1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 4 * 5 * Swap reorganised 29.12.95, Stephen Tweedie. 6 * kswapd added: 7.1.96 sct 7 * Removed kswapd_ctl limits, and swap out as many pages as needed 8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 9 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 10 * Multiqueue VM started 5.8.00, Rik van Riel. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 15 #include <linux/mm.h> 16 #include <linux/sched/mm.h> 17 #include <linux/module.h> 18 #include <linux/gfp.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/swap.h> 21 #include <linux/pagemap.h> 22 #include <linux/init.h> 23 #include <linux/highmem.h> 24 #include <linux/vmpressure.h> 25 #include <linux/vmstat.h> 26 #include <linux/file.h> 27 #include <linux/writeback.h> 28 #include <linux/blkdev.h> 29 #include <linux/buffer_head.h> /* for buffer_heads_over_limit */ 30 #include <linux/mm_inline.h> 31 #include <linux/backing-dev.h> 32 #include <linux/rmap.h> 33 #include <linux/topology.h> 34 #include <linux/cpu.h> 35 #include <linux/cpuset.h> 36 #include <linux/compaction.h> 37 #include <linux/notifier.h> 38 #include <linux/delay.h> 39 #include <linux/kthread.h> 40 #include <linux/freezer.h> 41 #include <linux/memcontrol.h> 42 #include <linux/migrate.h> 43 #include <linux/delayacct.h> 44 #include <linux/sysctl.h> 45 #include <linux/memory-tiers.h> 46 #include <linux/oom.h> 47 #include <linux/pagevec.h> 48 #include <linux/prefetch.h> 49 #include <linux/printk.h> 50 #include <linux/dax.h> 51 #include <linux/psi.h> 52 #include <linux/pagewalk.h> 53 #include <linux/shmem_fs.h> 54 #include <linux/ctype.h> 55 #include <linux/debugfs.h> 56 #include <linux/khugepaged.h> 57 #include <linux/rculist_nulls.h> 58 #include <linux/random.h> 59 60 #include <asm/tlbflush.h> 61 #include <asm/div64.h> 62 63 #include <linux/swapops.h> 64 #include <linux/balloon_compaction.h> 65 #include <linux/sched/sysctl.h> 66 67 #include "internal.h" 68 #include "swap.h" 69 70 #define CREATE_TRACE_POINTS 71 #include <trace/events/vmscan.h> 72 73 struct scan_control { 74 /* How many pages shrink_list() should reclaim */ 75 unsigned long nr_to_reclaim; 76 77 /* 78 * Nodemask of nodes allowed by the caller. If NULL, all nodes 79 * are scanned. 80 */ 81 nodemask_t *nodemask; 82 83 /* 84 * The memory cgroup that hit its limit and as a result is the 85 * primary target of this reclaim invocation. 86 */ 87 struct mem_cgroup *target_mem_cgroup; 88 89 /* 90 * Scan pressure balancing between anon and file LRUs 91 */ 92 unsigned long anon_cost; 93 unsigned long file_cost; 94 95 #ifdef CONFIG_MEMCG 96 /* Swappiness value for proactive reclaim. Always use sc_swappiness()! */ 97 int *proactive_swappiness; 98 #endif 99 100 /* Can active folios be deactivated as part of reclaim? */ 101 #define DEACTIVATE_ANON 1 102 #define DEACTIVATE_FILE 2 103 unsigned int may_deactivate:2; 104 unsigned int force_deactivate:1; 105 unsigned int skipped_deactivate:1; 106 107 /* Writepage batching in laptop mode; RECLAIM_WRITE */ 108 unsigned int may_writepage:1; 109 110 /* Can mapped folios be reclaimed? */ 111 unsigned int may_unmap:1; 112 113 /* Can folios be swapped as part of reclaim? */ 114 unsigned int may_swap:1; 115 116 /* Not allow cache_trim_mode to be turned on as part of reclaim? */ 117 unsigned int no_cache_trim_mode:1; 118 119 /* Has cache_trim_mode failed at least once? */ 120 unsigned int cache_trim_mode_failed:1; 121 122 /* Proactive reclaim invoked by userspace through memory.reclaim */ 123 unsigned int proactive:1; 124 125 /* 126 * Cgroup memory below memory.low is protected as long as we 127 * don't threaten to OOM. If any cgroup is reclaimed at 128 * reduced force or passed over entirely due to its memory.low 129 * setting (memcg_low_skipped), and nothing is reclaimed as a 130 * result, then go back for one more cycle that reclaims the protected 131 * memory (memcg_low_reclaim) to avert OOM. 132 */ 133 unsigned int memcg_low_reclaim:1; 134 unsigned int memcg_low_skipped:1; 135 136 /* Shared cgroup tree walk failed, rescan the whole tree */ 137 unsigned int memcg_full_walk:1; 138 139 unsigned int hibernation_mode:1; 140 141 /* One of the zones is ready for compaction */ 142 unsigned int compaction_ready:1; 143 144 /* There is easily reclaimable cold cache in the current node */ 145 unsigned int cache_trim_mode:1; 146 147 /* The file folios on the current node are dangerously low */ 148 unsigned int file_is_tiny:1; 149 150 /* Always discard instead of demoting to lower tier memory */ 151 unsigned int no_demotion:1; 152 153 /* Allocation order */ 154 s8 order; 155 156 /* Scan (total_size >> priority) pages at once */ 157 s8 priority; 158 159 /* The highest zone to isolate folios for reclaim from */ 160 s8 reclaim_idx; 161 162 /* This context's GFP mask */ 163 gfp_t gfp_mask; 164 165 /* Incremented by the number of inactive pages that were scanned */ 166 unsigned long nr_scanned; 167 168 /* Number of pages freed so far during a call to shrink_zones() */ 169 unsigned long nr_reclaimed; 170 171 struct { 172 unsigned int dirty; 173 unsigned int unqueued_dirty; 174 unsigned int congested; 175 unsigned int writeback; 176 unsigned int immediate; 177 unsigned int file_taken; 178 unsigned int taken; 179 } nr; 180 181 /* for recording the reclaimed slab by now */ 182 struct reclaim_state reclaim_state; 183 }; 184 185 #ifdef ARCH_HAS_PREFETCHW 186 #define prefetchw_prev_lru_folio(_folio, _base, _field) \ 187 do { \ 188 if ((_folio)->lru.prev != _base) { \ 189 struct folio *prev; \ 190 \ 191 prev = lru_to_folio(&(_folio->lru)); \ 192 prefetchw(&prev->_field); \ 193 } \ 194 } while (0) 195 #else 196 #define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0) 197 #endif 198 199 /* 200 * From 0 .. MAX_SWAPPINESS. Higher means more swappy. 201 */ 202 int vm_swappiness = 60; 203 204 #ifdef CONFIG_MEMCG 205 206 /* Returns true for reclaim through cgroup limits or cgroup interfaces. */ 207 static bool cgroup_reclaim(struct scan_control *sc) 208 { 209 return sc->target_mem_cgroup; 210 } 211 212 /* 213 * Returns true for reclaim on the root cgroup. This is true for direct 214 * allocator reclaim and reclaim through cgroup interfaces on the root cgroup. 215 */ 216 static bool root_reclaim(struct scan_control *sc) 217 { 218 return !sc->target_mem_cgroup || mem_cgroup_is_root(sc->target_mem_cgroup); 219 } 220 221 /** 222 * writeback_throttling_sane - is the usual dirty throttling mechanism available? 223 * @sc: scan_control in question 224 * 225 * The normal page dirty throttling mechanism in balance_dirty_pages() is 226 * completely broken with the legacy memcg and direct stalling in 227 * shrink_folio_list() is used for throttling instead, which lacks all the 228 * niceties such as fairness, adaptive pausing, bandwidth proportional 229 * allocation and configurability. 230 * 231 * This function tests whether the vmscan currently in progress can assume 232 * that the normal dirty throttling mechanism is operational. 233 */ 234 static bool writeback_throttling_sane(struct scan_control *sc) 235 { 236 if (!cgroup_reclaim(sc)) 237 return true; 238 #ifdef CONFIG_CGROUP_WRITEBACK 239 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 240 return true; 241 #endif 242 return false; 243 } 244 245 static int sc_swappiness(struct scan_control *sc, struct mem_cgroup *memcg) 246 { 247 if (sc->proactive && sc->proactive_swappiness) 248 return *sc->proactive_swappiness; 249 return mem_cgroup_swappiness(memcg); 250 } 251 #else 252 static bool cgroup_reclaim(struct scan_control *sc) 253 { 254 return false; 255 } 256 257 static bool root_reclaim(struct scan_control *sc) 258 { 259 return true; 260 } 261 262 static bool writeback_throttling_sane(struct scan_control *sc) 263 { 264 return true; 265 } 266 267 static int sc_swappiness(struct scan_control *sc, struct mem_cgroup *memcg) 268 { 269 return READ_ONCE(vm_swappiness); 270 } 271 #endif 272 273 static void set_task_reclaim_state(struct task_struct *task, 274 struct reclaim_state *rs) 275 { 276 /* Check for an overwrite */ 277 WARN_ON_ONCE(rs && task->reclaim_state); 278 279 /* Check for the nulling of an already-nulled member */ 280 WARN_ON_ONCE(!rs && !task->reclaim_state); 281 282 task->reclaim_state = rs; 283 } 284 285 /* 286 * flush_reclaim_state(): add pages reclaimed outside of LRU-based reclaim to 287 * scan_control->nr_reclaimed. 288 */ 289 static void flush_reclaim_state(struct scan_control *sc) 290 { 291 /* 292 * Currently, reclaim_state->reclaimed includes three types of pages 293 * freed outside of vmscan: 294 * (1) Slab pages. 295 * (2) Clean file pages from pruned inodes (on highmem systems). 296 * (3) XFS freed buffer pages. 297 * 298 * For all of these cases, we cannot universally link the pages to a 299 * single memcg. For example, a memcg-aware shrinker can free one object 300 * charged to the target memcg, causing an entire page to be freed. 301 * If we count the entire page as reclaimed from the memcg, we end up 302 * overestimating the reclaimed amount (potentially under-reclaiming). 303 * 304 * Only count such pages for global reclaim to prevent under-reclaiming 305 * from the target memcg; preventing unnecessary retries during memcg 306 * charging and false positives from proactive reclaim. 307 * 308 * For uncommon cases where the freed pages were actually mostly 309 * charged to the target memcg, we end up underestimating the reclaimed 310 * amount. This should be fine. The freed pages will be uncharged 311 * anyway, even if they are not counted here properly, and we will be 312 * able to make forward progress in charging (which is usually in a 313 * retry loop). 314 * 315 * We can go one step further, and report the uncharged objcg pages in 316 * memcg reclaim, to make reporting more accurate and reduce 317 * underestimation, but it's probably not worth the complexity for now. 318 */ 319 if (current->reclaim_state && root_reclaim(sc)) { 320 sc->nr_reclaimed += current->reclaim_state->reclaimed; 321 current->reclaim_state->reclaimed = 0; 322 } 323 } 324 325 static bool can_demote(int nid, struct scan_control *sc) 326 { 327 if (!numa_demotion_enabled) 328 return false; 329 if (sc && sc->no_demotion) 330 return false; 331 if (next_demotion_node(nid) == NUMA_NO_NODE) 332 return false; 333 334 return true; 335 } 336 337 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg, 338 int nid, 339 struct scan_control *sc) 340 { 341 if (memcg == NULL) { 342 /* 343 * For non-memcg reclaim, is there 344 * space in any swap device? 345 */ 346 if (get_nr_swap_pages() > 0) 347 return true; 348 } else { 349 /* Is the memcg below its swap limit? */ 350 if (mem_cgroup_get_nr_swap_pages(memcg) > 0) 351 return true; 352 } 353 354 /* 355 * The page can not be swapped. 356 * 357 * Can it be reclaimed from this node via demotion? 358 */ 359 return can_demote(nid, sc); 360 } 361 362 /* 363 * This misses isolated folios which are not accounted for to save counters. 364 * As the data only determines if reclaim or compaction continues, it is 365 * not expected that isolated folios will be a dominating factor. 366 */ 367 unsigned long zone_reclaimable_pages(struct zone *zone) 368 { 369 unsigned long nr; 370 371 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) + 372 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE); 373 if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL)) 374 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) + 375 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON); 376 377 return nr; 378 } 379 380 /** 381 * lruvec_lru_size - Returns the number of pages on the given LRU list. 382 * @lruvec: lru vector 383 * @lru: lru to use 384 * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list) 385 */ 386 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, 387 int zone_idx) 388 { 389 unsigned long size = 0; 390 int zid; 391 392 for (zid = 0; zid <= zone_idx; zid++) { 393 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid]; 394 395 if (!managed_zone(zone)) 396 continue; 397 398 if (!mem_cgroup_disabled()) 399 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid); 400 else 401 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru); 402 } 403 return size; 404 } 405 406 static unsigned long drop_slab_node(int nid) 407 { 408 unsigned long freed = 0; 409 struct mem_cgroup *memcg = NULL; 410 411 memcg = mem_cgroup_iter(NULL, NULL, NULL); 412 do { 413 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0); 414 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 415 416 return freed; 417 } 418 419 void drop_slab(void) 420 { 421 int nid; 422 int shift = 0; 423 unsigned long freed; 424 425 do { 426 freed = 0; 427 for_each_online_node(nid) { 428 if (fatal_signal_pending(current)) 429 return; 430 431 freed += drop_slab_node(nid); 432 } 433 } while ((freed >> shift++) > 1); 434 } 435 436 static int reclaimer_offset(void) 437 { 438 BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD != 439 PGDEMOTE_DIRECT - PGDEMOTE_KSWAPD); 440 BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD != 441 PGDEMOTE_KHUGEPAGED - PGDEMOTE_KSWAPD); 442 BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD != 443 PGSCAN_DIRECT - PGSCAN_KSWAPD); 444 BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD != 445 PGSCAN_KHUGEPAGED - PGSCAN_KSWAPD); 446 447 if (current_is_kswapd()) 448 return 0; 449 if (current_is_khugepaged()) 450 return PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD; 451 return PGSTEAL_DIRECT - PGSTEAL_KSWAPD; 452 } 453 454 static inline int is_page_cache_freeable(struct folio *folio) 455 { 456 /* 457 * A freeable page cache folio is referenced only by the caller 458 * that isolated the folio, the page cache and optional filesystem 459 * private data at folio->private. 460 */ 461 return folio_ref_count(folio) - folio_test_private(folio) == 462 1 + folio_nr_pages(folio); 463 } 464 465 /* 466 * We detected a synchronous write error writing a folio out. Probably 467 * -ENOSPC. We need to propagate that into the address_space for a subsequent 468 * fsync(), msync() or close(). 469 * 470 * The tricky part is that after writepage we cannot touch the mapping: nothing 471 * prevents it from being freed up. But we have a ref on the folio and once 472 * that folio is locked, the mapping is pinned. 473 * 474 * We're allowed to run sleeping folio_lock() here because we know the caller has 475 * __GFP_FS. 476 */ 477 static void handle_write_error(struct address_space *mapping, 478 struct folio *folio, int error) 479 { 480 folio_lock(folio); 481 if (folio_mapping(folio) == mapping) 482 mapping_set_error(mapping, error); 483 folio_unlock(folio); 484 } 485 486 static bool skip_throttle_noprogress(pg_data_t *pgdat) 487 { 488 int reclaimable = 0, write_pending = 0; 489 int i; 490 491 /* 492 * If kswapd is disabled, reschedule if necessary but do not 493 * throttle as the system is likely near OOM. 494 */ 495 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 496 return true; 497 498 /* 499 * If there are a lot of dirty/writeback folios then do not 500 * throttle as throttling will occur when the folios cycle 501 * towards the end of the LRU if still under writeback. 502 */ 503 for (i = 0; i < MAX_NR_ZONES; i++) { 504 struct zone *zone = pgdat->node_zones + i; 505 506 if (!managed_zone(zone)) 507 continue; 508 509 reclaimable += zone_reclaimable_pages(zone); 510 write_pending += zone_page_state_snapshot(zone, 511 NR_ZONE_WRITE_PENDING); 512 } 513 if (2 * write_pending <= reclaimable) 514 return true; 515 516 return false; 517 } 518 519 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason) 520 { 521 wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason]; 522 long timeout, ret; 523 DEFINE_WAIT(wait); 524 525 /* 526 * Do not throttle user workers, kthreads other than kswapd or 527 * workqueues. They may be required for reclaim to make 528 * forward progress (e.g. journalling workqueues or kthreads). 529 */ 530 if (!current_is_kswapd() && 531 current->flags & (PF_USER_WORKER|PF_KTHREAD)) { 532 cond_resched(); 533 return; 534 } 535 536 /* 537 * These figures are pulled out of thin air. 538 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many 539 * parallel reclaimers which is a short-lived event so the timeout is 540 * short. Failing to make progress or waiting on writeback are 541 * potentially long-lived events so use a longer timeout. This is shaky 542 * logic as a failure to make progress could be due to anything from 543 * writeback to a slow device to excessive referenced folios at the tail 544 * of the inactive LRU. 545 */ 546 switch(reason) { 547 case VMSCAN_THROTTLE_WRITEBACK: 548 timeout = HZ/10; 549 550 if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) { 551 WRITE_ONCE(pgdat->nr_reclaim_start, 552 node_page_state(pgdat, NR_THROTTLED_WRITTEN)); 553 } 554 555 break; 556 case VMSCAN_THROTTLE_CONGESTED: 557 fallthrough; 558 case VMSCAN_THROTTLE_NOPROGRESS: 559 if (skip_throttle_noprogress(pgdat)) { 560 cond_resched(); 561 return; 562 } 563 564 timeout = 1; 565 566 break; 567 case VMSCAN_THROTTLE_ISOLATED: 568 timeout = HZ/50; 569 break; 570 default: 571 WARN_ON_ONCE(1); 572 timeout = HZ; 573 break; 574 } 575 576 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE); 577 ret = schedule_timeout(timeout); 578 finish_wait(wqh, &wait); 579 580 if (reason == VMSCAN_THROTTLE_WRITEBACK) 581 atomic_dec(&pgdat->nr_writeback_throttled); 582 583 trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout), 584 jiffies_to_usecs(timeout - ret), 585 reason); 586 } 587 588 /* 589 * Account for folios written if tasks are throttled waiting on dirty 590 * folios to clean. If enough folios have been cleaned since throttling 591 * started then wakeup the throttled tasks. 592 */ 593 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio, 594 int nr_throttled) 595 { 596 unsigned long nr_written; 597 598 node_stat_add_folio(folio, NR_THROTTLED_WRITTEN); 599 600 /* 601 * This is an inaccurate read as the per-cpu deltas may not 602 * be synchronised. However, given that the system is 603 * writeback throttled, it is not worth taking the penalty 604 * of getting an accurate count. At worst, the throttle 605 * timeout guarantees forward progress. 606 */ 607 nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) - 608 READ_ONCE(pgdat->nr_reclaim_start); 609 610 if (nr_written > SWAP_CLUSTER_MAX * nr_throttled) 611 wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]); 612 } 613 614 /* possible outcome of pageout() */ 615 typedef enum { 616 /* failed to write folio out, folio is locked */ 617 PAGE_KEEP, 618 /* move folio to the active list, folio is locked */ 619 PAGE_ACTIVATE, 620 /* folio has been sent to the disk successfully, folio is unlocked */ 621 PAGE_SUCCESS, 622 /* folio is clean and locked */ 623 PAGE_CLEAN, 624 } pageout_t; 625 626 /* 627 * pageout is called by shrink_folio_list() for each dirty folio. 628 * Calls ->writepage(). 629 */ 630 static pageout_t pageout(struct folio *folio, struct address_space *mapping, 631 struct swap_iocb **plug, struct list_head *folio_list) 632 { 633 /* 634 * If the folio is dirty, only perform writeback if that write 635 * will be non-blocking. To prevent this allocation from being 636 * stalled by pagecache activity. But note that there may be 637 * stalls if we need to run get_block(). We could test 638 * PagePrivate for that. 639 * 640 * If this process is currently in __generic_file_write_iter() against 641 * this folio's queue, we can perform writeback even if that 642 * will block. 643 * 644 * If the folio is swapcache, write it back even if that would 645 * block, for some throttling. This happens by accident, because 646 * swap_backing_dev_info is bust: it doesn't reflect the 647 * congestion state of the swapdevs. Easy to fix, if needed. 648 */ 649 if (!is_page_cache_freeable(folio)) 650 return PAGE_KEEP; 651 if (!mapping) { 652 /* 653 * Some data journaling orphaned folios can have 654 * folio->mapping == NULL while being dirty with clean buffers. 655 */ 656 if (folio_test_private(folio)) { 657 if (try_to_free_buffers(folio)) { 658 folio_clear_dirty(folio); 659 pr_info("%s: orphaned folio\n", __func__); 660 return PAGE_CLEAN; 661 } 662 } 663 return PAGE_KEEP; 664 } 665 if (mapping->a_ops->writepage == NULL) 666 return PAGE_ACTIVATE; 667 668 if (folio_clear_dirty_for_io(folio)) { 669 int res; 670 struct writeback_control wbc = { 671 .sync_mode = WB_SYNC_NONE, 672 .nr_to_write = SWAP_CLUSTER_MAX, 673 .range_start = 0, 674 .range_end = LLONG_MAX, 675 .for_reclaim = 1, 676 .swap_plug = plug, 677 }; 678 679 /* 680 * The large shmem folio can be split if CONFIG_THP_SWAP is 681 * not enabled or contiguous swap entries are failed to 682 * allocate. 683 */ 684 if (shmem_mapping(mapping) && folio_test_large(folio)) 685 wbc.list = folio_list; 686 687 folio_set_reclaim(folio); 688 res = mapping->a_ops->writepage(&folio->page, &wbc); 689 if (res < 0) 690 handle_write_error(mapping, folio, res); 691 if (res == AOP_WRITEPAGE_ACTIVATE) { 692 folio_clear_reclaim(folio); 693 return PAGE_ACTIVATE; 694 } 695 696 if (!folio_test_writeback(folio)) { 697 /* synchronous write or broken a_ops? */ 698 folio_clear_reclaim(folio); 699 } 700 trace_mm_vmscan_write_folio(folio); 701 node_stat_add_folio(folio, NR_VMSCAN_WRITE); 702 return PAGE_SUCCESS; 703 } 704 705 return PAGE_CLEAN; 706 } 707 708 /* 709 * Same as remove_mapping, but if the folio is removed from the mapping, it 710 * gets returned with a refcount of 0. 711 */ 712 static int __remove_mapping(struct address_space *mapping, struct folio *folio, 713 bool reclaimed, struct mem_cgroup *target_memcg) 714 { 715 int refcount; 716 void *shadow = NULL; 717 718 BUG_ON(!folio_test_locked(folio)); 719 BUG_ON(mapping != folio_mapping(folio)); 720 721 if (!folio_test_swapcache(folio)) 722 spin_lock(&mapping->host->i_lock); 723 xa_lock_irq(&mapping->i_pages); 724 /* 725 * The non racy check for a busy folio. 726 * 727 * Must be careful with the order of the tests. When someone has 728 * a ref to the folio, it may be possible that they dirty it then 729 * drop the reference. So if the dirty flag is tested before the 730 * refcount here, then the following race may occur: 731 * 732 * get_user_pages(&page); 733 * [user mapping goes away] 734 * write_to(page); 735 * !folio_test_dirty(folio) [good] 736 * folio_set_dirty(folio); 737 * folio_put(folio); 738 * !refcount(folio) [good, discard it] 739 * 740 * [oops, our write_to data is lost] 741 * 742 * Reversing the order of the tests ensures such a situation cannot 743 * escape unnoticed. The smp_rmb is needed to ensure the folio->flags 744 * load is not satisfied before that of folio->_refcount. 745 * 746 * Note that if the dirty flag is always set via folio_mark_dirty, 747 * and thus under the i_pages lock, then this ordering is not required. 748 */ 749 refcount = 1 + folio_nr_pages(folio); 750 if (!folio_ref_freeze(folio, refcount)) 751 goto cannot_free; 752 /* note: atomic_cmpxchg in folio_ref_freeze provides the smp_rmb */ 753 if (unlikely(folio_test_dirty(folio))) { 754 folio_ref_unfreeze(folio, refcount); 755 goto cannot_free; 756 } 757 758 if (folio_test_swapcache(folio)) { 759 swp_entry_t swap = folio->swap; 760 761 if (reclaimed && !mapping_exiting(mapping)) 762 shadow = workingset_eviction(folio, target_memcg); 763 __delete_from_swap_cache(folio, swap, shadow); 764 mem_cgroup_swapout(folio, swap); 765 xa_unlock_irq(&mapping->i_pages); 766 put_swap_folio(folio, swap); 767 } else { 768 void (*free_folio)(struct folio *); 769 770 free_folio = mapping->a_ops->free_folio; 771 /* 772 * Remember a shadow entry for reclaimed file cache in 773 * order to detect refaults, thus thrashing, later on. 774 * 775 * But don't store shadows in an address space that is 776 * already exiting. This is not just an optimization, 777 * inode reclaim needs to empty out the radix tree or 778 * the nodes are lost. Don't plant shadows behind its 779 * back. 780 * 781 * We also don't store shadows for DAX mappings because the 782 * only page cache folios found in these are zero pages 783 * covering holes, and because we don't want to mix DAX 784 * exceptional entries and shadow exceptional entries in the 785 * same address_space. 786 */ 787 if (reclaimed && folio_is_file_lru(folio) && 788 !mapping_exiting(mapping) && !dax_mapping(mapping)) 789 shadow = workingset_eviction(folio, target_memcg); 790 __filemap_remove_folio(folio, shadow); 791 xa_unlock_irq(&mapping->i_pages); 792 if (mapping_shrinkable(mapping)) 793 inode_add_lru(mapping->host); 794 spin_unlock(&mapping->host->i_lock); 795 796 if (free_folio) 797 free_folio(folio); 798 } 799 800 return 1; 801 802 cannot_free: 803 xa_unlock_irq(&mapping->i_pages); 804 if (!folio_test_swapcache(folio)) 805 spin_unlock(&mapping->host->i_lock); 806 return 0; 807 } 808 809 /** 810 * remove_mapping() - Attempt to remove a folio from its mapping. 811 * @mapping: The address space. 812 * @folio: The folio to remove. 813 * 814 * If the folio is dirty, under writeback or if someone else has a ref 815 * on it, removal will fail. 816 * Return: The number of pages removed from the mapping. 0 if the folio 817 * could not be removed. 818 * Context: The caller should have a single refcount on the folio and 819 * hold its lock. 820 */ 821 long remove_mapping(struct address_space *mapping, struct folio *folio) 822 { 823 if (__remove_mapping(mapping, folio, false, NULL)) { 824 /* 825 * Unfreezing the refcount with 1 effectively 826 * drops the pagecache ref for us without requiring another 827 * atomic operation. 828 */ 829 folio_ref_unfreeze(folio, 1); 830 return folio_nr_pages(folio); 831 } 832 return 0; 833 } 834 835 /** 836 * folio_putback_lru - Put previously isolated folio onto appropriate LRU list. 837 * @folio: Folio to be returned to an LRU list. 838 * 839 * Add previously isolated @folio to appropriate LRU list. 840 * The folio may still be unevictable for other reasons. 841 * 842 * Context: lru_lock must not be held, interrupts must be enabled. 843 */ 844 void folio_putback_lru(struct folio *folio) 845 { 846 folio_add_lru(folio); 847 folio_put(folio); /* drop ref from isolate */ 848 } 849 850 enum folio_references { 851 FOLIOREF_RECLAIM, 852 FOLIOREF_RECLAIM_CLEAN, 853 FOLIOREF_KEEP, 854 FOLIOREF_ACTIVATE, 855 }; 856 857 static enum folio_references folio_check_references(struct folio *folio, 858 struct scan_control *sc) 859 { 860 int referenced_ptes, referenced_folio; 861 unsigned long vm_flags; 862 863 referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup, 864 &vm_flags); 865 referenced_folio = folio_test_clear_referenced(folio); 866 867 /* 868 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma. 869 * Let the folio, now marked Mlocked, be moved to the unevictable list. 870 */ 871 if (vm_flags & VM_LOCKED) 872 return FOLIOREF_ACTIVATE; 873 874 /* 875 * There are two cases to consider. 876 * 1) Rmap lock contention: rotate. 877 * 2) Skip the non-shared swapbacked folio mapped solely by 878 * the exiting or OOM-reaped process. 879 */ 880 if (referenced_ptes == -1) 881 return FOLIOREF_KEEP; 882 883 if (referenced_ptes) { 884 /* 885 * All mapped folios start out with page table 886 * references from the instantiating fault, so we need 887 * to look twice if a mapped file/anon folio is used more 888 * than once. 889 * 890 * Mark it and spare it for another trip around the 891 * inactive list. Another page table reference will 892 * lead to its activation. 893 * 894 * Note: the mark is set for activated folios as well 895 * so that recently deactivated but used folios are 896 * quickly recovered. 897 */ 898 folio_set_referenced(folio); 899 900 if (referenced_folio || referenced_ptes > 1) 901 return FOLIOREF_ACTIVATE; 902 903 /* 904 * Activate file-backed executable folios after first usage. 905 */ 906 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) 907 return FOLIOREF_ACTIVATE; 908 909 return FOLIOREF_KEEP; 910 } 911 912 /* Reclaim if clean, defer dirty folios to writeback */ 913 if (referenced_folio && folio_is_file_lru(folio)) 914 return FOLIOREF_RECLAIM_CLEAN; 915 916 return FOLIOREF_RECLAIM; 917 } 918 919 /* Check if a folio is dirty or under writeback */ 920 static void folio_check_dirty_writeback(struct folio *folio, 921 bool *dirty, bool *writeback) 922 { 923 struct address_space *mapping; 924 925 /* 926 * Anonymous folios are not handled by flushers and must be written 927 * from reclaim context. Do not stall reclaim based on them. 928 * MADV_FREE anonymous folios are put into inactive file list too. 929 * They could be mistakenly treated as file lru. So further anon 930 * test is needed. 931 */ 932 if (!folio_is_file_lru(folio) || 933 (folio_test_anon(folio) && !folio_test_swapbacked(folio))) { 934 *dirty = false; 935 *writeback = false; 936 return; 937 } 938 939 /* By default assume that the folio flags are accurate */ 940 *dirty = folio_test_dirty(folio); 941 *writeback = folio_test_writeback(folio); 942 943 /* Verify dirty/writeback state if the filesystem supports it */ 944 if (!folio_test_private(folio)) 945 return; 946 947 mapping = folio_mapping(folio); 948 if (mapping && mapping->a_ops->is_dirty_writeback) 949 mapping->a_ops->is_dirty_writeback(folio, dirty, writeback); 950 } 951 952 struct folio *alloc_migrate_folio(struct folio *src, unsigned long private) 953 { 954 struct folio *dst; 955 nodemask_t *allowed_mask; 956 struct migration_target_control *mtc; 957 958 mtc = (struct migration_target_control *)private; 959 960 allowed_mask = mtc->nmask; 961 /* 962 * make sure we allocate from the target node first also trying to 963 * demote or reclaim pages from the target node via kswapd if we are 964 * low on free memory on target node. If we don't do this and if 965 * we have free memory on the slower(lower) memtier, we would start 966 * allocating pages from slower(lower) memory tiers without even forcing 967 * a demotion of cold pages from the target memtier. This can result 968 * in the kernel placing hot pages in slower(lower) memory tiers. 