1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/vmscan.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * 7 * Swap reorganised 29.12.95, Stephen Tweedie. 8 * kswapd added: 7.1.96 sct 9 * Removed kswapd_ctl limits, and swap out as many pages as needed 10 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 11 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 12 * Multiqueue VM started 5.8.00, Rik van Riel. 13 */ 14 15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 16 17 #include <linux/mm.h> 18 #include <linux/sched/mm.h> 19 #include <linux/module.h> 20 #include <linux/gfp.h> 21 #include <linux/kernel_stat.h> 22 #include <linux/swap.h> 23 #include <linux/pagemap.h> 24 #include <linux/init.h> 25 #include <linux/highmem.h> 26 #include <linux/vmpressure.h> 27 #include <linux/vmstat.h> 28 #include <linux/file.h> 29 #include <linux/writeback.h> 30 #include <linux/blkdev.h> 31 #include <linux/buffer_head.h> /* for try_to_release_page(), 32 buffer_heads_over_limit */ 33 #include <linux/mm_inline.h> 34 #include <linux/backing-dev.h> 35 #include <linux/rmap.h> 36 #include <linux/topology.h> 37 #include <linux/cpu.h> 38 #include <linux/cpuset.h> 39 #include <linux/compaction.h> 40 #include <linux/notifier.h> 41 #include <linux/rwsem.h> 42 #include <linux/delay.h> 43 #include <linux/kthread.h> 44 #include <linux/freezer.h> 45 #include <linux/memcontrol.h> 46 #include <linux/delayacct.h> 47 #include <linux/sysctl.h> 48 #include <linux/oom.h> 49 #include <linux/pagevec.h> 50 #include <linux/prefetch.h> 51 #include <linux/printk.h> 52 #include <linux/dax.h> 53 #include <linux/psi.h> 54 55 #include <asm/tlbflush.h> 56 #include <asm/div64.h> 57 58 #include <linux/swapops.h> 59 #include <linux/balloon_compaction.h> 60 61 #include "internal.h" 62 63 #define CREATE_TRACE_POINTS 64 #include <trace/events/vmscan.h> 65 66 struct scan_control { 67 /* How many pages shrink_list() should reclaim */ 68 unsigned long nr_to_reclaim; 69 70 /* 71 * Nodemask of nodes allowed by the caller. If NULL, all nodes 72 * are scanned. 73 */ 74 nodemask_t *nodemask; 75 76 /* 77 * The memory cgroup that hit its limit and as a result is the 78 * primary target of this reclaim invocation. 79 */ 80 struct mem_cgroup *target_mem_cgroup; 81 82 /* Writepage batching in laptop mode; RECLAIM_WRITE */ 83 unsigned int may_writepage:1; 84 85 /* Can mapped pages be reclaimed? */ 86 unsigned int may_unmap:1; 87 88 /* Can pages be swapped as part of reclaim? */ 89 unsigned int may_swap:1; 90 91 /* e.g. boosted watermark reclaim leaves slabs alone */ 92 unsigned int may_shrinkslab:1; 93 94 /* 95 * Cgroups are not reclaimed below their configured memory.low, 96 * unless we threaten to OOM. If any cgroups are skipped due to 97 * memory.low and nothing was reclaimed, go back for memory.low. 98 */ 99 unsigned int memcg_low_reclaim:1; 100 unsigned int memcg_low_skipped:1; 101 102 unsigned int hibernation_mode:1; 103 104 /* One of the zones is ready for compaction */ 105 unsigned int compaction_ready:1; 106 107 /* Allocation order */ 108 s8 order; 109 110 /* Scan (total_size >> priority) pages at once */ 111 s8 priority; 112 113 /* The highest zone to isolate pages for reclaim from */ 114 s8 reclaim_idx; 115 116 /* This context's GFP mask */ 117 gfp_t gfp_mask; 118 119 /* Incremented by the number of inactive pages that were scanned */ 120 unsigned long nr_scanned; 121 122 /* Number of pages freed so far during a call to shrink_zones() */ 123 unsigned long nr_reclaimed; 124 125 struct { 126 unsigned int dirty; 127 unsigned int unqueued_dirty; 128 unsigned int congested; 129 unsigned int writeback; 130 unsigned int immediate; 131 unsigned int file_taken; 132 unsigned int taken; 133 } nr; 134 }; 135 136 #ifdef ARCH_HAS_PREFETCH 137 #define prefetch_prev_lru_page(_page, _base, _field) \ 138 do { \ 139 if ((_page)->lru.prev != _base) { \ 140 struct page *prev; \ 141 \ 142 prev = lru_to_page(&(_page->lru)); \ 143 prefetch(&prev->_field); \ 144 } \ 145 } while (0) 146 #else 147 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0) 148 #endif 149 150 #ifdef ARCH_HAS_PREFETCHW 151 #define prefetchw_prev_lru_page(_page, _base, _field) \ 152 do { \ 153 if ((_page)->lru.prev != _base) { \ 154 struct page *prev; \ 155 \ 156 prev = lru_to_page(&(_page->lru)); \ 157 prefetchw(&prev->_field); \ 158 } \ 159 } while (0) 160 #else 161 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 162 #endif 163 164 /* 165 * From 0 .. 100. Higher means more swappy. 166 */ 167 int vm_swappiness = 60; 168 /* 169 * The total number of pages which are beyond the high watermark within all 170 * zones. 171 */ 172 unsigned long vm_total_pages; 173 174 static LIST_HEAD(shrinker_list); 175 static DECLARE_RWSEM(shrinker_rwsem); 176 177 #ifdef CONFIG_MEMCG_KMEM 178 179 /* 180 * We allow subsystems to populate their shrinker-related 181 * LRU lists before register_shrinker_prepared() is called 182 * for the shrinker, since we don't want to impose 183 * restrictions on their internal registration order. 184 * In this case shrink_slab_memcg() may find corresponding 185 * bit is set in the shrinkers map. 186 * 187 * This value is used by the function to detect registering 188 * shrinkers and to skip do_shrink_slab() calls for them. 189 */ 190 #define SHRINKER_REGISTERING ((struct shrinker *)~0UL) 191 192 static DEFINE_IDR(shrinker_idr); 193 static int shrinker_nr_max; 194 195 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 196 { 197 int id, ret = -ENOMEM; 198 199 down_write(&shrinker_rwsem); 200 /* This may call shrinker, so it must use down_read_trylock() */ 201 id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL); 202 if (id < 0) 203 goto unlock; 204 205 if (id >= shrinker_nr_max) { 206 if (memcg_expand_shrinker_maps(id)) { 207 idr_remove(&shrinker_idr, id); 208 goto unlock; 209 } 210 211 shrinker_nr_max = id + 1; 212 } 213 shrinker->id = id; 214 ret = 0; 215 unlock: 216 up_write(&shrinker_rwsem); 217 return ret; 218 } 219 220 static void unregister_memcg_shrinker(struct shrinker *shrinker) 221 { 222 int id = shrinker->id; 223 224 BUG_ON(id < 0); 225 226 down_write(&shrinker_rwsem); 227 idr_remove(&shrinker_idr, id); 228 up_write(&shrinker_rwsem); 229 } 230 #else /* CONFIG_MEMCG_KMEM */ 231 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 232 { 233 return 0; 234 } 235 236 static void unregister_memcg_shrinker(struct shrinker *shrinker) 237 { 238 } 239 #endif /* CONFIG_MEMCG_KMEM */ 240 241 #ifdef CONFIG_MEMCG 242 static bool global_reclaim(struct scan_control *sc) 243 { 244 return !sc->target_mem_cgroup; 245 } 246 247 /** 248 * sane_reclaim - is the usual dirty throttling mechanism operational? 249 * @sc: scan_control in question 250 * 251 * The normal page dirty throttling mechanism in balance_dirty_pages() is 252 * completely broken with the legacy memcg and direct stalling in 253 * shrink_page_list() is used for throttling instead, which lacks all the 254 * niceties such as fairness, adaptive pausing, bandwidth proportional 255 * allocation and configurability. 256 * 257 * This function tests whether the vmscan currently in progress can assume 258 * that the normal dirty throttling mechanism is operational. 259 */ 260 static bool sane_reclaim(struct scan_control *sc) 261 { 262 struct mem_cgroup *memcg = sc->target_mem_cgroup; 263 264 if (!memcg) 265 return true; 266 #ifdef CONFIG_CGROUP_WRITEBACK 267 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 268 return true; 269 #endif 270 return false; 271 } 272 273 static void set_memcg_congestion(pg_data_t *pgdat, 274 struct mem_cgroup *memcg, 275 bool congested) 276 { 277 struct mem_cgroup_per_node *mn; 278 279 if (!memcg) 280 return; 281 282 mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id); 283 WRITE_ONCE(mn->congested, congested); 284 } 285 286 static bool memcg_congested(pg_data_t *pgdat, 287 struct mem_cgroup *memcg) 288 { 289 struct mem_cgroup_per_node *mn; 290 291 mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id); 292 return READ_ONCE(mn->congested); 293 294 } 295 #else 296 static bool global_reclaim(struct scan_control *sc) 297 { 298 return true; 299 } 300 301 static bool sane_reclaim(struct scan_control *sc) 302 { 303 return true; 304 } 305 306 static inline void set_memcg_congestion(struct pglist_data *pgdat, 307 struct mem_cgroup *memcg, bool congested) 308 { 309 } 310 311 static inline bool memcg_congested(struct pglist_data *pgdat, 312 struct mem_cgroup *memcg) 313 { 314 return false; 315 316 } 317 #endif 318 319 /* 320 * This misses isolated pages which are not accounted for to save counters. 321 * As the data only determines if reclaim or compaction continues, it is 322 * not expected that isolated pages will be a dominating factor. 323 */ 324 unsigned long zone_reclaimable_pages(struct zone *zone) 325 { 326 unsigned long nr; 327 328 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) + 329 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE); 330 if (get_nr_swap_pages() > 0) 331 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) + 332 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON); 333 334 return nr; 335 } 336 337 /** 338 * lruvec_lru_size - Returns the number of pages on the given LRU list. 339 * @lruvec: lru vector 340 * @lru: lru to use 341 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list) 342 */ 343 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx) 344 { 345 unsigned long lru_size; 346 int zid; 347 348 if (!mem_cgroup_disabled()) 349 lru_size = lruvec_page_state_local(lruvec, NR_LRU_BASE + lru); 350 else 351 lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru); 352 353 for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) { 354 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid]; 355 unsigned long size; 356 357 if (!managed_zone(zone)) 358 continue; 359 360 if (!mem_cgroup_disabled()) 361 size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid); 362 else 363 size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid], 364 NR_ZONE_LRU_BASE + lru); 365 lru_size -= min(size, lru_size); 366 } 367 368 return lru_size; 369 370 } 371 372 /* 373 * Add a shrinker callback to be called from the vm. 374 */ 375 int prealloc_shrinker(struct shrinker *shrinker) 376 { 377 unsigned int size = sizeof(*shrinker->nr_deferred); 378 379 if (shrinker->flags & SHRINKER_NUMA_AWARE) 380 size *= nr_node_ids; 381 382 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); 383 if (!shrinker->nr_deferred) 384 return -ENOMEM; 385 386 if (shrinker->flags & SHRINKER_MEMCG_AWARE) { 387 if (prealloc_memcg_shrinker(shrinker)) 388 goto free_deferred; 389 } 390 391 return 0; 392 393 free_deferred: 394 kfree(shrinker->nr_deferred); 395 shrinker->nr_deferred = NULL; 396 return -ENOMEM; 397 } 398 399 void free_prealloced_shrinker(struct shrinker *shrinker) 400 { 401 if (!shrinker->nr_deferred) 402 return; 403 404 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 405 unregister_memcg_shrinker(shrinker); 406 407 kfree(shrinker->nr_deferred); 408 shrinker->nr_deferred = NULL; 409 } 410 411 void register_shrinker_prepared(struct shrinker *shrinker) 412 { 413 down_write(&shrinker_rwsem); 414 list_add_tail(&shrinker->list, &shrinker_list); 415 #ifdef CONFIG_MEMCG_KMEM 416 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 417 idr_replace(&shrinker_idr, shrinker, shrinker->id); 418 #endif 419 up_write(&shrinker_rwsem); 420 } 421 422 int register_shrinker(struct shrinker *shrinker) 423 { 424 int err = prealloc_shrinker(shrinker); 425 426 if (err) 427 return err; 428 register_shrinker_prepared(shrinker); 429 return 0; 430 } 431 EXPORT_SYMBOL(register_shrinker); 432 433 /* 434 * Remove one 435 */ 436 void unregister_shrinker(struct shrinker *shrinker) 437 { 438 if (!shrinker->nr_deferred) 439 return; 440 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 441 unregister_memcg_shrinker(shrinker); 442 down_write(&shrinker_rwsem); 443 list_del(&shrinker->list); 444 up_write(&shrinker_rwsem); 445 kfree(shrinker->nr_deferred); 446 shrinker->nr_deferred = NULL; 447 } 448 EXPORT_SYMBOL(unregister_shrinker); 449 450 #define SHRINK_BATCH 128 451 452 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl, 453 struct shrinker *shrinker, int priority) 454 { 455 unsigned long freed = 0; 456 unsigned long long delta; 457 long total_scan; 458 long freeable; 459 long nr; 460 long new_nr; 461 int nid = shrinkctl->nid; 462 long batch_size = shrinker->batch ? shrinker->batch 463 : SHRINK_BATCH; 464 long scanned = 0, next_deferred; 465 466 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 467 nid = 0; 468 469 freeable = shrinker->count_objects(shrinker, shrinkctl); 470 if (freeable == 0 || freeable == SHRINK_EMPTY) 471 return freeable; 472 473 /* 474 * copy the current shrinker scan count into a local variable 475 * and zero it so that other concurrent shrinker invocations 476 * don't also do this scanning work. 477 */ 478 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0); 479 480 total_scan = nr; 481 if (shrinker->seeks) { 482 delta = freeable >> priority; 483 delta *= 4; 484 do_div(delta, shrinker->seeks); 485 } else { 486 /* 487 * These objects don't require any IO to create. Trim 488 * them aggressively under memory pressure to keep 489 * them from causing refetches in the IO caches. 490 */ 491 delta = freeable / 2; 492 } 493 494 total_scan += delta; 495 if (total_scan < 0) { 496 pr_err("shrink_slab: %pS negative objects to delete nr=%ld\n", 497 shrinker->scan_objects, total_scan); 498 total_scan = freeable; 499 next_deferred = nr; 500 } else 501 next_deferred = total_scan; 502 503 /* 504 * We need to avoid excessive windup on filesystem shrinkers 505 * due to large numbers of GFP_NOFS allocations causing the 506 * shrinkers to return -1 all the time. This results in a large 507 * nr being built up so when a shrink that can do some work 508 * comes along it empties the entire cache due to nr >>> 509 * freeable. This is bad for sustaining a working set in 510 * memory. 511 * 512 * Hence only allow the shrinker to scan the entire cache when 513 * a large delta change is calculated directly. 514 */ 515 if (delta < freeable / 4) 516 total_scan = min(total_scan, freeable / 2); 517 518 /* 519 * Avoid risking looping forever due to too large nr value: 520 * never try to free more than twice the estimate number of 521 * freeable entries. 522 */ 523 if (total_scan > freeable * 2) 524 total_scan = freeable * 2; 525 526 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, 527 freeable, delta, total_scan, priority); 528 529 /* 530 * Normally, we should not scan less than batch_size objects in one 531 * pass to avoid too frequent shrinker calls, but if the slab has less 532 * than batch_size objects in total and we are really tight on memory, 533 * we will try to reclaim all available objects, otherwise we can end 534 * up failing allocations although there are plenty of reclaimable 535 * objects spread over several slabs with usage less than the 536 * batch_size. 537 * 538 * We detect the "tight on memory" situations by looking at the total 539 * number of objects we want to scan (total_scan). If it is greater 540 * than the total number of objects on slab (freeable), we must be 541 * scanning at high prio and therefore should try to reclaim as much as 542 * possible. 543 */ 544 while (total_scan >= batch_size || 545 total_scan >= freeable) { 546 unsigned long ret; 547 unsigned long nr_to_scan = min(batch_size, total_scan); 548 549 shrinkctl->nr_to_scan = nr_to_scan; 550 shrinkctl->nr_scanned = nr_to_scan; 551 ret = shrinker->scan_objects(shrinker, shrinkctl); 552 if (ret == SHRINK_STOP) 553 break; 554 freed += ret; 555 556 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned); 557 total_scan -= shrinkctl->nr_scanned; 558 scanned += shrinkctl->nr_scanned; 559 560 cond_resched(); 561 } 562 563 if (next_deferred >= scanned) 564 next_deferred -= scanned; 565 else 566 next_deferred = 0; 567 /* 568 * move the unused scan count back into the shrinker in a 569 * manner that handles concurrent updates. If we exhausted the 570 * scan, there is no need to do an update. 571 */ 572 if (next_deferred > 0) 573 new_nr = atomic_long_add_return(next_deferred, 574 &shrinker->nr_deferred[nid]); 575 else 576 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]); 577 578 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan); 579 return freed; 580 } 581 582 #ifdef CONFIG_MEMCG_KMEM 583 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 584 struct mem_cgroup *memcg, int priority) 585 { 586 struct memcg_shrinker_map *map; 587 unsigned long ret, freed = 0; 588 int i; 589 590 if (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)) 591 return 0; 592 593 if (!down_read_trylock(&shrinker_rwsem)) 594 return 0; 595 596 map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map, 597 true); 598 if (unlikely(!map)) 599 goto unlock; 600 601 for_each_set_bit(i, map->map, shrinker_nr_max) { 602 struct shrink_control sc = { 603 .gfp_mask = gfp_mask, 604 .nid = nid, 605 .memcg = memcg, 606 }; 607 struct shrinker *shrinker; 608 609 shrinker = idr_find(&shrinker_idr, i); 610 if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) { 611 if (!shrinker) 612 clear_bit(i, map->map); 613 continue; 614 } 615 616 ret = do_shrink_slab(&sc, shrinker, priority); 617 if (ret == SHRINK_EMPTY) { 618 clear_bit(i, map->map); 619 /* 620 * After the shrinker reported that it had no objects to 621 * free, but before we cleared the corresponding bit in 622 * the memcg shrinker map, a new object might have been 623 * added. To make sure, we have the bit set in this 624 * case, we invoke the shrinker one more time and reset 625 * the bit if it reports that it is not empty anymore. 