1 /* 2 * linux/mm/vmscan.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * 6 * Swap reorganised 29.12.95, Stephen Tweedie. 7 * kswapd added: 7.1.96 sct 8 * Removed kswapd_ctl limits, and swap out as many pages as needed 9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 11 * Multiqueue VM started 5.8.00, Rik van Riel. 12 */ 13 14 #include <linux/mm.h> 15 #include <linux/module.h> 16 #include <linux/slab.h> 17 #include <linux/kernel_stat.h> 18 #include <linux/swap.h> 19 #include <linux/pagemap.h> 20 #include <linux/init.h> 21 #include <linux/highmem.h> 22 #include <linux/vmstat.h> 23 #include <linux/file.h> 24 #include <linux/writeback.h> 25 #include <linux/blkdev.h> 26 #include <linux/buffer_head.h> /* for try_to_release_page(), 27 buffer_heads_over_limit */ 28 #include <linux/mm_inline.h> 29 #include <linux/pagevec.h> 30 #include <linux/backing-dev.h> 31 #include <linux/rmap.h> 32 #include <linux/topology.h> 33 #include <linux/cpu.h> 34 #include <linux/cpuset.h> 35 #include <linux/notifier.h> 36 #include <linux/rwsem.h> 37 #include <linux/delay.h> 38 #include <linux/kthread.h> 39 #include <linux/freezer.h> 40 #include <linux/memcontrol.h> 41 #include <linux/delayacct.h> 42 #include <linux/sysctl.h> 43 44 #include <asm/tlbflush.h> 45 #include <asm/div64.h> 46 47 #include <linux/swapops.h> 48 49 #include "internal.h" 50 51 struct scan_control { 52 /* Incremented by the number of inactive pages that were scanned */ 53 unsigned long nr_scanned; 54 55 /* Number of pages freed so far during a call to shrink_zones() */ 56 unsigned long nr_reclaimed; 57 58 /* This context's GFP mask */ 59 gfp_t gfp_mask; 60 61 int may_writepage; 62 63 /* Can mapped pages be reclaimed? */ 64 int may_unmap; 65 66 /* Can pages be swapped as part of reclaim? */ 67 int may_swap; 68 69 /* This context's SWAP_CLUSTER_MAX. If freeing memory for 70 * suspend, we effectively ignore SWAP_CLUSTER_MAX. 71 * In this context, it doesn't matter that we scan the 72 * whole list at once. */ 73 int swap_cluster_max; 74 75 int swappiness; 76 77 int all_unreclaimable; 78 79 int order; 80 81 /* Which cgroup do we reclaim from */ 82 struct mem_cgroup *mem_cgroup; 83 84 /* 85 * Nodemask of nodes allowed by the caller. If NULL, all nodes 86 * are scanned. 87 */ 88 nodemask_t *nodemask; 89 90 /* Pluggable isolate pages callback */ 91 unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst, 92 unsigned long *scanned, int order, int mode, 93 struct zone *z, struct mem_cgroup *mem_cont, 94 int active, int file); 95 }; 96 97 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru)) 98 99 #ifdef ARCH_HAS_PREFETCH 100 #define prefetch_prev_lru_page(_page, _base, _field) \ 101 do { \ 102 if ((_page)->lru.prev != _base) { \ 103 struct page *prev; \ 104 \ 105 prev = lru_to_page(&(_page->lru)); \ 106 prefetch(&prev->_field); \ 107 } \ 108 } while (0) 109 #else 110 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0) 111 #endif 112 113 #ifdef ARCH_HAS_PREFETCHW 114 #define prefetchw_prev_lru_page(_page, _base, _field) \ 115 do { \ 116 if ((_page)->lru.prev != _base) { \ 117 struct page *prev; \ 118 \ 119 prev = lru_to_page(&(_page->lru)); \ 120 prefetchw(&prev->_field); \ 121 } \ 122 } while (0) 123 #else 124 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 125 #endif 126 127 /* 128 * From 0 .. 100. Higher means more swappy. 129 */ 130 int vm_swappiness = 60; 131 long vm_total_pages; /* The total number of pages which the VM controls */ 132 133 static LIST_HEAD(shrinker_list); 134 static DECLARE_RWSEM(shrinker_rwsem); 135 136 #ifdef CONFIG_CGROUP_MEM_RES_CTLR 137 #define scanning_global_lru(sc) (!(sc)->mem_cgroup) 138 #else 139 #define scanning_global_lru(sc) (1) 140 #endif 141 142 static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone, 143 struct scan_control *sc) 144 { 145 if (!scanning_global_lru(sc)) 146 return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone); 147 148 return &zone->reclaim_stat; 149 } 150 151 static unsigned long zone_nr_lru_pages(struct zone *zone, 152 struct scan_control *sc, enum lru_list lru) 153 { 154 if (!scanning_global_lru(sc)) 155 return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru); 156 157 return zone_page_state(zone, NR_LRU_BASE + lru); 158 } 159 160 161 /* 162 * Add a shrinker callback to be called from the vm 163 */ 164 void register_shrinker(struct shrinker *shrinker) 165 { 166 shrinker->nr = 0; 167 down_write(&shrinker_rwsem); 168 list_add_tail(&shrinker->list, &shrinker_list); 169 up_write(&shrinker_rwsem); 170 } 171 EXPORT_SYMBOL(register_shrinker); 172 173 /* 174 * Remove one 175 */ 176 void unregister_shrinker(struct shrinker *shrinker) 177 { 178 down_write(&shrinker_rwsem); 179 list_del(&shrinker->list); 180 up_write(&shrinker_rwsem); 181 } 182 EXPORT_SYMBOL(unregister_shrinker); 183 184 #define SHRINK_BATCH 128 185 /* 186 * Call the shrink functions to age shrinkable caches 187 * 188 * Here we assume it costs one seek to replace a lru page and that it also 189 * takes a seek to recreate a cache object. With this in mind we age equal 190 * percentages of the lru and ageable caches. This should balance the seeks 191 * generated by these structures. 192 * 193 * If the vm encountered mapped pages on the LRU it increase the pressure on 194 * slab to avoid swapping. 195 * 196 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits. 197 * 198 * `lru_pages' represents the number of on-LRU pages in all the zones which 199 * are eligible for the caller's allocation attempt. It is used for balancing 200 * slab reclaim versus page reclaim. 201 * 202 * Returns the number of slab objects which we shrunk. 203 */ 204 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask, 205 unsigned long lru_pages) 206 { 207 struct shrinker *shrinker; 208 unsigned long ret = 0; 209 210 if (scanned == 0) 211 scanned = SWAP_CLUSTER_MAX; 212 213 if (!down_read_trylock(&shrinker_rwsem)) 214 return 1; /* Assume we'll be able to shrink next time */ 215 216 list_for_each_entry(shrinker, &shrinker_list, list) { 217 unsigned long long delta; 218 unsigned long total_scan; 219 unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask); 220 221 delta = (4 * scanned) / shrinker->seeks; 222 delta *= max_pass; 223 do_div(delta, lru_pages + 1); 224 shrinker->nr += delta; 225 if (shrinker->nr < 0) { 226 printk(KERN_ERR "shrink_slab: %pF negative objects to " 227 "delete nr=%ld\n", 228 shrinker->shrink, shrinker->nr); 229 shrinker->nr = max_pass; 230 } 231 232 /* 233 * Avoid risking looping forever due to too large nr value: 234 * never try to free more than twice the estimate number of 235 * freeable entries. 236 */ 237 if (shrinker->nr > max_pass * 2) 238 shrinker->nr = max_pass * 2; 239 240 total_scan = shrinker->nr; 241 shrinker->nr = 0; 242 243 while (total_scan >= SHRINK_BATCH) { 244 long this_scan = SHRINK_BATCH; 245 int shrink_ret; 246 int nr_before; 247 248 nr_before = (*shrinker->shrink)(0, gfp_mask); 249 shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask); 250 if (shrink_ret == -1) 251 break; 252 if (shrink_ret < nr_before) 253 ret += nr_before - shrink_ret; 254 count_vm_events(SLABS_SCANNED, this_scan); 255 total_scan -= this_scan; 256 257 cond_resched(); 258 } 259 260 shrinker->nr += total_scan; 261 } 262 up_read(&shrinker_rwsem); 263 return ret; 264 } 265 266 /* Called without lock on whether page is mapped, so answer is unstable */ 267 static inline int page_mapping_inuse(struct page *page) 268 { 269 struct address_space *mapping; 270 271 /* Page is in somebody's page tables. */ 272 if (page_mapped(page)) 273 return 1; 274 275 /* Be more reluctant to reclaim swapcache than pagecache */ 276 if (PageSwapCache(page)) 277 return 1; 278 279 mapping = page_mapping(page); 280 if (!mapping) 281 return 0; 282 283 /* File is mmap'd by somebody? */ 284 return mapping_mapped(mapping); 285 } 286 287 static inline int is_page_cache_freeable(struct page *page) 288 { 289 /* 290 * A freeable page cache page is referenced only by the caller 291 * that isolated the page, the page cache radix tree and 292 * optional buffer heads at page->private. 293 */ 294 return page_count(page) - page_has_private(page) == 2; 295 } 296 297 static int may_write_to_queue(struct backing_dev_info *bdi) 298 { 299 if (current->flags & PF_SWAPWRITE) 300 return 1; 301 if (!bdi_write_congested(bdi)) 302 return 1; 303 if (bdi == current->backing_dev_info) 304 return 1; 305 return 0; 306 } 307 308 /* 309 * We detected a synchronous write error writing a page out. Probably 310 * -ENOSPC. We need to propagate that into the address_space for a subsequent 311 * fsync(), msync() or close(). 312 * 313 * The tricky part is that after writepage we cannot touch the mapping: nothing 314 * prevents it from being freed up. But we have a ref on the page and once 315 * that page is locked, the mapping is pinned. 316 * 317 * We're allowed to run sleeping lock_page() here because we know the caller has 318 * __GFP_FS. 319 */ 320 static void handle_write_error(struct address_space *mapping, 321 struct page *page, int error) 322 { 323 lock_page(page); 324 if (page_mapping(page) == mapping) 325 mapping_set_error(mapping, error); 326 unlock_page(page); 327 } 328 329 /* Request for sync pageout. */ 330 enum pageout_io { 331 PAGEOUT_IO_ASYNC, 332 PAGEOUT_IO_SYNC, 333 }; 334 335 /* possible outcome of pageout() */ 336 typedef enum { 337 /* failed to write page out, page is locked */ 338 PAGE_KEEP, 339 /* move page to the active list, page is locked */ 340 PAGE_ACTIVATE, 341 /* page has been sent to the disk successfully, page is unlocked */ 342 PAGE_SUCCESS, 343 /* page is clean and locked */ 344 PAGE_CLEAN, 345 } pageout_t; 346 347 /* 348 * pageout is called by shrink_page_list() for each dirty page. 349 * Calls ->writepage(). 350 */ 351 static pageout_t pageout(struct page *page, struct address_space *mapping, 352 enum pageout_io sync_writeback) 353 { 354 /* 355 * If the page is dirty, only perform writeback if that write 356 * will be non-blocking. To prevent this allocation from being 357 * stalled by pagecache activity. But note that there may be 358 * stalls if we need to run get_block(). We could test 359 * PagePrivate for that. 360 * 361 * If this process is currently in generic_file_write() against 362 * this page's queue, we can perform writeback even if that 363 * will block. 364 * 365 * If the page is swapcache, write it back even if that would 366 * block, for some throttling. This happens by accident, because 367 * swap_backing_dev_info is bust: it doesn't reflect the 368 * congestion state of the swapdevs. Easy to fix, if needed. 369 */ 370 if (!is_page_cache_freeable(page)) 371 return PAGE_KEEP; 372 if (!mapping) { 373 /* 374 * Some data journaling orphaned pages can have 375 * page->mapping == NULL while being dirty with clean buffers. 