xref: /linux/mm/vmscan.c (revision 6feb348783767e3f38d7612e6551ee8b580ac4e9)
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13 
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h>	/* for try_to_release_page(),
27 					buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41 #include <linux/delayacct.h>
42 #include <linux/sysctl.h>
43 
44 #include <asm/tlbflush.h>
45 #include <asm/div64.h>
46 
47 #include <linux/swapops.h>
48 
49 #include "internal.h"
50 
51 struct scan_control {
52 	/* Incremented by the number of inactive pages that were scanned */
53 	unsigned long nr_scanned;
54 
55 	/* This context's GFP mask */
56 	gfp_t gfp_mask;
57 
58 	int may_writepage;
59 
60 	/* Can pages be swapped as part of reclaim? */
61 	int may_swap;
62 
63 	/* This context's SWAP_CLUSTER_MAX. If freeing memory for
64 	 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
65 	 * In this context, it doesn't matter that we scan the
66 	 * whole list at once. */
67 	int swap_cluster_max;
68 
69 	int swappiness;
70 
71 	int all_unreclaimable;
72 
73 	int order;
74 
75 	/* Which cgroup do we reclaim from */
76 	struct mem_cgroup *mem_cgroup;
77 
78 	/* Pluggable isolate pages callback */
79 	unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst,
80 			unsigned long *scanned, int order, int mode,
81 			struct zone *z, struct mem_cgroup *mem_cont,
82 			int active, int file);
83 };
84 
85 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
86 
87 #ifdef ARCH_HAS_PREFETCH
88 #define prefetch_prev_lru_page(_page, _base, _field)			\
89 	do {								\
90 		if ((_page)->lru.prev != _base) {			\
91 			struct page *prev;				\
92 									\
93 			prev = lru_to_page(&(_page->lru));		\
94 			prefetch(&prev->_field);			\
95 		}							\
96 	} while (0)
97 #else
98 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
99 #endif
100 
101 #ifdef ARCH_HAS_PREFETCHW
102 #define prefetchw_prev_lru_page(_page, _base, _field)			\
103 	do {								\
104 		if ((_page)->lru.prev != _base) {			\
105 			struct page *prev;				\
106 									\
107 			prev = lru_to_page(&(_page->lru));		\
108 			prefetchw(&prev->_field);			\
109 		}							\
110 	} while (0)
111 #else
112 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
113 #endif
114 
115 /*
116  * From 0 .. 100.  Higher means more swappy.
117  */
118 int vm_swappiness = 60;
119 long vm_total_pages;	/* The total number of pages which the VM controls */
120 
121 static LIST_HEAD(shrinker_list);
122 static DECLARE_RWSEM(shrinker_rwsem);
123 
124 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
125 #define scan_global_lru(sc)	(!(sc)->mem_cgroup)
126 #else
127 #define scan_global_lru(sc)	(1)
128 #endif
129 
130 /*
131  * Add a shrinker callback to be called from the vm
132  */
133 void register_shrinker(struct shrinker *shrinker)
134 {
135 	shrinker->nr = 0;
136 	down_write(&shrinker_rwsem);
137 	list_add_tail(&shrinker->list, &shrinker_list);
138 	up_write(&shrinker_rwsem);
139 }
140 EXPORT_SYMBOL(register_shrinker);
141 
142 /*
143  * Remove one
144  */
145 void unregister_shrinker(struct shrinker *shrinker)
146 {
147 	down_write(&shrinker_rwsem);
148 	list_del(&shrinker->list);
149 	up_write(&shrinker_rwsem);
150 }
151 EXPORT_SYMBOL(unregister_shrinker);
152 
153 #define SHRINK_BATCH 128
154 /*
155  * Call the shrink functions to age shrinkable caches
156  *
157  * Here we assume it costs one seek to replace a lru page and that it also
158  * takes a seek to recreate a cache object.  With this in mind we age equal
159  * percentages of the lru and ageable caches.  This should balance the seeks
160  * generated by these structures.
161  *
162  * If the vm encountered mapped pages on the LRU it increase the pressure on
163  * slab to avoid swapping.
164  *
165  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
166  *
167  * `lru_pages' represents the number of on-LRU pages in all the zones which
168  * are eligible for the caller's allocation attempt.  It is used for balancing
169  * slab reclaim versus page reclaim.
170  *
171  * Returns the number of slab objects which we shrunk.
172  */
173 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
174 			unsigned long lru_pages)
175 {
176 	struct shrinker *shrinker;
177 	unsigned long ret = 0;
178 
179 	if (scanned == 0)
180 		scanned = SWAP_CLUSTER_MAX;
181 
182 	if (!down_read_trylock(&shrinker_rwsem))
183 		return 1;	/* Assume we'll be able to shrink next time */
184 
185 	list_for_each_entry(shrinker, &shrinker_list, list) {
186 		unsigned long long delta;
187 		unsigned long total_scan;
188 		unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask);
189 
190 		delta = (4 * scanned) / shrinker->seeks;
191 		delta *= max_pass;
192 		do_div(delta, lru_pages + 1);
193 		shrinker->nr += delta;
194 		if (shrinker->nr < 0) {
195 			printk(KERN_ERR "%s: nr=%ld\n",
196 					__func__, shrinker->nr);
197 			shrinker->nr = max_pass;
198 		}
199 
200 		/*
201 		 * Avoid risking looping forever due to too large nr value:
202 		 * never try to free more than twice the estimate number of
203 		 * freeable entries.
204 		 */
205 		if (shrinker->nr > max_pass * 2)
206 			shrinker->nr = max_pass * 2;
207 
208 		total_scan = shrinker->nr;
209 		shrinker->nr = 0;
210 
211 		while (total_scan >= SHRINK_BATCH) {
212 			long this_scan = SHRINK_BATCH;
213 			int shrink_ret;
214 			int nr_before;
215 
216 			nr_before = (*shrinker->shrink)(0, gfp_mask);
217 			shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask);
218 			if (shrink_ret == -1)
219 				break;
220 			if (shrink_ret < nr_before)
221 				ret += nr_before - shrink_ret;
222 			count_vm_events(SLABS_SCANNED, this_scan);
223 			total_scan -= this_scan;
224 
225 			cond_resched();
226 		}
227 
228 		shrinker->nr += total_scan;
229 	}
230 	up_read(&shrinker_rwsem);
231 	return ret;
232 }
233 
234 /* Called without lock on whether page is mapped, so answer is unstable */
235 static inline int page_mapping_inuse(struct page *page)
236 {
237 	struct address_space *mapping;
238 
239 	/* Page is in somebody's page tables. */
240 	if (page_mapped(page))
241 		return 1;
242 
243 	/* Be more reluctant to reclaim swapcache than pagecache */
244 	if (PageSwapCache(page))
245 		return 1;
246 
247 	mapping = page_mapping(page);
248 	if (!mapping)
249 		return 0;
250 
251 	/* File is mmap'd by somebody? */
252 	return mapping_mapped(mapping);
253 }
254 
255 static inline int is_page_cache_freeable(struct page *page)
256 {
257 	return page_count(page) - !!PagePrivate(page) == 2;
258 }
259 
260 static int may_write_to_queue(struct backing_dev_info *bdi)
261 {
262 	if (current->flags & PF_SWAPWRITE)
263 		return 1;
264 	if (!bdi_write_congested(bdi))
265 		return 1;
266 	if (bdi == current->backing_dev_info)
267 		return 1;
268 	return 0;
269 }
270 
271 /*
272  * We detected a synchronous write error writing a page out.  Probably
273  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
274  * fsync(), msync() or close().
275  *
276  * The tricky part is that after writepage we cannot touch the mapping: nothing
277  * prevents it from being freed up.  But we have a ref on the page and once
278  * that page is locked, the mapping is pinned.
279  *
280  * We're allowed to run sleeping lock_page() here because we know the caller has
281  * __GFP_FS.
282  */
283 static void handle_write_error(struct address_space *mapping,
284 				struct page *page, int error)
285 {
286 	lock_page(page);
287 	if (page_mapping(page) == mapping)
288 		mapping_set_error(mapping, error);
289 	unlock_page(page);
290 }
291 
292 /* Request for sync pageout. */
293 enum pageout_io {
294 	PAGEOUT_IO_ASYNC,
295 	PAGEOUT_IO_SYNC,
296 };
297 
298 /* possible outcome of pageout() */
299 typedef enum {
300 	/* failed to write page out, page is locked */
301 	PAGE_KEEP,
302 	/* move page to the active list, page is locked */
303 	PAGE_ACTIVATE,
304 	/* page has been sent to the disk successfully, page is unlocked */
305 	PAGE_SUCCESS,
306 	/* page is clean and locked */
307 	PAGE_CLEAN,
308 } pageout_t;
309 
310 /*
311  * pageout is called by shrink_page_list() for each dirty page.
312  * Calls ->writepage().
313  */
314 static pageout_t pageout(struct page *page, struct address_space *mapping,
315 						enum pageout_io sync_writeback)
316 {
317 	/*
318 	 * If the page is dirty, only perform writeback if that write
319 	 * will be non-blocking.  To prevent this allocation from being
320 	 * stalled by pagecache activity.  But note that there may be
321 	 * stalls if we need to run get_block().  We could test
322 	 * PagePrivate for that.
323 	 *
324 	 * If this process is currently in generic_file_write() against
325 	 * this page's queue, we can perform writeback even if that
326 	 * will block.
327 	 *
328 	 * If the page is swapcache, write it back even if that would
329 	 * block, for some throttling. This happens by accident, because
330 	 * swap_backing_dev_info is bust: it doesn't reflect the
331 	 * congestion state of the swapdevs.  Easy to fix, if needed.
332 	 * See swapfile.c:page_queue_congested().
333 	 */
334 	if (!is_page_cache_freeable(page))
335 		return PAGE_KEEP;
336 	if (!mapping) {
337 		/*
338 		 * Some data journaling orphaned pages can have
339 		 * page->mapping == NULL while being dirty with clean buffers.
340 		 */
341 		if (PagePrivate(page)) {
342 			if (try_to_free_buffers(page)) {
343 				ClearPageDirty(page);
344 				printk("%s: orphaned page\n", __func__);
345 				return PAGE_CLEAN;
346 			}
347 		}
348 		return PAGE_KEEP;
349 	}
350 	if (mapping->a_ops->writepage == NULL)
351 		return PAGE_ACTIVATE;
352 	if (!may_write_to_queue(mapping->backing_dev_info))
353 		return PAGE_KEEP;
354 
355 	if (clear_page_dirty_for_io(page)) {
356 		int res;
357 		struct writeback_control wbc = {
358 			.sync_mode = WB_SYNC_NONE,
359 			.nr_to_write = SWAP_CLUSTER_MAX,
360 			.range_start = 0,
361 			.range_end = LLONG_MAX,
362 			.nonblocking = 1,
363 			.for_reclaim = 1,
364 		};
365 
366 		SetPageReclaim(page);
367 		res = mapping->a_ops->writepage(page, &wbc);
368 		if (res < 0)
369 			handle_write_error(mapping, page, res);
370 		if (res == AOP_WRITEPAGE_ACTIVATE) {
371 			ClearPageReclaim(page);
372 			return PAGE_ACTIVATE;
373 		}
374 
375 		/*
376 		 * Wait on writeback if requested to. This happens when
377 		 * direct reclaiming a large contiguous area and the
378 		 * first attempt to free a range of pages fails.
