1 /* 2 * linux/mm/vmscan.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * 6 * Swap reorganised 29.12.95, Stephen Tweedie. 7 * kswapd added: 7.1.96 sct 8 * Removed kswapd_ctl limits, and swap out as many pages as needed 9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 11 * Multiqueue VM started 5.8.00, Rik van Riel. 12 */ 13 14 #include <linux/mm.h> 15 #include <linux/module.h> 16 #include <linux/gfp.h> 17 #include <linux/kernel_stat.h> 18 #include <linux/swap.h> 19 #include <linux/pagemap.h> 20 #include <linux/init.h> 21 #include <linux/highmem.h> 22 #include <linux/vmpressure.h> 23 #include <linux/vmstat.h> 24 #include <linux/file.h> 25 #include <linux/writeback.h> 26 #include <linux/blkdev.h> 27 #include <linux/buffer_head.h> /* for try_to_release_page(), 28 buffer_heads_over_limit */ 29 #include <linux/mm_inline.h> 30 #include <linux/backing-dev.h> 31 #include <linux/rmap.h> 32 #include <linux/topology.h> 33 #include <linux/cpu.h> 34 #include <linux/cpuset.h> 35 #include <linux/compaction.h> 36 #include <linux/notifier.h> 37 #include <linux/rwsem.h> 38 #include <linux/delay.h> 39 #include <linux/kthread.h> 40 #include <linux/freezer.h> 41 #include <linux/memcontrol.h> 42 #include <linux/delayacct.h> 43 #include <linux/sysctl.h> 44 #include <linux/oom.h> 45 #include <linux/prefetch.h> 46 47 #include <asm/tlbflush.h> 48 #include <asm/div64.h> 49 50 #include <linux/swapops.h> 51 52 #include "internal.h" 53 54 #define CREATE_TRACE_POINTS 55 #include <trace/events/vmscan.h> 56 57 struct scan_control { 58 /* Incremented by the number of inactive pages that were scanned */ 59 unsigned long nr_scanned; 60 61 /* Number of pages freed so far during a call to shrink_zones() */ 62 unsigned long nr_reclaimed; 63 64 /* How many pages shrink_list() should reclaim */ 65 unsigned long nr_to_reclaim; 66 67 unsigned long hibernation_mode; 68 69 /* This context's GFP mask */ 70 gfp_t gfp_mask; 71 72 int may_writepage; 73 74 /* Can mapped pages be reclaimed? */ 75 int may_unmap; 76 77 /* Can pages be swapped as part of reclaim? */ 78 int may_swap; 79 80 int order; 81 82 /* Scan (total_size >> priority) pages at once */ 83 int priority; 84 85 /* 86 * The memory cgroup that hit its limit and as a result is the 87 * primary target of this reclaim invocation. 88 */ 89 struct mem_cgroup *target_mem_cgroup; 90 91 /* 92 * Nodemask of nodes allowed by the caller. If NULL, all nodes 93 * are scanned. 94 */ 95 nodemask_t *nodemask; 96 }; 97 98 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru)) 99 100 #ifdef ARCH_HAS_PREFETCH 101 #define prefetch_prev_lru_page(_page, _base, _field) \ 102 do { \ 103 if ((_page)->lru.prev != _base) { \ 104 struct page *prev; \ 105 \ 106 prev = lru_to_page(&(_page->lru)); \ 107 prefetch(&prev->_field); \ 108 } \ 109 } while (0) 110 #else 111 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0) 112 #endif 113 114 #ifdef ARCH_HAS_PREFETCHW 115 #define prefetchw_prev_lru_page(_page, _base, _field) \ 116 do { \ 117 if ((_page)->lru.prev != _base) { \ 118 struct page *prev; \ 119 \ 120 prev = lru_to_page(&(_page->lru)); \ 121 prefetchw(&prev->_field); \ 122 } \ 123 } while (0) 124 #else 125 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 126 #endif 127 128 /* 129 * From 0 .. 100. Higher means more swappy. 130 */ 131 int vm_swappiness = 60; 132 unsigned long vm_total_pages; /* The total number of pages which the VM controls */ 133 134 static LIST_HEAD(shrinker_list); 135 static DECLARE_RWSEM(shrinker_rwsem); 136 137 #ifdef CONFIG_MEMCG 138 static bool global_reclaim(struct scan_control *sc) 139 { 140 return !sc->target_mem_cgroup; 141 } 142 #else 143 static bool global_reclaim(struct scan_control *sc) 144 { 145 return true; 146 } 147 #endif 148 149 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru) 150 { 151 if (!mem_cgroup_disabled()) 152 return mem_cgroup_get_lru_size(lruvec, lru); 153 154 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru); 155 } 156 157 /* 158 * Add a shrinker callback to be called from the vm 159 */ 160 void register_shrinker(struct shrinker *shrinker) 161 { 162 atomic_long_set(&shrinker->nr_in_batch, 0); 163 down_write(&shrinker_rwsem); 164 list_add_tail(&shrinker->list, &shrinker_list); 165 up_write(&shrinker_rwsem); 166 } 167 EXPORT_SYMBOL(register_shrinker); 168 169 /* 170 * Remove one 171 */ 172 void unregister_shrinker(struct shrinker *shrinker) 173 { 174 down_write(&shrinker_rwsem); 175 list_del(&shrinker->list); 176 up_write(&shrinker_rwsem); 177 } 178 EXPORT_SYMBOL(unregister_shrinker); 179 180 static inline int do_shrinker_shrink(struct shrinker *shrinker, 181 struct shrink_control *sc, 182 unsigned long nr_to_scan) 183 { 184 sc->nr_to_scan = nr_to_scan; 185 return (*shrinker->shrink)(shrinker, sc); 186 } 187 188 #define SHRINK_BATCH 128 189 /* 190 * Call the shrink functions to age shrinkable caches 191 * 192 * Here we assume it costs one seek to replace a lru page and that it also 193 * takes a seek to recreate a cache object. With this in mind we age equal 194 * percentages of the lru and ageable caches. This should balance the seeks 195 * generated by these structures. 196 * 197 * If the vm encountered mapped pages on the LRU it increase the pressure on 198 * slab to avoid swapping. 199 * 200 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits. 201 * 202 * `lru_pages' represents the number of on-LRU pages in all the zones which 203 * are eligible for the caller's allocation attempt. It is used for balancing 204 * slab reclaim versus page reclaim. 205 * 206 * Returns the number of slab objects which we shrunk. 207 */ 208 unsigned long shrink_slab(struct shrink_control *shrink, 209 unsigned long nr_pages_scanned, 210 unsigned long lru_pages) 211 { 212 struct shrinker *shrinker; 213 unsigned long ret = 0; 214 215 if (nr_pages_scanned == 0) 216 nr_pages_scanned = SWAP_CLUSTER_MAX; 217 218 if (!down_read_trylock(&shrinker_rwsem)) { 219 /* Assume we'll be able to shrink next time */ 220 ret = 1; 221 goto out; 222 } 223 224 list_for_each_entry(shrinker, &shrinker_list, list) { 225 unsigned long long delta; 226 long total_scan; 227 long max_pass; 228 int shrink_ret = 0; 229 long nr; 230 long new_nr; 231 long batch_size = shrinker->batch ? shrinker->batch 232 : SHRINK_BATCH; 233 234 max_pass = do_shrinker_shrink(shrinker, shrink, 0); 235 if (max_pass <= 0) 236 continue; 237 238 /* 239 * copy the current shrinker scan count into a local variable 240 * and zero it so that other concurrent shrinker invocations 241 * don't also do this scanning work. 242 */ 243 nr = atomic_long_xchg(&shrinker->nr_in_batch, 0); 244 245 total_scan = nr; 246 delta = (4 * nr_pages_scanned) / shrinker->seeks; 247 delta *= max_pass; 248 do_div(delta, lru_pages + 1); 249 total_scan += delta; 250 if (total_scan < 0) { 251 printk(KERN_ERR "shrink_slab: %pF negative objects to " 252 "delete nr=%ld\n", 253 shrinker->shrink, total_scan); 254 total_scan = max_pass; 255 } 256 257 /* 258 * We need to avoid excessive windup on filesystem shrinkers 259 * due to large numbers of GFP_NOFS allocations causing the 260 * shrinkers to return -1 all the time. This results in a large 261 * nr being built up so when a shrink that can do some work 262 * comes along it empties the entire cache due to nr >>> 263 * max_pass. This is bad for sustaining a working set in 264 * memory. 265 * 266 * Hence only allow the shrinker to scan the entire cache when 267 * a large delta change is calculated directly. 268 */ 269 if (delta < max_pass / 4) 270 total_scan = min(total_scan, max_pass / 2); 271 272 /* 273 * Avoid risking looping forever due to too large nr value: 274 * never try to free more than twice the estimate number of 275 * freeable entries. 276 */ 277 if (total_scan > max_pass * 2) 278 total_scan = max_pass * 2; 279 280 trace_mm_shrink_slab_start(shrinker, shrink, nr, 281 nr_pages_scanned, lru_pages, 282 max_pass, delta, total_scan); 283 284 while (total_scan >= batch_size) { 285 int nr_before; 286 287 nr_before = do_shrinker_shrink(shrinker, shrink, 0); 288 shrink_ret = do_shrinker_shrink(shrinker, shrink, 289 batch_size); 290 if (shrink_ret == -1) 291 break; 292 if (shrink_ret < nr_before) 293 ret += nr_before - shrink_ret; 294 count_vm_events(SLABS_SCANNED, batch_size); 295 total_scan -= batch_size; 296 297 cond_resched(); 298 } 299 300 /* 301 * move the unused scan count back into the shrinker in a 302 * manner that handles concurrent updates. If we exhausted the 303 * scan, there is no need to do an update. 304 */ 305 if (total_scan > 0) 306 new_nr = atomic_long_add_return(total_scan, 307 &shrinker->nr_in_batch); 308 else 309 new_nr = atomic_long_read(&shrinker->nr_in_batch); 310 311 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr); 312 } 313 up_read(&shrinker_rwsem); 314 out: 315 cond_resched(); 316 return ret; 317 } 318 319 static inline int is_page_cache_freeable(struct page *page) 320 { 321 /* 322 * A freeable page cache page is referenced only by the caller 323 * that isolated the page, the page cache radix tree and 324 * optional buffer heads at page->private. 325 */ 326 return page_count(page) - page_has_private(page) == 2; 327 } 328 329 static int may_write_to_queue(struct backing_dev_info *bdi, 330 struct scan_control *sc) 331 { 332 if (current->flags & PF_SWAPWRITE) 333 return 1; 334 if (!bdi_write_congested(bdi)) 335 return 1; 336 if (bdi == current->backing_dev_info) 337 return 1; 338 return 0; 339 } 340 341 /* 342 * We detected a synchronous write error writing a page out. Probably 343 * -ENOSPC. We need to propagate that into the address_space for a subsequent 344 * fsync(), msync() or close(). 345 * 346 * The tricky part is that after writepage we cannot touch the mapping: nothing 347 * prevents it from being freed up. But we have a ref on the page and once 348 * that page is locked, the mapping is pinned. 349 * 350 * We're allowed to run sleeping lock_page() here because we know the caller has 351 * __GFP_FS. 352 */ 353 static void handle_write_error(struct address_space *mapping, 354 struct page *page, int error) 355 { 356 lock_page(page); 357 if (page_mapping(page) == mapping) 358 mapping_set_error(mapping, error); 359 unlock_page(page); 360 } 361 362 /* possible outcome of pageout() */ 363 typedef enum { 364 /* failed to write page out, page is locked */ 365 PAGE_KEEP, 366 /* move page to the active list, page is locked */ 367 PAGE_ACTIVATE, 368 /* page has been sent to the disk successfully, page is unlocked */ 369 PAGE_SUCCESS, 370 /* page is clean and locked */ 371 PAGE_CLEAN, 372 } pageout_t; 373 374 /* 375 * pageout is called by shrink_page_list() for each dirty page. 376 * Calls ->writepage(). 377 */ 378 static pageout_t pageout(struct page *page, struct address_space *mapping, 379 struct scan_control *sc) 380 { 381 /* 382 * If the page is dirty, only perform writeback if that write 383 * will be non-blocking. To prevent this allocation from being 384 * stalled by pagecache activity. But note that there may be 385 * stalls if we need to run get_block(). We could test 386 * PagePrivate for that. 387 * 388 * If this process is currently in __generic_file_aio_write() against 389 * this page's queue, we can perform writeback even if that 390 * will block. 391 * 392 * If the page is swapcache, write it back even if that would 393 * block, for some throttling. This happens by accident, because 394 * swap_backing_dev_info is bust: it doesn't reflect the 395 * congestion state of the swapdevs. Easy to fix, if needed. 396 */ 397 if (!is_page_cache_freeable(page)) 398 return PAGE_KEEP; 399 if (!mapping) { 400 /* 401 * Some data journaling orphaned pages can have 402 * page->mapping == NULL while being dirty with clean buffers. 403 */ 404 if (page_has_private(page)) { 405 if (try_to_free_buffers(page)) { 406 ClearPageDirty(page); 407 printk("%s: orphaned page\n", __func__); 408 return PAGE_CLEAN; 409 } 410 } 411 return PAGE_KEEP; 412 } 413 if (mapping->a_ops->writepage == NULL) 414 return PAGE_ACTIVATE; 415 if (!may_write_to_queue(mapping->backing_dev_info, sc)) 416 return PAGE_KEEP; 417 418 if (clear_page_dirty_for_io(page)) { 419 int res; 420 struct writeback_control wbc = { 421 .sync_mode = WB_SYNC_NONE, 422 .nr_to_write = SWAP_CLUSTER_MAX, 423 .range_start = 0, 424 .range_end = LLONG_MAX, 425 .for_reclaim = 1, 426 }; 427 428 SetPageReclaim(page); 429 res = mapping->a_ops->writepage(page, &wbc); 430 if (res < 0) 431 handle_write_error(mapping, page, res); 432 if (res == AOP_WRITEPAGE_ACTIVATE) { 433 ClearPageReclaim(page); 434 return PAGE_ACTIVATE; 435 } 436 437 if (!PageWriteback(page)) { 438 /* synchronous write or broken a_ops? */ 439 ClearPageReclaim(page); 440 } 441 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page)); 442 inc_zone_page_state(page, NR_VMSCAN_WRITE); 443 return PAGE_SUCCESS; 444 } 445 446 return PAGE_CLEAN; 447 } 448 449 /* 450 * Same as remove_mapping, but if the page is removed from the mapping, it 451 * gets returned with a refcount of 0. 452 */ 453 static int __remove_mapping(struct address_space *mapping, struct page *page) 454 { 455 BUG_ON(!PageLocked(page)); 456 BUG_ON(mapping != page_mapping(page)); 457 458 spin_lock_irq(&mapping->tree_lock); 459 /* 460 * The non racy check for a busy page. 461 * 462 * Must be careful with the order of the tests. When someone has 463 * a ref to the page, it may be possible that they dirty it then 464 * drop the reference. So if PageDirty is tested before page_count 465 * here, then the following race may occur: 466 * 467 * get_user_pages(&page); 468 * [user mapping goes away] 469 * write_to(page); 470 * !PageDirty(page) [good] 471 * SetPageDirty(page); 472 * put_page(page); 473 * !page_count(page) [good, discard it] 474 * 475 * [oops, our write_to data is lost] 476 * 477 * Reversing the order of the tests ensures such a situation cannot 478 * escape unnoticed. The smp_rmb is needed to ensure the page->flags 479 * load is not satisfied before that of page->_count. 480 * 481 * Note that if SetPageDirty is always performed via set_page_dirty, 482 * and thus under tree_lock, then this ordering is not required. 483 */ 484 if (!page_freeze_refs(page, 2)) 485 goto cannot_free; 486 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */ 487 if (unlikely(PageDirty(page))) { 488 page_unfreeze_refs(page, 2); 489 goto cannot_free; 490 } 491 492 if (PageSwapCache(page)) { 493 swp_entry_t swap = { .val = page_private(page) }; 494 __delete_from_swap_cache(page); 495 spin_unlock_irq(&mapping->tree_lock); 496 swapcache_free(swap, page); 497 } else { 498 void (*freepage)(struct page *); 499 500 freepage = mapping->a_ops->freepage; 501 502 __delete_from_page_cache(page); 503 spin_unlock_irq(&mapping->tree_lock); 504 mem_cgroup_uncharge_cache_page(page); 505 506 if (freepage != NULL) 507 freepage(page); 508 } 509 510 return 1; 511 512 cannot_free: 513 spin_unlock_irq(&mapping->tree_lock); 514 return 0; 515 } 516 517 /* 518 * Attempt to detach a locked page from its ->mapping. If it is dirty or if 519 * someone else has a ref on the page, abort and return 0. If it was 520 * successfully detached, return 1. Assumes the caller has a single ref on 521 * this page. 522 */ 523 int remove_mapping(struct address_space *mapping, struct page *page) 524 { 525 if (__remove_mapping(mapping, page)) { 526 /* 527 * Unfreezing the refcount with 1 rather than 2 effectively 528 * drops the pagecache ref for us without requiring another 529 * atomic operation. 