xref: /linux/mm/vmscan.c (revision 776cfebb430c7b22c208b1b17add97f354d97cab)
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13 
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/file.h>
23 #include <linux/writeback.h>
24 #include <linux/blkdev.h>
25 #include <linux/buffer_head.h>	/* for try_to_release_page(),
26 					buffer_heads_over_limit */
27 #include <linux/mm_inline.h>
28 #include <linux/pagevec.h>
29 #include <linux/backing-dev.h>
30 #include <linux/rmap.h>
31 #include <linux/topology.h>
32 #include <linux/cpu.h>
33 #include <linux/cpuset.h>
34 #include <linux/notifier.h>
35 #include <linux/rwsem.h>
36 
37 #include <asm/tlbflush.h>
38 #include <asm/div64.h>
39 
40 #include <linux/swapops.h>
41 
42 /* possible outcome of pageout() */
43 typedef enum {
44 	/* failed to write page out, page is locked */
45 	PAGE_KEEP,
46 	/* move page to the active list, page is locked */
47 	PAGE_ACTIVATE,
48 	/* page has been sent to the disk successfully, page is unlocked */
49 	PAGE_SUCCESS,
50 	/* page is clean and locked */
51 	PAGE_CLEAN,
52 } pageout_t;
53 
54 struct scan_control {
55 	/* Ask refill_inactive_zone, or shrink_cache to scan this many pages */
56 	unsigned long nr_to_scan;
57 
58 	/* Incremented by the number of inactive pages that were scanned */
59 	unsigned long nr_scanned;
60 
61 	/* Incremented by the number of pages reclaimed */
62 	unsigned long nr_reclaimed;
63 
64 	unsigned long nr_mapped;	/* From page_state */
65 
66 	/* How many pages shrink_cache() should reclaim */
67 	int nr_to_reclaim;
68 
69 	/* Ask shrink_caches, or shrink_zone to scan at this priority */
70 	unsigned int priority;
71 
72 	/* This context's GFP mask */
73 	unsigned int gfp_mask;
74 
75 	int may_writepage;
76 
77 	/* This context's SWAP_CLUSTER_MAX. If freeing memory for
78 	 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
79 	 * In this context, it doesn't matter that we scan the
80 	 * whole list at once. */
81 	int swap_cluster_max;
82 };
83 
84 /*
85  * The list of shrinker callbacks used by to apply pressure to
86  * ageable caches.
87  */
88 struct shrinker {
89 	shrinker_t		shrinker;
90 	struct list_head	list;
91 	int			seeks;	/* seeks to recreate an obj */
92 	long			nr;	/* objs pending delete */
93 };
94 
95 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
96 
97 #ifdef ARCH_HAS_PREFETCH
98 #define prefetch_prev_lru_page(_page, _base, _field)			\
99 	do {								\
100 		if ((_page)->lru.prev != _base) {			\
101 			struct page *prev;				\
102 									\
103 			prev = lru_to_page(&(_page->lru));		\
104 			prefetch(&prev->_field);			\
105 		}							\
106 	} while (0)
107 #else
108 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
109 #endif
110 
111 #ifdef ARCH_HAS_PREFETCHW
112 #define prefetchw_prev_lru_page(_page, _base, _field)			\
113 	do {								\
114 		if ((_page)->lru.prev != _base) {			\
115 			struct page *prev;				\
116 									\
117 			prev = lru_to_page(&(_page->lru));		\
118 			prefetchw(&prev->_field);			\
119 		}							\
120 	} while (0)
121 #else
122 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
123 #endif
124 
125 /*
126  * From 0 .. 100.  Higher means more swappy.
127  */
128 int vm_swappiness = 60;
129 static long total_memory;
130 
131 static LIST_HEAD(shrinker_list);
132 static DECLARE_RWSEM(shrinker_rwsem);
133 
134 /*
135  * Add a shrinker callback to be called from the vm
136  */
137 struct shrinker *set_shrinker(int seeks, shrinker_t theshrinker)
138 {
139         struct shrinker *shrinker;
140 
141         shrinker = kmalloc(sizeof(*shrinker), GFP_KERNEL);
142         if (shrinker) {
143 	        shrinker->shrinker = theshrinker;
144 	        shrinker->seeks = seeks;
145 	        shrinker->nr = 0;
146 	        down_write(&shrinker_rwsem);
147 	        list_add_tail(&shrinker->list, &shrinker_list);
148 	        up_write(&shrinker_rwsem);
149 	}
150 	return shrinker;
151 }
152 EXPORT_SYMBOL(set_shrinker);
153 
154 /*
155  * Remove one
156  */
157 void remove_shrinker(struct shrinker *shrinker)
158 {
159 	down_write(&shrinker_rwsem);
160 	list_del(&shrinker->list);
161 	up_write(&shrinker_rwsem);
162 	kfree(shrinker);
163 }
164 EXPORT_SYMBOL(remove_shrinker);
165 
166 #define SHRINK_BATCH 128
167 /*
168  * Call the shrink functions to age shrinkable caches
169  *
170  * Here we assume it costs one seek to replace a lru page and that it also
171  * takes a seek to recreate a cache object.  With this in mind we age equal
172  * percentages of the lru and ageable caches.  This should balance the seeks
173  * generated by these structures.
174  *
175  * If the vm encounted mapped pages on the LRU it increase the pressure on
176  * slab to avoid swapping.
177  *
178  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
179  *
180  * `lru_pages' represents the number of on-LRU pages in all the zones which
181  * are eligible for the caller's allocation attempt.  It is used for balancing
182  * slab reclaim versus page reclaim.
