xref: /linux/mm/vmscan.c (revision 6ee738610f41b59733f63718f0bdbcba7d3a3f12)
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13 
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h>	/* for try_to_release_page(),
27 					buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41 #include <linux/delayacct.h>
42 #include <linux/sysctl.h>
43 
44 #include <asm/tlbflush.h>
45 #include <asm/div64.h>
46 
47 #include <linux/swapops.h>
48 
49 #include "internal.h"
50 
51 struct scan_control {
52 	/* Incremented by the number of inactive pages that were scanned */
53 	unsigned long nr_scanned;
54 
55 	/* Number of pages freed so far during a call to shrink_zones() */
56 	unsigned long nr_reclaimed;
57 
58 	/* This context's GFP mask */
59 	gfp_t gfp_mask;
60 
61 	int may_writepage;
62 
63 	/* Can mapped pages be reclaimed? */
64 	int may_unmap;
65 
66 	/* Can pages be swapped as part of reclaim? */
67 	int may_swap;
68 
69 	/* This context's SWAP_CLUSTER_MAX. If freeing memory for
70 	 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
71 	 * In this context, it doesn't matter that we scan the
72 	 * whole list at once. */
73 	int swap_cluster_max;
74 
75 	int swappiness;
76 
77 	int all_unreclaimable;
78 
79 	int order;
80 
81 	/* Which cgroup do we reclaim from */
82 	struct mem_cgroup *mem_cgroup;
83 
84 	/*
85 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
86 	 * are scanned.
87 	 */
88 	nodemask_t	*nodemask;
89 
90 	/* Pluggable isolate pages callback */
91 	unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst,
92 			unsigned long *scanned, int order, int mode,
93 			struct zone *z, struct mem_cgroup *mem_cont,
94 			int active, int file);
95 };
96 
97 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
98 
99 #ifdef ARCH_HAS_PREFETCH
100 #define prefetch_prev_lru_page(_page, _base, _field)			\
101 	do {								\
102 		if ((_page)->lru.prev != _base) {			\
103 			struct page *prev;				\
104 									\
105 			prev = lru_to_page(&(_page->lru));		\
106 			prefetch(&prev->_field);			\
107 		}							\
108 	} while (0)
109 #else
110 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
111 #endif
112 
113 #ifdef ARCH_HAS_PREFETCHW
114 #define prefetchw_prev_lru_page(_page, _base, _field)			\
115 	do {								\
116 		if ((_page)->lru.prev != _base) {			\
117 			struct page *prev;				\
118 									\
119 			prev = lru_to_page(&(_page->lru));		\
120 			prefetchw(&prev->_field);			\
121 		}							\
122 	} while (0)
123 #else
124 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
125 #endif
126 
127 /*
128  * From 0 .. 100.  Higher means more swappy.
129  */
130 int vm_swappiness = 60;
131 long vm_total_pages;	/* The total number of pages which the VM controls */
132 
133 static LIST_HEAD(shrinker_list);
134 static DECLARE_RWSEM(shrinker_rwsem);
135 
136 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
137 #define scanning_global_lru(sc)	(!(sc)->mem_cgroup)
138 #else
139 #define scanning_global_lru(sc)	(1)
140 #endif
141 
142 static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
143 						  struct scan_control *sc)
144 {
145 	if (!scanning_global_lru(sc))
146 		return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
147 
148 	return &zone->reclaim_stat;
149 }
150 
151 static unsigned long zone_nr_lru_pages(struct zone *zone,
152 				struct scan_control *sc, enum lru_list lru)
153 {
154 	if (!scanning_global_lru(sc))
155 		return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru);
156 
157 	return zone_page_state(zone, NR_LRU_BASE + lru);
158 }
159 
160 
161 /*
162  * Add a shrinker callback to be called from the vm
163  */
164 void register_shrinker(struct shrinker *shrinker)
165 {
166 	shrinker->nr = 0;
167 	down_write(&shrinker_rwsem);
168 	list_add_tail(&shrinker->list, &shrinker_list);
169 	up_write(&shrinker_rwsem);
170 }
171 EXPORT_SYMBOL(register_shrinker);
172 
173 /*
174  * Remove one
175  */
176 void unregister_shrinker(struct shrinker *shrinker)
177 {
178 	down_write(&shrinker_rwsem);
179 	list_del(&shrinker->list);
180 	up_write(&shrinker_rwsem);
181 }
182 EXPORT_SYMBOL(unregister_shrinker);
183 
184 #define SHRINK_BATCH 128
185 /*
186  * Call the shrink functions to age shrinkable caches
187  *
188  * Here we assume it costs one seek to replace a lru page and that it also
189  * takes a seek to recreate a cache object.  With this in mind we age equal
190  * percentages of the lru and ageable caches.  This should balance the seeks
191  * generated by these structures.
192  *
193  * If the vm encountered mapped pages on the LRU it increase the pressure on
194  * slab to avoid swapping.
195  *
196  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
197  *
198  * `lru_pages' represents the number of on-LRU pages in all the zones which
199  * are eligible for the caller's allocation attempt.  It is used for balancing
200  * slab reclaim versus page reclaim.
201  *
202  * Returns the number of slab objects which we shrunk.
203  */
204 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
205 			unsigned long lru_pages)
206 {
207 	struct shrinker *shrinker;
208 	unsigned long ret = 0;
209 
210 	if (scanned == 0)
211 		scanned = SWAP_CLUSTER_MAX;
212 
213 	if (!down_read_trylock(&shrinker_rwsem))
214 		return 1;	/* Assume we'll be able to shrink next time */
215 
216 	list_for_each_entry(shrinker, &shrinker_list, list) {
217 		unsigned long long delta;
218 		unsigned long total_scan;
219 		unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask);
220 
221 		delta = (4 * scanned) / shrinker->seeks;
222 		delta *= max_pass;
223 		do_div(delta, lru_pages + 1);
224 		shrinker->nr += delta;
225 		if (shrinker->nr < 0) {
226 			printk(KERN_ERR "shrink_slab: %pF negative objects to "
227 			       "delete nr=%ld\n",
228 			       shrinker->shrink, shrinker->nr);
229 			shrinker->nr = max_pass;
230 		}
231 
232 		/*
233 		 * Avoid risking looping forever due to too large nr value:
234 		 * never try to free more than twice the estimate number of
235 		 * freeable entries.
236 		 */
237 		if (shrinker->nr > max_pass * 2)
238 			shrinker->nr = max_pass * 2;
239 
240 		total_scan = shrinker->nr;
241 		shrinker->nr = 0;
242 
243 		while (total_scan >= SHRINK_BATCH) {
244 			long this_scan = SHRINK_BATCH;
245 			int shrink_ret;
246 			int nr_before;
247 
248 			nr_before = (*shrinker->shrink)(0, gfp_mask);
249 			shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask);
250 			if (shrink_ret == -1)
251 				break;
252 			if (shrink_ret < nr_before)
253 				ret += nr_before - shrink_ret;
254 			count_vm_events(SLABS_SCANNED, this_scan);
255 			total_scan -= this_scan;
256 
257 			cond_resched();
258 		}
259 
260 		shrinker->nr += total_scan;
261 	}
262 	up_read(&shrinker_rwsem);
263 	return ret;
264 }
265 
266 /* Called without lock on whether page is mapped, so answer is unstable */
267 static inline int page_mapping_inuse(struct page *page)
268 {
269 	struct address_space *mapping;
270 
271 	/* Page is in somebody's page tables. */
272 	if (page_mapped(page))
273 		return 1;
274 
275 	/* Be more reluctant to reclaim swapcache than pagecache */
276 	if (PageSwapCache(page))
277 		return 1;
278 
279 	mapping = page_mapping(page);
280 	if (!mapping)
281 		return 0;
282 
283 	/* File is mmap'd by somebody? */
284 	return mapping_mapped(mapping);
285 }
286 
287 static inline int is_page_cache_freeable(struct page *page)
288 {
289 	/*
290 	 * A freeable page cache page is referenced only by the caller
291 	 * that isolated the page, the page cache radix tree and
292 	 * optional buffer heads at page->private.
293 	 */
294 	return page_count(page) - page_has_private(page) == 2;
295 }
296 
297 static int may_write_to_queue(struct backing_dev_info *bdi)
298 {
299 	if (current->flags & PF_SWAPWRITE)
300 		return 1;
301 	if (!bdi_write_congested(bdi))
302 		return 1;
303 	if (bdi == current->backing_dev_info)
304 		return 1;
305 	return 0;
306 }
307 
308 /*
309  * We detected a synchronous write error writing a page out.  Probably
310  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
311  * fsync(), msync() or close().
312  *
313  * The tricky part is that after writepage we cannot touch the mapping: nothing
314  * prevents it from being freed up.  But we have a ref on the page and once
315  * that page is locked, the mapping is pinned.
316  *
317  * We're allowed to run sleeping lock_page() here because we know the caller has
318  * __GFP_FS.
319  */
320 static void handle_write_error(struct address_space *mapping,
321 				struct page *page, int error)
322 {
323 	lock_page(page);
324 	if (page_mapping(page) == mapping)
325 		mapping_set_error(mapping, error);
326 	unlock_page(page);
327 }
328 
329 /* Request for sync pageout. */
330 enum pageout_io {
331 	PAGEOUT_IO_ASYNC,
332 	PAGEOUT_IO_SYNC,
333 };
334 
335 /* possible outcome of pageout() */
336 typedef enum {
337 	/* failed to write page out, page is locked */
338 	PAGE_KEEP,
339 	/* move page to the active list, page is locked */
340 	PAGE_ACTIVATE,
341 	/* page has been sent to the disk successfully, page is unlocked */
342 	PAGE_SUCCESS,
343 	/* page is clean and locked */
344 	PAGE_CLEAN,
345 } pageout_t;
346 
347 /*
348  * pageout is called by shrink_page_list() for each dirty page.
349  * Calls ->writepage().
350  */
351 static pageout_t pageout(struct page *page, struct address_space *mapping,
352 						enum pageout_io sync_writeback)
353 {
354 	/*
355 	 * If the page is dirty, only perform writeback if that write
356 	 * will be non-blocking.  To prevent this allocation from being
357 	 * stalled by pagecache activity.  But note that there may be
358 	 * stalls if we need to run get_block().  We could test
359 	 * PagePrivate for that.
360 	 *
361 	 * If this process is currently in generic_file_write() against
362 	 * this page's queue, we can perform writeback even if that
363 	 * will block.
364 	 *
365 	 * If the page is swapcache, write it back even if that would
366 	 * block, for some throttling. This happens by accident, because
367 	 * swap_backing_dev_info is bust: it doesn't reflect the
368 	 * congestion state of the swapdevs.  Easy to fix, if needed.
369 	 */
370 	if (!is_page_cache_freeable(page))
371 		return PAGE_KEEP;
372 	if (!mapping) {
373 		/*
374 		 * Some data journaling orphaned pages can have
375 		 * page->mapping == NULL while being dirty with clean buffers.
376 		 */
377 		if (page_has_private(page)) {
378 			if (try_to_free_buffers(page)) {
379 				ClearPageDirty(page);
380 				printk("%s: orphaned page\n", __func__);
381 				return PAGE_CLEAN;
382 			}
383 		}
384 		return PAGE_KEEP;
385 	}
386 	if (mapping->a_ops->writepage == NULL)
387 		return PAGE_ACTIVATE;
388 	if (!may_write_to_queue(mapping->backing_dev_info))
389 		return PAGE_KEEP;
390 
391 	if (clear_page_dirty_for_io(page)) {
392 		int res;
393 		struct writeback_control wbc = {
394 			.sync_mode = WB_SYNC_NONE,
395 			.nr_to_write = SWAP_CLUSTER_MAX,
396 			.range_start = 0,
397 			.range_end = LLONG_MAX,
398 			.nonblocking = 1,
399 			.for_reclaim = 1,
400 		};
401 
402 		SetPageReclaim(page);
403 		res = mapping->a_ops->writepage(page, &wbc);
404 		if (res < 0)
405 			handle_write_error(mapping, page, res);
406 		if (res == AOP_WRITEPAGE_ACTIVATE) {
407 			ClearPageReclaim(page);
408 			return PAGE_ACTIVATE;
409 		}
410 
411 		/*
412 		 * Wait on writeback if requested to. This happens when
413 		 * direct reclaiming a large contiguous area and the
414 		 * first attempt to free a range of pages fails.
