xref: /linux/mm/vmscan.c (revision 6d80f20c5328ad24dde0fddb980f60734a17b911)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/mm/vmscan.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *
7  *  Swap reorganised 29.12.95, Stephen Tweedie.
8  *  kswapd added: 7.1.96  sct
9  *  Removed kswapd_ctl limits, and swap out as many pages as needed
10  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
12  *  Multiqueue VM started 5.8.00, Rik van Riel.
13  */
14 
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/mm.h>
18 #include <linux/sched/mm.h>
19 #include <linux/module.h>
20 #include <linux/gfp.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/swap.h>
23 #include <linux/pagemap.h>
24 #include <linux/init.h>
25 #include <linux/highmem.h>
26 #include <linux/vmpressure.h>
27 #include <linux/vmstat.h>
28 #include <linux/file.h>
29 #include <linux/writeback.h>
30 #include <linux/blkdev.h>
31 #include <linux/buffer_head.h>	/* for try_to_release_page(),
32 					buffer_heads_over_limit */
33 #include <linux/mm_inline.h>
34 #include <linux/backing-dev.h>
35 #include <linux/rmap.h>
36 #include <linux/topology.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/compaction.h>
40 #include <linux/notifier.h>
41 #include <linux/rwsem.h>
42 #include <linux/delay.h>
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45 #include <linux/memcontrol.h>
46 #include <linux/delayacct.h>
47 #include <linux/sysctl.h>
48 #include <linux/oom.h>
49 #include <linux/pagevec.h>
50 #include <linux/prefetch.h>
51 #include <linux/printk.h>
52 #include <linux/dax.h>
53 #include <linux/psi.h>
54 
55 #include <asm/tlbflush.h>
56 #include <asm/div64.h>
57 
58 #include <linux/swapops.h>
59 #include <linux/balloon_compaction.h>
60 
61 #include "internal.h"
62 
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/vmscan.h>
65 
66 struct scan_control {
67 	/* How many pages shrink_list() should reclaim */
68 	unsigned long nr_to_reclaim;
69 
70 	/*
71 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
72 	 * are scanned.
73 	 */
74 	nodemask_t	*nodemask;
75 
76 	/*
77 	 * The memory cgroup that hit its limit and as a result is the
78 	 * primary target of this reclaim invocation.
79 	 */
80 	struct mem_cgroup *target_mem_cgroup;
81 
82 	/* Writepage batching in laptop mode; RECLAIM_WRITE */
83 	unsigned int may_writepage:1;
84 
85 	/* Can mapped pages be reclaimed? */
86 	unsigned int may_unmap:1;
87 
88 	/* Can pages be swapped as part of reclaim? */
89 	unsigned int may_swap:1;
90 
91 	/* e.g. boosted watermark reclaim leaves slabs alone */
92 	unsigned int may_shrinkslab:1;
93 
94 	/*
95 	 * Cgroups are not reclaimed below their configured memory.low,
96 	 * unless we threaten to OOM. If any cgroups are skipped due to
97 	 * memory.low and nothing was reclaimed, go back for memory.low.
98 	 */
99 	unsigned int memcg_low_reclaim:1;
100 	unsigned int memcg_low_skipped:1;
101 
102 	unsigned int hibernation_mode:1;
103 
104 	/* One of the zones is ready for compaction */
105 	unsigned int compaction_ready:1;
106 
107 	/* Allocation order */
108 	s8 order;
109 
110 	/* Scan (total_size >> priority) pages at once */
111 	s8 priority;
112 
113 	/* The highest zone to isolate pages for reclaim from */
114 	s8 reclaim_idx;
115 
116 	/* This context's GFP mask */
117 	gfp_t gfp_mask;
118 
119 	/* Incremented by the number of inactive pages that were scanned */
120 	unsigned long nr_scanned;
121 
122 	/* Number of pages freed so far during a call to shrink_zones() */
123 	unsigned long nr_reclaimed;
124 
125 	struct {
126 		unsigned int dirty;
127 		unsigned int unqueued_dirty;
128 		unsigned int congested;
129 		unsigned int writeback;
130 		unsigned int immediate;
131 		unsigned int file_taken;
132 		unsigned int taken;
133 	} nr;
134 };
135 
136 #ifdef ARCH_HAS_PREFETCH
137 #define prefetch_prev_lru_page(_page, _base, _field)			\
138 	do {								\
139 		if ((_page)->lru.prev != _base) {			\
140 			struct page *prev;				\
141 									\
142 			prev = lru_to_page(&(_page->lru));		\
143 			prefetch(&prev->_field);			\
144 		}							\
145 	} while (0)
146 #else
147 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
148 #endif
149 
150 #ifdef ARCH_HAS_PREFETCHW
151 #define prefetchw_prev_lru_page(_page, _base, _field)			\
152 	do {								\
153 		if ((_page)->lru.prev != _base) {			\
154 			struct page *prev;				\
155 									\
156 			prev = lru_to_page(&(_page->lru));		\
157 			prefetchw(&prev->_field);			\
158 		}							\
159 	} while (0)
160 #else
161 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
162 #endif
163 
164 /*
165  * From 0 .. 100.  Higher means more swappy.
166  */
167 int vm_swappiness = 60;
168 /*
169  * The total number of pages which are beyond the high watermark within all
170  * zones.
171  */
172 unsigned long vm_total_pages;
173 
174 static LIST_HEAD(shrinker_list);
175 static DECLARE_RWSEM(shrinker_rwsem);
176 
177 #ifdef CONFIG_MEMCG_KMEM
178 
179 /*
180  * We allow subsystems to populate their shrinker-related
181  * LRU lists before register_shrinker_prepared() is called
182  * for the shrinker, since we don't want to impose
183  * restrictions on their internal registration order.
184  * In this case shrink_slab_memcg() may find corresponding
185  * bit is set in the shrinkers map.
186  *
187  * This value is used by the function to detect registering
188  * shrinkers and to skip do_shrink_slab() calls for them.
189  */
190 #define SHRINKER_REGISTERING ((struct shrinker *)~0UL)
191 
192 static DEFINE_IDR(shrinker_idr);
193 static int shrinker_nr_max;
194 
195 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
196 {
197 	int id, ret = -ENOMEM;
198 
199 	down_write(&shrinker_rwsem);
200 	/* This may call shrinker, so it must use down_read_trylock() */
201 	id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
202 	if (id < 0)
203 		goto unlock;
204 
205 	if (id >= shrinker_nr_max) {
206 		if (memcg_expand_shrinker_maps(id)) {
207 			idr_remove(&shrinker_idr, id);
208 			goto unlock;
209 		}
210 
211 		shrinker_nr_max = id + 1;
212 	}
213 	shrinker->id = id;
214 	ret = 0;
215 unlock:
216 	up_write(&shrinker_rwsem);
217 	return ret;
218 }
219 
220 static void unregister_memcg_shrinker(struct shrinker *shrinker)
221 {
222 	int id = shrinker->id;
223 
224 	BUG_ON(id < 0);
225 
226 	down_write(&shrinker_rwsem);
227 	idr_remove(&shrinker_idr, id);
228 	up_write(&shrinker_rwsem);
229 }
230 #else /* CONFIG_MEMCG_KMEM */
231 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
232 {
233 	return 0;
234 }
235 
236 static void unregister_memcg_shrinker(struct shrinker *shrinker)
237 {
238 }
239 #endif /* CONFIG_MEMCG_KMEM */
240 
241 #ifdef CONFIG_MEMCG
242 static bool global_reclaim(struct scan_control *sc)
243 {
244 	return !sc->target_mem_cgroup;
245 }
246 
247 /**
248  * sane_reclaim - is the usual dirty throttling mechanism operational?
249  * @sc: scan_control in question
250  *
251  * The normal page dirty throttling mechanism in balance_dirty_pages() is
252  * completely broken with the legacy memcg and direct stalling in
253  * shrink_page_list() is used for throttling instead, which lacks all the
254  * niceties such as fairness, adaptive pausing, bandwidth proportional
255  * allocation and configurability.
256  *
257  * This function tests whether the vmscan currently in progress can assume
258  * that the normal dirty throttling mechanism is operational.
259  */
260 static bool sane_reclaim(struct scan_control *sc)
261 {
262 	struct mem_cgroup *memcg = sc->target_mem_cgroup;
263 
264 	if (!memcg)
265 		return true;
266 #ifdef CONFIG_CGROUP_WRITEBACK
267 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
268 		return true;
269 #endif
270 	return false;
271 }
272 
273 static void set_memcg_congestion(pg_data_t *pgdat,
274 				struct mem_cgroup *memcg,
275 				bool congested)
276 {
277 	struct mem_cgroup_per_node *mn;
278 
279 	if (!memcg)
280 		return;
281 
282 	mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
283 	WRITE_ONCE(mn->congested, congested);
284 }
285 
286 static bool memcg_congested(pg_data_t *pgdat,
287 			struct mem_cgroup *memcg)
288 {
289 	struct mem_cgroup_per_node *mn;
290 
291 	mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
292 	return READ_ONCE(mn->congested);
293 
294 }
295 #else
296 static bool global_reclaim(struct scan_control *sc)
297 {
298 	return true;
299 }
300 
301 static bool sane_reclaim(struct scan_control *sc)
302 {
303 	return true;
304 }
305 
306 static inline void set_memcg_congestion(struct pglist_data *pgdat,
307 				struct mem_cgroup *memcg, bool congested)
308 {
309 }
310 
311 static inline bool memcg_congested(struct pglist_data *pgdat,
312 			struct mem_cgroup *memcg)
313 {
314 	return false;
315 
316 }
317 #endif
318 
319 /*
320  * This misses isolated pages which are not accounted for to save counters.
321  * As the data only determines if reclaim or compaction continues, it is
322  * not expected that isolated pages will be a dominating factor.
323  */
324 unsigned long zone_reclaimable_pages(struct zone *zone)
325 {
326 	unsigned long nr;
327 
328 	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
329 		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
330 	if (get_nr_swap_pages() > 0)
331 		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
332 			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
333 
334 	return nr;
335 }
336 
337 /**
338  * lruvec_lru_size -  Returns the number of pages on the given LRU list.
339  * @lruvec: lru vector
340  * @lru: lru to use
341  * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
342  */
343 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
344 {
345 	unsigned long lru_size;
346 	int zid;
347 
348 	if (!mem_cgroup_disabled())
349 		lru_size = lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
350 	else
351 		lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
352 
353 	for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
354 		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
355 		unsigned long size;
356 
357 		if (!managed_zone(zone))
358 			continue;
359 
360 		if (!mem_cgroup_disabled())
361 			size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
362 		else
363 			size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
364 				       NR_ZONE_LRU_BASE + lru);
365 		lru_size -= min(size, lru_size);
366 	}
367 
368 	return lru_size;
369 
370 }
371 
372 /*
373  * Add a shrinker callback to be called from the vm.
374  */
375 int prealloc_shrinker(struct shrinker *shrinker)
376 {
377 	unsigned int size = sizeof(*shrinker->nr_deferred);
378 
379 	if (shrinker->flags & SHRINKER_NUMA_AWARE)
380 		size *= nr_node_ids;
381 
382 	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
383 	if (!shrinker->nr_deferred)
384 		return -ENOMEM;
385 
386 	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
387 		if (prealloc_memcg_shrinker(shrinker))
388 			goto free_deferred;
389 	}
390 
391 	return 0;
392 
393 free_deferred:
394 	kfree(shrinker->nr_deferred);
395 	shrinker->nr_deferred = NULL;
396 	return -ENOMEM;
397 }
398 
399 void free_prealloced_shrinker(struct shrinker *shrinker)
400 {
401 	if (!shrinker->nr_deferred)
402 		return;
403 
404 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
405 		unregister_memcg_shrinker(shrinker);
406 
407 	kfree(shrinker->nr_deferred);
408 	shrinker->nr_deferred = NULL;
409 }
410 
411 void register_shrinker_prepared(struct shrinker *shrinker)
412 {
413 	down_write(&shrinker_rwsem);
414 	list_add_tail(&shrinker->list, &shrinker_list);
415 #ifdef CONFIG_MEMCG_KMEM
416 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
417 		idr_replace(&shrinker_idr, shrinker, shrinker->id);
418 #endif
419 	up_write(&shrinker_rwsem);
420 }
421 
422 int register_shrinker(struct shrinker *shrinker)
423 {
424 	int err = prealloc_shrinker(shrinker);
425 
426 	if (err)
427 		return err;
428 	register_shrinker_prepared(shrinker);
429 	return 0;
430 }
431 EXPORT_SYMBOL(register_shrinker);
432 
433 /*
434  * Remove one
435  */
436 void unregister_shrinker(struct shrinker *shrinker)
437 {
438 	if (!shrinker->nr_deferred)
439 		return;
440 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
441 		unregister_memcg_shrinker(shrinker);
442 	down_write(&shrinker_rwsem);
443 	list_del(&shrinker->list);
444 	up_write(&shrinker_rwsem);
445 	kfree(shrinker->nr_deferred);
446 	shrinker->nr_deferred = NULL;
447 }
448 EXPORT_SYMBOL(unregister_shrinker);
449 
450 #define SHRINK_BATCH 128
451 
452 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
453 				    struct shrinker *shrinker, int priority)
454 {
455 	unsigned long freed = 0;
456 	unsigned long long delta;
457 	long total_scan;
458 	long freeable;
459 	long nr;
460 	long new_nr;
461 	int nid = shrinkctl->nid;
462 	long batch_size = shrinker->batch ? shrinker->batch
463 					  : SHRINK_BATCH;
464 	long scanned = 0, next_deferred;
465 
466 	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
467 		nid = 0;
468 
469 	freeable = shrinker->count_objects(shrinker, shrinkctl);
470 	if (freeable == 0 || freeable == SHRINK_EMPTY)
471 		return freeable;
472 
473 	/*
474 	 * copy the current shrinker scan count into a local variable
475 	 * and zero it so that other concurrent shrinker invocations
476 	 * don't also do this scanning work.
477 	 */
478 	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
479 
480 	total_scan = nr;
481 	if (shrinker->seeks) {
482 		delta = freeable >> priority;
483 		delta *= 4;
484 		do_div(delta, shrinker->seeks);
485 	} else {
486 		/*
487 		 * These objects don't require any IO to create. Trim
488 		 * them aggressively under memory pressure to keep
489 		 * them from causing refetches in the IO caches.
490 		 */
491 		delta = freeable / 2;
492 	}
493 
494 	total_scan += delta;
495 	if (total_scan < 0) {
496 		pr_err("shrink_slab: %pS negative objects to delete nr=%ld\n",
497 		       shrinker->scan_objects, total_scan);
498 		total_scan = freeable;
499 		next_deferred = nr;
500 	} else
501 		next_deferred = total_scan;
502 
503 	/*
504 	 * We need to avoid excessive windup on filesystem shrinkers
505 	 * due to large numbers of GFP_NOFS allocations causing the
506 	 * shrinkers to return -1 all the time. This results in a large
507 	 * nr being built up so when a shrink that can do some work
508 	 * comes along it empties the entire cache due to nr >>>
509 	 * freeable. This is bad for sustaining a working set in
510 	 * memory.
511 	 *
512 	 * Hence only allow the shrinker to scan the entire cache when
513 	 * a large delta change is calculated directly.
514 	 */
515 	if (delta < freeable / 4)
516 		total_scan = min(total_scan, freeable / 2);
517 
518 	/*
519 	 * Avoid risking looping forever due to too large nr value:
520 	 * never try to free more than twice the estimate number of
521 	 * freeable entries.
522 	 */
523 	if (total_scan > freeable * 2)
524 		total_scan = freeable * 2;
525 
526 	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
527 				   freeable, delta, total_scan, priority);
528 
529 	/*
530 	 * Normally, we should not scan less than batch_size objects in one
531 	 * pass to avoid too frequent shrinker calls, but if the slab has less
532 	 * than batch_size objects in total and we are really tight on memory,
533 	 * we will try to reclaim all available objects, otherwise we can end
534 	 * up failing allocations although there are plenty of reclaimable
535 	 * objects spread over several slabs with usage less than the
536 	 * batch_size.
537 	 *
538 	 * We detect the "tight on memory" situations by looking at the total
539 	 * number of objects we want to scan (total_scan). If it is greater
540 	 * than the total number of objects on slab (freeable), we must be
541 	 * scanning at high prio and therefore should try to reclaim as much as
542 	 * possible.
543 	 */
544 	while (total_scan >= batch_size ||
545 	       total_scan >= freeable) {
546 		unsigned long ret;
547 		unsigned long nr_to_scan = min(batch_size, total_scan);
548 
549 		shrinkctl->nr_to_scan = nr_to_scan;
550 		shrinkctl->nr_scanned = nr_to_scan;
551 		ret = shrinker->scan_objects(shrinker, shrinkctl);
552 		if (ret == SHRINK_STOP)
553 			break;
554 		freed += ret;
555 
556 		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
557 		total_scan -= shrinkctl->nr_scanned;
558 		scanned += shrinkctl->nr_scanned;
559 
560 		cond_resched();
561 	}
562 
563 	if (next_deferred >= scanned)
564 		next_deferred -= scanned;
565 	else
566 		next_deferred = 0;
567 	/*
568 	 * move the unused scan count back into the shrinker in a
569 	 * manner that handles concurrent updates. If we exhausted the
570 	 * scan, there is no need to do an update.
