xref: /linux/mm/vmscan.c (revision 90ab5ee94171b3e28de6bb42ee30b527014e0be7)
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13 
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h>	/* for try_to_release_page(),
27 					buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44 #include <linux/oom.h>
45 #include <linux/prefetch.h>
46 
47 #include <asm/tlbflush.h>
48 #include <asm/div64.h>
49 
50 #include <linux/swapops.h>
51 
52 #include "internal.h"
53 
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/vmscan.h>
56 
57 /*
58  * reclaim_mode determines how the inactive list is shrunk
59  * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
60  * RECLAIM_MODE_ASYNC:  Do not block
61  * RECLAIM_MODE_SYNC:   Allow blocking e.g. call wait_on_page_writeback
62  * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
63  *			page from the LRU and reclaim all pages within a
64  *			naturally aligned range
65  * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
66  *			order-0 pages and then compact the zone
67  */
68 typedef unsigned __bitwise__ reclaim_mode_t;
69 #define RECLAIM_MODE_SINGLE		((__force reclaim_mode_t)0x01u)
70 #define RECLAIM_MODE_ASYNC		((__force reclaim_mode_t)0x02u)
71 #define RECLAIM_MODE_SYNC		((__force reclaim_mode_t)0x04u)
72 #define RECLAIM_MODE_LUMPYRECLAIM	((__force reclaim_mode_t)0x08u)
73 #define RECLAIM_MODE_COMPACTION		((__force reclaim_mode_t)0x10u)
74 
75 struct scan_control {
76 	/* Incremented by the number of inactive pages that were scanned */
77 	unsigned long nr_scanned;
78 
79 	/* Number of pages freed so far during a call to shrink_zones() */
80 	unsigned long nr_reclaimed;
81 
82 	/* How many pages shrink_list() should reclaim */
83 	unsigned long nr_to_reclaim;
84 
85 	unsigned long hibernation_mode;
86 
87 	/* This context's GFP mask */
88 	gfp_t gfp_mask;
89 
90 	int may_writepage;
91 
92 	/* Can mapped pages be reclaimed? */
93 	int may_unmap;
94 
95 	/* Can pages be swapped as part of reclaim? */
96 	int may_swap;
97 
98 	int order;
99 
100 	/*
101 	 * Intend to reclaim enough continuous memory rather than reclaim
102 	 * enough amount of memory. i.e, mode for high order allocation.
103 	 */
104 	reclaim_mode_t reclaim_mode;
105 
106 	/* Which cgroup do we reclaim from */
107 	struct mem_cgroup *mem_cgroup;
108 
109 	/*
110 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
111 	 * are scanned.
112 	 */
113 	nodemask_t	*nodemask;
114 };
115 
116 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
117 
118 #ifdef ARCH_HAS_PREFETCH
119 #define prefetch_prev_lru_page(_page, _base, _field)			\
120 	do {								\
121 		if ((_page)->lru.prev != _base) {			\
122 			struct page *prev;				\
123 									\
124 			prev = lru_to_page(&(_page->lru));		\
125 			prefetch(&prev->_field);			\
126 		}							\
127 	} while (0)
128 #else
129 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
130 #endif
131 
132 #ifdef ARCH_HAS_PREFETCHW
133 #define prefetchw_prev_lru_page(_page, _base, _field)			\
134 	do {								\
135 		if ((_page)->lru.prev != _base) {			\
136 			struct page *prev;				\
137 									\
138 			prev = lru_to_page(&(_page->lru));		\
139 			prefetchw(&prev->_field);			\
140 		}							\
141 	} while (0)
142 #else
143 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
144 #endif
145 
146 /*
147  * From 0 .. 100.  Higher means more swappy.
148  */
149 int vm_swappiness = 60;
150 long vm_total_pages;	/* The total number of pages which the VM controls */
151 
152 static LIST_HEAD(shrinker_list);
153 static DECLARE_RWSEM(shrinker_rwsem);
154 
155 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
156 #define scanning_global_lru(sc)	(!(sc)->mem_cgroup)
157 #else
158 #define scanning_global_lru(sc)	(1)
159 #endif
160 
161 static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
162 						  struct scan_control *sc)
163 {
164 	if (!scanning_global_lru(sc))
165 		return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
166 
167 	return &zone->reclaim_stat;
168 }
169 
170 static unsigned long zone_nr_lru_pages(struct zone *zone,
171 				struct scan_control *sc, enum lru_list lru)
172 {
173 	if (!scanning_global_lru(sc))
174 		return mem_cgroup_zone_nr_lru_pages(sc->mem_cgroup,
175 				zone_to_nid(zone), zone_idx(zone), BIT(lru));
176 
177 	return zone_page_state(zone, NR_LRU_BASE + lru);
178 }
179 
180 
181 /*
182  * Add a shrinker callback to be called from the vm
183  */
184 void register_shrinker(struct shrinker *shrinker)
185 {
186 	atomic_long_set(&shrinker->nr_in_batch, 0);
187 	down_write(&shrinker_rwsem);
188 	list_add_tail(&shrinker->list, &shrinker_list);
189 	up_write(&shrinker_rwsem);
190 }
191 EXPORT_SYMBOL(register_shrinker);
192 
193 /*
194  * Remove one
195  */
196 void unregister_shrinker(struct shrinker *shrinker)
197 {
198 	down_write(&shrinker_rwsem);
199 	list_del(&shrinker->list);
200 	up_write(&shrinker_rwsem);
201 }
202 EXPORT_SYMBOL(unregister_shrinker);
203 
204 static inline int do_shrinker_shrink(struct shrinker *shrinker,
205 				     struct shrink_control *sc,
206 				     unsigned long nr_to_scan)
207 {
208 	sc->nr_to_scan = nr_to_scan;
209 	return (*shrinker->shrink)(shrinker, sc);
210 }
211 
212 #define SHRINK_BATCH 128
213 /*
214  * Call the shrink functions to age shrinkable caches
215  *
216  * Here we assume it costs one seek to replace a lru page and that it also
217  * takes a seek to recreate a cache object.  With this in mind we age equal
218  * percentages of the lru and ageable caches.  This should balance the seeks
219  * generated by these structures.
220  *
221  * If the vm encountered mapped pages on the LRU it increase the pressure on
222  * slab to avoid swapping.
223  *
224  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
225  *
226  * `lru_pages' represents the number of on-LRU pages in all the zones which
227  * are eligible for the caller's allocation attempt.  It is used for balancing
228  * slab reclaim versus page reclaim.
229  *
230  * Returns the number of slab objects which we shrunk.
231  */
232 unsigned long shrink_slab(struct shrink_control *shrink,
233 			  unsigned long nr_pages_scanned,
234 			  unsigned long lru_pages)
235 {
236 	struct shrinker *shrinker;
237 	unsigned long ret = 0;
238 
239 	if (nr_pages_scanned == 0)
240 		nr_pages_scanned = SWAP_CLUSTER_MAX;
241 
242 	if (!down_read_trylock(&shrinker_rwsem)) {
243 		/* Assume we'll be able to shrink next time */
244 		ret = 1;
245 		goto out;
246 	}
247 
248 	list_for_each_entry(shrinker, &shrinker_list, list) {
249 		unsigned long long delta;
250 		long total_scan;
251 		long max_pass;
252 		int shrink_ret = 0;
253 		long nr;
254 		long new_nr;
255 		long batch_size = shrinker->batch ? shrinker->batch
256 						  : SHRINK_BATCH;
257 
258 		max_pass = do_shrinker_shrink(shrinker, shrink, 0);
259 		if (max_pass <= 0)
260 			continue;
261 
262 		/*
263 		 * copy the current shrinker scan count into a local variable
264 		 * and zero it so that other concurrent shrinker invocations
265 		 * don't also do this scanning work.
266 		 */
267 		nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
268 
269 		total_scan = nr;
270 		delta = (4 * nr_pages_scanned) / shrinker->seeks;
271 		delta *= max_pass;
272 		do_div(delta, lru_pages + 1);
273 		total_scan += delta;
274 		if (total_scan < 0) {
275 			printk(KERN_ERR "shrink_slab: %pF negative objects to "
276 			       "delete nr=%ld\n",
277 			       shrinker->shrink, total_scan);
278 			total_scan = max_pass;
279 		}
280 
281 		/*
282 		 * We need to avoid excessive windup on filesystem shrinkers
283 		 * due to large numbers of GFP_NOFS allocations causing the
284 		 * shrinkers to return -1 all the time. This results in a large
285 		 * nr being built up so when a shrink that can do some work
286 		 * comes along it empties the entire cache due to nr >>>
287 		 * max_pass.  This is bad for sustaining a working set in
288 		 * memory.
289 		 *
290 		 * Hence only allow the shrinker to scan the entire cache when
291 		 * a large delta change is calculated directly.
292 		 */
293 		if (delta < max_pass / 4)
294 			total_scan = min(total_scan, max_pass / 2);
295 
296 		/*
297 		 * Avoid risking looping forever due to too large nr value:
298 		 * never try to free more than twice the estimate number of
299 		 * freeable entries.
300 		 */
301 		if (total_scan > max_pass * 2)
302 			total_scan = max_pass * 2;
303 
304 		trace_mm_shrink_slab_start(shrinker, shrink, nr,
305 					nr_pages_scanned, lru_pages,
306 					max_pass, delta, total_scan);
307 
308 		while (total_scan >= batch_size) {
309 			int nr_before;
310 
311 			nr_before = do_shrinker_shrink(shrinker, shrink, 0);
312 			shrink_ret = do_shrinker_shrink(shrinker, shrink,
313 							batch_size);
314 			if (shrink_ret == -1)
315 				break;
316 			if (shrink_ret < nr_before)
317 				ret += nr_before - shrink_ret;
318 			count_vm_events(SLABS_SCANNED, batch_size);
319 			total_scan -= batch_size;
320 
321 			cond_resched();
322 		}
323 
324 		/*
325 		 * move the unused scan count back into the shrinker in a
326 		 * manner that handles concurrent updates. If we exhausted the
327 		 * scan, there is no need to do an update.
328 		 */
329 		if (total_scan > 0)
330 			new_nr = atomic_long_add_return(total_scan,
331 					&shrinker->nr_in_batch);
332 		else
333 			new_nr = atomic_long_read(&shrinker->nr_in_batch);
334 
335 		trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
336 	}
337 	up_read(&shrinker_rwsem);
338 out:
339 	cond_resched();
340 	return ret;
341 }
342 
343 static void set_reclaim_mode(int priority, struct scan_control *sc,
344 				   bool sync)
345 {
346 	reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
347 
348 	/*
349 	 * Initially assume we are entering either lumpy reclaim or
350 	 * reclaim/compaction.Depending on the order, we will either set the
351 	 * sync mode or just reclaim order-0 pages later.
352 	 */
353 	if (COMPACTION_BUILD)
354 		sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
355 	else
356 		sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
357 
358 	/*
359 	 * Avoid using lumpy reclaim or reclaim/compaction if possible by
360 	 * restricting when its set to either costly allocations or when
361 	 * under memory pressure
362 	 */
363 	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
364 		sc->reclaim_mode |= syncmode;
365 	else if (sc->order && priority < DEF_PRIORITY - 2)
366 		sc->reclaim_mode |= syncmode;
367 	else
368 		sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
369 }
370 
371 static void reset_reclaim_mode(struct scan_control *sc)
372 {
373 	sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
374 }
375 
376 static inline int is_page_cache_freeable(struct page *page)
377 {
378 	/*
379 	 * A freeable page cache page is referenced only by the caller
380 	 * that isolated the page, the page cache radix tree and
381 	 * optional buffer heads at page->private.
382 	 */
383 	return page_count(page) - page_has_private(page) == 2;
384 }
385 
386 static int may_write_to_queue(struct backing_dev_info *bdi,
387 			      struct scan_control *sc)
388 {
389 	if (current->flags & PF_SWAPWRITE)
390 		return 1;
391 	if (!bdi_write_congested(bdi))
392 		return 1;
393 	if (bdi == current->backing_dev_info)
394 		return 1;
395 
396 	/* lumpy reclaim for hugepage often need a lot of write */
397 	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
398 		return 1;
399 	return 0;
400 }
401 
402 /*
403  * We detected a synchronous write error writing a page out.  Probably
404  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
405  * fsync(), msync() or close().
406  *
407  * The tricky part is that after writepage we cannot touch the mapping: nothing
408  * prevents it from being freed up.  But we have a ref on the page and once
409  * that page is locked, the mapping is pinned.
410  *
411  * We're allowed to run sleeping lock_page() here because we know the caller has
412  * __GFP_FS.
413  */
414 static void handle_write_error(struct address_space *mapping,
415 				struct page *page, int error)
416 {
417 	lock_page(page);
418 	if (page_mapping(page) == mapping)
419 		mapping_set_error(mapping, error);
420 	unlock_page(page);
421 }
422 
423 /* possible outcome of pageout() */
424 typedef enum {
425 	/* failed to write page out, page is locked */
426 	PAGE_KEEP,
427 	/* move page to the active list, page is locked */
428 	PAGE_ACTIVATE,
429 	/* page has been sent to the disk successfully, page is unlocked */
430 	PAGE_SUCCESS,
431 	/* page is clean and locked */
432 	PAGE_CLEAN,
433 } pageout_t;
434 
435 /*
436  * pageout is called by shrink_page_list() for each dirty page.
437  * Calls ->writepage().
438  */
439 static pageout_t pageout(struct page *page, struct address_space *mapping,
440 			 struct scan_control *sc)
441 {
442 	/*
443 	 * If the page is dirty, only perform writeback if that write
444 	 * will be non-blocking.  To prevent this allocation from being
445 	 * stalled by pagecache activity.  But note that there may be
446 	 * stalls if we need to run get_block().  We could test
447 	 * PagePrivate for that.
448 	 *
449 	 * If this process is currently in __generic_file_aio_write() against
450 	 * this page's queue, we can perform writeback even if that
451 	 * will block.
452 	 *
453 	 * If the page is swapcache, write it back even if that would
454 	 * block, for some throttling. This happens by accident, because
455 	 * swap_backing_dev_info is bust: it doesn't reflect the
456 	 * congestion state of the swapdevs.  Easy to fix, if needed.
457 	 */
458 	if (!is_page_cache_freeable(page))
459 		return PAGE_KEEP;
460 	if (!mapping) {
461 		/*
462 		 * Some data journaling orphaned pages can have
463 		 * page->mapping == NULL while being dirty with clean buffers.
