1 /* 2 * linux/mm/vmscan.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * 6 * Swap reorganised 29.12.95, Stephen Tweedie. 7 * kswapd added: 7.1.96 sct 8 * Removed kswapd_ctl limits, and swap out as many pages as needed 9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 11 * Multiqueue VM started 5.8.00, Rik van Riel. 12 */ 13 14 #include <linux/mm.h> 15 #include <linux/module.h> 16 #include <linux/slab.h> 17 #include <linux/kernel_stat.h> 18 #include <linux/swap.h> 19 #include <linux/pagemap.h> 20 #include <linux/init.h> 21 #include <linux/highmem.h> 22 #include <linux/file.h> 23 #include <linux/writeback.h> 24 #include <linux/blkdev.h> 25 #include <linux/buffer_head.h> /* for try_to_release_page(), 26 buffer_heads_over_limit */ 27 #include <linux/mm_inline.h> 28 #include <linux/pagevec.h> 29 #include <linux/backing-dev.h> 30 #include <linux/rmap.h> 31 #include <linux/topology.h> 32 #include <linux/cpu.h> 33 #include <linux/cpuset.h> 34 #include <linux/notifier.h> 35 #include <linux/rwsem.h> 36 37 #include <asm/tlbflush.h> 38 #include <asm/div64.h> 39 40 #include <linux/swapops.h> 41 42 /* possible outcome of pageout() */ 43 typedef enum { 44 /* failed to write page out, page is locked */ 45 PAGE_KEEP, 46 /* move page to the active list, page is locked */ 47 PAGE_ACTIVATE, 48 /* page has been sent to the disk successfully, page is unlocked */ 49 PAGE_SUCCESS, 50 /* page is clean and locked */ 51 PAGE_CLEAN, 52 } pageout_t; 53 54 struct scan_control { 55 /* Ask refill_inactive_zone, or shrink_cache to scan this many pages */ 56 unsigned long nr_to_scan; 57 58 /* Incremented by the number of inactive pages that were scanned */ 59 unsigned long nr_scanned; 60 61 /* Incremented by the number of pages reclaimed */ 62 unsigned long nr_reclaimed; 63 64 unsigned long nr_mapped; /* From page_state */ 65 66 /* How many pages shrink_cache() should reclaim */ 67 int nr_to_reclaim; 68 69 /* Ask shrink_caches, or shrink_zone to scan at this priority */ 70 unsigned int priority; 71 72 /* This context's GFP mask */ 73 unsigned int gfp_mask; 74 75 int may_writepage; 76 77 /* This context's SWAP_CLUSTER_MAX. If freeing memory for 78 * suspend, we effectively ignore SWAP_CLUSTER_MAX. 79 * In this context, it doesn't matter that we scan the 80 * whole list at once. */ 81 int swap_cluster_max; 82 }; 83 84 /* 85 * The list of shrinker callbacks used by to apply pressure to 86 * ageable caches. 87 */ 88 struct shrinker { 89 shrinker_t shrinker; 90 struct list_head list; 91 int seeks; /* seeks to recreate an obj */ 92 long nr; /* objs pending delete */ 93 }; 94 95 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru)) 96 97 #ifdef ARCH_HAS_PREFETCH 98 #define prefetch_prev_lru_page(_page, _base, _field) \ 99 do { \ 100 if ((_page)->lru.prev != _base) { \ 101 struct page *prev; \ 102 \ 103 prev = lru_to_page(&(_page->lru)); \ 104 prefetch(&prev->_field); \ 105 } \ 106 } while (0) 107 #else 108 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0) 109 #endif 110 111 #ifdef ARCH_HAS_PREFETCHW 112 #define prefetchw_prev_lru_page(_page, _base, _field) \ 113 do { \ 114 if ((_page)->lru.prev != _base) { \ 115 struct page *prev; \ 116 \ 117 prev = lru_to_page(&(_page->lru)); \ 118 prefetchw(&prev->_field); \ 119 } \ 120 } while (0) 121 #else 122 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 123 #endif 124 125 /* 126 * From 0 .. 100. Higher means more swappy. 127 */ 128 int vm_swappiness = 60; 129 static long total_memory; 130 131 static LIST_HEAD(shrinker_list); 132 static DECLARE_RWSEM(shrinker_rwsem); 133 134 /* 135 * Add a shrinker callback to be called from the vm 136 */ 137 struct shrinker *set_shrinker(int seeks, shrinker_t theshrinker) 138 { 139 struct shrinker *shrinker; 140 141 shrinker = kmalloc(sizeof(*shrinker), GFP_KERNEL); 142 if (shrinker) { 143 shrinker->shrinker = theshrinker; 144 shrinker->seeks = seeks; 145 shrinker->nr = 0; 146 down_write(&shrinker_rwsem); 147 list_add_tail(&shrinker->list, &shrinker_list); 148 up_write(&shrinker_rwsem); 149 } 150 return shrinker; 151 } 152 EXPORT_SYMBOL(set_shrinker); 153 154 /* 155 * Remove one 156 */ 157 void remove_shrinker(struct shrinker *shrinker) 158 { 159 down_write(&shrinker_rwsem); 160 list_del(&shrinker->list); 161 up_write(&shrinker_rwsem); 162 kfree(shrinker); 163 } 164 EXPORT_SYMBOL(remove_shrinker); 165 166 #define SHRINK_BATCH 128 167 /* 168 * Call the shrink functions to age shrinkable caches 169 * 170 * Here we assume it costs one seek to replace a lru page and that it also 171 * takes a seek to recreate a cache object. With this in mind we age equal 172 * percentages of the lru and ageable caches. This should balance the seeks 173 * generated by these structures. 174 * 175 * If the vm encounted mapped pages on the LRU it increase the pressure on 176 * slab to avoid swapping. 