1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 4 * 5 * Swap reorganised 29.12.95, Stephen Tweedie. 6 * kswapd added: 7.1.96 sct 7 * Removed kswapd_ctl limits, and swap out as many pages as needed 8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 9 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 10 * Multiqueue VM started 5.8.00, Rik van Riel. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 15 #include <linux/mm.h> 16 #include <linux/sched/mm.h> 17 #include <linux/module.h> 18 #include <linux/gfp.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/swap.h> 21 #include <linux/pagemap.h> 22 #include <linux/init.h> 23 #include <linux/highmem.h> 24 #include <linux/vmpressure.h> 25 #include <linux/vmstat.h> 26 #include <linux/file.h> 27 #include <linux/writeback.h> 28 #include <linux/blkdev.h> 29 #include <linux/buffer_head.h> /* for buffer_heads_over_limit */ 30 #include <linux/mm_inline.h> 31 #include <linux/backing-dev.h> 32 #include <linux/rmap.h> 33 #include <linux/topology.h> 34 #include <linux/cpu.h> 35 #include <linux/cpuset.h> 36 #include <linux/compaction.h> 37 #include <linux/notifier.h> 38 #include <linux/delay.h> 39 #include <linux/kthread.h> 40 #include <linux/freezer.h> 41 #include <linux/memcontrol.h> 42 #include <linux/migrate.h> 43 #include <linux/delayacct.h> 44 #include <linux/sysctl.h> 45 #include <linux/memory-tiers.h> 46 #include <linux/oom.h> 47 #include <linux/pagevec.h> 48 #include <linux/prefetch.h> 49 #include <linux/printk.h> 50 #include <linux/dax.h> 51 #include <linux/psi.h> 52 #include <linux/pagewalk.h> 53 #include <linux/shmem_fs.h> 54 #include <linux/ctype.h> 55 #include <linux/debugfs.h> 56 #include <linux/khugepaged.h> 57 #include <linux/rculist_nulls.h> 58 #include <linux/random.h> 59 60 #include <asm/tlbflush.h> 61 #include <asm/div64.h> 62 63 #include <linux/swapops.h> 64 #include <linux/balloon_compaction.h> 65 #include <linux/sched/sysctl.h> 66 67 #include "internal.h" 68 #include "swap.h" 69 70 #define CREATE_TRACE_POINTS 71 #include <trace/events/vmscan.h> 72 73 struct scan_control { 74 /* How many pages shrink_list() should reclaim */ 75 unsigned long nr_to_reclaim; 76 77 /* 78 * Nodemask of nodes allowed by the caller. If NULL, all nodes 79 * are scanned. 80 */ 81 nodemask_t *nodemask; 82 83 /* 84 * The memory cgroup that hit its limit and as a result is the 85 * primary target of this reclaim invocation. 86 */ 87 struct mem_cgroup *target_mem_cgroup; 88 89 /* 90 * Scan pressure balancing between anon and file LRUs 91 */ 92 unsigned long anon_cost; 93 unsigned long file_cost; 94 95 /* Can active folios be deactivated as part of reclaim? */ 96 #define DEACTIVATE_ANON 1 97 #define DEACTIVATE_FILE 2 98 unsigned int may_deactivate:2; 99 unsigned int force_deactivate:1; 100 unsigned int skipped_deactivate:1; 101 102 /* Writepage batching in laptop mode; RECLAIM_WRITE */ 103 unsigned int may_writepage:1; 104 105 /* Can mapped folios be reclaimed? */ 106 unsigned int may_unmap:1; 107 108 /* Can folios be swapped as part of reclaim? */ 109 unsigned int may_swap:1; 110 111 /* Not allow cache_trim_mode to be turned on as part of reclaim? */ 112 unsigned int no_cache_trim_mode:1; 113 114 /* Has cache_trim_mode failed at least once? */ 115 unsigned int cache_trim_mode_failed:1; 116 117 /* Proactive reclaim invoked by userspace through memory.reclaim */ 118 unsigned int proactive:1; 119 120 /* 121 * Cgroup memory below memory.low is protected as long as we 122 * don't threaten to OOM. If any cgroup is reclaimed at 123 * reduced force or passed over entirely due to its memory.low 124 * setting (memcg_low_skipped), and nothing is reclaimed as a 125 * result, then go back for one more cycle that reclaims the protected 126 * memory (memcg_low_reclaim) to avert OOM. 127 */ 128 unsigned int memcg_low_reclaim:1; 129 unsigned int memcg_low_skipped:1; 130 131 unsigned int hibernation_mode:1; 132 133 /* One of the zones is ready for compaction */ 134 unsigned int compaction_ready:1; 135 136 /* There is easily reclaimable cold cache in the current node */ 137 unsigned int cache_trim_mode:1; 138 139 /* The file folios on the current node are dangerously low */ 140 unsigned int file_is_tiny:1; 141 142 /* Always discard instead of demoting to lower tier memory */ 143 unsigned int no_demotion:1; 144 145 /* Allocation order */ 146 s8 order; 147 148 /* Scan (total_size >> priority) pages at once */ 149 s8 priority; 150 151 /* The highest zone to isolate folios for reclaim from */ 152 s8 reclaim_idx; 153 154 /* This context's GFP mask */ 155 gfp_t gfp_mask; 156 157 /* Incremented by the number of inactive pages that were scanned */ 158 unsigned long nr_scanned; 159 160 /* Number of pages freed so far during a call to shrink_zones() */ 161 unsigned long nr_reclaimed; 162 163 struct { 164 unsigned int dirty; 165 unsigned int unqueued_dirty; 166 unsigned int congested; 167 unsigned int writeback; 168 unsigned int immediate; 169 unsigned int file_taken; 170 unsigned int taken; 171 } nr; 172 173 /* for recording the reclaimed slab by now */ 174 struct reclaim_state reclaim_state; 175 }; 176 177 #ifdef ARCH_HAS_PREFETCHW 178 #define prefetchw_prev_lru_folio(_folio, _base, _field) \ 179 do { \ 180 if ((_folio)->lru.prev != _base) { \ 181 struct folio *prev; \ 182 \ 183 prev = lru_to_folio(&(_folio->lru)); \ 184 prefetchw(&prev->_field); \ 185 } \ 186 } while (0) 187 #else 188 #define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0) 189 #endif 190 191 /* 192 * From 0 .. 200. Higher means more swappy. 193 */ 194 int vm_swappiness = 60; 195 196 #ifdef CONFIG_MEMCG 197 198 /* Returns true for reclaim through cgroup limits or cgroup interfaces. */ 199 static bool cgroup_reclaim(struct scan_control *sc) 200 { 201 return sc->target_mem_cgroup; 202 } 203 204 /* 205 * Returns true for reclaim on the root cgroup. This is true for direct 206 * allocator reclaim and reclaim through cgroup interfaces on the root cgroup. 207 */ 208 static bool root_reclaim(struct scan_control *sc) 209 { 210 return !sc->target_mem_cgroup || mem_cgroup_is_root(sc->target_mem_cgroup); 211 } 212 213 /** 214 * writeback_throttling_sane - is the usual dirty throttling mechanism available? 215 * @sc: scan_control in question 216 * 217 * The normal page dirty throttling mechanism in balance_dirty_pages() is 218 * completely broken with the legacy memcg and direct stalling in 219 * shrink_folio_list() is used for throttling instead, which lacks all the 220 * niceties such as fairness, adaptive pausing, bandwidth proportional 221 * allocation and configurability. 222 * 223 * This function tests whether the vmscan currently in progress can assume 224 * that the normal dirty throttling mechanism is operational. 225 */ 226 static bool writeback_throttling_sane(struct scan_control *sc) 227 { 228 if (!cgroup_reclaim(sc)) 229 return true; 230 #ifdef CONFIG_CGROUP_WRITEBACK 231 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 232 return true; 233 #endif 234 return false; 235 } 236 #else 237 static bool cgroup_reclaim(struct scan_control *sc) 238 { 239 return false; 240 } 241 242 static bool root_reclaim(struct scan_control *sc) 243 { 244 return true; 245 } 246 247 static bool writeback_throttling_sane(struct scan_control *sc) 248 { 249 return true; 250 } 251 #endif 252 253 static void set_task_reclaim_state(struct task_struct *task, 254 struct reclaim_state *rs) 255 { 256 /* Check for an overwrite */ 257 WARN_ON_ONCE(rs && task->reclaim_state); 258 259 /* Check for the nulling of an already-nulled member */ 260 WARN_ON_ONCE(!rs && !task->reclaim_state); 261 262 task->reclaim_state = rs; 263 } 264 265 /* 266 * flush_reclaim_state(): add pages reclaimed outside of LRU-based reclaim to 267 * scan_control->nr_reclaimed. 268 */ 269 static void flush_reclaim_state(struct scan_control *sc) 270 { 271 /* 272 * Currently, reclaim_state->reclaimed includes three types of pages 273 * freed outside of vmscan: 274 * (1) Slab pages. 275 * (2) Clean file pages from pruned inodes (on highmem systems). 276 * (3) XFS freed buffer pages. 277 * 278 * For all of these cases, we cannot universally link the pages to a 279 * single memcg. For example, a memcg-aware shrinker can free one object 280 * charged to the target memcg, causing an entire page to be freed. 281 * If we count the entire page as reclaimed from the memcg, we end up 282 * overestimating the reclaimed amount (potentially under-reclaiming). 283 * 284 * Only count such pages for global reclaim to prevent under-reclaiming 285 * from the target memcg; preventing unnecessary retries during memcg 286 * charging and false positives from proactive reclaim. 287 * 288 * For uncommon cases where the freed pages were actually mostly 289 * charged to the target memcg, we end up underestimating the reclaimed 290 * amount. This should be fine. The freed pages will be uncharged 291 * anyway, even if they are not counted here properly, and we will be 292 * able to make forward progress in charging (which is usually in a 293 * retry loop). 294 * 295 * We can go one step further, and report the uncharged objcg pages in 296 * memcg reclaim, to make reporting more accurate and reduce 297 * underestimation, but it's probably not worth the complexity for now. 298 */ 299 if (current->reclaim_state && root_reclaim(sc)) { 300 sc->nr_reclaimed += current->reclaim_state->reclaimed; 301 current->reclaim_state->reclaimed = 0; 302 } 303 } 304 305 static bool can_demote(int nid, struct scan_control *sc) 306 { 307 if (!numa_demotion_enabled) 308 return false; 309 if (sc && sc->no_demotion) 310 return false; 311 if (next_demotion_node(nid) == NUMA_NO_NODE) 312 return false; 313 314 return true; 315 } 316 317 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg, 318 int nid, 319 struct scan_control *sc) 320 { 321 if (memcg == NULL) { 322 /* 323 * For non-memcg reclaim, is there 324 * space in any swap device? 325 */ 326 if (get_nr_swap_pages() > 0) 327 return true; 328 } else { 329 /* Is the memcg below its swap limit? */ 330 if (mem_cgroup_get_nr_swap_pages(memcg) > 0) 331 return true; 332 } 333 334 /* 335 * The page can not be swapped. 336 * 337 * Can it be reclaimed from this node via demotion? 338 */ 339 return can_demote(nid, sc); 340 } 341 342 /* 343 * This misses isolated folios which are not accounted for to save counters. 344 * As the data only determines if reclaim or compaction continues, it is 345 * not expected that isolated folios will be a dominating factor. 346 */ 347 unsigned long zone_reclaimable_pages(struct zone *zone) 348 { 349 unsigned long nr; 350 351 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) + 352 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE); 353 if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL)) 354 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) + 355 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON); 356 357 return nr; 358 } 359 360 /** 361 * lruvec_lru_size - Returns the number of pages on the given LRU list. 362 * @lruvec: lru vector 363 * @lru: lru to use 364 * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list) 365 */ 366 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, 367 int zone_idx) 368 { 369 unsigned long size = 0; 370 int zid; 371 372 for (zid = 0; zid <= zone_idx; zid++) { 373 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid]; 374 375 if (!managed_zone(zone)) 376 continue; 377 378 if (!mem_cgroup_disabled()) 379 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid); 380 else 381 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru); 382 } 383 return size; 384 } 385 386 static unsigned long drop_slab_node(int nid) 387 { 388 unsigned long freed = 0; 389 struct mem_cgroup *memcg = NULL; 390 391 memcg = mem_cgroup_iter(NULL, NULL, NULL); 392 do { 393 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0); 394 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 395 396 return freed; 397 } 398 399 void drop_slab(void) 400 { 401 int nid; 402 int shift = 0; 403 unsigned long freed; 404 405 do { 406 freed = 0; 407 for_each_online_node(nid) { 408 if (fatal_signal_pending(current)) 409 return; 410 411 freed += drop_slab_node(nid); 412 } 413 } while ((freed >> shift++) > 1); 414 } 415 416 static int reclaimer_offset(void) 417 { 418 BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD != 419 PGDEMOTE_DIRECT - PGDEMOTE_KSWAPD); 420 BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD != 421 PGDEMOTE_KHUGEPAGED - PGDEMOTE_KSWAPD); 422 BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD != 423 PGSCAN_DIRECT - PGSCAN_KSWAPD); 424 BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD != 425 PGSCAN_KHUGEPAGED - PGSCAN_KSWAPD); 426 427 if (current_is_kswapd()) 428 return 0; 429 if (current_is_khugepaged()) 430 return PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD; 431 return PGSTEAL_DIRECT - PGSTEAL_KSWAPD; 432 } 433 434 static inline int is_page_cache_freeable(struct folio *folio) 435 { 436 /* 437 * A freeable page cache folio is referenced only by the caller 438 * that isolated the folio, the page cache and optional filesystem 439 * private data at folio->private. 440 */ 441 return folio_ref_count(folio) - folio_test_private(folio) == 442 1 + folio_nr_pages(folio); 443 } 444 445 /* 446 * We detected a synchronous write error writing a folio out. Probably 447 * -ENOSPC. We need to propagate that into the address_space for a subsequent 448 * fsync(), msync() or close(). 449 * 450 * The tricky part is that after writepage we cannot touch the mapping: nothing 451 * prevents it from being freed up. But we have a ref on the folio and once 452 * that folio is locked, the mapping is pinned. 453 * 454 * We're allowed to run sleeping folio_lock() here because we know the caller has 455 * __GFP_FS. 456 */ 457 static void handle_write_error(struct address_space *mapping, 458 struct folio *folio, int error) 459 { 460 folio_lock(folio); 461 if (folio_mapping(folio) == mapping) 462 mapping_set_error(mapping, error); 463 folio_unlock(folio); 464 } 465 466 static bool skip_throttle_noprogress(pg_data_t *pgdat) 467 { 468 int reclaimable = 0, write_pending = 0; 469 int i; 470 471 /* 472 * If kswapd is disabled, reschedule if necessary but do not 473 * throttle as the system is likely near OOM. 474 */ 475 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 476 return true; 477 478 /* 479 * If there are a lot of dirty/writeback folios then do not 480 * throttle as throttling will occur when the folios cycle 481 * towards the end of the LRU if still under writeback. 482 */ 483 for (i = 0; i < MAX_NR_ZONES; i++) { 484 struct zone *zone = pgdat->node_zones + i; 485 486 if (!managed_zone(zone)) 487 continue; 488 489 reclaimable += zone_reclaimable_pages(zone); 490 write_pending += zone_page_state_snapshot(zone, 491 NR_ZONE_WRITE_PENDING); 492 } 493 if (2 * write_pending <= reclaimable) 494 return true; 495 496 return false; 497 } 498 499 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason) 500 { 501 wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason]; 502 long timeout, ret; 503 DEFINE_WAIT(wait); 504 505 /* 506 * Do not throttle user workers, kthreads other than kswapd or 507 * workqueues. They may be required for reclaim to make 508 * forward progress (e.g. journalling workqueues or kthreads). 509 */ 510 if (!current_is_kswapd() && 511 current->flags & (PF_USER_WORKER|PF_KTHREAD)) { 512 cond_resched(); 513 return; 514 } 515 516 /* 517 * These figures are pulled out of thin air. 518 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many 519 * parallel reclaimers which is a short-lived event so the timeout is 520 * short. Failing to make progress or waiting on writeback are 521 * potentially long-lived events so use a longer timeout. This is shaky 522 * logic as a failure to make progress could be due to anything from 523 * writeback to a slow device to excessive referenced folios at the tail 524 * of the inactive LRU. 525 */ 526 switch(reason) { 527 case VMSCAN_THROTTLE_WRITEBACK: 528 timeout = HZ/10; 529 530 if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) { 531 WRITE_ONCE(pgdat->nr_reclaim_start, 532 node_page_state(pgdat, NR_THROTTLED_WRITTEN)); 533 } 534 535 break; 536 case VMSCAN_THROTTLE_CONGESTED: 537 fallthrough; 538 case VMSCAN_THROTTLE_NOPROGRESS: 539 if (skip_throttle_noprogress(pgdat)) { 540 cond_resched(); 541 return; 542 } 543 544 timeout = 1; 545 546 break; 547 case VMSCAN_THROTTLE_ISOLATED: 548 timeout = HZ/50; 549 break; 550 default: 551 WARN_ON_ONCE(1); 552 timeout = HZ; 553 break; 554 } 555 556 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE); 557 ret = schedule_timeout(timeout); 558 finish_wait(wqh, &wait); 559 560 if (reason == VMSCAN_THROTTLE_WRITEBACK) 561 atomic_dec(&pgdat->nr_writeback_throttled); 562 563 trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout), 564 jiffies_to_usecs(timeout - ret), 565 reason); 566 } 567 568 /* 569 * Account for folios written if tasks are throttled waiting on dirty 570 * folios to clean. If enough folios have been cleaned since throttling 571 * started then wakeup the throttled tasks. 572 */ 573 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio, 574 int nr_throttled) 575 { 576 unsigned long nr_written; 577 578 node_stat_add_folio(folio, NR_THROTTLED_WRITTEN); 579 580 /* 581 * This is an inaccurate read as the per-cpu deltas may not 582 * be synchronised. However, given that the system is 583 * writeback throttled, it is not worth taking the penalty 584 * of getting an accurate count. At worst, the throttle 585 * timeout guarantees forward progress. 586 */ 587 nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) - 588 READ_ONCE(pgdat->nr_reclaim_start); 589 590 if (nr_written > SWAP_CLUSTER_MAX * nr_throttled) 591 wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]); 592 } 593 594 /* possible outcome of pageout() */ 595 typedef enum { 596 /* failed to write folio out, folio is locked */ 597 PAGE_KEEP, 598 /* move folio to the active list, folio is locked */ 599 PAGE_ACTIVATE, 600 /* folio has been sent to the disk successfully, folio is unlocked */ 601 PAGE_SUCCESS, 602 /* folio is clean and locked */ 603 PAGE_CLEAN, 604 } pageout_t; 605 606 /* 607 * pageout is called by shrink_folio_list() for each dirty folio. 608 * Calls ->writepage(). 609 */ 610 static pageout_t pageout(struct folio *folio, struct address_space *mapping, 611 struct swap_iocb **plug) 612 { 613 /* 614 * If the folio is dirty, only perform writeback if that write 615 * will be non-blocking. To prevent this allocation from being 616 * stalled by pagecache activity. But note that there may be 617 * stalls if we need to run get_block(). We could test 618 * PagePrivate for that. 619 * 620 * If this process is currently in __generic_file_write_iter() against 621 * this folio's queue, we can perform writeback even if that 622 * will block. 623 * 624 * If the folio is swapcache, write it back even if that would 625 * block, for some throttling. This happens by accident, because 626 * swap_backing_dev_info is bust: it doesn't reflect the 627 * congestion state of the swapdevs. Easy to fix, if needed. 628 */ 629 if (!is_page_cache_freeable(folio)) 630 return PAGE_KEEP; 631 if (!mapping) { 632 /* 633 * Some data journaling orphaned folios can have 634 * folio->mapping == NULL while being dirty with clean buffers. 635 */ 636 if (folio_test_private(folio)) { 637 if (try_to_free_buffers(folio)) { 638 folio_clear_dirty(folio); 639 pr_info("%s: orphaned folio\n", __func__); 640 return PAGE_CLEAN; 641 } 642 } 643 return PAGE_KEEP; 644 } 645 if (mapping->a_ops->writepage == NULL) 646 return PAGE_ACTIVATE; 647 648 if (folio_clear_dirty_for_io(folio)) { 649 int res; 650 struct writeback_control wbc = { 651 .sync_mode = WB_SYNC_NONE, 652 .nr_to_write = SWAP_CLUSTER_MAX, 653 .range_start = 0, 654 .range_end = LLONG_MAX, 655 .for_reclaim = 1, 656 .swap_plug = plug, 657 }; 658 659 folio_set_reclaim(folio); 660 res = mapping->a_ops->writepage(&folio->page, &wbc); 661 if (res < 0) 662 handle_write_error(mapping, folio, res); 663 if (res == AOP_WRITEPAGE_ACTIVATE) { 664 folio_clear_reclaim(folio); 665 return PAGE_ACTIVATE; 666 } 667 668 if (!folio_test_writeback(folio)) { 669 /* synchronous write or broken a_ops? */ 670 folio_clear_reclaim(folio); 671 } 672 trace_mm_vmscan_write_folio(folio); 673 node_stat_add_folio(folio, NR_VMSCAN_WRITE); 674 return PAGE_SUCCESS; 675 } 676 677 return PAGE_CLEAN; 678 } 679 680 /* 681 * Same as remove_mapping, but if the folio is removed from the mapping, it 682 * gets returned with a refcount of 0. 683 */ 684 static int __remove_mapping(struct address_space *mapping, struct folio *folio, 685 bool reclaimed, struct mem_cgroup *target_memcg) 686 { 687 int refcount; 688 void *shadow = NULL; 689 690 BUG_ON(!folio_test_locked(folio)); 691 BUG_ON(mapping != folio_mapping(folio)); 692 693 if (!folio_test_swapcache(folio)) 694 spin_lock(&mapping->host->i_lock); 695 xa_lock_irq(&mapping->i_pages); 696 /* 697 * The non racy check for a busy folio. 698 * 699 * Must be careful with the order of the tests. When someone has 700 * a ref to the folio, it may be possible that they dirty it then 701 * drop the reference. So if the dirty flag is tested before the 702 * refcount here, then the following race may occur: 703 * 704 * get_user_pages(&page); 705 * [user mapping goes away] 706 * write_to(page); 707 * !folio_test_dirty(folio) [good] 708 * folio_set_dirty(folio); 709 * folio_put(folio); 710 * !refcount(folio) [good, discard it] 711 * 712 * [oops, our write_to data is lost] 713 * 714 * Reversing the order of the tests ensures such a situation cannot 715 * escape unnoticed. The smp_rmb is needed to ensure the folio->flags 716 * load is not satisfied before that of folio->_refcount. 717 * 718 * Note that if the dirty flag is always set via folio_mark_dirty, 719 * and thus under the i_pages lock, then this ordering is not required. 720 */ 721 refcount = 1 + folio_nr_pages(folio); 722 if (!folio_ref_freeze(folio, refcount)) 723 goto cannot_free; 724 /* note: atomic_cmpxchg in folio_ref_freeze provides the smp_rmb */ 725 if (unlikely(folio_test_dirty(folio))) { 726 folio_ref_unfreeze(folio, refcount); 727 goto cannot_free; 728 } 729 730 if (folio_test_swapcache(folio)) { 731 swp_entry_t swap = folio->swap; 732 733 if (reclaimed && !mapping_exiting(mapping)) 734 shadow = workingset_eviction(folio, target_memcg); 735 __delete_from_swap_cache(folio, swap, shadow); 736 mem_cgroup_swapout(folio, swap); 737 xa_unlock_irq(&mapping->i_pages); 738 put_swap_folio(folio, swap); 739 } else { 740 void (*free_folio)(struct folio *); 741 742 free_folio = mapping->a_ops->free_folio; 743 /* 744 * Remember a shadow entry for reclaimed file cache in 745 * order to detect refaults, thus thrashing, later on. 746 * 747 * But don't store shadows in an address space that is 748 * already exiting. This is not just an optimization, 749 * inode reclaim needs to empty out the radix tree or 750 * the nodes are lost. Don't plant shadows behind its 751 * back. 752 * 753 * We also don't store shadows for DAX mappings because the 754 * only page cache folios found in these are zero pages 755 * covering holes, and because we don't want to mix DAX 756 * exceptional entries and shadow exceptional entries in the 757 * same address_space. 758 */ 759 if (reclaimed && folio_is_file_lru(folio) && 760 !mapping_exiting(mapping) && !dax_mapping(mapping)) 761 shadow = workingset_eviction(folio, target_memcg); 762 __filemap_remove_folio(folio, shadow); 763 xa_unlock_irq(&mapping->i_pages); 764 if (mapping_shrinkable(mapping)) 765 inode_add_lru(mapping->host); 766 spin_unlock(&mapping->host->i_lock); 767 768 if (free_folio) 769 free_folio(folio); 770 } 771 772 return 1; 773 774 cannot_free: 775 xa_unlock_irq(&mapping->i_pages); 776 if (!folio_test_swapcache(folio)) 777 spin_unlock(&mapping->host->i_lock); 778 return 0; 779 } 780 781 /** 782 * remove_mapping() - Attempt to remove a folio from its mapping. 783 * @mapping: The address space. 784 * @folio: The folio to remove. 785 * 786 * If the folio is dirty, under writeback or if someone else has a ref 787 * on it, removal will fail. 788 * Return: The number of pages removed from the mapping. 0 if the folio 789 * could not be removed. 790 * Context: The caller should have a single refcount on the folio and 791 * hold its lock. 792 */ 793 long remove_mapping(struct address_space *mapping, struct folio *folio) 794 { 795 if (__remove_mapping(mapping, folio, false, NULL)) { 796 /* 797 * Unfreezing the refcount with 1 effectively 798 * drops the pagecache ref for us without requiring another 799 * atomic operation. 800 */ 801 folio_ref_unfreeze(folio, 1); 802 return folio_nr_pages(folio); 803 } 804 return 0; 805 } 806 807 /** 808 * folio_putback_lru - Put previously isolated folio onto appropriate LRU list. 809 * @folio: Folio to be returned to an LRU list. 810 * 811 * Add previously isolated @folio to appropriate LRU list. 812 * The folio may still be unevictable for other reasons. 813 * 814 * Context: lru_lock must not be held, interrupts must be enabled. 815 */ 816 void folio_putback_lru(struct folio *folio) 817 { 818 folio_add_lru(folio); 819 folio_put(folio); /* drop ref from isolate */ 820 } 821 822 enum folio_references { 823 FOLIOREF_RECLAIM, 824 FOLIOREF_RECLAIM_CLEAN, 825 FOLIOREF_KEEP, 826 FOLIOREF_ACTIVATE, 827 }; 828 829 static enum folio_references folio_check_references(struct folio *folio, 830 struct scan_control *sc) 831 { 832 int referenced_ptes, referenced_folio; 833 unsigned long vm_flags; 834 835 referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup, 836 &vm_flags); 837 referenced_folio = folio_test_clear_referenced(folio); 838 839 /* 840 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma. 841 * Let the folio, now marked Mlocked, be moved to the unevictable list. 842 */ 843 if (vm_flags & VM_LOCKED) 844 return FOLIOREF_ACTIVATE; 845 846 /* rmap lock contention: rotate */ 847 if (referenced_ptes == -1) 848 return FOLIOREF_KEEP; 849 850 if (referenced_ptes) { 851 /* 852 * All mapped folios start out with page table 853 * references from the instantiating fault, so we need 854 * to look twice if a mapped file/anon folio is used more 855 * than once. 856 * 857 * Mark it and spare it for another trip around the 858 * inactive list. Another page table reference will 859 * lead to its activation. 860 * 861 * Note: the mark is set for activated folios as well 862 * so that recently deactivated but used folios are 863 * quickly recovered. 864 */ 865 folio_set_referenced(folio); 866 867 if (referenced_folio || referenced_ptes > 1) 868 return FOLIOREF_ACTIVATE; 869 870 /* 871 * Activate file-backed executable folios after first usage. 872 */ 873 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) 874 return FOLIOREF_ACTIVATE; 875 876 return FOLIOREF_KEEP; 877 } 878 879 /* Reclaim if clean, defer dirty folios to writeback */ 880 if (referenced_folio && folio_is_file_lru(folio)) 881 return FOLIOREF_RECLAIM_CLEAN; 882 883 return FOLIOREF_RECLAIM; 884 } 885 886 /* Check if a folio is dirty or under writeback */ 887 static void folio_check_dirty_writeback(struct folio *folio, 888 bool *dirty, bool *writeback) 889 { 890 struct address_space *mapping; 891 892 /* 893 * Anonymous folios are not handled by flushers and must be written 894 * from reclaim context. Do not stall reclaim based on them. 895 * MADV_FREE anonymous folios are put into inactive file list too. 896 * They could be mistakenly treated as file lru. So further anon 897 * test is needed. 898 */ 899 if (!folio_is_file_lru(folio) || 900 (folio_test_anon(folio) && !folio_test_swapbacked(folio))) { 901 *dirty = false; 902 *writeback = false; 903 return; 904 } 905 906 /* By default assume that the folio flags are accurate */ 907 *dirty = folio_test_dirty(folio); 908 *writeback = folio_test_writeback(folio); 909 910 /* Verify dirty/writeback state if the filesystem supports it */ 911 if (!folio_test_private(folio)) 912 return; 913 914 mapping = folio_mapping(folio); 915 if (mapping && mapping->a_ops->is_dirty_writeback) 916 mapping->a_ops->is_dirty_writeback(folio, dirty, writeback); 917 } 918 919 static struct folio *alloc_demote_folio(struct folio *src, 920 unsigned long private) 921 { 922 struct folio *dst; 923 nodemask_t *allowed_mask; 924 struct migration_target_control *mtc; 925 926 mtc = (struct migration_target_control *)private; 927 928 allowed_mask = mtc->nmask; 929 /* 930 * make sure we allocate from the target node first also trying to 931 * demote or reclaim pages from the target node via kswapd if we are 932 * low on free memory on target node. If we don't do this and if 933 * we have free memory on the slower(lower) memtier, we would start 934 * allocating pages from slower(lower) memory tiers without even forcing 935 * a demotion of cold pages from the target memtier. This can result 936 * in the kernel placing hot pages in slower(lower) memory tiers. 937 */ 938 mtc->nmask = NULL; 939 mtc->gfp_mask |= __GFP_THISNODE; 940 dst = alloc_migration_target(src, (unsigned long)mtc); 941 if (dst) 942 return dst; 943 944 mtc->gfp_mask &= ~__GFP_THISNODE; 945 mtc->nmask = allowed_mask; 946 947 return alloc_migration_target(src, (unsigned long)mtc); 948 } 949 950 /* 951 * Take folios on @demote_folios and attempt to demote them to another node. 952 * Folios which are not demoted are left on @demote_folios. 