464 		 */
465 		if (page_has_private(page)) {
466 			if (try_to_free_buffers(page)) {
467 				ClearPageDirty(page);
468 				printk("%s: orphaned page\n", __func__);
469 				return PAGE_CLEAN;
470 			}
471 		}
472 		return PAGE_KEEP;
473 	}
474 	if (mapping->a_ops->writepage == NULL)
475 		return PAGE_ACTIVATE;
476 	if (!may_write_to_queue(mapping->backing_dev_info, sc))
477 		return PAGE_KEEP;
478 
479 	if (clear_page_dirty_for_io(page)) {
480 		int res;
481 		struct writeback_control wbc = {
482 			.sync_mode = WB_SYNC_NONE,
483 			.nr_to_write = SWAP_CLUSTER_MAX,
484 			.range_start = 0,
485 			.range_end = LLONG_MAX,
486 			.for_reclaim = 1,
487 		};
488 
489 		SetPageReclaim(page);
490 		res = mapping->a_ops->writepage(page, &wbc);
491 		if (res < 0)
492 			handle_write_error(mapping, page, res);
493 		if (res == AOP_WRITEPAGE_ACTIVATE) {
494 			ClearPageReclaim(page);
495 			return PAGE_ACTIVATE;
496 		}
497 
498 		if (!PageWriteback(page)) {
499 			/* synchronous write or broken a_ops? */
500 			ClearPageReclaim(page);
501 		}
502 		trace_mm_vmscan_writepage(page,
503 			trace_reclaim_flags(page, sc->reclaim_mode));
504 		inc_zone_page_state(page, NR_VMSCAN_WRITE);
505 		return PAGE_SUCCESS;
506 	}
507 
508 	return PAGE_CLEAN;
509 }
510 
511 /*
512  * Same as remove_mapping, but if the page is removed from the mapping, it
513  * gets returned with a refcount of 0.
514  */
515 static int __remove_mapping(struct address_space *mapping, struct page *page)
516 {
517 	BUG_ON(!PageLocked(page));
518 	BUG_ON(mapping != page_mapping(page));
519 
520 	spin_lock_irq(&mapping->tree_lock);
521 	/*
522 	 * The non racy check for a busy page.
523 	 *
524 	 * Must be careful with the order of the tests. When someone has
525 	 * a ref to the page, it may be possible that they dirty it then
526 	 * drop the reference. So if PageDirty is tested before page_count
527 	 * here, then the following race may occur:
528 	 *
529 	 * get_user_pages(&page);
530 	 * [user mapping goes away]
531 	 * write_to(page);
532 	 *				!PageDirty(page)    [good]
533 	 * SetPageDirty(page);
534 	 * put_page(page);
535 	 *				!page_count(page)   [good, discard it]
536 	 *
537 	 * [oops, our write_to data is lost]
538 	 *
539 	 * Reversing the order of the tests ensures such a situation cannot
540 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
541 	 * load is not satisfied before that of page->_count.
542 	 *
543 	 * Note that if SetPageDirty is always performed via set_page_dirty,
544 	 * and thus under tree_lock, then this ordering is not required.
545 	 */
546 	if (!page_freeze_refs(page, 2))
547 		goto cannot_free;
548 	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
549 	if (unlikely(PageDirty(page))) {
550 		page_unfreeze_refs(page, 2);
551 		goto cannot_free;
552 	}
553 
554 	if (PageSwapCache(page)) {
555 		swp_entry_t swap = { .val = page_private(page) };
556 		__delete_from_swap_cache(page);
557 		spin_unlock_irq(&mapping->tree_lock);
558 		swapcache_free(swap, page);
559 	} else {
560 		void (*freepage)(struct page *);
561 
562 		freepage = mapping->a_ops->freepage;
563 
564 		__delete_from_page_cache(page);
565 		spin_unlock_irq(&mapping->tree_lock);
566 		mem_cgroup_uncharge_cache_page(page);
567 
568 		if (freepage != NULL)
569 			freepage(page);
570 	}
571 
572 	return 1;
573 
574 cannot_free:
575 	spin_unlock_irq(&mapping->tree_lock);
576 	return 0;
577 }
578 
579 /*
580  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
581  * someone else has a ref on the page, abort and return 0.  If it was
582  * successfully detached, return 1.  Assumes the caller has a single ref on
583  * this page.
584  */
585 int remove_mapping(struct address_space *mapping, struct page *page)
586 {
587 	if (__remove_mapping(mapping, page)) {
588 		/*
589 		 * Unfreezing the refcount with 1 rather than 2 effectively
590 		 * drops the pagecache ref for us without requiring another
591 		 * atomic operation.
592 		 */
593 		page_unfreeze_refs(page, 1);
594 		return 1;
595 	}
596 	return 0;
597 }
598 
599 /**
600  * putback_lru_page - put previously isolated page onto appropriate LRU list
601  * @page: page to be put back to appropriate lru list
602  *
603  * Add previously isolated @page to appropriate LRU list.
604  * Page may still be unevictable for other reasons.
605  *
606  * lru_lock must not be held, interrupts must be enabled.
607  */
608 void putback_lru_page(struct page *page)
609 {
610 	int lru;
611 	int active = !!TestClearPageActive(page);
612 	int was_unevictable = PageUnevictable(page);
613 
614 	VM_BUG_ON(PageLRU(page));
615 
616 redo:
617 	ClearPageUnevictable(page);
618 
619 	if (page_evictable(page, NULL)) {
620 		/*
621 		 * For evictable pages, we can use the cache.
622 		 * In event of a race, worst case is we end up with an
623 		 * unevictable page on [in]active list.
624 		 * We know how to handle that.
625 		 */
626 		lru = active + page_lru_base_type(page);
627 		lru_cache_add_lru(page, lru);
628 	} else {
629 		/*
630 		 * Put unevictable pages directly on zone's unevictable
631 		 * list.
632 		 */
633 		lru = LRU_UNEVICTABLE;
634 		add_page_to_unevictable_list(page);
635 		/*
636 		 * When racing with an mlock or AS_UNEVICTABLE clearing
637 		 * (page is unlocked) make sure that if the other thread
638 		 * does not observe our setting of PG_lru and fails
639 		 * isolation/check_move_unevictable_page,
640 		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
641 		 * the page back to the evictable list.
642 		 *
643 		 * The other side is TestClearPageMlocked() or shmem_lock().
644 		 */
645 		smp_mb();
646 	}
647 
648 	/*
649 	 * page's status can change while we move it among lru. If an evictable
650 	 * page is on unevictable list, it never be freed. To avoid that,
651 	 * check after we added it to the list, again.
652 	 */
653 	if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
654 		if (!isolate_lru_page(page)) {
655 			put_page(page);
656 			goto redo;
657 		}
658 		/* This means someone else dropped this page from LRU
659 		 * So, it will be freed or putback to LRU again. There is
660 		 * nothing to do here.
661 		 */
662 	}
663 
664 	if (was_unevictable && lru != LRU_UNEVICTABLE)
665 		count_vm_event(UNEVICTABLE_PGRESCUED);
666 	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
667 		count_vm_event(UNEVICTABLE_PGCULLED);
668 
669 	put_page(page);		/* drop ref from isolate */
670 }
671 
672 enum page_references {
673 	PAGEREF_RECLAIM,
674 	PAGEREF_RECLAIM_CLEAN,
675 	PAGEREF_KEEP,
676 	PAGEREF_ACTIVATE,
677 };
678 
679 static enum page_references page_check_references(struct page *page,
680 						  struct scan_control *sc)
681 {
682 	int referenced_ptes, referenced_page;
683 	unsigned long vm_flags;
684 
685 	referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
686 	referenced_page = TestClearPageReferenced(page);
687 
688 	/* Lumpy reclaim - ignore references */
689 	if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
690 		return PAGEREF_RECLAIM;
691 
692 	/*
693 	 * Mlock lost the isolation race with us.  Let try_to_unmap()
694 	 * move the page to the unevictable list.
695 	 */
696 	if (vm_flags & VM_LOCKED)
697 		return PAGEREF_RECLAIM;
698 
699 	if (referenced_ptes) {
700 		if (PageAnon(page))
701 			return PAGEREF_ACTIVATE;
702 		/*
703 		 * All mapped pages start out with page table
704 		 * references from the instantiating fault, so we need
705 		 * to look twice if a mapped file page is used more
706 		 * than once.
707 		 *
708 		 * Mark it and spare it for another trip around the
709 		 * inactive list.  Another page table reference will
710 		 * lead to its activation.
711 		 *
712 		 * Note: the mark is set for activated pages as well
713 		 * so that recently deactivated but used pages are
714 		 * quickly recovered.
715 		 */
716 		SetPageReferenced(page);
717 
718 		if (referenced_page || referenced_ptes > 1)
719 			return PAGEREF_ACTIVATE;
720 
721 		/*
722 		 * Activate file-backed executable pages after first usage.
723 		 */
724 		if (vm_flags & VM_EXEC)
725 			return PAGEREF_ACTIVATE;
726 
727 		return PAGEREF_KEEP;
728 	}
729 
730 	/* Reclaim if clean, defer dirty pages to writeback */
731 	if (referenced_page && !PageSwapBacked(page))
732 		return PAGEREF_RECLAIM_CLEAN;
733 
734 	return PAGEREF_RECLAIM;
735 }
736 
737 /*
738  * shrink_page_list() returns the number of reclaimed pages
739  */
740 static unsigned long shrink_page_list(struct list_head *page_list,
741 				      struct zone *zone,
742 				      struct scan_control *sc,
743 				      int priority,
744 				      unsigned long *ret_nr_dirty,
745 				      unsigned long *ret_nr_writeback)
746 {
747 	LIST_HEAD(ret_pages);
748 	LIST_HEAD(free_pages);
749 	int pgactivate = 0;
750 	unsigned long nr_dirty = 0;
751 	unsigned long nr_congested = 0;
752 	unsigned long nr_reclaimed = 0;
753 	unsigned long nr_writeback = 0;
754 
755 	cond_resched();
756 
757 	while (!list_empty(page_list)) {
758 		enum page_references references;
759 		struct address_space *mapping;
760 		struct page *page;
761 		int may_enter_fs;
762 
763 		cond_resched();
764 
765 		page = lru_to_page(page_list);
766 		list_del(&page->lru);
767 
768 		if (!trylock_page(page))
769 			goto keep;
770 
771 		VM_BUG_ON(PageActive(page));
772 		VM_BUG_ON(page_zone(page) != zone);
773 
774 		sc->nr_scanned++;
775 
776 		if (unlikely(!page_evictable(page, NULL)))
777 			goto cull_mlocked;
778 
779 		if (!sc->may_unmap && page_mapped(page))
780 			goto keep_locked;
781 
782 		/* Double the slab pressure for mapped and swapcache pages */
783 		if (page_mapped(page) || PageSwapCache(page))
784 			sc->nr_scanned++;
785 
786 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
787 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
788 
789 		if (PageWriteback(page)) {
790 			nr_writeback++;
791 			/*
792 			 * Synchronous reclaim cannot queue pages for
793 			 * writeback due to the possibility of stack overflow
794 			 * but if it encounters a page under writeback, wait
795 			 * for the IO to complete.
796 			 */
797 			if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
798 			    may_enter_fs)
799 				wait_on_page_writeback(page);
800 			else {
801 				unlock_page(page);
802 				goto keep_lumpy;
803 			}
804 		}
805 
806 		references = page_check_references(page, sc);
807 		switch (references) {
808 		case PAGEREF_ACTIVATE:
809 			goto activate_locked;
810 		case PAGEREF_KEEP:
811 			goto keep_locked;
812 		case PAGEREF_RECLAIM:
813 		case PAGEREF_RECLAIM_CLEAN:
814 			; /* try to reclaim the page below */
815 		}
816 
817 		/*
818 		 * Anonymous process memory has backing store?
819 		 * Try to allocate it some swap space here.
820 		 */
821 		if (PageAnon(page) && !PageSwapCache(page)) {
822 			if (!(sc->gfp_mask & __GFP_IO))
823 				goto keep_locked;
824 			if (!add_to_swap(page))
825 				goto activate_locked;
826 			may_enter_fs = 1;
827 		}
828 
829 		mapping = page_mapping(page);
830 
831 		/*
832 		 * The page is mapped into the page tables of one or more
833 		 * processes. Try to unmap it here.
834 		 */
835 		if (page_mapped(page) && mapping) {
836 			switch (try_to_unmap(page, TTU_UNMAP)) {
837 			case SWAP_FAIL:
838 				goto activate_locked;
839 			case SWAP_AGAIN:
840 				goto keep_locked;
841 			case SWAP_MLOCK:
842 				goto cull_mlocked;
843 			case SWAP_SUCCESS:
844 				; /* try to free the page below */
845 			}
846 		}
847 
848 		if (PageDirty(page)) {
849 			nr_dirty++;
850 
851 			/*
852 			 * Only kswapd can writeback filesystem pages to
853 			 * avoid risk of stack overflow but do not writeback
854 			 * unless under significant pressure.
855 			 */
856 			if (page_is_file_cache(page) &&
857 					(!current_is_kswapd() || priority >= DEF_PRIORITY - 2)) {
858 				/*
859 				 * Immediately reclaim when written back.
860 				 * Similar in principal to deactivate_page()
861 				 * except we already have the page isolated
862 				 * and know it's dirty
863 				 */
864 				inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
865 				SetPageReclaim(page);
866 
867 				goto keep_locked;
868 			}
869 
870 			if (references == PAGEREF_RECLAIM_CLEAN)
871 				goto keep_locked;
872 			if (!may_enter_fs)
873 				goto keep_locked;
874 			if (!sc->may_writepage)
875 				goto keep_locked;
876 
877 			/* Page is dirty, try to write it out here */
878 			switch (pageout(page, mapping, sc)) {
879 			case PAGE_KEEP:
880 				nr_congested++;
881 				goto keep_locked;
882 			case PAGE_ACTIVATE:
883 				goto activate_locked;
884 			case PAGE_SUCCESS:
885 				if (PageWriteback(page))
886 					goto keep_lumpy;
887 				if (PageDirty(page))
888 					goto keep;
889 
890 				/*
891 				 * A synchronous write - probably a ramdisk.  Go
892 				 * ahead and try to reclaim the page.
893 				 */
894 				if (!trylock_page(page))
895 					goto keep;
896 				if (PageDirty(page) || PageWriteback(page))
897 					goto keep_locked;
898 				mapping = page_mapping(page);
899 			case PAGE_CLEAN:
900 				; /* try to free the page below */
901 			}
902 		}
903 
904 		/*
905 		 * If the page has buffers, try to free the buffer mappings
906 		 * associated with this page. If we succeed we try to free
907 		 * the page as well.
908 		 *
909 		 * We do this even if the page is PageDirty().
910 		 * try_to_release_page() does not perform I/O, but it is
911 		 * possible for a page to have PageDirty set, but it is actually
912 		 * clean (all its buffers are clean).  This happens if the
913 		 * buffers were written out directly, with submit_bh(). ext3
914 		 * will do this, as well as the blockdev mapping.
915 		 * try_to_release_page() will discover that cleanness and will
916 		 * drop the buffers and mark the page clean - it can be freed.