376 */ 377 if (page_has_private(page)) { 378 if (try_to_free_buffers(page)) { 379 ClearPageDirty(page); 380 printk("%s: orphaned page\n", __func__); 381 return PAGE_CLEAN; 382 } 383 } 384 return PAGE_KEEP; 385 } 386 if (mapping->a_ops->writepage == NULL) 387 return PAGE_ACTIVATE; 388 if (!may_write_to_queue(mapping->backing_dev_info)) 389 return PAGE_KEEP; 390 391 if (clear_page_dirty_for_io(page)) { 392 int res; 393 struct writeback_control wbc = { 394 .sync_mode = WB_SYNC_NONE, 395 .nr_to_write = SWAP_CLUSTER_MAX, 396 .range_start = 0, 397 .range_end = LLONG_MAX, 398 .nonblocking = 1, 399 .for_reclaim = 1, 400 }; 401 402 SetPageReclaim(page); 403 res = mapping->a_ops->writepage(page, &wbc); 404 if (res < 0) 405 handle_write_error(mapping, page, res); 406 if (res == AOP_WRITEPAGE_ACTIVATE) { 407 ClearPageReclaim(page); 408 return PAGE_ACTIVATE; 409 } 410 411 /* 412 * Wait on writeback if requested to. This happens when 413 * direct reclaiming a large contiguous area and the 414 * first attempt to free a range of pages fails. 415 */ 416 if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC) 417 wait_on_page_writeback(page); 418 419 if (!PageWriteback(page)) { 420 /* synchronous write or broken a_ops? */ 421 ClearPageReclaim(page); 422 } 423 inc_zone_page_state(page, NR_VMSCAN_WRITE); 424 return PAGE_SUCCESS; 425 } 426 427 return PAGE_CLEAN; 428 } 429 430 /* 431 * Same as remove_mapping, but if the page is removed from the mapping, it 432 * gets returned with a refcount of 0. 433 */ 434 static int __remove_mapping(struct address_space *mapping, struct page *page) 435 { 436 BUG_ON(!PageLocked(page)); 437 BUG_ON(mapping != page_mapping(page)); 438 439 spin_lock_irq(&mapping->tree_lock); 440 /* 441 * The non racy check for a busy page. 442 * 443 * Must be careful with the order of the tests. When someone has 444 * a ref to the page, it may be possible that they dirty it then 445 * drop the reference. So if PageDirty is tested before page_count 446 * here, then the following race may occur: 447 * 448 * get_user_pages(&page); 449 * [user mapping goes away] 450 * write_to(page); 451 * !PageDirty(page) [good] 452 * SetPageDirty(page); 453 * put_page(page); 454 * !page_count(page) [good, discard it] 455 * 456 * [oops, our write_to data is lost] 457 * 458 * Reversing the order of the tests ensures such a situation cannot 459 * escape unnoticed. The smp_rmb is needed to ensure the page->flags 460 * load is not satisfied before that of page->_count. 461 * 462 * Note that if SetPageDirty is always performed via set_page_dirty, 463 * and thus under tree_lock, then this ordering is not required. 464 */ 465 if (!page_freeze_refs(page, 2)) 466 goto cannot_free; 467 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */ 468 if (unlikely(PageDirty(page))) { 469 page_unfreeze_refs(page, 2); 470 goto cannot_free; 471 } 472 473 if (PageSwapCache(page)) { 474 swp_entry_t swap = { .val = page_private(page) }; 475 __delete_from_swap_cache(page); 476 spin_unlock_irq(&mapping->tree_lock); 477 swapcache_free(swap, page); 478 } else { 479 __remove_from_page_cache(page); 480 spin_unlock_irq(&mapping->tree_lock); 481 mem_cgroup_uncharge_cache_page(page); 482 } 483 484 return 1; 485 486 cannot_free: 487 spin_unlock_irq(&mapping->tree_lock); 488 return 0; 489 } 490 491 /* 492 * Attempt to detach a locked page from its ->mapping. If it is dirty or if 493 * someone else has a ref on the page, abort and return 0. If it was 494 * successfully detached, return 1. Assumes the caller has a single ref on 495 * this page. 496 */ 497 int remove_mapping(struct address_space *mapping, struct page *page) 498 { 499 if (__remove_mapping(mapping, page)) { 500 /* 501 * Unfreezing the refcount with 1 rather than 2 effectively 502 * drops the pagecache ref for us without requiring another 503 * atomic operation. 504 */ 505 page_unfreeze_refs(page, 1); 506 return 1; 507 } 508 return 0; 509 } 510 511 /** 512 * putback_lru_page - put previously isolated page onto appropriate LRU list 513 * @page: page to be put back to appropriate lru list 514 * 515 * Add previously isolated @page to appropriate LRU list. 516 * Page may still be unevictable for other reasons. 517 * 518 * lru_lock must not be held, interrupts must be enabled. 519 */ 520 void putback_lru_page(struct page *page) 521 { 522 int lru; 523 int active = !!TestClearPageActive(page); 524 int was_unevictable = PageUnevictable(page); 525 526 VM_BUG_ON(PageLRU(page)); 527 528 redo: 529 ClearPageUnevictable(page); 530 531 if (page_evictable(page, NULL)) { 532 /* 533 * For evictable pages, we can use the cache. 534 * In event of a race, worst case is we end up with an 535 * unevictable page on [in]active list. 536 * We know how to handle that. 537 */ 538 lru = active + page_lru_base_type(page); 539 lru_cache_add_lru(page, lru); 540 } else { 541 /* 542 * Put unevictable pages directly on zone's unevictable 543 * list. 544 */ 545 lru = LRU_UNEVICTABLE; 546 add_page_to_unevictable_list(page); 547 /* 548 * When racing with an mlock clearing (page is 549 * unlocked), make sure that if the other thread does 550 * not observe our setting of PG_lru and fails 551 * isolation, we see PG_mlocked cleared below and move 552 * the page back to the evictable list. 553 * 554 * The other side is TestClearPageMlocked(). 555 */ 556 smp_mb(); 557 } 558 559 /* 560 * page's status can change while we move it among lru. If an evictable 561 * page is on unevictable list, it never be freed. To avoid that, 562 * check after we added it to the list, again. 563 */ 564 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) { 565 if (!isolate_lru_page(page)) { 566 put_page(page); 567 goto redo; 568 } 569 /* This means someone else dropped this page from LRU 570 * So, it will be freed or putback to LRU again. There is 571 * nothing to do here. 572 */ 573 } 574 575 if (was_unevictable && lru != LRU_UNEVICTABLE) 576 count_vm_event(UNEVICTABLE_PGRESCUED); 577 else if (!was_unevictable && lru == LRU_UNEVICTABLE) 578 count_vm_event(UNEVICTABLE_PGCULLED); 579 580 put_page(page); /* drop ref from isolate */ 581 } 582 583 /* 584 * shrink_page_list() returns the number of reclaimed pages 585 */ 586 static unsigned long shrink_page_list(struct list_head *page_list, 587 struct scan_control *sc, 588 enum pageout_io sync_writeback) 589 { 590 LIST_HEAD(ret_pages); 591 struct pagevec freed_pvec; 592 int pgactivate = 0; 593 unsigned long nr_reclaimed = 0; 594 unsigned long vm_flags; 595 596 cond_resched(); 597 598 pagevec_init(&freed_pvec, 1); 599 while (!list_empty(page_list)) { 600 struct address_space *mapping; 601 struct page *page; 602 int may_enter_fs; 603 int referenced; 604 605 cond_resched(); 606 607 page = lru_to_page(page_list); 608 list_del(&page->lru); 609 610 if (!trylock_page(page)) 611 goto keep; 612 613 VM_BUG_ON(PageActive(page)); 614 615 sc->nr_scanned++; 616 617 if (unlikely(!page_evictable(page, NULL))) 618 goto cull_mlocked; 619 620 if (!sc->may_unmap && page_mapped(page)) 621 goto keep_locked; 622 623 /* Double the slab pressure for mapped and swapcache pages */ 624 if (page_mapped(page) || PageSwapCache(page)) 625 sc->nr_scanned++; 626 627 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 628 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 629 630 if (PageWriteback(page)) { 631 /* 632 * Synchronous reclaim is performed in two passes, 633 * first an asynchronous pass over the list to 634 * start parallel writeback, and a second synchronous 635 * pass to wait for the IO to complete. Wait here 636 * for any page for which writeback has already 637 * started. 638 */ 639 if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs) 640 wait_on_page_writeback(page); 641 else 642 goto keep_locked; 643 } 644 645 referenced = page_referenced(page, 1, 646 sc->mem_cgroup, &vm_flags); 647 /* 648 * In active use or really unfreeable? Activate it. 649 * If page which have PG_mlocked lost isoltation race, 650 * try_to_unmap moves it to unevictable list 651 */ 652 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && 653 referenced && page_mapping_inuse(page) 654 && !(vm_flags & VM_LOCKED)) 655 goto activate_locked; 656 657 /* 658 * Anonymous process memory has backing store? 659 * Try to allocate it some swap space here. 660 */ 661 if (PageAnon(page) && !PageSwapCache(page)) { 662 if (!(sc->gfp_mask & __GFP_IO)) 663 goto keep_locked; 664 if (!add_to_swap(page)) 665 goto activate_locked; 666 may_enter_fs = 1; 667 } 668 669 mapping = page_mapping(page); 670 671 /* 672 * The page is mapped into the page tables of one or more 673 * processes. Try to unmap it here. 674 */ 675 if (page_mapped(page) && mapping) { 676 switch (try_to_unmap(page, TTU_UNMAP)) { 677 case SWAP_FAIL: 678 goto activate_locked; 679 case SWAP_AGAIN: 680 goto keep_locked; 681 case SWAP_MLOCK: 682 goto cull_mlocked; 683 case SWAP_SUCCESS: 684 ; /* try to free the page below */ 685 } 686 } 687 688 if (PageDirty(page)) { 689 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && referenced) 690 goto keep_locked; 691 if (!may_enter_fs) 692 goto keep_locked; 693 if (!sc->may_writepage) 694 goto keep_locked; 695 696 /* Page is dirty, try to write it out here */ 697 switch (pageout(page, mapping, sync_writeback)) { 698 case PAGE_KEEP: 699 goto keep_locked; 700 case PAGE_ACTIVATE: 701 goto activate_locked; 702 case PAGE_SUCCESS: 703 if (PageWriteback(page) || PageDirty(page)) 704 goto keep; 705 /* 706 * A synchronous write - probably a ramdisk. Go 707 * ahead and try to reclaim the page. 708 */ 709 if (!trylock_page(page)) 710 goto keep; 711 if (PageDirty(page) || PageWriteback(page)) 712 goto keep_locked; 713 mapping = page_mapping(page); 714 case PAGE_CLEAN: 715 ; /* try to free the page below */ 716 } 717 } 718 719 /* 720 * If the page has buffers, try to free the buffer mappings 721 * associated with this page. If we succeed we try to free 722 * the page as well. 723 * 724 * We do this even if the page is PageDirty(). 725 * try_to_release_page() does not perform I/O, but it is 726 * possible for a page to have PageDirty set, but it is actually 727 * clean (all its buffers are clean). This happens if the 728 * buffers were written out directly, with submit_bh(). ext3 729 * will do this, as well as the blockdev mapping. 730 * try_to_release_page() will discover that cleanness and will 731 * drop the buffers and mark the page clean - it can be freed. 732 * 733 * Rarely, pages can have buffers and no ->mapping. These are 734 * the pages which were not successfully invalidated in 735 * truncate_complete_page(). We try to drop those buffers here 736 * and if that worked, and the page is no longer mapped into 737 * process address space (page_count == 1) it can be freed. 738 * Otherwise, leave the page on the LRU so it is swappable. 739 */ 740 if (page_has_private(page)) { 741 if (!try_to_release_page(page, sc->gfp_mask)) 742 goto activate_locked; 743 if (!mapping && page_count(page) == 1) { 744 unlock_page(page); 745 if (put_page_testzero(page)) 746 goto free_it; 747 else { 748 /* 749 * rare race with speculative reference. 750 * the speculative reference will free 751 * this page shortly, so we may 752 * increment nr_reclaimed here (and 753 * leave it off the LRU). 754 */ 755 nr_reclaimed++; 756 continue; 757 } 758 } 759 } 760 761 if (!mapping || !__remove_mapping(mapping, page)) 762 goto keep_locked; 763 764 /* 765 * At this point, we have no other references and there is 766 * no way to pick any more up (removed from LRU, removed 767 * from pagecache). Can use non-atomic bitops now (and 768 * we obviously don't have to worry about waking up a process 769 * waiting on the page lock, because there are no references. 