177 * 178 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits. 179 * 180 * `lru_pages' represents the number of on-LRU pages in all the zones which 181 * are eligible for the caller's allocation attempt. It is used for balancing 182 * slab reclaim versus page reclaim. 183 */ 184 static int shrink_slab(unsigned long scanned, unsigned int gfp_mask, 185 unsigned long lru_pages) 186 { 187 struct shrinker *shrinker; 188 189 if (scanned == 0) 190 scanned = SWAP_CLUSTER_MAX; 191 192 if (!down_read_trylock(&shrinker_rwsem)) 193 return 0; 194 195 list_for_each_entry(shrinker, &shrinker_list, list) { 196 unsigned long long delta; 197 unsigned long total_scan; 198 199 delta = (4 * scanned) / shrinker->seeks; 200 delta *= (*shrinker->shrinker)(0, gfp_mask); 201 do_div(delta, lru_pages + 1); 202 shrinker->nr += delta; 203 if (shrinker->nr < 0) 204 shrinker->nr = LONG_MAX; /* It wrapped! */ 205 206 total_scan = shrinker->nr; 207 shrinker->nr = 0; 208 209 while (total_scan >= SHRINK_BATCH) { 210 long this_scan = SHRINK_BATCH; 211 int shrink_ret; 212 213 shrink_ret = (*shrinker->shrinker)(this_scan, gfp_mask); 214 if (shrink_ret == -1) 215 break; 216 mod_page_state(slabs_scanned, this_scan); 217 total_scan -= this_scan; 218 219 cond_resched(); 220 } 221 222 shrinker->nr += total_scan; 223 } 224 up_read(&shrinker_rwsem); 225 return 0; 226 } 227 228 /* Called without lock on whether page is mapped, so answer is unstable */ 229 static inline int page_mapping_inuse(struct page *page) 230 { 231 struct address_space *mapping; 232 233 /* Page is in somebody's page tables. */ 234 if (page_mapped(page)) 235 return 1; 236 237 /* Be more reluctant to reclaim swapcache than pagecache */ 238 if (PageSwapCache(page)) 239 return 1; 240 241 mapping = page_mapping(page); 242 if (!mapping) 243 return 0; 244 245 /* File is mmap'd by somebody? */ 246 return mapping_mapped(mapping); 247 } 248 249 static inline int is_page_cache_freeable(struct page *page) 250 { 251 return page_count(page) - !!PagePrivate(page) == 2; 252 } 253 254 static int may_write_to_queue(struct backing_dev_info *bdi) 255 { 256 if (current_is_kswapd()) 257 return 1; 258 if (current_is_pdflush()) /* This is unlikely, but why not... */ 259 return 1; 260 if (!bdi_write_congested(bdi)) 261 return 1; 262 if (bdi == current->backing_dev_info) 263 return 1; 264 return 0; 265 } 266 267 /* 268 * We detected a synchronous write error writing a page out. Probably 269 * -ENOSPC. We need to propagate that into the address_space for a subsequent 270 * fsync(), msync() or close(). 271 * 272 * The tricky part is that after writepage we cannot touch the mapping: nothing 273 * prevents it from being freed up. But we have a ref on the page and once 274 * that page is locked, the mapping is pinned. 275 * 276 * We're allowed to run sleeping lock_page() here because we know the caller has 277 * __GFP_FS. 278 */ 279 static void handle_write_error(struct address_space *mapping, 280 struct page *page, int error) 281 { 282 lock_page(page); 283 if (page_mapping(page) == mapping) { 284 if (error == -ENOSPC) 285 set_bit(AS_ENOSPC, &mapping->flags); 286 else 287 set_bit(AS_EIO, &mapping->flags); 288 } 289 unlock_page(page); 290 } 291 292 /* 293 * pageout is called by shrink_list() for each dirty page. Calls ->writepage(). 294 */ 295 static pageout_t pageout(struct page *page, struct address_space *mapping) 296 { 297 /* 298 * If the page is dirty, only perform writeback if that write 299 * will be non-blocking. To prevent this allocation from being 300 * stalled by pagecache activity. But note that there may be 301 * stalls if we need to run get_block(). We could test 302 * PagePrivate for that. 303 * 304 * If this process is currently in generic_file_write() against 305 * this page's queue, we can perform writeback even if that 306 * will block. 307 * 308 * If the page is swapcache, write it back even if that would 309 * block, for some throttling. This happens by accident, because 310 * swap_backing_dev_info is bust: it doesn't reflect the 311 * congestion state of the swapdevs. Easy to fix, if needed. 312 * See swapfile.c:page_queue_congested(). 313 */ 314 if (!is_page_cache_freeable(page)) 315 return PAGE_KEEP; 316 if (!mapping) { 317 /* 318 * Some data journaling orphaned pages can have 319 * page->mapping == NULL while being dirty with clean buffers. 