1 /* 2 * linux/mm/vmscan.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * 6 * Swap reorganised 29.12.95, Stephen Tweedie. 7 * kswapd added: 7.1.96 sct 8 * Removed kswapd_ctl limits, and swap out as many pages as needed 9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 11 * Multiqueue VM started 5.8.00, Rik van Riel. 12 */ 13 14 #include <linux/mm.h> 15 #include <linux/module.h> 16 #include <linux/slab.h> 17 #include <linux/kernel_stat.h> 18 #include <linux/swap.h> 19 #include <linux/pagemap.h> 20 #include <linux/init.h> 21 #include <linux/highmem.h> 22 #include <linux/vmstat.h> 23 #include <linux/file.h> 24 #include <linux/writeback.h> 25 #include <linux/blkdev.h> 26 #include <linux/buffer_head.h> /* for try_to_release_page(), 27 buffer_heads_over_limit */ 28 #include <linux/mm_inline.h> 29 #include <linux/pagevec.h> 30 #include <linux/backing-dev.h> 31 #include <linux/rmap.h> 32 #include <linux/topology.h> 33 #include <linux/cpu.h> 34 #include <linux/cpuset.h> 35 #include <linux/notifier.h> 36 #include <linux/rwsem.h> 37 #include <linux/delay.h> 38 #include <linux/kthread.h> 39 #include <linux/freezer.h> 40 #include <linux/memcontrol.h> 41 #include <linux/delayacct.h> 42 #include <linux/sysctl.h> 43 44 #include <asm/tlbflush.h> 45 #include <asm/div64.h> 46 47 #include <linux/swapops.h> 48 49 #include "internal.h" 50 51 struct scan_control { 52 /* Incremented by the number of inactive pages that were scanned */ 53 unsigned long nr_scanned; 54 55 /* This context's GFP mask */ 56 gfp_t gfp_mask; 57 58 int may_writepage; 59 60 /* Can pages be swapped as part of reclaim? */ 61 int may_swap; 62 63 /* This context's SWAP_CLUSTER_MAX. If freeing memory for 64 * suspend, we effectively ignore SWAP_CLUSTER_MAX. 65 * In this context, it doesn't matter that we scan the 66 * whole list at once. */ 67 int swap_cluster_max; 68 69 int swappiness; 70 71 int all_unreclaimable; 72 73 int order; 74 75 /* Which cgroup do we reclaim from */ 76 struct mem_cgroup *mem_cgroup; 77 78 /* Pluggable isolate pages callback */ 79 unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst, 80 unsigned long *scanned, int order, int mode, 81 struct zone *z, struct mem_cgroup *mem_cont, 82 int active, int file); 83 }; 84 85 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru)) 86 87 #ifdef ARCH_HAS_PREFETCH 88 #define prefetch_prev_lru_page(_page, _base, _field) \ 89 do { \ 90 if ((_page)->lru.prev != _base) { \ 91 struct page *prev; \ 92 \ 93 prev = lru_to_page(&(_page->lru)); \ 94 prefetch(&prev->_field); \ 95 } \ 96 } while (0) 97 #else 98 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0) 99 #endif 100 101 #ifdef ARCH_HAS_PREFETCHW 102 #define prefetchw_prev_lru_page(_page, _base, _field) \ 103 do { \ 104 if ((_page)->lru.prev != _base) { \ 105 struct page *prev; \ 106 \ 107 prev = lru_to_page(&(_page->lru)); \ 108 prefetchw(&prev->_field); \ 109 } \ 110 } while (0) 111 #else 112 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 113 #endif 114 115 /* 116 * From 0 .. 100. Higher means more swappy. 117 */ 118 int vm_swappiness = 60; 119 long vm_total_pages; /* The total number of pages which the VM controls */ 120 121 static LIST_HEAD(shrinker_list); 122 static DECLARE_RWSEM(shrinker_rwsem); 123 124 #ifdef CONFIG_CGROUP_MEM_RES_CTLR 125 #define scan_global_lru(sc) (!(sc)->mem_cgroup) 126 #else 127 #define scan_global_lru(sc) (1) 128 #endif 129 130 /* 131 * Add a shrinker callback to be called from the vm 132 */ 133 void register_shrinker(struct shrinker *shrinker) 134 { 135 shrinker->nr = 0; 136 down_write(&shrinker_rwsem); 137 list_add_tail(&shrinker->list, &shrinker_list); 138 up_write(&shrinker_rwsem); 139 } 140 EXPORT_SYMBOL(register_shrinker); 141 142 /* 143 * Remove one 144 */ 145 void unregister_shrinker(struct shrinker *shrinker) 146 { 147 down_write(&shrinker_rwsem); 148 list_del(&shrinker->list); 149 up_write(&shrinker_rwsem); 150 } 151 EXPORT_SYMBOL(unregister_shrinker); 152 153 #define SHRINK_BATCH 128 154 /* 155 * Call the shrink functions to age shrinkable caches 156 * 157 * Here we assume it costs one seek to replace a lru page and that it also 158 * takes a seek to recreate a cache object. With this in mind we age equal 159 * percentages of the lru and ageable caches. This should balance the seeks 160 * generated by these structures. 161 * 162 * If the vm encountered mapped pages on the LRU it increase the pressure on 163 * slab to avoid swapping. 164 * 165 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits. 166 * 167 * `lru_pages' represents the number of on-LRU pages in all the zones which 168 * are eligible for the caller's allocation attempt. It is used for balancing 169 * slab reclaim versus page reclaim. 170 * 171 * Returns the number of slab objects which we shrunk. 172 */ 173 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask, 174 unsigned long lru_pages) 175 { 176 struct shrinker *shrinker; 177 unsigned long ret = 0; 178 179 if (scanned == 0) 180 scanned = SWAP_CLUSTER_MAX; 181 182 if (!down_read_trylock(&shrinker_rwsem)) 183 return 1; /* Assume we'll be able to shrink next time */ 184 185 list_for_each_entry(shrinker, &shrinker_list, list) { 186 unsigned long long delta; 187 unsigned long total_scan; 188 unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask); 189 190 delta = (4 * scanned) / shrinker->seeks; 191 delta *= max_pass; 192 do_div(delta, lru_pages + 1); 193 shrinker->nr += delta; 194 if (shrinker->nr < 0) { 195 printk(KERN_ERR "%s: nr=%ld\n", 196 __func__, shrinker->nr); 197 shrinker->nr = max_pass; 198 } 199 200 /* 201 * Avoid risking looping forever due to too large nr value: 202 * never try to free more than twice the estimate number of 203 * freeable entries. 204 */ 205 if (shrinker->nr > max_pass * 2) 206 shrinker->nr = max_pass * 2; 207 208 total_scan = shrinker->nr; 209 shrinker->nr = 0; 210 211 while (total_scan >= SHRINK_BATCH) { 212 long this_scan = SHRINK_BATCH; 213 int shrink_ret; 214 int nr_before; 215 216 nr_before = (*shrinker->shrink)(0, gfp_mask); 217 shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask); 218 if (shrink_ret == -1) 219 break; 220 if (shrink_ret < nr_before) 221 ret += nr_before - shrink_ret; 222 count_vm_events(SLABS_SCANNED, this_scan); 223 total_scan -= this_scan; 224 225 cond_resched(); 226 } 227 228 shrinker->nr += total_scan; 229 } 230 up_read(&shrinker_rwsem); 231 return ret; 232 } 233 234 /* Called without lock on whether page is mapped, so answer is unstable */ 235 static inline int page_mapping_inuse(struct page *page) 236 { 237 struct address_space *mapping; 238 239 /* Page is in somebody's page tables. */ 240 if (page_mapped(page)) 241 return 1; 242 243 /* Be more reluctant to reclaim swapcache than pagecache */ 244 if (PageSwapCache(page)) 245 return 1; 246 247 mapping = page_mapping(page); 248 if (!mapping) 249 return 0; 250 251 /* File is mmap'd by somebody? */ 252 return mapping_mapped(mapping); 253 } 254 255 static inline int is_page_cache_freeable(struct page *page) 256 { 257 return page_count(page) - !!PagePrivate(page) == 2; 258 } 259 260 static int may_write_to_queue(struct backing_dev_info *bdi) 261 { 262 if (current->flags & PF_SWAPWRITE) 263 return 1; 264 if (!bdi_write_congested(bdi)) 265 return 1; 266 if (bdi == current->backing_dev_info) 267 return 1; 268 return 0; 269 } 270 271 /* 272 * We detected a synchronous write error writing a page out. Probably 273 * -ENOSPC. We need to propagate that into the address_space for a subsequent 274 * fsync(), msync() or close(). 275 * 276 * The tricky part is that after writepage we cannot touch the mapping: nothing 277 * prevents it from being freed up. But we have a ref on the page and once 278 * that page is locked, the mapping is pinned. 279 * 280 * We're allowed to run sleeping lock_page() here because we know the caller has 281 * __GFP_FS. 282 */ 283 static void handle_write_error(struct address_space *mapping, 284 struct page *page, int error) 285 { 286 lock_page(page); 287 if (page_mapping(page) == mapping) 288 mapping_set_error(mapping, error); 289 unlock_page(page); 290 } 291 292 /* Request for sync pageout. */ 293 enum pageout_io { 294 PAGEOUT_IO_ASYNC, 295 PAGEOUT_IO_SYNC, 296 }; 297 298 /* possible outcome of pageout() */ 299 typedef enum { 300 /* failed to write page out, page is locked */ 301 PAGE_KEEP, 302 /* move page to the active list, page is locked */ 303 PAGE_ACTIVATE, 304 /* page has been sent to the disk successfully, page is unlocked */ 305 PAGE_SUCCESS, 306 /* page is clean and locked */ 307 PAGE_CLEAN, 308 } pageout_t; 309 310 /* 311 * pageout is called by shrink_page_list() for each dirty page. 312 * Calls ->writepage(). 313 */ 314 static pageout_t pageout(struct page *page, struct address_space *mapping, 315 enum pageout_io sync_writeback) 316 { 317 /* 318 * If the page is dirty, only perform writeback if that write 319 * will be non-blocking. To prevent this allocation from being 320 * stalled by pagecache activity. But note that there may be 321 * stalls if we need to run get_block(). We could test 322 * PagePrivate for that. 323 * 324 * If this process is currently in generic_file_write() against 325 * this page's queue, we can perform writeback even if that 326 * will block. 327 * 328 * If the page is swapcache, write it back even if that would 329 * block, for some throttling. This happens by accident, because 330 * swap_backing_dev_info is bust: it doesn't reflect the 331 * congestion state of the swapdevs. Easy to fix, if needed. 332 * See swapfile.c:page_queue_congested(). 333 */ 334 if (!is_page_cache_freeable(page)) 335 return PAGE_KEEP; 336 if (!mapping) { 337 /* 338 * Some data journaling orphaned pages can have 339 * page->mapping == NULL while being dirty with clean buffers. 