770 */ 771 __clear_page_locked(page); 772 free_it: 773 nr_reclaimed++; 774 if (!pagevec_add(&freed_pvec, page)) { 775 __pagevec_free(&freed_pvec); 776 pagevec_reinit(&freed_pvec); 777 } 778 continue; 779 780 cull_mlocked: 781 if (PageSwapCache(page)) 782 try_to_free_swap(page); 783 unlock_page(page); 784 putback_lru_page(page); 785 continue; 786 787 activate_locked: 788 /* Not a candidate for swapping, so reclaim swap space. */ 789 if (PageSwapCache(page) && vm_swap_full()) 790 try_to_free_swap(page); 791 VM_BUG_ON(PageActive(page)); 792 SetPageActive(page); 793 pgactivate++; 794 keep_locked: 795 unlock_page(page); 796 keep: 797 list_add(&page->lru, &ret_pages); 798 VM_BUG_ON(PageLRU(page) || PageUnevictable(page)); 799 } 800 list_splice(&ret_pages, page_list); 801 if (pagevec_count(&freed_pvec)) 802 __pagevec_free(&freed_pvec); 803 count_vm_events(PGACTIVATE, pgactivate); 804 return nr_reclaimed; 805 } 806 807 /* LRU Isolation modes. */ 808 #define ISOLATE_INACTIVE 0 /* Isolate inactive pages. */ 809 #define ISOLATE_ACTIVE 1 /* Isolate active pages. */ 810 #define ISOLATE_BOTH 2 /* Isolate both active and inactive pages. */ 811 812 /* 813 * Attempt to remove the specified page from its LRU. Only take this page 814 * if it is of the appropriate PageActive status. Pages which are being 815 * freed elsewhere are also ignored. 816 * 817 * page: page to consider 818 * mode: one of the LRU isolation modes defined above 819 * 820 * returns 0 on success, -ve errno on failure. 821 */ 822 int __isolate_lru_page(struct page *page, int mode, int file) 823 { 824 int ret = -EINVAL; 825 826 /* Only take pages on the LRU. */ 827 if (!PageLRU(page)) 828 return ret; 829 830 /* 831 * When checking the active state, we need to be sure we are 832 * dealing with comparible boolean values. Take the logical not 833 * of each. 834 */ 835 if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode)) 836 return ret; 837 838 if (mode != ISOLATE_BOTH && page_is_file_cache(page) != file) 839 return ret; 840 841 /* 842 * When this function is being called for lumpy reclaim, we 843 * initially look into all LRU pages, active, inactive and 844 * unevictable; only give shrink_page_list evictable pages. 845 */ 846 if (PageUnevictable(page)) 847 return ret; 848 849 ret = -EBUSY; 850 851 if (likely(get_page_unless_zero(page))) { 852 /* 853 * Be careful not to clear PageLRU until after we're 854 * sure the page is not being freed elsewhere -- the 855 * page release code relies on it. 856 */ 857 ClearPageLRU(page); 858 ret = 0; 859 } 860 861 return ret; 862 } 863 864 /* 865 * zone->lru_lock is heavily contended. Some of the functions that 866 * shrink the lists perform better by taking out a batch of pages 867 * and working on them outside the LRU lock. 868 * 869 * For pagecache intensive workloads, this function is the hottest 870 * spot in the kernel (apart from copy_*_user functions). 871 * 872 * Appropriate locks must be held before calling this function. 873 * 874 * @nr_to_scan: The number of pages to look through on the list. 875 * @src: The LRU list to pull pages off. 876 * @dst: The temp list to put pages on to. 877 * @scanned: The number of pages that were scanned. 878 * @order: The caller's attempted allocation order 879 * @mode: One of the LRU isolation modes 880 * @file: True [1] if isolating file [!anon] pages 881 * 882 * returns how many pages were moved onto *@dst. 883 */ 884 static unsigned long isolate_lru_pages(unsigned long nr_to_scan, 885 struct list_head *src, struct list_head *dst, 886 unsigned long *scanned, int order, int mode, int file) 887 { 888 unsigned long nr_taken = 0; 889 unsigned long scan; 890 891 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) { 892 struct page *page; 893 unsigned long pfn; 894 unsigned long end_pfn; 895 unsigned long page_pfn; 896 int zone_id; 897 898 page = lru_to_page(src); 899 prefetchw_prev_lru_page(page, src, flags); 900 901 VM_BUG_ON(!PageLRU(page)); 902 903 switch (__isolate_lru_page(page, mode, file)) { 904 case 0: 905 list_move(&page->lru, dst); 906 mem_cgroup_del_lru(page); 907 nr_taken++; 908 break; 909 910 case -EBUSY: 911 /* else it is being freed elsewhere */ 912 list_move(&page->lru, src); 913 mem_cgroup_rotate_lru_list(page, page_lru(page)); 914 continue; 915 916 default: 917 BUG(); 918 } 919 920 if (!order) 921 continue; 922 923 /* 924 * Attempt to take all pages in the order aligned region 925 * surrounding the tag page. Only take those pages of 926 * the same active state as that tag page. We may safely 927 * round the target page pfn down to the requested order 928 * as the mem_map is guarenteed valid out to MAX_ORDER, 929 * where that page is in a different zone we will detect 930 * it from its zone id and abort this block scan. 931 */ 932 zone_id = page_zone_id(page); 933 page_pfn = page_to_pfn(page); 934 pfn = page_pfn & ~((1 << order) - 1); 935 end_pfn = pfn + (1 << order); 936 for (; pfn < end_pfn; pfn++) { 937 struct page *cursor_page; 938 939 /* The target page is in the block, ignore it. */ 940 if (unlikely(pfn == page_pfn)) 941 continue; 942 943 /* Avoid holes within the zone. */ 944 if (unlikely(!pfn_valid_within(pfn))) 945 break; 946 947 cursor_page = pfn_to_page(pfn); 948 949 /* Check that we have not crossed a zone boundary. */ 950 if (unlikely(page_zone_id(cursor_page) != zone_id)) 951 continue; 952 953 /* 954 * If we don't have enough swap space, reclaiming of 955 * anon page which don't already have a swap slot is 956 * pointless. 957 */ 958 if (nr_swap_pages <= 0 && PageAnon(cursor_page) && 959 !PageSwapCache(cursor_page)) 960 continue; 961 962 if (__isolate_lru_page(cursor_page, mode, file) == 0) { 963 list_move(&cursor_page->lru, dst); 964 mem_cgroup_del_lru(cursor_page); 965 nr_taken++; 966 scan++; 967 } 968 } 969 } 970 971 *scanned = scan; 972 return nr_taken; 973 } 974 975 static unsigned long isolate_pages_global(unsigned long nr, 976 struct list_head *dst, 977 unsigned long *scanned, int order, 978 int mode, struct zone *z, 979 struct mem_cgroup *mem_cont, 980 int active, int file) 981 { 982 int lru = LRU_BASE; 983 if (active) 984 lru += LRU_ACTIVE; 985 if (file) 986 lru += LRU_FILE; 987 return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order, 988 mode, file); 989 } 990 991 /* 992 * clear_active_flags() is a helper for shrink_active_list(), clearing 993 * any active bits from the pages in the list. 994 */ 995 static unsigned long clear_active_flags(struct list_head *page_list, 996 unsigned int *count) 997 { 998 int nr_active = 0; 999 int lru; 1000 struct page *page; 1001 1002 list_for_each_entry(page, page_list, lru) { 1003 lru = page_lru_base_type(page); 1004 if (PageActive(page)) { 1005 lru += LRU_ACTIVE; 1006 ClearPageActive(page); 1007 nr_active++; 1008 } 1009 count[lru]++; 1010 } 1011 1012 return nr_active; 1013 } 1014 1015 /** 1016 * isolate_lru_page - tries to isolate a page from its LRU list 1017 * @page: page to isolate from its LRU list 1018 * 1019 * Isolates a @page from an LRU list, clears PageLRU and adjusts the 1020 * vmstat statistic corresponding to whatever LRU list the page was on. 1021 * 1022 * Returns 0 if the page was removed from an LRU list. 1023 * Returns -EBUSY if the page was not on an LRU list. 1024 * 1025 * The returned page will have PageLRU() cleared. If it was found on 1026 * the active list, it will have PageActive set. If it was found on 1027 * the unevictable list, it will have the PageUnevictable bit set. That flag 1028 * may need to be cleared by the caller before letting the page go. 1029 * 1030 * The vmstat statistic corresponding to the list on which the page was 1031 * found will be decremented. 1032 * 1033 * Restrictions: 1034 * (1) Must be called with an elevated refcount on the page. This is a 1035 * fundamentnal difference from isolate_lru_pages (which is called 1036 * without a stable reference). 1037 * (2) the lru_lock must not be held. 1038 * (3) interrupts must be enabled. 1039 */ 1040 int isolate_lru_page(struct page *page) 1041 { 1042 int ret = -EBUSY; 1043 1044 if (PageLRU(page)) { 1045 struct zone *zone = page_zone(page); 1046 1047 spin_lock_irq(&zone->lru_lock); 1048 if (PageLRU(page) && get_page_unless_zero(page)) { 1049 int lru = page_lru(page); 1050 ret = 0; 1051 ClearPageLRU(page); 1052 1053 del_page_from_lru_list(zone, page, lru); 1054 } 1055 spin_unlock_irq(&zone->lru_lock); 1056 } 1057 return ret; 1058 } 1059 1060 /* 1061 * Are there way too many processes in the direct reclaim path already? 1062 */ 1063 static int too_many_isolated(struct zone *zone, int file, 1064 struct scan_control *sc) 1065 { 1066 unsigned long inactive, isolated; 1067 1068 if (current_is_kswapd()) 1069 return 0; 1070 1071 if (!scanning_global_lru(sc)) 1072 return 0; 1073 1074 if (file) { 1075 inactive = zone_page_state(zone, NR_INACTIVE_FILE); 1076 isolated = zone_page_state(zone, NR_ISOLATED_FILE); 1077 } else { 1078 inactive = zone_page_state(zone, NR_INACTIVE_ANON); 1079 isolated = zone_page_state(zone, NR_ISOLATED_ANON); 1080 } 1081 1082 return isolated > inactive; 1083 } 1084 1085 /* 1086 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number 1087 * of reclaimed pages 1088 */ 1089 static unsigned long shrink_inactive_list(unsigned long max_scan, 1090 struct zone *zone, struct scan_control *sc, 1091 int priority, int file) 1092 { 1093 LIST_HEAD(page_list); 1094 struct pagevec pvec; 1095 unsigned long nr_scanned = 0; 1096 unsigned long nr_reclaimed = 0; 1097 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc); 1098 int lumpy_reclaim = 0; 1099 1100 while (unlikely(too_many_isolated(zone, file, sc))) { 1101 congestion_wait(BLK_RW_ASYNC, HZ/10); 1102 1103 /* We are about to die and free our memory. Return now. */ 1104 if (fatal_signal_pending(current)) 1105 return SWAP_CLUSTER_MAX; 1106 } 1107 1108 /* 1109 * If we need a large contiguous chunk of memory, or have 1110 * trouble getting a small set of contiguous pages, we 1111 * will reclaim both active and inactive pages. 1112 * 1113 * We use the same threshold as pageout congestion_wait below. 1114 */ 1115 if (sc->order > PAGE_ALLOC_COSTLY_ORDER) 1116 lumpy_reclaim = 1; 1117 else if (sc->order && priority < DEF_PRIORITY - 2) 1118 lumpy_reclaim = 1; 1119 1120 pagevec_init(&pvec, 1); 1121 1122 lru_add_drain(); 1123 spin_lock_irq(&zone->lru_lock); 1124 do { 1125 struct page *page; 1126 unsigned long nr_taken; 1127 unsigned long nr_scan; 1128 unsigned long nr_freed; 1129 unsigned long nr_active; 1130 unsigned int count[NR_LRU_LISTS] = { 0, }; 1131 int mode = lumpy_reclaim ? ISOLATE_BOTH : ISOLATE_INACTIVE; 1132 unsigned long nr_anon; 1133 unsigned long nr_file; 1134 1135 nr_taken = sc->isolate_pages(sc->swap_cluster_max, 1136 &page_list, &nr_scan, sc->order, mode, 1137 zone, sc->mem_cgroup, 0, file); 1138 1139 if (scanning_global_lru(sc)) { 1140 zone->pages_scanned += nr_scan; 1141 if (current_is_kswapd()) 1142 __count_zone_vm_events(PGSCAN_KSWAPD, zone, 1143 nr_scan); 1144 else 1145 __count_zone_vm_events(PGSCAN_DIRECT, zone, 1146 nr_scan); 1147 } 1148 1149 if (nr_taken == 0) 1150 goto done; 1151 1152 nr_active = clear_active_flags(&page_list, count); 1153 __count_vm_events(PGDEACTIVATE, nr_active); 1154 1155 __mod_zone_page_state(zone, NR_ACTIVE_FILE, 1156 -count[LRU_ACTIVE_FILE]); 1157 __mod_zone_page_state(zone, NR_INACTIVE_FILE, 1158 -count[LRU_INACTIVE_FILE]); 1159 __mod_zone_page_state(zone, NR_ACTIVE_ANON, 1160 -count[LRU_ACTIVE_ANON]); 1161 __mod_zone_page_state(zone, NR_INACTIVE_ANON, 1162 -count[LRU_INACTIVE_ANON]); 1163 1164 nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON]; 1165 nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE]; 1166 __mod_zone_page_state(zone, NR_ISOLATED_ANON, nr_anon); 1167 __mod_zone_page_state(zone, NR_ISOLATED_FILE, nr_file); 1168 1169 reclaim_stat->recent_scanned[0] += count[LRU_INACTIVE_ANON]; 1170 reclaim_stat->recent_scanned[0] += count[LRU_ACTIVE_ANON]; 1171 reclaim_stat->recent_scanned[1] += count[LRU_INACTIVE_FILE]; 1172 reclaim_stat->recent_scanned[1] += count[LRU_ACTIVE_FILE]; 1173 1174 spin_unlock_irq(&zone->lru_lock); 1175 1176 nr_scanned += nr_scan; 1177 nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC); 1178 1179 /* 1180 * If we are direct reclaiming for contiguous pages and we do 1181 * not reclaim everything in the list, try again and wait 1182 * for IO to complete. This will stall high-order allocations 1183 * but that should be acceptable to the caller 1184 */ 1185 if (nr_freed < nr_taken && !current_is_kswapd() && 1186 lumpy_reclaim) { 1187 congestion_wait(BLK_RW_ASYNC, HZ/10); 1188 1189 /* 1190 * The attempt at page out may have made some 1191 * of the pages active, mark them inactive again. 