1 /* 2 * linux/mm/vmscan.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * 6 * Swap reorganised 29.12.95, Stephen Tweedie. 7 * kswapd added: 7.1.96 sct 8 * Removed kswapd_ctl limits, and swap out as many pages as needed 9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 11 * Multiqueue VM started 5.8.00, Rik van Riel. 12 */ 13 14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 15 16 #include <linux/mm.h> 17 #include <linux/module.h> 18 #include <linux/gfp.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/swap.h> 21 #include <linux/pagemap.h> 22 #include <linux/init.h> 23 #include <linux/highmem.h> 24 #include <linux/vmpressure.h> 25 #include <linux/vmstat.h> 26 #include <linux/file.h> 27 #include <linux/writeback.h> 28 #include <linux/blkdev.h> 29 #include <linux/buffer_head.h> /* for try_to_release_page(), 30 buffer_heads_over_limit */ 31 #include <linux/mm_inline.h> 32 #include <linux/backing-dev.h> 33 #include <linux/rmap.h> 34 #include <linux/topology.h> 35 #include <linux/cpu.h> 36 #include <linux/cpuset.h> 37 #include <linux/compaction.h> 38 #include <linux/notifier.h> 39 #include <linux/rwsem.h> 40 #include <linux/delay.h> 41 #include <linux/kthread.h> 42 #include <linux/freezer.h> 43 #include <linux/memcontrol.h> 44 #include <linux/delayacct.h> 45 #include <linux/sysctl.h> 46 #include <linux/oom.h> 47 #include <linux/prefetch.h> 48 #include <linux/printk.h> 49 #include <linux/dax.h> 50 51 #include <asm/tlbflush.h> 52 #include <asm/div64.h> 53 54 #include <linux/swapops.h> 55 #include <linux/balloon_compaction.h> 56 57 #include "internal.h" 58 59 #define CREATE_TRACE_POINTS 60 #include <trace/events/vmscan.h> 61 62 struct scan_control { 63 /* How many pages shrink_list() should reclaim */ 64 unsigned long nr_to_reclaim; 65 66 /* This context's GFP mask */ 67 gfp_t gfp_mask; 68 69 /* Allocation order */ 70 int order; 71 72 /* 73 * Nodemask of nodes allowed by the caller. If NULL, all nodes 74 * are scanned. 75 */ 76 nodemask_t *nodemask; 77 78 /* 79 * The memory cgroup that hit its limit and as a result is the 80 * primary target of this reclaim invocation. 81 */ 82 struct mem_cgroup *target_mem_cgroup; 83 84 /* Scan (total_size >> priority) pages at once */ 85 int priority; 86 87 /* The highest zone to isolate pages for reclaim from */ 88 enum zone_type reclaim_idx; 89 90 unsigned int may_writepage:1; 91 92 /* Can mapped pages be reclaimed? */ 93 unsigned int may_unmap:1; 94 95 /* Can pages be swapped as part of reclaim? */ 96 unsigned int may_swap:1; 97 98 /* Can cgroups be reclaimed below their normal consumption range? */ 99 unsigned int may_thrash:1; 100 101 unsigned int hibernation_mode:1; 102 103 /* One of the zones is ready for compaction */ 104 unsigned int compaction_ready:1; 105 106 /* Incremented by the number of inactive pages that were scanned */ 107 unsigned long nr_scanned; 108 109 /* Number of pages freed so far during a call to shrink_zones() */ 110 unsigned long nr_reclaimed; 111 }; 112 113 #ifdef ARCH_HAS_PREFETCH 114 #define prefetch_prev_lru_page(_page, _base, _field) \ 115 do { \ 116 if ((_page)->lru.prev != _base) { \ 117 struct page *prev; \ 118 \ 119 prev = lru_to_page(&(_page->lru)); \ 120 prefetch(&prev->_field); \ 121 } \ 122 } while (0) 123 #else 124 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0) 125 #endif 126 127 #ifdef ARCH_HAS_PREFETCHW 128 #define prefetchw_prev_lru_page(_page, _base, _field) \ 129 do { \ 130 if ((_page)->lru.prev != _base) { \ 131 struct page *prev; \ 132 \ 133 prev = lru_to_page(&(_page->lru)); \ 134 prefetchw(&prev->_field); \ 135 } \ 136 } while (0) 137 #else 138 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 139 #endif 140 141 /* 142 * From 0 .. 100. Higher means more swappy. 143 */ 144 int vm_swappiness = 60; 145 /* 146 * The total number of pages which are beyond the high watermark within all 147 * zones. 148 */ 149 unsigned long vm_total_pages; 150 151 static LIST_HEAD(shrinker_list); 152 static DECLARE_RWSEM(shrinker_rwsem); 153 154 #ifdef CONFIG_MEMCG 155 static bool global_reclaim(struct scan_control *sc) 156 { 157 return !sc->target_mem_cgroup; 158 } 159 160 /** 161 * sane_reclaim - is the usual dirty throttling mechanism operational? 162 * @sc: scan_control in question 163 * 164 * The normal page dirty throttling mechanism in balance_dirty_pages() is 165 * completely broken with the legacy memcg and direct stalling in 166 * shrink_page_list() is used for throttling instead, which lacks all the 167 * niceties such as fairness, adaptive pausing, bandwidth proportional 168 * allocation and configurability. 169 * 170 * This function tests whether the vmscan currently in progress can assume 171 * that the normal dirty throttling mechanism is operational. 172 */ 173 static bool sane_reclaim(struct scan_control *sc) 174 { 175 struct mem_cgroup *memcg = sc->target_mem_cgroup; 176 177 if (!memcg) 178 return true; 179 #ifdef CONFIG_CGROUP_WRITEBACK 180 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 181 return true; 182 #endif 183 return false; 184 } 185 #else 186 static bool global_reclaim(struct scan_control *sc) 187 { 188 return true; 189 } 190 191 static bool sane_reclaim(struct scan_control *sc) 192 { 193 return true; 194 } 195 #endif 196 197 /* 198 * This misses isolated pages which are not accounted for to save counters. 199 * As the data only determines if reclaim or compaction continues, it is 200 * not expected that isolated pages will be a dominating factor. 201 */ 202 unsigned long zone_reclaimable_pages(struct zone *zone) 203 { 204 unsigned long nr; 205 206 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) + 207 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE); 208 if (get_nr_swap_pages() > 0) 209 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) + 210 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON); 211 212 return nr; 213 } 214 215 unsigned long pgdat_reclaimable_pages(struct pglist_data *pgdat) 216 { 217 unsigned long nr; 218 219 nr = node_page_state_snapshot(pgdat, NR_ACTIVE_FILE) + 220 node_page_state_snapshot(pgdat, NR_INACTIVE_FILE) + 221 node_page_state_snapshot(pgdat, NR_ISOLATED_FILE); 222 223 if (get_nr_swap_pages() > 0) 224 nr += node_page_state_snapshot(pgdat, NR_ACTIVE_ANON) + 225 node_page_state_snapshot(pgdat, NR_INACTIVE_ANON) + 226 node_page_state_snapshot(pgdat, NR_ISOLATED_ANON); 227 228 return nr; 229 } 230 231 bool pgdat_reclaimable(struct pglist_data *pgdat) 232 { 233 return node_page_state_snapshot(pgdat, NR_PAGES_SCANNED) < 234 pgdat_reclaimable_pages(pgdat) * 6; 235 } 236 237 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru) 238 { 239 if (!mem_cgroup_disabled()) 240 return mem_cgroup_get_lru_size(lruvec, lru); 241 242 return node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru); 243 } 244 245 /* 246 * Add a shrinker callback to be called from the vm. 247 */ 248 int register_shrinker(struct shrinker *shrinker) 249 { 250 size_t size = sizeof(*shrinker->nr_deferred); 251 252 if (shrinker->flags & SHRINKER_NUMA_AWARE) 253 size *= nr_node_ids; 254 255 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); 256 if (!shrinker->nr_deferred) 257 return -ENOMEM; 258 259 down_write(&shrinker_rwsem); 260 list_add_tail(&shrinker->list, &shrinker_list); 261 up_write(&shrinker_rwsem); 262 return 0; 263 } 264 EXPORT_SYMBOL(register_shrinker); 265 266 /* 267 * Remove one 268 */ 269 void unregister_shrinker(struct shrinker *shrinker) 270 { 271 down_write(&shrinker_rwsem); 272 list_del(&shrinker->list); 273 up_write(&shrinker_rwsem); 274 kfree(shrinker->nr_deferred); 275 } 276 EXPORT_SYMBOL(unregister_shrinker); 277 278 #define SHRINK_BATCH 128 279 280 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl, 281 struct shrinker *shrinker, 282 unsigned long nr_scanned, 283 unsigned long nr_eligible) 284 { 285 unsigned long freed = 0; 286 unsigned long long delta; 287 long total_scan; 288 long freeable; 289 long nr; 290 long new_nr; 291 int nid = shrinkctl->nid; 292 long batch_size = shrinker->batch ? shrinker->batch 293 : SHRINK_BATCH; 294 long scanned = 0, next_deferred; 295 296 freeable = shrinker->count_objects(shrinker, shrinkctl); 297 if (freeable == 0) 298 return 0; 299 300 /* 301 * copy the current shrinker scan count into a local variable 302 * and zero it so that other concurrent shrinker invocations 303 * don't also do this scanning work. 304 */ 305 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0); 306 307 total_scan = nr; 308 delta = (4 * nr_scanned) / shrinker->seeks; 309 delta *= freeable; 310 do_div(delta, nr_eligible + 1); 311 total_scan += delta; 312 if (total_scan < 0) { 313 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n", 314 shrinker->scan_objects, total_scan); 315 total_scan = freeable; 316 next_deferred = nr; 317 } else 318 next_deferred = total_scan; 319 320 /* 321 * We need to avoid excessive windup on filesystem shrinkers 322 * due to large numbers of GFP_NOFS allocations causing the 323 * shrinkers to return -1 all the time. This results in a large 324 * nr being built up so when a shrink that can do some work 325 * comes along it empties the entire cache due to nr >>> 326 * freeable. This is bad for sustaining a working set in 327 * memory. 328 * 329 * Hence only allow the shrinker to scan the entire cache when 330 * a large delta change is calculated directly. 331 */ 332 if (delta < freeable / 4) 333 total_scan = min(total_scan, freeable / 2); 334 335 /* 336 * Avoid risking looping forever due to too large nr value: 337 * never try to free more than twice the estimate number of 338 * freeable entries. 339 */ 340 if (total_scan > freeable * 2) 341 total_scan = freeable * 2; 342 343 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, 344 nr_scanned, nr_eligible, 345 freeable, delta, total_scan); 346 347 /* 348 * Normally, we should not scan less than batch_size objects in one 349 * pass to avoid too frequent shrinker calls, but if the slab has less 350 * than batch_size objects in total and we are really tight on memory, 351 * we will try to reclaim all available objects, otherwise we can end 352 * up failing allocations although there are plenty of reclaimable 353 * objects spread over several slabs with usage less than the 354 * batch_size. 355 * 356 * We detect the "tight on memory" situations by looking at the total 357 * number of objects we want to scan (total_scan). If it is greater 358 * than the total number of objects on slab (freeable), we must be 359 * scanning at high prio and therefore should try to reclaim as much as 360 * possible. 361 */ 362 while (total_scan >= batch_size || 363 total_scan >= freeable) { 364 unsigned long ret; 365 unsigned long nr_to_scan = min(batch_size, total_scan); 366 367 shrinkctl->nr_to_scan = nr_to_scan; 368 ret = shrinker->scan_objects(shrinker, shrinkctl); 369 if (ret == SHRINK_STOP) 370 break; 371 freed += ret; 372 373 count_vm_events(SLABS_SCANNED, nr_to_scan); 374 total_scan -= nr_to_scan; 375 scanned += nr_to_scan; 376 377 cond_resched(); 378 } 379 380 if (next_deferred >= scanned) 381 next_deferred -= scanned; 382 else 383 next_deferred = 0; 384 /* 385 * move the unused scan count back into the shrinker in a 386 * manner that handles concurrent updates. If we exhausted the 387 * scan, there is no need to do an update. 388 */ 389 if (next_deferred > 0) 390 new_nr = atomic_long_add_return(next_deferred, 391 &shrinker->nr_deferred[nid]); 392 else 393 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]); 394 395 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan); 396 return freed; 397 } 398 399 /** 400 * shrink_slab - shrink slab caches 401 * @gfp_mask: allocation context 402 * @nid: node whose slab caches to target 403 * @memcg: memory cgroup whose slab caches to target 404 * @nr_scanned: pressure numerator 405 * @nr_eligible: pressure denominator 406 * 407 * Call the shrink functions to age shrinkable caches. 408 * 409 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set, 410 * unaware shrinkers will receive a node id of 0 instead. 411 * 412 * @memcg specifies the memory cgroup to target. If it is not NULL, 413 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan 414 * objects from the memory cgroup specified. Otherwise, only unaware 415 * shrinkers are called. 416 * 417 * @nr_scanned and @nr_eligible form a ratio that indicate how much of 418 * the available objects should be scanned. Page reclaim for example 419 * passes the number of pages scanned and the number of pages on the 420 * LRU lists that it considered on @nid, plus a bias in @nr_scanned 421 * when it encountered mapped pages. The ratio is further biased by 422 * the ->seeks setting of the shrink function, which indicates the 423 * cost to recreate an object relative to that of an LRU page. 424 * 425 * Returns the number of reclaimed slab objects. 426 */ 427 static unsigned long shrink_slab(gfp_t gfp_mask, int nid, 428 struct mem_cgroup *memcg, 429 unsigned long nr_scanned, 430 unsigned long nr_eligible) 431 { 432 struct shrinker *shrinker; 433 unsigned long freed = 0; 434 435 if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg))) 436 return 0; 437 438 if (nr_scanned == 0) 439 nr_scanned = SWAP_CLUSTER_MAX; 440 441 if (!down_read_trylock(&shrinker_rwsem)) { 442 /* 443 * If we would return 0, our callers would understand that we 444 * have nothing else to shrink and give up trying. By returning 445 * 1 we keep it going and assume we'll be able to shrink next 446 * time. 447 */ 448 freed = 1; 449 goto out; 450 } 451 452 list_for_each_entry(shrinker, &shrinker_list, list) { 453 struct shrink_control sc = { 454 .gfp_mask = gfp_mask, 455 .nid = nid, 456 .memcg = memcg, 457 }; 458 459 /* 460 * If kernel memory accounting is disabled, we ignore 461 * SHRINKER_MEMCG_AWARE flag and call all shrinkers 462 * passing NULL for memcg. 463 */ 464 if (memcg_kmem_enabled() && 465 !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE)) 466 continue; 467 468 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 469 sc.nid = 0; 470 471 freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible); 472 } 473 474 up_read(&shrinker_rwsem); 475 out: 476 cond_resched(); 477 return freed; 478 } 479 480 void drop_slab_node(int nid) 481 { 482 unsigned long freed; 483 484 do { 485 struct mem_cgroup *memcg = NULL; 486 487 freed = 0; 488 do { 489 freed += shrink_slab(GFP_KERNEL, nid, memcg, 490 1000, 1000); 491 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 492 } while (freed > 10); 493 } 494 495 void drop_slab(void) 496 { 497 int nid; 498 499 for_each_online_node(nid) 500 drop_slab_node(nid); 501 } 502 503 static inline int is_page_cache_freeable(struct page *page) 504 { 505 /* 506 * A freeable page cache page is referenced only by the caller 507 * that isolated the page, the page cache radix tree and 508 * optional buffer heads at page->private. 509 */ 510 return page_count(page) - page_has_private(page) == 2; 511 } 512 513 static int may_write_to_inode(struct inode *inode, struct scan_control *sc) 514 { 515 if (current->flags & PF_SWAPWRITE) 516 return 1; 517 if (!inode_write_congested(inode)) 518 return 1; 519 if (inode_to_bdi(inode) == current->backing_dev_info) 520 return 1; 521 return 0; 522 } 523 524 /* 525 * We detected a synchronous write error writing a page out. Probably 526 * -ENOSPC. We need to propagate that into the address_space for a subsequent 527 * fsync(), msync() or close(). 