183  */
184 static int shrink_slab(unsigned long scanned, unsigned int gfp_mask,
185 			unsigned long lru_pages)
186 {
187 	struct shrinker *shrinker;
188 
189 	if (scanned == 0)
190 		scanned = SWAP_CLUSTER_MAX;
191 
192 	if (!down_read_trylock(&shrinker_rwsem))
193 		return 0;
194 
195 	list_for_each_entry(shrinker, &shrinker_list, list) {
196 		unsigned long long delta;
197 		unsigned long total_scan;
198 
199 		delta = (4 * scanned) / shrinker->seeks;
200 		delta *= (*shrinker->shrinker)(0, gfp_mask);
201 		do_div(delta, lru_pages + 1);
202 		shrinker->nr += delta;
203 		if (shrinker->nr < 0)
204 			shrinker->nr = LONG_MAX;	/* It wrapped! */
205 
206 		total_scan = shrinker->nr;
207 		shrinker->nr = 0;
208 
209 		while (total_scan >= SHRINK_BATCH) {
210 			long this_scan = SHRINK_BATCH;
211 			int shrink_ret;
212 
213 			shrink_ret = (*shrinker->shrinker)(this_scan, gfp_mask);
214 			if (shrink_ret == -1)
215 				break;
216 			mod_page_state(slabs_scanned, this_scan);
217 			total_scan -= this_scan;
218 
219 			cond_resched();
220 		}
221 
222 		shrinker->nr += total_scan;
223 	}
224 	up_read(&shrinker_rwsem);
225 	return 0;
226 }
227 
228 /* Called without lock on whether page is mapped, so answer is unstable */
229 static inline int page_mapping_inuse(struct page *page)
230 {
231 	struct address_space *mapping;
232 
233 	/* Page is in somebody's page tables. */
234 	if (page_mapped(page))
235 		return 1;
236 
237 	/* Be more reluctant to reclaim swapcache than pagecache */
238 	if (PageSwapCache(page))
239 		return 1;
240 
241 	mapping = page_mapping(page);
242 	if (!mapping)
243 		return 0;
244 
245 	/* File is mmap'd by somebody? */
246 	return mapping_mapped(mapping);
247 }
248 
249 static inline int is_page_cache_freeable(struct page *page)
250 {
251 	return page_count(page) - !!PagePrivate(page) == 2;
252 }
253 
254 static int may_write_to_queue(struct backing_dev_info *bdi)
255 {
256 	if (current_is_kswapd())
257 		return 1;
258 	if (current_is_pdflush())	/* This is unlikely, but why not... */
259 		return 1;
260 	if (!bdi_write_congested(bdi))
261 		return 1;
262 	if (bdi == current->backing_dev_info)
263 		return 1;
264 	return 0;
265 }
266 
267 /*
268  * We detected a synchronous write error writing a page out.  Probably
269  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
270  * fsync(), msync() or close().
271  *
272  * The tricky part is that after writepage we cannot touch the mapping: nothing
273  * prevents it from being freed up.  But we have a ref on the page and once
274  * that page is locked, the mapping is pinned.
275  *
276  * We're allowed to run sleeping lock_page() here because we know the caller has
277  * __GFP_FS.
278  */
279 static void handle_write_error(struct address_space *mapping,
280 				struct page *page, int error)
281 {
282 	lock_page(page);
283 	if (page_mapping(page) == mapping) {
284 		if (error == -ENOSPC)
285 			set_bit(AS_ENOSPC, &mapping->flags);
286 		else
287 			set_bit(AS_EIO, &mapping->flags);
288 	}
289 	unlock_page(page);
290 }
291 
292 /*
293  * pageout is called by shrink_list() for each dirty page. Calls ->writepage().
294  */
295 static pageout_t pageout(struct page *page, struct address_space *mapping)
296 {
297 	/*
298 	 * If the page is dirty, only perform writeback if that write
299 	 * will be non-blocking.  To prevent this allocation from being
300 	 * stalled by pagecache activity.  But note that there may be
301 	 * stalls if we need to run get_block().  We could test
302 	 * PagePrivate for that.
303 	 *
304 	 * If this process is currently in generic_file_write() against
305 	 * this page's queue, we can perform writeback even if that
306 	 * will block.
307 	 *
308 	 * If the page is swapcache, write it back even if that would
309 	 * block, for some throttling. This happens by accident, because
310 	 * swap_backing_dev_info is bust: it doesn't reflect the
311 	 * congestion state of the swapdevs.  Easy to fix, if needed.
312 	 * See swapfile.c:page_queue_congested().
313 	 */
314 	if (!is_page_cache_freeable(page))
315 		return PAGE_KEEP;
316 	if (!mapping) {
317 		/*
318 		 * Some data journaling orphaned pages can have
319 		 * page->mapping == NULL while being dirty with clean buffers.
320 		 */
321 		if (PagePrivate(page)) {
322 			if (try_to_free_buffers(page)) {
323 				ClearPageDirty(page);
324 				printk("%s: orphaned page\n", __FUNCTION__);
325 				return PAGE_CLEAN;
326 			}
327 		}
328 		return PAGE_KEEP;
329 	}
330 	if (mapping->a_ops->writepage == NULL)
331 		return PAGE_ACTIVATE;
332 	if (!may_write_to_queue(mapping->backing_dev_info))
333 		return PAGE_KEEP;
334 
335 	if (clear_page_dirty_for_io(page)) {
336 		int res;
337 		struct writeback_control wbc = {
338 			.sync_mode = WB_SYNC_NONE,
339 			.nr_to_write = SWAP_CLUSTER_MAX,
340 			.nonblocking = 1,
341 			.for_reclaim = 1,
342 		};
343 
344 		SetPageReclaim(page);
345 		res = mapping->a_ops->writepage(page, &wbc);
346 		if (res < 0)
347 			handle_write_error(mapping, page, res);
348 		if (res == WRITEPAGE_ACTIVATE) {
349 			ClearPageReclaim(page);
350 			return PAGE_ACTIVATE;
351 		}
352 		if (!PageWriteback(page)) {
353 			/* synchronous write or broken a_ops? */
354 			ClearPageReclaim(page);
355 		}
356 
357 		return PAGE_SUCCESS;
358 	}
359 
360 	return PAGE_CLEAN;
361 }
362 
363 /*
364  * shrink_list adds the number of reclaimed pages to sc->nr_reclaimed
365  */
366 static int shrink_list(struct list_head *page_list, struct scan_control *sc)
367 {
368 	LIST_HEAD(ret_pages);
369 	struct pagevec freed_pvec;
370 	int pgactivate = 0;
371 	int reclaimed = 0;
372 
373 	cond_resched();
374 
375 	pagevec_init(&freed_pvec, 1);
376 	while (!list_empty(page_list)) {
377 		struct address_space *mapping;
378 		struct page *page;
379 		int may_enter_fs;
380 		int referenced;
381 
382 		cond_resched();
383 
384 		page = lru_to_page(page_list);
385 		list_del(&page->lru);
386 
387 		if (TestSetPageLocked(page))
388 			goto keep;
389 
390 		BUG_ON(PageActive(page));
391 
392 		sc->nr_scanned++;
393 		/* Double the slab pressure for mapped and swapcache pages */
394 		if (page_mapped(page) || PageSwapCache(page))
395 			sc->nr_scanned++;
396 
397 		if (PageWriteback(page))
398 			goto keep_locked;
399 
400 		referenced = page_referenced(page, 1, sc->priority <= 0);
401 		/* In active use or really unfreeable?  Activate it. */
402 		if (referenced && page_mapping_inuse(page))
403 			goto activate_locked;
404 
405 #ifdef CONFIG_SWAP
406 		/*
407 		 * Anonymous process memory has backing store?