1192 */ 1193 nr_active = clear_active_flags(&page_list, count); 1194 count_vm_events(PGDEACTIVATE, nr_active); 1195 1196 nr_freed += shrink_page_list(&page_list, sc, 1197 PAGEOUT_IO_SYNC); 1198 } 1199 1200 nr_reclaimed += nr_freed; 1201 1202 local_irq_disable(); 1203 if (current_is_kswapd()) 1204 __count_vm_events(KSWAPD_STEAL, nr_freed); 1205 __count_zone_vm_events(PGSTEAL, zone, nr_freed); 1206 1207 spin_lock(&zone->lru_lock); 1208 /* 1209 * Put back any unfreeable pages. 1210 */ 1211 while (!list_empty(&page_list)) { 1212 int lru; 1213 page = lru_to_page(&page_list); 1214 VM_BUG_ON(PageLRU(page)); 1215 list_del(&page->lru); 1216 if (unlikely(!page_evictable(page, NULL))) { 1217 spin_unlock_irq(&zone->lru_lock); 1218 putback_lru_page(page); 1219 spin_lock_irq(&zone->lru_lock); 1220 continue; 1221 } 1222 SetPageLRU(page); 1223 lru = page_lru(page); 1224 add_page_to_lru_list(zone, page, lru); 1225 if (is_active_lru(lru)) { 1226 int file = is_file_lru(lru); 1227 reclaim_stat->recent_rotated[file]++; 1228 } 1229 if (!pagevec_add(&pvec, page)) { 1230 spin_unlock_irq(&zone->lru_lock); 1231 __pagevec_release(&pvec); 1232 spin_lock_irq(&zone->lru_lock); 1233 } 1234 } 1235 __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon); 1236 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file); 1237 1238 } while (nr_scanned < max_scan); 1239 1240 done: 1241 spin_unlock_irq(&zone->lru_lock); 1242 pagevec_release(&pvec); 1243 return nr_reclaimed; 1244 } 1245 1246 /* 1247 * We are about to scan this zone at a certain priority level. If that priority 1248 * level is smaller (ie: more urgent) than the previous priority, then note 1249 * that priority level within the zone. This is done so that when the next 1250 * process comes in to scan this zone, it will immediately start out at this 1251 * priority level rather than having to build up its own scanning priority. 1252 * Here, this priority affects only the reclaim-mapped threshold. 1253 */ 1254 static inline void note_zone_scanning_priority(struct zone *zone, int priority) 1255 { 1256 if (priority < zone->prev_priority) 1257 zone->prev_priority = priority; 1258 } 1259 1260 /* 1261 * This moves pages from the active list to the inactive list. 1262 * 1263 * We move them the other way if the page is referenced by one or more 1264 * processes, from rmap. 1265 * 1266 * If the pages are mostly unmapped, the processing is fast and it is 1267 * appropriate to hold zone->lru_lock across the whole operation. But if 1268 * the pages are mapped, the processing is slow (page_referenced()) so we 1269 * should drop zone->lru_lock around each page. It's impossible to balance 1270 * this, so instead we remove the pages from the LRU while processing them. 1271 * It is safe to rely on PG_active against the non-LRU pages in here because 1272 * nobody will play with that bit on a non-LRU page. 1273 * 1274 * The downside is that we have to touch page->_count against each page. 1275 * But we had to alter page->flags anyway. 1276 */ 1277 1278 static void move_active_pages_to_lru(struct zone *zone, 1279 struct list_head *list, 1280 enum lru_list lru) 1281 { 1282 unsigned long pgmoved = 0; 1283 struct pagevec pvec; 1284 struct page *page; 1285 1286 pagevec_init(&pvec, 1); 1287 1288 while (!list_empty(list)) { 1289 page = lru_to_page(list); 1290 1291 VM_BUG_ON(PageLRU(page)); 1292 SetPageLRU(page); 1293 1294 list_move(&page->lru, &zone->lru[lru].list); 1295 mem_cgroup_add_lru_list(page, lru); 1296 pgmoved++; 1297 1298 if (!pagevec_add(&pvec, page) || list_empty(list)) { 1299 spin_unlock_irq(&zone->lru_lock); 1300 if (buffer_heads_over_limit) 1301 pagevec_strip(&pvec); 1302 __pagevec_release(&pvec); 1303 spin_lock_irq(&zone->lru_lock); 1304 } 1305 } 1306 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved); 1307 if (!is_active_lru(lru)) 1308 __count_vm_events(PGDEACTIVATE, pgmoved); 1309 } 1310 1311 static void shrink_active_list(unsigned long nr_pages, struct zone *zone, 1312 struct scan_control *sc, int priority, int file) 1313 { 1314 unsigned long nr_taken; 1315 unsigned long pgscanned; 1316 unsigned long vm_flags; 1317 LIST_HEAD(l_hold); /* The pages which were snipped off */ 1318 LIST_HEAD(l_active); 1319 LIST_HEAD(l_inactive); 1320 struct page *page; 1321 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc); 1322 unsigned long nr_rotated = 0; 1323 1324 lru_add_drain(); 1325 spin_lock_irq(&zone->lru_lock); 1326 nr_taken = sc->isolate_pages(nr_pages, &l_hold, &pgscanned, sc->order, 1327 ISOLATE_ACTIVE, zone, 1328 sc->mem_cgroup, 1, file); 1329 /* 1330 * zone->pages_scanned is used for detect zone's oom 1331 * mem_cgroup remembers nr_scan by itself. 1332 */ 1333 if (scanning_global_lru(sc)) { 1334 zone->pages_scanned += pgscanned; 1335 } 1336 reclaim_stat->recent_scanned[file] += nr_taken; 1337 1338 __count_zone_vm_events(PGREFILL, zone, pgscanned); 1339 if (file) 1340 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken); 1341 else 1342 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken); 1343 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken); 1344 spin_unlock_irq(&zone->lru_lock); 1345 1346 while (!list_empty(&l_hold)) { 1347 cond_resched(); 1348 page = lru_to_page(&l_hold); 1349 list_del(&page->lru); 1350 1351 if (unlikely(!page_evictable(page, NULL))) { 1352 putback_lru_page(page); 1353 continue; 1354 } 1355 1356 /* page_referenced clears PageReferenced */ 1357 if (page_mapping_inuse(page) && 1358 page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) { 1359 nr_rotated++; 1360 /* 1361 * Identify referenced, file-backed active pages and 1362 * give them one more trip around the active list. So 1363 * that executable code get better chances to stay in 1364 * memory under moderate memory pressure. Anon pages 1365 * are not likely to be evicted by use-once streaming 1366 * IO, plus JVM can create lots of anon VM_EXEC pages, 1367 * so we ignore them here. 1368 */ 1369 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) { 1370 list_add(&page->lru, &l_active); 1371 continue; 1372 } 1373 } 1374 1375 ClearPageActive(page); /* we are de-activating */ 1376 list_add(&page->lru, &l_inactive); 1377 } 1378 1379 /* 1380 * Move pages back to the lru list. 1381 */ 1382 spin_lock_irq(&zone->lru_lock); 1383 /* 1384 * Count referenced pages from currently used mappings as rotated, 1385 * even though only some of them are actually re-activated. This 1386 * helps balance scan pressure between file and anonymous pages in 1387 * get_scan_ratio. 1388 */ 1389 reclaim_stat->recent_rotated[file] += nr_rotated; 1390 1391 move_active_pages_to_lru(zone, &l_active, 1392 LRU_ACTIVE + file * LRU_FILE); 1393 move_active_pages_to_lru(zone, &l_inactive, 1394 LRU_BASE + file * LRU_FILE); 1395 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken); 1396 spin_unlock_irq(&zone->lru_lock); 1397 } 1398 1399 static int inactive_anon_is_low_global(struct zone *zone) 1400 { 1401 unsigned long active, inactive; 1402 1403 active = zone_page_state(zone, NR_ACTIVE_ANON); 1404 inactive = zone_page_state(zone, NR_INACTIVE_ANON); 1405 1406 if (inactive * zone->inactive_ratio < active) 1407 return 1; 1408 1409 return 0; 1410 } 1411 1412 /** 1413 * inactive_anon_is_low - check if anonymous pages need to be deactivated 1414 * @zone: zone to check 1415 * @sc: scan control of this context 1416 * 1417 * Returns true if the zone does not have enough inactive anon pages, 1418 * meaning some active anon pages need to be deactivated. 1419 */ 1420 static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc) 1421 { 1422 int low; 1423 1424 if (scanning_global_lru(sc)) 1425 low = inactive_anon_is_low_global(zone); 1426 else 1427 low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup); 1428 return low; 1429 } 1430 1431 static int inactive_file_is_low_global(struct zone *zone) 1432 { 1433 unsigned long active, inactive; 1434 1435 active = zone_page_state(zone, NR_ACTIVE_FILE); 1436 inactive = zone_page_state(zone, NR_INACTIVE_FILE); 1437 1438 return (active > inactive); 1439 } 1440 1441 /** 1442 * inactive_file_is_low - check if file pages need to be deactivated 1443 * @zone: zone to check 1444 * @sc: scan control of this context 1445 * 1446 * When the system is doing streaming IO, memory pressure here 1447 * ensures that active file pages get deactivated, until more 1448 * than half of the file pages are on the inactive list. 1449 * 1450 * Once we get to that situation, protect the system's working 1451 * set from being evicted by disabling active file page aging. 1452 * 1453 * This uses a different ratio than the anonymous pages, because 1454 * the page cache uses a use-once replacement algorithm. 1455 */ 1456 static int inactive_file_is_low(struct zone *zone, struct scan_control *sc) 1457 { 1458 int low; 1459 1460 if (scanning_global_lru(sc)) 1461 low = inactive_file_is_low_global(zone); 1462 else 1463 low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup); 1464 return low; 1465 } 1466 1467 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 1468 struct zone *zone, struct scan_control *sc, int priority) 1469 { 1470 int file = is_file_lru(lru); 1471 1472 if (lru == LRU_ACTIVE_FILE && inactive_file_is_low(zone, sc)) { 1473 shrink_active_list(nr_to_scan, zone, sc, priority, file); 1474 return 0; 1475 } 1476 1477 if (lru == LRU_ACTIVE_ANON && inactive_anon_is_low(zone, sc)) { 1478 shrink_active_list(nr_to_scan, zone, sc, priority, file); 1479 return 0; 1480 } 1481 return shrink_inactive_list(nr_to_scan, zone, sc, priority, file); 1482 } 1483 1484 /* 1485 * Determine how aggressively the anon and file LRU lists should be 1486 * scanned. The relative value of each set of LRU lists is determined 1487 * by looking at the fraction of the pages scanned we did rotate back 1488 * onto the active list instead of evict. 