571 	 */
572 	if (next_deferred > 0)
573 		new_nr = atomic_long_add_return(next_deferred,
574 						&shrinker->nr_deferred[nid]);
575 	else
576 		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
577 
578 	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
579 	return freed;
580 }
581 
582 #ifdef CONFIG_MEMCG_KMEM
583 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
584 			struct mem_cgroup *memcg, int priority)
585 {
586 	struct memcg_shrinker_map *map;
587 	unsigned long ret, freed = 0;
588 	int i;
589 
590 	if (!memcg_kmem_enabled() || !mem_cgroup_online(memcg))
591 		return 0;
592 
593 	if (!down_read_trylock(&shrinker_rwsem))
594 		return 0;
595 
596 	map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
597 					true);
598 	if (unlikely(!map))
599 		goto unlock;
600 
601 	for_each_set_bit(i, map->map, shrinker_nr_max) {
602 		struct shrink_control sc = {
603 			.gfp_mask = gfp_mask,
604 			.nid = nid,
605 			.memcg = memcg,
606 		};
607 		struct shrinker *shrinker;
608 
609 		shrinker = idr_find(&shrinker_idr, i);
610 		if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
611 			if (!shrinker)
612 				clear_bit(i, map->map);
613 			continue;
614 		}
615 
616 		ret = do_shrink_slab(&sc, shrinker, priority);
617 		if (ret == SHRINK_EMPTY) {
618 			clear_bit(i, map->map);
619 			/*
620 			 * After the shrinker reported that it had no objects to
621 			 * free, but before we cleared the corresponding bit in
622 			 * the memcg shrinker map, a new object might have been
623 			 * added. To make sure, we have the bit set in this
624 			 * case, we invoke the shrinker one more time and reset
625 			 * the bit if it reports that it is not empty anymore.
626 			 * The memory barrier here pairs with the barrier in
627 			 * memcg_set_shrinker_bit():
628 			 *
629 			 * list_lru_add()     shrink_slab_memcg()
630 			 *   list_add_tail()    clear_bit()
631 			 *   <MB>               <MB>
632 			 *   set_bit()          do_shrink_slab()
633 			 */
634 			smp_mb__after_atomic();
635 			ret = do_shrink_slab(&sc, shrinker, priority);
636 			if (ret == SHRINK_EMPTY)
637 				ret = 0;
638 			else
639 				memcg_set_shrinker_bit(memcg, nid, i);
640 		}
641 		freed += ret;
642 
643 		if (rwsem_is_contended(&shrinker_rwsem)) {
644 			freed = freed ? : 1;
645 			break;
646 		}
647 	}
648 unlock:
649 	up_read(&shrinker_rwsem);
650 	return freed;
651 }
652 #else /* CONFIG_MEMCG_KMEM */
653 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
654 			struct mem_cgroup *memcg, int priority)
655 {
656 	return 0;
657 }
658 #endif /* CONFIG_MEMCG_KMEM */
659 
660 /**
661  * shrink_slab - shrink slab caches
662  * @gfp_mask: allocation context
663  * @nid: node whose slab caches to target
664  * @memcg: memory cgroup whose slab caches to target
665  * @priority: the reclaim priority
666  *
667  * Call the shrink functions to age shrinkable caches.
668  *
669  * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
670  * unaware shrinkers will receive a node id of 0 instead.
671  *
672  * @memcg specifies the memory cgroup to target. Unaware shrinkers
673  * are called only if it is the root cgroup.
674  *
675  * @priority is sc->priority, we take the number of objects and >> by priority
676  * in order to get the scan target.
677  *
678  * Returns the number of reclaimed slab objects.
679  */
680 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
681 				 struct mem_cgroup *memcg,
682 				 int priority)
683 {
684 	unsigned long ret, freed = 0;
685 	struct shrinker *shrinker;
686 
687 	if (!mem_cgroup_is_root(memcg))
688 		return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
689 
690 	if (!down_read_trylock(&shrinker_rwsem))
691 		goto out;
692 
693 	list_for_each_entry(shrinker, &shrinker_list, list) {
694 		struct shrink_control sc = {
695 			.gfp_mask = gfp_mask,
696 			.nid = nid,
697 			.memcg = memcg,
698 		};
699 
700 		ret = do_shrink_slab(&sc, shrinker, priority);
701 		if (ret == SHRINK_EMPTY)
702 			ret = 0;
703 		freed += ret;
704 		/*
705 		 * Bail out if someone want to register a new shrinker to
706 		 * prevent the regsitration from being stalled for long periods
707 		 * by parallel ongoing shrinking.
708 		 */
709 		if (rwsem_is_contended(&shrinker_rwsem)) {
710 			freed = freed ? : 1;
711 			break;
712 		}
713 	}
714 
715 	up_read(&shrinker_rwsem);
716 out:
717 	cond_resched();
718 	return freed;
719 }
720 
721 void drop_slab_node(int nid)
722 {
723 	unsigned long freed;
724 
725 	do {
726 		struct mem_cgroup *memcg = NULL;
727 
728 		freed = 0;
729 		memcg = mem_cgroup_iter(NULL, NULL, NULL);
730 		do {
731 			freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
732 		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
733 	} while (freed > 10);
734 }
735 
736 void drop_slab(void)
737 {
738 	int nid;
739 
740 	for_each_online_node(nid)
741 		drop_slab_node(nid);
742 }
743 
744 static inline int is_page_cache_freeable(struct page *page)
745 {
746 	/*
747 	 * A freeable page cache page is referenced only by the caller
748 	 * that isolated the page, the page cache and optional buffer
749 	 * heads at page->private.
750 	 */
751 	int page_cache_pins = PageTransHuge(page) && PageSwapCache(page) ?
752 		HPAGE_PMD_NR : 1;
753 	return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
754 }
755 
756 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
757 {
758 	if (current->flags & PF_SWAPWRITE)
759 		return 1;
760 	if (!inode_write_congested(inode))
761 		return 1;
762 	if (inode_to_bdi(inode) == current->backing_dev_info)
763 		return 1;
764 	return 0;
765 }
766 
767 /*
768  * We detected a synchronous write error writing a page out.  Probably
769  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
770  * fsync(), msync() or close().
771  *
772  * The tricky part is that after writepage we cannot touch the mapping: nothing
773  * prevents it from being freed up.  But we have a ref on the page and once
774  * that page is locked, the mapping is pinned.
775  *
776  * We're allowed to run sleeping lock_page() here because we know the caller has
777  * __GFP_FS.
778  */
779 static void handle_write_error(struct address_space *mapping,
780 				struct page *page, int error)
781 {
782 	lock_page(page);
783 	if (page_mapping(page) == mapping)
784 		mapping_set_error(mapping, error);
785 	unlock_page(page);
786 }
787 
788 /* possible outcome of pageout() */
789 typedef enum {
790 	/* failed to write page out, page is locked */
791 	PAGE_KEEP,
792 	/* move page to the active list, page is locked */
793 	PAGE_ACTIVATE,
794 	/* page has been sent to the disk successfully, page is unlocked */
795 	PAGE_SUCCESS,
796 	/* page is clean and locked */
797 	PAGE_CLEAN,
798 } pageout_t;
799 
800 /*
801  * pageout is called by shrink_page_list() for each dirty page.
802  * Calls ->writepage().
803  */
804 static pageout_t pageout(struct page *page, struct address_space *mapping,
805 			 struct scan_control *sc)
806 {
807 	/*
808 	 * If the page is dirty, only perform writeback if that write
809 	 * will be non-blocking.  To prevent this allocation from being
810 	 * stalled by pagecache activity.  But note that there may be
811 	 * stalls if we need to run get_block().  We could test
812 	 * PagePrivate for that.
813 	 *
814 	 * If this process is currently in __generic_file_write_iter() against
815 	 * this page's queue, we can perform writeback even if that
816 	 * will block.
817 	 *
818 	 * If the page is swapcache, write it back even if that would
819 	 * block, for some throttling. This happens by accident, because
820 	 * swap_backing_dev_info is bust: it doesn't reflect the
821 	 * congestion state of the swapdevs.  Easy to fix, if needed.
822 	 */
823 	if (!is_page_cache_freeable(page))
824 		return PAGE_KEEP;
825 	if (!mapping) {
826 		/*
827 		 * Some data journaling orphaned pages can have
828 		 * page->mapping == NULL while being dirty with clean buffers.
829 		 */
830 		if (page_has_private(page)) {
831 			if (try_to_free_buffers(page)) {
832 				ClearPageDirty(page);
833 				pr_info("%s: orphaned page\n", __func__);
834 				return PAGE_CLEAN;
835 			}
836 		}
837 		return PAGE_KEEP;
838 	}
839 	if (mapping->a_ops->writepage == NULL)
840 		return PAGE_ACTIVATE;
841 	if (!may_write_to_inode(mapping->host, sc))
842 		return PAGE_KEEP;
843 
844 	if (clear_page_dirty_for_io(page)) {
845 		int res;
846 		struct writeback_control wbc = {
847 			.sync_mode = WB_SYNC_NONE,
848 			.nr_to_write = SWAP_CLUSTER_MAX,
849 			.range_start = 0,
850 			.range_end = LLONG_MAX,
851 			.for_reclaim = 1,
852 		};
853 
854 		SetPageReclaim(page);
855 		res = mapping->a_ops->writepage(page, &wbc);
856 		if (res < 0)
857 			handle_write_error(mapping, page, res);
858 		if (res == AOP_WRITEPAGE_ACTIVATE) {
859 			ClearPageReclaim(page);
860 			return PAGE_ACTIVATE;
861 		}
862 
863 		if (!PageWriteback(page)) {
864 			/* synchronous write or broken a_ops? */
865 			ClearPageReclaim(page);
866 		}
867 		trace_mm_vmscan_writepage(page);
868 		inc_node_page_state(page, NR_VMSCAN_WRITE);
869 		return PAGE_SUCCESS;
870 	}
871 
872 	return PAGE_CLEAN;
873 }
874 
875 /*
876  * Same as remove_mapping, but if the page is removed from the mapping, it
877  * gets returned with a refcount of 0.
878  */
879 static int __remove_mapping(struct address_space *mapping, struct page *page,
880 			    bool reclaimed)
881 {
882 	unsigned long flags;
883 	int refcount;
884 
885 	BUG_ON(!PageLocked(page));
886 	BUG_ON(mapping != page_mapping(page));
887 
888 	xa_lock_irqsave(&mapping->i_pages, flags);
889 	/*
890 	 * The non racy check for a busy page.
891 	 *
892 	 * Must be careful with the order of the tests. When someone has
893 	 * a ref to the page, it may be possible that they dirty it then
894 	 * drop the reference. So if PageDirty is tested before page_count
895 	 * here, then the following race may occur:
896 	 *
897 	 * get_user_pages(&page);
898 	 * [user mapping goes away]
899 	 * write_to(page);
900 	 *				!PageDirty(page)    [good]
901 	 * SetPageDirty(page);
902 	 * put_page(page);
903 	 *				!page_count(page)   [good, discard it]
904 	 *
905 	 * [oops, our write_to data is lost]
906 	 *
907 	 * Reversing the order of the tests ensures such a situation cannot
908 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
909 	 * load is not satisfied before that of page->_refcount.
910 	 *
911 	 * Note that if SetPageDirty is always performed via set_page_dirty,
912 	 * and thus under the i_pages lock, then this ordering is not required.
913 	 */
914 	if (unlikely(PageTransHuge(page)) && PageSwapCache(page))
915 		refcount = 1 + HPAGE_PMD_NR;
916 	else
917 		refcount = 2;
918 	if (!page_ref_freeze(page, refcount))
919 		goto cannot_free;
920 	/* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
921 	if (unlikely(PageDirty(page))) {
922 		page_ref_unfreeze(page, refcount);
923 		goto cannot_free;
924 	}
925 
926 	if (PageSwapCache(page)) {
927 		swp_entry_t swap = { .val = page_private(page) };
928 		mem_cgroup_swapout(page, swap);
929 		__delete_from_swap_cache(page, swap);
930 		xa_unlock_irqrestore(&mapping->i_pages, flags);
931 		put_swap_page(page, swap);
932 	} else {
933 		void (*freepage)(struct page *);
934 		void *shadow = NULL;
935 
936 		freepage = mapping->a_ops->freepage;
937 		/*
938 		 * Remember a shadow entry for reclaimed file cache in
939 		 * order to detect refaults, thus thrashing, later on.
940 		 *
941 		 * But don't store shadows in an address space that is
942 		 * already exiting.  This is not just an optizimation,
943 		 * inode reclaim needs to empty out the radix tree or
944 		 * the nodes are lost.  Don't plant shadows behind its
945 		 * back.
946 		 *
947 		 * We also don't store shadows for DAX mappings because the
948 		 * only page cache pages found in these are zero pages
949 		 * covering holes, and because we don't want to mix DAX
950 		 * exceptional entries and shadow exceptional entries in the
951 		 * same address_space.
952 		 */
953 		if (reclaimed && page_is_file_cache(page) &&
954 		    !mapping_exiting(mapping) && !dax_mapping(mapping))
955 			shadow = workingset_eviction(page);
956 		__delete_from_page_cache(page, shadow);
957 		xa_unlock_irqrestore(&mapping->i_pages, flags);
958 
959 		if (freepage != NULL)
960 			freepage(page);
961 	}
962 
963 	return 1;
964 
965 cannot_free:
966 	xa_unlock_irqrestore(&mapping->i_pages, flags);
967 	return 0;
968 }
969 
970 /*
971  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
972  * someone else has a ref on the page, abort and return 0.  If it was
973  * successfully detached, return 1.  Assumes the caller has a single ref on
974  * this page.
975  */
976 int remove_mapping(struct address_space *mapping, struct page *page)
977 {
978 	if (__remove_mapping(mapping, page, false)) {
979 		/*
980 		 * Unfreezing the refcount with 1 rather than 2 effectively
981 		 * drops the pagecache ref for us without requiring another
982 		 * atomic operation.
983 		 */
984 		page_ref_unfreeze(page, 1);
985 		return 1;
986 	}
987 	return 0;
988 }
989 
990 /**
991  * putback_lru_page - put previously isolated page onto appropriate LRU list
992  * @page: page to be put back to appropriate lru list
993  *
994  * Add previously isolated @page to appropriate LRU list.
995  * Page may still be unevictable for other reasons.
996  *
997  * lru_lock must not be held, interrupts must be enabled.
998  */
999 void putback_lru_page(struct page *page)
1000 {
1001 	lru_cache_add(page);
1002 	put_page(page);		/* drop ref from isolate */
1003 }
1004 
1005 enum page_references {
1006 	PAGEREF_RECLAIM,
1007 	PAGEREF_RECLAIM_CLEAN,
1008 	PAGEREF_KEEP,
1009 	PAGEREF_ACTIVATE,
1010 };
1011 
1012 static enum page_references page_check_references(struct page *page,
1013 						  struct scan_control *sc)
1014 {
1015 	int referenced_ptes, referenced_page;
1016 	unsigned long vm_flags;
1017 
1018 	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
1019 					  &vm_flags);
1020 	referenced_page = TestClearPageReferenced(page);
1021 
1022 	/*
1023 	 * Mlock lost the isolation race with us.  Let try_to_unmap()
1024 	 * move the page to the unevictable list.
1025 	 */
1026 	if (vm_flags & VM_LOCKED)
1027 		return PAGEREF_RECLAIM;
1028 
1029 	if (referenced_ptes) {
1030 		if (PageSwapBacked(page))
1031 			return PAGEREF_ACTIVATE;
1032 		/*
1033 		 * All mapped pages start out with page table
1034 		 * references from the instantiating fault, so we need
1035 		 * to look twice if a mapped file page is used more
1036 		 * than once.
1037 		 *
1038 		 * Mark it and spare it for another trip around the
1039 		 * inactive list.  Another page table reference will
1040 		 * lead to its activation.
1041 		 *
1042 		 * Note: the mark is set for activated pages as well
1043 		 * so that recently deactivated but used pages are
1044 		 * quickly recovered.
1045 		 */
1046 		SetPageReferenced(page);
1047 
1048 		if (referenced_page || referenced_ptes > 1)
1049 			return PAGEREF_ACTIVATE;
1050 
1051 		/*
1052 		 * Activate file-backed executable pages after first usage.
1053 		 */
1054 		if (vm_flags & VM_EXEC)
1055 			return PAGEREF_ACTIVATE;
1056 
1057 		return PAGEREF_KEEP;
1058 	}
1059 
1060 	/* Reclaim if clean, defer dirty pages to writeback */
1061 	if (referenced_page && !PageSwapBacked(page))
1062 		return PAGEREF_RECLAIM_CLEAN;
1063 
1064 	return PAGEREF_RECLAIM;
1065 }
1066 
1067 /* Check if a page is dirty or under writeback */
1068 static void page_check_dirty_writeback(struct page *page,
1069 				       bool *dirty, bool *writeback)
1070 {
1071 	struct address_space *mapping;
1072 
1073 	/*
1074 	 * Anonymous pages are not handled by flushers and must be written
1075 	 * from reclaim context. Do not stall reclaim based on them
1076 	 */
1077 	if (!page_is_file_cache(page) ||
1078 	    (PageAnon(page) && !PageSwapBacked(page))) {
1079 		*dirty = false;
1080 		*writeback = false;
1081 		return;
1082 	}
1083 
1084 	/* By default assume that the page flags are accurate */
1085 	*dirty = PageDirty(page);
1086 	*writeback = PageWriteback(page);
1087 
1088 	/* Verify dirty/writeback state if the filesystem supports it */
1089 	if (!page_has_private(page))
1090 		return;
1091 
1092 	mapping = page_mapping(page);
1093 	if (mapping && mapping->a_ops->is_dirty_writeback)
1094 		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1095 }
1096 
1097 /*
1098  * shrink_page_list() returns the number of reclaimed pages
1099  */
1100 static unsigned long shrink_page_list(struct list_head *page_list,
1101 				      struct pglist_data *pgdat,
1102 				      struct scan_control *sc,
1103 				      enum ttu_flags ttu_flags,
1104 				      struct reclaim_stat *stat,
1105 				      bool force_reclaim)
1106 {
1107 	LIST_HEAD(ret_pages);
1108 	LIST_HEAD(free_pages);
1109 	unsigned nr_reclaimed = 0;
1110 	unsigned pgactivate = 0;
1111 
1112 	memset(stat, 0, sizeof(*stat));
1113 	cond_resched();
1114 
1115 	while (!list_empty(page_list)) {
1116 		struct address_space *mapping;
1117 		struct page *page;
1118 		int may_enter_fs;
1119 		enum page_references references = PAGEREF_RECLAIM_CLEAN;
1120 		bool dirty, writeback;
1121 
1122 		cond_resched();
1123 
1124 		page = lru_to_page(page_list);
1125 		list_del(&page->lru);
1126 
1127 		if (!trylock_page(page))
1128 			goto keep;
1129 
1130 		VM_BUG_ON_PAGE(PageActive(page), page);
1131 
1132 		sc->nr_scanned++;
1133 
1134 		if (unlikely(!page_evictable(page)))
1135 			goto activate_locked;
1136 
1137 		if (!sc->may_unmap && page_mapped(page))
1138 			goto keep_locked;
1139 
1140 		/* Double the slab pressure for mapped and swapcache pages */
1141 		if ((page_mapped(page) || PageSwapCache(page)) &&
1142 		    !(PageAnon(page) && !PageSwapBacked(page)))
1143 			sc->nr_scanned++;
1144 
1145 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1146 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1147 
1148 		/*
1149 		 * The number of dirty pages determines if a node is marked
1150 		 * reclaim_congested which affects wait_iff_congested. kswapd
1151 		 * will stall and start writing pages if the tail of the LRU
1152 		 * is all dirty unqueued pages.
