xref: /linux/mm/vmscan.c (revision 80d443e8876602be2c130f79c4de81e12e2a700d)
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13 
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h>	/* for try_to_release_page(),
30 					buffer_heads_over_limit */
31 #include <linux/mm_inline.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rmap.h>
34 #include <linux/topology.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/compaction.h>
38 #include <linux/notifier.h>
39 #include <linux/rwsem.h>
40 #include <linux/delay.h>
41 #include <linux/kthread.h>
42 #include <linux/freezer.h>
43 #include <linux/memcontrol.h>
44 #include <linux/delayacct.h>
45 #include <linux/sysctl.h>
46 #include <linux/oom.h>
47 #include <linux/prefetch.h>
48 #include <linux/printk.h>
49 #include <linux/dax.h>
50 
51 #include <asm/tlbflush.h>
52 #include <asm/div64.h>
53 
54 #include <linux/swapops.h>
55 #include <linux/balloon_compaction.h>
56 
57 #include "internal.h"
58 
59 #define CREATE_TRACE_POINTS
60 #include <trace/events/vmscan.h>
61 
62 struct scan_control {
63 	/* How many pages shrink_list() should reclaim */
64 	unsigned long nr_to_reclaim;
65 
66 	/* This context's GFP mask */
67 	gfp_t gfp_mask;
68 
69 	/* Allocation order */
70 	int order;
71 
72 	/*
73 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
74 	 * are scanned.
75 	 */
76 	nodemask_t	*nodemask;
77 
78 	/*
79 	 * The memory cgroup that hit its limit and as a result is the
80 	 * primary target of this reclaim invocation.
81 	 */
82 	struct mem_cgroup *target_mem_cgroup;
83 
84 	/* Scan (total_size >> priority) pages at once */
85 	int priority;
86 
87 	/* The highest zone to isolate pages for reclaim from */
88 	enum zone_type reclaim_idx;
89 
90 	unsigned int may_writepage:1;
91 
92 	/* Can mapped pages be reclaimed? */
93 	unsigned int may_unmap:1;
94 
95 	/* Can pages be swapped as part of reclaim? */
96 	unsigned int may_swap:1;
97 
98 	/* Can cgroups be reclaimed below their normal consumption range? */
99 	unsigned int may_thrash:1;
100 
101 	unsigned int hibernation_mode:1;
102 
103 	/* One of the zones is ready for compaction */
104 	unsigned int compaction_ready:1;
105 
106 	/* Incremented by the number of inactive pages that were scanned */
107 	unsigned long nr_scanned;
108 
109 	/* Number of pages freed so far during a call to shrink_zones() */
110 	unsigned long nr_reclaimed;
111 };
112 
113 #ifdef ARCH_HAS_PREFETCH
114 #define prefetch_prev_lru_page(_page, _base, _field)			\
115 	do {								\
116 		if ((_page)->lru.prev != _base) {			\
117 			struct page *prev;				\
118 									\
119 			prev = lru_to_page(&(_page->lru));		\
120 			prefetch(&prev->_field);			\
121 		}							\
122 	} while (0)
123 #else
124 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
125 #endif
126 
127 #ifdef ARCH_HAS_PREFETCHW
128 #define prefetchw_prev_lru_page(_page, _base, _field)			\
129 	do {								\
130 		if ((_page)->lru.prev != _base) {			\
131 			struct page *prev;				\
132 									\
133 			prev = lru_to_page(&(_page->lru));		\
134 			prefetchw(&prev->_field);			\
135 		}							\
136 	} while (0)
137 #else
138 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
139 #endif
140 
141 /*
142  * From 0 .. 100.  Higher means more swappy.
143  */
144 int vm_swappiness = 60;
145 /*
146  * The total number of pages which are beyond the high watermark within all
147  * zones.
148  */
149 unsigned long vm_total_pages;
150 
151 static LIST_HEAD(shrinker_list);
152 static DECLARE_RWSEM(shrinker_rwsem);
153 
154 #ifdef CONFIG_MEMCG
155 static bool global_reclaim(struct scan_control *sc)
156 {
157 	return !sc->target_mem_cgroup;
158 }
159 
160 /**
161  * sane_reclaim - is the usual dirty throttling mechanism operational?
162  * @sc: scan_control in question
163  *
164  * The normal page dirty throttling mechanism in balance_dirty_pages() is
165  * completely broken with the legacy memcg and direct stalling in
166  * shrink_page_list() is used for throttling instead, which lacks all the
167  * niceties such as fairness, adaptive pausing, bandwidth proportional
168  * allocation and configurability.
169  *
170  * This function tests whether the vmscan currently in progress can assume
171  * that the normal dirty throttling mechanism is operational.
172  */
173 static bool sane_reclaim(struct scan_control *sc)
174 {
175 	struct mem_cgroup *memcg = sc->target_mem_cgroup;
176 
177 	if (!memcg)
178 		return true;
179 #ifdef CONFIG_CGROUP_WRITEBACK
180 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
181 		return true;
182 #endif
183 	return false;
184 }
185 #else
186 static bool global_reclaim(struct scan_control *sc)
187 {
188 	return true;
189 }
190 
191 static bool sane_reclaim(struct scan_control *sc)
192 {
193 	return true;
194 }
195 #endif
196 
197 /*
198  * This misses isolated pages which are not accounted for to save counters.
199  * As the data only determines if reclaim or compaction continues, it is
200  * not expected that isolated pages will be a dominating factor.
201  */
202 unsigned long zone_reclaimable_pages(struct zone *zone)
203 {
204 	unsigned long nr;
205 
206 	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
207 		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
208 	if (get_nr_swap_pages() > 0)
209 		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
210 			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
211 
212 	return nr;
213 }
214 
215 unsigned long pgdat_reclaimable_pages(struct pglist_data *pgdat)
216 {
217 	unsigned long nr;
218 
219 	nr = node_page_state_snapshot(pgdat, NR_ACTIVE_FILE) +
220 	     node_page_state_snapshot(pgdat, NR_INACTIVE_FILE) +
221 	     node_page_state_snapshot(pgdat, NR_ISOLATED_FILE);
222 
223 	if (get_nr_swap_pages() > 0)
224 		nr += node_page_state_snapshot(pgdat, NR_ACTIVE_ANON) +
225 		      node_page_state_snapshot(pgdat, NR_INACTIVE_ANON) +
226 		      node_page_state_snapshot(pgdat, NR_ISOLATED_ANON);
227 
228 	return nr;
229 }
230 
231 bool pgdat_reclaimable(struct pglist_data *pgdat)
232 {
233 	return node_page_state_snapshot(pgdat, NR_PAGES_SCANNED) <
234 		pgdat_reclaimable_pages(pgdat) * 6;
235 }
236 
237 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru)
238 {
239 	if (!mem_cgroup_disabled())
240 		return mem_cgroup_get_lru_size(lruvec, lru);
241 
242 	return node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
243 }
244 
245 /*
246  * Add a shrinker callback to be called from the vm.
247  */
248 int register_shrinker(struct shrinker *shrinker)
249 {
250 	size_t size = sizeof(*shrinker->nr_deferred);
251 
252 	if (shrinker->flags & SHRINKER_NUMA_AWARE)
253 		size *= nr_node_ids;
254 
255 	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
256 	if (!shrinker->nr_deferred)
257 		return -ENOMEM;
258 
259 	down_write(&shrinker_rwsem);
260 	list_add_tail(&shrinker->list, &shrinker_list);
261 	up_write(&shrinker_rwsem);
262 	return 0;
263 }
264 EXPORT_SYMBOL(register_shrinker);
265 
266 /*
267  * Remove one
268  */
269 void unregister_shrinker(struct shrinker *shrinker)
270 {
271 	down_write(&shrinker_rwsem);
272 	list_del(&shrinker->list);
273 	up_write(&shrinker_rwsem);
274 	kfree(shrinker->nr_deferred);
275 }
276 EXPORT_SYMBOL(unregister_shrinker);
277 
278 #define SHRINK_BATCH 128
279 
280 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
281 				    struct shrinker *shrinker,
282 				    unsigned long nr_scanned,
283 				    unsigned long nr_eligible)
284 {
285 	unsigned long freed = 0;
286 	unsigned long long delta;
287 	long total_scan;
288 	long freeable;
289 	long nr;
290 	long new_nr;
291 	int nid = shrinkctl->nid;
292 	long batch_size = shrinker->batch ? shrinker->batch
293 					  : SHRINK_BATCH;
294 	long scanned = 0, next_deferred;
295 
296 	freeable = shrinker->count_objects(shrinker, shrinkctl);
297 	if (freeable == 0)
298 		return 0;
299 
300 	/*
301 	 * copy the current shrinker scan count into a local variable
302 	 * and zero it so that other concurrent shrinker invocations
303 	 * don't also do this scanning work.
304 	 */
305 	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
306 
307 	total_scan = nr;
308 	delta = (4 * nr_scanned) / shrinker->seeks;
309 	delta *= freeable;
310 	do_div(delta, nr_eligible + 1);
311 	total_scan += delta;
312 	if (total_scan < 0) {
313 		pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
314 		       shrinker->scan_objects, total_scan);
315 		total_scan = freeable;
316 		next_deferred = nr;
317 	} else
318 		next_deferred = total_scan;
319 
320 	/*
321 	 * We need to avoid excessive windup on filesystem shrinkers
322 	 * due to large numbers of GFP_NOFS allocations causing the
323 	 * shrinkers to return -1 all the time. This results in a large
324 	 * nr being built up so when a shrink that can do some work
325 	 * comes along it empties the entire cache due to nr >>>
326 	 * freeable. This is bad for sustaining a working set in
327 	 * memory.
328 	 *
329 	 * Hence only allow the shrinker to scan the entire cache when
330 	 * a large delta change is calculated directly.
331 	 */
332 	if (delta < freeable / 4)
333 		total_scan = min(total_scan, freeable / 2);
334 
335 	/*
336 	 * Avoid risking looping forever due to too large nr value:
337 	 * never try to free more than twice the estimate number of
338 	 * freeable entries.
339 	 */
340 	if (total_scan > freeable * 2)
341 		total_scan = freeable * 2;
342 
343 	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
344 				   nr_scanned, nr_eligible,
345 				   freeable, delta, total_scan);
346 
347 	/*
348 	 * Normally, we should not scan less than batch_size objects in one
349 	 * pass to avoid too frequent shrinker calls, but if the slab has less
350 	 * than batch_size objects in total and we are really tight on memory,
351 	 * we will try to reclaim all available objects, otherwise we can end
352 	 * up failing allocations although there are plenty of reclaimable
353 	 * objects spread over several slabs with usage less than the
354 	 * batch_size.
355 	 *
356 	 * We detect the "tight on memory" situations by looking at the total
357 	 * number of objects we want to scan (total_scan). If it is greater
358 	 * than the total number of objects on slab (freeable), we must be
359 	 * scanning at high prio and therefore should try to reclaim as much as
360 	 * possible.
361 	 */
362 	while (total_scan >= batch_size ||
363 	       total_scan >= freeable) {
364 		unsigned long ret;
365 		unsigned long nr_to_scan = min(batch_size, total_scan);
366 
367 		shrinkctl->nr_to_scan = nr_to_scan;
368 		ret = shrinker->scan_objects(shrinker, shrinkctl);
369 		if (ret == SHRINK_STOP)
370 			break;
371 		freed += ret;
372 
373 		count_vm_events(SLABS_SCANNED, nr_to_scan);
374 		total_scan -= nr_to_scan;
375 		scanned += nr_to_scan;
376 
377 		cond_resched();
378 	}
379 
380 	if (next_deferred >= scanned)
381 		next_deferred -= scanned;
382 	else
383 		next_deferred = 0;
384 	/*
385 	 * move the unused scan count back into the shrinker in a
386 	 * manner that handles concurrent updates. If we exhausted the
387 	 * scan, there is no need to do an update.
388 	 */
389 	if (next_deferred > 0)
390 		new_nr = atomic_long_add_return(next_deferred,
391 						&shrinker->nr_deferred[nid]);
392 	else
393 		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
394 
395 	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
396 	return freed;
397 }
398 
399 /**
400  * shrink_slab - shrink slab caches
401  * @gfp_mask: allocation context
402  * @nid: node whose slab caches to target
403  * @memcg: memory cgroup whose slab caches to target
404  * @nr_scanned: pressure numerator
405  * @nr_eligible: pressure denominator
406  *
407  * Call the shrink functions to age shrinkable caches.
408  *
409  * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
410  * unaware shrinkers will receive a node id of 0 instead.
411  *
412  * @memcg specifies the memory cgroup to target. If it is not NULL,
413  * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
414  * objects from the memory cgroup specified. Otherwise, only unaware
415  * shrinkers are called.
416  *
417  * @nr_scanned and @nr_eligible form a ratio that indicate how much of
418  * the available objects should be scanned.  Page reclaim for example
419  * passes the number of pages scanned and the number of pages on the
420  * LRU lists that it considered on @nid, plus a bias in @nr_scanned
421  * when it encountered mapped pages.  The ratio is further biased by
422  * the ->seeks setting of the shrink function, which indicates the
423  * cost to recreate an object relative to that of an LRU page.
424  *
425  * Returns the number of reclaimed slab objects.
426  */
427 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
428 				 struct mem_cgroup *memcg,
429 				 unsigned long nr_scanned,
430 				 unsigned long nr_eligible)
431 {
432 	struct shrinker *shrinker;
433 	unsigned long freed = 0;
434 
435 	if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
436 		return 0;
437 
438 	if (nr_scanned == 0)
439 		nr_scanned = SWAP_CLUSTER_MAX;
440 
441 	if (!down_read_trylock(&shrinker_rwsem)) {
442 		/*
443 		 * If we would return 0, our callers would understand that we
444 		 * have nothing else to shrink and give up trying. By returning
445 		 * 1 we keep it going and assume we'll be able to shrink next
446 		 * time.
447 		 */
448 		freed = 1;
449 		goto out;
450 	}
451 
452 	list_for_each_entry(shrinker, &shrinker_list, list) {
453 		struct shrink_control sc = {
454 			.gfp_mask = gfp_mask,
455 			.nid = nid,
456 			.memcg = memcg,
457 		};
458 
459 		/*
460 		 * If kernel memory accounting is disabled, we ignore
461 		 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
462 		 * passing NULL for memcg.
463 		 */
464 		if (memcg_kmem_enabled() &&
465 		    !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
466 			continue;
467 
468 		if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
469 			sc.nid = 0;
470 
471 		freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
472 	}
473 
474 	up_read(&shrinker_rwsem);
475 out:
476 	cond_resched();
477 	return freed;
478 }
479 
480 void drop_slab_node(int nid)
481 {
482 	unsigned long freed;
483 
484 	do {
485 		struct mem_cgroup *memcg = NULL;
486 
487 		freed = 0;
488 		do {
489 			freed += shrink_slab(GFP_KERNEL, nid, memcg,
490 					     1000, 1000);
491 		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
492 	} while (freed > 10);
493 }
494 
495 void drop_slab(void)
496 {
497 	int nid;
498 
499 	for_each_online_node(nid)
500 		drop_slab_node(nid);
501 }
502 
503 static inline int is_page_cache_freeable(struct page *page)
504 {
505 	/*
506 	 * A freeable page cache page is referenced only by the caller
507 	 * that isolated the page, the page cache radix tree and
508 	 * optional buffer heads at page->private.
509 	 */
510 	return page_count(page) - page_has_private(page) == 2;
511 }
512 
513 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
514 {
515 	if (current->flags & PF_SWAPWRITE)
516 		return 1;
517 	if (!inode_write_congested(inode))
518 		return 1;
519 	if (inode_to_bdi(inode) == current->backing_dev_info)
520 		return 1;
521 	return 0;
522 }
523 
524 /*
525  * We detected a synchronous write error writing a page out.  Probably
526  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
527  * fsync(), msync() or close().
528  *
529  * The tricky part is that after writepage we cannot touch the mapping: nothing
530  * prevents it from being freed up.  But we have a ref on the page and once
531  * that page is locked, the mapping is pinned.
532  *
533  * We're allowed to run sleeping lock_page() here because we know the caller has
534  * __GFP_FS.
535  */
536 static void handle_write_error(struct address_space *mapping,
537 				struct page *page, int error)
538 {
539 	lock_page(page);
540 	if (page_mapping(page) == mapping)
541 		mapping_set_error(mapping, error);
542 	unlock_page(page);
543 }
544 
545 /* possible outcome of pageout() */
546 typedef enum {
547 	/* failed to write page out, page is locked */
548 	PAGE_KEEP,
549 	/* move page to the active list, page is locked */
550 	PAGE_ACTIVATE,
551 	/* page has been sent to the disk successfully, page is unlocked */
552 	PAGE_SUCCESS,
553 	/* page is clean and locked */
554 	PAGE_CLEAN,
555 } pageout_t;
556 
557 /*
558  * pageout is called by shrink_page_list() for each dirty page.