530 */ 531 page_unfreeze_refs(page, 1); 532 return 1; 533 } 534 return 0; 535 } 536 537 /** 538 * putback_lru_page - put previously isolated page onto appropriate LRU list 539 * @page: page to be put back to appropriate lru list 540 * 541 * Add previously isolated @page to appropriate LRU list. 542 * Page may still be unevictable for other reasons. 543 * 544 * lru_lock must not be held, interrupts must be enabled. 545 */ 546 void putback_lru_page(struct page *page) 547 { 548 int lru; 549 int was_unevictable = PageUnevictable(page); 550 551 VM_BUG_ON(PageLRU(page)); 552 553 redo: 554 ClearPageUnevictable(page); 555 556 if (page_evictable(page)) { 557 /* 558 * For evictable pages, we can use the cache. 559 * In event of a race, worst case is we end up with an 560 * unevictable page on [in]active list. 561 * We know how to handle that. 562 */ 563 lru = page_lru_base_type(page); 564 lru_cache_add(page); 565 } else { 566 /* 567 * Put unevictable pages directly on zone's unevictable 568 * list. 569 */ 570 lru = LRU_UNEVICTABLE; 571 add_page_to_unevictable_list(page); 572 /* 573 * When racing with an mlock or AS_UNEVICTABLE clearing 574 * (page is unlocked) make sure that if the other thread 575 * does not observe our setting of PG_lru and fails 576 * isolation/check_move_unevictable_pages, 577 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move 578 * the page back to the evictable list. 579 * 580 * The other side is TestClearPageMlocked() or shmem_lock(). 581 */ 582 smp_mb(); 583 } 584 585 /* 586 * page's status can change while we move it among lru. If an evictable 587 * page is on unevictable list, it never be freed. To avoid that, 588 * check after we added it to the list, again. 589 */ 590 if (lru == LRU_UNEVICTABLE && page_evictable(page)) { 591 if (!isolate_lru_page(page)) { 592 put_page(page); 593 goto redo; 594 } 595 /* This means someone else dropped this page from LRU 596 * So, it will be freed or putback to LRU again. There is 597 * nothing to do here. 598 */ 599 } 600 601 if (was_unevictable && lru != LRU_UNEVICTABLE) 602 count_vm_event(UNEVICTABLE_PGRESCUED); 603 else if (!was_unevictable && lru == LRU_UNEVICTABLE) 604 count_vm_event(UNEVICTABLE_PGCULLED); 605 606 put_page(page); /* drop ref from isolate */ 607 } 608 609 enum page_references { 610 PAGEREF_RECLAIM, 611 PAGEREF_RECLAIM_CLEAN, 612 PAGEREF_KEEP, 613 PAGEREF_ACTIVATE, 614 }; 615 616 static enum page_references page_check_references(struct page *page, 617 struct scan_control *sc) 618 { 619 int referenced_ptes, referenced_page; 620 unsigned long vm_flags; 621 622 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup, 623 &vm_flags); 624 referenced_page = TestClearPageReferenced(page); 625 626 /* 627 * Mlock lost the isolation race with us. Let try_to_unmap() 628 * move the page to the unevictable list. 629 */ 630 if (vm_flags & VM_LOCKED) 631 return PAGEREF_RECLAIM; 632 633 if (referenced_ptes) { 634 if (PageSwapBacked(page)) 635 return PAGEREF_ACTIVATE; 636 /* 637 * All mapped pages start out with page table 638 * references from the instantiating fault, so we need 639 * to look twice if a mapped file page is used more 640 * than once. 641 * 642 * Mark it and spare it for another trip around the 643 * inactive list. Another page table reference will 644 * lead to its activation. 645 * 646 * Note: the mark is set for activated pages as well 647 * so that recently deactivated but used pages are 648 * quickly recovered. 649 */ 650 SetPageReferenced(page); 651 652 if (referenced_page || referenced_ptes > 1) 653 return PAGEREF_ACTIVATE; 654 655 /* 656 * Activate file-backed executable pages after first usage. 657 */ 658 if (vm_flags & VM_EXEC) 659 return PAGEREF_ACTIVATE; 660 661 return PAGEREF_KEEP; 662 } 663 664 /* Reclaim if clean, defer dirty pages to writeback */ 665 if (referenced_page && !PageSwapBacked(page)) 666 return PAGEREF_RECLAIM_CLEAN; 667 668 return PAGEREF_RECLAIM; 669 } 670 671 /* Check if a page is dirty or under writeback */ 672 static void page_check_dirty_writeback(struct page *page, 673 bool *dirty, bool *writeback) 674 { 675 struct address_space *mapping; 676 677 /* 678 * Anonymous pages are not handled by flushers and must be written 679 * from reclaim context. Do not stall reclaim based on them 680 */ 681 if (!page_is_file_cache(page)) { 682 *dirty = false; 683 *writeback = false; 684 return; 685 } 686 687 /* By default assume that the page flags are accurate */ 688 *dirty = PageDirty(page); 689 *writeback = PageWriteback(page); 690 691 /* Verify dirty/writeback state if the filesystem supports it */ 692 if (!page_has_private(page)) 693 return; 694 695 mapping = page_mapping(page); 696 if (mapping && mapping->a_ops->is_dirty_writeback) 697 mapping->a_ops->is_dirty_writeback(page, dirty, writeback); 698 } 699 700 /* 701 * shrink_page_list() returns the number of reclaimed pages 702 */ 703 static unsigned long shrink_page_list(struct list_head *page_list, 704 struct zone *zone, 705 struct scan_control *sc, 706 enum ttu_flags ttu_flags, 707 unsigned long *ret_nr_dirty, 708 unsigned long *ret_nr_unqueued_dirty, 709 unsigned long *ret_nr_congested, 710 unsigned long *ret_nr_writeback, 711 unsigned long *ret_nr_immediate, 712 bool force_reclaim) 713 { 714 LIST_HEAD(ret_pages); 715 LIST_HEAD(free_pages); 716 int pgactivate = 0; 717 unsigned long nr_unqueued_dirty = 0; 718 unsigned long nr_dirty = 0; 719 unsigned long nr_congested = 0; 720 unsigned long nr_reclaimed = 0; 721 unsigned long nr_writeback = 0; 722 unsigned long nr_immediate = 0; 723 724 cond_resched(); 725 726 mem_cgroup_uncharge_start(); 727 while (!list_empty(page_list)) { 728 struct address_space *mapping; 729 struct page *page; 730 int may_enter_fs; 731 enum page_references references = PAGEREF_RECLAIM_CLEAN; 732 bool dirty, writeback; 733 734 cond_resched(); 735 736 page = lru_to_page(page_list); 737 list_del(&page->lru); 738 739 if (!trylock_page(page)) 740 goto keep; 741 742 VM_BUG_ON(PageActive(page)); 743 VM_BUG_ON(page_zone(page) != zone); 744 745 sc->nr_scanned++; 746 747 if (unlikely(!page_evictable(page))) 748 goto cull_mlocked; 749 750 if (!sc->may_unmap && page_mapped(page)) 751 goto keep_locked; 752 753 /* Double the slab pressure for mapped and swapcache pages */ 754 if (page_mapped(page) || PageSwapCache(page)) 755 sc->nr_scanned++; 756 757 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 758 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 759 760 /* 761 * The number of dirty pages determines if a zone is marked 762 * reclaim_congested which affects wait_iff_congested. kswapd 763 * will stall and start writing pages if the tail of the LRU 764 * is all dirty unqueued pages. 765 */ 766 page_check_dirty_writeback(page, &dirty, &writeback); 767 if (dirty || writeback) 768 nr_dirty++; 769 770 if (dirty && !writeback) 771 nr_unqueued_dirty++; 772 773 /* 774 * Treat this page as congested if the underlying BDI is or if 775 * pages are cycling through the LRU so quickly that the 776 * pages marked for immediate reclaim are making it to the 777 * end of the LRU a second time. 778 */ 779 mapping = page_mapping(page); 780 if ((mapping && bdi_write_congested(mapping->backing_dev_info)) || 781 (writeback && PageReclaim(page))) 782 nr_congested++; 783 784 /* 785 * If a page at the tail of the LRU is under writeback, there 786 * are three cases to consider. 787 * 788 * 1) If reclaim is encountering an excessive number of pages 789 * under writeback and this page is both under writeback and 790 * PageReclaim then it indicates that pages are being queued 791 * for IO but are being recycled through the LRU before the 792 * IO can complete. Waiting on the page itself risks an 793 * indefinite stall if it is impossible to writeback the 794 * page due to IO error or disconnected storage so instead 795 * note that the LRU is being scanned too quickly and the 796 * caller can stall after page list has been processed. 797 * 798 * 2) Global reclaim encounters a page, memcg encounters a 799 * page that is not marked for immediate reclaim or 800 * the caller does not have __GFP_IO. In this case mark 801 * the page for immediate reclaim and continue scanning. 802 * 803 * __GFP_IO is checked because a loop driver thread might 804 * enter reclaim, and deadlock if it waits on a page for 805 * which it is needed to do the write (loop masks off 806 * __GFP_IO|__GFP_FS for this reason); but more thought 807 * would probably show more reasons. 808 * 809 * Don't require __GFP_FS, since we're not going into the 810 * FS, just waiting on its writeback completion. Worryingly, 811 * ext4 gfs2 and xfs allocate pages with 812 * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing 813 * may_enter_fs here is liable to OOM on them. 814 * 815 * 3) memcg encounters a page that is not already marked 816 * PageReclaim. memcg does not have any dirty pages 817 * throttling so we could easily OOM just because too many 818 * pages are in writeback and there is nothing else to 819 * reclaim. Wait for the writeback to complete. 820 */ 821 if (PageWriteback(page)) { 822 /* Case 1 above */ 823 if (current_is_kswapd() && 824 PageReclaim(page) && 825 zone_is_reclaim_writeback(zone)) { 826 nr_immediate++; 827 goto keep_locked; 828 829 /* Case 2 above */ 830 } else if (global_reclaim(sc) || 831 !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) { 832 /* 833 * This is slightly racy - end_page_writeback() 834 * might have just cleared PageReclaim, then 835 * setting PageReclaim here end up interpreted 836 * as PageReadahead - but that does not matter 837 * enough to care. What we do want is for this 838 * page to have PageReclaim set next time memcg 839 * reclaim reaches the tests above, so it will 840 * then wait_on_page_writeback() to avoid OOM; 841 * and it's also appropriate in global reclaim. 842 */ 843 SetPageReclaim(page); 844 nr_writeback++; 845 846 goto keep_locked; 847 848 /* Case 3 above */ 849 } else { 850 wait_on_page_writeback(page); 851 } 852 } 853 854 if (!force_reclaim) 855 references = page_check_references(page, sc); 856 857 switch (references) { 858 case PAGEREF_ACTIVATE: 859 goto activate_locked; 860 case PAGEREF_KEEP: 861 goto keep_locked; 862 case PAGEREF_RECLAIM: 863 case PAGEREF_RECLAIM_CLEAN: 864 ; /* try to reclaim the page below */ 865 } 866 867 /* 868 * Anonymous process memory has backing store? 869 * Try to allocate it some swap space here. 870 */ 871 if (PageAnon(page) && !PageSwapCache(page)) { 872 if (!(sc->gfp_mask & __GFP_IO)) 873 goto keep_locked; 874 if (!add_to_swap(page, page_list)) 875 goto activate_locked; 876 may_enter_fs = 1; 877 878 /* Adding to swap updated mapping */ 879 mapping = page_mapping(page); 880 } 881 882 /* 883 * The page is mapped into the page tables of one or more 884 * processes. Try to unmap it here. 885 */ 886 if (page_mapped(page) && mapping) { 887 switch (try_to_unmap(page, ttu_flags)) { 888 case SWAP_FAIL: 889 goto activate_locked; 890 case SWAP_AGAIN: 891 goto keep_locked; 892 case SWAP_MLOCK: 893 goto cull_mlocked; 894 case SWAP_SUCCESS: 895 ; /* try to free the page below */ 896 } 897 } 898 899 if (PageDirty(page)) { 900 /* 901 * Only kswapd can writeback filesystem pages to 902 * avoid risk of stack overflow but only writeback 903 * if many dirty pages have been encountered. 904 */ 905 if (page_is_file_cache(page) && 906 (!current_is_kswapd() || 907 !zone_is_reclaim_dirty(zone))) { 908 /* 909 * Immediately reclaim when written back. 910 * Similar in principal to deactivate_page() 911 * except we already have the page isolated 912 * and know it's dirty 913 */ 914 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE); 915 SetPageReclaim(page); 916 917 goto keep_locked; 918 } 919 920 if (references == PAGEREF_RECLAIM_CLEAN) 921 goto keep_locked; 922 if (!may_enter_fs) 923 goto keep_locked; 924 if (!sc->may_writepage) 925 goto keep_locked; 926 927 /* Page is dirty, try to write it out here */ 928 switch (pageout(page, mapping, sc)) { 929 case PAGE_KEEP: 930 goto keep_locked; 931 case PAGE_ACTIVATE: 932 goto activate_locked; 933 case PAGE_SUCCESS: 934 if (PageWriteback(page)) 935 goto keep; 936 if (PageDirty(page)) 937 goto keep; 938 939 /* 940 * A synchronous write - probably a ramdisk. Go 941 * ahead and try to reclaim the page. 942 */ 943 if (!trylock_page(page)) 944 goto keep; 945 if (PageDirty(page) || PageWriteback(page)) 946 goto keep_locked; 947 mapping = page_mapping(page); 948 case PAGE_CLEAN: 949 ; /* try to free the page below */ 950 } 951 } 952 953 /* 954 * If the page has buffers, try to free the buffer mappings 955 * associated with this page. If we succeed we try to free 956 * the page as well. 957 * 958 * We do this even if the page is PageDirty(). 959 * try_to_release_page() does not perform I/O, but it is 960 * possible for a page to have PageDirty set, but it is actually 961 * clean (all its buffers are clean). This happens if the 962 * buffers were written out directly, with submit_bh(). ext3 963 * will do this, as well as the blockdev mapping. 964 * try_to_release_page() will discover that cleanness and will 965 * drop the buffers and mark the page clean - it can be freed. 966 * 967 * Rarely, pages can have buffers and no ->mapping. These are 968 * the pages which were not successfully invalidated in 969 * truncate_complete_page(). We try to drop those buffers here 970 * and if that worked, and the page is no longer mapped into 971 * process address space (page_count == 1) it can be freed. 972 * Otherwise, leave the page on the LRU so it is swappable. 973 */ 974 if (page_has_private(page)) { 975 if (!try_to_release_page(page, sc->gfp_mask)) 976 goto activate_locked; 977 if (!mapping && page_count(page) == 1) { 978 unlock_page(page); 979 if (put_page_testzero(page)) 980 goto free_it; 981 else { 982 /* 983 * rare race with speculative reference. 984 * the speculative reference will free 985 * this page shortly, so we may 986 * increment nr_reclaimed here (and 987 * leave it off the LRU). 988 */ 989 nr_reclaimed++; 990 continue; 991 } 992 } 993 } 994 995 if (!mapping || !