xref: /linux/mm/vmscan.c (revision 9307c29524502c21f0e8a6d96d850b2f5bc0bd9a)
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13 
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmpressure.h>
23 #include <linux/vmstat.h>
24 #include <linux/file.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/buffer_head.h>	/* for try_to_release_page(),
28 					buffer_heads_over_limit */
29 #include <linux/mm_inline.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44 #include <linux/oom.h>
45 #include <linux/prefetch.h>
46 
47 #include <asm/tlbflush.h>
48 #include <asm/div64.h>
49 
50 #include <linux/swapops.h>
51 
52 #include "internal.h"
53 
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/vmscan.h>
56 
57 struct scan_control {
58 	/* Incremented by the number of inactive pages that were scanned */
59 	unsigned long nr_scanned;
60 
61 	/* Number of pages freed so far during a call to shrink_zones() */
62 	unsigned long nr_reclaimed;
63 
64 	/* How many pages shrink_list() should reclaim */
65 	unsigned long nr_to_reclaim;
66 
67 	unsigned long hibernation_mode;
68 
69 	/* This context's GFP mask */
70 	gfp_t gfp_mask;
71 
72 	int may_writepage;
73 
74 	/* Can mapped pages be reclaimed? */
75 	int may_unmap;
76 
77 	/* Can pages be swapped as part of reclaim? */
78 	int may_swap;
79 
80 	int order;
81 
82 	/* Scan (total_size >> priority) pages at once */
83 	int priority;
84 
85 	/*
86 	 * The memory cgroup that hit its limit and as a result is the
87 	 * primary target of this reclaim invocation.
88 	 */
89 	struct mem_cgroup *target_mem_cgroup;
90 
91 	/*
92 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
93 	 * are scanned.
94 	 */
95 	nodemask_t	*nodemask;
96 };
97 
98 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
99 
100 #ifdef ARCH_HAS_PREFETCH
101 #define prefetch_prev_lru_page(_page, _base, _field)			\
102 	do {								\
103 		if ((_page)->lru.prev != _base) {			\
104 			struct page *prev;				\
105 									\
106 			prev = lru_to_page(&(_page->lru));		\
107 			prefetch(&prev->_field);			\
108 		}							\
109 	} while (0)
110 #else
111 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
112 #endif
113 
114 #ifdef ARCH_HAS_PREFETCHW
115 #define prefetchw_prev_lru_page(_page, _base, _field)			\
116 	do {								\
117 		if ((_page)->lru.prev != _base) {			\
118 			struct page *prev;				\
119 									\
120 			prev = lru_to_page(&(_page->lru));		\
121 			prefetchw(&prev->_field);			\
122 		}							\
123 	} while (0)
124 #else
125 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
126 #endif
127 
128 /*
129  * From 0 .. 100.  Higher means more swappy.
130  */
131 int vm_swappiness = 60;
132 unsigned long vm_total_pages;	/* The total number of pages which the VM controls */
133 
134 static LIST_HEAD(shrinker_list);
135 static DECLARE_RWSEM(shrinker_rwsem);
136 
137 #ifdef CONFIG_MEMCG
138 static bool global_reclaim(struct scan_control *sc)
139 {
140 	return !sc->target_mem_cgroup;
141 }
142 #else
143 static bool global_reclaim(struct scan_control *sc)
144 {
145 	return true;
146 }
147 #endif
148 
149 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
150 {
151 	if (!mem_cgroup_disabled())
152 		return mem_cgroup_get_lru_size(lruvec, lru);
153 
154 	return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
155 }
156 
157 /*
158  * Add a shrinker callback to be called from the vm
159  */
160 void register_shrinker(struct shrinker *shrinker)
161 {
162 	atomic_long_set(&shrinker->nr_in_batch, 0);
163 	down_write(&shrinker_rwsem);
164 	list_add_tail(&shrinker->list, &shrinker_list);
165 	up_write(&shrinker_rwsem);
166 }
167 EXPORT_SYMBOL(register_shrinker);
168 
169 /*
170  * Remove one
171  */
172 void unregister_shrinker(struct shrinker *shrinker)
173 {
174 	down_write(&shrinker_rwsem);
175 	list_del(&shrinker->list);
176 	up_write(&shrinker_rwsem);
177 }
178 EXPORT_SYMBOL(unregister_shrinker);
179 
180 static inline int do_shrinker_shrink(struct shrinker *shrinker,
181 				     struct shrink_control *sc,
182 				     unsigned long nr_to_scan)
183 {
184 	sc->nr_to_scan = nr_to_scan;
185 	return (*shrinker->shrink)(shrinker, sc);
186 }
187 
188 #define SHRINK_BATCH 128
189 /*
190  * Call the shrink functions to age shrinkable caches
191  *
192  * Here we assume it costs one seek to replace a lru page and that it also
193  * takes a seek to recreate a cache object.  With this in mind we age equal
194  * percentages of the lru and ageable caches.  This should balance the seeks
195  * generated by these structures.
196  *
197  * If the vm encountered mapped pages on the LRU it increase the pressure on
198  * slab to avoid swapping.
199  *
200  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
201  *
202  * `lru_pages' represents the number of on-LRU pages in all the zones which
203  * are eligible for the caller's allocation attempt.  It is used for balancing
204  * slab reclaim versus page reclaim.
205  *
206  * Returns the number of slab objects which we shrunk.
207  */
208 unsigned long shrink_slab(struct shrink_control *shrink,
209 			  unsigned long nr_pages_scanned,
210 			  unsigned long lru_pages)
211 {
212 	struct shrinker *shrinker;
213 	unsigned long ret = 0;
214 
215 	if (nr_pages_scanned == 0)
216 		nr_pages_scanned = SWAP_CLUSTER_MAX;
217 
218 	if (!down_read_trylock(&shrinker_rwsem)) {
219 		/* Assume we'll be able to shrink next time */
220 		ret = 1;
221 		goto out;
222 	}
223 
224 	list_for_each_entry(shrinker, &shrinker_list, list) {
225 		unsigned long long delta;
226 		long total_scan;
227 		long max_pass;
228 		int shrink_ret = 0;
229 		long nr;
230 		long new_nr;
231 		long batch_size = shrinker->batch ? shrinker->batch
232 						  : SHRINK_BATCH;
233 
234 		max_pass = do_shrinker_shrink(shrinker, shrink, 0);
235 		if (max_pass <= 0)
236 			continue;
237 
238 		/*
239 		 * copy the current shrinker scan count into a local variable
240 		 * and zero it so that other concurrent shrinker invocations
241 		 * don't also do this scanning work.
242 		 */
243 		nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
244 
245 		total_scan = nr;
246 		delta = (4 * nr_pages_scanned) / shrinker->seeks;
247 		delta *= max_pass;
248 		do_div(delta, lru_pages + 1);
249 		total_scan += delta;
250 		if (total_scan < 0) {
251 			printk(KERN_ERR "shrink_slab: %pF negative objects to "
252 			       "delete nr=%ld\n",
253 			       shrinker->shrink, total_scan);
254 			total_scan = max_pass;
255 		}
256 
257 		/*
258 		 * We need to avoid excessive windup on filesystem shrinkers
259 		 * due to large numbers of GFP_NOFS allocations causing the
260 		 * shrinkers to return -1 all the time. This results in a large
261 		 * nr being built up so when a shrink that can do some work
262 		 * comes along it empties the entire cache due to nr >>>
263 		 * max_pass.  This is bad for sustaining a working set in
264 		 * memory.
265 		 *
266 		 * Hence only allow the shrinker to scan the entire cache when
267 		 * a large delta change is calculated directly.
268 		 */
269 		if (delta < max_pass / 4)
270 			total_scan = min(total_scan, max_pass / 2);
271 
272 		/*
273 		 * Avoid risking looping forever due to too large nr value:
274 		 * never try to free more than twice the estimate number of
275 		 * freeable entries.
276 		 */
277 		if (total_scan > max_pass * 2)
278 			total_scan = max_pass * 2;
279 
280 		trace_mm_shrink_slab_start(shrinker, shrink, nr,
281 					nr_pages_scanned, lru_pages,
282 					max_pass, delta, total_scan);
283 
284 		while (total_scan >= batch_size) {
285 			int nr_before;
286 
287 			nr_before = do_shrinker_shrink(shrinker, shrink, 0);
288 			shrink_ret = do_shrinker_shrink(shrinker, shrink,
289 							batch_size);
290 			if (shrink_ret == -1)
291 				break;
292 			if (shrink_ret < nr_before)
293 				ret += nr_before - shrink_ret;
294 			count_vm_events(SLABS_SCANNED, batch_size);
295 			total_scan -= batch_size;
296 
297 			cond_resched();
298 		}
299 
300 		/*
301 		 * move the unused scan count back into the shrinker in a
302 		 * manner that handles concurrent updates. If we exhausted the
303 		 * scan, there is no need to do an update.
304 		 */
305 		if (total_scan > 0)
306 			new_nr = atomic_long_add_return(total_scan,
307 					&shrinker->nr_in_batch);
308 		else
309 			new_nr = atomic_long_read(&shrinker->nr_in_batch);
310 
311 		trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
312 	}
313 	up_read(&shrinker_rwsem);
314 out:
315 	cond_resched();
316 	return ret;
317 }
318 
319 static inline int is_page_cache_freeable(struct page *page)
320 {
321 	/*
322 	 * A freeable page cache page is referenced only by the caller
323 	 * that isolated the page, the page cache radix tree and
324 	 * optional buffer heads at page->private.
325 	 */
326 	return page_count(page) - page_has_private(page) == 2;
327 }
328 
329 static int may_write_to_queue(struct backing_dev_info *bdi,
330 			      struct scan_control *sc)
331 {
332 	if (current->flags & PF_SWAPWRITE)
333 		return 1;
334 	if (!bdi_write_congested(bdi))
335 		return 1;
336 	if (bdi == current->backing_dev_info)
337 		return 1;
338 	return 0;
339 }
340 
341 /*
342  * We detected a synchronous write error writing a page out.  Probably
343  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
344  * fsync(), msync() or close().
345  *
346  * The tricky part is that after writepage we cannot touch the mapping: nothing
347  * prevents it from being freed up.  But we have a ref on the page and once
348  * that page is locked, the mapping is pinned.
349  *
350  * We're allowed to run sleeping lock_page() here because we know the caller has
351  * __GFP_FS.
352  */
353 static void handle_write_error(struct address_space *mapping,
354 				struct page *page, int error)
355 {
356 	lock_page(page);
357 	if (page_mapping(page) == mapping)
358 		mapping_set_error(mapping, error);
359 	unlock_page(page);
360 }
361 
362 /* possible outcome of pageout() */
363 typedef enum {
364 	/* failed to write page out, page is locked */
365 	PAGE_KEEP,
366 	/* move page to the active list, page is locked */
367 	PAGE_ACTIVATE,
368 	/* page has been sent to the disk successfully, page is unlocked */
369 	PAGE_SUCCESS,
370 	/* page is clean and locked */
371 	PAGE_CLEAN,
372 } pageout_t;
373 
374 /*
375  * pageout is called by shrink_page_list() for each dirty page.
376  * Calls ->writepage().
377  */
378 static pageout_t pageout(struct page *page, struct address_space *mapping,
379 			 struct scan_control *sc)
380 {
381 	/*
382 	 * If the page is dirty, only perform writeback if that write
383 	 * will be non-blocking.  To prevent this allocation from being
384 	 * stalled by pagecache activity.  But note that there may be
385 	 * stalls if we need to run get_block().  We could test
386 	 * PagePrivate for that.
387 	 *
388 	 * If this process is currently in __generic_file_aio_write() against
389 	 * this page's queue, we can perform writeback even if that
390 	 * will block.
391 	 *
392 	 * If the page is swapcache, write it back even if that would
393 	 * block, for some throttling. This happens by accident, because
394 	 * swap_backing_dev_info is bust: it doesn't reflect the
395 	 * congestion state of the swapdevs.  Easy to fix, if needed.
396 	 */
397 	if (!is_page_cache_freeable(page))
398 		return PAGE_KEEP;
399 	if (!mapping) {
400 		/*
401 		 * Some data journaling orphaned pages can have
402 		 * page->mapping == NULL while being dirty with clean buffers.
403 		 */
404 		if (page_has_private(page)) {
405 			if (try_to_free_buffers(page)) {
406 				ClearPageDirty(page);
407 				printk("%s: orphaned page\n", __func__);
408 				return PAGE_CLEAN;
409 			}
410 		}
411 		return PAGE_KEEP;
412 	}
413 	if (mapping->a_ops->writepage == NULL)
414 		return PAGE_ACTIVATE;
415 	if (!may_write_to_queue(mapping->backing_dev_info, sc))
416 		return PAGE_KEEP;
417 
418 	if (clear_page_dirty_for_io(page)) {
419 		int res;
420 		struct writeback_control wbc = {
421 			.sync_mode = WB_SYNC_NONE,
422 			.nr_to_write = SWAP_CLUSTER_MAX,
423 			.range_start = 0,
424 			.range_end = LLONG_MAX,
425 			.for_reclaim = 1,
426 		};
427 
428 		SetPageReclaim(page);
429 		res = mapping->a_ops->writepage(page, &wbc);
430 		if (res < 0)
431 			handle_write_error(mapping, page, res);
432 		if (res == AOP_WRITEPAGE_ACTIVATE) {
433 			ClearPageReclaim(page);
434 			return PAGE_ACTIVATE;
435 		}
436 
437 		if (!PageWriteback(page)) {
438 			/* synchronous write or broken a_ops? */
439 			ClearPageReclaim(page);
440 		}
441 		trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
442 		inc_zone_page_state(page, NR_VMSCAN_WRITE);
443 		return PAGE_SUCCESS;
444 	}
445 
446 	return PAGE_CLEAN;
447 }
448 
449 /*
450  * Same as remove_mapping, but if the page is removed from the mapping, it
451  * gets returned with a refcount of 0.
452  */
453 static int __remove_mapping(struct address_space *mapping, struct page *page)
454 {
455 	BUG_ON(!PageLocked(page));
456 	BUG_ON(mapping != page_mapping(page));
457 
458 	spin_lock_irq(&mapping->tree_lock);
459 	/*
460 	 * The non racy check for a busy page.
461 	 *
462 	 * Must be careful with the order of the tests. When someone has
463 	 * a ref to the page, it may be possible that they dirty it then
464 	 * drop the reference. So if PageDirty is tested before page_count
465 	 * here, then the following race may occur:
466 	 *
467 	 * get_user_pages(&page);
468 	 * [user mapping goes away]
469 	 * write_to(page);
470 	 *				!PageDirty(page)    [good]
471 	 * SetPageDirty(page);
472 	 * put_page(page);
473 	 *				!page_count(page)   [good, discard it]
474 	 *
475 	 * [oops, our write_to data is lost]
476 	 *
477 	 * Reversing the order of the tests ensures such a situation cannot
478 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
479 	 * load is not satisfied before that of page->_count.
480 	 *
481 	 * Note that if SetPageDirty is always performed via set_page_dirty,
482 	 * and thus under tree_lock, then this ordering is not required.
483 	 */
484 	if (!page_freeze_refs(page, 2))
485 		goto cannot_free;
486 	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
487 	if (unlikely(PageDirty(page))) {
488 		page_unfreeze_refs(page, 2);
489 		goto cannot_free;
490 	}
491 
492 	if (PageSwapCache(page)) {
493 		swp_entry_t swap = { .val = page_private(page) };
494 		__delete_from_swap_cache(page);
495 		spin_unlock_irq(&mapping->tree_lock);
496 		swapcache_free(swap, page);
497 	} else {
498 		void (*freepage)(struct page *);
499 
500 		freepage = mapping->a_ops->freepage;
501 
502 		__delete_from_page_cache(page);
503 		spin_unlock_irq(&mapping->tree_lock);
504 		mem_cgroup_uncharge_cache_page(page);
505 
506 		if (freepage != NULL)
507 			freepage(page);
508 	}
509 
510 	return 1;
511 
512 cannot_free:
513 	spin_unlock_irq(&mapping->tree_lock);
514 	return 0;
515 }
516 
517 /*
518  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
519  * someone else has a ref on the page, abort and return 0.  If it was
520  * successfully detached, return 1.  Assumes the caller has a single ref on
521  * this page.
