1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 4 * 5 * Swap reorganised 29.12.95, Stephen Tweedie. 6 * kswapd added: 7.1.96 sct 7 * Removed kswapd_ctl limits, and swap out as many pages as needed 8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 9 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 10 * Multiqueue VM started 5.8.00, Rik van Riel. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 15 #include <linux/mm.h> 16 #include <linux/sched/mm.h> 17 #include <linux/module.h> 18 #include <linux/gfp.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/swap.h> 21 #include <linux/pagemap.h> 22 #include <linux/init.h> 23 #include <linux/highmem.h> 24 #include <linux/vmpressure.h> 25 #include <linux/vmstat.h> 26 #include <linux/file.h> 27 #include <linux/writeback.h> 28 #include <linux/blkdev.h> 29 #include <linux/buffer_head.h> /* for buffer_heads_over_limit */ 30 #include <linux/mm_inline.h> 31 #include <linux/backing-dev.h> 32 #include <linux/rmap.h> 33 #include <linux/topology.h> 34 #include <linux/cpu.h> 35 #include <linux/cpuset.h> 36 #include <linux/compaction.h> 37 #include <linux/notifier.h> 38 #include <linux/delay.h> 39 #include <linux/kthread.h> 40 #include <linux/freezer.h> 41 #include <linux/memcontrol.h> 42 #include <linux/migrate.h> 43 #include <linux/delayacct.h> 44 #include <linux/sysctl.h> 45 #include <linux/memory-tiers.h> 46 #include <linux/oom.h> 47 #include <linux/pagevec.h> 48 #include <linux/prefetch.h> 49 #include <linux/printk.h> 50 #include <linux/dax.h> 51 #include <linux/psi.h> 52 #include <linux/pagewalk.h> 53 #include <linux/shmem_fs.h> 54 #include <linux/ctype.h> 55 #include <linux/debugfs.h> 56 #include <linux/khugepaged.h> 57 #include <linux/rculist_nulls.h> 58 #include <linux/random.h> 59 #include <linux/mmu_notifier.h> 60 #include <linux/parser.h> 61 62 #include <asm/tlbflush.h> 63 #include <asm/div64.h> 64 65 #include <linux/swapops.h> 66 #include <linux/sched/sysctl.h> 67 68 #include "internal.h" 69 #include "swap.h" 70 71 #define CREATE_TRACE_POINTS 72 #include <trace/events/vmscan.h> 73 74 struct scan_control { 75 /* How many pages shrink_list() should reclaim */ 76 unsigned long nr_to_reclaim; 77 78 /* 79 * Nodemask of nodes allowed by the caller. If NULL, all nodes 80 * are scanned. 81 */ 82 nodemask_t *nodemask; 83 84 /* 85 * The memory cgroup that hit its limit and as a result is the 86 * primary target of this reclaim invocation. 87 */ 88 struct mem_cgroup *target_mem_cgroup; 89 90 /* 91 * Scan pressure balancing between anon and file LRUs 92 */ 93 unsigned long anon_cost; 94 unsigned long file_cost; 95 96 /* Swappiness value for proactive reclaim. Always use sc_swappiness()! */ 97 int *proactive_swappiness; 98 99 /* Can active folios be deactivated as part of reclaim? */ 100 #define DEACTIVATE_ANON 1 101 #define DEACTIVATE_FILE 2 102 unsigned int may_deactivate:2; 103 unsigned int force_deactivate:1; 104 unsigned int skipped_deactivate:1; 105 106 /* zone_reclaim_mode, boost reclaim */ 107 unsigned int may_writepage:1; 108 109 /* zone_reclaim_mode */ 110 unsigned int may_unmap:1; 111 112 /* zome_reclaim_mode, boost reclaim, cgroup restrictions */ 113 unsigned int may_swap:1; 114 115 /* Not allow cache_trim_mode to be turned on as part of reclaim? */ 116 unsigned int no_cache_trim_mode:1; 117 118 /* Has cache_trim_mode failed at least once? */ 119 unsigned int cache_trim_mode_failed:1; 120 121 /* Proactive reclaim invoked by userspace */ 122 unsigned int proactive:1; 123 124 /* 125 * Cgroup memory below memory.low is protected as long as we 126 * don't threaten to OOM. If any cgroup is reclaimed at 127 * reduced force or passed over entirely due to its memory.low 128 * setting (memcg_low_skipped), and nothing is reclaimed as a 129 * result, then go back for one more cycle that reclaims the protected 130 * memory (memcg_low_reclaim) to avert OOM. 131 */ 132 unsigned int memcg_low_reclaim:1; 133 unsigned int memcg_low_skipped:1; 134 135 /* Shared cgroup tree walk failed, rescan the whole tree */ 136 unsigned int memcg_full_walk:1; 137 138 unsigned int hibernation_mode:1; 139 140 /* One of the zones is ready for compaction */ 141 unsigned int compaction_ready:1; 142 143 /* There is easily reclaimable cold cache in the current node */ 144 unsigned int cache_trim_mode:1; 145 146 /* The file folios on the current node are dangerously low */ 147 unsigned int file_is_tiny:1; 148 149 /* Always discard instead of demoting to lower tier memory */ 150 unsigned int no_demotion:1; 151 152 /* Allocation order */ 153 s8 order; 154 155 /* Scan (total_size >> priority) pages at once */ 156 s8 priority; 157 158 /* The highest zone to isolate folios for reclaim from */ 159 s8 reclaim_idx; 160 161 /* This context's GFP mask */ 162 gfp_t gfp_mask; 163 164 /* Incremented by the number of inactive pages that were scanned */ 165 unsigned long nr_scanned; 166 167 /* Number of pages freed so far during a call to shrink_zones() */ 168 unsigned long nr_reclaimed; 169 170 struct { 171 unsigned int dirty; 172 unsigned int unqueued_dirty; 173 unsigned int congested; 174 unsigned int writeback; 175 unsigned int immediate; 176 unsigned int file_taken; 177 unsigned int taken; 178 } nr; 179 180 /* for recording the reclaimed slab by now */ 181 struct reclaim_state reclaim_state; 182 }; 183 184 #ifdef ARCH_HAS_PREFETCHW 185 #define prefetchw_prev_lru_folio(_folio, _base, _field) \ 186 do { \ 187 if ((_folio)->lru.prev != _base) { \ 188 struct folio *prev; \ 189 \ 190 prev = lru_to_folio(&(_folio->lru)); \ 191 prefetchw(&prev->_field); \ 192 } \ 193 } while (0) 194 #else 195 #define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0) 196 #endif 197 198 /* 199 * From 0 .. MAX_SWAPPINESS. Higher means more swappy. 200 */ 201 int vm_swappiness = 60; 202 203 #ifdef CONFIG_MEMCG 204 205 /* Returns true for reclaim through cgroup limits or cgroup interfaces. */ 206 static bool cgroup_reclaim(struct scan_control *sc) 207 { 208 return sc->target_mem_cgroup; 209 } 210 211 /* 212 * Returns true for reclaim on the root cgroup. This is true for direct 213 * allocator reclaim and reclaim through cgroup interfaces on the root cgroup. 214 */ 215 static bool root_reclaim(struct scan_control *sc) 216 { 217 return !sc->target_mem_cgroup || mem_cgroup_is_root(sc->target_mem_cgroup); 218 } 219 220 /** 221 * writeback_throttling_sane - is the usual dirty throttling mechanism available? 222 * @sc: scan_control in question 223 * 224 * The normal page dirty throttling mechanism in balance_dirty_pages() is 225 * completely broken with the legacy memcg and direct stalling in 226 * shrink_folio_list() is used for throttling instead, which lacks all the 227 * niceties such as fairness, adaptive pausing, bandwidth proportional 228 * allocation and configurability. 229 * 230 * This function tests whether the vmscan currently in progress can assume 231 * that the normal dirty throttling mechanism is operational. 232 */ 233 static bool writeback_throttling_sane(struct scan_control *sc) 234 { 235 if (!cgroup_reclaim(sc)) 236 return true; 237 #ifdef CONFIG_CGROUP_WRITEBACK 238 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 239 return true; 240 #endif 241 return false; 242 } 243 244 static int sc_swappiness(struct scan_control *sc, struct mem_cgroup *memcg) 245 { 246 if (sc->proactive && sc->proactive_swappiness) 247 return *sc->proactive_swappiness; 248 return mem_cgroup_swappiness(memcg); 249 } 250 #else 251 static bool cgroup_reclaim(struct scan_control *sc) 252 { 253 return false; 254 } 255 256 static bool root_reclaim(struct scan_control *sc) 257 { 258 return true; 259 } 260 261 static bool writeback_throttling_sane(struct scan_control *sc) 262 { 263 return true; 264 } 265 266 static int sc_swappiness(struct scan_control *sc, struct mem_cgroup *memcg) 267 { 268 return READ_ONCE(vm_swappiness); 269 } 270 #endif 271 272 /* for_each_managed_zone_pgdat - helper macro to iterate over all managed zones in a pgdat up to 273 * and including the specified highidx 274 * @zone: The current zone in the iterator 275 * @pgdat: The pgdat which node_zones are being iterated 276 * @idx: The index variable 277 * @highidx: The index of the highest zone to return 278 * 279 * This macro iterates through all managed zones up to and including the specified highidx. 280 * The zone iterator enters an invalid state after macro call and must be reinitialized 281 * before it can be used again. 282 */ 283 #define for_each_managed_zone_pgdat(zone, pgdat, idx, highidx) \ 284 for ((idx) = 0, (zone) = (pgdat)->node_zones; \ 285 (idx) <= (highidx); \ 286 (idx)++, (zone)++) \ 287 if (!managed_zone(zone)) \ 288 continue; \ 289 else 290 291 static void set_task_reclaim_state(struct task_struct *task, 292 struct reclaim_state *rs) 293 { 294 /* Check for an overwrite */ 295 WARN_ON_ONCE(rs && task->reclaim_state); 296 297 /* Check for the nulling of an already-nulled member */ 298 WARN_ON_ONCE(!rs && !task->reclaim_state); 299 300 task->reclaim_state = rs; 301 } 302 303 /* 304 * flush_reclaim_state(): add pages reclaimed outside of LRU-based reclaim to 305 * scan_control->nr_reclaimed. 306 */ 307 static void flush_reclaim_state(struct scan_control *sc) 308 { 309 /* 310 * Currently, reclaim_state->reclaimed includes three types of pages 311 * freed outside of vmscan: 312 * (1) Slab pages. 313 * (2) Clean file pages from pruned inodes (on highmem systems). 314 * (3) XFS freed buffer pages. 315 * 316 * For all of these cases, we cannot universally link the pages to a 317 * single memcg. For example, a memcg-aware shrinker can free one object 318 * charged to the target memcg, causing an entire page to be freed. 319 * If we count the entire page as reclaimed from the memcg, we end up 320 * overestimating the reclaimed amount (potentially under-reclaiming). 321 * 322 * Only count such pages for global reclaim to prevent under-reclaiming 323 * from the target memcg; preventing unnecessary retries during memcg 324 * charging and false positives from proactive reclaim. 325 * 326 * For uncommon cases where the freed pages were actually mostly 327 * charged to the target memcg, we end up underestimating the reclaimed 328 * amount. This should be fine. The freed pages will be uncharged 329 * anyway, even if they are not counted here properly, and we will be 330 * able to make forward progress in charging (which is usually in a 331 * retry loop). 332 * 333 * We can go one step further, and report the uncharged objcg pages in 334 * memcg reclaim, to make reporting more accurate and reduce 335 * underestimation, but it's probably not worth the complexity for now. 336 */ 337 if (current->reclaim_state && root_reclaim(sc)) { 338 sc->nr_reclaimed += current->reclaim_state->reclaimed; 339 current->reclaim_state->reclaimed = 0; 340 } 341 } 342 343 static bool can_demote(int nid, struct scan_control *sc, 344 struct mem_cgroup *memcg) 345 { 346 struct pglist_data *pgdat = NODE_DATA(nid); 347 nodemask_t allowed_mask; 348 349 if (!pgdat || !numa_demotion_enabled) 350 return false; 351 if (sc && sc->no_demotion) 352 return false; 353 354 node_get_allowed_targets(pgdat, &allowed_mask); 355 if (nodes_empty(allowed_mask)) 356 return false; 357 358 /* Filter out nodes that are not in cgroup's mems_allowed. */ 359 mem_cgroup_node_filter_allowed(memcg, &allowed_mask); 360 return !nodes_empty(allowed_mask); 361 } 362 363 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg, 364 int nid, 365 struct scan_control *sc) 366 { 367 if (memcg == NULL) { 368 /* 369 * For non-memcg reclaim, is there 370 * space in any swap device? 371 */ 372 if (get_nr_swap_pages() > 0) 373 return true; 374 } else { 375 /* Is the memcg below its swap limit? */ 376 if (mem_cgroup_get_nr_swap_pages(memcg) > 0) 377 return true; 378 } 379 380 /* 381 * The page can not be swapped. 382 * 383 * Can it be reclaimed from this node via demotion? 384 */ 385 return can_demote(nid, sc, memcg); 386 } 387 388 /* 389 * This misses isolated folios which are not accounted for to save counters. 390 * As the data only determines if reclaim or compaction continues, it is 391 * not expected that isolated folios will be a dominating factor. 392 */ 393 unsigned long zone_reclaimable_pages(struct zone *zone) 394 { 395 unsigned long nr; 396 397 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) + 398 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE); 399 if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL)) 400 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) + 401 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON); 402 403 return nr; 404 } 405 406 /** 407 * lruvec_lru_size - Returns the number of pages on the given LRU list. 408 * @lruvec: lru vector 409 * @lru: lru to use 410 * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list) 411 */ 412 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, 413 int zone_idx) 414 { 415 unsigned long size = 0; 416 int zid; 417 struct zone *zone; 418 419 for_each_managed_zone_pgdat(zone, lruvec_pgdat(lruvec), zid, zone_idx) { 420 if (!mem_cgroup_disabled()) 421 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid); 422 else 423 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru); 424 } 425 return size; 426 } 427 428 static unsigned long drop_slab_node(int nid) 429 { 430 unsigned long freed = 0; 431 struct mem_cgroup *memcg = NULL; 432 433 memcg = mem_cgroup_iter(NULL, NULL, NULL); 434 do { 435 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0); 436 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 437 438 return freed; 439 } 440 441 void drop_slab(void) 442 { 443 int nid; 444 int shift = 0; 445 unsigned long freed; 446 447 do { 448 freed = 0; 449 for_each_online_node(nid) { 450 if (fatal_signal_pending(current)) 451 return; 452 453 freed += drop_slab_node(nid); 454 } 455 } while ((freed >> shift++) > 1); 456 } 457 458 #define CHECK_RECLAIMER_OFFSET(type) \ 459 do { \ 460 BUILD_BUG_ON(PGSTEAL_##type - PGSTEAL_KSWAPD != \ 461 PGDEMOTE_##type - PGDEMOTE_KSWAPD); \ 462 BUILD_BUG_ON(PGSTEAL_##type - PGSTEAL_KSWAPD != \ 463 PGSCAN_##type - PGSCAN_KSWAPD); \ 464 } while (0) 465 466 static int reclaimer_offset(struct scan_control *sc) 467 { 468 CHECK_RECLAIMER_OFFSET(DIRECT); 469 CHECK_RECLAIMER_OFFSET(KHUGEPAGED); 470 CHECK_RECLAIMER_OFFSET(PROACTIVE); 471 472 if (current_is_kswapd()) 473 return 0; 474 if (current_is_khugepaged()) 475 return PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD; 476 if (sc->proactive) 477 return PGSTEAL_PROACTIVE - PGSTEAL_KSWAPD; 478 return PGSTEAL_DIRECT - PGSTEAL_KSWAPD; 479 } 480 481 /* 482 * We detected a synchronous write error writing a folio out. Probably 483 * -ENOSPC. We need to propagate that into the address_space for a subsequent 484 * fsync(), msync() or close(). 485 * 486 * The tricky part is that after writepage we cannot touch the mapping: nothing 487 * prevents it from being freed up. But we have a ref on the folio and once 488 * that folio is locked, the mapping is pinned. 489 * 490 * We're allowed to run sleeping folio_lock() here because we know the caller has 491 * __GFP_FS. 492 */ 493 static void handle_write_error(struct address_space *mapping, 494 struct folio *folio, int error) 495 { 496 folio_lock(folio); 497 if (folio_mapping(folio) == mapping) 498 mapping_set_error(mapping, error); 499 folio_unlock(folio); 500 } 501 502 static bool skip_throttle_noprogress(pg_data_t *pgdat) 503 { 504 int reclaimable = 0, write_pending = 0; 505 int i; 506 struct zone *zone; 507 /* 508 * If kswapd is disabled, reschedule if necessary but do not 509 * throttle as the system is likely near OOM. 510 */ 511 if (kswapd_test_hopeless(pgdat)) 512 return true; 513 514 /* 515 * If there are a lot of dirty/writeback folios then do not 516 * throttle as throttling will occur when the folios cycle 517 * towards the end of the LRU if still under writeback. 518 */ 519 for_each_managed_zone_pgdat(zone, pgdat, i, MAX_NR_ZONES - 1) { 520 reclaimable += zone_reclaimable_pages(zone); 521 write_pending += zone_page_state_snapshot(zone, 522 NR_ZONE_WRITE_PENDING); 523 } 524 if (2 * write_pending <= reclaimable) 525 return true; 526 527 return false; 528 } 529 530 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason) 531 { 532 wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason]; 533 long timeout, ret; 534 DEFINE_WAIT(wait); 535 536 /* 537 * Do not throttle user workers, kthreads other than kswapd or 538 * workqueues. They may be required for reclaim to make 539 * forward progress (e.g. journalling workqueues or kthreads). 540 */ 541 if (!current_is_kswapd() && 542 current->flags & (PF_USER_WORKER|PF_KTHREAD)) { 543 cond_resched(); 544 return; 545 } 546 547 /* 548 * These figures are pulled out of thin air. 549 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many 550 * parallel reclaimers which is a short-lived event so the timeout is 551 * short. Failing to make progress or waiting on writeback are 552 * potentially long-lived events so use a longer timeout. This is shaky 553 * logic as a failure to make progress could be due to anything from 554 * writeback to a slow device to excessive referenced folios at the tail 555 * of the inactive LRU. 556 */ 557 switch(reason) { 558 case VMSCAN_THROTTLE_WRITEBACK: 559 timeout = HZ/10; 560 561 if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) { 562 WRITE_ONCE(pgdat->nr_reclaim_start, 563 node_page_state(pgdat, NR_THROTTLED_WRITTEN)); 564 } 565 566 break; 567 case VMSCAN_THROTTLE_CONGESTED: 568 fallthrough; 569 case VMSCAN_THROTTLE_NOPROGRESS: 570 if (skip_throttle_noprogress(pgdat)) { 571 cond_resched(); 572 return; 573 } 574 575 timeout = 1; 576 577 break; 578 case VMSCAN_THROTTLE_ISOLATED: 579 timeout = HZ/50; 580 break; 581 default: 582 WARN_ON_ONCE(1); 583 timeout = HZ; 584 break; 585 } 586 587 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE); 588 ret = schedule_timeout(timeout); 589 finish_wait(wqh, &wait); 590 591 if (reason == VMSCAN_THROTTLE_WRITEBACK) 592 atomic_dec(&pgdat->nr_writeback_throttled); 593 594 trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout), 595 jiffies_to_usecs(timeout - ret), 596 reason); 597 } 598 599 /* 600 * Account for folios written if tasks are throttled waiting on dirty 601 * folios to clean. If enough folios have been cleaned since throttling 602 * started then wakeup the throttled tasks. 603 */ 604 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio, 605 int nr_throttled) 606 { 607 unsigned long nr_written; 608 609 node_stat_add_folio(folio, NR_THROTTLED_WRITTEN); 610 611 /* 612 * This is an inaccurate read as the per-cpu deltas may not 613 * be synchronised. However, given that the system is 614 * writeback throttled, it is not worth taking the penalty 615 * of getting an accurate count. At worst, the throttle 616 * timeout guarantees forward progress. 617 */ 618 nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) - 619 READ_ONCE(pgdat->nr_reclaim_start); 620 621 if (nr_written > SWAP_CLUSTER_MAX * nr_throttled) 622 wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]); 623 } 624 625 /* possible outcome of pageout() */ 626 typedef enum { 627 /* failed to write folio out, folio is locked */ 628 PAGE_KEEP, 629 /* move folio to the active list, folio is locked */ 630 PAGE_ACTIVATE, 631 /* folio has been sent to the disk successfully, folio is unlocked */ 632 PAGE_SUCCESS, 633 /* folio is clean and locked */ 634 PAGE_CLEAN, 635 } pageout_t; 636 637 static pageout_t writeout(struct folio *folio, struct address_space *mapping, 638 struct swap_iocb **plug, struct list_head *folio_list) 639 { 640 int res; 641 642 folio_set_reclaim(folio); 643 644 /* 645 * The large shmem folio can be split if CONFIG_THP_SWAP is not enabled 646 * or we failed to allocate contiguous swap entries, in which case 647 * the split out folios get added back to folio_list. 648 */ 649 if (shmem_mapping(mapping)) 650 res = shmem_writeout(folio, plug, folio_list); 651 else 652 res = swap_writeout(folio, plug); 653 654 if (res < 0) 655 handle_write_error(mapping, folio, res); 656 if (res == AOP_WRITEPAGE_ACTIVATE) { 657 folio_clear_reclaim(folio); 658 return PAGE_ACTIVATE; 659 } 660 661 /* synchronous write? */ 662 if (!folio_test_writeback(folio)) 663 folio_clear_reclaim(folio); 664 665 trace_mm_vmscan_write_folio(folio); 666 node_stat_add_folio(folio, NR_VMSCAN_WRITE); 667 return PAGE_SUCCESS; 668 } 669 670 /* 671 * pageout is called by shrink_folio_list() for each dirty folio. 672 */ 673 static pageout_t pageout(struct folio *folio, struct address_space *mapping, 674 struct swap_iocb **plug, struct list_head *folio_list) 675 { 676 /* 677 * We no longer attempt to writeback filesystem folios here, other 678 * than tmpfs/shmem. That's taken care of in page-writeback. 679 * If we find a dirty filesystem folio at the end of the LRU list, 680 * typically that means the filesystem is saturating the storage 681 * with contiguous writes and telling it to write a folio here 682 * would only make the situation worse by injecting an element 683 * of random access. 684 * 685 * If the folio is swapcache, write it back even if that would 686 * block, for some throttling. This happens by accident, because 687 * swap_backing_dev_info is bust: it doesn't reflect the 688 * congestion state of the swapdevs. Easy to fix, if needed. 689 * 690 * A freeable shmem or swapcache folio is referenced only by the 691 * caller that isolated the folio and the page cache. 692 */ 693 if (folio_ref_count(folio) != 1 + folio_nr_pages(folio) || !mapping) 694 return PAGE_KEEP; 695 if (!shmem_mapping(mapping) && !folio_test_anon(folio)) 696 return PAGE_ACTIVATE; 697 if (!folio_clear_dirty_for_io(folio)) 698 return PAGE_CLEAN; 699 return writeout(folio, mapping, plug, folio_list); 700 } 701 702 /* 703 * Same as remove_mapping, but if the folio is removed from the mapping, it 704 * gets returned with a refcount of 0. 705 */ 706 static int __remove_mapping(struct address_space *mapping, struct folio *folio, 707 bool reclaimed, struct mem_cgroup *target_memcg) 708 { 709 int refcount; 710 void *shadow = NULL; 711 struct swap_cluster_info *ci; 712 713 BUG_ON(!folio_test_locked(folio)); 714 BUG_ON(mapping != folio_mapping(folio)); 715 716 if (folio_test_swapcache(folio)) { 717 ci = swap_cluster_get_and_lock_irq(folio); 718 } else { 719 spin_lock(&mapping->host->i_lock); 720 xa_lock_irq(&mapping->i_pages); 721 } 722 723 /* 724 * The non racy check for a busy folio. 725 * 726 * Must be careful with the order of the tests. When someone has 727 * a ref to the folio, it may be possible that they dirty it then 728 * drop the reference. So if the dirty flag is tested before the 729 * refcount here, then the following race may occur: 730 * 731 * get_user_pages(&page); 732 * [user mapping goes away] 733 * write_to(page); 734 * !folio_test_dirty(folio) [good] 735 * folio_set_dirty(folio); 736 * folio_put(folio); 737 * !refcount(folio) [good, discard it] 738 * 739 * [oops, our write_to data is lost] 740 * 741 * Reversing the order of the tests ensures such a situation cannot 742 * escape unnoticed. The smp_rmb is needed to ensure the folio->flags 743 * load is not satisfied before that of folio->_refcount. 744 * 745 * Note that if the dirty flag is always set via folio_mark_dirty, 746 * and thus under the i_pages lock, then this ordering is not required. 747 */ 748 refcount = 1 + folio_nr_pages(folio); 749 if (!folio_ref_freeze(folio, refcount)) 750 goto cannot_free; 751 /* note: atomic_cmpxchg in folio_ref_freeze provides the smp_rmb */ 752 if (unlikely(folio_test_dirty(folio))) { 753 folio_ref_unfreeze(folio, refcount); 754 goto cannot_free; 755 } 756 757 if (folio_test_swapcache(folio)) { 758 swp_entry_t swap = folio->swap; 759 760 if (reclaimed && !mapping_exiting(mapping)) 761 shadow = workingset_eviction(folio, target_memcg); 762 memcg1_swapout(folio, swap); 763 __swap_cache_del_folio(ci, folio, swap, shadow); 764 swap_cluster_unlock_irq(ci); 765 } else { 766 void (*free_folio)(struct folio *); 767 768 free_folio = mapping->a_ops->free_folio; 769 /* 770 * Remember a shadow entry for reclaimed file cache in 771 * order to detect refaults, thus thrashing, later on. 772 * 773 * But don't store shadows in an address space that is 774 * already exiting. This is not just an optimization, 775 * inode reclaim needs to empty out the radix tree or 776 * the nodes are lost. Don't plant shadows behind its 777 * back. 778 * 779 * We also don't store shadows for DAX mappings because the 780 * only page cache folios found in these are zero pages 781 * covering holes, and because we don't want to mix DAX 782 * exceptional entries and shadow exceptional entries in the 783 * same address_space. 784 */ 785 if (reclaimed && folio_is_file_lru(folio) && 786 !mapping_exiting(mapping) && !dax_mapping(mapping)) 787 shadow = workingset_eviction(folio, target_memcg); 788 __filemap_remove_folio(folio, shadow); 789 xa_unlock_irq(&mapping->i_pages); 790 if (mapping_shrinkable(mapping)) 791 inode_lru_list_add(mapping->host); 792 spin_unlock(&mapping->host->i_lock); 793 794 if (free_folio) 795 free_folio(folio); 796 } 797 798 return 1; 799 800 cannot_free: 801 if (folio_test_swapcache(folio)) { 802 swap_cluster_unlock_irq(ci); 803 } else { 804 xa_unlock_irq(&mapping->i_pages); 805 spin_unlock(&mapping->host->i_lock); 806 } 807 return 0; 808 } 809 810 /** 811 * remove_mapping() - Attempt to remove a folio from its mapping. 812 * @mapping: The address space. 813 * @folio: The folio to remove. 814 * 815 * If the folio is dirty, under writeback or if someone else has a ref 816 * on it, removal will fail. 817 * Return: The number of pages removed from the mapping. 0 if the folio 818 * could not be removed. 819 * Context: The caller should have a single refcount on the folio and 820 * hold its lock. 821 */ 822 long remove_mapping(struct address_space *mapping, struct folio *folio) 823 { 824 if (__remove_mapping(mapping, folio, false, NULL)) { 825 /* 826 * Unfreezing the refcount with 1 effectively 827 * drops the pagecache ref for us without requiring another 828 * atomic operation. 829 */ 830 folio_ref_unfreeze(folio, 1); 831 return folio_nr_pages(folio); 832 } 833 return 0; 834 } 835 836 /** 837 * folio_putback_lru - Put previously isolated folio onto appropriate LRU list. 838 * @folio: Folio to be returned to an LRU list. 839 * 840 * Add previously isolated @folio to appropriate LRU list. 841 * The folio may still be unevictable for other reasons. 842 * 843 * Context: lru_lock must not be held, interrupts must be enabled. 844 */ 845 void folio_putback_lru(struct folio *folio) 846 { 847 folio_add_lru(folio); 848 folio_put(folio); /* drop ref from isolate */ 849 } 850 851 enum folio_references { 852 FOLIOREF_RECLAIM, 853 FOLIOREF_RECLAIM_CLEAN, 854 FOLIOREF_KEEP, 855 FOLIOREF_ACTIVATE, 856 }; 857 858 #ifdef CONFIG_LRU_GEN 859 /* 860 * Only used on a mapped folio in the eviction (rmap walk) path, where promotion 861 * needs to be done by taking the folio off the LRU list and then adding it back 862 * with PG_active set. In contrast, the aging (page table walk) path uses 863 * folio_update_gen(). 864 */ 865 static bool lru_gen_set_refs(struct folio *folio) 866 { 867 /* see the comment on LRU_REFS_FLAGS */ 868 if (!folio_test_referenced(folio) && !folio_test_workingset(folio)) { 869 set_mask_bits(&folio->flags.f, LRU_REFS_MASK, BIT(PG_referenced)); 870 return false; 871 } 872 873 set_mask_bits(&folio->flags.f, LRU_REFS_FLAGS, BIT(PG_workingset)); 874 return true; 875 } 876 #else 877 static bool lru_gen_set_refs(struct folio *folio) 878 { 879 return false; 880 } 881 #endif /* CONFIG_LRU_GEN */ 882 883 static enum folio_references folio_check_references(struct folio *folio, 884 struct scan_control *sc) 885 { 886 int referenced_ptes, referenced_folio; 887 vm_flags_t vm_flags; 888 889 referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup, 890 &vm_flags); 891 892 /* 893 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma. 894 * Let the folio, now marked Mlocked, be moved to the unevictable list. 895 */ 896 if (vm_flags & VM_LOCKED) 897 return FOLIOREF_ACTIVATE; 898 899 /* 900 * There are two cases to consider. 