__remove_mapping(mapping, page)) 996 goto keep_locked; 997 998 /* 999 * At this point, we have no other references and there is 1000 * no way to pick any more up (removed from LRU, removed 1001 * from pagecache). Can use non-atomic bitops now (and 1002 * we obviously don't have to worry about waking up a process 1003 * waiting on the page lock, because there are no references. 1004 */ 1005 __clear_page_locked(page); 1006 free_it: 1007 nr_reclaimed++; 1008 1009 /* 1010 * Is there need to periodically free_page_list? It would 1011 * appear not as the counts should be low 1012 */ 1013 list_add(&page->lru, &free_pages); 1014 continue; 1015 1016 cull_mlocked: 1017 if (PageSwapCache(page)) 1018 try_to_free_swap(page); 1019 unlock_page(page); 1020 putback_lru_page(page); 1021 continue; 1022 1023 activate_locked: 1024 /* Not a candidate for swapping, so reclaim swap space. */ 1025 if (PageSwapCache(page) && vm_swap_full()) 1026 try_to_free_swap(page); 1027 VM_BUG_ON(PageActive(page)); 1028 SetPageActive(page); 1029 pgactivate++; 1030 keep_locked: 1031 unlock_page(page); 1032 keep: 1033 list_add(&page->lru, &ret_pages); 1034 VM_BUG_ON(PageLRU(page) || PageUnevictable(page)); 1035 } 1036 1037 free_hot_cold_page_list(&free_pages, 1); 1038 1039 list_splice(&ret_pages, page_list); 1040 count_vm_events(PGACTIVATE, pgactivate); 1041 mem_cgroup_uncharge_end(); 1042 *ret_nr_dirty += nr_dirty; 1043 *ret_nr_congested += nr_congested; 1044 *ret_nr_unqueued_dirty += nr_unqueued_dirty; 1045 *ret_nr_writeback += nr_writeback; 1046 *ret_nr_immediate += nr_immediate; 1047 return nr_reclaimed; 1048 } 1049 1050 unsigned long reclaim_clean_pages_from_list(struct zone *zone, 1051 struct list_head *page_list) 1052 { 1053 struct scan_control sc = { 1054 .gfp_mask = GFP_KERNEL, 1055 .priority = DEF_PRIORITY, 1056 .may_unmap = 1, 1057 }; 1058 unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5; 1059 struct page *page, *next; 1060 LIST_HEAD(clean_pages); 1061 1062 list_for_each_entry_safe(page, next, page_list, lru) { 1063 if (page_is_file_cache(page) && !PageDirty(page)) { 1064 ClearPageActive(page); 1065 list_move(&page->lru, &clean_pages); 1066 } 1067 } 1068 1069 ret = shrink_page_list(&clean_pages, zone, &sc, 1070 TTU_UNMAP|TTU_IGNORE_ACCESS, 1071 &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true); 1072 list_splice(&clean_pages, page_list); 1073 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret); 1074 return ret; 1075 } 1076 1077 /* 1078 * Attempt to remove the specified page from its LRU. Only take this page 1079 * if it is of the appropriate PageActive status. Pages which are being 1080 * freed elsewhere are also ignored. 1081 * 1082 * page: page to consider 1083 * mode: one of the LRU isolation modes defined above 1084 * 1085 * returns 0 on success, -ve errno on failure. 1086 */ 1087 int __isolate_lru_page(struct page *page, isolate_mode_t mode) 1088 { 1089 int ret = -EINVAL; 1090 1091 /* Only take pages on the LRU. */ 1092 if (!PageLRU(page)) 1093 return ret; 1094 1095 /* Compaction should not handle unevictable pages but CMA can do so */ 1096 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE)) 1097 return ret; 1098 1099 ret = -EBUSY; 1100 1101 /* 1102 * To minimise LRU disruption, the caller can indicate that it only 1103 * wants to isolate pages it will be able to operate on without 1104 * blocking - clean pages for the most part. 1105 * 1106 * ISOLATE_CLEAN means that only clean pages should be isolated. This 1107 * is used by reclaim when it is cannot write to backing storage 1108 * 1109 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages 1110 * that it is possible to migrate without blocking 1111 */ 1112 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) { 1113 /* All the caller can do on PageWriteback is block */ 1114 if (PageWriteback(page)) 1115 return ret; 1116 1117 if (PageDirty(page)) { 1118 struct address_space *mapping; 1119 1120 /* ISOLATE_CLEAN means only clean pages */ 1121 if (mode & ISOLATE_CLEAN) 1122 return ret; 1123 1124 /* 1125 * Only pages without mappings or that have a 1126 * ->migratepage callback are possible to migrate 1127 * without blocking 1128 */ 1129 mapping = page_mapping(page); 1130 if (mapping && !mapping->a_ops->migratepage) 1131 return ret; 1132 } 1133 } 1134 1135 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page)) 1136 return ret; 1137 1138 if (likely(get_page_unless_zero(page))) { 1139 /* 1140 * Be careful not to clear PageLRU until after we're 1141 * sure the page is not being freed elsewhere -- the 1142 * page release code relies on it. 1143 */ 1144 ClearPageLRU(page); 1145 ret = 0; 1146 } 1147 1148 return ret; 1149 } 1150 1151 /* 1152 * zone->lru_lock is heavily contended. Some of the functions that 1153 * shrink the lists perform better by taking out a batch of pages 1154 * and working on them outside the LRU lock. 1155 * 1156 * For pagecache intensive workloads, this function is the hottest 1157 * spot in the kernel (apart from copy_*_user functions). 1158 * 1159 * Appropriate locks must be held before calling this function. 1160 * 1161 * @nr_to_scan: The number of pages to look through on the list. 1162 * @lruvec: The LRU vector to pull pages from. 1163 * @dst: The temp list to put pages on to. 1164 * @nr_scanned: The number of pages that were scanned. 1165 * @sc: The scan_control struct for this reclaim session 1166 * @mode: One of the LRU isolation modes 1167 * @lru: LRU list id for isolating 1168 * 1169 * returns how many pages were moved onto *@dst. 1170 */ 1171 static unsigned long isolate_lru_pages(unsigned long nr_to_scan, 1172 struct lruvec *lruvec, struct list_head *dst, 1173 unsigned long *nr_scanned, struct scan_control *sc, 1174 isolate_mode_t mode, enum lru_list lru) 1175 { 1176 struct list_head *src = &lruvec->lists[lru]; 1177 unsigned long nr_taken = 0; 1178 unsigned long scan; 1179 1180 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) { 1181 struct page *page; 1182 int nr_pages; 1183 1184 page = lru_to_page(src); 1185 prefetchw_prev_lru_page(page, src, flags); 1186 1187 VM_BUG_ON(!PageLRU(page)); 1188 1189 switch (__isolate_lru_page(page, mode)) { 1190 case 0: 1191 nr_pages = hpage_nr_pages(page); 1192 mem_cgroup_update_lru_size(lruvec, lru, -nr_pages); 1193 list_move(&page->lru, dst); 1194 nr_taken += nr_pages; 1195 break; 1196 1197 case -EBUSY: 1198 /* else it is being freed elsewhere */ 1199 list_move(&page->lru, src); 1200 continue; 1201 1202 default: 1203 BUG(); 1204 } 1205 } 1206 1207 *nr_scanned = scan; 1208 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan, 1209 nr_taken, mode, is_file_lru(lru)); 1210 return nr_taken; 1211 } 1212 1213 /** 1214 * isolate_lru_page - tries to isolate a page from its LRU list 1215 * @page: page to isolate from its LRU list 1216 * 1217 * Isolates a @page from an LRU list, clears PageLRU and adjusts the 1218 * vmstat statistic corresponding to whatever LRU list the page was on. 1219 * 1220 * Returns 0 if the page was removed from an LRU list. 1221 * Returns -EBUSY if the page was not on an LRU list. 1222 * 1223 * The returned page will have PageLRU() cleared. If it was found on 1224 * the active list, it will have PageActive set. If it was found on 1225 * the unevictable list, it will have the PageUnevictable bit set. That flag 1226 * may need to be cleared by the caller before letting the page go. 1227 * 1228 * The vmstat statistic corresponding to the list on which the page was 1229 * found will be decremented. 1230 * 1231 * Restrictions: 1232 * (1) Must be called with an elevated refcount on the page. This is a 1233 * fundamentnal difference from isolate_lru_pages (which is called 1234 * without a stable reference). 1235 * (2) the lru_lock must not be held. 1236 * (3) interrupts must be enabled. 1237 */ 1238 int isolate_lru_page(struct page *page) 1239 { 1240 int ret = -EBUSY; 1241 1242 VM_BUG_ON(!page_count(page)); 1243 1244 if (PageLRU(page)) { 1245 struct zone *zone = page_zone(page); 1246 struct lruvec *lruvec; 1247 1248 spin_lock_irq(&zone->lru_lock); 1249 lruvec = mem_cgroup_page_lruvec(page, zone); 1250 if (PageLRU(page)) { 1251 int lru = page_lru(page); 1252 get_page(page); 1253 ClearPageLRU(page); 1254 del_page_from_lru_list(page, lruvec, lru); 1255 ret = 0; 1256 } 1257 spin_unlock_irq(&zone->lru_lock); 1258 } 1259 return ret; 1260 } 1261 1262 /* 1263 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 1264 * then get resheduled. When there are massive number of tasks doing page 1265 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 1266 * the LRU list will go small and be scanned faster than necessary, leading to 1267 * unnecessary swapping, thrashing and OOM. 1268 */ 1269 static int too_many_isolated(struct zone *zone, int file, 1270 struct scan_control *sc) 1271 { 1272 unsigned long inactive, isolated; 1273 1274 if (current_is_kswapd()) 1275 return 0; 1276 1277 if (!global_reclaim(sc)) 1278 return 0; 1279 1280 if (file) { 1281 inactive = zone_page_state(zone, NR_INACTIVE_FILE); 1282 isolated = zone_page_state(zone, NR_ISOLATED_FILE); 1283 } else { 1284 inactive = zone_page_state(zone, NR_INACTIVE_ANON); 1285 isolated = zone_page_state(zone, NR_ISOLATED_ANON); 1286 } 1287 1288 /* 1289 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 1290 * won't get blocked by normal direct-reclaimers, forming a circular 1291 * deadlock. 1292 */ 1293 if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS) 1294 inactive >>= 3; 1295 1296 return isolated > inactive; 1297 } 1298 1299 static noinline_for_stack void 1300 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list) 1301 { 1302 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1303 struct zone *zone = lruvec_zone(lruvec); 1304 LIST_HEAD(pages_to_free); 1305 1306 /* 1307 * Put back any unfreeable pages. 1308 */ 1309 while (!list_empty(page_list)) { 1310 struct page *page = lru_to_page(page_list); 1311 int lru; 1312 1313 VM_BUG_ON(PageLRU(page)); 1314 list_del(&page->lru); 1315 if (unlikely(!page_evictable(page))) { 1316 spin_unlock_irq(&zone->lru_lock); 1317 putback_lru_page(page); 1318 spin_lock_irq(&zone->lru_lock); 1319 continue; 1320 } 1321 1322 lruvec = mem_cgroup_page_lruvec(page, zone); 1323 1324 SetPageLRU(page); 1325 lru = page_lru(page); 1326 add_page_to_lru_list(page, lruvec, lru); 1327 1328 if (is_active_lru(lru)) { 1329 int file = is_file_lru(lru); 1330 int numpages = hpage_nr_pages(page); 1331 reclaim_stat->recent_rotated[file] += numpages; 1332 } 1333 if (put_page_testzero(page)) { 1334 __ClearPageLRU(page); 1335 __ClearPageActive(page); 1336 del_page_from_lru_list(page, lruvec, lru); 1337 1338 if (unlikely(PageCompound(page))) { 1339 spin_unlock_irq(&zone->lru_lock); 1340 (*get_compound_page_dtor(page))(page); 1341 spin_lock_irq(&zone->lru_lock); 1342 } else 1343 list_add(&page->lru, &pages_to_free); 1344 } 1345 } 1346 1347 /* 1348 * To save our caller's stack, now use input list for pages to free. 1349 */ 1350 list_splice(&pages_to_free, page_list); 1351 } 1352 1353 /* 1354 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number 1355 * of reclaimed pages 1356 */ 1357 static noinline_for_stack unsigned long 1358 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, 1359 struct scan_control *sc, enum lru_list lru) 1360 { 1361 LIST_HEAD(page_list); 1362 unsigned long nr_scanned; 1363 unsigned long nr_reclaimed = 0; 1364 unsigned long nr_taken; 1365 unsigned long nr_dirty = 0; 1366 unsigned long nr_congested = 0; 1367 unsigned long nr_unqueued_dirty = 0; 1368 unsigned long nr_writeback = 0; 1369 unsigned long nr_immediate = 0; 1370 isolate_mode_t isolate_mode = 0; 1371 int file = is_file_lru(lru); 1372 struct zone *zone = lruvec_zone(lruvec); 1373 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1374 1375 while (unlikely(too_many_isolated(zone, file, sc))) { 1376 congestion_wait(BLK_RW_ASYNC, HZ/10); 1377 1378 /* We are about to die and free our memory. Return now. */ 1379 if (fatal_signal_pending(current)) 1380 return SWAP_CLUSTER_MAX; 1381 } 1382 1383 lru_add_drain(); 1384 1385 if (!sc->may_unmap) 1386 isolate_mode |= ISOLATE_UNMAPPED; 1387 if (!sc->may_writepage) 1388 isolate_mode |= ISOLATE_CLEAN; 1389 1390 spin_lock_irq(&zone->lru_lock); 1391 1392 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list, 1393 &nr_scanned, sc, isolate_mode, lru); 1394 1395 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken); 1396 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken); 1397 1398 if (global_reclaim(sc)) { 1399 zone->pages_scanned += nr_scanned; 1400 if (current_is_kswapd()) 1401 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned); 1402 else 1403 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned); 1404 } 1405 spin_unlock_irq(&zone->lru_lock); 1406 1407 if (nr_taken == 0) 1408 return 0; 1409 1410 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP, 1411 &nr_dirty, &nr_unqueued_dirty, &nr_congested, 1412 &nr_writeback, &nr_immediate, 1413 false); 1414 1415 spin_lock_irq(&zone->lru_lock); 1416 1417 reclaim_stat->recent_scanned[file] += nr_taken; 1418 1419 if (global_reclaim(sc)) { 1420 if (current_is_kswapd()) 1421 __count_zone_vm_events(PGSTEAL_KSWAPD, zone, 1422 nr_reclaimed); 1423 else 1424 __count_zone_vm_events(PGSTEAL_DIRECT, zone, 1425 nr_reclaimed); 1426 } 1427 1428 putback_inactive_pages(lruvec, &page_list); 1429 1430 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken); 1431 1432 spin_unlock_irq(&zone->lru_lock); 1433 1434 free_hot_cold_page_list(&page_list, 1); 1435 1436 /* 1437 * If reclaim is isolating dirty pages under writeback, it implies 1438 * that the long-lived page allocation rate is exceeding the page 1439 * laundering rate. Either the global limits are not being effective 1440 * at throttling processes due to the page distribution throughout 1441 * zones or there is heavy usage of a slow backing device. The 1442 * only option is to throttle from reclaim context which is not ideal 1443 * as there is no guarantee the dirtying process is throttled in the 1444 * same way balance_dirty_pages() manages. 1445 * 1446 * This scales the number of dirty pages that must be under writeback 1447 * before a zone gets flagged ZONE_WRITEBACK. It is a simple backoff 1448 * function that has the most effect in the range DEF_PRIORITY to 1449 * DEF_PRIORITY-2 which is the priority reclaim is considered to be 1450 * in trouble and reclaim is considered to be in trouble. 1451 * 1452 * DEF_PRIORITY 100% isolated pages must be PageWriteback to throttle 1453 * DEF_PRIORITY-1 50% must be PageWriteback 1454 * DEF_PRIORITY-2 25% must be PageWriteback, kswapd in trouble 1455 * ... 1456 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any 1457 * isolated page is PageWriteback 1458 * 1459 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number 1460 * of pages under pages flagged for immediate reclaim and stall if any 1461 * are encountered in the nr_immediate check below. 