1153 		 */
1154 		page_check_dirty_writeback(page, &dirty, &writeback);
1155 		if (dirty || writeback)
1156 			stat->nr_dirty++;
1157 
1158 		if (dirty && !writeback)
1159 			stat->nr_unqueued_dirty++;
1160 
1161 		/*
1162 		 * Treat this page as congested if the underlying BDI is or if
1163 		 * pages are cycling through the LRU so quickly that the
1164 		 * pages marked for immediate reclaim are making it to the
1165 		 * end of the LRU a second time.
1166 		 */
1167 		mapping = page_mapping(page);
1168 		if (((dirty || writeback) && mapping &&
1169 		     inode_write_congested(mapping->host)) ||
1170 		    (writeback && PageReclaim(page)))
1171 			stat->nr_congested++;
1172 
1173 		/*
1174 		 * If a page at the tail of the LRU is under writeback, there
1175 		 * are three cases to consider.
1176 		 *
1177 		 * 1) If reclaim is encountering an excessive number of pages
1178 		 *    under writeback and this page is both under writeback and
1179 		 *    PageReclaim then it indicates that pages are being queued
1180 		 *    for IO but are being recycled through the LRU before the
1181 		 *    IO can complete. Waiting on the page itself risks an
1182 		 *    indefinite stall if it is impossible to writeback the
1183 		 *    page due to IO error or disconnected storage so instead
1184 		 *    note that the LRU is being scanned too quickly and the
1185 		 *    caller can stall after page list has been processed.
1186 		 *
1187 		 * 2) Global or new memcg reclaim encounters a page that is
1188 		 *    not marked for immediate reclaim, or the caller does not
1189 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1190 		 *    not to fs). In this case mark the page for immediate
1191 		 *    reclaim and continue scanning.
1192 		 *
1193 		 *    Require may_enter_fs because we would wait on fs, which
1194 		 *    may not have submitted IO yet. And the loop driver might
1195 		 *    enter reclaim, and deadlock if it waits on a page for
1196 		 *    which it is needed to do the write (loop masks off
1197 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1198 		 *    would probably show more reasons.
1199 		 *
1200 		 * 3) Legacy memcg encounters a page that is already marked
1201 		 *    PageReclaim. memcg does not have any dirty pages
1202 		 *    throttling so we could easily OOM just because too many
1203 		 *    pages are in writeback and there is nothing else to
1204 		 *    reclaim. Wait for the writeback to complete.
1205 		 *
1206 		 * In cases 1) and 2) we activate the pages to get them out of
1207 		 * the way while we continue scanning for clean pages on the
1208 		 * inactive list and refilling from the active list. The
1209 		 * observation here is that waiting for disk writes is more
1210 		 * expensive than potentially causing reloads down the line.
1211 		 * Since they're marked for immediate reclaim, they won't put
1212 		 * memory pressure on the cache working set any longer than it
1213 		 * takes to write them to disk.
1214 		 */
1215 		if (PageWriteback(page)) {
1216 			/* Case 1 above */
1217 			if (current_is_kswapd() &&
1218 			    PageReclaim(page) &&
1219 			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1220 				stat->nr_immediate++;
1221 				goto activate_locked;
1222 
1223 			/* Case 2 above */
1224 			} else if (sane_reclaim(sc) ||
1225 			    !PageReclaim(page) || !may_enter_fs) {
1226 				/*
1227 				 * This is slightly racy - end_page_writeback()
1228 				 * might have just cleared PageReclaim, then
1229 				 * setting PageReclaim here end up interpreted
1230 				 * as PageReadahead - but that does not matter
1231 				 * enough to care.  What we do want is for this
1232 				 * page to have PageReclaim set next time memcg
1233 				 * reclaim reaches the tests above, so it will
1234 				 * then wait_on_page_writeback() to avoid OOM;
1235 				 * and it's also appropriate in global reclaim.
1236 				 */
1237 				SetPageReclaim(page);
1238 				stat->nr_writeback++;
1239 				goto activate_locked;
1240 
1241 			/* Case 3 above */
1242 			} else {
1243 				unlock_page(page);
1244 				wait_on_page_writeback(page);
1245 				/* then go back and try same page again */
1246 				list_add_tail(&page->lru, page_list);
1247 				continue;
1248 			}
1249 		}
1250 
1251 		if (!force_reclaim)
1252 			references = page_check_references(page, sc);
1253 
1254 		switch (references) {
1255 		case PAGEREF_ACTIVATE:
1256 			goto activate_locked;
1257 		case PAGEREF_KEEP:
1258 			stat->nr_ref_keep++;
1259 			goto keep_locked;
1260 		case PAGEREF_RECLAIM:
1261 		case PAGEREF_RECLAIM_CLEAN:
1262 			; /* try to reclaim the page below */
1263 		}
1264 
1265 		/*
1266 		 * Anonymous process memory has backing store?
1267 		 * Try to allocate it some swap space here.
1268 		 * Lazyfree page could be freed directly
1269 		 */
1270 		if (PageAnon(page) && PageSwapBacked(page)) {
1271 			if (!PageSwapCache(page)) {
1272 				if (!(sc->gfp_mask & __GFP_IO))
1273 					goto keep_locked;
1274 				if (PageTransHuge(page)) {
1275 					/* cannot split THP, skip it */
1276 					if (!can_split_huge_page(page, NULL))
1277 						goto activate_locked;
1278 					/*
1279 					 * Split pages without a PMD map right
1280 					 * away. Chances are some or all of the
1281 					 * tail pages can be freed without IO.
1282 					 */
1283 					if (!compound_mapcount(page) &&
1284 					    split_huge_page_to_list(page,
1285 								    page_list))
1286 						goto activate_locked;
1287 				}
1288 				if (!add_to_swap(page)) {
1289 					if (!PageTransHuge(page))
1290 						goto activate_locked;
1291 					/* Fallback to swap normal pages */
1292 					if (split_huge_page_to_list(page,
1293 								    page_list))
1294 						goto activate_locked;
1295 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1296 					count_vm_event(THP_SWPOUT_FALLBACK);
1297 #endif
1298 					if (!add_to_swap(page))
1299 						goto activate_locked;
1300 				}
1301 
1302 				may_enter_fs = 1;
1303 
1304 				/* Adding to swap updated mapping */
1305 				mapping = page_mapping(page);
1306 			}
1307 		} else if (unlikely(PageTransHuge(page))) {
1308 			/* Split file THP */
1309 			if (split_huge_page_to_list(page, page_list))
1310 				goto keep_locked;
1311 		}
1312 
1313 		/*
1314 		 * The page is mapped into the page tables of one or more
1315 		 * processes. Try to unmap it here.
1316 		 */
1317 		if (page_mapped(page)) {
1318 			enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1319 
1320 			if (unlikely(PageTransHuge(page)))
1321 				flags |= TTU_SPLIT_HUGE_PMD;
1322 			if (!try_to_unmap(page, flags)) {
1323 				stat->nr_unmap_fail++;
1324 				goto activate_locked;
1325 			}
1326 		}
1327 
1328 		if (PageDirty(page)) {
1329 			/*
1330 			 * Only kswapd can writeback filesystem pages
1331 			 * to avoid risk of stack overflow. But avoid
1332 			 * injecting inefficient single-page IO into
1333 			 * flusher writeback as much as possible: only
1334 			 * write pages when we've encountered many
1335 			 * dirty pages, and when we've already scanned
1336 			 * the rest of the LRU for clean pages and see
1337 			 * the same dirty pages again (PageReclaim).
1338 			 */
1339 			if (page_is_file_cache(page) &&
1340 			    (!current_is_kswapd() || !PageReclaim(page) ||
1341 			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1342 				/*
1343 				 * Immediately reclaim when written back.
1344 				 * Similar in principal to deactivate_page()
1345 				 * except we already have the page isolated
1346 				 * and know it's dirty
1347 				 */
1348 				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1349 				SetPageReclaim(page);
1350 
1351 				goto activate_locked;
1352 			}
1353 
1354 			if (references == PAGEREF_RECLAIM_CLEAN)
1355 				goto keep_locked;
1356 			if (!may_enter_fs)
1357 				goto keep_locked;
1358 			if (!sc->may_writepage)
1359 				goto keep_locked;
1360 
1361 			/*
1362 			 * Page is dirty. Flush the TLB if a writable entry
1363 			 * potentially exists to avoid CPU writes after IO
1364 			 * starts and then write it out here.
1365 			 */
1366 			try_to_unmap_flush_dirty();
1367 			switch (pageout(page, mapping, sc)) {
1368 			case PAGE_KEEP:
1369 				goto keep_locked;
1370 			case PAGE_ACTIVATE:
1371 				goto activate_locked;
1372 			case PAGE_SUCCESS:
1373 				if (PageWriteback(page))
1374 					goto keep;
1375 				if (PageDirty(page))
1376 					goto keep;
1377 
1378 				/*
1379 				 * A synchronous write - probably a ramdisk.  Go
1380 				 * ahead and try to reclaim the page.
1381 				 */
1382 				if (!trylock_page(page))
1383 					goto keep;
1384 				if (PageDirty(page) || PageWriteback(page))
1385 					goto keep_locked;
1386 				mapping = page_mapping(page);
1387 			case PAGE_CLEAN:
1388 				; /* try to free the page below */
1389 			}
1390 		}
1391 
1392 		/*
1393 		 * If the page has buffers, try to free the buffer mappings
1394 		 * associated with this page. If we succeed we try to free
1395 		 * the page as well.
1396 		 *
1397 		 * We do this even if the page is PageDirty().
1398 		 * try_to_release_page() does not perform I/O, but it is
1399 		 * possible for a page to have PageDirty set, but it is actually
1400 		 * clean (all its buffers are clean).  This happens if the
1401 		 * buffers were written out directly, with submit_bh(). ext3
1402 		 * will do this, as well as the blockdev mapping.
1403 		 * try_to_release_page() will discover that cleanness and will
1404 		 * drop the buffers and mark the page clean - it can be freed.
1405 		 *
1406 		 * Rarely, pages can have buffers and no ->mapping.  These are
1407 		 * the pages which were not successfully invalidated in
1408 		 * truncate_complete_page().  We try to drop those buffers here
1409 		 * and if that worked, and the page is no longer mapped into
1410 		 * process address space (page_count == 1) it can be freed.
1411 		 * Otherwise, leave the page on the LRU so it is swappable.
1412 		 */
1413 		if (page_has_private(page)) {
1414 			if (!try_to_release_page(page, sc->gfp_mask))
1415 				goto activate_locked;
1416 			if (!mapping && page_count(page) == 1) {
1417 				unlock_page(page);
1418 				if (put_page_testzero(page))
1419 					goto free_it;
1420 				else {
1421 					/*
1422 					 * rare race with speculative reference.
1423 					 * the speculative reference will free
1424 					 * this page shortly, so we may
1425 					 * increment nr_reclaimed here (and
1426 					 * leave it off the LRU).
1427 					 */
1428 					nr_reclaimed++;
1429 					continue;
1430 				}
1431 			}
1432 		}
1433 
1434 		if (PageAnon(page) && !PageSwapBacked(page)) {
1435 			/* follow __remove_mapping for reference */
1436 			if (!page_ref_freeze(page, 1))
1437 				goto keep_locked;
1438 			if (PageDirty(page)) {
1439 				page_ref_unfreeze(page, 1);
1440 				goto keep_locked;
1441 			}
1442 
1443 			count_vm_event(PGLAZYFREED);
1444 			count_memcg_page_event(page, PGLAZYFREED);
1445 		} else if (!mapping || !__remove_mapping(mapping, page, true))
1446 			goto keep_locked;
1447 
1448 		unlock_page(page);
1449 free_it:
1450 		nr_reclaimed++;
1451 
1452 		/*
1453 		 * Is there need to periodically free_page_list? It would
1454 		 * appear not as the counts should be low
1455 		 */
1456 		if (unlikely(PageTransHuge(page))) {
1457 			mem_cgroup_uncharge(page);
1458 			(*get_compound_page_dtor(page))(page);
1459 		} else
1460 			list_add(&page->lru, &free_pages);
1461 		continue;
1462 
1463 activate_locked:
1464 		/* Not a candidate for swapping, so reclaim swap space. */
1465 		if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1466 						PageMlocked(page)))
1467 			try_to_free_swap(page);
1468 		VM_BUG_ON_PAGE(PageActive(page), page);
1469 		if (!PageMlocked(page)) {
1470 			int type = page_is_file_cache(page);
1471 			SetPageActive(page);
1472 			pgactivate++;
1473 			stat->nr_activate[type] += hpage_nr_pages(page);
1474 			count_memcg_page_event(page, PGACTIVATE);
1475 		}
1476 keep_locked:
1477 		unlock_page(page);
1478 keep:
1479 		list_add(&page->lru, &ret_pages);
1480 		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1481 	}
1482 
1483 	mem_cgroup_uncharge_list(&free_pages);
1484 	try_to_unmap_flush();
1485 	free_unref_page_list(&free_pages);
1486 
1487 	list_splice(&ret_pages, page_list);
1488 	count_vm_events(PGACTIVATE, pgactivate);
1489 
1490 	return nr_reclaimed;
1491 }
1492 
1493 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1494 					    struct list_head *page_list)
1495 {
1496 	struct scan_control sc = {
1497 		.gfp_mask = GFP_KERNEL,
1498 		.priority = DEF_PRIORITY,
1499 		.may_unmap = 1,
1500 	};
1501 	struct reclaim_stat dummy_stat;
1502 	unsigned long ret;
1503 	struct page *page, *next;
1504 	LIST_HEAD(clean_pages);
1505 
1506 	list_for_each_entry_safe(page, next, page_list, lru) {
1507 		if (page_is_file_cache(page) && !PageDirty(page) &&
1508 		    !__PageMovable(page) && !PageUnevictable(page)) {
1509 			ClearPageActive(page);
1510 			list_move(&page->lru, &clean_pages);
1511 		}
1512 	}
1513 
1514 	ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1515 			TTU_IGNORE_ACCESS, &dummy_stat, true);
1516 	list_splice(&clean_pages, page_list);
1517 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1518 	return ret;
1519 }
1520 
1521 /*
1522  * Attempt to remove the specified page from its LRU.  Only take this page
1523  * if it is of the appropriate PageActive status.  Pages which are being
1524  * freed elsewhere are also ignored.
1525  *
1526  * page:	page to consider
1527  * mode:	one of the LRU isolation modes defined above
1528  *
1529  * returns 0 on success, -ve errno on failure.
1530  */
1531 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1532 {
1533 	int ret = -EINVAL;
1534 
1535 	/* Only take pages on the LRU. */
1536 	if (!PageLRU(page))
1537 		return ret;
1538 
1539 	/* Compaction should not handle unevictable pages but CMA can do so */
1540 	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1541 		return ret;
1542 
1543 	ret = -EBUSY;
1544 
1545 	/*
1546 	 * To minimise LRU disruption, the caller can indicate that it only
1547 	 * wants to isolate pages it will be able to operate on without
1548 	 * blocking - clean pages for the most part.
1549 	 *
1550 	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1551 	 * that it is possible to migrate without blocking
1552 	 */
1553 	if (mode & ISOLATE_ASYNC_MIGRATE) {
1554 		/* All the caller can do on PageWriteback is block */
1555 		if (PageWriteback(page))
1556 			return ret;
1557 
1558 		if (PageDirty(page)) {
1559 			struct address_space *mapping;
1560 			bool migrate_dirty;
1561 
1562 			/*
1563 			 * Only pages without mappings or that have a
1564 			 * ->migratepage callback are possible to migrate
1565 			 * without blocking. However, we can be racing with
1566 			 * truncation so it's necessary to lock the page
1567 			 * to stabilise the mapping as truncation holds
1568 			 * the page lock until after the page is removed
1569 			 * from the page cache.
1570 			 */
1571 			if (!trylock_page(page))
1572 				return ret;
1573 
1574 			mapping = page_mapping(page);
1575 			migrate_dirty = !mapping || mapping->a_ops->migratepage;
1576 			unlock_page(page);
1577 			if (!migrate_dirty)
1578 				return ret;
1579 		}
1580 	}
1581 
1582 	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1583 		return ret;
1584 
1585 	if (likely(get_page_unless_zero(page))) {
1586 		/*
1587 		 * Be careful not to clear PageLRU until after we're
1588 		 * sure the page is not being freed elsewhere -- the
1589 		 * page release code relies on it.
1590 		 */
1591 		ClearPageLRU(page);
1592 		ret = 0;
1593 	}
1594 
1595 	return ret;
1596 }
1597 
1598 
1599 /*
1600  * Update LRU sizes after isolating pages. The LRU size updates must
1601  * be complete before mem_cgroup_update_lru_size due to a santity check.
1602  */
1603 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1604 			enum lru_list lru, unsigned long *nr_zone_taken)
1605 {
1606 	int zid;
1607 
1608 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1609 		if (!nr_zone_taken[zid])
1610 			continue;
1611 
1612 		__update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1613 #ifdef CONFIG_MEMCG
1614 		mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1615 #endif
1616 	}
1617 
1618 }
1619 
1620 /**
1621  * pgdat->lru_lock is heavily contended.  Some of the functions that
1622  * shrink the lists perform better by taking out a batch of pages
1623  * and working on them outside the LRU lock.