522  */
523 int remove_mapping(struct address_space *mapping, struct page *page)
524 {
525 	if (__remove_mapping(mapping, page)) {
526 		/*
527 		 * Unfreezing the refcount with 1 rather than 2 effectively
528 		 * drops the pagecache ref for us without requiring another
529 		 * atomic operation.
530 		 */
531 		page_unfreeze_refs(page, 1);
532 		return 1;
533 	}
534 	return 0;
535 }
536 
537 /**
538  * putback_lru_page - put previously isolated page onto appropriate LRU list
539  * @page: page to be put back to appropriate lru list
540  *
541  * Add previously isolated @page to appropriate LRU list.
542  * Page may still be unevictable for other reasons.
543  *
544  * lru_lock must not be held, interrupts must be enabled.
545  */
546 void putback_lru_page(struct page *page)
547 {
548 	int lru;
549 	int was_unevictable = PageUnevictable(page);
550 
551 	VM_BUG_ON(PageLRU(page));
552 
553 redo:
554 	ClearPageUnevictable(page);
555 
556 	if (page_evictable(page)) {
557 		/*
558 		 * For evictable pages, we can use the cache.
559 		 * In event of a race, worst case is we end up with an
560 		 * unevictable page on [in]active list.
561 		 * We know how to handle that.
562 		 */
563 		lru = page_lru_base_type(page);
564 		lru_cache_add(page);
565 	} else {
566 		/*
567 		 * Put unevictable pages directly on zone's unevictable
568 		 * list.
569 		 */
570 		lru = LRU_UNEVICTABLE;
571 		add_page_to_unevictable_list(page);
572 		/*
573 		 * When racing with an mlock or AS_UNEVICTABLE clearing
574 		 * (page is unlocked) make sure that if the other thread
575 		 * does not observe our setting of PG_lru and fails
576 		 * isolation/check_move_unevictable_pages,
577 		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
578 		 * the page back to the evictable list.
579 		 *
580 		 * The other side is TestClearPageMlocked() or shmem_lock().
581 		 */
582 		smp_mb();
583 	}
584 
585 	/*
586 	 * page's status can change while we move it among lru. If an evictable
587 	 * page is on unevictable list, it never be freed. To avoid that,
588 	 * check after we added it to the list, again.
589 	 */
590 	if (lru == LRU_UNEVICTABLE && page_evictable(page)) {
591 		if (!isolate_lru_page(page)) {
592 			put_page(page);
593 			goto redo;
594 		}
595 		/* This means someone else dropped this page from LRU
596 		 * So, it will be freed or putback to LRU again. There is
597 		 * nothing to do here.
598 		 */
599 	}
600 
601 	if (was_unevictable && lru != LRU_UNEVICTABLE)
602 		count_vm_event(UNEVICTABLE_PGRESCUED);
603 	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
604 		count_vm_event(UNEVICTABLE_PGCULLED);
605 
606 	put_page(page);		/* drop ref from isolate */
607 }
608 
609 enum page_references {
610 	PAGEREF_RECLAIM,
611 	PAGEREF_RECLAIM_CLEAN,
612 	PAGEREF_KEEP,
613 	PAGEREF_ACTIVATE,
614 };
615 
616 static enum page_references page_check_references(struct page *page,
617 						  struct scan_control *sc)
618 {
619 	int referenced_ptes, referenced_page;
620 	unsigned long vm_flags;
621 
622 	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
623 					  &vm_flags);
624 	referenced_page = TestClearPageReferenced(page);
625 
626 	/*
627 	 * Mlock lost the isolation race with us.  Let try_to_unmap()
628 	 * move the page to the unevictable list.
629 	 */
630 	if (vm_flags & VM_LOCKED)
631 		return PAGEREF_RECLAIM;
632 
633 	if (referenced_ptes) {
634 		if (PageSwapBacked(page))
635 			return PAGEREF_ACTIVATE;
636 		/*
637 		 * All mapped pages start out with page table
638 		 * references from the instantiating fault, so we need
639 		 * to look twice if a mapped file page is used more
640 		 * than once.
641 		 *
642 		 * Mark it and spare it for another trip around the
643 		 * inactive list.  Another page table reference will
644 		 * lead to its activation.
645 		 *
646 		 * Note: the mark is set for activated pages as well
647 		 * so that recently deactivated but used pages are
648 		 * quickly recovered.
649 		 */
650 		SetPageReferenced(page);
651 
652 		if (referenced_page || referenced_ptes > 1)
653 			return PAGEREF_ACTIVATE;
654 
655 		/*
656 		 * Activate file-backed executable pages after first usage.
657 		 */
658 		if (vm_flags & VM_EXEC)
659 			return PAGEREF_ACTIVATE;
660 
661 		return PAGEREF_KEEP;
662 	}
663 
664 	/* Reclaim if clean, defer dirty pages to writeback */
665 	if (referenced_page && !PageSwapBacked(page))
666 		return PAGEREF_RECLAIM_CLEAN;
667 
668 	return PAGEREF_RECLAIM;
669 }
670 
671 /* Check if a page is dirty or under writeback */
672 static void page_check_dirty_writeback(struct page *page,
673 				       bool *dirty, bool *writeback)
674 {
675 	struct address_space *mapping;
676 
677 	/*
678 	 * Anonymous pages are not handled by flushers and must be written
679 	 * from reclaim context. Do not stall reclaim based on them
680 	 */
681 	if (!page_is_file_cache(page)) {
682 		*dirty = false;
683 		*writeback = false;
684 		return;
685 	}
686 
687 	/* By default assume that the page flags are accurate */
688 	*dirty = PageDirty(page);
689 	*writeback = PageWriteback(page);
690 
691 	/* Verify dirty/writeback state if the filesystem supports it */
692 	if (!page_has_private(page))
693 		return;
694 
695 	mapping = page_mapping(page);
696 	if (mapping && mapping->a_ops->is_dirty_writeback)
697 		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
698 }
699 
700 /*
701  * shrink_page_list() returns the number of reclaimed pages
702  */
703 static unsigned long shrink_page_list(struct list_head *page_list,
704 				      struct zone *zone,
705 				      struct scan_control *sc,
706 				      enum ttu_flags ttu_flags,
707 				      unsigned long *ret_nr_dirty,
708 				      unsigned long *ret_nr_unqueued_dirty,
709 				      unsigned long *ret_nr_congested,
710 				      unsigned long *ret_nr_writeback,
711 				      unsigned long *ret_nr_immediate,
712 				      bool force_reclaim)
713 {
714 	LIST_HEAD(ret_pages);
715 	LIST_HEAD(free_pages);
716 	int pgactivate = 0;
717 	unsigned long nr_unqueued_dirty = 0;
718 	unsigned long nr_dirty = 0;
719 	unsigned long nr_congested = 0;
720 	unsigned long nr_reclaimed = 0;
721 	unsigned long nr_writeback = 0;
722 	unsigned long nr_immediate = 0;
723 
724 	cond_resched();
725 
726 	mem_cgroup_uncharge_start();
727 	while (!list_empty(page_list)) {
728 		struct address_space *mapping;
729 		struct page *page;
730 		int may_enter_fs;
731 		enum page_references references = PAGEREF_RECLAIM_CLEAN;
732 		bool dirty, writeback;
733 
734 		cond_resched();
735 
736 		page = lru_to_page(page_list);
737 		list_del(&page->lru);
738 
739 		if (!trylock_page(page))
740 			goto keep;
741 
742 		VM_BUG_ON(PageActive(page));
743 		VM_BUG_ON(page_zone(page) != zone);
744 
745 		sc->nr_scanned++;
746 
747 		if (unlikely(!page_evictable(page)))
748 			goto cull_mlocked;
749 
750 		if (!sc->may_unmap && page_mapped(page))
751 			goto keep_locked;
752 
753 		/* Double the slab pressure for mapped and swapcache pages */
754 		if (page_mapped(page) || PageSwapCache(page))
755 			sc->nr_scanned++;
756 
757 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
758 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
759 
760 		/*
761 		 * The number of dirty pages determines if a zone is marked
762 		 * reclaim_congested which affects wait_iff_congested. kswapd
763 		 * will stall and start writing pages if the tail of the LRU
764 		 * is all dirty unqueued pages.
765 		 */
766 		page_check_dirty_writeback(page, &dirty, &writeback);
767 		if (dirty || writeback)
768 			nr_dirty++;
769 
770 		if (dirty && !writeback)
771 			nr_unqueued_dirty++;
772 
773 		/*
774 		 * Treat this page as congested if the underlying BDI is or if
775 		 * pages are cycling through the LRU so quickly that the
776 		 * pages marked for immediate reclaim are making it to the
777 		 * end of the LRU a second time.
778 		 */
779 		mapping = page_mapping(page);
780 		if ((mapping && bdi_write_congested(mapping->backing_dev_info)) ||
781 		    (writeback && PageReclaim(page)))
782 			nr_congested++;
783 
784 		/*
785 		 * If a page at the tail of the LRU is under writeback, there
786 		 * are three cases to consider.
787 		 *
788 		 * 1) If reclaim is encountering an excessive number of pages
789 		 *    under writeback and this page is both under writeback and
790 		 *    PageReclaim then it indicates that pages are being queued
791 		 *    for IO but are being recycled through the LRU before the
792 		 *    IO can complete. Waiting on the page itself risks an
793 		 *    indefinite stall if it is impossible to writeback the
794 		 *    page due to IO error or disconnected storage so instead
795 		 *    note that the LRU is being scanned too quickly and the
796 		 *    caller can stall after page list has been processed.
797 		 *
798 		 * 2) Global reclaim encounters a page, memcg encounters a
799 		 *    page that is not marked for immediate reclaim or
800 		 *    the caller does not have __GFP_IO. In this case mark
801 		 *    the page for immediate reclaim and continue scanning.
802 		 *
803 		 *    __GFP_IO is checked  because a loop driver thread might
804 		 *    enter reclaim, and deadlock if it waits on a page for
805 		 *    which it is needed to do the write (loop masks off
806 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
807 		 *    would probably show more reasons.
808 		 *
809 		 *    Don't require __GFP_FS, since we're not going into the
810 		 *    FS, just waiting on its writeback completion. Worryingly,
811 		 *    ext4 gfs2 and xfs allocate pages with
812 		 *    grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing
813 		 *    may_enter_fs here is liable to OOM on them.
814 		 *
815 		 * 3) memcg encounters a page that is not already marked
816 		 *    PageReclaim. memcg does not have any dirty pages
817 		 *    throttling so we could easily OOM just because too many
818 		 *    pages are in writeback and there is nothing else to
819 		 *    reclaim. Wait for the writeback to complete.
820 		 */
821 		if (PageWriteback(page)) {
822 			/* Case 1 above */
823 			if (current_is_kswapd() &&
824 			    PageReclaim(page) &&
825 			    zone_is_reclaim_writeback(zone)) {
826 				nr_immediate++;
827 				goto keep_locked;
828 
829 			/* Case 2 above */
830 			} else if (global_reclaim(sc) ||
831 			    !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
832 				/*
833 				 * This is slightly racy - end_page_writeback()
834 				 * might have just cleared PageReclaim, then
835 				 * setting PageReclaim here end up interpreted
836 				 * as PageReadahead - but that does not matter
837 				 * enough to care.  What we do want is for this
838 				 * page to have PageReclaim set next time memcg
839 				 * reclaim reaches the tests above, so it will
840 				 * then wait_on_page_writeback() to avoid OOM;
841 				 * and it's also appropriate in global reclaim.
842 				 */
843 				SetPageReclaim(page);
844 				nr_writeback++;
845 
846 				goto keep_locked;
847 
848 			/* Case 3 above */
849 			} else {
850 				wait_on_page_writeback(page);
851 			}
852 		}
853 
854 		if (!force_reclaim)
855 			references = page_check_references(page, sc);
856 
857 		switch (references) {
858 		case PAGEREF_ACTIVATE:
859 			goto activate_locked;
860 		case PAGEREF_KEEP:
861 			goto keep_locked;
862 		case PAGEREF_RECLAIM:
863 		case PAGEREF_RECLAIM_CLEAN:
864 			; /* try to reclaim the page below */
865 		}
866 
867 		/*
868 		 * Anonymous process memory has backing store?
869 		 * Try to allocate it some swap space here.
870 		 */
871 		if (PageAnon(page) && !PageSwapCache(page)) {
872 			if (!(sc->gfp_mask & __GFP_IO))
873 				goto keep_locked;
874 			if (!add_to_swap(page, page_list))
875 				goto activate_locked;
876 			may_enter_fs = 1;
877 
878 			/* Adding to swap updated mapping */
879 			mapping = page_mapping(page);
880 		}
881 
882 		/*
883 		 * The page is mapped into the page tables of one or more
884 		 * processes. Try to unmap it here.
885 		 */
886 		if (page_mapped(page) && mapping) {
887 			switch (try_to_unmap(page, ttu_flags)) {
888 			case SWAP_FAIL:
889 				goto activate_locked;
890 			case SWAP_AGAIN:
891 				goto keep_locked;
892 			case SWAP_MLOCK:
893 				goto cull_mlocked;
894 			case SWAP_SUCCESS:
895 				; /* try to free the page below */
896 			}
897 		}
898 
899 		if (PageDirty(page)) {
900 			/*
901 			 * Only kswapd can writeback filesystem pages to
902 			 * avoid risk of stack overflow but only writeback
903 			 * if many dirty pages have been encountered.
904 			 */
905 			if (page_is_file_cache(page) &&
906 					(!current_is_kswapd() ||
907 					 !zone_is_reclaim_dirty(zone))) {
908 				/*
909 				 * Immediately reclaim when written back.
910 				 * Similar in principal to deactivate_page()
911 				 * except we already have the page isolated
912 				 * and know it's dirty
913 				 */
914 				inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
915 				SetPageReclaim(page);
916 
917 				goto keep_locked;
918 			}
919 
920 			if (references == PAGEREF_RECLAIM_CLEAN)
921 				goto keep_locked;
922 			if (!may_enter_fs)
923 				goto keep_locked;
924 			if (!sc->may_writepage)
925 				goto keep_locked;
926 
927 			/* Page is dirty, try to write it out here */
928 			switch (pageout(page, mapping, sc)) {
929 			case PAGE_KEEP:
930 				goto keep_locked;
931 			case PAGE_ACTIVATE:
932 				goto activate_locked;
933 			case PAGE_SUCCESS:
934 				if (PageWriteback(page))
935 					goto keep;
936 				if (PageDirty(page))
937 					goto keep;
938 
939 				/*
940 				 * A synchronous write - probably a ramdisk.  Go
941 				 * ahead and try to reclaim the page.
942 				 */
943 				if (!trylock_page(page))
944 					goto keep;
945 				if (PageDirty(page) || PageWriteback(page))
946 					goto keep_locked;
947 				mapping = page_mapping(page);
948 			case PAGE_CLEAN:
949 				; /* try to free the page below */
950 			}
951 		}
952 
953 		/*
954 		 * If the page has buffers, try to free the buffer mappings
955 		 * associated with this page. If we succeed we try to free
956 		 * the page as well.
957 		 *
958 		 * We do this even if the page is PageDirty().
959 		 * try_to_release_page() does not perform I/O, but it is
960 		 * possible for a page to have PageDirty set, but it is actually
961 		 * clean (all its buffers are clean).  This happens if the
962 		 * buffers were written out directly, with submit_bh(). ext3
963 		 * will do this, as well as the blockdev mapping.
964 		 * try_to_release_page() will discover that cleanness and will
965 		 * drop the buffers and mark the page clean - it can be freed.