953 */ 954 static unsigned int demote_folio_list(struct list_head *demote_folios, 955 struct pglist_data *pgdat) 956 { 957 int target_nid = next_demotion_node(pgdat->node_id); 958 unsigned int nr_succeeded; 959 nodemask_t allowed_mask; 960 961 struct migration_target_control mtc = { 962 /* 963 * Allocate from 'node', or fail quickly and quietly. 964 * When this happens, 'page' will likely just be discarded 965 * instead of migrated. 966 */ 967 .gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | __GFP_NOWARN | 968 __GFP_NOMEMALLOC | GFP_NOWAIT, 969 .nid = target_nid, 970 .nmask = &allowed_mask, 971 .reason = MR_DEMOTION, 972 }; 973 974 if (list_empty(demote_folios)) 975 return 0; 976 977 if (target_nid == NUMA_NO_NODE) 978 return 0; 979 980 node_get_allowed_targets(pgdat, &allowed_mask); 981 982 /* Demotion ignores all cpuset and mempolicy settings */ 983 migrate_pages(demote_folios, alloc_demote_folio, NULL, 984 (unsigned long)&mtc, MIGRATE_ASYNC, MR_DEMOTION, 985 &nr_succeeded); 986 987 mod_node_page_state(pgdat, PGDEMOTE_KSWAPD + reclaimer_offset(), 988 nr_succeeded); 989 990 return nr_succeeded; 991 } 992 993 static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask) 994 { 995 if (gfp_mask & __GFP_FS) 996 return true; 997 if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO)) 998 return false; 999 /* 1000 * We can "enter_fs" for swap-cache with only __GFP_IO 1001 * providing this isn't SWP_FS_OPS. 1002 * ->flags can be updated non-atomicially (scan_swap_map_slots), 1003 * but that will never affect SWP_FS_OPS, so the data_race 1004 * is safe. 1005 */ 1006 return !data_race(folio_swap_flags(folio) & SWP_FS_OPS); 1007 } 1008 1009 /* 1010 * shrink_folio_list() returns the number of reclaimed pages 1011 */ 1012 static unsigned int shrink_folio_list(struct list_head *folio_list, 1013 struct pglist_data *pgdat, struct scan_control *sc, 1014 struct reclaim_stat *stat, bool ignore_references) 1015 { 1016 struct folio_batch free_folios; 1017 LIST_HEAD(ret_folios); 1018 LIST_HEAD(demote_folios); 1019 unsigned int nr_reclaimed = 0; 1020 unsigned int pgactivate = 0; 1021 bool do_demote_pass; 1022 struct swap_iocb *plug = NULL; 1023 1024 folio_batch_init(&free_folios); 1025 memset(stat, 0, sizeof(*stat)); 1026 cond_resched(); 1027 do_demote_pass = can_demote(pgdat->node_id, sc); 1028 1029 retry: 1030 while (!list_empty(folio_list)) { 1031 struct address_space *mapping; 1032 struct folio *folio; 1033 enum folio_references references = FOLIOREF_RECLAIM; 1034 bool dirty, writeback; 1035 unsigned int nr_pages; 1036 1037 cond_resched(); 1038 1039 folio = lru_to_folio(folio_list); 1040 list_del(&folio->lru); 1041 1042 if (!folio_trylock(folio)) 1043 goto keep; 1044 1045 VM_BUG_ON_FOLIO(folio_test_active(folio), folio); 1046 1047 nr_pages = folio_nr_pages(folio); 1048 1049 /* Account the number of base pages */ 1050 sc->nr_scanned += nr_pages; 1051 1052 if (unlikely(!folio_evictable(folio))) 1053 goto activate_locked; 1054 1055 if (!sc->may_unmap && folio_mapped(folio)) 1056 goto keep_locked; 1057 1058 /* folio_update_gen() tried to promote this page? */ 1059 if (lru_gen_enabled() && !ignore_references && 1060 folio_mapped(folio) && folio_test_referenced(folio)) 1061 goto keep_locked; 1062 1063 /* 1064 * The number of dirty pages determines if a node is marked 1065 * reclaim_congested. kswapd will stall and start writing 1066 * folios if the tail of the LRU is all dirty unqueued folios. 1067 */ 1068 folio_check_dirty_writeback(folio, &dirty, &writeback); 1069 if (dirty || writeback) 1070 stat->nr_dirty += nr_pages; 1071 1072 if (dirty && !writeback) 1073 stat->nr_unqueued_dirty += nr_pages; 1074 1075 /* 1076 * Treat this folio as congested if folios are cycling 1077 * through the LRU so quickly that the folios marked 1078 * for immediate reclaim are making it to the end of 1079 * the LRU a second time. 1080 */ 1081 if (writeback && folio_test_reclaim(folio)) 1082 stat->nr_congested += nr_pages; 1083 1084 /* 1085 * If a folio at the tail of the LRU is under writeback, there 1086 * are three cases to consider. 1087 * 1088 * 1) If reclaim is encountering an excessive number 1089 * of folios under writeback and this folio has both 1090 * the writeback and reclaim flags set, then it 1091 * indicates that folios are being queued for I/O but 1092 * are being recycled through the LRU before the I/O 1093 * can complete. Waiting on the folio itself risks an 1094 * indefinite stall if it is impossible to writeback 1095 * the folio due to I/O error or disconnected storage 1096 * so instead note that the LRU is being scanned too 1097 * quickly and the caller can stall after the folio 1098 * list has been processed. 1099 * 1100 * 2) Global or new memcg reclaim encounters a folio that is 1101 * not marked for immediate reclaim, or the caller does not 1102 * have __GFP_FS (or __GFP_IO if it's simply going to swap, 1103 * not to fs). In this case mark the folio for immediate 1104 * reclaim and continue scanning. 1105 * 1106 * Require may_enter_fs() because we would wait on fs, which 1107 * may not have submitted I/O yet. And the loop driver might 1108 * enter reclaim, and deadlock if it waits on a folio for 1109 * which it is needed to do the write (loop masks off 1110 * __GFP_IO|__GFP_FS for this reason); but more thought 1111 * would probably show more reasons. 1112 * 1113 * 3) Legacy memcg encounters a folio that already has the 1114 * reclaim flag set. memcg does not have any dirty folio 1115 * throttling so we could easily OOM just because too many 1116 * folios are in writeback and there is nothing else to 1117 * reclaim. Wait for the writeback to complete. 1118 * 1119 * In cases 1) and 2) we activate the folios to get them out of 1120 * the way while we continue scanning for clean folios on the 1121 * inactive list and refilling from the active list. The 1122 * observation here is that waiting for disk writes is more 1123 * expensive than potentially causing reloads down the line. 1124 * Since they're marked for immediate reclaim, they won't put 1125 * memory pressure on the cache working set any longer than it 1126 * takes to write them to disk. 1127 */ 1128 if (folio_test_writeback(folio)) { 1129 /* Case 1 above */ 1130 if (current_is_kswapd() && 1131 folio_test_reclaim(folio) && 1132 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) { 1133 stat->nr_immediate += nr_pages; 1134 goto activate_locked; 1135 1136 /* Case 2 above */ 1137 } else if (writeback_throttling_sane(sc) || 1138 !folio_test_reclaim(folio) || 1139 !may_enter_fs(folio, sc->gfp_mask)) { 1140 /* 1141 * This is slightly racy - 1142 * folio_end_writeback() might have 1143 * just cleared the reclaim flag, then 1144 * setting the reclaim flag here ends up 1145 * interpreted as the readahead flag - but 1146 * that does not matter enough to care. 1147 * What we do want is for this folio to 1148 * have the reclaim flag set next time 1149 * memcg reclaim reaches the tests above, 1150 * so it will then wait for writeback to 1151 * avoid OOM; and it's also appropriate 1152 * in global reclaim. 1153 */ 1154 folio_set_reclaim(folio); 1155 stat->nr_writeback += nr_pages; 1156 goto activate_locked; 1157 1158 /* Case 3 above */ 1159 } else { 1160 folio_unlock(folio); 1161 folio_wait_writeback(folio); 1162 /* then go back and try same folio again */ 1163 list_add_tail(&folio->lru, folio_list); 1164 continue; 1165 } 1166 } 1167 1168 if (!ignore_references) 1169 references = folio_check_references(folio, sc); 1170 1171 switch (references) { 1172 case FOLIOREF_ACTIVATE: 1173 goto activate_locked; 1174 case FOLIOREF_KEEP: 1175 stat->nr_ref_keep += nr_pages; 1176 goto keep_locked; 1177 case FOLIOREF_RECLAIM: 1178 case FOLIOREF_RECLAIM_CLEAN: 1179 ; /* try to reclaim the folio below */ 1180 } 1181 1182 /* 1183 * Before reclaiming the folio, try to relocate 1184 * its contents to another node. 1185 */ 1186 if (do_demote_pass && 1187 (thp_migration_supported() || !folio_test_large(folio))) { 1188 list_add(&folio->lru, &demote_folios); 1189 folio_unlock(folio); 1190 continue; 1191 } 1192 1193 /* 1194 * Anonymous process memory has backing store? 1195 * Try to allocate it some swap space here. 1196 * Lazyfree folio could be freed directly 1197 */ 1198 if (folio_test_anon(folio) && folio_test_swapbacked(folio)) { 1199 if (!folio_test_swapcache(folio)) { 1200 if (!(sc->gfp_mask & __GFP_IO)) 1201 goto keep_locked; 1202 if (folio_maybe_dma_pinned(folio)) 1203 goto keep_locked; 1204 if (folio_test_large(folio)) { 1205 /* cannot split folio, skip it */ 1206 if (!can_split_folio(folio, NULL)) 1207 goto activate_locked; 1208 /* 1209 * Split partially mapped folios right away. 1210 * We can free the unmapped pages without IO. 1211 */ 1212 if (data_race(!list_empty(&folio->_deferred_list)) && 1213 split_folio_to_list(folio, folio_list)) 1214 goto activate_locked; 1215 } 1216 if (!add_to_swap(folio)) { 1217 int __maybe_unused order = folio_order(folio); 1218 1219 if (!folio_test_large(folio)) 1220 goto activate_locked_split; 1221 /* Fallback to swap normal pages */ 1222 if (split_folio_to_list(folio, folio_list)) 1223 goto activate_locked; 1224 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1225 if (nr_pages >= HPAGE_PMD_NR) { 1226 count_memcg_folio_events(folio, 1227 THP_SWPOUT_FALLBACK, 1); 1228 count_vm_event(THP_SWPOUT_FALLBACK); 1229 } 1230 count_mthp_stat(order, MTHP_STAT_ANON_SWPOUT_FALLBACK); 1231 #endif 1232 if (!add_to_swap(folio)) 1233 goto activate_locked_split; 1234 } 1235 } 1236 } else if (folio_test_swapbacked(folio) && 1237 folio_test_large(folio)) { 1238 /* Split shmem folio */ 1239 if (split_folio_to_list(folio, folio_list)) 1240 goto keep_locked; 1241 } 1242 1243 /* 1244 * If the folio was split above, the tail pages will make 1245 * their own pass through this function and be accounted 1246 * then. 1247 */ 1248 if ((nr_pages > 1) && !folio_test_large(folio)) { 1249 sc->nr_scanned -= (nr_pages - 1); 1250 nr_pages = 1; 1251 } 1252 1253 /* 1254 * The folio is mapped into the page tables of one or more 1255 * processes. Try to unmap it here. 1256 */ 1257 if (folio_mapped(folio)) { 1258 enum ttu_flags flags = TTU_BATCH_FLUSH; 1259 bool was_swapbacked = folio_test_swapbacked(folio); 1260 1261 if (folio_test_pmd_mappable(folio)) 1262 flags |= TTU_SPLIT_HUGE_PMD; 1263 /* 1264 * Without TTU_SYNC, try_to_unmap will only begin to 1265 * hold PTL from the first present PTE within a large 1266 * folio. Some initial PTEs might be skipped due to 1267 * races with parallel PTE writes in which PTEs can be 1268 * cleared temporarily before being written new present 1269 * values. This will lead to a large folio is still 1270 * mapped while some subpages have been partially 1271 * unmapped after try_to_unmap; TTU_SYNC helps 1272 * try_to_unmap acquire PTL from the first PTE, 1273 * eliminating the influence of temporary PTE values. 1274 */ 1275 if (folio_test_large(folio) && list_empty(&folio->_deferred_list)) 1276 flags |= TTU_SYNC; 1277 1278 try_to_unmap(folio, flags); 1279 if (folio_mapped(folio)) { 1280 stat->nr_unmap_fail += nr_pages; 1281 if (!was_swapbacked && 1282 folio_test_swapbacked(folio)) 1283 stat->nr_lazyfree_fail += nr_pages; 1284 goto activate_locked; 1285 } 1286 } 1287 1288 /* 1289 * Folio is unmapped now so it cannot be newly pinned anymore. 1290 * No point in trying to reclaim folio if it is pinned. 1291 * Furthermore we don't want to reclaim underlying fs metadata 1292 * if the folio is pinned and thus potentially modified by the 1293 * pinning process as that may upset the filesystem. 1294 */ 1295 if (folio_maybe_dma_pinned(folio)) 1296 goto activate_locked; 1297 1298 mapping = folio_mapping(folio); 1299 if (folio_test_dirty(folio)) { 1300 /* 1301 * Only kswapd can writeback filesystem folios 1302 * to avoid risk of stack overflow. But avoid 1303 * injecting inefficient single-folio I/O into 1304 * flusher writeback as much as possible: only 1305 * write folios when we've encountered many 1306 * dirty folios, and when we've already scanned 1307 * the rest of the LRU for clean folios and see 1308 * the same dirty folios again (with the reclaim 1309 * flag set). 1310 */ 1311 if (folio_is_file_lru(folio) && 1312 (!current_is_kswapd() || 1313 !folio_test_reclaim(folio) || 1314 !test_bit(PGDAT_DIRTY, &pgdat->flags))) { 1315 /* 1316 * Immediately reclaim when written back. 1317 * Similar in principle to folio_deactivate() 1318 * except we already have the folio isolated 1319 * and know it's dirty 1320 */ 1321 node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE, 1322 nr_pages); 1323 folio_set_reclaim(folio); 1324 1325 goto activate_locked; 1326 } 1327 1328 if (references == FOLIOREF_RECLAIM_CLEAN) 1329 goto keep_locked; 1330 if (!may_enter_fs(folio, sc->gfp_mask)) 1331 goto keep_locked; 1332 if (!sc->may_writepage) 1333 goto keep_locked; 1334 1335 /* 1336 * Folio is dirty. Flush the TLB if a writable entry 1337 * potentially exists to avoid CPU writes after I/O 1338 * starts and then write it out here. 1339 */ 1340 try_to_unmap_flush_dirty(); 1341 switch (pageout(folio, mapping, &plug)) { 1342 case PAGE_KEEP: 1343 goto keep_locked; 1344 case PAGE_ACTIVATE: 1345 goto activate_locked; 1346 case PAGE_SUCCESS: 1347 stat->nr_pageout += nr_pages; 1348 1349 if (folio_test_writeback(folio)) 1350 goto keep; 1351 if (folio_test_dirty(folio)) 1352 goto keep; 1353 1354 /* 1355 * A synchronous write - probably a ramdisk. Go 1356 * ahead and try to reclaim the folio. 1357 */ 1358 if (!folio_trylock(folio)) 1359 goto keep; 1360 if (folio_test_dirty(folio) || 1361 folio_test_writeback(folio)) 1362 goto keep_locked; 1363 mapping = folio_mapping(folio); 1364 fallthrough; 1365 case PAGE_CLEAN: 1366 ; /* try to free the folio below */ 1367 } 1368 } 1369 1370 /* 1371 * If the folio has buffers, try to free the buffer 1372 * mappings associated with this folio. If we succeed 1373 * we try to free the folio as well. 1374 * 1375 * We do this even if the folio is dirty. 1376 * filemap_release_folio() does not perform I/O, but it 1377 * is possible for a folio to have the dirty flag set, 1378 * but it is actually clean (all its buffers are clean). 1379 * This happens if the buffers were written out directly, 1380 * with submit_bh(). ext3 will do this, as well as 1381 * the blockdev mapping. filemap_release_folio() will 1382 * discover that cleanness and will drop the buffers 1383 * and mark the folio clean - it can be freed. 1384 * 1385 * Rarely, folios can have buffers and no ->mapping. 1386 * These are the folios which were not successfully 1387 * invalidated in truncate_cleanup_folio(). We try to 1388 * drop those buffers here and if that worked, and the 1389 * folio is no longer mapped into process address space 1390 * (refcount == 1) it can be freed. Otherwise, leave 1391 * the folio on the LRU so it is swappable. 1392 */ 1393 if (folio_needs_release(folio)) { 1394 if (!filemap_release_folio(folio, sc->gfp_mask)) 1395 goto activate_locked; 1396 if (!mapping && folio_ref_count(folio) == 1) { 1397 folio_unlock(folio); 1398 if (folio_put_testzero(folio)) 1399 goto free_it; 1400 else { 1401 /* 1402 * rare race with speculative reference. 1403 * the speculative reference will free 1404 * this folio shortly, so we may 1405 * increment nr_reclaimed here (and 1406 * leave it off the LRU). 1407 */ 1408 nr_reclaimed += nr_pages; 1409 continue; 1410 } 1411 } 1412 } 1413 1414 if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) { 1415 /* follow __remove_mapping for reference */ 1416 if (!folio_ref_freeze(folio, 1)) 1417 goto keep_locked; 1418 /* 1419 * The folio has only one reference left, which is 1420 * from the isolation. After the caller puts the 1421 * folio back on the lru and drops the reference, the 1422 * folio will be freed anyway. It doesn't matter 1423 * which lru it goes on. So we don't bother checking 1424 * the dirty flag here. 1425 */ 1426 count_vm_events(PGLAZYFREED, nr_pages); 1427 count_memcg_folio_events(folio, PGLAZYFREED, nr_pages); 1428 } else if (!mapping || !__remove_mapping(mapping, folio, true, 1429 sc->target_mem_cgroup)) 1430 goto keep_locked; 1431 1432 folio_unlock(folio); 1433 free_it: 1434 /* 1435 * Folio may get swapped out as a whole, need to account 1436 * all pages in it. 1437 */ 1438 nr_reclaimed += nr_pages; 1439 1440 if (folio_test_large(folio) && 1441 folio_test_large_rmappable(folio)) 1442 folio_undo_large_rmappable(folio); 1443 if (folio_batch_add(&free_folios, folio) == 0) { 1444 mem_cgroup_uncharge_folios(&free_folios); 1445 try_to_unmap_flush(); 1446 free_unref_folios(&free_folios); 1447 } 1448 continue; 1449 1450 activate_locked_split: 1451 /* 1452 * The tail pages that are failed to add into swap cache 1453 * reach here. Fixup nr_scanned and nr_pages. 1454 */ 1455 if (nr_pages > 1) { 1456 sc->nr_scanned -= (nr_pages - 1); 1457 nr_pages = 1; 1458 } 1459 activate_locked: 1460 /* Not a candidate for swapping, so reclaim swap space. */ 1461 if (folio_test_swapcache(folio) && 1462 (mem_cgroup_swap_full(folio) || folio_test_mlocked(folio))) 1463 folio_free_swap(folio); 1464 VM_BUG_ON_FOLIO(folio_test_active(folio), folio); 1465 if (!folio_test_mlocked(folio)) { 1466 int type = folio_is_file_lru(folio); 1467 folio_set_active(folio); 1468 stat->nr_activate[type] += nr_pages; 1469 count_memcg_folio_events(folio, PGACTIVATE, nr_pages); 1470 } 1471 keep_locked: 1472 folio_unlock(folio); 1473 keep: 1474 list_add(&folio->lru, &ret_folios); 1475 VM_BUG_ON_FOLIO(folio_test_lru(folio) || 1476 folio_test_unevictable(folio), folio); 1477 } 1478 /* 'folio_list' is always empty here */ 1479 1480 /* Migrate folios selected for demotion */ 1481 nr_reclaimed += demote_folio_list(&demote_folios, pgdat); 1482 /* Folios that could not be demoted are still in @demote_folios */ 1483 if (!list_empty(&demote_folios)) { 1484 /* Folios which weren't demoted go back on @folio_list */ 1485 list_splice_init(&demote_folios, folio_list); 1486 1487 /* 1488 * goto retry to reclaim the undemoted folios in folio_list if 1489 * desired. 1490 * 1491 * Reclaiming directly from top tier nodes is not often desired 1492 * due to it breaking the LRU ordering: in general memory 1493 * should be reclaimed from lower tier nodes and demoted from 1494 * top tier nodes. 1495 * 1496 * However, disabling reclaim from top tier nodes entirely 1497 * would cause ooms in edge scenarios where lower tier memory 1498 * is unreclaimable for whatever reason, eg memory being 1499 * mlocked or too hot to reclaim. We can disable reclaim 1500 * from top tier nodes in proactive reclaim though as that is 1501 * not real memory pressure. 1502 */ 1503 if (!sc->proactive) { 1504 do_demote_pass = false; 1505 goto retry; 1506 } 1507 } 1508 1509 pgactivate = stat->nr_activate[0] + stat->nr_activate[1]; 1510 1511 mem_cgroup_uncharge_folios(&free_folios); 1512 try_to_unmap_flush(); 1513 free_unref_folios(&free_folios); 1514 1515 list_splice(&ret_folios, folio_list); 1516 count_vm_events(PGACTIVATE, pgactivate); 1517 1518 if (plug) 1519 swap_write_unplug(plug); 1520 return nr_reclaimed; 1521 } 1522 1523 unsigned int reclaim_clean_pages_from_list(struct zone *zone, 1524 struct list_head *folio_list) 1525 { 1526 struct scan_control sc = { 1527 .gfp_mask = GFP_KERNEL, 1528 .may_unmap = 1, 1529 }; 1530 struct reclaim_stat stat; 1531 unsigned int nr_reclaimed; 1532 struct folio *folio, *next; 1533 LIST_HEAD(clean_folios); 1534 unsigned int noreclaim_flag; 1535 1536 list_for_each_entry_safe(folio, next, folio_list, lru) { 1537 if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) && 1538 !folio_test_dirty(folio) && !__folio_test_movable(folio) && 1539 !folio_test_unevictable(folio)) { 1540 folio_clear_active(folio); 1541 list_move(&folio->lru, &clean_folios); 1542 } 1543 } 1544 1545 /* 1546 * We should be safe here since we are only dealing with file pages and 1547 * we are not kswapd and therefore cannot write dirty file pages. But 1548 * call memalloc_noreclaim_save() anyway, just in case these conditions 1549 * change in the future. 1550 */ 1551 noreclaim_flag = memalloc_noreclaim_save(); 1552 nr_reclaimed = shrink_folio_list(&clean_folios, zone->zone_pgdat, &sc, 1553 &stat, true); 1554 memalloc_noreclaim_restore(noreclaim_flag); 1555 1556 list_splice(&clean_folios, folio_list); 1557 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, 1558 -(long)nr_reclaimed); 1559 /* 1560 * Since lazyfree pages are isolated from file LRU from the beginning, 1561 * they will rotate back to anonymous LRU in the end if it failed to 1562 * discard so isolated count will be mismatched. 1563 * Compensate the isolated count for both LRU lists. 1564 */ 1565 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON, 1566 stat.nr_lazyfree_fail); 1567 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, 1568 -(long)stat.nr_lazyfree_fail); 1569 return nr_reclaimed; 1570 } 1571 1572 /* 1573 * Update LRU sizes after isolating pages. The LRU size updates must 1574 * be complete before mem_cgroup_update_lru_size due to a sanity check. 1575 */ 1576 static __always_inline void update_lru_sizes(struct lruvec *lruvec, 1577 enum lru_list lru, unsigned long *nr_zone_taken) 1578 { 1579 int zid; 1580 1581 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1582 if (!nr_zone_taken[zid]) 1583 continue; 1584 1585 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 1586 } 1587 1588 } 1589 1590 #ifdef CONFIG_CMA 1591 /* 1592 * It is waste of effort to scan and reclaim CMA pages if it is not available 1593 * for current allocation context. Kswapd can not be enrolled as it can not 1594 * distinguish this scenario by using sc->gfp_mask = GFP_KERNEL 1595 */ 1596 static bool skip_cma(struct folio *folio, struct scan_control *sc) 1597 { 1598 return !current_is_kswapd() && 1599 gfp_migratetype(sc->gfp_mask) != MIGRATE_MOVABLE && 1600 folio_migratetype(folio) == MIGRATE_CMA; 1601 } 1602 #else 1603 static bool skip_cma(struct folio *folio, struct scan_control *sc) 1604 { 1605 return false; 1606 } 1607 #endif 1608 1609 /* 1610 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times. 1611 * 1612 * lruvec->lru_lock is heavily contended. Some of the functions that 1613 * shrink the lists perform better by taking out a batch of pages 1614 * and working on them outside the LRU lock. 1615 * 1616 * For pagecache intensive workloads, this function is the hottest 1617 * spot in the kernel (apart from copy_*_user functions). 1618 * 1619 * Lru_lock must be held before calling this function. 1620 * 1621 * @nr_to_scan: The number of eligible pages to look through on the list. 1622 * @lruvec: The LRU vector to pull pages from. 1623 * @dst: The temp list to put pages on to. 1624 * @nr_scanned: The number of pages that were scanned. 1625 * @sc: The scan_control struct for this reclaim session 1626 * @lru: LRU list id for isolating 1627 * 1628 * returns how many pages were moved onto *@dst. 1629 */ 1630 static unsigned long isolate_lru_folios(unsigned long nr_to_scan, 1631 struct lruvec *lruvec, struct list_head *dst, 1632 unsigned long *nr_scanned, struct scan_control *sc, 1633 enum lru_list lru) 1634 { 1635 struct list_head *src = &lruvec->lists[lru]; 1636 unsigned long nr_taken = 0; 1637 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 }; 1638 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, }; 1639 unsigned long skipped = 0; 1640 unsigned long scan, total_scan, nr_pages; 1641 LIST_HEAD(folios_skipped); 1642 1643 total_scan = 0; 1644 scan = 0; 1645 while (scan < nr_to_scan && !list_empty(src)) { 1646 struct list_head *move_to = src; 1647 struct folio *folio; 1648 1649 folio = lru_to_folio(src); 1650 prefetchw_prev_lru_folio(folio, src, flags); 1651 1652 nr_pages = folio_nr_pages(folio); 1653 total_scan += nr_pages; 1654 1655 if (folio_zonenum(folio) > sc->reclaim_idx || 1656 skip_cma(folio, sc)) { 1657 nr_skipped[folio_zonenum(folio)] += nr_pages; 1658 move_to = &folios_skipped; 1659 goto move; 1660 } 1661 1662 /* 1663 * Do not count skipped folios because that makes the function 1664 * return with no isolated folios if the LRU mostly contains 1665 * ineligible folios. This causes the VM to not reclaim any 1666 * folios, triggering a premature OOM. 1667 * Account all pages in a folio. 1668 */ 1669 scan += nr_pages; 1670 1671 if (!folio_test_lru(folio)) 1672 goto move; 1673 if (!sc->may_unmap && folio_mapped(folio)) 1674 goto move; 1675 1676 /* 1677 * Be careful not to clear the lru flag until after we're 1678 * sure the folio is not being freed elsewhere -- the 1679 * folio release code relies on it. 1680 */ 1681 if (unlikely(!folio_try_get(folio))) 1682 goto move; 1683 1684 if (!folio_test_clear_lru(folio)) { 1685 /* Another thread is already isolating this folio */ 1686 folio_put(folio); 1687 goto move; 1688 } 1689 1690 nr_taken += nr_pages; 1691 nr_zone_taken[folio_zonenum(folio)] += nr_pages; 1692 move_to = dst; 1693 move: 1694 list_move(&folio->lru, move_to); 1695 } 1696 1697 /* 1698 * Splice any skipped folios to the start of the LRU list. Note that 1699 * this disrupts the LRU order when reclaiming for lower zones but 1700 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX 1701 * scanning would soon rescan the same folios to skip and waste lots 1702 * of cpu cycles. 1703 */ 1704 if (!list_empty(&folios_skipped)) { 1705 int zid; 1706 1707 list_splice(&folios_skipped, src); 1708 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1709 if (!nr_skipped[zid]) 1710 continue; 1711 1712 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]); 1713 skipped += nr_skipped[zid]; 1714 } 1715 } 1716 *nr_scanned = total_scan; 1717 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, 1718 total_scan, skipped, nr_taken, lru); 1719 update_lru_sizes(lruvec, lru, nr_zone_taken); 1720 return nr_taken; 1721 } 1722 1723 /** 1724 * folio_isolate_lru() - Try to isolate a folio from its LRU list. 1725 * @folio: Folio to isolate from its LRU list. 1726 * 1727 * Isolate a @folio from an LRU list and adjust the vmstat statistic 1728 * corresponding to whatever LRU list the folio was on. 1729 * 1730 * The folio will have its LRU flag cleared. If it was found on the 1731 * active list, it will have the Active flag set. If it was found on the 1732 * unevictable list, it will have the Unevictable flag set. These flags 1733 * may need to be cleared by the caller before letting the page go. 1734 * 1735 * Context: 1736 * 1737 * (1) Must be called with an elevated refcount on the folio. This is a 1738 * fundamental difference from isolate_lru_folios() (which is called 1739 * without a stable reference). 1740 * (2) The lru_lock must not be held. 1741 * (3) Interrupts must be enabled. 1742 * 1743 * Return: true if the folio was removed from an LRU list. 1744 * false if the folio was not on an LRU list. 1745 */ 1746 bool folio_isolate_lru(struct folio *folio) 1747 { 1748 bool ret = false; 1749 1750 VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio); 1751 1752 if (folio_test_clear_lru(folio)) { 1753 struct lruvec *lruvec; 1754 1755 folio_get(folio); 1756 lruvec = folio_lruvec_lock_irq(folio); 1757 lruvec_del_folio(lruvec, folio); 1758 unlock_page_lruvec_irq(lruvec); 1759 ret = true; 1760 } 1761 1762 return ret; 1763 } 1764 1765 /* 1766 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 1767 * then get rescheduled. When there are massive number of tasks doing page 1768 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 1769 * the LRU list will go small and be scanned faster than necessary, leading to 1770 * unnecessary swapping, thrashing and OOM. 1771 */ 1772 static bool too_many_isolated(struct pglist_data *pgdat, int file, 1773 struct scan_control *sc) 1774 { 1775 unsigned long inactive, isolated; 1776 bool too_many; 1777 1778 if (current_is_kswapd()) 1779 return false; 1780 1781 if (!writeback_throttling_sane(sc)) 1782 return false; 1783 1784 if (file) { 1785 inactive = node_page_state(pgdat, NR_INACTIVE_FILE); 1786 isolated = node_page_state(pgdat, NR_ISOLATED_FILE); 1787 } else { 1788 inactive = node_page_state(pgdat, NR_INACTIVE_ANON); 1789 isolated = node_page_state(pgdat, NR_ISOLATED_ANON); 1790 } 1791 1792 /* 1793 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 1794 * won't get blocked by normal direct-reclaimers, forming a circular 1795 * deadlock. 1796 */ 1797 if (gfp_has_io_fs(sc->gfp_mask)) 1798 inactive >>= 3; 1799 1800 too_many = isolated > inactive; 1801 1802 /* Wake up tasks throttled due to too_many_isolated. */ 1803 if (!too_many) 1804 wake_throttle_isolated(pgdat); 1805 1806 return too_many; 1807 } 1808 1809 /* 1810 * move_folios_to_lru() moves folios from private @list to appropriate LRU list. 1811 * 1812 * Returns the number of pages moved to the given lruvec. 1813 */ 1814 static unsigned int move_folios_to_lru(struct lruvec *lruvec, 1815 struct list_head *list) 1816 { 1817 int nr_pages, nr_moved = 0; 1818 struct folio_batch free_folios; 1819 1820 folio_batch_init(&free_folios); 1821 while (!list_empty(list)) { 1822 struct folio *folio = lru_to_folio(list); 1823 1824 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 1825 list_del(&folio->lru); 1826 if (unlikely(!folio_evictable(folio))) { 1827 spin_unlock_irq(&lruvec->lru_lock); 1828 folio_putback_lru(folio); 1829 spin_lock_irq(&lruvec->lru_lock); 1830 continue; 1831 } 1832 1833 /* 1834 * The folio_set_lru needs to be kept here for list integrity. 