1 /* 2 * linux/mm/vmscan.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * 6 * Swap reorganised 29.12.95, Stephen Tweedie. 7 * kswapd added: 7.1.96 sct 8 * Removed kswapd_ctl limits, and swap out as many pages as needed 9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 11 * Multiqueue VM started 5.8.00, Rik van Riel. 12 */ 13 14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 15 16 #include <linux/mm.h> 17 #include <linux/module.h> 18 #include <linux/gfp.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/swap.h> 21 #include <linux/pagemap.h> 22 #include <linux/init.h> 23 #include <linux/highmem.h> 24 #include <linux/vmpressure.h> 25 #include <linux/vmstat.h> 26 #include <linux/file.h> 27 #include <linux/writeback.h> 28 #include <linux/blkdev.h> 29 #include <linux/buffer_head.h> /* for try_to_release_page(), 30 buffer_heads_over_limit */ 31 #include <linux/mm_inline.h> 32 #include <linux/backing-dev.h> 33 #include <linux/rmap.h> 34 #include <linux/topology.h> 35 #include <linux/cpu.h> 36 #include <linux/cpuset.h> 37 #include <linux/compaction.h> 38 #include <linux/notifier.h> 39 #include <linux/rwsem.h> 40 #include <linux/delay.h> 41 #include <linux/kthread.h> 42 #include <linux/freezer.h> 43 #include <linux/memcontrol.h> 44 #include <linux/delayacct.h> 45 #include <linux/sysctl.h> 46 #include <linux/oom.h> 47 #include <linux/prefetch.h> 48 #include <linux/printk.h> 49 50 #include <asm/tlbflush.h> 51 #include <asm/div64.h> 52 53 #include <linux/swapops.h> 54 #include <linux/balloon_compaction.h> 55 56 #include "internal.h" 57 58 #define CREATE_TRACE_POINTS 59 #include <trace/events/vmscan.h> 60 61 struct scan_control { 62 /* How many pages shrink_list() should reclaim */ 63 unsigned long nr_to_reclaim; 64 65 /* This context's GFP mask */ 66 gfp_t gfp_mask; 67 68 /* Allocation order */ 69 int order; 70 71 /* 72 * Nodemask of nodes allowed by the caller. If NULL, all nodes 73 * are scanned. 74 */ 75 nodemask_t *nodemask; 76 77 /* 78 * The memory cgroup that hit its limit and as a result is the 79 * primary target of this reclaim invocation. 80 */ 81 struct mem_cgroup *target_mem_cgroup; 82 83 /* Scan (total_size >> priority) pages at once */ 84 int priority; 85 86 unsigned int may_writepage:1; 87 88 /* Can mapped pages be reclaimed? */ 89 unsigned int may_unmap:1; 90 91 /* Can pages be swapped as part of reclaim? */ 92 unsigned int may_swap:1; 93 94 unsigned int hibernation_mode:1; 95 96 /* One of the zones is ready for compaction */ 97 unsigned int compaction_ready:1; 98 99 /* Incremented by the number of inactive pages that were scanned */ 100 unsigned long nr_scanned; 101 102 /* Number of pages freed so far during a call to shrink_zones() */ 103 unsigned long nr_reclaimed; 104 }; 105 106 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru)) 107 108 #ifdef ARCH_HAS_PREFETCH 109 #define prefetch_prev_lru_page(_page, _base, _field) \ 110 do { \ 111 if ((_page)->lru.prev != _base) { \ 112 struct page *prev; \ 113 \ 114 prev = lru_to_page(&(_page->lru)); \ 115 prefetch(&prev->_field); \ 116 } \ 117 } while (0) 118 #else 119 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0) 120 #endif 121 122 #ifdef ARCH_HAS_PREFETCHW 123 #define prefetchw_prev_lru_page(_page, _base, _field) \ 124 do { \ 125 if ((_page)->lru.prev != _base) { \ 126 struct page *prev; \ 127 \ 128 prev = lru_to_page(&(_page->lru)); \ 129 prefetchw(&prev->_field); \ 130 } \ 131 } while (0) 132 #else 133 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 134 #endif 135 136 /* 137 * From 0 .. 100. Higher means more swappy. 138 */ 139 int vm_swappiness = 60; 140 /* 141 * The total number of pages which are beyond the high watermark within all 142 * zones. 143 */ 144 unsigned long vm_total_pages; 145 146 static LIST_HEAD(shrinker_list); 147 static DECLARE_RWSEM(shrinker_rwsem); 148 149 #ifdef CONFIG_MEMCG 150 static bool global_reclaim(struct scan_control *sc) 151 { 152 return !sc->target_mem_cgroup; 153 } 154 #else 155 static bool global_reclaim(struct scan_control *sc) 156 { 157 return true; 158 } 159 #endif 160 161 static unsigned long zone_reclaimable_pages(struct zone *zone) 162 { 163 int nr; 164 165 nr = zone_page_state(zone, NR_ACTIVE_FILE) + 166 zone_page_state(zone, NR_INACTIVE_FILE); 167 168 if (get_nr_swap_pages() > 0) 169 nr += zone_page_state(zone, NR_ACTIVE_ANON) + 170 zone_page_state(zone, NR_INACTIVE_ANON); 171 172 return nr; 173 } 174 175 bool zone_reclaimable(struct zone *zone) 176 { 177 return zone_page_state(zone, NR_PAGES_SCANNED) < 178 zone_reclaimable_pages(zone) * 6; 179 } 180 181 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru) 182 { 183 if (!mem_cgroup_disabled()) 184 return mem_cgroup_get_lru_size(lruvec, lru); 185 186 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru); 187 } 188 189 /* 190 * Add a shrinker callback to be called from the vm. 191 */ 192 int register_shrinker(struct shrinker *shrinker) 193 { 194 size_t size = sizeof(*shrinker->nr_deferred); 195 196 /* 197 * If we only have one possible node in the system anyway, save 198 * ourselves the trouble and disable NUMA aware behavior. This way we 199 * will save memory and some small loop time later. 200 */ 201 if (nr_node_ids == 1) 202 shrinker->flags &= ~SHRINKER_NUMA_AWARE; 203 204 if (shrinker->flags & SHRINKER_NUMA_AWARE) 205 size *= nr_node_ids; 206 207 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); 208 if (!shrinker->nr_deferred) 209 return -ENOMEM; 210 211 down_write(&shrinker_rwsem); 212 list_add_tail(&shrinker->list, &shrinker_list); 213 up_write(&shrinker_rwsem); 214 return 0; 215 } 216 EXPORT_SYMBOL(register_shrinker); 217 218 /* 219 * Remove one 220 */ 221 void unregister_shrinker(struct shrinker *shrinker) 222 { 223 down_write(&shrinker_rwsem); 224 list_del(&shrinker->list); 225 up_write(&shrinker_rwsem); 226 kfree(shrinker->nr_deferred); 227 } 228 EXPORT_SYMBOL(unregister_shrinker); 229 230 #define SHRINK_BATCH 128 231 232 static unsigned long shrink_slabs(struct shrink_control *shrinkctl, 233 struct shrinker *shrinker, 234 unsigned long nr_scanned, 235 unsigned long nr_eligible) 236 { 237 unsigned long freed = 0; 238 unsigned long long delta; 239 long total_scan; 240 long freeable; 241 long nr; 242 long new_nr; 243 int nid = shrinkctl->nid; 244 long batch_size = shrinker->batch ? shrinker->batch 245 : SHRINK_BATCH; 246 247 freeable = shrinker->count_objects(shrinker, shrinkctl); 248 if (freeable == 0) 249 return 0; 250 251 /* 252 * copy the current shrinker scan count into a local variable 253 * and zero it so that other concurrent shrinker invocations 254 * don't also do this scanning work. 255 */ 256 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0); 257 258 total_scan = nr; 259 delta = (4 * nr_scanned) / shrinker->seeks; 260 delta *= freeable; 261 do_div(delta, nr_eligible + 1); 262 total_scan += delta; 263 if (total_scan < 0) { 264 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n", 265 shrinker->scan_objects, total_scan); 266 total_scan = freeable; 267 } 268 269 /* 270 * We need to avoid excessive windup on filesystem shrinkers 271 * due to large numbers of GFP_NOFS allocations causing the 272 * shrinkers to return -1 all the time. This results in a large 273 * nr being built up so when a shrink that can do some work 274 * comes along it empties the entire cache due to nr >>> 275 * freeable. This is bad for sustaining a working set in 276 * memory. 277 * 278 * Hence only allow the shrinker to scan the entire cache when 279 * a large delta change is calculated directly. 280 */ 281 if (delta < freeable / 4) 282 total_scan = min(total_scan, freeable / 2); 283 284 /* 285 * Avoid risking looping forever due to too large nr value: 286 * never try to free more than twice the estimate number of 287 * freeable entries. 288 */ 289 if (total_scan > freeable * 2) 290 total_scan = freeable * 2; 291 292 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, 293 nr_scanned, nr_eligible, 294 freeable, delta, total_scan); 295 296 /* 297 * Normally, we should not scan less than batch_size objects in one 298 * pass to avoid too frequent shrinker calls, but if the slab has less 299 * than batch_size objects in total and we are really tight on memory, 300 * we will try to reclaim all available objects, otherwise we can end 301 * up failing allocations although there are plenty of reclaimable 302 * objects spread over several slabs with usage less than the 303 * batch_size. 304 * 305 * We detect the "tight on memory" situations by looking at the total 306 * number of objects we want to scan (total_scan). If it is greater 307 * than the total number of objects on slab (freeable), we must be 308 * scanning at high prio and therefore should try to reclaim as much as 309 * possible. 310 */ 311 while (total_scan >= batch_size || 312 total_scan >= freeable) { 313 unsigned long ret; 314 unsigned long nr_to_scan = min(batch_size, total_scan); 315 316 shrinkctl->nr_to_scan = nr_to_scan; 317 ret = shrinker->scan_objects(shrinker, shrinkctl); 318 if (ret == SHRINK_STOP) 319 break; 320 freed += ret; 321 322 count_vm_events(SLABS_SCANNED, nr_to_scan); 323 total_scan -= nr_to_scan; 324 325 cond_resched(); 326 } 327 328 /* 329 * move the unused scan count back into the shrinker in a 330 * manner that handles concurrent updates. If we exhausted the 331 * scan, there is no need to do an update. 332 */ 333 if (total_scan > 0) 334 new_nr = atomic_long_add_return(total_scan, 335 &shrinker->nr_deferred[nid]); 336 else 337 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]); 338 339 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan); 340 return freed; 341 } 342 343 /** 344 * shrink_node_slabs - shrink slab caches of a given node 345 * @gfp_mask: allocation context 346 * @nid: node whose slab caches to target 347 * @nr_scanned: pressure numerator 348 * @nr_eligible: pressure denominator 349 * 350 * Call the shrink functions to age shrinkable caches. 351 * 352 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set, 353 * unaware shrinkers will receive a node id of 0 instead. 354 * 355 * @nr_scanned and @nr_eligible form a ratio that indicate how much of 356 * the available objects should be scanned. Page reclaim for example 357 * passes the number of pages scanned and the number of pages on the 358 * LRU lists that it considered on @nid, plus a bias in @nr_scanned 359 * when it encountered mapped pages. The ratio is further biased by 360 * the ->seeks setting of the shrink function, which indicates the 361 * cost to recreate an object relative to that of an LRU page. 362 * 363 * Returns the number of reclaimed slab objects. 364 */ 365 unsigned long shrink_node_slabs(gfp_t gfp_mask, int nid, 366 unsigned long nr_scanned, 367 unsigned long nr_eligible) 368 { 369 struct shrinker *shrinker; 370 unsigned long freed = 0; 371 372 if (nr_scanned == 0) 373 nr_scanned = SWAP_CLUSTER_MAX; 374 375 if (!down_read_trylock(&shrinker_rwsem)) { 376 /* 377 * If we would return 0, our callers would understand that we 378 * have nothing else to shrink and give up trying. By returning 379 * 1 we keep it going and assume we'll be able to shrink next 380 * time. 381 */ 382 freed = 1; 383 goto out; 384 } 385 386 list_for_each_entry(shrinker, &shrinker_list, list) { 387 struct shrink_control sc = { 388 .gfp_mask = gfp_mask, 389 .nid = nid, 390 }; 391 392 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 393 sc.nid = 0; 394 395 freed += shrink_slabs(&sc, shrinker, nr_scanned, nr_eligible); 396 } 397 398 up_read(&shrinker_rwsem); 399 out: 400 cond_resched(); 401 return freed; 402 } 403 404 static inline int is_page_cache_freeable(struct page *page) 405 { 406 /* 407 * A freeable page cache page is referenced only by the caller 408 * that isolated the page, the page cache radix tree and 409 * optional buffer heads at page->private. 410 */ 411 return page_count(page) - page_has_private(page) == 2; 412 } 413 414 static int may_write_to_queue(struct backing_dev_info *bdi, 415 struct scan_control *sc) 416 { 417 if (current->flags & PF_SWAPWRITE) 418 return 1; 419 if (!bdi_write_congested(bdi)) 420 return 1; 421 if (bdi == current->backing_dev_info) 422 return 1; 423 return 0; 424 } 425 426 /* 427 * We detected a synchronous write error writing a page out. Probably 428 * -ENOSPC. We need to propagate that into the address_space for a subsequent 429 * fsync(), msync() or close(). 430 * 431 * The tricky part is that after writepage we cannot touch the mapping: nothing 432 * prevents it from being freed up. But we have a ref on the page and once 433 * that page is locked, the mapping is pinned. 434 * 435 * We're allowed to run sleeping lock_page() here because we know the caller has 436 * __GFP_FS. 437 */ 438 static void handle_write_error(struct address_space *mapping, 439 struct page *page, int error) 440 { 441 lock_page(page); 442 if (page_mapping(page) == mapping) 443 mapping_set_error(mapping, error); 444 unlock_page(page); 445 } 446 447 /* possible outcome of pageout() */ 448 typedef enum { 449 /* failed to write page out, page is locked */ 450 PAGE_KEEP, 451 /* move page to the active list, page is locked */ 452 PAGE_ACTIVATE, 453 /* page has been sent to the disk successfully, page is unlocked */ 454 PAGE_SUCCESS, 455 /* page is clean and locked */ 456 PAGE_CLEAN, 457 } pageout_t; 458 459 /* 460 * pageout is called by shrink_page_list() for each dirty page. 461 * Calls ->writepage(). 462 */ 463 static pageout_t pageout(struct page *page, struct address_space *mapping, 464 struct scan_control *sc) 465 { 466 /* 467 * If the page is dirty, only perform writeback if that write 468 * will be non-blocking. To prevent this allocation from being 469 * stalled by pagecache activity. But note that there may be 470 * stalls if we need to run get_block(). We could test 471 * PagePrivate for that. 472 * 473 * If this process is currently in __generic_file_write_iter() against 474 * this page's queue, we can perform writeback even if that 475 * will block. 476 * 477 * If the page is swapcache, write it back even if that would 478 * block, for some throttling. This happens by accident, because 479 * swap_backing_dev_info is bust: it doesn't reflect the 480 * congestion state of the swapdevs. Easy to fix, if needed. 481 */ 482 if (!is_page_cache_freeable(page)) 483 return PAGE_KEEP; 484 if (!mapping) { 485 /* 486 * Some data journaling orphaned pages can have 487 * page->mapping == NULL while being dirty with clean buffers. 