xref: /linux/mm/vmscan.c (revision 8ce936c2f1a68c3a4f46578eed016ff92a67fbc6)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
4  *
5  *  Swap reorganised 29.12.95, Stephen Tweedie.
6  *  kswapd added: 7.1.96  sct
7  *  Removed kswapd_ctl limits, and swap out as many pages as needed
8  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
9  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
10  *  Multiqueue VM started 5.8.00, Rik van Riel.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/mm.h>
16 #include <linux/sched/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h>	/* for try_to_release_page(),
30 					buffer_heads_over_limit */
31 #include <linux/mm_inline.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rmap.h>
34 #include <linux/topology.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/compaction.h>
38 #include <linux/notifier.h>
39 #include <linux/rwsem.h>
40 #include <linux/delay.h>
41 #include <linux/kthread.h>
42 #include <linux/freezer.h>
43 #include <linux/memcontrol.h>
44 #include <linux/migrate.h>
45 #include <linux/delayacct.h>
46 #include <linux/sysctl.h>
47 #include <linux/oom.h>
48 #include <linux/pagevec.h>
49 #include <linux/prefetch.h>
50 #include <linux/printk.h>
51 #include <linux/dax.h>
52 #include <linux/psi.h>
53 
54 #include <asm/tlbflush.h>
55 #include <asm/div64.h>
56 
57 #include <linux/swapops.h>
58 #include <linux/balloon_compaction.h>
59 
60 #include "internal.h"
61 
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/vmscan.h>
64 
65 struct scan_control {
66 	/* How many pages shrink_list() should reclaim */
67 	unsigned long nr_to_reclaim;
68 
69 	/*
70 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
71 	 * are scanned.
72 	 */
73 	nodemask_t	*nodemask;
74 
75 	/*
76 	 * The memory cgroup that hit its limit and as a result is the
77 	 * primary target of this reclaim invocation.
78 	 */
79 	struct mem_cgroup *target_mem_cgroup;
80 
81 	/*
82 	 * Scan pressure balancing between anon and file LRUs
83 	 */
84 	unsigned long	anon_cost;
85 	unsigned long	file_cost;
86 
87 	/* Can active pages be deactivated as part of reclaim? */
88 #define DEACTIVATE_ANON 1
89 #define DEACTIVATE_FILE 2
90 	unsigned int may_deactivate:2;
91 	unsigned int force_deactivate:1;
92 	unsigned int skipped_deactivate:1;
93 
94 	/* Writepage batching in laptop mode; RECLAIM_WRITE */
95 	unsigned int may_writepage:1;
96 
97 	/* Can mapped pages be reclaimed? */
98 	unsigned int may_unmap:1;
99 
100 	/* Can pages be swapped as part of reclaim? */
101 	unsigned int may_swap:1;
102 
103 	/*
104 	 * Cgroup memory below memory.low is protected as long as we
105 	 * don't threaten to OOM. If any cgroup is reclaimed at
106 	 * reduced force or passed over entirely due to its memory.low
107 	 * setting (memcg_low_skipped), and nothing is reclaimed as a
108 	 * result, then go back for one more cycle that reclaims the protected
109 	 * memory (memcg_low_reclaim) to avert OOM.
110 	 */
111 	unsigned int memcg_low_reclaim:1;
112 	unsigned int memcg_low_skipped:1;
113 
114 	unsigned int hibernation_mode:1;
115 
116 	/* One of the zones is ready for compaction */
117 	unsigned int compaction_ready:1;
118 
119 	/* There is easily reclaimable cold cache in the current node */
120 	unsigned int cache_trim_mode:1;
121 
122 	/* The file pages on the current node are dangerously low */
123 	unsigned int file_is_tiny:1;
124 
125 	/* Always discard instead of demoting to lower tier memory */
126 	unsigned int no_demotion:1;
127 
128 	/* Allocation order */
129 	s8 order;
130 
131 	/* Scan (total_size >> priority) pages at once */
132 	s8 priority;
133 
134 	/* The highest zone to isolate pages for reclaim from */
135 	s8 reclaim_idx;
136 
137 	/* This context's GFP mask */
138 	gfp_t gfp_mask;
139 
140 	/* Incremented by the number of inactive pages that were scanned */
141 	unsigned long nr_scanned;
142 
143 	/* Number of pages freed so far during a call to shrink_zones() */
144 	unsigned long nr_reclaimed;
145 
146 	struct {
147 		unsigned int dirty;
148 		unsigned int unqueued_dirty;
149 		unsigned int congested;
150 		unsigned int writeback;
151 		unsigned int immediate;
152 		unsigned int file_taken;
153 		unsigned int taken;
154 	} nr;
155 
156 	/* for recording the reclaimed slab by now */
157 	struct reclaim_state reclaim_state;
158 };
159 
160 #ifdef ARCH_HAS_PREFETCHW
161 #define prefetchw_prev_lru_page(_page, _base, _field)			\
162 	do {								\
163 		if ((_page)->lru.prev != _base) {			\
164 			struct page *prev;				\
165 									\
166 			prev = lru_to_page(&(_page->lru));		\
167 			prefetchw(&prev->_field);			\
168 		}							\
169 	} while (0)
170 #else
171 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
172 #endif
173 
174 /*
175  * From 0 .. 200.  Higher means more swappy.
176  */
177 int vm_swappiness = 60;
178 
179 static void set_task_reclaim_state(struct task_struct *task,
180 				   struct reclaim_state *rs)
181 {
182 	/* Check for an overwrite */
183 	WARN_ON_ONCE(rs && task->reclaim_state);
184 
185 	/* Check for the nulling of an already-nulled member */
186 	WARN_ON_ONCE(!rs && !task->reclaim_state);
187 
188 	task->reclaim_state = rs;
189 }
190 
191 static LIST_HEAD(shrinker_list);
192 static DECLARE_RWSEM(shrinker_rwsem);
193 
194 #ifdef CONFIG_MEMCG
195 static int shrinker_nr_max;
196 
197 /* The shrinker_info is expanded in a batch of BITS_PER_LONG */
198 static inline int shrinker_map_size(int nr_items)
199 {
200 	return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long));
201 }
202 
203 static inline int shrinker_defer_size(int nr_items)
204 {
205 	return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t));
206 }
207 
208 static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg,
209 						     int nid)
210 {
211 	return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info,
212 					 lockdep_is_held(&shrinker_rwsem));
213 }
214 
215 static int expand_one_shrinker_info(struct mem_cgroup *memcg,
216 				    int map_size, int defer_size,
217 				    int old_map_size, int old_defer_size)
218 {
219 	struct shrinker_info *new, *old;
220 	struct mem_cgroup_per_node *pn;
221 	int nid;
222 	int size = map_size + defer_size;
223 
224 	for_each_node(nid) {
225 		pn = memcg->nodeinfo[nid];
226 		old = shrinker_info_protected(memcg, nid);
227 		/* Not yet online memcg */
228 		if (!old)
229 			return 0;
230 
231 		new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
232 		if (!new)
233 			return -ENOMEM;
234 
235 		new->nr_deferred = (atomic_long_t *)(new + 1);
236 		new->map = (void *)new->nr_deferred + defer_size;
237 
238 		/* map: set all old bits, clear all new bits */
239 		memset(new->map, (int)0xff, old_map_size);
240 		memset((void *)new->map + old_map_size, 0, map_size - old_map_size);
241 		/* nr_deferred: copy old values, clear all new values */
242 		memcpy(new->nr_deferred, old->nr_deferred, old_defer_size);
243 		memset((void *)new->nr_deferred + old_defer_size, 0,
244 		       defer_size - old_defer_size);
245 
246 		rcu_assign_pointer(pn->shrinker_info, new);
247 		kvfree_rcu(old, rcu);
248 	}
249 
250 	return 0;
251 }
252 
253 void free_shrinker_info(struct mem_cgroup *memcg)
254 {
255 	struct mem_cgroup_per_node *pn;
256 	struct shrinker_info *info;
257 	int nid;
258 
259 	for_each_node(nid) {
260 		pn = memcg->nodeinfo[nid];
261 		info = rcu_dereference_protected(pn->shrinker_info, true);
262 		kvfree(info);
263 		rcu_assign_pointer(pn->shrinker_info, NULL);
264 	}
265 }
266 
267 int alloc_shrinker_info(struct mem_cgroup *memcg)
268 {
269 	struct shrinker_info *info;
270 	int nid, size, ret = 0;
271 	int map_size, defer_size = 0;
272 
273 	down_write(&shrinker_rwsem);
274 	map_size = shrinker_map_size(shrinker_nr_max);
275 	defer_size = shrinker_defer_size(shrinker_nr_max);
276 	size = map_size + defer_size;
277 	for_each_node(nid) {
278 		info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid);
279 		if (!info) {
280 			free_shrinker_info(memcg);
281 			ret = -ENOMEM;
282 			break;
283 		}
284 		info->nr_deferred = (atomic_long_t *)(info + 1);
285 		info->map = (void *)info->nr_deferred + defer_size;
286 		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info);
287 	}
288 	up_write(&shrinker_rwsem);
289 
290 	return ret;
291 }
292 
293 static inline bool need_expand(int nr_max)
294 {
295 	return round_up(nr_max, BITS_PER_LONG) >
296 	       round_up(shrinker_nr_max, BITS_PER_LONG);
297 }
298 
299 static int expand_shrinker_info(int new_id)
300 {
301 	int ret = 0;
302 	int new_nr_max = new_id + 1;
303 	int map_size, defer_size = 0;
304 	int old_map_size, old_defer_size = 0;
305 	struct mem_cgroup *memcg;
306 
307 	if (!need_expand(new_nr_max))
308 		goto out;
309 
310 	if (!root_mem_cgroup)
311 		goto out;
312 
313 	lockdep_assert_held(&shrinker_rwsem);
314 
315 	map_size = shrinker_map_size(new_nr_max);
316 	defer_size = shrinker_defer_size(new_nr_max);
317 	old_map_size = shrinker_map_size(shrinker_nr_max);
318 	old_defer_size = shrinker_defer_size(shrinker_nr_max);
319 
320 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
321 	do {
322 		ret = expand_one_shrinker_info(memcg, map_size, defer_size,
323 					       old_map_size, old_defer_size);
324 		if (ret) {
325 			mem_cgroup_iter_break(NULL, memcg);
326 			goto out;
327 		}
328 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
329 out:
330 	if (!ret)
331 		shrinker_nr_max = new_nr_max;
332 
333 	return ret;
334 }
335 
336 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
337 {
338 	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
339 		struct shrinker_info *info;
340 
341 		rcu_read_lock();
342 		info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info);
343 		/* Pairs with smp mb in shrink_slab() */
344 		smp_mb__before_atomic();
345 		set_bit(shrinker_id, info->map);
346 		rcu_read_unlock();
347 	}
348 }
349 
350 static DEFINE_IDR(shrinker_idr);
351 
352 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
353 {
354 	int id, ret = -ENOMEM;
355 
356 	if (mem_cgroup_disabled())
357 		return -ENOSYS;
358 
359 	down_write(&shrinker_rwsem);
360 	/* This may call shrinker, so it must use down_read_trylock() */
361 	id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL);
362 	if (id < 0)
363 		goto unlock;
364 
365 	if (id >= shrinker_nr_max) {
366 		if (expand_shrinker_info(id)) {
367 			idr_remove(&shrinker_idr, id);
368 			goto unlock;
369 		}
370 	}
371 	shrinker->id = id;
372 	ret = 0;
373 unlock:
374 	up_write(&shrinker_rwsem);
375 	return ret;
376 }
377 
378 static void unregister_memcg_shrinker(struct shrinker *shrinker)
379 {
380 	int id = shrinker->id;
381 
382 	BUG_ON(id < 0);
383 
384 	lockdep_assert_held(&shrinker_rwsem);
385 
386 	idr_remove(&shrinker_idr, id);
387 }
388 
389 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
390 				   struct mem_cgroup *memcg)
391 {
392 	struct shrinker_info *info;
393 
394 	info = shrinker_info_protected(memcg, nid);
395 	return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0);
396 }
397 
398 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
399 				  struct mem_cgroup *memcg)
400 {
401 	struct shrinker_info *info;
402 
403 	info = shrinker_info_protected(memcg, nid);
404 	return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]);
405 }
406 
407 void reparent_shrinker_deferred(struct mem_cgroup *memcg)
408 {
409 	int i, nid;
410 	long nr;
411 	struct mem_cgroup *parent;
412 	struct shrinker_info *child_info, *parent_info;
413 
414 	parent = parent_mem_cgroup(memcg);
415 	if (!parent)
416 		parent = root_mem_cgroup;
417 
418 	/* Prevent from concurrent shrinker_info expand */
419 	down_read(&shrinker_rwsem);
420 	for_each_node(nid) {
421 		child_info = shrinker_info_protected(memcg, nid);
422 		parent_info = shrinker_info_protected(parent, nid);
423 		for (i = 0; i < shrinker_nr_max; i++) {
424 			nr = atomic_long_read(&child_info->nr_deferred[i]);
425 			atomic_long_add(nr, &parent_info->nr_deferred[i]);
426 		}
427 	}
428 	up_read(&shrinker_rwsem);
429 }
430 
431 static bool cgroup_reclaim(struct scan_control *sc)
432 {
433 	return sc->target_mem_cgroup;
434 }
435 
436 /**
437  * writeback_throttling_sane - is the usual dirty throttling mechanism available?
438  * @sc: scan_control in question
439  *
440  * The normal page dirty throttling mechanism in balance_dirty_pages() is
441  * completely broken with the legacy memcg and direct stalling in
442  * shrink_page_list() is used for throttling instead, which lacks all the
443  * niceties such as fairness, adaptive pausing, bandwidth proportional
444  * allocation and configurability.
445  *
446  * This function tests whether the vmscan currently in progress can assume
447  * that the normal dirty throttling mechanism is operational.
448  */
449 static bool writeback_throttling_sane(struct scan_control *sc)
450 {
451 	if (!cgroup_reclaim(sc))
452 		return true;
453 #ifdef CONFIG_CGROUP_WRITEBACK
454 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
455 		return true;
456 #endif
457 	return false;
458 }
459 #else
460 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
461 {
462 	return -ENOSYS;
463 }
464 
465 static void unregister_memcg_shrinker(struct shrinker *shrinker)
466 {
467 }
468 
469 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
470 				   struct mem_cgroup *memcg)
471 {
472 	return 0;
473 }
474 
475 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
476 				  struct mem_cgroup *memcg)
477 {
478 	return 0;
479 }
480 
481 static bool cgroup_reclaim(struct scan_control *sc)
482 {
483 	return false;
484 }
485 
486 static bool writeback_throttling_sane(struct scan_control *sc)
487 {
488 	return true;
489 }
490 #endif
491 
492 static long xchg_nr_deferred(struct shrinker *shrinker,
493 			     struct shrink_control *sc)
494 {
495 	int nid = sc->nid;
496 
497 	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
498 		nid = 0;
499 
500 	if (sc->memcg &&
501 	    (shrinker->flags & SHRINKER_MEMCG_AWARE))
502 		return xchg_nr_deferred_memcg(nid, shrinker,
503 					      sc->memcg);
504 
505 	return atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
506 }
507 
508 
509 static long add_nr_deferred(long nr, struct shrinker *shrinker,
510 			    struct shrink_control *sc)
511 {
512 	int nid = sc->nid;
513 
514 	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
515 		nid = 0;
516 
517 	if (sc->memcg &&
518 	    (shrinker->flags & SHRINKER_MEMCG_AWARE))
519 		return add_nr_deferred_memcg(nr, nid, shrinker,
520 					     sc->memcg);
521 
522 	return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]);
523 }
524 
525 static bool can_demote(int nid, struct scan_control *sc)
526 {
527 	if (!numa_demotion_enabled)
528 		return false;
529 	if (sc) {
530 		if (sc->no_demotion)
531 			return false;
532 		/* It is pointless to do demotion in memcg reclaim */
533 		if (cgroup_reclaim(sc))
534 			return false;
535 	}
536 	if (next_demotion_node(nid) == NUMA_NO_NODE)
537 		return false;
538 
539 	return true;
540 }
541 
542 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
543 					  int nid,
544 					  struct scan_control *sc)
545 {
546 	if (memcg == NULL) {
547 		/*
548 		 * For non-memcg reclaim, is there
549 		 * space in any swap device?
550 		 */
551 		if (get_nr_swap_pages() > 0)
552 			return true;
553 	} else {
554 		/* Is the memcg below its swap limit? */
555 		if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
556 			return true;
557 	}
558 
559 	/*
560 	 * The page can not be swapped.
561 	 *
562 	 * Can it be reclaimed from this node via demotion?
563 	 */
564 	return can_demote(nid, sc);
565 }
566 
567 /*
568  * This misses isolated pages which are not accounted for to save counters.
569  * As the data only determines if reclaim or compaction continues, it is
570  * not expected that isolated pages will be a dominating factor.
571  */
572 unsigned long zone_reclaimable_pages(struct zone *zone)
573 {
574 	unsigned long nr;
575 
576 	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
577 		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
578 	if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
579 		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
580 			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
581 
582 	return nr;
583 }
584 
585 /**
586  * lruvec_lru_size -  Returns the number of pages on the given LRU list.
587  * @lruvec: lru vector
588  * @lru: lru to use
589  * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
590  */
591 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
592 				     int zone_idx)
593 {
594 	unsigned long size = 0;
595 	int zid;
596 
597 	for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) {
598 		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
599 
600 		if (!managed_zone(zone))
601 			continue;
602 
603 		if (!mem_cgroup_disabled())
604 			size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
605 		else
606 			size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
607 	}
608 	return size;
609 }
610 
611 /*
612  * Add a shrinker callback to be called from the vm.
613  */
614 int prealloc_shrinker(struct shrinker *shrinker)
615 {
616 	unsigned int size;
617 	int err;
618 
619 	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
620 		err = prealloc_memcg_shrinker(shrinker);
621 		if (err != -ENOSYS)
622 			return err;
623 
624 		shrinker->flags &= ~SHRINKER_MEMCG_AWARE;
625 	}
626 
627 	size = sizeof(*shrinker->nr_deferred);
628 	if (shrinker->flags & SHRINKER_NUMA_AWARE)
629 		size *= nr_node_ids;
630 
631 	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
632 	if (!shrinker->nr_deferred)
633 		return -ENOMEM;
634 
635 	return 0;
636 }
637 
638 void free_prealloced_shrinker(struct shrinker *shrinker)
639 {
640 	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
641 		down_write(&shrinker_rwsem);
642 		unregister_memcg_shrinker(shrinker);
643 		up_write(&shrinker_rwsem);
644 		return;
645 	}
646 
647 	kfree(shrinker->nr_deferred);
648 	shrinker->nr_deferred = NULL;
649 }
650 
651 void register_shrinker_prepared(struct shrinker *shrinker)
652 {
653 	down_write(&shrinker_rwsem);
654 	list_add_tail(&shrinker->list, &shrinker_list);
655 	shrinker->flags |= SHRINKER_REGISTERED;
656 	up_write(&shrinker_rwsem);
657 }
658 
659 int register_shrinker(struct shrinker *shrinker)
660 {
661 	int err = prealloc_shrinker(shrinker);
662 
663 	if (err)
664 		return err;
665 	register_shrinker_prepared(shrinker);
666 	return 0;
667 }
668 EXPORT_SYMBOL(register_shrinker);
669 
670 /*
671  * Remove one
672  */
673 void unregister_shrinker(struct shrinker *shrinker)
674 {
675 	if (!(shrinker->flags & SHRINKER_REGISTERED))
676 		return;
677 
678 	down_write(&shrinker_rwsem);
679 	list_del(&shrinker->list);
680 	shrinker->flags &= ~SHRINKER_REGISTERED;
681 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
682 		unregister_memcg_shrinker(shrinker);
683 	up_write(&shrinker_rwsem);
684 
685 	kfree(shrinker->nr_deferred);
686 	shrinker->nr_deferred = NULL;
687 }
688 EXPORT_SYMBOL(unregister_shrinker);
689 
690 #define SHRINK_BATCH 128
691 
692 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
693 				    struct shrinker *shrinker, int priority)
694 {
695 	unsigned long freed = 0;
696 	unsigned long long delta;
697 	long total_scan;
698 	long freeable;
699 	long nr;
700 	long new_nr;
701 	long batch_size = shrinker->batch ? shrinker->batch
702 					  : SHRINK_BATCH;
703 	long scanned = 0, next_deferred;
704 
705 	freeable = shrinker->count_objects(shrinker, shrinkctl);
706 	if (freeable == 0 || freeable == SHRINK_EMPTY)
707 		return freeable;
708 
709 	/*
710 	 * copy the current shrinker scan count into a local variable
711 	 * and zero it so that other concurrent shrinker invocations
712 	 * don't also do this scanning work.