1835 * Otherwise: 1836 * #0 move_folios_to_lru #1 release_pages 1837 * if (!folio_put_testzero()) 1838 * if (folio_put_testzero()) 1839 * !lru //skip lru_lock 1840 * folio_set_lru() 1841 * list_add(&folio->lru,) 1842 * list_add(&folio->lru,) 1843 */ 1844 folio_set_lru(folio); 1845 1846 if (unlikely(folio_put_testzero(folio))) { 1847 __folio_clear_lru_flags(folio); 1848 1849 if (folio_test_large(folio) && 1850 folio_test_large_rmappable(folio)) 1851 folio_undo_large_rmappable(folio); 1852 if (folio_batch_add(&free_folios, folio) == 0) { 1853 spin_unlock_irq(&lruvec->lru_lock); 1854 mem_cgroup_uncharge_folios(&free_folios); 1855 free_unref_folios(&free_folios); 1856 spin_lock_irq(&lruvec->lru_lock); 1857 } 1858 1859 continue; 1860 } 1861 1862 /* 1863 * All pages were isolated from the same lruvec (and isolation 1864 * inhibits memcg migration). 1865 */ 1866 VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio); 1867 lruvec_add_folio(lruvec, folio); 1868 nr_pages = folio_nr_pages(folio); 1869 nr_moved += nr_pages; 1870 if (folio_test_active(folio)) 1871 workingset_age_nonresident(lruvec, nr_pages); 1872 } 1873 1874 if (free_folios.nr) { 1875 spin_unlock_irq(&lruvec->lru_lock); 1876 mem_cgroup_uncharge_folios(&free_folios); 1877 free_unref_folios(&free_folios); 1878 spin_lock_irq(&lruvec->lru_lock); 1879 } 1880 1881 return nr_moved; 1882 } 1883 1884 /* 1885 * If a kernel thread (such as nfsd for loop-back mounts) services a backing 1886 * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case 1887 * we should not throttle. Otherwise it is safe to do so. 1888 */ 1889 static int current_may_throttle(void) 1890 { 1891 return !(current->flags & PF_LOCAL_THROTTLE); 1892 } 1893 1894 /* 1895 * shrink_inactive_list() is a helper for shrink_node(). It returns the number 1896 * of reclaimed pages 1897 */ 1898 static unsigned long shrink_inactive_list(unsigned long nr_to_scan, 1899 struct lruvec *lruvec, struct scan_control *sc, 1900 enum lru_list lru) 1901 { 1902 LIST_HEAD(folio_list); 1903 unsigned long nr_scanned; 1904 unsigned int nr_reclaimed = 0; 1905 unsigned long nr_taken; 1906 struct reclaim_stat stat; 1907 bool file = is_file_lru(lru); 1908 enum vm_event_item item; 1909 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1910 bool stalled = false; 1911 1912 while (unlikely(too_many_isolated(pgdat, file, sc))) { 1913 if (stalled) 1914 return 0; 1915 1916 /* wait a bit for the reclaimer. */ 1917 stalled = true; 1918 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED); 1919 1920 /* We are about to die and free our memory. Return now. */ 1921 if (fatal_signal_pending(current)) 1922 return SWAP_CLUSTER_MAX; 1923 } 1924 1925 lru_add_drain(); 1926 1927 spin_lock_irq(&lruvec->lru_lock); 1928 1929 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &folio_list, 1930 &nr_scanned, sc, lru); 1931 1932 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 1933 item = PGSCAN_KSWAPD + reclaimer_offset(); 1934 if (!cgroup_reclaim(sc)) 1935 __count_vm_events(item, nr_scanned); 1936 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned); 1937 __count_vm_events(PGSCAN_ANON + file, nr_scanned); 1938 1939 spin_unlock_irq(&lruvec->lru_lock); 1940 1941 if (nr_taken == 0) 1942 return 0; 1943 1944 nr_reclaimed = shrink_folio_list(&folio_list, pgdat, sc, &stat, false); 1945 1946 spin_lock_irq(&lruvec->lru_lock); 1947 move_folios_to_lru(lruvec, &folio_list); 1948 1949 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 1950 item = PGSTEAL_KSWAPD + reclaimer_offset(); 1951 if (!cgroup_reclaim(sc)) 1952 __count_vm_events(item, nr_reclaimed); 1953 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed); 1954 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed); 1955 spin_unlock_irq(&lruvec->lru_lock); 1956 1957 lru_note_cost(lruvec, file, stat.nr_pageout, nr_scanned - nr_reclaimed); 1958 1959 /* 1960 * If dirty folios are scanned that are not queued for IO, it 1961 * implies that flushers are not doing their job. This can 1962 * happen when memory pressure pushes dirty folios to the end of 1963 * the LRU before the dirty limits are breached and the dirty 1964 * data has expired. It can also happen when the proportion of 1965 * dirty folios grows not through writes but through memory 1966 * pressure reclaiming all the clean cache. And in some cases, 1967 * the flushers simply cannot keep up with the allocation 1968 * rate. Nudge the flusher threads in case they are asleep. 1969 */ 1970 if (stat.nr_unqueued_dirty == nr_taken) { 1971 wakeup_flusher_threads(WB_REASON_VMSCAN); 1972 /* 1973 * For cgroupv1 dirty throttling is achieved by waking up 1974 * the kernel flusher here and later waiting on folios 1975 * which are in writeback to finish (see shrink_folio_list()). 1976 * 1977 * Flusher may not be able to issue writeback quickly 1978 * enough for cgroupv1 writeback throttling to work 1979 * on a large system. 1980 */ 1981 if (!writeback_throttling_sane(sc)) 1982 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK); 1983 } 1984 1985 sc->nr.dirty += stat.nr_dirty; 1986 sc->nr.congested += stat.nr_congested; 1987 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty; 1988 sc->nr.writeback += stat.nr_writeback; 1989 sc->nr.immediate += stat.nr_immediate; 1990 sc->nr.taken += nr_taken; 1991 if (file) 1992 sc->nr.file_taken += nr_taken; 1993 1994 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 1995 nr_scanned, nr_reclaimed, &stat, sc->priority, file); 1996 return nr_reclaimed; 1997 } 1998 1999 /* 2000 * shrink_active_list() moves folios from the active LRU to the inactive LRU. 2001 * 2002 * We move them the other way if the folio is referenced by one or more 2003 * processes. 2004 * 2005 * If the folios are mostly unmapped, the processing is fast and it is 2006 * appropriate to hold lru_lock across the whole operation. But if 2007 * the folios are mapped, the processing is slow (folio_referenced()), so 2008 * we should drop lru_lock around each folio. It's impossible to balance 2009 * this, so instead we remove the folios from the LRU while processing them. 2010 * It is safe to rely on the active flag against the non-LRU folios in here 2011 * because nobody will play with that bit on a non-LRU folio. 2012 * 2013 * The downside is that we have to touch folio->_refcount against each folio. 2014 * But we had to alter folio->flags anyway. 2015 */ 2016 static void shrink_active_list(unsigned long nr_to_scan, 2017 struct lruvec *lruvec, 2018 struct scan_control *sc, 2019 enum lru_list lru) 2020 { 2021 unsigned long nr_taken; 2022 unsigned long nr_scanned; 2023 unsigned long vm_flags; 2024 LIST_HEAD(l_hold); /* The folios which were snipped off */ 2025 LIST_HEAD(l_active); 2026 LIST_HEAD(l_inactive); 2027 unsigned nr_deactivate, nr_activate; 2028 unsigned nr_rotated = 0; 2029 bool file = is_file_lru(lru); 2030 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2031 2032 lru_add_drain(); 2033 2034 spin_lock_irq(&lruvec->lru_lock); 2035 2036 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &l_hold, 2037 &nr_scanned, sc, lru); 2038 2039 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2040 2041 if (!cgroup_reclaim(sc)) 2042 __count_vm_events(PGREFILL, nr_scanned); 2043 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned); 2044 2045 spin_unlock_irq(&lruvec->lru_lock); 2046 2047 while (!list_empty(&l_hold)) { 2048 struct folio *folio; 2049 2050 cond_resched(); 2051 folio = lru_to_folio(&l_hold); 2052 list_del(&folio->lru); 2053 2054 if (unlikely(!folio_evictable(folio))) { 2055 folio_putback_lru(folio); 2056 continue; 2057 } 2058 2059 if (unlikely(buffer_heads_over_limit)) { 2060 if (folio_needs_release(folio) && 2061 folio_trylock(folio)) { 2062 filemap_release_folio(folio, 0); 2063 folio_unlock(folio); 2064 } 2065 } 2066 2067 /* Referenced or rmap lock contention: rotate */ 2068 if (folio_referenced(folio, 0, sc->target_mem_cgroup, 2069 &vm_flags) != 0) { 2070 /* 2071 * Identify referenced, file-backed active folios and 2072 * give them one more trip around the active list. So 2073 * that executable code get better chances to stay in 2074 * memory under moderate memory pressure. Anon folios 2075 * are not likely to be evicted by use-once streaming 2076 * IO, plus JVM can create lots of anon VM_EXEC folios, 2077 * so we ignore them here. 2078 */ 2079 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) { 2080 nr_rotated += folio_nr_pages(folio); 2081 list_add(&folio->lru, &l_active); 2082 continue; 2083 } 2084 } 2085 2086 folio_clear_active(folio); /* we are de-activating */ 2087 folio_set_workingset(folio); 2088 list_add(&folio->lru, &l_inactive); 2089 } 2090 2091 /* 2092 * Move folios back to the lru list. 2093 */ 2094 spin_lock_irq(&lruvec->lru_lock); 2095 2096 nr_activate = move_folios_to_lru(lruvec, &l_active); 2097 nr_deactivate = move_folios_to_lru(lruvec, &l_inactive); 2098 2099 __count_vm_events(PGDEACTIVATE, nr_deactivate); 2100 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate); 2101 2102 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2103 spin_unlock_irq(&lruvec->lru_lock); 2104 2105 if (nr_rotated) 2106 lru_note_cost(lruvec, file, 0, nr_rotated); 2107 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate, 2108 nr_deactivate, nr_rotated, sc->priority, file); 2109 } 2110 2111 static unsigned int reclaim_folio_list(struct list_head *folio_list, 2112 struct pglist_data *pgdat, 2113 bool ignore_references) 2114 { 2115 struct reclaim_stat dummy_stat; 2116 unsigned int nr_reclaimed; 2117 struct folio *folio; 2118 struct scan_control sc = { 2119 .gfp_mask = GFP_KERNEL, 2120 .may_writepage = 1, 2121 .may_unmap = 1, 2122 .may_swap = 1, 2123 .no_demotion = 1, 2124 }; 2125 2126 nr_reclaimed = shrink_folio_list(folio_list, pgdat, &sc, &dummy_stat, ignore_references); 2127 while (!list_empty(folio_list)) { 2128 folio = lru_to_folio(folio_list); 2129 list_del(&folio->lru); 2130 folio_putback_lru(folio); 2131 } 2132 2133 return nr_reclaimed; 2134 } 2135 2136 unsigned long reclaim_pages(struct list_head *folio_list, bool ignore_references) 2137 { 2138 int nid; 2139 unsigned int nr_reclaimed = 0; 2140 LIST_HEAD(node_folio_list); 2141 unsigned int noreclaim_flag; 2142 2143 if (list_empty(folio_list)) 2144 return nr_reclaimed; 2145 2146 noreclaim_flag = memalloc_noreclaim_save(); 2147 2148 nid = folio_nid(lru_to_folio(folio_list)); 2149 do { 2150 struct folio *folio = lru_to_folio(folio_list); 2151 2152 if (nid == folio_nid(folio)) { 2153 folio_clear_active(folio); 2154 list_move(&folio->lru, &node_folio_list); 2155 continue; 2156 } 2157 2158 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid), 2159 ignore_references); 2160 nid = folio_nid(lru_to_folio(folio_list)); 2161 } while (!list_empty(folio_list)); 2162 2163 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid), ignore_references); 2164 2165 memalloc_noreclaim_restore(noreclaim_flag); 2166 2167 return nr_reclaimed; 2168 } 2169 2170 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 2171 struct lruvec *lruvec, struct scan_control *sc) 2172 { 2173 if (is_active_lru(lru)) { 2174 if (sc->may_deactivate & (1 << is_file_lru(lru))) 2175 shrink_active_list(nr_to_scan, lruvec, sc, lru); 2176 else 2177 sc->skipped_deactivate = 1; 2178 return 0; 2179 } 2180 2181 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 2182 } 2183 2184 /* 2185 * The inactive anon list should be small enough that the VM never has 2186 * to do too much work. 2187 * 2188 * The inactive file list should be small enough to leave most memory 2189 * to the established workingset on the scan-resistant active list, 2190 * but large enough to avoid thrashing the aggregate readahead window. 2191 * 2192 * Both inactive lists should also be large enough that each inactive 2193 * folio has a chance to be referenced again before it is reclaimed. 2194 * 2195 * If that fails and refaulting is observed, the inactive list grows. 2196 * 2197 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE folios 2198 * on this LRU, maintained by the pageout code. An inactive_ratio 2199 * of 3 means 3:1 or 25% of the folios are kept on the inactive list. 2200 * 2201 * total target max 2202 * memory ratio inactive 2203 * ------------------------------------- 2204 * 10MB 1 5MB 2205 * 100MB 1 50MB 2206 * 1GB 3 250MB 2207 * 10GB 10 0.9GB 2208 * 100GB 31 3GB 2209 * 1TB 101 10GB 2210 * 10TB 320 32GB 2211 */ 2212 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru) 2213 { 2214 enum lru_list active_lru = inactive_lru + LRU_ACTIVE; 2215 unsigned long inactive, active; 2216 unsigned long inactive_ratio; 2217 unsigned long gb; 2218 2219 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru); 2220 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru); 2221 2222 gb = (inactive + active) >> (30 - PAGE_SHIFT); 2223 if (gb) 2224 inactive_ratio = int_sqrt(10 * gb); 2225 else 2226 inactive_ratio = 1; 2227 2228 return inactive * inactive_ratio < active; 2229 } 2230 2231 enum scan_balance { 2232 SCAN_EQUAL, 2233 SCAN_FRACT, 2234 SCAN_ANON, 2235 SCAN_FILE, 2236 }; 2237 2238 static void prepare_scan_control(pg_data_t *pgdat, struct scan_control *sc) 2239 { 2240 unsigned long file; 2241 struct lruvec *target_lruvec; 2242 2243 if (lru_gen_enabled()) 2244 return; 2245 2246 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat); 2247 2248 /* 2249 * Flush the memory cgroup stats, so that we read accurate per-memcg 2250 * lruvec stats for heuristics. 2251 */ 2252 mem_cgroup_flush_stats(sc->target_mem_cgroup); 2253 2254 /* 2255 * Determine the scan balance between anon and file LRUs. 2256 */ 2257 spin_lock_irq(&target_lruvec->lru_lock); 2258 sc->anon_cost = target_lruvec->anon_cost; 2259 sc->file_cost = target_lruvec->file_cost; 2260 spin_unlock_irq(&target_lruvec->lru_lock); 2261 2262 /* 2263 * Target desirable inactive:active list ratios for the anon 2264 * and file LRU lists. 2265 */ 2266 if (!sc->force_deactivate) { 2267 unsigned long refaults; 2268 2269 /* 2270 * When refaults are being observed, it means a new 2271 * workingset is being established. Deactivate to get 2272 * rid of any stale active pages quickly. 2273 */ 2274 refaults = lruvec_page_state(target_lruvec, 2275 WORKINGSET_ACTIVATE_ANON); 2276 if (refaults != target_lruvec->refaults[WORKINGSET_ANON] || 2277 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON)) 2278 sc->may_deactivate |= DEACTIVATE_ANON; 2279 else 2280 sc->may_deactivate &= ~DEACTIVATE_ANON; 2281 2282 refaults = lruvec_page_state(target_lruvec, 2283 WORKINGSET_ACTIVATE_FILE); 2284 if (refaults != target_lruvec->refaults[WORKINGSET_FILE] || 2285 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE)) 2286 sc->may_deactivate |= DEACTIVATE_FILE; 2287 else 2288 sc->may_deactivate &= ~DEACTIVATE_FILE; 2289 } else 2290 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE; 2291 2292 /* 2293 * If we have plenty of inactive file pages that aren't 2294 * thrashing, try to reclaim those first before touching 2295 * anonymous pages. 2296 */ 2297 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE); 2298 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE) && 2299 !sc->no_cache_trim_mode) 2300 sc->cache_trim_mode = 1; 2301 else 2302 sc->cache_trim_mode = 0; 2303 2304 /* 2305 * Prevent the reclaimer from falling into the cache trap: as 2306 * cache pages start out inactive, every cache fault will tip 2307 * the scan balance towards the file LRU. And as the file LRU 2308 * shrinks, so does the window for rotation from references. 2309 * This means we have a runaway feedback loop where a tiny 2310 * thrashing file LRU becomes infinitely more attractive than 2311 * anon pages. Try to detect this based on file LRU size. 2312 */ 2313 if (!cgroup_reclaim(sc)) { 2314 unsigned long total_high_wmark = 0; 2315 unsigned long free, anon; 2316 int z; 2317 2318 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES); 2319 file = node_page_state(pgdat, NR_ACTIVE_FILE) + 2320 node_page_state(pgdat, NR_INACTIVE_FILE); 2321 2322 for (z = 0; z < MAX_NR_ZONES; z++) { 2323 struct zone *zone = &pgdat->node_zones[z]; 2324 2325 if (!managed_zone(zone)) 2326 continue; 2327 2328 total_high_wmark += high_wmark_pages(zone); 2329 } 2330 2331 /* 2332 * Consider anon: if that's low too, this isn't a 2333 * runaway file reclaim problem, but rather just 2334 * extreme pressure. Reclaim as per usual then. 2335 */ 2336 anon = node_page_state(pgdat, NR_INACTIVE_ANON); 2337 2338 sc->file_is_tiny = 2339 file + free <= total_high_wmark && 2340 !(sc->may_deactivate & DEACTIVATE_ANON) && 2341 anon >> sc->priority; 2342 } 2343 } 2344 2345 /* 2346 * Determine how aggressively the anon and file LRU lists should be 2347 * scanned. 2348 * 2349 * nr[0] = anon inactive folios to scan; nr[1] = anon active folios to scan 2350 * nr[2] = file inactive folios to scan; nr[3] = file active folios to scan 2351 */ 2352 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc, 2353 unsigned long *nr) 2354 { 2355 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2356 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 2357 unsigned long anon_cost, file_cost, total_cost; 2358 int swappiness = mem_cgroup_swappiness(memcg); 2359 u64 fraction[ANON_AND_FILE]; 2360 u64 denominator = 0; /* gcc */ 2361 enum scan_balance scan_balance; 2362 unsigned long ap, fp; 2363 enum lru_list lru; 2364 2365 /* If we have no swap space, do not bother scanning anon folios. */ 2366 if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) { 2367 scan_balance = SCAN_FILE; 2368 goto out; 2369 } 2370 2371 /* 2372 * Global reclaim will swap to prevent OOM even with no 2373 * swappiness, but memcg users want to use this knob to 2374 * disable swapping for individual groups completely when 2375 * using the memory controller's swap limit feature would be 2376 * too expensive. 2377 */ 2378 if (cgroup_reclaim(sc) && !swappiness) { 2379 scan_balance = SCAN_FILE; 2380 goto out; 2381 } 2382 2383 /* 2384 * Do not apply any pressure balancing cleverness when the 2385 * system is close to OOM, scan both anon and file equally 2386 * (unless the swappiness setting disagrees with swapping). 2387 */ 2388 if (!sc->priority && swappiness) { 2389 scan_balance = SCAN_EQUAL; 2390 goto out; 2391 } 2392 2393 /* 2394 * If the system is almost out of file pages, force-scan anon. 2395 */ 2396 if (sc->file_is_tiny) { 2397 scan_balance = SCAN_ANON; 2398 goto out; 2399 } 2400 2401 /* 2402 * If there is enough inactive page cache, we do not reclaim 2403 * anything from the anonymous working right now. 2404 */ 2405 if (sc->cache_trim_mode) { 2406 scan_balance = SCAN_FILE; 2407 goto out; 2408 } 2409 2410 scan_balance = SCAN_FRACT; 2411 /* 2412 * Calculate the pressure balance between anon and file pages. 2413 * 2414 * The amount of pressure we put on each LRU is inversely 2415 * proportional to the cost of reclaiming each list, as 2416 * determined by the share of pages that are refaulting, times 2417 * the relative IO cost of bringing back a swapped out 2418 * anonymous page vs reloading a filesystem page (swappiness). 2419 * 2420 * Although we limit that influence to ensure no list gets 2421 * left behind completely: at least a third of the pressure is 2422 * applied, before swappiness. 2423 * 2424 * With swappiness at 100, anon and file have equal IO cost. 2425 */ 2426 total_cost = sc->anon_cost + sc->file_cost; 2427 anon_cost = total_cost + sc->anon_cost; 2428 file_cost = total_cost + sc->file_cost; 2429 total_cost = anon_cost + file_cost; 2430 2431 ap = swappiness * (total_cost + 1); 2432 ap /= anon_cost + 1; 2433 2434 fp = (200 - swappiness) * (total_cost + 1); 2435 fp /= file_cost + 1; 2436 2437 fraction[0] = ap; 2438 fraction[1] = fp; 2439 denominator = ap + fp; 2440 out: 2441 for_each_evictable_lru(lru) { 2442 bool file = is_file_lru(lru); 2443 unsigned long lruvec_size; 2444 unsigned long low, min; 2445 unsigned long scan; 2446 2447 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx); 2448 mem_cgroup_protection(sc->target_mem_cgroup, memcg, 2449 &min, &low); 2450 2451 if (min || low) { 2452 /* 2453 * Scale a cgroup's reclaim pressure by proportioning 2454 * its current usage to its memory.low or memory.min 2455 * setting. 2456 * 2457 * This is important, as otherwise scanning aggression 2458 * becomes extremely binary -- from nothing as we 2459 * approach the memory protection threshold, to totally 2460 * nominal as we exceed it. This results in requiring 2461 * setting extremely liberal protection thresholds. It 2462 * also means we simply get no protection at all if we 2463 * set it too low, which is not ideal. 2464 * 2465 * If there is any protection in place, we reduce scan 2466 * pressure by how much of the total memory used is 2467 * within protection thresholds. 2468 * 2469 * There is one special case: in the first reclaim pass, 2470 * we skip over all groups that are within their low 2471 * protection. If that fails to reclaim enough pages to 2472 * satisfy the reclaim goal, we come back and override 2473 * the best-effort low protection. However, we still 2474 * ideally want to honor how well-behaved groups are in 2475 * that case instead of simply punishing them all 2476 * equally. As such, we reclaim them based on how much 2477 * memory they are using, reducing the scan pressure 2478 * again by how much of the total memory used is under 2479 * hard protection. 2480 */ 2481 unsigned long cgroup_size = mem_cgroup_size(memcg); 2482 unsigned long protection; 2483 2484 /* memory.low scaling, make sure we retry before OOM */ 2485 if (!sc->memcg_low_reclaim && low > min) { 2486 protection = low; 2487 sc->memcg_low_skipped = 1; 2488 } else { 2489 protection = min; 2490 } 2491 2492 /* Avoid TOCTOU with earlier protection check */ 2493 cgroup_size = max(cgroup_size, protection); 2494 2495 scan = lruvec_size - lruvec_size * protection / 2496 (cgroup_size + 1); 2497 2498 /* 2499 * Minimally target SWAP_CLUSTER_MAX pages to keep 2500 * reclaim moving forwards, avoiding decrementing 2501 * sc->priority further than desirable. 2502 */ 2503 scan = max(scan, SWAP_CLUSTER_MAX); 2504 } else { 2505 scan = lruvec_size; 2506 } 2507 2508 scan >>= sc->priority; 2509 2510 /* 2511 * If the cgroup's already been deleted, make sure to 2512 * scrape out the remaining cache. 2513 */ 2514 if (!scan && !mem_cgroup_online(memcg)) 2515 scan = min(lruvec_size, SWAP_CLUSTER_MAX); 2516 2517 switch (scan_balance) { 2518 case SCAN_EQUAL: 2519 /* Scan lists relative to size */ 2520 break; 2521 case SCAN_FRACT: 2522 /* 2523 * Scan types proportional to swappiness and 2524 * their relative recent reclaim efficiency. 2525 * Make sure we don't miss the last page on 2526 * the offlined memory cgroups because of a 2527 * round-off error. 2528 */ 2529 scan = mem_cgroup_online(memcg) ? 2530 div64_u64(scan * fraction[file], denominator) : 2531 DIV64_U64_ROUND_UP(scan * fraction[file], 2532 denominator); 2533 break; 2534 case SCAN_FILE: 2535 case SCAN_ANON: 2536 /* Scan one type exclusively */ 2537 if ((scan_balance == SCAN_FILE) != file) 2538 scan = 0; 2539 break; 2540 default: 2541 /* Look ma, no brain */ 2542 BUG(); 2543 } 2544 2545 nr[lru] = scan; 2546 } 2547 } 2548 2549 /* 2550 * Anonymous LRU management is a waste if there is 2551 * ultimately no way to reclaim the memory. 2552 */ 2553 static bool can_age_anon_pages(struct pglist_data *pgdat, 2554 struct scan_control *sc) 2555 { 2556 /* Aging the anon LRU is valuable if swap is present: */ 2557 if (total_swap_pages > 0) 2558 return true; 2559 2560 /* Also valuable if anon pages can be demoted: */ 2561 return can_demote(pgdat->node_id, sc); 2562 } 2563 2564 #ifdef CONFIG_LRU_GEN 2565 2566 #ifdef CONFIG_LRU_GEN_ENABLED 2567 DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS); 2568 #define get_cap(cap) static_branch_likely(&lru_gen_caps[cap]) 2569 #else 2570 DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS); 2571 #define get_cap(cap) static_branch_unlikely(&lru_gen_caps[cap]) 2572 #endif 2573 2574 static bool should_walk_mmu(void) 2575 { 2576 return arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK); 2577 } 2578 2579 static bool should_clear_pmd_young(void) 2580 { 2581 return arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG); 2582 } 2583 2584 /****************************************************************************** 2585 * shorthand helpers 2586 ******************************************************************************/ 2587 2588 #define LRU_REFS_FLAGS (BIT(PG_referenced) | BIT(PG_workingset)) 2589 2590 #define DEFINE_MAX_SEQ(lruvec) \ 2591 unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq) 2592 2593 #define DEFINE_MIN_SEQ(lruvec) \ 2594 unsigned long min_seq[ANON_AND_FILE] = { \ 2595 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]), \ 2596 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]), \ 2597 } 2598 2599 #define for_each_gen_type_zone(gen, type, zone) \ 2600 for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++) \ 2601 for ((type) = 0; (type) < ANON_AND_FILE; (type)++) \ 2602 for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++) 2603 2604 #define get_memcg_gen(seq) ((seq) % MEMCG_NR_GENS) 2605 #define get_memcg_bin(bin) ((bin) % MEMCG_NR_BINS) 2606 2607 static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid) 2608 { 2609 struct pglist_data *pgdat = NODE_DATA(nid); 2610 2611 #ifdef CONFIG_MEMCG 2612 if (memcg) { 2613 struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec; 2614 2615 /* see the comment in mem_cgroup_lruvec() */ 2616 if (!lruvec->pgdat) 2617 lruvec->pgdat = pgdat; 2618 2619 return lruvec; 2620 } 2621 #endif 2622 VM_WARN_ON_ONCE(!mem_cgroup_disabled()); 2623 2624 return &pgdat->__lruvec; 2625 } 2626 2627 static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc) 2628 { 2629 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 2630 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2631 2632 if (!sc->may_swap) 2633 return 0; 2634 2635 if (!can_demote(pgdat->node_id, sc) && 2636 mem_cgroup_get_nr_swap_pages(memcg) < MIN_LRU_BATCH) 2637 return 0; 2638 2639 return mem_cgroup_swappiness(memcg); 2640 } 2641 2642 static int get_nr_gens(struct lruvec *lruvec, int type) 2643 { 2644 return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1; 2645 } 2646 2647 static bool __maybe_unused seq_is_valid(struct lruvec *lruvec) 2648 { 2649 /* see the comment on lru_gen_folio */ 2650 return get_nr_gens(lruvec, LRU_GEN_FILE) >= MIN_NR_GENS && 2651 get_nr_gens(lruvec, LRU_GEN_FILE) <= get_nr_gens(lruvec, LRU_GEN_ANON) && 2652 get_nr_gens(lruvec, LRU_GEN_ANON) <= MAX_NR_GENS; 2653 } 2654 2655 /****************************************************************************** 2656 * Bloom filters 2657 ******************************************************************************/ 2658 2659 /* 2660 * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when 2661 * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of 2662 * bits in a bitmap, k is the number of hash functions and n is the number of 2663 * inserted items. 2664 * 2665 * Page table walkers use one of the two filters to reduce their search space. 2666 * To get rid of non-leaf entries that no longer have enough leaf entries, the 2667 * aging uses the double-buffering technique to flip to the other filter each 2668 * time it produces a new generation. For non-leaf entries that have enough 2669 * leaf entries, the aging carries them over to the next generation in 2670 * walk_pmd_range(); the eviction also report them when walking the rmap 2671 * in lru_gen_look_around(). 2672 * 2673 * For future optimizations: 2674 * 1. It's not necessary to keep both filters all the time. The spare one can be 2675 * freed after the RCU grace period and reallocated if needed again. 2676 * 2. And when reallocating, it's worth scaling its size according to the number 2677 * of inserted entries in the other filter, to reduce the memory overhead on 2678 * small systems and false positives on large systems. 