528 * 529 * The tricky part is that after writepage we cannot touch the mapping: nothing 530 * prevents it from being freed up. But we have a ref on the page and once 531 * that page is locked, the mapping is pinned. 532 * 533 * We're allowed to run sleeping lock_page() here because we know the caller has 534 * __GFP_FS. 535 */ 536 static void handle_write_error(struct address_space *mapping, 537 struct page *page, int error) 538 { 539 lock_page(page); 540 if (page_mapping(page) == mapping) 541 mapping_set_error(mapping, error); 542 unlock_page(page); 543 } 544 545 /* possible outcome of pageout() */ 546 typedef enum { 547 /* failed to write page out, page is locked */ 548 PAGE_KEEP, 549 /* move page to the active list, page is locked */ 550 PAGE_ACTIVATE, 551 /* page has been sent to the disk successfully, page is unlocked */ 552 PAGE_SUCCESS, 553 /* page is clean and locked */ 554 PAGE_CLEAN, 555 } pageout_t; 556 557 /* 558 * pageout is called by shrink_page_list() for each dirty page. 559 * Calls ->writepage(). 560 */ 561 static pageout_t pageout(struct page *page, struct address_space *mapping, 562 struct scan_control *sc) 563 { 564 /* 565 * If the page is dirty, only perform writeback if that write 566 * will be non-blocking. To prevent this allocation from being 567 * stalled by pagecache activity. But note that there may be 568 * stalls if we need to run get_block(). We could test 569 * PagePrivate for that. 570 * 571 * If this process is currently in __generic_file_write_iter() against 572 * this page's queue, we can perform writeback even if that 573 * will block. 574 * 575 * If the page is swapcache, write it back even if that would 576 * block, for some throttling. This happens by accident, because 577 * swap_backing_dev_info is bust: it doesn't reflect the 578 * congestion state of the swapdevs. Easy to fix, if needed. 579 */ 580 if (!is_page_cache_freeable(page)) 581 return PAGE_KEEP; 582 if (!mapping) { 583 /* 584 * Some data journaling orphaned pages can have 585 * page->mapping == NULL while being dirty with clean buffers. 586 */ 587 if (page_has_private(page)) { 588 if (try_to_free_buffers(page)) { 589 ClearPageDirty(page); 590 pr_info("%s: orphaned page\n", __func__); 591 return PAGE_CLEAN; 592 } 593 } 594 return PAGE_KEEP; 595 } 596 if (mapping->a_ops->writepage == NULL) 597 return PAGE_ACTIVATE; 598 if (!may_write_to_inode(mapping->host, sc)) 599 return PAGE_KEEP; 600 601 if (clear_page_dirty_for_io(page)) { 602 int res; 603 struct writeback_control wbc = { 604 .sync_mode = WB_SYNC_NONE, 605 .nr_to_write = SWAP_CLUSTER_MAX, 606 .range_start = 0, 607 .range_end = LLONG_MAX, 608 .for_reclaim = 1, 609 }; 610 611 SetPageReclaim(page); 612 res = mapping->a_ops->writepage(page, &wbc); 613 if (res < 0) 614 handle_write_error(mapping, page, res); 615 if (res == AOP_WRITEPAGE_ACTIVATE) { 616 ClearPageReclaim(page); 617 return PAGE_ACTIVATE; 618 } 619 620 if (!PageWriteback(page)) { 621 /* synchronous write or broken a_ops? */ 622 ClearPageReclaim(page); 623 } 624 trace_mm_vmscan_writepage(page); 625 inc_node_page_state(page, NR_VMSCAN_WRITE); 626 return PAGE_SUCCESS; 627 } 628 629 return PAGE_CLEAN; 630 } 631 632 /* 633 * Same as remove_mapping, but if the page is removed from the mapping, it 634 * gets returned with a refcount of 0. 635 */ 636 static int __remove_mapping(struct address_space *mapping, struct page *page, 637 bool reclaimed) 638 { 639 unsigned long flags; 640 641 BUG_ON(!PageLocked(page)); 642 BUG_ON(mapping != page_mapping(page)); 643 644 spin_lock_irqsave(&mapping->tree_lock, flags); 645 /* 646 * The non racy check for a busy page. 647 * 648 * Must be careful with the order of the tests. When someone has 649 * a ref to the page, it may be possible that they dirty it then 650 * drop the reference. So if PageDirty is tested before page_count 651 * here, then the following race may occur: 652 * 653 * get_user_pages(&page); 654 * [user mapping goes away] 655 * write_to(page); 656 * !PageDirty(page) [good] 657 * SetPageDirty(page); 658 * put_page(page); 659 * !page_count(page) [good, discard it] 660 * 661 * [oops, our write_to data is lost] 662 * 663 * Reversing the order of the tests ensures such a situation cannot 664 * escape unnoticed. The smp_rmb is needed to ensure the page->flags 665 * load is not satisfied before that of page->_refcount. 666 * 667 * Note that if SetPageDirty is always performed via set_page_dirty, 668 * and thus under tree_lock, then this ordering is not required. 669 */ 670 if (!page_ref_freeze(page, 2)) 671 goto cannot_free; 672 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */ 673 if (unlikely(PageDirty(page))) { 674 page_ref_unfreeze(page, 2); 675 goto cannot_free; 676 } 677 678 if (PageSwapCache(page)) { 679 swp_entry_t swap = { .val = page_private(page) }; 680 mem_cgroup_swapout(page, swap); 681 __delete_from_swap_cache(page); 682 spin_unlock_irqrestore(&mapping->tree_lock, flags); 683 swapcache_free(swap); 684 } else { 685 void (*freepage)(struct page *); 686 void *shadow = NULL; 687 688 freepage = mapping->a_ops->freepage; 689 /* 690 * Remember a shadow entry for reclaimed file cache in 691 * order to detect refaults, thus thrashing, later on. 692 * 693 * But don't store shadows in an address space that is 694 * already exiting. This is not just an optizimation, 695 * inode reclaim needs to empty out the radix tree or 696 * the nodes are lost. Don't plant shadows behind its 697 * back. 698 * 699 * We also don't store shadows for DAX mappings because the 700 * only page cache pages found in these are zero pages 701 * covering holes, and because we don't want to mix DAX 702 * exceptional entries and shadow exceptional entries in the 703 * same page_tree. 704 */ 705 if (reclaimed && page_is_file_cache(page) && 706 !mapping_exiting(mapping) && !dax_mapping(mapping)) 707 shadow = workingset_eviction(mapping, page); 708 __delete_from_page_cache(page, shadow); 709 spin_unlock_irqrestore(&mapping->tree_lock, flags); 710 711 if (freepage != NULL) 712 freepage(page); 713 } 714 715 return 1; 716 717 cannot_free: 718 spin_unlock_irqrestore(&mapping->tree_lock, flags); 719 return 0; 720 } 721 722 /* 723 * Attempt to detach a locked page from its ->mapping. If it is dirty or if 724 * someone else has a ref on the page, abort and return 0. If it was 725 * successfully detached, return 1. Assumes the caller has a single ref on 726 * this page. 727 */ 728 int remove_mapping(struct address_space *mapping, struct page *page) 729 { 730 if (__remove_mapping(mapping, page, false)) { 731 /* 732 * Unfreezing the refcount with 1 rather than 2 effectively 733 * drops the pagecache ref for us without requiring another 734 * atomic operation. 735 */ 736 page_ref_unfreeze(page, 1); 737 return 1; 738 } 739 return 0; 740 } 741 742 /** 743 * putback_lru_page - put previously isolated page onto appropriate LRU list 744 * @page: page to be put back to appropriate lru list 745 * 746 * Add previously isolated @page to appropriate LRU list. 747 * Page may still be unevictable for other reasons. 748 * 749 * lru_lock must not be held, interrupts must be enabled. 750 */ 751 void putback_lru_page(struct page *page) 752 { 753 bool is_unevictable; 754 int was_unevictable = PageUnevictable(page); 755 756 VM_BUG_ON_PAGE(PageLRU(page), page); 757 758 redo: 759 ClearPageUnevictable(page); 760 761 if (page_evictable(page)) { 762 /* 763 * For evictable pages, we can use the cache. 764 * In event of a race, worst case is we end up with an 765 * unevictable page on [in]active list. 766 * We know how to handle that. 767 */ 768 is_unevictable = false; 769 lru_cache_add(page); 770 } else { 771 /* 772 * Put unevictable pages directly on zone's unevictable 773 * list. 774 */ 775 is_unevictable = true; 776 add_page_to_unevictable_list(page); 777 /* 778 * When racing with an mlock or AS_UNEVICTABLE clearing 779 * (page is unlocked) make sure that if the other thread 780 * does not observe our setting of PG_lru and fails 781 * isolation/check_move_unevictable_pages, 782 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move 783 * the page back to the evictable list. 784 * 785 * The other side is TestClearPageMlocked() or shmem_lock(). 786 */ 787 smp_mb(); 788 } 789 790 /* 791 * page's status can change while we move it among lru. If an evictable 792 * page is on unevictable list, it never be freed. To avoid that, 793 * check after we added it to the list, again. 794 */ 795 if (is_unevictable && page_evictable(page)) { 796 if (!isolate_lru_page(page)) { 797 put_page(page); 798 goto redo; 799 } 800 /* This means someone else dropped this page from LRU 801 * So, it will be freed or putback to LRU again. There is 802 * nothing to do here. 803 */ 804 } 805 806 if (was_unevictable && !is_unevictable) 807 count_vm_event(UNEVICTABLE_PGRESCUED); 808 else if (!was_unevictable && is_unevictable) 809 count_vm_event(UNEVICTABLE_PGCULLED); 810 811 put_page(page); /* drop ref from isolate */ 812 } 813 814 enum page_references { 815 PAGEREF_RECLAIM, 816 PAGEREF_RECLAIM_CLEAN, 817 PAGEREF_KEEP, 818 PAGEREF_ACTIVATE, 819 }; 820 821 static enum page_references page_check_references(struct page *page, 822 struct scan_control *sc) 823 { 824 int referenced_ptes, referenced_page; 825 unsigned long vm_flags; 826 827 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup, 828 &vm_flags); 829 referenced_page = TestClearPageReferenced(page); 830 831 /* 832 * Mlock lost the isolation race with us. Let try_to_unmap() 833 * move the page to the unevictable list. 834 */ 835 if (vm_flags & VM_LOCKED) 836 return PAGEREF_RECLAIM; 837 838 if (referenced_ptes) { 839 if (PageSwapBacked(page)) 840 return PAGEREF_ACTIVATE; 841 /* 842 * All mapped pages start out with page table 843 * references from the instantiating fault, so we need 844 * to look twice if a mapped file page is used more 845 * than once. 846 * 847 * Mark it and spare it for another trip around the 848 * inactive list. Another page table reference will 849 * lead to its activation. 850 * 851 * Note: the mark is set for activated pages as well 852 * so that recently deactivated but used pages are 853 * quickly recovered. 854 */ 855 SetPageReferenced(page); 856 857 if (referenced_page || referenced_ptes > 1) 858 return PAGEREF_ACTIVATE; 859 860 /* 861 * Activate file-backed executable pages after first usage. 862 */ 863 if (vm_flags & VM_EXEC) 864 return PAGEREF_ACTIVATE; 865 866 return PAGEREF_KEEP; 867 } 868 869 /* Reclaim if clean, defer dirty pages to writeback */ 870 if (referenced_page && !PageSwapBacked(page)) 871 return PAGEREF_RECLAIM_CLEAN; 872 873 return PAGEREF_RECLAIM; 874 } 875 876 /* Check if a page is dirty or under writeback */ 877 static void page_check_dirty_writeback(struct page *page, 878 bool *dirty, bool *writeback) 879 { 880 struct address_space *mapping; 881 882 /* 883 * Anonymous pages are not handled by flushers and must be written 884 * from reclaim context. Do not stall reclaim based on them 885 */ 886 if (!page_is_file_cache(page)) { 887 *dirty = false; 888 *writeback = false; 889 return; 890 } 891 892 /* By default assume that the page flags are accurate */ 893 *dirty = PageDirty(page); 894 *writeback = PageWriteback(page); 895 896 /* Verify dirty/writeback state if the filesystem supports it */ 897 if (!page_has_private(page)) 898 return; 899 900 mapping = page_mapping(page); 901 if (mapping && mapping->a_ops->is_dirty_writeback) 902 mapping->a_ops->is_dirty_writeback(page, dirty, writeback); 903 } 904 905 /* 906 * shrink_page_list() returns the number of reclaimed pages 907 */ 908 static unsigned long shrink_page_list(struct list_head *page_list, 909 struct pglist_data *pgdat, 910 struct scan_control *sc, 911 enum ttu_flags ttu_flags, 912 unsigned long *ret_nr_dirty, 913 unsigned long *ret_nr_unqueued_dirty, 914 unsigned long *ret_nr_congested, 915 unsigned long *ret_nr_writeback, 916 unsigned long *ret_nr_immediate, 917 bool force_reclaim) 918 { 919 LIST_HEAD(ret_pages); 920 LIST_HEAD(free_pages); 921 int pgactivate = 0; 922 unsigned long nr_unqueued_dirty = 0; 923 unsigned long nr_dirty = 0; 924 unsigned long nr_congested = 0; 925 unsigned long nr_reclaimed = 0; 926 unsigned long nr_writeback = 0; 927 unsigned long nr_immediate = 0; 928 929 cond_resched(); 930 931 while (!list_empty(page_list)) { 932 struct address_space *mapping; 933 struct page *page; 934 int may_enter_fs; 935 enum page_references references = PAGEREF_RECLAIM_CLEAN; 936 bool dirty, writeback; 937 bool lazyfree = false; 938 int ret = SWAP_SUCCESS; 939 940 cond_resched(); 941 942 page = lru_to_page(page_list); 943 list_del(&page->lru); 944 945 if (!trylock_page(page)) 946 goto keep; 947 948 VM_BUG_ON_PAGE(PageActive(page), page); 949 950 sc->nr_scanned++; 951 952 if (unlikely(!page_evictable(page))) 953 goto cull_mlocked; 954 955 if (!sc->may_unmap && page_mapped(page)) 956 goto keep_locked; 957 958 /* Double the slab pressure for mapped and swapcache pages */ 959 if (page_mapped(page) || PageSwapCache(page)) 960 sc->nr_scanned++; 961 962 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 963 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 964 965 /* 966 * The number of dirty pages determines if a zone is marked 967 * reclaim_congested which affects wait_iff_congested. kswapd 968 * will stall and start writing pages if the tail of the LRU 969 * is all dirty unqueued pages. 970 */ 971 page_check_dirty_writeback(page, &dirty, &writeback); 972 if (dirty || writeback) 973 nr_dirty++; 974 975 if (dirty && !writeback) 976 nr_unqueued_dirty++; 977 978 /* 979 * Treat this page as congested if the underlying BDI is or if 980 * pages are cycling through the LRU so quickly that the 981 * pages marked for immediate reclaim are making it to the 982 * end of the LRU a second time. 983 */ 984 mapping = page_mapping(page); 985 if (((dirty || writeback) && mapping && 986 inode_write_congested(mapping->host)) || 987 (writeback && PageReclaim(page))) 988 nr_congested++; 989 990 /* 991 * If a page at the tail of the LRU is under writeback, there 992 * are three cases to consider. 993 * 994 * 1) If reclaim is encountering an excessive number of pages 995 * under writeback and this page is both under writeback and 996 * PageReclaim then it indicates that pages are being queued 997 * for IO but are being recycled through the LRU before the 998 * IO can complete. Waiting on the page itself risks an 999 * indefinite stall if it is impossible to writeback the 1000 * page due to IO error or disconnected storage so instead 1001 * note that the LRU is being scanned too quickly and the 1002 * caller can stall after page list has been processed. 1003 * 1004 * 2) Global or new memcg reclaim encounters a page that is 1005 * not marked for immediate reclaim, or the caller does not 1006 * have __GFP_FS (or __GFP_IO if it's simply going to swap, 1007 * not to fs). In this case mark the page for immediate 1008 * reclaim and continue scanning. 1009 * 1010 * Require may_enter_fs because we would wait on fs, which 1011 * may not have submitted IO yet. And the loop driver might 1012 * enter reclaim, and deadlock if it waits on a page for 1013 * which it is needed to do the write (loop masks off 1014 * __GFP_IO|__GFP_FS for this reason); but more thought 1015 * would probably show more reasons. 1016 * 1017 * 3) Legacy memcg encounters a page that is already marked 1018 * PageReclaim. memcg does not have any dirty pages 1019 * throttling so we could easily OOM just because too many 1020 * pages are in writeback and there is nothing else to 1021 * reclaim. Wait for the writeback to complete. 