713 	 */
714 	nr = xchg_nr_deferred(shrinker, shrinkctl);
715 
716 	if (shrinker->seeks) {
717 		delta = freeable >> priority;
718 		delta *= 4;
719 		do_div(delta, shrinker->seeks);
720 	} else {
721 		/*
722 		 * These objects don't require any IO to create. Trim
723 		 * them aggressively under memory pressure to keep
724 		 * them from causing refetches in the IO caches.
725 		 */
726 		delta = freeable / 2;
727 	}
728 
729 	total_scan = nr >> priority;
730 	total_scan += delta;
731 	total_scan = min(total_scan, (2 * freeable));
732 
733 	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
734 				   freeable, delta, total_scan, priority);
735 
736 	/*
737 	 * Normally, we should not scan less than batch_size objects in one
738 	 * pass to avoid too frequent shrinker calls, but if the slab has less
739 	 * than batch_size objects in total and we are really tight on memory,
740 	 * we will try to reclaim all available objects, otherwise we can end
741 	 * up failing allocations although there are plenty of reclaimable
742 	 * objects spread over several slabs with usage less than the
743 	 * batch_size.
744 	 *
745 	 * We detect the "tight on memory" situations by looking at the total
746 	 * number of objects we want to scan (total_scan). If it is greater
747 	 * than the total number of objects on slab (freeable), we must be
748 	 * scanning at high prio and therefore should try to reclaim as much as
749 	 * possible.
750 	 */
751 	while (total_scan >= batch_size ||
752 	       total_scan >= freeable) {
753 		unsigned long ret;
754 		unsigned long nr_to_scan = min(batch_size, total_scan);
755 
756 		shrinkctl->nr_to_scan = nr_to_scan;
757 		shrinkctl->nr_scanned = nr_to_scan;
758 		ret = shrinker->scan_objects(shrinker, shrinkctl);
759 		if (ret == SHRINK_STOP)
760 			break;
761 		freed += ret;
762 
763 		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
764 		total_scan -= shrinkctl->nr_scanned;
765 		scanned += shrinkctl->nr_scanned;
766 
767 		cond_resched();
768 	}
769 
770 	/*
771 	 * The deferred work is increased by any new work (delta) that wasn't
772 	 * done, decreased by old deferred work that was done now.
773 	 *
774 	 * And it is capped to two times of the freeable items.
775 	 */
776 	next_deferred = max_t(long, (nr + delta - scanned), 0);
777 	next_deferred = min(next_deferred, (2 * freeable));
778 
779 	/*
780 	 * move the unused scan count back into the shrinker in a
781 	 * manner that handles concurrent updates.
782 	 */
783 	new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl);
784 
785 	trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan);
786 	return freed;
787 }
788 
789 #ifdef CONFIG_MEMCG
790 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
791 			struct mem_cgroup *memcg, int priority)
792 {
793 	struct shrinker_info *info;
794 	unsigned long ret, freed = 0;
795 	int i;
796 
797 	if (!mem_cgroup_online(memcg))
798 		return 0;
799 
800 	if (!down_read_trylock(&shrinker_rwsem))
801 		return 0;
802 
803 	info = shrinker_info_protected(memcg, nid);
804 	if (unlikely(!info))
805 		goto unlock;
806 
807 	for_each_set_bit(i, info->map, shrinker_nr_max) {
808 		struct shrink_control sc = {
809 			.gfp_mask = gfp_mask,
810 			.nid = nid,
811 			.memcg = memcg,
812 		};
813 		struct shrinker *shrinker;
814 
815 		shrinker = idr_find(&shrinker_idr, i);
816 		if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) {
817 			if (!shrinker)
818 				clear_bit(i, info->map);
819 			continue;
820 		}
821 
822 		/* Call non-slab shrinkers even though kmem is disabled */
823 		if (!memcg_kmem_enabled() &&
824 		    !(shrinker->flags & SHRINKER_NONSLAB))
825 			continue;
826 
827 		ret = do_shrink_slab(&sc, shrinker, priority);
828 		if (ret == SHRINK_EMPTY) {
829 			clear_bit(i, info->map);
830 			/*
831 			 * After the shrinker reported that it had no objects to
832 			 * free, but before we cleared the corresponding bit in
833 			 * the memcg shrinker map, a new object might have been
834 			 * added. To make sure, we have the bit set in this
835 			 * case, we invoke the shrinker one more time and reset
836 			 * the bit if it reports that it is not empty anymore.
837 			 * The memory barrier here pairs with the barrier in
838 			 * set_shrinker_bit():
839 			 *
840 			 * list_lru_add()     shrink_slab_memcg()
841 			 *   list_add_tail()    clear_bit()
842 			 *   <MB>               <MB>
843 			 *   set_bit()          do_shrink_slab()
844 			 */
845 			smp_mb__after_atomic();
846 			ret = do_shrink_slab(&sc, shrinker, priority);
847 			if (ret == SHRINK_EMPTY)
848 				ret = 0;
849 			else
850 				set_shrinker_bit(memcg, nid, i);
851 		}
852 		freed += ret;
853 
854 		if (rwsem_is_contended(&shrinker_rwsem)) {
855 			freed = freed ? : 1;
856 			break;
857 		}
858 	}
859 unlock:
860 	up_read(&shrinker_rwsem);
861 	return freed;
862 }
863 #else /* CONFIG_MEMCG */
864 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
865 			struct mem_cgroup *memcg, int priority)
866 {
867 	return 0;
868 }
869 #endif /* CONFIG_MEMCG */
870 
871 /**
872  * shrink_slab - shrink slab caches
873  * @gfp_mask: allocation context
874  * @nid: node whose slab caches to target
875  * @memcg: memory cgroup whose slab caches to target
876  * @priority: the reclaim priority
877  *
878  * Call the shrink functions to age shrinkable caches.
879  *
880  * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
881  * unaware shrinkers will receive a node id of 0 instead.
882  *
883  * @memcg specifies the memory cgroup to target. Unaware shrinkers
884  * are called only if it is the root cgroup.
885  *
886  * @priority is sc->priority, we take the number of objects and >> by priority
887  * in order to get the scan target.
888  *
889  * Returns the number of reclaimed slab objects.
890  */
891 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
892 				 struct mem_cgroup *memcg,
893 				 int priority)
894 {
895 	unsigned long ret, freed = 0;
896 	struct shrinker *shrinker;
897 
898 	/*
899 	 * The root memcg might be allocated even though memcg is disabled
900 	 * via "cgroup_disable=memory" boot parameter.  This could make
901 	 * mem_cgroup_is_root() return false, then just run memcg slab
902 	 * shrink, but skip global shrink.  This may result in premature
903 	 * oom.
904 	 */
905 	if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
906 		return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
907 
908 	if (!down_read_trylock(&shrinker_rwsem))
909 		goto out;
910 
911 	list_for_each_entry(shrinker, &shrinker_list, list) {
912 		struct shrink_control sc = {
913 			.gfp_mask = gfp_mask,
914 			.nid = nid,
915 			.memcg = memcg,
916 		};
917 
918 		ret = do_shrink_slab(&sc, shrinker, priority);
919 		if (ret == SHRINK_EMPTY)
920 			ret = 0;
921 		freed += ret;
922 		/*
923 		 * Bail out if someone want to register a new shrinker to
924 		 * prevent the registration from being stalled for long periods
925 		 * by parallel ongoing shrinking.
926 		 */
927 		if (rwsem_is_contended(&shrinker_rwsem)) {
928 			freed = freed ? : 1;
929 			break;
930 		}
931 	}
932 
933 	up_read(&shrinker_rwsem);
934 out:
935 	cond_resched();
936 	return freed;
937 }
938 
939 void drop_slab_node(int nid)
940 {
941 	unsigned long freed;
942 	int shift = 0;
943 
944 	do {
945 		struct mem_cgroup *memcg = NULL;
946 
947 		if (fatal_signal_pending(current))
948 			return;
949 
950 		freed = 0;
951 		memcg = mem_cgroup_iter(NULL, NULL, NULL);
952 		do {
953 			freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
954 		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
955 	} while ((freed >> shift++) > 1);
956 }
957 
958 void drop_slab(void)
959 {
960 	int nid;
961 
962 	for_each_online_node(nid)
963 		drop_slab_node(nid);
964 }
965 
966 static inline int is_page_cache_freeable(struct page *page)
967 {
968 	/*
969 	 * A freeable page cache page is referenced only by the caller
970 	 * that isolated the page, the page cache and optional buffer
971 	 * heads at page->private.
972 	 */
973 	int page_cache_pins = thp_nr_pages(page);
974 	return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
975 }
976 
977 static int may_write_to_inode(struct inode *inode)
978 {
979 	if (current->flags & PF_SWAPWRITE)
980 		return 1;
981 	if (!inode_write_congested(inode))
982 		return 1;
983 	if (inode_to_bdi(inode) == current->backing_dev_info)
984 		return 1;
985 	return 0;
986 }
987 
988 /*
989  * We detected a synchronous write error writing a page out.  Probably
990  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
991  * fsync(), msync() or close().
992  *
993  * The tricky part is that after writepage we cannot touch the mapping: nothing
994  * prevents it from being freed up.  But we have a ref on the page and once
995  * that page is locked, the mapping is pinned.
996  *
997  * We're allowed to run sleeping lock_page() here because we know the caller has
998  * __GFP_FS.
999  */
1000 static void handle_write_error(struct address_space *mapping,
1001 				struct page *page, int error)
1002 {
1003 	lock_page(page);
1004 	if (page_mapping(page) == mapping)
1005 		mapping_set_error(mapping, error);
1006 	unlock_page(page);
1007 }
1008 
1009 /* possible outcome of pageout() */
1010 typedef enum {
1011 	/* failed to write page out, page is locked */
1012 	PAGE_KEEP,
1013 	/* move page to the active list, page is locked */
1014 	PAGE_ACTIVATE,
1015 	/* page has been sent to the disk successfully, page is unlocked */
1016 	PAGE_SUCCESS,
1017 	/* page is clean and locked */
1018 	PAGE_CLEAN,
1019 } pageout_t;
1020 
1021 /*
1022  * pageout is called by shrink_page_list() for each dirty page.
1023  * Calls ->writepage().
1024  */
1025 static pageout_t pageout(struct page *page, struct address_space *mapping)
1026 {
1027 	/*
1028 	 * If the page is dirty, only perform writeback if that write
1029 	 * will be non-blocking.  To prevent this allocation from being
1030 	 * stalled by pagecache activity.  But note that there may be
1031 	 * stalls if we need to run get_block().  We could test
1032 	 * PagePrivate for that.
1033 	 *
1034 	 * If this process is currently in __generic_file_write_iter() against
1035 	 * this page's queue, we can perform writeback even if that
1036 	 * will block.
1037 	 *
1038 	 * If the page is swapcache, write it back even if that would
1039 	 * block, for some throttling. This happens by accident, because
1040 	 * swap_backing_dev_info is bust: it doesn't reflect the
1041 	 * congestion state of the swapdevs.  Easy to fix, if needed.
1042 	 */
1043 	if (!is_page_cache_freeable(page))
1044 		return PAGE_KEEP;
1045 	if (!mapping) {
1046 		/*
1047 		 * Some data journaling orphaned pages can have
1048 		 * page->mapping == NULL while being dirty with clean buffers.
1049 		 */
1050 		if (page_has_private(page)) {
1051 			if (try_to_free_buffers(page)) {
1052 				ClearPageDirty(page);
1053 				pr_info("%s: orphaned page\n", __func__);
1054 				return PAGE_CLEAN;
1055 			}
1056 		}
1057 		return PAGE_KEEP;
1058 	}
1059 	if (mapping->a_ops->writepage == NULL)
1060 		return PAGE_ACTIVATE;
1061 	if (!may_write_to_inode(mapping->host))
1062 		return PAGE_KEEP;
1063 
1064 	if (clear_page_dirty_for_io(page)) {
1065 		int res;
1066 		struct writeback_control wbc = {
1067 			.sync_mode = WB_SYNC_NONE,
1068 			.nr_to_write = SWAP_CLUSTER_MAX,
1069 			.range_start = 0,
1070 			.range_end = LLONG_MAX,
1071 			.for_reclaim = 1,
1072 		};
1073 
1074 		SetPageReclaim(page);
1075 		res = mapping->a_ops->writepage(page, &wbc);
1076 		if (res < 0)
1077 			handle_write_error(mapping, page, res);
1078 		if (res == AOP_WRITEPAGE_ACTIVATE) {
1079 			ClearPageReclaim(page);
1080 			return PAGE_ACTIVATE;
1081 		}
1082 
1083 		if (!PageWriteback(page)) {
1084 			/* synchronous write or broken a_ops? */
1085 			ClearPageReclaim(page);
1086 		}
1087 		trace_mm_vmscan_writepage(page);
1088 		inc_node_page_state(page, NR_VMSCAN_WRITE);
1089 		return PAGE_SUCCESS;
1090 	}
1091 
1092 	return PAGE_CLEAN;
1093 }
1094 
1095 /*
1096  * Same as remove_mapping, but if the page is removed from the mapping, it
1097  * gets returned with a refcount of 0.
1098  */
1099 static int __remove_mapping(struct address_space *mapping, struct page *page,
1100 			    bool reclaimed, struct mem_cgroup *target_memcg)
1101 {
1102 	int refcount;
1103 	void *shadow = NULL;
1104 
1105 	BUG_ON(!PageLocked(page));
1106 	BUG_ON(mapping != page_mapping(page));
1107 
1108 	xa_lock_irq(&mapping->i_pages);
1109 	/*
1110 	 * The non racy check for a busy page.
1111 	 *
1112 	 * Must be careful with the order of the tests. When someone has
1113 	 * a ref to the page, it may be possible that they dirty it then
1114 	 * drop the reference. So if PageDirty is tested before page_count
1115 	 * here, then the following race may occur:
1116 	 *
1117 	 * get_user_pages(&page);
1118 	 * [user mapping goes away]
1119 	 * write_to(page);
1120 	 *				!PageDirty(page)    [good]
1121 	 * SetPageDirty(page);
1122 	 * put_page(page);
1123 	 *				!page_count(page)   [good, discard it]
1124 	 *
1125 	 * [oops, our write_to data is lost]
1126 	 *
1127 	 * Reversing the order of the tests ensures such a situation cannot
1128 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
1129 	 * load is not satisfied before that of page->_refcount.
1130 	 *
1131 	 * Note that if SetPageDirty is always performed via set_page_dirty,
1132 	 * and thus under the i_pages lock, then this ordering is not required.
1133 	 */
1134 	refcount = 1 + compound_nr(page);
1135 	if (!page_ref_freeze(page, refcount))
1136 		goto cannot_free;
1137 	/* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
1138 	if (unlikely(PageDirty(page))) {
1139 		page_ref_unfreeze(page, refcount);
1140 		goto cannot_free;
1141 	}
1142 
1143 	if (PageSwapCache(page)) {
1144 		swp_entry_t swap = { .val = page_private(page) };
1145 		mem_cgroup_swapout(page, swap);
1146 		if (reclaimed && !mapping_exiting(mapping))
1147 			shadow = workingset_eviction(page, target_memcg);
1148 		__delete_from_swap_cache(page, swap, shadow);
1149 		xa_unlock_irq(&mapping->i_pages);
1150 		put_swap_page(page, swap);
1151 	} else {
1152 		void (*freepage)(struct page *);
1153 
1154 		freepage = mapping->a_ops->freepage;
1155 		/*
1156 		 * Remember a shadow entry for reclaimed file cache in
1157 		 * order to detect refaults, thus thrashing, later on.
1158 		 *
1159 		 * But don't store shadows in an address space that is
1160 		 * already exiting.  This is not just an optimization,
1161 		 * inode reclaim needs to empty out the radix tree or
1162 		 * the nodes are lost.  Don't plant shadows behind its
1163 		 * back.
1164 		 *
1165 		 * We also don't store shadows for DAX mappings because the
1166 		 * only page cache pages found in these are zero pages
1167 		 * covering holes, and because we don't want to mix DAX
1168 		 * exceptional entries and shadow exceptional entries in the
1169 		 * same address_space.
1170 		 */
1171 		if (reclaimed && page_is_file_lru(page) &&
1172 		    !mapping_exiting(mapping) && !dax_mapping(mapping))
1173 			shadow = workingset_eviction(page, target_memcg);
1174 		__delete_from_page_cache(page, shadow);
1175 		xa_unlock_irq(&mapping->i_pages);
1176 
1177 		if (freepage != NULL)
1178 			freepage(page);
1179 	}
1180 
1181 	return 1;
1182 
1183 cannot_free:
1184 	xa_unlock_irq(&mapping->i_pages);
1185 	return 0;
1186 }
1187 
1188 /*
1189  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
1190  * someone else has a ref on the page, abort and return 0.  If it was
1191  * successfully detached, return 1.  Assumes the caller has a single ref on
1192  * this page.
1193  */
1194 int remove_mapping(struct address_space *mapping, struct page *page)
1195 {
1196 	if (__remove_mapping(mapping, page, false, NULL)) {
1197 		/*
1198 		 * Unfreezing the refcount with 1 rather than 2 effectively
1199 		 * drops the pagecache ref for us without requiring another
1200 		 * atomic operation.
1201 		 */
1202 		page_ref_unfreeze(page, 1);
1203 		return 1;
1204 	}
1205 	return 0;
1206 }
1207 
1208 /**
1209  * putback_lru_page - put previously isolated page onto appropriate LRU list
1210  * @page: page to be put back to appropriate lru list
1211  *
1212  * Add previously isolated @page to appropriate LRU list.
1213  * Page may still be unevictable for other reasons.
1214  *
1215  * lru_lock must not be held, interrupts must be enabled.
1216  */
1217 void putback_lru_page(struct page *page)
1218 {
1219 	lru_cache_add(page);
1220 	put_page(page);		/* drop ref from isolate */
1221 }
1222 
1223 enum page_references {
1224 	PAGEREF_RECLAIM,
1225 	PAGEREF_RECLAIM_CLEAN,
1226 	PAGEREF_KEEP,
1227 	PAGEREF_ACTIVATE,
1228 };
1229 
1230 static enum page_references page_check_references(struct page *page,
1231 						  struct scan_control *sc)
1232 {
1233 	int referenced_ptes, referenced_page;
1234 	unsigned long vm_flags;
1235 
1236 	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
1237 					  &vm_flags);
1238 	referenced_page = TestClearPageReferenced(page);
1239 
1240 	/*
1241 	 * Mlock lost the isolation race with us.  Let try_to_unmap()
1242 	 * move the page to the unevictable list.
1243 	 */
1244 	if (vm_flags & VM_LOCKED)
1245 		return PAGEREF_RECLAIM;
1246 
1247 	if (referenced_ptes) {
1248 		/*
1249 		 * All mapped pages start out with page table
1250 		 * references from the instantiating fault, so we need
1251 		 * to look twice if a mapped file page is used more
1252 		 * than once.
1253 		 *
1254 		 * Mark it and spare it for another trip around the
1255 		 * inactive list.  Another page table reference will
1256 		 * lead to its activation.
1257 		 *
1258 		 * Note: the mark is set for activated pages as well
1259 		 * so that recently deactivated but used pages are
1260 		 * quickly recovered.
