1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 4 * 5 * Swap reorganised 29.12.95, Stephen Tweedie. 6 * kswapd added: 7.1.96 sct 7 * Removed kswapd_ctl limits, and swap out as many pages as needed 8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 9 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 10 * Multiqueue VM started 5.8.00, Rik van Riel. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 15 #include <linux/mm.h> 16 #include <linux/sched/mm.h> 17 #include <linux/module.h> 18 #include <linux/gfp.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/swap.h> 21 #include <linux/pagemap.h> 22 #include <linux/init.h> 23 #include <linux/highmem.h> 24 #include <linux/vmpressure.h> 25 #include <linux/vmstat.h> 26 #include <linux/file.h> 27 #include <linux/writeback.h> 28 #include <linux/blkdev.h> 29 #include <linux/buffer_head.h> /* for try_to_release_page(), 30 buffer_heads_over_limit */ 31 #include <linux/mm_inline.h> 32 #include <linux/backing-dev.h> 33 #include <linux/rmap.h> 34 #include <linux/topology.h> 35 #include <linux/cpu.h> 36 #include <linux/cpuset.h> 37 #include <linux/compaction.h> 38 #include <linux/notifier.h> 39 #include <linux/rwsem.h> 40 #include <linux/delay.h> 41 #include <linux/kthread.h> 42 #include <linux/freezer.h> 43 #include <linux/memcontrol.h> 44 #include <linux/delayacct.h> 45 #include <linux/sysctl.h> 46 #include <linux/oom.h> 47 #include <linux/pagevec.h> 48 #include <linux/prefetch.h> 49 #include <linux/printk.h> 50 #include <linux/dax.h> 51 #include <linux/psi.h> 52 53 #include <asm/tlbflush.h> 54 #include <asm/div64.h> 55 56 #include <linux/swapops.h> 57 #include <linux/balloon_compaction.h> 58 59 #include "internal.h" 60 61 #define CREATE_TRACE_POINTS 62 #include <trace/events/vmscan.h> 63 64 struct scan_control { 65 /* How many pages shrink_list() should reclaim */ 66 unsigned long nr_to_reclaim; 67 68 /* 69 * Nodemask of nodes allowed by the caller. If NULL, all nodes 70 * are scanned. 71 */ 72 nodemask_t *nodemask; 73 74 /* 75 * The memory cgroup that hit its limit and as a result is the 76 * primary target of this reclaim invocation. 77 */ 78 struct mem_cgroup *target_mem_cgroup; 79 80 /* 81 * Scan pressure balancing between anon and file LRUs 82 */ 83 unsigned long anon_cost; 84 unsigned long file_cost; 85 86 /* Can active pages be deactivated as part of reclaim? */ 87 #define DEACTIVATE_ANON 1 88 #define DEACTIVATE_FILE 2 89 unsigned int may_deactivate:2; 90 unsigned int force_deactivate:1; 91 unsigned int skipped_deactivate:1; 92 93 /* Writepage batching in laptop mode; RECLAIM_WRITE */ 94 unsigned int may_writepage:1; 95 96 /* Can mapped pages be reclaimed? */ 97 unsigned int may_unmap:1; 98 99 /* Can pages be swapped as part of reclaim? */ 100 unsigned int may_swap:1; 101 102 /* 103 * Cgroups are not reclaimed below their configured memory.low, 104 * unless we threaten to OOM. If any cgroups are skipped due to 105 * memory.low and nothing was reclaimed, go back for memory.low. 106 */ 107 unsigned int memcg_low_reclaim:1; 108 unsigned int memcg_low_skipped:1; 109 110 unsigned int hibernation_mode:1; 111 112 /* One of the zones is ready for compaction */ 113 unsigned int compaction_ready:1; 114 115 /* There is easily reclaimable cold cache in the current node */ 116 unsigned int cache_trim_mode:1; 117 118 /* The file pages on the current node are dangerously low */ 119 unsigned int file_is_tiny:1; 120 121 /* Allocation order */ 122 s8 order; 123 124 /* Scan (total_size >> priority) pages at once */ 125 s8 priority; 126 127 /* The highest zone to isolate pages for reclaim from */ 128 s8 reclaim_idx; 129 130 /* This context's GFP mask */ 131 gfp_t gfp_mask; 132 133 /* Incremented by the number of inactive pages that were scanned */ 134 unsigned long nr_scanned; 135 136 /* Number of pages freed so far during a call to shrink_zones() */ 137 unsigned long nr_reclaimed; 138 139 struct { 140 unsigned int dirty; 141 unsigned int unqueued_dirty; 142 unsigned int congested; 143 unsigned int writeback; 144 unsigned int immediate; 145 unsigned int file_taken; 146 unsigned int taken; 147 } nr; 148 149 /* for recording the reclaimed slab by now */ 150 struct reclaim_state reclaim_state; 151 }; 152 153 #ifdef ARCH_HAS_PREFETCHW 154 #define prefetchw_prev_lru_page(_page, _base, _field) \ 155 do { \ 156 if ((_page)->lru.prev != _base) { \ 157 struct page *prev; \ 158 \ 159 prev = lru_to_page(&(_page->lru)); \ 160 prefetchw(&prev->_field); \ 161 } \ 162 } while (0) 163 #else 164 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 165 #endif 166 167 /* 168 * From 0 .. 200. Higher means more swappy. 169 */ 170 int vm_swappiness = 60; 171 172 static void set_task_reclaim_state(struct task_struct *task, 173 struct reclaim_state *rs) 174 { 175 /* Check for an overwrite */ 176 WARN_ON_ONCE(rs && task->reclaim_state); 177 178 /* Check for the nulling of an already-nulled member */ 179 WARN_ON_ONCE(!rs && !task->reclaim_state); 180 181 task->reclaim_state = rs; 182 } 183 184 static LIST_HEAD(shrinker_list); 185 static DECLARE_RWSEM(shrinker_rwsem); 186 187 #ifdef CONFIG_MEMCG 188 static int shrinker_nr_max; 189 190 /* The shrinker_info is expanded in a batch of BITS_PER_LONG */ 191 static inline int shrinker_map_size(int nr_items) 192 { 193 return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long)); 194 } 195 196 static inline int shrinker_defer_size(int nr_items) 197 { 198 return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t)); 199 } 200 201 static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg, 202 int nid) 203 { 204 return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info, 205 lockdep_is_held(&shrinker_rwsem)); 206 } 207 208 static int expand_one_shrinker_info(struct mem_cgroup *memcg, 209 int map_size, int defer_size, 210 int old_map_size, int old_defer_size) 211 { 212 struct shrinker_info *new, *old; 213 struct mem_cgroup_per_node *pn; 214 int nid; 215 int size = map_size + defer_size; 216 217 for_each_node(nid) { 218 pn = memcg->nodeinfo[nid]; 219 old = shrinker_info_protected(memcg, nid); 220 /* Not yet online memcg */ 221 if (!old) 222 return 0; 223 224 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid); 225 if (!new) 226 return -ENOMEM; 227 228 new->nr_deferred = (atomic_long_t *)(new + 1); 229 new->map = (void *)new->nr_deferred + defer_size; 230 231 /* map: set all old bits, clear all new bits */ 232 memset(new->map, (int)0xff, old_map_size); 233 memset((void *)new->map + old_map_size, 0, map_size - old_map_size); 234 /* nr_deferred: copy old values, clear all new values */ 235 memcpy(new->nr_deferred, old->nr_deferred, old_defer_size); 236 memset((void *)new->nr_deferred + old_defer_size, 0, 237 defer_size - old_defer_size); 238 239 rcu_assign_pointer(pn->shrinker_info, new); 240 kvfree_rcu(old, rcu); 241 } 242 243 return 0; 244 } 245 246 void free_shrinker_info(struct mem_cgroup *memcg) 247 { 248 struct mem_cgroup_per_node *pn; 249 struct shrinker_info *info; 250 int nid; 251 252 for_each_node(nid) { 253 pn = memcg->nodeinfo[nid]; 254 info = rcu_dereference_protected(pn->shrinker_info, true); 255 kvfree(info); 256 rcu_assign_pointer(pn->shrinker_info, NULL); 257 } 258 } 259 260 int alloc_shrinker_info(struct mem_cgroup *memcg) 261 { 262 struct shrinker_info *info; 263 int nid, size, ret = 0; 264 int map_size, defer_size = 0; 265 266 down_write(&shrinker_rwsem); 267 map_size = shrinker_map_size(shrinker_nr_max); 268 defer_size = shrinker_defer_size(shrinker_nr_max); 269 size = map_size + defer_size; 270 for_each_node(nid) { 271 info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid); 272 if (!info) { 273 free_shrinker_info(memcg); 274 ret = -ENOMEM; 275 break; 276 } 277 info->nr_deferred = (atomic_long_t *)(info + 1); 278 info->map = (void *)info->nr_deferred + defer_size; 279 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info); 280 } 281 up_write(&shrinker_rwsem); 282 283 return ret; 284 } 285 286 static inline bool need_expand(int nr_max) 287 { 288 return round_up(nr_max, BITS_PER_LONG) > 289 round_up(shrinker_nr_max, BITS_PER_LONG); 290 } 291 292 static int expand_shrinker_info(int new_id) 293 { 294 int ret = 0; 295 int new_nr_max = new_id + 1; 296 int map_size, defer_size = 0; 297 int old_map_size, old_defer_size = 0; 298 struct mem_cgroup *memcg; 299 300 if (!need_expand(new_nr_max)) 301 goto out; 302 303 if (!root_mem_cgroup) 304 goto out; 305 306 lockdep_assert_held(&shrinker_rwsem); 307 308 map_size = shrinker_map_size(new_nr_max); 309 defer_size = shrinker_defer_size(new_nr_max); 310 old_map_size = shrinker_map_size(shrinker_nr_max); 311 old_defer_size = shrinker_defer_size(shrinker_nr_max); 312 313 memcg = mem_cgroup_iter(NULL, NULL, NULL); 314 do { 315 ret = expand_one_shrinker_info(memcg, map_size, defer_size, 316 old_map_size, old_defer_size); 317 if (ret) { 318 mem_cgroup_iter_break(NULL, memcg); 319 goto out; 320 } 321 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 322 out: 323 if (!ret) 324 shrinker_nr_max = new_nr_max; 325 326 return ret; 327 } 328 329 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id) 330 { 331 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) { 332 struct shrinker_info *info; 333 334 rcu_read_lock(); 335 info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info); 336 /* Pairs with smp mb in shrink_slab() */ 337 smp_mb__before_atomic(); 338 set_bit(shrinker_id, info->map); 339 rcu_read_unlock(); 340 } 341 } 342 343 static DEFINE_IDR(shrinker_idr); 344 345 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 346 { 347 int id, ret = -ENOMEM; 348 349 if (mem_cgroup_disabled()) 350 return -ENOSYS; 351 352 down_write(&shrinker_rwsem); 353 /* This may call shrinker, so it must use down_read_trylock() */ 354 id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL); 355 if (id < 0) 356 goto unlock; 357 358 if (id >= shrinker_nr_max) { 359 if (expand_shrinker_info(id)) { 360 idr_remove(&shrinker_idr, id); 361 goto unlock; 362 } 363 } 364 shrinker->id = id; 365 ret = 0; 366 unlock: 367 up_write(&shrinker_rwsem); 368 return ret; 369 } 370 371 static void unregister_memcg_shrinker(struct shrinker *shrinker) 372 { 373 int id = shrinker->id; 374 375 BUG_ON(id < 0); 376 377 lockdep_assert_held(&shrinker_rwsem); 378 379 idr_remove(&shrinker_idr, id); 380 } 381 382 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker, 383 struct mem_cgroup *memcg) 384 { 385 struct shrinker_info *info; 386 387 info = shrinker_info_protected(memcg, nid); 388 return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0); 389 } 390 391 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker, 392 struct mem_cgroup *memcg) 393 { 394 struct shrinker_info *info; 395 396 info = shrinker_info_protected(memcg, nid); 397 return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]); 398 } 399 400 void reparent_shrinker_deferred(struct mem_cgroup *memcg) 401 { 402 int i, nid; 403 long nr; 404 struct mem_cgroup *parent; 405 struct shrinker_info *child_info, *parent_info; 406 407 parent = parent_mem_cgroup(memcg); 408 if (!parent) 409 parent = root_mem_cgroup; 410 411 /* Prevent from concurrent shrinker_info expand */ 412 down_read(&shrinker_rwsem); 413 for_each_node(nid) { 414 child_info = shrinker_info_protected(memcg, nid); 415 parent_info = shrinker_info_protected(parent, nid); 416 for (i = 0; i < shrinker_nr_max; i++) { 417 nr = atomic_long_read(&child_info->nr_deferred[i]); 418 atomic_long_add(nr, &parent_info->nr_deferred[i]); 419 } 420 } 421 up_read(&shrinker_rwsem); 422 } 423 424 static bool cgroup_reclaim(struct scan_control *sc) 425 { 426 return sc->target_mem_cgroup; 427 } 428 429 /** 430 * writeback_throttling_sane - is the usual dirty throttling mechanism available? 431 * @sc: scan_control in question 432 * 433 * The normal page dirty throttling mechanism in balance_dirty_pages() is 434 * completely broken with the legacy memcg and direct stalling in 435 * shrink_page_list() is used for throttling instead, which lacks all the 436 * niceties such as fairness, adaptive pausing, bandwidth proportional 437 * allocation and configurability. 438 * 439 * This function tests whether the vmscan currently in progress can assume 440 * that the normal dirty throttling mechanism is operational. 441 */ 442 static bool writeback_throttling_sane(struct scan_control *sc) 443 { 444 if (!cgroup_reclaim(sc)) 445 return true; 446 #ifdef CONFIG_CGROUP_WRITEBACK 447 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 448 return true; 449 #endif 450 return false; 451 } 452 #else 453 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 454 { 455 return -ENOSYS; 456 } 457 458 static void unregister_memcg_shrinker(struct shrinker *shrinker) 459 { 460 } 461 462 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker, 463 struct mem_cgroup *memcg) 464 { 465 return 0; 466 } 467 468 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker, 469 struct mem_cgroup *memcg) 470 { 471 return 0; 472 } 473 474 static bool cgroup_reclaim(struct scan_control *sc) 475 { 476 return false; 477 } 478 479 static bool writeback_throttling_sane(struct scan_control *sc) 480 { 481 return true; 482 } 483 #endif 484 485 static long xchg_nr_deferred(struct shrinker *shrinker, 486 struct shrink_control *sc) 487 { 488 int nid = sc->nid; 489 490 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 491 nid = 0; 492 493 if (sc->memcg && 494 (shrinker->flags & SHRINKER_MEMCG_AWARE)) 495 return xchg_nr_deferred_memcg(nid, shrinker, 496 sc->memcg); 497 498 return atomic_long_xchg(&shrinker->nr_deferred[nid], 0); 499 } 500 501 502 static long add_nr_deferred(long nr, struct shrinker *shrinker, 503 struct shrink_control *sc) 504 { 505 int nid = sc->nid; 506 507 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 508 nid = 0; 509 510 if (sc->memcg && 511 (shrinker->flags & SHRINKER_MEMCG_AWARE)) 512 return add_nr_deferred_memcg(nr, nid, shrinker, 513 sc->memcg); 514 515 return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]); 516 } 517 518 /* 519 * This misses isolated pages which are not accounted for to save counters. 520 * As the data only determines if reclaim or compaction continues, it is 521 * not expected that isolated pages will be a dominating factor. 522 */ 523 unsigned long zone_reclaimable_pages(struct zone *zone) 524 { 525 unsigned long nr; 526 527 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) + 528 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE); 529 if (get_nr_swap_pages() > 0) 530 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) + 531 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON); 532 533 return nr; 534 } 535 536 /** 537 * lruvec_lru_size - Returns the number of pages on the given LRU list. 538 * @lruvec: lru vector 539 * @lru: lru to use 540 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list) 541 */ 542 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, 543 int zone_idx) 544 { 545 unsigned long size = 0; 546 int zid; 547 548 for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) { 549 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid]; 550 551 if (!managed_zone(zone)) 552 continue; 553 554 if (!mem_cgroup_disabled()) 555 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid); 556 else 557 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru); 558 } 559 return size; 560 } 561 562 /* 563 * Add a shrinker callback to be called from the vm. 564 */ 565 int prealloc_shrinker(struct shrinker *shrinker) 566 { 567 unsigned int size; 568 int err; 569 570 if (shrinker->flags & SHRINKER_MEMCG_AWARE) { 571 err = prealloc_memcg_shrinker(shrinker); 572 if (err != -ENOSYS) 573 return err; 574 575 shrinker->flags &= ~SHRINKER_MEMCG_AWARE; 576 } 577 578 size = sizeof(*shrinker->nr_deferred); 579 if (shrinker->flags & SHRINKER_NUMA_AWARE) 580 size *= nr_node_ids; 581 582 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); 583 if (!shrinker->nr_deferred) 584 return -ENOMEM; 585 586 return 0; 587 } 588 589 void free_prealloced_shrinker(struct shrinker *shrinker) 590 { 591 if (shrinker->flags & SHRINKER_MEMCG_AWARE) { 592 down_write(&shrinker_rwsem); 593 unregister_memcg_shrinker(shrinker); 594 up_write(&shrinker_rwsem); 595 return; 596 } 597 598 kfree(shrinker->nr_deferred); 599 shrinker->nr_deferred = NULL; 600 } 601 602 void register_shrinker_prepared(struct shrinker *shrinker) 603 { 604 down_write(&shrinker_rwsem); 605 list_add_tail(&shrinker->list, &shrinker_list); 606 shrinker->flags |= SHRINKER_REGISTERED; 607 up_write(&shrinker_rwsem); 608 } 609 610 int register_shrinker(struct shrinker *shrinker) 611 { 612 int err = prealloc_shrinker(shrinker); 613 614 if (err) 615 return err; 616 register_shrinker_prepared(shrinker); 617 return 0; 618 } 619 EXPORT_SYMBOL(register_shrinker); 620 621 /* 622 * Remove one 623 */ 624 void unregister_shrinker(struct shrinker *shrinker) 625 { 626 if (!(shrinker->flags & SHRINKER_REGISTERED)) 627 return; 628 629 down_write(&shrinker_rwsem); 630 list_del(&shrinker->list); 631 shrinker->flags &= ~SHRINKER_REGISTERED; 632 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 633 unregister_memcg_shrinker(shrinker); 634 up_write(&shrinker_rwsem); 635 636 kfree(shrinker->nr_deferred); 637 shrinker->nr_deferred = NULL; 638 } 639 EXPORT_SYMBOL(unregister_shrinker); 640 641 #define SHRINK_BATCH 128 642 643 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl, 644 struct shrinker *shrinker, int priority) 645 { 646 unsigned long freed = 0; 647 unsigned long long delta; 648 long total_scan; 649 long freeable; 650 long nr; 651 long new_nr; 652 long batch_size = shrinker->batch ? shrinker->batch 653 : SHRINK_BATCH; 654 long scanned = 0, next_deferred; 655 656 freeable = shrinker->count_objects(shrinker, shrinkctl); 657 if (freeable == 0 || freeable == SHRINK_EMPTY) 658 return freeable; 659 660 /* 661 * copy the current shrinker scan count into a local variable 662 * and zero it so that other concurrent shrinker invocations 663 * don't also do this scanning work. 664 */ 665 nr = xchg_nr_deferred(shrinker, shrinkctl); 666 667 if (shrinker->seeks) { 668 delta = freeable >> priority; 669 delta *= 4; 670 do_div(delta, shrinker->seeks); 671 } else { 672 /* 673 * These objects don't require any IO to create. Trim 674 * them aggressively under memory pressure to keep 675 * them from causing refetches in the IO caches. 