1022 */ 1023 if (PageWriteback(page)) { 1024 /* Case 1 above */ 1025 if (current_is_kswapd() && 1026 PageReclaim(page) && 1027 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) { 1028 nr_immediate++; 1029 goto keep_locked; 1030 1031 /* Case 2 above */ 1032 } else if (sane_reclaim(sc) || 1033 !PageReclaim(page) || !may_enter_fs) { 1034 /* 1035 * This is slightly racy - end_page_writeback() 1036 * might have just cleared PageReclaim, then 1037 * setting PageReclaim here end up interpreted 1038 * as PageReadahead - but that does not matter 1039 * enough to care. What we do want is for this 1040 * page to have PageReclaim set next time memcg 1041 * reclaim reaches the tests above, so it will 1042 * then wait_on_page_writeback() to avoid OOM; 1043 * and it's also appropriate in global reclaim. 1044 */ 1045 SetPageReclaim(page); 1046 nr_writeback++; 1047 goto keep_locked; 1048 1049 /* Case 3 above */ 1050 } else { 1051 unlock_page(page); 1052 wait_on_page_writeback(page); 1053 /* then go back and try same page again */ 1054 list_add_tail(&page->lru, page_list); 1055 continue; 1056 } 1057 } 1058 1059 if (!force_reclaim) 1060 references = page_check_references(page, sc); 1061 1062 switch (references) { 1063 case PAGEREF_ACTIVATE: 1064 goto activate_locked; 1065 case PAGEREF_KEEP: 1066 goto keep_locked; 1067 case PAGEREF_RECLAIM: 1068 case PAGEREF_RECLAIM_CLEAN: 1069 ; /* try to reclaim the page below */ 1070 } 1071 1072 /* 1073 * Anonymous process memory has backing store? 1074 * Try to allocate it some swap space here. 1075 */ 1076 if (PageAnon(page) && !PageSwapCache(page)) { 1077 if (!(sc->gfp_mask & __GFP_IO)) 1078 goto keep_locked; 1079 if (!add_to_swap(page, page_list)) 1080 goto activate_locked; 1081 lazyfree = true; 1082 may_enter_fs = 1; 1083 1084 /* Adding to swap updated mapping */ 1085 mapping = page_mapping(page); 1086 } else if (unlikely(PageTransHuge(page))) { 1087 /* Split file THP */ 1088 if (split_huge_page_to_list(page, page_list)) 1089 goto keep_locked; 1090 } 1091 1092 VM_BUG_ON_PAGE(PageTransHuge(page), page); 1093 1094 /* 1095 * The page is mapped into the page tables of one or more 1096 * processes. Try to unmap it here. 1097 */ 1098 if (page_mapped(page) && mapping) { 1099 switch (ret = try_to_unmap(page, lazyfree ? 1100 (ttu_flags | TTU_BATCH_FLUSH | TTU_LZFREE) : 1101 (ttu_flags | TTU_BATCH_FLUSH))) { 1102 case SWAP_FAIL: 1103 goto activate_locked; 1104 case SWAP_AGAIN: 1105 goto keep_locked; 1106 case SWAP_MLOCK: 1107 goto cull_mlocked; 1108 case SWAP_LZFREE: 1109 goto lazyfree; 1110 case SWAP_SUCCESS: 1111 ; /* try to free the page below */ 1112 } 1113 } 1114 1115 if (PageDirty(page)) { 1116 /* 1117 * Only kswapd can writeback filesystem pages to 1118 * avoid risk of stack overflow but only writeback 1119 * if many dirty pages have been encountered. 1120 */ 1121 if (page_is_file_cache(page) && 1122 (!current_is_kswapd() || 1123 !test_bit(PGDAT_DIRTY, &pgdat->flags))) { 1124 /* 1125 * Immediately reclaim when written back. 1126 * Similar in principal to deactivate_page() 1127 * except we already have the page isolated 1128 * and know it's dirty 1129 */ 1130 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE); 1131 SetPageReclaim(page); 1132 1133 goto keep_locked; 1134 } 1135 1136 if (references == PAGEREF_RECLAIM_CLEAN) 1137 goto keep_locked; 1138 if (!may_enter_fs) 1139 goto keep_locked; 1140 if (!sc->may_writepage) 1141 goto keep_locked; 1142 1143 /* 1144 * Page is dirty. Flush the TLB if a writable entry 1145 * potentially exists to avoid CPU writes after IO 1146 * starts and then write it out here. 1147 */ 1148 try_to_unmap_flush_dirty(); 1149 switch (pageout(page, mapping, sc)) { 1150 case PAGE_KEEP: 1151 goto keep_locked; 1152 case PAGE_ACTIVATE: 1153 goto activate_locked; 1154 case PAGE_SUCCESS: 1155 if (PageWriteback(page)) 1156 goto keep; 1157 if (PageDirty(page)) 1158 goto keep; 1159 1160 /* 1161 * A synchronous write - probably a ramdisk. Go 1162 * ahead and try to reclaim the page. 1163 */ 1164 if (!trylock_page(page)) 1165 goto keep; 1166 if (PageDirty(page) || PageWriteback(page)) 1167 goto keep_locked; 1168 mapping = page_mapping(page); 1169 case PAGE_CLEAN: 1170 ; /* try to free the page below */ 1171 } 1172 } 1173 1174 /* 1175 * If the page has buffers, try to free the buffer mappings 1176 * associated with this page. If we succeed we try to free 1177 * the page as well. 1178 * 1179 * We do this even if the page is PageDirty(). 1180 * try_to_release_page() does not perform I/O, but it is 1181 * possible for a page to have PageDirty set, but it is actually 1182 * clean (all its buffers are clean). This happens if the 1183 * buffers were written out directly, with submit_bh(). ext3 1184 * will do this, as well as the blockdev mapping. 1185 * try_to_release_page() will discover that cleanness and will 1186 * drop the buffers and mark the page clean - it can be freed. 1187 * 1188 * Rarely, pages can have buffers and no ->mapping. These are 1189 * the pages which were not successfully invalidated in 1190 * truncate_complete_page(). We try to drop those buffers here 1191 * and if that worked, and the page is no longer mapped into 1192 * process address space (page_count == 1) it can be freed. 1193 * Otherwise, leave the page on the LRU so it is swappable. 1194 */ 1195 if (page_has_private(page)) { 1196 if (!try_to_release_page(page, sc->gfp_mask)) 1197 goto activate_locked; 1198 if (!mapping && page_count(page) == 1) { 1199 unlock_page(page); 1200 if (put_page_testzero(page)) 1201 goto free_it; 1202 else { 1203 /* 1204 * rare race with speculative reference. 1205 * the speculative reference will free 1206 * this page shortly, so we may 1207 * increment nr_reclaimed here (and 1208 * leave it off the LRU). 1209 */ 1210 nr_reclaimed++; 1211 continue; 1212 } 1213 } 1214 } 1215 1216 lazyfree: 1217 if (!mapping || !__remove_mapping(mapping, page, true)) 1218 goto keep_locked; 1219 1220 /* 1221 * At this point, we have no other references and there is 1222 * no way to pick any more up (removed from LRU, removed 1223 * from pagecache). Can use non-atomic bitops now (and 1224 * we obviously don't have to worry about waking up a process 1225 * waiting on the page lock, because there are no references. 1226 */ 1227 __ClearPageLocked(page); 1228 free_it: 1229 if (ret == SWAP_LZFREE) 1230 count_vm_event(PGLAZYFREED); 1231 1232 nr_reclaimed++; 1233 1234 /* 1235 * Is there need to periodically free_page_list? It would 1236 * appear not as the counts should be low 1237 */ 1238 list_add(&page->lru, &free_pages); 1239 continue; 1240 1241 cull_mlocked: 1242 if (PageSwapCache(page)) 1243 try_to_free_swap(page); 1244 unlock_page(page); 1245 list_add(&page->lru, &ret_pages); 1246 continue; 1247 1248 activate_locked: 1249 /* Not a candidate for swapping, so reclaim swap space. */ 1250 if (PageSwapCache(page) && mem_cgroup_swap_full(page)) 1251 try_to_free_swap(page); 1252 VM_BUG_ON_PAGE(PageActive(page), page); 1253 SetPageActive(page); 1254 pgactivate++; 1255 keep_locked: 1256 unlock_page(page); 1257 keep: 1258 list_add(&page->lru, &ret_pages); 1259 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page); 1260 } 1261 1262 mem_cgroup_uncharge_list(&free_pages); 1263 try_to_unmap_flush(); 1264 free_hot_cold_page_list(&free_pages, true); 1265 1266 list_splice(&ret_pages, page_list); 1267 count_vm_events(PGACTIVATE, pgactivate); 1268 1269 *ret_nr_dirty += nr_dirty; 1270 *ret_nr_congested += nr_congested; 1271 *ret_nr_unqueued_dirty += nr_unqueued_dirty; 1272 *ret_nr_writeback += nr_writeback; 1273 *ret_nr_immediate += nr_immediate; 1274 return nr_reclaimed; 1275 } 1276 1277 unsigned long reclaim_clean_pages_from_list(struct zone *zone, 1278 struct list_head *page_list) 1279 { 1280 struct scan_control sc = { 1281 .gfp_mask = GFP_KERNEL, 1282 .priority = DEF_PRIORITY, 1283 .may_unmap = 1, 1284 }; 1285 unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5; 1286 struct page *page, *next; 1287 LIST_HEAD(clean_pages); 1288 1289 list_for_each_entry_safe(page, next, page_list, lru) { 1290 if (page_is_file_cache(page) && !PageDirty(page) && 1291 !__PageMovable(page)) { 1292 ClearPageActive(page); 1293 list_move(&page->lru, &clean_pages); 1294 } 1295 } 1296 1297 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc, 1298 TTU_UNMAP|TTU_IGNORE_ACCESS, 1299 &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true); 1300 list_splice(&clean_pages, page_list); 1301 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret); 1302 return ret; 1303 } 1304 1305 /* 1306 * Attempt to remove the specified page from its LRU. Only take this page 1307 * if it is of the appropriate PageActive status. Pages which are being 1308 * freed elsewhere are also ignored. 1309 * 1310 * page: page to consider 1311 * mode: one of the LRU isolation modes defined above 1312 * 1313 * returns 0 on success, -ve errno on failure. 1314 */ 1315 int __isolate_lru_page(struct page *page, isolate_mode_t mode) 1316 { 1317 int ret = -EINVAL; 1318 1319 /* Only take pages on the LRU. */ 1320 if (!PageLRU(page)) 1321 return ret; 1322 1323 /* Compaction should not handle unevictable pages but CMA can do so */ 1324 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE)) 1325 return ret; 1326 1327 ret = -EBUSY; 1328 1329 /* 1330 * To minimise LRU disruption, the caller can indicate that it only 1331 * wants to isolate pages it will be able to operate on without 1332 * blocking - clean pages for the most part. 1333 * 1334 * ISOLATE_CLEAN means that only clean pages should be isolated. This 1335 * is used by reclaim when it is cannot write to backing storage 1336 * 1337 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages 1338 * that it is possible to migrate without blocking 1339 */ 1340 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) { 1341 /* All the caller can do on PageWriteback is block */ 1342 if (PageWriteback(page)) 1343 return ret; 1344 1345 if (PageDirty(page)) { 1346 struct address_space *mapping; 1347 1348 /* ISOLATE_CLEAN means only clean pages */ 1349 if (mode & ISOLATE_CLEAN) 1350 return ret; 1351 1352 /* 1353 * Only pages without mappings or that have a 1354 * ->migratepage callback are possible to migrate 1355 * without blocking 1356 */ 1357 mapping = page_mapping(page); 1358 if (mapping && !mapping->a_ops->migratepage) 1359 return ret; 1360 } 1361 } 1362 1363 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page)) 1364 return ret; 1365 1366 if (likely(get_page_unless_zero(page))) { 1367 /* 1368 * Be careful not to clear PageLRU until after we're 1369 * sure the page is not being freed elsewhere -- the 1370 * page release code relies on it. 1371 */ 1372 ClearPageLRU(page); 1373 ret = 0; 1374 } 1375 1376 return ret; 1377 } 1378 1379 1380 /* 1381 * Update LRU sizes after isolating pages. The LRU size updates must 1382 * be complete before mem_cgroup_update_lru_size due to a santity check. 1383 */ 1384 static __always_inline void update_lru_sizes(struct lruvec *lruvec, 1385 enum lru_list lru, unsigned long *nr_zone_taken, 1386 unsigned long nr_taken) 1387 { 1388 int zid; 1389 1390 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1391 if (!nr_zone_taken[zid]) 1392 continue; 1393 1394 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 1395 } 1396 1397 #ifdef CONFIG_MEMCG 1398 mem_cgroup_update_lru_size(lruvec, lru, -nr_taken); 1399 #endif 1400 } 1401 1402 /* 1403 * zone_lru_lock is heavily contended. Some of the functions that 1404 * shrink the lists perform better by taking out a batch of pages 1405 * and working on them outside the LRU lock. 1406 * 1407 * For pagecache intensive workloads, this function is the hottest 1408 * spot in the kernel (apart from copy_*_user functions). 1409 * 1410 * Appropriate locks must be held before calling this function. 1411 * 1412 * @nr_to_scan: The number of pages to look through on the list. 1413 * @lruvec: The LRU vector to pull pages from. 1414 * @dst: The temp list to put pages on to. 1415 * @nr_scanned: The number of pages that were scanned. 1416 * @sc: The scan_control struct for this reclaim session 1417 * @mode: One of the LRU isolation modes 1418 * @lru: LRU list id for isolating 1419 * 1420 * returns how many pages were moved onto *@dst. 1421 */ 1422 static unsigned long isolate_lru_pages(unsigned long nr_to_scan, 1423 struct lruvec *lruvec, struct list_head *dst, 1424 unsigned long *nr_scanned, struct scan_control *sc, 1425 isolate_mode_t mode, enum lru_list lru) 1426 { 1427 struct list_head *src = &lruvec->lists[lru]; 1428 unsigned long nr_taken = 0; 1429 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 }; 1430 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, }; 1431 unsigned long scan, nr_pages; 1432 LIST_HEAD(pages_skipped); 1433 1434 for (scan = 0; scan < nr_to_scan && nr_taken < nr_to_scan && 1435 !list_empty(src);) { 1436 struct page *page; 1437 1438 page = lru_to_page(src); 1439 prefetchw_prev_lru_page(page, src, flags); 1440 1441 VM_BUG_ON_PAGE(!PageLRU(page), page); 1442 1443 if (page_zonenum(page) > sc->reclaim_idx) { 1444 list_move(&page->lru, &pages_skipped); 1445 nr_skipped[page_zonenum(page)]++; 1446 continue; 1447 } 1448 1449 /* 1450 * Account for scanned and skipped separetly to avoid the pgdat 1451 * being prematurely marked unreclaimable by pgdat_reclaimable. 1452 */ 1453 scan++; 1454 1455 switch (__isolate_lru_page(page, mode)) { 1456 case 0: 1457 nr_pages = hpage_nr_pages(page); 1458 nr_taken += nr_pages; 1459 nr_zone_taken[page_zonenum(page)] += nr_pages; 1460 list_move(&page->lru, dst); 1461 break; 1462 1463 case -EBUSY: 1464 /* else it is being freed elsewhere */ 1465 list_move(&page->lru, src); 1466 continue; 1467 1468 default: 1469 BUG(); 1470 } 1471 } 1472 1473 /* 1474 * Splice any skipped pages to the start of the LRU list. Note that 1475 * this disrupts the LRU order when reclaiming for lower zones but 1476 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX 1477 * scanning would soon rescan the same pages to skip and put the 1478 * system at risk of premature OOM. 1479 */ 1480 if (!list_empty(&pages_skipped)) { 1481 int zid; 1482 unsigned long total_skipped = 0; 1483 1484 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1485 if (!nr_skipped[zid]) 1486 continue; 1487 1488 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]); 1489 total_skipped += nr_skipped[zid]; 1490 } 1491 1492 /* 1493 * Account skipped pages as a partial scan as the pgdat may be 1494 * close to unreclaimable. If the LRU list is empty, account 1495 * skipped pages as a full scan. 1496 */ 1497 scan += list_empty(src) ? total_skipped : total_skipped >> 2; 1498 1499 list_splice(&pages_skipped, src); 1500 } 1501 *nr_scanned = scan; 1502 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, scan, 1503 nr_taken, mode, is_file_lru(lru)); 1504 update_lru_sizes(lruvec, lru, nr_zone_taken, nr_taken); 1505 return nr_taken; 1506 } 1507 1508 /** 1509 * isolate_lru_page - tries to isolate a page from its LRU list 1510 * @page: page to isolate from its LRU list 1511 * 1512 * Isolates a @page from an LRU list, clears PageLRU and adjusts the 1513 * vmstat statistic corresponding to whatever LRU list the page was on. 1514 * 1515 * Returns 0 if the page was removed from an LRU list. 1516 * Returns -EBUSY if the page was not on an LRU list. 1517 * 1518 * The returned page will have PageLRU() cleared. If it was found on 1519 * the active list, it will have PageActive set. If it was found on 1520 * the unevictable list, it will have the PageUnevictable bit set. That flag 1521 * may need to be cleared by the caller before letting the page go. 1522 * 1523 * The vmstat statistic corresponding to the list on which the page was 1524 * found will be decremented. 