626 * The memory barrier here pairs with the barrier in 627 * memcg_set_shrinker_bit(): 628 * 629 * list_lru_add() shrink_slab_memcg() 630 * list_add_tail() clear_bit() 631 * <MB> <MB> 632 * set_bit() do_shrink_slab() 633 */ 634 smp_mb__after_atomic(); 635 ret = do_shrink_slab(&sc, shrinker, priority); 636 if (ret == SHRINK_EMPTY) 637 ret = 0; 638 else 639 memcg_set_shrinker_bit(memcg, nid, i); 640 } 641 freed += ret; 642 643 if (rwsem_is_contended(&shrinker_rwsem)) { 644 freed = freed ? : 1; 645 break; 646 } 647 } 648 unlock: 649 up_read(&shrinker_rwsem); 650 return freed; 651 } 652 #else /* CONFIG_MEMCG_KMEM */ 653 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 654 struct mem_cgroup *memcg, int priority) 655 { 656 return 0; 657 } 658 #endif /* CONFIG_MEMCG_KMEM */ 659 660 /** 661 * shrink_slab - shrink slab caches 662 * @gfp_mask: allocation context 663 * @nid: node whose slab caches to target 664 * @memcg: memory cgroup whose slab caches to target 665 * @priority: the reclaim priority 666 * 667 * Call the shrink functions to age shrinkable caches. 668 * 669 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set, 670 * unaware shrinkers will receive a node id of 0 instead. 671 * 672 * @memcg specifies the memory cgroup to target. Unaware shrinkers 673 * are called only if it is the root cgroup. 674 * 675 * @priority is sc->priority, we take the number of objects and >> by priority 676 * in order to get the scan target. 677 * 678 * Returns the number of reclaimed slab objects. 679 */ 680 static unsigned long shrink_slab(gfp_t gfp_mask, int nid, 681 struct mem_cgroup *memcg, 682 int priority) 683 { 684 unsigned long ret, freed = 0; 685 struct shrinker *shrinker; 686 687 if (!mem_cgroup_is_root(memcg)) 688 return shrink_slab_memcg(gfp_mask, nid, memcg, priority); 689 690 if (!down_read_trylock(&shrinker_rwsem)) 691 goto out; 692 693 list_for_each_entry(shrinker, &shrinker_list, list) { 694 struct shrink_control sc = { 695 .gfp_mask = gfp_mask, 696 .nid = nid, 697 .memcg = memcg, 698 }; 699 700 ret = do_shrink_slab(&sc, shrinker, priority); 701 if (ret == SHRINK_EMPTY) 702 ret = 0; 703 freed += ret; 704 /* 705 * Bail out if someone want to register a new shrinker to 706 * prevent the regsitration from being stalled for long periods 707 * by parallel ongoing shrinking. 708 */ 709 if (rwsem_is_contended(&shrinker_rwsem)) { 710 freed = freed ? : 1; 711 break; 712 } 713 } 714 715 up_read(&shrinker_rwsem); 716 out: 717 cond_resched(); 718 return freed; 719 } 720 721 void drop_slab_node(int nid) 722 { 723 unsigned long freed; 724 725 do { 726 struct mem_cgroup *memcg = NULL; 727 728 freed = 0; 729 memcg = mem_cgroup_iter(NULL, NULL, NULL); 730 do { 731 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0); 732 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 733 } while (freed > 10); 734 } 735 736 void drop_slab(void) 737 { 738 int nid; 739 740 for_each_online_node(nid) 741 drop_slab_node(nid); 742 } 743 744 static inline int is_page_cache_freeable(struct page *page) 745 { 746 /* 747 * A freeable page cache page is referenced only by the caller 748 * that isolated the page, the page cache and optional buffer 749 * heads at page->private. 750 */ 751 int page_cache_pins = PageTransHuge(page) && PageSwapCache(page) ? 752 HPAGE_PMD_NR : 1; 753 return page_count(page) - page_has_private(page) == 1 + page_cache_pins; 754 } 755 756 static int may_write_to_inode(struct inode *inode, struct scan_control *sc) 757 { 758 if (current->flags & PF_SWAPWRITE) 759 return 1; 760 if (!inode_write_congested(inode)) 761 return 1; 762 if (inode_to_bdi(inode) == current->backing_dev_info) 763 return 1; 764 return 0; 765 } 766 767 /* 768 * We detected a synchronous write error writing a page out. Probably 769 * -ENOSPC. We need to propagate that into the address_space for a subsequent 770 * fsync(), msync() or close(). 771 * 772 * The tricky part is that after writepage we cannot touch the mapping: nothing 773 * prevents it from being freed up. But we have a ref on the page and once 774 * that page is locked, the mapping is pinned. 775 * 776 * We're allowed to run sleeping lock_page() here because we know the caller has 777 * __GFP_FS. 778 */ 779 static void handle_write_error(struct address_space *mapping, 780 struct page *page, int error) 781 { 782 lock_page(page); 783 if (page_mapping(page) == mapping) 784 mapping_set_error(mapping, error); 785 unlock_page(page); 786 } 787 788 /* possible outcome of pageout() */ 789 typedef enum { 790 /* failed to write page out, page is locked */ 791 PAGE_KEEP, 792 /* move page to the active list, page is locked */ 793 PAGE_ACTIVATE, 794 /* page has been sent to the disk successfully, page is unlocked */ 795 PAGE_SUCCESS, 796 /* page is clean and locked */ 797 PAGE_CLEAN, 798 } pageout_t; 799 800 /* 801 * pageout is called by shrink_page_list() for each dirty page. 802 * Calls ->writepage(). 803 */ 804 static pageout_t pageout(struct page *page, struct address_space *mapping, 805 struct scan_control *sc) 806 { 807 /* 808 * If the page is dirty, only perform writeback if that write 809 * will be non-blocking. To prevent this allocation from being 810 * stalled by pagecache activity. But note that there may be 811 * stalls if we need to run get_block(). We could test 812 * PagePrivate for that. 813 * 814 * If this process is currently in __generic_file_write_iter() against 815 * this page's queue, we can perform writeback even if that 816 * will block. 817 * 818 * If the page is swapcache, write it back even if that would 819 * block, for some throttling. This happens by accident, because 820 * swap_backing_dev_info is bust: it doesn't reflect the 821 * congestion state of the swapdevs. Easy to fix, if needed. 822 */ 823 if (!is_page_cache_freeable(page)) 824 return PAGE_KEEP; 825 if (!mapping) { 826 /* 827 * Some data journaling orphaned pages can have 828 * page->mapping == NULL while being dirty with clean buffers. 829 */ 830 if (page_has_private(page)) { 831 if (try_to_free_buffers(page)) { 832 ClearPageDirty(page); 833 pr_info("%s: orphaned page\n", __func__); 834 return PAGE_CLEAN; 835 } 836 } 837 return PAGE_KEEP; 838 } 839 if (mapping->a_ops->writepage == NULL) 840 return PAGE_ACTIVATE; 841 if (!may_write_to_inode(mapping->host, sc)) 842 return PAGE_KEEP; 843 844 if (clear_page_dirty_for_io(page)) { 845 int res; 846 struct writeback_control wbc = { 847 .sync_mode = WB_SYNC_NONE, 848 .nr_to_write = SWAP_CLUSTER_MAX, 849 .range_start = 0, 850 .range_end = LLONG_MAX, 851 .for_reclaim = 1, 852 }; 853 854 SetPageReclaim(page); 855 res = mapping->a_ops->writepage(page, &wbc); 856 if (res < 0) 857 handle_write_error(mapping, page, res); 858 if (res == AOP_WRITEPAGE_ACTIVATE) { 859 ClearPageReclaim(page); 860 return PAGE_ACTIVATE; 861 } 862 863 if (!PageWriteback(page)) { 864 /* synchronous write or broken a_ops? */ 865 ClearPageReclaim(page); 866 } 867 trace_mm_vmscan_writepage(page); 868 inc_node_page_state(page, NR_VMSCAN_WRITE); 869 return PAGE_SUCCESS; 870 } 871 872 return PAGE_CLEAN; 873 } 874 875 /* 876 * Same as remove_mapping, but if the page is removed from the mapping, it 877 * gets returned with a refcount of 0. 878 */ 879 static int __remove_mapping(struct address_space *mapping, struct page *page, 880 bool reclaimed) 881 { 882 unsigned long flags; 883 int refcount; 884 885 BUG_ON(!PageLocked(page)); 886 BUG_ON(mapping != page_mapping(page)); 887 888 xa_lock_irqsave(&mapping->i_pages, flags); 889 /* 890 * The non racy check for a busy page. 891 * 892 * Must be careful with the order of the tests. When someone has 893 * a ref to the page, it may be possible that they dirty it then 894 * drop the reference. So if PageDirty is tested before page_count 895 * here, then the following race may occur: 896 * 897 * get_user_pages(&page); 898 * [user mapping goes away] 899 * write_to(page); 900 * !PageDirty(page) [good] 901 * SetPageDirty(page); 902 * put_page(page); 903 * !page_count(page) [good, discard it] 904 * 905 * [oops, our write_to data is lost] 906 * 907 * Reversing the order of the tests ensures such a situation cannot 908 * escape unnoticed. The smp_rmb is needed to ensure the page->flags 909 * load is not satisfied before that of page->_refcount. 910 * 911 * Note that if SetPageDirty is always performed via set_page_dirty, 912 * and thus under the i_pages lock, then this ordering is not required. 913 */ 914 if (unlikely(PageTransHuge(page)) && PageSwapCache(page)) 915 refcount = 1 + HPAGE_PMD_NR; 916 else 917 refcount = 2; 918 if (!page_ref_freeze(page, refcount)) 919 goto cannot_free; 920 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */ 921 if (unlikely(PageDirty(page))) { 922 page_ref_unfreeze(page, refcount); 923 goto cannot_free; 924 } 925 926 if (PageSwapCache(page)) { 927 swp_entry_t swap = { .val = page_private(page) }; 928 mem_cgroup_swapout(page, swap); 929 __delete_from_swap_cache(page, swap); 930 xa_unlock_irqrestore(&mapping->i_pages, flags); 931 put_swap_page(page, swap); 932 } else { 933 void (*freepage)(struct page *); 934 void *shadow = NULL; 935 936 freepage = mapping->a_ops->freepage; 937 /* 938 * Remember a shadow entry for reclaimed file cache in 939 * order to detect refaults, thus thrashing, later on. 940 * 941 * But don't store shadows in an address space that is 942 * already exiting. This is not just an optizimation, 943 * inode reclaim needs to empty out the radix tree or 944 * the nodes are lost. Don't plant shadows behind its 945 * back. 946 * 947 * We also don't store shadows for DAX mappings because the 948 * only page cache pages found in these are zero pages 949 * covering holes, and because we don't want to mix DAX 950 * exceptional entries and shadow exceptional entries in the 951 * same address_space. 952 */ 953 if (reclaimed && page_is_file_cache(page) && 954 !mapping_exiting(mapping) && !dax_mapping(mapping)) 955 shadow = workingset_eviction(page); 956 __delete_from_page_cache(page, shadow); 957 xa_unlock_irqrestore(&mapping->i_pages, flags); 958 959 if (freepage != NULL) 960 freepage(page); 961 } 962 963 return 1; 964 965 cannot_free: 966 xa_unlock_irqrestore(&mapping->i_pages, flags); 967 return 0; 968 } 969 970 /* 971 * Attempt to detach a locked page from its ->mapping. If it is dirty or if 972 * someone else has a ref on the page, abort and return 0. If it was 973 * successfully detached, return 1. Assumes the caller has a single ref on 974 * this page. 975 */ 976 int remove_mapping(struct address_space *mapping, struct page *page) 977 { 978 if (__remove_mapping(mapping, page, false)) { 979 /* 980 * Unfreezing the refcount with 1 rather than 2 effectively 981 * drops the pagecache ref for us without requiring another 982 * atomic operation. 983 */ 984 page_ref_unfreeze(page, 1); 985 return 1; 986 } 987 return 0; 988 } 989 990 /** 991 * putback_lru_page - put previously isolated page onto appropriate LRU list 992 * @page: page to be put back to appropriate lru list 993 * 994 * Add previously isolated @page to appropriate LRU list. 995 * Page may still be unevictable for other reasons. 996 * 997 * lru_lock must not be held, interrupts must be enabled. 998 */ 999 void putback_lru_page(struct page *page) 1000 { 1001 lru_cache_add(page); 1002 put_page(page); /* drop ref from isolate */ 1003 } 1004 1005 enum page_references { 1006 PAGEREF_RECLAIM, 1007 PAGEREF_RECLAIM_CLEAN, 1008 PAGEREF_KEEP, 1009 PAGEREF_ACTIVATE, 1010 }; 1011 1012 static enum page_references page_check_references(struct page *page, 1013 struct scan_control *sc) 1014 { 1015 int referenced_ptes, referenced_page; 1016 unsigned long vm_flags; 1017 1018 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup, 1019 &vm_flags); 1020 referenced_page = TestClearPageReferenced(page); 1021 1022 /* 1023 * Mlock lost the isolation race with us. Let try_to_unmap() 1024 * move the page to the unevictable list. 1025 */ 1026 if (vm_flags & VM_LOCKED) 1027 return PAGEREF_RECLAIM; 1028 1029 if (referenced_ptes) { 1030 if (PageSwapBacked(page)) 1031 return PAGEREF_ACTIVATE; 1032 /* 1033 * All mapped pages start out with page table 1034 * references from the instantiating fault, so we need 1035 * to look twice if a mapped file page is used more 1036 * than once. 1037 * 1038 * Mark it and spare it for another trip around the 1039 * inactive list. Another page table reference will 1040 * lead to its activation. 1041 * 1042 * Note: the mark is set for activated pages as well 1043 * so that recently deactivated but used pages are 1044 * quickly recovered. 1045 */ 1046 SetPageReferenced(page); 1047 1048 if (referenced_page || referenced_ptes > 1) 1049 return PAGEREF_ACTIVATE; 1050 1051 /* 1052 * Activate file-backed executable pages after first usage. 1053 */ 1054 if (vm_flags & VM_EXEC) 1055 return PAGEREF_ACTIVATE; 1056 1057 return PAGEREF_KEEP; 1058 } 1059 1060 /* Reclaim if clean, defer dirty pages to writeback */ 1061 if (referenced_page && !PageSwapBacked(page)) 1062 return PAGEREF_RECLAIM_CLEAN; 1063 1064 return PAGEREF_RECLAIM; 1065 } 1066 1067 /* Check if a page is dirty or under writeback */ 1068 static void page_check_dirty_writeback(struct page *page, 1069 bool *dirty, bool *writeback) 1070 { 1071 struct address_space *mapping; 1072 1073 /* 1074 * Anonymous pages are not handled by flushers and must be written 1075 * from reclaim context. Do not stall reclaim based on them 1076 */ 1077 if (!page_is_file_cache(page) || 1078 (PageAnon(page) && !PageSwapBacked(page))) { 1079 *dirty = false; 1080 *writeback = false; 1081 return; 1082 } 1083 1084 /* By default assume that the page flags are accurate */ 1085 *dirty = PageDirty(page); 1086 *writeback = PageWriteback(page); 1087 1088 /* Verify dirty/writeback state if the filesystem supports it */ 1089 if (!page_has_private(page)) 1090 return; 1091 1092 mapping = page_mapping(page); 1093 if (mapping && mapping->a_ops->is_dirty_writeback) 1094 mapping->a_ops->is_dirty_writeback(page, dirty, writeback); 1095 } 1096 1097 /* 1098 * shrink_page_list() returns the number of reclaimed pages 1099 */ 1100 static unsigned long shrink_page_list(struct list_head *page_list, 1101 struct pglist_data *pgdat, 1102 struct scan_control *sc, 1103 enum ttu_flags ttu_flags, 1104 struct reclaim_stat *stat, 1105 bool force_reclaim) 1106 { 1107 LIST_HEAD(ret_pages); 1108 LIST_HEAD(free_pages); 1109 unsigned nr_reclaimed = 0; 1110 unsigned pgactivate = 0; 1111 1112 memset(stat, 0, sizeof(*stat)); 1113 cond_resched(); 1114 1115 while (!list_empty(page_list)) { 1116 struct address_space *mapping; 1117 struct page *page; 1118 int may_enter_fs; 1119 enum page_references references = PAGEREF_RECLAIM_CLEAN; 1120 bool dirty, writeback; 1121 1122 cond_resched(); 1123 1124 page = lru_to_page(page_list); 1125 list_del(&page->lru); 1126 1127 if (!trylock_page(page)) 1128 goto keep; 1129 1130 VM_BUG_ON_PAGE(PageActive(page), page); 1131 1132 sc->nr_scanned++; 1133 1134 if (unlikely(!page_evictable(page))) 1135 goto activate_locked; 1136 1137 if (!sc->may_unmap && page_mapped(page)) 1138 goto keep_locked; 1139 1140 /* Double the slab pressure for mapped and swapcache pages */ 1141 if ((page_mapped(page) || PageSwapCache(page)) && 1142 !(PageAnon(page) && !PageSwapBacked(page))) 1143 sc->nr_scanned++; 1144 1145 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 1146 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 1147 1148 /* 1149 * The number of dirty pages determines if a node is marked 1150 * reclaim_congested which affects wait_iff_congested. kswapd 1151 * will stall and start writing pages if the tail of the LRU 1152 * is all dirty unqueued pages. 1153 */ 1154 page_check_dirty_writeback(page, &dirty, &writeback); 1155 if (dirty || writeback) 1156 stat->nr_dirty++; 1157 1158 if (dirty && !writeback) 1159 stat->nr_unqueued_dirty++; 1160 1161 /* 1162 * Treat this page as congested if the underlying BDI is or if 1163 * pages are cycling through the LRU so quickly that the 1164 * pages marked for immediate reclaim are making it to the 1165 * end of the LRU a second time. 1166 */ 1167 mapping = page_mapping(page); 1168 if (((dirty || writeback) && mapping && 1169 inode_write_congested(mapping->host)) || 1170 (writeback && PageReclaim(page))) 1171 stat->nr_congested++; 1172 1173 /* 1174 * If a page at the tail of the LRU is under writeback, there 1175 * are three cases to consider. 