379 		 */
380 		if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
381 			wait_on_page_writeback(page);
382 
383 		if (!PageWriteback(page)) {
384 			/* synchronous write or broken a_ops? */
385 			ClearPageReclaim(page);
386 		}
387 		inc_zone_page_state(page, NR_VMSCAN_WRITE);
388 		return PAGE_SUCCESS;
389 	}
390 
391 	return PAGE_CLEAN;
392 }
393 
394 /*
395  * Same as remove_mapping, but if the page is removed from the mapping, it
396  * gets returned with a refcount of 0.
397  */
398 static int __remove_mapping(struct address_space *mapping, struct page *page)
399 {
400 	BUG_ON(!PageLocked(page));
401 	BUG_ON(mapping != page_mapping(page));
402 
403 	spin_lock_irq(&mapping->tree_lock);
404 	/*
405 	 * The non racy check for a busy page.
406 	 *
407 	 * Must be careful with the order of the tests. When someone has
408 	 * a ref to the page, it may be possible that they dirty it then
409 	 * drop the reference. So if PageDirty is tested before page_count
410 	 * here, then the following race may occur:
411 	 *
412 	 * get_user_pages(&page);
413 	 * [user mapping goes away]
414 	 * write_to(page);
415 	 *				!PageDirty(page)    [good]
416 	 * SetPageDirty(page);
417 	 * put_page(page);
418 	 *				!page_count(page)   [good, discard it]
419 	 *
420 	 * [oops, our write_to data is lost]
421 	 *
422 	 * Reversing the order of the tests ensures such a situation cannot
423 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
424 	 * load is not satisfied before that of page->_count.
425 	 *
426 	 * Note that if SetPageDirty is always performed via set_page_dirty,
427 	 * and thus under tree_lock, then this ordering is not required.
428 	 */
429 	if (!page_freeze_refs(page, 2))
430 		goto cannot_free;
431 	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
432 	if (unlikely(PageDirty(page))) {
433 		page_unfreeze_refs(page, 2);
434 		goto cannot_free;
435 	}
436 
437 	if (PageSwapCache(page)) {
438 		swp_entry_t swap = { .val = page_private(page) };
439 		__delete_from_swap_cache(page);
440 		spin_unlock_irq(&mapping->tree_lock);
441 		swap_free(swap);
442 	} else {
443 		__remove_from_page_cache(page);
444 		spin_unlock_irq(&mapping->tree_lock);
445 	}
446 
447 	return 1;
448 
449 cannot_free:
450 	spin_unlock_irq(&mapping->tree_lock);
451 	return 0;
452 }
453 
454 /*
455  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
456  * someone else has a ref on the page, abort and return 0.  If it was
457  * successfully detached, return 1.  Assumes the caller has a single ref on
458  * this page.
459  */
460 int remove_mapping(struct address_space *mapping, struct page *page)
461 {
462 	if (__remove_mapping(mapping, page)) {
463 		/*
464 		 * Unfreezing the refcount with 1 rather than 2 effectively
465 		 * drops the pagecache ref for us without requiring another
466 		 * atomic operation.
467 		 */
468 		page_unfreeze_refs(page, 1);
469 		return 1;
470 	}
471 	return 0;
472 }
473 
474 /**
475  * putback_lru_page - put previously isolated page onto appropriate LRU list
476  * @page: page to be put back to appropriate lru list
477  *
478  * Add previously isolated @page to appropriate LRU list.
479  * Page may still be unevictable for other reasons.
480  *
481  * lru_lock must not be held, interrupts must be enabled.
482  */
483 #ifdef CONFIG_UNEVICTABLE_LRU
484 void putback_lru_page(struct page *page)
485 {
486 	int lru;
487 	int active = !!TestClearPageActive(page);
488 	int was_unevictable = PageUnevictable(page);
489 
490 	VM_BUG_ON(PageLRU(page));
491 
492 redo:
493 	ClearPageUnevictable(page);
494 
495 	if (page_evictable(page, NULL)) {
496 		/*
497 		 * For evictable pages, we can use the cache.
498 		 * In event of a race, worst case is we end up with an
499 		 * unevictable page on [in]active list.
500 		 * We know how to handle that.
501 		 */
502 		lru = active + page_is_file_cache(page);
503 		lru_cache_add_lru(page, lru);
504 	} else {
505 		/*
506 		 * Put unevictable pages directly on zone's unevictable
507 		 * list.
508 		 */
509 		lru = LRU_UNEVICTABLE;
510 		add_page_to_unevictable_list(page);
511 	}
512 	mem_cgroup_move_lists(page, lru);
513 
514 	/*
515 	 * page's status can change while we move it among lru. If an evictable
516 	 * page is on unevictable list, it never be freed. To avoid that,
517 	 * check after we added it to the list, again.
518 	 */
519 	if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
520 		if (!isolate_lru_page(page)) {
521 			put_page(page);
522 			goto redo;
523 		}
524 		/* This means someone else dropped this page from LRU
525 		 * So, it will be freed or putback to LRU again. There is
526 		 * nothing to do here.
527 		 */
528 	}
529 
530 	if (was_unevictable && lru != LRU_UNEVICTABLE)
531 		count_vm_event(UNEVICTABLE_PGRESCUED);
532 	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
533 		count_vm_event(UNEVICTABLE_PGCULLED);
534 
535 	put_page(page);		/* drop ref from isolate */
536 }
537 
538 #else /* CONFIG_UNEVICTABLE_LRU */
539 
540 void putback_lru_page(struct page *page)
541 {
542 	int lru;
543 	VM_BUG_ON(PageLRU(page));
544 
545 	lru = !!TestClearPageActive(page) + page_is_file_cache(page);
546 	lru_cache_add_lru(page, lru);
547 	mem_cgroup_move_lists(page, lru);
548 	put_page(page);
549 }
550 #endif /* CONFIG_UNEVICTABLE_LRU */
551 
552 
553 /*
554  * shrink_page_list() returns the number of reclaimed pages
555  */
556 static unsigned long shrink_page_list(struct list_head *page_list,
557 					struct scan_control *sc,
558 					enum pageout_io sync_writeback)
559 {
560 	LIST_HEAD(ret_pages);
561 	struct pagevec freed_pvec;
562 	int pgactivate = 0;
563 	unsigned long nr_reclaimed = 0;
564 
565 	cond_resched();
566 
567 	pagevec_init(&freed_pvec, 1);
568 	while (!list_empty(page_list)) {
569 		struct address_space *mapping;
570 		struct page *page;
571 		int may_enter_fs;
572 		int referenced;
573 
574 		cond_resched();
575 
576 		page = lru_to_page(page_list);
577 		list_del(&page->lru);
578 
579 		if (!trylock_page(page))
580 			goto keep;
581 
582 		VM_BUG_ON(PageActive(page));
583 
584 		sc->nr_scanned++;
585 
586 		if (unlikely(!page_evictable(page, NULL)))
587 			goto cull_mlocked;
588 
589 		if (!sc->may_swap && page_mapped(page))
590 			goto keep_locked;
591 
592 		/* Double the slab pressure for mapped and swapcache pages */
593 		if (page_mapped(page) || PageSwapCache(page))
594 			sc->nr_scanned++;
595 
596 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
597 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
598 
599 		if (PageWriteback(page)) {
600 			/*
601 			 * Synchronous reclaim is performed in two passes,
602 			 * first an asynchronous pass over the list to
603 			 * start parallel writeback, and a second synchronous
604 			 * pass to wait for the IO to complete.  Wait here
605 			 * for any page for which writeback has already
606 			 * started.
607 			 */
608 			if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
609 				wait_on_page_writeback(page);
610 			else
611 				goto keep_locked;
612 		}
613 
614 		referenced = page_referenced(page, 1, sc->mem_cgroup);
615 		/* In active use or really unfreeable?  Activate it. */
616 		if (sc->order <= PAGE_ALLOC_COSTLY_ORDER &&
617 					referenced && page_mapping_inuse(page))
618 			goto activate_locked;
619 
620 #ifdef CONFIG_SWAP
621 		/*
622 		 * Anonymous process memory has backing store?
623 		 * Try to allocate it some swap space here.
624 		 */
625 		if (PageAnon(page) && !PageSwapCache(page)) {
626 			if (!(sc->gfp_mask & __GFP_IO))
627 				goto keep_locked;
628 			switch (try_to_munlock(page)) {
629 			case SWAP_FAIL:		/* shouldn't happen */
630 			case SWAP_AGAIN:
631 				goto keep_locked;
632 			case SWAP_MLOCK:
633 				goto cull_mlocked;
634 			case SWAP_SUCCESS:
635 				; /* fall thru'; add to swap cache */
636 			}
637 			if (!add_to_swap(page, GFP_ATOMIC))
638 				goto activate_locked;
639 			may_enter_fs = 1;
640 		}
641 #endif /* CONFIG_SWAP */
642 
643 		mapping = page_mapping(page);
644 
645 		/*
646 		 * The page is mapped into the page tables of one or more
647 		 * processes. Try to unmap it here.
648 		 */
649 		if (page_mapped(page) && mapping) {
650 			switch (try_to_unmap(page, 0)) {
651 			case SWAP_FAIL:
652 				goto activate_locked;
653 			case SWAP_AGAIN:
654 				goto keep_locked;
655 			case SWAP_MLOCK:
656 				goto cull_mlocked;
657 			case SWAP_SUCCESS:
658 				; /* try to free the page below */
659 			}
660 		}
661 
662 		if (PageDirty(page)) {
663 			if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && referenced)
664 				goto keep_locked;
665 			if (!may_enter_fs)
666 				goto keep_locked;
667 			if (!sc->may_writepage)
668 				goto keep_locked;
669 
670 			/* Page is dirty, try to write it out here */
671 			switch (pageout(page, mapping, sync_writeback)) {
672 			case PAGE_KEEP:
673 				goto keep_locked;
674 			case PAGE_ACTIVATE:
675 				goto activate_locked;
676 			case PAGE_SUCCESS:
677 				if (PageWriteback(page) || PageDirty(page))
678 					goto keep;
679 				/*
680 				 * A synchronous write - probably a ramdisk.  Go
681 				 * ahead and try to reclaim the page.
682 				 */
683 				if (!trylock_page(page))
684 					goto keep;
685 				if (PageDirty(page) || PageWriteback(page))
686 					goto keep_locked;
687 				mapping = page_mapping(page);
688 			case PAGE_CLEAN:
689 				; /* try to free the page below */
690 			}
691 		}
692 
693 		/*
694 		 * If the page has buffers, try to free the buffer mappings
695 		 * associated with this page. If we succeed we try to free
696 		 * the page as well.
697 		 *
698 		 * We do this even if the page is PageDirty().
699 		 * try_to_release_page() does not perform I/O, but it is
700 		 * possible for a page to have PageDirty set, but it is actually
701 		 * clean (all its buffers are clean).  This happens if the
702 		 * buffers were written out directly, with submit_bh(). ext3
703 		 * will do this, as well as the blockdev mapping.
704 		 * try_to_release_page() will discover that cleanness and will
705 		 * drop the buffers and mark the page clean - it can be freed.
706 		 *
707 		 * Rarely, pages can have buffers and no ->mapping.  These are
708 		 * the pages which were not successfully invalidated in
709 		 * truncate_complete_page().  We try to drop those buffers here
710 		 * and if that worked, and the page is no longer mapped into
711 		 * process address space (page_count == 1) it can be freed.
712 		 * Otherwise, leave the page on the LRU so it is swappable.