966 		 *
967 		 * Rarely, pages can have buffers and no ->mapping.  These are
968 		 * the pages which were not successfully invalidated in
969 		 * truncate_complete_page().  We try to drop those buffers here
970 		 * and if that worked, and the page is no longer mapped into
971 		 * process address space (page_count == 1) it can be freed.
972 		 * Otherwise, leave the page on the LRU so it is swappable.
973 		 */
974 		if (page_has_private(page)) {
975 			if (!try_to_release_page(page, sc->gfp_mask))
976 				goto activate_locked;
977 			if (!mapping && page_count(page) == 1) {
978 				unlock_page(page);
979 				if (put_page_testzero(page))
980 					goto free_it;
981 				else {
982 					/*
983 					 * rare race with speculative reference.
984 					 * the speculative reference will free
985 					 * this page shortly, so we may
986 					 * increment nr_reclaimed here (and
987 					 * leave it off the LRU).
988 					 */
989 					nr_reclaimed++;
990 					continue;
991 				}
992 			}
993 		}
994 
995 		if (!mapping || !__remove_mapping(mapping, page))
996 			goto keep_locked;
997 
998 		/*
999 		 * At this point, we have no other references and there is
1000 		 * no way to pick any more up (removed from LRU, removed
1001 		 * from pagecache). Can use non-atomic bitops now (and
1002 		 * we obviously don't have to worry about waking up a process
1003 		 * waiting on the page lock, because there are no references.
1004 		 */
1005 		__clear_page_locked(page);
1006 free_it:
1007 		nr_reclaimed++;
1008 
1009 		/*
1010 		 * Is there need to periodically free_page_list? It would
1011 		 * appear not as the counts should be low
1012 		 */
1013 		list_add(&page->lru, &free_pages);
1014 		continue;
1015 
1016 cull_mlocked:
1017 		if (PageSwapCache(page))
1018 			try_to_free_swap(page);
1019 		unlock_page(page);
1020 		putback_lru_page(page);
1021 		continue;
1022 
1023 activate_locked:
1024 		/* Not a candidate for swapping, so reclaim swap space. */
1025 		if (PageSwapCache(page) && vm_swap_full())
1026 			try_to_free_swap(page);
1027 		VM_BUG_ON(PageActive(page));
1028 		SetPageActive(page);
1029 		pgactivate++;
1030 keep_locked:
1031 		unlock_page(page);
1032 keep:
1033 		list_add(&page->lru, &ret_pages);
1034 		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1035 	}
1036 
1037 	free_hot_cold_page_list(&free_pages, 1);
1038 
1039 	list_splice(&ret_pages, page_list);
1040 	count_vm_events(PGACTIVATE, pgactivate);
1041 	mem_cgroup_uncharge_end();
1042 	*ret_nr_dirty += nr_dirty;
1043 	*ret_nr_congested += nr_congested;
1044 	*ret_nr_unqueued_dirty += nr_unqueued_dirty;
1045 	*ret_nr_writeback += nr_writeback;
1046 	*ret_nr_immediate += nr_immediate;
1047 	return nr_reclaimed;
1048 }
1049 
1050 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1051 					    struct list_head *page_list)
1052 {
1053 	struct scan_control sc = {
1054 		.gfp_mask = GFP_KERNEL,
1055 		.priority = DEF_PRIORITY,
1056 		.may_unmap = 1,
1057 	};
1058 	unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1059 	struct page *page, *next;
1060 	LIST_HEAD(clean_pages);
1061 
1062 	list_for_each_entry_safe(page, next, page_list, lru) {
1063 		if (page_is_file_cache(page) && !PageDirty(page)) {
1064 			ClearPageActive(page);
1065 			list_move(&page->lru, &clean_pages);
1066 		}
1067 	}
1068 
1069 	ret = shrink_page_list(&clean_pages, zone, &sc,
1070 			TTU_UNMAP|TTU_IGNORE_ACCESS,
1071 			&dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1072 	list_splice(&clean_pages, page_list);
1073 	__mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
1074 	return ret;
1075 }
1076 
1077 /*
1078  * Attempt to remove the specified page from its LRU.  Only take this page
1079  * if it is of the appropriate PageActive status.  Pages which are being
1080  * freed elsewhere are also ignored.
1081  *
1082  * page:	page to consider
1083  * mode:	one of the LRU isolation modes defined above
1084  *
1085  * returns 0 on success, -ve errno on failure.
1086  */
1087 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1088 {
1089 	int ret = -EINVAL;
1090 
1091 	/* Only take pages on the LRU. */
1092 	if (!PageLRU(page))
1093 		return ret;
1094 
1095 	/* Compaction should not handle unevictable pages but CMA can do so */
1096 	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1097 		return ret;
1098 
1099 	ret = -EBUSY;
1100 
1101 	/*
1102 	 * To minimise LRU disruption, the caller can indicate that it only
1103 	 * wants to isolate pages it will be able to operate on without
1104 	 * blocking - clean pages for the most part.
1105 	 *
1106 	 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1107 	 * is used by reclaim when it is cannot write to backing storage
1108 	 *
1109 	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1110 	 * that it is possible to migrate without blocking
1111 	 */
1112 	if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1113 		/* All the caller can do on PageWriteback is block */
1114 		if (PageWriteback(page))
1115 			return ret;
1116 
1117 		if (PageDirty(page)) {
1118 			struct address_space *mapping;
1119 
1120 			/* ISOLATE_CLEAN means only clean pages */
1121 			if (mode & ISOLATE_CLEAN)
1122 				return ret;
1123 
1124 			/*
1125 			 * Only pages without mappings or that have a
1126 			 * ->migratepage callback are possible to migrate
1127 			 * without blocking
1128 			 */
1129 			mapping = page_mapping(page);
1130 			if (mapping && !mapping->a_ops->migratepage)
1131 				return ret;
1132 		}
1133 	}
1134 
1135 	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1136 		return ret;
1137 
1138 	if (likely(get_page_unless_zero(page))) {
1139 		/*
1140 		 * Be careful not to clear PageLRU until after we're
1141 		 * sure the page is not being freed elsewhere -- the
1142 		 * page release code relies on it.
1143 		 */
1144 		ClearPageLRU(page);
1145 		ret = 0;
1146 	}
1147 
1148 	return ret;
1149 }
1150 
1151 /*
1152  * zone->lru_lock is heavily contended.  Some of the functions that
1153  * shrink the lists perform better by taking out a batch of pages
1154  * and working on them outside the LRU lock.
1155  *
1156  * For pagecache intensive workloads, this function is the hottest
1157  * spot in the kernel (apart from copy_*_user functions).
1158  *
1159  * Appropriate locks must be held before calling this function.
1160  *
1161  * @nr_to_scan:	The number of pages to look through on the list.
1162  * @lruvec:	The LRU vector to pull pages from.
1163  * @dst:	The temp list to put pages on to.
1164  * @nr_scanned:	The number of pages that were scanned.
1165  * @sc:		The scan_control struct for this reclaim session
1166  * @mode:	One of the LRU isolation modes
1167  * @lru:	LRU list id for isolating
1168  *
1169  * returns how many pages were moved onto *@dst.
1170  */
1171 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1172 		struct lruvec *lruvec, struct list_head *dst,
1173 		unsigned long *nr_scanned, struct scan_control *sc,
1174 		isolate_mode_t mode, enum lru_list lru)
1175 {
1176 	struct list_head *src = &lruvec->lists[lru];
1177 	unsigned long nr_taken = 0;
1178 	unsigned long scan;
1179 
1180 	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1181 		struct page *page;
1182 		int nr_pages;
1183 
1184 		page = lru_to_page(src);
1185 		prefetchw_prev_lru_page(page, src, flags);
1186 
1187 		VM_BUG_ON(!PageLRU(page));
1188 
1189 		switch (__isolate_lru_page(page, mode)) {
1190 		case 0:
1191 			nr_pages = hpage_nr_pages(page);
1192 			mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
1193 			list_move(&page->lru, dst);
1194 			nr_taken += nr_pages;
1195 			break;
1196 
1197 		case -EBUSY:
1198 			/* else it is being freed elsewhere */
1199 			list_move(&page->lru, src);
1200 			continue;
1201 
1202 		default:
1203 			BUG();
1204 		}
1205 	}
1206 
1207 	*nr_scanned = scan;
1208 	trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1209 				    nr_taken, mode, is_file_lru(lru));
1210 	return nr_taken;
1211 }
1212 
1213 /**
1214  * isolate_lru_page - tries to isolate a page from its LRU list
1215  * @page: page to isolate from its LRU list
1216  *
1217  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1218  * vmstat statistic corresponding to whatever LRU list the page was on.
1219  *
1220  * Returns 0 if the page was removed from an LRU list.
1221  * Returns -EBUSY if the page was not on an LRU list.
1222  *
1223  * The returned page will have PageLRU() cleared.  If it was found on
1224  * the active list, it will have PageActive set.  If it was found on
1225  * the unevictable list, it will have the PageUnevictable bit set. That flag
1226  * may need to be cleared by the caller before letting the page go.
1227  *
1228  * The vmstat statistic corresponding to the list on which the page was
1229  * found will be decremented.
1230  *
1231  * Restrictions:
1232  * (1) Must be called with an elevated refcount on the page. This is a
1233  *     fundamentnal difference from isolate_lru_pages (which is called
1234  *     without a stable reference).
1235  * (2) the lru_lock must not be held.
1236  * (3) interrupts must be enabled.
1237  */
1238 int isolate_lru_page(struct page *page)
1239 {
1240 	int ret = -EBUSY;
1241 
1242 	VM_BUG_ON(!page_count(page));
1243 
1244 	if (PageLRU(page)) {
1245 		struct zone *zone = page_zone(page);
1246 		struct lruvec *lruvec;
1247 
1248 		spin_lock_irq(&zone->lru_lock);
1249 		lruvec = mem_cgroup_page_lruvec(page, zone);
1250 		if (PageLRU(page)) {
1251 			int lru = page_lru(page);
1252 			get_page(page);
1253 			ClearPageLRU(page);
1254 			del_page_from_lru_list(page, lruvec, lru);
1255 			ret = 0;
1256 		}
1257 		spin_unlock_irq(&zone->lru_lock);
1258 	}
1259 	return ret;
1260 }
1261 
1262 /*
1263  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1264  * then get resheduled. When there are massive number of tasks doing page
1265  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1266  * the LRU list will go small and be scanned faster than necessary, leading to
1267  * unnecessary swapping, thrashing and OOM.
1268  */
1269 static int too_many_isolated(struct zone *zone, int file,
1270 		struct scan_control *sc)
1271 {
1272 	unsigned long inactive, isolated;
1273 
1274 	if (current_is_kswapd())
1275 		return 0;
1276 
1277 	if (!global_reclaim(sc))
1278 		return 0;
1279 
1280 	if (file) {
1281 		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1282 		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1283 	} else {
1284 		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1285 		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1286 	}
1287 
1288 	/*
1289 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1290 	 * won't get blocked by normal direct-reclaimers, forming a circular
1291 	 * deadlock.
1292 	 */
1293 	if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
1294 		inactive >>= 3;
1295 
1296 	return isolated > inactive;
1297 }
1298 
1299 static noinline_for_stack void
1300 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1301 {
1302 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1303 	struct zone *zone = lruvec_zone(lruvec);
1304 	LIST_HEAD(pages_to_free);
1305 
1306 	/*
1307 	 * Put back any unfreeable pages.
1308 	 */
1309 	while (!list_empty(page_list)) {
1310 		struct page *page = lru_to_page(page_list);
1311 		int lru;
1312 
1313 		VM_BUG_ON(PageLRU(page));
1314 		list_del(&page->lru);
1315 		if (unlikely(!page_evictable(page))) {
1316 			spin_unlock_irq(&zone->lru_lock);
1317 			putback_lru_page(page);
1318 			spin_lock_irq(&zone->lru_lock);
1319 			continue;
1320 		}
1321 
1322 		lruvec = mem_cgroup_page_lruvec(page, zone);
1323 
1324 		SetPageLRU(page);
1325 		lru = page_lru(page);
1326 		add_page_to_lru_list(page, lruvec, lru);
1327 
1328 		if (is_active_lru(lru)) {
1329 			int file = is_file_lru(lru);
1330 			int numpages = hpage_nr_pages(page);
1331 			reclaim_stat->recent_rotated[file] += numpages;
1332 		}
1333 		if (put_page_testzero(page)) {
1334 			__ClearPageLRU(page);
1335 			__ClearPageActive(page);
1336 			del_page_from_lru_list(page, lruvec, lru);
1337 
1338 			if (unlikely(PageCompound(page))) {
1339 				spin_unlock_irq(&zone->lru_lock);
1340 				(*get_compound_page_dtor(page))(page);
1341 				spin_lock_irq(&zone->lru_lock);
1342 			} else
1343 				list_add(&page->lru, &pages_to_free);
1344 		}
1345 	}
1346 
1347 	/*
1348 	 * To save our caller's stack, now use input list for pages to free.
1349 	 */
1350 	list_splice(&pages_to_free, page_list);
1351 }
1352 
1353 /*
1354  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1355  * of reclaimed pages
1356  */
1357 static noinline_for_stack unsigned long
1358 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1359 		     struct scan_control *sc, enum lru_list lru)
1360 {
1361 	LIST_HEAD(page_list);
1362 	unsigned long nr_scanned;
1363 	unsigned long nr_reclaimed = 0;
1364 	unsigned long nr_taken;
1365 	unsigned long nr_dirty = 0;
1366 	unsigned long nr_congested = 0;
1367 	unsigned long nr_unqueued_dirty = 0;
1368 	unsigned long nr_writeback = 0;
1369 	unsigned long nr_immediate = 0;
1370 	isolate_mode_t isolate_mode = 0;
1371 	int file = is_file_lru(lru);
1372 	struct zone *zone = lruvec_zone(lruvec);
1373 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1374 
1375 	while (unlikely(too_many_isolated(zone, file, sc))) {
1376 		congestion_wait(BLK_RW_ASYNC, HZ/10);
1377 
1378 		/* We are about to die and free our memory. Return now. */
1379 		if (fatal_signal_pending(current))
1380 			return SWAP_CLUSTER_MAX;
1381 	}
1382 
1383 	lru_add_drain();
1384 
1385 	if (!sc->may_unmap)
1386 		isolate_mode |= ISOLATE_UNMAPPED;
1387 	if (!sc->may_writepage)
1388 		isolate_mode |= ISOLATE_CLEAN;
1389 
1390 	spin_lock_irq(&zone->lru_lock);
1391 
1392 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1393 				     &nr_scanned, sc, isolate_mode, lru);
1394 
1395 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1396 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1397 
1398 	if (global_reclaim(sc)) {
1399 		zone->pages_scanned += nr_scanned;
1400 		if (current_is_kswapd())
1401 			__count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1402 		else
1403 			__count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1404 	}
1405 	spin_unlock_irq(&zone->lru_lock);
1406 
1407 	if (nr_taken == 0)
1408 		return 0;
1409 
1410 	nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1411 				&nr_dirty, &nr_unqueued_dirty, &nr_congested,
1412 				&nr_writeback, &nr_immediate,
1413 				false);
1414 
1415 	spin_lock_irq(&zone->lru_lock);
1416 
1417 	reclaim_stat->recent_scanned[file] += nr_taken;
1418 
1419 	if (global_reclaim(sc)) {
1420 		if (current_is_kswapd())
1421 			__count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1422 					       nr_reclaimed);
1423 		else
1424 			__count_zone_vm_events(PGSTEAL_DIRECT, zone,
1425 					       nr_reclaimed);
1426 	}
1427 
1428 	putback_inactive_pages(lruvec, &page_list);
1429 
1430 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1431 
1432 	spin_unlock_irq(&zone->lru_lock);
1433 
1434 	free_hot_cold_page_list(&page_list, 1);
1435 
1436 	/*
1437 	 * If reclaim is isolating dirty pages under writeback, it implies
1438 	 * that the long-lived page allocation rate is exceeding the page
1439 	 * laundering rate. Either the global limits are not being effective
1440 	 * at throttling processes due to the page distribution throughout
1441 	 * zones or there is heavy usage of a slow backing device. The
1442 	 * only option is to throttle from reclaim context which is not ideal
1443 	 * as there is no guarantee the dirtying process is throttled in the
1444 	 * same way balance_dirty_pages() manages.