1624  *
1625  * For pagecache intensive workloads, this function is the hottest
1626  * spot in the kernel (apart from copy_*_user functions).
1627  *
1628  * Appropriate locks must be held before calling this function.
1629  *
1630  * @nr_to_scan:	The number of eligible pages to look through on the list.
1631  * @lruvec:	The LRU vector to pull pages from.
1632  * @dst:	The temp list to put pages on to.
1633  * @nr_scanned:	The number of pages that were scanned.
1634  * @sc:		The scan_control struct for this reclaim session
1635  * @mode:	One of the LRU isolation modes
1636  * @lru:	LRU list id for isolating
1637  *
1638  * returns how many pages were moved onto *@dst.
1639  */
1640 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1641 		struct lruvec *lruvec, struct list_head *dst,
1642 		unsigned long *nr_scanned, struct scan_control *sc,
1643 		enum lru_list lru)
1644 {
1645 	struct list_head *src = &lruvec->lists[lru];
1646 	unsigned long nr_taken = 0;
1647 	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1648 	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1649 	unsigned long skipped = 0;
1650 	unsigned long scan, total_scan, nr_pages;
1651 	LIST_HEAD(pages_skipped);
1652 	isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
1653 
1654 	scan = 0;
1655 	for (total_scan = 0;
1656 	     scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src);
1657 	     total_scan++) {
1658 		struct page *page;
1659 
1660 		page = lru_to_page(src);
1661 		prefetchw_prev_lru_page(page, src, flags);
1662 
1663 		VM_BUG_ON_PAGE(!PageLRU(page), page);
1664 
1665 		if (page_zonenum(page) > sc->reclaim_idx) {
1666 			list_move(&page->lru, &pages_skipped);
1667 			nr_skipped[page_zonenum(page)]++;
1668 			continue;
1669 		}
1670 
1671 		/*
1672 		 * Do not count skipped pages because that makes the function
1673 		 * return with no isolated pages if the LRU mostly contains
1674 		 * ineligible pages.  This causes the VM to not reclaim any
1675 		 * pages, triggering a premature OOM.
1676 		 */
1677 		scan++;
1678 		switch (__isolate_lru_page(page, mode)) {
1679 		case 0:
1680 			nr_pages = hpage_nr_pages(page);
1681 			nr_taken += nr_pages;
1682 			nr_zone_taken[page_zonenum(page)] += nr_pages;
1683 			list_move(&page->lru, dst);
1684 			break;
1685 
1686 		case -EBUSY:
1687 			/* else it is being freed elsewhere */
1688 			list_move(&page->lru, src);
1689 			continue;
1690 
1691 		default:
1692 			BUG();
1693 		}
1694 	}
1695 
1696 	/*
1697 	 * Splice any skipped pages to the start of the LRU list. Note that
1698 	 * this disrupts the LRU order when reclaiming for lower zones but
1699 	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1700 	 * scanning would soon rescan the same pages to skip and put the
1701 	 * system at risk of premature OOM.
1702 	 */
1703 	if (!list_empty(&pages_skipped)) {
1704 		int zid;
1705 
1706 		list_splice(&pages_skipped, src);
1707 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1708 			if (!nr_skipped[zid])
1709 				continue;
1710 
1711 			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1712 			skipped += nr_skipped[zid];
1713 		}
1714 	}
1715 	*nr_scanned = total_scan;
1716 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1717 				    total_scan, skipped, nr_taken, mode, lru);
1718 	update_lru_sizes(lruvec, lru, nr_zone_taken);
1719 	return nr_taken;
1720 }
1721 
1722 /**
1723  * isolate_lru_page - tries to isolate a page from its LRU list
1724  * @page: page to isolate from its LRU list
1725  *
1726  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1727  * vmstat statistic corresponding to whatever LRU list the page was on.
1728  *
1729  * Returns 0 if the page was removed from an LRU list.
1730  * Returns -EBUSY if the page was not on an LRU list.
1731  *
1732  * The returned page will have PageLRU() cleared.  If it was found on
1733  * the active list, it will have PageActive set.  If it was found on
1734  * the unevictable list, it will have the PageUnevictable bit set. That flag
1735  * may need to be cleared by the caller before letting the page go.
1736  *
1737  * The vmstat statistic corresponding to the list on which the page was
1738  * found will be decremented.
1739  *
1740  * Restrictions:
1741  *
1742  * (1) Must be called with an elevated refcount on the page. This is a
1743  *     fundamentnal difference from isolate_lru_pages (which is called
1744  *     without a stable reference).
1745  * (2) the lru_lock must not be held.
1746  * (3) interrupts must be enabled.
1747  */
1748 int isolate_lru_page(struct page *page)
1749 {
1750 	int ret = -EBUSY;
1751 
1752 	VM_BUG_ON_PAGE(!page_count(page), page);
1753 	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1754 
1755 	if (PageLRU(page)) {
1756 		pg_data_t *pgdat = page_pgdat(page);
1757 		struct lruvec *lruvec;
1758 
1759 		spin_lock_irq(&pgdat->lru_lock);
1760 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1761 		if (PageLRU(page)) {
1762 			int lru = page_lru(page);
1763 			get_page(page);
1764 			ClearPageLRU(page);
1765 			del_page_from_lru_list(page, lruvec, lru);
1766 			ret = 0;
1767 		}
1768 		spin_unlock_irq(&pgdat->lru_lock);
1769 	}
1770 	return ret;
1771 }
1772 
1773 /*
1774  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1775  * then get resheduled. When there are massive number of tasks doing page
1776  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1777  * the LRU list will go small and be scanned faster than necessary, leading to
1778  * unnecessary swapping, thrashing and OOM.
1779  */
1780 static int too_many_isolated(struct pglist_data *pgdat, int file,
1781 		struct scan_control *sc)
1782 {
1783 	unsigned long inactive, isolated;
1784 
1785 	if (current_is_kswapd())
1786 		return 0;
1787 
1788 	if (!sane_reclaim(sc))
1789 		return 0;
1790 
1791 	if (file) {
1792 		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1793 		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1794 	} else {
1795 		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1796 		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1797 	}
1798 
1799 	/*
1800 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1801 	 * won't get blocked by normal direct-reclaimers, forming a circular
1802 	 * deadlock.
1803 	 */
1804 	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1805 		inactive >>= 3;
1806 
1807 	return isolated > inactive;
1808 }
1809 
1810 /*
1811  * This moves pages from @list to corresponding LRU list.
1812  *
1813  * We move them the other way if the page is referenced by one or more
1814  * processes, from rmap.
1815  *
1816  * If the pages are mostly unmapped, the processing is fast and it is
1817  * appropriate to hold zone_lru_lock across the whole operation.  But if
1818  * the pages are mapped, the processing is slow (page_referenced()) so we
1819  * should drop zone_lru_lock around each page.  It's impossible to balance
1820  * this, so instead we remove the pages from the LRU while processing them.
1821  * It is safe to rely on PG_active against the non-LRU pages in here because
1822  * nobody will play with that bit on a non-LRU page.
1823  *
1824  * The downside is that we have to touch page->_refcount against each page.
1825  * But we had to alter page->flags anyway.
1826  *
1827  * Returns the number of pages moved to the given lruvec.
1828  */
1829 
1830 static unsigned noinline_for_stack move_pages_to_lru(struct lruvec *lruvec,
1831 						     struct list_head *list)
1832 {
1833 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1834 	int nr_pages, nr_moved = 0;
1835 	LIST_HEAD(pages_to_free);
1836 	struct page *page;
1837 	enum lru_list lru;
1838 
1839 	while (!list_empty(list)) {
1840 		page = lru_to_page(list);
1841 		VM_BUG_ON_PAGE(PageLRU(page), page);
1842 		if (unlikely(!page_evictable(page))) {
1843 			list_del(&page->lru);
1844 			spin_unlock_irq(&pgdat->lru_lock);
1845 			putback_lru_page(page);
1846 			spin_lock_irq(&pgdat->lru_lock);
1847 			continue;
1848 		}
1849 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1850 
1851 		SetPageLRU(page);
1852 		lru = page_lru(page);
1853 
1854 		nr_pages = hpage_nr_pages(page);
1855 		update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1856 		list_move(&page->lru, &lruvec->lists[lru]);
1857 
1858 		if (put_page_testzero(page)) {
1859 			__ClearPageLRU(page);
1860 			__ClearPageActive(page);
1861 			del_page_from_lru_list(page, lruvec, lru);
1862 
1863 			if (unlikely(PageCompound(page))) {
1864 				spin_unlock_irq(&pgdat->lru_lock);
1865 				mem_cgroup_uncharge(page);
1866 				(*get_compound_page_dtor(page))(page);
1867 				spin_lock_irq(&pgdat->lru_lock);
1868 			} else
1869 				list_add(&page->lru, &pages_to_free);
1870 		} else {
1871 			nr_moved += nr_pages;
1872 		}
1873 	}
1874 
1875 	/*
1876 	 * To save our caller's stack, now use input list for pages to free.
1877 	 */
1878 	list_splice(&pages_to_free, list);
1879 
1880 	return nr_moved;
1881 }
1882 
1883 /*
1884  * If a kernel thread (such as nfsd for loop-back mounts) services
1885  * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1886  * In that case we should only throttle if the backing device it is
1887  * writing to is congested.  In other cases it is safe to throttle.
1888  */
1889 static int current_may_throttle(void)
1890 {
1891 	return !(current->flags & PF_LESS_THROTTLE) ||
1892 		current->backing_dev_info == NULL ||
1893 		bdi_write_congested(current->backing_dev_info);
1894 }
1895 
1896 /*
1897  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
1898  * of reclaimed pages
1899  */
1900 static noinline_for_stack unsigned long
1901 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1902 		     struct scan_control *sc, enum lru_list lru)
1903 {
1904 	LIST_HEAD(page_list);
1905 	unsigned long nr_scanned;
1906 	unsigned long nr_reclaimed = 0;
1907 	unsigned long nr_taken;
1908 	struct reclaim_stat stat;
1909 	int file = is_file_lru(lru);
1910 	enum vm_event_item item;
1911 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1912 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1913 	bool stalled = false;
1914 
1915 	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1916 		if (stalled)
1917 			return 0;
1918 
1919 		/* wait a bit for the reclaimer. */
1920 		msleep(100);
1921 		stalled = true;
1922 
1923 		/* We are about to die and free our memory. Return now. */
1924 		if (fatal_signal_pending(current))
1925 			return SWAP_CLUSTER_MAX;
1926 	}
1927 
1928 	lru_add_drain();
1929 
1930 	spin_lock_irq(&pgdat->lru_lock);
1931 
1932 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1933 				     &nr_scanned, sc, lru);
1934 
1935 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1936 	reclaim_stat->recent_scanned[file] += nr_taken;
1937 
1938 	item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
1939 	if (global_reclaim(sc))
1940 		__count_vm_events(item, nr_scanned);
1941 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
1942 	spin_unlock_irq(&pgdat->lru_lock);
1943 
1944 	if (nr_taken == 0)
1945 		return 0;
1946 
1947 	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1948 				&stat, false);
1949 
1950 	spin_lock_irq(&pgdat->lru_lock);
1951 
1952 	item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
1953 	if (global_reclaim(sc))
1954 		__count_vm_events(item, nr_reclaimed);
1955 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
1956 	reclaim_stat->recent_rotated[0] += stat.nr_activate[0];
1957 	reclaim_stat->recent_rotated[1] += stat.nr_activate[1];
1958 
1959 	move_pages_to_lru(lruvec, &page_list);
1960 
1961 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1962 
1963 	spin_unlock_irq(&pgdat->lru_lock);
1964 
1965 	mem_cgroup_uncharge_list(&page_list);
1966 	free_unref_page_list(&page_list);
1967 
1968 	/*
1969 	 * If dirty pages are scanned that are not queued for IO, it
1970 	 * implies that flushers are not doing their job. This can
1971 	 * happen when memory pressure pushes dirty pages to the end of
1972 	 * the LRU before the dirty limits are breached and the dirty
1973 	 * data has expired. It can also happen when the proportion of
1974 	 * dirty pages grows not through writes but through memory
1975 	 * pressure reclaiming all the clean cache. And in some cases,
1976 	 * the flushers simply cannot keep up with the allocation
1977 	 * rate. Nudge the flusher threads in case they are asleep.
1978 	 */
1979 	if (stat.nr_unqueued_dirty == nr_taken)
1980 		wakeup_flusher_threads(WB_REASON_VMSCAN);
1981 
1982 	sc->nr.dirty += stat.nr_dirty;
1983 	sc->nr.congested += stat.nr_congested;
1984 	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
1985 	sc->nr.writeback += stat.nr_writeback;
1986 	sc->nr.immediate += stat.nr_immediate;
1987 	sc->nr.taken += nr_taken;
1988 	if (file)
1989 		sc->nr.file_taken += nr_taken;
1990 
1991 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1992 			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
1993 	return nr_reclaimed;
1994 }
1995 
1996 static void shrink_active_list(unsigned long nr_to_scan,
1997 			       struct lruvec *lruvec,
1998 			       struct scan_control *sc,
1999 			       enum lru_list lru)
2000 {
2001 	unsigned long nr_taken;
2002 	unsigned long nr_scanned;
2003 	unsigned long vm_flags;
2004 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
2005 	LIST_HEAD(l_active);
2006 	LIST_HEAD(l_inactive);
2007 	struct page *page;
2008 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2009 	unsigned nr_deactivate, nr_activate;
2010 	unsigned nr_rotated = 0;
2011 	int file = is_file_lru(lru);
2012 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2013 
2014 	lru_add_drain();
2015 
2016 	spin_lock_irq(&pgdat->lru_lock);
2017 
2018 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2019 				     &nr_scanned, sc, lru);
2020 
2021 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2022 	reclaim_stat->recent_scanned[file] += nr_taken;
2023 
2024 	__count_vm_events(PGREFILL, nr_scanned);
2025 	__count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2026 
2027 	spin_unlock_irq(&pgdat->lru_lock);
2028 
2029 	while (!list_empty(&l_hold)) {
2030 		cond_resched();
2031 		page = lru_to_page(&l_hold);
2032 		list_del(&page->lru);
2033 
2034 		if (unlikely(!page_evictable(page))) {
2035 			putback_lru_page(page);
2036 			continue;
2037 		}
2038 
2039 		if (unlikely(buffer_heads_over_limit)) {
2040 			if (page_has_private(page) && trylock_page(page)) {
2041 				if (page_has_private(page))
2042 					try_to_release_page(page, 0);
2043 				unlock_page(page);
2044 			}
2045 		}
2046 
2047 		if (page_referenced(page, 0, sc->target_mem_cgroup,
2048 				    &vm_flags)) {
2049 			nr_rotated += hpage_nr_pages(page);
2050 			/*
2051 			 * Identify referenced, file-backed active pages and
2052 			 * give them one more trip around the active list. So
2053 			 * that executable code get better chances to stay in
2054 			 * memory under moderate memory pressure.  Anon pages
2055 			 * are not likely to be evicted by use-once streaming
2056 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
2057 			 * so we ignore them here.
2058 			 */
2059 			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
2060 				list_add(&page->lru, &l_active);
2061 				continue;
2062 			}
2063 		}
2064 
2065 		ClearPageActive(page);	/* we are de-activating */
2066 		SetPageWorkingset(page);
2067 		list_add(&page->lru, &l_inactive);
2068 	}
2069 
2070 	/*
2071 	 * Move pages back to the lru list.
2072 	 */
2073 	spin_lock_irq(&pgdat->lru_lock);
2074 	/*
2075 	 * Count referenced pages from currently used mappings as rotated,
2076 	 * even though only some of them are actually re-activated.  This
2077 	 * helps balance scan pressure between file and anonymous pages in
2078 	 * get_scan_count.
2079 	 */
2080 	reclaim_stat->recent_rotated[file] += nr_rotated;
2081 
2082 	nr_activate = move_pages_to_lru(lruvec, &l_active);
2083 	nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
2084 	/* Keep all free pages in l_active list */
2085 	list_splice(&l_inactive, &l_active);
2086 
2087 	__count_vm_events(PGDEACTIVATE, nr_deactivate);
2088 	__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2089 
2090 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2091 	spin_unlock_irq(&pgdat->lru_lock);
2092 
2093 	mem_cgroup_uncharge_list(&l_active);
2094 	free_unref_page_list(&l_active);
2095 	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2096 			nr_deactivate, nr_rotated, sc->priority, file);
2097 }
2098 
2099 /*
2100  * The inactive anon list should be small enough that the VM never has
2101  * to do too much work.
2102  *
2103  * The inactive file list should be small enough to leave most memory
2104  * to the established workingset on the scan-resistant active list,
2105  * but large enough to avoid thrashing the aggregate readahead window.
2106  *
2107  * Both inactive lists should also be large enough that each inactive
2108  * page has a chance to be referenced again before it is reclaimed.
2109  *
2110  * If that fails and refaulting is observed, the inactive list grows.
2111  *
2112  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2113  * on this LRU, maintained by the pageout code. An inactive_ratio
2114  * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2115  *
2116  * total     target    max
2117  * memory    ratio     inactive
2118  * -------------------------------------
2119  *   10MB       1         5MB
2120  *  100MB       1        50MB
2121  *    1GB       3       250MB
2122  *   10GB      10       0.9GB
2123  *  100GB      31         3GB
2124  *    1TB     101        10GB
2125  *   10TB     320        32GB
2126  */
2127 static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2128 				 struct scan_control *sc, bool actual_reclaim)
2129 {
2130 	enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2131 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2132 	enum lru_list inactive_lru = file * LRU_FILE;
2133 	unsigned long inactive, active;
2134 	unsigned long inactive_ratio;
2135 	unsigned long refaults;
2136 	unsigned long gb;
2137 
2138 	/*
2139 	 * If we don't have swap space, anonymous page deactivation
2140 	 * is pointless.
