1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 4 * 5 * Swap reorganised 29.12.95, Stephen Tweedie. 6 * kswapd added: 7.1.96 sct 7 * Removed kswapd_ctl limits, and swap out as many pages as needed 8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 9 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 10 * Multiqueue VM started 5.8.00, Rik van Riel. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 15 #include <linux/mm.h> 16 #include <linux/sched/mm.h> 17 #include <linux/module.h> 18 #include <linux/gfp.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/swap.h> 21 #include <linux/pagemap.h> 22 #include <linux/init.h> 23 #include <linux/highmem.h> 24 #include <linux/vmpressure.h> 25 #include <linux/vmstat.h> 26 #include <linux/file.h> 27 #include <linux/writeback.h> 28 #include <linux/blkdev.h> 29 #include <linux/buffer_head.h> /* for buffer_heads_over_limit */ 30 #include <linux/mm_inline.h> 31 #include <linux/backing-dev.h> 32 #include <linux/rmap.h> 33 #include <linux/topology.h> 34 #include <linux/cpu.h> 35 #include <linux/cpuset.h> 36 #include <linux/compaction.h> 37 #include <linux/notifier.h> 38 #include <linux/rwsem.h> 39 #include <linux/delay.h> 40 #include <linux/kthread.h> 41 #include <linux/freezer.h> 42 #include <linux/memcontrol.h> 43 #include <linux/migrate.h> 44 #include <linux/delayacct.h> 45 #include <linux/sysctl.h> 46 #include <linux/memory-tiers.h> 47 #include <linux/oom.h> 48 #include <linux/pagevec.h> 49 #include <linux/prefetch.h> 50 #include <linux/printk.h> 51 #include <linux/dax.h> 52 #include <linux/psi.h> 53 #include <linux/pagewalk.h> 54 #include <linux/shmem_fs.h> 55 #include <linux/ctype.h> 56 #include <linux/debugfs.h> 57 #include <linux/khugepaged.h> 58 59 #include <asm/tlbflush.h> 60 #include <asm/div64.h> 61 62 #include <linux/swapops.h> 63 #include <linux/balloon_compaction.h> 64 #include <linux/sched/sysctl.h> 65 66 #include "internal.h" 67 #include "swap.h" 68 69 #define CREATE_TRACE_POINTS 70 #include <trace/events/vmscan.h> 71 72 struct scan_control { 73 /* How many pages shrink_list() should reclaim */ 74 unsigned long nr_to_reclaim; 75 76 /* 77 * Nodemask of nodes allowed by the caller. If NULL, all nodes 78 * are scanned. 79 */ 80 nodemask_t *nodemask; 81 82 /* 83 * The memory cgroup that hit its limit and as a result is the 84 * primary target of this reclaim invocation. 85 */ 86 struct mem_cgroup *target_mem_cgroup; 87 88 /* 89 * Scan pressure balancing between anon and file LRUs 90 */ 91 unsigned long anon_cost; 92 unsigned long file_cost; 93 94 /* Can active folios be deactivated as part of reclaim? */ 95 #define DEACTIVATE_ANON 1 96 #define DEACTIVATE_FILE 2 97 unsigned int may_deactivate:2; 98 unsigned int force_deactivate:1; 99 unsigned int skipped_deactivate:1; 100 101 /* Writepage batching in laptop mode; RECLAIM_WRITE */ 102 unsigned int may_writepage:1; 103 104 /* Can mapped folios be reclaimed? */ 105 unsigned int may_unmap:1; 106 107 /* Can folios be swapped as part of reclaim? */ 108 unsigned int may_swap:1; 109 110 /* Proactive reclaim invoked by userspace through memory.reclaim */ 111 unsigned int proactive:1; 112 113 /* 114 * Cgroup memory below memory.low is protected as long as we 115 * don't threaten to OOM. If any cgroup is reclaimed at 116 * reduced force or passed over entirely due to its memory.low 117 * setting (memcg_low_skipped), and nothing is reclaimed as a 118 * result, then go back for one more cycle that reclaims the protected 119 * memory (memcg_low_reclaim) to avert OOM. 120 */ 121 unsigned int memcg_low_reclaim:1; 122 unsigned int memcg_low_skipped:1; 123 124 unsigned int hibernation_mode:1; 125 126 /* One of the zones is ready for compaction */ 127 unsigned int compaction_ready:1; 128 129 /* There is easily reclaimable cold cache in the current node */ 130 unsigned int cache_trim_mode:1; 131 132 /* The file folios on the current node are dangerously low */ 133 unsigned int file_is_tiny:1; 134 135 /* Always discard instead of demoting to lower tier memory */ 136 unsigned int no_demotion:1; 137 138 #ifdef CONFIG_LRU_GEN 139 /* help kswapd make better choices among multiple memcgs */ 140 unsigned int memcgs_need_aging:1; 141 unsigned long last_reclaimed; 142 #endif 143 144 /* Allocation order */ 145 s8 order; 146 147 /* Scan (total_size >> priority) pages at once */ 148 s8 priority; 149 150 /* The highest zone to isolate folios for reclaim from */ 151 s8 reclaim_idx; 152 153 /* This context's GFP mask */ 154 gfp_t gfp_mask; 155 156 /* Incremented by the number of inactive pages that were scanned */ 157 unsigned long nr_scanned; 158 159 /* Number of pages freed so far during a call to shrink_zones() */ 160 unsigned long nr_reclaimed; 161 162 struct { 163 unsigned int dirty; 164 unsigned int unqueued_dirty; 165 unsigned int congested; 166 unsigned int writeback; 167 unsigned int immediate; 168 unsigned int file_taken; 169 unsigned int taken; 170 } nr; 171 172 /* for recording the reclaimed slab by now */ 173 struct reclaim_state reclaim_state; 174 }; 175 176 #ifdef ARCH_HAS_PREFETCHW 177 #define prefetchw_prev_lru_folio(_folio, _base, _field) \ 178 do { \ 179 if ((_folio)->lru.prev != _base) { \ 180 struct folio *prev; \ 181 \ 182 prev = lru_to_folio(&(_folio->lru)); \ 183 prefetchw(&prev->_field); \ 184 } \ 185 } while (0) 186 #else 187 #define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0) 188 #endif 189 190 /* 191 * From 0 .. 200. Higher means more swappy. 192 */ 193 int vm_swappiness = 60; 194 195 static void set_task_reclaim_state(struct task_struct *task, 196 struct reclaim_state *rs) 197 { 198 /* Check for an overwrite */ 199 WARN_ON_ONCE(rs && task->reclaim_state); 200 201 /* Check for the nulling of an already-nulled member */ 202 WARN_ON_ONCE(!rs && !task->reclaim_state); 203 204 task->reclaim_state = rs; 205 } 206 207 LIST_HEAD(shrinker_list); 208 DECLARE_RWSEM(shrinker_rwsem); 209 210 #ifdef CONFIG_MEMCG 211 static int shrinker_nr_max; 212 213 /* The shrinker_info is expanded in a batch of BITS_PER_LONG */ 214 static inline int shrinker_map_size(int nr_items) 215 { 216 return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long)); 217 } 218 219 static inline int shrinker_defer_size(int nr_items) 220 { 221 return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t)); 222 } 223 224 static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg, 225 int nid) 226 { 227 return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info, 228 lockdep_is_held(&shrinker_rwsem)); 229 } 230 231 static int expand_one_shrinker_info(struct mem_cgroup *memcg, 232 int map_size, int defer_size, 233 int old_map_size, int old_defer_size) 234 { 235 struct shrinker_info *new, *old; 236 struct mem_cgroup_per_node *pn; 237 int nid; 238 int size = map_size + defer_size; 239 240 for_each_node(nid) { 241 pn = memcg->nodeinfo[nid]; 242 old = shrinker_info_protected(memcg, nid); 243 /* Not yet online memcg */ 244 if (!old) 245 return 0; 246 247 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid); 248 if (!new) 249 return -ENOMEM; 250 251 new->nr_deferred = (atomic_long_t *)(new + 1); 252 new->map = (void *)new->nr_deferred + defer_size; 253 254 /* map: set all old bits, clear all new bits */ 255 memset(new->map, (int)0xff, old_map_size); 256 memset((void *)new->map + old_map_size, 0, map_size - old_map_size); 257 /* nr_deferred: copy old values, clear all new values */ 258 memcpy(new->nr_deferred, old->nr_deferred, old_defer_size); 259 memset((void *)new->nr_deferred + old_defer_size, 0, 260 defer_size - old_defer_size); 261 262 rcu_assign_pointer(pn->shrinker_info, new); 263 kvfree_rcu(old, rcu); 264 } 265 266 return 0; 267 } 268 269 void free_shrinker_info(struct mem_cgroup *memcg) 270 { 271 struct mem_cgroup_per_node *pn; 272 struct shrinker_info *info; 273 int nid; 274 275 for_each_node(nid) { 276 pn = memcg->nodeinfo[nid]; 277 info = rcu_dereference_protected(pn->shrinker_info, true); 278 kvfree(info); 279 rcu_assign_pointer(pn->shrinker_info, NULL); 280 } 281 } 282 283 int alloc_shrinker_info(struct mem_cgroup *memcg) 284 { 285 struct shrinker_info *info; 286 int nid, size, ret = 0; 287 int map_size, defer_size = 0; 288 289 down_write(&shrinker_rwsem); 290 map_size = shrinker_map_size(shrinker_nr_max); 291 defer_size = shrinker_defer_size(shrinker_nr_max); 292 size = map_size + defer_size; 293 for_each_node(nid) { 294 info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid); 295 if (!info) { 296 free_shrinker_info(memcg); 297 ret = -ENOMEM; 298 break; 299 } 300 info->nr_deferred = (atomic_long_t *)(info + 1); 301 info->map = (void *)info->nr_deferred + defer_size; 302 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info); 303 } 304 up_write(&shrinker_rwsem); 305 306 return ret; 307 } 308 309 static inline bool need_expand(int nr_max) 310 { 311 return round_up(nr_max, BITS_PER_LONG) > 312 round_up(shrinker_nr_max, BITS_PER_LONG); 313 } 314 315 static int expand_shrinker_info(int new_id) 316 { 317 int ret = 0; 318 int new_nr_max = new_id + 1; 319 int map_size, defer_size = 0; 320 int old_map_size, old_defer_size = 0; 321 struct mem_cgroup *memcg; 322 323 if (!need_expand(new_nr_max)) 324 goto out; 325 326 if (!root_mem_cgroup) 327 goto out; 328 329 lockdep_assert_held(&shrinker_rwsem); 330 331 map_size = shrinker_map_size(new_nr_max); 332 defer_size = shrinker_defer_size(new_nr_max); 333 old_map_size = shrinker_map_size(shrinker_nr_max); 334 old_defer_size = shrinker_defer_size(shrinker_nr_max); 335 336 memcg = mem_cgroup_iter(NULL, NULL, NULL); 337 do { 338 ret = expand_one_shrinker_info(memcg, map_size, defer_size, 339 old_map_size, old_defer_size); 340 if (ret) { 341 mem_cgroup_iter_break(NULL, memcg); 342 goto out; 343 } 344 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 345 out: 346 if (!ret) 347 shrinker_nr_max = new_nr_max; 348 349 return ret; 350 } 351 352 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id) 353 { 354 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) { 355 struct shrinker_info *info; 356 357 rcu_read_lock(); 358 info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info); 359 /* Pairs with smp mb in shrink_slab() */ 360 smp_mb__before_atomic(); 361 set_bit(shrinker_id, info->map); 362 rcu_read_unlock(); 363 } 364 } 365 366 static DEFINE_IDR(shrinker_idr); 367 368 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 369 { 370 int id, ret = -ENOMEM; 371 372 if (mem_cgroup_disabled()) 373 return -ENOSYS; 374 375 down_write(&shrinker_rwsem); 376 /* This may call shrinker, so it must use down_read_trylock() */ 377 id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL); 378 if (id < 0) 379 goto unlock; 380 381 if (id >= shrinker_nr_max) { 382 if (expand_shrinker_info(id)) { 383 idr_remove(&shrinker_idr, id); 384 goto unlock; 385 } 386 } 387 shrinker->id = id; 388 ret = 0; 389 unlock: 390 up_write(&shrinker_rwsem); 391 return ret; 392 } 393 394 static void unregister_memcg_shrinker(struct shrinker *shrinker) 395 { 396 int id = shrinker->id; 397 398 BUG_ON(id < 0); 399 400 lockdep_assert_held(&shrinker_rwsem); 401 402 idr_remove(&shrinker_idr, id); 403 } 404 405 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker, 406 struct mem_cgroup *memcg) 407 { 408 struct shrinker_info *info; 409 410 info = shrinker_info_protected(memcg, nid); 411 return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0); 412 } 413 414 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker, 415 struct mem_cgroup *memcg) 416 { 417 struct shrinker_info *info; 418 419 info = shrinker_info_protected(memcg, nid); 420 return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]); 421 } 422 423 void reparent_shrinker_deferred(struct mem_cgroup *memcg) 424 { 425 int i, nid; 426 long nr; 427 struct mem_cgroup *parent; 428 struct shrinker_info *child_info, *parent_info; 429 430 parent = parent_mem_cgroup(memcg); 431 if (!parent) 432 parent = root_mem_cgroup; 433 434 /* Prevent from concurrent shrinker_info expand */ 435 down_read(&shrinker_rwsem); 436 for_each_node(nid) { 437 child_info = shrinker_info_protected(memcg, nid); 438 parent_info = shrinker_info_protected(parent, nid); 439 for (i = 0; i < shrinker_nr_max; i++) { 440 nr = atomic_long_read(&child_info->nr_deferred[i]); 441 atomic_long_add(nr, &parent_info->nr_deferred[i]); 442 } 443 } 444 up_read(&shrinker_rwsem); 445 } 446 447 static bool cgroup_reclaim(struct scan_control *sc) 448 { 449 return sc->target_mem_cgroup; 450 } 451 452 /** 453 * writeback_throttling_sane - is the usual dirty throttling mechanism available? 454 * @sc: scan_control in question 455 * 456 * The normal page dirty throttling mechanism in balance_dirty_pages() is 457 * completely broken with the legacy memcg and direct stalling in 458 * shrink_folio_list() is used for throttling instead, which lacks all the 459 * niceties such as fairness, adaptive pausing, bandwidth proportional 460 * allocation and configurability. 461 * 462 * This function tests whether the vmscan currently in progress can assume 463 * that the normal dirty throttling mechanism is operational. 464 */ 465 static bool writeback_throttling_sane(struct scan_control *sc) 466 { 467 if (!cgroup_reclaim(sc)) 468 return true; 469 #ifdef CONFIG_CGROUP_WRITEBACK 470 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 471 return true; 472 #endif 473 return false; 474 } 475 #else 476 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 477 { 478 return -ENOSYS; 479 } 480 481 static void unregister_memcg_shrinker(struct shrinker *shrinker) 482 { 483 } 484 485 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker, 486 struct mem_cgroup *memcg) 487 { 488 return 0; 489 } 490 491 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker, 492 struct mem_cgroup *memcg) 493 { 494 return 0; 495 } 496 497 static bool cgroup_reclaim(struct scan_control *sc) 498 { 499 return false; 500 } 501 502 static bool writeback_throttling_sane(struct scan_control *sc) 503 { 504 return true; 505 } 506 #endif 507 508 static long xchg_nr_deferred(struct shrinker *shrinker, 509 struct shrink_control *sc) 510 { 511 int nid = sc->nid; 512 513 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 514 nid = 0; 515 516 if (sc->memcg && 517 (shrinker->flags & SHRINKER_MEMCG_AWARE)) 518 return xchg_nr_deferred_memcg(nid, shrinker, 519 sc->memcg); 520 521 return atomic_long_xchg(&shrinker->nr_deferred[nid], 0); 522 } 523 524 525 static long add_nr_deferred(long nr, struct shrinker *shrinker, 526 struct shrink_control *sc) 527 { 528 int nid = sc->nid; 529 530 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 531 nid = 0; 532 533 if (sc->memcg && 534 (shrinker->flags & SHRINKER_MEMCG_AWARE)) 535 return add_nr_deferred_memcg(nr, nid, shrinker, 536 sc->memcg); 537 538 return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]); 539 } 540 541 static bool can_demote(int nid, struct scan_control *sc) 542 { 543 if (!numa_demotion_enabled) 544 return false; 545 if (sc && sc->no_demotion) 546 return false; 547 if (next_demotion_node(nid) == NUMA_NO_NODE) 548 return false; 549 550 return true; 551 } 552 553 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg, 554 int nid, 555 struct scan_control *sc) 556 { 557 if (memcg == NULL) { 558 /* 559 * For non-memcg reclaim, is there 560 * space in any swap device? 561 */ 562 if (get_nr_swap_pages() > 0) 563 return true; 564 } else { 565 /* Is the memcg below its swap limit? */ 566 if (mem_cgroup_get_nr_swap_pages(memcg) > 0) 567 return true; 568 } 569 570 /* 571 * The page can not be swapped. 572 * 573 * Can it be reclaimed from this node via demotion? 574 */ 575 return can_demote(nid, sc); 576 } 577 578 /* 579 * This misses isolated folios which are not accounted for to save counters. 580 * As the data only determines if reclaim or compaction continues, it is 581 * not expected that isolated folios will be a dominating factor. 582 */ 583 unsigned long zone_reclaimable_pages(struct zone *zone) 584 { 585 unsigned long nr; 586 587 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) + 588 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE); 589 if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL)) 590 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) + 591 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON); 592 593 return nr; 594 } 595 596 /** 597 * lruvec_lru_size - Returns the number of pages on the given LRU list. 598 * @lruvec: lru vector 599 * @lru: lru to use 600 * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list) 601 */ 602 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, 603 int zone_idx) 604 { 605 unsigned long size = 0; 606 int zid; 607 608 for (zid = 0; zid <= zone_idx; zid++) { 609 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid]; 610 611 if (!managed_zone(zone)) 612 continue; 613 614 if (!mem_cgroup_disabled()) 615 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid); 616 else 617 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru); 618 } 619 return size; 620 } 621 622 /* 623 * Add a shrinker callback to be called from the vm. 624 */ 625 static int __prealloc_shrinker(struct shrinker *shrinker) 626 { 627 unsigned int size; 628 int err; 629 630 if (shrinker->flags & SHRINKER_MEMCG_AWARE) { 631 err = prealloc_memcg_shrinker(shrinker); 632 if (err != -ENOSYS) 633 return err; 634 635 shrinker->flags &= ~SHRINKER_MEMCG_AWARE; 636 } 637 638 size = sizeof(*shrinker->nr_deferred); 639 if (shrinker->flags & SHRINKER_NUMA_AWARE) 640 size *= nr_node_ids; 641 642 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); 643 if (!shrinker->nr_deferred) 644 return -ENOMEM; 645 646 return 0; 647 } 648 649 #ifdef CONFIG_SHRINKER_DEBUG 650 int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...) 651 { 652 va_list ap; 653 int err; 654 655 va_start(ap, fmt); 656 shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap); 657 va_end(ap); 658 if (!shrinker->name) 659 return -ENOMEM; 660 661 err = __prealloc_shrinker(shrinker); 662 if (err) { 663 kfree_const(shrinker->name); 664 shrinker->name = NULL; 665 } 666 667 return err; 668 } 669 #else 670 int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...) 671 { 672 return __prealloc_shrinker(shrinker); 673 } 674 #endif 675 676 void free_prealloced_shrinker(struct shrinker *shrinker) 677 { 678 #ifdef CONFIG_SHRINKER_DEBUG 679 kfree_const(shrinker->name); 680 shrinker->name = NULL; 681 #endif 682 if (shrinker->flags & SHRINKER_MEMCG_AWARE) { 683 down_write(&shrinker_rwsem); 684 unregister_memcg_shrinker(shrinker); 685 up_write(&shrinker_rwsem); 686 return; 687 } 688 689 kfree(shrinker->nr_deferred); 690 shrinker->nr_deferred = NULL; 691 } 692 693 void register_shrinker_prepared(struct shrinker *shrinker) 694 { 695 down_write(&shrinker_rwsem); 696 list_add_tail(&shrinker->list, &shrinker_list); 697 shrinker->flags |= SHRINKER_REGISTERED; 698 shrinker_debugfs_add(shrinker); 699 up_write(&shrinker_rwsem); 700 } 701 702 static int __register_shrinker(struct shrinker *shrinker) 703 { 704 int err = __prealloc_shrinker(shrinker); 705 706 if (err) 707 return err; 708 register_shrinker_prepared(shrinker); 709 return 0; 710 } 711 712 #ifdef CONFIG_SHRINKER_DEBUG 713 int register_shrinker(struct shrinker *shrinker, const char *fmt, ...) 714 { 715 va_list ap; 716 int err; 717 718 va_start(ap, fmt); 719 shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap); 720 va_end(ap); 721 if (!shrinker->name) 722 return -ENOMEM; 723 724 err = __register_shrinker(shrinker); 725 if (err) { 726 kfree_const(shrinker->name); 727 shrinker->name = NULL; 728 } 729 return err; 730 } 731 #else 732 int register_shrinker(struct shrinker *shrinker, const char *fmt, ...) 733 { 734 return __register_shrinker(shrinker); 735 } 736 #endif 737 EXPORT_SYMBOL(register_shrinker); 738 739 /* 740 * Remove one 741 */ 742 void unregister_shrinker(struct shrinker *shrinker) 743 { 744 if (!(shrinker->flags & SHRINKER_REGISTERED)) 745 return; 746 747 down_write(&shrinker_rwsem); 748 list_del(&shrinker->list); 749 shrinker->flags &= ~SHRINKER_REGISTERED; 750 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 751 unregister_memcg_shrinker(shrinker); 752 shrinker_debugfs_remove(shrinker); 753 up_write(&shrinker_rwsem); 754 755 kfree(shrinker->nr_deferred); 756 shrinker->nr_deferred = NULL; 757 } 758 EXPORT_SYMBOL(unregister_shrinker); 759 760 /** 761 * synchronize_shrinkers - Wait for all running shrinkers to complete. 762 * 763 * This is equivalent to calling unregister_shrink() and register_shrinker(), 764 * but atomically and with less overhead. This is useful to guarantee that all 765 * shrinker invocations have seen an update, before freeing memory, similar to 766 * rcu. 767 */ 768 void synchronize_shrinkers(void) 769 { 770 down_write(&shrinker_rwsem); 771 up_write(&shrinker_rwsem); 772 } 773 EXPORT_SYMBOL(synchronize_shrinkers); 774 775 #define SHRINK_BATCH 128 776 777 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl, 778 struct shrinker *shrinker, int priority) 779 { 780 unsigned long freed = 0; 781 unsigned long long delta; 782 long total_scan; 783 long freeable; 784 long nr; 785 long new_nr; 786 long batch_size = shrinker->batch ? shrinker->batch 787 : SHRINK_BATCH; 788 long scanned = 0, next_deferred; 789 790 freeable = shrinker->count_objects(shrinker, shrinkctl); 791 if (freeable == 0 || freeable == SHRINK_EMPTY) 792 return freeable; 793 794 /* 795 * copy the current shrinker scan count into a local variable 796 * and zero it so that other concurrent shrinker invocations 797 * don't also do this scanning work. 798 */ 799 nr = xchg_nr_deferred(shrinker, shrinkctl); 800 801 if (shrinker->seeks) { 802 delta = freeable >> priority; 803 delta *= 4; 804 do_div(delta, shrinker->seeks); 805 } else { 806 /* 807 * These objects don't require any IO to create. Trim 808 * them aggressively under memory pressure to keep 809 * them from causing refetches in the IO caches. 810 */ 811 delta = freeable / 2; 812 } 813 814 total_scan = nr >> priority; 815 total_scan += delta; 816 total_scan = min(total_scan, (2 * freeable)); 817 818 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, 819 freeable, delta, total_scan, priority); 820 821 /* 822 * Normally, we should not scan less than batch_size objects in one 823 * pass to avoid too frequent shrinker calls, but if the slab has less 824 * than batch_size objects in total and we are really tight on memory, 825 * we will try to reclaim all available objects, otherwise we can end 826 * up failing allocations although there are plenty of reclaimable 827 * objects spread over several slabs with usage less than the 828 * batch_size. 829 * 830 * We detect the "tight on memory" situations by looking at the total 831 * number of objects we want to scan (total_scan). If it is greater 832 * than the total number of objects on slab (freeable), we must be 833 * scanning at high prio and therefore should try to reclaim as much as 834 * possible. 835 */ 836 while (total_scan >= batch_size || 837 total_scan >= freeable) { 838 unsigned long ret; 839 unsigned long nr_to_scan = min(batch_size, total_scan); 840 841 shrinkctl->nr_to_scan = nr_to_scan; 842 shrinkctl->nr_scanned = nr_to_scan; 843 ret = shrinker->scan_objects(shrinker, shrinkctl); 844 if (ret == SHRINK_STOP) 845 break; 846 freed += ret; 847 848 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned); 849 total_scan -= shrinkctl->nr_scanned; 850 scanned += shrinkctl->nr_scanned; 851 852 cond_resched(); 853 } 854 855 /* 856 * The deferred work is increased by any new work (delta) that wasn't 857 * done, decreased by old deferred work that was done now. 858 * 859 * And it is capped to two times of the freeable items. 860 */ 861 next_deferred = max_t(long, (nr + delta - scanned), 0); 862 next_deferred = min(next_deferred, (2 * freeable)); 863 864 /* 865 * move the unused scan count back into the shrinker in a 866 * manner that handles concurrent updates. 867 */ 868 new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl); 869 870 trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan); 871 return freed; 872 } 873 874 #ifdef CONFIG_MEMCG 875 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 876 struct mem_cgroup *memcg, int priority) 877 { 878 struct shrinker_info *info; 879 unsigned long ret, freed = 0; 880 int i; 881 882 if (!mem_cgroup_online(memcg)) 883 return 0; 884 885 if (!down_read_trylock(&shrinker_rwsem)) 886 return 0; 887 888 info = shrinker_info_protected(memcg, nid); 889 if (unlikely(!info)) 890 goto unlock; 891 892 for_each_set_bit(i, info->map, shrinker_nr_max) { 893 struct shrink_control sc = { 894 .gfp_mask = gfp_mask, 895 .nid = nid, 896 .memcg = memcg, 897 }; 898 struct shrinker *shrinker; 899 900 shrinker = idr_find(&shrinker_idr, i); 901 if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) { 902 if (!shrinker) 903 clear_bit(i, info->map); 904 continue; 905 } 906 907 /* Call non-slab shrinkers even though kmem is disabled */ 908 if (!memcg_kmem_enabled() && 909 !(shrinker->flags & SHRINKER_NONSLAB)) 910 continue; 911 912 ret = do_shrink_slab(&sc, shrinker, priority); 913 if (ret == SHRINK_EMPTY) { 914 clear_bit(i, info->map); 915 /* 916 * After the shrinker reported that it had no objects to 917 * free, but before we cleared the corresponding bit in 918 * the memcg shrinker map, a new object might have been 919 * added. To make sure, we have the bit set in this 920 * case, we invoke the shrinker one more time and reset 921 * the bit if it reports that it is not empty anymore. 922 * The memory barrier here pairs with the barrier in 923 * set_shrinker_bit(): 924 * 925 * list_lru_add() shrink_slab_memcg() 926 * list_add_tail() clear_bit() 927 * <MB> <MB> 928 * set_bit() do_shrink_slab() 929 */ 930 smp_mb__after_atomic(); 931 ret = do_shrink_slab(&sc, shrinker, priority); 932 if (ret == SHRINK_EMPTY) 933 ret = 0; 934 else 935 set_shrinker_bit(memcg, nid, i); 936 } 937 freed += ret; 938 939 if (rwsem_is_contended(&shrinker_rwsem)) { 940 freed = freed ? : 1; 941 break; 942 } 943 } 944 unlock: 945 up_read(&shrinker_rwsem); 946 return freed; 947 } 948 #else /* CONFIG_MEMCG */ 949 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 950 struct mem_cgroup *memcg, int priority) 951 { 952 return 0; 953 } 954 #endif /* CONFIG_MEMCG */ 955 956 /** 957 * shrink_slab - shrink slab caches 958 * @gfp_mask: allocation context 959 * @nid: node whose slab caches to target 960 * @memcg: memory cgroup whose slab caches to target 961 * @priority: the reclaim priority 962 * 963 * Call the shrink functions to age shrinkable caches. 964 * 965 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set, 966 * unaware shrinkers will receive a node id of 0 instead. 967 * 968 * @memcg specifies the memory cgroup to target. Unaware shrinkers 969 * are called only if it is the root cgroup. 970 * 971 * @priority is sc->priority, we take the number of objects and >> by priority 972 * in order to get the scan target. 973 * 974 * Returns the number of reclaimed slab objects. 975 */ 976 static unsigned long shrink_slab(gfp_t gfp_mask, int nid, 977 struct mem_cgroup *memcg, 978 int priority) 979 { 980 unsigned long ret, freed = 0; 981 struct shrinker *shrinker; 982 983 /* 984 * The root memcg might be allocated even though memcg is disabled 985 * via "cgroup_disable=memory" boot parameter. This could make 986 * mem_cgroup_is_root() return false, then just run memcg slab 987 * shrink, but skip global shrink. This may result in premature 988 * oom. 989 */ 990 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg)) 991 return shrink_slab_memcg(gfp_mask, nid, memcg, priority); 992 993 if (!down_read_trylock(&shrinker_rwsem)) 994 goto out; 995 996 list_for_each_entry(shrinker, &shrinker_list, list) { 997 struct shrink_control sc = { 998 .gfp_mask = gfp_mask, 999 .nid = nid, 1000 .memcg = memcg, 1001 }; 1002 1003 ret = do_shrink_slab(&sc, shrinker, priority); 1004 if (ret == SHRINK_EMPTY) 1005 ret = 0; 1006 freed += ret; 1007 /* 1008 * Bail out if someone want to register a new shrinker to 1009 * prevent the registration from being stalled for long periods 1010 * by parallel ongoing shrinking. 1011 */ 1012 if (rwsem_is_contended(&shrinker_rwsem)) { 1013 freed = freed ? : 1; 1014 break; 1015 } 1016 } 1017 1018 up_read(&shrinker_rwsem); 1019 out: 1020 cond_resched(); 1021 return freed; 1022 } 1023 1024 static unsigned long drop_slab_node(int nid) 1025 { 1026 unsigned long freed = 0; 1027 struct mem_cgroup *memcg = NULL; 1028 1029 memcg = mem_cgroup_iter(NULL, NULL, NULL); 1030 do { 1031 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0); 1032 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 1033 1034 return freed; 1035 } 1036 1037 void drop_slab(void) 1038 { 1039 int nid; 1040 int shift = 0; 1041 unsigned long freed; 1042 1043 do { 1044 freed = 0; 1045 for_each_online_node(nid) { 1046 if (fatal_signal_pending(current)) 1047 return; 1048 1049 freed += drop_slab_node(nid); 1050 } 1051 } while ((freed >> shift++) > 1); 1052 } 1053 1054 static int reclaimer_offset(void) 1055 { 1056 BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD != 1057 PGDEMOTE_DIRECT - PGDEMOTE_KSWAPD); 1058 BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD != 1059 PGSCAN_DIRECT - PGSCAN_KSWAPD); 1060 BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD != 1061 PGDEMOTE_KHUGEPAGED - PGDEMOTE_KSWAPD); 1062 BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD != 1063 PGSCAN_KHUGEPAGED - PGSCAN_KSWAPD); 1064 1065 if (current_is_kswapd()) 1066 return 0; 1067 if (current_is_khugepaged()) 1068 return PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD; 1069 return PGSTEAL_DIRECT - PGSTEAL_KSWAPD; 1070 } 1071 1072 static inline int is_page_cache_freeable(struct folio *folio) 1073 { 1074 /* 1075 * A freeable page cache folio is referenced only by the caller 1076 * that isolated the folio, the page cache and optional filesystem 1077 * private data at folio->private. 1078 */ 1079 return folio_ref_count(folio) - folio_test_private(folio) == 1080 1 + folio_nr_pages(folio); 1081 } 1082 1083 /* 1084 * We detected a synchronous write error writing a folio out. Probably 1085 * -ENOSPC. We need to propagate that into the address_space for a subsequent 1086 * fsync(), msync() or close(). 