917 		 *
918 		 * Rarely, pages can have buffers and no ->mapping.  These are
919 		 * the pages which were not successfully invalidated in
920 		 * truncate_complete_page().  We try to drop those buffers here
921 		 * and if that worked, and the page is no longer mapped into
922 		 * process address space (page_count == 1) it can be freed.
923 		 * Otherwise, leave the page on the LRU so it is swappable.
924 		 */
925 		if (page_has_private(page)) {
926 			if (!try_to_release_page(page, sc->gfp_mask))
927 				goto activate_locked;
928 			if (!mapping && page_count(page) == 1) {
929 				unlock_page(page);
930 				if (put_page_testzero(page))
931 					goto free_it;
932 				else {
933 					/*
934 					 * rare race with speculative reference.
935 					 * the speculative reference will free
936 					 * this page shortly, so we may
937 					 * increment nr_reclaimed here (and
938 					 * leave it off the LRU).
939 					 */
940 					nr_reclaimed++;
941 					continue;
942 				}
943 			}
944 		}
945 
946 		if (!mapping || !__remove_mapping(mapping, page))
947 			goto keep_locked;
948 
949 		/*
950 		 * At this point, we have no other references and there is
951 		 * no way to pick any more up (removed from LRU, removed
952 		 * from pagecache). Can use non-atomic bitops now (and
953 		 * we obviously don't have to worry about waking up a process
954 		 * waiting on the page lock, because there are no references.
955 		 */
956 		__clear_page_locked(page);
957 free_it:
958 		nr_reclaimed++;
959 
960 		/*
961 		 * Is there need to periodically free_page_list? It would
962 		 * appear not as the counts should be low
963 		 */
964 		list_add(&page->lru, &free_pages);
965 		continue;
966 
967 cull_mlocked:
968 		if (PageSwapCache(page))
969 			try_to_free_swap(page);
970 		unlock_page(page);
971 		putback_lru_page(page);
972 		reset_reclaim_mode(sc);
973 		continue;
974 
975 activate_locked:
976 		/* Not a candidate for swapping, so reclaim swap space. */
977 		if (PageSwapCache(page) && vm_swap_full())
978 			try_to_free_swap(page);
979 		VM_BUG_ON(PageActive(page));
980 		SetPageActive(page);
981 		pgactivate++;
982 keep_locked:
983 		unlock_page(page);
984 keep:
985 		reset_reclaim_mode(sc);
986 keep_lumpy:
987 		list_add(&page->lru, &ret_pages);
988 		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
989 	}
990 
991 	/*
992 	 * Tag a zone as congested if all the dirty pages encountered were
993 	 * backed by a congested BDI. In this case, reclaimers should just
994 	 * back off and wait for congestion to clear because further reclaim
995 	 * will encounter the same problem
996 	 */
997 	if (nr_dirty && nr_dirty == nr_congested && scanning_global_lru(sc))
998 		zone_set_flag(zone, ZONE_CONGESTED);
999 
1000 	free_hot_cold_page_list(&free_pages, 1);
1001 
1002 	list_splice(&ret_pages, page_list);
1003 	count_vm_events(PGACTIVATE, pgactivate);
1004 	*ret_nr_dirty += nr_dirty;
1005 	*ret_nr_writeback += nr_writeback;
1006 	return nr_reclaimed;
1007 }
1008 
1009 /*
1010  * Attempt to remove the specified page from its LRU.  Only take this page
1011  * if it is of the appropriate PageActive status.  Pages which are being
1012  * freed elsewhere are also ignored.
1013  *
1014  * page:	page to consider
1015  * mode:	one of the LRU isolation modes defined above
1016  *
1017  * returns 0 on success, -ve errno on failure.
1018  */
1019 int __isolate_lru_page(struct page *page, isolate_mode_t mode, int file)
1020 {
1021 	bool all_lru_mode;
1022 	int ret = -EINVAL;
1023 
1024 	/* Only take pages on the LRU. */
1025 	if (!PageLRU(page))
1026 		return ret;
1027 
1028 	all_lru_mode = (mode & (ISOLATE_ACTIVE|ISOLATE_INACTIVE)) ==
1029 		(ISOLATE_ACTIVE|ISOLATE_INACTIVE);
1030 
1031 	/*
1032 	 * When checking the active state, we need to be sure we are
1033 	 * dealing with comparible boolean values.  Take the logical not
1034 	 * of each.
1035 	 */
1036 	if (!all_lru_mode && !PageActive(page) != !(mode & ISOLATE_ACTIVE))
1037 		return ret;
1038 
1039 	if (!all_lru_mode && !!page_is_file_cache(page) != file)
1040 		return ret;
1041 
1042 	/*
1043 	 * When this function is being called for lumpy reclaim, we
1044 	 * initially look into all LRU pages, active, inactive and
1045 	 * unevictable; only give shrink_page_list evictable pages.
1046 	 */
1047 	if (PageUnevictable(page))
1048 		return ret;
1049 
1050 	ret = -EBUSY;
1051 
1052 	if ((mode & ISOLATE_CLEAN) && (PageDirty(page) || PageWriteback(page)))
1053 		return ret;
1054 
1055 	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1056 		return ret;
1057 
1058 	if (likely(get_page_unless_zero(page))) {
1059 		/*
1060 		 * Be careful not to clear PageLRU until after we're
1061 		 * sure the page is not being freed elsewhere -- the
1062 		 * page release code relies on it.
1063 		 */
1064 		ClearPageLRU(page);
1065 		ret = 0;
1066 	}
1067 
1068 	return ret;
1069 }
1070 
1071 /*
1072  * zone->lru_lock is heavily contended.  Some of the functions that
1073  * shrink the lists perform better by taking out a batch of pages
1074  * and working on them outside the LRU lock.
1075  *
1076  * For pagecache intensive workloads, this function is the hottest
1077  * spot in the kernel (apart from copy_*_user functions).
1078  *
1079  * Appropriate locks must be held before calling this function.
1080  *
1081  * @nr_to_scan:	The number of pages to look through on the list.
1082  * @src:	The LRU list to pull pages off.
1083  * @dst:	The temp list to put pages on to.
1084  * @scanned:	The number of pages that were scanned.
1085  * @order:	The caller's attempted allocation order
1086  * @mode:	One of the LRU isolation modes
1087  * @file:	True [1] if isolating file [!anon] pages
1088  *
1089  * returns how many pages were moved onto *@dst.
1090  */
1091 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1092 		struct list_head *src, struct list_head *dst,
1093 		unsigned long *scanned, int order, isolate_mode_t mode,
1094 		int file)
1095 {
1096 	unsigned long nr_taken = 0;
1097 	unsigned long nr_lumpy_taken = 0;
1098 	unsigned long nr_lumpy_dirty = 0;
1099 	unsigned long nr_lumpy_failed = 0;
1100 	unsigned long scan;
1101 
1102 	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1103 		struct page *page;
1104 		unsigned long pfn;
1105 		unsigned long end_pfn;
1106 		unsigned long page_pfn;
1107 		int zone_id;
1108 
1109 		page = lru_to_page(src);
1110 		prefetchw_prev_lru_page(page, src, flags);
1111 
1112 		VM_BUG_ON(!PageLRU(page));
1113 
1114 		switch (__isolate_lru_page(page, mode, file)) {
1115 		case 0:
1116 			list_move(&page->lru, dst);
1117 			mem_cgroup_del_lru(page);
1118 			nr_taken += hpage_nr_pages(page);
1119 			break;
1120 
1121 		case -EBUSY:
1122 			/* else it is being freed elsewhere */
1123 			list_move(&page->lru, src);
1124 			mem_cgroup_rotate_lru_list(page, page_lru(page));
1125 			continue;
1126 
1127 		default:
1128 			BUG();
1129 		}
1130 
1131 		if (!order)
1132 			continue;
1133 
1134 		/*
1135 		 * Attempt to take all pages in the order aligned region
1136 		 * surrounding the tag page.  Only take those pages of
1137 		 * the same active state as that tag page.  We may safely
1138 		 * round the target page pfn down to the requested order
1139 		 * as the mem_map is guaranteed valid out to MAX_ORDER,
1140 		 * where that page is in a different zone we will detect
1141 		 * it from its zone id and abort this block scan.
1142 		 */
1143 		zone_id = page_zone_id(page);
1144 		page_pfn = page_to_pfn(page);
1145 		pfn = page_pfn & ~((1 << order) - 1);
1146 		end_pfn = pfn + (1 << order);
1147 		for (; pfn < end_pfn; pfn++) {
1148 			struct page *cursor_page;
1149 
1150 			/* The target page is in the block, ignore it. */
1151 			if (unlikely(pfn == page_pfn))
1152 				continue;
1153 
1154 			/* Avoid holes within the zone. */
1155 			if (unlikely(!pfn_valid_within(pfn)))
1156 				break;
1157 
1158 			cursor_page = pfn_to_page(pfn);
1159 
1160 			/* Check that we have not crossed a zone boundary. */
1161 			if (unlikely(page_zone_id(cursor_page) != zone_id))
1162 				break;
1163 
1164 			/*
1165 			 * If we don't have enough swap space, reclaiming of
1166 			 * anon page which don't already have a swap slot is
1167 			 * pointless.
1168 			 */
1169 			if (nr_swap_pages <= 0 && PageSwapBacked(cursor_page) &&
1170 			    !PageSwapCache(cursor_page))
1171 				break;
1172 
1173 			if (__isolate_lru_page(cursor_page, mode, file) == 0) {
1174 				list_move(&cursor_page->lru, dst);
1175 				mem_cgroup_del_lru(cursor_page);
1176 				nr_taken += hpage_nr_pages(cursor_page);
1177 				nr_lumpy_taken++;
1178 				if (PageDirty(cursor_page))
1179 					nr_lumpy_dirty++;
1180 				scan++;
1181 			} else {
1182 				/*
1183 				 * Check if the page is freed already.
1184 				 *
1185 				 * We can't use page_count() as that
1186 				 * requires compound_head and we don't
1187 				 * have a pin on the page here. If a
1188 				 * page is tail, we may or may not
1189 				 * have isolated the head, so assume
1190 				 * it's not free, it'd be tricky to
1191 				 * track the head status without a
1192 				 * page pin.
1193 				 */
1194 				if (!PageTail(cursor_page) &&
1195 				    !atomic_read(&cursor_page->_count))
1196 					continue;
1197 				break;
1198 			}
1199 		}
1200 
1201 		/* If we break out of the loop above, lumpy reclaim failed */
1202 		if (pfn < end_pfn)
1203 			nr_lumpy_failed++;
1204 	}
1205 
1206 	*scanned = scan;
1207 
1208 	trace_mm_vmscan_lru_isolate(order,
1209 			nr_to_scan, scan,
1210 			nr_taken,
1211 			nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1212 			mode);
1213 	return nr_taken;
1214 }
1215 
1216 static unsigned long isolate_pages_global(unsigned long nr,
1217 					struct list_head *dst,
1218 					unsigned long *scanned, int order,
1219 					isolate_mode_t mode,
1220 					struct zone *z,	int active, int file)
1221 {
1222 	int lru = LRU_BASE;
1223 	if (active)
1224 		lru += LRU_ACTIVE;
1225 	if (file)
1226 		lru += LRU_FILE;
1227 	return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1228 								mode, file);
1229 }
1230 
1231 /*
1232  * clear_active_flags() is a helper for shrink_active_list(), clearing
1233  * any active bits from the pages in the list.
1234  */
1235 static unsigned long clear_active_flags(struct list_head *page_list,
1236 					unsigned int *count)
1237 {
1238 	int nr_active = 0;
1239 	int lru;
1240 	struct page *page;
1241 
1242 	list_for_each_entry(page, page_list, lru) {
1243 		int numpages = hpage_nr_pages(page);
1244 		lru = page_lru_base_type(page);
1245 		if (PageActive(page)) {
1246 			lru += LRU_ACTIVE;
1247 			ClearPageActive(page);
1248 			nr_active += numpages;
1249 		}
1250 		if (count)
1251 			count[lru] += numpages;
1252 	}
1253 
1254 	return nr_active;
1255 }
1256 
1257 /**
1258  * isolate_lru_page - tries to isolate a page from its LRU list
1259  * @page: page to isolate from its LRU list
1260  *
1261  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1262  * vmstat statistic corresponding to whatever LRU list the page was on.
1263  *
1264  * Returns 0 if the page was removed from an LRU list.
1265  * Returns -EBUSY if the page was not on an LRU list.
1266  *
1267  * The returned page will have PageLRU() cleared.  If it was found on
1268  * the active list, it will have PageActive set.  If it was found on
1269  * the unevictable list, it will have the PageUnevictable bit set. That flag
1270  * may need to be cleared by the caller before letting the page go.
1271  *
1272  * The vmstat statistic corresponding to the list on which the page was
1273  * found will be decremented.
1274  *
1275  * Restrictions:
1276  * (1) Must be called with an elevated refcount on the page. This is a
1277  *     fundamentnal difference from isolate_lru_pages (which is called
1278  *     without a stable reference).
1279  * (2) the lru_lock must not be held.
1280  * (3) interrupts must be enabled.
1281  */
1282 int isolate_lru_page(struct page *page)
1283 {
1284 	int ret = -EBUSY;
1285 
1286 	VM_BUG_ON(!page_count(page));
1287 
1288 	if (PageLRU(page)) {
1289 		struct zone *zone = page_zone(page);
1290 
1291 		spin_lock_irq(&zone->lru_lock);
1292 		if (PageLRU(page)) {
1293 			int lru = page_lru(page);
1294 			ret = 0;
1295 			get_page(page);
1296 			ClearPageLRU(page);
1297 
1298 			del_page_from_lru_list(zone, page, lru);
1299 		}
1300 		spin_unlock_irq(&zone->lru_lock);
1301 	}
1302 	return ret;
1303 }
1304 
1305 /*
1306  * Are there way too many processes in the direct reclaim path already?
1307  */
1308 static int too_many_isolated(struct zone *zone, int file,
1309 		struct scan_control *sc)
1310 {
1311 	unsigned long inactive, isolated;
1312 
1313 	if (current_is_kswapd())
1314 		return 0;
1315 
1316 	if (!scanning_global_lru(sc))
1317 		return 0;
1318 
1319 	if (file) {
1320 		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1321 		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1322 	} else {
1323 		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1324 		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1325 	}
1326 
1327 	return isolated > inactive;
1328 }
1329 
1330 /*
1331  * TODO: Try merging with migrations version of putback_lru_pages
1332  */
1333 static noinline_for_stack void
1334 putback_lru_pages(struct zone *zone, struct scan_control *sc,
1335 				unsigned long nr_anon, unsigned long nr_file,
1336 				struct list_head *page_list)
1337 {
1338 	struct page *page;
1339 	struct pagevec pvec;
1340 	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1341 
1342 	pagevec_init(&pvec, 1);
1343 
1344 	/*
1345 	 * Put back any unfreeable pages.