1525 * 1526 * Restrictions: 1527 * (1) Must be called with an elevated refcount on the page. This is a 1528 * fundamentnal difference from isolate_lru_pages (which is called 1529 * without a stable reference). 1530 * (2) the lru_lock must not be held. 1531 * (3) interrupts must be enabled. 1532 */ 1533 int isolate_lru_page(struct page *page) 1534 { 1535 int ret = -EBUSY; 1536 1537 VM_BUG_ON_PAGE(!page_count(page), page); 1538 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page"); 1539 1540 if (PageLRU(page)) { 1541 struct zone *zone = page_zone(page); 1542 struct lruvec *lruvec; 1543 1544 spin_lock_irq(zone_lru_lock(zone)); 1545 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat); 1546 if (PageLRU(page)) { 1547 int lru = page_lru(page); 1548 get_page(page); 1549 ClearPageLRU(page); 1550 del_page_from_lru_list(page, lruvec, lru); 1551 ret = 0; 1552 } 1553 spin_unlock_irq(zone_lru_lock(zone)); 1554 } 1555 return ret; 1556 } 1557 1558 /* 1559 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 1560 * then get resheduled. When there are massive number of tasks doing page 1561 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 1562 * the LRU list will go small and be scanned faster than necessary, leading to 1563 * unnecessary swapping, thrashing and OOM. 1564 */ 1565 static int too_many_isolated(struct pglist_data *pgdat, int file, 1566 struct scan_control *sc) 1567 { 1568 unsigned long inactive, isolated; 1569 1570 if (current_is_kswapd()) 1571 return 0; 1572 1573 if (!sane_reclaim(sc)) 1574 return 0; 1575 1576 if (file) { 1577 inactive = node_page_state(pgdat, NR_INACTIVE_FILE); 1578 isolated = node_page_state(pgdat, NR_ISOLATED_FILE); 1579 } else { 1580 inactive = node_page_state(pgdat, NR_INACTIVE_ANON); 1581 isolated = node_page_state(pgdat, NR_ISOLATED_ANON); 1582 } 1583 1584 /* 1585 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 1586 * won't get blocked by normal direct-reclaimers, forming a circular 1587 * deadlock. 1588 */ 1589 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 1590 inactive >>= 3; 1591 1592 return isolated > inactive; 1593 } 1594 1595 static noinline_for_stack void 1596 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list) 1597 { 1598 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1599 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1600 LIST_HEAD(pages_to_free); 1601 1602 /* 1603 * Put back any unfreeable pages. 1604 */ 1605 while (!list_empty(page_list)) { 1606 struct page *page = lru_to_page(page_list); 1607 int lru; 1608 1609 VM_BUG_ON_PAGE(PageLRU(page), page); 1610 list_del(&page->lru); 1611 if (unlikely(!page_evictable(page))) { 1612 spin_unlock_irq(&pgdat->lru_lock); 1613 putback_lru_page(page); 1614 spin_lock_irq(&pgdat->lru_lock); 1615 continue; 1616 } 1617 1618 lruvec = mem_cgroup_page_lruvec(page, pgdat); 1619 1620 SetPageLRU(page); 1621 lru = page_lru(page); 1622 add_page_to_lru_list(page, lruvec, lru); 1623 1624 if (is_active_lru(lru)) { 1625 int file = is_file_lru(lru); 1626 int numpages = hpage_nr_pages(page); 1627 reclaim_stat->recent_rotated[file] += numpages; 1628 } 1629 if (put_page_testzero(page)) { 1630 __ClearPageLRU(page); 1631 __ClearPageActive(page); 1632 del_page_from_lru_list(page, lruvec, lru); 1633 1634 if (unlikely(PageCompound(page))) { 1635 spin_unlock_irq(&pgdat->lru_lock); 1636 mem_cgroup_uncharge(page); 1637 (*get_compound_page_dtor(page))(page); 1638 spin_lock_irq(&pgdat->lru_lock); 1639 } else 1640 list_add(&page->lru, &pages_to_free); 1641 } 1642 } 1643 1644 /* 1645 * To save our caller's stack, now use input list for pages to free. 1646 */ 1647 list_splice(&pages_to_free, page_list); 1648 } 1649 1650 /* 1651 * If a kernel thread (such as nfsd for loop-back mounts) services 1652 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE. 1653 * In that case we should only throttle if the backing device it is 1654 * writing to is congested. In other cases it is safe to throttle. 1655 */ 1656 static int current_may_throttle(void) 1657 { 1658 return !(current->flags & PF_LESS_THROTTLE) || 1659 current->backing_dev_info == NULL || 1660 bdi_write_congested(current->backing_dev_info); 1661 } 1662 1663 static bool inactive_reclaimable_pages(struct lruvec *lruvec, 1664 struct scan_control *sc, enum lru_list lru) 1665 { 1666 int zid; 1667 struct zone *zone; 1668 int file = is_file_lru(lru); 1669 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1670 1671 if (!global_reclaim(sc)) 1672 return true; 1673 1674 for (zid = sc->reclaim_idx; zid >= 0; zid--) { 1675 zone = &pgdat->node_zones[zid]; 1676 if (!managed_zone(zone)) 1677 continue; 1678 1679 if (zone_page_state_snapshot(zone, NR_ZONE_LRU_BASE + 1680 LRU_FILE * file) >= SWAP_CLUSTER_MAX) 1681 return true; 1682 } 1683 1684 return false; 1685 } 1686 1687 /* 1688 * shrink_inactive_list() is a helper for shrink_node(). It returns the number 1689 * of reclaimed pages 1690 */ 1691 static noinline_for_stack unsigned long 1692 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, 1693 struct scan_control *sc, enum lru_list lru) 1694 { 1695 LIST_HEAD(page_list); 1696 unsigned long nr_scanned; 1697 unsigned long nr_reclaimed = 0; 1698 unsigned long nr_taken; 1699 unsigned long nr_dirty = 0; 1700 unsigned long nr_congested = 0; 1701 unsigned long nr_unqueued_dirty = 0; 1702 unsigned long nr_writeback = 0; 1703 unsigned long nr_immediate = 0; 1704 isolate_mode_t isolate_mode = 0; 1705 int file = is_file_lru(lru); 1706 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1707 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1708 1709 if (!inactive_reclaimable_pages(lruvec, sc, lru)) 1710 return 0; 1711 1712 while (unlikely(too_many_isolated(pgdat, file, sc))) { 1713 congestion_wait(BLK_RW_ASYNC, HZ/10); 1714 1715 /* We are about to die and free our memory. Return now. */ 1716 if (fatal_signal_pending(current)) 1717 return SWAP_CLUSTER_MAX; 1718 } 1719 1720 lru_add_drain(); 1721 1722 if (!sc->may_unmap) 1723 isolate_mode |= ISOLATE_UNMAPPED; 1724 if (!sc->may_writepage) 1725 isolate_mode |= ISOLATE_CLEAN; 1726 1727 spin_lock_irq(&pgdat->lru_lock); 1728 1729 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list, 1730 &nr_scanned, sc, isolate_mode, lru); 1731 1732 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 1733 reclaim_stat->recent_scanned[file] += nr_taken; 1734 1735 if (global_reclaim(sc)) { 1736 __mod_node_page_state(pgdat, NR_PAGES_SCANNED, nr_scanned); 1737 if (current_is_kswapd()) 1738 __count_vm_events(PGSCAN_KSWAPD, nr_scanned); 1739 else 1740 __count_vm_events(PGSCAN_DIRECT, nr_scanned); 1741 } 1742 spin_unlock_irq(&pgdat->lru_lock); 1743 1744 if (nr_taken == 0) 1745 return 0; 1746 1747 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, TTU_UNMAP, 1748 &nr_dirty, &nr_unqueued_dirty, &nr_congested, 1749 &nr_writeback, &nr_immediate, 1750 false); 1751 1752 spin_lock_irq(&pgdat->lru_lock); 1753 1754 if (global_reclaim(sc)) { 1755 if (current_is_kswapd()) 1756 __count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed); 1757 else 1758 __count_vm_events(PGSTEAL_DIRECT, nr_reclaimed); 1759 } 1760 1761 putback_inactive_pages(lruvec, &page_list); 1762 1763 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 1764 1765 spin_unlock_irq(&pgdat->lru_lock); 1766 1767 mem_cgroup_uncharge_list(&page_list); 1768 free_hot_cold_page_list(&page_list, true); 1769 1770 /* 1771 * If reclaim is isolating dirty pages under writeback, it implies 1772 * that the long-lived page allocation rate is exceeding the page 1773 * laundering rate. Either the global limits are not being effective 1774 * at throttling processes due to the page distribution throughout 1775 * zones or there is heavy usage of a slow backing device. The 1776 * only option is to throttle from reclaim context which is not ideal 1777 * as there is no guarantee the dirtying process is throttled in the 1778 * same way balance_dirty_pages() manages. 1779 * 1780 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number 1781 * of pages under pages flagged for immediate reclaim and stall if any 1782 * are encountered in the nr_immediate check below. 1783 */ 1784 if (nr_writeback && nr_writeback == nr_taken) 1785 set_bit(PGDAT_WRITEBACK, &pgdat->flags); 1786 1787 /* 1788 * Legacy memcg will stall in page writeback so avoid forcibly 1789 * stalling here. 1790 */ 1791 if (sane_reclaim(sc)) { 1792 /* 1793 * Tag a zone as congested if all the dirty pages scanned were 1794 * backed by a congested BDI and wait_iff_congested will stall. 1795 */ 1796 if (nr_dirty && nr_dirty == nr_congested) 1797 set_bit(PGDAT_CONGESTED, &pgdat->flags); 1798 1799 /* 1800 * If dirty pages are scanned that are not queued for IO, it 1801 * implies that flushers are not keeping up. In this case, flag 1802 * the pgdat PGDAT_DIRTY and kswapd will start writing pages from 1803 * reclaim context. 1804 */ 1805 if (nr_unqueued_dirty == nr_taken) 1806 set_bit(PGDAT_DIRTY, &pgdat->flags); 1807 1808 /* 1809 * If kswapd scans pages marked marked for immediate 1810 * reclaim and under writeback (nr_immediate), it implies 1811 * that pages are cycling through the LRU faster than 1812 * they are written so also forcibly stall. 1813 */ 1814 if (nr_immediate && current_may_throttle()) 1815 congestion_wait(BLK_RW_ASYNC, HZ/10); 1816 } 1817 1818 /* 1819 * Stall direct reclaim for IO completions if underlying BDIs or zone 1820 * is congested. Allow kswapd to continue until it starts encountering 1821 * unqueued dirty pages or cycling through the LRU too quickly. 1822 */ 1823 if (!sc->hibernation_mode && !current_is_kswapd() && 1824 current_may_throttle()) 1825 wait_iff_congested(pgdat, BLK_RW_ASYNC, HZ/10); 1826 1827 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 1828 nr_scanned, nr_reclaimed, 1829 sc->priority, file); 1830 return nr_reclaimed; 1831 } 1832 1833 /* 1834 * This moves pages from the active list to the inactive list. 1835 * 1836 * We move them the other way if the page is referenced by one or more 1837 * processes, from rmap. 1838 * 1839 * If the pages are mostly unmapped, the processing is fast and it is 1840 * appropriate to hold zone_lru_lock across the whole operation. But if 1841 * the pages are mapped, the processing is slow (page_referenced()) so we 1842 * should drop zone_lru_lock around each page. It's impossible to balance 1843 * this, so instead we remove the pages from the LRU while processing them. 1844 * It is safe to rely on PG_active against the non-LRU pages in here because 1845 * nobody will play with that bit on a non-LRU page. 1846 * 1847 * The downside is that we have to touch page->_refcount against each page. 1848 * But we had to alter page->flags anyway. 1849 */ 1850 1851 static void move_active_pages_to_lru(struct lruvec *lruvec, 1852 struct list_head *list, 1853 struct list_head *pages_to_free, 1854 enum lru_list lru) 1855 { 1856 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1857 unsigned long pgmoved = 0; 1858 struct page *page; 1859 int nr_pages; 1860 1861 while (!list_empty(list)) { 1862 page = lru_to_page(list); 1863 lruvec = mem_cgroup_page_lruvec(page, pgdat); 1864 1865 VM_BUG_ON_PAGE(PageLRU(page), page); 1866 SetPageLRU(page); 1867 1868 nr_pages = hpage_nr_pages(page); 1869 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages); 1870 list_move(&page->lru, &lruvec->lists[lru]); 1871 pgmoved += nr_pages; 1872 1873 if (put_page_testzero(page)) { 1874 __ClearPageLRU(page); 1875 __ClearPageActive(page); 1876 del_page_from_lru_list(page, lruvec, lru); 1877 1878 if (unlikely(PageCompound(page))) { 1879 spin_unlock_irq(&pgdat->lru_lock); 1880 mem_cgroup_uncharge(page); 1881 (*get_compound_page_dtor(page))(page); 1882 spin_lock_irq(&pgdat->lru_lock); 1883 } else 1884 list_add(&page->lru, pages_to_free); 1885 } 1886 } 1887 1888 if (!is_active_lru(lru)) 1889 __count_vm_events(PGDEACTIVATE, pgmoved); 1890 } 1891 1892 static void shrink_active_list(unsigned long nr_to_scan, 1893 struct lruvec *lruvec, 1894 struct scan_control *sc, 1895 enum lru_list lru) 1896 { 1897 unsigned long nr_taken; 1898 unsigned long nr_scanned; 1899 unsigned long vm_flags; 1900 LIST_HEAD(l_hold); /* The pages which were snipped off */ 1901 LIST_HEAD(l_active); 1902 LIST_HEAD(l_inactive); 1903 struct page *page; 1904 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1905 unsigned long nr_rotated = 0; 1906 isolate_mode_t isolate_mode = 0; 1907 int file = is_file_lru(lru); 1908 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1909 1910 lru_add_drain(); 1911 1912 if (!sc->may_unmap) 1913 isolate_mode |= ISOLATE_UNMAPPED; 1914 if (!sc->may_writepage) 1915 isolate_mode |= ISOLATE_CLEAN; 1916 1917 spin_lock_irq(&pgdat->lru_lock); 1918 1919 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold, 1920 &nr_scanned, sc, isolate_mode, lru); 1921 1922 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 1923 reclaim_stat->recent_scanned[file] += nr_taken; 1924 1925 if (global_reclaim(sc)) 1926 __mod_node_page_state(pgdat, NR_PAGES_SCANNED, nr_scanned); 1927 __count_vm_events(PGREFILL, nr_scanned); 1928 1929 spin_unlock_irq(&pgdat->lru_lock); 1930 1931 while (!list_empty(&l_hold)) { 1932 cond_resched(); 1933 page = lru_to_page(&l_hold); 1934 list_del(&page->lru); 1935 1936 if (unlikely(!page_evictable(page))) { 1937 putback_lru_page(page); 1938 continue; 1939 } 1940 1941 if (unlikely(buffer_heads_over_limit)) { 1942 if (page_has_private(page) && trylock_page(page)) { 1943 if (page_has_private(page)) 1944 try_to_release_page(page, 0); 1945 unlock_page(page); 1946 } 1947 } 1948 1949 if (page_referenced(page, 0, sc->target_mem_cgroup, 1950 &vm_flags)) { 1951 nr_rotated += hpage_nr_pages(page); 1952 /* 1953 * Identify referenced, file-backed active pages and 1954 * give them one more trip around the active list. So 1955 * that executable code get better chances to stay in 1956 * memory under moderate memory pressure. Anon pages 1957 * are not likely to be evicted by use-once streaming 1958 * IO, plus JVM can create lots of anon VM_EXEC pages, 1959 * so we ignore them here. 1960 */ 1961 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) { 1962 list_add(&page->lru, &l_active); 1963 continue; 1964 } 1965 } 1966 1967 ClearPageActive(page); /* we are de-activating */ 1968 list_add(&page->lru, &l_inactive); 1969 } 1970 1971 /* 1972 * Move pages back to the lru list. 1973 */ 1974 spin_lock_irq(&pgdat->lru_lock); 1975 /* 1976 * Count referenced pages from currently used mappings as rotated, 1977 * even though only some of them are actually re-activated. This 1978 * helps balance scan pressure between file and anonymous pages in 1979 * get_scan_count. 1980 */ 1981 reclaim_stat->recent_rotated[file] += nr_rotated; 1982 1983 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru); 1984 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE); 1985 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 1986 spin_unlock_irq(&pgdat->lru_lock); 1987 1988 mem_cgroup_uncharge_list(&l_hold); 1989 free_hot_cold_page_list(&l_hold, true); 1990 } 1991 1992 /* 1993 * The inactive anon list should be small enough that the VM never has 1994 * to do too much work. 1995 * 1996 * The inactive file list should be small enough to leave most memory 1997 * to the established workingset on the scan-resistant active list, 1998 * but large enough to avoid thrashing the aggregate readahead window. 