2679 * 3. Jenkins' hash function is an alternative to Knuth's. 2680 */ 2681 #define BLOOM_FILTER_SHIFT 15 2682 2683 static inline int filter_gen_from_seq(unsigned long seq) 2684 { 2685 return seq % NR_BLOOM_FILTERS; 2686 } 2687 2688 static void get_item_key(void *item, int *key) 2689 { 2690 u32 hash = hash_ptr(item, BLOOM_FILTER_SHIFT * 2); 2691 2692 BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32)); 2693 2694 key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1); 2695 key[1] = hash >> BLOOM_FILTER_SHIFT; 2696 } 2697 2698 static bool test_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq, 2699 void *item) 2700 { 2701 int key[2]; 2702 unsigned long *filter; 2703 int gen = filter_gen_from_seq(seq); 2704 2705 filter = READ_ONCE(mm_state->filters[gen]); 2706 if (!filter) 2707 return true; 2708 2709 get_item_key(item, key); 2710 2711 return test_bit(key[0], filter) && test_bit(key[1], filter); 2712 } 2713 2714 static void update_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq, 2715 void *item) 2716 { 2717 int key[2]; 2718 unsigned long *filter; 2719 int gen = filter_gen_from_seq(seq); 2720 2721 filter = READ_ONCE(mm_state->filters[gen]); 2722 if (!filter) 2723 return; 2724 2725 get_item_key(item, key); 2726 2727 if (!test_bit(key[0], filter)) 2728 set_bit(key[0], filter); 2729 if (!test_bit(key[1], filter)) 2730 set_bit(key[1], filter); 2731 } 2732 2733 static void reset_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq) 2734 { 2735 unsigned long *filter; 2736 int gen = filter_gen_from_seq(seq); 2737 2738 filter = mm_state->filters[gen]; 2739 if (filter) { 2740 bitmap_clear(filter, 0, BIT(BLOOM_FILTER_SHIFT)); 2741 return; 2742 } 2743 2744 filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT), 2745 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN); 2746 WRITE_ONCE(mm_state->filters[gen], filter); 2747 } 2748 2749 /****************************************************************************** 2750 * mm_struct list 2751 ******************************************************************************/ 2752 2753 #ifdef CONFIG_LRU_GEN_WALKS_MMU 2754 2755 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg) 2756 { 2757 static struct lru_gen_mm_list mm_list = { 2758 .fifo = LIST_HEAD_INIT(mm_list.fifo), 2759 .lock = __SPIN_LOCK_UNLOCKED(mm_list.lock), 2760 }; 2761 2762 #ifdef CONFIG_MEMCG 2763 if (memcg) 2764 return &memcg->mm_list; 2765 #endif 2766 VM_WARN_ON_ONCE(!mem_cgroup_disabled()); 2767 2768 return &mm_list; 2769 } 2770 2771 static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec) 2772 { 2773 return &lruvec->mm_state; 2774 } 2775 2776 static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk) 2777 { 2778 int key; 2779 struct mm_struct *mm; 2780 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 2781 struct lru_gen_mm_state *mm_state = get_mm_state(walk->lruvec); 2782 2783 mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list); 2784 key = pgdat->node_id % BITS_PER_TYPE(mm->lru_gen.bitmap); 2785 2786 if (!walk->force_scan && !test_bit(key, &mm->lru_gen.bitmap)) 2787 return NULL; 2788 2789 clear_bit(key, &mm->lru_gen.bitmap); 2790 2791 return mmget_not_zero(mm) ? mm : NULL; 2792 } 2793 2794 void lru_gen_add_mm(struct mm_struct *mm) 2795 { 2796 int nid; 2797 struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm); 2798 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 2799 2800 VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list)); 2801 #ifdef CONFIG_MEMCG 2802 VM_WARN_ON_ONCE(mm->lru_gen.memcg); 2803 mm->lru_gen.memcg = memcg; 2804 #endif 2805 spin_lock(&mm_list->lock); 2806 2807 for_each_node_state(nid, N_MEMORY) { 2808 struct lruvec *lruvec = get_lruvec(memcg, nid); 2809 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 2810 2811 /* the first addition since the last iteration */ 2812 if (mm_state->tail == &mm_list->fifo) 2813 mm_state->tail = &mm->lru_gen.list; 2814 } 2815 2816 list_add_tail(&mm->lru_gen.list, &mm_list->fifo); 2817 2818 spin_unlock(&mm_list->lock); 2819 } 2820 2821 void lru_gen_del_mm(struct mm_struct *mm) 2822 { 2823 int nid; 2824 struct lru_gen_mm_list *mm_list; 2825 struct mem_cgroup *memcg = NULL; 2826 2827 if (list_empty(&mm->lru_gen.list)) 2828 return; 2829 2830 #ifdef CONFIG_MEMCG 2831 memcg = mm->lru_gen.memcg; 2832 #endif 2833 mm_list = get_mm_list(memcg); 2834 2835 spin_lock(&mm_list->lock); 2836 2837 for_each_node(nid) { 2838 struct lruvec *lruvec = get_lruvec(memcg, nid); 2839 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 2840 2841 /* where the current iteration continues after */ 2842 if (mm_state->head == &mm->lru_gen.list) 2843 mm_state->head = mm_state->head->prev; 2844 2845 /* where the last iteration ended before */ 2846 if (mm_state->tail == &mm->lru_gen.list) 2847 mm_state->tail = mm_state->tail->next; 2848 } 2849 2850 list_del_init(&mm->lru_gen.list); 2851 2852 spin_unlock(&mm_list->lock); 2853 2854 #ifdef CONFIG_MEMCG 2855 mem_cgroup_put(mm->lru_gen.memcg); 2856 mm->lru_gen.memcg = NULL; 2857 #endif 2858 } 2859 2860 #ifdef CONFIG_MEMCG 2861 void lru_gen_migrate_mm(struct mm_struct *mm) 2862 { 2863 struct mem_cgroup *memcg; 2864 struct task_struct *task = rcu_dereference_protected(mm->owner, true); 2865 2866 VM_WARN_ON_ONCE(task->mm != mm); 2867 lockdep_assert_held(&task->alloc_lock); 2868 2869 /* for mm_update_next_owner() */ 2870 if (mem_cgroup_disabled()) 2871 return; 2872 2873 /* migration can happen before addition */ 2874 if (!mm->lru_gen.memcg) 2875 return; 2876 2877 rcu_read_lock(); 2878 memcg = mem_cgroup_from_task(task); 2879 rcu_read_unlock(); 2880 if (memcg == mm->lru_gen.memcg) 2881 return; 2882 2883 VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list)); 2884 2885 lru_gen_del_mm(mm); 2886 lru_gen_add_mm(mm); 2887 } 2888 #endif 2889 2890 #else /* !CONFIG_LRU_GEN_WALKS_MMU */ 2891 2892 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg) 2893 { 2894 return NULL; 2895 } 2896 2897 static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec) 2898 { 2899 return NULL; 2900 } 2901 2902 static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk) 2903 { 2904 return NULL; 2905 } 2906 2907 #endif 2908 2909 static void reset_mm_stats(struct lru_gen_mm_walk *walk, bool last) 2910 { 2911 int i; 2912 int hist; 2913 struct lruvec *lruvec = walk->lruvec; 2914 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 2915 2916 lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock); 2917 2918 hist = lru_hist_from_seq(walk->seq); 2919 2920 for (i = 0; i < NR_MM_STATS; i++) { 2921 WRITE_ONCE(mm_state->stats[hist][i], 2922 mm_state->stats[hist][i] + walk->mm_stats[i]); 2923 walk->mm_stats[i] = 0; 2924 } 2925 2926 if (NR_HIST_GENS > 1 && last) { 2927 hist = lru_hist_from_seq(walk->seq + 1); 2928 2929 for (i = 0; i < NR_MM_STATS; i++) 2930 WRITE_ONCE(mm_state->stats[hist][i], 0); 2931 } 2932 } 2933 2934 static bool iterate_mm_list(struct lru_gen_mm_walk *walk, struct mm_struct **iter) 2935 { 2936 bool first = false; 2937 bool last = false; 2938 struct mm_struct *mm = NULL; 2939 struct lruvec *lruvec = walk->lruvec; 2940 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 2941 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 2942 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 2943 2944 /* 2945 * mm_state->seq is incremented after each iteration of mm_list. There 2946 * are three interesting cases for this page table walker: 2947 * 1. It tries to start a new iteration with a stale max_seq: there is 2948 * nothing left to do. 2949 * 2. It started the next iteration: it needs to reset the Bloom filter 2950 * so that a fresh set of PTE tables can be recorded. 2951 * 3. It ended the current iteration: it needs to reset the mm stats 2952 * counters and tell its caller to increment max_seq. 2953 */ 2954 spin_lock(&mm_list->lock); 2955 2956 VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->seq); 2957 2958 if (walk->seq <= mm_state->seq) 2959 goto done; 2960 2961 if (!mm_state->head) 2962 mm_state->head = &mm_list->fifo; 2963 2964 if (mm_state->head == &mm_list->fifo) 2965 first = true; 2966 2967 do { 2968 mm_state->head = mm_state->head->next; 2969 if (mm_state->head == &mm_list->fifo) { 2970 WRITE_ONCE(mm_state->seq, mm_state->seq + 1); 2971 last = true; 2972 break; 2973 } 2974 2975 /* force scan for those added after the last iteration */ 2976 if (!mm_state->tail || mm_state->tail == mm_state->head) { 2977 mm_state->tail = mm_state->head->next; 2978 walk->force_scan = true; 2979 } 2980 } while (!(mm = get_next_mm(walk))); 2981 done: 2982 if (*iter || last) 2983 reset_mm_stats(walk, last); 2984 2985 spin_unlock(&mm_list->lock); 2986 2987 if (mm && first) 2988 reset_bloom_filter(mm_state, walk->seq + 1); 2989 2990 if (*iter) 2991 mmput_async(*iter); 2992 2993 *iter = mm; 2994 2995 return last; 2996 } 2997 2998 static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long seq) 2999 { 3000 bool success = false; 3001 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 3002 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 3003 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 3004 3005 spin_lock(&mm_list->lock); 3006 3007 VM_WARN_ON_ONCE(mm_state->seq + 1 < seq); 3008 3009 if (seq > mm_state->seq) { 3010 mm_state->head = NULL; 3011 mm_state->tail = NULL; 3012 WRITE_ONCE(mm_state->seq, mm_state->seq + 1); 3013 success = true; 3014 } 3015 3016 spin_unlock(&mm_list->lock); 3017 3018 return success; 3019 } 3020 3021 /****************************************************************************** 3022 * PID controller 3023 ******************************************************************************/ 3024 3025 /* 3026 * A feedback loop based on Proportional-Integral-Derivative (PID) controller. 3027 * 3028 * The P term is refaulted/(evicted+protected) from a tier in the generation 3029 * currently being evicted; the I term is the exponential moving average of the 3030 * P term over the generations previously evicted, using the smoothing factor 3031 * 1/2; the D term isn't supported. 3032 * 3033 * The setpoint (SP) is always the first tier of one type; the process variable 3034 * (PV) is either any tier of the other type or any other tier of the same 3035 * type. 3036 * 3037 * The error is the difference between the SP and the PV; the correction is to 3038 * turn off protection when SP>PV or turn on protection when SP<PV. 3039 * 3040 * For future optimizations: 3041 * 1. The D term may discount the other two terms over time so that long-lived 3042 * generations can resist stale information. 3043 */ 3044 struct ctrl_pos { 3045 unsigned long refaulted; 3046 unsigned long total; 3047 int gain; 3048 }; 3049 3050 static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain, 3051 struct ctrl_pos *pos) 3052 { 3053 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3054 int hist = lru_hist_from_seq(lrugen->min_seq[type]); 3055 3056 pos->refaulted = lrugen->avg_refaulted[type][tier] + 3057 atomic_long_read(&lrugen->refaulted[hist][type][tier]); 3058 pos->total = lrugen->avg_total[type][tier] + 3059 atomic_long_read(&lrugen->evicted[hist][type][tier]); 3060 if (tier) 3061 pos->total += lrugen->protected[hist][type][tier - 1]; 3062 pos->gain = gain; 3063 } 3064 3065 static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover) 3066 { 3067 int hist, tier; 3068 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3069 bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1; 3070 unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1; 3071 3072 lockdep_assert_held(&lruvec->lru_lock); 3073 3074 if (!carryover && !clear) 3075 return; 3076 3077 hist = lru_hist_from_seq(seq); 3078 3079 for (tier = 0; tier < MAX_NR_TIERS; tier++) { 3080 if (carryover) { 3081 unsigned long sum; 3082 3083 sum = lrugen->avg_refaulted[type][tier] + 3084 atomic_long_read(&lrugen->refaulted[hist][type][tier]); 3085 WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2); 3086 3087 sum = lrugen->avg_total[type][tier] + 3088 atomic_long_read(&lrugen->evicted[hist][type][tier]); 3089 if (tier) 3090 sum += lrugen->protected[hist][type][tier - 1]; 3091 WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2); 3092 } 3093 3094 if (clear) { 3095 atomic_long_set(&lrugen->refaulted[hist][type][tier], 0); 3096 atomic_long_set(&lrugen->evicted[hist][type][tier], 0); 3097 if (tier) 3098 WRITE_ONCE(lrugen->protected[hist][type][tier - 1], 0); 3099 } 3100 } 3101 } 3102 3103 static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv) 3104 { 3105 /* 3106 * Return true if the PV has a limited number of refaults or a lower 3107 * refaulted/total than the SP. 3108 */ 3109 return pv->refaulted < MIN_LRU_BATCH || 3110 pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <= 3111 (sp->refaulted + 1) * pv->total * pv->gain; 3112 } 3113 3114 /****************************************************************************** 3115 * the aging 3116 ******************************************************************************/ 3117 3118 /* promote pages accessed through page tables */ 3119 static int folio_update_gen(struct folio *folio, int gen) 3120 { 3121 unsigned long new_flags, old_flags = READ_ONCE(folio->flags); 3122 3123 VM_WARN_ON_ONCE(gen >= MAX_NR_GENS); 3124 VM_WARN_ON_ONCE(!rcu_read_lock_held()); 3125 3126 do { 3127 /* lru_gen_del_folio() has isolated this page? */ 3128 if (!(old_flags & LRU_GEN_MASK)) { 3129 /* for shrink_folio_list() */ 3130 new_flags = old_flags | BIT(PG_referenced); 3131 continue; 3132 } 3133 3134 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS); 3135 new_flags |= (gen + 1UL) << LRU_GEN_PGOFF; 3136 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags)); 3137 3138 return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1; 3139 } 3140 3141 /* protect pages accessed multiple times through file descriptors */ 3142 static int folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming) 3143 { 3144 int type = folio_is_file_lru(folio); 3145 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3146 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]); 3147 unsigned long new_flags, old_flags = READ_ONCE(folio->flags); 3148 3149 VM_WARN_ON_ONCE_FOLIO(!(old_flags & LRU_GEN_MASK), folio); 3150 3151 do { 3152 new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1; 3153 /* folio_update_gen() has promoted this page? */ 3154 if (new_gen >= 0 && new_gen != old_gen) 3155 return new_gen; 3156 3157 new_gen = (old_gen + 1) % MAX_NR_GENS; 3158 3159 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS); 3160 new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF; 3161 /* for folio_end_writeback() */ 3162 if (reclaiming) 3163 new_flags |= BIT(PG_reclaim); 3164 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags)); 3165 3166 lru_gen_update_size(lruvec, folio, old_gen, new_gen); 3167 3168 return new_gen; 3169 } 3170 3171 static void update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio, 3172 int old_gen, int new_gen) 3173 { 3174 int type = folio_is_file_lru(folio); 3175 int zone = folio_zonenum(folio); 3176 int delta = folio_nr_pages(folio); 3177 3178 VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS); 3179 VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS); 3180 3181 walk->batched++; 3182 3183 walk->nr_pages[old_gen][type][zone] -= delta; 3184 walk->nr_pages[new_gen][type][zone] += delta; 3185 } 3186 3187 static void reset_batch_size(struct lru_gen_mm_walk *walk) 3188 { 3189 int gen, type, zone; 3190 struct lruvec *lruvec = walk->lruvec; 3191 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3192 3193 walk->batched = 0; 3194 3195 for_each_gen_type_zone(gen, type, zone) { 3196 enum lru_list lru = type * LRU_INACTIVE_FILE; 3197 int delta = walk->nr_pages[gen][type][zone]; 3198 3199 if (!delta) 3200 continue; 3201 3202 walk->nr_pages[gen][type][zone] = 0; 3203 WRITE_ONCE(lrugen->nr_pages[gen][type][zone], 3204 lrugen->nr_pages[gen][type][zone] + delta); 3205 3206 if (lru_gen_is_active(lruvec, gen)) 3207 lru += LRU_ACTIVE; 3208 __update_lru_size(lruvec, lru, zone, delta); 3209 } 3210 } 3211 3212 static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args) 3213 { 3214 struct address_space *mapping; 3215 struct vm_area_struct *vma = args->vma; 3216 struct lru_gen_mm_walk *walk = args->private; 3217 3218 if (!vma_is_accessible(vma)) 3219 return true; 3220 3221 if (is_vm_hugetlb_page(vma)) 3222 return true; 3223 3224 if (!vma_has_recency(vma)) 3225 return true; 3226 3227 if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) 3228 return true; 3229 3230 if (vma == get_gate_vma(vma->vm_mm)) 3231 return true; 3232 3233 if (vma_is_anonymous(vma)) 3234 return !walk->can_swap; 3235 3236 if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping)) 3237 return true; 3238 3239 mapping = vma->vm_file->f_mapping; 3240 if (mapping_unevictable(mapping)) 3241 return true; 3242 3243 if (shmem_mapping(mapping)) 3244 return !walk->can_swap; 3245 3246 /* to exclude special mappings like dax, etc. */ 3247 return !mapping->a_ops->read_folio; 3248 } 3249 3250 /* 3251 * Some userspace memory allocators map many single-page VMAs. Instead of 3252 * returning back to the PGD table for each of such VMAs, finish an entire PMD 3253 * table to reduce zigzags and improve cache performance. 3254 */ 3255 static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args, 3256 unsigned long *vm_start, unsigned long *vm_end) 3257 { 3258 unsigned long start = round_up(*vm_end, size); 3259 unsigned long end = (start | ~mask) + 1; 3260 VMA_ITERATOR(vmi, args->mm, start); 3261 3262 VM_WARN_ON_ONCE(mask & size); 3263 VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask)); 3264 3265 for_each_vma(vmi, args->vma) { 3266 if (end && end <= args->vma->vm_start) 3267 return false; 3268 3269 if (should_skip_vma(args->vma->vm_start, args->vma->vm_end, args)) 3270 continue; 3271 3272 *vm_start = max(start, args->vma->vm_start); 3273 *vm_end = min(end - 1, args->vma->vm_end - 1) + 1; 3274 3275 return true; 3276 } 3277 3278 return false; 3279 } 3280 3281 static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr) 3282 { 3283 unsigned long pfn = pte_pfn(pte); 3284 3285 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end); 3286 3287 if (!pte_present(pte) || is_zero_pfn(pfn)) 3288 return -1; 3289 3290 if (WARN_ON_ONCE(pte_devmap(pte) || pte_special(pte))) 3291 return -1; 3292 3293 if (WARN_ON_ONCE(!pfn_valid(pfn))) 3294 return -1; 3295 3296 return pfn; 3297 } 3298 3299 static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr) 3300 { 3301 unsigned long pfn = pmd_pfn(pmd); 3302 3303 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end); 3304 3305 if (!pmd_present(pmd) || is_huge_zero_pmd(pmd)) 3306 return -1; 3307 3308 if (WARN_ON_ONCE(pmd_devmap(pmd))) 3309 return -1; 3310 3311 if (WARN_ON_ONCE(!pfn_valid(pfn))) 3312 return -1; 3313 3314 return pfn; 3315 } 3316 3317 static struct folio *get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg, 3318 struct pglist_data *pgdat, bool can_swap) 3319 { 3320 struct folio *folio; 3321 3322 /* try to avoid unnecessary memory loads */ 3323 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat)) 3324 return NULL; 3325 3326 folio = pfn_folio(pfn); 3327 if (folio_nid(folio) != pgdat->node_id) 3328 return NULL; 3329 3330 if (folio_memcg_rcu(folio) != memcg) 3331 return NULL; 3332 3333 /* file VMAs can contain anon pages from COW */ 3334 if (!folio_is_file_lru(folio) && !can_swap) 3335 return NULL; 3336 3337 return folio; 3338 } 3339 3340 static bool suitable_to_scan(int total, int young) 3341 { 3342 int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8); 3343 3344 /* suitable if the average number of young PTEs per cacheline is >=1 */ 3345 return young * n >= total; 3346 } 3347 3348 static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end, 3349 struct mm_walk *args) 3350 { 3351 int i; 3352 pte_t *pte; 3353 spinlock_t *ptl; 3354 unsigned long addr; 3355 int total = 0; 3356 int young = 0; 3357 struct lru_gen_mm_walk *walk = args->private; 3358 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec); 3359 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 3360 DEFINE_MAX_SEQ(walk->lruvec); 3361 int old_gen, new_gen = lru_gen_from_seq(max_seq); 3362 3363 pte = pte_offset_map_nolock(args->mm, pmd, start & PMD_MASK, &ptl); 3364 if (!pte) 3365 return false; 3366 if (!spin_trylock(ptl)) { 3367 pte_unmap(pte); 3368 return false; 3369 } 3370 3371 arch_enter_lazy_mmu_mode(); 3372 restart: 3373 for (i = pte_index(start), addr = start; addr != end; i++, addr += PAGE_SIZE) { 3374 unsigned long pfn; 3375 struct folio *folio; 3376 pte_t ptent = ptep_get(pte + i); 3377 3378 total++; 3379 walk->mm_stats[MM_LEAF_TOTAL]++; 3380 3381 pfn = get_pte_pfn(ptent, args->vma, addr); 3382 if (pfn == -1) 3383 continue; 3384 3385 if (!pte_young(ptent)) { 3386 walk->mm_stats[MM_LEAF_OLD]++; 3387 continue; 3388 } 3389 3390 folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap); 3391 if (!folio) 3392 continue; 3393 3394 if (!ptep_test_and_clear_young(args->vma, addr, pte + i)) 3395 VM_WARN_ON_ONCE(true); 3396 3397 young++; 3398 walk->mm_stats[MM_LEAF_YOUNG]++; 3399 3400 if (pte_dirty(ptent) && !folio_test_dirty(folio) && 3401 !(folio_test_anon(folio) && folio_test_swapbacked(folio) && 3402 !folio_test_swapcache(folio))) 3403 folio_mark_dirty(folio); 3404 3405 old_gen = folio_update_gen(folio, new_gen); 3406 if (old_gen >= 0 && old_gen != new_gen) 3407 update_batch_size(walk, folio, old_gen, new_gen); 3408 } 3409 3410 if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, &start, &end)) 3411 goto restart; 3412 3413 arch_leave_lazy_mmu_mode(); 3414 pte_unmap_unlock(pte, ptl); 3415 3416 return suitable_to_scan(total, young); 3417 } 3418 3419 static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma, 3420 struct mm_walk *args, unsigned long *bitmap, unsigned long *first) 3421 { 3422 int i; 3423 pmd_t *pmd; 3424 spinlock_t *ptl; 3425 struct lru_gen_mm_walk *walk = args->private; 3426 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec); 3427 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 3428 DEFINE_MAX_SEQ(walk->lruvec); 3429 int old_gen, new_gen = lru_gen_from_seq(max_seq); 3430 3431 VM_WARN_ON_ONCE(pud_leaf(*pud)); 3432 3433 /* try to batch at most 1+MIN_LRU_BATCH+1 entries */ 3434 if (*first == -1) { 3435 *first = addr; 3436 bitmap_zero(bitmap, MIN_LRU_BATCH); 3437 return; 3438 } 3439 3440 i = addr == -1 ? 0 : pmd_index(addr) - pmd_index(*first); 3441 if (i && i <= MIN_LRU_BATCH) { 3442 __set_bit(i - 1, bitmap); 3443 return; 3444 } 3445 3446 pmd = pmd_offset(pud, *first); 3447 3448 ptl = pmd_lockptr(args->mm, pmd); 3449 if (!spin_trylock(ptl)) 3450 goto done; 3451 3452 arch_enter_lazy_mmu_mode(); 3453 3454 do { 3455 unsigned long pfn; 3456 struct folio *folio; 3457 3458 /* don't round down the first address */ 3459 addr = i ? (*first & PMD_MASK) + i * PMD_SIZE : *first; 3460 3461 pfn = get_pmd_pfn(pmd[i], vma, addr); 3462 if (pfn == -1) 3463 goto next; 3464 3465 if (!pmd_trans_huge(pmd[i])) { 3466 if (should_clear_pmd_young()) 3467 pmdp_test_and_clear_young(vma, addr, pmd + i); 3468 goto next; 3469 } 3470 3471 folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap); 3472 if (!folio) 3473 goto next; 3474 3475 if (!pmdp_test_and_clear_young(vma, addr, pmd + i)) 3476 goto next; 3477 3478 walk->mm_stats[MM_LEAF_YOUNG]++; 3479 3480 if (pmd_dirty(pmd[i]) && !folio_test_dirty(folio) && 3481 !(folio_test_anon(folio) && folio_test_swapbacked(folio) && 3482 !folio_test_swapcache(folio))) 3483 folio_mark_dirty(folio); 3484 3485 old_gen = folio_update_gen(folio, new_gen); 3486 if (old_gen >= 0 && old_gen != new_gen) 3487 update_batch_size(walk, folio, old_gen, new_gen); 3488 next: 3489 i = i > MIN_LRU_BATCH ? 0 : find_next_bit(bitmap, MIN_LRU_BATCH, i) + 1; 3490 } while (i <= MIN_LRU_BATCH); 3491 3492 arch_leave_lazy_mmu_mode(); 3493 spin_unlock(ptl); 3494 done: 3495 *first = -1; 3496 } 3497 3498 static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end, 3499 struct mm_walk *args) 3500 { 3501 int i; 3502 pmd_t *pmd; 3503 unsigned long next; 3504 unsigned long addr; 3505 struct vm_area_struct *vma; 3506 DECLARE_BITMAP(bitmap, MIN_LRU_BATCH); 3507 unsigned long first = -1; 3508 struct lru_gen_mm_walk *walk = args->private; 3509 struct lru_gen_mm_state *mm_state = get_mm_state(walk->lruvec); 3510 3511 VM_WARN_ON_ONCE(pud_leaf(*pud)); 3512 3513 /* 3514 * Finish an entire PMD in two passes: the first only reaches to PTE 3515 * tables to avoid taking the PMD lock; the second, if necessary, takes 3516 * the PMD lock to clear the accessed bit in PMD entries. 3517 */ 3518 pmd = pmd_offset(pud, start & PUD_MASK); 3519 restart: 3520 /* walk_pte_range() may call get_next_vma() */ 3521 vma = args->vma; 3522 for (i = pmd_index(start), addr = start; addr != end; i++, addr = next) { 3523 pmd_t val = pmdp_get_lockless(pmd + i); 3524 3525 next = pmd_addr_end(addr, end); 3526 3527 if (!pmd_present(val) || is_huge_zero_pmd(val)) { 3528 walk->mm_stats[MM_LEAF_TOTAL]++; 3529 continue; 3530 } 3531 3532 if (pmd_trans_huge(val)) { 3533 unsigned long pfn = pmd_pfn(val); 3534 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 3535 3536 walk->mm_stats[MM_LEAF_TOTAL]++; 3537 3538 if (!pmd_young(val)) { 3539 walk->mm_stats[MM_LEAF_OLD]++; 3540 continue; 3541 } 3542 3543 /* try to avoid unnecessary memory loads */ 3544 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat)) 3545 continue; 3546 3547 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first); 3548 continue; 3549 } 3550 3551 walk->mm_stats[MM_NONLEAF_TOTAL]++; 3552 3553 if (should_clear_pmd_young()) { 3554 if (!pmd_young(val)) 3555 continue; 3556 3557 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first); 3558 } 3559 3560 if (!walk->force_scan && !test_bloom_filter(mm_state, walk->seq, pmd + i)) 3561 continue; 3562 3563 walk->mm_stats[MM_NONLEAF_FOUND]++; 3564 3565 if (!walk_pte_range(&val, addr, next, args)) 3566 continue; 3567 3568 walk->mm_stats[MM_NONLEAF_ADDED]++; 3569 3570 /* carry over to the next generation */ 3571 update_bloom_filter(mm_state, walk->seq + 1, pmd + i); 3572 } 3573 3574 walk_pmd_range_locked(pud, -1, vma, args, bitmap, &first); 3575 3576 if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, &start, &end)) 3577 goto restart; 3578 } 3579 3580 static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end, 3581 struct mm_walk *args) 3582 { 3583 int i; 3584 pud_t *pud; 3585 unsigned long addr; 3586 unsigned long next; 3587 struct lru_gen_mm_walk *walk = args->private; 3588 3589 VM_WARN_ON_ONCE(p4d_leaf(*p4d)); 3590 3591 pud = pud_offset(p4d, start & P4D_MASK); 3592 restart: 3593 for (i = pud_index(start), addr = start; addr != end; i++, addr = next) { 3594 pud_t val = READ_ONCE(pud[i]); 3595 3596 next = pud_addr_end(addr, end); 3597 3598 if (!pud_present(val) || WARN_ON_ONCE(pud_leaf(val))) 3599 continue; 3600 3601 walk_pmd_range(&val, addr, next, args); 3602 3603 if (need_resched() || walk->batched >= MAX_LRU_BATCH) { 3604 end = (addr | ~PUD_MASK) + 1; 3605 goto done; 3606 } 3607 } 3608 3609 if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, &start, &end)) 3610 goto restart; 3611 3612 end = round_up(end, P4D_SIZE); 3613 done: 3614 if (!end || !args->vma) 3615 return 1; 3616 3617 walk->next_addr = max(end, args->vma->vm_start); 3618 3619 return -EAGAIN; 3620 } 3621 3622 static void walk_mm(struct mm_struct *mm, struct lru_gen_mm_walk *walk) 3623 { 3624 static const struct mm_walk_ops mm_walk_ops = { 3625 .test_walk = should_skip_vma, 3626 .p4d_entry = walk_pud_range, 3627 .walk_lock = PGWALK_RDLOCK, 3628 }; 3629 3630 int err; 3631 struct lruvec *lruvec = walk->lruvec; 3632 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 3633 3634 walk->next_addr = FIRST_USER_ADDRESS; 3635 3636 do { 3637 DEFINE_MAX_SEQ(lruvec); 3638 3639 err = -EBUSY; 3640 3641 /* another thread might have called inc_max_seq() */ 3642 if (walk->seq != max_seq) 3643 break; 3644 3645 /* folio_update_gen() requires stable folio_memcg() */ 3646 if (!mem_cgroup_trylock_pages(memcg)) 3647 break; 3648 3649 /* the caller might be holding the lock for write */ 3650 if (mmap_read_trylock(mm)) { 3651 err = walk_page_range(mm, walk->next_addr, ULONG_MAX, &mm_walk_ops, walk); 3652 3653 mmap_read_unlock(mm); 3654 } 3655 3656 mem_cgroup_unlock_pages(); 3657 3658 if (walk->batched) { 3659 spin_lock_irq(&lruvec->lru_lock); 3660 reset_batch_size(walk); 3661 spin_unlock_irq(&lruvec->lru_lock); 3662 } 3663 3664 cond_resched(); 3665 } while (err == -EAGAIN); 3666 } 3667 3668 static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat, bool force_alloc) 3669 { 3670 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk; 3671 3672 if (pgdat && current_is_kswapd()) { 3673 VM_WARN_ON_ONCE(walk); 3674 3675 walk = &pgdat->mm_walk; 3676 } else if (!walk && force_alloc) { 3677 VM_WARN_ON_ONCE(current_is_kswapd()); 3678 3679 walk = kzalloc(sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN); 3680 } 3681 3682 current->reclaim_state->mm_walk = walk; 3683 3684 return walk; 3685 } 3686 3687 static void clear_mm_walk(void) 3688 { 3689 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk; 3690 3691 VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages))); 3692 VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats))); 3693 3694 current->reclaim_state->mm_walk = NULL; 3695 3696 if (!current_is_kswapd()) 3697 kfree(walk); 3698 } 3699 3700 static bool inc_min_seq(struct lruvec *lruvec, int type, bool can_swap) 3701 { 3702 int zone; 3703 int remaining = MAX_LRU_BATCH; 3704 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3705 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]); 3706 3707 if (type == LRU_GEN_ANON && !can_swap) 3708 goto done; 3709 3710 /* prevent cold/hot inversion if force_scan is true */ 3711 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 3712 struct list_head *head = &lrugen->folios[old_gen][type][zone]; 3713 3714 while (!list_empty(head)) { 3715 struct folio *folio = lru_to_folio(head); 3716 3717 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 3718 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio); 3719 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 3720 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio); 3721 3722 new_gen = folio_inc_gen(lruvec, folio, false); 3723 list_move_tail(&folio->lru, &lrugen->folios[new_gen][type][zone]); 3724 3725 if (!