1087 * 1088 * The tricky part is that after writepage we cannot touch the mapping: nothing 1089 * prevents it from being freed up. But we have a ref on the folio and once 1090 * that folio is locked, the mapping is pinned. 1091 * 1092 * We're allowed to run sleeping folio_lock() here because we know the caller has 1093 * __GFP_FS. 1094 */ 1095 static void handle_write_error(struct address_space *mapping, 1096 struct folio *folio, int error) 1097 { 1098 folio_lock(folio); 1099 if (folio_mapping(folio) == mapping) 1100 mapping_set_error(mapping, error); 1101 folio_unlock(folio); 1102 } 1103 1104 static bool skip_throttle_noprogress(pg_data_t *pgdat) 1105 { 1106 int reclaimable = 0, write_pending = 0; 1107 int i; 1108 1109 /* 1110 * If kswapd is disabled, reschedule if necessary but do not 1111 * throttle as the system is likely near OOM. 1112 */ 1113 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 1114 return true; 1115 1116 /* 1117 * If there are a lot of dirty/writeback folios then do not 1118 * throttle as throttling will occur when the folios cycle 1119 * towards the end of the LRU if still under writeback. 1120 */ 1121 for (i = 0; i < MAX_NR_ZONES; i++) { 1122 struct zone *zone = pgdat->node_zones + i; 1123 1124 if (!managed_zone(zone)) 1125 continue; 1126 1127 reclaimable += zone_reclaimable_pages(zone); 1128 write_pending += zone_page_state_snapshot(zone, 1129 NR_ZONE_WRITE_PENDING); 1130 } 1131 if (2 * write_pending <= reclaimable) 1132 return true; 1133 1134 return false; 1135 } 1136 1137 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason) 1138 { 1139 wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason]; 1140 long timeout, ret; 1141 DEFINE_WAIT(wait); 1142 1143 /* 1144 * Do not throttle IO workers, kthreads other than kswapd or 1145 * workqueues. They may be required for reclaim to make 1146 * forward progress (e.g. journalling workqueues or kthreads). 1147 */ 1148 if (!current_is_kswapd() && 1149 current->flags & (PF_IO_WORKER|PF_KTHREAD)) { 1150 cond_resched(); 1151 return; 1152 } 1153 1154 /* 1155 * These figures are pulled out of thin air. 1156 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many 1157 * parallel reclaimers which is a short-lived event so the timeout is 1158 * short. Failing to make progress or waiting on writeback are 1159 * potentially long-lived events so use a longer timeout. This is shaky 1160 * logic as a failure to make progress could be due to anything from 1161 * writeback to a slow device to excessive referenced folios at the tail 1162 * of the inactive LRU. 1163 */ 1164 switch(reason) { 1165 case VMSCAN_THROTTLE_WRITEBACK: 1166 timeout = HZ/10; 1167 1168 if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) { 1169 WRITE_ONCE(pgdat->nr_reclaim_start, 1170 node_page_state(pgdat, NR_THROTTLED_WRITTEN)); 1171 } 1172 1173 break; 1174 case VMSCAN_THROTTLE_CONGESTED: 1175 fallthrough; 1176 case VMSCAN_THROTTLE_NOPROGRESS: 1177 if (skip_throttle_noprogress(pgdat)) { 1178 cond_resched(); 1179 return; 1180 } 1181 1182 timeout = 1; 1183 1184 break; 1185 case VMSCAN_THROTTLE_ISOLATED: 1186 timeout = HZ/50; 1187 break; 1188 default: 1189 WARN_ON_ONCE(1); 1190 timeout = HZ; 1191 break; 1192 } 1193 1194 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE); 1195 ret = schedule_timeout(timeout); 1196 finish_wait(wqh, &wait); 1197 1198 if (reason == VMSCAN_THROTTLE_WRITEBACK) 1199 atomic_dec(&pgdat->nr_writeback_throttled); 1200 1201 trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout), 1202 jiffies_to_usecs(timeout - ret), 1203 reason); 1204 } 1205 1206 /* 1207 * Account for folios written if tasks are throttled waiting on dirty 1208 * folios to clean. If enough folios have been cleaned since throttling 1209 * started then wakeup the throttled tasks. 1210 */ 1211 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio, 1212 int nr_throttled) 1213 { 1214 unsigned long nr_written; 1215 1216 node_stat_add_folio(folio, NR_THROTTLED_WRITTEN); 1217 1218 /* 1219 * This is an inaccurate read as the per-cpu deltas may not 1220 * be synchronised. However, given that the system is 1221 * writeback throttled, it is not worth taking the penalty 1222 * of getting an accurate count. At worst, the throttle 1223 * timeout guarantees forward progress. 1224 */ 1225 nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) - 1226 READ_ONCE(pgdat->nr_reclaim_start); 1227 1228 if (nr_written > SWAP_CLUSTER_MAX * nr_throttled) 1229 wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]); 1230 } 1231 1232 /* possible outcome of pageout() */ 1233 typedef enum { 1234 /* failed to write folio out, folio is locked */ 1235 PAGE_KEEP, 1236 /* move folio to the active list, folio is locked */ 1237 PAGE_ACTIVATE, 1238 /* folio has been sent to the disk successfully, folio is unlocked */ 1239 PAGE_SUCCESS, 1240 /* folio is clean and locked */ 1241 PAGE_CLEAN, 1242 } pageout_t; 1243 1244 /* 1245 * pageout is called by shrink_folio_list() for each dirty folio. 1246 * Calls ->writepage(). 1247 */ 1248 static pageout_t pageout(struct folio *folio, struct address_space *mapping, 1249 struct swap_iocb **plug) 1250 { 1251 /* 1252 * If the folio is dirty, only perform writeback if that write 1253 * will be non-blocking. To prevent this allocation from being 1254 * stalled by pagecache activity. But note that there may be 1255 * stalls if we need to run get_block(). We could test 1256 * PagePrivate for that. 1257 * 1258 * If this process is currently in __generic_file_write_iter() against 1259 * this folio's queue, we can perform writeback even if that 1260 * will block. 1261 * 1262 * If the folio is swapcache, write it back even if that would 1263 * block, for some throttling. This happens by accident, because 1264 * swap_backing_dev_info is bust: it doesn't reflect the 1265 * congestion state of the swapdevs. Easy to fix, if needed. 1266 */ 1267 if (!is_page_cache_freeable(folio)) 1268 return PAGE_KEEP; 1269 if (!mapping) { 1270 /* 1271 * Some data journaling orphaned folios can have 1272 * folio->mapping == NULL while being dirty with clean buffers. 1273 */ 1274 if (folio_test_private(folio)) { 1275 if (try_to_free_buffers(folio)) { 1276 folio_clear_dirty(folio); 1277 pr_info("%s: orphaned folio\n", __func__); 1278 return PAGE_CLEAN; 1279 } 1280 } 1281 return PAGE_KEEP; 1282 } 1283 if (mapping->a_ops->writepage == NULL) 1284 return PAGE_ACTIVATE; 1285 1286 if (folio_clear_dirty_for_io(folio)) { 1287 int res; 1288 struct writeback_control wbc = { 1289 .sync_mode = WB_SYNC_NONE, 1290 .nr_to_write = SWAP_CLUSTER_MAX, 1291 .range_start = 0, 1292 .range_end = LLONG_MAX, 1293 .for_reclaim = 1, 1294 .swap_plug = plug, 1295 }; 1296 1297 folio_set_reclaim(folio); 1298 res = mapping->a_ops->writepage(&folio->page, &wbc); 1299 if (res < 0) 1300 handle_write_error(mapping, folio, res); 1301 if (res == AOP_WRITEPAGE_ACTIVATE) { 1302 folio_clear_reclaim(folio); 1303 return PAGE_ACTIVATE; 1304 } 1305 1306 if (!folio_test_writeback(folio)) { 1307 /* synchronous write or broken a_ops? */ 1308 folio_clear_reclaim(folio); 1309 } 1310 trace_mm_vmscan_write_folio(folio); 1311 node_stat_add_folio(folio, NR_VMSCAN_WRITE); 1312 return PAGE_SUCCESS; 1313 } 1314 1315 return PAGE_CLEAN; 1316 } 1317 1318 /* 1319 * Same as remove_mapping, but if the folio is removed from the mapping, it 1320 * gets returned with a refcount of 0. 1321 */ 1322 static int __remove_mapping(struct address_space *mapping, struct folio *folio, 1323 bool reclaimed, struct mem_cgroup *target_memcg) 1324 { 1325 int refcount; 1326 void *shadow = NULL; 1327 1328 BUG_ON(!folio_test_locked(folio)); 1329 BUG_ON(mapping != folio_mapping(folio)); 1330 1331 if (!folio_test_swapcache(folio)) 1332 spin_lock(&mapping->host->i_lock); 1333 xa_lock_irq(&mapping->i_pages); 1334 /* 1335 * The non racy check for a busy folio. 1336 * 1337 * Must be careful with the order of the tests. When someone has 1338 * a ref to the folio, it may be possible that they dirty it then 1339 * drop the reference. So if the dirty flag is tested before the 1340 * refcount here, then the following race may occur: 1341 * 1342 * get_user_pages(&page); 1343 * [user mapping goes away] 1344 * write_to(page); 1345 * !folio_test_dirty(folio) [good] 1346 * folio_set_dirty(folio); 1347 * folio_put(folio); 1348 * !refcount(folio) [good, discard it] 1349 * 1350 * [oops, our write_to data is lost] 1351 * 1352 * Reversing the order of the tests ensures such a situation cannot 1353 * escape unnoticed. The smp_rmb is needed to ensure the folio->flags 1354 * load is not satisfied before that of folio->_refcount. 1355 * 1356 * Note that if the dirty flag is always set via folio_mark_dirty, 1357 * and thus under the i_pages lock, then this ordering is not required. 1358 */ 1359 refcount = 1 + folio_nr_pages(folio); 1360 if (!folio_ref_freeze(folio, refcount)) 1361 goto cannot_free; 1362 /* note: atomic_cmpxchg in folio_ref_freeze provides the smp_rmb */ 1363 if (unlikely(folio_test_dirty(folio))) { 1364 folio_ref_unfreeze(folio, refcount); 1365 goto cannot_free; 1366 } 1367 1368 if (folio_test_swapcache(folio)) { 1369 swp_entry_t swap = folio_swap_entry(folio); 1370 1371 if (reclaimed && !mapping_exiting(mapping)) 1372 shadow = workingset_eviction(folio, target_memcg); 1373 __delete_from_swap_cache(folio, swap, shadow); 1374 mem_cgroup_swapout(folio, swap); 1375 xa_unlock_irq(&mapping->i_pages); 1376 put_swap_folio(folio, swap); 1377 } else { 1378 void (*free_folio)(struct folio *); 1379 1380 free_folio = mapping->a_ops->free_folio; 1381 /* 1382 * Remember a shadow entry for reclaimed file cache in 1383 * order to detect refaults, thus thrashing, later on. 1384 * 1385 * But don't store shadows in an address space that is 1386 * already exiting. This is not just an optimization, 1387 * inode reclaim needs to empty out the radix tree or 1388 * the nodes are lost. Don't plant shadows behind its 1389 * back. 1390 * 1391 * We also don't store shadows for DAX mappings because the 1392 * only page cache folios found in these are zero pages 1393 * covering holes, and because we don't want to mix DAX 1394 * exceptional entries and shadow exceptional entries in the 1395 * same address_space. 1396 */ 1397 if (reclaimed && folio_is_file_lru(folio) && 1398 !mapping_exiting(mapping) && !dax_mapping(mapping)) 1399 shadow = workingset_eviction(folio, target_memcg); 1400 __filemap_remove_folio(folio, shadow); 1401 xa_unlock_irq(&mapping->i_pages); 1402 if (mapping_shrinkable(mapping)) 1403 inode_add_lru(mapping->host); 1404 spin_unlock(&mapping->host->i_lock); 1405 1406 if (free_folio) 1407 free_folio(folio); 1408 } 1409 1410 return 1; 1411 1412 cannot_free: 1413 xa_unlock_irq(&mapping->i_pages); 1414 if (!folio_test_swapcache(folio)) 1415 spin_unlock(&mapping->host->i_lock); 1416 return 0; 1417 } 1418 1419 /** 1420 * remove_mapping() - Attempt to remove a folio from its mapping. 1421 * @mapping: The address space. 1422 * @folio: The folio to remove. 1423 * 1424 * If the folio is dirty, under writeback or if someone else has a ref 1425 * on it, removal will fail. 1426 * Return: The number of pages removed from the mapping. 0 if the folio 1427 * could not be removed. 1428 * Context: The caller should have a single refcount on the folio and 1429 * hold its lock. 1430 */ 1431 long remove_mapping(struct address_space *mapping, struct folio *folio) 1432 { 1433 if (__remove_mapping(mapping, folio, false, NULL)) { 1434 /* 1435 * Unfreezing the refcount with 1 effectively 1436 * drops the pagecache ref for us without requiring another 1437 * atomic operation. 1438 */ 1439 folio_ref_unfreeze(folio, 1); 1440 return folio_nr_pages(folio); 1441 } 1442 return 0; 1443 } 1444 1445 /** 1446 * folio_putback_lru - Put previously isolated folio onto appropriate LRU list. 1447 * @folio: Folio to be returned to an LRU list. 1448 * 1449 * Add previously isolated @folio to appropriate LRU list. 1450 * The folio may still be unevictable for other reasons. 1451 * 1452 * Context: lru_lock must not be held, interrupts must be enabled. 1453 */ 1454 void folio_putback_lru(struct folio *folio) 1455 { 1456 folio_add_lru(folio); 1457 folio_put(folio); /* drop ref from isolate */ 1458 } 1459 1460 enum folio_references { 1461 FOLIOREF_RECLAIM, 1462 FOLIOREF_RECLAIM_CLEAN, 1463 FOLIOREF_KEEP, 1464 FOLIOREF_ACTIVATE, 1465 }; 1466 1467 static enum folio_references folio_check_references(struct folio *folio, 1468 struct scan_control *sc) 1469 { 1470 int referenced_ptes, referenced_folio; 1471 unsigned long vm_flags; 1472 1473 referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup, 1474 &vm_flags); 1475 referenced_folio = folio_test_clear_referenced(folio); 1476 1477 /* 1478 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma. 1479 * Let the folio, now marked Mlocked, be moved to the unevictable list. 1480 */ 1481 if (vm_flags & VM_LOCKED) 1482 return FOLIOREF_ACTIVATE; 1483 1484 /* rmap lock contention: rotate */ 1485 if (referenced_ptes == -1) 1486 return FOLIOREF_KEEP; 1487 1488 if (referenced_ptes) { 1489 /* 1490 * All mapped folios start out with page table 1491 * references from the instantiating fault, so we need 1492 * to look twice if a mapped file/anon folio is used more 1493 * than once. 1494 * 1495 * Mark it and spare it for another trip around the 1496 * inactive list. Another page table reference will 1497 * lead to its activation. 1498 * 1499 * Note: the mark is set for activated folios as well 1500 * so that recently deactivated but used folios are 1501 * quickly recovered. 1502 */ 1503 folio_set_referenced(folio); 1504 1505 if (referenced_folio || referenced_ptes > 1) 1506 return FOLIOREF_ACTIVATE; 1507 1508 /* 1509 * Activate file-backed executable folios after first usage. 1510 */ 1511 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) 1512 return FOLIOREF_ACTIVATE; 1513 1514 return FOLIOREF_KEEP; 1515 } 1516 1517 /* Reclaim if clean, defer dirty folios to writeback */ 1518 if (referenced_folio && folio_is_file_lru(folio)) 1519 return FOLIOREF_RECLAIM_CLEAN; 1520 1521 return FOLIOREF_RECLAIM; 1522 } 1523 1524 /* Check if a folio is dirty or under writeback */ 1525 static void folio_check_dirty_writeback(struct folio *folio, 1526 bool *dirty, bool *writeback) 1527 { 1528 struct address_space *mapping; 1529 1530 /* 1531 * Anonymous folios are not handled by flushers and must be written 1532 * from reclaim context. Do not stall reclaim based on them. 1533 * MADV_FREE anonymous folios are put into inactive file list too. 1534 * They could be mistakenly treated as file lru. So further anon 1535 * test is needed. 1536 */ 1537 if (!folio_is_file_lru(folio) || 1538 (folio_test_anon(folio) && !folio_test_swapbacked(folio))) { 1539 *dirty = false; 1540 *writeback = false; 1541 return; 1542 } 1543 1544 /* By default assume that the folio flags are accurate */ 1545 *dirty = folio_test_dirty(folio); 1546 *writeback = folio_test_writeback(folio); 1547 1548 /* Verify dirty/writeback state if the filesystem supports it */ 1549 if (!folio_test_private(folio)) 1550 return; 1551 1552 mapping = folio_mapping(folio); 1553 if (mapping && mapping->a_ops->is_dirty_writeback) 1554 mapping->a_ops->is_dirty_writeback(folio, dirty, writeback); 1555 } 1556 1557 static struct page *alloc_demote_page(struct page *page, unsigned long private) 1558 { 1559 struct page *target_page; 1560 nodemask_t *allowed_mask; 1561 struct migration_target_control *mtc; 1562 1563 mtc = (struct migration_target_control *)private; 1564 1565 allowed_mask = mtc->nmask; 1566 /* 1567 * make sure we allocate from the target node first also trying to 1568 * demote or reclaim pages from the target node via kswapd if we are 1569 * low on free memory on target node. If we don't do this and if 1570 * we have free memory on the slower(lower) memtier, we would start 1571 * allocating pages from slower(lower) memory tiers without even forcing 1572 * a demotion of cold pages from the target memtier. This can result 1573 * in the kernel placing hot pages in slower(lower) memory tiers. 1574 */ 1575 mtc->nmask = NULL; 1576 mtc->gfp_mask |= __GFP_THISNODE; 1577 target_page = alloc_migration_target(page, (unsigned long)mtc); 1578 if (target_page) 1579 return target_page; 1580 1581 mtc->gfp_mask &= ~__GFP_THISNODE; 1582 mtc->nmask = allowed_mask; 1583 1584 return alloc_migration_target(page, (unsigned long)mtc); 1585 } 1586 1587 /* 1588 * Take folios on @demote_folios and attempt to demote them to another node. 1589 * Folios which are not demoted are left on @demote_folios. 1590 */ 1591 static unsigned int demote_folio_list(struct list_head *demote_folios, 1592 struct pglist_data *pgdat) 1593 { 1594 int target_nid = next_demotion_node(pgdat->node_id); 1595 unsigned int nr_succeeded; 1596 nodemask_t allowed_mask; 1597 1598 struct migration_target_control mtc = { 1599 /* 1600 * Allocate from 'node', or fail quickly and quietly. 1601 * When this happens, 'page' will likely just be discarded 1602 * instead of migrated. 1603 */ 1604 .gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | __GFP_NOWARN | 1605 __GFP_NOMEMALLOC | GFP_NOWAIT, 1606 .nid = target_nid, 1607 .nmask = &allowed_mask 1608 }; 1609 1610 if (list_empty(demote_folios)) 1611 return 0; 1612 1613 if (target_nid == NUMA_NO_NODE) 1614 return 0; 1615 1616 node_get_allowed_targets(pgdat, &allowed_mask); 1617 1618 /* Demotion ignores all cpuset and mempolicy settings */ 1619 migrate_pages(demote_folios, alloc_demote_page, NULL, 1620 (unsigned long)&mtc, MIGRATE_ASYNC, MR_DEMOTION, 1621 &nr_succeeded); 1622 1623 __count_vm_events(PGDEMOTE_KSWAPD + reclaimer_offset(), nr_succeeded); 1624 1625 return nr_succeeded; 1626 } 1627 1628 static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask) 1629 { 1630 if (gfp_mask & __GFP_FS) 1631 return true; 1632 if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO)) 1633 return false; 1634 /* 1635 * We can "enter_fs" for swap-cache with only __GFP_IO 1636 * providing this isn't SWP_FS_OPS. 1637 * ->flags can be updated non-atomicially (scan_swap_map_slots), 1638 * but that will never affect SWP_FS_OPS, so the data_race 1639 * is safe. 1640 */ 1641 return !data_race(folio_swap_flags(folio) & SWP_FS_OPS); 1642 } 1643 1644 /* 1645 * shrink_folio_list() returns the number of reclaimed pages 1646 */ 1647 static unsigned int shrink_folio_list(struct list_head *folio_list, 1648 struct pglist_data *pgdat, struct scan_control *sc, 1649 struct reclaim_stat *stat, bool ignore_references) 1650 { 1651 LIST_HEAD(ret_folios); 1652 LIST_HEAD(free_folios); 1653 LIST_HEAD(demote_folios); 1654 unsigned int nr_reclaimed = 0; 1655 unsigned int pgactivate = 0; 1656 bool do_demote_pass; 1657 struct swap_iocb *plug = NULL; 1658 1659 memset(stat, 0, sizeof(*stat)); 1660 cond_resched(); 1661 do_demote_pass = can_demote(pgdat->node_id, sc); 1662 1663 retry: 1664 while (!list_empty(folio_list)) { 1665 struct address_space *mapping; 1666 struct folio *folio; 1667 enum folio_references references = FOLIOREF_RECLAIM; 1668 bool dirty, writeback; 1669 unsigned int nr_pages; 1670 1671 cond_resched(); 1672 1673 folio = lru_to_folio(folio_list); 1674 list_del(&folio->lru); 1675 1676 if (!folio_trylock(folio)) 1677 goto keep; 1678 1679 VM_BUG_ON_FOLIO(folio_test_active(folio), folio); 1680 1681 nr_pages = folio_nr_pages(folio); 1682 1683 /* Account the number of base pages */ 1684 sc->nr_scanned += nr_pages; 1685 1686 if (unlikely(!folio_evictable(folio))) 1687 goto activate_locked; 1688 1689 if (!sc->may_unmap && folio_mapped(folio)) 1690 goto keep_locked; 1691 1692 /* folio_update_gen() tried to promote this page? */ 1693 if (lru_gen_enabled() && !ignore_references && 1694 folio_mapped(folio) && folio_test_referenced(folio)) 1695 goto keep_locked; 1696 1697 /* 1698 * The number of dirty pages determines if a node is marked 1699 * reclaim_congested. kswapd will stall and start writing 1700 * folios if the tail of the LRU is all dirty unqueued folios. 1701 */ 1702 folio_check_dirty_writeback(folio, &dirty, &writeback); 1703 if (dirty || writeback) 1704 stat->nr_dirty += nr_pages; 1705 1706 if (dirty && !writeback) 1707 stat->nr_unqueued_dirty += nr_pages; 1708 1709 /* 1710 * Treat this folio as congested if folios are cycling 1711 * through the LRU so quickly that the folios marked 1712 * for immediate reclaim are making it to the end of 1713 * the LRU a second time. 1714 */ 1715 if (writeback && folio_test_reclaim(folio)) 1716 stat->nr_congested += nr_pages; 1717 1718 /* 1719 * If a folio at the tail of the LRU is under writeback, there 1720 * are three cases to consider. 1721 * 1722 * 1) If reclaim is encountering an excessive number 1723 * of folios under writeback and this folio has both 1724 * the writeback and reclaim flags set, then it 1725 * indicates that folios are being queued for I/O but 1726 * are being recycled through the LRU before the I/O 1727 * can complete. Waiting on the folio itself risks an 1728 * indefinite stall if it is impossible to writeback 1729 * the folio due to I/O error or disconnected storage 1730 * so instead note that the LRU is being scanned too 1731 * quickly and the caller can stall after the folio 1732 * list has been processed. 1733 * 1734 * 2) Global or new memcg reclaim encounters a folio that is 1735 * not marked for immediate reclaim, or the caller does not 1736 * have __GFP_FS (or __GFP_IO if it's simply going to swap, 1737 * not to fs). In this case mark the folio for immediate 1738 * reclaim and continue scanning. 1739 * 1740 * Require may_enter_fs() because we would wait on fs, which 1741 * may not have submitted I/O yet. And the loop driver might 1742 * enter reclaim, and deadlock if it waits on a folio for 1743 * which it is needed to do the write (loop masks off 1744 * __GFP_IO|__GFP_FS for this reason); but more thought 1745 * would probably show more reasons. 1746 * 1747 * 3) Legacy memcg encounters a folio that already has the 1748 * reclaim flag set. memcg does not have any dirty folio 1749 * throttling so we could easily OOM just because too many 1750 * folios are in writeback and there is nothing else to 1751 * reclaim. Wait for the writeback to complete. 1752 * 1753 * In cases 1) and 2) we activate the folios to get them out of 1754 * the way while we continue scanning for clean folios on the 1755 * inactive list and refilling from the active list. The 1756 * observation here is that waiting for disk writes is more 1757 * expensive than potentially causing reloads down the line. 1758 * Since they're marked for immediate reclaim, they won't put 1759 * memory pressure on the cache working set any longer than it 1760 * takes to write them to disk. 1761 */ 1762 if (folio_test_writeback(folio)) { 1763 /* Case 1 above */ 1764 if (current_is_kswapd() && 1765 folio_test_reclaim(folio) && 1766 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) { 1767 stat->nr_immediate += nr_pages; 1768 goto activate_locked; 1769 1770 /* Case 2 above */ 1771 } else if (writeback_throttling_sane(sc) || 1772 !folio_test_reclaim(folio) || 1773 !may_enter_fs(folio, sc->gfp_mask)) { 1774 /* 1775 * This is slightly racy - 1776 * folio_end_writeback() might have 1777 * just cleared the reclaim flag, then 1778 * setting the reclaim flag here ends up 1779 * interpreted as the readahead flag - but 1780 * that does not matter enough to care. 1781 * What we do want is for this folio to 1782 * have the reclaim flag set next time 1783 * memcg reclaim reaches the tests above, 1784 * so it will then wait for writeback to 1785 * avoid OOM; and it's also appropriate 1786 * in global reclaim. 1787 */ 1788 folio_set_reclaim(folio); 1789 stat->nr_writeback += nr_pages; 1790 goto activate_locked; 1791 1792 /* Case 3 above */ 1793 } else { 1794 folio_unlock(folio); 1795 folio_wait_writeback(folio); 1796 /* then go back and try same folio again */ 1797 list_add_tail(&folio->lru, folio_list); 1798 continue; 1799 } 1800 } 1801 1802 if (!ignore_references) 1803 references = folio_check_references(folio, sc); 1804 1805 switch (references) { 1806 case FOLIOREF_ACTIVATE: 1807 goto activate_locked; 1808 case FOLIOREF_KEEP: 1809 stat->nr_ref_keep += nr_pages; 1810 goto keep_locked; 1811 case FOLIOREF_RECLAIM: 1812 case FOLIOREF_RECLAIM_CLEAN: 1813 ; /* try to reclaim the folio below */ 1814 } 1815 1816 /* 1817 * Before reclaiming the folio, try to relocate 1818 * its contents to another node. 1819 */ 1820 if (do_demote_pass && 1821 (thp_migration_supported() || !folio_test_large(folio))) { 1822 list_add(&folio->lru, &demote_folios); 1823 folio_unlock(folio); 1824 continue; 1825 } 1826 1827 /* 1828 * Anonymous process memory has backing store? 1829 * Try to allocate it some swap space here. 1830 * Lazyfree folio could be freed directly 1831 */ 1832 if (folio_test_anon(folio) && folio_test_swapbacked(folio)) { 1833 if (!folio_test_swapcache(folio)) { 1834 if (!(sc->gfp_mask & __GFP_IO)) 1835 goto keep_locked; 1836 if (folio_maybe_dma_pinned(folio)) 1837 goto keep_locked; 1838 if (folio_test_large(folio)) { 1839 /* cannot split folio, skip it */ 1840 if (!can_split_folio(folio, NULL)) 1841 goto activate_locked; 1842 /* 1843 * Split folios without a PMD map right 1844 * away. Chances are some or all of the 1845 * tail pages can be freed without IO. 1846 */ 1847 if (!folio_entire_mapcount(folio) && 1848 split_folio_to_list(folio, 1849 folio_list)) 1850 goto activate_locked; 1851 } 1852 if (!add_to_swap(folio)) { 1853 if (!folio_test_large(folio)) 1854 goto activate_locked_split; 1855 /* Fallback to swap normal pages */ 1856 if (split_folio_to_list(folio, 1857 folio_list)) 1858 goto activate_locked; 1859 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1860 count_vm_event(THP_SWPOUT_FALLBACK); 1861 #endif 1862 if (!add_to_swap(folio)) 1863 goto activate_locked_split; 1864 } 1865 } 1866 } else if (folio_test_swapbacked(folio) && 1867 folio_test_large(folio)) { 1868 /* Split shmem folio */ 1869 if (split_folio_to_list(folio, folio_list)) 1870 goto keep_locked; 1871 } 1872 1873 /* 1874 * If the folio was split above, the tail pages will make 1875 * their own pass through this function and be accounted 1876 * then. 1877 */ 1878 if ((nr_pages > 1) && !folio_test_large(folio)) { 1879 sc->nr_scanned -= (nr_pages - 1); 1880 nr_pages = 1; 1881 } 1882 1883 /* 1884 * The folio is mapped into the page tables of one or more 1885 * processes. Try to unmap it here. 1886 */ 1887 if (folio_mapped(folio)) { 1888 enum ttu_flags flags = TTU_BATCH_FLUSH; 1889 bool was_swapbacked = folio_test_swapbacked(folio); 1890 1891 if (folio_test_pmd_mappable(folio)) 1892 flags |= TTU_SPLIT_HUGE_PMD; 1893 1894 try_to_unmap(folio, flags); 1895 if (folio_mapped(folio)) { 1896 stat->nr_unmap_fail += nr_pages; 1897 if (!was_swapbacked && 1898 folio_test_swapbacked(folio)) 1899 stat->nr_lazyfree_fail += nr_pages; 1900 goto activate_locked; 1901 } 1902 } 1903 1904 mapping = folio_mapping(folio); 1905 if (folio_test_dirty(folio)) { 1906 /* 1907 * Only kswapd can writeback filesystem folios 1908 * to avoid risk of stack overflow. But avoid 1909 * injecting inefficient single-folio I/O into 1910 * flusher writeback as much as possible: only 1911 * write folios when we've encountered many 1912 * dirty folios, and when we've already scanned 1913 * the rest of the LRU for clean folios and see 1914 * the same dirty folios again (with the reclaim 1915 * flag set). 1916 */ 1917 if (folio_is_file_lru(folio) && 1918 (!current_is_kswapd() || 1919 !folio_test_reclaim(folio) || 1920 !test_bit(PGDAT_DIRTY, &pgdat->flags))) { 1921 /* 1922 * Immediately reclaim when written back. 1923 * Similar in principle to deactivate_page() 1924 * except we already have the folio isolated 1925 * and know it's dirty 1926 */ 1927 node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE, 1928 nr_pages); 1929 folio_set_reclaim(folio); 1930 1931 goto activate_locked; 1932 } 1933 1934 if (references == FOLIOREF_RECLAIM_CLEAN) 1935 goto keep_locked; 1936 if (!may_enter_fs(folio, sc->gfp_mask)) 1937 goto keep_locked; 1938 if (!sc->may_writepage) 1939 goto keep_locked; 1940 1941 /* 1942 * Folio is dirty. Flush the TLB if a writable entry 1943 * potentially exists to avoid CPU writes after I/O 1944 * starts and then write it out here. 1945 */ 1946 try_to_unmap_flush_dirty(); 1947 switch (pageout(folio, mapping, &plug)) { 1948 case PAGE_KEEP: 1949 goto keep_locked; 1950 case PAGE_ACTIVATE: 1951 goto activate_locked; 1952 case PAGE_SUCCESS: 1953 stat->nr_pageout += nr_pages; 1954 1955 if (folio_test_writeback(folio)) 1956 goto keep; 1957 if (folio_test_dirty(folio)) 1958 goto keep; 1959 1960 /* 1961 * A synchronous write - probably a ramdisk. Go 1962 * ahead and try to reclaim the folio. 1963 */ 1964 if (!folio_trylock(folio)) 1965 goto keep; 1966 if (folio_test_dirty(folio) || 1967 folio_test_writeback(folio)) 1968 goto keep_locked; 1969 mapping = folio_mapping(folio); 1970 fallthrough; 1971 case PAGE_CLEAN: 1972 ; /* try to free the folio below */ 1973 } 1974 } 1975 1976 /* 1977 * If the folio has buffers, try to free the buffer 1978 * mappings associated with this folio. If we succeed 1979 * we try to free the folio as well. 1980 * 1981 * We do this even if the folio is dirty. 1982 * filemap_release_folio() does not perform I/O, but it 1983 * is possible for a folio to have the dirty flag set, 1984 * but it is actually clean (all its buffers are clean). 1985 * This happens if the buffers were written out directly, 1986 * with submit_bh(). ext3 will do this, as well as 1987 * the blockdev mapping. filemap_release_folio() will 1988 * discover that cleanness and will drop the buffers 1989 * and mark the folio clean - it can be freed. 1990 * 1991 * Rarely, folios can have buffers and no ->mapping. 1992 * These are the folios which were not successfully 1993 * invalidated in truncate_cleanup_folio(). We try to 1994 * drop those buffers here and if that worked, and the 1995 * folio is no longer mapped into process address space 1996 * (refcount == 1) it can be freed. Otherwise, leave 1997 * the folio on the LRU so it is swappable. 