1445 	 *
1446 	 * This scales the number of dirty pages that must be under writeback
1447 	 * before a zone gets flagged ZONE_WRITEBACK. It is a simple backoff
1448 	 * function that has the most effect in the range DEF_PRIORITY to
1449 	 * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1450 	 * in trouble and reclaim is considered to be in trouble.
1451 	 *
1452 	 * DEF_PRIORITY   100% isolated pages must be PageWriteback to throttle
1453 	 * DEF_PRIORITY-1  50% must be PageWriteback
1454 	 * DEF_PRIORITY-2  25% must be PageWriteback, kswapd in trouble
1455 	 * ...
1456 	 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1457 	 *                     isolated page is PageWriteback
1458 	 *
1459 	 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1460 	 * of pages under pages flagged for immediate reclaim and stall if any
1461 	 * are encountered in the nr_immediate check below.
1462 	 */
1463 	if (nr_writeback && nr_writeback >=
1464 			(nr_taken >> (DEF_PRIORITY - sc->priority)))
1465 		zone_set_flag(zone, ZONE_WRITEBACK);
1466 
1467 	/*
1468 	 * memcg will stall in page writeback so only consider forcibly
1469 	 * stalling for global reclaim
1470 	 */
1471 	if (global_reclaim(sc)) {
1472 		/*
1473 		 * Tag a zone as congested if all the dirty pages scanned were
1474 		 * backed by a congested BDI and wait_iff_congested will stall.
1475 		 */
1476 		if (nr_dirty && nr_dirty == nr_congested)
1477 			zone_set_flag(zone, ZONE_CONGESTED);
1478 
1479 		/*
1480 		 * If dirty pages are scanned that are not queued for IO, it
1481 		 * implies that flushers are not keeping up. In this case, flag
1482 		 * the zone ZONE_TAIL_LRU_DIRTY and kswapd will start writing
1483 		 * pages from reclaim context. It will forcibly stall in the
1484 		 * next check.
1485 		 */
1486 		if (nr_unqueued_dirty == nr_taken)
1487 			zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY);
1488 
1489 		/*
1490 		 * In addition, if kswapd scans pages marked marked for
1491 		 * immediate reclaim and under writeback (nr_immediate), it
1492 		 * implies that pages are cycling through the LRU faster than
1493 		 * they are written so also forcibly stall.
1494 		 */
1495 		if (nr_unqueued_dirty == nr_taken || nr_immediate)
1496 			congestion_wait(BLK_RW_ASYNC, HZ/10);
1497 	}
1498 
1499 	/*
1500 	 * Stall direct reclaim for IO completions if underlying BDIs or zone
1501 	 * is congested. Allow kswapd to continue until it starts encountering
1502 	 * unqueued dirty pages or cycling through the LRU too quickly.
1503 	 */
1504 	if (!sc->hibernation_mode && !current_is_kswapd())
1505 		wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1506 
1507 	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1508 		zone_idx(zone),
1509 		nr_scanned, nr_reclaimed,
1510 		sc->priority,
1511 		trace_shrink_flags(file));
1512 	return nr_reclaimed;
1513 }
1514 
1515 /*
1516  * This moves pages from the active list to the inactive list.
1517  *
1518  * We move them the other way if the page is referenced by one or more
1519  * processes, from rmap.
1520  *
1521  * If the pages are mostly unmapped, the processing is fast and it is
1522  * appropriate to hold zone->lru_lock across the whole operation.  But if
1523  * the pages are mapped, the processing is slow (page_referenced()) so we
1524  * should drop zone->lru_lock around each page.  It's impossible to balance
1525  * this, so instead we remove the pages from the LRU while processing them.
1526  * It is safe to rely on PG_active against the non-LRU pages in here because
1527  * nobody will play with that bit on a non-LRU page.
1528  *
1529  * The downside is that we have to touch page->_count against each page.
1530  * But we had to alter page->flags anyway.
1531  */
1532 
1533 static void move_active_pages_to_lru(struct lruvec *lruvec,
1534 				     struct list_head *list,
1535 				     struct list_head *pages_to_free,
1536 				     enum lru_list lru)
1537 {
1538 	struct zone *zone = lruvec_zone(lruvec);
1539 	unsigned long pgmoved = 0;
1540 	struct page *page;
1541 	int nr_pages;
1542 
1543 	while (!list_empty(list)) {
1544 		page = lru_to_page(list);
1545 		lruvec = mem_cgroup_page_lruvec(page, zone);
1546 
1547 		VM_BUG_ON(PageLRU(page));
1548 		SetPageLRU(page);
1549 
1550 		nr_pages = hpage_nr_pages(page);
1551 		mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1552 		list_move(&page->lru, &lruvec->lists[lru]);
1553 		pgmoved += nr_pages;
1554 
1555 		if (put_page_testzero(page)) {
1556 			__ClearPageLRU(page);
1557 			__ClearPageActive(page);
1558 			del_page_from_lru_list(page, lruvec, lru);
1559 
1560 			if (unlikely(PageCompound(page))) {
1561 				spin_unlock_irq(&zone->lru_lock);
1562 				(*get_compound_page_dtor(page))(page);
1563 				spin_lock_irq(&zone->lru_lock);
1564 			} else
1565 				list_add(&page->lru, pages_to_free);
1566 		}
1567 	}
1568 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1569 	if (!is_active_lru(lru))
1570 		__count_vm_events(PGDEACTIVATE, pgmoved);
1571 }
1572 
1573 static void shrink_active_list(unsigned long nr_to_scan,
1574 			       struct lruvec *lruvec,
1575 			       struct scan_control *sc,
1576 			       enum lru_list lru)
1577 {
1578 	unsigned long nr_taken;
1579 	unsigned long nr_scanned;
1580 	unsigned long vm_flags;
1581 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1582 	LIST_HEAD(l_active);
1583 	LIST_HEAD(l_inactive);
1584 	struct page *page;
1585 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1586 	unsigned long nr_rotated = 0;
1587 	isolate_mode_t isolate_mode = 0;
1588 	int file = is_file_lru(lru);
1589 	struct zone *zone = lruvec_zone(lruvec);
1590 
1591 	lru_add_drain();
1592 
1593 	if (!sc->may_unmap)
1594 		isolate_mode |= ISOLATE_UNMAPPED;
1595 	if (!sc->may_writepage)
1596 		isolate_mode |= ISOLATE_CLEAN;
1597 
1598 	spin_lock_irq(&zone->lru_lock);
1599 
1600 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1601 				     &nr_scanned, sc, isolate_mode, lru);
1602 	if (global_reclaim(sc))
1603 		zone->pages_scanned += nr_scanned;
1604 
1605 	reclaim_stat->recent_scanned[file] += nr_taken;
1606 
1607 	__count_zone_vm_events(PGREFILL, zone, nr_scanned);
1608 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1609 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1610 	spin_unlock_irq(&zone->lru_lock);
1611 
1612 	while (!list_empty(&l_hold)) {
1613 		cond_resched();
1614 		page = lru_to_page(&l_hold);
1615 		list_del(&page->lru);
1616 
1617 		if (unlikely(!page_evictable(page))) {
1618 			putback_lru_page(page);
1619 			continue;
1620 		}
1621 
1622 		if (unlikely(buffer_heads_over_limit)) {
1623 			if (page_has_private(page) && trylock_page(page)) {
1624 				if (page_has_private(page))
1625 					try_to_release_page(page, 0);
1626 				unlock_page(page);
1627 			}
1628 		}
1629 
1630 		if (page_referenced(page, 0, sc->target_mem_cgroup,
1631 				    &vm_flags)) {
1632 			nr_rotated += hpage_nr_pages(page);
1633 			/*
1634 			 * Identify referenced, file-backed active pages and
1635 			 * give them one more trip around the active list. So
1636 			 * that executable code get better chances to stay in
1637 			 * memory under moderate memory pressure.  Anon pages
1638 			 * are not likely to be evicted by use-once streaming
1639 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
1640 			 * so we ignore them here.
1641 			 */
1642 			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1643 				list_add(&page->lru, &l_active);
1644 				continue;
1645 			}
1646 		}
1647 
1648 		ClearPageActive(page);	/* we are de-activating */
1649 		list_add(&page->lru, &l_inactive);
1650 	}
1651 
1652 	/*
1653 	 * Move pages back to the lru list.
1654 	 */
1655 	spin_lock_irq(&zone->lru_lock);
1656 	/*
1657 	 * Count referenced pages from currently used mappings as rotated,
1658 	 * even though only some of them are actually re-activated.  This
1659 	 * helps balance scan pressure between file and anonymous pages in
1660 	 * get_scan_ratio.
1661 	 */
1662 	reclaim_stat->recent_rotated[file] += nr_rotated;
1663 
1664 	move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1665 	move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1666 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1667 	spin_unlock_irq(&zone->lru_lock);
1668 
1669 	free_hot_cold_page_list(&l_hold, 1);
1670 }
1671 
1672 #ifdef CONFIG_SWAP
1673 static int inactive_anon_is_low_global(struct zone *zone)
1674 {
1675 	unsigned long active, inactive;
1676 
1677 	active = zone_page_state(zone, NR_ACTIVE_ANON);
1678 	inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1679 
1680 	if (inactive * zone->inactive_ratio < active)
1681 		return 1;
1682 
1683 	return 0;
1684 }
1685 
1686 /**
1687  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1688  * @lruvec: LRU vector to check
1689  *
1690  * Returns true if the zone does not have enough inactive anon pages,
1691  * meaning some active anon pages need to be deactivated.
1692  */
1693 static int inactive_anon_is_low(struct lruvec *lruvec)
1694 {
1695 	/*
1696 	 * If we don't have swap space, anonymous page deactivation
1697 	 * is pointless.
1698 	 */
1699 	if (!total_swap_pages)
1700 		return 0;
1701 
1702 	if (!mem_cgroup_disabled())
1703 		return mem_cgroup_inactive_anon_is_low(lruvec);
1704 
1705 	return inactive_anon_is_low_global(lruvec_zone(lruvec));
1706 }
1707 #else
1708 static inline int inactive_anon_is_low(struct lruvec *lruvec)
1709 {
1710 	return 0;
1711 }
1712 #endif
1713 
1714 /**
1715  * inactive_file_is_low - check if file pages need to be deactivated
1716  * @lruvec: LRU vector to check
1717  *
1718  * When the system is doing streaming IO, memory pressure here
1719  * ensures that active file pages get deactivated, until more
1720  * than half of the file pages are on the inactive list.
1721  *
1722  * Once we get to that situation, protect the system's working
1723  * set from being evicted by disabling active file page aging.
1724  *
1725  * This uses a different ratio than the anonymous pages, because
1726  * the page cache uses a use-once replacement algorithm.
1727  */
1728 static int inactive_file_is_low(struct lruvec *lruvec)
1729 {
1730 	unsigned long inactive;
1731 	unsigned long active;
1732 
1733 	inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1734 	active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1735 
1736 	return active > inactive;
1737 }
1738 
1739 static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1740 {
1741 	if (is_file_lru(lru))
1742 		return inactive_file_is_low(lruvec);
1743 	else
1744 		return inactive_anon_is_low(lruvec);
1745 }
1746 
1747 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1748 				 struct lruvec *lruvec, struct scan_control *sc)
1749 {
1750 	if (is_active_lru(lru)) {
1751 		if (inactive_list_is_low(lruvec, lru))
1752 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
1753 		return 0;
1754 	}
1755 
1756 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1757 }
1758 
1759 static int vmscan_swappiness(struct scan_control *sc)
1760 {
1761 	if (global_reclaim(sc))
1762 		return vm_swappiness;
1763 	return mem_cgroup_swappiness(sc->target_mem_cgroup);
1764 }
1765 
1766 enum scan_balance {
1767 	SCAN_EQUAL,
1768 	SCAN_FRACT,
1769 	SCAN_ANON,
1770 	SCAN_FILE,
1771 };
1772 
1773 /*
1774  * Determine how aggressively the anon and file LRU lists should be
1775  * scanned.  The relative value of each set of LRU lists is determined
1776  * by looking at the fraction of the pages scanned we did rotate back
1777  * onto the active list instead of evict.
1778  *
1779  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1780  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1781  */
1782 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
1783 			   unsigned long *nr)
1784 {
1785 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1786 	u64 fraction[2];
1787 	u64 denominator = 0;	/* gcc */
1788 	struct zone *zone = lruvec_zone(lruvec);
1789 	unsigned long anon_prio, file_prio;
1790 	enum scan_balance scan_balance;
1791 	unsigned long anon, file, free;
1792 	bool force_scan = false;
1793 	unsigned long ap, fp;
1794 	enum lru_list lru;
1795 
1796 	/*
1797 	 * If the zone or memcg is small, nr[l] can be 0.  This
1798 	 * results in no scanning on this priority and a potential
1799 	 * priority drop.  Global direct reclaim can go to the next
1800 	 * zone and tends to have no problems. Global kswapd is for
1801 	 * zone balancing and it needs to scan a minimum amount. When
1802 	 * reclaiming for a memcg, a priority drop can cause high
1803 	 * latencies, so it's better to scan a minimum amount there as
1804 	 * well.
1805 	 */
1806 	if (current_is_kswapd() && zone->all_unreclaimable)
1807 		force_scan = true;
1808 	if (!global_reclaim(sc))
1809 		force_scan = true;
1810 
1811 	/* If we have no swap space, do not bother scanning anon pages. */
1812 	if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
1813 		scan_balance = SCAN_FILE;
1814 		goto out;
1815 	}
1816 
1817 	/*
1818 	 * Global reclaim will swap to prevent OOM even with no
1819 	 * swappiness, but memcg users want to use this knob to
1820 	 * disable swapping for individual groups completely when
1821 	 * using the memory controller's swap limit feature would be
1822 	 * too expensive.
1823 	 */
1824 	if (!global_reclaim(sc) && !vmscan_swappiness(sc)) {
1825 		scan_balance = SCAN_FILE;
1826 		goto out;
1827 	}
1828 
1829 	/*
1830 	 * Do not apply any pressure balancing cleverness when the
1831 	 * system is close to OOM, scan both anon and file equally
1832 	 * (unless the swappiness setting disagrees with swapping).
1833 	 */
1834 	if (!sc->priority && vmscan_swappiness(sc)) {
1835 		scan_balance = SCAN_EQUAL;
1836 		goto out;
1837 	}
1838 
1839 	anon  = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
1840 		get_lru_size(lruvec, LRU_INACTIVE_ANON);
1841 	file  = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
1842 		get_lru_size(lruvec, LRU_INACTIVE_FILE);
1843 
1844 	/*
1845 	 * If it's foreseeable that reclaiming the file cache won't be
1846 	 * enough to get the zone back into a desirable shape, we have
1847 	 * to swap.  Better start now and leave the - probably heavily
1848 	 * thrashing - remaining file pages alone.
1849 	 */
1850 	if (global_reclaim(sc)) {
1851 		free = zone_page_state(zone, NR_FREE_PAGES);
1852 		if (unlikely(file + free <= high_wmark_pages(zone))) {
1853 			scan_balance = SCAN_ANON;
1854 			goto out;
1855 		}
1856 	}
1857 
1858 	/*
1859 	 * There is enough inactive page cache, do not reclaim
1860 	 * anything from the anonymous working set right now.
1861 	 */
1862 	if (!inactive_file_is_low(lruvec)) {
1863 		scan_balance = SCAN_FILE;
1864 		goto out;
1865 	}
1866 
1867 	scan_balance = SCAN_FRACT;
1868 
1869 	/*
1870 	 * With swappiness at 100, anonymous and file have the same priority.