320 */ 321 if (PagePrivate(page)) { 322 if (try_to_free_buffers(page)) { 323 ClearPageDirty(page); 324 printk("%s: orphaned page\n", __FUNCTION__); 325 return PAGE_CLEAN; 326 } 327 } 328 return PAGE_KEEP; 329 } 330 if (mapping->a_ops->writepage == NULL) 331 return PAGE_ACTIVATE; 332 if (!may_write_to_queue(mapping->backing_dev_info)) 333 return PAGE_KEEP; 334 335 if (clear_page_dirty_for_io(page)) { 336 int res; 337 struct writeback_control wbc = { 338 .sync_mode = WB_SYNC_NONE, 339 .nr_to_write = SWAP_CLUSTER_MAX, 340 .nonblocking = 1, 341 .for_reclaim = 1, 342 }; 343 344 SetPageReclaim(page); 345 res = mapping->a_ops->writepage(page, &wbc); 346 if (res < 0) 347 handle_write_error(mapping, page, res); 348 if (res == WRITEPAGE_ACTIVATE) { 349 ClearPageReclaim(page); 350 return PAGE_ACTIVATE; 351 } 352 if (!PageWriteback(page)) { 353 /* synchronous write or broken a_ops? */ 354 ClearPageReclaim(page); 355 } 356 357 return PAGE_SUCCESS; 358 } 359 360 return PAGE_CLEAN; 361 } 362 363 /* 364 * shrink_list adds the number of reclaimed pages to sc->nr_reclaimed 365 */ 366 static int shrink_list(struct list_head *page_list, struct scan_control *sc) 367 { 368 LIST_HEAD(ret_pages); 369 struct pagevec freed_pvec; 370 int pgactivate = 0; 371 int reclaimed = 0; 372 373 cond_resched(); 374 375 pagevec_init(&freed_pvec, 1); 376 while (!list_empty(page_list)) { 377 struct address_space *mapping; 378 struct page *page; 379 int may_enter_fs; 380 int referenced; 381 382 cond_resched(); 383 384 page = lru_to_page(page_list); 385 list_del(&page->lru); 386 387 if (TestSetPageLocked(page)) 388 goto keep; 389 390 BUG_ON(PageActive(page)); 391 392 sc->nr_scanned++; 393 /* Double the slab pressure for mapped and swapcache pages */ 394 if (page_mapped(page) || PageSwapCache(page)) 395 sc->nr_scanned++; 396 397 if (PageWriteback(page)) 398 goto keep_locked; 399 400 referenced = page_referenced(page, 1, sc->priority <= 0); 401 /* In active use or really unfreeable? Activate it. */ 402 if (referenced && page_mapping_inuse(page)) 403 goto activate_locked; 404 405 #ifdef CONFIG_SWAP 406 /* 407 * Anonymous process memory has backing store? 408 * Try to allocate it some swap space here. 409 */ 410 if (PageAnon(page) && !PageSwapCache(page)) { 411 if (!add_to_swap(page)) 412 goto activate_locked; 413 } 414 #endif /* CONFIG_SWAP */ 415 416 mapping = page_mapping(page); 417 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 418 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 419 420 /* 421 * The page is mapped into the page tables of one or more 422 * processes. Try to unmap it here. 423 */ 424 if (page_mapped(page) && mapping) { 425 switch (try_to_unmap(page)) { 426 case SWAP_FAIL: 427 goto activate_locked; 428 case SWAP_AGAIN: 429 goto keep_locked; 430 case SWAP_SUCCESS: 431 ; /* try to free the page below */ 432 } 433 } 434 435 if (PageDirty(page)) { 436 if (referenced) 437 goto keep_locked; 438 if (!may_enter_fs) 439 goto keep_locked; 440 if (laptop_mode && !sc->may_writepage) 441 goto keep_locked; 442 443 /* Page is dirty, try to write it out here */ 444 switch(pageout(page, mapping)) { 445 case PAGE_KEEP: 446 goto keep_locked; 447 case PAGE_ACTIVATE: 448 goto activate_locked; 449 case PAGE_SUCCESS: 450 if (PageWriteback(page) || PageDirty(page)) 451 goto keep; 452 /* 453 * A synchronous write - probably a ramdisk. Go 454 * ahead and try to reclaim the page. 455 */ 456 if (TestSetPageLocked(page)) 457 goto keep; 458 if (PageDirty(page) || PageWriteback(page)) 459 goto keep_locked; 460 mapping = page_mapping(page); 461 case PAGE_CLEAN: 462 ; /* try to free the page below */ 463 } 464 } 465 466 /* 467 * If the page has buffers, try to free the buffer mappings 468 * associated with this page. If we succeed we try to free 469 * the page as well. 470 * 471 * We do this even if the page is PageDirty(). 472 * try_to_release_page() does not perform I/O, but it is 473 * possible for a page to have PageDirty set, but it is actually 474 * clean (all its buffers are clean). This happens if the 475 * buffers were written out directly, with submit_bh(). ext3 476 * will do this, as well as the blockdev mapping. 477 * try_to_release_page() will discover that cleanness and will 478 * drop the buffers and mark the page clean - it can be freed. 479 * 480 * Rarely, pages can have buffers and no ->mapping. These are 481 * the pages which were not successfully invalidated in 482 * truncate_complete_page(). We try to drop those buffers here 483 * and if that worked, and the page is no longer mapped into 484 * process address space (page_count == 1) it can be freed. 485 * Otherwise, leave the page on the LRU so it is swappable. 