins at the requested order but if a high-order 4168 * reclaim fails then kswapd falls back to reclaiming for 4169 * order-0. If that happens, kswapd will consider sleeping 4170 * for the order it finished reclaiming at (reclaim_order) 4171 * but kcompactd is woken to compact for the original 4172 * request (alloc_order). 4173 */ 4174 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx, 4175 alloc_order); 4176 reclaim_order = balance_pgdat(pgdat, alloc_order, 4177 highest_zoneidx); 4178 if (reclaim_order < alloc_order) 4179 goto kswapd_try_sleep; 4180 } 4181 4182 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD); 4183 4184 return 0; 4185 } 4186 4187 /* 4188 * A zone is low on free memory or too fragmented for high-order memory. If 4189 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's 4190 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim 4191 * has failed or is not needed, still wake up kcompactd if only compaction is 4192 * needed. 4193 */ 4194 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order, 4195 enum zone_type highest_zoneidx) 4196 { 4197 pg_data_t *pgdat; 4198 enum zone_type curr_idx; 4199 4200 if (!managed_zone(zone)) 4201 return; 4202 4203 if (!cpuset_zone_allowed(zone, gfp_flags)) 4204 return; 4205 4206 pgdat = zone->zone_pgdat; 4207 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 4208 4209 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx) 4210 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx); 4211 4212 if (READ_ONCE(pgdat->kswapd_order) < order) 4213 WRITE_ONCE(pgdat->kswapd_order, order); 4214 4215 if (!waitqueue_active(&pgdat->kswapd_wait)) 4216 return; 4217 4218 /* Hopeless node, leave it to direct reclaim if possible */ 4219 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES || 4220 (pgdat_balanced(pgdat, order, highest_zoneidx) && 4221 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) { 4222 /* 4223 * There may be plenty of free memory available, but it's too 4224 * fragmented for high-order allocations. Wake up kcompactd 4225 * and rely on compaction_suitable() to determine if it's 4226 * needed. If it fails, it will defer subsequent attempts to 4227 * ratelimit its work. 4228 */ 4229 if (!(gfp_flags & __GFP_DIRECT_RECLAIM)) 4230 wakeup_kcompactd(pgdat, order, highest_zoneidx); 4231 return; 4232 } 4233 4234 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order, 4235 gfp_flags); 4236 wake_up_interruptible(&pgdat->kswapd_wait); 4237 } 4238 4239 #ifdef CONFIG_HIBERNATION 4240 /* 4241 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 4242 * freed pages. 4243 * 4244 * Rather than trying to age LRUs the aim is to preserve the overall 4245 * LRU order by reclaiming preferentially 4246 * inactive > active > active referenced > active mapped 4247 */ 4248 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 4249 { 4250 struct scan_control sc = { 4251 .nr_to_reclaim = nr_to_reclaim, 4252 .gfp_mask = GFP_HIGHUSER_MOVABLE, 4253 .reclaim_idx = MAX_NR_ZONES - 1, 4254 .priority = DEF_PRIORITY, 4255 .may_writepage = 1, 4256 .may_unmap = 1, 4257 .may_swap = 1, 4258 .hibernation_mode = 1, 4259 }; 4260 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 4261 unsigned long nr_reclaimed; 4262 unsigned int noreclaim_flag; 4263 4264 fs_reclaim_acquire(sc.gfp_mask); 4265 noreclaim_flag = memalloc_noreclaim_save(); 4266 set_task_reclaim_state(current, &sc.reclaim_state); 4267 4268 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 4269 4270 set_task_reclaim_state(current, NULL); 4271 memalloc_noreclaim_restore(noreclaim_flag); 4272 fs_reclaim_release(sc.gfp_mask); 4273 4274 return nr_reclaimed; 4275 } 4276 #endif /* CONFIG_HIBERNATION */ 4277 4278 /* 4279 * This kswapd start function will be called by init and node-hot-add. 4280 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. 