1346 	 */
1347 	spin_lock(&zone->lru_lock);
1348 	while (!list_empty(page_list)) {
1349 		int lru;
1350 		page = lru_to_page(page_list);
1351 		VM_BUG_ON(PageLRU(page));
1352 		list_del(&page->lru);
1353 		if (unlikely(!page_evictable(page, NULL))) {
1354 			spin_unlock_irq(&zone->lru_lock);
1355 			putback_lru_page(page);
1356 			spin_lock_irq(&zone->lru_lock);
1357 			continue;
1358 		}
1359 		SetPageLRU(page);
1360 		lru = page_lru(page);
1361 		add_page_to_lru_list(zone, page, lru);
1362 		if (is_active_lru(lru)) {
1363 			int file = is_file_lru(lru);
1364 			int numpages = hpage_nr_pages(page);
1365 			reclaim_stat->recent_rotated[file] += numpages;
1366 		}
1367 		if (!pagevec_add(&pvec, page)) {
1368 			spin_unlock_irq(&zone->lru_lock);
1369 			__pagevec_release(&pvec);
1370 			spin_lock_irq(&zone->lru_lock);
1371 		}
1372 	}
1373 	__mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1374 	__mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1375 
1376 	spin_unlock_irq(&zone->lru_lock);
1377 	pagevec_release(&pvec);
1378 }
1379 
1380 static noinline_for_stack void update_isolated_counts(struct zone *zone,
1381 					struct scan_control *sc,
1382 					unsigned long *nr_anon,
1383 					unsigned long *nr_file,
1384 					struct list_head *isolated_list)
1385 {
1386 	unsigned long nr_active;
1387 	unsigned int count[NR_LRU_LISTS] = { 0, };
1388 	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1389 
1390 	nr_active = clear_active_flags(isolated_list, count);
1391 	__count_vm_events(PGDEACTIVATE, nr_active);
1392 
1393 	__mod_zone_page_state(zone, NR_ACTIVE_FILE,
1394 			      -count[LRU_ACTIVE_FILE]);
1395 	__mod_zone_page_state(zone, NR_INACTIVE_FILE,
1396 			      -count[LRU_INACTIVE_FILE]);
1397 	__mod_zone_page_state(zone, NR_ACTIVE_ANON,
1398 			      -count[LRU_ACTIVE_ANON]);
1399 	__mod_zone_page_state(zone, NR_INACTIVE_ANON,
1400 			      -count[LRU_INACTIVE_ANON]);
1401 
1402 	*nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1403 	*nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1404 	__mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1405 	__mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1406 
1407 	reclaim_stat->recent_scanned[0] += *nr_anon;
1408 	reclaim_stat->recent_scanned[1] += *nr_file;
1409 }
1410 
1411 /*
1412  * Returns true if a direct reclaim should wait on pages under writeback.
1413  *
1414  * If we are direct reclaiming for contiguous pages and we do not reclaim
1415  * everything in the list, try again and wait for writeback IO to complete.
1416  * This will stall high-order allocations noticeably. Only do that when really
1417  * need to free the pages under high memory pressure.
1418  */
1419 static inline bool should_reclaim_stall(unsigned long nr_taken,
1420 					unsigned long nr_freed,
1421 					int priority,
1422 					struct scan_control *sc)
1423 {
1424 	int lumpy_stall_priority;
1425 
1426 	/* kswapd should not stall on sync IO */
1427 	if (current_is_kswapd())
1428 		return false;
1429 
1430 	/* Only stall on lumpy reclaim */
1431 	if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
1432 		return false;
1433 
1434 	/* If we have reclaimed everything on the isolated list, no stall */
1435 	if (nr_freed == nr_taken)
1436 		return false;
1437 
1438 	/*
1439 	 * For high-order allocations, there are two stall thresholds.
1440 	 * High-cost allocations stall immediately where as lower
1441 	 * order allocations such as stacks require the scanning
1442 	 * priority to be much higher before stalling.
1443 	 */
1444 	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1445 		lumpy_stall_priority = DEF_PRIORITY;
1446 	else
1447 		lumpy_stall_priority = DEF_PRIORITY / 3;
1448 
1449 	return priority <= lumpy_stall_priority;
1450 }
1451 
1452 /*
1453  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1454  * of reclaimed pages
1455  */
1456 static noinline_for_stack unsigned long
1457 shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
1458 			struct scan_control *sc, int priority, int file)
1459 {
1460 	LIST_HEAD(page_list);
1461 	unsigned long nr_scanned;
1462 	unsigned long nr_reclaimed = 0;
1463 	unsigned long nr_taken;
1464 	unsigned long nr_anon;
1465 	unsigned long nr_file;
1466 	unsigned long nr_dirty = 0;
1467 	unsigned long nr_writeback = 0;
1468 	isolate_mode_t reclaim_mode = ISOLATE_INACTIVE;
1469 
1470 	while (unlikely(too_many_isolated(zone, file, sc))) {
1471 		congestion_wait(BLK_RW_ASYNC, HZ/10);
1472 
1473 		/* We are about to die and free our memory. Return now. */
1474 		if (fatal_signal_pending(current))
1475 			return SWAP_CLUSTER_MAX;
1476 	}
1477 
1478 	set_reclaim_mode(priority, sc, false);
1479 	if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
1480 		reclaim_mode |= ISOLATE_ACTIVE;
1481 
1482 	lru_add_drain();
1483 
1484 	if (!sc->may_unmap)
1485 		reclaim_mode |= ISOLATE_UNMAPPED;
1486 	if (!sc->may_writepage)
1487 		reclaim_mode |= ISOLATE_CLEAN;
1488 
1489 	spin_lock_irq(&zone->lru_lock);
1490 
1491 	if (scanning_global_lru(sc)) {
1492 		nr_taken = isolate_pages_global(nr_to_scan, &page_list,
1493 			&nr_scanned, sc->order, reclaim_mode, zone, 0, file);
1494 		zone->pages_scanned += nr_scanned;
1495 		if (current_is_kswapd())
1496 			__count_zone_vm_events(PGSCAN_KSWAPD, zone,
1497 					       nr_scanned);
1498 		else
1499 			__count_zone_vm_events(PGSCAN_DIRECT, zone,
1500 					       nr_scanned);
1501 	} else {
1502 		nr_taken = mem_cgroup_isolate_pages(nr_to_scan, &page_list,
1503 			&nr_scanned, sc->order, reclaim_mode, zone,
1504 			sc->mem_cgroup, 0, file);
1505 		/*
1506 		 * mem_cgroup_isolate_pages() keeps track of
1507 		 * scanned pages on its own.
1508 		 */
1509 	}
1510 
1511 	if (nr_taken == 0) {
1512 		spin_unlock_irq(&zone->lru_lock);
1513 		return 0;
1514 	}
1515 
1516 	update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
1517 
1518 	spin_unlock_irq(&zone->lru_lock);
1519 
1520 	nr_reclaimed = shrink_page_list(&page_list, zone, sc, priority,
1521 						&nr_dirty, &nr_writeback);
1522 
1523 	/* Check if we should syncronously wait for writeback */
1524 	if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1525 		set_reclaim_mode(priority, sc, true);
1526 		nr_reclaimed += shrink_page_list(&page_list, zone, sc,
1527 					priority, &nr_dirty, &nr_writeback);
1528 	}
1529 
1530 	local_irq_disable();
1531 	if (current_is_kswapd())
1532 		__count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1533 	__count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
1534 
1535 	putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
1536 
1537 	/*
1538 	 * If reclaim is isolating dirty pages under writeback, it implies
1539 	 * that the long-lived page allocation rate is exceeding the page
1540 	 * laundering rate. Either the global limits are not being effective
1541 	 * at throttling processes due to the page distribution throughout
1542 	 * zones or there is heavy usage of a slow backing device. The
1543 	 * only option is to throttle from reclaim context which is not ideal
1544 	 * as there is no guarantee the dirtying process is throttled in the
1545 	 * same way balance_dirty_pages() manages.
1546 	 *
1547 	 * This scales the number of dirty pages that must be under writeback
1548 	 * before throttling depending on priority. It is a simple backoff
1549 	 * function that has the most effect in the range DEF_PRIORITY to
1550 	 * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1551 	 * in trouble and reclaim is considered to be in trouble.
1552 	 *
1553 	 * DEF_PRIORITY   100% isolated pages must be PageWriteback to throttle
1554 	 * DEF_PRIORITY-1  50% must be PageWriteback
1555 	 * DEF_PRIORITY-2  25% must be PageWriteback, kswapd in trouble
1556 	 * ...
1557 	 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1558 	 *                     isolated page is PageWriteback
1559 	 */
1560 	if (nr_writeback && nr_writeback >= (nr_taken >> (DEF_PRIORITY-priority)))
1561 		wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1562 
1563 	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1564 		zone_idx(zone),
1565 		nr_scanned, nr_reclaimed,
1566 		priority,
1567 		trace_shrink_flags(file, sc->reclaim_mode));
1568 	return nr_reclaimed;
1569 }
1570 
1571 /*
1572  * This moves pages from the active list to the inactive list.
1573  *
1574  * We move them the other way if the page is referenced by one or more
1575  * processes, from rmap.
1576  *
1577  * If the pages are mostly unmapped, the processing is fast and it is
1578  * appropriate to hold zone->lru_lock across the whole operation.  But if
1579  * the pages are mapped, the processing is slow (page_referenced()) so we
1580  * should drop zone->lru_lock around each page.  It's impossible to balance
1581  * this, so instead we remove the pages from the LRU while processing them.
1582  * It is safe to rely on PG_active against the non-LRU pages in here because
1583  * nobody will play with that bit on a non-LRU page.
1584  *
1585  * The downside is that we have to touch page->_count against each page.
1586  * But we had to alter page->flags anyway.
1587  */
1588 
1589 static void move_active_pages_to_lru(struct zone *zone,
1590 				     struct list_head *list,
1591 				     enum lru_list lru)
1592 {
1593 	unsigned long pgmoved = 0;
1594 	struct pagevec pvec;
1595 	struct page *page;
1596 
1597 	pagevec_init(&pvec, 1);
1598 
1599 	while (!list_empty(list)) {
1600 		page = lru_to_page(list);
1601 
1602 		VM_BUG_ON(PageLRU(page));
1603 		SetPageLRU(page);
1604 
1605 		list_move(&page->lru, &zone->lru[lru].list);
1606 		mem_cgroup_add_lru_list(page, lru);
1607 		pgmoved += hpage_nr_pages(page);
1608 
1609 		if (!pagevec_add(&pvec, page) || list_empty(list)) {
1610 			spin_unlock_irq(&zone->lru_lock);
1611 			if (buffer_heads_over_limit)
1612 				pagevec_strip(&pvec);
1613 			__pagevec_release(&pvec);
1614 			spin_lock_irq(&zone->lru_lock);
1615 		}
1616 	}
1617 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1618 	if (!is_active_lru(lru))
1619 		__count_vm_events(PGDEACTIVATE, pgmoved);
1620 }
1621 
1622 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1623 			struct scan_control *sc, int priority, int file)
1624 {
1625 	unsigned long nr_taken;
1626 	unsigned long pgscanned;
1627 	unsigned long vm_flags;
1628 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1629 	LIST_HEAD(l_active);
1630 	LIST_HEAD(l_inactive);
1631 	struct page *page;
1632 	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1633 	unsigned long nr_rotated = 0;
1634 	isolate_mode_t reclaim_mode = ISOLATE_ACTIVE;
1635 
1636 	lru_add_drain();
1637 
1638 	if (!sc->may_unmap)
1639 		reclaim_mode |= ISOLATE_UNMAPPED;
1640 	if (!sc->may_writepage)
1641 		reclaim_mode |= ISOLATE_CLEAN;
1642 
1643 	spin_lock_irq(&zone->lru_lock);
1644 	if (scanning_global_lru(sc)) {
1645 		nr_taken = isolate_pages_global(nr_pages, &l_hold,
1646 						&pgscanned, sc->order,
1647 						reclaim_mode, zone,
1648 						1, file);
1649 		zone->pages_scanned += pgscanned;
1650 	} else {
1651 		nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
1652 						&pgscanned, sc->order,
1653 						reclaim_mode, zone,
1654 						sc->mem_cgroup, 1, file);
1655 		/*
1656 		 * mem_cgroup_isolate_pages() keeps track of
1657 		 * scanned pages on its own.
1658 		 */
1659 	}
1660 
1661 	reclaim_stat->recent_scanned[file] += nr_taken;
1662 
1663 	__count_zone_vm_events(PGREFILL, zone, pgscanned);
1664 	if (file)
1665 		__mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1666 	else
1667 		__mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1668 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1669 	spin_unlock_irq(&zone->lru_lock);
1670 
1671 	while (!list_empty(&l_hold)) {
1672 		cond_resched();
1673 		page = lru_to_page(&l_hold);
1674 		list_del(&page->lru);
1675 
1676 		if (unlikely(!page_evictable(page, NULL))) {
1677 			putback_lru_page(page);
1678 			continue;
1679 		}
1680 
1681 		if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1682 			nr_rotated += hpage_nr_pages(page);
1683 			/*
1684 			 * Identify referenced, file-backed active pages and
1685 			 * give them one more trip around the active list. So
1686 			 * that executable code get better chances to stay in
1687 			 * memory under moderate memory pressure.  Anon pages
1688 			 * are not likely to be evicted by use-once streaming
1689 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
1690 			 * so we ignore them here.
1691 			 */
1692 			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1693 				list_add(&page->lru, &l_active);
1694 				continue;
1695 			}
1696 		}
1697 
1698 		ClearPageActive(page);	/* we are de-activating */
1699 		list_add(&page->lru, &l_inactive);
1700 	}
1701 
1702 	/*
1703 	 * Move pages back to the lru list.
1704 	 */
1705 	spin_lock_irq(&zone->lru_lock);
1706 	/*
1707 	 * Count referenced pages from currently used mappings as rotated,
1708 	 * even though only some of them are actually re-activated.  This
1709 	 * helps balance scan pressure between file and anonymous pages in
1710 	 * get_scan_ratio.
1711 	 */
1712 	reclaim_stat->recent_rotated[file] += nr_rotated;
1713 
1714 	move_active_pages_to_lru(zone, &l_active,
1715 						LRU_ACTIVE + file * LRU_FILE);
1716 	move_active_pages_to_lru(zone, &l_inactive,
1717 						LRU_BASE   + file * LRU_FILE);
1718 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1719 	spin_unlock_irq(&zone->lru_lock);
1720 }
1721 
1722 #ifdef CONFIG_SWAP
1723 static int inactive_anon_is_low_global(struct zone *zone)
1724 {
1725 	unsigned long active, inactive;
1726 
1727 	active = zone_page_state(zone, NR_ACTIVE_ANON);
1728 	inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1729 
1730 	if (inactive * zone->inactive_ratio < active)
1731 		return 1;
1732 
1733 	return 0;
1734 }
1735 
1736 /**
1737  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1738  * @zone: zone to check
1739  * @sc:   scan control of this context
1740  *
1741  * Returns true if the zone does not have enough inactive anon pages,
1742  * meaning some active anon pages need to be deactivated.