713 		 */
714 		if (PagePrivate(page)) {
715 			if (!try_to_release_page(page, sc->gfp_mask))
716 				goto activate_locked;
717 			if (!mapping && page_count(page) == 1) {
718 				unlock_page(page);
719 				if (put_page_testzero(page))
720 					goto free_it;
721 				else {
722 					/*
723 					 * rare race with speculative reference.
724 					 * the speculative reference will free
725 					 * this page shortly, so we may
726 					 * increment nr_reclaimed here (and
727 					 * leave it off the LRU).
728 					 */
729 					nr_reclaimed++;
730 					continue;
731 				}
732 			}
733 		}
734 
735 		if (!mapping || !__remove_mapping(mapping, page))
736 			goto keep_locked;
737 
738 		/*
739 		 * At this point, we have no other references and there is
740 		 * no way to pick any more up (removed from LRU, removed
741 		 * from pagecache). Can use non-atomic bitops now (and
742 		 * we obviously don't have to worry about waking up a process
743 		 * waiting on the page lock, because there are no references.
744 		 */
745 		__clear_page_locked(page);
746 free_it:
747 		nr_reclaimed++;
748 		if (!pagevec_add(&freed_pvec, page)) {
749 			__pagevec_free(&freed_pvec);
750 			pagevec_reinit(&freed_pvec);
751 		}
752 		continue;
753 
754 cull_mlocked:
755 		unlock_page(page);
756 		putback_lru_page(page);
757 		continue;
758 
759 activate_locked:
760 		/* Not a candidate for swapping, so reclaim swap space. */
761 		if (PageSwapCache(page) && vm_swap_full())
762 			remove_exclusive_swap_page_ref(page);
763 		VM_BUG_ON(PageActive(page));
764 		SetPageActive(page);
765 		pgactivate++;
766 keep_locked:
767 		unlock_page(page);
768 keep:
769 		list_add(&page->lru, &ret_pages);
770 		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
771 	}
772 	list_splice(&ret_pages, page_list);
773 	if (pagevec_count(&freed_pvec))
774 		__pagevec_free(&freed_pvec);
775 	count_vm_events(PGACTIVATE, pgactivate);
776 	return nr_reclaimed;
777 }
778 
779 /* LRU Isolation modes. */
780 #define ISOLATE_INACTIVE 0	/* Isolate inactive pages. */
781 #define ISOLATE_ACTIVE 1	/* Isolate active pages. */
782 #define ISOLATE_BOTH 2		/* Isolate both active and inactive pages. */
783 
784 /*
785  * Attempt to remove the specified page from its LRU.  Only take this page
786  * if it is of the appropriate PageActive status.  Pages which are being
787  * freed elsewhere are also ignored.
788  *
789  * page:	page to consider
790  * mode:	one of the LRU isolation modes defined above
791  *
792  * returns 0 on success, -ve errno on failure.
793  */
794 int __isolate_lru_page(struct page *page, int mode, int file)
795 {
796 	int ret = -EINVAL;
797 
798 	/* Only take pages on the LRU. */
799 	if (!PageLRU(page))
800 		return ret;
801 
802 	/*
803 	 * When checking the active state, we need to be sure we are
804 	 * dealing with comparible boolean values.  Take the logical not
805 	 * of each.
806 	 */
807 	if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
808 		return ret;
809 
810 	if (mode != ISOLATE_BOTH && (!page_is_file_cache(page) != !file))
811 		return ret;
812 
813 	/*
814 	 * When this function is being called for lumpy reclaim, we
815 	 * initially look into all LRU pages, active, inactive and
816 	 * unevictable; only give shrink_page_list evictable pages.
817 	 */
818 	if (PageUnevictable(page))
819 		return ret;
820 
821 	ret = -EBUSY;
822 	if (likely(get_page_unless_zero(page))) {
823 		/*
824 		 * Be careful not to clear PageLRU until after we're
825 		 * sure the page is not being freed elsewhere -- the
826 		 * page release code relies on it.
827 		 */
828 		ClearPageLRU(page);
829 		ret = 0;
830 	}
831 
832 	return ret;
833 }
834 
835 /*
836  * zone->lru_lock is heavily contended.  Some of the functions that
837  * shrink the lists perform better by taking out a batch of pages
838  * and working on them outside the LRU lock.
839  *
840  * For pagecache intensive workloads, this function is the hottest
841  * spot in the kernel (apart from copy_*_user functions).
842  *
843  * Appropriate locks must be held before calling this function.
844  *
845  * @nr_to_scan:	The number of pages to look through on the list.
846  * @src:	The LRU list to pull pages off.
847  * @dst:	The temp list to put pages on to.
848  * @scanned:	The number of pages that were scanned.
849  * @order:	The caller's attempted allocation order
850  * @mode:	One of the LRU isolation modes
851  * @file:	True [1] if isolating file [!anon] pages
852  *
853  * returns how many pages were moved onto *@dst.
854  */
855 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
856 		struct list_head *src, struct list_head *dst,
857 		unsigned long *scanned, int order, int mode, int file)
858 {
859 	unsigned long nr_taken = 0;
860 	unsigned long scan;
861 
862 	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
863 		struct page *page;
864 		unsigned long pfn;
865 		unsigned long end_pfn;
866 		unsigned long page_pfn;
867 		int zone_id;
868 
869 		page = lru_to_page(src);
870 		prefetchw_prev_lru_page(page, src, flags);
871 
872 		VM_BUG_ON(!PageLRU(page));
873 
874 		switch (__isolate_lru_page(page, mode, file)) {
875 		case 0:
876 			list_move(&page->lru, dst);
877 			nr_taken++;
878 			break;
879 
880 		case -EBUSY:
881 			/* else it is being freed elsewhere */
882 			list_move(&page->lru, src);
883 			continue;
884 
885 		default:
886 			BUG();
887 		}
888 
889 		if (!order)
890 			continue;
891 
892 		/*
893 		 * Attempt to take all pages in the order aligned region
894 		 * surrounding the tag page.  Only take those pages of
895 		 * the same active state as that tag page.  We may safely
896 		 * round the target page pfn down to the requested order
897 		 * as the mem_map is guarenteed valid out to MAX_ORDER,
898 		 * where that page is in a different zone we will detect
899 		 * it from its zone id and abort this block scan.
900 		 */
901 		zone_id = page_zone_id(page);
902 		page_pfn = page_to_pfn(page);
903 		pfn = page_pfn & ~((1 << order) - 1);
904 		end_pfn = pfn + (1 << order);
905 		for (; pfn < end_pfn; pfn++) {
906 			struct page *cursor_page;
907 
908 			/* The target page is in the block, ignore it. */
909 			if (unlikely(pfn == page_pfn))
910 				continue;
911 
912 			/* Avoid holes within the zone. */
913 			if (unlikely(!pfn_valid_within(pfn)))
914 				break;
915 
916 			cursor_page = pfn_to_page(pfn);
917 
918 			/* Check that we have not crossed a zone boundary. */
919 			if (unlikely(page_zone_id(cursor_page) != zone_id))
920 				continue;
921 			switch (__isolate_lru_page(cursor_page, mode, file)) {
922 			case 0:
923 				list_move(&cursor_page->lru, dst);
924 				nr_taken++;
925 				scan++;
926 				break;
927 
928 			case -EBUSY:
929 				/* else it is being freed elsewhere */
930 				list_move(&cursor_page->lru, src);
931 			default:
932 				break;	/* ! on LRU or wrong list */
933 			}
934 		}
935 	}
936 
937 	*scanned = scan;
938 	return nr_taken;
939 }
940 
941 static unsigned long isolate_pages_global(unsigned long nr,
942 					struct list_head *dst,
943 					unsigned long *scanned, int order,
944 					int mode, struct zone *z,
945 					struct mem_cgroup *mem_cont,
946 					int active, int file)
947 {
948 	int lru = LRU_BASE;
949 	if (active)
950 		lru += LRU_ACTIVE;
951 	if (file)
952 		lru += LRU_FILE;
953 	return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
954 								mode, !!file);
955 }
956 
957 /*
958  * clear_active_flags() is a helper for shrink_active_list(), clearing
959  * any active bits from the pages in the list.
960  */
961 static unsigned long clear_active_flags(struct list_head *page_list,
962 					unsigned int *count)
963 {
964 	int nr_active = 0;
965 	int lru;
966 	struct page *page;
967 
968 	list_for_each_entry(page, page_list, lru) {
969 		lru = page_is_file_cache(page);
970 		if (PageActive(page)) {
971 			lru += LRU_ACTIVE;
972 			ClearPageActive(page);
973 			nr_active++;
974 		}
975 		count[lru]++;
976 	}
977 
978 	return nr_active;
979 }
980 
981 /**
982  * isolate_lru_page - tries to isolate a page from its LRU list
983  * @page: page to isolate from its LRU list
984  *
985  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
986  * vmstat statistic corresponding to whatever LRU list the page was on.
987  *
988  * Returns 0 if the page was removed from an LRU list.
989  * Returns -EBUSY if the page was not on an LRU list.
990  *
991  * The returned page will have PageLRU() cleared.  If it was found on
992  * the active list, it will have PageActive set.  If it was found on
993  * the unevictable list, it will have the PageUnevictable bit set. That flag
994  * may need to be cleared by the caller before letting the page go.
995  *
996  * The vmstat statistic corresponding to the list on which the page was
997  * found will be decremented.
998  *
999  * Restrictions:
1000  * (1) Must be called with an elevated refcount on the page. This is a
1001  *     fundamentnal difference from isolate_lru_pages (which is called
1002  *     without a stable reference).
1003  * (2) the lru_lock must not be held.
1004  * (3) interrupts must be enabled.
1005  */
1006 int isolate_lru_page(struct page *page)
1007 {
1008 	int ret = -EBUSY;
1009 
1010 	if (PageLRU(page)) {
1011 		struct zone *zone = page_zone(page);
1012 
1013 		spin_lock_irq(&zone->lru_lock);
1014 		if (PageLRU(page) && get_page_unless_zero(page)) {
1015 			int lru = page_lru(page);
1016 			ret = 0;
1017 			ClearPageLRU(page);
1018 
1019 			del_page_from_lru_list(zone, page, lru);
1020 		}
1021 		spin_unlock_irq(&zone->lru_lock);
1022 	}
1023 	return ret;
1024 }
1025 
1026 /*
1027  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1028  * of reclaimed pages
1029  */
1030 static unsigned long shrink_inactive_list(unsigned long max_scan,
1031 			struct zone *zone, struct scan_control *sc,
1032 			int priority, int file)
1033 {
1034 	LIST_HEAD(page_list);
1035 	struct pagevec pvec;
1036 	unsigned long nr_scanned = 0;
1037 	unsigned long nr_reclaimed = 0;
1038 
1039 	pagevec_init(&pvec, 1);
1040 
1041 	lru_add_drain();
1042 	spin_lock_irq(&zone->lru_lock);
1043 	do {
1044 		struct page *page;
1045 		unsigned long nr_taken;
1046 		unsigned long nr_scan;
1047 		unsigned long nr_freed;
1048 		unsigned long nr_active;
1049 		unsigned int count[NR_LRU_LISTS] = { 0, };
1050 		int mode = ISOLATE_INACTIVE;
1051 
1052 		/*
1053 		 * If we need a large contiguous chunk of memory, or have
1054 		 * trouble getting a small set of contiguous pages, we
1055 		 * will reclaim both active and inactive pages.