486 */ 487 if (PagePrivate(page)) { 488 if (!try_to_release_page(page, sc->gfp_mask)) 489 goto activate_locked; 490 if (!mapping && page_count(page) == 1) 491 goto free_it; 492 } 493 494 if (!mapping) 495 goto keep_locked; /* truncate got there first */ 496 497 write_lock_irq(&mapping->tree_lock); 498 499 /* 500 * The non-racy check for busy page. It is critical to check 501 * PageDirty _after_ making sure that the page is freeable and 502 * not in use by anybody. (pagecache + us == 2) 503 */ 504 if (page_count(page) != 2 || PageDirty(page)) { 505 write_unlock_irq(&mapping->tree_lock); 506 goto keep_locked; 507 } 508 509 #ifdef CONFIG_SWAP 510 if (PageSwapCache(page)) { 511 swp_entry_t swap = { .val = page->private }; 512 __delete_from_swap_cache(page); 513 write_unlock_irq(&mapping->tree_lock); 514 swap_free(swap); 515 __put_page(page); /* The pagecache ref */ 516 goto free_it; 517 } 518 #endif /* CONFIG_SWAP */ 519 520 __remove_from_page_cache(page); 521 write_unlock_irq(&mapping->tree_lock); 522 __put_page(page); 523 524 free_it: 525 unlock_page(page); 526 reclaimed++; 527 if (!pagevec_add(&freed_pvec, page)) 528 __pagevec_release_nonlru(&freed_pvec); 529 continue; 530 531 activate_locked: 532 SetPageActive(page); 533 pgactivate++; 534 keep_locked: 535 unlock_page(page); 536 keep: 537 list_add(&page->lru, &ret_pages); 538 BUG_ON(PageLRU(page)); 539 } 540 list_splice(&ret_pages, page_list); 541 if (pagevec_count(&freed_pvec)) 542 __pagevec_release_nonlru(&freed_pvec); 543 mod_page_state(pgactivate, pgactivate); 544 sc->nr_reclaimed += reclaimed; 545 return reclaimed; 546 } 547 548 /* 549 * zone->lru_lock is heavily contended. Some of the functions that 550 * shrink the lists perform better by taking out a batch of pages 551 * and working on them outside the LRU lock. 552 * 553 * For pagecache intensive workloads, this function is the hottest 554 * spot in the kernel (apart from copy_*_user functions). 555 * 556 * Appropriate locks must be held before calling this function. 557 * 558 * @nr_to_scan: The number of pages to look through on the list. 559 * @src: The LRU list to pull pages off. 560 * @dst: The temp list to put pages on to. 561 * @scanned: The number of pages that were scanned. 562 * 563 * returns how many pages were moved onto *@dst. 564 */ 565 static int isolate_lru_pages(int nr_to_scan, struct list_head *src, 566 struct list_head *dst, int *scanned) 567 { 568 int nr_taken = 0; 569 struct page *page; 570 int scan = 0; 571 572 while (scan++ < nr_to_scan && !list_empty(src)) { 573 page = lru_to_page(src); 574 prefetchw_prev_lru_page(page, src, flags); 575 576 if (!TestClearPageLRU(page)) 577 BUG(); 578 list_del(&page->lru); 579 if (get_page_testone(page)) { 580 /* 581 * It is being freed elsewhere 582 */ 583 __put_page(page); 584 SetPageLRU(page); 585 list_add(&page->lru, src); 586 continue; 587 } else { 588 list_add(&page->lru, dst); 589 nr_taken++; 590 } 591 } 592 593 *scanned = scan; 594 return nr_taken; 595 } 596 597 /* 598 * shrink_cache() adds the number of pages reclaimed to sc->nr_reclaimed 599 */ 600 static void shrink_cache(struct zone *zone, struct scan_control *sc) 601 { 602 LIST_HEAD(page_list); 603 struct pagevec pvec; 604 int max_scan = sc->nr_to_scan; 605 606 pagevec_init(&pvec, 1); 607 608 lru_add_drain(); 609 spin_lock_irq(&zone->lru_lock); 610 while (max_scan > 0) { 611 struct page *page; 612 int nr_taken; 613 int nr_scan; 614 int nr_freed; 615 616 nr_taken = isolate_lru_pages(sc->swap_cluster_max, 617 &zone->inactive_list, 618 &page_list, &nr_scan); 619 zone->nr_inactive -= nr_taken; 620 zone->pages_scanned += nr_scan; 621 spin_unlock_irq(&zone->lru_lock); 622 623 if (nr_taken == 0) 624 goto done; 625 626 max_scan -= nr_scan; 627 if (current_is_kswapd()) 628 mod_page_state_zone(zone, pgscan_kswapd, nr_scan); 629 else 630 mod_page_state_zone(zone, pgscan_direct, nr_scan); 631 nr_freed = shrink_list(&page_list, sc); 632 if (current_is_kswapd()) 633 mod_page_state(kswapd_steal, nr_freed); 634 mod_page_state_zone(zone, pgsteal, nr_freed); 635 sc->nr_to_reclaim -= nr_freed; 636 637 spin_lock_irq(&zone->lru_lock); 638 /* 639 * Put back any unfreeable pages. 640 */ 641 while (!list_empty(&page_list)) { 642 page = lru_to_page(&page_list); 643 if (TestSetPageLRU(page)) 644 BUG(); 645 list_del(&page->lru); 646 if (PageActive(page)) 647 add_page_to_active_list(zone, page); 648 else 649 add_page_to_inactive_list(zone, page); 650 if (!pagevec_add(&pvec, page)) { 651 spin_unlock_irq(&zone->lru_lock); 652 __pagevec_release(&pvec); 653 spin_lock_irq(&zone->lru_lock); 654 } 655 } 656 } 657 spin_unlock_irq(&zone->lru_lock); 658 done: 659 pagevec_release(&pvec); 660 } 661 662 /* 663 * This moves pages from the active list to the inactive list. 664 * 665 * We move them the other way if the page is referenced by one or more 666 * processes, from rmap. 667 * 668 * If the pages are mostly unmapped, the processing is fast and it is 669 * appropriate to hold zone->lru_lock across the whole operation. But if 670 * the pages are mapped, the processing is slow (page_referenced()) so we 671 * should drop zone->lru_lock around each page. It's impossible to balance 672 * this, so instead we remove the pages from the LRU while processing them. 673 * It is safe to rely on PG_active against the non-LRU pages in here because 674 * nobody will play with that bit on a non-LRU page. 675 * 676 * The downside is that we have to touch page->_count against each page. 677 * But we had to alter page->flags anyway. 