488 */ 489 if (page_has_private(page)) { 490 if (try_to_free_buffers(page)) { 491 ClearPageDirty(page); 492 pr_info("%s: orphaned page\n", __func__); 493 return PAGE_CLEAN; 494 } 495 } 496 return PAGE_KEEP; 497 } 498 if (mapping->a_ops->writepage == NULL) 499 return PAGE_ACTIVATE; 500 if (!may_write_to_queue(mapping->backing_dev_info, sc)) 501 return PAGE_KEEP; 502 503 if (clear_page_dirty_for_io(page)) { 504 int res; 505 struct writeback_control wbc = { 506 .sync_mode = WB_SYNC_NONE, 507 .nr_to_write = SWAP_CLUSTER_MAX, 508 .range_start = 0, 509 .range_end = LLONG_MAX, 510 .for_reclaim = 1, 511 }; 512 513 SetPageReclaim(page); 514 res = mapping->a_ops->writepage(page, &wbc); 515 if (res < 0) 516 handle_write_error(mapping, page, res); 517 if (res == AOP_WRITEPAGE_ACTIVATE) { 518 ClearPageReclaim(page); 519 return PAGE_ACTIVATE; 520 } 521 522 if (!PageWriteback(page)) { 523 /* synchronous write or broken a_ops? */ 524 ClearPageReclaim(page); 525 } 526 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page)); 527 inc_zone_page_state(page, NR_VMSCAN_WRITE); 528 return PAGE_SUCCESS; 529 } 530 531 return PAGE_CLEAN; 532 } 533 534 /* 535 * Same as remove_mapping, but if the page is removed from the mapping, it 536 * gets returned with a refcount of 0. 537 */ 538 static int __remove_mapping(struct address_space *mapping, struct page *page, 539 bool reclaimed) 540 { 541 BUG_ON(!PageLocked(page)); 542 BUG_ON(mapping != page_mapping(page)); 543 544 spin_lock_irq(&mapping->tree_lock); 545 /* 546 * The non racy check for a busy page. 547 * 548 * Must be careful with the order of the tests. When someone has 549 * a ref to the page, it may be possible that they dirty it then 550 * drop the reference. So if PageDirty is tested before page_count 551 * here, then the following race may occur: 552 * 553 * get_user_pages(&page); 554 * [user mapping goes away] 555 * write_to(page); 556 * !PageDirty(page) [good] 557 * SetPageDirty(page); 558 * put_page(page); 559 * !page_count(page) [good, discard it] 560 * 561 * [oops, our write_to data is lost] 562 * 563 * Reversing the order of the tests ensures such a situation cannot 564 * escape unnoticed. The smp_rmb is needed to ensure the page->flags 565 * load is not satisfied before that of page->_count. 566 * 567 * Note that if SetPageDirty is always performed via set_page_dirty, 568 * and thus under tree_lock, then this ordering is not required. 569 */ 570 if (!page_freeze_refs(page, 2)) 571 goto cannot_free; 572 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */ 573 if (unlikely(PageDirty(page))) { 574 page_unfreeze_refs(page, 2); 575 goto cannot_free; 576 } 577 578 if (PageSwapCache(page)) { 579 swp_entry_t swap = { .val = page_private(page) }; 580 mem_cgroup_swapout(page, swap); 581 __delete_from_swap_cache(page); 582 spin_unlock_irq(&mapping->tree_lock); 583 swapcache_free(swap); 584 } else { 585 void (*freepage)(struct page *); 586 void *shadow = NULL; 587 588 freepage = mapping->a_ops->freepage; 589 /* 590 * Remember a shadow entry for reclaimed file cache in 591 * order to detect refaults, thus thrashing, later on. 592 * 593 * But don't store shadows in an address space that is 594 * already exiting. This is not just an optizimation, 595 * inode reclaim needs to empty out the radix tree or 596 * the nodes are lost. Don't plant shadows behind its 597 * back. 598 */ 599 if (reclaimed && page_is_file_cache(page) && 600 !mapping_exiting(mapping)) 601 shadow = workingset_eviction(mapping, page); 602 __delete_from_page_cache(page, shadow); 603 spin_unlock_irq(&mapping->tree_lock); 604 605 if (freepage != NULL) 606 freepage(page); 607 } 608 609 return 1; 610 611 cannot_free: 612 spin_unlock_irq(&mapping->tree_lock); 613 return 0; 614 } 615 616 /* 617 * Attempt to detach a locked page from its ->mapping. If it is dirty or if 618 * someone else has a ref on the page, abort and return 0. If it was 619 * successfully detached, return 1. Assumes the caller has a single ref on 620 * this page. 621 */ 622 int remove_mapping(struct address_space *mapping, struct page *page) 623 { 624 if (__remove_mapping(mapping, page, false)) { 625 /* 626 * Unfreezing the refcount with 1 rather than 2 effectively 627 * drops the pagecache ref for us without requiring another 628 * atomic operation. 629 */ 630 page_unfreeze_refs(page, 1); 631 return 1; 632 } 633 return 0; 634 } 635 636 /** 637 * putback_lru_page - put previously isolated page onto appropriate LRU list 638 * @page: page to be put back to appropriate lru list 639 * 640 * Add previously isolated @page to appropriate LRU list. 641 * Page may still be unevictable for other reasons. 642 * 643 * lru_lock must not be held, interrupts must be enabled. 644 */ 645 void putback_lru_page(struct page *page) 646 { 647 bool is_unevictable; 648 int was_unevictable = PageUnevictable(page); 649 650 VM_BUG_ON_PAGE(PageLRU(page), page); 651 652 redo: 653 ClearPageUnevictable(page); 654 655 if (page_evictable(page)) { 656 /* 657 * For evictable pages, we can use the cache. 658 * In event of a race, worst case is we end up with an 659 * unevictable page on [in]active list. 660 * We know how to handle that. 661 */ 662 is_unevictable = false; 663 lru_cache_add(page); 664 } else { 665 /* 666 * Put unevictable pages directly on zone's unevictable 667 * list. 668 */ 669 is_unevictable = true; 670 add_page_to_unevictable_list(page); 671 /* 672 * When racing with an mlock or AS_UNEVICTABLE clearing 673 * (page is unlocked) make sure that if the other thread 674 * does not observe our setting of PG_lru and fails 675 * isolation/check_move_unevictable_pages, 676 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move 677 * the page back to the evictable list. 678 * 679 * The other side is TestClearPageMlocked() or shmem_lock(). 680 */ 681 smp_mb(); 682 } 683 684 /* 685 * page's status can change while we move it among lru. If an evictable 686 * page is on unevictable list, it never be freed. To avoid that, 687 * check after we added it to the list, again. 688 */ 689 if (is_unevictable && page_evictable(page)) { 690 if (!isolate_lru_page(page)) { 691 put_page(page); 692 goto redo; 693 } 694 /* This means someone else dropped this page from LRU 695 * So, it will be freed or putback to LRU again. There is 696 * nothing to do here. 697 */ 698 } 699 700 if (was_unevictable && !is_unevictable) 701 count_vm_event(UNEVICTABLE_PGRESCUED); 702 else if (!was_unevictable && is_unevictable) 703 count_vm_event(UNEVICTABLE_PGCULLED); 704 705 put_page(page); /* drop ref from isolate */ 706 } 707 708 enum page_references { 709 PAGEREF_RECLAIM, 710 PAGEREF_RECLAIM_CLEAN, 711 PAGEREF_KEEP, 712 PAGEREF_ACTIVATE, 713 }; 714 715 static enum page_references page_check_references(struct page *page, 716 struct scan_control *sc) 717 { 718 int referenced_ptes, referenced_page; 719 unsigned long vm_flags; 720 721 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup, 722 &vm_flags); 723 referenced_page = TestClearPageReferenced(page); 724 725 /* 726 * Mlock lost the isolation race with us. Let try_to_unmap() 727 * move the page to the unevictable list. 728 */ 729 if (vm_flags & VM_LOCKED) 730 return PAGEREF_RECLAIM; 731 732 if (referenced_ptes) { 733 if (PageSwapBacked(page)) 734 return PAGEREF_ACTIVATE; 735 /* 736 * All mapped pages start out with page table 737 * references from the instantiating fault, so we need 738 * to look twice if a mapped file page is used more 739 * than once. 740 * 741 * Mark it and spare it for another trip around the 742 * inactive list. Another page table reference will 743 * lead to its activation. 744 * 745 * Note: the mark is set for activated pages as well 746 * so that recently deactivated but used pages are 747 * quickly recovered. 748 */ 749 SetPageReferenced(page); 750 751 if (referenced_page || referenced_ptes > 1) 752 return PAGEREF_ACTIVATE; 753 754 /* 755 * Activate file-backed executable pages after first usage. 756 */ 757 if (vm_flags & VM_EXEC) 758 return PAGEREF_ACTIVATE; 759 760 return PAGEREF_KEEP; 761 } 762 763 /* Reclaim if clean, defer dirty pages to writeback */ 764 if (referenced_page && !PageSwapBacked(page)) 765 return PAGEREF_RECLAIM_CLEAN; 766 767 return PAGEREF_RECLAIM; 768 } 769 770 /* Check if a page is dirty or under writeback */ 771 static void page_check_dirty_writeback(struct page *page, 772 bool *dirty, bool *writeback) 773 { 774 struct address_space *mapping; 775 776 /* 777 * Anonymous pages are not handled by flushers and must be written 778 * from reclaim context. Do not stall reclaim based on them 779 */ 780 if (!page_is_file_cache(page)) { 781 *dirty = false; 782 *writeback = false; 783 return; 784 } 785 786 /* By default assume that the page flags are accurate */ 787 *dirty = PageDirty(page); 788 *writeback = PageWriteback(page); 789 790 /* Verify dirty/writeback state if the filesystem supports it */ 791 if (!page_has_private(page)) 792 return; 793 794 mapping = page_mapping(page); 795 if (mapping && mapping->a_ops->is_dirty_writeback) 796 mapping->a_ops->is_dirty_writeback(page, dirty, writeback); 797 } 798 799 /* 800 * shrink_page_list() returns the number of reclaimed pages 801 */ 802 static unsigned long shrink_page_list(struct list_head *page_list, 803 struct zone *zone, 804 struct scan_control *sc, 805 enum ttu_flags ttu_flags, 806 unsigned long *ret_nr_dirty, 807 unsigned long *ret_nr_unqueued_dirty, 808 unsigned long *ret_nr_congested, 809 unsigned long *ret_nr_writeback, 810 unsigned long *ret_nr_immediate, 811 bool force_reclaim) 812 { 813 LIST_HEAD(ret_pages); 814 LIST_HEAD(free_pages); 815 int pgactivate = 0; 816 unsigned long nr_unqueued_dirty = 0; 817 unsigned long nr_dirty = 0; 818 unsigned long nr_congested = 0; 819 unsigned long nr_reclaimed = 0; 820 unsigned long nr_writeback = 0; 821 unsigned long nr_immediate = 0; 822 823 cond_resched(); 824 825 while (!list_empty(page_list)) { 826 struct address_space *mapping; 827 struct page *page; 828 int may_enter_fs; 829 enum page_references references = PAGEREF_RECLAIM_CLEAN; 830 bool dirty, writeback; 831 832 cond_resched(); 833 834 page = lru_to_page(page_list); 835 list_del(&page->lru); 836 837 if (!trylock_page(page)) 838 goto keep; 839 840 VM_BUG_ON_PAGE(PageActive(page), page); 841 VM_BUG_ON_PAGE(page_zone(page) != zone, page); 842 843 sc->nr_scanned++; 844 845 if (unlikely(!page_evictable(page))) 846 goto cull_mlocked; 847 848 if (!sc->may_unmap && page_mapped(page)) 849 goto keep_locked; 850 851 /* Double the slab pressure for mapped and swapcache pages */ 852 if (page_mapped(page) || PageSwapCache(page)) 853 sc->nr_scanned++; 854 855 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 856 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 857 858 /* 859 * The number of dirty pages determines if a zone is marked 860 * reclaim_congested which affects wait_iff_congested. kswapd 861 * will stall and start writing pages if the tail of the LRU 862 * is all dirty unqueued pages. 863 */ 864 page_check_dirty_writeback(page, &dirty, &writeback); 865 if (dirty || writeback) 866 nr_dirty++; 867 868 if (dirty && !writeback) 869 nr_unqueued_dirty++; 870 871 /* 872 * Treat this page as congested if the underlying BDI is or if 873 * pages are cycling through the LRU so quickly that the 874 * pages marked for immediate reclaim are making it to the 875 * end of the LRU a second time. 876 */ 877 mapping = page_mapping(page); 878 if (((dirty || writeback) && mapping && 879 bdi_write_congested(mapping->backing_dev_info)) || 880 (writeback && PageReclaim(page))) 881 nr_congested++; 882 883 /* 884 * If a page at the tail of the LRU is under writeback, there 885 * are three cases to consider. 886 * 887 * 1) If reclaim is encountering an excessive number of pages 888 * under writeback and this page is both under writeback and 889 * PageReclaim then it indicates that pages are being queued 890 * for IO but are being recycled through the LRU before the 891 * IO can complete. Waiting on the page itself risks an 892 * indefinite stall if it is impossible to writeback the 893 * page due to IO error or disconnected storage so instead 894 * note that the LRU is being scanned too quickly and the 895 * caller can stall after page list has been processed. 896 * 897 * 2) Global reclaim encounters a page, memcg encounters a 898 * page that is not marked for immediate reclaim or 899 * the caller does not have __GFP_IO. In this case mark 900 * the page for immediate reclaim and continue scanning. 901 * 902 * __GFP_IO is checked because a loop driver thread might 903 * enter reclaim, and deadlock if it waits on a page for 904 * which it is needed to do the write (loop masks off 905 * __GFP_IO|__GFP_FS for this reason); but more thought 906 * would probably show more reasons. 907 * 908 * Don't require __GFP_FS, since we're not going into the 909 * FS, just waiting on its writeback completion. Worryingly, 910 * ext4 gfs2 and xfs allocate pages with 911 * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing 912 * may_enter_fs here is liable to OOM on them. 913 * 914 * 3) memcg encounters a page that is not already marked 915 * PageReclaim. memcg does not have any dirty pages 916 * throttling so we could easily OOM just because too many 917 * pages are in writeback and there is nothing else to 918 * reclaim. Wait for the writeback to complete. 919 */ 920 if (PageWriteback(page)) { 921 /* Case 1 above */ 922 if (current_is_kswapd() && 923 PageReclaim(page) && 924 test_bit(ZONE_WRITEBACK, &zone->flags)) { 925 nr_immediate++; 926 goto keep_locked; 927 928 /* Case 2 above */ 929 } else if (global_reclaim(sc) || 930 !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) { 931 /* 932 * This is slightly racy - end_page_writeback() 933 * might have just cleared PageReclaim, then 934 * setting PageReclaim here end up interpreted 935 * as PageReadahead - but that does not matter 936 * enough to care. What we do want is for this 937 * page to have PageReclaim set next time memcg 938 * reclaim reaches the tests above, so it will 939 * then wait_on_page_writeback() to avoid OOM; 940 * and it's also appropriate in global reclaim. 941 */ 942 SetPageReclaim(page); 943 nr_writeback++; 944 945 goto keep_locked; 946 947 /* Case 3 above */ 948 } else { 949 wait_on_page_writeback(page); 950 } 951 } 952 953 if (!force_reclaim) 954 references = page_check_references(page, sc); 955 956 switch (references) { 957 case PAGEREF_ACTIVATE: 958 goto activate_locked; 959 case PAGEREF_KEEP: 960 goto keep_locked; 961 case PAGEREF_RECLAIM: 962 case PAGEREF_RECLAIM_CLEAN: 963 ; /* try to reclaim the page below */ 964 } 965 966 /* 967 * Anonymous process memory has backing store? 968 * Try to allocate it some swap space here. 969 */ 970 if (PageAnon(page) && !PageSwapCache(page)) { 971 if (!(sc->gfp_mask & __GFP_IO)) 972 goto keep_locked; 973 if (!add_to_swap(page, page_list)) 974 goto activate_locked; 975 may_enter_fs = 1; 976 977 /* Adding to swap updated mapping */ 978 mapping = page_mapping(page); 979 } 980 981 /* 982 * The page is mapped into the page tables of one or more 983 * processes. Try to unmap it here. 984 */ 985 if (page_mapped(page) && mapping) { 986 switch (try_to_unmap(page, ttu_flags)) { 987 case SWAP_FAIL: 988 goto activate_locked; 989 case SWAP_AGAIN: 990 goto keep_locked; 991 case SWAP_MLOCK: 992 goto cull_mlocked; 993 case SWAP_SUCCESS: 994 ; /* try to free the page below */ 995 } 996 } 997 998 if (PageDirty(page)) { 999 /* 1000 * Only kswapd can writeback filesystem pages to 1001 * avoid risk of stack overflow but only writeback 1002 * if many dirty pages have been encountered. 