901 * 1) Rmap lock contention: rotate. 902 * 2) Skip the non-shared swapbacked folio mapped solely by 903 * the exiting or OOM-reaped process. 904 */ 905 if (referenced_ptes == -1) 906 return FOLIOREF_KEEP; 907 908 if (lru_gen_enabled()) { 909 if (!referenced_ptes) 910 return FOLIOREF_RECLAIM; 911 912 return lru_gen_set_refs(folio) ? FOLIOREF_ACTIVATE : FOLIOREF_KEEP; 913 } 914 915 referenced_folio = folio_test_clear_referenced(folio); 916 917 if (referenced_ptes) { 918 /* 919 * All mapped folios start out with page table 920 * references from the instantiating fault, so we need 921 * to look twice if a mapped file/anon folio is used more 922 * than once. 923 * 924 * Mark it and spare it for another trip around the 925 * inactive list. Another page table reference will 926 * lead to its activation. 927 * 928 * Note: the mark is set for activated folios as well 929 * so that recently deactivated but used folios are 930 * quickly recovered. 931 */ 932 folio_set_referenced(folio); 933 934 if (referenced_folio || referenced_ptes > 1) 935 return FOLIOREF_ACTIVATE; 936 937 /* 938 * Activate file-backed executable folios after first usage. 939 */ 940 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) 941 return FOLIOREF_ACTIVATE; 942 943 return FOLIOREF_KEEP; 944 } 945 946 /* Reclaim if clean, defer dirty folios to writeback */ 947 if (referenced_folio && folio_is_file_lru(folio)) 948 return FOLIOREF_RECLAIM_CLEAN; 949 950 return FOLIOREF_RECLAIM; 951 } 952 953 /* Check if a folio is dirty or under writeback */ 954 static void folio_check_dirty_writeback(struct folio *folio, 955 bool *dirty, bool *writeback) 956 { 957 struct address_space *mapping; 958 959 /* 960 * Anonymous folios are not handled by flushers and must be written 961 * from reclaim context. Do not stall reclaim based on them. 962 * MADV_FREE anonymous folios are put into inactive file list too. 963 * They could be mistakenly treated as file lru. So further anon 964 * test is needed. 965 */ 966 if (!folio_is_file_lru(folio) || 967 (folio_test_anon(folio) && !folio_test_swapbacked(folio))) { 968 *dirty = false; 969 *writeback = false; 970 return; 971 } 972 973 /* By default assume that the folio flags are accurate */ 974 *dirty = folio_test_dirty(folio); 975 *writeback = folio_test_writeback(folio); 976 977 /* Verify dirty/writeback state if the filesystem supports it */ 978 if (!folio_test_private(folio)) 979 return; 980 981 mapping = folio_mapping(folio); 982 if (mapping && mapping->a_ops->is_dirty_writeback) 983 mapping->a_ops->is_dirty_writeback(folio, dirty, writeback); 984 } 985 986 static struct folio *alloc_demote_folio(struct folio *src, 987 unsigned long private) 988 { 989 struct folio *dst; 990 nodemask_t *allowed_mask; 991 struct migration_target_control *mtc; 992 993 mtc = (struct migration_target_control *)private; 994 995 allowed_mask = mtc->nmask; 996 /* 997 * make sure we allocate from the target node first also trying to 998 * demote or reclaim pages from the target node via kswapd if we are 999 * low on free memory on target node. If we don't do this and if 1000 * we have free memory on the slower(lower) memtier, we would start 1001 * allocating pages from slower(lower) memory tiers without even forcing 1002 * a demotion of cold pages from the target memtier. This can result 1003 * in the kernel placing hot pages in slower(lower) memory tiers. 1004 */ 1005 mtc->nmask = NULL; 1006 mtc->gfp_mask |= __GFP_THISNODE; 1007 dst = alloc_migration_target(src, (unsigned long)mtc); 1008 if (dst) 1009 return dst; 1010 1011 mtc->gfp_mask &= ~__GFP_THISNODE; 1012 mtc->nmask = allowed_mask; 1013 1014 return alloc_migration_target(src, (unsigned long)mtc); 1015 } 1016 1017 /* 1018 * Take folios on @demote_folios and attempt to demote them to another node. 1019 * Folios which are not demoted are left on @demote_folios. 1020 */ 1021 static unsigned int demote_folio_list(struct list_head *demote_folios, 1022 struct pglist_data *pgdat, 1023 struct mem_cgroup *memcg) 1024 { 1025 int target_nid; 1026 unsigned int nr_succeeded; 1027 nodemask_t allowed_mask; 1028 1029 struct migration_target_control mtc = { 1030 /* 1031 * Allocate from 'node', or fail quickly and quietly. 1032 * When this happens, 'page' will likely just be discarded 1033 * instead of migrated. 1034 */ 1035 .gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | 1036 __GFP_NOMEMALLOC | GFP_NOWAIT, 1037 .nmask = &allowed_mask, 1038 .reason = MR_DEMOTION, 1039 }; 1040 1041 if (list_empty(demote_folios)) 1042 return 0; 1043 1044 node_get_allowed_targets(pgdat, &allowed_mask); 1045 mem_cgroup_node_filter_allowed(memcg, &allowed_mask); 1046 if (nodes_empty(allowed_mask)) 1047 return 0; 1048 1049 target_nid = next_demotion_node(pgdat->node_id, &allowed_mask); 1050 if (target_nid == NUMA_NO_NODE) 1051 /* No lower-tier nodes or nodes were hot-unplugged. */ 1052 return 0; 1053 1054 mtc.nid = target_nid; 1055 1056 /* Demotion ignores all cpuset and mempolicy settings */ 1057 migrate_pages(demote_folios, alloc_demote_folio, NULL, 1058 (unsigned long)&mtc, MIGRATE_ASYNC, MR_DEMOTION, 1059 &nr_succeeded); 1060 1061 return nr_succeeded; 1062 } 1063 1064 static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask) 1065 { 1066 if (gfp_mask & __GFP_FS) 1067 return true; 1068 if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO)) 1069 return false; 1070 /* 1071 * We can "enter_fs" for swap-cache with only __GFP_IO 1072 * providing this isn't SWP_FS_OPS. 1073 * ->flags can be updated non-atomically (scan_swap_map_slots), 1074 * but that will never affect SWP_FS_OPS, so the data_race 1075 * is safe. 1076 */ 1077 return !data_race(folio_swap_flags(folio) & SWP_FS_OPS); 1078 } 1079 1080 /* 1081 * shrink_folio_list() returns the number of reclaimed pages 1082 */ 1083 static unsigned int shrink_folio_list(struct list_head *folio_list, 1084 struct pglist_data *pgdat, struct scan_control *sc, 1085 struct reclaim_stat *stat, bool ignore_references, 1086 struct mem_cgroup *memcg) 1087 { 1088 struct folio_batch free_folios; 1089 LIST_HEAD(ret_folios); 1090 LIST_HEAD(demote_folios); 1091 unsigned int nr_reclaimed = 0, nr_demoted = 0; 1092 unsigned int pgactivate = 0; 1093 bool do_demote_pass; 1094 struct swap_iocb *plug = NULL; 1095 1096 folio_batch_init(&free_folios); 1097 memset(stat, 0, sizeof(*stat)); 1098 cond_resched(); 1099 do_demote_pass = can_demote(pgdat->node_id, sc, memcg); 1100 1101 retry: 1102 while (!list_empty(folio_list)) { 1103 struct address_space *mapping; 1104 struct folio *folio; 1105 enum folio_references references = FOLIOREF_RECLAIM; 1106 bool dirty, writeback; 1107 unsigned int nr_pages; 1108 1109 cond_resched(); 1110 1111 folio = lru_to_folio(folio_list); 1112 list_del(&folio->lru); 1113 1114 if (!folio_trylock(folio)) 1115 goto keep; 1116 1117 if (folio_contain_hwpoisoned_page(folio)) { 1118 /* 1119 * unmap_poisoned_folio() can't handle large 1120 * folio, just skip it. memory_failure() will 1121 * handle it if the UCE is triggered again. 1122 */ 1123 if (folio_test_large(folio)) 1124 goto keep_locked; 1125 1126 unmap_poisoned_folio(folio, folio_pfn(folio), false); 1127 folio_unlock(folio); 1128 folio_put(folio); 1129 continue; 1130 } 1131 1132 VM_BUG_ON_FOLIO(folio_test_active(folio), folio); 1133 1134 nr_pages = folio_nr_pages(folio); 1135 1136 /* Account the number of base pages */ 1137 sc->nr_scanned += nr_pages; 1138 1139 if (unlikely(!folio_evictable(folio))) 1140 goto activate_locked; 1141 1142 if (!sc->may_unmap && folio_mapped(folio)) 1143 goto keep_locked; 1144 1145 /* 1146 * The number of dirty pages determines if a node is marked 1147 * reclaim_congested. kswapd will stall and start writing 1148 * folios if the tail of the LRU is all dirty unqueued folios. 1149 */ 1150 folio_check_dirty_writeback(folio, &dirty, &writeback); 1151 if (dirty || writeback) 1152 stat->nr_dirty += nr_pages; 1153 1154 if (dirty && !writeback) 1155 stat->nr_unqueued_dirty += nr_pages; 1156 1157 /* 1158 * Treat this folio as congested if folios are cycling 1159 * through the LRU so quickly that the folios marked 1160 * for immediate reclaim are making it to the end of 1161 * the LRU a second time. 1162 */ 1163 if (writeback && folio_test_reclaim(folio)) 1164 stat->nr_congested += nr_pages; 1165 1166 /* 1167 * If a folio at the tail of the LRU is under writeback, there 1168 * are three cases to consider. 1169 * 1170 * 1) If reclaim is encountering an excessive number 1171 * of folios under writeback and this folio has both 1172 * the writeback and reclaim flags set, then it 1173 * indicates that folios are being queued for I/O but 1174 * are being recycled through the LRU before the I/O 1175 * can complete. Waiting on the folio itself risks an 1176 * indefinite stall if it is impossible to writeback 1177 * the folio due to I/O error or disconnected storage 1178 * so instead note that the LRU is being scanned too 1179 * quickly and the caller can stall after the folio 1180 * list has been processed. 1181 * 1182 * 2) Global or new memcg reclaim encounters a folio that is 1183 * not marked for immediate reclaim, or the caller does not 1184 * have __GFP_FS (or __GFP_IO if it's simply going to swap, 1185 * not to fs), or the folio belongs to a mapping where 1186 * waiting on writeback during reclaim may lead to a deadlock. 1187 * In this case mark the folio for immediate reclaim and 1188 * continue scanning. 1189 * 1190 * Require may_enter_fs() because we would wait on fs, which 1191 * may not have submitted I/O yet. And the loop driver might 1192 * enter reclaim, and deadlock if it waits on a folio for 1193 * which it is needed to do the write (loop masks off 1194 * __GFP_IO|__GFP_FS for this reason); but more thought 1195 * would probably show more reasons. 1196 * 1197 * 3) Legacy memcg encounters a folio that already has the 1198 * reclaim flag set. memcg does not have any dirty folio 1199 * throttling so we could easily OOM just because too many 1200 * folios are in writeback and there is nothing else to 1201 * reclaim. Wait for the writeback to complete. 1202 * 1203 * In cases 1) and 2) we activate the folios to get them out of 1204 * the way while we continue scanning for clean folios on the 1205 * inactive list and refilling from the active list. The 1206 * observation here is that waiting for disk writes is more 1207 * expensive than potentially causing reloads down the line. 1208 * Since they're marked for immediate reclaim, they won't put 1209 * memory pressure on the cache working set any longer than it 1210 * takes to write them to disk. 1211 */ 1212 if (folio_test_writeback(folio)) { 1213 mapping = folio_mapping(folio); 1214 1215 /* Case 1 above */ 1216 if (current_is_kswapd() && 1217 folio_test_reclaim(folio) && 1218 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) { 1219 stat->nr_immediate += nr_pages; 1220 goto activate_locked; 1221 1222 /* Case 2 above */ 1223 } else if (writeback_throttling_sane(sc) || 1224 !folio_test_reclaim(folio) || 1225 !may_enter_fs(folio, sc->gfp_mask) || 1226 (mapping && 1227 mapping_writeback_may_deadlock_on_reclaim(mapping))) { 1228 /* 1229 * This is slightly racy - 1230 * folio_end_writeback() might have 1231 * just cleared the reclaim flag, then 1232 * setting the reclaim flag here ends up 1233 * interpreted as the readahead flag - but 1234 * that does not matter enough to care. 1235 * What we do want is for this folio to 1236 * have the reclaim flag set next time 1237 * memcg reclaim reaches the tests above, 1238 * so it will then wait for writeback to 1239 * avoid OOM; and it's also appropriate 1240 * in global reclaim. 1241 */ 1242 folio_set_reclaim(folio); 1243 stat->nr_writeback += nr_pages; 1244 goto activate_locked; 1245 1246 /* Case 3 above */ 1247 } else { 1248 folio_unlock(folio); 1249 folio_wait_writeback(folio); 1250 /* then go back and try same folio again */ 1251 list_add_tail(&folio->lru, folio_list); 1252 continue; 1253 } 1254 } 1255 1256 if (!ignore_references) 1257 references = folio_check_references(folio, sc); 1258 1259 switch (references) { 1260 case FOLIOREF_ACTIVATE: 1261 goto activate_locked; 1262 case FOLIOREF_KEEP: 1263 stat->nr_ref_keep += nr_pages; 1264 goto keep_locked; 1265 case FOLIOREF_RECLAIM: 1266 case FOLIOREF_RECLAIM_CLEAN: 1267 ; /* try to reclaim the folio below */ 1268 } 1269 1270 /* 1271 * Before reclaiming the folio, try to relocate 1272 * its contents to another node. 1273 */ 1274 if (do_demote_pass && 1275 (thp_migration_supported() || !folio_test_large(folio))) { 1276 list_add(&folio->lru, &demote_folios); 1277 folio_unlock(folio); 1278 continue; 1279 } 1280 1281 /* 1282 * Anonymous process memory has backing store? 1283 * Try to allocate it some swap space here. 1284 * Lazyfree folio could be freed directly 1285 */ 1286 if (folio_test_anon(folio) && folio_test_swapbacked(folio) && 1287 !folio_test_swapcache(folio)) { 1288 if (!(sc->gfp_mask & __GFP_IO)) 1289 goto keep_locked; 1290 if (folio_maybe_dma_pinned(folio)) 1291 goto keep_locked; 1292 if (folio_test_large(folio)) { 1293 /* cannot split folio, skip it */ 1294 if (folio_expected_ref_count(folio) != 1295 folio_ref_count(folio) - 1) 1296 goto activate_locked; 1297 /* 1298 * Split partially mapped folios right away. 1299 * We can free the unmapped pages without IO. 1300 */ 1301 if (data_race(!list_empty(&folio->_deferred_list) && 1302 folio_test_partially_mapped(folio)) && 1303 split_folio_to_list(folio, folio_list)) 1304 goto activate_locked; 1305 } 1306 if (folio_alloc_swap(folio)) { 1307 int __maybe_unused order = folio_order(folio); 1308 1309 if (!folio_test_large(folio)) 1310 goto activate_locked_split; 1311 /* Fallback to swap normal pages */ 1312 if (split_folio_to_list(folio, folio_list)) 1313 goto activate_locked; 1314 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1315 if (nr_pages >= HPAGE_PMD_NR) { 1316 count_memcg_folio_events(folio, 1317 THP_SWPOUT_FALLBACK, 1); 1318 count_vm_event(THP_SWPOUT_FALLBACK); 1319 } 1320 #endif 1321 count_mthp_stat(order, MTHP_STAT_SWPOUT_FALLBACK); 1322 if (folio_alloc_swap(folio)) 1323 goto activate_locked_split; 1324 } 1325 /* 1326 * Normally the folio will be dirtied in unmap because 1327 * its pte should be dirty. A special case is MADV_FREE 1328 * page. The page's pte could have dirty bit cleared but 1329 * the folio's SwapBacked flag is still set because 1330 * clearing the dirty bit and SwapBacked flag has no 1331 * lock protected. For such folio, unmap will not set 1332 * dirty bit for it, so folio reclaim will not write the 1333 * folio out. This can cause data corruption when the 1334 * folio is swapped in later. Always setting the dirty 1335 * flag for the folio solves the problem. 1336 */ 1337 folio_mark_dirty(folio); 1338 } 1339 1340 /* 1341 * If the folio was split above, the tail pages will make 1342 * their own pass through this function and be accounted 1343 * then. 1344 */ 1345 if ((nr_pages > 1) && !folio_test_large(folio)) { 1346 sc->nr_scanned -= (nr_pages - 1); 1347 nr_pages = 1; 1348 } 1349 1350 /* 1351 * The folio is mapped into the page tables of one or more 1352 * processes. Try to unmap it here. 1353 */ 1354 if (folio_mapped(folio)) { 1355 enum ttu_flags flags = TTU_BATCH_FLUSH; 1356 bool was_swapbacked = folio_test_swapbacked(folio); 1357 1358 if (folio_test_pmd_mappable(folio)) 1359 flags |= TTU_SPLIT_HUGE_PMD; 1360 /* 1361 * Without TTU_SYNC, try_to_unmap will only begin to 1362 * hold PTL from the first present PTE within a large 1363 * folio. Some initial PTEs might be skipped due to 1364 * races with parallel PTE writes in which PTEs can be 1365 * cleared temporarily before being written new present 1366 * values. This will lead to a large folio is still 1367 * mapped while some subpages have been partially 1368 * unmapped after try_to_unmap; TTU_SYNC helps 1369 * try_to_unmap acquire PTL from the first PTE, 1370 * eliminating the influence of temporary PTE values. 1371 */ 1372 if (folio_test_large(folio)) 1373 flags |= TTU_SYNC; 1374 1375 try_to_unmap(folio, flags); 1376 if (folio_mapped(folio)) { 1377 stat->nr_unmap_fail += nr_pages; 1378 if (!was_swapbacked && 1379 folio_test_swapbacked(folio)) 1380 stat->nr_lazyfree_fail += nr_pages; 1381 goto activate_locked; 1382 } 1383 } 1384 1385 /* 1386 * Folio is unmapped now so it cannot be newly pinned anymore. 1387 * No point in trying to reclaim folio if it is pinned. 1388 * Furthermore we don't want to reclaim underlying fs metadata 1389 * if the folio is pinned and thus potentially modified by the 1390 * pinning process as that may upset the filesystem. 1391 */ 1392 if (folio_maybe_dma_pinned(folio)) 1393 goto activate_locked; 1394 1395 mapping = folio_mapping(folio); 1396 if (folio_test_dirty(folio)) { 1397 if (folio_is_file_lru(folio)) { 1398 /* 1399 * Immediately reclaim when written back. 1400 * Similar in principle to folio_deactivate() 1401 * except we already have the folio isolated 1402 * and know it's dirty 1403 */ 1404 node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE, 1405 nr_pages); 1406 if (!folio_test_reclaim(folio)) 1407 folio_set_reclaim(folio); 1408 1409 goto activate_locked; 1410 } 1411 1412 if (references == FOLIOREF_RECLAIM_CLEAN) 1413 goto keep_locked; 1414 if (!may_enter_fs(folio, sc->gfp_mask)) 1415 goto keep_locked; 1416 if (!sc->may_writepage) 1417 goto keep_locked; 1418 1419 /* 1420 * Folio is dirty. Flush the TLB if a writable entry 1421 * potentially exists to avoid CPU writes after I/O 1422 * starts and then write it out here. 1423 */ 1424 try_to_unmap_flush_dirty(); 1425 switch (pageout(folio, mapping, &plug, folio_list)) { 1426 case PAGE_KEEP: 1427 goto keep_locked; 1428 case PAGE_ACTIVATE: 1429 /* 1430 * If shmem folio is split when writeback to swap, 1431 * the tail pages will make their own pass through 1432 * this function and be accounted then. 1433 */ 1434 if (nr_pages > 1 && !folio_test_large(folio)) { 1435 sc->nr_scanned -= (nr_pages - 1); 1436 nr_pages = 1; 1437 } 1438 goto activate_locked; 1439 case PAGE_SUCCESS: 1440 if (nr_pages > 1 && !folio_test_large(folio)) { 1441 sc->nr_scanned -= (nr_pages - 1); 1442 nr_pages = 1; 1443 } 1444 stat->nr_pageout += nr_pages; 1445 1446 if (folio_test_writeback(folio)) 1447 goto keep; 1448 if (folio_test_dirty(folio)) 1449 goto keep; 1450 1451 /* 1452 * A synchronous write - probably a ramdisk. Go 1453 * ahead and try to reclaim the folio. 1454 */ 1455 if (!folio_trylock(folio)) 1456 goto keep; 1457 if (folio_test_dirty(folio) || 1458 folio_test_writeback(folio)) 1459 goto keep_locked; 1460 mapping = folio_mapping(folio); 1461 fallthrough; 1462 case PAGE_CLEAN: 1463 ; /* try to free the folio below */ 1464 } 1465 } 1466 1467 /* 1468 * If the folio has buffers, try to free the buffer 1469 * mappings associated with this folio. If we succeed 1470 * we try to free the folio as well. 1471 * 1472 * We do this even if the folio is dirty. 1473 * filemap_release_folio() does not perform I/O, but it 1474 * is possible for a folio to have the dirty flag set, 1475 * but it is actually clean (all its buffers are clean). 1476 * This happens if the buffers were written out directly, 1477 * with submit_bh(). ext3 will do this, as well as 1478 * the blockdev mapping. filemap_release_folio() will 1479 * discover that cleanness and will drop the buffers 1480 * and mark the folio clean - it can be freed. 1481 * 1482 * Rarely, folios can have buffers and no ->mapping. 1483 * These are the folios which were not successfully 1484 * invalidated in truncate_cleanup_folio(). We try to 1485 * drop those buffers here and if that worked, and the 1486 * folio is no longer mapped into process address space 1487 * (refcount == 1) it can be freed. Otherwise, leave 1488 * the folio on the LRU so it is swappable. 1489 */ 1490 if (folio_needs_release(folio)) { 1491 if (!filemap_release_folio(folio, sc->gfp_mask)) 1492 goto activate_locked; 1493 if (!mapping && folio_ref_count(folio) == 1) { 1494 folio_unlock(folio); 1495 if (folio_put_testzero(folio)) 1496 goto free_it; 1497 else { 1498 /* 1499 * rare race with speculative reference. 1500 * the speculative reference will free 1501 * this folio shortly, so we may 1502 * increment nr_reclaimed here (and 1503 * leave it off the LRU). 1504 */ 1505 nr_reclaimed += nr_pages; 1506 continue; 1507 } 1508 } 1509 } 1510 1511 if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) { 1512 /* follow __remove_mapping for reference */ 1513 if (!folio_ref_freeze(folio, 1)) 1514 goto keep_locked; 1515 /* 1516 * The folio has only one reference left, which is 1517 * from the isolation. After the caller puts the 1518 * folio back on the lru and drops the reference, the 1519 * folio will be freed anyway. It doesn't matter 1520 * which lru it goes on. So we don't bother checking 1521 * the dirty flag here. 1522 */ 1523 count_vm_events(PGLAZYFREED, nr_pages); 1524 count_memcg_folio_events(folio, PGLAZYFREED, nr_pages); 1525 } else if (!mapping || !__remove_mapping(mapping, folio, true, 1526 sc->target_mem_cgroup)) 1527 goto keep_locked; 1528 1529 folio_unlock(folio); 1530 free_it: 1531 /* 1532 * Folio may get swapped out as a whole, need to account 1533 * all pages in it. 1534 */ 1535 nr_reclaimed += nr_pages; 1536 1537 folio_unqueue_deferred_split(folio); 1538 if (folio_batch_add(&free_folios, folio) == 0) { 1539 mem_cgroup_uncharge_folios(&free_folios); 1540 try_to_unmap_flush(); 1541 free_unref_folios(&free_folios); 1542 } 1543 continue; 1544 1545 activate_locked_split: 1546 /* 1547 * The tail pages that are failed to add into swap cache 1548 * reach here. Fixup nr_scanned and nr_pages. 1549 */ 1550 if (nr_pages > 1) { 1551 sc->nr_scanned -= (nr_pages - 1); 1552 nr_pages = 1; 1553 } 1554 activate_locked: 1555 /* Not a candidate for swapping, so reclaim swap space. */ 1556 if (folio_test_swapcache(folio) && 1557 (mem_cgroup_swap_full(folio) || folio_test_mlocked(folio))) 1558 folio_free_swap(folio); 1559 VM_BUG_ON_FOLIO(folio_test_active(folio), folio); 1560 if (!folio_test_mlocked(folio)) { 1561 int type = folio_is_file_lru(folio); 1562 folio_set_active(folio); 1563 stat->nr_activate[type] += nr_pages; 1564 count_memcg_folio_events(folio, PGACTIVATE, nr_pages); 1565 } 1566 keep_locked: 1567 folio_unlock(folio); 1568 keep: 1569 list_add(&folio->lru, &ret_folios); 1570 VM_BUG_ON_FOLIO(folio_test_lru(folio) || 1571 folio_test_unevictable(folio), folio); 1572 } 1573 /* 'folio_list' is always empty here */ 1574 1575 /* Migrate folios selected for demotion */ 1576 nr_demoted = demote_folio_list(&demote_folios, pgdat, memcg); 1577 nr_reclaimed += nr_demoted; 1578 stat->nr_demoted += nr_demoted; 1579 /* Folios that could not be demoted are still in @demote_folios */ 1580 if (!list_empty(&demote_folios)) { 1581 /* Folios which weren't demoted go back on @folio_list */ 1582 list_splice_init(&demote_folios, folio_list); 1583 1584 /* 1585 * goto retry to reclaim the undemoted folios in folio_list if 1586 * desired. 1587 * 1588 * Reclaiming directly from top tier nodes is not often desired 1589 * due to it breaking the LRU ordering: in general memory 1590 * should be reclaimed from lower tier nodes and demoted from 1591 * top tier nodes. 1592 * 1593 * However, disabling reclaim from top tier nodes entirely 1594 * would cause ooms in edge scenarios where lower tier memory 1595 * is unreclaimable for whatever reason, eg memory being 1596 * mlocked or too hot to reclaim. We can disable reclaim 1597 * from top tier nodes in proactive reclaim though as that is 1598 * not real memory pressure. 1599 */ 1600 if (!sc->proactive) { 1601 do_demote_pass = false; 1602 goto retry; 1603 } 1604 } 1605 1606 pgactivate = stat->nr_activate[0] + stat->nr_activate[1]; 1607 1608 mem_cgroup_uncharge_folios(&free_folios); 1609 try_to_unmap_flush(); 1610 free_unref_folios(&free_folios); 1611 1612 list_splice(&ret_folios, folio_list); 1613 count_vm_events(PGACTIVATE, pgactivate); 1614 1615 if (plug) 1616 swap_write_unplug(plug); 1617 return nr_reclaimed; 1618 } 1619 1620 unsigned int reclaim_clean_pages_from_list(struct zone *zone, 1621 struct list_head *folio_list) 1622 { 1623 struct scan_control sc = { 1624 .gfp_mask = GFP_KERNEL, 1625 .may_unmap = 1, 1626 }; 1627 struct reclaim_stat stat; 1628 unsigned int nr_reclaimed; 1629 struct folio *folio, *next; 1630 LIST_HEAD(clean_folios); 1631 unsigned int noreclaim_flag; 1632 1633 list_for_each_entry_safe(folio, next, folio_list, lru) { 1634 /* TODO: these pages should not even appear in this list. */ 1635 if (page_has_movable_ops(&folio->page)) 1636 continue; 1637 if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) && 1638 !folio_test_dirty(folio) && !folio_test_unevictable(folio)) { 1639 folio_clear_active(folio); 1640 list_move(&folio->lru, &clean_folios); 1641 } 1642 } 1643 1644 /* 1645 * We should be safe here since we are only dealing with file pages and 1646 * we are not kswapd and therefore cannot write dirty file pages. But 1647 * call memalloc_noreclaim_save() anyway, just in case these conditions 1648 * change in the future. 1649 */ 1650 noreclaim_flag = memalloc_noreclaim_save(); 1651 nr_reclaimed = shrink_folio_list(&clean_folios, zone->zone_pgdat, &sc, 1652 &stat, true, NULL); 1653 memalloc_noreclaim_restore(noreclaim_flag); 1654 1655 list_splice(&clean_folios, folio_list); 1656 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, 1657 -(long)nr_reclaimed); 1658 /* 1659 * Since lazyfree pages are isolated from file LRU from the beginning, 1660 * they will rotate back to anonymous LRU in the end if it failed to 1661 * discard so isolated count will be mismatched. 1662 * Compensate the isolated count for both LRU lists. 1663 */ 1664 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON, 1665 stat.nr_lazyfree_fail); 1666 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, 1667 -(long)stat.nr_lazyfree_fail); 1668 return nr_reclaimed; 1669 } 1670 1671 /* 1672 * Update LRU sizes after isolating pages. The LRU size updates must 1673 * be complete before mem_cgroup_update_lru_size due to a sanity check. 1674 */ 1675 static __always_inline void update_lru_sizes(struct lruvec *lruvec, 1676 enum lru_list lru, unsigned long *nr_zone_taken) 1677 { 1678 int zid; 1679 1680 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1681 if (!nr_zone_taken[zid]) 1682 continue; 1683 1684 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 1685 } 1686 1687 } 1688 1689 /* 1690 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times. 1691 * 1692 * lruvec->lru_lock is heavily contended. Some of the functions that 1693 * shrink the lists perform better by taking out a batch of pages 1694 * and working on them outside the LRU lock. 1695 * 1696 * For pagecache intensive workloads, this function is the hottest 1697 * spot in the kernel (apart from copy_*_user functions). 1698 * 1699 * Lru_lock must be held before calling this function. 1700 * 1701 * @nr_to_scan: The number of eligible pages to look through on the list. 1702 * @lruvec: The LRU vector to pull pages from. 1703 * @dst: The temp list to put pages on to. 1704 * @nr_scanned: The number of pages that were scanned. 