408 		 * Try to allocate it some swap space here.
409 		 */
410 		if (PageAnon(page) && !PageSwapCache(page)) {
411 			if (!add_to_swap(page))
412 				goto activate_locked;
413 		}
414 #endif /* CONFIG_SWAP */
415 
416 		mapping = page_mapping(page);
417 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
418 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
419 
420 		/*
421 		 * The page is mapped into the page tables of one or more
422 		 * processes. Try to unmap it here.
423 		 */
424 		if (page_mapped(page) && mapping) {
425 			switch (try_to_unmap(page)) {
426 			case SWAP_FAIL:
427 				goto activate_locked;
428 			case SWAP_AGAIN:
429 				goto keep_locked;
430 			case SWAP_SUCCESS:
431 				; /* try to free the page below */
432 			}
433 		}
434 
435 		if (PageDirty(page)) {
436 			if (referenced)
437 				goto keep_locked;
438 			if (!may_enter_fs)
439 				goto keep_locked;
440 			if (laptop_mode && !sc->may_writepage)
441 				goto keep_locked;
442 
443 			/* Page is dirty, try to write it out here */
444 			switch(pageout(page, mapping)) {
445 			case PAGE_KEEP:
446 				goto keep_locked;
447 			case PAGE_ACTIVATE:
448 				goto activate_locked;
449 			case PAGE_SUCCESS:
450 				if (PageWriteback(page) || PageDirty(page))
451 					goto keep;
452 				/*
453 				 * A synchronous write - probably a ramdisk.  Go
454 				 * ahead and try to reclaim the page.
455 				 */
456 				if (TestSetPageLocked(page))
457 					goto keep;
458 				if (PageDirty(page) || PageWriteback(page))
459 					goto keep_locked;
460 				mapping = page_mapping(page);
461 			case PAGE_CLEAN:
462 				; /* try to free the page below */
463 			}
464 		}
465 
466 		/*
467 		 * If the page has buffers, try to free the buffer mappings
468 		 * associated with this page. If we succeed we try to free
469 		 * the page as well.
470 		 *
471 		 * We do this even if the page is PageDirty().
472 		 * try_to_release_page() does not perform I/O, but it is
473 		 * possible for a page to have PageDirty set, but it is actually
474 		 * clean (all its buffers are clean).  This happens if the
475 		 * buffers were written out directly, with submit_bh(). ext3
476 		 * will do this, as well as the blockdev mapping.
477 		 * try_to_release_page() will discover that cleanness and will
478 		 * drop the buffers and mark the page clean - it can be freed.
479 		 *
480 		 * Rarely, pages can have buffers and no ->mapping.  These are
481 		 * the pages which were not successfully invalidated in
482 		 * truncate_complete_page().  We try to drop those buffers here
483 		 * and if that worked, and the page is no longer mapped into
484 		 * process address space (page_count == 1) it can be freed.
485 		 * Otherwise, leave the page on the LRU so it is swappable.
486 		 */
487 		if (PagePrivate(page)) {
488 			if (!try_to_release_page(page, sc->gfp_mask))
489 				goto activate_locked;
490 			if (!mapping && page_count(page) == 1)
491 				goto free_it;
492 		}
493 
494 		if (!mapping)
495 			goto keep_locked;	/* truncate got there first */
496 
497 		write_lock_irq(&mapping->tree_lock);
498 
499 		/*
500 		 * The non-racy check for busy page.  It is critical to check
501 		 * PageDirty _after_ making sure that the page is freeable and
502 		 * not in use by anybody. 	(pagecache + us == 2)
503 		 */
504 		if (page_count(page) != 2 || PageDirty(page)) {
505 			write_unlock_irq(&mapping->tree_lock);
506 			goto keep_locked;
507 		}
508 
509 #ifdef CONFIG_SWAP
510 		if (PageSwapCache(page)) {
511 			swp_entry_t swap = { .val = page->private };
512 			__delete_from_swap_cache(page);
513 			write_unlock_irq(&mapping->tree_lock);
514 			swap_free(swap);
515 			__put_page(page);	/* The pagecache ref */
516 			goto free_it;
517 		}
518 #endif /* CONFIG_SWAP */
519 
520 		__remove_from_page_cache(page);
521 		write_unlock_irq(&mapping->tree_lock);
522 		__put_page(page);
523 
524 free_it:
525 		unlock_page(page);
526 		reclaimed++;
527 		if (!pagevec_add(&freed_pvec, page))
528 			__pagevec_release_nonlru(&freed_pvec);
529 		continue;
530 
531 activate_locked:
532 		SetPageActive(page);
533 		pgactivate++;
534 keep_locked:
535 		unlock_page(page);
536 keep:
537 		list_add(&page->lru, &ret_pages);
538 		BUG_ON(PageLRU(page));
539 	}
540 	list_splice(&ret_pages, page_list);
541 	if (pagevec_count(&freed_pvec))
542 		__pagevec_release_nonlru(&freed_pvec);
543 	mod_page_state(pgactivate, pgactivate);
544 	sc->nr_reclaimed += reclaimed;
545 	return reclaimed;
546 }
547 
548 /*
549  * zone->lru_lock is heavily contended.  Some of the functions that
550  * shrink the lists perform better by taking out a batch of pages
551  * and working on them outside the LRU lock.