559  * Calls ->writepage().
560  */
561 static pageout_t pageout(struct page *page, struct address_space *mapping,
562 			 struct scan_control *sc)
563 {
564 	/*
565 	 * If the page is dirty, only perform writeback if that write
566 	 * will be non-blocking.  To prevent this allocation from being
567 	 * stalled by pagecache activity.  But note that there may be
568 	 * stalls if we need to run get_block().  We could test
569 	 * PagePrivate for that.
570 	 *
571 	 * If this process is currently in __generic_file_write_iter() against
572 	 * this page's queue, we can perform writeback even if that
573 	 * will block.
574 	 *
575 	 * If the page is swapcache, write it back even if that would
576 	 * block, for some throttling. This happens by accident, because
577 	 * swap_backing_dev_info is bust: it doesn't reflect the
578 	 * congestion state of the swapdevs.  Easy to fix, if needed.
579 	 */
580 	if (!is_page_cache_freeable(page))
581 		return PAGE_KEEP;
582 	if (!mapping) {
583 		/*
584 		 * Some data journaling orphaned pages can have
585 		 * page->mapping == NULL while being dirty with clean buffers.
586 		 */
587 		if (page_has_private(page)) {
588 			if (try_to_free_buffers(page)) {
589 				ClearPageDirty(page);
590 				pr_info("%s: orphaned page\n", __func__);
591 				return PAGE_CLEAN;
592 			}
593 		}
594 		return PAGE_KEEP;
595 	}
596 	if (mapping->a_ops->writepage == NULL)
597 		return PAGE_ACTIVATE;
598 	if (!may_write_to_inode(mapping->host, sc))
599 		return PAGE_KEEP;
600 
601 	if (clear_page_dirty_for_io(page)) {
602 		int res;
603 		struct writeback_control wbc = {
604 			.sync_mode = WB_SYNC_NONE,
605 			.nr_to_write = SWAP_CLUSTER_MAX,
606 			.range_start = 0,
607 			.range_end = LLONG_MAX,
608 			.for_reclaim = 1,
609 		};
610 
611 		SetPageReclaim(page);
612 		res = mapping->a_ops->writepage(page, &wbc);
613 		if (res < 0)
614 			handle_write_error(mapping, page, res);
615 		if (res == AOP_WRITEPAGE_ACTIVATE) {
616 			ClearPageReclaim(page);
617 			return PAGE_ACTIVATE;
618 		}
619 
620 		if (!PageWriteback(page)) {
621 			/* synchronous write or broken a_ops? */
622 			ClearPageReclaim(page);
623 		}
624 		trace_mm_vmscan_writepage(page);
625 		inc_node_page_state(page, NR_VMSCAN_WRITE);
626 		return PAGE_SUCCESS;
627 	}
628 
629 	return PAGE_CLEAN;
630 }
631 
632 /*
633  * Same as remove_mapping, but if the page is removed from the mapping, it
634  * gets returned with a refcount of 0.
635  */
636 static int __remove_mapping(struct address_space *mapping, struct page *page,
637 			    bool reclaimed)
638 {
639 	unsigned long flags;
640 
641 	BUG_ON(!PageLocked(page));
642 	BUG_ON(mapping != page_mapping(page));
643 
644 	spin_lock_irqsave(&mapping->tree_lock, flags);
645 	/*
646 	 * The non racy check for a busy page.
647 	 *
648 	 * Must be careful with the order of the tests. When someone has
649 	 * a ref to the page, it may be possible that they dirty it then
650 	 * drop the reference. So if PageDirty is tested before page_count
651 	 * here, then the following race may occur:
652 	 *
653 	 * get_user_pages(&page);
654 	 * [user mapping goes away]
655 	 * write_to(page);
656 	 *				!PageDirty(page)    [good]
657 	 * SetPageDirty(page);
658 	 * put_page(page);
659 	 *				!page_count(page)   [good, discard it]
660 	 *
661 	 * [oops, our write_to data is lost]
662 	 *
663 	 * Reversing the order of the tests ensures such a situation cannot
664 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
665 	 * load is not satisfied before that of page->_refcount.
666 	 *
667 	 * Note that if SetPageDirty is always performed via set_page_dirty,
668 	 * and thus under tree_lock, then this ordering is not required.
669 	 */
670 	if (!page_ref_freeze(page, 2))
671 		goto cannot_free;
672 	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
673 	if (unlikely(PageDirty(page))) {
674 		page_ref_unfreeze(page, 2);
675 		goto cannot_free;
676 	}
677 
678 	if (PageSwapCache(page)) {
679 		swp_entry_t swap = { .val = page_private(page) };
680 		mem_cgroup_swapout(page, swap);
681 		__delete_from_swap_cache(page);
682 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
683 		swapcache_free(swap);
684 	} else {
685 		void (*freepage)(struct page *);
686 		void *shadow = NULL;
687 
688 		freepage = mapping->a_ops->freepage;
689 		/*
690 		 * Remember a shadow entry for reclaimed file cache in
691 		 * order to detect refaults, thus thrashing, later on.
692 		 *
693 		 * But don't store shadows in an address space that is
694 		 * already exiting.  This is not just an optizimation,
695 		 * inode reclaim needs to empty out the radix tree or
696 		 * the nodes are lost.  Don't plant shadows behind its
697 		 * back.
698 		 *
699 		 * We also don't store shadows for DAX mappings because the
700 		 * only page cache pages found in these are zero pages
701 		 * covering holes, and because we don't want to mix DAX
702 		 * exceptional entries and shadow exceptional entries in the
703 		 * same page_tree.
704 		 */
705 		if (reclaimed && page_is_file_cache(page) &&
706 		    !mapping_exiting(mapping) && !dax_mapping(mapping))
707 			shadow = workingset_eviction(mapping, page);
708 		__delete_from_page_cache(page, shadow);
709 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
710 
711 		if (freepage != NULL)
712 			freepage(page);
713 	}
714 
715 	return 1;
716 
717 cannot_free:
718 	spin_unlock_irqrestore(&mapping->tree_lock, flags);
719 	return 0;
720 }
721 
722 /*
723  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
724  * someone else has a ref on the page, abort and return 0.  If it was
725  * successfully detached, return 1.  Assumes the caller has a single ref on
726  * this page.
727  */
728 int remove_mapping(struct address_space *mapping, struct page *page)
729 {
730 	if (__remove_mapping(mapping, page, false)) {
731 		/*
732 		 * Unfreezing the refcount with 1 rather than 2 effectively
733 		 * drops the pagecache ref for us without requiring another
734 		 * atomic operation.
735 		 */
736 		page_ref_unfreeze(page, 1);
737 		return 1;
738 	}
739 	return 0;
740 }
741 
742 /**
743  * putback_lru_page - put previously isolated page onto appropriate LRU list
744  * @page: page to be put back to appropriate lru list
745  *
746  * Add previously isolated @page to appropriate LRU list.
747  * Page may still be unevictable for other reasons.
748  *
749  * lru_lock must not be held, interrupts must be enabled.
750  */
751 void putback_lru_page(struct page *page)
752 {
753 	bool is_unevictable;
754 	int was_unevictable = PageUnevictable(page);
755 
756 	VM_BUG_ON_PAGE(PageLRU(page), page);
757 
758 redo:
759 	ClearPageUnevictable(page);
760 
761 	if (page_evictable(page)) {
762 		/*
763 		 * For evictable pages, we can use the cache.
764 		 * In event of a race, worst case is we end up with an
765 		 * unevictable page on [in]active list.
766 		 * We know how to handle that.
767 		 */
768 		is_unevictable = false;
769 		lru_cache_add(page);
770 	} else {
771 		/*
772 		 * Put unevictable pages directly on zone's unevictable
773 		 * list.
774 		 */
775 		is_unevictable = true;
776 		add_page_to_unevictable_list(page);
777 		/*
778 		 * When racing with an mlock or AS_UNEVICTABLE clearing
779 		 * (page is unlocked) make sure that if the other thread
780 		 * does not observe our setting of PG_lru and fails
781 		 * isolation/check_move_unevictable_pages,
782 		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
783 		 * the page back to the evictable list.
784 		 *
785 		 * The other side is TestClearPageMlocked() or shmem_lock().
786 		 */
787 		smp_mb();
788 	}
789 
790 	/*
791 	 * page's status can change while we move it among lru. If an evictable
792 	 * page is on unevictable list, it never be freed. To avoid that,
793 	 * check after we added it to the list, again.
794 	 */
795 	if (is_unevictable && page_evictable(page)) {
796 		if (!isolate_lru_page(page)) {
797 			put_page(page);
798 			goto redo;
799 		}
800 		/* This means someone else dropped this page from LRU
801 		 * So, it will be freed or putback to LRU again. There is
802 		 * nothing to do here.
803 		 */
804 	}
805 
806 	if (was_unevictable && !is_unevictable)
807 		count_vm_event(UNEVICTABLE_PGRESCUED);
808 	else if (!was_unevictable && is_unevictable)
809 		count_vm_event(UNEVICTABLE_PGCULLED);
810 
811 	put_page(page);		/* drop ref from isolate */
812 }
813 
814 enum page_references {
815 	PAGEREF_RECLAIM,
816 	PAGEREF_RECLAIM_CLEAN,
817 	PAGEREF_KEEP,
818 	PAGEREF_ACTIVATE,
819 };
820 
821 static enum page_references page_check_references(struct page *page,
822 						  struct scan_control *sc)
823 {
824 	int referenced_ptes, referenced_page;
825 	unsigned long vm_flags;
826 
827 	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
828 					  &vm_flags);
829 	referenced_page = TestClearPageReferenced(page);
830 
831 	/*
832 	 * Mlock lost the isolation race with us.  Let try_to_unmap()
833 	 * move the page to the unevictable list.
834 	 */
835 	if (vm_flags & VM_LOCKED)
836 		return PAGEREF_RECLAIM;
837 
838 	if (referenced_ptes) {
839 		if (PageSwapBacked(page))
840 			return PAGEREF_ACTIVATE;
841 		/*
842 		 * All mapped pages start out with page table
843 		 * references from the instantiating fault, so we need
844 		 * to look twice if a mapped file page is used more
845 		 * than once.
846 		 *
847 		 * Mark it and spare it for another trip around the
848 		 * inactive list.  Another page table reference will
849 		 * lead to its activation.
850 		 *
851 		 * Note: the mark is set for activated pages as well
852 		 * so that recently deactivated but used pages are
853 		 * quickly recovered.
854 		 */
855 		SetPageReferenced(page);
856 
857 		if (referenced_page || referenced_ptes > 1)
858 			return PAGEREF_ACTIVATE;
859 
860 		/*
861 		 * Activate file-backed executable pages after first usage.
862 		 */
863 		if (vm_flags & VM_EXEC)
864 			return PAGEREF_ACTIVATE;
865 
866 		return PAGEREF_KEEP;
867 	}
868 
869 	/* Reclaim if clean, defer dirty pages to writeback */
870 	if (referenced_page && !PageSwapBacked(page))
871 		return PAGEREF_RECLAIM_CLEAN;
872 
873 	return PAGEREF_RECLAIM;
874 }
875 
876 /* Check if a page is dirty or under writeback */
877 static void page_check_dirty_writeback(struct page *page,
878 				       bool *dirty, bool *writeback)
879 {
880 	struct address_space *mapping;
881 
882 	/*
883 	 * Anonymous pages are not handled by flushers and must be written
884 	 * from reclaim context. Do not stall reclaim based on them
885 	 */
886 	if (!page_is_file_cache(page)) {
887 		*dirty = false;
888 		*writeback = false;
889 		return;
890 	}
891 
892 	/* By default assume that the page flags are accurate */
893 	*dirty = PageDirty(page);
894 	*writeback = PageWriteback(page);
895 
896 	/* Verify dirty/writeback state if the filesystem supports it */
897 	if (!page_has_private(page))
898 		return;
899 
900 	mapping = page_mapping(page);
901 	if (mapping && mapping->a_ops->is_dirty_writeback)
902 		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
903 }
904 
905 /*
906  * shrink_page_list() returns the number of reclaimed pages
907  */
908 static unsigned long shrink_page_list(struct list_head *page_list,
909 				      struct pglist_data *pgdat,
910 				      struct scan_control *sc,
911 				      enum ttu_flags ttu_flags,
912 				      unsigned long *ret_nr_dirty,
913 				      unsigned long *ret_nr_unqueued_dirty,
914 				      unsigned long *ret_nr_congested,
915 				      unsigned long *ret_nr_writeback,
916 				      unsigned long *ret_nr_immediate,
917 				      bool force_reclaim)
918 {
919 	LIST_HEAD(ret_pages);
920 	LIST_HEAD(free_pages);
921 	int pgactivate = 0;
922 	unsigned long nr_unqueued_dirty = 0;
923 	unsigned long nr_dirty = 0;
924 	unsigned long nr_congested = 0;
925 	unsigned long nr_reclaimed = 0;
926 	unsigned long nr_writeback = 0;
927 	unsigned long nr_immediate = 0;
928 
929 	cond_resched();
930 
931 	while (!list_empty(page_list)) {
932 		struct address_space *mapping;
933 		struct page *page;
934 		int may_enter_fs;
935 		enum page_references references = PAGEREF_RECLAIM_CLEAN;
936 		bool dirty, writeback;
937 		bool lazyfree = false;
938 		int ret = SWAP_SUCCESS;
939 
940 		cond_resched();
941 
942 		page = lru_to_page(page_list);
943 		list_del(&page->lru);
944 
945 		if (!trylock_page(page))
946 			goto keep;
947 
948 		VM_BUG_ON_PAGE(PageActive(page), page);
949 
950 		sc->nr_scanned++;
951 
952 		if (unlikely(!page_evictable(page)))
953 			goto cull_mlocked;
954 
955 		if (!sc->may_unmap && page_mapped(page))
956 			goto keep_locked;
957 
958 		/* Double the slab pressure for mapped and swapcache pages */
959 		if (page_mapped(page) || PageSwapCache(page))
960 			sc->nr_scanned++;
961 
962 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
963 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
964 
965 		/*
966 		 * The number of dirty pages determines if a zone is marked
967 		 * reclaim_congested which affects wait_iff_congested. kswapd
968 		 * will stall and start writing pages if the tail of the LRU
969 		 * is all dirty unqueued pages.
970 		 */
971 		page_check_dirty_writeback(page, &dirty, &writeback);
972 		if (dirty || writeback)
973 			nr_dirty++;
974 
975 		if (dirty && !writeback)
976 			nr_unqueued_dirty++;
977 
978 		/*
979 		 * Treat this page as congested if the underlying BDI is or if
980 		 * pages are cycling through the LRU so quickly that the
981 		 * pages marked for immediate reclaim are making it to the
982 		 * end of the LRU a second time.
983 		 */
984 		mapping = page_mapping(page);
985 		if (((dirty || writeback) && mapping &&
986 		     inode_write_congested(mapping->host)) ||
987 		    (writeback && PageReclaim(page)))
988 			nr_congested++;
989 
990 		/*
991 		 * If a page at the tail of the LRU is under writeback, there
992 		 * are three cases to consider.
993 		 *
994 		 * 1) If reclaim is encountering an excessive number of pages
995 		 *    under writeback and this page is both under writeback and
996 		 *    PageReclaim then it indicates that pages are being queued
997 		 *    for IO but are being recycled through the LRU before the
998 		 *    IO can complete. Waiting on the page itself risks an
999 		 *    indefinite stall if it is impossible to writeback the
1000 		 *    page due to IO error or disconnected storage so instead
1001 		 *    note that the LRU is being scanned too quickly and the
1002 		 *    caller can stall after page list has been processed.
1003 		 *
1004 		 * 2) Global or new memcg reclaim encounters a page that is
1005 		 *    not marked for immediate reclaim, or the caller does not
1006 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1007 		 *    not to fs). In this case mark the page for immediate
1008 		 *    reclaim and continue scanning.
1009 		 *
1010 		 *    Require may_enter_fs because we would wait on fs, which
1011 		 *    may not have submitted IO yet. And the loop driver might
1012 		 *    enter reclaim, and deadlock if it waits on a page for
1013 		 *    which it is needed to do the write (loop masks off
1014 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1015 		 *    would probably show more reasons.
1016 		 *
1017 		 * 3) Legacy memcg encounters a page that is already marked
1018 		 *    PageReclaim. memcg does not have any dirty pages
1019 		 *    throttling so we could easily OOM just because too many
1020 		 *    pages are in writeback and there is nothing else to
1021 		 *    reclaim. Wait for the writeback to complete.