340 */ 341 if (PagePrivate(page)) { 342 if (try_to_free_buffers(page)) { 343 ClearPageDirty(page); 344 printk("%s: orphaned page\n", __func__); 345 return PAGE_CLEAN; 346 } 347 } 348 return PAGE_KEEP; 349 } 350 if (mapping->a_ops->writepage == NULL) 351 return PAGE_ACTIVATE; 352 if (!may_write_to_queue(mapping->backing_dev_info)) 353 return PAGE_KEEP; 354 355 if (clear_page_dirty_for_io(page)) { 356 int res; 357 struct writeback_control wbc = { 358 .sync_mode = WB_SYNC_NONE, 359 .nr_to_write = SWAP_CLUSTER_MAX, 360 .range_start = 0, 361 .range_end = LLONG_MAX, 362 .nonblocking = 1, 363 .for_reclaim = 1, 364 }; 365 366 SetPageReclaim(page); 367 res = mapping->a_ops->writepage(page, &wbc); 368 if (res < 0) 369 handle_write_error(mapping, page, res); 370 if (res == AOP_WRITEPAGE_ACTIVATE) { 371 ClearPageReclaim(page); 372 return PAGE_ACTIVATE; 373 } 374 375 /* 376 * Wait on writeback if requested to. This happens when 377 * direct reclaiming a large contiguous area and the 378 * first attempt to free a range of pages fails. 379 */ 380 if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC) 381 wait_on_page_writeback(page); 382 383 if (!PageWriteback(page)) { 384 /* synchronous write or broken a_ops? */ 385 ClearPageReclaim(page); 386 } 387 inc_zone_page_state(page, NR_VMSCAN_WRITE); 388 return PAGE_SUCCESS; 389 } 390 391 return PAGE_CLEAN; 392 } 393 394 /* 395 * Same as remove_mapping, but if the page is removed from the mapping, it 396 * gets returned with a refcount of 0. 397 */ 398 static int __remove_mapping(struct address_space *mapping, struct page *page) 399 { 400 BUG_ON(!PageLocked(page)); 401 BUG_ON(mapping != page_mapping(page)); 402 403 spin_lock_irq(&mapping->tree_lock); 404 /* 405 * The non racy check for a busy page. 406 * 407 * Must be careful with the order of the tests. When someone has 408 * a ref to the page, it may be possible that they dirty it then 409 * drop the reference. So if PageDirty is tested before page_count 410 * here, then the following race may occur: 411 * 412 * get_user_pages(&page); 413 * [user mapping goes away] 414 * write_to(page); 415 * !PageDirty(page) [good] 416 * SetPageDirty(page); 417 * put_page(page); 418 * !page_count(page) [good, discard it] 419 * 420 * [oops, our write_to data is lost] 421 * 422 * Reversing the order of the tests ensures such a situation cannot 423 * escape unnoticed. The smp_rmb is needed to ensure the page->flags 424 * load is not satisfied before that of page->_count. 425 * 426 * Note that if SetPageDirty is always performed via set_page_dirty, 427 * and thus under tree_lock, then this ordering is not required. 428 */ 429 if (!page_freeze_refs(page, 2)) 430 goto cannot_free; 431 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */ 432 if (unlikely(PageDirty(page))) { 433 page_unfreeze_refs(page, 2); 434 goto cannot_free; 435 } 436 437 if (PageSwapCache(page)) { 438 swp_entry_t swap = { .val = page_private(page) }; 439 __delete_from_swap_cache(page); 440 spin_unlock_irq(&mapping->tree_lock); 441 swap_free(swap); 442 } else { 443 __remove_from_page_cache(page); 444 spin_unlock_irq(&mapping->tree_lock); 445 } 446 447 return 1; 448 449 cannot_free: 450 spin_unlock_irq(&mapping->tree_lock); 451 return 0; 452 } 453 454 /* 455 * Attempt to detach a locked page from its ->mapping. If it is dirty or if 456 * someone else has a ref on the page, abort and return 0. If it was 457 * successfully detached, return 1. Assumes the caller has a single ref on 458 * this page. 459 */ 460 int remove_mapping(struct address_space *mapping, struct page *page) 461 { 462 if (__remove_mapping(mapping, page)) { 463 /* 464 * Unfreezing the refcount with 1 rather than 2 effectively 465 * drops the pagecache ref for us without requiring another 466 * atomic operation. 467 */ 468 page_unfreeze_refs(page, 1); 469 return 1; 470 } 471 return 0; 472 } 473 474 /** 475 * putback_lru_page - put previously isolated page onto appropriate LRU list 476 * @page: page to be put back to appropriate lru list 477 * 478 * Add previously isolated @page to appropriate LRU list. 479 * Page may still be unevictable for other reasons. 480 * 481 * lru_lock must not be held, interrupts must be enabled. 482 */ 483 #ifdef CONFIG_UNEVICTABLE_LRU 484 void putback_lru_page(struct page *page) 485 { 486 int lru; 487 int active = !!TestClearPageActive(page); 488 int was_unevictable = PageUnevictable(page); 489 490 VM_BUG_ON(PageLRU(page)); 491 492 redo: 493 ClearPageUnevictable(page); 494 495 if (page_evictable(page, NULL)) { 496 /* 497 * For evictable pages, we can use the cache. 498 * In event of a race, worst case is we end up with an 499 * unevictable page on [in]active list. 500 * We know how to handle that. 501 */ 502 lru = active + page_is_file_cache(page); 503 lru_cache_add_lru(page, lru); 504 } else { 505 /* 506 * Put unevictable pages directly on zone's unevictable 507 * list. 508 */ 509 lru = LRU_UNEVICTABLE; 510 add_page_to_unevictable_list(page); 511 } 512 mem_cgroup_move_lists(page, lru); 513 514 /* 515 * page's status can change while we move it among lru. If an evictable 516 * page is on unevictable list, it never be freed. To avoid that, 517 * check after we added it to the list, again. 518 */ 519 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) { 520 if (!isolate_lru_page(page)) { 521 put_page(page); 522 goto redo; 523 } 524 /* This means someone else dropped this page from LRU 525 * So, it will be freed or putback to LRU again. There is 526 * nothing to do here. 527 */ 528 } 529 530 if (was_unevictable && lru != LRU_UNEVICTABLE) 531 count_vm_event(UNEVICTABLE_PGRESCUED); 532 else if (!was_unevictable && lru == LRU_UNEVICTABLE) 533 count_vm_event(UNEVICTABLE_PGCULLED); 534 535 put_page(page); /* drop ref from isolate */ 536 } 537 538 #else /* CONFIG_UNEVICTABLE_LRU */ 539 540 void putback_lru_page(struct page *page) 541 { 542 int lru; 543 VM_BUG_ON(PageLRU(page)); 544 545 lru = !!TestClearPageActive(page) + page_is_file_cache(page); 546 lru_cache_add_lru(page, lru); 547 mem_cgroup_move_lists(page, lru); 548 put_page(page); 549 } 550 #endif /* CONFIG_UNEVICTABLE_LRU */ 551 552 553 /* 554 * shrink_page_list() returns the number of reclaimed pages 555 */ 556 static unsigned long shrink_page_list(struct list_head *page_list, 557 struct scan_control *sc, 558 enum pageout_io sync_writeback) 559 { 560 LIST_HEAD(ret_pages); 561 struct pagevec freed_pvec; 562 int pgactivate = 0; 563 unsigned long nr_reclaimed = 0; 564 565 cond_resched(); 566 567 pagevec_init(&freed_pvec, 1); 568 while (!list_empty(page_list)) { 569 struct address_space *mapping; 570 struct page *page; 571 int may_enter_fs; 572 int referenced; 573 574 cond_resched(); 575 576 page = lru_to_page(page_list); 577 list_del(&page->lru); 578 579 if (!trylock_page(page)) 580 goto keep; 581 582 VM_BUG_ON(PageActive(page)); 583 584 sc->nr_scanned++; 585 586 if (unlikely(!page_evictable(page, NULL))) 587 goto cull_mlocked; 588 589 if (!sc->may_swap && page_mapped(page)) 590 goto keep_locked; 591 592 /* Double the slab pressure for mapped and swapcache pages */ 593 if (page_mapped(page) || PageSwapCache(page)) 594 sc->nr_scanned++; 595 596 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 597 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 598 599 if (PageWriteback(page)) { 600 /* 601 * Synchronous reclaim is performed in two passes, 602 * first an asynchronous pass over the list to 603 * start parallel writeback, and a second synchronous 604 * pass to wait for the IO to complete. Wait here 605 * for any page for which writeback has already 606 * started. 607 */ 608 if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs) 609 wait_on_page_writeback(page); 610 else 611 goto keep_locked; 612 } 613 614 referenced = page_referenced(page, 1, sc->mem_cgroup); 615 /* In active use or really unfreeable? Activate it. */ 616 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && 617 referenced && page_mapping_inuse(page)) 618 goto activate_locked; 619 620 #ifdef CONFIG_SWAP 621 /* 622 * Anonymous process memory has backing store? 623 * Try to allocate it some swap space here. 624 */ 625 if (PageAnon(page) && !PageSwapCache(page)) { 626 if (!(sc->gfp_mask & __GFP_IO)) 627 goto keep_locked; 628 switch (try_to_munlock(page)) { 629 case SWAP_FAIL: /* shouldn't happen */ 630 case SWAP_AGAIN: 631 goto keep_locked; 632 case SWAP_MLOCK: 633 goto cull_mlocked; 634 case SWAP_SUCCESS: 635 ; /* fall thru'; add to swap cache */ 636 } 637 if (!add_to_swap(page, GFP_ATOMIC)) 638 goto activate_locked; 639 may_enter_fs = 1; 640 } 641 #endif /* CONFIG_SWAP */ 642 643 mapping = page_mapping(page); 644 645 /* 646 * The page is mapped into the page tables of one or more 647 * processes. Try to unmap it here. 648 */ 649 if (page_mapped(page) && mapping) { 650 switch (try_to_unmap(page, 0)) { 651 case SWAP_FAIL: 652 goto activate_locked; 653 case SWAP_AGAIN: 654 goto keep_locked; 655 case SWAP_MLOCK: 656 goto cull_mlocked; 657 case SWAP_SUCCESS: 658 ; /* try to free the page below */ 659 } 660 } 661 662 if (PageDirty(page)) { 663 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && referenced) 664 goto keep_locked; 665 if (!may_enter_fs) 666 goto keep_locked; 667 if (!sc->may_writepage) 668 goto keep_locked; 669 670 /* Page is dirty, try to write it out here */ 671 switch (pageout(page, mapping, sync_writeback)) { 672 case PAGE_KEEP: 673 goto keep_locked; 674 case PAGE_ACTIVATE: 675 goto activate_locked; 676 case PAGE_SUCCESS: 677 if (PageWriteback(page) || PageDirty(page)) 678 goto keep; 679 /* 680 * A synchronous write - probably a ramdisk. Go 681 * ahead and try to reclaim the page. 682 */ 683 if (!trylock_page(page)) 684 goto keep; 685 if (PageDirty(page) || PageWriteback(page)) 686 goto keep_locked; 687 mapping = page_mapping(page); 688 case PAGE_CLEAN: 689 ; /* try to free the page below */ 690 } 691 } 692 693 /* 694 * If the page has buffers, try to free the buffer mappings 695 * associated with this page. If we succeed we try to free 696 * the page as well. 697 * 698 * We do this even if the page is PageDirty(). 