1462 */ 1463 if (nr_writeback && nr_writeback >= 1464 (nr_taken >> (DEF_PRIORITY - sc->priority))) 1465 zone_set_flag(zone, ZONE_WRITEBACK); 1466 1467 /* 1468 * memcg will stall in page writeback so only consider forcibly 1469 * stalling for global reclaim 1470 */ 1471 if (global_reclaim(sc)) { 1472 /* 1473 * Tag a zone as congested if all the dirty pages scanned were 1474 * backed by a congested BDI and wait_iff_congested will stall. 1475 */ 1476 if (nr_dirty && nr_dirty == nr_congested) 1477 zone_set_flag(zone, ZONE_CONGESTED); 1478 1479 /* 1480 * If dirty pages are scanned that are not queued for IO, it 1481 * implies that flushers are not keeping up. In this case, flag 1482 * the zone ZONE_TAIL_LRU_DIRTY and kswapd will start writing 1483 * pages from reclaim context. It will forcibly stall in the 1484 * next check. 1485 */ 1486 if (nr_unqueued_dirty == nr_taken) 1487 zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY); 1488 1489 /* 1490 * In addition, if kswapd scans pages marked marked for 1491 * immediate reclaim and under writeback (nr_immediate), it 1492 * implies that pages are cycling through the LRU faster than 1493 * they are written so also forcibly stall. 1494 */ 1495 if (nr_unqueued_dirty == nr_taken || nr_immediate) 1496 congestion_wait(BLK_RW_ASYNC, HZ/10); 1497 } 1498 1499 /* 1500 * Stall direct reclaim for IO completions if underlying BDIs or zone 1501 * is congested. Allow kswapd to continue until it starts encountering 1502 * unqueued dirty pages or cycling through the LRU too quickly. 1503 */ 1504 if (!sc->hibernation_mode && !current_is_kswapd()) 1505 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10); 1506 1507 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id, 1508 zone_idx(zone), 1509 nr_scanned, nr_reclaimed, 1510 sc->priority, 1511 trace_shrink_flags(file)); 1512 return nr_reclaimed; 1513 } 1514 1515 /* 1516 * This moves pages from the active list to the inactive list. 1517 * 1518 * We move them the other way if the page is referenced by one or more 1519 * processes, from rmap. 1520 * 1521 * If the pages are mostly unmapped, the processing is fast and it is 1522 * appropriate to hold zone->lru_lock across the whole operation. But if 1523 * the pages are mapped, the processing is slow (page_referenced()) so we 1524 * should drop zone->lru_lock around each page. It's impossible to balance 1525 * this, so instead we remove the pages from the LRU while processing them. 1526 * It is safe to rely on PG_active against the non-LRU pages in here because 1527 * nobody will play with that bit on a non-LRU page. 1528 * 1529 * The downside is that we have to touch page->_count against each page. 1530 * But we had to alter page->flags anyway. 1531 */ 1532 1533 static void move_active_pages_to_lru(struct lruvec *lruvec, 1534 struct list_head *list, 1535 struct list_head *pages_to_free, 1536 enum lru_list lru) 1537 { 1538 struct zone *zone = lruvec_zone(lruvec); 1539 unsigned long pgmoved = 0; 1540 struct page *page; 1541 int nr_pages; 1542 1543 while (!list_empty(list)) { 1544 page = lru_to_page(list); 1545 lruvec = mem_cgroup_page_lruvec(page, zone); 1546 1547 VM_BUG_ON(PageLRU(page)); 1548 SetPageLRU(page); 1549 1550 nr_pages = hpage_nr_pages(page); 1551 mem_cgroup_update_lru_size(lruvec, lru, nr_pages); 1552 list_move(&page->lru, &lruvec->lists[lru]); 1553 pgmoved += nr_pages; 1554 1555 if (put_page_testzero(page)) { 1556 __ClearPageLRU(page); 1557 __ClearPageActive(page); 1558 del_page_from_lru_list(page, lruvec, lru); 1559 1560 if (unlikely(PageCompound(page))) { 1561 spin_unlock_irq(&zone->lru_lock); 1562 (*get_compound_page_dtor(page))(page); 1563 spin_lock_irq(&zone->lru_lock); 1564 } else 1565 list_add(&page->lru, pages_to_free); 1566 } 1567 } 1568 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved); 1569 if (!is_active_lru(lru)) 1570 __count_vm_events(PGDEACTIVATE, pgmoved); 1571 } 1572 1573 static void shrink_active_list(unsigned long nr_to_scan, 1574 struct lruvec *lruvec, 1575 struct scan_control *sc, 1576 enum lru_list lru) 1577 { 1578 unsigned long nr_taken; 1579 unsigned long nr_scanned; 1580 unsigned long vm_flags; 1581 LIST_HEAD(l_hold); /* The pages which were snipped off */ 1582 LIST_HEAD(l_active); 1583 LIST_HEAD(l_inactive); 1584 struct page *page; 1585 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1586 unsigned long nr_rotated = 0; 1587 isolate_mode_t isolate_mode = 0; 1588 int file = is_file_lru(lru); 1589 struct zone *zone = lruvec_zone(lruvec); 1590 1591 lru_add_drain(); 1592 1593 if (!sc->may_unmap) 1594 isolate_mode |= ISOLATE_UNMAPPED; 1595 if (!sc->may_writepage) 1596 isolate_mode |= ISOLATE_CLEAN; 1597 1598 spin_lock_irq(&zone->lru_lock); 1599 1600 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold, 1601 &nr_scanned, sc, isolate_mode, lru); 1602 if (global_reclaim(sc)) 1603 zone->pages_scanned += nr_scanned; 1604 1605 reclaim_stat->recent_scanned[file] += nr_taken; 1606 1607 __count_zone_vm_events(PGREFILL, zone, nr_scanned); 1608 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken); 1609 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken); 1610 spin_unlock_irq(&zone->lru_lock); 1611 1612 while (!list_empty(&l_hold)) { 1613 cond_resched(); 1614 page = lru_to_page(&l_hold); 1615 list_del(&page->lru); 1616 1617 if (unlikely(!page_evictable(page))) { 1618 putback_lru_page(page); 1619 continue; 1620 } 1621 1622 if (unlikely(buffer_heads_over_limit)) { 1623 if (page_has_private(page) && trylock_page(page)) { 1624 if (page_has_private(page)) 1625 try_to_release_page(page, 0); 1626 unlock_page(page); 1627 } 1628 } 1629 1630 if (page_referenced(page, 0, sc->target_mem_cgroup, 1631 &vm_flags)) { 1632 nr_rotated += hpage_nr_pages(page); 1633 /* 1634 * Identify referenced, file-backed active pages and 1635 * give them one more trip around the active list. So 1636 * that executable code get better chances to stay in 1637 * memory under moderate memory pressure. Anon pages 1638 * are not likely to be evicted by use-once streaming 1639 * IO, plus JVM can create lots of anon VM_EXEC pages, 1640 * so we ignore them here. 1641 */ 1642 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) { 1643 list_add(&page->lru, &l_active); 1644 continue; 1645 } 1646 } 1647 1648 ClearPageActive(page); /* we are de-activating */ 1649 list_add(&page->lru, &l_inactive); 1650 } 1651 1652 /* 1653 * Move pages back to the lru list. 1654 */ 1655 spin_lock_irq(&zone->lru_lock); 1656 /* 1657 * Count referenced pages from currently used mappings as rotated, 1658 * even though only some of them are actually re-activated. This 1659 * helps balance scan pressure between file and anonymous pages in 1660 * get_scan_ratio. 1661 */ 1662 reclaim_stat->recent_rotated[file] += nr_rotated; 1663 1664 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru); 1665 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE); 1666 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken); 1667 spin_unlock_irq(&zone->lru_lock); 1668 1669 free_hot_cold_page_list(&l_hold, 1); 1670 } 1671 1672 #ifdef CONFIG_SWAP 1673 static int inactive_anon_is_low_global(struct zone *zone) 1674 { 1675 unsigned long active, inactive; 1676 1677 active = zone_page_state(zone, NR_ACTIVE_ANON); 1678 inactive = zone_page_state(zone, NR_INACTIVE_ANON); 1679 1680 if (inactive * zone->inactive_ratio < active) 1681 return 1; 1682 1683 return 0; 1684 } 1685 1686 /** 1687 * inactive_anon_is_low - check if anonymous pages need to be deactivated 1688 * @lruvec: LRU vector to check 1689 * 1690 * Returns true if the zone does not have enough inactive anon pages, 1691 * meaning some active anon pages need to be deactivated. 1692 */ 1693 static int inactive_anon_is_low(struct lruvec *lruvec) 1694 { 1695 /* 1696 * If we don't have swap space, anonymous page deactivation 1697 * is pointless. 1698 */ 1699 if (!total_swap_pages) 1700 return 0; 1701 1702 if (!mem_cgroup_disabled()) 1703 return mem_cgroup_inactive_anon_is_low(lruvec); 1704 1705 return inactive_anon_is_low_global(lruvec_zone(lruvec)); 1706 } 1707 #else 1708 static inline int inactive_anon_is_low(struct lruvec *lruvec) 1709 { 1710 return 0; 1711 } 1712 #endif 1713 1714 /** 1715 * inactive_file_is_low - check if file pages need to be deactivated 1716 * @lruvec: LRU vector to check 1717 * 1718 * When the system is doing streaming IO, memory pressure here 1719 * ensures that active file pages get deactivated, until more 1720 * than half of the file pages are on the inactive list. 1721 * 1722 * Once we get to that situation, protect the system's working 1723 * set from being evicted by disabling active file page aging. 1724 * 1725 * This uses a different ratio than the anonymous pages, because 1726 * the page cache uses a use-once replacement algorithm. 1727 */ 1728 static int inactive_file_is_low(struct lruvec *lruvec) 1729 { 1730 unsigned long inactive; 1731 unsigned long active; 1732 1733 inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE); 1734 active = get_lru_size(lruvec, LRU_ACTIVE_FILE); 1735 1736 return active > inactive; 1737 } 1738 1739 static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru) 1740 { 1741 if (is_file_lru(lru)) 1742 return inactive_file_is_low(lruvec); 1743 else 1744 return inactive_anon_is_low(lruvec); 1745 } 1746 1747 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 1748 struct lruvec *lruvec, struct scan_control *sc) 1749 { 1750 if (is_active_lru(lru)) { 1751 if (inactive_list_is_low(lruvec, lru)) 1752 shrink_active_list(nr_to_scan, lruvec, sc, lru); 1753 return 0; 1754 } 1755 1756 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 1757 } 1758 1759 static int vmscan_swappiness(struct scan_control *sc) 1760 { 1761 if (global_reclaim(sc)) 1762 return vm_swappiness; 1763 return mem_cgroup_swappiness(sc->target_mem_cgroup); 1764 } 1765 1766 enum scan_balance { 1767 SCAN_EQUAL, 1768 SCAN_FRACT, 1769 SCAN_ANON, 1770 SCAN_FILE, 1771 }; 1772 1773 /* 1774 * Determine how aggressively the anon and file LRU lists should be 1775 * scanned. The relative value of each set of LRU lists is determined 1776 * by looking at the fraction of the pages scanned we did rotate back 1777 * onto the active list instead of evict. 1778 * 1779 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan 1780 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan 1781 */ 1782 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc, 1783 unsigned long *nr) 1784 { 1785 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1786 u64 fraction[2]; 1787 u64 denominator = 0; /* gcc */ 1788 struct zone *zone = lruvec_zone(lruvec); 1789 unsigned long anon_prio, file_prio; 1790 enum scan_balance scan_balance; 1791 unsigned long anon, file, free; 1792 bool force_scan = false; 1793 unsigned long ap, fp; 1794 enum lru_list lru; 1795 1796 /* 1797 * If the zone or memcg is small, nr[l] can be 0. This 1798 * results in no scanning on this priority and a potential 1799 * priority drop. Global direct reclaim can go to the next 1800 * zone and tends to have no problems. Global kswapd is for 1801 * zone balancing and it needs to scan a minimum amount. When 1802 * reclaiming for a memcg, a priority drop can cause high 1803 * latencies, so it's better to scan a minimum amount there as 1804 * well. 1805 */ 1806 if (current_is_kswapd() && zone->all_unreclaimable) 1807 force_scan = true; 1808 if (!global_reclaim(sc)) 1809 force_scan = true; 1810 1811 /* If we have no swap space, do not bother scanning anon pages. */ 1812 if (!sc->may_swap || (get_nr_swap_pages() <= 0)) { 1813 scan_balance = SCAN_FILE; 1814 goto out; 1815 } 1816 1817 /* 1818 * Global reclaim will swap to prevent OOM even with no 1819 * swappiness, but memcg users want to use this knob to 1820 * disable swapping for individual groups completely when 1821 * using the memory controller's swap limit feature would be 1822 * too expensive. 1823 */ 1824 if (!global_reclaim(sc) && !vmscan_swappiness(sc)) { 1825 scan_balance = SCAN_FILE; 1826 goto out; 1827 } 1828 1829 /* 1830 * Do not apply any pressure balancing cleverness when the 1831 * system is close to OOM, scan both anon and file equally 1832 * (unless the swappiness setting disagrees with swapping). 1833 */ 1834 if (!sc->priority && vmscan_swappiness(sc)) { 1835 scan_balance = SCAN_EQUAL; 1836 goto out; 1837 } 1838 1839 anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) + 1840 get_lru_size(lruvec, LRU_INACTIVE_ANON); 1841 file = get_lru_size(lruvec, LRU_ACTIVE_FILE) + 1842 get_lru_size(lruvec, LRU_INACTIVE_FILE); 1843 1844 /* 1845 * If it's foreseeable that reclaiming the file cache won't be 1846 * enough to get the zone back into a desirable shape, we have 1847 * to swap. Better start now and leave the - probably heavily 1848 * thrashing - remaining file pages alone. 1849 */ 1850 if (global_reclaim(sc)) { 1851 free = zone_page_state(zone, NR_FREE_PAGES); 1852 if (unlikely(file + free <= high_wmark_pages(zone))) { 1853 scan_balance = SCAN_ANON; 1854 goto out; 1855 } 1856 } 1857 1858 /* 1859 * There is enough inactive page cache, do not reclaim 1860 * anything from the anonymous working set right now. 1861 */ 1862 if (!inactive_file_is_low(lruvec)) { 1863 scan_balance = SCAN_FILE; 1864 goto out; 1865 } 1866 1867 scan_balance = SCAN_FRACT; 1868 1869 /* 1870 * With swappiness at 100, anonymous and file have the same priority. 1871 * This scanning priority is essentially the inverse of IO cost. 1872 */ 1873 anon_prio = vmscan_swappiness(sc); 1874 file_prio = 200 - anon_prio; 1875 1876 /* 1877 * OK, so we have swap space and a fair amount of page cache 1878 * pages. We use the recently rotated / recently scanned 1879 * ratios to determine how valuable each cache is. 1880 * 1881 * Because workloads change over time (and to avoid overflow) 1882 * we keep these statistics as a floating average, which ends 1883 * up weighing recent references more than old ones. 1884 * 1885 * anon in [0], file in [1] 1886 */ 1887 spin_lock_irq(&zone->lru_lock); 1888 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) { 1889 reclaim_stat->recent_scanned[0] /= 2; 1890 reclaim_stat->recent_rotated[0] /= 2; 1891 } 1892 1893 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) { 1894 reclaim_stat->recent_scanned[1] /= 2; 1895 reclaim_stat->recent_rotated[1] /= 2; 1896 } 1897 1898 /* 1899 * The amount of pressure on anon vs file pages is inversely 1900 * proportional to the fraction of recently scanned pages on 1901 * each list that were recently referenced and in active use. 1902 */ 1903 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1); 1904 ap /= reclaim_stat->recent_rotated[0] + 1; 1905 1906 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1); 1907 fp /= reclaim_stat->recent_rotated[1] + 1; 1908 spin_unlock_irq(&zone->lru_lock); 1909 1910 fraction[0] = ap; 1911 fraction[1] = fp; 1912 denominator = ap + fp + 1; 1913 out: 1914 for_each_evictable_lru(lru) { 1915 int file = is_file_lru(lru); 1916 unsigned long size; 1917 unsigned long scan; 1918 1919 size = get_lru_size(lruvec, lru); 1920 scan = size >> sc->priority; 1921 1922 if (!scan && force_scan) 1923 scan = min(size, SWAP_CLUSTER_MAX); 1924 1925 switch (scan_balance) { 1926 case SCAN_EQUAL: 1927 /* Scan lists relative to size */ 1928 break; 1929 case SCAN_FRACT: 1930 /* 1931 * Scan types proportional to swappiness and 1932 * their relative recent reclaim efficiency. 