1489 * 1490 * percent[0] specifies how much pressure to put on ram/swap backed 1491 * memory, while percent[1] determines pressure on the file LRUs. 1492 */ 1493 static void get_scan_ratio(struct zone *zone, struct scan_control *sc, 1494 unsigned long *percent) 1495 { 1496 unsigned long anon, file, free; 1497 unsigned long anon_prio, file_prio; 1498 unsigned long ap, fp; 1499 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc); 1500 1501 anon = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) + 1502 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON); 1503 file = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) + 1504 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE); 1505 1506 if (scanning_global_lru(sc)) { 1507 free = zone_page_state(zone, NR_FREE_PAGES); 1508 /* If we have very few page cache pages, 1509 force-scan anon pages. */ 1510 if (unlikely(file + free <= high_wmark_pages(zone))) { 1511 percent[0] = 100; 1512 percent[1] = 0; 1513 return; 1514 } 1515 } 1516 1517 /* 1518 * OK, so we have swap space and a fair amount of page cache 1519 * pages. We use the recently rotated / recently scanned 1520 * ratios to determine how valuable each cache is. 1521 * 1522 * Because workloads change over time (and to avoid overflow) 1523 * we keep these statistics as a floating average, which ends 1524 * up weighing recent references more than old ones. 1525 * 1526 * anon in [0], file in [1] 1527 */ 1528 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) { 1529 spin_lock_irq(&zone->lru_lock); 1530 reclaim_stat->recent_scanned[0] /= 2; 1531 reclaim_stat->recent_rotated[0] /= 2; 1532 spin_unlock_irq(&zone->lru_lock); 1533 } 1534 1535 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) { 1536 spin_lock_irq(&zone->lru_lock); 1537 reclaim_stat->recent_scanned[1] /= 2; 1538 reclaim_stat->recent_rotated[1] /= 2; 1539 spin_unlock_irq(&zone->lru_lock); 1540 } 1541 1542 /* 1543 * With swappiness at 100, anonymous and file have the same priority. 1544 * This scanning priority is essentially the inverse of IO cost. 1545 */ 1546 anon_prio = sc->swappiness; 1547 file_prio = 200 - sc->swappiness; 1548 1549 /* 1550 * The amount of pressure on anon vs file pages is inversely 1551 * proportional to the fraction of recently scanned pages on 1552 * each list that were recently referenced and in active use. 1553 */ 1554 ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1); 1555 ap /= reclaim_stat->recent_rotated[0] + 1; 1556 1557 fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1); 1558 fp /= reclaim_stat->recent_rotated[1] + 1; 1559 1560 /* Normalize to percentages */ 1561 percent[0] = 100 * ap / (ap + fp + 1); 1562 percent[1] = 100 - percent[0]; 1563 } 1564 1565 /* 1566 * Smallish @nr_to_scan's are deposited in @nr_saved_scan, 1567 * until we collected @swap_cluster_max pages to scan. 1568 */ 1569 static unsigned long nr_scan_try_batch(unsigned long nr_to_scan, 1570 unsigned long *nr_saved_scan, 1571 unsigned long swap_cluster_max) 1572 { 1573 unsigned long nr; 1574 1575 *nr_saved_scan += nr_to_scan; 1576 nr = *nr_saved_scan; 1577 1578 if (nr >= swap_cluster_max) 1579 *nr_saved_scan = 0; 1580 else 1581 nr = 0; 1582 1583 return nr; 1584 } 1585 1586 /* 1587 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim. 1588 */ 1589 static void shrink_zone(int priority, struct zone *zone, 1590 struct scan_control *sc) 1591 { 1592 unsigned long nr[NR_LRU_LISTS]; 1593 unsigned long nr_to_scan; 1594 unsigned long percent[2]; /* anon @ 0; file @ 1 */ 1595 enum lru_list l; 1596 unsigned long nr_reclaimed = sc->nr_reclaimed; 1597 unsigned long swap_cluster_max = sc->swap_cluster_max; 1598 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc); 1599 int noswap = 0; 1600 1601 /* If we have no swap space, do not bother scanning anon pages. */ 1602 if (!sc->may_swap || (nr_swap_pages <= 0)) { 1603 noswap = 1; 1604 percent[0] = 0; 1605 percent[1] = 100; 1606 } else 1607 get_scan_ratio(zone, sc, percent); 1608 1609 for_each_evictable_lru(l) { 1610 int file = is_file_lru(l); 1611 unsigned long scan; 1612 1613 scan = zone_nr_lru_pages(zone, sc, l); 1614 if (priority || noswap) { 1615 scan >>= priority; 1616 scan = (scan * percent[file]) / 100; 1617 } 1618 nr[l] = nr_scan_try_batch(scan, 1619 &reclaim_stat->nr_saved_scan[l], 1620 swap_cluster_max); 1621 } 1622 1623 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 1624 nr[LRU_INACTIVE_FILE]) { 1625 for_each_evictable_lru(l) { 1626 if (nr[l]) { 1627 nr_to_scan = min(nr[l], swap_cluster_max); 1628 nr[l] -= nr_to_scan; 1629 1630 nr_reclaimed += shrink_list(l, nr_to_scan, 1631 zone, sc, priority); 1632 } 1633 } 1634 /* 1635 * On large memory systems, scan >> priority can become 1636 * really large. This is fine for the starting priority; 1637 * we want to put equal scanning pressure on each zone. 1638 * However, if the VM has a harder time of freeing pages, 1639 * with multiple processes reclaiming pages, the total 1640 * freeing target can get unreasonably large. 1641 */ 1642 if (nr_reclaimed > swap_cluster_max && 1643 priority < DEF_PRIORITY && !current_is_kswapd()) 1644 break; 1645 } 1646 1647 sc->nr_reclaimed = nr_reclaimed; 1648 1649 /* 1650 * Even if we did not try to evict anon pages at all, we want to 1651 * rebalance the anon lru active/inactive ratio. 1652 */ 1653 if (inactive_anon_is_low(zone, sc) && nr_swap_pages > 0) 1654 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0); 1655 1656 throttle_vm_writeout(sc->gfp_mask); 1657 } 1658 1659 /* 1660 * This is the direct reclaim path, for page-allocating processes. We only 1661 * try to reclaim pages from zones which will satisfy the caller's allocation 1662 * request. 1663 * 1664 * We reclaim from a zone even if that zone is over high_wmark_pages(zone). 1665 * Because: 1666 * a) The caller may be trying to free *extra* pages to satisfy a higher-order 1667 * allocation or 1668 * b) The target zone may be at high_wmark_pages(zone) but the lower zones 1669 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min' 1670 * zone defense algorithm. 1671 * 1672 * If a zone is deemed to be full of pinned pages then just give it a light 1673 * scan then give up on it. 1674 */ 1675 static void shrink_zones(int priority, struct zonelist *zonelist, 1676 struct scan_control *sc) 1677 { 1678 enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask); 1679 struct zoneref *z; 1680 struct zone *zone; 1681 1682 sc->all_unreclaimable = 1; 1683 for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx, 1684 sc->nodemask) { 1685 if (!populated_zone(zone)) 1686 continue; 1687 /* 1688 * Take care memory controller reclaiming has small influence 1689 * to global LRU. 1690 */ 1691 if (scanning_global_lru(sc)) { 1692 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 1693 continue; 1694 note_zone_scanning_priority(zone, priority); 1695 1696 if (zone_is_all_unreclaimable(zone) && 1697 priority != DEF_PRIORITY) 1698 continue; /* Let kswapd poll it */ 1699 sc->all_unreclaimable = 0; 1700 } else { 1701 /* 1702 * Ignore cpuset limitation here. We just want to reduce 1703 * # of used pages by us regardless of memory shortage. 1704 */ 1705 sc->all_unreclaimable = 0; 1706 mem_cgroup_note_reclaim_priority(sc->mem_cgroup, 1707 priority); 1708 } 1709 1710 shrink_zone(priority, zone, sc); 1711 } 1712 } 1713 1714 /* 1715 * This is the main entry point to direct page reclaim. 1716 * 1717 * If a full scan of the inactive list fails to free enough memory then we 1718 * are "out of memory" and something needs to be killed. 1719 * 1720 * If the caller is !__GFP_FS then the probability of a failure is reasonably 1721 * high - the zone may be full of dirty or under-writeback pages, which this 1722 * caller can't do much about. We kick the writeback threads and take explicit 1723 * naps in the hope that some of these pages can be written. But if the 1724 * allocating task holds filesystem locks which prevent writeout this might not 1725 * work, and the allocation attempt will fail. 1726 * 1727 * returns: 0, if no pages reclaimed 1728 * else, the number of pages reclaimed 1729 */ 1730 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 1731 struct scan_control *sc) 1732 { 1733 int priority; 1734 unsigned long ret = 0; 1735 unsigned long total_scanned = 0; 1736 struct reclaim_state *reclaim_state = current->reclaim_state; 1737 unsigned long lru_pages = 0; 1738 struct zoneref *z; 1739 struct zone *zone; 1740 enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask); 1741 1742 delayacct_freepages_start(); 1743 1744 if (scanning_global_lru(sc)) 1745 count_vm_event(ALLOCSTALL); 1746 /* 1747 * mem_cgroup will not do shrink_slab. 1748 */ 1749 if (scanning_global_lru(sc)) { 1750 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 1751 1752 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 1753 continue; 1754 1755 lru_pages += zone_reclaimable_pages(zone); 1756 } 1757 } 1758 1759 for (priority = DEF_PRIORITY; priority >= 0; priority--) { 1760 sc->nr_scanned = 0; 1761 if (!priority) 1762 disable_swap_token(); 1763 shrink_zones(priority, zonelist, sc); 1764 /* 1765 * Don't shrink slabs when reclaiming memory from 1766 * over limit cgroups 1767 */ 1768 if (scanning_global_lru(sc)) { 1769 shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages); 1770 if (reclaim_state) { 1771 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 1772 reclaim_state->reclaimed_slab = 0; 1773 } 1774 } 1775 total_scanned += sc->nr_scanned; 1776 if (sc->nr_reclaimed >= sc->swap_cluster_max) { 1777 ret = sc->nr_reclaimed; 1778 goto out; 1779 } 1780 1781 /* 1782 * Try to write back as many pages as we just scanned. This 1783 * tends to cause slow streaming writers to write data to the 1784 * disk smoothly, at the dirtying rate, which is nice. But 1785 * that's undesirable in laptop mode, where we *want* lumpy 1786 * writeout. So in laptop mode, write out the whole world. 