699 * try_to_release_page() does not perform I/O, but it is 700 * possible for a page to have PageDirty set, but it is actually 701 * clean (all its buffers are clean). This happens if the 702 * buffers were written out directly, with submit_bh(). ext3 703 * will do this, as well as the blockdev mapping. 704 * try_to_release_page() will discover that cleanness and will 705 * drop the buffers and mark the page clean - it can be freed. 706 * 707 * Rarely, pages can have buffers and no ->mapping. These are 708 * the pages which were not successfully invalidated in 709 * truncate_complete_page(). We try to drop those buffers here 710 * and if that worked, and the page is no longer mapped into 711 * process address space (page_count == 1) it can be freed. 712 * Otherwise, leave the page on the LRU so it is swappable. 713 */ 714 if (PagePrivate(page)) { 715 if (!try_to_release_page(page, sc->gfp_mask)) 716 goto activate_locked; 717 if (!mapping && page_count(page) == 1) { 718 unlock_page(page); 719 if (put_page_testzero(page)) 720 goto free_it; 721 else { 722 /* 723 * rare race with speculative reference. 724 * the speculative reference will free 725 * this page shortly, so we may 726 * increment nr_reclaimed here (and 727 * leave it off the LRU). 728 */ 729 nr_reclaimed++; 730 continue; 731 } 732 } 733 } 734 735 if (!mapping || !__remove_mapping(mapping, page)) 736 goto keep_locked; 737 738 /* 739 * At this point, we have no other references and there is 740 * no way to pick any more up (removed from LRU, removed 741 * from pagecache). Can use non-atomic bitops now (and 742 * we obviously don't have to worry about waking up a process 743 * waiting on the page lock, because there are no references. 744 */ 745 __clear_page_locked(page); 746 free_it: 747 nr_reclaimed++; 748 if (!pagevec_add(&freed_pvec, page)) { 749 __pagevec_free(&freed_pvec); 750 pagevec_reinit(&freed_pvec); 751 } 752 continue; 753 754 cull_mlocked: 755 unlock_page(page); 756 putback_lru_page(page); 757 continue; 758 759 activate_locked: 760 /* Not a candidate for swapping, so reclaim swap space. */ 761 if (PageSwapCache(page) && vm_swap_full()) 762 remove_exclusive_swap_page_ref(page); 763 VM_BUG_ON(PageActive(page)); 764 SetPageActive(page); 765 pgactivate++; 766 keep_locked: 767 unlock_page(page); 768 keep: 769 list_add(&page->lru, &ret_pages); 770 VM_BUG_ON(PageLRU(page) || PageUnevictable(page)); 771 } 772 list_splice(&ret_pages, page_list); 773 if (pagevec_count(&freed_pvec)) 774 __pagevec_free(&freed_pvec); 775 count_vm_events(PGACTIVATE, pgactivate); 776 return nr_reclaimed; 777 } 778 779 /* LRU Isolation modes. */ 780 #define ISOLATE_INACTIVE 0 /* Isolate inactive pages. */ 781 #define ISOLATE_ACTIVE 1 /* Isolate active pages. */ 782 #define ISOLATE_BOTH 2 /* Isolate both active and inactive pages. */ 783 784 /* 785 * Attempt to remove the specified page from its LRU. Only take this page 786 * if it is of the appropriate PageActive status. Pages which are being 787 * freed elsewhere are also ignored. 788 * 789 * page: page to consider 790 * mode: one of the LRU isolation modes defined above 791 * 792 * returns 0 on success, -ve errno on failure. 793 */ 794 int __isolate_lru_page(struct page *page, int mode, int file) 795 { 796 int ret = -EINVAL; 797 798 /* Only take pages on the LRU. */ 799 if (!PageLRU(page)) 800 return ret; 801 802 /* 803 * When checking the active state, we need to be sure we are 804 * dealing with comparible boolean values. Take the logical not 805 * of each. 806 */ 807 if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode)) 808 return ret; 809 810 if (mode != ISOLATE_BOTH && (!page_is_file_cache(page) != !file)) 811 return ret; 812 813 /* 814 * When this function is being called for lumpy reclaim, we 815 * initially look into all LRU pages, active, inactive and 816 * unevictable; only give shrink_page_list evictable pages. 817 */ 818 if (PageUnevictable(page)) 819 return ret; 820 821 ret = -EBUSY; 822 if (likely(get_page_unless_zero(page))) { 823 /* 824 * Be careful not to clear PageLRU until after we're 825 * sure the page is not being freed elsewhere -- the 826 * page release code relies on it. 827 */ 828 ClearPageLRU(page); 829 ret = 0; 830 } 831 832 return ret; 833 } 834 835 /* 836 * zone->lru_lock is heavily contended. Some of the functions that 837 * shrink the lists perform better by taking out a batch of pages 838 * and working on them outside the LRU lock. 839 * 840 * For pagecache intensive workloads, this function is the hottest 841 * spot in the kernel (apart from copy_*_user functions). 842 * 843 * Appropriate locks must be held before calling this function. 844 * 845 * @nr_to_scan: The number of pages to look through on the list. 846 * @src: The LRU list to pull pages off. 847 * @dst: The temp list to put pages on to. 848 * @scanned: The number of pages that were scanned. 849 * @order: The caller's attempted allocation order 850 * @mode: One of the LRU isolation modes 851 * @file: True [1] if isolating file [!anon] pages 852 * 853 * returns how many pages were moved onto *@dst. 854 */ 855 static unsigned long isolate_lru_pages(unsigned long nr_to_scan, 856 struct list_head *src, struct list_head *dst, 857 unsigned long *scanned, int order, int mode, int file) 858 { 859 unsigned long nr_taken = 0; 860 unsigned long scan; 861 862 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) { 863 struct page *page; 864 unsigned long pfn; 865 unsigned long end_pfn; 866 unsigned long page_pfn; 867 int zone_id; 868 869 page = lru_to_page(src); 870 prefetchw_prev_lru_page(page, src, flags); 871 872 VM_BUG_ON(!PageLRU(page)); 873 874 switch (__isolate_lru_page(page, mode, file)) { 875 case 0: 876 list_move(&page->lru, dst); 877 nr_taken++; 878 break; 879 880 case -EBUSY: 881 /* else it is being freed elsewhere */ 882 list_move(&page->lru, src); 883 continue; 884 885 default: 886 BUG(); 887 } 888 889 if (!order) 890 continue; 891 892 /* 893 * Attempt to take all pages in the order aligned region 894 * surrounding the tag page. Only take those pages of 895 * the same active state as that tag page. We may safely 896 * round the target page pfn down to the requested order 897 * as the mem_map is guarenteed valid out to MAX_ORDER, 898 * where that page is in a different zone we will detect 899 * it from its zone id and abort this block scan. 900 */ 901 zone_id = page_zone_id(page); 902 page_pfn = page_to_pfn(page); 903 pfn = page_pfn & ~((1 << order) - 1); 904 end_pfn = pfn + (1 << order); 905 for (; pfn < end_pfn; pfn++) { 906 struct page *cursor_page; 907 908 /* The target page is in the block, ignore it. */ 909 if (unlikely(pfn == page_pfn)) 910 continue; 911 912 /* Avoid holes within the zone. */ 913 if (unlikely(!pfn_valid_within(pfn))) 914 break; 915 916 cursor_page = pfn_to_page(pfn); 917 918 /* Check that we have not crossed a zone boundary. */ 919 if (unlikely(page_zone_id(cursor_page) != zone_id)) 920 continue; 921 switch (__isolate_lru_page(cursor_page, mode, file)) { 922 case 0: 923 list_move(&cursor_page->lru, dst); 924 nr_taken++; 925 scan++; 926 break; 927 928 case -EBUSY: 929 /* else it is being freed elsewhere */ 930 list_move(&cursor_page->lru, src); 931 default: 932 break; /* ! on LRU or wrong list */ 933 } 934 } 935 } 936 937 *scanned = scan; 938 return nr_taken; 939 } 940 941 static unsigned long isolate_pages_global(unsigned long nr, 942 struct list_head *dst, 943 unsigned long *scanned, int order, 944 int mode, struct zone *z, 945 struct mem_cgroup *mem_cont, 946 int active, int file) 947 { 948 int lru = LRU_BASE; 949 if (active) 950 lru += LRU_ACTIVE; 951 if (file) 952 lru += LRU_FILE; 953 return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order, 954 mode, !!file); 955 } 956 957 /* 958 * clear_active_flags() is a helper for shrink_active_list(), clearing 959 * any active bits from the pages in the list. 960 */ 961 static unsigned long clear_active_flags(struct list_head *page_list, 962 unsigned int *count) 963 { 964 int nr_active = 0; 965 int lru; 966 struct page *page; 967 968 list_for_each_entry(page, page_list, lru) { 969 lru = page_is_file_cache(page); 970 if (PageActive(page)) { 971 lru += LRU_ACTIVE; 972 ClearPageActive(page); 973 nr_active++; 974 } 975 count[lru]++; 976 } 977 978 return nr_active; 979 } 980 981 /** 982 * isolate_lru_page - tries to isolate a page from its LRU list 983 * @page: page to isolate from its LRU list 984 * 985 * Isolates a @page from an LRU list, clears PageLRU and adjusts the 986 * vmstat statistic corresponding to whatever LRU list the page was on. 987 * 988 * Returns 0 if the page was removed from an LRU list. 989 * Returns -EBUSY if the page was not on an LRU list. 990 * 991 * The returned page will have PageLRU() cleared. If it was found on 992 * the active list, it will have PageActive set. If it was found on 993 * the unevictable list, it will have the PageUnevictable bit set. That flag 994 * may need to be cleared by the caller before letting the page go. 995 * 996 * The vmstat statistic corresponding to the list on which the page was 997 * found will be decremented. 998 * 999 * Restrictions: 1000 * (1) Must be called with an elevated refcount on the page. This is a 1001 * fundamentnal difference from isolate_lru_pages (which is called 1002 * without a stable reference). 1003 * (2) the lru_lock must not be held. 1004 * (3) interrupts must be enabled. 