678 */ 679 static void 680 refill_inactive_zone(struct zone *zone, struct scan_control *sc) 681 { 682 int pgmoved; 683 int pgdeactivate = 0; 684 int pgscanned; 685 int nr_pages = sc->nr_to_scan; 686 LIST_HEAD(l_hold); /* The pages which were snipped off */ 687 LIST_HEAD(l_inactive); /* Pages to go onto the inactive_list */ 688 LIST_HEAD(l_active); /* Pages to go onto the active_list */ 689 struct page *page; 690 struct pagevec pvec; 691 int reclaim_mapped = 0; 692 long mapped_ratio; 693 long distress; 694 long swap_tendency; 695 696 lru_add_drain(); 697 spin_lock_irq(&zone->lru_lock); 698 pgmoved = isolate_lru_pages(nr_pages, &zone->active_list, 699 &l_hold, &pgscanned); 700 zone->pages_scanned += pgscanned; 701 zone->nr_active -= pgmoved; 702 spin_unlock_irq(&zone->lru_lock); 703 704 /* 705 * `distress' is a measure of how much trouble we're having reclaiming 706 * pages. 0 -> no problems. 100 -> great trouble. 707 */ 708 distress = 100 >> zone->prev_priority; 709 710 /* 711 * The point of this algorithm is to decide when to start reclaiming 712 * mapped memory instead of just pagecache. Work out how much memory 713 * is mapped. 714 */ 715 mapped_ratio = (sc->nr_mapped * 100) / total_memory; 716 717 /* 718 * Now decide how much we really want to unmap some pages. The mapped 719 * ratio is downgraded - just because there's a lot of mapped memory 720 * doesn't necessarily mean that page reclaim isn't succeeding. 721 * 722 * The distress ratio is important - we don't want to start going oom. 723 * 724 * A 100% value of vm_swappiness overrides this algorithm altogether. 725 */ 726 swap_tendency = mapped_ratio / 2 + distress + vm_swappiness; 727 728 /* 729 * Now use this metric to decide whether to start moving mapped memory 730 * onto the inactive list. 731 */ 732 if (swap_tendency >= 100) 733 reclaim_mapped = 1; 734 735 while (!list_empty(&l_hold)) { 736 cond_resched(); 737 page = lru_to_page(&l_hold); 738 list_del(&page->lru); 739 if (page_mapped(page)) { 740 if (!reclaim_mapped || 741 (total_swap_pages == 0 && PageAnon(page)) || 742 page_referenced(page, 0, sc->priority <= 0)) { 743 list_add(&page->lru, &l_active); 744 continue; 745 } 746 } 747 list_add(&page->lru, &l_inactive); 748 } 749 750 pagevec_init(&pvec, 1); 751 pgmoved = 0; 752 spin_lock_irq(&zone->lru_lock); 753 while (!list_empty(&l_inactive)) { 754 page = lru_to_page(&l_inactive); 755 prefetchw_prev_lru_page(page, &l_inactive, flags); 756 if (TestSetPageLRU(page)) 757 BUG(); 758 if (!TestClearPageActive(page)) 759 BUG(); 760 list_move(&page->lru, &zone->inactive_list); 761 pgmoved++; 762 if (!pagevec_add(&pvec, page)) { 763 zone->nr_inactive += pgmoved; 764 spin_unlock_irq(&zone->lru_lock); 765 pgdeactivate += pgmoved; 766 pgmoved = 0; 767 if (buffer_heads_over_limit) 768 pagevec_strip(&pvec); 769 __pagevec_release(&pvec); 770 spin_lock_irq(&zone->lru_lock); 771 } 772 } 773 zone->nr_inactive += pgmoved; 774 pgdeactivate += pgmoved; 775 if (buffer_heads_over_limit) { 776 spin_unlock_irq(&zone->lru_lock); 777 pagevec_strip(&pvec); 778 spin_lock_irq(&zone->lru_lock); 779 } 780 781 pgmoved = 0; 782 while (!list_empty(&l_active)) { 783 page = lru_to_page(&l_active); 784 prefetchw_prev_lru_page(page, &l_active, flags); 785 if (TestSetPageLRU(page)) 786 BUG(); 787 BUG_ON(!PageActive(page)); 788 list_move(&page->lru, &zone->active_list); 789 pgmoved++; 790 if (!pagevec_add(&pvec, page)) { 791 zone->nr_active += pgmoved; 792 pgmoved = 0; 793 spin_unlock_irq(&zone->lru_lock); 794 __pagevec_release(&pvec); 795 spin_lock_irq(&zone->lru_lock); 796 } 797 } 798 zone->nr_active += pgmoved; 799 spin_unlock_irq(&zone->lru_lock); 800 pagevec_release(&pvec); 801 802 mod_page_state_zone(zone, pgrefill, pgscanned); 803 mod_page_state(pgdeactivate, pgdeactivate); 804 } 805 806 /* 807 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim. 808 */ 809 static void 810 shrink_zone(struct zone *zone, struct scan_control *sc) 811 { 812 unsigned long nr_active; 813 unsigned long nr_inactive; 814 815 /* 816 * Add one to `nr_to_scan' just to make sure that the kernel will 817 * slowly sift through the active list. 818 */ 819 zone->nr_scan_active += (zone->nr_active >> sc->priority) + 1; 820 nr_active = zone->nr_scan_active; 821 if (nr_active >= sc->swap_cluster_max) 822 zone->nr_scan_active = 0; 823 else 824 nr_active = 0; 825 826 zone->nr_scan_inactive += (zone->nr_inactive >> sc->priority) + 1; 827 nr_inactive = zone->nr_scan_inactive; 828 if (nr_inactive >= sc->swap_cluster_max) 829 zone->nr_scan_inactive = 0; 830 else 831 nr_inactive = 0; 832 833 sc->nr_to_reclaim = sc->swap_cluster_max; 834 835 while (nr_active || nr_inactive) { 836 if (nr_active) { 837 sc->nr_to_scan = min(nr_active, 838 (unsigned long)sc->swap_cluster_max); 839 nr_active -= sc->nr_to_scan; 840 refill_inactive_zone(zone, sc); 841 } 842 843 if (nr_inactive) { 844 sc->nr_to_scan = min(nr_inactive, 845 (unsigned long)sc->swap_cluster_max); 846 nr_inactive -= sc->nr_to_scan; 847 shrink_cache(zone, sc); 848 if (sc->nr_to_reclaim <= 0) 849 break; 850 } 851 } 852 853 throttle_vm_writeout(); 854 } 855 856 /* 857 * This is the direct reclaim path, for page-allocating processes. We only 858 * try to reclaim pages from zones which will satisfy the caller's allocation 859 * request. 