552  *
553  * For pagecache intensive workloads, this function is the hottest
554  * spot in the kernel (apart from copy_*_user functions).
555  *
556  * Appropriate locks must be held before calling this function.
557  *
558  * @nr_to_scan:	The number of pages to look through on the list.
559  * @src:	The LRU list to pull pages off.
560  * @dst:	The temp list to put pages on to.
561  * @scanned:	The number of pages that were scanned.
562  *
563  * returns how many pages were moved onto *@dst.
564  */
565 static int isolate_lru_pages(int nr_to_scan, struct list_head *src,
566 			     struct list_head *dst, int *scanned)
567 {
568 	int nr_taken = 0;
569 	struct page *page;
570 	int scan = 0;
571 
572 	while (scan++ < nr_to_scan && !list_empty(src)) {
573 		page = lru_to_page(src);
574 		prefetchw_prev_lru_page(page, src, flags);
575 
576 		if (!TestClearPageLRU(page))
577 			BUG();
578 		list_del(&page->lru);
579 		if (get_page_testone(page)) {
580 			/*
581 			 * It is being freed elsewhere
582 			 */
583 			__put_page(page);
584 			SetPageLRU(page);
585 			list_add(&page->lru, src);
586 			continue;
587 		} else {
588 			list_add(&page->lru, dst);
589 			nr_taken++;
590 		}
591 	}
592 
593 	*scanned = scan;
594 	return nr_taken;
595 }
596 
597 /*
598  * shrink_cache() adds the number of pages reclaimed to sc->nr_reclaimed
599  */
600 static void shrink_cache(struct zone *zone, struct scan_control *sc)
601 {
602 	LIST_HEAD(page_list);
603 	struct pagevec pvec;
604 	int max_scan = sc->nr_to_scan;
605 
606 	pagevec_init(&pvec, 1);
607 
608 	lru_add_drain();
609 	spin_lock_irq(&zone->lru_lock);
610 	while (max_scan > 0) {
611 		struct page *page;
612 		int nr_taken;
613 		int nr_scan;
614 		int nr_freed;
615 
616 		nr_taken = isolate_lru_pages(sc->swap_cluster_max,
617 					     &zone->inactive_list,
618 					     &page_list, &nr_scan);
619 		zone->nr_inactive -= nr_taken;
620 		zone->pages_scanned += nr_scan;
621 		spin_unlock_irq(&zone->lru_lock);
622 
623 		if (nr_taken == 0)
624 			goto done;
625 
626 		max_scan -= nr_scan;
627 		if (current_is_kswapd())
628 			mod_page_state_zone(zone, pgscan_kswapd, nr_scan);
629 		else
630 			mod_page_state_zone(zone, pgscan_direct, nr_scan);
631 		nr_freed = shrink_list(&page_list, sc);
632 		if (current_is_kswapd())
633 			mod_page_state(kswapd_steal, nr_freed);
634 		mod_page_state_zone(zone, pgsteal, nr_freed);
635 		sc->nr_to_reclaim -= nr_freed;
636 
637 		spin_lock_irq(&zone->lru_lock);
638 		/*
639 		 * Put back any unfreeable pages.
640 		 */
641 		while (!list_empty(&page_list)) {
642 			page = lru_to_page(&page_list);
643 			if (TestSetPageLRU(page))
644 				BUG();
645 			list_del(&page->lru);
646 			if (PageActive(page))
647 				add_page_to_active_list(zone, page);
648 			else
649 				add_page_to_inactive_list(zone, page);
650 			if (!pagevec_add(&pvec, page)) {
651 				spin_unlock_irq(&zone->lru_lock);
652 				__pagevec_release(&pvec);
653 				spin_lock_irq(&zone->lru_lock);
654 			}
655 		}
656   	}
657 	spin_unlock_irq(&zone->lru_lock);
658 done:
659 	pagevec_release(&pvec);
660 }
661 
662 /*
663  * This moves pages from the active list to the inactive list.
664  *
665  * We move them the other way if the page is referenced by one or more
666  * processes, from rmap.
667  *
668  * If the pages are mostly unmapped, the processing is fast and it is
669  * appropriate to hold zone->lru_lock across the whole operation.  But if
670  * the pages are mapped, the processing is slow (page_referenced()) so we
671  * should drop zone->lru_lock around each page.  It's impossible to balance
672  * this, so instead we remove the pages from the LRU while processing them.
673  * It is safe to rely on PG_active against the non-LRU pages in here because
674  * nobody will play with that bit on a non-LRU page.
675  *
676  * The downside is that we have to touch page->_count against each page.
677  * But we had to alter page->flags anyway.
678  */
679 static void
680 refill_inactive_zone(struct zone *zone, struct scan_control *sc)
681 {
682 	int pgmoved;
683 	int pgdeactivate = 0;
684 	int pgscanned;
685 	int nr_pages = sc->nr_to_scan;
686 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
687 	LIST_HEAD(l_inactive);	/* Pages to go onto the inactive_list */
688 	LIST_HEAD(l_active);	/* Pages to go onto the active_list */
689 	struct page *page;
690 	struct pagevec pvec;
691 	int reclaim_mapped = 0;
692 	long mapped_ratio;
693 	long distress;
694 	long swap_tendency;
695 
696 	lru_add_drain();
697 	spin_lock_irq(&zone->lru_lock);
698 	pgmoved = isolate_lru_pages(nr_pages, &zone->active_list,
699 				    &l_hold, &pgscanned);
700 	zone->pages_scanned += pgscanned;
701 	zone->nr_active -= pgmoved;
702 	spin_unlock_irq(&zone->lru_lock);
703 
704 	/*
705 	 * `distress' is a measure of how much trouble we're having reclaiming
706 	 * pages.  0 -> no problems.  100 -> great trouble.