1261 		 */
1262 		SetPageReferenced(page);
1263 
1264 		if (referenced_page || referenced_ptes > 1)
1265 			return PAGEREF_ACTIVATE;
1266 
1267 		/*
1268 		 * Activate file-backed executable pages after first usage.
1269 		 */
1270 		if ((vm_flags & VM_EXEC) && !PageSwapBacked(page))
1271 			return PAGEREF_ACTIVATE;
1272 
1273 		return PAGEREF_KEEP;
1274 	}
1275 
1276 	/* Reclaim if clean, defer dirty pages to writeback */
1277 	if (referenced_page && !PageSwapBacked(page))
1278 		return PAGEREF_RECLAIM_CLEAN;
1279 
1280 	return PAGEREF_RECLAIM;
1281 }
1282 
1283 /* Check if a page is dirty or under writeback */
1284 static void page_check_dirty_writeback(struct page *page,
1285 				       bool *dirty, bool *writeback)
1286 {
1287 	struct address_space *mapping;
1288 
1289 	/*
1290 	 * Anonymous pages are not handled by flushers and must be written
1291 	 * from reclaim context. Do not stall reclaim based on them
1292 	 */
1293 	if (!page_is_file_lru(page) ||
1294 	    (PageAnon(page) && !PageSwapBacked(page))) {
1295 		*dirty = false;
1296 		*writeback = false;
1297 		return;
1298 	}
1299 
1300 	/* By default assume that the page flags are accurate */
1301 	*dirty = PageDirty(page);
1302 	*writeback = PageWriteback(page);
1303 
1304 	/* Verify dirty/writeback state if the filesystem supports it */
1305 	if (!page_has_private(page))
1306 		return;
1307 
1308 	mapping = page_mapping(page);
1309 	if (mapping && mapping->a_ops->is_dirty_writeback)
1310 		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1311 }
1312 
1313 static struct page *alloc_demote_page(struct page *page, unsigned long node)
1314 {
1315 	struct migration_target_control mtc = {
1316 		/*
1317 		 * Allocate from 'node', or fail quickly and quietly.
1318 		 * When this happens, 'page' will likely just be discarded
1319 		 * instead of migrated.
1320 		 */
1321 		.gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) |
1322 			    __GFP_THISNODE  | __GFP_NOWARN |
1323 			    __GFP_NOMEMALLOC | GFP_NOWAIT,
1324 		.nid = node
1325 	};
1326 
1327 	return alloc_migration_target(page, (unsigned long)&mtc);
1328 }
1329 
1330 /*
1331  * Take pages on @demote_list and attempt to demote them to
1332  * another node.  Pages which are not demoted are left on
1333  * @demote_pages.
1334  */
1335 static unsigned int demote_page_list(struct list_head *demote_pages,
1336 				     struct pglist_data *pgdat)
1337 {
1338 	int target_nid = next_demotion_node(pgdat->node_id);
1339 	unsigned int nr_succeeded;
1340 	int err;
1341 
1342 	if (list_empty(demote_pages))
1343 		return 0;
1344 
1345 	if (target_nid == NUMA_NO_NODE)
1346 		return 0;
1347 
1348 	/* Demotion ignores all cpuset and mempolicy settings */
1349 	err = migrate_pages(demote_pages, alloc_demote_page, NULL,
1350 			    target_nid, MIGRATE_ASYNC, MR_DEMOTION,
1351 			    &nr_succeeded);
1352 
1353 	if (current_is_kswapd())
1354 		__count_vm_events(PGDEMOTE_KSWAPD, nr_succeeded);
1355 	else
1356 		__count_vm_events(PGDEMOTE_DIRECT, nr_succeeded);
1357 
1358 	return nr_succeeded;
1359 }
1360 
1361 /*
1362  * shrink_page_list() returns the number of reclaimed pages
1363  */
1364 static unsigned int shrink_page_list(struct list_head *page_list,
1365 				     struct pglist_data *pgdat,
1366 				     struct scan_control *sc,
1367 				     struct reclaim_stat *stat,
1368 				     bool ignore_references)
1369 {
1370 	LIST_HEAD(ret_pages);
1371 	LIST_HEAD(free_pages);
1372 	LIST_HEAD(demote_pages);
1373 	unsigned int nr_reclaimed = 0;
1374 	unsigned int pgactivate = 0;
1375 	bool do_demote_pass;
1376 
1377 	memset(stat, 0, sizeof(*stat));
1378 	cond_resched();
1379 	do_demote_pass = can_demote(pgdat->node_id, sc);
1380 
1381 retry:
1382 	while (!list_empty(page_list)) {
1383 		struct address_space *mapping;
1384 		struct page *page;
1385 		enum page_references references = PAGEREF_RECLAIM;
1386 		bool dirty, writeback, may_enter_fs;
1387 		unsigned int nr_pages;
1388 
1389 		cond_resched();
1390 
1391 		page = lru_to_page(page_list);
1392 		list_del(&page->lru);
1393 
1394 		if (!trylock_page(page))
1395 			goto keep;
1396 
1397 		VM_BUG_ON_PAGE(PageActive(page), page);
1398 
1399 		nr_pages = compound_nr(page);
1400 
1401 		/* Account the number of base pages even though THP */
1402 		sc->nr_scanned += nr_pages;
1403 
1404 		if (unlikely(!page_evictable(page)))
1405 			goto activate_locked;
1406 
1407 		if (!sc->may_unmap && page_mapped(page))
1408 			goto keep_locked;
1409 
1410 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1411 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1412 
1413 		/*
1414 		 * The number of dirty pages determines if a node is marked
1415 		 * reclaim_congested which affects wait_iff_congested. kswapd
1416 		 * will stall and start writing pages if the tail of the LRU
1417 		 * is all dirty unqueued pages.
1418 		 */
1419 		page_check_dirty_writeback(page, &dirty, &writeback);
1420 		if (dirty || writeback)
1421 			stat->nr_dirty++;
1422 
1423 		if (dirty && !writeback)
1424 			stat->nr_unqueued_dirty++;
1425 
1426 		/*
1427 		 * Treat this page as congested if the underlying BDI is or if
1428 		 * pages are cycling through the LRU so quickly that the
1429 		 * pages marked for immediate reclaim are making it to the
1430 		 * end of the LRU a second time.
1431 		 */
1432 		mapping = page_mapping(page);
1433 		if (((dirty || writeback) && mapping &&
1434 		     inode_write_congested(mapping->host)) ||
1435 		    (writeback && PageReclaim(page)))
1436 			stat->nr_congested++;
1437 
1438 		/*
1439 		 * If a page at the tail of the LRU is under writeback, there
1440 		 * are three cases to consider.
1441 		 *
1442 		 * 1) If reclaim is encountering an excessive number of pages
1443 		 *    under writeback and this page is both under writeback and
1444 		 *    PageReclaim then it indicates that pages are being queued
1445 		 *    for IO but are being recycled through the LRU before the
1446 		 *    IO can complete. Waiting on the page itself risks an
1447 		 *    indefinite stall if it is impossible to writeback the
1448 		 *    page due to IO error or disconnected storage so instead
1449 		 *    note that the LRU is being scanned too quickly and the
1450 		 *    caller can stall after page list has been processed.
1451 		 *
1452 		 * 2) Global or new memcg reclaim encounters a page that is
1453 		 *    not marked for immediate reclaim, or the caller does not
1454 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1455 		 *    not to fs). In this case mark the page for immediate
1456 		 *    reclaim and continue scanning.
1457 		 *
1458 		 *    Require may_enter_fs because we would wait on fs, which
1459 		 *    may not have submitted IO yet. And the loop driver might
1460 		 *    enter reclaim, and deadlock if it waits on a page for
1461 		 *    which it is needed to do the write (loop masks off
1462 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1463 		 *    would probably show more reasons.
1464 		 *
1465 		 * 3) Legacy memcg encounters a page that is already marked
1466 		 *    PageReclaim. memcg does not have any dirty pages
1467 		 *    throttling so we could easily OOM just because too many
1468 		 *    pages are in writeback and there is nothing else to
1469 		 *    reclaim. Wait for the writeback to complete.
1470 		 *
1471 		 * In cases 1) and 2) we activate the pages to get them out of
1472 		 * the way while we continue scanning for clean pages on the
1473 		 * inactive list and refilling from the active list. The
1474 		 * observation here is that waiting for disk writes is more
1475 		 * expensive than potentially causing reloads down the line.
1476 		 * Since they're marked for immediate reclaim, they won't put
1477 		 * memory pressure on the cache working set any longer than it
1478 		 * takes to write them to disk.
1479 		 */
1480 		if (PageWriteback(page)) {
1481 			/* Case 1 above */
1482 			if (current_is_kswapd() &&
1483 			    PageReclaim(page) &&
1484 			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1485 				stat->nr_immediate++;
1486 				goto activate_locked;
1487 
1488 			/* Case 2 above */
1489 			} else if (writeback_throttling_sane(sc) ||
1490 			    !PageReclaim(page) || !may_enter_fs) {
1491 				/*
1492 				 * This is slightly racy - end_page_writeback()
1493 				 * might have just cleared PageReclaim, then
1494 				 * setting PageReclaim here end up interpreted
1495 				 * as PageReadahead - but that does not matter
1496 				 * enough to care.  What we do want is for this
1497 				 * page to have PageReclaim set next time memcg
1498 				 * reclaim reaches the tests above, so it will
1499 				 * then wait_on_page_writeback() to avoid OOM;
1500 				 * and it's also appropriate in global reclaim.
1501 				 */
1502 				SetPageReclaim(page);
1503 				stat->nr_writeback++;
1504 				goto activate_locked;
1505 
1506 			/* Case 3 above */
1507 			} else {
1508 				unlock_page(page);
1509 				wait_on_page_writeback(page);
1510 				/* then go back and try same page again */
1511 				list_add_tail(&page->lru, page_list);
1512 				continue;
1513 			}
1514 		}
1515 
1516 		if (!ignore_references)
1517 			references = page_check_references(page, sc);
1518 
1519 		switch (references) {
1520 		case PAGEREF_ACTIVATE:
1521 			goto activate_locked;
1522 		case PAGEREF_KEEP:
1523 			stat->nr_ref_keep += nr_pages;
1524 			goto keep_locked;
1525 		case PAGEREF_RECLAIM:
1526 		case PAGEREF_RECLAIM_CLEAN:
1527 			; /* try to reclaim the page below */
1528 		}
1529 
1530 		/*
1531 		 * Before reclaiming the page, try to relocate
1532 		 * its contents to another node.
1533 		 */
1534 		if (do_demote_pass &&
1535 		    (thp_migration_supported() || !PageTransHuge(page))) {
1536 			list_add(&page->lru, &demote_pages);
1537 			unlock_page(page);
1538 			continue;
1539 		}
1540 
1541 		/*
1542 		 * Anonymous process memory has backing store?
1543 		 * Try to allocate it some swap space here.
1544 		 * Lazyfree page could be freed directly
1545 		 */
1546 		if (PageAnon(page) && PageSwapBacked(page)) {
1547 			if (!PageSwapCache(page)) {
1548 				if (!(sc->gfp_mask & __GFP_IO))
1549 					goto keep_locked;
1550 				if (page_maybe_dma_pinned(page))
1551 					goto keep_locked;
1552 				if (PageTransHuge(page)) {
1553 					/* cannot split THP, skip it */
1554 					if (!can_split_huge_page(page, NULL))
1555 						goto activate_locked;
1556 					/*
1557 					 * Split pages without a PMD map right
1558 					 * away. Chances are some or all of the
1559 					 * tail pages can be freed without IO.
1560 					 */
1561 					if (!compound_mapcount(page) &&
1562 					    split_huge_page_to_list(page,
1563 								    page_list))
1564 						goto activate_locked;
1565 				}
1566 				if (!add_to_swap(page)) {
1567 					if (!PageTransHuge(page))
1568 						goto activate_locked_split;
1569 					/* Fallback to swap normal pages */
1570 					if (split_huge_page_to_list(page,
1571 								    page_list))
1572 						goto activate_locked;
1573 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1574 					count_vm_event(THP_SWPOUT_FALLBACK);
1575 #endif
1576 					if (!add_to_swap(page))
1577 						goto activate_locked_split;
1578 				}
1579 
1580 				may_enter_fs = true;
1581 
1582 				/* Adding to swap updated mapping */
1583 				mapping = page_mapping(page);
1584 			}
1585 		} else if (unlikely(PageTransHuge(page))) {
1586 			/* Split file THP */
1587 			if (split_huge_page_to_list(page, page_list))
1588 				goto keep_locked;
1589 		}
1590 
1591 		/*
1592 		 * THP may get split above, need minus tail pages and update
1593 		 * nr_pages to avoid accounting tail pages twice.
1594 		 *
1595 		 * The tail pages that are added into swap cache successfully
1596 		 * reach here.
1597 		 */
1598 		if ((nr_pages > 1) && !PageTransHuge(page)) {
1599 			sc->nr_scanned -= (nr_pages - 1);
1600 			nr_pages = 1;
1601 		}
1602 
1603 		/*
1604 		 * The page is mapped into the page tables of one or more
1605 		 * processes. Try to unmap it here.
1606 		 */
1607 		if (page_mapped(page)) {
1608 			enum ttu_flags flags = TTU_BATCH_FLUSH;
1609 			bool was_swapbacked = PageSwapBacked(page);
1610 
1611 			if (unlikely(PageTransHuge(page)))
1612 				flags |= TTU_SPLIT_HUGE_PMD;
1613 
1614 			try_to_unmap(page, flags);
1615 			if (page_mapped(page)) {
1616 				stat->nr_unmap_fail += nr_pages;
1617 				if (!was_swapbacked && PageSwapBacked(page))
1618 					stat->nr_lazyfree_fail += nr_pages;
1619 				goto activate_locked;
1620 			}
1621 		}
1622 
1623 		if (PageDirty(page)) {
1624 			/*
1625 			 * Only kswapd can writeback filesystem pages
1626 			 * to avoid risk of stack overflow. But avoid
1627 			 * injecting inefficient single-page IO into
1628 			 * flusher writeback as much as possible: only
1629 			 * write pages when we've encountered many
1630 			 * dirty pages, and when we've already scanned
1631 			 * the rest of the LRU for clean pages and see
1632 			 * the same dirty pages again (PageReclaim).
1633 			 */
1634 			if (page_is_file_lru(page) &&
1635 			    (!current_is_kswapd() || !PageReclaim(page) ||
1636 			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1637 				/*
1638 				 * Immediately reclaim when written back.
1639 				 * Similar in principal to deactivate_page()
1640 				 * except we already have the page isolated
1641 				 * and know it's dirty
1642 				 */
1643 				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1644 				SetPageReclaim(page);
1645 
1646 				goto activate_locked;
1647 			}
1648 
1649 			if (references == PAGEREF_RECLAIM_CLEAN)
1650 				goto keep_locked;
1651 			if (!may_enter_fs)
1652 				goto keep_locked;
1653 			if (!sc->may_writepage)
1654 				goto keep_locked;
1655 
1656 			/*
1657 			 * Page is dirty. Flush the TLB if a writable entry
1658 			 * potentially exists to avoid CPU writes after IO
1659 			 * starts and then write it out here.
1660 			 */
1661 			try_to_unmap_flush_dirty();
1662 			switch (pageout(page, mapping)) {
1663 			case PAGE_KEEP:
1664 				goto keep_locked;
1665 			case PAGE_ACTIVATE:
1666 				goto activate_locked;
1667 			case PAGE_SUCCESS:
1668 				stat->nr_pageout += thp_nr_pages(page);
1669 
1670 				if (PageWriteback(page))
1671 					goto keep;
1672 				if (PageDirty(page))
1673 					goto keep;
1674 
1675 				/*
1676 				 * A synchronous write - probably a ramdisk.  Go
1677 				 * ahead and try to reclaim the page.
1678 				 */
1679 				if (!trylock_page(page))
1680 					goto keep;
1681 				if (PageDirty(page) || PageWriteback(page))
1682 					goto keep_locked;
1683 				mapping = page_mapping(page);
1684 				fallthrough;
1685 			case PAGE_CLEAN:
1686 				; /* try to free the page below */
1687 			}
1688 		}
1689 
1690 		/*
1691 		 * If the page has buffers, try to free the buffer mappings
1692 		 * associated with this page. If we succeed we try to free
1693 		 * the page as well.
1694 		 *
1695 		 * We do this even if the page is PageDirty().
1696 		 * try_to_release_page() does not perform I/O, but it is
1697 		 * possible for a page to have PageDirty set, but it is actually
1698 		 * clean (all its buffers are clean).  This happens if the
1699 		 * buffers were written out directly, with submit_bh(). ext3
1700 		 * will do this, as well as the blockdev mapping.
1701 		 * try_to_release_page() will discover that cleanness and will
1702 		 * drop the buffers and mark the page clean - it can be freed.
1703 		 *
1704 		 * Rarely, pages can have buffers and no ->mapping.  These are
1705 		 * the pages which were not successfully invalidated in
1706 		 * truncate_cleanup_page().  We try to drop those buffers here
1707 		 * and if that worked, and the page is no longer mapped into
1708 		 * process address space (page_count == 1) it can be freed.
1709 		 * Otherwise, leave the page on the LRU so it is swappable.
1710 		 */
1711 		if (page_has_private(page)) {
1712 			if (!try_to_release_page(page, sc->gfp_mask))
1713 				goto activate_locked;
1714 			if (!mapping && page_count(page) == 1) {
1715 				unlock_page(page);
1716 				if (put_page_testzero(page))
1717 					goto free_it;
1718 				else {
1719 					/*
1720 					 * rare race with speculative reference.
1721 					 * the speculative reference will free
1722 					 * this page shortly, so we may
1723 					 * increment nr_reclaimed here (and
1724 					 * leave it off the LRU).
1725 					 */
1726 					nr_reclaimed++;
1727 					continue;
1728 				}
1729 			}
1730 		}
1731 
1732 		if (PageAnon(page) && !PageSwapBacked(page)) {
1733 			/* follow __remove_mapping for reference */
1734 			if (!page_ref_freeze(page, 1))
1735 				goto keep_locked;
1736 			/*
1737 			 * The page has only one reference left, which is
1738 			 * from the isolation. After the caller puts the
1739 			 * page back on lru and drops the reference, the
1740 			 * page will be freed anyway. It doesn't matter
1741 			 * which lru it goes. So we don't bother checking
1742 			 * PageDirty here.
1743 			 */
1744 			count_vm_event(PGLAZYFREED);
1745 			count_memcg_page_event(page, PGLAZYFREED);
1746 		} else if (!mapping || !__remove_mapping(mapping, page, true,
1747 							 sc->target_mem_cgroup))
1748 			goto keep_locked;
1749 
1750 		unlock_page(page);
1751 free_it:
1752 		/*
1753 		 * THP may get swapped out in a whole, need account
1754 		 * all base pages.
1755 		 */
1756 		nr_reclaimed += nr_pages;
1757 
1758 		/*
1759 		 * Is there need to periodically free_page_list? It would
1760 		 * appear not as the counts should be low
1761 		 */
1762 		if (unlikely(PageTransHuge(page)))
1763 			destroy_compound_page(page);
1764 		else
1765 			list_add(&page->lru, &free_pages);
1766 		continue;
1767 
1768 activate_locked_split:
1769 		/*
1770 		 * The tail pages that are failed to add into swap cache
1771 		 * reach here.  Fixup nr_scanned and nr_pages.