415 		 */
416 		if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
417 			wait_on_page_writeback(page);
418 
419 		if (!PageWriteback(page)) {
420 			/* synchronous write or broken a_ops? */
421 			ClearPageReclaim(page);
422 		}
423 		inc_zone_page_state(page, NR_VMSCAN_WRITE);
424 		return PAGE_SUCCESS;
425 	}
426 
427 	return PAGE_CLEAN;
428 }
429 
430 /*
431  * Same as remove_mapping, but if the page is removed from the mapping, it
432  * gets returned with a refcount of 0.
433  */
434 static int __remove_mapping(struct address_space *mapping, struct page *page)
435 {
436 	BUG_ON(!PageLocked(page));
437 	BUG_ON(mapping != page_mapping(page));
438 
439 	spin_lock_irq(&mapping->tree_lock);
440 	/*
441 	 * The non racy check for a busy page.
442 	 *
443 	 * Must be careful with the order of the tests. When someone has
444 	 * a ref to the page, it may be possible that they dirty it then
445 	 * drop the reference. So if PageDirty is tested before page_count
446 	 * here, then the following race may occur:
447 	 *
448 	 * get_user_pages(&page);
449 	 * [user mapping goes away]
450 	 * write_to(page);
451 	 *				!PageDirty(page)    [good]
452 	 * SetPageDirty(page);
453 	 * put_page(page);
454 	 *				!page_count(page)   [good, discard it]
455 	 *
456 	 * [oops, our write_to data is lost]
457 	 *
458 	 * Reversing the order of the tests ensures such a situation cannot
459 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
460 	 * load is not satisfied before that of page->_count.
461 	 *
462 	 * Note that if SetPageDirty is always performed via set_page_dirty,
463 	 * and thus under tree_lock, then this ordering is not required.
464 	 */
465 	if (!page_freeze_refs(page, 2))
466 		goto cannot_free;
467 	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
468 	if (unlikely(PageDirty(page))) {
469 		page_unfreeze_refs(page, 2);
470 		goto cannot_free;
471 	}
472 
473 	if (PageSwapCache(page)) {
474 		swp_entry_t swap = { .val = page_private(page) };
475 		__delete_from_swap_cache(page);
476 		spin_unlock_irq(&mapping->tree_lock);
477 		swapcache_free(swap, page);
478 	} else {
479 		__remove_from_page_cache(page);
480 		spin_unlock_irq(&mapping->tree_lock);
481 		mem_cgroup_uncharge_cache_page(page);
482 	}
483 
484 	return 1;
485 
486 cannot_free:
487 	spin_unlock_irq(&mapping->tree_lock);
488 	return 0;
489 }
490 
491 /*
492  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
493  * someone else has a ref on the page, abort and return 0.  If it was
494  * successfully detached, return 1.  Assumes the caller has a single ref on
495  * this page.
496  */
497 int remove_mapping(struct address_space *mapping, struct page *page)
498 {
499 	if (__remove_mapping(mapping, page)) {
500 		/*
501 		 * Unfreezing the refcount with 1 rather than 2 effectively
502 		 * drops the pagecache ref for us without requiring another
503 		 * atomic operation.
504 		 */
505 		page_unfreeze_refs(page, 1);
506 		return 1;
507 	}
508 	return 0;
509 }
510 
511 /**
512  * putback_lru_page - put previously isolated page onto appropriate LRU list
513  * @page: page to be put back to appropriate lru list
514  *
515  * Add previously isolated @page to appropriate LRU list.
516  * Page may still be unevictable for other reasons.
517  *
518  * lru_lock must not be held, interrupts must be enabled.
519  */
520 void putback_lru_page(struct page *page)
521 {
522 	int lru;
523 	int active = !!TestClearPageActive(page);
524 	int was_unevictable = PageUnevictable(page);
525 
526 	VM_BUG_ON(PageLRU(page));
527 
528 redo:
529 	ClearPageUnevictable(page);
530 
531 	if (page_evictable(page, NULL)) {
532 		/*
533 		 * For evictable pages, we can use the cache.
534 		 * In event of a race, worst case is we end up with an
535 		 * unevictable page on [in]active list.
536 		 * We know how to handle that.
537 		 */
538 		lru = active + page_lru_base_type(page);
539 		lru_cache_add_lru(page, lru);
540 	} else {
541 		/*
542 		 * Put unevictable pages directly on zone's unevictable
543 		 * list.
544 		 */
545 		lru = LRU_UNEVICTABLE;
546 		add_page_to_unevictable_list(page);
547 		/*
548 		 * When racing with an mlock clearing (page is
549 		 * unlocked), make sure that if the other thread does
550 		 * not observe our setting of PG_lru and fails
551 		 * isolation, we see PG_mlocked cleared below and move
552 		 * the page back to the evictable list.
553 		 *
554 		 * The other side is TestClearPageMlocked().
555 		 */
556 		smp_mb();
557 	}
558 
559 	/*
560 	 * page's status can change while we move it among lru. If an evictable
561 	 * page is on unevictable list, it never be freed. To avoid that,
562 	 * check after we added it to the list, again.
563 	 */
564 	if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
565 		if (!isolate_lru_page(page)) {
566 			put_page(page);
567 			goto redo;
568 		}
569 		/* This means someone else dropped this page from LRU
570 		 * So, it will be freed or putback to LRU again. There is
571 		 * nothing to do here.
572 		 */
573 	}
574 
575 	if (was_unevictable && lru != LRU_UNEVICTABLE)
576 		count_vm_event(UNEVICTABLE_PGRESCUED);
577 	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
578 		count_vm_event(UNEVICTABLE_PGCULLED);
579 
580 	put_page(page);		/* drop ref from isolate */
581 }
582 
583 /*
584  * shrink_page_list() returns the number of reclaimed pages
585  */
586 static unsigned long shrink_page_list(struct list_head *page_list,
587 					struct scan_control *sc,
588 					enum pageout_io sync_writeback)
589 {
590 	LIST_HEAD(ret_pages);
591 	struct pagevec freed_pvec;
592 	int pgactivate = 0;
593 	unsigned long nr_reclaimed = 0;
594 	unsigned long vm_flags;
595 
596 	cond_resched();
597 
598 	pagevec_init(&freed_pvec, 1);
599 	while (!list_empty(page_list)) {
600 		struct address_space *mapping;
601 		struct page *page;
602 		int may_enter_fs;
603 		int referenced;
604 
605 		cond_resched();
606 
607 		page = lru_to_page(page_list);
608 		list_del(&page->lru);
609 
610 		if (!trylock_page(page))
611 			goto keep;
612 
613 		VM_BUG_ON(PageActive(page));
614 
615 		sc->nr_scanned++;
616 
617 		if (unlikely(!page_evictable(page, NULL)))
618 			goto cull_mlocked;
619 
620 		if (!sc->may_unmap && page_mapped(page))
621 			goto keep_locked;
622 
623 		/* Double the slab pressure for mapped and swapcache pages */
624 		if (page_mapped(page) || PageSwapCache(page))
625 			sc->nr_scanned++;
626 
627 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
628 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
629 
630 		if (PageWriteback(page)) {
631 			/*
632 			 * Synchronous reclaim is performed in two passes,
633 			 * first an asynchronous pass over the list to
634 			 * start parallel writeback, and a second synchronous
635 			 * pass to wait for the IO to complete.  Wait here
636 			 * for any page for which writeback has already
637 			 * started.
638 			 */
639 			if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
640 				wait_on_page_writeback(page);
641 			else
642 				goto keep_locked;
643 		}
644 
645 		referenced = page_referenced(page, 1,
646 						sc->mem_cgroup, &vm_flags);
647 		/*
648 		 * In active use or really unfreeable?  Activate it.
649 		 * If page which have PG_mlocked lost isoltation race,
650 		 * try_to_unmap moves it to unevictable list
651 		 */
652 		if (sc->order <= PAGE_ALLOC_COSTLY_ORDER &&
653 					referenced && page_mapping_inuse(page)
654 					&& !(vm_flags & VM_LOCKED))
655 			goto activate_locked;
656 
657 		/*
658 		 * Anonymous process memory has backing store?
659 		 * Try to allocate it some swap space here.
660 		 */
661 		if (PageAnon(page) && !PageSwapCache(page)) {
662 			if (!(sc->gfp_mask & __GFP_IO))
663 				goto keep_locked;
664 			if (!add_to_swap(page))
665 				goto activate_locked;
666 			may_enter_fs = 1;
667 		}
668 
669 		mapping = page_mapping(page);
670 
671 		/*
672 		 * The page is mapped into the page tables of one or more
673 		 * processes. Try to unmap it here.
674 		 */
675 		if (page_mapped(page) && mapping) {
676 			switch (try_to_unmap(page, TTU_UNMAP)) {
677 			case SWAP_FAIL:
678 				goto activate_locked;
679 			case SWAP_AGAIN:
680 				goto keep_locked;
681 			case SWAP_MLOCK:
682 				goto cull_mlocked;
683 			case SWAP_SUCCESS:
684 				; /* try to free the page below */
685 			}
686 		}
687 
688 		if (PageDirty(page)) {
689 			if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && referenced)
690 				goto keep_locked;
691 			if (!may_enter_fs)
692 				goto keep_locked;
693 			if (!sc->may_writepage)
694 				goto keep_locked;
695 
696 			/* Page is dirty, try to write it out here */
697 			switch (pageout(page, mapping, sync_writeback)) {
698 			case PAGE_KEEP:
699 				goto keep_locked;
700 			case PAGE_ACTIVATE:
701 				goto activate_locked;
702 			case PAGE_SUCCESS:
703 				if (PageWriteback(page) || PageDirty(page))
704 					goto keep;
705 				/*
706 				 * A synchronous write - probably a ramdisk.  Go
707 				 * ahead and try to reclaim the page.
708 				 */
709 				if (!trylock_page(page))
710 					goto keep;
711 				if (PageDirty(page) || PageWriteback(page))
712 					goto keep_locked;
713 				mapping = page_mapping(page);
714 			case PAGE_CLEAN:
715 				; /* try to free the page below */
716 			}
717 		}
718 
719 		/*
720 		 * If the page has buffers, try to free the buffer mappings
721 		 * associated with this page. If we succeed we try to free
722 		 * the page as well.
723 		 *
724 		 * We do this even if the page is PageDirty().
725 		 * try_to_release_page() does not perform I/O, but it is
726 		 * possible for a page to have PageDirty set, but it is actually
727 		 * clean (all its buffers are clean).  This happens if the
728 		 * buffers were written out directly, with submit_bh(). ext3
729 		 * will do this, as well as the blockdev mapping.
730 		 * try_to_release_page() will discover that cleanness and will
731 		 * drop the buffers and mark the page clean - it can be freed.
732 		 *
733 		 * Rarely, pages can have buffers and no ->mapping.  These are
734 		 * the pages which were not successfully invalidated in
735 		 * truncate_complete_page().  We try to drop those buffers here
736 		 * and if that worked, and the page is no longer mapped into
737 		 * process address space (page_count == 1) it can be freed.
738 		 * Otherwise, leave the page on the LRU so it is swappable.
739 		 */
740 		if (page_has_private(page)) {
741 			if (!try_to_release_page(page, sc->gfp_mask))
742 				goto activate_locked;
743 			if (!mapping && page_count(page) == 1) {
744 				unlock_page(page);
745 				if (put_page_testzero(page))
746 					goto free_it;
747 				else {
748 					/*
749 					 * rare race with speculative reference.
750 					 * the speculative reference will free
751 					 * this page shortly, so we may
752 					 * increment nr_reclaimed here (and
753 					 * leave it off the LRU).
754 					 */
755 					nr_reclaimed++;
756 					continue;
757 				}
758 			}
759 		}
760 
761 		if (!mapping || !__remove_mapping(mapping, page))
762 			goto keep_locked;
763 
764 		/*
765 		 * At this point, we have no other references and there is
766 		 * no way to pick any more up (removed from LRU, removed
767 		 * from pagecache). Can use non-atomic bitops now (and
768 		 * we obviously don't have to worry about waking up a process
769 		 * waiting on the page lock, because there are no references.