1003 */ 1004 if (page_is_file_cache(page) && 1005 (!current_is_kswapd() || 1006 !test_bit(ZONE_DIRTY, &zone->flags))) { 1007 /* 1008 * Immediately reclaim when written back. 1009 * Similar in principal to deactivate_page() 1010 * except we already have the page isolated 1011 * and know it's dirty 1012 */ 1013 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE); 1014 SetPageReclaim(page); 1015 1016 goto keep_locked; 1017 } 1018 1019 if (references == PAGEREF_RECLAIM_CLEAN) 1020 goto keep_locked; 1021 if (!may_enter_fs) 1022 goto keep_locked; 1023 if (!sc->may_writepage) 1024 goto keep_locked; 1025 1026 /* Page is dirty, try to write it out here */ 1027 switch (pageout(page, mapping, sc)) { 1028 case PAGE_KEEP: 1029 goto keep_locked; 1030 case PAGE_ACTIVATE: 1031 goto activate_locked; 1032 case PAGE_SUCCESS: 1033 if (PageWriteback(page)) 1034 goto keep; 1035 if (PageDirty(page)) 1036 goto keep; 1037 1038 /* 1039 * A synchronous write - probably a ramdisk. Go 1040 * ahead and try to reclaim the page. 1041 */ 1042 if (!trylock_page(page)) 1043 goto keep; 1044 if (PageDirty(page) || PageWriteback(page)) 1045 goto keep_locked; 1046 mapping = page_mapping(page); 1047 case PAGE_CLEAN: 1048 ; /* try to free the page below */ 1049 } 1050 } 1051 1052 /* 1053 * If the page has buffers, try to free the buffer mappings 1054 * associated with this page. If we succeed we try to free 1055 * the page as well. 1056 * 1057 * We do this even if the page is PageDirty(). 1058 * try_to_release_page() does not perform I/O, but it is 1059 * possible for a page to have PageDirty set, but it is actually 1060 * clean (all its buffers are clean). This happens if the 1061 * buffers were written out directly, with submit_bh(). ext3 1062 * will do this, as well as the blockdev mapping. 1063 * try_to_release_page() will discover that cleanness and will 1064 * drop the buffers and mark the page clean - it can be freed. 1065 * 1066 * Rarely, pages can have buffers and no ->mapping. These are 1067 * the pages which were not successfully invalidated in 1068 * truncate_complete_page(). We try to drop those buffers here 1069 * and if that worked, and the page is no longer mapped into 1070 * process address space (page_count == 1) it can be freed. 1071 * Otherwise, leave the page on the LRU so it is swappable. 1072 */ 1073 if (page_has_private(page)) { 1074 if (!try_to_release_page(page, sc->gfp_mask)) 1075 goto activate_locked; 1076 if (!mapping && page_count(page) == 1) { 1077 unlock_page(page); 1078 if (put_page_testzero(page)) 1079 goto free_it; 1080 else { 1081 /* 1082 * rare race with speculative reference. 1083 * the speculative reference will free 1084 * this page shortly, so we may 1085 * increment nr_reclaimed here (and 1086 * leave it off the LRU). 1087 */ 1088 nr_reclaimed++; 1089 continue; 1090 } 1091 } 1092 } 1093 1094 if (!mapping || !__remove_mapping(mapping, page, true)) 1095 goto keep_locked; 1096 1097 /* 1098 * At this point, we have no other references and there is 1099 * no way to pick any more up (removed from LRU, removed 1100 * from pagecache). Can use non-atomic bitops now (and 1101 * we obviously don't have to worry about waking up a process 1102 * waiting on the page lock, because there are no references. 1103 */ 1104 __clear_page_locked(page); 1105 free_it: 1106 nr_reclaimed++; 1107 1108 /* 1109 * Is there need to periodically free_page_list? It would 1110 * appear not as the counts should be low 1111 */ 1112 list_add(&page->lru, &free_pages); 1113 continue; 1114 1115 cull_mlocked: 1116 if (PageSwapCache(page)) 1117 try_to_free_swap(page); 1118 unlock_page(page); 1119 putback_lru_page(page); 1120 continue; 1121 1122 activate_locked: 1123 /* Not a candidate for swapping, so reclaim swap space. */ 1124 if (PageSwapCache(page) && vm_swap_full()) 1125 try_to_free_swap(page); 1126 VM_BUG_ON_PAGE(PageActive(page), page); 1127 SetPageActive(page); 1128 pgactivate++; 1129 keep_locked: 1130 unlock_page(page); 1131 keep: 1132 list_add(&page->lru, &ret_pages); 1133 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page); 1134 } 1135 1136 mem_cgroup_uncharge_list(&free_pages); 1137 free_hot_cold_page_list(&free_pages, true); 1138 1139 list_splice(&ret_pages, page_list); 1140 count_vm_events(PGACTIVATE, pgactivate); 1141 1142 *ret_nr_dirty += nr_dirty; 1143 *ret_nr_congested += nr_congested; 1144 *ret_nr_unqueued_dirty += nr_unqueued_dirty; 1145 *ret_nr_writeback += nr_writeback; 1146 *ret_nr_immediate += nr_immediate; 1147 return nr_reclaimed; 1148 } 1149 1150 unsigned long reclaim_clean_pages_from_list(struct zone *zone, 1151 struct list_head *page_list) 1152 { 1153 struct scan_control sc = { 1154 .gfp_mask = GFP_KERNEL, 1155 .priority = DEF_PRIORITY, 1156 .may_unmap = 1, 1157 }; 1158 unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5; 1159 struct page *page, *next; 1160 LIST_HEAD(clean_pages); 1161 1162 list_for_each_entry_safe(page, next, page_list, lru) { 1163 if (page_is_file_cache(page) && !PageDirty(page) && 1164 !isolated_balloon_page(page)) { 1165 ClearPageActive(page); 1166 list_move(&page->lru, &clean_pages); 1167 } 1168 } 1169 1170 ret = shrink_page_list(&clean_pages, zone, &sc, 1171 TTU_UNMAP|TTU_IGNORE_ACCESS, 1172 &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true); 1173 list_splice(&clean_pages, page_list); 1174 mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret); 1175 return ret; 1176 } 1177 1178 /* 1179 * Attempt to remove the specified page from its LRU. Only take this page 1180 * if it is of the appropriate PageActive status. Pages which are being 1181 * freed elsewhere are also ignored. 1182 * 1183 * page: page to consider 1184 * mode: one of the LRU isolation modes defined above 1185 * 1186 * returns 0 on success, -ve errno on failure. 1187 */ 1188 int __isolate_lru_page(struct page *page, isolate_mode_t mode) 1189 { 1190 int ret = -EINVAL; 1191 1192 /* Only take pages on the LRU. */ 1193 if (!PageLRU(page)) 1194 return ret; 1195 1196 /* Compaction should not handle unevictable pages but CMA can do so */ 1197 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE)) 1198 return ret; 1199 1200 ret = -EBUSY; 1201 1202 /* 1203 * To minimise LRU disruption, the caller can indicate that it only 1204 * wants to isolate pages it will be able to operate on without 1205 * blocking - clean pages for the most part. 1206 * 1207 * ISOLATE_CLEAN means that only clean pages should be isolated. This 1208 * is used by reclaim when it is cannot write to backing storage 1209 * 1210 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages 1211 * that it is possible to migrate without blocking 1212 */ 1213 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) { 1214 /* All the caller can do on PageWriteback is block */ 1215 if (PageWriteback(page)) 1216 return ret; 1217 1218 if (PageDirty(page)) { 1219 struct address_space *mapping; 1220 1221 /* ISOLATE_CLEAN means only clean pages */ 1222 if (mode & ISOLATE_CLEAN) 1223 return ret; 1224 1225 /* 1226 * Only pages without mappings or that have a 1227 * ->migratepage callback are possible to migrate 1228 * without blocking 1229 */ 1230 mapping = page_mapping(page); 1231 if (mapping && !mapping->a_ops->migratepage) 1232 return ret; 1233 } 1234 } 1235 1236 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page)) 1237 return ret; 1238 1239 if (likely(get_page_unless_zero(page))) { 1240 /* 1241 * Be careful not to clear PageLRU until after we're 1242 * sure the page is not being freed elsewhere -- the 1243 * page release code relies on it. 1244 */ 1245 ClearPageLRU(page); 1246 ret = 0; 1247 } 1248 1249 return ret; 1250 } 1251 1252 /* 1253 * zone->lru_lock is heavily contended. Some of the functions that 1254 * shrink the lists perform better by taking out a batch of pages 1255 * and working on them outside the LRU lock. 1256 * 1257 * For pagecache intensive workloads, this function is the hottest 1258 * spot in the kernel (apart from copy_*_user functions). 1259 * 1260 * Appropriate locks must be held before calling this function. 1261 * 1262 * @nr_to_scan: The number of pages to look through on the list. 1263 * @lruvec: The LRU vector to pull pages from. 1264 * @dst: The temp list to put pages on to. 1265 * @nr_scanned: The number of pages that were scanned. 1266 * @sc: The scan_control struct for this reclaim session 1267 * @mode: One of the LRU isolation modes 1268 * @lru: LRU list id for isolating 1269 * 1270 * returns how many pages were moved onto *@dst. 1271 */ 1272 static unsigned long isolate_lru_pages(unsigned long nr_to_scan, 1273 struct lruvec *lruvec, struct list_head *dst, 1274 unsigned long *nr_scanned, struct scan_control *sc, 1275 isolate_mode_t mode, enum lru_list lru) 1276 { 1277 struct list_head *src = &lruvec->lists[lru]; 1278 unsigned long nr_taken = 0; 1279 unsigned long scan; 1280 1281 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) { 1282 struct page *page; 1283 int nr_pages; 1284 1285 page = lru_to_page(src); 1286 prefetchw_prev_lru_page(page, src, flags); 1287 1288 VM_BUG_ON_PAGE(!PageLRU(page), page); 1289 1290 switch (__isolate_lru_page(page, mode)) { 1291 case 0: 1292 nr_pages = hpage_nr_pages(page); 1293 mem_cgroup_update_lru_size(lruvec, lru, -nr_pages); 1294 list_move(&page->lru, dst); 1295 nr_taken += nr_pages; 1296 break; 1297 1298 case -EBUSY: 1299 /* else it is being freed elsewhere */ 1300 list_move(&page->lru, src); 1301 continue; 1302 1303 default: 1304 BUG(); 1305 } 1306 } 1307 1308 *nr_scanned = scan; 1309 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan, 1310 nr_taken, mode, is_file_lru(lru)); 1311 return nr_taken; 1312 } 1313 1314 /** 1315 * isolate_lru_page - tries to isolate a page from its LRU list 1316 * @page: page to isolate from its LRU list 1317 * 1318 * Isolates a @page from an LRU list, clears PageLRU and adjusts the 1319 * vmstat statistic corresponding to whatever LRU list the page was on. 1320 * 1321 * Returns 0 if the page was removed from an LRU list. 1322 * Returns -EBUSY if the page was not on an LRU list. 1323 * 1324 * The returned page will have PageLRU() cleared. If it was found on 1325 * the active list, it will have PageActive set. If it was found on 1326 * the unevictable list, it will have the PageUnevictable bit set. That flag 1327 * may need to be cleared by the caller before letting the page go. 1328 * 1329 * The vmstat statistic corresponding to the list on which the page was 1330 * found will be decremented. 1331 * 1332 * Restrictions: 1333 * (1) Must be called with an elevated refcount on the page. This is a 1334 * fundamentnal difference from isolate_lru_pages (which is called 1335 * without a stable reference). 1336 * (2) the lru_lock must not be held. 1337 * (3) interrupts must be enabled. 1338 */ 1339 int isolate_lru_page(struct page *page) 1340 { 1341 int ret = -EBUSY; 1342 1343 VM_BUG_ON_PAGE(!page_count(page), page); 1344 1345 if (PageLRU(page)) { 1346 struct zone *zone = page_zone(page); 1347 struct lruvec *lruvec; 1348 1349 spin_lock_irq(&zone->lru_lock); 1350 lruvec = mem_cgroup_page_lruvec(page, zone); 1351 if (PageLRU(page)) { 1352 int lru = page_lru(page); 1353 get_page(page); 1354 ClearPageLRU(page); 1355 del_page_from_lru_list(page, lruvec, lru); 1356 ret = 0; 1357 } 1358 spin_unlock_irq(&zone->lru_lock); 1359 } 1360 return ret; 1361 } 1362 1363 /* 1364 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 1365 * then get resheduled. When there are massive number of tasks doing page 1366 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 1367 * the LRU list will go small and be scanned faster than necessary, leading to 1368 * unnecessary swapping, thrashing and OOM. 1369 */ 1370 static int too_many_isolated(struct zone *zone, int file, 1371 struct scan_control *sc) 1372 { 1373 unsigned long inactive, isolated; 1374 1375 if (current_is_kswapd()) 1376 return 0; 1377 1378 if (!global_reclaim(sc)) 1379 return 0; 1380 1381 if (file) { 1382 inactive = zone_page_state(zone, NR_INACTIVE_FILE); 1383 isolated = zone_page_state(zone, NR_ISOLATED_FILE); 1384 } else { 1385 inactive = zone_page_state(zone, NR_INACTIVE_ANON); 1386 isolated = zone_page_state(zone, NR_ISOLATED_ANON); 1387 } 1388 1389 /* 1390 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 1391 * won't get blocked by normal direct-reclaimers, forming a circular 1392 * deadlock. 1393 */ 1394 if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS) 1395 inactive >>= 3; 1396 1397 return isolated > inactive; 1398 } 1399 1400 static noinline_for_stack void 1401 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list) 1402 { 1403 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1404 struct zone *zone = lruvec_zone(lruvec); 1405 LIST_HEAD(pages_to_free); 1406 1407 /* 1408 * Put back any unfreeable pages. 1409 */ 1410 while (!list_empty(page_list)) { 1411 struct page *page = lru_to_page(page_list); 1412 int lru; 1413 1414 VM_BUG_ON_PAGE(PageLRU(page), page); 1415 list_del(&page->lru); 1416 if (unlikely(!page_evictable(page))) { 1417 spin_unlock_irq(&zone->lru_lock); 1418 putback_lru_page(page); 1419 spin_lock_irq(&zone->lru_lock); 1420 continue; 1421 } 1422 1423 lruvec = mem_cgroup_page_lruvec(page, zone); 1424 1425 SetPageLRU(page); 1426 lru = page_lru(page); 1427 add_page_to_lru_list(page, lruvec, lru); 1428 1429 if (is_active_lru(lru)) { 1430 int file = is_file_lru(lru); 1431 int numpages = hpage_nr_pages(page); 1432 reclaim_stat->recent_rotated[file] += numpages; 1433 } 1434 if (put_page_testzero(page)) { 1435 __ClearPageLRU(page); 1436 __ClearPageActive(page); 1437 del_page_from_lru_list(page, lruvec, lru); 1438 1439 if (unlikely(PageCompound(page))) { 1440 spin_unlock_irq(&zone->lru_lock); 1441 mem_cgroup_uncharge(page); 1442 (*get_compound_page_dtor(page))(page); 1443 spin_lock_irq(&zone->lru_lock); 1444 } else 1445 list_add(&page->lru, &pages_to_free); 1446 } 1447 } 1448 1449 /* 1450 * To save our caller's stack, now use input list for pages to free. 1451 */ 1452 list_splice(&pages_to_free, page_list); 1453 } 1454 1455 /* 1456 * If a kernel thread (such as nfsd for loop-back mounts) services 1457 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE. 1458 * In that case we should only throttle if the backing device it is 1459 * writing to is congested. In other cases it is safe to throttle. 1460 */ 1461 static int current_may_throttle(void) 1462 { 1463 return !