1772 		 */
1773 		if (nr_pages > 1) {
1774 			sc->nr_scanned -= (nr_pages - 1);
1775 			nr_pages = 1;
1776 		}
1777 activate_locked:
1778 		/* Not a candidate for swapping, so reclaim swap space. */
1779 		if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1780 						PageMlocked(page)))
1781 			try_to_free_swap(page);
1782 		VM_BUG_ON_PAGE(PageActive(page), page);
1783 		if (!PageMlocked(page)) {
1784 			int type = page_is_file_lru(page);
1785 			SetPageActive(page);
1786 			stat->nr_activate[type] += nr_pages;
1787 			count_memcg_page_event(page, PGACTIVATE);
1788 		}
1789 keep_locked:
1790 		unlock_page(page);
1791 keep:
1792 		list_add(&page->lru, &ret_pages);
1793 		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1794 	}
1795 	/* 'page_list' is always empty here */
1796 
1797 	/* Migrate pages selected for demotion */
1798 	nr_reclaimed += demote_page_list(&demote_pages, pgdat);
1799 	/* Pages that could not be demoted are still in @demote_pages */
1800 	if (!list_empty(&demote_pages)) {
1801 		/* Pages which failed to demoted go back on @page_list for retry: */
1802 		list_splice_init(&demote_pages, page_list);
1803 		do_demote_pass = false;
1804 		goto retry;
1805 	}
1806 
1807 	pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1808 
1809 	mem_cgroup_uncharge_list(&free_pages);
1810 	try_to_unmap_flush();
1811 	free_unref_page_list(&free_pages);
1812 
1813 	list_splice(&ret_pages, page_list);
1814 	count_vm_events(PGACTIVATE, pgactivate);
1815 
1816 	return nr_reclaimed;
1817 }
1818 
1819 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1820 					    struct list_head *page_list)
1821 {
1822 	struct scan_control sc = {
1823 		.gfp_mask = GFP_KERNEL,
1824 		.may_unmap = 1,
1825 	};
1826 	struct reclaim_stat stat;
1827 	unsigned int nr_reclaimed;
1828 	struct page *page, *next;
1829 	LIST_HEAD(clean_pages);
1830 	unsigned int noreclaim_flag;
1831 
1832 	list_for_each_entry_safe(page, next, page_list, lru) {
1833 		if (!PageHuge(page) && page_is_file_lru(page) &&
1834 		    !PageDirty(page) && !__PageMovable(page) &&
1835 		    !PageUnevictable(page)) {
1836 			ClearPageActive(page);
1837 			list_move(&page->lru, &clean_pages);
1838 		}
1839 	}
1840 
1841 	/*
1842 	 * We should be safe here since we are only dealing with file pages and
1843 	 * we are not kswapd and therefore cannot write dirty file pages. But
1844 	 * call memalloc_noreclaim_save() anyway, just in case these conditions
1845 	 * change in the future.
1846 	 */
1847 	noreclaim_flag = memalloc_noreclaim_save();
1848 	nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1849 					&stat, true);
1850 	memalloc_noreclaim_restore(noreclaim_flag);
1851 
1852 	list_splice(&clean_pages, page_list);
1853 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1854 			    -(long)nr_reclaimed);
1855 	/*
1856 	 * Since lazyfree pages are isolated from file LRU from the beginning,
1857 	 * they will rotate back to anonymous LRU in the end if it failed to
1858 	 * discard so isolated count will be mismatched.
1859 	 * Compensate the isolated count for both LRU lists.
1860 	 */
1861 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
1862 			    stat.nr_lazyfree_fail);
1863 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1864 			    -(long)stat.nr_lazyfree_fail);
1865 	return nr_reclaimed;
1866 }
1867 
1868 /*
1869  * Attempt to remove the specified page from its LRU.  Only take this page
1870  * if it is of the appropriate PageActive status.  Pages which are being
1871  * freed elsewhere are also ignored.
1872  *
1873  * page:	page to consider
1874  * mode:	one of the LRU isolation modes defined above
1875  *
1876  * returns true on success, false on failure.
1877  */
1878 bool __isolate_lru_page_prepare(struct page *page, isolate_mode_t mode)
1879 {
1880 	/* Only take pages on the LRU. */
1881 	if (!PageLRU(page))
1882 		return false;
1883 
1884 	/* Compaction should not handle unevictable pages but CMA can do so */
1885 	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1886 		return false;
1887 
1888 	/*
1889 	 * To minimise LRU disruption, the caller can indicate that it only
1890 	 * wants to isolate pages it will be able to operate on without
1891 	 * blocking - clean pages for the most part.
1892 	 *
1893 	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1894 	 * that it is possible to migrate without blocking
1895 	 */
1896 	if (mode & ISOLATE_ASYNC_MIGRATE) {
1897 		/* All the caller can do on PageWriteback is block */
1898 		if (PageWriteback(page))
1899 			return false;
1900 
1901 		if (PageDirty(page)) {
1902 			struct address_space *mapping;
1903 			bool migrate_dirty;
1904 
1905 			/*
1906 			 * Only pages without mappings or that have a
1907 			 * ->migratepage callback are possible to migrate
1908 			 * without blocking. However, we can be racing with
1909 			 * truncation so it's necessary to lock the page
1910 			 * to stabilise the mapping as truncation holds
1911 			 * the page lock until after the page is removed
1912 			 * from the page cache.
1913 			 */
1914 			if (!trylock_page(page))
1915 				return false;
1916 
1917 			mapping = page_mapping(page);
1918 			migrate_dirty = !mapping || mapping->a_ops->migratepage;
1919 			unlock_page(page);
1920 			if (!migrate_dirty)
1921 				return false;
1922 		}
1923 	}
1924 
1925 	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1926 		return false;
1927 
1928 	return true;
1929 }
1930 
1931 /*
1932  * Update LRU sizes after isolating pages. The LRU size updates must
1933  * be complete before mem_cgroup_update_lru_size due to a sanity check.
1934  */
1935 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1936 			enum lru_list lru, unsigned long *nr_zone_taken)
1937 {
1938 	int zid;
1939 
1940 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1941 		if (!nr_zone_taken[zid])
1942 			continue;
1943 
1944 		update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1945 	}
1946 
1947 }
1948 
1949 /*
1950  * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
1951  *
1952  * lruvec->lru_lock is heavily contended.  Some of the functions that
1953  * shrink the lists perform better by taking out a batch of pages
1954  * and working on them outside the LRU lock.
1955  *
1956  * For pagecache intensive workloads, this function is the hottest
1957  * spot in the kernel (apart from copy_*_user functions).
1958  *
1959  * Lru_lock must be held before calling this function.
1960  *
1961  * @nr_to_scan:	The number of eligible pages to look through on the list.
1962  * @lruvec:	The LRU vector to pull pages from.
1963  * @dst:	The temp list to put pages on to.
1964  * @nr_scanned:	The number of pages that were scanned.
1965  * @sc:		The scan_control struct for this reclaim session
1966  * @lru:	LRU list id for isolating
1967  *
1968  * returns how many pages were moved onto *@dst.
1969  */
1970 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1971 		struct lruvec *lruvec, struct list_head *dst,
1972 		unsigned long *nr_scanned, struct scan_control *sc,
1973 		enum lru_list lru)
1974 {
1975 	struct list_head *src = &lruvec->lists[lru];
1976 	unsigned long nr_taken = 0;
1977 	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1978 	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1979 	unsigned long skipped = 0;
1980 	unsigned long scan, total_scan, nr_pages;
1981 	LIST_HEAD(pages_skipped);
1982 	isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
1983 
1984 	total_scan = 0;
1985 	scan = 0;
1986 	while (scan < nr_to_scan && !list_empty(src)) {
1987 		struct page *page;
1988 
1989 		page = lru_to_page(src);
1990 		prefetchw_prev_lru_page(page, src, flags);
1991 
1992 		nr_pages = compound_nr(page);
1993 		total_scan += nr_pages;
1994 
1995 		if (page_zonenum(page) > sc->reclaim_idx) {
1996 			list_move(&page->lru, &pages_skipped);
1997 			nr_skipped[page_zonenum(page)] += nr_pages;
1998 			continue;
1999 		}
2000 
2001 		/*
2002 		 * Do not count skipped pages because that makes the function
2003 		 * return with no isolated pages if the LRU mostly contains
2004 		 * ineligible pages.  This causes the VM to not reclaim any
2005 		 * pages, triggering a premature OOM.
2006 		 *
2007 		 * Account all tail pages of THP.  This would not cause
2008 		 * premature OOM since __isolate_lru_page() returns -EBUSY
2009 		 * only when the page is being freed somewhere else.
2010 		 */
2011 		scan += nr_pages;
2012 		if (!__isolate_lru_page_prepare(page, mode)) {
2013 			/* It is being freed elsewhere */
2014 			list_move(&page->lru, src);
2015 			continue;
2016 		}
2017 		/*
2018 		 * Be careful not to clear PageLRU until after we're
2019 		 * sure the page is not being freed elsewhere -- the
2020 		 * page release code relies on it.
2021 		 */
2022 		if (unlikely(!get_page_unless_zero(page))) {
2023 			list_move(&page->lru, src);
2024 			continue;
2025 		}
2026 
2027 		if (!TestClearPageLRU(page)) {
2028 			/* Another thread is already isolating this page */
2029 			put_page(page);
2030 			list_move(&page->lru, src);
2031 			continue;
2032 		}
2033 
2034 		nr_taken += nr_pages;
2035 		nr_zone_taken[page_zonenum(page)] += nr_pages;
2036 		list_move(&page->lru, dst);
2037 	}
2038 
2039 	/*
2040 	 * Splice any skipped pages to the start of the LRU list. Note that
2041 	 * this disrupts the LRU order when reclaiming for lower zones but
2042 	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
2043 	 * scanning would soon rescan the same pages to skip and put the
2044 	 * system at risk of premature OOM.
2045 	 */
2046 	if (!list_empty(&pages_skipped)) {
2047 		int zid;
2048 
2049 		list_splice(&pages_skipped, src);
2050 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2051 			if (!nr_skipped[zid])
2052 				continue;
2053 
2054 			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
2055 			skipped += nr_skipped[zid];
2056 		}
2057 	}
2058 	*nr_scanned = total_scan;
2059 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
2060 				    total_scan, skipped, nr_taken, mode, lru);
2061 	update_lru_sizes(lruvec, lru, nr_zone_taken);
2062 	return nr_taken;
2063 }
2064 
2065 /**
2066  * isolate_lru_page - tries to isolate a page from its LRU list
2067  * @page: page to isolate from its LRU list
2068  *
2069  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
2070  * vmstat statistic corresponding to whatever LRU list the page was on.
2071  *
2072  * Returns 0 if the page was removed from an LRU list.
2073  * Returns -EBUSY if the page was not on an LRU list.
2074  *
2075  * The returned page will have PageLRU() cleared.  If it was found on
2076  * the active list, it will have PageActive set.  If it was found on
2077  * the unevictable list, it will have the PageUnevictable bit set. That flag
2078  * may need to be cleared by the caller before letting the page go.
2079  *
2080  * The vmstat statistic corresponding to the list on which the page was
2081  * found will be decremented.
2082  *
2083  * Restrictions:
2084  *
2085  * (1) Must be called with an elevated refcount on the page. This is a
2086  *     fundamental difference from isolate_lru_pages (which is called
2087  *     without a stable reference).
2088  * (2) the lru_lock must not be held.
2089  * (3) interrupts must be enabled.
2090  */
2091 int isolate_lru_page(struct page *page)
2092 {
2093 	int ret = -EBUSY;
2094 
2095 	VM_BUG_ON_PAGE(!page_count(page), page);
2096 	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
2097 
2098 	if (TestClearPageLRU(page)) {
2099 		struct lruvec *lruvec;
2100 
2101 		get_page(page);
2102 		lruvec = lock_page_lruvec_irq(page);
2103 		del_page_from_lru_list(page, lruvec);
2104 		unlock_page_lruvec_irq(lruvec);
2105 		ret = 0;
2106 	}
2107 
2108 	return ret;
2109 }
2110 
2111 /*
2112  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
2113  * then get rescheduled. When there are massive number of tasks doing page
2114  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
2115  * the LRU list will go small and be scanned faster than necessary, leading to
2116  * unnecessary swapping, thrashing and OOM.
2117  */
2118 static int too_many_isolated(struct pglist_data *pgdat, int file,
2119 		struct scan_control *sc)
2120 {
2121 	unsigned long inactive, isolated;
2122 
2123 	if (current_is_kswapd())
2124 		return 0;
2125 
2126 	if (!writeback_throttling_sane(sc))
2127 		return 0;
2128 
2129 	if (file) {
2130 		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
2131 		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
2132 	} else {
2133 		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
2134 		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
2135 	}
2136 
2137 	/*
2138 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
2139 	 * won't get blocked by normal direct-reclaimers, forming a circular
2140 	 * deadlock.
2141 	 */
2142 	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
2143 		inactive >>= 3;
2144 
2145 	return isolated > inactive;
2146 }
2147 
2148 /*
2149  * move_pages_to_lru() moves pages from private @list to appropriate LRU list.
2150  * On return, @list is reused as a list of pages to be freed by the caller.
2151  *
2152  * Returns the number of pages moved to the given lruvec.
2153  */
2154 static unsigned int move_pages_to_lru(struct lruvec *lruvec,
2155 				      struct list_head *list)
2156 {
2157 	int nr_pages, nr_moved = 0;
2158 	LIST_HEAD(pages_to_free);
2159 	struct page *page;
2160 
2161 	while (!list_empty(list)) {
2162 		page = lru_to_page(list);
2163 		VM_BUG_ON_PAGE(PageLRU(page), page);
2164 		list_del(&page->lru);
2165 		if (unlikely(!page_evictable(page))) {
2166 			spin_unlock_irq(&lruvec->lru_lock);
2167 			putback_lru_page(page);
2168 			spin_lock_irq(&lruvec->lru_lock);
2169 			continue;
2170 		}
2171 
2172 		/*
2173 		 * The SetPageLRU needs to be kept here for list integrity.
2174 		 * Otherwise:
2175 		 *   #0 move_pages_to_lru             #1 release_pages
2176 		 *   if !put_page_testzero
2177 		 *				      if (put_page_testzero())
2178 		 *				        !PageLRU //skip lru_lock
2179 		 *     SetPageLRU()
2180 		 *     list_add(&page->lru,)
2181 		 *                                        list_add(&page->lru,)
2182 		 */
2183 		SetPageLRU(page);
2184 
2185 		if (unlikely(put_page_testzero(page))) {
2186 			__clear_page_lru_flags(page);
2187 
2188 			if (unlikely(PageCompound(page))) {
2189 				spin_unlock_irq(&lruvec->lru_lock);
2190 				destroy_compound_page(page);
2191 				spin_lock_irq(&lruvec->lru_lock);
2192 			} else
2193 				list_add(&page->lru, &pages_to_free);
2194 
2195 			continue;
2196 		}
2197 
2198 		/*
2199 		 * All pages were isolated from the same lruvec (and isolation
2200 		 * inhibits memcg migration).
2201 		 */
2202 		VM_BUG_ON_PAGE(!page_matches_lruvec(page, lruvec), page);
2203 		add_page_to_lru_list(page, lruvec);
2204 		nr_pages = thp_nr_pages(page);
2205 		nr_moved += nr_pages;
2206 		if (PageActive(page))
2207 			workingset_age_nonresident(lruvec, nr_pages);
2208 	}
2209 
2210 	/*
2211 	 * To save our caller's stack, now use input list for pages to free.
2212 	 */
2213 	list_splice(&pages_to_free, list);
2214 
2215 	return nr_moved;
2216 }
2217 
2218 /*
2219  * If a kernel thread (such as nfsd for loop-back mounts) services
2220  * a backing device by writing to the page cache it sets PF_LOCAL_THROTTLE.
2221  * In that case we should only throttle if the backing device it is
2222  * writing to is congested.  In other cases it is safe to throttle.
2223  */
2224 static int current_may_throttle(void)
2225 {
2226 	return !(current->flags & PF_LOCAL_THROTTLE) ||
2227 		current->backing_dev_info == NULL ||
2228 		bdi_write_congested(current->backing_dev_info);
2229 }
2230 
2231 /*
2232  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
2233  * of reclaimed pages
2234  */
2235 static unsigned long
2236 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
2237 		     struct scan_control *sc, enum lru_list lru)
2238 {
2239 	LIST_HEAD(page_list);
2240 	unsigned long nr_scanned;
2241 	unsigned int nr_reclaimed = 0;
2242 	unsigned long nr_taken;
2243 	struct reclaim_stat stat;
2244 	bool file = is_file_lru(lru);
2245 	enum vm_event_item item;
2246 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2247 	bool stalled = false;
2248 
2249 	while (unlikely(too_many_isolated(pgdat, file, sc))) {
2250 		if (stalled)
2251 			return 0;
2252 
2253 		/* wait a bit for the reclaimer. */
2254 		msleep(100);
2255 		stalled = true;
2256 
2257 		/* We are about to die and free our memory. Return now. */
2258 		if (fatal_signal_pending(current))
2259 			return SWAP_CLUSTER_MAX;
2260 	}
2261 
2262 	lru_add_drain();
2263 
2264 	spin_lock_irq(&lruvec->lru_lock);
2265 
2266 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
2267 				     &nr_scanned, sc, lru);
2268 
2269 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2270 	item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
2271 	if (!cgroup_reclaim(sc))
2272 		__count_vm_events(item, nr_scanned);
2273 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
2274 	__count_vm_events(PGSCAN_ANON + file, nr_scanned);
2275 
2276 	spin_unlock_irq(&lruvec->lru_lock);
2277 
2278 	if (nr_taken == 0)
2279 		return 0;
2280 
2281 	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, &stat, false);
2282 
2283 	spin_lock_irq(&lruvec->lru_lock);
2284 	move_pages_to_lru(lruvec, &page_list);
2285 
2286 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2287 	item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
2288 	if (!cgroup_reclaim(sc))
2289 		__count_vm_events(item, nr_reclaimed);
2290 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
2291 	__count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
2292 	spin_unlock_irq(&lruvec->lru_lock);
2293 
2294 	lru_note_cost(lruvec, file, stat.nr_pageout);
2295 	mem_cgroup_uncharge_list(&page_list);
2296 	free_unref_page_list(&page_list);
2297 
2298 	/*
2299 	 * If dirty pages are scanned that are not queued for IO, it
2300 	 * implies that flushers are not doing their job. This can
2301 	 * happen when memory pressure pushes dirty pages to the end of
2302 	 * the LRU before the dirty limits are breached and the dirty
2303 	 * data has expired. It can also happen when the proportion of
2304 	 * dirty pages grows not through writes but through memory
2305 	 * pressure reclaiming all the clean cache. And in some cases,
2306 	 * the flushers simply cannot keep up with the allocation
2307 	 * rate. Nudge the flusher threads in case they are asleep.
2308 	 */
2309 	if (stat.nr_unqueued_dirty == nr_taken)
2310 		wakeup_flusher_threads(WB_REASON_VMSCAN);
2311 
2312 	sc->nr.dirty += stat.nr_dirty;
2313 	sc->nr.congested += stat.nr_congested;
2314 	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2315 	sc->nr.writeback += stat.nr_writeback;
2316 	sc->nr.immediate += stat.nr_immediate;
2317 	sc->nr.taken += nr_taken;
2318 	if (file)
2319 		sc->nr.file_taken += nr_taken;
2320 
2321 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2322 			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2323 	return nr_reclaimed;
2324 }
2325 
2326 /*
2327  * shrink_active_list() moves pages from the active LRU to the inactive LRU.
2328  *
2329  * We move them the other way if the page is referenced by one or more
2330  * processes.
2331  *
2332  * If the pages are mostly unmapped, the processing is fast and it is
2333  * appropriate to hold lru_lock across the whole operation.  But if
2334  * the pages are mapped, the processing is slow (page_referenced()), so
2335  * we should drop lru_lock around each page.  It's impossible to balance
2336  * this, so instead we remove the pages from the LRU while processing them.
2337  * It is safe to rely on PG_active against the non-LRU pages in here because
2338  * nobody will play with that bit on a non-LRU page.
2339  *
2340  * The downside is that we have to touch page->_refcount against each page.
2341  * But we had to alter page->flags anyway.