676 */ 677 delta = freeable / 2; 678 } 679 680 total_scan = nr >> priority; 681 total_scan += delta; 682 total_scan = min(total_scan, (2 * freeable)); 683 684 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, 685 freeable, delta, total_scan, priority); 686 687 /* 688 * Normally, we should not scan less than batch_size objects in one 689 * pass to avoid too frequent shrinker calls, but if the slab has less 690 * than batch_size objects in total and we are really tight on memory, 691 * we will try to reclaim all available objects, otherwise we can end 692 * up failing allocations although there are plenty of reclaimable 693 * objects spread over several slabs with usage less than the 694 * batch_size. 695 * 696 * We detect the "tight on memory" situations by looking at the total 697 * number of objects we want to scan (total_scan). If it is greater 698 * than the total number of objects on slab (freeable), we must be 699 * scanning at high prio and therefore should try to reclaim as much as 700 * possible. 701 */ 702 while (total_scan >= batch_size || 703 total_scan >= freeable) { 704 unsigned long ret; 705 unsigned long nr_to_scan = min(batch_size, total_scan); 706 707 shrinkctl->nr_to_scan = nr_to_scan; 708 shrinkctl->nr_scanned = nr_to_scan; 709 ret = shrinker->scan_objects(shrinker, shrinkctl); 710 if (ret == SHRINK_STOP) 711 break; 712 freed += ret; 713 714 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned); 715 total_scan -= shrinkctl->nr_scanned; 716 scanned += shrinkctl->nr_scanned; 717 718 cond_resched(); 719 } 720 721 /* 722 * The deferred work is increased by any new work (delta) that wasn't 723 * done, decreased by old deferred work that was done now. 724 * 725 * And it is capped to two times of the freeable items. 726 */ 727 next_deferred = max_t(long, (nr + delta - scanned), 0); 728 next_deferred = min(next_deferred, (2 * freeable)); 729 730 /* 731 * move the unused scan count back into the shrinker in a 732 * manner that handles concurrent updates. 733 */ 734 new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl); 735 736 trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan); 737 return freed; 738 } 739 740 #ifdef CONFIG_MEMCG 741 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 742 struct mem_cgroup *memcg, int priority) 743 { 744 struct shrinker_info *info; 745 unsigned long ret, freed = 0; 746 int i; 747 748 if (!mem_cgroup_online(memcg)) 749 return 0; 750 751 if (!down_read_trylock(&shrinker_rwsem)) 752 return 0; 753 754 info = shrinker_info_protected(memcg, nid); 755 if (unlikely(!info)) 756 goto unlock; 757 758 for_each_set_bit(i, info->map, shrinker_nr_max) { 759 struct shrink_control sc = { 760 .gfp_mask = gfp_mask, 761 .nid = nid, 762 .memcg = memcg, 763 }; 764 struct shrinker *shrinker; 765 766 shrinker = idr_find(&shrinker_idr, i); 767 if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) { 768 if (!shrinker) 769 clear_bit(i, info->map); 770 continue; 771 } 772 773 /* Call non-slab shrinkers even though kmem is disabled */ 774 if (!memcg_kmem_enabled() && 775 !(shrinker->flags & SHRINKER_NONSLAB)) 776 continue; 777 778 ret = do_shrink_slab(&sc, shrinker, priority); 779 if (ret == SHRINK_EMPTY) { 780 clear_bit(i, info->map); 781 /* 782 * After the shrinker reported that it had no objects to 783 * free, but before we cleared the corresponding bit in 784 * the memcg shrinker map, a new object might have been 785 * added. To make sure, we have the bit set in this 786 * case, we invoke the shrinker one more time and reset 787 * the bit if it reports that it is not empty anymore. 788 * The memory barrier here pairs with the barrier in 789 * set_shrinker_bit(): 790 * 791 * list_lru_add() shrink_slab_memcg() 792 * list_add_tail() clear_bit() 793 * <MB> <MB> 794 * set_bit() do_shrink_slab() 795 */ 796 smp_mb__after_atomic(); 797 ret = do_shrink_slab(&sc, shrinker, priority); 798 if (ret == SHRINK_EMPTY) 799 ret = 0; 800 else 801 set_shrinker_bit(memcg, nid, i); 802 } 803 freed += ret; 804 805 if (rwsem_is_contended(&shrinker_rwsem)) { 806 freed = freed ? : 1; 807 break; 808 } 809 } 810 unlock: 811 up_read(&shrinker_rwsem); 812 return freed; 813 } 814 #else /* CONFIG_MEMCG */ 815 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 816 struct mem_cgroup *memcg, int priority) 817 { 818 return 0; 819 } 820 #endif /* CONFIG_MEMCG */ 821 822 /** 823 * shrink_slab - shrink slab caches 824 * @gfp_mask: allocation context 825 * @nid: node whose slab caches to target 826 * @memcg: memory cgroup whose slab caches to target 827 * @priority: the reclaim priority 828 * 829 * Call the shrink functions to age shrinkable caches. 830 * 831 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set, 832 * unaware shrinkers will receive a node id of 0 instead. 833 * 834 * @memcg specifies the memory cgroup to target. Unaware shrinkers 835 * are called only if it is the root cgroup. 836 * 837 * @priority is sc->priority, we take the number of objects and >> by priority 838 * in order to get the scan target. 839 * 840 * Returns the number of reclaimed slab objects. 841 */ 842 static unsigned long shrink_slab(gfp_t gfp_mask, int nid, 843 struct mem_cgroup *memcg, 844 int priority) 845 { 846 unsigned long ret, freed = 0; 847 struct shrinker *shrinker; 848 849 /* 850 * The root memcg might be allocated even though memcg is disabled 851 * via "cgroup_disable=memory" boot parameter. This could make 852 * mem_cgroup_is_root() return false, then just run memcg slab 853 * shrink, but skip global shrink. This may result in premature 854 * oom. 855 */ 856 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg)) 857 return shrink_slab_memcg(gfp_mask, nid, memcg, priority); 858 859 if (!down_read_trylock(&shrinker_rwsem)) 860 goto out; 861 862 list_for_each_entry(shrinker, &shrinker_list, list) { 863 struct shrink_control sc = { 864 .gfp_mask = gfp_mask, 865 .nid = nid, 866 .memcg = memcg, 867 }; 868 869 ret = do_shrink_slab(&sc, shrinker, priority); 870 if (ret == SHRINK_EMPTY) 871 ret = 0; 872 freed += ret; 873 /* 874 * Bail out if someone want to register a new shrinker to 875 * prevent the registration from being stalled for long periods 876 * by parallel ongoing shrinking. 877 */ 878 if (rwsem_is_contended(&shrinker_rwsem)) { 879 freed = freed ? : 1; 880 break; 881 } 882 } 883 884 up_read(&shrinker_rwsem); 885 out: 886 cond_resched(); 887 return freed; 888 } 889 890 void drop_slab_node(int nid) 891 { 892 unsigned long freed; 893 894 do { 895 struct mem_cgroup *memcg = NULL; 896 897 if (fatal_signal_pending(current)) 898 return; 899 900 freed = 0; 901 memcg = mem_cgroup_iter(NULL, NULL, NULL); 902 do { 903 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0); 904 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 905 } while (freed > 10); 906 } 907 908 void drop_slab(void) 909 { 910 int nid; 911 912 for_each_online_node(nid) 913 drop_slab_node(nid); 914 } 915 916 static inline int is_page_cache_freeable(struct page *page) 917 { 918 /* 919 * A freeable page cache page is referenced only by the caller 920 * that isolated the page, the page cache and optional buffer 921 * heads at page->private. 922 */ 923 int page_cache_pins = thp_nr_pages(page); 924 return page_count(page) - page_has_private(page) == 1 + page_cache_pins; 925 } 926 927 static int may_write_to_inode(struct inode *inode) 928 { 929 if (current->flags & PF_SWAPWRITE) 930 return 1; 931 if (!inode_write_congested(inode)) 932 return 1; 933 if (inode_to_bdi(inode) == current->backing_dev_info) 934 return 1; 935 return 0; 936 } 937 938 /* 939 * We detected a synchronous write error writing a page out. Probably 940 * -ENOSPC. We need to propagate that into the address_space for a subsequent 941 * fsync(), msync() or close(). 942 * 943 * The tricky part is that after writepage we cannot touch the mapping: nothing 944 * prevents it from being freed up. But we have a ref on the page and once 945 * that page is locked, the mapping is pinned. 946 * 947 * We're allowed to run sleeping lock_page() here because we know the caller has 948 * __GFP_FS. 949 */ 950 static void handle_write_error(struct address_space *mapping, 951 struct page *page, int error) 952 { 953 lock_page(page); 954 if (page_mapping(page) == mapping) 955 mapping_set_error(mapping, error); 956 unlock_page(page); 957 } 958 959 /* possible outcome of pageout() */ 960 typedef enum { 961 /* failed to write page out, page is locked */ 962 PAGE_KEEP, 963 /* move page to the active list, page is locked */ 964 PAGE_ACTIVATE, 965 /* page has been sent to the disk successfully, page is unlocked */ 966 PAGE_SUCCESS, 967 /* page is clean and locked */ 968 PAGE_CLEAN, 969 } pageout_t; 970 971 /* 972 * pageout is called by shrink_page_list() for each dirty page. 973 * Calls ->writepage(). 974 */ 975 static pageout_t pageout(struct page *page, struct address_space *mapping) 976 { 977 /* 978 * If the page is dirty, only perform writeback if that write 979 * will be non-blocking. To prevent this allocation from being 980 * stalled by pagecache activity. But note that there may be 981 * stalls if we need to run get_block(). We could test 982 * PagePrivate for that. 983 * 984 * If this process is currently in __generic_file_write_iter() against 985 * this page's queue, we can perform writeback even if that 986 * will block. 987 * 988 * If the page is swapcache, write it back even if that would 989 * block, for some throttling. This happens by accident, because 990 * swap_backing_dev_info is bust: it doesn't reflect the 991 * congestion state of the swapdevs. Easy to fix, if needed. 992 */ 993 if (!is_page_cache_freeable(page)) 994 return PAGE_KEEP; 995 if (!mapping) { 996 /* 997 * Some data journaling orphaned pages can have 998 * page->mapping == NULL while being dirty with clean buffers. 999 */ 1000 if (page_has_private(page)) { 1001 if (try_to_free_buffers(page)) { 1002 ClearPageDirty(page); 1003 pr_info("%s: orphaned page\n", __func__); 1004 return PAGE_CLEAN; 1005 } 1006 } 1007 return PAGE_KEEP; 1008 } 1009 if (mapping->a_ops->writepage == NULL) 1010 return PAGE_ACTIVATE; 1011 if (!may_write_to_inode(mapping->host)) 1012 return PAGE_KEEP; 1013 1014 if (clear_page_dirty_for_io(page)) { 1015 int res; 1016 struct writeback_control wbc = { 1017 .sync_mode = WB_SYNC_NONE, 1018 .nr_to_write = SWAP_CLUSTER_MAX, 1019 .range_start = 0, 1020 .range_end = LLONG_MAX, 1021 .for_reclaim = 1, 1022 }; 1023 1024 SetPageReclaim(page); 1025 res = mapping->a_ops->writepage(page, &wbc); 1026 if (res < 0) 1027 handle_write_error(mapping, page, res); 1028 if (res == AOP_WRITEPAGE_ACTIVATE) { 1029 ClearPageReclaim(page); 1030 return PAGE_ACTIVATE; 1031 } 1032 1033 if (!PageWriteback(page)) { 1034 /* synchronous write or broken a_ops? */ 1035 ClearPageReclaim(page); 1036 } 1037 trace_mm_vmscan_writepage(page); 1038 inc_node_page_state(page, NR_VMSCAN_WRITE); 1039 return PAGE_SUCCESS; 1040 } 1041 1042 return PAGE_CLEAN; 1043 } 1044 1045 /* 1046 * Same as remove_mapping, but if the page is removed from the mapping, it 1047 * gets returned with a refcount of 0. 1048 */ 1049 static int __remove_mapping(struct address_space *mapping, struct page *page, 1050 bool reclaimed, struct mem_cgroup *target_memcg) 1051 { 1052 unsigned long flags; 1053 int refcount; 1054 void *shadow = NULL; 1055 1056 BUG_ON(!PageLocked(page)); 1057 BUG_ON(mapping != page_mapping(page)); 1058 1059 xa_lock_irqsave(&mapping->i_pages, flags); 1060 /* 1061 * The non racy check for a busy page. 1062 * 1063 * Must be careful with the order of the tests. When someone has 1064 * a ref to the page, it may be possible that they dirty it then 1065 * drop the reference. So if PageDirty is tested before page_count 1066 * here, then the following race may occur: 1067 * 1068 * get_user_pages(&page); 1069 * [user mapping goes away] 1070 * write_to(page); 1071 * !PageDirty(page) [good] 1072 * SetPageDirty(page); 1073 * put_page(page); 1074 * !page_count(page) [good, discard it] 1075 * 1076 * [oops, our write_to data is lost] 1077 * 1078 * Reversing the order of the tests ensures such a situation cannot 1079 * escape unnoticed. The smp_rmb is needed to ensure the page->flags 1080 * load is not satisfied before that of page->_refcount. 1081 * 1082 * Note that if SetPageDirty is always performed via set_page_dirty, 1083 * and thus under the i_pages lock, then this ordering is not required. 1084 */ 1085 refcount = 1 + compound_nr(page); 1086 if (!page_ref_freeze(page, refcount)) 1087 goto cannot_free; 1088 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */ 1089 if (unlikely(PageDirty(page))) { 1090 page_ref_unfreeze(page, refcount); 1091 goto cannot_free; 1092 } 1093 1094 if (PageSwapCache(page)) { 1095 swp_entry_t swap = { .val = page_private(page) }; 1096 mem_cgroup_swapout(page, swap); 1097 if (reclaimed && !mapping_exiting(mapping)) 1098 shadow = workingset_eviction(page, target_memcg); 1099 __delete_from_swap_cache(page, swap, shadow); 1100 xa_unlock_irqrestore(&mapping->i_pages, flags); 1101 put_swap_page(page, swap); 1102 } else { 1103 void (*freepage)(struct page *); 1104 1105 freepage = mapping->a_ops->freepage; 1106 /* 1107 * Remember a shadow entry for reclaimed file cache in 1108 * order to detect refaults, thus thrashing, later on. 1109 * 1110 * But don't store shadows in an address space that is 1111 * already exiting. This is not just an optimization, 1112 * inode reclaim needs to empty out the radix tree or 1113 * the nodes are lost. Don't plant shadows behind its 1114 * back. 1115 * 1116 * We also don't store shadows for DAX mappings because the 1117 * only page cache pages found in these are zero pages 1118 * covering holes, and because we don't want to mix DAX 1119 * exceptional entries and shadow exceptional entries in the 1120 * same address_space. 1121 */ 1122 if (reclaimed && page_is_file_lru(page) && 1123 !mapping_exiting(mapping) && !dax_mapping(mapping)) 1124 shadow = workingset_eviction(page, target_memcg); 1125 __delete_from_page_cache(page, shadow); 1126 xa_unlock_irqrestore(&mapping->i_pages, flags); 1127 1128 if (freepage != NULL) 1129 freepage(page); 1130 } 1131 1132 return 1; 1133 1134 cannot_free: 1135 xa_unlock_irqrestore(&mapping->i_pages, flags); 1136 return 0; 1137 } 1138 1139 /* 1140 * Attempt to detach a locked page from its ->mapping. If it is dirty or if 1141 * someone else has a ref on the page, abort and return 0. If it was 1142 * successfully detached, return 1. Assumes the caller has a single ref on 1143 * this page. 1144 */ 1145 int remove_mapping(struct address_space *mapping, struct page *page) 1146 { 1147 if (__remove_mapping(mapping, page, false, NULL)) { 1148 /* 1149 * Unfreezing the refcount with 1 rather than 2 effectively 1150 * drops the pagecache ref for us without requiring another 1151 * atomic operation. 1152 */ 1153 page_ref_unfreeze(page, 1); 1154 return 1; 1155 } 1156 return 0; 1157 } 1158 1159 /** 1160 * putback_lru_page - put previously isolated page onto appropriate LRU list 1161 * @page: page to be put back to appropriate lru list 1162 * 1163 * Add previously isolated @page to appropriate LRU list. 1164 * Page may still be unevictable for other reasons. 1165 * 1166 * lru_lock must not be held, interrupts must be enabled. 1167 */ 1168 void putback_lru_page(struct page *page) 1169 { 1170 lru_cache_add(page); 1171 put_page(page); /* drop ref from isolate */ 1172 } 1173 1174 enum page_references { 1175 PAGEREF_RECLAIM, 1176 PAGEREF_RECLAIM_CLEAN, 1177 PAGEREF_KEEP, 1178 PAGEREF_ACTIVATE, 1179 }; 1180 1181 static enum page_references page_check_references(struct page *page, 1182 struct scan_control *sc) 1183 { 1184 int referenced_ptes, referenced_page; 1185 unsigned long vm_flags; 1186 1187 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup, 1188 &vm_flags); 1189 referenced_page = TestClearPageReferenced(page); 1190 1191 /* 1192 * Mlock lost the isolation race with us. Let try_to_unmap() 1193 * move the page to the unevictable list. 1194 */ 1195 if (vm_flags & VM_LOCKED) 1196 return PAGEREF_RECLAIM; 1197 1198 if (referenced_ptes) { 1199 /* 1200 * All mapped pages start out with page table 1201 * references from the instantiating fault, so we need 1202 * to look twice if a mapped file page is used more 1203 * than once. 1204 * 1205 * Mark it and spare it for another trip around the 1206 * inactive list. Another page table reference will 1207 * lead to its activation. 1208 * 1209 * Note: the mark is set for activated pages as well 1210 * so that recently deactivated but used pages are 1211 * quickly recovered. 1212 */ 1213 SetPageReferenced(page); 1214 1215 if (referenced_page || referenced_ptes > 1) 1216 return PAGEREF_ACTIVATE; 1217 1218 /* 1219 * Activate file-backed executable pages after first usage. 