1176 * 1177 * 1) If reclaim is encountering an excessive number of pages 1178 * under writeback and this page is both under writeback and 1179 * PageReclaim then it indicates that pages are being queued 1180 * for IO but are being recycled through the LRU before the 1181 * IO can complete. Waiting on the page itself risks an 1182 * indefinite stall if it is impossible to writeback the 1183 * page due to IO error or disconnected storage so instead 1184 * note that the LRU is being scanned too quickly and the 1185 * caller can stall after page list has been processed. 1186 * 1187 * 2) Global or new memcg reclaim encounters a page that is 1188 * not marked for immediate reclaim, or the caller does not 1189 * have __GFP_FS (or __GFP_IO if it's simply going to swap, 1190 * not to fs). In this case mark the page for immediate 1191 * reclaim and continue scanning. 1192 * 1193 * Require may_enter_fs because we would wait on fs, which 1194 * may not have submitted IO yet. And the loop driver might 1195 * enter reclaim, and deadlock if it waits on a page for 1196 * which it is needed to do the write (loop masks off 1197 * __GFP_IO|__GFP_FS for this reason); but more thought 1198 * would probably show more reasons. 1199 * 1200 * 3) Legacy memcg encounters a page that is already marked 1201 * PageReclaim. memcg does not have any dirty pages 1202 * throttling so we could easily OOM just because too many 1203 * pages are in writeback and there is nothing else to 1204 * reclaim. Wait for the writeback to complete. 1205 * 1206 * In cases 1) and 2) we activate the pages to get them out of 1207 * the way while we continue scanning for clean pages on the 1208 * inactive list and refilling from the active list. The 1209 * observation here is that waiting for disk writes is more 1210 * expensive than potentially causing reloads down the line. 1211 * Since they're marked for immediate reclaim, they won't put 1212 * memory pressure on the cache working set any longer than it 1213 * takes to write them to disk. 1214 */ 1215 if (PageWriteback(page)) { 1216 /* Case 1 above */ 1217 if (current_is_kswapd() && 1218 PageReclaim(page) && 1219 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) { 1220 stat->nr_immediate++; 1221 goto activate_locked; 1222 1223 /* Case 2 above */ 1224 } else if (sane_reclaim(sc) || 1225 !PageReclaim(page) || !may_enter_fs) { 1226 /* 1227 * This is slightly racy - end_page_writeback() 1228 * might have just cleared PageReclaim, then 1229 * setting PageReclaim here end up interpreted 1230 * as PageReadahead - but that does not matter 1231 * enough to care. What we do want is for this 1232 * page to have PageReclaim set next time memcg 1233 * reclaim reaches the tests above, so it will 1234 * then wait_on_page_writeback() to avoid OOM; 1235 * and it's also appropriate in global reclaim. 1236 */ 1237 SetPageReclaim(page); 1238 stat->nr_writeback++; 1239 goto activate_locked; 1240 1241 /* Case 3 above */ 1242 } else { 1243 unlock_page(page); 1244 wait_on_page_writeback(page); 1245 /* then go back and try same page again */ 1246 list_add_tail(&page->lru, page_list); 1247 continue; 1248 } 1249 } 1250 1251 if (!force_reclaim) 1252 references = page_check_references(page, sc); 1253 1254 switch (references) { 1255 case PAGEREF_ACTIVATE: 1256 goto activate_locked; 1257 case PAGEREF_KEEP: 1258 stat->nr_ref_keep++; 1259 goto keep_locked; 1260 case PAGEREF_RECLAIM: 1261 case PAGEREF_RECLAIM_CLEAN: 1262 ; /* try to reclaim the page below */ 1263 } 1264 1265 /* 1266 * Anonymous process memory has backing store? 1267 * Try to allocate it some swap space here. 1268 * Lazyfree page could be freed directly 1269 */ 1270 if (PageAnon(page) && PageSwapBacked(page)) { 1271 if (!PageSwapCache(page)) { 1272 if (!(sc->gfp_mask & __GFP_IO)) 1273 goto keep_locked; 1274 if (PageTransHuge(page)) { 1275 /* cannot split THP, skip it */ 1276 if (!can_split_huge_page(page, NULL)) 1277 goto activate_locked; 1278 /* 1279 * Split pages without a PMD map right 1280 * away. Chances are some or all of the 1281 * tail pages can be freed without IO. 1282 */ 1283 if (!compound_mapcount(page) && 1284 split_huge_page_to_list(page, 1285 page_list)) 1286 goto activate_locked; 1287 } 1288 if (!add_to_swap(page)) { 1289 if (!PageTransHuge(page)) 1290 goto activate_locked; 1291 /* Fallback to swap normal pages */ 1292 if (split_huge_page_to_list(page, 1293 page_list)) 1294 goto activate_locked; 1295 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1296 count_vm_event(THP_SWPOUT_FALLBACK); 1297 #endif 1298 if (!add_to_swap(page)) 1299 goto activate_locked; 1300 } 1301 1302 may_enter_fs = 1; 1303 1304 /* Adding to swap updated mapping */ 1305 mapping = page_mapping(page); 1306 } 1307 } else if (unlikely(PageTransHuge(page))) { 1308 /* Split file THP */ 1309 if (split_huge_page_to_list(page, page_list)) 1310 goto keep_locked; 1311 } 1312 1313 /* 1314 * The page is mapped into the page tables of one or more 1315 * processes. Try to unmap it here. 1316 */ 1317 if (page_mapped(page)) { 1318 enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH; 1319 1320 if (unlikely(PageTransHuge(page))) 1321 flags |= TTU_SPLIT_HUGE_PMD; 1322 if (!try_to_unmap(page, flags)) { 1323 stat->nr_unmap_fail++; 1324 goto activate_locked; 1325 } 1326 } 1327 1328 if (PageDirty(page)) { 1329 /* 1330 * Only kswapd can writeback filesystem pages 1331 * to avoid risk of stack overflow. But avoid 1332 * injecting inefficient single-page IO into 1333 * flusher writeback as much as possible: only 1334 * write pages when we've encountered many 1335 * dirty pages, and when we've already scanned 1336 * the rest of the LRU for clean pages and see 1337 * the same dirty pages again (PageReclaim). 1338 */ 1339 if (page_is_file_cache(page) && 1340 (!current_is_kswapd() || !PageReclaim(page) || 1341 !test_bit(PGDAT_DIRTY, &pgdat->flags))) { 1342 /* 1343 * Immediately reclaim when written back. 1344 * Similar in principal to deactivate_page() 1345 * except we already have the page isolated 1346 * and know it's dirty 1347 */ 1348 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE); 1349 SetPageReclaim(page); 1350 1351 goto activate_locked; 1352 } 1353 1354 if (references == PAGEREF_RECLAIM_CLEAN) 1355 goto keep_locked; 1356 if (!may_enter_fs) 1357 goto keep_locked; 1358 if (!sc->may_writepage) 1359 goto keep_locked; 1360 1361 /* 1362 * Page is dirty. Flush the TLB if a writable entry 1363 * potentially exists to avoid CPU writes after IO 1364 * starts and then write it out here. 1365 */ 1366 try_to_unmap_flush_dirty(); 1367 switch (pageout(page, mapping, sc)) { 1368 case PAGE_KEEP: 1369 goto keep_locked; 1370 case PAGE_ACTIVATE: 1371 goto activate_locked; 1372 case PAGE_SUCCESS: 1373 if (PageWriteback(page)) 1374 goto keep; 1375 if (PageDirty(page)) 1376 goto keep; 1377 1378 /* 1379 * A synchronous write - probably a ramdisk. Go 1380 * ahead and try to reclaim the page. 1381 */ 1382 if (!trylock_page(page)) 1383 goto keep; 1384 if (PageDirty(page) || PageWriteback(page)) 1385 goto keep_locked; 1386 mapping = page_mapping(page); 1387 case PAGE_CLEAN: 1388 ; /* try to free the page below */ 1389 } 1390 } 1391 1392 /* 1393 * If the page has buffers, try to free the buffer mappings 1394 * associated with this page. If we succeed we try to free 1395 * the page as well. 1396 * 1397 * We do this even if the page is PageDirty(). 1398 * try_to_release_page() does not perform I/O, but it is 1399 * possible for a page to have PageDirty set, but it is actually 1400 * clean (all its buffers are clean). This happens if the 1401 * buffers were written out directly, with submit_bh(). ext3 1402 * will do this, as well as the blockdev mapping. 1403 * try_to_release_page() will discover that cleanness and will 1404 * drop the buffers and mark the page clean - it can be freed. 1405 * 1406 * Rarely, pages can have buffers and no ->mapping. These are 1407 * the pages which were not successfully invalidated in 1408 * truncate_complete_page(). We try to drop those buffers here 1409 * and if that worked, and the page is no longer mapped into 1410 * process address space (page_count == 1) it can be freed. 1411 * Otherwise, leave the page on the LRU so it is swappable. 1412 */ 1413 if (page_has_private(page)) { 1414 if (!try_to_release_page(page, sc->gfp_mask)) 1415 goto activate_locked; 1416 if (!mapping && page_count(page) == 1) { 1417 unlock_page(page); 1418 if (put_page_testzero(page)) 1419 goto free_it; 1420 else { 1421 /* 1422 * rare race with speculative reference. 1423 * the speculative reference will free 1424 * this page shortly, so we may 1425 * increment nr_reclaimed here (and 1426 * leave it off the LRU). 1427 */ 1428 nr_reclaimed++; 1429 continue; 1430 } 1431 } 1432 } 1433 1434 if (PageAnon(page) && !PageSwapBacked(page)) { 1435 /* follow __remove_mapping for reference */ 1436 if (!page_ref_freeze(page, 1)) 1437 goto keep_locked; 1438 if (PageDirty(page)) { 1439 page_ref_unfreeze(page, 1); 1440 goto keep_locked; 1441 } 1442 1443 count_vm_event(PGLAZYFREED); 1444 count_memcg_page_event(page, PGLAZYFREED); 1445 } else if (!mapping || !__remove_mapping(mapping, page, true)) 1446 goto keep_locked; 1447 1448 unlock_page(page); 1449 free_it: 1450 nr_reclaimed++; 1451 1452 /* 1453 * Is there need to periodically free_page_list? It would 1454 * appear not as the counts should be low 1455 */ 1456 if (unlikely(PageTransHuge(page))) { 1457 mem_cgroup_uncharge(page); 1458 (*get_compound_page_dtor(page))(page); 1459 } else 1460 list_add(&page->lru, &free_pages); 1461 continue; 1462 1463 activate_locked: 1464 /* Not a candidate for swapping, so reclaim swap space. */ 1465 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) || 1466 PageMlocked(page))) 1467 try_to_free_swap(page); 1468 VM_BUG_ON_PAGE(PageActive(page), page); 1469 if (!PageMlocked(page)) { 1470 int type = page_is_file_cache(page); 1471 SetPageActive(page); 1472 pgactivate++; 1473 stat->nr_activate[type] += hpage_nr_pages(page); 1474 count_memcg_page_event(page, PGACTIVATE); 1475 } 1476 keep_locked: 1477 unlock_page(page); 1478 keep: 1479 list_add(&page->lru, &ret_pages); 1480 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page); 1481 } 1482 1483 mem_cgroup_uncharge_list(&free_pages); 1484 try_to_unmap_flush(); 1485 free_unref_page_list(&free_pages); 1486 1487 list_splice(&ret_pages, page_list); 1488 count_vm_events(PGACTIVATE, pgactivate); 1489 1490 return nr_reclaimed; 1491 } 1492 1493 unsigned long reclaim_clean_pages_from_list(struct zone *zone, 1494 struct list_head *page_list) 1495 { 1496 struct scan_control sc = { 1497 .gfp_mask = GFP_KERNEL, 1498 .priority = DEF_PRIORITY, 1499 .may_unmap = 1, 1500 }; 1501 struct reclaim_stat dummy_stat; 1502 unsigned long ret; 1503 struct page *page, *next; 1504 LIST_HEAD(clean_pages); 1505 1506 list_for_each_entry_safe(page, next, page_list, lru) { 1507 if (page_is_file_cache(page) && !PageDirty(page) && 1508 !__PageMovable(page) && !PageUnevictable(page)) { 1509 ClearPageActive(page); 1510 list_move(&page->lru, &clean_pages); 1511 } 1512 } 1513 1514 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc, 1515 TTU_IGNORE_ACCESS, &dummy_stat, true); 1516 list_splice(&clean_pages, page_list); 1517 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret); 1518 return ret; 1519 } 1520 1521 /* 1522 * Attempt to remove the specified page from its LRU. Only take this page 1523 * if it is of the appropriate PageActive status. Pages which are being 1524 * freed elsewhere are also ignored. 1525 * 1526 * page: page to consider 1527 * mode: one of the LRU isolation modes defined above 1528 * 1529 * returns 0 on success, -ve errno on failure. 1530 */ 1531 int __isolate_lru_page(struct page *page, isolate_mode_t mode) 1532 { 1533 int ret = -EINVAL; 1534 1535 /* Only take pages on the LRU. */ 1536 if (!PageLRU(page)) 1537 return ret; 1538 1539 /* Compaction should not handle unevictable pages but CMA can do so */ 1540 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE)) 1541 return ret; 1542 1543 ret = -EBUSY; 1544 1545 /* 1546 * To minimise LRU disruption, the caller can indicate that it only 1547 * wants to isolate pages it will be able to operate on without 1548 * blocking - clean pages for the most part. 1549 * 1550 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages 1551 * that it is possible to migrate without blocking 1552 */ 1553 if (mode & ISOLATE_ASYNC_MIGRATE) { 1554 /* All the caller can do on PageWriteback is block */ 1555 if (PageWriteback(page)) 1556 return ret; 1557 1558 if (PageDirty(page)) { 1559 struct address_space *mapping; 1560 bool migrate_dirty; 1561 1562 /* 1563 * Only pages without mappings or that have a 1564 * ->migratepage callback are possible to migrate 1565 * without blocking. However, we can be racing with 1566 * truncation so it's necessary to lock the page 1567 * to stabilise the mapping as truncation holds 1568 * the page lock until after the page is removed 1569 * from the page cache. 1570 */ 1571 if (!trylock_page(page)) 1572 return ret; 1573 1574 mapping = page_mapping(page); 1575 migrate_dirty = !mapping || mapping->a_ops->migratepage; 1576 unlock_page(page); 1577 if (!migrate_dirty) 1578 return ret; 1579 } 1580 } 1581 1582 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page)) 1583 return ret; 1584 1585 if (likely(get_page_unless_zero(page))) { 1586 /* 1587 * Be careful not to clear PageLRU until after we're 1588 * sure the page is not being freed elsewhere -- the 1589 * page release code relies on it. 1590 */ 1591 ClearPageLRU(page); 1592 ret = 0; 1593 } 1594 1595 return ret; 1596 } 1597 1598 1599 /* 1600 * Update LRU sizes after isolating pages. The LRU size updates must 1601 * be complete before mem_cgroup_update_lru_size due to a santity check. 1602 */ 1603 static __always_inline void update_lru_sizes(struct lruvec *lruvec, 1604 enum lru_list lru, unsigned long *nr_zone_taken) 1605 { 1606 int zid; 1607 1608 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1609 if (!nr_zone_taken[zid]) 1610 continue; 1611 1612 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 1613 #ifdef CONFIG_MEMCG 1614 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 1615 #endif 1616 } 1617 1618 } 1619 1620 /** 1621 * pgdat->lru_lock is heavily contended. Some of the functions that 1622 * shrink the lists perform better by taking out a batch of pages 1623 * and working on them outside the LRU lock. 1624 * 1625 * For pagecache intensive workloads, this function is the hottest 1626 * spot in the kernel (apart from copy_*_user functions). 1627 * 1628 * Appropriate locks must be held before calling this function. 1629 * 1630 * @nr_to_scan: The number of eligible pages to look through on the list. 1631 * @lruvec: The LRU vector to pull pages from. 1632 * @dst: The temp list to put pages on to. 1633 * @nr_scanned: The number of pages that were scanned. 1634 * @sc: The scan_control struct for this reclaim session 1635 * @mode: One of the LRU isolation modes 1636 * @lru: LRU list id for isolating 1637 * 1638 * returns how many pages were moved onto *@dst. 1639 */ 1640 static unsigned long isolate_lru_pages(unsigned long nr_to_scan, 1641 struct lruvec *lruvec, struct list_head *dst, 1642 unsigned long *nr_scanned, struct scan_control *sc, 1643 enum lru_list lru) 1644 { 1645 struct list_head *src = &lruvec->lists[lru]; 1646 unsigned long nr_taken = 0; 1647 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 }; 1648 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, }; 1649 unsigned long skipped = 0; 1650 unsigned long scan, total_scan, nr_pages; 1651 LIST_HEAD(pages_skipped); 1652 isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED); 1653 1654 scan = 0; 1655 for (total_scan = 0; 1656 scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src); 1657 total_scan++) { 1658 struct page *page; 1659 1660 page = lru_to_page(src); 1661 prefetchw_prev_lru_page(page, src, flags); 1662 1663 VM_BUG_ON_PAGE(!PageLRU(page), page); 1664 1665 if (page_zonenum(page) > sc->reclaim_idx) { 1666 list_move(&page->lru, &pages_skipped); 1667 nr_skipped[page_zonenum(page)]++; 1668 continue; 1669 } 1670 1671 /* 1672 * Do not count skipped pages because that makes the function 1673 * return with no isolated pages if the LRU mostly contains 1674 * ineligible pages. This causes the VM to not reclaim any 1675 * pages, triggering a premature OOM. 1676 */ 1677 scan++; 1678 switch (__isolate_lru_page(page, mode)) { 1679 case 0: 1680 nr_pages = hpage_nr_pages(page); 1681 nr_taken += nr_pages; 1682 nr_zone_taken[page_zonenum(page)] += nr_pages; 1683 list_move(&page->lru, dst); 1684 break; 1685 1686 case -EBUSY: 1687 /* else it is being freed elsewhere */ 1688 list_move(&page->lru, src); 1689 continue; 1690 1691 default: 1692 BUG(); 1693 } 1694 } 1695 1696 /* 1697 * Splice any skipped pages to the start of the LRU list. Note that 1698 * this disrupts the LRU order when reclaiming for lower zones but 1699 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX 1700 * scanning would soon rescan the same pages to skip and put the 1701 * system at risk of premature OOM. 1702 */ 1703 if (!list_empty(&pages_skipped)) { 1704 int zid; 1705 1706 list_splice(&pages_skipped, src); 1707 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1708 if (!nr_skipped[zid]) 1709 continue; 1710 1711 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]); 1712 skipped += nr_skipped[zid]; 1713 } 1714 } 1715 *nr_scanned = total_scan; 1716 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, 1717 total_scan, skipped, nr_taken, mode, lru); 1718 update_lru_sizes(lruvec, lru, nr_zone_taken); 1719 return nr_taken; 1720 } 1721 1722 /** 1723 * isolate_lru_page - tries to isolate a page from its LRU list 1724 * @page: page to isolate from its LRU list 1725 * 1726 * Isolates a @page from an LRU list, clears PageLRU and adjusts the 1727 * vmstat statistic corresponding to whatever LRU list the page was on. 1728 * 1729 * Returns 0 if the page was removed from an LRU list. 1730 * Returns -EBUSY if the page was not on an LRU list. 1731 * 1732 * The returned page will have PageLRU() cleared. If it was found on 1733 * the active list, it will have PageActive set. If it was found on 1734 * the unevictable list, it will have the PageUnevictable bit set. That flag 1735 * may need to be cleared by the caller before letting the page go. 1736 * 1737 * The vmstat statistic corresponding to the list on which the page was 1738 * found will be decremented. 