4281 */ 4282 int kswapd_run(int nid) 4283 { 4284 pg_data_t *pgdat = NODE_DATA(nid); 4285 int ret = 0; 4286 4287 if (pgdat->kswapd) 4288 return 0; 4289 4290 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 4291 if (IS_ERR(pgdat->kswapd)) { 4292 /* failure at boot is fatal */ 4293 BUG_ON(system_state < SYSTEM_RUNNING); 4294 pr_err("Failed to start kswapd on node %d\n", nid); 4295 ret = PTR_ERR(pgdat->kswapd); 4296 pgdat->kswapd = NULL; 4297 } 4298 return ret; 4299 } 4300 4301 /* 4302 * Called by memory hotplug when all memory in a node is offlined. Caller must 4303 * hold mem_hotplug_begin/end(). 4304 */ 4305 void kswapd_stop(int nid) 4306 { 4307 struct task_struct *kswapd = NODE_DATA(nid)->kswapd; 4308 4309 if (kswapd) { 4310 kthread_stop(kswapd); 4311 NODE_DATA(nid)->kswapd = NULL; 4312 } 4313 } 4314 4315 static int __init kswapd_init(void) 4316 { 4317 int nid; 4318 4319 swap_setup(); 4320 for_each_node_state(nid, N_MEMORY) 4321 kswapd_run(nid); 4322 return 0; 4323 } 4324 4325 module_init(kswapd_init) 4326 4327 #ifdef CONFIG_NUMA 4328 /* 4329 * Node reclaim mode 4330 * 4331 * If non-zero call node_reclaim when the number of free pages falls below 4332 * the watermarks. 4333 */ 4334 int node_reclaim_mode __read_mostly; 4335 4336 /* 4337 * Priority for NODE_RECLAIM. This determines the fraction of pages 4338 * of a node considered for each zone_reclaim. 4 scans 1/16th of 4339 * a zone. 4340 */ 4341 #define NODE_RECLAIM_PRIORITY 4 4342 4343 /* 4344 * Percentage of pages in a zone that must be unmapped for node_reclaim to 4345 * occur. 4346 */ 4347 int sysctl_min_unmapped_ratio = 1; 4348 4349 /* 4350 * If the number of slab pages in a zone grows beyond this percentage then 4351 * slab reclaim needs to occur. 4352 */ 4353 int sysctl_min_slab_ratio = 5; 4354 4355 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat) 4356 { 4357 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED); 4358 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) + 4359 node_page_state(pgdat, NR_ACTIVE_FILE); 4360 4361 /* 4362 * It's possible for there to be more file mapped pages than 4363 * accounted for by the pages on the file LRU lists because 4364 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 4365 */ 4366 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 4367 } 4368 4369 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 4370 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat) 4371 { 4372 unsigned long nr_pagecache_reclaimable; 4373 unsigned long delta = 0; 4374 4375 /* 4376 * If RECLAIM_UNMAP is set, then all file pages are considered 4377 * potentially reclaimable. Otherwise, we have to worry about 4378 * pages like swapcache and node_unmapped_file_pages() provides 4379 * a better estimate 4380 */ 4381 if (node_reclaim_mode & RECLAIM_UNMAP) 4382 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES); 4383 else 4384 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat); 4385 4386 /* If we can't clean pages, remove dirty pages from consideration */ 4387 if (!(node_reclaim_mode & RECLAIM_WRITE)) 4388 delta += node_page_state(pgdat, NR_FILE_DIRTY); 4389 4390 /* Watch for any possible underflows due to delta */ 4391 if (unlikely(delta > nr_pagecache_reclaimable)) 4392 delta = nr_pagecache_reclaimable; 4393 4394 return nr_pagecache_reclaimable - delta; 4395 } 4396 4397 /* 4398 * Try to free up some pages from this node through reclaim. 4399 */ 4400 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 4401 { 4402 /* Minimum pages needed in order to stay on node */ 4403 const unsigned long nr_pages = 1 << order; 4404 struct task_struct *p = current; 4405 unsigned int noreclaim_flag; 4406 struct scan_control sc = { 4407 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 4408 .gfp_mask = current_gfp_context(gfp_mask), 4409 .order = order, 4410 .priority = NODE_RECLAIM_PRIORITY, 4411 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE), 4412 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP), 4413 .may_swap = 1, 4414 .reclaim_idx = gfp_zone(gfp_mask), 4415 }; 4416 4417 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order, 4418 sc.gfp_mask); 4419 4420 cond_resched(); 4421 fs_reclaim_acquire(sc.gfp_mask); 4422 /* 4423 * We need to be able to allocate from the reserves for RECLAIM_UNMAP 4424 * and we also need to be able to write out pages for RECLAIM_WRITE 4425 * and RECLAIM_UNMAP. 