1220 */ 1221 if ((vm_flags & VM_EXEC) && !PageSwapBacked(page)) 1222 return PAGEREF_ACTIVATE; 1223 1224 return PAGEREF_KEEP; 1225 } 1226 1227 /* Reclaim if clean, defer dirty pages to writeback */ 1228 if (referenced_page && !PageSwapBacked(page)) 1229 return PAGEREF_RECLAIM_CLEAN; 1230 1231 return PAGEREF_RECLAIM; 1232 } 1233 1234 /* Check if a page is dirty or under writeback */ 1235 static void page_check_dirty_writeback(struct page *page, 1236 bool *dirty, bool *writeback) 1237 { 1238 struct address_space *mapping; 1239 1240 /* 1241 * Anonymous pages are not handled by flushers and must be written 1242 * from reclaim context. Do not stall reclaim based on them 1243 */ 1244 if (!page_is_file_lru(page) || 1245 (PageAnon(page) && !PageSwapBacked(page))) { 1246 *dirty = false; 1247 *writeback = false; 1248 return; 1249 } 1250 1251 /* By default assume that the page flags are accurate */ 1252 *dirty = PageDirty(page); 1253 *writeback = PageWriteback(page); 1254 1255 /* Verify dirty/writeback state if the filesystem supports it */ 1256 if (!page_has_private(page)) 1257 return; 1258 1259 mapping = page_mapping(page); 1260 if (mapping && mapping->a_ops->is_dirty_writeback) 1261 mapping->a_ops->is_dirty_writeback(page, dirty, writeback); 1262 } 1263 1264 /* 1265 * shrink_page_list() returns the number of reclaimed pages 1266 */ 1267 static unsigned int shrink_page_list(struct list_head *page_list, 1268 struct pglist_data *pgdat, 1269 struct scan_control *sc, 1270 struct reclaim_stat *stat, 1271 bool ignore_references) 1272 { 1273 LIST_HEAD(ret_pages); 1274 LIST_HEAD(free_pages); 1275 unsigned int nr_reclaimed = 0; 1276 unsigned int pgactivate = 0; 1277 1278 memset(stat, 0, sizeof(*stat)); 1279 cond_resched(); 1280 1281 while (!list_empty(page_list)) { 1282 struct address_space *mapping; 1283 struct page *page; 1284 enum page_references references = PAGEREF_RECLAIM; 1285 bool dirty, writeback, may_enter_fs; 1286 unsigned int nr_pages; 1287 1288 cond_resched(); 1289 1290 page = lru_to_page(page_list); 1291 list_del(&page->lru); 1292 1293 if (!trylock_page(page)) 1294 goto keep; 1295 1296 VM_BUG_ON_PAGE(PageActive(page), page); 1297 1298 nr_pages = compound_nr(page); 1299 1300 /* Account the number of base pages even though THP */ 1301 sc->nr_scanned += nr_pages; 1302 1303 if (unlikely(!page_evictable(page))) 1304 goto activate_locked; 1305 1306 if (!sc->may_unmap && page_mapped(page)) 1307 goto keep_locked; 1308 1309 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 1310 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 1311 1312 /* 1313 * The number of dirty pages determines if a node is marked 1314 * reclaim_congested which affects wait_iff_congested. kswapd 1315 * will stall and start writing pages if the tail of the LRU 1316 * is all dirty unqueued pages. 1317 */ 1318 page_check_dirty_writeback(page, &dirty, &writeback); 1319 if (dirty || writeback) 1320 stat->nr_dirty++; 1321 1322 if (dirty && !writeback) 1323 stat->nr_unqueued_dirty++; 1324 1325 /* 1326 * Treat this page as congested if the underlying BDI is or if 1327 * pages are cycling through the LRU so quickly that the 1328 * pages marked for immediate reclaim are making it to the 1329 * end of the LRU a second time. 1330 */ 1331 mapping = page_mapping(page); 1332 if (((dirty || writeback) && mapping && 1333 inode_write_congested(mapping->host)) || 1334 (writeback && PageReclaim(page))) 1335 stat->nr_congested++; 1336 1337 /* 1338 * If a page at the tail of the LRU is under writeback, there 1339 * are three cases to consider. 1340 * 1341 * 1) If reclaim is encountering an excessive number of pages 1342 * under writeback and this page is both under writeback and 1343 * PageReclaim then it indicates that pages are being queued 1344 * for IO but are being recycled through the LRU before the 1345 * IO can complete. Waiting on the page itself risks an 1346 * indefinite stall if it is impossible to writeback the 1347 * page due to IO error or disconnected storage so instead 1348 * note that the LRU is being scanned too quickly and the 1349 * caller can stall after page list has been processed. 1350 * 1351 * 2) Global or new memcg reclaim encounters a page that is 1352 * not marked for immediate reclaim, or the caller does not 1353 * have __GFP_FS (or __GFP_IO if it's simply going to swap, 1354 * not to fs). In this case mark the page for immediate 1355 * reclaim and continue scanning. 1356 * 1357 * Require may_enter_fs because we would wait on fs, which 1358 * may not have submitted IO yet. And the loop driver might 1359 * enter reclaim, and deadlock if it waits on a page for 1360 * which it is needed to do the write (loop masks off 1361 * __GFP_IO|__GFP_FS for this reason); but more thought 1362 * would probably show more reasons. 1363 * 1364 * 3) Legacy memcg encounters a page that is already marked 1365 * PageReclaim. memcg does not have any dirty pages 1366 * throttling so we could easily OOM just because too many 1367 * pages are in writeback and there is nothing else to 1368 * reclaim. Wait for the writeback to complete. 1369 * 1370 * In cases 1) and 2) we activate the pages to get them out of 1371 * the way while we continue scanning for clean pages on the 1372 * inactive list and refilling from the active list. The 1373 * observation here is that waiting for disk writes is more 1374 * expensive than potentially causing reloads down the line. 1375 * Since they're marked for immediate reclaim, they won't put 1376 * memory pressure on the cache working set any longer than it 1377 * takes to write them to disk. 1378 */ 1379 if (PageWriteback(page)) { 1380 /* Case 1 above */ 1381 if (current_is_kswapd() && 1382 PageReclaim(page) && 1383 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) { 1384 stat->nr_immediate++; 1385 goto activate_locked; 1386 1387 /* Case 2 above */ 1388 } else if (writeback_throttling_sane(sc) || 1389 !PageReclaim(page) || !may_enter_fs) { 1390 /* 1391 * This is slightly racy - end_page_writeback() 1392 * might have just cleared PageReclaim, then 1393 * setting PageReclaim here end up interpreted 1394 * as PageReadahead - but that does not matter 1395 * enough to care. What we do want is for this 1396 * page to have PageReclaim set next time memcg 1397 * reclaim reaches the tests above, so it will 1398 * then wait_on_page_writeback() to avoid OOM; 1399 * and it's also appropriate in global reclaim. 1400 */ 1401 SetPageReclaim(page); 1402 stat->nr_writeback++; 1403 goto activate_locked; 1404 1405 /* Case 3 above */ 1406 } else { 1407 unlock_page(page); 1408 wait_on_page_writeback(page); 1409 /* then go back and try same page again */ 1410 list_add_tail(&page->lru, page_list); 1411 continue; 1412 } 1413 } 1414 1415 if (!ignore_references) 1416 references = page_check_references(page, sc); 1417 1418 switch (references) { 1419 case PAGEREF_ACTIVATE: 1420 goto activate_locked; 1421 case PAGEREF_KEEP: 1422 stat->nr_ref_keep += nr_pages; 1423 goto keep_locked; 1424 case PAGEREF_RECLAIM: 1425 case PAGEREF_RECLAIM_CLEAN: 1426 ; /* try to reclaim the page below */ 1427 } 1428 1429 /* 1430 * Anonymous process memory has backing store? 1431 * Try to allocate it some swap space here. 1432 * Lazyfree page could be freed directly 1433 */ 1434 if (PageAnon(page) && PageSwapBacked(page)) { 1435 if (!PageSwapCache(page)) { 1436 if (!(sc->gfp_mask & __GFP_IO)) 1437 goto keep_locked; 1438 if (page_maybe_dma_pinned(page)) 1439 goto keep_locked; 1440 if (PageTransHuge(page)) { 1441 /* cannot split THP, skip it */ 1442 if (!can_split_huge_page(page, NULL)) 1443 goto activate_locked; 1444 /* 1445 * Split pages without a PMD map right 1446 * away. Chances are some or all of the 1447 * tail pages can be freed without IO. 1448 */ 1449 if (!compound_mapcount(page) && 1450 split_huge_page_to_list(page, 1451 page_list)) 1452 goto activate_locked; 1453 } 1454 if (!add_to_swap(page)) { 1455 if (!PageTransHuge(page)) 1456 goto activate_locked_split; 1457 /* Fallback to swap normal pages */ 1458 if (split_huge_page_to_list(page, 1459 page_list)) 1460 goto activate_locked; 1461 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1462 count_vm_event(THP_SWPOUT_FALLBACK); 1463 #endif 1464 if (!add_to_swap(page)) 1465 goto activate_locked_split; 1466 } 1467 1468 may_enter_fs = true; 1469 1470 /* Adding to swap updated mapping */ 1471 mapping = page_mapping(page); 1472 } 1473 } else if (unlikely(PageTransHuge(page))) { 1474 /* Split file THP */ 1475 if (split_huge_page_to_list(page, page_list)) 1476 goto keep_locked; 1477 } 1478 1479 /* 1480 * THP may get split above, need minus tail pages and update 1481 * nr_pages to avoid accounting tail pages twice. 1482 * 1483 * The tail pages that are added into swap cache successfully 1484 * reach here. 1485 */ 1486 if ((nr_pages > 1) && !PageTransHuge(page)) { 1487 sc->nr_scanned -= (nr_pages - 1); 1488 nr_pages = 1; 1489 } 1490 1491 /* 1492 * The page is mapped into the page tables of one or more 1493 * processes. Try to unmap it here. 1494 */ 1495 if (page_mapped(page)) { 1496 enum ttu_flags flags = TTU_BATCH_FLUSH; 1497 bool was_swapbacked = PageSwapBacked(page); 1498 1499 if (unlikely(PageTransHuge(page))) 1500 flags |= TTU_SPLIT_HUGE_PMD; 1501 1502 if (!try_to_unmap(page, flags)) { 1503 stat->nr_unmap_fail += nr_pages; 1504 if (!was_swapbacked && PageSwapBacked(page)) 1505 stat->nr_lazyfree_fail += nr_pages; 1506 goto activate_locked; 1507 } 1508 } 1509 1510 if (PageDirty(page)) { 1511 /* 1512 * Only kswapd can writeback filesystem pages 1513 * to avoid risk of stack overflow. But avoid 1514 * injecting inefficient single-page IO into 1515 * flusher writeback as much as possible: only 1516 * write pages when we've encountered many 1517 * dirty pages, and when we've already scanned 1518 * the rest of the LRU for clean pages and see 1519 * the same dirty pages again (PageReclaim). 1520 */ 1521 if (page_is_file_lru(page) && 1522 (!current_is_kswapd() || !PageReclaim(page) || 1523 !test_bit(PGDAT_DIRTY, &pgdat->flags))) { 1524 /* 1525 * Immediately reclaim when written back. 1526 * Similar in principal to deactivate_page() 1527 * except we already have the page isolated 1528 * and know it's dirty 1529 */ 1530 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE); 1531 SetPageReclaim(page); 1532 1533 goto activate_locked; 1534 } 1535 1536 if (references == PAGEREF_RECLAIM_CLEAN) 1537 goto keep_locked; 1538 if (!may_enter_fs) 1539 goto keep_locked; 1540 if (!sc->may_writepage) 1541 goto keep_locked; 1542 1543 /* 1544 * Page is dirty. Flush the TLB if a writable entry 1545 * potentially exists to avoid CPU writes after IO 1546 * starts and then write it out here. 1547 */ 1548 try_to_unmap_flush_dirty(); 1549 switch (pageout(page, mapping)) { 1550 case PAGE_KEEP: 1551 goto keep_locked; 1552 case PAGE_ACTIVATE: 1553 goto activate_locked; 1554 case PAGE_SUCCESS: 1555 stat->nr_pageout += thp_nr_pages(page); 1556 1557 if (PageWriteback(page)) 1558 goto keep; 1559 if (PageDirty(page)) 1560 goto keep; 1561 1562 /* 1563 * A synchronous write - probably a ramdisk. Go 1564 * ahead and try to reclaim the page. 1565 */ 1566 if (!trylock_page(page)) 1567 goto keep; 1568 if (PageDirty(page) || PageWriteback(page)) 1569 goto keep_locked; 1570 mapping = page_mapping(page); 1571 fallthrough; 1572 case PAGE_CLEAN: 1573 ; /* try to free the page below */ 1574 } 1575 } 1576 1577 /* 1578 * If the page has buffers, try to free the buffer mappings 1579 * associated with this page. If we succeed we try to free 1580 * the page as well. 1581 * 1582 * We do this even if the page is PageDirty(). 1583 * try_to_release_page() does not perform I/O, but it is 1584 * possible for a page to have PageDirty set, but it is actually 1585 * clean (all its buffers are clean). This happens if the 1586 * buffers were written out directly, with submit_bh(). ext3 1587 * will do this, as well as the blockdev mapping. 1588 * try_to_release_page() will discover that cleanness and will 1589 * drop the buffers and mark the page clean - it can be freed. 1590 * 1591 * Rarely, pages can have buffers and no ->mapping. These are 1592 * the pages which were not successfully invalidated in 1593 * truncate_cleanup_page(). We try to drop those buffers here 1594 * and if that worked, and the page is no longer mapped into 1595 * process address space (page_count == 1) it can be freed. 1596 * Otherwise, leave the page on the LRU so it is swappable. 1597 */ 1598 if (page_has_private(page)) { 1599 if (!try_to_release_page(page, sc->gfp_mask)) 1600 goto activate_locked; 1601 if (!mapping && page_count(page) == 1) { 1602 unlock_page(page); 1603 if (put_page_testzero(page)) 1604 goto free_it; 1605 else { 1606 /* 1607 * rare race with speculative reference. 1608 * the speculative reference will free 1609 * this page shortly, so we may 1610 * increment nr_reclaimed here (and 1611 * leave it off the LRU). 1612 */ 1613 nr_reclaimed++; 1614 continue; 1615 } 1616 } 1617 } 1618 1619 if (PageAnon(page) && !PageSwapBacked(page)) { 1620 /* follow __remove_mapping for reference */ 1621 if (!page_ref_freeze(page, 1)) 1622 goto keep_locked; 1623 if (PageDirty(page)) { 1624 page_ref_unfreeze(page, 1); 1625 goto keep_locked; 1626 } 1627 1628 count_vm_event(PGLAZYFREED); 1629 count_memcg_page_event(page, PGLAZYFREED); 1630 } else if (!mapping || !__remove_mapping(mapping, page, true, 1631 sc->target_mem_cgroup)) 1632 goto keep_locked; 1633 1634 unlock_page(page); 1635 free_it: 1636 /* 1637 * THP may get swapped out in a whole, need account 1638 * all base pages. 1639 */ 1640 nr_reclaimed += nr_pages; 1641 1642 /* 1643 * Is there need to periodically free_page_list? It would 1644 * appear not as the counts should be low 1645 */ 1646 if (unlikely(PageTransHuge(page))) 1647 destroy_compound_page(page); 1648 else 1649 list_add(&page->lru, &free_pages); 1650 continue; 1651 1652 activate_locked_split: 1653 /* 1654 * The tail pages that are failed to add into swap cache 1655 * reach here. Fixup nr_scanned and nr_pages. 1656 */ 1657 if (nr_pages > 1) { 1658 sc->nr_scanned -= (nr_pages - 1); 1659 nr_pages = 1; 1660 } 1661 activate_locked: 1662 /* Not a candidate for swapping, so reclaim swap space. */ 1663 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) || 1664 PageMlocked(page))) 1665 try_to_free_swap(page); 1666 VM_BUG_ON_PAGE(PageActive(page), page); 1667 if (!PageMlocked(page)) { 1668 int type = page_is_file_lru(page); 1669 SetPageActive(page); 1670 stat->nr_activate[type] += nr_pages; 1671 count_memcg_page_event(page, PGACTIVATE); 1672 } 1673 keep_locked: 1674 unlock_page(page); 1675 keep: 1676 list_add(&page->lru, &ret_pages); 1677 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page); 1678 } 1679 1680 pgactivate = stat->nr_activate[0] + stat->nr_activate[1]; 1681 1682 mem_cgroup_uncharge_list(&free_pages); 1683 try_to_unmap_flush(); 1684 free_unref_page_list(&free_pages); 1685 1686 list_splice(&ret_pages, page_list); 1687 count_vm_events(PGACTIVATE, pgactivate); 1688 1689 return nr_reclaimed; 1690 } 1691 1692 unsigned int reclaim_clean_pages_from_list(struct zone *zone, 1693 struct list_head *page_list) 1694 { 1695 struct scan_control sc = { 1696 .gfp_mask = GFP_KERNEL, 1697 .priority = DEF_PRIORITY, 1698 .may_unmap = 1, 1699 }; 1700 struct reclaim_stat stat; 1701 unsigned int nr_reclaimed; 1702 struct page *page, *next; 1703 LIST_HEAD(clean_pages); 1704 1705 list_for_each_entry_safe(page, next, page_list, lru) { 1706 if (!PageHuge(page) && page_is_file_lru(page) && 1707 !PageDirty(page) && !__PageMovable(page) && 1708 !PageUnevictable(page)) { 1709 ClearPageActive(page); 1710 list_move(&page->lru, &clean_pages); 1711 } 1712 } 1713 1714 nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc, 1715 &stat, true); 1716 list_splice(&clean_pages, page_list); 1717 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, 1718 -(long)nr_reclaimed); 1719 /* 1720 * Since lazyfree pages are isolated from file LRU from the beginning, 1721 * they will rotate back to anonymous LRU in the end if it failed to 1722 * discard so isolated count will be mismatched. 1723 * Compensate the isolated count for both LRU lists. 1724 */ 1725 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON, 1726 stat.nr_lazyfree_fail); 1727 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, 1728 -(long)stat.nr_lazyfree_fail); 1729 return nr_reclaimed; 1730 } 1731 1732 /* 1733 * Attempt to remove the specified page from its LRU. Only take this page 1734 * if it is of the appropriate PageActive status. Pages which are being 1735 * freed elsewhere are also ignored. 1736 * 1737 * page: page to consider 1738 * mode: one of the LRU isolation modes defined above 1739 * 1740 * returns true on success, false on failure. 1741 */ 1742 bool __isolate_lru_page_prepare(struct page *page, isolate_mode_t mode) 1743 { 1744 /* Only take pages on the LRU. */ 1745 if (!PageLRU(page)) 1746 return false; 1747 1748 /* Compaction should not handle unevictable pages but CMA can do so */ 1749 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE)) 1750 return false; 1751 1752 /* 1753 * To minimise LRU disruption, the caller can indicate that it only 1754 * wants to isolate pages it will be able to operate on without 1755 * blocking - clean pages for the most part. 1756 * 1757 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages 1758 * that it is possible to migrate without blocking 1759 */ 1760 if (mode & ISOLATE_ASYNC_MIGRATE) { 1761 /* All the caller can do on PageWriteback is block */ 1762 if (PageWriteback(page)) 1763 return false; 1764 1765 if (PageDirty(page)) { 1766 struct address_space *mapping; 1767 bool migrate_dirty; 1768 1769 /* 1770 * Only pages without mappings or that have a 1771 * ->migratepage callback are possible to migrate 1772 * without blocking. However, we can be racing with 1773 * truncation so it's necessary to lock the page 1774 * to stabilise the mapping as truncation holds 1775 * the page lock until after the page is removed 1776 * from the page cache. 1777 */ 1778 if (!trylock_page(page)) 1779 return false; 1780 1781 mapping = page_mapping(page); 1782 migrate_dirty = !mapping || mapping->a_ops->migratepage; 1783 unlock_page(page); 1784 if (!migrate_dirty) 1785 return false; 1786 } 1787 } 1788 1789 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page)) 1790 return false; 1791 1792 return true; 1793 } 1794 1795 /* 1796 * Update LRU sizes after isolating pages. The LRU size updates must 1797 * be complete before mem_cgroup_update_lru_size due to a sanity check. 