969 */ 970 mtc->nmask = NULL; 971 mtc->gfp_mask |= __GFP_THISNODE; 972 dst = alloc_migration_target(src, (unsigned long)mtc); 973 if (dst) 974 return dst; 975 976 mtc->gfp_mask &= ~__GFP_THISNODE; 977 mtc->nmask = allowed_mask; 978 979 return alloc_migration_target(src, (unsigned long)mtc); 980 } 981 982 /* 983 * Take folios on @demote_folios and attempt to demote them to another node. 984 * Folios which are not demoted are left on @demote_folios. 985 */ 986 static unsigned int demote_folio_list(struct list_head *demote_folios, 987 struct pglist_data *pgdat) 988 { 989 int target_nid = next_demotion_node(pgdat->node_id); 990 unsigned int nr_succeeded; 991 nodemask_t allowed_mask; 992 993 struct migration_target_control mtc = { 994 /* 995 * Allocate from 'node', or fail quickly and quietly. 996 * When this happens, 'page' will likely just be discarded 997 * instead of migrated. 998 */ 999 .gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | __GFP_NOWARN | 1000 __GFP_NOMEMALLOC | GFP_NOWAIT, 1001 .nid = target_nid, 1002 .nmask = &allowed_mask, 1003 .reason = MR_DEMOTION, 1004 }; 1005 1006 if (list_empty(demote_folios)) 1007 return 0; 1008 1009 if (target_nid == NUMA_NO_NODE) 1010 return 0; 1011 1012 node_get_allowed_targets(pgdat, &allowed_mask); 1013 1014 /* Demotion ignores all cpuset and mempolicy settings */ 1015 migrate_pages(demote_folios, alloc_migrate_folio, NULL, 1016 (unsigned long)&mtc, MIGRATE_ASYNC, MR_DEMOTION, 1017 &nr_succeeded); 1018 1019 return nr_succeeded; 1020 } 1021 1022 static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask) 1023 { 1024 if (gfp_mask & __GFP_FS) 1025 return true; 1026 if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO)) 1027 return false; 1028 /* 1029 * We can "enter_fs" for swap-cache with only __GFP_IO 1030 * providing this isn't SWP_FS_OPS. 1031 * ->flags can be updated non-atomicially (scan_swap_map_slots), 1032 * but that will never affect SWP_FS_OPS, so the data_race 1033 * is safe. 1034 */ 1035 return !data_race(folio_swap_flags(folio) & SWP_FS_OPS); 1036 } 1037 1038 /* 1039 * shrink_folio_list() returns the number of reclaimed pages 1040 */ 1041 static unsigned int shrink_folio_list(struct list_head *folio_list, 1042 struct pglist_data *pgdat, struct scan_control *sc, 1043 struct reclaim_stat *stat, bool ignore_references) 1044 { 1045 struct folio_batch free_folios; 1046 LIST_HEAD(ret_folios); 1047 LIST_HEAD(demote_folios); 1048 unsigned int nr_reclaimed = 0; 1049 unsigned int pgactivate = 0; 1050 bool do_demote_pass; 1051 struct swap_iocb *plug = NULL; 1052 1053 folio_batch_init(&free_folios); 1054 memset(stat, 0, sizeof(*stat)); 1055 cond_resched(); 1056 do_demote_pass = can_demote(pgdat->node_id, sc); 1057 1058 retry: 1059 while (!list_empty(folio_list)) { 1060 struct address_space *mapping; 1061 struct folio *folio; 1062 enum folio_references references = FOLIOREF_RECLAIM; 1063 bool dirty, writeback; 1064 unsigned int nr_pages; 1065 1066 cond_resched(); 1067 1068 folio = lru_to_folio(folio_list); 1069 list_del(&folio->lru); 1070 1071 if (!folio_trylock(folio)) 1072 goto keep; 1073 1074 VM_BUG_ON_FOLIO(folio_test_active(folio), folio); 1075 1076 nr_pages = folio_nr_pages(folio); 1077 1078 /* Account the number of base pages */ 1079 sc->nr_scanned += nr_pages; 1080 1081 if (unlikely(!folio_evictable(folio))) 1082 goto activate_locked; 1083 1084 if (!sc->may_unmap && folio_mapped(folio)) 1085 goto keep_locked; 1086 1087 /* folio_update_gen() tried to promote this page? */ 1088 if (lru_gen_enabled() && !ignore_references && 1089 folio_mapped(folio) && folio_test_referenced(folio)) 1090 goto keep_locked; 1091 1092 /* 1093 * The number of dirty pages determines if a node is marked 1094 * reclaim_congested. kswapd will stall and start writing 1095 * folios if the tail of the LRU is all dirty unqueued folios. 1096 */ 1097 folio_check_dirty_writeback(folio, &dirty, &writeback); 1098 if (dirty || writeback) 1099 stat->nr_dirty += nr_pages; 1100 1101 if (dirty && !writeback) 1102 stat->nr_unqueued_dirty += nr_pages; 1103 1104 /* 1105 * Treat this folio as congested if folios are cycling 1106 * through the LRU so quickly that the folios marked 1107 * for immediate reclaim are making it to the end of 1108 * the LRU a second time. 1109 */ 1110 if (writeback && folio_test_reclaim(folio)) 1111 stat->nr_congested += nr_pages; 1112 1113 /* 1114 * If a folio at the tail of the LRU is under writeback, there 1115 * are three cases to consider. 1116 * 1117 * 1) If reclaim is encountering an excessive number 1118 * of folios under writeback and this folio has both 1119 * the writeback and reclaim flags set, then it 1120 * indicates that folios are being queued for I/O but 1121 * are being recycled through the LRU before the I/O 1122 * can complete. Waiting on the folio itself risks an 1123 * indefinite stall if it is impossible to writeback 1124 * the folio due to I/O error or disconnected storage 1125 * so instead note that the LRU is being scanned too 1126 * quickly and the caller can stall after the folio 1127 * list has been processed. 1128 * 1129 * 2) Global or new memcg reclaim encounters a folio that is 1130 * not marked for immediate reclaim, or the caller does not 1131 * have __GFP_FS (or __GFP_IO if it's simply going to swap, 1132 * not to fs). In this case mark the folio for immediate 1133 * reclaim and continue scanning. 1134 * 1135 * Require may_enter_fs() because we would wait on fs, which 1136 * may not have submitted I/O yet. And the loop driver might 1137 * enter reclaim, and deadlock if it waits on a folio for 1138 * which it is needed to do the write (loop masks off 1139 * __GFP_IO|__GFP_FS for this reason); but more thought 1140 * would probably show more reasons. 1141 * 1142 * 3) Legacy memcg encounters a folio that already has the 1143 * reclaim flag set. memcg does not have any dirty folio 1144 * throttling so we could easily OOM just because too many 1145 * folios are in writeback and there is nothing else to 1146 * reclaim. Wait for the writeback to complete. 1147 * 1148 * In cases 1) and 2) we activate the folios to get them out of 1149 * the way while we continue scanning for clean folios on the 1150 * inactive list and refilling from the active list. The 1151 * observation here is that waiting for disk writes is more 1152 * expensive than potentially causing reloads down the line. 1153 * Since they're marked for immediate reclaim, they won't put 1154 * memory pressure on the cache working set any longer than it 1155 * takes to write them to disk. 1156 */ 1157 if (folio_test_writeback(folio)) { 1158 /* Case 1 above */ 1159 if (current_is_kswapd() && 1160 folio_test_reclaim(folio) && 1161 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) { 1162 stat->nr_immediate += nr_pages; 1163 goto activate_locked; 1164 1165 /* Case 2 above */ 1166 } else if (writeback_throttling_sane(sc) || 1167 !folio_test_reclaim(folio) || 1168 !may_enter_fs(folio, sc->gfp_mask)) { 1169 /* 1170 * This is slightly racy - 1171 * folio_end_writeback() might have 1172 * just cleared the reclaim flag, then 1173 * setting the reclaim flag here ends up 1174 * interpreted as the readahead flag - but 1175 * that does not matter enough to care. 1176 * What we do want is for this folio to 1177 * have the reclaim flag set next time 1178 * memcg reclaim reaches the tests above, 1179 * so it will then wait for writeback to 1180 * avoid OOM; and it's also appropriate 1181 * in global reclaim. 1182 */ 1183 folio_set_reclaim(folio); 1184 stat->nr_writeback += nr_pages; 1185 goto activate_locked; 1186 1187 /* Case 3 above */ 1188 } else { 1189 folio_unlock(folio); 1190 folio_wait_writeback(folio); 1191 /* then go back and try same folio again */ 1192 list_add_tail(&folio->lru, folio_list); 1193 continue; 1194 } 1195 } 1196 1197 if (!ignore_references) 1198 references = folio_check_references(folio, sc); 1199 1200 switch (references) { 1201 case FOLIOREF_ACTIVATE: 1202 goto activate_locked; 1203 case FOLIOREF_KEEP: 1204 stat->nr_ref_keep += nr_pages; 1205 goto keep_locked; 1206 case FOLIOREF_RECLAIM: 1207 case FOLIOREF_RECLAIM_CLEAN: 1208 ; /* try to reclaim the folio below */ 1209 } 1210 1211 /* 1212 * Before reclaiming the folio, try to relocate 1213 * its contents to another node. 1214 */ 1215 if (do_demote_pass && 1216 (thp_migration_supported() || !folio_test_large(folio))) { 1217 list_add(&folio->lru, &demote_folios); 1218 folio_unlock(folio); 1219 continue; 1220 } 1221 1222 /* 1223 * Anonymous process memory has backing store? 1224 * Try to allocate it some swap space here. 1225 * Lazyfree folio could be freed directly 1226 */ 1227 if (folio_test_anon(folio) && folio_test_swapbacked(folio)) { 1228 if (!folio_test_swapcache(folio)) { 1229 if (!(sc->gfp_mask & __GFP_IO)) 1230 goto keep_locked; 1231 if (folio_maybe_dma_pinned(folio)) 1232 goto keep_locked; 1233 if (folio_test_large(folio)) { 1234 /* cannot split folio, skip it */ 1235 if (!can_split_folio(folio, 1, NULL)) 1236 goto activate_locked; 1237 /* 1238 * Split partially mapped folios right away. 1239 * We can free the unmapped pages without IO. 1240 */ 1241 if (data_race(!list_empty(&folio->_deferred_list)) && 1242 split_folio_to_list(folio, folio_list)) 1243 goto activate_locked; 1244 } 1245 if (!add_to_swap(folio)) { 1246 int __maybe_unused order = folio_order(folio); 1247 1248 if (!folio_test_large(folio)) 1249 goto activate_locked_split; 1250 /* Fallback to swap normal pages */ 1251 if (split_folio_to_list(folio, folio_list)) 1252 goto activate_locked; 1253 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1254 if (nr_pages >= HPAGE_PMD_NR) { 1255 count_memcg_folio_events(folio, 1256 THP_SWPOUT_FALLBACK, 1); 1257 count_vm_event(THP_SWPOUT_FALLBACK); 1258 } 1259 count_mthp_stat(order, MTHP_STAT_SWPOUT_FALLBACK); 1260 #endif 1261 if (!add_to_swap(folio)) 1262 goto activate_locked_split; 1263 } 1264 } 1265 } 1266 1267 /* 1268 * If the folio was split above, the tail pages will make 1269 * their own pass through this function and be accounted 1270 * then. 1271 */ 1272 if ((nr_pages > 1) && !folio_test_large(folio)) { 1273 sc->nr_scanned -= (nr_pages - 1); 1274 nr_pages = 1; 1275 } 1276 1277 /* 1278 * The folio is mapped into the page tables of one or more 1279 * processes. Try to unmap it here. 1280 */ 1281 if (folio_mapped(folio)) { 1282 enum ttu_flags flags = TTU_BATCH_FLUSH; 1283 bool was_swapbacked = folio_test_swapbacked(folio); 1284 1285 if (folio_test_pmd_mappable(folio)) 1286 flags |= TTU_SPLIT_HUGE_PMD; 1287 /* 1288 * Without TTU_SYNC, try_to_unmap will only begin to 1289 * hold PTL from the first present PTE within a large 1290 * folio. Some initial PTEs might be skipped due to 1291 * races with parallel PTE writes in which PTEs can be 1292 * cleared temporarily before being written new present 1293 * values. This will lead to a large folio is still 1294 * mapped while some subpages have been partially 1295 * unmapped after try_to_unmap; TTU_SYNC helps 1296 * try_to_unmap acquire PTL from the first PTE, 1297 * eliminating the influence of temporary PTE values. 1298 */ 1299 if (folio_test_large(folio)) 1300 flags |= TTU_SYNC; 1301 1302 try_to_unmap(folio, flags); 1303 if (folio_mapped(folio)) { 1304 stat->nr_unmap_fail += nr_pages; 1305 if (!was_swapbacked && 1306 folio_test_swapbacked(folio)) 1307 stat->nr_lazyfree_fail += nr_pages; 1308 goto activate_locked; 1309 } 1310 } 1311 1312 /* 1313 * Folio is unmapped now so it cannot be newly pinned anymore. 1314 * No point in trying to reclaim folio if it is pinned. 1315 * Furthermore we don't want to reclaim underlying fs metadata 1316 * if the folio is pinned and thus potentially modified by the 1317 * pinning process as that may upset the filesystem. 1318 */ 1319 if (folio_maybe_dma_pinned(folio)) 1320 goto activate_locked; 1321 1322 mapping = folio_mapping(folio); 1323 if (folio_test_dirty(folio)) { 1324 /* 1325 * Only kswapd can writeback filesystem folios 1326 * to avoid risk of stack overflow. But avoid 1327 * injecting inefficient single-folio I/O into 1328 * flusher writeback as much as possible: only 1329 * write folios when we've encountered many 1330 * dirty folios, and when we've already scanned 1331 * the rest of the LRU for clean folios and see 1332 * the same dirty folios again (with the reclaim 1333 * flag set). 1334 */ 1335 if (folio_is_file_lru(folio) && 1336 (!current_is_kswapd() || 1337 !folio_test_reclaim(folio) || 1338 !test_bit(PGDAT_DIRTY, &pgdat->flags))) { 1339 /* 1340 * Immediately reclaim when written back. 1341 * Similar in principle to folio_deactivate() 1342 * except we already have the folio isolated 1343 * and know it's dirty 1344 */ 1345 node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE, 1346 nr_pages); 1347 folio_set_reclaim(folio); 1348 1349 goto activate_locked; 1350 } 1351 1352 if (references == FOLIOREF_RECLAIM_CLEAN) 1353 goto keep_locked; 1354 if (!may_enter_fs(folio, sc->gfp_mask)) 1355 goto keep_locked; 1356 if (!sc->may_writepage) 1357 goto keep_locked; 1358 1359 /* 1360 * Folio is dirty. Flush the TLB if a writable entry 1361 * potentially exists to avoid CPU writes after I/O 1362 * starts and then write it out here. 1363 */ 1364 try_to_unmap_flush_dirty(); 1365 switch (pageout(folio, mapping, &plug, folio_list)) { 1366 case PAGE_KEEP: 1367 goto keep_locked; 1368 case PAGE_ACTIVATE: 1369 /* 1370 * If shmem folio is split when writeback to swap, 1371 * the tail pages will make their own pass through 1372 * this function and be accounted then. 1373 */ 1374 if (nr_pages > 1 && !folio_test_large(folio)) { 1375 sc->nr_scanned -= (nr_pages - 1); 1376 nr_pages = 1; 1377 } 1378 goto activate_locked; 1379 case PAGE_SUCCESS: 1380 if (nr_pages > 1 && !folio_test_large(folio)) { 1381 sc->nr_scanned -= (nr_pages - 1); 1382 nr_pages = 1; 1383 } 1384 stat->nr_pageout += nr_pages; 1385 1386 if (folio_test_writeback(folio)) 1387 goto keep; 1388 if (folio_test_dirty(folio)) 1389 goto keep; 1390 1391 /* 1392 * A synchronous write - probably a ramdisk. Go 1393 * ahead and try to reclaim the folio. 1394 */ 1395 if (!folio_trylock(folio)) 1396 goto keep; 1397 if (folio_test_dirty(folio) || 1398 folio_test_writeback(folio)) 1399 goto keep_locked; 1400 mapping = folio_mapping(folio); 1401 fallthrough; 1402 case PAGE_CLEAN: 1403 ; /* try to free the folio below */ 1404 } 1405 } 1406 1407 /* 1408 * If the folio has buffers, try to free the buffer 1409 * mappings associated with this folio. If we succeed 1410 * we try to free the folio as well. 1411 * 1412 * We do this even if the folio is dirty. 1413 * filemap_release_folio() does not perform I/O, but it 1414 * is possible for a folio to have the dirty flag set, 1415 * but it is actually clean (all its buffers are clean). 1416 * This happens if the buffers were written out directly, 1417 * with submit_bh(). ext3 will do this, as well as 1418 * the blockdev mapping. filemap_release_folio() will 1419 * discover that cleanness and will drop the buffers 1420 * and mark the folio clean - it can be freed. 1421 * 1422 * Rarely, folios can have buffers and no ->mapping. 1423 * These are the folios which were not successfully 1424 * invalidated in truncate_cleanup_folio(). We try to 1425 * drop those buffers here and if that worked, and the 1426 * folio is no longer mapped into process address space 1427 * (refcount == 1) it can be freed. Otherwise, leave 1428 * the folio on the LRU so it is swappable. 1429 */ 1430 if (folio_needs_release(folio)) { 1431 if (!filemap_release_folio(folio, sc->gfp_mask)) 1432 goto activate_locked; 1433 if (!mapping && folio_ref_count(folio) == 1) { 1434 folio_unlock(folio); 1435 if (folio_put_testzero(folio)) 1436 goto free_it; 1437 else { 1438 /* 1439 * rare race with speculative reference. 1440 * the speculative reference will free 1441 * this folio shortly, so we may 1442 * increment nr_reclaimed here (and 1443 * leave it off the LRU). 1444 */ 1445 nr_reclaimed += nr_pages; 1446 continue; 1447 } 1448 } 1449 } 1450 1451 if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) { 1452 /* follow __remove_mapping for reference */ 1453 if (!folio_ref_freeze(folio, 1)) 1454 goto keep_locked; 1455 /* 1456 * The folio has only one reference left, which is 1457 * from the isolation. After the caller puts the 1458 * folio back on the lru and drops the reference, the 1459 * folio will be freed anyway. It doesn't matter 1460 * which lru it goes on. So we don't bother checking 1461 * the dirty flag here. 1462 */ 1463 count_vm_events(PGLAZYFREED, nr_pages); 1464 count_memcg_folio_events(folio, PGLAZYFREED, nr_pages); 1465 } else if (!mapping || !__remove_mapping(mapping, folio, true, 1466 sc->target_mem_cgroup)) 1467 goto keep_locked; 1468 1469 folio_unlock(folio); 1470 free_it: 1471 /* 1472 * Folio may get swapped out as a whole, need to account 1473 * all pages in it. 1474 */ 1475 nr_reclaimed += nr_pages; 1476 1477 folio_undo_large_rmappable(folio); 1478 if (folio_batch_add(&free_folios, folio) == 0) { 1479 mem_cgroup_uncharge_folios(&free_folios); 1480 try_to_unmap_flush(); 1481 free_unref_folios(&free_folios); 1482 } 1483 continue; 1484 1485 activate_locked_split: 1486 /* 1487 * The tail pages that are failed to add into swap cache 1488 * reach here. Fixup nr_scanned and nr_pages. 1489 */ 1490 if (nr_pages > 1) { 1491 sc->nr_scanned -= (nr_pages - 1); 1492 nr_pages = 1; 1493 } 1494 activate_locked: 1495 /* Not a candidate for swapping, so reclaim swap space. */ 1496 if (folio_test_swapcache(folio) && 1497 (mem_cgroup_swap_full(folio) || folio_test_mlocked(folio))) 1498 folio_free_swap(folio); 1499 VM_BUG_ON_FOLIO(folio_test_active(folio), folio); 1500 if (!folio_test_mlocked(folio)) { 1501 int type = folio_is_file_lru(folio); 1502 folio_set_active(folio); 1503 stat->nr_activate[type] += nr_pages; 1504 count_memcg_folio_events(folio, PGACTIVATE, nr_pages); 1505 } 1506 keep_locked: 1507 folio_unlock(folio); 1508 keep: 1509 list_add(&folio->lru, &ret_folios); 1510 VM_BUG_ON_FOLIO(folio_test_lru(folio) || 1511 folio_test_unevictable(folio), folio); 1512 } 1513 /* 'folio_list' is always empty here */ 1514 1515 /* Migrate folios selected for demotion */ 1516 stat->nr_demoted = demote_folio_list(&demote_folios, pgdat); 1517 nr_reclaimed += stat->nr_demoted; 1518 /* Folios that could not be demoted are still in @demote_folios */ 1519 if (!list_empty(&demote_folios)) { 1520 /* Folios which weren't demoted go back on @folio_list */ 1521 list_splice_init(&demote_folios, folio_list); 1522 1523 /* 1524 * goto retry to reclaim the undemoted folios in folio_list if 1525 * desired. 1526 * 1527 * Reclaiming directly from top tier nodes is not often desired 1528 * due to it breaking the LRU ordering: in general memory 1529 * should be reclaimed from lower tier nodes and demoted from 1530 * top tier nodes. 1531 * 1532 * However, disabling reclaim from top tier nodes entirely 1533 * would cause ooms in edge scenarios where lower tier memory 1534 * is unreclaimable for whatever reason, eg memory being 1535 * mlocked or too hot to reclaim. We can disable reclaim 1536 * from top tier nodes in proactive reclaim though as that is 1537 * not real memory pressure. 1538 */ 1539 if (!sc->proactive) { 1540 do_demote_pass = false; 1541 goto retry; 1542 } 1543 } 1544 1545 pgactivate = stat->nr_activate[0] + stat->nr_activate[1]; 1546 1547 mem_cgroup_uncharge_folios(&free_folios); 1548 try_to_unmap_flush(); 1549 free_unref_folios(&free_folios); 1550 1551 list_splice(&ret_folios, folio_list); 1552 count_vm_events(PGACTIVATE, pgactivate); 1553 1554 if (plug) 1555 swap_write_unplug(plug); 1556 return nr_reclaimed; 1557 } 1558 1559 unsigned int reclaim_clean_pages_from_list(struct zone *zone, 1560 struct list_head *folio_list) 1561 { 1562 struct scan_control sc = { 1563 .gfp_mask = GFP_KERNEL, 1564 .may_unmap = 1, 1565 }; 1566 struct reclaim_stat stat; 1567 unsigned int nr_reclaimed; 1568 struct folio *folio, *next; 1569 LIST_HEAD(clean_folios); 1570 unsigned int noreclaim_flag; 1571 1572 list_for_each_entry_safe(folio, next, folio_list, lru) { 1573 if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) && 1574 !folio_test_dirty(folio) && !__folio_test_movable(folio) && 1575 !folio_test_unevictable(folio)) { 1576 folio_clear_active(folio); 1577 list_move(&folio->lru, &clean_folios); 1578 } 1579 } 1580 1581 /* 1582 * We should be safe here since we are only dealing with file pages and 1583 * we are not kswapd and therefore cannot write dirty file pages. But 1584 * call memalloc_noreclaim_save() anyway, just in case these conditions 1585 * change in the future. 1586 */ 1587 noreclaim_flag = memalloc_noreclaim_save(); 1588 nr_reclaimed = shrink_folio_list(&clean_folios, zone->zone_pgdat, &sc, 1589 &stat, true); 1590 memalloc_noreclaim_restore(noreclaim_flag); 1591 1592 list_splice(&clean_folios, folio_list); 1593 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, 1594 -(long)nr_reclaimed); 1595 /* 1596 * Since lazyfree pages are isolated from file LRU from the beginning, 1597 * they will rotate back to anonymous LRU in the end if it failed to 1598 * discard so isolated count will be mismatched. 1599 * Compensate the isolated count for both LRU lists. 1600 */ 1601 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON, 1602 stat.nr_lazyfree_fail); 1603 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, 1604 -(long)stat.nr_lazyfree_fail); 1605 return nr_reclaimed; 1606 } 1607 1608 /* 1609 * Update LRU sizes after isolating pages. The LRU size updates must 1610 * be complete before mem_cgroup_update_lru_size due to a sanity check. 1611 */ 1612 static __always_inline void update_lru_sizes(struct lruvec *lruvec, 1613 enum lru_list lru, unsigned long *nr_zone_taken) 1614 { 1615 int zid; 1616 1617 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1618 if (!nr_zone_taken[zid]) 1619 continue; 1620 1621 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 1622 } 1623 1624 } 1625 1626 #ifdef CONFIG_CMA 1627 /* 1628 * It is waste of effort to scan and reclaim CMA pages if it is not available 1629 * for current allocation context. Kswapd can not be enrolled as it can not 1630 * distinguish this scenario by using sc->gfp_mask = GFP_KERNEL 1631 */ 1632 static bool skip_cma(struct folio *folio, struct scan_control *sc) 1633 { 1634 return !current_is_kswapd() && 1635 gfp_migratetype(sc->gfp_mask) != MIGRATE_MOVABLE && 1636 folio_migratetype(folio) == MIGRATE_CMA; 1637 } 1638 #else 1639 static bool skip_cma(struct folio *folio, struct scan_control *sc) 1640 { 1641 return false; 1642 } 1643 #endif 1644 1645 /* 1646 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times. 1647 * 1648 * lruvec->lru_lock is heavily contended. Some of the functions that 1649 * shrink the lists perform better by taking out a batch of pages 1650 * and working on them outside the LRU lock. 1651 * 1652 * For pagecache intensive workloads, this function is the hottest 1653 * spot in the kernel (apart from copy_*_user functions). 1654 * 1655 * Lru_lock must be held before calling this function. 1656 * 1657 * @nr_to_scan: The number of eligible pages to look through on the list. 1658 * @lruvec: The LRU vector to pull pages from. 1659 * @dst: The temp list to put pages on to. 1660 * @nr_scanned: The number of pages that were scanned. 1661 * @sc: The scan_control struct for this reclaim session 1662 * @lru: LRU list id for isolating 1663 * 1664 * returns how many pages were moved onto *@dst. 1665 */ 1666 static unsigned long isolate_lru_folios(unsigned long nr_to_scan, 1667 struct lruvec *lruvec, struct list_head *dst, 1668 unsigned long *nr_scanned, struct scan_control *sc, 1669 enum lru_list lru) 1670 { 1671 struct list_head *src = &lruvec->lists[lru]; 1672 unsigned long nr_taken = 0; 1673 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 }; 1674 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, }; 1675 unsigned long skipped = 0; 1676 unsigned long scan, total_scan, nr_pages; 1677 LIST_HEAD(folios_skipped); 1678 1679 total_scan = 0; 1680 scan = 0; 1681 while (scan < nr_to_scan && !list_empty(src)) { 1682 struct list_head *move_to = src; 1683 struct folio *folio; 1684 1685 folio = lru_to_folio(src); 1686 prefetchw_prev_lru_folio(folio, src, flags); 1687 1688 nr_pages = folio_nr_pages(folio); 1689 total_scan += nr_pages; 1690 1691 if (folio_zonenum(folio) > sc->reclaim_idx || 1692 skip_cma(folio, sc)) { 1693 nr_skipped[folio_zonenum(folio)] += nr_pages; 1694 move_to = &folios_skipped; 1695 goto move; 1696 } 1697 1698 /* 1699 * Do not count skipped folios because that makes the function 1700 * return with no isolated folios if the LRU mostly contains 1701 * ineligible folios. This causes the VM to not reclaim any 1702 * folios, triggering a premature OOM. 1703 * Account all pages in a folio. 1704 */ 1705 scan += nr_pages; 1706 1707 if (!folio_test_lru(folio)) 1708 goto move; 1709 if (!sc->may_unmap && folio_mapped(folio)) 1710 goto move; 1711 1712 /* 1713 * Be careful not to clear the lru flag until after we're 1714 * sure the folio is not being freed elsewhere -- the 1715 * folio release code relies on it. 1716 */ 1717 if (unlikely(!folio_try_get(folio))) 1718 goto move; 1719 1720 if (!folio_test_clear_lru(folio)) { 1721 /* Another thread is already isolating this folio */ 1722 folio_put(folio); 1723 goto move; 1724 } 1725 1726 nr_taken += nr_pages; 1727 nr_zone_taken[folio_zonenum(folio)] += nr_pages; 1728 move_to = dst; 1729 move: 1730 list_move(&folio->lru, move_to); 1731 } 1732 1733 /* 1734 * Splice any skipped folios to the start of the LRU list. Note that 1735 * this disrupts the LRU order when reclaiming for lower zones but 1736 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX 1737 * scanning would soon rescan the same folios to skip and waste lots 1738 * of cpu cycles. 1739 */ 1740 if (!list_empty(&folios_skipped)) { 1741 int zid; 1742 1743 list_splice(&folios_skipped, src); 1744 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1745 if (!nr_skipped[zid]) 1746 continue; 1747 1748 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]); 1749 skipped += nr_skipped[zid]; 1750 } 1751 } 1752 *nr_scanned = total_scan; 1753 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, 1754 total_scan, skipped, nr_taken, lru); 1755 update_lru_sizes(lruvec, lru, nr_zone_taken); 1756 return nr_taken; 1757 } 1758 1759 /** 1760 * folio_isolate_lru() - Try to isolate a folio from its LRU list. 1761 * @folio: Folio to isolate from its LRU list. 1762 * 1763 * Isolate a @folio from an LRU list and adjust the vmstat statistic 1764 * corresponding to whatever LRU list the folio was on. 1765 * 1766 * The folio will have its LRU flag cleared. If it was found on the 1767 * active list, it will have the Active flag set. If it was found on the 1768 * unevictable list, it will have the Unevictable flag set. These flags 1769 * may need to be cleared by the caller before letting the page go. 1770 * 1771 * Context: 1772 * 1773 * (1) Must be called with an elevated refcount on the folio. This is a 1774 * fundamental difference from isolate_lru_folios() (which is called 1775 * without a stable reference). 1776 * (2) The lru_lock must not be held. 1777 * (3) Interrupts must be enabled. 1778 * 1779 * Return: true if the folio was removed from an LRU list. 1780 * false if the folio was not on an LRU list. 1781 */ 1782 bool folio_isolate_lru(struct folio *folio) 1783 { 1784 bool ret = false; 1785 1786 VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio); 1787 1788 if (folio_test_clear_lru(folio)) { 1789 struct lruvec *lruvec; 1790 1791 folio_get(folio); 1792 lruvec = folio_lruvec_lock_irq(folio); 1793 lruvec_del_folio(lruvec, folio); 1794 unlock_page_lruvec_irq(lruvec); 1795 ret = true; 1796 } 1797 1798 return ret; 1799 } 1800 1801 /* 1802 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 1803 * then get rescheduled. When there are massive number of tasks doing page 1804 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 1805 * the LRU list will go small and be scanned faster than necessary, leading to 1806 * unnecessary swapping, thrashing and OOM. 1807 */ 1808 static bool too_many_isolated(struct pglist_data *pgdat, int file, 1809 struct scan_control *sc) 1810 { 1811 unsigned long inactive, isolated; 1812 bool too_many; 1813 1814 if (current_is_kswapd()) 1815 return false; 1816 1817 if (!writeback_throttling_sane(sc)) 1818 return false; 1819 1820 if (file) { 1821 inactive = node_page_state(pgdat, NR_INACTIVE_FILE); 1822 isolated = node_page_state(pgdat, NR_ISOLATED_FILE); 1823 } else { 1824 inactive = node_page_state(pgdat, NR_INACTIVE_ANON); 1825 isolated = node_page_state(pgdat, NR_ISOLATED_ANON); 1826 } 1827 1828 /* 1829 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 1830 * won't get blocked by normal direct-reclaimers, forming a circular 1831 * deadlock. 1832 */ 1833 if (gfp_has_io_fs(sc->gfp_mask)) 1834 inactive >>= 3; 1835 1836 too_many = isolated > inactive; 1837 1838 /* Wake up tasks throttled due to too_many_isolated. */ 1839 if (!too_many) 1840 wake_throttle_isolated(pgdat); 1841 1842 return too_many; 1843 } 1844 1845 /* 1846 * move_folios_to_lru() moves folios from private @list to appropriate LRU list. 1847 * 1848 * Returns the number of pages moved to the given lruvec. 