1056 		 *
1057 		 * We use the same threshold as pageout congestion_wait below.
1058 		 */
1059 		if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1060 			mode = ISOLATE_BOTH;
1061 		else if (sc->order && priority < DEF_PRIORITY - 2)
1062 			mode = ISOLATE_BOTH;
1063 
1064 		nr_taken = sc->isolate_pages(sc->swap_cluster_max,
1065 			     &page_list, &nr_scan, sc->order, mode,
1066 				zone, sc->mem_cgroup, 0, file);
1067 		nr_active = clear_active_flags(&page_list, count);
1068 		__count_vm_events(PGDEACTIVATE, nr_active);
1069 
1070 		__mod_zone_page_state(zone, NR_ACTIVE_FILE,
1071 						-count[LRU_ACTIVE_FILE]);
1072 		__mod_zone_page_state(zone, NR_INACTIVE_FILE,
1073 						-count[LRU_INACTIVE_FILE]);
1074 		__mod_zone_page_state(zone, NR_ACTIVE_ANON,
1075 						-count[LRU_ACTIVE_ANON]);
1076 		__mod_zone_page_state(zone, NR_INACTIVE_ANON,
1077 						-count[LRU_INACTIVE_ANON]);
1078 
1079 		if (scan_global_lru(sc)) {
1080 			zone->pages_scanned += nr_scan;
1081 			zone->recent_scanned[0] += count[LRU_INACTIVE_ANON];
1082 			zone->recent_scanned[0] += count[LRU_ACTIVE_ANON];
1083 			zone->recent_scanned[1] += count[LRU_INACTIVE_FILE];
1084 			zone->recent_scanned[1] += count[LRU_ACTIVE_FILE];
1085 		}
1086 		spin_unlock_irq(&zone->lru_lock);
1087 
1088 		nr_scanned += nr_scan;
1089 		nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);
1090 
1091 		/*
1092 		 * If we are direct reclaiming for contiguous pages and we do
1093 		 * not reclaim everything in the list, try again and wait
1094 		 * for IO to complete. This will stall high-order allocations
1095 		 * but that should be acceptable to the caller
1096 		 */
1097 		if (nr_freed < nr_taken && !current_is_kswapd() &&
1098 					sc->order > PAGE_ALLOC_COSTLY_ORDER) {
1099 			congestion_wait(WRITE, HZ/10);
1100 
1101 			/*
1102 			 * The attempt at page out may have made some
1103 			 * of the pages active, mark them inactive again.
1104 			 */
1105 			nr_active = clear_active_flags(&page_list, count);
1106 			count_vm_events(PGDEACTIVATE, nr_active);
1107 
1108 			nr_freed += shrink_page_list(&page_list, sc,
1109 							PAGEOUT_IO_SYNC);
1110 		}
1111 
1112 		nr_reclaimed += nr_freed;
1113 		local_irq_disable();
1114 		if (current_is_kswapd()) {
1115 			__count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scan);
1116 			__count_vm_events(KSWAPD_STEAL, nr_freed);
1117 		} else if (scan_global_lru(sc))
1118 			__count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scan);
1119 
1120 		__count_zone_vm_events(PGSTEAL, zone, nr_freed);
1121 
1122 		if (nr_taken == 0)
1123 			goto done;
1124 
1125 		spin_lock(&zone->lru_lock);
1126 		/*
1127 		 * Put back any unfreeable pages.
1128 		 */
1129 		while (!list_empty(&page_list)) {
1130 			int lru;
1131 			page = lru_to_page(&page_list);
1132 			VM_BUG_ON(PageLRU(page));
1133 			list_del(&page->lru);
1134 			if (unlikely(!page_evictable(page, NULL))) {
1135 				spin_unlock_irq(&zone->lru_lock);
1136 				putback_lru_page(page);
1137 				spin_lock_irq(&zone->lru_lock);
1138 				continue;
1139 			}
1140 			SetPageLRU(page);
1141 			lru = page_lru(page);
1142 			add_page_to_lru_list(zone, page, lru);
1143 			mem_cgroup_move_lists(page, lru);
1144 			if (PageActive(page) && scan_global_lru(sc)) {
1145 				int file = !!page_is_file_cache(page);
1146 				zone->recent_rotated[file]++;
1147 			}
1148 			if (!pagevec_add(&pvec, page)) {
1149 				spin_unlock_irq(&zone->lru_lock);
1150 				__pagevec_release(&pvec);
1151 				spin_lock_irq(&zone->lru_lock);
1152 			}
1153 		}
1154   	} while (nr_scanned < max_scan);
1155 	spin_unlock(&zone->lru_lock);
1156 done:
1157 	local_irq_enable();
1158 	pagevec_release(&pvec);
1159 	return nr_reclaimed;
1160 }
1161 
1162 /*
1163  * We are about to scan this zone at a certain priority level.  If that priority
1164  * level is smaller (ie: more urgent) than the previous priority, then note
1165  * that priority level within the zone.  This is done so that when the next
1166  * process comes in to scan this zone, it will immediately start out at this
1167  * priority level rather than having to build up its own scanning priority.
1168  * Here, this priority affects only the reclaim-mapped threshold.
1169  */
1170 static inline void note_zone_scanning_priority(struct zone *zone, int priority)
1171 {
1172 	if (priority < zone->prev_priority)
1173 		zone->prev_priority = priority;
1174 }
1175 
1176 static inline int zone_is_near_oom(struct zone *zone)
1177 {
1178 	return zone->pages_scanned >= (zone_lru_pages(zone) * 3);
1179 }
1180 
1181 /*
1182  * This moves pages from the active list to the inactive list.
1183  *
1184  * We move them the other way if the page is referenced by one or more
1185  * processes, from rmap.
1186  *
1187  * If the pages are mostly unmapped, the processing is fast and it is
1188  * appropriate to hold zone->lru_lock across the whole operation.  But if
1189  * the pages are mapped, the processing is slow (page_referenced()) so we
1190  * should drop zone->lru_lock around each page.  It's impossible to balance
1191  * this, so instead we remove the pages from the LRU while processing them.
1192  * It is safe to rely on PG_active against the non-LRU pages in here because
1193  * nobody will play with that bit on a non-LRU page.
1194  *
1195  * The downside is that we have to touch page->_count against each page.
1196  * But we had to alter page->flags anyway.
1197  */
1198 
1199 
1200 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1201 			struct scan_control *sc, int priority, int file)
1202 {
1203 	unsigned long pgmoved;
1204 	int pgdeactivate = 0;
1205 	unsigned long pgscanned;
1206 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1207 	LIST_HEAD(l_inactive);
1208 	struct page *page;
1209 	struct pagevec pvec;
1210 	enum lru_list lru;
1211 
1212 	lru_add_drain();
1213 	spin_lock_irq(&zone->lru_lock);
1214 	pgmoved = sc->isolate_pages(nr_pages, &l_hold, &pgscanned, sc->order,
1215 					ISOLATE_ACTIVE, zone,
1216 					sc->mem_cgroup, 1, file);
1217 	/*
1218 	 * zone->pages_scanned is used for detect zone's oom
1219 	 * mem_cgroup remembers nr_scan by itself.
1220 	 */
1221 	if (scan_global_lru(sc)) {
1222 		zone->pages_scanned += pgscanned;
1223 		zone->recent_scanned[!!file] += pgmoved;
1224 	}
1225 
1226 	if (file)
1227 		__mod_zone_page_state(zone, NR_ACTIVE_FILE, -pgmoved);
1228 	else
1229 		__mod_zone_page_state(zone, NR_ACTIVE_ANON, -pgmoved);
1230 	spin_unlock_irq(&zone->lru_lock);
1231 
1232 	pgmoved = 0;
1233 	while (!list_empty(&l_hold)) {
1234 		cond_resched();
1235 		page = lru_to_page(&l_hold);
1236 		list_del(&page->lru);
1237 
1238 		if (unlikely(!page_evictable(page, NULL))) {
1239 			putback_lru_page(page);
1240 			continue;
1241 		}
1242 
1243 		/* page_referenced clears PageReferenced */
1244 		if (page_mapping_inuse(page) &&
1245 		    page_referenced(page, 0, sc->mem_cgroup))
1246 			pgmoved++;
1247 
1248 		list_add(&page->lru, &l_inactive);
1249 	}
1250 
1251 	spin_lock_irq(&zone->lru_lock);
1252 	/*
1253 	 * Count referenced pages from currently used mappings as
1254 	 * rotated, even though they are moved to the inactive list.
1255 	 * This helps balance scan pressure between file and anonymous
1256 	 * pages in get_scan_ratio.
1257 	 */
1258 	zone->recent_rotated[!!file] += pgmoved;
1259 
1260 	/*
1261 	 * Move the pages to the [file or anon] inactive list.
1262 	 */
1263 	pagevec_init(&pvec, 1);
1264 
1265 	pgmoved = 0;
1266 	lru = LRU_BASE + file * LRU_FILE;
1267 	while (!list_empty(&l_inactive)) {
1268 		page = lru_to_page(&l_inactive);
1269 		prefetchw_prev_lru_page(page, &l_inactive, flags);
1270 		VM_BUG_ON(PageLRU(page));
1271 		SetPageLRU(page);
1272 		VM_BUG_ON(!PageActive(page));
1273 		ClearPageActive(page);
1274 
1275 		list_move(&page->lru, &zone->lru[lru].list);
1276 		mem_cgroup_move_lists(page, lru);
1277 		pgmoved++;
1278 		if (!pagevec_add(&pvec, page)) {
1279 			__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1280 			spin_unlock_irq(&zone->lru_lock);
1281 			pgdeactivate += pgmoved;
1282 			pgmoved = 0;
1283 			if (buffer_heads_over_limit)
1284 				pagevec_strip(&pvec);
1285 			__pagevec_release(&pvec);
1286 			spin_lock_irq(&zone->lru_lock);
1287 		}
1288 	}
1289 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1290 	pgdeactivate += pgmoved;
1291 	if (buffer_heads_over_limit) {
1292 		spin_unlock_irq(&zone->lru_lock);
1293 		pagevec_strip(&pvec);
1294 		spin_lock_irq(&zone->lru_lock);
1295 	}
1296 	__count_zone_vm_events(PGREFILL, zone, pgscanned);
1297 	__count_vm_events(PGDEACTIVATE, pgdeactivate);
1298 	spin_unlock_irq(&zone->lru_lock);
1299 	if (vm_swap_full())
1300 		pagevec_swap_free(&pvec);
1301 
1302 	pagevec_release(&pvec);
1303 }
1304 
1305 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1306 	struct zone *zone, struct scan_control *sc, int priority)
1307 {
1308 	int file = is_file_lru(lru);
1309 
1310 	if (lru == LRU_ACTIVE_FILE) {
1311 		shrink_active_list(nr_to_scan, zone, sc, priority, file);
1312 		return 0;
1313 	}
1314 
1315 	if (lru == LRU_ACTIVE_ANON &&
1316 	    (!scan_global_lru(sc) || inactive_anon_is_low(zone))) {
1317 		shrink_active_list(nr_to_scan, zone, sc, priority, file);
1318 		return 0;
1319 	}
1320 	return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1321 }
1322 
1323 /*
1324  * Determine how aggressively the anon and file LRU lists should be
1325  * scanned.  The relative value of each set of LRU lists is determined
1326  * by looking at the fraction of the pages scanned we did rotate back
1327  * onto the active list instead of evict.