707 	 */
708 	distress = 100 >> zone->prev_priority;
709 
710 	/*
711 	 * The point of this algorithm is to decide when to start reclaiming
712 	 * mapped memory instead of just pagecache.  Work out how much memory
713 	 * is mapped.
714 	 */
715 	mapped_ratio = (sc->nr_mapped * 100) / total_memory;
716 
717 	/*
718 	 * Now decide how much we really want to unmap some pages.  The mapped
719 	 * ratio is downgraded - just because there's a lot of mapped memory
720 	 * doesn't necessarily mean that page reclaim isn't succeeding.
721 	 *
722 	 * The distress ratio is important - we don't want to start going oom.
723 	 *
724 	 * A 100% value of vm_swappiness overrides this algorithm altogether.
725 	 */
726 	swap_tendency = mapped_ratio / 2 + distress + vm_swappiness;
727 
728 	/*
729 	 * Now use this metric to decide whether to start moving mapped memory
730 	 * onto the inactive list.
731 	 */
732 	if (swap_tendency >= 100)
733 		reclaim_mapped = 1;
734 
735 	while (!list_empty(&l_hold)) {
736 		cond_resched();
737 		page = lru_to_page(&l_hold);
738 		list_del(&page->lru);
739 		if (page_mapped(page)) {
740 			if (!reclaim_mapped ||
741 			    (total_swap_pages == 0 && PageAnon(page)) ||
742 			    page_referenced(page, 0, sc->priority <= 0)) {
743 				list_add(&page->lru, &l_active);
744 				continue;
745 			}
746 		}
747 		list_add(&page->lru, &l_inactive);
748 	}
749 
750 	pagevec_init(&pvec, 1);
751 	pgmoved = 0;
752 	spin_lock_irq(&zone->lru_lock);
753 	while (!list_empty(&l_inactive)) {
754 		page = lru_to_page(&l_inactive);
755 		prefetchw_prev_lru_page(page, &l_inactive, flags);
756 		if (TestSetPageLRU(page))
757 			BUG();
758 		if (!TestClearPageActive(page))
759 			BUG();
760 		list_move(&page->lru, &zone->inactive_list);
761 		pgmoved++;
762 		if (!pagevec_add(&pvec, page)) {
763 			zone->nr_inactive += pgmoved;
764 			spin_unlock_irq(&zone->lru_lock);
765 			pgdeactivate += pgmoved;
766 			pgmoved = 0;
767 			if (buffer_heads_over_limit)
768 				pagevec_strip(&pvec);
769 			__pagevec_release(&pvec);
770 			spin_lock_irq(&zone->lru_lock);
771 		}
772 	}
773 	zone->nr_inactive += pgmoved;
774 	pgdeactivate += pgmoved;
775 	if (buffer_heads_over_limit) {
776 		spin_unlock_irq(&zone->lru_lock);
777 		pagevec_strip(&pvec);
778 		spin_lock_irq(&zone->lru_lock);
779 	}
780 
781 	pgmoved = 0;
782 	while (!list_empty(&l_active)) {
783 		page = lru_to_page(&l_active);
784 		prefetchw_prev_lru_page(page, &l_active, flags);
785 		if (TestSetPageLRU(page))
786 			BUG();
787 		BUG_ON(!PageActive(page));
788 		list_move(&page->lru, &zone->active_list);
789 		pgmoved++;
790 		if (!pagevec_add(&pvec, page)) {
791 			zone->nr_active += pgmoved;
792 			pgmoved = 0;
793 			spin_unlock_irq(&zone->lru_lock);
794 			__pagevec_release(&pvec);
795 			spin_lock_irq(&zone->lru_lock);
796 		}
797 	}
798 	zone->nr_active += pgmoved;
799 	spin_unlock_irq(&zone->lru_lock);
800 	pagevec_release(&pvec);
801 
802 	mod_page_state_zone(zone, pgrefill, pgscanned);
803 	mod_page_state(pgdeactivate, pgdeactivate);
804 }
805 
806 /*
807  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
808  */
809 static void
810 shrink_zone(struct zone *zone, struct scan_control *sc)
811 {
812 	unsigned long nr_active;
813 	unsigned long nr_inactive;
814 
815 	/*
816 	 * Add one to `nr_to_scan' just to make sure that the kernel will
817 	 * slowly sift through the active list.
818 	 */
819 	zone->nr_scan_active += (zone->nr_active >> sc->priority) + 1;
820 	nr_active = zone->nr_scan_active;
821 	if (nr_active >= sc->swap_cluster_max)
822 		zone->nr_scan_active = 0;
823 	else
824 		nr_active = 0;
825 
826 	zone->nr_scan_inactive += (zone->nr_inactive >> sc->priority) + 1;
827 	nr_inactive = zone->nr_scan_inactive;
828 	if (nr_inactive >= sc->swap_cluster_max)
829 		zone->nr_scan_inactive = 0;
830 	else
831 		nr_inactive = 0;
832 
833 	sc->nr_to_reclaim = sc->swap_cluster_max;
834 
835 	while (nr_active || nr_inactive) {
836 		if (nr_active) {
837 			sc->nr_to_scan = min(nr_active,
838 					(unsigned long)sc->swap_cluster_max);
839 			nr_active -= sc->nr_to_scan;
840 			refill_inactive_zone(zone, sc);
841 		}
842 
843 		if (nr_inactive) {
844 			sc->nr_to_scan = min(nr_inactive,
845 					(unsigned long)sc->swap_cluster_max);
846 			nr_inactive -= sc->nr_to_scan;
847 			shrink_cache(zone, sc);
848 			if (sc->nr_to_reclaim <= 0)
849 				break;
850 		}
851 	}
852 
853 	throttle_vm_writeout();
854 }
855 
856 /*
857  * This is the direct reclaim path, for page-allocating processes.  We only
858  * try to reclaim pages from zones which will satisfy the caller's allocation
859  * request.