1998 */ 1999 if (folio_has_private(folio)) { 2000 if (!filemap_release_folio(folio, sc->gfp_mask)) 2001 goto activate_locked; 2002 if (!mapping && folio_ref_count(folio) == 1) { 2003 folio_unlock(folio); 2004 if (folio_put_testzero(folio)) 2005 goto free_it; 2006 else { 2007 /* 2008 * rare race with speculative reference. 2009 * the speculative reference will free 2010 * this folio shortly, so we may 2011 * increment nr_reclaimed here (and 2012 * leave it off the LRU). 2013 */ 2014 nr_reclaimed += nr_pages; 2015 continue; 2016 } 2017 } 2018 } 2019 2020 if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) { 2021 /* follow __remove_mapping for reference */ 2022 if (!folio_ref_freeze(folio, 1)) 2023 goto keep_locked; 2024 /* 2025 * The folio has only one reference left, which is 2026 * from the isolation. After the caller puts the 2027 * folio back on the lru and drops the reference, the 2028 * folio will be freed anyway. It doesn't matter 2029 * which lru it goes on. So we don't bother checking 2030 * the dirty flag here. 2031 */ 2032 count_vm_events(PGLAZYFREED, nr_pages); 2033 count_memcg_folio_events(folio, PGLAZYFREED, nr_pages); 2034 } else if (!mapping || !__remove_mapping(mapping, folio, true, 2035 sc->target_mem_cgroup)) 2036 goto keep_locked; 2037 2038 folio_unlock(folio); 2039 free_it: 2040 /* 2041 * Folio may get swapped out as a whole, need to account 2042 * all pages in it. 2043 */ 2044 nr_reclaimed += nr_pages; 2045 2046 /* 2047 * Is there need to periodically free_folio_list? It would 2048 * appear not as the counts should be low 2049 */ 2050 if (unlikely(folio_test_large(folio))) 2051 destroy_large_folio(folio); 2052 else 2053 list_add(&folio->lru, &free_folios); 2054 continue; 2055 2056 activate_locked_split: 2057 /* 2058 * The tail pages that are failed to add into swap cache 2059 * reach here. Fixup nr_scanned and nr_pages. 2060 */ 2061 if (nr_pages > 1) { 2062 sc->nr_scanned -= (nr_pages - 1); 2063 nr_pages = 1; 2064 } 2065 activate_locked: 2066 /* Not a candidate for swapping, so reclaim swap space. */ 2067 if (folio_test_swapcache(folio) && 2068 (mem_cgroup_swap_full(folio) || folio_test_mlocked(folio))) 2069 folio_free_swap(folio); 2070 VM_BUG_ON_FOLIO(folio_test_active(folio), folio); 2071 if (!folio_test_mlocked(folio)) { 2072 int type = folio_is_file_lru(folio); 2073 folio_set_active(folio); 2074 stat->nr_activate[type] += nr_pages; 2075 count_memcg_folio_events(folio, PGACTIVATE, nr_pages); 2076 } 2077 keep_locked: 2078 folio_unlock(folio); 2079 keep: 2080 list_add(&folio->lru, &ret_folios); 2081 VM_BUG_ON_FOLIO(folio_test_lru(folio) || 2082 folio_test_unevictable(folio), folio); 2083 } 2084 /* 'folio_list' is always empty here */ 2085 2086 /* Migrate folios selected for demotion */ 2087 nr_reclaimed += demote_folio_list(&demote_folios, pgdat); 2088 /* Folios that could not be demoted are still in @demote_folios */ 2089 if (!list_empty(&demote_folios)) { 2090 /* Folios which weren't demoted go back on @folio_list */ 2091 list_splice_init(&demote_folios, folio_list); 2092 2093 /* 2094 * goto retry to reclaim the undemoted folios in folio_list if 2095 * desired. 2096 * 2097 * Reclaiming directly from top tier nodes is not often desired 2098 * due to it breaking the LRU ordering: in general memory 2099 * should be reclaimed from lower tier nodes and demoted from 2100 * top tier nodes. 2101 * 2102 * However, disabling reclaim from top tier nodes entirely 2103 * would cause ooms in edge scenarios where lower tier memory 2104 * is unreclaimable for whatever reason, eg memory being 2105 * mlocked or too hot to reclaim. We can disable reclaim 2106 * from top tier nodes in proactive reclaim though as that is 2107 * not real memory pressure. 2108 */ 2109 if (!sc->proactive) { 2110 do_demote_pass = false; 2111 goto retry; 2112 } 2113 } 2114 2115 pgactivate = stat->nr_activate[0] + stat->nr_activate[1]; 2116 2117 mem_cgroup_uncharge_list(&free_folios); 2118 try_to_unmap_flush(); 2119 free_unref_page_list(&free_folios); 2120 2121 list_splice(&ret_folios, folio_list); 2122 count_vm_events(PGACTIVATE, pgactivate); 2123 2124 if (plug) 2125 swap_write_unplug(plug); 2126 return nr_reclaimed; 2127 } 2128 2129 unsigned int reclaim_clean_pages_from_list(struct zone *zone, 2130 struct list_head *folio_list) 2131 { 2132 struct scan_control sc = { 2133 .gfp_mask = GFP_KERNEL, 2134 .may_unmap = 1, 2135 }; 2136 struct reclaim_stat stat; 2137 unsigned int nr_reclaimed; 2138 struct folio *folio, *next; 2139 LIST_HEAD(clean_folios); 2140 unsigned int noreclaim_flag; 2141 2142 list_for_each_entry_safe(folio, next, folio_list, lru) { 2143 if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) && 2144 !folio_test_dirty(folio) && !__folio_test_movable(folio) && 2145 !folio_test_unevictable(folio)) { 2146 folio_clear_active(folio); 2147 list_move(&folio->lru, &clean_folios); 2148 } 2149 } 2150 2151 /* 2152 * We should be safe here since we are only dealing with file pages and 2153 * we are not kswapd and therefore cannot write dirty file pages. But 2154 * call memalloc_noreclaim_save() anyway, just in case these conditions 2155 * change in the future. 2156 */ 2157 noreclaim_flag = memalloc_noreclaim_save(); 2158 nr_reclaimed = shrink_folio_list(&clean_folios, zone->zone_pgdat, &sc, 2159 &stat, true); 2160 memalloc_noreclaim_restore(noreclaim_flag); 2161 2162 list_splice(&clean_folios, folio_list); 2163 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, 2164 -(long)nr_reclaimed); 2165 /* 2166 * Since lazyfree pages are isolated from file LRU from the beginning, 2167 * they will rotate back to anonymous LRU in the end if it failed to 2168 * discard so isolated count will be mismatched. 2169 * Compensate the isolated count for both LRU lists. 2170 */ 2171 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON, 2172 stat.nr_lazyfree_fail); 2173 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, 2174 -(long)stat.nr_lazyfree_fail); 2175 return nr_reclaimed; 2176 } 2177 2178 /* 2179 * Update LRU sizes after isolating pages. The LRU size updates must 2180 * be complete before mem_cgroup_update_lru_size due to a sanity check. 2181 */ 2182 static __always_inline void update_lru_sizes(struct lruvec *lruvec, 2183 enum lru_list lru, unsigned long *nr_zone_taken) 2184 { 2185 int zid; 2186 2187 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 2188 if (!nr_zone_taken[zid]) 2189 continue; 2190 2191 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 2192 } 2193 2194 } 2195 2196 /* 2197 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times. 2198 * 2199 * lruvec->lru_lock is heavily contended. Some of the functions that 2200 * shrink the lists perform better by taking out a batch of pages 2201 * and working on them outside the LRU lock. 2202 * 2203 * For pagecache intensive workloads, this function is the hottest 2204 * spot in the kernel (apart from copy_*_user functions). 2205 * 2206 * Lru_lock must be held before calling this function. 2207 * 2208 * @nr_to_scan: The number of eligible pages to look through on the list. 2209 * @lruvec: The LRU vector to pull pages from. 2210 * @dst: The temp list to put pages on to. 2211 * @nr_scanned: The number of pages that were scanned. 2212 * @sc: The scan_control struct for this reclaim session 2213 * @lru: LRU list id for isolating 2214 * 2215 * returns how many pages were moved onto *@dst. 2216 */ 2217 static unsigned long isolate_lru_folios(unsigned long nr_to_scan, 2218 struct lruvec *lruvec, struct list_head *dst, 2219 unsigned long *nr_scanned, struct scan_control *sc, 2220 enum lru_list lru) 2221 { 2222 struct list_head *src = &lruvec->lists[lru]; 2223 unsigned long nr_taken = 0; 2224 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 }; 2225 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, }; 2226 unsigned long skipped = 0; 2227 unsigned long scan, total_scan, nr_pages; 2228 LIST_HEAD(folios_skipped); 2229 2230 total_scan = 0; 2231 scan = 0; 2232 while (scan < nr_to_scan && !list_empty(src)) { 2233 struct list_head *move_to = src; 2234 struct folio *folio; 2235 2236 folio = lru_to_folio(src); 2237 prefetchw_prev_lru_folio(folio, src, flags); 2238 2239 nr_pages = folio_nr_pages(folio); 2240 total_scan += nr_pages; 2241 2242 if (folio_zonenum(folio) > sc->reclaim_idx) { 2243 nr_skipped[folio_zonenum(folio)] += nr_pages; 2244 move_to = &folios_skipped; 2245 goto move; 2246 } 2247 2248 /* 2249 * Do not count skipped folios because that makes the function 2250 * return with no isolated folios if the LRU mostly contains 2251 * ineligible folios. This causes the VM to not reclaim any 2252 * folios, triggering a premature OOM. 2253 * Account all pages in a folio. 2254 */ 2255 scan += nr_pages; 2256 2257 if (!folio_test_lru(folio)) 2258 goto move; 2259 if (!sc->may_unmap && folio_mapped(folio)) 2260 goto move; 2261 2262 /* 2263 * Be careful not to clear the lru flag until after we're 2264 * sure the folio is not being freed elsewhere -- the 2265 * folio release code relies on it. 2266 */ 2267 if (unlikely(!folio_try_get(folio))) 2268 goto move; 2269 2270 if (!folio_test_clear_lru(folio)) { 2271 /* Another thread is already isolating this folio */ 2272 folio_put(folio); 2273 goto move; 2274 } 2275 2276 nr_taken += nr_pages; 2277 nr_zone_taken[folio_zonenum(folio)] += nr_pages; 2278 move_to = dst; 2279 move: 2280 list_move(&folio->lru, move_to); 2281 } 2282 2283 /* 2284 * Splice any skipped folios to the start of the LRU list. Note that 2285 * this disrupts the LRU order when reclaiming for lower zones but 2286 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX 2287 * scanning would soon rescan the same folios to skip and waste lots 2288 * of cpu cycles. 2289 */ 2290 if (!list_empty(&folios_skipped)) { 2291 int zid; 2292 2293 list_splice(&folios_skipped, src); 2294 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 2295 if (!nr_skipped[zid]) 2296 continue; 2297 2298 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]); 2299 skipped += nr_skipped[zid]; 2300 } 2301 } 2302 *nr_scanned = total_scan; 2303 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, 2304 total_scan, skipped, nr_taken, 2305 sc->may_unmap ? 0 : ISOLATE_UNMAPPED, lru); 2306 update_lru_sizes(lruvec, lru, nr_zone_taken); 2307 return nr_taken; 2308 } 2309 2310 /** 2311 * folio_isolate_lru() - Try to isolate a folio from its LRU list. 2312 * @folio: Folio to isolate from its LRU list. 2313 * 2314 * Isolate a @folio from an LRU list and adjust the vmstat statistic 2315 * corresponding to whatever LRU list the folio was on. 2316 * 2317 * The folio will have its LRU flag cleared. If it was found on the 2318 * active list, it will have the Active flag set. If it was found on the 2319 * unevictable list, it will have the Unevictable flag set. These flags 2320 * may need to be cleared by the caller before letting the page go. 2321 * 2322 * Context: 2323 * 2324 * (1) Must be called with an elevated refcount on the folio. This is a 2325 * fundamental difference from isolate_lru_folios() (which is called 2326 * without a stable reference). 2327 * (2) The lru_lock must not be held. 2328 * (3) Interrupts must be enabled. 2329 * 2330 * Return: 0 if the folio was removed from an LRU list. 2331 * -EBUSY if the folio was not on an LRU list. 2332 */ 2333 int folio_isolate_lru(struct folio *folio) 2334 { 2335 int ret = -EBUSY; 2336 2337 VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio); 2338 2339 if (folio_test_clear_lru(folio)) { 2340 struct lruvec *lruvec; 2341 2342 folio_get(folio); 2343 lruvec = folio_lruvec_lock_irq(folio); 2344 lruvec_del_folio(lruvec, folio); 2345 unlock_page_lruvec_irq(lruvec); 2346 ret = 0; 2347 } 2348 2349 return ret; 2350 } 2351 2352 /* 2353 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 2354 * then get rescheduled. When there are massive number of tasks doing page 2355 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 2356 * the LRU list will go small and be scanned faster than necessary, leading to 2357 * unnecessary swapping, thrashing and OOM. 2358 */ 2359 static int too_many_isolated(struct pglist_data *pgdat, int file, 2360 struct scan_control *sc) 2361 { 2362 unsigned long inactive, isolated; 2363 bool too_many; 2364 2365 if (current_is_kswapd()) 2366 return 0; 2367 2368 if (!writeback_throttling_sane(sc)) 2369 return 0; 2370 2371 if (file) { 2372 inactive = node_page_state(pgdat, NR_INACTIVE_FILE); 2373 isolated = node_page_state(pgdat, NR_ISOLATED_FILE); 2374 } else { 2375 inactive = node_page_state(pgdat, NR_INACTIVE_ANON); 2376 isolated = node_page_state(pgdat, NR_ISOLATED_ANON); 2377 } 2378 2379 /* 2380 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 2381 * won't get blocked by normal direct-reclaimers, forming a circular 2382 * deadlock. 2383 */ 2384 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 2385 inactive >>= 3; 2386 2387 too_many = isolated > inactive; 2388 2389 /* Wake up tasks throttled due to too_many_isolated. */ 2390 if (!too_many) 2391 wake_throttle_isolated(pgdat); 2392 2393 return too_many; 2394 } 2395 2396 /* 2397 * move_folios_to_lru() moves folios from private @list to appropriate LRU list. 2398 * On return, @list is reused as a list of folios to be freed by the caller. 2399 * 2400 * Returns the number of pages moved to the given lruvec. 2401 */ 2402 static unsigned int move_folios_to_lru(struct lruvec *lruvec, 2403 struct list_head *list) 2404 { 2405 int nr_pages, nr_moved = 0; 2406 LIST_HEAD(folios_to_free); 2407 2408 while (!list_empty(list)) { 2409 struct folio *folio = lru_to_folio(list); 2410 2411 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 2412 list_del(&folio->lru); 2413 if (unlikely(!folio_evictable(folio))) { 2414 spin_unlock_irq(&lruvec->lru_lock); 2415 folio_putback_lru(folio); 2416 spin_lock_irq(&lruvec->lru_lock); 2417 continue; 2418 } 2419 2420 /* 2421 * The folio_set_lru needs to be kept here for list integrity. 2422 * Otherwise: 2423 * #0 move_folios_to_lru #1 release_pages 2424 * if (!folio_put_testzero()) 2425 * if (folio_put_testzero()) 2426 * !lru //skip lru_lock 2427 * folio_set_lru() 2428 * list_add(&folio->lru,) 2429 * list_add(&folio->lru,) 2430 */ 2431 folio_set_lru(folio); 2432 2433 if (unlikely(folio_put_testzero(folio))) { 2434 __folio_clear_lru_flags(folio); 2435 2436 if (unlikely(folio_test_large(folio))) { 2437 spin_unlock_irq(&lruvec->lru_lock); 2438 destroy_large_folio(folio); 2439 spin_lock_irq(&lruvec->lru_lock); 2440 } else 2441 list_add(&folio->lru, &folios_to_free); 2442 2443 continue; 2444 } 2445 2446 /* 2447 * All pages were isolated from the same lruvec (and isolation 2448 * inhibits memcg migration). 2449 */ 2450 VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio); 2451 lruvec_add_folio(lruvec, folio); 2452 nr_pages = folio_nr_pages(folio); 2453 nr_moved += nr_pages; 2454 if (folio_test_active(folio)) 2455 workingset_age_nonresident(lruvec, nr_pages); 2456 } 2457 2458 /* 2459 * To save our caller's stack, now use input list for pages to free. 2460 */ 2461 list_splice(&folios_to_free, list); 2462 2463 return nr_moved; 2464 } 2465 2466 /* 2467 * If a kernel thread (such as nfsd for loop-back mounts) services a backing 2468 * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case 2469 * we should not throttle. Otherwise it is safe to do so. 2470 */ 2471 static int current_may_throttle(void) 2472 { 2473 return !(current->flags & PF_LOCAL_THROTTLE); 2474 } 2475 2476 /* 2477 * shrink_inactive_list() is a helper for shrink_node(). It returns the number 2478 * of reclaimed pages 2479 */ 2480 static unsigned long shrink_inactive_list(unsigned long nr_to_scan, 2481 struct lruvec *lruvec, struct scan_control *sc, 2482 enum lru_list lru) 2483 { 2484 LIST_HEAD(folio_list); 2485 unsigned long nr_scanned; 2486 unsigned int nr_reclaimed = 0; 2487 unsigned long nr_taken; 2488 struct reclaim_stat stat; 2489 bool file = is_file_lru(lru); 2490 enum vm_event_item item; 2491 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2492 bool stalled = false; 2493 2494 while (unlikely(too_many_isolated(pgdat, file, sc))) { 2495 if (stalled) 2496 return 0; 2497 2498 /* wait a bit for the reclaimer. */ 2499 stalled = true; 2500 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED); 2501 2502 /* We are about to die and free our memory. Return now. */ 2503 if (fatal_signal_pending(current)) 2504 return SWAP_CLUSTER_MAX; 2505 } 2506 2507 lru_add_drain(); 2508 2509 spin_lock_irq(&lruvec->lru_lock); 2510 2511 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &folio_list, 2512 &nr_scanned, sc, lru); 2513 2514 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2515 item = PGSCAN_KSWAPD + reclaimer_offset(); 2516 if (!cgroup_reclaim(sc)) 2517 __count_vm_events(item, nr_scanned); 2518 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned); 2519 __count_vm_events(PGSCAN_ANON + file, nr_scanned); 2520 2521 spin_unlock_irq(&lruvec->lru_lock); 2522 2523 if (nr_taken == 0) 2524 return 0; 2525 2526 nr_reclaimed = shrink_folio_list(&folio_list, pgdat, sc, &stat, false); 2527 2528 spin_lock_irq(&lruvec->lru_lock); 2529 move_folios_to_lru(lruvec, &folio_list); 2530 2531 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2532 item = PGSTEAL_KSWAPD + reclaimer_offset(); 2533 if (!cgroup_reclaim(sc)) 2534 __count_vm_events(item, nr_reclaimed); 2535 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed); 2536 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed); 2537 spin_unlock_irq(&lruvec->lru_lock); 2538 2539 lru_note_cost(lruvec, file, stat.nr_pageout, nr_scanned - nr_reclaimed); 2540 mem_cgroup_uncharge_list(&folio_list); 2541 free_unref_page_list(&folio_list); 2542 2543 /* 2544 * If dirty folios are scanned that are not queued for IO, it 2545 * implies that flushers are not doing their job. This can 2546 * happen when memory pressure pushes dirty folios to the end of 2547 * the LRU before the dirty limits are breached and the dirty 2548 * data has expired. It can also happen when the proportion of 2549 * dirty folios grows not through writes but through memory 2550 * pressure reclaiming all the clean cache. And in some cases, 2551 * the flushers simply cannot keep up with the allocation 2552 * rate. Nudge the flusher threads in case they are asleep. 2553 */ 2554 if (stat.nr_unqueued_dirty == nr_taken) { 2555 wakeup_flusher_threads(WB_REASON_VMSCAN); 2556 /* 2557 * For cgroupv1 dirty throttling is achieved by waking up 2558 * the kernel flusher here and later waiting on folios 2559 * which are in writeback to finish (see shrink_folio_list()). 2560 * 2561 * Flusher may not be able to issue writeback quickly 2562 * enough for cgroupv1 writeback throttling to work 2563 * on a large system. 2564 */ 2565 if (!writeback_throttling_sane(sc)) 2566 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK); 2567 } 2568 2569 sc->nr.dirty += stat.nr_dirty; 2570 sc->nr.congested += stat.nr_congested; 2571 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty; 2572 sc->nr.writeback += stat.nr_writeback; 2573 sc->nr.immediate += stat.nr_immediate; 2574 sc->nr.taken += nr_taken; 2575 if (file) 2576 sc->nr.file_taken += nr_taken; 2577 2578 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 2579 nr_scanned, nr_reclaimed, &stat, sc->priority, file); 2580 return nr_reclaimed; 2581 } 2582 2583 /* 2584 * shrink_active_list() moves folios from the active LRU to the inactive LRU. 2585 * 2586 * We move them the other way if the folio is referenced by one or more 2587 * processes. 2588 * 2589 * If the folios are mostly unmapped, the processing is fast and it is 2590 * appropriate to hold lru_lock across the whole operation. But if 2591 * the folios are mapped, the processing is slow (folio_referenced()), so 2592 * we should drop lru_lock around each folio. It's impossible to balance 2593 * this, so instead we remove the folios from the LRU while processing them. 2594 * It is safe to rely on the active flag against the non-LRU folios in here 2595 * because nobody will play with that bit on a non-LRU folio. 2596 * 2597 * The downside is that we have to touch folio->_refcount against each folio. 2598 * But we had to alter folio->flags anyway. 2599 */ 2600 static void shrink_active_list(unsigned long nr_to_scan, 2601 struct lruvec *lruvec, 2602 struct scan_control *sc, 2603 enum lru_list lru) 2604 { 2605 unsigned long nr_taken; 2606 unsigned long nr_scanned; 2607 unsigned long vm_flags; 2608 LIST_HEAD(l_hold); /* The folios which were snipped off */ 2609 LIST_HEAD(l_active); 2610 LIST_HEAD(l_inactive); 2611 unsigned nr_deactivate, nr_activate; 2612 unsigned nr_rotated = 0; 2613 int file = is_file_lru(lru); 2614 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2615 2616 lru_add_drain(); 2617 2618 spin_lock_irq(&lruvec->lru_lock); 2619 2620 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &l_hold, 2621 &nr_scanned, sc, lru); 2622 2623 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2624 2625 if (!cgroup_reclaim(sc)) 2626 __count_vm_events(PGREFILL, nr_scanned); 2627 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned); 2628 2629 spin_unlock_irq(&lruvec->lru_lock); 2630 2631 while (!list_empty(&l_hold)) { 2632 struct folio *folio; 2633 2634 cond_resched(); 2635 folio = lru_to_folio(&l_hold); 2636 list_del(&folio->lru); 2637 2638 if (unlikely(!folio_evictable(folio))) { 2639 folio_putback_lru(folio); 2640 continue; 2641 } 2642 2643 if (unlikely(buffer_heads_over_limit)) { 2644 if (folio_test_private(folio) && folio_trylock(folio)) { 2645 if (folio_test_private(folio)) 2646 filemap_release_folio(folio, 0); 2647 folio_unlock(folio); 2648 } 2649 } 2650 2651 /* Referenced or rmap lock contention: rotate */ 2652 if (folio_referenced(folio, 0, sc->target_mem_cgroup, 2653 &vm_flags) != 0) { 2654 /* 2655 * Identify referenced, file-backed active folios and 2656 * give them one more trip around the active list. So 2657 * that executable code get better chances to stay in 2658 * memory under moderate memory pressure. Anon folios 2659 * are not likely to be evicted by use-once streaming 2660 * IO, plus JVM can create lots of anon VM_EXEC folios, 2661 * so we ignore them here. 2662 */ 2663 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) { 2664 nr_rotated += folio_nr_pages(folio); 2665 list_add(&folio->lru, &l_active); 2666 continue; 2667 } 2668 } 2669 2670 folio_clear_active(folio); /* we are de-activating */ 2671 folio_set_workingset(folio); 2672 list_add(&folio->lru, &l_inactive); 2673 } 2674 2675 /* 2676 * Move folios back to the lru list. 2677 */ 2678 spin_lock_irq(&lruvec->lru_lock); 2679 2680 nr_activate = move_folios_to_lru(lruvec, &l_active); 2681 nr_deactivate = move_folios_to_lru(lruvec, &l_inactive); 2682 /* Keep all free folios in l_active list */ 2683 list_splice(&l_inactive, &l_active); 2684 2685 __count_vm_events(PGDEACTIVATE, nr_deactivate); 2686 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate); 2687 2688 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2689 spin_unlock_irq(&lruvec->lru_lock); 2690 2691 if (nr_rotated) 2692 lru_note_cost(lruvec, file, 0, nr_rotated); 2693 mem_cgroup_uncharge_list(&l_active); 2694 free_unref_page_list(&l_active); 2695 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate, 2696 nr_deactivate, nr_rotated, sc->priority, file); 2697 } 2698 2699 static unsigned int reclaim_folio_list(struct list_head *folio_list, 2700 struct pglist_data *pgdat) 2701 { 2702 struct reclaim_stat dummy_stat; 2703 unsigned int nr_reclaimed; 2704 struct folio *folio; 2705 struct scan_control sc = { 2706 .gfp_mask = GFP_KERNEL, 2707 .may_writepage = 1, 2708 .may_unmap = 1, 2709 .may_swap = 1, 2710 .no_demotion = 1, 2711 }; 2712 2713 nr_reclaimed = shrink_folio_list(folio_list, pgdat, &sc, &dummy_stat, false); 2714 while (!list_empty(folio_list)) { 2715 folio = lru_to_folio(folio_list); 2716 list_del(&folio->lru); 2717 folio_putback_lru(folio); 2718 } 2719 2720 return nr_reclaimed; 2721 } 2722 2723 unsigned long reclaim_pages(struct list_head *folio_list) 2724 { 2725 int nid; 2726 unsigned int nr_reclaimed = 0; 2727 LIST_HEAD(node_folio_list); 2728 unsigned int noreclaim_flag; 2729 2730 if (list_empty(folio_list)) 2731 return nr_reclaimed; 2732 2733 noreclaim_flag = memalloc_noreclaim_save(); 2734 2735 nid = folio_nid(lru_to_folio(folio_list)); 2736 do { 2737 struct folio *folio = lru_to_folio(folio_list); 2738 2739 if (nid == folio_nid(folio)) { 2740 folio_clear_active(folio); 2741 list_move(&folio->lru, &node_folio_list); 2742 continue; 2743 } 2744 2745 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid)); 2746 nid = folio_nid(lru_to_folio(folio_list)); 2747 } while (!list_empty(folio_list)); 2748 2749 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid)); 2750 2751 memalloc_noreclaim_restore(noreclaim_flag); 2752 2753 return nr_reclaimed; 2754 } 2755 2756 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 2757 struct lruvec *lruvec, struct scan_control *sc) 2758 { 2759 if (is_active_lru(lru)) { 2760 if (sc->may_deactivate & (1 << is_file_lru(lru))) 2761 shrink_active_list(nr_to_scan, lruvec, sc, lru); 2762 else 2763 sc->skipped_deactivate = 1; 2764 return 0; 2765 } 2766 2767 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 2768 } 2769 2770 /* 2771 * The inactive anon list should be small enough that the VM never has 2772 * to do too much work. 2773 * 2774 * The inactive file list should be small enough to leave most memory 2775 * to the established workingset on the scan-resistant active list, 2776 * but large enough to avoid thrashing the aggregate readahead window. 2777 * 2778 * Both inactive lists should also be large enough that each inactive 2779 * folio has a chance to be referenced again before it is reclaimed. 2780 * 2781 * If that fails and refaulting is observed, the inactive list grows. 2782 * 2783 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE folios 2784 * on this LRU, maintained by the pageout code. An inactive_ratio 2785 * of 3 means 3:1 or 25% of the folios are kept on the inactive list. 2786 * 2787 * total target max 2788 * memory ratio inactive 2789 * ------------------------------------- 2790 * 10MB 1 5MB 2791 * 100MB 1 50MB 2792 * 1GB 3 250MB 2793 * 10GB 10 0.9GB 2794 * 100GB 31 3GB 2795 * 1TB 101 10GB 2796 * 10TB 320 32GB 2797 */ 2798 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru) 2799 { 2800 enum lru_list active_lru = inactive_lru + LRU_ACTIVE; 2801 unsigned long inactive, active; 2802 unsigned long inactive_ratio; 2803 unsigned long gb; 2804 2805 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru); 2806 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru); 2807 2808 gb = (inactive + active) >> (30 - PAGE_SHIFT); 2809 if (gb) 2810 inactive_ratio = int_sqrt(10 * gb); 2811 else 2812 inactive_ratio = 1; 2813 2814 return inactive * inactive_ratio < active; 2815 } 2816 2817 enum scan_balance { 2818 SCAN_EQUAL, 2819 SCAN_FRACT, 2820 SCAN_ANON, 2821 SCAN_FILE, 2822 }; 2823 2824 static void prepare_scan_count(pg_data_t *pgdat, struct scan_control *sc) 2825 { 2826 unsigned long file; 2827 struct lruvec *target_lruvec; 2828 2829 if (lru_gen_enabled()) 2830 return; 2831 2832 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat); 2833 2834 /* 2835 * Flush the memory cgroup stats, so that we read accurate per-memcg 2836 * lruvec stats for heuristics. 2837 */ 2838 mem_cgroup_flush_stats(); 2839 2840 /* 2841 * Determine the scan balance between anon and file LRUs. 2842 */ 2843 spin_lock_irq(&target_lruvec->lru_lock); 2844 sc->anon_cost = target_lruvec->anon_cost; 2845 sc->file_cost = target_lruvec->file_cost; 2846 spin_unlock_irq(&target_lruvec->lru_lock); 2847 2848 /* 2849 * Target desirable inactive:active list ratios for the anon 2850 * and file LRU lists. 2851 */ 2852 if (!sc->force_deactivate) { 2853 unsigned long refaults; 2854 2855 /* 2856 * When refaults are being observed, it means a new 2857 * workingset is being established. Deactivate to get 2858 * rid of any stale active pages quickly. 2859 */ 2860 refaults = lruvec_page_state(target_lruvec, 2861 WORKINGSET_ACTIVATE_ANON); 2862 if (refaults != target_lruvec->refaults[WORKINGSET_ANON] || 2863 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON)) 2864 sc->may_deactivate |= DEACTIVATE_ANON; 2865 else 2866 sc->may_deactivate &= ~DEACTIVATE_ANON; 2867 2868 refaults = lruvec_page_state(target_lruvec, 2869 WORKINGSET_ACTIVATE_FILE); 2870 if (refaults != target_lruvec->refaults[WORKINGSET_FILE] || 2871 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE)) 2872 sc->may_deactivate |= DEACTIVATE_FILE; 2873 else 2874 sc->may_deactivate &= ~DEACTIVATE_FILE; 2875 } else 2876 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE; 2877 2878 /* 2879 * If we have plenty of inactive file pages that aren't 2880 * thrashing, try to reclaim those first before touching 2881 * anonymous pages. 2882 */ 2883 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE); 2884 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE)) 2885 sc->cache_trim_mode = 1; 2886 else 2887 sc->cache_trim_mode = 0; 2888 2889 /* 2890 * Prevent the reclaimer from falling into the cache trap: as 2891 * cache pages start out inactive, every cache fault will tip 2892 * the scan balance towards the file LRU. And as the file LRU 2893 * shrinks, so does the window for rotation from references. 2894 * This means we have a runaway feedback loop where a tiny 2895 * thrashing file LRU becomes infinitely more attractive than 2896 * anon pages. Try to detect this based on file LRU size. 2897 */ 2898 if (!cgroup_reclaim(sc)) { 2899 unsigned long total_high_wmark = 0; 2900 unsigned long free, anon; 2901 int z; 2902 2903 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES); 2904 file = node_page_state(pgdat, NR_ACTIVE_FILE) + 2905 node_page_state(pgdat, NR_INACTIVE_FILE); 2906 2907 for (z = 0; z < MAX_NR_ZONES; z++) { 2908 struct zone *zone = &pgdat->node_zones[z]; 2909 2910 if (!managed_zone(zone)) 2911 continue; 2912 2913 total_high_wmark += high_wmark_pages(zone); 2914 } 2915 2916 /* 2917 * Consider anon: if that's low too, this isn't a 2918 * runaway file reclaim problem, but rather just 2919 * extreme pressure. Reclaim as per usual then. 2920 */ 2921 anon = node_page_state(pgdat, NR_INACTIVE_ANON); 2922 2923 sc->file_is_tiny = 2924 file + free <= total_high_wmark && 2925 !