2342  */
2343 static void shrink_active_list(unsigned long nr_to_scan,
2344 			       struct lruvec *lruvec,
2345 			       struct scan_control *sc,
2346 			       enum lru_list lru)
2347 {
2348 	unsigned long nr_taken;
2349 	unsigned long nr_scanned;
2350 	unsigned long vm_flags;
2351 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
2352 	LIST_HEAD(l_active);
2353 	LIST_HEAD(l_inactive);
2354 	struct page *page;
2355 	unsigned nr_deactivate, nr_activate;
2356 	unsigned nr_rotated = 0;
2357 	int file = is_file_lru(lru);
2358 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2359 
2360 	lru_add_drain();
2361 
2362 	spin_lock_irq(&lruvec->lru_lock);
2363 
2364 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2365 				     &nr_scanned, sc, lru);
2366 
2367 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2368 
2369 	if (!cgroup_reclaim(sc))
2370 		__count_vm_events(PGREFILL, nr_scanned);
2371 	__count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2372 
2373 	spin_unlock_irq(&lruvec->lru_lock);
2374 
2375 	while (!list_empty(&l_hold)) {
2376 		cond_resched();
2377 		page = lru_to_page(&l_hold);
2378 		list_del(&page->lru);
2379 
2380 		if (unlikely(!page_evictable(page))) {
2381 			putback_lru_page(page);
2382 			continue;
2383 		}
2384 
2385 		if (unlikely(buffer_heads_over_limit)) {
2386 			if (page_has_private(page) && trylock_page(page)) {
2387 				if (page_has_private(page))
2388 					try_to_release_page(page, 0);
2389 				unlock_page(page);
2390 			}
2391 		}
2392 
2393 		if (page_referenced(page, 0, sc->target_mem_cgroup,
2394 				    &vm_flags)) {
2395 			/*
2396 			 * Identify referenced, file-backed active pages and
2397 			 * give them one more trip around the active list. So
2398 			 * that executable code get better chances to stay in
2399 			 * memory under moderate memory pressure.  Anon pages
2400 			 * are not likely to be evicted by use-once streaming
2401 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
2402 			 * so we ignore them here.
2403 			 */
2404 			if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) {
2405 				nr_rotated += thp_nr_pages(page);
2406 				list_add(&page->lru, &l_active);
2407 				continue;
2408 			}
2409 		}
2410 
2411 		ClearPageActive(page);	/* we are de-activating */
2412 		SetPageWorkingset(page);
2413 		list_add(&page->lru, &l_inactive);
2414 	}
2415 
2416 	/*
2417 	 * Move pages back to the lru list.
2418 	 */
2419 	spin_lock_irq(&lruvec->lru_lock);
2420 
2421 	nr_activate = move_pages_to_lru(lruvec, &l_active);
2422 	nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
2423 	/* Keep all free pages in l_active list */
2424 	list_splice(&l_inactive, &l_active);
2425 
2426 	__count_vm_events(PGDEACTIVATE, nr_deactivate);
2427 	__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2428 
2429 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2430 	spin_unlock_irq(&lruvec->lru_lock);
2431 
2432 	mem_cgroup_uncharge_list(&l_active);
2433 	free_unref_page_list(&l_active);
2434 	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2435 			nr_deactivate, nr_rotated, sc->priority, file);
2436 }
2437 
2438 unsigned long reclaim_pages(struct list_head *page_list)
2439 {
2440 	int nid = NUMA_NO_NODE;
2441 	unsigned int nr_reclaimed = 0;
2442 	LIST_HEAD(node_page_list);
2443 	struct reclaim_stat dummy_stat;
2444 	struct page *page;
2445 	unsigned int noreclaim_flag;
2446 	struct scan_control sc = {
2447 		.gfp_mask = GFP_KERNEL,
2448 		.may_writepage = 1,
2449 		.may_unmap = 1,
2450 		.may_swap = 1,
2451 		.no_demotion = 1,
2452 	};
2453 
2454 	noreclaim_flag = memalloc_noreclaim_save();
2455 
2456 	while (!list_empty(page_list)) {
2457 		page = lru_to_page(page_list);
2458 		if (nid == NUMA_NO_NODE) {
2459 			nid = page_to_nid(page);
2460 			INIT_LIST_HEAD(&node_page_list);
2461 		}
2462 
2463 		if (nid == page_to_nid(page)) {
2464 			ClearPageActive(page);
2465 			list_move(&page->lru, &node_page_list);
2466 			continue;
2467 		}
2468 
2469 		nr_reclaimed += shrink_page_list(&node_page_list,
2470 						NODE_DATA(nid),
2471 						&sc, &dummy_stat, false);
2472 		while (!list_empty(&node_page_list)) {
2473 			page = lru_to_page(&node_page_list);
2474 			list_del(&page->lru);
2475 			putback_lru_page(page);
2476 		}
2477 
2478 		nid = NUMA_NO_NODE;
2479 	}
2480 
2481 	if (!list_empty(&node_page_list)) {
2482 		nr_reclaimed += shrink_page_list(&node_page_list,
2483 						NODE_DATA(nid),
2484 						&sc, &dummy_stat, false);
2485 		while (!list_empty(&node_page_list)) {
2486 			page = lru_to_page(&node_page_list);
2487 			list_del(&page->lru);
2488 			putback_lru_page(page);
2489 		}
2490 	}
2491 
2492 	memalloc_noreclaim_restore(noreclaim_flag);
2493 
2494 	return nr_reclaimed;
2495 }
2496 
2497 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2498 				 struct lruvec *lruvec, struct scan_control *sc)
2499 {
2500 	if (is_active_lru(lru)) {
2501 		if (sc->may_deactivate & (1 << is_file_lru(lru)))
2502 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2503 		else
2504 			sc->skipped_deactivate = 1;
2505 		return 0;
2506 	}
2507 
2508 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2509 }
2510 
2511 /*
2512  * The inactive anon list should be small enough that the VM never has
2513  * to do too much work.
2514  *
2515  * The inactive file list should be small enough to leave most memory
2516  * to the established workingset on the scan-resistant active list,
2517  * but large enough to avoid thrashing the aggregate readahead window.
2518  *
2519  * Both inactive lists should also be large enough that each inactive
2520  * page has a chance to be referenced again before it is reclaimed.
2521  *
2522  * If that fails and refaulting is observed, the inactive list grows.
2523  *
2524  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2525  * on this LRU, maintained by the pageout code. An inactive_ratio
2526  * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2527  *
2528  * total     target    max
2529  * memory    ratio     inactive
2530  * -------------------------------------
2531  *   10MB       1         5MB
2532  *  100MB       1        50MB
2533  *    1GB       3       250MB
2534  *   10GB      10       0.9GB
2535  *  100GB      31         3GB
2536  *    1TB     101        10GB
2537  *   10TB     320        32GB
2538  */
2539 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2540 {
2541 	enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2542 	unsigned long inactive, active;
2543 	unsigned long inactive_ratio;
2544 	unsigned long gb;
2545 
2546 	inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2547 	active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2548 
2549 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
2550 	if (gb)
2551 		inactive_ratio = int_sqrt(10 * gb);
2552 	else
2553 		inactive_ratio = 1;
2554 
2555 	return inactive * inactive_ratio < active;
2556 }
2557 
2558 enum scan_balance {
2559 	SCAN_EQUAL,
2560 	SCAN_FRACT,
2561 	SCAN_ANON,
2562 	SCAN_FILE,
2563 };
2564 
2565 /*
2566  * Determine how aggressively the anon and file LRU lists should be
2567  * scanned.  The relative value of each set of LRU lists is determined
2568  * by looking at the fraction of the pages scanned we did rotate back
2569  * onto the active list instead of evict.
2570  *
2571  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2572  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2573  */
2574 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2575 			   unsigned long *nr)
2576 {
2577 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2578 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2579 	unsigned long anon_cost, file_cost, total_cost;
2580 	int swappiness = mem_cgroup_swappiness(memcg);
2581 	u64 fraction[ANON_AND_FILE];
2582 	u64 denominator = 0;	/* gcc */
2583 	enum scan_balance scan_balance;
2584 	unsigned long ap, fp;
2585 	enum lru_list lru;
2586 
2587 	/* If we have no swap space, do not bother scanning anon pages. */
2588 	if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
2589 		scan_balance = SCAN_FILE;
2590 		goto out;
2591 	}
2592 
2593 	/*
2594 	 * Global reclaim will swap to prevent OOM even with no
2595 	 * swappiness, but memcg users want to use this knob to
2596 	 * disable swapping for individual groups completely when
2597 	 * using the memory controller's swap limit feature would be
2598 	 * too expensive.
2599 	 */
2600 	if (cgroup_reclaim(sc) && !swappiness) {
2601 		scan_balance = SCAN_FILE;
2602 		goto out;
2603 	}
2604 
2605 	/*
2606 	 * Do not apply any pressure balancing cleverness when the
2607 	 * system is close to OOM, scan both anon and file equally
2608 	 * (unless the swappiness setting disagrees with swapping).
2609 	 */
2610 	if (!sc->priority && swappiness) {
2611 		scan_balance = SCAN_EQUAL;
2612 		goto out;
2613 	}
2614 
2615 	/*
2616 	 * If the system is almost out of file pages, force-scan anon.
2617 	 */
2618 	if (sc->file_is_tiny) {
2619 		scan_balance = SCAN_ANON;
2620 		goto out;
2621 	}
2622 
2623 	/*
2624 	 * If there is enough inactive page cache, we do not reclaim
2625 	 * anything from the anonymous working right now.
2626 	 */
2627 	if (sc->cache_trim_mode) {
2628 		scan_balance = SCAN_FILE;
2629 		goto out;
2630 	}
2631 
2632 	scan_balance = SCAN_FRACT;
2633 	/*
2634 	 * Calculate the pressure balance between anon and file pages.
2635 	 *
2636 	 * The amount of pressure we put on each LRU is inversely
2637 	 * proportional to the cost of reclaiming each list, as
2638 	 * determined by the share of pages that are refaulting, times
2639 	 * the relative IO cost of bringing back a swapped out
2640 	 * anonymous page vs reloading a filesystem page (swappiness).
2641 	 *
2642 	 * Although we limit that influence to ensure no list gets
2643 	 * left behind completely: at least a third of the pressure is
2644 	 * applied, before swappiness.
2645 	 *
2646 	 * With swappiness at 100, anon and file have equal IO cost.
2647 	 */
2648 	total_cost = sc->anon_cost + sc->file_cost;
2649 	anon_cost = total_cost + sc->anon_cost;
2650 	file_cost = total_cost + sc->file_cost;
2651 	total_cost = anon_cost + file_cost;
2652 
2653 	ap = swappiness * (total_cost + 1);
2654 	ap /= anon_cost + 1;
2655 
2656 	fp = (200 - swappiness) * (total_cost + 1);
2657 	fp /= file_cost + 1;
2658 
2659 	fraction[0] = ap;
2660 	fraction[1] = fp;
2661 	denominator = ap + fp;
2662 out:
2663 	for_each_evictable_lru(lru) {
2664 		int file = is_file_lru(lru);
2665 		unsigned long lruvec_size;
2666 		unsigned long low, min;
2667 		unsigned long scan;
2668 
2669 		lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2670 		mem_cgroup_protection(sc->target_mem_cgroup, memcg,
2671 				      &min, &low);
2672 
2673 		if (min || low) {
2674 			/*
2675 			 * Scale a cgroup's reclaim pressure by proportioning
2676 			 * its current usage to its memory.low or memory.min
2677 			 * setting.
2678 			 *
2679 			 * This is important, as otherwise scanning aggression
2680 			 * becomes extremely binary -- from nothing as we
2681 			 * approach the memory protection threshold, to totally
2682 			 * nominal as we exceed it.  This results in requiring
2683 			 * setting extremely liberal protection thresholds. It
2684 			 * also means we simply get no protection at all if we
2685 			 * set it too low, which is not ideal.
2686 			 *
2687 			 * If there is any protection in place, we reduce scan
2688 			 * pressure by how much of the total memory used is
2689 			 * within protection thresholds.
2690 			 *
2691 			 * There is one special case: in the first reclaim pass,
2692 			 * we skip over all groups that are within their low
2693 			 * protection. If that fails to reclaim enough pages to
2694 			 * satisfy the reclaim goal, we come back and override
2695 			 * the best-effort low protection. However, we still
2696 			 * ideally want to honor how well-behaved groups are in
2697 			 * that case instead of simply punishing them all
2698 			 * equally. As such, we reclaim them based on how much
2699 			 * memory they are using, reducing the scan pressure
2700 			 * again by how much of the total memory used is under
2701 			 * hard protection.
2702 			 */
2703 			unsigned long cgroup_size = mem_cgroup_size(memcg);
2704 			unsigned long protection;
2705 
2706 			/* memory.low scaling, make sure we retry before OOM */
2707 			if (!sc->memcg_low_reclaim && low > min) {
2708 				protection = low;
2709 				sc->memcg_low_skipped = 1;
2710 			} else {
2711 				protection = min;
2712 			}
2713 
2714 			/* Avoid TOCTOU with earlier protection check */
2715 			cgroup_size = max(cgroup_size, protection);
2716 
2717 			scan = lruvec_size - lruvec_size * protection /
2718 				(cgroup_size + 1);
2719 
2720 			/*
2721 			 * Minimally target SWAP_CLUSTER_MAX pages to keep
2722 			 * reclaim moving forwards, avoiding decrementing
2723 			 * sc->priority further than desirable.
2724 			 */
2725 			scan = max(scan, SWAP_CLUSTER_MAX);
2726 		} else {
2727 			scan = lruvec_size;
2728 		}
2729 
2730 		scan >>= sc->priority;
2731 
2732 		/*
2733 		 * If the cgroup's already been deleted, make sure to
2734 		 * scrape out the remaining cache.
2735 		 */
2736 		if (!scan && !mem_cgroup_online(memcg))
2737 			scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2738 
2739 		switch (scan_balance) {
2740 		case SCAN_EQUAL:
2741 			/* Scan lists relative to size */
2742 			break;
2743 		case SCAN_FRACT:
2744 			/*
2745 			 * Scan types proportional to swappiness and
2746 			 * their relative recent reclaim efficiency.
2747 			 * Make sure we don't miss the last page on
2748 			 * the offlined memory cgroups because of a
2749 			 * round-off error.
2750 			 */
2751 			scan = mem_cgroup_online(memcg) ?
2752 			       div64_u64(scan * fraction[file], denominator) :
2753 			       DIV64_U64_ROUND_UP(scan * fraction[file],
2754 						  denominator);
2755 			break;
2756 		case SCAN_FILE:
2757 		case SCAN_ANON:
2758 			/* Scan one type exclusively */
2759 			if ((scan_balance == SCAN_FILE) != file)
2760 				scan = 0;
2761 			break;
2762 		default:
2763 			/* Look ma, no brain */
2764 			BUG();
2765 		}
2766 
2767 		nr[lru] = scan;
2768 	}
2769 }
2770 
2771 /*
2772  * Anonymous LRU management is a waste if there is
2773  * ultimately no way to reclaim the memory.
2774  */
2775 static bool can_age_anon_pages(struct pglist_data *pgdat,
2776 			       struct scan_control *sc)
2777 {
2778 	/* Aging the anon LRU is valuable if swap is present: */
2779 	if (total_swap_pages > 0)
2780 		return true;
2781 
2782 	/* Also valuable if anon pages can be demoted: */
2783 	return can_demote(pgdat->node_id, sc);
2784 }
2785 
2786 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
2787 {
2788 	unsigned long nr[NR_LRU_LISTS];
2789 	unsigned long targets[NR_LRU_LISTS];
2790 	unsigned long nr_to_scan;
2791 	enum lru_list lru;
2792 	unsigned long nr_reclaimed = 0;
2793 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2794 	struct blk_plug plug;
2795 	bool scan_adjusted;
2796 
2797 	get_scan_count(lruvec, sc, nr);
2798 
2799 	/* Record the original scan target for proportional adjustments later */
2800 	memcpy(targets, nr, sizeof(nr));
2801 
2802 	/*
2803 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2804 	 * event that can occur when there is little memory pressure e.g.
2805 	 * multiple streaming readers/writers. Hence, we do not abort scanning
2806 	 * when the requested number of pages are reclaimed when scanning at
2807 	 * DEF_PRIORITY on the assumption that the fact we are direct
2808 	 * reclaiming implies that kswapd is not keeping up and it is best to
2809 	 * do a batch of work at once. For memcg reclaim one check is made to
2810 	 * abort proportional reclaim if either the file or anon lru has already
2811 	 * dropped to zero at the first pass.
2812 	 */
2813 	scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
2814 			 sc->priority == DEF_PRIORITY);
2815 
2816 	blk_start_plug(&plug);
2817 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2818 					nr[LRU_INACTIVE_FILE]) {
2819 		unsigned long nr_anon, nr_file, percentage;
2820 		unsigned long nr_scanned;
2821 
2822 		for_each_evictable_lru(lru) {
2823 			if (nr[lru]) {
2824 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2825 				nr[lru] -= nr_to_scan;
2826 
2827 				nr_reclaimed += shrink_list(lru, nr_to_scan,
2828 							    lruvec, sc);
2829 			}
2830 		}
2831 
2832 		cond_resched();
2833 
2834 		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2835 			continue;
2836 
2837 		/*
2838 		 * For kswapd and memcg, reclaim at least the number of pages
2839 		 * requested. Ensure that the anon and file LRUs are scanned
2840 		 * proportionally what was requested by get_scan_count(). We
2841 		 * stop reclaiming one LRU and reduce the amount scanning
2842 		 * proportional to the original scan target.
2843 		 */
2844 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2845 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2846 
2847 		/*
2848 		 * It's just vindictive to attack the larger once the smaller
2849 		 * has gone to zero.  And given the way we stop scanning the
2850 		 * smaller below, this makes sure that we only make one nudge
2851 		 * towards proportionality once we've got nr_to_reclaim.
2852 		 */
2853 		if (!nr_file || !nr_anon)
2854 			break;
2855 
2856 		if (nr_file > nr_anon) {
2857 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2858 						targets[LRU_ACTIVE_ANON] + 1;
2859 			lru = LRU_BASE;
2860 			percentage = nr_anon * 100 / scan_target;
2861 		} else {
2862 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2863 						targets[LRU_ACTIVE_FILE] + 1;
2864 			lru = LRU_FILE;
2865 			percentage = nr_file * 100 / scan_target;
2866 		}
2867 
2868 		/* Stop scanning the smaller of the LRU */
2869 		nr[lru] = 0;
2870 		nr[lru + LRU_ACTIVE] = 0;
2871 
2872 		/*
2873 		 * Recalculate the other LRU scan count based on its original
2874 		 * scan target and the percentage scanning already complete
2875 		 */
2876 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2877 		nr_scanned = targets[lru] - nr[lru];
2878 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2879 		nr[lru] -= min(nr[lru], nr_scanned);
2880 
2881 		lru += LRU_ACTIVE;
2882 		nr_scanned = targets[lru] - nr[lru];
2883 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2884 		nr[lru] -= min(nr[lru], nr_scanned);
2885 
2886 		scan_adjusted = true;
2887 	}
2888 	blk_finish_plug(&plug);
2889 	sc->nr_reclaimed += nr_reclaimed;
2890 
2891 	/*
2892 	 * Even if we did not try to evict anon pages at all, we want to
2893 	 * rebalance the anon lru active/inactive ratio.
2894 	 */
2895 	if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) &&
2896 	    inactive_is_low(lruvec, LRU_INACTIVE_ANON))
2897 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2898 				   sc, LRU_ACTIVE_ANON);
2899 }
2900 
2901 /* Use reclaim/compaction for costly allocs or under memory pressure */
2902 static bool in_reclaim_compaction(struct scan_control *sc)
2903 {
2904 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2905 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2906 			 sc->priority < DEF_PRIORITY - 2))
2907 		return true;
2908 
2909 	return false;
2910 }
2911 
2912 /*
2913  * Reclaim/compaction is used for high-order allocation requests. It reclaims
2914  * order-0 pages before compacting the zone. should_continue_reclaim() returns
2915  * true if more pages should be reclaimed such that when the page allocator
2916  * calls try_to_compact_pages() that it will have enough free pages to succeed.
2917  * It will give up earlier than that if there is difficulty reclaiming pages.