1705 * @sc: The scan_control struct for this reclaim session 1706 * @lru: LRU list id for isolating 1707 * 1708 * returns how many pages were moved onto *@dst. 1709 */ 1710 static unsigned long isolate_lru_folios(unsigned long nr_to_scan, 1711 struct lruvec *lruvec, struct list_head *dst, 1712 unsigned long *nr_scanned, struct scan_control *sc, 1713 enum lru_list lru) 1714 { 1715 struct list_head *src = &lruvec->lists[lru]; 1716 unsigned long nr_taken = 0; 1717 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 }; 1718 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, }; 1719 unsigned long skipped = 0, total_scan = 0, scan = 0; 1720 unsigned long nr_pages; 1721 unsigned long max_nr_skipped = 0; 1722 LIST_HEAD(folios_skipped); 1723 1724 while (scan < nr_to_scan && !list_empty(src)) { 1725 struct list_head *move_to = src; 1726 struct folio *folio; 1727 1728 folio = lru_to_folio(src); 1729 prefetchw_prev_lru_folio(folio, src, flags); 1730 1731 nr_pages = folio_nr_pages(folio); 1732 total_scan += nr_pages; 1733 1734 /* Using max_nr_skipped to prevent hard LOCKUP*/ 1735 if (max_nr_skipped < SWAP_CLUSTER_MAX_SKIPPED && 1736 (folio_zonenum(folio) > sc->reclaim_idx)) { 1737 nr_skipped[folio_zonenum(folio)] += nr_pages; 1738 move_to = &folios_skipped; 1739 max_nr_skipped++; 1740 goto move; 1741 } 1742 1743 /* 1744 * Do not count skipped folios because that makes the function 1745 * return with no isolated folios if the LRU mostly contains 1746 * ineligible folios. This causes the VM to not reclaim any 1747 * folios, triggering a premature OOM. 1748 * Account all pages in a folio. 1749 */ 1750 scan += nr_pages; 1751 1752 if (!folio_test_lru(folio)) 1753 goto move; 1754 if (!sc->may_unmap && folio_mapped(folio)) 1755 goto move; 1756 1757 /* 1758 * Be careful not to clear the lru flag until after we're 1759 * sure the folio is not being freed elsewhere -- the 1760 * folio release code relies on it. 1761 */ 1762 if (unlikely(!folio_try_get(folio))) 1763 goto move; 1764 1765 if (!folio_test_clear_lru(folio)) { 1766 /* Another thread is already isolating this folio */ 1767 folio_put(folio); 1768 goto move; 1769 } 1770 1771 nr_taken += nr_pages; 1772 nr_zone_taken[folio_zonenum(folio)] += nr_pages; 1773 move_to = dst; 1774 move: 1775 list_move(&folio->lru, move_to); 1776 } 1777 1778 /* 1779 * Splice any skipped folios to the start of the LRU list. Note that 1780 * this disrupts the LRU order when reclaiming for lower zones but 1781 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX 1782 * scanning would soon rescan the same folios to skip and waste lots 1783 * of cpu cycles. 1784 */ 1785 if (!list_empty(&folios_skipped)) { 1786 int zid; 1787 1788 list_splice(&folios_skipped, src); 1789 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1790 if (!nr_skipped[zid]) 1791 continue; 1792 1793 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]); 1794 skipped += nr_skipped[zid]; 1795 } 1796 } 1797 *nr_scanned = total_scan; 1798 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, 1799 total_scan, skipped, nr_taken, lru); 1800 update_lru_sizes(lruvec, lru, nr_zone_taken); 1801 return nr_taken; 1802 } 1803 1804 /** 1805 * folio_isolate_lru() - Try to isolate a folio from its LRU list. 1806 * @folio: Folio to isolate from its LRU list. 1807 * 1808 * Isolate a @folio from an LRU list and adjust the vmstat statistic 1809 * corresponding to whatever LRU list the folio was on. 1810 * 1811 * The folio will have its LRU flag cleared. If it was found on the 1812 * active list, it will have the Active flag set. If it was found on the 1813 * unevictable list, it will have the Unevictable flag set. These flags 1814 * may need to be cleared by the caller before letting the page go. 1815 * 1816 * Context: 1817 * 1818 * (1) Must be called with an elevated refcount on the folio. This is a 1819 * fundamental difference from isolate_lru_folios() (which is called 1820 * without a stable reference). 1821 * (2) The lru_lock must not be held. 1822 * (3) Interrupts must be enabled. 1823 * 1824 * Return: true if the folio was removed from an LRU list. 1825 * false if the folio was not on an LRU list. 1826 */ 1827 bool folio_isolate_lru(struct folio *folio) 1828 { 1829 bool ret = false; 1830 1831 VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio); 1832 1833 if (folio_test_clear_lru(folio)) { 1834 struct lruvec *lruvec; 1835 1836 folio_get(folio); 1837 lruvec = folio_lruvec_lock_irq(folio); 1838 lruvec_del_folio(lruvec, folio); 1839 unlock_page_lruvec_irq(lruvec); 1840 ret = true; 1841 } 1842 1843 return ret; 1844 } 1845 1846 /* 1847 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 1848 * then get rescheduled. When there are massive number of tasks doing page 1849 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 1850 * the LRU list will go small and be scanned faster than necessary, leading to 1851 * unnecessary swapping, thrashing and OOM. 1852 */ 1853 static bool too_many_isolated(struct pglist_data *pgdat, int file, 1854 struct scan_control *sc) 1855 { 1856 unsigned long inactive, isolated; 1857 bool too_many; 1858 1859 if (current_is_kswapd()) 1860 return false; 1861 1862 if (!writeback_throttling_sane(sc)) 1863 return false; 1864 1865 if (file) { 1866 inactive = node_page_state(pgdat, NR_INACTIVE_FILE); 1867 isolated = node_page_state(pgdat, NR_ISOLATED_FILE); 1868 } else { 1869 inactive = node_page_state(pgdat, NR_INACTIVE_ANON); 1870 isolated = node_page_state(pgdat, NR_ISOLATED_ANON); 1871 } 1872 1873 /* 1874 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 1875 * won't get blocked by normal direct-reclaimers, forming a circular 1876 * deadlock. 1877 */ 1878 if (gfp_has_io_fs(sc->gfp_mask)) 1879 inactive >>= 3; 1880 1881 too_many = isolated > inactive; 1882 1883 /* Wake up tasks throttled due to too_many_isolated. */ 1884 if (!too_many) 1885 wake_throttle_isolated(pgdat); 1886 1887 return too_many; 1888 } 1889 1890 /* 1891 * move_folios_to_lru() moves folios from private @list to appropriate LRU list. 1892 * 1893 * Returns the number of pages moved to the given lruvec. 1894 */ 1895 static unsigned int move_folios_to_lru(struct lruvec *lruvec, 1896 struct list_head *list) 1897 { 1898 int nr_pages, nr_moved = 0; 1899 struct folio_batch free_folios; 1900 1901 folio_batch_init(&free_folios); 1902 while (!list_empty(list)) { 1903 struct folio *folio = lru_to_folio(list); 1904 1905 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 1906 list_del(&folio->lru); 1907 if (unlikely(!folio_evictable(folio))) { 1908 spin_unlock_irq(&lruvec->lru_lock); 1909 folio_putback_lru(folio); 1910 spin_lock_irq(&lruvec->lru_lock); 1911 continue; 1912 } 1913 1914 /* 1915 * The folio_set_lru needs to be kept here for list integrity. 1916 * Otherwise: 1917 * #0 move_folios_to_lru #1 release_pages 1918 * if (!folio_put_testzero()) 1919 * if (folio_put_testzero()) 1920 * !lru //skip lru_lock 1921 * folio_set_lru() 1922 * list_add(&folio->lru,) 1923 * list_add(&folio->lru,) 1924 */ 1925 folio_set_lru(folio); 1926 1927 if (unlikely(folio_put_testzero(folio))) { 1928 __folio_clear_lru_flags(folio); 1929 1930 folio_unqueue_deferred_split(folio); 1931 if (folio_batch_add(&free_folios, folio) == 0) { 1932 spin_unlock_irq(&lruvec->lru_lock); 1933 mem_cgroup_uncharge_folios(&free_folios); 1934 free_unref_folios(&free_folios); 1935 spin_lock_irq(&lruvec->lru_lock); 1936 } 1937 1938 continue; 1939 } 1940 1941 /* 1942 * All pages were isolated from the same lruvec (and isolation 1943 * inhibits memcg migration). 1944 */ 1945 VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio); 1946 lruvec_add_folio(lruvec, folio); 1947 nr_pages = folio_nr_pages(folio); 1948 nr_moved += nr_pages; 1949 if (folio_test_active(folio)) 1950 workingset_age_nonresident(lruvec, nr_pages); 1951 } 1952 1953 if (free_folios.nr) { 1954 spin_unlock_irq(&lruvec->lru_lock); 1955 mem_cgroup_uncharge_folios(&free_folios); 1956 free_unref_folios(&free_folios); 1957 spin_lock_irq(&lruvec->lru_lock); 1958 } 1959 1960 return nr_moved; 1961 } 1962 1963 /* 1964 * If a kernel thread (such as nfsd for loop-back mounts) services a backing 1965 * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case 1966 * we should not throttle. Otherwise it is safe to do so. 1967 */ 1968 static int current_may_throttle(void) 1969 { 1970 return !(current->flags & PF_LOCAL_THROTTLE); 1971 } 1972 1973 /* 1974 * shrink_inactive_list() is a helper for shrink_node(). It returns the number 1975 * of reclaimed pages 1976 */ 1977 static unsigned long shrink_inactive_list(unsigned long nr_to_scan, 1978 struct lruvec *lruvec, struct scan_control *sc, 1979 enum lru_list lru) 1980 { 1981 LIST_HEAD(folio_list); 1982 unsigned long nr_scanned; 1983 unsigned int nr_reclaimed = 0; 1984 unsigned long nr_taken; 1985 struct reclaim_stat stat; 1986 bool file = is_file_lru(lru); 1987 enum vm_event_item item; 1988 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1989 bool stalled = false; 1990 1991 while (unlikely(too_many_isolated(pgdat, file, sc))) { 1992 if (stalled) 1993 return 0; 1994 1995 /* wait a bit for the reclaimer. */ 1996 stalled = true; 1997 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED); 1998 1999 /* We are about to die and free our memory. Return now. */ 2000 if (fatal_signal_pending(current)) 2001 return SWAP_CLUSTER_MAX; 2002 } 2003 2004 lru_add_drain(); 2005 2006 spin_lock_irq(&lruvec->lru_lock); 2007 2008 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &folio_list, 2009 &nr_scanned, sc, lru); 2010 2011 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2012 item = PGSCAN_KSWAPD + reclaimer_offset(sc); 2013 if (!cgroup_reclaim(sc)) 2014 __count_vm_events(item, nr_scanned); 2015 count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned); 2016 __count_vm_events(PGSCAN_ANON + file, nr_scanned); 2017 2018 spin_unlock_irq(&lruvec->lru_lock); 2019 2020 if (nr_taken == 0) 2021 return 0; 2022 2023 nr_reclaimed = shrink_folio_list(&folio_list, pgdat, sc, &stat, false, 2024 lruvec_memcg(lruvec)); 2025 2026 spin_lock_irq(&lruvec->lru_lock); 2027 move_folios_to_lru(lruvec, &folio_list); 2028 2029 mod_lruvec_state(lruvec, PGDEMOTE_KSWAPD + reclaimer_offset(sc), 2030 stat.nr_demoted); 2031 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2032 item = PGSTEAL_KSWAPD + reclaimer_offset(sc); 2033 if (!cgroup_reclaim(sc)) 2034 __count_vm_events(item, nr_reclaimed); 2035 count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed); 2036 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed); 2037 2038 lru_note_cost_unlock_irq(lruvec, file, stat.nr_pageout, 2039 nr_scanned - nr_reclaimed); 2040 2041 /* 2042 * If dirty folios are scanned that are not queued for IO, it 2043 * implies that flushers are not doing their job. This can 2044 * happen when memory pressure pushes dirty folios to the end of 2045 * the LRU before the dirty limits are breached and the dirty 2046 * data has expired. It can also happen when the proportion of 2047 * dirty folios grows not through writes but through memory 2048 * pressure reclaiming all the clean cache. And in some cases, 2049 * the flushers simply cannot keep up with the allocation 2050 * rate. Nudge the flusher threads in case they are asleep. 2051 */ 2052 if (stat.nr_unqueued_dirty == nr_taken) { 2053 wakeup_flusher_threads(WB_REASON_VMSCAN); 2054 /* 2055 * For cgroupv1 dirty throttling is achieved by waking up 2056 * the kernel flusher here and later waiting on folios 2057 * which are in writeback to finish (see shrink_folio_list()). 2058 * 2059 * Flusher may not be able to issue writeback quickly 2060 * enough for cgroupv1 writeback throttling to work 2061 * on a large system. 2062 */ 2063 if (!writeback_throttling_sane(sc)) 2064 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK); 2065 } 2066 2067 sc->nr.dirty += stat.nr_dirty; 2068 sc->nr.congested += stat.nr_congested; 2069 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty; 2070 sc->nr.writeback += stat.nr_writeback; 2071 sc->nr.immediate += stat.nr_immediate; 2072 sc->nr.taken += nr_taken; 2073 if (file) 2074 sc->nr.file_taken += nr_taken; 2075 2076 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 2077 nr_scanned, nr_reclaimed, &stat, sc->priority, file); 2078 return nr_reclaimed; 2079 } 2080 2081 /* 2082 * shrink_active_list() moves folios from the active LRU to the inactive LRU. 2083 * 2084 * We move them the other way if the folio is referenced by one or more 2085 * processes. 2086 * 2087 * If the folios are mostly unmapped, the processing is fast and it is 2088 * appropriate to hold lru_lock across the whole operation. But if 2089 * the folios are mapped, the processing is slow (folio_referenced()), so 2090 * we should drop lru_lock around each folio. It's impossible to balance 2091 * this, so instead we remove the folios from the LRU while processing them. 2092 * It is safe to rely on the active flag against the non-LRU folios in here 2093 * because nobody will play with that bit on a non-LRU folio. 2094 * 2095 * The downside is that we have to touch folio->_refcount against each folio. 2096 * But we had to alter folio->flags anyway. 2097 */ 2098 static void shrink_active_list(unsigned long nr_to_scan, 2099 struct lruvec *lruvec, 2100 struct scan_control *sc, 2101 enum lru_list lru) 2102 { 2103 unsigned long nr_taken; 2104 unsigned long nr_scanned; 2105 vm_flags_t vm_flags; 2106 LIST_HEAD(l_hold); /* The folios which were snipped off */ 2107 LIST_HEAD(l_active); 2108 LIST_HEAD(l_inactive); 2109 unsigned nr_deactivate, nr_activate; 2110 unsigned nr_rotated = 0; 2111 bool file = is_file_lru(lru); 2112 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2113 2114 lru_add_drain(); 2115 2116 spin_lock_irq(&lruvec->lru_lock); 2117 2118 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &l_hold, 2119 &nr_scanned, sc, lru); 2120 2121 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2122 2123 if (!cgroup_reclaim(sc)) 2124 __count_vm_events(PGREFILL, nr_scanned); 2125 count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned); 2126 2127 spin_unlock_irq(&lruvec->lru_lock); 2128 2129 while (!list_empty(&l_hold)) { 2130 struct folio *folio; 2131 2132 cond_resched(); 2133 folio = lru_to_folio(&l_hold); 2134 list_del(&folio->lru); 2135 2136 if (unlikely(!folio_evictable(folio))) { 2137 folio_putback_lru(folio); 2138 continue; 2139 } 2140 2141 if (unlikely(buffer_heads_over_limit)) { 2142 if (folio_needs_release(folio) && 2143 folio_trylock(folio)) { 2144 filemap_release_folio(folio, 0); 2145 folio_unlock(folio); 2146 } 2147 } 2148 2149 /* Referenced or rmap lock contention: rotate */ 2150 if (folio_referenced(folio, 0, sc->target_mem_cgroup, 2151 &vm_flags) != 0) { 2152 /* 2153 * Identify referenced, file-backed active folios and 2154 * give them one more trip around the active list. So 2155 * that executable code get better chances to stay in 2156 * memory under moderate memory pressure. Anon folios 2157 * are not likely to be evicted by use-once streaming 2158 * IO, plus JVM can create lots of anon VM_EXEC folios, 2159 * so we ignore them here. 2160 */ 2161 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) { 2162 nr_rotated += folio_nr_pages(folio); 2163 list_add(&folio->lru, &l_active); 2164 continue; 2165 } 2166 } 2167 2168 folio_clear_active(folio); /* we are de-activating */ 2169 folio_set_workingset(folio); 2170 list_add(&folio->lru, &l_inactive); 2171 } 2172 2173 /* 2174 * Move folios back to the lru list. 2175 */ 2176 spin_lock_irq(&lruvec->lru_lock); 2177 2178 nr_activate = move_folios_to_lru(lruvec, &l_active); 2179 nr_deactivate = move_folios_to_lru(lruvec, &l_inactive); 2180 2181 __count_vm_events(PGDEACTIVATE, nr_deactivate); 2182 count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate); 2183 2184 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2185 2186 lru_note_cost_unlock_irq(lruvec, file, 0, nr_rotated); 2187 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate, 2188 nr_deactivate, nr_rotated, sc->priority, file); 2189 } 2190 2191 static unsigned int reclaim_folio_list(struct list_head *folio_list, 2192 struct pglist_data *pgdat) 2193 { 2194 struct reclaim_stat stat; 2195 unsigned int nr_reclaimed; 2196 struct folio *folio; 2197 struct scan_control sc = { 2198 .gfp_mask = GFP_KERNEL, 2199 .may_writepage = 1, 2200 .may_unmap = 1, 2201 .may_swap = 1, 2202 .no_demotion = 1, 2203 }; 2204 2205 nr_reclaimed = shrink_folio_list(folio_list, pgdat, &sc, &stat, true, NULL); 2206 while (!list_empty(folio_list)) { 2207 folio = lru_to_folio(folio_list); 2208 list_del(&folio->lru); 2209 folio_putback_lru(folio); 2210 } 2211 trace_mm_vmscan_reclaim_pages(pgdat->node_id, sc.nr_scanned, nr_reclaimed, &stat); 2212 2213 return nr_reclaimed; 2214 } 2215 2216 unsigned long reclaim_pages(struct list_head *folio_list) 2217 { 2218 int nid; 2219 unsigned int nr_reclaimed = 0; 2220 LIST_HEAD(node_folio_list); 2221 unsigned int noreclaim_flag; 2222 2223 if (list_empty(folio_list)) 2224 return nr_reclaimed; 2225 2226 noreclaim_flag = memalloc_noreclaim_save(); 2227 2228 nid = folio_nid(lru_to_folio(folio_list)); 2229 do { 2230 struct folio *folio = lru_to_folio(folio_list); 2231 2232 if (nid == folio_nid(folio)) { 2233 folio_clear_active(folio); 2234 list_move(&folio->lru, &node_folio_list); 2235 continue; 2236 } 2237 2238 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid)); 2239 nid = folio_nid(lru_to_folio(folio_list)); 2240 } while (!list_empty(folio_list)); 2241 2242 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid)); 2243 2244 memalloc_noreclaim_restore(noreclaim_flag); 2245 2246 return nr_reclaimed; 2247 } 2248 2249 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 2250 struct lruvec *lruvec, struct scan_control *sc) 2251 { 2252 if (is_active_lru(lru)) { 2253 if (sc->may_deactivate & (1 << is_file_lru(lru))) 2254 shrink_active_list(nr_to_scan, lruvec, sc, lru); 2255 else 2256 sc->skipped_deactivate = 1; 2257 return 0; 2258 } 2259 2260 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 2261 } 2262 2263 /* 2264 * The inactive anon list should be small enough that the VM never has 2265 * to do too much work. 2266 * 2267 * The inactive file list should be small enough to leave most memory 2268 * to the established workingset on the scan-resistant active list, 2269 * but large enough to avoid thrashing the aggregate readahead window. 2270 * 2271 * Both inactive lists should also be large enough that each inactive 2272 * folio has a chance to be referenced again before it is reclaimed. 2273 * 2274 * If that fails and refaulting is observed, the inactive list grows. 2275 * 2276 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE folios 2277 * on this LRU, maintained by the pageout code. An inactive_ratio 2278 * of 3 means 3:1 or 25% of the folios are kept on the inactive list. 2279 * 2280 * total target max 2281 * memory ratio inactive 2282 * ------------------------------------- 2283 * 10MB 1 5MB 2284 * 100MB 1 50MB 2285 * 1GB 3 250MB 2286 * 10GB 10 0.9GB 2287 * 100GB 31 3GB 2288 * 1TB 101 10GB 2289 * 10TB 320 32GB 2290 */ 2291 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru) 2292 { 2293 enum lru_list active_lru = inactive_lru + LRU_ACTIVE; 2294 unsigned long inactive, active; 2295 unsigned long inactive_ratio; 2296 unsigned long gb; 2297 2298 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru); 2299 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru); 2300 2301 gb = (inactive + active) >> (30 - PAGE_SHIFT); 2302 if (gb) 2303 inactive_ratio = int_sqrt(10 * gb); 2304 else 2305 inactive_ratio = 1; 2306 2307 return inactive * inactive_ratio < active; 2308 } 2309 2310 enum scan_balance { 2311 SCAN_EQUAL, 2312 SCAN_FRACT, 2313 SCAN_ANON, 2314 SCAN_FILE, 2315 }; 2316 2317 static void prepare_scan_control(pg_data_t *pgdat, struct scan_control *sc) 2318 { 2319 unsigned long file; 2320 struct lruvec *target_lruvec; 2321 2322 if (lru_gen_enabled()) 2323 return; 2324 2325 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat); 2326 2327 /* 2328 * Flush the memory cgroup stats in rate-limited way as we don't need 2329 * most accurate stats here. We may switch to regular stats flushing 2330 * in the future once it is cheap enough. 2331 */ 2332 mem_cgroup_flush_stats_ratelimited(sc->target_mem_cgroup); 2333 2334 /* 2335 * Determine the scan balance between anon and file LRUs. 2336 */ 2337 spin_lock_irq(&target_lruvec->lru_lock); 2338 sc->anon_cost = target_lruvec->anon_cost; 2339 sc->file_cost = target_lruvec->file_cost; 2340 spin_unlock_irq(&target_lruvec->lru_lock); 2341 2342 /* 2343 * Target desirable inactive:active list ratios for the anon 2344 * and file LRU lists. 2345 */ 2346 if (!sc->force_deactivate) { 2347 unsigned long refaults; 2348 2349 /* 2350 * When refaults are being observed, it means a new 2351 * workingset is being established. Deactivate to get 2352 * rid of any stale active pages quickly. 2353 */ 2354 refaults = lruvec_page_state(target_lruvec, 2355 WORKINGSET_ACTIVATE_ANON); 2356 if (refaults != target_lruvec->refaults[WORKINGSET_ANON] || 2357 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON)) 2358 sc->may_deactivate |= DEACTIVATE_ANON; 2359 else 2360 sc->may_deactivate &= ~DEACTIVATE_ANON; 2361 2362 refaults = lruvec_page_state(target_lruvec, 2363 WORKINGSET_ACTIVATE_FILE); 2364 if (refaults != target_lruvec->refaults[WORKINGSET_FILE] || 2365 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE)) 2366 sc->may_deactivate |= DEACTIVATE_FILE; 2367 else 2368 sc->may_deactivate &= ~DEACTIVATE_FILE; 2369 } else 2370 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE; 2371 2372 /* 2373 * If we have plenty of inactive file pages that aren't 2374 * thrashing, try to reclaim those first before touching 2375 * anonymous pages. 2376 */ 2377 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE); 2378 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE) && 2379 !sc->no_cache_trim_mode) 2380 sc->cache_trim_mode = 1; 2381 else 2382 sc->cache_trim_mode = 0; 2383 2384 /* 2385 * Prevent the reclaimer from falling into the cache trap: as 2386 * cache pages start out inactive, every cache fault will tip 2387 * the scan balance towards the file LRU. And as the file LRU 2388 * shrinks, so does the window for rotation from references. 2389 * This means we have a runaway feedback loop where a tiny 2390 * thrashing file LRU becomes infinitely more attractive than 2391 * anon pages. Try to detect this based on file LRU size. 2392 */ 2393 if (!cgroup_reclaim(sc)) { 2394 unsigned long total_high_wmark = 0; 2395 unsigned long free, anon; 2396 int z; 2397 struct zone *zone; 2398 2399 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES); 2400 file = node_page_state(pgdat, NR_ACTIVE_FILE) + 2401 node_page_state(pgdat, NR_INACTIVE_FILE); 2402 2403 for_each_managed_zone_pgdat(zone, pgdat, z, MAX_NR_ZONES - 1) { 2404 total_high_wmark += high_wmark_pages(zone); 2405 } 2406 2407 /* 2408 * Consider anon: if that's low too, this isn't a 2409 * runaway file reclaim problem, but rather just 2410 * extreme pressure. Reclaim as per usual then. 2411 */ 2412 anon = node_page_state(pgdat, NR_INACTIVE_ANON); 2413 2414 sc->file_is_tiny = 2415 file + free <= total_high_wmark && 2416 !(sc->may_deactivate & DEACTIVATE_ANON) && 2417 anon >> sc->priority; 2418 } 2419 } 2420 2421 static inline void calculate_pressure_balance(struct scan_control *sc, 2422 int swappiness, u64 *fraction, u64 *denominator) 2423 { 2424 unsigned long anon_cost, file_cost, total_cost; 2425 unsigned long ap, fp; 2426 2427 /* 2428 * Calculate the pressure balance between anon and file pages. 2429 * 2430 * The amount of pressure we put on each LRU is inversely 2431 * proportional to the cost of reclaiming each list, as 2432 * determined by the share of pages that are refaulting, times 2433 * the relative IO cost of bringing back a swapped out 2434 * anonymous page vs reloading a filesystem page (swappiness). 2435 * 2436 * Although we limit that influence to ensure no list gets 2437 * left behind completely: at least a third of the pressure is 2438 * applied, before swappiness. 2439 * 2440 * With swappiness at 100, anon and file have equal IO cost. 2441 */ 2442 total_cost = sc->anon_cost + sc->file_cost; 2443 anon_cost = total_cost + sc->anon_cost; 2444 file_cost = total_cost + sc->file_cost; 2445 total_cost = anon_cost + file_cost; 2446 2447 ap = swappiness * (total_cost + 1); 2448 ap /= anon_cost + 1; 2449 2450 fp = (MAX_SWAPPINESS - swappiness) * (total_cost + 1); 2451 fp /= file_cost + 1; 2452 2453 fraction[WORKINGSET_ANON] = ap; 2454 fraction[WORKINGSET_FILE] = fp; 2455 *denominator = ap + fp; 2456 } 2457 2458 static unsigned long apply_proportional_protection(struct mem_cgroup *memcg, 2459 struct scan_control *sc, unsigned long scan) 2460 { 2461 unsigned long min, low, usage; 2462 2463 mem_cgroup_protection(sc->target_mem_cgroup, memcg, &min, &low, &usage); 2464 2465 if (min || low) { 2466 /* 2467 * Scale a cgroup's reclaim pressure by proportioning 2468 * its current usage to its memory.low or memory.min 2469 * setting. 2470 * 2471 * This is important, as otherwise scanning aggression 2472 * becomes extremely binary -- from nothing as we 2473 * approach the memory protection threshold, to totally 2474 * nominal as we exceed it. This results in requiring 2475 * setting extremely liberal protection thresholds. It 2476 * also means we simply get no protection at all if we 2477 * set it too low, which is not ideal. 2478 * 2479 * If there is any protection in place, we reduce scan 2480 * pressure by how much of the total memory used is 2481 * within protection thresholds. 2482 * 2483 * There is one special case: in the first reclaim pass, 2484 * we skip over all groups that are within their low 2485 * protection. If that fails to reclaim enough pages to 2486 * satisfy the reclaim goal, we come back and override 2487 * the best-effort low protection. However, we still 2488 * ideally want to honor how well-behaved groups are in 2489 * that case instead of simply punishing them all 2490 * equally. As such, we reclaim them based on how much 2491 * memory they are using, reducing the scan pressure 2492 * again by how much of the total memory used is under 2493 * hard protection. 2494 */ 2495 unsigned long protection; 2496 2497 /* memory.low scaling, make sure we retry before OOM */ 2498 if (!sc->memcg_low_reclaim && low > min) { 2499 protection = low; 2500 sc->memcg_low_skipped = 1; 2501 } else { 2502 protection = min; 2503 } 2504 2505 /* Avoid TOCTOU with earlier protection check */ 2506 usage = max(usage, protection); 2507 2508 scan -= scan * protection / (usage + 1); 2509 2510 /* 2511 * Minimally target SWAP_CLUSTER_MAX pages to keep 2512 * reclaim moving forwards, avoiding decrementing 2513 * sc->priority further than desirable. 2514 */ 2515 scan = max(scan, SWAP_CLUSTER_MAX); 2516 } 2517 return scan; 2518 } 2519 2520 /* 2521 * Determine how aggressively the anon and file LRU lists should be 2522 * scanned. 2523 * 2524 * nr[0] = anon inactive folios to scan; nr[1] = anon active folios to scan 2525 * nr[2] = file inactive folios to scan; nr[3] = file active folios to scan 2526 */ 2527 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc, 2528 unsigned long *nr) 2529 { 2530 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2531 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 2532 int swappiness = sc_swappiness(sc, memcg); 2533 u64 fraction[ANON_AND_FILE]; 2534 u64 denominator = 0; /* gcc */ 2535 enum scan_balance scan_balance; 2536 enum lru_list lru; 2537 2538 /* If we have no swap space, do not bother scanning anon folios. */ 2539 if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) { 2540 scan_balance = SCAN_FILE; 2541 goto out; 2542 } 2543 2544 /* 2545 * Global reclaim will swap to prevent OOM even with no 2546 * swappiness, but memcg users want to use this knob to 2547 * disable swapping for individual groups completely when 2548 * using the memory controller's swap limit feature would be 2549 * too expensive. 2550 */ 2551 if (cgroup_reclaim(sc) && !swappiness) { 2552 scan_balance = SCAN_FILE; 2553 goto out; 2554 } 2555 2556 /* Proactive reclaim initiated by userspace for anonymous memory only */ 2557 if (swappiness == SWAPPINESS_ANON_ONLY) { 2558 WARN_ON_ONCE(!sc->proactive); 2559 scan_balance = SCAN_ANON; 2560 goto out; 2561 } 2562 2563 /* 2564 * Do not apply any pressure balancing cleverness when the 2565 * system is close to OOM, scan both anon and file equally 2566 * (unless the swappiness setting disagrees with swapping). 