1933 */ 1934 scan = div64_u64(scan * fraction[file], denominator); 1935 break; 1936 case SCAN_FILE: 1937 case SCAN_ANON: 1938 /* Scan one type exclusively */ 1939 if ((scan_balance == SCAN_FILE) != file) 1940 scan = 0; 1941 break; 1942 default: 1943 /* Look ma, no brain */ 1944 BUG(); 1945 } 1946 nr[lru] = scan; 1947 } 1948 } 1949 1950 /* 1951 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim. 1952 */ 1953 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 1954 { 1955 unsigned long nr[NR_LRU_LISTS]; 1956 unsigned long targets[NR_LRU_LISTS]; 1957 unsigned long nr_to_scan; 1958 enum lru_list lru; 1959 unsigned long nr_reclaimed = 0; 1960 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 1961 struct blk_plug plug; 1962 bool scan_adjusted = false; 1963 1964 get_scan_count(lruvec, sc, nr); 1965 1966 /* Record the original scan target for proportional adjustments later */ 1967 memcpy(targets, nr, sizeof(nr)); 1968 1969 blk_start_plug(&plug); 1970 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 1971 nr[LRU_INACTIVE_FILE]) { 1972 unsigned long nr_anon, nr_file, percentage; 1973 unsigned long nr_scanned; 1974 1975 for_each_evictable_lru(lru) { 1976 if (nr[lru]) { 1977 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 1978 nr[lru] -= nr_to_scan; 1979 1980 nr_reclaimed += shrink_list(lru, nr_to_scan, 1981 lruvec, sc); 1982 } 1983 } 1984 1985 if (nr_reclaimed < nr_to_reclaim || scan_adjusted) 1986 continue; 1987 1988 /* 1989 * For global direct reclaim, reclaim only the number of pages 1990 * requested. Less care is taken to scan proportionally as it 1991 * is more important to minimise direct reclaim stall latency 1992 * than it is to properly age the LRU lists. 1993 */ 1994 if (global_reclaim(sc) && !current_is_kswapd()) 1995 break; 1996 1997 /* 1998 * For kswapd and memcg, reclaim at least the number of pages 1999 * requested. Ensure that the anon and file LRUs shrink 2000 * proportionally what was requested by get_scan_count(). We 2001 * stop reclaiming one LRU and reduce the amount scanning 2002 * proportional to the original scan target. 2003 */ 2004 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 2005 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 2006 2007 if (nr_file > nr_anon) { 2008 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 2009 targets[LRU_ACTIVE_ANON] + 1; 2010 lru = LRU_BASE; 2011 percentage = nr_anon * 100 / scan_target; 2012 } else { 2013 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 2014 targets[LRU_ACTIVE_FILE] + 1; 2015 lru = LRU_FILE; 2016 percentage = nr_file * 100 / scan_target; 2017 } 2018 2019 /* Stop scanning the smaller of the LRU */ 2020 nr[lru] = 0; 2021 nr[lru + LRU_ACTIVE] = 0; 2022 2023 /* 2024 * Recalculate the other LRU scan count based on its original 2025 * scan target and the percentage scanning already complete 2026 */ 2027 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 2028 nr_scanned = targets[lru] - nr[lru]; 2029 nr[lru] = targets[lru] * (100 - percentage) / 100; 2030 nr[lru] -= min(nr[lru], nr_scanned); 2031 2032 lru += LRU_ACTIVE; 2033 nr_scanned = targets[lru] - nr[lru]; 2034 nr[lru] = targets[lru] * (100 - percentage) / 100; 2035 nr[lru] -= min(nr[lru], nr_scanned); 2036 2037 scan_adjusted = true; 2038 } 2039 blk_finish_plug(&plug); 2040 sc->nr_reclaimed += nr_reclaimed; 2041 2042 /* 2043 * Even if we did not try to evict anon pages at all, we want to 2044 * rebalance the anon lru active/inactive ratio. 2045 */ 2046 if (inactive_anon_is_low(lruvec)) 2047 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 2048 sc, LRU_ACTIVE_ANON); 2049 2050 throttle_vm_writeout(sc->gfp_mask); 2051 } 2052 2053 /* Use reclaim/compaction for costly allocs or under memory pressure */ 2054 static bool in_reclaim_compaction(struct scan_control *sc) 2055 { 2056 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 2057 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 2058 sc->priority < DEF_PRIORITY - 2)) 2059 return true; 2060 2061 return false; 2062 } 2063 2064 /* 2065 * Reclaim/compaction is used for high-order allocation requests. It reclaims 2066 * order-0 pages before compacting the zone. should_continue_reclaim() returns 2067 * true if more pages should be reclaimed such that when the page allocator 2068 * calls try_to_compact_zone() that it will have enough free pages to succeed. 2069 * It will give up earlier than that if there is difficulty reclaiming pages. 2070 */ 2071 static inline bool should_continue_reclaim(struct zone *zone, 2072 unsigned long nr_reclaimed, 2073 unsigned long nr_scanned, 2074 struct scan_control *sc) 2075 { 2076 unsigned long pages_for_compaction; 2077 unsigned long inactive_lru_pages; 2078 2079 /* If not in reclaim/compaction mode, stop */ 2080 if (!in_reclaim_compaction(sc)) 2081 return false; 2082 2083 /* Consider stopping depending on scan and reclaim activity */ 2084 if (sc->gfp_mask & __GFP_REPEAT) { 2085 /* 2086 * For __GFP_REPEAT allocations, stop reclaiming if the 2087 * full LRU list has been scanned and we are still failing 2088 * to reclaim pages. This full LRU scan is potentially 2089 * expensive but a __GFP_REPEAT caller really wants to succeed 2090 */ 2091 if (!nr_reclaimed && !nr_scanned) 2092 return false; 2093 } else { 2094 /* 2095 * For non-__GFP_REPEAT allocations which can presumably 2096 * fail without consequence, stop if we failed to reclaim 2097 * any pages from the last SWAP_CLUSTER_MAX number of 2098 * pages that were scanned. This will return to the 2099 * caller faster at the risk reclaim/compaction and 2100 * the resulting allocation attempt fails 2101 */ 2102 if (!nr_reclaimed) 2103 return false; 2104 } 2105 2106 /* 2107 * If we have not reclaimed enough pages for compaction and the 2108 * inactive lists are large enough, continue reclaiming 2109 */ 2110 pages_for_compaction = (2UL << sc->order); 2111 inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE); 2112 if (get_nr_swap_pages() > 0) 2113 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON); 2114 if (sc->nr_reclaimed < pages_for_compaction && 2115 inactive_lru_pages > pages_for_compaction) 2116 return true; 2117 2118 /* If compaction would go ahead or the allocation would succeed, stop */ 2119 switch (compaction_suitable(zone, sc->order)) { 2120 case COMPACT_PARTIAL: 2121 case COMPACT_CONTINUE: 2122 return false; 2123 default: 2124 return true; 2125 } 2126 } 2127 2128 static void shrink_zone(struct zone *zone, struct scan_control *sc) 2129 { 2130 unsigned long nr_reclaimed, nr_scanned; 2131 2132 do { 2133 struct mem_cgroup *root = sc->target_mem_cgroup; 2134 struct mem_cgroup_reclaim_cookie reclaim = { 2135 .zone = zone, 2136 .priority = sc->priority, 2137 }; 2138 struct mem_cgroup *memcg; 2139 2140 nr_reclaimed = sc->nr_reclaimed; 2141 nr_scanned = sc->nr_scanned; 2142 2143 memcg = mem_cgroup_iter(root, NULL, &reclaim); 2144 do { 2145 struct lruvec *lruvec; 2146 2147 lruvec = mem_cgroup_zone_lruvec(zone, memcg); 2148 2149 shrink_lruvec(lruvec, sc); 2150 2151 /* 2152 * Direct reclaim and kswapd have to scan all memory 2153 * cgroups to fulfill the overall scan target for the 2154 * zone. 2155 * 2156 * Limit reclaim, on the other hand, only cares about 2157 * nr_to_reclaim pages to be reclaimed and it will 2158 * retry with decreasing priority if one round over the 2159 * whole hierarchy is not sufficient. 2160 */ 2161 if (!global_reclaim(sc) && 2162 sc->nr_reclaimed >= sc->nr_to_reclaim) { 2163 mem_cgroup_iter_break(root, memcg); 2164 break; 2165 } 2166 memcg = mem_cgroup_iter(root, memcg, &reclaim); 2167 } while (memcg); 2168 2169 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, 2170 sc->nr_scanned - nr_scanned, 2171 sc->nr_reclaimed - nr_reclaimed); 2172 2173 } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed, 2174 sc->nr_scanned - nr_scanned, sc)); 2175 } 2176 2177 /* Returns true if compaction should go ahead for a high-order request */ 2178 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) 2179 { 2180 unsigned long balance_gap, watermark; 2181 bool watermark_ok; 2182 2183 /* Do not consider compaction for orders reclaim is meant to satisfy */ 2184 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER) 2185 return false; 2186 2187 /* 2188 * Compaction takes time to run and there are potentially other 2189 * callers using the pages just freed. Continue reclaiming until 2190 * there is a buffer of free pages available to give compaction 2191 * a reasonable chance of completing and allocating the page 2192 */ 2193 balance_gap = min(low_wmark_pages(zone), 2194 (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) / 2195 KSWAPD_ZONE_BALANCE_GAP_RATIO); 2196 watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order); 2197 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0); 2198 2199 /* 2200 * If compaction is deferred, reclaim up to a point where 2201 * compaction will have a chance of success when re-enabled 2202 */ 2203 if (compaction_deferred(zone, sc->order)) 2204 return watermark_ok; 2205 2206 /* If compaction is not ready to start, keep reclaiming */ 2207 if (!compaction_suitable(zone, sc->order)) 2208 return false; 2209 2210 return watermark_ok; 2211 } 2212 2213 /* 2214 * This is the direct reclaim path, for page-allocating processes. We only 2215 * try to reclaim pages from zones which will satisfy the caller's allocation 2216 * request. 2217 * 2218 * We reclaim from a zone even if that zone is over high_wmark_pages(zone). 2219 * Because: 2220 * a) The caller may be trying to free *extra* pages to satisfy a higher-order 2221 * allocation or 2222 * b) The target zone may be at high_wmark_pages(zone) but the lower zones 2223 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min' 2224 * zone defense algorithm. 2225 * 2226 * If a zone is deemed to be full of pinned pages then just give it a light 2227 * scan then give up on it. 2228 * 2229 * This function returns true if a zone is being reclaimed for a costly 2230 * high-order allocation and compaction is ready to begin. This indicates to 2231 * the caller that it should consider retrying the allocation instead of 2232 * further reclaim. 2233 */ 2234 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 2235 { 2236 struct zoneref *z; 2237 struct zone *zone; 2238 unsigned long nr_soft_reclaimed; 2239 unsigned long nr_soft_scanned; 2240 bool aborted_reclaim = false; 2241 2242 /* 2243 * If the number of buffer_heads in the machine exceeds the maximum 2244 * allowed level, force direct reclaim to scan the highmem zone as 2245 * highmem pages could be pinning lowmem pages storing buffer_heads 2246 */ 2247 if (buffer_heads_over_limit) 2248 sc->gfp_mask |= __GFP_HIGHMEM; 2249 2250 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2251 gfp_zone(sc->gfp_mask), sc->nodemask) { 2252 if (!populated_zone(zone)) 2253 continue; 2254 /* 2255 * Take care memory controller reclaiming has small influence 2256 * to global LRU. 2257 */ 2258 if (global_reclaim(sc)) { 2259 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 2260 continue; 2261 if (zone->all_unreclaimable && 2262 sc->priority != DEF_PRIORITY) 2263 continue; /* Let kswapd poll it */ 2264 if (IS_ENABLED(CONFIG_COMPACTION)) { 2265 /* 2266 * If we already have plenty of memory free for 2267 * compaction in this zone, don't free any more. 2268 * Even though compaction is invoked for any 2269 * non-zero order, only frequent costly order 2270 * reclamation is disruptive enough to become a 2271 * noticeable problem, like transparent huge 2272 * page allocations. 2273 */ 2274 if (compaction_ready(zone, sc)) { 2275 aborted_reclaim = true; 2276 continue; 2277 } 2278 } 2279 /* 2280 * This steals pages from memory cgroups over softlimit 2281 * and returns the number of reclaimed pages and 2282 * scanned pages. This works for global memory pressure 2283 * and balancing, not for a memcg's limit. 2284 */ 2285 nr_soft_scanned = 0; 2286 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone, 2287 sc->order, sc->gfp_mask, 2288 &nr_soft_scanned); 2289 sc->nr_reclaimed += nr_soft_reclaimed; 2290 sc->nr_scanned += nr_soft_scanned; 2291 /* need some check for avoid more shrink_zone() */ 2292 } 2293 2294 shrink_zone(zone, sc); 2295 } 2296 2297 return aborted_reclaim; 2298 } 2299 2300 static bool zone_reclaimable(struct zone *zone) 2301 { 2302 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6; 2303 } 2304 2305 /* All zones in zonelist are unreclaimable? */ 2306 static bool all_unreclaimable(struct zonelist *zonelist, 2307 struct scan_control *sc) 2308 { 2309 struct zoneref *z; 2310 struct zone *zone; 2311 2312 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2313 gfp_zone(sc->gfp_mask), sc->nodemask) { 2314 if (!populated_zone(zone)) 2315 continue; 2316 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 2317 continue; 2318 if (!zone->all_unreclaimable) 2319 return false; 2320 } 2321 2322 return true; 2323 } 2324 2325 /* 2326 * This is the main entry point to direct page reclaim. 2327 * 2328 * If a full scan of the inactive list fails to free enough memory then we 2329 * are "out of memory" and something needs to be killed. 2330 * 2331 * If the caller is !