1871 	 * This scanning priority is essentially the inverse of IO cost.
1872 	 */
1873 	anon_prio = vmscan_swappiness(sc);
1874 	file_prio = 200 - anon_prio;
1875 
1876 	/*
1877 	 * OK, so we have swap space and a fair amount of page cache
1878 	 * pages.  We use the recently rotated / recently scanned
1879 	 * ratios to determine how valuable each cache is.
1880 	 *
1881 	 * Because workloads change over time (and to avoid overflow)
1882 	 * we keep these statistics as a floating average, which ends
1883 	 * up weighing recent references more than old ones.
1884 	 *
1885 	 * anon in [0], file in [1]
1886 	 */
1887 	spin_lock_irq(&zone->lru_lock);
1888 	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1889 		reclaim_stat->recent_scanned[0] /= 2;
1890 		reclaim_stat->recent_rotated[0] /= 2;
1891 	}
1892 
1893 	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1894 		reclaim_stat->recent_scanned[1] /= 2;
1895 		reclaim_stat->recent_rotated[1] /= 2;
1896 	}
1897 
1898 	/*
1899 	 * The amount of pressure on anon vs file pages is inversely
1900 	 * proportional to the fraction of recently scanned pages on
1901 	 * each list that were recently referenced and in active use.
1902 	 */
1903 	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1904 	ap /= reclaim_stat->recent_rotated[0] + 1;
1905 
1906 	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1907 	fp /= reclaim_stat->recent_rotated[1] + 1;
1908 	spin_unlock_irq(&zone->lru_lock);
1909 
1910 	fraction[0] = ap;
1911 	fraction[1] = fp;
1912 	denominator = ap + fp + 1;
1913 out:
1914 	for_each_evictable_lru(lru) {
1915 		int file = is_file_lru(lru);
1916 		unsigned long size;
1917 		unsigned long scan;
1918 
1919 		size = get_lru_size(lruvec, lru);
1920 		scan = size >> sc->priority;
1921 
1922 		if (!scan && force_scan)
1923 			scan = min(size, SWAP_CLUSTER_MAX);
1924 
1925 		switch (scan_balance) {
1926 		case SCAN_EQUAL:
1927 			/* Scan lists relative to size */
1928 			break;
1929 		case SCAN_FRACT:
1930 			/*
1931 			 * Scan types proportional to swappiness and
1932 			 * their relative recent reclaim efficiency.
1933 			 */
1934 			scan = div64_u64(scan * fraction[file], denominator);
1935 			break;
1936 		case SCAN_FILE:
1937 		case SCAN_ANON:
1938 			/* Scan one type exclusively */
1939 			if ((scan_balance == SCAN_FILE) != file)
1940 				scan = 0;
1941 			break;
1942 		default:
1943 			/* Look ma, no brain */
1944 			BUG();
1945 		}
1946 		nr[lru] = scan;
1947 	}
1948 }
1949 
1950 /*
1951  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1952  */
1953 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
1954 {
1955 	unsigned long nr[NR_LRU_LISTS];
1956 	unsigned long targets[NR_LRU_LISTS];
1957 	unsigned long nr_to_scan;
1958 	enum lru_list lru;
1959 	unsigned long nr_reclaimed = 0;
1960 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1961 	struct blk_plug plug;
1962 	bool scan_adjusted = false;
1963 
1964 	get_scan_count(lruvec, sc, nr);
1965 
1966 	/* Record the original scan target for proportional adjustments later */
1967 	memcpy(targets, nr, sizeof(nr));
1968 
1969 	blk_start_plug(&plug);
1970 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1971 					nr[LRU_INACTIVE_FILE]) {
1972 		unsigned long nr_anon, nr_file, percentage;
1973 		unsigned long nr_scanned;
1974 
1975 		for_each_evictable_lru(lru) {
1976 			if (nr[lru]) {
1977 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
1978 				nr[lru] -= nr_to_scan;
1979 
1980 				nr_reclaimed += shrink_list(lru, nr_to_scan,
1981 							    lruvec, sc);
1982 			}
1983 		}
1984 
1985 		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
1986 			continue;
1987 
1988 		/*
1989 		 * For global direct reclaim, reclaim only the number of pages
1990 		 * requested. Less care is taken to scan proportionally as it
1991 		 * is more important to minimise direct reclaim stall latency
1992 		 * than it is to properly age the LRU lists.
1993 		 */
1994 		if (global_reclaim(sc) && !current_is_kswapd())
1995 			break;
1996 
1997 		/*
1998 		 * For kswapd and memcg, reclaim at least the number of pages
1999 		 * requested. Ensure that the anon and file LRUs shrink
2000 		 * proportionally what was requested by get_scan_count(). We
2001 		 * stop reclaiming one LRU and reduce the amount scanning
2002 		 * proportional to the original scan target.
2003 		 */
2004 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2005 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2006 
2007 		if (nr_file > nr_anon) {
2008 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2009 						targets[LRU_ACTIVE_ANON] + 1;
2010 			lru = LRU_BASE;
2011 			percentage = nr_anon * 100 / scan_target;
2012 		} else {
2013 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2014 						targets[LRU_ACTIVE_FILE] + 1;
2015 			lru = LRU_FILE;
2016 			percentage = nr_file * 100 / scan_target;
2017 		}
2018 
2019 		/* Stop scanning the smaller of the LRU */
2020 		nr[lru] = 0;
2021 		nr[lru + LRU_ACTIVE] = 0;
2022 
2023 		/*
2024 		 * Recalculate the other LRU scan count based on its original
2025 		 * scan target and the percentage scanning already complete
2026 		 */
2027 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2028 		nr_scanned = targets[lru] - nr[lru];
2029 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2030 		nr[lru] -= min(nr[lru], nr_scanned);
2031 
2032 		lru += LRU_ACTIVE;
2033 		nr_scanned = targets[lru] - nr[lru];
2034 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2035 		nr[lru] -= min(nr[lru], nr_scanned);
2036 
2037 		scan_adjusted = true;
2038 	}
2039 	blk_finish_plug(&plug);
2040 	sc->nr_reclaimed += nr_reclaimed;
2041 
2042 	/*
2043 	 * Even if we did not try to evict anon pages at all, we want to
2044 	 * rebalance the anon lru active/inactive ratio.
2045 	 */
2046 	if (inactive_anon_is_low(lruvec))
2047 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2048 				   sc, LRU_ACTIVE_ANON);
2049 
2050 	throttle_vm_writeout(sc->gfp_mask);
2051 }
2052 
2053 /* Use reclaim/compaction for costly allocs or under memory pressure */
2054 static bool in_reclaim_compaction(struct scan_control *sc)
2055 {
2056 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2057 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2058 			 sc->priority < DEF_PRIORITY - 2))
2059 		return true;
2060 
2061 	return false;
2062 }
2063 
2064 /*
2065  * Reclaim/compaction is used for high-order allocation requests. It reclaims
2066  * order-0 pages before compacting the zone. should_continue_reclaim() returns
2067  * true if more pages should be reclaimed such that when the page allocator
2068  * calls try_to_compact_zone() that it will have enough free pages to succeed.
2069  * It will give up earlier than that if there is difficulty reclaiming pages.
2070  */
2071 static inline bool should_continue_reclaim(struct zone *zone,
2072 					unsigned long nr_reclaimed,
2073 					unsigned long nr_scanned,
2074 					struct scan_control *sc)
2075 {
2076 	unsigned long pages_for_compaction;
2077 	unsigned long inactive_lru_pages;
2078 
2079 	/* If not in reclaim/compaction mode, stop */
2080 	if (!in_reclaim_compaction(sc))
2081 		return false;
2082 
2083 	/* Consider stopping depending on scan and reclaim activity */
2084 	if (sc->gfp_mask & __GFP_REPEAT) {
2085 		/*
2086 		 * For __GFP_REPEAT allocations, stop reclaiming if the
2087 		 * full LRU list has been scanned and we are still failing
2088 		 * to reclaim pages. This full LRU scan is potentially
2089 		 * expensive but a __GFP_REPEAT caller really wants to succeed
2090 		 */
2091 		if (!nr_reclaimed && !nr_scanned)
2092 			return false;
2093 	} else {
2094 		/*
2095 		 * For non-__GFP_REPEAT allocations which can presumably
2096 		 * fail without consequence, stop if we failed to reclaim
2097 		 * any pages from the last SWAP_CLUSTER_MAX number of
2098 		 * pages that were scanned. This will return to the
2099 		 * caller faster at the risk reclaim/compaction and
2100 		 * the resulting allocation attempt fails
2101 		 */
2102 		if (!nr_reclaimed)
2103 			return false;
2104 	}
2105 
2106 	/*
2107 	 * If we have not reclaimed enough pages for compaction and the
2108 	 * inactive lists are large enough, continue reclaiming
2109 	 */
2110 	pages_for_compaction = (2UL << sc->order);
2111 	inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2112 	if (get_nr_swap_pages() > 0)
2113 		inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2114 	if (sc->nr_reclaimed < pages_for_compaction &&
2115 			inactive_lru_pages > pages_for_compaction)
2116 		return true;
2117 
2118 	/* If compaction would go ahead or the allocation would succeed, stop */
2119 	switch (compaction_suitable(zone, sc->order)) {
2120 	case COMPACT_PARTIAL:
2121 	case COMPACT_CONTINUE:
2122 		return false;
2123 	default:
2124 		return true;
2125 	}
2126 }
2127 
2128 static void shrink_zone(struct zone *zone, struct scan_control *sc)
2129 {
2130 	unsigned long nr_reclaimed, nr_scanned;
2131 
2132 	do {
2133 		struct mem_cgroup *root = sc->target_mem_cgroup;
2134 		struct mem_cgroup_reclaim_cookie reclaim = {
2135 			.zone = zone,
2136 			.priority = sc->priority,
2137 		};
2138 		struct mem_cgroup *memcg;
2139 
2140 		nr_reclaimed = sc->nr_reclaimed;
2141 		nr_scanned = sc->nr_scanned;
2142 
2143 		memcg = mem_cgroup_iter(root, NULL, &reclaim);
2144 		do {
2145 			struct lruvec *lruvec;
2146 
2147 			lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2148 
2149 			shrink_lruvec(lruvec, sc);
2150 
2151 			/*
2152 			 * Direct reclaim and kswapd have to scan all memory
2153 			 * cgroups to fulfill the overall scan target for the
2154 			 * zone.
2155 			 *
2156 			 * Limit reclaim, on the other hand, only cares about
2157 			 * nr_to_reclaim pages to be reclaimed and it will
2158 			 * retry with decreasing priority if one round over the
2159 			 * whole hierarchy is not sufficient.
2160 			 */
2161 			if (!global_reclaim(sc) &&
2162 					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2163 				mem_cgroup_iter_break(root, memcg);
2164 				break;
2165 			}
2166 			memcg = mem_cgroup_iter(root, memcg, &reclaim);
2167 		} while (memcg);
2168 
2169 		vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
2170 			   sc->nr_scanned - nr_scanned,
2171 			   sc->nr_reclaimed - nr_reclaimed);
2172 
2173 	} while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2174 					 sc->nr_scanned - nr_scanned, sc));
2175 }
2176 
2177 /* Returns true if compaction should go ahead for a high-order request */
2178 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2179 {
2180 	unsigned long balance_gap, watermark;
2181 	bool watermark_ok;
2182 
2183 	/* Do not consider compaction for orders reclaim is meant to satisfy */
2184 	if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
2185 		return false;
2186 
2187 	/*
2188 	 * Compaction takes time to run and there are potentially other
2189 	 * callers using the pages just freed. Continue reclaiming until
2190 	 * there is a buffer of free pages available to give compaction
2191 	 * a reasonable chance of completing and allocating the page
2192 	 */
2193 	balance_gap = min(low_wmark_pages(zone),
2194 		(zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2195 			KSWAPD_ZONE_BALANCE_GAP_RATIO);
2196 	watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
2197 	watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2198 
2199 	/*
2200 	 * If compaction is deferred, reclaim up to a point where
2201 	 * compaction will have a chance of success when re-enabled
2202 	 */
2203 	if (compaction_deferred(zone, sc->order))
2204 		return watermark_ok;
2205 
2206 	/* If compaction is not ready to start, keep reclaiming */
2207 	if (!compaction_suitable(zone, sc->order))
2208 		return false;
2209 
2210 	return watermark_ok;
2211 }
2212 
2213 /*
2214  * This is the direct reclaim path, for page-allocating processes.  We only
2215  * try to reclaim pages from zones which will satisfy the caller's allocation
2216  * request.
2217  *
2218  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2219  * Because:
2220  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2221  *    allocation or
2222  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2223  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2224  *    zone defense algorithm.
2225  *
2226  * If a zone is deemed to be full of pinned pages then just give it a light
2227  * scan then give up on it.
2228  *
2229  * This function returns true if a zone is being reclaimed for a costly
2230  * high-order allocation and compaction is ready to begin. This indicates to
2231  * the caller that it should consider retrying the allocation instead of
2232  * further reclaim.
2233  */
2234 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2235 {
2236 	struct zoneref *z;
2237 	struct zone *zone;
2238 	unsigned long nr_soft_reclaimed;
2239 	unsigned long nr_soft_scanned;
2240 	bool aborted_reclaim = false;
2241 
2242 	/*
2243 	 * If the number of buffer_heads in the machine exceeds the maximum
2244 	 * allowed level, force direct reclaim to scan the highmem zone as
2245 	 * highmem pages could be pinning lowmem pages storing buffer_heads
2246 	 */
2247 	if (buffer_heads_over_limit)
2248 		sc->gfp_mask |= __GFP_HIGHMEM;
2249 
2250 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2251 					gfp_zone(sc->gfp_mask), sc->nodemask) {
2252 		if (!populated_zone(zone))
2253 			continue;
2254 		/*
2255 		 * Take care memory controller reclaiming has small influence
2256 		 * to global LRU.
2257 		 */
2258 		if (global_reclaim(sc)) {
2259 			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2260 				continue;
2261 			if (zone->all_unreclaimable &&
2262 					sc->priority != DEF_PRIORITY)
2263 				continue;	/* Let kswapd poll it */
2264 			if (IS_ENABLED(CONFIG_COMPACTION)) {
2265 				/*
2266 				 * If we already have plenty of memory free for
2267 				 * compaction in this zone, don't free any more.
2268 				 * Even though compaction is invoked for any
2269 				 * non-zero order, only frequent costly order
2270 				 * reclamation is disruptive enough to become a
2271 				 * noticeable problem, like transparent huge
2272 				 * page allocations.
2273 				 */
2274 				if (compaction_ready(zone, sc)) {
2275 					aborted_reclaim = true;
2276 					continue;
2277 				}
2278 			}
2279 			/*
2280 			 * This steals pages from memory cgroups over softlimit
2281 			 * and returns the number of reclaimed pages and
2282 			 * scanned pages. This works for global memory pressure
2283 			 * and balancing, not for a memcg's limit.
2284 			 */
2285 			nr_soft_scanned = 0;
2286 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2287 						sc->order, sc->gfp_mask,
2288 						&nr_soft_scanned);
2289 			sc->nr_reclaimed += nr_soft_reclaimed;
2290 			sc->nr_scanned += nr_soft_scanned;
2291 			/* need some check for avoid more shrink_zone() */
2292 		}
2293 
2294 		shrink_zone(zone, sc);
2295 	}
2296 
2297 	return aborted_reclaim;
2298 }
2299 
2300 static bool zone_reclaimable(struct zone *zone)
2301 {
2302 	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2303 }
2304 
2305 /* All zones in zonelist are unreclaimable? */
2306 static bool all_unreclaimable(struct zonelist *zonelist,
2307 		struct scan_control *sc)
2308 {
2309 	struct zoneref *z;
2310 	struct zone *zone;
2311 
2312 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2313 			gfp_zone(sc->gfp_mask), sc->nodemask) {
2314 		if (!populated_zone(zone))
2315 			continue;
2316 		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2317 			continue;
2318 		if (!zone->all_unreclaimable)
2319 			return false;
2320 	}
2321 
2322 	return true;
2323 }
2324 
2325 /*
2326  * This is the main entry point to direct page reclaim.