(current->flags & PF_LESS_THROTTLE) || 1464 current->backing_dev_info == NULL || 1465 bdi_write_congested(current->backing_dev_info); 1466 } 1467 1468 /* 1469 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number 1470 * of reclaimed pages 1471 */ 1472 static noinline_for_stack unsigned long 1473 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, 1474 struct scan_control *sc, enum lru_list lru) 1475 { 1476 LIST_HEAD(page_list); 1477 unsigned long nr_scanned; 1478 unsigned long nr_reclaimed = 0; 1479 unsigned long nr_taken; 1480 unsigned long nr_dirty = 0; 1481 unsigned long nr_congested = 0; 1482 unsigned long nr_unqueued_dirty = 0; 1483 unsigned long nr_writeback = 0; 1484 unsigned long nr_immediate = 0; 1485 isolate_mode_t isolate_mode = 0; 1486 int file = is_file_lru(lru); 1487 struct zone *zone = lruvec_zone(lruvec); 1488 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1489 1490 while (unlikely(too_many_isolated(zone, file, sc))) { 1491 congestion_wait(BLK_RW_ASYNC, HZ/10); 1492 1493 /* We are about to die and free our memory. Return now. */ 1494 if (fatal_signal_pending(current)) 1495 return SWAP_CLUSTER_MAX; 1496 } 1497 1498 lru_add_drain(); 1499 1500 if (!sc->may_unmap) 1501 isolate_mode |= ISOLATE_UNMAPPED; 1502 if (!sc->may_writepage) 1503 isolate_mode |= ISOLATE_CLEAN; 1504 1505 spin_lock_irq(&zone->lru_lock); 1506 1507 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list, 1508 &nr_scanned, sc, isolate_mode, lru); 1509 1510 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken); 1511 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken); 1512 1513 if (global_reclaim(sc)) { 1514 __mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned); 1515 if (current_is_kswapd()) 1516 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned); 1517 else 1518 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned); 1519 } 1520 spin_unlock_irq(&zone->lru_lock); 1521 1522 if (nr_taken == 0) 1523 return 0; 1524 1525 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP, 1526 &nr_dirty, &nr_unqueued_dirty, &nr_congested, 1527 &nr_writeback, &nr_immediate, 1528 false); 1529 1530 spin_lock_irq(&zone->lru_lock); 1531 1532 reclaim_stat->recent_scanned[file] += nr_taken; 1533 1534 if (global_reclaim(sc)) { 1535 if (current_is_kswapd()) 1536 __count_zone_vm_events(PGSTEAL_KSWAPD, zone, 1537 nr_reclaimed); 1538 else 1539 __count_zone_vm_events(PGSTEAL_DIRECT, zone, 1540 nr_reclaimed); 1541 } 1542 1543 putback_inactive_pages(lruvec, &page_list); 1544 1545 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken); 1546 1547 spin_unlock_irq(&zone->lru_lock); 1548 1549 mem_cgroup_uncharge_list(&page_list); 1550 free_hot_cold_page_list(&page_list, true); 1551 1552 /* 1553 * If reclaim is isolating dirty pages under writeback, it implies 1554 * that the long-lived page allocation rate is exceeding the page 1555 * laundering rate. Either the global limits are not being effective 1556 * at throttling processes due to the page distribution throughout 1557 * zones or there is heavy usage of a slow backing device. The 1558 * only option is to throttle from reclaim context which is not ideal 1559 * as there is no guarantee the dirtying process is throttled in the 1560 * same way balance_dirty_pages() manages. 1561 * 1562 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number 1563 * of pages under pages flagged for immediate reclaim and stall if any 1564 * are encountered in the nr_immediate check below. 1565 */ 1566 if (nr_writeback && nr_writeback == nr_taken) 1567 set_bit(ZONE_WRITEBACK, &zone->flags); 1568 1569 /* 1570 * memcg will stall in page writeback so only consider forcibly 1571 * stalling for global reclaim 1572 */ 1573 if (global_reclaim(sc)) { 1574 /* 1575 * Tag a zone as congested if all the dirty pages scanned were 1576 * backed by a congested BDI and wait_iff_congested will stall. 1577 */ 1578 if (nr_dirty && nr_dirty == nr_congested) 1579 set_bit(ZONE_CONGESTED, &zone->flags); 1580 1581 /* 1582 * If dirty pages are scanned that are not queued for IO, it 1583 * implies that flushers are not keeping up. In this case, flag 1584 * the zone ZONE_DIRTY and kswapd will start writing pages from 1585 * reclaim context. 1586 */ 1587 if (nr_unqueued_dirty == nr_taken) 1588 set_bit(ZONE_DIRTY, &zone->flags); 1589 1590 /* 1591 * If kswapd scans pages marked marked for immediate 1592 * reclaim and under writeback (nr_immediate), it implies 1593 * that pages are cycling through the LRU faster than 1594 * they are written so also forcibly stall. 1595 */ 1596 if (nr_immediate && current_may_throttle()) 1597 congestion_wait(BLK_RW_ASYNC, HZ/10); 1598 } 1599 1600 /* 1601 * Stall direct reclaim for IO completions if underlying BDIs or zone 1602 * is congested. Allow kswapd to continue until it starts encountering 1603 * unqueued dirty pages or cycling through the LRU too quickly. 1604 */ 1605 if (!sc->hibernation_mode && !current_is_kswapd() && 1606 current_may_throttle()) 1607 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10); 1608 1609 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id, 1610 zone_idx(zone), 1611 nr_scanned, nr_reclaimed, 1612 sc->priority, 1613 trace_shrink_flags(file)); 1614 return nr_reclaimed; 1615 } 1616 1617 /* 1618 * This moves pages from the active list to the inactive list. 1619 * 1620 * We move them the other way if the page is referenced by one or more 1621 * processes, from rmap. 1622 * 1623 * If the pages are mostly unmapped, the processing is fast and it is 1624 * appropriate to hold zone->lru_lock across the whole operation. But if 1625 * the pages are mapped, the processing is slow (page_referenced()) so we 1626 * should drop zone->lru_lock around each page. It's impossible to balance 1627 * this, so instead we remove the pages from the LRU while processing them. 1628 * It is safe to rely on PG_active against the non-LRU pages in here because 1629 * nobody will play with that bit on a non-LRU page. 1630 * 1631 * The downside is that we have to touch page->_count against each page. 1632 * But we had to alter page->flags anyway. 1633 */ 1634 1635 static void move_active_pages_to_lru(struct lruvec *lruvec, 1636 struct list_head *list, 1637 struct list_head *pages_to_free, 1638 enum lru_list lru) 1639 { 1640 struct zone *zone = lruvec_zone(lruvec); 1641 unsigned long pgmoved = 0; 1642 struct page *page; 1643 int nr_pages; 1644 1645 while (!list_empty(list)) { 1646 page = lru_to_page(list); 1647 lruvec = mem_cgroup_page_lruvec(page, zone); 1648 1649 VM_BUG_ON_PAGE(PageLRU(page), page); 1650 SetPageLRU(page); 1651 1652 nr_pages = hpage_nr_pages(page); 1653 mem_cgroup_update_lru_size(lruvec, lru, nr_pages); 1654 list_move(&page->lru, &lruvec->lists[lru]); 1655 pgmoved += nr_pages; 1656 1657 if (put_page_testzero(page)) { 1658 __ClearPageLRU(page); 1659 __ClearPageActive(page); 1660 del_page_from_lru_list(page, lruvec, lru); 1661 1662 if (unlikely(PageCompound(page))) { 1663 spin_unlock_irq(&zone->lru_lock); 1664 mem_cgroup_uncharge(page); 1665 (*get_compound_page_dtor(page))(page); 1666 spin_lock_irq(&zone->lru_lock); 1667 } else 1668 list_add(&page->lru, pages_to_free); 1669 } 1670 } 1671 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved); 1672 if (!is_active_lru(lru)) 1673 __count_vm_events(PGDEACTIVATE, pgmoved); 1674 } 1675 1676 static void shrink_active_list(unsigned long nr_to_scan, 1677 struct lruvec *lruvec, 1678 struct scan_control *sc, 1679 enum lru_list lru) 1680 { 1681 unsigned long nr_taken; 1682 unsigned long nr_scanned; 1683 unsigned long vm_flags; 1684 LIST_HEAD(l_hold); /* The pages which were snipped off */ 1685 LIST_HEAD(l_active); 1686 LIST_HEAD(l_inactive); 1687 struct page *page; 1688 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1689 unsigned long nr_rotated = 0; 1690 isolate_mode_t isolate_mode = 0; 1691 int file = is_file_lru(lru); 1692 struct zone *zone = lruvec_zone(lruvec); 1693 1694 lru_add_drain(); 1695 1696 if (!sc->may_unmap) 1697 isolate_mode |= ISOLATE_UNMAPPED; 1698 if (!sc->may_writepage) 1699 isolate_mode |= ISOLATE_CLEAN; 1700 1701 spin_lock_irq(&zone->lru_lock); 1702 1703 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold, 1704 &nr_scanned, sc, isolate_mode, lru); 1705 if (global_reclaim(sc)) 1706 __mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned); 1707 1708 reclaim_stat->recent_scanned[file] += nr_taken; 1709 1710 __count_zone_vm_events(PGREFILL, zone, nr_scanned); 1711 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken); 1712 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken); 1713 spin_unlock_irq(&zone->lru_lock); 1714 1715 while (!list_empty(&l_hold)) { 1716 cond_resched(); 1717 page = lru_to_page(&l_hold); 1718 list_del(&page->lru); 1719 1720 if (unlikely(!page_evictable(page))) { 1721 putback_lru_page(page); 1722 continue; 1723 } 1724 1725 if (unlikely(buffer_heads_over_limit)) { 1726 if (page_has_private(page) && trylock_page(page)) { 1727 if (page_has_private(page)) 1728 try_to_release_page(page, 0); 1729 unlock_page(page); 1730 } 1731 } 1732 1733 if (page_referenced(page, 0, sc->target_mem_cgroup, 1734 &vm_flags)) { 1735 nr_rotated += hpage_nr_pages(page); 1736 /* 1737 * Identify referenced, file-backed active pages and 1738 * give them one more trip around the active list. So 1739 * that executable code get better chances to stay in 1740 * memory under moderate memory pressure. Anon pages 1741 * are not likely to be evicted by use-once streaming 1742 * IO, plus JVM can create lots of anon VM_EXEC pages, 1743 * so we ignore them here. 1744 */ 1745 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) { 1746 list_add(&page->lru, &l_active); 1747 continue; 1748 } 1749 } 1750 1751 ClearPageActive(page); /* we are de-activating */ 1752 list_add(&page->lru, &l_inactive); 1753 } 1754 1755 /* 1756 * Move pages back to the lru list. 1757 */ 1758 spin_lock_irq(&zone->lru_lock); 1759 /* 1760 * Count referenced pages from currently used mappings as rotated, 1761 * even though only some of them are actually re-activated. This 1762 * helps balance scan pressure between file and anonymous pages in 1763 * get_scan_count. 1764 */ 1765 reclaim_stat->recent_rotated[file] += nr_rotated; 1766 1767 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru); 1768 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE); 1769 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken); 1770 spin_unlock_irq(&zone->lru_lock); 1771 1772 mem_cgroup_uncharge_list(&l_hold); 1773 free_hot_cold_page_list(&l_hold, true); 1774 } 1775 1776 #ifdef CONFIG_SWAP 1777 static int inactive_anon_is_low_global(struct zone *zone) 1778 { 1779 unsigned long active, inactive; 1780 1781 active = zone_page_state(zone, NR_ACTIVE_ANON); 1782 inactive = zone_page_state(zone, NR_INACTIVE_ANON); 1783 1784 if (inactive * zone->inactive_ratio < active) 1785 return 1; 1786 1787 return 0; 1788 } 1789 1790 /** 1791 * inactive_anon_is_low - check if anonymous pages need to be deactivated 1792 * @lruvec: LRU vector to check 1793 * 1794 * Returns true if the zone does not have enough inactive anon pages, 1795 * meaning some active anon pages need to be deactivated. 1796 */ 1797 static int inactive_anon_is_low(struct lruvec *lruvec) 1798 { 1799 /* 1800 * If we don't have swap space, anonymous page deactivation 1801 * is pointless. 1802 */ 1803 if (!total_swap_pages) 1804 return 0; 1805 1806 if (!mem_cgroup_disabled()) 1807 return mem_cgroup_inactive_anon_is_low(lruvec); 1808 1809 return inactive_anon_is_low_global(lruvec_zone(lruvec)); 1810 } 1811 #else 1812 static inline int inactive_anon_is_low(struct lruvec *lruvec) 1813 { 1814 return 0; 1815 } 1816 #endif 1817 1818 /** 1819 * inactive_file_is_low - check if file pages need to be deactivated 1820 * @lruvec: LRU vector to check 1821 * 1822 * When the system is doing streaming IO, memory pressure here 1823 * ensures that active file pages get deactivated, until more 1824 * than half of the file pages are on the inactive list. 1825 * 1826 * Once we get to that situation, protect the system's working 1827 * set from being evicted by disabling active file page aging. 1828 * 1829 * This uses a different ratio than the anonymous pages, because 1830 * the page cache uses a use-once replacement algorithm. 1831 */ 1832 static int inactive_file_is_low(struct lruvec *lruvec) 1833 { 1834 unsigned long inactive; 1835 unsigned long active; 1836 1837 inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE); 1838 active = get_lru_size(lruvec, LRU_ACTIVE_FILE); 1839 1840 return active > inactive; 1841 } 1842 1843 static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru) 1844 { 1845 if (is_file_lru(lru)) 1846 return inactive_file_is_low(lruvec); 1847 else 1848 return inactive_anon_is_low(lruvec); 1849 } 1850 1851 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 1852 struct lruvec *lruvec, struct scan_control *sc) 1853 { 1854 if (is_active_lru(lru)) { 1855 if (inactive_list_is_low(lruvec, lru)) 1856 shrink_active_list(nr_to_scan, lruvec, sc, lru); 1857 return 0; 1858 } 1859 1860 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 1861 } 1862 1863 enum scan_balance { 1864 SCAN_EQUAL, 1865 SCAN_FRACT, 1866 SCAN_ANON, 1867 SCAN_FILE, 1868 }; 1869 1870 /* 1871 * Determine how aggressively the anon and file LRU lists should be 1872 * scanned. The relative value of each set of LRU lists is determined 1873 * by looking at the fraction of the pages scanned we did rotate back 1874 * onto the active list instead of evict. 1875 * 1876 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan 1877 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan 1878 */ 1879 static void get_scan_count(struct lruvec *lruvec, int swappiness, 1880 struct scan_control *sc, unsigned long *nr, 1881 unsigned long *lru_pages) 1882 { 1883 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1884 u64 fraction[2]; 1885 u64 denominator = 0; /* gcc */ 1886 struct zone *zone = lruvec_zone(lruvec); 1887 unsigned long anon_prio, file_prio; 1888 enum scan_balance scan_balance; 1889 unsigned long anon, file; 1890 bool force_scan = false; 1891 unsigned long ap, fp; 1892 enum lru_list lru; 1893 bool some_scanned; 1894 int pass; 1895 1896 /* 1897 * If the zone or memcg is small, nr[l] can be 0. This 1898 * results in no scanning on this priority and a potential 1899 * priority drop. Global direct reclaim can go to the next 1900 * zone and tends to have no problems. Global kswapd is for 1901 * zone balancing and it needs to scan a minimum amount. When 1902 * reclaiming for a memcg, a priority drop can cause high 1903 * latencies, so it's better to scan a minimum amount there as 1904 * well. 1905 */ 1906 if (current_is_kswapd() && !zone_reclaimable(zone)) 1907 force_scan = true; 1908 if (!global_reclaim(sc)) 1909 force_scan = true; 1910 1911 /* If we have no swap space, do not bother scanning anon pages. */ 1912 if (!sc->may_swap || (get_nr_swap_pages() <= 0)) { 1913 scan_balance = SCAN_FILE; 1914 goto out; 1915 } 1916 1917 /* 1918 * Global reclaim will swap to prevent OOM even with no 1919 * swappiness, but memcg users want to use this knob to 1920 * disable swapping for individual groups completely when 1921 * using the memory controller's swap limit feature would be 1922 * too expensive. 1923 */ 1924 if (!global_reclaim(sc) && !swappiness) { 1925 scan_balance = SCAN_FILE; 1926 goto out; 1927 } 1928 1929 /* 1930 * Do not apply any pressure balancing cleverness when the 1931 * system is close to OOM, scan both anon and file equally 1932 * (unless the swappiness setting disagrees with swapping). 