__GFP_FS then the probability of a failure is reasonably 2332 * high - the zone may be full of dirty or under-writeback pages, which this 2333 * caller can't do much about. We kick the writeback threads and take explicit 2334 * naps in the hope that some of these pages can be written. But if the 2335 * allocating task holds filesystem locks which prevent writeout this might not 2336 * work, and the allocation attempt will fail. 2337 * 2338 * returns: 0, if no pages reclaimed 2339 * else, the number of pages reclaimed 2340 */ 2341 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 2342 struct scan_control *sc, 2343 struct shrink_control *shrink) 2344 { 2345 unsigned long total_scanned = 0; 2346 struct reclaim_state *reclaim_state = current->reclaim_state; 2347 struct zoneref *z; 2348 struct zone *zone; 2349 unsigned long writeback_threshold; 2350 bool aborted_reclaim; 2351 2352 delayacct_freepages_start(); 2353 2354 if (global_reclaim(sc)) 2355 count_vm_event(ALLOCSTALL); 2356 2357 do { 2358 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 2359 sc->priority); 2360 sc->nr_scanned = 0; 2361 aborted_reclaim = shrink_zones(zonelist, sc); 2362 2363 /* 2364 * Don't shrink slabs when reclaiming memory from 2365 * over limit cgroups 2366 */ 2367 if (global_reclaim(sc)) { 2368 unsigned long lru_pages = 0; 2369 for_each_zone_zonelist(zone, z, zonelist, 2370 gfp_zone(sc->gfp_mask)) { 2371 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 2372 continue; 2373 2374 lru_pages += zone_reclaimable_pages(zone); 2375 } 2376 2377 shrink_slab(shrink, sc->nr_scanned, lru_pages); 2378 if (reclaim_state) { 2379 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 2380 reclaim_state->reclaimed_slab = 0; 2381 } 2382 } 2383 total_scanned += sc->nr_scanned; 2384 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 2385 goto out; 2386 2387 /* 2388 * If we're getting trouble reclaiming, start doing 2389 * writepage even in laptop mode. 2390 */ 2391 if (sc->priority < DEF_PRIORITY - 2) 2392 sc->may_writepage = 1; 2393 2394 /* 2395 * Try to write back as many pages as we just scanned. This 2396 * tends to cause slow streaming writers to write data to the 2397 * disk smoothly, at the dirtying rate, which is nice. But 2398 * that's undesirable in laptop mode, where we *want* lumpy 2399 * writeout. So in laptop mode, write out the whole world. 2400 */ 2401 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2; 2402 if (total_scanned > writeback_threshold) { 2403 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned, 2404 WB_REASON_TRY_TO_FREE_PAGES); 2405 sc->may_writepage = 1; 2406 } 2407 } while (--sc->priority >= 0); 2408 2409 out: 2410 delayacct_freepages_end(); 2411 2412 if (sc->nr_reclaimed) 2413 return sc->nr_reclaimed; 2414 2415 /* 2416 * As hibernation is going on, kswapd is freezed so that it can't mark 2417 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable 2418 * check. 2419 */ 2420 if (oom_killer_disabled) 2421 return 0; 2422 2423 /* Aborted reclaim to try compaction? don't OOM, then */ 2424 if (aborted_reclaim) 2425 return 1; 2426 2427 /* top priority shrink_zones still had more to do? don't OOM, then */ 2428 if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc)) 2429 return 1; 2430 2431 return 0; 2432 } 2433 2434 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat) 2435 { 2436 struct zone *zone; 2437 unsigned long pfmemalloc_reserve = 0; 2438 unsigned long free_pages = 0; 2439 int i; 2440 bool wmark_ok; 2441 2442 for (i = 0; i <= ZONE_NORMAL; i++) { 2443 zone = &pgdat->node_zones[i]; 2444 pfmemalloc_reserve += min_wmark_pages(zone); 2445 free_pages += zone_page_state(zone, NR_FREE_PAGES); 2446 } 2447 2448 wmark_ok = free_pages > pfmemalloc_reserve / 2; 2449 2450 /* kswapd must be awake if processes are being throttled */ 2451 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 2452 pgdat->classzone_idx = min(pgdat->classzone_idx, 2453 (enum zone_type)ZONE_NORMAL); 2454 wake_up_interruptible(&pgdat->kswapd_wait); 2455 } 2456 2457 return wmark_ok; 2458 } 2459 2460 /* 2461 * Throttle direct reclaimers if backing storage is backed by the network 2462 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 2463 * depleted. kswapd will continue to make progress and wake the processes 2464 * when the low watermark is reached. 2465 * 2466 * Returns true if a fatal signal was delivered during throttling. If this 2467 * happens, the page allocator should not consider triggering the OOM killer. 2468 */ 2469 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 2470 nodemask_t *nodemask) 2471 { 2472 struct zone *zone; 2473 int high_zoneidx = gfp_zone(gfp_mask); 2474 pg_data_t *pgdat; 2475 2476 /* 2477 * Kernel threads should not be throttled as they may be indirectly 2478 * responsible for cleaning pages necessary for reclaim to make forward 2479 * progress. kjournald for example may enter direct reclaim while 2480 * committing a transaction where throttling it could forcing other 2481 * processes to block on log_wait_commit(). 2482 */ 2483 if (current->flags & PF_KTHREAD) 2484 goto out; 2485 2486 /* 2487 * If a fatal signal is pending, this process should not throttle. 2488 * It should return quickly so it can exit and free its memory 2489 */ 2490 if (fatal_signal_pending(current)) 2491 goto out; 2492 2493 /* Check if the pfmemalloc reserves are ok */ 2494 first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone); 2495 pgdat = zone->zone_pgdat; 2496 if (pfmemalloc_watermark_ok(pgdat)) 2497 goto out; 2498 2499 /* Account for the throttling */ 2500 count_vm_event(PGSCAN_DIRECT_THROTTLE); 2501 2502 /* 2503 * If the caller cannot enter the filesystem, it's possible that it 2504 * is due to the caller holding an FS lock or performing a journal 2505 * transaction in the case of a filesystem like ext[3|4]. In this case, 2506 * it is not safe to block on pfmemalloc_wait as kswapd could be 2507 * blocked waiting on the same lock. Instead, throttle for up to a 2508 * second before continuing. 2509 */ 2510 if (!(gfp_mask & __GFP_FS)) { 2511 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 2512 pfmemalloc_watermark_ok(pgdat), HZ); 2513 2514 goto check_pending; 2515 } 2516 2517 /* Throttle until kswapd wakes the process */ 2518 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 2519 pfmemalloc_watermark_ok(pgdat)); 2520 2521 check_pending: 2522 if (fatal_signal_pending(current)) 2523 return true; 2524 2525 out: 2526 return false; 2527 } 2528 2529 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 2530 gfp_t gfp_mask, nodemask_t *nodemask) 2531 { 2532 unsigned long nr_reclaimed; 2533 struct scan_control sc = { 2534 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)), 2535 .may_writepage = !laptop_mode, 2536 .nr_to_reclaim = SWAP_CLUSTER_MAX, 2537 .may_unmap = 1, 2538 .may_swap = 1, 2539 .order = order, 2540 .priority = DEF_PRIORITY, 2541 .target_mem_cgroup = NULL, 2542 .nodemask = nodemask, 2543 }; 2544 struct shrink_control shrink = { 2545 .gfp_mask = sc.gfp_mask, 2546 }; 2547 2548 /* 2549 * Do not enter reclaim if fatal signal was delivered while throttled. 2550 * 1 is returned so that the page allocator does not OOM kill at this 2551 * point. 2552 */ 2553 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask)) 2554 return 1; 2555 2556 trace_mm_vmscan_direct_reclaim_begin(order, 2557 sc.may_writepage, 2558 gfp_mask); 2559 2560 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink); 2561 2562 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 2563 2564 return nr_reclaimed; 2565 } 2566 2567 #ifdef CONFIG_MEMCG 2568 2569 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg, 2570 gfp_t gfp_mask, bool noswap, 2571 struct zone *zone, 2572 unsigned long *nr_scanned) 2573 { 2574 struct scan_control sc = { 2575 .nr_scanned = 0, 2576 .nr_to_reclaim = SWAP_CLUSTER_MAX, 2577 .may_writepage = !laptop_mode, 2578 .may_unmap = 1, 2579 .may_swap = !noswap, 2580 .order = 0, 2581 .priority = 0, 2582 .target_mem_cgroup = memcg, 2583 }; 2584 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg); 2585 2586 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 2587 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 2588 2589 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 2590 sc.may_writepage, 2591 sc.gfp_mask); 2592 2593 /* 2594 * NOTE: Although we can get the priority field, using it 2595 * here is not a good idea, since it limits the pages we can scan. 2596 * if we don't reclaim here, the shrink_zone from balance_pgdat 2597 * will pick up pages from other mem cgroup's as well. We hack 2598 * the priority and make it zero. 2599 */ 2600 shrink_lruvec(lruvec, &sc); 2601 2602 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 2603 2604 *nr_scanned = sc.nr_scanned; 2605 return sc.nr_reclaimed; 2606 } 2607 2608 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 2609 gfp_t gfp_mask, 2610 bool noswap) 2611 { 2612 struct zonelist *zonelist; 2613 unsigned long nr_reclaimed; 2614 int nid; 2615 struct scan_control sc = { 2616 .may_writepage = !laptop_mode, 2617 .may_unmap = 1, 2618 .may_swap = !noswap, 2619 .nr_to_reclaim = SWAP_CLUSTER_MAX, 2620 .order = 0, 2621 .priority = DEF_PRIORITY, 2622 .target_mem_cgroup = memcg, 2623 .nodemask = NULL, /* we don't care the placement */ 2624 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 2625 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 2626 }; 2627 struct shrink_control shrink = { 2628 .gfp_mask = sc.gfp_mask, 2629 }; 2630 2631 /* 2632 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't 2633 * take care of from where we get pages. So the node where we start the 2634 * scan does not need to be the current node. 2635 */ 2636 nid = mem_cgroup_select_victim_node(memcg); 2637 2638 zonelist = NODE_DATA(nid)->node_zonelists; 2639 2640 trace_mm_vmscan_memcg_reclaim_begin(0, 2641 sc.may_writepage, 2642 sc.gfp_mask); 2643 2644 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink); 2645 2646 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 2647 2648 return nr_reclaimed; 2649 } 2650 #endif 2651 2652 static void age_active_anon(struct zone *zone, struct scan_control *sc) 2653 { 2654 struct mem_cgroup *memcg; 2655 2656 if (!total_swap_pages) 2657 return; 2658 2659 memcg = mem_cgroup_iter(NULL, NULL, NULL); 2660 do { 2661 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg); 2662 2663 if (inactive_anon_is_low(lruvec)) 2664 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 2665 sc, LRU_ACTIVE_ANON); 2666 2667 memcg = mem_cgroup_iter(NULL, memcg, NULL); 2668 } while (memcg); 2669 } 2670 2671 static bool zone_balanced(struct zone *zone, int order, 2672 unsigned long balance_gap, int classzone_idx) 2673 { 2674 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) + 2675 balance_gap, classzone_idx, 0)) 2676 return false; 2677 2678 if (IS_ENABLED(CONFIG_COMPACTION) && order && 2679 !compaction_suitable(zone, order)) 2680 return false; 2681 2682 return true; 2683 } 2684 2685 /* 2686 * pgdat_balanced() is used when checking if a node is balanced. 2687 * 2688 * For order-0, all zones must be balanced! 2689 * 2690 * For high-order allocations only zones that meet watermarks and are in a 2691 * zone allowed by the callers classzone_idx are added to balanced_pages. The 2692 * total of balanced pages must be at least 25% of the zones allowed by 2693 * classzone_idx for the node to be considered balanced. Forcing all zones to 2694 * be balanced for high orders can cause excessive reclaim when there are 2695 * imbalanced zones. 2696 * The choice of 25% is due to 2697 * o a 16M DMA zone that is balanced will not balance a zone on any 2698 * reasonable sized machine 2699 * o On all other machines, the top zone must be at least a reasonable 2700 * percentage of the middle zones. For example, on 32-bit x86, highmem 2701 * would need to be at least 256M for it to be balance a whole node. 2702 * Similarly, on x86-64 the Normal zone would need to be at least 1G 2703 * to balance a node on its own. These seemed like reasonable ratios. 2704 */ 2705 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx) 2706 { 2707 unsigned long managed_pages = 0; 2708 unsigned long balanced_pages = 0; 2709 int i; 2710 2711 /* Check the watermark levels */ 2712 for (i = 0; i <= classzone_idx; i++) { 2713 struct zone *zone = pgdat->node_zones + i; 2714 2715 if (!populated_zone(zone)) 2716 continue; 2717 2718 managed_pages += zone->managed_pages; 2719 2720 /* 2721 * A special case here: 2722 * 2723 * balance_pgdat() skips over all_unreclaimable after 2724 * DEF_PRIORITY. Effectively, it considers them balanced so 2725 * they must be considered balanced here as well! 2726 */ 2727 if (zone->all_unreclaimable) { 2728 balanced_pages += zone->managed_pages; 2729 continue; 2730 } 2731 2732 if (zone_balanced(zone, order, 0, i)) 2733 balanced_pages += zone->managed_pages; 2734 else if (!order) 2735 return false; 2736 } 2737 2738 if (order) 2739 return balanced_pages >= (managed_pages >> 2); 2740 else 2741 return true; 2742 } 2743 2744 /* 2745 * Prepare kswapd for sleeping. This verifies that there are no processes 2746 * waiting in throttle_direct_reclaim() and that watermarks have been met. 2747 * 2748 * Returns true if kswapd is ready to sleep 2749 */ 2750 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining, 2751 int classzone_idx) 2752 { 2753 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */ 2754 if (remaining) 2755 return false; 2756 2757 /* 2758 * There is a potential race between when kswapd checks its watermarks 2759 * and a process gets throttled. There is also a potential race if 2760 * processes get throttled, kswapd wakes, a large process exits therby 2761 * balancing the zones that causes kswapd to miss a wakeup. If kswapd 2762 * is going to sleep, no process should be sleeping on pfmemalloc_wait 2763 * so wake them now if necessary. If necessary, processes will wake 2764 * kswapd and get throttled again 2765 */ 2766 if (waitqueue_active(&pgdat->pfmemalloc_wait)) { 2767 wake_up(&pgdat->pfmemalloc_wait); 2768 return false; 2769 } 2770 2771 return pgdat_balanced(pgdat, order, classzone_idx); 2772 } 2773 2774 /* 2775 * kswapd shrinks the zone by the number of pages required to reach 2776 * the high watermark. 2777 * 2778 * Returns true if kswapd scanned at least the requested number of pages to 2779 * reclaim or if the lack of progress was due to pages under writeback. 2780 * This is used to determine if the scanning priority needs to be raised. 2781 */ 2782 static bool kswapd_shrink_zone(struct zone *zone, 2783 int classzone_idx, 2784 struct scan_control *sc, 2785 unsigned long lru_pages, 2786 unsigned long *nr_attempted) 2787 { 2788 unsigned long nr_slab; 2789 int testorder = sc->order; 2790 unsigned long balance_gap; 2791 struct reclaim_state *reclaim_state = current->reclaim_state; 2792 struct shrink_control shrink = { 2793 .gfp_mask = sc->gfp_mask, 2794 }; 2795 bool lowmem_pressure; 2796 2797 /* Reclaim above the high watermark. */ 2798 sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone)); 2799 2800 /* 2801 * Kswapd reclaims only single pages with compaction enabled. Trying 2802 * too hard to reclaim until contiguous free pages have become 2803 * available can hurt performance by evicting too much useful data 2804 * from memory. Do not reclaim more than needed for compaction. 2805 */ 2806 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 2807 compaction_suitable(zone, sc->order) != 2808 COMPACT_SKIPPED) 2809 testorder = 0; 2810 2811 /* 2812 * We put equal pressure on every zone, unless one zone has way too 2813 * many pages free already. The "too many pages" is defined as the 2814 * high wmark plus a "gap" where the gap is either the low 2815 * watermark or 1% of the zone, whichever is smaller. 