1005 */ 1006 int isolate_lru_page(struct page *page) 1007 { 1008 int ret = -EBUSY; 1009 1010 if (PageLRU(page)) { 1011 struct zone *zone = page_zone(page); 1012 1013 spin_lock_irq(&zone->lru_lock); 1014 if (PageLRU(page) && get_page_unless_zero(page)) { 1015 int lru = page_lru(page); 1016 ret = 0; 1017 ClearPageLRU(page); 1018 1019 del_page_from_lru_list(zone, page, lru); 1020 } 1021 spin_unlock_irq(&zone->lru_lock); 1022 } 1023 return ret; 1024 } 1025 1026 /* 1027 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number 1028 * of reclaimed pages 1029 */ 1030 static unsigned long shrink_inactive_list(unsigned long max_scan, 1031 struct zone *zone, struct scan_control *sc, 1032 int priority, int file) 1033 { 1034 LIST_HEAD(page_list); 1035 struct pagevec pvec; 1036 unsigned long nr_scanned = 0; 1037 unsigned long nr_reclaimed = 0; 1038 1039 pagevec_init(&pvec, 1); 1040 1041 lru_add_drain(); 1042 spin_lock_irq(&zone->lru_lock); 1043 do { 1044 struct page *page; 1045 unsigned long nr_taken; 1046 unsigned long nr_scan; 1047 unsigned long nr_freed; 1048 unsigned long nr_active; 1049 unsigned int count[NR_LRU_LISTS] = { 0, }; 1050 int mode = ISOLATE_INACTIVE; 1051 1052 /* 1053 * If we need a large contiguous chunk of memory, or have 1054 * trouble getting a small set of contiguous pages, we 1055 * will reclaim both active and inactive pages. 1056 * 1057 * We use the same threshold as pageout congestion_wait below. 1058 */ 1059 if (sc->order > PAGE_ALLOC_COSTLY_ORDER) 1060 mode = ISOLATE_BOTH; 1061 else if (sc->order && priority < DEF_PRIORITY - 2) 1062 mode = ISOLATE_BOTH; 1063 1064 nr_taken = sc->isolate_pages(sc->swap_cluster_max, 1065 &page_list, &nr_scan, sc->order, mode, 1066 zone, sc->mem_cgroup, 0, file); 1067 nr_active = clear_active_flags(&page_list, count); 1068 __count_vm_events(PGDEACTIVATE, nr_active); 1069 1070 __mod_zone_page_state(zone, NR_ACTIVE_FILE, 1071 -count[LRU_ACTIVE_FILE]); 1072 __mod_zone_page_state(zone, NR_INACTIVE_FILE, 1073 -count[LRU_INACTIVE_FILE]); 1074 __mod_zone_page_state(zone, NR_ACTIVE_ANON, 1075 -count[LRU_ACTIVE_ANON]); 1076 __mod_zone_page_state(zone, NR_INACTIVE_ANON, 1077 -count[LRU_INACTIVE_ANON]); 1078 1079 if (scan_global_lru(sc)) { 1080 zone->pages_scanned += nr_scan; 1081 zone->recent_scanned[0] += count[LRU_INACTIVE_ANON]; 1082 zone->recent_scanned[0] += count[LRU_ACTIVE_ANON]; 1083 zone->recent_scanned[1] += count[LRU_INACTIVE_FILE]; 1084 zone->recent_scanned[1] += count[LRU_ACTIVE_FILE]; 1085 } 1086 spin_unlock_irq(&zone->lru_lock); 1087 1088 nr_scanned += nr_scan; 1089 nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC); 1090 1091 /* 1092 * If we are direct reclaiming for contiguous pages and we do 1093 * not reclaim everything in the list, try again and wait 1094 * for IO to complete. This will stall high-order allocations 1095 * but that should be acceptable to the caller 1096 */ 1097 if (nr_freed < nr_taken && !current_is_kswapd() && 1098 sc->order > PAGE_ALLOC_COSTLY_ORDER) { 1099 congestion_wait(WRITE, HZ/10); 1100 1101 /* 1102 * The attempt at page out may have made some 1103 * of the pages active, mark them inactive again. 1104 */ 1105 nr_active = clear_active_flags(&page_list, count); 1106 count_vm_events(PGDEACTIVATE, nr_active); 1107 1108 nr_freed += shrink_page_list(&page_list, sc, 1109 PAGEOUT_IO_SYNC); 1110 } 1111 1112 nr_reclaimed += nr_freed; 1113 local_irq_disable(); 1114 if (current_is_kswapd()) { 1115 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scan); 1116 __count_vm_events(KSWAPD_STEAL, nr_freed); 1117 } else if (scan_global_lru(sc)) 1118 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scan); 1119 1120 __count_zone_vm_events(PGSTEAL, zone, nr_freed); 1121 1122 if (nr_taken == 0) 1123 goto done; 1124 1125 spin_lock(&zone->lru_lock); 1126 /* 1127 * Put back any unfreeable pages. 1128 */ 1129 while (!list_empty(&page_list)) { 1130 int lru; 1131 page = lru_to_page(&page_list); 1132 VM_BUG_ON(PageLRU(page)); 1133 list_del(&page->lru); 1134 if (unlikely(!page_evictable(page, NULL))) { 1135 spin_unlock_irq(&zone->lru_lock); 1136 putback_lru_page(page); 1137 spin_lock_irq(&zone->lru_lock); 1138 continue; 1139 } 1140 SetPageLRU(page); 1141 lru = page_lru(page); 1142 add_page_to_lru_list(zone, page, lru); 1143 mem_cgroup_move_lists(page, lru); 1144 if (PageActive(page) && scan_global_lru(sc)) { 1145 int file = !!page_is_file_cache(page); 1146 zone->recent_rotated[file]++; 1147 } 1148 if (!pagevec_add(&pvec, page)) { 1149 spin_unlock_irq(&zone->lru_lock); 1150 __pagevec_release(&pvec); 1151 spin_lock_irq(&zone->lru_lock); 1152 } 1153 } 1154 } while (nr_scanned < max_scan); 1155 spin_unlock(&zone->lru_lock); 1156 done: 1157 local_irq_enable(); 1158 pagevec_release(&pvec); 1159 return nr_reclaimed; 1160 } 1161 1162 /* 1163 * We are about to scan this zone at a certain priority level. If that priority 1164 * level is smaller (ie: more urgent) than the previous priority, then note 1165 * that priority level within the zone. This is done so that when the next 1166 * process comes in to scan this zone, it will immediately start out at this 1167 * priority level rather than having to build up its own scanning priority. 1168 * Here, this priority affects only the reclaim-mapped threshold. 1169 */ 1170 static inline void note_zone_scanning_priority(struct zone *zone, int priority) 1171 { 1172 if (priority < zone->prev_priority) 1173 zone->prev_priority = priority; 1174 } 1175 1176 static inline int zone_is_near_oom(struct zone *zone) 1177 { 1178 return zone->pages_scanned >= (zone_lru_pages(zone) * 3); 1179 } 1180 1181 /* 1182 * This moves pages from the active list to the inactive list. 1183 * 1184 * We move them the other way if the page is referenced by one or more 1185 * processes, from rmap. 1186 * 1187 * If the pages are mostly unmapped, the processing is fast and it is 1188 * appropriate to hold zone->lru_lock across the whole operation. But if 1189 * the pages are mapped, the processing is slow (page_referenced()) so we 1190 * should drop zone->lru_lock around each page. It's impossible to balance 1191 * this, so instead we remove the pages from the LRU while processing them. 1192 * It is safe to rely on PG_active against the non-LRU pages in here because 1193 * nobody will play with that bit on a non-LRU page. 1194 * 1195 * The downside is that we have to touch page->_count against each page. 1196 * But we had to alter page->flags anyway. 1197 */ 1198 1199 1200 static void shrink_active_list(unsigned long nr_pages, struct zone *zone, 1201 struct scan_control *sc, int priority, int file) 1202 { 1203 unsigned long pgmoved; 1204 int pgdeactivate = 0; 1205 unsigned long pgscanned; 1206 LIST_HEAD(l_hold); /* The pages which were snipped off */ 1207 LIST_HEAD(l_inactive); 1208 struct page *page; 1209 struct pagevec pvec; 1210 enum lru_list lru; 1211 1212 lru_add_drain(); 1213 spin_lock_irq(&zone->lru_lock); 1214 pgmoved = sc->isolate_pages(nr_pages, &l_hold, &pgscanned, sc->order, 1215 ISOLATE_ACTIVE, zone, 1216 sc->mem_cgroup, 1, file); 1217 /* 1218 * zone->pages_scanned is used for detect zone's oom 1219 * mem_cgroup remembers nr_scan by itself. 1220 */ 1221 if (scan_global_lru(sc)) { 1222 zone->pages_scanned += pgscanned; 1223 zone->recent_scanned[!!file] += pgmoved; 1224 } 1225 1226 if (file) 1227 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -pgmoved); 1228 else 1229 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -pgmoved); 1230 spin_unlock_irq(&zone->lru_lock); 1231 1232 pgmoved = 0; 1233 while (!list_empty(&l_hold)) { 1234 cond_resched(); 1235 page = lru_to_page(&l_hold); 1236 list_del(&page->lru); 1237 1238 if (unlikely(!page_evictable(page, NULL))) { 1239 putback_lru_page(page); 1240 continue; 1241 } 1242 1243 /* page_referenced clears PageReferenced */ 1244 if (page_mapping_inuse(page) && 1245 page_referenced(page, 0, sc->mem_cgroup)) 1246 pgmoved++; 1247 1248 list_add(&page->lru, &l_inactive); 1249 } 1250 1251 spin_lock_irq(&zone->lru_lock); 1252 /* 1253 * Count referenced pages from currently used mappings as 1254 * rotated, even though they are moved to the inactive list. 1255 * This helps balance scan pressure between file and anonymous 1256 * pages in get_scan_ratio. 1257 */ 1258 zone->recent_rotated[!!file] += pgmoved; 1259 1260 /* 1261 * Move the pages to the [file or anon] inactive list. 1262 */ 1263 pagevec_init(&pvec, 1); 1264 1265 pgmoved = 0; 1266 lru = LRU_BASE + file * LRU_FILE; 1267 while (!list_empty(&l_inactive)) { 1268 page = lru_to_page(&l_inactive); 1269 prefetchw_prev_lru_page(page, &l_inactive, flags); 1270 VM_BUG_ON(PageLRU(page)); 1271 SetPageLRU(page); 1272 VM_BUG_ON(!PageActive(page)); 1273 ClearPageActive(page); 1274 1275 list_move(&page->lru, &zone->lru[lru].list); 1276 mem_cgroup_move_lists(page, lru); 1277 pgmoved++; 1278 if (!pagevec_add(&pvec, page)) { 1279 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved); 1280 spin_unlock_irq(&zone->lru_lock); 1281 pgdeactivate += pgmoved; 1282 pgmoved = 0; 1283 if (buffer_heads_over_limit) 1284 pagevec_strip(&pvec); 1285 __pagevec_release(&pvec); 1286 spin_lock_irq(&zone->lru_lock); 1287 } 1288 } 1289 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved); 1290 pgdeactivate += pgmoved; 1291 if (buffer_heads_over_limit) { 1292 spin_unlock_irq(&zone->lru_lock); 1293 pagevec_strip(&pvec); 1294 spin_lock_irq(&zone->lru_lock); 1295 } 1296 __count_zone_vm_events(PGREFILL, zone, pgscanned); 1297 __count_vm_events(PGDEACTIVATE, pgdeactivate); 1298 spin_unlock_irq(&zone->lru_lock); 1299 if (vm_swap_full()) 1300 pagevec_swap_free(&pvec); 1301 1302 pagevec_release(&pvec); 1303 } 1304 1305 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 1306 struct zone *zone, struct scan_control *sc, int priority) 1307 { 1308 int file = is_file_lru(lru); 1309 1310 if (lru == LRU_ACTIVE_FILE) { 1311 shrink_active_list(nr_to_scan, zone, sc, priority, file); 1312 return 0; 1313 } 1314 1315 if (lru == LRU_ACTIVE_ANON && 1316 (!scan_global_lru(sc) || inactive_anon_is_low(zone))) { 1317 shrink_active_list(nr_to_scan, zone, sc, priority, file); 1318 return 0; 1319 } 1320 return shrink_inactive_list(nr_to_scan, zone, sc, priority, file); 1321 } 1322 1323 /* 1324 * Determine how aggressively the anon and file LRU lists should be 1325 * scanned. The relative value of each set of LRU lists is determined 1326 * by looking at the fraction of the pages scanned we did rotate back 1327 * onto the active list instead of evict. 