1787 */ 1788 if (total_scanned > sc->swap_cluster_max + 1789 sc->swap_cluster_max / 2) { 1790 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned); 1791 sc->may_writepage = 1; 1792 } 1793 1794 /* Take a nap, wait for some writeback to complete */ 1795 if (sc->nr_scanned && priority < DEF_PRIORITY - 2) 1796 congestion_wait(BLK_RW_ASYNC, HZ/10); 1797 } 1798 /* top priority shrink_zones still had more to do? don't OOM, then */ 1799 if (!sc->all_unreclaimable && scanning_global_lru(sc)) 1800 ret = sc->nr_reclaimed; 1801 out: 1802 /* 1803 * Now that we've scanned all the zones at this priority level, note 1804 * that level within the zone so that the next thread which performs 1805 * scanning of this zone will immediately start out at this priority 1806 * level. This affects only the decision whether or not to bring 1807 * mapped pages onto the inactive list. 1808 */ 1809 if (priority < 0) 1810 priority = 0; 1811 1812 if (scanning_global_lru(sc)) { 1813 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 1814 1815 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 1816 continue; 1817 1818 zone->prev_priority = priority; 1819 } 1820 } else 1821 mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority); 1822 1823 delayacct_freepages_end(); 1824 1825 return ret; 1826 } 1827 1828 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 1829 gfp_t gfp_mask, nodemask_t *nodemask) 1830 { 1831 struct scan_control sc = { 1832 .gfp_mask = gfp_mask, 1833 .may_writepage = !laptop_mode, 1834 .swap_cluster_max = SWAP_CLUSTER_MAX, 1835 .may_unmap = 1, 1836 .may_swap = 1, 1837 .swappiness = vm_swappiness, 1838 .order = order, 1839 .mem_cgroup = NULL, 1840 .isolate_pages = isolate_pages_global, 1841 .nodemask = nodemask, 1842 }; 1843 1844 return do_try_to_free_pages(zonelist, &sc); 1845 } 1846 1847 #ifdef CONFIG_CGROUP_MEM_RES_CTLR 1848 1849 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem, 1850 gfp_t gfp_mask, bool noswap, 1851 unsigned int swappiness, 1852 struct zone *zone, int nid) 1853 { 1854 struct scan_control sc = { 1855 .may_writepage = !laptop_mode, 1856 .may_unmap = 1, 1857 .may_swap = !noswap, 1858 .swap_cluster_max = SWAP_CLUSTER_MAX, 1859 .swappiness = swappiness, 1860 .order = 0, 1861 .mem_cgroup = mem, 1862 .isolate_pages = mem_cgroup_isolate_pages, 1863 }; 1864 nodemask_t nm = nodemask_of_node(nid); 1865 1866 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 1867 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 1868 sc.nodemask = &nm; 1869 sc.nr_reclaimed = 0; 1870 sc.nr_scanned = 0; 1871 /* 1872 * NOTE: Although we can get the priority field, using it 1873 * here is not a good idea, since it limits the pages we can scan. 1874 * if we don't reclaim here, the shrink_zone from balance_pgdat 1875 * will pick up pages from other mem cgroup's as well. We hack 1876 * the priority and make it zero. 1877 */ 1878 shrink_zone(0, zone, &sc); 1879 return sc.nr_reclaimed; 1880 } 1881 1882 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont, 1883 gfp_t gfp_mask, 1884 bool noswap, 1885 unsigned int swappiness) 1886 { 1887 struct zonelist *zonelist; 1888 struct scan_control sc = { 1889 .may_writepage = !laptop_mode, 1890 .may_unmap = 1, 1891 .may_swap = !noswap, 1892 .swap_cluster_max = SWAP_CLUSTER_MAX, 1893 .swappiness = swappiness, 1894 .order = 0, 1895 .mem_cgroup = mem_cont, 1896 .isolate_pages = mem_cgroup_isolate_pages, 1897 .nodemask = NULL, /* we don't care the placement */ 1898 }; 1899 1900 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 1901 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 1902 zonelist = NODE_DATA(numa_node_id())->node_zonelists; 1903 return do_try_to_free_pages(zonelist, &sc); 1904 } 1905 #endif 1906 1907 /* 1908 * For kswapd, balance_pgdat() will work across all this node's zones until 1909 * they are all at high_wmark_pages(zone). 1910 * 1911 * Returns the number of pages which were actually freed. 1912 * 1913 * There is special handling here for zones which are full of pinned pages. 1914 * This can happen if the pages are all mlocked, or if they are all used by 1915 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb. 1916 * What we do is to detect the case where all pages in the zone have been 1917 * scanned twice and there has been zero successful reclaim. Mark the zone as 1918 * dead and from now on, only perform a short scan. Basically we're polling 1919 * the zone for when the problem goes away. 1920 * 1921 * kswapd scans the zones in the highmem->normal->dma direction. It skips 1922 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 1923 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the 1924 * lower zones regardless of the number of free pages in the lower zones. This 1925 * interoperates with the page allocator fallback scheme to ensure that aging 1926 * of pages is balanced across the zones. 1927 */ 1928 static unsigned long balance_pgdat(pg_data_t *pgdat, int order) 1929 { 1930 int all_zones_ok; 1931 int priority; 1932 int i; 1933 unsigned long total_scanned; 1934 struct reclaim_state *reclaim_state = current->reclaim_state; 1935 struct scan_control sc = { 1936 .gfp_mask = GFP_KERNEL, 1937 .may_unmap = 1, 1938 .may_swap = 1, 1939 .swap_cluster_max = SWAP_CLUSTER_MAX, 1940 .swappiness = vm_swappiness, 1941 .order = order, 1942 .mem_cgroup = NULL, 1943 .isolate_pages = isolate_pages_global, 1944 }; 1945 /* 1946 * temp_priority is used to remember the scanning priority at which 1947 * this zone was successfully refilled to 1948 * free_pages == high_wmark_pages(zone). 1949 */ 1950 int temp_priority[MAX_NR_ZONES]; 1951 1952 loop_again: 1953 total_scanned = 0; 1954 sc.nr_reclaimed = 0; 1955 sc.may_writepage = !laptop_mode; 1956 count_vm_event(PAGEOUTRUN); 1957 1958 for (i = 0; i < pgdat->nr_zones; i++) 1959 temp_priority[i] = DEF_PRIORITY; 1960 1961 for (priority = DEF_PRIORITY; priority >= 0; priority--) { 1962 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */ 1963 unsigned long lru_pages = 0; 1964 1965 /* The swap token gets in the way of swapout... */ 1966 if (!priority) 1967 disable_swap_token(); 1968 1969 all_zones_ok = 1; 1970 1971 /* 1972 * Scan in the highmem->dma direction for the highest 1973 * zone which needs scanning 1974 */ 1975 for (i = pgdat->nr_zones - 1; i >= 0; i--) { 1976 struct zone *zone = pgdat->node_zones + i; 1977 1978 if (!populated_zone(zone)) 1979 continue; 1980 1981 if (zone_is_all_unreclaimable(zone) && 1982 priority != DEF_PRIORITY) 1983 continue; 1984 1985 /* 1986 * Do some background aging of the anon list, to give 1987 * pages a chance to be referenced before reclaiming. 1988 */ 1989 if (inactive_anon_is_low(zone, &sc)) 1990 shrink_active_list(SWAP_CLUSTER_MAX, zone, 1991 &sc, priority, 0); 1992 1993 if (!zone_watermark_ok(zone, order, 1994 high_wmark_pages(zone), 0, 0)) { 1995 end_zone = i; 1996 break; 1997 } 1998 } 1999 if (i < 0) 2000 goto out; 2001 2002 for (i = 0; i <= end_zone; i++) { 2003 struct zone *zone = pgdat->node_zones + i; 2004 2005 lru_pages += zone_reclaimable_pages(zone); 2006 } 2007 2008 /* 2009 * Now scan the zone in the dma->highmem direction, stopping 2010 * at the last zone which needs scanning. 2011 * 2012 * We do this because the page allocator works in the opposite 2013 * direction. This prevents the page allocator from allocating 2014 * pages behind kswapd's direction of progress, which would 2015 * cause too much scanning of the lower zones. 2016 */ 2017 for (i = 0; i <= end_zone; i++) { 2018 struct zone *zone = pgdat->node_zones + i; 2019 int nr_slab; 2020 int nid, zid; 2021 2022 if (!populated_zone(zone)) 2023 continue; 2024 2025 if (zone_is_all_unreclaimable(zone) && 2026 priority != DEF_PRIORITY) 2027 continue; 2028 2029 if (!zone_watermark_ok(zone, order, 2030 high_wmark_pages(zone), end_zone, 0)) 2031 all_zones_ok = 0; 2032 temp_priority[i] = priority; 2033 sc.nr_scanned = 0; 2034 note_zone_scanning_priority(zone, priority); 2035 2036 nid = pgdat->node_id; 2037 zid = zone_idx(zone); 2038 /* 2039 * Call soft limit reclaim before calling shrink_zone. 2040 * For now we ignore the return value 2041 */ 2042 mem_cgroup_soft_limit_reclaim(zone, order, sc.gfp_mask, 2043 nid, zid); 2044 /* 2045 * We put equal pressure on every zone, unless one 2046 * zone has way too many pages free already. 2047 */ 2048 if (!zone_watermark_ok(zone, order, 2049 8*high_wmark_pages(zone), end_zone, 0)) 2050 shrink_zone(priority, zone, &sc); 2051 reclaim_state->reclaimed_slab = 0; 2052 nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL, 2053 lru_pages); 2054 sc.nr_reclaimed += reclaim_state->reclaimed_slab; 2055 total_scanned += sc.nr_scanned; 2056 if (zone_is_all_unreclaimable(zone)) 2057 continue; 2058 if (nr_slab == 0 && zone->pages_scanned >= 2059 (zone_reclaimable_pages(zone) * 6)) 2060 zone_set_flag(zone, 2061 ZONE_ALL_UNRECLAIMABLE); 2062 /* 2063 * If we've done a decent amount of scanning and 2064 * the reclaim ratio is low, start doing writepage 2065 * even in laptop mode 2066 */ 2067 if (total_scanned > SWAP_CLUSTER_MAX * 2 && 2068 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2) 2069 sc.may_writepage = 1; 2070 } 2071 if (all_zones_ok) 2072 break; /* kswapd: all done */ 2073 /* 2074 * OK, kswapd is getting into trouble. Take a nap, then take 2075 * another pass across the zones. 2076 */ 2077 if (total_scanned && priority < DEF_PRIORITY - 2) 2078 congestion_wait(BLK_RW_ASYNC, HZ/10); 2079 2080 /* 2081 * We do this so kswapd doesn't build up large priorities for 2082 * example when it is freeing in parallel with allocators. It 2083 * matches the direct reclaim path behaviour in terms of impact 2084 * on zone->*_priority. 2085 */ 2086 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX) 2087 break; 2088 } 2089 out: 2090 /* 2091 * Note within each zone the priority level at which this zone was 2092 * brought into a happy state. So that the next thread which scans this 2093 * zone will start out at that priority level. 2094 */ 2095 for (i = 0; i < pgdat->nr_zones; i++) { 2096 struct zone *zone = pgdat->node_zones + i; 2097 2098 zone->prev_priority = temp_priority[i]; 2099 } 2100 if (!all_zones_ok) { 2101 cond_resched(); 2102 2103 try_to_freeze(); 2104 2105 /* 2106 * Fragmentation may mean that the system cannot be 2107 * rebalanced for high-order allocations in all zones. 2108 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX, 2109 * it means the zones have been fully scanned and are still 2110 * not balanced. For high-order allocations, there is 2111 * little point trying all over again as kswapd may 2112 * infinite loop. 2113 * 2114 * Instead, recheck all watermarks at order-0 as they 2115 * are the most important. If watermarks are ok, kswapd will go 2116 * back to sleep. High-order users can still perform direct 2117 * reclaim if they wish. 2118 */ 2119 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX) 2120 order = sc.order = 0; 2121 2122 goto loop_again; 2123 } 2124 2125 return sc.nr_reclaimed; 2126 } 2127 2128 /* 2129 * The background pageout daemon, started as a kernel thread 2130 * from the init process. 2131 * 2132 * This basically trickles out pages so that we have _some_ 2133 * free memory available even if there is no other activity 2134 * that frees anything up. This is needed for things like routing 2135 * etc, where we otherwise might have all activity going on in 2136 * asynchronous contexts that cannot page things out. 2137 * 2138 * If there are applications that are active memory-allocators 2139 * (most normal use), this basically shouldn't matter. 2140 */ 2141 static int kswapd(void *p) 2142 { 2143 unsigned long order; 2144 pg_data_t *pgdat = (pg_data_t*)p; 2145 struct task_struct *tsk = current; 2146 DEFINE_WAIT(wait); 2147 struct reclaim_state reclaim_state = { 2148 .reclaimed_slab = 0, 2149 }; 2150 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 2151 2152 lockdep_set_current_reclaim_state(GFP_KERNEL); 2153 2154 if (!cpumask_empty(cpumask)) 2155 set_cpus_allowed_ptr(tsk, cpumask); 2156 current->reclaim_state = &reclaim_state; 2157 2158 /* 2159 * Tell the memory management that we're a "memory allocator", 2160 * and that if we need more memory we should get access to it 2161 * regardless (see "__alloc_pages()"). "kswapd" should 2162 * never get caught in the normal page freeing logic. 2163 * 2164 * (Kswapd normally doesn't need memory anyway, but sometimes 2165 * you need a small amount of memory in order to be able to 2166 * page out something else, and this flag essentially protects 2167 * us from recursively trying to free more memory as we're 2168 * trying to free the first piece of memory in the first place). 