1999 * 2000 * Both inactive lists should also be large enough that each inactive 2001 * page has a chance to be referenced again before it is reclaimed. 2002 * 2003 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages 2004 * on this LRU, maintained by the pageout code. A zone->inactive_ratio 2005 * of 3 means 3:1 or 25% of the pages are kept on the inactive list. 2006 * 2007 * total target max 2008 * memory ratio inactive 2009 * ------------------------------------- 2010 * 10MB 1 5MB 2011 * 100MB 1 50MB 2012 * 1GB 3 250MB 2013 * 10GB 10 0.9GB 2014 * 100GB 31 3GB 2015 * 1TB 101 10GB 2016 * 10TB 320 32GB 2017 */ 2018 static bool inactive_list_is_low(struct lruvec *lruvec, bool file, 2019 struct scan_control *sc) 2020 { 2021 unsigned long inactive_ratio; 2022 unsigned long inactive; 2023 unsigned long active; 2024 unsigned long gb; 2025 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2026 int zid; 2027 2028 /* 2029 * If we don't have swap space, anonymous page deactivation 2030 * is pointless. 2031 */ 2032 if (!file && !total_swap_pages) 2033 return false; 2034 2035 inactive = lruvec_lru_size(lruvec, file * LRU_FILE); 2036 active = lruvec_lru_size(lruvec, file * LRU_FILE + LRU_ACTIVE); 2037 2038 /* 2039 * For zone-constrained allocations, it is necessary to check if 2040 * deactivations are required for lowmem to be reclaimed. This 2041 * calculates the inactive/active pages available in eligible zones. 2042 */ 2043 for (zid = sc->reclaim_idx + 1; zid < MAX_NR_ZONES; zid++) { 2044 struct zone *zone = &pgdat->node_zones[zid]; 2045 unsigned long inactive_zone, active_zone; 2046 2047 if (!managed_zone(zone)) 2048 continue; 2049 2050 inactive_zone = zone_page_state(zone, 2051 NR_ZONE_LRU_BASE + (file * LRU_FILE)); 2052 active_zone = zone_page_state(zone, 2053 NR_ZONE_LRU_BASE + (file * LRU_FILE) + LRU_ACTIVE); 2054 2055 inactive -= min(inactive, inactive_zone); 2056 active -= min(active, active_zone); 2057 } 2058 2059 gb = (inactive + active) >> (30 - PAGE_SHIFT); 2060 if (gb) 2061 inactive_ratio = int_sqrt(10 * gb); 2062 else 2063 inactive_ratio = 1; 2064 2065 return inactive * inactive_ratio < active; 2066 } 2067 2068 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 2069 struct lruvec *lruvec, struct scan_control *sc) 2070 { 2071 if (is_active_lru(lru)) { 2072 if (inactive_list_is_low(lruvec, is_file_lru(lru), sc)) 2073 shrink_active_list(nr_to_scan, lruvec, sc, lru); 2074 return 0; 2075 } 2076 2077 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 2078 } 2079 2080 enum scan_balance { 2081 SCAN_EQUAL, 2082 SCAN_FRACT, 2083 SCAN_ANON, 2084 SCAN_FILE, 2085 }; 2086 2087 /* 2088 * Determine how aggressively the anon and file LRU lists should be 2089 * scanned. The relative value of each set of LRU lists is determined 2090 * by looking at the fraction of the pages scanned we did rotate back 2091 * onto the active list instead of evict. 2092 * 2093 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan 2094 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan 2095 */ 2096 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg, 2097 struct scan_control *sc, unsigned long *nr, 2098 unsigned long *lru_pages) 2099 { 2100 int swappiness = mem_cgroup_swappiness(memcg); 2101 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 2102 u64 fraction[2]; 2103 u64 denominator = 0; /* gcc */ 2104 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2105 unsigned long anon_prio, file_prio; 2106 enum scan_balance scan_balance; 2107 unsigned long anon, file; 2108 bool force_scan = false; 2109 unsigned long ap, fp; 2110 enum lru_list lru; 2111 bool some_scanned; 2112 int pass; 2113 2114 /* 2115 * If the zone or memcg is small, nr[l] can be 0. This 2116 * results in no scanning on this priority and a potential 2117 * priority drop. Global direct reclaim can go to the next 2118 * zone and tends to have no problems. Global kswapd is for 2119 * zone balancing and it needs to scan a minimum amount. When 2120 * reclaiming for a memcg, a priority drop can cause high 2121 * latencies, so it's better to scan a minimum amount there as 2122 * well. 2123 */ 2124 if (current_is_kswapd()) { 2125 if (!pgdat_reclaimable(pgdat)) 2126 force_scan = true; 2127 if (!mem_cgroup_online(memcg)) 2128 force_scan = true; 2129 } 2130 if (!global_reclaim(sc)) 2131 force_scan = true; 2132 2133 /* If we have no swap space, do not bother scanning anon pages. */ 2134 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) { 2135 scan_balance = SCAN_FILE; 2136 goto out; 2137 } 2138 2139 /* 2140 * Global reclaim will swap to prevent OOM even with no 2141 * swappiness, but memcg users want to use this knob to 2142 * disable swapping for individual groups completely when 2143 * using the memory controller's swap limit feature would be 2144 * too expensive. 2145 */ 2146 if (!global_reclaim(sc) && !swappiness) { 2147 scan_balance = SCAN_FILE; 2148 goto out; 2149 } 2150 2151 /* 2152 * Do not apply any pressure balancing cleverness when the 2153 * system is close to OOM, scan both anon and file equally 2154 * (unless the swappiness setting disagrees with swapping). 2155 */ 2156 if (!sc->priority && swappiness) { 2157 scan_balance = SCAN_EQUAL; 2158 goto out; 2159 } 2160 2161 /* 2162 * Prevent the reclaimer from falling into the cache trap: as 2163 * cache pages start out inactive, every cache fault will tip 2164 * the scan balance towards the file LRU. And as the file LRU 2165 * shrinks, so does the window for rotation from references. 2166 * This means we have a runaway feedback loop where a tiny 2167 * thrashing file LRU becomes infinitely more attractive than 2168 * anon pages. Try to detect this based on file LRU size. 2169 */ 2170 if (global_reclaim(sc)) { 2171 unsigned long pgdatfile; 2172 unsigned long pgdatfree; 2173 int z; 2174 unsigned long total_high_wmark = 0; 2175 2176 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES); 2177 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) + 2178 node_page_state(pgdat, NR_INACTIVE_FILE); 2179 2180 for (z = 0; z < MAX_NR_ZONES; z++) { 2181 struct zone *zone = &pgdat->node_zones[z]; 2182 if (!managed_zone(zone)) 2183 continue; 2184 2185 total_high_wmark += high_wmark_pages(zone); 2186 } 2187 2188 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) { 2189 scan_balance = SCAN_ANON; 2190 goto out; 2191 } 2192 } 2193 2194 /* 2195 * If there is enough inactive page cache, i.e. if the size of the 2196 * inactive list is greater than that of the active list *and* the 2197 * inactive list actually has some pages to scan on this priority, we 2198 * do not reclaim anything from the anonymous working set right now. 2199 * Without the second condition we could end up never scanning an 2200 * lruvec even if it has plenty of old anonymous pages unless the 2201 * system is under heavy pressure. 2202 */ 2203 if (!inactive_list_is_low(lruvec, true, sc) && 2204 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE) >> sc->priority) { 2205 scan_balance = SCAN_FILE; 2206 goto out; 2207 } 2208 2209 scan_balance = SCAN_FRACT; 2210 2211 /* 2212 * With swappiness at 100, anonymous and file have the same priority. 2213 * This scanning priority is essentially the inverse of IO cost. 2214 */ 2215 anon_prio = swappiness; 2216 file_prio = 200 - anon_prio; 2217 2218 /* 2219 * OK, so we have swap space and a fair amount of page cache 2220 * pages. We use the recently rotated / recently scanned 2221 * ratios to determine how valuable each cache is. 2222 * 2223 * Because workloads change over time (and to avoid overflow) 2224 * we keep these statistics as a floating average, which ends 2225 * up weighing recent references more than old ones. 2226 * 2227 * anon in [0], file in [1] 2228 */ 2229 2230 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON) + 2231 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON); 2232 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE) + 2233 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE); 2234 2235 spin_lock_irq(&pgdat->lru_lock); 2236 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) { 2237 reclaim_stat->recent_scanned[0] /= 2; 2238 reclaim_stat->recent_rotated[0] /= 2; 2239 } 2240 2241 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) { 2242 reclaim_stat->recent_scanned[1] /= 2; 2243 reclaim_stat->recent_rotated[1] /= 2; 2244 } 2245 2246 /* 2247 * The amount of pressure on anon vs file pages is inversely 2248 * proportional to the fraction of recently scanned pages on 2249 * each list that were recently referenced and in active use. 2250 */ 2251 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1); 2252 ap /= reclaim_stat->recent_rotated[0] + 1; 2253 2254 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1); 2255 fp /= reclaim_stat->recent_rotated[1] + 1; 2256 spin_unlock_irq(&pgdat->lru_lock); 2257 2258 fraction[0] = ap; 2259 fraction[1] = fp; 2260 denominator = ap + fp + 1; 2261 out: 2262 some_scanned = false; 2263 /* Only use force_scan on second pass. */ 2264 for (pass = 0; !some_scanned && pass < 2; pass++) { 2265 *lru_pages = 0; 2266 for_each_evictable_lru(lru) { 2267 int file = is_file_lru(lru); 2268 unsigned long size; 2269 unsigned long scan; 2270 2271 size = lruvec_lru_size(lruvec, lru); 2272 scan = size >> sc->priority; 2273 2274 if (!scan && pass && force_scan) 2275 scan = min(size, SWAP_CLUSTER_MAX); 2276 2277 switch (scan_balance) { 2278 case SCAN_EQUAL: 2279 /* Scan lists relative to size */ 2280 break; 2281 case SCAN_FRACT: 2282 /* 2283 * Scan types proportional to swappiness and 2284 * their relative recent reclaim efficiency. 2285 */ 2286 scan = div64_u64(scan * fraction[file], 2287 denominator); 2288 break; 2289 case SCAN_FILE: 2290 case SCAN_ANON: 2291 /* Scan one type exclusively */ 2292 if ((scan_balance == SCAN_FILE) != file) { 2293 size = 0; 2294 scan = 0; 2295 } 2296 break; 2297 default: 2298 /* Look ma, no brain */ 2299 BUG(); 2300 } 2301 2302 *lru_pages += size; 2303 nr[lru] = scan; 2304 2305 /* 2306 * Skip the second pass and don't force_scan, 2307 * if we found something to scan. 2308 */ 2309 some_scanned |= !!scan; 2310 } 2311 } 2312 } 2313 2314 /* 2315 * This is a basic per-node page freer. Used by both kswapd and direct reclaim. 2316 */ 2317 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg, 2318 struct scan_control *sc, unsigned long *lru_pages) 2319 { 2320 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg); 2321 unsigned long nr[NR_LRU_LISTS]; 2322 unsigned long targets[NR_LRU_LISTS]; 2323 unsigned long nr_to_scan; 2324 enum lru_list lru; 2325 unsigned long nr_reclaimed = 0; 2326 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 2327 struct blk_plug plug; 2328 bool scan_adjusted; 2329 2330 get_scan_count(lruvec, memcg, sc, nr, lru_pages); 2331 2332 /* Record the original scan target for proportional adjustments later */ 2333 memcpy(targets, nr, sizeof(nr)); 2334 2335 /* 2336 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal 2337 * event that can occur when there is little memory pressure e.g. 2338 * multiple streaming readers/writers. Hence, we do not abort scanning 2339 * when the requested number of pages are reclaimed when scanning at 2340 * DEF_PRIORITY on the assumption that the fact we are direct 2341 * reclaiming implies that kswapd is not keeping up and it is best to 2342 * do a batch of work at once. For memcg reclaim one check is made to 2343 * abort proportional reclaim if either the file or anon lru has already 2344 * dropped to zero at the first pass. 2345 */ 2346 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() && 2347 sc->priority == DEF_PRIORITY); 2348 2349 blk_start_plug(&plug); 2350 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 2351 nr[LRU_INACTIVE_FILE]) { 2352 unsigned long nr_anon, nr_file, percentage; 2353 unsigned long nr_scanned; 2354 2355 for_each_evictable_lru(lru) { 2356 if (nr[lru]) { 2357 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 2358 nr[lru] -= nr_to_scan; 2359 2360 nr_reclaimed += shrink_list(lru, nr_to_scan, 2361 lruvec, sc); 2362 } 2363 } 2364 2365 cond_resched(); 2366 2367 if (nr_reclaimed < nr_to_reclaim || scan_adjusted) 2368 continue; 2369 2370 /* 2371 * For kswapd and memcg, reclaim at least the number of pages 2372 * requested. Ensure that the anon and file LRUs are scanned 2373 * proportionally what was requested by get_scan_count(). We 2374 * stop reclaiming one LRU and reduce the amount scanning 2375 * proportional to the original scan target. 2376 */ 2377 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 2378 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 2379 2380 /* 2381 * It's just vindictive to attack the larger once the smaller 2382 * has gone to zero. And given the way we stop scanning the 2383 * smaller below, this makes sure that we only make one nudge 2384 * towards proportionality once we've got nr_to_reclaim. 2385 */ 2386 if (!nr_file || !nr_anon) 2387 break; 2388 2389 if (nr_file > nr_anon) { 2390 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 2391 targets[LRU_ACTIVE_ANON] + 1; 2392 lru = LRU_BASE; 2393 percentage = nr_anon * 100 / scan_target; 2394 } else { 2395 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 2396 targets[LRU_ACTIVE_FILE] + 1; 2397 lru = LRU_FILE; 2398 percentage = nr_file * 100 / scan_target; 2399 } 2400 2401 /* Stop scanning the smaller of the LRU */ 2402 nr[lru] = 0; 2403 nr[lru + LRU_ACTIVE] = 0; 2404 2405 /* 2406 * Recalculate the other LRU scan count based on its original 2407 * scan target and the percentage scanning already complete 2408 */ 2409 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 2410 nr_scanned = targets[lru] - nr[lru]; 2411 nr[lru] = targets[lru] * (100 - percentage) / 100; 2412 nr[lru] -= min(nr[lru], nr_scanned); 2413 2414 lru += LRU_ACTIVE; 2415 nr_scanned = targets[lru] - nr[lru]; 2416 nr[lru] = targets[lru] * (100 - percentage) / 100; 2417 nr[lru] -= min(nr[lru], nr_scanned); 2418 2419 scan_adjusted = true; 2420 } 2421 blk_finish_plug(&plug); 2422 sc->nr_reclaimed += nr_reclaimed; 2423 2424 /* 2425 * Even if we did not try to evict anon pages at all, we want to 2426 * rebalance the anon lru active/inactive ratio. 2427 */ 2428 if (inactive_list_is_low(lruvec, false, sc)) 2429 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 2430 sc, LRU_ACTIVE_ANON); 2431 } 2432 2433 /* Use reclaim/compaction for costly allocs or under memory pressure */ 2434 static bool in_reclaim_compaction(struct scan_control *sc) 2435 { 2436 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 2437 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 2438 sc->priority < DEF_PRIORITY - 2)) 2439 return true; 2440 2441 return false; 2442 } 2443 2444 /* 2445 * Reclaim/compaction is used for high-order allocation requests. It reclaims 2446 * order-0 pages before compacting the zone. should_continue_reclaim() returns 2447 * true if more pages should be reclaimed such that when the page allocator 2448 * calls try_to_compact_zone() that it will have enough free pages to succeed. 2449 * It will give up earlier than that if there is difficulty reclaiming pages. 