2567 */ 2568 if (!sc->priority && swappiness) { 2569 scan_balance = SCAN_EQUAL; 2570 goto out; 2571 } 2572 2573 /* 2574 * If the system is almost out of file pages, force-scan anon. 2575 */ 2576 if (sc->file_is_tiny) { 2577 scan_balance = SCAN_ANON; 2578 goto out; 2579 } 2580 2581 /* 2582 * If there is enough inactive page cache, we do not reclaim 2583 * anything from the anonymous working right now to make sure 2584 * a streaming file access pattern doesn't cause swapping. 2585 */ 2586 if (sc->cache_trim_mode) { 2587 scan_balance = SCAN_FILE; 2588 goto out; 2589 } 2590 2591 scan_balance = SCAN_FRACT; 2592 calculate_pressure_balance(sc, swappiness, fraction, &denominator); 2593 2594 out: 2595 for_each_evictable_lru(lru) { 2596 bool file = is_file_lru(lru); 2597 unsigned long lruvec_size; 2598 unsigned long scan; 2599 2600 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx); 2601 scan = apply_proportional_protection(memcg, sc, lruvec_size); 2602 scan >>= sc->priority; 2603 2604 /* 2605 * If the cgroup's already been deleted, make sure to 2606 * scrape out the remaining cache. 2607 */ 2608 if (!scan && !mem_cgroup_online(memcg)) 2609 scan = min(lruvec_size, SWAP_CLUSTER_MAX); 2610 2611 switch (scan_balance) { 2612 case SCAN_EQUAL: 2613 /* Scan lists relative to size */ 2614 break; 2615 case SCAN_FRACT: 2616 /* 2617 * Scan types proportional to swappiness and 2618 * their relative recent reclaim efficiency. 2619 * Make sure we don't miss the last page on 2620 * the offlined memory cgroups because of a 2621 * round-off error. 2622 */ 2623 scan = mem_cgroup_online(memcg) ? 2624 div64_u64(scan * fraction[file], denominator) : 2625 DIV64_U64_ROUND_UP(scan * fraction[file], 2626 denominator); 2627 break; 2628 case SCAN_FILE: 2629 case SCAN_ANON: 2630 /* Scan one type exclusively */ 2631 if ((scan_balance == SCAN_FILE) != file) 2632 scan = 0; 2633 break; 2634 default: 2635 /* Look ma, no brain */ 2636 BUG(); 2637 } 2638 2639 nr[lru] = scan; 2640 } 2641 } 2642 2643 /* 2644 * Anonymous LRU management is a waste if there is 2645 * ultimately no way to reclaim the memory. 2646 */ 2647 static bool can_age_anon_pages(struct lruvec *lruvec, 2648 struct scan_control *sc) 2649 { 2650 /* Aging the anon LRU is valuable if swap is present: */ 2651 if (total_swap_pages > 0) 2652 return true; 2653 2654 /* Also valuable if anon pages can be demoted: */ 2655 return can_demote(lruvec_pgdat(lruvec)->node_id, sc, 2656 lruvec_memcg(lruvec)); 2657 } 2658 2659 #ifdef CONFIG_LRU_GEN 2660 2661 #ifdef CONFIG_LRU_GEN_ENABLED 2662 DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS); 2663 #define get_cap(cap) static_branch_likely(&lru_gen_caps[cap]) 2664 #else 2665 DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS); 2666 #define get_cap(cap) static_branch_unlikely(&lru_gen_caps[cap]) 2667 #endif 2668 2669 static bool should_walk_mmu(void) 2670 { 2671 return arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK); 2672 } 2673 2674 static bool should_clear_pmd_young(void) 2675 { 2676 return arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG); 2677 } 2678 2679 /****************************************************************************** 2680 * shorthand helpers 2681 ******************************************************************************/ 2682 2683 #define DEFINE_MAX_SEQ(lruvec) \ 2684 unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq) 2685 2686 #define DEFINE_MIN_SEQ(lruvec) \ 2687 unsigned long min_seq[ANON_AND_FILE] = { \ 2688 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]), \ 2689 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]), \ 2690 } 2691 2692 /* Get the min/max evictable type based on swappiness */ 2693 #define min_type(swappiness) (!(swappiness)) 2694 #define max_type(swappiness) ((swappiness) < SWAPPINESS_ANON_ONLY) 2695 2696 #define evictable_min_seq(min_seq, swappiness) \ 2697 min((min_seq)[min_type(swappiness)], (min_seq)[max_type(swappiness)]) 2698 2699 #define for_each_gen_type_zone(gen, type, zone) \ 2700 for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++) \ 2701 for ((type) = 0; (type) < ANON_AND_FILE; (type)++) \ 2702 for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++) 2703 2704 #define for_each_evictable_type(type, swappiness) \ 2705 for ((type) = min_type(swappiness); (type) <= max_type(swappiness); (type)++) 2706 2707 #define get_memcg_gen(seq) ((seq) % MEMCG_NR_GENS) 2708 #define get_memcg_bin(bin) ((bin) % MEMCG_NR_BINS) 2709 2710 static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid) 2711 { 2712 struct pglist_data *pgdat = NODE_DATA(nid); 2713 2714 #ifdef CONFIG_MEMCG 2715 if (memcg) { 2716 struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec; 2717 2718 /* see the comment in mem_cgroup_lruvec() */ 2719 if (!lruvec->pgdat) 2720 lruvec->pgdat = pgdat; 2721 2722 return lruvec; 2723 } 2724 #endif 2725 VM_WARN_ON_ONCE(!mem_cgroup_disabled()); 2726 2727 return &pgdat->__lruvec; 2728 } 2729 2730 static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc) 2731 { 2732 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 2733 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2734 2735 if (!sc->may_swap) 2736 return 0; 2737 2738 if (!can_demote(pgdat->node_id, sc, memcg) && 2739 mem_cgroup_get_nr_swap_pages(memcg) < MIN_LRU_BATCH) 2740 return 0; 2741 2742 return sc_swappiness(sc, memcg); 2743 } 2744 2745 static int get_nr_gens(struct lruvec *lruvec, int type) 2746 { 2747 return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1; 2748 } 2749 2750 static bool __maybe_unused seq_is_valid(struct lruvec *lruvec) 2751 { 2752 int type; 2753 2754 for (type = 0; type < ANON_AND_FILE; type++) { 2755 int n = get_nr_gens(lruvec, type); 2756 2757 if (n < MIN_NR_GENS || n > MAX_NR_GENS) 2758 return false; 2759 } 2760 2761 return true; 2762 } 2763 2764 /****************************************************************************** 2765 * Bloom filters 2766 ******************************************************************************/ 2767 2768 /* 2769 * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when 2770 * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of 2771 * bits in a bitmap, k is the number of hash functions and n is the number of 2772 * inserted items. 2773 * 2774 * Page table walkers use one of the two filters to reduce their search space. 2775 * To get rid of non-leaf entries that no longer have enough leaf entries, the 2776 * aging uses the double-buffering technique to flip to the other filter each 2777 * time it produces a new generation. For non-leaf entries that have enough 2778 * leaf entries, the aging carries them over to the next generation in 2779 * walk_pmd_range(); the eviction also report them when walking the rmap 2780 * in lru_gen_look_around(). 2781 * 2782 * For future optimizations: 2783 * 1. It's not necessary to keep both filters all the time. The spare one can be 2784 * freed after the RCU grace period and reallocated if needed again. 2785 * 2. And when reallocating, it's worth scaling its size according to the number 2786 * of inserted entries in the other filter, to reduce the memory overhead on 2787 * small systems and false positives on large systems. 2788 * 3. Jenkins' hash function is an alternative to Knuth's. 2789 */ 2790 #define BLOOM_FILTER_SHIFT 15 2791 2792 static inline int filter_gen_from_seq(unsigned long seq) 2793 { 2794 return seq % NR_BLOOM_FILTERS; 2795 } 2796 2797 static void get_item_key(void *item, int *key) 2798 { 2799 u32 hash = hash_ptr(item, BLOOM_FILTER_SHIFT * 2); 2800 2801 BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32)); 2802 2803 key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1); 2804 key[1] = hash >> BLOOM_FILTER_SHIFT; 2805 } 2806 2807 static bool test_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq, 2808 void *item) 2809 { 2810 int key[2]; 2811 unsigned long *filter; 2812 int gen = filter_gen_from_seq(seq); 2813 2814 filter = READ_ONCE(mm_state->filters[gen]); 2815 if (!filter) 2816 return true; 2817 2818 get_item_key(item, key); 2819 2820 return test_bit(key[0], filter) && test_bit(key[1], filter); 2821 } 2822 2823 static void update_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq, 2824 void *item) 2825 { 2826 int key[2]; 2827 unsigned long *filter; 2828 int gen = filter_gen_from_seq(seq); 2829 2830 filter = READ_ONCE(mm_state->filters[gen]); 2831 if (!filter) 2832 return; 2833 2834 get_item_key(item, key); 2835 2836 if (!test_bit(key[0], filter)) 2837 set_bit(key[0], filter); 2838 if (!test_bit(key[1], filter)) 2839 set_bit(key[1], filter); 2840 } 2841 2842 static void reset_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq) 2843 { 2844 unsigned long *filter; 2845 int gen = filter_gen_from_seq(seq); 2846 2847 filter = mm_state->filters[gen]; 2848 if (filter) { 2849 bitmap_clear(filter, 0, BIT(BLOOM_FILTER_SHIFT)); 2850 return; 2851 } 2852 2853 filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT), 2854 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN); 2855 WRITE_ONCE(mm_state->filters[gen], filter); 2856 } 2857 2858 /****************************************************************************** 2859 * mm_struct list 2860 ******************************************************************************/ 2861 2862 #ifdef CONFIG_LRU_GEN_WALKS_MMU 2863 2864 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg) 2865 { 2866 static struct lru_gen_mm_list mm_list = { 2867 .fifo = LIST_HEAD_INIT(mm_list.fifo), 2868 .lock = __SPIN_LOCK_UNLOCKED(mm_list.lock), 2869 }; 2870 2871 #ifdef CONFIG_MEMCG 2872 if (memcg) 2873 return &memcg->mm_list; 2874 #endif 2875 VM_WARN_ON_ONCE(!mem_cgroup_disabled()); 2876 2877 return &mm_list; 2878 } 2879 2880 static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec) 2881 { 2882 return &lruvec->mm_state; 2883 } 2884 2885 static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk) 2886 { 2887 int key; 2888 struct mm_struct *mm; 2889 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 2890 struct lru_gen_mm_state *mm_state = get_mm_state(walk->lruvec); 2891 2892 mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list); 2893 key = pgdat->node_id % BITS_PER_TYPE(mm->lru_gen.bitmap); 2894 2895 if (!walk->force_scan && !test_bit(key, &mm->lru_gen.bitmap)) 2896 return NULL; 2897 2898 clear_bit(key, &mm->lru_gen.bitmap); 2899 2900 return mmget_not_zero(mm) ? mm : NULL; 2901 } 2902 2903 void lru_gen_add_mm(struct mm_struct *mm) 2904 { 2905 int nid; 2906 struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm); 2907 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 2908 2909 VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list)); 2910 #ifdef CONFIG_MEMCG 2911 VM_WARN_ON_ONCE(mm->lru_gen.memcg); 2912 mm->lru_gen.memcg = memcg; 2913 #endif 2914 spin_lock(&mm_list->lock); 2915 2916 for_each_node_state(nid, N_MEMORY) { 2917 struct lruvec *lruvec = get_lruvec(memcg, nid); 2918 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 2919 2920 /* the first addition since the last iteration */ 2921 if (mm_state->tail == &mm_list->fifo) 2922 mm_state->tail = &mm->lru_gen.list; 2923 } 2924 2925 list_add_tail(&mm->lru_gen.list, &mm_list->fifo); 2926 2927 spin_unlock(&mm_list->lock); 2928 } 2929 2930 void lru_gen_del_mm(struct mm_struct *mm) 2931 { 2932 int nid; 2933 struct lru_gen_mm_list *mm_list; 2934 struct mem_cgroup *memcg = NULL; 2935 2936 if (list_empty(&mm->lru_gen.list)) 2937 return; 2938 2939 #ifdef CONFIG_MEMCG 2940 memcg = mm->lru_gen.memcg; 2941 #endif 2942 mm_list = get_mm_list(memcg); 2943 2944 spin_lock(&mm_list->lock); 2945 2946 for_each_node(nid) { 2947 struct lruvec *lruvec = get_lruvec(memcg, nid); 2948 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 2949 2950 /* where the current iteration continues after */ 2951 if (mm_state->head == &mm->lru_gen.list) 2952 mm_state->head = mm_state->head->prev; 2953 2954 /* where the last iteration ended before */ 2955 if (mm_state->tail == &mm->lru_gen.list) 2956 mm_state->tail = mm_state->tail->next; 2957 } 2958 2959 list_del_init(&mm->lru_gen.list); 2960 2961 spin_unlock(&mm_list->lock); 2962 2963 #ifdef CONFIG_MEMCG 2964 mem_cgroup_put(mm->lru_gen.memcg); 2965 mm->lru_gen.memcg = NULL; 2966 #endif 2967 } 2968 2969 #ifdef CONFIG_MEMCG 2970 void lru_gen_migrate_mm(struct mm_struct *mm) 2971 { 2972 struct mem_cgroup *memcg; 2973 struct task_struct *task = rcu_dereference_protected(mm->owner, true); 2974 2975 VM_WARN_ON_ONCE(task->mm != mm); 2976 lockdep_assert_held(&task->alloc_lock); 2977 2978 /* for mm_update_next_owner() */ 2979 if (mem_cgroup_disabled()) 2980 return; 2981 2982 /* migration can happen before addition */ 2983 if (!mm->lru_gen.memcg) 2984 return; 2985 2986 rcu_read_lock(); 2987 memcg = mem_cgroup_from_task(task); 2988 rcu_read_unlock(); 2989 if (memcg == mm->lru_gen.memcg) 2990 return; 2991 2992 VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list)); 2993 2994 lru_gen_del_mm(mm); 2995 lru_gen_add_mm(mm); 2996 } 2997 #endif 2998 2999 #else /* !CONFIG_LRU_GEN_WALKS_MMU */ 3000 3001 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg) 3002 { 3003 return NULL; 3004 } 3005 3006 static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec) 3007 { 3008 return NULL; 3009 } 3010 3011 static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk) 3012 { 3013 return NULL; 3014 } 3015 3016 #endif 3017 3018 static void reset_mm_stats(struct lru_gen_mm_walk *walk, bool last) 3019 { 3020 int i; 3021 int hist; 3022 struct lruvec *lruvec = walk->lruvec; 3023 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 3024 3025 lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock); 3026 3027 hist = lru_hist_from_seq(walk->seq); 3028 3029 for (i = 0; i < NR_MM_STATS; i++) { 3030 WRITE_ONCE(mm_state->stats[hist][i], 3031 mm_state->stats[hist][i] + walk->mm_stats[i]); 3032 walk->mm_stats[i] = 0; 3033 } 3034 3035 if (NR_HIST_GENS > 1 && last) { 3036 hist = lru_hist_from_seq(walk->seq + 1); 3037 3038 for (i = 0; i < NR_MM_STATS; i++) 3039 WRITE_ONCE(mm_state->stats[hist][i], 0); 3040 } 3041 } 3042 3043 static bool iterate_mm_list(struct lru_gen_mm_walk *walk, struct mm_struct **iter) 3044 { 3045 bool first = false; 3046 bool last = false; 3047 struct mm_struct *mm = NULL; 3048 struct lruvec *lruvec = walk->lruvec; 3049 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 3050 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 3051 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 3052 3053 /* 3054 * mm_state->seq is incremented after each iteration of mm_list. There 3055 * are three interesting cases for this page table walker: 3056 * 1. It tries to start a new iteration with a stale max_seq: there is 3057 * nothing left to do. 3058 * 2. It started the next iteration: it needs to reset the Bloom filter 3059 * so that a fresh set of PTE tables can be recorded. 3060 * 3. It ended the current iteration: it needs to reset the mm stats 3061 * counters and tell its caller to increment max_seq. 3062 */ 3063 spin_lock(&mm_list->lock); 3064 3065 VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->seq); 3066 3067 if (walk->seq <= mm_state->seq) 3068 goto done; 3069 3070 if (!mm_state->head) 3071 mm_state->head = &mm_list->fifo; 3072 3073 if (mm_state->head == &mm_list->fifo) 3074 first = true; 3075 3076 do { 3077 mm_state->head = mm_state->head->next; 3078 if (mm_state->head == &mm_list->fifo) { 3079 WRITE_ONCE(mm_state->seq, mm_state->seq + 1); 3080 last = true; 3081 break; 3082 } 3083 3084 /* force scan for those added after the last iteration */ 3085 if (!mm_state->tail || mm_state->tail == mm_state->head) { 3086 mm_state->tail = mm_state->head->next; 3087 walk->force_scan = true; 3088 } 3089 } while (!(mm = get_next_mm(walk))); 3090 done: 3091 if (*iter || last) 3092 reset_mm_stats(walk, last); 3093 3094 spin_unlock(&mm_list->lock); 3095 3096 if (mm && first) 3097 reset_bloom_filter(mm_state, walk->seq + 1); 3098 3099 if (*iter) 3100 mmput_async(*iter); 3101 3102 *iter = mm; 3103 3104 return last; 3105 } 3106 3107 static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long seq) 3108 { 3109 bool success = false; 3110 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 3111 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 3112 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 3113 3114 spin_lock(&mm_list->lock); 3115 3116 VM_WARN_ON_ONCE(mm_state->seq + 1 < seq); 3117 3118 if (seq > mm_state->seq) { 3119 mm_state->head = NULL; 3120 mm_state->tail = NULL; 3121 WRITE_ONCE(mm_state->seq, mm_state->seq + 1); 3122 success = true; 3123 } 3124 3125 spin_unlock(&mm_list->lock); 3126 3127 return success; 3128 } 3129 3130 /****************************************************************************** 3131 * PID controller 3132 ******************************************************************************/ 3133 3134 /* 3135 * A feedback loop based on Proportional-Integral-Derivative (PID) controller. 3136 * 3137 * The P term is refaulted/(evicted+protected) from a tier in the generation 3138 * currently being evicted; the I term is the exponential moving average of the 3139 * P term over the generations previously evicted, using the smoothing factor 3140 * 1/2; the D term isn't supported. 3141 * 3142 * The setpoint (SP) is always the first tier of one type; the process variable 3143 * (PV) is either any tier of the other type or any other tier of the same 3144 * type. 3145 * 3146 * The error is the difference between the SP and the PV; the correction is to 3147 * turn off protection when SP>PV or turn on protection when SP<PV. 3148 * 3149 * For future optimizations: 3150 * 1. The D term may discount the other two terms over time so that long-lived 3151 * generations can resist stale information. 3152 */ 3153 struct ctrl_pos { 3154 unsigned long refaulted; 3155 unsigned long total; 3156 int gain; 3157 }; 3158 3159 static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain, 3160 struct ctrl_pos *pos) 3161 { 3162 int i; 3163 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3164 int hist = lru_hist_from_seq(lrugen->min_seq[type]); 3165 3166 pos->gain = gain; 3167 pos->refaulted = pos->total = 0; 3168 3169 for (i = tier % MAX_NR_TIERS; i <= min(tier, MAX_NR_TIERS - 1); i++) { 3170 pos->refaulted += lrugen->avg_refaulted[type][i] + 3171 atomic_long_read(&lrugen->refaulted[hist][type][i]); 3172 pos->total += lrugen->avg_total[type][i] + 3173 lrugen->protected[hist][type][i] + 3174 atomic_long_read(&lrugen->evicted[hist][type][i]); 3175 } 3176 } 3177 3178 static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover) 3179 { 3180 int hist, tier; 3181 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3182 bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1; 3183 unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1; 3184 3185 lockdep_assert_held(&lruvec->lru_lock); 3186 3187 if (!carryover && !clear) 3188 return; 3189 3190 hist = lru_hist_from_seq(seq); 3191 3192 for (tier = 0; tier < MAX_NR_TIERS; tier++) { 3193 if (carryover) { 3194 unsigned long sum; 3195 3196 sum = lrugen->avg_refaulted[type][tier] + 3197 atomic_long_read(&lrugen->refaulted[hist][type][tier]); 3198 WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2); 3199 3200 sum = lrugen->avg_total[type][tier] + 3201 lrugen->protected[hist][type][tier] + 3202 atomic_long_read(&lrugen->evicted[hist][type][tier]); 3203 WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2); 3204 } 3205 3206 if (clear) { 3207 atomic_long_set(&lrugen->refaulted[hist][type][tier], 0); 3208 atomic_long_set(&lrugen->evicted[hist][type][tier], 0); 3209 WRITE_ONCE(lrugen->protected[hist][type][tier], 0); 3210 } 3211 } 3212 } 3213 3214 static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv) 3215 { 3216 /* 3217 * Return true if the PV has a limited number of refaults or a lower 3218 * refaulted/total than the SP. 3219 */ 3220 return pv->refaulted < MIN_LRU_BATCH || 3221 pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <= 3222 (sp->refaulted + 1) * pv->total * pv->gain; 3223 } 3224 3225 /****************************************************************************** 3226 * the aging 3227 ******************************************************************************/ 3228 3229 /* promote pages accessed through page tables */ 3230 static int folio_update_gen(struct folio *folio, int gen) 3231 { 3232 unsigned long new_flags, old_flags = READ_ONCE(folio->flags.f); 3233 3234 VM_WARN_ON_ONCE(gen >= MAX_NR_GENS); 3235 3236 /* see the comment on LRU_REFS_FLAGS */ 3237 if (!folio_test_referenced(folio) && !folio_test_workingset(folio)) { 3238 set_mask_bits(&folio->flags.f, LRU_REFS_MASK, BIT(PG_referenced)); 3239 return -1; 3240 } 3241 3242 do { 3243 /* lru_gen_del_folio() has isolated this page? */ 3244 if (!(old_flags & LRU_GEN_MASK)) 3245 return -1; 3246 3247 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_FLAGS); 3248 new_flags |= ((gen + 1UL) << LRU_GEN_PGOFF) | BIT(PG_workingset); 3249 } while (!try_cmpxchg(&folio->flags.f, &old_flags, new_flags)); 3250 3251 return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1; 3252 } 3253 3254 /* protect pages accessed multiple times through file descriptors */ 3255 static int folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming) 3256 { 3257 int type = folio_is_file_lru(folio); 3258 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3259 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]); 3260 unsigned long new_flags, old_flags = READ_ONCE(folio->flags.f); 3261 3262 VM_WARN_ON_ONCE_FOLIO(!(old_flags & LRU_GEN_MASK), folio); 3263 3264 do { 3265 new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1; 3266 /* folio_update_gen() has promoted this page? */ 3267 if (new_gen >= 0 && new_gen != old_gen) 3268 return new_gen; 3269 3270 new_gen = (old_gen + 1) % MAX_NR_GENS; 3271 3272 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_FLAGS); 3273 new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF; 3274 /* for folio_end_writeback() */ 3275 if (reclaiming) 3276 new_flags |= BIT(PG_reclaim); 3277 } while (!try_cmpxchg(&folio->flags.f, &old_flags, new_flags)); 3278 3279 lru_gen_update_size(lruvec, folio, old_gen, new_gen); 3280 3281 return new_gen; 3282 } 3283 3284 static void update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio, 3285 int old_gen, int new_gen) 3286 { 3287 int type = folio_is_file_lru(folio); 3288 int zone = folio_zonenum(folio); 3289 int delta = folio_nr_pages(folio); 3290 3291 VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS); 3292 VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS); 3293 3294 walk->batched++; 3295 3296 walk->nr_pages[old_gen][type][zone] -= delta; 3297 walk->nr_pages[new_gen][type][zone] += delta; 3298 } 3299 3300 static void reset_batch_size(struct lru_gen_mm_walk *walk) 3301 { 3302 int gen, type, zone; 3303 struct lruvec *lruvec = walk->lruvec; 3304 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3305 3306 walk->batched = 0; 3307 3308 for_each_gen_type_zone(gen, type, zone) { 3309 enum lru_list lru = type * LRU_INACTIVE_FILE; 3310 int delta = walk->nr_pages[gen][type][zone]; 3311 3312 if (!delta) 3313 continue; 3314 3315 walk->nr_pages[gen][type][zone] = 0; 3316 WRITE_ONCE(lrugen->nr_pages[gen][type][zone], 3317 lrugen->nr_pages[gen][type][zone] + delta); 3318 3319 if (lru_gen_is_active(lruvec, gen)) 3320 lru += LRU_ACTIVE; 3321 __update_lru_size(lruvec, lru, zone, delta); 3322 } 3323 } 3324 3325 static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args) 3326 { 3327 struct address_space *mapping; 3328 struct vm_area_struct *vma = args->vma; 3329 struct lru_gen_mm_walk *walk = args->private; 3330 3331 if (!vma_is_accessible(vma)) 3332 return true; 3333 3334 if (is_vm_hugetlb_page(vma)) 3335 return true; 3336 3337 if (!vma_has_recency(vma)) 3338 return true; 3339 3340 if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) 3341 return true; 3342 3343 if (vma == get_gate_vma(vma->vm_mm)) 3344 return true; 3345 3346 if (vma_is_anonymous(vma)) 3347 return !walk->swappiness; 3348 3349 if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping)) 3350 return true; 3351 3352 mapping = vma->vm_file->f_mapping; 3353 if (mapping_unevictable(mapping)) 3354 return true; 3355 3356 if (shmem_mapping(mapping)) 3357 return !walk->swappiness; 3358 3359 if (walk->swappiness > MAX_SWAPPINESS) 3360 return true; 3361 3362 /* to exclude special mappings like dax, etc. */ 3363 return !mapping->a_ops->read_folio; 3364 } 3365 3366 /* 3367 * Some userspace memory allocators map many single-page VMAs. Instead of 3368 * returning back to the PGD table for each of such VMAs, finish an entire PMD 3369 * table to reduce zigzags and improve cache performance. 3370 */ 3371 static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args, 3372 unsigned long *vm_start, unsigned long *vm_end) 3373 { 3374 unsigned long start = round_up(*vm_end, size); 3375 unsigned long end = (start | ~mask) + 1; 3376 VMA_ITERATOR(vmi, args->mm, start); 3377 3378 VM_WARN_ON_ONCE(mask & size); 3379 VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask)); 3380 3381 for_each_vma(vmi, args->vma) { 3382 if (end && end <= args->vma->vm_start) 3383 return false; 3384 3385 if (should_skip_vma(args->vma->vm_start, args->vma->vm_end, args)) 3386 continue; 3387 3388 *vm_start = max(start, args->vma->vm_start); 3389 *vm_end = min(end - 1, args->vma->vm_end - 1) + 1; 3390 3391 return true; 3392 } 3393 3394 return false; 3395 } 3396 3397 static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr, 3398 struct pglist_data *pgdat) 3399 { 3400 unsigned long pfn = pte_pfn(pte); 3401 3402 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end); 3403 3404 if (!pte_present(pte) || is_zero_pfn(pfn)) 3405 return -1; 3406 3407 if (WARN_ON_ONCE(pte_special(pte))) 3408 return -1; 3409 3410 if (!pte_young(pte) && !mm_has_notifiers(vma->vm_mm)) 3411 return -1; 3412 3413 if (WARN_ON_ONCE(!pfn_valid(pfn))) 3414 return -1; 3415 3416 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat)) 3417 return -1; 3418 3419 return pfn; 3420 } 3421 3422 static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr, 3423 struct pglist_data *pgdat) 3424 { 3425 unsigned long pfn = pmd_pfn(pmd); 3426 3427 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end); 3428 3429 if (!pmd_present(pmd) || is_huge_zero_pmd(pmd)) 3430 return -1; 3431 3432 if (!pmd_young(pmd) && !mm_has_notifiers(vma->vm_mm)) 3433 return -1; 3434 3435 if (WARN_ON_ONCE(!pfn_valid(pfn))) 3436 return -1; 3437 3438 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat)) 3439 return -1; 3440 3441 return pfn; 3442 } 3443 3444 static struct folio *get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg, 3445 struct pglist_data *pgdat) 3446 { 3447 struct folio *folio = pfn_folio(pfn); 3448 3449 if (folio_lru_gen(folio) < 0) 3450 return NULL; 3451 3452 if (folio_nid(folio) != pgdat->node_id) 3453 return NULL; 3454 3455 if (folio_memcg(folio) != memcg) 3456 return NULL; 3457 3458 return folio; 3459 } 3460 3461 static bool suitable_to_scan(int total, int young) 3462 { 3463 int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8); 3464 3465 /* suitable if the average number of young PTEs per cacheline is >=1 */ 3466 return young * n >= total; 3467 } 3468 3469 static void walk_update_folio(struct lru_gen_mm_walk *walk, struct folio *folio, 3470 int new_gen, bool dirty) 3471 { 3472 int old_gen; 3473 3474 if (!folio) 3475 return; 3476 3477 if (dirty && !folio_test_dirty(folio) && 3478 !