1328  *
1329  * percent[0] specifies how much pressure to put on ram/swap backed
1330  * memory, while percent[1] determines pressure on the file LRUs.
1331  */
1332 static void get_scan_ratio(struct zone *zone, struct scan_control *sc,
1333 					unsigned long *percent)
1334 {
1335 	unsigned long anon, file, free;
1336 	unsigned long anon_prio, file_prio;
1337 	unsigned long ap, fp;
1338 
1339 	anon  = zone_page_state(zone, NR_ACTIVE_ANON) +
1340 		zone_page_state(zone, NR_INACTIVE_ANON);
1341 	file  = zone_page_state(zone, NR_ACTIVE_FILE) +
1342 		zone_page_state(zone, NR_INACTIVE_FILE);
1343 	free  = zone_page_state(zone, NR_FREE_PAGES);
1344 
1345 	/* If we have no swap space, do not bother scanning anon pages. */
1346 	if (nr_swap_pages <= 0) {
1347 		percent[0] = 0;
1348 		percent[1] = 100;
1349 		return;
1350 	}
1351 
1352 	/* If we have very few page cache pages, force-scan anon pages. */
1353 	if (unlikely(file + free <= zone->pages_high)) {
1354 		percent[0] = 100;
1355 		percent[1] = 0;
1356 		return;
1357 	}
1358 
1359 	/*
1360 	 * OK, so we have swap space and a fair amount of page cache
1361 	 * pages.  We use the recently rotated / recently scanned
1362 	 * ratios to determine how valuable each cache is.
1363 	 *
1364 	 * Because workloads change over time (and to avoid overflow)
1365 	 * we keep these statistics as a floating average, which ends
1366 	 * up weighing recent references more than old ones.
1367 	 *
1368 	 * anon in [0], file in [1]
1369 	 */
1370 	if (unlikely(zone->recent_scanned[0] > anon / 4)) {
1371 		spin_lock_irq(&zone->lru_lock);
1372 		zone->recent_scanned[0] /= 2;
1373 		zone->recent_rotated[0] /= 2;
1374 		spin_unlock_irq(&zone->lru_lock);
1375 	}
1376 
1377 	if (unlikely(zone->recent_scanned[1] > file / 4)) {
1378 		spin_lock_irq(&zone->lru_lock);
1379 		zone->recent_scanned[1] /= 2;
1380 		zone->recent_rotated[1] /= 2;
1381 		spin_unlock_irq(&zone->lru_lock);
1382 	}
1383 
1384 	/*
1385 	 * With swappiness at 100, anonymous and file have the same priority.
1386 	 * This scanning priority is essentially the inverse of IO cost.
1387 	 */
1388 	anon_prio = sc->swappiness;
1389 	file_prio = 200 - sc->swappiness;
1390 
1391 	/*
1392 	 * The amount of pressure on anon vs file pages is inversely
1393 	 * proportional to the fraction of recently scanned pages on
1394 	 * each list that were recently referenced and in active use.
1395 	 */
1396 	ap = (anon_prio + 1) * (zone->recent_scanned[0] + 1);
1397 	ap /= zone->recent_rotated[0] + 1;
1398 
1399 	fp = (file_prio + 1) * (zone->recent_scanned[1] + 1);
1400 	fp /= zone->recent_rotated[1] + 1;
1401 
1402 	/* Normalize to percentages */
1403 	percent[0] = 100 * ap / (ap + fp + 1);
1404 	percent[1] = 100 - percent[0];
1405 }
1406 
1407 
1408 /*
1409  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1410  */
1411 static unsigned long shrink_zone(int priority, struct zone *zone,
1412 				struct scan_control *sc)
1413 {
1414 	unsigned long nr[NR_LRU_LISTS];
1415 	unsigned long nr_to_scan;
1416 	unsigned long nr_reclaimed = 0;
1417 	unsigned long percent[2];	/* anon @ 0; file @ 1 */
1418 	enum lru_list l;
1419 
1420 	get_scan_ratio(zone, sc, percent);
1421 
1422 	for_each_evictable_lru(l) {
1423 		if (scan_global_lru(sc)) {
1424 			int file = is_file_lru(l);
1425 			int scan;
1426 
1427 			scan = zone_page_state(zone, NR_LRU_BASE + l);
1428 			if (priority) {
1429 				scan >>= priority;
1430 				scan = (scan * percent[file]) / 100;
1431 			}
1432 			zone->lru[l].nr_scan += scan;
1433 			nr[l] = zone->lru[l].nr_scan;
1434 			if (nr[l] >= sc->swap_cluster_max)
1435 				zone->lru[l].nr_scan = 0;
1436 			else
1437 				nr[l] = 0;
1438 		} else {
1439 			/*
1440 			 * This reclaim occurs not because zone memory shortage
1441 			 * but because memory controller hits its limit.
1442 			 * Don't modify zone reclaim related data.
1443 			 */
1444 			nr[l] = mem_cgroup_calc_reclaim(sc->mem_cgroup, zone,
1445 								priority, l);
1446 		}
1447 	}
1448 
1449 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1450 					nr[LRU_INACTIVE_FILE]) {
1451 		for_each_evictable_lru(l) {
1452 			if (nr[l]) {
1453 				nr_to_scan = min(nr[l],
1454 					(unsigned long)sc->swap_cluster_max);
1455 				nr[l] -= nr_to_scan;
1456 
1457 				nr_reclaimed += shrink_list(l, nr_to_scan,
1458 							zone, sc, priority);
1459 			}
1460 		}
1461 	}
1462 
1463 	/*
1464 	 * Even if we did not try to evict anon pages at all, we want to
1465 	 * rebalance the anon lru active/inactive ratio.
1466 	 */
1467 	if (!scan_global_lru(sc) || inactive_anon_is_low(zone))
1468 		shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1469 	else if (!scan_global_lru(sc))
1470 		shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1471 
1472 	throttle_vm_writeout(sc->gfp_mask);
1473 	return nr_reclaimed;
1474 }
1475 
1476 /*
1477  * This is the direct reclaim path, for page-allocating processes.  We only
1478  * try to reclaim pages from zones which will satisfy the caller's allocation
1479  * request.
1480  *
1481  * We reclaim from a zone even if that zone is over pages_high.  Because:
1482  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1483  *    allocation or
1484  * b) The zones may be over pages_high but they must go *over* pages_high to
1485  *    satisfy the `incremental min' zone defense algorithm.
1486  *
1487  * Returns the number of reclaimed pages.
1488  *
1489  * If a zone is deemed to be full of pinned pages then just give it a light
1490  * scan then give up on it.
1491  */
1492 static unsigned long shrink_zones(int priority, struct zonelist *zonelist,
1493 					struct scan_control *sc)
1494 {
1495 	enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1496 	unsigned long nr_reclaimed = 0;
1497 	struct zoneref *z;
1498 	struct zone *zone;
1499 
1500 	sc->all_unreclaimable = 1;
1501 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1502 		if (!populated_zone(zone))
1503 			continue;
1504 		/*
1505 		 * Take care memory controller reclaiming has small influence
1506 		 * to global LRU.
1507 		 */
1508 		if (scan_global_lru(sc)) {
1509 			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1510 				continue;
1511 			note_zone_scanning_priority(zone, priority);
1512 
1513 			if (zone_is_all_unreclaimable(zone) &&
1514 						priority != DEF_PRIORITY)
1515 				continue;	/* Let kswapd poll it */
1516 			sc->all_unreclaimable = 0;
1517 		} else {
1518 			/*
1519 			 * Ignore cpuset limitation here. We just want to reduce
1520 			 * # of used pages by us regardless of memory shortage.
1521 			 */
1522 			sc->all_unreclaimable = 0;
1523 			mem_cgroup_note_reclaim_priority(sc->mem_cgroup,
1524 							priority);
1525 		}
1526 
1527 		nr_reclaimed += shrink_zone(priority, zone, sc);
1528 	}
1529 
1530 	return nr_reclaimed;
1531 }
1532 
1533 /*
1534  * This is the main entry point to direct page reclaim.
1535  *
1536  * If a full scan of the inactive list fails to free enough memory then we
1537  * are "out of memory" and something needs to be killed.
1538  *
1539  * If the caller is !__GFP_FS then the probability of a failure is reasonably
1540  * high - the zone may be full of dirty or under-writeback pages, which this
1541  * caller can't do much about.  We kick pdflush and take explicit naps in the
1542  * hope that some of these pages can be written.  But if the allocating task
1543  * holds filesystem locks which prevent writeout this might not work, and the
1544  * allocation attempt will fail.
1545  *
1546  * returns:	0, if no pages reclaimed
1547  * 		else, the number of pages reclaimed
1548  */
1549 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
1550 					struct scan_control *sc)
1551 {
1552 	int priority;
1553 	unsigned long ret = 0;
1554 	unsigned long total_scanned = 0;
1555 	unsigned long nr_reclaimed = 0;
1556 	struct reclaim_state *reclaim_state = current->reclaim_state;
1557 	unsigned long lru_pages = 0;
1558 	struct zoneref *z;
1559 	struct zone *zone;
1560 	enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1561 
1562 	delayacct_freepages_start();
1563 
1564 	if (scan_global_lru(sc))
1565 		count_vm_event(ALLOCSTALL);
1566 	/*
1567 	 * mem_cgroup will not do shrink_slab.
1568 	 */
1569 	if (scan_global_lru(sc)) {
1570 		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1571 
1572 			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1573 				continue;
1574 
1575 			lru_pages += zone_lru_pages(zone);
1576 		}
1577 	}
1578 
1579 	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1580 		sc->nr_scanned = 0;
1581 		if (!priority)
1582 			disable_swap_token();
1583 		nr_reclaimed += shrink_zones(priority, zonelist, sc);
1584 		/*
1585 		 * Don't shrink slabs when reclaiming memory from
1586 		 * over limit cgroups
1587 		 */
1588 		if (scan_global_lru(sc)) {
1589 			shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
1590 			if (reclaim_state) {
1591 				nr_reclaimed += reclaim_state->reclaimed_slab;
1592 				reclaim_state->reclaimed_slab = 0;
1593 			}
1594 		}
1595 		total_scanned += sc->nr_scanned;
1596 		if (nr_reclaimed >= sc->swap_cluster_max) {
1597 			ret = nr_reclaimed;
1598 			goto out;
1599 		}
1600 
1601 		/*
1602 		 * Try to write back as many pages as we just scanned.  This
1603 		 * tends to cause slow streaming writers to write data to the
1604 		 * disk smoothly, at the dirtying rate, which is nice.   But
1605 		 * that's undesirable in laptop mode, where we *want* lumpy
1606 		 * writeout.  So in laptop mode, write out the whole world.
1607 		 */
1608 		if (total_scanned > sc->swap_cluster_max +
1609 					sc->swap_cluster_max / 2) {
1610 			wakeup_pdflush(laptop_mode ? 0 : total_scanned);
1611 			sc->may_writepage = 1;
1612 		}
1613 
1614 		/* Take a nap, wait for some writeback to complete */
1615 		if (sc->nr_scanned && priority < DEF_PRIORITY - 2)
1616 			congestion_wait(WRITE, HZ/10);
1617 	}
1618 	/* top priority shrink_zones still had more to do? don't OOM, then */
1619 	if (!sc->all_unreclaimable && scan_global_lru(sc))
1620 		ret = nr_reclaimed;
1621 out:
1622 	/*
1623 	 * Now that we've scanned all the zones at this priority level, note
1624 	 * that level within the zone so that the next thread which performs
1625 	 * scanning of this zone will immediately start out at this priority
1626 	 * level.  This affects only the decision whether or not to bring
1627 	 * mapped pages onto the inactive list.