2450 */ 2451 static inline bool should_continue_reclaim(struct pglist_data *pgdat, 2452 unsigned long nr_reclaimed, 2453 unsigned long nr_scanned, 2454 struct scan_control *sc) 2455 { 2456 unsigned long pages_for_compaction; 2457 unsigned long inactive_lru_pages; 2458 int z; 2459 2460 /* If not in reclaim/compaction mode, stop */ 2461 if (!in_reclaim_compaction(sc)) 2462 return false; 2463 2464 /* Consider stopping depending on scan and reclaim activity */ 2465 if (sc->gfp_mask & __GFP_REPEAT) { 2466 /* 2467 * For __GFP_REPEAT allocations, stop reclaiming if the 2468 * full LRU list has been scanned and we are still failing 2469 * to reclaim pages. This full LRU scan is potentially 2470 * expensive but a __GFP_REPEAT caller really wants to succeed 2471 */ 2472 if (!nr_reclaimed && !nr_scanned) 2473 return false; 2474 } else { 2475 /* 2476 * For non-__GFP_REPEAT allocations which can presumably 2477 * fail without consequence, stop if we failed to reclaim 2478 * any pages from the last SWAP_CLUSTER_MAX number of 2479 * pages that were scanned. This will return to the 2480 * caller faster at the risk reclaim/compaction and 2481 * the resulting allocation attempt fails 2482 */ 2483 if (!nr_reclaimed) 2484 return false; 2485 } 2486 2487 /* 2488 * If we have not reclaimed enough pages for compaction and the 2489 * inactive lists are large enough, continue reclaiming 2490 */ 2491 pages_for_compaction = compact_gap(sc->order); 2492 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE); 2493 if (get_nr_swap_pages() > 0) 2494 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON); 2495 if (sc->nr_reclaimed < pages_for_compaction && 2496 inactive_lru_pages > pages_for_compaction) 2497 return true; 2498 2499 /* If compaction would go ahead or the allocation would succeed, stop */ 2500 for (z = 0; z <= sc->reclaim_idx; z++) { 2501 struct zone *zone = &pgdat->node_zones[z]; 2502 if (!managed_zone(zone)) 2503 continue; 2504 2505 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) { 2506 case COMPACT_SUCCESS: 2507 case COMPACT_CONTINUE: 2508 return false; 2509 default: 2510 /* check next zone */ 2511 ; 2512 } 2513 } 2514 return true; 2515 } 2516 2517 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc) 2518 { 2519 struct reclaim_state *reclaim_state = current->reclaim_state; 2520 unsigned long nr_reclaimed, nr_scanned; 2521 bool reclaimable = false; 2522 2523 do { 2524 struct mem_cgroup *root = sc->target_mem_cgroup; 2525 struct mem_cgroup_reclaim_cookie reclaim = { 2526 .pgdat = pgdat, 2527 .priority = sc->priority, 2528 }; 2529 unsigned long node_lru_pages = 0; 2530 struct mem_cgroup *memcg; 2531 2532 nr_reclaimed = sc->nr_reclaimed; 2533 nr_scanned = sc->nr_scanned; 2534 2535 memcg = mem_cgroup_iter(root, NULL, &reclaim); 2536 do { 2537 unsigned long lru_pages; 2538 unsigned long reclaimed; 2539 unsigned long scanned; 2540 2541 if (mem_cgroup_low(root, memcg)) { 2542 if (!sc->may_thrash) 2543 continue; 2544 mem_cgroup_events(memcg, MEMCG_LOW, 1); 2545 } 2546 2547 reclaimed = sc->nr_reclaimed; 2548 scanned = sc->nr_scanned; 2549 2550 shrink_node_memcg(pgdat, memcg, sc, &lru_pages); 2551 node_lru_pages += lru_pages; 2552 2553 if (memcg) 2554 shrink_slab(sc->gfp_mask, pgdat->node_id, 2555 memcg, sc->nr_scanned - scanned, 2556 lru_pages); 2557 2558 /* Record the group's reclaim efficiency */ 2559 vmpressure(sc->gfp_mask, memcg, false, 2560 sc->nr_scanned - scanned, 2561 sc->nr_reclaimed - reclaimed); 2562 2563 /* 2564 * Direct reclaim and kswapd have to scan all memory 2565 * cgroups to fulfill the overall scan target for the 2566 * node. 2567 * 2568 * Limit reclaim, on the other hand, only cares about 2569 * nr_to_reclaim pages to be reclaimed and it will 2570 * retry with decreasing priority if one round over the 2571 * whole hierarchy is not sufficient. 2572 */ 2573 if (!global_reclaim(sc) && 2574 sc->nr_reclaimed >= sc->nr_to_reclaim) { 2575 mem_cgroup_iter_break(root, memcg); 2576 break; 2577 } 2578 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim))); 2579 2580 /* 2581 * Shrink the slab caches in the same proportion that 2582 * the eligible LRU pages were scanned. 2583 */ 2584 if (global_reclaim(sc)) 2585 shrink_slab(sc->gfp_mask, pgdat->node_id, NULL, 2586 sc->nr_scanned - nr_scanned, 2587 node_lru_pages); 2588 2589 if (reclaim_state) { 2590 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 2591 reclaim_state->reclaimed_slab = 0; 2592 } 2593 2594 /* Record the subtree's reclaim efficiency */ 2595 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, 2596 sc->nr_scanned - nr_scanned, 2597 sc->nr_reclaimed - nr_reclaimed); 2598 2599 if (sc->nr_reclaimed - nr_reclaimed) 2600 reclaimable = true; 2601 2602 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed, 2603 sc->nr_scanned - nr_scanned, sc)); 2604 2605 return reclaimable; 2606 } 2607 2608 /* 2609 * Returns true if compaction should go ahead for a costly-order request, or 2610 * the allocation would already succeed without compaction. Return false if we 2611 * should reclaim first. 2612 */ 2613 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) 2614 { 2615 unsigned long watermark; 2616 enum compact_result suitable; 2617 2618 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx); 2619 if (suitable == COMPACT_SUCCESS) 2620 /* Allocation should succeed already. Don't reclaim. */ 2621 return true; 2622 if (suitable == COMPACT_SKIPPED) 2623 /* Compaction cannot yet proceed. Do reclaim. */ 2624 return false; 2625 2626 /* 2627 * Compaction is already possible, but it takes time to run and there 2628 * are potentially other callers using the pages just freed. So proceed 2629 * with reclaim to make a buffer of free pages available to give 2630 * compaction a reasonable chance of completing and allocating the page. 2631 * Note that we won't actually reclaim the whole buffer in one attempt 2632 * as the target watermark in should_continue_reclaim() is lower. But if 2633 * we are already above the high+gap watermark, don't reclaim at all. 2634 */ 2635 watermark = high_wmark_pages(zone) + compact_gap(sc->order); 2636 2637 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx); 2638 } 2639 2640 /* 2641 * This is the direct reclaim path, for page-allocating processes. We only 2642 * try to reclaim pages from zones which will satisfy the caller's allocation 2643 * request. 2644 * 2645 * If a zone is deemed to be full of pinned pages then just give it a light 2646 * scan then give up on it. 2647 */ 2648 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 2649 { 2650 struct zoneref *z; 2651 struct zone *zone; 2652 unsigned long nr_soft_reclaimed; 2653 unsigned long nr_soft_scanned; 2654 gfp_t orig_mask; 2655 pg_data_t *last_pgdat = NULL; 2656 2657 /* 2658 * If the number of buffer_heads in the machine exceeds the maximum 2659 * allowed level, force direct reclaim to scan the highmem zone as 2660 * highmem pages could be pinning lowmem pages storing buffer_heads 2661 */ 2662 orig_mask = sc->gfp_mask; 2663 if (buffer_heads_over_limit) { 2664 sc->gfp_mask |= __GFP_HIGHMEM; 2665 sc->reclaim_idx = gfp_zone(sc->gfp_mask); 2666 } 2667 2668 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2669 sc->reclaim_idx, sc->nodemask) { 2670 /* 2671 * Take care memory controller reclaiming has small influence 2672 * to global LRU. 2673 */ 2674 if (global_reclaim(sc)) { 2675 if (!cpuset_zone_allowed(zone, 2676 GFP_KERNEL | __GFP_HARDWALL)) 2677 continue; 2678 2679 if (sc->priority != DEF_PRIORITY && 2680 !pgdat_reclaimable(zone->zone_pgdat)) 2681 continue; /* Let kswapd poll it */ 2682 2683 /* 2684 * If we already have plenty of memory free for 2685 * compaction in this zone, don't free any more. 2686 * Even though compaction is invoked for any 2687 * non-zero order, only frequent costly order 2688 * reclamation is disruptive enough to become a 2689 * noticeable problem, like transparent huge 2690 * page allocations. 2691 */ 2692 if (IS_ENABLED(CONFIG_COMPACTION) && 2693 sc->order > PAGE_ALLOC_COSTLY_ORDER && 2694 compaction_ready(zone, sc)) { 2695 sc->compaction_ready = true; 2696 continue; 2697 } 2698 2699 /* 2700 * Shrink each node in the zonelist once. If the 2701 * zonelist is ordered by zone (not the default) then a 2702 * node may be shrunk multiple times but in that case 2703 * the user prefers lower zones being preserved. 2704 */ 2705 if (zone->zone_pgdat == last_pgdat) 2706 continue; 2707 2708 /* 2709 * This steals pages from memory cgroups over softlimit 2710 * and returns the number of reclaimed pages and 2711 * scanned pages. This works for global memory pressure 2712 * and balancing, not for a memcg's limit. 2713 */ 2714 nr_soft_scanned = 0; 2715 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat, 2716 sc->order, sc->gfp_mask, 2717 &nr_soft_scanned); 2718 sc->nr_reclaimed += nr_soft_reclaimed; 2719 sc->nr_scanned += nr_soft_scanned; 2720 /* need some check for avoid more shrink_zone() */ 2721 } 2722 2723 /* See comment about same check for global reclaim above */ 2724 if (zone->zone_pgdat == last_pgdat) 2725 continue; 2726 last_pgdat = zone->zone_pgdat; 2727 shrink_node(zone->zone_pgdat, sc); 2728 } 2729 2730 /* 2731 * Restore to original mask to avoid the impact on the caller if we 2732 * promoted it to __GFP_HIGHMEM. 2733 */ 2734 sc->gfp_mask = orig_mask; 2735 } 2736 2737 /* 2738 * This is the main entry point to direct page reclaim. 2739 * 2740 * If a full scan of the inactive list fails to free enough memory then we 2741 * are "out of memory" and something needs to be killed. 2742 * 2743 * If the caller is !__GFP_FS then the probability of a failure is reasonably 2744 * high - the zone may be full of dirty or under-writeback pages, which this 2745 * caller can't do much about. We kick the writeback threads and take explicit 2746 * naps in the hope that some of these pages can be written. But if the 2747 * allocating task holds filesystem locks which prevent writeout this might not 2748 * work, and the allocation attempt will fail. 2749 * 2750 * returns: 0, if no pages reclaimed 2751 * else, the number of pages reclaimed 2752 */ 2753 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 2754 struct scan_control *sc) 2755 { 2756 int initial_priority = sc->priority; 2757 unsigned long total_scanned = 0; 2758 unsigned long writeback_threshold; 2759 retry: 2760 delayacct_freepages_start(); 2761 2762 if (global_reclaim(sc)) 2763 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1); 2764 2765 do { 2766 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 2767 sc->priority); 2768 sc->nr_scanned = 0; 2769 shrink_zones(zonelist, sc); 2770 2771 total_scanned += sc->nr_scanned; 2772 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 2773 break; 2774 2775 if (sc->compaction_ready) 2776 break; 2777 2778 /* 2779 * If we're getting trouble reclaiming, start doing 2780 * writepage even in laptop mode. 2781 */ 2782 if (sc->priority < DEF_PRIORITY - 2) 2783 sc->may_writepage = 1; 2784 2785 /* 2786 * Try to write back as many pages as we just scanned. This 2787 * tends to cause slow streaming writers to write data to the 2788 * disk smoothly, at the dirtying rate, which is nice. But 2789 * that's undesirable in laptop mode, where we *want* lumpy 2790 * writeout. So in laptop mode, write out the whole world. 2791 */ 2792 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2; 2793 if (total_scanned > writeback_threshold) { 2794 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned, 2795 WB_REASON_TRY_TO_FREE_PAGES); 2796 sc->may_writepage = 1; 2797 } 2798 } while (--sc->priority >= 0); 2799 2800 delayacct_freepages_end(); 2801 2802 if (sc->nr_reclaimed) 2803 return sc->nr_reclaimed; 2804 2805 /* Aborted reclaim to try compaction? don't OOM, then */ 2806 if (sc->compaction_ready) 2807 return 1; 2808 2809 /* Untapped cgroup reserves? Don't OOM, retry. */ 2810 if (!sc->may_thrash) { 2811 sc->priority = initial_priority; 2812 sc->may_thrash = 1; 2813 goto retry; 2814 } 2815 2816 return 0; 2817 } 2818 2819 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat) 2820 { 2821 struct zone *zone; 2822 unsigned long pfmemalloc_reserve = 0; 2823 unsigned long free_pages = 0; 2824 int i; 2825 bool wmark_ok; 2826 2827 for (i = 0; i <= ZONE_NORMAL; i++) { 2828 zone = &pgdat->node_zones[i]; 2829 if (!managed_zone(zone) || 2830 pgdat_reclaimable_pages(pgdat) == 0) 2831 continue; 2832 2833 pfmemalloc_reserve += min_wmark_pages(zone); 2834 free_pages += zone_page_state(zone, NR_FREE_PAGES); 2835 } 2836 2837 /* If there are no reserves (unexpected config) then do not throttle */ 2838 if (!pfmemalloc_reserve) 2839 return true; 2840 2841 wmark_ok = free_pages > pfmemalloc_reserve / 2; 2842 2843 /* kswapd must be awake if processes are being throttled */ 2844 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 2845 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx, 2846 (enum zone_type)ZONE_NORMAL); 2847 wake_up_interruptible(&pgdat->kswapd_wait); 2848 } 2849 2850 return wmark_ok; 2851 } 2852 2853 /* 2854 * Throttle direct reclaimers if backing storage is backed by the network 2855 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 2856 * depleted. kswapd will continue to make progress and wake the processes 2857 * when the low watermark is reached. 2858 * 2859 * Returns true if a fatal signal was delivered during throttling. If this 2860 * happens, the page allocator should not consider triggering the OOM killer. 2861 */ 2862 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 2863 nodemask_t *nodemask) 2864 { 2865 struct zoneref *z; 2866 struct zone *zone; 2867 pg_data_t *pgdat = NULL; 2868 2869 /* 2870 * Kernel threads should not be throttled as they may be indirectly 2871 * responsible for cleaning pages necessary for reclaim to make forward 2872 * progress. kjournald for example may enter direct reclaim while 2873 * committing a transaction where throttling it could forcing other 2874 * processes to block on log_wait_commit(). 2875 */ 2876 if (current->flags & PF_KTHREAD) 2877 goto out; 2878 2879 /* 2880 * If a fatal signal is pending, this process should not throttle. 2881 * It should return quickly so it can exit and free its memory 2882 */ 2883 if (fatal_signal_pending(current)) 2884 goto out; 2885 2886 /* 2887 * Check if the pfmemalloc reserves are ok by finding the first node 2888 * with a usable ZONE_NORMAL or lower zone. The expectation is that 2889 * GFP_KERNEL will be required for allocating network buffers when 2890 * swapping over the network so ZONE_HIGHMEM is unusable. 2891 * 2892 * Throttling is based on the first usable node and throttled processes 2893 * wait on a queue until kswapd makes progress and wakes them. There 2894 * is an affinity then between processes waking up and where reclaim 2895 * progress has been made assuming the process wakes on the same node. 2896 * More importantly, processes running on remote nodes will not compete 2897 * for remote pfmemalloc reserves and processes on different nodes 2898 * should make reasonable progress. 2899 */ 2900 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2901 gfp_zone(gfp_mask), nodemask) { 2902 if (zone_idx(zone) > ZONE_NORMAL) 2903 continue; 2904 2905 /* Throttle based on the first usable node */ 2906 pgdat = zone->zone_pgdat; 2907 if (pfmemalloc_watermark_ok(pgdat)) 2908 goto out; 2909 break; 2910 } 2911 2912 /* If no zone was usable by the allocation flags then do not throttle */ 2913 if (!pgdat) 2914 goto out; 2915 2916 /* Account for the throttling */ 2917 count_vm_event(PGSCAN_DIRECT_THROTTLE); 2918 2919 /* 2920 * If the caller cannot enter the filesystem, it's possible that it 2921 * is due to the caller holding an FS lock or performing a journal 2922 * transaction in the case of a filesystem like ext[3|4]. In this case, 2923 * it is not safe to block on pfmemalloc_wait as kswapd could be 2924 * blocked waiting on the same lock. Instead, throttle for up to a 2925 * second before continuing. 