(folio_test_anon(folio) && folio_test_swapbacked(folio) && 3479 !folio_test_swapcache(folio))) 3480 folio_mark_dirty(folio); 3481 3482 if (walk) { 3483 old_gen = folio_update_gen(folio, new_gen); 3484 if (old_gen >= 0 && old_gen != new_gen) 3485 update_batch_size(walk, folio, old_gen, new_gen); 3486 } else if (lru_gen_set_refs(folio)) { 3487 old_gen = folio_lru_gen(folio); 3488 if (old_gen >= 0 && old_gen != new_gen) 3489 folio_activate(folio); 3490 } 3491 } 3492 3493 static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end, 3494 struct mm_walk *args) 3495 { 3496 int i; 3497 bool dirty; 3498 pte_t *pte; 3499 spinlock_t *ptl; 3500 unsigned long addr; 3501 int total = 0; 3502 int young = 0; 3503 struct folio *last = NULL; 3504 struct lru_gen_mm_walk *walk = args->private; 3505 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec); 3506 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 3507 DEFINE_MAX_SEQ(walk->lruvec); 3508 int gen = lru_gen_from_seq(max_seq); 3509 pmd_t pmdval; 3510 3511 pte = pte_offset_map_rw_nolock(args->mm, pmd, start & PMD_MASK, &pmdval, &ptl); 3512 if (!pte) 3513 return false; 3514 3515 if (!spin_trylock(ptl)) { 3516 pte_unmap(pte); 3517 return true; 3518 } 3519 3520 if (unlikely(!pmd_same(pmdval, pmdp_get_lockless(pmd)))) { 3521 pte_unmap_unlock(pte, ptl); 3522 return false; 3523 } 3524 3525 lazy_mmu_mode_enable(); 3526 restart: 3527 for (i = pte_index(start), addr = start; addr != end; i++, addr += PAGE_SIZE) { 3528 unsigned long pfn; 3529 struct folio *folio; 3530 pte_t ptent = ptep_get(pte + i); 3531 3532 total++; 3533 walk->mm_stats[MM_LEAF_TOTAL]++; 3534 3535 pfn = get_pte_pfn(ptent, args->vma, addr, pgdat); 3536 if (pfn == -1) 3537 continue; 3538 3539 folio = get_pfn_folio(pfn, memcg, pgdat); 3540 if (!folio) 3541 continue; 3542 3543 if (!ptep_clear_young_notify(args->vma, addr, pte + i)) 3544 continue; 3545 3546 if (last != folio) { 3547 walk_update_folio(walk, last, gen, dirty); 3548 3549 last = folio; 3550 dirty = false; 3551 } 3552 3553 if (pte_dirty(ptent)) 3554 dirty = true; 3555 3556 young++; 3557 walk->mm_stats[MM_LEAF_YOUNG]++; 3558 } 3559 3560 walk_update_folio(walk, last, gen, dirty); 3561 last = NULL; 3562 3563 if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, &start, &end)) 3564 goto restart; 3565 3566 lazy_mmu_mode_disable(); 3567 pte_unmap_unlock(pte, ptl); 3568 3569 return suitable_to_scan(total, young); 3570 } 3571 3572 static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma, 3573 struct mm_walk *args, unsigned long *bitmap, unsigned long *first) 3574 { 3575 int i; 3576 bool dirty; 3577 pmd_t *pmd; 3578 spinlock_t *ptl; 3579 struct folio *last = NULL; 3580 struct lru_gen_mm_walk *walk = args->private; 3581 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec); 3582 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 3583 DEFINE_MAX_SEQ(walk->lruvec); 3584 int gen = lru_gen_from_seq(max_seq); 3585 3586 VM_WARN_ON_ONCE(pud_leaf(*pud)); 3587 3588 /* try to batch at most 1+MIN_LRU_BATCH+1 entries */ 3589 if (*first == -1) { 3590 *first = addr; 3591 bitmap_zero(bitmap, MIN_LRU_BATCH); 3592 return; 3593 } 3594 3595 i = addr == -1 ? 0 : pmd_index(addr) - pmd_index(*first); 3596 if (i && i <= MIN_LRU_BATCH) { 3597 __set_bit(i - 1, bitmap); 3598 return; 3599 } 3600 3601 pmd = pmd_offset(pud, *first); 3602 3603 ptl = pmd_lockptr(args->mm, pmd); 3604 if (!spin_trylock(ptl)) 3605 goto done; 3606 3607 lazy_mmu_mode_enable(); 3608 3609 do { 3610 unsigned long pfn; 3611 struct folio *folio; 3612 3613 /* don't round down the first address */ 3614 addr = i ? (*first & PMD_MASK) + i * PMD_SIZE : *first; 3615 3616 if (!pmd_present(pmd[i])) 3617 goto next; 3618 3619 if (!pmd_trans_huge(pmd[i])) { 3620 if (!walk->force_scan && should_clear_pmd_young() && 3621 !mm_has_notifiers(args->mm)) 3622 pmdp_test_and_clear_young(vma, addr, pmd + i); 3623 goto next; 3624 } 3625 3626 pfn = get_pmd_pfn(pmd[i], vma, addr, pgdat); 3627 if (pfn == -1) 3628 goto next; 3629 3630 folio = get_pfn_folio(pfn, memcg, pgdat); 3631 if (!folio) 3632 goto next; 3633 3634 if (!pmdp_clear_young_notify(vma, addr, pmd + i)) 3635 goto next; 3636 3637 if (last != folio) { 3638 walk_update_folio(walk, last, gen, dirty); 3639 3640 last = folio; 3641 dirty = false; 3642 } 3643 3644 if (pmd_dirty(pmd[i])) 3645 dirty = true; 3646 3647 walk->mm_stats[MM_LEAF_YOUNG]++; 3648 next: 3649 i = i > MIN_LRU_BATCH ? 0 : find_next_bit(bitmap, MIN_LRU_BATCH, i) + 1; 3650 } while (i <= MIN_LRU_BATCH); 3651 3652 walk_update_folio(walk, last, gen, dirty); 3653 3654 lazy_mmu_mode_disable(); 3655 spin_unlock(ptl); 3656 done: 3657 *first = -1; 3658 } 3659 3660 static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end, 3661 struct mm_walk *args) 3662 { 3663 int i; 3664 pmd_t *pmd; 3665 unsigned long next; 3666 unsigned long addr; 3667 struct vm_area_struct *vma; 3668 DECLARE_BITMAP(bitmap, MIN_LRU_BATCH); 3669 unsigned long first = -1; 3670 struct lru_gen_mm_walk *walk = args->private; 3671 struct lru_gen_mm_state *mm_state = get_mm_state(walk->lruvec); 3672 3673 VM_WARN_ON_ONCE(pud_leaf(*pud)); 3674 3675 /* 3676 * Finish an entire PMD in two passes: the first only reaches to PTE 3677 * tables to avoid taking the PMD lock; the second, if necessary, takes 3678 * the PMD lock to clear the accessed bit in PMD entries. 3679 */ 3680 pmd = pmd_offset(pud, start & PUD_MASK); 3681 restart: 3682 /* walk_pte_range() may call get_next_vma() */ 3683 vma = args->vma; 3684 for (i = pmd_index(start), addr = start; addr != end; i++, addr = next) { 3685 pmd_t val = pmdp_get_lockless(pmd + i); 3686 3687 next = pmd_addr_end(addr, end); 3688 3689 if (!pmd_present(val) || is_huge_zero_pmd(val)) { 3690 walk->mm_stats[MM_LEAF_TOTAL]++; 3691 continue; 3692 } 3693 3694 if (pmd_trans_huge(val)) { 3695 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 3696 unsigned long pfn = get_pmd_pfn(val, vma, addr, pgdat); 3697 3698 walk->mm_stats[MM_LEAF_TOTAL]++; 3699 3700 if (pfn != -1) 3701 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first); 3702 continue; 3703 } 3704 3705 if (!walk->force_scan && should_clear_pmd_young() && 3706 !mm_has_notifiers(args->mm)) { 3707 if (!pmd_young(val)) 3708 continue; 3709 3710 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first); 3711 } 3712 3713 if (!walk->force_scan && !test_bloom_filter(mm_state, walk->seq, pmd + i)) 3714 continue; 3715 3716 walk->mm_stats[MM_NONLEAF_FOUND]++; 3717 3718 if (!walk_pte_range(&val, addr, next, args)) 3719 continue; 3720 3721 walk->mm_stats[MM_NONLEAF_ADDED]++; 3722 3723 /* carry over to the next generation */ 3724 update_bloom_filter(mm_state, walk->seq + 1, pmd + i); 3725 } 3726 3727 walk_pmd_range_locked(pud, -1, vma, args, bitmap, &first); 3728 3729 if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, &start, &end)) 3730 goto restart; 3731 } 3732 3733 static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end, 3734 struct mm_walk *args) 3735 { 3736 int i; 3737 pud_t *pud; 3738 unsigned long addr; 3739 unsigned long next; 3740 struct lru_gen_mm_walk *walk = args->private; 3741 3742 VM_WARN_ON_ONCE(p4d_leaf(*p4d)); 3743 3744 pud = pud_offset(p4d, start & P4D_MASK); 3745 restart: 3746 for (i = pud_index(start), addr = start; addr != end; i++, addr = next) { 3747 pud_t val = pudp_get(pud + i); 3748 3749 next = pud_addr_end(addr, end); 3750 3751 if (!pud_present(val) || WARN_ON_ONCE(pud_leaf(val))) 3752 continue; 3753 3754 walk_pmd_range(&val, addr, next, args); 3755 3756 if (need_resched() || walk->batched >= MAX_LRU_BATCH) { 3757 end = (addr | ~PUD_MASK) + 1; 3758 goto done; 3759 } 3760 } 3761 3762 if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, &start, &end)) 3763 goto restart; 3764 3765 end = round_up(end, P4D_SIZE); 3766 done: 3767 if (!end || !args->vma) 3768 return 1; 3769 3770 walk->next_addr = max(end, args->vma->vm_start); 3771 3772 return -EAGAIN; 3773 } 3774 3775 static void walk_mm(struct mm_struct *mm, struct lru_gen_mm_walk *walk) 3776 { 3777 static const struct mm_walk_ops mm_walk_ops = { 3778 .test_walk = should_skip_vma, 3779 .p4d_entry = walk_pud_range, 3780 .walk_lock = PGWALK_RDLOCK, 3781 }; 3782 int err; 3783 struct lruvec *lruvec = walk->lruvec; 3784 3785 walk->next_addr = FIRST_USER_ADDRESS; 3786 3787 do { 3788 DEFINE_MAX_SEQ(lruvec); 3789 3790 err = -EBUSY; 3791 3792 /* another thread might have called inc_max_seq() */ 3793 if (walk->seq != max_seq) 3794 break; 3795 3796 /* the caller might be holding the lock for write */ 3797 if (mmap_read_trylock(mm)) { 3798 err = walk_page_range(mm, walk->next_addr, ULONG_MAX, &mm_walk_ops, walk); 3799 3800 mmap_read_unlock(mm); 3801 } 3802 3803 if (walk->batched) { 3804 spin_lock_irq(&lruvec->lru_lock); 3805 reset_batch_size(walk); 3806 spin_unlock_irq(&lruvec->lru_lock); 3807 } 3808 3809 cond_resched(); 3810 } while (err == -EAGAIN); 3811 } 3812 3813 static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat, bool force_alloc) 3814 { 3815 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk; 3816 3817 if (pgdat && current_is_kswapd()) { 3818 VM_WARN_ON_ONCE(walk); 3819 3820 walk = &pgdat->mm_walk; 3821 } else if (!walk && force_alloc) { 3822 VM_WARN_ON_ONCE(current_is_kswapd()); 3823 3824 walk = kzalloc(sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN); 3825 } 3826 3827 current->reclaim_state->mm_walk = walk; 3828 3829 return walk; 3830 } 3831 3832 static void clear_mm_walk(void) 3833 { 3834 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk; 3835 3836 VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages))); 3837 VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats))); 3838 3839 current->reclaim_state->mm_walk = NULL; 3840 3841 if (!current_is_kswapd()) 3842 kfree(walk); 3843 } 3844 3845 static bool inc_min_seq(struct lruvec *lruvec, int type, int swappiness) 3846 { 3847 int zone; 3848 int remaining = MAX_LRU_BATCH; 3849 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3850 int hist = lru_hist_from_seq(lrugen->min_seq[type]); 3851 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]); 3852 3853 /* For file type, skip the check if swappiness is anon only */ 3854 if (type && (swappiness == SWAPPINESS_ANON_ONLY)) 3855 goto done; 3856 3857 /* For anon type, skip the check if swappiness is zero (file only) */ 3858 if (!type && !swappiness) 3859 goto done; 3860 3861 /* prevent cold/hot inversion if the type is evictable */ 3862 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 3863 struct list_head *head = &lrugen->folios[old_gen][type][zone]; 3864 3865 while (!list_empty(head)) { 3866 struct folio *folio = lru_to_folio(head); 3867 int refs = folio_lru_refs(folio); 3868 bool workingset = folio_test_workingset(folio); 3869 3870 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 3871 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio); 3872 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 3873 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio); 3874 3875 new_gen = folio_inc_gen(lruvec, folio, false); 3876 list_move_tail(&folio->lru, &lrugen->folios[new_gen][type][zone]); 3877 3878 /* don't count the workingset being lazily promoted */ 3879 if (refs + workingset != BIT(LRU_REFS_WIDTH) + 1) { 3880 int tier = lru_tier_from_refs(refs, workingset); 3881 int delta = folio_nr_pages(folio); 3882 3883 WRITE_ONCE(lrugen->protected[hist][type][tier], 3884 lrugen->protected[hist][type][tier] + delta); 3885 } 3886 3887 if (!--remaining) 3888 return false; 3889 } 3890 } 3891 done: 3892 reset_ctrl_pos(lruvec, type, true); 3893 WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1); 3894 3895 return true; 3896 } 3897 3898 static bool try_to_inc_min_seq(struct lruvec *lruvec, int swappiness) 3899 { 3900 int gen, type, zone; 3901 bool success = false; 3902 bool seq_inc_flag = false; 3903 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3904 DEFINE_MIN_SEQ(lruvec); 3905 3906 VM_WARN_ON_ONCE(!seq_is_valid(lruvec)); 3907 3908 /* find the oldest populated generation */ 3909 for_each_evictable_type(type, swappiness) { 3910 while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) { 3911 gen = lru_gen_from_seq(min_seq[type]); 3912 3913 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 3914 if (!list_empty(&lrugen->folios[gen][type][zone])) 3915 goto next; 3916 } 3917 3918 min_seq[type]++; 3919 seq_inc_flag = true; 3920 } 3921 next: 3922 ; 3923 } 3924 3925 /* 3926 * If min_seq[type] of both anonymous and file is not increased, 3927 * we can directly return false to avoid unnecessary checking 3928 * overhead later. 3929 */ 3930 if (!seq_inc_flag) 3931 return success; 3932 3933 /* see the comment on lru_gen_folio */ 3934 if (swappiness && swappiness <= MAX_SWAPPINESS) { 3935 unsigned long seq = lrugen->max_seq - MIN_NR_GENS; 3936 3937 if (min_seq[LRU_GEN_ANON] > seq && min_seq[LRU_GEN_FILE] < seq) 3938 min_seq[LRU_GEN_ANON] = seq; 3939 else if (min_seq[LRU_GEN_FILE] > seq && min_seq[LRU_GEN_ANON] < seq) 3940 min_seq[LRU_GEN_FILE] = seq; 3941 } 3942 3943 for_each_evictable_type(type, swappiness) { 3944 if (min_seq[type] <= lrugen->min_seq[type]) 3945 continue; 3946 3947 reset_ctrl_pos(lruvec, type, true); 3948 WRITE_ONCE(lrugen->min_seq[type], min_seq[type]); 3949 success = true; 3950 } 3951 3952 return success; 3953 } 3954 3955 static bool inc_max_seq(struct lruvec *lruvec, unsigned long seq, int swappiness) 3956 { 3957 bool success; 3958 int prev, next; 3959 int type, zone; 3960 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3961 restart: 3962 if (seq < READ_ONCE(lrugen->max_seq)) 3963 return false; 3964 3965 spin_lock_irq(&lruvec->lru_lock); 3966 3967 VM_WARN_ON_ONCE(!seq_is_valid(lruvec)); 3968 3969 success = seq == lrugen->max_seq; 3970 if (!success) 3971 goto unlock; 3972 3973 for (type = 0; type < ANON_AND_FILE; type++) { 3974 if (get_nr_gens(lruvec, type) != MAX_NR_GENS) 3975 continue; 3976 3977 if (inc_min_seq(lruvec, type, swappiness)) 3978 continue; 3979 3980 spin_unlock_irq(&lruvec->lru_lock); 3981 cond_resched(); 3982 goto restart; 3983 } 3984 3985 /* 3986 * Update the active/inactive LRU sizes for compatibility. Both sides of 3987 * the current max_seq need to be covered, since max_seq+1 can overlap 3988 * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do 3989 * overlap, cold/hot inversion happens. 3990 */ 3991 prev = lru_gen_from_seq(lrugen->max_seq - 1); 3992 next = lru_gen_from_seq(lrugen->max_seq + 1); 3993 3994 for (type = 0; type < ANON_AND_FILE; type++) { 3995 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 3996 enum lru_list lru = type * LRU_INACTIVE_FILE; 3997 long delta = lrugen->nr_pages[prev][type][zone] - 3998 lrugen->nr_pages[next][type][zone]; 3999 4000 if (!delta) 4001 continue; 4002 4003 __update_lru_size(lruvec, lru, zone, delta); 4004 __update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta); 4005 } 4006 } 4007 4008 for (type = 0; type < ANON_AND_FILE; type++) 4009 reset_ctrl_pos(lruvec, type, false); 4010 4011 WRITE_ONCE(lrugen->timestamps[next], jiffies); 4012 /* make sure preceding modifications appear */ 4013 smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1); 4014 unlock: 4015 spin_unlock_irq(&lruvec->lru_lock); 4016 4017 return success; 4018 } 4019 4020 static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long seq, 4021 int swappiness, bool force_scan) 4022 { 4023 bool success; 4024 struct lru_gen_mm_walk *walk; 4025 struct mm_struct *mm = NULL; 4026 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4027 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 4028 4029 VM_WARN_ON_ONCE(seq > READ_ONCE(lrugen->max_seq)); 4030 4031 if (!mm_state) 4032 return inc_max_seq(lruvec, seq, swappiness); 4033 4034 /* see the comment in iterate_mm_list() */ 4035 if (seq <= READ_ONCE(mm_state->seq)) 4036 return false; 4037 4038 /* 4039 * If the hardware doesn't automatically set the accessed bit, fallback 4040 * to lru_gen_look_around(), which only clears the accessed bit in a 4041 * handful of PTEs. Spreading the work out over a period of time usually 4042 * is less efficient, but it avoids bursty page faults. 4043 */ 4044 if (!should_walk_mmu()) { 4045 success = iterate_mm_list_nowalk(lruvec, seq); 4046 goto done; 4047 } 4048 4049 walk = set_mm_walk(NULL, true); 4050 if (!walk) { 4051 success = iterate_mm_list_nowalk(lruvec, seq); 4052 goto done; 4053 } 4054 4055 walk->lruvec = lruvec; 4056 walk->seq = seq; 4057 walk->swappiness = swappiness; 4058 walk->force_scan = force_scan; 4059 4060 do { 4061 success = iterate_mm_list(walk, &mm); 4062 if (mm) 4063 walk_mm(mm, walk); 4064 } while (mm); 4065 done: 4066 if (success) { 4067 success = inc_max_seq(lruvec, seq, swappiness); 4068 WARN_ON_ONCE(!success); 4069 } 4070 4071 return success; 4072 } 4073 4074 /****************************************************************************** 4075 * working set protection 4076 ******************************************************************************/ 4077 4078 static void set_initial_priority(struct pglist_data *pgdat, struct scan_control *sc) 4079 { 4080 int priority; 4081 unsigned long reclaimable; 4082 4083 if (sc->priority != DEF_PRIORITY || sc->nr_to_reclaim < MIN_LRU_BATCH) 4084 return; 4085 /* 4086 * Determine the initial priority based on 4087 * (total >> priority) * reclaimed_to_scanned_ratio = nr_to_reclaim, 4088 * where reclaimed_to_scanned_ratio = inactive / total. 4089 */ 4090 reclaimable = node_page_state(pgdat, NR_INACTIVE_FILE); 4091 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc)) 4092 reclaimable += node_page_state(pgdat, NR_INACTIVE_ANON); 4093 4094 /* round down reclaimable and round up sc->nr_to_reclaim */ 4095 priority = fls_long(reclaimable) - 1 - fls_long(sc->nr_to_reclaim - 1); 4096 4097 /* 4098 * The estimation is based on LRU pages only, so cap it to prevent 4099 * overshoots of shrinker objects by large margins. 4100 */ 4101 sc->priority = clamp(priority, DEF_PRIORITY / 2, DEF_PRIORITY); 4102 } 4103 4104 static bool lruvec_is_sizable(struct lruvec *lruvec, struct scan_control *sc) 4105 { 4106 int gen, type, zone; 4107 unsigned long total = 0; 4108 int swappiness = get_swappiness(lruvec, sc); 4109 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4110 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4111 DEFINE_MAX_SEQ(lruvec); 4112 DEFINE_MIN_SEQ(lruvec); 4113 4114 for_each_evictable_type(type, swappiness) { 4115 unsigned long seq; 4116 4117 for (seq = min_seq[type]; seq <= max_seq; seq++) { 4118 gen = lru_gen_from_seq(seq); 4119 4120 for (zone = 0; zone < MAX_NR_ZONES; zone++) 4121 total += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L); 4122 } 4123 } 4124 4125 /* whether the size is big enough to be helpful */ 4126 return mem_cgroup_online(memcg) ? (total >> sc->priority) : total; 4127 } 4128 4129 static bool lruvec_is_reclaimable(struct lruvec *lruvec, struct scan_control *sc, 4130 unsigned long min_ttl) 4131 { 4132 int gen; 4133 unsigned long birth; 4134 int swappiness = get_swappiness(lruvec, sc); 4135 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4136 DEFINE_MIN_SEQ(lruvec); 4137 4138 if (mem_cgroup_below_min(NULL, memcg)) 4139 return false; 4140 4141 if (!lruvec_is_sizable(lruvec, sc)) 4142 return false; 4143 4144 gen = lru_gen_from_seq(evictable_min_seq(min_seq, swappiness)); 4145 birth = READ_ONCE(lruvec->lrugen.timestamps[gen]); 4146 4147 return time_is_before_jiffies(birth + min_ttl); 4148 } 4149 4150 /* to protect the working set of the last N jiffies */ 4151 static unsigned long lru_gen_min_ttl __read_mostly; 4152 4153 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc) 4154 { 4155 struct mem_cgroup *memcg; 4156 unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl); 4157 bool reclaimable = !min_ttl; 4158 4159 VM_WARN_ON_ONCE(!current_is_kswapd()); 4160 4161 set_initial_priority(pgdat, sc); 4162 4163 memcg = mem_cgroup_iter(NULL, NULL, NULL); 4164 do { 4165 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 4166 4167 mem_cgroup_calculate_protection(NULL, memcg); 4168 4169 if (!reclaimable) 4170 reclaimable = lruvec_is_reclaimable(lruvec, sc, min_ttl); 4171 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL))); 4172 4173 /* 4174 * The main goal is to OOM kill if every generation from all memcgs is 4175 * younger than min_ttl. However, another possibility is all memcgs are 4176 * either too small or below min. 4177 */ 4178 if (!reclaimable && mutex_trylock(&oom_lock)) { 4179 struct oom_control oc = { 4180 .gfp_mask = sc->gfp_mask, 4181 }; 4182 4183 out_of_memory(&oc); 4184 4185 mutex_unlock(&oom_lock); 4186 } 4187 } 4188 4189 /****************************************************************************** 4190 * rmap/PT walk feedback 4191 ******************************************************************************/ 4192 4193 /* 4194 * This function exploits spatial locality when shrink_folio_list() walks the 4195 * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If 4196 * the scan was done cacheline efficiently, it adds the PMD entry pointing to 4197 * the PTE table to the Bloom filter. This forms a feedback loop between the 4198 * eviction and the aging. 4199 */ 4200 bool lru_gen_look_around(struct page_vma_mapped_walk *pvmw) 4201 { 4202 int i; 4203 bool dirty; 4204 unsigned long start; 4205 unsigned long end; 4206 struct lru_gen_mm_walk *walk; 4207 struct folio *last = NULL; 4208 int young = 1; 4209 pte_t *pte = pvmw->pte; 4210 unsigned long addr = pvmw->address; 4211 struct vm_area_struct *vma = pvmw->vma; 4212 struct folio *folio = pfn_folio(pvmw->pfn); 4213 struct mem_cgroup *memcg = folio_memcg(folio); 4214 struct pglist_data *pgdat = folio_pgdat(folio); 4215 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 4216 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 4217 DEFINE_MAX_SEQ(lruvec); 4218 int gen = lru_gen_from_seq(max_seq); 4219 4220 lockdep_assert_held(pvmw->ptl); 4221 VM_WARN_ON_ONCE_FOLIO(folio_test_lru(folio), folio); 4222 4223 if (!ptep_clear_young_notify(vma, addr, pte)) 4224 return false; 4225 4226 if (spin_is_contended(pvmw->ptl)) 4227 return true; 4228 4229 /* exclude special VMAs containing anon pages from COW */ 4230 if (vma->vm_flags & VM_SPECIAL) 4231 return true; 4232 4233 /* avoid taking the LRU lock under the PTL when possible */ 4234 walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL; 4235 4236 start = max(addr & PMD_MASK, vma->vm_start); 4237 end = min(addr | ~PMD_MASK, vma->vm_end - 1) + 1; 4238 4239 if (end - start == PAGE_SIZE) 4240 return true; 4241 4242 if (end - start > MIN_LRU_BATCH * PAGE_SIZE) { 4243 if (addr - start < MIN_LRU_BATCH * PAGE_SIZE / 2) 4244 end = start + MIN_LRU_BATCH * PAGE_SIZE; 4245 else if (end - addr < MIN_LRU_BATCH * PAGE_SIZE / 2) 4246 start = end - MIN_LRU_BATCH * PAGE_SIZE; 4247 else { 4248 start = addr - MIN_LRU_BATCH * PAGE_SIZE / 2; 4249 end = addr + MIN_LRU_BATCH * PAGE_SIZE / 2; 4250 } 4251 } 4252 4253 lazy_mmu_mode_enable(); 4254 4255 pte -= (addr - start) / PAGE_SIZE; 4256 4257 for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) { 4258 unsigned long pfn; 4259 pte_t ptent = ptep_get(pte + i); 4260 4261 pfn = get_pte_pfn(ptent, vma, addr, pgdat); 4262 if (pfn == -1) 4263 continue; 4264 4265 folio = get_pfn_folio(pfn, memcg, pgdat); 4266 if (!folio) 4267 continue; 4268 4269 if (!ptep_clear_young_notify(vma, addr, pte + i)) 4270 continue; 4271 4272 if (last != folio) { 4273 walk_update_folio(walk, last, gen, dirty); 4274 4275 last = folio; 4276 dirty = false; 4277 } 4278 4279 if (pte_dirty(ptent)) 4280 dirty = true; 4281 4282 young++; 4283 } 4284 4285 walk_update_folio(walk, last, gen, dirty); 4286 4287 lazy_mmu_mode_disable(); 4288 4289 /* feedback from rmap walkers to page table walkers */ 4290 if (mm_state && suitable_to_scan(i, young)) 4291 update_bloom_filter(mm_state, max_seq, pvmw->pmd); 4292 4293 return true; 4294 } 4295 4296 /****************************************************************************** 4297 * memcg LRU 4298 ******************************************************************************/ 4299 4300 /* see the comment on MEMCG_NR_GENS */ 4301 enum { 4302 MEMCG_LRU_NOP, 4303 MEMCG_LRU_HEAD, 4304 MEMCG_LRU_TAIL, 4305 MEMCG_LRU_OLD, 4306 MEMCG_LRU_YOUNG, 4307 }; 4308 4309 static void lru_gen_rotate_memcg(struct lruvec *lruvec, int op) 4310 { 4311 int seg; 4312 int old, new; 4313 unsigned long flags; 4314 int bin = get_random_u32_below(MEMCG_NR_BINS); 4315 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 4316 4317 spin_lock_irqsave(&pgdat->memcg_lru.lock, flags); 4318 4319 VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list)); 4320 4321 seg = 0; 4322 new = old = lruvec->lrugen.gen; 4323 4324 /* see the comment on MEMCG_NR_GENS */ 4325 if (op == MEMCG_LRU_HEAD) 4326 seg = MEMCG_LRU_HEAD; 4327 else if (op == MEMCG_LRU_TAIL) 4328 seg = MEMCG_LRU_TAIL; 4329 else if (op == MEMCG_LRU_OLD) 4330 new = get_memcg_gen(pgdat->memcg_lru.seq); 4331 else if (op == MEMCG_LRU_YOUNG) 4332 new = get_memcg_gen(pgdat->memcg_lru.seq + 1); 4333 else 4334 VM_WARN_ON_ONCE(true); 4335 4336 WRITE_ONCE(lruvec->lrugen.seg, seg); 4337 WRITE_ONCE(lruvec->lrugen.gen, new); 4338 4339 hlist_nulls_del_rcu(&lruvec->lrugen.list); 4340 4341 if (op == MEMCG_LRU_HEAD || op == MEMCG_LRU_OLD) 4342 hlist_nulls_add_head_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]); 4343 else 4344 hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]); 4345 4346 pgdat->memcg_lru.nr_memcgs[old]--; 4347 pgdat->memcg_lru.nr_memcgs[new]++; 4348 4349 if (!pgdat->memcg_lru.nr_memcgs[old] && old == get_memcg_gen(pgdat->memcg_lru.seq)) 4350 WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1); 4351 4352 spin_unlock_irqrestore(&pgdat->memcg_lru.lock, flags); 4353 } 4354 4355 #ifdef CONFIG_MEMCG 4356 4357 void lru_gen_online_memcg(struct mem_cgroup *memcg) 4358 { 4359 int gen; 4360 int nid; 4361 int bin = get_random_u32_below(MEMCG_NR_BINS); 4362 4363 for_each_node(nid) { 4364 struct pglist_data *pgdat = NODE_DATA(nid); 4365 struct lruvec *lruvec = get_lruvec(memcg, nid); 4366 4367 spin_lock_irq(&pgdat->memcg_lru.lock); 4368 4369 VM_WARN_ON_ONCE(!hlist_nulls_unhashed(&lruvec->lrugen.list)); 4370 4371 gen = get_memcg_gen(pgdat->memcg_lru.seq); 4372 4373 lruvec->lrugen.gen = gen; 4374 4375 hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[gen][bin]); 4376 pgdat->memcg_lru.nr_memcgs[gen]++; 4377 4378 spin_unlock_irq(&pgdat->memcg_lru.lock); 4379 } 4380 } 4381 4382 void lru_gen_offline_memcg(struct mem_cgroup *memcg) 4383 { 4384 int nid; 4385 4386 for_each_node(nid) { 4387 struct lruvec *lruvec = get_lruvec(memcg, nid); 4388 4389 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_OLD); 4390 } 4391 } 4392 4393 void lru_gen_release_memcg(struct mem_cgroup *memcg) 4394 { 4395 int gen; 4396 int nid; 4397 4398 for_each_node(nid) { 4399 struct pglist_data *pgdat = NODE_DATA(nid); 4400 struct lruvec *lruvec = get_lruvec(memcg, nid); 4401 4402 spin_lock_irq(&pgdat->memcg_lru.lock); 4403 4404 if (hlist_nulls_unhashed(&lruvec->lrugen.list)) 4405 goto unlock; 4406 4407 gen = lruvec->lrugen.gen; 4408 4409 hlist_nulls_del_init_rcu(&lruvec->lrugen.list); 4410 pgdat->memcg_lru.nr_memcgs[gen]--; 4411 4412 if (!pgdat->memcg_lru.nr_memcgs[gen] && gen == get_memcg_gen(pgdat->memcg_lru.seq)) 4413 WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1); 4414 unlock: 4415 spin_unlock_irq(&pgdat->memcg_lru.lock); 4416 } 4417 } 4418 4419 void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid) 4420 { 4421 struct lruvec *lruvec = get_lruvec(memcg, nid); 4422 4423 /* see the comment on MEMCG_NR_GENS */ 4424 if (READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_HEAD) 4425 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_HEAD); 4426 } 4427 4428 #endif /* CONFIG_MEMCG */ 4429 4430 /****************************************************************************** 4431 * the eviction 4432 ******************************************************************************/ 4433 4434 static bool sort_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc, 4435 int tier_idx) 4436 { 4437 bool success; 4438 bool dirty, writeback; 4439 int gen = folio_lru_gen(folio); 4440 int type = folio_is_file_lru(folio); 4441 int zone = folio_zonenum(folio); 4442 int delta = folio_nr_pages(folio); 4443 int refs = folio_lru_refs(folio); 4444 bool workingset = folio_test_workingset(folio); 4445 int tier = lru_tier_from_refs(refs, workingset); 4446 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4447 4448 VM_WARN_ON_ONCE_FOLIO(gen >= MAX_NR_GENS, folio); 4449 4450 /* unevictable */ 4451 if (!folio_evictable(folio)) { 4452 success = lru_gen_del_folio(lruvec, folio, true); 4453 VM_WARN_ON_ONCE_FOLIO(!success, folio); 4454 folio_set_unevictable(folio); 4455 lruvec_add_folio(lruvec, folio); 4456 __count_vm_events(UNEVICTABLE_PGCULLED, delta); 4457 return true; 4458 } 4459 4460 /* promoted */ 4461 if (gen != lru_gen_from_seq(lrugen->min_seq[type])) { 4462 list_move(&folio->lru, &lrugen->folios[gen][type][zone]); 4463 return true; 4464 } 4465 4466 /* protected */ 4467 if (tier > tier_idx || refs + workingset == BIT(LRU_REFS_WIDTH) + 1) { 4468 gen = folio_inc_gen(lruvec, folio, false); 4469 list_move(&folio->lru, &lrugen->folios[gen][type][zone]); 4470 4471 /* don't count the workingset being lazily promoted */ 4472 if (refs + workingset != BIT(LRU_REFS_WIDTH) + 1) { 4473 int hist = lru_hist_from_seq(lrugen->min_seq[type]); 4474 4475 WRITE_ONCE(lrugen->protected[hist][type][tier], 4476 lrugen->protected[hist][type][tier] + delta); 4477 } 4478 return true; 4479 } 4480 4481 /* ineligible */ 4482 if (zone > sc->reclaim_idx) { 4483 gen = folio_inc_gen(lruvec, folio, false); 4484 list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]); 4485 return true; 4486 } 4487 4488 dirty = folio_test_dirty(folio); 4489 writeback = folio_test_writeback(folio); 4490 if (type == LRU_GEN_FILE && dirty) { 4491 sc->nr.file_taken += delta; 4492 if (!writeback) 4493 sc->nr.unqueued_dirty += delta; 4494 } 4495 4496 /* waiting for writeback */ 4497 if (writeback || (type == LRU_GEN_FILE && dirty)) { 4498 gen = folio_inc_gen(lruvec, folio, true); 4499 list_move(&folio->lru, &lrugen->folios[gen][type][zone]); 4500 return true; 4501 } 4502 4503 return false; 4504 } 4505 4506 static bool isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc) 4507 { 4508 bool success; 4509 4510 /* swap constrained */ 4511 if (!