1628 	 */
1629 	if (priority < 0)
1630 		priority = 0;
1631 
1632 	if (scan_global_lru(sc)) {
1633 		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1634 
1635 			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1636 				continue;
1637 
1638 			zone->prev_priority = priority;
1639 		}
1640 	} else
1641 		mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority);
1642 
1643 	delayacct_freepages_end();
1644 
1645 	return ret;
1646 }
1647 
1648 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
1649 								gfp_t gfp_mask)
1650 {
1651 	struct scan_control sc = {
1652 		.gfp_mask = gfp_mask,
1653 		.may_writepage = !laptop_mode,
1654 		.swap_cluster_max = SWAP_CLUSTER_MAX,
1655 		.may_swap = 1,
1656 		.swappiness = vm_swappiness,
1657 		.order = order,
1658 		.mem_cgroup = NULL,
1659 		.isolate_pages = isolate_pages_global,
1660 	};
1661 
1662 	return do_try_to_free_pages(zonelist, &sc);
1663 }
1664 
1665 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1666 
1667 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
1668 						gfp_t gfp_mask)
1669 {
1670 	struct scan_control sc = {
1671 		.may_writepage = !laptop_mode,
1672 		.may_swap = 1,
1673 		.swap_cluster_max = SWAP_CLUSTER_MAX,
1674 		.swappiness = vm_swappiness,
1675 		.order = 0,
1676 		.mem_cgroup = mem_cont,
1677 		.isolate_pages = mem_cgroup_isolate_pages,
1678 	};
1679 	struct zonelist *zonelist;
1680 
1681 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
1682 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
1683 	zonelist = NODE_DATA(numa_node_id())->node_zonelists;
1684 	return do_try_to_free_pages(zonelist, &sc);
1685 }
1686 #endif
1687 
1688 /*
1689  * For kswapd, balance_pgdat() will work across all this node's zones until
1690  * they are all at pages_high.
1691  *
1692  * Returns the number of pages which were actually freed.
1693  *
1694  * There is special handling here for zones which are full of pinned pages.
1695  * This can happen if the pages are all mlocked, or if they are all used by
1696  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
1697  * What we do is to detect the case where all pages in the zone have been
1698  * scanned twice and there has been zero successful reclaim.  Mark the zone as
1699  * dead and from now on, only perform a short scan.  Basically we're polling
1700  * the zone for when the problem goes away.
1701  *
1702  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
1703  * zones which have free_pages > pages_high, but once a zone is found to have
1704  * free_pages <= pages_high, we scan that zone and the lower zones regardless
1705  * of the number of free pages in the lower zones.  This interoperates with
1706  * the page allocator fallback scheme to ensure that aging of pages is balanced
1707  * across the zones.
1708  */
1709 static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
1710 {
1711 	int all_zones_ok;
1712 	int priority;
1713 	int i;
1714 	unsigned long total_scanned;
1715 	unsigned long nr_reclaimed;
1716 	struct reclaim_state *reclaim_state = current->reclaim_state;
1717 	struct scan_control sc = {
1718 		.gfp_mask = GFP_KERNEL,
1719 		.may_swap = 1,
1720 		.swap_cluster_max = SWAP_CLUSTER_MAX,
1721 		.swappiness = vm_swappiness,
1722 		.order = order,
1723 		.mem_cgroup = NULL,
1724 		.isolate_pages = isolate_pages_global,
1725 	};
1726 	/*
1727 	 * temp_priority is used to remember the scanning priority at which
1728 	 * this zone was successfully refilled to free_pages == pages_high.
1729 	 */
1730 	int temp_priority[MAX_NR_ZONES];
1731 
1732 loop_again:
1733 	total_scanned = 0;
1734 	nr_reclaimed = 0;
1735 	sc.may_writepage = !laptop_mode;
1736 	count_vm_event(PAGEOUTRUN);
1737 
1738 	for (i = 0; i < pgdat->nr_zones; i++)
1739 		temp_priority[i] = DEF_PRIORITY;
1740 
1741 	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1742 		int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
1743 		unsigned long lru_pages = 0;
1744 
1745 		/* The swap token gets in the way of swapout... */
1746 		if (!priority)
1747 			disable_swap_token();
1748 
1749 		all_zones_ok = 1;
1750 
1751 		/*
1752 		 * Scan in the highmem->dma direction for the highest
1753 		 * zone which needs scanning
1754 		 */
1755 		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1756 			struct zone *zone = pgdat->node_zones + i;
1757 
1758 			if (!populated_zone(zone))
1759 				continue;
1760 
1761 			if (zone_is_all_unreclaimable(zone) &&
1762 			    priority != DEF_PRIORITY)
1763 				continue;
1764 
1765 			/*
1766 			 * Do some background aging of the anon list, to give
1767 			 * pages a chance to be referenced before reclaiming.
1768 			 */
1769 			if (inactive_anon_is_low(zone))
1770 				shrink_active_list(SWAP_CLUSTER_MAX, zone,
1771 							&sc, priority, 0);
1772 
1773 			if (!zone_watermark_ok(zone, order, zone->pages_high,
1774 					       0, 0)) {
1775 				end_zone = i;
1776 				break;
1777 			}
1778 		}
1779 		if (i < 0)
1780 			goto out;
1781 
1782 		for (i = 0; i <= end_zone; i++) {
1783 			struct zone *zone = pgdat->node_zones + i;
1784 
1785 			lru_pages += zone_lru_pages(zone);
1786 		}
1787 
1788 		/*
1789 		 * Now scan the zone in the dma->highmem direction, stopping
1790 		 * at the last zone which needs scanning.
1791 		 *
1792 		 * We do this because the page allocator works in the opposite
1793 		 * direction.  This prevents the page allocator from allocating
1794 		 * pages behind kswapd's direction of progress, which would
1795 		 * cause too much scanning of the lower zones.
1796 		 */
1797 		for (i = 0; i <= end_zone; i++) {
1798 			struct zone *zone = pgdat->node_zones + i;
1799 			int nr_slab;
1800 
1801 			if (!populated_zone(zone))
1802 				continue;
1803 
1804 			if (zone_is_all_unreclaimable(zone) &&
1805 					priority != DEF_PRIORITY)
1806 				continue;
1807 
1808 			if (!zone_watermark_ok(zone, order, zone->pages_high,
1809 					       end_zone, 0))
1810 				all_zones_ok = 0;
1811 			temp_priority[i] = priority;
1812 			sc.nr_scanned = 0;
1813 			note_zone_scanning_priority(zone, priority);
1814 			/*
1815 			 * We put equal pressure on every zone, unless one
1816 			 * zone has way too many pages free already.
1817 			 */
1818 			if (!zone_watermark_ok(zone, order, 8*zone->pages_high,
1819 						end_zone, 0))
1820 				nr_reclaimed += shrink_zone(priority, zone, &sc);
1821 			reclaim_state->reclaimed_slab = 0;
1822 			nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
1823 						lru_pages);
1824 			nr_reclaimed += reclaim_state->reclaimed_slab;
1825 			total_scanned += sc.nr_scanned;
1826 			if (zone_is_all_unreclaimable(zone))
1827 				continue;
1828 			if (nr_slab == 0 && zone->pages_scanned >=
1829 						(zone_lru_pages(zone) * 6))
1830 					zone_set_flag(zone,
1831 						      ZONE_ALL_UNRECLAIMABLE);
1832 			/*
1833 			 * If we've done a decent amount of scanning and
1834 			 * the reclaim ratio is low, start doing writepage
1835 			 * even in laptop mode
1836 			 */
1837 			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
1838 			    total_scanned > nr_reclaimed + nr_reclaimed / 2)
1839 				sc.may_writepage = 1;
1840 		}
1841 		if (all_zones_ok)
1842 			break;		/* kswapd: all done */
1843 		/*
1844 		 * OK, kswapd is getting into trouble.  Take a nap, then take
1845 		 * another pass across the zones.
1846 		 */
1847 		if (total_scanned && priority < DEF_PRIORITY - 2)
1848 			congestion_wait(WRITE, HZ/10);
1849 
1850 		/*
1851 		 * We do this so kswapd doesn't build up large priorities for
1852 		 * example when it is freeing in parallel with allocators. It
1853 		 * matches the direct reclaim path behaviour in terms of impact
1854 		 * on zone->*_priority.
1855 		 */
1856 		if (nr_reclaimed >= SWAP_CLUSTER_MAX)
1857 			break;
1858 	}
1859 out:
1860 	/*
1861 	 * Note within each zone the priority level at which this zone was
1862 	 * brought into a happy state.  So that the next thread which scans this
1863 	 * zone will start out at that priority level.
1864 	 */
1865 	for (i = 0; i < pgdat->nr_zones; i++) {
1866 		struct zone *zone = pgdat->node_zones + i;
1867 
1868 		zone->prev_priority = temp_priority[i];
1869 	}
1870 	if (!all_zones_ok) {
1871 		cond_resched();
1872 
1873 		try_to_freeze();
1874 
1875 		goto loop_again;
1876 	}
1877 
1878 	return nr_reclaimed;
1879 }
1880 
1881 /*
1882  * The background pageout daemon, started as a kernel thread
1883  * from the init process.
1884  *
1885  * This basically trickles out pages so that we have _some_
1886  * free memory available even if there is no other activity
1887  * that frees anything up. This is needed for things like routing
1888  * etc, where we otherwise might have all activity going on in
1889  * asynchronous contexts that cannot page things out.
1890  *
1891  * If there are applications that are active memory-allocators
1892  * (most normal use), this basically shouldn't matter.
1893  */
1894 static int kswapd(void *p)
1895 {
1896 	unsigned long order;
1897 	pg_data_t *pgdat = (pg_data_t*)p;
1898 	struct task_struct *tsk = current;
1899 	DEFINE_WAIT(wait);
1900 	struct reclaim_state reclaim_state = {
1901 		.reclaimed_slab = 0,
1902 	};
1903 	node_to_cpumask_ptr(cpumask, pgdat->node_id);
1904 
1905 	if (!cpus_empty(*cpumask))
1906 		set_cpus_allowed_ptr(tsk, cpumask);
1907 	current->reclaim_state = &reclaim_state;
1908 
1909 	/*
1910 	 * Tell the memory management that we're a "memory allocator",
1911 	 * and that if we need more memory we should get access to it
1912 	 * regardless (see "__alloc_pages()"). "kswapd" should
1913 	 * never get caught in the normal page freeing logic.
1914 	 *
1915 	 * (Kswapd normally doesn't need memory anyway, but sometimes
1916 	 * you need a small amount of memory in order to be able to
1917 	 * page out something else, and this flag essentially protects
1918 	 * us from recursively trying to free more memory as we're
1919 	 * trying to free the first piece of memory in the first place).