1743  */
1744 static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1745 {
1746 	int low;
1747 
1748 	/*
1749 	 * If we don't have swap space, anonymous page deactivation
1750 	 * is pointless.
1751 	 */
1752 	if (!total_swap_pages)
1753 		return 0;
1754 
1755 	if (scanning_global_lru(sc))
1756 		low = inactive_anon_is_low_global(zone);
1757 	else
1758 		low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup, zone);
1759 	return low;
1760 }
1761 #else
1762 static inline int inactive_anon_is_low(struct zone *zone,
1763 					struct scan_control *sc)
1764 {
1765 	return 0;
1766 }
1767 #endif
1768 
1769 static int inactive_file_is_low_global(struct zone *zone)
1770 {
1771 	unsigned long active, inactive;
1772 
1773 	active = zone_page_state(zone, NR_ACTIVE_FILE);
1774 	inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1775 
1776 	return (active > inactive);
1777 }
1778 
1779 /**
1780  * inactive_file_is_low - check if file pages need to be deactivated
1781  * @zone: zone to check
1782  * @sc:   scan control of this context
1783  *
1784  * When the system is doing streaming IO, memory pressure here
1785  * ensures that active file pages get deactivated, until more
1786  * than half of the file pages are on the inactive list.
1787  *
1788  * Once we get to that situation, protect the system's working
1789  * set from being evicted by disabling active file page aging.
1790  *
1791  * This uses a different ratio than the anonymous pages, because
1792  * the page cache uses a use-once replacement algorithm.
1793  */
1794 static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1795 {
1796 	int low;
1797 
1798 	if (scanning_global_lru(sc))
1799 		low = inactive_file_is_low_global(zone);
1800 	else
1801 		low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup, zone);
1802 	return low;
1803 }
1804 
1805 static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
1806 				int file)
1807 {
1808 	if (file)
1809 		return inactive_file_is_low(zone, sc);
1810 	else
1811 		return inactive_anon_is_low(zone, sc);
1812 }
1813 
1814 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1815 	struct zone *zone, struct scan_control *sc, int priority)
1816 {
1817 	int file = is_file_lru(lru);
1818 
1819 	if (is_active_lru(lru)) {
1820 		if (inactive_list_is_low(zone, sc, file))
1821 		    shrink_active_list(nr_to_scan, zone, sc, priority, file);
1822 		return 0;
1823 	}
1824 
1825 	return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1826 }
1827 
1828 static int vmscan_swappiness(struct scan_control *sc)
1829 {
1830 	if (scanning_global_lru(sc))
1831 		return vm_swappiness;
1832 	return mem_cgroup_swappiness(sc->mem_cgroup);
1833 }
1834 
1835 /*
1836  * Determine how aggressively the anon and file LRU lists should be
1837  * scanned.  The relative value of each set of LRU lists is determined
1838  * by looking at the fraction of the pages scanned we did rotate back
1839  * onto the active list instead of evict.
1840  *
1841  * nr[0] = anon pages to scan; nr[1] = file pages to scan
1842  */
1843 static void get_scan_count(struct zone *zone, struct scan_control *sc,
1844 					unsigned long *nr, int priority)
1845 {
1846 	unsigned long anon, file, free;
1847 	unsigned long anon_prio, file_prio;
1848 	unsigned long ap, fp;
1849 	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1850 	u64 fraction[2], denominator;
1851 	enum lru_list l;
1852 	int noswap = 0;
1853 	bool force_scan = false;
1854 
1855 	/*
1856 	 * If the zone or memcg is small, nr[l] can be 0.  This
1857 	 * results in no scanning on this priority and a potential
1858 	 * priority drop.  Global direct reclaim can go to the next
1859 	 * zone and tends to have no problems. Global kswapd is for
1860 	 * zone balancing and it needs to scan a minimum amount. When
1861 	 * reclaiming for a memcg, a priority drop can cause high
1862 	 * latencies, so it's better to scan a minimum amount there as
1863 	 * well.
1864 	 */
1865 	if (scanning_global_lru(sc) && current_is_kswapd())
1866 		force_scan = true;
1867 	if (!scanning_global_lru(sc))
1868 		force_scan = true;
1869 
1870 	/* If we have no swap space, do not bother scanning anon pages. */
1871 	if (!sc->may_swap || (nr_swap_pages <= 0)) {
1872 		noswap = 1;
1873 		fraction[0] = 0;
1874 		fraction[1] = 1;
1875 		denominator = 1;
1876 		goto out;
1877 	}
1878 
1879 	anon  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1880 		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1881 	file  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1882 		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1883 
1884 	if (scanning_global_lru(sc)) {
1885 		free  = zone_page_state(zone, NR_FREE_PAGES);
1886 		/* If we have very few page cache pages,
1887 		   force-scan anon pages. */
1888 		if (unlikely(file + free <= high_wmark_pages(zone))) {
1889 			fraction[0] = 1;
1890 			fraction[1] = 0;
1891 			denominator = 1;
1892 			goto out;
1893 		}
1894 	}
1895 
1896 	/*
1897 	 * With swappiness at 100, anonymous and file have the same priority.
1898 	 * This scanning priority is essentially the inverse of IO cost.
1899 	 */
1900 	anon_prio = vmscan_swappiness(sc);
1901 	file_prio = 200 - vmscan_swappiness(sc);
1902 
1903 	/*
1904 	 * OK, so we have swap space and a fair amount of page cache
1905 	 * pages.  We use the recently rotated / recently scanned
1906 	 * ratios to determine how valuable each cache is.
1907 	 *
1908 	 * Because workloads change over time (and to avoid overflow)
1909 	 * we keep these statistics as a floating average, which ends
1910 	 * up weighing recent references more than old ones.
1911 	 *
1912 	 * anon in [0], file in [1]
1913 	 */
1914 	spin_lock_irq(&zone->lru_lock);
1915 	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1916 		reclaim_stat->recent_scanned[0] /= 2;
1917 		reclaim_stat->recent_rotated[0] /= 2;
1918 	}
1919 
1920 	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1921 		reclaim_stat->recent_scanned[1] /= 2;
1922 		reclaim_stat->recent_rotated[1] /= 2;
1923 	}
1924 
1925 	/*
1926 	 * The amount of pressure on anon vs file pages is inversely
1927 	 * proportional to the fraction of recently scanned pages on
1928 	 * each list that were recently referenced and in active use.
1929 	 */
1930 	ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1931 	ap /= reclaim_stat->recent_rotated[0] + 1;
1932 
1933 	fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1934 	fp /= reclaim_stat->recent_rotated[1] + 1;
1935 	spin_unlock_irq(&zone->lru_lock);
1936 
1937 	fraction[0] = ap;
1938 	fraction[1] = fp;
1939 	denominator = ap + fp + 1;
1940 out:
1941 	for_each_evictable_lru(l) {
1942 		int file = is_file_lru(l);
1943 		unsigned long scan;
1944 
1945 		scan = zone_nr_lru_pages(zone, sc, l);
1946 		if (priority || noswap) {
1947 			scan >>= priority;
1948 			if (!scan && force_scan)
1949 				scan = SWAP_CLUSTER_MAX;
1950 			scan = div64_u64(scan * fraction[file], denominator);
1951 		}
1952 		nr[l] = scan;
1953 	}
1954 }
1955 
1956 /*
1957  * Reclaim/compaction depends on a number of pages being freed. To avoid
1958  * disruption to the system, a small number of order-0 pages continue to be
1959  * rotated and reclaimed in the normal fashion. However, by the time we get
1960  * back to the allocator and call try_to_compact_zone(), we ensure that
1961  * there are enough free pages for it to be likely successful
1962  */
1963 static inline bool should_continue_reclaim(struct zone *zone,
1964 					unsigned long nr_reclaimed,
1965 					unsigned long nr_scanned,
1966 					struct scan_control *sc)
1967 {
1968 	unsigned long pages_for_compaction;
1969 	unsigned long inactive_lru_pages;
1970 
1971 	/* If not in reclaim/compaction mode, stop */
1972 	if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
1973 		return false;
1974 
1975 	/* Consider stopping depending on scan and reclaim activity */
1976 	if (sc->gfp_mask & __GFP_REPEAT) {
1977 		/*
1978 		 * For __GFP_REPEAT allocations, stop reclaiming if the
1979 		 * full LRU list has been scanned and we are still failing
1980 		 * to reclaim pages. This full LRU scan is potentially
1981 		 * expensive but a __GFP_REPEAT caller really wants to succeed
1982 		 */
1983 		if (!nr_reclaimed && !nr_scanned)
1984 			return false;
1985 	} else {
1986 		/*
1987 		 * For non-__GFP_REPEAT allocations which can presumably
1988 		 * fail without consequence, stop if we failed to reclaim
1989 		 * any pages from the last SWAP_CLUSTER_MAX number of
1990 		 * pages that were scanned. This will return to the
1991 		 * caller faster at the risk reclaim/compaction and
1992 		 * the resulting allocation attempt fails
1993 		 */
1994 		if (!nr_reclaimed)
1995 			return false;
1996 	}
1997 
1998 	/*
1999 	 * If we have not reclaimed enough pages for compaction and the
2000 	 * inactive lists are large enough, continue reclaiming
2001 	 */
2002 	pages_for_compaction = (2UL << sc->order);
2003 	inactive_lru_pages = zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
2004 	if (nr_swap_pages > 0)
2005 		inactive_lru_pages += zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
2006 	if (sc->nr_reclaimed < pages_for_compaction &&
2007 			inactive_lru_pages > pages_for_compaction)
2008 		return true;
2009 
2010 	/* If compaction would go ahead or the allocation would succeed, stop */
2011 	switch (compaction_suitable(zone, sc->order)) {
2012 	case COMPACT_PARTIAL:
2013 	case COMPACT_CONTINUE:
2014 		return false;
2015 	default:
2016 		return true;
2017 	}
2018 }
2019 
2020 /*
2021  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
2022  */
2023 static void shrink_zone(int priority, struct zone *zone,
2024 				struct scan_control *sc)
2025 {
2026 	unsigned long nr[NR_LRU_LISTS];
2027 	unsigned long nr_to_scan;
2028 	enum lru_list l;
2029 	unsigned long nr_reclaimed, nr_scanned;
2030 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2031 	struct blk_plug plug;
2032 
2033 restart:
2034 	nr_reclaimed = 0;
2035 	nr_scanned = sc->nr_scanned;
2036 	get_scan_count(zone, sc, nr, priority);
2037 
2038 	blk_start_plug(&plug);
2039 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2040 					nr[LRU_INACTIVE_FILE]) {
2041 		for_each_evictable_lru(l) {
2042 			if (nr[l]) {
2043 				nr_to_scan = min_t(unsigned long,
2044 						   nr[l], SWAP_CLUSTER_MAX);
2045 				nr[l] -= nr_to_scan;
2046 
2047 				nr_reclaimed += shrink_list(l, nr_to_scan,
2048 							    zone, sc, priority);
2049 			}
2050 		}
2051 		/*
2052 		 * On large memory systems, scan >> priority can become
2053 		 * really large. This is fine for the starting priority;
2054 		 * we want to put equal scanning pressure on each zone.
2055 		 * However, if the VM has a harder time of freeing pages,
2056 		 * with multiple processes reclaiming pages, the total
2057 		 * freeing target can get unreasonably large.
2058 		 */
2059 		if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
2060 			break;
2061 	}
2062 	blk_finish_plug(&plug);
2063 	sc->nr_reclaimed += nr_reclaimed;
2064 
2065 	/*
2066 	 * Even if we did not try to evict anon pages at all, we want to
2067 	 * rebalance the anon lru active/inactive ratio.
2068 	 */
2069 	if (inactive_anon_is_low(zone, sc))
2070 		shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
2071 
2072 	/* reclaim/compaction might need reclaim to continue */
2073 	if (should_continue_reclaim(zone, nr_reclaimed,
2074 					sc->nr_scanned - nr_scanned, sc))
2075 		goto restart;
2076 
2077 	throttle_vm_writeout(sc->gfp_mask);
2078 }
2079 
2080 /*
2081  * This is the direct reclaim path, for page-allocating processes.  We only
2082  * try to reclaim pages from zones which will satisfy the caller's allocation
2083  * request.
2084  *
2085  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2086  * Because:
2087  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2088  *    allocation or
2089  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2090  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2091  *    zone defense algorithm.
2092  *
2093  * If a zone is deemed to be full of pinned pages then just give it a light
2094  * scan then give up on it.
2095  *
2096  * This function returns true if a zone is being reclaimed for a costly
2097  * high-order allocation and compaction is either ready to begin or deferred.
2098  * This indicates to the caller that it should retry the allocation or fail.
2099  */
2100 static bool shrink_zones(int priority, struct zonelist *zonelist,
2101 					struct scan_control *sc)
2102 {
2103 	struct zoneref *z;
2104 	struct zone *zone;
2105 	unsigned long nr_soft_reclaimed;
2106 	unsigned long nr_soft_scanned;
2107 	bool should_abort_reclaim = false;
2108 
2109 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2110 					gfp_zone(sc->gfp_mask), sc->nodemask) {
2111 		if (!populated_zone(zone))
2112 			continue;
2113 		/*
2114 		 * Take care memory controller reclaiming has small influence
2115 		 * to global LRU.
2116 		 */
2117 		if (scanning_global_lru(sc)) {
2118 			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2119 				continue;
2120 			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2121 				continue;	/* Let kswapd poll it */
2122 			if (COMPACTION_BUILD) {
2123 				/*
2124 				 * If we already have plenty of memory free for
2125 				 * compaction in this zone, don't free any more.
2126 				 * Even though compaction is invoked for any
2127 				 * non-zero order, only frequent costly order
2128 				 * reclamation is disruptive enough to become a
2129 				 * noticable problem, like transparent huge page
2130 				 * allocations.
2131 				 */
2132 				if (sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2133 					(compaction_suitable(zone, sc->order) ||
2134 					 compaction_deferred(zone))) {
2135 					should_abort_reclaim = true;
2136 					continue;
2137 				}
2138 			}
2139 			/*
2140 			 * This steals pages from memory cgroups over softlimit
2141 			 * and returns the number of reclaimed pages and
2142 			 * scanned pages. This works for global memory pressure
2143 			 * and balancing, not for a memcg's limit.