2926 */ 2927 if (!(gfp_mask & __GFP_FS)) { 2928 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 2929 pfmemalloc_watermark_ok(pgdat), HZ); 2930 2931 goto check_pending; 2932 } 2933 2934 /* Throttle until kswapd wakes the process */ 2935 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 2936 pfmemalloc_watermark_ok(pgdat)); 2937 2938 check_pending: 2939 if (fatal_signal_pending(current)) 2940 return true; 2941 2942 out: 2943 return false; 2944 } 2945 2946 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 2947 gfp_t gfp_mask, nodemask_t *nodemask) 2948 { 2949 unsigned long nr_reclaimed; 2950 struct scan_control sc = { 2951 .nr_to_reclaim = SWAP_CLUSTER_MAX, 2952 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)), 2953 .reclaim_idx = gfp_zone(gfp_mask), 2954 .order = order, 2955 .nodemask = nodemask, 2956 .priority = DEF_PRIORITY, 2957 .may_writepage = !laptop_mode, 2958 .may_unmap = 1, 2959 .may_swap = 1, 2960 }; 2961 2962 /* 2963 * Do not enter reclaim if fatal signal was delivered while throttled. 2964 * 1 is returned so that the page allocator does not OOM kill at this 2965 * point. 2966 */ 2967 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask)) 2968 return 1; 2969 2970 trace_mm_vmscan_direct_reclaim_begin(order, 2971 sc.may_writepage, 2972 gfp_mask, 2973 sc.reclaim_idx); 2974 2975 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 2976 2977 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 2978 2979 return nr_reclaimed; 2980 } 2981 2982 #ifdef CONFIG_MEMCG 2983 2984 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg, 2985 gfp_t gfp_mask, bool noswap, 2986 pg_data_t *pgdat, 2987 unsigned long *nr_scanned) 2988 { 2989 struct scan_control sc = { 2990 .nr_to_reclaim = SWAP_CLUSTER_MAX, 2991 .target_mem_cgroup = memcg, 2992 .may_writepage = !laptop_mode, 2993 .may_unmap = 1, 2994 .reclaim_idx = MAX_NR_ZONES - 1, 2995 .may_swap = !noswap, 2996 }; 2997 unsigned long lru_pages; 2998 2999 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 3000 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 3001 3002 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 3003 sc.may_writepage, 3004 sc.gfp_mask, 3005 sc.reclaim_idx); 3006 3007 /* 3008 * NOTE: Although we can get the priority field, using it 3009 * here is not a good idea, since it limits the pages we can scan. 3010 * if we don't reclaim here, the shrink_node from balance_pgdat 3011 * will pick up pages from other mem cgroup's as well. We hack 3012 * the priority and make it zero. 3013 */ 3014 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages); 3015 3016 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 3017 3018 *nr_scanned = sc.nr_scanned; 3019 return sc.nr_reclaimed; 3020 } 3021 3022 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 3023 unsigned long nr_pages, 3024 gfp_t gfp_mask, 3025 bool may_swap) 3026 { 3027 struct zonelist *zonelist; 3028 unsigned long nr_reclaimed; 3029 int nid; 3030 struct scan_control sc = { 3031 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 3032 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 3033 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 3034 .reclaim_idx = MAX_NR_ZONES - 1, 3035 .target_mem_cgroup = memcg, 3036 .priority = DEF_PRIORITY, 3037 .may_writepage = !laptop_mode, 3038 .may_unmap = 1, 3039 .may_swap = may_swap, 3040 }; 3041 3042 /* 3043 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't 3044 * take care of from where we get pages. So the node where we start the 3045 * scan does not need to be the current node. 3046 */ 3047 nid = mem_cgroup_select_victim_node(memcg); 3048 3049 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK]; 3050 3051 trace_mm_vmscan_memcg_reclaim_begin(0, 3052 sc.may_writepage, 3053 sc.gfp_mask, 3054 sc.reclaim_idx); 3055 3056 current->flags |= PF_MEMALLOC; 3057 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3058 current->flags &= ~PF_MEMALLOC; 3059 3060 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 3061 3062 return nr_reclaimed; 3063 } 3064 #endif 3065 3066 static void age_active_anon(struct pglist_data *pgdat, 3067 struct scan_control *sc) 3068 { 3069 struct mem_cgroup *memcg; 3070 3071 if (!total_swap_pages) 3072 return; 3073 3074 memcg = mem_cgroup_iter(NULL, NULL, NULL); 3075 do { 3076 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg); 3077 3078 if (inactive_list_is_low(lruvec, false, sc)) 3079 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 3080 sc, LRU_ACTIVE_ANON); 3081 3082 memcg = mem_cgroup_iter(NULL, memcg, NULL); 3083 } while (memcg); 3084 } 3085 3086 static bool zone_balanced(struct zone *zone, int order, int classzone_idx) 3087 { 3088 unsigned long mark = high_wmark_pages(zone); 3089 3090 if (!zone_watermark_ok_safe(zone, order, mark, classzone_idx)) 3091 return false; 3092 3093 /* 3094 * If any eligible zone is balanced then the node is not considered 3095 * to be congested or dirty 3096 */ 3097 clear_bit(PGDAT_CONGESTED, &zone->zone_pgdat->flags); 3098 clear_bit(PGDAT_DIRTY, &zone->zone_pgdat->flags); 3099 3100 return true; 3101 } 3102 3103 /* 3104 * Prepare kswapd for sleeping. This verifies that there are no processes 3105 * waiting in throttle_direct_reclaim() and that watermarks have been met. 3106 * 3107 * Returns true if kswapd is ready to sleep 3108 */ 3109 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx) 3110 { 3111 int i; 3112 3113 /* 3114 * The throttled processes are normally woken up in balance_pgdat() as 3115 * soon as pfmemalloc_watermark_ok() is true. But there is a potential 3116 * race between when kswapd checks the watermarks and a process gets 3117 * throttled. There is also a potential race if processes get 3118 * throttled, kswapd wakes, a large process exits thereby balancing the 3119 * zones, which causes kswapd to exit balance_pgdat() before reaching 3120 * the wake up checks. If kswapd is going to sleep, no process should 3121 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If 3122 * the wake up is premature, processes will wake kswapd and get 3123 * throttled again. The difference from wake ups in balance_pgdat() is 3124 * that here we are under prepare_to_wait(). 3125 */ 3126 if (waitqueue_active(&pgdat->pfmemalloc_wait)) 3127 wake_up_all(&pgdat->pfmemalloc_wait); 3128 3129 for (i = 0; i <= classzone_idx; i++) { 3130 struct zone *zone = pgdat->node_zones + i; 3131 3132 if (!managed_zone(zone)) 3133 continue; 3134 3135 if (!zone_balanced(zone, order, classzone_idx)) 3136 return false; 3137 } 3138 3139 return true; 3140 } 3141 3142 /* 3143 * kswapd shrinks a node of pages that are at or below the highest usable 3144 * zone that is currently unbalanced. 3145 * 3146 * Returns true if kswapd scanned at least the requested number of pages to 3147 * reclaim or if the lack of progress was due to pages under writeback. 3148 * This is used to determine if the scanning priority needs to be raised. 3149 */ 3150 static bool kswapd_shrink_node(pg_data_t *pgdat, 3151 struct scan_control *sc) 3152 { 3153 struct zone *zone; 3154 int z; 3155 3156 /* Reclaim a number of pages proportional to the number of zones */ 3157 sc->nr_to_reclaim = 0; 3158 for (z = 0; z <= sc->reclaim_idx; z++) { 3159 zone = pgdat->node_zones + z; 3160 if (!managed_zone(zone)) 3161 continue; 3162 3163 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX); 3164 } 3165 3166 /* 3167 * Historically care was taken to put equal pressure on all zones but 3168 * now pressure is applied based on node LRU order. 3169 */ 3170 shrink_node(pgdat, sc); 3171 3172 /* 3173 * Fragmentation may mean that the system cannot be rebalanced for 3174 * high-order allocations. If twice the allocation size has been 3175 * reclaimed then recheck watermarks only at order-0 to prevent 3176 * excessive reclaim. Assume that a process requested a high-order 3177 * can direct reclaim/compact. 3178 */ 3179 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order)) 3180 sc->order = 0; 3181 3182 return sc->nr_scanned >= sc->nr_to_reclaim; 3183 } 3184 3185 /* 3186 * For kswapd, balance_pgdat() will reclaim pages across a node from zones 3187 * that are eligible for use by the caller until at least one zone is 3188 * balanced. 3189 * 3190 * Returns the order kswapd finished reclaiming at. 3191 * 3192 * kswapd scans the zones in the highmem->normal->dma direction. It skips 3193 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 3194 * found to have free_pages <= high_wmark_pages(zone), any page is that zone 3195 * or lower is eligible for reclaim until at least one usable zone is 3196 * balanced. 3197 */ 3198 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx) 3199 { 3200 int i; 3201 unsigned long nr_soft_reclaimed; 3202 unsigned long nr_soft_scanned; 3203 struct zone *zone; 3204 struct scan_control sc = { 3205 .gfp_mask = GFP_KERNEL, 3206 .order = order, 3207 .priority = DEF_PRIORITY, 3208 .may_writepage = !laptop_mode, 3209 .may_unmap = 1, 3210 .may_swap = 1, 3211 }; 3212 count_vm_event(PAGEOUTRUN); 3213 3214 do { 3215 bool raise_priority = true; 3216 3217 sc.nr_reclaimed = 0; 3218 sc.reclaim_idx = classzone_idx; 3219 3220 /* 3221 * If the number of buffer_heads exceeds the maximum allowed 3222 * then consider reclaiming from all zones. This has a dual 3223 * purpose -- on 64-bit systems it is expected that 3224 * buffer_heads are stripped during active rotation. On 32-bit 3225 * systems, highmem pages can pin lowmem memory and shrinking 3226 * buffers can relieve lowmem pressure. Reclaim may still not 3227 * go ahead if all eligible zones for the original allocation 3228 * request are balanced to avoid excessive reclaim from kswapd. 3229 */ 3230 if (buffer_heads_over_limit) { 3231 for (i = MAX_NR_ZONES - 1; i >= 0; i--) { 3232 zone = pgdat->node_zones + i; 3233 if (!managed_zone(zone)) 3234 continue; 3235 3236 sc.reclaim_idx = i; 3237 break; 3238 } 3239 } 3240 3241 /* 3242 * Only reclaim if there are no eligible zones. Check from 3243 * high to low zone as allocations prefer higher zones. 3244 * Scanning from low to high zone would allow congestion to be 3245 * cleared during a very small window when a small low 3246 * zone was balanced even under extreme pressure when the 3247 * overall node may be congested. Note that sc.reclaim_idx 3248 * is not used as buffer_heads_over_limit may have adjusted 3249 * it. 3250 */ 3251 for (i = classzone_idx; i >= 0; i--) { 3252 zone = pgdat->node_zones + i; 3253 if (!managed_zone(zone)) 3254 continue; 3255 3256 if (zone_balanced(zone, sc.order, classzone_idx)) 3257 goto out; 3258 } 3259 3260 /* 3261 * Do some background aging of the anon list, to give 3262 * pages a chance to be referenced before reclaiming. All 3263 * pages are rotated regardless of classzone as this is 3264 * about consistent aging. 3265 */ 3266 age_active_anon(pgdat, &sc); 3267 3268 /* 3269 * If we're getting trouble reclaiming, start doing writepage 3270 * even in laptop mode. 3271 */ 3272 if (sc.priority < DEF_PRIORITY - 2 || !pgdat_reclaimable(pgdat)) 3273 sc.may_writepage = 1; 3274 3275 /* Call soft limit reclaim before calling shrink_node. */ 3276 sc.nr_scanned = 0; 3277 nr_soft_scanned = 0; 3278 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order, 3279 sc.gfp_mask, &nr_soft_scanned); 3280 sc.nr_reclaimed += nr_soft_reclaimed; 3281 3282 /* 3283 * There should be no need to raise the scanning priority if 3284 * enough pages are already being scanned that that high 3285 * watermark would be met at 100% efficiency. 3286 */ 3287 if (kswapd_shrink_node(pgdat, &sc)) 3288 raise_priority = false; 3289 3290 /* 3291 * If the low watermark is met there is no need for processes 3292 * to be throttled on pfmemalloc_wait as they should not be 3293 * able to safely make forward progress. Wake them 3294 */ 3295 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 3296 pfmemalloc_watermark_ok(pgdat)) 3297 wake_up_all(&pgdat->pfmemalloc_wait); 3298 3299 /* Check if kswapd should be suspending */ 3300 if (try_to_freeze() || kthread_should_stop()) 3301 break; 3302 3303 /* 3304 * Raise priority if scanning rate is too low or there was no 3305 * progress in reclaiming pages 3306 */ 3307 if (raise_priority || !sc.nr_reclaimed) 3308 sc.priority--; 3309 } while (sc.priority >= 1); 3310 3311 out: 3312 /* 3313 * Return the order kswapd stopped reclaiming at as 3314 * prepare_kswapd_sleep() takes it into account. If another caller 3315 * entered the allocator slow path while kswapd was awake, order will 3316 * remain at the higher level. 3317 */ 3318 return sc.order; 3319 } 3320 3321 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order, 3322 unsigned int classzone_idx) 3323 { 3324 long remaining = 0; 3325 DEFINE_WAIT(wait); 3326 3327 if (freezing(current) || kthread_should_stop()) 3328 return; 3329 3330 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3331 3332 /* Try to sleep for a short interval */ 3333 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) { 3334 /* 3335 * Compaction records what page blocks it recently failed to 3336 * isolate pages from and skips them in the future scanning. 3337 * When kswapd is going to sleep, it is reasonable to assume 3338 * that pages and compaction may succeed so reset the cache. 3339 */ 3340 reset_isolation_suitable(pgdat); 3341 3342 /* 3343 * We have freed the memory, now we should compact it to make 3344 * allocation of the requested order possible. 3345 */ 3346 wakeup_kcompactd(pgdat, alloc_order, classzone_idx); 3347 3348 remaining = schedule_timeout(HZ/10); 3349 3350 /* 3351 * If woken prematurely then reset kswapd_classzone_idx and 3352 * order. The values will either be from a wakeup request or 3353 * the previous request that slept prematurely. 3354 */ 3355 if (remaining) { 3356 pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, classzone_idx); 3357 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order); 3358 } 3359 3360 finish_wait(&pgdat->kswapd_wait, &wait); 3361 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3362 } 3363 3364 /* 3365 * After a short sleep, check if it was a premature sleep. If not, then 3366 * go fully to sleep until explicitly woken up. 3367 */ 3368 if (!remaining && 3369 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) { 3370 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 3371 3372 /* 3373 * vmstat counters are not perfectly accurate and the estimated 3374 * value for counters such as NR_FREE_PAGES can deviate from the 3375 * true value by nr_online_cpus * threshold. To avoid the zone 3376 * watermarks being breached while under pressure, we reduce the 3377 * per-cpu vmstat threshold while kswapd is awake and restore 3378 * them before going back to sleep. 3379 */ 3380 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 3381 3382 if (!kthread_should_stop()) 3383 schedule(); 3384 3385 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 3386 } else { 3387 if (remaining) 3388 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 3389 else 3390 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 3391 } 3392 finish_wait(&pgdat->kswapd_wait, &wait); 3393 } 3394 3395 /* 3396 * The background pageout daemon, started as a kernel thread 3397 * from the init process. 