860  *
861  * We reclaim from a zone even if that zone is over pages_high.  Because:
862  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
863  *    allocation or
864  * b) The zones may be over pages_high but they must go *over* pages_high to
865  *    satisfy the `incremental min' zone defense algorithm.
866  *
867  * Returns the number of reclaimed pages.
868  *
869  * If a zone is deemed to be full of pinned pages then just give it a light
870  * scan then give up on it.
871  */
872 static void
873 shrink_caches(struct zone **zones, struct scan_control *sc)
874 {
875 	int i;
876 
877 	for (i = 0; zones[i] != NULL; i++) {
878 		struct zone *zone = zones[i];
879 
880 		if (zone->present_pages == 0)
881 			continue;
882 
883 		if (!cpuset_zone_allowed(zone))
884 			continue;
885 
886 		zone->temp_priority = sc->priority;
887 		if (zone->prev_priority > sc->priority)
888 			zone->prev_priority = sc->priority;
889 
890 		if (zone->all_unreclaimable && sc->priority != DEF_PRIORITY)
891 			continue;	/* Let kswapd poll it */
892 
893 		shrink_zone(zone, sc);
894 	}
895 }
896 
897 /*
898  * This is the main entry point to direct page reclaim.
899  *
900  * If a full scan of the inactive list fails to free enough memory then we
901  * are "out of memory" and something needs to be killed.
902  *
903  * If the caller is !__GFP_FS then the probability of a failure is reasonably
904  * high - the zone may be full of dirty or under-writeback pages, which this
905  * caller can't do much about.  We kick pdflush and take explicit naps in the
906  * hope that some of these pages can be written.  But if the allocating task
907  * holds filesystem locks which prevent writeout this might not work, and the
908  * allocation attempt will fail.
909  */
910 int try_to_free_pages(struct zone **zones,
911 		unsigned int gfp_mask, unsigned int order)
912 {
913 	int priority;
914 	int ret = 0;
915 	int total_scanned = 0, total_reclaimed = 0;
916 	struct reclaim_state *reclaim_state = current->reclaim_state;
917 	struct scan_control sc;
918 	unsigned long lru_pages = 0;
919 	int i;
920 
921 	sc.gfp_mask = gfp_mask;
922 	sc.may_writepage = 0;
923 
924 	inc_page_state(allocstall);
925 
926 	for (i = 0; zones[i] != NULL; i++) {
927 		struct zone *zone = zones[i];
928 
929 		if (!cpuset_zone_allowed(zone))
930 			continue;
931 
932 		zone->temp_priority = DEF_PRIORITY;
933 		lru_pages += zone->nr_active + zone->nr_inactive;
934 	}
935 
936 	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
937 		sc.nr_mapped = read_page_state(nr_mapped);
938 		sc.nr_scanned = 0;
939 		sc.nr_reclaimed = 0;
940 		sc.priority = priority;
941 		sc.swap_cluster_max = SWAP_CLUSTER_MAX;
942 		shrink_caches(zones, &sc);
943 		shrink_slab(sc.nr_scanned, gfp_mask, lru_pages);
944 		if (reclaim_state) {
945 			sc.nr_reclaimed += reclaim_state->reclaimed_slab;
946 			reclaim_state->reclaimed_slab = 0;
947 		}
948 		total_scanned += sc.nr_scanned;
949 		total_reclaimed += sc.nr_reclaimed;
950 		if (total_reclaimed >= sc.swap_cluster_max) {
951 			ret = 1;
952 			goto out;
953 		}
954 
955 		/*
956 		 * Try to write back as many pages as we just scanned.  This
957 		 * tends to cause slow streaming writers to write data to the
958 		 * disk smoothly, at the dirtying rate, which is nice.   But
959 		 * that's undesirable in laptop mode, where we *want* lumpy
960 		 * writeout.  So in laptop mode, write out the whole world.
961 		 */
962 		if (total_scanned > sc.swap_cluster_max + sc.swap_cluster_max/2) {
963 			wakeup_bdflush(laptop_mode ? 0 : total_scanned);
964 			sc.may_writepage = 1;
965 		}
966 
967 		/* Take a nap, wait for some writeback to complete */
968 		if (sc.nr_scanned && priority < DEF_PRIORITY - 2)
969 			blk_congestion_wait(WRITE, HZ/10);
970 	}
971 out:
972 	for (i = 0; zones[i] != 0; i++) {
973 		struct zone *zone = zones[i];
974 
975 		if (!cpuset_zone_allowed(zone))
976 			continue;
977 
978 		zone->prev_priority = zone->temp_priority;
979 	}
980 	return ret;
981 }
982 
983 /*
984  * For kswapd, balance_pgdat() will work across all this node's zones until
985  * they are all at pages_high.
986  *
987  * If `nr_pages' is non-zero then it is the number of pages which are to be
988  * reclaimed, regardless of the zone occupancies.  This is a software suspend
989  * special.
990  *
991  * Returns the number of pages which were actually freed.
992  *
993  * There is special handling here for zones which are full of pinned pages.
994  * This can happen if the pages are all mlocked, or if they are all used by
995  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
996  * What we do is to detect the case where all pages in the zone have been
997  * scanned twice and there has been zero successful reclaim.  Mark the zone as
998  * dead and from now on, only perform a short scan.  Basically we're polling
999  * the zone for when the problem goes away.