2144 			 */
2145 			nr_soft_scanned = 0;
2146 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2147 						sc->order, sc->gfp_mask,
2148 						&nr_soft_scanned);
2149 			sc->nr_reclaimed += nr_soft_reclaimed;
2150 			sc->nr_scanned += nr_soft_scanned;
2151 			/* need some check for avoid more shrink_zone() */
2152 		}
2153 
2154 		shrink_zone(priority, zone, sc);
2155 	}
2156 
2157 	return should_abort_reclaim;
2158 }
2159 
2160 static bool zone_reclaimable(struct zone *zone)
2161 {
2162 	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2163 }
2164 
2165 /* All zones in zonelist are unreclaimable? */
2166 static bool all_unreclaimable(struct zonelist *zonelist,
2167 		struct scan_control *sc)
2168 {
2169 	struct zoneref *z;
2170 	struct zone *zone;
2171 
2172 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2173 			gfp_zone(sc->gfp_mask), sc->nodemask) {
2174 		if (!populated_zone(zone))
2175 			continue;
2176 		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2177 			continue;
2178 		if (!zone->all_unreclaimable)
2179 			return false;
2180 	}
2181 
2182 	return true;
2183 }
2184 
2185 /*
2186  * This is the main entry point to direct page reclaim.
2187  *
2188  * If a full scan of the inactive list fails to free enough memory then we
2189  * are "out of memory" and something needs to be killed.
2190  *
2191  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2192  * high - the zone may be full of dirty or under-writeback pages, which this
2193  * caller can't do much about.  We kick the writeback threads and take explicit
2194  * naps in the hope that some of these pages can be written.  But if the
2195  * allocating task holds filesystem locks which prevent writeout this might not
2196  * work, and the allocation attempt will fail.
2197  *
2198  * returns:	0, if no pages reclaimed
2199  * 		else, the number of pages reclaimed
2200  */
2201 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2202 					struct scan_control *sc,
2203 					struct shrink_control *shrink)
2204 {
2205 	int priority;
2206 	unsigned long total_scanned = 0;
2207 	struct reclaim_state *reclaim_state = current->reclaim_state;
2208 	struct zoneref *z;
2209 	struct zone *zone;
2210 	unsigned long writeback_threshold;
2211 
2212 	get_mems_allowed();
2213 	delayacct_freepages_start();
2214 
2215 	if (scanning_global_lru(sc))
2216 		count_vm_event(ALLOCSTALL);
2217 
2218 	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2219 		sc->nr_scanned = 0;
2220 		if (!priority)
2221 			disable_swap_token(sc->mem_cgroup);
2222 		if (shrink_zones(priority, zonelist, sc))
2223 			break;
2224 
2225 		/*
2226 		 * Don't shrink slabs when reclaiming memory from
2227 		 * over limit cgroups
2228 		 */
2229 		if (scanning_global_lru(sc)) {
2230 			unsigned long lru_pages = 0;
2231 			for_each_zone_zonelist(zone, z, zonelist,
2232 					gfp_zone(sc->gfp_mask)) {
2233 				if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2234 					continue;
2235 
2236 				lru_pages += zone_reclaimable_pages(zone);
2237 			}
2238 
2239 			shrink_slab(shrink, sc->nr_scanned, lru_pages);
2240 			if (reclaim_state) {
2241 				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2242 				reclaim_state->reclaimed_slab = 0;
2243 			}
2244 		}
2245 		total_scanned += sc->nr_scanned;
2246 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2247 			goto out;
2248 
2249 		/*
2250 		 * Try to write back as many pages as we just scanned.  This
2251 		 * tends to cause slow streaming writers to write data to the
2252 		 * disk smoothly, at the dirtying rate, which is nice.   But
2253 		 * that's undesirable in laptop mode, where we *want* lumpy
2254 		 * writeout.  So in laptop mode, write out the whole world.
2255 		 */
2256 		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2257 		if (total_scanned > writeback_threshold) {
2258 			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2259 						WB_REASON_TRY_TO_FREE_PAGES);
2260 			sc->may_writepage = 1;
2261 		}
2262 
2263 		/* Take a nap, wait for some writeback to complete */
2264 		if (!sc->hibernation_mode && sc->nr_scanned &&
2265 		    priority < DEF_PRIORITY - 2) {
2266 			struct zone *preferred_zone;
2267 
2268 			first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2269 						&cpuset_current_mems_allowed,
2270 						&preferred_zone);
2271 			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2272 		}
2273 	}
2274 
2275 out:
2276 	delayacct_freepages_end();
2277 	put_mems_allowed();
2278 
2279 	if (sc->nr_reclaimed)
2280 		return sc->nr_reclaimed;
2281 
2282 	/*
2283 	 * As hibernation is going on, kswapd is freezed so that it can't mark
2284 	 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2285 	 * check.
2286 	 */
2287 	if (oom_killer_disabled)
2288 		return 0;
2289 
2290 	/* top priority shrink_zones still had more to do? don't OOM, then */
2291 	if (scanning_global_lru(sc) && !all_unreclaimable(zonelist, sc))
2292 		return 1;
2293 
2294 	return 0;
2295 }
2296 
2297 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2298 				gfp_t gfp_mask, nodemask_t *nodemask)
2299 {
2300 	unsigned long nr_reclaimed;
2301 	struct scan_control sc = {
2302 		.gfp_mask = gfp_mask,
2303 		.may_writepage = !laptop_mode,
2304 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2305 		.may_unmap = 1,
2306 		.may_swap = 1,
2307 		.order = order,
2308 		.mem_cgroup = NULL,
2309 		.nodemask = nodemask,
2310 	};
2311 	struct shrink_control shrink = {
2312 		.gfp_mask = sc.gfp_mask,
2313 	};
2314 
2315 	trace_mm_vmscan_direct_reclaim_begin(order,
2316 				sc.may_writepage,
2317 				gfp_mask);
2318 
2319 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2320 
2321 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2322 
2323 	return nr_reclaimed;
2324 }
2325 
2326 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2327 
2328 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
2329 						gfp_t gfp_mask, bool noswap,
2330 						struct zone *zone,
2331 						unsigned long *nr_scanned)
2332 {
2333 	struct scan_control sc = {
2334 		.nr_scanned = 0,
2335 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2336 		.may_writepage = !laptop_mode,
2337 		.may_unmap = 1,
2338 		.may_swap = !noswap,
2339 		.order = 0,
2340 		.mem_cgroup = mem,
2341 	};
2342 
2343 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2344 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2345 
2346 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2347 						      sc.may_writepage,
2348 						      sc.gfp_mask);
2349 
2350 	/*
2351 	 * NOTE: Although we can get the priority field, using it
2352 	 * here is not a good idea, since it limits the pages we can scan.
2353 	 * if we don't reclaim here, the shrink_zone from balance_pgdat
2354 	 * will pick up pages from other mem cgroup's as well. We hack
2355 	 * the priority and make it zero.
2356 	 */
2357 	shrink_zone(0, zone, &sc);
2358 
2359 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2360 
2361 	*nr_scanned = sc.nr_scanned;
2362 	return sc.nr_reclaimed;
2363 }
2364 
2365 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
2366 					   gfp_t gfp_mask,
2367 					   bool noswap)
2368 {
2369 	struct zonelist *zonelist;
2370 	unsigned long nr_reclaimed;
2371 	int nid;
2372 	struct scan_control sc = {
2373 		.may_writepage = !laptop_mode,
2374 		.may_unmap = 1,
2375 		.may_swap = !noswap,
2376 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2377 		.order = 0,
2378 		.mem_cgroup = mem_cont,
2379 		.nodemask = NULL, /* we don't care the placement */
2380 		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2381 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2382 	};
2383 	struct shrink_control shrink = {
2384 		.gfp_mask = sc.gfp_mask,
2385 	};
2386 
2387 	/*
2388 	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2389 	 * take care of from where we get pages. So the node where we start the
2390 	 * scan does not need to be the current node.
2391 	 */
2392 	nid = mem_cgroup_select_victim_node(mem_cont);
2393 
2394 	zonelist = NODE_DATA(nid)->node_zonelists;
2395 
2396 	trace_mm_vmscan_memcg_reclaim_begin(0,
2397 					    sc.may_writepage,
2398 					    sc.gfp_mask);
2399 
2400 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2401 
2402 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2403 
2404 	return nr_reclaimed;
2405 }
2406 #endif
2407 
2408 /*
2409  * pgdat_balanced is used when checking if a node is balanced for high-order
2410  * allocations. Only zones that meet watermarks and are in a zone allowed
2411  * by the callers classzone_idx are added to balanced_pages. The total of
2412  * balanced pages must be at least 25% of the zones allowed by classzone_idx
2413  * for the node to be considered balanced. Forcing all zones to be balanced
2414  * for high orders can cause excessive reclaim when there are imbalanced zones.
2415  * The choice of 25% is due to
2416  *   o a 16M DMA zone that is balanced will not balance a zone on any
2417  *     reasonable sized machine
2418  *   o On all other machines, the top zone must be at least a reasonable
2419  *     percentage of the middle zones. For example, on 32-bit x86, highmem
2420  *     would need to be at least 256M for it to be balance a whole node.
2421  *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2422  *     to balance a node on its own. These seemed like reasonable ratios.
2423  */
2424 static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2425 						int classzone_idx)
2426 {
2427 	unsigned long present_pages = 0;
2428 	int i;
2429 
2430 	for (i = 0; i <= classzone_idx; i++)
2431 		present_pages += pgdat->node_zones[i].present_pages;
2432 
2433 	/* A special case here: if zone has no page, we think it's balanced */
2434 	return balanced_pages >= (present_pages >> 2);
2435 }
2436 
2437 /* is kswapd sleeping prematurely? */
2438 static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2439 					int classzone_idx)
2440 {
2441 	int i;
2442 	unsigned long balanced = 0;
2443 	bool all_zones_ok = true;
2444 
2445 	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2446 	if (remaining)
2447 		return true;
2448 
2449 	/* Check the watermark levels */
2450 	for (i = 0; i <= classzone_idx; i++) {
2451 		struct zone *zone = pgdat->node_zones + i;
2452 
2453 		if (!populated_zone(zone))
2454 			continue;
2455 
2456 		/*
2457 		 * balance_pgdat() skips over all_unreclaimable after
2458 		 * DEF_PRIORITY. Effectively, it considers them balanced so
2459 		 * they must be considered balanced here as well if kswapd
2460 		 * is to sleep
2461 		 */
2462 		if (zone->all_unreclaimable) {
2463 			balanced += zone->present_pages;
2464 			continue;
2465 		}
2466 
2467 		if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2468 							i, 0))
2469 			all_zones_ok = false;
2470 		else
2471 			balanced += zone->present_pages;
2472 	}
2473 
2474 	/*
2475 	 * For high-order requests, the balanced zones must contain at least
2476 	 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2477 	 * must be balanced
2478 	 */
2479 	if (order)
2480 		return !pgdat_balanced(pgdat, balanced, classzone_idx);
2481 	else
2482 		return !all_zones_ok;
2483 }
2484 
2485 /*
2486  * For kswapd, balance_pgdat() will work across all this node's zones until
2487  * they are all at high_wmark_pages(zone).
2488  *
2489  * Returns the final order kswapd was reclaiming at
2490  *
2491  * There is special handling here for zones which are full of pinned pages.
2492  * This can happen if the pages are all mlocked, or if they are all used by
2493  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2494  * What we do is to detect the case where all pages in the zone have been
2495  * scanned twice and there has been zero successful reclaim.  Mark the zone as
2496  * dead and from now on, only perform a short scan.  Basically we're polling
2497  * the zone for when the problem goes away.
2498  *
2499  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2500  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2501  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2502  * lower zones regardless of the number of free pages in the lower zones. This
2503  * interoperates with the page allocator fallback scheme to ensure that aging
2504  * of pages is balanced across the zones.
2505  */
2506 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2507 							int *classzone_idx)
2508 {
2509 	int all_zones_ok;
2510 	unsigned long balanced;
2511 	int priority;
2512 	int i;
2513 	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
2514 	unsigned long total_scanned;
2515 	struct reclaim_state *reclaim_state = current->reclaim_state;
2516 	unsigned long nr_soft_reclaimed;
2517 	unsigned long nr_soft_scanned;
2518 	struct scan_control sc = {
2519 		.gfp_mask = GFP_KERNEL,
2520 		.may_unmap = 1,
2521 		.may_swap = 1,
2522 		/*
2523 		 * kswapd doesn't want to be bailed out while reclaim. because
2524 		 * we want to put equal scanning pressure on each zone.
2525 		 */
2526 		.nr_to_reclaim = ULONG_MAX,
2527 		.order = order,
2528 		.mem_cgroup = NULL,
2529 	};
2530 	struct shrink_control shrink = {
2531 		.gfp_mask = sc.gfp_mask,
2532 	};
2533 loop_again:
2534 	total_scanned = 0;
2535 	sc.nr_reclaimed = 0;
2536 	sc.may_writepage = !laptop_mode;
2537 	count_vm_event(PAGEOUTRUN);
2538 
2539 	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2540 		unsigned long lru_pages = 0;
2541 		int has_under_min_watermark_zone = 0;
2542 
2543 		/* The swap token gets in the way of swapout... */
2544 		if (!priority)
2545 			disable_swap_token(NULL);
2546 
2547 		all_zones_ok = 1;
2548 		balanced = 0;
2549 
2550 		/*
2551 		 * Scan in the highmem->dma direction for the highest
2552 		 * zone which needs scanning
2553 		 */
2554 		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2555 			struct zone *zone = pgdat->node_zones + i;
2556 
2557 			if (!populated_zone(zone))
2558 				continue;
2559 
2560 			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2561 				continue;
2562 
2563 			/*
2564 			 * Do some background aging of the anon list, to give
2565 			 * pages a chance to be referenced before reclaiming.
2566 			 */
2567 			if (inactive_anon_is_low(zone, &sc))
2568 				shrink_active_list(SWAP_CLUSTER_MAX, zone,
2569 							&sc, priority, 0);
2570 
2571 			if (!zone_watermark_ok_safe(zone, order,
2572 					high_wmark_pages(zone), 0, 0)) {
2573 				end_zone = i;
2574 				break;
2575 			} else {
2576 				/* If balanced, clear the congested flag */
2577 				zone_clear_flag(zone, ZONE_CONGESTED);
2578 			}
2579 		}
2580 		if (i < 0)
2581 			goto out;
2582 
2583 		for (i = 0; i <= end_zone; i++) {
2584 			struct zone *zone = pgdat->node_zones + i;
2585 
2586 			lru_pages += zone_reclaimable_pages(zone);
2587 		}
2588 
2589 		/*
2590 		 * Now scan the zone in the dma->highmem direction, stopping
2591 		 * at the last zone which needs scanning.
2592 		 *
2593 		 * We do this because the page allocator works in the opposite
2594 		 * direction.  This prevents the page allocator from allocating
2595 		 * pages behind kswapd's direction of progress, which would
2596 		 * cause too much scanning of the lower zones.
2597 		 */
2598 		for (i = 0; i <= end_zone; i++) {
2599 			struct zone *zone = pgdat->node_zones + i;
2600 			int nr_slab;
2601 			unsigned long balance_gap;
2602 
2603 			if (!populated_zone(zone))
2604 				continue;
2605 
2606 			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2607 				continue;
2608 
2609 			sc.nr_scanned = 0;
2610 
2611 			nr_soft_scanned = 0;
2612 			/*
2613 			 * Call soft limit reclaim before calling shrink_zone.