1920 	 */
1921 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
1922 	set_freezable();
1923 
1924 	order = 0;
1925 	for ( ; ; ) {
1926 		unsigned long new_order;
1927 
1928 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
1929 		new_order = pgdat->kswapd_max_order;
1930 		pgdat->kswapd_max_order = 0;
1931 		if (order < new_order) {
1932 			/*
1933 			 * Don't sleep if someone wants a larger 'order'
1934 			 * allocation
1935 			 */
1936 			order = new_order;
1937 		} else {
1938 			if (!freezing(current))
1939 				schedule();
1940 
1941 			order = pgdat->kswapd_max_order;
1942 		}
1943 		finish_wait(&pgdat->kswapd_wait, &wait);
1944 
1945 		if (!try_to_freeze()) {
1946 			/* We can speed up thawing tasks if we don't call
1947 			 * balance_pgdat after returning from the refrigerator
1948 			 */
1949 			balance_pgdat(pgdat, order);
1950 		}
1951 	}
1952 	return 0;
1953 }
1954 
1955 /*
1956  * A zone is low on free memory, so wake its kswapd task to service it.
1957  */
1958 void wakeup_kswapd(struct zone *zone, int order)
1959 {
1960 	pg_data_t *pgdat;
1961 
1962 	if (!populated_zone(zone))
1963 		return;
1964 
1965 	pgdat = zone->zone_pgdat;
1966 	if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0))
1967 		return;
1968 	if (pgdat->kswapd_max_order < order)
1969 		pgdat->kswapd_max_order = order;
1970 	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1971 		return;
1972 	if (!waitqueue_active(&pgdat->kswapd_wait))
1973 		return;
1974 	wake_up_interruptible(&pgdat->kswapd_wait);
1975 }
1976 
1977 unsigned long global_lru_pages(void)
1978 {
1979 	return global_page_state(NR_ACTIVE_ANON)
1980 		+ global_page_state(NR_ACTIVE_FILE)
1981 		+ global_page_state(NR_INACTIVE_ANON)
1982 		+ global_page_state(NR_INACTIVE_FILE);
1983 }
1984 
1985 #ifdef CONFIG_PM
1986 /*
1987  * Helper function for shrink_all_memory().  Tries to reclaim 'nr_pages' pages
1988  * from LRU lists system-wide, for given pass and priority, and returns the
1989  * number of reclaimed pages
1990  *
1991  * For pass > 3 we also try to shrink the LRU lists that contain a few pages
1992  */
1993 static unsigned long shrink_all_zones(unsigned long nr_pages, int prio,
1994 				      int pass, struct scan_control *sc)
1995 {
1996 	struct zone *zone;
1997 	unsigned long nr_to_scan, ret = 0;
1998 	enum lru_list l;
1999 
2000 	for_each_zone(zone) {
2001 
2002 		if (!populated_zone(zone))
2003 			continue;
2004 
2005 		if (zone_is_all_unreclaimable(zone) && prio != DEF_PRIORITY)
2006 			continue;
2007 
2008 		for_each_evictable_lru(l) {
2009 			/* For pass = 0, we don't shrink the active list */
2010 			if (pass == 0 &&
2011 				(l == LRU_ACTIVE || l == LRU_ACTIVE_FILE))
2012 				continue;
2013 
2014 			zone->lru[l].nr_scan +=
2015 				(zone_page_state(zone, NR_LRU_BASE + l)
2016 								>> prio) + 1;
2017 			if (zone->lru[l].nr_scan >= nr_pages || pass > 3) {
2018 				zone->lru[l].nr_scan = 0;
2019 				nr_to_scan = min(nr_pages,
2020 					zone_page_state(zone,
2021 							NR_LRU_BASE + l));
2022 				ret += shrink_list(l, nr_to_scan, zone,
2023 								sc, prio);
2024 				if (ret >= nr_pages)
2025 					return ret;
2026 			}
2027 		}
2028 	}
2029 
2030 	return ret;
2031 }
2032 
2033 /*
2034  * Try to free `nr_pages' of memory, system-wide, and return the number of
2035  * freed pages.
2036  *
2037  * Rather than trying to age LRUs the aim is to preserve the overall
2038  * LRU order by reclaiming preferentially
2039  * inactive > active > active referenced > active mapped
2040  */
2041 unsigned long shrink_all_memory(unsigned long nr_pages)
2042 {
2043 	unsigned long lru_pages, nr_slab;
2044 	unsigned long ret = 0;
2045 	int pass;
2046 	struct reclaim_state reclaim_state;
2047 	struct scan_control sc = {
2048 		.gfp_mask = GFP_KERNEL,
2049 		.may_swap = 0,
2050 		.swap_cluster_max = nr_pages,
2051 		.may_writepage = 1,
2052 		.swappiness = vm_swappiness,
2053 		.isolate_pages = isolate_pages_global,
2054 	};
2055 
2056 	current->reclaim_state = &reclaim_state;
2057 
2058 	lru_pages = global_lru_pages();
2059 	nr_slab = global_page_state(NR_SLAB_RECLAIMABLE);
2060 	/* If slab caches are huge, it's better to hit them first */
2061 	while (nr_slab >= lru_pages) {
2062 		reclaim_state.reclaimed_slab = 0;
2063 		shrink_slab(nr_pages, sc.gfp_mask, lru_pages);
2064 		if (!reclaim_state.reclaimed_slab)
2065 			break;
2066 
2067 		ret += reclaim_state.reclaimed_slab;
2068 		if (ret >= nr_pages)
2069 			goto out;
2070 
2071 		nr_slab -= reclaim_state.reclaimed_slab;
2072 	}
2073 
2074 	/*
2075 	 * We try to shrink LRUs in 5 passes:
2076 	 * 0 = Reclaim from inactive_list only
2077 	 * 1 = Reclaim from active list but don't reclaim mapped
2078 	 * 2 = 2nd pass of type 1
2079 	 * 3 = Reclaim mapped (normal reclaim)
2080 	 * 4 = 2nd pass of type 3
2081 	 */
2082 	for (pass = 0; pass < 5; pass++) {
2083 		int prio;
2084 
2085 		/* Force reclaiming mapped pages in the passes #3 and #4 */
2086 		if (pass > 2) {
2087 			sc.may_swap = 1;
2088 			sc.swappiness = 100;
2089 		}
2090 
2091 		for (prio = DEF_PRIORITY; prio >= 0; prio--) {
2092 			unsigned long nr_to_scan = nr_pages - ret;
2093 
2094 			sc.nr_scanned = 0;
2095 			ret += shrink_all_zones(nr_to_scan, prio, pass, &sc);
2096 			if (ret >= nr_pages)
2097 				goto out;
2098 
2099 			reclaim_state.reclaimed_slab = 0;
2100 			shrink_slab(sc.nr_scanned, sc.gfp_mask,
2101 					global_lru_pages());
2102 			ret += reclaim_state.reclaimed_slab;
2103 			if (ret >= nr_pages)
2104 				goto out;
2105 
2106 			if (sc.nr_scanned && prio < DEF_PRIORITY - 2)
2107 				congestion_wait(WRITE, HZ / 10);
2108 		}
2109 	}
2110 
2111 	/*
2112 	 * If ret = 0, we could not shrink LRUs, but there may be something
2113 	 * in slab caches
2114 	 */
2115 	if (!ret) {
2116 		do {
2117 			reclaim_state.reclaimed_slab = 0;
2118 			shrink_slab(nr_pages, sc.gfp_mask, global_lru_pages());
2119 			ret += reclaim_state.reclaimed_slab;
2120 		} while (ret < nr_pages && reclaim_state.reclaimed_slab > 0);
2121 	}
2122 
2123 out:
2124 	current->reclaim_state = NULL;
2125 
2126 	return ret;
2127 }
2128 #endif
2129 
2130 /* It's optimal to keep kswapds on the same CPUs as their memory, but
2131    not required for correctness.  So if the last cpu in a node goes
2132    away, we get changed to run anywhere: as the first one comes back,
2133    restore their cpu bindings. */
2134 static int __devinit cpu_callback(struct notifier_block *nfb,
2135 				  unsigned long action, void *hcpu)
2136 {
2137 	int nid;
2138 
2139 	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2140 		for_each_node_state(nid, N_HIGH_MEMORY) {
2141 			pg_data_t *pgdat = NODE_DATA(nid);
2142 			node_to_cpumask_ptr(mask, pgdat->node_id);
2143 
2144 			if (any_online_cpu(*mask) < nr_cpu_ids)
2145 				/* One of our CPUs online: restore mask */
2146 				set_cpus_allowed_ptr(pgdat->kswapd, mask);
2147 		}
2148 	}
2149 	return NOTIFY_OK;
2150 }
2151 
2152 /*
2153  * This kswapd start function will be called by init and node-hot-add.
2154  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2155  */
2156 int kswapd_run(int nid)
2157 {
2158 	pg_data_t *pgdat = NODE_DATA(nid);
2159 	int ret = 0;
2160 
2161 	if (pgdat->kswapd)
2162 		return 0;
2163 
2164 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2165 	if (IS_ERR(pgdat->kswapd)) {
2166 		/* failure at boot is fatal */
2167 		BUG_ON(system_state == SYSTEM_BOOTING);
2168 		printk("Failed to start kswapd on node %d\n",nid);
2169 		ret = -1;
2170 	}
2171 	return ret;
2172 }
2173 
2174 static int __init kswapd_init(void)
2175 {
2176 	int nid;
2177 
2178 	swap_setup();
2179 	for_each_node_state(nid, N_HIGH_MEMORY)
2180  		kswapd_run(nid);
2181 	hotcpu_notifier(cpu_callback, 0);
2182 	return 0;
2183 }
2184 
2185 module_init(kswapd_init)
2186 
2187 #ifdef CONFIG_NUMA
2188 /*
2189  * Zone reclaim mode
2190  *
2191  * If non-zero call zone_reclaim when the number of free pages falls below
2192  * the watermarks.
2193  */
2194 int zone_reclaim_mode __read_mostly;
2195 
2196 #define RECLAIM_OFF 0
2197 #define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
2198 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
2199 #define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
2200 
2201 /*
2202  * Priority for ZONE_RECLAIM. This determines the fraction of pages
2203  * of a node considered for each zone_reclaim. 4 scans 1/16th of
2204  * a zone.
2205  */
2206 #define ZONE_RECLAIM_PRIORITY 4
2207 
2208 /*
2209  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2210  * occur.
2211  */
2212 int sysctl_min_unmapped_ratio = 1;
2213 
2214 /*
2215  * If the number of slab pages in a zone grows beyond this percentage then
2216  * slab reclaim needs to occur.
2217  */
2218 int sysctl_min_slab_ratio = 5;
2219 
2220 /*
2221  * Try to free up some pages from this zone through reclaim.
2222  */
2223 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2224 {
2225 	/* Minimum pages needed in order to stay on node */
2226 	const unsigned long nr_pages = 1 << order;
2227 	struct task_struct *p = current;
2228 	struct reclaim_state reclaim_state;
2229 	int priority;
2230 	unsigned long nr_reclaimed = 0;
2231 	struct scan_control sc = {
2232 		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
2233 		.may_swap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2234 		.swap_cluster_max = max_t(unsigned long, nr_pages,
2235 					SWAP_CLUSTER_MAX),
2236 		.gfp_mask = gfp_mask,
2237 		.swappiness = vm_swappiness,
2238 		.isolate_pages = isolate_pages_global,
2239 	};
2240 	unsigned long slab_reclaimable;
2241 
2242 	disable_swap_token();
2243 	cond_resched();
2244 	/*
2245 	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2246 	 * and we also need to be able to write out pages for RECLAIM_WRITE
2247 	 * and RECLAIM_SWAP.