1022 		 */
1023 		if (PageWriteback(page)) {
1024 			/* Case 1 above */
1025 			if (current_is_kswapd() &&
1026 			    PageReclaim(page) &&
1027 			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1028 				nr_immediate++;
1029 				goto keep_locked;
1030 
1031 			/* Case 2 above */
1032 			} else if (sane_reclaim(sc) ||
1033 			    !PageReclaim(page) || !may_enter_fs) {
1034 				/*
1035 				 * This is slightly racy - end_page_writeback()
1036 				 * might have just cleared PageReclaim, then
1037 				 * setting PageReclaim here end up interpreted
1038 				 * as PageReadahead - but that does not matter
1039 				 * enough to care.  What we do want is for this
1040 				 * page to have PageReclaim set next time memcg
1041 				 * reclaim reaches the tests above, so it will
1042 				 * then wait_on_page_writeback() to avoid OOM;
1043 				 * and it's also appropriate in global reclaim.
1044 				 */
1045 				SetPageReclaim(page);
1046 				nr_writeback++;
1047 				goto keep_locked;
1048 
1049 			/* Case 3 above */
1050 			} else {
1051 				unlock_page(page);
1052 				wait_on_page_writeback(page);
1053 				/* then go back and try same page again */
1054 				list_add_tail(&page->lru, page_list);
1055 				continue;
1056 			}
1057 		}
1058 
1059 		if (!force_reclaim)
1060 			references = page_check_references(page, sc);
1061 
1062 		switch (references) {
1063 		case PAGEREF_ACTIVATE:
1064 			goto activate_locked;
1065 		case PAGEREF_KEEP:
1066 			goto keep_locked;
1067 		case PAGEREF_RECLAIM:
1068 		case PAGEREF_RECLAIM_CLEAN:
1069 			; /* try to reclaim the page below */
1070 		}
1071 
1072 		/*
1073 		 * Anonymous process memory has backing store?
1074 		 * Try to allocate it some swap space here.
1075 		 */
1076 		if (PageAnon(page) && !PageSwapCache(page)) {
1077 			if (!(sc->gfp_mask & __GFP_IO))
1078 				goto keep_locked;
1079 			if (!add_to_swap(page, page_list))
1080 				goto activate_locked;
1081 			lazyfree = true;
1082 			may_enter_fs = 1;
1083 
1084 			/* Adding to swap updated mapping */
1085 			mapping = page_mapping(page);
1086 		} else if (unlikely(PageTransHuge(page))) {
1087 			/* Split file THP */
1088 			if (split_huge_page_to_list(page, page_list))
1089 				goto keep_locked;
1090 		}
1091 
1092 		VM_BUG_ON_PAGE(PageTransHuge(page), page);
1093 
1094 		/*
1095 		 * The page is mapped into the page tables of one or more
1096 		 * processes. Try to unmap it here.
1097 		 */
1098 		if (page_mapped(page) && mapping) {
1099 			switch (ret = try_to_unmap(page, lazyfree ?
1100 				(ttu_flags | TTU_BATCH_FLUSH | TTU_LZFREE) :
1101 				(ttu_flags | TTU_BATCH_FLUSH))) {
1102 			case SWAP_FAIL:
1103 				goto activate_locked;
1104 			case SWAP_AGAIN:
1105 				goto keep_locked;
1106 			case SWAP_MLOCK:
1107 				goto cull_mlocked;
1108 			case SWAP_LZFREE:
1109 				goto lazyfree;
1110 			case SWAP_SUCCESS:
1111 				; /* try to free the page below */
1112 			}
1113 		}
1114 
1115 		if (PageDirty(page)) {
1116 			/*
1117 			 * Only kswapd can writeback filesystem pages to
1118 			 * avoid risk of stack overflow but only writeback
1119 			 * if many dirty pages have been encountered.
1120 			 */
1121 			if (page_is_file_cache(page) &&
1122 					(!current_is_kswapd() ||
1123 					 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1124 				/*
1125 				 * Immediately reclaim when written back.
1126 				 * Similar in principal to deactivate_page()
1127 				 * except we already have the page isolated
1128 				 * and know it's dirty
1129 				 */
1130 				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1131 				SetPageReclaim(page);
1132 
1133 				goto keep_locked;
1134 			}
1135 
1136 			if (references == PAGEREF_RECLAIM_CLEAN)
1137 				goto keep_locked;
1138 			if (!may_enter_fs)
1139 				goto keep_locked;
1140 			if (!sc->may_writepage)
1141 				goto keep_locked;
1142 
1143 			/*
1144 			 * Page is dirty. Flush the TLB if a writable entry
1145 			 * potentially exists to avoid CPU writes after IO
1146 			 * starts and then write it out here.
1147 			 */
1148 			try_to_unmap_flush_dirty();
1149 			switch (pageout(page, mapping, sc)) {
1150 			case PAGE_KEEP:
1151 				goto keep_locked;
1152 			case PAGE_ACTIVATE:
1153 				goto activate_locked;
1154 			case PAGE_SUCCESS:
1155 				if (PageWriteback(page))
1156 					goto keep;
1157 				if (PageDirty(page))
1158 					goto keep;
1159 
1160 				/*
1161 				 * A synchronous write - probably a ramdisk.  Go
1162 				 * ahead and try to reclaim the page.
1163 				 */
1164 				if (!trylock_page(page))
1165 					goto keep;
1166 				if (PageDirty(page) || PageWriteback(page))
1167 					goto keep_locked;
1168 				mapping = page_mapping(page);
1169 			case PAGE_CLEAN:
1170 				; /* try to free the page below */
1171 			}
1172 		}
1173 
1174 		/*
1175 		 * If the page has buffers, try to free the buffer mappings
1176 		 * associated with this page. If we succeed we try to free
1177 		 * the page as well.
1178 		 *
1179 		 * We do this even if the page is PageDirty().
1180 		 * try_to_release_page() does not perform I/O, but it is
1181 		 * possible for a page to have PageDirty set, but it is actually
1182 		 * clean (all its buffers are clean).  This happens if the
1183 		 * buffers were written out directly, with submit_bh(). ext3
1184 		 * will do this, as well as the blockdev mapping.
1185 		 * try_to_release_page() will discover that cleanness and will
1186 		 * drop the buffers and mark the page clean - it can be freed.
1187 		 *
1188 		 * Rarely, pages can have buffers and no ->mapping.  These are
1189 		 * the pages which were not successfully invalidated in
1190 		 * truncate_complete_page().  We try to drop those buffers here
1191 		 * and if that worked, and the page is no longer mapped into
1192 		 * process address space (page_count == 1) it can be freed.
1193 		 * Otherwise, leave the page on the LRU so it is swappable.
1194 		 */
1195 		if (page_has_private(page)) {
1196 			if (!try_to_release_page(page, sc->gfp_mask))
1197 				goto activate_locked;
1198 			if (!mapping && page_count(page) == 1) {
1199 				unlock_page(page);
1200 				if (put_page_testzero(page))
1201 					goto free_it;
1202 				else {
1203 					/*
1204 					 * rare race with speculative reference.
1205 					 * the speculative reference will free
1206 					 * this page shortly, so we may
1207 					 * increment nr_reclaimed here (and
1208 					 * leave it off the LRU).
1209 					 */
1210 					nr_reclaimed++;
1211 					continue;
1212 				}
1213 			}
1214 		}
1215 
1216 lazyfree:
1217 		if (!mapping || !__remove_mapping(mapping, page, true))
1218 			goto keep_locked;
1219 
1220 		/*
1221 		 * At this point, we have no other references and there is
1222 		 * no way to pick any more up (removed from LRU, removed
1223 		 * from pagecache). Can use non-atomic bitops now (and
1224 		 * we obviously don't have to worry about waking up a process
1225 		 * waiting on the page lock, because there are no references.
1226 		 */
1227 		__ClearPageLocked(page);
1228 free_it:
1229 		if (ret == SWAP_LZFREE)
1230 			count_vm_event(PGLAZYFREED);
1231 
1232 		nr_reclaimed++;
1233 
1234 		/*
1235 		 * Is there need to periodically free_page_list? It would
1236 		 * appear not as the counts should be low
1237 		 */
1238 		list_add(&page->lru, &free_pages);
1239 		continue;
1240 
1241 cull_mlocked:
1242 		if (PageSwapCache(page))
1243 			try_to_free_swap(page);
1244 		unlock_page(page);
1245 		list_add(&page->lru, &ret_pages);
1246 		continue;
1247 
1248 activate_locked:
1249 		/* Not a candidate for swapping, so reclaim swap space. */
1250 		if (PageSwapCache(page) && mem_cgroup_swap_full(page))
1251 			try_to_free_swap(page);
1252 		VM_BUG_ON_PAGE(PageActive(page), page);
1253 		SetPageActive(page);
1254 		pgactivate++;
1255 keep_locked:
1256 		unlock_page(page);
1257 keep:
1258 		list_add(&page->lru, &ret_pages);
1259 		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1260 	}
1261 
1262 	mem_cgroup_uncharge_list(&free_pages);
1263 	try_to_unmap_flush();
1264 	free_hot_cold_page_list(&free_pages, true);
1265 
1266 	list_splice(&ret_pages, page_list);
1267 	count_vm_events(PGACTIVATE, pgactivate);
1268 
1269 	*ret_nr_dirty += nr_dirty;
1270 	*ret_nr_congested += nr_congested;
1271 	*ret_nr_unqueued_dirty += nr_unqueued_dirty;
1272 	*ret_nr_writeback += nr_writeback;
1273 	*ret_nr_immediate += nr_immediate;
1274 	return nr_reclaimed;
1275 }
1276 
1277 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1278 					    struct list_head *page_list)
1279 {
1280 	struct scan_control sc = {
1281 		.gfp_mask = GFP_KERNEL,
1282 		.priority = DEF_PRIORITY,
1283 		.may_unmap = 1,
1284 	};
1285 	unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1286 	struct page *page, *next;
1287 	LIST_HEAD(clean_pages);
1288 
1289 	list_for_each_entry_safe(page, next, page_list, lru) {
1290 		if (page_is_file_cache(page) && !PageDirty(page) &&
1291 		    !__PageMovable(page)) {
1292 			ClearPageActive(page);
1293 			list_move(&page->lru, &clean_pages);
1294 		}
1295 	}
1296 
1297 	ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1298 			TTU_UNMAP|TTU_IGNORE_ACCESS,
1299 			&dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1300 	list_splice(&clean_pages, page_list);
1301 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1302 	return ret;
1303 }
1304 
1305 /*
1306  * Attempt to remove the specified page from its LRU.  Only take this page
1307  * if it is of the appropriate PageActive status.  Pages which are being
1308  * freed elsewhere are also ignored.
1309  *
1310  * page:	page to consider
1311  * mode:	one of the LRU isolation modes defined above
1312  *
1313  * returns 0 on success, -ve errno on failure.
1314  */
1315 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1316 {
1317 	int ret = -EINVAL;
1318 
1319 	/* Only take pages on the LRU. */
1320 	if (!PageLRU(page))
1321 		return ret;
1322 
1323 	/* Compaction should not handle unevictable pages but CMA can do so */
1324 	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1325 		return ret;
1326 
1327 	ret = -EBUSY;
1328 
1329 	/*
1330 	 * To minimise LRU disruption, the caller can indicate that it only
1331 	 * wants to isolate pages it will be able to operate on without
1332 	 * blocking - clean pages for the most part.
1333 	 *
1334 	 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1335 	 * is used by reclaim when it is cannot write to backing storage
1336 	 *
1337 	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1338 	 * that it is possible to migrate without blocking
1339 	 */
1340 	if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1341 		/* All the caller can do on PageWriteback is block */
1342 		if (PageWriteback(page))
1343 			return ret;
1344 
1345 		if (PageDirty(page)) {
1346 			struct address_space *mapping;
1347 
1348 			/* ISOLATE_CLEAN means only clean pages */
1349 			if (mode & ISOLATE_CLEAN)
1350 				return ret;
1351 
1352 			/*
1353 			 * Only pages without mappings or that have a
1354 			 * ->migratepage callback are possible to migrate
1355 			 * without blocking
1356 			 */
1357 			mapping = page_mapping(page);
1358 			if (mapping && !mapping->a_ops->migratepage)
1359 				return ret;
1360 		}
1361 	}
1362 
1363 	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1364 		return ret;
1365 
1366 	if (likely(get_page_unless_zero(page))) {
1367 		/*
1368 		 * Be careful not to clear PageLRU until after we're
1369 		 * sure the page is not being freed elsewhere -- the
1370 		 * page release code relies on it.
1371 		 */
1372 		ClearPageLRU(page);
1373 		ret = 0;
1374 	}
1375 
1376 	return ret;
1377 }
1378 
1379 
1380 /*
1381  * Update LRU sizes after isolating pages. The LRU size updates must
1382  * be complete before mem_cgroup_update_lru_size due to a santity check.
1383  */
1384 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1385 			enum lru_list lru, unsigned long *nr_zone_taken,
1386 			unsigned long nr_taken)
1387 {
1388 	int zid;
1389 
1390 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1391 		if (!nr_zone_taken[zid])
1392 			continue;
1393 
1394 		__update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1395 	}
1396 
1397 #ifdef CONFIG_MEMCG
1398 	mem_cgroup_update_lru_size(lruvec, lru, -nr_taken);
1399 #endif
1400 }
1401 
1402 /*
1403  * zone_lru_lock is heavily contended.  Some of the functions that
1404  * shrink the lists perform better by taking out a batch of pages
1405  * and working on them outside the LRU lock.
1406  *
1407  * For pagecache intensive workloads, this function is the hottest
1408  * spot in the kernel (apart from copy_*_user functions).
1409  *
1410  * Appropriate locks must be held before calling this function.
1411  *
1412  * @nr_to_scan:	The number of pages to look through on the list.
1413  * @lruvec:	The LRU vector to pull pages from.
1414  * @dst:	The temp list to put pages on to.
1415  * @nr_scanned:	The number of pages that were scanned.
1416  * @sc:		The scan_control struct for this reclaim session
1417  * @mode:	One of the LRU isolation modes
1418  * @lru:	LRU list id for isolating
1419  *
1420  * returns how many pages were moved onto *@dst.
1421  */
1422 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1423 		struct lruvec *lruvec, struct list_head *dst,
1424 		unsigned long *nr_scanned, struct scan_control *sc,
1425 		isolate_mode_t mode, enum lru_list lru)
1426 {
1427 	struct list_head *src = &lruvec->lists[lru];
1428 	unsigned long nr_taken = 0;
1429 	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1430 	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1431 	unsigned long scan, nr_pages;
1432 	LIST_HEAD(pages_skipped);
1433 
1434 	for (scan = 0; scan < nr_to_scan && nr_taken < nr_to_scan &&
1435 					!list_empty(src);) {
1436 		struct page *page;
1437 
1438 		page = lru_to_page(src);
1439 		prefetchw_prev_lru_page(page, src, flags);
1440 
1441 		VM_BUG_ON_PAGE(!PageLRU(page), page);
1442 
1443 		if (page_zonenum(page) > sc->reclaim_idx) {
1444 			list_move(&page->lru, &pages_skipped);
1445 			nr_skipped[page_zonenum(page)]++;
1446 			continue;
1447 		}
1448 
1449 		/*
1450 		 * Account for scanned and skipped separetly to avoid the pgdat
1451 		 * being prematurely marked unreclaimable by pgdat_reclaimable.
1452 		 */
1453 		scan++;
1454 
1455 		switch (__isolate_lru_page(page, mode)) {
1456 		case 0:
1457 			nr_pages = hpage_nr_pages(page);
1458 			nr_taken += nr_pages;
1459 			nr_zone_taken[page_zonenum(page)] += nr_pages;
1460 			list_move(&page->lru, dst);
1461 			break;
1462 
1463 		case -EBUSY:
1464 			/* else it is being freed elsewhere */
1465 			list_move(&page->lru, src);
1466 			continue;
1467 
1468 		default:
1469 			BUG();
1470 		}
1471 	}
1472 
1473 	/*
1474 	 * Splice any skipped pages to the start of the LRU list. Note that
1475 	 * this disrupts the LRU order when reclaiming for lower zones but
1476 	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1477 	 * scanning would soon rescan the same pages to skip and put the
1478 	 * system at risk of premature OOM.