2918  */
2919 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2920 					unsigned long nr_reclaimed,
2921 					struct scan_control *sc)
2922 {
2923 	unsigned long pages_for_compaction;
2924 	unsigned long inactive_lru_pages;
2925 	int z;
2926 
2927 	/* If not in reclaim/compaction mode, stop */
2928 	if (!in_reclaim_compaction(sc))
2929 		return false;
2930 
2931 	/*
2932 	 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
2933 	 * number of pages that were scanned. This will return to the caller
2934 	 * with the risk reclaim/compaction and the resulting allocation attempt
2935 	 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
2936 	 * allocations through requiring that the full LRU list has been scanned
2937 	 * first, by assuming that zero delta of sc->nr_scanned means full LRU
2938 	 * scan, but that approximation was wrong, and there were corner cases
2939 	 * where always a non-zero amount of pages were scanned.
2940 	 */
2941 	if (!nr_reclaimed)
2942 		return false;
2943 
2944 	/* If compaction would go ahead or the allocation would succeed, stop */
2945 	for (z = 0; z <= sc->reclaim_idx; z++) {
2946 		struct zone *zone = &pgdat->node_zones[z];
2947 		if (!managed_zone(zone))
2948 			continue;
2949 
2950 		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2951 		case COMPACT_SUCCESS:
2952 		case COMPACT_CONTINUE:
2953 			return false;
2954 		default:
2955 			/* check next zone */
2956 			;
2957 		}
2958 	}
2959 
2960 	/*
2961 	 * If we have not reclaimed enough pages for compaction and the
2962 	 * inactive lists are large enough, continue reclaiming
2963 	 */
2964 	pages_for_compaction = compact_gap(sc->order);
2965 	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2966 	if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
2967 		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2968 
2969 	return inactive_lru_pages > pages_for_compaction;
2970 }
2971 
2972 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
2973 {
2974 	struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
2975 	struct mem_cgroup *memcg;
2976 
2977 	memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
2978 	do {
2979 		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
2980 		unsigned long reclaimed;
2981 		unsigned long scanned;
2982 
2983 		/*
2984 		 * This loop can become CPU-bound when target memcgs
2985 		 * aren't eligible for reclaim - either because they
2986 		 * don't have any reclaimable pages, or because their
2987 		 * memory is explicitly protected. Avoid soft lockups.
2988 		 */
2989 		cond_resched();
2990 
2991 		mem_cgroup_calculate_protection(target_memcg, memcg);
2992 
2993 		if (mem_cgroup_below_min(memcg)) {
2994 			/*
2995 			 * Hard protection.
2996 			 * If there is no reclaimable memory, OOM.
2997 			 */
2998 			continue;
2999 		} else if (mem_cgroup_below_low(memcg)) {
3000 			/*
3001 			 * Soft protection.
3002 			 * Respect the protection only as long as
3003 			 * there is an unprotected supply
3004 			 * of reclaimable memory from other cgroups.
3005 			 */
3006 			if (!sc->memcg_low_reclaim) {
3007 				sc->memcg_low_skipped = 1;
3008 				continue;
3009 			}
3010 			memcg_memory_event(memcg, MEMCG_LOW);
3011 		}
3012 
3013 		reclaimed = sc->nr_reclaimed;
3014 		scanned = sc->nr_scanned;
3015 
3016 		shrink_lruvec(lruvec, sc);
3017 
3018 		shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
3019 			    sc->priority);
3020 
3021 		/* Record the group's reclaim efficiency */
3022 		vmpressure(sc->gfp_mask, memcg, false,
3023 			   sc->nr_scanned - scanned,
3024 			   sc->nr_reclaimed - reclaimed);
3025 
3026 	} while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
3027 }
3028 
3029 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
3030 {
3031 	struct reclaim_state *reclaim_state = current->reclaim_state;
3032 	unsigned long nr_reclaimed, nr_scanned;
3033 	struct lruvec *target_lruvec;
3034 	bool reclaimable = false;
3035 	unsigned long file;
3036 
3037 	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
3038 
3039 again:
3040 	/*
3041 	 * Flush the memory cgroup stats, so that we read accurate per-memcg
3042 	 * lruvec stats for heuristics.
3043 	 */
3044 	mem_cgroup_flush_stats();
3045 
3046 	memset(&sc->nr, 0, sizeof(sc->nr));
3047 
3048 	nr_reclaimed = sc->nr_reclaimed;
3049 	nr_scanned = sc->nr_scanned;
3050 
3051 	/*
3052 	 * Determine the scan balance between anon and file LRUs.
3053 	 */
3054 	spin_lock_irq(&target_lruvec->lru_lock);
3055 	sc->anon_cost = target_lruvec->anon_cost;
3056 	sc->file_cost = target_lruvec->file_cost;
3057 	spin_unlock_irq(&target_lruvec->lru_lock);
3058 
3059 	/*
3060 	 * Target desirable inactive:active list ratios for the anon
3061 	 * and file LRU lists.
3062 	 */
3063 	if (!sc->force_deactivate) {
3064 		unsigned long refaults;
3065 
3066 		refaults = lruvec_page_state(target_lruvec,
3067 				WORKINGSET_ACTIVATE_ANON);
3068 		if (refaults != target_lruvec->refaults[0] ||
3069 			inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
3070 			sc->may_deactivate |= DEACTIVATE_ANON;
3071 		else
3072 			sc->may_deactivate &= ~DEACTIVATE_ANON;
3073 
3074 		/*
3075 		 * When refaults are being observed, it means a new
3076 		 * workingset is being established. Deactivate to get
3077 		 * rid of any stale active pages quickly.
3078 		 */
3079 		refaults = lruvec_page_state(target_lruvec,
3080 				WORKINGSET_ACTIVATE_FILE);
3081 		if (refaults != target_lruvec->refaults[1] ||
3082 		    inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
3083 			sc->may_deactivate |= DEACTIVATE_FILE;
3084 		else
3085 			sc->may_deactivate &= ~DEACTIVATE_FILE;
3086 	} else
3087 		sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
3088 
3089 	/*
3090 	 * If we have plenty of inactive file pages that aren't
3091 	 * thrashing, try to reclaim those first before touching
3092 	 * anonymous pages.
3093 	 */
3094 	file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
3095 	if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
3096 		sc->cache_trim_mode = 1;
3097 	else
3098 		sc->cache_trim_mode = 0;
3099 
3100 	/*
3101 	 * Prevent the reclaimer from falling into the cache trap: as
3102 	 * cache pages start out inactive, every cache fault will tip
3103 	 * the scan balance towards the file LRU.  And as the file LRU
3104 	 * shrinks, so does the window for rotation from references.
3105 	 * This means we have a runaway feedback loop where a tiny
3106 	 * thrashing file LRU becomes infinitely more attractive than
3107 	 * anon pages.  Try to detect this based on file LRU size.
3108 	 */
3109 	if (!cgroup_reclaim(sc)) {
3110 		unsigned long total_high_wmark = 0;
3111 		unsigned long free, anon;
3112 		int z;
3113 
3114 		free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
3115 		file = node_page_state(pgdat, NR_ACTIVE_FILE) +
3116 			   node_page_state(pgdat, NR_INACTIVE_FILE);
3117 
3118 		for (z = 0; z < MAX_NR_ZONES; z++) {
3119 			struct zone *zone = &pgdat->node_zones[z];
3120 			if (!managed_zone(zone))
3121 				continue;
3122 
3123 			total_high_wmark += high_wmark_pages(zone);
3124 		}
3125 
3126 		/*
3127 		 * Consider anon: if that's low too, this isn't a
3128 		 * runaway file reclaim problem, but rather just
3129 		 * extreme pressure. Reclaim as per usual then.
3130 		 */
3131 		anon = node_page_state(pgdat, NR_INACTIVE_ANON);
3132 
3133 		sc->file_is_tiny =
3134 			file + free <= total_high_wmark &&
3135 			!(sc->may_deactivate & DEACTIVATE_ANON) &&
3136 			anon >> sc->priority;
3137 	}
3138 
3139 	shrink_node_memcgs(pgdat, sc);
3140 
3141 	if (reclaim_state) {
3142 		sc->nr_reclaimed += reclaim_state->reclaimed_slab;
3143 		reclaim_state->reclaimed_slab = 0;
3144 	}
3145 
3146 	/* Record the subtree's reclaim efficiency */
3147 	vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
3148 		   sc->nr_scanned - nr_scanned,
3149 		   sc->nr_reclaimed - nr_reclaimed);
3150 
3151 	if (sc->nr_reclaimed - nr_reclaimed)
3152 		reclaimable = true;
3153 
3154 	if (current_is_kswapd()) {
3155 		/*
3156 		 * If reclaim is isolating dirty pages under writeback,
3157 		 * it implies that the long-lived page allocation rate
3158 		 * is exceeding the page laundering rate. Either the
3159 		 * global limits are not being effective at throttling
3160 		 * processes due to the page distribution throughout
3161 		 * zones or there is heavy usage of a slow backing
3162 		 * device. The only option is to throttle from reclaim
3163 		 * context which is not ideal as there is no guarantee
3164 		 * the dirtying process is throttled in the same way
3165 		 * balance_dirty_pages() manages.
3166 		 *
3167 		 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
3168 		 * count the number of pages under pages flagged for
3169 		 * immediate reclaim and stall if any are encountered
3170 		 * in the nr_immediate check below.
3171 		 */
3172 		if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
3173 			set_bit(PGDAT_WRITEBACK, &pgdat->flags);
3174 
3175 		/* Allow kswapd to start writing pages during reclaim.*/
3176 		if (sc->nr.unqueued_dirty == sc->nr.file_taken)
3177 			set_bit(PGDAT_DIRTY, &pgdat->flags);
3178 
3179 		/*
3180 		 * If kswapd scans pages marked for immediate
3181 		 * reclaim and under writeback (nr_immediate), it
3182 		 * implies that pages are cycling through the LRU
3183 		 * faster than they are written so also forcibly stall.
3184 		 */
3185 		if (sc->nr.immediate)
3186 			congestion_wait(BLK_RW_ASYNC, HZ/10);
3187 	}
3188 
3189 	/*
3190 	 * Tag a node/memcg as congested if all the dirty pages
3191 	 * scanned were backed by a congested BDI and
3192 	 * wait_iff_congested will stall.
3193 	 *
3194 	 * Legacy memcg will stall in page writeback so avoid forcibly
3195 	 * stalling in wait_iff_congested().
3196 	 */
3197 	if ((current_is_kswapd() ||
3198 	     (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
3199 	    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
3200 		set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
3201 
3202 	/*
3203 	 * Stall direct reclaim for IO completions if underlying BDIs
3204 	 * and node is congested. Allow kswapd to continue until it
3205 	 * starts encountering unqueued dirty pages or cycling through
3206 	 * the LRU too quickly.
3207 	 */
3208 	if (!current_is_kswapd() && current_may_throttle() &&
3209 	    !sc->hibernation_mode &&
3210 	    test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
3211 		wait_iff_congested(BLK_RW_ASYNC, HZ/10);
3212 
3213 	if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
3214 				    sc))
3215 		goto again;
3216 
3217 	/*
3218 	 * Kswapd gives up on balancing particular nodes after too
3219 	 * many failures to reclaim anything from them and goes to
3220 	 * sleep. On reclaim progress, reset the failure counter. A
3221 	 * successful direct reclaim run will revive a dormant kswapd.
3222 	 */
3223 	if (reclaimable)
3224 		pgdat->kswapd_failures = 0;
3225 }
3226 
3227 /*
3228  * Returns true if compaction should go ahead for a costly-order request, or
3229  * the allocation would already succeed without compaction. Return false if we
3230  * should reclaim first.
3231  */
3232 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
3233 {
3234 	unsigned long watermark;
3235 	enum compact_result suitable;
3236 
3237 	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
3238 	if (suitable == COMPACT_SUCCESS)
3239 		/* Allocation should succeed already. Don't reclaim. */
3240 		return true;
3241 	if (suitable == COMPACT_SKIPPED)
3242 		/* Compaction cannot yet proceed. Do reclaim. */
3243 		return false;
3244 
3245 	/*
3246 	 * Compaction is already possible, but it takes time to run and there
3247 	 * are potentially other callers using the pages just freed. So proceed
3248 	 * with reclaim to make a buffer of free pages available to give
3249 	 * compaction a reasonable chance of completing and allocating the page.
3250 	 * Note that we won't actually reclaim the whole buffer in one attempt
3251 	 * as the target watermark in should_continue_reclaim() is lower. But if
3252 	 * we are already above the high+gap watermark, don't reclaim at all.
3253 	 */
3254 	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
3255 
3256 	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
3257 }
3258 
3259 /*
3260  * This is the direct reclaim path, for page-allocating processes.  We only
3261  * try to reclaim pages from zones which will satisfy the caller's allocation
3262  * request.
3263  *
3264  * If a zone is deemed to be full of pinned pages then just give it a light
3265  * scan then give up on it.
3266  */
3267 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
3268 {
3269 	struct zoneref *z;
3270 	struct zone *zone;
3271 	unsigned long nr_soft_reclaimed;
3272 	unsigned long nr_soft_scanned;
3273 	gfp_t orig_mask;
3274 	pg_data_t *last_pgdat = NULL;
3275 
3276 	/*
3277 	 * If the number of buffer_heads in the machine exceeds the maximum
3278 	 * allowed level, force direct reclaim to scan the highmem zone as
3279 	 * highmem pages could be pinning lowmem pages storing buffer_heads
3280 	 */
3281 	orig_mask = sc->gfp_mask;
3282 	if (buffer_heads_over_limit) {
3283 		sc->gfp_mask |= __GFP_HIGHMEM;
3284 		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
3285 	}
3286 
3287 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
3288 					sc->reclaim_idx, sc->nodemask) {
3289 		/*
3290 		 * Take care memory controller reclaiming has small influence
3291 		 * to global LRU.
3292 		 */
3293 		if (!cgroup_reclaim(sc)) {
3294 			if (!cpuset_zone_allowed(zone,
3295 						 GFP_KERNEL | __GFP_HARDWALL))
3296 				continue;
3297 
3298 			/*
3299 			 * If we already have plenty of memory free for
3300 			 * compaction in this zone, don't free any more.
3301 			 * Even though compaction is invoked for any
3302 			 * non-zero order, only frequent costly order
3303 			 * reclamation is disruptive enough to become a
3304 			 * noticeable problem, like transparent huge
3305 			 * page allocations.
3306 			 */
3307 			if (IS_ENABLED(CONFIG_COMPACTION) &&
3308 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
3309 			    compaction_ready(zone, sc)) {
3310 				sc->compaction_ready = true;
3311 				continue;
3312 			}
3313 
3314 			/*
3315 			 * Shrink each node in the zonelist once. If the
3316 			 * zonelist is ordered by zone (not the default) then a
3317 			 * node may be shrunk multiple times but in that case
3318 			 * the user prefers lower zones being preserved.
3319 			 */
3320 			if (zone->zone_pgdat == last_pgdat)
3321 				continue;
3322 
3323 			/*
3324 			 * This steals pages from memory cgroups over softlimit
3325 			 * and returns the number of reclaimed pages and
3326 			 * scanned pages. This works for global memory pressure
3327 			 * and balancing, not for a memcg's limit.
3328 			 */
3329 			nr_soft_scanned = 0;
3330 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
3331 						sc->order, sc->gfp_mask,
3332 						&nr_soft_scanned);
3333 			sc->nr_reclaimed += nr_soft_reclaimed;
3334 			sc->nr_scanned += nr_soft_scanned;
3335 			/* need some check for avoid more shrink_zone() */
3336 		}
3337 
3338 		/* See comment about same check for global reclaim above */
3339 		if (zone->zone_pgdat == last_pgdat)
3340 			continue;
3341 		last_pgdat = zone->zone_pgdat;
3342 		shrink_node(zone->zone_pgdat, sc);
3343 	}
3344 
3345 	/*
3346 	 * Restore to original mask to avoid the impact on the caller if we
3347 	 * promoted it to __GFP_HIGHMEM.
3348 	 */
3349 	sc->gfp_mask = orig_mask;
3350 }
3351 
3352 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
3353 {
3354 	struct lruvec *target_lruvec;
3355 	unsigned long refaults;
3356 
3357 	target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
3358 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
3359 	target_lruvec->refaults[0] = refaults;
3360 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
3361 	target_lruvec->refaults[1] = refaults;
3362 }
3363 
3364 /*
3365  * This is the main entry point to direct page reclaim.
3366  *
3367  * If a full scan of the inactive list fails to free enough memory then we
3368  * are "out of memory" and something needs to be killed.
3369  *
3370  * If the caller is !__GFP_FS then the probability of a failure is reasonably
3371  * high - the zone may be full of dirty or under-writeback pages, which this
3372  * caller can't do much about.  We kick the writeback threads and take explicit
3373  * naps in the hope that some of these pages can be written.  But if the
3374  * allocating task holds filesystem locks which prevent writeout this might not
3375  * work, and the allocation attempt will fail.
3376  *
3377  * returns:	0, if no pages reclaimed
3378  * 		else, the number of pages reclaimed
3379  */
3380 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3381 					  struct scan_control *sc)
3382 {
3383 	int initial_priority = sc->priority;
3384 	pg_data_t *last_pgdat;
3385 	struct zoneref *z;
3386 	struct zone *zone;
3387 retry:
3388 	delayacct_freepages_start();
3389 
3390 	if (!cgroup_reclaim(sc))
3391 		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
3392 
3393 	do {
3394 		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3395 				sc->priority);
3396 		sc->nr_scanned = 0;
3397 		shrink_zones(zonelist, sc);
3398 
3399 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3400 			break;
3401 
3402 		if (sc->compaction_ready)
3403 			break;
3404 
3405 		/*
3406 		 * If we're getting trouble reclaiming, start doing
3407 		 * writepage even in laptop mode.
3408 		 */
3409 		if (sc->priority < DEF_PRIORITY - 2)
3410 			sc->may_writepage = 1;
3411 	} while (--sc->priority >= 0);
3412 
3413 	last_pgdat = NULL;
3414 	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3415 					sc->nodemask) {
3416 		if (zone->zone_pgdat == last_pgdat)
3417 			continue;
3418 		last_pgdat = zone->zone_pgdat;
3419 
3420 		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3421 
3422 		if (cgroup_reclaim(sc)) {
3423 			struct lruvec *lruvec;
3424 
3425 			lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
3426 						   zone->zone_pgdat);
3427 			clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3428 		}
3429 	}
3430 
3431 	delayacct_freepages_end();
3432 
3433 	if (sc->nr_reclaimed)
3434 		return sc->nr_reclaimed;
3435 
3436 	/* Aborted reclaim to try compaction? don't OOM, then */
3437 	if (sc->compaction_ready)
3438 		return 1;
3439 
3440 	/*
3441 	 * We make inactive:active ratio decisions based on the node's
3442 	 * composition of memory, but a restrictive reclaim_idx or a
3443 	 * memory.low cgroup setting can exempt large amounts of
3444 	 * memory from reclaim. Neither of which are very common, so
3445 	 * instead of doing costly eligibility calculations of the
3446 	 * entire cgroup subtree up front, we assume the estimates are
3447 	 * good, and retry with forcible deactivation if that fails.
3448 	 */
3449 	if (sc->skipped_deactivate) {
3450 		sc->priority = initial_priority;
3451 		sc->force_deactivate = 1;
3452 		sc->skipped_deactivate = 0;
3453 		goto retry;
3454 	}
3455 
3456 	/* Untapped cgroup reserves?  Don't OOM, retry. */
3457 	if (sc->memcg_low_skipped) {
3458 		sc->priority = initial_priority;
3459 		sc->force_deactivate = 0;
3460 		sc->memcg_low_reclaim = 1;
3461 		sc->memcg_low_skipped = 0;
3462 		goto retry;
3463 	}
3464 
3465 	return 0;
3466 }
3467 
3468 static bool allow_direct_reclaim(pg_data_t *pgdat)
3469 {
3470 	struct zone *zone;
3471 	unsigned long pfmemalloc_reserve = 0;
3472 	unsigned long free_pages = 0;
3473 	int i;
3474 	bool wmark_ok;
3475 
3476 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3477 		return true;
3478 
3479 	for (i = 0; i <= ZONE_NORMAL; i++) {
3480 		zone = &pgdat->node_zones[i];
3481 		if (!managed_zone(zone))
3482 			continue;
3483 
3484 		if (!zone_reclaimable_pages(zone))
3485 			continue;
3486 
3487 		pfmemalloc_reserve += min_wmark_pages(zone);
3488 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
3489 	}
3490 
3491 	/* If there are no reserves (unexpected config) then do not throttle */
3492 	if (!pfmemalloc_reserve)
3493 		return true;
3494 
3495 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
3496 
3497 	/* kswapd must be awake if processes are being throttled */
3498 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3499 		if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
3500 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
3501 
3502 		wake_up_interruptible(&pgdat->kswapd_wait);
3503 	}
3504 
3505 	return wmark_ok;
3506 }
3507 
3508 /*
3509  * Throttle direct reclaimers if backing storage is backed by the network
3510  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3511  * depleted. kswapd will continue to make progress and wake the processes
3512  * when the low watermark is reached.