2816 */ 2817 balance_gap = min(low_wmark_pages(zone), 2818 (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) / 2819 KSWAPD_ZONE_BALANCE_GAP_RATIO); 2820 2821 /* 2822 * If there is no low memory pressure or the zone is balanced then no 2823 * reclaim is necessary 2824 */ 2825 lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone)); 2826 if (!lowmem_pressure && zone_balanced(zone, testorder, 2827 balance_gap, classzone_idx)) 2828 return true; 2829 2830 shrink_zone(zone, sc); 2831 2832 reclaim_state->reclaimed_slab = 0; 2833 nr_slab = shrink_slab(&shrink, sc->nr_scanned, lru_pages); 2834 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 2835 2836 /* Account for the number of pages attempted to reclaim */ 2837 *nr_attempted += sc->nr_to_reclaim; 2838 2839 if (nr_slab == 0 && !zone_reclaimable(zone)) 2840 zone->all_unreclaimable = 1; 2841 2842 zone_clear_flag(zone, ZONE_WRITEBACK); 2843 2844 /* 2845 * If a zone reaches its high watermark, consider it to be no longer 2846 * congested. It's possible there are dirty pages backed by congested 2847 * BDIs but as pressure is relieved, speculatively avoid congestion 2848 * waits. 2849 */ 2850 if (!zone->all_unreclaimable && 2851 zone_balanced(zone, testorder, 0, classzone_idx)) { 2852 zone_clear_flag(zone, ZONE_CONGESTED); 2853 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY); 2854 } 2855 2856 return sc->nr_scanned >= sc->nr_to_reclaim; 2857 } 2858 2859 /* 2860 * For kswapd, balance_pgdat() will work across all this node's zones until 2861 * they are all at high_wmark_pages(zone). 2862 * 2863 * Returns the final order kswapd was reclaiming at 2864 * 2865 * There is special handling here for zones which are full of pinned pages. 2866 * This can happen if the pages are all mlocked, or if they are all used by 2867 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb. 2868 * What we do is to detect the case where all pages in the zone have been 2869 * scanned twice and there has been zero successful reclaim. Mark the zone as 2870 * dead and from now on, only perform a short scan. Basically we're polling 2871 * the zone for when the problem goes away. 2872 * 2873 * kswapd scans the zones in the highmem->normal->dma direction. It skips 2874 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 2875 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the 2876 * lower zones regardless of the number of free pages in the lower zones. This 2877 * interoperates with the page allocator fallback scheme to ensure that aging 2878 * of pages is balanced across the zones. 2879 */ 2880 static unsigned long balance_pgdat(pg_data_t *pgdat, int order, 2881 int *classzone_idx) 2882 { 2883 int i; 2884 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */ 2885 unsigned long nr_soft_reclaimed; 2886 unsigned long nr_soft_scanned; 2887 struct scan_control sc = { 2888 .gfp_mask = GFP_KERNEL, 2889 .priority = DEF_PRIORITY, 2890 .may_unmap = 1, 2891 .may_swap = 1, 2892 .may_writepage = !laptop_mode, 2893 .order = order, 2894 .target_mem_cgroup = NULL, 2895 }; 2896 count_vm_event(PAGEOUTRUN); 2897 2898 do { 2899 unsigned long lru_pages = 0; 2900 unsigned long nr_attempted = 0; 2901 bool raise_priority = true; 2902 bool pgdat_needs_compaction = (order > 0); 2903 2904 sc.nr_reclaimed = 0; 2905 2906 /* 2907 * Scan in the highmem->dma direction for the highest 2908 * zone which needs scanning 2909 */ 2910 for (i = pgdat->nr_zones - 1; i >= 0; i--) { 2911 struct zone *zone = pgdat->node_zones + i; 2912 2913 if (!populated_zone(zone)) 2914 continue; 2915 2916 if (zone->all_unreclaimable && 2917 sc.priority != DEF_PRIORITY) 2918 continue; 2919 2920 /* 2921 * Do some background aging of the anon list, to give 2922 * pages a chance to be referenced before reclaiming. 2923 */ 2924 age_active_anon(zone, &sc); 2925 2926 /* 2927 * If the number of buffer_heads in the machine 2928 * exceeds the maximum allowed level and this node 2929 * has a highmem zone, force kswapd to reclaim from 2930 * it to relieve lowmem pressure. 2931 */ 2932 if (buffer_heads_over_limit && is_highmem_idx(i)) { 2933 end_zone = i; 2934 break; 2935 } 2936 2937 if (!zone_balanced(zone, order, 0, 0)) { 2938 end_zone = i; 2939 break; 2940 } else { 2941 /* 2942 * If balanced, clear the dirty and congested 2943 * flags 2944 */ 2945 zone_clear_flag(zone, ZONE_CONGESTED); 2946 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY); 2947 } 2948 } 2949 2950 if (i < 0) 2951 goto out; 2952 2953 for (i = 0; i <= end_zone; i++) { 2954 struct zone *zone = pgdat->node_zones + i; 2955 2956 if (!populated_zone(zone)) 2957 continue; 2958 2959 lru_pages += zone_reclaimable_pages(zone); 2960 2961 /* 2962 * If any zone is currently balanced then kswapd will 2963 * not call compaction as it is expected that the 2964 * necessary pages are already available. 2965 */ 2966 if (pgdat_needs_compaction && 2967 zone_watermark_ok(zone, order, 2968 low_wmark_pages(zone), 2969 *classzone_idx, 0)) 2970 pgdat_needs_compaction = false; 2971 } 2972 2973 /* 2974 * If we're getting trouble reclaiming, start doing writepage 2975 * even in laptop mode. 2976 */ 2977 if (sc.priority < DEF_PRIORITY - 2) 2978 sc.may_writepage = 1; 2979 2980 /* 2981 * Now scan the zone in the dma->highmem direction, stopping 2982 * at the last zone which needs scanning. 2983 * 2984 * We do this because the page allocator works in the opposite 2985 * direction. This prevents the page allocator from allocating 2986 * pages behind kswapd's direction of progress, which would 2987 * cause too much scanning of the lower zones. 2988 */ 2989 for (i = 0; i <= end_zone; i++) { 2990 struct zone *zone = pgdat->node_zones + i; 2991 2992 if (!populated_zone(zone)) 2993 continue; 2994 2995 if (zone->all_unreclaimable && 2996 sc.priority != DEF_PRIORITY) 2997 continue; 2998 2999 sc.nr_scanned = 0; 3000 3001 nr_soft_scanned = 0; 3002 /* 3003 * Call soft limit reclaim before calling shrink_zone. 3004 */ 3005 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone, 3006 order, sc.gfp_mask, 3007 &nr_soft_scanned); 3008 sc.nr_reclaimed += nr_soft_reclaimed; 3009 3010 /* 3011 * There should be no need to raise the scanning 3012 * priority if enough pages are already being scanned 3013 * that that high watermark would be met at 100% 3014 * efficiency. 3015 */ 3016 if (kswapd_shrink_zone(zone, end_zone, &sc, 3017 lru_pages, &nr_attempted)) 3018 raise_priority = false; 3019 } 3020 3021 /* 3022 * If the low watermark is met there is no need for processes 3023 * to be throttled on pfmemalloc_wait as they should not be 3024 * able to safely make forward progress. Wake them 3025 */ 3026 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 3027 pfmemalloc_watermark_ok(pgdat)) 3028 wake_up(&pgdat->pfmemalloc_wait); 3029 3030 /* 3031 * Fragmentation may mean that the system cannot be rebalanced 3032 * for high-order allocations in all zones. If twice the 3033 * allocation size has been reclaimed and the zones are still 3034 * not balanced then recheck the watermarks at order-0 to 3035 * prevent kswapd reclaiming excessively. Assume that a 3036 * process requested a high-order can direct reclaim/compact. 3037 */ 3038 if (order && sc.nr_reclaimed >= 2UL << order) 3039 order = sc.order = 0; 3040 3041 /* Check if kswapd should be suspending */ 3042 if (try_to_freeze() || kthread_should_stop()) 3043 break; 3044 3045 /* 3046 * Compact if necessary and kswapd is reclaiming at least the 3047 * high watermark number of pages as requsted 3048 */ 3049 if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted) 3050 compact_pgdat(pgdat, order); 3051 3052 /* 3053 * Raise priority if scanning rate is too low or there was no 3054 * progress in reclaiming pages 3055 */ 3056 if (raise_priority || !sc.nr_reclaimed) 3057 sc.priority--; 3058 } while (sc.priority >= 1 && 3059 !pgdat_balanced(pgdat, order, *classzone_idx)); 3060 3061 out: 3062 /* 3063 * Return the order we were reclaiming at so prepare_kswapd_sleep() 3064 * makes a decision on the order we were last reclaiming at. However, 3065 * if another caller entered the allocator slow path while kswapd 3066 * was awake, order will remain at the higher level 3067 */ 3068 *classzone_idx = end_zone; 3069 return order; 3070 } 3071 3072 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx) 3073 { 3074 long remaining = 0; 3075 DEFINE_WAIT(wait); 3076 3077 if (freezing(current) || kthread_should_stop()) 3078 return; 3079 3080 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3081 3082 /* Try to sleep for a short interval */ 3083 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) { 3084 remaining = schedule_timeout(HZ/10); 3085 finish_wait(&pgdat->kswapd_wait, &wait); 3086 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3087 } 3088 3089 /* 3090 * After a short sleep, check if it was a premature sleep. If not, then 3091 * go fully to sleep until explicitly woken up. 3092 */ 3093 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) { 3094 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 3095 3096 /* 3097 * vmstat counters are not perfectly accurate and the estimated 3098 * value for counters such as NR_FREE_PAGES can deviate from the 3099 * true value by nr_online_cpus * threshold. To avoid the zone 3100 * watermarks being breached while under pressure, we reduce the 3101 * per-cpu vmstat threshold while kswapd is awake and restore 3102 * them before going back to sleep. 3103 */ 3104 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 3105 3106 /* 3107 * Compaction records what page blocks it recently failed to 3108 * isolate pages from and skips them in the future scanning. 3109 * When kswapd is going to sleep, it is reasonable to assume 3110 * that pages and compaction may succeed so reset the cache. 3111 */ 3112 reset_isolation_suitable(pgdat); 3113 3114 if (!kthread_should_stop()) 3115 schedule(); 3116 3117 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 3118 } else { 3119 if (remaining) 3120 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 3121 else 3122 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 3123 } 3124 finish_wait(&pgdat->kswapd_wait, &wait); 3125 } 3126 3127 /* 3128 * The background pageout daemon, started as a kernel thread 3129 * from the init process. 3130 * 3131 * This basically trickles out pages so that we have _some_ 3132 * free memory available even if there is no other activity 3133 * that frees anything up. This is needed for things like routing 3134 * etc, where we otherwise might have all activity going on in 3135 * asynchronous contexts that cannot page things out. 3136 * 3137 * If there are applications that are active memory-allocators 3138 * (most normal use), this basically shouldn't matter. 3139 */ 3140 static int kswapd(void *p) 3141 { 3142 unsigned long order, new_order; 3143 unsigned balanced_order; 3144 int classzone_idx, new_classzone_idx; 3145 int balanced_classzone_idx; 3146 pg_data_t *pgdat = (pg_data_t*)p; 3147 struct task_struct *tsk = current; 3148 3149 struct reclaim_state reclaim_state = { 3150 .reclaimed_slab = 0, 3151 }; 3152 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 3153 3154 lockdep_set_current_reclaim_state(GFP_KERNEL); 3155 3156 if (!cpumask_empty(cpumask)) 3157 set_cpus_allowed_ptr(tsk, cpumask); 3158 current->reclaim_state = &reclaim_state; 3159 3160 /* 3161 * Tell the memory management that we're a "memory allocator", 3162 * and that if we need more memory we should get access to it 3163 * regardless (see "__alloc_pages()"). "kswapd" should 3164 * never get caught in the normal page freeing logic. 3165 * 3166 * (Kswapd normally doesn't need memory anyway, but sometimes 3167 * you need a small amount of memory in order to be able to 3168 * page out something else, and this flag essentially protects 3169 * us from recursively trying to free more memory as we're 3170 * trying to free the first piece of memory in the first place). 3171 */ 3172 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 3173 set_freezable(); 3174 3175 order = new_order = 0; 3176 balanced_order = 0; 3177 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1; 3178 balanced_classzone_idx = classzone_idx; 3179 for ( ; ; ) { 3180 bool ret; 3181 3182 /* 3183 * If the last balance_pgdat was unsuccessful it's unlikely a 3184 * new request of a similar or harder type will succeed soon 3185 * so consider going to sleep on the basis we reclaimed at 3186 */ 3187 if (balanced_classzone_idx >= new_classzone_idx && 3188 balanced_order == new_order) { 3189 new_order = pgdat->kswapd_max_order; 3190 new_classzone_idx = pgdat->classzone_idx; 3191 pgdat->kswapd_max_order = 0; 3192 pgdat->classzone_idx = pgdat->nr_zones - 1; 3193 } 3194 3195 if (order < new_order || classzone_idx > new_classzone_idx) { 3196 /* 3197 * Don't sleep if someone wants a larger 'order' 3198 * allocation or has tigher zone constraints 3199 */ 3200 order = new_order; 3201 classzone_idx = new_classzone_idx; 3202 } else { 3203 kswapd_try_to_sleep(pgdat, balanced_order, 3204 balanced_classzone_idx); 3205 order = pgdat->kswapd_max_order; 3206 classzone_idx = pgdat->classzone_idx; 3207 new_order = order; 3208 new_classzone_idx = classzone_idx; 3209 pgdat->kswapd_max_order = 0; 3210 pgdat->classzone_idx = pgdat->nr_zones - 1; 3211 } 3212 3213 ret = try_to_freeze(); 3214 if (kthread_should_stop()) 3215 break; 3216 3217 /* 3218 * We can speed up thawing tasks if we don't call balance_pgdat 3219 * after returning from the refrigerator 3220 */ 3221 if (!ret) { 3222 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order); 3223 balanced_classzone_idx = classzone_idx; 3224 balanced_order = balance_pgdat(pgdat, order, 3225 &balanced_classzone_idx); 3226 } 3227 } 3228 3229 current->reclaim_state = NULL; 3230 return 0; 3231 } 3232 3233 /* 3234 * A zone is low on free memory, so wake its kswapd task to service it. 3235 */ 3236 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx) 3237 { 3238 pg_data_t *pgdat; 3239 3240 if (!populated_zone(zone)) 3241 return; 3242 3243 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 3244 return; 3245 pgdat = zone->zone_pgdat; 3246 if (pgdat->kswapd_max_order < order) { 3247 pgdat->kswapd_max_order = order; 3248 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx); 3249 } 3250 if (!waitqueue_active(&pgdat->kswapd_wait)) 3251 return; 3252 if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0)) 3253 return; 3254 3255 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order); 3256 wake_up_interruptible(&pgdat->kswapd_wait); 3257 } 3258 3259 /* 3260 * The reclaimable count would be mostly accurate. 