--remaining) 3726 return false; 3727 } 3728 } 3729 done: 3730 reset_ctrl_pos(lruvec, type, true); 3731 WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1); 3732 3733 return true; 3734 } 3735 3736 static bool try_to_inc_min_seq(struct lruvec *lruvec, bool can_swap) 3737 { 3738 int gen, type, zone; 3739 bool success = false; 3740 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3741 DEFINE_MIN_SEQ(lruvec); 3742 3743 VM_WARN_ON_ONCE(!seq_is_valid(lruvec)); 3744 3745 /* find the oldest populated generation */ 3746 for (type = !can_swap; type < ANON_AND_FILE; type++) { 3747 while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) { 3748 gen = lru_gen_from_seq(min_seq[type]); 3749 3750 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 3751 if (!list_empty(&lrugen->folios[gen][type][zone])) 3752 goto next; 3753 } 3754 3755 min_seq[type]++; 3756 } 3757 next: 3758 ; 3759 } 3760 3761 /* see the comment on lru_gen_folio */ 3762 if (can_swap) { 3763 min_seq[LRU_GEN_ANON] = min(min_seq[LRU_GEN_ANON], min_seq[LRU_GEN_FILE]); 3764 min_seq[LRU_GEN_FILE] = max(min_seq[LRU_GEN_ANON], lrugen->min_seq[LRU_GEN_FILE]); 3765 } 3766 3767 for (type = !can_swap; type < ANON_AND_FILE; type++) { 3768 if (min_seq[type] == lrugen->min_seq[type]) 3769 continue; 3770 3771 reset_ctrl_pos(lruvec, type, true); 3772 WRITE_ONCE(lrugen->min_seq[type], min_seq[type]); 3773 success = true; 3774 } 3775 3776 return success; 3777 } 3778 3779 static bool inc_max_seq(struct lruvec *lruvec, unsigned long seq, 3780 bool can_swap, bool force_scan) 3781 { 3782 bool success; 3783 int prev, next; 3784 int type, zone; 3785 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3786 restart: 3787 if (seq < READ_ONCE(lrugen->max_seq)) 3788 return false; 3789 3790 spin_lock_irq(&lruvec->lru_lock); 3791 3792 VM_WARN_ON_ONCE(!seq_is_valid(lruvec)); 3793 3794 success = seq == lrugen->max_seq; 3795 if (!success) 3796 goto unlock; 3797 3798 for (type = ANON_AND_FILE - 1; type >= 0; type--) { 3799 if (get_nr_gens(lruvec, type) != MAX_NR_GENS) 3800 continue; 3801 3802 VM_WARN_ON_ONCE(!force_scan && (type == LRU_GEN_FILE || can_swap)); 3803 3804 if (inc_min_seq(lruvec, type, can_swap)) 3805 continue; 3806 3807 spin_unlock_irq(&lruvec->lru_lock); 3808 cond_resched(); 3809 goto restart; 3810 } 3811 3812 /* 3813 * Update the active/inactive LRU sizes for compatibility. Both sides of 3814 * the current max_seq need to be covered, since max_seq+1 can overlap 3815 * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do 3816 * overlap, cold/hot inversion happens. 3817 */ 3818 prev = lru_gen_from_seq(lrugen->max_seq - 1); 3819 next = lru_gen_from_seq(lrugen->max_seq + 1); 3820 3821 for (type = 0; type < ANON_AND_FILE; type++) { 3822 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 3823 enum lru_list lru = type * LRU_INACTIVE_FILE; 3824 long delta = lrugen->nr_pages[prev][type][zone] - 3825 lrugen->nr_pages[next][type][zone]; 3826 3827 if (!delta) 3828 continue; 3829 3830 __update_lru_size(lruvec, lru, zone, delta); 3831 __update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta); 3832 } 3833 } 3834 3835 for (type = 0; type < ANON_AND_FILE; type++) 3836 reset_ctrl_pos(lruvec, type, false); 3837 3838 WRITE_ONCE(lrugen->timestamps[next], jiffies); 3839 /* make sure preceding modifications appear */ 3840 smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1); 3841 unlock: 3842 spin_unlock_irq(&lruvec->lru_lock); 3843 3844 return success; 3845 } 3846 3847 static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long seq, 3848 bool can_swap, bool force_scan) 3849 { 3850 bool success; 3851 struct lru_gen_mm_walk *walk; 3852 struct mm_struct *mm = NULL; 3853 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3854 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 3855 3856 VM_WARN_ON_ONCE(seq > READ_ONCE(lrugen->max_seq)); 3857 3858 if (!mm_state) 3859 return inc_max_seq(lruvec, seq, can_swap, force_scan); 3860 3861 /* see the comment in iterate_mm_list() */ 3862 if (seq <= READ_ONCE(mm_state->seq)) 3863 return false; 3864 3865 /* 3866 * If the hardware doesn't automatically set the accessed bit, fallback 3867 * to lru_gen_look_around(), which only clears the accessed bit in a 3868 * handful of PTEs. Spreading the work out over a period of time usually 3869 * is less efficient, but it avoids bursty page faults. 3870 */ 3871 if (!should_walk_mmu()) { 3872 success = iterate_mm_list_nowalk(lruvec, seq); 3873 goto done; 3874 } 3875 3876 walk = set_mm_walk(NULL, true); 3877 if (!walk) { 3878 success = iterate_mm_list_nowalk(lruvec, seq); 3879 goto done; 3880 } 3881 3882 walk->lruvec = lruvec; 3883 walk->seq = seq; 3884 walk->can_swap = can_swap; 3885 walk->force_scan = force_scan; 3886 3887 do { 3888 success = iterate_mm_list(walk, &mm); 3889 if (mm) 3890 walk_mm(mm, walk); 3891 } while (mm); 3892 done: 3893 if (success) { 3894 success = inc_max_seq(lruvec, seq, can_swap, force_scan); 3895 WARN_ON_ONCE(!success); 3896 } 3897 3898 return success; 3899 } 3900 3901 /****************************************************************************** 3902 * working set protection 3903 ******************************************************************************/ 3904 3905 static bool lruvec_is_sizable(struct lruvec *lruvec, struct scan_control *sc) 3906 { 3907 int gen, type, zone; 3908 unsigned long total = 0; 3909 bool can_swap = get_swappiness(lruvec, sc); 3910 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3911 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 3912 DEFINE_MAX_SEQ(lruvec); 3913 DEFINE_MIN_SEQ(lruvec); 3914 3915 for (type = !can_swap; type < ANON_AND_FILE; type++) { 3916 unsigned long seq; 3917 3918 for (seq = min_seq[type]; seq <= max_seq; seq++) { 3919 gen = lru_gen_from_seq(seq); 3920 3921 for (zone = 0; zone < MAX_NR_ZONES; zone++) 3922 total += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L); 3923 } 3924 } 3925 3926 /* whether the size is big enough to be helpful */ 3927 return mem_cgroup_online(memcg) ? (total >> sc->priority) : total; 3928 } 3929 3930 static bool lruvec_is_reclaimable(struct lruvec *lruvec, struct scan_control *sc, 3931 unsigned long min_ttl) 3932 { 3933 int gen; 3934 unsigned long birth; 3935 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 3936 DEFINE_MIN_SEQ(lruvec); 3937 3938 /* see the comment on lru_gen_folio */ 3939 gen = lru_gen_from_seq(min_seq[LRU_GEN_FILE]); 3940 birth = READ_ONCE(lruvec->lrugen.timestamps[gen]); 3941 3942 if (time_is_after_jiffies(birth + min_ttl)) 3943 return false; 3944 3945 if (!lruvec_is_sizable(lruvec, sc)) 3946 return false; 3947 3948 mem_cgroup_calculate_protection(NULL, memcg); 3949 3950 return !mem_cgroup_below_min(NULL, memcg); 3951 } 3952 3953 /* to protect the working set of the last N jiffies */ 3954 static unsigned long lru_gen_min_ttl __read_mostly; 3955 3956 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc) 3957 { 3958 struct mem_cgroup *memcg; 3959 unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl); 3960 3961 VM_WARN_ON_ONCE(!current_is_kswapd()); 3962 3963 /* check the order to exclude compaction-induced reclaim */ 3964 if (!min_ttl || sc->order || sc->priority == DEF_PRIORITY) 3965 return; 3966 3967 memcg = mem_cgroup_iter(NULL, NULL, NULL); 3968 do { 3969 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 3970 3971 if (lruvec_is_reclaimable(lruvec, sc, min_ttl)) { 3972 mem_cgroup_iter_break(NULL, memcg); 3973 return; 3974 } 3975 3976 cond_resched(); 3977 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL))); 3978 3979 /* 3980 * The main goal is to OOM kill if every generation from all memcgs is 3981 * younger than min_ttl. However, another possibility is all memcgs are 3982 * either too small or below min. 3983 */ 3984 if (mutex_trylock(&oom_lock)) { 3985 struct oom_control oc = { 3986 .gfp_mask = sc->gfp_mask, 3987 }; 3988 3989 out_of_memory(&oc); 3990 3991 mutex_unlock(&oom_lock); 3992 } 3993 } 3994 3995 /****************************************************************************** 3996 * rmap/PT walk feedback 3997 ******************************************************************************/ 3998 3999 /* 4000 * This function exploits spatial locality when shrink_folio_list() walks the 4001 * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If 4002 * the scan was done cacheline efficiently, it adds the PMD entry pointing to 4003 * the PTE table to the Bloom filter. This forms a feedback loop between the 4004 * eviction and the aging. 4005 */ 4006 void lru_gen_look_around(struct page_vma_mapped_walk *pvmw) 4007 { 4008 int i; 4009 unsigned long start; 4010 unsigned long end; 4011 struct lru_gen_mm_walk *walk; 4012 int young = 0; 4013 pte_t *pte = pvmw->pte; 4014 unsigned long addr = pvmw->address; 4015 struct vm_area_struct *vma = pvmw->vma; 4016 struct folio *folio = pfn_folio(pvmw->pfn); 4017 bool can_swap = !folio_is_file_lru(folio); 4018 struct mem_cgroup *memcg = folio_memcg(folio); 4019 struct pglist_data *pgdat = folio_pgdat(folio); 4020 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 4021 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 4022 DEFINE_MAX_SEQ(lruvec); 4023 int old_gen, new_gen = lru_gen_from_seq(max_seq); 4024 4025 lockdep_assert_held(pvmw->ptl); 4026 VM_WARN_ON_ONCE_FOLIO(folio_test_lru(folio), folio); 4027 4028 if (spin_is_contended(pvmw->ptl)) 4029 return; 4030 4031 /* exclude special VMAs containing anon pages from COW */ 4032 if (vma->vm_flags & VM_SPECIAL) 4033 return; 4034 4035 /* avoid taking the LRU lock under the PTL when possible */ 4036 walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL; 4037 4038 start = max(addr & PMD_MASK, vma->vm_start); 4039 end = min(addr | ~PMD_MASK, vma->vm_end - 1) + 1; 4040 4041 if (end - start > MIN_LRU_BATCH * PAGE_SIZE) { 4042 if (addr - start < MIN_LRU_BATCH * PAGE_SIZE / 2) 4043 end = start + MIN_LRU_BATCH * PAGE_SIZE; 4044 else if (end - addr < MIN_LRU_BATCH * PAGE_SIZE / 2) 4045 start = end - MIN_LRU_BATCH * PAGE_SIZE; 4046 else { 4047 start = addr - MIN_LRU_BATCH * PAGE_SIZE / 2; 4048 end = addr + MIN_LRU_BATCH * PAGE_SIZE / 2; 4049 } 4050 } 4051 4052 /* folio_update_gen() requires stable folio_memcg() */ 4053 if (!mem_cgroup_trylock_pages(memcg)) 4054 return; 4055 4056 arch_enter_lazy_mmu_mode(); 4057 4058 pte -= (addr - start) / PAGE_SIZE; 4059 4060 for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) { 4061 unsigned long pfn; 4062 pte_t ptent = ptep_get(pte + i); 4063 4064 pfn = get_pte_pfn(ptent, vma, addr); 4065 if (pfn == -1) 4066 continue; 4067 4068 if (!pte_young(ptent)) 4069 continue; 4070 4071 folio = get_pfn_folio(pfn, memcg, pgdat, can_swap); 4072 if (!folio) 4073 continue; 4074 4075 if (!ptep_test_and_clear_young(vma, addr, pte + i)) 4076 VM_WARN_ON_ONCE(true); 4077 4078 young++; 4079 4080 if (pte_dirty(ptent) && !folio_test_dirty(folio) && 4081 !(folio_test_anon(folio) && folio_test_swapbacked(folio) && 4082 !folio_test_swapcache(folio))) 4083 folio_mark_dirty(folio); 4084 4085 if (walk) { 4086 old_gen = folio_update_gen(folio, new_gen); 4087 if (old_gen >= 0 && old_gen != new_gen) 4088 update_batch_size(walk, folio, old_gen, new_gen); 4089 4090 continue; 4091 } 4092 4093 old_gen = folio_lru_gen(folio); 4094 if (old_gen < 0) 4095 folio_set_referenced(folio); 4096 else if (old_gen != new_gen) 4097 folio_activate(folio); 4098 } 4099 4100 arch_leave_lazy_mmu_mode(); 4101 mem_cgroup_unlock_pages(); 4102 4103 /* feedback from rmap walkers to page table walkers */ 4104 if (mm_state && suitable_to_scan(i, young)) 4105 update_bloom_filter(mm_state, max_seq, pvmw->pmd); 4106 } 4107 4108 /****************************************************************************** 4109 * memcg LRU 4110 ******************************************************************************/ 4111 4112 /* see the comment on MEMCG_NR_GENS */ 4113 enum { 4114 MEMCG_LRU_NOP, 4115 MEMCG_LRU_HEAD, 4116 MEMCG_LRU_TAIL, 4117 MEMCG_LRU_OLD, 4118 MEMCG_LRU_YOUNG, 4119 }; 4120 4121 static void lru_gen_rotate_memcg(struct lruvec *lruvec, int op) 4122 { 4123 int seg; 4124 int old, new; 4125 unsigned long flags; 4126 int bin = get_random_u32_below(MEMCG_NR_BINS); 4127 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 4128 4129 spin_lock_irqsave(&pgdat->memcg_lru.lock, flags); 4130 4131 VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list)); 4132 4133 seg = 0; 4134 new = old = lruvec->lrugen.gen; 4135 4136 /* see the comment on MEMCG_NR_GENS */ 4137 if (op == MEMCG_LRU_HEAD) 4138 seg = MEMCG_LRU_HEAD; 4139 else if (op == MEMCG_LRU_TAIL) 4140 seg = MEMCG_LRU_TAIL; 4141 else if (op == MEMCG_LRU_OLD) 4142 new = get_memcg_gen(pgdat->memcg_lru.seq); 4143 else if (op == MEMCG_LRU_YOUNG) 4144 new = get_memcg_gen(pgdat->memcg_lru.seq + 1); 4145 else 4146 VM_WARN_ON_ONCE(true); 4147 4148 WRITE_ONCE(lruvec->lrugen.seg, seg); 4149 WRITE_ONCE(lruvec->lrugen.gen, new); 4150 4151 hlist_nulls_del_rcu(&lruvec->lrugen.list); 4152 4153 if (op == MEMCG_LRU_HEAD || op == MEMCG_LRU_OLD) 4154 hlist_nulls_add_head_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]); 4155 else 4156 hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]); 4157 4158 pgdat->memcg_lru.nr_memcgs[old]--; 4159 pgdat->memcg_lru.nr_memcgs[new]++; 4160 4161 if (!pgdat->memcg_lru.nr_memcgs[old] && old == get_memcg_gen(pgdat->memcg_lru.seq)) 4162 WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1); 4163 4164 spin_unlock_irqrestore(&pgdat->memcg_lru.lock, flags); 4165 } 4166 4167 #ifdef CONFIG_MEMCG 4168 4169 void lru_gen_online_memcg(struct mem_cgroup *memcg) 4170 { 4171 int gen; 4172 int nid; 4173 int bin = get_random_u32_below(MEMCG_NR_BINS); 4174 4175 for_each_node(nid) { 4176 struct pglist_data *pgdat = NODE_DATA(nid); 4177 struct lruvec *lruvec = get_lruvec(memcg, nid); 4178 4179 spin_lock_irq(&pgdat->memcg_lru.lock); 4180 4181 VM_WARN_ON_ONCE(!hlist_nulls_unhashed(&lruvec->lrugen.list)); 4182 4183 gen = get_memcg_gen(pgdat->memcg_lru.seq); 4184 4185 lruvec->lrugen.gen = gen; 4186 4187 hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[gen][bin]); 4188 pgdat->memcg_lru.nr_memcgs[gen]++; 4189 4190 spin_unlock_irq(&pgdat->memcg_lru.lock); 4191 } 4192 } 4193 4194 void lru_gen_offline_memcg(struct mem_cgroup *memcg) 4195 { 4196 int nid; 4197 4198 for_each_node(nid) { 4199 struct lruvec *lruvec = get_lruvec(memcg, nid); 4200 4201 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_OLD); 4202 } 4203 } 4204 4205 void lru_gen_release_memcg(struct mem_cgroup *memcg) 4206 { 4207 int gen; 4208 int nid; 4209 4210 for_each_node(nid) { 4211 struct pglist_data *pgdat = NODE_DATA(nid); 4212 struct lruvec *lruvec = get_lruvec(memcg, nid); 4213 4214 spin_lock_irq(&pgdat->memcg_lru.lock); 4215 4216 if (hlist_nulls_unhashed(&lruvec->lrugen.list)) 4217 goto unlock; 4218 4219 gen = lruvec->lrugen.gen; 4220 4221 hlist_nulls_del_init_rcu(&lruvec->lrugen.list); 4222 pgdat->memcg_lru.nr_memcgs[gen]--; 4223 4224 if (!pgdat->memcg_lru.nr_memcgs[gen] && gen == get_memcg_gen(pgdat->memcg_lru.seq)) 4225 WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1); 4226 unlock: 4227 spin_unlock_irq(&pgdat->memcg_lru.lock); 4228 } 4229 } 4230 4231 void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid) 4232 { 4233 struct lruvec *lruvec = get_lruvec(memcg, nid); 4234 4235 /* see the comment on MEMCG_NR_GENS */ 4236 if (READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_HEAD) 4237 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_HEAD); 4238 } 4239 4240 #endif /* CONFIG_MEMCG */ 4241 4242 /****************************************************************************** 4243 * the eviction 4244 ******************************************************************************/ 4245 4246 static bool sort_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc, 4247 int tier_idx) 4248 { 4249 bool success; 4250 int gen = folio_lru_gen(folio); 4251 int type = folio_is_file_lru(folio); 4252 int zone = folio_zonenum(folio); 4253 int delta = folio_nr_pages(folio); 4254 int refs = folio_lru_refs(folio); 4255 int tier = lru_tier_from_refs(refs); 4256 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4257 4258 VM_WARN_ON_ONCE_FOLIO(gen >= MAX_NR_GENS, folio); 4259 4260 /* unevictable */ 4261 if (!folio_evictable(folio)) { 4262 success = lru_gen_del_folio(lruvec, folio, true); 4263 VM_WARN_ON_ONCE_FOLIO(!success, folio); 4264 folio_set_unevictable(folio); 4265 lruvec_add_folio(lruvec, folio); 4266 __count_vm_events(UNEVICTABLE_PGCULLED, delta); 4267 return true; 4268 } 4269 4270 /* dirty lazyfree */ 4271 if (type == LRU_GEN_FILE && folio_test_anon(folio) && folio_test_dirty(folio)) { 4272 success = lru_gen_del_folio(lruvec, folio, true); 4273 VM_WARN_ON_ONCE_FOLIO(!success, folio); 4274 folio_set_swapbacked(folio); 4275 lruvec_add_folio_tail(lruvec, folio); 4276 return true; 4277 } 4278 4279 /* promoted */ 4280 if (gen != lru_gen_from_seq(lrugen->min_seq[type])) { 4281 list_move(&folio->lru, &lrugen->folios[gen][type][zone]); 4282 return true; 4283 } 4284 4285 /* protected */ 4286 if (tier > tier_idx || refs == BIT(LRU_REFS_WIDTH)) { 4287 int hist = lru_hist_from_seq(lrugen->min_seq[type]); 4288 4289 gen = folio_inc_gen(lruvec, folio, false); 4290 list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]); 4291 4292 WRITE_ONCE(lrugen->protected[hist][type][tier - 1], 4293 lrugen->protected[hist][type][tier - 1] + delta); 4294 return true; 4295 } 4296 4297 /* ineligible */ 4298 if (zone > sc->reclaim_idx || skip_cma(folio, sc)) { 4299 gen = folio_inc_gen(lruvec, folio, false); 4300 list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]); 4301 return true; 4302 } 4303 4304 /* waiting for writeback */ 4305 if (folio_test_locked(folio) || folio_test_writeback(folio) || 4306 (type == LRU_GEN_FILE && folio_test_dirty(folio))) { 4307 gen = folio_inc_gen(lruvec, folio, true); 4308 list_move(&folio->lru, &lrugen->folios[gen][type][zone]); 4309 return true; 4310 } 4311 4312 return false; 4313 } 4314 4315 static bool isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc) 4316 { 4317 bool success; 4318 4319 /* swap constrained */ 4320 if (!(sc->gfp_mask & __GFP_IO) && 4321 (folio_test_dirty(folio) || 4322 (folio_test_anon(folio) && !folio_test_swapcache(folio)))) 4323 return false; 4324 4325 /* raced with release_pages() */ 4326 if (!folio_try_get(folio)) 4327 return false; 4328 4329 /* raced with another isolation */ 4330 if (!folio_test_clear_lru(folio)) { 4331 folio_put(folio); 4332 return false; 4333 } 4334 4335 /* see the comment on MAX_NR_TIERS */ 4336 if (!folio_test_referenced(folio)) 4337 set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS, 0); 4338 4339 /* for shrink_folio_list() */ 4340 folio_clear_reclaim(folio); 4341 folio_clear_referenced(folio); 4342 4343 success = lru_gen_del_folio(lruvec, folio, true); 4344 VM_WARN_ON_ONCE_FOLIO(!success, folio); 4345 4346 return true; 4347 } 4348 4349 static int scan_folios(struct lruvec *lruvec, struct scan_control *sc, 4350 int type, int tier, struct list_head *list) 4351 { 4352 int i; 4353 int gen; 4354 enum vm_event_item item; 4355 int sorted = 0; 4356 int scanned = 0; 4357 int isolated = 0; 4358 int skipped = 0; 4359 int remaining = MAX_LRU_BATCH; 4360 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4361 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4362 4363 VM_WARN_ON_ONCE(!list_empty(list)); 4364 4365 if (get_nr_gens(lruvec, type) == MIN_NR_GENS) 4366 return 0; 4367 4368 gen = lru_gen_from_seq(lrugen->min_seq[type]); 4369 4370 for (i = MAX_NR_ZONES; i > 0; i--) { 4371 LIST_HEAD(moved); 4372 int skipped_zone = 0; 4373 int zone = (sc->reclaim_idx + i) % MAX_NR_ZONES; 4374 struct list_head *head = &lrugen->folios[gen][type][zone]; 4375 4376 while (!list_empty(head)) { 4377 struct folio *folio = lru_to_folio(head); 4378 int delta = folio_nr_pages(folio); 4379 4380 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 4381 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio); 4382 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 4383 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio); 4384 4385 scanned += delta; 4386 4387 if (sort_folio(lruvec, folio, sc, tier)) 4388 sorted += delta; 4389 else if (isolate_folio(lruvec, folio, sc)) { 4390 list_add(&folio->lru, list); 4391 isolated += delta; 4392 } else { 4393 list_move(&folio->lru, &moved); 4394 skipped_zone += delta; 4395 } 4396 4397 if (!--remaining || max(isolated, skipped_zone) >= MIN_LRU_BATCH) 4398 break; 4399 } 4400 4401 if (skipped_zone) { 4402 list_splice(&moved, head); 4403 __count_zid_vm_events(PGSCAN_SKIP, zone, skipped_zone); 4404 skipped += skipped_zone; 4405 } 4406 4407 if (!remaining || isolated >= MIN_LRU_BATCH) 4408 break; 4409 } 4410 4411 item = PGSCAN_KSWAPD + reclaimer_offset(); 4412 if (!cgroup_reclaim(sc)) { 4413 __count_vm_events(item, isolated); 4414 __count_vm_events(PGREFILL, sorted); 4415 } 4416 __count_memcg_events(memcg, item, isolated); 4417 __count_memcg_events(memcg, PGREFILL, sorted); 4418 __count_vm_events(PGSCAN_ANON + type, isolated); 4419 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, MAX_LRU_BATCH, 4420 scanned, skipped, isolated, 4421 type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON); 4422 4423 /* 4424 * There might not be eligible folios due to reclaim_idx. Check the 4425 * remaining to prevent livelock if it's not making progress. 4426 */ 4427 return isolated || !remaining ? scanned : 0; 4428 } 4429 4430 static int get_tier_idx(struct lruvec *lruvec, int type) 4431 { 4432 int tier; 4433 struct ctrl_pos sp, pv; 4434 4435 /* 4436 * To leave a margin for fluctuations, use a larger gain factor (1:2). 4437 * This value is chosen because any other tier would have at least twice 4438 * as many refaults as the first tier. 4439 */ 4440 read_ctrl_pos(lruvec, type, 0, 1, &sp); 4441 for (tier = 1; tier < MAX_NR_TIERS; tier++) { 4442 read_ctrl_pos(lruvec, type, tier, 2, &pv); 4443 if (!positive_ctrl_err(&sp, &pv)) 4444 break; 4445 } 4446 4447 return tier - 1; 4448 } 4449 4450 static int get_type_to_scan(struct lruvec *lruvec, int swappiness, int *tier_idx) 4451 { 4452 int type, tier; 4453 struct ctrl_pos sp, pv; 4454 int gain[ANON_AND_FILE] = { swappiness, 200 - swappiness }; 4455 4456 /* 4457 * Compare the first tier of anon with that of file to determine which 4458 * type to scan. Also need to compare other tiers of the selected type 4459 * with the first tier of the other type to determine the last tier (of 4460 * the selected type) to evict. 4461 */ 4462 read_ctrl_pos(lruvec, LRU_GEN_ANON, 0, gain[LRU_GEN_ANON], &sp); 4463 read_ctrl_pos(lruvec, LRU_GEN_FILE, 0, gain[LRU_GEN_FILE], &pv); 4464 type = positive_ctrl_err(&sp, &pv); 4465 4466 read_ctrl_pos(lruvec, !type, 0, gain[!type], &sp); 4467 for (tier = 1; tier < MAX_NR_TIERS; tier++) { 4468 read_ctrl_pos(lruvec, type, tier, gain[type], &pv); 4469 if (!positive_ctrl_err(&sp, &pv)) 4470 break; 4471 } 4472 4473 *tier_idx = tier - 1; 4474 4475 return type; 4476 } 4477 4478 static int isolate_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness, 4479 int *type_scanned, struct list_head *list) 4480 { 4481 int i; 4482 int type; 4483 int scanned; 4484 int tier = -1; 4485 DEFINE_MIN_SEQ(lruvec); 4486 4487 /* 4488 * Try to make the obvious choice first, and if anon and file are both 4489 * available from the same generation, 4490 * 1. Interpret swappiness 1 as file first and MAX_SWAPPINESS as anon 4491 * first. 4492 * 2. If !__GFP_IO, file first since clean pagecache is more likely to 4493 * exist than clean swapcache. 4494 */ 4495 if (!swappiness) 4496 type = LRU_GEN_FILE; 4497 else if (min_seq[LRU_GEN_ANON] < min_seq[LRU_GEN_FILE]) 4498 type = LRU_GEN_ANON; 4499 else if (swappiness == 1) 4500 type = LRU_GEN_FILE; 4501 else if (swappiness == 200) 4502 type = LRU_GEN_ANON; 4503 else if (!(sc->gfp_mask & __GFP_IO)) 4504 type = LRU_GEN_FILE; 4505 else 4506 type = get_type_to_scan(lruvec, swappiness, &tier); 4507 4508 for (i = !swappiness; i < ANON_AND_FILE; i++) { 4509 if (tier < 0) 4510 tier = get_tier_idx(lruvec, type); 4511 4512 scanned = scan_folios(lruvec, sc, type, tier, list); 4513 if (scanned) 4514 break; 4515 4516 type = !type; 4517 tier = -1; 4518 } 4519 4520 *type_scanned = type; 4521 4522 return scanned; 4523 } 4524 4525 static int evict_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness) 4526 { 4527 int type; 4528 int scanned; 4529 int reclaimed; 4530 LIST_HEAD(list); 4531 LIST_HEAD(clean); 4532 struct folio *folio; 4533 struct folio *next; 4534 enum vm_event_item item; 4535 struct reclaim_stat stat; 4536 struct lru_gen_mm_walk *walk; 4537 bool skip_retry = false; 4538 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4539 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 4540 4541 spin_lock_irq(&lruvec->lru_lock); 4542 4543 scanned = isolate_folios(lruvec, sc, swappiness, &type, &list); 4544 4545 scanned += try_to_inc_min_seq(lruvec, swappiness); 4546 4547 if (get_nr_gens(lruvec, !swappiness) == MIN_NR_GENS) 4548 scanned = 0; 4549 4550 spin_unlock_irq(&lruvec->lru_lock); 4551 4552 if (list_empty(&list)) 4553 return scanned; 4554 retry: 4555 reclaimed = shrink_folio_list(&list, pgdat, sc, &stat, false); 4556 sc->nr_reclaimed += reclaimed; 4557 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 4558 scanned, reclaimed, &stat, sc->priority, 4559 type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON); 4560 4561 list_for_each_entry_safe_reverse(folio, next, &list, lru) { 4562 if (!folio_evictable(folio)) { 4563 list_del(&folio->lru); 4564 folio_putback_lru(folio); 4565 continue; 4566 } 4567 4568 if (folio_test_reclaim(folio) && 4569 (folio_test_dirty(folio) || folio_test_writeback(folio))) { 4570 /* restore LRU_REFS_FLAGS cleared by isolate_folio() */ 4571 if (folio_test_workingset(folio)) 4572 folio_set_referenced(folio); 4573 continue; 4574 } 4575 4576 if (skip_retry || folio_test_active(folio) || folio_test_referenced(folio) || 4577 folio_mapped(folio) || folio_test_locked(folio) || 4578 folio_test_dirty(folio) || folio_test_writeback(folio)) { 4579 /* don't add rejected folios to the oldest generation */ 4580 set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS, 4581 BIT(PG_active)); 4582 continue; 4583 } 4584 4585 /* retry folios that may have missed folio_rotate_reclaimable() */ 4586 list_move(&folio->lru, &clean); 4587 sc->nr_scanned -= folio_nr_pages(folio); 4588 } 4589 4590 spin_lock_irq(&lruvec->lru_lock); 4591 4592 move_folios_to_lru(lruvec, &list); 4593 4594 walk = current->reclaim_state->mm_walk; 4595 if (walk && walk->batched) { 4596 walk->lruvec = lruvec; 4597 reset_batch_size(walk); 4598 } 4599 4600 item = PGSTEAL_KSWAPD + reclaimer_offset(); 4601 if (!cgroup_reclaim(sc)) 4602 __count_vm_events(item, reclaimed); 4603 __count_memcg_events(memcg, item, reclaimed); 4604 __count_vm_events(PGSTEAL_ANON + type, reclaimed); 4605 4606 spin_unlock_irq(&lruvec->lru_lock); 4607 4608 list_splice_init(&clean, &list); 4609 4610 if (!list_empty(&list)) { 4611 skip_retry = true; 4612 goto retry; 4613 } 4614 4615 return scanned; 4616 } 4617 4618 static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq, 4619 bool can_swap, unsigned long *nr_to_scan) 4620 { 4621 int gen, type, zone; 4622 unsigned long old = 0; 4623 unsigned long young = 0; 4624 unsigned long total = 0; 4625 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4626 DEFINE_MIN_SEQ(lruvec); 4627 4628 /* whether this lruvec is completely out of cold folios */ 4629 if (min_seq[!can_swap] + MIN_NR_GENS > max_seq) { 4630 *nr_to_scan = 0; 4631 return true; 4632 } 4633 4634 for (type = !can_swap; type < ANON_AND_FILE; type++) { 4635 unsigned long seq; 4636 4637 for (seq = min_seq[type]; seq <= max_seq; seq++) { 4638 unsigned long size = 0; 4639 4640 gen = lru_gen_from_seq(seq); 4641 4642 for (zone = 0; zone < MAX_NR_ZONES; zone++) 4643 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L); 4644 4645 total += size; 4646 if (seq == max_seq) 4647 young += size; 4648 else if (seq + MIN_NR_GENS == max_seq) 4649 old += size; 4650 } 4651 } 4652 4653 *nr_to_scan = total; 4654 4655 /* 4656 * The aging tries to be lazy to reduce the overhead, while the eviction 4657 * stalls when the number of generations reaches MIN_NR_GENS. Hence, the 4658 * ideal number of generations is MIN_NR_GENS+1. 4659 */ 4660 if (min_seq[!can_swap] + MIN_NR_GENS < max_seq) 4661 return false; 4662 4663 /* 4664 * It's also ideal to spread pages out evenly, i.e., 1/(MIN_NR_GENS+1) 4665 * of the total number of pages for each generation. A reasonable range 4666 * for this average portion is [1/MIN_NR_GENS, 1/(MIN_NR_GENS+2)]. The 4667 * aging cares about the upper bound of hot pages, while the eviction 4668 * cares about the lower bound of cold pages. 4669 */ 4670 if (young * MIN_NR_GENS > total) 4671 return true; 4672 if (old * (MIN_NR_GENS + 2) < total) 4673 return true; 4674 4675 return false; 4676 } 4677 4678 /* 4679 * For future optimizations: 4680 * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg 4681 * reclaim. 4682 */ 4683 static long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc, bool can_swap) 4684 { 4685 bool success; 4686 unsigned long nr_to_scan; 4687 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4688 DEFINE_MAX_SEQ(lruvec); 4689 4690 if (mem_cgroup_below_min(sc->target_mem_cgroup, memcg)) 4691 return -1; 4692 4693 success = should_run_aging(lruvec, max_seq, can_swap, &nr_to_scan); 4694 4695 /* try to scrape all its memory if this memcg was deleted */ 4696 if (nr_to_scan && !mem_cgroup_online(memcg)) 4697 return nr_to_scan; 4698 4699 /* try to get away with not aging at the default priority */ 4700 if (!success || sc->priority == DEF_PRIORITY) 4701 return nr_to_scan >> sc->priority; 4702 4703 /* stop scanning this lruvec as it's low on cold folios */ 4704 return try_to_inc_max_seq(lruvec, max_seq, can_swap, false) ? -1 : 0; 4705 } 4706 4707 static bool should_abort_scan(struct lruvec *lruvec, struct scan_control *sc) 4708 { 4709 int i; 4710 enum zone_watermarks mark; 4711 4712 /* don't abort memcg reclaim to ensure fairness */ 4713 if (!root_reclaim(sc)) 4714 return false; 4715 4716 if (sc->nr_reclaimed >= max(sc->nr_to_reclaim, compact_gap(sc->order))) 4717 return true; 4718 4719 /* check the order to exclude compaction-induced reclaim */ 4720 if (!current_is_kswapd() || sc->order) 4721 return false; 4722 4723 mark = sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ? 