(sc->may_deactivate & DEACTIVATE_ANON) && 2926 anon >> sc->priority; 2927 } 2928 } 2929 2930 /* 2931 * Determine how aggressively the anon and file LRU lists should be 2932 * scanned. 2933 * 2934 * nr[0] = anon inactive folios to scan; nr[1] = anon active folios to scan 2935 * nr[2] = file inactive folios to scan; nr[3] = file active folios to scan 2936 */ 2937 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc, 2938 unsigned long *nr) 2939 { 2940 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2941 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 2942 unsigned long anon_cost, file_cost, total_cost; 2943 int swappiness = mem_cgroup_swappiness(memcg); 2944 u64 fraction[ANON_AND_FILE]; 2945 u64 denominator = 0; /* gcc */ 2946 enum scan_balance scan_balance; 2947 unsigned long ap, fp; 2948 enum lru_list lru; 2949 2950 /* If we have no swap space, do not bother scanning anon folios. */ 2951 if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) { 2952 scan_balance = SCAN_FILE; 2953 goto out; 2954 } 2955 2956 /* 2957 * Global reclaim will swap to prevent OOM even with no 2958 * swappiness, but memcg users want to use this knob to 2959 * disable swapping for individual groups completely when 2960 * using the memory controller's swap limit feature would be 2961 * too expensive. 2962 */ 2963 if (cgroup_reclaim(sc) && !swappiness) { 2964 scan_balance = SCAN_FILE; 2965 goto out; 2966 } 2967 2968 /* 2969 * Do not apply any pressure balancing cleverness when the 2970 * system is close to OOM, scan both anon and file equally 2971 * (unless the swappiness setting disagrees with swapping). 2972 */ 2973 if (!sc->priority && swappiness) { 2974 scan_balance = SCAN_EQUAL; 2975 goto out; 2976 } 2977 2978 /* 2979 * If the system is almost out of file pages, force-scan anon. 2980 */ 2981 if (sc->file_is_tiny) { 2982 scan_balance = SCAN_ANON; 2983 goto out; 2984 } 2985 2986 /* 2987 * If there is enough inactive page cache, we do not reclaim 2988 * anything from the anonymous working right now. 2989 */ 2990 if (sc->cache_trim_mode) { 2991 scan_balance = SCAN_FILE; 2992 goto out; 2993 } 2994 2995 scan_balance = SCAN_FRACT; 2996 /* 2997 * Calculate the pressure balance between anon and file pages. 2998 * 2999 * The amount of pressure we put on each LRU is inversely 3000 * proportional to the cost of reclaiming each list, as 3001 * determined by the share of pages that are refaulting, times 3002 * the relative IO cost of bringing back a swapped out 3003 * anonymous page vs reloading a filesystem page (swappiness). 3004 * 3005 * Although we limit that influence to ensure no list gets 3006 * left behind completely: at least a third of the pressure is 3007 * applied, before swappiness. 3008 * 3009 * With swappiness at 100, anon and file have equal IO cost. 3010 */ 3011 total_cost = sc->anon_cost + sc->file_cost; 3012 anon_cost = total_cost + sc->anon_cost; 3013 file_cost = total_cost + sc->file_cost; 3014 total_cost = anon_cost + file_cost; 3015 3016 ap = swappiness * (total_cost + 1); 3017 ap /= anon_cost + 1; 3018 3019 fp = (200 - swappiness) * (total_cost + 1); 3020 fp /= file_cost + 1; 3021 3022 fraction[0] = ap; 3023 fraction[1] = fp; 3024 denominator = ap + fp; 3025 out: 3026 for_each_evictable_lru(lru) { 3027 int file = is_file_lru(lru); 3028 unsigned long lruvec_size; 3029 unsigned long low, min; 3030 unsigned long scan; 3031 3032 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx); 3033 mem_cgroup_protection(sc->target_mem_cgroup, memcg, 3034 &min, &low); 3035 3036 if (min || low) { 3037 /* 3038 * Scale a cgroup's reclaim pressure by proportioning 3039 * its current usage to its memory.low or memory.min 3040 * setting. 3041 * 3042 * This is important, as otherwise scanning aggression 3043 * becomes extremely binary -- from nothing as we 3044 * approach the memory protection threshold, to totally 3045 * nominal as we exceed it. This results in requiring 3046 * setting extremely liberal protection thresholds. It 3047 * also means we simply get no protection at all if we 3048 * set it too low, which is not ideal. 3049 * 3050 * If there is any protection in place, we reduce scan 3051 * pressure by how much of the total memory used is 3052 * within protection thresholds. 3053 * 3054 * There is one special case: in the first reclaim pass, 3055 * we skip over all groups that are within their low 3056 * protection. If that fails to reclaim enough pages to 3057 * satisfy the reclaim goal, we come back and override 3058 * the best-effort low protection. However, we still 3059 * ideally want to honor how well-behaved groups are in 3060 * that case instead of simply punishing them all 3061 * equally. As such, we reclaim them based on how much 3062 * memory they are using, reducing the scan pressure 3063 * again by how much of the total memory used is under 3064 * hard protection. 3065 */ 3066 unsigned long cgroup_size = mem_cgroup_size(memcg); 3067 unsigned long protection; 3068 3069 /* memory.low scaling, make sure we retry before OOM */ 3070 if (!sc->memcg_low_reclaim && low > min) { 3071 protection = low; 3072 sc->memcg_low_skipped = 1; 3073 } else { 3074 protection = min; 3075 } 3076 3077 /* Avoid TOCTOU with earlier protection check */ 3078 cgroup_size = max(cgroup_size, protection); 3079 3080 scan = lruvec_size - lruvec_size * protection / 3081 (cgroup_size + 1); 3082 3083 /* 3084 * Minimally target SWAP_CLUSTER_MAX pages to keep 3085 * reclaim moving forwards, avoiding decrementing 3086 * sc->priority further than desirable. 3087 */ 3088 scan = max(scan, SWAP_CLUSTER_MAX); 3089 } else { 3090 scan = lruvec_size; 3091 } 3092 3093 scan >>= sc->priority; 3094 3095 /* 3096 * If the cgroup's already been deleted, make sure to 3097 * scrape out the remaining cache. 3098 */ 3099 if (!scan && !mem_cgroup_online(memcg)) 3100 scan = min(lruvec_size, SWAP_CLUSTER_MAX); 3101 3102 switch (scan_balance) { 3103 case SCAN_EQUAL: 3104 /* Scan lists relative to size */ 3105 break; 3106 case SCAN_FRACT: 3107 /* 3108 * Scan types proportional to swappiness and 3109 * their relative recent reclaim efficiency. 3110 * Make sure we don't miss the last page on 3111 * the offlined memory cgroups because of a 3112 * round-off error. 3113 */ 3114 scan = mem_cgroup_online(memcg) ? 3115 div64_u64(scan * fraction[file], denominator) : 3116 DIV64_U64_ROUND_UP(scan * fraction[file], 3117 denominator); 3118 break; 3119 case SCAN_FILE: 3120 case SCAN_ANON: 3121 /* Scan one type exclusively */ 3122 if ((scan_balance == SCAN_FILE) != file) 3123 scan = 0; 3124 break; 3125 default: 3126 /* Look ma, no brain */ 3127 BUG(); 3128 } 3129 3130 nr[lru] = scan; 3131 } 3132 } 3133 3134 /* 3135 * Anonymous LRU management is a waste if there is 3136 * ultimately no way to reclaim the memory. 3137 */ 3138 static bool can_age_anon_pages(struct pglist_data *pgdat, 3139 struct scan_control *sc) 3140 { 3141 /* Aging the anon LRU is valuable if swap is present: */ 3142 if (total_swap_pages > 0) 3143 return true; 3144 3145 /* Also valuable if anon pages can be demoted: */ 3146 return can_demote(pgdat->node_id, sc); 3147 } 3148 3149 #ifdef CONFIG_LRU_GEN 3150 3151 #ifdef CONFIG_LRU_GEN_ENABLED 3152 DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS); 3153 #define get_cap(cap) static_branch_likely(&lru_gen_caps[cap]) 3154 #else 3155 DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS); 3156 #define get_cap(cap) static_branch_unlikely(&lru_gen_caps[cap]) 3157 #endif 3158 3159 /****************************************************************************** 3160 * shorthand helpers 3161 ******************************************************************************/ 3162 3163 #define LRU_REFS_FLAGS (BIT(PG_referenced) | BIT(PG_workingset)) 3164 3165 #define DEFINE_MAX_SEQ(lruvec) \ 3166 unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq) 3167 3168 #define DEFINE_MIN_SEQ(lruvec) \ 3169 unsigned long min_seq[ANON_AND_FILE] = { \ 3170 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]), \ 3171 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]), \ 3172 } 3173 3174 #define for_each_gen_type_zone(gen, type, zone) \ 3175 for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++) \ 3176 for ((type) = 0; (type) < ANON_AND_FILE; (type)++) \ 3177 for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++) 3178 3179 static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid) 3180 { 3181 struct pglist_data *pgdat = NODE_DATA(nid); 3182 3183 #ifdef CONFIG_MEMCG 3184 if (memcg) { 3185 struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec; 3186 3187 /* see the comment in mem_cgroup_lruvec() */ 3188 if (!lruvec->pgdat) 3189 lruvec->pgdat = pgdat; 3190 3191 return lruvec; 3192 } 3193 #endif 3194 VM_WARN_ON_ONCE(!mem_cgroup_disabled()); 3195 3196 return &pgdat->__lruvec; 3197 } 3198 3199 static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc) 3200 { 3201 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 3202 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 3203 3204 if (!can_demote(pgdat->node_id, sc) && 3205 mem_cgroup_get_nr_swap_pages(memcg) < MIN_LRU_BATCH) 3206 return 0; 3207 3208 return mem_cgroup_swappiness(memcg); 3209 } 3210 3211 static int get_nr_gens(struct lruvec *lruvec, int type) 3212 { 3213 return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1; 3214 } 3215 3216 static bool __maybe_unused seq_is_valid(struct lruvec *lruvec) 3217 { 3218 /* see the comment on lru_gen_struct */ 3219 return get_nr_gens(lruvec, LRU_GEN_FILE) >= MIN_NR_GENS && 3220 get_nr_gens(lruvec, LRU_GEN_FILE) <= get_nr_gens(lruvec, LRU_GEN_ANON) && 3221 get_nr_gens(lruvec, LRU_GEN_ANON) <= MAX_NR_GENS; 3222 } 3223 3224 /****************************************************************************** 3225 * mm_struct list 3226 ******************************************************************************/ 3227 3228 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg) 3229 { 3230 static struct lru_gen_mm_list mm_list = { 3231 .fifo = LIST_HEAD_INIT(mm_list.fifo), 3232 .lock = __SPIN_LOCK_UNLOCKED(mm_list.lock), 3233 }; 3234 3235 #ifdef CONFIG_MEMCG 3236 if (memcg) 3237 return &memcg->mm_list; 3238 #endif 3239 VM_WARN_ON_ONCE(!mem_cgroup_disabled()); 3240 3241 return &mm_list; 3242 } 3243 3244 void lru_gen_add_mm(struct mm_struct *mm) 3245 { 3246 int nid; 3247 struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm); 3248 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 3249 3250 VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list)); 3251 #ifdef CONFIG_MEMCG 3252 VM_WARN_ON_ONCE(mm->lru_gen.memcg); 3253 mm->lru_gen.memcg = memcg; 3254 #endif 3255 spin_lock(&mm_list->lock); 3256 3257 for_each_node_state(nid, N_MEMORY) { 3258 struct lruvec *lruvec = get_lruvec(memcg, nid); 3259 3260 /* the first addition since the last iteration */ 3261 if (lruvec->mm_state.tail == &mm_list->fifo) 3262 lruvec->mm_state.tail = &mm->lru_gen.list; 3263 } 3264 3265 list_add_tail(&mm->lru_gen.list, &mm_list->fifo); 3266 3267 spin_unlock(&mm_list->lock); 3268 } 3269 3270 void lru_gen_del_mm(struct mm_struct *mm) 3271 { 3272 int nid; 3273 struct lru_gen_mm_list *mm_list; 3274 struct mem_cgroup *memcg = NULL; 3275 3276 if (list_empty(&mm->lru_gen.list)) 3277 return; 3278 3279 #ifdef CONFIG_MEMCG 3280 memcg = mm->lru_gen.memcg; 3281 #endif 3282 mm_list = get_mm_list(memcg); 3283 3284 spin_lock(&mm_list->lock); 3285 3286 for_each_node(nid) { 3287 struct lruvec *lruvec = get_lruvec(memcg, nid); 3288 3289 /* where the last iteration ended (exclusive) */ 3290 if (lruvec->mm_state.tail == &mm->lru_gen.list) 3291 lruvec->mm_state.tail = lruvec->mm_state.tail->next; 3292 3293 /* where the current iteration continues (inclusive) */ 3294 if (lruvec->mm_state.head != &mm->lru_gen.list) 3295 continue; 3296 3297 lruvec->mm_state.head = lruvec->mm_state.head->next; 3298 /* the deletion ends the current iteration */ 3299 if (lruvec->mm_state.head == &mm_list->fifo) 3300 WRITE_ONCE(lruvec->mm_state.seq, lruvec->mm_state.seq + 1); 3301 } 3302 3303 list_del_init(&mm->lru_gen.list); 3304 3305 spin_unlock(&mm_list->lock); 3306 3307 #ifdef CONFIG_MEMCG 3308 mem_cgroup_put(mm->lru_gen.memcg); 3309 mm->lru_gen.memcg = NULL; 3310 #endif 3311 } 3312 3313 #ifdef CONFIG_MEMCG 3314 void lru_gen_migrate_mm(struct mm_struct *mm) 3315 { 3316 struct mem_cgroup *memcg; 3317 struct task_struct *task = rcu_dereference_protected(mm->owner, true); 3318 3319 VM_WARN_ON_ONCE(task->mm != mm); 3320 lockdep_assert_held(&task->alloc_lock); 3321 3322 /* for mm_update_next_owner() */ 3323 if (mem_cgroup_disabled()) 3324 return; 3325 3326 /* migration can happen before addition */ 3327 if (!mm->lru_gen.memcg) 3328 return; 3329 3330 rcu_read_lock(); 3331 memcg = mem_cgroup_from_task(task); 3332 rcu_read_unlock(); 3333 if (memcg == mm->lru_gen.memcg) 3334 return; 3335 3336 VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list)); 3337 3338 lru_gen_del_mm(mm); 3339 lru_gen_add_mm(mm); 3340 } 3341 #endif 3342 3343 /* 3344 * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when 3345 * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of 3346 * bits in a bitmap, k is the number of hash functions and n is the number of 3347 * inserted items. 3348 * 3349 * Page table walkers use one of the two filters to reduce their search space. 3350 * To get rid of non-leaf entries that no longer have enough leaf entries, the 3351 * aging uses the double-buffering technique to flip to the other filter each 3352 * time it produces a new generation. For non-leaf entries that have enough 3353 * leaf entries, the aging carries them over to the next generation in 3354 * walk_pmd_range(); the eviction also report them when walking the rmap 3355 * in lru_gen_look_around(). 3356 * 3357 * For future optimizations: 3358 * 1. It's not necessary to keep both filters all the time. The spare one can be 3359 * freed after the RCU grace period and reallocated if needed again. 3360 * 2. And when reallocating, it's worth scaling its size according to the number 3361 * of inserted entries in the other filter, to reduce the memory overhead on 3362 * small systems and false positives on large systems. 3363 * 3. Jenkins' hash function is an alternative to Knuth's. 3364 */ 3365 #define BLOOM_FILTER_SHIFT 15 3366 3367 static inline int filter_gen_from_seq(unsigned long seq) 3368 { 3369 return seq % NR_BLOOM_FILTERS; 3370 } 3371 3372 static void get_item_key(void *item, int *key) 3373 { 3374 u32 hash = hash_ptr(item, BLOOM_FILTER_SHIFT * 2); 3375 3376 BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32)); 3377 3378 key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1); 3379 key[1] = hash >> BLOOM_FILTER_SHIFT; 3380 } 3381 3382 static void reset_bloom_filter(struct lruvec *lruvec, unsigned long seq) 3383 { 3384 unsigned long *filter; 3385 int gen = filter_gen_from_seq(seq); 3386 3387 filter = lruvec->mm_state.filters[gen]; 3388 if (filter) { 3389 bitmap_clear(filter, 0, BIT(BLOOM_FILTER_SHIFT)); 3390 return; 3391 } 3392 3393 filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT), 3394 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN); 3395 WRITE_ONCE(lruvec->mm_state.filters[gen], filter); 3396 } 3397 3398 static void update_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item) 3399 { 3400 int key[2]; 3401 unsigned long *filter; 3402 int gen = filter_gen_from_seq(seq); 3403 3404 filter = READ_ONCE(lruvec->mm_state.filters[gen]); 3405 if (!filter) 3406 return; 3407 3408 get_item_key(item, key); 3409 3410 if (!test_bit(key[0], filter)) 3411 set_bit(key[0], filter); 3412 if (!test_bit(key[1], filter)) 3413 set_bit(key[1], filter); 3414 } 3415 3416 static bool test_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item) 3417 { 3418 int key[2]; 3419 unsigned long *filter; 3420 int gen = filter_gen_from_seq(seq); 3421 3422 filter = READ_ONCE(lruvec->mm_state.filters[gen]); 3423 if (!filter) 3424 return true; 3425 3426 get_item_key(item, key); 3427 3428 return test_bit(key[0], filter) && test_bit(key[1], filter); 3429 } 3430 3431 static void reset_mm_stats(struct lruvec *lruvec, struct lru_gen_mm_walk *walk, bool last) 3432 { 3433 int i; 3434 int hist; 3435 3436 lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock); 3437 3438 if (walk) { 3439 hist = lru_hist_from_seq(walk->max_seq); 3440 3441 for (i = 0; i < NR_MM_STATS; i++) { 3442 WRITE_ONCE(lruvec->mm_state.stats[hist][i], 3443 lruvec->mm_state.stats[hist][i] + walk->mm_stats[i]); 3444 walk->mm_stats[i] = 0; 3445 } 3446 } 3447 3448 if (NR_HIST_GENS > 1 && last) { 3449 hist = lru_hist_from_seq(lruvec->mm_state.seq + 1); 3450 3451 for (i = 0; i < NR_MM_STATS; i++) 3452 WRITE_ONCE(lruvec->mm_state.stats[hist][i], 0); 3453 } 3454 } 3455 3456 static bool should_skip_mm(struct mm_struct *mm, struct lru_gen_mm_walk *walk) 3457 { 3458 int type; 3459 unsigned long size = 0; 3460 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 3461 int key = pgdat->node_id % BITS_PER_TYPE(mm->lru_gen.bitmap); 3462 3463 if (!walk->force_scan && !test_bit(key, &mm->lru_gen.bitmap)) 3464 return true; 3465 3466 clear_bit(key, &mm->lru_gen.bitmap); 3467 3468 for (type = !walk->can_swap; type < ANON_AND_FILE; type++) { 3469 size += type ? get_mm_counter(mm, MM_FILEPAGES) : 3470 get_mm_counter(mm, MM_ANONPAGES) + 3471 get_mm_counter(mm, MM_SHMEMPAGES); 3472 } 3473 3474 if (size < MIN_LRU_BATCH) 3475 return true; 3476 3477 return !mmget_not_zero(mm); 3478 } 3479 3480 static bool iterate_mm_list(struct lruvec *lruvec, struct lru_gen_mm_walk *walk, 3481 struct mm_struct **iter) 3482 { 3483 bool first = false; 3484 bool last = true; 3485 struct mm_struct *mm = NULL; 3486 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 3487 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 3488 struct lru_gen_mm_state *mm_state = &lruvec->mm_state; 3489 3490 /* 3491 * There are four interesting cases for this page table walker: 3492 * 1. It tries to start a new iteration of mm_list with a stale max_seq; 3493 * there is nothing left to do. 3494 * 2. It's the first of the current generation, and it needs to reset 3495 * the Bloom filter for the next generation. 3496 * 3. It reaches the end of mm_list, and it needs to increment 3497 * mm_state->seq; the iteration is done. 3498 * 4. It's the last of the current generation, and it needs to reset the 3499 * mm stats counters for the next generation. 3500 */ 3501 spin_lock(&mm_list->lock); 3502 3503 VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->max_seq); 3504 VM_WARN_ON_ONCE(*iter && mm_state->seq > walk->max_seq); 3505 VM_WARN_ON_ONCE(*iter && !mm_state->nr_walkers); 3506 3507 if (walk->max_seq <= mm_state->seq) { 3508 if (!*iter) 3509 last = false; 3510 goto done; 3511 } 3512 3513 if (!mm_state->nr_walkers) { 3514 VM_WARN_ON_ONCE(mm_state->head && mm_state->head != &mm_list->fifo); 3515 3516 mm_state->head = mm_list->fifo.next; 3517 first = true; 3518 } 3519 3520 while (!mm && mm_state->head != &mm_list->fifo) { 3521 mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list); 3522 3523 mm_state->head = mm_state->head->next; 3524 3525 /* force scan for those added after the last iteration */ 3526 if (!mm_state->tail || mm_state->tail == &mm->lru_gen.list) { 3527 mm_state->tail = mm_state->head; 3528 walk->force_scan = true; 3529 } 3530 3531 if (should_skip_mm(mm, walk)) 3532 mm = NULL; 3533 } 3534 3535 if (mm_state->head == &mm_list->fifo) 3536 WRITE_ONCE(mm_state->seq, mm_state->seq + 1); 3537 done: 3538 if (*iter && !mm) 3539 mm_state->nr_walkers--; 3540 if (!*iter && mm) 3541 mm_state->nr_walkers++; 3542 3543 if (mm_state->nr_walkers) 3544 last = false; 3545 3546 if (*iter || last) 3547 reset_mm_stats(lruvec, walk, last); 3548 3549 spin_unlock(&mm_list->lock); 3550 3551 if (mm && first) 3552 reset_bloom_filter(lruvec, walk->max_seq + 1); 3553 3554 if (*iter) 3555 mmput_async(*iter); 3556 3557 *iter = mm; 3558 3559 return last; 3560 } 3561 3562 static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long max_seq) 3563 { 3564 bool success = false; 3565 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 3566 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 3567 struct lru_gen_mm_state *mm_state = &lruvec->mm_state; 3568 3569 spin_lock(&mm_list->lock); 3570 3571 VM_WARN_ON_ONCE(mm_state->seq + 1 < max_seq); 3572 3573 if (max_seq > mm_state->seq && !mm_state->nr_walkers) { 3574 VM_WARN_ON_ONCE(mm_state->head && mm_state->head != &mm_list->fifo); 3575 3576 WRITE_ONCE(mm_state->seq, mm_state->seq + 1); 3577 reset_mm_stats(lruvec, NULL, true); 3578 success = true; 3579 } 3580 3581 spin_unlock(&mm_list->lock); 3582 3583 return success; 3584 } 3585 3586 /****************************************************************************** 3587 * refault feedback loop 3588 ******************************************************************************/ 3589 3590 /* 3591 * A feedback loop based on Proportional-Integral-Derivative (PID) controller. 3592 * 3593 * The P term is refaulted/(evicted+protected) from a tier in the generation 3594 * currently being evicted; the I term is the exponential moving average of the 3595 * P term over the generations previously evicted, using the smoothing factor 3596 * 1/2; the D term isn't supported. 3597 * 3598 * The setpoint (SP) is always the first tier of one type; the process variable 3599 * (PV) is either any tier of the other type or any other tier of the same 3600 * type. 3601 * 3602 * The error is the difference between the SP and the PV; the correction is to 3603 * turn off protection when SP>PV or turn on protection when SP<PV. 3604 * 3605 * For future optimizations: 3606 * 1. The D term may discount the other two terms over time so that long-lived 3607 * generations can resist stale information. 3608 */ 3609 struct ctrl_pos { 3610 unsigned long refaulted; 3611 unsigned long total; 3612 int gain; 3613 }; 3614 3615 static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain, 3616 struct ctrl_pos *pos) 3617 { 3618 struct lru_gen_struct *lrugen = &lruvec->lrugen; 3619 int hist = lru_hist_from_seq(lrugen->min_seq[type]); 3620 3621 pos->refaulted = lrugen->avg_refaulted[type][tier] + 3622 atomic_long_read(&lrugen->refaulted[hist][type][tier]); 3623 pos->total = lrugen->avg_total[type][tier] + 3624 atomic_long_read(&lrugen->evicted[hist][type][tier]); 3625 if (tier) 3626 pos->total += lrugen->protected[hist][type][tier - 1]; 3627 pos->gain = gain; 3628 } 3629 3630 static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover) 3631 { 3632 int hist, tier; 3633 struct lru_gen_struct *lrugen = &lruvec->lrugen; 3634 bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1; 3635 unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1; 3636 3637 lockdep_assert_held(&lruvec->lru_lock); 3638 3639 if (!carryover && !clear) 3640 return; 3641 3642 hist = lru_hist_from_seq(seq); 3643 3644 for (tier = 0; tier < MAX_NR_TIERS; tier++) { 3645 if (carryover) { 3646 unsigned long sum; 3647 3648 sum = lrugen->avg_refaulted[type][tier] + 3649 atomic_long_read(&lrugen->refaulted[hist][type][tier]); 3650 WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2); 3651 3652 sum = lrugen->avg_total[type][tier] + 3653 atomic_long_read(&lrugen->evicted[hist][type][tier]); 3654 if (tier) 3655 sum += lrugen->protected[hist][type][tier - 1]; 3656 WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2); 3657 } 3658 3659 if (clear) { 3660 atomic_long_set(&lrugen->refaulted[hist][type][tier], 0); 3661 atomic_long_set(&lrugen->evicted[hist][type][tier], 0); 3662 if (tier) 3663 WRITE_ONCE(lrugen->protected[hist][type][tier - 1], 0); 3664 } 3665 } 3666 } 3667 3668 static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv) 3669 { 3670 /* 3671 * Return true if the PV has a limited number of refaults or a lower 3672 * refaulted/total than the SP. 3673 */ 3674 return pv->refaulted < MIN_LRU_BATCH || 3675 pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <= 3676 (sp->refaulted + 1) * pv->total * pv->gain; 3677 } 3678 3679 /****************************************************************************** 3680 * the aging 3681 ******************************************************************************/ 3682 3683 /* promote pages accessed through page tables */ 3684 static int folio_update_gen(struct folio *folio, int gen) 3685 { 3686 unsigned long new_flags, old_flags = READ_ONCE(folio->flags); 3687 3688 VM_WARN_ON_ONCE(gen >= MAX_NR_GENS); 3689 VM_WARN_ON_ONCE(!rcu_read_lock_held()); 3690 3691 do { 3692 /* lru_gen_del_folio() has isolated this page? */ 3693 if (!(old_flags & LRU_GEN_MASK)) { 3694 /* for shrink_folio_list() */ 3695 new_flags = old_flags | BIT(PG_referenced); 3696 continue; 3697 } 3698 3699 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS); 3700 new_flags |= (gen + 1UL) << LRU_GEN_PGOFF; 3701 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags)); 3702 3703 return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1; 3704 } 3705 3706 /* protect pages accessed multiple times through file descriptors */ 3707 static int folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming) 3708 { 3709 int type = folio_is_file_lru(folio); 3710 struct lru_gen_struct *lrugen = &lruvec->lrugen; 3711 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]); 3712 unsigned long new_flags, old_flags = READ_ONCE(folio->flags); 3713 3714 VM_WARN_ON_ONCE_FOLIO(!(old_flags & LRU_GEN_MASK), folio); 3715 3716 do { 3717 new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1; 3718 /* folio_update_gen() has promoted this page? */ 3719 if (new_gen >= 0 && new_gen != old_gen) 3720 return new_gen; 3721 3722 new_gen = (old_gen + 1) % MAX_NR_GENS; 3723 3724 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS); 3725 new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF; 3726 /* for folio_end_writeback() */ 3727 if (reclaiming) 3728 new_flags |= BIT(PG_reclaim); 3729 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags)); 3730 3731 lru_gen_update_size(lruvec, folio, old_gen, new_gen); 3732 3733 return new_gen; 3734 } 3735 3736 static void update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio, 3737 int old_gen, int new_gen) 3738 { 3739 int type = folio_is_file_lru(folio); 3740 int zone = folio_zonenum(folio); 3741 int delta = folio_nr_pages(folio); 3742 3743 VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS); 3744 VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS); 3745 3746 walk->batched++; 3747 3748 walk->nr_pages[old_gen][type][zone] -= delta; 3749 walk->nr_pages[new_gen][type][zone] += delta; 3750 } 3751 3752 static void reset_batch_size(struct lruvec *lruvec, struct lru_gen_mm_walk *walk) 3753 { 3754 int gen, type, zone; 3755 struct lru_gen_struct *lrugen = &lruvec->lrugen; 3756 3757 walk->batched = 0; 3758 3759 for_each_gen_type_zone(gen, type, zone) { 3760 enum lru_list lru = type * LRU_INACTIVE_FILE; 3761 int delta = walk->nr_pages[gen][type][zone]; 3762 3763 if (!delta) 3764 continue; 3765 3766 walk->nr_pages[gen][type][zone] = 0; 3767 WRITE_ONCE(lrugen->nr_pages[gen][type][zone], 3768 lrugen->nr_pages[gen][type][zone] + delta); 3769 3770 if (lru_gen_is_active(lruvec, gen)) 3771 lru += LRU_ACTIVE; 3772 __update_lru_size(lruvec, lru, zone, delta); 3773 } 3774 } 3775 3776 static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args) 3777 { 3778 struct address_space *mapping; 3779 struct vm_area_struct *vma = args->vma; 3780 struct lru_gen_mm_walk *walk = args->private; 3781 3782 if (!vma_is_accessible(vma)) 3783 return true; 3784 3785 if (is_vm_hugetlb_page(vma)) 3786 return true; 3787 3788 if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL | VM_SEQ_READ | VM_RAND_READ)) 3789 return true; 3790 3791 if (vma == get_gate_vma(vma->vm_mm)) 3792 return true; 3793 3794 if (vma_is_anonymous(vma)) 3795 return !walk->can_swap; 3796 3797 if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping)) 3798 return true; 3799 3800 mapping = vma->vm_file->f_mapping; 3801 if (mapping_unevictable(mapping)) 3802 return true; 3803 3804 if (shmem_mapping(mapping)) 3805 return !walk->can_swap; 3806 3807 /* to exclude special mappings like dax, etc. */ 3808 return !mapping->a_ops->read_folio; 3809 } 3810 3811 /* 3812 * Some userspace memory allocators map many single-page VMAs. Instead of 3813 * returning back to the PGD table for each of such VMAs, finish an entire PMD 3814 * table to reduce zigzags and improve cache performance. 