860 * 861 * We reclaim from a zone even if that zone is over pages_high. Because: 862 * a) The caller may be trying to free *extra* pages to satisfy a higher-order 863 * allocation or 864 * b) The zones may be over pages_high but they must go *over* pages_high to 865 * satisfy the `incremental min' zone defense algorithm. 866 * 867 * Returns the number of reclaimed pages. 868 * 869 * If a zone is deemed to be full of pinned pages then just give it a light 870 * scan then give up on it. 871 */ 872 static void 873 shrink_caches(struct zone **zones, struct scan_control *sc) 874 { 875 int i; 876 877 for (i = 0; zones[i] != NULL; i++) { 878 struct zone *zone = zones[i]; 879 880 if (zone->present_pages == 0) 881 continue; 882 883 if (!cpuset_zone_allowed(zone)) 884 continue; 885 886 zone->temp_priority = sc->priority; 887 if (zone->prev_priority > sc->priority) 888 zone->prev_priority = sc->priority; 889 890 if (zone->all_unreclaimable && sc->priority != DEF_PRIORITY) 891 continue; /* Let kswapd poll it */ 892 893 shrink_zone(zone, sc); 894 } 895 } 896 897 /* 898 * This is the main entry point to direct page reclaim. 899 * 900 * If a full scan of the inactive list fails to free enough memory then we 901 * are "out of memory" and something needs to be killed. 902 * 903 * If the caller is !__GFP_FS then the probability of a failure is reasonably 904 * high - the zone may be full of dirty or under-writeback pages, which this 905 * caller can't do much about. We kick pdflush and take explicit naps in the 906 * hope that some of these pages can be written. But if the allocating task 907 * holds filesystem locks which prevent writeout this might not work, and the 908 * allocation attempt will fail. 909 */ 910 int try_to_free_pages(struct zone **zones, 911 unsigned int gfp_mask, unsigned int order) 912 { 913 int priority; 914 int ret = 0; 915 int total_scanned = 0, total_reclaimed = 0; 916 struct reclaim_state *reclaim_state = current->reclaim_state; 917 struct scan_control sc; 918 unsigned long lru_pages = 0; 919 int i; 920 921 sc.gfp_mask = gfp_mask; 922 sc.may_writepage = 0; 923 924 inc_page_state(allocstall); 925 926 for (i = 0; zones[i] != NULL; i++) { 927 struct zone *zone = zones[i]; 928 929 if (!cpuset_zone_allowed(zone)) 930 continue; 931 932 zone->temp_priority = DEF_PRIORITY; 933 lru_pages += zone->nr_active + zone->nr_inactive; 934 } 935 936 for (priority = DEF_PRIORITY; priority >= 0; priority--) { 937 sc.nr_mapped = read_page_state(nr_mapped); 938 sc.nr_scanned = 0; 939 sc.nr_reclaimed = 0; 940 sc.priority = priority; 941 sc.swap_cluster_max = SWAP_CLUSTER_MAX; 942 shrink_caches(zones, &sc); 943 shrink_slab(sc.nr_scanned, gfp_mask, lru_pages); 944 if (reclaim_state) { 945 sc.nr_reclaimed += reclaim_state->reclaimed_slab; 946 reclaim_state->reclaimed_slab = 0; 947 } 948 total_scanned += sc.nr_scanned; 949 total_reclaimed += sc.nr_reclaimed; 950 if (total_reclaimed >= sc.swap_cluster_max) { 951 ret = 1; 952 goto out; 953 } 954 955 /* 956 * Try to write back as many pages as we just scanned. This 957 * tends to cause slow streaming writers to write data to the 958 * disk smoothly, at the dirtying rate, which is nice. But 959 * that's undesirable in laptop mode, where we *want* lumpy 960 * writeout. So in laptop mode, write out the whole world. 961 */ 962 if (total_scanned > sc.swap_cluster_max + sc.swap_cluster_max/2) { 963 wakeup_bdflush(laptop_mode ? 0 : total_scanned); 964 sc.may_writepage = 1; 965 } 966 967 /* Take a nap, wait for some writeback to complete */ 968 if (sc.nr_scanned && priority < DEF_PRIORITY - 2) 969 blk_congestion_wait(WRITE, HZ/10); 970 } 971 out: 972 for (i = 0; zones[i] != 0; i++) { 973 struct zone *zone = zones[i]; 974 975 if (!cpuset_zone_allowed(zone)) 976 continue; 977 978 zone->prev_priority = zone->temp_priority; 979 } 980 return ret; 981 } 982 983 /* 984 * For kswapd, balance_pgdat() will work across all this node's zones until 985 * they are all at pages_high. 986 * 987 * If `nr_pages' is non-zero then it is the number of pages which are to be 988 * reclaimed, regardless of the zone occupancies. This is a software suspend 989 * special. 990 * 991 * Returns the number of pages which were actually freed. 992 * 993 * There is special handling here for zones which are full of pinned pages. 