1798 */ 1799 static __always_inline void update_lru_sizes(struct lruvec *lruvec, 1800 enum lru_list lru, unsigned long *nr_zone_taken) 1801 { 1802 int zid; 1803 1804 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1805 if (!nr_zone_taken[zid]) 1806 continue; 1807 1808 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 1809 } 1810 1811 } 1812 1813 /** 1814 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times. 1815 * 1816 * lruvec->lru_lock is heavily contended. Some of the functions that 1817 * shrink the lists perform better by taking out a batch of pages 1818 * and working on them outside the LRU lock. 1819 * 1820 * For pagecache intensive workloads, this function is the hottest 1821 * spot in the kernel (apart from copy_*_user functions). 1822 * 1823 * Lru_lock must be held before calling this function. 1824 * 1825 * @nr_to_scan: The number of eligible pages to look through on the list. 1826 * @lruvec: The LRU vector to pull pages from. 1827 * @dst: The temp list to put pages on to. 1828 * @nr_scanned: The number of pages that were scanned. 1829 * @sc: The scan_control struct for this reclaim session 1830 * @lru: LRU list id for isolating 1831 * 1832 * returns how many pages were moved onto *@dst. 1833 */ 1834 static unsigned long isolate_lru_pages(unsigned long nr_to_scan, 1835 struct lruvec *lruvec, struct list_head *dst, 1836 unsigned long *nr_scanned, struct scan_control *sc, 1837 enum lru_list lru) 1838 { 1839 struct list_head *src = &lruvec->lists[lru]; 1840 unsigned long nr_taken = 0; 1841 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 }; 1842 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, }; 1843 unsigned long skipped = 0; 1844 unsigned long scan, total_scan, nr_pages; 1845 LIST_HEAD(pages_skipped); 1846 isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED); 1847 1848 total_scan = 0; 1849 scan = 0; 1850 while (scan < nr_to_scan && !list_empty(src)) { 1851 struct page *page; 1852 1853 page = lru_to_page(src); 1854 prefetchw_prev_lru_page(page, src, flags); 1855 1856 nr_pages = compound_nr(page); 1857 total_scan += nr_pages; 1858 1859 if (page_zonenum(page) > sc->reclaim_idx) { 1860 list_move(&page->lru, &pages_skipped); 1861 nr_skipped[page_zonenum(page)] += nr_pages; 1862 continue; 1863 } 1864 1865 /* 1866 * Do not count skipped pages because that makes the function 1867 * return with no isolated pages if the LRU mostly contains 1868 * ineligible pages. This causes the VM to not reclaim any 1869 * pages, triggering a premature OOM. 1870 * 1871 * Account all tail pages of THP. This would not cause 1872 * premature OOM since __isolate_lru_page() returns -EBUSY 1873 * only when the page is being freed somewhere else. 1874 */ 1875 scan += nr_pages; 1876 if (!__isolate_lru_page_prepare(page, mode)) { 1877 /* It is being freed elsewhere */ 1878 list_move(&page->lru, src); 1879 continue; 1880 } 1881 /* 1882 * Be careful not to clear PageLRU until after we're 1883 * sure the page is not being freed elsewhere -- the 1884 * page release code relies on it. 1885 */ 1886 if (unlikely(!get_page_unless_zero(page))) { 1887 list_move(&page->lru, src); 1888 continue; 1889 } 1890 1891 if (!TestClearPageLRU(page)) { 1892 /* Another thread is already isolating this page */ 1893 put_page(page); 1894 list_move(&page->lru, src); 1895 continue; 1896 } 1897 1898 nr_taken += nr_pages; 1899 nr_zone_taken[page_zonenum(page)] += nr_pages; 1900 list_move(&page->lru, dst); 1901 } 1902 1903 /* 1904 * Splice any skipped pages to the start of the LRU list. Note that 1905 * this disrupts the LRU order when reclaiming for lower zones but 1906 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX 1907 * scanning would soon rescan the same pages to skip and put the 1908 * system at risk of premature OOM. 1909 */ 1910 if (!list_empty(&pages_skipped)) { 1911 int zid; 1912 1913 list_splice(&pages_skipped, src); 1914 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1915 if (!nr_skipped[zid]) 1916 continue; 1917 1918 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]); 1919 skipped += nr_skipped[zid]; 1920 } 1921 } 1922 *nr_scanned = total_scan; 1923 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, 1924 total_scan, skipped, nr_taken, mode, lru); 1925 update_lru_sizes(lruvec, lru, nr_zone_taken); 1926 return nr_taken; 1927 } 1928 1929 /** 1930 * isolate_lru_page - tries to isolate a page from its LRU list 1931 * @page: page to isolate from its LRU list 1932 * 1933 * Isolates a @page from an LRU list, clears PageLRU and adjusts the 1934 * vmstat statistic corresponding to whatever LRU list the page was on. 1935 * 1936 * Returns 0 if the page was removed from an LRU list. 1937 * Returns -EBUSY if the page was not on an LRU list. 1938 * 1939 * The returned page will have PageLRU() cleared. If it was found on 1940 * the active list, it will have PageActive set. If it was found on 1941 * the unevictable list, it will have the PageUnevictable bit set. That flag 1942 * may need to be cleared by the caller before letting the page go. 1943 * 1944 * The vmstat statistic corresponding to the list on which the page was 1945 * found will be decremented. 1946 * 1947 * Restrictions: 1948 * 1949 * (1) Must be called with an elevated refcount on the page. This is a 1950 * fundamental difference from isolate_lru_pages (which is called 1951 * without a stable reference). 1952 * (2) the lru_lock must not be held. 1953 * (3) interrupts must be enabled. 1954 */ 1955 int isolate_lru_page(struct page *page) 1956 { 1957 int ret = -EBUSY; 1958 1959 VM_BUG_ON_PAGE(!page_count(page), page); 1960 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page"); 1961 1962 if (TestClearPageLRU(page)) { 1963 struct lruvec *lruvec; 1964 1965 get_page(page); 1966 lruvec = lock_page_lruvec_irq(page); 1967 del_page_from_lru_list(page, lruvec); 1968 unlock_page_lruvec_irq(lruvec); 1969 ret = 0; 1970 } 1971 1972 return ret; 1973 } 1974 1975 /* 1976 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 1977 * then get rescheduled. When there are massive number of tasks doing page 1978 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 1979 * the LRU list will go small and be scanned faster than necessary, leading to 1980 * unnecessary swapping, thrashing and OOM. 1981 */ 1982 static int too_many_isolated(struct pglist_data *pgdat, int file, 1983 struct scan_control *sc) 1984 { 1985 unsigned long inactive, isolated; 1986 1987 if (current_is_kswapd()) 1988 return 0; 1989 1990 if (!writeback_throttling_sane(sc)) 1991 return 0; 1992 1993 if (file) { 1994 inactive = node_page_state(pgdat, NR_INACTIVE_FILE); 1995 isolated = node_page_state(pgdat, NR_ISOLATED_FILE); 1996 } else { 1997 inactive = node_page_state(pgdat, NR_INACTIVE_ANON); 1998 isolated = node_page_state(pgdat, NR_ISOLATED_ANON); 1999 } 2000 2001 /* 2002 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 2003 * won't get blocked by normal direct-reclaimers, forming a circular 2004 * deadlock. 2005 */ 2006 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 2007 inactive >>= 3; 2008 2009 return isolated > inactive; 2010 } 2011 2012 /* 2013 * move_pages_to_lru() moves pages from private @list to appropriate LRU list. 2014 * On return, @list is reused as a list of pages to be freed by the caller. 2015 * 2016 * Returns the number of pages moved to the given lruvec. 2017 */ 2018 static unsigned noinline_for_stack move_pages_to_lru(struct lruvec *lruvec, 2019 struct list_head *list) 2020 { 2021 int nr_pages, nr_moved = 0; 2022 LIST_HEAD(pages_to_free); 2023 struct page *page; 2024 2025 while (!list_empty(list)) { 2026 page = lru_to_page(list); 2027 VM_BUG_ON_PAGE(PageLRU(page), page); 2028 list_del(&page->lru); 2029 if (unlikely(!page_evictable(page))) { 2030 spin_unlock_irq(&lruvec->lru_lock); 2031 putback_lru_page(page); 2032 spin_lock_irq(&lruvec->lru_lock); 2033 continue; 2034 } 2035 2036 /* 2037 * The SetPageLRU needs to be kept here for list integrity. 2038 * Otherwise: 2039 * #0 move_pages_to_lru #1 release_pages 2040 * if !put_page_testzero 2041 * if (put_page_testzero()) 2042 * !PageLRU //skip lru_lock 2043 * SetPageLRU() 2044 * list_add(&page->lru,) 2045 * list_add(&page->lru,) 2046 */ 2047 SetPageLRU(page); 2048 2049 if (unlikely(put_page_testzero(page))) { 2050 __clear_page_lru_flags(page); 2051 2052 if (unlikely(PageCompound(page))) { 2053 spin_unlock_irq(&lruvec->lru_lock); 2054 destroy_compound_page(page); 2055 spin_lock_irq(&lruvec->lru_lock); 2056 } else 2057 list_add(&page->lru, &pages_to_free); 2058 2059 continue; 2060 } 2061 2062 /* 2063 * All pages were isolated from the same lruvec (and isolation 2064 * inhibits memcg migration). 2065 */ 2066 VM_BUG_ON_PAGE(!lruvec_holds_page_lru_lock(page, lruvec), page); 2067 add_page_to_lru_list(page, lruvec); 2068 nr_pages = thp_nr_pages(page); 2069 nr_moved += nr_pages; 2070 if (PageActive(page)) 2071 workingset_age_nonresident(lruvec, nr_pages); 2072 } 2073 2074 /* 2075 * To save our caller's stack, now use input list for pages to free. 2076 */ 2077 list_splice(&pages_to_free, list); 2078 2079 return nr_moved; 2080 } 2081 2082 /* 2083 * If a kernel thread (such as nfsd for loop-back mounts) services 2084 * a backing device by writing to the page cache it sets PF_LOCAL_THROTTLE. 2085 * In that case we should only throttle if the backing device it is 2086 * writing to is congested. In other cases it is safe to throttle. 2087 */ 2088 static int current_may_throttle(void) 2089 { 2090 return !(current->flags & PF_LOCAL_THROTTLE) || 2091 current->backing_dev_info == NULL || 2092 bdi_write_congested(current->backing_dev_info); 2093 } 2094 2095 /* 2096 * shrink_inactive_list() is a helper for shrink_node(). It returns the number 2097 * of reclaimed pages 2098 */ 2099 static noinline_for_stack unsigned long 2100 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, 2101 struct scan_control *sc, enum lru_list lru) 2102 { 2103 LIST_HEAD(page_list); 2104 unsigned long nr_scanned; 2105 unsigned int nr_reclaimed = 0; 2106 unsigned long nr_taken; 2107 struct reclaim_stat stat; 2108 bool file = is_file_lru(lru); 2109 enum vm_event_item item; 2110 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2111 bool stalled = false; 2112 2113 while (unlikely(too_many_isolated(pgdat, file, sc))) { 2114 if (stalled) 2115 return 0; 2116 2117 /* wait a bit for the reclaimer. */ 2118 msleep(100); 2119 stalled = true; 2120 2121 /* We are about to die and free our memory. Return now. */ 2122 if (fatal_signal_pending(current)) 2123 return SWAP_CLUSTER_MAX; 2124 } 2125 2126 lru_add_drain(); 2127 2128 spin_lock_irq(&lruvec->lru_lock); 2129 2130 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list, 2131 &nr_scanned, sc, lru); 2132 2133 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2134 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT; 2135 if (!cgroup_reclaim(sc)) 2136 __count_vm_events(item, nr_scanned); 2137 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned); 2138 __count_vm_events(PGSCAN_ANON + file, nr_scanned); 2139 2140 spin_unlock_irq(&lruvec->lru_lock); 2141 2142 if (nr_taken == 0) 2143 return 0; 2144 2145 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, &stat, false); 2146 2147 spin_lock_irq(&lruvec->lru_lock); 2148 move_pages_to_lru(lruvec, &page_list); 2149 2150 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2151 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT; 2152 if (!cgroup_reclaim(sc)) 2153 __count_vm_events(item, nr_reclaimed); 2154 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed); 2155 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed); 2156 spin_unlock_irq(&lruvec->lru_lock); 2157 2158 lru_note_cost(lruvec, file, stat.nr_pageout); 2159 mem_cgroup_uncharge_list(&page_list); 2160 free_unref_page_list(&page_list); 2161 2162 /* 2163 * If dirty pages are scanned that are not queued for IO, it 2164 * implies that flushers are not doing their job. This can 2165 * happen when memory pressure pushes dirty pages to the end of 2166 * the LRU before the dirty limits are breached and the dirty 2167 * data has expired. It can also happen when the proportion of 2168 * dirty pages grows not through writes but through memory 2169 * pressure reclaiming all the clean cache. And in some cases, 2170 * the flushers simply cannot keep up with the allocation 2171 * rate. Nudge the flusher threads in case they are asleep. 2172 */ 2173 if (stat.nr_unqueued_dirty == nr_taken) 2174 wakeup_flusher_threads(WB_REASON_VMSCAN); 2175 2176 sc->nr.dirty += stat.nr_dirty; 2177 sc->nr.congested += stat.nr_congested; 2178 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty; 2179 sc->nr.writeback += stat.nr_writeback; 2180 sc->nr.immediate += stat.nr_immediate; 2181 sc->nr.taken += nr_taken; 2182 if (file) 2183 sc->nr.file_taken += nr_taken; 2184 2185 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 2186 nr_scanned, nr_reclaimed, &stat, sc->priority, file); 2187 return nr_reclaimed; 2188 } 2189 2190 /* 2191 * shrink_active_list() moves pages from the active LRU to the inactive LRU. 2192 * 2193 * We move them the other way if the page is referenced by one or more 2194 * processes. 2195 * 2196 * If the pages are mostly unmapped, the processing is fast and it is 2197 * appropriate to hold lru_lock across the whole operation. But if 2198 * the pages are mapped, the processing is slow (page_referenced()), so 2199 * we should drop lru_lock around each page. It's impossible to balance 2200 * this, so instead we remove the pages from the LRU while processing them. 2201 * It is safe to rely on PG_active against the non-LRU pages in here because 2202 * nobody will play with that bit on a non-LRU page. 2203 * 2204 * The downside is that we have to touch page->_refcount against each page. 2205 * But we had to alter page->flags anyway. 2206 */ 2207 static void shrink_active_list(unsigned long nr_to_scan, 2208 struct lruvec *lruvec, 2209 struct scan_control *sc, 2210 enum lru_list lru) 2211 { 2212 unsigned long nr_taken; 2213 unsigned long nr_scanned; 2214 unsigned long vm_flags; 2215 LIST_HEAD(l_hold); /* The pages which were snipped off */ 2216 LIST_HEAD(l_active); 2217 LIST_HEAD(l_inactive); 2218 struct page *page; 2219 unsigned nr_deactivate, nr_activate; 2220 unsigned nr_rotated = 0; 2221 int file = is_file_lru(lru); 2222 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2223 2224 lru_add_drain(); 2225 2226 spin_lock_irq(&lruvec->lru_lock); 2227 2228 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold, 2229 &nr_scanned, sc, lru); 2230 2231 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2232 2233 if (!cgroup_reclaim(sc)) 2234 __count_vm_events(PGREFILL, nr_scanned); 2235 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned); 2236 2237 spin_unlock_irq(&lruvec->lru_lock); 2238 2239 while (!list_empty(&l_hold)) { 2240 cond_resched(); 2241 page = lru_to_page(&l_hold); 2242 list_del(&page->lru); 2243 2244 if (unlikely(!page_evictable(page))) { 2245 putback_lru_page(page); 2246 continue; 2247 } 2248 2249 if (unlikely(buffer_heads_over_limit)) { 2250 if (page_has_private(page) && trylock_page(page)) { 2251 if (page_has_private(page)) 2252 try_to_release_page(page, 0); 2253 unlock_page(page); 2254 } 2255 } 2256 2257 if (page_referenced(page, 0, sc->target_mem_cgroup, 2258 &vm_flags)) { 2259 /* 2260 * Identify referenced, file-backed active pages and 2261 * give them one more trip around the active list. So 2262 * that executable code get better chances to stay in 2263 * memory under moderate memory pressure. Anon pages 2264 * are not likely to be evicted by use-once streaming 2265 * IO, plus JVM can create lots of anon VM_EXEC pages, 2266 * so we ignore them here. 2267 */ 2268 if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) { 2269 nr_rotated += thp_nr_pages(page); 2270 list_add(&page->lru, &l_active); 2271 continue; 2272 } 2273 } 2274 2275 ClearPageActive(page); /* we are de-activating */ 2276 SetPageWorkingset(page); 2277 list_add(&page->lru, &l_inactive); 2278 } 2279 2280 /* 2281 * Move pages back to the lru list. 2282 */ 2283 spin_lock_irq(&lruvec->lru_lock); 2284 2285 nr_activate = move_pages_to_lru(lruvec, &l_active); 2286 nr_deactivate = move_pages_to_lru(lruvec, &l_inactive); 2287 /* Keep all free pages in l_active list */ 2288 list_splice(&l_inactive, &l_active); 2289 2290 __count_vm_events(PGDEACTIVATE, nr_deactivate); 2291 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate); 2292 2293 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2294 spin_unlock_irq(&lruvec->lru_lock); 2295 2296 mem_cgroup_uncharge_list(&l_active); 2297 free_unref_page_list(&l_active); 2298 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate, 2299 nr_deactivate, nr_rotated, sc->priority, file); 2300 } 2301 2302 unsigned long reclaim_pages(struct list_head *page_list) 2303 { 2304 int nid = NUMA_NO_NODE; 2305 unsigned int nr_reclaimed = 0; 2306 LIST_HEAD(node_page_list); 2307 struct reclaim_stat dummy_stat; 2308 struct page *page; 2309 struct scan_control sc = { 2310 .gfp_mask = GFP_KERNEL, 2311 .priority = DEF_PRIORITY, 2312 .may_writepage = 1, 2313 .may_unmap = 1, 2314 .may_swap = 1, 2315 }; 2316 2317 while (!list_empty(page_list)) { 2318 page = lru_to_page(page_list); 2319 if (nid == NUMA_NO_NODE) { 2320 nid = page_to_nid(page); 2321 INIT_LIST_HEAD(&node_page_list); 2322 } 2323 2324 if (nid == page_to_nid(page)) { 2325 ClearPageActive(page); 2326 list_move(&page->lru, &node_page_list); 2327 continue; 2328 } 2329 2330 nr_reclaimed += shrink_page_list(&node_page_list, 2331 NODE_DATA(nid), 2332 &sc, &dummy_stat, false); 2333 while (!list_empty(&node_page_list)) { 2334 page = lru_to_page(&node_page_list); 2335 list_del(&page->lru); 2336 putback_lru_page(page); 2337 } 2338 2339 nid = NUMA_NO_NODE; 2340 } 2341 2342 if (!list_empty(&node_page_list)) { 2343 nr_reclaimed += shrink_page_list(&node_page_list, 2344 NODE_DATA(nid), 2345 &sc, &dummy_stat, false); 2346 while (!list_empty(&node_page_list)) { 2347 page = lru_to_page(&node_page_list); 2348 list_del(&page->lru); 2349 putback_lru_page(page); 2350 } 2351 } 2352 2353 return nr_reclaimed; 2354 } 2355 2356 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 2357 struct lruvec *lruvec, struct scan_control *sc) 2358 { 2359 if (is_active_lru(lru)) { 2360 if (sc->may_deactivate & (1 << is_file_lru(lru))) 2361 shrink_active_list(nr_to_scan, lruvec, sc, lru); 2362 else 2363 sc->skipped_deactivate = 1; 2364 return 0; 2365 } 2366 2367 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 2368 } 2369 2370 /* 2371 * The inactive anon list should be small enough that the VM never has 2372 * to do too much work. 2373 * 2374 * The inactive file list should be small enough to leave most memory 2375 * to the established workingset on the scan-resistant active list, 2376 * but large enough to avoid thrashing the aggregate readahead window. 