3815 */ 3816 static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args, 3817 unsigned long *vm_start, unsigned long *vm_end) 3818 { 3819 unsigned long start = round_up(*vm_end, size); 3820 unsigned long end = (start | ~mask) + 1; 3821 VMA_ITERATOR(vmi, args->mm, start); 3822 3823 VM_WARN_ON_ONCE(mask & size); 3824 VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask)); 3825 3826 for_each_vma(vmi, args->vma) { 3827 if (end && end <= args->vma->vm_start) 3828 return false; 3829 3830 if (should_skip_vma(args->vma->vm_start, args->vma->vm_end, args)) 3831 continue; 3832 3833 *vm_start = max(start, args->vma->vm_start); 3834 *vm_end = min(end - 1, args->vma->vm_end - 1) + 1; 3835 3836 return true; 3837 } 3838 3839 return false; 3840 } 3841 3842 static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr) 3843 { 3844 unsigned long pfn = pte_pfn(pte); 3845 3846 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end); 3847 3848 if (!pte_present(pte) || is_zero_pfn(pfn)) 3849 return -1; 3850 3851 if (WARN_ON_ONCE(pte_devmap(pte) || pte_special(pte))) 3852 return -1; 3853 3854 if (WARN_ON_ONCE(!pfn_valid(pfn))) 3855 return -1; 3856 3857 return pfn; 3858 } 3859 3860 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG) 3861 static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr) 3862 { 3863 unsigned long pfn = pmd_pfn(pmd); 3864 3865 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end); 3866 3867 if (!pmd_present(pmd) || is_huge_zero_pmd(pmd)) 3868 return -1; 3869 3870 if (WARN_ON_ONCE(pmd_devmap(pmd))) 3871 return -1; 3872 3873 if (WARN_ON_ONCE(!pfn_valid(pfn))) 3874 return -1; 3875 3876 return pfn; 3877 } 3878 #endif 3879 3880 static struct folio *get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg, 3881 struct pglist_data *pgdat, bool can_swap) 3882 { 3883 struct folio *folio; 3884 3885 /* try to avoid unnecessary memory loads */ 3886 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat)) 3887 return NULL; 3888 3889 folio = pfn_folio(pfn); 3890 if (folio_nid(folio) != pgdat->node_id) 3891 return NULL; 3892 3893 if (folio_memcg_rcu(folio) != memcg) 3894 return NULL; 3895 3896 /* file VMAs can contain anon pages from COW */ 3897 if (!folio_is_file_lru(folio) && !can_swap) 3898 return NULL; 3899 3900 return folio; 3901 } 3902 3903 static bool suitable_to_scan(int total, int young) 3904 { 3905 int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8); 3906 3907 /* suitable if the average number of young PTEs per cacheline is >=1 */ 3908 return young * n >= total; 3909 } 3910 3911 static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end, 3912 struct mm_walk *args) 3913 { 3914 int i; 3915 pte_t *pte; 3916 spinlock_t *ptl; 3917 unsigned long addr; 3918 int total = 0; 3919 int young = 0; 3920 struct lru_gen_mm_walk *walk = args->private; 3921 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec); 3922 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 3923 int old_gen, new_gen = lru_gen_from_seq(walk->max_seq); 3924 3925 VM_WARN_ON_ONCE(pmd_leaf(*pmd)); 3926 3927 ptl = pte_lockptr(args->mm, pmd); 3928 if (!spin_trylock(ptl)) 3929 return false; 3930 3931 arch_enter_lazy_mmu_mode(); 3932 3933 pte = pte_offset_map(pmd, start & PMD_MASK); 3934 restart: 3935 for (i = pte_index(start), addr = start; addr != end; i++, addr += PAGE_SIZE) { 3936 unsigned long pfn; 3937 struct folio *folio; 3938 3939 total++; 3940 walk->mm_stats[MM_LEAF_TOTAL]++; 3941 3942 pfn = get_pte_pfn(pte[i], args->vma, addr); 3943 if (pfn == -1) 3944 continue; 3945 3946 if (!pte_young(pte[i])) { 3947 walk->mm_stats[MM_LEAF_OLD]++; 3948 continue; 3949 } 3950 3951 folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap); 3952 if (!folio) 3953 continue; 3954 3955 if (!ptep_test_and_clear_young(args->vma, addr, pte + i)) 3956 VM_WARN_ON_ONCE(true); 3957 3958 young++; 3959 walk->mm_stats[MM_LEAF_YOUNG]++; 3960 3961 if (pte_dirty(pte[i]) && !folio_test_dirty(folio) && 3962 !(folio_test_anon(folio) && folio_test_swapbacked(folio) && 3963 !folio_test_swapcache(folio))) 3964 folio_mark_dirty(folio); 3965 3966 old_gen = folio_update_gen(folio, new_gen); 3967 if (old_gen >= 0 && old_gen != new_gen) 3968 update_batch_size(walk, folio, old_gen, new_gen); 3969 } 3970 3971 if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, &start, &end)) 3972 goto restart; 3973 3974 pte_unmap(pte); 3975 3976 arch_leave_lazy_mmu_mode(); 3977 spin_unlock(ptl); 3978 3979 return suitable_to_scan(total, young); 3980 } 3981 3982 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG) 3983 static void walk_pmd_range_locked(pud_t *pud, unsigned long next, struct vm_area_struct *vma, 3984 struct mm_walk *args, unsigned long *bitmap, unsigned long *start) 3985 { 3986 int i; 3987 pmd_t *pmd; 3988 spinlock_t *ptl; 3989 struct lru_gen_mm_walk *walk = args->private; 3990 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec); 3991 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 3992 int old_gen, new_gen = lru_gen_from_seq(walk->max_seq); 3993 3994 VM_WARN_ON_ONCE(pud_leaf(*pud)); 3995 3996 /* try to batch at most 1+MIN_LRU_BATCH+1 entries */ 3997 if (*start == -1) { 3998 *start = next; 3999 return; 4000 } 4001 4002 i = next == -1 ? 0 : pmd_index(next) - pmd_index(*start); 4003 if (i && i <= MIN_LRU_BATCH) { 4004 __set_bit(i - 1, bitmap); 4005 return; 4006 } 4007 4008 pmd = pmd_offset(pud, *start); 4009 4010 ptl = pmd_lockptr(args->mm, pmd); 4011 if (!spin_trylock(ptl)) 4012 goto done; 4013 4014 arch_enter_lazy_mmu_mode(); 4015 4016 do { 4017 unsigned long pfn; 4018 struct folio *folio; 4019 unsigned long addr = i ? (*start & PMD_MASK) + i * PMD_SIZE : *start; 4020 4021 pfn = get_pmd_pfn(pmd[i], vma, addr); 4022 if (pfn == -1) 4023 goto next; 4024 4025 if (!pmd_trans_huge(pmd[i])) { 4026 if (arch_has_hw_nonleaf_pmd_young() && 4027 get_cap(LRU_GEN_NONLEAF_YOUNG)) 4028 pmdp_test_and_clear_young(vma, addr, pmd + i); 4029 goto next; 4030 } 4031 4032 folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap); 4033 if (!folio) 4034 goto next; 4035 4036 if (!pmdp_test_and_clear_young(vma, addr, pmd + i)) 4037 goto next; 4038 4039 walk->mm_stats[MM_LEAF_YOUNG]++; 4040 4041 if (pmd_dirty(pmd[i]) && !folio_test_dirty(folio) && 4042 !(folio_test_anon(folio) && folio_test_swapbacked(folio) && 4043 !folio_test_swapcache(folio))) 4044 folio_mark_dirty(folio); 4045 4046 old_gen = folio_update_gen(folio, new_gen); 4047 if (old_gen >= 0 && old_gen != new_gen) 4048 update_batch_size(walk, folio, old_gen, new_gen); 4049 next: 4050 i = i > MIN_LRU_BATCH ? 0 : find_next_bit(bitmap, MIN_LRU_BATCH, i) + 1; 4051 } while (i <= MIN_LRU_BATCH); 4052 4053 arch_leave_lazy_mmu_mode(); 4054 spin_unlock(ptl); 4055 done: 4056 *start = -1; 4057 bitmap_zero(bitmap, MIN_LRU_BATCH); 4058 } 4059 #else 4060 static void walk_pmd_range_locked(pud_t *pud, unsigned long next, struct vm_area_struct *vma, 4061 struct mm_walk *args, unsigned long *bitmap, unsigned long *start) 4062 { 4063 } 4064 #endif 4065 4066 static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end, 4067 struct mm_walk *args) 4068 { 4069 int i; 4070 pmd_t *pmd; 4071 unsigned long next; 4072 unsigned long addr; 4073 struct vm_area_struct *vma; 4074 unsigned long pos = -1; 4075 struct lru_gen_mm_walk *walk = args->private; 4076 unsigned long bitmap[BITS_TO_LONGS(MIN_LRU_BATCH)] = {}; 4077 4078 VM_WARN_ON_ONCE(pud_leaf(*pud)); 4079 4080 /* 4081 * Finish an entire PMD in two passes: the first only reaches to PTE 4082 * tables to avoid taking the PMD lock; the second, if necessary, takes 4083 * the PMD lock to clear the accessed bit in PMD entries. 4084 */ 4085 pmd = pmd_offset(pud, start & PUD_MASK); 4086 restart: 4087 /* walk_pte_range() may call get_next_vma() */ 4088 vma = args->vma; 4089 for (i = pmd_index(start), addr = start; addr != end; i++, addr = next) { 4090 pmd_t val = pmdp_get_lockless(pmd + i); 4091 4092 next = pmd_addr_end(addr, end); 4093 4094 if (!pmd_present(val) || is_huge_zero_pmd(val)) { 4095 walk->mm_stats[MM_LEAF_TOTAL]++; 4096 continue; 4097 } 4098 4099 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4100 if (pmd_trans_huge(val)) { 4101 unsigned long pfn = pmd_pfn(val); 4102 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 4103 4104 walk->mm_stats[MM_LEAF_TOTAL]++; 4105 4106 if (!pmd_young(val)) { 4107 walk->mm_stats[MM_LEAF_OLD]++; 4108 continue; 4109 } 4110 4111 /* try to avoid unnecessary memory loads */ 4112 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat)) 4113 continue; 4114 4115 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &pos); 4116 continue; 4117 } 4118 #endif 4119 walk->mm_stats[MM_NONLEAF_TOTAL]++; 4120 4121 if (arch_has_hw_nonleaf_pmd_young() && 4122 get_cap(LRU_GEN_NONLEAF_YOUNG)) { 4123 if (!pmd_young(val)) 4124 continue; 4125 4126 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &pos); 4127 } 4128 4129 if (!walk->force_scan && !test_bloom_filter(walk->lruvec, walk->max_seq, pmd + i)) 4130 continue; 4131 4132 walk->mm_stats[MM_NONLEAF_FOUND]++; 4133 4134 if (!walk_pte_range(&val, addr, next, args)) 4135 continue; 4136 4137 walk->mm_stats[MM_NONLEAF_ADDED]++; 4138 4139 /* carry over to the next generation */ 4140 update_bloom_filter(walk->lruvec, walk->max_seq + 1, pmd + i); 4141 } 4142 4143 walk_pmd_range_locked(pud, -1, vma, args, bitmap, &pos); 4144 4145 if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, &start, &end)) 4146 goto restart; 4147 } 4148 4149 static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end, 4150 struct mm_walk *args) 4151 { 4152 int i; 4153 pud_t *pud; 4154 unsigned long addr; 4155 unsigned long next; 4156 struct lru_gen_mm_walk *walk = args->private; 4157 4158 VM_WARN_ON_ONCE(p4d_leaf(*p4d)); 4159 4160 pud = pud_offset(p4d, start & P4D_MASK); 4161 restart: 4162 for (i = pud_index(start), addr = start; addr != end; i++, addr = next) { 4163 pud_t val = READ_ONCE(pud[i]); 4164 4165 next = pud_addr_end(addr, end); 4166 4167 if (!pud_present(val) || WARN_ON_ONCE(pud_leaf(val))) 4168 continue; 4169 4170 walk_pmd_range(&val, addr, next, args); 4171 4172 /* a racy check to curtail the waiting time */ 4173 if (wq_has_sleeper(&walk->lruvec->mm_state.wait)) 4174 return 1; 4175 4176 if (need_resched() || walk->batched >= MAX_LRU_BATCH) { 4177 end = (addr | ~PUD_MASK) + 1; 4178 goto done; 4179 } 4180 } 4181 4182 if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, &start, &end)) 4183 goto restart; 4184 4185 end = round_up(end, P4D_SIZE); 4186 done: 4187 if (!end || !args->vma) 4188 return 1; 4189 4190 walk->next_addr = max(end, args->vma->vm_start); 4191 4192 return -EAGAIN; 4193 } 4194 4195 static void walk_mm(struct lruvec *lruvec, struct mm_struct *mm, struct lru_gen_mm_walk *walk) 4196 { 4197 static const struct mm_walk_ops mm_walk_ops = { 4198 .test_walk = should_skip_vma, 4199 .p4d_entry = walk_pud_range, 4200 }; 4201 4202 int err; 4203 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4204 4205 walk->next_addr = FIRST_USER_ADDRESS; 4206 4207 do { 4208 err = -EBUSY; 4209 4210 /* folio_update_gen() requires stable folio_memcg() */ 4211 if (!mem_cgroup_trylock_pages(memcg)) 4212 break; 4213 4214 /* the caller might be holding the lock for write */ 4215 if (mmap_read_trylock(mm)) { 4216 err = walk_page_range(mm, walk->next_addr, ULONG_MAX, &mm_walk_ops, walk); 4217 4218 mmap_read_unlock(mm); 4219 } 4220 4221 mem_cgroup_unlock_pages(); 4222 4223 if (walk->batched) { 4224 spin_lock_irq(&lruvec->lru_lock); 4225 reset_batch_size(lruvec, walk); 4226 spin_unlock_irq(&lruvec->lru_lock); 4227 } 4228 4229 cond_resched(); 4230 } while (err == -EAGAIN); 4231 } 4232 4233 static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat) 4234 { 4235 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk; 4236 4237 if (pgdat && current_is_kswapd()) { 4238 VM_WARN_ON_ONCE(walk); 4239 4240 walk = &pgdat->mm_walk; 4241 } else if (!pgdat && !walk) { 4242 VM_WARN_ON_ONCE(current_is_kswapd()); 4243 4244 walk = kzalloc(sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN); 4245 } 4246 4247 current->reclaim_state->mm_walk = walk; 4248 4249 return walk; 4250 } 4251 4252 static void clear_mm_walk(void) 4253 { 4254 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk; 4255 4256 VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages))); 4257 VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats))); 4258 4259 current->reclaim_state->mm_walk = NULL; 4260 4261 if (!current_is_kswapd()) 4262 kfree(walk); 4263 } 4264 4265 static bool inc_min_seq(struct lruvec *lruvec, int type, bool can_swap) 4266 { 4267 int zone; 4268 int remaining = MAX_LRU_BATCH; 4269 struct lru_gen_struct *lrugen = &lruvec->lrugen; 4270 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]); 4271 4272 if (type == LRU_GEN_ANON && !can_swap) 4273 goto done; 4274 4275 /* prevent cold/hot inversion if force_scan is true */ 4276 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 4277 struct list_head *head = &lrugen->lists[old_gen][type][zone]; 4278 4279 while (!list_empty(head)) { 4280 struct folio *folio = lru_to_folio(head); 4281 4282 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 4283 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio); 4284 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 4285 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio); 4286 4287 new_gen = folio_inc_gen(lruvec, folio, false); 4288 list_move_tail(&folio->lru, &lrugen->lists[new_gen][type][zone]); 4289 4290 if (!--remaining) 4291 return false; 4292 } 4293 } 4294 done: 4295 reset_ctrl_pos(lruvec, type, true); 4296 WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1); 4297 4298 return true; 4299 } 4300 4301 static bool try_to_inc_min_seq(struct lruvec *lruvec, bool can_swap) 4302 { 4303 int gen, type, zone; 4304 bool success = false; 4305 struct lru_gen_struct *lrugen = &lruvec->lrugen; 4306 DEFINE_MIN_SEQ(lruvec); 4307 4308 VM_WARN_ON_ONCE(!seq_is_valid(lruvec)); 4309 4310 /* find the oldest populated generation */ 4311 for (type = !can_swap; type < ANON_AND_FILE; type++) { 4312 while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) { 4313 gen = lru_gen_from_seq(min_seq[type]); 4314 4315 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 4316 if (!list_empty(&lrugen->lists[gen][type][zone])) 4317 goto next; 4318 } 4319 4320 min_seq[type]++; 4321 } 4322 next: 4323 ; 4324 } 4325 4326 /* see the comment on lru_gen_struct */ 4327 if (can_swap) { 4328 min_seq[LRU_GEN_ANON] = min(min_seq[LRU_GEN_ANON], min_seq[LRU_GEN_FILE]); 4329 min_seq[LRU_GEN_FILE] = max(min_seq[LRU_GEN_ANON], lrugen->min_seq[LRU_GEN_FILE]); 4330 } 4331 4332 for (type = !can_swap; type < ANON_AND_FILE; type++) { 4333 if (min_seq[type] == lrugen->min_seq[type]) 4334 continue; 4335 4336 reset_ctrl_pos(lruvec, type, true); 4337 WRITE_ONCE(lrugen->min_seq[type], min_seq[type]); 4338 success = true; 4339 } 4340 4341 return success; 4342 } 4343 4344 static void inc_max_seq(struct lruvec *lruvec, bool can_swap, bool force_scan) 4345 { 4346 int prev, next; 4347 int type, zone; 4348 struct lru_gen_struct *lrugen = &lruvec->lrugen; 4349 4350 spin_lock_irq(&lruvec->lru_lock); 4351 4352 VM_WARN_ON_ONCE(!seq_is_valid(lruvec)); 4353 4354 for (type = ANON_AND_FILE - 1; type >= 0; type--) { 4355 if (get_nr_gens(lruvec, type) != MAX_NR_GENS) 4356 continue; 4357 4358 VM_WARN_ON_ONCE(!force_scan && (type == LRU_GEN_FILE || can_swap)); 4359 4360 while (!inc_min_seq(lruvec, type, can_swap)) { 4361 spin_unlock_irq(&lruvec->lru_lock); 4362 cond_resched(); 4363 spin_lock_irq(&lruvec->lru_lock); 4364 } 4365 } 4366 4367 /* 4368 * Update the active/inactive LRU sizes for compatibility. Both sides of 4369 * the current max_seq need to be covered, since max_seq+1 can overlap 4370 * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do 4371 * overlap, cold/hot inversion happens. 4372 */ 4373 prev = lru_gen_from_seq(lrugen->max_seq - 1); 4374 next = lru_gen_from_seq(lrugen->max_seq + 1); 4375 4376 for (type = 0; type < ANON_AND_FILE; type++) { 4377 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 4378 enum lru_list lru = type * LRU_INACTIVE_FILE; 4379 long delta = lrugen->nr_pages[prev][type][zone] - 4380 lrugen->nr_pages[next][type][zone]; 4381 4382 if (!delta) 4383 continue; 4384 4385 __update_lru_size(lruvec, lru, zone, delta); 4386 __update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta); 4387 } 4388 } 4389 4390 for (type = 0; type < ANON_AND_FILE; type++) 4391 reset_ctrl_pos(lruvec, type, false); 4392 4393 WRITE_ONCE(lrugen->timestamps[next], jiffies); 4394 /* make sure preceding modifications appear */ 4395 smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1); 4396 4397 spin_unlock_irq(&lruvec->lru_lock); 4398 } 4399 4400 static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long max_seq, 4401 struct scan_control *sc, bool can_swap, bool force_scan) 4402 { 4403 bool success; 4404 struct lru_gen_mm_walk *walk; 4405 struct mm_struct *mm = NULL; 4406 struct lru_gen_struct *lrugen = &lruvec->lrugen; 4407 4408 VM_WARN_ON_ONCE(max_seq > READ_ONCE(lrugen->max_seq)); 4409 4410 /* see the comment in iterate_mm_list() */ 4411 if (max_seq <= READ_ONCE(lruvec->mm_state.seq)) { 4412 success = false; 4413 goto done; 4414 } 4415 4416 /* 4417 * If the hardware doesn't automatically set the accessed bit, fallback 4418 * to lru_gen_look_around(), which only clears the accessed bit in a 4419 * handful of PTEs. Spreading the work out over a period of time usually 4420 * is less efficient, but it avoids bursty page faults. 4421 */ 4422 if (!force_scan && !(arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK))) { 4423 success = iterate_mm_list_nowalk(lruvec, max_seq); 4424 goto done; 4425 } 4426 4427 walk = set_mm_walk(NULL); 4428 if (!walk) { 4429 success = iterate_mm_list_nowalk(lruvec, max_seq); 4430 goto done; 4431 } 4432 4433 walk->lruvec = lruvec; 4434 walk->max_seq = max_seq; 4435 walk->can_swap = can_swap; 4436 walk->force_scan = force_scan; 4437 4438 do { 4439 success = iterate_mm_list(lruvec, walk, &mm); 4440 if (mm) 4441 walk_mm(lruvec, mm, walk); 4442 4443 cond_resched(); 4444 } while (mm); 4445 done: 4446 if (!success) { 4447 if (sc->priority <= DEF_PRIORITY - 2) 4448 wait_event_killable(lruvec->mm_state.wait, 4449 max_seq < READ_ONCE(lrugen->max_seq)); 4450 4451 return max_seq < READ_ONCE(lrugen->max_seq); 4452 } 4453 4454 VM_WARN_ON_ONCE(max_seq != READ_ONCE(lrugen->max_seq)); 4455 4456 inc_max_seq(lruvec, can_swap, force_scan); 4457 /* either this sees any waiters or they will see updated max_seq */ 4458 if (wq_has_sleeper(&lruvec->mm_state.wait)) 4459 wake_up_all(&lruvec->mm_state.wait); 4460 4461 return true; 4462 } 4463 4464 static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq, unsigned long *min_seq, 4465 struct scan_control *sc, bool can_swap, unsigned long *nr_to_scan) 4466 { 4467 int gen, type, zone; 4468 unsigned long old = 0; 4469 unsigned long young = 0; 4470 unsigned long total = 0; 4471 struct lru_gen_struct *lrugen = &lruvec->lrugen; 4472 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4473 4474 for (type = !can_swap; type < ANON_AND_FILE; type++) { 4475 unsigned long seq; 4476 4477 for (seq = min_seq[type]; seq <= max_seq; seq++) { 4478 unsigned long size = 0; 4479 4480 gen = lru_gen_from_seq(seq); 4481 4482 for (zone = 0; zone < MAX_NR_ZONES; zone++) 4483 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L); 4484 4485 total += size; 4486 if (seq == max_seq) 4487 young += size; 4488 else if (seq + MIN_NR_GENS == max_seq) 4489 old += size; 4490 } 4491 } 4492 4493 /* try to scrape all its memory if this memcg was deleted */ 4494 *nr_to_scan = mem_cgroup_online(memcg) ? (total >> sc->priority) : total; 4495 4496 /* 4497 * The aging tries to be lazy to reduce the overhead, while the eviction 4498 * stalls when the number of generations reaches MIN_NR_GENS. Hence, the 4499 * ideal number of generations is MIN_NR_GENS+1. 4500 */ 4501 if (min_seq[!can_swap] + MIN_NR_GENS > max_seq) 4502 return true; 4503 if (min_seq[!can_swap] + MIN_NR_GENS < max_seq) 4504 return false; 4505 4506 /* 4507 * It's also ideal to spread pages out evenly, i.e., 1/(MIN_NR_GENS+1) 4508 * of the total number of pages for each generation. A reasonable range 4509 * for this average portion is [1/MIN_NR_GENS, 1/(MIN_NR_GENS+2)]. The 4510 * aging cares about the upper bound of hot pages, while the eviction 4511 * cares about the lower bound of cold pages. 4512 */ 4513 if (young * MIN_NR_GENS > total) 4514 return true; 4515 if (old * (MIN_NR_GENS + 2) < total) 4516 return true; 4517 4518 return false; 4519 } 4520 4521 static bool age_lruvec(struct lruvec *lruvec, struct scan_control *sc, unsigned long min_ttl) 4522 { 4523 bool need_aging; 4524 unsigned long nr_to_scan; 4525 int swappiness = get_swappiness(lruvec, sc); 4526 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4527 DEFINE_MAX_SEQ(lruvec); 4528 DEFINE_MIN_SEQ(lruvec); 4529 4530 VM_WARN_ON_ONCE(sc->memcg_low_reclaim); 4531 4532 mem_cgroup_calculate_protection(NULL, memcg); 4533 4534 if (mem_cgroup_below_min(NULL, memcg)) 4535 return false; 4536 4537 need_aging = should_run_aging(lruvec, max_seq, min_seq, sc, swappiness, &nr_to_scan); 4538 4539 if (min_ttl) { 4540 int gen = lru_gen_from_seq(min_seq[LRU_GEN_FILE]); 4541 unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]); 4542 4543 if (time_is_after_jiffies(birth + min_ttl)) 4544 return false; 4545 4546 /* the size is likely too small to be helpful */ 4547 if (!nr_to_scan && sc->priority != DEF_PRIORITY) 4548 return false; 4549 } 4550 4551 if (need_aging) 4552 try_to_inc_max_seq(lruvec, max_seq, sc, swappiness, false); 4553 4554 return true; 4555 } 4556 4557 /* to protect the working set of the last N jiffies */ 4558 static unsigned long lru_gen_min_ttl __read_mostly; 4559 4560 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc) 4561 { 4562 struct mem_cgroup *memcg; 4563 bool success = false; 4564 unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl); 4565 4566 VM_WARN_ON_ONCE(!current_is_kswapd()); 4567 4568 sc->last_reclaimed = sc->nr_reclaimed; 4569 4570 /* 4571 * To reduce the chance of going into the aging path, which can be 4572 * costly, optimistically skip it if the flag below was cleared in the 4573 * eviction path. This improves the overall performance when multiple 4574 * memcgs are available. 4575 */ 4576 if (!sc->memcgs_need_aging) { 4577 sc->memcgs_need_aging = true; 4578 return; 4579 } 4580 4581 set_mm_walk(pgdat); 4582 4583 memcg = mem_cgroup_iter(NULL, NULL, NULL); 4584 do { 4585 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 4586 4587 if (age_lruvec(lruvec, sc, min_ttl)) 4588 success = true; 4589 4590 cond_resched(); 4591 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL))); 4592 4593 clear_mm_walk(); 4594 4595 /* check the order to exclude compaction-induced reclaim */ 4596 if (success || !min_ttl || sc->order) 4597 return; 4598 4599 /* 4600 * The main goal is to OOM kill if every generation from all memcgs is 4601 * younger than min_ttl. However, another possibility is all memcgs are 4602 * either below min or empty. 4603 */ 4604 if (mutex_trylock(&oom_lock)) { 4605 struct oom_control oc = { 4606 .gfp_mask = sc->gfp_mask, 4607 }; 4608 4609 out_of_memory(&oc); 4610 4611 mutex_unlock(&oom_lock); 4612 } 4613 } 4614 4615 /* 4616 * This function exploits spatial locality when shrink_folio_list() walks the 4617 * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If 4618 * the scan was done cacheline efficiently, it adds the PMD entry pointing to 4619 * the PTE table to the Bloom filter. This forms a feedback loop between the 4620 * eviction and the aging. 4621 */ 4622 void lru_gen_look_around(struct page_vma_mapped_walk *pvmw) 4623 { 4624 int i; 4625 pte_t *pte; 4626 unsigned long start; 4627 unsigned long end; 4628 unsigned long addr; 4629 struct lru_gen_mm_walk *walk; 4630 int young = 0; 4631 unsigned long bitmap[BITS_TO_LONGS(MIN_LRU_BATCH)] = {}; 4632 struct folio *folio = pfn_folio(pvmw->pfn); 4633 struct mem_cgroup *memcg = folio_memcg(folio); 4634 struct pglist_data *pgdat = folio_pgdat(folio); 4635 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 4636 DEFINE_MAX_SEQ(lruvec); 4637 int old_gen, new_gen = lru_gen_from_seq(max_seq); 4638 4639 lockdep_assert_held(pvmw->ptl); 4640 VM_WARN_ON_ONCE_FOLIO(folio_test_lru(folio), folio); 4641 4642 if (spin_is_contended(pvmw->ptl)) 4643 return; 4644 4645 /* avoid taking the LRU lock under the PTL when possible */ 4646 walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL; 4647 4648 start = max(pvmw->address & PMD_MASK, pvmw->vma->vm_start); 4649 end = min(pvmw->address | ~PMD_MASK, pvmw->vma->vm_end - 1) + 1; 4650 4651 if (end - start > MIN_LRU_BATCH * PAGE_SIZE) { 4652 if (pvmw->address - start < MIN_LRU_BATCH * PAGE_SIZE / 2) 4653 end = start + MIN_LRU_BATCH * PAGE_SIZE; 4654 else if (end - pvmw->address < MIN_LRU_BATCH * PAGE_SIZE / 2) 4655 start = end - MIN_LRU_BATCH * PAGE_SIZE; 4656 else { 4657 start = pvmw->address - MIN_LRU_BATCH * PAGE_SIZE / 2; 4658 end = pvmw->address + MIN_LRU_BATCH * PAGE_SIZE / 2; 4659 } 4660 } 4661 4662 pte = pvmw->pte - (pvmw->address - start) / PAGE_SIZE; 4663 4664 rcu_read_lock(); 4665 arch_enter_lazy_mmu_mode(); 4666 4667 for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) { 4668 unsigned long pfn; 4669 4670 pfn = get_pte_pfn(pte[i], pvmw->vma, addr); 4671 if (pfn == -1) 4672 continue; 4673 4674 if (!pte_young(pte[i])) 4675 continue; 4676 4677 folio = get_pfn_folio(pfn, memcg, pgdat, !walk || walk->can_swap); 4678 if (!folio) 4679 continue; 4680 4681 if (!ptep_test_and_clear_young(pvmw->vma, addr, pte + i)) 4682 VM_WARN_ON_ONCE(true); 4683 4684 young++; 4685 4686 if (pte_dirty(pte[i]) && !folio_test_dirty(folio) && 4687 !(folio_test_anon(folio) && folio_test_swapbacked(folio) && 4688 !folio_test_swapcache(folio))) 4689 folio_mark_dirty(folio); 4690 4691 old_gen = folio_lru_gen(folio); 4692 if (old_gen < 0) 4693 folio_set_referenced(folio); 4694 else if (old_gen != new_gen) 4695 __set_bit(i, bitmap); 4696 } 4697 4698 arch_leave_lazy_mmu_mode(); 4699 rcu_read_unlock(); 4700 4701 /* feedback from rmap walkers to page table walkers */ 4702 if (suitable_to_scan(i, young)) 4703 update_bloom_filter(lruvec, max_seq, pvmw->pmd); 4704 4705 if (!walk && bitmap_weight(bitmap, MIN_LRU_BATCH) < PAGEVEC_SIZE) { 4706 for_each_set_bit(i, bitmap, MIN_LRU_BATCH) { 4707 folio = pfn_folio(pte_pfn(pte[i])); 4708 folio_activate(folio); 4709 } 4710 return; 4711 } 4712 4713 /* folio_update_gen() requires stable folio_memcg() */ 4714 if (!mem_cgroup_trylock_pages(memcg)) 4715 return; 4716 4717 if (!walk) { 4718 spin_lock_irq(&lruvec->lru_lock); 4719 new_gen = lru_gen_from_seq(lruvec->lrugen.max_seq); 4720 } 4721 4722 for_each_set_bit(i, bitmap, MIN_LRU_BATCH) { 4723 folio = pfn_folio(pte_pfn(pte[i])); 4724 if (folio_memcg_rcu(folio) != memcg) 4725 continue; 4726 4727 old_gen = folio_update_gen(folio, new_gen); 4728 if (old_gen < 0 || old_gen == new_gen) 4729 continue; 4730 4731 if (walk) 4732 update_batch_size(walk, folio, old_gen, new_gen); 4733 else 4734 lru_gen_update_size(lruvec, folio, old_gen, new_gen); 4735 } 4736 4737 if (!walk) 4738 spin_unlock_irq(&lruvec->lru_lock); 4739 4740 mem_cgroup_unlock_pages(); 4741 } 4742 4743 /****************************************************************************** 4744 * the eviction 4745 ******************************************************************************/ 4746 4747 static bool sort_folio(struct lruvec *lruvec, struct folio *folio, int tier_idx) 4748 { 4749 bool success; 4750 int gen = folio_lru_gen(folio); 4751 int type = folio_is_file_lru(folio); 4752 int zone = folio_zonenum(folio); 4753 int delta = folio_nr_pages(folio); 4754 int refs = folio_lru_refs(folio); 4755 int tier = lru_tier_from_refs(refs); 4756 struct lru_gen_struct *lrugen = &lruvec->lrugen; 4757 4758 VM_WARN_ON_ONCE_FOLIO(gen >= MAX_NR_GENS, folio); 4759 4760 /* unevictable */ 4761 if (!folio_evictable(folio)) { 4762 success = lru_gen_del_folio(lruvec, folio, true); 4763 VM_WARN_ON_ONCE_FOLIO(!success, folio); 4764 folio_set_unevictable(folio); 4765 lruvec_add_folio(lruvec, folio); 4766 __count_vm_events(UNEVICTABLE_PGCULLED, delta); 4767 return true; 4768 } 4769 4770 /* dirty lazyfree */ 4771 if (type == LRU_GEN_FILE && folio_test_anon(folio) && folio_test_dirty(folio)) { 4772 success = lru_gen_del_folio(lruvec, folio, true); 4773 VM_WARN_ON_ONCE_FOLIO(!success, folio); 4774 folio_set_swapbacked(folio); 4775 lruvec_add_folio_tail(lruvec, folio); 4776 return true; 4777 } 4778 4779 /* promoted */ 4780 if (gen != lru_gen_from_seq(lrugen->min_seq[type])) { 4781 list_move(&folio->lru, &lrugen->lists[gen][type][zone]); 4782 return true; 4783 } 4784 4785 /* protected */ 4786 if (tier > tier_idx) { 4787 int hist = lru_hist_from_seq(lrugen->min_seq[type]); 4788 4789 gen = folio_inc_gen(lruvec, folio, false); 4790 list_move_tail(&folio->lru, &lrugen->lists[gen][type][zone]); 4791 4792 WRITE_ONCE(lrugen->protected[hist][type][tier - 1], 4793 lrugen->protected[hist][type][tier - 1] + delta); 4794 __mod_lruvec_state(lruvec, WORKINGSET_ACTIVATE_BASE + type, delta); 4795 return true; 4796 } 4797 4798 /* waiting for writeback */ 4799 if (folio_test_locked(folio) || folio_test_writeback(folio) || 4800 (type == LRU_GEN_FILE && folio_test_dirty(folio))) { 4801 gen = folio_inc_gen(lruvec, folio, true); 4802 list_move(&folio->lru, &lrugen->lists[gen][type][zone]); 4803 return true; 4804 } 4805 4806 return false; 4807 } 4808 4809 static bool isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc) 4810 { 4811 bool success; 4812 4813 /* unmapping inhibited */ 4814 if (!sc->may_unmap && folio_mapped(folio)) 4815 return false; 4816 4817 /* swapping inhibited */ 4818 if (!(sc->may_writepage && (sc->gfp_mask & __GFP_IO)) && 4819 (folio_test_dirty(folio) || 4820 (folio_test_anon(folio) && !folio_test_swapcache(folio)))) 4821 return false; 4822 4823 /* raced with release_pages() */ 4824 if (!folio_try_get(folio)) 4825 return false; 4826 4827 /* raced with another isolation */ 4828 if (!folio_test_clear_lru(folio)) { 4829 folio_put(folio); 4830 return false; 4831 } 4832 4833 /* see the comment on MAX_NR_TIERS */ 4834 if (!folio_test_referenced(folio)) 4835 set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS, 0); 4836 4837 /* for shrink_folio_list() */ 4838 folio_clear_reclaim(folio); 4839 folio_clear_referenced(folio); 4840 4841 success = lru_gen_del_folio(lruvec, folio, true); 4842 VM_WARN_ON_ONCE_FOLIO(!success, folio); 4843 4844 return true; 4845 } 4846 4847 static int scan_folios(struct lruvec *lruvec, struct scan_control *sc, 4848 int type, int tier, struct list_head *list) 4849 { 4850 int gen, zone; 4851 enum vm_event_item item; 4852 int sorted = 0; 4853 int scanned = 0; 4854 int isolated = 0; 4855 int remaining = MAX_LRU_BATCH; 4856 struct lru_gen_struct *lrugen = &lruvec->lrugen; 4857 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4858 4859 VM_WARN_ON_ONCE(!list_empty(list)); 4860 4861 if (get_nr_gens(lruvec, type) == MIN_NR_GENS) 4862 return 0; 4863 4864 gen = lru_gen_from_seq(lrugen->min_seq[type]); 4865 4866 for (zone = sc->reclaim_idx; zone >= 0; zone--) { 4867 LIST_HEAD(moved); 4868 int skipped = 0; 4869 struct list_head *head = &lrugen->lists[gen][type][zone]; 4870 4871 while (!list_empty(head)) { 4872 struct folio *folio = lru_to_folio(head); 4873 int delta = folio_nr_pages(folio); 4874 4875 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 4876 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio); 4877 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 4878 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio); 4879 4880 scanned += delta; 4881 4882 if (sort_folio(lruvec, folio, tier)) 4883 sorted += delta; 4884 else if (isolate_folio(lruvec, folio, sc)) { 4885 list_add(&folio->lru, list); 4886 isolated += delta; 4887 } else { 4888 list_move(&folio->lru, &moved); 4889 skipped += delta; 4890 } 4891 4892 if (!