1328 * 1329 * percent[0] specifies how much pressure to put on ram/swap backed 1330 * memory, while percent[1] determines pressure on the file LRUs. 1331 */ 1332 static void get_scan_ratio(struct zone *zone, struct scan_control *sc, 1333 unsigned long *percent) 1334 { 1335 unsigned long anon, file, free; 1336 unsigned long anon_prio, file_prio; 1337 unsigned long ap, fp; 1338 1339 anon = zone_page_state(zone, NR_ACTIVE_ANON) + 1340 zone_page_state(zone, NR_INACTIVE_ANON); 1341 file = zone_page_state(zone, NR_ACTIVE_FILE) + 1342 zone_page_state(zone, NR_INACTIVE_FILE); 1343 free = zone_page_state(zone, NR_FREE_PAGES); 1344 1345 /* If we have no swap space, do not bother scanning anon pages. */ 1346 if (nr_swap_pages <= 0) { 1347 percent[0] = 0; 1348 percent[1] = 100; 1349 return; 1350 } 1351 1352 /* If we have very few page cache pages, force-scan anon pages. */ 1353 if (unlikely(file + free <= zone->pages_high)) { 1354 percent[0] = 100; 1355 percent[1] = 0; 1356 return; 1357 } 1358 1359 /* 1360 * OK, so we have swap space and a fair amount of page cache 1361 * pages. We use the recently rotated / recently scanned 1362 * ratios to determine how valuable each cache is. 1363 * 1364 * Because workloads change over time (and to avoid overflow) 1365 * we keep these statistics as a floating average, which ends 1366 * up weighing recent references more than old ones. 1367 * 1368 * anon in [0], file in [1] 1369 */ 1370 if (unlikely(zone->recent_scanned[0] > anon / 4)) { 1371 spin_lock_irq(&zone->lru_lock); 1372 zone->recent_scanned[0] /= 2; 1373 zone->recent_rotated[0] /= 2; 1374 spin_unlock_irq(&zone->lru_lock); 1375 } 1376 1377 if (unlikely(zone->recent_scanned[1] > file / 4)) { 1378 spin_lock_irq(&zone->lru_lock); 1379 zone->recent_scanned[1] /= 2; 1380 zone->recent_rotated[1] /= 2; 1381 spin_unlock_irq(&zone->lru_lock); 1382 } 1383 1384 /* 1385 * With swappiness at 100, anonymous and file have the same priority. 1386 * This scanning priority is essentially the inverse of IO cost. 1387 */ 1388 anon_prio = sc->swappiness; 1389 file_prio = 200 - sc->swappiness; 1390 1391 /* 1392 * The amount of pressure on anon vs file pages is inversely 1393 * proportional to the fraction of recently scanned pages on 1394 * each list that were recently referenced and in active use. 1395 */ 1396 ap = (anon_prio + 1) * (zone->recent_scanned[0] + 1); 1397 ap /= zone->recent_rotated[0] + 1; 1398 1399 fp = (file_prio + 1) * (zone->recent_scanned[1] + 1); 1400 fp /= zone->recent_rotated[1] + 1; 1401 1402 /* Normalize to percentages */ 1403 percent[0] = 100 * ap / (ap + fp + 1); 1404 percent[1] = 100 - percent[0]; 1405 } 1406 1407 1408 /* 1409 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim. 1410 */ 1411 static unsigned long shrink_zone(int priority, struct zone *zone, 1412 struct scan_control *sc) 1413 { 1414 unsigned long nr[NR_LRU_LISTS]; 1415 unsigned long nr_to_scan; 1416 unsigned long nr_reclaimed = 0; 1417 unsigned long percent[2]; /* anon @ 0; file @ 1 */ 1418 enum lru_list l; 1419 1420 get_scan_ratio(zone, sc, percent); 1421 1422 for_each_evictable_lru(l) { 1423 if (scan_global_lru(sc)) { 1424 int file = is_file_lru(l); 1425 int scan; 1426 1427 scan = zone_page_state(zone, NR_LRU_BASE + l); 1428 if (priority) { 1429 scan >>= priority; 1430 scan = (scan * percent[file]) / 100; 1431 } 1432 zone->lru[l].nr_scan += scan; 1433 nr[l] = zone->lru[l].nr_scan; 1434 if (nr[l] >= sc->swap_cluster_max) 1435 zone->lru[l].nr_scan = 0; 1436 else 1437 nr[l] = 0; 1438 } else { 1439 /* 1440 * This reclaim occurs not because zone memory shortage 1441 * but because memory controller hits its limit. 1442 * Don't modify zone reclaim related data. 1443 */ 1444 nr[l] = mem_cgroup_calc_reclaim(sc->mem_cgroup, zone, 1445 priority, l); 1446 } 1447 } 1448 1449 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 1450 nr[LRU_INACTIVE_FILE]) { 1451 for_each_evictable_lru(l) { 1452 if (nr[l]) { 1453 nr_to_scan = min(nr[l], 1454 (unsigned long)sc->swap_cluster_max); 1455 nr[l] -= nr_to_scan; 1456 1457 nr_reclaimed += shrink_list(l, nr_to_scan, 1458 zone, sc, priority); 1459 } 1460 } 1461 } 1462 1463 /* 1464 * Even if we did not try to evict anon pages at all, we want to 1465 * rebalance the anon lru active/inactive ratio. 1466 */ 1467 if (!scan_global_lru(sc) || inactive_anon_is_low(zone)) 1468 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0); 1469 else if (!scan_global_lru(sc)) 1470 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0); 1471 1472 throttle_vm_writeout(sc->gfp_mask); 1473 return nr_reclaimed; 1474 } 1475 1476 /* 1477 * This is the direct reclaim path, for page-allocating processes. We only 1478 * try to reclaim pages from zones which will satisfy the caller's allocation 1479 * request. 1480 * 1481 * We reclaim from a zone even if that zone is over pages_high. Because: 1482 * a) The caller may be trying to free *extra* pages to satisfy a higher-order 1483 * allocation or 1484 * b) The zones may be over pages_high but they must go *over* pages_high to 1485 * satisfy the `incremental min' zone defense algorithm. 1486 * 1487 * Returns the number of reclaimed pages. 1488 * 1489 * If a zone is deemed to be full of pinned pages then just give it a light 1490 * scan then give up on it. 1491 */ 1492 static unsigned long shrink_zones(int priority, struct zonelist *zonelist, 1493 struct scan_control *sc) 1494 { 1495 enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask); 1496 unsigned long nr_reclaimed = 0; 1497 struct zoneref *z; 1498 struct zone *zone; 1499 1500 sc->all_unreclaimable = 1; 1501 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 1502 if (!populated_zone(zone)) 1503 continue; 1504 /* 1505 * Take care memory controller reclaiming has small influence 1506 * to global LRU. 1507 */ 1508 if (scan_global_lru(sc)) { 1509 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 1510 continue; 1511 note_zone_scanning_priority(zone, priority); 1512 1513 if (zone_is_all_unreclaimable(zone) && 1514 priority != DEF_PRIORITY) 1515 continue; /* Let kswapd poll it */ 1516 sc->all_unreclaimable = 0; 1517 } else { 1518 /* 1519 * Ignore cpuset limitation here. We just want to reduce 1520 * # of used pages by us regardless of memory shortage. 1521 */ 1522 sc->all_unreclaimable = 0; 1523 mem_cgroup_note_reclaim_priority(sc->mem_cgroup, 1524 priority); 1525 } 1526 1527 nr_reclaimed += shrink_zone(priority, zone, sc); 1528 } 1529 1530 return nr_reclaimed; 1531 } 1532 1533 /* 1534 * This is the main entry point to direct page reclaim. 1535 * 1536 * If a full scan of the inactive list fails to free enough memory then we 1537 * are "out of memory" and something needs to be killed. 1538 * 1539 * If the caller is !__GFP_FS then the probability of a failure is reasonably 1540 * high - the zone may be full of dirty or under-writeback pages, which this 1541 * caller can't do much about. We kick pdflush and take explicit naps in the 1542 * hope that some of these pages can be written. But if the allocating task 1543 * holds filesystem locks which prevent writeout this might not work, and the 1544 * allocation attempt will fail. 1545 * 1546 * returns: 0, if no pages reclaimed 1547 * else, the number of pages reclaimed 1548 */ 1549 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 1550 struct scan_control *sc) 1551 { 1552 int priority; 1553 unsigned long ret = 0; 1554 unsigned long total_scanned = 0; 1555 unsigned long nr_reclaimed = 0; 1556 struct reclaim_state *reclaim_state = current->reclaim_state; 1557 unsigned long lru_pages = 0; 1558 struct zoneref *z; 1559 struct zone *zone; 1560 enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask); 1561 1562 delayacct_freepages_start(); 1563 1564 if (scan_global_lru(sc)) 1565 count_vm_event(ALLOCSTALL); 1566 /* 1567 * mem_cgroup will not do shrink_slab. 1568 */ 1569 if (scan_global_lru(sc)) { 1570 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 1571 1572 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 1573 continue; 1574 1575 lru_pages += zone_lru_pages(zone); 1576 } 1577 } 1578 1579 for (priority = DEF_PRIORITY; priority >= 0; priority--) { 1580 sc->nr_scanned = 0; 1581 if (!priority) 1582 disable_swap_token(); 1583 nr_reclaimed += shrink_zones(priority, zonelist, sc); 1584 /* 1585 * Don't shrink slabs when reclaiming memory from 1586 * over limit cgroups 1587 */ 1588 if (scan_global_lru(sc)) { 1589 shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages); 1590 if (reclaim_state) { 1591 nr_reclaimed += reclaim_state->reclaimed_slab; 1592 reclaim_state->reclaimed_slab = 0; 1593 } 1594 } 1595 total_scanned += sc->nr_scanned; 1596 if (nr_reclaimed >= sc->swap_cluster_max) { 1597 ret = nr_reclaimed; 1598 goto out; 1599 } 1600 1601 /* 1602 * Try to write back as many pages as we just scanned. This 1603 * tends to cause slow streaming writers to write data to the 1604 * disk smoothly, at the dirtying rate, which is nice. But 1605 * that's undesirable in laptop mode, where we *want* lumpy 1606 * writeout. So in laptop mode, write out the whole world. 1607 */ 1608 if (total_scanned > sc->swap_cluster_max + 1609 sc->swap_cluster_max / 2) { 1610 wakeup_pdflush(laptop_mode ? 