4724 WMARK_PROMO : WMARK_HIGH; 4725 4726 for (i = 0; i <= sc->reclaim_idx; i++) { 4727 struct zone *zone = lruvec_pgdat(lruvec)->node_zones + i; 4728 unsigned long size = wmark_pages(zone, mark) + MIN_LRU_BATCH; 4729 4730 if (managed_zone(zone) && !zone_watermark_ok(zone, 0, size, sc->reclaim_idx, 0)) 4731 return false; 4732 } 4733 4734 /* kswapd should abort if all eligible zones are safe */ 4735 return true; 4736 } 4737 4738 static bool try_to_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 4739 { 4740 long nr_to_scan; 4741 unsigned long scanned = 0; 4742 int swappiness = get_swappiness(lruvec, sc); 4743 4744 while (true) { 4745 int delta; 4746 4747 nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness); 4748 if (nr_to_scan <= 0) 4749 break; 4750 4751 delta = evict_folios(lruvec, sc, swappiness); 4752 if (!delta) 4753 break; 4754 4755 scanned += delta; 4756 if (scanned >= nr_to_scan) 4757 break; 4758 4759 if (should_abort_scan(lruvec, sc)) 4760 break; 4761 4762 cond_resched(); 4763 } 4764 4765 /* whether this lruvec should be rotated */ 4766 return nr_to_scan < 0; 4767 } 4768 4769 static int shrink_one(struct lruvec *lruvec, struct scan_control *sc) 4770 { 4771 bool success; 4772 unsigned long scanned = sc->nr_scanned; 4773 unsigned long reclaimed = sc->nr_reclaimed; 4774 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4775 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 4776 4777 mem_cgroup_calculate_protection(NULL, memcg); 4778 4779 if (mem_cgroup_below_min(NULL, memcg)) 4780 return MEMCG_LRU_YOUNG; 4781 4782 if (mem_cgroup_below_low(NULL, memcg)) { 4783 /* see the comment on MEMCG_NR_GENS */ 4784 if (READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_TAIL) 4785 return MEMCG_LRU_TAIL; 4786 4787 memcg_memory_event(memcg, MEMCG_LOW); 4788 } 4789 4790 success = try_to_shrink_lruvec(lruvec, sc); 4791 4792 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, sc->priority); 4793 4794 if (!sc->proactive) 4795 vmpressure(sc->gfp_mask, memcg, false, sc->nr_scanned - scanned, 4796 sc->nr_reclaimed - reclaimed); 4797 4798 flush_reclaim_state(sc); 4799 4800 if (success && mem_cgroup_online(memcg)) 4801 return MEMCG_LRU_YOUNG; 4802 4803 if (!success && lruvec_is_sizable(lruvec, sc)) 4804 return 0; 4805 4806 /* one retry if offlined or too small */ 4807 return READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_TAIL ? 4808 MEMCG_LRU_TAIL : MEMCG_LRU_YOUNG; 4809 } 4810 4811 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc) 4812 { 4813 int op; 4814 int gen; 4815 int bin; 4816 int first_bin; 4817 struct lruvec *lruvec; 4818 struct lru_gen_folio *lrugen; 4819 struct mem_cgroup *memcg; 4820 struct hlist_nulls_node *pos; 4821 4822 gen = get_memcg_gen(READ_ONCE(pgdat->memcg_lru.seq)); 4823 bin = first_bin = get_random_u32_below(MEMCG_NR_BINS); 4824 restart: 4825 op = 0; 4826 memcg = NULL; 4827 4828 rcu_read_lock(); 4829 4830 hlist_nulls_for_each_entry_rcu(lrugen, pos, &pgdat->memcg_lru.fifo[gen][bin], list) { 4831 if (op) { 4832 lru_gen_rotate_memcg(lruvec, op); 4833 op = 0; 4834 } 4835 4836 mem_cgroup_put(memcg); 4837 memcg = NULL; 4838 4839 if (gen != READ_ONCE(lrugen->gen)) 4840 continue; 4841 4842 lruvec = container_of(lrugen, struct lruvec, lrugen); 4843 memcg = lruvec_memcg(lruvec); 4844 4845 if (!mem_cgroup_tryget(memcg)) { 4846 lru_gen_release_memcg(memcg); 4847 memcg = NULL; 4848 continue; 4849 } 4850 4851 rcu_read_unlock(); 4852 4853 op = shrink_one(lruvec, sc); 4854 4855 rcu_read_lock(); 4856 4857 if (should_abort_scan(lruvec, sc)) 4858 break; 4859 } 4860 4861 rcu_read_unlock(); 4862 4863 if (op) 4864 lru_gen_rotate_memcg(lruvec, op); 4865 4866 mem_cgroup_put(memcg); 4867 4868 if (!is_a_nulls(pos)) 4869 return; 4870 4871 /* restart if raced with lru_gen_rotate_memcg() */ 4872 if (gen != get_nulls_value(pos)) 4873 goto restart; 4874 4875 /* try the rest of the bins of the current generation */ 4876 bin = get_memcg_bin(bin + 1); 4877 if (bin != first_bin) 4878 goto restart; 4879 } 4880 4881 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 4882 { 4883 struct blk_plug plug; 4884 4885 VM_WARN_ON_ONCE(root_reclaim(sc)); 4886 VM_WARN_ON_ONCE(!sc->may_writepage || !sc->may_unmap); 4887 4888 lru_add_drain(); 4889 4890 blk_start_plug(&plug); 4891 4892 set_mm_walk(NULL, sc->proactive); 4893 4894 if (try_to_shrink_lruvec(lruvec, sc)) 4895 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_YOUNG); 4896 4897 clear_mm_walk(); 4898 4899 blk_finish_plug(&plug); 4900 } 4901 4902 static void set_initial_priority(struct pglist_data *pgdat, struct scan_control *sc) 4903 { 4904 int priority; 4905 unsigned long reclaimable; 4906 4907 if (sc->priority != DEF_PRIORITY || sc->nr_to_reclaim < MIN_LRU_BATCH) 4908 return; 4909 /* 4910 * Determine the initial priority based on 4911 * (total >> priority) * reclaimed_to_scanned_ratio = nr_to_reclaim, 4912 * where reclaimed_to_scanned_ratio = inactive / total. 4913 */ 4914 reclaimable = node_page_state(pgdat, NR_INACTIVE_FILE); 4915 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc)) 4916 reclaimable += node_page_state(pgdat, NR_INACTIVE_ANON); 4917 4918 /* round down reclaimable and round up sc->nr_to_reclaim */ 4919 priority = fls_long(reclaimable) - 1 - fls_long(sc->nr_to_reclaim - 1); 4920 4921 sc->priority = clamp(priority, 0, DEF_PRIORITY); 4922 } 4923 4924 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc) 4925 { 4926 struct blk_plug plug; 4927 unsigned long reclaimed = sc->nr_reclaimed; 4928 4929 VM_WARN_ON_ONCE(!root_reclaim(sc)); 4930 4931 /* 4932 * Unmapped clean folios are already prioritized. Scanning for more of 4933 * them is likely futile and can cause high reclaim latency when there 4934 * is a large number of memcgs. 4935 */ 4936 if (!sc->may_writepage || !sc->may_unmap) 4937 goto done; 4938 4939 lru_add_drain(); 4940 4941 blk_start_plug(&plug); 4942 4943 set_mm_walk(pgdat, sc->proactive); 4944 4945 set_initial_priority(pgdat, sc); 4946 4947 if (current_is_kswapd()) 4948 sc->nr_reclaimed = 0; 4949 4950 if (mem_cgroup_disabled()) 4951 shrink_one(&pgdat->__lruvec, sc); 4952 else 4953 shrink_many(pgdat, sc); 4954 4955 if (current_is_kswapd()) 4956 sc->nr_reclaimed += reclaimed; 4957 4958 clear_mm_walk(); 4959 4960 blk_finish_plug(&plug); 4961 done: 4962 /* kswapd should never fail */ 4963 pgdat->kswapd_failures = 0; 4964 } 4965 4966 /****************************************************************************** 4967 * state change 4968 ******************************************************************************/ 4969 4970 static bool __maybe_unused state_is_valid(struct lruvec *lruvec) 4971 { 4972 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4973 4974 if (lrugen->enabled) { 4975 enum lru_list lru; 4976 4977 for_each_evictable_lru(lru) { 4978 if (!list_empty(&lruvec->lists[lru])) 4979 return false; 4980 } 4981 } else { 4982 int gen, type, zone; 4983 4984 for_each_gen_type_zone(gen, type, zone) { 4985 if (!list_empty(&lrugen->folios[gen][type][zone])) 4986 return false; 4987 } 4988 } 4989 4990 return true; 4991 } 4992 4993 static bool fill_evictable(struct lruvec *lruvec) 4994 { 4995 enum lru_list lru; 4996 int remaining = MAX_LRU_BATCH; 4997 4998 for_each_evictable_lru(lru) { 4999 int type = is_file_lru(lru); 5000 bool active = is_active_lru(lru); 5001 struct list_head *head = &lruvec->lists[lru]; 5002 5003 while (!list_empty(head)) { 5004 bool success; 5005 struct folio *folio = lru_to_folio(head); 5006 5007 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 5008 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio) != active, folio); 5009 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 5010 VM_WARN_ON_ONCE_FOLIO(folio_lru_gen(folio) != -1, folio); 5011 5012 lruvec_del_folio(lruvec, folio); 5013 success = lru_gen_add_folio(lruvec, folio, false); 5014 VM_WARN_ON_ONCE(!success); 5015 5016 if (!--remaining) 5017 return false; 5018 } 5019 } 5020 5021 return true; 5022 } 5023 5024 static bool drain_evictable(struct lruvec *lruvec) 5025 { 5026 int gen, type, zone; 5027 int remaining = MAX_LRU_BATCH; 5028 5029 for_each_gen_type_zone(gen, type, zone) { 5030 struct list_head *head = &lruvec->lrugen.folios[gen][type][zone]; 5031 5032 while (!list_empty(head)) { 5033 bool success; 5034 struct folio *folio = lru_to_folio(head); 5035 5036 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 5037 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio); 5038 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 5039 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio); 5040 5041 success = lru_gen_del_folio(lruvec, folio, false); 5042 VM_WARN_ON_ONCE(!success); 5043 lruvec_add_folio(lruvec, folio); 5044 5045 if (!--remaining) 5046 return false; 5047 } 5048 } 5049 5050 return true; 5051 } 5052 5053 static void lru_gen_change_state(bool enabled) 5054 { 5055 static DEFINE_MUTEX(state_mutex); 5056 5057 struct mem_cgroup *memcg; 5058 5059 cgroup_lock(); 5060 cpus_read_lock(); 5061 get_online_mems(); 5062 mutex_lock(&state_mutex); 5063 5064 if (enabled == lru_gen_enabled()) 5065 goto unlock; 5066 5067 if (enabled) 5068 static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]); 5069 else 5070 static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]); 5071 5072 memcg = mem_cgroup_iter(NULL, NULL, NULL); 5073 do { 5074 int nid; 5075 5076 for_each_node(nid) { 5077 struct lruvec *lruvec = get_lruvec(memcg, nid); 5078 5079 spin_lock_irq(&lruvec->lru_lock); 5080 5081 VM_WARN_ON_ONCE(!seq_is_valid(lruvec)); 5082 VM_WARN_ON_ONCE(!state_is_valid(lruvec)); 5083 5084 lruvec->lrugen.enabled = enabled; 5085 5086 while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) { 5087 spin_unlock_irq(&lruvec->lru_lock); 5088 cond_resched(); 5089 spin_lock_irq(&lruvec->lru_lock); 5090 } 5091 5092 spin_unlock_irq(&lruvec->lru_lock); 5093 } 5094 5095 cond_resched(); 5096 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL))); 5097 unlock: 5098 mutex_unlock(&state_mutex); 5099 put_online_mems(); 5100 cpus_read_unlock(); 5101 cgroup_unlock(); 5102 } 5103 5104 /****************************************************************************** 5105 * sysfs interface 5106 ******************************************************************************/ 5107 5108 static ssize_t min_ttl_ms_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) 5109 { 5110 return sysfs_emit(buf, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl))); 5111 } 5112 5113 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5114 static ssize_t min_ttl_ms_store(struct kobject *kobj, struct kobj_attribute *attr, 5115 const char *buf, size_t len) 5116 { 5117 unsigned int msecs; 5118 5119 if (kstrtouint(buf, 0, &msecs)) 5120 return -EINVAL; 5121 5122 WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs)); 5123 5124 return len; 5125 } 5126 5127 static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR_RW(min_ttl_ms); 5128 5129 static ssize_t enabled_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) 5130 { 5131 unsigned int caps = 0; 5132 5133 if (get_cap(LRU_GEN_CORE)) 5134 caps |= BIT(LRU_GEN_CORE); 5135 5136 if (should_walk_mmu()) 5137 caps |= BIT(LRU_GEN_MM_WALK); 5138 5139 if (should_clear_pmd_young()) 5140 caps |= BIT(LRU_GEN_NONLEAF_YOUNG); 5141 5142 return sysfs_emit(buf, "0x%04x\n", caps); 5143 } 5144 5145 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5146 static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr, 5147 const char *buf, size_t len) 5148 { 5149 int i; 5150 unsigned int caps; 5151 5152 if (tolower(*buf) == 'n') 5153 caps = 0; 5154 else if (tolower(*buf) == 'y') 5155 caps = -1; 5156 else if (kstrtouint(buf, 0, &caps)) 5157 return -EINVAL; 5158 5159 for (i = 0; i < NR_LRU_GEN_CAPS; i++) { 5160 bool enabled = caps & BIT(i); 5161 5162 if (i == LRU_GEN_CORE) 5163 lru_gen_change_state(enabled); 5164 else if (enabled) 5165 static_branch_enable(&lru_gen_caps[i]); 5166 else 5167 static_branch_disable(&lru_gen_caps[i]); 5168 } 5169 5170 return len; 5171 } 5172 5173 static struct kobj_attribute lru_gen_enabled_attr = __ATTR_RW(enabled); 5174 5175 static struct attribute *lru_gen_attrs[] = { 5176 &lru_gen_min_ttl_attr.attr, 5177 &lru_gen_enabled_attr.attr, 5178 NULL 5179 }; 5180 5181 static const struct attribute_group lru_gen_attr_group = { 5182 .name = "lru_gen", 5183 .attrs = lru_gen_attrs, 5184 }; 5185 5186 /****************************************************************************** 5187 * debugfs interface 5188 ******************************************************************************/ 5189 5190 static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos) 5191 { 5192 struct mem_cgroup *memcg; 5193 loff_t nr_to_skip = *pos; 5194 5195 m->private = kvmalloc(PATH_MAX, GFP_KERNEL); 5196 if (!m->private) 5197 return ERR_PTR(-ENOMEM); 5198 5199 memcg = mem_cgroup_iter(NULL, NULL, NULL); 5200 do { 5201 int nid; 5202 5203 for_each_node_state(nid, N_MEMORY) { 5204 if (!nr_to_skip--) 5205 return get_lruvec(memcg, nid); 5206 } 5207 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL))); 5208 5209 return NULL; 5210 } 5211 5212 static void lru_gen_seq_stop(struct seq_file *m, void *v) 5213 { 5214 if (!IS_ERR_OR_NULL(v)) 5215 mem_cgroup_iter_break(NULL, lruvec_memcg(v)); 5216 5217 kvfree(m->private); 5218 m->private = NULL; 5219 } 5220 5221 static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos) 5222 { 5223 int nid = lruvec_pgdat(v)->node_id; 5224 struct mem_cgroup *memcg = lruvec_memcg(v); 5225 5226 ++*pos; 5227 5228 nid = next_memory_node(nid); 5229 if (nid == MAX_NUMNODES) { 5230 memcg = mem_cgroup_iter(NULL, memcg, NULL); 5231 if (!memcg) 5232 return NULL; 5233 5234 nid = first_memory_node; 5235 } 5236 5237 return get_lruvec(memcg, nid); 5238 } 5239 5240 static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec, 5241 unsigned long max_seq, unsigned long *min_seq, 5242 unsigned long seq) 5243 { 5244 int i; 5245 int type, tier; 5246 int hist = lru_hist_from_seq(seq); 5247 struct lru_gen_folio *lrugen = &lruvec->lrugen; 5248 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 5249 5250 for (tier = 0; tier < MAX_NR_TIERS; tier++) { 5251 seq_printf(m, " %10d", tier); 5252 for (type = 0; type < ANON_AND_FILE; type++) { 5253 const char *s = " "; 5254 unsigned long n[3] = {}; 5255 5256 if (seq == max_seq) { 5257 s = "RT "; 5258 n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]); 5259 n[1] = READ_ONCE(lrugen->avg_total[type][tier]); 5260 } else if (seq == min_seq[type] || NR_HIST_GENS > 1) { 5261 s = "rep"; 5262 n[0] = atomic_long_read(&lrugen->refaulted[hist][type][tier]); 5263 n[1] = atomic_long_read(&lrugen->evicted[hist][type][tier]); 5264 if (tier) 5265 n[2] = READ_ONCE(lrugen->protected[hist][type][tier - 1]); 5266 } 5267 5268 for (i = 0; i < 3; i++) 5269 seq_printf(m, " %10lu%c", n[i], s[i]); 5270 } 5271 seq_putc(m, '\n'); 5272 } 5273 5274 if (!mm_state) 5275 return; 5276 5277 seq_puts(m, " "); 5278 for (i = 0; i < NR_MM_STATS; i++) { 5279 const char *s = " "; 5280 unsigned long n = 0; 5281 5282 if (seq == max_seq && NR_HIST_GENS == 1) { 5283 s = "LOYNFA"; 5284 n = READ_ONCE(mm_state->stats[hist][i]); 5285 } else if (seq != max_seq && NR_HIST_GENS > 1) { 5286 s = "loynfa"; 5287 n = READ_ONCE(mm_state->stats[hist][i]); 5288 } 5289 5290 seq_printf(m, " %10lu%c", n, s[i]); 5291 } 5292 seq_putc(m, '\n'); 5293 } 5294 5295 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5296 static int lru_gen_seq_show(struct seq_file *m, void *v) 5297 { 5298 unsigned long seq; 5299 bool full = !debugfs_real_fops(m->file)->write; 5300 struct lruvec *lruvec = v; 5301 struct lru_gen_folio *lrugen = &lruvec->lrugen; 5302 int nid = lruvec_pgdat(lruvec)->node_id; 5303 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 5304 DEFINE_MAX_SEQ(lruvec); 5305 DEFINE_MIN_SEQ(lruvec); 5306 5307 if (nid == first_memory_node) { 5308 const char *path = memcg ? m->private : ""; 5309 5310 #ifdef CONFIG_MEMCG 5311 if (memcg) 5312 cgroup_path(memcg->css.cgroup, m->private, PATH_MAX); 5313 #endif 5314 seq_printf(m, "memcg %5hu %s\n", mem_cgroup_id(memcg), path); 5315 } 5316 5317 seq_printf(m, " node %5d\n", nid); 5318 5319 if (!full) 5320 seq = min_seq[LRU_GEN_ANON]; 5321 else if (max_seq >= MAX_NR_GENS) 5322 seq = max_seq - MAX_NR_GENS + 1; 5323 else 5324 seq = 0; 5325 5326 for (; seq <= max_seq; seq++) { 5327 int type, zone; 5328 int gen = lru_gen_from_seq(seq); 5329 unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]); 5330 5331 seq_printf(m, " %10lu %10u", seq, jiffies_to_msecs(jiffies - birth)); 5332 5333 for (type = 0; type < ANON_AND_FILE; type++) { 5334 unsigned long size = 0; 5335 char mark = full && seq < min_seq[type] ? 'x' : ' '; 5336 5337 for (zone = 0; zone < MAX_NR_ZONES; zone++) 5338 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L); 5339 5340 seq_printf(m, " %10lu%c", size, mark); 5341 } 5342 5343 seq_putc(m, '\n'); 5344 5345 if (full) 5346 lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq); 5347 } 5348 5349 return 0; 5350 } 5351 5352 static const struct seq_operations lru_gen_seq_ops = { 5353 .start = lru_gen_seq_start, 5354 .stop = lru_gen_seq_stop, 5355 .next = lru_gen_seq_next, 5356 .show = lru_gen_seq_show, 5357 }; 5358 5359 static int run_aging(struct lruvec *lruvec, unsigned long seq, 5360 bool can_swap, bool force_scan) 5361 { 5362 DEFINE_MAX_SEQ(lruvec); 5363 DEFINE_MIN_SEQ(lruvec); 5364 5365 if (seq < max_seq) 5366 return 0; 5367 5368 if (seq > max_seq) 5369 return -EINVAL; 5370 5371 if (!force_scan && min_seq[!can_swap] + MAX_NR_GENS - 1 <= max_seq) 5372 return -ERANGE; 5373 5374 try_to_inc_max_seq(lruvec, max_seq, can_swap, force_scan); 5375 5376 return 0; 5377 } 5378 5379 static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc, 5380 int swappiness, unsigned long nr_to_reclaim) 5381 { 5382 DEFINE_MAX_SEQ(lruvec); 5383 5384 if (seq + MIN_NR_GENS > max_seq) 5385 return -EINVAL; 5386 5387 sc->nr_reclaimed = 0; 5388 5389 while (!signal_pending(current)) { 5390 DEFINE_MIN_SEQ(lruvec); 5391 5392 if (seq < min_seq[!swappiness]) 5393 return 0; 5394 5395 if (sc->nr_reclaimed >= nr_to_reclaim) 5396 return 0; 5397 5398 if (!evict_folios(lruvec, sc, swappiness)) 5399 return 0; 5400 5401 cond_resched(); 5402 } 5403 5404 return -EINTR; 5405 } 5406 5407 static int run_cmd(char cmd, int memcg_id, int nid, unsigned long seq, 5408 struct scan_control *sc, int swappiness, unsigned long opt) 5409 { 5410 struct lruvec *lruvec; 5411 int err = -EINVAL; 5412 struct mem_cgroup *memcg = NULL; 5413 5414 if (nid < 0 || nid >= MAX_NUMNODES || !node_state(nid, N_MEMORY)) 5415 return -EINVAL; 5416 5417 if (!mem_cgroup_disabled()) { 5418 rcu_read_lock(); 5419 5420 memcg = mem_cgroup_from_id(memcg_id); 5421 if (!mem_cgroup_tryget(memcg)) 5422 memcg = NULL; 5423 5424 rcu_read_unlock(); 5425 5426 if (!memcg) 5427 return -EINVAL; 5428 } 5429 5430 if (memcg_id != mem_cgroup_id(memcg)) 5431 goto done; 5432 5433 lruvec = get_lruvec(memcg, nid); 5434 5435 if (swappiness < 0) 5436 swappiness = get_swappiness(lruvec, sc); 5437 else if (swappiness > 200) 5438 goto done; 5439 5440 switch (cmd) { 5441 case '+': 5442 err = run_aging(lruvec, seq, swappiness, opt); 5443 break; 5444 case '-': 5445 err = run_eviction(lruvec, seq, sc, swappiness, opt); 5446 break; 5447 } 5448 done: 5449 mem_cgroup_put(memcg); 5450 5451 return err; 5452 } 5453 5454 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5455 static ssize_t lru_gen_seq_write(struct file *file, const char __user *src, 5456 size_t len, loff_t *pos) 5457 { 5458 void *buf; 5459 char *cur, *next; 5460 unsigned int flags; 5461 struct blk_plug plug; 5462 int err = -EINVAL; 5463 struct scan_control sc = { 5464 .may_writepage = true, 5465 .may_unmap = true, 5466 .may_swap = true, 5467 .reclaim_idx = MAX_NR_ZONES - 1, 5468 .gfp_mask = GFP_KERNEL, 5469 }; 5470 5471 buf = kvmalloc(len + 1, GFP_KERNEL); 5472 if (!buf) 5473 return -ENOMEM; 5474 5475 if (copy_from_user(buf, src, len)) { 5476 kvfree(buf); 5477 return -EFAULT; 5478 } 5479 5480 set_task_reclaim_state(current, &sc.reclaim_state); 5481 flags = memalloc_noreclaim_save(); 5482 blk_start_plug(&plug); 5483 if (!set_mm_walk(NULL, true)) { 5484 err = -ENOMEM; 5485 goto done; 5486 } 5487 5488 next = buf; 5489 next[len] = '\0'; 5490 5491 while ((cur = strsep(&next, ",;\n"))) { 5492 int n; 5493 int end; 5494 char cmd; 5495 unsigned int memcg_id; 5496 unsigned int nid; 5497 unsigned long seq; 5498 unsigned int swappiness = -1; 5499 unsigned long opt = -1; 5500 5501 cur = skip_spaces(cur); 5502 if (!*cur) 5503 continue; 5504 5505 n = sscanf(cur, "%c %u %u %lu %n %u %n %lu %n", &cmd, &memcg_id, &nid, 5506 &seq, &end, &swappiness, &end, &opt, &end); 5507 if (n < 4 || cur[end]) { 5508 err = -EINVAL; 5509 break; 5510 } 5511 5512 err = run_cmd(cmd, memcg_id, nid, seq, &sc, swappiness, opt); 5513 if (err) 5514 break; 5515 } 5516 done: 5517 clear_mm_walk(); 5518 blk_finish_plug(&plug); 5519 memalloc_noreclaim_restore(flags); 5520 set_task_reclaim_state(current, NULL); 5521 5522 kvfree(buf); 5523 5524 return err ? : len; 5525 } 5526 5527 static int lru_gen_seq_open(struct inode *inode, struct file *file) 5528 { 5529 return seq_open(file, &lru_gen_seq_ops); 5530 } 5531 5532 static const struct file_operations lru_gen_rw_fops = { 5533 .open = lru_gen_seq_open, 5534 .read = seq_read, 5535 .write = lru_gen_seq_write, 5536 .llseek = seq_lseek, 5537 .release = seq_release, 5538 }; 5539 5540 static const struct file_operations lru_gen_ro_fops = { 5541 .open = lru_gen_seq_open, 5542 .read = seq_read, 5543 .llseek = seq_lseek, 5544 .release = seq_release, 5545 }; 5546 5547 /****************************************************************************** 5548 * initialization 5549 ******************************************************************************/ 5550 5551 void lru_gen_init_pgdat(struct pglist_data *pgdat) 5552 { 5553 int i, j; 5554 5555 spin_lock_init(&pgdat->memcg_lru.lock); 5556 5557 for (i = 0; i < MEMCG_NR_GENS; i++) { 5558 for (j = 0; j < MEMCG_NR_BINS; j++) 5559 INIT_HLIST_NULLS_HEAD(&pgdat->memcg_lru.fifo[i][j], i); 5560 } 5561 } 5562 5563 void lru_gen_init_lruvec(struct lruvec *lruvec) 5564 { 5565 int i; 5566 int gen, type, zone; 5567 struct lru_gen_folio *lrugen = &lruvec->lrugen; 5568 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 5569 5570 lrugen->max_seq = MIN_NR_GENS + 1; 5571 lrugen->enabled = lru_gen_enabled(); 5572 5573 for (i = 0; i <= MIN_NR_GENS + 1; i++) 5574 lrugen->timestamps[i] = jiffies; 5575 5576 for_each_gen_type_zone(gen, type, zone) 5577 INIT_LIST_HEAD(&lrugen->folios[gen][type][zone]); 5578 5579 if (mm_state) 5580 mm_state->seq = MIN_NR_GENS; 5581 } 5582 5583 #ifdef CONFIG_MEMCG 5584 5585 void lru_gen_init_memcg(struct mem_cgroup *memcg) 5586 { 5587 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 5588 5589 if (!mm_list) 5590 return; 5591 5592 INIT_LIST_HEAD(&mm_list->fifo); 5593 spin_lock_init(&mm_list->lock); 5594 } 5595 5596 void lru_gen_exit_memcg(struct mem_cgroup *memcg) 5597 { 5598 int i; 5599 int nid; 5600 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 5601 5602 VM_WARN_ON_ONCE(mm_list && !list_empty(&mm_list->fifo)); 5603 5604 for_each_node(nid) { 5605 struct lruvec *lruvec = get_lruvec(memcg, nid); 5606 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 5607 5608 VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0, 5609 sizeof(lruvec->lrugen.nr_pages))); 5610 5611 lruvec->lrugen.list.next = LIST_POISON1; 5612 5613 if (!mm_state) 5614 continue; 5615 5616 for (i = 0; i < NR_BLOOM_FILTERS; i++) { 5617 bitmap_free(mm_state->filters[i]); 5618 mm_state->filters[i] = NULL; 5619 } 5620 } 5621 } 5622 5623 #endif /* CONFIG_MEMCG */ 5624 5625 static int __init init_lru_gen(void) 5626 { 5627 BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS); 5628 BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS); 5629 5630 if (sysfs_create_group(mm_kobj, &lru_gen_attr_group)) 5631 pr_err("lru_gen: failed to create sysfs group\n"); 5632 5633 debugfs_create_file("lru_gen", 0644, NULL, NULL, &lru_gen_rw_fops); 5634 debugfs_create_file("lru_gen_full", 0444, NULL, NULL, &lru_gen_ro_fops); 5635 5636 return 0; 5637 }; 5638 late_initcall(init_lru_gen); 5639 5640 #else /* !CONFIG_LRU_GEN */ 5641 5642 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc) 5643 { 5644 BUILD_BUG(); 5645 } 5646 5647 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 5648 { 5649 BUILD_BUG(); 5650 } 5651 5652 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc) 5653 { 5654 BUILD_BUG(); 5655 } 5656 5657 #endif /* CONFIG_LRU_GEN */ 5658 5659 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 5660 { 5661 unsigned long nr[NR_LRU_LISTS]; 5662 unsigned long targets[NR_LRU_LISTS]; 5663 unsigned long nr_to_scan; 5664 enum lru_list lru; 5665 unsigned long nr_reclaimed = 0; 5666 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 5667 bool proportional_reclaim; 5668 struct blk_plug plug; 5669 5670 if (lru_gen_enabled() && !root_reclaim(sc)) { 5671 lru_gen_shrink_lruvec(lruvec, sc); 5672 return; 5673 } 5674 5675 get_scan_count(lruvec, sc, nr); 5676 5677 /* Record the original scan target for proportional adjustments later */ 5678 memcpy(targets, nr, sizeof(nr)); 5679 5680 /* 5681 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal 5682 * event that can occur when there is little memory pressure e.g. 5683 * multiple streaming readers/writers. Hence, we do not abort scanning 5684 * when the requested number of pages are reclaimed when scanning at 5685 * DEF_PRIORITY on the assumption that the fact we are direct 5686 * reclaiming implies that kswapd is not keeping up and it is best to 5687 * do a batch of work at once. For memcg reclaim one check is made to 5688 * abort proportional reclaim if either the file or anon lru has already 5689 * dropped to zero at the first pass. 5690 */ 5691 proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() && 5692 sc->priority == DEF_PRIORITY); 5693 5694 blk_start_plug(&plug); 5695 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 5696 nr[LRU_INACTIVE_FILE]) { 5697 unsigned long nr_anon, nr_file, percentage; 5698 unsigned long nr_scanned; 5699 5700 for_each_evictable_lru(lru) { 5701 if (nr[lru]) { 5702 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 5703 nr[lru] -= nr_to_scan; 5704 5705 nr_reclaimed += shrink_list(lru, nr_to_scan, 5706 lruvec, sc); 5707 } 5708 } 5709 5710 cond_resched(); 5711 5712 if (nr_reclaimed < nr_to_reclaim || proportional_reclaim) 5713 continue; 5714 5715 /* 5716 * For kswapd and memcg, reclaim at least the number of pages 5717 * requested. Ensure that the anon and file LRUs are scanned 5718 * proportionally what was requested by get_scan_count(). We 5719 * stop reclaiming one LRU and reduce the amount scanning 5720 * proportional to the original scan target. 5721 */ 5722 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 5723 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 5724 5725 /* 5726 * It's just vindictive to attack the larger once the smaller 5727 * has gone to zero. And given the way we stop scanning the 5728 * smaller below, this makes sure that we only make one nudge 5729 * towards proportionality once we've got nr_to_reclaim. 5730 */ 5731 if (!nr_file || !nr_anon) 5732 break; 5733 5734 if (nr_file > nr_anon) { 5735 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 5736 targets[LRU_ACTIVE_ANON] + 1; 5737 lru = LRU_BASE; 5738 percentage = nr_anon * 100 / scan_target; 5739 } else { 5740 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 5741 targets[LRU_ACTIVE_FILE] + 1; 5742 lru = LRU_FILE; 5743 percentage = nr_file * 100 / scan_target; 5744 } 5745 5746 /* Stop scanning the smaller of the LRU */ 5747 nr[lru] = 0; 5748 nr[lru + LRU_ACTIVE] = 0; 5749 5750 /* 5751 * Recalculate the other LRU scan count based on its original 5752 * scan target and the percentage scanning already complete 5753 */ 5754 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 5755 nr_scanned = targets[lru] - nr[lru]; 5756 nr[lru] = targets[lru] * (100 - percentage) / 100; 5757 nr[lru] -= min(nr[lru], nr_scanned); 5758 5759 lru += LRU_ACTIVE; 5760 nr_scanned = targets[lru] - nr[lru]; 5761 nr[lru] = targets[lru] * (100 - percentage) / 100; 5762 nr[lru] -= min(nr[lru], nr_scanned); 5763 } 5764 blk_finish_plug(&plug); 5765 sc->nr_reclaimed += nr_reclaimed; 5766 5767 /* 5768 * Even if we did not try to evict anon pages at all, we want to 5769 * rebalance the anon lru active/inactive ratio. 