(sc->gfp_mask & __GFP_IO) && 4512 (folio_test_dirty(folio) || 4513 (folio_test_anon(folio) && !folio_test_swapcache(folio)))) 4514 return false; 4515 4516 /* raced with release_pages() */ 4517 if (!folio_try_get(folio)) 4518 return false; 4519 4520 /* raced with another isolation */ 4521 if (!folio_test_clear_lru(folio)) { 4522 folio_put(folio); 4523 return false; 4524 } 4525 4526 /* see the comment on LRU_REFS_FLAGS */ 4527 if (!folio_test_referenced(folio)) 4528 set_mask_bits(&folio->flags.f, LRU_REFS_MASK, 0); 4529 4530 /* for shrink_folio_list() */ 4531 folio_clear_reclaim(folio); 4532 4533 success = lru_gen_del_folio(lruvec, folio, true); 4534 VM_WARN_ON_ONCE_FOLIO(!success, folio); 4535 4536 return true; 4537 } 4538 4539 static int scan_folios(unsigned long nr_to_scan, struct lruvec *lruvec, 4540 struct scan_control *sc, int type, int tier, 4541 struct list_head *list) 4542 { 4543 int i; 4544 int gen; 4545 enum vm_event_item item; 4546 int sorted = 0; 4547 int scanned = 0; 4548 int isolated = 0; 4549 int skipped = 0; 4550 int scan_batch = min(nr_to_scan, MAX_LRU_BATCH); 4551 int remaining = scan_batch; 4552 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4553 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4554 4555 VM_WARN_ON_ONCE(!list_empty(list)); 4556 4557 if (get_nr_gens(lruvec, type) == MIN_NR_GENS) 4558 return 0; 4559 4560 gen = lru_gen_from_seq(lrugen->min_seq[type]); 4561 4562 for (i = MAX_NR_ZONES; i > 0; i--) { 4563 LIST_HEAD(moved); 4564 int skipped_zone = 0; 4565 int zone = (sc->reclaim_idx + i) % MAX_NR_ZONES; 4566 struct list_head *head = &lrugen->folios[gen][type][zone]; 4567 4568 while (!list_empty(head)) { 4569 struct folio *folio = lru_to_folio(head); 4570 int delta = folio_nr_pages(folio); 4571 4572 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 4573 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio); 4574 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 4575 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio); 4576 4577 scanned += delta; 4578 4579 if (sort_folio(lruvec, folio, sc, tier)) 4580 sorted += delta; 4581 else if (isolate_folio(lruvec, folio, sc)) { 4582 list_add(&folio->lru, list); 4583 isolated += delta; 4584 } else { 4585 list_move(&folio->lru, &moved); 4586 skipped_zone += delta; 4587 } 4588 4589 if (!--remaining || max(isolated, skipped_zone) >= MIN_LRU_BATCH) 4590 break; 4591 } 4592 4593 if (skipped_zone) { 4594 list_splice(&moved, head); 4595 __count_zid_vm_events(PGSCAN_SKIP, zone, skipped_zone); 4596 skipped += skipped_zone; 4597 } 4598 4599 if (!remaining || isolated >= MIN_LRU_BATCH) 4600 break; 4601 } 4602 4603 item = PGSCAN_KSWAPD + reclaimer_offset(sc); 4604 if (!cgroup_reclaim(sc)) { 4605 __count_vm_events(item, isolated); 4606 __count_vm_events(PGREFILL, sorted); 4607 } 4608 count_memcg_events(memcg, item, isolated); 4609 count_memcg_events(memcg, PGREFILL, sorted); 4610 __count_vm_events(PGSCAN_ANON + type, isolated); 4611 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, scan_batch, 4612 scanned, skipped, isolated, 4613 type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON); 4614 if (type == LRU_GEN_FILE) 4615 sc->nr.file_taken += isolated; 4616 /* 4617 * There might not be eligible folios due to reclaim_idx. Check the 4618 * remaining to prevent livelock if it's not making progress. 4619 */ 4620 return isolated || !remaining ? scanned : 0; 4621 } 4622 4623 static int get_tier_idx(struct lruvec *lruvec, int type) 4624 { 4625 int tier; 4626 struct ctrl_pos sp, pv; 4627 4628 /* 4629 * To leave a margin for fluctuations, use a larger gain factor (2:3). 4630 * This value is chosen because any other tier would have at least twice 4631 * as many refaults as the first tier. 4632 */ 4633 read_ctrl_pos(lruvec, type, 0, 2, &sp); 4634 for (tier = 1; tier < MAX_NR_TIERS; tier++) { 4635 read_ctrl_pos(lruvec, type, tier, 3, &pv); 4636 if (!positive_ctrl_err(&sp, &pv)) 4637 break; 4638 } 4639 4640 return tier - 1; 4641 } 4642 4643 static int get_type_to_scan(struct lruvec *lruvec, int swappiness) 4644 { 4645 struct ctrl_pos sp, pv; 4646 4647 if (swappiness <= MIN_SWAPPINESS + 1) 4648 return LRU_GEN_FILE; 4649 4650 if (swappiness >= MAX_SWAPPINESS) 4651 return LRU_GEN_ANON; 4652 /* 4653 * Compare the sum of all tiers of anon with that of file to determine 4654 * which type to scan. 4655 */ 4656 read_ctrl_pos(lruvec, LRU_GEN_ANON, MAX_NR_TIERS, swappiness, &sp); 4657 read_ctrl_pos(lruvec, LRU_GEN_FILE, MAX_NR_TIERS, MAX_SWAPPINESS - swappiness, &pv); 4658 4659 return positive_ctrl_err(&sp, &pv); 4660 } 4661 4662 static int isolate_folios(unsigned long nr_to_scan, struct lruvec *lruvec, 4663 struct scan_control *sc, int swappiness, 4664 int *type_scanned, struct list_head *list) 4665 { 4666 int i; 4667 int type = get_type_to_scan(lruvec, swappiness); 4668 4669 for_each_evictable_type(i, swappiness) { 4670 int scanned; 4671 int tier = get_tier_idx(lruvec, type); 4672 4673 *type_scanned = type; 4674 4675 scanned = scan_folios(nr_to_scan, lruvec, sc, type, tier, list); 4676 if (scanned) 4677 return scanned; 4678 4679 type = !type; 4680 } 4681 4682 return 0; 4683 } 4684 4685 static int evict_folios(unsigned long nr_to_scan, struct lruvec *lruvec, 4686 struct scan_control *sc, int swappiness) 4687 { 4688 int type; 4689 int scanned; 4690 int reclaimed; 4691 LIST_HEAD(list); 4692 LIST_HEAD(clean); 4693 struct folio *folio; 4694 struct folio *next; 4695 enum vm_event_item item; 4696 struct reclaim_stat stat; 4697 struct lru_gen_mm_walk *walk; 4698 bool skip_retry = false; 4699 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4700 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4701 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 4702 4703 spin_lock_irq(&lruvec->lru_lock); 4704 4705 scanned = isolate_folios(nr_to_scan, lruvec, sc, swappiness, &type, &list); 4706 4707 scanned += try_to_inc_min_seq(lruvec, swappiness); 4708 4709 if (evictable_min_seq(lrugen->min_seq, swappiness) + MIN_NR_GENS > lrugen->max_seq) 4710 scanned = 0; 4711 4712 spin_unlock_irq(&lruvec->lru_lock); 4713 4714 if (list_empty(&list)) 4715 return scanned; 4716 retry: 4717 reclaimed = shrink_folio_list(&list, pgdat, sc, &stat, false, memcg); 4718 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty; 4719 sc->nr_reclaimed += reclaimed; 4720 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 4721 scanned, reclaimed, &stat, sc->priority, 4722 type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON); 4723 4724 list_for_each_entry_safe_reverse(folio, next, &list, lru) { 4725 DEFINE_MIN_SEQ(lruvec); 4726 4727 if (!folio_evictable(folio)) { 4728 list_del(&folio->lru); 4729 folio_putback_lru(folio); 4730 continue; 4731 } 4732 4733 /* retry folios that may have missed folio_rotate_reclaimable() */ 4734 if (!skip_retry && !folio_test_active(folio) && !folio_mapped(folio) && 4735 !folio_test_dirty(folio) && !folio_test_writeback(folio)) { 4736 list_move(&folio->lru, &clean); 4737 continue; 4738 } 4739 4740 /* don't add rejected folios to the oldest generation */ 4741 if (lru_gen_folio_seq(lruvec, folio, false) == min_seq[type]) 4742 set_mask_bits(&folio->flags.f, LRU_REFS_FLAGS, BIT(PG_active)); 4743 } 4744 4745 spin_lock_irq(&lruvec->lru_lock); 4746 4747 move_folios_to_lru(lruvec, &list); 4748 4749 walk = current->reclaim_state->mm_walk; 4750 if (walk && walk->batched) { 4751 walk->lruvec = lruvec; 4752 reset_batch_size(walk); 4753 } 4754 4755 mod_lruvec_state(lruvec, PGDEMOTE_KSWAPD + reclaimer_offset(sc), 4756 stat.nr_demoted); 4757 4758 item = PGSTEAL_KSWAPD + reclaimer_offset(sc); 4759 if (!cgroup_reclaim(sc)) 4760 __count_vm_events(item, reclaimed); 4761 count_memcg_events(memcg, item, reclaimed); 4762 __count_vm_events(PGSTEAL_ANON + type, reclaimed); 4763 4764 spin_unlock_irq(&lruvec->lru_lock); 4765 4766 list_splice_init(&clean, &list); 4767 4768 if (!list_empty(&list)) { 4769 skip_retry = true; 4770 goto retry; 4771 } 4772 4773 return scanned; 4774 } 4775 4776 static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq, 4777 int swappiness, unsigned long *nr_to_scan) 4778 { 4779 int gen, type, zone; 4780 unsigned long size = 0; 4781 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4782 DEFINE_MIN_SEQ(lruvec); 4783 4784 *nr_to_scan = 0; 4785 /* have to run aging, since eviction is not possible anymore */ 4786 if (evictable_min_seq(min_seq, swappiness) + MIN_NR_GENS > max_seq) 4787 return true; 4788 4789 for_each_evictable_type(type, swappiness) { 4790 unsigned long seq; 4791 4792 for (seq = min_seq[type]; seq <= max_seq; seq++) { 4793 gen = lru_gen_from_seq(seq); 4794 4795 for (zone = 0; zone < MAX_NR_ZONES; zone++) 4796 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L); 4797 } 4798 } 4799 4800 *nr_to_scan = size; 4801 /* better to run aging even though eviction is still possible */ 4802 return evictable_min_seq(min_seq, swappiness) + MIN_NR_GENS == max_seq; 4803 } 4804 4805 /* 4806 * For future optimizations: 4807 * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg 4808 * reclaim. 4809 */ 4810 static long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc, int swappiness) 4811 { 4812 bool success; 4813 unsigned long nr_to_scan; 4814 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4815 DEFINE_MAX_SEQ(lruvec); 4816 4817 if (mem_cgroup_below_min(sc->target_mem_cgroup, memcg)) 4818 return -1; 4819 4820 success = should_run_aging(lruvec, max_seq, swappiness, &nr_to_scan); 4821 4822 /* try to scrape all its memory if this memcg was deleted */ 4823 if (nr_to_scan && !mem_cgroup_online(memcg)) 4824 return nr_to_scan; 4825 4826 nr_to_scan = apply_proportional_protection(memcg, sc, nr_to_scan); 4827 4828 /* try to get away with not aging at the default priority */ 4829 if (!success || sc->priority == DEF_PRIORITY) 4830 return nr_to_scan >> sc->priority; 4831 4832 /* stop scanning this lruvec as it's low on cold folios */ 4833 return try_to_inc_max_seq(lruvec, max_seq, swappiness, false) ? -1 : 0; 4834 } 4835 4836 static bool should_abort_scan(struct lruvec *lruvec, struct scan_control *sc) 4837 { 4838 int i; 4839 enum zone_watermarks mark; 4840 4841 /* don't abort memcg reclaim to ensure fairness */ 4842 if (!root_reclaim(sc)) 4843 return false; 4844 4845 if (sc->nr_reclaimed >= max(sc->nr_to_reclaim, compact_gap(sc->order))) 4846 return true; 4847 4848 /* check the order to exclude compaction-induced reclaim */ 4849 if (!current_is_kswapd() || sc->order) 4850 return false; 4851 4852 mark = sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ? 4853 WMARK_PROMO : WMARK_HIGH; 4854 4855 for (i = 0; i <= sc->reclaim_idx; i++) { 4856 struct zone *zone = lruvec_pgdat(lruvec)->node_zones + i; 4857 unsigned long size = wmark_pages(zone, mark) + MIN_LRU_BATCH; 4858 4859 if (managed_zone(zone) && !zone_watermark_ok(zone, 0, size, sc->reclaim_idx, 0)) 4860 return false; 4861 } 4862 4863 /* kswapd should abort if all eligible zones are safe */ 4864 return true; 4865 } 4866 4867 static bool try_to_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 4868 { 4869 long nr_to_scan; 4870 unsigned long scanned = 0; 4871 int swappiness = get_swappiness(lruvec, sc); 4872 4873 while (true) { 4874 int delta; 4875 4876 nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness); 4877 if (nr_to_scan <= 0) 4878 break; 4879 4880 delta = evict_folios(nr_to_scan, lruvec, sc, swappiness); 4881 if (!delta) 4882 break; 4883 4884 scanned += delta; 4885 if (scanned >= nr_to_scan) 4886 break; 4887 4888 if (should_abort_scan(lruvec, sc)) 4889 break; 4890 4891 cond_resched(); 4892 } 4893 4894 /* 4895 * If too many file cache in the coldest generation can't be evicted 4896 * due to being dirty, wake up the flusher. 4897 */ 4898 if (sc->nr.unqueued_dirty && sc->nr.unqueued_dirty == sc->nr.file_taken) 4899 wakeup_flusher_threads(WB_REASON_VMSCAN); 4900 4901 /* whether this lruvec should be rotated */ 4902 return nr_to_scan < 0; 4903 } 4904 4905 static int shrink_one(struct lruvec *lruvec, struct scan_control *sc) 4906 { 4907 bool success; 4908 unsigned long scanned = sc->nr_scanned; 4909 unsigned long reclaimed = sc->nr_reclaimed; 4910 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4911 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 4912 4913 /* lru_gen_age_node() called mem_cgroup_calculate_protection() */ 4914 if (mem_cgroup_below_min(NULL, memcg)) 4915 return MEMCG_LRU_YOUNG; 4916 4917 if (mem_cgroup_below_low(NULL, memcg)) { 4918 /* see the comment on MEMCG_NR_GENS */ 4919 if (READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_TAIL) 4920 return MEMCG_LRU_TAIL; 4921 4922 memcg_memory_event(memcg, MEMCG_LOW); 4923 } 4924 4925 success = try_to_shrink_lruvec(lruvec, sc); 4926 4927 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, sc->priority); 4928 4929 if (!sc->proactive) 4930 vmpressure(sc->gfp_mask, memcg, false, sc->nr_scanned - scanned, 4931 sc->nr_reclaimed - reclaimed); 4932 4933 flush_reclaim_state(sc); 4934 4935 if (success && mem_cgroup_online(memcg)) 4936 return MEMCG_LRU_YOUNG; 4937 4938 if (!success && lruvec_is_sizable(lruvec, sc)) 4939 return 0; 4940 4941 /* one retry if offlined or too small */ 4942 return READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_TAIL ? 4943 MEMCG_LRU_TAIL : MEMCG_LRU_YOUNG; 4944 } 4945 4946 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc) 4947 { 4948 int op; 4949 int gen; 4950 int bin; 4951 int first_bin; 4952 struct lruvec *lruvec; 4953 struct lru_gen_folio *lrugen; 4954 struct mem_cgroup *memcg; 4955 struct hlist_nulls_node *pos; 4956 4957 gen = get_memcg_gen(READ_ONCE(pgdat->memcg_lru.seq)); 4958 bin = first_bin = get_random_u32_below(MEMCG_NR_BINS); 4959 restart: 4960 op = 0; 4961 memcg = NULL; 4962 4963 rcu_read_lock(); 4964 4965 hlist_nulls_for_each_entry_rcu(lrugen, pos, &pgdat->memcg_lru.fifo[gen][bin], list) { 4966 if (op) { 4967 lru_gen_rotate_memcg(lruvec, op); 4968 op = 0; 4969 } 4970 4971 mem_cgroup_put(memcg); 4972 memcg = NULL; 4973 4974 if (gen != READ_ONCE(lrugen->gen)) 4975 continue; 4976 4977 lruvec = container_of(lrugen, struct lruvec, lrugen); 4978 memcg = lruvec_memcg(lruvec); 4979 4980 if (!mem_cgroup_tryget(memcg)) { 4981 lru_gen_release_memcg(memcg); 4982 memcg = NULL; 4983 continue; 4984 } 4985 4986 rcu_read_unlock(); 4987 4988 op = shrink_one(lruvec, sc); 4989 4990 rcu_read_lock(); 4991 4992 if (should_abort_scan(lruvec, sc)) 4993 break; 4994 } 4995 4996 rcu_read_unlock(); 4997 4998 if (op) 4999 lru_gen_rotate_memcg(lruvec, op); 5000 5001 mem_cgroup_put(memcg); 5002 5003 if (!is_a_nulls(pos)) 5004 return; 5005 5006 /* restart if raced with lru_gen_rotate_memcg() */ 5007 if (gen != get_nulls_value(pos)) 5008 goto restart; 5009 5010 /* try the rest of the bins of the current generation */ 5011 bin = get_memcg_bin(bin + 1); 5012 if (bin != first_bin) 5013 goto restart; 5014 } 5015 5016 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 5017 { 5018 struct blk_plug plug; 5019 5020 VM_WARN_ON_ONCE(root_reclaim(sc)); 5021 VM_WARN_ON_ONCE(!sc->may_writepage || !sc->may_unmap); 5022 5023 lru_add_drain(); 5024 5025 blk_start_plug(&plug); 5026 5027 set_mm_walk(NULL, sc->proactive); 5028 5029 if (try_to_shrink_lruvec(lruvec, sc)) 5030 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_YOUNG); 5031 5032 clear_mm_walk(); 5033 5034 blk_finish_plug(&plug); 5035 } 5036 5037 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc) 5038 { 5039 struct blk_plug plug; 5040 unsigned long reclaimed = sc->nr_reclaimed; 5041 5042 VM_WARN_ON_ONCE(!root_reclaim(sc)); 5043 5044 /* 5045 * Unmapped clean folios are already prioritized. Scanning for more of 5046 * them is likely futile and can cause high reclaim latency when there 5047 * is a large number of memcgs. 5048 */ 5049 if (!sc->may_writepage || !sc->may_unmap) 5050 goto done; 5051 5052 lru_add_drain(); 5053 5054 blk_start_plug(&plug); 5055 5056 set_mm_walk(pgdat, sc->proactive); 5057 5058 set_initial_priority(pgdat, sc); 5059 5060 if (current_is_kswapd()) 5061 sc->nr_reclaimed = 0; 5062 5063 if (mem_cgroup_disabled()) 5064 shrink_one(&pgdat->__lruvec, sc); 5065 else 5066 shrink_many(pgdat, sc); 5067 5068 if (current_is_kswapd()) 5069 sc->nr_reclaimed += reclaimed; 5070 5071 clear_mm_walk(); 5072 5073 blk_finish_plug(&plug); 5074 done: 5075 if (sc->nr_reclaimed > reclaimed) 5076 kswapd_try_clear_hopeless(pgdat, sc->order, sc->reclaim_idx); 5077 } 5078 5079 /****************************************************************************** 5080 * state change 5081 ******************************************************************************/ 5082 5083 static bool __maybe_unused state_is_valid(struct lruvec *lruvec) 5084 { 5085 struct lru_gen_folio *lrugen = &lruvec->lrugen; 5086 5087 if (lrugen->enabled) { 5088 enum lru_list lru; 5089 5090 for_each_evictable_lru(lru) { 5091 if (!list_empty(&lruvec->lists[lru])) 5092 return false; 5093 } 5094 } else { 5095 int gen, type, zone; 5096 5097 for_each_gen_type_zone(gen, type, zone) { 5098 if (!list_empty(&lrugen->folios[gen][type][zone])) 5099 return false; 5100 } 5101 } 5102 5103 return true; 5104 } 5105 5106 static bool fill_evictable(struct lruvec *lruvec) 5107 { 5108 enum lru_list lru; 5109 int remaining = MAX_LRU_BATCH; 5110 5111 for_each_evictable_lru(lru) { 5112 int type = is_file_lru(lru); 5113 bool active = is_active_lru(lru); 5114 struct list_head *head = &lruvec->lists[lru]; 5115 5116 while (!list_empty(head)) { 5117 bool success; 5118 struct folio *folio = lru_to_folio(head); 5119 5120 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 5121 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio) != active, folio); 5122 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 5123 VM_WARN_ON_ONCE_FOLIO(folio_lru_gen(folio) != -1, folio); 5124 5125 lruvec_del_folio(lruvec, folio); 5126 success = lru_gen_add_folio(lruvec, folio, false); 5127 VM_WARN_ON_ONCE(!success); 5128 5129 if (!--remaining) 5130 return false; 5131 } 5132 } 5133 5134 return true; 5135 } 5136 5137 static bool drain_evictable(struct lruvec *lruvec) 5138 { 5139 int gen, type, zone; 5140 int remaining = MAX_LRU_BATCH; 5141 5142 for_each_gen_type_zone(gen, type, zone) { 5143 struct list_head *head = &lruvec->lrugen.folios[gen][type][zone]; 5144 5145 while (!list_empty(head)) { 5146 bool success; 5147 struct folio *folio = lru_to_folio(head); 5148 5149 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 5150 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio); 5151 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 5152 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio); 5153 5154 success = lru_gen_del_folio(lruvec, folio, false); 5155 VM_WARN_ON_ONCE(!success); 5156 lruvec_add_folio(lruvec, folio); 5157 5158 if (!--remaining) 5159 return false; 5160 } 5161 } 5162 5163 return true; 5164 } 5165 5166 static void lru_gen_change_state(bool enabled) 5167 { 5168 static DEFINE_MUTEX(state_mutex); 5169 5170 struct mem_cgroup *memcg; 5171 5172 cgroup_lock(); 5173 cpus_read_lock(); 5174 get_online_mems(); 5175 mutex_lock(&state_mutex); 5176 5177 if (enabled == lru_gen_enabled()) 5178 goto unlock; 5179 5180 if (enabled) 5181 static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]); 5182 else 5183 static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]); 5184 5185 memcg = mem_cgroup_iter(NULL, NULL, NULL); 5186 do { 5187 int nid; 5188 5189 for_each_node(nid) { 5190 struct lruvec *lruvec = get_lruvec(memcg, nid); 5191 5192 spin_lock_irq(&lruvec->lru_lock); 5193 5194 VM_WARN_ON_ONCE(!seq_is_valid(lruvec)); 5195 VM_WARN_ON_ONCE(!state_is_valid(lruvec)); 5196 5197 lruvec->lrugen.enabled = enabled; 5198 5199 while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) { 5200 spin_unlock_irq(&lruvec->lru_lock); 5201 cond_resched(); 5202 spin_lock_irq(&lruvec->lru_lock); 5203 } 5204 5205 spin_unlock_irq(&lruvec->lru_lock); 5206 } 5207 5208 cond_resched(); 5209 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL))); 5210 unlock: 5211 mutex_unlock(&state_mutex); 5212 put_online_mems(); 5213 cpus_read_unlock(); 5214 cgroup_unlock(); 5215 } 5216 5217 /****************************************************************************** 5218 * sysfs interface 5219 ******************************************************************************/ 5220 5221 static ssize_t min_ttl_ms_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) 5222 { 5223 return sysfs_emit(buf, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl))); 5224 } 5225 5226 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5227 static ssize_t min_ttl_ms_store(struct kobject *kobj, struct kobj_attribute *attr, 5228 const char *buf, size_t len) 5229 { 5230 unsigned int msecs; 5231 5232 if (kstrtouint(buf, 0, &msecs)) 5233 return -EINVAL; 5234 5235 WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs)); 5236 5237 return len; 5238 } 5239 5240 static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR_RW(min_ttl_ms); 5241 5242 static ssize_t enabled_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) 5243 { 5244 unsigned int caps = 0; 5245 5246 if (get_cap(LRU_GEN_CORE)) 5247 caps |= BIT(LRU_GEN_CORE); 5248 5249 if (should_walk_mmu()) 5250 caps |= BIT(LRU_GEN_MM_WALK); 5251 5252 if (should_clear_pmd_young()) 5253 caps |= BIT(LRU_GEN_NONLEAF_YOUNG); 5254 5255 return sysfs_emit(buf, "0x%04x\n", caps); 5256 } 5257 5258 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5259 static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr, 5260 const char *buf, size_t len) 5261 { 5262 int i; 5263 unsigned int caps; 5264 5265 if (tolower(*buf) == 'n') 5266 caps = 0; 5267 else if (tolower(*buf) == 'y') 5268 caps = -1; 5269 else if (kstrtouint(buf, 0, &caps)) 5270 return -EINVAL; 5271 5272 for (i = 0; i < NR_LRU_GEN_CAPS; i++) { 5273 bool enabled = caps & BIT(i); 5274 5275 if (i == LRU_GEN_CORE) 5276 lru_gen_change_state(enabled); 5277 else if (enabled) 5278 static_branch_enable(&lru_gen_caps[i]); 5279 else 5280 static_branch_disable(&lru_gen_caps[i]); 5281 } 5282 5283 return len; 5284 } 5285 5286 static struct kobj_attribute lru_gen_enabled_attr = __ATTR_RW(enabled); 5287 5288 static struct attribute *lru_gen_attrs[] = { 5289 &lru_gen_min_ttl_attr.attr, 5290 &lru_gen_enabled_attr.attr, 5291 NULL 5292 }; 5293 5294 static const struct attribute_group lru_gen_attr_group = { 5295 .name = "lru_gen", 5296 .attrs = lru_gen_attrs, 5297 }; 5298 5299 /****************************************************************************** 5300 * debugfs interface 5301 ******************************************************************************/ 5302 5303 static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos) 5304 { 5305 struct mem_cgroup *memcg; 5306 loff_t nr_to_skip = *pos; 5307 5308 m->private = kvmalloc(PATH_MAX, GFP_KERNEL); 5309 if (!m->private) 5310 return ERR_PTR(-ENOMEM); 5311 5312 memcg = mem_cgroup_iter(NULL, NULL, NULL); 5313 do { 5314 int nid; 5315 5316 for_each_node_state(nid, N_MEMORY) { 5317 if (!nr_to_skip--) 5318 return get_lruvec(memcg, nid); 5319 } 5320 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL))); 5321 5322 return NULL; 5323 } 5324 5325 static void lru_gen_seq_stop(struct seq_file *m, void *v) 5326 { 5327 if (!IS_ERR_OR_NULL(v)) 5328 mem_cgroup_iter_break(NULL, lruvec_memcg(v)); 5329 5330 kvfree(m->private); 5331 m->private = NULL; 5332 } 5333 5334 static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos) 5335 { 5336 int nid = lruvec_pgdat(v)->node_id; 5337 struct mem_cgroup *memcg = lruvec_memcg(v); 5338 5339 ++*pos; 5340 5341 nid = next_memory_node(nid); 5342 if (nid == MAX_NUMNODES) { 5343 memcg = mem_cgroup_iter(NULL, memcg, NULL); 5344 if (!memcg) 5345 return NULL; 5346 5347 nid = first_memory_node; 5348 } 5349 5350 return get_lruvec(memcg, nid); 5351 } 5352 5353 static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec, 5354 unsigned long max_seq, unsigned long *min_seq, 5355 unsigned long seq) 5356 { 5357 int i; 5358 int type, tier; 5359 int hist = lru_hist_from_seq(seq); 5360 struct lru_gen_folio *lrugen = &lruvec->lrugen; 5361 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 5362 5363 for (tier = 0; tier < MAX_NR_TIERS; tier++) { 5364 seq_printf(m, " %10d", tier); 5365 for (type = 0; type < ANON_AND_FILE; type++) { 5366 const char *s = "xxx"; 5367 unsigned long n[3] = {}; 5368 5369 if (seq == max_seq) { 5370 s = "RTx"; 5371 n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]); 5372 n[1] = READ_ONCE(lrugen->avg_total[type][tier]); 5373 } else if (seq == min_seq[type] || NR_HIST_GENS > 1) { 5374 s = "rep"; 5375 n[0] = atomic_long_read(&lrugen->refaulted[hist][type][tier]); 5376 n[1] = atomic_long_read(&lrugen->evicted[hist][type][tier]); 5377 n[2] = READ_ONCE(lrugen->protected[hist][type][tier]); 5378 } 5379 5380 for (i = 0; i < 3; i++) 5381 seq_printf(m, " %10lu%c", n[i], s[i]); 5382 } 5383 seq_putc(m, '\n'); 5384 } 5385 5386 if (!mm_state) 5387 return; 5388 5389 seq_puts(m, " "); 5390 for (i = 0; i < NR_MM_STATS; i++) { 5391 const char *s = "xxxx"; 5392 unsigned long n = 0; 5393 5394 if (seq == max_seq && NR_HIST_GENS == 1) { 5395 s = "TYFA"; 5396 n = READ_ONCE(mm_state->stats[hist][i]); 5397 } else if (seq != max_seq && NR_HIST_GENS > 1) { 5398 s = "tyfa"; 5399 n = READ_ONCE(mm_state->stats[hist][i]); 5400 } 5401 5402 seq_printf(m, " %10lu%c", n, s[i]); 5403 } 5404 seq_putc(m, '\n'); 5405 } 5406 5407 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5408 static int lru_gen_seq_show(struct seq_file *m, void *v) 5409 { 5410 unsigned long seq; 5411 bool full = debugfs_get_aux_num(m->file); 5412 struct lruvec *lruvec = v; 5413 struct lru_gen_folio *lrugen = &lruvec->lrugen; 5414 int nid = lruvec_pgdat(lruvec)->node_id; 5415 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 5416 DEFINE_MAX_SEQ(lruvec); 5417 DEFINE_MIN_SEQ(lruvec); 5418 5419 if (nid == first_memory_node) { 5420 const char *path = memcg ? m->private : ""; 5421 5422 #ifdef CONFIG_MEMCG 5423 if (memcg) 5424 cgroup_path(memcg->css.cgroup, m->private, PATH_MAX); 5425 #endif 5426 seq_printf(m, "memcg %llu %s\n", mem_cgroup_id(memcg), path); 5427 } 5428 5429 seq_printf(m, " node %5d\n", nid); 5430 5431 if (!full) 5432 seq = evictable_min_seq(min_seq, MAX_SWAPPINESS / 2); 5433 else if (max_seq >= MAX_NR_GENS) 5434 seq = max_seq - MAX_NR_GENS + 1; 5435 else 5436 seq = 0; 5437 5438 for (; seq <= max_seq; seq++) { 5439 int type, zone; 5440 int gen = lru_gen_from_seq(seq); 5441 unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]); 5442 5443 seq_printf(m, " %10lu %10u", seq, jiffies_to_msecs(jiffies - birth)); 5444 5445 for (type = 0; type < ANON_AND_FILE; type++) { 5446 unsigned long size = 0; 5447 char mark = full && seq < min_seq[type] ? 