1479 	 */
1480 	if (!list_empty(&pages_skipped)) {
1481 		int zid;
1482 		unsigned long total_skipped = 0;
1483 
1484 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1485 			if (!nr_skipped[zid])
1486 				continue;
1487 
1488 			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1489 			total_skipped += nr_skipped[zid];
1490 		}
1491 
1492 		/*
1493 		 * Account skipped pages as a partial scan as the pgdat may be
1494 		 * close to unreclaimable. If the LRU list is empty, account
1495 		 * skipped pages as a full scan.
1496 		 */
1497 		scan += list_empty(src) ? total_skipped : total_skipped >> 2;
1498 
1499 		list_splice(&pages_skipped, src);
1500 	}
1501 	*nr_scanned = scan;
1502 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, scan,
1503 				    nr_taken, mode, is_file_lru(lru));
1504 	update_lru_sizes(lruvec, lru, nr_zone_taken, nr_taken);
1505 	return nr_taken;
1506 }
1507 
1508 /**
1509  * isolate_lru_page - tries to isolate a page from its LRU list
1510  * @page: page to isolate from its LRU list
1511  *
1512  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1513  * vmstat statistic corresponding to whatever LRU list the page was on.
1514  *
1515  * Returns 0 if the page was removed from an LRU list.
1516  * Returns -EBUSY if the page was not on an LRU list.
1517  *
1518  * The returned page will have PageLRU() cleared.  If it was found on
1519  * the active list, it will have PageActive set.  If it was found on
1520  * the unevictable list, it will have the PageUnevictable bit set. That flag
1521  * may need to be cleared by the caller before letting the page go.
1522  *
1523  * The vmstat statistic corresponding to the list on which the page was
1524  * found will be decremented.
1525  *
1526  * Restrictions:
1527  * (1) Must be called with an elevated refcount on the page. This is a
1528  *     fundamentnal difference from isolate_lru_pages (which is called
1529  *     without a stable reference).
1530  * (2) the lru_lock must not be held.
1531  * (3) interrupts must be enabled.
1532  */
1533 int isolate_lru_page(struct page *page)
1534 {
1535 	int ret = -EBUSY;
1536 
1537 	VM_BUG_ON_PAGE(!page_count(page), page);
1538 	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1539 
1540 	if (PageLRU(page)) {
1541 		struct zone *zone = page_zone(page);
1542 		struct lruvec *lruvec;
1543 
1544 		spin_lock_irq(zone_lru_lock(zone));
1545 		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1546 		if (PageLRU(page)) {
1547 			int lru = page_lru(page);
1548 			get_page(page);
1549 			ClearPageLRU(page);
1550 			del_page_from_lru_list(page, lruvec, lru);
1551 			ret = 0;
1552 		}
1553 		spin_unlock_irq(zone_lru_lock(zone));
1554 	}
1555 	return ret;
1556 }
1557 
1558 /*
1559  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1560  * then get resheduled. When there are massive number of tasks doing page
1561  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1562  * the LRU list will go small and be scanned faster than necessary, leading to
1563  * unnecessary swapping, thrashing and OOM.
1564  */
1565 static int too_many_isolated(struct pglist_data *pgdat, int file,
1566 		struct scan_control *sc)
1567 {
1568 	unsigned long inactive, isolated;
1569 
1570 	if (current_is_kswapd())
1571 		return 0;
1572 
1573 	if (!sane_reclaim(sc))
1574 		return 0;
1575 
1576 	if (file) {
1577 		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1578 		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1579 	} else {
1580 		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1581 		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1582 	}
1583 
1584 	/*
1585 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1586 	 * won't get blocked by normal direct-reclaimers, forming a circular
1587 	 * deadlock.
1588 	 */
1589 	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1590 		inactive >>= 3;
1591 
1592 	return isolated > inactive;
1593 }
1594 
1595 static noinline_for_stack void
1596 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1597 {
1598 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1599 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1600 	LIST_HEAD(pages_to_free);
1601 
1602 	/*
1603 	 * Put back any unfreeable pages.
1604 	 */
1605 	while (!list_empty(page_list)) {
1606 		struct page *page = lru_to_page(page_list);
1607 		int lru;
1608 
1609 		VM_BUG_ON_PAGE(PageLRU(page), page);
1610 		list_del(&page->lru);
1611 		if (unlikely(!page_evictable(page))) {
1612 			spin_unlock_irq(&pgdat->lru_lock);
1613 			putback_lru_page(page);
1614 			spin_lock_irq(&pgdat->lru_lock);
1615 			continue;
1616 		}
1617 
1618 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1619 
1620 		SetPageLRU(page);
1621 		lru = page_lru(page);
1622 		add_page_to_lru_list(page, lruvec, lru);
1623 
1624 		if (is_active_lru(lru)) {
1625 			int file = is_file_lru(lru);
1626 			int numpages = hpage_nr_pages(page);
1627 			reclaim_stat->recent_rotated[file] += numpages;
1628 		}
1629 		if (put_page_testzero(page)) {
1630 			__ClearPageLRU(page);
1631 			__ClearPageActive(page);
1632 			del_page_from_lru_list(page, lruvec, lru);
1633 
1634 			if (unlikely(PageCompound(page))) {
1635 				spin_unlock_irq(&pgdat->lru_lock);
1636 				mem_cgroup_uncharge(page);
1637 				(*get_compound_page_dtor(page))(page);
1638 				spin_lock_irq(&pgdat->lru_lock);
1639 			} else
1640 				list_add(&page->lru, &pages_to_free);
1641 		}
1642 	}
1643 
1644 	/*
1645 	 * To save our caller's stack, now use input list for pages to free.
1646 	 */
1647 	list_splice(&pages_to_free, page_list);
1648 }
1649 
1650 /*
1651  * If a kernel thread (such as nfsd for loop-back mounts) services
1652  * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1653  * In that case we should only throttle if the backing device it is
1654  * writing to is congested.  In other cases it is safe to throttle.
1655  */
1656 static int current_may_throttle(void)
1657 {
1658 	return !(current->flags & PF_LESS_THROTTLE) ||
1659 		current->backing_dev_info == NULL ||
1660 		bdi_write_congested(current->backing_dev_info);
1661 }
1662 
1663 static bool inactive_reclaimable_pages(struct lruvec *lruvec,
1664 				struct scan_control *sc, enum lru_list lru)
1665 {
1666 	int zid;
1667 	struct zone *zone;
1668 	int file = is_file_lru(lru);
1669 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1670 
1671 	if (!global_reclaim(sc))
1672 		return true;
1673 
1674 	for (zid = sc->reclaim_idx; zid >= 0; zid--) {
1675 		zone = &pgdat->node_zones[zid];
1676 		if (!managed_zone(zone))
1677 			continue;
1678 
1679 		if (zone_page_state_snapshot(zone, NR_ZONE_LRU_BASE +
1680 				LRU_FILE * file) >= SWAP_CLUSTER_MAX)
1681 			return true;
1682 	}
1683 
1684 	return false;
1685 }
1686 
1687 /*
1688  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
1689  * of reclaimed pages
1690  */
1691 static noinline_for_stack unsigned long
1692 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1693 		     struct scan_control *sc, enum lru_list lru)
1694 {
1695 	LIST_HEAD(page_list);
1696 	unsigned long nr_scanned;
1697 	unsigned long nr_reclaimed = 0;
1698 	unsigned long nr_taken;
1699 	unsigned long nr_dirty = 0;
1700 	unsigned long nr_congested = 0;
1701 	unsigned long nr_unqueued_dirty = 0;
1702 	unsigned long nr_writeback = 0;
1703 	unsigned long nr_immediate = 0;
1704 	isolate_mode_t isolate_mode = 0;
1705 	int file = is_file_lru(lru);
1706 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1707 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1708 
1709 	if (!inactive_reclaimable_pages(lruvec, sc, lru))
1710 		return 0;
1711 
1712 	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1713 		congestion_wait(BLK_RW_ASYNC, HZ/10);
1714 
1715 		/* We are about to die and free our memory. Return now. */
1716 		if (fatal_signal_pending(current))
1717 			return SWAP_CLUSTER_MAX;
1718 	}
1719 
1720 	lru_add_drain();
1721 
1722 	if (!sc->may_unmap)
1723 		isolate_mode |= ISOLATE_UNMAPPED;
1724 	if (!sc->may_writepage)
1725 		isolate_mode |= ISOLATE_CLEAN;
1726 
1727 	spin_lock_irq(&pgdat->lru_lock);
1728 
1729 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1730 				     &nr_scanned, sc, isolate_mode, lru);
1731 
1732 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1733 	reclaim_stat->recent_scanned[file] += nr_taken;
1734 
1735 	if (global_reclaim(sc)) {
1736 		__mod_node_page_state(pgdat, NR_PAGES_SCANNED, nr_scanned);
1737 		if (current_is_kswapd())
1738 			__count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1739 		else
1740 			__count_vm_events(PGSCAN_DIRECT, nr_scanned);
1741 	}
1742 	spin_unlock_irq(&pgdat->lru_lock);
1743 
1744 	if (nr_taken == 0)
1745 		return 0;
1746 
1747 	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, TTU_UNMAP,
1748 				&nr_dirty, &nr_unqueued_dirty, &nr_congested,
1749 				&nr_writeback, &nr_immediate,
1750 				false);
1751 
1752 	spin_lock_irq(&pgdat->lru_lock);
1753 
1754 	if (global_reclaim(sc)) {
1755 		if (current_is_kswapd())
1756 			__count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
1757 		else
1758 			__count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
1759 	}
1760 
1761 	putback_inactive_pages(lruvec, &page_list);
1762 
1763 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1764 
1765 	spin_unlock_irq(&pgdat->lru_lock);
1766 
1767 	mem_cgroup_uncharge_list(&page_list);
1768 	free_hot_cold_page_list(&page_list, true);
1769 
1770 	/*
1771 	 * If reclaim is isolating dirty pages under writeback, it implies
1772 	 * that the long-lived page allocation rate is exceeding the page
1773 	 * laundering rate. Either the global limits are not being effective
1774 	 * at throttling processes due to the page distribution throughout
1775 	 * zones or there is heavy usage of a slow backing device. The
1776 	 * only option is to throttle from reclaim context which is not ideal
1777 	 * as there is no guarantee the dirtying process is throttled in the
1778 	 * same way balance_dirty_pages() manages.
1779 	 *
1780 	 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1781 	 * of pages under pages flagged for immediate reclaim and stall if any
1782 	 * are encountered in the nr_immediate check below.
1783 	 */
1784 	if (nr_writeback && nr_writeback == nr_taken)
1785 		set_bit(PGDAT_WRITEBACK, &pgdat->flags);
1786 
1787 	/*
1788 	 * Legacy memcg will stall in page writeback so avoid forcibly
1789 	 * stalling here.
1790 	 */
1791 	if (sane_reclaim(sc)) {
1792 		/*
1793 		 * Tag a zone as congested if all the dirty pages scanned were
1794 		 * backed by a congested BDI and wait_iff_congested will stall.
1795 		 */
1796 		if (nr_dirty && nr_dirty == nr_congested)
1797 			set_bit(PGDAT_CONGESTED, &pgdat->flags);
1798 
1799 		/*
1800 		 * If dirty pages are scanned that are not queued for IO, it
1801 		 * implies that flushers are not keeping up. In this case, flag
1802 		 * the pgdat PGDAT_DIRTY and kswapd will start writing pages from
1803 		 * reclaim context.
1804 		 */
1805 		if (nr_unqueued_dirty == nr_taken)
1806 			set_bit(PGDAT_DIRTY, &pgdat->flags);
1807 
1808 		/*
1809 		 * If kswapd scans pages marked marked for immediate
1810 		 * reclaim and under writeback (nr_immediate), it implies
1811 		 * that pages are cycling through the LRU faster than
1812 		 * they are written so also forcibly stall.
1813 		 */
1814 		if (nr_immediate && current_may_throttle())
1815 			congestion_wait(BLK_RW_ASYNC, HZ/10);
1816 	}
1817 
1818 	/*
1819 	 * Stall direct reclaim for IO completions if underlying BDIs or zone
1820 	 * is congested. Allow kswapd to continue until it starts encountering
1821 	 * unqueued dirty pages or cycling through the LRU too quickly.
1822 	 */
1823 	if (!sc->hibernation_mode && !current_is_kswapd() &&
1824 	    current_may_throttle())
1825 		wait_iff_congested(pgdat, BLK_RW_ASYNC, HZ/10);
1826 
1827 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1828 			nr_scanned, nr_reclaimed,
1829 			sc->priority, file);
1830 	return nr_reclaimed;
1831 }
1832 
1833 /*
1834  * This moves pages from the active list to the inactive list.
1835  *
1836  * We move them the other way if the page is referenced by one or more
1837  * processes, from rmap.
1838  *
1839  * If the pages are mostly unmapped, the processing is fast and it is
1840  * appropriate to hold zone_lru_lock across the whole operation.  But if
1841  * the pages are mapped, the processing is slow (page_referenced()) so we
1842  * should drop zone_lru_lock around each page.  It's impossible to balance
1843  * this, so instead we remove the pages from the LRU while processing them.
1844  * It is safe to rely on PG_active against the non-LRU pages in here because
1845  * nobody will play with that bit on a non-LRU page.
1846  *
1847  * The downside is that we have to touch page->_refcount against each page.
1848  * But we had to alter page->flags anyway.
1849  */
1850 
1851 static void move_active_pages_to_lru(struct lruvec *lruvec,
1852 				     struct list_head *list,
1853 				     struct list_head *pages_to_free,
1854 				     enum lru_list lru)
1855 {
1856 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1857 	unsigned long pgmoved = 0;
1858 	struct page *page;
1859 	int nr_pages;
1860 
1861 	while (!list_empty(list)) {
1862 		page = lru_to_page(list);
1863 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1864 
1865 		VM_BUG_ON_PAGE(PageLRU(page), page);
1866 		SetPageLRU(page);
1867 
1868 		nr_pages = hpage_nr_pages(page);
1869 		update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1870 		list_move(&page->lru, &lruvec->lists[lru]);
1871 		pgmoved += nr_pages;
1872 
1873 		if (put_page_testzero(page)) {
1874 			__ClearPageLRU(page);
1875 			__ClearPageActive(page);
1876 			del_page_from_lru_list(page, lruvec, lru);
1877 
1878 			if (unlikely(PageCompound(page))) {
1879 				spin_unlock_irq(&pgdat->lru_lock);
1880 				mem_cgroup_uncharge(page);
1881 				(*get_compound_page_dtor(page))(page);
1882 				spin_lock_irq(&pgdat->lru_lock);
1883 			} else
1884 				list_add(&page->lru, pages_to_free);
1885 		}
1886 	}
1887 
1888 	if (!is_active_lru(lru))
1889 		__count_vm_events(PGDEACTIVATE, pgmoved);
1890 }
1891 
1892 static void shrink_active_list(unsigned long nr_to_scan,
1893 			       struct lruvec *lruvec,
1894 			       struct scan_control *sc,
1895 			       enum lru_list lru)
1896 {
1897 	unsigned long nr_taken;
1898 	unsigned long nr_scanned;
1899 	unsigned long vm_flags;
1900 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1901 	LIST_HEAD(l_active);
1902 	LIST_HEAD(l_inactive);
1903 	struct page *page;
1904 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1905 	unsigned long nr_rotated = 0;
1906 	isolate_mode_t isolate_mode = 0;
1907 	int file = is_file_lru(lru);
1908 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1909 
1910 	lru_add_drain();
1911 
1912 	if (!sc->may_unmap)
1913 		isolate_mode |= ISOLATE_UNMAPPED;
1914 	if (!sc->may_writepage)
1915 		isolate_mode |= ISOLATE_CLEAN;
1916 
1917 	spin_lock_irq(&pgdat->lru_lock);
1918 
1919 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1920 				     &nr_scanned, sc, isolate_mode, lru);
1921 
1922 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1923 	reclaim_stat->recent_scanned[file] += nr_taken;
1924 
1925 	if (global_reclaim(sc))
1926 		__mod_node_page_state(pgdat, NR_PAGES_SCANNED, nr_scanned);
1927 	__count_vm_events(PGREFILL, nr_scanned);
1928 
1929 	spin_unlock_irq(&pgdat->lru_lock);
1930 
1931 	while (!list_empty(&l_hold)) {
1932 		cond_resched();
1933 		page = lru_to_page(&l_hold);
1934 		list_del(&page->lru);
1935 
1936 		if (unlikely(!page_evictable(page))) {
1937 			putback_lru_page(page);
1938 			continue;
1939 		}
1940 
1941 		if (unlikely(buffer_heads_over_limit)) {
1942 			if (page_has_private(page) && trylock_page(page)) {
1943 				if (page_has_private(page))
1944 					try_to_release_page(page, 0);
1945 				unlock_page(page);
1946 			}
1947 		}
1948 
1949 		if (page_referenced(page, 0, sc->target_mem_cgroup,
1950 				    &vm_flags)) {
1951 			nr_rotated += hpage_nr_pages(page);
1952 			/*
1953 			 * Identify referenced, file-backed active pages and
1954 			 * give them one more trip around the active list. So
1955 			 * that executable code get better chances to stay in
1956 			 * memory under moderate memory pressure.  Anon pages
1957 			 * are not likely to be evicted by use-once streaming
1958 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
1959 			 * so we ignore them here.