1849 */ 1850 static unsigned int move_folios_to_lru(struct lruvec *lruvec, 1851 struct list_head *list) 1852 { 1853 int nr_pages, nr_moved = 0; 1854 struct folio_batch free_folios; 1855 1856 folio_batch_init(&free_folios); 1857 while (!list_empty(list)) { 1858 struct folio *folio = lru_to_folio(list); 1859 1860 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 1861 list_del(&folio->lru); 1862 if (unlikely(!folio_evictable(folio))) { 1863 spin_unlock_irq(&lruvec->lru_lock); 1864 folio_putback_lru(folio); 1865 spin_lock_irq(&lruvec->lru_lock); 1866 continue; 1867 } 1868 1869 /* 1870 * The folio_set_lru needs to be kept here for list integrity. 1871 * Otherwise: 1872 * #0 move_folios_to_lru #1 release_pages 1873 * if (!folio_put_testzero()) 1874 * if (folio_put_testzero()) 1875 * !lru //skip lru_lock 1876 * folio_set_lru() 1877 * list_add(&folio->lru,) 1878 * list_add(&folio->lru,) 1879 */ 1880 folio_set_lru(folio); 1881 1882 if (unlikely(folio_put_testzero(folio))) { 1883 __folio_clear_lru_flags(folio); 1884 1885 folio_undo_large_rmappable(folio); 1886 if (folio_batch_add(&free_folios, folio) == 0) { 1887 spin_unlock_irq(&lruvec->lru_lock); 1888 mem_cgroup_uncharge_folios(&free_folios); 1889 free_unref_folios(&free_folios); 1890 spin_lock_irq(&lruvec->lru_lock); 1891 } 1892 1893 continue; 1894 } 1895 1896 /* 1897 * All pages were isolated from the same lruvec (and isolation 1898 * inhibits memcg migration). 1899 */ 1900 VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio); 1901 lruvec_add_folio(lruvec, folio); 1902 nr_pages = folio_nr_pages(folio); 1903 nr_moved += nr_pages; 1904 if (folio_test_active(folio)) 1905 workingset_age_nonresident(lruvec, nr_pages); 1906 } 1907 1908 if (free_folios.nr) { 1909 spin_unlock_irq(&lruvec->lru_lock); 1910 mem_cgroup_uncharge_folios(&free_folios); 1911 free_unref_folios(&free_folios); 1912 spin_lock_irq(&lruvec->lru_lock); 1913 } 1914 1915 return nr_moved; 1916 } 1917 1918 /* 1919 * If a kernel thread (such as nfsd for loop-back mounts) services a backing 1920 * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case 1921 * we should not throttle. Otherwise it is safe to do so. 1922 */ 1923 static int current_may_throttle(void) 1924 { 1925 return !(current->flags & PF_LOCAL_THROTTLE); 1926 } 1927 1928 /* 1929 * shrink_inactive_list() is a helper for shrink_node(). It returns the number 1930 * of reclaimed pages 1931 */ 1932 static unsigned long shrink_inactive_list(unsigned long nr_to_scan, 1933 struct lruvec *lruvec, struct scan_control *sc, 1934 enum lru_list lru) 1935 { 1936 LIST_HEAD(folio_list); 1937 unsigned long nr_scanned; 1938 unsigned int nr_reclaimed = 0; 1939 unsigned long nr_taken; 1940 struct reclaim_stat stat; 1941 bool file = is_file_lru(lru); 1942 enum vm_event_item item; 1943 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1944 bool stalled = false; 1945 1946 while (unlikely(too_many_isolated(pgdat, file, sc))) { 1947 if (stalled) 1948 return 0; 1949 1950 /* wait a bit for the reclaimer. */ 1951 stalled = true; 1952 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED); 1953 1954 /* We are about to die and free our memory. Return now. */ 1955 if (fatal_signal_pending(current)) 1956 return SWAP_CLUSTER_MAX; 1957 } 1958 1959 lru_add_drain(); 1960 1961 spin_lock_irq(&lruvec->lru_lock); 1962 1963 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &folio_list, 1964 &nr_scanned, sc, lru); 1965 1966 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 1967 item = PGSCAN_KSWAPD + reclaimer_offset(); 1968 if (!cgroup_reclaim(sc)) 1969 __count_vm_events(item, nr_scanned); 1970 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned); 1971 __count_vm_events(PGSCAN_ANON + file, nr_scanned); 1972 1973 spin_unlock_irq(&lruvec->lru_lock); 1974 1975 if (nr_taken == 0) 1976 return 0; 1977 1978 nr_reclaimed = shrink_folio_list(&folio_list, pgdat, sc, &stat, false); 1979 1980 spin_lock_irq(&lruvec->lru_lock); 1981 move_folios_to_lru(lruvec, &folio_list); 1982 1983 __mod_lruvec_state(lruvec, PGDEMOTE_KSWAPD + reclaimer_offset(), 1984 stat.nr_demoted); 1985 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 1986 item = PGSTEAL_KSWAPD + reclaimer_offset(); 1987 if (!cgroup_reclaim(sc)) 1988 __count_vm_events(item, nr_reclaimed); 1989 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed); 1990 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed); 1991 spin_unlock_irq(&lruvec->lru_lock); 1992 1993 lru_note_cost(lruvec, file, stat.nr_pageout, nr_scanned - nr_reclaimed); 1994 1995 /* 1996 * If dirty folios are scanned that are not queued for IO, it 1997 * implies that flushers are not doing their job. This can 1998 * happen when memory pressure pushes dirty folios to the end of 1999 * the LRU before the dirty limits are breached and the dirty 2000 * data has expired. It can also happen when the proportion of 2001 * dirty folios grows not through writes but through memory 2002 * pressure reclaiming all the clean cache. And in some cases, 2003 * the flushers simply cannot keep up with the allocation 2004 * rate. Nudge the flusher threads in case they are asleep. 2005 */ 2006 if (stat.nr_unqueued_dirty == nr_taken) { 2007 wakeup_flusher_threads(WB_REASON_VMSCAN); 2008 /* 2009 * For cgroupv1 dirty throttling is achieved by waking up 2010 * the kernel flusher here and later waiting on folios 2011 * which are in writeback to finish (see shrink_folio_list()). 2012 * 2013 * Flusher may not be able to issue writeback quickly 2014 * enough for cgroupv1 writeback throttling to work 2015 * on a large system. 2016 */ 2017 if (!writeback_throttling_sane(sc)) 2018 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK); 2019 } 2020 2021 sc->nr.dirty += stat.nr_dirty; 2022 sc->nr.congested += stat.nr_congested; 2023 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty; 2024 sc->nr.writeback += stat.nr_writeback; 2025 sc->nr.immediate += stat.nr_immediate; 2026 sc->nr.taken += nr_taken; 2027 if (file) 2028 sc->nr.file_taken += nr_taken; 2029 2030 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 2031 nr_scanned, nr_reclaimed, &stat, sc->priority, file); 2032 return nr_reclaimed; 2033 } 2034 2035 /* 2036 * shrink_active_list() moves folios from the active LRU to the inactive LRU. 2037 * 2038 * We move them the other way if the folio is referenced by one or more 2039 * processes. 2040 * 2041 * If the folios are mostly unmapped, the processing is fast and it is 2042 * appropriate to hold lru_lock across the whole operation. But if 2043 * the folios are mapped, the processing is slow (folio_referenced()), so 2044 * we should drop lru_lock around each folio. It's impossible to balance 2045 * this, so instead we remove the folios from the LRU while processing them. 2046 * It is safe to rely on the active flag against the non-LRU folios in here 2047 * because nobody will play with that bit on a non-LRU folio. 2048 * 2049 * The downside is that we have to touch folio->_refcount against each folio. 2050 * But we had to alter folio->flags anyway. 2051 */ 2052 static void shrink_active_list(unsigned long nr_to_scan, 2053 struct lruvec *lruvec, 2054 struct scan_control *sc, 2055 enum lru_list lru) 2056 { 2057 unsigned long nr_taken; 2058 unsigned long nr_scanned; 2059 unsigned long vm_flags; 2060 LIST_HEAD(l_hold); /* The folios which were snipped off */ 2061 LIST_HEAD(l_active); 2062 LIST_HEAD(l_inactive); 2063 unsigned nr_deactivate, nr_activate; 2064 unsigned nr_rotated = 0; 2065 bool file = is_file_lru(lru); 2066 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2067 2068 lru_add_drain(); 2069 2070 spin_lock_irq(&lruvec->lru_lock); 2071 2072 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &l_hold, 2073 &nr_scanned, sc, lru); 2074 2075 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2076 2077 if (!cgroup_reclaim(sc)) 2078 __count_vm_events(PGREFILL, nr_scanned); 2079 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned); 2080 2081 spin_unlock_irq(&lruvec->lru_lock); 2082 2083 while (!list_empty(&l_hold)) { 2084 struct folio *folio; 2085 2086 cond_resched(); 2087 folio = lru_to_folio(&l_hold); 2088 list_del(&folio->lru); 2089 2090 if (unlikely(!folio_evictable(folio))) { 2091 folio_putback_lru(folio); 2092 continue; 2093 } 2094 2095 if (unlikely(buffer_heads_over_limit)) { 2096 if (folio_needs_release(folio) && 2097 folio_trylock(folio)) { 2098 filemap_release_folio(folio, 0); 2099 folio_unlock(folio); 2100 } 2101 } 2102 2103 /* Referenced or rmap lock contention: rotate */ 2104 if (folio_referenced(folio, 0, sc->target_mem_cgroup, 2105 &vm_flags) != 0) { 2106 /* 2107 * Identify referenced, file-backed active folios and 2108 * give them one more trip around the active list. So 2109 * that executable code get better chances to stay in 2110 * memory under moderate memory pressure. Anon folios 2111 * are not likely to be evicted by use-once streaming 2112 * IO, plus JVM can create lots of anon VM_EXEC folios, 2113 * so we ignore them here. 2114 */ 2115 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) { 2116 nr_rotated += folio_nr_pages(folio); 2117 list_add(&folio->lru, &l_active); 2118 continue; 2119 } 2120 } 2121 2122 folio_clear_active(folio); /* we are de-activating */ 2123 folio_set_workingset(folio); 2124 list_add(&folio->lru, &l_inactive); 2125 } 2126 2127 /* 2128 * Move folios back to the lru list. 2129 */ 2130 spin_lock_irq(&lruvec->lru_lock); 2131 2132 nr_activate = move_folios_to_lru(lruvec, &l_active); 2133 nr_deactivate = move_folios_to_lru(lruvec, &l_inactive); 2134 2135 __count_vm_events(PGDEACTIVATE, nr_deactivate); 2136 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate); 2137 2138 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2139 spin_unlock_irq(&lruvec->lru_lock); 2140 2141 if (nr_rotated) 2142 lru_note_cost(lruvec, file, 0, nr_rotated); 2143 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate, 2144 nr_deactivate, nr_rotated, sc->priority, file); 2145 } 2146 2147 static unsigned int reclaim_folio_list(struct list_head *folio_list, 2148 struct pglist_data *pgdat) 2149 { 2150 struct reclaim_stat dummy_stat; 2151 unsigned int nr_reclaimed; 2152 struct folio *folio; 2153 struct scan_control sc = { 2154 .gfp_mask = GFP_KERNEL, 2155 .may_writepage = 1, 2156 .may_unmap = 1, 2157 .may_swap = 1, 2158 .no_demotion = 1, 2159 }; 2160 2161 nr_reclaimed = shrink_folio_list(folio_list, pgdat, &sc, &dummy_stat, true); 2162 while (!list_empty(folio_list)) { 2163 folio = lru_to_folio(folio_list); 2164 list_del(&folio->lru); 2165 folio_putback_lru(folio); 2166 } 2167 2168 return nr_reclaimed; 2169 } 2170 2171 unsigned long reclaim_pages(struct list_head *folio_list) 2172 { 2173 int nid; 2174 unsigned int nr_reclaimed = 0; 2175 LIST_HEAD(node_folio_list); 2176 unsigned int noreclaim_flag; 2177 2178 if (list_empty(folio_list)) 2179 return nr_reclaimed; 2180 2181 noreclaim_flag = memalloc_noreclaim_save(); 2182 2183 nid = folio_nid(lru_to_folio(folio_list)); 2184 do { 2185 struct folio *folio = lru_to_folio(folio_list); 2186 2187 if (nid == folio_nid(folio)) { 2188 folio_clear_active(folio); 2189 list_move(&folio->lru, &node_folio_list); 2190 continue; 2191 } 2192 2193 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid)); 2194 nid = folio_nid(lru_to_folio(folio_list)); 2195 } while (!list_empty(folio_list)); 2196 2197 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid)); 2198 2199 memalloc_noreclaim_restore(noreclaim_flag); 2200 2201 return nr_reclaimed; 2202 } 2203 2204 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 2205 struct lruvec *lruvec, struct scan_control *sc) 2206 { 2207 if (is_active_lru(lru)) { 2208 if (sc->may_deactivate & (1 << is_file_lru(lru))) 2209 shrink_active_list(nr_to_scan, lruvec, sc, lru); 2210 else 2211 sc->skipped_deactivate = 1; 2212 return 0; 2213 } 2214 2215 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 2216 } 2217 2218 /* 2219 * The inactive anon list should be small enough that the VM never has 2220 * to do too much work. 2221 * 2222 * The inactive file list should be small enough to leave most memory 2223 * to the established workingset on the scan-resistant active list, 2224 * but large enough to avoid thrashing the aggregate readahead window. 2225 * 2226 * Both inactive lists should also be large enough that each inactive 2227 * folio has a chance to be referenced again before it is reclaimed. 2228 * 2229 * If that fails and refaulting is observed, the inactive list grows. 2230 * 2231 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE folios 2232 * on this LRU, maintained by the pageout code. An inactive_ratio 2233 * of 3 means 3:1 or 25% of the folios are kept on the inactive list. 2234 * 2235 * total target max 2236 * memory ratio inactive 2237 * ------------------------------------- 2238 * 10MB 1 5MB 2239 * 100MB 1 50MB 2240 * 1GB 3 250MB 2241 * 10GB 10 0.9GB 2242 * 100GB 31 3GB 2243 * 1TB 101 10GB 2244 * 10TB 320 32GB 2245 */ 2246 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru) 2247 { 2248 enum lru_list active_lru = inactive_lru + LRU_ACTIVE; 2249 unsigned long inactive, active; 2250 unsigned long inactive_ratio; 2251 unsigned long gb; 2252 2253 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru); 2254 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru); 2255 2256 gb = (inactive + active) >> (30 - PAGE_SHIFT); 2257 if (gb) 2258 inactive_ratio = int_sqrt(10 * gb); 2259 else 2260 inactive_ratio = 1; 2261 2262 return inactive * inactive_ratio < active; 2263 } 2264 2265 enum scan_balance { 2266 SCAN_EQUAL, 2267 SCAN_FRACT, 2268 SCAN_ANON, 2269 SCAN_FILE, 2270 }; 2271 2272 static void prepare_scan_control(pg_data_t *pgdat, struct scan_control *sc) 2273 { 2274 unsigned long file; 2275 struct lruvec *target_lruvec; 2276 2277 if (lru_gen_enabled()) 2278 return; 2279 2280 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat); 2281 2282 /* 2283 * Flush the memory cgroup stats in rate-limited way as we don't need 2284 * most accurate stats here. We may switch to regular stats flushing 2285 * in the future once it is cheap enough. 2286 */ 2287 mem_cgroup_flush_stats_ratelimited(sc->target_mem_cgroup); 2288 2289 /* 2290 * Determine the scan balance between anon and file LRUs. 2291 */ 2292 spin_lock_irq(&target_lruvec->lru_lock); 2293 sc->anon_cost = target_lruvec->anon_cost; 2294 sc->file_cost = target_lruvec->file_cost; 2295 spin_unlock_irq(&target_lruvec->lru_lock); 2296 2297 /* 2298 * Target desirable inactive:active list ratios for the anon 2299 * and file LRU lists. 2300 */ 2301 if (!sc->force_deactivate) { 2302 unsigned long refaults; 2303 2304 /* 2305 * When refaults are being observed, it means a new 2306 * workingset is being established. Deactivate to get 2307 * rid of any stale active pages quickly. 2308 */ 2309 refaults = lruvec_page_state(target_lruvec, 2310 WORKINGSET_ACTIVATE_ANON); 2311 if (refaults != target_lruvec->refaults[WORKINGSET_ANON] || 2312 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON)) 2313 sc->may_deactivate |= DEACTIVATE_ANON; 2314 else 2315 sc->may_deactivate &= ~DEACTIVATE_ANON; 2316 2317 refaults = lruvec_page_state(target_lruvec, 2318 WORKINGSET_ACTIVATE_FILE); 2319 if (refaults != target_lruvec->refaults[WORKINGSET_FILE] || 2320 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE)) 2321 sc->may_deactivate |= DEACTIVATE_FILE; 2322 else 2323 sc->may_deactivate &= ~DEACTIVATE_FILE; 2324 } else 2325 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE; 2326 2327 /* 2328 * If we have plenty of inactive file pages that aren't 2329 * thrashing, try to reclaim those first before touching 2330 * anonymous pages. 2331 */ 2332 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE); 2333 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE) && 2334 !sc->no_cache_trim_mode) 2335 sc->cache_trim_mode = 1; 2336 else 2337 sc->cache_trim_mode = 0; 2338 2339 /* 2340 * Prevent the reclaimer from falling into the cache trap: as 2341 * cache pages start out inactive, every cache fault will tip 2342 * the scan balance towards the file LRU. And as the file LRU 2343 * shrinks, so does the window for rotation from references. 2344 * This means we have a runaway feedback loop where a tiny 2345 * thrashing file LRU becomes infinitely more attractive than 2346 * anon pages. Try to detect this based on file LRU size. 2347 */ 2348 if (!cgroup_reclaim(sc)) { 2349 unsigned long total_high_wmark = 0; 2350 unsigned long free, anon; 2351 int z; 2352 2353 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES); 2354 file = node_page_state(pgdat, NR_ACTIVE_FILE) + 2355 node_page_state(pgdat, NR_INACTIVE_FILE); 2356 2357 for (z = 0; z < MAX_NR_ZONES; z++) { 2358 struct zone *zone = &pgdat->node_zones[z]; 2359 2360 if (!managed_zone(zone)) 2361 continue; 2362 2363 total_high_wmark += high_wmark_pages(zone); 2364 } 2365 2366 /* 2367 * Consider anon: if that's low too, this isn't a 2368 * runaway file reclaim problem, but rather just 2369 * extreme pressure. Reclaim as per usual then. 2370 */ 2371 anon = node_page_state(pgdat, NR_INACTIVE_ANON); 2372 2373 sc->file_is_tiny = 2374 file + free <= total_high_wmark && 2375 !(sc->may_deactivate & DEACTIVATE_ANON) && 2376 anon >> sc->priority; 2377 } 2378 } 2379 2380 /* 2381 * Determine how aggressively the anon and file LRU lists should be 2382 * scanned. 2383 * 2384 * nr[0] = anon inactive folios to scan; nr[1] = anon active folios to scan 2385 * nr[2] = file inactive folios to scan; nr[3] = file active folios to scan 2386 */ 2387 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc, 2388 unsigned long *nr) 2389 { 2390 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2391 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 2392 unsigned long anon_cost, file_cost, total_cost; 2393 int swappiness = sc_swappiness(sc, memcg); 2394 u64 fraction[ANON_AND_FILE]; 2395 u64 denominator = 0; /* gcc */ 2396 enum scan_balance scan_balance; 2397 unsigned long ap, fp; 2398 enum lru_list lru; 2399 2400 /* If we have no swap space, do not bother scanning anon folios. */ 2401 if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) { 2402 scan_balance = SCAN_FILE; 2403 goto out; 2404 } 2405 2406 /* 2407 * Global reclaim will swap to prevent OOM even with no 2408 * swappiness, but memcg users want to use this knob to 2409 * disable swapping for individual groups completely when 2410 * using the memory controller's swap limit feature would be 2411 * too expensive. 2412 */ 2413 if (cgroup_reclaim(sc) && !swappiness) { 2414 scan_balance = SCAN_FILE; 2415 goto out; 2416 } 2417 2418 /* 2419 * Do not apply any pressure balancing cleverness when the 2420 * system is close to OOM, scan both anon and file equally 2421 * (unless the swappiness setting disagrees with swapping). 2422 */ 2423 if (!sc->priority && swappiness) { 2424 scan_balance = SCAN_EQUAL; 2425 goto out; 2426 } 2427 2428 /* 2429 * If the system is almost out of file pages, force-scan anon. 2430 */ 2431 if (sc->file_is_tiny) { 2432 scan_balance = SCAN_ANON; 2433 goto out; 2434 } 2435 2436 /* 2437 * If there is enough inactive page cache, we do not reclaim 2438 * anything from the anonymous working right now. 2439 */ 2440 if (sc->cache_trim_mode) { 2441 scan_balance = SCAN_FILE; 2442 goto out; 2443 } 2444 2445 scan_balance = SCAN_FRACT; 2446 /* 2447 * Calculate the pressure balance between anon and file pages. 2448 * 2449 * The amount of pressure we put on each LRU is inversely 2450 * proportional to the cost of reclaiming each list, as 2451 * determined by the share of pages that are refaulting, times 2452 * the relative IO cost of bringing back a swapped out 2453 * anonymous page vs reloading a filesystem page (swappiness). 2454 * 2455 * Although we limit that influence to ensure no list gets 2456 * left behind completely: at least a third of the pressure is 2457 * applied, before swappiness. 2458 * 2459 * With swappiness at 100, anon and file have equal IO cost. 2460 */ 2461 total_cost = sc->anon_cost + sc->file_cost; 2462 anon_cost = total_cost + sc->anon_cost; 2463 file_cost = total_cost + sc->file_cost; 2464 total_cost = anon_cost + file_cost; 2465 2466 ap = swappiness * (total_cost + 1); 2467 ap /= anon_cost + 1; 2468 2469 fp = (MAX_SWAPPINESS - swappiness) * (total_cost + 1); 2470 fp /= file_cost + 1; 2471 2472 fraction[0] = ap; 2473 fraction[1] = fp; 2474 denominator = ap + fp; 2475 out: 2476 for_each_evictable_lru(lru) { 2477 bool file = is_file_lru(lru); 2478 unsigned long lruvec_size; 2479 unsigned long low, min; 2480 unsigned long scan; 2481 2482 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx); 2483 mem_cgroup_protection(sc->target_mem_cgroup, memcg, 2484 &min, &low); 2485 2486 if (min || low) { 2487 /* 2488 * Scale a cgroup's reclaim pressure by proportioning 2489 * its current usage to its memory.low or memory.min 2490 * setting. 2491 * 2492 * This is important, as otherwise scanning aggression 2493 * becomes extremely binary -- from nothing as we 2494 * approach the memory protection threshold, to totally 2495 * nominal as we exceed it. This results in requiring 2496 * setting extremely liberal protection thresholds. It 2497 * also means we simply get no protection at all if we 2498 * set it too low, which is not ideal. 2499 * 2500 * If there is any protection in place, we reduce scan 2501 * pressure by how much of the total memory used is 2502 * within protection thresholds. 2503 * 2504 * There is one special case: in the first reclaim pass, 2505 * we skip over all groups that are within their low 2506 * protection. If that fails to reclaim enough pages to 2507 * satisfy the reclaim goal, we come back and override 2508 * the best-effort low protection. However, we still 2509 * ideally want to honor how well-behaved groups are in 2510 * that case instead of simply punishing them all 2511 * equally. As such, we reclaim them based on how much 2512 * memory they are using, reducing the scan pressure 2513 * again by how much of the total memory used is under 2514 * hard protection. 2515 */ 2516 unsigned long cgroup_size = mem_cgroup_size(memcg); 2517 unsigned long protection; 2518 2519 /* memory.low scaling, make sure we retry before OOM */ 2520 if (!sc->memcg_low_reclaim && low > min) { 2521 protection = low; 2522 sc->memcg_low_skipped = 1; 2523 } else { 2524 protection = min; 2525 } 2526 2527 /* Avoid TOCTOU with earlier protection check */ 2528 cgroup_size = max(cgroup_size, protection); 2529 2530 scan = lruvec_size - lruvec_size * protection / 2531 (cgroup_size + 1); 2532 2533 /* 2534 * Minimally target SWAP_CLUSTER_MAX pages to keep 2535 * reclaim moving forwards, avoiding decrementing 2536 * sc->priority further than desirable. 2537 */ 2538 scan = max(scan, SWAP_CLUSTER_MAX); 2539 } else { 2540 scan = lruvec_size; 2541 } 2542 2543 scan >>= sc->priority; 2544 2545 /* 2546 * If the cgroup's already been deleted, make sure to 2547 * scrape out the remaining cache. 2548 */ 2549 if (!scan && !mem_cgroup_online(memcg)) 2550 scan = min(lruvec_size, SWAP_CLUSTER_MAX); 2551 2552 switch (scan_balance) { 2553 case SCAN_EQUAL: 2554 /* Scan lists relative to size */ 2555 break; 2556 case SCAN_FRACT: 2557 /* 2558 * Scan types proportional to swappiness and 2559 * their relative recent reclaim efficiency. 2560 * Make sure we don't miss the last page on 2561 * the offlined memory cgroups because of a 2562 * round-off error. 2563 */ 2564 scan = mem_cgroup_online(memcg) ? 2565 div64_u64(scan * fraction[file], denominator) : 2566 DIV64_U64_ROUND_UP(scan * fraction[file], 2567 denominator); 2568 break; 2569 case SCAN_FILE: 2570 case SCAN_ANON: 2571 /* Scan one type exclusively */ 2572 if ((scan_balance == SCAN_FILE) != file) 2573 scan = 0; 2574 break; 2575 default: 2576 /* Look ma, no brain */ 2577 BUG(); 2578 } 2579 2580 nr[lru] = scan; 2581 } 2582 } 2583 2584 /* 2585 * Anonymous LRU management is a waste if there is 2586 * ultimately no way to reclaim the memory. 2587 */ 2588 static bool can_age_anon_pages(struct pglist_data *pgdat, 2589 struct scan_control *sc) 2590 { 2591 /* Aging the anon LRU is valuable if swap is present: */ 2592 if (total_swap_pages > 0) 2593 return true; 2594 2595 /* Also valuable if anon pages can be demoted: */ 2596 return can_demote(pgdat->node_id, sc); 2597 } 2598 2599 #ifdef CONFIG_LRU_GEN 2600 2601 #ifdef CONFIG_LRU_GEN_ENABLED 2602 DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS); 2603 #define get_cap(cap) static_branch_likely(&lru_gen_caps[cap]) 2604 #else 2605 DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS); 2606 #define get_cap(cap) static_branch_unlikely(&lru_gen_caps[cap]) 2607 #endif 2608 2609 static bool should_walk_mmu(void) 2610 { 2611 return arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK); 2612 } 2613 2614 static bool should_clear_pmd_young(void) 2615 { 2616 return arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG); 2617 } 2618 2619 /****************************************************************************** 2620 * shorthand helpers 2621 ******************************************************************************/ 2622 2623 #define LRU_REFS_FLAGS (BIT(PG_referenced) | BIT(PG_workingset)) 2624 2625 #define DEFINE_MAX_SEQ(lruvec) \ 2626 unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq) 2627 2628 #define DEFINE_MIN_SEQ(lruvec) \ 2629 unsigned long min_seq[ANON_AND_FILE] = { \ 2630 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]), \ 2631 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]), \ 2632 } 2633 2634 #define for_each_gen_type_zone(gen, type, zone) \ 2635 for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++) \ 2636 for ((type) = 0; (type) < ANON_AND_FILE; (type)++) \ 2637 for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++) 2638 2639 #define get_memcg_gen(seq) ((seq) % MEMCG_NR_GENS) 2640 #define get_memcg_bin(bin) ((bin) % MEMCG_NR_BINS) 2641 2642 static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid) 2643 { 2644 struct pglist_data *pgdat = NODE_DATA(nid); 2645 2646 #ifdef CONFIG_MEMCG 2647 if (memcg) { 2648 struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec; 2649 2650 /* see the comment in mem_cgroup_lruvec() */ 2651 if (!lruvec->pgdat) 2652 lruvec->pgdat = pgdat; 2653 2654 return lruvec; 2655 } 2656 #endif 2657 VM_WARN_ON_ONCE(!mem_cgroup_disabled()); 2658 2659 return &pgdat->__lruvec; 2660 } 2661 2662 static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc) 2663 { 2664 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 2665 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2666 2667 if (!sc->may_swap) 2668 return 0; 2669 2670 if (!can_demote(pgdat->node_id, sc) && 2671 mem_cgroup_get_nr_swap_pages(memcg) < MIN_LRU_BATCH) 2672 return 0; 2673 2674 return sc_swappiness(sc, memcg); 2675 } 2676 2677 static int get_nr_gens(struct lruvec *lruvec, int type) 2678 { 2679 return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1; 2680 } 2681 2682 static bool __maybe_unused seq_is_valid(struct lruvec *lruvec) 2683 { 2684 /* see the comment on lru_gen_folio */ 2685 return get_nr_gens(lruvec, LRU_GEN_FILE) >= MIN_NR_GENS && 2686 get_nr_gens(lruvec, LRU_GEN_FILE) <= get_nr_gens(lruvec, LRU_GEN_ANON) && 2687 get_nr_gens(lruvec, LRU_GEN_ANON) <= MAX_NR_GENS; 2688 } 2689 2690 /****************************************************************************** 2691 * Bloom filters 2692 ******************************************************************************/ 2693 2694 /* 2695 * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when 2696 * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of 2697 * bits in a bitmap, k is the number of hash functions and n is the number of 2698 * inserted items. 2699 * 2700 * Page table walkers use one of the two filters to reduce their search space. 2701 * To get rid of non-leaf entries that no longer have enough leaf entries, the 2702 * aging uses the double-buffering technique to flip to the other filter each 2703 * time it produces a new generation. For non-leaf entries that have enough 2704 * leaf entries, the aging carries them over to the next generation in 2705 * walk_pmd_range(); the eviction also report them when walking the rmap 2706 * in lru_gen_look_around(). 2707 * 2708 * For future optimizations: 2709 * 1. It's not necessary to keep both filters all the time. The spare one can be 2710 * freed after the RCU grace period and reallocated if needed again. 2711 * 2. And when reallocating, it's worth scaling its size according to the number 2712 * of inserted entries in the other filter, to reduce the memory overhead on 2713 * small systems and false positives on large systems. 