1933 */ 1934 if (!sc->priority && swappiness) { 1935 scan_balance = SCAN_EQUAL; 1936 goto out; 1937 } 1938 1939 /* 1940 * Prevent the reclaimer from falling into the cache trap: as 1941 * cache pages start out inactive, every cache fault will tip 1942 * the scan balance towards the file LRU. And as the file LRU 1943 * shrinks, so does the window for rotation from references. 1944 * This means we have a runaway feedback loop where a tiny 1945 * thrashing file LRU becomes infinitely more attractive than 1946 * anon pages. Try to detect this based on file LRU size. 1947 */ 1948 if (global_reclaim(sc)) { 1949 unsigned long zonefile; 1950 unsigned long zonefree; 1951 1952 zonefree = zone_page_state(zone, NR_FREE_PAGES); 1953 zonefile = zone_page_state(zone, NR_ACTIVE_FILE) + 1954 zone_page_state(zone, NR_INACTIVE_FILE); 1955 1956 if (unlikely(zonefile + zonefree <= high_wmark_pages(zone))) { 1957 scan_balance = SCAN_ANON; 1958 goto out; 1959 } 1960 } 1961 1962 /* 1963 * There is enough inactive page cache, do not reclaim 1964 * anything from the anonymous working set right now. 1965 */ 1966 if (!inactive_file_is_low(lruvec)) { 1967 scan_balance = SCAN_FILE; 1968 goto out; 1969 } 1970 1971 scan_balance = SCAN_FRACT; 1972 1973 /* 1974 * With swappiness at 100, anonymous and file have the same priority. 1975 * This scanning priority is essentially the inverse of IO cost. 1976 */ 1977 anon_prio = swappiness; 1978 file_prio = 200 - anon_prio; 1979 1980 /* 1981 * OK, so we have swap space and a fair amount of page cache 1982 * pages. We use the recently rotated / recently scanned 1983 * ratios to determine how valuable each cache is. 1984 * 1985 * Because workloads change over time (and to avoid overflow) 1986 * we keep these statistics as a floating average, which ends 1987 * up weighing recent references more than old ones. 1988 * 1989 * anon in [0], file in [1] 1990 */ 1991 1992 anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) + 1993 get_lru_size(lruvec, LRU_INACTIVE_ANON); 1994 file = get_lru_size(lruvec, LRU_ACTIVE_FILE) + 1995 get_lru_size(lruvec, LRU_INACTIVE_FILE); 1996 1997 spin_lock_irq(&zone->lru_lock); 1998 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) { 1999 reclaim_stat->recent_scanned[0] /= 2; 2000 reclaim_stat->recent_rotated[0] /= 2; 2001 } 2002 2003 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) { 2004 reclaim_stat->recent_scanned[1] /= 2; 2005 reclaim_stat->recent_rotated[1] /= 2; 2006 } 2007 2008 /* 2009 * The amount of pressure on anon vs file pages is inversely 2010 * proportional to the fraction of recently scanned pages on 2011 * each list that were recently referenced and in active use. 2012 */ 2013 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1); 2014 ap /= reclaim_stat->recent_rotated[0] + 1; 2015 2016 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1); 2017 fp /= reclaim_stat->recent_rotated[1] + 1; 2018 spin_unlock_irq(&zone->lru_lock); 2019 2020 fraction[0] = ap; 2021 fraction[1] = fp; 2022 denominator = ap + fp + 1; 2023 out: 2024 some_scanned = false; 2025 /* Only use force_scan on second pass. */ 2026 for (pass = 0; !some_scanned && pass < 2; pass++) { 2027 *lru_pages = 0; 2028 for_each_evictable_lru(lru) { 2029 int file = is_file_lru(lru); 2030 unsigned long size; 2031 unsigned long scan; 2032 2033 size = get_lru_size(lruvec, lru); 2034 scan = size >> sc->priority; 2035 2036 if (!scan && pass && force_scan) 2037 scan = min(size, SWAP_CLUSTER_MAX); 2038 2039 switch (scan_balance) { 2040 case SCAN_EQUAL: 2041 /* Scan lists relative to size */ 2042 break; 2043 case SCAN_FRACT: 2044 /* 2045 * Scan types proportional to swappiness and 2046 * their relative recent reclaim efficiency. 2047 */ 2048 scan = div64_u64(scan * fraction[file], 2049 denominator); 2050 break; 2051 case SCAN_FILE: 2052 case SCAN_ANON: 2053 /* Scan one type exclusively */ 2054 if ((scan_balance == SCAN_FILE) != file) { 2055 size = 0; 2056 scan = 0; 2057 } 2058 break; 2059 default: 2060 /* Look ma, no brain */ 2061 BUG(); 2062 } 2063 2064 *lru_pages += size; 2065 nr[lru] = scan; 2066 2067 /* 2068 * Skip the second pass and don't force_scan, 2069 * if we found something to scan. 2070 */ 2071 some_scanned |= !!scan; 2072 } 2073 } 2074 } 2075 2076 /* 2077 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim. 2078 */ 2079 static void shrink_lruvec(struct lruvec *lruvec, int swappiness, 2080 struct scan_control *sc, unsigned long *lru_pages) 2081 { 2082 unsigned long nr[NR_LRU_LISTS]; 2083 unsigned long targets[NR_LRU_LISTS]; 2084 unsigned long nr_to_scan; 2085 enum lru_list lru; 2086 unsigned long nr_reclaimed = 0; 2087 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 2088 struct blk_plug plug; 2089 bool scan_adjusted; 2090 2091 get_scan_count(lruvec, swappiness, sc, nr, lru_pages); 2092 2093 /* Record the original scan target for proportional adjustments later */ 2094 memcpy(targets, nr, sizeof(nr)); 2095 2096 /* 2097 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal 2098 * event that can occur when there is little memory pressure e.g. 2099 * multiple streaming readers/writers. Hence, we do not abort scanning 2100 * when the requested number of pages are reclaimed when scanning at 2101 * DEF_PRIORITY on the assumption that the fact we are direct 2102 * reclaiming implies that kswapd is not keeping up and it is best to 2103 * do a batch of work at once. For memcg reclaim one check is made to 2104 * abort proportional reclaim if either the file or anon lru has already 2105 * dropped to zero at the first pass. 2106 */ 2107 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() && 2108 sc->priority == DEF_PRIORITY); 2109 2110 blk_start_plug(&plug); 2111 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 2112 nr[LRU_INACTIVE_FILE]) { 2113 unsigned long nr_anon, nr_file, percentage; 2114 unsigned long nr_scanned; 2115 2116 for_each_evictable_lru(lru) { 2117 if (nr[lru]) { 2118 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 2119 nr[lru] -= nr_to_scan; 2120 2121 nr_reclaimed += shrink_list(lru, nr_to_scan, 2122 lruvec, sc); 2123 } 2124 } 2125 2126 if (nr_reclaimed < nr_to_reclaim || scan_adjusted) 2127 continue; 2128 2129 /* 2130 * For kswapd and memcg, reclaim at least the number of pages 2131 * requested. Ensure that the anon and file LRUs are scanned 2132 * proportionally what was requested by get_scan_count(). We 2133 * stop reclaiming one LRU and reduce the amount scanning 2134 * proportional to the original scan target. 2135 */ 2136 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 2137 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 2138 2139 /* 2140 * It's just vindictive to attack the larger once the smaller 2141 * has gone to zero. And given the way we stop scanning the 2142 * smaller below, this makes sure that we only make one nudge 2143 * towards proportionality once we've got nr_to_reclaim. 2144 */ 2145 if (!nr_file || !nr_anon) 2146 break; 2147 2148 if (nr_file > nr_anon) { 2149 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 2150 targets[LRU_ACTIVE_ANON] + 1; 2151 lru = LRU_BASE; 2152 percentage = nr_anon * 100 / scan_target; 2153 } else { 2154 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 2155 targets[LRU_ACTIVE_FILE] + 1; 2156 lru = LRU_FILE; 2157 percentage = nr_file * 100 / scan_target; 2158 } 2159 2160 /* Stop scanning the smaller of the LRU */ 2161 nr[lru] = 0; 2162 nr[lru + LRU_ACTIVE] = 0; 2163 2164 /* 2165 * Recalculate the other LRU scan count based on its original 2166 * scan target and the percentage scanning already complete 2167 */ 2168 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 2169 nr_scanned = targets[lru] - nr[lru]; 2170 nr[lru] = targets[lru] * (100 - percentage) / 100; 2171 nr[lru] -= min(nr[lru], nr_scanned); 2172 2173 lru += LRU_ACTIVE; 2174 nr_scanned = targets[lru] - nr[lru]; 2175 nr[lru] = targets[lru] * (100 - percentage) / 100; 2176 nr[lru] -= min(nr[lru], nr_scanned); 2177 2178 scan_adjusted = true; 2179 } 2180 blk_finish_plug(&plug); 2181 sc->nr_reclaimed += nr_reclaimed; 2182 2183 /* 2184 * Even if we did not try to evict anon pages at all, we want to 2185 * rebalance the anon lru active/inactive ratio. 2186 */ 2187 if (inactive_anon_is_low(lruvec)) 2188 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 2189 sc, LRU_ACTIVE_ANON); 2190 2191 throttle_vm_writeout(sc->gfp_mask); 2192 } 2193 2194 /* Use reclaim/compaction for costly allocs or under memory pressure */ 2195 static bool in_reclaim_compaction(struct scan_control *sc) 2196 { 2197 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 2198 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 2199 sc->priority < DEF_PRIORITY - 2)) 2200 return true; 2201 2202 return false; 2203 } 2204 2205 /* 2206 * Reclaim/compaction is used for high-order allocation requests. It reclaims 2207 * order-0 pages before compacting the zone. should_continue_reclaim() returns 2208 * true if more pages should be reclaimed such that when the page allocator 2209 * calls try_to_compact_zone() that it will have enough free pages to succeed. 2210 * It will give up earlier than that if there is difficulty reclaiming pages. 2211 */ 2212 static inline bool should_continue_reclaim(struct zone *zone, 2213 unsigned long nr_reclaimed, 2214 unsigned long nr_scanned, 2215 struct scan_control *sc) 2216 { 2217 unsigned long pages_for_compaction; 2218 unsigned long inactive_lru_pages; 2219 2220 /* If not in reclaim/compaction mode, stop */ 2221 if (!in_reclaim_compaction(sc)) 2222 return false; 2223 2224 /* Consider stopping depending on scan and reclaim activity */ 2225 if (sc->gfp_mask & __GFP_REPEAT) { 2226 /* 2227 * For __GFP_REPEAT allocations, stop reclaiming if the 2228 * full LRU list has been scanned and we are still failing 2229 * to reclaim pages. This full LRU scan is potentially 2230 * expensive but a __GFP_REPEAT caller really wants to succeed 2231 */ 2232 if (!nr_reclaimed && !nr_scanned) 2233 return false; 2234 } else { 2235 /* 2236 * For non-__GFP_REPEAT allocations which can presumably 2237 * fail without consequence, stop if we failed to reclaim 2238 * any pages from the last SWAP_CLUSTER_MAX number of 2239 * pages that were scanned. This will return to the 2240 * caller faster at the risk reclaim/compaction and 2241 * the resulting allocation attempt fails 2242 */ 2243 if (!nr_reclaimed) 2244 return false; 2245 } 2246 2247 /* 2248 * If we have not reclaimed enough pages for compaction and the 2249 * inactive lists are large enough, continue reclaiming 2250 */ 2251 pages_for_compaction = (2UL << sc->order); 2252 inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE); 2253 if (get_nr_swap_pages() > 0) 2254 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON); 2255 if (sc->nr_reclaimed < pages_for_compaction && 2256 inactive_lru_pages > pages_for_compaction) 2257 return true; 2258 2259 /* If compaction would go ahead or the allocation would succeed, stop */ 2260 switch (compaction_suitable(zone, sc->order, 0, 0)) { 2261 case COMPACT_PARTIAL: 2262 case COMPACT_CONTINUE: 2263 return false; 2264 default: 2265 return true; 2266 } 2267 } 2268 2269 static bool shrink_zone(struct zone *zone, struct scan_control *sc, 2270 bool is_classzone) 2271 { 2272 unsigned long nr_reclaimed, nr_scanned; 2273 bool reclaimable = false; 2274 2275 do { 2276 struct mem_cgroup *root = sc->target_mem_cgroup; 2277 struct mem_cgroup_reclaim_cookie reclaim = { 2278 .zone = zone, 2279 .priority = sc->priority, 2280 }; 2281 unsigned long zone_lru_pages = 0; 2282 struct mem_cgroup *memcg; 2283 2284 nr_reclaimed = sc->nr_reclaimed; 2285 nr_scanned = sc->nr_scanned; 2286 2287 memcg = mem_cgroup_iter(root, NULL, &reclaim); 2288 do { 2289 unsigned long lru_pages; 2290 struct lruvec *lruvec; 2291 int swappiness; 2292 2293 lruvec = mem_cgroup_zone_lruvec(zone, memcg); 2294 swappiness = mem_cgroup_swappiness(memcg); 2295 2296 shrink_lruvec(lruvec, swappiness, sc, &lru_pages); 2297 zone_lru_pages += lru_pages; 2298 2299 /* 2300 * Direct reclaim and kswapd have to scan all memory 2301 * cgroups to fulfill the overall scan target for the 2302 * zone. 2303 * 2304 * Limit reclaim, on the other hand, only cares about 2305 * nr_to_reclaim pages to be reclaimed and it will 2306 * retry with decreasing priority if one round over the 2307 * whole hierarchy is not sufficient. 2308 */ 2309 if (!global_reclaim(sc) && 2310 sc->nr_reclaimed >= sc->nr_to_reclaim) { 2311 mem_cgroup_iter_break(root, memcg); 2312 break; 2313 } 2314 memcg = mem_cgroup_iter(root, memcg, &reclaim); 2315 } while (memcg); 2316 2317 /* 2318 * Shrink the slab caches in the same proportion that 2319 * the eligible LRU pages were scanned. 2320 */ 2321 if (global_reclaim(sc) && is_classzone) { 2322 struct reclaim_state *reclaim_state; 2323 2324 shrink_node_slabs(sc->gfp_mask, zone_to_nid(zone), 2325 sc->nr_scanned - nr_scanned, 2326 zone_lru_pages); 2327 2328 reclaim_state = current->reclaim_state; 2329 if (reclaim_state) { 2330 sc->nr_reclaimed += 2331 reclaim_state->reclaimed_slab; 2332 reclaim_state->reclaimed_slab = 0; 2333 } 2334 } 2335 2336 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, 2337 sc->nr_scanned - nr_scanned, 2338 sc->nr_reclaimed - nr_reclaimed); 2339 2340 if (sc->nr_reclaimed - nr_reclaimed) 2341 reclaimable = true; 2342 2343 } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed, 2344 sc->nr_scanned - nr_scanned, sc)); 2345 2346 return reclaimable; 2347 } 2348 2349 /* 2350 * Returns true if compaction should go ahead for a high-order request, or 2351 * the high-order allocation would succeed without compaction. 2352 */ 2353 static inline bool compaction_ready(struct zone *zone, int order) 2354 { 2355 unsigned long balance_gap, watermark; 2356 bool watermark_ok; 2357 2358 /* 2359 * Compaction takes time to run and there are potentially other 2360 * callers using the pages just freed. Continue reclaiming until 2361 * there is a buffer of free pages available to give compaction 2362 * a reasonable chance of completing and allocating the page 2363 */ 2364 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP( 2365 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO)); 2366 watermark = high_wmark_pages(zone) + balance_gap + (2UL << order); 2367 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0); 2368 2369 /* 2370 * If compaction is deferred, reclaim up to a point where 2371 * compaction will have a chance of success when re-enabled 2372 */ 2373 if (compaction_deferred(zone, order)) 2374 return watermark_ok; 2375 2376 /* 2377 * If compaction is not ready to start and allocation is not likely 2378 * to succeed without it, then keep reclaiming. 2379 */ 2380 if (compaction_suitable(zone, order, 0, 0) == COMPACT_SKIPPED) 2381 return false; 2382 2383 return watermark_ok; 2384 } 2385 2386 /* 2387 * This is the direct reclaim path, for page-allocating processes. We only 2388 * try to reclaim pages from zones which will satisfy the caller's allocation 2389 * request. 