1960 			 */
1961 			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1962 				list_add(&page->lru, &l_active);
1963 				continue;
1964 			}
1965 		}
1966 
1967 		ClearPageActive(page);	/* we are de-activating */
1968 		list_add(&page->lru, &l_inactive);
1969 	}
1970 
1971 	/*
1972 	 * Move pages back to the lru list.
1973 	 */
1974 	spin_lock_irq(&pgdat->lru_lock);
1975 	/*
1976 	 * Count referenced pages from currently used mappings as rotated,
1977 	 * even though only some of them are actually re-activated.  This
1978 	 * helps balance scan pressure between file and anonymous pages in
1979 	 * get_scan_count.
1980 	 */
1981 	reclaim_stat->recent_rotated[file] += nr_rotated;
1982 
1983 	move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1984 	move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1985 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1986 	spin_unlock_irq(&pgdat->lru_lock);
1987 
1988 	mem_cgroup_uncharge_list(&l_hold);
1989 	free_hot_cold_page_list(&l_hold, true);
1990 }
1991 
1992 /*
1993  * The inactive anon list should be small enough that the VM never has
1994  * to do too much work.
1995  *
1996  * The inactive file list should be small enough to leave most memory
1997  * to the established workingset on the scan-resistant active list,
1998  * but large enough to avoid thrashing the aggregate readahead window.
1999  *
2000  * Both inactive lists should also be large enough that each inactive
2001  * page has a chance to be referenced again before it is reclaimed.
2002  *
2003  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2004  * on this LRU, maintained by the pageout code. A zone->inactive_ratio
2005  * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2006  *
2007  * total     target    max
2008  * memory    ratio     inactive
2009  * -------------------------------------
2010  *   10MB       1         5MB
2011  *  100MB       1        50MB
2012  *    1GB       3       250MB
2013  *   10GB      10       0.9GB
2014  *  100GB      31         3GB
2015  *    1TB     101        10GB
2016  *   10TB     320        32GB
2017  */
2018 static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2019 						struct scan_control *sc)
2020 {
2021 	unsigned long inactive_ratio;
2022 	unsigned long inactive;
2023 	unsigned long active;
2024 	unsigned long gb;
2025 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2026 	int zid;
2027 
2028 	/*
2029 	 * If we don't have swap space, anonymous page deactivation
2030 	 * is pointless.
2031 	 */
2032 	if (!file && !total_swap_pages)
2033 		return false;
2034 
2035 	inactive = lruvec_lru_size(lruvec, file * LRU_FILE);
2036 	active = lruvec_lru_size(lruvec, file * LRU_FILE + LRU_ACTIVE);
2037 
2038 	/*
2039 	 * For zone-constrained allocations, it is necessary to check if
2040 	 * deactivations are required for lowmem to be reclaimed. This
2041 	 * calculates the inactive/active pages available in eligible zones.
2042 	 */
2043 	for (zid = sc->reclaim_idx + 1; zid < MAX_NR_ZONES; zid++) {
2044 		struct zone *zone = &pgdat->node_zones[zid];
2045 		unsigned long inactive_zone, active_zone;
2046 
2047 		if (!managed_zone(zone))
2048 			continue;
2049 
2050 		inactive_zone = zone_page_state(zone,
2051 				NR_ZONE_LRU_BASE + (file * LRU_FILE));
2052 		active_zone = zone_page_state(zone,
2053 				NR_ZONE_LRU_BASE + (file * LRU_FILE) + LRU_ACTIVE);
2054 
2055 		inactive -= min(inactive, inactive_zone);
2056 		active -= min(active, active_zone);
2057 	}
2058 
2059 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
2060 	if (gb)
2061 		inactive_ratio = int_sqrt(10 * gb);
2062 	else
2063 		inactive_ratio = 1;
2064 
2065 	return inactive * inactive_ratio < active;
2066 }
2067 
2068 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2069 				 struct lruvec *lruvec, struct scan_control *sc)
2070 {
2071 	if (is_active_lru(lru)) {
2072 		if (inactive_list_is_low(lruvec, is_file_lru(lru), sc))
2073 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2074 		return 0;
2075 	}
2076 
2077 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2078 }
2079 
2080 enum scan_balance {
2081 	SCAN_EQUAL,
2082 	SCAN_FRACT,
2083 	SCAN_ANON,
2084 	SCAN_FILE,
2085 };
2086 
2087 /*
2088  * Determine how aggressively the anon and file LRU lists should be
2089  * scanned.  The relative value of each set of LRU lists is determined
2090  * by looking at the fraction of the pages scanned we did rotate back
2091  * onto the active list instead of evict.
2092  *
2093  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2094  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2095  */
2096 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2097 			   struct scan_control *sc, unsigned long *nr,
2098 			   unsigned long *lru_pages)
2099 {
2100 	int swappiness = mem_cgroup_swappiness(memcg);
2101 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2102 	u64 fraction[2];
2103 	u64 denominator = 0;	/* gcc */
2104 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2105 	unsigned long anon_prio, file_prio;
2106 	enum scan_balance scan_balance;
2107 	unsigned long anon, file;
2108 	bool force_scan = false;
2109 	unsigned long ap, fp;
2110 	enum lru_list lru;
2111 	bool some_scanned;
2112 	int pass;
2113 
2114 	/*
2115 	 * If the zone or memcg is small, nr[l] can be 0.  This
2116 	 * results in no scanning on this priority and a potential
2117 	 * priority drop.  Global direct reclaim can go to the next
2118 	 * zone and tends to have no problems. Global kswapd is for
2119 	 * zone balancing and it needs to scan a minimum amount. When
2120 	 * reclaiming for a memcg, a priority drop can cause high
2121 	 * latencies, so it's better to scan a minimum amount there as
2122 	 * well.
2123 	 */
2124 	if (current_is_kswapd()) {
2125 		if (!pgdat_reclaimable(pgdat))
2126 			force_scan = true;
2127 		if (!mem_cgroup_online(memcg))
2128 			force_scan = true;
2129 	}
2130 	if (!global_reclaim(sc))
2131 		force_scan = true;
2132 
2133 	/* If we have no swap space, do not bother scanning anon pages. */
2134 	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2135 		scan_balance = SCAN_FILE;
2136 		goto out;
2137 	}
2138 
2139 	/*
2140 	 * Global reclaim will swap to prevent OOM even with no
2141 	 * swappiness, but memcg users want to use this knob to
2142 	 * disable swapping for individual groups completely when
2143 	 * using the memory controller's swap limit feature would be
2144 	 * too expensive.
2145 	 */
2146 	if (!global_reclaim(sc) && !swappiness) {
2147 		scan_balance = SCAN_FILE;
2148 		goto out;
2149 	}
2150 
2151 	/*
2152 	 * Do not apply any pressure balancing cleverness when the
2153 	 * system is close to OOM, scan both anon and file equally
2154 	 * (unless the swappiness setting disagrees with swapping).
2155 	 */
2156 	if (!sc->priority && swappiness) {
2157 		scan_balance = SCAN_EQUAL;
2158 		goto out;
2159 	}
2160 
2161 	/*
2162 	 * Prevent the reclaimer from falling into the cache trap: as
2163 	 * cache pages start out inactive, every cache fault will tip
2164 	 * the scan balance towards the file LRU.  And as the file LRU
2165 	 * shrinks, so does the window for rotation from references.
2166 	 * This means we have a runaway feedback loop where a tiny
2167 	 * thrashing file LRU becomes infinitely more attractive than
2168 	 * anon pages.  Try to detect this based on file LRU size.
2169 	 */
2170 	if (global_reclaim(sc)) {
2171 		unsigned long pgdatfile;
2172 		unsigned long pgdatfree;
2173 		int z;
2174 		unsigned long total_high_wmark = 0;
2175 
2176 		pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2177 		pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2178 			   node_page_state(pgdat, NR_INACTIVE_FILE);
2179 
2180 		for (z = 0; z < MAX_NR_ZONES; z++) {
2181 			struct zone *zone = &pgdat->node_zones[z];
2182 			if (!managed_zone(zone))
2183 				continue;
2184 
2185 			total_high_wmark += high_wmark_pages(zone);
2186 		}
2187 
2188 		if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2189 			scan_balance = SCAN_ANON;
2190 			goto out;
2191 		}
2192 	}
2193 
2194 	/*
2195 	 * If there is enough inactive page cache, i.e. if the size of the
2196 	 * inactive list is greater than that of the active list *and* the
2197 	 * inactive list actually has some pages to scan on this priority, we
2198 	 * do not reclaim anything from the anonymous working set right now.
2199 	 * Without the second condition we could end up never scanning an
2200 	 * lruvec even if it has plenty of old anonymous pages unless the
2201 	 * system is under heavy pressure.
2202 	 */
2203 	if (!inactive_list_is_low(lruvec, true, sc) &&
2204 	    lruvec_lru_size(lruvec, LRU_INACTIVE_FILE) >> sc->priority) {
2205 		scan_balance = SCAN_FILE;
2206 		goto out;
2207 	}
2208 
2209 	scan_balance = SCAN_FRACT;
2210 
2211 	/*
2212 	 * With swappiness at 100, anonymous and file have the same priority.
2213 	 * This scanning priority is essentially the inverse of IO cost.
2214 	 */
2215 	anon_prio = swappiness;
2216 	file_prio = 200 - anon_prio;
2217 
2218 	/*
2219 	 * OK, so we have swap space and a fair amount of page cache
2220 	 * pages.  We use the recently rotated / recently scanned
2221 	 * ratios to determine how valuable each cache is.
2222 	 *
2223 	 * Because workloads change over time (and to avoid overflow)
2224 	 * we keep these statistics as a floating average, which ends
2225 	 * up weighing recent references more than old ones.
2226 	 *
2227 	 * anon in [0], file in [1]
2228 	 */
2229 
2230 	anon  = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON) +
2231 		lruvec_lru_size(lruvec, LRU_INACTIVE_ANON);
2232 	file  = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE) +
2233 		lruvec_lru_size(lruvec, LRU_INACTIVE_FILE);
2234 
2235 	spin_lock_irq(&pgdat->lru_lock);
2236 	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2237 		reclaim_stat->recent_scanned[0] /= 2;
2238 		reclaim_stat->recent_rotated[0] /= 2;
2239 	}
2240 
2241 	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2242 		reclaim_stat->recent_scanned[1] /= 2;
2243 		reclaim_stat->recent_rotated[1] /= 2;
2244 	}
2245 
2246 	/*
2247 	 * The amount of pressure on anon vs file pages is inversely
2248 	 * proportional to the fraction of recently scanned pages on
2249 	 * each list that were recently referenced and in active use.
2250 	 */
2251 	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2252 	ap /= reclaim_stat->recent_rotated[0] + 1;
2253 
2254 	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2255 	fp /= reclaim_stat->recent_rotated[1] + 1;
2256 	spin_unlock_irq(&pgdat->lru_lock);
2257 
2258 	fraction[0] = ap;
2259 	fraction[1] = fp;
2260 	denominator = ap + fp + 1;
2261 out:
2262 	some_scanned = false;
2263 	/* Only use force_scan on second pass. */
2264 	for (pass = 0; !some_scanned && pass < 2; pass++) {
2265 		*lru_pages = 0;
2266 		for_each_evictable_lru(lru) {
2267 			int file = is_file_lru(lru);
2268 			unsigned long size;
2269 			unsigned long scan;
2270 
2271 			size = lruvec_lru_size(lruvec, lru);
2272 			scan = size >> sc->priority;
2273 
2274 			if (!scan && pass && force_scan)
2275 				scan = min(size, SWAP_CLUSTER_MAX);
2276 
2277 			switch (scan_balance) {
2278 			case SCAN_EQUAL:
2279 				/* Scan lists relative to size */
2280 				break;
2281 			case SCAN_FRACT:
2282 				/*
2283 				 * Scan types proportional to swappiness and
2284 				 * their relative recent reclaim efficiency.
2285 				 */
2286 				scan = div64_u64(scan * fraction[file],
2287 							denominator);
2288 				break;
2289 			case SCAN_FILE:
2290 			case SCAN_ANON:
2291 				/* Scan one type exclusively */
2292 				if ((scan_balance == SCAN_FILE) != file) {
2293 					size = 0;
2294 					scan = 0;
2295 				}
2296 				break;
2297 			default:
2298 				/* Look ma, no brain */
2299 				BUG();
2300 			}
2301 
2302 			*lru_pages += size;
2303 			nr[lru] = scan;
2304 
2305 			/*
2306 			 * Skip the second pass and don't force_scan,
2307 			 * if we found something to scan.
2308 			 */
2309 			some_scanned |= !!scan;
2310 		}
2311 	}
2312 }
2313 
2314 /*
2315  * This is a basic per-node page freer.  Used by both kswapd and direct reclaim.
2316  */
2317 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2318 			      struct scan_control *sc, unsigned long *lru_pages)
2319 {
2320 	struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2321 	unsigned long nr[NR_LRU_LISTS];
2322 	unsigned long targets[NR_LRU_LISTS];
2323 	unsigned long nr_to_scan;
2324 	enum lru_list lru;
2325 	unsigned long nr_reclaimed = 0;
2326 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2327 	struct blk_plug plug;
2328 	bool scan_adjusted;
2329 
2330 	get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2331 
2332 	/* Record the original scan target for proportional adjustments later */
2333 	memcpy(targets, nr, sizeof(nr));
2334 
2335 	/*
2336 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2337 	 * event that can occur when there is little memory pressure e.g.
2338 	 * multiple streaming readers/writers. Hence, we do not abort scanning
2339 	 * when the requested number of pages are reclaimed when scanning at
2340 	 * DEF_PRIORITY on the assumption that the fact we are direct
2341 	 * reclaiming implies that kswapd is not keeping up and it is best to
2342 	 * do a batch of work at once. For memcg reclaim one check is made to
2343 	 * abort proportional reclaim if either the file or anon lru has already
2344 	 * dropped to zero at the first pass.
2345 	 */
2346 	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2347 			 sc->priority == DEF_PRIORITY);
2348 
2349 	blk_start_plug(&plug);
2350 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2351 					nr[LRU_INACTIVE_FILE]) {
2352 		unsigned long nr_anon, nr_file, percentage;
2353 		unsigned long nr_scanned;
2354 
2355 		for_each_evictable_lru(lru) {
2356 			if (nr[lru]) {
2357 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2358 				nr[lru] -= nr_to_scan;
2359 
2360 				nr_reclaimed += shrink_list(lru, nr_to_scan,
2361 							    lruvec, sc);
2362 			}
2363 		}
2364 
2365 		cond_resched();
2366 
2367 		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2368 			continue;
2369 
2370 		/*
2371 		 * For kswapd and memcg, reclaim at least the number of pages
2372 		 * requested. Ensure that the anon and file LRUs are scanned
2373 		 * proportionally what was requested by get_scan_count(). We
2374 		 * stop reclaiming one LRU and reduce the amount scanning
2375 		 * proportional to the original scan target.
2376 		 */
2377 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2378 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2379 
2380 		/*
2381 		 * It's just vindictive to attack the larger once the smaller
2382 		 * has gone to zero.  And given the way we stop scanning the
2383 		 * smaller below, this makes sure that we only make one nudge
2384 		 * towards proportionality once we've got nr_to_reclaim.
2385 		 */
2386 		if (!nr_file || !nr_anon)
2387 			break;
2388 
2389 		if (nr_file > nr_anon) {
2390 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2391 						targets[LRU_ACTIVE_ANON] + 1;
2392 			lru = LRU_BASE;
2393 			percentage = nr_anon * 100 / scan_target;
2394 		} else {
2395 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2396 						targets[LRU_ACTIVE_FILE] + 1;
2397 			lru = LRU_FILE;
2398 			percentage = nr_file * 100 / scan_target;
2399 		}
2400 
2401 		/* Stop scanning the smaller of the LRU */
2402 		nr[lru] = 0;
2403 		nr[lru + LRU_ACTIVE] = 0;
2404 
2405 		/*
2406 		 * Recalculate the other LRU scan count based on its original
2407 		 * scan target and the percentage scanning already complete
2408 		 */
2409 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2410 		nr_scanned = targets[lru] - nr[lru];
2411 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2412 		nr[lru] -= min(nr[lru], nr_scanned);
2413 
2414 		lru += LRU_ACTIVE;
2415 		nr_scanned = targets[lru] - nr[lru];
2416 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2417 		nr[lru] -= min(nr[lru], nr_scanned);
2418 
2419 		scan_adjusted = true;
2420 	}
2421 	blk_finish_plug(&plug);
2422 	sc->nr_reclaimed += nr_reclaimed;
2423 
2424 	/*
2425 	 * Even if we did not try to evict anon pages at all, we want to
2426 	 * rebalance the anon lru active/inactive ratio.