2327  *
2328  * If a full scan of the inactive list fails to free enough memory then we
2329  * are "out of memory" and something needs to be killed.
2330  *
2331  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2332  * high - the zone may be full of dirty or under-writeback pages, which this
2333  * caller can't do much about.  We kick the writeback threads and take explicit
2334  * naps in the hope that some of these pages can be written.  But if the
2335  * allocating task holds filesystem locks which prevent writeout this might not
2336  * work, and the allocation attempt will fail.
2337  *
2338  * returns:	0, if no pages reclaimed
2339  * 		else, the number of pages reclaimed
2340  */
2341 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2342 					struct scan_control *sc,
2343 					struct shrink_control *shrink)
2344 {
2345 	unsigned long total_scanned = 0;
2346 	struct reclaim_state *reclaim_state = current->reclaim_state;
2347 	struct zoneref *z;
2348 	struct zone *zone;
2349 	unsigned long writeback_threshold;
2350 	bool aborted_reclaim;
2351 
2352 	delayacct_freepages_start();
2353 
2354 	if (global_reclaim(sc))
2355 		count_vm_event(ALLOCSTALL);
2356 
2357 	do {
2358 		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2359 				sc->priority);
2360 		sc->nr_scanned = 0;
2361 		aborted_reclaim = shrink_zones(zonelist, sc);
2362 
2363 		/*
2364 		 * Don't shrink slabs when reclaiming memory from
2365 		 * over limit cgroups
2366 		 */
2367 		if (global_reclaim(sc)) {
2368 			unsigned long lru_pages = 0;
2369 			for_each_zone_zonelist(zone, z, zonelist,
2370 					gfp_zone(sc->gfp_mask)) {
2371 				if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2372 					continue;
2373 
2374 				lru_pages += zone_reclaimable_pages(zone);
2375 			}
2376 
2377 			shrink_slab(shrink, sc->nr_scanned, lru_pages);
2378 			if (reclaim_state) {
2379 				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2380 				reclaim_state->reclaimed_slab = 0;
2381 			}
2382 		}
2383 		total_scanned += sc->nr_scanned;
2384 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2385 			goto out;
2386 
2387 		/*
2388 		 * If we're getting trouble reclaiming, start doing
2389 		 * writepage even in laptop mode.
2390 		 */
2391 		if (sc->priority < DEF_PRIORITY - 2)
2392 			sc->may_writepage = 1;
2393 
2394 		/*
2395 		 * Try to write back as many pages as we just scanned.  This
2396 		 * tends to cause slow streaming writers to write data to the
2397 		 * disk smoothly, at the dirtying rate, which is nice.   But
2398 		 * that's undesirable in laptop mode, where we *want* lumpy
2399 		 * writeout.  So in laptop mode, write out the whole world.
2400 		 */
2401 		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2402 		if (total_scanned > writeback_threshold) {
2403 			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2404 						WB_REASON_TRY_TO_FREE_PAGES);
2405 			sc->may_writepage = 1;
2406 		}
2407 	} while (--sc->priority >= 0);
2408 
2409 out:
2410 	delayacct_freepages_end();
2411 
2412 	if (sc->nr_reclaimed)
2413 		return sc->nr_reclaimed;
2414 
2415 	/*
2416 	 * As hibernation is going on, kswapd is freezed so that it can't mark
2417 	 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2418 	 * check.
2419 	 */
2420 	if (oom_killer_disabled)
2421 		return 0;
2422 
2423 	/* Aborted reclaim to try compaction? don't OOM, then */
2424 	if (aborted_reclaim)
2425 		return 1;
2426 
2427 	/* top priority shrink_zones still had more to do? don't OOM, then */
2428 	if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2429 		return 1;
2430 
2431 	return 0;
2432 }
2433 
2434 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2435 {
2436 	struct zone *zone;
2437 	unsigned long pfmemalloc_reserve = 0;
2438 	unsigned long free_pages = 0;
2439 	int i;
2440 	bool wmark_ok;
2441 
2442 	for (i = 0; i <= ZONE_NORMAL; i++) {
2443 		zone = &pgdat->node_zones[i];
2444 		pfmemalloc_reserve += min_wmark_pages(zone);
2445 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
2446 	}
2447 
2448 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
2449 
2450 	/* kswapd must be awake if processes are being throttled */
2451 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2452 		pgdat->classzone_idx = min(pgdat->classzone_idx,
2453 						(enum zone_type)ZONE_NORMAL);
2454 		wake_up_interruptible(&pgdat->kswapd_wait);
2455 	}
2456 
2457 	return wmark_ok;
2458 }
2459 
2460 /*
2461  * Throttle direct reclaimers if backing storage is backed by the network
2462  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2463  * depleted. kswapd will continue to make progress and wake the processes
2464  * when the low watermark is reached.
2465  *
2466  * Returns true if a fatal signal was delivered during throttling. If this
2467  * happens, the page allocator should not consider triggering the OOM killer.
2468  */
2469 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2470 					nodemask_t *nodemask)
2471 {
2472 	struct zone *zone;
2473 	int high_zoneidx = gfp_zone(gfp_mask);
2474 	pg_data_t *pgdat;
2475 
2476 	/*
2477 	 * Kernel threads should not be throttled as they may be indirectly
2478 	 * responsible for cleaning pages necessary for reclaim to make forward
2479 	 * progress. kjournald for example may enter direct reclaim while
2480 	 * committing a transaction where throttling it could forcing other
2481 	 * processes to block on log_wait_commit().
2482 	 */
2483 	if (current->flags & PF_KTHREAD)
2484 		goto out;
2485 
2486 	/*
2487 	 * If a fatal signal is pending, this process should not throttle.
2488 	 * It should return quickly so it can exit and free its memory
2489 	 */
2490 	if (fatal_signal_pending(current))
2491 		goto out;
2492 
2493 	/* Check if the pfmemalloc reserves are ok */
2494 	first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone);
2495 	pgdat = zone->zone_pgdat;
2496 	if (pfmemalloc_watermark_ok(pgdat))
2497 		goto out;
2498 
2499 	/* Account for the throttling */
2500 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
2501 
2502 	/*
2503 	 * If the caller cannot enter the filesystem, it's possible that it
2504 	 * is due to the caller holding an FS lock or performing a journal
2505 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
2506 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
2507 	 * blocked waiting on the same lock. Instead, throttle for up to a
2508 	 * second before continuing.
2509 	 */
2510 	if (!(gfp_mask & __GFP_FS)) {
2511 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2512 			pfmemalloc_watermark_ok(pgdat), HZ);
2513 
2514 		goto check_pending;
2515 	}
2516 
2517 	/* Throttle until kswapd wakes the process */
2518 	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2519 		pfmemalloc_watermark_ok(pgdat));
2520 
2521 check_pending:
2522 	if (fatal_signal_pending(current))
2523 		return true;
2524 
2525 out:
2526 	return false;
2527 }
2528 
2529 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2530 				gfp_t gfp_mask, nodemask_t *nodemask)
2531 {
2532 	unsigned long nr_reclaimed;
2533 	struct scan_control sc = {
2534 		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2535 		.may_writepage = !laptop_mode,
2536 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2537 		.may_unmap = 1,
2538 		.may_swap = 1,
2539 		.order = order,
2540 		.priority = DEF_PRIORITY,
2541 		.target_mem_cgroup = NULL,
2542 		.nodemask = nodemask,
2543 	};
2544 	struct shrink_control shrink = {
2545 		.gfp_mask = sc.gfp_mask,
2546 	};
2547 
2548 	/*
2549 	 * Do not enter reclaim if fatal signal was delivered while throttled.
2550 	 * 1 is returned so that the page allocator does not OOM kill at this
2551 	 * point.
2552 	 */
2553 	if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2554 		return 1;
2555 
2556 	trace_mm_vmscan_direct_reclaim_begin(order,
2557 				sc.may_writepage,
2558 				gfp_mask);
2559 
2560 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2561 
2562 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2563 
2564 	return nr_reclaimed;
2565 }
2566 
2567 #ifdef CONFIG_MEMCG
2568 
2569 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2570 						gfp_t gfp_mask, bool noswap,
2571 						struct zone *zone,
2572 						unsigned long *nr_scanned)
2573 {
2574 	struct scan_control sc = {
2575 		.nr_scanned = 0,
2576 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2577 		.may_writepage = !laptop_mode,
2578 		.may_unmap = 1,
2579 		.may_swap = !noswap,
2580 		.order = 0,
2581 		.priority = 0,
2582 		.target_mem_cgroup = memcg,
2583 	};
2584 	struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2585 
2586 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2587 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2588 
2589 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2590 						      sc.may_writepage,
2591 						      sc.gfp_mask);
2592 
2593 	/*
2594 	 * NOTE: Although we can get the priority field, using it
2595 	 * here is not a good idea, since it limits the pages we can scan.
2596 	 * if we don't reclaim here, the shrink_zone from balance_pgdat
2597 	 * will pick up pages from other mem cgroup's as well. We hack
2598 	 * the priority and make it zero.
2599 	 */
2600 	shrink_lruvec(lruvec, &sc);
2601 
2602 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2603 
2604 	*nr_scanned = sc.nr_scanned;
2605 	return sc.nr_reclaimed;
2606 }
2607 
2608 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2609 					   gfp_t gfp_mask,
2610 					   bool noswap)
2611 {
2612 	struct zonelist *zonelist;
2613 	unsigned long nr_reclaimed;
2614 	int nid;
2615 	struct scan_control sc = {
2616 		.may_writepage = !laptop_mode,
2617 		.may_unmap = 1,
2618 		.may_swap = !noswap,
2619 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2620 		.order = 0,
2621 		.priority = DEF_PRIORITY,
2622 		.target_mem_cgroup = memcg,
2623 		.nodemask = NULL, /* we don't care the placement */
2624 		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2625 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2626 	};
2627 	struct shrink_control shrink = {
2628 		.gfp_mask = sc.gfp_mask,
2629 	};
2630 
2631 	/*
2632 	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2633 	 * take care of from where we get pages. So the node where we start the
2634 	 * scan does not need to be the current node.
2635 	 */
2636 	nid = mem_cgroup_select_victim_node(memcg);
2637 
2638 	zonelist = NODE_DATA(nid)->node_zonelists;
2639 
2640 	trace_mm_vmscan_memcg_reclaim_begin(0,
2641 					    sc.may_writepage,
2642 					    sc.gfp_mask);
2643 
2644 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2645 
2646 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2647 
2648 	return nr_reclaimed;
2649 }
2650 #endif
2651 
2652 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2653 {
2654 	struct mem_cgroup *memcg;
2655 
2656 	if (!total_swap_pages)
2657 		return;
2658 
2659 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
2660 	do {
2661 		struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2662 
2663 		if (inactive_anon_is_low(lruvec))
2664 			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2665 					   sc, LRU_ACTIVE_ANON);
2666 
2667 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
2668 	} while (memcg);
2669 }
2670 
2671 static bool zone_balanced(struct zone *zone, int order,
2672 			  unsigned long balance_gap, int classzone_idx)
2673 {
2674 	if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2675 				    balance_gap, classzone_idx, 0))
2676 		return false;
2677 
2678 	if (IS_ENABLED(CONFIG_COMPACTION) && order &&
2679 	    !compaction_suitable(zone, order))
2680 		return false;
2681 
2682 	return true;
2683 }
2684 
2685 /*
2686  * pgdat_balanced() is used when checking if a node is balanced.
2687  *
2688  * For order-0, all zones must be balanced!
2689  *
2690  * For high-order allocations only zones that meet watermarks and are in a
2691  * zone allowed by the callers classzone_idx are added to balanced_pages. The
2692  * total of balanced pages must be at least 25% of the zones allowed by
2693  * classzone_idx for the node to be considered balanced. Forcing all zones to
2694  * be balanced for high orders can cause excessive reclaim when there are
2695  * imbalanced zones.
2696  * The choice of 25% is due to
2697  *   o a 16M DMA zone that is balanced will not balance a zone on any
2698  *     reasonable sized machine
2699  *   o On all other machines, the top zone must be at least a reasonable
2700  *     percentage of the middle zones. For example, on 32-bit x86, highmem
2701  *     would need to be at least 256M for it to be balance a whole node.
2702  *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2703  *     to balance a node on its own. These seemed like reasonable ratios.
2704  */
2705 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
2706 {
2707 	unsigned long managed_pages = 0;
2708 	unsigned long balanced_pages = 0;
2709 	int i;
2710 
2711 	/* Check the watermark levels */
2712 	for (i = 0; i <= classzone_idx; i++) {
2713 		struct zone *zone = pgdat->node_zones + i;
2714 
2715 		if (!populated_zone(zone))
2716 			continue;
2717 
2718 		managed_pages += zone->managed_pages;
2719 
2720 		/*
2721 		 * A special case here:
2722 		 *
2723 		 * balance_pgdat() skips over all_unreclaimable after
2724 		 * DEF_PRIORITY. Effectively, it considers them balanced so
2725 		 * they must be considered balanced here as well!
2726 		 */
2727 		if (zone->all_unreclaimable) {
2728 			balanced_pages += zone->managed_pages;
2729 			continue;
2730 		}
2731 
2732 		if (zone_balanced(zone, order, 0, i))
2733 			balanced_pages += zone->managed_pages;
2734 		else if (!order)
2735 			return false;
2736 	}
2737 
2738 	if (order)
2739 		return balanced_pages >= (managed_pages >> 2);
2740 	else
2741 		return true;
2742 }
2743 
2744 /*
2745  * Prepare kswapd for sleeping. This verifies that there are no processes
2746  * waiting in throttle_direct_reclaim() and that watermarks have been met.
2747  *
2748  * Returns true if kswapd is ready to sleep
2749  */
2750 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2751 					int classzone_idx)
2752 {
2753 	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2754 	if (remaining)
2755 		return false;
2756 
2757 	/*
2758 	 * There is a potential race between when kswapd checks its watermarks
2759 	 * and a process gets throttled. There is also a potential race if
2760 	 * processes get throttled, kswapd wakes, a large process exits therby
2761 	 * balancing the zones that causes kswapd to miss a wakeup. If kswapd
2762 	 * is going to sleep, no process should be sleeping on pfmemalloc_wait
2763 	 * so wake them now if necessary. If necessary, processes will wake
2764 	 * kswapd and get throttled again
2765 	 */
2766 	if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
2767 		wake_up(&pgdat->pfmemalloc_wait);
2768 		return false;
2769 	}
2770 
2771 	return pgdat_balanced(pgdat, order, classzone_idx);
2772 }
2773 
2774 /*
2775  * kswapd shrinks the zone by the number of pages required to reach
2776  * the high watermark.
2777  *
2778  * Returns true if kswapd scanned at least the requested number of pages to
2779  * reclaim or if the lack of progress was due to pages under writeback.
2780  * This is used to determine if the scanning priority needs to be raised.
2781  */
2782 static bool kswapd_shrink_zone(struct zone *zone,
2783 			       int classzone_idx,
2784 			       struct scan_control *sc,
2785 			       unsigned long lru_pages,
2786 			       unsigned long *nr_attempted)
2787 {
2788 	unsigned long nr_slab;
2789 	int testorder = sc->order;
2790 	unsigned long balance_gap;
2791 	struct reclaim_state *reclaim_state = current->reclaim_state;
2792 	struct shrink_control shrink = {
2793 		.gfp_mask = sc->gfp_mask,
2794 	};
2795 	bool lowmem_pressure;
2796 
2797 	/* Reclaim above the high watermark. */
2798 	sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
2799 
2800 	/*
2801 	 * Kswapd reclaims only single pages with compaction enabled. Trying
2802 	 * too hard to reclaim until contiguous free pages have become
2803 	 * available can hurt performance by evicting too much useful data
2804 	 * from memory. Do not reclaim more than needed for compaction.