2714 * 3. Jenkins' hash function is an alternative to Knuth's. 2715 */ 2716 #define BLOOM_FILTER_SHIFT 15 2717 2718 static inline int filter_gen_from_seq(unsigned long seq) 2719 { 2720 return seq % NR_BLOOM_FILTERS; 2721 } 2722 2723 static void get_item_key(void *item, int *key) 2724 { 2725 u32 hash = hash_ptr(item, BLOOM_FILTER_SHIFT * 2); 2726 2727 BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32)); 2728 2729 key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1); 2730 key[1] = hash >> BLOOM_FILTER_SHIFT; 2731 } 2732 2733 static bool test_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq, 2734 void *item) 2735 { 2736 int key[2]; 2737 unsigned long *filter; 2738 int gen = filter_gen_from_seq(seq); 2739 2740 filter = READ_ONCE(mm_state->filters[gen]); 2741 if (!filter) 2742 return true; 2743 2744 get_item_key(item, key); 2745 2746 return test_bit(key[0], filter) && test_bit(key[1], filter); 2747 } 2748 2749 static void update_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq, 2750 void *item) 2751 { 2752 int key[2]; 2753 unsigned long *filter; 2754 int gen = filter_gen_from_seq(seq); 2755 2756 filter = READ_ONCE(mm_state->filters[gen]); 2757 if (!filter) 2758 return; 2759 2760 get_item_key(item, key); 2761 2762 if (!test_bit(key[0], filter)) 2763 set_bit(key[0], filter); 2764 if (!test_bit(key[1], filter)) 2765 set_bit(key[1], filter); 2766 } 2767 2768 static void reset_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq) 2769 { 2770 unsigned long *filter; 2771 int gen = filter_gen_from_seq(seq); 2772 2773 filter = mm_state->filters[gen]; 2774 if (filter) { 2775 bitmap_clear(filter, 0, BIT(BLOOM_FILTER_SHIFT)); 2776 return; 2777 } 2778 2779 filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT), 2780 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN); 2781 WRITE_ONCE(mm_state->filters[gen], filter); 2782 } 2783 2784 /****************************************************************************** 2785 * mm_struct list 2786 ******************************************************************************/ 2787 2788 #ifdef CONFIG_LRU_GEN_WALKS_MMU 2789 2790 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg) 2791 { 2792 static struct lru_gen_mm_list mm_list = { 2793 .fifo = LIST_HEAD_INIT(mm_list.fifo), 2794 .lock = __SPIN_LOCK_UNLOCKED(mm_list.lock), 2795 }; 2796 2797 #ifdef CONFIG_MEMCG 2798 if (memcg) 2799 return &memcg->mm_list; 2800 #endif 2801 VM_WARN_ON_ONCE(!mem_cgroup_disabled()); 2802 2803 return &mm_list; 2804 } 2805 2806 static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec) 2807 { 2808 return &lruvec->mm_state; 2809 } 2810 2811 static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk) 2812 { 2813 int key; 2814 struct mm_struct *mm; 2815 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 2816 struct lru_gen_mm_state *mm_state = get_mm_state(walk->lruvec); 2817 2818 mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list); 2819 key = pgdat->node_id % BITS_PER_TYPE(mm->lru_gen.bitmap); 2820 2821 if (!walk->force_scan && !test_bit(key, &mm->lru_gen.bitmap)) 2822 return NULL; 2823 2824 clear_bit(key, &mm->lru_gen.bitmap); 2825 2826 return mmget_not_zero(mm) ? mm : NULL; 2827 } 2828 2829 void lru_gen_add_mm(struct mm_struct *mm) 2830 { 2831 int nid; 2832 struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm); 2833 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 2834 2835 VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list)); 2836 #ifdef CONFIG_MEMCG 2837 VM_WARN_ON_ONCE(mm->lru_gen.memcg); 2838 mm->lru_gen.memcg = memcg; 2839 #endif 2840 spin_lock(&mm_list->lock); 2841 2842 for_each_node_state(nid, N_MEMORY) { 2843 struct lruvec *lruvec = get_lruvec(memcg, nid); 2844 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 2845 2846 /* the first addition since the last iteration */ 2847 if (mm_state->tail == &mm_list->fifo) 2848 mm_state->tail = &mm->lru_gen.list; 2849 } 2850 2851 list_add_tail(&mm->lru_gen.list, &mm_list->fifo); 2852 2853 spin_unlock(&mm_list->lock); 2854 } 2855 2856 void lru_gen_del_mm(struct mm_struct *mm) 2857 { 2858 int nid; 2859 struct lru_gen_mm_list *mm_list; 2860 struct mem_cgroup *memcg = NULL; 2861 2862 if (list_empty(&mm->lru_gen.list)) 2863 return; 2864 2865 #ifdef CONFIG_MEMCG 2866 memcg = mm->lru_gen.memcg; 2867 #endif 2868 mm_list = get_mm_list(memcg); 2869 2870 spin_lock(&mm_list->lock); 2871 2872 for_each_node(nid) { 2873 struct lruvec *lruvec = get_lruvec(memcg, nid); 2874 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 2875 2876 /* where the current iteration continues after */ 2877 if (mm_state->head == &mm->lru_gen.list) 2878 mm_state->head = mm_state->head->prev; 2879 2880 /* where the last iteration ended before */ 2881 if (mm_state->tail == &mm->lru_gen.list) 2882 mm_state->tail = mm_state->tail->next; 2883 } 2884 2885 list_del_init(&mm->lru_gen.list); 2886 2887 spin_unlock(&mm_list->lock); 2888 2889 #ifdef CONFIG_MEMCG 2890 mem_cgroup_put(mm->lru_gen.memcg); 2891 mm->lru_gen.memcg = NULL; 2892 #endif 2893 } 2894 2895 #ifdef CONFIG_MEMCG 2896 void lru_gen_migrate_mm(struct mm_struct *mm) 2897 { 2898 struct mem_cgroup *memcg; 2899 struct task_struct *task = rcu_dereference_protected(mm->owner, true); 2900 2901 VM_WARN_ON_ONCE(task->mm != mm); 2902 lockdep_assert_held(&task->alloc_lock); 2903 2904 /* for mm_update_next_owner() */ 2905 if (mem_cgroup_disabled()) 2906 return; 2907 2908 /* migration can happen before addition */ 2909 if (!mm->lru_gen.memcg) 2910 return; 2911 2912 rcu_read_lock(); 2913 memcg = mem_cgroup_from_task(task); 2914 rcu_read_unlock(); 2915 if (memcg == mm->lru_gen.memcg) 2916 return; 2917 2918 VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list)); 2919 2920 lru_gen_del_mm(mm); 2921 lru_gen_add_mm(mm); 2922 } 2923 #endif 2924 2925 #else /* !CONFIG_LRU_GEN_WALKS_MMU */ 2926 2927 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg) 2928 { 2929 return NULL; 2930 } 2931 2932 static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec) 2933 { 2934 return NULL; 2935 } 2936 2937 static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk) 2938 { 2939 return NULL; 2940 } 2941 2942 #endif 2943 2944 static void reset_mm_stats(struct lru_gen_mm_walk *walk, bool last) 2945 { 2946 int i; 2947 int hist; 2948 struct lruvec *lruvec = walk->lruvec; 2949 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 2950 2951 lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock); 2952 2953 hist = lru_hist_from_seq(walk->seq); 2954 2955 for (i = 0; i < NR_MM_STATS; i++) { 2956 WRITE_ONCE(mm_state->stats[hist][i], 2957 mm_state->stats[hist][i] + walk->mm_stats[i]); 2958 walk->mm_stats[i] = 0; 2959 } 2960 2961 if (NR_HIST_GENS > 1 && last) { 2962 hist = lru_hist_from_seq(walk->seq + 1); 2963 2964 for (i = 0; i < NR_MM_STATS; i++) 2965 WRITE_ONCE(mm_state->stats[hist][i], 0); 2966 } 2967 } 2968 2969 static bool iterate_mm_list(struct lru_gen_mm_walk *walk, struct mm_struct **iter) 2970 { 2971 bool first = false; 2972 bool last = false; 2973 struct mm_struct *mm = NULL; 2974 struct lruvec *lruvec = walk->lruvec; 2975 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 2976 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 2977 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 2978 2979 /* 2980 * mm_state->seq is incremented after each iteration of mm_list. There 2981 * are three interesting cases for this page table walker: 2982 * 1. It tries to start a new iteration with a stale max_seq: there is 2983 * nothing left to do. 2984 * 2. It started the next iteration: it needs to reset the Bloom filter 2985 * so that a fresh set of PTE tables can be recorded. 2986 * 3. It ended the current iteration: it needs to reset the mm stats 2987 * counters and tell its caller to increment max_seq. 2988 */ 2989 spin_lock(&mm_list->lock); 2990 2991 VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->seq); 2992 2993 if (walk->seq <= mm_state->seq) 2994 goto done; 2995 2996 if (!mm_state->head) 2997 mm_state->head = &mm_list->fifo; 2998 2999 if (mm_state->head == &mm_list->fifo) 3000 first = true; 3001 3002 do { 3003 mm_state->head = mm_state->head->next; 3004 if (mm_state->head == &mm_list->fifo) { 3005 WRITE_ONCE(mm_state->seq, mm_state->seq + 1); 3006 last = true; 3007 break; 3008 } 3009 3010 /* force scan for those added after the last iteration */ 3011 if (!mm_state->tail || mm_state->tail == mm_state->head) { 3012 mm_state->tail = mm_state->head->next; 3013 walk->force_scan = true; 3014 } 3015 } while (!(mm = get_next_mm(walk))); 3016 done: 3017 if (*iter || last) 3018 reset_mm_stats(walk, last); 3019 3020 spin_unlock(&mm_list->lock); 3021 3022 if (mm && first) 3023 reset_bloom_filter(mm_state, walk->seq + 1); 3024 3025 if (*iter) 3026 mmput_async(*iter); 3027 3028 *iter = mm; 3029 3030 return last; 3031 } 3032 3033 static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long seq) 3034 { 3035 bool success = false; 3036 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 3037 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 3038 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 3039 3040 spin_lock(&mm_list->lock); 3041 3042 VM_WARN_ON_ONCE(mm_state->seq + 1 < seq); 3043 3044 if (seq > mm_state->seq) { 3045 mm_state->head = NULL; 3046 mm_state->tail = NULL; 3047 WRITE_ONCE(mm_state->seq, mm_state->seq + 1); 3048 success = true; 3049 } 3050 3051 spin_unlock(&mm_list->lock); 3052 3053 return success; 3054 } 3055 3056 /****************************************************************************** 3057 * PID controller 3058 ******************************************************************************/ 3059 3060 /* 3061 * A feedback loop based on Proportional-Integral-Derivative (PID) controller. 3062 * 3063 * The P term is refaulted/(evicted+protected) from a tier in the generation 3064 * currently being evicted; the I term is the exponential moving average of the 3065 * P term over the generations previously evicted, using the smoothing factor 3066 * 1/2; the D term isn't supported. 3067 * 3068 * The setpoint (SP) is always the first tier of one type; the process variable 3069 * (PV) is either any tier of the other type or any other tier of the same 3070 * type. 3071 * 3072 * The error is the difference between the SP and the PV; the correction is to 3073 * turn off protection when SP>PV or turn on protection when SP<PV. 3074 * 3075 * For future optimizations: 3076 * 1. The D term may discount the other two terms over time so that long-lived 3077 * generations can resist stale information. 3078 */ 3079 struct ctrl_pos { 3080 unsigned long refaulted; 3081 unsigned long total; 3082 int gain; 3083 }; 3084 3085 static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain, 3086 struct ctrl_pos *pos) 3087 { 3088 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3089 int hist = lru_hist_from_seq(lrugen->min_seq[type]); 3090 3091 pos->refaulted = lrugen->avg_refaulted[type][tier] + 3092 atomic_long_read(&lrugen->refaulted[hist][type][tier]); 3093 pos->total = lrugen->avg_total[type][tier] + 3094 atomic_long_read(&lrugen->evicted[hist][type][tier]); 3095 if (tier) 3096 pos->total += lrugen->protected[hist][type][tier - 1]; 3097 pos->gain = gain; 3098 } 3099 3100 static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover) 3101 { 3102 int hist, tier; 3103 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3104 bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1; 3105 unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1; 3106 3107 lockdep_assert_held(&lruvec->lru_lock); 3108 3109 if (!carryover && !clear) 3110 return; 3111 3112 hist = lru_hist_from_seq(seq); 3113 3114 for (tier = 0; tier < MAX_NR_TIERS; tier++) { 3115 if (carryover) { 3116 unsigned long sum; 3117 3118 sum = lrugen->avg_refaulted[type][tier] + 3119 atomic_long_read(&lrugen->refaulted[hist][type][tier]); 3120 WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2); 3121 3122 sum = lrugen->avg_total[type][tier] + 3123 atomic_long_read(&lrugen->evicted[hist][type][tier]); 3124 if (tier) 3125 sum += lrugen->protected[hist][type][tier - 1]; 3126 WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2); 3127 } 3128 3129 if (clear) { 3130 atomic_long_set(&lrugen->refaulted[hist][type][tier], 0); 3131 atomic_long_set(&lrugen->evicted[hist][type][tier], 0); 3132 if (tier) 3133 WRITE_ONCE(lrugen->protected[hist][type][tier - 1], 0); 3134 } 3135 } 3136 } 3137 3138 static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv) 3139 { 3140 /* 3141 * Return true if the PV has a limited number of refaults or a lower 3142 * refaulted/total than the SP. 3143 */ 3144 return pv->refaulted < MIN_LRU_BATCH || 3145 pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <= 3146 (sp->refaulted + 1) * pv->total * pv->gain; 3147 } 3148 3149 /****************************************************************************** 3150 * the aging 3151 ******************************************************************************/ 3152 3153 /* promote pages accessed through page tables */ 3154 static int folio_update_gen(struct folio *folio, int gen) 3155 { 3156 unsigned long new_flags, old_flags = READ_ONCE(folio->flags); 3157 3158 VM_WARN_ON_ONCE(gen >= MAX_NR_GENS); 3159 VM_WARN_ON_ONCE(!rcu_read_lock_held()); 3160 3161 do { 3162 /* lru_gen_del_folio() has isolated this page? */ 3163 if (!(old_flags & LRU_GEN_MASK)) { 3164 /* for shrink_folio_list() */ 3165 new_flags = old_flags | BIT(PG_referenced); 3166 continue; 3167 } 3168 3169 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS); 3170 new_flags |= (gen + 1UL) << LRU_GEN_PGOFF; 3171 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags)); 3172 3173 return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1; 3174 } 3175 3176 /* protect pages accessed multiple times through file descriptors */ 3177 static int folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming) 3178 { 3179 int type = folio_is_file_lru(folio); 3180 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3181 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]); 3182 unsigned long new_flags, old_flags = READ_ONCE(folio->flags); 3183 3184 VM_WARN_ON_ONCE_FOLIO(!(old_flags & LRU_GEN_MASK), folio); 3185 3186 do { 3187 new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1; 3188 /* folio_update_gen() has promoted this page? */ 3189 if (new_gen >= 0 && new_gen != old_gen) 3190 return new_gen; 3191 3192 new_gen = (old_gen + 1) % MAX_NR_GENS; 3193 3194 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS); 3195 new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF; 3196 /* for folio_end_writeback() */ 3197 if (reclaiming) 3198 new_flags |= BIT(PG_reclaim); 3199 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags)); 3200 3201 lru_gen_update_size(lruvec, folio, old_gen, new_gen); 3202 3203 return new_gen; 3204 } 3205 3206 static void update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio, 3207 int old_gen, int new_gen) 3208 { 3209 int type = folio_is_file_lru(folio); 3210 int zone = folio_zonenum(folio); 3211 int delta = folio_nr_pages(folio); 3212 3213 VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS); 3214 VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS); 3215 3216 walk->batched++; 3217 3218 walk->nr_pages[old_gen][type][zone] -= delta; 3219 walk->nr_pages[new_gen][type][zone] += delta; 3220 } 3221 3222 static void reset_batch_size(struct lru_gen_mm_walk *walk) 3223 { 3224 int gen, type, zone; 3225 struct lruvec *lruvec = walk->lruvec; 3226 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3227 3228 walk->batched = 0; 3229 3230 for_each_gen_type_zone(gen, type, zone) { 3231 enum lru_list lru = type * LRU_INACTIVE_FILE; 3232 int delta = walk->nr_pages[gen][type][zone]; 3233 3234 if (!delta) 3235 continue; 3236 3237 walk->nr_pages[gen][type][zone] = 0; 3238 WRITE_ONCE(lrugen->nr_pages[gen][type][zone], 3239 lrugen->nr_pages[gen][type][zone] + delta); 3240 3241 if (lru_gen_is_active(lruvec, gen)) 3242 lru += LRU_ACTIVE; 3243 __update_lru_size(lruvec, lru, zone, delta); 3244 } 3245 } 3246 3247 static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args) 3248 { 3249 struct address_space *mapping; 3250 struct vm_area_struct *vma = args->vma; 3251 struct lru_gen_mm_walk *walk = args->private; 3252 3253 if (!vma_is_accessible(vma)) 3254 return true; 3255 3256 if (is_vm_hugetlb_page(vma)) 3257 return true; 3258 3259 if (!vma_has_recency(vma)) 3260 return true; 3261 3262 if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) 3263 return true; 3264 3265 if (vma == get_gate_vma(vma->vm_mm)) 3266 return true; 3267 3268 if (vma_is_anonymous(vma)) 3269 return !walk->can_swap; 3270 3271 if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping)) 3272 return true; 3273 3274 mapping = vma->vm_file->f_mapping; 3275 if (mapping_unevictable(mapping)) 3276 return true; 3277 3278 if (shmem_mapping(mapping)) 3279 return !walk->can_swap; 3280 3281 /* to exclude special mappings like dax, etc. */ 3282 return !mapping->a_ops->read_folio; 3283 } 3284 3285 /* 3286 * Some userspace memory allocators map many single-page VMAs. Instead of 3287 * returning back to the PGD table for each of such VMAs, finish an entire PMD 3288 * table to reduce zigzags and improve cache performance. 3289 */ 3290 static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args, 3291 unsigned long *vm_start, unsigned long *vm_end) 3292 { 3293 unsigned long start = round_up(*vm_end, size); 3294 unsigned long end = (start | ~mask) + 1; 3295 VMA_ITERATOR(vmi, args->mm, start); 3296 3297 VM_WARN_ON_ONCE(mask & size); 3298 VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask)); 3299 3300 for_each_vma(vmi, args->vma) { 3301 if (end && end <= args->vma->vm_start) 3302 return false; 3303 3304 if (should_skip_vma(args->vma->vm_start, args->vma->vm_end, args)) 3305 continue; 3306 3307 *vm_start = max(start, args->vma->vm_start); 3308 *vm_end = min(end - 1, args->vma->vm_end - 1) + 1; 3309 3310 return true; 3311 } 3312 3313 return false; 3314 } 3315 3316 static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr) 3317 { 3318 unsigned long pfn = pte_pfn(pte); 3319 3320 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end); 3321 3322 if (!pte_present(pte) || is_zero_pfn(pfn)) 3323 return -1; 3324 3325 if (WARN_ON_ONCE(pte_devmap(pte) || pte_special(pte))) 3326 return -1; 3327 3328 if (WARN_ON_ONCE(!pfn_valid(pfn))) 3329 return -1; 3330 3331 return pfn; 3332 } 3333 3334 static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr) 3335 { 3336 unsigned long pfn = pmd_pfn(pmd); 3337 3338 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end); 3339 3340 if (!pmd_present(pmd) || is_huge_zero_pmd(pmd)) 3341 return -1; 3342 3343 if (WARN_ON_ONCE(pmd_devmap(pmd))) 3344 return -1; 3345 3346 if (WARN_ON_ONCE(!pfn_valid(pfn))) 3347 return -1; 3348 3349 return pfn; 3350 } 3351 3352 static struct folio *get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg, 3353 struct pglist_data *pgdat, bool can_swap) 3354 { 3355 struct folio *folio; 3356 3357 /* try to avoid unnecessary memory loads */ 3358 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat)) 3359 return NULL; 3360 3361 folio = pfn_folio(pfn); 3362 if (folio_nid(folio) != pgdat->node_id) 3363 return NULL; 3364 3365 if (folio_memcg_rcu(folio) != memcg) 3366 return NULL; 3367 3368 /* file VMAs can contain anon pages from COW */ 3369 if (!folio_is_file_lru(folio) && !can_swap) 3370 return NULL; 3371 3372 return folio; 3373 } 3374 3375 static bool suitable_to_scan(int total, int young) 3376 { 3377 int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8); 3378 3379 /* suitable if the average number of young PTEs per cacheline is >=1 */ 3380 return young * n >= total; 3381 } 3382 3383 static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end, 3384 struct mm_walk *args) 3385 { 3386 int i; 3387 pte_t *pte; 3388 spinlock_t *ptl; 3389 unsigned long addr; 3390 int total = 0; 3391 int young = 0; 3392 struct lru_gen_mm_walk *walk = args->private; 3393 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec); 3394 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 3395 DEFINE_MAX_SEQ(walk->lruvec); 3396 int old_gen, new_gen = lru_gen_from_seq(max_seq); 3397 3398 pte = pte_offset_map_nolock(args->mm, pmd, start & PMD_MASK, &ptl); 3399 if (!pte) 3400 return false; 3401 if (!spin_trylock(ptl)) { 3402 pte_unmap(pte); 3403 return false; 3404 } 3405 3406 arch_enter_lazy_mmu_mode(); 3407 restart: 3408 for (i = pte_index(start), addr = start; addr != end; i++, addr += PAGE_SIZE) { 3409 unsigned long pfn; 3410 struct folio *folio; 3411 pte_t ptent = ptep_get(pte + i); 3412 3413 total++; 3414 walk->mm_stats[MM_LEAF_TOTAL]++; 3415 3416 pfn = get_pte_pfn(ptent, args->vma, addr); 3417 if (pfn == -1) 3418 continue; 3419 3420 if (!pte_young(ptent)) { 3421 walk->mm_stats[MM_LEAF_OLD]++; 3422 continue; 3423 } 3424 3425 folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap); 3426 if (!folio) 3427 continue; 3428 3429 if (!ptep_test_and_clear_young(args->vma, addr, pte + i)) 3430 VM_WARN_ON_ONCE(true); 3431 3432 young++; 3433 walk->mm_stats[MM_LEAF_YOUNG]++; 3434 3435 if (pte_dirty(ptent) && !folio_test_dirty(folio) && 3436 !(folio_test_anon(folio) && folio_test_swapbacked(folio) && 3437 !folio_test_swapcache(folio))) 3438 folio_mark_dirty(folio); 3439 3440 old_gen = folio_update_gen(folio, new_gen); 3441 if (old_gen >= 0 && old_gen != new_gen) 3442 update_batch_size(walk, folio, old_gen, new_gen); 3443 } 3444 3445 if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, &start, &end)) 3446 goto restart; 3447 3448 arch_leave_lazy_mmu_mode(); 3449 pte_unmap_unlock(pte, ptl); 3450 3451 return suitable_to_scan(total, young); 3452 } 3453 3454 static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma, 3455 struct mm_walk *args, unsigned long *bitmap, unsigned long *first) 3456 { 3457 int i; 3458 pmd_t *pmd; 3459 spinlock_t *ptl; 3460 struct lru_gen_mm_walk *walk = args->private; 3461 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec); 3462 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 3463 DEFINE_MAX_SEQ(walk->lruvec); 3464 int old_gen, new_gen = lru_gen_from_seq(max_seq); 3465 3466 VM_WARN_ON_ONCE(pud_leaf(*pud)); 3467 3468 /* try to batch at most 1+MIN_LRU_BATCH+1 entries */ 3469 if (*first == -1) { 3470 *first = addr; 3471 bitmap_zero(bitmap, MIN_LRU_BATCH); 3472 return; 3473 } 3474 3475 i = addr == -1 ? 0 : pmd_index(addr) - pmd_index(*first); 3476 if (i && i <= MIN_LRU_BATCH) { 3477 __set_bit(i - 1, bitmap); 3478 return; 3479 } 3480 3481 pmd = pmd_offset(pud, *first); 3482 3483 ptl = pmd_lockptr(args->mm, pmd); 3484 if (!spin_trylock(ptl)) 3485 goto done; 3486 3487 arch_enter_lazy_mmu_mode(); 3488 3489 do { 3490 unsigned long pfn; 3491 struct folio *folio; 3492 3493 /* don't round down the first address */ 3494 addr = i ? (*first & PMD_MASK) + i * PMD_SIZE : *first; 3495 3496 pfn = get_pmd_pfn(pmd[i], vma, addr); 3497 if (pfn == -1) 3498 goto next; 3499 3500 if (!pmd_trans_huge(pmd[i])) { 3501 if (!walk->force_scan && should_clear_pmd_young()) 3502 pmdp_test_and_clear_young(vma, addr, pmd + i); 3503 goto next; 3504 } 3505 3506 folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap); 3507 if (!folio) 3508 goto next; 3509 3510 if (!pmdp_test_and_clear_young(vma, addr, pmd + i)) 3511 goto next; 3512 3513 walk->mm_stats[MM_LEAF_YOUNG]++; 3514 3515 if (pmd_dirty(pmd[i]) && !folio_test_dirty(folio) && 3516 !(folio_test_anon(folio) && folio_test_swapbacked(folio) && 3517 !folio_test_swapcache(folio))) 3518 folio_mark_dirty(folio); 3519 3520 old_gen = folio_update_gen(folio, new_gen); 3521 if (old_gen >= 0 && old_gen != new_gen) 3522 update_batch_size(walk, folio, old_gen, new_gen); 3523 next: 3524 i = i > MIN_LRU_BATCH ? 0 : find_next_bit(bitmap, MIN_LRU_BATCH, i) + 1; 3525 } while (i <= MIN_LRU_BATCH); 3526 3527 arch_leave_lazy_mmu_mode(); 3528 spin_unlock(ptl); 3529 done: 3530 *first = -1; 3531 } 3532 3533 static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end, 3534 struct mm_walk *args) 3535 { 3536 int i; 3537 pmd_t *pmd; 3538 unsigned long next; 3539 unsigned long addr; 3540 struct vm_area_struct *vma; 3541 DECLARE_BITMAP(bitmap, MIN_LRU_BATCH); 3542 unsigned long first = -1; 3543 struct lru_gen_mm_walk *walk = args->private; 3544 struct lru_gen_mm_state *mm_state = get_mm_state(walk->lruvec); 3545 3546 VM_WARN_ON_ONCE(pud_leaf(*pud)); 3547 3548 /* 3549 * Finish an entire PMD in two passes: the first only reaches to PTE 3550 * tables to avoid taking the PMD lock; the second, if necessary, takes 3551 * the PMD lock to clear the accessed bit in PMD entries. 3552 */ 3553 pmd = pmd_offset(pud, start & PUD_MASK); 3554 restart: 3555 /* walk_pte_range() may call get_next_vma() */ 3556 vma = args->vma; 3557 for (i = pmd_index(start), addr = start; addr != end; i++, addr = next) { 3558 pmd_t val = pmdp_get_lockless(pmd + i); 3559 3560 next = pmd_addr_end(addr, end); 3561 3562 if (!pmd_present(val) || is_huge_zero_pmd(val)) { 3563 walk->mm_stats[MM_LEAF_TOTAL]++; 3564 continue; 3565 } 3566 3567 if (pmd_trans_huge(val)) { 3568 unsigned long pfn = pmd_pfn(val); 3569 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 3570 3571 walk->mm_stats[MM_LEAF_TOTAL]++; 3572 3573 if (!pmd_young(val)) { 3574 walk->mm_stats[MM_LEAF_OLD]++; 3575 continue; 3576 } 3577 3578 /* try to avoid unnecessary memory loads */ 3579 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat)) 3580 continue; 3581 3582 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first); 3583 continue; 3584 } 3585 3586 walk->mm_stats[MM_NONLEAF_TOTAL]++; 3587 3588 if (!walk->force_scan && should_clear_pmd_young()) { 3589 if (!pmd_young(val)) 3590 continue; 3591 3592 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first); 3593 } 3594 3595 if (!walk->force_scan && !test_bloom_filter(mm_state, walk->seq, pmd + i)) 3596 continue; 3597 3598 walk->mm_stats[MM_NONLEAF_FOUND]++; 3599 3600 if (!walk_pte_range(&val, addr, next, args)) 3601 continue; 3602 3603 walk->mm_stats[MM_NONLEAF_ADDED]++; 3604 3605 /* carry over to the next generation */ 3606 update_bloom_filter(mm_state, walk->seq + 1, pmd + i); 3607 } 3608 3609 walk_pmd_range_locked(pud, -1, vma, args, bitmap, &first); 3610 3611 if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, &start, &end)) 3612 goto restart; 3613 } 3614 3615 static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end, 3616 struct mm_walk *args) 3617 { 3618 int i; 3619 pud_t *pud; 3620 unsigned long addr; 3621 unsigned long next; 3622 struct lru_gen_mm_walk *walk = args->private; 3623 3624 VM_WARN_ON_ONCE(p4d_leaf(*p4d)); 3625 3626 pud = pud_offset(p4d, start & P4D_MASK); 3627 restart: 3628 for (i = pud_index(start), addr = start; addr != end; i++, addr = next) { 3629 pud_t val = READ_ONCE(pud[i]); 3630 3631 next = pud_addr_end(addr, end); 3632 3633 if (!pud_present(val) || WARN_ON_ONCE(pud_leaf(val))) 3634 continue; 3635 3636 walk_pmd_range(&val, addr, next, args); 3637 3638 if (need_resched() || walk->batched >= MAX_LRU_BATCH) { 3639 end = (addr | ~PUD_MASK) + 1; 3640 goto done; 3641 } 3642 } 3643 3644 if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, &start, &end)) 3645 goto restart; 3646 3647 end = round_up(end, P4D_SIZE); 3648 done: 3649 if (!end || !args->vma) 3650 return 1; 3651 3652 walk->next_addr = max(end, args->vma->vm_start); 3653 3654 return -EAGAIN; 3655 } 3656 3657 static void walk_mm(struct mm_struct *mm, struct lru_gen_mm_walk *walk) 3658 { 3659 static const struct mm_walk_ops mm_walk_ops = { 3660 .test_walk = should_skip_vma, 3661 .p4d_entry = walk_pud_range, 3662 .walk_lock = PGWALK_RDLOCK, 3663 }; 3664 3665 int err; 3666 struct lruvec *lruvec = walk->lruvec; 3667 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 3668 3669 walk->next_addr = FIRST_USER_ADDRESS; 3670 3671 do { 3672 DEFINE_MAX_SEQ(lruvec); 3673 3674 err = -EBUSY; 3675 3676 /* another thread might have called inc_max_seq() */ 3677 if (walk->seq != max_seq) 3678 break; 3679 3680 /* folio_update_gen() requires stable folio_memcg() */ 3681 if (!mem_cgroup_trylock_pages(memcg)) 3682 break; 3683 3684 /* the caller might be holding the lock for write */ 3685 if (mmap_read_trylock(mm)) { 3686 err = walk_page_range(mm, walk->next_addr, ULONG_MAX, &mm_walk_ops, walk); 3687 3688 mmap_read_unlock(mm); 3689 } 3690 3691 mem_cgroup_unlock_pages(); 3692 3693 if (walk->batched) { 3694 spin_lock_irq(&lruvec->lru_lock); 3695 reset_batch_size(walk); 3696 spin_unlock_irq(&lruvec->lru_lock); 3697 } 3698 3699 cond_resched(); 3700 } while (err == -EAGAIN); 3701 } 3702 3703 static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat, bool force_alloc) 3704 { 3705 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk; 3706 3707 if (pgdat && current_is_kswapd()) { 3708 VM_WARN_ON_ONCE(walk); 3709 3710 walk = &pgdat->mm_walk; 3711 } else if (!walk && force_alloc) { 3712 VM_WARN_ON_ONCE(current_is_kswapd()); 3713 3714 walk = kzalloc(sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN); 3715 } 3716 3717 current->reclaim_state->mm_walk = walk; 3718 3719 return walk; 3720 } 3721 3722 static void clear_mm_walk(void) 3723 { 3724 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk; 3725 3726 VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages))); 3727 VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats))); 3728 3729 current->reclaim_state->mm_walk = NULL; 3730 3731 if (!current_is_kswapd()) 3732 kfree(walk); 3733 } 3734 3735 static bool inc_min_seq(struct lruvec *lruvec, int type, bool can_swap) 3736 { 3737 int zone; 3738 int remaining = MAX_LRU_BATCH; 3739 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3740 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]); 3741 3742 if (type == LRU_GEN_ANON && !can_swap) 3743 goto done; 3744 3745 /* prevent cold/hot inversion if force_scan is true */ 3746 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 3747 struct list_head *head = &lrugen->folios[old_gen][type][zone]; 3748 3749 while (!list_empty(head)) { 3750 struct folio *folio = lru_to_folio(head); 3751 3752 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 3753 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio); 3754 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 3755 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio); 3756 3757 new_gen = folio_inc_gen(lruvec, folio, false); 3758 list_move_tail(&folio->lru, &lrugen->folios[new_gen][type][zone]); 3759 3760 if (!