2614 			 */
2615 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2616 							order, sc.gfp_mask,
2617 							&nr_soft_scanned);
2618 			sc.nr_reclaimed += nr_soft_reclaimed;
2619 			total_scanned += nr_soft_scanned;
2620 
2621 			/*
2622 			 * We put equal pressure on every zone, unless
2623 			 * one zone has way too many pages free
2624 			 * already. The "too many pages" is defined
2625 			 * as the high wmark plus a "gap" where the
2626 			 * gap is either the low watermark or 1%
2627 			 * of the zone, whichever is smaller.
2628 			 */
2629 			balance_gap = min(low_wmark_pages(zone),
2630 				(zone->present_pages +
2631 					KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2632 				KSWAPD_ZONE_BALANCE_GAP_RATIO);
2633 			if (!zone_watermark_ok_safe(zone, order,
2634 					high_wmark_pages(zone) + balance_gap,
2635 					end_zone, 0)) {
2636 				shrink_zone(priority, zone, &sc);
2637 
2638 				reclaim_state->reclaimed_slab = 0;
2639 				nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2640 				sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2641 				total_scanned += sc.nr_scanned;
2642 
2643 				if (nr_slab == 0 && !zone_reclaimable(zone))
2644 					zone->all_unreclaimable = 1;
2645 			}
2646 
2647 			/*
2648 			 * If we've done a decent amount of scanning and
2649 			 * the reclaim ratio is low, start doing writepage
2650 			 * even in laptop mode
2651 			 */
2652 			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2653 			    total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2654 				sc.may_writepage = 1;
2655 
2656 			if (zone->all_unreclaimable) {
2657 				if (end_zone && end_zone == i)
2658 					end_zone--;
2659 				continue;
2660 			}
2661 
2662 			if (!zone_watermark_ok_safe(zone, order,
2663 					high_wmark_pages(zone), end_zone, 0)) {
2664 				all_zones_ok = 0;
2665 				/*
2666 				 * We are still under min water mark.  This
2667 				 * means that we have a GFP_ATOMIC allocation
2668 				 * failure risk. Hurry up!
2669 				 */
2670 				if (!zone_watermark_ok_safe(zone, order,
2671 					    min_wmark_pages(zone), end_zone, 0))
2672 					has_under_min_watermark_zone = 1;
2673 			} else {
2674 				/*
2675 				 * If a zone reaches its high watermark,
2676 				 * consider it to be no longer congested. It's
2677 				 * possible there are dirty pages backed by
2678 				 * congested BDIs but as pressure is relieved,
2679 				 * spectulatively avoid congestion waits
2680 				 */
2681 				zone_clear_flag(zone, ZONE_CONGESTED);
2682 				if (i <= *classzone_idx)
2683 					balanced += zone->present_pages;
2684 			}
2685 
2686 		}
2687 		if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2688 			break;		/* kswapd: all done */
2689 		/*
2690 		 * OK, kswapd is getting into trouble.  Take a nap, then take
2691 		 * another pass across the zones.
2692 		 */
2693 		if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2694 			if (has_under_min_watermark_zone)
2695 				count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2696 			else
2697 				congestion_wait(BLK_RW_ASYNC, HZ/10);
2698 		}
2699 
2700 		/*
2701 		 * We do this so kswapd doesn't build up large priorities for
2702 		 * example when it is freeing in parallel with allocators. It
2703 		 * matches the direct reclaim path behaviour in terms of impact
2704 		 * on zone->*_priority.
2705 		 */
2706 		if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2707 			break;
2708 	}
2709 out:
2710 
2711 	/*
2712 	 * order-0: All zones must meet high watermark for a balanced node
2713 	 * high-order: Balanced zones must make up at least 25% of the node
2714 	 *             for the node to be balanced
2715 	 */
2716 	if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2717 		cond_resched();
2718 
2719 		try_to_freeze();
2720 
2721 		/*
2722 		 * Fragmentation may mean that the system cannot be
2723 		 * rebalanced for high-order allocations in all zones.
2724 		 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2725 		 * it means the zones have been fully scanned and are still
2726 		 * not balanced. For high-order allocations, there is
2727 		 * little point trying all over again as kswapd may
2728 		 * infinite loop.
2729 		 *
2730 		 * Instead, recheck all watermarks at order-0 as they
2731 		 * are the most important. If watermarks are ok, kswapd will go
2732 		 * back to sleep. High-order users can still perform direct
2733 		 * reclaim if they wish.
2734 		 */
2735 		if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2736 			order = sc.order = 0;
2737 
2738 		goto loop_again;
2739 	}
2740 
2741 	/*
2742 	 * If kswapd was reclaiming at a higher order, it has the option of
2743 	 * sleeping without all zones being balanced. Before it does, it must
2744 	 * ensure that the watermarks for order-0 on *all* zones are met and
2745 	 * that the congestion flags are cleared. The congestion flag must
2746 	 * be cleared as kswapd is the only mechanism that clears the flag
2747 	 * and it is potentially going to sleep here.
2748 	 */
2749 	if (order) {
2750 		for (i = 0; i <= end_zone; i++) {
2751 			struct zone *zone = pgdat->node_zones + i;
2752 
2753 			if (!populated_zone(zone))
2754 				continue;
2755 
2756 			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2757 				continue;
2758 
2759 			/* Confirm the zone is balanced for order-0 */
2760 			if (!zone_watermark_ok(zone, 0,
2761 					high_wmark_pages(zone), 0, 0)) {
2762 				order = sc.order = 0;
2763 				goto loop_again;
2764 			}
2765 
2766 			/* If balanced, clear the congested flag */
2767 			zone_clear_flag(zone, ZONE_CONGESTED);
2768 			if (i <= *classzone_idx)
2769 				balanced += zone->present_pages;
2770 		}
2771 	}
2772 
2773 	/*
2774 	 * Return the order we were reclaiming at so sleeping_prematurely()
2775 	 * makes a decision on the order we were last reclaiming at. However,
2776 	 * if another caller entered the allocator slow path while kswapd
2777 	 * was awake, order will remain at the higher level
2778 	 */
2779 	*classzone_idx = end_zone;
2780 	return order;
2781 }
2782 
2783 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2784 {
2785 	long remaining = 0;
2786 	DEFINE_WAIT(wait);
2787 
2788 	if (freezing(current) || kthread_should_stop())
2789 		return;
2790 
2791 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2792 
2793 	/* Try to sleep for a short interval */
2794 	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2795 		remaining = schedule_timeout(HZ/10);
2796 		finish_wait(&pgdat->kswapd_wait, &wait);
2797 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2798 	}
2799 
2800 	/*
2801 	 * After a short sleep, check if it was a premature sleep. If not, then
2802 	 * go fully to sleep until explicitly woken up.
2803 	 */
2804 	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2805 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2806 
2807 		/*
2808 		 * vmstat counters are not perfectly accurate and the estimated
2809 		 * value for counters such as NR_FREE_PAGES can deviate from the
2810 		 * true value by nr_online_cpus * threshold. To avoid the zone
2811 		 * watermarks being breached while under pressure, we reduce the
2812 		 * per-cpu vmstat threshold while kswapd is awake and restore
2813 		 * them before going back to sleep.
2814 		 */
2815 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2816 		schedule();
2817 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2818 	} else {
2819 		if (remaining)
2820 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2821 		else
2822 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2823 	}
2824 	finish_wait(&pgdat->kswapd_wait, &wait);
2825 }
2826 
2827 /*
2828  * The background pageout daemon, started as a kernel thread
2829  * from the init process.
2830  *
2831  * This basically trickles out pages so that we have _some_
2832  * free memory available even if there is no other activity
2833  * that frees anything up. This is needed for things like routing
2834  * etc, where we otherwise might have all activity going on in
2835  * asynchronous contexts that cannot page things out.
2836  *
2837  * If there are applications that are active memory-allocators
2838  * (most normal use), this basically shouldn't matter.
2839  */
2840 static int kswapd(void *p)
2841 {
2842 	unsigned long order, new_order;
2843 	unsigned balanced_order;
2844 	int classzone_idx, new_classzone_idx;
2845 	int balanced_classzone_idx;
2846 	pg_data_t *pgdat = (pg_data_t*)p;
2847 	struct task_struct *tsk = current;
2848 
2849 	struct reclaim_state reclaim_state = {
2850 		.reclaimed_slab = 0,
2851 	};
2852 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2853 
2854 	lockdep_set_current_reclaim_state(GFP_KERNEL);
2855 
2856 	if (!cpumask_empty(cpumask))
2857 		set_cpus_allowed_ptr(tsk, cpumask);
2858 	current->reclaim_state = &reclaim_state;
2859 
2860 	/*
2861 	 * Tell the memory management that we're a "memory allocator",
2862 	 * and that if we need more memory we should get access to it
2863 	 * regardless (see "__alloc_pages()"). "kswapd" should
2864 	 * never get caught in the normal page freeing logic.
2865 	 *
2866 	 * (Kswapd normally doesn't need memory anyway, but sometimes
2867 	 * you need a small amount of memory in order to be able to
2868 	 * page out something else, and this flag essentially protects
2869 	 * us from recursively trying to free more memory as we're
2870 	 * trying to free the first piece of memory in the first place).
2871 	 */
2872 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2873 	set_freezable();
2874 
2875 	order = new_order = 0;
2876 	balanced_order = 0;
2877 	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
2878 	balanced_classzone_idx = classzone_idx;
2879 	for ( ; ; ) {
2880 		int ret;
2881 
2882 		/*
2883 		 * If the last balance_pgdat was unsuccessful it's unlikely a
2884 		 * new request of a similar or harder type will succeed soon
2885 		 * so consider going to sleep on the basis we reclaimed at
2886 		 */
2887 		if (balanced_classzone_idx >= new_classzone_idx &&
2888 					balanced_order == new_order) {
2889 			new_order = pgdat->kswapd_max_order;
2890 			new_classzone_idx = pgdat->classzone_idx;
2891 			pgdat->kswapd_max_order =  0;
2892 			pgdat->classzone_idx = pgdat->nr_zones - 1;
2893 		}
2894 
2895 		if (order < new_order || classzone_idx > new_classzone_idx) {
2896 			/*
2897 			 * Don't sleep if someone wants a larger 'order'
2898 			 * allocation or has tigher zone constraints
2899 			 */
2900 			order = new_order;
2901 			classzone_idx = new_classzone_idx;
2902 		} else {
2903 			kswapd_try_to_sleep(pgdat, balanced_order,
2904 						balanced_classzone_idx);
2905 			order = pgdat->kswapd_max_order;
2906 			classzone_idx = pgdat->classzone_idx;
2907 			new_order = order;
2908 			new_classzone_idx = classzone_idx;
2909 			pgdat->kswapd_max_order = 0;
2910 			pgdat->classzone_idx = pgdat->nr_zones - 1;
2911 		}
2912 
2913 		ret = try_to_freeze();
2914 		if (kthread_should_stop())
2915 			break;
2916 
2917 		/*
2918 		 * We can speed up thawing tasks if we don't call balance_pgdat
2919 		 * after returning from the refrigerator
2920 		 */
2921 		if (!ret) {
2922 			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2923 			balanced_classzone_idx = classzone_idx;
2924 			balanced_order = balance_pgdat(pgdat, order,
2925 						&balanced_classzone_idx);
2926 		}
2927 	}
2928 	return 0;
2929 }
2930 
2931 /*
2932  * A zone is low on free memory, so wake its kswapd task to service it.
2933  */
2934 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
2935 {
2936 	pg_data_t *pgdat;
2937 
2938 	if (!populated_zone(zone))
2939 		return;
2940 
2941 	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2942 		return;
2943 	pgdat = zone->zone_pgdat;
2944 	if (pgdat->kswapd_max_order < order) {
2945 		pgdat->kswapd_max_order = order;
2946 		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2947 	}
2948 	if (!waitqueue_active(&pgdat->kswapd_wait))
2949 		return;
2950 	if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
2951 		return;
2952 
2953 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2954 	wake_up_interruptible(&pgdat->kswapd_wait);
2955 }
2956 
2957 /*
2958  * The reclaimable count would be mostly accurate.
2959  * The less reclaimable pages may be
2960  * - mlocked pages, which will be moved to unevictable list when encountered
2961  * - mapped pages, which may require several travels to be reclaimed
2962  * - dirty pages, which is not "instantly" reclaimable
2963  */
2964 unsigned long global_reclaimable_pages(void)
2965 {
2966 	int nr;
2967 
2968 	nr = global_page_state(NR_ACTIVE_FILE) +
2969 	     global_page_state(NR_INACTIVE_FILE);
2970 
2971 	if (nr_swap_pages > 0)
2972 		nr += global_page_state(NR_ACTIVE_ANON) +
2973 		      global_page_state(NR_INACTIVE_ANON);
2974 
2975 	return nr;
2976 }
2977 
2978 unsigned long zone_reclaimable_pages(struct zone *zone)
2979 {
2980 	int nr;
2981 
2982 	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2983 	     zone_page_state(zone, NR_INACTIVE_FILE);
2984 
2985 	if (nr_swap_pages > 0)
2986 		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2987 		      zone_page_state(zone, NR_INACTIVE_ANON);
2988 
2989 	return nr;
2990 }
2991 
2992 #ifdef CONFIG_HIBERNATION
2993 /*
2994  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2995  * freed pages.
2996  *
2997  * Rather than trying to age LRUs the aim is to preserve the overall
2998  * LRU order by reclaiming preferentially
2999  * inactive > active > active referenced > active mapped
3000  */
3001 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3002 {
3003 	struct reclaim_state reclaim_state;
3004 	struct scan_control sc = {
3005 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3006 		.may_swap = 1,
3007 		.may_unmap = 1,
3008 		.may_writepage = 1,
3009 		.nr_to_reclaim = nr_to_reclaim,
3010 		.hibernation_mode = 1,
3011 		.order = 0,
3012 	};
3013 	struct shrink_control shrink = {
3014 		.gfp_mask = sc.gfp_mask,
3015 	};
3016 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3017 	struct task_struct *p = current;
3018 	unsigned long nr_reclaimed;
3019 
3020 	p->flags |= PF_MEMALLOC;
3021 	lockdep_set_current_reclaim_state(sc.gfp_mask);
3022 	reclaim_state.reclaimed_slab = 0;
3023 	p->reclaim_state = &reclaim_state;
3024 
3025 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3026 
3027 	p->reclaim_state = NULL;
3028 	lockdep_clear_current_reclaim_state();
3029 	p->flags &= ~PF_MEMALLOC;
3030 
3031 	return nr_reclaimed;
3032 }
3033 #endif /* CONFIG_HIBERNATION */
3034 
3035 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3036    not required for correctness.  So if the last cpu in a node goes
3037    away, we get changed to run anywhere: as the first one comes back,
3038    restore their cpu bindings. */
3039 static int __devinit cpu_callback(struct notifier_block *nfb,
3040 				  unsigned long action, void *hcpu)
3041 {
3042 	int nid;
3043 
3044 	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3045 		for_each_node_state(nid, N_HIGH_MEMORY) {
3046 			pg_data_t *pgdat = NODE_DATA(nid);
3047 			const struct cpumask *mask;
3048 
3049 			mask = cpumask_of_node(pgdat->node_id);
3050 
3051 			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3052 				/* One of our CPUs online: restore mask */
3053 				set_cpus_allowed_ptr(pgdat->kswapd, mask);
3054 		}
3055 	}
3056 	return NOTIFY_OK;
3057 }
3058 
3059 /*
3060  * This kswapd start function will be called by init and node-hot-add.