770 		 */
771 		__clear_page_locked(page);
772 free_it:
773 		nr_reclaimed++;
774 		if (!pagevec_add(&freed_pvec, page)) {
775 			__pagevec_free(&freed_pvec);
776 			pagevec_reinit(&freed_pvec);
777 		}
778 		continue;
779 
780 cull_mlocked:
781 		if (PageSwapCache(page))
782 			try_to_free_swap(page);
783 		unlock_page(page);
784 		putback_lru_page(page);
785 		continue;
786 
787 activate_locked:
788 		/* Not a candidate for swapping, so reclaim swap space. */
789 		if (PageSwapCache(page) && vm_swap_full())
790 			try_to_free_swap(page);
791 		VM_BUG_ON(PageActive(page));
792 		SetPageActive(page);
793 		pgactivate++;
794 keep_locked:
795 		unlock_page(page);
796 keep:
797 		list_add(&page->lru, &ret_pages);
798 		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
799 	}
800 	list_splice(&ret_pages, page_list);
801 	if (pagevec_count(&freed_pvec))
802 		__pagevec_free(&freed_pvec);
803 	count_vm_events(PGACTIVATE, pgactivate);
804 	return nr_reclaimed;
805 }
806 
807 /* LRU Isolation modes. */
808 #define ISOLATE_INACTIVE 0	/* Isolate inactive pages. */
809 #define ISOLATE_ACTIVE 1	/* Isolate active pages. */
810 #define ISOLATE_BOTH 2		/* Isolate both active and inactive pages. */
811 
812 /*
813  * Attempt to remove the specified page from its LRU.  Only take this page
814  * if it is of the appropriate PageActive status.  Pages which are being
815  * freed elsewhere are also ignored.
816  *
817  * page:	page to consider
818  * mode:	one of the LRU isolation modes defined above
819  *
820  * returns 0 on success, -ve errno on failure.
821  */
822 int __isolate_lru_page(struct page *page, int mode, int file)
823 {
824 	int ret = -EINVAL;
825 
826 	/* Only take pages on the LRU. */
827 	if (!PageLRU(page))
828 		return ret;
829 
830 	/*
831 	 * When checking the active state, we need to be sure we are
832 	 * dealing with comparible boolean values.  Take the logical not
833 	 * of each.
834 	 */
835 	if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
836 		return ret;
837 
838 	if (mode != ISOLATE_BOTH && page_is_file_cache(page) != file)
839 		return ret;
840 
841 	/*
842 	 * When this function is being called for lumpy reclaim, we
843 	 * initially look into all LRU pages, active, inactive and
844 	 * unevictable; only give shrink_page_list evictable pages.
845 	 */
846 	if (PageUnevictable(page))
847 		return ret;
848 
849 	ret = -EBUSY;
850 
851 	if (likely(get_page_unless_zero(page))) {
852 		/*
853 		 * Be careful not to clear PageLRU until after we're
854 		 * sure the page is not being freed elsewhere -- the
855 		 * page release code relies on it.
856 		 */
857 		ClearPageLRU(page);
858 		ret = 0;
859 	}
860 
861 	return ret;
862 }
863 
864 /*
865  * zone->lru_lock is heavily contended.  Some of the functions that
866  * shrink the lists perform better by taking out a batch of pages
867  * and working on them outside the LRU lock.
868  *
869  * For pagecache intensive workloads, this function is the hottest
870  * spot in the kernel (apart from copy_*_user functions).
871  *
872  * Appropriate locks must be held before calling this function.
873  *
874  * @nr_to_scan:	The number of pages to look through on the list.
875  * @src:	The LRU list to pull pages off.
876  * @dst:	The temp list to put pages on to.
877  * @scanned:	The number of pages that were scanned.
878  * @order:	The caller's attempted allocation order
879  * @mode:	One of the LRU isolation modes
880  * @file:	True [1] if isolating file [!anon] pages
881  *
882  * returns how many pages were moved onto *@dst.
883  */
884 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
885 		struct list_head *src, struct list_head *dst,
886 		unsigned long *scanned, int order, int mode, int file)
887 {
888 	unsigned long nr_taken = 0;
889 	unsigned long scan;
890 
891 	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
892 		struct page *page;
893 		unsigned long pfn;
894 		unsigned long end_pfn;
895 		unsigned long page_pfn;
896 		int zone_id;
897 
898 		page = lru_to_page(src);
899 		prefetchw_prev_lru_page(page, src, flags);
900 
901 		VM_BUG_ON(!PageLRU(page));
902 
903 		switch (__isolate_lru_page(page, mode, file)) {
904 		case 0:
905 			list_move(&page->lru, dst);
906 			mem_cgroup_del_lru(page);
907 			nr_taken++;
908 			break;
909 
910 		case -EBUSY:
911 			/* else it is being freed elsewhere */
912 			list_move(&page->lru, src);
913 			mem_cgroup_rotate_lru_list(page, page_lru(page));
914 			continue;
915 
916 		default:
917 			BUG();
918 		}
919 
920 		if (!order)
921 			continue;
922 
923 		/*
924 		 * Attempt to take all pages in the order aligned region
925 		 * surrounding the tag page.  Only take those pages of
926 		 * the same active state as that tag page.  We may safely
927 		 * round the target page pfn down to the requested order
928 		 * as the mem_map is guarenteed valid out to MAX_ORDER,
929 		 * where that page is in a different zone we will detect
930 		 * it from its zone id and abort this block scan.
931 		 */
932 		zone_id = page_zone_id(page);
933 		page_pfn = page_to_pfn(page);
934 		pfn = page_pfn & ~((1 << order) - 1);
935 		end_pfn = pfn + (1 << order);
936 		for (; pfn < end_pfn; pfn++) {
937 			struct page *cursor_page;
938 
939 			/* The target page is in the block, ignore it. */
940 			if (unlikely(pfn == page_pfn))
941 				continue;
942 
943 			/* Avoid holes within the zone. */
944 			if (unlikely(!pfn_valid_within(pfn)))
945 				break;
946 
947 			cursor_page = pfn_to_page(pfn);
948 
949 			/* Check that we have not crossed a zone boundary. */
950 			if (unlikely(page_zone_id(cursor_page) != zone_id))
951 				continue;
952 
953 			/*
954 			 * If we don't have enough swap space, reclaiming of
955 			 * anon page which don't already have a swap slot is
956 			 * pointless.
957 			 */
958 			if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
959 					!PageSwapCache(cursor_page))
960 				continue;
961 
962 			if (__isolate_lru_page(cursor_page, mode, file) == 0) {
963 				list_move(&cursor_page->lru, dst);
964 				mem_cgroup_del_lru(cursor_page);
965 				nr_taken++;
966 				scan++;
967 			}
968 		}
969 	}
970 
971 	*scanned = scan;
972 	return nr_taken;
973 }
974 
975 static unsigned long isolate_pages_global(unsigned long nr,
976 					struct list_head *dst,
977 					unsigned long *scanned, int order,
978 					int mode, struct zone *z,
979 					struct mem_cgroup *mem_cont,
980 					int active, int file)
981 {
982 	int lru = LRU_BASE;
983 	if (active)
984 		lru += LRU_ACTIVE;
985 	if (file)
986 		lru += LRU_FILE;
987 	return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
988 								mode, file);
989 }
990 
991 /*
992  * clear_active_flags() is a helper for shrink_active_list(), clearing
993  * any active bits from the pages in the list.
994  */
995 static unsigned long clear_active_flags(struct list_head *page_list,
996 					unsigned int *count)
997 {
998 	int nr_active = 0;
999 	int lru;
1000 	struct page *page;
1001 
1002 	list_for_each_entry(page, page_list, lru) {
1003 		lru = page_lru_base_type(page);
1004 		if (PageActive(page)) {
1005 			lru += LRU_ACTIVE;
1006 			ClearPageActive(page);
1007 			nr_active++;
1008 		}
1009 		count[lru]++;
1010 	}
1011 
1012 	return nr_active;
1013 }
1014 
1015 /**
1016  * isolate_lru_page - tries to isolate a page from its LRU list
1017  * @page: page to isolate from its LRU list
1018  *
1019  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1020  * vmstat statistic corresponding to whatever LRU list the page was on.
1021  *
1022  * Returns 0 if the page was removed from an LRU list.
1023  * Returns -EBUSY if the page was not on an LRU list.
1024  *
1025  * The returned page will have PageLRU() cleared.  If it was found on
1026  * the active list, it will have PageActive set.  If it was found on
1027  * the unevictable list, it will have the PageUnevictable bit set. That flag
1028  * may need to be cleared by the caller before letting the page go.
1029  *
1030  * The vmstat statistic corresponding to the list on which the page was
1031  * found will be decremented.
1032  *
1033  * Restrictions:
1034  * (1) Must be called with an elevated refcount on the page. This is a
1035  *     fundamentnal difference from isolate_lru_pages (which is called
1036  *     without a stable reference).
1037  * (2) the lru_lock must not be held.
1038  * (3) interrupts must be enabled.
1039  */
1040 int isolate_lru_page(struct page *page)
1041 {
1042 	int ret = -EBUSY;
1043 
1044 	if (PageLRU(page)) {
1045 		struct zone *zone = page_zone(page);
1046 
1047 		spin_lock_irq(&zone->lru_lock);
1048 		if (PageLRU(page) && get_page_unless_zero(page)) {
1049 			int lru = page_lru(page);
1050 			ret = 0;
1051 			ClearPageLRU(page);
1052 
1053 			del_page_from_lru_list(zone, page, lru);
1054 		}
1055 		spin_unlock_irq(&zone->lru_lock);
1056 	}
1057 	return ret;
1058 }
1059 
1060 /*
1061  * Are there way too many processes in the direct reclaim path already?
1062  */
1063 static int too_many_isolated(struct zone *zone, int file,
1064 		struct scan_control *sc)
1065 {
1066 	unsigned long inactive, isolated;
1067 
1068 	if (current_is_kswapd())
1069 		return 0;
1070 
1071 	if (!scanning_global_lru(sc))
1072 		return 0;
1073 
1074 	if (file) {
1075 		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1076 		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1077 	} else {
1078 		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1079 		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1080 	}
1081 
1082 	return isolated > inactive;
1083 }
1084 
1085 /*
1086  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1087  * of reclaimed pages
1088  */
1089 static unsigned long shrink_inactive_list(unsigned long max_scan,
1090 			struct zone *zone, struct scan_control *sc,
1091 			int priority, int file)
1092 {
1093 	LIST_HEAD(page_list);
1094 	struct pagevec pvec;
1095 	unsigned long nr_scanned = 0;
1096 	unsigned long nr_reclaimed = 0;
1097 	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1098 	int lumpy_reclaim = 0;
1099 
1100 	while (unlikely(too_many_isolated(zone, file, sc))) {
1101 		congestion_wait(BLK_RW_ASYNC, HZ/10);
1102 
1103 		/* We are about to die and free our memory. Return now. */
1104 		if (fatal_signal_pending(current))
1105 			return SWAP_CLUSTER_MAX;
1106 	}
1107 
1108 	/*
1109 	 * If we need a large contiguous chunk of memory, or have
1110 	 * trouble getting a small set of contiguous pages, we
1111 	 * will reclaim both active and inactive pages.
1112 	 *
1113 	 * We use the same threshold as pageout congestion_wait below.
1114 	 */
1115 	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1116 		lumpy_reclaim = 1;
1117 	else if (sc->order && priority < DEF_PRIORITY - 2)
1118 		lumpy_reclaim = 1;
1119 
1120 	pagevec_init(&pvec, 1);
1121 
1122 	lru_add_drain();
1123 	spin_lock_irq(&zone->lru_lock);
1124 	do {
1125 		struct page *page;
1126 		unsigned long nr_taken;
1127 		unsigned long nr_scan;
1128 		unsigned long nr_freed;
1129 		unsigned long nr_active;
1130 		unsigned int count[NR_LRU_LISTS] = { 0, };
1131 		int mode = lumpy_reclaim ? ISOLATE_BOTH : ISOLATE_INACTIVE;
1132 		unsigned long nr_anon;
1133 		unsigned long nr_file;
1134 
1135 		nr_taken = sc->isolate_pages(sc->swap_cluster_max,
1136 			     &page_list, &nr_scan, sc->order, mode,
1137 				zone, sc->mem_cgroup, 0, file);
1138 
1139 		if (scanning_global_lru(sc)) {
1140 			zone->pages_scanned += nr_scan;
1141 			if (current_is_kswapd())
1142 				__count_zone_vm_events(PGSCAN_KSWAPD, zone,
1143 						       nr_scan);
1144 			else
1145 				__count_zone_vm_events(PGSCAN_DIRECT, zone,
1146 						       nr_scan);
1147 		}
1148 
1149 		if (nr_taken == 0)
1150 			goto done;
1151 
1152 		nr_active = clear_active_flags(&page_list, count);
1153 		__count_vm_events(PGDEACTIVATE, nr_active);
1154 
1155 		__mod_zone_page_state(zone, NR_ACTIVE_FILE,
1156 						-count[LRU_ACTIVE_FILE]);
1157 		__mod_zone_page_state(zone, NR_INACTIVE_FILE,
1158 						-count[LRU_INACTIVE_FILE]);
1159 		__mod_zone_page_state(zone, NR_ACTIVE_ANON,
1160 						-count[LRU_ACTIVE_ANON]);
1161 		__mod_zone_page_state(zone, NR_INACTIVE_ANON,
1162 						-count[LRU_INACTIVE_ANON]);
1163 
1164 		nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1165 		nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1166 		__mod_zone_page_state(zone, NR_ISOLATED_ANON, nr_anon);
1167 		__mod_zone_page_state(zone, NR_ISOLATED_FILE, nr_file);
1168 
1169 		reclaim_stat->recent_scanned[0] += count[LRU_INACTIVE_ANON];
1170 		reclaim_stat->recent_scanned[0] += count[LRU_ACTIVE_ANON];
1171 		reclaim_stat->recent_scanned[1] += count[LRU_INACTIVE_FILE];
1172 		reclaim_stat->recent_scanned[1] += count[LRU_ACTIVE_FILE];
1173 
1174 		spin_unlock_irq(&zone->lru_lock);
1175 
1176 		nr_scanned += nr_scan;
1177 		nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);
1178 
1179 		/*
1180 		 * If we are direct reclaiming for contiguous pages and we do
1181 		 * not reclaim everything in the list, try again and wait
1182 		 * for IO to complete. This will stall high-order allocations
1183 		 * but that should be acceptable to the caller
1184 		 */
1185 		if (nr_freed < nr_taken && !current_is_kswapd() &&
1186 		    lumpy_reclaim) {
1187 			congestion_wait(BLK_RW_ASYNC, HZ/10);
1188 
1189 			/*
1190 			 * The attempt at page out may have made some
1191 			 * of the pages active, mark them inactive again.