0 : total_scanned); 1611 sc->may_writepage = 1; 1612 } 1613 1614 /* Take a nap, wait for some writeback to complete */ 1615 if (sc->nr_scanned && priority < DEF_PRIORITY - 2) 1616 congestion_wait(WRITE, HZ/10); 1617 } 1618 /* top priority shrink_zones still had more to do? don't OOM, then */ 1619 if (!sc->all_unreclaimable && scan_global_lru(sc)) 1620 ret = nr_reclaimed; 1621 out: 1622 /* 1623 * Now that we've scanned all the zones at this priority level, note 1624 * that level within the zone so that the next thread which performs 1625 * scanning of this zone will immediately start out at this priority 1626 * level. This affects only the decision whether or not to bring 1627 * mapped pages onto the inactive list. 1628 */ 1629 if (priority < 0) 1630 priority = 0; 1631 1632 if (scan_global_lru(sc)) { 1633 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 1634 1635 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 1636 continue; 1637 1638 zone->prev_priority = priority; 1639 } 1640 } else 1641 mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority); 1642 1643 delayacct_freepages_end(); 1644 1645 return ret; 1646 } 1647 1648 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 1649 gfp_t gfp_mask) 1650 { 1651 struct scan_control sc = { 1652 .gfp_mask = gfp_mask, 1653 .may_writepage = !laptop_mode, 1654 .swap_cluster_max = SWAP_CLUSTER_MAX, 1655 .may_swap = 1, 1656 .swappiness = vm_swappiness, 1657 .order = order, 1658 .mem_cgroup = NULL, 1659 .isolate_pages = isolate_pages_global, 1660 }; 1661 1662 return do_try_to_free_pages(zonelist, &sc); 1663 } 1664 1665 #ifdef CONFIG_CGROUP_MEM_RES_CTLR 1666 1667 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont, 1668 gfp_t gfp_mask) 1669 { 1670 struct scan_control sc = { 1671 .may_writepage = !laptop_mode, 1672 .may_swap = 1, 1673 .swap_cluster_max = SWAP_CLUSTER_MAX, 1674 .swappiness = vm_swappiness, 1675 .order = 0, 1676 .mem_cgroup = mem_cont, 1677 .isolate_pages = mem_cgroup_isolate_pages, 1678 }; 1679 struct zonelist *zonelist; 1680 1681 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 1682 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 1683 zonelist = NODE_DATA(numa_node_id())->node_zonelists; 1684 return do_try_to_free_pages(zonelist, &sc); 1685 } 1686 #endif 1687 1688 /* 1689 * For kswapd, balance_pgdat() will work across all this node's zones until 1690 * they are all at pages_high. 1691 * 1692 * Returns the number of pages which were actually freed. 1693 * 1694 * There is special handling here for zones which are full of pinned pages. 1695 * This can happen if the pages are all mlocked, or if they are all used by 1696 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb. 1697 * What we do is to detect the case where all pages in the zone have been 1698 * scanned twice and there has been zero successful reclaim. Mark the zone as 1699 * dead and from now on, only perform a short scan. Basically we're polling 1700 * the zone for when the problem goes away. 1701 * 1702 * kswapd scans the zones in the highmem->normal->dma direction. It skips 1703 * zones which have free_pages > pages_high, but once a zone is found to have 1704 * free_pages <= pages_high, we scan that zone and the lower zones regardless 1705 * of the number of free pages in the lower zones. This interoperates with 1706 * the page allocator fallback scheme to ensure that aging of pages is balanced 1707 * across the zones. 1708 */ 1709 static unsigned long balance_pgdat(pg_data_t *pgdat, int order) 1710 { 1711 int all_zones_ok; 1712 int priority; 1713 int i; 1714 unsigned long total_scanned; 1715 unsigned long nr_reclaimed; 1716 struct reclaim_state *reclaim_state = current->reclaim_state; 1717 struct scan_control sc = { 1718 .gfp_mask = GFP_KERNEL, 1719 .may_swap = 1, 1720 .swap_cluster_max = SWAP_CLUSTER_MAX, 1721 .swappiness = vm_swappiness, 1722 .order = order, 1723 .mem_cgroup = NULL, 1724 .isolate_pages = isolate_pages_global, 1725 }; 1726 /* 1727 * temp_priority is used to remember the scanning priority at which 1728 * this zone was successfully refilled to free_pages == pages_high. 1729 */ 1730 int temp_priority[MAX_NR_ZONES]; 1731 1732 loop_again: 1733 total_scanned = 0; 1734 nr_reclaimed = 0; 1735 sc.may_writepage = !laptop_mode; 1736 count_vm_event(PAGEOUTRUN); 1737 1738 for (i = 0; i < pgdat->nr_zones; i++) 1739 temp_priority[i] = DEF_PRIORITY; 1740 1741 for (priority = DEF_PRIORITY; priority >= 0; priority--) { 1742 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */ 1743 unsigned long lru_pages = 0; 1744 1745 /* The swap token gets in the way of swapout... */ 1746 if (!priority) 1747 disable_swap_token(); 1748 1749 all_zones_ok = 1; 1750 1751 /* 1752 * Scan in the highmem->dma direction for the highest 1753 * zone which needs scanning 1754 */ 1755 for (i = pgdat->nr_zones - 1; i >= 0; i--) { 1756 struct zone *zone = pgdat->node_zones + i; 1757 1758 if (!populated_zone(zone)) 1759 continue; 1760 1761 if (zone_is_all_unreclaimable(zone) && 1762 priority != DEF_PRIORITY) 1763 continue; 1764 1765 /* 1766 * Do some background aging of the anon list, to give 1767 * pages a chance to be referenced before reclaiming. 1768 */ 1769 if (inactive_anon_is_low(zone)) 1770 shrink_active_list(SWAP_CLUSTER_MAX, zone, 1771 &sc, priority, 0); 1772 1773 if (!zone_watermark_ok(zone, order, zone->pages_high, 1774 0, 0)) { 1775 end_zone = i; 1776 break; 1777 } 1778 } 1779 if (i < 0) 1780 goto out; 1781 1782 for (i = 0; i <= end_zone; i++) { 1783 struct zone *zone = pgdat->node_zones + i; 1784 1785 lru_pages += zone_lru_pages(zone); 1786 } 1787 1788 /* 1789 * Now scan the zone in the dma->highmem direction, stopping 1790 * at the last zone which needs scanning. 1791 * 1792 * We do this because the page allocator works in the opposite 1793 * direction. This prevents the page allocator from allocating 1794 * pages behind kswapd's direction of progress, which would 1795 * cause too much scanning of the lower zones. 1796 */ 1797 for (i = 0; i <= end_zone; i++) { 1798 struct zone *zone = pgdat->node_zones + i; 1799 int nr_slab; 1800 1801 if (!populated_zone(zone)) 1802 continue; 1803 1804 if (zone_is_all_unreclaimable(zone) && 1805 priority != DEF_PRIORITY) 1806 continue; 1807 1808 if (!zone_watermark_ok(zone, order, zone->pages_high, 1809 end_zone, 0)) 1810 all_zones_ok = 0; 1811 temp_priority[i] = priority; 1812 sc.nr_scanned = 0; 1813 note_zone_scanning_priority(zone, priority); 1814 /* 1815 * We put equal pressure on every zone, unless one 1816 * zone has way too many pages free already. 1817 */ 1818 if (!zone_watermark_ok(zone, order, 8*zone->pages_high, 1819 end_zone, 0)) 1820 nr_reclaimed += shrink_zone(priority, zone, &sc); 1821 reclaim_state->reclaimed_slab = 0; 1822 nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL, 1823 lru_pages); 1824 nr_reclaimed += reclaim_state->reclaimed_slab; 1825 total_scanned += sc.nr_scanned; 1826 if (zone_is_all_unreclaimable(zone)) 1827 continue; 1828 if (nr_slab == 0 && zone->pages_scanned >= 1829 (zone_lru_pages(zone) * 6)) 1830 zone_set_flag(zone, 1831 ZONE_ALL_UNRECLAIMABLE); 1832 /* 1833 * If we've done a decent amount of scanning and 1834 * the reclaim ratio is low, start doing writepage 1835 * even in laptop mode 1836 */ 1837 if (total_scanned > SWAP_CLUSTER_MAX * 2 && 1838 total_scanned > nr_reclaimed + nr_reclaimed / 2) 1839 sc.may_writepage = 1; 1840 } 1841 if (all_zones_ok) 1842 break; /* kswapd: all done */ 1843 /* 1844 * OK, kswapd is getting into trouble. Take a nap, then take 1845 * another pass across the zones. 1846 */ 1847 if (total_scanned && priority < DEF_PRIORITY - 2) 1848 congestion_wait(WRITE, HZ/10); 1849 1850 /* 1851 * We do this so kswapd doesn't build up large priorities for 1852 * example when it is freeing in parallel with allocators. It 1853 * matches the direct reclaim path behaviour in terms of impact 1854 * on zone->*_priority. 1855 */ 1856 if (nr_reclaimed >= SWAP_CLUSTER_MAX) 1857 break; 1858 } 1859 out: 1860 /* 1861 * Note within each zone the priority level at which this zone was 1862 * brought into a happy state. So that the next thread which scans this 1863 * zone will start out at that priority level. 1864 */ 1865 for (i = 0; i < pgdat->nr_zones; i++) { 1866 struct zone *zone = pgdat->node_zones + i; 1867 1868 zone->prev_priority = temp_priority[i]; 1869 } 1870 if (!all_zones_ok) { 1871 cond_resched(); 1872 1873 try_to_freeze(); 1874 1875 goto loop_again; 1876 } 1877 1878 return nr_reclaimed; 1879 } 1880 1881 /* 1882 * The background pageout daemon, started as a kernel thread 1883 * from the init process. 1884 * 1885 * This basically trickles out pages so that we have _some_ 1886 * free memory available even if there is no other activity 1887 * that frees anything up. This is needed for things like routing 1888 * etc, where we otherwise might have all activity going on in 1889 * asynchronous contexts that cannot page things out. 1890 * 1891 * If there are applications that are active memory-allocators 1892 * (most normal use), this basically shouldn't matter. 1893 */ 1894 static int kswapd(void *p) 1895 { 1896 unsigned long order; 1897 pg_data_t *pgdat = (pg_data_t*)p; 1898 struct task_struct *tsk = current; 1899 DEFINE_WAIT(wait); 1900 struct reclaim_state reclaim_state = { 1901 .reclaimed_slab = 0, 1902 }; 1903 node_to_cpumask_ptr(cpumask, pgdat->node_id); 1904 1905 if (!cpus_empty(*cpumask)) 1906 set_cpus_allowed_ptr(tsk, cpumask); 1907 current->reclaim_state = &reclaim_state; 1908 1909 /* 1910 * Tell the memory management that we're a "memory allocator", 1911 * and that if we need more memory we should get access to it 1912 * regardless (see "__alloc_pages()"). "kswapd" should 1913 * never get caught in the normal page freeing logic. 1914 * 1915 * (Kswapd normally doesn't need memory anyway, but sometimes 1916 * you need a small amount of memory in order to be able to 1917 * page out something else, and this flag essentially protects 1918 * us from recursively trying to free more memory as we're 1919 * trying to free the first piece of memory in the first place). 