--remaining || max(isolated, skipped) >= MIN_LRU_BATCH) 4893 break; 4894 } 4895 4896 if (skipped) { 4897 list_splice(&moved, head); 4898 __count_zid_vm_events(PGSCAN_SKIP, zone, skipped); 4899 } 4900 4901 if (!remaining || isolated >= MIN_LRU_BATCH) 4902 break; 4903 } 4904 4905 item = PGSCAN_KSWAPD + reclaimer_offset(); 4906 if (!cgroup_reclaim(sc)) { 4907 __count_vm_events(item, isolated); 4908 __count_vm_events(PGREFILL, sorted); 4909 } 4910 __count_memcg_events(memcg, item, isolated); 4911 __count_memcg_events(memcg, PGREFILL, sorted); 4912 __count_vm_events(PGSCAN_ANON + type, isolated); 4913 4914 /* 4915 * There might not be eligible pages due to reclaim_idx, may_unmap and 4916 * may_writepage. Check the remaining to prevent livelock if it's not 4917 * making progress. 4918 */ 4919 return isolated || !remaining ? scanned : 0; 4920 } 4921 4922 static int get_tier_idx(struct lruvec *lruvec, int type) 4923 { 4924 int tier; 4925 struct ctrl_pos sp, pv; 4926 4927 /* 4928 * To leave a margin for fluctuations, use a larger gain factor (1:2). 4929 * This value is chosen because any other tier would have at least twice 4930 * as many refaults as the first tier. 4931 */ 4932 read_ctrl_pos(lruvec, type, 0, 1, &sp); 4933 for (tier = 1; tier < MAX_NR_TIERS; tier++) { 4934 read_ctrl_pos(lruvec, type, tier, 2, &pv); 4935 if (!positive_ctrl_err(&sp, &pv)) 4936 break; 4937 } 4938 4939 return tier - 1; 4940 } 4941 4942 static int get_type_to_scan(struct lruvec *lruvec, int swappiness, int *tier_idx) 4943 { 4944 int type, tier; 4945 struct ctrl_pos sp, pv; 4946 int gain[ANON_AND_FILE] = { swappiness, 200 - swappiness }; 4947 4948 /* 4949 * Compare the first tier of anon with that of file to determine which 4950 * type to scan. Also need to compare other tiers of the selected type 4951 * with the first tier of the other type to determine the last tier (of 4952 * the selected type) to evict. 4953 */ 4954 read_ctrl_pos(lruvec, LRU_GEN_ANON, 0, gain[LRU_GEN_ANON], &sp); 4955 read_ctrl_pos(lruvec, LRU_GEN_FILE, 0, gain[LRU_GEN_FILE], &pv); 4956 type = positive_ctrl_err(&sp, &pv); 4957 4958 read_ctrl_pos(lruvec, !type, 0, gain[!type], &sp); 4959 for (tier = 1; tier < MAX_NR_TIERS; tier++) { 4960 read_ctrl_pos(lruvec, type, tier, gain[type], &pv); 4961 if (!positive_ctrl_err(&sp, &pv)) 4962 break; 4963 } 4964 4965 *tier_idx = tier - 1; 4966 4967 return type; 4968 } 4969 4970 static int isolate_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness, 4971 int *type_scanned, struct list_head *list) 4972 { 4973 int i; 4974 int type; 4975 int scanned; 4976 int tier = -1; 4977 DEFINE_MIN_SEQ(lruvec); 4978 4979 /* 4980 * Try to make the obvious choice first. When anon and file are both 4981 * available from the same generation, interpret swappiness 1 as file 4982 * first and 200 as anon first. 4983 */ 4984 if (!swappiness) 4985 type = LRU_GEN_FILE; 4986 else if (min_seq[LRU_GEN_ANON] < min_seq[LRU_GEN_FILE]) 4987 type = LRU_GEN_ANON; 4988 else if (swappiness == 1) 4989 type = LRU_GEN_FILE; 4990 else if (swappiness == 200) 4991 type = LRU_GEN_ANON; 4992 else 4993 type = get_type_to_scan(lruvec, swappiness, &tier); 4994 4995 for (i = !swappiness; i < ANON_AND_FILE; i++) { 4996 if (tier < 0) 4997 tier = get_tier_idx(lruvec, type); 4998 4999 scanned = scan_folios(lruvec, sc, type, tier, list); 5000 if (scanned) 5001 break; 5002 5003 type = !type; 5004 tier = -1; 5005 } 5006 5007 *type_scanned = type; 5008 5009 return scanned; 5010 } 5011 5012 static int evict_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness, 5013 bool *need_swapping) 5014 { 5015 int type; 5016 int scanned; 5017 int reclaimed; 5018 LIST_HEAD(list); 5019 LIST_HEAD(clean); 5020 struct folio *folio; 5021 struct folio *next; 5022 enum vm_event_item item; 5023 struct reclaim_stat stat; 5024 struct lru_gen_mm_walk *walk; 5025 bool skip_retry = false; 5026 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 5027 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 5028 5029 spin_lock_irq(&lruvec->lru_lock); 5030 5031 scanned = isolate_folios(lruvec, sc, swappiness, &type, &list); 5032 5033 scanned += try_to_inc_min_seq(lruvec, swappiness); 5034 5035 if (get_nr_gens(lruvec, !swappiness) == MIN_NR_GENS) 5036 scanned = 0; 5037 5038 spin_unlock_irq(&lruvec->lru_lock); 5039 5040 if (list_empty(&list)) 5041 return scanned; 5042 retry: 5043 reclaimed = shrink_folio_list(&list, pgdat, sc, &stat, false); 5044 sc->nr_reclaimed += reclaimed; 5045 5046 list_for_each_entry_safe_reverse(folio, next, &list, lru) { 5047 if (!folio_evictable(folio)) { 5048 list_del(&folio->lru); 5049 folio_putback_lru(folio); 5050 continue; 5051 } 5052 5053 if (folio_test_reclaim(folio) && 5054 (folio_test_dirty(folio) || folio_test_writeback(folio))) { 5055 /* restore LRU_REFS_FLAGS cleared by isolate_folio() */ 5056 if (folio_test_workingset(folio)) 5057 folio_set_referenced(folio); 5058 continue; 5059 } 5060 5061 if (skip_retry || folio_test_active(folio) || folio_test_referenced(folio) || 5062 folio_mapped(folio) || folio_test_locked(folio) || 5063 folio_test_dirty(folio) || folio_test_writeback(folio)) { 5064 /* don't add rejected folios to the oldest generation */ 5065 set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS, 5066 BIT(PG_active)); 5067 continue; 5068 } 5069 5070 /* retry folios that may have missed folio_rotate_reclaimable() */ 5071 list_move(&folio->lru, &clean); 5072 sc->nr_scanned -= folio_nr_pages(folio); 5073 } 5074 5075 spin_lock_irq(&lruvec->lru_lock); 5076 5077 move_folios_to_lru(lruvec, &list); 5078 5079 walk = current->reclaim_state->mm_walk; 5080 if (walk && walk->batched) 5081 reset_batch_size(lruvec, walk); 5082 5083 item = PGSTEAL_KSWAPD + reclaimer_offset(); 5084 if (!cgroup_reclaim(sc)) 5085 __count_vm_events(item, reclaimed); 5086 __count_memcg_events(memcg, item, reclaimed); 5087 __count_vm_events(PGSTEAL_ANON + type, reclaimed); 5088 5089 spin_unlock_irq(&lruvec->lru_lock); 5090 5091 mem_cgroup_uncharge_list(&list); 5092 free_unref_page_list(&list); 5093 5094 INIT_LIST_HEAD(&list); 5095 list_splice_init(&clean, &list); 5096 5097 if (!list_empty(&list)) { 5098 skip_retry = true; 5099 goto retry; 5100 } 5101 5102 if (need_swapping && type == LRU_GEN_ANON) 5103 *need_swapping = true; 5104 5105 return scanned; 5106 } 5107 5108 /* 5109 * For future optimizations: 5110 * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg 5111 * reclaim. 5112 */ 5113 static unsigned long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc, 5114 bool can_swap, bool *need_aging) 5115 { 5116 unsigned long nr_to_scan; 5117 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 5118 DEFINE_MAX_SEQ(lruvec); 5119 DEFINE_MIN_SEQ(lruvec); 5120 5121 if (mem_cgroup_below_min(sc->target_mem_cgroup, memcg) || 5122 (mem_cgroup_below_low(sc->target_mem_cgroup, memcg) && 5123 !sc->memcg_low_reclaim)) 5124 return 0; 5125 5126 *need_aging = should_run_aging(lruvec, max_seq, min_seq, sc, can_swap, &nr_to_scan); 5127 if (!*need_aging) 5128 return nr_to_scan; 5129 5130 /* skip the aging path at the default priority */ 5131 if (sc->priority == DEF_PRIORITY) 5132 goto done; 5133 5134 /* leave the work to lru_gen_age_node() */ 5135 if (current_is_kswapd()) 5136 return 0; 5137 5138 if (try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, false)) 5139 return nr_to_scan; 5140 done: 5141 return min_seq[!can_swap] + MIN_NR_GENS <= max_seq ? nr_to_scan : 0; 5142 } 5143 5144 static bool should_abort_scan(struct lruvec *lruvec, unsigned long seq, 5145 struct scan_control *sc, bool need_swapping) 5146 { 5147 int i; 5148 DEFINE_MAX_SEQ(lruvec); 5149 5150 if (!current_is_kswapd()) { 5151 /* age each memcg at most once to ensure fairness */ 5152 if (max_seq - seq > 1) 5153 return true; 5154 5155 /* over-swapping can increase allocation latency */ 5156 if (sc->nr_reclaimed >= sc->nr_to_reclaim && need_swapping) 5157 return true; 5158 5159 /* give this thread a chance to exit and free its memory */ 5160 if (fatal_signal_pending(current)) { 5161 sc->nr_reclaimed += MIN_LRU_BATCH; 5162 return true; 5163 } 5164 5165 if (cgroup_reclaim(sc)) 5166 return false; 5167 } else if (sc->nr_reclaimed - sc->last_reclaimed < sc->nr_to_reclaim) 5168 return false; 5169 5170 /* keep scanning at low priorities to ensure fairness */ 5171 if (sc->priority > DEF_PRIORITY - 2) 5172 return false; 5173 5174 /* 5175 * A minimum amount of work was done under global memory pressure. For 5176 * kswapd, it may be overshooting. For direct reclaim, the allocation 5177 * may succeed if all suitable zones are somewhat safe. In either case, 5178 * it's better to stop now, and restart later if necessary. 5179 */ 5180 for (i = 0; i <= sc->reclaim_idx; i++) { 5181 unsigned long wmark; 5182 struct zone *zone = lruvec_pgdat(lruvec)->node_zones + i; 5183 5184 if (!managed_zone(zone)) 5185 continue; 5186 5187 wmark = current_is_kswapd() ? high_wmark_pages(zone) : low_wmark_pages(zone); 5188 if (wmark > zone_page_state(zone, NR_FREE_PAGES)) 5189 return false; 5190 } 5191 5192 sc->nr_reclaimed += MIN_LRU_BATCH; 5193 5194 return true; 5195 } 5196 5197 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 5198 { 5199 struct blk_plug plug; 5200 bool need_aging = false; 5201 bool need_swapping = false; 5202 unsigned long scanned = 0; 5203 unsigned long reclaimed = sc->nr_reclaimed; 5204 DEFINE_MAX_SEQ(lruvec); 5205 5206 lru_add_drain(); 5207 5208 blk_start_plug(&plug); 5209 5210 set_mm_walk(lruvec_pgdat(lruvec)); 5211 5212 while (true) { 5213 int delta; 5214 int swappiness; 5215 unsigned long nr_to_scan; 5216 5217 if (sc->may_swap) 5218 swappiness = get_swappiness(lruvec, sc); 5219 else if (!cgroup_reclaim(sc) && get_swappiness(lruvec, sc)) 5220 swappiness = 1; 5221 else 5222 swappiness = 0; 5223 5224 nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness, &need_aging); 5225 if (!nr_to_scan) 5226 goto done; 5227 5228 delta = evict_folios(lruvec, sc, swappiness, &need_swapping); 5229 if (!delta) 5230 goto done; 5231 5232 scanned += delta; 5233 if (scanned >= nr_to_scan) 5234 break; 5235 5236 if (should_abort_scan(lruvec, max_seq, sc, need_swapping)) 5237 break; 5238 5239 cond_resched(); 5240 } 5241 5242 /* see the comment in lru_gen_age_node() */ 5243 if (sc->nr_reclaimed - reclaimed >= MIN_LRU_BATCH && !need_aging) 5244 sc->memcgs_need_aging = false; 5245 done: 5246 clear_mm_walk(); 5247 5248 blk_finish_plug(&plug); 5249 } 5250 5251 /****************************************************************************** 5252 * state change 5253 ******************************************************************************/ 5254 5255 static bool __maybe_unused state_is_valid(struct lruvec *lruvec) 5256 { 5257 struct lru_gen_struct *lrugen = &lruvec->lrugen; 5258 5259 if (lrugen->enabled) { 5260 enum lru_list lru; 5261 5262 for_each_evictable_lru(lru) { 5263 if (!list_empty(&lruvec->lists[lru])) 5264 return false; 5265 } 5266 } else { 5267 int gen, type, zone; 5268 5269 for_each_gen_type_zone(gen, type, zone) { 5270 if (!list_empty(&lrugen->lists[gen][type][zone])) 5271 return false; 5272 } 5273 } 5274 5275 return true; 5276 } 5277 5278 static bool fill_evictable(struct lruvec *lruvec) 5279 { 5280 enum lru_list lru; 5281 int remaining = MAX_LRU_BATCH; 5282 5283 for_each_evictable_lru(lru) { 5284 int type = is_file_lru(lru); 5285 bool active = is_active_lru(lru); 5286 struct list_head *head = &lruvec->lists[lru]; 5287 5288 while (!list_empty(head)) { 5289 bool success; 5290 struct folio *folio = lru_to_folio(head); 5291 5292 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 5293 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio) != active, folio); 5294 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 5295 VM_WARN_ON_ONCE_FOLIO(folio_lru_gen(folio) != -1, folio); 5296 5297 lruvec_del_folio(lruvec, folio); 5298 success = lru_gen_add_folio(lruvec, folio, false); 5299 VM_WARN_ON_ONCE(!success); 5300 5301 if (!--remaining) 5302 return false; 5303 } 5304 } 5305 5306 return true; 5307 } 5308 5309 static bool drain_evictable(struct lruvec *lruvec) 5310 { 5311 int gen, type, zone; 5312 int remaining = MAX_LRU_BATCH; 5313 5314 for_each_gen_type_zone(gen, type, zone) { 5315 struct list_head *head = &lruvec->lrugen.lists[gen][type][zone]; 5316 5317 while (!list_empty(head)) { 5318 bool success; 5319 struct folio *folio = lru_to_folio(head); 5320 5321 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 5322 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio); 5323 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 5324 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio); 5325 5326 success = lru_gen_del_folio(lruvec, folio, false); 5327 VM_WARN_ON_ONCE(!success); 5328 lruvec_add_folio(lruvec, folio); 5329 5330 if (!--remaining) 5331 return false; 5332 } 5333 } 5334 5335 return true; 5336 } 5337 5338 static void lru_gen_change_state(bool enabled) 5339 { 5340 static DEFINE_MUTEX(state_mutex); 5341 5342 struct mem_cgroup *memcg; 5343 5344 cgroup_lock(); 5345 cpus_read_lock(); 5346 get_online_mems(); 5347 mutex_lock(&state_mutex); 5348 5349 if (enabled == lru_gen_enabled()) 5350 goto unlock; 5351 5352 if (enabled) 5353 static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]); 5354 else 5355 static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]); 5356 5357 memcg = mem_cgroup_iter(NULL, NULL, NULL); 5358 do { 5359 int nid; 5360 5361 for_each_node(nid) { 5362 struct lruvec *lruvec = get_lruvec(memcg, nid); 5363 5364 spin_lock_irq(&lruvec->lru_lock); 5365 5366 VM_WARN_ON_ONCE(!seq_is_valid(lruvec)); 5367 VM_WARN_ON_ONCE(!state_is_valid(lruvec)); 5368 5369 lruvec->lrugen.enabled = enabled; 5370 5371 while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) { 5372 spin_unlock_irq(&lruvec->lru_lock); 5373 cond_resched(); 5374 spin_lock_irq(&lruvec->lru_lock); 5375 } 5376 5377 spin_unlock_irq(&lruvec->lru_lock); 5378 } 5379 5380 cond_resched(); 5381 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL))); 5382 unlock: 5383 mutex_unlock(&state_mutex); 5384 put_online_mems(); 5385 cpus_read_unlock(); 5386 cgroup_unlock(); 5387 } 5388 5389 /****************************************************************************** 5390 * sysfs interface 5391 ******************************************************************************/ 5392 5393 static ssize_t show_min_ttl(struct kobject *kobj, struct kobj_attribute *attr, char *buf) 5394 { 5395 return sprintf(buf, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl))); 5396 } 5397 5398 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5399 static ssize_t store_min_ttl(struct kobject *kobj, struct kobj_attribute *attr, 5400 const char *buf, size_t len) 5401 { 5402 unsigned int msecs; 5403 5404 if (kstrtouint(buf, 0, &msecs)) 5405 return -EINVAL; 5406 5407 WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs)); 5408 5409 return len; 5410 } 5411 5412 static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR( 5413 min_ttl_ms, 0644, show_min_ttl, store_min_ttl 5414 ); 5415 5416 static ssize_t show_enabled(struct kobject *kobj, struct kobj_attribute *attr, char *buf) 5417 { 5418 unsigned int caps = 0; 5419 5420 if (get_cap(LRU_GEN_CORE)) 5421 caps |= BIT(LRU_GEN_CORE); 5422 5423 if (arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK)) 5424 caps |= BIT(LRU_GEN_MM_WALK); 5425 5426 if (arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG)) 5427 caps |= BIT(LRU_GEN_NONLEAF_YOUNG); 5428 5429 return sysfs_emit(buf, "0x%04x\n", caps); 5430 } 5431 5432 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5433 static ssize_t store_enabled(struct kobject *kobj, struct kobj_attribute *attr, 5434 const char *buf, size_t len) 5435 { 5436 int i; 5437 unsigned int caps; 5438 5439 if (tolower(*buf) == 'n') 5440 caps = 0; 5441 else if (tolower(*buf) == 'y') 5442 caps = -1; 5443 else if (kstrtouint(buf, 0, &caps)) 5444 return -EINVAL; 5445 5446 for (i = 0; i < NR_LRU_GEN_CAPS; i++) { 5447 bool enabled = caps & BIT(i); 5448 5449 if (i == LRU_GEN_CORE) 5450 lru_gen_change_state(enabled); 5451 else if (enabled) 5452 static_branch_enable(&lru_gen_caps[i]); 5453 else 5454 static_branch_disable(&lru_gen_caps[i]); 5455 } 5456 5457 return len; 5458 } 5459 5460 static struct kobj_attribute lru_gen_enabled_attr = __ATTR( 5461 enabled, 0644, show_enabled, store_enabled 5462 ); 5463 5464 static struct attribute *lru_gen_attrs[] = { 5465 &lru_gen_min_ttl_attr.attr, 5466 &lru_gen_enabled_attr.attr, 5467 NULL 5468 }; 5469 5470 static struct attribute_group lru_gen_attr_group = { 5471 .name = "lru_gen", 5472 .attrs = lru_gen_attrs, 5473 }; 5474 5475 /****************************************************************************** 5476 * debugfs interface 5477 ******************************************************************************/ 5478 5479 static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos) 5480 { 5481 struct mem_cgroup *memcg; 5482 loff_t nr_to_skip = *pos; 5483 5484 m->private = kvmalloc(PATH_MAX, GFP_KERNEL); 5485 if (!m->private) 5486 return ERR_PTR(-ENOMEM); 5487 5488 memcg = mem_cgroup_iter(NULL, NULL, NULL); 5489 do { 5490 int nid; 5491 5492 for_each_node_state(nid, N_MEMORY) { 5493 if (!nr_to_skip--) 5494 return get_lruvec(memcg, nid); 5495 } 5496 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL))); 5497 5498 return NULL; 5499 } 5500 5501 static void lru_gen_seq_stop(struct seq_file *m, void *v) 5502 { 5503 if (!IS_ERR_OR_NULL(v)) 5504 mem_cgroup_iter_break(NULL, lruvec_memcg(v)); 5505 5506 kvfree(m->private); 5507 m->private = NULL; 5508 } 5509 5510 static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos) 5511 { 5512 int nid = lruvec_pgdat(v)->node_id; 5513 struct mem_cgroup *memcg = lruvec_memcg(v); 5514 5515 ++*pos; 5516 5517 nid = next_memory_node(nid); 5518 if (nid == MAX_NUMNODES) { 5519 memcg = mem_cgroup_iter(NULL, memcg, NULL); 5520 if (!memcg) 5521 return NULL; 5522 5523 nid = first_memory_node; 5524 } 5525 5526 return get_lruvec(memcg, nid); 5527 } 5528 5529 static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec, 5530 unsigned long max_seq, unsigned long *min_seq, 5531 unsigned long seq) 5532 { 5533 int i; 5534 int type, tier; 5535 int hist = lru_hist_from_seq(seq); 5536 struct lru_gen_struct *lrugen = &lruvec->lrugen; 5537 5538 for (tier = 0; tier < MAX_NR_TIERS; tier++) { 5539 seq_printf(m, " %10d", tier); 5540 for (type = 0; type < ANON_AND_FILE; type++) { 5541 const char *s = " "; 5542 unsigned long n[3] = {}; 5543 5544 if (seq == max_seq) { 5545 s = "RT "; 5546 n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]); 5547 n[1] = READ_ONCE(lrugen->avg_total[type][tier]); 5548 } else if (seq == min_seq[type] || NR_HIST_GENS > 1) { 5549 s = "rep"; 5550 n[0] = atomic_long_read(&lrugen->refaulted[hist][type][tier]); 5551 n[1] = atomic_long_read(&lrugen->evicted[hist][type][tier]); 5552 if (tier) 5553 n[2] = READ_ONCE(lrugen->protected[hist][type][tier - 1]); 5554 } 5555 5556 for (i = 0; i < 3; i++) 5557 seq_printf(m, " %10lu%c", n[i], s[i]); 5558 } 5559 seq_putc(m, '\n'); 5560 } 5561 5562 seq_puts(m, " "); 5563 for (i = 0; i < NR_MM_STATS; i++) { 5564 const char *s = " "; 5565 unsigned long n = 0; 5566 5567 if (seq == max_seq && NR_HIST_GENS == 1) { 5568 s = "LOYNFA"; 5569 n = READ_ONCE(lruvec->mm_state.stats[hist][i]); 5570 } else if (seq != max_seq && NR_HIST_GENS > 1) { 5571 s = "loynfa"; 5572 n = READ_ONCE(lruvec->mm_state.stats[hist][i]); 5573 } 5574 5575 seq_printf(m, " %10lu%c", n, s[i]); 5576 } 5577 seq_putc(m, '\n'); 5578 } 5579 5580 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5581 static int lru_gen_seq_show(struct seq_file *m, void *v) 5582 { 5583 unsigned long seq; 5584 bool full = !debugfs_real_fops(m->file)->write; 5585 struct lruvec *lruvec = v; 5586 struct lru_gen_struct *lrugen = &lruvec->lrugen; 5587 int nid = lruvec_pgdat(lruvec)->node_id; 5588 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 5589 DEFINE_MAX_SEQ(lruvec); 5590 DEFINE_MIN_SEQ(lruvec); 5591 5592 if (nid == first_memory_node) { 5593 const char *path = memcg ? m->private : ""; 5594 5595 #ifdef CONFIG_MEMCG 5596 if (memcg) 5597 cgroup_path(memcg->css.cgroup, m->private, PATH_MAX); 5598 #endif 5599 seq_printf(m, "memcg %5hu %s\n", mem_cgroup_id(memcg), path); 5600 } 5601 5602 seq_printf(m, " node %5d\n", nid); 5603 5604 if (!full) 5605 seq = min_seq[LRU_GEN_ANON]; 5606 else if (max_seq >= MAX_NR_GENS) 5607 seq = max_seq - MAX_NR_GENS + 1; 5608 else 5609 seq = 0; 5610 5611 for (; seq <= max_seq; seq++) { 5612 int type, zone; 5613 int gen = lru_gen_from_seq(seq); 5614 unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]); 5615 5616 seq_printf(m, " %10lu %10u", seq, jiffies_to_msecs(jiffies - birth)); 5617 5618 for (type = 0; type < ANON_AND_FILE; type++) { 5619 unsigned long size = 0; 5620 char mark = full && seq < min_seq[type] ? 'x' : ' '; 5621 5622 for (zone = 0; zone < MAX_NR_ZONES; zone++) 5623 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L); 5624 5625 seq_printf(m, " %10lu%c", size, mark); 5626 } 5627 5628 seq_putc(m, '\n'); 5629 5630 if (full) 5631 lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq); 5632 } 5633 5634 return 0; 5635 } 5636 5637 static const struct seq_operations lru_gen_seq_ops = { 5638 .start = lru_gen_seq_start, 5639 .stop = lru_gen_seq_stop, 5640 .next = lru_gen_seq_next, 5641 .show = lru_gen_seq_show, 5642 }; 5643 5644 static int run_aging(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc, 5645 bool can_swap, bool force_scan) 5646 { 5647 DEFINE_MAX_SEQ(lruvec); 5648 DEFINE_MIN_SEQ(lruvec); 5649 5650 if (seq < max_seq) 5651 return 0; 5652 5653 if (seq > max_seq) 5654 return -EINVAL; 5655 5656 if (!force_scan && min_seq[!can_swap] + MAX_NR_GENS - 1 <= max_seq) 5657 return -ERANGE; 5658 5659 try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, force_scan); 5660 5661 return 0; 5662 } 5663 5664 static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc, 5665 int swappiness, unsigned long nr_to_reclaim) 5666 { 5667 DEFINE_MAX_SEQ(lruvec); 5668 5669 if (seq + MIN_NR_GENS > max_seq) 5670 return -EINVAL; 5671 5672 sc->nr_reclaimed = 0; 5673 5674 while (!signal_pending(current)) { 5675 DEFINE_MIN_SEQ(lruvec); 5676 5677 if (seq < min_seq[!swappiness]) 5678 return 0; 5679 5680 if (sc->nr_reclaimed >= nr_to_reclaim) 5681 return 0; 5682 5683 if (!evict_folios(lruvec, sc, swappiness, NULL)) 5684 return 0; 5685 5686 cond_resched(); 5687 } 5688 5689 return -EINTR; 5690 } 5691 5692 static int run_cmd(char cmd, int memcg_id, int nid, unsigned long seq, 5693 struct scan_control *sc, int swappiness, unsigned long opt) 5694 { 5695 struct lruvec *lruvec; 5696 int err = -EINVAL; 5697 struct mem_cgroup *memcg = NULL; 5698 5699 if (nid < 0 || nid >= MAX_NUMNODES || !node_state(nid, N_MEMORY)) 5700 return -EINVAL; 5701 5702 if (!mem_cgroup_disabled()) { 5703 rcu_read_lock(); 5704 memcg = mem_cgroup_from_id(memcg_id); 5705 #ifdef CONFIG_MEMCG 5706 if (memcg && !css_tryget(&memcg->css)) 5707 memcg = NULL; 5708 #endif 5709 rcu_read_unlock(); 5710 5711 if (!memcg) 5712 return -EINVAL; 5713 } 5714 5715 if (memcg_id != mem_cgroup_id(memcg)) 5716 goto done; 5717 5718 lruvec = get_lruvec(memcg, nid); 5719 5720 if (swappiness < 0) 5721 swappiness = get_swappiness(lruvec, sc); 5722 else if (swappiness > 200) 5723 goto done; 5724 5725 switch (cmd) { 5726 case '+': 5727 err = run_aging(lruvec, seq, sc, swappiness, opt); 5728 break; 5729 case '-': 5730 err = run_eviction(lruvec, seq, sc, swappiness, opt); 5731 break; 5732 } 5733 done: 5734 mem_cgroup_put(memcg); 5735 5736 return err; 5737 } 5738 5739 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5740 static ssize_t lru_gen_seq_write(struct file *file, const char __user *src, 5741 size_t len, loff_t *pos) 5742 { 5743 void *buf; 5744 char *cur, *next; 5745 unsigned int flags; 5746 struct blk_plug plug; 5747 int err = -EINVAL; 5748 struct scan_control sc = { 5749 .may_writepage = true, 5750 .may_unmap = true, 5751 .may_swap = true, 5752 .reclaim_idx = MAX_NR_ZONES - 1, 5753 .gfp_mask = GFP_KERNEL, 5754 }; 5755 5756 buf = kvmalloc(len + 1, GFP_KERNEL); 5757 if (!buf) 5758 return -ENOMEM; 5759 5760 if (copy_from_user(buf, src, len)) { 5761 kvfree(buf); 5762 return -EFAULT; 5763 } 5764 5765 set_task_reclaim_state(current, &sc.reclaim_state); 5766 flags = memalloc_noreclaim_save(); 5767 blk_start_plug(&plug); 5768 if (!set_mm_walk(NULL)) { 5769 err = -ENOMEM; 5770 goto done; 5771 } 5772 5773 next = buf; 5774 next[len] = '\0'; 5775 5776 while ((cur = strsep(&next, ",;\n"))) { 5777 int n; 5778 int end; 5779 char cmd; 5780 unsigned int memcg_id; 5781 unsigned int nid; 5782 unsigned long seq; 5783 unsigned int swappiness = -1; 5784 unsigned long opt = -1; 5785 5786 cur = skip_spaces(cur); 5787 if (!*cur) 5788 continue; 5789 5790 n = sscanf(cur, "%c %u %u %lu %n %u %n %lu %n", &cmd, &memcg_id, &nid, 5791 &seq, &end, &swappiness, &end, &opt, &end); 5792 if (n < 4 || cur[end]) { 5793 err = -EINVAL; 5794 break; 5795 } 5796 5797 err = run_cmd(cmd, memcg_id, nid, seq, &sc, swappiness, opt); 5798 if (err) 5799 break; 5800 } 5801 done: 5802 clear_mm_walk(); 5803 blk_finish_plug(&plug); 5804 memalloc_noreclaim_restore(flags); 5805 set_task_reclaim_state(current, NULL); 5806 5807 kvfree(buf); 5808 5809 return err ? : len; 5810 } 5811 5812 static int lru_gen_seq_open(struct inode *inode, struct file *file) 5813 { 5814 return seq_open(file, &lru_gen_seq_ops); 5815 } 5816 5817 static const struct file_operations lru_gen_rw_fops = { 5818 .open = lru_gen_seq_open, 5819 .read = seq_read, 5820 .write = lru_gen_seq_write, 5821 .llseek = seq_lseek, 5822 .release = seq_release, 5823 }; 5824 5825 static const struct file_operations lru_gen_ro_fops = { 5826 .open = lru_gen_seq_open, 5827 .read = seq_read, 5828 .llseek = seq_lseek, 5829 .release = seq_release, 5830 }; 5831 5832 /****************************************************************************** 5833 * initialization 5834 ******************************************************************************/ 5835 5836 void lru_gen_init_lruvec(struct lruvec *lruvec) 5837 { 5838 int i; 5839 int gen, type, zone; 5840 struct lru_gen_struct *lrugen = &lruvec->lrugen; 5841 5842 lrugen->max_seq = MIN_NR_GENS + 1; 5843 lrugen->enabled = lru_gen_enabled(); 5844 5845 for (i = 0; i <= MIN_NR_GENS + 1; i++) 5846 lrugen->timestamps[i] = jiffies; 5847 5848 for_each_gen_type_zone(gen, type, zone) 5849 INIT_LIST_HEAD(&lrugen->lists[gen][type][zone]); 5850 5851 lruvec->mm_state.seq = MIN_NR_GENS; 5852 init_waitqueue_head(&lruvec->mm_state.wait); 5853 } 5854 5855 #ifdef CONFIG_MEMCG 5856 void lru_gen_init_memcg(struct mem_cgroup *memcg) 5857 { 5858 INIT_LIST_HEAD(&memcg->mm_list.fifo); 5859 spin_lock_init(&memcg->mm_list.lock); 5860 } 5861 5862 void lru_gen_exit_memcg(struct mem_cgroup *memcg) 5863 { 5864 int i; 5865 int nid; 5866 5867 for_each_node(nid) { 5868 struct lruvec *lruvec = get_lruvec(memcg, nid); 5869 5870 VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0, 5871 sizeof(lruvec->lrugen.nr_pages))); 5872 5873 for (i = 0; i < NR_BLOOM_FILTERS; i++) { 5874 bitmap_free(lruvec->mm_state.filters[i]); 5875 lruvec->mm_state.filters[i] = NULL; 5876 } 5877 } 5878 } 5879 #endif 5880 5881 static int __init init_lru_gen(void) 5882 { 5883 BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS); 5884 BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS); 5885 5886 if (sysfs_create_group(mm_kobj, &lru_gen_attr_group)) 5887 pr_err("lru_gen: failed to create sysfs group\n"); 5888 5889 debugfs_create_file("lru_gen", 0644, NULL, NULL, &lru_gen_rw_fops); 5890 debugfs_create_file("lru_gen_full", 0444, NULL, NULL, &lru_gen_ro_fops); 5891 5892 return 0; 5893 }; 5894 late_initcall(init_lru_gen); 5895 5896 #else /* !CONFIG_LRU_GEN */ 5897 5898 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc) 5899 { 5900 } 5901 5902 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 5903 { 5904 } 5905 5906 #endif /* CONFIG_LRU_GEN */ 5907 5908 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 5909 { 5910 unsigned long nr[NR_LRU_LISTS]; 5911 unsigned long targets[NR_LRU_LISTS]; 5912 unsigned long nr_to_scan; 5913 enum lru_list lru; 5914 unsigned long nr_reclaimed = 0; 5915 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 5916 bool proportional_reclaim; 5917 struct blk_plug plug; 5918 5919 if (lru_gen_enabled()) { 5920 lru_gen_shrink_lruvec(lruvec, sc); 5921 return; 5922 } 5923 5924 get_scan_count(lruvec, sc, nr); 5925 5926 /* Record the original scan target for proportional adjustments later */ 5927 memcpy(targets, nr, sizeof(nr)); 5928 5929 /* 5930 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal 5931 * event that can occur when there is little memory pressure e.g. 5932 * multiple streaming readers/writers. Hence, we do not abort scanning 5933 * when the requested number of pages are reclaimed when scanning at 5934 * DEF_PRIORITY on the assumption that the fact we are direct 5935 * reclaiming implies that kswapd is not keeping up and it is best to 5936 * do a batch of work at once. For memcg reclaim one check is made to 5937 * abort proportional reclaim if either the file or anon lru has already 5938 * dropped to zero at the first pass. 5939 */ 5940 proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() && 5941 sc->priority == DEF_PRIORITY); 5942 5943 blk_start_plug(&plug); 5944 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 5945 nr[LRU_INACTIVE_FILE]) { 5946 unsigned long nr_anon, nr_file, percentage; 5947 unsigned long nr_scanned; 5948 5949 for_each_evictable_lru(lru) { 5950 if (nr[lru]) { 5951 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 5952 nr[lru] -= nr_to_scan; 5953 5954 nr_reclaimed += shrink_list(lru, nr_to_scan, 5955 lruvec, sc); 5956 } 5957 } 5958 5959 cond_resched(); 5960 5961 if (nr_reclaimed < nr_to_reclaim || proportional_reclaim) 5962 continue; 5963 5964 /* 5965 * For kswapd and memcg, reclaim at least the number of pages 5966 * requested. Ensure that the anon and file LRUs are scanned 5967 * proportionally what was requested by get_scan_count(). We 5968 * stop reclaiming one LRU and reduce the amount scanning 5969 * proportional to the original scan target. 