1739 * 1740 * Restrictions: 1741 * 1742 * (1) Must be called with an elevated refcount on the page. This is a 1743 * fundamentnal difference from isolate_lru_pages (which is called 1744 * without a stable reference). 1745 * (2) the lru_lock must not be held. 1746 * (3) interrupts must be enabled. 1747 */ 1748 int isolate_lru_page(struct page *page) 1749 { 1750 int ret = -EBUSY; 1751 1752 VM_BUG_ON_PAGE(!page_count(page), page); 1753 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page"); 1754 1755 if (PageLRU(page)) { 1756 pg_data_t *pgdat = page_pgdat(page); 1757 struct lruvec *lruvec; 1758 1759 spin_lock_irq(&pgdat->lru_lock); 1760 lruvec = mem_cgroup_page_lruvec(page, pgdat); 1761 if (PageLRU(page)) { 1762 int lru = page_lru(page); 1763 get_page(page); 1764 ClearPageLRU(page); 1765 del_page_from_lru_list(page, lruvec, lru); 1766 ret = 0; 1767 } 1768 spin_unlock_irq(&pgdat->lru_lock); 1769 } 1770 return ret; 1771 } 1772 1773 /* 1774 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 1775 * then get resheduled. When there are massive number of tasks doing page 1776 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 1777 * the LRU list will go small and be scanned faster than necessary, leading to 1778 * unnecessary swapping, thrashing and OOM. 1779 */ 1780 static int too_many_isolated(struct pglist_data *pgdat, int file, 1781 struct scan_control *sc) 1782 { 1783 unsigned long inactive, isolated; 1784 1785 if (current_is_kswapd()) 1786 return 0; 1787 1788 if (!sane_reclaim(sc)) 1789 return 0; 1790 1791 if (file) { 1792 inactive = node_page_state(pgdat, NR_INACTIVE_FILE); 1793 isolated = node_page_state(pgdat, NR_ISOLATED_FILE); 1794 } else { 1795 inactive = node_page_state(pgdat, NR_INACTIVE_ANON); 1796 isolated = node_page_state(pgdat, NR_ISOLATED_ANON); 1797 } 1798 1799 /* 1800 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 1801 * won't get blocked by normal direct-reclaimers, forming a circular 1802 * deadlock. 1803 */ 1804 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 1805 inactive >>= 3; 1806 1807 return isolated > inactive; 1808 } 1809 1810 /* 1811 * This moves pages from @list to corresponding LRU list. 1812 * 1813 * We move them the other way if the page is referenced by one or more 1814 * processes, from rmap. 1815 * 1816 * If the pages are mostly unmapped, the processing is fast and it is 1817 * appropriate to hold zone_lru_lock across the whole operation. But if 1818 * the pages are mapped, the processing is slow (page_referenced()) so we 1819 * should drop zone_lru_lock around each page. It's impossible to balance 1820 * this, so instead we remove the pages from the LRU while processing them. 1821 * It is safe to rely on PG_active against the non-LRU pages in here because 1822 * nobody will play with that bit on a non-LRU page. 1823 * 1824 * The downside is that we have to touch page->_refcount against each page. 1825 * But we had to alter page->flags anyway. 1826 * 1827 * Returns the number of pages moved to the given lruvec. 1828 */ 1829 1830 static unsigned noinline_for_stack move_pages_to_lru(struct lruvec *lruvec, 1831 struct list_head *list) 1832 { 1833 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1834 int nr_pages, nr_moved = 0; 1835 LIST_HEAD(pages_to_free); 1836 struct page *page; 1837 enum lru_list lru; 1838 1839 while (!list_empty(list)) { 1840 page = lru_to_page(list); 1841 VM_BUG_ON_PAGE(PageLRU(page), page); 1842 if (unlikely(!page_evictable(page))) { 1843 list_del(&page->lru); 1844 spin_unlock_irq(&pgdat->lru_lock); 1845 putback_lru_page(page); 1846 spin_lock_irq(&pgdat->lru_lock); 1847 continue; 1848 } 1849 lruvec = mem_cgroup_page_lruvec(page, pgdat); 1850 1851 SetPageLRU(page); 1852 lru = page_lru(page); 1853 1854 nr_pages = hpage_nr_pages(page); 1855 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages); 1856 list_move(&page->lru, &lruvec->lists[lru]); 1857 1858 if (put_page_testzero(page)) { 1859 __ClearPageLRU(page); 1860 __ClearPageActive(page); 1861 del_page_from_lru_list(page, lruvec, lru); 1862 1863 if (unlikely(PageCompound(page))) { 1864 spin_unlock_irq(&pgdat->lru_lock); 1865 mem_cgroup_uncharge(page); 1866 (*get_compound_page_dtor(page))(page); 1867 spin_lock_irq(&pgdat->lru_lock); 1868 } else 1869 list_add(&page->lru, &pages_to_free); 1870 } else { 1871 nr_moved += nr_pages; 1872 } 1873 } 1874 1875 /* 1876 * To save our caller's stack, now use input list for pages to free. 1877 */ 1878 list_splice(&pages_to_free, list); 1879 1880 return nr_moved; 1881 } 1882 1883 /* 1884 * If a kernel thread (such as nfsd for loop-back mounts) services 1885 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE. 1886 * In that case we should only throttle if the backing device it is 1887 * writing to is congested. In other cases it is safe to throttle. 1888 */ 1889 static int current_may_throttle(void) 1890 { 1891 return !(current->flags & PF_LESS_THROTTLE) || 1892 current->backing_dev_info == NULL || 1893 bdi_write_congested(current->backing_dev_info); 1894 } 1895 1896 /* 1897 * shrink_inactive_list() is a helper for shrink_node(). It returns the number 1898 * of reclaimed pages 1899 */ 1900 static noinline_for_stack unsigned long 1901 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, 1902 struct scan_control *sc, enum lru_list lru) 1903 { 1904 LIST_HEAD(page_list); 1905 unsigned long nr_scanned; 1906 unsigned long nr_reclaimed = 0; 1907 unsigned long nr_taken; 1908 struct reclaim_stat stat; 1909 int file = is_file_lru(lru); 1910 enum vm_event_item item; 1911 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1912 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1913 bool stalled = false; 1914 1915 while (unlikely(too_many_isolated(pgdat, file, sc))) { 1916 if (stalled) 1917 return 0; 1918 1919 /* wait a bit for the reclaimer. */ 1920 msleep(100); 1921 stalled = true; 1922 1923 /* We are about to die and free our memory. Return now. */ 1924 if (fatal_signal_pending(current)) 1925 return SWAP_CLUSTER_MAX; 1926 } 1927 1928 lru_add_drain(); 1929 1930 spin_lock_irq(&pgdat->lru_lock); 1931 1932 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list, 1933 &nr_scanned, sc, lru); 1934 1935 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 1936 reclaim_stat->recent_scanned[file] += nr_taken; 1937 1938 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT; 1939 if (global_reclaim(sc)) 1940 __count_vm_events(item, nr_scanned); 1941 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned); 1942 spin_unlock_irq(&pgdat->lru_lock); 1943 1944 if (nr_taken == 0) 1945 return 0; 1946 1947 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0, 1948 &stat, false); 1949 1950 spin_lock_irq(&pgdat->lru_lock); 1951 1952 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT; 1953 if (global_reclaim(sc)) 1954 __count_vm_events(item, nr_reclaimed); 1955 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed); 1956 reclaim_stat->recent_rotated[0] += stat.nr_activate[0]; 1957 reclaim_stat->recent_rotated[1] += stat.nr_activate[1]; 1958 1959 move_pages_to_lru(lruvec, &page_list); 1960 1961 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 1962 1963 spin_unlock_irq(&pgdat->lru_lock); 1964 1965 mem_cgroup_uncharge_list(&page_list); 1966 free_unref_page_list(&page_list); 1967 1968 /* 1969 * If dirty pages are scanned that are not queued for IO, it 1970 * implies that flushers are not doing their job. This can 1971 * happen when memory pressure pushes dirty pages to the end of 1972 * the LRU before the dirty limits are breached and the dirty 1973 * data has expired. It can also happen when the proportion of 1974 * dirty pages grows not through writes but through memory 1975 * pressure reclaiming all the clean cache. And in some cases, 1976 * the flushers simply cannot keep up with the allocation 1977 * rate. Nudge the flusher threads in case they are asleep. 1978 */ 1979 if (stat.nr_unqueued_dirty == nr_taken) 1980 wakeup_flusher_threads(WB_REASON_VMSCAN); 1981 1982 sc->nr.dirty += stat.nr_dirty; 1983 sc->nr.congested += stat.nr_congested; 1984 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty; 1985 sc->nr.writeback += stat.nr_writeback; 1986 sc->nr.immediate += stat.nr_immediate; 1987 sc->nr.taken += nr_taken; 1988 if (file) 1989 sc->nr.file_taken += nr_taken; 1990 1991 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 1992 nr_scanned, nr_reclaimed, &stat, sc->priority, file); 1993 return nr_reclaimed; 1994 } 1995 1996 static void shrink_active_list(unsigned long nr_to_scan, 1997 struct lruvec *lruvec, 1998 struct scan_control *sc, 1999 enum lru_list lru) 2000 { 2001 unsigned long nr_taken; 2002 unsigned long nr_scanned; 2003 unsigned long vm_flags; 2004 LIST_HEAD(l_hold); /* The pages which were snipped off */ 2005 LIST_HEAD(l_active); 2006 LIST_HEAD(l_inactive); 2007 struct page *page; 2008 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 2009 unsigned nr_deactivate, nr_activate; 2010 unsigned nr_rotated = 0; 2011 int file = is_file_lru(lru); 2012 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2013 2014 lru_add_drain(); 2015 2016 spin_lock_irq(&pgdat->lru_lock); 2017 2018 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold, 2019 &nr_scanned, sc, lru); 2020 2021 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2022 reclaim_stat->recent_scanned[file] += nr_taken; 2023 2024 __count_vm_events(PGREFILL, nr_scanned); 2025 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned); 2026 2027 spin_unlock_irq(&pgdat->lru_lock); 2028 2029 while (!list_empty(&l_hold)) { 2030 cond_resched(); 2031 page = lru_to_page(&l_hold); 2032 list_del(&page->lru); 2033 2034 if (unlikely(!page_evictable(page))) { 2035 putback_lru_page(page); 2036 continue; 2037 } 2038 2039 if (unlikely(buffer_heads_over_limit)) { 2040 if (page_has_private(page) && trylock_page(page)) { 2041 if (page_has_private(page)) 2042 try_to_release_page(page, 0); 2043 unlock_page(page); 2044 } 2045 } 2046 2047 if (page_referenced(page, 0, sc->target_mem_cgroup, 2048 &vm_flags)) { 2049 nr_rotated += hpage_nr_pages(page); 2050 /* 2051 * Identify referenced, file-backed active pages and 2052 * give them one more trip around the active list. So 2053 * that executable code get better chances to stay in 2054 * memory under moderate memory pressure. Anon pages 2055 * are not likely to be evicted by use-once streaming 2056 * IO, plus JVM can create lots of anon VM_EXEC pages, 2057 * so we ignore them here. 2058 */ 2059 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) { 2060 list_add(&page->lru, &l_active); 2061 continue; 2062 } 2063 } 2064 2065 ClearPageActive(page); /* we are de-activating */ 2066 SetPageWorkingset(page); 2067 list_add(&page->lru, &l_inactive); 2068 } 2069 2070 /* 2071 * Move pages back to the lru list. 2072 */ 2073 spin_lock_irq(&pgdat->lru_lock); 2074 /* 2075 * Count referenced pages from currently used mappings as rotated, 2076 * even though only some of them are actually re-activated. This 2077 * helps balance scan pressure between file and anonymous pages in 2078 * get_scan_count. 2079 */ 2080 reclaim_stat->recent_rotated[file] += nr_rotated; 2081 2082 nr_activate = move_pages_to_lru(lruvec, &l_active); 2083 nr_deactivate = move_pages_to_lru(lruvec, &l_inactive); 2084 /* Keep all free pages in l_active list */ 2085 list_splice(&l_inactive, &l_active); 2086 2087 __count_vm_events(PGDEACTIVATE, nr_deactivate); 2088 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate); 2089 2090 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2091 spin_unlock_irq(&pgdat->lru_lock); 2092 2093 mem_cgroup_uncharge_list(&l_active); 2094 free_unref_page_list(&l_active); 2095 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate, 2096 nr_deactivate, nr_rotated, sc->priority, file); 2097 } 2098 2099 /* 2100 * The inactive anon list should be small enough that the VM never has 2101 * to do too much work. 2102 * 2103 * The inactive file list should be small enough to leave most memory 2104 * to the established workingset on the scan-resistant active list, 2105 * but large enough to avoid thrashing the aggregate readahead window. 2106 * 2107 * Both inactive lists should also be large enough that each inactive 2108 * page has a chance to be referenced again before it is reclaimed. 2109 * 2110 * If that fails and refaulting is observed, the inactive list grows. 2111 * 2112 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages 2113 * on this LRU, maintained by the pageout code. An inactive_ratio 2114 * of 3 means 3:1 or 25% of the pages are kept on the inactive list. 2115 * 2116 * total target max 2117 * memory ratio inactive 2118 * ------------------------------------- 2119 * 10MB 1 5MB 2120 * 100MB 1 50MB 2121 * 1GB 3 250MB 2122 * 10GB 10 0.9GB 2123 * 100GB 31 3GB 2124 * 1TB 101 10GB 2125 * 10TB 320 32GB 2126 */ 2127 static bool inactive_list_is_low(struct lruvec *lruvec, bool file, 2128 struct scan_control *sc, bool actual_reclaim) 2129 { 2130 enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE; 2131 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2132 enum lru_list inactive_lru = file * LRU_FILE; 2133 unsigned long inactive, active; 2134 unsigned long inactive_ratio; 2135 unsigned long refaults; 2136 unsigned long gb; 2137 2138 /* 2139 * If we don't have swap space, anonymous page deactivation 2140 * is pointless. 2141 */ 2142 if (!file && !total_swap_pages) 2143 return false; 2144 2145 inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx); 2146 active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx); 2147 2148 /* 2149 * When refaults are being observed, it means a new workingset 2150 * is being established. Disable active list protection to get 2151 * rid of the stale workingset quickly. 2152 */ 2153 refaults = lruvec_page_state_local(lruvec, WORKINGSET_ACTIVATE); 2154 if (file && actual_reclaim && lruvec->refaults != refaults) { 2155 inactive_ratio = 0; 2156 } else { 2157 gb = (inactive + active) >> (30 - PAGE_SHIFT); 2158 if (gb) 2159 inactive_ratio = int_sqrt(10 * gb); 2160 else 2161 inactive_ratio = 1; 2162 } 2163 2164 if (actual_reclaim) 2165 trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx, 2166 lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive, 2167 lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active, 2168 inactive_ratio, file); 2169 2170 return inactive * inactive_ratio < active; 2171 } 2172 2173 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 2174 struct lruvec *lruvec, struct scan_control *sc) 2175 { 2176 if (is_active_lru(lru)) { 2177 if (inactive_list_is_low(lruvec, is_file_lru(lru), sc, true)) 2178 shrink_active_list(nr_to_scan, lruvec, sc, lru); 2179 return 0; 2180 } 2181 2182 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 2183 } 2184 2185 enum scan_balance { 2186 SCAN_EQUAL, 2187 SCAN_FRACT, 2188 SCAN_ANON, 2189 SCAN_FILE, 2190 }; 2191 2192 /* 2193 * Determine how aggressively the anon and file LRU lists should be 2194 * scanned. The relative value of each set of LRU lists is determined 2195 * by looking at the fraction of the pages scanned we did rotate back 2196 * onto the active list instead of evict. 