1920 */ 1921 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 1922 set_freezable(); 1923 1924 order = 0; 1925 for ( ; ; ) { 1926 unsigned long new_order; 1927 1928 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 1929 new_order = pgdat->kswapd_max_order; 1930 pgdat->kswapd_max_order = 0; 1931 if (order < new_order) { 1932 /* 1933 * Don't sleep if someone wants a larger 'order' 1934 * allocation 1935 */ 1936 order = new_order; 1937 } else { 1938 if (!freezing(current)) 1939 schedule(); 1940 1941 order = pgdat->kswapd_max_order; 1942 } 1943 finish_wait(&pgdat->kswapd_wait, &wait); 1944 1945 if (!try_to_freeze()) { 1946 /* We can speed up thawing tasks if we don't call 1947 * balance_pgdat after returning from the refrigerator 1948 */ 1949 balance_pgdat(pgdat, order); 1950 } 1951 } 1952 return 0; 1953 } 1954 1955 /* 1956 * A zone is low on free memory, so wake its kswapd task to service it. 1957 */ 1958 void wakeup_kswapd(struct zone *zone, int order) 1959 { 1960 pg_data_t *pgdat; 1961 1962 if (!populated_zone(zone)) 1963 return; 1964 1965 pgdat = zone->zone_pgdat; 1966 if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0)) 1967 return; 1968 if (pgdat->kswapd_max_order < order) 1969 pgdat->kswapd_max_order = order; 1970 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 1971 return; 1972 if (!waitqueue_active(&pgdat->kswapd_wait)) 1973 return; 1974 wake_up_interruptible(&pgdat->kswapd_wait); 1975 } 1976 1977 unsigned long global_lru_pages(void) 1978 { 1979 return global_page_state(NR_ACTIVE_ANON) 1980 + global_page_state(NR_ACTIVE_FILE) 1981 + global_page_state(NR_INACTIVE_ANON) 1982 + global_page_state(NR_INACTIVE_FILE); 1983 } 1984 1985 #ifdef CONFIG_PM 1986 /* 1987 * Helper function for shrink_all_memory(). Tries to reclaim 'nr_pages' pages 1988 * from LRU lists system-wide, for given pass and priority, and returns the 1989 * number of reclaimed pages 1990 * 1991 * For pass > 3 we also try to shrink the LRU lists that contain a few pages 1992 */ 1993 static unsigned long shrink_all_zones(unsigned long nr_pages, int prio, 1994 int pass, struct scan_control *sc) 1995 { 1996 struct zone *zone; 1997 unsigned long nr_to_scan, ret = 0; 1998 enum lru_list l; 1999 2000 for_each_zone(zone) { 2001 2002 if (!populated_zone(zone)) 2003 continue; 2004 2005 if (zone_is_all_unreclaimable(zone) && prio != DEF_PRIORITY) 2006 continue; 2007 2008 for_each_evictable_lru(l) { 2009 /* For pass = 0, we don't shrink the active list */ 2010 if (pass == 0 && 2011 (l == LRU_ACTIVE || l == LRU_ACTIVE_FILE)) 2012 continue; 2013 2014 zone->lru[l].nr_scan += 2015 (zone_page_state(zone, NR_LRU_BASE + l) 2016 >> prio) + 1; 2017 if (zone->lru[l].nr_scan >= nr_pages || pass > 3) { 2018 zone->lru[l].nr_scan = 0; 2019 nr_to_scan = min(nr_pages, 2020 zone_page_state(zone, 2021 NR_LRU_BASE + l)); 2022 ret += shrink_list(l, nr_to_scan, zone, 2023 sc, prio); 2024 if (ret >= nr_pages) 2025 return ret; 2026 } 2027 } 2028 } 2029 2030 return ret; 2031 } 2032 2033 /* 2034 * Try to free `nr_pages' of memory, system-wide, and return the number of 2035 * freed pages. 2036 * 2037 * Rather than trying to age LRUs the aim is to preserve the overall 2038 * LRU order by reclaiming preferentially 2039 * inactive > active > active referenced > active mapped 2040 */ 2041 unsigned long shrink_all_memory(unsigned long nr_pages) 2042 { 2043 unsigned long lru_pages, nr_slab; 2044 unsigned long ret = 0; 2045 int pass; 2046 struct reclaim_state reclaim_state; 2047 struct scan_control sc = { 2048 .gfp_mask = GFP_KERNEL, 2049 .may_swap = 0, 2050 .swap_cluster_max = nr_pages, 2051 .may_writepage = 1, 2052 .swappiness = vm_swappiness, 2053 .isolate_pages = isolate_pages_global, 2054 }; 2055 2056 current->reclaim_state = &reclaim_state; 2057 2058 lru_pages = global_lru_pages(); 2059 nr_slab = global_page_state(NR_SLAB_RECLAIMABLE); 2060 /* If slab caches are huge, it's better to hit them first */ 2061 while (nr_slab >= lru_pages) { 2062 reclaim_state.reclaimed_slab = 0; 2063 shrink_slab(nr_pages, sc.gfp_mask, lru_pages); 2064 if (!reclaim_state.reclaimed_slab) 2065 break; 2066 2067 ret += reclaim_state.reclaimed_slab; 2068 if (ret >= nr_pages) 2069 goto out; 2070 2071 nr_slab -= reclaim_state.reclaimed_slab; 2072 } 2073 2074 /* 2075 * We try to shrink LRUs in 5 passes: 2076 * 0 = Reclaim from inactive_list only 2077 * 1 = Reclaim from active list but don't reclaim mapped 2078 * 2 = 2nd pass of type 1 2079 * 3 = Reclaim mapped (normal reclaim) 2080 * 4 = 2nd pass of type 3 2081 */ 2082 for (pass = 0; pass < 5; pass++) { 2083 int prio; 2084 2085 /* Force reclaiming mapped pages in the passes #3 and #4 */ 2086 if (pass > 2) { 2087 sc.may_swap = 1; 2088 sc.swappiness = 100; 2089 } 2090 2091 for (prio = DEF_PRIORITY; prio >= 0; prio--) { 2092 unsigned long nr_to_scan = nr_pages - ret; 2093 2094 sc.nr_scanned = 0; 2095 ret += shrink_all_zones(nr_to_scan, prio, pass, &sc); 2096 if (ret >= nr_pages) 2097 goto out; 2098 2099 reclaim_state.reclaimed_slab = 0; 2100 shrink_slab(sc.nr_scanned, sc.gfp_mask, 2101 global_lru_pages()); 2102 ret += reclaim_state.reclaimed_slab; 2103 if (ret >= nr_pages) 2104 goto out; 2105 2106 if (sc.nr_scanned && prio < DEF_PRIORITY - 2) 2107 congestion_wait(WRITE, HZ / 10); 2108 } 2109 } 2110 2111 /* 2112 * If ret = 0, we could not shrink LRUs, but there may be something 2113 * in slab caches 2114 */ 2115 if (!ret) { 2116 do { 2117 reclaim_state.reclaimed_slab = 0; 2118 shrink_slab(nr_pages, sc.gfp_mask, global_lru_pages()); 2119 ret += reclaim_state.reclaimed_slab; 2120 } while (ret < nr_pages && reclaim_state.reclaimed_slab > 0); 2121 } 2122 2123 out: 2124 current->reclaim_state = NULL; 2125 2126 return ret; 2127 } 2128 #endif 2129 2130 /* It's optimal to keep kswapds on the same CPUs as their memory, but 2131 not required for correctness. So if the last cpu in a node goes 2132 away, we get changed to run anywhere: as the first one comes back, 2133 restore their cpu bindings. */ 2134 static int __devinit cpu_callback(struct notifier_block *nfb, 2135 unsigned long action, void *hcpu) 2136 { 2137 int nid; 2138 2139 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) { 2140 for_each_node_state(nid, N_HIGH_MEMORY) { 2141 pg_data_t *pgdat = NODE_DATA(nid); 2142 node_to_cpumask_ptr(mask, pgdat->node_id); 2143 2144 if (any_online_cpu(*mask) < nr_cpu_ids) 2145 /* One of our CPUs online: restore mask */ 2146 set_cpus_allowed_ptr(pgdat->kswapd, mask); 2147 } 2148 } 2149 return NOTIFY_OK; 2150 } 2151 2152 /* 2153 * This kswapd start function will be called by init and node-hot-add. 2154 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. 2155 */ 2156 int kswapd_run(int nid) 2157 { 2158 pg_data_t *pgdat = NODE_DATA(nid); 2159 int ret = 0; 2160 2161 if (pgdat->kswapd) 2162 return 0; 2163 2164 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 2165 if (IS_ERR(pgdat->kswapd)) { 2166 /* failure at boot is fatal */ 2167 BUG_ON(system_state == SYSTEM_BOOTING); 2168 printk("Failed to start kswapd on node %d\n",nid); 2169 ret = -1; 2170 } 2171 return ret; 2172 } 2173 2174 static int __init kswapd_init(void) 2175 { 2176 int nid; 2177 2178 swap_setup(); 2179 for_each_node_state(nid, N_HIGH_MEMORY) 2180 kswapd_run(nid); 2181 hotcpu_notifier(cpu_callback, 0); 2182 return 0; 2183 } 2184 2185 module_init(kswapd_init) 2186 2187 #ifdef CONFIG_NUMA 2188 /* 2189 * Zone reclaim mode 2190 * 2191 * If non-zero call zone_reclaim when the number of free pages falls below 2192 * the watermarks. 2193 */ 2194 int zone_reclaim_mode __read_mostly; 2195 2196 #define RECLAIM_OFF 0 2197 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */ 2198 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */ 2199 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */ 2200 2201 /* 2202 * Priority for ZONE_RECLAIM. This determines the fraction of pages 2203 * of a node considered for each zone_reclaim. 4 scans 1/16th of 2204 * a zone. 2205 */ 2206 #define ZONE_RECLAIM_PRIORITY 4 2207 2208 /* 2209 * Percentage of pages in a zone that must be unmapped for zone_reclaim to 2210 * occur. 2211 */ 2212 int sysctl_min_unmapped_ratio = 1; 2213 2214 /* 2215 * If the number of slab pages in a zone grows beyond this percentage then 2216 * slab reclaim needs to occur. 2217 */ 2218 int sysctl_min_slab_ratio = 5; 2219 2220 /* 2221 * Try to free up some pages from this zone through reclaim. 2222 */ 2223 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) 2224 { 2225 /* Minimum pages needed in order to stay on node */ 2226 const unsigned long nr_pages = 1 << order; 2227 struct task_struct *p = current; 2228 struct reclaim_state reclaim_state; 2229 int priority; 2230 unsigned long nr_reclaimed = 0; 2231 struct scan_control sc = { 2232 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE), 2233 .may_swap = !!(zone_reclaim_mode & RECLAIM_SWAP), 2234 .swap_cluster_max = max_t(unsigned long, nr_pages, 2235 SWAP_CLUSTER_MAX), 2236 .gfp_mask = gfp_mask, 2237 .swappiness = vm_swappiness, 2238 .isolate_pages = isolate_pages_global, 2239 }; 2240 unsigned long slab_reclaimable; 2241 2242 disable_swap_token(); 2243 cond_resched(); 2244 /* 2245 * We need to be able to allocate from the reserves for RECLAIM_SWAP 2246 * and we also need to be able to write out pages for RECLAIM_WRITE 2247 * and RECLAIM_SWAP. 2248 */ 2249 p->flags |= PF_MEMALLOC | PF_SWAPWRITE; 2250 reclaim_state.reclaimed_slab = 0; 2251 p->reclaim_state = &reclaim_state; 2252 2253 if (zone_page_state(zone, NR_FILE_PAGES) - 2254 zone_page_state(zone, NR_FILE_MAPPED) > 2255 zone->min_unmapped_pages) { 2256 /* 2257 * Free memory by calling shrink zone with increasing 2258 * priorities until we have enough memory freed. 2259 */ 2260 priority = ZONE_RECLAIM_PRIORITY; 2261 do { 2262 note_zone_scanning_priority(zone, priority); 2263 nr_reclaimed += shrink_zone(priority, zone, &sc); 2264 priority--; 2265 } while (priority >= 0 && nr_reclaimed < nr_pages); 2266 } 2267 2268 slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE); 2269 if (slab_reclaimable > zone->min_slab_pages) { 2270 /* 2271 * shrink_slab() does not currently allow us to determine how 2272 * many pages were freed in this zone. So we take the current 2273 * number of slab pages and shake the slab until it is reduced 2274 * by the same nr_pages that we used for reclaiming unmapped 2275 * pages. 