3061  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3062  */
3063 int kswapd_run(int nid)
3064 {
3065 	pg_data_t *pgdat = NODE_DATA(nid);
3066 	int ret = 0;
3067 
3068 	if (pgdat->kswapd)
3069 		return 0;
3070 
3071 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3072 	if (IS_ERR(pgdat->kswapd)) {
3073 		/* failure at boot is fatal */
3074 		BUG_ON(system_state == SYSTEM_BOOTING);
3075 		printk("Failed to start kswapd on node %d\n",nid);
3076 		ret = -1;
3077 	}
3078 	return ret;
3079 }
3080 
3081 /*
3082  * Called by memory hotplug when all memory in a node is offlined.
3083  */
3084 void kswapd_stop(int nid)
3085 {
3086 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3087 
3088 	if (kswapd)
3089 		kthread_stop(kswapd);
3090 }
3091 
3092 static int __init kswapd_init(void)
3093 {
3094 	int nid;
3095 
3096 	swap_setup();
3097 	for_each_node_state(nid, N_HIGH_MEMORY)
3098  		kswapd_run(nid);
3099 	hotcpu_notifier(cpu_callback, 0);
3100 	return 0;
3101 }
3102 
3103 module_init(kswapd_init)
3104 
3105 #ifdef CONFIG_NUMA
3106 /*
3107  * Zone reclaim mode
3108  *
3109  * If non-zero call zone_reclaim when the number of free pages falls below
3110  * the watermarks.
3111  */
3112 int zone_reclaim_mode __read_mostly;
3113 
3114 #define RECLAIM_OFF 0
3115 #define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3116 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3117 #define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
3118 
3119 /*
3120  * Priority for ZONE_RECLAIM. This determines the fraction of pages
3121  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3122  * a zone.
3123  */
3124 #define ZONE_RECLAIM_PRIORITY 4
3125 
3126 /*
3127  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3128  * occur.
3129  */
3130 int sysctl_min_unmapped_ratio = 1;
3131 
3132 /*
3133  * If the number of slab pages in a zone grows beyond this percentage then
3134  * slab reclaim needs to occur.
3135  */
3136 int sysctl_min_slab_ratio = 5;
3137 
3138 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3139 {
3140 	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3141 	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3142 		zone_page_state(zone, NR_ACTIVE_FILE);
3143 
3144 	/*
3145 	 * It's possible for there to be more file mapped pages than
3146 	 * accounted for by the pages on the file LRU lists because
3147 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3148 	 */
3149 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3150 }
3151 
3152 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3153 static long zone_pagecache_reclaimable(struct zone *zone)
3154 {
3155 	long nr_pagecache_reclaimable;
3156 	long delta = 0;
3157 
3158 	/*
3159 	 * If RECLAIM_SWAP is set, then all file pages are considered
3160 	 * potentially reclaimable. Otherwise, we have to worry about
3161 	 * pages like swapcache and zone_unmapped_file_pages() provides
3162 	 * a better estimate
3163 	 */
3164 	if (zone_reclaim_mode & RECLAIM_SWAP)
3165 		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3166 	else
3167 		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3168 
3169 	/* If we can't clean pages, remove dirty pages from consideration */
3170 	if (!(zone_reclaim_mode & RECLAIM_WRITE))
3171 		delta += zone_page_state(zone, NR_FILE_DIRTY);
3172 
3173 	/* Watch for any possible underflows due to delta */
3174 	if (unlikely(delta > nr_pagecache_reclaimable))
3175 		delta = nr_pagecache_reclaimable;
3176 
3177 	return nr_pagecache_reclaimable - delta;
3178 }
3179 
3180 /*
3181  * Try to free up some pages from this zone through reclaim.
3182  */
3183 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3184 {
3185 	/* Minimum pages needed in order to stay on node */
3186 	const unsigned long nr_pages = 1 << order;
3187 	struct task_struct *p = current;
3188 	struct reclaim_state reclaim_state;
3189 	int priority;
3190 	struct scan_control sc = {
3191 		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3192 		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3193 		.may_swap = 1,
3194 		.nr_to_reclaim = max_t(unsigned long, nr_pages,
3195 				       SWAP_CLUSTER_MAX),
3196 		.gfp_mask = gfp_mask,
3197 		.order = order,
3198 	};
3199 	struct shrink_control shrink = {
3200 		.gfp_mask = sc.gfp_mask,
3201 	};
3202 	unsigned long nr_slab_pages0, nr_slab_pages1;
3203 
3204 	cond_resched();
3205 	/*
3206 	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3207 	 * and we also need to be able to write out pages for RECLAIM_WRITE
3208 	 * and RECLAIM_SWAP.
3209 	 */
3210 	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3211 	lockdep_set_current_reclaim_state(gfp_mask);
3212 	reclaim_state.reclaimed_slab = 0;
3213 	p->reclaim_state = &reclaim_state;
3214 
3215 	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3216 		/*
3217 		 * Free memory by calling shrink zone with increasing
3218 		 * priorities until we have enough memory freed.
3219 		 */
3220 		priority = ZONE_RECLAIM_PRIORITY;
3221 		do {
3222 			shrink_zone(priority, zone, &sc);
3223 			priority--;
3224 		} while (priority >= 0 && sc.nr_reclaimed < nr_pages);
3225 	}
3226 
3227 	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3228 	if (nr_slab_pages0 > zone->min_slab_pages) {
3229 		/*
3230 		 * shrink_slab() does not currently allow us to determine how
3231 		 * many pages were freed in this zone. So we take the current
3232 		 * number of slab pages and shake the slab until it is reduced
3233 		 * by the same nr_pages that we used for reclaiming unmapped
3234 		 * pages.
3235 		 *
3236 		 * Note that shrink_slab will free memory on all zones and may
3237 		 * take a long time.
3238 		 */
3239 		for (;;) {
3240 			unsigned long lru_pages = zone_reclaimable_pages(zone);
3241 
3242 			/* No reclaimable slab or very low memory pressure */
3243 			if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3244 				break;
3245 
3246 			/* Freed enough memory */
3247 			nr_slab_pages1 = zone_page_state(zone,
3248 							NR_SLAB_RECLAIMABLE);
3249 			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3250 				break;
3251 		}
3252 
3253 		/*
3254 		 * Update nr_reclaimed by the number of slab pages we
3255 		 * reclaimed from this zone.
3256 		 */
3257 		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3258 		if (nr_slab_pages1 < nr_slab_pages0)
3259 			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3260 	}
3261 
3262 	p->reclaim_state = NULL;
3263 	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3264 	lockdep_clear_current_reclaim_state();
3265 	return sc.nr_reclaimed >= nr_pages;
3266 }
3267 
3268 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3269 {
3270 	int node_id;
3271 	int ret;
3272 
3273 	/*
3274 	 * Zone reclaim reclaims unmapped file backed pages and
3275 	 * slab pages if we are over the defined limits.
3276 	 *
3277 	 * A small portion of unmapped file backed pages is needed for
3278 	 * file I/O otherwise pages read by file I/O will be immediately
3279 	 * thrown out if the zone is overallocated. So we do not reclaim
3280 	 * if less than a specified percentage of the zone is used by
3281 	 * unmapped file backed pages.
3282 	 */
3283 	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3284 	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3285 		return ZONE_RECLAIM_FULL;
3286 
3287 	if (zone->all_unreclaimable)
3288 		return ZONE_RECLAIM_FULL;
3289 
3290 	/*
3291 	 * Do not scan if the allocation should not be delayed.
3292 	 */
3293 	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3294 		return ZONE_RECLAIM_NOSCAN;
3295 
3296 	/*
3297 	 * Only run zone reclaim on the local zone or on zones that do not
3298 	 * have associated processors. This will favor the local processor
3299 	 * over remote processors and spread off node memory allocations
3300 	 * as wide as possible.
3301 	 */
3302 	node_id = zone_to_nid(zone);
3303 	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3304 		return ZONE_RECLAIM_NOSCAN;
3305 
3306 	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3307 		return ZONE_RECLAIM_NOSCAN;
3308 
3309 	ret = __zone_reclaim(zone, gfp_mask, order);
3310 	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3311 
3312 	if (!ret)
3313 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3314 
3315 	return ret;
3316 }
3317 #endif
3318 
3319 /*
3320  * page_evictable - test whether a page is evictable
3321  * @page: the page to test
3322  * @vma: the VMA in which the page is or will be mapped, may be NULL
3323  *
3324  * Test whether page is evictable--i.e., should be placed on active/inactive
3325  * lists vs unevictable list.  The vma argument is !NULL when called from the
3326  * fault path to determine how to instantate a new page.
3327  *
3328  * Reasons page might not be evictable:
3329  * (1) page's mapping marked unevictable
3330  * (2) page is part of an mlocked VMA
3331  *
3332  */
3333 int page_evictable(struct page *page, struct vm_area_struct *vma)
3334 {
3335 
3336 	if (mapping_unevictable(page_mapping(page)))
3337 		return 0;
3338 
3339 	if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
3340 		return 0;
3341 
3342 	return 1;
3343 }
3344 
3345 /**
3346  * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
3347  * @page: page to check evictability and move to appropriate lru list
3348  * @zone: zone page is in
3349  *
3350  * Checks a page for evictability and moves the page to the appropriate
3351  * zone lru list.
3352  *
3353  * Restrictions: zone->lru_lock must be held, page must be on LRU and must
3354  * have PageUnevictable set.
3355  */
3356 static void check_move_unevictable_page(struct page *page, struct zone *zone)
3357 {
3358 	VM_BUG_ON(PageActive(page));
3359 
3360 retry:
3361 	ClearPageUnevictable(page);
3362 	if (page_evictable(page, NULL)) {
3363 		enum lru_list l = page_lru_base_type(page);
3364 
3365 		__dec_zone_state(zone, NR_UNEVICTABLE);
3366 		list_move(&page->lru, &zone->lru[l].list);
3367 		mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
3368 		__inc_zone_state(zone, NR_INACTIVE_ANON + l);
3369 		__count_vm_event(UNEVICTABLE_PGRESCUED);
3370 	} else {
3371 		/*
3372 		 * rotate unevictable list
3373 		 */
3374 		SetPageUnevictable(page);
3375 		list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
3376 		mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
3377 		if (page_evictable(page, NULL))
3378 			goto retry;
3379 	}
3380 }
3381 
3382 /**
3383  * scan_mapping_unevictable_pages - scan an address space for evictable pages
3384  * @mapping: struct address_space to scan for evictable pages
3385  *
3386  * Scan all pages in mapping.  Check unevictable pages for
3387  * evictability and move them to the appropriate zone lru list.
3388  */
3389 void scan_mapping_unevictable_pages(struct address_space *mapping)
3390 {
3391 	pgoff_t next = 0;
3392 	pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
3393 			 PAGE_CACHE_SHIFT;
3394 	struct zone *zone;
3395 	struct pagevec pvec;
3396 
3397 	if (mapping->nrpages == 0)
3398 		return;
3399 
3400 	pagevec_init(&pvec, 0);
3401 	while (next < end &&
3402 		pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
3403 		int i;
3404 		int pg_scanned = 0;
3405 
3406 		zone = NULL;
3407 
3408 		for (i = 0; i < pagevec_count(&pvec); i++) {
3409 			struct page *page = pvec.pages[i];
3410 			pgoff_t page_index = page->index;
3411 			struct zone *pagezone = page_zone(page);
3412 
3413 			pg_scanned++;
3414 			if (page_index > next)
3415 				next = page_index;
3416 			next++;
3417 
3418 			if (pagezone != zone) {
3419 				if (zone)
3420 					spin_unlock_irq(&zone->lru_lock);
3421 				zone = pagezone;
3422 				spin_lock_irq(&zone->lru_lock);
3423 			}
3424 
3425 			if (PageLRU(page) && PageUnevictable(page))
3426 				check_move_unevictable_page(page, zone);
3427 		}
3428 		if (zone)
3429 			spin_unlock_irq(&zone->lru_lock);
3430 		pagevec_release(&pvec);
3431 
3432 		count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
3433 	}
3434 
3435 }
3436 
3437 static void warn_scan_unevictable_pages(void)
3438 {
3439 	printk_once(KERN_WARNING
3440 		    "%s: The scan_unevictable_pages sysctl/node-interface has been "
3441 		    "disabled for lack of a legitimate use case.  If you have "
3442 		    "one, please send an email to linux-mm@kvack.org.\n",
3443 		    current->comm);
3444 }
3445 
3446 /*
3447  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3448  * all nodes' unevictable lists for evictable pages
3449  */
3450 unsigned long scan_unevictable_pages;
3451 
3452 int scan_unevictable_handler(struct ctl_table *table, int write,
3453 			   void __user *buffer,
3454 			   size_t *length, loff_t *ppos)
3455 {
3456 	warn_scan_unevictable_pages();
3457 	proc_doulongvec_minmax(table, write, buffer, length, ppos);
3458 	scan_unevictable_pages = 0;
3459 	return 0;
3460 }
3461 
3462 #ifdef CONFIG_NUMA
3463 /*
3464  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3465  * a specified node's per zone unevictable lists for evictable pages.
3466  */
3467 
3468 static ssize_t read_scan_unevictable_node(struct device *dev,
3469 					  struct device_attribute *attr,
3470 					  char *buf)
3471 {
3472 	warn_scan_unevictable_pages();
3473 	return sprintf(buf, "0\n");	/* always zero; should fit... */
3474 }
3475 
3476 static ssize_t write_scan_unevictable_node(struct device *dev,
3477 					   struct device_attribute *attr,
3478 					const char *buf, size_t count)
3479 {
3480 	warn_scan_unevictable_pages();
3481 	return 1;
3482 }
3483 
3484 
3485 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3486 			read_scan_unevictable_node,
3487 			write_scan_unevictable_node);
3488 
3489 int scan_unevictable_register_node(struct node *node)
3490 {
3491 	return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3492 }
3493 
3494 void scan_unevictable_unregister_node(struct node *node)
3495 {
3496 	device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3497 }
3498 #endif
3499