5770 */ 5771 if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) && 5772 inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 5773 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 5774 sc, LRU_ACTIVE_ANON); 5775 } 5776 5777 /* Use reclaim/compaction for costly allocs or under memory pressure */ 5778 static bool in_reclaim_compaction(struct scan_control *sc) 5779 { 5780 if (gfp_compaction_allowed(sc->gfp_mask) && sc->order && 5781 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 5782 sc->priority < DEF_PRIORITY - 2)) 5783 return true; 5784 5785 return false; 5786 } 5787 5788 /* 5789 * Reclaim/compaction is used for high-order allocation requests. It reclaims 5790 * order-0 pages before compacting the zone. should_continue_reclaim() returns 5791 * true if more pages should be reclaimed such that when the page allocator 5792 * calls try_to_compact_pages() that it will have enough free pages to succeed. 5793 * It will give up earlier than that if there is difficulty reclaiming pages. 5794 */ 5795 static inline bool should_continue_reclaim(struct pglist_data *pgdat, 5796 unsigned long nr_reclaimed, 5797 struct scan_control *sc) 5798 { 5799 unsigned long pages_for_compaction; 5800 unsigned long inactive_lru_pages; 5801 int z; 5802 5803 /* If not in reclaim/compaction mode, stop */ 5804 if (!in_reclaim_compaction(sc)) 5805 return false; 5806 5807 /* 5808 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX 5809 * number of pages that were scanned. This will return to the caller 5810 * with the risk reclaim/compaction and the resulting allocation attempt 5811 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL 5812 * allocations through requiring that the full LRU list has been scanned 5813 * first, by assuming that zero delta of sc->nr_scanned means full LRU 5814 * scan, but that approximation was wrong, and there were corner cases 5815 * where always a non-zero amount of pages were scanned. 5816 */ 5817 if (!nr_reclaimed) 5818 return false; 5819 5820 /* If compaction would go ahead or the allocation would succeed, stop */ 5821 for (z = 0; z <= sc->reclaim_idx; z++) { 5822 struct zone *zone = &pgdat->node_zones[z]; 5823 if (!managed_zone(zone)) 5824 continue; 5825 5826 /* Allocation can already succeed, nothing to do */ 5827 if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone), 5828 sc->reclaim_idx, 0)) 5829 return false; 5830 5831 if (compaction_suitable(zone, sc->order, sc->reclaim_idx)) 5832 return false; 5833 } 5834 5835 /* 5836 * If we have not reclaimed enough pages for compaction and the 5837 * inactive lists are large enough, continue reclaiming 5838 */ 5839 pages_for_compaction = compact_gap(sc->order); 5840 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE); 5841 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc)) 5842 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON); 5843 5844 return inactive_lru_pages > pages_for_compaction; 5845 } 5846 5847 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc) 5848 { 5849 struct mem_cgroup *target_memcg = sc->target_mem_cgroup; 5850 struct mem_cgroup *memcg; 5851 5852 memcg = mem_cgroup_iter(target_memcg, NULL, NULL); 5853 do { 5854 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 5855 unsigned long reclaimed; 5856 unsigned long scanned; 5857 5858 /* 5859 * This loop can become CPU-bound when target memcgs 5860 * aren't eligible for reclaim - either because they 5861 * don't have any reclaimable pages, or because their 5862 * memory is explicitly protected. Avoid soft lockups. 5863 */ 5864 cond_resched(); 5865 5866 mem_cgroup_calculate_protection(target_memcg, memcg); 5867 5868 if (mem_cgroup_below_min(target_memcg, memcg)) { 5869 /* 5870 * Hard protection. 5871 * If there is no reclaimable memory, OOM. 5872 */ 5873 continue; 5874 } else if (mem_cgroup_below_low(target_memcg, memcg)) { 5875 /* 5876 * Soft protection. 5877 * Respect the protection only as long as 5878 * there is an unprotected supply 5879 * of reclaimable memory from other cgroups. 5880 */ 5881 if (!sc->memcg_low_reclaim) { 5882 sc->memcg_low_skipped = 1; 5883 continue; 5884 } 5885 memcg_memory_event(memcg, MEMCG_LOW); 5886 } 5887 5888 reclaimed = sc->nr_reclaimed; 5889 scanned = sc->nr_scanned; 5890 5891 shrink_lruvec(lruvec, sc); 5892 5893 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, 5894 sc->priority); 5895 5896 /* Record the group's reclaim efficiency */ 5897 if (!sc->proactive) 5898 vmpressure(sc->gfp_mask, memcg, false, 5899 sc->nr_scanned - scanned, 5900 sc->nr_reclaimed - reclaimed); 5901 5902 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL))); 5903 } 5904 5905 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc) 5906 { 5907 unsigned long nr_reclaimed, nr_scanned, nr_node_reclaimed; 5908 struct lruvec *target_lruvec; 5909 bool reclaimable = false; 5910 5911 if (lru_gen_enabled() && root_reclaim(sc)) { 5912 lru_gen_shrink_node(pgdat, sc); 5913 return; 5914 } 5915 5916 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat); 5917 5918 again: 5919 memset(&sc->nr, 0, sizeof(sc->nr)); 5920 5921 nr_reclaimed = sc->nr_reclaimed; 5922 nr_scanned = sc->nr_scanned; 5923 5924 prepare_scan_control(pgdat, sc); 5925 5926 shrink_node_memcgs(pgdat, sc); 5927 5928 flush_reclaim_state(sc); 5929 5930 nr_node_reclaimed = sc->nr_reclaimed - nr_reclaimed; 5931 5932 /* Record the subtree's reclaim efficiency */ 5933 if (!sc->proactive) 5934 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, 5935 sc->nr_scanned - nr_scanned, nr_node_reclaimed); 5936 5937 if (nr_node_reclaimed) 5938 reclaimable = true; 5939 5940 if (current_is_kswapd()) { 5941 /* 5942 * If reclaim is isolating dirty pages under writeback, 5943 * it implies that the long-lived page allocation rate 5944 * is exceeding the page laundering rate. Either the 5945 * global limits are not being effective at throttling 5946 * processes due to the page distribution throughout 5947 * zones or there is heavy usage of a slow backing 5948 * device. The only option is to throttle from reclaim 5949 * context which is not ideal as there is no guarantee 5950 * the dirtying process is throttled in the same way 5951 * balance_dirty_pages() manages. 5952 * 5953 * Once a node is flagged PGDAT_WRITEBACK, kswapd will 5954 * count the number of pages under pages flagged for 5955 * immediate reclaim and stall if any are encountered 5956 * in the nr_immediate check below. 5957 */ 5958 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken) 5959 set_bit(PGDAT_WRITEBACK, &pgdat->flags); 5960 5961 /* Allow kswapd to start writing pages during reclaim.*/ 5962 if (sc->nr.unqueued_dirty == sc->nr.file_taken) 5963 set_bit(PGDAT_DIRTY, &pgdat->flags); 5964 5965 /* 5966 * If kswapd scans pages marked for immediate 5967 * reclaim and under writeback (nr_immediate), it 5968 * implies that pages are cycling through the LRU 5969 * faster than they are written so forcibly stall 5970 * until some pages complete writeback. 5971 */ 5972 if (sc->nr.immediate) 5973 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK); 5974 } 5975 5976 /* 5977 * Tag a node/memcg as congested if all the dirty pages were marked 5978 * for writeback and immediate reclaim (counted in nr.congested). 5979 * 5980 * Legacy memcg will stall in page writeback so avoid forcibly 5981 * stalling in reclaim_throttle(). 5982 */ 5983 if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested) { 5984 if (cgroup_reclaim(sc) && writeback_throttling_sane(sc)) 5985 set_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags); 5986 5987 if (current_is_kswapd()) 5988 set_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags); 5989 } 5990 5991 /* 5992 * Stall direct reclaim for IO completions if the lruvec is 5993 * node is congested. Allow kswapd to continue until it 5994 * starts encountering unqueued dirty pages or cycling through 5995 * the LRU too quickly. 5996 */ 5997 if (!current_is_kswapd() && current_may_throttle() && 5998 !sc->hibernation_mode && 5999 (test_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags) || 6000 test_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags))) 6001 reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED); 6002 6003 if (should_continue_reclaim(pgdat, nr_node_reclaimed, sc)) 6004 goto again; 6005 6006 /* 6007 * Kswapd gives up on balancing particular nodes after too 6008 * many failures to reclaim anything from them and goes to 6009 * sleep. On reclaim progress, reset the failure counter. A 6010 * successful direct reclaim run will revive a dormant kswapd. 6011 */ 6012 if (reclaimable) 6013 pgdat->kswapd_failures = 0; 6014 else if (sc->cache_trim_mode) 6015 sc->cache_trim_mode_failed = 1; 6016 } 6017 6018 /* 6019 * Returns true if compaction should go ahead for a costly-order request, or 6020 * the allocation would already succeed without compaction. Return false if we 6021 * should reclaim first. 6022 */ 6023 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) 6024 { 6025 unsigned long watermark; 6026 6027 if (!gfp_compaction_allowed(sc->gfp_mask)) 6028 return false; 6029 6030 /* Allocation can already succeed, nothing to do */ 6031 if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone), 6032 sc->reclaim_idx, 0)) 6033 return true; 6034 6035 /* Compaction cannot yet proceed. Do reclaim. */ 6036 if (!compaction_suitable(zone, sc->order, sc->reclaim_idx)) 6037 return false; 6038 6039 /* 6040 * Compaction is already possible, but it takes time to run and there 6041 * are potentially other callers using the pages just freed. So proceed 6042 * with reclaim to make a buffer of free pages available to give 6043 * compaction a reasonable chance of completing and allocating the page. 6044 * Note that we won't actually reclaim the whole buffer in one attempt 6045 * as the target watermark in should_continue_reclaim() is lower. But if 6046 * we are already above the high+gap watermark, don't reclaim at all. 6047 */ 6048 watermark = high_wmark_pages(zone) + compact_gap(sc->order); 6049 6050 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx); 6051 } 6052 6053 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc) 6054 { 6055 /* 6056 * If reclaim is making progress greater than 12% efficiency then 6057 * wake all the NOPROGRESS throttled tasks. 6058 */ 6059 if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) { 6060 wait_queue_head_t *wqh; 6061 6062 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS]; 6063 if (waitqueue_active(wqh)) 6064 wake_up(wqh); 6065 6066 return; 6067 } 6068 6069 /* 6070 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will 6071 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages 6072 * under writeback and marked for immediate reclaim at the tail of the 6073 * LRU. 6074 */ 6075 if (current_is_kswapd() || cgroup_reclaim(sc)) 6076 return; 6077 6078 /* Throttle if making no progress at high prioities. */ 6079 if (sc->priority == 1 && !sc->nr_reclaimed) 6080 reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS); 6081 } 6082 6083 /* 6084 * This is the direct reclaim path, for page-allocating processes. We only 6085 * try to reclaim pages from zones which will satisfy the caller's allocation 6086 * request. 6087 * 6088 * If a zone is deemed to be full of pinned pages then just give it a light 6089 * scan then give up on it. 6090 */ 6091 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 6092 { 6093 struct zoneref *z; 6094 struct zone *zone; 6095 unsigned long nr_soft_reclaimed; 6096 unsigned long nr_soft_scanned; 6097 gfp_t orig_mask; 6098 pg_data_t *last_pgdat = NULL; 6099 pg_data_t *first_pgdat = NULL; 6100 6101 /* 6102 * If the number of buffer_heads in the machine exceeds the maximum 6103 * allowed level, force direct reclaim to scan the highmem zone as 6104 * highmem pages could be pinning lowmem pages storing buffer_heads 6105 */ 6106 orig_mask = sc->gfp_mask; 6107 if (buffer_heads_over_limit) { 6108 sc->gfp_mask |= __GFP_HIGHMEM; 6109 sc->reclaim_idx = gfp_zone(sc->gfp_mask); 6110 } 6111 6112 for_each_zone_zonelist_nodemask(zone, z, zonelist, 6113 sc->reclaim_idx, sc->nodemask) { 6114 /* 6115 * Take care memory controller reclaiming has small influence 6116 * to global LRU. 6117 */ 6118 if (!cgroup_reclaim(sc)) { 6119 if (!cpuset_zone_allowed(zone, 6120 GFP_KERNEL | __GFP_HARDWALL)) 6121 continue; 6122 6123 /* 6124 * If we already have plenty of memory free for 6125 * compaction in this zone, don't free any more. 6126 * Even though compaction is invoked for any 6127 * non-zero order, only frequent costly order 6128 * reclamation is disruptive enough to become a 6129 * noticeable problem, like transparent huge 6130 * page allocations. 6131 */ 6132 if (IS_ENABLED(CONFIG_COMPACTION) && 6133 sc->order > PAGE_ALLOC_COSTLY_ORDER && 6134 compaction_ready(zone, sc)) { 6135 sc->compaction_ready = true; 6136 continue; 6137 } 6138 6139 /* 6140 * Shrink each node in the zonelist once. If the 6141 * zonelist is ordered by zone (not the default) then a 6142 * node may be shrunk multiple times but in that case 6143 * the user prefers lower zones being preserved. 6144 */ 6145 if (zone->zone_pgdat == last_pgdat) 6146 continue; 6147 6148 /* 6149 * This steals pages from memory cgroups over softlimit 6150 * and returns the number of reclaimed pages and 6151 * scanned pages. This works for global memory pressure 6152 * and balancing, not for a memcg's limit. 6153 */ 6154 nr_soft_scanned = 0; 6155 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat, 6156 sc->order, sc->gfp_mask, 6157 &nr_soft_scanned); 6158 sc->nr_reclaimed += nr_soft_reclaimed; 6159 sc->nr_scanned += nr_soft_scanned; 6160 /* need some check for avoid more shrink_zone() */ 6161 } 6162 6163 if (!first_pgdat) 6164 first_pgdat = zone->zone_pgdat; 6165 6166 /* See comment about same check for global reclaim above */ 6167 if (zone->zone_pgdat == last_pgdat) 6168 continue; 6169 last_pgdat = zone->zone_pgdat; 6170 shrink_node(zone->zone_pgdat, sc); 6171 } 6172 6173 if (first_pgdat) 6174 consider_reclaim_throttle(first_pgdat, sc); 6175 6176 /* 6177 * Restore to original mask to avoid the impact on the caller if we 6178 * promoted it to __GFP_HIGHMEM. 6179 */ 6180 sc->gfp_mask = orig_mask; 6181 } 6182 6183 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat) 6184 { 6185 struct lruvec *target_lruvec; 6186 unsigned long refaults; 6187 6188 if (lru_gen_enabled()) 6189 return; 6190 6191 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat); 6192 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON); 6193 target_lruvec->refaults[WORKINGSET_ANON] = refaults; 6194 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE); 6195 target_lruvec->refaults[WORKINGSET_FILE] = refaults; 6196 } 6197 6198 /* 6199 * This is the main entry point to direct page reclaim. 6200 * 6201 * If a full scan of the inactive list fails to free enough memory then we 6202 * are "out of memory" and something needs to be killed. 6203 * 6204 * If the caller is !__GFP_FS then the probability of a failure is reasonably 6205 * high - the zone may be full of dirty or under-writeback pages, which this 6206 * caller can't do much about. We kick the writeback threads and take explicit 6207 * naps in the hope that some of these pages can be written. But if the 6208 * allocating task holds filesystem locks which prevent writeout this might not 6209 * work, and the allocation attempt will fail. 6210 * 6211 * returns: 0, if no pages reclaimed 6212 * else, the number of pages reclaimed 6213 */ 6214 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 6215 struct scan_control *sc) 6216 { 6217 int initial_priority = sc->priority; 6218 pg_data_t *last_pgdat; 6219 struct zoneref *z; 6220 struct zone *zone; 6221 retry: 6222 delayacct_freepages_start(); 6223 6224 if (!cgroup_reclaim(sc)) 6225 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1); 6226 6227 do { 6228 if (!sc->proactive) 6229 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 6230 sc->priority); 6231 sc->nr_scanned = 0; 6232 shrink_zones(zonelist, sc); 6233 6234 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 6235 break; 6236 6237 if (sc->compaction_ready) 6238 break; 6239 6240 /* 6241 * If we're getting trouble reclaiming, start doing 6242 * writepage even in laptop mode. 6243 */ 6244 if (sc->priority < DEF_PRIORITY - 2) 6245 sc->may_writepage = 1; 6246 } while (--sc->priority >= 0); 6247 6248 last_pgdat = NULL; 6249 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx, 6250 sc->nodemask) { 6251 if (zone->zone_pgdat == last_pgdat) 6252 continue; 6253 last_pgdat = zone->zone_pgdat; 6254 6255 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat); 6256 6257 if (cgroup_reclaim(sc)) { 6258 struct lruvec *lruvec; 6259 6260 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, 6261 zone->zone_pgdat); 6262 clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags); 6263 } 6264 } 6265 6266 delayacct_freepages_end(); 6267 6268 if (sc->nr_reclaimed) 6269 return sc->nr_reclaimed; 6270 6271 /* Aborted reclaim to try compaction? don't OOM, then */ 6272 if (sc->compaction_ready) 6273 return 1; 6274 6275 /* 6276 * We make inactive:active ratio decisions based on the node's 6277 * composition of memory, but a restrictive reclaim_idx or a 6278 * memory.low cgroup setting can exempt large amounts of 6279 * memory from reclaim. Neither of which are very common, so 6280 * instead of doing costly eligibility calculations of the 6281 * entire cgroup subtree up front, we assume the estimates are 6282 * good, and retry with forcible deactivation if that fails. 6283 */ 6284 if (sc->skipped_deactivate) { 6285 sc->priority = initial_priority; 6286 sc->force_deactivate = 1; 6287 sc->skipped_deactivate = 0; 6288 goto retry; 6289 } 6290 6291 /* Untapped cgroup reserves? Don't OOM, retry. */ 6292 if (sc->memcg_low_skipped) { 6293 sc->priority = initial_priority; 6294 sc->force_deactivate = 0; 6295 sc->memcg_low_reclaim = 1; 6296 sc->memcg_low_skipped = 0; 6297 goto retry; 6298 } 6299 6300 return 0; 6301 } 6302 6303 static bool allow_direct_reclaim(pg_data_t *pgdat) 6304 { 6305 struct zone *zone; 6306 unsigned long pfmemalloc_reserve = 0; 6307 unsigned long free_pages = 0; 6308 int i; 6309 bool wmark_ok; 6310 6311 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 6312 return true; 6313 6314 for (i = 0; i <= ZONE_NORMAL; i++) { 6315 zone = &pgdat->node_zones[i]; 6316 if (!managed_zone(zone)) 6317 continue; 6318 6319 if (!zone_reclaimable_pages(zone)) 6320 continue; 6321 6322 pfmemalloc_reserve += min_wmark_pages(zone); 6323 free_pages += zone_page_state_snapshot(zone, NR_FREE_PAGES); 6324 } 6325 6326 /* If there are no reserves (unexpected config) then do not throttle */ 6327 if (!pfmemalloc_reserve) 6328 return true; 6329 6330 wmark_ok = free_pages > pfmemalloc_reserve / 2; 6331 6332 /* kswapd must be awake if processes are being throttled */ 6333 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 6334 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL) 6335 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL); 6336 6337 wake_up_interruptible(&pgdat->kswapd_wait); 6338 } 6339 6340 return wmark_ok; 6341 } 6342 6343 /* 6344 * Throttle direct reclaimers if backing storage is backed by the network 6345 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 6346 * depleted. kswapd will continue to make progress and wake the processes 6347 * when the low watermark is reached. 6348 * 6349 * Returns true if a fatal signal was delivered during throttling. If this 6350 * happens, the page allocator should not consider triggering the OOM killer. 6351 */ 6352 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 6353 nodemask_t *nodemask) 6354 { 6355 struct zoneref *z; 6356 struct zone *zone; 6357 pg_data_t *pgdat = NULL; 6358 6359 /* 6360 * Kernel threads should not be throttled as they may be indirectly 6361 * responsible for cleaning pages necessary for reclaim to make forward 6362 * progress. kjournald for example may enter direct reclaim while 6363 * committing a transaction where throttling it could forcing other 6364 * processes to block on log_wait_commit(). 6365 */ 6366 if (current->flags & PF_KTHREAD) 6367 goto out; 6368 6369 /* 6370 * If a fatal signal is pending, this process should not throttle. 6371 * It should return quickly so it can exit and free its memory 6372 */ 6373 if (fatal_signal_pending(current)) 6374 goto out; 6375 6376 /* 6377 * Check if the pfmemalloc reserves are ok by finding the first node 6378 * with a usable ZONE_NORMAL or lower zone. The expectation is that 6379 * GFP_KERNEL will be required for allocating network buffers when 6380 * swapping over the network so ZONE_HIGHMEM is unusable. 6381 * 6382 * Throttling is based on the first usable node and throttled processes 6383 * wait on a queue until kswapd makes progress and wakes them. There 6384 * is an affinity then between processes waking up and where reclaim 6385 * progress has been made assuming the process wakes on the same node. 6386 * More importantly, processes running on remote nodes will not compete 6387 * for remote pfmemalloc reserves and processes on different nodes 6388 * should make reasonable progress. 6389 */ 6390 for_each_zone_zonelist_nodemask(zone, z, zonelist, 6391 gfp_zone(gfp_mask), nodemask) { 6392 if (zone_idx(zone) > ZONE_NORMAL) 6393 continue; 6394 6395 /* Throttle based on the first usable node */ 6396 pgdat = zone->zone_pgdat; 6397 if (allow_direct_reclaim(pgdat)) 6398 goto out; 6399 break; 6400 } 6401 6402 /* If no zone was usable by the allocation flags then do not throttle */ 6403 if (!pgdat) 6404 goto out; 6405 6406 /* Account for the throttling */ 6407 count_vm_event(PGSCAN_DIRECT_THROTTLE); 6408 6409 /* 6410 * If the caller cannot enter the filesystem, it's possible that it 6411 * is due to the caller holding an FS lock or performing a journal 6412 * transaction in the case of a filesystem like ext[3|4]. In this case, 6413 * it is not safe to block on pfmemalloc_wait as kswapd could be 6414 * blocked waiting on the same lock. Instead, throttle for up to a 6415 * second before continuing. 6416 */ 6417 if (!(gfp_mask & __GFP_FS)) 6418 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 6419 allow_direct_reclaim(pgdat), HZ); 6420 else 6421 /* Throttle until kswapd wakes the process */ 6422 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 6423 allow_direct_reclaim(pgdat)); 6424 6425 if (fatal_signal_pending(current)) 6426 return true; 6427 6428 out: 6429 return false; 6430 } 6431 6432 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 6433 gfp_t gfp_mask, nodemask_t *nodemask) 6434 { 6435 unsigned long nr_reclaimed; 6436 struct scan_control sc = { 6437 .nr_to_reclaim = SWAP_CLUSTER_MAX, 6438 .gfp_mask = current_gfp_context(gfp_mask), 6439 .reclaim_idx = gfp_zone(gfp_mask), 6440 .order = order, 6441 .nodemask = nodemask, 6442 .priority = DEF_PRIORITY, 6443 .may_writepage = !laptop_mode, 6444 .may_unmap = 1, 6445 .may_swap = 1, 6446 }; 6447 6448 /* 6449 * scan_control uses s8 fields for order, priority, and reclaim_idx. 6450 * Confirm they are large enough for max values. 6451 */ 6452 BUILD_BUG_ON(MAX_PAGE_ORDER >= S8_MAX); 6453 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX); 6454 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX); 6455 6456 /* 6457 * Do not enter reclaim if fatal signal was delivered while throttled. 6458 * 1 is returned so that the page allocator does not OOM kill at this 6459 * point. 6460 */ 6461 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask)) 6462 return 1; 6463 6464 set_task_reclaim_state(current, &sc.reclaim_state); 6465 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask); 6466 6467 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 6468 6469 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 6470 set_task_reclaim_state(current, NULL); 6471 6472 return nr_reclaimed; 6473 } 6474 6475 #ifdef CONFIG_MEMCG 6476 6477 /* Only used by soft limit reclaim. Do not reuse for anything else. */ 6478 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg, 6479 gfp_t gfp_mask, bool noswap, 6480 pg_data_t *pgdat, 6481 unsigned long *nr_scanned) 6482 { 6483 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 6484 struct scan_control sc = { 6485 .nr_to_reclaim = SWAP_CLUSTER_MAX, 6486 .target_mem_cgroup = memcg, 6487 .may_writepage = !laptop_mode, 6488 .may_unmap = 1, 6489 .reclaim_idx = MAX_NR_ZONES - 1, 6490 .may_swap = !noswap, 6491 }; 6492 6493 WARN_ON_ONCE(!current->reclaim_state); 6494 6495 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 6496 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 6497 6498 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 6499 sc.gfp_mask); 6500 6501 /* 6502 * NOTE: Although we can get the priority field, using it 6503 * here is not a good idea, since it limits the pages we can scan. 6504 * if we don't reclaim here, the shrink_node from balance_pgdat 6505 * will pick up pages from other mem cgroup's as well. We hack 6506 * the priority and make it zero. 6507 */ 6508 shrink_lruvec(lruvec, &sc); 6509 6510 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 6511 6512 *nr_scanned = sc.nr_scanned; 6513 6514 return sc.nr_reclaimed; 6515 } 6516 6517 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 6518 unsigned long nr_pages, 6519 gfp_t gfp_mask, 6520 unsigned int reclaim_options) 6521 { 6522 unsigned long nr_reclaimed; 6523 unsigned int noreclaim_flag; 6524 struct scan_control sc = { 6525 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 6526 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) | 6527 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 6528 .reclaim_idx = MAX_NR_ZONES - 1, 6529 .target_mem_cgroup = memcg, 6530 .priority = DEF_PRIORITY, 6531 .may_writepage = !laptop_mode, 6532 .may_unmap = 1, 6533 .may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP), 6534 .proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE), 6535 }; 6536 /* 6537 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put 6538 * equal pressure on all the nodes. This is based on the assumption that 6539 * the reclaim does not bail out early. 6540 */ 6541 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 6542 6543 set_task_reclaim_state(current, &sc.reclaim_state); 6544 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask); 6545 noreclaim_flag = memalloc_noreclaim_save(); 6546 6547 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 6548 6549 memalloc_noreclaim_restore(noreclaim_flag); 6550 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 6551 set_task_reclaim_state(current, NULL); 6552 6553 return nr_reclaimed; 6554 } 6555 #endif 6556 6557 static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc) 6558 { 6559 struct mem_cgroup *memcg; 6560 struct lruvec *lruvec; 6561 6562 if (lru_gen_enabled()) { 6563 lru_gen_age_node(pgdat, sc); 6564 return; 6565 } 6566 6567 if (!can_age_anon_pages(pgdat, sc)) 6568 return; 6569 6570 lruvec = mem_cgroup_lruvec(NULL, pgdat); 6571 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 6572 return; 6573 6574 memcg = mem_cgroup_iter(NULL, NULL, NULL); 6575 do { 6576 lruvec = mem_cgroup_lruvec(memcg, pgdat); 6577 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 6578 sc, LRU_ACTIVE_ANON); 6579 memcg = mem_cgroup_iter(NULL, memcg, NULL); 6580 } while (memcg); 6581 } 6582 6583 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx) 6584 { 6585 int i; 6586 struct zone *zone; 6587 6588 /* 6589 * Check for watermark boosts top-down as the higher zones 6590 * are more likely to be boosted. Both watermarks and boosts 6591 * should not be checked at the same time as reclaim would 6592 * start prematurely when there is no boosting and a lower 6593 * zone is balanced. 6594 */ 6595 for (i = highest_zoneidx; i >= 0; i--) { 6596 zone = pgdat->node_zones + i; 6597 if (!managed_zone(zone)) 6598 continue; 6599 6600 if (zone->watermark_boost) 6601 return true; 6602 } 6603 6604 return false; 6605 } 6606 6607 /* 6608 * Returns true if there is an eligible zone balanced for the request order 6609 * and highest_zoneidx 6610 */ 6611 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx) 6612 { 6613 int i; 6614 unsigned long mark = -1; 6615 struct zone *zone; 6616 6617 /* 6618 * Check watermarks bottom-up as lower zones are more likely to 6619 * meet watermarks. 6620 */ 6621 for (i = 0; i <= highest_zoneidx; i++) { 6622 zone = pgdat->node_zones + i; 6623 6624 if (!managed_zone(zone)) 6625 continue; 6626 6627 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) 6628 mark = wmark_pages(zone, WMARK_PROMO); 6629 else 6630 mark = high_wmark_pages(zone); 6631 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx)) 6632 return true; 6633 } 6634 6635 /* 6636 * If a node has no managed zone within highest_zoneidx, it does not 6637 * need balancing by definition. This can happen if a zone-restricted 6638 * allocation tries to wake a remote kswapd. 6639 */ 6640 if (mark == -1) 6641 return true; 6642 6643 return false; 6644 } 6645 6646 /* Clear pgdat state for congested, dirty or under writeback. */ 6647 static void clear_pgdat_congested(pg_data_t *pgdat) 6648 { 6649 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat); 6650 6651 clear_bit(LRUVEC_NODE_CONGESTED, &lruvec->flags); 6652 clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags); 6653 clear_bit(PGDAT_DIRTY, &pgdat->flags); 6654 clear_bit(PGDAT_WRITEBACK, &pgdat->flags); 6655 } 6656 6657 /* 6658 * Prepare kswapd for sleeping. This verifies that there are no processes 6659 * waiting in throttle_direct_reclaim() and that watermarks have been met. 6660 * 6661 * Returns true if kswapd is ready to sleep 6662 */ 6663 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, 6664 int highest_zoneidx) 6665 { 6666 /* 6667 * The throttled processes are normally woken up in balance_pgdat() as 6668 * soon as allow_direct_reclaim() is true. But there is a potential 6669 * race between when kswapd checks the watermarks and a process gets 6670 * throttled. There is also a potential race if processes get 6671 * throttled, kswapd wakes, a large process exits thereby balancing the 6672 * zones, which causes kswapd to exit balance_pgdat() before reaching 6673 * the wake up checks. If kswapd is going to sleep, no process should 6674 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If 6675 * the wake up is premature, processes will wake kswapd and get 6676 * throttled again. The difference from wake ups in balance_pgdat() is 6677 * that here we are under prepare_to_wait(). 