2197 * 2198 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan 2199 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan 2200 */ 2201 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg, 2202 struct scan_control *sc, unsigned long *nr, 2203 unsigned long *lru_pages) 2204 { 2205 int swappiness = mem_cgroup_swappiness(memcg); 2206 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 2207 u64 fraction[2]; 2208 u64 denominator = 0; /* gcc */ 2209 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2210 unsigned long anon_prio, file_prio; 2211 enum scan_balance scan_balance; 2212 unsigned long anon, file; 2213 unsigned long ap, fp; 2214 enum lru_list lru; 2215 2216 /* If we have no swap space, do not bother scanning anon pages. */ 2217 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) { 2218 scan_balance = SCAN_FILE; 2219 goto out; 2220 } 2221 2222 /* 2223 * Global reclaim will swap to prevent OOM even with no 2224 * swappiness, but memcg users want to use this knob to 2225 * disable swapping for individual groups completely when 2226 * using the memory controller's swap limit feature would be 2227 * too expensive. 2228 */ 2229 if (!global_reclaim(sc) && !swappiness) { 2230 scan_balance = SCAN_FILE; 2231 goto out; 2232 } 2233 2234 /* 2235 * Do not apply any pressure balancing cleverness when the 2236 * system is close to OOM, scan both anon and file equally 2237 * (unless the swappiness setting disagrees with swapping). 2238 */ 2239 if (!sc->priority && swappiness) { 2240 scan_balance = SCAN_EQUAL; 2241 goto out; 2242 } 2243 2244 /* 2245 * Prevent the reclaimer from falling into the cache trap: as 2246 * cache pages start out inactive, every cache fault will tip 2247 * the scan balance towards the file LRU. And as the file LRU 2248 * shrinks, so does the window for rotation from references. 2249 * This means we have a runaway feedback loop where a tiny 2250 * thrashing file LRU becomes infinitely more attractive than 2251 * anon pages. Try to detect this based on file LRU size. 2252 */ 2253 if (global_reclaim(sc)) { 2254 unsigned long pgdatfile; 2255 unsigned long pgdatfree; 2256 int z; 2257 unsigned long total_high_wmark = 0; 2258 2259 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES); 2260 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) + 2261 node_page_state(pgdat, NR_INACTIVE_FILE); 2262 2263 for (z = 0; z < MAX_NR_ZONES; z++) { 2264 struct zone *zone = &pgdat->node_zones[z]; 2265 if (!managed_zone(zone)) 2266 continue; 2267 2268 total_high_wmark += high_wmark_pages(zone); 2269 } 2270 2271 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) { 2272 /* 2273 * Force SCAN_ANON if there are enough inactive 2274 * anonymous pages on the LRU in eligible zones. 2275 * Otherwise, the small LRU gets thrashed. 2276 */ 2277 if (!inactive_list_is_low(lruvec, false, sc, false) && 2278 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx) 2279 >> sc->priority) { 2280 scan_balance = SCAN_ANON; 2281 goto out; 2282 } 2283 } 2284 } 2285 2286 /* 2287 * If there is enough inactive page cache, i.e. if the size of the 2288 * inactive list is greater than that of the active list *and* the 2289 * inactive list actually has some pages to scan on this priority, we 2290 * do not reclaim anything from the anonymous working set right now. 2291 * Without the second condition we could end up never scanning an 2292 * lruvec even if it has plenty of old anonymous pages unless the 2293 * system is under heavy pressure. 2294 */ 2295 if (!inactive_list_is_low(lruvec, true, sc, false) && 2296 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) { 2297 scan_balance = SCAN_FILE; 2298 goto out; 2299 } 2300 2301 scan_balance = SCAN_FRACT; 2302 2303 /* 2304 * With swappiness at 100, anonymous and file have the same priority. 2305 * This scanning priority is essentially the inverse of IO cost. 2306 */ 2307 anon_prio = swappiness; 2308 file_prio = 200 - anon_prio; 2309 2310 /* 2311 * OK, so we have swap space and a fair amount of page cache 2312 * pages. We use the recently rotated / recently scanned 2313 * ratios to determine how valuable each cache is. 2314 * 2315 * Because workloads change over time (and to avoid overflow) 2316 * we keep these statistics as a floating average, which ends 2317 * up weighing recent references more than old ones. 2318 * 2319 * anon in [0], file in [1] 2320 */ 2321 2322 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) + 2323 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES); 2324 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) + 2325 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES); 2326 2327 spin_lock_irq(&pgdat->lru_lock); 2328 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) { 2329 reclaim_stat->recent_scanned[0] /= 2; 2330 reclaim_stat->recent_rotated[0] /= 2; 2331 } 2332 2333 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) { 2334 reclaim_stat->recent_scanned[1] /= 2; 2335 reclaim_stat->recent_rotated[1] /= 2; 2336 } 2337 2338 /* 2339 * The amount of pressure on anon vs file pages is inversely 2340 * proportional to the fraction of recently scanned pages on 2341 * each list that were recently referenced and in active use. 2342 */ 2343 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1); 2344 ap /= reclaim_stat->recent_rotated[0] + 1; 2345 2346 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1); 2347 fp /= reclaim_stat->recent_rotated[1] + 1; 2348 spin_unlock_irq(&pgdat->lru_lock); 2349 2350 fraction[0] = ap; 2351 fraction[1] = fp; 2352 denominator = ap + fp + 1; 2353 out: 2354 *lru_pages = 0; 2355 for_each_evictable_lru(lru) { 2356 int file = is_file_lru(lru); 2357 unsigned long size; 2358 unsigned long scan; 2359 2360 size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx); 2361 scan = size >> sc->priority; 2362 /* 2363 * If the cgroup's already been deleted, make sure to 2364 * scrape out the remaining cache. 2365 */ 2366 if (!scan && !mem_cgroup_online(memcg)) 2367 scan = min(size, SWAP_CLUSTER_MAX); 2368 2369 switch (scan_balance) { 2370 case SCAN_EQUAL: 2371 /* Scan lists relative to size */ 2372 break; 2373 case SCAN_FRACT: 2374 /* 2375 * Scan types proportional to swappiness and 2376 * their relative recent reclaim efficiency. 2377 * Make sure we don't miss the last page 2378 * because of a round-off error. 2379 */ 2380 scan = DIV64_U64_ROUND_UP(scan * fraction[file], 2381 denominator); 2382 break; 2383 case SCAN_FILE: 2384 case SCAN_ANON: 2385 /* Scan one type exclusively */ 2386 if ((scan_balance == SCAN_FILE) != file) { 2387 size = 0; 2388 scan = 0; 2389 } 2390 break; 2391 default: 2392 /* Look ma, no brain */ 2393 BUG(); 2394 } 2395 2396 *lru_pages += size; 2397 nr[lru] = scan; 2398 } 2399 } 2400 2401 /* 2402 * This is a basic per-node page freer. Used by both kswapd and direct reclaim. 2403 */ 2404 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg, 2405 struct scan_control *sc, unsigned long *lru_pages) 2406 { 2407 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg); 2408 unsigned long nr[NR_LRU_LISTS]; 2409 unsigned long targets[NR_LRU_LISTS]; 2410 unsigned long nr_to_scan; 2411 enum lru_list lru; 2412 unsigned long nr_reclaimed = 0; 2413 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 2414 struct blk_plug plug; 2415 bool scan_adjusted; 2416 2417 get_scan_count(lruvec, memcg, sc, nr, lru_pages); 2418 2419 /* Record the original scan target for proportional adjustments later */ 2420 memcpy(targets, nr, sizeof(nr)); 2421 2422 /* 2423 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal 2424 * event that can occur when there is little memory pressure e.g. 2425 * multiple streaming readers/writers. Hence, we do not abort scanning 2426 * when the requested number of pages are reclaimed when scanning at 2427 * DEF_PRIORITY on the assumption that the fact we are direct 2428 * reclaiming implies that kswapd is not keeping up and it is best to 2429 * do a batch of work at once. For memcg reclaim one check is made to 2430 * abort proportional reclaim if either the file or anon lru has already 2431 * dropped to zero at the first pass. 2432 */ 2433 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() && 2434 sc->priority == DEF_PRIORITY); 2435 2436 blk_start_plug(&plug); 2437 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 2438 nr[LRU_INACTIVE_FILE]) { 2439 unsigned long nr_anon, nr_file, percentage; 2440 unsigned long nr_scanned; 2441 2442 for_each_evictable_lru(lru) { 2443 if (nr[lru]) { 2444 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 2445 nr[lru] -= nr_to_scan; 2446 2447 nr_reclaimed += shrink_list(lru, nr_to_scan, 2448 lruvec, sc); 2449 } 2450 } 2451 2452 cond_resched(); 2453 2454 if (nr_reclaimed < nr_to_reclaim || scan_adjusted) 2455 continue; 2456 2457 /* 2458 * For kswapd and memcg, reclaim at least the number of pages 2459 * requested. Ensure that the anon and file LRUs are scanned 2460 * proportionally what was requested by get_scan_count(). We 2461 * stop reclaiming one LRU and reduce the amount scanning 2462 * proportional to the original scan target. 2463 */ 2464 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 2465 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 2466 2467 /* 2468 * It's just vindictive to attack the larger once the smaller 2469 * has gone to zero. And given the way we stop scanning the 2470 * smaller below, this makes sure that we only make one nudge 2471 * towards proportionality once we've got nr_to_reclaim. 2472 */ 2473 if (!nr_file || !nr_anon) 2474 break; 2475 2476 if (nr_file > nr_anon) { 2477 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 2478 targets[LRU_ACTIVE_ANON] + 1; 2479 lru = LRU_BASE; 2480 percentage = nr_anon * 100 / scan_target; 2481 } else { 2482 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 2483 targets[LRU_ACTIVE_FILE] + 1; 2484 lru = LRU_FILE; 2485 percentage = nr_file * 100 / scan_target; 2486 } 2487 2488 /* Stop scanning the smaller of the LRU */ 2489 nr[lru] = 0; 2490 nr[lru + LRU_ACTIVE] = 0; 2491 2492 /* 2493 * Recalculate the other LRU scan count based on its original 2494 * scan target and the percentage scanning already complete 2495 */ 2496 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 2497 nr_scanned = targets[lru] - nr[lru]; 2498 nr[lru] = targets[lru] * (100 - percentage) / 100; 2499 nr[lru] -= min(nr[lru], nr_scanned); 2500 2501 lru += LRU_ACTIVE; 2502 nr_scanned = targets[lru] - nr[lru]; 2503 nr[lru] = targets[lru] * (100 - percentage) / 100; 2504 nr[lru] -= min(nr[lru], nr_scanned); 2505 2506 scan_adjusted = true; 2507 } 2508 blk_finish_plug(&plug); 2509 sc->nr_reclaimed += nr_reclaimed; 2510 2511 /* 2512 * Even if we did not try to evict anon pages at all, we want to 2513 * rebalance the anon lru active/inactive ratio. 2514 */ 2515 if (inactive_list_is_low(lruvec, false, sc, true)) 2516 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 2517 sc, LRU_ACTIVE_ANON); 2518 } 2519 2520 /* Use reclaim/compaction for costly allocs or under memory pressure */ 2521 static bool in_reclaim_compaction(struct scan_control *sc) 2522 { 2523 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 2524 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 2525 sc->priority < DEF_PRIORITY - 2)) 2526 return true; 2527 2528 return false; 2529 } 2530 2531 /* 2532 * Reclaim/compaction is used for high-order allocation requests. It reclaims 2533 * order-0 pages before compacting the zone. should_continue_reclaim() returns 2534 * true if more pages should be reclaimed such that when the page allocator 2535 * calls try_to_compact_zone() that it will have enough free pages to succeed. 2536 * It will give up earlier than that if there is difficulty reclaiming pages. 2537 */ 2538 static inline bool should_continue_reclaim(struct pglist_data *pgdat, 2539 unsigned long nr_reclaimed, 2540 unsigned long nr_scanned, 2541 struct scan_control *sc) 2542 { 2543 unsigned long pages_for_compaction; 2544 unsigned long inactive_lru_pages; 2545 int z; 2546 2547 /* If not in reclaim/compaction mode, stop */ 2548 if (!in_reclaim_compaction(sc)) 2549 return false; 2550 2551 /* Consider stopping depending on scan and reclaim activity */ 2552 if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) { 2553 /* 2554 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the 2555 * full LRU list has been scanned and we are still failing 2556 * to reclaim pages. This full LRU scan is potentially 2557 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed 2558 */ 2559 if (!nr_reclaimed && !nr_scanned) 2560 return false; 2561 } else { 2562 /* 2563 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably 2564 * fail without consequence, stop if we failed to reclaim 2565 * any pages from the last SWAP_CLUSTER_MAX number of 2566 * pages that were scanned. This will return to the 2567 * caller faster at the risk reclaim/compaction and 2568 * the resulting allocation attempt fails 2569 */ 2570 if (!nr_reclaimed) 2571 return false; 2572 } 2573 2574 /* 2575 * If we have not reclaimed enough pages for compaction and the 2576 * inactive lists are large enough, continue reclaiming 2577 */ 2578 pages_for_compaction = compact_gap(sc->order); 2579 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE); 2580 if (get_nr_swap_pages() > 0) 2581 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON); 2582 if (sc->nr_reclaimed < pages_for_compaction && 2583 inactive_lru_pages > pages_for_compaction) 2584 return true; 2585 2586 /* If compaction would go ahead or the allocation would succeed, stop */ 2587 for (z = 0; z <= sc->reclaim_idx; z++) { 2588 struct zone *zone = &pgdat->node_zones[z]; 2589 if (!managed_zone(zone)) 2590 continue; 2591 2592 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) { 2593 case COMPACT_SUCCESS: 2594 case COMPACT_CONTINUE: 2595 return false; 2596 default: 2597 /* check next zone */ 2598 ; 2599 } 2600 } 2601 return true; 2602 } 2603 2604 static bool pgdat_memcg_congested(pg_data_t *pgdat, struct mem_cgroup *memcg) 2605 { 2606 return test_bit(PGDAT_CONGESTED, &pgdat->flags) || 2607 (memcg && memcg_congested(pgdat, memcg)); 2608 } 2609 2610 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc) 2611 { 2612 struct reclaim_state *reclaim_state = current->reclaim_state; 2613 unsigned long nr_reclaimed, nr_scanned; 2614 bool reclaimable = false; 2615 2616 do { 2617 struct mem_cgroup *root = sc->target_mem_cgroup; 2618 struct mem_cgroup_reclaim_cookie reclaim = { 2619 .pgdat = pgdat, 2620 .priority = sc->priority, 2621 }; 2622 unsigned long node_lru_pages = 0; 2623 struct mem_cgroup *memcg; 2624 2625 memset(&sc->nr, 0, sizeof(sc->nr)); 2626 2627 nr_reclaimed = sc->nr_reclaimed; 2628 nr_scanned = sc->nr_scanned; 2629 2630 memcg = mem_cgroup_iter(root, NULL, &reclaim); 2631 do { 2632 unsigned long lru_pages; 2633 unsigned long reclaimed; 2634 unsigned long scanned; 2635 2636 switch (mem_cgroup_protected(root, memcg)) { 2637 case MEMCG_PROT_MIN: 2638 /* 2639 * Hard protection. 2640 * If there is no reclaimable memory, OOM. 2641 */ 2642 continue; 2643 case MEMCG_PROT_LOW: 2644 /* 2645 * Soft protection. 2646 * Respect the protection only as long as 2647 * there is an unprotected supply 2648 * of reclaimable memory from other cgroups. 2649 */ 2650 if (!sc->memcg_low_reclaim) { 2651 sc->memcg_low_skipped = 1; 2652 continue; 2653 } 2654 memcg_memory_event(memcg, MEMCG_LOW); 2655 break; 2656 case MEMCG_PROT_NONE: 2657 break; 2658 } 2659 2660 reclaimed = sc->nr_reclaimed; 2661 scanned = sc->nr_scanned; 2662 shrink_node_memcg(pgdat, memcg, sc, &lru_pages); 2663 node_lru_pages += lru_pages; 2664 2665 if (sc->may_shrinkslab) { 2666 shrink_slab(sc->gfp_mask, pgdat->node_id, 2667 memcg, sc->priority); 2668 } 2669 2670 /* Record the group's reclaim efficiency */ 2671 vmpressure(sc->gfp_mask, memcg, false, 2672 sc->nr_scanned - scanned, 2673 sc->nr_reclaimed - reclaimed); 2674 2675 /* 2676 * Kswapd have to scan all memory cgroups to fulfill 2677 * the overall scan target for the node. 2678 * 2679 * Limit reclaim, on the other hand, only cares about 2680 * nr_to_reclaim pages to be reclaimed and it will 2681 * retry with decreasing priority if one round over the 2682 * whole hierarchy is not sufficient. 2683 */ 2684 if (!current_is_kswapd() && 2685 sc->nr_reclaimed >= sc->nr_to_reclaim) { 2686 mem_cgroup_iter_break(root, memcg); 2687 break; 2688 } 2689 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim))); 2690 2691 if (reclaim_state) { 2692 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 2693 reclaim_state->reclaimed_slab = 0; 2694 } 2695 2696 /* Record the subtree's reclaim efficiency */ 2697 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, 2698 sc->nr_scanned - nr_scanned, 2699 sc->nr_reclaimed - nr_reclaimed); 2700 2701 if (sc->nr_reclaimed - nr_reclaimed) 2702 reclaimable = true; 2703 2704 if (current_is_kswapd()) { 2705 /* 2706 * If reclaim is isolating dirty pages under writeback, 2707 * it implies that the long-lived page allocation rate 2708 * is exceeding the page laundering rate. Either the 2709 * global limits are not being effective at throttling 2710 * processes due to the page distribution throughout 2711 * zones or there is heavy usage of a slow backing 2712 * device. The only option is to throttle from reclaim 2713 * context which is not ideal as there is no guarantee 2714 * the dirtying process is throttled in the same way 2715 * balance_dirty_pages() manages. 