1000  *
1001  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
1002  * zones which have free_pages > pages_high, but once a zone is found to have
1003  * free_pages <= pages_high, we scan that zone and the lower zones regardless
1004  * of the number of free pages in the lower zones.  This interoperates with
1005  * the page allocator fallback scheme to ensure that aging of pages is balanced
1006  * across the zones.
1007  */
1008 static int balance_pgdat(pg_data_t *pgdat, int nr_pages, int order)
1009 {
1010 	int to_free = nr_pages;
1011 	int all_zones_ok;
1012 	int priority;
1013 	int i;
1014 	int total_scanned, total_reclaimed;
1015 	struct reclaim_state *reclaim_state = current->reclaim_state;
1016 	struct scan_control sc;
1017 
1018 loop_again:
1019 	total_scanned = 0;
1020 	total_reclaimed = 0;
1021 	sc.gfp_mask = GFP_KERNEL;
1022 	sc.may_writepage = 0;
1023 	sc.nr_mapped = read_page_state(nr_mapped);
1024 
1025 	inc_page_state(pageoutrun);
1026 
1027 	for (i = 0; i < pgdat->nr_zones; i++) {
1028 		struct zone *zone = pgdat->node_zones + i;
1029 
1030 		zone->temp_priority = DEF_PRIORITY;
1031 	}
1032 
1033 	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1034 		int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
1035 		unsigned long lru_pages = 0;
1036 
1037 		all_zones_ok = 1;
1038 
1039 		if (nr_pages == 0) {
1040 			/*
1041 			 * Scan in the highmem->dma direction for the highest
1042 			 * zone which needs scanning
1043 			 */
1044 			for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1045 				struct zone *zone = pgdat->node_zones + i;
1046 
1047 				if (zone->present_pages == 0)
1048 					continue;
1049 
1050 				if (zone->all_unreclaimable &&
1051 						priority != DEF_PRIORITY)
1052 					continue;
1053 
1054 				if (!zone_watermark_ok(zone, order,
1055 						zone->pages_high, 0, 0, 0)) {
1056 					end_zone = i;
1057 					goto scan;
1058 				}
1059 			}
1060 			goto out;
1061 		} else {
1062 			end_zone = pgdat->nr_zones - 1;
1063 		}
1064 scan:
1065 		for (i = 0; i <= end_zone; i++) {
1066 			struct zone *zone = pgdat->node_zones + i;
1067 
1068 			lru_pages += zone->nr_active + zone->nr_inactive;
1069 		}
1070 
1071 		/*
1072 		 * Now scan the zone in the dma->highmem direction, stopping
1073 		 * at the last zone which needs scanning.
1074 		 *
1075 		 * We do this because the page allocator works in the opposite
1076 		 * direction.  This prevents the page allocator from allocating
1077 		 * pages behind kswapd's direction of progress, which would
1078 		 * cause too much scanning of the lower zones.
1079 		 */
1080 		for (i = 0; i <= end_zone; i++) {
1081 			struct zone *zone = pgdat->node_zones + i;
1082 
1083 			if (zone->present_pages == 0)
1084 				continue;
1085 
1086 			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1087 				continue;
1088 
1089 			if (nr_pages == 0) {	/* Not software suspend */
1090 				if (!zone_watermark_ok(zone, order,
1091 						zone->pages_high, end_zone, 0, 0))
1092 					all_zones_ok = 0;
1093 			}
1094 			zone->temp_priority = priority;
1095 			if (zone->prev_priority > priority)
1096 				zone->prev_priority = priority;
1097 			sc.nr_scanned = 0;
1098 			sc.nr_reclaimed = 0;
1099 			sc.priority = priority;
1100 			sc.swap_cluster_max = nr_pages? nr_pages : SWAP_CLUSTER_MAX;
1101 			shrink_zone(zone, &sc);
1102 			reclaim_state->reclaimed_slab = 0;
1103 			shrink_slab(sc.nr_scanned, GFP_KERNEL, lru_pages);
1104 			sc.nr_reclaimed += reclaim_state->reclaimed_slab;
1105 			total_reclaimed += sc.nr_reclaimed;
1106 			total_scanned += sc.nr_scanned;
1107 			if (zone->all_unreclaimable)
1108 				continue;
1109 			if (zone->pages_scanned >= (zone->nr_active +
1110 							zone->nr_inactive) * 4)
1111 				zone->all_unreclaimable = 1;
1112 			/*
1113 			 * If we've done a decent amount of scanning and
1114 			 * the reclaim ratio is low, start doing writepage
1115 			 * even in laptop mode
1116 			 */
1117 			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
1118 			    total_scanned > total_reclaimed+total_reclaimed/2)
1119 				sc.may_writepage = 1;
1120 		}
1121 		if (nr_pages && to_free > total_reclaimed)
1122 			continue;	/* swsusp: need to do more work */
1123 		if (all_zones_ok)
1124 			break;		/* kswapd: all done */
1125 		/*
1126 		 * OK, kswapd is getting into trouble.  Take a nap, then take
1127 		 * another pass across the zones.
1128 		 */
1129 		if (total_scanned && priority < DEF_PRIORITY - 2)
1130 			blk_congestion_wait(WRITE, HZ/10);
1131 
1132 		/*
1133 		 * We do this so kswapd doesn't build up large priorities for
1134 		 * example when it is freeing in parallel with allocators. It
1135 		 * matches the direct reclaim path behaviour in terms of impact
1136 		 * on zone->*_priority.
1137 		 */
1138 		if ((total_reclaimed >= SWAP_CLUSTER_MAX) && (!nr_pages))
1139 			break;
1140 	}
1141 out:
1142 	for (i = 0; i < pgdat->nr_zones; i++) {
1143 		struct zone *zone = pgdat->node_zones + i;
1144 
1145 		zone->prev_priority = zone->temp_priority;
1146 	}
1147 	if (!all_zones_ok) {
1148 		cond_resched();
1149 		goto loop_again;
1150 	}
1151 
1152 	return total_reclaimed;
1153 }
1154 
1155 /*
1156  * The background pageout daemon, started as a kernel thread
1157  * from the init process.