6678 */ 6679 if (waitqueue_active(&pgdat->pfmemalloc_wait)) 6680 wake_up_all(&pgdat->pfmemalloc_wait); 6681 6682 /* Hopeless node, leave it to direct reclaim */ 6683 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 6684 return true; 6685 6686 if (pgdat_balanced(pgdat, order, highest_zoneidx)) { 6687 clear_pgdat_congested(pgdat); 6688 return true; 6689 } 6690 6691 return false; 6692 } 6693 6694 /* 6695 * kswapd shrinks a node of pages that are at or below the highest usable 6696 * zone that is currently unbalanced. 6697 * 6698 * Returns true if kswapd scanned at least the requested number of pages to 6699 * reclaim or if the lack of progress was due to pages under writeback. 6700 * This is used to determine if the scanning priority needs to be raised. 6701 */ 6702 static bool kswapd_shrink_node(pg_data_t *pgdat, 6703 struct scan_control *sc) 6704 { 6705 struct zone *zone; 6706 int z; 6707 6708 /* Reclaim a number of pages proportional to the number of zones */ 6709 sc->nr_to_reclaim = 0; 6710 for (z = 0; z <= sc->reclaim_idx; z++) { 6711 zone = pgdat->node_zones + z; 6712 if (!managed_zone(zone)) 6713 continue; 6714 6715 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX); 6716 } 6717 6718 /* 6719 * Historically care was taken to put equal pressure on all zones but 6720 * now pressure is applied based on node LRU order. 6721 */ 6722 shrink_node(pgdat, sc); 6723 6724 /* 6725 * Fragmentation may mean that the system cannot be rebalanced for 6726 * high-order allocations. If twice the allocation size has been 6727 * reclaimed then recheck watermarks only at order-0 to prevent 6728 * excessive reclaim. Assume that a process requested a high-order 6729 * can direct reclaim/compact. 6730 */ 6731 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order)) 6732 sc->order = 0; 6733 6734 return sc->nr_scanned >= sc->nr_to_reclaim; 6735 } 6736 6737 /* Page allocator PCP high watermark is lowered if reclaim is active. */ 6738 static inline void 6739 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active) 6740 { 6741 int i; 6742 struct zone *zone; 6743 6744 for (i = 0; i <= highest_zoneidx; i++) { 6745 zone = pgdat->node_zones + i; 6746 6747 if (!managed_zone(zone)) 6748 continue; 6749 6750 if (active) 6751 set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags); 6752 else 6753 clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags); 6754 } 6755 } 6756 6757 static inline void 6758 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx) 6759 { 6760 update_reclaim_active(pgdat, highest_zoneidx, true); 6761 } 6762 6763 static inline void 6764 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx) 6765 { 6766 update_reclaim_active(pgdat, highest_zoneidx, false); 6767 } 6768 6769 /* 6770 * For kswapd, balance_pgdat() will reclaim pages across a node from zones 6771 * that are eligible for use by the caller until at least one zone is 6772 * balanced. 6773 * 6774 * Returns the order kswapd finished reclaiming at. 6775 * 6776 * kswapd scans the zones in the highmem->normal->dma direction. It skips 6777 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 6778 * found to have free_pages <= high_wmark_pages(zone), any page in that zone 6779 * or lower is eligible for reclaim until at least one usable zone is 6780 * balanced. 6781 */ 6782 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx) 6783 { 6784 int i; 6785 unsigned long nr_soft_reclaimed; 6786 unsigned long nr_soft_scanned; 6787 unsigned long pflags; 6788 unsigned long nr_boost_reclaim; 6789 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, }; 6790 bool boosted; 6791 struct zone *zone; 6792 struct scan_control sc = { 6793 .gfp_mask = GFP_KERNEL, 6794 .order = order, 6795 .may_unmap = 1, 6796 }; 6797 6798 set_task_reclaim_state(current, &sc.reclaim_state); 6799 psi_memstall_enter(&pflags); 6800 __fs_reclaim_acquire(_THIS_IP_); 6801 6802 count_vm_event(PAGEOUTRUN); 6803 6804 /* 6805 * Account for the reclaim boost. Note that the zone boost is left in 6806 * place so that parallel allocations that are near the watermark will 6807 * stall or direct reclaim until kswapd is finished. 6808 */ 6809 nr_boost_reclaim = 0; 6810 for (i = 0; i <= highest_zoneidx; i++) { 6811 zone = pgdat->node_zones + i; 6812 if (!managed_zone(zone)) 6813 continue; 6814 6815 nr_boost_reclaim += zone->watermark_boost; 6816 zone_boosts[i] = zone->watermark_boost; 6817 } 6818 boosted = nr_boost_reclaim; 6819 6820 restart: 6821 set_reclaim_active(pgdat, highest_zoneidx); 6822 sc.priority = DEF_PRIORITY; 6823 do { 6824 unsigned long nr_reclaimed = sc.nr_reclaimed; 6825 bool raise_priority = true; 6826 bool balanced; 6827 bool ret; 6828 bool was_frozen; 6829 6830 sc.reclaim_idx = highest_zoneidx; 6831 6832 /* 6833 * If the number of buffer_heads exceeds the maximum allowed 6834 * then consider reclaiming from all zones. This has a dual 6835 * purpose -- on 64-bit systems it is expected that 6836 * buffer_heads are stripped during active rotation. On 32-bit 6837 * systems, highmem pages can pin lowmem memory and shrinking 6838 * buffers can relieve lowmem pressure. Reclaim may still not 6839 * go ahead if all eligible zones for the original allocation 6840 * request are balanced to avoid excessive reclaim from kswapd. 6841 */ 6842 if (buffer_heads_over_limit) { 6843 for (i = MAX_NR_ZONES - 1; i >= 0; i--) { 6844 zone = pgdat->node_zones + i; 6845 if (!managed_zone(zone)) 6846 continue; 6847 6848 sc.reclaim_idx = i; 6849 break; 6850 } 6851 } 6852 6853 /* 6854 * If the pgdat is imbalanced then ignore boosting and preserve 6855 * the watermarks for a later time and restart. Note that the 6856 * zone watermarks will be still reset at the end of balancing 6857 * on the grounds that the normal reclaim should be enough to 6858 * re-evaluate if boosting is required when kswapd next wakes. 6859 */ 6860 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx); 6861 if (!balanced && nr_boost_reclaim) { 6862 nr_boost_reclaim = 0; 6863 goto restart; 6864 } 6865 6866 /* 6867 * If boosting is not active then only reclaim if there are no 6868 * eligible zones. Note that sc.reclaim_idx is not used as 6869 * buffer_heads_over_limit may have adjusted it. 6870 */ 6871 if (!nr_boost_reclaim && balanced) 6872 goto out; 6873 6874 /* Limit the priority of boosting to avoid reclaim writeback */ 6875 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2) 6876 raise_priority = false; 6877 6878 /* 6879 * Do not writeback or swap pages for boosted reclaim. The 6880 * intent is to relieve pressure not issue sub-optimal IO 6881 * from reclaim context. If no pages are reclaimed, the 6882 * reclaim will be aborted. 6883 */ 6884 sc.may_writepage = !laptop_mode && !nr_boost_reclaim; 6885 sc.may_swap = !nr_boost_reclaim; 6886 6887 /* 6888 * Do some background aging, to give pages a chance to be 6889 * referenced before reclaiming. All pages are rotated 6890 * regardless of classzone as this is about consistent aging. 6891 */ 6892 kswapd_age_node(pgdat, &sc); 6893 6894 /* 6895 * If we're getting trouble reclaiming, start doing writepage 6896 * even in laptop mode. 6897 */ 6898 if (sc.priority < DEF_PRIORITY - 2) 6899 sc.may_writepage = 1; 6900 6901 /* Call soft limit reclaim before calling shrink_node. */ 6902 sc.nr_scanned = 0; 6903 nr_soft_scanned = 0; 6904 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order, 6905 sc.gfp_mask, &nr_soft_scanned); 6906 sc.nr_reclaimed += nr_soft_reclaimed; 6907 6908 /* 6909 * There should be no need to raise the scanning priority if 6910 * enough pages are already being scanned that that high 6911 * watermark would be met at 100% efficiency. 6912 */ 6913 if (kswapd_shrink_node(pgdat, &sc)) 6914 raise_priority = false; 6915 6916 /* 6917 * If the low watermark is met there is no need for processes 6918 * to be throttled on pfmemalloc_wait as they should not be 6919 * able to safely make forward progress. Wake them 6920 */ 6921 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 6922 allow_direct_reclaim(pgdat)) 6923 wake_up_all(&pgdat->pfmemalloc_wait); 6924 6925 /* Check if kswapd should be suspending */ 6926 __fs_reclaim_release(_THIS_IP_); 6927 ret = kthread_freezable_should_stop(&was_frozen); 6928 __fs_reclaim_acquire(_THIS_IP_); 6929 if (was_frozen || ret) 6930 break; 6931 6932 /* 6933 * Raise priority if scanning rate is too low or there was no 6934 * progress in reclaiming pages 6935 */ 6936 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed; 6937 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed); 6938 6939 /* 6940 * If reclaim made no progress for a boost, stop reclaim as 6941 * IO cannot be queued and it could be an infinite loop in 6942 * extreme circumstances. 6943 */ 6944 if (nr_boost_reclaim && !nr_reclaimed) 6945 break; 6946 6947 if (raise_priority || !nr_reclaimed) 6948 sc.priority--; 6949 } while (sc.priority >= 1); 6950 6951 /* 6952 * Restart only if it went through the priority loop all the way, 6953 * but cache_trim_mode didn't work. 6954 */ 6955 if (!sc.nr_reclaimed && sc.priority < 1 && 6956 !sc.no_cache_trim_mode && sc.cache_trim_mode_failed) { 6957 sc.no_cache_trim_mode = 1; 6958 goto restart; 6959 } 6960 6961 if (!sc.nr_reclaimed) 6962 pgdat->kswapd_failures++; 6963 6964 out: 6965 clear_reclaim_active(pgdat, highest_zoneidx); 6966 6967 /* If reclaim was boosted, account for the reclaim done in this pass */ 6968 if (boosted) { 6969 unsigned long flags; 6970 6971 for (i = 0; i <= highest_zoneidx; i++) { 6972 if (!zone_boosts[i]) 6973 continue; 6974 6975 /* Increments are under the zone lock */ 6976 zone = pgdat->node_zones + i; 6977 spin_lock_irqsave(&zone->lock, flags); 6978 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]); 6979 spin_unlock_irqrestore(&zone->lock, flags); 6980 } 6981 6982 /* 6983 * As there is now likely space, wakeup kcompact to defragment 6984 * pageblocks. 6985 */ 6986 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx); 6987 } 6988 6989 snapshot_refaults(NULL, pgdat); 6990 __fs_reclaim_release(_THIS_IP_); 6991 psi_memstall_leave(&pflags); 6992 set_task_reclaim_state(current, NULL); 6993 6994 /* 6995 * Return the order kswapd stopped reclaiming at as 6996 * prepare_kswapd_sleep() takes it into account. If another caller 6997 * entered the allocator slow path while kswapd was awake, order will 6998 * remain at the higher level. 6999 */ 7000 return sc.order; 7001 } 7002 7003 /* 7004 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to 7005 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is 7006 * not a valid index then either kswapd runs for first time or kswapd couldn't 7007 * sleep after previous reclaim attempt (node is still unbalanced). In that 7008 * case return the zone index of the previous kswapd reclaim cycle. 7009 */ 7010 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat, 7011 enum zone_type prev_highest_zoneidx) 7012 { 7013 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 7014 7015 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx; 7016 } 7017 7018 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order, 7019 unsigned int highest_zoneidx) 7020 { 7021 long remaining = 0; 7022 DEFINE_WAIT(wait); 7023 7024 if (freezing(current) || kthread_should_stop()) 7025 return; 7026 7027 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 7028 7029 /* 7030 * Try to sleep for a short interval. Note that kcompactd will only be 7031 * woken if it is possible to sleep for a short interval. This is 7032 * deliberate on the assumption that if reclaim cannot keep an 7033 * eligible zone balanced that it's also unlikely that compaction will 7034 * succeed. 7035 */ 7036 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 7037 /* 7038 * Compaction records what page blocks it recently failed to 7039 * isolate pages from and skips them in the future scanning. 7040 * When kswapd is going to sleep, it is reasonable to assume 7041 * that pages and compaction may succeed so reset the cache. 7042 */ 7043 reset_isolation_suitable(pgdat); 7044 7045 /* 7046 * We have freed the memory, now we should compact it to make 7047 * allocation of the requested order possible. 7048 */ 7049 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx); 7050 7051 remaining = schedule_timeout(HZ/10); 7052 7053 /* 7054 * If woken prematurely then reset kswapd_highest_zoneidx and 7055 * order. The values will either be from a wakeup request or 7056 * the previous request that slept prematurely. 7057 */ 7058 if (remaining) { 7059 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, 7060 kswapd_highest_zoneidx(pgdat, 7061 highest_zoneidx)); 7062 7063 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order) 7064 WRITE_ONCE(pgdat->kswapd_order, reclaim_order); 7065 } 7066 7067 finish_wait(&pgdat->kswapd_wait, &wait); 7068 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 7069 } 7070 7071 /* 7072 * After a short sleep, check if it was a premature sleep. If not, then 7073 * go fully to sleep until explicitly woken up. 7074 */ 7075 if (!remaining && 7076 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 7077 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 7078 7079 /* 7080 * vmstat counters are not perfectly accurate and the estimated 7081 * value for counters such as NR_FREE_PAGES can deviate from the 7082 * true value by nr_online_cpus * threshold. To avoid the zone 7083 * watermarks being breached while under pressure, we reduce the 7084 * per-cpu vmstat threshold while kswapd is awake and restore 7085 * them before going back to sleep. 7086 */ 7087 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 7088 7089 if (!kthread_should_stop()) 7090 schedule(); 7091 7092 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 7093 } else { 7094 if (remaining) 7095 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 7096 else 7097 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 7098 } 7099 finish_wait(&pgdat->kswapd_wait, &wait); 7100 } 7101 7102 /* 7103 * The background pageout daemon, started as a kernel thread 7104 * from the init process. 7105 * 7106 * This basically trickles out pages so that we have _some_ 7107 * free memory available even if there is no other activity 7108 * that frees anything up. This is needed for things like routing 7109 * etc, where we otherwise might have all activity going on in 7110 * asynchronous contexts that cannot page things out. 7111 * 7112 * If there are applications that are active memory-allocators 7113 * (most normal use), this basically shouldn't matter. 7114 */ 7115 static int kswapd(void *p) 7116 { 7117 unsigned int alloc_order, reclaim_order; 7118 unsigned int highest_zoneidx = MAX_NR_ZONES - 1; 7119 pg_data_t *pgdat = (pg_data_t *)p; 7120 struct task_struct *tsk = current; 7121 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 7122 7123 if (!cpumask_empty(cpumask)) 7124 set_cpus_allowed_ptr(tsk, cpumask); 7125 7126 /* 7127 * Tell the memory management that we're a "memory allocator", 7128 * and that if we need more memory we should get access to it 7129 * regardless (see "__alloc_pages()"). "kswapd" should 7130 * never get caught in the normal page freeing logic. 7131 * 7132 * (Kswapd normally doesn't need memory anyway, but sometimes 7133 * you need a small amount of memory in order to be able to 7134 * page out something else, and this flag essentially protects 7135 * us from recursively trying to free more memory as we're 7136 * trying to free the first piece of memory in the first place). 7137 */ 7138 tsk->flags |= PF_MEMALLOC | PF_KSWAPD; 7139 set_freezable(); 7140 7141 WRITE_ONCE(pgdat->kswapd_order, 0); 7142 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 7143 atomic_set(&pgdat->nr_writeback_throttled, 0); 7144 for ( ; ; ) { 7145 bool was_frozen; 7146 7147 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order); 7148 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 7149 highest_zoneidx); 7150 7151 kswapd_try_sleep: 7152 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order, 7153 highest_zoneidx); 7154 7155 /* Read the new order and highest_zoneidx */ 7156 alloc_order = READ_ONCE(pgdat->kswapd_order); 7157 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 7158 highest_zoneidx); 7159 WRITE_ONCE(pgdat->kswapd_order, 0); 7160 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 7161 7162 if (kthread_freezable_should_stop(&was_frozen)) 7163 break; 7164 7165 /* 7166 * We can speed up thawing tasks if we don't call balance_pgdat 7167 * after returning from the refrigerator 7168 */ 7169 if (was_frozen) 7170 continue; 7171 7172 /* 7173 * Reclaim begins at the requested order but if a high-order 7174 * reclaim fails then kswapd falls back to reclaiming for 7175 * order-0. If that happens, kswapd will consider sleeping 7176 * for the order it finished reclaiming at (reclaim_order) 7177 * but kcompactd is woken to compact for the original 7178 * request (alloc_order). 7179 */ 7180 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx, 7181 alloc_order); 7182 reclaim_order = balance_pgdat(pgdat, alloc_order, 7183 highest_zoneidx); 7184 if (reclaim_order < alloc_order) 7185 goto kswapd_try_sleep; 7186 } 7187 7188 tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD); 7189 7190 return 0; 7191 } 7192 7193 /* 7194 * A zone is low on free memory or too fragmented for high-order memory. If 7195 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's 7196 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim 7197 * has failed or is not needed, still wake up kcompactd if only compaction is 7198 * needed. 7199 */ 7200 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order, 7201 enum zone_type highest_zoneidx) 7202 { 7203 pg_data_t *pgdat; 7204 enum zone_type curr_idx; 7205 7206 if (!managed_zone(zone)) 7207 return; 7208 7209 if (!cpuset_zone_allowed(zone, gfp_flags)) 7210 return; 7211 7212 pgdat = zone->zone_pgdat; 7213 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 7214 7215 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx) 7216 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx); 7217 7218 if (READ_ONCE(pgdat->kswapd_order) < order) 7219 WRITE_ONCE(pgdat->kswapd_order, order); 7220 7221 if (!waitqueue_active(&pgdat->kswapd_wait)) 7222 return; 7223 7224 /* Hopeless node, leave it to direct reclaim if possible */ 7225 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES || 7226 (pgdat_balanced(pgdat, order, highest_zoneidx) && 7227 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) { 7228 /* 7229 * There may be plenty of free memory available, but it's too 7230 * fragmented for high-order allocations. Wake up kcompactd 7231 * and rely on compaction_suitable() to determine if it's 7232 * needed. If it fails, it will defer subsequent attempts to 7233 * ratelimit its work. 7234 */ 7235 if (!(gfp_flags & __GFP_DIRECT_RECLAIM)) 7236 wakeup_kcompactd(pgdat, order, highest_zoneidx); 7237 return; 7238 } 7239 7240 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order, 7241 gfp_flags); 7242 wake_up_interruptible(&pgdat->kswapd_wait); 7243 } 7244 7245 #ifdef CONFIG_HIBERNATION 7246 /* 7247 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 7248 * freed pages. 7249 * 7250 * Rather than trying to age LRUs the aim is to preserve the overall 7251 * LRU order by reclaiming preferentially 7252 * inactive > active > active referenced > active mapped 7253 */ 7254 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 7255 { 7256 struct scan_control sc = { 7257 .nr_to_reclaim = nr_to_reclaim, 7258 .gfp_mask = GFP_HIGHUSER_MOVABLE, 7259 .reclaim_idx = MAX_NR_ZONES - 1, 7260 .priority = DEF_PRIORITY, 7261 .may_writepage = 1, 7262 .may_unmap = 1, 7263 .may_swap = 1, 7264 .hibernation_mode = 1, 7265 }; 7266 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 7267 unsigned long nr_reclaimed; 7268 unsigned int noreclaim_flag; 7269 7270 fs_reclaim_acquire(sc.gfp_mask); 7271 noreclaim_flag = memalloc_noreclaim_save(); 7272 set_task_reclaim_state(current, &sc.reclaim_state); 7273 7274 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 7275 7276 set_task_reclaim_state(current, NULL); 7277 memalloc_noreclaim_restore(noreclaim_flag); 7278 fs_reclaim_release(sc.gfp_mask); 7279 7280 return nr_reclaimed; 7281 } 7282 #endif /* CONFIG_HIBERNATION */ 7283 7284 /* 7285 * This kswapd start function will be called by init and node-hot-add. 7286 */ 7287 void __meminit kswapd_run(int nid) 7288 { 7289 pg_data_t *pgdat = NODE_DATA(nid); 7290 7291 pgdat_kswapd_lock(pgdat); 7292 if (!pgdat->kswapd) { 7293 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 7294 if (IS_ERR(pgdat->kswapd)) { 7295 /* failure at boot is fatal */ 7296 pr_err("Failed to start kswapd on node %d,ret=%ld\n", 7297 nid, PTR_ERR(pgdat->kswapd)); 7298 BUG_ON(system_state < SYSTEM_RUNNING); 7299 pgdat->kswapd = NULL; 7300 } 7301 } 7302 pgdat_kswapd_unlock(pgdat); 7303 } 7304 7305 /* 7306 * Called by memory hotplug when all memory in a node is offlined. Caller must 7307 * be holding mem_hotplug_begin/done(). 7308 */ 7309 void __meminit kswapd_stop(int nid) 7310 { 7311 pg_data_t *pgdat = NODE_DATA(nid); 7312 struct task_struct *kswapd; 7313 7314 pgdat_kswapd_lock(pgdat); 7315 kswapd = pgdat->kswapd; 7316 if (kswapd) { 7317 kthread_stop(kswapd); 7318 pgdat->kswapd = NULL; 7319 } 7320 pgdat_kswapd_unlock(pgdat); 7321 } 7322 7323 static int __init kswapd_init(void) 7324 { 7325 int nid; 7326 7327 swap_setup(); 7328 for_each_node_state(nid, N_MEMORY) 7329 kswapd_run(nid); 7330 return 0; 7331 } 7332 7333 module_init(kswapd_init) 7334 7335 #ifdef CONFIG_NUMA 7336 /* 7337 * Node reclaim mode 7338 * 7339 * If non-zero call node_reclaim when the number of free pages falls below 7340 * the watermarks. 7341 */ 7342 int node_reclaim_mode __read_mostly; 7343 7344 /* 7345 * Priority for NODE_RECLAIM. This determines the fraction of pages 7346 * of a node considered for each zone_reclaim. 4 scans 1/16th of 7347 * a zone. 7348 */ 7349 #define NODE_RECLAIM_PRIORITY 4 7350 7351 /* 7352 * Percentage of pages in a zone that must be unmapped for node_reclaim to 7353 * occur. 7354 */ 7355 int sysctl_min_unmapped_ratio = 1; 7356 7357 /* 7358 * If the number of slab pages in a zone grows beyond this percentage then 7359 * slab reclaim needs to occur. 7360 */ 7361 int sysctl_min_slab_ratio = 5; 7362 7363 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat) 7364 { 7365 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED); 7366 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) + 7367 node_page_state(pgdat, NR_ACTIVE_FILE); 7368 7369 /* 7370 * It's possible for there to be more file mapped pages than 7371 * accounted for by the pages on the file LRU lists because 7372 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 7373 */ 7374 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 7375 } 7376 7377 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 7378 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat) 7379 { 7380 unsigned long nr_pagecache_reclaimable; 7381 unsigned long delta = 0; 7382 7383 /* 7384 * If RECLAIM_UNMAP is set, then all file pages are considered 7385 * potentially reclaimable. Otherwise, we have to worry about 7386 * pages like swapcache and node_unmapped_file_pages() provides 7387 * a better estimate 7388 */ 7389 if (node_reclaim_mode & RECLAIM_UNMAP) 7390 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES); 7391 else 7392 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat); 7393 7394 /* If we can't clean pages, remove dirty pages from consideration */ 7395 if (!(node_reclaim_mode & RECLAIM_WRITE)) 7396 delta += node_page_state(pgdat, NR_FILE_DIRTY); 7397 7398 /* Watch for any possible underflows due to delta */ 7399 if (unlikely(delta > nr_pagecache_reclaimable)) 7400 delta = nr_pagecache_reclaimable; 7401 7402 return nr_pagecache_reclaimable - delta; 7403 } 7404 7405 /* 7406 * Try to free up some pages from this node through reclaim. 7407 */ 7408 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 7409 { 7410 /* Minimum pages needed in order to stay on node */ 7411 const unsigned long nr_pages = 1 << order; 7412 struct task_struct *p = current; 7413 unsigned int noreclaim_flag; 7414 struct scan_control sc = { 7415 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 7416 .gfp_mask = current_gfp_context(gfp_mask), 7417 .order = order, 7418 .priority = NODE_RECLAIM_PRIORITY, 7419 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE), 7420 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP), 7421 .may_swap = 1, 7422 .reclaim_idx = gfp_zone(gfp_mask), 7423 }; 7424 unsigned long pflags; 7425 7426 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order, 7427 sc.gfp_mask); 7428 7429 cond_resched(); 7430 psi_memstall_enter(&pflags); 7431 delayacct_freepages_start(); 7432 fs_reclaim_acquire(sc.gfp_mask); 7433 /* 7434 * We need to be able to allocate from the reserves for RECLAIM_UNMAP 7435 */ 7436 noreclaim_flag = memalloc_noreclaim_save(); 7437 set_task_reclaim_state(p, &sc.reclaim_state); 7438 7439 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages || 7440 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) { 7441 /* 7442 * Free memory by calling shrink node with increasing 7443 * priorities until we have enough memory freed. 7444 */ 7445 do { 7446 shrink_node(pgdat, &sc); 7447 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 7448 } 7449 7450 set_task_reclaim_state(p, NULL); 7451 memalloc_noreclaim_restore(noreclaim_flag); 7452 fs_reclaim_release(sc.gfp_mask); 7453 psi_memstall_leave(&pflags); 7454 delayacct_freepages_end(); 7455 7456 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed); 7457 7458 return sc.nr_reclaimed >= nr_pages; 7459 } 7460 7461 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 7462 { 7463 int ret; 7464 7465 /* 7466 * Node reclaim reclaims unmapped file backed pages and 7467 * slab pages if we are over the defined limits. 7468 * 7469 * A small portion of unmapped file backed pages is needed for 7470 * file I/O otherwise pages read by file I/O will be immediately 7471 * thrown out if the node is overallocated. So we do not reclaim 7472 * if less than a specified percentage of the node is used by 7473 * unmapped file backed pages. 7474 */ 7475 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages && 7476 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <= 7477 pgdat->min_slab_pages) 7478 return NODE_RECLAIM_FULL; 7479 7480 /* 7481 * Do not scan if the allocation should not be delayed. 7482 */ 7483 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) 7484 return NODE_RECLAIM_NOSCAN; 7485 7486 /* 7487 * Only run node reclaim on the local node or on nodes that do not 7488 * have associated processors. This will favor the local processor 7489 * over remote processors and spread off node memory allocations 7490 * as wide as possible. 7491 */ 7492 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id()) 7493 return NODE_RECLAIM_NOSCAN; 7494 7495 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags)) 7496 return NODE_RECLAIM_NOSCAN; 7497 7498 ret = __node_reclaim(pgdat, gfp_mask, order); 7499 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags); 7500 7501 if (!ret) 7502 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 7503 7504 return ret; 7505 } 7506 #endif 7507 7508 /** 7509 * check_move_unevictable_folios - Move evictable folios to appropriate zone 7510 * lru list 7511 * @fbatch: Batch of lru folios to check. 7512 * 7513 * Checks folios for evictability, if an evictable folio is in the unevictable 7514 * lru list, moves it to the appropriate evictable lru list. This function 7515 * should be only used for lru folios. 7516 */ 7517 void check_move_unevictable_folios(struct folio_batch *fbatch) 7518 { 7519 struct lruvec *lruvec = NULL; 7520 int pgscanned = 0; 7521 int pgrescued = 0; 7522 int i; 7523 7524 for (i = 0; i < fbatch->nr; i++) { 7525 struct folio *folio = fbatch->folios[i]; 7526 int nr_pages = folio_nr_pages(folio); 7527 7528 pgscanned += nr_pages; 7529 7530 /* block memcg migration while the folio moves between lrus */ 7531 if (!folio_test_clear_lru(folio)) 7532 continue; 7533 7534 lruvec = folio_lruvec_relock_irq(folio, lruvec); 7535 if (folio_evictable(folio) && folio_test_unevictable(folio)) { 7536 lruvec_del_folio(lruvec, folio); 7537 folio_clear_unevictable(folio); 7538 lruvec_add_folio(lruvec, folio); 7539 pgrescued += nr_pages; 7540 } 7541 folio_set_lru(folio); 7542 } 7543 7544 if (lruvec) { 7545 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 7546 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 7547 unlock_page_lruvec_irq(lruvec); 7548 } else if (pgscanned) { 7549 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 7550 } 7551 } 7552 EXPORT_SYMBOL_GPL(check_move_unevictable_folios); 7553