2141 	 */
2142 	if (!file && !total_swap_pages)
2143 		return false;
2144 
2145 	inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2146 	active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2147 
2148 	/*
2149 	 * When refaults are being observed, it means a new workingset
2150 	 * is being established. Disable active list protection to get
2151 	 * rid of the stale workingset quickly.
2152 	 */
2153 	refaults = lruvec_page_state_local(lruvec, WORKINGSET_ACTIVATE);
2154 	if (file && actual_reclaim && lruvec->refaults != refaults) {
2155 		inactive_ratio = 0;
2156 	} else {
2157 		gb = (inactive + active) >> (30 - PAGE_SHIFT);
2158 		if (gb)
2159 			inactive_ratio = int_sqrt(10 * gb);
2160 		else
2161 			inactive_ratio = 1;
2162 	}
2163 
2164 	if (actual_reclaim)
2165 		trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
2166 			lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2167 			lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2168 			inactive_ratio, file);
2169 
2170 	return inactive * inactive_ratio < active;
2171 }
2172 
2173 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2174 				 struct lruvec *lruvec, struct scan_control *sc)
2175 {
2176 	if (is_active_lru(lru)) {
2177 		if (inactive_list_is_low(lruvec, is_file_lru(lru), sc, true))
2178 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2179 		return 0;
2180 	}
2181 
2182 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2183 }
2184 
2185 enum scan_balance {
2186 	SCAN_EQUAL,
2187 	SCAN_FRACT,
2188 	SCAN_ANON,
2189 	SCAN_FILE,
2190 };
2191 
2192 /*
2193  * Determine how aggressively the anon and file LRU lists should be
2194  * scanned.  The relative value of each set of LRU lists is determined
2195  * by looking at the fraction of the pages scanned we did rotate back
2196  * onto the active list instead of evict.
2197  *
2198  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2199  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2200  */
2201 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2202 			   struct scan_control *sc, unsigned long *nr,
2203 			   unsigned long *lru_pages)
2204 {
2205 	int swappiness = mem_cgroup_swappiness(memcg);
2206 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2207 	u64 fraction[2];
2208 	u64 denominator = 0;	/* gcc */
2209 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2210 	unsigned long anon_prio, file_prio;
2211 	enum scan_balance scan_balance;
2212 	unsigned long anon, file;
2213 	unsigned long ap, fp;
2214 	enum lru_list lru;
2215 
2216 	/* If we have no swap space, do not bother scanning anon pages. */
2217 	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2218 		scan_balance = SCAN_FILE;
2219 		goto out;
2220 	}
2221 
2222 	/*
2223 	 * Global reclaim will swap to prevent OOM even with no
2224 	 * swappiness, but memcg users want to use this knob to
2225 	 * disable swapping for individual groups completely when
2226 	 * using the memory controller's swap limit feature would be
2227 	 * too expensive.
2228 	 */
2229 	if (!global_reclaim(sc) && !swappiness) {
2230 		scan_balance = SCAN_FILE;
2231 		goto out;
2232 	}
2233 
2234 	/*
2235 	 * Do not apply any pressure balancing cleverness when the
2236 	 * system is close to OOM, scan both anon and file equally
2237 	 * (unless the swappiness setting disagrees with swapping).
2238 	 */
2239 	if (!sc->priority && swappiness) {
2240 		scan_balance = SCAN_EQUAL;
2241 		goto out;
2242 	}
2243 
2244 	/*
2245 	 * Prevent the reclaimer from falling into the cache trap: as
2246 	 * cache pages start out inactive, every cache fault will tip
2247 	 * the scan balance towards the file LRU.  And as the file LRU
2248 	 * shrinks, so does the window for rotation from references.
2249 	 * This means we have a runaway feedback loop where a tiny
2250 	 * thrashing file LRU becomes infinitely more attractive than
2251 	 * anon pages.  Try to detect this based on file LRU size.
2252 	 */
2253 	if (global_reclaim(sc)) {
2254 		unsigned long pgdatfile;
2255 		unsigned long pgdatfree;
2256 		int z;
2257 		unsigned long total_high_wmark = 0;
2258 
2259 		pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2260 		pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2261 			   node_page_state(pgdat, NR_INACTIVE_FILE);
2262 
2263 		for (z = 0; z < MAX_NR_ZONES; z++) {
2264 			struct zone *zone = &pgdat->node_zones[z];
2265 			if (!managed_zone(zone))
2266 				continue;
2267 
2268 			total_high_wmark += high_wmark_pages(zone);
2269 		}
2270 
2271 		if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2272 			/*
2273 			 * Force SCAN_ANON if there are enough inactive
2274 			 * anonymous pages on the LRU in eligible zones.
2275 			 * Otherwise, the small LRU gets thrashed.
2276 			 */
2277 			if (!inactive_list_is_low(lruvec, false, sc, false) &&
2278 			    lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
2279 					>> sc->priority) {
2280 				scan_balance = SCAN_ANON;
2281 				goto out;
2282 			}
2283 		}
2284 	}
2285 
2286 	/*
2287 	 * If there is enough inactive page cache, i.e. if the size of the
2288 	 * inactive list is greater than that of the active list *and* the
2289 	 * inactive list actually has some pages to scan on this priority, we
2290 	 * do not reclaim anything from the anonymous working set right now.
2291 	 * Without the second condition we could end up never scanning an
2292 	 * lruvec even if it has plenty of old anonymous pages unless the
2293 	 * system is under heavy pressure.
2294 	 */
2295 	if (!inactive_list_is_low(lruvec, true, sc, false) &&
2296 	    lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2297 		scan_balance = SCAN_FILE;
2298 		goto out;
2299 	}
2300 
2301 	scan_balance = SCAN_FRACT;
2302 
2303 	/*
2304 	 * With swappiness at 100, anonymous and file have the same priority.
2305 	 * This scanning priority is essentially the inverse of IO cost.
2306 	 */
2307 	anon_prio = swappiness;
2308 	file_prio = 200 - anon_prio;
2309 
2310 	/*
2311 	 * OK, so we have swap space and a fair amount of page cache
2312 	 * pages.  We use the recently rotated / recently scanned
2313 	 * ratios to determine how valuable each cache is.
2314 	 *
2315 	 * Because workloads change over time (and to avoid overflow)
2316 	 * we keep these statistics as a floating average, which ends
2317 	 * up weighing recent references more than old ones.
2318 	 *
2319 	 * anon in [0], file in [1]
2320 	 */
2321 
2322 	anon  = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2323 		lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2324 	file  = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2325 		lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2326 
2327 	spin_lock_irq(&pgdat->lru_lock);
2328 	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2329 		reclaim_stat->recent_scanned[0] /= 2;
2330 		reclaim_stat->recent_rotated[0] /= 2;
2331 	}
2332 
2333 	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2334 		reclaim_stat->recent_scanned[1] /= 2;
2335 		reclaim_stat->recent_rotated[1] /= 2;
2336 	}
2337 
2338 	/*
2339 	 * The amount of pressure on anon vs file pages is inversely
2340 	 * proportional to the fraction of recently scanned pages on
2341 	 * each list that were recently referenced and in active use.
2342 	 */
2343 	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2344 	ap /= reclaim_stat->recent_rotated[0] + 1;
2345 
2346 	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2347 	fp /= reclaim_stat->recent_rotated[1] + 1;
2348 	spin_unlock_irq(&pgdat->lru_lock);
2349 
2350 	fraction[0] = ap;
2351 	fraction[1] = fp;
2352 	denominator = ap + fp + 1;
2353 out:
2354 	*lru_pages = 0;
2355 	for_each_evictable_lru(lru) {
2356 		int file = is_file_lru(lru);
2357 		unsigned long size;
2358 		unsigned long scan;
2359 
2360 		size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2361 		scan = size >> sc->priority;
2362 		/*
2363 		 * If the cgroup's already been deleted, make sure to
2364 		 * scrape out the remaining cache.
2365 		 */
2366 		if (!scan && !mem_cgroup_online(memcg))
2367 			scan = min(size, SWAP_CLUSTER_MAX);
2368 
2369 		switch (scan_balance) {
2370 		case SCAN_EQUAL:
2371 			/* Scan lists relative to size */
2372 			break;
2373 		case SCAN_FRACT:
2374 			/*
2375 			 * Scan types proportional to swappiness and
2376 			 * their relative recent reclaim efficiency.
2377 			 * Make sure we don't miss the last page
2378 			 * because of a round-off error.
2379 			 */
2380 			scan = DIV64_U64_ROUND_UP(scan * fraction[file],
2381 						  denominator);
2382 			break;
2383 		case SCAN_FILE:
2384 		case SCAN_ANON:
2385 			/* Scan one type exclusively */
2386 			if ((scan_balance == SCAN_FILE) != file) {
2387 				size = 0;
2388 				scan = 0;
2389 			}
2390 			break;
2391 		default:
2392 			/* Look ma, no brain */
2393 			BUG();
2394 		}
2395 
2396 		*lru_pages += size;
2397 		nr[lru] = scan;
2398 	}
2399 }
2400 
2401 /*
2402  * This is a basic per-node page freer.  Used by both kswapd and direct reclaim.
2403  */
2404 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2405 			      struct scan_control *sc, unsigned long *lru_pages)
2406 {
2407 	struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2408 	unsigned long nr[NR_LRU_LISTS];
2409 	unsigned long targets[NR_LRU_LISTS];
2410 	unsigned long nr_to_scan;
2411 	enum lru_list lru;
2412 	unsigned long nr_reclaimed = 0;
2413 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2414 	struct blk_plug plug;
2415 	bool scan_adjusted;
2416 
2417 	get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2418 
2419 	/* Record the original scan target for proportional adjustments later */
2420 	memcpy(targets, nr, sizeof(nr));
2421 
2422 	/*
2423 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2424 	 * event that can occur when there is little memory pressure e.g.
2425 	 * multiple streaming readers/writers. Hence, we do not abort scanning
2426 	 * when the requested number of pages are reclaimed when scanning at
2427 	 * DEF_PRIORITY on the assumption that the fact we are direct
2428 	 * reclaiming implies that kswapd is not keeping up and it is best to
2429 	 * do a batch of work at once. For memcg reclaim one check is made to
2430 	 * abort proportional reclaim if either the file or anon lru has already
2431 	 * dropped to zero at the first pass.
2432 	 */
2433 	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2434 			 sc->priority == DEF_PRIORITY);
2435 
2436 	blk_start_plug(&plug);
2437 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2438 					nr[LRU_INACTIVE_FILE]) {
2439 		unsigned long nr_anon, nr_file, percentage;
2440 		unsigned long nr_scanned;
2441 
2442 		for_each_evictable_lru(lru) {
2443 			if (nr[lru]) {
2444 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2445 				nr[lru] -= nr_to_scan;
2446 
2447 				nr_reclaimed += shrink_list(lru, nr_to_scan,
2448 							    lruvec, sc);
2449 			}
2450 		}
2451 
2452 		cond_resched();
2453 
2454 		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2455 			continue;
2456 
2457 		/*
2458 		 * For kswapd and memcg, reclaim at least the number of pages
2459 		 * requested. Ensure that the anon and file LRUs are scanned
2460 		 * proportionally what was requested by get_scan_count(). We
2461 		 * stop reclaiming one LRU and reduce the amount scanning
2462 		 * proportional to the original scan target.
2463 		 */
2464 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2465 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2466 
2467 		/*
2468 		 * It's just vindictive to attack the larger once the smaller
2469 		 * has gone to zero.  And given the way we stop scanning the
2470 		 * smaller below, this makes sure that we only make one nudge
2471 		 * towards proportionality once we've got nr_to_reclaim.
2472 		 */
2473 		if (!nr_file || !nr_anon)
2474 			break;
2475 
2476 		if (nr_file > nr_anon) {
2477 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2478 						targets[LRU_ACTIVE_ANON] + 1;
2479 			lru = LRU_BASE;
2480 			percentage = nr_anon * 100 / scan_target;
2481 		} else {
2482 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2483 						targets[LRU_ACTIVE_FILE] + 1;
2484 			lru = LRU_FILE;
2485 			percentage = nr_file * 100 / scan_target;
2486 		}
2487 
2488 		/* Stop scanning the smaller of the LRU */
2489 		nr[lru] = 0;
2490 		nr[lru + LRU_ACTIVE] = 0;
2491 
2492 		/*
2493 		 * Recalculate the other LRU scan count based on its original
2494 		 * scan target and the percentage scanning already complete
2495 		 */
2496 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2497 		nr_scanned = targets[lru] - nr[lru];
2498 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2499 		nr[lru] -= min(nr[lru], nr_scanned);
2500 
2501 		lru += LRU_ACTIVE;
2502 		nr_scanned = targets[lru] - nr[lru];
2503 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2504 		nr[lru] -= min(nr[lru], nr_scanned);
2505 
2506 		scan_adjusted = true;
2507 	}
2508 	blk_finish_plug(&plug);
2509 	sc->nr_reclaimed += nr_reclaimed;
2510 
2511 	/*
2512 	 * Even if we did not try to evict anon pages at all, we want to
2513 	 * rebalance the anon lru active/inactive ratio.
2514 	 */
2515 	if (inactive_list_is_low(lruvec, false, sc, true))
2516 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2517 				   sc, LRU_ACTIVE_ANON);
2518 }
2519 
2520 /* Use reclaim/compaction for costly allocs or under memory pressure */
2521 static bool in_reclaim_compaction(struct scan_control *sc)
2522 {
2523 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2524 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2525 			 sc->priority < DEF_PRIORITY - 2))
2526 		return true;
2527 
2528 	return false;
2529 }
2530 
2531 /*
2532  * Reclaim/compaction is used for high-order allocation requests. It reclaims
2533  * order-0 pages before compacting the zone. should_continue_reclaim() returns
2534  * true if more pages should be reclaimed such that when the page allocator
2535  * calls try_to_compact_zone() that it will have enough free pages to succeed.
2536  * It will give up earlier than that if there is difficulty reclaiming pages.
2537  */
2538 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2539 					unsigned long nr_reclaimed,
2540 					unsigned long nr_scanned,
2541 					struct scan_control *sc)
2542 {
2543 	unsigned long pages_for_compaction;
2544 	unsigned long inactive_lru_pages;
2545 	int z;
2546 
2547 	/* If not in reclaim/compaction mode, stop */
2548 	if (!in_reclaim_compaction(sc))
2549 		return false;
2550 
2551 	/* Consider stopping depending on scan and reclaim activity */
2552 	if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) {
2553 		/*
2554 		 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2555 		 * full LRU list has been scanned and we are still failing
2556 		 * to reclaim pages. This full LRU scan is potentially
2557 		 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2558 		 */
2559 		if (!nr_reclaimed && !nr_scanned)
2560 			return false;
2561 	} else {
2562 		/*
2563 		 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2564 		 * fail without consequence, stop if we failed to reclaim
2565 		 * any pages from the last SWAP_CLUSTER_MAX number of
2566 		 * pages that were scanned. This will return to the
2567 		 * caller faster at the risk reclaim/compaction and
2568 		 * the resulting allocation attempt fails
2569 		 */
2570 		if (!nr_reclaimed)
2571 			return false;
2572 	}
2573 
2574 	/*
2575 	 * If we have not reclaimed enough pages for compaction and the
2576 	 * inactive lists are large enough, continue reclaiming
2577 	 */
2578 	pages_for_compaction = compact_gap(sc->order);
2579 	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2580 	if (get_nr_swap_pages() > 0)
2581 		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2582 	if (sc->nr_reclaimed < pages_for_compaction &&
2583 			inactive_lru_pages > pages_for_compaction)
2584 		return true;
2585 
2586 	/* If compaction would go ahead or the allocation would succeed, stop */
2587 	for (z = 0; z <= sc->reclaim_idx; z++) {
2588 		struct zone *zone = &pgdat->node_zones[z];
2589 		if (!managed_zone(zone))
2590 			continue;
2591 
2592 		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2593 		case COMPACT_SUCCESS:
2594 		case COMPACT_CONTINUE:
2595 			return false;
2596 		default:
2597 			/* check next zone */
2598 			;
2599 		}
2600 	}
2601 	return true;
2602 }
2603 
2604 static bool pgdat_memcg_congested(pg_data_t *pgdat, struct mem_cgroup *memcg)
2605 {
2606 	return test_bit(PGDAT_CONGESTED, &pgdat->flags) ||
2607 		(memcg && memcg_congested(pgdat, memcg));
2608 }
2609 
2610 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2611 {
2612 	struct reclaim_state *reclaim_state = current->reclaim_state;
2613 	unsigned long nr_reclaimed, nr_scanned;
2614 	bool reclaimable = false;
2615 
2616 	do {
2617 		struct mem_cgroup *root = sc->target_mem_cgroup;
2618 		struct mem_cgroup_reclaim_cookie reclaim = {
2619 			.pgdat = pgdat,
2620 			.priority = sc->priority,
2621 		};
2622 		unsigned long node_lru_pages = 0;
2623 		struct mem_cgroup *memcg;
2624 
2625 		memset(&sc->nr, 0, sizeof(sc->nr));
2626 
2627 		nr_reclaimed = sc->nr_reclaimed;
2628 		nr_scanned = sc->nr_scanned;
2629 
2630 		memcg = mem_cgroup_iter(root, NULL, &reclaim);
2631 		do {
2632 			unsigned long lru_pages;
2633 			unsigned long reclaimed;
2634 			unsigned long scanned;
2635 
2636 			switch (mem_cgroup_protected(root, memcg)) {
2637 			case MEMCG_PROT_MIN:
2638 				/*
2639 				 * Hard protection.
2640 				 * If there is no reclaimable memory, OOM.
2641 				 */
2642 				continue;
2643 			case MEMCG_PROT_LOW:
2644 				/*
2645 				 * Soft protection.
2646 				 * Respect the protection only as long as
2647 				 * there is an unprotected supply
2648 				 * of reclaimable memory from other cgroups.