5970 */ 5971 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 5972 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 5973 5974 /* 5975 * It's just vindictive to attack the larger once the smaller 5976 * has gone to zero. And given the way we stop scanning the 5977 * smaller below, this makes sure that we only make one nudge 5978 * towards proportionality once we've got nr_to_reclaim. 5979 */ 5980 if (!nr_file || !nr_anon) 5981 break; 5982 5983 if (nr_file > nr_anon) { 5984 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 5985 targets[LRU_ACTIVE_ANON] + 1; 5986 lru = LRU_BASE; 5987 percentage = nr_anon * 100 / scan_target; 5988 } else { 5989 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 5990 targets[LRU_ACTIVE_FILE] + 1; 5991 lru = LRU_FILE; 5992 percentage = nr_file * 100 / scan_target; 5993 } 5994 5995 /* Stop scanning the smaller of the LRU */ 5996 nr[lru] = 0; 5997 nr[lru + LRU_ACTIVE] = 0; 5998 5999 /* 6000 * Recalculate the other LRU scan count based on its original 6001 * scan target and the percentage scanning already complete 6002 */ 6003 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 6004 nr_scanned = targets[lru] - nr[lru]; 6005 nr[lru] = targets[lru] * (100 - percentage) / 100; 6006 nr[lru] -= min(nr[lru], nr_scanned); 6007 6008 lru += LRU_ACTIVE; 6009 nr_scanned = targets[lru] - nr[lru]; 6010 nr[lru] = targets[lru] * (100 - percentage) / 100; 6011 nr[lru] -= min(nr[lru], nr_scanned); 6012 } 6013 blk_finish_plug(&plug); 6014 sc->nr_reclaimed += nr_reclaimed; 6015 6016 /* 6017 * Even if we did not try to evict anon pages at all, we want to 6018 * rebalance the anon lru active/inactive ratio. 6019 */ 6020 if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) && 6021 inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 6022 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 6023 sc, LRU_ACTIVE_ANON); 6024 } 6025 6026 /* Use reclaim/compaction for costly allocs or under memory pressure */ 6027 static bool in_reclaim_compaction(struct scan_control *sc) 6028 { 6029 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 6030 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 6031 sc->priority < DEF_PRIORITY - 2)) 6032 return true; 6033 6034 return false; 6035 } 6036 6037 /* 6038 * Reclaim/compaction is used for high-order allocation requests. It reclaims 6039 * order-0 pages before compacting the zone. should_continue_reclaim() returns 6040 * true if more pages should be reclaimed such that when the page allocator 6041 * calls try_to_compact_pages() that it will have enough free pages to succeed. 6042 * It will give up earlier than that if there is difficulty reclaiming pages. 6043 */ 6044 static inline bool should_continue_reclaim(struct pglist_data *pgdat, 6045 unsigned long nr_reclaimed, 6046 struct scan_control *sc) 6047 { 6048 unsigned long pages_for_compaction; 6049 unsigned long inactive_lru_pages; 6050 int z; 6051 6052 /* If not in reclaim/compaction mode, stop */ 6053 if (!in_reclaim_compaction(sc)) 6054 return false; 6055 6056 /* 6057 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX 6058 * number of pages that were scanned. This will return to the caller 6059 * with the risk reclaim/compaction and the resulting allocation attempt 6060 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL 6061 * allocations through requiring that the full LRU list has been scanned 6062 * first, by assuming that zero delta of sc->nr_scanned means full LRU 6063 * scan, but that approximation was wrong, and there were corner cases 6064 * where always a non-zero amount of pages were scanned. 6065 */ 6066 if (!nr_reclaimed) 6067 return false; 6068 6069 /* If compaction would go ahead or the allocation would succeed, stop */ 6070 for (z = 0; z <= sc->reclaim_idx; z++) { 6071 struct zone *zone = &pgdat->node_zones[z]; 6072 if (!managed_zone(zone)) 6073 continue; 6074 6075 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) { 6076 case COMPACT_SUCCESS: 6077 case COMPACT_CONTINUE: 6078 return false; 6079 default: 6080 /* check next zone */ 6081 ; 6082 } 6083 } 6084 6085 /* 6086 * If we have not reclaimed enough pages for compaction and the 6087 * inactive lists are large enough, continue reclaiming 6088 */ 6089 pages_for_compaction = compact_gap(sc->order); 6090 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE); 6091 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc)) 6092 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON); 6093 6094 return inactive_lru_pages > pages_for_compaction; 6095 } 6096 6097 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc) 6098 { 6099 struct mem_cgroup *target_memcg = sc->target_mem_cgroup; 6100 struct mem_cgroup *memcg; 6101 6102 memcg = mem_cgroup_iter(target_memcg, NULL, NULL); 6103 do { 6104 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 6105 unsigned long reclaimed; 6106 unsigned long scanned; 6107 6108 /* 6109 * This loop can become CPU-bound when target memcgs 6110 * aren't eligible for reclaim - either because they 6111 * don't have any reclaimable pages, or because their 6112 * memory is explicitly protected. Avoid soft lockups. 6113 */ 6114 cond_resched(); 6115 6116 mem_cgroup_calculate_protection(target_memcg, memcg); 6117 6118 if (mem_cgroup_below_min(target_memcg, memcg)) { 6119 /* 6120 * Hard protection. 6121 * If there is no reclaimable memory, OOM. 6122 */ 6123 continue; 6124 } else if (mem_cgroup_below_low(target_memcg, memcg)) { 6125 /* 6126 * Soft protection. 6127 * Respect the protection only as long as 6128 * there is an unprotected supply 6129 * of reclaimable memory from other cgroups. 6130 */ 6131 if (!sc->memcg_low_reclaim) { 6132 sc->memcg_low_skipped = 1; 6133 continue; 6134 } 6135 memcg_memory_event(memcg, MEMCG_LOW); 6136 } 6137 6138 reclaimed = sc->nr_reclaimed; 6139 scanned = sc->nr_scanned; 6140 6141 shrink_lruvec(lruvec, sc); 6142 6143 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, 6144 sc->priority); 6145 6146 /* Record the group's reclaim efficiency */ 6147 if (!sc->proactive) 6148 vmpressure(sc->gfp_mask, memcg, false, 6149 sc->nr_scanned - scanned, 6150 sc->nr_reclaimed - reclaimed); 6151 6152 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL))); 6153 } 6154 6155 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc) 6156 { 6157 struct reclaim_state *reclaim_state = current->reclaim_state; 6158 unsigned long nr_reclaimed, nr_scanned; 6159 struct lruvec *target_lruvec; 6160 bool reclaimable = false; 6161 6162 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat); 6163 6164 again: 6165 memset(&sc->nr, 0, sizeof(sc->nr)); 6166 6167 nr_reclaimed = sc->nr_reclaimed; 6168 nr_scanned = sc->nr_scanned; 6169 6170 prepare_scan_count(pgdat, sc); 6171 6172 shrink_node_memcgs(pgdat, sc); 6173 6174 if (reclaim_state) { 6175 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 6176 reclaim_state->reclaimed_slab = 0; 6177 } 6178 6179 /* Record the subtree's reclaim efficiency */ 6180 if (!sc->proactive) 6181 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, 6182 sc->nr_scanned - nr_scanned, 6183 sc->nr_reclaimed - nr_reclaimed); 6184 6185 if (sc->nr_reclaimed - nr_reclaimed) 6186 reclaimable = true; 6187 6188 if (current_is_kswapd()) { 6189 /* 6190 * If reclaim is isolating dirty pages under writeback, 6191 * it implies that the long-lived page allocation rate 6192 * is exceeding the page laundering rate. Either the 6193 * global limits are not being effective at throttling 6194 * processes due to the page distribution throughout 6195 * zones or there is heavy usage of a slow backing 6196 * device. The only option is to throttle from reclaim 6197 * context which is not ideal as there is no guarantee 6198 * the dirtying process is throttled in the same way 6199 * balance_dirty_pages() manages. 6200 * 6201 * Once a node is flagged PGDAT_WRITEBACK, kswapd will 6202 * count the number of pages under pages flagged for 6203 * immediate reclaim and stall if any are encountered 6204 * in the nr_immediate check below. 6205 */ 6206 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken) 6207 set_bit(PGDAT_WRITEBACK, &pgdat->flags); 6208 6209 /* Allow kswapd to start writing pages during reclaim.*/ 6210 if (sc->nr.unqueued_dirty == sc->nr.file_taken) 6211 set_bit(PGDAT_DIRTY, &pgdat->flags); 6212 6213 /* 6214 * If kswapd scans pages marked for immediate 6215 * reclaim and under writeback (nr_immediate), it 6216 * implies that pages are cycling through the LRU 6217 * faster than they are written so forcibly stall 6218 * until some pages complete writeback. 6219 */ 6220 if (sc->nr.immediate) 6221 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK); 6222 } 6223 6224 /* 6225 * Tag a node/memcg as congested if all the dirty pages were marked 6226 * for writeback and immediate reclaim (counted in nr.congested). 6227 * 6228 * Legacy memcg will stall in page writeback so avoid forcibly 6229 * stalling in reclaim_throttle(). 6230 */ 6231 if ((current_is_kswapd() || 6232 (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) && 6233 sc->nr.dirty && sc->nr.dirty == sc->nr.congested) 6234 set_bit(LRUVEC_CONGESTED, &target_lruvec->flags); 6235 6236 /* 6237 * Stall direct reclaim for IO completions if the lruvec is 6238 * node is congested. Allow kswapd to continue until it 6239 * starts encountering unqueued dirty pages or cycling through 6240 * the LRU too quickly. 6241 */ 6242 if (!current_is_kswapd() && current_may_throttle() && 6243 !sc->hibernation_mode && 6244 test_bit(LRUVEC_CONGESTED, &target_lruvec->flags)) 6245 reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED); 6246 6247 if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed, 6248 sc)) 6249 goto again; 6250 6251 /* 6252 * Kswapd gives up on balancing particular nodes after too 6253 * many failures to reclaim anything from them and goes to 6254 * sleep. On reclaim progress, reset the failure counter. A 6255 * successful direct reclaim run will revive a dormant kswapd. 6256 */ 6257 if (reclaimable) 6258 pgdat->kswapd_failures = 0; 6259 } 6260 6261 /* 6262 * Returns true if compaction should go ahead for a costly-order request, or 6263 * the allocation would already succeed without compaction. Return false if we 6264 * should reclaim first. 6265 */ 6266 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) 6267 { 6268 unsigned long watermark; 6269 enum compact_result suitable; 6270 6271 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx); 6272 if (suitable == COMPACT_SUCCESS) 6273 /* Allocation should succeed already. Don't reclaim. */ 6274 return true; 6275 if (suitable == COMPACT_SKIPPED) 6276 /* Compaction cannot yet proceed. Do reclaim. */ 6277 return false; 6278 6279 /* 6280 * Compaction is already possible, but it takes time to run and there 6281 * are potentially other callers using the pages just freed. So proceed 6282 * with reclaim to make a buffer of free pages available to give 6283 * compaction a reasonable chance of completing and allocating the page. 6284 * Note that we won't actually reclaim the whole buffer in one attempt 6285 * as the target watermark in should_continue_reclaim() is lower. But if 6286 * we are already above the high+gap watermark, don't reclaim at all. 6287 */ 6288 watermark = high_wmark_pages(zone) + compact_gap(sc->order); 6289 6290 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx); 6291 } 6292 6293 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc) 6294 { 6295 /* 6296 * If reclaim is making progress greater than 12% efficiency then 6297 * wake all the NOPROGRESS throttled tasks. 6298 */ 6299 if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) { 6300 wait_queue_head_t *wqh; 6301 6302 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS]; 6303 if (waitqueue_active(wqh)) 6304 wake_up(wqh); 6305 6306 return; 6307 } 6308 6309 /* 6310 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will 6311 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages 6312 * under writeback and marked for immediate reclaim at the tail of the 6313 * LRU. 6314 */ 6315 if (current_is_kswapd() || cgroup_reclaim(sc)) 6316 return; 6317 6318 /* Throttle if making no progress at high prioities. */ 6319 if (sc->priority == 1 && !sc->nr_reclaimed) 6320 reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS); 6321 } 6322 6323 /* 6324 * This is the direct reclaim path, for page-allocating processes. We only 6325 * try to reclaim pages from zones which will satisfy the caller's allocation 6326 * request. 6327 * 6328 * If a zone is deemed to be full of pinned pages then just give it a light 6329 * scan then give up on it. 6330 */ 6331 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 6332 { 6333 struct zoneref *z; 6334 struct zone *zone; 6335 unsigned long nr_soft_reclaimed; 6336 unsigned long nr_soft_scanned; 6337 gfp_t orig_mask; 6338 pg_data_t *last_pgdat = NULL; 6339 pg_data_t *first_pgdat = NULL; 6340 6341 /* 6342 * If the number of buffer_heads in the machine exceeds the maximum 6343 * allowed level, force direct reclaim to scan the highmem zone as 6344 * highmem pages could be pinning lowmem pages storing buffer_heads 6345 */ 6346 orig_mask = sc->gfp_mask; 6347 if (buffer_heads_over_limit) { 6348 sc->gfp_mask |= __GFP_HIGHMEM; 6349 sc->reclaim_idx = gfp_zone(sc->gfp_mask); 6350 } 6351 6352 for_each_zone_zonelist_nodemask(zone, z, zonelist, 6353 sc->reclaim_idx, sc->nodemask) { 6354 /* 6355 * Take care memory controller reclaiming has small influence 6356 * to global LRU. 6357 */ 6358 if (!cgroup_reclaim(sc)) { 6359 if (!cpuset_zone_allowed(zone, 6360 GFP_KERNEL | __GFP_HARDWALL)) 6361 continue; 6362 6363 /* 6364 * If we already have plenty of memory free for 6365 * compaction in this zone, don't free any more. 6366 * Even though compaction is invoked for any 6367 * non-zero order, only frequent costly order 6368 * reclamation is disruptive enough to become a 6369 * noticeable problem, like transparent huge 6370 * page allocations. 6371 */ 6372 if (IS_ENABLED(CONFIG_COMPACTION) && 6373 sc->order > PAGE_ALLOC_COSTLY_ORDER && 6374 compaction_ready(zone, sc)) { 6375 sc->compaction_ready = true; 6376 continue; 6377 } 6378 6379 /* 6380 * Shrink each node in the zonelist once. If the 6381 * zonelist is ordered by zone (not the default) then a 6382 * node may be shrunk multiple times but in that case 6383 * the user prefers lower zones being preserved. 6384 */ 6385 if (zone->zone_pgdat == last_pgdat) 6386 continue; 6387 6388 /* 6389 * This steals pages from memory cgroups over softlimit 6390 * and returns the number of reclaimed pages and 6391 * scanned pages. This works for global memory pressure 6392 * and balancing, not for a memcg's limit. 6393 */ 6394 nr_soft_scanned = 0; 6395 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat, 6396 sc->order, sc->gfp_mask, 6397 &nr_soft_scanned); 6398 sc->nr_reclaimed += nr_soft_reclaimed; 6399 sc->nr_scanned += nr_soft_scanned; 6400 /* need some check for avoid more shrink_zone() */ 6401 } 6402 6403 if (!first_pgdat) 6404 first_pgdat = zone->zone_pgdat; 6405 6406 /* See comment about same check for global reclaim above */ 6407 if (zone->zone_pgdat == last_pgdat) 6408 continue; 6409 last_pgdat = zone->zone_pgdat; 6410 shrink_node(zone->zone_pgdat, sc); 6411 } 6412 6413 if (first_pgdat) 6414 consider_reclaim_throttle(first_pgdat, sc); 6415 6416 /* 6417 * Restore to original mask to avoid the impact on the caller if we 6418 * promoted it to __GFP_HIGHMEM. 6419 */ 6420 sc->gfp_mask = orig_mask; 6421 } 6422 6423 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat) 6424 { 6425 struct lruvec *target_lruvec; 6426 unsigned long refaults; 6427 6428 if (lru_gen_enabled()) 6429 return; 6430 6431 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat); 6432 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON); 6433 target_lruvec->refaults[WORKINGSET_ANON] = refaults; 6434 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE); 6435 target_lruvec->refaults[WORKINGSET_FILE] = refaults; 6436 } 6437 6438 /* 6439 * This is the main entry point to direct page reclaim. 6440 * 6441 * If a full scan of the inactive list fails to free enough memory then we 6442 * are "out of memory" and something needs to be killed. 6443 * 6444 * If the caller is !__GFP_FS then the probability of a failure is reasonably 6445 * high - the zone may be full of dirty or under-writeback pages, which this 6446 * caller can't do much about. We kick the writeback threads and take explicit 6447 * naps in the hope that some of these pages can be written. But if the 6448 * allocating task holds filesystem locks which prevent writeout this might not 6449 * work, and the allocation attempt will fail. 6450 * 6451 * returns: 0, if no pages reclaimed 6452 * else, the number of pages reclaimed 6453 */ 6454 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 6455 struct scan_control *sc) 6456 { 6457 int initial_priority = sc->priority; 6458 pg_data_t *last_pgdat; 6459 struct zoneref *z; 6460 struct zone *zone; 6461 retry: 6462 delayacct_freepages_start(); 6463 6464 if (!cgroup_reclaim(sc)) 6465 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1); 6466 6467 do { 6468 if (!sc->proactive) 6469 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 6470 sc->priority); 6471 sc->nr_scanned = 0; 6472 shrink_zones(zonelist, sc); 6473 6474 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 6475 break; 6476 6477 if (sc->compaction_ready) 6478 break; 6479 6480 /* 6481 * If we're getting trouble reclaiming, start doing 6482 * writepage even in laptop mode. 6483 */ 6484 if (sc->priority < DEF_PRIORITY - 2) 6485 sc->may_writepage = 1; 6486 } while (--sc->priority >= 0); 6487 6488 last_pgdat = NULL; 6489 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx, 6490 sc->nodemask) { 6491 if (zone->zone_pgdat == last_pgdat) 6492 continue; 6493 last_pgdat = zone->zone_pgdat; 6494 6495 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat); 6496 6497 if (cgroup_reclaim(sc)) { 6498 struct lruvec *lruvec; 6499 6500 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, 6501 zone->zone_pgdat); 6502 clear_bit(LRUVEC_CONGESTED, &lruvec->flags); 6503 } 6504 } 6505 6506 delayacct_freepages_end(); 6507 6508 if (sc->nr_reclaimed) 6509 return sc->nr_reclaimed; 6510 6511 /* Aborted reclaim to try compaction? don't OOM, then */ 6512 if (sc->compaction_ready) 6513 return 1; 6514 6515 /* 6516 * We make inactive:active ratio decisions based on the node's 6517 * composition of memory, but a restrictive reclaim_idx or a 6518 * memory.low cgroup setting can exempt large amounts of 6519 * memory from reclaim. Neither of which are very common, so 6520 * instead of doing costly eligibility calculations of the 6521 * entire cgroup subtree up front, we assume the estimates are 6522 * good, and retry with forcible deactivation if that fails. 6523 */ 6524 if (sc->skipped_deactivate) { 6525 sc->priority = initial_priority; 6526 sc->force_deactivate = 1; 6527 sc->skipped_deactivate = 0; 6528 goto retry; 6529 } 6530 6531 /* Untapped cgroup reserves? Don't OOM, retry. */ 6532 if (sc->memcg_low_skipped) { 6533 sc->priority = initial_priority; 6534 sc->force_deactivate = 0; 6535 sc->memcg_low_reclaim = 1; 6536 sc->memcg_low_skipped = 0; 6537 goto retry; 6538 } 6539 6540 return 0; 6541 } 6542 6543 static bool allow_direct_reclaim(pg_data_t *pgdat) 6544 { 6545 struct zone *zone; 6546 unsigned long pfmemalloc_reserve = 0; 6547 unsigned long free_pages = 0; 6548 int i; 6549 bool wmark_ok; 6550 6551 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 6552 return true; 6553 6554 for (i = 0; i <= ZONE_NORMAL; i++) { 6555 zone = &pgdat->node_zones[i]; 6556 if (!managed_zone(zone)) 6557 continue; 6558 6559 if (!zone_reclaimable_pages(zone)) 6560 continue; 6561 6562 pfmemalloc_reserve += min_wmark_pages(zone); 6563 free_pages += zone_page_state(zone, NR_FREE_PAGES); 6564 } 6565 6566 /* If there are no reserves (unexpected config) then do not throttle */ 6567 if (!pfmemalloc_reserve) 6568 return true; 6569 6570 wmark_ok = free_pages > pfmemalloc_reserve / 2; 6571 6572 /* kswapd must be awake if processes are being throttled */ 6573 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 6574 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL) 6575 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL); 6576 6577 wake_up_interruptible(&pgdat->kswapd_wait); 6578 } 6579 6580 return wmark_ok; 6581 } 6582 6583 /* 6584 * Throttle direct reclaimers if backing storage is backed by the network 6585 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 6586 * depleted. kswapd will continue to make progress and wake the processes 6587 * when the low watermark is reached. 6588 * 6589 * Returns true if a fatal signal was delivered during throttling. If this 6590 * happens, the page allocator should not consider triggering the OOM killer. 6591 */ 6592 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 6593 nodemask_t *nodemask) 6594 { 6595 struct zoneref *z; 6596 struct zone *zone; 6597 pg_data_t *pgdat = NULL; 6598 6599 /* 6600 * Kernel threads should not be throttled as they may be indirectly 6601 * responsible for cleaning pages necessary for reclaim to make forward 6602 * progress. kjournald for example may enter direct reclaim while 6603 * committing a transaction where throttling it could forcing other 6604 * processes to block on log_wait_commit(). 6605 */ 6606 if (current->flags & PF_KTHREAD) 6607 goto out; 6608 6609 /* 6610 * If a fatal signal is pending, this process should not throttle. 6611 * It should return quickly so it can exit and free its memory 6612 */ 6613 if (fatal_signal_pending(current)) 6614 goto out; 6615 6616 /* 6617 * Check if the pfmemalloc reserves are ok by finding the first node 6618 * with a usable ZONE_NORMAL or lower zone. The expectation is that 6619 * GFP_KERNEL will be required for allocating network buffers when 6620 * swapping over the network so ZONE_HIGHMEM is unusable. 6621 * 6622 * Throttling is based on the first usable node and throttled processes 6623 * wait on a queue until kswapd makes progress and wakes them. There 6624 * is an affinity then between processes waking up and where reclaim 6625 * progress has been made assuming the process wakes on the same node. 6626 * More importantly, processes running on remote nodes will not compete 6627 * for remote pfmemalloc reserves and processes on different nodes 6628 * should make reasonable progress. 6629 */ 6630 for_each_zone_zonelist_nodemask(zone, z, zonelist, 6631 gfp_zone(gfp_mask), nodemask) { 6632 if (zone_idx(zone) > ZONE_NORMAL) 6633 continue; 6634 6635 /* Throttle based on the first usable node */ 6636 pgdat = zone->zone_pgdat; 6637 if (allow_direct_reclaim(pgdat)) 6638 goto out; 6639 break; 6640 } 6641 6642 /* If no zone was usable by the allocation flags then do not throttle */ 6643 if (!pgdat) 6644 goto out; 6645 6646 /* Account for the throttling */ 6647 count_vm_event(PGSCAN_DIRECT_THROTTLE); 6648 6649 /* 6650 * If the caller cannot enter the filesystem, it's possible that it 6651 * is due to the caller holding an FS lock or performing a journal 6652 * transaction in the case of a filesystem like ext[3|4]. In this case, 6653 * it is not safe to block on pfmemalloc_wait as kswapd could be 6654 * blocked waiting on the same lock. Instead, throttle for up to a 6655 * second before continuing. 6656 */ 6657 if (!(gfp_mask & __GFP_FS)) 6658 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 6659 allow_direct_reclaim(pgdat), HZ); 6660 else 6661 /* Throttle until kswapd wakes the process */ 6662 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 6663 allow_direct_reclaim(pgdat)); 6664 6665 if (fatal_signal_pending(current)) 6666 return true; 6667 6668 out: 6669 return false; 6670 } 6671 6672 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 6673 gfp_t gfp_mask, nodemask_t *nodemask) 6674 { 6675 unsigned long nr_reclaimed; 6676 struct scan_control sc = { 6677 .nr_to_reclaim = SWAP_CLUSTER_MAX, 6678 .gfp_mask = current_gfp_context(gfp_mask), 6679 .reclaim_idx = gfp_zone(gfp_mask), 6680 .order = order, 6681 .nodemask = nodemask, 6682 .priority = DEF_PRIORITY, 6683 .may_writepage = !laptop_mode, 6684 .may_unmap = 1, 6685 .may_swap = 1, 6686 }; 6687 6688 /* 6689 * scan_control uses s8 fields for order, priority, and reclaim_idx. 6690 * Confirm they are large enough for max values. 6691 */ 6692 BUILD_BUG_ON(MAX_ORDER > S8_MAX); 6693 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX); 6694 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX); 6695 6696 /* 6697 * Do not enter reclaim if fatal signal was delivered while throttled. 6698 * 1 is returned so that the page allocator does not OOM kill at this 6699 * point. 6700 */ 6701 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask)) 6702 return 1; 6703 6704 set_task_reclaim_state(current, &sc.reclaim_state); 6705 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask); 6706 6707 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 6708 6709 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 6710 set_task_reclaim_state(current, NULL); 6711 6712 return nr_reclaimed; 6713 } 6714 6715 #ifdef CONFIG_MEMCG 6716 6717 /* Only used by soft limit reclaim. Do not reuse for anything else. */ 6718 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg, 6719 gfp_t gfp_mask, bool noswap, 6720 pg_data_t *pgdat, 6721 unsigned long *nr_scanned) 6722 { 6723 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 6724 struct scan_control sc = { 6725 .nr_to_reclaim = SWAP_CLUSTER_MAX, 6726 .target_mem_cgroup = memcg, 6727 .may_writepage = !laptop_mode, 6728 .may_unmap = 1, 6729 .reclaim_idx = MAX_NR_ZONES - 1, 6730 .may_swap = !noswap, 6731 }; 6732 6733 WARN_ON_ONCE(!current->reclaim_state); 6734 6735 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 6736 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 6737 6738 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 6739 sc.gfp_mask); 6740 6741 /* 6742 * NOTE: Although we can get the priority field, using it 6743 * here is not a good idea, since it limits the pages we can scan. 6744 * if we don't reclaim here, the shrink_node from balance_pgdat 6745 * will pick up pages from other mem cgroup's as well. We hack 6746 * the priority and make it zero. 6747 */ 6748 shrink_lruvec(lruvec, &sc); 6749 6750 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 6751 6752 *nr_scanned = sc.nr_scanned; 6753 6754 return sc.nr_reclaimed; 6755 } 6756 6757 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 6758 unsigned long nr_pages, 6759 gfp_t gfp_mask, 6760 unsigned int reclaim_options) 6761 { 6762 unsigned long nr_reclaimed; 6763 unsigned int noreclaim_flag; 6764 struct scan_control sc = { 6765 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 6766 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) | 6767 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 6768 .reclaim_idx = MAX_NR_ZONES - 1, 6769 .target_mem_cgroup = memcg, 6770 .priority = DEF_PRIORITY, 6771 .may_writepage = !laptop_mode, 6772 .may_unmap = 1, 6773 .may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP), 6774 .proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE), 6775 }; 6776 /* 6777 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put 6778 * equal pressure on all the nodes. This is based on the assumption that 6779 * the reclaim does not bail out early. 6780 */ 6781 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 6782 6783 set_task_reclaim_state(current, &sc.reclaim_state); 6784 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask); 6785 noreclaim_flag = memalloc_noreclaim_save(); 6786 6787 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 6788 6789 memalloc_noreclaim_restore(noreclaim_flag); 6790 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 6791 set_task_reclaim_state(current, NULL); 6792 6793 return nr_reclaimed; 6794 } 6795 #endif 6796 6797 static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc) 6798 { 6799 struct mem_cgroup *memcg; 6800 struct lruvec *lruvec; 6801 6802 if (lru_gen_enabled()) { 6803 lru_gen_age_node(pgdat, sc); 6804 return; 6805 } 6806 6807 if (!can_age_anon_pages(pgdat, sc)) 6808 return; 6809 6810 lruvec = mem_cgroup_lruvec(NULL, pgdat); 6811 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 6812 return; 6813 6814 memcg = mem_cgroup_iter(NULL, NULL, NULL); 6815 do { 6816 lruvec = mem_cgroup_lruvec(memcg, pgdat); 6817 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 6818 sc, LRU_ACTIVE_ANON); 6819 memcg = mem_cgroup_iter(NULL, memcg, NULL); 6820 } while (memcg); 6821 } 6822 6823 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx) 6824 { 6825 int i; 6826 struct zone *zone; 6827 6828 /* 6829 * Check for watermark boosts top-down as the higher zones 6830 * are more likely to be boosted. Both watermarks and boosts 6831 * should not be checked at the same time as reclaim would 6832 * start prematurely when there is no boosting and a lower 6833 * zone is balanced. 6834 */ 6835 for (i = highest_zoneidx; i >= 0; i--) { 6836 zone = pgdat->node_zones + i; 6837 if (!managed_zone(zone)) 6838 continue; 6839 6840 if (zone->watermark_boost) 6841 return true; 6842 } 6843 6844 return false; 6845 } 6846 6847 /* 6848 * Returns true if there is an eligible zone balanced for the request order 6849 * and highest_zoneidx 6850 */ 6851 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx) 6852 { 6853 int i; 6854 unsigned long mark = -1; 6855 struct zone *zone; 6856 6857 /* 6858 * Check watermarks bottom-up as lower zones are more likely to 6859 * meet watermarks. 6860 */ 6861 for (i = 0; i <= highest_zoneidx; i++) { 6862 zone = pgdat->node_zones + i; 6863 6864 if (!managed_zone(zone)) 6865 continue; 6866 6867 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) 6868 mark = wmark_pages(zone, WMARK_PROMO); 6869 else 6870 mark = high_wmark_pages(zone); 6871 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx)) 6872 return true; 6873 } 6874 6875 /* 6876 * If a node has no managed zone within highest_zoneidx, it does not 6877 * need balancing by definition. This can happen if a zone-restricted 6878 * allocation tries to wake a remote kswapd. 