2377 * 2378 * Both inactive lists should also be large enough that each inactive 2379 * page has a chance to be referenced again before it is reclaimed. 2380 * 2381 * If that fails and refaulting is observed, the inactive list grows. 2382 * 2383 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages 2384 * on this LRU, maintained by the pageout code. An inactive_ratio 2385 * of 3 means 3:1 or 25% of the pages are kept on the inactive list. 2386 * 2387 * total target max 2388 * memory ratio inactive 2389 * ------------------------------------- 2390 * 10MB 1 5MB 2391 * 100MB 1 50MB 2392 * 1GB 3 250MB 2393 * 10GB 10 0.9GB 2394 * 100GB 31 3GB 2395 * 1TB 101 10GB 2396 * 10TB 320 32GB 2397 */ 2398 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru) 2399 { 2400 enum lru_list active_lru = inactive_lru + LRU_ACTIVE; 2401 unsigned long inactive, active; 2402 unsigned long inactive_ratio; 2403 unsigned long gb; 2404 2405 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru); 2406 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru); 2407 2408 gb = (inactive + active) >> (30 - PAGE_SHIFT); 2409 if (gb) 2410 inactive_ratio = int_sqrt(10 * gb); 2411 else 2412 inactive_ratio = 1; 2413 2414 return inactive * inactive_ratio < active; 2415 } 2416 2417 enum scan_balance { 2418 SCAN_EQUAL, 2419 SCAN_FRACT, 2420 SCAN_ANON, 2421 SCAN_FILE, 2422 }; 2423 2424 /* 2425 * Determine how aggressively the anon and file LRU lists should be 2426 * scanned. The relative value of each set of LRU lists is determined 2427 * by looking at the fraction of the pages scanned we did rotate back 2428 * onto the active list instead of evict. 2429 * 2430 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan 2431 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan 2432 */ 2433 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc, 2434 unsigned long *nr) 2435 { 2436 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 2437 unsigned long anon_cost, file_cost, total_cost; 2438 int swappiness = mem_cgroup_swappiness(memcg); 2439 u64 fraction[ANON_AND_FILE]; 2440 u64 denominator = 0; /* gcc */ 2441 enum scan_balance scan_balance; 2442 unsigned long ap, fp; 2443 enum lru_list lru; 2444 2445 /* If we have no swap space, do not bother scanning anon pages. */ 2446 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) { 2447 scan_balance = SCAN_FILE; 2448 goto out; 2449 } 2450 2451 /* 2452 * Global reclaim will swap to prevent OOM even with no 2453 * swappiness, but memcg users want to use this knob to 2454 * disable swapping for individual groups completely when 2455 * using the memory controller's swap limit feature would be 2456 * too expensive. 2457 */ 2458 if (cgroup_reclaim(sc) && !swappiness) { 2459 scan_balance = SCAN_FILE; 2460 goto out; 2461 } 2462 2463 /* 2464 * Do not apply any pressure balancing cleverness when the 2465 * system is close to OOM, scan both anon and file equally 2466 * (unless the swappiness setting disagrees with swapping). 2467 */ 2468 if (!sc->priority && swappiness) { 2469 scan_balance = SCAN_EQUAL; 2470 goto out; 2471 } 2472 2473 /* 2474 * If the system is almost out of file pages, force-scan anon. 2475 */ 2476 if (sc->file_is_tiny) { 2477 scan_balance = SCAN_ANON; 2478 goto out; 2479 } 2480 2481 /* 2482 * If there is enough inactive page cache, we do not reclaim 2483 * anything from the anonymous working right now. 2484 */ 2485 if (sc->cache_trim_mode) { 2486 scan_balance = SCAN_FILE; 2487 goto out; 2488 } 2489 2490 scan_balance = SCAN_FRACT; 2491 /* 2492 * Calculate the pressure balance between anon and file pages. 2493 * 2494 * The amount of pressure we put on each LRU is inversely 2495 * proportional to the cost of reclaiming each list, as 2496 * determined by the share of pages that are refaulting, times 2497 * the relative IO cost of bringing back a swapped out 2498 * anonymous page vs reloading a filesystem page (swappiness). 2499 * 2500 * Although we limit that influence to ensure no list gets 2501 * left behind completely: at least a third of the pressure is 2502 * applied, before swappiness. 2503 * 2504 * With swappiness at 100, anon and file have equal IO cost. 2505 */ 2506 total_cost = sc->anon_cost + sc->file_cost; 2507 anon_cost = total_cost + sc->anon_cost; 2508 file_cost = total_cost + sc->file_cost; 2509 total_cost = anon_cost + file_cost; 2510 2511 ap = swappiness * (total_cost + 1); 2512 ap /= anon_cost + 1; 2513 2514 fp = (200 - swappiness) * (total_cost + 1); 2515 fp /= file_cost + 1; 2516 2517 fraction[0] = ap; 2518 fraction[1] = fp; 2519 denominator = ap + fp; 2520 out: 2521 for_each_evictable_lru(lru) { 2522 int file = is_file_lru(lru); 2523 unsigned long lruvec_size; 2524 unsigned long scan; 2525 unsigned long protection; 2526 2527 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx); 2528 protection = mem_cgroup_protection(sc->target_mem_cgroup, 2529 memcg, 2530 sc->memcg_low_reclaim); 2531 2532 if (protection) { 2533 /* 2534 * Scale a cgroup's reclaim pressure by proportioning 2535 * its current usage to its memory.low or memory.min 2536 * setting. 2537 * 2538 * This is important, as otherwise scanning aggression 2539 * becomes extremely binary -- from nothing as we 2540 * approach the memory protection threshold, to totally 2541 * nominal as we exceed it. This results in requiring 2542 * setting extremely liberal protection thresholds. It 2543 * also means we simply get no protection at all if we 2544 * set it too low, which is not ideal. 2545 * 2546 * If there is any protection in place, we reduce scan 2547 * pressure by how much of the total memory used is 2548 * within protection thresholds. 2549 * 2550 * There is one special case: in the first reclaim pass, 2551 * we skip over all groups that are within their low 2552 * protection. If that fails to reclaim enough pages to 2553 * satisfy the reclaim goal, we come back and override 2554 * the best-effort low protection. However, we still 2555 * ideally want to honor how well-behaved groups are in 2556 * that case instead of simply punishing them all 2557 * equally. As such, we reclaim them based on how much 2558 * memory they are using, reducing the scan pressure 2559 * again by how much of the total memory used is under 2560 * hard protection. 2561 */ 2562 unsigned long cgroup_size = mem_cgroup_size(memcg); 2563 2564 /* Avoid TOCTOU with earlier protection check */ 2565 cgroup_size = max(cgroup_size, protection); 2566 2567 scan = lruvec_size - lruvec_size * protection / 2568 cgroup_size; 2569 2570 /* 2571 * Minimally target SWAP_CLUSTER_MAX pages to keep 2572 * reclaim moving forwards, avoiding decrementing 2573 * sc->priority further than desirable. 2574 */ 2575 scan = max(scan, SWAP_CLUSTER_MAX); 2576 } else { 2577 scan = lruvec_size; 2578 } 2579 2580 scan >>= sc->priority; 2581 2582 /* 2583 * If the cgroup's already been deleted, make sure to 2584 * scrape out the remaining cache. 2585 */ 2586 if (!scan && !mem_cgroup_online(memcg)) 2587 scan = min(lruvec_size, SWAP_CLUSTER_MAX); 2588 2589 switch (scan_balance) { 2590 case SCAN_EQUAL: 2591 /* Scan lists relative to size */ 2592 break; 2593 case SCAN_FRACT: 2594 /* 2595 * Scan types proportional to swappiness and 2596 * their relative recent reclaim efficiency. 2597 * Make sure we don't miss the last page on 2598 * the offlined memory cgroups because of a 2599 * round-off error. 2600 */ 2601 scan = mem_cgroup_online(memcg) ? 2602 div64_u64(scan * fraction[file], denominator) : 2603 DIV64_U64_ROUND_UP(scan * fraction[file], 2604 denominator); 2605 break; 2606 case SCAN_FILE: 2607 case SCAN_ANON: 2608 /* Scan one type exclusively */ 2609 if ((scan_balance == SCAN_FILE) != file) 2610 scan = 0; 2611 break; 2612 default: 2613 /* Look ma, no brain */ 2614 BUG(); 2615 } 2616 2617 nr[lru] = scan; 2618 } 2619 } 2620 2621 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 2622 { 2623 unsigned long nr[NR_LRU_LISTS]; 2624 unsigned long targets[NR_LRU_LISTS]; 2625 unsigned long nr_to_scan; 2626 enum lru_list lru; 2627 unsigned long nr_reclaimed = 0; 2628 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 2629 struct blk_plug plug; 2630 bool scan_adjusted; 2631 2632 get_scan_count(lruvec, sc, nr); 2633 2634 /* Record the original scan target for proportional adjustments later */ 2635 memcpy(targets, nr, sizeof(nr)); 2636 2637 /* 2638 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal 2639 * event that can occur when there is little memory pressure e.g. 2640 * multiple streaming readers/writers. Hence, we do not abort scanning 2641 * when the requested number of pages are reclaimed when scanning at 2642 * DEF_PRIORITY on the assumption that the fact we are direct 2643 * reclaiming implies that kswapd is not keeping up and it is best to 2644 * do a batch of work at once. For memcg reclaim one check is made to 2645 * abort proportional reclaim if either the file or anon lru has already 2646 * dropped to zero at the first pass. 2647 */ 2648 scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() && 2649 sc->priority == DEF_PRIORITY); 2650 2651 blk_start_plug(&plug); 2652 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 2653 nr[LRU_INACTIVE_FILE]) { 2654 unsigned long nr_anon, nr_file, percentage; 2655 unsigned long nr_scanned; 2656 2657 for_each_evictable_lru(lru) { 2658 if (nr[lru]) { 2659 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 2660 nr[lru] -= nr_to_scan; 2661 2662 nr_reclaimed += shrink_list(lru, nr_to_scan, 2663 lruvec, sc); 2664 } 2665 } 2666 2667 cond_resched(); 2668 2669 if (nr_reclaimed < nr_to_reclaim || scan_adjusted) 2670 continue; 2671 2672 /* 2673 * For kswapd and memcg, reclaim at least the number of pages 2674 * requested. Ensure that the anon and file LRUs are scanned 2675 * proportionally what was requested by get_scan_count(). We 2676 * stop reclaiming one LRU and reduce the amount scanning 2677 * proportional to the original scan target. 2678 */ 2679 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 2680 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 2681 2682 /* 2683 * It's just vindictive to attack the larger once the smaller 2684 * has gone to zero. And given the way we stop scanning the 2685 * smaller below, this makes sure that we only make one nudge 2686 * towards proportionality once we've got nr_to_reclaim. 2687 */ 2688 if (!nr_file || !nr_anon) 2689 break; 2690 2691 if (nr_file > nr_anon) { 2692 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 2693 targets[LRU_ACTIVE_ANON] + 1; 2694 lru = LRU_BASE; 2695 percentage = nr_anon * 100 / scan_target; 2696 } else { 2697 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 2698 targets[LRU_ACTIVE_FILE] + 1; 2699 lru = LRU_FILE; 2700 percentage = nr_file * 100 / scan_target; 2701 } 2702 2703 /* Stop scanning the smaller of the LRU */ 2704 nr[lru] = 0; 2705 nr[lru + LRU_ACTIVE] = 0; 2706 2707 /* 2708 * Recalculate the other LRU scan count based on its original 2709 * scan target and the percentage scanning already complete 2710 */ 2711 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 2712 nr_scanned = targets[lru] - nr[lru]; 2713 nr[lru] = targets[lru] * (100 - percentage) / 100; 2714 nr[lru] -= min(nr[lru], nr_scanned); 2715 2716 lru += LRU_ACTIVE; 2717 nr_scanned = targets[lru] - nr[lru]; 2718 nr[lru] = targets[lru] * (100 - percentage) / 100; 2719 nr[lru] -= min(nr[lru], nr_scanned); 2720 2721 scan_adjusted = true; 2722 } 2723 blk_finish_plug(&plug); 2724 sc->nr_reclaimed += nr_reclaimed; 2725 2726 /* 2727 * Even if we did not try to evict anon pages at all, we want to 2728 * rebalance the anon lru active/inactive ratio. 2729 */ 2730 if (total_swap_pages && inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 2731 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 2732 sc, LRU_ACTIVE_ANON); 2733 } 2734 2735 /* Use reclaim/compaction for costly allocs or under memory pressure */ 2736 static bool in_reclaim_compaction(struct scan_control *sc) 2737 { 2738 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 2739 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 2740 sc->priority < DEF_PRIORITY - 2)) 2741 return true; 2742 2743 return false; 2744 } 2745 2746 /* 2747 * Reclaim/compaction is used for high-order allocation requests. It reclaims 2748 * order-0 pages before compacting the zone. should_continue_reclaim() returns 2749 * true if more pages should be reclaimed such that when the page allocator 2750 * calls try_to_compact_pages() that it will have enough free pages to succeed. 2751 * It will give up earlier than that if there is difficulty reclaiming pages. 2752 */ 2753 static inline bool should_continue_reclaim(struct pglist_data *pgdat, 2754 unsigned long nr_reclaimed, 2755 struct scan_control *sc) 2756 { 2757 unsigned long pages_for_compaction; 2758 unsigned long inactive_lru_pages; 2759 int z; 2760 2761 /* If not in reclaim/compaction mode, stop */ 2762 if (!in_reclaim_compaction(sc)) 2763 return false; 2764 2765 /* 2766 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX 2767 * number of pages that were scanned. This will return to the caller 2768 * with the risk reclaim/compaction and the resulting allocation attempt 2769 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL 2770 * allocations through requiring that the full LRU list has been scanned 2771 * first, by assuming that zero delta of sc->nr_scanned means full LRU 2772 * scan, but that approximation was wrong, and there were corner cases 2773 * where always a non-zero amount of pages were scanned. 2774 */ 2775 if (!nr_reclaimed) 2776 return false; 2777 2778 /* If compaction would go ahead or the allocation would succeed, stop */ 2779 for (z = 0; z <= sc->reclaim_idx; z++) { 2780 struct zone *zone = &pgdat->node_zones[z]; 2781 if (!managed_zone(zone)) 2782 continue; 2783 2784 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) { 2785 case COMPACT_SUCCESS: 2786 case COMPACT_CONTINUE: 2787 return false; 2788 default: 2789 /* check next zone */ 2790 ; 2791 } 2792 } 2793 2794 /* 2795 * If we have not reclaimed enough pages for compaction and the 2796 * inactive lists are large enough, continue reclaiming 2797 */ 2798 pages_for_compaction = compact_gap(sc->order); 2799 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE); 2800 if (get_nr_swap_pages() > 0) 2801 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON); 2802 2803 return inactive_lru_pages > pages_for_compaction; 2804 } 2805 2806 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc) 2807 { 2808 struct mem_cgroup *target_memcg = sc->target_mem_cgroup; 2809 struct mem_cgroup *memcg; 2810 2811 memcg = mem_cgroup_iter(target_memcg, NULL, NULL); 2812 do { 2813 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 2814 unsigned long reclaimed; 2815 unsigned long scanned; 2816 2817 /* 2818 * This loop can become CPU-bound when target memcgs 2819 * aren't eligible for reclaim - either because they 2820 * don't have any reclaimable pages, or because their 2821 * memory is explicitly protected. Avoid soft lockups. 2822 */ 2823 cond_resched(); 2824 2825 mem_cgroup_calculate_protection(target_memcg, memcg); 2826 2827 if (mem_cgroup_below_min(memcg)) { 2828 /* 2829 * Hard protection. 2830 * If there is no reclaimable memory, OOM. 2831 */ 2832 continue; 2833 } else if (mem_cgroup_below_low(memcg)) { 2834 /* 2835 * Soft protection. 2836 * Respect the protection only as long as 2837 * there is an unprotected supply 2838 * of reclaimable memory from other cgroups. 2839 */ 2840 if (!sc->memcg_low_reclaim) { 2841 sc->memcg_low_skipped = 1; 2842 continue; 2843 } 2844 memcg_memory_event(memcg, MEMCG_LOW); 2845 } 2846 2847 reclaimed = sc->nr_reclaimed; 2848 scanned = sc->nr_scanned; 2849 2850 shrink_lruvec(lruvec, sc); 2851 2852 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, 2853 sc->priority); 2854 2855 /* Record the group's reclaim efficiency */ 2856 vmpressure(sc->gfp_mask, memcg, false, 2857 sc->nr_scanned - scanned, 2858 sc->nr_reclaimed - reclaimed); 2859 2860 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL))); 2861 } 2862 2863 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc) 2864 { 2865 struct reclaim_state *reclaim_state = current->reclaim_state; 2866 unsigned long nr_reclaimed, nr_scanned; 2867 struct lruvec *target_lruvec; 2868 bool reclaimable = false; 2869 unsigned long file; 2870 2871 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat); 2872 2873 again: 2874 memset(&sc->nr, 0, sizeof(sc->nr)); 2875 2876 nr_reclaimed = sc->nr_reclaimed; 2877 nr_scanned = sc->nr_scanned; 2878 2879 /* 2880 * Determine the scan balance between anon and file LRUs. 2881 */ 2882 spin_lock_irq(&target_lruvec->lru_lock); 2883 sc->anon_cost = target_lruvec->anon_cost; 2884 sc->file_cost = target_lruvec->file_cost; 2885 spin_unlock_irq(&target_lruvec->lru_lock); 2886 2887 /* 2888 * Target desirable inactive:active list ratios for the anon 2889 * and file LRU lists. 