--remaining) 3761 return false; 3762 } 3763 } 3764 done: 3765 reset_ctrl_pos(lruvec, type, true); 3766 WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1); 3767 3768 return true; 3769 } 3770 3771 static bool try_to_inc_min_seq(struct lruvec *lruvec, bool can_swap) 3772 { 3773 int gen, type, zone; 3774 bool success = false; 3775 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3776 DEFINE_MIN_SEQ(lruvec); 3777 3778 VM_WARN_ON_ONCE(!seq_is_valid(lruvec)); 3779 3780 /* find the oldest populated generation */ 3781 for (type = !can_swap; type < ANON_AND_FILE; type++) { 3782 while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) { 3783 gen = lru_gen_from_seq(min_seq[type]); 3784 3785 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 3786 if (!list_empty(&lrugen->folios[gen][type][zone])) 3787 goto next; 3788 } 3789 3790 min_seq[type]++; 3791 } 3792 next: 3793 ; 3794 } 3795 3796 /* see the comment on lru_gen_folio */ 3797 if (can_swap) { 3798 min_seq[LRU_GEN_ANON] = min(min_seq[LRU_GEN_ANON], min_seq[LRU_GEN_FILE]); 3799 min_seq[LRU_GEN_FILE] = max(min_seq[LRU_GEN_ANON], lrugen->min_seq[LRU_GEN_FILE]); 3800 } 3801 3802 for (type = !can_swap; type < ANON_AND_FILE; type++) { 3803 if (min_seq[type] == lrugen->min_seq[type]) 3804 continue; 3805 3806 reset_ctrl_pos(lruvec, type, true); 3807 WRITE_ONCE(lrugen->min_seq[type], min_seq[type]); 3808 success = true; 3809 } 3810 3811 return success; 3812 } 3813 3814 static bool inc_max_seq(struct lruvec *lruvec, unsigned long seq, 3815 bool can_swap, bool force_scan) 3816 { 3817 bool success; 3818 int prev, next; 3819 int type, zone; 3820 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3821 restart: 3822 if (seq < READ_ONCE(lrugen->max_seq)) 3823 return false; 3824 3825 spin_lock_irq(&lruvec->lru_lock); 3826 3827 VM_WARN_ON_ONCE(!seq_is_valid(lruvec)); 3828 3829 success = seq == lrugen->max_seq; 3830 if (!success) 3831 goto unlock; 3832 3833 for (type = ANON_AND_FILE - 1; type >= 0; type--) { 3834 if (get_nr_gens(lruvec, type) != MAX_NR_GENS) 3835 continue; 3836 3837 VM_WARN_ON_ONCE(!force_scan && (type == LRU_GEN_FILE || can_swap)); 3838 3839 if (inc_min_seq(lruvec, type, can_swap)) 3840 continue; 3841 3842 spin_unlock_irq(&lruvec->lru_lock); 3843 cond_resched(); 3844 goto restart; 3845 } 3846 3847 /* 3848 * Update the active/inactive LRU sizes for compatibility. Both sides of 3849 * the current max_seq need to be covered, since max_seq+1 can overlap 3850 * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do 3851 * overlap, cold/hot inversion happens. 3852 */ 3853 prev = lru_gen_from_seq(lrugen->max_seq - 1); 3854 next = lru_gen_from_seq(lrugen->max_seq + 1); 3855 3856 for (type = 0; type < ANON_AND_FILE; type++) { 3857 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 3858 enum lru_list lru = type * LRU_INACTIVE_FILE; 3859 long delta = lrugen->nr_pages[prev][type][zone] - 3860 lrugen->nr_pages[next][type][zone]; 3861 3862 if (!delta) 3863 continue; 3864 3865 __update_lru_size(lruvec, lru, zone, delta); 3866 __update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta); 3867 } 3868 } 3869 3870 for (type = 0; type < ANON_AND_FILE; type++) 3871 reset_ctrl_pos(lruvec, type, false); 3872 3873 WRITE_ONCE(lrugen->timestamps[next], jiffies); 3874 /* make sure preceding modifications appear */ 3875 smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1); 3876 unlock: 3877 spin_unlock_irq(&lruvec->lru_lock); 3878 3879 return success; 3880 } 3881 3882 static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long seq, 3883 bool can_swap, bool force_scan) 3884 { 3885 bool success; 3886 struct lru_gen_mm_walk *walk; 3887 struct mm_struct *mm = NULL; 3888 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3889 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 3890 3891 VM_WARN_ON_ONCE(seq > READ_ONCE(lrugen->max_seq)); 3892 3893 if (!mm_state) 3894 return inc_max_seq(lruvec, seq, can_swap, force_scan); 3895 3896 /* see the comment in iterate_mm_list() */ 3897 if (seq <= READ_ONCE(mm_state->seq)) 3898 return false; 3899 3900 /* 3901 * If the hardware doesn't automatically set the accessed bit, fallback 3902 * to lru_gen_look_around(), which only clears the accessed bit in a 3903 * handful of PTEs. Spreading the work out over a period of time usually 3904 * is less efficient, but it avoids bursty page faults. 3905 */ 3906 if (!should_walk_mmu()) { 3907 success = iterate_mm_list_nowalk(lruvec, seq); 3908 goto done; 3909 } 3910 3911 walk = set_mm_walk(NULL, true); 3912 if (!walk) { 3913 success = iterate_mm_list_nowalk(lruvec, seq); 3914 goto done; 3915 } 3916 3917 walk->lruvec = lruvec; 3918 walk->seq = seq; 3919 walk->can_swap = can_swap; 3920 walk->force_scan = force_scan; 3921 3922 do { 3923 success = iterate_mm_list(walk, &mm); 3924 if (mm) 3925 walk_mm(mm, walk); 3926 } while (mm); 3927 done: 3928 if (success) { 3929 success = inc_max_seq(lruvec, seq, can_swap, force_scan); 3930 WARN_ON_ONCE(!success); 3931 } 3932 3933 return success; 3934 } 3935 3936 /****************************************************************************** 3937 * working set protection 3938 ******************************************************************************/ 3939 3940 static void set_initial_priority(struct pglist_data *pgdat, struct scan_control *sc) 3941 { 3942 int priority; 3943 unsigned long reclaimable; 3944 3945 if (sc->priority != DEF_PRIORITY || sc->nr_to_reclaim < MIN_LRU_BATCH) 3946 return; 3947 /* 3948 * Determine the initial priority based on 3949 * (total >> priority) * reclaimed_to_scanned_ratio = nr_to_reclaim, 3950 * where reclaimed_to_scanned_ratio = inactive / total. 3951 */ 3952 reclaimable = node_page_state(pgdat, NR_INACTIVE_FILE); 3953 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc)) 3954 reclaimable += node_page_state(pgdat, NR_INACTIVE_ANON); 3955 3956 /* round down reclaimable and round up sc->nr_to_reclaim */ 3957 priority = fls_long(reclaimable) - 1 - fls_long(sc->nr_to_reclaim - 1); 3958 3959 /* 3960 * The estimation is based on LRU pages only, so cap it to prevent 3961 * overshoots of shrinker objects by large margins. 3962 */ 3963 sc->priority = clamp(priority, DEF_PRIORITY / 2, DEF_PRIORITY); 3964 } 3965 3966 static bool lruvec_is_sizable(struct lruvec *lruvec, struct scan_control *sc) 3967 { 3968 int gen, type, zone; 3969 unsigned long total = 0; 3970 bool can_swap = get_swappiness(lruvec, sc); 3971 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3972 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 3973 DEFINE_MAX_SEQ(lruvec); 3974 DEFINE_MIN_SEQ(lruvec); 3975 3976 for (type = !can_swap; type < ANON_AND_FILE; type++) { 3977 unsigned long seq; 3978 3979 for (seq = min_seq[type]; seq <= max_seq; seq++) { 3980 gen = lru_gen_from_seq(seq); 3981 3982 for (zone = 0; zone < MAX_NR_ZONES; zone++) 3983 total += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L); 3984 } 3985 } 3986 3987 /* whether the size is big enough to be helpful */ 3988 return mem_cgroup_online(memcg) ? (total >> sc->priority) : total; 3989 } 3990 3991 static bool lruvec_is_reclaimable(struct lruvec *lruvec, struct scan_control *sc, 3992 unsigned long min_ttl) 3993 { 3994 int gen; 3995 unsigned long birth; 3996 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 3997 DEFINE_MIN_SEQ(lruvec); 3998 3999 if (mem_cgroup_below_min(NULL, memcg)) 4000 return false; 4001 4002 if (!lruvec_is_sizable(lruvec, sc)) 4003 return false; 4004 4005 /* see the comment on lru_gen_folio */ 4006 gen = lru_gen_from_seq(min_seq[LRU_GEN_FILE]); 4007 birth = READ_ONCE(lruvec->lrugen.timestamps[gen]); 4008 4009 return time_is_before_jiffies(birth + min_ttl); 4010 } 4011 4012 /* to protect the working set of the last N jiffies */ 4013 static unsigned long lru_gen_min_ttl __read_mostly; 4014 4015 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc) 4016 { 4017 struct mem_cgroup *memcg; 4018 unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl); 4019 bool reclaimable = !min_ttl; 4020 4021 VM_WARN_ON_ONCE(!current_is_kswapd()); 4022 4023 set_initial_priority(pgdat, sc); 4024 4025 memcg = mem_cgroup_iter(NULL, NULL, NULL); 4026 do { 4027 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 4028 4029 mem_cgroup_calculate_protection(NULL, memcg); 4030 4031 if (!reclaimable) 4032 reclaimable = lruvec_is_reclaimable(lruvec, sc, min_ttl); 4033 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL))); 4034 4035 /* 4036 * The main goal is to OOM kill if every generation from all memcgs is 4037 * younger than min_ttl. However, another possibility is all memcgs are 4038 * either too small or below min. 4039 */ 4040 if (!reclaimable && mutex_trylock(&oom_lock)) { 4041 struct oom_control oc = { 4042 .gfp_mask = sc->gfp_mask, 4043 }; 4044 4045 out_of_memory(&oc); 4046 4047 mutex_unlock(&oom_lock); 4048 } 4049 } 4050 4051 /****************************************************************************** 4052 * rmap/PT walk feedback 4053 ******************************************************************************/ 4054 4055 /* 4056 * This function exploits spatial locality when shrink_folio_list() walks the 4057 * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If 4058 * the scan was done cacheline efficiently, it adds the PMD entry pointing to 4059 * the PTE table to the Bloom filter. This forms a feedback loop between the 4060 * eviction and the aging. 4061 */ 4062 void lru_gen_look_around(struct page_vma_mapped_walk *pvmw) 4063 { 4064 int i; 4065 unsigned long start; 4066 unsigned long end; 4067 struct lru_gen_mm_walk *walk; 4068 int young = 0; 4069 pte_t *pte = pvmw->pte; 4070 unsigned long addr = pvmw->address; 4071 struct vm_area_struct *vma = pvmw->vma; 4072 struct folio *folio = pfn_folio(pvmw->pfn); 4073 bool can_swap = !folio_is_file_lru(folio); 4074 struct mem_cgroup *memcg = folio_memcg(folio); 4075 struct pglist_data *pgdat = folio_pgdat(folio); 4076 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 4077 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 4078 DEFINE_MAX_SEQ(lruvec); 4079 int old_gen, new_gen = lru_gen_from_seq(max_seq); 4080 4081 lockdep_assert_held(pvmw->ptl); 4082 VM_WARN_ON_ONCE_FOLIO(folio_test_lru(folio), folio); 4083 4084 if (spin_is_contended(pvmw->ptl)) 4085 return; 4086 4087 /* exclude special VMAs containing anon pages from COW */ 4088 if (vma->vm_flags & VM_SPECIAL) 4089 return; 4090 4091 /* avoid taking the LRU lock under the PTL when possible */ 4092 walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL; 4093 4094 start = max(addr & PMD_MASK, vma->vm_start); 4095 end = min(addr | ~PMD_MASK, vma->vm_end - 1) + 1; 4096 4097 if (end - start > MIN_LRU_BATCH * PAGE_SIZE) { 4098 if (addr - start < MIN_LRU_BATCH * PAGE_SIZE / 2) 4099 end = start + MIN_LRU_BATCH * PAGE_SIZE; 4100 else if (end - addr < MIN_LRU_BATCH * PAGE_SIZE / 2) 4101 start = end - MIN_LRU_BATCH * PAGE_SIZE; 4102 else { 4103 start = addr - MIN_LRU_BATCH * PAGE_SIZE / 2; 4104 end = addr + MIN_LRU_BATCH * PAGE_SIZE / 2; 4105 } 4106 } 4107 4108 /* folio_update_gen() requires stable folio_memcg() */ 4109 if (!mem_cgroup_trylock_pages(memcg)) 4110 return; 4111 4112 arch_enter_lazy_mmu_mode(); 4113 4114 pte -= (addr - start) / PAGE_SIZE; 4115 4116 for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) { 4117 unsigned long pfn; 4118 pte_t ptent = ptep_get(pte + i); 4119 4120 pfn = get_pte_pfn(ptent, vma, addr); 4121 if (pfn == -1) 4122 continue; 4123 4124 if (!pte_young(ptent)) 4125 continue; 4126 4127 folio = get_pfn_folio(pfn, memcg, pgdat, can_swap); 4128 if (!folio) 4129 continue; 4130 4131 if (!ptep_test_and_clear_young(vma, addr, pte + i)) 4132 VM_WARN_ON_ONCE(true); 4133 4134 young++; 4135 4136 if (pte_dirty(ptent) && !folio_test_dirty(folio) && 4137 !(folio_test_anon(folio) && folio_test_swapbacked(folio) && 4138 !folio_test_swapcache(folio))) 4139 folio_mark_dirty(folio); 4140 4141 if (walk) { 4142 old_gen = folio_update_gen(folio, new_gen); 4143 if (old_gen >= 0 && old_gen != new_gen) 4144 update_batch_size(walk, folio, old_gen, new_gen); 4145 4146 continue; 4147 } 4148 4149 old_gen = folio_lru_gen(folio); 4150 if (old_gen < 0) 4151 folio_set_referenced(folio); 4152 else if (old_gen != new_gen) 4153 folio_activate(folio); 4154 } 4155 4156 arch_leave_lazy_mmu_mode(); 4157 mem_cgroup_unlock_pages(); 4158 4159 /* feedback from rmap walkers to page table walkers */ 4160 if (mm_state && suitable_to_scan(i, young)) 4161 update_bloom_filter(mm_state, max_seq, pvmw->pmd); 4162 } 4163 4164 /****************************************************************************** 4165 * memcg LRU 4166 ******************************************************************************/ 4167 4168 /* see the comment on MEMCG_NR_GENS */ 4169 enum { 4170 MEMCG_LRU_NOP, 4171 MEMCG_LRU_HEAD, 4172 MEMCG_LRU_TAIL, 4173 MEMCG_LRU_OLD, 4174 MEMCG_LRU_YOUNG, 4175 }; 4176 4177 static void lru_gen_rotate_memcg(struct lruvec *lruvec, int op) 4178 { 4179 int seg; 4180 int old, new; 4181 unsigned long flags; 4182 int bin = get_random_u32_below(MEMCG_NR_BINS); 4183 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 4184 4185 spin_lock_irqsave(&pgdat->memcg_lru.lock, flags); 4186 4187 VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list)); 4188 4189 seg = 0; 4190 new = old = lruvec->lrugen.gen; 4191 4192 /* see the comment on MEMCG_NR_GENS */ 4193 if (op == MEMCG_LRU_HEAD) 4194 seg = MEMCG_LRU_HEAD; 4195 else if (op == MEMCG_LRU_TAIL) 4196 seg = MEMCG_LRU_TAIL; 4197 else if (op == MEMCG_LRU_OLD) 4198 new = get_memcg_gen(pgdat->memcg_lru.seq); 4199 else if (op == MEMCG_LRU_YOUNG) 4200 new = get_memcg_gen(pgdat->memcg_lru.seq + 1); 4201 else 4202 VM_WARN_ON_ONCE(true); 4203 4204 WRITE_ONCE(lruvec->lrugen.seg, seg); 4205 WRITE_ONCE(lruvec->lrugen.gen, new); 4206 4207 hlist_nulls_del_rcu(&lruvec->lrugen.list); 4208 4209 if (op == MEMCG_LRU_HEAD || op == MEMCG_LRU_OLD) 4210 hlist_nulls_add_head_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]); 4211 else 4212 hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]); 4213 4214 pgdat->memcg_lru.nr_memcgs[old]--; 4215 pgdat->memcg_lru.nr_memcgs[new]++; 4216 4217 if (!pgdat->memcg_lru.nr_memcgs[old] && old == get_memcg_gen(pgdat->memcg_lru.seq)) 4218 WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1); 4219 4220 spin_unlock_irqrestore(&pgdat->memcg_lru.lock, flags); 4221 } 4222 4223 #ifdef CONFIG_MEMCG 4224 4225 void lru_gen_online_memcg(struct mem_cgroup *memcg) 4226 { 4227 int gen; 4228 int nid; 4229 int bin = get_random_u32_below(MEMCG_NR_BINS); 4230 4231 for_each_node(nid) { 4232 struct pglist_data *pgdat = NODE_DATA(nid); 4233 struct lruvec *lruvec = get_lruvec(memcg, nid); 4234 4235 spin_lock_irq(&pgdat->memcg_lru.lock); 4236 4237 VM_WARN_ON_ONCE(!hlist_nulls_unhashed(&lruvec->lrugen.list)); 4238 4239 gen = get_memcg_gen(pgdat->memcg_lru.seq); 4240 4241 lruvec->lrugen.gen = gen; 4242 4243 hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[gen][bin]); 4244 pgdat->memcg_lru.nr_memcgs[gen]++; 4245 4246 spin_unlock_irq(&pgdat->memcg_lru.lock); 4247 } 4248 } 4249 4250 void lru_gen_offline_memcg(struct mem_cgroup *memcg) 4251 { 4252 int nid; 4253 4254 for_each_node(nid) { 4255 struct lruvec *lruvec = get_lruvec(memcg, nid); 4256 4257 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_OLD); 4258 } 4259 } 4260 4261 void lru_gen_release_memcg(struct mem_cgroup *memcg) 4262 { 4263 int gen; 4264 int nid; 4265 4266 for_each_node(nid) { 4267 struct pglist_data *pgdat = NODE_DATA(nid); 4268 struct lruvec *lruvec = get_lruvec(memcg, nid); 4269 4270 spin_lock_irq(&pgdat->memcg_lru.lock); 4271 4272 if (hlist_nulls_unhashed(&lruvec->lrugen.list)) 4273 goto unlock; 4274 4275 gen = lruvec->lrugen.gen; 4276 4277 hlist_nulls_del_init_rcu(&lruvec->lrugen.list); 4278 pgdat->memcg_lru.nr_memcgs[gen]--; 4279 4280 if (!pgdat->memcg_lru.nr_memcgs[gen] && gen == get_memcg_gen(pgdat->memcg_lru.seq)) 4281 WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1); 4282 unlock: 4283 spin_unlock_irq(&pgdat->memcg_lru.lock); 4284 } 4285 } 4286 4287 void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid) 4288 { 4289 struct lruvec *lruvec = get_lruvec(memcg, nid); 4290 4291 /* see the comment on MEMCG_NR_GENS */ 4292 if (READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_HEAD) 4293 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_HEAD); 4294 } 4295 4296 #endif /* CONFIG_MEMCG */ 4297 4298 /****************************************************************************** 4299 * the eviction 4300 ******************************************************************************/ 4301 4302 static bool sort_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc, 4303 int tier_idx) 4304 { 4305 bool success; 4306 int gen = folio_lru_gen(folio); 4307 int type = folio_is_file_lru(folio); 4308 int zone = folio_zonenum(folio); 4309 int delta = folio_nr_pages(folio); 4310 int refs = folio_lru_refs(folio); 4311 int tier = lru_tier_from_refs(refs); 4312 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4313 4314 VM_WARN_ON_ONCE_FOLIO(gen >= MAX_NR_GENS, folio); 4315 4316 /* unevictable */ 4317 if (!folio_evictable(folio)) { 4318 success = lru_gen_del_folio(lruvec, folio, true); 4319 VM_WARN_ON_ONCE_FOLIO(!success, folio); 4320 folio_set_unevictable(folio); 4321 lruvec_add_folio(lruvec, folio); 4322 __count_vm_events(UNEVICTABLE_PGCULLED, delta); 4323 return true; 4324 } 4325 4326 /* promoted */ 4327 if (gen != lru_gen_from_seq(lrugen->min_seq[type])) { 4328 list_move(&folio->lru, &lrugen->folios[gen][type][zone]); 4329 return true; 4330 } 4331 4332 /* protected */ 4333 if (tier > tier_idx || refs == BIT(LRU_REFS_WIDTH)) { 4334 int hist = lru_hist_from_seq(lrugen->min_seq[type]); 4335 4336 gen = folio_inc_gen(lruvec, folio, false); 4337 list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]); 4338 4339 WRITE_ONCE(lrugen->protected[hist][type][tier - 1], 4340 lrugen->protected[hist][type][tier - 1] + delta); 4341 return true; 4342 } 4343 4344 /* ineligible */ 4345 if (zone > sc->reclaim_idx || skip_cma(folio, sc)) { 4346 gen = folio_inc_gen(lruvec, folio, false); 4347 list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]); 4348 return true; 4349 } 4350 4351 /* waiting for writeback */ 4352 if (folio_test_locked(folio) || folio_test_writeback(folio) || 4353 (type == LRU_GEN_FILE && folio_test_dirty(folio))) { 4354 gen = folio_inc_gen(lruvec, folio, true); 4355 list_move(&folio->lru, &lrugen->folios[gen][type][zone]); 4356 return true; 4357 } 4358 4359 return false; 4360 } 4361 4362 static bool isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc) 4363 { 4364 bool success; 4365 4366 /* swap constrained */ 4367 if (!(sc->gfp_mask & __GFP_IO) && 4368 (folio_test_dirty(folio) || 4369 (folio_test_anon(folio) && !folio_test_swapcache(folio)))) 4370 return false; 4371 4372 /* raced with release_pages() */ 4373 if (!folio_try_get(folio)) 4374 return false; 4375 4376 /* raced with another isolation */ 4377 if (!folio_test_clear_lru(folio)) { 4378 folio_put(folio); 4379 return false; 4380 } 4381 4382 /* see the comment on MAX_NR_TIERS */ 4383 if (!folio_test_referenced(folio)) 4384 set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS, 0); 4385 4386 /* for shrink_folio_list() */ 4387 folio_clear_reclaim(folio); 4388 folio_clear_referenced(folio); 4389 4390 success = lru_gen_del_folio(lruvec, folio, true); 4391 VM_WARN_ON_ONCE_FOLIO(!success, folio); 4392 4393 return true; 4394 } 4395 4396 static int scan_folios(struct lruvec *lruvec, struct scan_control *sc, 4397 int type, int tier, struct list_head *list) 4398 { 4399 int i; 4400 int gen; 4401 enum vm_event_item item; 4402 int sorted = 0; 4403 int scanned = 0; 4404 int isolated = 0; 4405 int skipped = 0; 4406 int remaining = MAX_LRU_BATCH; 4407 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4408 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4409 4410 VM_WARN_ON_ONCE(!list_empty(list)); 4411 4412 if (get_nr_gens(lruvec, type) == MIN_NR_GENS) 4413 return 0; 4414 4415 gen = lru_gen_from_seq(lrugen->min_seq[type]); 4416 4417 for (i = MAX_NR_ZONES; i > 0; i--) { 4418 LIST_HEAD(moved); 4419 int skipped_zone = 0; 4420 int zone = (sc->reclaim_idx + i) % MAX_NR_ZONES; 4421 struct list_head *head = &lrugen->folios[gen][type][zone]; 4422 4423 while (!list_empty(head)) { 4424 struct folio *folio = lru_to_folio(head); 4425 int delta = folio_nr_pages(folio); 4426 4427 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 4428 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio); 4429 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 4430 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio); 4431 4432 scanned += delta; 4433 4434 if (sort_folio(lruvec, folio, sc, tier)) 4435 sorted += delta; 4436 else if (isolate_folio(lruvec, folio, sc)) { 4437 list_add(&folio->lru, list); 4438 isolated += delta; 4439 } else { 4440 list_move(&folio->lru, &moved); 4441 skipped_zone += delta; 4442 } 4443 4444 if (!--remaining || max(isolated, skipped_zone) >= MIN_LRU_BATCH) 4445 break; 4446 } 4447 4448 if (skipped_zone) { 4449 list_splice(&moved, head); 4450 __count_zid_vm_events(PGSCAN_SKIP, zone, skipped_zone); 4451 skipped += skipped_zone; 4452 } 4453 4454 if (!remaining || isolated >= MIN_LRU_BATCH) 4455 break; 4456 } 4457 4458 item = PGSCAN_KSWAPD + reclaimer_offset(); 4459 if (!cgroup_reclaim(sc)) { 4460 __count_vm_events(item, isolated); 4461 __count_vm_events(PGREFILL, sorted); 4462 } 4463 __count_memcg_events(memcg, item, isolated); 4464 __count_memcg_events(memcg, PGREFILL, sorted); 4465 __count_vm_events(PGSCAN_ANON + type, isolated); 4466 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, MAX_LRU_BATCH, 4467 scanned, skipped, isolated, 4468 type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON); 4469 4470 /* 4471 * There might not be eligible folios due to reclaim_idx. Check the 4472 * remaining to prevent livelock if it's not making progress. 4473 */ 4474 return isolated || !remaining ? scanned : 0; 4475 } 4476 4477 static int get_tier_idx(struct lruvec *lruvec, int type) 4478 { 4479 int tier; 4480 struct ctrl_pos sp, pv; 4481 4482 /* 4483 * To leave a margin for fluctuations, use a larger gain factor (1:2). 4484 * This value is chosen because any other tier would have at least twice 4485 * as many refaults as the first tier. 4486 */ 4487 read_ctrl_pos(lruvec, type, 0, 1, &sp); 4488 for (tier = 1; tier < MAX_NR_TIERS; tier++) { 4489 read_ctrl_pos(lruvec, type, tier, 2, &pv); 4490 if (!positive_ctrl_err(&sp, &pv)) 4491 break; 4492 } 4493 4494 return tier - 1; 4495 } 4496 4497 static int get_type_to_scan(struct lruvec *lruvec, int swappiness, int *tier_idx) 4498 { 4499 int type, tier; 4500 struct ctrl_pos sp, pv; 4501 int gain[ANON_AND_FILE] = { swappiness, MAX_SWAPPINESS - swappiness }; 4502 4503 /* 4504 * Compare the first tier of anon with that of file to determine which 4505 * type to scan. Also need to compare other tiers of the selected type 4506 * with the first tier of the other type to determine the last tier (of 4507 * the selected type) to evict. 4508 */ 4509 read_ctrl_pos(lruvec, LRU_GEN_ANON, 0, gain[LRU_GEN_ANON], &sp); 4510 read_ctrl_pos(lruvec, LRU_GEN_FILE, 0, gain[LRU_GEN_FILE], &pv); 4511 type = positive_ctrl_err(&sp, &pv); 4512 4513 read_ctrl_pos(lruvec, !type, 0, gain[!type], &sp); 4514 for (tier = 1; tier < MAX_NR_TIERS; tier++) { 4515 read_ctrl_pos(lruvec, type, tier, gain[type], &pv); 4516 if (!positive_ctrl_err(&sp, &pv)) 4517 break; 4518 } 4519 4520 *tier_idx = tier - 1; 4521 4522 return type; 4523 } 4524 4525 static int isolate_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness, 4526 int *type_scanned, struct list_head *list) 4527 { 4528 int i; 4529 int type; 4530 int scanned; 4531 int tier = -1; 4532 DEFINE_MIN_SEQ(lruvec); 4533 4534 /* 4535 * Try to make the obvious choice first, and if anon and file are both 4536 * available from the same generation, 4537 * 1. Interpret swappiness 1 as file first and MAX_SWAPPINESS as anon 4538 * first. 4539 * 2. If !__GFP_IO, file first since clean pagecache is more likely to 4540 * exist than clean swapcache. 4541 */ 4542 if (!swappiness) 4543 type = LRU_GEN_FILE; 4544 else if (min_seq[LRU_GEN_ANON] < min_seq[LRU_GEN_FILE]) 4545 type = LRU_GEN_ANON; 4546 else if (swappiness == 1) 4547 type = LRU_GEN_FILE; 4548 else if (swappiness == MAX_SWAPPINESS) 4549 type = LRU_GEN_ANON; 4550 else if (!(sc->gfp_mask & __GFP_IO)) 4551 type = LRU_GEN_FILE; 4552 else 4553 type = get_type_to_scan(lruvec, swappiness, &tier); 4554 4555 for (i = !swappiness; i < ANON_AND_FILE; i++) { 4556 if (tier < 0) 4557 tier = get_tier_idx(lruvec, type); 4558 4559 scanned = scan_folios(lruvec, sc, type, tier, list); 4560 if (scanned) 4561 break; 4562 4563 type = !type; 4564 tier = -1; 4565 } 4566 4567 *type_scanned = type; 4568 4569 return scanned; 4570 } 4571 4572 static int evict_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness) 4573 { 4574 int type; 4575 int scanned; 4576 int reclaimed; 4577 LIST_HEAD(list); 4578 LIST_HEAD(clean); 4579 struct folio *folio; 4580 struct folio *next; 4581 enum vm_event_item item; 4582 struct reclaim_stat stat; 4583 struct lru_gen_mm_walk *walk; 4584 bool skip_retry = false; 4585 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4586 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 4587 4588 spin_lock_irq(&lruvec->lru_lock); 4589 4590 scanned = isolate_folios(lruvec, sc, swappiness, &type, &list); 4591 4592 scanned += try_to_inc_min_seq(lruvec, swappiness); 4593 4594 if (get_nr_gens(lruvec, !swappiness) == MIN_NR_GENS) 4595 scanned = 0; 4596 4597 spin_unlock_irq(&lruvec->lru_lock); 4598 4599 if (list_empty(&list)) 4600 return scanned; 4601 retry: 4602 reclaimed = shrink_folio_list(&list, pgdat, sc, &stat, false); 4603 sc->nr_reclaimed += reclaimed; 4604 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 4605 scanned, reclaimed, &stat, sc->priority, 4606 type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON); 4607 4608 list_for_each_entry_safe_reverse(folio, next, &list, lru) { 4609 if (!folio_evictable(folio)) { 4610 list_del(&folio->lru); 4611 folio_putback_lru(folio); 4612 continue; 4613 } 4614 4615 if (folio_test_reclaim(folio) && 4616 (folio_test_dirty(folio) || folio_test_writeback(folio))) { 4617 /* restore LRU_REFS_FLAGS cleared by isolate_folio() */ 4618 if (folio_test_workingset(folio)) 4619 folio_set_referenced(folio); 4620 continue; 4621 } 4622 4623 if (skip_retry || folio_test_active(folio) || folio_test_referenced(folio) || 4624 folio_mapped(folio) || folio_test_locked(folio) || 4625 folio_test_dirty(folio) || folio_test_writeback(folio)) { 4626 /* don't add rejected folios to the oldest generation */ 4627 set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS, 4628 BIT(PG_active)); 4629 continue; 4630 } 4631 4632 /* retry folios that may have missed folio_rotate_reclaimable() */ 4633 list_move(&folio->lru, &clean); 4634 } 4635 4636 spin_lock_irq(&lruvec->lru_lock); 4637 4638 move_folios_to_lru(lruvec, &list); 4639 4640 walk = current->reclaim_state->mm_walk; 4641 if (walk && walk->batched) { 4642 walk->lruvec = lruvec; 4643 reset_batch_size(walk); 4644 } 4645 4646 item = PGSTEAL_KSWAPD + reclaimer_offset(); 4647 if (!cgroup_reclaim(sc)) 4648 __count_vm_events(item, reclaimed); 4649 __count_memcg_events(memcg, item, reclaimed); 4650 __count_vm_events(PGSTEAL_ANON + type, reclaimed); 4651 4652 spin_unlock_irq(&lruvec->lru_lock); 4653 4654 list_splice_init(&clean, &list); 4655 4656 if (!list_empty(&list)) { 4657 skip_retry = true; 4658 goto retry; 4659 } 4660 4661 return scanned; 4662 } 4663 4664 static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq, 4665 bool can_swap, unsigned long *nr_to_scan) 4666 { 4667 int gen, type, zone; 4668 unsigned long old = 0; 4669 unsigned long young = 0; 4670 unsigned long total = 0; 4671 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4672 DEFINE_MIN_SEQ(lruvec); 4673 4674 /* whether this lruvec is completely out of cold folios */ 4675 if (min_seq[!can_swap] + MIN_NR_GENS > max_seq) { 4676 *nr_to_scan = 0; 4677 return true; 4678 } 4679 4680 for (type = !can_swap; type < ANON_AND_FILE; type++) { 4681 unsigned long seq; 4682 4683 for (seq = min_seq[type]; seq <= max_seq; seq++) { 4684 unsigned long size = 0; 4685 4686 gen = lru_gen_from_seq(seq); 4687 4688 for (zone = 0; zone < MAX_NR_ZONES; zone++) 4689 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L); 4690 4691 total += size; 4692 if (seq == max_seq) 4693 young += size; 4694 else if (seq + MIN_NR_GENS == max_seq) 4695 old += size; 4696 } 4697 } 4698 4699 *nr_to_scan = total; 4700 4701 /* 4702 * The aging tries to be lazy to reduce the overhead, while the eviction 4703 * stalls when the number of generations reaches MIN_NR_GENS. Hence, the 4704 * ideal number of generations is MIN_NR_GENS+1. 4705 */ 4706 if (min_seq[!can_swap] + MIN_NR_GENS < max_seq) 4707 return false; 4708 4709 /* 4710 * It's also ideal to spread pages out evenly, i.e., 1/(MIN_NR_GENS+1) 4711 * of the total number of pages for each generation. A reasonable range 4712 * for this average portion is [1/MIN_NR_GENS, 1/(MIN_NR_GENS+2)]. The 4713 * aging cares about the upper bound of hot pages, while the eviction 4714 * cares about the lower bound of cold pages. 4715 */ 4716 if (young * MIN_NR_GENS > total) 4717 return true; 4718 if (old * (MIN_NR_GENS + 2) < total) 4719 return true; 4720 4721 return false; 4722 } 4723 4724 /* 4725 * For future optimizations: 4726 * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg 4727 * reclaim. 4728 */ 4729 static long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc, bool can_swap) 4730 { 4731 bool success; 4732 unsigned long nr_to_scan; 4733 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4734 DEFINE_MAX_SEQ(lruvec); 4735 4736 if (mem_cgroup_below_min(sc->target_mem_cgroup, memcg)) 4737 return -1; 4738 4739 success = should_run_aging(lruvec, max_seq, can_swap, &nr_to_scan); 4740 4741 /* try to scrape all its memory if this memcg was deleted */ 4742 if (nr_to_scan && !mem_cgroup_online(memcg)) 4743 return nr_to_scan; 4744 4745 /* try to get away with not aging at the default priority */ 4746 if (!success || sc->priority == DEF_PRIORITY) 4747 return nr_to_scan >> sc->priority; 4748 4749 /* stop scanning this lruvec as it's low on cold folios */ 4750 return try_to_inc_max_seq(lruvec, max_seq, can_swap, false) ? -1 : 0; 4751 } 4752 4753 static bool should_abort_scan(struct lruvec *lruvec, struct scan_control *sc) 4754 { 4755 int i; 4756 enum zone_watermarks mark; 4757 4758 /* don't abort memcg reclaim to ensure fairness */ 4759 if (!root_reclaim(sc)) 4760 return false; 4761 4762 if (sc->nr_reclaimed >= max(sc->nr_to_reclaim, compact_gap(sc->order))) 4763 return true; 4764 4765 /* check the order to exclude compaction-induced reclaim */ 4766 if (!current_is_kswapd() || sc->order) 4767 return false; 4768 4769 mark = sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ? 