2390 * 2391 * We reclaim from a zone even if that zone is over high_wmark_pages(zone). 2392 * Because: 2393 * a) The caller may be trying to free *extra* pages to satisfy a higher-order 2394 * allocation or 2395 * b) The target zone may be at high_wmark_pages(zone) but the lower zones 2396 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min' 2397 * zone defense algorithm. 2398 * 2399 * If a zone is deemed to be full of pinned pages then just give it a light 2400 * scan then give up on it. 2401 * 2402 * Returns true if a zone was reclaimable. 2403 */ 2404 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 2405 { 2406 struct zoneref *z; 2407 struct zone *zone; 2408 unsigned long nr_soft_reclaimed; 2409 unsigned long nr_soft_scanned; 2410 gfp_t orig_mask; 2411 enum zone_type requested_highidx = gfp_zone(sc->gfp_mask); 2412 bool reclaimable = false; 2413 2414 /* 2415 * If the number of buffer_heads in the machine exceeds the maximum 2416 * allowed level, force direct reclaim to scan the highmem zone as 2417 * highmem pages could be pinning lowmem pages storing buffer_heads 2418 */ 2419 orig_mask = sc->gfp_mask; 2420 if (buffer_heads_over_limit) 2421 sc->gfp_mask |= __GFP_HIGHMEM; 2422 2423 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2424 requested_highidx, sc->nodemask) { 2425 enum zone_type classzone_idx; 2426 2427 if (!populated_zone(zone)) 2428 continue; 2429 2430 classzone_idx = requested_highidx; 2431 while (!populated_zone(zone->zone_pgdat->node_zones + 2432 classzone_idx)) 2433 classzone_idx--; 2434 2435 /* 2436 * Take care memory controller reclaiming has small influence 2437 * to global LRU. 2438 */ 2439 if (global_reclaim(sc)) { 2440 if (!cpuset_zone_allowed(zone, 2441 GFP_KERNEL | __GFP_HARDWALL)) 2442 continue; 2443 2444 if (sc->priority != DEF_PRIORITY && 2445 !zone_reclaimable(zone)) 2446 continue; /* Let kswapd poll it */ 2447 2448 /* 2449 * If we already have plenty of memory free for 2450 * compaction in this zone, don't free any more. 2451 * Even though compaction is invoked for any 2452 * non-zero order, only frequent costly order 2453 * reclamation is disruptive enough to become a 2454 * noticeable problem, like transparent huge 2455 * page allocations. 2456 */ 2457 if (IS_ENABLED(CONFIG_COMPACTION) && 2458 sc->order > PAGE_ALLOC_COSTLY_ORDER && 2459 zonelist_zone_idx(z) <= requested_highidx && 2460 compaction_ready(zone, sc->order)) { 2461 sc->compaction_ready = true; 2462 continue; 2463 } 2464 2465 /* 2466 * This steals pages from memory cgroups over softlimit 2467 * and returns the number of reclaimed pages and 2468 * scanned pages. This works for global memory pressure 2469 * and balancing, not for a memcg's limit. 2470 */ 2471 nr_soft_scanned = 0; 2472 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone, 2473 sc->order, sc->gfp_mask, 2474 &nr_soft_scanned); 2475 sc->nr_reclaimed += nr_soft_reclaimed; 2476 sc->nr_scanned += nr_soft_scanned; 2477 if (nr_soft_reclaimed) 2478 reclaimable = true; 2479 /* need some check for avoid more shrink_zone() */ 2480 } 2481 2482 if (shrink_zone(zone, sc, zone_idx(zone) == classzone_idx)) 2483 reclaimable = true; 2484 2485 if (global_reclaim(sc) && 2486 !reclaimable && zone_reclaimable(zone)) 2487 reclaimable = true; 2488 } 2489 2490 /* 2491 * Restore to original mask to avoid the impact on the caller if we 2492 * promoted it to __GFP_HIGHMEM. 2493 */ 2494 sc->gfp_mask = orig_mask; 2495 2496 return reclaimable; 2497 } 2498 2499 /* 2500 * This is the main entry point to direct page reclaim. 2501 * 2502 * If a full scan of the inactive list fails to free enough memory then we 2503 * are "out of memory" and something needs to be killed. 2504 * 2505 * If the caller is !__GFP_FS then the probability of a failure is reasonably 2506 * high - the zone may be full of dirty or under-writeback pages, which this 2507 * caller can't do much about. We kick the writeback threads and take explicit 2508 * naps in the hope that some of these pages can be written. But if the 2509 * allocating task holds filesystem locks which prevent writeout this might not 2510 * work, and the allocation attempt will fail. 2511 * 2512 * returns: 0, if no pages reclaimed 2513 * else, the number of pages reclaimed 2514 */ 2515 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 2516 struct scan_control *sc) 2517 { 2518 unsigned long total_scanned = 0; 2519 unsigned long writeback_threshold; 2520 bool zones_reclaimable; 2521 2522 delayacct_freepages_start(); 2523 2524 if (global_reclaim(sc)) 2525 count_vm_event(ALLOCSTALL); 2526 2527 do { 2528 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 2529 sc->priority); 2530 sc->nr_scanned = 0; 2531 zones_reclaimable = shrink_zones(zonelist, sc); 2532 2533 total_scanned += sc->nr_scanned; 2534 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 2535 break; 2536 2537 if (sc->compaction_ready) 2538 break; 2539 2540 /* 2541 * If we're getting trouble reclaiming, start doing 2542 * writepage even in laptop mode. 2543 */ 2544 if (sc->priority < DEF_PRIORITY - 2) 2545 sc->may_writepage = 1; 2546 2547 /* 2548 * Try to write back as many pages as we just scanned. This 2549 * tends to cause slow streaming writers to write data to the 2550 * disk smoothly, at the dirtying rate, which is nice. But 2551 * that's undesirable in laptop mode, where we *want* lumpy 2552 * writeout. So in laptop mode, write out the whole world. 2553 */ 2554 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2; 2555 if (total_scanned > writeback_threshold) { 2556 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned, 2557 WB_REASON_TRY_TO_FREE_PAGES); 2558 sc->may_writepage = 1; 2559 } 2560 } while (--sc->priority >= 0); 2561 2562 delayacct_freepages_end(); 2563 2564 if (sc->nr_reclaimed) 2565 return sc->nr_reclaimed; 2566 2567 /* Aborted reclaim to try compaction? don't OOM, then */ 2568 if (sc->compaction_ready) 2569 return 1; 2570 2571 /* Any of the zones still reclaimable? Don't OOM. */ 2572 if (zones_reclaimable) 2573 return 1; 2574 2575 return 0; 2576 } 2577 2578 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat) 2579 { 2580 struct zone *zone; 2581 unsigned long pfmemalloc_reserve = 0; 2582 unsigned long free_pages = 0; 2583 int i; 2584 bool wmark_ok; 2585 2586 for (i = 0; i <= ZONE_NORMAL; i++) { 2587 zone = &pgdat->node_zones[i]; 2588 if (!populated_zone(zone)) 2589 continue; 2590 2591 pfmemalloc_reserve += min_wmark_pages(zone); 2592 free_pages += zone_page_state(zone, NR_FREE_PAGES); 2593 } 2594 2595 /* If there are no reserves (unexpected config) then do not throttle */ 2596 if (!pfmemalloc_reserve) 2597 return true; 2598 2599 wmark_ok = free_pages > pfmemalloc_reserve / 2; 2600 2601 /* kswapd must be awake if processes are being throttled */ 2602 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 2603 pgdat->classzone_idx = min(pgdat->classzone_idx, 2604 (enum zone_type)ZONE_NORMAL); 2605 wake_up_interruptible(&pgdat->kswapd_wait); 2606 } 2607 2608 return wmark_ok; 2609 } 2610 2611 /* 2612 * Throttle direct reclaimers if backing storage is backed by the network 2613 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 2614 * depleted. kswapd will continue to make progress and wake the processes 2615 * when the low watermark is reached. 2616 * 2617 * Returns true if a fatal signal was delivered during throttling. If this 2618 * happens, the page allocator should not consider triggering the OOM killer. 2619 */ 2620 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 2621 nodemask_t *nodemask) 2622 { 2623 struct zoneref *z; 2624 struct zone *zone; 2625 pg_data_t *pgdat = NULL; 2626 2627 /* 2628 * Kernel threads should not be throttled as they may be indirectly 2629 * responsible for cleaning pages necessary for reclaim to make forward 2630 * progress. kjournald for example may enter direct reclaim while 2631 * committing a transaction where throttling it could forcing other 2632 * processes to block on log_wait_commit(). 2633 */ 2634 if (current->flags & PF_KTHREAD) 2635 goto out; 2636 2637 /* 2638 * If a fatal signal is pending, this process should not throttle. 2639 * It should return quickly so it can exit and free its memory 2640 */ 2641 if (fatal_signal_pending(current)) 2642 goto out; 2643 2644 /* 2645 * Check if the pfmemalloc reserves are ok by finding the first node 2646 * with a usable ZONE_NORMAL or lower zone. The expectation is that 2647 * GFP_KERNEL will be required for allocating network buffers when 2648 * swapping over the network so ZONE_HIGHMEM is unusable. 2649 * 2650 * Throttling is based on the first usable node and throttled processes 2651 * wait on a queue until kswapd makes progress and wakes them. There 2652 * is an affinity then between processes waking up and where reclaim 2653 * progress has been made assuming the process wakes on the same node. 2654 * More importantly, processes running on remote nodes will not compete 2655 * for remote pfmemalloc reserves and processes on different nodes 2656 * should make reasonable progress. 2657 */ 2658 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2659 gfp_mask, nodemask) { 2660 if (zone_idx(zone) > ZONE_NORMAL) 2661 continue; 2662 2663 /* Throttle based on the first usable node */ 2664 pgdat = zone->zone_pgdat; 2665 if (pfmemalloc_watermark_ok(pgdat)) 2666 goto out; 2667 break; 2668 } 2669 2670 /* If no zone was usable by the allocation flags then do not throttle */ 2671 if (!pgdat) 2672 goto out; 2673 2674 /* Account for the throttling */ 2675 count_vm_event(PGSCAN_DIRECT_THROTTLE); 2676 2677 /* 2678 * If the caller cannot enter the filesystem, it's possible that it 2679 * is due to the caller holding an FS lock or performing a journal 2680 * transaction in the case of a filesystem like ext[3|4]. In this case, 2681 * it is not safe to block on pfmemalloc_wait as kswapd could be 2682 * blocked waiting on the same lock. Instead, throttle for up to a 2683 * second before continuing. 2684 */ 2685 if (!(gfp_mask & __GFP_FS)) { 2686 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 2687 pfmemalloc_watermark_ok(pgdat), HZ); 2688 2689 goto check_pending; 2690 } 2691 2692 /* Throttle until kswapd wakes the process */ 2693 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 2694 pfmemalloc_watermark_ok(pgdat)); 2695 2696 check_pending: 2697 if (fatal_signal_pending(current)) 2698 return true; 2699 2700 out: 2701 return false; 2702 } 2703 2704 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 2705 gfp_t gfp_mask, nodemask_t *nodemask) 2706 { 2707 unsigned long nr_reclaimed; 2708 struct scan_control sc = { 2709 .nr_to_reclaim = SWAP_CLUSTER_MAX, 2710 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)), 2711 .order = order, 2712 .nodemask = nodemask, 2713 .priority = DEF_PRIORITY, 2714 .may_writepage = !laptop_mode, 2715 .may_unmap = 1, 2716 .may_swap = 1, 2717 }; 2718 2719 /* 2720 * Do not enter reclaim if fatal signal was delivered while throttled. 2721 * 1 is returned so that the page allocator does not OOM kill at this 2722 * point. 2723 */ 2724 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask)) 2725 return 1; 2726 2727 trace_mm_vmscan_direct_reclaim_begin(order, 2728 sc.may_writepage, 2729 gfp_mask); 2730 2731 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 2732 2733 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 2734 2735 return nr_reclaimed; 2736 } 2737 2738 #ifdef CONFIG_MEMCG 2739 2740 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg, 2741 gfp_t gfp_mask, bool noswap, 2742 struct zone *zone, 2743 unsigned long *nr_scanned) 2744 { 2745 struct scan_control sc = { 2746 .nr_to_reclaim = SWAP_CLUSTER_MAX, 2747 .target_mem_cgroup = memcg, 2748 .may_writepage = !laptop_mode, 2749 .may_unmap = 1, 2750 .may_swap = !noswap, 2751 }; 2752 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg); 2753 int swappiness = mem_cgroup_swappiness(memcg); 2754 unsigned long lru_pages; 2755 2756 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 2757 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 2758 2759 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 2760 sc.may_writepage, 2761 sc.gfp_mask); 2762 2763 /* 2764 * NOTE: Although we can get the priority field, using it 2765 * here is not a good idea, since it limits the pages we can scan. 2766 * if we don't reclaim here, the shrink_zone from balance_pgdat 2767 * will pick up pages from other mem cgroup's as well. We hack 2768 * the priority and make it zero. 2769 */ 2770 shrink_lruvec(lruvec, swappiness, &sc, &lru_pages); 2771 2772 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 2773 2774 *nr_scanned = sc.nr_scanned; 2775 return sc.nr_reclaimed; 2776 } 2777 2778 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 2779 unsigned long nr_pages, 2780 gfp_t gfp_mask, 2781 bool may_swap) 2782 { 2783 struct zonelist *zonelist; 2784 unsigned long nr_reclaimed; 2785 int nid; 2786 struct scan_control sc = { 2787 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 2788 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 2789 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 2790 .target_mem_cgroup = memcg, 2791 .priority = DEF_PRIORITY, 2792 .may_writepage = !laptop_mode, 2793 .may_unmap = 1, 2794 .may_swap = may_swap, 2795 }; 2796 2797 /* 2798 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't 2799 * take care of from where we get pages. So the node where we start the 2800 * scan does not need to be the current node. 2801 */ 2802 nid = mem_cgroup_select_victim_node(memcg); 2803 2804 zonelist = NODE_DATA(nid)->node_zonelists; 2805 2806 trace_mm_vmscan_memcg_reclaim_begin(0, 2807 sc.may_writepage, 2808 sc.gfp_mask); 2809 2810 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 2811 2812 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 2813 2814 return nr_reclaimed; 2815 } 2816 #endif 2817 2818 static void age_active_anon(struct zone *zone, struct scan_control *sc) 2819 { 2820 struct mem_cgroup *memcg; 2821 2822 if (!total_swap_pages) 2823 return; 2824 2825 memcg = mem_cgroup_iter(NULL, NULL, NULL); 2826 do { 2827 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg); 2828 2829 if (inactive_anon_is_low(lruvec)) 2830 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 2831 sc, LRU_ACTIVE_ANON); 2832 2833 memcg = mem_cgroup_iter(NULL, memcg, NULL); 2834 } while (memcg); 2835 } 2836 2837 static bool zone_balanced(struct zone *zone, int order, 2838 unsigned long balance_gap, int classzone_idx) 2839 { 2840 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) + 2841 balance_gap, classzone_idx, 0)) 2842 return false; 2843 2844 if (IS_ENABLED(CONFIG_COMPACTION) && order && compaction_suitable(zone, 2845 order, 0, classzone_idx) == COMPACT_SKIPPED) 2846 return false; 2847 2848 return true; 2849 } 2850 2851 /* 2852 * pgdat_balanced() is used when checking if a node is balanced. 2853 * 2854 * For order-0, all zones must be balanced! 