2890 */ 2891 if (!sc->force_deactivate) { 2892 unsigned long refaults; 2893 2894 refaults = lruvec_page_state(target_lruvec, 2895 WORKINGSET_ACTIVATE_ANON); 2896 if (refaults != target_lruvec->refaults[0] || 2897 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON)) 2898 sc->may_deactivate |= DEACTIVATE_ANON; 2899 else 2900 sc->may_deactivate &= ~DEACTIVATE_ANON; 2901 2902 /* 2903 * When refaults are being observed, it means a new 2904 * workingset is being established. Deactivate to get 2905 * rid of any stale active pages quickly. 2906 */ 2907 refaults = lruvec_page_state(target_lruvec, 2908 WORKINGSET_ACTIVATE_FILE); 2909 if (refaults != target_lruvec->refaults[1] || 2910 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE)) 2911 sc->may_deactivate |= DEACTIVATE_FILE; 2912 else 2913 sc->may_deactivate &= ~DEACTIVATE_FILE; 2914 } else 2915 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE; 2916 2917 /* 2918 * If we have plenty of inactive file pages that aren't 2919 * thrashing, try to reclaim those first before touching 2920 * anonymous pages. 2921 */ 2922 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE); 2923 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE)) 2924 sc->cache_trim_mode = 1; 2925 else 2926 sc->cache_trim_mode = 0; 2927 2928 /* 2929 * Prevent the reclaimer from falling into the cache trap: as 2930 * cache pages start out inactive, every cache fault will tip 2931 * the scan balance towards the file LRU. And as the file LRU 2932 * shrinks, so does the window for rotation from references. 2933 * This means we have a runaway feedback loop where a tiny 2934 * thrashing file LRU becomes infinitely more attractive than 2935 * anon pages. Try to detect this based on file LRU size. 2936 */ 2937 if (!cgroup_reclaim(sc)) { 2938 unsigned long total_high_wmark = 0; 2939 unsigned long free, anon; 2940 int z; 2941 2942 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES); 2943 file = node_page_state(pgdat, NR_ACTIVE_FILE) + 2944 node_page_state(pgdat, NR_INACTIVE_FILE); 2945 2946 for (z = 0; z < MAX_NR_ZONES; z++) { 2947 struct zone *zone = &pgdat->node_zones[z]; 2948 if (!managed_zone(zone)) 2949 continue; 2950 2951 total_high_wmark += high_wmark_pages(zone); 2952 } 2953 2954 /* 2955 * Consider anon: if that's low too, this isn't a 2956 * runaway file reclaim problem, but rather just 2957 * extreme pressure. Reclaim as per usual then. 2958 */ 2959 anon = node_page_state(pgdat, NR_INACTIVE_ANON); 2960 2961 sc->file_is_tiny = 2962 file + free <= total_high_wmark && 2963 !(sc->may_deactivate & DEACTIVATE_ANON) && 2964 anon >> sc->priority; 2965 } 2966 2967 shrink_node_memcgs(pgdat, sc); 2968 2969 if (reclaim_state) { 2970 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 2971 reclaim_state->reclaimed_slab = 0; 2972 } 2973 2974 /* Record the subtree's reclaim efficiency */ 2975 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, 2976 sc->nr_scanned - nr_scanned, 2977 sc->nr_reclaimed - nr_reclaimed); 2978 2979 if (sc->nr_reclaimed - nr_reclaimed) 2980 reclaimable = true; 2981 2982 if (current_is_kswapd()) { 2983 /* 2984 * If reclaim is isolating dirty pages under writeback, 2985 * it implies that the long-lived page allocation rate 2986 * is exceeding the page laundering rate. Either the 2987 * global limits are not being effective at throttling 2988 * processes due to the page distribution throughout 2989 * zones or there is heavy usage of a slow backing 2990 * device. The only option is to throttle from reclaim 2991 * context which is not ideal as there is no guarantee 2992 * the dirtying process is throttled in the same way 2993 * balance_dirty_pages() manages. 2994 * 2995 * Once a node is flagged PGDAT_WRITEBACK, kswapd will 2996 * count the number of pages under pages flagged for 2997 * immediate reclaim and stall if any are encountered 2998 * in the nr_immediate check below. 2999 */ 3000 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken) 3001 set_bit(PGDAT_WRITEBACK, &pgdat->flags); 3002 3003 /* Allow kswapd to start writing pages during reclaim.*/ 3004 if (sc->nr.unqueued_dirty == sc->nr.file_taken) 3005 set_bit(PGDAT_DIRTY, &pgdat->flags); 3006 3007 /* 3008 * If kswapd scans pages marked for immediate 3009 * reclaim and under writeback (nr_immediate), it 3010 * implies that pages are cycling through the LRU 3011 * faster than they are written so also forcibly stall. 3012 */ 3013 if (sc->nr.immediate) 3014 congestion_wait(BLK_RW_ASYNC, HZ/10); 3015 } 3016 3017 /* 3018 * Tag a node/memcg as congested if all the dirty pages 3019 * scanned were backed by a congested BDI and 3020 * wait_iff_congested will stall. 3021 * 3022 * Legacy memcg will stall in page writeback so avoid forcibly 3023 * stalling in wait_iff_congested(). 3024 */ 3025 if ((current_is_kswapd() || 3026 (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) && 3027 sc->nr.dirty && sc->nr.dirty == sc->nr.congested) 3028 set_bit(LRUVEC_CONGESTED, &target_lruvec->flags); 3029 3030 /* 3031 * Stall direct reclaim for IO completions if underlying BDIs 3032 * and node is congested. Allow kswapd to continue until it 3033 * starts encountering unqueued dirty pages or cycling through 3034 * the LRU too quickly. 3035 */ 3036 if (!current_is_kswapd() && current_may_throttle() && 3037 !sc->hibernation_mode && 3038 test_bit(LRUVEC_CONGESTED, &target_lruvec->flags)) 3039 wait_iff_congested(BLK_RW_ASYNC, HZ/10); 3040 3041 if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed, 3042 sc)) 3043 goto again; 3044 3045 /* 3046 * Kswapd gives up on balancing particular nodes after too 3047 * many failures to reclaim anything from them and goes to 3048 * sleep. On reclaim progress, reset the failure counter. A 3049 * successful direct reclaim run will revive a dormant kswapd. 3050 */ 3051 if (reclaimable) 3052 pgdat->kswapd_failures = 0; 3053 } 3054 3055 /* 3056 * Returns true if compaction should go ahead for a costly-order request, or 3057 * the allocation would already succeed without compaction. Return false if we 3058 * should reclaim first. 3059 */ 3060 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) 3061 { 3062 unsigned long watermark; 3063 enum compact_result suitable; 3064 3065 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx); 3066 if (suitable == COMPACT_SUCCESS) 3067 /* Allocation should succeed already. Don't reclaim. */ 3068 return true; 3069 if (suitable == COMPACT_SKIPPED) 3070 /* Compaction cannot yet proceed. Do reclaim. */ 3071 return false; 3072 3073 /* 3074 * Compaction is already possible, but it takes time to run and there 3075 * are potentially other callers using the pages just freed. So proceed 3076 * with reclaim to make a buffer of free pages available to give 3077 * compaction a reasonable chance of completing and allocating the page. 3078 * Note that we won't actually reclaim the whole buffer in one attempt 3079 * as the target watermark in should_continue_reclaim() is lower. But if 3080 * we are already above the high+gap watermark, don't reclaim at all. 3081 */ 3082 watermark = high_wmark_pages(zone) + compact_gap(sc->order); 3083 3084 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx); 3085 } 3086 3087 /* 3088 * This is the direct reclaim path, for page-allocating processes. We only 3089 * try to reclaim pages from zones which will satisfy the caller's allocation 3090 * request. 3091 * 3092 * If a zone is deemed to be full of pinned pages then just give it a light 3093 * scan then give up on it. 3094 */ 3095 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 3096 { 3097 struct zoneref *z; 3098 struct zone *zone; 3099 unsigned long nr_soft_reclaimed; 3100 unsigned long nr_soft_scanned; 3101 gfp_t orig_mask; 3102 pg_data_t *last_pgdat = NULL; 3103 3104 /* 3105 * If the number of buffer_heads in the machine exceeds the maximum 3106 * allowed level, force direct reclaim to scan the highmem zone as 3107 * highmem pages could be pinning lowmem pages storing buffer_heads 3108 */ 3109 orig_mask = sc->gfp_mask; 3110 if (buffer_heads_over_limit) { 3111 sc->gfp_mask |= __GFP_HIGHMEM; 3112 sc->reclaim_idx = gfp_zone(sc->gfp_mask); 3113 } 3114 3115 for_each_zone_zonelist_nodemask(zone, z, zonelist, 3116 sc->reclaim_idx, sc->nodemask) { 3117 /* 3118 * Take care memory controller reclaiming has small influence 3119 * to global LRU. 3120 */ 3121 if (!cgroup_reclaim(sc)) { 3122 if (!cpuset_zone_allowed(zone, 3123 GFP_KERNEL | __GFP_HARDWALL)) 3124 continue; 3125 3126 /* 3127 * If we already have plenty of memory free for 3128 * compaction in this zone, don't free any more. 3129 * Even though compaction is invoked for any 3130 * non-zero order, only frequent costly order 3131 * reclamation is disruptive enough to become a 3132 * noticeable problem, like transparent huge 3133 * page allocations. 3134 */ 3135 if (IS_ENABLED(CONFIG_COMPACTION) && 3136 sc->order > PAGE_ALLOC_COSTLY_ORDER && 3137 compaction_ready(zone, sc)) { 3138 sc->compaction_ready = true; 3139 continue; 3140 } 3141 3142 /* 3143 * Shrink each node in the zonelist once. If the 3144 * zonelist is ordered by zone (not the default) then a 3145 * node may be shrunk multiple times but in that case 3146 * the user prefers lower zones being preserved. 3147 */ 3148 if (zone->zone_pgdat == last_pgdat) 3149 continue; 3150 3151 /* 3152 * This steals pages from memory cgroups over softlimit 3153 * and returns the number of reclaimed pages and 3154 * scanned pages. This works for global memory pressure 3155 * and balancing, not for a memcg's limit. 3156 */ 3157 nr_soft_scanned = 0; 3158 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat, 3159 sc->order, sc->gfp_mask, 3160 &nr_soft_scanned); 3161 sc->nr_reclaimed += nr_soft_reclaimed; 3162 sc->nr_scanned += nr_soft_scanned; 3163 /* need some check for avoid more shrink_zone() */ 3164 } 3165 3166 /* See comment about same check for global reclaim above */ 3167 if (zone->zone_pgdat == last_pgdat) 3168 continue; 3169 last_pgdat = zone->zone_pgdat; 3170 shrink_node(zone->zone_pgdat, sc); 3171 } 3172 3173 /* 3174 * Restore to original mask to avoid the impact on the caller if we 3175 * promoted it to __GFP_HIGHMEM. 3176 */ 3177 sc->gfp_mask = orig_mask; 3178 } 3179 3180 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat) 3181 { 3182 struct lruvec *target_lruvec; 3183 unsigned long refaults; 3184 3185 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat); 3186 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON); 3187 target_lruvec->refaults[0] = refaults; 3188 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE); 3189 target_lruvec->refaults[1] = refaults; 3190 } 3191 3192 /* 3193 * This is the main entry point to direct page reclaim. 3194 * 3195 * If a full scan of the inactive list fails to free enough memory then we 3196 * are "out of memory" and something needs to be killed. 3197 * 3198 * If the caller is !__GFP_FS then the probability of a failure is reasonably 3199 * high - the zone may be full of dirty or under-writeback pages, which this 3200 * caller can't do much about. We kick the writeback threads and take explicit 3201 * naps in the hope that some of these pages can be written. But if the 3202 * allocating task holds filesystem locks which prevent writeout this might not 3203 * work, and the allocation attempt will fail. 3204 * 3205 * returns: 0, if no pages reclaimed 3206 * else, the number of pages reclaimed 3207 */ 3208 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 3209 struct scan_control *sc) 3210 { 3211 int initial_priority = sc->priority; 3212 pg_data_t *last_pgdat; 3213 struct zoneref *z; 3214 struct zone *zone; 3215 retry: 3216 delayacct_freepages_start(); 3217 3218 if (!cgroup_reclaim(sc)) 3219 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1); 3220 3221 do { 3222 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 3223 sc->priority); 3224 sc->nr_scanned = 0; 3225 shrink_zones(zonelist, sc); 3226 3227 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 3228 break; 3229 3230 if (sc->compaction_ready) 3231 break; 3232 3233 /* 3234 * If we're getting trouble reclaiming, start doing 3235 * writepage even in laptop mode. 3236 */ 3237 if (sc->priority < DEF_PRIORITY - 2) 3238 sc->may_writepage = 1; 3239 } while (--sc->priority >= 0); 3240 3241 last_pgdat = NULL; 3242 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx, 3243 sc->nodemask) { 3244 if (zone->zone_pgdat == last_pgdat) 3245 continue; 3246 last_pgdat = zone->zone_pgdat; 3247 3248 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat); 3249 3250 if (cgroup_reclaim(sc)) { 3251 struct lruvec *lruvec; 3252 3253 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, 3254 zone->zone_pgdat); 3255 clear_bit(LRUVEC_CONGESTED, &lruvec->flags); 3256 } 3257 } 3258 3259 delayacct_freepages_end(); 3260 3261 if (sc->nr_reclaimed) 3262 return sc->nr_reclaimed; 3263 3264 /* Aborted reclaim to try compaction? don't OOM, then */ 3265 if (sc->compaction_ready) 3266 return 1; 3267 3268 /* 3269 * We make inactive:active ratio decisions based on the node's 3270 * composition of memory, but a restrictive reclaim_idx or a 3271 * memory.low cgroup setting can exempt large amounts of 3272 * memory from reclaim. Neither of which are very common, so 3273 * instead of doing costly eligibility calculations of the 3274 * entire cgroup subtree up front, we assume the estimates are 3275 * good, and retry with forcible deactivation if that fails. 3276 */ 3277 if (sc->skipped_deactivate) { 3278 sc->priority = initial_priority; 3279 sc->force_deactivate = 1; 3280 sc->skipped_deactivate = 0; 3281 goto retry; 3282 } 3283 3284 /* Untapped cgroup reserves? Don't OOM, retry. */ 3285 if (sc->memcg_low_skipped) { 3286 sc->priority = initial_priority; 3287 sc->force_deactivate = 0; 3288 sc->memcg_low_reclaim = 1; 3289 sc->memcg_low_skipped = 0; 3290 goto retry; 3291 } 3292 3293 return 0; 3294 } 3295 3296 static bool allow_direct_reclaim(pg_data_t *pgdat) 3297 { 3298 struct zone *zone; 3299 unsigned long pfmemalloc_reserve = 0; 3300 unsigned long free_pages = 0; 3301 int i; 3302 bool wmark_ok; 3303 3304 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 3305 return true; 3306 3307 for (i = 0; i <= ZONE_NORMAL; i++) { 3308 zone = &pgdat->node_zones[i]; 3309 if (!managed_zone(zone)) 3310 continue; 3311 3312 if (!zone_reclaimable_pages(zone)) 3313 continue; 3314 3315 pfmemalloc_reserve += min_wmark_pages(zone); 3316 free_pages += zone_page_state(zone, NR_FREE_PAGES); 3317 } 3318 3319 /* If there are no reserves (unexpected config) then do not throttle */ 3320 if (!pfmemalloc_reserve) 3321 return true; 3322 3323 wmark_ok = free_pages > pfmemalloc_reserve / 2; 3324 3325 /* kswapd must be awake if processes are being throttled */ 3326 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 3327 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL) 3328 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL); 3329 3330 wake_up_interruptible(&pgdat->kswapd_wait); 3331 } 3332 3333 return wmark_ok; 3334 } 3335 3336 /* 3337 * Throttle direct reclaimers if backing storage is backed by the network 3338 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 3339 * depleted. kswapd will continue to make progress and wake the processes 3340 * when the low watermark is reached. 3341 * 3342 * Returns true if a fatal signal was delivered during throttling. If this 3343 * happens, the page allocator should not consider triggering the OOM killer. 3344 */ 3345 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 3346 nodemask_t *nodemask) 3347 { 3348 struct zoneref *z; 3349 struct zone *zone; 3350 pg_data_t *pgdat = NULL; 3351 3352 /* 3353 * Kernel threads should not be throttled as they may be indirectly 3354 * responsible for cleaning pages necessary for reclaim to make forward 3355 * progress. kjournald for example may enter direct reclaim while 3356 * committing a transaction where throttling it could forcing other 3357 * processes to block on log_wait_commit(). 3358 */ 3359 if (current->flags & PF_KTHREAD) 3360 goto out; 3361 3362 /* 3363 * If a fatal signal is pending, this process should not throttle. 3364 * It should return quickly so it can exit and free its memory 3365 */ 3366 if (fatal_signal_pending(current)) 3367 goto out; 3368 3369 /* 3370 * Check if the pfmemalloc reserves are ok by finding the first node 3371 * with a usable ZONE_NORMAL or lower zone. The expectation is that 3372 * GFP_KERNEL will be required for allocating network buffers when 3373 * swapping over the network so ZONE_HIGHMEM is unusable. 3374 * 3375 * Throttling is based on the first usable node and throttled processes 3376 * wait on a queue until kswapd makes progress and wakes them. There 3377 * is an affinity then between processes waking up and where reclaim 3378 * progress has been made assuming the process wakes on the same node. 3379 * More importantly, processes running on remote nodes will not compete 3380 * for remote pfmemalloc reserves and processes on different nodes 3381 * should make reasonable progress. 3382 */ 3383 for_each_zone_zonelist_nodemask(zone, z, zonelist, 3384 gfp_zone(gfp_mask), nodemask) { 3385 if (zone_idx(zone) > ZONE_NORMAL) 3386 continue; 3387 3388 /* Throttle based on the first usable node */ 3389 pgdat = zone->zone_pgdat; 3390 if (allow_direct_reclaim(pgdat)) 3391 goto out; 3392 break; 3393 } 3394 3395 /* If no zone was usable by the allocation flags then do not throttle */ 3396 if (!pgdat) 3397 goto out; 3398 3399 /* Account for the throttling */ 3400 count_vm_event(PGSCAN_DIRECT_THROTTLE); 3401 3402 /* 3403 * If the caller cannot enter the filesystem, it's possible that it 3404 * is due to the caller holding an FS lock or performing a journal 3405 * transaction in the case of a filesystem like ext[3|4]. In this case, 3406 * it is not safe to block on pfmemalloc_wait as kswapd could be 3407 * blocked waiting on the same lock. Instead, throttle for up to a 3408 * second before continuing. 