1192 			 */
1193 			nr_active = clear_active_flags(&page_list, count);
1194 			count_vm_events(PGDEACTIVATE, nr_active);
1195 
1196 			nr_freed += shrink_page_list(&page_list, sc,
1197 							PAGEOUT_IO_SYNC);
1198 		}
1199 
1200 		nr_reclaimed += nr_freed;
1201 
1202 		local_irq_disable();
1203 		if (current_is_kswapd())
1204 			__count_vm_events(KSWAPD_STEAL, nr_freed);
1205 		__count_zone_vm_events(PGSTEAL, zone, nr_freed);
1206 
1207 		spin_lock(&zone->lru_lock);
1208 		/*
1209 		 * Put back any unfreeable pages.
1210 		 */
1211 		while (!list_empty(&page_list)) {
1212 			int lru;
1213 			page = lru_to_page(&page_list);
1214 			VM_BUG_ON(PageLRU(page));
1215 			list_del(&page->lru);
1216 			if (unlikely(!page_evictable(page, NULL))) {
1217 				spin_unlock_irq(&zone->lru_lock);
1218 				putback_lru_page(page);
1219 				spin_lock_irq(&zone->lru_lock);
1220 				continue;
1221 			}
1222 			SetPageLRU(page);
1223 			lru = page_lru(page);
1224 			add_page_to_lru_list(zone, page, lru);
1225 			if (is_active_lru(lru)) {
1226 				int file = is_file_lru(lru);
1227 				reclaim_stat->recent_rotated[file]++;
1228 			}
1229 			if (!pagevec_add(&pvec, page)) {
1230 				spin_unlock_irq(&zone->lru_lock);
1231 				__pagevec_release(&pvec);
1232 				spin_lock_irq(&zone->lru_lock);
1233 			}
1234 		}
1235 		__mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1236 		__mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1237 
1238   	} while (nr_scanned < max_scan);
1239 
1240 done:
1241 	spin_unlock_irq(&zone->lru_lock);
1242 	pagevec_release(&pvec);
1243 	return nr_reclaimed;
1244 }
1245 
1246 /*
1247  * We are about to scan this zone at a certain priority level.  If that priority
1248  * level is smaller (ie: more urgent) than the previous priority, then note
1249  * that priority level within the zone.  This is done so that when the next
1250  * process comes in to scan this zone, it will immediately start out at this
1251  * priority level rather than having to build up its own scanning priority.
1252  * Here, this priority affects only the reclaim-mapped threshold.
1253  */
1254 static inline void note_zone_scanning_priority(struct zone *zone, int priority)
1255 {
1256 	if (priority < zone->prev_priority)
1257 		zone->prev_priority = priority;
1258 }
1259 
1260 /*
1261  * This moves pages from the active list to the inactive list.
1262  *
1263  * We move them the other way if the page is referenced by one or more
1264  * processes, from rmap.
1265  *
1266  * If the pages are mostly unmapped, the processing is fast and it is
1267  * appropriate to hold zone->lru_lock across the whole operation.  But if
1268  * the pages are mapped, the processing is slow (page_referenced()) so we
1269  * should drop zone->lru_lock around each page.  It's impossible to balance
1270  * this, so instead we remove the pages from the LRU while processing them.
1271  * It is safe to rely on PG_active against the non-LRU pages in here because
1272  * nobody will play with that bit on a non-LRU page.
1273  *
1274  * The downside is that we have to touch page->_count against each page.
1275  * But we had to alter page->flags anyway.
1276  */
1277 
1278 static void move_active_pages_to_lru(struct zone *zone,
1279 				     struct list_head *list,
1280 				     enum lru_list lru)
1281 {
1282 	unsigned long pgmoved = 0;
1283 	struct pagevec pvec;
1284 	struct page *page;
1285 
1286 	pagevec_init(&pvec, 1);
1287 
1288 	while (!list_empty(list)) {
1289 		page = lru_to_page(list);
1290 
1291 		VM_BUG_ON(PageLRU(page));
1292 		SetPageLRU(page);
1293 
1294 		list_move(&page->lru, &zone->lru[lru].list);
1295 		mem_cgroup_add_lru_list(page, lru);
1296 		pgmoved++;
1297 
1298 		if (!pagevec_add(&pvec, page) || list_empty(list)) {
1299 			spin_unlock_irq(&zone->lru_lock);
1300 			if (buffer_heads_over_limit)
1301 				pagevec_strip(&pvec);
1302 			__pagevec_release(&pvec);
1303 			spin_lock_irq(&zone->lru_lock);
1304 		}
1305 	}
1306 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1307 	if (!is_active_lru(lru))
1308 		__count_vm_events(PGDEACTIVATE, pgmoved);
1309 }
1310 
1311 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1312 			struct scan_control *sc, int priority, int file)
1313 {
1314 	unsigned long nr_taken;
1315 	unsigned long pgscanned;
1316 	unsigned long vm_flags;
1317 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1318 	LIST_HEAD(l_active);
1319 	LIST_HEAD(l_inactive);
1320 	struct page *page;
1321 	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1322 	unsigned long nr_rotated = 0;
1323 
1324 	lru_add_drain();
1325 	spin_lock_irq(&zone->lru_lock);
1326 	nr_taken = sc->isolate_pages(nr_pages, &l_hold, &pgscanned, sc->order,
1327 					ISOLATE_ACTIVE, zone,
1328 					sc->mem_cgroup, 1, file);
1329 	/*
1330 	 * zone->pages_scanned is used for detect zone's oom
1331 	 * mem_cgroup remembers nr_scan by itself.
1332 	 */
1333 	if (scanning_global_lru(sc)) {
1334 		zone->pages_scanned += pgscanned;
1335 	}
1336 	reclaim_stat->recent_scanned[file] += nr_taken;
1337 
1338 	__count_zone_vm_events(PGREFILL, zone, pgscanned);
1339 	if (file)
1340 		__mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1341 	else
1342 		__mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1343 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1344 	spin_unlock_irq(&zone->lru_lock);
1345 
1346 	while (!list_empty(&l_hold)) {
1347 		cond_resched();
1348 		page = lru_to_page(&l_hold);
1349 		list_del(&page->lru);
1350 
1351 		if (unlikely(!page_evictable(page, NULL))) {
1352 			putback_lru_page(page);
1353 			continue;
1354 		}
1355 
1356 		/* page_referenced clears PageReferenced */
1357 		if (page_mapping_inuse(page) &&
1358 		    page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1359 			nr_rotated++;
1360 			/*
1361 			 * Identify referenced, file-backed active pages and
1362 			 * give them one more trip around the active list. So
1363 			 * that executable code get better chances to stay in
1364 			 * memory under moderate memory pressure.  Anon pages
1365 			 * are not likely to be evicted by use-once streaming
1366 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
1367 			 * so we ignore them here.
1368 			 */
1369 			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1370 				list_add(&page->lru, &l_active);
1371 				continue;
1372 			}
1373 		}
1374 
1375 		ClearPageActive(page);	/* we are de-activating */
1376 		list_add(&page->lru, &l_inactive);
1377 	}
1378 
1379 	/*
1380 	 * Move pages back to the lru list.
1381 	 */
1382 	spin_lock_irq(&zone->lru_lock);
1383 	/*
1384 	 * Count referenced pages from currently used mappings as rotated,
1385 	 * even though only some of them are actually re-activated.  This
1386 	 * helps balance scan pressure between file and anonymous pages in
1387 	 * get_scan_ratio.
1388 	 */
1389 	reclaim_stat->recent_rotated[file] += nr_rotated;
1390 
1391 	move_active_pages_to_lru(zone, &l_active,
1392 						LRU_ACTIVE + file * LRU_FILE);
1393 	move_active_pages_to_lru(zone, &l_inactive,
1394 						LRU_BASE   + file * LRU_FILE);
1395 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1396 	spin_unlock_irq(&zone->lru_lock);
1397 }
1398 
1399 static int inactive_anon_is_low_global(struct zone *zone)
1400 {
1401 	unsigned long active, inactive;
1402 
1403 	active = zone_page_state(zone, NR_ACTIVE_ANON);
1404 	inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1405 
1406 	if (inactive * zone->inactive_ratio < active)
1407 		return 1;
1408 
1409 	return 0;
1410 }
1411 
1412 /**
1413  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1414  * @zone: zone to check
1415  * @sc:   scan control of this context
1416  *
1417  * Returns true if the zone does not have enough inactive anon pages,
1418  * meaning some active anon pages need to be deactivated.
1419  */
1420 static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1421 {
1422 	int low;
1423 
1424 	if (scanning_global_lru(sc))
1425 		low = inactive_anon_is_low_global(zone);
1426 	else
1427 		low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1428 	return low;
1429 }
1430 
1431 static int inactive_file_is_low_global(struct zone *zone)
1432 {
1433 	unsigned long active, inactive;
1434 
1435 	active = zone_page_state(zone, NR_ACTIVE_FILE);
1436 	inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1437 
1438 	return (active > inactive);
1439 }
1440 
1441 /**
1442  * inactive_file_is_low - check if file pages need to be deactivated
1443  * @zone: zone to check
1444  * @sc:   scan control of this context
1445  *
1446  * When the system is doing streaming IO, memory pressure here
1447  * ensures that active file pages get deactivated, until more
1448  * than half of the file pages are on the inactive list.
1449  *
1450  * Once we get to that situation, protect the system's working
1451  * set from being evicted by disabling active file page aging.
1452  *
1453  * This uses a different ratio than the anonymous pages, because
1454  * the page cache uses a use-once replacement algorithm.
1455  */
1456 static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1457 {
1458 	int low;
1459 
1460 	if (scanning_global_lru(sc))
1461 		low = inactive_file_is_low_global(zone);
1462 	else
1463 		low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1464 	return low;
1465 }
1466 
1467 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1468 	struct zone *zone, struct scan_control *sc, int priority)
1469 {
1470 	int file = is_file_lru(lru);
1471 
1472 	if (lru == LRU_ACTIVE_FILE && inactive_file_is_low(zone, sc)) {
1473 		shrink_active_list(nr_to_scan, zone, sc, priority, file);
1474 		return 0;
1475 	}
1476 
1477 	if (lru == LRU_ACTIVE_ANON && inactive_anon_is_low(zone, sc)) {
1478 		shrink_active_list(nr_to_scan, zone, sc, priority, file);
1479 		return 0;
1480 	}
1481 	return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1482 }
1483 
1484 /*
1485  * Determine how aggressively the anon and file LRU lists should be
1486  * scanned.  The relative value of each set of LRU lists is determined
1487  * by looking at the fraction of the pages scanned we did rotate back
1488  * onto the active list instead of evict.
1489  *
1490  * percent[0] specifies how much pressure to put on ram/swap backed
1491  * memory, while percent[1] determines pressure on the file LRUs.