2248 	 */
2249 	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
2250 	reclaim_state.reclaimed_slab = 0;
2251 	p->reclaim_state = &reclaim_state;
2252 
2253 	if (zone_page_state(zone, NR_FILE_PAGES) -
2254 		zone_page_state(zone, NR_FILE_MAPPED) >
2255 		zone->min_unmapped_pages) {
2256 		/*
2257 		 * Free memory by calling shrink zone with increasing
2258 		 * priorities until we have enough memory freed.
2259 		 */
2260 		priority = ZONE_RECLAIM_PRIORITY;
2261 		do {
2262 			note_zone_scanning_priority(zone, priority);
2263 			nr_reclaimed += shrink_zone(priority, zone, &sc);
2264 			priority--;
2265 		} while (priority >= 0 && nr_reclaimed < nr_pages);
2266 	}
2267 
2268 	slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2269 	if (slab_reclaimable > zone->min_slab_pages) {
2270 		/*
2271 		 * shrink_slab() does not currently allow us to determine how
2272 		 * many pages were freed in this zone. So we take the current
2273 		 * number of slab pages and shake the slab until it is reduced
2274 		 * by the same nr_pages that we used for reclaiming unmapped
2275 		 * pages.
2276 		 *
2277 		 * Note that shrink_slab will free memory on all zones and may
2278 		 * take a long time.
2279 		 */
2280 		while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
2281 			zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
2282 				slab_reclaimable - nr_pages)
2283 			;
2284 
2285 		/*
2286 		 * Update nr_reclaimed by the number of slab pages we
2287 		 * reclaimed from this zone.
2288 		 */
2289 		nr_reclaimed += slab_reclaimable -
2290 			zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2291 	}
2292 
2293 	p->reclaim_state = NULL;
2294 	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
2295 	return nr_reclaimed >= nr_pages;
2296 }
2297 
2298 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2299 {
2300 	int node_id;
2301 	int ret;
2302 
2303 	/*
2304 	 * Zone reclaim reclaims unmapped file backed pages and
2305 	 * slab pages if we are over the defined limits.
2306 	 *
2307 	 * A small portion of unmapped file backed pages is needed for
2308 	 * file I/O otherwise pages read by file I/O will be immediately
2309 	 * thrown out if the zone is overallocated. So we do not reclaim
2310 	 * if less than a specified percentage of the zone is used by
2311 	 * unmapped file backed pages.
2312 	 */
2313 	if (zone_page_state(zone, NR_FILE_PAGES) -
2314 	    zone_page_state(zone, NR_FILE_MAPPED) <= zone->min_unmapped_pages
2315 	    && zone_page_state(zone, NR_SLAB_RECLAIMABLE)
2316 			<= zone->min_slab_pages)
2317 		return 0;
2318 
2319 	if (zone_is_all_unreclaimable(zone))
2320 		return 0;
2321 
2322 	/*
2323 	 * Do not scan if the allocation should not be delayed.
2324 	 */
2325 	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
2326 			return 0;
2327 
2328 	/*
2329 	 * Only run zone reclaim on the local zone or on zones that do not
2330 	 * have associated processors. This will favor the local processor
2331 	 * over remote processors and spread off node memory allocations
2332 	 * as wide as possible.
2333 	 */
2334 	node_id = zone_to_nid(zone);
2335 	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
2336 		return 0;
2337 
2338 	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
2339 		return 0;
2340 	ret = __zone_reclaim(zone, gfp_mask, order);
2341 	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
2342 
2343 	return ret;
2344 }
2345 #endif
2346 
2347 #ifdef CONFIG_UNEVICTABLE_LRU
2348 /*
2349  * page_evictable - test whether a page is evictable
2350  * @page: the page to test
2351  * @vma: the VMA in which the page is or will be mapped, may be NULL
2352  *
2353  * Test whether page is evictable--i.e., should be placed on active/inactive
2354  * lists vs unevictable list.  The vma argument is !NULL when called from the
2355  * fault path to determine how to instantate a new page.
2356  *
2357  * Reasons page might not be evictable:
2358  * (1) page's mapping marked unevictable
2359  * (2) page is part of an mlocked VMA
2360  *
2361  */
2362 int page_evictable(struct page *page, struct vm_area_struct *vma)
2363 {
2364 
2365 	if (mapping_unevictable(page_mapping(page)))
2366 		return 0;
2367 
2368 	if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
2369 		return 0;
2370 
2371 	return 1;
2372 }
2373 
2374 /**
2375  * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
2376  * @page: page to check evictability and move to appropriate lru list
2377  * @zone: zone page is in
2378  *
2379  * Checks a page for evictability and moves the page to the appropriate
2380  * zone lru list.
2381  *
2382  * Restrictions: zone->lru_lock must be held, page must be on LRU and must
2383  * have PageUnevictable set.
2384  */
2385 static void check_move_unevictable_page(struct page *page, struct zone *zone)
2386 {
2387 	VM_BUG_ON(PageActive(page));
2388 
2389 retry:
2390 	ClearPageUnevictable(page);
2391 	if (page_evictable(page, NULL)) {
2392 		enum lru_list l = LRU_INACTIVE_ANON + page_is_file_cache(page);
2393 
2394 		__dec_zone_state(zone, NR_UNEVICTABLE);
2395 		list_move(&page->lru, &zone->lru[l].list);
2396 		__inc_zone_state(zone, NR_INACTIVE_ANON + l);
2397 		__count_vm_event(UNEVICTABLE_PGRESCUED);
2398 	} else {
2399 		/*
2400 		 * rotate unevictable list
2401 		 */
2402 		SetPageUnevictable(page);
2403 		list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
2404 		if (page_evictable(page, NULL))
2405 			goto retry;
2406 	}
2407 }
2408 
2409 /**
2410  * scan_mapping_unevictable_pages - scan an address space for evictable pages
2411  * @mapping: struct address_space to scan for evictable pages
2412  *
2413  * Scan all pages in mapping.  Check unevictable pages for
2414  * evictability and move them to the appropriate zone lru list.
2415  */
2416 void scan_mapping_unevictable_pages(struct address_space *mapping)
2417 {
2418 	pgoff_t next = 0;
2419 	pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
2420 			 PAGE_CACHE_SHIFT;
2421 	struct zone *zone;
2422 	struct pagevec pvec;
2423 
2424 	if (mapping->nrpages == 0)
2425 		return;
2426 
2427 	pagevec_init(&pvec, 0);
2428 	while (next < end &&
2429 		pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
2430 		int i;
2431 		int pg_scanned = 0;
2432 
2433 		zone = NULL;
2434 
2435 		for (i = 0; i < pagevec_count(&pvec); i++) {
2436 			struct page *page = pvec.pages[i];
2437 			pgoff_t page_index = page->index;
2438 			struct zone *pagezone = page_zone(page);
2439 
2440 			pg_scanned++;
2441 			if (page_index > next)
2442 				next = page_index;
2443 			next++;
2444 
2445 			if (pagezone != zone) {
2446 				if (zone)
2447 					spin_unlock_irq(&zone->lru_lock);
2448 				zone = pagezone;
2449 				spin_lock_irq(&zone->lru_lock);
2450 			}
2451 
2452 			if (PageLRU(page) && PageUnevictable(page))
2453 				check_move_unevictable_page(page, zone);
2454 		}
2455 		if (zone)
2456 			spin_unlock_irq(&zone->lru_lock);
2457 		pagevec_release(&pvec);
2458 
2459 		count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
2460 	}
2461 
2462 }
2463 
2464 /**
2465  * scan_zone_unevictable_pages - check unevictable list for evictable pages
2466  * @zone - zone of which to scan the unevictable list
2467  *
2468  * Scan @zone's unevictable LRU lists to check for pages that have become
2469  * evictable.  Move those that have to @zone's inactive list where they
2470  * become candidates for reclaim, unless shrink_inactive_zone() decides
2471  * to reactivate them.  Pages that are still unevictable are rotated
2472  * back onto @zone's unevictable list.
2473  */
2474 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
2475 void scan_zone_unevictable_pages(struct zone *zone)
2476 {
2477 	struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
2478 	unsigned long scan;
2479 	unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
2480 
2481 	while (nr_to_scan > 0) {
2482 		unsigned long batch_size = min(nr_to_scan,
2483 						SCAN_UNEVICTABLE_BATCH_SIZE);
2484 
2485 		spin_lock_irq(&zone->lru_lock);
2486 		for (scan = 0;  scan < batch_size; scan++) {
2487 			struct page *page = lru_to_page(l_unevictable);
2488 
2489 			if (!trylock_page(page))
2490 				continue;
2491 
2492 			prefetchw_prev_lru_page(page, l_unevictable, flags);
2493 
2494 			if (likely(PageLRU(page) && PageUnevictable(page)))
2495 				check_move_unevictable_page(page, zone);
2496 
2497 			unlock_page(page);
2498 		}
2499 		spin_unlock_irq(&zone->lru_lock);
2500 
2501 		nr_to_scan -= batch_size;
2502 	}
2503 }
2504 
2505 
2506 /**
2507  * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
2508  *
2509  * A really big hammer:  scan all zones' unevictable LRU lists to check for
2510  * pages that have become evictable.  Move those back to the zones'
2511  * inactive list where they become candidates for reclaim.
2512  * This occurs when, e.g., we have unswappable pages on the unevictable lists,
2513  * and we add swap to the system.  As such, it runs in the context of a task
2514  * that has possibly/probably made some previously unevictable pages
2515  * evictable.
2516  */
2517 void scan_all_zones_unevictable_pages(void)
2518 {
2519 	struct zone *zone;
2520 
2521 	for_each_zone(zone) {
2522 		scan_zone_unevictable_pages(zone);
2523 	}
2524 }
2525 
2526 /*
2527  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
2528  * all nodes' unevictable lists for evictable pages
2529  */
2530 unsigned long scan_unevictable_pages;
2531 
2532 int scan_unevictable_handler(struct ctl_table *table, int write,
2533 			   struct file *file, void __user *buffer,
2534 			   size_t *length, loff_t *ppos)
2535 {
2536 	proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
2537 
2538 	if (write && *(unsigned long *)table->data)
2539 		scan_all_zones_unevictable_pages();
2540 
2541 	scan_unevictable_pages = 0;
2542 	return 0;
2543 }
2544 
2545 /*
2546  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
2547  * a specified node's per zone unevictable lists for evictable pages.
2548  */
2549 
2550 static ssize_t read_scan_unevictable_node(struct sys_device *dev,
2551 					  struct sysdev_attribute *attr,
2552 					  char *buf)
2553 {
2554 	return sprintf(buf, "0\n");	/* always zero; should fit... */
2555 }
2556 
2557 static ssize_t write_scan_unevictable_node(struct sys_device *dev,
2558 					   struct sysdev_attribute *attr,
2559 					const char *buf, size_t count)
2560 {
2561 	struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
2562 	struct zone *zone;
2563 	unsigned long res;
2564 	unsigned long req = strict_strtoul(buf, 10, &res);
2565 
2566 	if (!req)
2567 		return 1;	/* zero is no-op */
2568 
2569 	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2570 		if (!populated_zone(zone))
2571 			continue;
2572 		scan_zone_unevictable_pages(zone);
2573 	}
2574 	return 1;
2575 }
2576 
2577 
2578 static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
2579 			read_scan_unevictable_node,
2580 			write_scan_unevictable_node);
2581 
2582 int scan_unevictable_register_node(struct node *node)
2583 {
2584 	return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
2585 }
2586 
2587 void scan_unevictable_unregister_node(struct node *node)
2588 {
2589 	sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
2590 }
2591 
2592 #endif
2593