3513  *
3514  * Returns true if a fatal signal was delivered during throttling. If this
3515  * happens, the page allocator should not consider triggering the OOM killer.
3516  */
3517 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3518 					nodemask_t *nodemask)
3519 {
3520 	struct zoneref *z;
3521 	struct zone *zone;
3522 	pg_data_t *pgdat = NULL;
3523 
3524 	/*
3525 	 * Kernel threads should not be throttled as they may be indirectly
3526 	 * responsible for cleaning pages necessary for reclaim to make forward
3527 	 * progress. kjournald for example may enter direct reclaim while
3528 	 * committing a transaction where throttling it could forcing other
3529 	 * processes to block on log_wait_commit().
3530 	 */
3531 	if (current->flags & PF_KTHREAD)
3532 		goto out;
3533 
3534 	/*
3535 	 * If a fatal signal is pending, this process should not throttle.
3536 	 * It should return quickly so it can exit and free its memory
3537 	 */
3538 	if (fatal_signal_pending(current))
3539 		goto out;
3540 
3541 	/*
3542 	 * Check if the pfmemalloc reserves are ok by finding the first node
3543 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3544 	 * GFP_KERNEL will be required for allocating network buffers when
3545 	 * swapping over the network so ZONE_HIGHMEM is unusable.
3546 	 *
3547 	 * Throttling is based on the first usable node and throttled processes
3548 	 * wait on a queue until kswapd makes progress and wakes them. There
3549 	 * is an affinity then between processes waking up and where reclaim
3550 	 * progress has been made assuming the process wakes on the same node.
3551 	 * More importantly, processes running on remote nodes will not compete
3552 	 * for remote pfmemalloc reserves and processes on different nodes
3553 	 * should make reasonable progress.
3554 	 */
3555 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
3556 					gfp_zone(gfp_mask), nodemask) {
3557 		if (zone_idx(zone) > ZONE_NORMAL)
3558 			continue;
3559 
3560 		/* Throttle based on the first usable node */
3561 		pgdat = zone->zone_pgdat;
3562 		if (allow_direct_reclaim(pgdat))
3563 			goto out;
3564 		break;
3565 	}
3566 
3567 	/* If no zone was usable by the allocation flags then do not throttle */
3568 	if (!pgdat)
3569 		goto out;
3570 
3571 	/* Account for the throttling */
3572 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
3573 
3574 	/*
3575 	 * If the caller cannot enter the filesystem, it's possible that it
3576 	 * is due to the caller holding an FS lock or performing a journal
3577 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
3578 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
3579 	 * blocked waiting on the same lock. Instead, throttle for up to a
3580 	 * second before continuing.
3581 	 */
3582 	if (!(gfp_mask & __GFP_FS))
3583 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3584 			allow_direct_reclaim(pgdat), HZ);
3585 	else
3586 		/* Throttle until kswapd wakes the process */
3587 		wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3588 			allow_direct_reclaim(pgdat));
3589 
3590 	if (fatal_signal_pending(current))
3591 		return true;
3592 
3593 out:
3594 	return false;
3595 }
3596 
3597 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3598 				gfp_t gfp_mask, nodemask_t *nodemask)
3599 {
3600 	unsigned long nr_reclaimed;
3601 	struct scan_control sc = {
3602 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3603 		.gfp_mask = current_gfp_context(gfp_mask),
3604 		.reclaim_idx = gfp_zone(gfp_mask),
3605 		.order = order,
3606 		.nodemask = nodemask,
3607 		.priority = DEF_PRIORITY,
3608 		.may_writepage = !laptop_mode,
3609 		.may_unmap = 1,
3610 		.may_swap = 1,
3611 	};
3612 
3613 	/*
3614 	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3615 	 * Confirm they are large enough for max values.
3616 	 */
3617 	BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3618 	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3619 	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3620 
3621 	/*
3622 	 * Do not enter reclaim if fatal signal was delivered while throttled.
3623 	 * 1 is returned so that the page allocator does not OOM kill at this
3624 	 * point.
3625 	 */
3626 	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3627 		return 1;
3628 
3629 	set_task_reclaim_state(current, &sc.reclaim_state);
3630 	trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
3631 
3632 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3633 
3634 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3635 	set_task_reclaim_state(current, NULL);
3636 
3637 	return nr_reclaimed;
3638 }
3639 
3640 #ifdef CONFIG_MEMCG
3641 
3642 /* Only used by soft limit reclaim. Do not reuse for anything else. */
3643 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3644 						gfp_t gfp_mask, bool noswap,
3645 						pg_data_t *pgdat,
3646 						unsigned long *nr_scanned)
3647 {
3648 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3649 	struct scan_control sc = {
3650 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3651 		.target_mem_cgroup = memcg,
3652 		.may_writepage = !laptop_mode,
3653 		.may_unmap = 1,
3654 		.reclaim_idx = MAX_NR_ZONES - 1,
3655 		.may_swap = !noswap,
3656 	};
3657 
3658 	WARN_ON_ONCE(!current->reclaim_state);
3659 
3660 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3661 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3662 
3663 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3664 						      sc.gfp_mask);
3665 
3666 	/*
3667 	 * NOTE: Although we can get the priority field, using it
3668 	 * here is not a good idea, since it limits the pages we can scan.
3669 	 * if we don't reclaim here, the shrink_node from balance_pgdat
3670 	 * will pick up pages from other mem cgroup's as well. We hack
3671 	 * the priority and make it zero.
3672 	 */
3673 	shrink_lruvec(lruvec, &sc);
3674 
3675 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3676 
3677 	*nr_scanned = sc.nr_scanned;
3678 
3679 	return sc.nr_reclaimed;
3680 }
3681 
3682 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3683 					   unsigned long nr_pages,
3684 					   gfp_t gfp_mask,
3685 					   bool may_swap)
3686 {
3687 	unsigned long nr_reclaimed;
3688 	unsigned int noreclaim_flag;
3689 	struct scan_control sc = {
3690 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3691 		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3692 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3693 		.reclaim_idx = MAX_NR_ZONES - 1,
3694 		.target_mem_cgroup = memcg,
3695 		.priority = DEF_PRIORITY,
3696 		.may_writepage = !laptop_mode,
3697 		.may_unmap = 1,
3698 		.may_swap = may_swap,
3699 	};
3700 	/*
3701 	 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
3702 	 * equal pressure on all the nodes. This is based on the assumption that
3703 	 * the reclaim does not bail out early.
3704 	 */
3705 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3706 
3707 	set_task_reclaim_state(current, &sc.reclaim_state);
3708 	trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
3709 	noreclaim_flag = memalloc_noreclaim_save();
3710 
3711 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3712 
3713 	memalloc_noreclaim_restore(noreclaim_flag);
3714 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3715 	set_task_reclaim_state(current, NULL);
3716 
3717 	return nr_reclaimed;
3718 }
3719 #endif
3720 
3721 static void age_active_anon(struct pglist_data *pgdat,
3722 				struct scan_control *sc)
3723 {
3724 	struct mem_cgroup *memcg;
3725 	struct lruvec *lruvec;
3726 
3727 	if (!can_age_anon_pages(pgdat, sc))
3728 		return;
3729 
3730 	lruvec = mem_cgroup_lruvec(NULL, pgdat);
3731 	if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
3732 		return;
3733 
3734 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
3735 	do {
3736 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
3737 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3738 				   sc, LRU_ACTIVE_ANON);
3739 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
3740 	} while (memcg);
3741 }
3742 
3743 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
3744 {
3745 	int i;
3746 	struct zone *zone;
3747 
3748 	/*
3749 	 * Check for watermark boosts top-down as the higher zones
3750 	 * are more likely to be boosted. Both watermarks and boosts
3751 	 * should not be checked at the same time as reclaim would
3752 	 * start prematurely when there is no boosting and a lower
3753 	 * zone is balanced.
3754 	 */
3755 	for (i = highest_zoneidx; i >= 0; i--) {
3756 		zone = pgdat->node_zones + i;
3757 		if (!managed_zone(zone))
3758 			continue;
3759 
3760 		if (zone->watermark_boost)
3761 			return true;
3762 	}
3763 
3764 	return false;
3765 }
3766 
3767 /*
3768  * Returns true if there is an eligible zone balanced for the request order
3769  * and highest_zoneidx
3770  */
3771 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
3772 {
3773 	int i;
3774 	unsigned long mark = -1;
3775 	struct zone *zone;
3776 
3777 	/*
3778 	 * Check watermarks bottom-up as lower zones are more likely to
3779 	 * meet watermarks.
3780 	 */
3781 	for (i = 0; i <= highest_zoneidx; i++) {
3782 		zone = pgdat->node_zones + i;
3783 
3784 		if (!managed_zone(zone))
3785 			continue;
3786 
3787 		mark = high_wmark_pages(zone);
3788 		if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
3789 			return true;
3790 	}
3791 
3792 	/*
3793 	 * If a node has no populated zone within highest_zoneidx, it does not
3794 	 * need balancing by definition. This can happen if a zone-restricted
3795 	 * allocation tries to wake a remote kswapd.
3796 	 */
3797 	if (mark == -1)
3798 		return true;
3799 
3800 	return false;
3801 }
3802 
3803 /* Clear pgdat state for congested, dirty or under writeback. */
3804 static void clear_pgdat_congested(pg_data_t *pgdat)
3805 {
3806 	struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
3807 
3808 	clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3809 	clear_bit(PGDAT_DIRTY, &pgdat->flags);
3810 	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3811 }
3812 
3813 /*
3814  * Prepare kswapd for sleeping. This verifies that there are no processes
3815  * waiting in throttle_direct_reclaim() and that watermarks have been met.
3816  *
3817  * Returns true if kswapd is ready to sleep
3818  */
3819 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
3820 				int highest_zoneidx)
3821 {
3822 	/*
3823 	 * The throttled processes are normally woken up in balance_pgdat() as
3824 	 * soon as allow_direct_reclaim() is true. But there is a potential
3825 	 * race between when kswapd checks the watermarks and a process gets
3826 	 * throttled. There is also a potential race if processes get
3827 	 * throttled, kswapd wakes, a large process exits thereby balancing the
3828 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
3829 	 * the wake up checks. If kswapd is going to sleep, no process should
3830 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3831 	 * the wake up is premature, processes will wake kswapd and get
3832 	 * throttled again. The difference from wake ups in balance_pgdat() is
3833 	 * that here we are under prepare_to_wait().
3834 	 */
3835 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
3836 		wake_up_all(&pgdat->pfmemalloc_wait);
3837 
3838 	/* Hopeless node, leave it to direct reclaim */
3839 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3840 		return true;
3841 
3842 	if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
3843 		clear_pgdat_congested(pgdat);
3844 		return true;
3845 	}
3846 
3847 	return false;
3848 }
3849 
3850 /*
3851  * kswapd shrinks a node of pages that are at or below the highest usable
3852  * zone that is currently unbalanced.
3853  *
3854  * Returns true if kswapd scanned at least the requested number of pages to
3855  * reclaim or if the lack of progress was due to pages under writeback.
3856  * This is used to determine if the scanning priority needs to be raised.
3857  */
3858 static bool kswapd_shrink_node(pg_data_t *pgdat,
3859 			       struct scan_control *sc)
3860 {
3861 	struct zone *zone;
3862 	int z;
3863 
3864 	/* Reclaim a number of pages proportional to the number of zones */
3865 	sc->nr_to_reclaim = 0;
3866 	for (z = 0; z <= sc->reclaim_idx; z++) {
3867 		zone = pgdat->node_zones + z;
3868 		if (!managed_zone(zone))
3869 			continue;
3870 
3871 		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3872 	}
3873 
3874 	/*
3875 	 * Historically care was taken to put equal pressure on all zones but
3876 	 * now pressure is applied based on node LRU order.
3877 	 */
3878 	shrink_node(pgdat, sc);
3879 
3880 	/*
3881 	 * Fragmentation may mean that the system cannot be rebalanced for
3882 	 * high-order allocations. If twice the allocation size has been
3883 	 * reclaimed then recheck watermarks only at order-0 to prevent
3884 	 * excessive reclaim. Assume that a process requested a high-order
3885 	 * can direct reclaim/compact.
3886 	 */
3887 	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3888 		sc->order = 0;
3889 
3890 	return sc->nr_scanned >= sc->nr_to_reclaim;
3891 }
3892 
3893 /* Page allocator PCP high watermark is lowered if reclaim is active. */
3894 static inline void
3895 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
3896 {
3897 	int i;
3898 	struct zone *zone;
3899 
3900 	for (i = 0; i <= highest_zoneidx; i++) {
3901 		zone = pgdat->node_zones + i;
3902 
3903 		if (!managed_zone(zone))
3904 			continue;
3905 
3906 		if (active)
3907 			set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
3908 		else
3909 			clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
3910 	}
3911 }
3912 
3913 static inline void
3914 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
3915 {
3916 	update_reclaim_active(pgdat, highest_zoneidx, true);
3917 }
3918 
3919 static inline void
3920 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
3921 {
3922 	update_reclaim_active(pgdat, highest_zoneidx, false);
3923 }
3924 
3925 /*
3926  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3927  * that are eligible for use by the caller until at least one zone is
3928  * balanced.
3929  *
3930  * Returns the order kswapd finished reclaiming at.
3931  *
3932  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3933  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3934  * found to have free_pages <= high_wmark_pages(zone), any page in that zone
3935  * or lower is eligible for reclaim until at least one usable zone is
3936  * balanced.
3937  */
3938 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
3939 {
3940 	int i;
3941 	unsigned long nr_soft_reclaimed;
3942 	unsigned long nr_soft_scanned;
3943 	unsigned long pflags;
3944 	unsigned long nr_boost_reclaim;
3945 	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
3946 	bool boosted;
3947 	struct zone *zone;
3948 	struct scan_control sc = {
3949 		.gfp_mask = GFP_KERNEL,
3950 		.order = order,
3951 		.may_unmap = 1,
3952 	};
3953 
3954 	set_task_reclaim_state(current, &sc.reclaim_state);
3955 	psi_memstall_enter(&pflags);
3956 	__fs_reclaim_acquire(_THIS_IP_);
3957 
3958 	count_vm_event(PAGEOUTRUN);
3959 
3960 	/*
3961 	 * Account for the reclaim boost. Note that the zone boost is left in
3962 	 * place so that parallel allocations that are near the watermark will
3963 	 * stall or direct reclaim until kswapd is finished.
3964 	 */
3965 	nr_boost_reclaim = 0;
3966 	for (i = 0; i <= highest_zoneidx; i++) {
3967 		zone = pgdat->node_zones + i;
3968 		if (!managed_zone(zone))
3969 			continue;
3970 
3971 		nr_boost_reclaim += zone->watermark_boost;
3972 		zone_boosts[i] = zone->watermark_boost;
3973 	}
3974 	boosted = nr_boost_reclaim;
3975 
3976 restart:
3977 	set_reclaim_active(pgdat, highest_zoneidx);
3978 	sc.priority = DEF_PRIORITY;
3979 	do {
3980 		unsigned long nr_reclaimed = sc.nr_reclaimed;
3981 		bool raise_priority = true;
3982 		bool balanced;
3983 		bool ret;
3984 
3985 		sc.reclaim_idx = highest_zoneidx;
3986 
3987 		/*
3988 		 * If the number of buffer_heads exceeds the maximum allowed
3989 		 * then consider reclaiming from all zones. This has a dual
3990 		 * purpose -- on 64-bit systems it is expected that
3991 		 * buffer_heads are stripped during active rotation. On 32-bit
3992 		 * systems, highmem pages can pin lowmem memory and shrinking
3993 		 * buffers can relieve lowmem pressure. Reclaim may still not
3994 		 * go ahead if all eligible zones for the original allocation
3995 		 * request are balanced to avoid excessive reclaim from kswapd.
3996 		 */
3997 		if (buffer_heads_over_limit) {
3998 			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3999 				zone = pgdat->node_zones + i;
4000 				if (!managed_zone(zone))
4001 					continue;
4002 
4003 				sc.reclaim_idx = i;
4004 				break;
4005 			}
4006 		}
4007 
4008 		/*
4009 		 * If the pgdat is imbalanced then ignore boosting and preserve
4010 		 * the watermarks for a later time and restart. Note that the
4011 		 * zone watermarks will be still reset at the end of balancing
4012 		 * on the grounds that the normal reclaim should be enough to
4013 		 * re-evaluate if boosting is required when kswapd next wakes.
4014 		 */
4015 		balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
4016 		if (!balanced && nr_boost_reclaim) {
4017 			nr_boost_reclaim = 0;
4018 			goto restart;
4019 		}
4020 
4021 		/*
4022 		 * If boosting is not active then only reclaim if there are no
4023 		 * eligible zones. Note that sc.reclaim_idx is not used as
4024 		 * buffer_heads_over_limit may have adjusted it.
4025 		 */
4026 		if (!nr_boost_reclaim && balanced)
4027 			goto out;
4028 
4029 		/* Limit the priority of boosting to avoid reclaim writeback */
4030 		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
4031 			raise_priority = false;
4032 
4033 		/*
4034 		 * Do not writeback or swap pages for boosted reclaim. The
4035 		 * intent is to relieve pressure not issue sub-optimal IO
4036 		 * from reclaim context. If no pages are reclaimed, the
4037 		 * reclaim will be aborted.
4038 		 */
4039 		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
4040 		sc.may_swap = !nr_boost_reclaim;
4041 
4042 		/*
4043 		 * Do some background aging of the anon list, to give
4044 		 * pages a chance to be referenced before reclaiming. All
4045 		 * pages are rotated regardless of classzone as this is
4046 		 * about consistent aging.
4047 		 */
4048 		age_active_anon(pgdat, &sc);
4049 
4050 		/*
4051 		 * If we're getting trouble reclaiming, start doing writepage
4052 		 * even in laptop mode.
4053 		 */
4054 		if (sc.priority < DEF_PRIORITY - 2)
4055 			sc.may_writepage = 1;
4056 
4057 		/* Call soft limit reclaim before calling shrink_node. */
4058 		sc.nr_scanned = 0;
4059 		nr_soft_scanned = 0;
4060 		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
4061 						sc.gfp_mask, &nr_soft_scanned);
4062 		sc.nr_reclaimed += nr_soft_reclaimed;
4063 
4064 		/*
4065 		 * There should be no need to raise the scanning priority if
4066 		 * enough pages are already being scanned that that high
4067 		 * watermark would be met at 100% efficiency.
4068 		 */
4069 		if (kswapd_shrink_node(pgdat, &sc))
4070 			raise_priority = false;
4071 
4072 		/*
4073 		 * If the low watermark is met there is no need for processes
4074 		 * to be throttled on pfmemalloc_wait as they should not be
4075 		 * able to safely make forward progress. Wake them
4076 		 */
4077 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
4078 				allow_direct_reclaim(pgdat))
4079 			wake_up_all(&pgdat->pfmemalloc_wait);
4080 
4081 		/* Check if kswapd should be suspending */
4082 		__fs_reclaim_release(_THIS_IP_);
4083 		ret = try_to_freeze();
4084 		__fs_reclaim_acquire(_THIS_IP_);
4085 		if (ret || kthread_should_stop())
4086 			break;
4087 
4088 		/*
4089 		 * Raise priority if scanning rate is too low or there was no
4090 		 * progress in reclaiming pages
4091 		 */
4092 		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
4093 		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
4094 
4095 		/*
4096 		 * If reclaim made no progress for a boost, stop reclaim as
4097 		 * IO cannot be queued and it could be an infinite loop in
4098 		 * extreme circumstances.