1492  */
1493 static void get_scan_ratio(struct zone *zone, struct scan_control *sc,
1494 					unsigned long *percent)
1495 {
1496 	unsigned long anon, file, free;
1497 	unsigned long anon_prio, file_prio;
1498 	unsigned long ap, fp;
1499 	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1500 
1501 	anon  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1502 		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1503 	file  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1504 		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1505 
1506 	if (scanning_global_lru(sc)) {
1507 		free  = zone_page_state(zone, NR_FREE_PAGES);
1508 		/* If we have very few page cache pages,
1509 		   force-scan anon pages. */
1510 		if (unlikely(file + free <= high_wmark_pages(zone))) {
1511 			percent[0] = 100;
1512 			percent[1] = 0;
1513 			return;
1514 		}
1515 	}
1516 
1517 	/*
1518 	 * OK, so we have swap space and a fair amount of page cache
1519 	 * pages.  We use the recently rotated / recently scanned
1520 	 * ratios to determine how valuable each cache is.
1521 	 *
1522 	 * Because workloads change over time (and to avoid overflow)
1523 	 * we keep these statistics as a floating average, which ends
1524 	 * up weighing recent references more than old ones.
1525 	 *
1526 	 * anon in [0], file in [1]
1527 	 */
1528 	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1529 		spin_lock_irq(&zone->lru_lock);
1530 		reclaim_stat->recent_scanned[0] /= 2;
1531 		reclaim_stat->recent_rotated[0] /= 2;
1532 		spin_unlock_irq(&zone->lru_lock);
1533 	}
1534 
1535 	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1536 		spin_lock_irq(&zone->lru_lock);
1537 		reclaim_stat->recent_scanned[1] /= 2;
1538 		reclaim_stat->recent_rotated[1] /= 2;
1539 		spin_unlock_irq(&zone->lru_lock);
1540 	}
1541 
1542 	/*
1543 	 * With swappiness at 100, anonymous and file have the same priority.
1544 	 * This scanning priority is essentially the inverse of IO cost.
1545 	 */
1546 	anon_prio = sc->swappiness;
1547 	file_prio = 200 - sc->swappiness;
1548 
1549 	/*
1550 	 * The amount of pressure on anon vs file pages is inversely
1551 	 * proportional to the fraction of recently scanned pages on
1552 	 * each list that were recently referenced and in active use.
1553 	 */
1554 	ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1555 	ap /= reclaim_stat->recent_rotated[0] + 1;
1556 
1557 	fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1558 	fp /= reclaim_stat->recent_rotated[1] + 1;
1559 
1560 	/* Normalize to percentages */
1561 	percent[0] = 100 * ap / (ap + fp + 1);
1562 	percent[1] = 100 - percent[0];
1563 }
1564 
1565 /*
1566  * Smallish @nr_to_scan's are deposited in @nr_saved_scan,
1567  * until we collected @swap_cluster_max pages to scan.
1568  */
1569 static unsigned long nr_scan_try_batch(unsigned long nr_to_scan,
1570 				       unsigned long *nr_saved_scan,
1571 				       unsigned long swap_cluster_max)
1572 {
1573 	unsigned long nr;
1574 
1575 	*nr_saved_scan += nr_to_scan;
1576 	nr = *nr_saved_scan;
1577 
1578 	if (nr >= swap_cluster_max)
1579 		*nr_saved_scan = 0;
1580 	else
1581 		nr = 0;
1582 
1583 	return nr;
1584 }
1585 
1586 /*
1587  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1588  */
1589 static void shrink_zone(int priority, struct zone *zone,
1590 				struct scan_control *sc)
1591 {
1592 	unsigned long nr[NR_LRU_LISTS];
1593 	unsigned long nr_to_scan;
1594 	unsigned long percent[2];	/* anon @ 0; file @ 1 */
1595 	enum lru_list l;
1596 	unsigned long nr_reclaimed = sc->nr_reclaimed;
1597 	unsigned long swap_cluster_max = sc->swap_cluster_max;
1598 	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1599 	int noswap = 0;
1600 
1601 	/* If we have no swap space, do not bother scanning anon pages. */
1602 	if (!sc->may_swap || (nr_swap_pages <= 0)) {
1603 		noswap = 1;
1604 		percent[0] = 0;
1605 		percent[1] = 100;
1606 	} else
1607 		get_scan_ratio(zone, sc, percent);
1608 
1609 	for_each_evictable_lru(l) {
1610 		int file = is_file_lru(l);
1611 		unsigned long scan;
1612 
1613 		scan = zone_nr_lru_pages(zone, sc, l);
1614 		if (priority || noswap) {
1615 			scan >>= priority;
1616 			scan = (scan * percent[file]) / 100;
1617 		}
1618 		nr[l] = nr_scan_try_batch(scan,
1619 					  &reclaim_stat->nr_saved_scan[l],
1620 					  swap_cluster_max);
1621 	}
1622 
1623 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1624 					nr[LRU_INACTIVE_FILE]) {
1625 		for_each_evictable_lru(l) {
1626 			if (nr[l]) {
1627 				nr_to_scan = min(nr[l], swap_cluster_max);
1628 				nr[l] -= nr_to_scan;
1629 
1630 				nr_reclaimed += shrink_list(l, nr_to_scan,
1631 							    zone, sc, priority);
1632 			}
1633 		}
1634 		/*
1635 		 * On large memory systems, scan >> priority can become
1636 		 * really large. This is fine for the starting priority;
1637 		 * we want to put equal scanning pressure on each zone.
1638 		 * However, if the VM has a harder time of freeing pages,
1639 		 * with multiple processes reclaiming pages, the total
1640 		 * freeing target can get unreasonably large.
1641 		 */
1642 		if (nr_reclaimed > swap_cluster_max &&
1643 			priority < DEF_PRIORITY && !current_is_kswapd())
1644 			break;
1645 	}
1646 
1647 	sc->nr_reclaimed = nr_reclaimed;
1648 
1649 	/*
1650 	 * Even if we did not try to evict anon pages at all, we want to
1651 	 * rebalance the anon lru active/inactive ratio.
1652 	 */
1653 	if (inactive_anon_is_low(zone, sc) && nr_swap_pages > 0)
1654 		shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1655 
1656 	throttle_vm_writeout(sc->gfp_mask);
1657 }
1658 
1659 /*
1660  * This is the direct reclaim path, for page-allocating processes.  We only
1661  * try to reclaim pages from zones which will satisfy the caller's allocation
1662  * request.
1663  *
1664  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1665  * Because:
1666  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1667  *    allocation or
1668  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1669  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1670  *    zone defense algorithm.
1671  *
1672  * If a zone is deemed to be full of pinned pages then just give it a light
1673  * scan then give up on it.
1674  */
1675 static void shrink_zones(int priority, struct zonelist *zonelist,
1676 					struct scan_control *sc)
1677 {
1678 	enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1679 	struct zoneref *z;
1680 	struct zone *zone;
1681 
1682 	sc->all_unreclaimable = 1;
1683 	for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
1684 					sc->nodemask) {
1685 		if (!populated_zone(zone))
1686 			continue;
1687 		/*
1688 		 * Take care memory controller reclaiming has small influence
1689 		 * to global LRU.
1690 		 */
1691 		if (scanning_global_lru(sc)) {
1692 			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1693 				continue;
1694 			note_zone_scanning_priority(zone, priority);
1695 
1696 			if (zone_is_all_unreclaimable(zone) &&
1697 						priority != DEF_PRIORITY)
1698 				continue;	/* Let kswapd poll it */
1699 			sc->all_unreclaimable = 0;
1700 		} else {
1701 			/*
1702 			 * Ignore cpuset limitation here. We just want to reduce
1703 			 * # of used pages by us regardless of memory shortage.
1704 			 */
1705 			sc->all_unreclaimable = 0;
1706 			mem_cgroup_note_reclaim_priority(sc->mem_cgroup,
1707 							priority);
1708 		}
1709 
1710 		shrink_zone(priority, zone, sc);
1711 	}
1712 }
1713 
1714 /*
1715  * This is the main entry point to direct page reclaim.
1716  *
1717  * If a full scan of the inactive list fails to free enough memory then we
1718  * are "out of memory" and something needs to be killed.
1719  *
1720  * If the caller is !__GFP_FS then the probability of a failure is reasonably
1721  * high - the zone may be full of dirty or under-writeback pages, which this
1722  * caller can't do much about.  We kick the writeback threads and take explicit
1723  * naps in the hope that some of these pages can be written.  But if the
1724  * allocating task holds filesystem locks which prevent writeout this might not
1725  * work, and the allocation attempt will fail.
1726  *
1727  * returns:	0, if no pages reclaimed
1728  * 		else, the number of pages reclaimed
1729  */
1730 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
1731 					struct scan_control *sc)
1732 {
1733 	int priority;
1734 	unsigned long ret = 0;
1735 	unsigned long total_scanned = 0;
1736 	struct reclaim_state *reclaim_state = current->reclaim_state;
1737 	unsigned long lru_pages = 0;
1738 	struct zoneref *z;
1739 	struct zone *zone;
1740 	enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1741 
1742 	delayacct_freepages_start();
1743 
1744 	if (scanning_global_lru(sc))
1745 		count_vm_event(ALLOCSTALL);
1746 	/*
1747 	 * mem_cgroup will not do shrink_slab.
1748 	 */
1749 	if (scanning_global_lru(sc)) {
1750 		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1751 
1752 			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1753 				continue;
1754 
1755 			lru_pages += zone_reclaimable_pages(zone);
1756 		}
1757 	}
1758 
1759 	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1760 		sc->nr_scanned = 0;
1761 		if (!priority)
1762 			disable_swap_token();
1763 		shrink_zones(priority, zonelist, sc);
1764 		/*
1765 		 * Don't shrink slabs when reclaiming memory from
1766 		 * over limit cgroups
1767 		 */
1768 		if (scanning_global_lru(sc)) {
1769 			shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
1770 			if (reclaim_state) {
1771 				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
1772 				reclaim_state->reclaimed_slab = 0;
1773 			}
1774 		}
1775 		total_scanned += sc->nr_scanned;
1776 		if (sc->nr_reclaimed >= sc->swap_cluster_max) {
1777 			ret = sc->nr_reclaimed;
1778 			goto out;
1779 		}
1780 
1781 		/*
1782 		 * Try to write back as many pages as we just scanned.  This
1783 		 * tends to cause slow streaming writers to write data to the
1784 		 * disk smoothly, at the dirtying rate, which is nice.   But
1785 		 * that's undesirable in laptop mode, where we *want* lumpy
1786 		 * writeout.  So in laptop mode, write out the whole world.
1787 		 */
1788 		if (total_scanned > sc->swap_cluster_max +
1789 					sc->swap_cluster_max / 2) {
1790 			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
1791 			sc->may_writepage = 1;
1792 		}
1793 
1794 		/* Take a nap, wait for some writeback to complete */
1795 		if (sc->nr_scanned && priority < DEF_PRIORITY - 2)
1796 			congestion_wait(BLK_RW_ASYNC, HZ/10);
1797 	}
1798 	/* top priority shrink_zones still had more to do? don't OOM, then */
1799 	if (!sc->all_unreclaimable && scanning_global_lru(sc))
1800 		ret = sc->nr_reclaimed;
1801 out:
1802 	/*
1803 	 * Now that we've scanned all the zones at this priority level, note
1804 	 * that level within the zone so that the next thread which performs
1805 	 * scanning of this zone will immediately start out at this priority
1806 	 * level.  This affects only the decision whether or not to bring
1807 	 * mapped pages onto the inactive list.
1808 	 */
1809 	if (priority < 0)
1810 		priority = 0;
1811 
1812 	if (scanning_global_lru(sc)) {
1813 		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1814 
1815 			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1816 				continue;
1817 
1818 			zone->prev_priority = priority;
1819 		}
1820 	} else
1821 		mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority);
1822 
1823 	delayacct_freepages_end();
1824 
1825 	return ret;
1826 }
1827 
1828 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
1829 				gfp_t gfp_mask, nodemask_t *nodemask)
1830 {
1831 	struct scan_control sc = {
1832 		.gfp_mask = gfp_mask,
1833 		.may_writepage = !laptop_mode,
1834 		.swap_cluster_max = SWAP_CLUSTER_MAX,
1835 		.may_unmap = 1,
1836 		.may_swap = 1,
1837 		.swappiness = vm_swappiness,
1838 		.order = order,
1839 		.mem_cgroup = NULL,
1840 		.isolate_pages = isolate_pages_global,
1841 		.nodemask = nodemask,
1842 	};
1843 
1844 	return do_try_to_free_pages(zonelist, &sc);
1845 }
1846 
1847 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1848 
1849 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
1850 						gfp_t gfp_mask, bool noswap,
1851 						unsigned int swappiness,
1852 						struct zone *zone, int nid)
1853 {
1854 	struct scan_control sc = {
1855 		.may_writepage = !laptop_mode,
1856 		.may_unmap = 1,
1857 		.may_swap = !noswap,
1858 		.swap_cluster_max = SWAP_CLUSTER_MAX,
1859 		.swappiness = swappiness,
1860 		.order = 0,
1861 		.mem_cgroup = mem,
1862 		.isolate_pages = mem_cgroup_isolate_pages,
1863 	};
1864 	nodemask_t nm  = nodemask_of_node(nid);
1865 
1866 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
1867 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
1868 	sc.nodemask = &nm;
1869 	sc.nr_reclaimed = 0;
1870 	sc.nr_scanned = 0;
1871 	/*
1872 	 * NOTE: Although we can get the priority field, using it
1873 	 * here is not a good idea, since it limits the pages we can scan.