4770 WMARK_PROMO : WMARK_HIGH; 4771 4772 for (i = 0; i <= sc->reclaim_idx; i++) { 4773 struct zone *zone = lruvec_pgdat(lruvec)->node_zones + i; 4774 unsigned long size = wmark_pages(zone, mark) + MIN_LRU_BATCH; 4775 4776 if (managed_zone(zone) && !zone_watermark_ok(zone, 0, size, sc->reclaim_idx, 0)) 4777 return false; 4778 } 4779 4780 /* kswapd should abort if all eligible zones are safe */ 4781 return true; 4782 } 4783 4784 static bool try_to_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 4785 { 4786 long nr_to_scan; 4787 unsigned long scanned = 0; 4788 int swappiness = get_swappiness(lruvec, sc); 4789 4790 while (true) { 4791 int delta; 4792 4793 nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness); 4794 if (nr_to_scan <= 0) 4795 break; 4796 4797 delta = evict_folios(lruvec, sc, swappiness); 4798 if (!delta) 4799 break; 4800 4801 scanned += delta; 4802 if (scanned >= nr_to_scan) 4803 break; 4804 4805 if (should_abort_scan(lruvec, sc)) 4806 break; 4807 4808 cond_resched(); 4809 } 4810 4811 /* whether this lruvec should be rotated */ 4812 return nr_to_scan < 0; 4813 } 4814 4815 static int shrink_one(struct lruvec *lruvec, struct scan_control *sc) 4816 { 4817 bool success; 4818 unsigned long scanned = sc->nr_scanned; 4819 unsigned long reclaimed = sc->nr_reclaimed; 4820 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4821 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 4822 4823 /* lru_gen_age_node() called mem_cgroup_calculate_protection() */ 4824 if (mem_cgroup_below_min(NULL, memcg)) 4825 return MEMCG_LRU_YOUNG; 4826 4827 if (mem_cgroup_below_low(NULL, memcg)) { 4828 /* see the comment on MEMCG_NR_GENS */ 4829 if (READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_TAIL) 4830 return MEMCG_LRU_TAIL; 4831 4832 memcg_memory_event(memcg, MEMCG_LOW); 4833 } 4834 4835 success = try_to_shrink_lruvec(lruvec, sc); 4836 4837 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, sc->priority); 4838 4839 if (!sc->proactive) 4840 vmpressure(sc->gfp_mask, memcg, false, sc->nr_scanned - scanned, 4841 sc->nr_reclaimed - reclaimed); 4842 4843 flush_reclaim_state(sc); 4844 4845 if (success && mem_cgroup_online(memcg)) 4846 return MEMCG_LRU_YOUNG; 4847 4848 if (!success && lruvec_is_sizable(lruvec, sc)) 4849 return 0; 4850 4851 /* one retry if offlined or too small */ 4852 return READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_TAIL ? 4853 MEMCG_LRU_TAIL : MEMCG_LRU_YOUNG; 4854 } 4855 4856 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc) 4857 { 4858 int op; 4859 int gen; 4860 int bin; 4861 int first_bin; 4862 struct lruvec *lruvec; 4863 struct lru_gen_folio *lrugen; 4864 struct mem_cgroup *memcg; 4865 struct hlist_nulls_node *pos; 4866 4867 gen = get_memcg_gen(READ_ONCE(pgdat->memcg_lru.seq)); 4868 bin = first_bin = get_random_u32_below(MEMCG_NR_BINS); 4869 restart: 4870 op = 0; 4871 memcg = NULL; 4872 4873 rcu_read_lock(); 4874 4875 hlist_nulls_for_each_entry_rcu(lrugen, pos, &pgdat->memcg_lru.fifo[gen][bin], list) { 4876 if (op) { 4877 lru_gen_rotate_memcg(lruvec, op); 4878 op = 0; 4879 } 4880 4881 mem_cgroup_put(memcg); 4882 memcg = NULL; 4883 4884 if (gen != READ_ONCE(lrugen->gen)) 4885 continue; 4886 4887 lruvec = container_of(lrugen, struct lruvec, lrugen); 4888 memcg = lruvec_memcg(lruvec); 4889 4890 if (!mem_cgroup_tryget(memcg)) { 4891 lru_gen_release_memcg(memcg); 4892 memcg = NULL; 4893 continue; 4894 } 4895 4896 rcu_read_unlock(); 4897 4898 op = shrink_one(lruvec, sc); 4899 4900 rcu_read_lock(); 4901 4902 if (should_abort_scan(lruvec, sc)) 4903 break; 4904 } 4905 4906 rcu_read_unlock(); 4907 4908 if (op) 4909 lru_gen_rotate_memcg(lruvec, op); 4910 4911 mem_cgroup_put(memcg); 4912 4913 if (!is_a_nulls(pos)) 4914 return; 4915 4916 /* restart if raced with lru_gen_rotate_memcg() */ 4917 if (gen != get_nulls_value(pos)) 4918 goto restart; 4919 4920 /* try the rest of the bins of the current generation */ 4921 bin = get_memcg_bin(bin + 1); 4922 if (bin != first_bin) 4923 goto restart; 4924 } 4925 4926 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 4927 { 4928 struct blk_plug plug; 4929 4930 VM_WARN_ON_ONCE(root_reclaim(sc)); 4931 VM_WARN_ON_ONCE(!sc->may_writepage || !sc->may_unmap); 4932 4933 lru_add_drain(); 4934 4935 blk_start_plug(&plug); 4936 4937 set_mm_walk(NULL, sc->proactive); 4938 4939 if (try_to_shrink_lruvec(lruvec, sc)) 4940 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_YOUNG); 4941 4942 clear_mm_walk(); 4943 4944 blk_finish_plug(&plug); 4945 } 4946 4947 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc) 4948 { 4949 struct blk_plug plug; 4950 unsigned long reclaimed = sc->nr_reclaimed; 4951 4952 VM_WARN_ON_ONCE(!root_reclaim(sc)); 4953 4954 /* 4955 * Unmapped clean folios are already prioritized. Scanning for more of 4956 * them is likely futile and can cause high reclaim latency when there 4957 * is a large number of memcgs. 4958 */ 4959 if (!sc->may_writepage || !sc->may_unmap) 4960 goto done; 4961 4962 lru_add_drain(); 4963 4964 blk_start_plug(&plug); 4965 4966 set_mm_walk(pgdat, sc->proactive); 4967 4968 set_initial_priority(pgdat, sc); 4969 4970 if (current_is_kswapd()) 4971 sc->nr_reclaimed = 0; 4972 4973 if (mem_cgroup_disabled()) 4974 shrink_one(&pgdat->__lruvec, sc); 4975 else 4976 shrink_many(pgdat, sc); 4977 4978 if (current_is_kswapd()) 4979 sc->nr_reclaimed += reclaimed; 4980 4981 clear_mm_walk(); 4982 4983 blk_finish_plug(&plug); 4984 done: 4985 /* kswapd should never fail */ 4986 pgdat->kswapd_failures = 0; 4987 } 4988 4989 /****************************************************************************** 4990 * state change 4991 ******************************************************************************/ 4992 4993 static bool __maybe_unused state_is_valid(struct lruvec *lruvec) 4994 { 4995 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4996 4997 if (lrugen->enabled) { 4998 enum lru_list lru; 4999 5000 for_each_evictable_lru(lru) { 5001 if (!list_empty(&lruvec->lists[lru])) 5002 return false; 5003 } 5004 } else { 5005 int gen, type, zone; 5006 5007 for_each_gen_type_zone(gen, type, zone) { 5008 if (!list_empty(&lrugen->folios[gen][type][zone])) 5009 return false; 5010 } 5011 } 5012 5013 return true; 5014 } 5015 5016 static bool fill_evictable(struct lruvec *lruvec) 5017 { 5018 enum lru_list lru; 5019 int remaining = MAX_LRU_BATCH; 5020 5021 for_each_evictable_lru(lru) { 5022 int type = is_file_lru(lru); 5023 bool active = is_active_lru(lru); 5024 struct list_head *head = &lruvec->lists[lru]; 5025 5026 while (!list_empty(head)) { 5027 bool success; 5028 struct folio *folio = lru_to_folio(head); 5029 5030 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 5031 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio) != active, folio); 5032 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 5033 VM_WARN_ON_ONCE_FOLIO(folio_lru_gen(folio) != -1, folio); 5034 5035 lruvec_del_folio(lruvec, folio); 5036 success = lru_gen_add_folio(lruvec, folio, false); 5037 VM_WARN_ON_ONCE(!success); 5038 5039 if (!--remaining) 5040 return false; 5041 } 5042 } 5043 5044 return true; 5045 } 5046 5047 static bool drain_evictable(struct lruvec *lruvec) 5048 { 5049 int gen, type, zone; 5050 int remaining = MAX_LRU_BATCH; 5051 5052 for_each_gen_type_zone(gen, type, zone) { 5053 struct list_head *head = &lruvec->lrugen.folios[gen][type][zone]; 5054 5055 while (!list_empty(head)) { 5056 bool success; 5057 struct folio *folio = lru_to_folio(head); 5058 5059 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 5060 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio); 5061 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 5062 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio); 5063 5064 success = lru_gen_del_folio(lruvec, folio, false); 5065 VM_WARN_ON_ONCE(!success); 5066 lruvec_add_folio(lruvec, folio); 5067 5068 if (!--remaining) 5069 return false; 5070 } 5071 } 5072 5073 return true; 5074 } 5075 5076 static void lru_gen_change_state(bool enabled) 5077 { 5078 static DEFINE_MUTEX(state_mutex); 5079 5080 struct mem_cgroup *memcg; 5081 5082 cgroup_lock(); 5083 cpus_read_lock(); 5084 get_online_mems(); 5085 mutex_lock(&state_mutex); 5086 5087 if (enabled == lru_gen_enabled()) 5088 goto unlock; 5089 5090 if (enabled) 5091 static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]); 5092 else 5093 static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]); 5094 5095 memcg = mem_cgroup_iter(NULL, NULL, NULL); 5096 do { 5097 int nid; 5098 5099 for_each_node(nid) { 5100 struct lruvec *lruvec = get_lruvec(memcg, nid); 5101 5102 spin_lock_irq(&lruvec->lru_lock); 5103 5104 VM_WARN_ON_ONCE(!seq_is_valid(lruvec)); 5105 VM_WARN_ON_ONCE(!state_is_valid(lruvec)); 5106 5107 lruvec->lrugen.enabled = enabled; 5108 5109 while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) { 5110 spin_unlock_irq(&lruvec->lru_lock); 5111 cond_resched(); 5112 spin_lock_irq(&lruvec->lru_lock); 5113 } 5114 5115 spin_unlock_irq(&lruvec->lru_lock); 5116 } 5117 5118 cond_resched(); 5119 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL))); 5120 unlock: 5121 mutex_unlock(&state_mutex); 5122 put_online_mems(); 5123 cpus_read_unlock(); 5124 cgroup_unlock(); 5125 } 5126 5127 /****************************************************************************** 5128 * sysfs interface 5129 ******************************************************************************/ 5130 5131 static ssize_t min_ttl_ms_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) 5132 { 5133 return sysfs_emit(buf, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl))); 5134 } 5135 5136 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5137 static ssize_t min_ttl_ms_store(struct kobject *kobj, struct kobj_attribute *attr, 5138 const char *buf, size_t len) 5139 { 5140 unsigned int msecs; 5141 5142 if (kstrtouint(buf, 0, &msecs)) 5143 return -EINVAL; 5144 5145 WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs)); 5146 5147 return len; 5148 } 5149 5150 static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR_RW(min_ttl_ms); 5151 5152 static ssize_t enabled_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) 5153 { 5154 unsigned int caps = 0; 5155 5156 if (get_cap(LRU_GEN_CORE)) 5157 caps |= BIT(LRU_GEN_CORE); 5158 5159 if (should_walk_mmu()) 5160 caps |= BIT(LRU_GEN_MM_WALK); 5161 5162 if (should_clear_pmd_young()) 5163 caps |= BIT(LRU_GEN_NONLEAF_YOUNG); 5164 5165 return sysfs_emit(buf, "0x%04x\n", caps); 5166 } 5167 5168 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5169 static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr, 5170 const char *buf, size_t len) 5171 { 5172 int i; 5173 unsigned int caps; 5174 5175 if (tolower(*buf) == 'n') 5176 caps = 0; 5177 else if (tolower(*buf) == 'y') 5178 caps = -1; 5179 else if (kstrtouint(buf, 0, &caps)) 5180 return -EINVAL; 5181 5182 for (i = 0; i < NR_LRU_GEN_CAPS; i++) { 5183 bool enabled = caps & BIT(i); 5184 5185 if (i == LRU_GEN_CORE) 5186 lru_gen_change_state(enabled); 5187 else if (enabled) 5188 static_branch_enable(&lru_gen_caps[i]); 5189 else 5190 static_branch_disable(&lru_gen_caps[i]); 5191 } 5192 5193 return len; 5194 } 5195 5196 static struct kobj_attribute lru_gen_enabled_attr = __ATTR_RW(enabled); 5197 5198 static struct attribute *lru_gen_attrs[] = { 5199 &lru_gen_min_ttl_attr.attr, 5200 &lru_gen_enabled_attr.attr, 5201 NULL 5202 }; 5203 5204 static const struct attribute_group lru_gen_attr_group = { 5205 .name = "lru_gen", 5206 .attrs = lru_gen_attrs, 5207 }; 5208 5209 /****************************************************************************** 5210 * debugfs interface 5211 ******************************************************************************/ 5212 5213 static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos) 5214 { 5215 struct mem_cgroup *memcg; 5216 loff_t nr_to_skip = *pos; 5217 5218 m->private = kvmalloc(PATH_MAX, GFP_KERNEL); 5219 if (!m->private) 5220 return ERR_PTR(-ENOMEM); 5221 5222 memcg = mem_cgroup_iter(NULL, NULL, NULL); 5223 do { 5224 int nid; 5225 5226 for_each_node_state(nid, N_MEMORY) { 5227 if (!nr_to_skip--) 5228 return get_lruvec(memcg, nid); 5229 } 5230 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL))); 5231 5232 return NULL; 5233 } 5234 5235 static void lru_gen_seq_stop(struct seq_file *m, void *v) 5236 { 5237 if (!IS_ERR_OR_NULL(v)) 5238 mem_cgroup_iter_break(NULL, lruvec_memcg(v)); 5239 5240 kvfree(m->private); 5241 m->private = NULL; 5242 } 5243 5244 static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos) 5245 { 5246 int nid = lruvec_pgdat(v)->node_id; 5247 struct mem_cgroup *memcg = lruvec_memcg(v); 5248 5249 ++*pos; 5250 5251 nid = next_memory_node(nid); 5252 if (nid == MAX_NUMNODES) { 5253 memcg = mem_cgroup_iter(NULL, memcg, NULL); 5254 if (!memcg) 5255 return NULL; 5256 5257 nid = first_memory_node; 5258 } 5259 5260 return get_lruvec(memcg, nid); 5261 } 5262 5263 static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec, 5264 unsigned long max_seq, unsigned long *min_seq, 5265 unsigned long seq) 5266 { 5267 int i; 5268 int type, tier; 5269 int hist = lru_hist_from_seq(seq); 5270 struct lru_gen_folio *lrugen = &lruvec->lrugen; 5271 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 5272 5273 for (tier = 0; tier < MAX_NR_TIERS; tier++) { 5274 seq_printf(m, " %10d", tier); 5275 for (type = 0; type < ANON_AND_FILE; type++) { 5276 const char *s = " "; 5277 unsigned long n[3] = {}; 5278 5279 if (seq == max_seq) { 5280 s = "RT "; 5281 n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]); 5282 n[1] = READ_ONCE(lrugen->avg_total[type][tier]); 5283 } else if (seq == min_seq[type] || NR_HIST_GENS > 1) { 5284 s = "rep"; 5285 n[0] = atomic_long_read(&lrugen->refaulted[hist][type][tier]); 5286 n[1] = atomic_long_read(&lrugen->evicted[hist][type][tier]); 5287 if (tier) 5288 n[2] = READ_ONCE(lrugen->protected[hist][type][tier - 1]); 5289 } 5290 5291 for (i = 0; i < 3; i++) 5292 seq_printf(m, " %10lu%c", n[i], s[i]); 5293 } 5294 seq_putc(m, '\n'); 5295 } 5296 5297 if (!mm_state) 5298 return; 5299 5300 seq_puts(m, " "); 5301 for (i = 0; i < NR_MM_STATS; i++) { 5302 const char *s = " "; 5303 unsigned long n = 0; 5304 5305 if (seq == max_seq && NR_HIST_GENS == 1) { 5306 s = "LOYNFA"; 5307 n = READ_ONCE(mm_state->stats[hist][i]); 5308 } else if (seq != max_seq && NR_HIST_GENS > 1) { 5309 s = "loynfa"; 5310 n = READ_ONCE(mm_state->stats[hist][i]); 5311 } 5312 5313 seq_printf(m, " %10lu%c", n, s[i]); 5314 } 5315 seq_putc(m, '\n'); 5316 } 5317 5318 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5319 static int lru_gen_seq_show(struct seq_file *m, void *v) 5320 { 5321 unsigned long seq; 5322 bool full = !debugfs_real_fops(m->file)->write; 5323 struct lruvec *lruvec = v; 5324 struct lru_gen_folio *lrugen = &lruvec->lrugen; 5325 int nid = lruvec_pgdat(lruvec)->node_id; 5326 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 5327 DEFINE_MAX_SEQ(lruvec); 5328 DEFINE_MIN_SEQ(lruvec); 5329 5330 if (nid == first_memory_node) { 5331 const char *path = memcg ? m->private : ""; 5332 5333 #ifdef CONFIG_MEMCG 5334 if (memcg) 5335 cgroup_path(memcg->css.cgroup, m->private, PATH_MAX); 5336 #endif 5337 seq_printf(m, "memcg %5hu %s\n", mem_cgroup_id(memcg), path); 5338 } 5339 5340 seq_printf(m, " node %5d\n", nid); 5341 5342 if (!full) 5343 seq = min_seq[LRU_GEN_ANON]; 5344 else if (max_seq >= MAX_NR_GENS) 5345 seq = max_seq - MAX_NR_GENS + 1; 5346 else 5347 seq = 0; 5348 5349 for (; seq <= max_seq; seq++) { 5350 int type, zone; 5351 int gen = lru_gen_from_seq(seq); 5352 unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]); 5353 5354 seq_printf(m, " %10lu %10u", seq, jiffies_to_msecs(jiffies - birth)); 5355 5356 for (type = 0; type < ANON_AND_FILE; type++) { 5357 unsigned long size = 0; 5358 char mark = full && seq < min_seq[type] ? 'x' : ' '; 5359 5360 for (zone = 0; zone < MAX_NR_ZONES; zone++) 5361 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L); 5362 5363 seq_printf(m, " %10lu%c", size, mark); 5364 } 5365 5366 seq_putc(m, '\n'); 5367 5368 if (full) 5369 lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq); 5370 } 5371 5372 return 0; 5373 } 5374 5375 static const struct seq_operations lru_gen_seq_ops = { 5376 .start = lru_gen_seq_start, 5377 .stop = lru_gen_seq_stop, 5378 .next = lru_gen_seq_next, 5379 .show = lru_gen_seq_show, 5380 }; 5381 5382 static int run_aging(struct lruvec *lruvec, unsigned long seq, 5383 bool can_swap, bool force_scan) 5384 { 5385 DEFINE_MAX_SEQ(lruvec); 5386 DEFINE_MIN_SEQ(lruvec); 5387 5388 if (seq < max_seq) 5389 return 0; 5390 5391 if (seq > max_seq) 5392 return -EINVAL; 5393 5394 if (!force_scan && min_seq[!can_swap] + MAX_NR_GENS - 1 <= max_seq) 5395 return -ERANGE; 5396 5397 try_to_inc_max_seq(lruvec, max_seq, can_swap, force_scan); 5398 5399 return 0; 5400 } 5401 5402 static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc, 5403 int swappiness, unsigned long nr_to_reclaim) 5404 { 5405 DEFINE_MAX_SEQ(lruvec); 5406 5407 if (seq + MIN_NR_GENS > max_seq) 5408 return -EINVAL; 5409 5410 sc->nr_reclaimed = 0; 5411 5412 while (!signal_pending(current)) { 5413 DEFINE_MIN_SEQ(lruvec); 5414 5415 if (seq < min_seq[!swappiness]) 5416 return 0; 5417 5418 if (sc->nr_reclaimed >= nr_to_reclaim) 5419 return 0; 5420 5421 if (!evict_folios(lruvec, sc, swappiness)) 5422 return 0; 5423 5424 cond_resched(); 5425 } 5426 5427 return -EINTR; 5428 } 5429 5430 static int run_cmd(char cmd, int memcg_id, int nid, unsigned long seq, 5431 struct scan_control *sc, int swappiness, unsigned long opt) 5432 { 5433 struct lruvec *lruvec; 5434 int err = -EINVAL; 5435 struct mem_cgroup *memcg = NULL; 5436 5437 if (nid < 0 || nid >= MAX_NUMNODES || !node_state(nid, N_MEMORY)) 5438 return -EINVAL; 5439 5440 if (!mem_cgroup_disabled()) { 5441 rcu_read_lock(); 5442 5443 memcg = mem_cgroup_from_id(memcg_id); 5444 if (!mem_cgroup_tryget(memcg)) 5445 memcg = NULL; 5446 5447 rcu_read_unlock(); 5448 5449 if (!memcg) 5450 return -EINVAL; 5451 } 5452 5453 if (memcg_id != mem_cgroup_id(memcg)) 5454 goto done; 5455 5456 lruvec = get_lruvec(memcg, nid); 5457 5458 if (swappiness < MIN_SWAPPINESS) 5459 swappiness = get_swappiness(lruvec, sc); 5460 else if (swappiness > MAX_SWAPPINESS) 5461 goto done; 5462 5463 switch (cmd) { 5464 case '+': 5465 err = run_aging(lruvec, seq, swappiness, opt); 5466 break; 5467 case '-': 5468 err = run_eviction(lruvec, seq, sc, swappiness, opt); 5469 break; 5470 } 5471 done: 5472 mem_cgroup_put(memcg); 5473 5474 return err; 5475 } 5476 5477 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5478 static ssize_t lru_gen_seq_write(struct file *file, const char __user *src, 5479 size_t len, loff_t *pos) 5480 { 5481 void *buf; 5482 char *cur, *next; 5483 unsigned int flags; 5484 struct blk_plug plug; 5485 int err = -EINVAL; 5486 struct scan_control sc = { 5487 .may_writepage = true, 5488 .may_unmap = true, 5489 .may_swap = true, 5490 .reclaim_idx = MAX_NR_ZONES - 1, 5491 .gfp_mask = GFP_KERNEL, 5492 }; 5493 5494 buf = kvmalloc(len + 1, GFP_KERNEL); 5495 if (!buf) 5496 return -ENOMEM; 5497 5498 if (copy_from_user(buf, src, len)) { 5499 kvfree(buf); 5500 return -EFAULT; 5501 } 5502 5503 set_task_reclaim_state(current, &sc.reclaim_state); 5504 flags = memalloc_noreclaim_save(); 5505 blk_start_plug(&plug); 5506 if (!set_mm_walk(NULL, true)) { 5507 err = -ENOMEM; 5508 goto done; 5509 } 5510 5511 next = buf; 5512 next[len] = '\0'; 5513 5514 while ((cur = strsep(&next, ",;\n"))) { 5515 int n; 5516 int end; 5517 char cmd; 5518 unsigned int memcg_id; 5519 unsigned int nid; 5520 unsigned long seq; 5521 unsigned int swappiness = -1; 5522 unsigned long opt = -1; 5523 5524 cur = skip_spaces(cur); 5525 if (!*cur) 5526 continue; 5527 5528 n = sscanf(cur, "%c %u %u %lu %n %u %n %lu %n", &cmd, &memcg_id, &nid, 5529 &seq, &end, &swappiness, &end, &opt, &end); 5530 if (n < 4 || cur[end]) { 5531 err = -EINVAL; 5532 break; 5533 } 5534 5535 err = run_cmd(cmd, memcg_id, nid, seq, &sc, swappiness, opt); 5536 if (err) 5537 break; 5538 } 5539 done: 5540 clear_mm_walk(); 5541 blk_finish_plug(&plug); 5542 memalloc_noreclaim_restore(flags); 5543 set_task_reclaim_state(current, NULL); 5544 5545 kvfree(buf); 5546 5547 return err ? : len; 5548 } 5549 5550 static int lru_gen_seq_open(struct inode *inode, struct file *file) 5551 { 5552 return seq_open(file, &lru_gen_seq_ops); 5553 } 5554 5555 static const struct file_operations lru_gen_rw_fops = { 5556 .open = lru_gen_seq_open, 5557 .read = seq_read, 5558 .write = lru_gen_seq_write, 5559 .llseek = seq_lseek, 5560 .release = seq_release, 5561 }; 5562 5563 static const struct file_operations lru_gen_ro_fops = { 5564 .open = lru_gen_seq_open, 5565 .read = seq_read, 5566 .llseek = seq_lseek, 5567 .release = seq_release, 5568 }; 5569 5570 /****************************************************************************** 5571 * initialization 5572 ******************************************************************************/ 5573 5574 void lru_gen_init_pgdat(struct pglist_data *pgdat) 5575 { 5576 int i, j; 5577 5578 spin_lock_init(&pgdat->memcg_lru.lock); 5579 5580 for (i = 0; i < MEMCG_NR_GENS; i++) { 5581 for (j = 0; j < MEMCG_NR_BINS; j++) 5582 INIT_HLIST_NULLS_HEAD(&pgdat->memcg_lru.fifo[i][j], i); 5583 } 5584 } 5585 5586 void lru_gen_init_lruvec(struct lruvec *lruvec) 5587 { 5588 int i; 5589 int gen, type, zone; 5590 struct lru_gen_folio *lrugen = &lruvec->lrugen; 5591 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 5592 5593 lrugen->max_seq = MIN_NR_GENS + 1; 5594 lrugen->enabled = lru_gen_enabled(); 5595 5596 for (i = 0; i <= MIN_NR_GENS + 1; i++) 5597 lrugen->timestamps[i] = jiffies; 5598 5599 for_each_gen_type_zone(gen, type, zone) 5600 INIT_LIST_HEAD(&lrugen->folios[gen][type][zone]); 5601 5602 if (mm_state) 5603 mm_state->seq = MIN_NR_GENS; 5604 } 5605 5606 #ifdef CONFIG_MEMCG 5607 5608 void lru_gen_init_memcg(struct mem_cgroup *memcg) 5609 { 5610 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 5611 5612 if (!mm_list) 5613 return; 5614 5615 INIT_LIST_HEAD(&mm_list->fifo); 5616 spin_lock_init(&mm_list->lock); 5617 } 5618 5619 void lru_gen_exit_memcg(struct mem_cgroup *memcg) 5620 { 5621 int i; 5622 int nid; 5623 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 5624 5625 VM_WARN_ON_ONCE(mm_list && !list_empty(&mm_list->fifo)); 5626 5627 for_each_node(nid) { 5628 struct lruvec *lruvec = get_lruvec(memcg, nid); 5629 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 5630 5631 VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0, 5632 sizeof(lruvec->lrugen.nr_pages))); 5633 5634 lruvec->lrugen.list.next = LIST_POISON1; 5635 5636 if (!mm_state) 5637 continue; 5638 5639 for (i = 0; i < NR_BLOOM_FILTERS; i++) { 5640 bitmap_free(mm_state->filters[i]); 5641 mm_state->filters[i] = NULL; 5642 } 5643 } 5644 } 5645 5646 #endif /* CONFIG_MEMCG */ 5647 5648 static int __init init_lru_gen(void) 5649 { 5650 BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS); 5651 BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS); 5652 5653 if (sysfs_create_group(mm_kobj, &lru_gen_attr_group)) 5654 pr_err("lru_gen: failed to create sysfs group\n"); 5655 5656 debugfs_create_file("lru_gen", 0644, NULL, NULL, &lru_gen_rw_fops); 5657 debugfs_create_file("lru_gen_full", 0444, NULL, NULL, &lru_gen_ro_fops); 5658 5659 return 0; 5660 }; 5661 late_initcall(init_lru_gen); 5662 5663 #else /* !CONFIG_LRU_GEN */ 5664 5665 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc) 5666 { 5667 BUILD_BUG(); 5668 } 5669 5670 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 5671 { 5672 BUILD_BUG(); 5673 } 5674 5675 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc) 5676 { 5677 BUILD_BUG(); 5678 } 5679 5680 #endif /* CONFIG_LRU_GEN */ 5681 5682 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 5683 { 5684 unsigned long nr[NR_LRU_LISTS]; 5685 unsigned long targets[NR_LRU_LISTS]; 5686 unsigned long nr_to_scan; 5687 enum lru_list lru; 5688 unsigned long nr_reclaimed = 0; 5689 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 5690 bool proportional_reclaim; 5691 struct blk_plug plug; 5692 5693 if (lru_gen_enabled() && !root_reclaim(sc)) { 5694 lru_gen_shrink_lruvec(lruvec, sc); 5695 return; 5696 } 5697 5698 get_scan_count(lruvec, sc, nr); 5699 5700 /* Record the original scan target for proportional adjustments later */ 5701 memcpy(targets, nr, sizeof(nr)); 5702 5703 /* 5704 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal 5705 * event that can occur when there is little memory pressure e.g. 5706 * multiple streaming readers/writers. Hence, we do not abort scanning 5707 * when the requested number of pages are reclaimed when scanning at 5708 * DEF_PRIORITY on the assumption that the fact we are direct 5709 * reclaiming implies that kswapd is not keeping up and it is best to 5710 * do a batch of work at once. For memcg reclaim one check is made to 5711 * abort proportional reclaim if either the file or anon lru has already 5712 * dropped to zero at the first pass. 5713 */ 5714 proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() && 5715 sc->priority == DEF_PRIORITY); 5716 5717 blk_start_plug(&plug); 5718 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 5719 nr[LRU_INACTIVE_FILE]) { 5720 unsigned long nr_anon, nr_file, percentage; 5721 unsigned long nr_scanned; 5722 5723 for_each_evictable_lru(lru) { 5724 if (nr[lru]) { 5725 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 5726 nr[lru] -= nr_to_scan; 5727 5728 nr_reclaimed += shrink_list(lru, nr_to_scan, 5729 lruvec, sc); 5730 } 5731 } 5732 5733 cond_resched(); 5734 5735 if (nr_reclaimed < nr_to_reclaim || proportional_reclaim) 5736 continue; 5737 5738 /* 5739 * For kswapd and memcg, reclaim at least the number of pages 5740 * requested. Ensure that the anon and file LRUs are scanned 5741 * proportionally what was requested by get_scan_count(). We 5742 * stop reclaiming one LRU and reduce the amount scanning 5743 * proportional to the original scan target. 5744 */ 5745 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 5746 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 5747 5748 /* 5749 * It's just vindictive to attack the larger once the smaller 5750 * has gone to zero. And given the way we stop scanning the 5751 * smaller below, this makes sure that we only make one nudge 5752 * towards proportionality once we've got nr_to_reclaim. 5753 */ 5754 if (!nr_file || !nr_anon) 5755 break; 5756 5757 if (nr_file > nr_anon) { 5758 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 5759 targets[LRU_ACTIVE_ANON] + 1; 5760 lru = LRU_BASE; 5761 percentage = nr_anon * 100 / scan_target; 5762 } else { 5763 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 5764 targets[LRU_ACTIVE_FILE] + 1; 5765 lru = LRU_FILE; 5766 percentage = nr_file * 100 / scan_target; 5767 } 5768 5769 /* Stop scanning the smaller of the LRU */ 5770 nr[lru] = 0; 5771 nr[lru + LRU_ACTIVE] = 0; 5772 5773 /* 5774 * Recalculate the other LRU scan count based on its original 5775 * scan target and the percentage scanning already complete 5776 */ 5777 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 5778 nr_scanned = targets[lru] - nr[lru]; 5779 nr[lru] = targets[lru] * (100 - percentage) / 100; 5780 nr[lru] -= min(nr[lru], nr_scanned); 5781 5782 lru += LRU_ACTIVE; 5783 nr_scanned = targets[lru] - nr[lru]; 5784 nr[lru] = targets[lru] * (100 - percentage) / 100; 5785 nr[lru] -= min(nr[lru], nr_scanned); 5786 } 5787 blk_finish_plug(&plug); 5788 sc->nr_reclaimed += nr_reclaimed; 5789 5790 /* 5791 * Even if we did not try to evict anon pages at all, we want to 5792 * rebalance the anon lru active/inactive ratio. 5793 */ 5794 if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) && 5795 inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 5796 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 5797 sc, LRU_ACTIVE_ANON); 5798 } 5799 5800 /* Use reclaim/compaction for costly allocs or under memory pressure */ 5801 static bool in_reclaim_compaction(struct scan_control *sc) 5802 { 5803 if (gfp_compaction_allowed(sc->gfp_mask) && sc->order && 5804 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 5805 sc->priority < DEF_PRIORITY - 2)) 5806 return true; 5807 5808 return false; 5809 } 5810 5811 /* 5812 * Reclaim/compaction is used for high-order allocation requests. It reclaims 5813 * order-0 pages before compacting the zone. should_continue_reclaim() returns 5814 * true if more pages should be reclaimed such that when the page allocator 5815 * calls try_to_compact_pages() that it will have enough free pages to succeed. 5816 * It will give up earlier than that if there is difficulty reclaiming pages. 