2855 * 2856 * For high-order allocations only zones that meet watermarks and are in a 2857 * zone allowed by the callers classzone_idx are added to balanced_pages. The 2858 * total of balanced pages must be at least 25% of the zones allowed by 2859 * classzone_idx for the node to be considered balanced. Forcing all zones to 2860 * be balanced for high orders can cause excessive reclaim when there are 2861 * imbalanced zones. 2862 * The choice of 25% is due to 2863 * o a 16M DMA zone that is balanced will not balance a zone on any 2864 * reasonable sized machine 2865 * o On all other machines, the top zone must be at least a reasonable 2866 * percentage of the middle zones. For example, on 32-bit x86, highmem 2867 * would need to be at least 256M for it to be balance a whole node. 2868 * Similarly, on x86-64 the Normal zone would need to be at least 1G 2869 * to balance a node on its own. These seemed like reasonable ratios. 2870 */ 2871 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx) 2872 { 2873 unsigned long managed_pages = 0; 2874 unsigned long balanced_pages = 0; 2875 int i; 2876 2877 /* Check the watermark levels */ 2878 for (i = 0; i <= classzone_idx; i++) { 2879 struct zone *zone = pgdat->node_zones + i; 2880 2881 if (!populated_zone(zone)) 2882 continue; 2883 2884 managed_pages += zone->managed_pages; 2885 2886 /* 2887 * A special case here: 2888 * 2889 * balance_pgdat() skips over all_unreclaimable after 2890 * DEF_PRIORITY. Effectively, it considers them balanced so 2891 * they must be considered balanced here as well! 2892 */ 2893 if (!zone_reclaimable(zone)) { 2894 balanced_pages += zone->managed_pages; 2895 continue; 2896 } 2897 2898 if (zone_balanced(zone, order, 0, i)) 2899 balanced_pages += zone->managed_pages; 2900 else if (!order) 2901 return false; 2902 } 2903 2904 if (order) 2905 return balanced_pages >= (managed_pages >> 2); 2906 else 2907 return true; 2908 } 2909 2910 /* 2911 * Prepare kswapd for sleeping. This verifies that there are no processes 2912 * waiting in throttle_direct_reclaim() and that watermarks have been met. 2913 * 2914 * Returns true if kswapd is ready to sleep 2915 */ 2916 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining, 2917 int classzone_idx) 2918 { 2919 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */ 2920 if (remaining) 2921 return false; 2922 2923 /* 2924 * The throttled processes are normally woken up in balance_pgdat() as 2925 * soon as pfmemalloc_watermark_ok() is true. But there is a potential 2926 * race between when kswapd checks the watermarks and a process gets 2927 * throttled. There is also a potential race if processes get 2928 * throttled, kswapd wakes, a large process exits thereby balancing the 2929 * zones, which causes kswapd to exit balance_pgdat() before reaching 2930 * the wake up checks. If kswapd is going to sleep, no process should 2931 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If 2932 * the wake up is premature, processes will wake kswapd and get 2933 * throttled again. The difference from wake ups in balance_pgdat() is 2934 * that here we are under prepare_to_wait(). 2935 */ 2936 if (waitqueue_active(&pgdat->pfmemalloc_wait)) 2937 wake_up_all(&pgdat->pfmemalloc_wait); 2938 2939 return pgdat_balanced(pgdat, order, classzone_idx); 2940 } 2941 2942 /* 2943 * kswapd shrinks the zone by the number of pages required to reach 2944 * the high watermark. 2945 * 2946 * Returns true if kswapd scanned at least the requested number of pages to 2947 * reclaim or if the lack of progress was due to pages under writeback. 2948 * This is used to determine if the scanning priority needs to be raised. 2949 */ 2950 static bool kswapd_shrink_zone(struct zone *zone, 2951 int classzone_idx, 2952 struct scan_control *sc, 2953 unsigned long *nr_attempted) 2954 { 2955 int testorder = sc->order; 2956 unsigned long balance_gap; 2957 bool lowmem_pressure; 2958 2959 /* Reclaim above the high watermark. */ 2960 sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone)); 2961 2962 /* 2963 * Kswapd reclaims only single pages with compaction enabled. Trying 2964 * too hard to reclaim until contiguous free pages have become 2965 * available can hurt performance by evicting too much useful data 2966 * from memory. Do not reclaim more than needed for compaction. 2967 */ 2968 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 2969 compaction_suitable(zone, sc->order, 0, classzone_idx) 2970 != COMPACT_SKIPPED) 2971 testorder = 0; 2972 2973 /* 2974 * We put equal pressure on every zone, unless one zone has way too 2975 * many pages free already. The "too many pages" is defined as the 2976 * high wmark plus a "gap" where the gap is either the low 2977 * watermark or 1% of the zone, whichever is smaller. 2978 */ 2979 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP( 2980 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO)); 2981 2982 /* 2983 * If there is no low memory pressure or the zone is balanced then no 2984 * reclaim is necessary 2985 */ 2986 lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone)); 2987 if (!lowmem_pressure && zone_balanced(zone, testorder, 2988 balance_gap, classzone_idx)) 2989 return true; 2990 2991 shrink_zone(zone, sc, zone_idx(zone) == classzone_idx); 2992 2993 /* Account for the number of pages attempted to reclaim */ 2994 *nr_attempted += sc->nr_to_reclaim; 2995 2996 clear_bit(ZONE_WRITEBACK, &zone->flags); 2997 2998 /* 2999 * If a zone reaches its high watermark, consider it to be no longer 3000 * congested. It's possible there are dirty pages backed by congested 3001 * BDIs but as pressure is relieved, speculatively avoid congestion 3002 * waits. 3003 */ 3004 if (zone_reclaimable(zone) && 3005 zone_balanced(zone, testorder, 0, classzone_idx)) { 3006 clear_bit(ZONE_CONGESTED, &zone->flags); 3007 clear_bit(ZONE_DIRTY, &zone->flags); 3008 } 3009 3010 return sc->nr_scanned >= sc->nr_to_reclaim; 3011 } 3012 3013 /* 3014 * For kswapd, balance_pgdat() will work across all this node's zones until 3015 * they are all at high_wmark_pages(zone). 3016 * 3017 * Returns the final order kswapd was reclaiming at 3018 * 3019 * There is special handling here for zones which are full of pinned pages. 3020 * This can happen if the pages are all mlocked, or if they are all used by 3021 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb. 3022 * What we do is to detect the case where all pages in the zone have been 3023 * scanned twice and there has been zero successful reclaim. Mark the zone as 3024 * dead and from now on, only perform a short scan. Basically we're polling 3025 * the zone for when the problem goes away. 3026 * 3027 * kswapd scans the zones in the highmem->normal->dma direction. It skips 3028 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 3029 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the 3030 * lower zones regardless of the number of free pages in the lower zones. This 3031 * interoperates with the page allocator fallback scheme to ensure that aging 3032 * of pages is balanced across the zones. 3033 */ 3034 static unsigned long balance_pgdat(pg_data_t *pgdat, int order, 3035 int *classzone_idx) 3036 { 3037 int i; 3038 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */ 3039 unsigned long nr_soft_reclaimed; 3040 unsigned long nr_soft_scanned; 3041 struct scan_control sc = { 3042 .gfp_mask = GFP_KERNEL, 3043 .order = order, 3044 .priority = DEF_PRIORITY, 3045 .may_writepage = !laptop_mode, 3046 .may_unmap = 1, 3047 .may_swap = 1, 3048 }; 3049 count_vm_event(PAGEOUTRUN); 3050 3051 do { 3052 unsigned long nr_attempted = 0; 3053 bool raise_priority = true; 3054 bool pgdat_needs_compaction = (order > 0); 3055 3056 sc.nr_reclaimed = 0; 3057 3058 /* 3059 * Scan in the highmem->dma direction for the highest 3060 * zone which needs scanning 3061 */ 3062 for (i = pgdat->nr_zones - 1; i >= 0; i--) { 3063 struct zone *zone = pgdat->node_zones + i; 3064 3065 if (!populated_zone(zone)) 3066 continue; 3067 3068 if (sc.priority != DEF_PRIORITY && 3069 !zone_reclaimable(zone)) 3070 continue; 3071 3072 /* 3073 * Do some background aging of the anon list, to give 3074 * pages a chance to be referenced before reclaiming. 3075 */ 3076 age_active_anon(zone, &sc); 3077 3078 /* 3079 * If the number of buffer_heads in the machine 3080 * exceeds the maximum allowed level and this node 3081 * has a highmem zone, force kswapd to reclaim from 3082 * it to relieve lowmem pressure. 3083 */ 3084 if (buffer_heads_over_limit && is_highmem_idx(i)) { 3085 end_zone = i; 3086 break; 3087 } 3088 3089 if (!zone_balanced(zone, order, 0, 0)) { 3090 end_zone = i; 3091 break; 3092 } else { 3093 /* 3094 * If balanced, clear the dirty and congested 3095 * flags 3096 */ 3097 clear_bit(ZONE_CONGESTED, &zone->flags); 3098 clear_bit(ZONE_DIRTY, &zone->flags); 3099 } 3100 } 3101 3102 if (i < 0) 3103 goto out; 3104 3105 for (i = 0; i <= end_zone; i++) { 3106 struct zone *zone = pgdat->node_zones + i; 3107 3108 if (!populated_zone(zone)) 3109 continue; 3110 3111 /* 3112 * If any zone is currently balanced then kswapd will 3113 * not call compaction as it is expected that the 3114 * necessary pages are already available. 3115 */ 3116 if (pgdat_needs_compaction && 3117 zone_watermark_ok(zone, order, 3118 low_wmark_pages(zone), 3119 *classzone_idx, 0)) 3120 pgdat_needs_compaction = false; 3121 } 3122 3123 /* 3124 * If we're getting trouble reclaiming, start doing writepage 3125 * even in laptop mode. 3126 */ 3127 if (sc.priority < DEF_PRIORITY - 2) 3128 sc.may_writepage = 1; 3129 3130 /* 3131 * Now scan the zone in the dma->highmem direction, stopping 3132 * at the last zone which needs scanning. 3133 * 3134 * We do this because the page allocator works in the opposite 3135 * direction. This prevents the page allocator from allocating 3136 * pages behind kswapd's direction of progress, which would 3137 * cause too much scanning of the lower zones. 3138 */ 3139 for (i = 0; i <= end_zone; i++) { 3140 struct zone *zone = pgdat->node_zones + i; 3141 3142 if (!populated_zone(zone)) 3143 continue; 3144 3145 if (sc.priority != DEF_PRIORITY && 3146 !zone_reclaimable(zone)) 3147 continue; 3148 3149 sc.nr_scanned = 0; 3150 3151 nr_soft_scanned = 0; 3152 /* 3153 * Call soft limit reclaim before calling shrink_zone. 3154 */ 3155 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone, 3156 order, sc.gfp_mask, 3157 &nr_soft_scanned); 3158 sc.nr_reclaimed += nr_soft_reclaimed; 3159 3160 /* 3161 * There should be no need to raise the scanning 3162 * priority if enough pages are already being scanned 3163 * that that high watermark would be met at 100% 3164 * efficiency. 3165 */ 3166 if (kswapd_shrink_zone(zone, end_zone, 3167 &sc, &nr_attempted)) 3168 raise_priority = false; 3169 } 3170 3171 /* 3172 * If the low watermark is met there is no need for processes 3173 * to be throttled on pfmemalloc_wait as they should not be 3174 * able to safely make forward progress. Wake them 3175 */ 3176 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 3177 pfmemalloc_watermark_ok(pgdat)) 3178 wake_up(&pgdat->pfmemalloc_wait); 3179 3180 /* 3181 * Fragmentation may mean that the system cannot be rebalanced 3182 * for high-order allocations in all zones. If twice the 3183 * allocation size has been reclaimed and the zones are still 3184 * not balanced then recheck the watermarks at order-0 to 3185 * prevent kswapd reclaiming excessively. Assume that a 3186 * process requested a high-order can direct reclaim/compact. 3187 */ 3188 if (order && sc.nr_reclaimed >= 2UL << order) 3189 order = sc.order = 0; 3190 3191 /* Check if kswapd should be suspending */ 3192 if (try_to_freeze() || kthread_should_stop()) 3193 break; 3194 3195 /* 3196 * Compact if necessary and kswapd is reclaiming at least the 3197 * high watermark number of pages as requsted 3198 */ 3199 if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted) 3200 compact_pgdat(pgdat, order); 3201 3202 /* 3203 * Raise priority if scanning rate is too low or there was no 3204 * progress in reclaiming pages 3205 */ 3206 if (raise_priority || !sc.nr_reclaimed) 3207 sc.priority--; 3208 } while (sc.priority >= 1 && 3209 !pgdat_balanced(pgdat, order, *classzone_idx)); 3210 3211 out: 3212 /* 3213 * Return the order we were reclaiming at so prepare_kswapd_sleep() 3214 * makes a decision on the order we were last reclaiming at. However, 3215 * if another caller entered the allocator slow path while kswapd 3216 * was awake, order will remain at the higher level 3217 */ 3218 *classzone_idx = end_zone; 3219 return order; 3220 } 3221 3222 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx) 3223 { 3224 long remaining = 0; 3225 DEFINE_WAIT(wait); 3226 3227 if (freezing(current) || kthread_should_stop()) 3228 return; 3229 3230 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3231 3232 /* Try to sleep for a short interval */ 3233 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) { 3234 remaining = schedule_timeout(HZ/10); 3235 finish_wait(&pgdat->kswapd_wait, &wait); 3236 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3237 } 3238 3239 /* 3240 * After a short sleep, check if it was a premature sleep. If not, then 3241 * go fully to sleep until explicitly woken up. 3242 */ 3243 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) { 3244 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 3245 3246 /* 3247 * vmstat counters are not perfectly accurate and the estimated 3248 * value for counters such as NR_FREE_PAGES can deviate from the 3249 * true value by nr_online_cpus * threshold. To avoid the zone 3250 * watermarks being breached while under pressure, we reduce the 3251 * per-cpu vmstat threshold while kswapd is awake and restore 3252 * them before going back to sleep. 3253 */ 3254 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 3255 3256 /* 3257 * Compaction records what page blocks it recently failed to 3258 * isolate pages from and skips them in the future scanning. 3259 * When kswapd is going to sleep, it is reasonable to assume 3260 * that pages and compaction may succeed so reset the cache. 3261 */ 3262 reset_isolation_suitable(pgdat); 3263 3264 if (!kthread_should_stop()) 3265 schedule(); 3266 3267 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 3268 } else { 3269 if (remaining) 3270 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 3271 else 3272 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 3273 } 3274 finish_wait(&pgdat->kswapd_wait, &wait); 3275 } 3276 3277 /* 3278 * The background pageout daemon, started as a kernel thread 3279 * from the init process. 3280 * 3281 * This basically trickles out pages so that we have _some_ 3282 * free memory available even if there is no other activity 3283 * that frees anything up. This is needed for things like routing 3284 * etc, where we otherwise might have all activity going on in 3285 * asynchronous contexts that cannot page things out. 3286 * 3287 * If there are applications that are active memory-allocators 3288 * (most normal use), this basically shouldn't matter. 