1874 	 * if we don't reclaim here, the shrink_zone from balance_pgdat
1875 	 * will pick up pages from other mem cgroup's as well. We hack
1876 	 * the priority and make it zero.
1877 	 */
1878 	shrink_zone(0, zone, &sc);
1879 	return sc.nr_reclaimed;
1880 }
1881 
1882 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
1883 					   gfp_t gfp_mask,
1884 					   bool noswap,
1885 					   unsigned int swappiness)
1886 {
1887 	struct zonelist *zonelist;
1888 	struct scan_control sc = {
1889 		.may_writepage = !laptop_mode,
1890 		.may_unmap = 1,
1891 		.may_swap = !noswap,
1892 		.swap_cluster_max = SWAP_CLUSTER_MAX,
1893 		.swappiness = swappiness,
1894 		.order = 0,
1895 		.mem_cgroup = mem_cont,
1896 		.isolate_pages = mem_cgroup_isolate_pages,
1897 		.nodemask = NULL, /* we don't care the placement */
1898 	};
1899 
1900 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
1901 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
1902 	zonelist = NODE_DATA(numa_node_id())->node_zonelists;
1903 	return do_try_to_free_pages(zonelist, &sc);
1904 }
1905 #endif
1906 
1907 /*
1908  * For kswapd, balance_pgdat() will work across all this node's zones until
1909  * they are all at high_wmark_pages(zone).
1910  *
1911  * Returns the number of pages which were actually freed.
1912  *
1913  * There is special handling here for zones which are full of pinned pages.
1914  * This can happen if the pages are all mlocked, or if they are all used by
1915  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
1916  * What we do is to detect the case where all pages in the zone have been
1917  * scanned twice and there has been zero successful reclaim.  Mark the zone as
1918  * dead and from now on, only perform a short scan.  Basically we're polling
1919  * the zone for when the problem goes away.
1920  *
1921  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
1922  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
1923  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
1924  * lower zones regardless of the number of free pages in the lower zones. This
1925  * interoperates with the page allocator fallback scheme to ensure that aging
1926  * of pages is balanced across the zones.
1927  */
1928 static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
1929 {
1930 	int all_zones_ok;
1931 	int priority;
1932 	int i;
1933 	unsigned long total_scanned;
1934 	struct reclaim_state *reclaim_state = current->reclaim_state;
1935 	struct scan_control sc = {
1936 		.gfp_mask = GFP_KERNEL,
1937 		.may_unmap = 1,
1938 		.may_swap = 1,
1939 		.swap_cluster_max = SWAP_CLUSTER_MAX,
1940 		.swappiness = vm_swappiness,
1941 		.order = order,
1942 		.mem_cgroup = NULL,
1943 		.isolate_pages = isolate_pages_global,
1944 	};
1945 	/*
1946 	 * temp_priority is used to remember the scanning priority at which
1947 	 * this zone was successfully refilled to
1948 	 * free_pages == high_wmark_pages(zone).
1949 	 */
1950 	int temp_priority[MAX_NR_ZONES];
1951 
1952 loop_again:
1953 	total_scanned = 0;
1954 	sc.nr_reclaimed = 0;
1955 	sc.may_writepage = !laptop_mode;
1956 	count_vm_event(PAGEOUTRUN);
1957 
1958 	for (i = 0; i < pgdat->nr_zones; i++)
1959 		temp_priority[i] = DEF_PRIORITY;
1960 
1961 	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1962 		int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
1963 		unsigned long lru_pages = 0;
1964 
1965 		/* The swap token gets in the way of swapout... */
1966 		if (!priority)
1967 			disable_swap_token();
1968 
1969 		all_zones_ok = 1;
1970 
1971 		/*
1972 		 * Scan in the highmem->dma direction for the highest
1973 		 * zone which needs scanning
1974 		 */
1975 		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1976 			struct zone *zone = pgdat->node_zones + i;
1977 
1978 			if (!populated_zone(zone))
1979 				continue;
1980 
1981 			if (zone_is_all_unreclaimable(zone) &&
1982 			    priority != DEF_PRIORITY)
1983 				continue;
1984 
1985 			/*
1986 			 * Do some background aging of the anon list, to give
1987 			 * pages a chance to be referenced before reclaiming.
1988 			 */
1989 			if (inactive_anon_is_low(zone, &sc))
1990 				shrink_active_list(SWAP_CLUSTER_MAX, zone,
1991 							&sc, priority, 0);
1992 
1993 			if (!zone_watermark_ok(zone, order,
1994 					high_wmark_pages(zone), 0, 0)) {
1995 				end_zone = i;
1996 				break;
1997 			}
1998 		}
1999 		if (i < 0)
2000 			goto out;
2001 
2002 		for (i = 0; i <= end_zone; i++) {
2003 			struct zone *zone = pgdat->node_zones + i;
2004 
2005 			lru_pages += zone_reclaimable_pages(zone);
2006 		}
2007 
2008 		/*
2009 		 * Now scan the zone in the dma->highmem direction, stopping
2010 		 * at the last zone which needs scanning.
2011 		 *
2012 		 * We do this because the page allocator works in the opposite
2013 		 * direction.  This prevents the page allocator from allocating
2014 		 * pages behind kswapd's direction of progress, which would
2015 		 * cause too much scanning of the lower zones.
2016 		 */
2017 		for (i = 0; i <= end_zone; i++) {
2018 			struct zone *zone = pgdat->node_zones + i;
2019 			int nr_slab;
2020 			int nid, zid;
2021 
2022 			if (!populated_zone(zone))
2023 				continue;
2024 
2025 			if (zone_is_all_unreclaimable(zone) &&
2026 					priority != DEF_PRIORITY)
2027 				continue;
2028 
2029 			if (!zone_watermark_ok(zone, order,
2030 					high_wmark_pages(zone), end_zone, 0))
2031 				all_zones_ok = 0;
2032 			temp_priority[i] = priority;
2033 			sc.nr_scanned = 0;
2034 			note_zone_scanning_priority(zone, priority);
2035 
2036 			nid = pgdat->node_id;
2037 			zid = zone_idx(zone);
2038 			/*
2039 			 * Call soft limit reclaim before calling shrink_zone.
2040 			 * For now we ignore the return value
2041 			 */
2042 			mem_cgroup_soft_limit_reclaim(zone, order, sc.gfp_mask,
2043 							nid, zid);
2044 			/*
2045 			 * We put equal pressure on every zone, unless one
2046 			 * zone has way too many pages free already.
2047 			 */
2048 			if (!zone_watermark_ok(zone, order,
2049 					8*high_wmark_pages(zone), end_zone, 0))
2050 				shrink_zone(priority, zone, &sc);
2051 			reclaim_state->reclaimed_slab = 0;
2052 			nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
2053 						lru_pages);
2054 			sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2055 			total_scanned += sc.nr_scanned;
2056 			if (zone_is_all_unreclaimable(zone))
2057 				continue;
2058 			if (nr_slab == 0 && zone->pages_scanned >=
2059 					(zone_reclaimable_pages(zone) * 6))
2060 					zone_set_flag(zone,
2061 						      ZONE_ALL_UNRECLAIMABLE);
2062 			/*
2063 			 * If we've done a decent amount of scanning and
2064 			 * the reclaim ratio is low, start doing writepage
2065 			 * even in laptop mode
2066 			 */
2067 			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2068 			    total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2069 				sc.may_writepage = 1;
2070 		}
2071 		if (all_zones_ok)
2072 			break;		/* kswapd: all done */
2073 		/*
2074 		 * OK, kswapd is getting into trouble.  Take a nap, then take
2075 		 * another pass across the zones.
2076 		 */
2077 		if (total_scanned && priority < DEF_PRIORITY - 2)
2078 			congestion_wait(BLK_RW_ASYNC, HZ/10);
2079 
2080 		/*
2081 		 * We do this so kswapd doesn't build up large priorities for
2082 		 * example when it is freeing in parallel with allocators. It
2083 		 * matches the direct reclaim path behaviour in terms of impact
2084 		 * on zone->*_priority.
2085 		 */
2086 		if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2087 			break;
2088 	}
2089 out:
2090 	/*
2091 	 * Note within each zone the priority level at which this zone was
2092 	 * brought into a happy state.  So that the next thread which scans this
2093 	 * zone will start out at that priority level.
2094 	 */
2095 	for (i = 0; i < pgdat->nr_zones; i++) {
2096 		struct zone *zone = pgdat->node_zones + i;
2097 
2098 		zone->prev_priority = temp_priority[i];
2099 	}
2100 	if (!all_zones_ok) {
2101 		cond_resched();
2102 
2103 		try_to_freeze();
2104 
2105 		/*
2106 		 * Fragmentation may mean that the system cannot be
2107 		 * rebalanced for high-order allocations in all zones.
2108 		 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2109 		 * it means the zones have been fully scanned and are still
2110 		 * not balanced. For high-order allocations, there is
2111 		 * little point trying all over again as kswapd may
2112 		 * infinite loop.
2113 		 *
2114 		 * Instead, recheck all watermarks at order-0 as they
2115 		 * are the most important. If watermarks are ok, kswapd will go
2116 		 * back to sleep. High-order users can still perform direct
2117 		 * reclaim if they wish.
2118 		 */
2119 		if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2120 			order = sc.order = 0;
2121 
2122 		goto loop_again;
2123 	}
2124 
2125 	return sc.nr_reclaimed;
2126 }
2127 
2128 /*
2129  * The background pageout daemon, started as a kernel thread
2130  * from the init process.
2131  *
2132  * This basically trickles out pages so that we have _some_
2133  * free memory available even if there is no other activity
2134  * that frees anything up. This is needed for things like routing
2135  * etc, where we otherwise might have all activity going on in
2136  * asynchronous contexts that cannot page things out.
2137  *
2138  * If there are applications that are active memory-allocators
2139  * (most normal use), this basically shouldn't matter.
2140  */
2141 static int kswapd(void *p)
2142 {
2143 	unsigned long order;
2144 	pg_data_t *pgdat = (pg_data_t*)p;
2145 	struct task_struct *tsk = current;
2146 	DEFINE_WAIT(wait);
2147 	struct reclaim_state reclaim_state = {
2148 		.reclaimed_slab = 0,
2149 	};
2150 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2151 
2152 	lockdep_set_current_reclaim_state(GFP_KERNEL);
2153 
2154 	if (!cpumask_empty(cpumask))
2155 		set_cpus_allowed_ptr(tsk, cpumask);
2156 	current->reclaim_state = &reclaim_state;
2157 
2158 	/*
2159 	 * Tell the memory management that we're a "memory allocator",
2160 	 * and that if we need more memory we should get access to it
2161 	 * regardless (see "__alloc_pages()"). "kswapd" should
2162 	 * never get caught in the normal page freeing logic.
2163 	 *
2164 	 * (Kswapd normally doesn't need memory anyway, but sometimes
2165 	 * you need a small amount of memory in order to be able to
2166 	 * page out something else, and this flag essentially protects
2167 	 * us from recursively trying to free more memory as we're
2168 	 * trying to free the first piece of memory in the first place).
2169 	 */
2170 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2171 	set_freezable();
2172 
2173 	order = 0;
2174 	for ( ; ; ) {
2175 		unsigned long new_order;
2176 
2177 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2178 		new_order = pgdat->kswapd_max_order;
2179 		pgdat->kswapd_max_order = 0;
2180 		if (order < new_order) {
2181 			/*
2182 			 * Don't sleep if someone wants a larger 'order'
2183 			 * allocation
2184 			 */
2185 			order = new_order;
2186 		} else {
2187 			if (!freezing(current))
2188 				schedule();
2189 
2190 			order = pgdat->kswapd_max_order;
2191 		}
2192 		finish_wait(&pgdat->kswapd_wait, &wait);
2193 
2194 		if (!try_to_freeze()) {
2195 			/* We can speed up thawing tasks if we don't call
2196 			 * balance_pgdat after returning from the refrigerator
2197 			 */
2198 			balance_pgdat(pgdat, order);
2199 		}
2200 	}
2201 	return 0;
2202 }
2203 
2204 /*
2205  * A zone is low on free memory, so wake its kswapd task to service it.