2649 				 */
2650 				if (!sc->memcg_low_reclaim) {
2651 					sc->memcg_low_skipped = 1;
2652 					continue;
2653 				}
2654 				memcg_memory_event(memcg, MEMCG_LOW);
2655 				break;
2656 			case MEMCG_PROT_NONE:
2657 				break;
2658 			}
2659 
2660 			reclaimed = sc->nr_reclaimed;
2661 			scanned = sc->nr_scanned;
2662 			shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2663 			node_lru_pages += lru_pages;
2664 
2665 			if (sc->may_shrinkslab) {
2666 				shrink_slab(sc->gfp_mask, pgdat->node_id,
2667 				    memcg, sc->priority);
2668 			}
2669 
2670 			/* Record the group's reclaim efficiency */
2671 			vmpressure(sc->gfp_mask, memcg, false,
2672 				   sc->nr_scanned - scanned,
2673 				   sc->nr_reclaimed - reclaimed);
2674 
2675 			/*
2676 			 * Kswapd have to scan all memory cgroups to fulfill
2677 			 * the overall scan target for the node.
2678 			 *
2679 			 * Limit reclaim, on the other hand, only cares about
2680 			 * nr_to_reclaim pages to be reclaimed and it will
2681 			 * retry with decreasing priority if one round over the
2682 			 * whole hierarchy is not sufficient.
2683 			 */
2684 			if (!current_is_kswapd() &&
2685 					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2686 				mem_cgroup_iter_break(root, memcg);
2687 				break;
2688 			}
2689 		} while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2690 
2691 		if (reclaim_state) {
2692 			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2693 			reclaim_state->reclaimed_slab = 0;
2694 		}
2695 
2696 		/* Record the subtree's reclaim efficiency */
2697 		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2698 			   sc->nr_scanned - nr_scanned,
2699 			   sc->nr_reclaimed - nr_reclaimed);
2700 
2701 		if (sc->nr_reclaimed - nr_reclaimed)
2702 			reclaimable = true;
2703 
2704 		if (current_is_kswapd()) {
2705 			/*
2706 			 * If reclaim is isolating dirty pages under writeback,
2707 			 * it implies that the long-lived page allocation rate
2708 			 * is exceeding the page laundering rate. Either the
2709 			 * global limits are not being effective at throttling
2710 			 * processes due to the page distribution throughout
2711 			 * zones or there is heavy usage of a slow backing
2712 			 * device. The only option is to throttle from reclaim
2713 			 * context which is not ideal as there is no guarantee
2714 			 * the dirtying process is throttled in the same way
2715 			 * balance_dirty_pages() manages.
2716 			 *
2717 			 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2718 			 * count the number of pages under pages flagged for
2719 			 * immediate reclaim and stall if any are encountered
2720 			 * in the nr_immediate check below.
2721 			 */
2722 			if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
2723 				set_bit(PGDAT_WRITEBACK, &pgdat->flags);
2724 
2725 			/*
2726 			 * Tag a node as congested if all the dirty pages
2727 			 * scanned were backed by a congested BDI and
2728 			 * wait_iff_congested will stall.
2729 			 */
2730 			if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2731 				set_bit(PGDAT_CONGESTED, &pgdat->flags);
2732 
2733 			/* Allow kswapd to start writing pages during reclaim.*/
2734 			if (sc->nr.unqueued_dirty == sc->nr.file_taken)
2735 				set_bit(PGDAT_DIRTY, &pgdat->flags);
2736 
2737 			/*
2738 			 * If kswapd scans pages marked marked for immediate
2739 			 * reclaim and under writeback (nr_immediate), it
2740 			 * implies that pages are cycling through the LRU
2741 			 * faster than they are written so also forcibly stall.
2742 			 */
2743 			if (sc->nr.immediate)
2744 				congestion_wait(BLK_RW_ASYNC, HZ/10);
2745 		}
2746 
2747 		/*
2748 		 * Legacy memcg will stall in page writeback so avoid forcibly
2749 		 * stalling in wait_iff_congested().
2750 		 */
2751 		if (!global_reclaim(sc) && sane_reclaim(sc) &&
2752 		    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2753 			set_memcg_congestion(pgdat, root, true);
2754 
2755 		/*
2756 		 * Stall direct reclaim for IO completions if underlying BDIs
2757 		 * and node is congested. Allow kswapd to continue until it
2758 		 * starts encountering unqueued dirty pages or cycling through
2759 		 * the LRU too quickly.
2760 		 */
2761 		if (!sc->hibernation_mode && !current_is_kswapd() &&
2762 		   current_may_throttle() && pgdat_memcg_congested(pgdat, root))
2763 			wait_iff_congested(BLK_RW_ASYNC, HZ/10);
2764 
2765 	} while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2766 					 sc->nr_scanned - nr_scanned, sc));
2767 
2768 	/*
2769 	 * Kswapd gives up on balancing particular nodes after too
2770 	 * many failures to reclaim anything from them and goes to
2771 	 * sleep. On reclaim progress, reset the failure counter. A
2772 	 * successful direct reclaim run will revive a dormant kswapd.
2773 	 */
2774 	if (reclaimable)
2775 		pgdat->kswapd_failures = 0;
2776 
2777 	return reclaimable;
2778 }
2779 
2780 /*
2781  * Returns true if compaction should go ahead for a costly-order request, or
2782  * the allocation would already succeed without compaction. Return false if we
2783  * should reclaim first.
2784  */
2785 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2786 {
2787 	unsigned long watermark;
2788 	enum compact_result suitable;
2789 
2790 	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2791 	if (suitable == COMPACT_SUCCESS)
2792 		/* Allocation should succeed already. Don't reclaim. */
2793 		return true;
2794 	if (suitable == COMPACT_SKIPPED)
2795 		/* Compaction cannot yet proceed. Do reclaim. */
2796 		return false;
2797 
2798 	/*
2799 	 * Compaction is already possible, but it takes time to run and there
2800 	 * are potentially other callers using the pages just freed. So proceed
2801 	 * with reclaim to make a buffer of free pages available to give
2802 	 * compaction a reasonable chance of completing and allocating the page.
2803 	 * Note that we won't actually reclaim the whole buffer in one attempt
2804 	 * as the target watermark in should_continue_reclaim() is lower. But if
2805 	 * we are already above the high+gap watermark, don't reclaim at all.
2806 	 */
2807 	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2808 
2809 	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2810 }
2811 
2812 /*
2813  * This is the direct reclaim path, for page-allocating processes.  We only
2814  * try to reclaim pages from zones which will satisfy the caller's allocation
2815  * request.
2816  *
2817  * If a zone is deemed to be full of pinned pages then just give it a light
2818  * scan then give up on it.
2819  */
2820 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2821 {
2822 	struct zoneref *z;
2823 	struct zone *zone;
2824 	unsigned long nr_soft_reclaimed;
2825 	unsigned long nr_soft_scanned;
2826 	gfp_t orig_mask;
2827 	pg_data_t *last_pgdat = NULL;
2828 
2829 	/*
2830 	 * If the number of buffer_heads in the machine exceeds the maximum
2831 	 * allowed level, force direct reclaim to scan the highmem zone as
2832 	 * highmem pages could be pinning lowmem pages storing buffer_heads
2833 	 */
2834 	orig_mask = sc->gfp_mask;
2835 	if (buffer_heads_over_limit) {
2836 		sc->gfp_mask |= __GFP_HIGHMEM;
2837 		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2838 	}
2839 
2840 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2841 					sc->reclaim_idx, sc->nodemask) {
2842 		/*
2843 		 * Take care memory controller reclaiming has small influence
2844 		 * to global LRU.
2845 		 */
2846 		if (global_reclaim(sc)) {
2847 			if (!cpuset_zone_allowed(zone,
2848 						 GFP_KERNEL | __GFP_HARDWALL))
2849 				continue;
2850 
2851 			/*
2852 			 * If we already have plenty of memory free for
2853 			 * compaction in this zone, don't free any more.
2854 			 * Even though compaction is invoked for any
2855 			 * non-zero order, only frequent costly order
2856 			 * reclamation is disruptive enough to become a
2857 			 * noticeable problem, like transparent huge
2858 			 * page allocations.
2859 			 */
2860 			if (IS_ENABLED(CONFIG_COMPACTION) &&
2861 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2862 			    compaction_ready(zone, sc)) {
2863 				sc->compaction_ready = true;
2864 				continue;
2865 			}
2866 
2867 			/*
2868 			 * Shrink each node in the zonelist once. If the
2869 			 * zonelist is ordered by zone (not the default) then a
2870 			 * node may be shrunk multiple times but in that case
2871 			 * the user prefers lower zones being preserved.
2872 			 */
2873 			if (zone->zone_pgdat == last_pgdat)
2874 				continue;
2875 
2876 			/*
2877 			 * This steals pages from memory cgroups over softlimit
2878 			 * and returns the number of reclaimed pages and
2879 			 * scanned pages. This works for global memory pressure
2880 			 * and balancing, not for a memcg's limit.
2881 			 */
2882 			nr_soft_scanned = 0;
2883 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2884 						sc->order, sc->gfp_mask,
2885 						&nr_soft_scanned);
2886 			sc->nr_reclaimed += nr_soft_reclaimed;
2887 			sc->nr_scanned += nr_soft_scanned;
2888 			/* need some check for avoid more shrink_zone() */
2889 		}
2890 
2891 		/* See comment about same check for global reclaim above */
2892 		if (zone->zone_pgdat == last_pgdat)
2893 			continue;
2894 		last_pgdat = zone->zone_pgdat;
2895 		shrink_node(zone->zone_pgdat, sc);
2896 	}
2897 
2898 	/*
2899 	 * Restore to original mask to avoid the impact on the caller if we
2900 	 * promoted it to __GFP_HIGHMEM.
2901 	 */
2902 	sc->gfp_mask = orig_mask;
2903 }
2904 
2905 static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
2906 {
2907 	struct mem_cgroup *memcg;
2908 
2909 	memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
2910 	do {
2911 		unsigned long refaults;
2912 		struct lruvec *lruvec;
2913 
2914 		lruvec = mem_cgroup_lruvec(pgdat, memcg);
2915 		refaults = lruvec_page_state_local(lruvec, WORKINGSET_ACTIVATE);
2916 		lruvec->refaults = refaults;
2917 	} while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
2918 }
2919 
2920 /*
2921  * This is the main entry point to direct page reclaim.
2922  *
2923  * If a full scan of the inactive list fails to free enough memory then we
2924  * are "out of memory" and something needs to be killed.
2925  *
2926  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2927  * high - the zone may be full of dirty or under-writeback pages, which this
2928  * caller can't do much about.  We kick the writeback threads and take explicit
2929  * naps in the hope that some of these pages can be written.  But if the
2930  * allocating task holds filesystem locks which prevent writeout this might not
2931  * work, and the allocation attempt will fail.
2932  *
2933  * returns:	0, if no pages reclaimed
2934  * 		else, the number of pages reclaimed
2935  */
2936 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2937 					  struct scan_control *sc)
2938 {
2939 	int initial_priority = sc->priority;
2940 	pg_data_t *last_pgdat;
2941 	struct zoneref *z;
2942 	struct zone *zone;
2943 retry:
2944 	delayacct_freepages_start();
2945 
2946 	if (global_reclaim(sc))
2947 		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
2948 
2949 	do {
2950 		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2951 				sc->priority);
2952 		sc->nr_scanned = 0;
2953 		shrink_zones(zonelist, sc);
2954 
2955 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2956 			break;
2957 
2958 		if (sc->compaction_ready)
2959 			break;
2960 
2961 		/*
2962 		 * If we're getting trouble reclaiming, start doing
2963 		 * writepage even in laptop mode.
2964 		 */
2965 		if (sc->priority < DEF_PRIORITY - 2)
2966 			sc->may_writepage = 1;
2967 	} while (--sc->priority >= 0);
2968 
2969 	last_pgdat = NULL;
2970 	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
2971 					sc->nodemask) {
2972 		if (zone->zone_pgdat == last_pgdat)
2973 			continue;
2974 		last_pgdat = zone->zone_pgdat;
2975 		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
2976 		set_memcg_congestion(last_pgdat, sc->target_mem_cgroup, false);
2977 	}
2978 
2979 	delayacct_freepages_end();
2980 
2981 	if (sc->nr_reclaimed)
2982 		return sc->nr_reclaimed;
2983 
2984 	/* Aborted reclaim to try compaction? don't OOM, then */
2985 	if (sc->compaction_ready)
2986 		return 1;
2987 
2988 	/* Untapped cgroup reserves?  Don't OOM, retry. */
2989 	if (sc->memcg_low_skipped) {
2990 		sc->priority = initial_priority;
2991 		sc->memcg_low_reclaim = 1;
2992 		sc->memcg_low_skipped = 0;
2993 		goto retry;
2994 	}
2995 
2996 	return 0;
2997 }
2998 
2999 static bool allow_direct_reclaim(pg_data_t *pgdat)
3000 {
3001 	struct zone *zone;
3002 	unsigned long pfmemalloc_reserve = 0;
3003 	unsigned long free_pages = 0;
3004 	int i;
3005 	bool wmark_ok;
3006 
3007 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3008 		return true;
3009 
3010 	for (i = 0; i <= ZONE_NORMAL; i++) {
3011 		zone = &pgdat->node_zones[i];
3012 		if (!managed_zone(zone))
3013 			continue;
3014 
3015 		if (!zone_reclaimable_pages(zone))
3016 			continue;
3017 
3018 		pfmemalloc_reserve += min_wmark_pages(zone);
3019 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
3020 	}
3021 
3022 	/* If there are no reserves (unexpected config) then do not throttle */
3023 	if (!pfmemalloc_reserve)
3024 		return true;
3025 
3026 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
3027 
3028 	/* kswapd must be awake if processes are being throttled */
3029 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3030 		pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
3031 						(enum zone_type)ZONE_NORMAL);
3032 		wake_up_interruptible(&pgdat->kswapd_wait);
3033 	}
3034 
3035 	return wmark_ok;
3036 }
3037 
3038 /*
3039  * Throttle direct reclaimers if backing storage is backed by the network
3040  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3041  * depleted. kswapd will continue to make progress and wake the processes
3042  * when the low watermark is reached.
3043  *
3044  * Returns true if a fatal signal was delivered during throttling. If this
3045  * happens, the page allocator should not consider triggering the OOM killer.
3046  */
3047 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3048 					nodemask_t *nodemask)
3049 {
3050 	struct zoneref *z;
3051 	struct zone *zone;
3052 	pg_data_t *pgdat = NULL;
3053 
3054 	/*
3055 	 * Kernel threads should not be throttled as they may be indirectly
3056 	 * responsible for cleaning pages necessary for reclaim to make forward
3057 	 * progress. kjournald for example may enter direct reclaim while
3058 	 * committing a transaction where throttling it could forcing other
3059 	 * processes to block on log_wait_commit().
3060 	 */
3061 	if (current->flags & PF_KTHREAD)
3062 		goto out;
3063 
3064 	/*
3065 	 * If a fatal signal is pending, this process should not throttle.
3066 	 * It should return quickly so it can exit and free its memory
3067 	 */
3068 	if (fatal_signal_pending(current))
3069 		goto out;
3070 
3071 	/*
3072 	 * Check if the pfmemalloc reserves are ok by finding the first node
3073 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3074 	 * GFP_KERNEL will be required for allocating network buffers when
3075 	 * swapping over the network so ZONE_HIGHMEM is unusable.
3076 	 *
3077 	 * Throttling is based on the first usable node and throttled processes
3078 	 * wait on a queue until kswapd makes progress and wakes them. There
3079 	 * is an affinity then between processes waking up and where reclaim
3080 	 * progress has been made assuming the process wakes on the same node.
3081 	 * More importantly, processes running on remote nodes will not compete
3082 	 * for remote pfmemalloc reserves and processes on different nodes
3083 	 * should make reasonable progress.
3084 	 */
3085 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
3086 					gfp_zone(gfp_mask), nodemask) {
3087 		if (zone_idx(zone) > ZONE_NORMAL)
3088 			continue;
3089 
3090 		/* Throttle based on the first usable node */
3091 		pgdat = zone->zone_pgdat;
3092 		if (allow_direct_reclaim(pgdat))
3093 			goto out;
3094 		break;
3095 	}
3096 
3097 	/* If no zone was usable by the allocation flags then do not throttle */
3098 	if (!pgdat)
3099 		goto out;
3100 
3101 	/* Account for the throttling */
3102 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
3103 
3104 	/*
3105 	 * If the caller cannot enter the filesystem, it's possible that it
3106 	 * is due to the caller holding an FS lock or performing a journal
3107 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
3108 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
3109 	 * blocked waiting on the same lock. Instead, throttle for up to a
3110 	 * second before continuing.
3111 	 */
3112 	if (!(gfp_mask & __GFP_FS)) {
3113 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3114 			allow_direct_reclaim(pgdat), HZ);
3115 
3116 		goto check_pending;
3117 	}
3118 
3119 	/* Throttle until kswapd wakes the process */
3120 	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3121 		allow_direct_reclaim(pgdat));
3122 
3123 check_pending:
3124 	if (fatal_signal_pending(current))
3125 		return true;
3126 
3127 out:
3128 	return false;
3129 }
3130 
3131 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3132 				gfp_t gfp_mask, nodemask_t *nodemask)
3133 {
3134 	unsigned long nr_reclaimed;
3135 	struct scan_control sc = {
3136 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3137 		.gfp_mask = current_gfp_context(gfp_mask),
3138 		.reclaim_idx = gfp_zone(gfp_mask),
3139 		.order = order,
3140 		.nodemask = nodemask,
3141 		.priority = DEF_PRIORITY,
3142 		.may_writepage = !laptop_mode,
3143 		.may_unmap = 1,
3144 		.may_swap = 1,
3145 		.may_shrinkslab = 1,
3146 	};
3147 
3148 	/*
3149 	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3150 	 * Confirm they are large enough for max values.
3151 	 */
3152 	BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3153 	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3154 	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3155 
3156 	/*
3157 	 * Do not enter reclaim if fatal signal was delivered while throttled.
3158 	 * 1 is returned so that the page allocator does not OOM kill at this
3159 	 * point.