3289 */ 3290 static int kswapd(void *p) 3291 { 3292 unsigned long order, new_order; 3293 unsigned balanced_order; 3294 int classzone_idx, new_classzone_idx; 3295 int balanced_classzone_idx; 3296 pg_data_t *pgdat = (pg_data_t*)p; 3297 struct task_struct *tsk = current; 3298 3299 struct reclaim_state reclaim_state = { 3300 .reclaimed_slab = 0, 3301 }; 3302 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 3303 3304 lockdep_set_current_reclaim_state(GFP_KERNEL); 3305 3306 if (!cpumask_empty(cpumask)) 3307 set_cpus_allowed_ptr(tsk, cpumask); 3308 current->reclaim_state = &reclaim_state; 3309 3310 /* 3311 * Tell the memory management that we're a "memory allocator", 3312 * and that if we need more memory we should get access to it 3313 * regardless (see "__alloc_pages()"). "kswapd" should 3314 * never get caught in the normal page freeing logic. 3315 * 3316 * (Kswapd normally doesn't need memory anyway, but sometimes 3317 * you need a small amount of memory in order to be able to 3318 * page out something else, and this flag essentially protects 3319 * us from recursively trying to free more memory as we're 3320 * trying to free the first piece of memory in the first place). 3321 */ 3322 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 3323 set_freezable(); 3324 3325 order = new_order = 0; 3326 balanced_order = 0; 3327 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1; 3328 balanced_classzone_idx = classzone_idx; 3329 for ( ; ; ) { 3330 bool ret; 3331 3332 /* 3333 * If the last balance_pgdat was unsuccessful it's unlikely a 3334 * new request of a similar or harder type will succeed soon 3335 * so consider going to sleep on the basis we reclaimed at 3336 */ 3337 if (balanced_classzone_idx >= new_classzone_idx && 3338 balanced_order == new_order) { 3339 new_order = pgdat->kswapd_max_order; 3340 new_classzone_idx = pgdat->classzone_idx; 3341 pgdat->kswapd_max_order = 0; 3342 pgdat->classzone_idx = pgdat->nr_zones - 1; 3343 } 3344 3345 if (order < new_order || classzone_idx > new_classzone_idx) { 3346 /* 3347 * Don't sleep if someone wants a larger 'order' 3348 * allocation or has tigher zone constraints 3349 */ 3350 order = new_order; 3351 classzone_idx = new_classzone_idx; 3352 } else { 3353 kswapd_try_to_sleep(pgdat, balanced_order, 3354 balanced_classzone_idx); 3355 order = pgdat->kswapd_max_order; 3356 classzone_idx = pgdat->classzone_idx; 3357 new_order = order; 3358 new_classzone_idx = classzone_idx; 3359 pgdat->kswapd_max_order = 0; 3360 pgdat->classzone_idx = pgdat->nr_zones - 1; 3361 } 3362 3363 ret = try_to_freeze(); 3364 if (kthread_should_stop()) 3365 break; 3366 3367 /* 3368 * We can speed up thawing tasks if we don't call balance_pgdat 3369 * after returning from the refrigerator 3370 */ 3371 if (!ret) { 3372 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order); 3373 balanced_classzone_idx = classzone_idx; 3374 balanced_order = balance_pgdat(pgdat, order, 3375 &balanced_classzone_idx); 3376 } 3377 } 3378 3379 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD); 3380 current->reclaim_state = NULL; 3381 lockdep_clear_current_reclaim_state(); 3382 3383 return 0; 3384 } 3385 3386 /* 3387 * A zone is low on free memory, so wake its kswapd task to service it. 3388 */ 3389 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx) 3390 { 3391 pg_data_t *pgdat; 3392 3393 if (!populated_zone(zone)) 3394 return; 3395 3396 if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL)) 3397 return; 3398 pgdat = zone->zone_pgdat; 3399 if (pgdat->kswapd_max_order < order) { 3400 pgdat->kswapd_max_order = order; 3401 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx); 3402 } 3403 if (!waitqueue_active(&pgdat->kswapd_wait)) 3404 return; 3405 if (zone_balanced(zone, order, 0, 0)) 3406 return; 3407 3408 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order); 3409 wake_up_interruptible(&pgdat->kswapd_wait); 3410 } 3411 3412 #ifdef CONFIG_HIBERNATION 3413 /* 3414 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 3415 * freed pages. 3416 * 3417 * Rather than trying to age LRUs the aim is to preserve the overall 3418 * LRU order by reclaiming preferentially 3419 * inactive > active > active referenced > active mapped 3420 */ 3421 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 3422 { 3423 struct reclaim_state reclaim_state; 3424 struct scan_control sc = { 3425 .nr_to_reclaim = nr_to_reclaim, 3426 .gfp_mask = GFP_HIGHUSER_MOVABLE, 3427 .priority = DEF_PRIORITY, 3428 .may_writepage = 1, 3429 .may_unmap = 1, 3430 .may_swap = 1, 3431 .hibernation_mode = 1, 3432 }; 3433 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 3434 struct task_struct *p = current; 3435 unsigned long nr_reclaimed; 3436 3437 p->flags |= PF_MEMALLOC; 3438 lockdep_set_current_reclaim_state(sc.gfp_mask); 3439 reclaim_state.reclaimed_slab = 0; 3440 p->reclaim_state = &reclaim_state; 3441 3442 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3443 3444 p->reclaim_state = NULL; 3445 lockdep_clear_current_reclaim_state(); 3446 p->flags &= ~PF_MEMALLOC; 3447 3448 return nr_reclaimed; 3449 } 3450 #endif /* CONFIG_HIBERNATION */ 3451 3452 /* It's optimal to keep kswapds on the same CPUs as their memory, but 3453 not required for correctness. So if the last cpu in a node goes 3454 away, we get changed to run anywhere: as the first one comes back, 3455 restore their cpu bindings. */ 3456 static int cpu_callback(struct notifier_block *nfb, unsigned long action, 3457 void *hcpu) 3458 { 3459 int nid; 3460 3461 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) { 3462 for_each_node_state(nid, N_MEMORY) { 3463 pg_data_t *pgdat = NODE_DATA(nid); 3464 const struct cpumask *mask; 3465 3466 mask = cpumask_of_node(pgdat->node_id); 3467 3468 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 3469 /* One of our CPUs online: restore mask */ 3470 set_cpus_allowed_ptr(pgdat->kswapd, mask); 3471 } 3472 } 3473 return NOTIFY_OK; 3474 } 3475 3476 /* 3477 * This kswapd start function will be called by init and node-hot-add. 3478 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. 3479 */ 3480 int kswapd_run(int nid) 3481 { 3482 pg_data_t *pgdat = NODE_DATA(nid); 3483 int ret = 0; 3484 3485 if (pgdat->kswapd) 3486 return 0; 3487 3488 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 3489 if (IS_ERR(pgdat->kswapd)) { 3490 /* failure at boot is fatal */ 3491 BUG_ON(system_state == SYSTEM_BOOTING); 3492 pr_err("Failed to start kswapd on node %d\n", nid); 3493 ret = PTR_ERR(pgdat->kswapd); 3494 pgdat->kswapd = NULL; 3495 } 3496 return ret; 3497 } 3498 3499 /* 3500 * Called by memory hotplug when all memory in a node is offlined. Caller must 3501 * hold mem_hotplug_begin/end(). 3502 */ 3503 void kswapd_stop(int nid) 3504 { 3505 struct task_struct *kswapd = NODE_DATA(nid)->kswapd; 3506 3507 if (kswapd) { 3508 kthread_stop(kswapd); 3509 NODE_DATA(nid)->kswapd = NULL; 3510 } 3511 } 3512 3513 static int __init kswapd_init(void) 3514 { 3515 int nid; 3516 3517 swap_setup(); 3518 for_each_node_state(nid, N_MEMORY) 3519 kswapd_run(nid); 3520 hotcpu_notifier(cpu_callback, 0); 3521 return 0; 3522 } 3523 3524 module_init(kswapd_init) 3525 3526 #ifdef CONFIG_NUMA 3527 /* 3528 * Zone reclaim mode 3529 * 3530 * If non-zero call zone_reclaim when the number of free pages falls below 3531 * the watermarks. 3532 */ 3533 int zone_reclaim_mode __read_mostly; 3534 3535 #define RECLAIM_OFF 0 3536 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */ 3537 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */ 3538 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */ 3539 3540 /* 3541 * Priority for ZONE_RECLAIM. This determines the fraction of pages 3542 * of a node considered for each zone_reclaim. 4 scans 1/16th of 3543 * a zone. 3544 */ 3545 #define ZONE_RECLAIM_PRIORITY 4 3546 3547 /* 3548 * Percentage of pages in a zone that must be unmapped for zone_reclaim to 3549 * occur. 3550 */ 3551 int sysctl_min_unmapped_ratio = 1; 3552 3553 /* 3554 * If the number of slab pages in a zone grows beyond this percentage then 3555 * slab reclaim needs to occur. 3556 */ 3557 int sysctl_min_slab_ratio = 5; 3558 3559 static inline unsigned long zone_unmapped_file_pages(struct zone *zone) 3560 { 3561 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED); 3562 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) + 3563 zone_page_state(zone, NR_ACTIVE_FILE); 3564 3565 /* 3566 * It's possible for there to be more file mapped pages than 3567 * accounted for by the pages on the file LRU lists because 3568 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 3569 */ 3570 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 3571 } 3572 3573 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 3574 static long zone_pagecache_reclaimable(struct zone *zone) 3575 { 3576 long nr_pagecache_reclaimable; 3577 long delta = 0; 3578 3579 /* 3580 * If RECLAIM_SWAP is set, then all file pages are considered 3581 * potentially reclaimable. Otherwise, we have to worry about 3582 * pages like swapcache and zone_unmapped_file_pages() provides 3583 * a better estimate 3584 */ 3585 if (zone_reclaim_mode & RECLAIM_SWAP) 3586 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES); 3587 else 3588 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone); 3589 3590 /* If we can't clean pages, remove dirty pages from consideration */ 3591 if (!(zone_reclaim_mode & RECLAIM_WRITE)) 3592 delta += zone_page_state(zone, NR_FILE_DIRTY); 3593 3594 /* Watch for any possible underflows due to delta */ 3595 if (unlikely(delta > nr_pagecache_reclaimable)) 3596 delta = nr_pagecache_reclaimable; 3597 3598 return nr_pagecache_reclaimable - delta; 3599 } 3600 3601 /* 3602 * Try to free up some pages from this zone through reclaim. 3603 */ 3604 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) 3605 { 3606 /* Minimum pages needed in order to stay on node */ 3607 const unsigned long nr_pages = 1 << order; 3608 struct task_struct *p = current; 3609 struct reclaim_state reclaim_state; 3610 struct scan_control sc = { 3611 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 3612 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)), 3613 .order = order, 3614 .priority = ZONE_RECLAIM_PRIORITY, 3615 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE), 3616 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP), 3617 .may_swap = 1, 3618 }; 3619 3620 cond_resched(); 3621 /* 3622 * We need to be able to allocate from the reserves for RECLAIM_SWAP 3623 * and we also need to be able to write out pages for RECLAIM_WRITE 3624 * and RECLAIM_SWAP. 3625 */ 3626 p->flags |= PF_MEMALLOC | PF_SWAPWRITE; 3627 lockdep_set_current_reclaim_state(gfp_mask); 3628 reclaim_state.reclaimed_slab = 0; 3629 p->reclaim_state = &reclaim_state; 3630 3631 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) { 3632 /* 3633 * Free memory by calling shrink zone with increasing 3634 * priorities until we have enough memory freed. 3635 */ 3636 do { 3637 shrink_zone(zone, &sc, true); 3638 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 3639 } 3640 3641 p->reclaim_state = NULL; 3642 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE); 3643 lockdep_clear_current_reclaim_state(); 3644 return sc.nr_reclaimed >= nr_pages; 3645 } 3646 3647 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) 3648 { 3649 int node_id; 3650 int ret; 3651 3652 /* 3653 * Zone reclaim reclaims unmapped file backed pages and 3654 * slab pages if we are over the defined limits. 3655 * 3656 * A small portion of unmapped file backed pages is needed for 3657 * file I/O otherwise pages read by file I/O will be immediately 3658 * thrown out if the zone is overallocated. So we do not reclaim 3659 * if less than a specified percentage of the zone is used by 3660 * unmapped file backed pages. 3661 */ 3662 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages && 3663 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages) 3664 return ZONE_RECLAIM_FULL; 3665 3666 if (!zone_reclaimable(zone)) 3667 return ZONE_RECLAIM_FULL; 3668 3669 /* 3670 * Do not scan if the allocation should not be delayed. 3671 */ 3672 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC)) 3673 return ZONE_RECLAIM_NOSCAN; 3674 3675 /* 3676 * Only run zone reclaim on the local zone or on zones that do not 3677 * have associated processors. This will favor the local processor 3678 * over remote processors and spread off node memory allocations 3679 * as wide as possible. 3680 */ 3681 node_id = zone_to_nid(zone); 3682 if (node_state(node_id, N_CPU) && node_id != numa_node_id()) 3683 return ZONE_RECLAIM_NOSCAN; 3684 3685 if (test_and_set_bit(ZONE_RECLAIM_LOCKED, &zone->flags)) 3686 return ZONE_RECLAIM_NOSCAN; 3687 3688 ret = __zone_reclaim(zone, gfp_mask, order); 3689 clear_bit(ZONE_RECLAIM_LOCKED, &zone->flags); 3690 3691 if (!ret) 3692 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 3693 3694 return ret; 3695 } 3696 #endif 3697 3698 /* 3699 * page_evictable - test whether a page is evictable 3700 * @page: the page to test 3701 * 3702 * Test whether page is evictable--i.e., should be placed on active/inactive 3703 * lists vs unevictable list. 3704 * 3705 * Reasons page might not be evictable: 3706 * (1) page's mapping marked unevictable 3707 * (2) page is part of an mlocked VMA 3708 * 3709 */ 3710 int page_evictable(struct page *page) 3711 { 3712 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page); 3713 } 3714 3715 #ifdef CONFIG_SHMEM 3716 /** 3717 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list 3718 * @pages: array of pages to check 3719 * @nr_pages: number of pages to check 3720 * 3721 * Checks pages for evictability and moves them to the appropriate lru list. 3722 * 3723 * This function is only used for SysV IPC SHM_UNLOCK. 3724 */ 3725 void check_move_unevictable_pages(struct page **pages, int nr_pages) 3726 { 3727 struct lruvec *lruvec; 3728 struct zone *zone = NULL; 3729 int pgscanned = 0; 3730 int pgrescued = 0; 3731 int i; 3732 3733 for (i = 0; i < nr_pages; i++) { 3734 struct page *page = pages[i]; 3735 struct zone *pagezone; 3736 3737 pgscanned++; 3738 pagezone = page_zone(page); 3739 if (pagezone != zone) { 3740 if (zone) 3741 spin_unlock_irq(&zone->lru_lock); 3742 zone = pagezone; 3743 spin_lock_irq(&zone->lru_lock); 3744 } 3745 lruvec = mem_cgroup_page_lruvec(page, zone); 3746 3747 if (!PageLRU(page) || !PageUnevictable(page)) 3748 continue; 3749 3750 if (page_evictable(page)) { 3751 enum lru_list lru = page_lru_base_type(page); 3752 3753 VM_BUG_ON_PAGE(PageActive(page), page); 3754 ClearPageUnevictable(page); 3755 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE); 3756 add_page_to_lru_list(page, lruvec, lru); 3757 pgrescued++; 3758 } 3759 } 3760 3761 if (zone) { 3762 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 3763 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 3764 spin_unlock_irq(&zone->lru_lock); 3765 } 3766 } 3767 #endif /* CONFIG_SHMEM */ 3768