6879 */ 6880 if (mark == -1) 6881 return true; 6882 6883 return false; 6884 } 6885 6886 /* Clear pgdat state for congested, dirty or under writeback. */ 6887 static void clear_pgdat_congested(pg_data_t *pgdat) 6888 { 6889 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat); 6890 6891 clear_bit(LRUVEC_CONGESTED, &lruvec->flags); 6892 clear_bit(PGDAT_DIRTY, &pgdat->flags); 6893 clear_bit(PGDAT_WRITEBACK, &pgdat->flags); 6894 } 6895 6896 /* 6897 * Prepare kswapd for sleeping. This verifies that there are no processes 6898 * waiting in throttle_direct_reclaim() and that watermarks have been met. 6899 * 6900 * Returns true if kswapd is ready to sleep 6901 */ 6902 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, 6903 int highest_zoneidx) 6904 { 6905 /* 6906 * The throttled processes are normally woken up in balance_pgdat() as 6907 * soon as allow_direct_reclaim() is true. But there is a potential 6908 * race between when kswapd checks the watermarks and a process gets 6909 * throttled. There is also a potential race if processes get 6910 * throttled, kswapd wakes, a large process exits thereby balancing the 6911 * zones, which causes kswapd to exit balance_pgdat() before reaching 6912 * the wake up checks. If kswapd is going to sleep, no process should 6913 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If 6914 * the wake up is premature, processes will wake kswapd and get 6915 * throttled again. The difference from wake ups in balance_pgdat() is 6916 * that here we are under prepare_to_wait(). 6917 */ 6918 if (waitqueue_active(&pgdat->pfmemalloc_wait)) 6919 wake_up_all(&pgdat->pfmemalloc_wait); 6920 6921 /* Hopeless node, leave it to direct reclaim */ 6922 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 6923 return true; 6924 6925 if (pgdat_balanced(pgdat, order, highest_zoneidx)) { 6926 clear_pgdat_congested(pgdat); 6927 return true; 6928 } 6929 6930 return false; 6931 } 6932 6933 /* 6934 * kswapd shrinks a node of pages that are at or below the highest usable 6935 * zone that is currently unbalanced. 6936 * 6937 * Returns true if kswapd scanned at least the requested number of pages to 6938 * reclaim or if the lack of progress was due to pages under writeback. 6939 * This is used to determine if the scanning priority needs to be raised. 6940 */ 6941 static bool kswapd_shrink_node(pg_data_t *pgdat, 6942 struct scan_control *sc) 6943 { 6944 struct zone *zone; 6945 int z; 6946 6947 /* Reclaim a number of pages proportional to the number of zones */ 6948 sc->nr_to_reclaim = 0; 6949 for (z = 0; z <= sc->reclaim_idx; z++) { 6950 zone = pgdat->node_zones + z; 6951 if (!managed_zone(zone)) 6952 continue; 6953 6954 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX); 6955 } 6956 6957 /* 6958 * Historically care was taken to put equal pressure on all zones but 6959 * now pressure is applied based on node LRU order. 6960 */ 6961 shrink_node(pgdat, sc); 6962 6963 /* 6964 * Fragmentation may mean that the system cannot be rebalanced for 6965 * high-order allocations. If twice the allocation size has been 6966 * reclaimed then recheck watermarks only at order-0 to prevent 6967 * excessive reclaim. Assume that a process requested a high-order 6968 * can direct reclaim/compact. 6969 */ 6970 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order)) 6971 sc->order = 0; 6972 6973 return sc->nr_scanned >= sc->nr_to_reclaim; 6974 } 6975 6976 /* Page allocator PCP high watermark is lowered if reclaim is active. */ 6977 static inline void 6978 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active) 6979 { 6980 int i; 6981 struct zone *zone; 6982 6983 for (i = 0; i <= highest_zoneidx; i++) { 6984 zone = pgdat->node_zones + i; 6985 6986 if (!managed_zone(zone)) 6987 continue; 6988 6989 if (active) 6990 set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags); 6991 else 6992 clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags); 6993 } 6994 } 6995 6996 static inline void 6997 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx) 6998 { 6999 update_reclaim_active(pgdat, highest_zoneidx, true); 7000 } 7001 7002 static inline void 7003 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx) 7004 { 7005 update_reclaim_active(pgdat, highest_zoneidx, false); 7006 } 7007 7008 /* 7009 * For kswapd, balance_pgdat() will reclaim pages across a node from zones 7010 * that are eligible for use by the caller until at least one zone is 7011 * balanced. 7012 * 7013 * Returns the order kswapd finished reclaiming at. 7014 * 7015 * kswapd scans the zones in the highmem->normal->dma direction. It skips 7016 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 7017 * found to have free_pages <= high_wmark_pages(zone), any page in that zone 7018 * or lower is eligible for reclaim until at least one usable zone is 7019 * balanced. 7020 */ 7021 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx) 7022 { 7023 int i; 7024 unsigned long nr_soft_reclaimed; 7025 unsigned long nr_soft_scanned; 7026 unsigned long pflags; 7027 unsigned long nr_boost_reclaim; 7028 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, }; 7029 bool boosted; 7030 struct zone *zone; 7031 struct scan_control sc = { 7032 .gfp_mask = GFP_KERNEL, 7033 .order = order, 7034 .may_unmap = 1, 7035 }; 7036 7037 set_task_reclaim_state(current, &sc.reclaim_state); 7038 psi_memstall_enter(&pflags); 7039 __fs_reclaim_acquire(_THIS_IP_); 7040 7041 count_vm_event(PAGEOUTRUN); 7042 7043 /* 7044 * Account for the reclaim boost. Note that the zone boost is left in 7045 * place so that parallel allocations that are near the watermark will 7046 * stall or direct reclaim until kswapd is finished. 7047 */ 7048 nr_boost_reclaim = 0; 7049 for (i = 0; i <= highest_zoneidx; i++) { 7050 zone = pgdat->node_zones + i; 7051 if (!managed_zone(zone)) 7052 continue; 7053 7054 nr_boost_reclaim += zone->watermark_boost; 7055 zone_boosts[i] = zone->watermark_boost; 7056 } 7057 boosted = nr_boost_reclaim; 7058 7059 restart: 7060 set_reclaim_active(pgdat, highest_zoneidx); 7061 sc.priority = DEF_PRIORITY; 7062 do { 7063 unsigned long nr_reclaimed = sc.nr_reclaimed; 7064 bool raise_priority = true; 7065 bool balanced; 7066 bool ret; 7067 7068 sc.reclaim_idx = highest_zoneidx; 7069 7070 /* 7071 * If the number of buffer_heads exceeds the maximum allowed 7072 * then consider reclaiming from all zones. This has a dual 7073 * purpose -- on 64-bit systems it is expected that 7074 * buffer_heads are stripped during active rotation. On 32-bit 7075 * systems, highmem pages can pin lowmem memory and shrinking 7076 * buffers can relieve lowmem pressure. Reclaim may still not 7077 * go ahead if all eligible zones for the original allocation 7078 * request are balanced to avoid excessive reclaim from kswapd. 7079 */ 7080 if (buffer_heads_over_limit) { 7081 for (i = MAX_NR_ZONES - 1; i >= 0; i--) { 7082 zone = pgdat->node_zones + i; 7083 if (!managed_zone(zone)) 7084 continue; 7085 7086 sc.reclaim_idx = i; 7087 break; 7088 } 7089 } 7090 7091 /* 7092 * If the pgdat is imbalanced then ignore boosting and preserve 7093 * the watermarks for a later time and restart. Note that the 7094 * zone watermarks will be still reset at the end of balancing 7095 * on the grounds that the normal reclaim should be enough to 7096 * re-evaluate if boosting is required when kswapd next wakes. 7097 */ 7098 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx); 7099 if (!balanced && nr_boost_reclaim) { 7100 nr_boost_reclaim = 0; 7101 goto restart; 7102 } 7103 7104 /* 7105 * If boosting is not active then only reclaim if there are no 7106 * eligible zones. Note that sc.reclaim_idx is not used as 7107 * buffer_heads_over_limit may have adjusted it. 7108 */ 7109 if (!nr_boost_reclaim && balanced) 7110 goto out; 7111 7112 /* Limit the priority of boosting to avoid reclaim writeback */ 7113 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2) 7114 raise_priority = false; 7115 7116 /* 7117 * Do not writeback or swap pages for boosted reclaim. The 7118 * intent is to relieve pressure not issue sub-optimal IO 7119 * from reclaim context. If no pages are reclaimed, the 7120 * reclaim will be aborted. 7121 */ 7122 sc.may_writepage = !laptop_mode && !nr_boost_reclaim; 7123 sc.may_swap = !nr_boost_reclaim; 7124 7125 /* 7126 * Do some background aging, to give pages a chance to be 7127 * referenced before reclaiming. All pages are rotated 7128 * regardless of classzone as this is about consistent aging. 7129 */ 7130 kswapd_age_node(pgdat, &sc); 7131 7132 /* 7133 * If we're getting trouble reclaiming, start doing writepage 7134 * even in laptop mode. 7135 */ 7136 if (sc.priority < DEF_PRIORITY - 2) 7137 sc.may_writepage = 1; 7138 7139 /* Call soft limit reclaim before calling shrink_node. */ 7140 sc.nr_scanned = 0; 7141 nr_soft_scanned = 0; 7142 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order, 7143 sc.gfp_mask, &nr_soft_scanned); 7144 sc.nr_reclaimed += nr_soft_reclaimed; 7145 7146 /* 7147 * There should be no need to raise the scanning priority if 7148 * enough pages are already being scanned that that high 7149 * watermark would be met at 100% efficiency. 7150 */ 7151 if (kswapd_shrink_node(pgdat, &sc)) 7152 raise_priority = false; 7153 7154 /* 7155 * If the low watermark is met there is no need for processes 7156 * to be throttled on pfmemalloc_wait as they should not be 7157 * able to safely make forward progress. Wake them 7158 */ 7159 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 7160 allow_direct_reclaim(pgdat)) 7161 wake_up_all(&pgdat->pfmemalloc_wait); 7162 7163 /* Check if kswapd should be suspending */ 7164 __fs_reclaim_release(_THIS_IP_); 7165 ret = try_to_freeze(); 7166 __fs_reclaim_acquire(_THIS_IP_); 7167 if (ret || kthread_should_stop()) 7168 break; 7169 7170 /* 7171 * Raise priority if scanning rate is too low or there was no 7172 * progress in reclaiming pages 7173 */ 7174 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed; 7175 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed); 7176 7177 /* 7178 * If reclaim made no progress for a boost, stop reclaim as 7179 * IO cannot be queued and it could be an infinite loop in 7180 * extreme circumstances. 7181 */ 7182 if (nr_boost_reclaim && !nr_reclaimed) 7183 break; 7184 7185 if (raise_priority || !nr_reclaimed) 7186 sc.priority--; 7187 } while (sc.priority >= 1); 7188 7189 if (!sc.nr_reclaimed) 7190 pgdat->kswapd_failures++; 7191 7192 out: 7193 clear_reclaim_active(pgdat, highest_zoneidx); 7194 7195 /* If reclaim was boosted, account for the reclaim done in this pass */ 7196 if (boosted) { 7197 unsigned long flags; 7198 7199 for (i = 0; i <= highest_zoneidx; i++) { 7200 if (!zone_boosts[i]) 7201 continue; 7202 7203 /* Increments are under the zone lock */ 7204 zone = pgdat->node_zones + i; 7205 spin_lock_irqsave(&zone->lock, flags); 7206 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]); 7207 spin_unlock_irqrestore(&zone->lock, flags); 7208 } 7209 7210 /* 7211 * As there is now likely space, wakeup kcompact to defragment 7212 * pageblocks. 7213 */ 7214 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx); 7215 } 7216 7217 snapshot_refaults(NULL, pgdat); 7218 __fs_reclaim_release(_THIS_IP_); 7219 psi_memstall_leave(&pflags); 7220 set_task_reclaim_state(current, NULL); 7221 7222 /* 7223 * Return the order kswapd stopped reclaiming at as 7224 * prepare_kswapd_sleep() takes it into account. If another caller 7225 * entered the allocator slow path while kswapd was awake, order will 7226 * remain at the higher level. 7227 */ 7228 return sc.order; 7229 } 7230 7231 /* 7232 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to 7233 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is 7234 * not a valid index then either kswapd runs for first time or kswapd couldn't 7235 * sleep after previous reclaim attempt (node is still unbalanced). In that 7236 * case return the zone index of the previous kswapd reclaim cycle. 7237 */ 7238 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat, 7239 enum zone_type prev_highest_zoneidx) 7240 { 7241 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 7242 7243 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx; 7244 } 7245 7246 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order, 7247 unsigned int highest_zoneidx) 7248 { 7249 long remaining = 0; 7250 DEFINE_WAIT(wait); 7251 7252 if (freezing(current) || kthread_should_stop()) 7253 return; 7254 7255 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 7256 7257 /* 7258 * Try to sleep for a short interval. Note that kcompactd will only be 7259 * woken if it is possible to sleep for a short interval. This is 7260 * deliberate on the assumption that if reclaim cannot keep an 7261 * eligible zone balanced that it's also unlikely that compaction will 7262 * succeed. 7263 */ 7264 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 7265 /* 7266 * Compaction records what page blocks it recently failed to 7267 * isolate pages from and skips them in the future scanning. 7268 * When kswapd is going to sleep, it is reasonable to assume 7269 * that pages and compaction may succeed so reset the cache. 7270 */ 7271 reset_isolation_suitable(pgdat); 7272 7273 /* 7274 * We have freed the memory, now we should compact it to make 7275 * allocation of the requested order possible. 7276 */ 7277 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx); 7278 7279 remaining = schedule_timeout(HZ/10); 7280 7281 /* 7282 * If woken prematurely then reset kswapd_highest_zoneidx and 7283 * order. The values will either be from a wakeup request or 7284 * the previous request that slept prematurely. 7285 */ 7286 if (remaining) { 7287 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, 7288 kswapd_highest_zoneidx(pgdat, 7289 highest_zoneidx)); 7290 7291 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order) 7292 WRITE_ONCE(pgdat->kswapd_order, reclaim_order); 7293 } 7294 7295 finish_wait(&pgdat->kswapd_wait, &wait); 7296 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 7297 } 7298 7299 /* 7300 * After a short sleep, check if it was a premature sleep. If not, then 7301 * go fully to sleep until explicitly woken up. 7302 */ 7303 if (!remaining && 7304 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 7305 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 7306 7307 /* 7308 * vmstat counters are not perfectly accurate and the estimated 7309 * value for counters such as NR_FREE_PAGES can deviate from the 7310 * true value by nr_online_cpus * threshold. To avoid the zone 7311 * watermarks being breached while under pressure, we reduce the 7312 * per-cpu vmstat threshold while kswapd is awake and restore 7313 * them before going back to sleep. 7314 */ 7315 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 7316 7317 if (!kthread_should_stop()) 7318 schedule(); 7319 7320 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 7321 } else { 7322 if (remaining) 7323 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 7324 else 7325 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 7326 } 7327 finish_wait(&pgdat->kswapd_wait, &wait); 7328 } 7329 7330 /* 7331 * The background pageout daemon, started as a kernel thread 7332 * from the init process. 7333 * 7334 * This basically trickles out pages so that we have _some_ 7335 * free memory available even if there is no other activity 7336 * that frees anything up. This is needed for things like routing 7337 * etc, where we otherwise might have all activity going on in 7338 * asynchronous contexts that cannot page things out. 7339 * 7340 * If there are applications that are active memory-allocators 7341 * (most normal use), this basically shouldn't matter. 7342 */ 7343 static int kswapd(void *p) 7344 { 7345 unsigned int alloc_order, reclaim_order; 7346 unsigned int highest_zoneidx = MAX_NR_ZONES - 1; 7347 pg_data_t *pgdat = (pg_data_t *)p; 7348 struct task_struct *tsk = current; 7349 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 7350 7351 if (!cpumask_empty(cpumask)) 7352 set_cpus_allowed_ptr(tsk, cpumask); 7353 7354 /* 7355 * Tell the memory management that we're a "memory allocator", 7356 * and that if we need more memory we should get access to it 7357 * regardless (see "__alloc_pages()"). "kswapd" should 7358 * never get caught in the normal page freeing logic. 7359 * 7360 * (Kswapd normally doesn't need memory anyway, but sometimes 7361 * you need a small amount of memory in order to be able to 7362 * page out something else, and this flag essentially protects 7363 * us from recursively trying to free more memory as we're 7364 * trying to free the first piece of memory in the first place). 7365 */ 7366 tsk->flags |= PF_MEMALLOC | PF_KSWAPD; 7367 set_freezable(); 7368 7369 WRITE_ONCE(pgdat->kswapd_order, 0); 7370 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 7371 atomic_set(&pgdat->nr_writeback_throttled, 0); 7372 for ( ; ; ) { 7373 bool ret; 7374 7375 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order); 7376 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 7377 highest_zoneidx); 7378 7379 kswapd_try_sleep: 7380 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order, 7381 highest_zoneidx); 7382 7383 /* Read the new order and highest_zoneidx */ 7384 alloc_order = READ_ONCE(pgdat->kswapd_order); 7385 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 7386 highest_zoneidx); 7387 WRITE_ONCE(pgdat->kswapd_order, 0); 7388 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 7389 7390 ret = try_to_freeze(); 7391 if (kthread_should_stop()) 7392 break; 7393 7394 /* 7395 * We can speed up thawing tasks if we don't call balance_pgdat 7396 * after returning from the refrigerator 7397 */ 7398 if (ret) 7399 continue; 7400 7401 /* 7402 * Reclaim begins at the requested order but if a high-order 7403 * reclaim fails then kswapd falls back to reclaiming for 7404 * order-0. If that happens, kswapd will consider sleeping 7405 * for the order it finished reclaiming at (reclaim_order) 7406 * but kcompactd is woken to compact for the original 7407 * request (alloc_order). 7408 */ 7409 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx, 7410 alloc_order); 7411 reclaim_order = balance_pgdat(pgdat, alloc_order, 7412 highest_zoneidx); 7413 if (reclaim_order < alloc_order) 7414 goto kswapd_try_sleep; 7415 } 7416 7417 tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD); 7418 7419 return 0; 7420 } 7421 7422 /* 7423 * A zone is low on free memory or too fragmented for high-order memory. If 7424 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's 7425 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim 7426 * has failed or is not needed, still wake up kcompactd if only compaction is 7427 * needed. 7428 */ 7429 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order, 7430 enum zone_type highest_zoneidx) 7431 { 7432 pg_data_t *pgdat; 7433 enum zone_type curr_idx; 7434 7435 if (!managed_zone(zone)) 7436 return; 7437 7438 if (!cpuset_zone_allowed(zone, gfp_flags)) 7439 return; 7440 7441 pgdat = zone->zone_pgdat; 7442 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 7443 7444 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx) 7445 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx); 7446 7447 if (READ_ONCE(pgdat->kswapd_order) < order) 7448 WRITE_ONCE(pgdat->kswapd_order, order); 7449 7450 if (!waitqueue_active(&pgdat->kswapd_wait)) 7451 return; 7452 7453 /* Hopeless node, leave it to direct reclaim if possible */ 7454 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES || 7455 (pgdat_balanced(pgdat, order, highest_zoneidx) && 7456 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) { 7457 /* 7458 * There may be plenty of free memory available, but it's too 7459 * fragmented for high-order allocations. Wake up kcompactd 7460 * and rely on compaction_suitable() to determine if it's 7461 * needed. If it fails, it will defer subsequent attempts to 7462 * ratelimit its work. 7463 */ 7464 if (!(gfp_flags & __GFP_DIRECT_RECLAIM)) 7465 wakeup_kcompactd(pgdat, order, highest_zoneidx); 7466 return; 7467 } 7468 7469 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order, 7470 gfp_flags); 7471 wake_up_interruptible(&pgdat->kswapd_wait); 7472 } 7473 7474 #ifdef CONFIG_HIBERNATION 7475 /* 7476 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 7477 * freed pages. 7478 * 7479 * Rather than trying to age LRUs the aim is to preserve the overall 7480 * LRU order by reclaiming preferentially 7481 * inactive > active > active referenced > active mapped 7482 */ 7483 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 7484 { 7485 struct scan_control sc = { 7486 .nr_to_reclaim = nr_to_reclaim, 7487 .gfp_mask = GFP_HIGHUSER_MOVABLE, 7488 .reclaim_idx = MAX_NR_ZONES - 1, 7489 .priority = DEF_PRIORITY, 7490 .may_writepage = 1, 7491 .may_unmap = 1, 7492 .may_swap = 1, 7493 .hibernation_mode = 1, 7494 }; 7495 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 7496 unsigned long nr_reclaimed; 7497 unsigned int noreclaim_flag; 7498 7499 fs_reclaim_acquire(sc.gfp_mask); 7500 noreclaim_flag = memalloc_noreclaim_save(); 7501 set_task_reclaim_state(current, &sc.reclaim_state); 7502 7503 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 7504 7505 set_task_reclaim_state(current, NULL); 7506 memalloc_noreclaim_restore(noreclaim_flag); 7507 fs_reclaim_release(sc.gfp_mask); 7508 7509 return nr_reclaimed; 7510 } 7511 #endif /* CONFIG_HIBERNATION */ 7512 7513 /* 7514 * This kswapd start function will be called by init and node-hot-add. 7515 */ 7516 void kswapd_run(int nid) 7517 { 7518 pg_data_t *pgdat = NODE_DATA(nid); 7519 7520 pgdat_kswapd_lock(pgdat); 7521 if (!pgdat->kswapd) { 7522 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 7523 if (IS_ERR(pgdat->kswapd)) { 7524 /* failure at boot is fatal */ 7525 BUG_ON(system_state < SYSTEM_RUNNING); 7526 pr_err("Failed to start kswapd on node %d\n", nid); 7527 pgdat->kswapd = NULL; 7528 } 7529 } 7530 pgdat_kswapd_unlock(pgdat); 7531 } 7532 7533 /* 7534 * Called by memory hotplug when all memory in a node is offlined. Caller must 7535 * be holding mem_hotplug_begin/done(). 7536 */ 7537 void kswapd_stop(int nid) 7538 { 7539 pg_data_t *pgdat = NODE_DATA(nid); 7540 struct task_struct *kswapd; 7541 7542 pgdat_kswapd_lock(pgdat); 7543 kswapd = pgdat->kswapd; 7544 if (kswapd) { 7545 kthread_stop(kswapd); 7546 pgdat->kswapd = NULL; 7547 } 7548 pgdat_kswapd_unlock(pgdat); 7549 } 7550 7551 static int __init kswapd_init(void) 7552 { 7553 int nid; 7554 7555 swap_setup(); 7556 for_each_node_state(nid, N_MEMORY) 7557 kswapd_run(nid); 7558 return 0; 7559 } 7560 7561 module_init(kswapd_init) 7562 7563 #ifdef CONFIG_NUMA 7564 /* 7565 * Node reclaim mode 7566 * 7567 * If non-zero call node_reclaim when the number of free pages falls below 7568 * the watermarks. 7569 */ 7570 int node_reclaim_mode __read_mostly; 7571 7572 /* 7573 * Priority for NODE_RECLAIM. This determines the fraction of pages 7574 * of a node considered for each zone_reclaim. 4 scans 1/16th of 7575 * a zone. 7576 */ 7577 #define NODE_RECLAIM_PRIORITY 4 7578 7579 /* 7580 * Percentage of pages in a zone that must be unmapped for node_reclaim to 7581 * occur. 7582 */ 7583 int sysctl_min_unmapped_ratio = 1; 7584 7585 /* 7586 * If the number of slab pages in a zone grows beyond this percentage then 7587 * slab reclaim needs to occur. 7588 */ 7589 int sysctl_min_slab_ratio = 5; 7590 7591 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat) 7592 { 7593 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED); 7594 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) + 7595 node_page_state(pgdat, NR_ACTIVE_FILE); 7596 7597 /* 7598 * It's possible for there to be more file mapped pages than 7599 * accounted for by the pages on the file LRU lists because 7600 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 7601 */ 7602 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 7603 } 7604 7605 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 7606 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat) 7607 { 7608 unsigned long nr_pagecache_reclaimable; 7609 unsigned long delta = 0; 7610 7611 /* 7612 * If RECLAIM_UNMAP is set, then all file pages are considered 7613 * potentially reclaimable. Otherwise, we have to worry about 7614 * pages like swapcache and node_unmapped_file_pages() provides 7615 * a better estimate 7616 */ 7617 if (node_reclaim_mode & RECLAIM_UNMAP) 7618 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES); 7619 else 7620 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat); 7621 7622 /* If we can't clean pages, remove dirty pages from consideration */ 7623 if (!(node_reclaim_mode & RECLAIM_WRITE)) 7624 delta += node_page_state(pgdat, NR_FILE_DIRTY); 7625 7626 /* Watch for any possible underflows due to delta */ 7627 if (unlikely(delta > nr_pagecache_reclaimable)) 7628 delta = nr_pagecache_reclaimable; 7629 7630 return nr_pagecache_reclaimable - delta; 7631 } 7632 7633 /* 7634 * Try to free up some pages from this node through reclaim. 7635 */ 7636 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 7637 { 7638 /* Minimum pages needed in order to stay on node */ 7639 const unsigned long nr_pages = 1 << order; 7640 struct task_struct *p = current; 7641 unsigned int noreclaim_flag; 7642 struct scan_control sc = { 7643 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 7644 .gfp_mask = current_gfp_context(gfp_mask), 7645 .order = order, 7646 .priority = NODE_RECLAIM_PRIORITY, 7647 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE), 7648 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP), 7649 .may_swap = 1, 7650 .reclaim_idx = gfp_zone(gfp_mask), 7651 }; 7652 unsigned long pflags; 7653 7654 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order, 7655 sc.gfp_mask); 7656 7657 cond_resched(); 7658 psi_memstall_enter(&pflags); 7659 fs_reclaim_acquire(sc.gfp_mask); 7660 /* 7661 * We need to be able to allocate from the reserves for RECLAIM_UNMAP 7662 */ 7663 noreclaim_flag = memalloc_noreclaim_save(); 7664 set_task_reclaim_state(p, &sc.reclaim_state); 7665 7666 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages || 7667 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) { 7668 /* 7669 * Free memory by calling shrink node with increasing 7670 * priorities until we have enough memory freed. 7671 */ 7672 do { 7673 shrink_node(pgdat, &sc); 7674 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 7675 } 7676 7677 set_task_reclaim_state(p, NULL); 7678 memalloc_noreclaim_restore(noreclaim_flag); 7679 fs_reclaim_release(sc.gfp_mask); 7680 psi_memstall_leave(&pflags); 7681 7682 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed); 7683 7684 return sc.nr_reclaimed >= nr_pages; 7685 } 7686 7687 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 7688 { 7689 int ret; 7690 7691 /* 7692 * Node reclaim reclaims unmapped file backed pages and 7693 * slab pages if we are over the defined limits. 7694 * 7695 * A small portion of unmapped file backed pages is needed for 7696 * file I/O otherwise pages read by file I/O will be immediately 7697 * thrown out if the node is overallocated. So we do not reclaim 7698 * if less than a specified percentage of the node is used by 7699 * unmapped file backed pages. 7700 */ 7701 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages && 7702 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <= 7703 pgdat->min_slab_pages) 7704 return NODE_RECLAIM_FULL; 7705 7706 /* 7707 * Do not scan if the allocation should not be delayed. 7708 */ 7709 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) 7710 return NODE_RECLAIM_NOSCAN; 7711 7712 /* 7713 * Only run node reclaim on the local node or on nodes that do not 7714 * have associated processors. This will favor the local processor 7715 * over remote processors and spread off node memory allocations 7716 * as wide as possible. 7717 */ 7718 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id()) 7719 return NODE_RECLAIM_NOSCAN; 7720 7721 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags)) 7722 return NODE_RECLAIM_NOSCAN; 7723 7724 ret = __node_reclaim(pgdat, gfp_mask, order); 7725 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags); 7726 7727 if (!ret) 7728 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 7729 7730 return ret; 7731 } 7732 #endif 7733 7734 void check_move_unevictable_pages(struct pagevec *pvec) 7735 { 7736 struct folio_batch fbatch; 7737 unsigned i; 7738 7739 folio_batch_init(&fbatch); 7740 for (i = 0; i < pvec->nr; i++) { 7741 struct page *page = pvec->pages[i]; 7742 7743 if (PageTransTail(page)) 7744 continue; 7745 folio_batch_add(&fbatch, page_folio(page)); 7746 } 7747 check_move_unevictable_folios(&fbatch); 7748 } 7749 EXPORT_SYMBOL_GPL(check_move_unevictable_pages); 7750 7751 /** 7752 * check_move_unevictable_folios - Move evictable folios to appropriate zone 7753 * lru list 7754 * @fbatch: Batch of lru folios to check. 7755 * 7756 * Checks folios for evictability, if an evictable folio is in the unevictable 7757 * lru list, moves it to the appropriate evictable lru list. This function 7758 * should be only used for lru folios. 7759 */ 7760 void check_move_unevictable_folios(struct folio_batch *fbatch) 7761 { 7762 struct lruvec *lruvec = NULL; 7763 int pgscanned = 0; 7764 int pgrescued = 0; 7765 int i; 7766 7767 for (i = 0; i < fbatch->nr; i++) { 7768 struct folio *folio = fbatch->folios[i]; 7769 int nr_pages = folio_nr_pages(folio); 7770 7771 pgscanned += nr_pages; 7772 7773 /* block memcg migration while the folio moves between lrus */ 7774 if (!folio_test_clear_lru(folio)) 7775 continue; 7776 7777 lruvec = folio_lruvec_relock_irq(folio, lruvec); 7778 if (folio_evictable(folio) && folio_test_unevictable(folio)) { 7779 lruvec_del_folio(lruvec, folio); 7780 folio_clear_unevictable(folio); 7781 lruvec_add_folio(lruvec, folio); 7782 pgrescued += nr_pages; 7783 } 7784 folio_set_lru(folio); 7785 } 7786 7787 if (lruvec) { 7788 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 7789 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 7790 unlock_page_lruvec_irq(lruvec); 7791 } else if (pgscanned) { 7792 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 7793 } 7794 } 7795 EXPORT_SYMBOL_GPL(check_move_unevictable_folios); 7796