3160 	 */
3161 	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3162 		return 1;
3163 
3164 	trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
3165 
3166 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3167 
3168 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3169 
3170 	return nr_reclaimed;
3171 }
3172 
3173 #ifdef CONFIG_MEMCG
3174 
3175 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3176 						gfp_t gfp_mask, bool noswap,
3177 						pg_data_t *pgdat,
3178 						unsigned long *nr_scanned)
3179 {
3180 	struct scan_control sc = {
3181 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3182 		.target_mem_cgroup = memcg,
3183 		.may_writepage = !laptop_mode,
3184 		.may_unmap = 1,
3185 		.reclaim_idx = MAX_NR_ZONES - 1,
3186 		.may_swap = !noswap,
3187 		.may_shrinkslab = 1,
3188 	};
3189 	unsigned long lru_pages;
3190 
3191 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3192 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3193 
3194 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3195 						      sc.gfp_mask);
3196 
3197 	/*
3198 	 * NOTE: Although we can get the priority field, using it
3199 	 * here is not a good idea, since it limits the pages we can scan.
3200 	 * if we don't reclaim here, the shrink_node from balance_pgdat
3201 	 * will pick up pages from other mem cgroup's as well. We hack
3202 	 * the priority and make it zero.
3203 	 */
3204 	shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3205 
3206 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3207 
3208 	*nr_scanned = sc.nr_scanned;
3209 	return sc.nr_reclaimed;
3210 }
3211 
3212 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3213 					   unsigned long nr_pages,
3214 					   gfp_t gfp_mask,
3215 					   bool may_swap)
3216 {
3217 	struct zonelist *zonelist;
3218 	unsigned long nr_reclaimed;
3219 	unsigned long pflags;
3220 	int nid;
3221 	unsigned int noreclaim_flag;
3222 	struct scan_control sc = {
3223 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3224 		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3225 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3226 		.reclaim_idx = MAX_NR_ZONES - 1,
3227 		.target_mem_cgroup = memcg,
3228 		.priority = DEF_PRIORITY,
3229 		.may_writepage = !laptop_mode,
3230 		.may_unmap = 1,
3231 		.may_swap = may_swap,
3232 		.may_shrinkslab = 1,
3233 	};
3234 
3235 	/*
3236 	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3237 	 * take care of from where we get pages. So the node where we start the
3238 	 * scan does not need to be the current node.
3239 	 */
3240 	nid = mem_cgroup_select_victim_node(memcg);
3241 
3242 	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3243 
3244 	trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
3245 
3246 	psi_memstall_enter(&pflags);
3247 	noreclaim_flag = memalloc_noreclaim_save();
3248 
3249 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3250 
3251 	memalloc_noreclaim_restore(noreclaim_flag);
3252 	psi_memstall_leave(&pflags);
3253 
3254 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3255 
3256 	return nr_reclaimed;
3257 }
3258 #endif
3259 
3260 static void age_active_anon(struct pglist_data *pgdat,
3261 				struct scan_control *sc)
3262 {
3263 	struct mem_cgroup *memcg;
3264 
3265 	if (!total_swap_pages)
3266 		return;
3267 
3268 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
3269 	do {
3270 		struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3271 
3272 		if (inactive_list_is_low(lruvec, false, sc, true))
3273 			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3274 					   sc, LRU_ACTIVE_ANON);
3275 
3276 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
3277 	} while (memcg);
3278 }
3279 
3280 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int classzone_idx)
3281 {
3282 	int i;
3283 	struct zone *zone;
3284 
3285 	/*
3286 	 * Check for watermark boosts top-down as the higher zones
3287 	 * are more likely to be boosted. Both watermarks and boosts
3288 	 * should not be checked at the time time as reclaim would
3289 	 * start prematurely when there is no boosting and a lower
3290 	 * zone is balanced.
3291 	 */
3292 	for (i = classzone_idx; i >= 0; i--) {
3293 		zone = pgdat->node_zones + i;
3294 		if (!managed_zone(zone))
3295 			continue;
3296 
3297 		if (zone->watermark_boost)
3298 			return true;
3299 	}
3300 
3301 	return false;
3302 }
3303 
3304 /*
3305  * Returns true if there is an eligible zone balanced for the request order
3306  * and classzone_idx
3307  */
3308 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3309 {
3310 	int i;
3311 	unsigned long mark = -1;
3312 	struct zone *zone;
3313 
3314 	/*
3315 	 * Check watermarks bottom-up as lower zones are more likely to
3316 	 * meet watermarks.
3317 	 */
3318 	for (i = 0; i <= classzone_idx; i++) {
3319 		zone = pgdat->node_zones + i;
3320 
3321 		if (!managed_zone(zone))
3322 			continue;
3323 
3324 		mark = high_wmark_pages(zone);
3325 		if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3326 			return true;
3327 	}
3328 
3329 	/*
3330 	 * If a node has no populated zone within classzone_idx, it does not
3331 	 * need balancing by definition. This can happen if a zone-restricted
3332 	 * allocation tries to wake a remote kswapd.
3333 	 */
3334 	if (mark == -1)
3335 		return true;
3336 
3337 	return false;
3338 }
3339 
3340 /* Clear pgdat state for congested, dirty or under writeback. */
3341 static void clear_pgdat_congested(pg_data_t *pgdat)
3342 {
3343 	clear_bit(PGDAT_CONGESTED, &pgdat->flags);
3344 	clear_bit(PGDAT_DIRTY, &pgdat->flags);
3345 	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3346 }
3347 
3348 /*
3349  * Prepare kswapd for sleeping. This verifies that there are no processes
3350  * waiting in throttle_direct_reclaim() and that watermarks have been met.
3351  *
3352  * Returns true if kswapd is ready to sleep
3353  */
3354 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3355 {
3356 	/*
3357 	 * The throttled processes are normally woken up in balance_pgdat() as
3358 	 * soon as allow_direct_reclaim() is true. But there is a potential
3359 	 * race between when kswapd checks the watermarks and a process gets
3360 	 * throttled. There is also a potential race if processes get
3361 	 * throttled, kswapd wakes, a large process exits thereby balancing the
3362 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
3363 	 * the wake up checks. If kswapd is going to sleep, no process should
3364 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3365 	 * the wake up is premature, processes will wake kswapd and get
3366 	 * throttled again. The difference from wake ups in balance_pgdat() is
3367 	 * that here we are under prepare_to_wait().
3368 	 */
3369 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
3370 		wake_up_all(&pgdat->pfmemalloc_wait);
3371 
3372 	/* Hopeless node, leave it to direct reclaim */
3373 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3374 		return true;
3375 
3376 	if (pgdat_balanced(pgdat, order, classzone_idx)) {
3377 		clear_pgdat_congested(pgdat);
3378 		return true;
3379 	}
3380 
3381 	return false;
3382 }
3383 
3384 /*
3385  * kswapd shrinks a node of pages that are at or below the highest usable
3386  * zone that is currently unbalanced.
3387  *
3388  * Returns true if kswapd scanned at least the requested number of pages to
3389  * reclaim or if the lack of progress was due to pages under writeback.
3390  * This is used to determine if the scanning priority needs to be raised.
3391  */
3392 static bool kswapd_shrink_node(pg_data_t *pgdat,
3393 			       struct scan_control *sc)
3394 {
3395 	struct zone *zone;
3396 	int z;
3397 
3398 	/* Reclaim a number of pages proportional to the number of zones */
3399 	sc->nr_to_reclaim = 0;
3400 	for (z = 0; z <= sc->reclaim_idx; z++) {
3401 		zone = pgdat->node_zones + z;
3402 		if (!managed_zone(zone))
3403 			continue;
3404 
3405 		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3406 	}
3407 
3408 	/*
3409 	 * Historically care was taken to put equal pressure on all zones but
3410 	 * now pressure is applied based on node LRU order.
3411 	 */
3412 	shrink_node(pgdat, sc);
3413 
3414 	/*
3415 	 * Fragmentation may mean that the system cannot be rebalanced for
3416 	 * high-order allocations. If twice the allocation size has been
3417 	 * reclaimed then recheck watermarks only at order-0 to prevent
3418 	 * excessive reclaim. Assume that a process requested a high-order
3419 	 * can direct reclaim/compact.
3420 	 */
3421 	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3422 		sc->order = 0;
3423 
3424 	return sc->nr_scanned >= sc->nr_to_reclaim;
3425 }
3426 
3427 /*
3428  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3429  * that are eligible for use by the caller until at least one zone is
3430  * balanced.
3431  *
3432  * Returns the order kswapd finished reclaiming at.
3433  *
3434  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3435  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3436  * found to have free_pages <= high_wmark_pages(zone), any page in that zone
3437  * or lower is eligible for reclaim until at least one usable zone is
3438  * balanced.
3439  */
3440 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3441 {
3442 	int i;
3443 	unsigned long nr_soft_reclaimed;
3444 	unsigned long nr_soft_scanned;
3445 	unsigned long pflags;
3446 	unsigned long nr_boost_reclaim;
3447 	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
3448 	bool boosted;
3449 	struct zone *zone;
3450 	struct scan_control sc = {
3451 		.gfp_mask = GFP_KERNEL,
3452 		.order = order,
3453 		.may_unmap = 1,
3454 	};
3455 
3456 	psi_memstall_enter(&pflags);
3457 	__fs_reclaim_acquire();
3458 
3459 	count_vm_event(PAGEOUTRUN);
3460 
3461 	/*
3462 	 * Account for the reclaim boost. Note that the zone boost is left in
3463 	 * place so that parallel allocations that are near the watermark will
3464 	 * stall or direct reclaim until kswapd is finished.
3465 	 */
3466 	nr_boost_reclaim = 0;
3467 	for (i = 0; i <= classzone_idx; i++) {
3468 		zone = pgdat->node_zones + i;
3469 		if (!managed_zone(zone))
3470 			continue;
3471 
3472 		nr_boost_reclaim += zone->watermark_boost;
3473 		zone_boosts[i] = zone->watermark_boost;
3474 	}
3475 	boosted = nr_boost_reclaim;
3476 
3477 restart:
3478 	sc.priority = DEF_PRIORITY;
3479 	do {
3480 		unsigned long nr_reclaimed = sc.nr_reclaimed;
3481 		bool raise_priority = true;
3482 		bool balanced;
3483 		bool ret;
3484 
3485 		sc.reclaim_idx = classzone_idx;
3486 
3487 		/*
3488 		 * If the number of buffer_heads exceeds the maximum allowed
3489 		 * then consider reclaiming from all zones. This has a dual
3490 		 * purpose -- on 64-bit systems it is expected that
3491 		 * buffer_heads are stripped during active rotation. On 32-bit
3492 		 * systems, highmem pages can pin lowmem memory and shrinking
3493 		 * buffers can relieve lowmem pressure. Reclaim may still not
3494 		 * go ahead if all eligible zones for the original allocation
3495 		 * request are balanced to avoid excessive reclaim from kswapd.
3496 		 */
3497 		if (buffer_heads_over_limit) {
3498 			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3499 				zone = pgdat->node_zones + i;
3500 				if (!managed_zone(zone))
3501 					continue;
3502 
3503 				sc.reclaim_idx = i;
3504 				break;
3505 			}
3506 		}
3507 
3508 		/*
3509 		 * If the pgdat is imbalanced then ignore boosting and preserve
3510 		 * the watermarks for a later time and restart. Note that the
3511 		 * zone watermarks will be still reset at the end of balancing
3512 		 * on the grounds that the normal reclaim should be enough to
3513 		 * re-evaluate if boosting is required when kswapd next wakes.
3514 		 */
3515 		balanced = pgdat_balanced(pgdat, sc.order, classzone_idx);
3516 		if (!balanced && nr_boost_reclaim) {
3517 			nr_boost_reclaim = 0;
3518 			goto restart;
3519 		}
3520 
3521 		/*
3522 		 * If boosting is not active then only reclaim if there are no
3523 		 * eligible zones. Note that sc.reclaim_idx is not used as
3524 		 * buffer_heads_over_limit may have adjusted it.
3525 		 */
3526 		if (!nr_boost_reclaim && balanced)
3527 			goto out;
3528 
3529 		/* Limit the priority of boosting to avoid reclaim writeback */
3530 		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
3531 			raise_priority = false;
3532 
3533 		/*
3534 		 * Do not writeback or swap pages for boosted reclaim. The
3535 		 * intent is to relieve pressure not issue sub-optimal IO
3536 		 * from reclaim context. If no pages are reclaimed, the
3537 		 * reclaim will be aborted.
3538 		 */
3539 		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
3540 		sc.may_swap = !nr_boost_reclaim;
3541 		sc.may_shrinkslab = !nr_boost_reclaim;
3542 
3543 		/*
3544 		 * Do some background aging of the anon list, to give
3545 		 * pages a chance to be referenced before reclaiming. All
3546 		 * pages are rotated regardless of classzone as this is
3547 		 * about consistent aging.
3548 		 */
3549 		age_active_anon(pgdat, &sc);
3550 
3551 		/*
3552 		 * If we're getting trouble reclaiming, start doing writepage
3553 		 * even in laptop mode.
3554 		 */
3555 		if (sc.priority < DEF_PRIORITY - 2)
3556 			sc.may_writepage = 1;
3557 
3558 		/* Call soft limit reclaim before calling shrink_node. */
3559 		sc.nr_scanned = 0;
3560 		nr_soft_scanned = 0;
3561 		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3562 						sc.gfp_mask, &nr_soft_scanned);
3563 		sc.nr_reclaimed += nr_soft_reclaimed;
3564 
3565 		/*
3566 		 * There should be no need to raise the scanning priority if
3567 		 * enough pages are already being scanned that that high
3568 		 * watermark would be met at 100% efficiency.
3569 		 */
3570 		if (kswapd_shrink_node(pgdat, &sc))
3571 			raise_priority = false;
3572 
3573 		/*
3574 		 * If the low watermark is met there is no need for processes
3575 		 * to be throttled on pfmemalloc_wait as they should not be
3576 		 * able to safely make forward progress. Wake them
3577 		 */
3578 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3579 				allow_direct_reclaim(pgdat))
3580 			wake_up_all(&pgdat->pfmemalloc_wait);
3581 
3582 		/* Check if kswapd should be suspending */
3583 		__fs_reclaim_release();
3584 		ret = try_to_freeze();
3585 		__fs_reclaim_acquire();
3586 		if (ret || kthread_should_stop())
3587 			break;
3588 
3589 		/*
3590 		 * Raise priority if scanning rate is too low or there was no
3591 		 * progress in reclaiming pages
3592 		 */
3593 		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3594 		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
3595 
3596 		/*
3597 		 * If reclaim made no progress for a boost, stop reclaim as
3598 		 * IO cannot be queued and it could be an infinite loop in
3599 		 * extreme circumstances.
3600 		 */
3601 		if (nr_boost_reclaim && !nr_reclaimed)
3602 			break;
3603 
3604 		if (raise_priority || !nr_reclaimed)
3605 			sc.priority--;
3606 	} while (sc.priority >= 1);
3607 
3608 	if (!sc.nr_reclaimed)
3609 		pgdat->kswapd_failures++;
3610 
3611 out:
3612 	/* If reclaim was boosted, account for the reclaim done in this pass */
3613 	if (boosted) {
3614 		unsigned long flags;
3615 
3616 		for (i = 0; i <= classzone_idx; i++) {
3617 			if (!zone_boosts[i])
3618 				continue;
3619 
3620 			/* Increments are under the zone lock */
3621 			zone = pgdat->node_zones + i;
3622 			spin_lock_irqsave(&zone->lock, flags);
3623 			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
3624 			spin_unlock_irqrestore(&zone->lock, flags);
3625 		}
3626 
3627 		/*
3628 		 * As there is now likely space, wakeup kcompact to defragment
3629 		 * pageblocks.
3630 		 */
3631 		wakeup_kcompactd(pgdat, pageblock_order, classzone_idx);
3632 	}
3633 
3634 	snapshot_refaults(NULL, pgdat);
3635 	__fs_reclaim_release();
3636 	psi_memstall_leave(&pflags);
3637 	/*
3638 	 * Return the order kswapd stopped reclaiming at as
3639 	 * prepare_kswapd_sleep() takes it into account. If another caller
3640 	 * entered the allocator slow path while kswapd was awake, order will
3641 	 * remain at the higher level.
3642 	 */
3643 	return sc.order;
3644 }
3645 
3646 /*
3647  * The pgdat->kswapd_classzone_idx is used to pass the highest zone index to be
3648  * reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is not
3649  * a valid index then either kswapd runs for first time or kswapd couldn't sleep
3650  * after previous reclaim attempt (node is still unbalanced). In that case
3651  * return the zone index of the previous kswapd reclaim cycle.
3652  */
3653 static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
3654 					   enum zone_type prev_classzone_idx)
3655 {
3656 	if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3657 		return prev_classzone_idx;
3658 	return pgdat->kswapd_classzone_idx;
3659 }
3660 
3661 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3662 				unsigned int classzone_idx)
3663 {
3664 	long remaining = 0;
3665 	DEFINE_WAIT(wait);
3666 
3667 	if (freezing(current) || kthread_should_stop())
3668 		return;
3669 
3670 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3671 
3672 	/*
3673 	 * Try to sleep for a short interval. Note that kcompactd will only be
3674 	 * woken if it is possible to sleep for a short interval. This is
3675 	 * deliberate on the assumption that if reclaim cannot keep an
3676 	 * eligible zone balanced that it's also unlikely that compaction will
3677 	 * succeed.
3678 	 */
3679 	if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3680 		/*
3681 		 * Compaction records what page blocks it recently failed to
3682 		 * isolate pages from and skips them in the future scanning.
3683 		 * When kswapd is going to sleep, it is reasonable to assume
3684 		 * that pages and compaction may succeed so reset the cache.
3685 		 */
3686 		reset_isolation_suitable(pgdat);
3687 
3688 		/*
3689 		 * We have freed the memory, now we should compact it to make
3690 		 * allocation of the requested order possible.
3691 		 */
3692 		wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3693 
3694 		remaining = schedule_timeout(HZ/10);
3695 
3696 		/*
3697 		 * If woken prematurely then reset kswapd_classzone_idx and
3698 		 * order. The values will either be from a wakeup request or
3699 		 * the previous request that slept prematurely.