2276 * 2277 * Note that shrink_slab will free memory on all zones and may 2278 * take a long time. 2279 */ 2280 while (shrink_slab(sc.nr_scanned, gfp_mask, order) && 2281 zone_page_state(zone, NR_SLAB_RECLAIMABLE) > 2282 slab_reclaimable - nr_pages) 2283 ; 2284 2285 /* 2286 * Update nr_reclaimed by the number of slab pages we 2287 * reclaimed from this zone. 2288 */ 2289 nr_reclaimed += slab_reclaimable - 2290 zone_page_state(zone, NR_SLAB_RECLAIMABLE); 2291 } 2292 2293 p->reclaim_state = NULL; 2294 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE); 2295 return nr_reclaimed >= nr_pages; 2296 } 2297 2298 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) 2299 { 2300 int node_id; 2301 int ret; 2302 2303 /* 2304 * Zone reclaim reclaims unmapped file backed pages and 2305 * slab pages if we are over the defined limits. 2306 * 2307 * A small portion of unmapped file backed pages is needed for 2308 * file I/O otherwise pages read by file I/O will be immediately 2309 * thrown out if the zone is overallocated. So we do not reclaim 2310 * if less than a specified percentage of the zone is used by 2311 * unmapped file backed pages. 2312 */ 2313 if (zone_page_state(zone, NR_FILE_PAGES) - 2314 zone_page_state(zone, NR_FILE_MAPPED) <= zone->min_unmapped_pages 2315 && zone_page_state(zone, NR_SLAB_RECLAIMABLE) 2316 <= zone->min_slab_pages) 2317 return 0; 2318 2319 if (zone_is_all_unreclaimable(zone)) 2320 return 0; 2321 2322 /* 2323 * Do not scan if the allocation should not be delayed. 2324 */ 2325 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC)) 2326 return 0; 2327 2328 /* 2329 * Only run zone reclaim on the local zone or on zones that do not 2330 * have associated processors. This will favor the local processor 2331 * over remote processors and spread off node memory allocations 2332 * as wide as possible. 2333 */ 2334 node_id = zone_to_nid(zone); 2335 if (node_state(node_id, N_CPU) && node_id != numa_node_id()) 2336 return 0; 2337 2338 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED)) 2339 return 0; 2340 ret = __zone_reclaim(zone, gfp_mask, order); 2341 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED); 2342 2343 return ret; 2344 } 2345 #endif 2346 2347 #ifdef CONFIG_UNEVICTABLE_LRU 2348 /* 2349 * page_evictable - test whether a page is evictable 2350 * @page: the page to test 2351 * @vma: the VMA in which the page is or will be mapped, may be NULL 2352 * 2353 * Test whether page is evictable--i.e., should be placed on active/inactive 2354 * lists vs unevictable list. The vma argument is !NULL when called from the 2355 * fault path to determine how to instantate a new page. 2356 * 2357 * Reasons page might not be evictable: 2358 * (1) page's mapping marked unevictable 2359 * (2) page is part of an mlocked VMA 2360 * 2361 */ 2362 int page_evictable(struct page *page, struct vm_area_struct *vma) 2363 { 2364 2365 if (mapping_unevictable(page_mapping(page))) 2366 return 0; 2367 2368 if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page))) 2369 return 0; 2370 2371 return 1; 2372 } 2373 2374 /** 2375 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list 2376 * @page: page to check evictability and move to appropriate lru list 2377 * @zone: zone page is in 2378 * 2379 * Checks a page for evictability and moves the page to the appropriate 2380 * zone lru list. 2381 * 2382 * Restrictions: zone->lru_lock must be held, page must be on LRU and must 2383 * have PageUnevictable set. 2384 */ 2385 static void check_move_unevictable_page(struct page *page, struct zone *zone) 2386 { 2387 VM_BUG_ON(PageActive(page)); 2388 2389 retry: 2390 ClearPageUnevictable(page); 2391 if (page_evictable(page, NULL)) { 2392 enum lru_list l = LRU_INACTIVE_ANON + page_is_file_cache(page); 2393 2394 __dec_zone_state(zone, NR_UNEVICTABLE); 2395 list_move(&page->lru, &zone->lru[l].list); 2396 __inc_zone_state(zone, NR_INACTIVE_ANON + l); 2397 __count_vm_event(UNEVICTABLE_PGRESCUED); 2398 } else { 2399 /* 2400 * rotate unevictable list 2401 */ 2402 SetPageUnevictable(page); 2403 list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list); 2404 if (page_evictable(page, NULL)) 2405 goto retry; 2406 } 2407 } 2408 2409 /** 2410 * scan_mapping_unevictable_pages - scan an address space for evictable pages 2411 * @mapping: struct address_space to scan for evictable pages 2412 * 2413 * Scan all pages in mapping. Check unevictable pages for 2414 * evictability and move them to the appropriate zone lru list. 2415 */ 2416 void scan_mapping_unevictable_pages(struct address_space *mapping) 2417 { 2418 pgoff_t next = 0; 2419 pgoff_t end = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >> 2420 PAGE_CACHE_SHIFT; 2421 struct zone *zone; 2422 struct pagevec pvec; 2423 2424 if (mapping->nrpages == 0) 2425 return; 2426 2427 pagevec_init(&pvec, 0); 2428 while (next < end && 2429 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) { 2430 int i; 2431 int pg_scanned = 0; 2432 2433 zone = NULL; 2434 2435 for (i = 0; i < pagevec_count(&pvec); i++) { 2436 struct page *page = pvec.pages[i]; 2437 pgoff_t page_index = page->index; 2438 struct zone *pagezone = page_zone(page); 2439 2440 pg_scanned++; 2441 if (page_index > next) 2442 next = page_index; 2443 next++; 2444 2445 if (pagezone != zone) { 2446 if (zone) 2447 spin_unlock_irq(&zone->lru_lock); 2448 zone = pagezone; 2449 spin_lock_irq(&zone->lru_lock); 2450 } 2451 2452 if (PageLRU(page) && PageUnevictable(page)) 2453 check_move_unevictable_page(page, zone); 2454 } 2455 if (zone) 2456 spin_unlock_irq(&zone->lru_lock); 2457 pagevec_release(&pvec); 2458 2459 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned); 2460 } 2461 2462 } 2463 2464 /** 2465 * scan_zone_unevictable_pages - check unevictable list for evictable pages 2466 * @zone - zone of which to scan the unevictable list 2467 * 2468 * Scan @zone's unevictable LRU lists to check for pages that have become 2469 * evictable. Move those that have to @zone's inactive list where they 2470 * become candidates for reclaim, unless shrink_inactive_zone() decides 2471 * to reactivate them. Pages that are still unevictable are rotated 2472 * back onto @zone's unevictable list. 2473 */ 2474 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */ 2475 void scan_zone_unevictable_pages(struct zone *zone) 2476 { 2477 struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list; 2478 unsigned long scan; 2479 unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE); 2480 2481 while (nr_to_scan > 0) { 2482 unsigned long batch_size = min(nr_to_scan, 2483 SCAN_UNEVICTABLE_BATCH_SIZE); 2484 2485 spin_lock_irq(&zone->lru_lock); 2486 for (scan = 0; scan < batch_size; scan++) { 2487 struct page *page = lru_to_page(l_unevictable); 2488 2489 if (!trylock_page(page)) 2490 continue; 2491 2492 prefetchw_prev_lru_page(page, l_unevictable, flags); 2493 2494 if (likely(PageLRU(page) && PageUnevictable(page))) 2495 check_move_unevictable_page(page, zone); 2496 2497 unlock_page(page); 2498 } 2499 spin_unlock_irq(&zone->lru_lock); 2500 2501 nr_to_scan -= batch_size; 2502 } 2503 } 2504 2505 2506 /** 2507 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages 2508 * 2509 * A really big hammer: scan all zones' unevictable LRU lists to check for 2510 * pages that have become evictable. Move those back to the zones' 2511 * inactive list where they become candidates for reclaim. 2512 * This occurs when, e.g., we have unswappable pages on the unevictable lists, 2513 * and we add swap to the system. As such, it runs in the context of a task 2514 * that has possibly/probably made some previously unevictable pages 2515 * evictable. 2516 */ 2517 void scan_all_zones_unevictable_pages(void) 2518 { 2519 struct zone *zone; 2520 2521 for_each_zone(zone) { 2522 scan_zone_unevictable_pages(zone); 2523 } 2524 } 2525 2526 /* 2527 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of 2528 * all nodes' unevictable lists for evictable pages 2529 */ 2530 unsigned long scan_unevictable_pages; 2531 2532 int scan_unevictable_handler(struct ctl_table *table, int write, 2533 struct file *file, void __user *buffer, 2534 size_t *length, loff_t *ppos) 2535 { 2536 proc_doulongvec_minmax(table, write, file, buffer, length, ppos); 2537 2538 if (write && *(unsigned long *)table->data) 2539 scan_all_zones_unevictable_pages(); 2540 2541 scan_unevictable_pages = 0; 2542 return 0; 2543 } 2544 2545 /* 2546 * per node 'scan_unevictable_pages' attribute. On demand re-scan of 2547 * a specified node's per zone unevictable lists for evictable pages. 2548 */ 2549 2550 static ssize_t read_scan_unevictable_node(struct sys_device *dev, 2551 struct sysdev_attribute *attr, 2552 char *buf) 2553 { 2554 return sprintf(buf, "0\n"); /* always zero; should fit... */ 2555 } 2556 2557 static ssize_t write_scan_unevictable_node(struct sys_device *dev, 2558 struct sysdev_attribute *attr, 2559 const char *buf, size_t count) 2560 { 2561 struct zone *node_zones = NODE_DATA(dev->id)->node_zones; 2562 struct zone *zone; 2563 unsigned long res; 2564 unsigned long req = strict_strtoul(buf, 10, &res); 2565 2566 if (!req) 2567 return 1; /* zero is no-op */ 2568 2569 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) { 2570 if (!populated_zone(zone)) 2571 continue; 2572 scan_zone_unevictable_pages(zone); 2573 } 2574 return 1; 2575 } 2576 2577 2578 static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR, 2579 read_scan_unevictable_node, 2580 write_scan_unevictable_node); 2581 2582 int scan_unevictable_register_node(struct node *node) 2583 { 2584 return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages); 2585 } 2586 2587 void scan_unevictable_unregister_node(struct node *node) 2588 { 2589 sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages); 2590 } 2591 2592 #endif 2593