1158  *
1159  * This basically trickles out pages so that we have _some_
1160  * free memory available even if there is no other activity
1161  * that frees anything up. This is needed for things like routing
1162  * etc, where we otherwise might have all activity going on in
1163  * asynchronous contexts that cannot page things out.
1164  *
1165  * If there are applications that are active memory-allocators
1166  * (most normal use), this basically shouldn't matter.
1167  */
1168 static int kswapd(void *p)
1169 {
1170 	unsigned long order;
1171 	pg_data_t *pgdat = (pg_data_t*)p;
1172 	struct task_struct *tsk = current;
1173 	DEFINE_WAIT(wait);
1174 	struct reclaim_state reclaim_state = {
1175 		.reclaimed_slab = 0,
1176 	};
1177 	cpumask_t cpumask;
1178 
1179 	daemonize("kswapd%d", pgdat->node_id);
1180 	cpumask = node_to_cpumask(pgdat->node_id);
1181 	if (!cpus_empty(cpumask))
1182 		set_cpus_allowed(tsk, cpumask);
1183 	current->reclaim_state = &reclaim_state;
1184 
1185 	/*
1186 	 * Tell the memory management that we're a "memory allocator",
1187 	 * and that if we need more memory we should get access to it
1188 	 * regardless (see "__alloc_pages()"). "kswapd" should
1189 	 * never get caught in the normal page freeing logic.
1190 	 *
1191 	 * (Kswapd normally doesn't need memory anyway, but sometimes
1192 	 * you need a small amount of memory in order to be able to
1193 	 * page out something else, and this flag essentially protects
1194 	 * us from recursively trying to free more memory as we're
1195 	 * trying to free the first piece of memory in the first place).
1196 	 */
1197 	tsk->flags |= PF_MEMALLOC|PF_KSWAPD;
1198 
1199 	order = 0;
1200 	for ( ; ; ) {
1201 		unsigned long new_order;
1202 		if (current->flags & PF_FREEZE)
1203 			refrigerator(PF_FREEZE);
1204 
1205 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
1206 		new_order = pgdat->kswapd_max_order;
1207 		pgdat->kswapd_max_order = 0;
1208 		if (order < new_order) {
1209 			/*
1210 			 * Don't sleep if someone wants a larger 'order'
1211 			 * allocation
1212 			 */
1213 			order = new_order;
1214 		} else {
1215 			schedule();
1216 			order = pgdat->kswapd_max_order;
1217 		}
1218 		finish_wait(&pgdat->kswapd_wait, &wait);
1219 
1220 		balance_pgdat(pgdat, 0, order);
1221 	}
1222 	return 0;
1223 }
1224 
1225 /*
1226  * A zone is low on free memory, so wake its kswapd task to service it.
1227  */
1228 void wakeup_kswapd(struct zone *zone, int order)
1229 {
1230 	pg_data_t *pgdat;
1231 
1232 	if (zone->present_pages == 0)
1233 		return;
1234 
1235 	pgdat = zone->zone_pgdat;
1236 	if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0, 0))
1237 		return;
1238 	if (pgdat->kswapd_max_order < order)
1239 		pgdat->kswapd_max_order = order;
1240 	if (!cpuset_zone_allowed(zone))
1241 		return;
1242 	if (!waitqueue_active(&zone->zone_pgdat->kswapd_wait))
1243 		return;
1244 	wake_up_interruptible(&zone->zone_pgdat->kswapd_wait);
1245 }
1246 
1247 #ifdef CONFIG_PM
1248 /*
1249  * Try to free `nr_pages' of memory, system-wide.  Returns the number of freed
1250  * pages.
1251  */
1252 int shrink_all_memory(int nr_pages)
1253 {
1254 	pg_data_t *pgdat;
1255 	int nr_to_free = nr_pages;
1256 	int ret = 0;
1257 	struct reclaim_state reclaim_state = {
1258 		.reclaimed_slab = 0,
1259 	};
1260 
1261 	current->reclaim_state = &reclaim_state;
1262 	for_each_pgdat(pgdat) {
1263 		int freed;
1264 		freed = balance_pgdat(pgdat, nr_to_free, 0);
1265 		ret += freed;
1266 		nr_to_free -= freed;
1267 		if (nr_to_free <= 0)
1268 			break;
1269 	}
1270 	current->reclaim_state = NULL;
1271 	return ret;
1272 }
1273 #endif
1274 
1275 #ifdef CONFIG_HOTPLUG_CPU
1276 /* It's optimal to keep kswapds on the same CPUs as their memory, but
1277    not required for correctness.  So if the last cpu in a node goes
1278    away, we get changed to run anywhere: as the first one comes back,
1279    restore their cpu bindings. */
1280 static int __devinit cpu_callback(struct notifier_block *nfb,
1281 				  unsigned long action,
1282 				  void *hcpu)
1283 {
1284 	pg_data_t *pgdat;
1285 	cpumask_t mask;
1286 
1287 	if (action == CPU_ONLINE) {
1288 		for_each_pgdat(pgdat) {
1289 			mask = node_to_cpumask(pgdat->node_id);
1290 			if (any_online_cpu(mask) != NR_CPUS)
1291 				/* One of our CPUs online: restore mask */
1292 				set_cpus_allowed(pgdat->kswapd, mask);
1293 		}
1294 	}
1295 	return NOTIFY_OK;
1296 }
1297 #endif /* CONFIG_HOTPLUG_CPU */
1298 
1299 static int __init kswapd_init(void)
1300 {
1301 	pg_data_t *pgdat;
1302 	swap_setup();
1303 	for_each_pgdat(pgdat)
1304 		pgdat->kswapd
1305 		= find_task_by_pid(kernel_thread(kswapd, pgdat, CLONE_KERNEL));
1306 	total_memory = nr_free_pagecache_pages();
1307 	hotcpu_notifier(cpu_callback, 0);
1308 	return 0;
1309 }
1310 
1311 module_init(kswapd_init)
1312