994 * This can happen if the pages are all mlocked, or if they are all used by 995 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb. 996 * What we do is to detect the case where all pages in the zone have been 997 * scanned twice and there has been zero successful reclaim. Mark the zone as 998 * dead and from now on, only perform a short scan. Basically we're polling 999 * the zone for when the problem goes away. 1000 * 1001 * kswapd scans the zones in the highmem->normal->dma direction. It skips 1002 * zones which have free_pages > pages_high, but once a zone is found to have 1003 * free_pages <= pages_high, we scan that zone and the lower zones regardless 1004 * of the number of free pages in the lower zones. This interoperates with 1005 * the page allocator fallback scheme to ensure that aging of pages is balanced 1006 * across the zones. 1007 */ 1008 static int balance_pgdat(pg_data_t *pgdat, int nr_pages, int order) 1009 { 1010 int to_free = nr_pages; 1011 int all_zones_ok; 1012 int priority; 1013 int i; 1014 int total_scanned, total_reclaimed; 1015 struct reclaim_state *reclaim_state = current->reclaim_state; 1016 struct scan_control sc; 1017 1018 loop_again: 1019 total_scanned = 0; 1020 total_reclaimed = 0; 1021 sc.gfp_mask = GFP_KERNEL; 1022 sc.may_writepage = 0; 1023 sc.nr_mapped = read_page_state(nr_mapped); 1024 1025 inc_page_state(pageoutrun); 1026 1027 for (i = 0; i < pgdat->nr_zones; i++) { 1028 struct zone *zone = pgdat->node_zones + i; 1029 1030 zone->temp_priority = DEF_PRIORITY; 1031 } 1032 1033 for (priority = DEF_PRIORITY; priority >= 0; priority--) { 1034 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */ 1035 unsigned long lru_pages = 0; 1036 1037 all_zones_ok = 1; 1038 1039 if (nr_pages == 0) { 1040 /* 1041 * Scan in the highmem->dma direction for the highest 1042 * zone which needs scanning 1043 */ 1044 for (i = pgdat->nr_zones - 1; i >= 0; i--) { 1045 struct zone *zone = pgdat->node_zones + i; 1046 1047 if (zone->present_pages == 0) 1048 continue; 1049 1050 if (zone->all_unreclaimable && 1051 priority != DEF_PRIORITY) 1052 continue; 1053 1054 if (!zone_watermark_ok(zone, order, 1055 zone->pages_high, 0, 0, 0)) { 1056 end_zone = i; 1057 goto scan; 1058 } 1059 } 1060 goto out; 1061 } else { 1062 end_zone = pgdat->nr_zones - 1; 1063 } 1064 scan: 1065 for (i = 0; i <= end_zone; i++) { 1066 struct zone *zone = pgdat->node_zones + i; 1067 1068 lru_pages += zone->nr_active + zone->nr_inactive; 1069 } 1070 1071 /* 1072 * Now scan the zone in the dma->highmem direction, stopping 1073 * at the last zone which needs scanning. 1074 * 1075 * We do this because the page allocator works in the opposite 1076 * direction. This prevents the page allocator from allocating 1077 * pages behind kswapd's direction of progress, which would 1078 * cause too much scanning of the lower zones. 1079 */ 1080 for (i = 0; i <= end_zone; i++) { 1081 struct zone *zone = pgdat->node_zones + i; 1082 1083 if (zone->present_pages == 0) 1084 continue; 1085 1086 if (zone->all_unreclaimable && priority != DEF_PRIORITY) 1087 continue; 1088 1089 if (nr_pages == 0) { /* Not software suspend */ 1090 if (!zone_watermark_ok(zone, order, 1091 zone->pages_high, end_zone, 0, 0)) 1092 all_zones_ok = 0; 1093 } 1094 zone->temp_priority = priority; 1095 if (zone->prev_priority > priority) 1096 zone->prev_priority = priority; 1097 sc.nr_scanned = 0; 1098 sc.nr_reclaimed = 0; 1099 sc.priority = priority; 1100 sc.swap_cluster_max = nr_pages? nr_pages : SWAP_CLUSTER_MAX; 1101 shrink_zone(zone, &sc); 1102 reclaim_state->reclaimed_slab = 0; 1103 shrink_slab(sc.nr_scanned, GFP_KERNEL, lru_pages); 1104 sc.nr_reclaimed += reclaim_state->reclaimed_slab; 1105 total_reclaimed += sc.nr_reclaimed; 1106 total_scanned += sc.nr_scanned; 1107 if (zone->all_unreclaimable) 1108 continue; 1109 if (zone->pages_scanned >= (zone->nr_active + 1110 zone->nr_inactive) * 4) 1111 zone->all_unreclaimable = 1; 1112 /* 1113 * If we've done a decent amount of scanning and 1114 * the reclaim ratio is low, start doing writepage 1115 * even in laptop mode 1116 */ 1117 if (total_scanned > SWAP_CLUSTER_MAX * 2 && 1118 total_scanned > total_reclaimed+total_reclaimed/2) 1119 sc.may_writepage = 1; 1120 } 1121 if (nr_pages && to_free > total_reclaimed) 1122 continue; /* swsusp: need to do more work */ 1123 if (all_zones_ok) 1124 break; /* kswapd: all done */ 1125 /* 1126 * OK, kswapd is getting into trouble. Take a nap, then take 1127 * another pass across the zones. 1128 */ 1129 if (total_scanned && priority < DEF_PRIORITY - 2) 1130 blk_congestion_wait(WRITE, HZ/10); 1131 1132 /* 1133 * We do this so kswapd doesn't build up large priorities for 1134 * example when it is freeing in parallel with allocators. It 1135 * matches the direct reclaim path behaviour in terms of impact 1136 * on zone->*_priority. 