2427 	 */
2428 	if (inactive_list_is_low(lruvec, false, sc))
2429 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2430 				   sc, LRU_ACTIVE_ANON);
2431 }
2432 
2433 /* Use reclaim/compaction for costly allocs or under memory pressure */
2434 static bool in_reclaim_compaction(struct scan_control *sc)
2435 {
2436 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2437 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2438 			 sc->priority < DEF_PRIORITY - 2))
2439 		return true;
2440 
2441 	return false;
2442 }
2443 
2444 /*
2445  * Reclaim/compaction is used for high-order allocation requests. It reclaims
2446  * order-0 pages before compacting the zone. should_continue_reclaim() returns
2447  * true if more pages should be reclaimed such that when the page allocator
2448  * calls try_to_compact_zone() that it will have enough free pages to succeed.
2449  * It will give up earlier than that if there is difficulty reclaiming pages.
2450  */
2451 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2452 					unsigned long nr_reclaimed,
2453 					unsigned long nr_scanned,
2454 					struct scan_control *sc)
2455 {
2456 	unsigned long pages_for_compaction;
2457 	unsigned long inactive_lru_pages;
2458 	int z;
2459 
2460 	/* If not in reclaim/compaction mode, stop */
2461 	if (!in_reclaim_compaction(sc))
2462 		return false;
2463 
2464 	/* Consider stopping depending on scan and reclaim activity */
2465 	if (sc->gfp_mask & __GFP_REPEAT) {
2466 		/*
2467 		 * For __GFP_REPEAT allocations, stop reclaiming if the
2468 		 * full LRU list has been scanned and we are still failing
2469 		 * to reclaim pages. This full LRU scan is potentially
2470 		 * expensive but a __GFP_REPEAT caller really wants to succeed
2471 		 */
2472 		if (!nr_reclaimed && !nr_scanned)
2473 			return false;
2474 	} else {
2475 		/*
2476 		 * For non-__GFP_REPEAT allocations which can presumably
2477 		 * fail without consequence, stop if we failed to reclaim
2478 		 * any pages from the last SWAP_CLUSTER_MAX number of
2479 		 * pages that were scanned. This will return to the
2480 		 * caller faster at the risk reclaim/compaction and
2481 		 * the resulting allocation attempt fails
2482 		 */
2483 		if (!nr_reclaimed)
2484 			return false;
2485 	}
2486 
2487 	/*
2488 	 * If we have not reclaimed enough pages for compaction and the
2489 	 * inactive lists are large enough, continue reclaiming
2490 	 */
2491 	pages_for_compaction = compact_gap(sc->order);
2492 	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2493 	if (get_nr_swap_pages() > 0)
2494 		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2495 	if (sc->nr_reclaimed < pages_for_compaction &&
2496 			inactive_lru_pages > pages_for_compaction)
2497 		return true;
2498 
2499 	/* If compaction would go ahead or the allocation would succeed, stop */
2500 	for (z = 0; z <= sc->reclaim_idx; z++) {
2501 		struct zone *zone = &pgdat->node_zones[z];
2502 		if (!managed_zone(zone))
2503 			continue;
2504 
2505 		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2506 		case COMPACT_SUCCESS:
2507 		case COMPACT_CONTINUE:
2508 			return false;
2509 		default:
2510 			/* check next zone */
2511 			;
2512 		}
2513 	}
2514 	return true;
2515 }
2516 
2517 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2518 {
2519 	struct reclaim_state *reclaim_state = current->reclaim_state;
2520 	unsigned long nr_reclaimed, nr_scanned;
2521 	bool reclaimable = false;
2522 
2523 	do {
2524 		struct mem_cgroup *root = sc->target_mem_cgroup;
2525 		struct mem_cgroup_reclaim_cookie reclaim = {
2526 			.pgdat = pgdat,
2527 			.priority = sc->priority,
2528 		};
2529 		unsigned long node_lru_pages = 0;
2530 		struct mem_cgroup *memcg;
2531 
2532 		nr_reclaimed = sc->nr_reclaimed;
2533 		nr_scanned = sc->nr_scanned;
2534 
2535 		memcg = mem_cgroup_iter(root, NULL, &reclaim);
2536 		do {
2537 			unsigned long lru_pages;
2538 			unsigned long reclaimed;
2539 			unsigned long scanned;
2540 
2541 			if (mem_cgroup_low(root, memcg)) {
2542 				if (!sc->may_thrash)
2543 					continue;
2544 				mem_cgroup_events(memcg, MEMCG_LOW, 1);
2545 			}
2546 
2547 			reclaimed = sc->nr_reclaimed;
2548 			scanned = sc->nr_scanned;
2549 
2550 			shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2551 			node_lru_pages += lru_pages;
2552 
2553 			if (memcg)
2554 				shrink_slab(sc->gfp_mask, pgdat->node_id,
2555 					    memcg, sc->nr_scanned - scanned,
2556 					    lru_pages);
2557 
2558 			/* Record the group's reclaim efficiency */
2559 			vmpressure(sc->gfp_mask, memcg, false,
2560 				   sc->nr_scanned - scanned,
2561 				   sc->nr_reclaimed - reclaimed);
2562 
2563 			/*
2564 			 * Direct reclaim and kswapd have to scan all memory
2565 			 * cgroups to fulfill the overall scan target for the
2566 			 * node.
2567 			 *
2568 			 * Limit reclaim, on the other hand, only cares about
2569 			 * nr_to_reclaim pages to be reclaimed and it will
2570 			 * retry with decreasing priority if one round over the
2571 			 * whole hierarchy is not sufficient.
2572 			 */
2573 			if (!global_reclaim(sc) &&
2574 					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2575 				mem_cgroup_iter_break(root, memcg);
2576 				break;
2577 			}
2578 		} while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2579 
2580 		/*
2581 		 * Shrink the slab caches in the same proportion that
2582 		 * the eligible LRU pages were scanned.
2583 		 */
2584 		if (global_reclaim(sc))
2585 			shrink_slab(sc->gfp_mask, pgdat->node_id, NULL,
2586 				    sc->nr_scanned - nr_scanned,
2587 				    node_lru_pages);
2588 
2589 		if (reclaim_state) {
2590 			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2591 			reclaim_state->reclaimed_slab = 0;
2592 		}
2593 
2594 		/* Record the subtree's reclaim efficiency */
2595 		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2596 			   sc->nr_scanned - nr_scanned,
2597 			   sc->nr_reclaimed - nr_reclaimed);
2598 
2599 		if (sc->nr_reclaimed - nr_reclaimed)
2600 			reclaimable = true;
2601 
2602 	} while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2603 					 sc->nr_scanned - nr_scanned, sc));
2604 
2605 	return reclaimable;
2606 }
2607 
2608 /*
2609  * Returns true if compaction should go ahead for a costly-order request, or
2610  * the allocation would already succeed without compaction. Return false if we
2611  * should reclaim first.
2612  */
2613 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2614 {
2615 	unsigned long watermark;
2616 	enum compact_result suitable;
2617 
2618 	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2619 	if (suitable == COMPACT_SUCCESS)
2620 		/* Allocation should succeed already. Don't reclaim. */
2621 		return true;
2622 	if (suitable == COMPACT_SKIPPED)
2623 		/* Compaction cannot yet proceed. Do reclaim. */
2624 		return false;
2625 
2626 	/*
2627 	 * Compaction is already possible, but it takes time to run and there
2628 	 * are potentially other callers using the pages just freed. So proceed
2629 	 * with reclaim to make a buffer of free pages available to give
2630 	 * compaction a reasonable chance of completing and allocating the page.
2631 	 * Note that we won't actually reclaim the whole buffer in one attempt
2632 	 * as the target watermark in should_continue_reclaim() is lower. But if
2633 	 * we are already above the high+gap watermark, don't reclaim at all.
2634 	 */
2635 	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2636 
2637 	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2638 }
2639 
2640 /*
2641  * This is the direct reclaim path, for page-allocating processes.  We only
2642  * try to reclaim pages from zones which will satisfy the caller's allocation
2643  * request.
2644  *
2645  * If a zone is deemed to be full of pinned pages then just give it a light
2646  * scan then give up on it.
2647  */
2648 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2649 {
2650 	struct zoneref *z;
2651 	struct zone *zone;
2652 	unsigned long nr_soft_reclaimed;
2653 	unsigned long nr_soft_scanned;
2654 	gfp_t orig_mask;
2655 	pg_data_t *last_pgdat = NULL;
2656 
2657 	/*
2658 	 * If the number of buffer_heads in the machine exceeds the maximum
2659 	 * allowed level, force direct reclaim to scan the highmem zone as
2660 	 * highmem pages could be pinning lowmem pages storing buffer_heads
2661 	 */
2662 	orig_mask = sc->gfp_mask;
2663 	if (buffer_heads_over_limit) {
2664 		sc->gfp_mask |= __GFP_HIGHMEM;
2665 		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2666 	}
2667 
2668 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2669 					sc->reclaim_idx, sc->nodemask) {
2670 		/*
2671 		 * Take care memory controller reclaiming has small influence
2672 		 * to global LRU.
2673 		 */
2674 		if (global_reclaim(sc)) {
2675 			if (!cpuset_zone_allowed(zone,
2676 						 GFP_KERNEL | __GFP_HARDWALL))
2677 				continue;
2678 
2679 			if (sc->priority != DEF_PRIORITY &&
2680 			    !pgdat_reclaimable(zone->zone_pgdat))
2681 				continue;	/* Let kswapd poll it */
2682 
2683 			/*
2684 			 * If we already have plenty of memory free for
2685 			 * compaction in this zone, don't free any more.
2686 			 * Even though compaction is invoked for any
2687 			 * non-zero order, only frequent costly order
2688 			 * reclamation is disruptive enough to become a
2689 			 * noticeable problem, like transparent huge
2690 			 * page allocations.
2691 			 */
2692 			if (IS_ENABLED(CONFIG_COMPACTION) &&
2693 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2694 			    compaction_ready(zone, sc)) {
2695 				sc->compaction_ready = true;
2696 				continue;
2697 			}
2698 
2699 			/*
2700 			 * Shrink each node in the zonelist once. If the
2701 			 * zonelist is ordered by zone (not the default) then a
2702 			 * node may be shrunk multiple times but in that case
2703 			 * the user prefers lower zones being preserved.
2704 			 */
2705 			if (zone->zone_pgdat == last_pgdat)
2706 				continue;
2707 
2708 			/*
2709 			 * This steals pages from memory cgroups over softlimit
2710 			 * and returns the number of reclaimed pages and
2711 			 * scanned pages. This works for global memory pressure
2712 			 * and balancing, not for a memcg's limit.
2713 			 */
2714 			nr_soft_scanned = 0;
2715 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2716 						sc->order, sc->gfp_mask,
2717 						&nr_soft_scanned);
2718 			sc->nr_reclaimed += nr_soft_reclaimed;
2719 			sc->nr_scanned += nr_soft_scanned;
2720 			/* need some check for avoid more shrink_zone() */
2721 		}
2722 
2723 		/* See comment about same check for global reclaim above */
2724 		if (zone->zone_pgdat == last_pgdat)
2725 			continue;
2726 		last_pgdat = zone->zone_pgdat;
2727 		shrink_node(zone->zone_pgdat, sc);
2728 	}
2729 
2730 	/*
2731 	 * Restore to original mask to avoid the impact on the caller if we
2732 	 * promoted it to __GFP_HIGHMEM.
2733 	 */
2734 	sc->gfp_mask = orig_mask;
2735 }
2736 
2737 /*
2738  * This is the main entry point to direct page reclaim.
2739  *
2740  * If a full scan of the inactive list fails to free enough memory then we
2741  * are "out of memory" and something needs to be killed.
2742  *
2743  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2744  * high - the zone may be full of dirty or under-writeback pages, which this
2745  * caller can't do much about.  We kick the writeback threads and take explicit
2746  * naps in the hope that some of these pages can be written.  But if the
2747  * allocating task holds filesystem locks which prevent writeout this might not
2748  * work, and the allocation attempt will fail.
2749  *
2750  * returns:	0, if no pages reclaimed
2751  * 		else, the number of pages reclaimed
2752  */
2753 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2754 					  struct scan_control *sc)
2755 {
2756 	int initial_priority = sc->priority;
2757 	unsigned long total_scanned = 0;
2758 	unsigned long writeback_threshold;
2759 retry:
2760 	delayacct_freepages_start();
2761 
2762 	if (global_reclaim(sc))
2763 		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
2764 
2765 	do {
2766 		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2767 				sc->priority);
2768 		sc->nr_scanned = 0;
2769 		shrink_zones(zonelist, sc);
2770 
2771 		total_scanned += sc->nr_scanned;
2772 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2773 			break;
2774 
2775 		if (sc->compaction_ready)
2776 			break;
2777 
2778 		/*
2779 		 * If we're getting trouble reclaiming, start doing
2780 		 * writepage even in laptop mode.
2781 		 */
2782 		if (sc->priority < DEF_PRIORITY - 2)
2783 			sc->may_writepage = 1;
2784 
2785 		/*
2786 		 * Try to write back as many pages as we just scanned.  This
2787 		 * tends to cause slow streaming writers to write data to the
2788 		 * disk smoothly, at the dirtying rate, which is nice.   But
2789 		 * that's undesirable in laptop mode, where we *want* lumpy
2790 		 * writeout.  So in laptop mode, write out the whole world.
2791 		 */
2792 		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2793 		if (total_scanned > writeback_threshold) {
2794 			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2795 						WB_REASON_TRY_TO_FREE_PAGES);
2796 			sc->may_writepage = 1;
2797 		}
2798 	} while (--sc->priority >= 0);
2799 
2800 	delayacct_freepages_end();
2801 
2802 	if (sc->nr_reclaimed)
2803 		return sc->nr_reclaimed;
2804 
2805 	/* Aborted reclaim to try compaction? don't OOM, then */
2806 	if (sc->compaction_ready)
2807 		return 1;
2808 
2809 	/* Untapped cgroup reserves?  Don't OOM, retry. */
2810 	if (!sc->may_thrash) {
2811 		sc->priority = initial_priority;
2812 		sc->may_thrash = 1;
2813 		goto retry;
2814 	}
2815 
2816 	return 0;
2817 }
2818 
2819 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2820 {
2821 	struct zone *zone;
2822 	unsigned long pfmemalloc_reserve = 0;
2823 	unsigned long free_pages = 0;
2824 	int i;
2825 	bool wmark_ok;
2826 
2827 	for (i = 0; i <= ZONE_NORMAL; i++) {
2828 		zone = &pgdat->node_zones[i];
2829 		if (!managed_zone(zone) ||
2830 		    pgdat_reclaimable_pages(pgdat) == 0)
2831 			continue;
2832 
2833 		pfmemalloc_reserve += min_wmark_pages(zone);
2834 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
2835 	}
2836 
2837 	/* If there are no reserves (unexpected config) then do not throttle */
2838 	if (!pfmemalloc_reserve)
2839 		return true;
2840 
2841 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
2842 
2843 	/* kswapd must be awake if processes are being throttled */
2844 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2845 		pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
2846 						(enum zone_type)ZONE_NORMAL);
2847 		wake_up_interruptible(&pgdat->kswapd_wait);
2848 	}
2849 
2850 	return wmark_ok;
2851 }
2852 
2853 /*
2854  * Throttle direct reclaimers if backing storage is backed by the network
2855  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2856  * depleted. kswapd will continue to make progress and wake the processes
2857  * when the low watermark is reached.
2858  *
2859  * Returns true if a fatal signal was delivered during throttling. If this
2860  * happens, the page allocator should not consider triggering the OOM killer.
2861  */
2862 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2863 					nodemask_t *nodemask)
2864 {
2865 	struct zoneref *z;
2866 	struct zone *zone;
2867 	pg_data_t *pgdat = NULL;
2868 
2869 	/*
2870 	 * Kernel threads should not be throttled as they may be indirectly
2871 	 * responsible for cleaning pages necessary for reclaim to make forward
2872 	 * progress. kjournald for example may enter direct reclaim while
2873 	 * committing a transaction where throttling it could forcing other
2874 	 * processes to block on log_wait_commit().