3409 */ 3410 if (!(gfp_mask & __GFP_FS)) { 3411 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 3412 allow_direct_reclaim(pgdat), HZ); 3413 3414 goto check_pending; 3415 } 3416 3417 /* Throttle until kswapd wakes the process */ 3418 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 3419 allow_direct_reclaim(pgdat)); 3420 3421 check_pending: 3422 if (fatal_signal_pending(current)) 3423 return true; 3424 3425 out: 3426 return false; 3427 } 3428 3429 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 3430 gfp_t gfp_mask, nodemask_t *nodemask) 3431 { 3432 unsigned long nr_reclaimed; 3433 struct scan_control sc = { 3434 .nr_to_reclaim = SWAP_CLUSTER_MAX, 3435 .gfp_mask = current_gfp_context(gfp_mask), 3436 .reclaim_idx = gfp_zone(gfp_mask), 3437 .order = order, 3438 .nodemask = nodemask, 3439 .priority = DEF_PRIORITY, 3440 .may_writepage = !laptop_mode, 3441 .may_unmap = 1, 3442 .may_swap = 1, 3443 }; 3444 3445 /* 3446 * scan_control uses s8 fields for order, priority, and reclaim_idx. 3447 * Confirm they are large enough for max values. 3448 */ 3449 BUILD_BUG_ON(MAX_ORDER > S8_MAX); 3450 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX); 3451 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX); 3452 3453 /* 3454 * Do not enter reclaim if fatal signal was delivered while throttled. 3455 * 1 is returned so that the page allocator does not OOM kill at this 3456 * point. 3457 */ 3458 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask)) 3459 return 1; 3460 3461 set_task_reclaim_state(current, &sc.reclaim_state); 3462 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask); 3463 3464 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3465 3466 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 3467 set_task_reclaim_state(current, NULL); 3468 3469 return nr_reclaimed; 3470 } 3471 3472 #ifdef CONFIG_MEMCG 3473 3474 /* Only used by soft limit reclaim. Do not reuse for anything else. */ 3475 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg, 3476 gfp_t gfp_mask, bool noswap, 3477 pg_data_t *pgdat, 3478 unsigned long *nr_scanned) 3479 { 3480 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 3481 struct scan_control sc = { 3482 .nr_to_reclaim = SWAP_CLUSTER_MAX, 3483 .target_mem_cgroup = memcg, 3484 .may_writepage = !laptop_mode, 3485 .may_unmap = 1, 3486 .reclaim_idx = MAX_NR_ZONES - 1, 3487 .may_swap = !noswap, 3488 }; 3489 3490 WARN_ON_ONCE(!current->reclaim_state); 3491 3492 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 3493 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 3494 3495 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 3496 sc.gfp_mask); 3497 3498 /* 3499 * NOTE: Although we can get the priority field, using it 3500 * here is not a good idea, since it limits the pages we can scan. 3501 * if we don't reclaim here, the shrink_node from balance_pgdat 3502 * will pick up pages from other mem cgroup's as well. We hack 3503 * the priority and make it zero. 3504 */ 3505 shrink_lruvec(lruvec, &sc); 3506 3507 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 3508 3509 *nr_scanned = sc.nr_scanned; 3510 3511 return sc.nr_reclaimed; 3512 } 3513 3514 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 3515 unsigned long nr_pages, 3516 gfp_t gfp_mask, 3517 bool may_swap) 3518 { 3519 unsigned long nr_reclaimed; 3520 unsigned int noreclaim_flag; 3521 struct scan_control sc = { 3522 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 3523 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) | 3524 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 3525 .reclaim_idx = MAX_NR_ZONES - 1, 3526 .target_mem_cgroup = memcg, 3527 .priority = DEF_PRIORITY, 3528 .may_writepage = !laptop_mode, 3529 .may_unmap = 1, 3530 .may_swap = may_swap, 3531 }; 3532 /* 3533 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put 3534 * equal pressure on all the nodes. This is based on the assumption that 3535 * the reclaim does not bail out early. 3536 */ 3537 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 3538 3539 set_task_reclaim_state(current, &sc.reclaim_state); 3540 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask); 3541 noreclaim_flag = memalloc_noreclaim_save(); 3542 3543 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3544 3545 memalloc_noreclaim_restore(noreclaim_flag); 3546 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 3547 set_task_reclaim_state(current, NULL); 3548 3549 return nr_reclaimed; 3550 } 3551 #endif 3552 3553 static void age_active_anon(struct pglist_data *pgdat, 3554 struct scan_control *sc) 3555 { 3556 struct mem_cgroup *memcg; 3557 struct lruvec *lruvec; 3558 3559 if (!total_swap_pages) 3560 return; 3561 3562 lruvec = mem_cgroup_lruvec(NULL, pgdat); 3563 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 3564 return; 3565 3566 memcg = mem_cgroup_iter(NULL, NULL, NULL); 3567 do { 3568 lruvec = mem_cgroup_lruvec(memcg, pgdat); 3569 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 3570 sc, LRU_ACTIVE_ANON); 3571 memcg = mem_cgroup_iter(NULL, memcg, NULL); 3572 } while (memcg); 3573 } 3574 3575 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx) 3576 { 3577 int i; 3578 struct zone *zone; 3579 3580 /* 3581 * Check for watermark boosts top-down as the higher zones 3582 * are more likely to be boosted. Both watermarks and boosts 3583 * should not be checked at the same time as reclaim would 3584 * start prematurely when there is no boosting and a lower 3585 * zone is balanced. 3586 */ 3587 for (i = highest_zoneidx; i >= 0; i--) { 3588 zone = pgdat->node_zones + i; 3589 if (!managed_zone(zone)) 3590 continue; 3591 3592 if (zone->watermark_boost) 3593 return true; 3594 } 3595 3596 return false; 3597 } 3598 3599 /* 3600 * Returns true if there is an eligible zone balanced for the request order 3601 * and highest_zoneidx 3602 */ 3603 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx) 3604 { 3605 int i; 3606 unsigned long mark = -1; 3607 struct zone *zone; 3608 3609 /* 3610 * Check watermarks bottom-up as lower zones are more likely to 3611 * meet watermarks. 3612 */ 3613 for (i = 0; i <= highest_zoneidx; i++) { 3614 zone = pgdat->node_zones + i; 3615 3616 if (!managed_zone(zone)) 3617 continue; 3618 3619 mark = high_wmark_pages(zone); 3620 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx)) 3621 return true; 3622 } 3623 3624 /* 3625 * If a node has no populated zone within highest_zoneidx, it does not 3626 * need balancing by definition. This can happen if a zone-restricted 3627 * allocation tries to wake a remote kswapd. 3628 */ 3629 if (mark == -1) 3630 return true; 3631 3632 return false; 3633 } 3634 3635 /* Clear pgdat state for congested, dirty or under writeback. */ 3636 static void clear_pgdat_congested(pg_data_t *pgdat) 3637 { 3638 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat); 3639 3640 clear_bit(LRUVEC_CONGESTED, &lruvec->flags); 3641 clear_bit(PGDAT_DIRTY, &pgdat->flags); 3642 clear_bit(PGDAT_WRITEBACK, &pgdat->flags); 3643 } 3644 3645 /* 3646 * Prepare kswapd for sleeping. This verifies that there are no processes 3647 * waiting in throttle_direct_reclaim() and that watermarks have been met. 3648 * 3649 * Returns true if kswapd is ready to sleep 3650 */ 3651 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, 3652 int highest_zoneidx) 3653 { 3654 /* 3655 * The throttled processes are normally woken up in balance_pgdat() as 3656 * soon as allow_direct_reclaim() is true. But there is a potential 3657 * race between when kswapd checks the watermarks and a process gets 3658 * throttled. There is also a potential race if processes get 3659 * throttled, kswapd wakes, a large process exits thereby balancing the 3660 * zones, which causes kswapd to exit balance_pgdat() before reaching 3661 * the wake up checks. If kswapd is going to sleep, no process should 3662 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If 3663 * the wake up is premature, processes will wake kswapd and get 3664 * throttled again. The difference from wake ups in balance_pgdat() is 3665 * that here we are under prepare_to_wait(). 3666 */ 3667 if (waitqueue_active(&pgdat->pfmemalloc_wait)) 3668 wake_up_all(&pgdat->pfmemalloc_wait); 3669 3670 /* Hopeless node, leave it to direct reclaim */ 3671 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 3672 return true; 3673 3674 if (pgdat_balanced(pgdat, order, highest_zoneidx)) { 3675 clear_pgdat_congested(pgdat); 3676 return true; 3677 } 3678 3679 return false; 3680 } 3681 3682 /* 3683 * kswapd shrinks a node of pages that are at or below the highest usable 3684 * zone that is currently unbalanced. 3685 * 3686 * Returns true if kswapd scanned at least the requested number of pages to 3687 * reclaim or if the lack of progress was due to pages under writeback. 3688 * This is used to determine if the scanning priority needs to be raised. 3689 */ 3690 static bool kswapd_shrink_node(pg_data_t *pgdat, 3691 struct scan_control *sc) 3692 { 3693 struct zone *zone; 3694 int z; 3695 3696 /* Reclaim a number of pages proportional to the number of zones */ 3697 sc->nr_to_reclaim = 0; 3698 for (z = 0; z <= sc->reclaim_idx; z++) { 3699 zone = pgdat->node_zones + z; 3700 if (!managed_zone(zone)) 3701 continue; 3702 3703 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX); 3704 } 3705 3706 /* 3707 * Historically care was taken to put equal pressure on all zones but 3708 * now pressure is applied based on node LRU order. 3709 */ 3710 shrink_node(pgdat, sc); 3711 3712 /* 3713 * Fragmentation may mean that the system cannot be rebalanced for 3714 * high-order allocations. If twice the allocation size has been 3715 * reclaimed then recheck watermarks only at order-0 to prevent 3716 * excessive reclaim. Assume that a process requested a high-order 3717 * can direct reclaim/compact. 3718 */ 3719 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order)) 3720 sc->order = 0; 3721 3722 return sc->nr_scanned >= sc->nr_to_reclaim; 3723 } 3724 3725 /* 3726 * For kswapd, balance_pgdat() will reclaim pages across a node from zones 3727 * that are eligible for use by the caller until at least one zone is 3728 * balanced. 3729 * 3730 * Returns the order kswapd finished reclaiming at. 3731 * 3732 * kswapd scans the zones in the highmem->normal->dma direction. It skips 3733 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 3734 * found to have free_pages <= high_wmark_pages(zone), any page in that zone 3735 * or lower is eligible for reclaim until at least one usable zone is 3736 * balanced. 3737 */ 3738 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx) 3739 { 3740 int i; 3741 unsigned long nr_soft_reclaimed; 3742 unsigned long nr_soft_scanned; 3743 unsigned long pflags; 3744 unsigned long nr_boost_reclaim; 3745 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, }; 3746 bool boosted; 3747 struct zone *zone; 3748 struct scan_control sc = { 3749 .gfp_mask = GFP_KERNEL, 3750 .order = order, 3751 .may_unmap = 1, 3752 }; 3753 3754 set_task_reclaim_state(current, &sc.reclaim_state); 3755 psi_memstall_enter(&pflags); 3756 __fs_reclaim_acquire(); 3757 3758 count_vm_event(PAGEOUTRUN); 3759 3760 /* 3761 * Account for the reclaim boost. Note that the zone boost is left in 3762 * place so that parallel allocations that are near the watermark will 3763 * stall or direct reclaim until kswapd is finished. 3764 */ 3765 nr_boost_reclaim = 0; 3766 for (i = 0; i <= highest_zoneidx; i++) { 3767 zone = pgdat->node_zones + i; 3768 if (!managed_zone(zone)) 3769 continue; 3770 3771 nr_boost_reclaim += zone->watermark_boost; 3772 zone_boosts[i] = zone->watermark_boost; 3773 } 3774 boosted = nr_boost_reclaim; 3775 3776 restart: 3777 sc.priority = DEF_PRIORITY; 3778 do { 3779 unsigned long nr_reclaimed = sc.nr_reclaimed; 3780 bool raise_priority = true; 3781 bool balanced; 3782 bool ret; 3783 3784 sc.reclaim_idx = highest_zoneidx; 3785 3786 /* 3787 * If the number of buffer_heads exceeds the maximum allowed 3788 * then consider reclaiming from all zones. This has a dual 3789 * purpose -- on 64-bit systems it is expected that 3790 * buffer_heads are stripped during active rotation. On 32-bit 3791 * systems, highmem pages can pin lowmem memory and shrinking 3792 * buffers can relieve lowmem pressure. Reclaim may still not 3793 * go ahead if all eligible zones for the original allocation 3794 * request are balanced to avoid excessive reclaim from kswapd. 3795 */ 3796 if (buffer_heads_over_limit) { 3797 for (i = MAX_NR_ZONES - 1; i >= 0; i--) { 3798 zone = pgdat->node_zones + i; 3799 if (!managed_zone(zone)) 3800 continue; 3801 3802 sc.reclaim_idx = i; 3803 break; 3804 } 3805 } 3806 3807 /* 3808 * If the pgdat is imbalanced then ignore boosting and preserve 3809 * the watermarks for a later time and restart. Note that the 3810 * zone watermarks will be still reset at the end of balancing 3811 * on the grounds that the normal reclaim should be enough to 3812 * re-evaluate if boosting is required when kswapd next wakes. 3813 */ 3814 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx); 3815 if (!balanced && nr_boost_reclaim) { 3816 nr_boost_reclaim = 0; 3817 goto restart; 3818 } 3819 3820 /* 3821 * If boosting is not active then only reclaim if there are no 3822 * eligible zones. Note that sc.reclaim_idx is not used as 3823 * buffer_heads_over_limit may have adjusted it. 3824 */ 3825 if (!nr_boost_reclaim && balanced) 3826 goto out; 3827 3828 /* Limit the priority of boosting to avoid reclaim writeback */ 3829 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2) 3830 raise_priority = false; 3831 3832 /* 3833 * Do not writeback or swap pages for boosted reclaim. The 3834 * intent is to relieve pressure not issue sub-optimal IO 3835 * from reclaim context. If no pages are reclaimed, the 3836 * reclaim will be aborted. 3837 */ 3838 sc.may_writepage = !laptop_mode && !nr_boost_reclaim; 3839 sc.may_swap = !nr_boost_reclaim; 3840 3841 /* 3842 * Do some background aging of the anon list, to give 3843 * pages a chance to be referenced before reclaiming. All 3844 * pages are rotated regardless of classzone as this is 3845 * about consistent aging. 3846 */ 3847 age_active_anon(pgdat, &sc); 3848 3849 /* 3850 * If we're getting trouble reclaiming, start doing writepage 3851 * even in laptop mode. 3852 */ 3853 if (sc.priority < DEF_PRIORITY - 2) 3854 sc.may_writepage = 1; 3855 3856 /* Call soft limit reclaim before calling shrink_node. */ 3857 sc.nr_scanned = 0; 3858 nr_soft_scanned = 0; 3859 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order, 3860 sc.gfp_mask, &nr_soft_scanned); 3861 sc.nr_reclaimed += nr_soft_reclaimed; 3862 3863 /* 3864 * There should be no need to raise the scanning priority if 3865 * enough pages are already being scanned that that high 3866 * watermark would be met at 100% efficiency. 3867 */ 3868 if (kswapd_shrink_node(pgdat, &sc)) 3869 raise_priority = false; 3870 3871 /* 3872 * If the low watermark is met there is no need for processes 3873 * to be throttled on pfmemalloc_wait as they should not be 3874 * able to safely make forward progress. Wake them 3875 */ 3876 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 3877 allow_direct_reclaim(pgdat)) 3878 wake_up_all(&pgdat->pfmemalloc_wait); 3879 3880 /* Check if kswapd should be suspending */ 3881 __fs_reclaim_release(); 3882 ret = try_to_freeze(); 3883 __fs_reclaim_acquire(); 3884 if (ret || kthread_should_stop()) 3885 break; 3886 3887 /* 3888 * Raise priority if scanning rate is too low or there was no 3889 * progress in reclaiming pages 3890 */ 3891 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed; 3892 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed); 3893 3894 /* 3895 * If reclaim made no progress for a boost, stop reclaim as 3896 * IO cannot be queued and it could be an infinite loop in 3897 * extreme circumstances. 3898 */ 3899 if (nr_boost_reclaim && !nr_reclaimed) 3900 break; 3901 3902 if (raise_priority || !nr_reclaimed) 3903 sc.priority--; 3904 } while (sc.priority >= 1); 3905 3906 if (!sc.nr_reclaimed) 3907 pgdat->kswapd_failures++; 3908 3909 out: 3910 /* If reclaim was boosted, account for the reclaim done in this pass */ 3911 if (boosted) { 3912 unsigned long flags; 3913 3914 for (i = 0; i <= highest_zoneidx; i++) { 3915 if (!zone_boosts[i]) 3916 continue; 3917 3918 /* Increments are under the zone lock */ 3919 zone = pgdat->node_zones + i; 3920 spin_lock_irqsave(&zone->lock, flags); 3921 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]); 3922 spin_unlock_irqrestore(&zone->lock, flags); 3923 } 3924 3925 /* 3926 * As there is now likely space, wakeup kcompact to defragment 3927 * pageblocks. 3928 */ 3929 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx); 3930 } 3931 3932 snapshot_refaults(NULL, pgdat); 3933 __fs_reclaim_release(); 3934 psi_memstall_leave(&pflags); 3935 set_task_reclaim_state(current, NULL); 3936 3937 /* 3938 * Return the order kswapd stopped reclaiming at as 3939 * prepare_kswapd_sleep() takes it into account. If another caller 3940 * entered the allocator slow path while kswapd was awake, order will 3941 * remain at the higher level. 3942 */ 3943 return sc.order; 3944 } 3945 3946 /* 3947 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to 3948 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is 3949 * not a valid index then either kswapd runs for first time or kswapd couldn't 3950 * sleep after previous reclaim attempt (node is still unbalanced). In that 3951 * case return the zone index of the previous kswapd reclaim cycle. 