2805 	 */
2806 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2807 			compaction_suitable(zone, sc->order) !=
2808 				COMPACT_SKIPPED)
2809 		testorder = 0;
2810 
2811 	/*
2812 	 * We put equal pressure on every zone, unless one zone has way too
2813 	 * many pages free already. The "too many pages" is defined as the
2814 	 * high wmark plus a "gap" where the gap is either the low
2815 	 * watermark or 1% of the zone, whichever is smaller.
2816 	 */
2817 	balance_gap = min(low_wmark_pages(zone),
2818 		(zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2819 		KSWAPD_ZONE_BALANCE_GAP_RATIO);
2820 
2821 	/*
2822 	 * If there is no low memory pressure or the zone is balanced then no
2823 	 * reclaim is necessary
2824 	 */
2825 	lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
2826 	if (!lowmem_pressure && zone_balanced(zone, testorder,
2827 						balance_gap, classzone_idx))
2828 		return true;
2829 
2830 	shrink_zone(zone, sc);
2831 
2832 	reclaim_state->reclaimed_slab = 0;
2833 	nr_slab = shrink_slab(&shrink, sc->nr_scanned, lru_pages);
2834 	sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2835 
2836 	/* Account for the number of pages attempted to reclaim */
2837 	*nr_attempted += sc->nr_to_reclaim;
2838 
2839 	if (nr_slab == 0 && !zone_reclaimable(zone))
2840 		zone->all_unreclaimable = 1;
2841 
2842 	zone_clear_flag(zone, ZONE_WRITEBACK);
2843 
2844 	/*
2845 	 * If a zone reaches its high watermark, consider it to be no longer
2846 	 * congested. It's possible there are dirty pages backed by congested
2847 	 * BDIs but as pressure is relieved, speculatively avoid congestion
2848 	 * waits.
2849 	 */
2850 	if (!zone->all_unreclaimable &&
2851 	    zone_balanced(zone, testorder, 0, classzone_idx)) {
2852 		zone_clear_flag(zone, ZONE_CONGESTED);
2853 		zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
2854 	}
2855 
2856 	return sc->nr_scanned >= sc->nr_to_reclaim;
2857 }
2858 
2859 /*
2860  * For kswapd, balance_pgdat() will work across all this node's zones until
2861  * they are all at high_wmark_pages(zone).
2862  *
2863  * Returns the final order kswapd was reclaiming at
2864  *
2865  * There is special handling here for zones which are full of pinned pages.
2866  * This can happen if the pages are all mlocked, or if they are all used by
2867  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2868  * What we do is to detect the case where all pages in the zone have been
2869  * scanned twice and there has been zero successful reclaim.  Mark the zone as
2870  * dead and from now on, only perform a short scan.  Basically we're polling
2871  * the zone for when the problem goes away.
2872  *
2873  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2874  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2875  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2876  * lower zones regardless of the number of free pages in the lower zones. This
2877  * interoperates with the page allocator fallback scheme to ensure that aging
2878  * of pages is balanced across the zones.
2879  */
2880 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2881 							int *classzone_idx)
2882 {
2883 	int i;
2884 	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
2885 	unsigned long nr_soft_reclaimed;
2886 	unsigned long nr_soft_scanned;
2887 	struct scan_control sc = {
2888 		.gfp_mask = GFP_KERNEL,
2889 		.priority = DEF_PRIORITY,
2890 		.may_unmap = 1,
2891 		.may_swap = 1,
2892 		.may_writepage = !laptop_mode,
2893 		.order = order,
2894 		.target_mem_cgroup = NULL,
2895 	};
2896 	count_vm_event(PAGEOUTRUN);
2897 
2898 	do {
2899 		unsigned long lru_pages = 0;
2900 		unsigned long nr_attempted = 0;
2901 		bool raise_priority = true;
2902 		bool pgdat_needs_compaction = (order > 0);
2903 
2904 		sc.nr_reclaimed = 0;
2905 
2906 		/*
2907 		 * Scan in the highmem->dma direction for the highest
2908 		 * zone which needs scanning
2909 		 */
2910 		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2911 			struct zone *zone = pgdat->node_zones + i;
2912 
2913 			if (!populated_zone(zone))
2914 				continue;
2915 
2916 			if (zone->all_unreclaimable &&
2917 			    sc.priority != DEF_PRIORITY)
2918 				continue;
2919 
2920 			/*
2921 			 * Do some background aging of the anon list, to give
2922 			 * pages a chance to be referenced before reclaiming.
2923 			 */
2924 			age_active_anon(zone, &sc);
2925 
2926 			/*
2927 			 * If the number of buffer_heads in the machine
2928 			 * exceeds the maximum allowed level and this node
2929 			 * has a highmem zone, force kswapd to reclaim from
2930 			 * it to relieve lowmem pressure.
2931 			 */
2932 			if (buffer_heads_over_limit && is_highmem_idx(i)) {
2933 				end_zone = i;
2934 				break;
2935 			}
2936 
2937 			if (!zone_balanced(zone, order, 0, 0)) {
2938 				end_zone = i;
2939 				break;
2940 			} else {
2941 				/*
2942 				 * If balanced, clear the dirty and congested
2943 				 * flags
2944 				 */
2945 				zone_clear_flag(zone, ZONE_CONGESTED);
2946 				zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
2947 			}
2948 		}
2949 
2950 		if (i < 0)
2951 			goto out;
2952 
2953 		for (i = 0; i <= end_zone; i++) {
2954 			struct zone *zone = pgdat->node_zones + i;
2955 
2956 			if (!populated_zone(zone))
2957 				continue;
2958 
2959 			lru_pages += zone_reclaimable_pages(zone);
2960 
2961 			/*
2962 			 * If any zone is currently balanced then kswapd will
2963 			 * not call compaction as it is expected that the
2964 			 * necessary pages are already available.
2965 			 */
2966 			if (pgdat_needs_compaction &&
2967 					zone_watermark_ok(zone, order,
2968 						low_wmark_pages(zone),
2969 						*classzone_idx, 0))
2970 				pgdat_needs_compaction = false;
2971 		}
2972 
2973 		/*
2974 		 * If we're getting trouble reclaiming, start doing writepage
2975 		 * even in laptop mode.
2976 		 */
2977 		if (sc.priority < DEF_PRIORITY - 2)
2978 			sc.may_writepage = 1;
2979 
2980 		/*
2981 		 * Now scan the zone in the dma->highmem direction, stopping
2982 		 * at the last zone which needs scanning.
2983 		 *
2984 		 * We do this because the page allocator works in the opposite
2985 		 * direction.  This prevents the page allocator from allocating
2986 		 * pages behind kswapd's direction of progress, which would
2987 		 * cause too much scanning of the lower zones.
2988 		 */
2989 		for (i = 0; i <= end_zone; i++) {
2990 			struct zone *zone = pgdat->node_zones + i;
2991 
2992 			if (!populated_zone(zone))
2993 				continue;
2994 
2995 			if (zone->all_unreclaimable &&
2996 			    sc.priority != DEF_PRIORITY)
2997 				continue;
2998 
2999 			sc.nr_scanned = 0;
3000 
3001 			nr_soft_scanned = 0;
3002 			/*
3003 			 * Call soft limit reclaim before calling shrink_zone.
3004 			 */
3005 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
3006 							order, sc.gfp_mask,
3007 							&nr_soft_scanned);
3008 			sc.nr_reclaimed += nr_soft_reclaimed;
3009 
3010 			/*
3011 			 * There should be no need to raise the scanning
3012 			 * priority if enough pages are already being scanned
3013 			 * that that high watermark would be met at 100%
3014 			 * efficiency.
3015 			 */
3016 			if (kswapd_shrink_zone(zone, end_zone, &sc,
3017 					lru_pages, &nr_attempted))
3018 				raise_priority = false;
3019 		}
3020 
3021 		/*
3022 		 * If the low watermark is met there is no need for processes
3023 		 * to be throttled on pfmemalloc_wait as they should not be
3024 		 * able to safely make forward progress. Wake them
3025 		 */
3026 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3027 				pfmemalloc_watermark_ok(pgdat))
3028 			wake_up(&pgdat->pfmemalloc_wait);
3029 
3030 		/*
3031 		 * Fragmentation may mean that the system cannot be rebalanced
3032 		 * for high-order allocations in all zones. If twice the
3033 		 * allocation size has been reclaimed and the zones are still
3034 		 * not balanced then recheck the watermarks at order-0 to
3035 		 * prevent kswapd reclaiming excessively. Assume that a
3036 		 * process requested a high-order can direct reclaim/compact.
3037 		 */
3038 		if (order && sc.nr_reclaimed >= 2UL << order)
3039 			order = sc.order = 0;
3040 
3041 		/* Check if kswapd should be suspending */
3042 		if (try_to_freeze() || kthread_should_stop())
3043 			break;
3044 
3045 		/*
3046 		 * Compact if necessary and kswapd is reclaiming at least the
3047 		 * high watermark number of pages as requsted
3048 		 */
3049 		if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
3050 			compact_pgdat(pgdat, order);
3051 
3052 		/*
3053 		 * Raise priority if scanning rate is too low or there was no
3054 		 * progress in reclaiming pages
3055 		 */
3056 		if (raise_priority || !sc.nr_reclaimed)
3057 			sc.priority--;
3058 	} while (sc.priority >= 1 &&
3059 		 !pgdat_balanced(pgdat, order, *classzone_idx));
3060 
3061 out:
3062 	/*
3063 	 * Return the order we were reclaiming at so prepare_kswapd_sleep()
3064 	 * makes a decision on the order we were last reclaiming at. However,
3065 	 * if another caller entered the allocator slow path while kswapd
3066 	 * was awake, order will remain at the higher level
3067 	 */
3068 	*classzone_idx = end_zone;
3069 	return order;
3070 }
3071 
3072 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3073 {
3074 	long remaining = 0;
3075 	DEFINE_WAIT(wait);
3076 
3077 	if (freezing(current) || kthread_should_stop())
3078 		return;
3079 
3080 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3081 
3082 	/* Try to sleep for a short interval */
3083 	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3084 		remaining = schedule_timeout(HZ/10);
3085 		finish_wait(&pgdat->kswapd_wait, &wait);
3086 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3087 	}
3088 
3089 	/*
3090 	 * After a short sleep, check if it was a premature sleep. If not, then
3091 	 * go fully to sleep until explicitly woken up.
3092 	 */
3093 	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3094 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3095 
3096 		/*
3097 		 * vmstat counters are not perfectly accurate and the estimated
3098 		 * value for counters such as NR_FREE_PAGES can deviate from the
3099 		 * true value by nr_online_cpus * threshold. To avoid the zone
3100 		 * watermarks being breached while under pressure, we reduce the
3101 		 * per-cpu vmstat threshold while kswapd is awake and restore
3102 		 * them before going back to sleep.
3103 		 */
3104 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3105 
3106 		/*
3107 		 * Compaction records what page blocks it recently failed to
3108 		 * isolate pages from and skips them in the future scanning.
3109 		 * When kswapd is going to sleep, it is reasonable to assume
3110 		 * that pages and compaction may succeed so reset the cache.
3111 		 */
3112 		reset_isolation_suitable(pgdat);
3113 
3114 		if (!kthread_should_stop())
3115 			schedule();
3116 
3117 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3118 	} else {
3119 		if (remaining)
3120 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3121 		else
3122 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3123 	}
3124 	finish_wait(&pgdat->kswapd_wait, &wait);
3125 }
3126 
3127 /*
3128  * The background pageout daemon, started as a kernel thread
3129  * from the init process.
3130  *
3131  * This basically trickles out pages so that we have _some_
3132  * free memory available even if there is no other activity
3133  * that frees anything up. This is needed for things like routing
3134  * etc, where we otherwise might have all activity going on in
3135  * asynchronous contexts that cannot page things out.
3136  *
3137  * If there are applications that are active memory-allocators
3138  * (most normal use), this basically shouldn't matter.
3139  */
3140 static int kswapd(void *p)
3141 {
3142 	unsigned long order, new_order;
3143 	unsigned balanced_order;
3144 	int classzone_idx, new_classzone_idx;
3145 	int balanced_classzone_idx;
3146 	pg_data_t *pgdat = (pg_data_t*)p;
3147 	struct task_struct *tsk = current;
3148 
3149 	struct reclaim_state reclaim_state = {
3150 		.reclaimed_slab = 0,
3151 	};
3152 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3153 
3154 	lockdep_set_current_reclaim_state(GFP_KERNEL);
3155 
3156 	if (!cpumask_empty(cpumask))
3157 		set_cpus_allowed_ptr(tsk, cpumask);
3158 	current->reclaim_state = &reclaim_state;
3159 
3160 	/*
3161 	 * Tell the memory management that we're a "memory allocator",
3162 	 * and that if we need more memory we should get access to it
3163 	 * regardless (see "__alloc_pages()"). "kswapd" should
3164 	 * never get caught in the normal page freeing logic.
3165 	 *
3166 	 * (Kswapd normally doesn't need memory anyway, but sometimes
3167 	 * you need a small amount of memory in order to be able to
3168 	 * page out something else, and this flag essentially protects
3169 	 * us from recursively trying to free more memory as we're
3170 	 * trying to free the first piece of memory in the first place).
3171 	 */
3172 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3173 	set_freezable();
3174 
3175 	order = new_order = 0;
3176 	balanced_order = 0;
3177 	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3178 	balanced_classzone_idx = classzone_idx;
3179 	for ( ; ; ) {
3180 		bool ret;
3181 
3182 		/*
3183 		 * If the last balance_pgdat was unsuccessful it's unlikely a
3184 		 * new request of a similar or harder type will succeed soon
3185 		 * so consider going to sleep on the basis we reclaimed at
3186 		 */
3187 		if (balanced_classzone_idx >= new_classzone_idx &&
3188 					balanced_order == new_order) {
3189 			new_order = pgdat->kswapd_max_order;
3190 			new_classzone_idx = pgdat->classzone_idx;
3191 			pgdat->kswapd_max_order =  0;
3192 			pgdat->classzone_idx = pgdat->nr_zones - 1;
3193 		}
3194 
3195 		if (order < new_order || classzone_idx > new_classzone_idx) {
3196 			/*
3197 			 * Don't sleep if someone wants a larger 'order'
3198 			 * allocation or has tigher zone constraints
3199 			 */
3200 			order = new_order;
3201 			classzone_idx = new_classzone_idx;
3202 		} else {
3203 			kswapd_try_to_sleep(pgdat, balanced_order,
3204 						balanced_classzone_idx);
3205 			order = pgdat->kswapd_max_order;
3206 			classzone_idx = pgdat->classzone_idx;
3207 			new_order = order;
3208 			new_classzone_idx = classzone_idx;
3209 			pgdat->kswapd_max_order = 0;
3210 			pgdat->classzone_idx = pgdat->nr_zones - 1;
3211 		}
3212 
3213 		ret = try_to_freeze();
3214 		if (kthread_should_stop())
3215 			break;
3216 
3217 		/*
3218 		 * We can speed up thawing tasks if we don't call balance_pgdat
3219 		 * after returning from the refrigerator
3220 		 */
3221 		if (!ret) {
3222 			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3223 			balanced_classzone_idx = classzone_idx;
3224 			balanced_order = balance_pgdat(pgdat, order,
3225 						&balanced_classzone_idx);
3226 		}
3227 	}
3228 
3229 	current->reclaim_state = NULL;
3230 	return 0;
3231 }
3232 
3233 /*
3234  * A zone is low on free memory, so wake its kswapd task to service it.
3235  */
3236 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3237 {
3238 	pg_data_t *pgdat;
3239 
3240 	if (!populated_zone(zone))
3241 		return;
3242 
3243 	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
3244 		return;
3245 	pgdat = zone->zone_pgdat;
3246 	if (pgdat->kswapd_max_order < order) {
3247 		pgdat->kswapd_max_order = order;
3248 		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3249 	}
3250 	if (!waitqueue_active(&pgdat->kswapd_wait))
3251 		return;
3252 	if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
3253 		return;
3254 
3255 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3256 	wake_up_interruptible(&pgdat->kswapd_wait);
3257 }
3258 
3259 /*
3260  * The reclaimable count would be mostly accurate.