4426 */ 4427 noreclaim_flag = memalloc_noreclaim_save(); 4428 p->flags |= PF_SWAPWRITE; 4429 set_task_reclaim_state(p, &sc.reclaim_state); 4430 4431 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) { 4432 /* 4433 * Free memory by calling shrink node with increasing 4434 * priorities until we have enough memory freed. 4435 */ 4436 do { 4437 shrink_node(pgdat, &sc); 4438 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 4439 } 4440 4441 set_task_reclaim_state(p, NULL); 4442 current->flags &= ~PF_SWAPWRITE; 4443 memalloc_noreclaim_restore(noreclaim_flag); 4444 fs_reclaim_release(sc.gfp_mask); 4445 4446 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed); 4447 4448 return sc.nr_reclaimed >= nr_pages; 4449 } 4450 4451 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 4452 { 4453 int ret; 4454 4455 /* 4456 * Node reclaim reclaims unmapped file backed pages and 4457 * slab pages if we are over the defined limits. 4458 * 4459 * A small portion of unmapped file backed pages is needed for 4460 * file I/O otherwise pages read by file I/O will be immediately 4461 * thrown out if the node is overallocated. So we do not reclaim 4462 * if less than a specified percentage of the node is used by 4463 * unmapped file backed pages. 4464 */ 4465 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages && 4466 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <= 4467 pgdat->min_slab_pages) 4468 return NODE_RECLAIM_FULL; 4469 4470 /* 4471 * Do not scan if the allocation should not be delayed. 4472 */ 4473 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) 4474 return NODE_RECLAIM_NOSCAN; 4475 4476 /* 4477 * Only run node reclaim on the local node or on nodes that do not 4478 * have associated processors. This will favor the local processor 4479 * over remote processors and spread off node memory allocations 4480 * as wide as possible. 4481 */ 4482 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id()) 4483 return NODE_RECLAIM_NOSCAN; 4484 4485 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags)) 4486 return NODE_RECLAIM_NOSCAN; 4487 4488 ret = __node_reclaim(pgdat, gfp_mask, order); 4489 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags); 4490 4491 if (!ret) 4492 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 4493 4494 return ret; 4495 } 4496 #endif 4497 4498 /** 4499 * check_move_unevictable_pages - check pages for evictability and move to 4500 * appropriate zone lru list 4501 * @pvec: pagevec with lru pages to check 4502 * 4503 * Checks pages for evictability, if an evictable page is in the unevictable 4504 * lru list, moves it to the appropriate evictable lru list. This function 4505 * should be only used for lru pages. 4506 */ 4507 void check_move_unevictable_pages(struct pagevec *pvec) 4508 { 4509 struct lruvec *lruvec = NULL; 4510 int pgscanned = 0; 4511 int pgrescued = 0; 4512 int i; 4513 4514 for (i = 0; i < pvec->nr; i++) { 4515 struct page *page = pvec->pages[i]; 4516 int nr_pages; 4517 4518 if (PageTransTail(page)) 4519 continue; 4520 4521 nr_pages = thp_nr_pages(page); 4522 pgscanned += nr_pages; 4523 4524 /* block memcg migration during page moving between lru */ 4525 if (!TestClearPageLRU(page)) 4526 continue; 4527 4528 lruvec = relock_page_lruvec_irq(page, lruvec); 4529 if (page_evictable(page) && PageUnevictable(page)) { 4530 del_page_from_lru_list(page, lruvec); 4531 ClearPageUnevictable(page); 4532 add_page_to_lru_list(page, lruvec); 4533 pgrescued += nr_pages; 4534 } 4535 SetPageLRU(page); 4536 } 4537 4538 if (lruvec) { 4539 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 4540 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 4541 unlock_page_lruvec_irq(lruvec); 4542 } else if (pgscanned) { 4543 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 4544 } 4545 } 4546 EXPORT_SYMBOL_GPL(check_move_unevictable_pages); 4547