2875 	 */
2876 	if (current->flags & PF_KTHREAD)
2877 		goto out;
2878 
2879 	/*
2880 	 * If a fatal signal is pending, this process should not throttle.
2881 	 * It should return quickly so it can exit and free its memory
2882 	 */
2883 	if (fatal_signal_pending(current))
2884 		goto out;
2885 
2886 	/*
2887 	 * Check if the pfmemalloc reserves are ok by finding the first node
2888 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2889 	 * GFP_KERNEL will be required for allocating network buffers when
2890 	 * swapping over the network so ZONE_HIGHMEM is unusable.
2891 	 *
2892 	 * Throttling is based on the first usable node and throttled processes
2893 	 * wait on a queue until kswapd makes progress and wakes them. There
2894 	 * is an affinity then between processes waking up and where reclaim
2895 	 * progress has been made assuming the process wakes on the same node.
2896 	 * More importantly, processes running on remote nodes will not compete
2897 	 * for remote pfmemalloc reserves and processes on different nodes
2898 	 * should make reasonable progress.
2899 	 */
2900 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2901 					gfp_zone(gfp_mask), nodemask) {
2902 		if (zone_idx(zone) > ZONE_NORMAL)
2903 			continue;
2904 
2905 		/* Throttle based on the first usable node */
2906 		pgdat = zone->zone_pgdat;
2907 		if (pfmemalloc_watermark_ok(pgdat))
2908 			goto out;
2909 		break;
2910 	}
2911 
2912 	/* If no zone was usable by the allocation flags then do not throttle */
2913 	if (!pgdat)
2914 		goto out;
2915 
2916 	/* Account for the throttling */
2917 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
2918 
2919 	/*
2920 	 * If the caller cannot enter the filesystem, it's possible that it
2921 	 * is due to the caller holding an FS lock or performing a journal
2922 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
2923 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
2924 	 * blocked waiting on the same lock. Instead, throttle for up to a
2925 	 * second before continuing.
2926 	 */
2927 	if (!(gfp_mask & __GFP_FS)) {
2928 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2929 			pfmemalloc_watermark_ok(pgdat), HZ);
2930 
2931 		goto check_pending;
2932 	}
2933 
2934 	/* Throttle until kswapd wakes the process */
2935 	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2936 		pfmemalloc_watermark_ok(pgdat));
2937 
2938 check_pending:
2939 	if (fatal_signal_pending(current))
2940 		return true;
2941 
2942 out:
2943 	return false;
2944 }
2945 
2946 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2947 				gfp_t gfp_mask, nodemask_t *nodemask)
2948 {
2949 	unsigned long nr_reclaimed;
2950 	struct scan_control sc = {
2951 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2952 		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2953 		.reclaim_idx = gfp_zone(gfp_mask),
2954 		.order = order,
2955 		.nodemask = nodemask,
2956 		.priority = DEF_PRIORITY,
2957 		.may_writepage = !laptop_mode,
2958 		.may_unmap = 1,
2959 		.may_swap = 1,
2960 	};
2961 
2962 	/*
2963 	 * Do not enter reclaim if fatal signal was delivered while throttled.
2964 	 * 1 is returned so that the page allocator does not OOM kill at this
2965 	 * point.
2966 	 */
2967 	if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2968 		return 1;
2969 
2970 	trace_mm_vmscan_direct_reclaim_begin(order,
2971 				sc.may_writepage,
2972 				gfp_mask,
2973 				sc.reclaim_idx);
2974 
2975 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2976 
2977 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2978 
2979 	return nr_reclaimed;
2980 }
2981 
2982 #ifdef CONFIG_MEMCG
2983 
2984 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
2985 						gfp_t gfp_mask, bool noswap,
2986 						pg_data_t *pgdat,
2987 						unsigned long *nr_scanned)
2988 {
2989 	struct scan_control sc = {
2990 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2991 		.target_mem_cgroup = memcg,
2992 		.may_writepage = !laptop_mode,
2993 		.may_unmap = 1,
2994 		.reclaim_idx = MAX_NR_ZONES - 1,
2995 		.may_swap = !noswap,
2996 	};
2997 	unsigned long lru_pages;
2998 
2999 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3000 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3001 
3002 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3003 						      sc.may_writepage,
3004 						      sc.gfp_mask,
3005 						      sc.reclaim_idx);
3006 
3007 	/*
3008 	 * NOTE: Although we can get the priority field, using it
3009 	 * here is not a good idea, since it limits the pages we can scan.
3010 	 * if we don't reclaim here, the shrink_node from balance_pgdat
3011 	 * will pick up pages from other mem cgroup's as well. We hack
3012 	 * the priority and make it zero.
3013 	 */
3014 	shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3015 
3016 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3017 
3018 	*nr_scanned = sc.nr_scanned;
3019 	return sc.nr_reclaimed;
3020 }
3021 
3022 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3023 					   unsigned long nr_pages,
3024 					   gfp_t gfp_mask,
3025 					   bool may_swap)
3026 {
3027 	struct zonelist *zonelist;
3028 	unsigned long nr_reclaimed;
3029 	int nid;
3030 	struct scan_control sc = {
3031 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3032 		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3033 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3034 		.reclaim_idx = MAX_NR_ZONES - 1,
3035 		.target_mem_cgroup = memcg,
3036 		.priority = DEF_PRIORITY,
3037 		.may_writepage = !laptop_mode,
3038 		.may_unmap = 1,
3039 		.may_swap = may_swap,
3040 	};
3041 
3042 	/*
3043 	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3044 	 * take care of from where we get pages. So the node where we start the
3045 	 * scan does not need to be the current node.
3046 	 */
3047 	nid = mem_cgroup_select_victim_node(memcg);
3048 
3049 	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3050 
3051 	trace_mm_vmscan_memcg_reclaim_begin(0,
3052 					    sc.may_writepage,
3053 					    sc.gfp_mask,
3054 					    sc.reclaim_idx);
3055 
3056 	current->flags |= PF_MEMALLOC;
3057 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3058 	current->flags &= ~PF_MEMALLOC;
3059 
3060 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3061 
3062 	return nr_reclaimed;
3063 }
3064 #endif
3065 
3066 static void age_active_anon(struct pglist_data *pgdat,
3067 				struct scan_control *sc)
3068 {
3069 	struct mem_cgroup *memcg;
3070 
3071 	if (!total_swap_pages)
3072 		return;
3073 
3074 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
3075 	do {
3076 		struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3077 
3078 		if (inactive_list_is_low(lruvec, false, sc))
3079 			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3080 					   sc, LRU_ACTIVE_ANON);
3081 
3082 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
3083 	} while (memcg);
3084 }
3085 
3086 static bool zone_balanced(struct zone *zone, int order, int classzone_idx)
3087 {
3088 	unsigned long mark = high_wmark_pages(zone);
3089 
3090 	if (!zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3091 		return false;
3092 
3093 	/*
3094 	 * If any eligible zone is balanced then the node is not considered
3095 	 * to be congested or dirty
3096 	 */
3097 	clear_bit(PGDAT_CONGESTED, &zone->zone_pgdat->flags);
3098 	clear_bit(PGDAT_DIRTY, &zone->zone_pgdat->flags);
3099 
3100 	return true;
3101 }
3102 
3103 /*
3104  * Prepare kswapd for sleeping. This verifies that there are no processes
3105  * waiting in throttle_direct_reclaim() and that watermarks have been met.
3106  *
3107  * Returns true if kswapd is ready to sleep
3108  */
3109 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3110 {
3111 	int i;
3112 
3113 	/*
3114 	 * The throttled processes are normally woken up in balance_pgdat() as
3115 	 * soon as pfmemalloc_watermark_ok() is true. But there is a potential
3116 	 * race between when kswapd checks the watermarks and a process gets
3117 	 * throttled. There is also a potential race if processes get
3118 	 * throttled, kswapd wakes, a large process exits thereby balancing the
3119 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
3120 	 * the wake up checks. If kswapd is going to sleep, no process should
3121 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3122 	 * the wake up is premature, processes will wake kswapd and get
3123 	 * throttled again. The difference from wake ups in balance_pgdat() is
3124 	 * that here we are under prepare_to_wait().
3125 	 */
3126 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
3127 		wake_up_all(&pgdat->pfmemalloc_wait);
3128 
3129 	for (i = 0; i <= classzone_idx; i++) {
3130 		struct zone *zone = pgdat->node_zones + i;
3131 
3132 		if (!managed_zone(zone))
3133 			continue;
3134 
3135 		if (!zone_balanced(zone, order, classzone_idx))
3136 			return false;
3137 	}
3138 
3139 	return true;
3140 }
3141 
3142 /*
3143  * kswapd shrinks a node of pages that are at or below the highest usable
3144  * zone that is currently unbalanced.
3145  *
3146  * Returns true if kswapd scanned at least the requested number of pages to
3147  * reclaim or if the lack of progress was due to pages under writeback.
3148  * This is used to determine if the scanning priority needs to be raised.
3149  */
3150 static bool kswapd_shrink_node(pg_data_t *pgdat,
3151 			       struct scan_control *sc)
3152 {
3153 	struct zone *zone;
3154 	int z;
3155 
3156 	/* Reclaim a number of pages proportional to the number of zones */
3157 	sc->nr_to_reclaim = 0;
3158 	for (z = 0; z <= sc->reclaim_idx; z++) {
3159 		zone = pgdat->node_zones + z;
3160 		if (!managed_zone(zone))
3161 			continue;
3162 
3163 		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3164 	}
3165 
3166 	/*
3167 	 * Historically care was taken to put equal pressure on all zones but
3168 	 * now pressure is applied based on node LRU order.
3169 	 */
3170 	shrink_node(pgdat, sc);
3171 
3172 	/*
3173 	 * Fragmentation may mean that the system cannot be rebalanced for
3174 	 * high-order allocations. If twice the allocation size has been
3175 	 * reclaimed then recheck watermarks only at order-0 to prevent
3176 	 * excessive reclaim. Assume that a process requested a high-order
3177 	 * can direct reclaim/compact.
3178 	 */
3179 	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3180 		sc->order = 0;
3181 
3182 	return sc->nr_scanned >= sc->nr_to_reclaim;
3183 }
3184 
3185 /*
3186  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3187  * that are eligible for use by the caller until at least one zone is
3188  * balanced.
3189  *
3190  * Returns the order kswapd finished reclaiming at.
3191  *
3192  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3193  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3194  * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3195  * or lower is eligible for reclaim until at least one usable zone is
3196  * balanced.
3197  */
3198 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3199 {
3200 	int i;
3201 	unsigned long nr_soft_reclaimed;
3202 	unsigned long nr_soft_scanned;
3203 	struct zone *zone;
3204 	struct scan_control sc = {
3205 		.gfp_mask = GFP_KERNEL,
3206 		.order = order,
3207 		.priority = DEF_PRIORITY,
3208 		.may_writepage = !laptop_mode,
3209 		.may_unmap = 1,
3210 		.may_swap = 1,
3211 	};
3212 	count_vm_event(PAGEOUTRUN);
3213 
3214 	do {
3215 		bool raise_priority = true;
3216 
3217 		sc.nr_reclaimed = 0;
3218 		sc.reclaim_idx = classzone_idx;
3219 
3220 		/*
3221 		 * If the number of buffer_heads exceeds the maximum allowed
3222 		 * then consider reclaiming from all zones. This has a dual
3223 		 * purpose -- on 64-bit systems it is expected that
3224 		 * buffer_heads are stripped during active rotation. On 32-bit
3225 		 * systems, highmem pages can pin lowmem memory and shrinking
3226 		 * buffers can relieve lowmem pressure. Reclaim may still not
3227 		 * go ahead if all eligible zones for the original allocation
3228 		 * request are balanced to avoid excessive reclaim from kswapd.
3229 		 */
3230 		if (buffer_heads_over_limit) {
3231 			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3232 				zone = pgdat->node_zones + i;
3233 				if (!managed_zone(zone))
3234 					continue;
3235 
3236 				sc.reclaim_idx = i;
3237 				break;
3238 			}
3239 		}
3240 
3241 		/*
3242 		 * Only reclaim if there are no eligible zones. Check from
3243 		 * high to low zone as allocations prefer higher zones.
3244 		 * Scanning from low to high zone would allow congestion to be
3245 		 * cleared during a very small window when a small low
3246 		 * zone was balanced even under extreme pressure when the
3247 		 * overall node may be congested. Note that sc.reclaim_idx
3248 		 * is not used as buffer_heads_over_limit may have adjusted
3249 		 * it.
3250 		 */
3251 		for (i = classzone_idx; i >= 0; i--) {
3252 			zone = pgdat->node_zones + i;
3253 			if (!managed_zone(zone))
3254 				continue;
3255 
3256 			if (zone_balanced(zone, sc.order, classzone_idx))
3257 				goto out;
3258 		}
3259 
3260 		/*
3261 		 * Do some background aging of the anon list, to give
3262 		 * pages a chance to be referenced before reclaiming. All
3263 		 * pages are rotated regardless of classzone as this is
3264 		 * about consistent aging.
3265 		 */
3266 		age_active_anon(pgdat, &sc);
3267 
3268 		/*
3269 		 * If we're getting trouble reclaiming, start doing writepage
3270 		 * even in laptop mode.
3271 		 */
3272 		if (sc.priority < DEF_PRIORITY - 2 || !pgdat_reclaimable(pgdat))
3273 			sc.may_writepage = 1;
3274 
3275 		/* Call soft limit reclaim before calling shrink_node. */
3276 		sc.nr_scanned = 0;
3277 		nr_soft_scanned = 0;
3278 		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3279 						sc.gfp_mask, &nr_soft_scanned);
3280 		sc.nr_reclaimed += nr_soft_reclaimed;
3281 
3282 		/*
3283 		 * There should be no need to raise the scanning priority if
3284 		 * enough pages are already being scanned that that high
3285 		 * watermark would be met at 100% efficiency.
3286 		 */
3287 		if (kswapd_shrink_node(pgdat, &sc))
3288 			raise_priority = false;
3289 
3290 		/*
3291 		 * If the low watermark is met there is no need for processes
3292 		 * to be throttled on pfmemalloc_wait as they should not be
3293 		 * able to safely make forward progress. Wake them
3294 		 */
3295 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3296 				pfmemalloc_watermark_ok(pgdat))
3297 			wake_up_all(&pgdat->pfmemalloc_wait);
3298 
3299 		/* Check if kswapd should be suspending */
3300 		if (try_to_freeze() || kthread_should_stop())
3301 			break;
3302 
3303 		/*
3304 		 * Raise priority if scanning rate is too low or there was no
3305 		 * progress in reclaiming pages
3306 		 */
3307 		if (raise_priority || !sc.nr_reclaimed)
3308 			sc.priority--;
3309 	} while (sc.priority >= 1);
3310 
3311 out:
3312 	/*
3313 	 * Return the order kswapd stopped reclaiming at as
3314 	 * prepare_kswapd_sleep() takes it into account. If another caller
3315 	 * entered the allocator slow path while kswapd was awake, order will
3316 	 * remain at the higher level.
3317 	 */
3318 	return sc.order;
3319 }
3320 
3321 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3322 				unsigned int classzone_idx)
3323 {
3324 	long remaining = 0;
3325 	DEFINE_WAIT(wait);
3326 
3327 	if (freezing(current) || kthread_should_stop())
3328 		return;
3329 
3330 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3331 
3332 	/* Try to sleep for a short interval */
3333 	if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3334 		/*
3335 		 * Compaction records what page blocks it recently failed to
3336 		 * isolate pages from and skips them in the future scanning.
3337 		 * When kswapd is going to sleep, it is reasonable to assume
3338 		 * that pages and compaction may succeed so reset the cache.
3339 		 */
3340 		reset_isolation_suitable(pgdat);
3341 
3342 		/*
3343 		 * We have freed the memory, now we should compact it to make
3344 		 * allocation of the requested order possible.
3345 		 */
3346 		wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3347 
3348 		remaining = schedule_timeout(HZ/10);
3349 
3350 		/*
3351 		 * If woken prematurely then reset kswapd_classzone_idx and
3352 		 * order. The values will either be from a wakeup request or
3353 		 * the previous request that slept prematurely.
3354 		 */
3355 		if (remaining) {
3356 			pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, classzone_idx);
3357 			pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3358 		}
3359 
3360 		finish_wait(&pgdat->kswapd_wait, &wait);
3361 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3362 	}
3363 
3364 	/*
3365 	 * After a short sleep, check if it was a premature sleep. If not, then
3366 	 * go fully to sleep until explicitly woken up.