3398 * 3399 * This basically trickles out pages so that we have _some_ 3400 * free memory available even if there is no other activity 3401 * that frees anything up. This is needed for things like routing 3402 * etc, where we otherwise might have all activity going on in 3403 * asynchronous contexts that cannot page things out. 3404 * 3405 * If there are applications that are active memory-allocators 3406 * (most normal use), this basically shouldn't matter. 3407 */ 3408 static int kswapd(void *p) 3409 { 3410 unsigned int alloc_order, reclaim_order, classzone_idx; 3411 pg_data_t *pgdat = (pg_data_t*)p; 3412 struct task_struct *tsk = current; 3413 3414 struct reclaim_state reclaim_state = { 3415 .reclaimed_slab = 0, 3416 }; 3417 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 3418 3419 lockdep_set_current_reclaim_state(GFP_KERNEL); 3420 3421 if (!cpumask_empty(cpumask)) 3422 set_cpus_allowed_ptr(tsk, cpumask); 3423 current->reclaim_state = &reclaim_state; 3424 3425 /* 3426 * Tell the memory management that we're a "memory allocator", 3427 * and that if we need more memory we should get access to it 3428 * regardless (see "__alloc_pages()"). "kswapd" should 3429 * never get caught in the normal page freeing logic. 3430 * 3431 * (Kswapd normally doesn't need memory anyway, but sometimes 3432 * you need a small amount of memory in order to be able to 3433 * page out something else, and this flag essentially protects 3434 * us from recursively trying to free more memory as we're 3435 * trying to free the first piece of memory in the first place). 3436 */ 3437 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 3438 set_freezable(); 3439 3440 pgdat->kswapd_order = alloc_order = reclaim_order = 0; 3441 pgdat->kswapd_classzone_idx = classzone_idx = 0; 3442 for ( ; ; ) { 3443 bool ret; 3444 3445 kswapd_try_sleep: 3446 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order, 3447 classzone_idx); 3448 3449 /* Read the new order and classzone_idx */ 3450 alloc_order = reclaim_order = pgdat->kswapd_order; 3451 classzone_idx = pgdat->kswapd_classzone_idx; 3452 pgdat->kswapd_order = 0; 3453 pgdat->kswapd_classzone_idx = 0; 3454 3455 ret = try_to_freeze(); 3456 if (kthread_should_stop()) 3457 break; 3458 3459 /* 3460 * We can speed up thawing tasks if we don't call balance_pgdat 3461 * after returning from the refrigerator 3462 */ 3463 if (ret) 3464 continue; 3465 3466 /* 3467 * Reclaim begins at the requested order but if a high-order 3468 * reclaim fails then kswapd falls back to reclaiming for 3469 * order-0. If that happens, kswapd will consider sleeping 3470 * for the order it finished reclaiming at (reclaim_order) 3471 * but kcompactd is woken to compact for the original 3472 * request (alloc_order). 3473 */ 3474 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx, 3475 alloc_order); 3476 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx); 3477 if (reclaim_order < alloc_order) 3478 goto kswapd_try_sleep; 3479 3480 alloc_order = reclaim_order = pgdat->kswapd_order; 3481 classzone_idx = pgdat->kswapd_classzone_idx; 3482 } 3483 3484 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD); 3485 current->reclaim_state = NULL; 3486 lockdep_clear_current_reclaim_state(); 3487 3488 return 0; 3489 } 3490 3491 /* 3492 * A zone is low on free memory, so wake its kswapd task to service it. 3493 */ 3494 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx) 3495 { 3496 pg_data_t *pgdat; 3497 int z; 3498 3499 if (!managed_zone(zone)) 3500 return; 3501 3502 if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL)) 3503 return; 3504 pgdat = zone->zone_pgdat; 3505 pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, classzone_idx); 3506 pgdat->kswapd_order = max(pgdat->kswapd_order, order); 3507 if (!waitqueue_active(&pgdat->kswapd_wait)) 3508 return; 3509 3510 /* Only wake kswapd if all zones are unbalanced */ 3511 for (z = 0; z <= classzone_idx; z++) { 3512 zone = pgdat->node_zones + z; 3513 if (!managed_zone(zone)) 3514 continue; 3515 3516 if (zone_balanced(zone, order, classzone_idx)) 3517 return; 3518 } 3519 3520 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order); 3521 wake_up_interruptible(&pgdat->kswapd_wait); 3522 } 3523 3524 #ifdef CONFIG_HIBERNATION 3525 /* 3526 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 3527 * freed pages. 3528 * 3529 * Rather than trying to age LRUs the aim is to preserve the overall 3530 * LRU order by reclaiming preferentially 3531 * inactive > active > active referenced > active mapped 3532 */ 3533 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 3534 { 3535 struct reclaim_state reclaim_state; 3536 struct scan_control sc = { 3537 .nr_to_reclaim = nr_to_reclaim, 3538 .gfp_mask = GFP_HIGHUSER_MOVABLE, 3539 .reclaim_idx = MAX_NR_ZONES - 1, 3540 .priority = DEF_PRIORITY, 3541 .may_writepage = 1, 3542 .may_unmap = 1, 3543 .may_swap = 1, 3544 .hibernation_mode = 1, 3545 }; 3546 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 3547 struct task_struct *p = current; 3548 unsigned long nr_reclaimed; 3549 3550 p->flags |= PF_MEMALLOC; 3551 lockdep_set_current_reclaim_state(sc.gfp_mask); 3552 reclaim_state.reclaimed_slab = 0; 3553 p->reclaim_state = &reclaim_state; 3554 3555 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3556 3557 p->reclaim_state = NULL; 3558 lockdep_clear_current_reclaim_state(); 3559 p->flags &= ~PF_MEMALLOC; 3560 3561 return nr_reclaimed; 3562 } 3563 #endif /* CONFIG_HIBERNATION */ 3564 3565 /* It's optimal to keep kswapds on the same CPUs as their memory, but 3566 not required for correctness. So if the last cpu in a node goes 3567 away, we get changed to run anywhere: as the first one comes back, 3568 restore their cpu bindings. */ 3569 static int kswapd_cpu_online(unsigned int cpu) 3570 { 3571 int nid; 3572 3573 for_each_node_state(nid, N_MEMORY) { 3574 pg_data_t *pgdat = NODE_DATA(nid); 3575 const struct cpumask *mask; 3576 3577 mask = cpumask_of_node(pgdat->node_id); 3578 3579 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 3580 /* One of our CPUs online: restore mask */ 3581 set_cpus_allowed_ptr(pgdat->kswapd, mask); 3582 } 3583 return 0; 3584 } 3585 3586 /* 3587 * This kswapd start function will be called by init and node-hot-add. 3588 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. 3589 */ 3590 int kswapd_run(int nid) 3591 { 3592 pg_data_t *pgdat = NODE_DATA(nid); 3593 int ret = 0; 3594 3595 if (pgdat->kswapd) 3596 return 0; 3597 3598 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 3599 if (IS_ERR(pgdat->kswapd)) { 3600 /* failure at boot is fatal */ 3601 BUG_ON(system_state == SYSTEM_BOOTING); 3602 pr_err("Failed to start kswapd on node %d\n", nid); 3603 ret = PTR_ERR(pgdat->kswapd); 3604 pgdat->kswapd = NULL; 3605 } 3606 return ret; 3607 } 3608 3609 /* 3610 * Called by memory hotplug when all memory in a node is offlined. Caller must 3611 * hold mem_hotplug_begin/end(). 3612 */ 3613 void kswapd_stop(int nid) 3614 { 3615 struct task_struct *kswapd = NODE_DATA(nid)->kswapd; 3616 3617 if (kswapd) { 3618 kthread_stop(kswapd); 3619 NODE_DATA(nid)->kswapd = NULL; 3620 } 3621 } 3622 3623 static int __init kswapd_init(void) 3624 { 3625 int nid, ret; 3626 3627 swap_setup(); 3628 for_each_node_state(nid, N_MEMORY) 3629 kswapd_run(nid); 3630 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, 3631 "mm/vmscan:online", kswapd_cpu_online, 3632 NULL); 3633 WARN_ON(ret < 0); 3634 return 0; 3635 } 3636 3637 module_init(kswapd_init) 3638 3639 #ifdef CONFIG_NUMA 3640 /* 3641 * Node reclaim mode 3642 * 3643 * If non-zero call node_reclaim when the number of free pages falls below 3644 * the watermarks. 3645 */ 3646 int node_reclaim_mode __read_mostly; 3647 3648 #define RECLAIM_OFF 0 3649 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */ 3650 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */ 3651 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */ 3652 3653 /* 3654 * Priority for NODE_RECLAIM. This determines the fraction of pages 3655 * of a node considered for each zone_reclaim. 4 scans 1/16th of 3656 * a zone. 3657 */ 3658 #define NODE_RECLAIM_PRIORITY 4 3659 3660 /* 3661 * Percentage of pages in a zone that must be unmapped for node_reclaim to 3662 * occur. 3663 */ 3664 int sysctl_min_unmapped_ratio = 1; 3665 3666 /* 3667 * If the number of slab pages in a zone grows beyond this percentage then 3668 * slab reclaim needs to occur. 3669 */ 3670 int sysctl_min_slab_ratio = 5; 3671 3672 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat) 3673 { 3674 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED); 3675 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) + 3676 node_page_state(pgdat, NR_ACTIVE_FILE); 3677 3678 /* 3679 * It's possible for there to be more file mapped pages than 3680 * accounted for by the pages on the file LRU lists because 3681 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 3682 */ 3683 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 3684 } 3685 3686 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 3687 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat) 3688 { 3689 unsigned long nr_pagecache_reclaimable; 3690 unsigned long delta = 0; 3691 3692 /* 3693 * If RECLAIM_UNMAP is set, then all file pages are considered 3694 * potentially reclaimable. Otherwise, we have to worry about 3695 * pages like swapcache and node_unmapped_file_pages() provides 3696 * a better estimate 3697 */ 3698 if (node_reclaim_mode & RECLAIM_UNMAP) 3699 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES); 3700 else 3701 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat); 3702 3703 /* If we can't clean pages, remove dirty pages from consideration */ 3704 if (!(node_reclaim_mode & RECLAIM_WRITE)) 3705 delta += node_page_state(pgdat, NR_FILE_DIRTY); 3706 3707 /* Watch for any possible underflows due to delta */ 3708 if (unlikely(delta > nr_pagecache_reclaimable)) 3709 delta = nr_pagecache_reclaimable; 3710 3711 return nr_pagecache_reclaimable - delta; 3712 } 3713 3714 /* 3715 * Try to free up some pages from this node through reclaim. 3716 */ 3717 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 3718 { 3719 /* Minimum pages needed in order to stay on node */ 3720 const unsigned long nr_pages = 1 << order; 3721 struct task_struct *p = current; 3722 struct reclaim_state reclaim_state; 3723 int classzone_idx = gfp_zone(gfp_mask); 3724 struct scan_control sc = { 3725 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 3726 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)), 3727 .order = order, 3728 .priority = NODE_RECLAIM_PRIORITY, 3729 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE), 3730 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP), 3731 .may_swap = 1, 3732 .reclaim_idx = classzone_idx, 3733 }; 3734 3735 cond_resched(); 3736 /* 3737 * We need to be able to allocate from the reserves for RECLAIM_UNMAP 3738 * and we also need to be able to write out pages for RECLAIM_WRITE 3739 * and RECLAIM_UNMAP. 3740 */ 3741 p->flags |= PF_MEMALLOC | PF_SWAPWRITE; 3742 lockdep_set_current_reclaim_state(gfp_mask); 3743 reclaim_state.reclaimed_slab = 0; 3744 p->reclaim_state = &reclaim_state; 3745 3746 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) { 3747 /* 3748 * Free memory by calling shrink zone with increasing 3749 * priorities until we have enough memory freed. 3750 */ 3751 do { 3752 shrink_node(pgdat, &sc); 3753 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 3754 } 3755 3756 p->reclaim_state = NULL; 3757 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE); 3758 lockdep_clear_current_reclaim_state(); 3759 return sc.nr_reclaimed >= nr_pages; 3760 } 3761 3762 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 3763 { 3764 int ret; 3765 3766 /* 3767 * Node reclaim reclaims unmapped file backed pages and 3768 * slab pages if we are over the defined limits. 3769 * 3770 * A small portion of unmapped file backed pages is needed for 3771 * file I/O otherwise pages read by file I/O will be immediately 3772 * thrown out if the node is overallocated. So we do not reclaim 3773 * if less than a specified percentage of the node is used by 3774 * unmapped file backed pages. 3775 */ 3776 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages && 3777 sum_zone_node_page_state(pgdat->node_id, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages) 3778 return NODE_RECLAIM_FULL; 3779 3780 if (!pgdat_reclaimable(pgdat)) 3781 return NODE_RECLAIM_FULL; 3782 3783 /* 3784 * Do not scan if the allocation should not be delayed. 3785 */ 3786 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) 3787 return NODE_RECLAIM_NOSCAN; 3788 3789 /* 3790 * Only run node reclaim on the local node or on nodes that do not 3791 * have associated processors. This will favor the local processor 3792 * over remote processors and spread off node memory allocations 3793 * as wide as possible. 3794 */ 3795 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id()) 3796 return NODE_RECLAIM_NOSCAN; 3797 3798 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags)) 3799 return NODE_RECLAIM_NOSCAN; 3800 3801 ret = __node_reclaim(pgdat, gfp_mask, order); 3802 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags); 3803 3804 if (!ret) 3805 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 3806 3807 return ret; 3808 } 3809 #endif 3810 3811 /* 3812 * page_evictable - test whether a page is evictable 3813 * @page: the page to test 3814 * 3815 * Test whether page is evictable--i.e., should be placed on active/inactive 3816 * lists vs unevictable list. 3817 * 3818 * Reasons page might not be evictable: 3819 * (1) page's mapping marked unevictable 3820 * (2) page is part of an mlocked VMA 3821 * 3822 */ 3823 int page_evictable(struct page *page) 3824 { 3825 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page); 3826 } 3827 3828 #ifdef CONFIG_SHMEM 3829 /** 3830 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list 3831 * @pages: array of pages to check 3832 * @nr_pages: number of pages to check 3833 * 3834 * Checks pages for evictability and moves them to the appropriate lru list. 3835 * 3836 * This function is only used for SysV IPC SHM_UNLOCK. 3837 */ 3838 void check_move_unevictable_pages(struct page **pages, int nr_pages) 3839 { 3840 struct lruvec *lruvec; 3841 struct pglist_data *pgdat = NULL; 3842 int pgscanned = 0; 3843 int pgrescued = 0; 3844 int i; 3845 3846 for (i = 0; i < nr_pages; i++) { 3847 struct page *page = pages[i]; 3848 struct pglist_data *pagepgdat = page_pgdat(page); 3849 3850 pgscanned++; 3851 if (pagepgdat != pgdat) { 3852 if (pgdat) 3853 spin_unlock_irq(&pgdat->lru_lock); 3854 pgdat = pagepgdat; 3855 spin_lock_irq(&pgdat->lru_lock); 3856 } 3857 lruvec = mem_cgroup_page_lruvec(page, pgdat); 3858 3859 if (!PageLRU(page) || !PageUnevictable(page)) 3860 continue; 3861 3862 if (page_evictable(page)) { 3863 enum lru_list lru = page_lru_base_type(page); 3864 3865 VM_BUG_ON_PAGE(PageActive(page), page); 3866 ClearPageUnevictable(page); 3867 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE); 3868 add_page_to_lru_list(page, lruvec, lru); 3869 pgrescued++; 3870 } 3871 } 3872 3873 if (pgdat) { 3874 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 3875 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 3876 spin_unlock_irq(&pgdat->lru_lock); 3877 } 3878 } 3879 #endif /* CONFIG_SHMEM */ 3880