2716 * 2717 * Once a node is flagged PGDAT_WRITEBACK, kswapd will 2718 * count the number of pages under pages flagged for 2719 * immediate reclaim and stall if any are encountered 2720 * in the nr_immediate check below. 2721 */ 2722 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken) 2723 set_bit(PGDAT_WRITEBACK, &pgdat->flags); 2724 2725 /* 2726 * Tag a node as congested if all the dirty pages 2727 * scanned were backed by a congested BDI and 2728 * wait_iff_congested will stall. 2729 */ 2730 if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested) 2731 set_bit(PGDAT_CONGESTED, &pgdat->flags); 2732 2733 /* Allow kswapd to start writing pages during reclaim.*/ 2734 if (sc->nr.unqueued_dirty == sc->nr.file_taken) 2735 set_bit(PGDAT_DIRTY, &pgdat->flags); 2736 2737 /* 2738 * If kswapd scans pages marked marked for immediate 2739 * reclaim and under writeback (nr_immediate), it 2740 * implies that pages are cycling through the LRU 2741 * faster than they are written so also forcibly stall. 2742 */ 2743 if (sc->nr.immediate) 2744 congestion_wait(BLK_RW_ASYNC, HZ/10); 2745 } 2746 2747 /* 2748 * Legacy memcg will stall in page writeback so avoid forcibly 2749 * stalling in wait_iff_congested(). 2750 */ 2751 if (!global_reclaim(sc) && sane_reclaim(sc) && 2752 sc->nr.dirty && sc->nr.dirty == sc->nr.congested) 2753 set_memcg_congestion(pgdat, root, true); 2754 2755 /* 2756 * Stall direct reclaim for IO completions if underlying BDIs 2757 * and node is congested. Allow kswapd to continue until it 2758 * starts encountering unqueued dirty pages or cycling through 2759 * the LRU too quickly. 2760 */ 2761 if (!sc->hibernation_mode && !current_is_kswapd() && 2762 current_may_throttle() && pgdat_memcg_congested(pgdat, root)) 2763 wait_iff_congested(BLK_RW_ASYNC, HZ/10); 2764 2765 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed, 2766 sc->nr_scanned - nr_scanned, sc)); 2767 2768 /* 2769 * Kswapd gives up on balancing particular nodes after too 2770 * many failures to reclaim anything from them and goes to 2771 * sleep. On reclaim progress, reset the failure counter. A 2772 * successful direct reclaim run will revive a dormant kswapd. 2773 */ 2774 if (reclaimable) 2775 pgdat->kswapd_failures = 0; 2776 2777 return reclaimable; 2778 } 2779 2780 /* 2781 * Returns true if compaction should go ahead for a costly-order request, or 2782 * the allocation would already succeed without compaction. Return false if we 2783 * should reclaim first. 2784 */ 2785 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) 2786 { 2787 unsigned long watermark; 2788 enum compact_result suitable; 2789 2790 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx); 2791 if (suitable == COMPACT_SUCCESS) 2792 /* Allocation should succeed already. Don't reclaim. */ 2793 return true; 2794 if (suitable == COMPACT_SKIPPED) 2795 /* Compaction cannot yet proceed. Do reclaim. */ 2796 return false; 2797 2798 /* 2799 * Compaction is already possible, but it takes time to run and there 2800 * are potentially other callers using the pages just freed. So proceed 2801 * with reclaim to make a buffer of free pages available to give 2802 * compaction a reasonable chance of completing and allocating the page. 2803 * Note that we won't actually reclaim the whole buffer in one attempt 2804 * as the target watermark in should_continue_reclaim() is lower. But if 2805 * we are already above the high+gap watermark, don't reclaim at all. 2806 */ 2807 watermark = high_wmark_pages(zone) + compact_gap(sc->order); 2808 2809 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx); 2810 } 2811 2812 /* 2813 * This is the direct reclaim path, for page-allocating processes. We only 2814 * try to reclaim pages from zones which will satisfy the caller's allocation 2815 * request. 2816 * 2817 * If a zone is deemed to be full of pinned pages then just give it a light 2818 * scan then give up on it. 2819 */ 2820 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 2821 { 2822 struct zoneref *z; 2823 struct zone *zone; 2824 unsigned long nr_soft_reclaimed; 2825 unsigned long nr_soft_scanned; 2826 gfp_t orig_mask; 2827 pg_data_t *last_pgdat = NULL; 2828 2829 /* 2830 * If the number of buffer_heads in the machine exceeds the maximum 2831 * allowed level, force direct reclaim to scan the highmem zone as 2832 * highmem pages could be pinning lowmem pages storing buffer_heads 2833 */ 2834 orig_mask = sc->gfp_mask; 2835 if (buffer_heads_over_limit) { 2836 sc->gfp_mask |= __GFP_HIGHMEM; 2837 sc->reclaim_idx = gfp_zone(sc->gfp_mask); 2838 } 2839 2840 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2841 sc->reclaim_idx, sc->nodemask) { 2842 /* 2843 * Take care memory controller reclaiming has small influence 2844 * to global LRU. 2845 */ 2846 if (global_reclaim(sc)) { 2847 if (!cpuset_zone_allowed(zone, 2848 GFP_KERNEL | __GFP_HARDWALL)) 2849 continue; 2850 2851 /* 2852 * If we already have plenty of memory free for 2853 * compaction in this zone, don't free any more. 2854 * Even though compaction is invoked for any 2855 * non-zero order, only frequent costly order 2856 * reclamation is disruptive enough to become a 2857 * noticeable problem, like transparent huge 2858 * page allocations. 2859 */ 2860 if (IS_ENABLED(CONFIG_COMPACTION) && 2861 sc->order > PAGE_ALLOC_COSTLY_ORDER && 2862 compaction_ready(zone, sc)) { 2863 sc->compaction_ready = true; 2864 continue; 2865 } 2866 2867 /* 2868 * Shrink each node in the zonelist once. If the 2869 * zonelist is ordered by zone (not the default) then a 2870 * node may be shrunk multiple times but in that case 2871 * the user prefers lower zones being preserved. 2872 */ 2873 if (zone->zone_pgdat == last_pgdat) 2874 continue; 2875 2876 /* 2877 * This steals pages from memory cgroups over softlimit 2878 * and returns the number of reclaimed pages and 2879 * scanned pages. This works for global memory pressure 2880 * and balancing, not for a memcg's limit. 2881 */ 2882 nr_soft_scanned = 0; 2883 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat, 2884 sc->order, sc->gfp_mask, 2885 &nr_soft_scanned); 2886 sc->nr_reclaimed += nr_soft_reclaimed; 2887 sc->nr_scanned += nr_soft_scanned; 2888 /* need some check for avoid more shrink_zone() */ 2889 } 2890 2891 /* See comment about same check for global reclaim above */ 2892 if (zone->zone_pgdat == last_pgdat) 2893 continue; 2894 last_pgdat = zone->zone_pgdat; 2895 shrink_node(zone->zone_pgdat, sc); 2896 } 2897 2898 /* 2899 * Restore to original mask to avoid the impact on the caller if we 2900 * promoted it to __GFP_HIGHMEM. 2901 */ 2902 sc->gfp_mask = orig_mask; 2903 } 2904 2905 static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat) 2906 { 2907 struct mem_cgroup *memcg; 2908 2909 memcg = mem_cgroup_iter(root_memcg, NULL, NULL); 2910 do { 2911 unsigned long refaults; 2912 struct lruvec *lruvec; 2913 2914 lruvec = mem_cgroup_lruvec(pgdat, memcg); 2915 refaults = lruvec_page_state_local(lruvec, WORKINGSET_ACTIVATE); 2916 lruvec->refaults = refaults; 2917 } while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL))); 2918 } 2919 2920 /* 2921 * This is the main entry point to direct page reclaim. 2922 * 2923 * If a full scan of the inactive list fails to free enough memory then we 2924 * are "out of memory" and something needs to be killed. 2925 * 2926 * If the caller is !__GFP_FS then the probability of a failure is reasonably 2927 * high - the zone may be full of dirty or under-writeback pages, which this 2928 * caller can't do much about. We kick the writeback threads and take explicit 2929 * naps in the hope that some of these pages can be written. But if the 2930 * allocating task holds filesystem locks which prevent writeout this might not 2931 * work, and the allocation attempt will fail. 2932 * 2933 * returns: 0, if no pages reclaimed 2934 * else, the number of pages reclaimed 2935 */ 2936 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 2937 struct scan_control *sc) 2938 { 2939 int initial_priority = sc->priority; 2940 pg_data_t *last_pgdat; 2941 struct zoneref *z; 2942 struct zone *zone; 2943 retry: 2944 delayacct_freepages_start(); 2945 2946 if (global_reclaim(sc)) 2947 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1); 2948 2949 do { 2950 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 2951 sc->priority); 2952 sc->nr_scanned = 0; 2953 shrink_zones(zonelist, sc); 2954 2955 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 2956 break; 2957 2958 if (sc->compaction_ready) 2959 break; 2960 2961 /* 2962 * If we're getting trouble reclaiming, start doing 2963 * writepage even in laptop mode. 2964 */ 2965 if (sc->priority < DEF_PRIORITY - 2) 2966 sc->may_writepage = 1; 2967 } while (--sc->priority >= 0); 2968 2969 last_pgdat = NULL; 2970 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx, 2971 sc->nodemask) { 2972 if (zone->zone_pgdat == last_pgdat) 2973 continue; 2974 last_pgdat = zone->zone_pgdat; 2975 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat); 2976 set_memcg_congestion(last_pgdat, sc->target_mem_cgroup, false); 2977 } 2978 2979 delayacct_freepages_end(); 2980 2981 if (sc->nr_reclaimed) 2982 return sc->nr_reclaimed; 2983 2984 /* Aborted reclaim to try compaction? don't OOM, then */ 2985 if (sc->compaction_ready) 2986 return 1; 2987 2988 /* Untapped cgroup reserves? Don't OOM, retry. */ 2989 if (sc->memcg_low_skipped) { 2990 sc->priority = initial_priority; 2991 sc->memcg_low_reclaim = 1; 2992 sc->memcg_low_skipped = 0; 2993 goto retry; 2994 } 2995 2996 return 0; 2997 } 2998 2999 static bool allow_direct_reclaim(pg_data_t *pgdat) 3000 { 3001 struct zone *zone; 3002 unsigned long pfmemalloc_reserve = 0; 3003 unsigned long free_pages = 0; 3004 int i; 3005 bool wmark_ok; 3006 3007 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 3008 return true; 3009 3010 for (i = 0; i <= ZONE_NORMAL; i++) { 3011 zone = &pgdat->node_zones[i]; 3012 if (!managed_zone(zone)) 3013 continue; 3014 3015 if (!zone_reclaimable_pages(zone)) 3016 continue; 3017 3018 pfmemalloc_reserve += min_wmark_pages(zone); 3019 free_pages += zone_page_state(zone, NR_FREE_PAGES); 3020 } 3021 3022 /* If there are no reserves (unexpected config) then do not throttle */ 3023 if (!pfmemalloc_reserve) 3024 return true; 3025 3026 wmark_ok = free_pages > pfmemalloc_reserve / 2; 3027 3028 /* kswapd must be awake if processes are being throttled */ 3029 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 3030 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx, 3031 (enum zone_type)ZONE_NORMAL); 3032 wake_up_interruptible(&pgdat->kswapd_wait); 3033 } 3034 3035 return wmark_ok; 3036 } 3037 3038 /* 3039 * Throttle direct reclaimers if backing storage is backed by the network 3040 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 3041 * depleted. kswapd will continue to make progress and wake the processes 3042 * when the low watermark is reached. 3043 * 3044 * Returns true if a fatal signal was delivered during throttling. If this 3045 * happens, the page allocator should not consider triggering the OOM killer. 3046 */ 3047 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 3048 nodemask_t *nodemask) 3049 { 3050 struct zoneref *z; 3051 struct zone *zone; 3052 pg_data_t *pgdat = NULL; 3053 3054 /* 3055 * Kernel threads should not be throttled as they may be indirectly 3056 * responsible for cleaning pages necessary for reclaim to make forward 3057 * progress. kjournald for example may enter direct reclaim while 3058 * committing a transaction where throttling it could forcing other 3059 * processes to block on log_wait_commit(). 3060 */ 3061 if (current->flags & PF_KTHREAD) 3062 goto out; 3063 3064 /* 3065 * If a fatal signal is pending, this process should not throttle. 3066 * It should return quickly so it can exit and free its memory 3067 */ 3068 if (fatal_signal_pending(current)) 3069 goto out; 3070 3071 /* 3072 * Check if the pfmemalloc reserves are ok by finding the first node 3073 * with a usable ZONE_NORMAL or lower zone. The expectation is that 3074 * GFP_KERNEL will be required for allocating network buffers when 3075 * swapping over the network so ZONE_HIGHMEM is unusable. 3076 * 3077 * Throttling is based on the first usable node and throttled processes 3078 * wait on a queue until kswapd makes progress and wakes them. There 3079 * is an affinity then between processes waking up and where reclaim 3080 * progress has been made assuming the process wakes on the same node. 3081 * More importantly, processes running on remote nodes will not compete 3082 * for remote pfmemalloc reserves and processes on different nodes 3083 * should make reasonable progress. 3084 */ 3085 for_each_zone_zonelist_nodemask(zone, z, zonelist, 3086 gfp_zone(gfp_mask), nodemask) { 3087 if (zone_idx(zone) > ZONE_NORMAL) 3088 continue; 3089 3090 /* Throttle based on the first usable node */ 3091 pgdat = zone->zone_pgdat; 3092 if (allow_direct_reclaim(pgdat)) 3093 goto out; 3094 break; 3095 } 3096 3097 /* If no zone was usable by the allocation flags then do not throttle */ 3098 if (!pgdat) 3099 goto out; 3100 3101 /* Account for the throttling */ 3102 count_vm_event(PGSCAN_DIRECT_THROTTLE); 3103 3104 /* 3105 * If the caller cannot enter the filesystem, it's possible that it 3106 * is due to the caller holding an FS lock or performing a journal 3107 * transaction in the case of a filesystem like ext[3|4]. In this case, 3108 * it is not safe to block on pfmemalloc_wait as kswapd could be 3109 * blocked waiting on the same lock. Instead, throttle for up to a 3110 * second before continuing. 3111 */ 3112 if (!(gfp_mask & __GFP_FS)) { 3113 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 3114 allow_direct_reclaim(pgdat), HZ); 3115 3116 goto check_pending; 3117 } 3118 3119 /* Throttle until kswapd wakes the process */ 3120 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 3121 allow_direct_reclaim(pgdat)); 3122 3123 check_pending: 3124 if (fatal_signal_pending(current)) 3125 return true; 3126 3127 out: 3128 return false; 3129 } 3130 3131 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 3132 gfp_t gfp_mask, nodemask_t *nodemask) 3133 { 3134 unsigned long nr_reclaimed; 3135 struct scan_control sc = { 3136 .nr_to_reclaim = SWAP_CLUSTER_MAX, 3137 .gfp_mask = current_gfp_context(gfp_mask), 3138 .reclaim_idx = gfp_zone(gfp_mask), 3139 .order = order, 3140 .nodemask = nodemask, 3141 .priority = DEF_PRIORITY, 3142 .may_writepage = !laptop_mode, 3143 .may_unmap = 1, 3144 .may_swap = 1, 3145 .may_shrinkslab = 1, 3146 }; 3147 3148 /* 3149 * scan_control uses s8 fields for order, priority, and reclaim_idx. 3150 * Confirm they are large enough for max values. 3151 */ 3152 BUILD_BUG_ON(MAX_ORDER > S8_MAX); 3153 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX); 3154 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX); 3155 3156 /* 3157 * Do not enter reclaim if fatal signal was delivered while throttled. 3158 * 1 is returned so that the page allocator does not OOM kill at this 3159 * point. 