'x' : ' '; 5448 5449 for (zone = 0; zone < MAX_NR_ZONES; zone++) 5450 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L); 5451 5452 seq_printf(m, " %10lu%c", size, mark); 5453 } 5454 5455 seq_putc(m, '\n'); 5456 5457 if (full) 5458 lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq); 5459 } 5460 5461 return 0; 5462 } 5463 5464 static const struct seq_operations lru_gen_seq_ops = { 5465 .start = lru_gen_seq_start, 5466 .stop = lru_gen_seq_stop, 5467 .next = lru_gen_seq_next, 5468 .show = lru_gen_seq_show, 5469 }; 5470 5471 static int run_aging(struct lruvec *lruvec, unsigned long seq, 5472 int swappiness, bool force_scan) 5473 { 5474 DEFINE_MAX_SEQ(lruvec); 5475 5476 if (seq > max_seq) 5477 return -EINVAL; 5478 5479 return try_to_inc_max_seq(lruvec, max_seq, swappiness, force_scan) ? 0 : -EEXIST; 5480 } 5481 5482 static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc, 5483 int swappiness, unsigned long nr_to_reclaim) 5484 { 5485 DEFINE_MAX_SEQ(lruvec); 5486 5487 if (seq + MIN_NR_GENS > max_seq) 5488 return -EINVAL; 5489 5490 sc->nr_reclaimed = 0; 5491 5492 while (!signal_pending(current)) { 5493 DEFINE_MIN_SEQ(lruvec); 5494 5495 if (seq < evictable_min_seq(min_seq, swappiness)) 5496 return 0; 5497 5498 if (sc->nr_reclaimed >= nr_to_reclaim) 5499 return 0; 5500 5501 if (!evict_folios(nr_to_reclaim - sc->nr_reclaimed, lruvec, sc, 5502 swappiness)) 5503 return 0; 5504 5505 cond_resched(); 5506 } 5507 5508 return -EINTR; 5509 } 5510 5511 static int run_cmd(char cmd, u64 memcg_id, int nid, unsigned long seq, 5512 struct scan_control *sc, int swappiness, unsigned long opt) 5513 { 5514 struct lruvec *lruvec; 5515 int err = -EINVAL; 5516 struct mem_cgroup *memcg = NULL; 5517 5518 if (nid < 0 || nid >= MAX_NUMNODES || !node_state(nid, N_MEMORY)) 5519 return -EINVAL; 5520 5521 if (!mem_cgroup_disabled()) { 5522 memcg = mem_cgroup_get_from_id(memcg_id); 5523 if (!memcg) 5524 return -EINVAL; 5525 } 5526 5527 if (memcg_id != mem_cgroup_id(memcg)) 5528 goto done; 5529 5530 sc->target_mem_cgroup = memcg; 5531 lruvec = get_lruvec(memcg, nid); 5532 5533 if (swappiness < MIN_SWAPPINESS) 5534 swappiness = get_swappiness(lruvec, sc); 5535 else if (swappiness > SWAPPINESS_ANON_ONLY) 5536 goto done; 5537 5538 switch (cmd) { 5539 case '+': 5540 err = run_aging(lruvec, seq, swappiness, opt); 5541 break; 5542 case '-': 5543 err = run_eviction(lruvec, seq, sc, swappiness, opt); 5544 break; 5545 } 5546 done: 5547 mem_cgroup_put(memcg); 5548 5549 return err; 5550 } 5551 5552 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5553 static ssize_t lru_gen_seq_write(struct file *file, const char __user *src, 5554 size_t len, loff_t *pos) 5555 { 5556 void *buf; 5557 char *cur, *next; 5558 unsigned int flags; 5559 struct blk_plug plug; 5560 int err = -EINVAL; 5561 struct scan_control sc = { 5562 .may_writepage = true, 5563 .may_unmap = true, 5564 .may_swap = true, 5565 .reclaim_idx = MAX_NR_ZONES - 1, 5566 .gfp_mask = GFP_KERNEL, 5567 .proactive = true, 5568 }; 5569 5570 buf = kvmalloc(len + 1, GFP_KERNEL); 5571 if (!buf) 5572 return -ENOMEM; 5573 5574 if (copy_from_user(buf, src, len)) { 5575 kvfree(buf); 5576 return -EFAULT; 5577 } 5578 5579 set_task_reclaim_state(current, &sc.reclaim_state); 5580 flags = memalloc_noreclaim_save(); 5581 blk_start_plug(&plug); 5582 if (!set_mm_walk(NULL, true)) { 5583 err = -ENOMEM; 5584 goto done; 5585 } 5586 5587 next = buf; 5588 next[len] = '\0'; 5589 5590 while ((cur = strsep(&next, ",;\n"))) { 5591 int n; 5592 int end; 5593 char cmd, swap_string[5]; 5594 u64 memcg_id; 5595 unsigned int nid; 5596 unsigned long seq; 5597 unsigned int swappiness; 5598 unsigned long opt = -1; 5599 5600 cur = skip_spaces(cur); 5601 if (!*cur) 5602 continue; 5603 5604 n = sscanf(cur, "%c %llu %u %lu %n %4s %n %lu %n", &cmd, &memcg_id, &nid, 5605 &seq, &end, swap_string, &end, &opt, &end); 5606 if (n < 4 || cur[end]) { 5607 err = -EINVAL; 5608 break; 5609 } 5610 5611 if (n == 4) { 5612 swappiness = -1; 5613 } else if (!strcmp("max", swap_string)) { 5614 /* set by userspace for anonymous memory only */ 5615 swappiness = SWAPPINESS_ANON_ONLY; 5616 } else { 5617 err = kstrtouint(swap_string, 0, &swappiness); 5618 if (err) 5619 break; 5620 } 5621 5622 err = run_cmd(cmd, memcg_id, nid, seq, &sc, swappiness, opt); 5623 if (err) 5624 break; 5625 } 5626 done: 5627 clear_mm_walk(); 5628 blk_finish_plug(&plug); 5629 memalloc_noreclaim_restore(flags); 5630 set_task_reclaim_state(current, NULL); 5631 5632 kvfree(buf); 5633 5634 return err ? : len; 5635 } 5636 5637 static int lru_gen_seq_open(struct inode *inode, struct file *file) 5638 { 5639 return seq_open(file, &lru_gen_seq_ops); 5640 } 5641 5642 static const struct file_operations lru_gen_rw_fops = { 5643 .open = lru_gen_seq_open, 5644 .read = seq_read, 5645 .write = lru_gen_seq_write, 5646 .llseek = seq_lseek, 5647 .release = seq_release, 5648 }; 5649 5650 static const struct file_operations lru_gen_ro_fops = { 5651 .open = lru_gen_seq_open, 5652 .read = seq_read, 5653 .llseek = seq_lseek, 5654 .release = seq_release, 5655 }; 5656 5657 /****************************************************************************** 5658 * initialization 5659 ******************************************************************************/ 5660 5661 void lru_gen_init_pgdat(struct pglist_data *pgdat) 5662 { 5663 int i, j; 5664 5665 spin_lock_init(&pgdat->memcg_lru.lock); 5666 5667 for (i = 0; i < MEMCG_NR_GENS; i++) { 5668 for (j = 0; j < MEMCG_NR_BINS; j++) 5669 INIT_HLIST_NULLS_HEAD(&pgdat->memcg_lru.fifo[i][j], i); 5670 } 5671 } 5672 5673 void lru_gen_init_lruvec(struct lruvec *lruvec) 5674 { 5675 int i; 5676 int gen, type, zone; 5677 struct lru_gen_folio *lrugen = &lruvec->lrugen; 5678 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 5679 5680 lrugen->max_seq = MIN_NR_GENS + 1; 5681 lrugen->enabled = lru_gen_enabled(); 5682 5683 for (i = 0; i <= MIN_NR_GENS + 1; i++) 5684 lrugen->timestamps[i] = jiffies; 5685 5686 for_each_gen_type_zone(gen, type, zone) 5687 INIT_LIST_HEAD(&lrugen->folios[gen][type][zone]); 5688 5689 if (mm_state) 5690 mm_state->seq = MIN_NR_GENS; 5691 } 5692 5693 #ifdef CONFIG_MEMCG 5694 5695 void lru_gen_init_memcg(struct mem_cgroup *memcg) 5696 { 5697 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 5698 5699 if (!mm_list) 5700 return; 5701 5702 INIT_LIST_HEAD(&mm_list->fifo); 5703 spin_lock_init(&mm_list->lock); 5704 } 5705 5706 void lru_gen_exit_memcg(struct mem_cgroup *memcg) 5707 { 5708 int i; 5709 int nid; 5710 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 5711 5712 VM_WARN_ON_ONCE(mm_list && !list_empty(&mm_list->fifo)); 5713 5714 for_each_node(nid) { 5715 struct lruvec *lruvec = get_lruvec(memcg, nid); 5716 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 5717 5718 VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0, 5719 sizeof(lruvec->lrugen.nr_pages))); 5720 5721 lruvec->lrugen.list.next = LIST_POISON1; 5722 5723 if (!mm_state) 5724 continue; 5725 5726 for (i = 0; i < NR_BLOOM_FILTERS; i++) { 5727 bitmap_free(mm_state->filters[i]); 5728 mm_state->filters[i] = NULL; 5729 } 5730 } 5731 } 5732 5733 #endif /* CONFIG_MEMCG */ 5734 5735 static int __init init_lru_gen(void) 5736 { 5737 BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS); 5738 BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS); 5739 5740 if (sysfs_create_group(mm_kobj, &lru_gen_attr_group)) 5741 pr_err("lru_gen: failed to create sysfs group\n"); 5742 5743 debugfs_create_file_aux_num("lru_gen", 0644, NULL, NULL, false, 5744 &lru_gen_rw_fops); 5745 debugfs_create_file_aux_num("lru_gen_full", 0444, NULL, NULL, true, 5746 &lru_gen_ro_fops); 5747 5748 return 0; 5749 }; 5750 late_initcall(init_lru_gen); 5751 5752 #else /* !CONFIG_LRU_GEN */ 5753 5754 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc) 5755 { 5756 BUILD_BUG(); 5757 } 5758 5759 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 5760 { 5761 BUILD_BUG(); 5762 } 5763 5764 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc) 5765 { 5766 BUILD_BUG(); 5767 } 5768 5769 #endif /* CONFIG_LRU_GEN */ 5770 5771 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 5772 { 5773 unsigned long nr[NR_LRU_LISTS]; 5774 unsigned long targets[NR_LRU_LISTS]; 5775 unsigned long nr_to_scan; 5776 enum lru_list lru; 5777 unsigned long nr_reclaimed = 0; 5778 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 5779 bool proportional_reclaim; 5780 struct blk_plug plug; 5781 5782 if (lru_gen_enabled() && !root_reclaim(sc)) { 5783 lru_gen_shrink_lruvec(lruvec, sc); 5784 return; 5785 } 5786 5787 get_scan_count(lruvec, sc, nr); 5788 5789 /* Record the original scan target for proportional adjustments later */ 5790 memcpy(targets, nr, sizeof(nr)); 5791 5792 /* 5793 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal 5794 * event that can occur when there is little memory pressure e.g. 5795 * multiple streaming readers/writers. Hence, we do not abort scanning 5796 * when the requested number of pages are reclaimed when scanning at 5797 * DEF_PRIORITY on the assumption that the fact we are direct 5798 * reclaiming implies that kswapd is not keeping up and it is best to 5799 * do a batch of work at once. For memcg reclaim one check is made to 5800 * abort proportional reclaim if either the file or anon lru has already 5801 * dropped to zero at the first pass. 5802 */ 5803 proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() && 5804 sc->priority == DEF_PRIORITY); 5805 5806 blk_start_plug(&plug); 5807 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 5808 nr[LRU_INACTIVE_FILE]) { 5809 unsigned long nr_anon, nr_file, percentage; 5810 unsigned long nr_scanned; 5811 5812 for_each_evictable_lru(lru) { 5813 if (nr[lru]) { 5814 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 5815 nr[lru] -= nr_to_scan; 5816 5817 nr_reclaimed += shrink_list(lru, nr_to_scan, 5818 lruvec, sc); 5819 } 5820 } 5821 5822 cond_resched(); 5823 5824 if (nr_reclaimed < nr_to_reclaim || proportional_reclaim) 5825 continue; 5826 5827 /* 5828 * For kswapd and memcg, reclaim at least the number of pages 5829 * requested. Ensure that the anon and file LRUs are scanned 5830 * proportionally what was requested by get_scan_count(). We 5831 * stop reclaiming one LRU and reduce the amount scanning 5832 * proportional to the original scan target. 5833 */ 5834 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 5835 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 5836 5837 /* 5838 * It's just vindictive to attack the larger once the smaller 5839 * has gone to zero. And given the way we stop scanning the 5840 * smaller below, this makes sure that we only make one nudge 5841 * towards proportionality once we've got nr_to_reclaim. 5842 */ 5843 if (!nr_file || !nr_anon) 5844 break; 5845 5846 if (nr_file > nr_anon) { 5847 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 5848 targets[LRU_ACTIVE_ANON] + 1; 5849 lru = LRU_BASE; 5850 percentage = nr_anon * 100 / scan_target; 5851 } else { 5852 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 5853 targets[LRU_ACTIVE_FILE] + 1; 5854 lru = LRU_FILE; 5855 percentage = nr_file * 100 / scan_target; 5856 } 5857 5858 /* Stop scanning the smaller of the LRU */ 5859 nr[lru] = 0; 5860 nr[lru + LRU_ACTIVE] = 0; 5861 5862 /* 5863 * Recalculate the other LRU scan count based on its original 5864 * scan target and the percentage scanning already complete 5865 */ 5866 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 5867 nr_scanned = targets[lru] - nr[lru]; 5868 nr[lru] = targets[lru] * (100 - percentage) / 100; 5869 nr[lru] -= min(nr[lru], nr_scanned); 5870 5871 lru += LRU_ACTIVE; 5872 nr_scanned = targets[lru] - nr[lru]; 5873 nr[lru] = targets[lru] * (100 - percentage) / 100; 5874 nr[lru] -= min(nr[lru], nr_scanned); 5875 } 5876 blk_finish_plug(&plug); 5877 sc->nr_reclaimed += nr_reclaimed; 5878 5879 /* 5880 * Even if we did not try to evict anon pages at all, we want to 5881 * rebalance the anon lru active/inactive ratio. 5882 */ 5883 if (can_age_anon_pages(lruvec, sc) && 5884 inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 5885 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 5886 sc, LRU_ACTIVE_ANON); 5887 } 5888 5889 /* Use reclaim/compaction for costly allocs or under memory pressure */ 5890 static bool in_reclaim_compaction(struct scan_control *sc) 5891 { 5892 if (gfp_compaction_allowed(sc->gfp_mask) && sc->order && 5893 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 5894 sc->priority < DEF_PRIORITY - 2)) 5895 return true; 5896 5897 return false; 5898 } 5899 5900 /* 5901 * Reclaim/compaction is used for high-order allocation requests. It reclaims 5902 * order-0 pages before compacting the zone. should_continue_reclaim() returns 5903 * true if more pages should be reclaimed such that when the page allocator 5904 * calls try_to_compact_pages() that it will have enough free pages to succeed. 5905 * It will give up earlier than that if there is difficulty reclaiming pages. 5906 */ 5907 static inline bool should_continue_reclaim(struct pglist_data *pgdat, 5908 unsigned long nr_reclaimed, 5909 struct scan_control *sc) 5910 { 5911 unsigned long pages_for_compaction; 5912 unsigned long inactive_lru_pages; 5913 int z; 5914 struct zone *zone; 5915 5916 /* If not in reclaim/compaction mode, stop */ 5917 if (!in_reclaim_compaction(sc)) 5918 return false; 5919 5920 /* 5921 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX 5922 * number of pages that were scanned. This will return to the caller 5923 * with the risk reclaim/compaction and the resulting allocation attempt 5924 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL 5925 * allocations through requiring that the full LRU list has been scanned 5926 * first, by assuming that zero delta of sc->nr_scanned means full LRU 5927 * scan, but that approximation was wrong, and there were corner cases 5928 * where always a non-zero amount of pages were scanned. 5929 */ 5930 if (!nr_reclaimed) 5931 return false; 5932 5933 /* If compaction would go ahead or the allocation would succeed, stop */ 5934 for_each_managed_zone_pgdat(zone, pgdat, z, sc->reclaim_idx) { 5935 unsigned long watermark = min_wmark_pages(zone); 5936 5937 /* Allocation can already succeed, nothing to do */ 5938 if (zone_watermark_ok(zone, sc->order, watermark, 5939 sc->reclaim_idx, 0)) 5940 return false; 5941 5942 if (compaction_suitable(zone, sc->order, watermark, 5943 sc->reclaim_idx)) 5944 return false; 5945 } 5946 5947 /* 5948 * If we have not reclaimed enough pages for compaction and the 5949 * inactive lists are large enough, continue reclaiming 5950 */ 5951 pages_for_compaction = compact_gap(sc->order); 5952 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE); 5953 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc)) 5954 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON); 5955 5956 return inactive_lru_pages > pages_for_compaction; 5957 } 5958 5959 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc) 5960 { 5961 struct mem_cgroup *target_memcg = sc->target_mem_cgroup; 5962 struct mem_cgroup_reclaim_cookie reclaim = { 5963 .pgdat = pgdat, 5964 }; 5965 struct mem_cgroup_reclaim_cookie *partial = &reclaim; 5966 struct mem_cgroup *memcg; 5967 5968 /* 5969 * In most cases, direct reclaimers can do partial walks 5970 * through the cgroup tree, using an iterator state that 5971 * persists across invocations. This strikes a balance between 5972 * fairness and allocation latency. 5973 * 5974 * For kswapd, reliable forward progress is more important 5975 * than a quick return to idle. Always do full walks. 5976 */ 5977 if (current_is_kswapd() || sc->memcg_full_walk) 5978 partial = NULL; 5979 5980 memcg = mem_cgroup_iter(target_memcg, NULL, partial); 5981 do { 5982 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 5983 unsigned long reclaimed; 5984 unsigned long scanned; 5985 5986 /* 5987 * This loop can become CPU-bound when target memcgs 5988 * aren't eligible for reclaim - either because they 5989 * don't have any reclaimable pages, or because their 5990 * memory is explicitly protected. Avoid soft lockups. 5991 */ 5992 cond_resched(); 5993 5994 mem_cgroup_calculate_protection(target_memcg, memcg); 5995 5996 if (mem_cgroup_below_min(target_memcg, memcg)) { 5997 /* 5998 * Hard protection. 5999 * If there is no reclaimable memory, OOM. 6000 */ 6001 continue; 6002 } else if (mem_cgroup_below_low(target_memcg, memcg)) { 6003 /* 6004 * Soft protection. 6005 * Respect the protection only as long as 6006 * there is an unprotected supply 6007 * of reclaimable memory from other cgroups. 6008 */ 6009 if (!sc->memcg_low_reclaim) { 6010 sc->memcg_low_skipped = 1; 6011 continue; 6012 } 6013 memcg_memory_event(memcg, MEMCG_LOW); 6014 } 6015 6016 reclaimed = sc->nr_reclaimed; 6017 scanned = sc->nr_scanned; 6018 6019 shrink_lruvec(lruvec, sc); 6020 6021 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, 6022 sc->priority); 6023 6024 /* Record the group's reclaim efficiency */ 6025 if (!sc->proactive) 6026 vmpressure(sc->gfp_mask, memcg, false, 6027 sc->nr_scanned - scanned, 6028 sc->nr_reclaimed - reclaimed); 6029 6030 /* If partial walks are allowed, bail once goal is reached */ 6031 if (partial && sc->nr_reclaimed >= sc->nr_to_reclaim) { 6032 mem_cgroup_iter_break(target_memcg, memcg); 6033 break; 6034 } 6035 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, partial))); 6036 } 6037 6038 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc) 6039 { 6040 unsigned long nr_reclaimed, nr_scanned, nr_node_reclaimed; 6041 struct lruvec *target_lruvec; 6042 bool reclaimable = false; 6043 6044 if (lru_gen_enabled() && root_reclaim(sc)) { 6045 memset(&sc->nr, 0, sizeof(sc->nr)); 6046 lru_gen_shrink_node(pgdat, sc); 6047 return; 6048 } 6049 6050 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat); 6051 6052 again: 6053 memset(&sc->nr, 0, sizeof(sc->nr)); 6054 6055 nr_reclaimed = sc->nr_reclaimed; 6056 nr_scanned = sc->nr_scanned; 6057 6058 prepare_scan_control(pgdat, sc); 6059 6060 shrink_node_memcgs(pgdat, sc); 6061 6062 flush_reclaim_state(sc); 6063 6064 nr_node_reclaimed = sc->nr_reclaimed - nr_reclaimed; 6065 6066 /* Record the subtree's reclaim efficiency */ 6067 if (!sc->proactive) 6068 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, 6069 sc->nr_scanned - nr_scanned, nr_node_reclaimed); 6070 6071 if (nr_node_reclaimed) 6072 reclaimable = true; 6073 6074 if (current_is_kswapd()) { 6075 /* 6076 * If reclaim is isolating dirty pages under writeback, 6077 * it implies that the long-lived page allocation rate 6078 * is exceeding the page laundering rate. Either the 6079 * global limits are not being effective at throttling 6080 * processes due to the page distribution throughout 6081 * zones or there is heavy usage of a slow backing 6082 * device. The only option is to throttle from reclaim 6083 * context which is not ideal as there is no guarantee 6084 * the dirtying process is throttled in the same way 6085 * balance_dirty_pages() manages. 6086 * 6087 * Once a node is flagged PGDAT_WRITEBACK, kswapd will 6088 * count the number of pages under pages flagged for 6089 * immediate reclaim and stall if any are encountered 6090 * in the nr_immediate check below. 6091 */ 6092 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken) 6093 set_bit(PGDAT_WRITEBACK, &pgdat->flags); 6094 6095 /* 6096 * If kswapd scans pages marked for immediate 6097 * reclaim and under writeback (nr_immediate), it 6098 * implies that pages are cycling through the LRU 6099 * faster than they are written so forcibly stall 6100 * until some pages complete writeback. 6101 */ 6102 if (sc->nr.immediate) 6103 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK); 6104 } 6105 6106 /* 6107 * Tag a node/memcg as congested if all the dirty pages were marked 6108 * for writeback and immediate reclaim (counted in nr.congested). 6109 * 6110 * Legacy memcg will stall in page writeback so avoid forcibly 6111 * stalling in reclaim_throttle(). 6112 */ 6113 if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested) { 6114 if (cgroup_reclaim(sc) && writeback_throttling_sane(sc)) 6115 set_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags); 6116 6117 if (current_is_kswapd()) 6118 set_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags); 6119 } 6120 6121 /* 6122 * Stall direct reclaim for IO completions if the lruvec is 6123 * node is congested. Allow kswapd to continue until it 6124 * starts encountering unqueued dirty pages or cycling through 6125 * the LRU too quickly. 6126 */ 6127 if (!current_is_kswapd() && current_may_throttle() && 6128 !sc->hibernation_mode && 6129 (test_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags) || 6130 test_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags))) 6131 reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED); 6132 6133 if (should_continue_reclaim(pgdat, nr_node_reclaimed, sc)) 6134 goto again; 6135 6136 /* 6137 * Kswapd gives up on balancing particular nodes after too 6138 * many failures to reclaim anything from them and goes to 6139 * sleep. On reclaim progress, reset the failure counter. A 6140 * successful direct reclaim run will revive a dormant kswapd. 6141 */ 6142 if (reclaimable) 6143 kswapd_try_clear_hopeless(pgdat, sc->order, sc->reclaim_idx); 6144 else if (sc->cache_trim_mode) 6145 sc->cache_trim_mode_failed = 1; 6146 } 6147 6148 /* 6149 * Returns true if compaction should go ahead for a costly-order request, or 6150 * the allocation would already succeed without compaction. Return false if we 6151 * should reclaim first. 6152 */ 6153 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) 6154 { 6155 unsigned long watermark; 6156 6157 if (!gfp_compaction_allowed(sc->gfp_mask)) 6158 return false; 6159 6160 /* Allocation can already succeed, nothing to do */ 6161 if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone), 6162 sc->reclaim_idx, 0)) 6163 return true; 6164 6165 /* 6166 * Direct reclaim usually targets the min watermark, but compaction 6167 * takes time to run and there are potentially other callers using the 6168 * pages just freed. So target a higher buffer to give compaction a 6169 * reasonable chance of completing and allocating the pages. 6170 * 6171 * Note that we won't actually reclaim the whole buffer in one attempt 6172 * as the target watermark in should_continue_reclaim() is lower. But if 6173 * we are already above the high+gap watermark, don't reclaim at all. 6174 */ 6175 watermark = high_wmark_pages(zone); 6176 if (compaction_suitable(zone, sc->order, watermark, sc->reclaim_idx)) 6177 return true; 6178 6179 return false; 6180 } 6181 6182 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc) 6183 { 6184 /* 6185 * If reclaim is making progress greater than 12% efficiency then 6186 * wake all the NOPROGRESS throttled tasks. 6187 */ 6188 if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) { 6189 wait_queue_head_t *wqh; 6190 6191 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS]; 6192 if (waitqueue_active(wqh)) 6193 wake_up(wqh); 6194 6195 return; 6196 } 6197 6198 /* 6199 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will 6200 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages 6201 * under writeback and marked for immediate reclaim at the tail of the 6202 * LRU. 6203 */ 6204 if (current_is_kswapd() || cgroup_reclaim(sc)) 6205 return; 6206 6207 /* Throttle if making no progress at high prioities. */ 6208 if (sc->priority == 1 && !sc->nr_reclaimed) 6209 reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS); 6210 } 6211 6212 /* 6213 * This is the direct reclaim path, for page-allocating processes. We only 6214 * try to reclaim pages from zones which will satisfy the caller's allocation 6215 * request. 6216 * 6217 * If a zone is deemed to be full of pinned pages then just give it a light 6218 * scan then give up on it. 6219 */ 6220 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 6221 { 6222 struct zoneref *z; 6223 struct zone *zone; 6224 unsigned long nr_soft_reclaimed; 6225 unsigned long nr_soft_scanned; 6226 gfp_t orig_mask; 6227 pg_data_t *last_pgdat = NULL; 6228 pg_data_t *first_pgdat = NULL; 6229 6230 /* 6231 * If the number of buffer_heads in the machine exceeds the maximum 6232 * allowed level, force direct reclaim to scan the highmem zone as 6233 * highmem pages could be pinning lowmem pages storing buffer_heads 6234 */ 6235 orig_mask = sc->gfp_mask; 6236 if (buffer_heads_over_limit) { 6237 sc->gfp_mask |= __GFP_HIGHMEM; 6238 sc->reclaim_idx = gfp_zone(sc->gfp_mask); 6239 } 6240 6241 for_each_zone_zonelist_nodemask(zone, z, zonelist, 6242 sc->reclaim_idx, sc->nodemask) { 6243 /* 6244 * Take care memory controller reclaiming has small influence 6245 * to global LRU. 6246 */ 6247 if (!cgroup_reclaim(sc)) { 6248 if (!cpuset_zone_allowed(zone, 6249 GFP_KERNEL | __GFP_HARDWALL)) 6250 continue; 6251 6252 /* 6253 * If we already have plenty of memory free for 6254 * compaction in this zone, don't free any more. 6255 * Even though compaction is invoked for any 6256 * non-zero order, only frequent costly order 6257 * reclamation is disruptive enough to become a 6258 * noticeable problem, like transparent huge 6259 * page allocations. 6260 */ 6261 if (IS_ENABLED(CONFIG_COMPACTION) && 6262 sc->order > PAGE_ALLOC_COSTLY_ORDER && 6263 compaction_ready(zone, sc)) { 6264 sc->compaction_ready = true; 6265 continue; 6266 } 6267 6268 /* 6269 * Shrink each node in the zonelist once. If the 6270 * zonelist is ordered by zone (not the default) then a 6271 * node may be shrunk multiple times but in that case 6272 * the user prefers lower zones being preserved. 6273 */ 6274 if (zone->zone_pgdat == last_pgdat) 6275 continue; 6276 6277 /* 6278 * This steals pages from memory cgroups over softlimit 6279 * and returns the number of reclaimed pages and 6280 * scanned pages. This works for global memory pressure 6281 * and balancing, not for a memcg's limit. 6282 */ 6283 nr_soft_scanned = 0; 6284 nr_soft_reclaimed = memcg1_soft_limit_reclaim(zone->zone_pgdat, 6285 sc->order, sc->gfp_mask, 6286 &nr_soft_scanned); 6287 sc->nr_reclaimed += nr_soft_reclaimed; 6288 sc->nr_scanned += nr_soft_scanned; 6289 /* need some check for avoid more shrink_zone() */ 6290 } 6291 6292 if (!first_pgdat) 6293 first_pgdat = zone->zone_pgdat; 6294 6295 /* See comment about same check for global reclaim above */ 6296 if (zone->zone_pgdat == last_pgdat) 6297 continue; 6298 last_pgdat = zone->zone_pgdat; 6299 shrink_node(zone->zone_pgdat, sc); 6300 } 6301 6302 if (first_pgdat) 6303 consider_reclaim_throttle(first_pgdat, sc); 6304 6305 /* 6306 * Restore to original mask to avoid the impact on the caller if we 6307 * promoted it to __GFP_HIGHMEM. 6308 */ 6309 sc->gfp_mask = orig_mask; 6310 } 6311 6312 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat) 6313 { 6314 struct lruvec *target_lruvec; 6315 unsigned long refaults; 6316 6317 if (lru_gen_enabled()) 6318 return; 6319 6320 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat); 6321 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON); 6322 target_lruvec->refaults[WORKINGSET_ANON] = refaults; 6323 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE); 6324 target_lruvec->refaults[WORKINGSET_FILE] = refaults; 6325 } 6326 6327 /* 6328 * This is the main entry point to direct page reclaim. 