1137 */ 1138 if ((total_reclaimed >= SWAP_CLUSTER_MAX) && (!nr_pages)) 1139 break; 1140 } 1141 out: 1142 for (i = 0; i < pgdat->nr_zones; i++) { 1143 struct zone *zone = pgdat->node_zones + i; 1144 1145 zone->prev_priority = zone->temp_priority; 1146 } 1147 if (!all_zones_ok) { 1148 cond_resched(); 1149 goto loop_again; 1150 } 1151 1152 return total_reclaimed; 1153 } 1154 1155 /* 1156 * The background pageout daemon, started as a kernel thread 1157 * from the init process. 1158 * 1159 * This basically trickles out pages so that we have _some_ 1160 * free memory available even if there is no other activity 1161 * that frees anything up. This is needed for things like routing 1162 * etc, where we otherwise might have all activity going on in 1163 * asynchronous contexts that cannot page things out. 1164 * 1165 * If there are applications that are active memory-allocators 1166 * (most normal use), this basically shouldn't matter. 1167 */ 1168 static int kswapd(void *p) 1169 { 1170 unsigned long order; 1171 pg_data_t *pgdat = (pg_data_t*)p; 1172 struct task_struct *tsk = current; 1173 DEFINE_WAIT(wait); 1174 struct reclaim_state reclaim_state = { 1175 .reclaimed_slab = 0, 1176 }; 1177 cpumask_t cpumask; 1178 1179 daemonize("kswapd%d", pgdat->node_id); 1180 cpumask = node_to_cpumask(pgdat->node_id); 1181 if (!cpus_empty(cpumask)) 1182 set_cpus_allowed(tsk, cpumask); 1183 current->reclaim_state = &reclaim_state; 1184 1185 /* 1186 * Tell the memory management that we're a "memory allocator", 1187 * and that if we need more memory we should get access to it 1188 * regardless (see "__alloc_pages()"). "kswapd" should 1189 * never get caught in the normal page freeing logic. 1190 * 1191 * (Kswapd normally doesn't need memory anyway, but sometimes 1192 * you need a small amount of memory in order to be able to 1193 * page out something else, and this flag essentially protects 1194 * us from recursively trying to free more memory as we're 1195 * trying to free the first piece of memory in the first place). 1196 */ 1197 tsk->flags |= PF_MEMALLOC|PF_KSWAPD; 1198 1199 order = 0; 1200 for ( ; ; ) { 1201 unsigned long new_order; 1202 if (current->flags & PF_FREEZE) 1203 refrigerator(PF_FREEZE); 1204 1205 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 1206 new_order = pgdat->kswapd_max_order; 1207 pgdat->kswapd_max_order = 0; 1208 if (order < new_order) { 1209 /* 1210 * Don't sleep if someone wants a larger 'order' 1211 * allocation 1212 */ 1213 order = new_order; 1214 } else { 1215 schedule(); 1216 order = pgdat->kswapd_max_order; 1217 } 1218 finish_wait(&pgdat->kswapd_wait, &wait); 1219 1220 balance_pgdat(pgdat, 0, order); 1221 } 1222 return 0; 1223 } 1224 1225 /* 1226 * A zone is low on free memory, so wake its kswapd task to service it. 1227 */ 1228 void wakeup_kswapd(struct zone *zone, int order) 1229 { 1230 pg_data_t *pgdat; 1231 1232 if (zone->present_pages == 0) 1233 return; 1234 1235 pgdat = zone->zone_pgdat; 1236 if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0, 0)) 1237 return; 1238 if (pgdat->kswapd_max_order < order) 1239 pgdat->kswapd_max_order = order; 1240 if (!cpuset_zone_allowed(zone)) 1241 return; 1242 if (!waitqueue_active(&zone->zone_pgdat->kswapd_wait)) 1243 return; 1244 wake_up_interruptible(&zone->zone_pgdat->kswapd_wait); 1245 } 1246 1247 #ifdef CONFIG_PM 1248 /* 1249 * Try to free `nr_pages' of memory, system-wide. Returns the number of freed 1250 * pages. 1251 */ 1252 int shrink_all_memory(int nr_pages) 1253 { 1254 pg_data_t *pgdat; 1255 int nr_to_free = nr_pages; 1256 int ret = 0; 1257 struct reclaim_state reclaim_state = { 1258 .reclaimed_slab = 0, 1259 }; 1260 1261 current->reclaim_state = &reclaim_state; 1262 for_each_pgdat(pgdat) { 1263 int freed; 1264 freed = balance_pgdat(pgdat, nr_to_free, 0); 1265 ret += freed; 1266 nr_to_free -= freed; 1267 if (nr_to_free <= 0) 1268 break; 1269 } 1270 current->reclaim_state = NULL; 1271 return ret; 1272 } 1273 #endif 1274 1275 #ifdef CONFIG_HOTPLUG_CPU 1276 /* It's optimal to keep kswapds on the same CPUs as their memory, but 1277 not required for correctness. So if the last cpu in a node goes 1278 away, we get changed to run anywhere: as the first one comes back, 1279 restore their cpu bindings. */ 1280 static int __devinit cpu_callback(struct notifier_block *nfb, 1281 unsigned long action, 1282 void *hcpu) 1283 { 1284 pg_data_t *pgdat; 1285 cpumask_t mask; 1286 1287 if (action == CPU_ONLINE) { 1288 for_each_pgdat(pgdat) { 1289 mask = node_to_cpumask(pgdat->node_id); 1290 if (any_online_cpu(mask) != NR_CPUS) 1291 /* One of our CPUs online: restore mask */ 1292 set_cpus_allowed(pgdat->kswapd, mask); 1293 } 1294 } 1295 return NOTIFY_OK; 1296 } 1297 #endif /* CONFIG_HOTPLUG_CPU */ 1298 1299 static int __init kswapd_init(void) 1300 { 1301 pg_data_t *pgdat; 1302 swap_setup(); 1303 for_each_pgdat(pgdat) 1304 pgdat->kswapd 1305 = find_task_by_pid(kernel_thread(kswapd, pgdat, CLONE_KERNEL)); 1306 total_memory = nr_free_pagecache_pages(); 1307 hotcpu_notifier(cpu_callback, 0); 1308 return 0; 1309 } 1310 1311 module_init(kswapd_init) 1312