5817 */ 5818 static inline bool should_continue_reclaim(struct pglist_data *pgdat, 5819 unsigned long nr_reclaimed, 5820 struct scan_control *sc) 5821 { 5822 unsigned long pages_for_compaction; 5823 unsigned long inactive_lru_pages; 5824 int z; 5825 5826 /* If not in reclaim/compaction mode, stop */ 5827 if (!in_reclaim_compaction(sc)) 5828 return false; 5829 5830 /* 5831 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX 5832 * number of pages that were scanned. This will return to the caller 5833 * with the risk reclaim/compaction and the resulting allocation attempt 5834 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL 5835 * allocations through requiring that the full LRU list has been scanned 5836 * first, by assuming that zero delta of sc->nr_scanned means full LRU 5837 * scan, but that approximation was wrong, and there were corner cases 5838 * where always a non-zero amount of pages were scanned. 5839 */ 5840 if (!nr_reclaimed) 5841 return false; 5842 5843 /* If compaction would go ahead or the allocation would succeed, stop */ 5844 for (z = 0; z <= sc->reclaim_idx; z++) { 5845 struct zone *zone = &pgdat->node_zones[z]; 5846 if (!managed_zone(zone)) 5847 continue; 5848 5849 /* Allocation can already succeed, nothing to do */ 5850 if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone), 5851 sc->reclaim_idx, 0)) 5852 return false; 5853 5854 if (compaction_suitable(zone, sc->order, sc->reclaim_idx)) 5855 return false; 5856 } 5857 5858 /* 5859 * If we have not reclaimed enough pages for compaction and the 5860 * inactive lists are large enough, continue reclaiming 5861 */ 5862 pages_for_compaction = compact_gap(sc->order); 5863 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE); 5864 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc)) 5865 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON); 5866 5867 return inactive_lru_pages > pages_for_compaction; 5868 } 5869 5870 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc) 5871 { 5872 struct mem_cgroup *target_memcg = sc->target_mem_cgroup; 5873 struct mem_cgroup_reclaim_cookie reclaim = { 5874 .pgdat = pgdat, 5875 }; 5876 struct mem_cgroup_reclaim_cookie *partial = &reclaim; 5877 struct mem_cgroup *memcg; 5878 5879 /* 5880 * In most cases, direct reclaimers can do partial walks 5881 * through the cgroup tree, using an iterator state that 5882 * persists across invocations. This strikes a balance between 5883 * fairness and allocation latency. 5884 * 5885 * For kswapd, reliable forward progress is more important 5886 * than a quick return to idle. Always do full walks. 5887 */ 5888 if (current_is_kswapd() || sc->memcg_full_walk) 5889 partial = NULL; 5890 5891 memcg = mem_cgroup_iter(target_memcg, NULL, partial); 5892 do { 5893 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 5894 unsigned long reclaimed; 5895 unsigned long scanned; 5896 5897 /* 5898 * This loop can become CPU-bound when target memcgs 5899 * aren't eligible for reclaim - either because they 5900 * don't have any reclaimable pages, or because their 5901 * memory is explicitly protected. Avoid soft lockups. 5902 */ 5903 cond_resched(); 5904 5905 mem_cgroup_calculate_protection(target_memcg, memcg); 5906 5907 if (mem_cgroup_below_min(target_memcg, memcg)) { 5908 /* 5909 * Hard protection. 5910 * If there is no reclaimable memory, OOM. 5911 */ 5912 continue; 5913 } else if (mem_cgroup_below_low(target_memcg, memcg)) { 5914 /* 5915 * Soft protection. 5916 * Respect the protection only as long as 5917 * there is an unprotected supply 5918 * of reclaimable memory from other cgroups. 5919 */ 5920 if (!sc->memcg_low_reclaim) { 5921 sc->memcg_low_skipped = 1; 5922 continue; 5923 } 5924 memcg_memory_event(memcg, MEMCG_LOW); 5925 } 5926 5927 reclaimed = sc->nr_reclaimed; 5928 scanned = sc->nr_scanned; 5929 5930 shrink_lruvec(lruvec, sc); 5931 5932 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, 5933 sc->priority); 5934 5935 /* Record the group's reclaim efficiency */ 5936 if (!sc->proactive) 5937 vmpressure(sc->gfp_mask, memcg, false, 5938 sc->nr_scanned - scanned, 5939 sc->nr_reclaimed - reclaimed); 5940 5941 /* If partial walks are allowed, bail once goal is reached */ 5942 if (partial && sc->nr_reclaimed >= sc->nr_to_reclaim) { 5943 mem_cgroup_iter_break(target_memcg, memcg); 5944 break; 5945 } 5946 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, partial))); 5947 } 5948 5949 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc) 5950 { 5951 unsigned long nr_reclaimed, nr_scanned, nr_node_reclaimed; 5952 struct lruvec *target_lruvec; 5953 bool reclaimable = false; 5954 5955 if (lru_gen_enabled() && root_reclaim(sc)) { 5956 lru_gen_shrink_node(pgdat, sc); 5957 return; 5958 } 5959 5960 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat); 5961 5962 again: 5963 memset(&sc->nr, 0, sizeof(sc->nr)); 5964 5965 nr_reclaimed = sc->nr_reclaimed; 5966 nr_scanned = sc->nr_scanned; 5967 5968 prepare_scan_control(pgdat, sc); 5969 5970 shrink_node_memcgs(pgdat, sc); 5971 5972 flush_reclaim_state(sc); 5973 5974 nr_node_reclaimed = sc->nr_reclaimed - nr_reclaimed; 5975 5976 /* Record the subtree's reclaim efficiency */ 5977 if (!sc->proactive) 5978 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, 5979 sc->nr_scanned - nr_scanned, nr_node_reclaimed); 5980 5981 if (nr_node_reclaimed) 5982 reclaimable = true; 5983 5984 if (current_is_kswapd()) { 5985 /* 5986 * If reclaim is isolating dirty pages under writeback, 5987 * it implies that the long-lived page allocation rate 5988 * is exceeding the page laundering rate. Either the 5989 * global limits are not being effective at throttling 5990 * processes due to the page distribution throughout 5991 * zones or there is heavy usage of a slow backing 5992 * device. The only option is to throttle from reclaim 5993 * context which is not ideal as there is no guarantee 5994 * the dirtying process is throttled in the same way 5995 * balance_dirty_pages() manages. 5996 * 5997 * Once a node is flagged PGDAT_WRITEBACK, kswapd will 5998 * count the number of pages under pages flagged for 5999 * immediate reclaim and stall if any are encountered 6000 * in the nr_immediate check below. 6001 */ 6002 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken) 6003 set_bit(PGDAT_WRITEBACK, &pgdat->flags); 6004 6005 /* Allow kswapd to start writing pages during reclaim.*/ 6006 if (sc->nr.unqueued_dirty == sc->nr.file_taken) 6007 set_bit(PGDAT_DIRTY, &pgdat->flags); 6008 6009 /* 6010 * If kswapd scans pages marked for immediate 6011 * reclaim and under writeback (nr_immediate), it 6012 * implies that pages are cycling through the LRU 6013 * faster than they are written so forcibly stall 6014 * until some pages complete writeback. 6015 */ 6016 if (sc->nr.immediate) 6017 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK); 6018 } 6019 6020 /* 6021 * Tag a node/memcg as congested if all the dirty pages were marked 6022 * for writeback and immediate reclaim (counted in nr.congested). 6023 * 6024 * Legacy memcg will stall in page writeback so avoid forcibly 6025 * stalling in reclaim_throttle(). 6026 */ 6027 if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested) { 6028 if (cgroup_reclaim(sc) && writeback_throttling_sane(sc)) 6029 set_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags); 6030 6031 if (current_is_kswapd()) 6032 set_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags); 6033 } 6034 6035 /* 6036 * Stall direct reclaim for IO completions if the lruvec is 6037 * node is congested. Allow kswapd to continue until it 6038 * starts encountering unqueued dirty pages or cycling through 6039 * the LRU too quickly. 6040 */ 6041 if (!current_is_kswapd() && current_may_throttle() && 6042 !sc->hibernation_mode && 6043 (test_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags) || 6044 test_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags))) 6045 reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED); 6046 6047 if (should_continue_reclaim(pgdat, nr_node_reclaimed, sc)) 6048 goto again; 6049 6050 /* 6051 * Kswapd gives up on balancing particular nodes after too 6052 * many failures to reclaim anything from them and goes to 6053 * sleep. On reclaim progress, reset the failure counter. A 6054 * successful direct reclaim run will revive a dormant kswapd. 6055 */ 6056 if (reclaimable) 6057 pgdat->kswapd_failures = 0; 6058 else if (sc->cache_trim_mode) 6059 sc->cache_trim_mode_failed = 1; 6060 } 6061 6062 /* 6063 * Returns true if compaction should go ahead for a costly-order request, or 6064 * the allocation would already succeed without compaction. Return false if we 6065 * should reclaim first. 6066 */ 6067 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) 6068 { 6069 unsigned long watermark; 6070 6071 if (!gfp_compaction_allowed(sc->gfp_mask)) 6072 return false; 6073 6074 /* Allocation can already succeed, nothing to do */ 6075 if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone), 6076 sc->reclaim_idx, 0)) 6077 return true; 6078 6079 /* Compaction cannot yet proceed. Do reclaim. */ 6080 if (!compaction_suitable(zone, sc->order, sc->reclaim_idx)) 6081 return false; 6082 6083 /* 6084 * Compaction is already possible, but it takes time to run and there 6085 * are potentially other callers using the pages just freed. So proceed 6086 * with reclaim to make a buffer of free pages available to give 6087 * compaction a reasonable chance of completing and allocating the page. 6088 * Note that we won't actually reclaim the whole buffer in one attempt 6089 * as the target watermark in should_continue_reclaim() is lower. But if 6090 * we are already above the high+gap watermark, don't reclaim at all. 6091 */ 6092 watermark = high_wmark_pages(zone) + compact_gap(sc->order); 6093 6094 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx); 6095 } 6096 6097 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc) 6098 { 6099 /* 6100 * If reclaim is making progress greater than 12% efficiency then 6101 * wake all the NOPROGRESS throttled tasks. 6102 */ 6103 if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) { 6104 wait_queue_head_t *wqh; 6105 6106 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS]; 6107 if (waitqueue_active(wqh)) 6108 wake_up(wqh); 6109 6110 return; 6111 } 6112 6113 /* 6114 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will 6115 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages 6116 * under writeback and marked for immediate reclaim at the tail of the 6117 * LRU. 6118 */ 6119 if (current_is_kswapd() || cgroup_reclaim(sc)) 6120 return; 6121 6122 /* Throttle if making no progress at high prioities. */ 6123 if (sc->priority == 1 && !sc->nr_reclaimed) 6124 reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS); 6125 } 6126 6127 /* 6128 * This is the direct reclaim path, for page-allocating processes. We only 6129 * try to reclaim pages from zones which will satisfy the caller's allocation 6130 * request. 6131 * 6132 * If a zone is deemed to be full of pinned pages then just give it a light 6133 * scan then give up on it. 6134 */ 6135 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 6136 { 6137 struct zoneref *z; 6138 struct zone *zone; 6139 unsigned long nr_soft_reclaimed; 6140 unsigned long nr_soft_scanned; 6141 gfp_t orig_mask; 6142 pg_data_t *last_pgdat = NULL; 6143 pg_data_t *first_pgdat = NULL; 6144 6145 /* 6146 * If the number of buffer_heads in the machine exceeds the maximum 6147 * allowed level, force direct reclaim to scan the highmem zone as 6148 * highmem pages could be pinning lowmem pages storing buffer_heads 6149 */ 6150 orig_mask = sc->gfp_mask; 6151 if (buffer_heads_over_limit) { 6152 sc->gfp_mask |= __GFP_HIGHMEM; 6153 sc->reclaim_idx = gfp_zone(sc->gfp_mask); 6154 } 6155 6156 for_each_zone_zonelist_nodemask(zone, z, zonelist, 6157 sc->reclaim_idx, sc->nodemask) { 6158 /* 6159 * Take care memory controller reclaiming has small influence 6160 * to global LRU. 6161 */ 6162 if (!cgroup_reclaim(sc)) { 6163 if (!cpuset_zone_allowed(zone, 6164 GFP_KERNEL | __GFP_HARDWALL)) 6165 continue; 6166 6167 /* 6168 * If we already have plenty of memory free for 6169 * compaction in this zone, don't free any more. 6170 * Even though compaction is invoked for any 6171 * non-zero order, only frequent costly order 6172 * reclamation is disruptive enough to become a 6173 * noticeable problem, like transparent huge 6174 * page allocations. 6175 */ 6176 if (IS_ENABLED(CONFIG_COMPACTION) && 6177 sc->order > PAGE_ALLOC_COSTLY_ORDER && 6178 compaction_ready(zone, sc)) { 6179 sc->compaction_ready = true; 6180 continue; 6181 } 6182 6183 /* 6184 * Shrink each node in the zonelist once. If the 6185 * zonelist is ordered by zone (not the default) then a 6186 * node may be shrunk multiple times but in that case 6187 * the user prefers lower zones being preserved. 6188 */ 6189 if (zone->zone_pgdat == last_pgdat) 6190 continue; 6191 6192 /* 6193 * This steals pages from memory cgroups over softlimit 6194 * and returns the number of reclaimed pages and 6195 * scanned pages. This works for global memory pressure 6196 * and balancing, not for a memcg's limit. 6197 */ 6198 nr_soft_scanned = 0; 6199 nr_soft_reclaimed = memcg1_soft_limit_reclaim(zone->zone_pgdat, 6200 sc->order, sc->gfp_mask, 6201 &nr_soft_scanned); 6202 sc->nr_reclaimed += nr_soft_reclaimed; 6203 sc->nr_scanned += nr_soft_scanned; 6204 /* need some check for avoid more shrink_zone() */ 6205 } 6206 6207 if (!first_pgdat) 6208 first_pgdat = zone->zone_pgdat; 6209 6210 /* See comment about same check for global reclaim above */ 6211 if (zone->zone_pgdat == last_pgdat) 6212 continue; 6213 last_pgdat = zone->zone_pgdat; 6214 shrink_node(zone->zone_pgdat, sc); 6215 } 6216 6217 if (first_pgdat) 6218 consider_reclaim_throttle(first_pgdat, sc); 6219 6220 /* 6221 * Restore to original mask to avoid the impact on the caller if we 6222 * promoted it to __GFP_HIGHMEM. 6223 */ 6224 sc->gfp_mask = orig_mask; 6225 } 6226 6227 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat) 6228 { 6229 struct lruvec *target_lruvec; 6230 unsigned long refaults; 6231 6232 if (lru_gen_enabled()) 6233 return; 6234 6235 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat); 6236 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON); 6237 target_lruvec->refaults[WORKINGSET_ANON] = refaults; 6238 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE); 6239 target_lruvec->refaults[WORKINGSET_FILE] = refaults; 6240 } 6241 6242 /* 6243 * This is the main entry point to direct page reclaim. 6244 * 6245 * If a full scan of the inactive list fails to free enough memory then we 6246 * are "out of memory" and something needs to be killed. 6247 * 6248 * If the caller is !__GFP_FS then the probability of a failure is reasonably 6249 * high - the zone may be full of dirty or under-writeback pages, which this 6250 * caller can't do much about. We kick the writeback threads and take explicit 6251 * naps in the hope that some of these pages can be written. But if the 6252 * allocating task holds filesystem locks which prevent writeout this might not 6253 * work, and the allocation attempt will fail. 6254 * 6255 * returns: 0, if no pages reclaimed 6256 * else, the number of pages reclaimed 6257 */ 6258 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 6259 struct scan_control *sc) 6260 { 6261 int initial_priority = sc->priority; 6262 pg_data_t *last_pgdat; 6263 struct zoneref *z; 6264 struct zone *zone; 6265 retry: 6266 delayacct_freepages_start(); 6267 6268 if (!cgroup_reclaim(sc)) 6269 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1); 6270 6271 do { 6272 if (!sc->proactive) 6273 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 6274 sc->priority); 6275 sc->nr_scanned = 0; 6276 shrink_zones(zonelist, sc); 6277 6278 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 6279 break; 6280 6281 if (sc->compaction_ready) 6282 break; 6283 6284 /* 6285 * If we're getting trouble reclaiming, start doing 6286 * writepage even in laptop mode. 6287 */ 6288 if (sc->priority < DEF_PRIORITY - 2) 6289 sc->may_writepage = 1; 6290 } while (--sc->priority >= 0); 6291 6292 last_pgdat = NULL; 6293 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx, 6294 sc->nodemask) { 6295 if (zone->zone_pgdat == last_pgdat) 6296 continue; 6297 last_pgdat = zone->zone_pgdat; 6298 6299 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat); 6300 6301 if (cgroup_reclaim(sc)) { 6302 struct lruvec *lruvec; 6303 6304 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, 6305 zone->zone_pgdat); 6306 clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags); 6307 } 6308 } 6309 6310 delayacct_freepages_end(); 6311 6312 if (sc->nr_reclaimed) 6313 return sc->nr_reclaimed; 6314 6315 /* Aborted reclaim to try compaction? don't OOM, then */ 6316 if (sc->compaction_ready) 6317 return 1; 6318 6319 /* 6320 * In most cases, direct reclaimers can do partial walks 6321 * through the cgroup tree to meet the reclaim goal while 6322 * keeping latency low. Since the iterator state is shared 6323 * among all direct reclaim invocations (to retain fairness 6324 * among cgroups), though, high concurrency can result in 6325 * individual threads not seeing enough cgroups to make 6326 * meaningful forward progress. Avoid false OOMs in this case. 6327 */ 6328 if (!sc->memcg_full_walk) { 6329 sc->priority = initial_priority; 6330 sc->memcg_full_walk = 1; 6331 goto retry; 6332 } 6333 6334 /* 6335 * We make inactive:active ratio decisions based on the node's 6336 * composition of memory, but a restrictive reclaim_idx or a 6337 * memory.low cgroup setting can exempt large amounts of 6338 * memory from reclaim. Neither of which are very common, so 6339 * instead of doing costly eligibility calculations of the 6340 * entire cgroup subtree up front, we assume the estimates are 6341 * good, and retry with forcible deactivation if that fails. 6342 */ 6343 if (sc->skipped_deactivate) { 6344 sc->priority = initial_priority; 6345 sc->force_deactivate = 1; 6346 sc->skipped_deactivate = 0; 6347 goto retry; 6348 } 6349 6350 /* Untapped cgroup reserves? Don't OOM, retry. */ 6351 if (sc->memcg_low_skipped) { 6352 sc->priority = initial_priority; 6353 sc->force_deactivate = 0; 6354 sc->memcg_low_reclaim = 1; 6355 sc->memcg_low_skipped = 0; 6356 goto retry; 6357 } 6358 6359 return 0; 6360 } 6361 6362 static bool allow_direct_reclaim(pg_data_t *pgdat) 6363 { 6364 struct zone *zone; 6365 unsigned long pfmemalloc_reserve = 0; 6366 unsigned long free_pages = 0; 6367 int i; 6368 bool wmark_ok; 6369 6370 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 6371 return true; 6372 6373 for (i = 0; i <= ZONE_NORMAL; i++) { 6374 zone = &pgdat->node_zones[i]; 6375 if (!managed_zone(zone)) 6376 continue; 6377 6378 if (!zone_reclaimable_pages(zone)) 6379 continue; 6380 6381 pfmemalloc_reserve += min_wmark_pages(zone); 6382 free_pages += zone_page_state_snapshot(zone, NR_FREE_PAGES); 6383 } 6384 6385 /* If there are no reserves (unexpected config) then do not throttle */ 6386 if (!pfmemalloc_reserve) 6387 return true; 6388 6389 wmark_ok = free_pages > pfmemalloc_reserve / 2; 6390 6391 /* kswapd must be awake if processes are being throttled */ 6392 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 6393 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL) 6394 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL); 6395 6396 wake_up_interruptible(&pgdat->kswapd_wait); 6397 } 6398 6399 return wmark_ok; 6400 } 6401 6402 /* 6403 * Throttle direct reclaimers if backing storage is backed by the network 6404 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 6405 * depleted. kswapd will continue to make progress and wake the processes 6406 * when the low watermark is reached. 6407 * 6408 * Returns true if a fatal signal was delivered during throttling. If this 6409 * happens, the page allocator should not consider triggering the OOM killer. 6410 */ 6411 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 6412 nodemask_t *nodemask) 6413 { 6414 struct zoneref *z; 6415 struct zone *zone; 6416 pg_data_t *pgdat = NULL; 6417 6418 /* 6419 * Kernel threads should not be throttled as they may be indirectly 6420 * responsible for cleaning pages necessary for reclaim to make forward 6421 * progress. kjournald for example may enter direct reclaim while 6422 * committing a transaction where throttling it could forcing other 6423 * processes to block on log_wait_commit(). 6424 */ 6425 if (current->flags & PF_KTHREAD) 6426 goto out; 6427 6428 /* 6429 * If a fatal signal is pending, this process should not throttle. 6430 * It should return quickly so it can exit and free its memory 6431 */ 6432 if (fatal_signal_pending(current)) 6433 goto out; 6434 6435 /* 6436 * Check if the pfmemalloc reserves are ok by finding the first node 6437 * with a usable ZONE_NORMAL or lower zone. The expectation is that 6438 * GFP_KERNEL will be required for allocating network buffers when 6439 * swapping over the network so ZONE_HIGHMEM is unusable. 6440 * 6441 * Throttling is based on the first usable node and throttled processes 6442 * wait on a queue until kswapd makes progress and wakes them. There 6443 * is an affinity then between processes waking up and where reclaim 6444 * progress has been made assuming the process wakes on the same node. 6445 * More importantly, processes running on remote nodes will not compete 6446 * for remote pfmemalloc reserves and processes on different nodes 6447 * should make reasonable progress. 6448 */ 6449 for_each_zone_zonelist_nodemask(zone, z, zonelist, 6450 gfp_zone(gfp_mask), nodemask) { 6451 if (zone_idx(zone) > ZONE_NORMAL) 6452 continue; 6453 6454 /* Throttle based on the first usable node */ 6455 pgdat = zone->zone_pgdat; 6456 if (allow_direct_reclaim(pgdat)) 6457 goto out; 6458 break; 6459 } 6460 6461 /* If no zone was usable by the allocation flags then do not throttle */ 6462 if (!pgdat) 6463 goto out; 6464 6465 /* Account for the throttling */ 6466 count_vm_event(PGSCAN_DIRECT_THROTTLE); 6467 6468 /* 6469 * If the caller cannot enter the filesystem, it's possible that it 6470 * is due to the caller holding an FS lock or performing a journal 6471 * transaction in the case of a filesystem like ext[3|4]. In this case, 6472 * it is not safe to block on pfmemalloc_wait as kswapd could be 6473 * blocked waiting on the same lock. Instead, throttle for up to a 6474 * second before continuing. 6475 */ 6476 if (!(gfp_mask & __GFP_FS)) 6477 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 6478 allow_direct_reclaim(pgdat), HZ); 6479 else 6480 /* Throttle until kswapd wakes the process */ 6481 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 6482 allow_direct_reclaim(pgdat)); 6483 6484 if (fatal_signal_pending(current)) 6485 return true; 6486 6487 out: 6488 return false; 6489 } 6490 6491 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 6492 gfp_t gfp_mask, nodemask_t *nodemask) 6493 { 6494 unsigned long nr_reclaimed; 6495 struct scan_control sc = { 6496 .nr_to_reclaim = SWAP_CLUSTER_MAX, 6497 .gfp_mask = current_gfp_context(gfp_mask), 6498 .reclaim_idx = gfp_zone(gfp_mask), 6499 .order = order, 6500 .nodemask = nodemask, 6501 .priority = DEF_PRIORITY, 6502 .may_writepage = !laptop_mode, 6503 .may_unmap = 1, 6504 .may_swap = 1, 6505 }; 6506 6507 /* 6508 * scan_control uses s8 fields for order, priority, and reclaim_idx. 6509 * Confirm they are large enough for max values. 6510 */ 6511 BUILD_BUG_ON(MAX_PAGE_ORDER >= S8_MAX); 6512 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX); 6513 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX); 6514 6515 /* 6516 * Do not enter reclaim if fatal signal was delivered while throttled. 6517 * 1 is returned so that the page allocator does not OOM kill at this 6518 * point. 6519 */ 6520 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask)) 6521 return 1; 6522 6523 set_task_reclaim_state(current, &sc.reclaim_state); 6524 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask); 6525 6526 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 6527 6528 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 6529 set_task_reclaim_state(current, NULL); 6530 6531 return nr_reclaimed; 6532 } 6533 6534 #ifdef CONFIG_MEMCG 6535 6536 /* Only used by soft limit reclaim. Do not reuse for anything else. */ 6537 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg, 6538 gfp_t gfp_mask, bool noswap, 6539 pg_data_t *pgdat, 6540 unsigned long *nr_scanned) 6541 { 6542 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 6543 struct scan_control sc = { 6544 .nr_to_reclaim = SWAP_CLUSTER_MAX, 6545 .target_mem_cgroup = memcg, 6546 .may_writepage = !laptop_mode, 6547 .may_unmap = 1, 6548 .reclaim_idx = MAX_NR_ZONES - 1, 6549 .may_swap = !noswap, 6550 }; 6551 6552 WARN_ON_ONCE(!current->reclaim_state); 6553 6554 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 6555 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 6556 6557 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 6558 sc.gfp_mask); 6559 6560 /* 6561 * NOTE: Although we can get the priority field, using it 6562 * here is not a good idea, since it limits the pages we can scan. 6563 * if we don't reclaim here, the shrink_node from balance_pgdat 6564 * will pick up pages from other mem cgroup's as well. We hack 6565 * the priority and make it zero. 6566 */ 6567 shrink_lruvec(lruvec, &sc); 6568 6569 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 6570 6571 *nr_scanned = sc.nr_scanned; 6572 6573 return sc.nr_reclaimed; 6574 } 6575 6576 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 6577 unsigned long nr_pages, 6578 gfp_t gfp_mask, 6579 unsigned int reclaim_options, 6580 int *swappiness) 6581 { 6582 unsigned long nr_reclaimed; 6583 unsigned int noreclaim_flag; 6584 struct scan_control sc = { 6585 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 6586 .proactive_swappiness = swappiness, 6587 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) | 6588 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 6589 .reclaim_idx = MAX_NR_ZONES - 1, 6590 .target_mem_cgroup = memcg, 6591 .priority = DEF_PRIORITY, 6592 .may_writepage = !laptop_mode, 6593 .may_unmap = 1, 6594 .may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP), 6595 .proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE), 6596 }; 6597 /* 6598 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put 6599 * equal pressure on all the nodes. This is based on the assumption that 6600 * the reclaim does not bail out early. 6601 */ 6602 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 6603 6604 set_task_reclaim_state(current, &sc.reclaim_state); 6605 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask); 6606 noreclaim_flag = memalloc_noreclaim_save(); 6607 6608 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 6609 6610 memalloc_noreclaim_restore(noreclaim_flag); 6611 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 6612 set_task_reclaim_state(current, NULL); 6613 6614 return nr_reclaimed; 6615 } 6616 #endif 6617 6618 static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc) 6619 { 6620 struct mem_cgroup *memcg; 6621 struct lruvec *lruvec; 6622 6623 if (lru_gen_enabled()) { 6624 lru_gen_age_node(pgdat, sc); 6625 return; 6626 } 6627 6628 if (!can_age_anon_pages(pgdat, sc)) 6629 return; 6630 6631 lruvec = mem_cgroup_lruvec(NULL, pgdat); 6632 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 6633 return; 6634 6635 memcg = mem_cgroup_iter(NULL, NULL, NULL); 6636 do { 6637 lruvec = mem_cgroup_lruvec(memcg, pgdat); 6638 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 6639 sc, LRU_ACTIVE_ANON); 6640 memcg = mem_cgroup_iter(NULL, memcg, NULL); 6641 } while (memcg); 6642 } 6643 6644 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx) 6645 { 6646 int i; 6647 struct zone *zone; 6648 6649 /* 6650 * Check for watermark boosts top-down as the higher zones 6651 * are more likely to be boosted. Both watermarks and boosts 6652 * should not be checked at the same time as reclaim would 6653 * start prematurely when there is no boosting and a lower 6654 * zone is balanced. 6655 */ 6656 for (i = highest_zoneidx; i >= 0; i--) { 6657 zone = pgdat->node_zones + i; 6658 if (!managed_zone(zone)) 6659 continue; 6660 6661 if (zone->watermark_boost) 6662 return true; 6663 } 6664 6665 return false; 6666 } 6667 6668 /* 6669 * Returns true if there is an eligible zone balanced for the request order 6670 * and highest_zoneidx 6671 */ 6672 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx) 6673 { 6674 int i; 6675 unsigned long mark = -1; 6676 struct zone *zone; 6677 6678 /* 6679 * Check watermarks bottom-up as lower zones are more likely to 6680 * meet watermarks. 6681 */ 6682 for (i = 0; i <= highest_zoneidx; i++) { 6683 zone = pgdat->node_zones + i; 6684 6685 if (!managed_zone(zone)) 6686 continue; 6687 6688 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) 6689 mark = promo_wmark_pages(zone); 6690 else 6691 mark = high_wmark_pages(zone); 6692 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx)) 6693 return true; 6694 } 6695 6696 /* 6697 * If a node has no managed zone within highest_zoneidx, it does not 6698 * need balancing by definition. This can happen if a zone-restricted 6699 * allocation tries to wake a remote kswapd. 6700 */ 6701 if (mark == -1) 6702 return true; 6703 6704 return false; 6705 } 6706 6707 /* Clear pgdat state for congested, dirty or under writeback. */ 6708 static void clear_pgdat_congested(pg_data_t *pgdat) 6709 { 6710 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat); 6711 6712 clear_bit(LRUVEC_NODE_CONGESTED, &lruvec->flags); 6713 clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags); 6714 clear_bit(PGDAT_DIRTY, &pgdat->flags); 6715 clear_bit(PGDAT_WRITEBACK, &pgdat->flags); 6716 } 6717 6718 /* 6719 * Prepare kswapd for sleeping. This verifies that there are no processes 6720 * waiting in throttle_direct_reclaim() and that watermarks have been met. 6721 * 6722 * Returns true if kswapd is ready to sleep 6723 */ 6724 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, 6725 int highest_zoneidx) 6726 { 6727 /* 6728 * The throttled processes are normally woken up in balance_pgdat() as 6729 * soon as allow_direct_reclaim() is true. But there is a potential 6730 * race between when kswapd checks the watermarks and a process gets 6731 * throttled. There is also a potential race if processes get 6732 * throttled, kswapd wakes, a large process exits thereby balancing the 6733 * zones, which causes kswapd to exit balance_pgdat() before reaching 6734 * the wake up checks. If kswapd is going to sleep, no process should 6735 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If 6736 * the wake up is premature, processes will wake kswapd and get 6737 * throttled again. The difference from wake ups in balance_pgdat() is 6738 * that here we are under prepare_to_wait(). 