4099 		 */
4100 		if (nr_boost_reclaim && !nr_reclaimed)
4101 			break;
4102 
4103 		if (raise_priority || !nr_reclaimed)
4104 			sc.priority--;
4105 	} while (sc.priority >= 1);
4106 
4107 	if (!sc.nr_reclaimed)
4108 		pgdat->kswapd_failures++;
4109 
4110 out:
4111 	clear_reclaim_active(pgdat, highest_zoneidx);
4112 
4113 	/* If reclaim was boosted, account for the reclaim done in this pass */
4114 	if (boosted) {
4115 		unsigned long flags;
4116 
4117 		for (i = 0; i <= highest_zoneidx; i++) {
4118 			if (!zone_boosts[i])
4119 				continue;
4120 
4121 			/* Increments are under the zone lock */
4122 			zone = pgdat->node_zones + i;
4123 			spin_lock_irqsave(&zone->lock, flags);
4124 			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
4125 			spin_unlock_irqrestore(&zone->lock, flags);
4126 		}
4127 
4128 		/*
4129 		 * As there is now likely space, wakeup kcompact to defragment
4130 		 * pageblocks.
4131 		 */
4132 		wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
4133 	}
4134 
4135 	snapshot_refaults(NULL, pgdat);
4136 	__fs_reclaim_release(_THIS_IP_);
4137 	psi_memstall_leave(&pflags);
4138 	set_task_reclaim_state(current, NULL);
4139 
4140 	/*
4141 	 * Return the order kswapd stopped reclaiming at as
4142 	 * prepare_kswapd_sleep() takes it into account. If another caller
4143 	 * entered the allocator slow path while kswapd was awake, order will
4144 	 * remain at the higher level.
4145 	 */
4146 	return sc.order;
4147 }
4148 
4149 /*
4150  * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
4151  * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
4152  * not a valid index then either kswapd runs for first time or kswapd couldn't
4153  * sleep after previous reclaim attempt (node is still unbalanced). In that
4154  * case return the zone index of the previous kswapd reclaim cycle.
4155  */
4156 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
4157 					   enum zone_type prev_highest_zoneidx)
4158 {
4159 	enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
4160 
4161 	return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
4162 }
4163 
4164 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
4165 				unsigned int highest_zoneidx)
4166 {
4167 	long remaining = 0;
4168 	DEFINE_WAIT(wait);
4169 
4170 	if (freezing(current) || kthread_should_stop())
4171 		return;
4172 
4173 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
4174 
4175 	/*
4176 	 * Try to sleep for a short interval. Note that kcompactd will only be
4177 	 * woken if it is possible to sleep for a short interval. This is
4178 	 * deliberate on the assumption that if reclaim cannot keep an
4179 	 * eligible zone balanced that it's also unlikely that compaction will
4180 	 * succeed.
4181 	 */
4182 	if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
4183 		/*
4184 		 * Compaction records what page blocks it recently failed to
4185 		 * isolate pages from and skips them in the future scanning.
4186 		 * When kswapd is going to sleep, it is reasonable to assume
4187 		 * that pages and compaction may succeed so reset the cache.
4188 		 */
4189 		reset_isolation_suitable(pgdat);
4190 
4191 		/*
4192 		 * We have freed the memory, now we should compact it to make
4193 		 * allocation of the requested order possible.
4194 		 */
4195 		wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
4196 
4197 		remaining = schedule_timeout(HZ/10);
4198 
4199 		/*
4200 		 * If woken prematurely then reset kswapd_highest_zoneidx and
4201 		 * order. The values will either be from a wakeup request or
4202 		 * the previous request that slept prematurely.
4203 		 */
4204 		if (remaining) {
4205 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
4206 					kswapd_highest_zoneidx(pgdat,
4207 							highest_zoneidx));
4208 
4209 			if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
4210 				WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
4211 		}
4212 
4213 		finish_wait(&pgdat->kswapd_wait, &wait);
4214 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
4215 	}
4216 
4217 	/*
4218 	 * After a short sleep, check if it was a premature sleep. If not, then
4219 	 * go fully to sleep until explicitly woken up.
4220 	 */
4221 	if (!remaining &&
4222 	    prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
4223 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
4224 
4225 		/*
4226 		 * vmstat counters are not perfectly accurate and the estimated
4227 		 * value for counters such as NR_FREE_PAGES can deviate from the
4228 		 * true value by nr_online_cpus * threshold. To avoid the zone
4229 		 * watermarks being breached while under pressure, we reduce the
4230 		 * per-cpu vmstat threshold while kswapd is awake and restore
4231 		 * them before going back to sleep.
4232 		 */
4233 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
4234 
4235 		if (!kthread_should_stop())
4236 			schedule();
4237 
4238 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
4239 	} else {
4240 		if (remaining)
4241 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
4242 		else
4243 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
4244 	}
4245 	finish_wait(&pgdat->kswapd_wait, &wait);
4246 }
4247 
4248 /*
4249  * The background pageout daemon, started as a kernel thread
4250  * from the init process.
4251  *
4252  * This basically trickles out pages so that we have _some_
4253  * free memory available even if there is no other activity
4254  * that frees anything up. This is needed for things like routing
4255  * etc, where we otherwise might have all activity going on in
4256  * asynchronous contexts that cannot page things out.
4257  *
4258  * If there are applications that are active memory-allocators
4259  * (most normal use), this basically shouldn't matter.
4260  */
4261 static int kswapd(void *p)
4262 {
4263 	unsigned int alloc_order, reclaim_order;
4264 	unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
4265 	pg_data_t *pgdat = (pg_data_t *)p;
4266 	struct task_struct *tsk = current;
4267 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
4268 
4269 	if (!cpumask_empty(cpumask))
4270 		set_cpus_allowed_ptr(tsk, cpumask);
4271 
4272 	/*
4273 	 * Tell the memory management that we're a "memory allocator",
4274 	 * and that if we need more memory we should get access to it
4275 	 * regardless (see "__alloc_pages()"). "kswapd" should
4276 	 * never get caught in the normal page freeing logic.
4277 	 *
4278 	 * (Kswapd normally doesn't need memory anyway, but sometimes
4279 	 * you need a small amount of memory in order to be able to
4280 	 * page out something else, and this flag essentially protects
4281 	 * us from recursively trying to free more memory as we're
4282 	 * trying to free the first piece of memory in the first place).
4283 	 */
4284 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
4285 	set_freezable();
4286 
4287 	WRITE_ONCE(pgdat->kswapd_order, 0);
4288 	WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
4289 	for ( ; ; ) {
4290 		bool ret;
4291 
4292 		alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
4293 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
4294 							highest_zoneidx);
4295 
4296 kswapd_try_sleep:
4297 		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
4298 					highest_zoneidx);
4299 
4300 		/* Read the new order and highest_zoneidx */
4301 		alloc_order = READ_ONCE(pgdat->kswapd_order);
4302 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
4303 							highest_zoneidx);
4304 		WRITE_ONCE(pgdat->kswapd_order, 0);
4305 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
4306 
4307 		ret = try_to_freeze();
4308 		if (kthread_should_stop())
4309 			break;
4310 
4311 		/*
4312 		 * We can speed up thawing tasks if we don't call balance_pgdat
4313 		 * after returning from the refrigerator
4314 		 */
4315 		if (ret)
4316 			continue;
4317 
4318 		/*
4319 		 * Reclaim begins at the requested order but if a high-order
4320 		 * reclaim fails then kswapd falls back to reclaiming for
4321 		 * order-0. If that happens, kswapd will consider sleeping
4322 		 * for the order it finished reclaiming at (reclaim_order)
4323 		 * but kcompactd is woken to compact for the original
4324 		 * request (alloc_order).
4325 		 */
4326 		trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
4327 						alloc_order);
4328 		reclaim_order = balance_pgdat(pgdat, alloc_order,
4329 						highest_zoneidx);
4330 		if (reclaim_order < alloc_order)
4331 			goto kswapd_try_sleep;
4332 	}
4333 
4334 	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
4335 
4336 	return 0;
4337 }
4338 
4339 /*
4340  * A zone is low on free memory or too fragmented for high-order memory.  If
4341  * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
4342  * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
4343  * has failed or is not needed, still wake up kcompactd if only compaction is
4344  * needed.
4345  */
4346 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
4347 		   enum zone_type highest_zoneidx)
4348 {
4349 	pg_data_t *pgdat;
4350 	enum zone_type curr_idx;
4351 
4352 	if (!managed_zone(zone))
4353 		return;
4354 
4355 	if (!cpuset_zone_allowed(zone, gfp_flags))
4356 		return;
4357 
4358 	pgdat = zone->zone_pgdat;
4359 	curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
4360 
4361 	if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
4362 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
4363 
4364 	if (READ_ONCE(pgdat->kswapd_order) < order)
4365 		WRITE_ONCE(pgdat->kswapd_order, order);
4366 
4367 	if (!waitqueue_active(&pgdat->kswapd_wait))
4368 		return;
4369 
4370 	/* Hopeless node, leave it to direct reclaim if possible */
4371 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
4372 	    (pgdat_balanced(pgdat, order, highest_zoneidx) &&
4373 	     !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
4374 		/*
4375 		 * There may be plenty of free memory available, but it's too
4376 		 * fragmented for high-order allocations.  Wake up kcompactd
4377 		 * and rely on compaction_suitable() to determine if it's
4378 		 * needed.  If it fails, it will defer subsequent attempts to
4379 		 * ratelimit its work.
4380 		 */
4381 		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
4382 			wakeup_kcompactd(pgdat, order, highest_zoneidx);
4383 		return;
4384 	}
4385 
4386 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
4387 				      gfp_flags);
4388 	wake_up_interruptible(&pgdat->kswapd_wait);
4389 }
4390 
4391 #ifdef CONFIG_HIBERNATION
4392 /*
4393  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
4394  * freed pages.
4395  *
4396  * Rather than trying to age LRUs the aim is to preserve the overall
4397  * LRU order by reclaiming preferentially
4398  * inactive > active > active referenced > active mapped
4399  */
4400 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
4401 {
4402 	struct scan_control sc = {
4403 		.nr_to_reclaim = nr_to_reclaim,
4404 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
4405 		.reclaim_idx = MAX_NR_ZONES - 1,
4406 		.priority = DEF_PRIORITY,
4407 		.may_writepage = 1,
4408 		.may_unmap = 1,
4409 		.may_swap = 1,
4410 		.hibernation_mode = 1,
4411 	};
4412 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
4413 	unsigned long nr_reclaimed;
4414 	unsigned int noreclaim_flag;
4415 
4416 	fs_reclaim_acquire(sc.gfp_mask);
4417 	noreclaim_flag = memalloc_noreclaim_save();
4418 	set_task_reclaim_state(current, &sc.reclaim_state);
4419 
4420 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
4421 
4422 	set_task_reclaim_state(current, NULL);
4423 	memalloc_noreclaim_restore(noreclaim_flag);
4424 	fs_reclaim_release(sc.gfp_mask);
4425 
4426 	return nr_reclaimed;
4427 }
4428 #endif /* CONFIG_HIBERNATION */
4429 
4430 /*
4431  * This kswapd start function will be called by init and node-hot-add.
4432  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
4433  */
4434 void kswapd_run(int nid)
4435 {
4436 	pg_data_t *pgdat = NODE_DATA(nid);
4437 
4438 	if (pgdat->kswapd)
4439 		return;
4440 
4441 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4442 	if (IS_ERR(pgdat->kswapd)) {
4443 		/* failure at boot is fatal */
4444 		BUG_ON(system_state < SYSTEM_RUNNING);
4445 		pr_err("Failed to start kswapd on node %d\n", nid);
4446 		pgdat->kswapd = NULL;
4447 	}
4448 }
4449 
4450 /*
4451  * Called by memory hotplug when all memory in a node is offlined.  Caller must
4452  * hold mem_hotplug_begin/end().
4453  */
4454 void kswapd_stop(int nid)
4455 {
4456 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4457 
4458 	if (kswapd) {
4459 		kthread_stop(kswapd);
4460 		NODE_DATA(nid)->kswapd = NULL;
4461 	}
4462 }
4463 
4464 static int __init kswapd_init(void)
4465 {
4466 	int nid;
4467 
4468 	swap_setup();
4469 	for_each_node_state(nid, N_MEMORY)
4470  		kswapd_run(nid);
4471 	return 0;
4472 }
4473 
4474 module_init(kswapd_init)
4475 
4476 #ifdef CONFIG_NUMA
4477 /*
4478  * Node reclaim mode
4479  *
4480  * If non-zero call node_reclaim when the number of free pages falls below
4481  * the watermarks.
4482  */
4483 int node_reclaim_mode __read_mostly;
4484 
4485 /*
4486  * Priority for NODE_RECLAIM. This determines the fraction of pages
4487  * of a node considered for each zone_reclaim. 4 scans 1/16th of
4488  * a zone.
4489  */
4490 #define NODE_RECLAIM_PRIORITY 4
4491 
4492 /*
4493  * Percentage of pages in a zone that must be unmapped for node_reclaim to
4494  * occur.
4495  */
4496 int sysctl_min_unmapped_ratio = 1;
4497 
4498 /*
4499  * If the number of slab pages in a zone grows beyond this percentage then
4500  * slab reclaim needs to occur.
4501  */
4502 int sysctl_min_slab_ratio = 5;
4503 
4504 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4505 {
4506 	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4507 	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4508 		node_page_state(pgdat, NR_ACTIVE_FILE);
4509 
4510 	/*
4511 	 * It's possible for there to be more file mapped pages than
4512 	 * accounted for by the pages on the file LRU lists because
4513 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4514 	 */
4515 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4516 }
4517 
4518 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
4519 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4520 {
4521 	unsigned long nr_pagecache_reclaimable;
4522 	unsigned long delta = 0;
4523 
4524 	/*
4525 	 * If RECLAIM_UNMAP is set, then all file pages are considered
4526 	 * potentially reclaimable. Otherwise, we have to worry about
4527 	 * pages like swapcache and node_unmapped_file_pages() provides
4528 	 * a better estimate
4529 	 */
4530 	if (node_reclaim_mode & RECLAIM_UNMAP)
4531 		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4532 	else
4533 		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4534 
4535 	/* If we can't clean pages, remove dirty pages from consideration */
4536 	if (!(node_reclaim_mode & RECLAIM_WRITE))
4537 		delta += node_page_state(pgdat, NR_FILE_DIRTY);
4538 
4539 	/* Watch for any possible underflows due to delta */
4540 	if (unlikely(delta > nr_pagecache_reclaimable))
4541 		delta = nr_pagecache_reclaimable;
4542 
4543 	return nr_pagecache_reclaimable - delta;
4544 }
4545 
4546 /*
4547  * Try to free up some pages from this node through reclaim.
4548  */
4549 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4550 {
4551 	/* Minimum pages needed in order to stay on node */
4552 	const unsigned long nr_pages = 1 << order;
4553 	struct task_struct *p = current;
4554 	unsigned int noreclaim_flag;
4555 	struct scan_control sc = {
4556 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4557 		.gfp_mask = current_gfp_context(gfp_mask),
4558 		.order = order,
4559 		.priority = NODE_RECLAIM_PRIORITY,
4560 		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4561 		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4562 		.may_swap = 1,
4563 		.reclaim_idx = gfp_zone(gfp_mask),
4564 	};
4565 	unsigned long pflags;
4566 
4567 	trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4568 					   sc.gfp_mask);
4569 
4570 	cond_resched();
4571 	psi_memstall_enter(&pflags);
4572 	fs_reclaim_acquire(sc.gfp_mask);
4573 	/*
4574 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4575 	 * and we also need to be able to write out pages for RECLAIM_WRITE
4576 	 * and RECLAIM_UNMAP.
4577 	 */
4578 	noreclaim_flag = memalloc_noreclaim_save();
4579 	p->flags |= PF_SWAPWRITE;
4580 	set_task_reclaim_state(p, &sc.reclaim_state);
4581 
4582 	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4583 		/*
4584 		 * Free memory by calling shrink node with increasing
4585 		 * priorities until we have enough memory freed.
4586 		 */
4587 		do {
4588 			shrink_node(pgdat, &sc);
4589 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4590 	}
4591 
4592 	set_task_reclaim_state(p, NULL);
4593 	current->flags &= ~PF_SWAPWRITE;
4594 	memalloc_noreclaim_restore(noreclaim_flag);
4595 	fs_reclaim_release(sc.gfp_mask);
4596 	psi_memstall_leave(&pflags);
4597 
4598 	trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4599 
4600 	return sc.nr_reclaimed >= nr_pages;
4601 }
4602 
4603 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4604 {
4605 	int ret;
4606 
4607 	/*
4608 	 * Node reclaim reclaims unmapped file backed pages and
4609 	 * slab pages if we are over the defined limits.
4610 	 *
4611 	 * A small portion of unmapped file backed pages is needed for
4612 	 * file I/O otherwise pages read by file I/O will be immediately
4613 	 * thrown out if the node is overallocated. So we do not reclaim
4614 	 * if less than a specified percentage of the node is used by
4615 	 * unmapped file backed pages.
4616 	 */
4617 	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4618 	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
4619 	    pgdat->min_slab_pages)
4620 		return NODE_RECLAIM_FULL;
4621 
4622 	/*
4623 	 * Do not scan if the allocation should not be delayed.
4624 	 */
4625 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4626 		return NODE_RECLAIM_NOSCAN;
4627 
4628 	/*
4629 	 * Only run node reclaim on the local node or on nodes that do not
4630 	 * have associated processors. This will favor the local processor
4631 	 * over remote processors and spread off node memory allocations
4632 	 * as wide as possible.
4633 	 */
4634 	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4635 		return NODE_RECLAIM_NOSCAN;
4636 
4637 	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4638 		return NODE_RECLAIM_NOSCAN;
4639 
4640 	ret = __node_reclaim(pgdat, gfp_mask, order);
4641 	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4642 
4643 	if (!ret)
4644 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4645 
4646 	return ret;
4647 }
4648 #endif
4649 
4650 /**
4651  * check_move_unevictable_pages - check pages for evictability and move to
4652  * appropriate zone lru list
4653  * @pvec: pagevec with lru pages to check
4654  *
4655  * Checks pages for evictability, if an evictable page is in the unevictable
4656  * lru list, moves it to the appropriate evictable lru list. This function
4657  * should be only used for lru pages.
4658  */
4659 void check_move_unevictable_pages(struct pagevec *pvec)
4660 {
4661 	struct lruvec *lruvec = NULL;
4662 	int pgscanned = 0;
4663 	int pgrescued = 0;
4664 	int i;
4665 
4666 	for (i = 0; i < pvec->nr; i++) {
4667 		struct page *page = pvec->pages[i];
4668 		int nr_pages;
4669 
4670 		if (PageTransTail(page))
4671 			continue;
4672 
4673 		nr_pages = thp_nr_pages(page);
4674 		pgscanned += nr_pages;
4675 
4676 		/* block memcg migration during page moving between lru */
4677 		if (!TestClearPageLRU(page))
4678 			continue;
4679 
4680 		lruvec = relock_page_lruvec_irq(page, lruvec);
4681 		if (page_evictable(page) && PageUnevictable(page)) {
4682 			del_page_from_lru_list(page, lruvec);
4683 			ClearPageUnevictable(page);
4684 			add_page_to_lru_list(page, lruvec);
4685 			pgrescued += nr_pages;
4686 		}
4687 		SetPageLRU(page);
4688 	}
4689 
4690 	if (lruvec) {
4691 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4692 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4693 		unlock_page_lruvec_irq(lruvec);
4694 	} else if (pgscanned) {
4695 		count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4696 	}
4697 }
4698 EXPORT_SYMBOL_GPL(check_move_unevictable_pages);
4699