3160 */ 3161 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask)) 3162 return 1; 3163 3164 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask); 3165 3166 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3167 3168 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 3169 3170 return nr_reclaimed; 3171 } 3172 3173 #ifdef CONFIG_MEMCG 3174 3175 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg, 3176 gfp_t gfp_mask, bool noswap, 3177 pg_data_t *pgdat, 3178 unsigned long *nr_scanned) 3179 { 3180 struct scan_control sc = { 3181 .nr_to_reclaim = SWAP_CLUSTER_MAX, 3182 .target_mem_cgroup = memcg, 3183 .may_writepage = !laptop_mode, 3184 .may_unmap = 1, 3185 .reclaim_idx = MAX_NR_ZONES - 1, 3186 .may_swap = !noswap, 3187 .may_shrinkslab = 1, 3188 }; 3189 unsigned long lru_pages; 3190 3191 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 3192 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 3193 3194 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 3195 sc.gfp_mask); 3196 3197 /* 3198 * NOTE: Although we can get the priority field, using it 3199 * here is not a good idea, since it limits the pages we can scan. 3200 * if we don't reclaim here, the shrink_node from balance_pgdat 3201 * will pick up pages from other mem cgroup's as well. We hack 3202 * the priority and make it zero. 3203 */ 3204 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages); 3205 3206 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 3207 3208 *nr_scanned = sc.nr_scanned; 3209 return sc.nr_reclaimed; 3210 } 3211 3212 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 3213 unsigned long nr_pages, 3214 gfp_t gfp_mask, 3215 bool may_swap) 3216 { 3217 struct zonelist *zonelist; 3218 unsigned long nr_reclaimed; 3219 unsigned long pflags; 3220 int nid; 3221 unsigned int noreclaim_flag; 3222 struct scan_control sc = { 3223 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 3224 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) | 3225 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 3226 .reclaim_idx = MAX_NR_ZONES - 1, 3227 .target_mem_cgroup = memcg, 3228 .priority = DEF_PRIORITY, 3229 .may_writepage = !laptop_mode, 3230 .may_unmap = 1, 3231 .may_swap = may_swap, 3232 .may_shrinkslab = 1, 3233 }; 3234 3235 /* 3236 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't 3237 * take care of from where we get pages. So the node where we start the 3238 * scan does not need to be the current node. 3239 */ 3240 nid = mem_cgroup_select_victim_node(memcg); 3241 3242 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK]; 3243 3244 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask); 3245 3246 psi_memstall_enter(&pflags); 3247 noreclaim_flag = memalloc_noreclaim_save(); 3248 3249 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3250 3251 memalloc_noreclaim_restore(noreclaim_flag); 3252 psi_memstall_leave(&pflags); 3253 3254 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 3255 3256 return nr_reclaimed; 3257 } 3258 #endif 3259 3260 static void age_active_anon(struct pglist_data *pgdat, 3261 struct scan_control *sc) 3262 { 3263 struct mem_cgroup *memcg; 3264 3265 if (!total_swap_pages) 3266 return; 3267 3268 memcg = mem_cgroup_iter(NULL, NULL, NULL); 3269 do { 3270 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg); 3271 3272 if (inactive_list_is_low(lruvec, false, sc, true)) 3273 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 3274 sc, LRU_ACTIVE_ANON); 3275 3276 memcg = mem_cgroup_iter(NULL, memcg, NULL); 3277 } while (memcg); 3278 } 3279 3280 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int classzone_idx) 3281 { 3282 int i; 3283 struct zone *zone; 3284 3285 /* 3286 * Check for watermark boosts top-down as the higher zones 3287 * are more likely to be boosted. Both watermarks and boosts 3288 * should not be checked at the time time as reclaim would 3289 * start prematurely when there is no boosting and a lower 3290 * zone is balanced. 3291 */ 3292 for (i = classzone_idx; i >= 0; i--) { 3293 zone = pgdat->node_zones + i; 3294 if (!managed_zone(zone)) 3295 continue; 3296 3297 if (zone->watermark_boost) 3298 return true; 3299 } 3300 3301 return false; 3302 } 3303 3304 /* 3305 * Returns true if there is an eligible zone balanced for the request order 3306 * and classzone_idx 3307 */ 3308 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx) 3309 { 3310 int i; 3311 unsigned long mark = -1; 3312 struct zone *zone; 3313 3314 /* 3315 * Check watermarks bottom-up as lower zones are more likely to 3316 * meet watermarks. 3317 */ 3318 for (i = 0; i <= classzone_idx; i++) { 3319 zone = pgdat->node_zones + i; 3320 3321 if (!managed_zone(zone)) 3322 continue; 3323 3324 mark = high_wmark_pages(zone); 3325 if (zone_watermark_ok_safe(zone, order, mark, classzone_idx)) 3326 return true; 3327 } 3328 3329 /* 3330 * If a node has no populated zone within classzone_idx, it does not 3331 * need balancing by definition. This can happen if a zone-restricted 3332 * allocation tries to wake a remote kswapd. 3333 */ 3334 if (mark == -1) 3335 return true; 3336 3337 return false; 3338 } 3339 3340 /* Clear pgdat state for congested, dirty or under writeback. */ 3341 static void clear_pgdat_congested(pg_data_t *pgdat) 3342 { 3343 clear_bit(PGDAT_CONGESTED, &pgdat->flags); 3344 clear_bit(PGDAT_DIRTY, &pgdat->flags); 3345 clear_bit(PGDAT_WRITEBACK, &pgdat->flags); 3346 } 3347 3348 /* 3349 * Prepare kswapd for sleeping. This verifies that there are no processes 3350 * waiting in throttle_direct_reclaim() and that watermarks have been met. 3351 * 3352 * Returns true if kswapd is ready to sleep 3353 */ 3354 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx) 3355 { 3356 /* 3357 * The throttled processes are normally woken up in balance_pgdat() as 3358 * soon as allow_direct_reclaim() is true. But there is a potential 3359 * race between when kswapd checks the watermarks and a process gets 3360 * throttled. There is also a potential race if processes get 3361 * throttled, kswapd wakes, a large process exits thereby balancing the 3362 * zones, which causes kswapd to exit balance_pgdat() before reaching 3363 * the wake up checks. If kswapd is going to sleep, no process should 3364 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If 3365 * the wake up is premature, processes will wake kswapd and get 3366 * throttled again. The difference from wake ups in balance_pgdat() is 3367 * that here we are under prepare_to_wait(). 3368 */ 3369 if (waitqueue_active(&pgdat->pfmemalloc_wait)) 3370 wake_up_all(&pgdat->pfmemalloc_wait); 3371 3372 /* Hopeless node, leave it to direct reclaim */ 3373 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 3374 return true; 3375 3376 if (pgdat_balanced(pgdat, order, classzone_idx)) { 3377 clear_pgdat_congested(pgdat); 3378 return true; 3379 } 3380 3381 return false; 3382 } 3383 3384 /* 3385 * kswapd shrinks a node of pages that are at or below the highest usable 3386 * zone that is currently unbalanced. 3387 * 3388 * Returns true if kswapd scanned at least the requested number of pages to 3389 * reclaim or if the lack of progress was due to pages under writeback. 3390 * This is used to determine if the scanning priority needs to be raised. 3391 */ 3392 static bool kswapd_shrink_node(pg_data_t *pgdat, 3393 struct scan_control *sc) 3394 { 3395 struct zone *zone; 3396 int z; 3397 3398 /* Reclaim a number of pages proportional to the number of zones */ 3399 sc->nr_to_reclaim = 0; 3400 for (z = 0; z <= sc->reclaim_idx; z++) { 3401 zone = pgdat->node_zones + z; 3402 if (!managed_zone(zone)) 3403 continue; 3404 3405 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX); 3406 } 3407 3408 /* 3409 * Historically care was taken to put equal pressure on all zones but 3410 * now pressure is applied based on node LRU order. 3411 */ 3412 shrink_node(pgdat, sc); 3413 3414 /* 3415 * Fragmentation may mean that the system cannot be rebalanced for 3416 * high-order allocations. If twice the allocation size has been 3417 * reclaimed then recheck watermarks only at order-0 to prevent 3418 * excessive reclaim. Assume that a process requested a high-order 3419 * can direct reclaim/compact. 3420 */ 3421 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order)) 3422 sc->order = 0; 3423 3424 return sc->nr_scanned >= sc->nr_to_reclaim; 3425 } 3426 3427 /* 3428 * For kswapd, balance_pgdat() will reclaim pages across a node from zones 3429 * that are eligible for use by the caller until at least one zone is 3430 * balanced. 3431 * 3432 * Returns the order kswapd finished reclaiming at. 3433 * 3434 * kswapd scans the zones in the highmem->normal->dma direction. It skips 3435 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 3436 * found to have free_pages <= high_wmark_pages(zone), any page in that zone 3437 * or lower is eligible for reclaim until at least one usable zone is 3438 * balanced. 3439 */ 3440 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx) 3441 { 3442 int i; 3443 unsigned long nr_soft_reclaimed; 3444 unsigned long nr_soft_scanned; 3445 unsigned long pflags; 3446 unsigned long nr_boost_reclaim; 3447 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, }; 3448 bool boosted; 3449 struct zone *zone; 3450 struct scan_control sc = { 3451 .gfp_mask = GFP_KERNEL, 3452 .order = order, 3453 .may_unmap = 1, 3454 }; 3455 3456 psi_memstall_enter(&pflags); 3457 __fs_reclaim_acquire(); 3458 3459 count_vm_event(PAGEOUTRUN); 3460 3461 /* 3462 * Account for the reclaim boost. Note that the zone boost is left in 3463 * place so that parallel allocations that are near the watermark will 3464 * stall or direct reclaim until kswapd is finished. 3465 */ 3466 nr_boost_reclaim = 0; 3467 for (i = 0; i <= classzone_idx; i++) { 3468 zone = pgdat->node_zones + i; 3469 if (!managed_zone(zone)) 3470 continue; 3471 3472 nr_boost_reclaim += zone->watermark_boost; 3473 zone_boosts[i] = zone->watermark_boost; 3474 } 3475 boosted = nr_boost_reclaim; 3476 3477 restart: 3478 sc.priority = DEF_PRIORITY; 3479 do { 3480 unsigned long nr_reclaimed = sc.nr_reclaimed; 3481 bool raise_priority = true; 3482 bool balanced; 3483 bool ret; 3484 3485 sc.reclaim_idx = classzone_idx; 3486 3487 /* 3488 * If the number of buffer_heads exceeds the maximum allowed 3489 * then consider reclaiming from all zones. This has a dual 3490 * purpose -- on 64-bit systems it is expected that 3491 * buffer_heads are stripped during active rotation. On 32-bit 3492 * systems, highmem pages can pin lowmem memory and shrinking 3493 * buffers can relieve lowmem pressure. Reclaim may still not 3494 * go ahead if all eligible zones for the original allocation 3495 * request are balanced to avoid excessive reclaim from kswapd. 3496 */ 3497 if (buffer_heads_over_limit) { 3498 for (i = MAX_NR_ZONES - 1; i >= 0; i--) { 3499 zone = pgdat->node_zones + i; 3500 if (!managed_zone(zone)) 3501 continue; 3502 3503 sc.reclaim_idx = i; 3504 break; 3505 } 3506 } 3507 3508 /* 3509 * If the pgdat is imbalanced then ignore boosting and preserve 3510 * the watermarks for a later time and restart. Note that the 3511 * zone watermarks will be still reset at the end of balancing 3512 * on the grounds that the normal reclaim should be enough to 3513 * re-evaluate if boosting is required when kswapd next wakes. 3514 */ 3515 balanced = pgdat_balanced(pgdat, sc.order, classzone_idx); 3516 if (!balanced && nr_boost_reclaim) { 3517 nr_boost_reclaim = 0; 3518 goto restart; 3519 } 3520 3521 /* 3522 * If boosting is not active then only reclaim if there are no 3523 * eligible zones. Note that sc.reclaim_idx is not used as 3524 * buffer_heads_over_limit may have adjusted it. 3525 */ 3526 if (!nr_boost_reclaim && balanced) 3527 goto out; 3528 3529 /* Limit the priority of boosting to avoid reclaim writeback */ 3530 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2) 3531 raise_priority = false; 3532 3533 /* 3534 * Do not writeback or swap pages for boosted reclaim. The 3535 * intent is to relieve pressure not issue sub-optimal IO 3536 * from reclaim context. If no pages are reclaimed, the 3537 * reclaim will be aborted. 3538 */ 3539 sc.may_writepage = !laptop_mode && !nr_boost_reclaim; 3540 sc.may_swap = !nr_boost_reclaim; 3541 sc.may_shrinkslab = !nr_boost_reclaim; 3542 3543 /* 3544 * Do some background aging of the anon list, to give 3545 * pages a chance to be referenced before reclaiming. All 3546 * pages are rotated regardless of classzone as this is 3547 * about consistent aging. 3548 */ 3549 age_active_anon(pgdat, &sc); 3550 3551 /* 3552 * If we're getting trouble reclaiming, start doing writepage 3553 * even in laptop mode. 3554 */ 3555 if (sc.priority < DEF_PRIORITY - 2) 3556 sc.may_writepage = 1; 3557 3558 /* Call soft limit reclaim before calling shrink_node. */ 3559 sc.nr_scanned = 0; 3560 nr_soft_scanned = 0; 3561 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order, 3562 sc.gfp_mask, &nr_soft_scanned); 3563 sc.nr_reclaimed += nr_soft_reclaimed; 3564 3565 /* 3566 * There should be no need to raise the scanning priority if 3567 * enough pages are already being scanned that that high 3568 * watermark would be met at 100% efficiency. 3569 */ 3570 if (kswapd_shrink_node(pgdat, &sc)) 3571 raise_priority = false; 3572 3573 /* 3574 * If the low watermark is met there is no need for processes 3575 * to be throttled on pfmemalloc_wait as they should not be 3576 * able to safely make forward progress. Wake them 3577 */ 3578 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 3579 allow_direct_reclaim(pgdat)) 3580 wake_up_all(&pgdat->pfmemalloc_wait); 3581 3582 /* Check if kswapd should be suspending */ 3583 __fs_reclaim_release(); 3584 ret = try_to_freeze(); 3585 __fs_reclaim_acquire(); 3586 if (ret || kthread_should_stop()) 3587 break; 3588 3589 /* 3590 * Raise priority if scanning rate is too low or there was no 3591 * progress in reclaiming pages 3592 */ 3593 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed; 3594 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed); 3595 3596 /* 3597 * If reclaim made no progress for a boost, stop reclaim as 3598 * IO cannot be queued and it could be an infinite loop in 3599 * extreme circumstances. 3600 */ 3601 if (nr_boost_reclaim && !nr_reclaimed) 3602 break; 3603 3604 if (raise_priority || !nr_reclaimed) 3605 sc.priority--; 3606 } while (sc.priority >= 1); 3607 3608 if (!sc.nr_reclaimed) 3609 pgdat->kswapd_failures++; 3610 3611 out: 3612 /* If reclaim was boosted, account for the reclaim done in this pass */ 3613 if (boosted) { 3614 unsigned long flags; 3615 3616 for (i = 0; i <= classzone_idx; i++) { 3617 if (!zone_boosts[i]) 3618 continue; 3619 3620 /* Increments are under the zone lock */ 3621 zone = pgdat->node_zones + i; 3622 spin_lock_irqsave(&zone->lock, flags); 3623 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]); 3624 spin_unlock_irqrestore(&zone->lock, flags); 3625 } 3626 3627 /* 3628 * As there is now likely space, wakeup kcompact to defragment 3629 * pageblocks. 3630 */ 3631 wakeup_kcompactd(pgdat, pageblock_order, classzone_idx); 3632 } 3633 3634 snapshot_refaults(NULL, pgdat); 3635 __fs_reclaim_release(); 3636 psi_memstall_leave(&pflags); 3637 /* 3638 * Return the order kswapd stopped reclaiming at as 3639 * prepare_kswapd_sleep() takes it into account. If another caller 3640 * entered the allocator slow path while kswapd was awake, order will 3641 * remain at the higher level. 3642 */ 3643 return sc.order; 3644 } 3645 3646 /* 3647 * The pgdat->kswapd_classzone_idx is used to pass the highest zone index to be 3648 * reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is not 3649 * a valid index then either kswapd runs for first time or kswapd couldn't sleep 3650 * after previous reclaim attempt (node is still unbalanced). In that case 3651 * return the zone index of the previous kswapd reclaim cycle. 3652 */ 3653 static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat, 3654 enum zone_type prev_classzone_idx) 3655 { 3656 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES) 3657 return prev_classzone_idx; 3658 return pgdat->kswapd_classzone_idx; 3659 } 3660 3661 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order, 3662 unsigned int classzone_idx) 3663 { 3664 long remaining = 0; 3665 DEFINE_WAIT(wait); 3666 3667 if (freezing(current) || kthread_should_stop()) 3668 return; 3669 3670 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3671 3672 /* 3673 * Try to sleep for a short interval. Note that kcompactd will only be 3674 * woken if it is possible to sleep for a short interval. This is 3675 * deliberate on the assumption that if reclaim cannot keep an 3676 * eligible zone balanced that it's also unlikely that compaction will 3677 * succeed. 3678 */ 3679 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) { 3680 /* 3681 * Compaction records what page blocks it recently failed to 3682 * isolate pages from and skips them in the future scanning. 3683 * When kswapd is going to sleep, it is reasonable to assume 3684 * that pages and compaction may succeed so reset the cache. 3685 */ 3686 reset_isolation_suitable(pgdat); 3687 3688 /* 3689 * We have freed the memory, now we should compact it to make 3690 * allocation of the requested order possible. 3691 */ 3692 wakeup_kcompactd(pgdat, alloc_order, classzone_idx); 3693 3694 remaining = schedule_timeout(HZ/10); 3695 3696 /* 3697 * If woken prematurely then reset kswapd_classzone_idx and 3698 * order. The values will either be from a wakeup request or 3699 * the previous request that slept prematurely. 3700 */ 3701 if (remaining) { 3702 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx); 3703 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order); 3704 } 3705 3706 finish_wait(&pgdat->kswapd_wait, &wait); 3707 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3708 } 3709 3710 /* 3711 * After a short sleep, check if it was a premature sleep. If not, then 3712 * go fully to sleep until explicitly woken up. 3713 */ 3714 if (!remaining && 3715 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) { 3716 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 3717 3718 /* 3719 * vmstat counters are not perfectly accurate and the estimated 3720 * value for counters such as NR_FREE_PAGES can deviate from the 3721 * true value by nr_online_cpus * threshold. To avoid the zone 3722 * watermarks being breached while under pressure, we reduce the 3723 * per-cpu vmstat threshold while kswapd is awake and restore 3724 * them before going back to sleep. 