3367 	 */
3368 	if (!remaining &&
3369 	    prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3370 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3371 
3372 		/*
3373 		 * vmstat counters are not perfectly accurate and the estimated
3374 		 * value for counters such as NR_FREE_PAGES can deviate from the
3375 		 * true value by nr_online_cpus * threshold. To avoid the zone
3376 		 * watermarks being breached while under pressure, we reduce the
3377 		 * per-cpu vmstat threshold while kswapd is awake and restore
3378 		 * them before going back to sleep.
3379 		 */
3380 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3381 
3382 		if (!kthread_should_stop())
3383 			schedule();
3384 
3385 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3386 	} else {
3387 		if (remaining)
3388 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3389 		else
3390 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3391 	}
3392 	finish_wait(&pgdat->kswapd_wait, &wait);
3393 }
3394 
3395 /*
3396  * The background pageout daemon, started as a kernel thread
3397  * from the init process.
3398  *
3399  * This basically trickles out pages so that we have _some_
3400  * free memory available even if there is no other activity
3401  * that frees anything up. This is needed for things like routing
3402  * etc, where we otherwise might have all activity going on in
3403  * asynchronous contexts that cannot page things out.
3404  *
3405  * If there are applications that are active memory-allocators
3406  * (most normal use), this basically shouldn't matter.
3407  */
3408 static int kswapd(void *p)
3409 {
3410 	unsigned int alloc_order, reclaim_order, classzone_idx;
3411 	pg_data_t *pgdat = (pg_data_t*)p;
3412 	struct task_struct *tsk = current;
3413 
3414 	struct reclaim_state reclaim_state = {
3415 		.reclaimed_slab = 0,
3416 	};
3417 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3418 
3419 	lockdep_set_current_reclaim_state(GFP_KERNEL);
3420 
3421 	if (!cpumask_empty(cpumask))
3422 		set_cpus_allowed_ptr(tsk, cpumask);
3423 	current->reclaim_state = &reclaim_state;
3424 
3425 	/*
3426 	 * Tell the memory management that we're a "memory allocator",
3427 	 * and that if we need more memory we should get access to it
3428 	 * regardless (see "__alloc_pages()"). "kswapd" should
3429 	 * never get caught in the normal page freeing logic.
3430 	 *
3431 	 * (Kswapd normally doesn't need memory anyway, but sometimes
3432 	 * you need a small amount of memory in order to be able to
3433 	 * page out something else, and this flag essentially protects
3434 	 * us from recursively trying to free more memory as we're
3435 	 * trying to free the first piece of memory in the first place).
3436 	 */
3437 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3438 	set_freezable();
3439 
3440 	pgdat->kswapd_order = alloc_order = reclaim_order = 0;
3441 	pgdat->kswapd_classzone_idx = classzone_idx = 0;
3442 	for ( ; ; ) {
3443 		bool ret;
3444 
3445 kswapd_try_sleep:
3446 		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3447 					classzone_idx);
3448 
3449 		/* Read the new order and classzone_idx */
3450 		alloc_order = reclaim_order = pgdat->kswapd_order;
3451 		classzone_idx = pgdat->kswapd_classzone_idx;
3452 		pgdat->kswapd_order = 0;
3453 		pgdat->kswapd_classzone_idx = 0;
3454 
3455 		ret = try_to_freeze();
3456 		if (kthread_should_stop())
3457 			break;
3458 
3459 		/*
3460 		 * We can speed up thawing tasks if we don't call balance_pgdat
3461 		 * after returning from the refrigerator
3462 		 */
3463 		if (ret)
3464 			continue;
3465 
3466 		/*
3467 		 * Reclaim begins at the requested order but if a high-order
3468 		 * reclaim fails then kswapd falls back to reclaiming for
3469 		 * order-0. If that happens, kswapd will consider sleeping
3470 		 * for the order it finished reclaiming at (reclaim_order)
3471 		 * but kcompactd is woken to compact for the original
3472 		 * request (alloc_order).
3473 		 */
3474 		trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3475 						alloc_order);
3476 		reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3477 		if (reclaim_order < alloc_order)
3478 			goto kswapd_try_sleep;
3479 
3480 		alloc_order = reclaim_order = pgdat->kswapd_order;
3481 		classzone_idx = pgdat->kswapd_classzone_idx;
3482 	}
3483 
3484 	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3485 	current->reclaim_state = NULL;
3486 	lockdep_clear_current_reclaim_state();
3487 
3488 	return 0;
3489 }
3490 
3491 /*
3492  * A zone is low on free memory, so wake its kswapd task to service it.
3493  */
3494 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3495 {
3496 	pg_data_t *pgdat;
3497 	int z;
3498 
3499 	if (!managed_zone(zone))
3500 		return;
3501 
3502 	if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
3503 		return;
3504 	pgdat = zone->zone_pgdat;
3505 	pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, classzone_idx);
3506 	pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3507 	if (!waitqueue_active(&pgdat->kswapd_wait))
3508 		return;
3509 
3510 	/* Only wake kswapd if all zones are unbalanced */
3511 	for (z = 0; z <= classzone_idx; z++) {
3512 		zone = pgdat->node_zones + z;
3513 		if (!managed_zone(zone))
3514 			continue;
3515 
3516 		if (zone_balanced(zone, order, classzone_idx))
3517 			return;
3518 	}
3519 
3520 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3521 	wake_up_interruptible(&pgdat->kswapd_wait);
3522 }
3523 
3524 #ifdef CONFIG_HIBERNATION
3525 /*
3526  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3527  * freed pages.
3528  *
3529  * Rather than trying to age LRUs the aim is to preserve the overall
3530  * LRU order by reclaiming preferentially
3531  * inactive > active > active referenced > active mapped
3532  */
3533 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3534 {
3535 	struct reclaim_state reclaim_state;
3536 	struct scan_control sc = {
3537 		.nr_to_reclaim = nr_to_reclaim,
3538 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3539 		.reclaim_idx = MAX_NR_ZONES - 1,
3540 		.priority = DEF_PRIORITY,
3541 		.may_writepage = 1,
3542 		.may_unmap = 1,
3543 		.may_swap = 1,
3544 		.hibernation_mode = 1,
3545 	};
3546 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3547 	struct task_struct *p = current;
3548 	unsigned long nr_reclaimed;
3549 
3550 	p->flags |= PF_MEMALLOC;
3551 	lockdep_set_current_reclaim_state(sc.gfp_mask);
3552 	reclaim_state.reclaimed_slab = 0;
3553 	p->reclaim_state = &reclaim_state;
3554 
3555 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3556 
3557 	p->reclaim_state = NULL;
3558 	lockdep_clear_current_reclaim_state();
3559 	p->flags &= ~PF_MEMALLOC;
3560 
3561 	return nr_reclaimed;
3562 }
3563 #endif /* CONFIG_HIBERNATION */
3564 
3565 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3566    not required for correctness.  So if the last cpu in a node goes
3567    away, we get changed to run anywhere: as the first one comes back,
3568    restore their cpu bindings. */
3569 static int kswapd_cpu_online(unsigned int cpu)
3570 {
3571 	int nid;
3572 
3573 	for_each_node_state(nid, N_MEMORY) {
3574 		pg_data_t *pgdat = NODE_DATA(nid);
3575 		const struct cpumask *mask;
3576 
3577 		mask = cpumask_of_node(pgdat->node_id);
3578 
3579 		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3580 			/* One of our CPUs online: restore mask */
3581 			set_cpus_allowed_ptr(pgdat->kswapd, mask);
3582 	}
3583 	return 0;
3584 }
3585 
3586 /*
3587  * This kswapd start function will be called by init and node-hot-add.
3588  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3589  */
3590 int kswapd_run(int nid)
3591 {
3592 	pg_data_t *pgdat = NODE_DATA(nid);
3593 	int ret = 0;
3594 
3595 	if (pgdat->kswapd)
3596 		return 0;
3597 
3598 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3599 	if (IS_ERR(pgdat->kswapd)) {
3600 		/* failure at boot is fatal */
3601 		BUG_ON(system_state == SYSTEM_BOOTING);
3602 		pr_err("Failed to start kswapd on node %d\n", nid);
3603 		ret = PTR_ERR(pgdat->kswapd);
3604 		pgdat->kswapd = NULL;
3605 	}
3606 	return ret;
3607 }
3608 
3609 /*
3610  * Called by memory hotplug when all memory in a node is offlined.  Caller must
3611  * hold mem_hotplug_begin/end().
3612  */
3613 void kswapd_stop(int nid)
3614 {
3615 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3616 
3617 	if (kswapd) {
3618 		kthread_stop(kswapd);
3619 		NODE_DATA(nid)->kswapd = NULL;
3620 	}
3621 }
3622 
3623 static int __init kswapd_init(void)
3624 {
3625 	int nid, ret;
3626 
3627 	swap_setup();
3628 	for_each_node_state(nid, N_MEMORY)
3629  		kswapd_run(nid);
3630 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3631 					"mm/vmscan:online", kswapd_cpu_online,
3632 					NULL);
3633 	WARN_ON(ret < 0);
3634 	return 0;
3635 }
3636 
3637 module_init(kswapd_init)
3638 
3639 #ifdef CONFIG_NUMA
3640 /*
3641  * Node reclaim mode
3642  *
3643  * If non-zero call node_reclaim when the number of free pages falls below
3644  * the watermarks.
3645  */
3646 int node_reclaim_mode __read_mostly;
3647 
3648 #define RECLAIM_OFF 0
3649 #define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3650 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3651 #define RECLAIM_UNMAP (1<<2)	/* Unmap pages during reclaim */
3652 
3653 /*
3654  * Priority for NODE_RECLAIM. This determines the fraction of pages
3655  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3656  * a zone.
3657  */
3658 #define NODE_RECLAIM_PRIORITY 4
3659 
3660 /*
3661  * Percentage of pages in a zone that must be unmapped for node_reclaim to
3662  * occur.
3663  */
3664 int sysctl_min_unmapped_ratio = 1;
3665 
3666 /*
3667  * If the number of slab pages in a zone grows beyond this percentage then
3668  * slab reclaim needs to occur.
3669  */
3670 int sysctl_min_slab_ratio = 5;
3671 
3672 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
3673 {
3674 	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
3675 	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
3676 		node_page_state(pgdat, NR_ACTIVE_FILE);
3677 
3678 	/*
3679 	 * It's possible for there to be more file mapped pages than
3680 	 * accounted for by the pages on the file LRU lists because
3681 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3682 	 */
3683 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3684 }
3685 
3686 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3687 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
3688 {
3689 	unsigned long nr_pagecache_reclaimable;
3690 	unsigned long delta = 0;
3691 
3692 	/*
3693 	 * If RECLAIM_UNMAP is set, then all file pages are considered
3694 	 * potentially reclaimable. Otherwise, we have to worry about
3695 	 * pages like swapcache and node_unmapped_file_pages() provides
3696 	 * a better estimate
3697 	 */
3698 	if (node_reclaim_mode & RECLAIM_UNMAP)
3699 		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
3700 	else
3701 		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
3702 
3703 	/* If we can't clean pages, remove dirty pages from consideration */
3704 	if (!(node_reclaim_mode & RECLAIM_WRITE))
3705 		delta += node_page_state(pgdat, NR_FILE_DIRTY);
3706 
3707 	/* Watch for any possible underflows due to delta */
3708 	if (unlikely(delta > nr_pagecache_reclaimable))
3709 		delta = nr_pagecache_reclaimable;
3710 
3711 	return nr_pagecache_reclaimable - delta;
3712 }
3713 
3714 /*
3715  * Try to free up some pages from this node through reclaim.
3716  */
3717 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3718 {
3719 	/* Minimum pages needed in order to stay on node */
3720 	const unsigned long nr_pages = 1 << order;
3721 	struct task_struct *p = current;
3722 	struct reclaim_state reclaim_state;
3723 	int classzone_idx = gfp_zone(gfp_mask);
3724 	struct scan_control sc = {
3725 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3726 		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3727 		.order = order,
3728 		.priority = NODE_RECLAIM_PRIORITY,
3729 		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
3730 		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
3731 		.may_swap = 1,
3732 		.reclaim_idx = classzone_idx,
3733 	};
3734 
3735 	cond_resched();
3736 	/*
3737 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3738 	 * and we also need to be able to write out pages for RECLAIM_WRITE
3739 	 * and RECLAIM_UNMAP.
3740 	 */
3741 	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3742 	lockdep_set_current_reclaim_state(gfp_mask);
3743 	reclaim_state.reclaimed_slab = 0;
3744 	p->reclaim_state = &reclaim_state;
3745 
3746 	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
3747 		/*
3748 		 * Free memory by calling shrink zone with increasing
3749 		 * priorities until we have enough memory freed.
3750 		 */
3751 		do {
3752 			shrink_node(pgdat, &sc);
3753 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3754 	}
3755 
3756 	p->reclaim_state = NULL;
3757 	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3758 	lockdep_clear_current_reclaim_state();
3759 	return sc.nr_reclaimed >= nr_pages;
3760 }
3761 
3762 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3763 {
3764 	int ret;
3765 
3766 	/*
3767 	 * Node reclaim reclaims unmapped file backed pages and
3768 	 * slab pages if we are over the defined limits.
3769 	 *
3770 	 * A small portion of unmapped file backed pages is needed for
3771 	 * file I/O otherwise pages read by file I/O will be immediately
3772 	 * thrown out if the node is overallocated. So we do not reclaim
3773 	 * if less than a specified percentage of the node is used by
3774 	 * unmapped file backed pages.
3775 	 */
3776 	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
3777 	    sum_zone_node_page_state(pgdat->node_id, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
3778 		return NODE_RECLAIM_FULL;
3779 
3780 	if (!pgdat_reclaimable(pgdat))
3781 		return NODE_RECLAIM_FULL;
3782 
3783 	/*
3784 	 * Do not scan if the allocation should not be delayed.
3785 	 */
3786 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
3787 		return NODE_RECLAIM_NOSCAN;
3788 
3789 	/*
3790 	 * Only run node reclaim on the local node or on nodes that do not
3791 	 * have associated processors. This will favor the local processor
3792 	 * over remote processors and spread off node memory allocations
3793 	 * as wide as possible.
3794 	 */
3795 	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
3796 		return NODE_RECLAIM_NOSCAN;
3797 
3798 	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
3799 		return NODE_RECLAIM_NOSCAN;
3800 
3801 	ret = __node_reclaim(pgdat, gfp_mask, order);
3802 	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
3803 
3804 	if (!ret)
3805 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3806 
3807 	return ret;
3808 }
3809 #endif
3810 
3811 /*
3812  * page_evictable - test whether a page is evictable
3813  * @page: the page to test
3814  *
3815  * Test whether page is evictable--i.e., should be placed on active/inactive
3816  * lists vs unevictable list.
3817  *
3818  * Reasons page might not be evictable:
3819  * (1) page's mapping marked unevictable
3820  * (2) page is part of an mlocked VMA
3821  *
3822  */
3823 int page_evictable(struct page *page)
3824 {
3825 	return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3826 }
3827 
3828 #ifdef CONFIG_SHMEM
3829 /**
3830  * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3831  * @pages:	array of pages to check
3832  * @nr_pages:	number of pages to check
3833  *
3834  * Checks pages for evictability and moves them to the appropriate lru list.
3835  *
3836  * This function is only used for SysV IPC SHM_UNLOCK.
3837  */
3838 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3839 {
3840 	struct lruvec *lruvec;
3841 	struct pglist_data *pgdat = NULL;
3842 	int pgscanned = 0;
3843 	int pgrescued = 0;
3844 	int i;
3845 
3846 	for (i = 0; i < nr_pages; i++) {
3847 		struct page *page = pages[i];
3848 		struct pglist_data *pagepgdat = page_pgdat(page);
3849 
3850 		pgscanned++;
3851 		if (pagepgdat != pgdat) {
3852 			if (pgdat)
3853 				spin_unlock_irq(&pgdat->lru_lock);
3854 			pgdat = pagepgdat;
3855 			spin_lock_irq(&pgdat->lru_lock);
3856 		}
3857 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
3858 
3859 		if (!PageLRU(page) || !PageUnevictable(page))
3860 			continue;
3861 
3862 		if (page_evictable(page)) {
3863 			enum lru_list lru = page_lru_base_type(page);
3864 
3865 			VM_BUG_ON_PAGE(PageActive(page), page);
3866 			ClearPageUnevictable(page);
3867 			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3868 			add_page_to_lru_list(page, lruvec, lru);
3869 			pgrescued++;
3870 		}
3871 	}
3872 
3873 	if (pgdat) {
3874 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3875 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3876 		spin_unlock_irq(&pgdat->lru_lock);
3877 	}
3878 }
3879 #endif /* CONFIG_SHMEM */
3880