6739 */ 6740 if (waitqueue_active(&pgdat->pfmemalloc_wait)) 6741 wake_up_all(&pgdat->pfmemalloc_wait); 6742 6743 /* Hopeless node, leave it to direct reclaim */ 6744 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 6745 return true; 6746 6747 if (pgdat_balanced(pgdat, order, highest_zoneidx)) { 6748 clear_pgdat_congested(pgdat); 6749 return true; 6750 } 6751 6752 return false; 6753 } 6754 6755 /* 6756 * kswapd shrinks a node of pages that are at or below the highest usable 6757 * zone that is currently unbalanced. 6758 * 6759 * Returns true if kswapd scanned at least the requested number of pages to 6760 * reclaim or if the lack of progress was due to pages under writeback. 6761 * This is used to determine if the scanning priority needs to be raised. 6762 */ 6763 static bool kswapd_shrink_node(pg_data_t *pgdat, 6764 struct scan_control *sc) 6765 { 6766 struct zone *zone; 6767 int z; 6768 unsigned long nr_reclaimed = sc->nr_reclaimed; 6769 6770 /* Reclaim a number of pages proportional to the number of zones */ 6771 sc->nr_to_reclaim = 0; 6772 for (z = 0; z <= sc->reclaim_idx; z++) { 6773 zone = pgdat->node_zones + z; 6774 if (!managed_zone(zone)) 6775 continue; 6776 6777 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX); 6778 } 6779 6780 /* 6781 * Historically care was taken to put equal pressure on all zones but 6782 * now pressure is applied based on node LRU order. 6783 */ 6784 shrink_node(pgdat, sc); 6785 6786 /* 6787 * Fragmentation may mean that the system cannot be rebalanced for 6788 * high-order allocations. If twice the allocation size has been 6789 * reclaimed then recheck watermarks only at order-0 to prevent 6790 * excessive reclaim. Assume that a process requested a high-order 6791 * can direct reclaim/compact. 6792 */ 6793 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order)) 6794 sc->order = 0; 6795 6796 /* account for progress from mm_account_reclaimed_pages() */ 6797 return max(sc->nr_scanned, sc->nr_reclaimed - nr_reclaimed) >= sc->nr_to_reclaim; 6798 } 6799 6800 /* Page allocator PCP high watermark is lowered if reclaim is active. */ 6801 static inline void 6802 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active) 6803 { 6804 int i; 6805 struct zone *zone; 6806 6807 for (i = 0; i <= highest_zoneidx; i++) { 6808 zone = pgdat->node_zones + i; 6809 6810 if (!managed_zone(zone)) 6811 continue; 6812 6813 if (active) 6814 set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags); 6815 else 6816 clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags); 6817 } 6818 } 6819 6820 static inline void 6821 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx) 6822 { 6823 update_reclaim_active(pgdat, highest_zoneidx, true); 6824 } 6825 6826 static inline void 6827 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx) 6828 { 6829 update_reclaim_active(pgdat, highest_zoneidx, false); 6830 } 6831 6832 /* 6833 * For kswapd, balance_pgdat() will reclaim pages across a node from zones 6834 * that are eligible for use by the caller until at least one zone is 6835 * balanced. 6836 * 6837 * Returns the order kswapd finished reclaiming at. 6838 * 6839 * kswapd scans the zones in the highmem->normal->dma direction. It skips 6840 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 6841 * found to have free_pages <= high_wmark_pages(zone), any page in that zone 6842 * or lower is eligible for reclaim until at least one usable zone is 6843 * balanced. 6844 */ 6845 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx) 6846 { 6847 int i; 6848 unsigned long nr_soft_reclaimed; 6849 unsigned long nr_soft_scanned; 6850 unsigned long pflags; 6851 unsigned long nr_boost_reclaim; 6852 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, }; 6853 bool boosted; 6854 struct zone *zone; 6855 struct scan_control sc = { 6856 .gfp_mask = GFP_KERNEL, 6857 .order = order, 6858 .may_unmap = 1, 6859 }; 6860 6861 set_task_reclaim_state(current, &sc.reclaim_state); 6862 psi_memstall_enter(&pflags); 6863 __fs_reclaim_acquire(_THIS_IP_); 6864 6865 count_vm_event(PAGEOUTRUN); 6866 6867 /* 6868 * Account for the reclaim boost. Note that the zone boost is left in 6869 * place so that parallel allocations that are near the watermark will 6870 * stall or direct reclaim until kswapd is finished. 6871 */ 6872 nr_boost_reclaim = 0; 6873 for (i = 0; i <= highest_zoneidx; i++) { 6874 zone = pgdat->node_zones + i; 6875 if (!managed_zone(zone)) 6876 continue; 6877 6878 nr_boost_reclaim += zone->watermark_boost; 6879 zone_boosts[i] = zone->watermark_boost; 6880 } 6881 boosted = nr_boost_reclaim; 6882 6883 restart: 6884 set_reclaim_active(pgdat, highest_zoneidx); 6885 sc.priority = DEF_PRIORITY; 6886 do { 6887 unsigned long nr_reclaimed = sc.nr_reclaimed; 6888 bool raise_priority = true; 6889 bool balanced; 6890 bool ret; 6891 bool was_frozen; 6892 6893 sc.reclaim_idx = highest_zoneidx; 6894 6895 /* 6896 * If the number of buffer_heads exceeds the maximum allowed 6897 * then consider reclaiming from all zones. This has a dual 6898 * purpose -- on 64-bit systems it is expected that 6899 * buffer_heads are stripped during active rotation. On 32-bit 6900 * systems, highmem pages can pin lowmem memory and shrinking 6901 * buffers can relieve lowmem pressure. Reclaim may still not 6902 * go ahead if all eligible zones for the original allocation 6903 * request are balanced to avoid excessive reclaim from kswapd. 6904 */ 6905 if (buffer_heads_over_limit) { 6906 for (i = MAX_NR_ZONES - 1; i >= 0; i--) { 6907 zone = pgdat->node_zones + i; 6908 if (!managed_zone(zone)) 6909 continue; 6910 6911 sc.reclaim_idx = i; 6912 break; 6913 } 6914 } 6915 6916 /* 6917 * If the pgdat is imbalanced then ignore boosting and preserve 6918 * the watermarks for a later time and restart. Note that the 6919 * zone watermarks will be still reset at the end of balancing 6920 * on the grounds that the normal reclaim should be enough to 6921 * re-evaluate if boosting is required when kswapd next wakes. 6922 */ 6923 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx); 6924 if (!balanced && nr_boost_reclaim) { 6925 nr_boost_reclaim = 0; 6926 goto restart; 6927 } 6928 6929 /* 6930 * If boosting is not active then only reclaim if there are no 6931 * eligible zones. Note that sc.reclaim_idx is not used as 6932 * buffer_heads_over_limit may have adjusted it. 6933 */ 6934 if (!nr_boost_reclaim && balanced) 6935 goto out; 6936 6937 /* Limit the priority of boosting to avoid reclaim writeback */ 6938 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2) 6939 raise_priority = false; 6940 6941 /* 6942 * Do not writeback or swap pages for boosted reclaim. The 6943 * intent is to relieve pressure not issue sub-optimal IO 6944 * from reclaim context. If no pages are reclaimed, the 6945 * reclaim will be aborted. 6946 */ 6947 sc.may_writepage = !laptop_mode && !nr_boost_reclaim; 6948 sc.may_swap = !nr_boost_reclaim; 6949 6950 /* 6951 * Do some background aging, to give pages a chance to be 6952 * referenced before reclaiming. All pages are rotated 6953 * regardless of classzone as this is about consistent aging. 6954 */ 6955 kswapd_age_node(pgdat, &sc); 6956 6957 /* 6958 * If we're getting trouble reclaiming, start doing writepage 6959 * even in laptop mode. 6960 */ 6961 if (sc.priority < DEF_PRIORITY - 2) 6962 sc.may_writepage = 1; 6963 6964 /* Call soft limit reclaim before calling shrink_node. */ 6965 sc.nr_scanned = 0; 6966 nr_soft_scanned = 0; 6967 nr_soft_reclaimed = memcg1_soft_limit_reclaim(pgdat, sc.order, 6968 sc.gfp_mask, &nr_soft_scanned); 6969 sc.nr_reclaimed += nr_soft_reclaimed; 6970 6971 /* 6972 * There should be no need to raise the scanning priority if 6973 * enough pages are already being scanned that that high 6974 * watermark would be met at 100% efficiency. 6975 */ 6976 if (kswapd_shrink_node(pgdat, &sc)) 6977 raise_priority = false; 6978 6979 /* 6980 * If the low watermark is met there is no need for processes 6981 * to be throttled on pfmemalloc_wait as they should not be 6982 * able to safely make forward progress. Wake them 6983 */ 6984 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 6985 allow_direct_reclaim(pgdat)) 6986 wake_up_all(&pgdat->pfmemalloc_wait); 6987 6988 /* Check if kswapd should be suspending */ 6989 __fs_reclaim_release(_THIS_IP_); 6990 ret = kthread_freezable_should_stop(&was_frozen); 6991 __fs_reclaim_acquire(_THIS_IP_); 6992 if (was_frozen || ret) 6993 break; 6994 6995 /* 6996 * Raise priority if scanning rate is too low or there was no 6997 * progress in reclaiming pages 6998 */ 6999 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed; 7000 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed); 7001 7002 /* 7003 * If reclaim made no progress for a boost, stop reclaim as 7004 * IO cannot be queued and it could be an infinite loop in 7005 * extreme circumstances. 7006 */ 7007 if (nr_boost_reclaim && !nr_reclaimed) 7008 break; 7009 7010 if (raise_priority || !nr_reclaimed) 7011 sc.priority--; 7012 } while (sc.priority >= 1); 7013 7014 /* 7015 * Restart only if it went through the priority loop all the way, 7016 * but cache_trim_mode didn't work. 7017 */ 7018 if (!sc.nr_reclaimed && sc.priority < 1 && 7019 !sc.no_cache_trim_mode && sc.cache_trim_mode_failed) { 7020 sc.no_cache_trim_mode = 1; 7021 goto restart; 7022 } 7023 7024 if (!sc.nr_reclaimed) 7025 pgdat->kswapd_failures++; 7026 7027 out: 7028 clear_reclaim_active(pgdat, highest_zoneidx); 7029 7030 /* If reclaim was boosted, account for the reclaim done in this pass */ 7031 if (boosted) { 7032 unsigned long flags; 7033 7034 for (i = 0; i <= highest_zoneidx; i++) { 7035 if (!zone_boosts[i]) 7036 continue; 7037 7038 /* Increments are under the zone lock */ 7039 zone = pgdat->node_zones + i; 7040 spin_lock_irqsave(&zone->lock, flags); 7041 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]); 7042 spin_unlock_irqrestore(&zone->lock, flags); 7043 } 7044 7045 /* 7046 * As there is now likely space, wakeup kcompact to defragment 7047 * pageblocks. 7048 */ 7049 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx); 7050 } 7051 7052 snapshot_refaults(NULL, pgdat); 7053 __fs_reclaim_release(_THIS_IP_); 7054 psi_memstall_leave(&pflags); 7055 set_task_reclaim_state(current, NULL); 7056 7057 /* 7058 * Return the order kswapd stopped reclaiming at as 7059 * prepare_kswapd_sleep() takes it into account. If another caller 7060 * entered the allocator slow path while kswapd was awake, order will 7061 * remain at the higher level. 7062 */ 7063 return sc.order; 7064 } 7065 7066 /* 7067 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to 7068 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is 7069 * not a valid index then either kswapd runs for first time or kswapd couldn't 7070 * sleep after previous reclaim attempt (node is still unbalanced). In that 7071 * case return the zone index of the previous kswapd reclaim cycle. 7072 */ 7073 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat, 7074 enum zone_type prev_highest_zoneidx) 7075 { 7076 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 7077 7078 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx; 7079 } 7080 7081 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order, 7082 unsigned int highest_zoneidx) 7083 { 7084 long remaining = 0; 7085 DEFINE_WAIT(wait); 7086 7087 if (freezing(current) || kthread_should_stop()) 7088 return; 7089 7090 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 7091 7092 /* 7093 * Try to sleep for a short interval. Note that kcompactd will only be 7094 * woken if it is possible to sleep for a short interval. This is 7095 * deliberate on the assumption that if reclaim cannot keep an 7096 * eligible zone balanced that it's also unlikely that compaction will 7097 * succeed. 7098 */ 7099 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 7100 /* 7101 * Compaction records what page blocks it recently failed to 7102 * isolate pages from and skips them in the future scanning. 7103 * When kswapd is going to sleep, it is reasonable to assume 7104 * that pages and compaction may succeed so reset the cache. 7105 */ 7106 reset_isolation_suitable(pgdat); 7107 7108 /* 7109 * We have freed the memory, now we should compact it to make 7110 * allocation of the requested order possible. 7111 */ 7112 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx); 7113 7114 remaining = schedule_timeout(HZ/10); 7115 7116 /* 7117 * If woken prematurely then reset kswapd_highest_zoneidx and 7118 * order. The values will either be from a wakeup request or 7119 * the previous request that slept prematurely. 7120 */ 7121 if (remaining) { 7122 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, 7123 kswapd_highest_zoneidx(pgdat, 7124 highest_zoneidx)); 7125 7126 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order) 7127 WRITE_ONCE(pgdat->kswapd_order, reclaim_order); 7128 } 7129 7130 finish_wait(&pgdat->kswapd_wait, &wait); 7131 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 7132 } 7133 7134 /* 7135 * After a short sleep, check if it was a premature sleep. If not, then 7136 * go fully to sleep until explicitly woken up. 7137 */ 7138 if (!remaining && 7139 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 7140 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 7141 7142 /* 7143 * vmstat counters are not perfectly accurate and the estimated 7144 * value for counters such as NR_FREE_PAGES can deviate from the 7145 * true value by nr_online_cpus * threshold. To avoid the zone 7146 * watermarks being breached while under pressure, we reduce the 7147 * per-cpu vmstat threshold while kswapd is awake and restore 7148 * them before going back to sleep. 7149 */ 7150 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 7151 7152 if (!kthread_should_stop()) 7153 schedule(); 7154 7155 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 7156 } else { 7157 if (remaining) 7158 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 7159 else 7160 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 7161 } 7162 finish_wait(&pgdat->kswapd_wait, &wait); 7163 } 7164 7165 /* 7166 * The background pageout daemon, started as a kernel thread 7167 * from the init process. 7168 * 7169 * This basically trickles out pages so that we have _some_ 7170 * free memory available even if there is no other activity 7171 * that frees anything up. This is needed for things like routing 7172 * etc, where we otherwise might have all activity going on in 7173 * asynchronous contexts that cannot page things out. 7174 * 7175 * If there are applications that are active memory-allocators 7176 * (most normal use), this basically shouldn't matter. 7177 */ 7178 static int kswapd(void *p) 7179 { 7180 unsigned int alloc_order, reclaim_order; 7181 unsigned int highest_zoneidx = MAX_NR_ZONES - 1; 7182 pg_data_t *pgdat = (pg_data_t *)p; 7183 struct task_struct *tsk = current; 7184 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 7185 7186 if (!cpumask_empty(cpumask)) 7187 set_cpus_allowed_ptr(tsk, cpumask); 7188 7189 /* 7190 * Tell the memory management that we're a "memory allocator", 7191 * and that if we need more memory we should get access to it 7192 * regardless (see "__alloc_pages()"). "kswapd" should 7193 * never get caught in the normal page freeing logic. 7194 * 7195 * (Kswapd normally doesn't need memory anyway, but sometimes 7196 * you need a small amount of memory in order to be able to 7197 * page out something else, and this flag essentially protects 7198 * us from recursively trying to free more memory as we're 7199 * trying to free the first piece of memory in the first place). 7200 */ 7201 tsk->flags |= PF_MEMALLOC | PF_KSWAPD; 7202 set_freezable(); 7203 7204 WRITE_ONCE(pgdat->kswapd_order, 0); 7205 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 7206 atomic_set(&pgdat->nr_writeback_throttled, 0); 7207 for ( ; ; ) { 7208 bool was_frozen; 7209 7210 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order); 7211 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 7212 highest_zoneidx); 7213 7214 kswapd_try_sleep: 7215 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order, 7216 highest_zoneidx); 7217 7218 /* Read the new order and highest_zoneidx */ 7219 alloc_order = READ_ONCE(pgdat->kswapd_order); 7220 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 7221 highest_zoneidx); 7222 WRITE_ONCE(pgdat->kswapd_order, 0); 7223 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 7224 7225 if (kthread_freezable_should_stop(&was_frozen)) 7226 break; 7227 7228 /* 7229 * We can speed up thawing tasks if we don't call balance_pgdat 7230 * after returning from the refrigerator 7231 */ 7232 if (was_frozen) 7233 continue; 7234 7235 /* 7236 * Reclaim begins at the requested order but if a high-order 7237 * reclaim fails then kswapd falls back to reclaiming for 7238 * order-0. If that happens, kswapd will consider sleeping 7239 * for the order it finished reclaiming at (reclaim_order) 7240 * but kcompactd is woken to compact for the original 7241 * request (alloc_order). 7242 */ 7243 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx, 7244 alloc_order); 7245 reclaim_order = balance_pgdat(pgdat, alloc_order, 7246 highest_zoneidx); 7247 if (reclaim_order < alloc_order) 7248 goto kswapd_try_sleep; 7249 } 7250 7251 tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD); 7252 7253 return 0; 7254 } 7255 7256 /* 7257 * A zone is low on free memory or too fragmented for high-order memory. If 7258 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's 7259 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim 7260 * has failed or is not needed, still wake up kcompactd if only compaction is 7261 * needed. 7262 */ 7263 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order, 7264 enum zone_type highest_zoneidx) 7265 { 7266 pg_data_t *pgdat; 7267 enum zone_type curr_idx; 7268 7269 if (!managed_zone(zone)) 7270 return; 7271 7272 if (!cpuset_zone_allowed(zone, gfp_flags)) 7273 return; 7274 7275 pgdat = zone->zone_pgdat; 7276 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 7277 7278 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx) 7279 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx); 7280 7281 if (READ_ONCE(pgdat->kswapd_order) < order) 7282 WRITE_ONCE(pgdat->kswapd_order, order); 7283 7284 if (!waitqueue_active(&pgdat->kswapd_wait)) 7285 return; 7286 7287 /* Hopeless node, leave it to direct reclaim if possible */ 7288 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES || 7289 (pgdat_balanced(pgdat, order, highest_zoneidx) && 7290 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) { 7291 /* 7292 * There may be plenty of free memory available, but it's too 7293 * fragmented for high-order allocations. Wake up kcompactd 7294 * and rely on compaction_suitable() to determine if it's 7295 * needed. If it fails, it will defer subsequent attempts to 7296 * ratelimit its work. 7297 */ 7298 if (!(gfp_flags & __GFP_DIRECT_RECLAIM)) 7299 wakeup_kcompactd(pgdat, order, highest_zoneidx); 7300 return; 7301 } 7302 7303 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order, 7304 gfp_flags); 7305 wake_up_interruptible(&pgdat->kswapd_wait); 7306 } 7307 7308 #ifdef CONFIG_HIBERNATION 7309 /* 7310 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 7311 * freed pages. 7312 * 7313 * Rather than trying to age LRUs the aim is to preserve the overall 7314 * LRU order by reclaiming preferentially 7315 * inactive > active > active referenced > active mapped 7316 */ 7317 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 7318 { 7319 struct scan_control sc = { 7320 .nr_to_reclaim = nr_to_reclaim, 7321 .gfp_mask = GFP_HIGHUSER_MOVABLE, 7322 .reclaim_idx = MAX_NR_ZONES - 1, 7323 .priority = DEF_PRIORITY, 7324 .may_writepage = 1, 7325 .may_unmap = 1, 7326 .may_swap = 1, 7327 .hibernation_mode = 1, 7328 }; 7329 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 7330 unsigned long nr_reclaimed; 7331 unsigned int noreclaim_flag; 7332 7333 fs_reclaim_acquire(sc.gfp_mask); 7334 noreclaim_flag = memalloc_noreclaim_save(); 7335 set_task_reclaim_state(current, &sc.reclaim_state); 7336 7337 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 7338 7339 set_task_reclaim_state(current, NULL); 7340 memalloc_noreclaim_restore(noreclaim_flag); 7341 fs_reclaim_release(sc.gfp_mask); 7342 7343 return nr_reclaimed; 7344 } 7345 #endif /* CONFIG_HIBERNATION */ 7346 7347 /* 7348 * This kswapd start function will be called by init and node-hot-add. 7349 */ 7350 void __meminit kswapd_run(int nid) 7351 { 7352 pg_data_t *pgdat = NODE_DATA(nid); 7353 7354 pgdat_kswapd_lock(pgdat); 7355 if (!pgdat->kswapd) { 7356 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 7357 if (IS_ERR(pgdat->kswapd)) { 7358 /* failure at boot is fatal */ 7359 pr_err("Failed to start kswapd on node %d,ret=%ld\n", 7360 nid, PTR_ERR(pgdat->kswapd)); 7361 BUG_ON(system_state < SYSTEM_RUNNING); 7362 pgdat->kswapd = NULL; 7363 } 7364 } 7365 pgdat_kswapd_unlock(pgdat); 7366 } 7367 7368 /* 7369 * Called by memory hotplug when all memory in a node is offlined. Caller must 7370 * be holding mem_hotplug_begin/done(). 7371 */ 7372 void __meminit kswapd_stop(int nid) 7373 { 7374 pg_data_t *pgdat = NODE_DATA(nid); 7375 struct task_struct *kswapd; 7376 7377 pgdat_kswapd_lock(pgdat); 7378 kswapd = pgdat->kswapd; 7379 if (kswapd) { 7380 kthread_stop(kswapd); 7381 pgdat->kswapd = NULL; 7382 } 7383 pgdat_kswapd_unlock(pgdat); 7384 } 7385 7386 static int __init kswapd_init(void) 7387 { 7388 int nid; 7389 7390 swap_setup(); 7391 for_each_node_state(nid, N_MEMORY) 7392 kswapd_run(nid); 7393 return 0; 7394 } 7395 7396 module_init(kswapd_init) 7397 7398 #ifdef CONFIG_NUMA 7399 /* 7400 * Node reclaim mode 7401 * 7402 * If non-zero call node_reclaim when the number of free pages falls below 7403 * the watermarks. 7404 */ 7405 int node_reclaim_mode __read_mostly; 7406 7407 /* 7408 * Priority for NODE_RECLAIM. This determines the fraction of pages 7409 * of a node considered for each zone_reclaim. 4 scans 1/16th of 7410 * a zone. 7411 */ 7412 #define NODE_RECLAIM_PRIORITY 4 7413 7414 /* 7415 * Percentage of pages in a zone that must be unmapped for node_reclaim to 7416 * occur. 7417 */ 7418 int sysctl_min_unmapped_ratio = 1; 7419 7420 /* 7421 * If the number of slab pages in a zone grows beyond this percentage then 7422 * slab reclaim needs to occur. 7423 */ 7424 int sysctl_min_slab_ratio = 5; 7425 7426 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat) 7427 { 7428 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED); 7429 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) + 7430 node_page_state(pgdat, NR_ACTIVE_FILE); 7431 7432 /* 7433 * It's possible for there to be more file mapped pages than 7434 * accounted for by the pages on the file LRU lists because 7435 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 7436 */ 7437 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 7438 } 7439 7440 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 7441 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat) 7442 { 7443 unsigned long nr_pagecache_reclaimable; 7444 unsigned long delta = 0; 7445 7446 /* 7447 * If RECLAIM_UNMAP is set, then all file pages are considered 7448 * potentially reclaimable. Otherwise, we have to worry about 7449 * pages like swapcache and node_unmapped_file_pages() provides 7450 * a better estimate 7451 */ 7452 if (node_reclaim_mode & RECLAIM_UNMAP) 7453 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES); 7454 else 7455 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat); 7456 7457 /* If we can't clean pages, remove dirty pages from consideration */ 7458 if (!(node_reclaim_mode & RECLAIM_WRITE)) 7459 delta += node_page_state(pgdat, NR_FILE_DIRTY); 7460 7461 /* Watch for any possible underflows due to delta */ 7462 if (unlikely(delta > nr_pagecache_reclaimable)) 7463 delta = nr_pagecache_reclaimable; 7464 7465 return nr_pagecache_reclaimable - delta; 7466 } 7467 7468 /* 7469 * Try to free up some pages from this node through reclaim. 7470 */ 7471 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 7472 { 7473 /* Minimum pages needed in order to stay on node */ 7474 const unsigned long nr_pages = 1 << order; 7475 struct task_struct *p = current; 7476 unsigned int noreclaim_flag; 7477 struct scan_control sc = { 7478 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 7479 .gfp_mask = current_gfp_context(gfp_mask), 7480 .order = order, 7481 .priority = NODE_RECLAIM_PRIORITY, 7482 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE), 7483 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP), 7484 .may_swap = 1, 7485 .reclaim_idx = gfp_zone(gfp_mask), 7486 }; 7487 unsigned long pflags; 7488 7489 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order, 7490 sc.gfp_mask); 7491 7492 cond_resched(); 7493 psi_memstall_enter(&pflags); 7494 delayacct_freepages_start(); 7495 fs_reclaim_acquire(sc.gfp_mask); 7496 /* 7497 * We need to be able to allocate from the reserves for RECLAIM_UNMAP 7498 */ 7499 noreclaim_flag = memalloc_noreclaim_save(); 7500 set_task_reclaim_state(p, &sc.reclaim_state); 7501 7502 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages || 7503 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) { 7504 /* 7505 * Free memory by calling shrink node with increasing 7506 * priorities until we have enough memory freed. 7507 */ 7508 do { 7509 shrink_node(pgdat, &sc); 7510 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 7511 } 7512 7513 set_task_reclaim_state(p, NULL); 7514 memalloc_noreclaim_restore(noreclaim_flag); 7515 fs_reclaim_release(sc.gfp_mask); 7516 psi_memstall_leave(&pflags); 7517 delayacct_freepages_end(); 7518 7519 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed); 7520 7521 return sc.nr_reclaimed >= nr_pages; 7522 } 7523 7524 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 7525 { 7526 int ret; 7527 7528 /* 7529 * Node reclaim reclaims unmapped file backed pages and 7530 * slab pages if we are over the defined limits. 7531 * 7532 * A small portion of unmapped file backed pages is needed for 7533 * file I/O otherwise pages read by file I/O will be immediately 7534 * thrown out if the node is overallocated. So we do not reclaim 7535 * if less than a specified percentage of the node is used by 7536 * unmapped file backed pages. 7537 */ 7538 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages && 7539 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <= 7540 pgdat->min_slab_pages) 7541 return NODE_RECLAIM_FULL; 7542 7543 /* 7544 * Do not scan if the allocation should not be delayed. 7545 */ 7546 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) 7547 return NODE_RECLAIM_NOSCAN; 7548 7549 /* 7550 * Only run node reclaim on the local node or on nodes that do not 7551 * have associated processors. This will favor the local processor 7552 * over remote processors and spread off node memory allocations 7553 * as wide as possible. 7554 */ 7555 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id()) 7556 return NODE_RECLAIM_NOSCAN; 7557 7558 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags)) 7559 return NODE_RECLAIM_NOSCAN; 7560 7561 ret = __node_reclaim(pgdat, gfp_mask, order); 7562 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags); 7563 7564 if (ret) 7565 count_vm_event(PGSCAN_ZONE_RECLAIM_SUCCESS); 7566 else 7567 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 7568 7569 return ret; 7570 } 7571 #endif 7572 7573 /** 7574 * check_move_unevictable_folios - Move evictable folios to appropriate zone 7575 * lru list 7576 * @fbatch: Batch of lru folios to check. 7577 * 7578 * Checks folios for evictability, if an evictable folio is in the unevictable 7579 * lru list, moves it to the appropriate evictable lru list. This function 7580 * should be only used for lru folios. 7581 */ 7582 void check_move_unevictable_folios(struct folio_batch *fbatch) 7583 { 7584 struct lruvec *lruvec = NULL; 7585 int pgscanned = 0; 7586 int pgrescued = 0; 7587 int i; 7588 7589 for (i = 0; i < fbatch->nr; i++) { 7590 struct folio *folio = fbatch->folios[i]; 7591 int nr_pages = folio_nr_pages(folio); 7592 7593 pgscanned += nr_pages; 7594 7595 /* block memcg migration while the folio moves between lrus */ 7596 if (!folio_test_clear_lru(folio)) 7597 continue; 7598 7599 lruvec = folio_lruvec_relock_irq(folio, lruvec); 7600 if (folio_evictable(folio) && folio_test_unevictable(folio)) { 7601 lruvec_del_folio(lruvec, folio); 7602 folio_clear_unevictable(folio); 7603 lruvec_add_folio(lruvec, folio); 7604 pgrescued += nr_pages; 7605 } 7606 folio_set_lru(folio); 7607 } 7608 7609 if (lruvec) { 7610 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 7611 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 7612 unlock_page_lruvec_irq(lruvec); 7613 } else if (pgscanned) { 7614 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 7615 } 7616 } 7617 EXPORT_SYMBOL_GPL(check_move_unevictable_folios); 7618