2169 */ 2170 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 2171 set_freezable(); 2172 2173 order = 0; 2174 for ( ; ; ) { 2175 unsigned long new_order; 2176 2177 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 2178 new_order = pgdat->kswapd_max_order; 2179 pgdat->kswapd_max_order = 0; 2180 if (order < new_order) { 2181 /* 2182 * Don't sleep if someone wants a larger 'order' 2183 * allocation 2184 */ 2185 order = new_order; 2186 } else { 2187 if (!freezing(current)) 2188 schedule(); 2189 2190 order = pgdat->kswapd_max_order; 2191 } 2192 finish_wait(&pgdat->kswapd_wait, &wait); 2193 2194 if (!try_to_freeze()) { 2195 /* We can speed up thawing tasks if we don't call 2196 * balance_pgdat after returning from the refrigerator 2197 */ 2198 balance_pgdat(pgdat, order); 2199 } 2200 } 2201 return 0; 2202 } 2203 2204 /* 2205 * A zone is low on free memory, so wake its kswapd task to service it. 2206 */ 2207 void wakeup_kswapd(struct zone *zone, int order) 2208 { 2209 pg_data_t *pgdat; 2210 2211 if (!populated_zone(zone)) 2212 return; 2213 2214 pgdat = zone->zone_pgdat; 2215 if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0)) 2216 return; 2217 if (pgdat->kswapd_max_order < order) 2218 pgdat->kswapd_max_order = order; 2219 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 2220 return; 2221 if (!waitqueue_active(&pgdat->kswapd_wait)) 2222 return; 2223 wake_up_interruptible(&pgdat->kswapd_wait); 2224 } 2225 2226 /* 2227 * The reclaimable count would be mostly accurate. 2228 * The less reclaimable pages may be 2229 * - mlocked pages, which will be moved to unevictable list when encountered 2230 * - mapped pages, which may require several travels to be reclaimed 2231 * - dirty pages, which is not "instantly" reclaimable 2232 */ 2233 unsigned long global_reclaimable_pages(void) 2234 { 2235 int nr; 2236 2237 nr = global_page_state(NR_ACTIVE_FILE) + 2238 global_page_state(NR_INACTIVE_FILE); 2239 2240 if (nr_swap_pages > 0) 2241 nr += global_page_state(NR_ACTIVE_ANON) + 2242 global_page_state(NR_INACTIVE_ANON); 2243 2244 return nr; 2245 } 2246 2247 unsigned long zone_reclaimable_pages(struct zone *zone) 2248 { 2249 int nr; 2250 2251 nr = zone_page_state(zone, NR_ACTIVE_FILE) + 2252 zone_page_state(zone, NR_INACTIVE_FILE); 2253 2254 if (nr_swap_pages > 0) 2255 nr += zone_page_state(zone, NR_ACTIVE_ANON) + 2256 zone_page_state(zone, NR_INACTIVE_ANON); 2257 2258 return nr; 2259 } 2260 2261 #ifdef CONFIG_HIBERNATION 2262 /* 2263 * Helper function for shrink_all_memory(). Tries to reclaim 'nr_pages' pages 2264 * from LRU lists system-wide, for given pass and priority. 2265 * 2266 * For pass > 3 we also try to shrink the LRU lists that contain a few pages 2267 */ 2268 static void shrink_all_zones(unsigned long nr_pages, int prio, 2269 int pass, struct scan_control *sc) 2270 { 2271 struct zone *zone; 2272 unsigned long nr_reclaimed = 0; 2273 struct zone_reclaim_stat *reclaim_stat; 2274 2275 for_each_populated_zone(zone) { 2276 enum lru_list l; 2277 2278 if (zone_is_all_unreclaimable(zone) && prio != DEF_PRIORITY) 2279 continue; 2280 2281 for_each_evictable_lru(l) { 2282 enum zone_stat_item ls = NR_LRU_BASE + l; 2283 unsigned long lru_pages = zone_page_state(zone, ls); 2284 2285 /* For pass = 0, we don't shrink the active list */ 2286 if (pass == 0 && (l == LRU_ACTIVE_ANON || 2287 l == LRU_ACTIVE_FILE)) 2288 continue; 2289 2290 reclaim_stat = get_reclaim_stat(zone, sc); 2291 reclaim_stat->nr_saved_scan[l] += 2292 (lru_pages >> prio) + 1; 2293 if (reclaim_stat->nr_saved_scan[l] 2294 >= nr_pages || pass > 3) { 2295 unsigned long nr_to_scan; 2296 2297 reclaim_stat->nr_saved_scan[l] = 0; 2298 nr_to_scan = min(nr_pages, lru_pages); 2299 nr_reclaimed += shrink_list(l, nr_to_scan, zone, 2300 sc, prio); 2301 if (nr_reclaimed >= nr_pages) { 2302 sc->nr_reclaimed += nr_reclaimed; 2303 return; 2304 } 2305 } 2306 } 2307 } 2308 sc->nr_reclaimed += nr_reclaimed; 2309 } 2310 2311 /* 2312 * Try to free `nr_pages' of memory, system-wide, and return the number of 2313 * freed pages. 2314 * 2315 * Rather than trying to age LRUs the aim is to preserve the overall 2316 * LRU order by reclaiming preferentially 2317 * inactive > active > active referenced > active mapped 2318 */ 2319 unsigned long shrink_all_memory(unsigned long nr_pages) 2320 { 2321 unsigned long lru_pages, nr_slab; 2322 int pass; 2323 struct reclaim_state reclaim_state; 2324 struct scan_control sc = { 2325 .gfp_mask = GFP_KERNEL, 2326 .may_unmap = 0, 2327 .may_writepage = 1, 2328 .isolate_pages = isolate_pages_global, 2329 .nr_reclaimed = 0, 2330 }; 2331 2332 current->reclaim_state = &reclaim_state; 2333 2334 lru_pages = global_reclaimable_pages(); 2335 nr_slab = global_page_state(NR_SLAB_RECLAIMABLE); 2336 /* If slab caches are huge, it's better to hit them first */ 2337 while (nr_slab >= lru_pages) { 2338 reclaim_state.reclaimed_slab = 0; 2339 shrink_slab(nr_pages, sc.gfp_mask, lru_pages); 2340 if (!reclaim_state.reclaimed_slab) 2341 break; 2342 2343 sc.nr_reclaimed += reclaim_state.reclaimed_slab; 2344 if (sc.nr_reclaimed >= nr_pages) 2345 goto out; 2346 2347 nr_slab -= reclaim_state.reclaimed_slab; 2348 } 2349 2350 /* 2351 * We try to shrink LRUs in 5 passes: 2352 * 0 = Reclaim from inactive_list only 2353 * 1 = Reclaim from active list but don't reclaim mapped 2354 * 2 = 2nd pass of type 1 2355 * 3 = Reclaim mapped (normal reclaim) 2356 * 4 = 2nd pass of type 3 2357 */ 2358 for (pass = 0; pass < 5; pass++) { 2359 int prio; 2360 2361 /* Force reclaiming mapped pages in the passes #3 and #4 */ 2362 if (pass > 2) 2363 sc.may_unmap = 1; 2364 2365 for (prio = DEF_PRIORITY; prio >= 0; prio--) { 2366 unsigned long nr_to_scan = nr_pages - sc.nr_reclaimed; 2367 2368 sc.nr_scanned = 0; 2369 sc.swap_cluster_max = nr_to_scan; 2370 shrink_all_zones(nr_to_scan, prio, pass, &sc); 2371 if (sc.nr_reclaimed >= nr_pages) 2372 goto out; 2373 2374 reclaim_state.reclaimed_slab = 0; 2375 shrink_slab(sc.nr_scanned, sc.gfp_mask, 2376 global_reclaimable_pages()); 2377 sc.nr_reclaimed += reclaim_state.reclaimed_slab; 2378 if (sc.nr_reclaimed >= nr_pages) 2379 goto out; 2380 2381 if (sc.nr_scanned && prio < DEF_PRIORITY - 2) 2382 congestion_wait(BLK_RW_ASYNC, HZ / 10); 2383 } 2384 } 2385 2386 /* 2387 * If sc.nr_reclaimed = 0, we could not shrink LRUs, but there may be 2388 * something in slab caches 2389 */ 2390 if (!sc.nr_reclaimed) { 2391 do { 2392 reclaim_state.reclaimed_slab = 0; 2393 shrink_slab(nr_pages, sc.gfp_mask, 2394 global_reclaimable_pages()); 2395 sc.nr_reclaimed += reclaim_state.reclaimed_slab; 2396 } while (sc.nr_reclaimed < nr_pages && 2397 reclaim_state.reclaimed_slab > 0); 2398 } 2399 2400 2401 out: 2402 current->reclaim_state = NULL; 2403 2404 return sc.nr_reclaimed; 2405 } 2406 #endif /* CONFIG_HIBERNATION */ 2407 2408 /* It's optimal to keep kswapds on the same CPUs as their memory, but 2409 not required for correctness. So if the last cpu in a node goes 2410 away, we get changed to run anywhere: as the first one comes back, 2411 restore their cpu bindings. */ 2412 static int __devinit cpu_callback(struct notifier_block *nfb, 2413 unsigned long action, void *hcpu) 2414 { 2415 int nid; 2416 2417 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) { 2418 for_each_node_state(nid, N_HIGH_MEMORY) { 2419 pg_data_t *pgdat = NODE_DATA(nid); 2420 const struct cpumask *mask; 2421 2422 mask = cpumask_of_node(pgdat->node_id); 2423 2424 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 2425 /* One of our CPUs online: restore mask */ 2426 set_cpus_allowed_ptr(pgdat->kswapd, mask); 2427 } 2428 } 2429 return NOTIFY_OK; 2430 } 2431 2432 /* 2433 * This kswapd start function will be called by init and node-hot-add. 2434 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. 2435 */ 2436 int kswapd_run(int nid) 2437 { 2438 pg_data_t *pgdat = NODE_DATA(nid); 2439 int ret = 0; 2440 2441 if (pgdat->kswapd) 2442 return 0; 2443 2444 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 2445 if (IS_ERR(pgdat->kswapd)) { 2446 /* failure at boot is fatal */ 2447 BUG_ON(system_state == SYSTEM_BOOTING); 2448 printk("Failed to start kswapd on node %d\n",nid); 2449 ret = -1; 2450 } 2451 return ret; 2452 } 2453 2454 static int __init kswapd_init(void) 2455 { 2456 int nid; 2457 2458 swap_setup(); 2459 for_each_node_state(nid, N_HIGH_MEMORY) 2460 kswapd_run(nid); 2461 hotcpu_notifier(cpu_callback, 0); 2462 return 0; 2463 } 2464 2465 module_init(kswapd_init) 2466 2467 #ifdef CONFIG_NUMA 2468 /* 2469 * Zone reclaim mode 2470 * 2471 * If non-zero call zone_reclaim when the number of free pages falls below 2472 * the watermarks. 2473 */ 2474 int zone_reclaim_mode __read_mostly; 2475 2476 #define RECLAIM_OFF 0 2477 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */ 2478 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */ 2479 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */ 2480 2481 /* 2482 * Priority for ZONE_RECLAIM. This determines the fraction of pages 2483 * of a node considered for each zone_reclaim. 4 scans 1/16th of 2484 * a zone. 2485 */ 2486 #define ZONE_RECLAIM_PRIORITY 4 2487 2488 /* 2489 * Percentage of pages in a zone that must be unmapped for zone_reclaim to 2490 * occur. 2491 */ 2492 int sysctl_min_unmapped_ratio = 1; 2493 2494 /* 2495 * If the number of slab pages in a zone grows beyond this percentage then 2496 * slab reclaim needs to occur. 2497 */ 2498 int sysctl_min_slab_ratio = 5; 2499 2500 static inline unsigned long zone_unmapped_file_pages(struct zone *zone) 2501 { 2502 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED); 2503 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) + 2504 zone_page_state(zone, NR_ACTIVE_FILE); 2505 2506 /* 2507 * It's possible for there to be more file mapped pages than 2508 * accounted for by the pages on the file LRU lists because 2509 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 2510 */ 2511 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 2512 } 2513 2514 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 2515 static long zone_pagecache_reclaimable(struct zone *zone) 2516 { 2517 long nr_pagecache_reclaimable; 2518 long delta = 0; 2519 2520 /* 2521 * If RECLAIM_SWAP is set, then all file pages are considered 2522 * potentially reclaimable. Otherwise, we have to worry about 2523 * pages like swapcache and zone_unmapped_file_pages() provides 2524 * a better estimate 2525 */ 2526 if (zone_reclaim_mode & RECLAIM_SWAP) 2527 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES); 2528 else 2529 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone); 2530 2531 /* If we can't clean pages, remove dirty pages from consideration */ 2532 if (!(zone_reclaim_mode & RECLAIM_WRITE)) 2533 delta += zone_page_state(zone, NR_FILE_DIRTY); 2534 2535 /* Watch for any possible underflows due to delta */ 2536 if (unlikely(delta > nr_pagecache_reclaimable)) 2537 delta = nr_pagecache_reclaimable; 2538 2539 return nr_pagecache_reclaimable - delta; 2540 } 2541 2542 /* 2543 * Try to free up some pages from this zone through reclaim. 