3700 		 */
3701 		if (remaining) {
3702 			pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3703 			pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3704 		}
3705 
3706 		finish_wait(&pgdat->kswapd_wait, &wait);
3707 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3708 	}
3709 
3710 	/*
3711 	 * After a short sleep, check if it was a premature sleep. If not, then
3712 	 * go fully to sleep until explicitly woken up.
3713 	 */
3714 	if (!remaining &&
3715 	    prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3716 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3717 
3718 		/*
3719 		 * vmstat counters are not perfectly accurate and the estimated
3720 		 * value for counters such as NR_FREE_PAGES can deviate from the
3721 		 * true value by nr_online_cpus * threshold. To avoid the zone
3722 		 * watermarks being breached while under pressure, we reduce the
3723 		 * per-cpu vmstat threshold while kswapd is awake and restore
3724 		 * them before going back to sleep.
3725 		 */
3726 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3727 
3728 		if (!kthread_should_stop())
3729 			schedule();
3730 
3731 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3732 	} else {
3733 		if (remaining)
3734 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3735 		else
3736 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3737 	}
3738 	finish_wait(&pgdat->kswapd_wait, &wait);
3739 }
3740 
3741 /*
3742  * The background pageout daemon, started as a kernel thread
3743  * from the init process.
3744  *
3745  * This basically trickles out pages so that we have _some_
3746  * free memory available even if there is no other activity
3747  * that frees anything up. This is needed for things like routing
3748  * etc, where we otherwise might have all activity going on in
3749  * asynchronous contexts that cannot page things out.
3750  *
3751  * If there are applications that are active memory-allocators
3752  * (most normal use), this basically shouldn't matter.
3753  */
3754 static int kswapd(void *p)
3755 {
3756 	unsigned int alloc_order, reclaim_order;
3757 	unsigned int classzone_idx = MAX_NR_ZONES - 1;
3758 	pg_data_t *pgdat = (pg_data_t*)p;
3759 	struct task_struct *tsk = current;
3760 
3761 	struct reclaim_state reclaim_state = {
3762 		.reclaimed_slab = 0,
3763 	};
3764 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3765 
3766 	if (!cpumask_empty(cpumask))
3767 		set_cpus_allowed_ptr(tsk, cpumask);
3768 	current->reclaim_state = &reclaim_state;
3769 
3770 	/*
3771 	 * Tell the memory management that we're a "memory allocator",
3772 	 * and that if we need more memory we should get access to it
3773 	 * regardless (see "__alloc_pages()"). "kswapd" should
3774 	 * never get caught in the normal page freeing logic.
3775 	 *
3776 	 * (Kswapd normally doesn't need memory anyway, but sometimes
3777 	 * you need a small amount of memory in order to be able to
3778 	 * page out something else, and this flag essentially protects
3779 	 * us from recursively trying to free more memory as we're
3780 	 * trying to free the first piece of memory in the first place).
3781 	 */
3782 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3783 	set_freezable();
3784 
3785 	pgdat->kswapd_order = 0;
3786 	pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3787 	for ( ; ; ) {
3788 		bool ret;
3789 
3790 		alloc_order = reclaim_order = pgdat->kswapd_order;
3791 		classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3792 
3793 kswapd_try_sleep:
3794 		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3795 					classzone_idx);
3796 
3797 		/* Read the new order and classzone_idx */
3798 		alloc_order = reclaim_order = pgdat->kswapd_order;
3799 		classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3800 		pgdat->kswapd_order = 0;
3801 		pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3802 
3803 		ret = try_to_freeze();
3804 		if (kthread_should_stop())
3805 			break;
3806 
3807 		/*
3808 		 * We can speed up thawing tasks if we don't call balance_pgdat
3809 		 * after returning from the refrigerator
3810 		 */
3811 		if (ret)
3812 			continue;
3813 
3814 		/*
3815 		 * Reclaim begins at the requested order but if a high-order
3816 		 * reclaim fails then kswapd falls back to reclaiming for
3817 		 * order-0. If that happens, kswapd will consider sleeping
3818 		 * for the order it finished reclaiming at (reclaim_order)
3819 		 * but kcompactd is woken to compact for the original
3820 		 * request (alloc_order).
3821 		 */
3822 		trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3823 						alloc_order);
3824 		reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3825 		if (reclaim_order < alloc_order)
3826 			goto kswapd_try_sleep;
3827 	}
3828 
3829 	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3830 	current->reclaim_state = NULL;
3831 
3832 	return 0;
3833 }
3834 
3835 /*
3836  * A zone is low on free memory or too fragmented for high-order memory.  If
3837  * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
3838  * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
3839  * has failed or is not needed, still wake up kcompactd if only compaction is
3840  * needed.
3841  */
3842 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
3843 		   enum zone_type classzone_idx)
3844 {
3845 	pg_data_t *pgdat;
3846 
3847 	if (!managed_zone(zone))
3848 		return;
3849 
3850 	if (!cpuset_zone_allowed(zone, gfp_flags))
3851 		return;
3852 	pgdat = zone->zone_pgdat;
3853 
3854 	if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3855 		pgdat->kswapd_classzone_idx = classzone_idx;
3856 	else
3857 		pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx,
3858 						  classzone_idx);
3859 	pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3860 	if (!waitqueue_active(&pgdat->kswapd_wait))
3861 		return;
3862 
3863 	/* Hopeless node, leave it to direct reclaim if possible */
3864 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
3865 	    (pgdat_balanced(pgdat, order, classzone_idx) &&
3866 	     !pgdat_watermark_boosted(pgdat, classzone_idx))) {
3867 		/*
3868 		 * There may be plenty of free memory available, but it's too
3869 		 * fragmented for high-order allocations.  Wake up kcompactd
3870 		 * and rely on compaction_suitable() to determine if it's
3871 		 * needed.  If it fails, it will defer subsequent attempts to
3872 		 * ratelimit its work.
3873 		 */
3874 		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
3875 			wakeup_kcompactd(pgdat, order, classzone_idx);
3876 		return;
3877 	}
3878 
3879 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order,
3880 				      gfp_flags);
3881 	wake_up_interruptible(&pgdat->kswapd_wait);
3882 }
3883 
3884 #ifdef CONFIG_HIBERNATION
3885 /*
3886  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3887  * freed pages.
3888  *
3889  * Rather than trying to age LRUs the aim is to preserve the overall
3890  * LRU order by reclaiming preferentially
3891  * inactive > active > active referenced > active mapped
3892  */
3893 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3894 {
3895 	struct reclaim_state reclaim_state;
3896 	struct scan_control sc = {
3897 		.nr_to_reclaim = nr_to_reclaim,
3898 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3899 		.reclaim_idx = MAX_NR_ZONES - 1,
3900 		.priority = DEF_PRIORITY,
3901 		.may_writepage = 1,
3902 		.may_unmap = 1,
3903 		.may_swap = 1,
3904 		.hibernation_mode = 1,
3905 	};
3906 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3907 	struct task_struct *p = current;
3908 	unsigned long nr_reclaimed;
3909 	unsigned int noreclaim_flag;
3910 
3911 	fs_reclaim_acquire(sc.gfp_mask);
3912 	noreclaim_flag = memalloc_noreclaim_save();
3913 	reclaim_state.reclaimed_slab = 0;
3914 	p->reclaim_state = &reclaim_state;
3915 
3916 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3917 
3918 	p->reclaim_state = NULL;
3919 	memalloc_noreclaim_restore(noreclaim_flag);
3920 	fs_reclaim_release(sc.gfp_mask);
3921 
3922 	return nr_reclaimed;
3923 }
3924 #endif /* CONFIG_HIBERNATION */
3925 
3926 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3927    not required for correctness.  So if the last cpu in a node goes
3928    away, we get changed to run anywhere: as the first one comes back,
3929    restore their cpu bindings. */
3930 static int kswapd_cpu_online(unsigned int cpu)
3931 {
3932 	int nid;
3933 
3934 	for_each_node_state(nid, N_MEMORY) {
3935 		pg_data_t *pgdat = NODE_DATA(nid);
3936 		const struct cpumask *mask;
3937 
3938 		mask = cpumask_of_node(pgdat->node_id);
3939 
3940 		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3941 			/* One of our CPUs online: restore mask */
3942 			set_cpus_allowed_ptr(pgdat->kswapd, mask);
3943 	}
3944 	return 0;
3945 }
3946 
3947 /*
3948  * This kswapd start function will be called by init and node-hot-add.
3949  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3950  */
3951 int kswapd_run(int nid)
3952 {
3953 	pg_data_t *pgdat = NODE_DATA(nid);
3954 	int ret = 0;
3955 
3956 	if (pgdat->kswapd)
3957 		return 0;
3958 
3959 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3960 	if (IS_ERR(pgdat->kswapd)) {
3961 		/* failure at boot is fatal */
3962 		BUG_ON(system_state < SYSTEM_RUNNING);
3963 		pr_err("Failed to start kswapd on node %d\n", nid);
3964 		ret = PTR_ERR(pgdat->kswapd);
3965 		pgdat->kswapd = NULL;
3966 	}
3967 	return ret;
3968 }
3969 
3970 /*
3971  * Called by memory hotplug when all memory in a node is offlined.  Caller must
3972  * hold mem_hotplug_begin/end().
3973  */
3974 void kswapd_stop(int nid)
3975 {
3976 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3977 
3978 	if (kswapd) {
3979 		kthread_stop(kswapd);
3980 		NODE_DATA(nid)->kswapd = NULL;
3981 	}
3982 }
3983 
3984 static int __init kswapd_init(void)
3985 {
3986 	int nid, ret;
3987 
3988 	swap_setup();
3989 	for_each_node_state(nid, N_MEMORY)
3990  		kswapd_run(nid);
3991 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3992 					"mm/vmscan:online", kswapd_cpu_online,
3993 					NULL);
3994 	WARN_ON(ret < 0);
3995 	return 0;
3996 }
3997 
3998 module_init(kswapd_init)
3999 
4000 #ifdef CONFIG_NUMA
4001 /*
4002  * Node reclaim mode
4003  *
4004  * If non-zero call node_reclaim when the number of free pages falls below
4005  * the watermarks.
4006  */
4007 int node_reclaim_mode __read_mostly;
4008 
4009 #define RECLAIM_OFF 0
4010 #define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
4011 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
4012 #define RECLAIM_UNMAP (1<<2)	/* Unmap pages during reclaim */
4013 
4014 /*
4015  * Priority for NODE_RECLAIM. This determines the fraction of pages
4016  * of a node considered for each zone_reclaim. 4 scans 1/16th of
4017  * a zone.
4018  */
4019 #define NODE_RECLAIM_PRIORITY 4
4020 
4021 /*
4022  * Percentage of pages in a zone that must be unmapped for node_reclaim to
4023  * occur.
4024  */
4025 int sysctl_min_unmapped_ratio = 1;
4026 
4027 /*
4028  * If the number of slab pages in a zone grows beyond this percentage then
4029  * slab reclaim needs to occur.
4030  */
4031 int sysctl_min_slab_ratio = 5;
4032 
4033 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4034 {
4035 	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4036 	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4037 		node_page_state(pgdat, NR_ACTIVE_FILE);
4038 
4039 	/*
4040 	 * It's possible for there to be more file mapped pages than
4041 	 * accounted for by the pages on the file LRU lists because
4042 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4043 	 */
4044 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4045 }
4046 
4047 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
4048 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4049 {
4050 	unsigned long nr_pagecache_reclaimable;
4051 	unsigned long delta = 0;
4052 
4053 	/*
4054 	 * If RECLAIM_UNMAP is set, then all file pages are considered
4055 	 * potentially reclaimable. Otherwise, we have to worry about
4056 	 * pages like swapcache and node_unmapped_file_pages() provides
4057 	 * a better estimate
4058 	 */
4059 	if (node_reclaim_mode & RECLAIM_UNMAP)
4060 		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4061 	else
4062 		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4063 
4064 	/* If we can't clean pages, remove dirty pages from consideration */
4065 	if (!(node_reclaim_mode & RECLAIM_WRITE))
4066 		delta += node_page_state(pgdat, NR_FILE_DIRTY);
4067 
4068 	/* Watch for any possible underflows due to delta */
4069 	if (unlikely(delta > nr_pagecache_reclaimable))
4070 		delta = nr_pagecache_reclaimable;
4071 
4072 	return nr_pagecache_reclaimable - delta;
4073 }
4074 
4075 /*
4076  * Try to free up some pages from this node through reclaim.
4077  */
4078 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4079 {
4080 	/* Minimum pages needed in order to stay on node */
4081 	const unsigned long nr_pages = 1 << order;
4082 	struct task_struct *p = current;
4083 	struct reclaim_state reclaim_state;
4084 	unsigned int noreclaim_flag;
4085 	struct scan_control sc = {
4086 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4087 		.gfp_mask = current_gfp_context(gfp_mask),
4088 		.order = order,
4089 		.priority = NODE_RECLAIM_PRIORITY,
4090 		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4091 		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4092 		.may_swap = 1,
4093 		.reclaim_idx = gfp_zone(gfp_mask),
4094 	};
4095 
4096 	trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4097 					   sc.gfp_mask);
4098 
4099 	cond_resched();
4100 	fs_reclaim_acquire(sc.gfp_mask);
4101 	/*
4102 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4103 	 * and we also need to be able to write out pages for RECLAIM_WRITE
4104 	 * and RECLAIM_UNMAP.
4105 	 */
4106 	noreclaim_flag = memalloc_noreclaim_save();
4107 	p->flags |= PF_SWAPWRITE;
4108 	reclaim_state.reclaimed_slab = 0;
4109 	p->reclaim_state = &reclaim_state;
4110 
4111 	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4112 		/*
4113 		 * Free memory by calling shrink node with increasing
4114 		 * priorities until we have enough memory freed.
4115 		 */
4116 		do {
4117 			shrink_node(pgdat, &sc);
4118 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4119 	}
4120 
4121 	p->reclaim_state = NULL;
4122 	current->flags &= ~PF_SWAPWRITE;
4123 	memalloc_noreclaim_restore(noreclaim_flag);
4124 	fs_reclaim_release(sc.gfp_mask);
4125 
4126 	trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4127 
4128 	return sc.nr_reclaimed >= nr_pages;
4129 }
4130 
4131 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4132 {
4133 	int ret;
4134 
4135 	/*
4136 	 * Node reclaim reclaims unmapped file backed pages and
4137 	 * slab pages if we are over the defined limits.
4138 	 *
4139 	 * A small portion of unmapped file backed pages is needed for
4140 	 * file I/O otherwise pages read by file I/O will be immediately
4141 	 * thrown out if the node is overallocated. So we do not reclaim
4142 	 * if less than a specified percentage of the node is used by
4143 	 * unmapped file backed pages.
4144 	 */
4145 	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4146 	    node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
4147 		return NODE_RECLAIM_FULL;
4148 
4149 	/*
4150 	 * Do not scan if the allocation should not be delayed.
4151 	 */
4152 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4153 		return NODE_RECLAIM_NOSCAN;
4154 
4155 	/*
4156 	 * Only run node reclaim on the local node or on nodes that do not
4157 	 * have associated processors. This will favor the local processor
4158 	 * over remote processors and spread off node memory allocations
4159 	 * as wide as possible.
4160 	 */
4161 	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4162 		return NODE_RECLAIM_NOSCAN;
4163 
4164 	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4165 		return NODE_RECLAIM_NOSCAN;
4166 
4167 	ret = __node_reclaim(pgdat, gfp_mask, order);
4168 	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4169 
4170 	if (!ret)
4171 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4172 
4173 	return ret;
4174 }
4175 #endif
4176 
4177 /*
4178  * page_evictable - test whether a page is evictable
4179  * @page: the page to test
4180  *
4181  * Test whether page is evictable--i.e., should be placed on active/inactive
4182  * lists vs unevictable list.
4183  *
4184  * Reasons page might not be evictable:
4185  * (1) page's mapping marked unevictable
4186  * (2) page is part of an mlocked VMA
4187  *
4188  */
4189 int page_evictable(struct page *page)
4190 {
4191 	int ret;
4192 
4193 	/* Prevent address_space of inode and swap cache from being freed */
4194 	rcu_read_lock();
4195 	ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
4196 	rcu_read_unlock();
4197 	return ret;
4198 }
4199 
4200 /**
4201  * check_move_unevictable_pages - check pages for evictability and move to
4202  * appropriate zone lru list
4203  * @pvec: pagevec with lru pages to check
4204  *
4205  * Checks pages for evictability, if an evictable page is in the unevictable
4206  * lru list, moves it to the appropriate evictable lru list. This function
4207  * should be only used for lru pages.
4208  */
4209 void check_move_unevictable_pages(struct pagevec *pvec)
4210 {
4211 	struct lruvec *lruvec;
4212 	struct pglist_data *pgdat = NULL;
4213 	int pgscanned = 0;
4214 	int pgrescued = 0;
4215 	int i;
4216 
4217 	for (i = 0; i < pvec->nr; i++) {
4218 		struct page *page = pvec->pages[i];
4219 		struct pglist_data *pagepgdat = page_pgdat(page);
4220 
4221 		pgscanned++;
4222 		if (pagepgdat != pgdat) {
4223 			if (pgdat)
4224 				spin_unlock_irq(&pgdat->lru_lock);
4225 			pgdat = pagepgdat;
4226 			spin_lock_irq(&pgdat->lru_lock);
4227 		}
4228 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
4229 
4230 		if (!PageLRU(page) || !PageUnevictable(page))
4231 			continue;
4232 
4233 		if (page_evictable(page)) {
4234 			enum lru_list lru = page_lru_base_type(page);
4235 
4236 			VM_BUG_ON_PAGE(PageActive(page), page);
4237 			ClearPageUnevictable(page);
4238 			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
4239 			add_page_to_lru_list(page, lruvec, lru);
4240 			pgrescued++;
4241 		}
4242 	}
4243 
4244 	if (pgdat) {
4245 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4246 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4247 		spin_unlock_irq(&pgdat->lru_lock);
4248 	}
4249 }
4250 EXPORT_SYMBOL_GPL(check_move_unevictable_pages);
4251