3261 * The less reclaimable pages may be 3262 * - mlocked pages, which will be moved to unevictable list when encountered 3263 * - mapped pages, which may require several travels to be reclaimed 3264 * - dirty pages, which is not "instantly" reclaimable 3265 */ 3266 unsigned long global_reclaimable_pages(void) 3267 { 3268 int nr; 3269 3270 nr = global_page_state(NR_ACTIVE_FILE) + 3271 global_page_state(NR_INACTIVE_FILE); 3272 3273 if (get_nr_swap_pages() > 0) 3274 nr += global_page_state(NR_ACTIVE_ANON) + 3275 global_page_state(NR_INACTIVE_ANON); 3276 3277 return nr; 3278 } 3279 3280 unsigned long zone_reclaimable_pages(struct zone *zone) 3281 { 3282 int nr; 3283 3284 nr = zone_page_state(zone, NR_ACTIVE_FILE) + 3285 zone_page_state(zone, NR_INACTIVE_FILE); 3286 3287 if (get_nr_swap_pages() > 0) 3288 nr += zone_page_state(zone, NR_ACTIVE_ANON) + 3289 zone_page_state(zone, NR_INACTIVE_ANON); 3290 3291 return nr; 3292 } 3293 3294 #ifdef CONFIG_HIBERNATION 3295 /* 3296 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 3297 * freed pages. 3298 * 3299 * Rather than trying to age LRUs the aim is to preserve the overall 3300 * LRU order by reclaiming preferentially 3301 * inactive > active > active referenced > active mapped 3302 */ 3303 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 3304 { 3305 struct reclaim_state reclaim_state; 3306 struct scan_control sc = { 3307 .gfp_mask = GFP_HIGHUSER_MOVABLE, 3308 .may_swap = 1, 3309 .may_unmap = 1, 3310 .may_writepage = 1, 3311 .nr_to_reclaim = nr_to_reclaim, 3312 .hibernation_mode = 1, 3313 .order = 0, 3314 .priority = DEF_PRIORITY, 3315 }; 3316 struct shrink_control shrink = { 3317 .gfp_mask = sc.gfp_mask, 3318 }; 3319 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 3320 struct task_struct *p = current; 3321 unsigned long nr_reclaimed; 3322 3323 p->flags |= PF_MEMALLOC; 3324 lockdep_set_current_reclaim_state(sc.gfp_mask); 3325 reclaim_state.reclaimed_slab = 0; 3326 p->reclaim_state = &reclaim_state; 3327 3328 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink); 3329 3330 p->reclaim_state = NULL; 3331 lockdep_clear_current_reclaim_state(); 3332 p->flags &= ~PF_MEMALLOC; 3333 3334 return nr_reclaimed; 3335 } 3336 #endif /* CONFIG_HIBERNATION */ 3337 3338 /* It's optimal to keep kswapds on the same CPUs as their memory, but 3339 not required for correctness. So if the last cpu in a node goes 3340 away, we get changed to run anywhere: as the first one comes back, 3341 restore their cpu bindings. */ 3342 static int cpu_callback(struct notifier_block *nfb, unsigned long action, 3343 void *hcpu) 3344 { 3345 int nid; 3346 3347 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) { 3348 for_each_node_state(nid, N_MEMORY) { 3349 pg_data_t *pgdat = NODE_DATA(nid); 3350 const struct cpumask *mask; 3351 3352 mask = cpumask_of_node(pgdat->node_id); 3353 3354 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 3355 /* One of our CPUs online: restore mask */ 3356 set_cpus_allowed_ptr(pgdat->kswapd, mask); 3357 } 3358 } 3359 return NOTIFY_OK; 3360 } 3361 3362 /* 3363 * This kswapd start function will be called by init and node-hot-add. 3364 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. 3365 */ 3366 int kswapd_run(int nid) 3367 { 3368 pg_data_t *pgdat = NODE_DATA(nid); 3369 int ret = 0; 3370 3371 if (pgdat->kswapd) 3372 return 0; 3373 3374 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 3375 if (IS_ERR(pgdat->kswapd)) { 3376 /* failure at boot is fatal */ 3377 BUG_ON(system_state == SYSTEM_BOOTING); 3378 pr_err("Failed to start kswapd on node %d\n", nid); 3379 ret = PTR_ERR(pgdat->kswapd); 3380 pgdat->kswapd = NULL; 3381 } 3382 return ret; 3383 } 3384 3385 /* 3386 * Called by memory hotplug when all memory in a node is offlined. Caller must 3387 * hold lock_memory_hotplug(). 3388 */ 3389 void kswapd_stop(int nid) 3390 { 3391 struct task_struct *kswapd = NODE_DATA(nid)->kswapd; 3392 3393 if (kswapd) { 3394 kthread_stop(kswapd); 3395 NODE_DATA(nid)->kswapd = NULL; 3396 } 3397 } 3398 3399 static int __init kswapd_init(void) 3400 { 3401 int nid; 3402 3403 swap_setup(); 3404 for_each_node_state(nid, N_MEMORY) 3405 kswapd_run(nid); 3406 hotcpu_notifier(cpu_callback, 0); 3407 return 0; 3408 } 3409 3410 module_init(kswapd_init) 3411 3412 #ifdef CONFIG_NUMA 3413 /* 3414 * Zone reclaim mode 3415 * 3416 * If non-zero call zone_reclaim when the number of free pages falls below 3417 * the watermarks. 3418 */ 3419 int zone_reclaim_mode __read_mostly; 3420 3421 #define RECLAIM_OFF 0 3422 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */ 3423 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */ 3424 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */ 3425 3426 /* 3427 * Priority for ZONE_RECLAIM. This determines the fraction of pages 3428 * of a node considered for each zone_reclaim. 4 scans 1/16th of 3429 * a zone. 3430 */ 3431 #define ZONE_RECLAIM_PRIORITY 4 3432 3433 /* 3434 * Percentage of pages in a zone that must be unmapped for zone_reclaim to 3435 * occur. 3436 */ 3437 int sysctl_min_unmapped_ratio = 1; 3438 3439 /* 3440 * If the number of slab pages in a zone grows beyond this percentage then 3441 * slab reclaim needs to occur. 3442 */ 3443 int sysctl_min_slab_ratio = 5; 3444 3445 static inline unsigned long zone_unmapped_file_pages(struct zone *zone) 3446 { 3447 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED); 3448 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) + 3449 zone_page_state(zone, NR_ACTIVE_FILE); 3450 3451 /* 3452 * It's possible for there to be more file mapped pages than 3453 * accounted for by the pages on the file LRU lists because 3454 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 3455 */ 3456 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 3457 } 3458 3459 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 3460 static long zone_pagecache_reclaimable(struct zone *zone) 3461 { 3462 long nr_pagecache_reclaimable; 3463 long delta = 0; 3464 3465 /* 3466 * If RECLAIM_SWAP is set, then all file pages are considered 3467 * potentially reclaimable. Otherwise, we have to worry about 3468 * pages like swapcache and zone_unmapped_file_pages() provides 3469 * a better estimate 3470 */ 3471 if (zone_reclaim_mode & RECLAIM_SWAP) 3472 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES); 3473 else 3474 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone); 3475 3476 /* If we can't clean pages, remove dirty pages from consideration */ 3477 if (!(zone_reclaim_mode & RECLAIM_WRITE)) 3478 delta += zone_page_state(zone, NR_FILE_DIRTY); 3479 3480 /* Watch for any possible underflows due to delta */ 3481 if (unlikely(delta > nr_pagecache_reclaimable)) 3482 delta = nr_pagecache_reclaimable; 3483 3484 return nr_pagecache_reclaimable - delta; 3485 } 3486 3487 /* 3488 * Try to free up some pages from this zone through reclaim. 3489 */ 3490 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) 3491 { 3492 /* Minimum pages needed in order to stay on node */ 3493 const unsigned long nr_pages = 1 << order; 3494 struct task_struct *p = current; 3495 struct reclaim_state reclaim_state; 3496 struct scan_control sc = { 3497 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE), 3498 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP), 3499 .may_swap = 1, 3500 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 3501 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)), 3502 .order = order, 3503 .priority = ZONE_RECLAIM_PRIORITY, 3504 }; 3505 struct shrink_control shrink = { 3506 .gfp_mask = sc.gfp_mask, 3507 }; 3508 unsigned long nr_slab_pages0, nr_slab_pages1; 3509 3510 cond_resched(); 3511 /* 3512 * We need to be able to allocate from the reserves for RECLAIM_SWAP 3513 * and we also need to be able to write out pages for RECLAIM_WRITE 3514 * and RECLAIM_SWAP. 3515 */ 3516 p->flags |= PF_MEMALLOC | PF_SWAPWRITE; 3517 lockdep_set_current_reclaim_state(gfp_mask); 3518 reclaim_state.reclaimed_slab = 0; 3519 p->reclaim_state = &reclaim_state; 3520 3521 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) { 3522 /* 3523 * Free memory by calling shrink zone with increasing 3524 * priorities until we have enough memory freed. 3525 */ 3526 do { 3527 shrink_zone(zone, &sc); 3528 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 3529 } 3530 3531 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE); 3532 if (nr_slab_pages0 > zone->min_slab_pages) { 3533 /* 3534 * shrink_slab() does not currently allow us to determine how 3535 * many pages were freed in this zone. So we take the current 3536 * number of slab pages and shake the slab until it is reduced 3537 * by the same nr_pages that we used for reclaiming unmapped 3538 * pages. 3539 * 3540 * Note that shrink_slab will free memory on all zones and may 3541 * take a long time. 3542 */ 3543 for (;;) { 3544 unsigned long lru_pages = zone_reclaimable_pages(zone); 3545 3546 /* No reclaimable slab or very low memory pressure */ 3547 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages)) 3548 break; 3549 3550 /* Freed enough memory */ 3551 nr_slab_pages1 = zone_page_state(zone, 3552 NR_SLAB_RECLAIMABLE); 3553 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0) 3554 break; 3555 } 3556 3557 /* 3558 * Update nr_reclaimed by the number of slab pages we 3559 * reclaimed from this zone. 3560 */ 3561 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE); 3562 if (nr_slab_pages1 < nr_slab_pages0) 3563 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1; 3564 } 3565 3566 p->reclaim_state = NULL; 3567 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE); 3568 lockdep_clear_current_reclaim_state(); 3569 return sc.nr_reclaimed >= nr_pages; 3570 } 3571 3572 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) 3573 { 3574 int node_id; 3575 int ret; 3576 3577 /* 3578 * Zone reclaim reclaims unmapped file backed pages and 3579 * slab pages if we are over the defined limits. 3580 * 3581 * A small portion of unmapped file backed pages is needed for 3582 * file I/O otherwise pages read by file I/O will be immediately 3583 * thrown out if the zone is overallocated. So we do not reclaim 3584 * if less than a specified percentage of the zone is used by 3585 * unmapped file backed pages. 3586 */ 3587 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages && 3588 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages) 3589 return ZONE_RECLAIM_FULL; 3590 3591 if (zone->all_unreclaimable) 3592 return ZONE_RECLAIM_FULL; 3593 3594 /* 3595 * Do not scan if the allocation should not be delayed. 3596 */ 3597 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC)) 3598 return ZONE_RECLAIM_NOSCAN; 3599 3600 /* 3601 * Only run zone reclaim on the local zone or on zones that do not 3602 * have associated processors. This will favor the local processor 3603 * over remote processors and spread off node memory allocations 3604 * as wide as possible. 3605 */ 3606 node_id = zone_to_nid(zone); 3607 if (node_state(node_id, N_CPU) && node_id != numa_node_id()) 3608 return ZONE_RECLAIM_NOSCAN; 3609 3610 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED)) 3611 return ZONE_RECLAIM_NOSCAN; 3612 3613 ret = __zone_reclaim(zone, gfp_mask, order); 3614 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED); 3615 3616 if (!ret) 3617 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 3618 3619 return ret; 3620 } 3621 #endif 3622 3623 /* 3624 * page_evictable - test whether a page is evictable 3625 * @page: the page to test 3626 * 3627 * Test whether page is evictable--i.e., should be placed on active/inactive 3628 * lists vs unevictable list. 3629 * 3630 * Reasons page might not be evictable: 3631 * (1) page's mapping marked unevictable 3632 * (2) page is part of an mlocked VMA 3633 * 3634 */ 3635 int page_evictable(struct page *page) 3636 { 3637 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page); 3638 } 3639 3640 #ifdef CONFIG_SHMEM 3641 /** 3642 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list 3643 * @pages: array of pages to check 3644 * @nr_pages: number of pages to check 3645 * 3646 * Checks pages for evictability and moves them to the appropriate lru list. 3647 * 3648 * This function is only used for SysV IPC SHM_UNLOCK. 3649 */ 3650 void check_move_unevictable_pages(struct page **pages, int nr_pages) 3651 { 3652 struct lruvec *lruvec; 3653 struct zone *zone = NULL; 3654 int pgscanned = 0; 3655 int pgrescued = 0; 3656 int i; 3657 3658 for (i = 0; i < nr_pages; i++) { 3659 struct page *page = pages[i]; 3660 struct zone *pagezone; 3661 3662 pgscanned++; 3663 pagezone = page_zone(page); 3664 if (pagezone != zone) { 3665 if (zone) 3666 spin_unlock_irq(&zone->lru_lock); 3667 zone = pagezone; 3668 spin_lock_irq(&zone->lru_lock); 3669 } 3670 lruvec = mem_cgroup_page_lruvec(page, zone); 3671 3672 if (!PageLRU(page) || !PageUnevictable(page)) 3673 continue; 3674 3675 if (page_evictable(page)) { 3676 enum lru_list lru = page_lru_base_type(page); 3677 3678 VM_BUG_ON(PageActive(page)); 3679 ClearPageUnevictable(page); 3680 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE); 3681 add_page_to_lru_list(page, lruvec, lru); 3682 pgrescued++; 3683 } 3684 } 3685 3686 if (zone) { 3687 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 3688 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 3689 spin_unlock_irq(&zone->lru_lock); 3690 } 3691 } 3692 #endif /* CONFIG_SHMEM */ 3693 3694 static void warn_scan_unevictable_pages(void) 3695 { 3696 printk_once(KERN_WARNING 3697 "%s: The scan_unevictable_pages sysctl/node-interface has been " 3698 "disabled for lack of a legitimate use case. If you have " 3699 "one, please send an email to linux-mm@kvack.org.\n", 3700 current->comm); 3701 } 3702 3703 /* 3704 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of 3705 * all nodes' unevictable lists for evictable pages 3706 */ 3707 unsigned long scan_unevictable_pages; 3708 3709 int scan_unevictable_handler(struct ctl_table *table, int write, 3710 void __user *buffer, 3711 size_t *length, loff_t *ppos) 3712 { 3713 warn_scan_unevictable_pages(); 3714 proc_doulongvec_minmax(table, write, buffer, length, ppos); 3715 scan_unevictable_pages = 0; 3716 return 0; 3717 } 3718 3719 #ifdef CONFIG_NUMA 3720 /* 3721 * per node 'scan_unevictable_pages' attribute. On demand re-scan of 3722 * a specified node's per zone unevictable lists for evictable pages. 3723 */ 3724 3725 static ssize_t read_scan_unevictable_node(struct device *dev, 3726 struct device_attribute *attr, 3727 char *buf) 3728 { 3729 warn_scan_unevictable_pages(); 3730 return sprintf(buf, "0\n"); /* always zero; should fit... */ 3731 } 3732 3733 static ssize_t write_scan_unevictable_node(struct device *dev, 3734 struct device_attribute *attr, 3735 const char *buf, size_t count) 3736 { 3737 warn_scan_unevictable_pages(); 3738 return 1; 3739 } 3740 3741 3742 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR, 3743 read_scan_unevictable_node, 3744 write_scan_unevictable_node); 3745 3746 int scan_unevictable_register_node(struct node *node) 3747 { 3748 return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages); 3749 } 3750 3751 void scan_unevictable_unregister_node(struct node *node) 3752 { 3753 device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages); 3754 } 3755 #endif 3756