2544 */ 2545 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) 2546 { 2547 /* Minimum pages needed in order to stay on node */ 2548 const unsigned long nr_pages = 1 << order; 2549 struct task_struct *p = current; 2550 struct reclaim_state reclaim_state; 2551 int priority; 2552 struct scan_control sc = { 2553 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE), 2554 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP), 2555 .may_swap = 1, 2556 .swap_cluster_max = max_t(unsigned long, nr_pages, 2557 SWAP_CLUSTER_MAX), 2558 .gfp_mask = gfp_mask, 2559 .swappiness = vm_swappiness, 2560 .order = order, 2561 .isolate_pages = isolate_pages_global, 2562 }; 2563 unsigned long slab_reclaimable; 2564 2565 disable_swap_token(); 2566 cond_resched(); 2567 /* 2568 * We need to be able to allocate from the reserves for RECLAIM_SWAP 2569 * and we also need to be able to write out pages for RECLAIM_WRITE 2570 * and RECLAIM_SWAP. 2571 */ 2572 p->flags |= PF_MEMALLOC | PF_SWAPWRITE; 2573 reclaim_state.reclaimed_slab = 0; 2574 p->reclaim_state = &reclaim_state; 2575 2576 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) { 2577 /* 2578 * Free memory by calling shrink zone with increasing 2579 * priorities until we have enough memory freed. 2580 */ 2581 priority = ZONE_RECLAIM_PRIORITY; 2582 do { 2583 note_zone_scanning_priority(zone, priority); 2584 shrink_zone(priority, zone, &sc); 2585 priority--; 2586 } while (priority >= 0 && sc.nr_reclaimed < nr_pages); 2587 } 2588 2589 slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE); 2590 if (slab_reclaimable > zone->min_slab_pages) { 2591 /* 2592 * shrink_slab() does not currently allow us to determine how 2593 * many pages were freed in this zone. So we take the current 2594 * number of slab pages and shake the slab until it is reduced 2595 * by the same nr_pages that we used for reclaiming unmapped 2596 * pages. 2597 * 2598 * Note that shrink_slab will free memory on all zones and may 2599 * take a long time. 2600 */ 2601 while (shrink_slab(sc.nr_scanned, gfp_mask, order) && 2602 zone_page_state(zone, NR_SLAB_RECLAIMABLE) > 2603 slab_reclaimable - nr_pages) 2604 ; 2605 2606 /* 2607 * Update nr_reclaimed by the number of slab pages we 2608 * reclaimed from this zone. 2609 */ 2610 sc.nr_reclaimed += slab_reclaimable - 2611 zone_page_state(zone, NR_SLAB_RECLAIMABLE); 2612 } 2613 2614 p->reclaim_state = NULL; 2615 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE); 2616 return sc.nr_reclaimed >= nr_pages; 2617 } 2618 2619 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) 2620 { 2621 int node_id; 2622 int ret; 2623 2624 /* 2625 * Zone reclaim reclaims unmapped file backed pages and 2626 * slab pages if we are over the defined limits. 2627 * 2628 * A small portion of unmapped file backed pages is needed for 2629 * file I/O otherwise pages read by file I/O will be immediately 2630 * thrown out if the zone is overallocated. So we do not reclaim 2631 * if less than a specified percentage of the zone is used by 2632 * unmapped file backed pages. 2633 */ 2634 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages && 2635 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages) 2636 return ZONE_RECLAIM_FULL; 2637 2638 if (zone_is_all_unreclaimable(zone)) 2639 return ZONE_RECLAIM_FULL; 2640 2641 /* 2642 * Do not scan if the allocation should not be delayed. 2643 */ 2644 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC)) 2645 return ZONE_RECLAIM_NOSCAN; 2646 2647 /* 2648 * Only run zone reclaim on the local zone or on zones that do not 2649 * have associated processors. This will favor the local processor 2650 * over remote processors and spread off node memory allocations 2651 * as wide as possible. 2652 */ 2653 node_id = zone_to_nid(zone); 2654 if (node_state(node_id, N_CPU) && node_id != numa_node_id()) 2655 return ZONE_RECLAIM_NOSCAN; 2656 2657 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED)) 2658 return ZONE_RECLAIM_NOSCAN; 2659 2660 ret = __zone_reclaim(zone, gfp_mask, order); 2661 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED); 2662 2663 if (!ret) 2664 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 2665 2666 return ret; 2667 } 2668 #endif 2669 2670 /* 2671 * page_evictable - test whether a page is evictable 2672 * @page: the page to test 2673 * @vma: the VMA in which the page is or will be mapped, may be NULL 2674 * 2675 * Test whether page is evictable--i.e., should be placed on active/inactive 2676 * lists vs unevictable list. The vma argument is !NULL when called from the 2677 * fault path to determine how to instantate a new page. 2678 * 2679 * Reasons page might not be evictable: 2680 * (1) page's mapping marked unevictable 2681 * (2) page is part of an mlocked VMA 2682 * 2683 */ 2684 int page_evictable(struct page *page, struct vm_area_struct *vma) 2685 { 2686 2687 if (mapping_unevictable(page_mapping(page))) 2688 return 0; 2689 2690 if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page))) 2691 return 0; 2692 2693 return 1; 2694 } 2695 2696 /** 2697 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list 2698 * @page: page to check evictability and move to appropriate lru list 2699 * @zone: zone page is in 2700 * 2701 * Checks a page for evictability and moves the page to the appropriate 2702 * zone lru list. 2703 * 2704 * Restrictions: zone->lru_lock must be held, page must be on LRU and must 2705 * have PageUnevictable set. 2706 */ 2707 static void check_move_unevictable_page(struct page *page, struct zone *zone) 2708 { 2709 VM_BUG_ON(PageActive(page)); 2710 2711 retry: 2712 ClearPageUnevictable(page); 2713 if (page_evictable(page, NULL)) { 2714 enum lru_list l = page_lru_base_type(page); 2715 2716 __dec_zone_state(zone, NR_UNEVICTABLE); 2717 list_move(&page->lru, &zone->lru[l].list); 2718 mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l); 2719 __inc_zone_state(zone, NR_INACTIVE_ANON + l); 2720 __count_vm_event(UNEVICTABLE_PGRESCUED); 2721 } else { 2722 /* 2723 * rotate unevictable list 2724 */ 2725 SetPageUnevictable(page); 2726 list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list); 2727 mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE); 2728 if (page_evictable(page, NULL)) 2729 goto retry; 2730 } 2731 } 2732 2733 /** 2734 * scan_mapping_unevictable_pages - scan an address space for evictable pages 2735 * @mapping: struct address_space to scan for evictable pages 2736 * 2737 * Scan all pages in mapping. Check unevictable pages for 2738 * evictability and move them to the appropriate zone lru list. 2739 */ 2740 void scan_mapping_unevictable_pages(struct address_space *mapping) 2741 { 2742 pgoff_t next = 0; 2743 pgoff_t end = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >> 2744 PAGE_CACHE_SHIFT; 2745 struct zone *zone; 2746 struct pagevec pvec; 2747 2748 if (mapping->nrpages == 0) 2749 return; 2750 2751 pagevec_init(&pvec, 0); 2752 while (next < end && 2753 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) { 2754 int i; 2755 int pg_scanned = 0; 2756 2757 zone = NULL; 2758 2759 for (i = 0; i < pagevec_count(&pvec); i++) { 2760 struct page *page = pvec.pages[i]; 2761 pgoff_t page_index = page->index; 2762 struct zone *pagezone = page_zone(page); 2763 2764 pg_scanned++; 2765 if (page_index > next) 2766 next = page_index; 2767 next++; 2768 2769 if (pagezone != zone) { 2770 if (zone) 2771 spin_unlock_irq(&zone->lru_lock); 2772 zone = pagezone; 2773 spin_lock_irq(&zone->lru_lock); 2774 } 2775 2776 if (PageLRU(page) && PageUnevictable(page)) 2777 check_move_unevictable_page(page, zone); 2778 } 2779 if (zone) 2780 spin_unlock_irq(&zone->lru_lock); 2781 pagevec_release(&pvec); 2782 2783 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned); 2784 } 2785 2786 } 2787 2788 /** 2789 * scan_zone_unevictable_pages - check unevictable list for evictable pages 2790 * @zone - zone of which to scan the unevictable list 2791 * 2792 * Scan @zone's unevictable LRU lists to check for pages that have become 2793 * evictable. Move those that have to @zone's inactive list where they 2794 * become candidates for reclaim, unless shrink_inactive_zone() decides 2795 * to reactivate them. Pages that are still unevictable are rotated 2796 * back onto @zone's unevictable list. 2797 */ 2798 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */ 2799 static void scan_zone_unevictable_pages(struct zone *zone) 2800 { 2801 struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list; 2802 unsigned long scan; 2803 unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE); 2804 2805 while (nr_to_scan > 0) { 2806 unsigned long batch_size = min(nr_to_scan, 2807 SCAN_UNEVICTABLE_BATCH_SIZE); 2808 2809 spin_lock_irq(&zone->lru_lock); 2810 for (scan = 0; scan < batch_size; scan++) { 2811 struct page *page = lru_to_page(l_unevictable); 2812 2813 if (!trylock_page(page)) 2814 continue; 2815 2816 prefetchw_prev_lru_page(page, l_unevictable, flags); 2817 2818 if (likely(PageLRU(page) && PageUnevictable(page))) 2819 check_move_unevictable_page(page, zone); 2820 2821 unlock_page(page); 2822 } 2823 spin_unlock_irq(&zone->lru_lock); 2824 2825 nr_to_scan -= batch_size; 2826 } 2827 } 2828 2829 2830 /** 2831 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages 2832 * 2833 * A really big hammer: scan all zones' unevictable LRU lists to check for 2834 * pages that have become evictable. Move those back to the zones' 2835 * inactive list where they become candidates for reclaim. 2836 * This occurs when, e.g., we have unswappable pages on the unevictable lists, 2837 * and we add swap to the system. As such, it runs in the context of a task 2838 * that has possibly/probably made some previously unevictable pages 2839 * evictable. 2840 */ 2841 static void scan_all_zones_unevictable_pages(void) 2842 { 2843 struct zone *zone; 2844 2845 for_each_zone(zone) { 2846 scan_zone_unevictable_pages(zone); 2847 } 2848 } 2849 2850 /* 2851 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of 2852 * all nodes' unevictable lists for evictable pages 2853 */ 2854 unsigned long scan_unevictable_pages; 2855 2856 int scan_unevictable_handler(struct ctl_table *table, int write, 2857 void __user *buffer, 2858 size_t *length, loff_t *ppos) 2859 { 2860 proc_doulongvec_minmax(table, write, buffer, length, ppos); 2861 2862 if (write && *(unsigned long *)table->data) 2863 scan_all_zones_unevictable_pages(); 2864 2865 scan_unevictable_pages = 0; 2866 return 0; 2867 } 2868 2869 /* 2870 * per node 'scan_unevictable_pages' attribute. On demand re-scan of 2871 * a specified node's per zone unevictable lists for evictable pages. 2872 */ 2873 2874 static ssize_t read_scan_unevictable_node(struct sys_device *dev, 2875 struct sysdev_attribute *attr, 2876 char *buf) 2877 { 2878 return sprintf(buf, "0\n"); /* always zero; should fit... */ 2879 } 2880 2881 static ssize_t write_scan_unevictable_node(struct sys_device *dev, 2882 struct sysdev_attribute *attr, 2883 const char *buf, size_t count) 2884 { 2885 struct zone *node_zones = NODE_DATA(dev->id)->node_zones; 2886 struct zone *zone; 2887 unsigned long res; 2888 unsigned long req = strict_strtoul(buf, 10, &res); 2889 2890 if (!req) 2891 return 1; /* zero is no-op */ 2892 2893 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) { 2894 if (!populated_zone(zone)) 2895 continue; 2896 scan_zone_unevictable_pages(zone); 2897 } 2898 return 1; 2899 } 2900 2901 2902 static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR, 2903 read_scan_unevictable_node, 2904 write_scan_unevictable_node); 2905 2906 int scan_unevictable_register_node(struct node *node) 2907 { 2908 return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages); 2909 } 2910 2911 void scan_unevictable_unregister_node(struct node *node) 2912 { 2913 sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages); 2914 } 2915 2916