3261  * The less reclaimable pages may be
3262  * - mlocked pages, which will be moved to unevictable list when encountered
3263  * - mapped pages, which may require several travels to be reclaimed
3264  * - dirty pages, which is not "instantly" reclaimable
3265  */
3266 unsigned long global_reclaimable_pages(void)
3267 {
3268 	int nr;
3269 
3270 	nr = global_page_state(NR_ACTIVE_FILE) +
3271 	     global_page_state(NR_INACTIVE_FILE);
3272 
3273 	if (get_nr_swap_pages() > 0)
3274 		nr += global_page_state(NR_ACTIVE_ANON) +
3275 		      global_page_state(NR_INACTIVE_ANON);
3276 
3277 	return nr;
3278 }
3279 
3280 unsigned long zone_reclaimable_pages(struct zone *zone)
3281 {
3282 	int nr;
3283 
3284 	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
3285 	     zone_page_state(zone, NR_INACTIVE_FILE);
3286 
3287 	if (get_nr_swap_pages() > 0)
3288 		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
3289 		      zone_page_state(zone, NR_INACTIVE_ANON);
3290 
3291 	return nr;
3292 }
3293 
3294 #ifdef CONFIG_HIBERNATION
3295 /*
3296  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3297  * freed pages.
3298  *
3299  * Rather than trying to age LRUs the aim is to preserve the overall
3300  * LRU order by reclaiming preferentially
3301  * inactive > active > active referenced > active mapped
3302  */
3303 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3304 {
3305 	struct reclaim_state reclaim_state;
3306 	struct scan_control sc = {
3307 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3308 		.may_swap = 1,
3309 		.may_unmap = 1,
3310 		.may_writepage = 1,
3311 		.nr_to_reclaim = nr_to_reclaim,
3312 		.hibernation_mode = 1,
3313 		.order = 0,
3314 		.priority = DEF_PRIORITY,
3315 	};
3316 	struct shrink_control shrink = {
3317 		.gfp_mask = sc.gfp_mask,
3318 	};
3319 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3320 	struct task_struct *p = current;
3321 	unsigned long nr_reclaimed;
3322 
3323 	p->flags |= PF_MEMALLOC;
3324 	lockdep_set_current_reclaim_state(sc.gfp_mask);
3325 	reclaim_state.reclaimed_slab = 0;
3326 	p->reclaim_state = &reclaim_state;
3327 
3328 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3329 
3330 	p->reclaim_state = NULL;
3331 	lockdep_clear_current_reclaim_state();
3332 	p->flags &= ~PF_MEMALLOC;
3333 
3334 	return nr_reclaimed;
3335 }
3336 #endif /* CONFIG_HIBERNATION */
3337 
3338 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3339    not required for correctness.  So if the last cpu in a node goes
3340    away, we get changed to run anywhere: as the first one comes back,
3341    restore their cpu bindings. */
3342 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3343 			void *hcpu)
3344 {
3345 	int nid;
3346 
3347 	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3348 		for_each_node_state(nid, N_MEMORY) {
3349 			pg_data_t *pgdat = NODE_DATA(nid);
3350 			const struct cpumask *mask;
3351 
3352 			mask = cpumask_of_node(pgdat->node_id);
3353 
3354 			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3355 				/* One of our CPUs online: restore mask */
3356 				set_cpus_allowed_ptr(pgdat->kswapd, mask);
3357 		}
3358 	}
3359 	return NOTIFY_OK;
3360 }
3361 
3362 /*
3363  * This kswapd start function will be called by init and node-hot-add.
3364  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3365  */
3366 int kswapd_run(int nid)
3367 {
3368 	pg_data_t *pgdat = NODE_DATA(nid);
3369 	int ret = 0;
3370 
3371 	if (pgdat->kswapd)
3372 		return 0;
3373 
3374 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3375 	if (IS_ERR(pgdat->kswapd)) {
3376 		/* failure at boot is fatal */
3377 		BUG_ON(system_state == SYSTEM_BOOTING);
3378 		pr_err("Failed to start kswapd on node %d\n", nid);
3379 		ret = PTR_ERR(pgdat->kswapd);
3380 		pgdat->kswapd = NULL;
3381 	}
3382 	return ret;
3383 }
3384 
3385 /*
3386  * Called by memory hotplug when all memory in a node is offlined.  Caller must
3387  * hold lock_memory_hotplug().
3388  */
3389 void kswapd_stop(int nid)
3390 {
3391 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3392 
3393 	if (kswapd) {
3394 		kthread_stop(kswapd);
3395 		NODE_DATA(nid)->kswapd = NULL;
3396 	}
3397 }
3398 
3399 static int __init kswapd_init(void)
3400 {
3401 	int nid;
3402 
3403 	swap_setup();
3404 	for_each_node_state(nid, N_MEMORY)
3405  		kswapd_run(nid);
3406 	hotcpu_notifier(cpu_callback, 0);
3407 	return 0;
3408 }
3409 
3410 module_init(kswapd_init)
3411 
3412 #ifdef CONFIG_NUMA
3413 /*
3414  * Zone reclaim mode
3415  *
3416  * If non-zero call zone_reclaim when the number of free pages falls below
3417  * the watermarks.
3418  */
3419 int zone_reclaim_mode __read_mostly;
3420 
3421 #define RECLAIM_OFF 0
3422 #define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3423 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3424 #define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
3425 
3426 /*
3427  * Priority for ZONE_RECLAIM. This determines the fraction of pages
3428  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3429  * a zone.
3430  */
3431 #define ZONE_RECLAIM_PRIORITY 4
3432 
3433 /*
3434  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3435  * occur.
3436  */
3437 int sysctl_min_unmapped_ratio = 1;
3438 
3439 /*
3440  * If the number of slab pages in a zone grows beyond this percentage then
3441  * slab reclaim needs to occur.
3442  */
3443 int sysctl_min_slab_ratio = 5;
3444 
3445 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3446 {
3447 	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3448 	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3449 		zone_page_state(zone, NR_ACTIVE_FILE);
3450 
3451 	/*
3452 	 * It's possible for there to be more file mapped pages than
3453 	 * accounted for by the pages on the file LRU lists because
3454 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3455 	 */
3456 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3457 }
3458 
3459 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3460 static long zone_pagecache_reclaimable(struct zone *zone)
3461 {
3462 	long nr_pagecache_reclaimable;
3463 	long delta = 0;
3464 
3465 	/*
3466 	 * If RECLAIM_SWAP is set, then all file pages are considered
3467 	 * potentially reclaimable. Otherwise, we have to worry about
3468 	 * pages like swapcache and zone_unmapped_file_pages() provides
3469 	 * a better estimate
3470 	 */
3471 	if (zone_reclaim_mode & RECLAIM_SWAP)
3472 		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3473 	else
3474 		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3475 
3476 	/* If we can't clean pages, remove dirty pages from consideration */
3477 	if (!(zone_reclaim_mode & RECLAIM_WRITE))
3478 		delta += zone_page_state(zone, NR_FILE_DIRTY);
3479 
3480 	/* Watch for any possible underflows due to delta */
3481 	if (unlikely(delta > nr_pagecache_reclaimable))
3482 		delta = nr_pagecache_reclaimable;
3483 
3484 	return nr_pagecache_reclaimable - delta;
3485 }
3486 
3487 /*
3488  * Try to free up some pages from this zone through reclaim.
3489  */
3490 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3491 {
3492 	/* Minimum pages needed in order to stay on node */
3493 	const unsigned long nr_pages = 1 << order;
3494 	struct task_struct *p = current;
3495 	struct reclaim_state reclaim_state;
3496 	struct scan_control sc = {
3497 		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3498 		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3499 		.may_swap = 1,
3500 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3501 		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3502 		.order = order,
3503 		.priority = ZONE_RECLAIM_PRIORITY,
3504 	};
3505 	struct shrink_control shrink = {
3506 		.gfp_mask = sc.gfp_mask,
3507 	};
3508 	unsigned long nr_slab_pages0, nr_slab_pages1;
3509 
3510 	cond_resched();
3511 	/*
3512 	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3513 	 * and we also need to be able to write out pages for RECLAIM_WRITE
3514 	 * and RECLAIM_SWAP.
3515 	 */
3516 	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3517 	lockdep_set_current_reclaim_state(gfp_mask);
3518 	reclaim_state.reclaimed_slab = 0;
3519 	p->reclaim_state = &reclaim_state;
3520 
3521 	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3522 		/*
3523 		 * Free memory by calling shrink zone with increasing
3524 		 * priorities until we have enough memory freed.
3525 		 */
3526 		do {
3527 			shrink_zone(zone, &sc);
3528 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3529 	}
3530 
3531 	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3532 	if (nr_slab_pages0 > zone->min_slab_pages) {
3533 		/*
3534 		 * shrink_slab() does not currently allow us to determine how
3535 		 * many pages were freed in this zone. So we take the current
3536 		 * number of slab pages and shake the slab until it is reduced
3537 		 * by the same nr_pages that we used for reclaiming unmapped
3538 		 * pages.
3539 		 *
3540 		 * Note that shrink_slab will free memory on all zones and may
3541 		 * take a long time.
3542 		 */
3543 		for (;;) {
3544 			unsigned long lru_pages = zone_reclaimable_pages(zone);
3545 
3546 			/* No reclaimable slab or very low memory pressure */
3547 			if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3548 				break;
3549 
3550 			/* Freed enough memory */
3551 			nr_slab_pages1 = zone_page_state(zone,
3552 							NR_SLAB_RECLAIMABLE);
3553 			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3554 				break;
3555 		}
3556 
3557 		/*
3558 		 * Update nr_reclaimed by the number of slab pages we
3559 		 * reclaimed from this zone.
3560 		 */
3561 		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3562 		if (nr_slab_pages1 < nr_slab_pages0)
3563 			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3564 	}
3565 
3566 	p->reclaim_state = NULL;
3567 	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3568 	lockdep_clear_current_reclaim_state();
3569 	return sc.nr_reclaimed >= nr_pages;
3570 }
3571 
3572 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3573 {
3574 	int node_id;
3575 	int ret;
3576 
3577 	/*
3578 	 * Zone reclaim reclaims unmapped file backed pages and
3579 	 * slab pages if we are over the defined limits.
3580 	 *
3581 	 * A small portion of unmapped file backed pages is needed for
3582 	 * file I/O otherwise pages read by file I/O will be immediately
3583 	 * thrown out if the zone is overallocated. So we do not reclaim
3584 	 * if less than a specified percentage of the zone is used by
3585 	 * unmapped file backed pages.
3586 	 */
3587 	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3588 	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3589 		return ZONE_RECLAIM_FULL;
3590 
3591 	if (zone->all_unreclaimable)
3592 		return ZONE_RECLAIM_FULL;
3593 
3594 	/*
3595 	 * Do not scan if the allocation should not be delayed.
3596 	 */
3597 	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3598 		return ZONE_RECLAIM_NOSCAN;
3599 
3600 	/*
3601 	 * Only run zone reclaim on the local zone or on zones that do not
3602 	 * have associated processors. This will favor the local processor
3603 	 * over remote processors and spread off node memory allocations
3604 	 * as wide as possible.
3605 	 */
3606 	node_id = zone_to_nid(zone);
3607 	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3608 		return ZONE_RECLAIM_NOSCAN;
3609 
3610 	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3611 		return ZONE_RECLAIM_NOSCAN;
3612 
3613 	ret = __zone_reclaim(zone, gfp_mask, order);
3614 	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3615 
3616 	if (!ret)
3617 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3618 
3619 	return ret;
3620 }
3621 #endif
3622 
3623 /*
3624  * page_evictable - test whether a page is evictable
3625  * @page: the page to test
3626  *
3627  * Test whether page is evictable--i.e., should be placed on active/inactive
3628  * lists vs unevictable list.
3629  *
3630  * Reasons page might not be evictable:
3631  * (1) page's mapping marked unevictable
3632  * (2) page is part of an mlocked VMA
3633  *
3634  */
3635 int page_evictable(struct page *page)
3636 {
3637 	return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3638 }
3639 
3640 #ifdef CONFIG_SHMEM
3641 /**
3642  * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3643  * @pages:	array of pages to check
3644  * @nr_pages:	number of pages to check
3645  *
3646  * Checks pages for evictability and moves them to the appropriate lru list.
3647  *
3648  * This function is only used for SysV IPC SHM_UNLOCK.
3649  */
3650 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3651 {
3652 	struct lruvec *lruvec;
3653 	struct zone *zone = NULL;
3654 	int pgscanned = 0;
3655 	int pgrescued = 0;
3656 	int i;
3657 
3658 	for (i = 0; i < nr_pages; i++) {
3659 		struct page *page = pages[i];
3660 		struct zone *pagezone;
3661 
3662 		pgscanned++;
3663 		pagezone = page_zone(page);
3664 		if (pagezone != zone) {
3665 			if (zone)
3666 				spin_unlock_irq(&zone->lru_lock);
3667 			zone = pagezone;
3668 			spin_lock_irq(&zone->lru_lock);
3669 		}
3670 		lruvec = mem_cgroup_page_lruvec(page, zone);
3671 
3672 		if (!PageLRU(page) || !PageUnevictable(page))
3673 			continue;
3674 
3675 		if (page_evictable(page)) {
3676 			enum lru_list lru = page_lru_base_type(page);
3677 
3678 			VM_BUG_ON(PageActive(page));
3679 			ClearPageUnevictable(page);
3680 			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3681 			add_page_to_lru_list(page, lruvec, lru);
3682 			pgrescued++;
3683 		}
3684 	}
3685 
3686 	if (zone) {
3687 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3688 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3689 		spin_unlock_irq(&zone->lru_lock);
3690 	}
3691 }
3692 #endif /* CONFIG_SHMEM */
3693 
3694 static void warn_scan_unevictable_pages(void)
3695 {
3696 	printk_once(KERN_WARNING
3697 		    "%s: The scan_unevictable_pages sysctl/node-interface has been "
3698 		    "disabled for lack of a legitimate use case.  If you have "
3699 		    "one, please send an email to linux-mm@kvack.org.\n",
3700 		    current->comm);
3701 }
3702 
3703 /*
3704  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3705  * all nodes' unevictable lists for evictable pages
3706  */
3707 unsigned long scan_unevictable_pages;
3708 
3709 int scan_unevictable_handler(struct ctl_table *table, int write,
3710 			   void __user *buffer,
3711 			   size_t *length, loff_t *ppos)
3712 {
3713 	warn_scan_unevictable_pages();
3714 	proc_doulongvec_minmax(table, write, buffer, length, ppos);
3715 	scan_unevictable_pages = 0;
3716 	return 0;
3717 }
3718 
3719 #ifdef CONFIG_NUMA
3720 /*
3721  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3722  * a specified node's per zone unevictable lists for evictable pages.
3723  */
3724 
3725 static ssize_t read_scan_unevictable_node(struct device *dev,
3726 					  struct device_attribute *attr,
3727 					  char *buf)
3728 {
3729 	warn_scan_unevictable_pages();
3730 	return sprintf(buf, "0\n");	/* always zero; should fit... */
3731 }
3732 
3733 static ssize_t write_scan_unevictable_node(struct device *dev,
3734 					   struct device_attribute *attr,
3735 					const char *buf, size_t count)
3736 {
3737 	warn_scan_unevictable_pages();
3738 	return 1;
3739 }
3740 
3741 
3742 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3743 			read_scan_unevictable_node,
3744 			write_scan_unevictable_node);
3745 
3746 int scan_unevictable_register_node(struct node *node)
3747 {
3748 	return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3749 }
3750 
3751 void scan_unevictable_unregister_node(struct node *node)
3752 {
3753 	device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3754 }
3755 #endif
3756