2206  */
2207 void wakeup_kswapd(struct zone *zone, int order)
2208 {
2209 	pg_data_t *pgdat;
2210 
2211 	if (!populated_zone(zone))
2212 		return;
2213 
2214 	pgdat = zone->zone_pgdat;
2215 	if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0))
2216 		return;
2217 	if (pgdat->kswapd_max_order < order)
2218 		pgdat->kswapd_max_order = order;
2219 	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2220 		return;
2221 	if (!waitqueue_active(&pgdat->kswapd_wait))
2222 		return;
2223 	wake_up_interruptible(&pgdat->kswapd_wait);
2224 }
2225 
2226 /*
2227  * The reclaimable count would be mostly accurate.
2228  * The less reclaimable pages may be
2229  * - mlocked pages, which will be moved to unevictable list when encountered
2230  * - mapped pages, which may require several travels to be reclaimed
2231  * - dirty pages, which is not "instantly" reclaimable
2232  */
2233 unsigned long global_reclaimable_pages(void)
2234 {
2235 	int nr;
2236 
2237 	nr = global_page_state(NR_ACTIVE_FILE) +
2238 	     global_page_state(NR_INACTIVE_FILE);
2239 
2240 	if (nr_swap_pages > 0)
2241 		nr += global_page_state(NR_ACTIVE_ANON) +
2242 		      global_page_state(NR_INACTIVE_ANON);
2243 
2244 	return nr;
2245 }
2246 
2247 unsigned long zone_reclaimable_pages(struct zone *zone)
2248 {
2249 	int nr;
2250 
2251 	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2252 	     zone_page_state(zone, NR_INACTIVE_FILE);
2253 
2254 	if (nr_swap_pages > 0)
2255 		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2256 		      zone_page_state(zone, NR_INACTIVE_ANON);
2257 
2258 	return nr;
2259 }
2260 
2261 #ifdef CONFIG_HIBERNATION
2262 /*
2263  * Helper function for shrink_all_memory().  Tries to reclaim 'nr_pages' pages
2264  * from LRU lists system-wide, for given pass and priority.
2265  *
2266  * For pass > 3 we also try to shrink the LRU lists that contain a few pages
2267  */
2268 static void shrink_all_zones(unsigned long nr_pages, int prio,
2269 				      int pass, struct scan_control *sc)
2270 {
2271 	struct zone *zone;
2272 	unsigned long nr_reclaimed = 0;
2273 	struct zone_reclaim_stat *reclaim_stat;
2274 
2275 	for_each_populated_zone(zone) {
2276 		enum lru_list l;
2277 
2278 		if (zone_is_all_unreclaimable(zone) && prio != DEF_PRIORITY)
2279 			continue;
2280 
2281 		for_each_evictable_lru(l) {
2282 			enum zone_stat_item ls = NR_LRU_BASE + l;
2283 			unsigned long lru_pages = zone_page_state(zone, ls);
2284 
2285 			/* For pass = 0, we don't shrink the active list */
2286 			if (pass == 0 && (l == LRU_ACTIVE_ANON ||
2287 						l == LRU_ACTIVE_FILE))
2288 				continue;
2289 
2290 			reclaim_stat = get_reclaim_stat(zone, sc);
2291 			reclaim_stat->nr_saved_scan[l] +=
2292 						(lru_pages >> prio) + 1;
2293 			if (reclaim_stat->nr_saved_scan[l]
2294 						>= nr_pages || pass > 3) {
2295 				unsigned long nr_to_scan;
2296 
2297 				reclaim_stat->nr_saved_scan[l] = 0;
2298 				nr_to_scan = min(nr_pages, lru_pages);
2299 				nr_reclaimed += shrink_list(l, nr_to_scan, zone,
2300 								sc, prio);
2301 				if (nr_reclaimed >= nr_pages) {
2302 					sc->nr_reclaimed += nr_reclaimed;
2303 					return;
2304 				}
2305 			}
2306 		}
2307 	}
2308 	sc->nr_reclaimed += nr_reclaimed;
2309 }
2310 
2311 /*
2312  * Try to free `nr_pages' of memory, system-wide, and return the number of
2313  * freed pages.
2314  *
2315  * Rather than trying to age LRUs the aim is to preserve the overall
2316  * LRU order by reclaiming preferentially
2317  * inactive > active > active referenced > active mapped
2318  */
2319 unsigned long shrink_all_memory(unsigned long nr_pages)
2320 {
2321 	unsigned long lru_pages, nr_slab;
2322 	int pass;
2323 	struct reclaim_state reclaim_state;
2324 	struct scan_control sc = {
2325 		.gfp_mask = GFP_KERNEL,
2326 		.may_unmap = 0,
2327 		.may_writepage = 1,
2328 		.isolate_pages = isolate_pages_global,
2329 		.nr_reclaimed = 0,
2330 	};
2331 
2332 	current->reclaim_state = &reclaim_state;
2333 
2334 	lru_pages = global_reclaimable_pages();
2335 	nr_slab = global_page_state(NR_SLAB_RECLAIMABLE);
2336 	/* If slab caches are huge, it's better to hit them first */
2337 	while (nr_slab >= lru_pages) {
2338 		reclaim_state.reclaimed_slab = 0;
2339 		shrink_slab(nr_pages, sc.gfp_mask, lru_pages);
2340 		if (!reclaim_state.reclaimed_slab)
2341 			break;
2342 
2343 		sc.nr_reclaimed += reclaim_state.reclaimed_slab;
2344 		if (sc.nr_reclaimed >= nr_pages)
2345 			goto out;
2346 
2347 		nr_slab -= reclaim_state.reclaimed_slab;
2348 	}
2349 
2350 	/*
2351 	 * We try to shrink LRUs in 5 passes:
2352 	 * 0 = Reclaim from inactive_list only
2353 	 * 1 = Reclaim from active list but don't reclaim mapped
2354 	 * 2 = 2nd pass of type 1
2355 	 * 3 = Reclaim mapped (normal reclaim)
2356 	 * 4 = 2nd pass of type 3
2357 	 */
2358 	for (pass = 0; pass < 5; pass++) {
2359 		int prio;
2360 
2361 		/* Force reclaiming mapped pages in the passes #3 and #4 */
2362 		if (pass > 2)
2363 			sc.may_unmap = 1;
2364 
2365 		for (prio = DEF_PRIORITY; prio >= 0; prio--) {
2366 			unsigned long nr_to_scan = nr_pages - sc.nr_reclaimed;
2367 
2368 			sc.nr_scanned = 0;
2369 			sc.swap_cluster_max = nr_to_scan;
2370 			shrink_all_zones(nr_to_scan, prio, pass, &sc);
2371 			if (sc.nr_reclaimed >= nr_pages)
2372 				goto out;
2373 
2374 			reclaim_state.reclaimed_slab = 0;
2375 			shrink_slab(sc.nr_scanned, sc.gfp_mask,
2376 				    global_reclaimable_pages());
2377 			sc.nr_reclaimed += reclaim_state.reclaimed_slab;
2378 			if (sc.nr_reclaimed >= nr_pages)
2379 				goto out;
2380 
2381 			if (sc.nr_scanned && prio < DEF_PRIORITY - 2)
2382 				congestion_wait(BLK_RW_ASYNC, HZ / 10);
2383 		}
2384 	}
2385 
2386 	/*
2387 	 * If sc.nr_reclaimed = 0, we could not shrink LRUs, but there may be
2388 	 * something in slab caches
2389 	 */
2390 	if (!sc.nr_reclaimed) {
2391 		do {
2392 			reclaim_state.reclaimed_slab = 0;
2393 			shrink_slab(nr_pages, sc.gfp_mask,
2394 				    global_reclaimable_pages());
2395 			sc.nr_reclaimed += reclaim_state.reclaimed_slab;
2396 		} while (sc.nr_reclaimed < nr_pages &&
2397 				reclaim_state.reclaimed_slab > 0);
2398 	}
2399 
2400 
2401 out:
2402 	current->reclaim_state = NULL;
2403 
2404 	return sc.nr_reclaimed;
2405 }
2406 #endif /* CONFIG_HIBERNATION */
2407 
2408 /* It's optimal to keep kswapds on the same CPUs as their memory, but
2409    not required for correctness.  So if the last cpu in a node goes
2410    away, we get changed to run anywhere: as the first one comes back,
2411    restore their cpu bindings. */
2412 static int __devinit cpu_callback(struct notifier_block *nfb,
2413 				  unsigned long action, void *hcpu)
2414 {
2415 	int nid;
2416 
2417 	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2418 		for_each_node_state(nid, N_HIGH_MEMORY) {
2419 			pg_data_t *pgdat = NODE_DATA(nid);
2420 			const struct cpumask *mask;
2421 
2422 			mask = cpumask_of_node(pgdat->node_id);
2423 
2424 			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2425 				/* One of our CPUs online: restore mask */
2426 				set_cpus_allowed_ptr(pgdat->kswapd, mask);
2427 		}
2428 	}
2429 	return NOTIFY_OK;
2430 }
2431 
2432 /*
2433  * This kswapd start function will be called by init and node-hot-add.
2434  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2435  */
2436 int kswapd_run(int nid)
2437 {
2438 	pg_data_t *pgdat = NODE_DATA(nid);
2439 	int ret = 0;
2440 
2441 	if (pgdat->kswapd)
2442 		return 0;
2443 
2444 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2445 	if (IS_ERR(pgdat->kswapd)) {
2446 		/* failure at boot is fatal */
2447 		BUG_ON(system_state == SYSTEM_BOOTING);
2448 		printk("Failed to start kswapd on node %d\n",nid);
2449 		ret = -1;
2450 	}
2451 	return ret;
2452 }
2453 
2454 static int __init kswapd_init(void)
2455 {
2456 	int nid;
2457 
2458 	swap_setup();
2459 	for_each_node_state(nid, N_HIGH_MEMORY)
2460  		kswapd_run(nid);
2461 	hotcpu_notifier(cpu_callback, 0);
2462 	return 0;
2463 }
2464 
2465 module_init(kswapd_init)
2466 
2467 #ifdef CONFIG_NUMA
2468 /*
2469  * Zone reclaim mode
2470  *
2471  * If non-zero call zone_reclaim when the number of free pages falls below
2472  * the watermarks.
2473  */
2474 int zone_reclaim_mode __read_mostly;
2475 
2476 #define RECLAIM_OFF 0
2477 #define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
2478 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
2479 #define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
2480 
2481 /*
2482  * Priority for ZONE_RECLAIM. This determines the fraction of pages
2483  * of a node considered for each zone_reclaim. 4 scans 1/16th of
2484  * a zone.
2485  */
2486 #define ZONE_RECLAIM_PRIORITY 4
2487 
2488 /*
2489  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2490  * occur.
2491  */
2492 int sysctl_min_unmapped_ratio = 1;
2493 
2494 /*
2495  * If the number of slab pages in a zone grows beyond this percentage then
2496  * slab reclaim needs to occur.
2497  */
2498 int sysctl_min_slab_ratio = 5;
2499 
2500 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
2501 {
2502 	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
2503 	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
2504 		zone_page_state(zone, NR_ACTIVE_FILE);
2505 
2506 	/*
2507 	 * It's possible for there to be more file mapped pages than
2508 	 * accounted for by the pages on the file LRU lists because
2509 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
2510 	 */
2511 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
2512 }
2513 
2514 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
2515 static long zone_pagecache_reclaimable(struct zone *zone)
2516 {
2517 	long nr_pagecache_reclaimable;
2518 	long delta = 0;
2519 
2520 	/*
2521 	 * If RECLAIM_SWAP is set, then all file pages are considered
2522 	 * potentially reclaimable. Otherwise, we have to worry about
2523 	 * pages like swapcache and zone_unmapped_file_pages() provides
2524 	 * a better estimate
2525 	 */
2526 	if (zone_reclaim_mode & RECLAIM_SWAP)
2527 		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
2528 	else
2529 		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
2530 
2531 	/* If we can't clean pages, remove dirty pages from consideration */
2532 	if (!(zone_reclaim_mode & RECLAIM_WRITE))
2533 		delta += zone_page_state(zone, NR_FILE_DIRTY);
2534 
2535 	/* Watch for any possible underflows due to delta */
2536 	if (unlikely(delta > nr_pagecache_reclaimable))
2537 		delta = nr_pagecache_reclaimable;
2538 
2539 	return nr_pagecache_reclaimable - delta;
2540 }
2541 
2542 /*
2543  * Try to free up some pages from this zone through reclaim.