3952 */ 3953 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat, 3954 enum zone_type prev_highest_zoneidx) 3955 { 3956 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 3957 3958 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx; 3959 } 3960 3961 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order, 3962 unsigned int highest_zoneidx) 3963 { 3964 long remaining = 0; 3965 DEFINE_WAIT(wait); 3966 3967 if (freezing(current) || kthread_should_stop()) 3968 return; 3969 3970 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3971 3972 /* 3973 * Try to sleep for a short interval. Note that kcompactd will only be 3974 * woken if it is possible to sleep for a short interval. This is 3975 * deliberate on the assumption that if reclaim cannot keep an 3976 * eligible zone balanced that it's also unlikely that compaction will 3977 * succeed. 3978 */ 3979 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 3980 /* 3981 * Compaction records what page blocks it recently failed to 3982 * isolate pages from and skips them in the future scanning. 3983 * When kswapd is going to sleep, it is reasonable to assume 3984 * that pages and compaction may succeed so reset the cache. 3985 */ 3986 reset_isolation_suitable(pgdat); 3987 3988 /* 3989 * We have freed the memory, now we should compact it to make 3990 * allocation of the requested order possible. 3991 */ 3992 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx); 3993 3994 remaining = schedule_timeout(HZ/10); 3995 3996 /* 3997 * If woken prematurely then reset kswapd_highest_zoneidx and 3998 * order. The values will either be from a wakeup request or 3999 * the previous request that slept prematurely. 4000 */ 4001 if (remaining) { 4002 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, 4003 kswapd_highest_zoneidx(pgdat, 4004 highest_zoneidx)); 4005 4006 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order) 4007 WRITE_ONCE(pgdat->kswapd_order, reclaim_order); 4008 } 4009 4010 finish_wait(&pgdat->kswapd_wait, &wait); 4011 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 4012 } 4013 4014 /* 4015 * After a short sleep, check if it was a premature sleep. If not, then 4016 * go fully to sleep until explicitly woken up. 4017 */ 4018 if (!remaining && 4019 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 4020 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 4021 4022 /* 4023 * vmstat counters are not perfectly accurate and the estimated 4024 * value for counters such as NR_FREE_PAGES can deviate from the 4025 * true value by nr_online_cpus * threshold. To avoid the zone 4026 * watermarks being breached while under pressure, we reduce the 4027 * per-cpu vmstat threshold while kswapd is awake and restore 4028 * them before going back to sleep. 4029 */ 4030 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 4031 4032 if (!kthread_should_stop()) 4033 schedule(); 4034 4035 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 4036 } else { 4037 if (remaining) 4038 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 4039 else 4040 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 4041 } 4042 finish_wait(&pgdat->kswapd_wait, &wait); 4043 } 4044 4045 /* 4046 * The background pageout daemon, started as a kernel thread 4047 * from the init process. 4048 * 4049 * This basically trickles out pages so that we have _some_ 4050 * free memory available even if there is no other activity 4051 * that frees anything up. This is needed for things like routing 4052 * etc, where we otherwise might have all activity going on in 4053 * asynchronous contexts that cannot page things out. 4054 * 4055 * If there are applications that are active memory-allocators 4056 * (most normal use), this basically shouldn't matter. 4057 */ 4058 static int kswapd(void *p) 4059 { 4060 unsigned int alloc_order, reclaim_order; 4061 unsigned int highest_zoneidx = MAX_NR_ZONES - 1; 4062 pg_data_t *pgdat = (pg_data_t *)p; 4063 struct task_struct *tsk = current; 4064 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 4065 4066 if (!cpumask_empty(cpumask)) 4067 set_cpus_allowed_ptr(tsk, cpumask); 4068 4069 /* 4070 * Tell the memory management that we're a "memory allocator", 4071 * and that if we need more memory we should get access to it 4072 * regardless (see "__alloc_pages()"). "kswapd" should 4073 * never get caught in the normal page freeing logic. 4074 * 4075 * (Kswapd normally doesn't need memory anyway, but sometimes 4076 * you need a small amount of memory in order to be able to 4077 * page out something else, and this flag essentially protects 4078 * us from recursively trying to free more memory as we're 4079 * trying to free the first piece of memory in the first place). 4080 */ 4081 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 4082 set_freezable(); 4083 4084 WRITE_ONCE(pgdat->kswapd_order, 0); 4085 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 4086 for ( ; ; ) { 4087 bool ret; 4088 4089 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order); 4090 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 4091 highest_zoneidx); 4092 4093 kswapd_try_sleep: 4094 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order, 4095 highest_zoneidx); 4096 4097 /* Read the new order and highest_zoneidx */ 4098 alloc_order = READ_ONCE(pgdat->kswapd_order); 4099 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 4100 highest_zoneidx); 4101 WRITE_ONCE(pgdat->kswapd_order, 0); 4102 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 4103 4104 ret = try_to_freeze(); 4105 if (kthread_should_stop()) 4106 break; 4107 4108 /* 4109 * We can speed up thawing tasks if we don't call balance_pgdat 4110 * after returning from the refrigerator 4111 */ 4112 if (ret) 4113 continue; 4114 4115 /* 4116 * Reclaim begins at the requested order but if a high-order 4117 * reclaim fails then kswapd falls back to reclaiming for 4118 * order-0. If that happens, kswapd will consider sleeping 4119 * for the order it finished reclaiming at (reclaim_order) 4120 * but kcompactd is woken to compact for the original 4121 * request (alloc_order). 4122 */ 4123 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx, 4124 alloc_order); 4125 reclaim_order = balance_pgdat(pgdat, alloc_order, 4126 highest_zoneidx); 4127 if (reclaim_order < alloc_order) 4128 goto kswapd_try_sleep; 4129 } 4130 4131 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD); 4132 4133 return 0; 4134 } 4135 4136 /* 4137 * A zone is low on free memory or too fragmented for high-order memory. If 4138 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's 4139 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim 4140 * has failed or is not needed, still wake up kcompactd if only compaction is 4141 * needed. 4142 */ 4143 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order, 4144 enum zone_type highest_zoneidx) 4145 { 4146 pg_data_t *pgdat; 4147 enum zone_type curr_idx; 4148 4149 if (!managed_zone(zone)) 4150 return; 4151 4152 if (!cpuset_zone_allowed(zone, gfp_flags)) 4153 return; 4154 4155 pgdat = zone->zone_pgdat; 4156 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 4157 4158 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx) 4159 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx); 4160 4161 if (READ_ONCE(pgdat->kswapd_order) < order) 4162 WRITE_ONCE(pgdat->kswapd_order, order); 4163 4164 if (!waitqueue_active(&pgdat->kswapd_wait)) 4165 return; 4166 4167 /* Hopeless node, leave it to direct reclaim if possible */ 4168 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES || 4169 (pgdat_balanced(pgdat, order, highest_zoneidx) && 4170 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) { 4171 /* 4172 * There may be plenty of free memory available, but it's too 4173 * fragmented for high-order allocations. Wake up kcompactd 4174 * and rely on compaction_suitable() to determine if it's 4175 * needed. If it fails, it will defer subsequent attempts to 4176 * ratelimit its work. 4177 */ 4178 if (!(gfp_flags & __GFP_DIRECT_RECLAIM)) 4179 wakeup_kcompactd(pgdat, order, highest_zoneidx); 4180 return; 4181 } 4182 4183 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order, 4184 gfp_flags); 4185 wake_up_interruptible(&pgdat->kswapd_wait); 4186 } 4187 4188 #ifdef CONFIG_HIBERNATION 4189 /* 4190 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 4191 * freed pages. 4192 * 4193 * Rather than trying to age LRUs the aim is to preserve the overall 4194 * LRU order by reclaiming preferentially 4195 * inactive > active > active referenced > active mapped 4196 */ 4197 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 4198 { 4199 struct scan_control sc = { 4200 .nr_to_reclaim = nr_to_reclaim, 4201 .gfp_mask = GFP_HIGHUSER_MOVABLE, 4202 .reclaim_idx = MAX_NR_ZONES - 1, 4203 .priority = DEF_PRIORITY, 4204 .may_writepage = 1, 4205 .may_unmap = 1, 4206 .may_swap = 1, 4207 .hibernation_mode = 1, 4208 }; 4209 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 4210 unsigned long nr_reclaimed; 4211 unsigned int noreclaim_flag; 4212 4213 fs_reclaim_acquire(sc.gfp_mask); 4214 noreclaim_flag = memalloc_noreclaim_save(); 4215 set_task_reclaim_state(current, &sc.reclaim_state); 4216 4217 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 4218 4219 set_task_reclaim_state(current, NULL); 4220 memalloc_noreclaim_restore(noreclaim_flag); 4221 fs_reclaim_release(sc.gfp_mask); 4222 4223 return nr_reclaimed; 4224 } 4225 #endif /* CONFIG_HIBERNATION */ 4226 4227 /* 4228 * This kswapd start function will be called by init and node-hot-add. 4229 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. 4230 */ 4231 int kswapd_run(int nid) 4232 { 4233 pg_data_t *pgdat = NODE_DATA(nid); 4234 int ret = 0; 4235 4236 if (pgdat->kswapd) 4237 return 0; 4238 4239 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 4240 if (IS_ERR(pgdat->kswapd)) { 4241 /* failure at boot is fatal */ 4242 BUG_ON(system_state < SYSTEM_RUNNING); 4243 pr_err("Failed to start kswapd on node %d\n", nid); 4244 ret = PTR_ERR(pgdat->kswapd); 4245 pgdat->kswapd = NULL; 4246 } 4247 return ret; 4248 } 4249 4250 /* 4251 * Called by memory hotplug when all memory in a node is offlined. Caller must 4252 * hold mem_hotplug_begin/end(). 4253 */ 4254 void kswapd_stop(int nid) 4255 { 4256 struct task_struct *kswapd = NODE_DATA(nid)->kswapd; 4257 4258 if (kswapd) { 4259 kthread_stop(kswapd); 4260 NODE_DATA(nid)->kswapd = NULL; 4261 } 4262 } 4263 4264 static int __init kswapd_init(void) 4265 { 4266 int nid; 4267 4268 swap_setup(); 4269 for_each_node_state(nid, N_MEMORY) 4270 kswapd_run(nid); 4271 return 0; 4272 } 4273 4274 module_init(kswapd_init) 4275 4276 #ifdef CONFIG_NUMA 4277 /* 4278 * Node reclaim mode 4279 * 4280 * If non-zero call node_reclaim when the number of free pages falls below 4281 * the watermarks. 4282 */ 4283 int node_reclaim_mode __read_mostly; 4284 4285 /* 4286 * Priority for NODE_RECLAIM. This determines the fraction of pages 4287 * of a node considered for each zone_reclaim. 4 scans 1/16th of 4288 * a zone. 4289 */ 4290 #define NODE_RECLAIM_PRIORITY 4 4291 4292 /* 4293 * Percentage of pages in a zone that must be unmapped for node_reclaim to 4294 * occur. 4295 */ 4296 int sysctl_min_unmapped_ratio = 1; 4297 4298 /* 4299 * If the number of slab pages in a zone grows beyond this percentage then 4300 * slab reclaim needs to occur. 4301 */ 4302 int sysctl_min_slab_ratio = 5; 4303 4304 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat) 4305 { 4306 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED); 4307 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) + 4308 node_page_state(pgdat, NR_ACTIVE_FILE); 4309 4310 /* 4311 * It's possible for there to be more file mapped pages than 4312 * accounted for by the pages on the file LRU lists because 4313 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 4314 */ 4315 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 4316 } 4317 4318 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 4319 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat) 4320 { 4321 unsigned long nr_pagecache_reclaimable; 4322 unsigned long delta = 0; 4323 4324 /* 4325 * If RECLAIM_UNMAP is set, then all file pages are considered 4326 * potentially reclaimable. Otherwise, we have to worry about 4327 * pages like swapcache and node_unmapped_file_pages() provides 4328 * a better estimate 4329 */ 4330 if (node_reclaim_mode & RECLAIM_UNMAP) 4331 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES); 4332 else 4333 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat); 4334 4335 /* If we can't clean pages, remove dirty pages from consideration */ 4336 if (!(node_reclaim_mode & RECLAIM_WRITE)) 4337 delta += node_page_state(pgdat, NR_FILE_DIRTY); 4338 4339 /* Watch for any possible underflows due to delta */ 4340 if (unlikely(delta > nr_pagecache_reclaimable)) 4341 delta = nr_pagecache_reclaimable; 4342 4343 return nr_pagecache_reclaimable - delta; 4344 } 4345 4346 /* 4347 * Try to free up some pages from this node through reclaim. 4348 */ 4349 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 4350 { 4351 /* Minimum pages needed in order to stay on node */ 4352 const unsigned long nr_pages = 1 << order; 4353 struct task_struct *p = current; 4354 unsigned int noreclaim_flag; 4355 struct scan_control sc = { 4356 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 4357 .gfp_mask = current_gfp_context(gfp_mask), 4358 .order = order, 4359 .priority = NODE_RECLAIM_PRIORITY, 4360 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE), 4361 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP), 4362 .may_swap = 1, 4363 .reclaim_idx = gfp_zone(gfp_mask), 4364 }; 4365 4366 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order, 4367 sc.gfp_mask); 4368 4369 cond_resched(); 4370 fs_reclaim_acquire(sc.gfp_mask); 4371 /* 4372 * We need to be able to allocate from the reserves for RECLAIM_UNMAP 4373 * and we also need to be able to write out pages for RECLAIM_WRITE 4374 * and RECLAIM_UNMAP. 4375 */ 4376 noreclaim_flag = memalloc_noreclaim_save(); 4377 p->flags |= PF_SWAPWRITE; 4378 set_task_reclaim_state(p, &sc.reclaim_state); 4379 4380 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) { 4381 /* 4382 * Free memory by calling shrink node with increasing 4383 * priorities until we have enough memory freed. 4384 */ 4385 do { 4386 shrink_node(pgdat, &sc); 4387 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 4388 } 4389 4390 set_task_reclaim_state(p, NULL); 4391 current->flags &= ~PF_SWAPWRITE; 4392 memalloc_noreclaim_restore(noreclaim_flag); 4393 fs_reclaim_release(sc.gfp_mask); 4394 4395 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed); 4396 4397 return sc.nr_reclaimed >= nr_pages; 4398 } 4399 4400 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 4401 { 4402 int ret; 4403 4404 /* 4405 * Node reclaim reclaims unmapped file backed pages and 4406 * slab pages if we are over the defined limits. 4407 * 4408 * A small portion of unmapped file backed pages is needed for 4409 * file I/O otherwise pages read by file I/O will be immediately 4410 * thrown out if the node is overallocated. So we do not reclaim 4411 * if less than a specified percentage of the node is used by 4412 * unmapped file backed pages. 4413 */ 4414 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages && 4415 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <= 4416 pgdat->min_slab_pages) 4417 return NODE_RECLAIM_FULL; 4418 4419 /* 4420 * Do not scan if the allocation should not be delayed. 4421 */ 4422 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) 4423 return NODE_RECLAIM_NOSCAN; 4424 4425 /* 4426 * Only run node reclaim on the local node or on nodes that do not 4427 * have associated processors. This will favor the local processor 4428 * over remote processors and spread off node memory allocations 4429 * as wide as possible. 4430 */ 4431 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id()) 4432 return NODE_RECLAIM_NOSCAN; 4433 4434 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags)) 4435 return NODE_RECLAIM_NOSCAN; 4436 4437 ret = __node_reclaim(pgdat, gfp_mask, order); 4438 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags); 4439 4440 if (!ret) 4441 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 4442 4443 return ret; 4444 } 4445 #endif 4446 4447 /** 4448 * check_move_unevictable_pages - check pages for evictability and move to 4449 * appropriate zone lru list 4450 * @pvec: pagevec with lru pages to check 4451 * 4452 * Checks pages for evictability, if an evictable page is in the unevictable 4453 * lru list, moves it to the appropriate evictable lru list. This function 4454 * should be only used for lru pages. 4455 */ 4456 void check_move_unevictable_pages(struct pagevec *pvec) 4457 { 4458 struct lruvec *lruvec = NULL; 4459 int pgscanned = 0; 4460 int pgrescued = 0; 4461 int i; 4462 4463 for (i = 0; i < pvec->nr; i++) { 4464 struct page *page = pvec->pages[i]; 4465 int nr_pages; 4466 4467 if (PageTransTail(page)) 4468 continue; 4469 4470 nr_pages = thp_nr_pages(page); 4471 pgscanned += nr_pages; 4472 4473 /* block memcg migration during page moving between lru */ 4474 if (!TestClearPageLRU(page)) 4475 continue; 4476 4477 lruvec = relock_page_lruvec_irq(page, lruvec); 4478 if (page_evictable(page) && PageUnevictable(page)) { 4479 del_page_from_lru_list(page, lruvec); 4480 ClearPageUnevictable(page); 4481 add_page_to_lru_list(page, lruvec); 4482 pgrescued += nr_pages; 4483 } 4484 SetPageLRU(page); 4485 } 4486 4487 if (lruvec) { 4488 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 4489 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 4490 unlock_page_lruvec_irq(lruvec); 4491 } else if (pgscanned) { 4492 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 4493 } 4494 } 4495 EXPORT_SYMBOL_GPL(check_move_unevictable_pages); 4496