3725 */ 3726 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 3727 3728 if (!kthread_should_stop()) 3729 schedule(); 3730 3731 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 3732 } else { 3733 if (remaining) 3734 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 3735 else 3736 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 3737 } 3738 finish_wait(&pgdat->kswapd_wait, &wait); 3739 } 3740 3741 /* 3742 * The background pageout daemon, started as a kernel thread 3743 * from the init process. 3744 * 3745 * This basically trickles out pages so that we have _some_ 3746 * free memory available even if there is no other activity 3747 * that frees anything up. This is needed for things like routing 3748 * etc, where we otherwise might have all activity going on in 3749 * asynchronous contexts that cannot page things out. 3750 * 3751 * If there are applications that are active memory-allocators 3752 * (most normal use), this basically shouldn't matter. 3753 */ 3754 static int kswapd(void *p) 3755 { 3756 unsigned int alloc_order, reclaim_order; 3757 unsigned int classzone_idx = MAX_NR_ZONES - 1; 3758 pg_data_t *pgdat = (pg_data_t*)p; 3759 struct task_struct *tsk = current; 3760 3761 struct reclaim_state reclaim_state = { 3762 .reclaimed_slab = 0, 3763 }; 3764 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 3765 3766 if (!cpumask_empty(cpumask)) 3767 set_cpus_allowed_ptr(tsk, cpumask); 3768 current->reclaim_state = &reclaim_state; 3769 3770 /* 3771 * Tell the memory management that we're a "memory allocator", 3772 * and that if we need more memory we should get access to it 3773 * regardless (see "__alloc_pages()"). "kswapd" should 3774 * never get caught in the normal page freeing logic. 3775 * 3776 * (Kswapd normally doesn't need memory anyway, but sometimes 3777 * you need a small amount of memory in order to be able to 3778 * page out something else, and this flag essentially protects 3779 * us from recursively trying to free more memory as we're 3780 * trying to free the first piece of memory in the first place). 3781 */ 3782 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 3783 set_freezable(); 3784 3785 pgdat->kswapd_order = 0; 3786 pgdat->kswapd_classzone_idx = MAX_NR_ZONES; 3787 for ( ; ; ) { 3788 bool ret; 3789 3790 alloc_order = reclaim_order = pgdat->kswapd_order; 3791 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx); 3792 3793 kswapd_try_sleep: 3794 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order, 3795 classzone_idx); 3796 3797 /* Read the new order and classzone_idx */ 3798 alloc_order = reclaim_order = pgdat->kswapd_order; 3799 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx); 3800 pgdat->kswapd_order = 0; 3801 pgdat->kswapd_classzone_idx = MAX_NR_ZONES; 3802 3803 ret = try_to_freeze(); 3804 if (kthread_should_stop()) 3805 break; 3806 3807 /* 3808 * We can speed up thawing tasks if we don't call balance_pgdat 3809 * after returning from the refrigerator 3810 */ 3811 if (ret) 3812 continue; 3813 3814 /* 3815 * Reclaim begins at the requested order but if a high-order 3816 * reclaim fails then kswapd falls back to reclaiming for 3817 * order-0. If that happens, kswapd will consider sleeping 3818 * for the order it finished reclaiming at (reclaim_order) 3819 * but kcompactd is woken to compact for the original 3820 * request (alloc_order). 3821 */ 3822 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx, 3823 alloc_order); 3824 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx); 3825 if (reclaim_order < alloc_order) 3826 goto kswapd_try_sleep; 3827 } 3828 3829 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD); 3830 current->reclaim_state = NULL; 3831 3832 return 0; 3833 } 3834 3835 /* 3836 * A zone is low on free memory or too fragmented for high-order memory. If 3837 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's 3838 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim 3839 * has failed or is not needed, still wake up kcompactd if only compaction is 3840 * needed. 3841 */ 3842 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order, 3843 enum zone_type classzone_idx) 3844 { 3845 pg_data_t *pgdat; 3846 3847 if (!managed_zone(zone)) 3848 return; 3849 3850 if (!cpuset_zone_allowed(zone, gfp_flags)) 3851 return; 3852 pgdat = zone->zone_pgdat; 3853 3854 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES) 3855 pgdat->kswapd_classzone_idx = classzone_idx; 3856 else 3857 pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, 3858 classzone_idx); 3859 pgdat->kswapd_order = max(pgdat->kswapd_order, order); 3860 if (!waitqueue_active(&pgdat->kswapd_wait)) 3861 return; 3862 3863 /* Hopeless node, leave it to direct reclaim if possible */ 3864 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES || 3865 (pgdat_balanced(pgdat, order, classzone_idx) && 3866 !pgdat_watermark_boosted(pgdat, classzone_idx))) { 3867 /* 3868 * There may be plenty of free memory available, but it's too 3869 * fragmented for high-order allocations. Wake up kcompactd 3870 * and rely on compaction_suitable() to determine if it's 3871 * needed. If it fails, it will defer subsequent attempts to 3872 * ratelimit its work. 3873 */ 3874 if (!(gfp_flags & __GFP_DIRECT_RECLAIM)) 3875 wakeup_kcompactd(pgdat, order, classzone_idx); 3876 return; 3877 } 3878 3879 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order, 3880 gfp_flags); 3881 wake_up_interruptible(&pgdat->kswapd_wait); 3882 } 3883 3884 #ifdef CONFIG_HIBERNATION 3885 /* 3886 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 3887 * freed pages. 3888 * 3889 * Rather than trying to age LRUs the aim is to preserve the overall 3890 * LRU order by reclaiming preferentially 3891 * inactive > active > active referenced > active mapped 3892 */ 3893 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 3894 { 3895 struct reclaim_state reclaim_state; 3896 struct scan_control sc = { 3897 .nr_to_reclaim = nr_to_reclaim, 3898 .gfp_mask = GFP_HIGHUSER_MOVABLE, 3899 .reclaim_idx = MAX_NR_ZONES - 1, 3900 .priority = DEF_PRIORITY, 3901 .may_writepage = 1, 3902 .may_unmap = 1, 3903 .may_swap = 1, 3904 .hibernation_mode = 1, 3905 }; 3906 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 3907 struct task_struct *p = current; 3908 unsigned long nr_reclaimed; 3909 unsigned int noreclaim_flag; 3910 3911 fs_reclaim_acquire(sc.gfp_mask); 3912 noreclaim_flag = memalloc_noreclaim_save(); 3913 reclaim_state.reclaimed_slab = 0; 3914 p->reclaim_state = &reclaim_state; 3915 3916 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3917 3918 p->reclaim_state = NULL; 3919 memalloc_noreclaim_restore(noreclaim_flag); 3920 fs_reclaim_release(sc.gfp_mask); 3921 3922 return nr_reclaimed; 3923 } 3924 #endif /* CONFIG_HIBERNATION */ 3925 3926 /* It's optimal to keep kswapds on the same CPUs as their memory, but 3927 not required for correctness. So if the last cpu in a node goes 3928 away, we get changed to run anywhere: as the first one comes back, 3929 restore their cpu bindings. */ 3930 static int kswapd_cpu_online(unsigned int cpu) 3931 { 3932 int nid; 3933 3934 for_each_node_state(nid, N_MEMORY) { 3935 pg_data_t *pgdat = NODE_DATA(nid); 3936 const struct cpumask *mask; 3937 3938 mask = cpumask_of_node(pgdat->node_id); 3939 3940 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 3941 /* One of our CPUs online: restore mask */ 3942 set_cpus_allowed_ptr(pgdat->kswapd, mask); 3943 } 3944 return 0; 3945 } 3946 3947 /* 3948 * This kswapd start function will be called by init and node-hot-add. 3949 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. 3950 */ 3951 int kswapd_run(int nid) 3952 { 3953 pg_data_t *pgdat = NODE_DATA(nid); 3954 int ret = 0; 3955 3956 if (pgdat->kswapd) 3957 return 0; 3958 3959 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 3960 if (IS_ERR(pgdat->kswapd)) { 3961 /* failure at boot is fatal */ 3962 BUG_ON(system_state < SYSTEM_RUNNING); 3963 pr_err("Failed to start kswapd on node %d\n", nid); 3964 ret = PTR_ERR(pgdat->kswapd); 3965 pgdat->kswapd = NULL; 3966 } 3967 return ret; 3968 } 3969 3970 /* 3971 * Called by memory hotplug when all memory in a node is offlined. Caller must 3972 * hold mem_hotplug_begin/end(). 3973 */ 3974 void kswapd_stop(int nid) 3975 { 3976 struct task_struct *kswapd = NODE_DATA(nid)->kswapd; 3977 3978 if (kswapd) { 3979 kthread_stop(kswapd); 3980 NODE_DATA(nid)->kswapd = NULL; 3981 } 3982 } 3983 3984 static int __init kswapd_init(void) 3985 { 3986 int nid, ret; 3987 3988 swap_setup(); 3989 for_each_node_state(nid, N_MEMORY) 3990 kswapd_run(nid); 3991 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, 3992 "mm/vmscan:online", kswapd_cpu_online, 3993 NULL); 3994 WARN_ON(ret < 0); 3995 return 0; 3996 } 3997 3998 module_init(kswapd_init) 3999 4000 #ifdef CONFIG_NUMA 4001 /* 4002 * Node reclaim mode 4003 * 4004 * If non-zero call node_reclaim when the number of free pages falls below 4005 * the watermarks. 4006 */ 4007 int node_reclaim_mode __read_mostly; 4008 4009 #define RECLAIM_OFF 0 4010 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */ 4011 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */ 4012 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */ 4013 4014 /* 4015 * Priority for NODE_RECLAIM. This determines the fraction of pages 4016 * of a node considered for each zone_reclaim. 4 scans 1/16th of 4017 * a zone. 4018 */ 4019 #define NODE_RECLAIM_PRIORITY 4 4020 4021 /* 4022 * Percentage of pages in a zone that must be unmapped for node_reclaim to 4023 * occur. 4024 */ 4025 int sysctl_min_unmapped_ratio = 1; 4026 4027 /* 4028 * If the number of slab pages in a zone grows beyond this percentage then 4029 * slab reclaim needs to occur. 4030 */ 4031 int sysctl_min_slab_ratio = 5; 4032 4033 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat) 4034 { 4035 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED); 4036 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) + 4037 node_page_state(pgdat, NR_ACTIVE_FILE); 4038 4039 /* 4040 * It's possible for there to be more file mapped pages than 4041 * accounted for by the pages on the file LRU lists because 4042 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 4043 */ 4044 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 4045 } 4046 4047 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 4048 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat) 4049 { 4050 unsigned long nr_pagecache_reclaimable; 4051 unsigned long delta = 0; 4052 4053 /* 4054 * If RECLAIM_UNMAP is set, then all file pages are considered 4055 * potentially reclaimable. Otherwise, we have to worry about 4056 * pages like swapcache and node_unmapped_file_pages() provides 4057 * a better estimate 4058 */ 4059 if (node_reclaim_mode & RECLAIM_UNMAP) 4060 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES); 4061 else 4062 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat); 4063 4064 /* If we can't clean pages, remove dirty pages from consideration */ 4065 if (!(node_reclaim_mode & RECLAIM_WRITE)) 4066 delta += node_page_state(pgdat, NR_FILE_DIRTY); 4067 4068 /* Watch for any possible underflows due to delta */ 4069 if (unlikely(delta > nr_pagecache_reclaimable)) 4070 delta = nr_pagecache_reclaimable; 4071 4072 return nr_pagecache_reclaimable - delta; 4073 } 4074 4075 /* 4076 * Try to free up some pages from this node through reclaim. 4077 */ 4078 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 4079 { 4080 /* Minimum pages needed in order to stay on node */ 4081 const unsigned long nr_pages = 1 << order; 4082 struct task_struct *p = current; 4083 struct reclaim_state reclaim_state; 4084 unsigned int noreclaim_flag; 4085 struct scan_control sc = { 4086 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 4087 .gfp_mask = current_gfp_context(gfp_mask), 4088 .order = order, 4089 .priority = NODE_RECLAIM_PRIORITY, 4090 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE), 4091 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP), 4092 .may_swap = 1, 4093 .reclaim_idx = gfp_zone(gfp_mask), 4094 }; 4095 4096 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order, 4097 sc.gfp_mask); 4098 4099 cond_resched(); 4100 fs_reclaim_acquire(sc.gfp_mask); 4101 /* 4102 * We need to be able to allocate from the reserves for RECLAIM_UNMAP 4103 * and we also need to be able to write out pages for RECLAIM_WRITE 4104 * and RECLAIM_UNMAP. 4105 */ 4106 noreclaim_flag = memalloc_noreclaim_save(); 4107 p->flags |= PF_SWAPWRITE; 4108 reclaim_state.reclaimed_slab = 0; 4109 p->reclaim_state = &reclaim_state; 4110 4111 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) { 4112 /* 4113 * Free memory by calling shrink node with increasing 4114 * priorities until we have enough memory freed. 4115 */ 4116 do { 4117 shrink_node(pgdat, &sc); 4118 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 4119 } 4120 4121 p->reclaim_state = NULL; 4122 current->flags &= ~PF_SWAPWRITE; 4123 memalloc_noreclaim_restore(noreclaim_flag); 4124 fs_reclaim_release(sc.gfp_mask); 4125 4126 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed); 4127 4128 return sc.nr_reclaimed >= nr_pages; 4129 } 4130 4131 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 4132 { 4133 int ret; 4134 4135 /* 4136 * Node reclaim reclaims unmapped file backed pages and 4137 * slab pages if we are over the defined limits. 4138 * 4139 * A small portion of unmapped file backed pages is needed for 4140 * file I/O otherwise pages read by file I/O will be immediately 4141 * thrown out if the node is overallocated. So we do not reclaim 4142 * if less than a specified percentage of the node is used by 4143 * unmapped file backed pages. 4144 */ 4145 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages && 4146 node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages) 4147 return NODE_RECLAIM_FULL; 4148 4149 /* 4150 * Do not scan if the allocation should not be delayed. 4151 */ 4152 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) 4153 return NODE_RECLAIM_NOSCAN; 4154 4155 /* 4156 * Only run node reclaim on the local node or on nodes that do not 4157 * have associated processors. This will favor the local processor 4158 * over remote processors and spread off node memory allocations 4159 * as wide as possible. 4160 */ 4161 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id()) 4162 return NODE_RECLAIM_NOSCAN; 4163 4164 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags)) 4165 return NODE_RECLAIM_NOSCAN; 4166 4167 ret = __node_reclaim(pgdat, gfp_mask, order); 4168 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags); 4169 4170 if (!ret) 4171 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 4172 4173 return ret; 4174 } 4175 #endif 4176 4177 /* 4178 * page_evictable - test whether a page is evictable 4179 * @page: the page to test 4180 * 4181 * Test whether page is evictable--i.e., should be placed on active/inactive 4182 * lists vs unevictable list. 4183 * 4184 * Reasons page might not be evictable: 4185 * (1) page's mapping marked unevictable 4186 * (2) page is part of an mlocked VMA 4187 * 4188 */ 4189 int page_evictable(struct page *page) 4190 { 4191 int ret; 4192 4193 /* Prevent address_space of inode and swap cache from being freed */ 4194 rcu_read_lock(); 4195 ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page); 4196 rcu_read_unlock(); 4197 return ret; 4198 } 4199 4200 /** 4201 * check_move_unevictable_pages - check pages for evictability and move to 4202 * appropriate zone lru list 4203 * @pvec: pagevec with lru pages to check 4204 * 4205 * Checks pages for evictability, if an evictable page is in the unevictable 4206 * lru list, moves it to the appropriate evictable lru list. This function 4207 * should be only used for lru pages. 4208 */ 4209 void check_move_unevictable_pages(struct pagevec *pvec) 4210 { 4211 struct lruvec *lruvec; 4212 struct pglist_data *pgdat = NULL; 4213 int pgscanned = 0; 4214 int pgrescued = 0; 4215 int i; 4216 4217 for (i = 0; i < pvec->nr; i++) { 4218 struct page *page = pvec->pages[i]; 4219 struct pglist_data *pagepgdat = page_pgdat(page); 4220 4221 pgscanned++; 4222 if (pagepgdat != pgdat) { 4223 if (pgdat) 4224 spin_unlock_irq(&pgdat->lru_lock); 4225 pgdat = pagepgdat; 4226 spin_lock_irq(&pgdat->lru_lock); 4227 } 4228 lruvec = mem_cgroup_page_lruvec(page, pgdat); 4229 4230 if (!PageLRU(page) || !PageUnevictable(page)) 4231 continue; 4232 4233 if (page_evictable(page)) { 4234 enum lru_list lru = page_lru_base_type(page); 4235 4236 VM_BUG_ON_PAGE(PageActive(page), page); 4237 ClearPageUnevictable(page); 4238 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE); 4239 add_page_to_lru_list(page, lruvec, lru); 4240 pgrescued++; 4241 } 4242 } 4243 4244 if (pgdat) { 4245 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 4246 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 4247 spin_unlock_irq(&pgdat->lru_lock); 4248 } 4249 } 4250 EXPORT_SYMBOL_GPL(check_move_unevictable_pages); 4251