2544  */
2545 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2546 {
2547 	/* Minimum pages needed in order to stay on node */
2548 	const unsigned long nr_pages = 1 << order;
2549 	struct task_struct *p = current;
2550 	struct reclaim_state reclaim_state;
2551 	int priority;
2552 	struct scan_control sc = {
2553 		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
2554 		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2555 		.may_swap = 1,
2556 		.swap_cluster_max = max_t(unsigned long, nr_pages,
2557 					SWAP_CLUSTER_MAX),
2558 		.gfp_mask = gfp_mask,
2559 		.swappiness = vm_swappiness,
2560 		.order = order,
2561 		.isolate_pages = isolate_pages_global,
2562 	};
2563 	unsigned long slab_reclaimable;
2564 
2565 	disable_swap_token();
2566 	cond_resched();
2567 	/*
2568 	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2569 	 * and we also need to be able to write out pages for RECLAIM_WRITE
2570 	 * and RECLAIM_SWAP.
2571 	 */
2572 	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
2573 	reclaim_state.reclaimed_slab = 0;
2574 	p->reclaim_state = &reclaim_state;
2575 
2576 	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
2577 		/*
2578 		 * Free memory by calling shrink zone with increasing
2579 		 * priorities until we have enough memory freed.
2580 		 */
2581 		priority = ZONE_RECLAIM_PRIORITY;
2582 		do {
2583 			note_zone_scanning_priority(zone, priority);
2584 			shrink_zone(priority, zone, &sc);
2585 			priority--;
2586 		} while (priority >= 0 && sc.nr_reclaimed < nr_pages);
2587 	}
2588 
2589 	slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2590 	if (slab_reclaimable > zone->min_slab_pages) {
2591 		/*
2592 		 * shrink_slab() does not currently allow us to determine how
2593 		 * many pages were freed in this zone. So we take the current
2594 		 * number of slab pages and shake the slab until it is reduced
2595 		 * by the same nr_pages that we used for reclaiming unmapped
2596 		 * pages.
2597 		 *
2598 		 * Note that shrink_slab will free memory on all zones and may
2599 		 * take a long time.
2600 		 */
2601 		while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
2602 			zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
2603 				slab_reclaimable - nr_pages)
2604 			;
2605 
2606 		/*
2607 		 * Update nr_reclaimed by the number of slab pages we
2608 		 * reclaimed from this zone.
2609 		 */
2610 		sc.nr_reclaimed += slab_reclaimable -
2611 			zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2612 	}
2613 
2614 	p->reclaim_state = NULL;
2615 	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
2616 	return sc.nr_reclaimed >= nr_pages;
2617 }
2618 
2619 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2620 {
2621 	int node_id;
2622 	int ret;
2623 
2624 	/*
2625 	 * Zone reclaim reclaims unmapped file backed pages and
2626 	 * slab pages if we are over the defined limits.
2627 	 *
2628 	 * A small portion of unmapped file backed pages is needed for
2629 	 * file I/O otherwise pages read by file I/O will be immediately
2630 	 * thrown out if the zone is overallocated. So we do not reclaim
2631 	 * if less than a specified percentage of the zone is used by
2632 	 * unmapped file backed pages.
2633 	 */
2634 	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
2635 	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
2636 		return ZONE_RECLAIM_FULL;
2637 
2638 	if (zone_is_all_unreclaimable(zone))
2639 		return ZONE_RECLAIM_FULL;
2640 
2641 	/*
2642 	 * Do not scan if the allocation should not be delayed.
2643 	 */
2644 	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
2645 		return ZONE_RECLAIM_NOSCAN;
2646 
2647 	/*
2648 	 * Only run zone reclaim on the local zone or on zones that do not
2649 	 * have associated processors. This will favor the local processor
2650 	 * over remote processors and spread off node memory allocations
2651 	 * as wide as possible.
2652 	 */
2653 	node_id = zone_to_nid(zone);
2654 	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
2655 		return ZONE_RECLAIM_NOSCAN;
2656 
2657 	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
2658 		return ZONE_RECLAIM_NOSCAN;
2659 
2660 	ret = __zone_reclaim(zone, gfp_mask, order);
2661 	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
2662 
2663 	if (!ret)
2664 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
2665 
2666 	return ret;
2667 }
2668 #endif
2669 
2670 /*
2671  * page_evictable - test whether a page is evictable
2672  * @page: the page to test
2673  * @vma: the VMA in which the page is or will be mapped, may be NULL
2674  *
2675  * Test whether page is evictable--i.e., should be placed on active/inactive
2676  * lists vs unevictable list.  The vma argument is !NULL when called from the
2677  * fault path to determine how to instantate a new page.
2678  *
2679  * Reasons page might not be evictable:
2680  * (1) page's mapping marked unevictable
2681  * (2) page is part of an mlocked VMA
2682  *
2683  */
2684 int page_evictable(struct page *page, struct vm_area_struct *vma)
2685 {
2686 
2687 	if (mapping_unevictable(page_mapping(page)))
2688 		return 0;
2689 
2690 	if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
2691 		return 0;
2692 
2693 	return 1;
2694 }
2695 
2696 /**
2697  * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
2698  * @page: page to check evictability and move to appropriate lru list
2699  * @zone: zone page is in
2700  *
2701  * Checks a page for evictability and moves the page to the appropriate
2702  * zone lru list.
2703  *
2704  * Restrictions: zone->lru_lock must be held, page must be on LRU and must
2705  * have PageUnevictable set.
2706  */
2707 static void check_move_unevictable_page(struct page *page, struct zone *zone)
2708 {
2709 	VM_BUG_ON(PageActive(page));
2710 
2711 retry:
2712 	ClearPageUnevictable(page);
2713 	if (page_evictable(page, NULL)) {
2714 		enum lru_list l = page_lru_base_type(page);
2715 
2716 		__dec_zone_state(zone, NR_UNEVICTABLE);
2717 		list_move(&page->lru, &zone->lru[l].list);
2718 		mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
2719 		__inc_zone_state(zone, NR_INACTIVE_ANON + l);
2720 		__count_vm_event(UNEVICTABLE_PGRESCUED);
2721 	} else {
2722 		/*
2723 		 * rotate unevictable list
2724 		 */
2725 		SetPageUnevictable(page);
2726 		list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
2727 		mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
2728 		if (page_evictable(page, NULL))
2729 			goto retry;
2730 	}
2731 }
2732 
2733 /**
2734  * scan_mapping_unevictable_pages - scan an address space for evictable pages
2735  * @mapping: struct address_space to scan for evictable pages
2736  *
2737  * Scan all pages in mapping.  Check unevictable pages for
2738  * evictability and move them to the appropriate zone lru list.
2739  */
2740 void scan_mapping_unevictable_pages(struct address_space *mapping)
2741 {
2742 	pgoff_t next = 0;
2743 	pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
2744 			 PAGE_CACHE_SHIFT;
2745 	struct zone *zone;
2746 	struct pagevec pvec;
2747 
2748 	if (mapping->nrpages == 0)
2749 		return;
2750 
2751 	pagevec_init(&pvec, 0);
2752 	while (next < end &&
2753 		pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
2754 		int i;
2755 		int pg_scanned = 0;
2756 
2757 		zone = NULL;
2758 
2759 		for (i = 0; i < pagevec_count(&pvec); i++) {
2760 			struct page *page = pvec.pages[i];
2761 			pgoff_t page_index = page->index;
2762 			struct zone *pagezone = page_zone(page);
2763 
2764 			pg_scanned++;
2765 			if (page_index > next)
2766 				next = page_index;
2767 			next++;
2768 
2769 			if (pagezone != zone) {
2770 				if (zone)
2771 					spin_unlock_irq(&zone->lru_lock);
2772 				zone = pagezone;
2773 				spin_lock_irq(&zone->lru_lock);
2774 			}
2775 
2776 			if (PageLRU(page) && PageUnevictable(page))
2777 				check_move_unevictable_page(page, zone);
2778 		}
2779 		if (zone)
2780 			spin_unlock_irq(&zone->lru_lock);
2781 		pagevec_release(&pvec);
2782 
2783 		count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
2784 	}
2785 
2786 }
2787 
2788 /**
2789  * scan_zone_unevictable_pages - check unevictable list for evictable pages
2790  * @zone - zone of which to scan the unevictable list
2791  *
2792  * Scan @zone's unevictable LRU lists to check for pages that have become
2793  * evictable.  Move those that have to @zone's inactive list where they
2794  * become candidates for reclaim, unless shrink_inactive_zone() decides
2795  * to reactivate them.  Pages that are still unevictable are rotated
2796  * back onto @zone's unevictable list.
2797  */
2798 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
2799 static void scan_zone_unevictable_pages(struct zone *zone)
2800 {
2801 	struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
2802 	unsigned long scan;
2803 	unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
2804 
2805 	while (nr_to_scan > 0) {
2806 		unsigned long batch_size = min(nr_to_scan,
2807 						SCAN_UNEVICTABLE_BATCH_SIZE);
2808 
2809 		spin_lock_irq(&zone->lru_lock);
2810 		for (scan = 0;  scan < batch_size; scan++) {
2811 			struct page *page = lru_to_page(l_unevictable);
2812 
2813 			if (!trylock_page(page))
2814 				continue;
2815 
2816 			prefetchw_prev_lru_page(page, l_unevictable, flags);
2817 
2818 			if (likely(PageLRU(page) && PageUnevictable(page)))
2819 				check_move_unevictable_page(page, zone);
2820 
2821 			unlock_page(page);
2822 		}
2823 		spin_unlock_irq(&zone->lru_lock);
2824 
2825 		nr_to_scan -= batch_size;
2826 	}
2827 }
2828 
2829 
2830 /**
2831  * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
2832  *
2833  * A really big hammer:  scan all zones' unevictable LRU lists to check for
2834  * pages that have become evictable.  Move those back to the zones'
2835  * inactive list where they become candidates for reclaim.
2836  * This occurs when, e.g., we have unswappable pages on the unevictable lists,
2837  * and we add swap to the system.  As such, it runs in the context of a task
2838  * that has possibly/probably made some previously unevictable pages
2839  * evictable.
2840  */
2841 static void scan_all_zones_unevictable_pages(void)
2842 {
2843 	struct zone *zone;
2844 
2845 	for_each_zone(zone) {
2846 		scan_zone_unevictable_pages(zone);
2847 	}
2848 }
2849 
2850 /*
2851  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
2852  * all nodes' unevictable lists for evictable pages
2853  */
2854 unsigned long scan_unevictable_pages;
2855 
2856 int scan_unevictable_handler(struct ctl_table *table, int write,
2857 			   void __user *buffer,
2858 			   size_t *length, loff_t *ppos)
2859 {
2860 	proc_doulongvec_minmax(table, write, buffer, length, ppos);
2861 
2862 	if (write && *(unsigned long *)table->data)
2863 		scan_all_zones_unevictable_pages();
2864 
2865 	scan_unevictable_pages = 0;
2866 	return 0;
2867 }
2868 
2869 /*
2870  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
2871  * a specified node's per zone unevictable lists for evictable pages.
2872  */
2873 
2874 static ssize_t read_scan_unevictable_node(struct sys_device *dev,
2875 					  struct sysdev_attribute *attr,
2876 					  char *buf)
2877 {
2878 	return sprintf(buf, "0\n");	/* always zero; should fit... */
2879 }
2880 
2881 static ssize_t write_scan_unevictable_node(struct sys_device *dev,
2882 					   struct sysdev_attribute *attr,
2883 					const char *buf, size_t count)
2884 {
2885 	struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
2886 	struct zone *zone;
2887 	unsigned long res;
2888 	unsigned long req = strict_strtoul(buf, 10, &res);
2889 
2890 	if (!req)
2891 		return 1;	/* zero is no-op */
2892 
2893 	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2894 		if (!populated_zone(zone))
2895 			continue;
2896 		scan_zone_unevictable_pages(zone);
2897 	}
2898 	return 1;
2899 }
2900 
2901 
2902 static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
2903 			read_scan_unevictable_node,
2904 			write_scan_unevictable_node);
2905 
2906 int scan_unevictable_register_node(struct node *node)
2907 {
2908 	return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
2909 }
2910 
2911 void scan_unevictable_unregister_node(struct node *node)
2912 {
2913 	sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
2914 }
2915 
2916