6329 * 6330 * If a full scan of the inactive list fails to free enough memory then we 6331 * are "out of memory" and something needs to be killed. 6332 * 6333 * If the caller is !__GFP_FS then the probability of a failure is reasonably 6334 * high - the zone may be full of dirty or under-writeback pages, which this 6335 * caller can't do much about. We kick the writeback threads and take explicit 6336 * naps in the hope that some of these pages can be written. But if the 6337 * allocating task holds filesystem locks which prevent writeout this might not 6338 * work, and the allocation attempt will fail. 6339 * 6340 * returns: 0, if no pages reclaimed 6341 * else, the number of pages reclaimed 6342 */ 6343 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 6344 struct scan_control *sc) 6345 { 6346 int initial_priority = sc->priority; 6347 pg_data_t *last_pgdat; 6348 struct zoneref *z; 6349 struct zone *zone; 6350 retry: 6351 delayacct_freepages_start(); 6352 6353 if (!cgroup_reclaim(sc)) 6354 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1); 6355 6356 do { 6357 if (!sc->proactive) 6358 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 6359 sc->priority); 6360 sc->nr_scanned = 0; 6361 shrink_zones(zonelist, sc); 6362 6363 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 6364 break; 6365 6366 if (sc->compaction_ready) 6367 break; 6368 } while (--sc->priority >= 0); 6369 6370 last_pgdat = NULL; 6371 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx, 6372 sc->nodemask) { 6373 if (zone->zone_pgdat == last_pgdat) 6374 continue; 6375 last_pgdat = zone->zone_pgdat; 6376 6377 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat); 6378 6379 if (cgroup_reclaim(sc)) { 6380 struct lruvec *lruvec; 6381 6382 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, 6383 zone->zone_pgdat); 6384 clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags); 6385 } 6386 } 6387 6388 delayacct_freepages_end(); 6389 6390 if (sc->nr_reclaimed) 6391 return sc->nr_reclaimed; 6392 6393 /* Aborted reclaim to try compaction? don't OOM, then */ 6394 if (sc->compaction_ready) 6395 return 1; 6396 6397 /* 6398 * In most cases, direct reclaimers can do partial walks 6399 * through the cgroup tree to meet the reclaim goal while 6400 * keeping latency low. Since the iterator state is shared 6401 * among all direct reclaim invocations (to retain fairness 6402 * among cgroups), though, high concurrency can result in 6403 * individual threads not seeing enough cgroups to make 6404 * meaningful forward progress. Avoid false OOMs in this case. 6405 */ 6406 if (!sc->memcg_full_walk) { 6407 sc->priority = initial_priority; 6408 sc->memcg_full_walk = 1; 6409 goto retry; 6410 } 6411 6412 /* 6413 * We make inactive:active ratio decisions based on the node's 6414 * composition of memory, but a restrictive reclaim_idx or a 6415 * memory.low cgroup setting can exempt large amounts of 6416 * memory from reclaim. Neither of which are very common, so 6417 * instead of doing costly eligibility calculations of the 6418 * entire cgroup subtree up front, we assume the estimates are 6419 * good, and retry with forcible deactivation if that fails. 6420 */ 6421 if (sc->skipped_deactivate) { 6422 sc->priority = initial_priority; 6423 sc->force_deactivate = 1; 6424 sc->skipped_deactivate = 0; 6425 goto retry; 6426 } 6427 6428 /* Untapped cgroup reserves? Don't OOM, retry. */ 6429 if (sc->memcg_low_skipped) { 6430 sc->priority = initial_priority; 6431 sc->force_deactivate = 0; 6432 sc->memcg_low_reclaim = 1; 6433 sc->memcg_low_skipped = 0; 6434 goto retry; 6435 } 6436 6437 return 0; 6438 } 6439 6440 static bool allow_direct_reclaim(pg_data_t *pgdat) 6441 { 6442 struct zone *zone; 6443 unsigned long pfmemalloc_reserve = 0; 6444 unsigned long free_pages = 0; 6445 int i; 6446 bool wmark_ok; 6447 6448 if (kswapd_test_hopeless(pgdat)) 6449 return true; 6450 6451 for_each_managed_zone_pgdat(zone, pgdat, i, ZONE_NORMAL) { 6452 if (!zone_reclaimable_pages(zone) && zone_page_state_snapshot(zone, NR_FREE_PAGES)) 6453 continue; 6454 6455 pfmemalloc_reserve += min_wmark_pages(zone); 6456 free_pages += zone_page_state_snapshot(zone, NR_FREE_PAGES); 6457 } 6458 6459 /* If there are no reserves (unexpected config) then do not throttle */ 6460 if (!pfmemalloc_reserve) 6461 return true; 6462 6463 wmark_ok = free_pages > pfmemalloc_reserve / 2; 6464 6465 /* kswapd must be awake if processes are being throttled */ 6466 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 6467 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL) 6468 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL); 6469 6470 wake_up_interruptible(&pgdat->kswapd_wait); 6471 } 6472 6473 return wmark_ok; 6474 } 6475 6476 /* 6477 * Throttle direct reclaimers if backing storage is backed by the network 6478 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 6479 * depleted. kswapd will continue to make progress and wake the processes 6480 * when the low watermark is reached. 6481 * 6482 * Returns true if a fatal signal was delivered during throttling. If this 6483 * happens, the page allocator should not consider triggering the OOM killer. 6484 */ 6485 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 6486 nodemask_t *nodemask) 6487 { 6488 struct zoneref *z; 6489 struct zone *zone; 6490 pg_data_t *pgdat = NULL; 6491 6492 /* 6493 * Kernel threads should not be throttled as they may be indirectly 6494 * responsible for cleaning pages necessary for reclaim to make forward 6495 * progress. kjournald for example may enter direct reclaim while 6496 * committing a transaction where throttling it could forcing other 6497 * processes to block on log_wait_commit(). 6498 */ 6499 if (current->flags & PF_KTHREAD) 6500 goto out; 6501 6502 /* 6503 * If a fatal signal is pending, this process should not throttle. 6504 * It should return quickly so it can exit and free its memory 6505 */ 6506 if (fatal_signal_pending(current)) 6507 goto out; 6508 6509 /* 6510 * Check if the pfmemalloc reserves are ok by finding the first node 6511 * with a usable ZONE_NORMAL or lower zone. The expectation is that 6512 * GFP_KERNEL will be required for allocating network buffers when 6513 * swapping over the network so ZONE_HIGHMEM is unusable. 6514 * 6515 * Throttling is based on the first usable node and throttled processes 6516 * wait on a queue until kswapd makes progress and wakes them. There 6517 * is an affinity then between processes waking up and where reclaim 6518 * progress has been made assuming the process wakes on the same node. 6519 * More importantly, processes running on remote nodes will not compete 6520 * for remote pfmemalloc reserves and processes on different nodes 6521 * should make reasonable progress. 6522 */ 6523 for_each_zone_zonelist_nodemask(zone, z, zonelist, 6524 gfp_zone(gfp_mask), nodemask) { 6525 if (zone_idx(zone) > ZONE_NORMAL) 6526 continue; 6527 6528 /* Throttle based on the first usable node */ 6529 pgdat = zone->zone_pgdat; 6530 if (allow_direct_reclaim(pgdat)) 6531 goto out; 6532 break; 6533 } 6534 6535 /* If no zone was usable by the allocation flags then do not throttle */ 6536 if (!pgdat) 6537 goto out; 6538 6539 /* Account for the throttling */ 6540 count_vm_event(PGSCAN_DIRECT_THROTTLE); 6541 6542 /* 6543 * If the caller cannot enter the filesystem, it's possible that it 6544 * is due to the caller holding an FS lock or performing a journal 6545 * transaction in the case of a filesystem like ext[3|4]. In this case, 6546 * it is not safe to block on pfmemalloc_wait as kswapd could be 6547 * blocked waiting on the same lock. Instead, throttle for up to a 6548 * second before continuing. 6549 */ 6550 if (!(gfp_mask & __GFP_FS)) 6551 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 6552 allow_direct_reclaim(pgdat), HZ); 6553 else 6554 /* Throttle until kswapd wakes the process */ 6555 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 6556 allow_direct_reclaim(pgdat)); 6557 6558 if (fatal_signal_pending(current)) 6559 return true; 6560 6561 out: 6562 return false; 6563 } 6564 6565 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 6566 gfp_t gfp_mask, nodemask_t *nodemask) 6567 { 6568 unsigned long nr_reclaimed; 6569 struct scan_control sc = { 6570 .nr_to_reclaim = SWAP_CLUSTER_MAX, 6571 .gfp_mask = current_gfp_context(gfp_mask), 6572 .reclaim_idx = gfp_zone(gfp_mask), 6573 .order = order, 6574 .nodemask = nodemask, 6575 .priority = DEF_PRIORITY, 6576 .may_writepage = 1, 6577 .may_unmap = 1, 6578 .may_swap = 1, 6579 }; 6580 6581 /* 6582 * scan_control uses s8 fields for order, priority, and reclaim_idx. 6583 * Confirm they are large enough for max values. 6584 */ 6585 BUILD_BUG_ON(MAX_PAGE_ORDER >= S8_MAX); 6586 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX); 6587 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX); 6588 6589 /* 6590 * Do not enter reclaim if fatal signal was delivered while throttled. 6591 * 1 is returned so that the page allocator does not OOM kill at this 6592 * point. 6593 */ 6594 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask)) 6595 return 1; 6596 6597 set_task_reclaim_state(current, &sc.reclaim_state); 6598 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask); 6599 6600 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 6601 6602 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 6603 set_task_reclaim_state(current, NULL); 6604 6605 return nr_reclaimed; 6606 } 6607 6608 #ifdef CONFIG_MEMCG 6609 6610 /* Only used by soft limit reclaim. Do not reuse for anything else. */ 6611 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg, 6612 gfp_t gfp_mask, bool noswap, 6613 pg_data_t *pgdat, 6614 unsigned long *nr_scanned) 6615 { 6616 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 6617 struct scan_control sc = { 6618 .nr_to_reclaim = SWAP_CLUSTER_MAX, 6619 .target_mem_cgroup = memcg, 6620 .may_writepage = 1, 6621 .may_unmap = 1, 6622 .reclaim_idx = MAX_NR_ZONES - 1, 6623 .may_swap = !noswap, 6624 }; 6625 6626 WARN_ON_ONCE(!current->reclaim_state); 6627 6628 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 6629 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 6630 6631 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 6632 sc.gfp_mask); 6633 6634 /* 6635 * NOTE: Although we can get the priority field, using it 6636 * here is not a good idea, since it limits the pages we can scan. 6637 * if we don't reclaim here, the shrink_node from balance_pgdat 6638 * will pick up pages from other mem cgroup's as well. We hack 6639 * the priority and make it zero. 6640 */ 6641 shrink_lruvec(lruvec, &sc); 6642 6643 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 6644 6645 *nr_scanned = sc.nr_scanned; 6646 6647 return sc.nr_reclaimed; 6648 } 6649 6650 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 6651 unsigned long nr_pages, 6652 gfp_t gfp_mask, 6653 unsigned int reclaim_options, 6654 int *swappiness) 6655 { 6656 unsigned long nr_reclaimed; 6657 unsigned int noreclaim_flag; 6658 struct scan_control sc = { 6659 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 6660 .proactive_swappiness = swappiness, 6661 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) | 6662 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 6663 .reclaim_idx = MAX_NR_ZONES - 1, 6664 .target_mem_cgroup = memcg, 6665 .priority = DEF_PRIORITY, 6666 .may_writepage = 1, 6667 .may_unmap = 1, 6668 .may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP), 6669 .proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE), 6670 }; 6671 /* 6672 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put 6673 * equal pressure on all the nodes. This is based on the assumption that 6674 * the reclaim does not bail out early. 6675 */ 6676 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 6677 6678 set_task_reclaim_state(current, &sc.reclaim_state); 6679 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask); 6680 noreclaim_flag = memalloc_noreclaim_save(); 6681 6682 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 6683 6684 memalloc_noreclaim_restore(noreclaim_flag); 6685 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 6686 set_task_reclaim_state(current, NULL); 6687 6688 return nr_reclaimed; 6689 } 6690 #else 6691 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 6692 unsigned long nr_pages, 6693 gfp_t gfp_mask, 6694 unsigned int reclaim_options, 6695 int *swappiness) 6696 { 6697 return 0; 6698 } 6699 #endif 6700 6701 static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc) 6702 { 6703 struct mem_cgroup *memcg; 6704 struct lruvec *lruvec; 6705 6706 if (lru_gen_enabled()) { 6707 lru_gen_age_node(pgdat, sc); 6708 return; 6709 } 6710 6711 lruvec = mem_cgroup_lruvec(NULL, pgdat); 6712 if (!can_age_anon_pages(lruvec, sc)) 6713 return; 6714 6715 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 6716 return; 6717 6718 memcg = mem_cgroup_iter(NULL, NULL, NULL); 6719 do { 6720 lruvec = mem_cgroup_lruvec(memcg, pgdat); 6721 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 6722 sc, LRU_ACTIVE_ANON); 6723 memcg = mem_cgroup_iter(NULL, memcg, NULL); 6724 } while (memcg); 6725 } 6726 6727 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx) 6728 { 6729 int i; 6730 struct zone *zone; 6731 6732 /* 6733 * Check for watermark boosts top-down as the higher zones 6734 * are more likely to be boosted. Both watermarks and boosts 6735 * should not be checked at the same time as reclaim would 6736 * start prematurely when there is no boosting and a lower 6737 * zone is balanced. 6738 */ 6739 for (i = highest_zoneidx; i >= 0; i--) { 6740 zone = pgdat->node_zones + i; 6741 if (!managed_zone(zone)) 6742 continue; 6743 6744 if (zone->watermark_boost) 6745 return true; 6746 } 6747 6748 return false; 6749 } 6750 6751 /* 6752 * Returns true if there is an eligible zone balanced for the request order 6753 * and highest_zoneidx 6754 */ 6755 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx) 6756 { 6757 int i; 6758 unsigned long mark = -1; 6759 struct zone *zone; 6760 6761 /* 6762 * Check watermarks bottom-up as lower zones are more likely to 6763 * meet watermarks. 6764 */ 6765 for_each_managed_zone_pgdat(zone, pgdat, i, highest_zoneidx) { 6766 enum zone_stat_item item; 6767 unsigned long free_pages; 6768 6769 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) 6770 mark = promo_wmark_pages(zone); 6771 else 6772 mark = high_wmark_pages(zone); 6773 6774 /* 6775 * In defrag_mode, watermarks must be met in whole 6776 * blocks to avoid polluting allocator fallbacks. 6777 * 6778 * However, kswapd usually cannot accomplish this on 6779 * its own and needs kcompactd support. Once it's 6780 * reclaimed a compaction gap, and kswapd_shrink_node 6781 * has dropped order, simply ensure there are enough 6782 * base pages for compaction, wake kcompactd & sleep. 6783 */ 6784 if (defrag_mode && order) 6785 item = NR_FREE_PAGES_BLOCKS; 6786 else 6787 item = NR_FREE_PAGES; 6788 6789 /* 6790 * When there is a high number of CPUs in the system, 6791 * the cumulative error from the vmstat per-cpu cache 6792 * can blur the line between the watermarks. In that 6793 * case, be safe and get an accurate snapshot. 6794 * 6795 * TODO: NR_FREE_PAGES_BLOCKS moves in steps of 6796 * pageblock_nr_pages, while the vmstat pcp threshold 6797 * is limited to 125. On many configurations that 6798 * counter won't actually be per-cpu cached. But keep 6799 * things simple for now; revisit when somebody cares. 6800 */ 6801 free_pages = zone_page_state(zone, item); 6802 if (zone->percpu_drift_mark && free_pages < zone->percpu_drift_mark) 6803 free_pages = zone_page_state_snapshot(zone, item); 6804 6805 if (__zone_watermark_ok(zone, order, mark, highest_zoneidx, 6806 0, free_pages)) 6807 return true; 6808 } 6809 6810 /* 6811 * If a node has no managed zone within highest_zoneidx, it does not 6812 * need balancing by definition. This can happen if a zone-restricted 6813 * allocation tries to wake a remote kswapd. 6814 */ 6815 if (mark == -1) 6816 return true; 6817 6818 return false; 6819 } 6820 6821 /* Clear pgdat state for congested, dirty or under writeback. */ 6822 static void clear_pgdat_congested(pg_data_t *pgdat) 6823 { 6824 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat); 6825 6826 clear_bit(LRUVEC_NODE_CONGESTED, &lruvec->flags); 6827 clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags); 6828 clear_bit(PGDAT_WRITEBACK, &pgdat->flags); 6829 } 6830 6831 /* 6832 * Prepare kswapd for sleeping. This verifies that there are no processes 6833 * waiting in throttle_direct_reclaim() and that watermarks have been met. 6834 * 6835 * Returns true if kswapd is ready to sleep 6836 */ 6837 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, 6838 int highest_zoneidx) 6839 { 6840 /* 6841 * The throttled processes are normally woken up in balance_pgdat() as 6842 * soon as allow_direct_reclaim() is true. But there is a potential 6843 * race between when kswapd checks the watermarks and a process gets 6844 * throttled. There is also a potential race if processes get 6845 * throttled, kswapd wakes, a large process exits thereby balancing the 6846 * zones, which causes kswapd to exit balance_pgdat() before reaching 6847 * the wake up checks. If kswapd is going to sleep, no process should 6848 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If 6849 * the wake up is premature, processes will wake kswapd and get 6850 * throttled again. The difference from wake ups in balance_pgdat() is 6851 * that here we are under prepare_to_wait(). 6852 */ 6853 if (waitqueue_active(&pgdat->pfmemalloc_wait)) 6854 wake_up_all(&pgdat->pfmemalloc_wait); 6855 6856 /* Hopeless node, leave it to direct reclaim */ 6857 if (kswapd_test_hopeless(pgdat)) 6858 return true; 6859 6860 if (pgdat_balanced(pgdat, order, highest_zoneidx)) { 6861 clear_pgdat_congested(pgdat); 6862 return true; 6863 } 6864 6865 return false; 6866 } 6867 6868 /* 6869 * kswapd shrinks a node of pages that are at or below the highest usable 6870 * zone that is currently unbalanced. 6871 * 6872 * Returns true if kswapd scanned at least the requested number of pages to 6873 * reclaim or if the lack of progress was due to pages under writeback. 6874 * This is used to determine if the scanning priority needs to be raised. 6875 */ 6876 static bool kswapd_shrink_node(pg_data_t *pgdat, 6877 struct scan_control *sc) 6878 { 6879 struct zone *zone; 6880 int z; 6881 unsigned long nr_reclaimed = sc->nr_reclaimed; 6882 6883 /* Reclaim a number of pages proportional to the number of zones */ 6884 sc->nr_to_reclaim = 0; 6885 for_each_managed_zone_pgdat(zone, pgdat, z, sc->reclaim_idx) { 6886 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX); 6887 } 6888 6889 /* 6890 * Historically care was taken to put equal pressure on all zones but 6891 * now pressure is applied based on node LRU order. 6892 */ 6893 shrink_node(pgdat, sc); 6894 6895 /* 6896 * Fragmentation may mean that the system cannot be rebalanced for 6897 * high-order allocations. If twice the allocation size has been 6898 * reclaimed then recheck watermarks only at order-0 to prevent 6899 * excessive reclaim. Assume that a process requested a high-order 6900 * can direct reclaim/compact. 6901 */ 6902 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order)) 6903 sc->order = 0; 6904 6905 /* account for progress from mm_account_reclaimed_pages() */ 6906 return max(sc->nr_scanned, sc->nr_reclaimed - nr_reclaimed) >= sc->nr_to_reclaim; 6907 } 6908 6909 /* Page allocator PCP high watermark is lowered if reclaim is active. */ 6910 static inline void 6911 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active) 6912 { 6913 int i; 6914 struct zone *zone; 6915 6916 for_each_managed_zone_pgdat(zone, pgdat, i, highest_zoneidx) { 6917 if (active) 6918 set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags); 6919 else 6920 clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags); 6921 } 6922 } 6923 6924 static inline void 6925 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx) 6926 { 6927 update_reclaim_active(pgdat, highest_zoneidx, true); 6928 } 6929 6930 static inline void 6931 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx) 6932 { 6933 update_reclaim_active(pgdat, highest_zoneidx, false); 6934 } 6935 6936 /* 6937 * For kswapd, balance_pgdat() will reclaim pages across a node from zones 6938 * that are eligible for use by the caller until at least one zone is 6939 * balanced. 6940 * 6941 * Returns the order kswapd finished reclaiming at. 6942 * 6943 * kswapd scans the zones in the highmem->normal->dma direction. It skips 6944 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 6945 * found to have free_pages <= high_wmark_pages(zone), any page in that zone 6946 * or lower is eligible for reclaim until at least one usable zone is 6947 * balanced. 6948 */ 6949 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx) 6950 { 6951 int i; 6952 unsigned long nr_soft_reclaimed; 6953 unsigned long nr_soft_scanned; 6954 unsigned long pflags; 6955 unsigned long nr_boost_reclaim; 6956 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, }; 6957 bool boosted; 6958 struct zone *zone; 6959 struct scan_control sc = { 6960 .gfp_mask = GFP_KERNEL, 6961 .order = order, 6962 .may_unmap = 1, 6963 }; 6964 6965 set_task_reclaim_state(current, &sc.reclaim_state); 6966 psi_memstall_enter(&pflags); 6967 __fs_reclaim_acquire(_THIS_IP_); 6968 6969 count_vm_event(PAGEOUTRUN); 6970 6971 /* 6972 * Account for the reclaim boost. Note that the zone boost is left in 6973 * place so that parallel allocations that are near the watermark will 6974 * stall or direct reclaim until kswapd is finished. 6975 */ 6976 nr_boost_reclaim = 0; 6977 for_each_managed_zone_pgdat(zone, pgdat, i, highest_zoneidx) { 6978 nr_boost_reclaim += zone->watermark_boost; 6979 zone_boosts[i] = zone->watermark_boost; 6980 } 6981 boosted = nr_boost_reclaim; 6982 6983 restart: 6984 set_reclaim_active(pgdat, highest_zoneidx); 6985 sc.priority = DEF_PRIORITY; 6986 do { 6987 unsigned long nr_reclaimed = sc.nr_reclaimed; 6988 bool raise_priority = true; 6989 bool balanced; 6990 bool ret; 6991 bool was_frozen; 6992 6993 sc.reclaim_idx = highest_zoneidx; 6994 6995 /* 6996 * If the number of buffer_heads exceeds the maximum allowed 6997 * then consider reclaiming from all zones. This has a dual 6998 * purpose -- on 64-bit systems it is expected that 6999 * buffer_heads are stripped during active rotation. On 32-bit 7000 * systems, highmem pages can pin lowmem memory and shrinking 7001 * buffers can relieve lowmem pressure. Reclaim may still not 7002 * go ahead if all eligible zones for the original allocation 7003 * request are balanced to avoid excessive reclaim from kswapd. 7004 */ 7005 if (buffer_heads_over_limit) { 7006 for (i = MAX_NR_ZONES - 1; i >= 0; i--) { 7007 zone = pgdat->node_zones + i; 7008 if (!managed_zone(zone)) 7009 continue; 7010 7011 sc.reclaim_idx = i; 7012 break; 7013 } 7014 } 7015 7016 /* 7017 * If the pgdat is imbalanced then ignore boosting and preserve 7018 * the watermarks for a later time and restart. Note that the 7019 * zone watermarks will be still reset at the end of balancing 7020 * on the grounds that the normal reclaim should be enough to 7021 * re-evaluate if boosting is required when kswapd next wakes. 7022 */ 7023 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx); 7024 if (!balanced && nr_boost_reclaim) { 7025 nr_boost_reclaim = 0; 7026 goto restart; 7027 } 7028 7029 /* 7030 * If boosting is not active then only reclaim if there are no 7031 * eligible zones. Note that sc.reclaim_idx is not used as 7032 * buffer_heads_over_limit may have adjusted it. 7033 */ 7034 if (!nr_boost_reclaim && balanced) 7035 goto out; 7036 7037 /* Limit the priority of boosting to avoid reclaim writeback */ 7038 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2) 7039 raise_priority = false; 7040 7041 /* 7042 * Do not writeback or swap pages for boosted reclaim. The 7043 * intent is to relieve pressure not issue sub-optimal IO 7044 * from reclaim context. If no pages are reclaimed, the 7045 * reclaim will be aborted. 7046 */ 7047 sc.may_writepage = !nr_boost_reclaim; 7048 sc.may_swap = !nr_boost_reclaim; 7049 7050 /* 7051 * Do some background aging, to give pages a chance to be 7052 * referenced before reclaiming. All pages are rotated 7053 * regardless of classzone as this is about consistent aging. 7054 */ 7055 kswapd_age_node(pgdat, &sc); 7056 7057 /* Call soft limit reclaim before calling shrink_node. */ 7058 sc.nr_scanned = 0; 7059 nr_soft_scanned = 0; 7060 nr_soft_reclaimed = memcg1_soft_limit_reclaim(pgdat, sc.order, 7061 sc.gfp_mask, &nr_soft_scanned); 7062 sc.nr_reclaimed += nr_soft_reclaimed; 7063 7064 /* 7065 * There should be no need to raise the scanning priority if 7066 * enough pages are already being scanned that that high 7067 * watermark would be met at 100% efficiency. 7068 */ 7069 if (kswapd_shrink_node(pgdat, &sc)) 7070 raise_priority = false; 7071 7072 /* 7073 * If the low watermark is met there is no need for processes 7074 * to be throttled on pfmemalloc_wait as they should not be 7075 * able to safely make forward progress. Wake them 7076 */ 7077 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 7078 allow_direct_reclaim(pgdat)) 7079 wake_up_all(&pgdat->pfmemalloc_wait); 7080 7081 /* Check if kswapd should be suspending */ 7082 __fs_reclaim_release(_THIS_IP_); 7083 ret = kthread_freezable_should_stop(&was_frozen); 7084 __fs_reclaim_acquire(_THIS_IP_); 7085 if (was_frozen || ret) 7086 break; 7087 7088 /* 7089 * Raise priority if scanning rate is too low or there was no 7090 * progress in reclaiming pages 7091 */ 7092 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed; 7093 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed); 7094 7095 /* 7096 * If reclaim made no progress for a boost, stop reclaim as 7097 * IO cannot be queued and it could be an infinite loop in 7098 * extreme circumstances. 7099 */ 7100 if (nr_boost_reclaim && !nr_reclaimed) 7101 break; 7102 7103 if (raise_priority || !nr_reclaimed) 7104 sc.priority--; 7105 } while (sc.priority >= 1); 7106 7107 /* 7108 * Restart only if it went through the priority loop all the way, 7109 * but cache_trim_mode didn't work. 7110 */ 7111 if (!sc.nr_reclaimed && sc.priority < 1 && 7112 !sc.no_cache_trim_mode && sc.cache_trim_mode_failed) { 7113 sc.no_cache_trim_mode = 1; 7114 goto restart; 7115 } 7116 7117 /* 7118 * If the reclaim was boosted, we might still be far from the 7119 * watermark_high at this point. We need to avoid increasing the 7120 * failure count to prevent the kswapd thread from stopping. 7121 */ 7122 if (!sc.nr_reclaimed && !boosted) { 7123 int fail_cnt = atomic_inc_return(&pgdat->kswapd_failures); 7124 /* kswapd context, low overhead to trace every failure */ 7125 trace_mm_vmscan_kswapd_reclaim_fail(pgdat->node_id, fail_cnt); 7126 } 7127 7128 out: 7129 clear_reclaim_active(pgdat, highest_zoneidx); 7130 7131 /* If reclaim was boosted, account for the reclaim done in this pass */ 7132 if (boosted) { 7133 unsigned long flags; 7134 7135 for (i = 0; i <= highest_zoneidx; i++) { 7136 if (!zone_boosts[i]) 7137 continue; 7138 7139 /* Increments are under the zone lock */ 7140 zone = pgdat->node_zones + i; 7141 spin_lock_irqsave(&zone->lock, flags); 7142 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]); 7143 spin_unlock_irqrestore(&zone->lock, flags); 7144 } 7145 7146 /* 7147 * As there is now likely space, wakeup kcompact to defragment 7148 * pageblocks. 7149 */ 7150 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx); 7151 } 7152 7153 snapshot_refaults(NULL, pgdat); 7154 __fs_reclaim_release(_THIS_IP_); 7155 psi_memstall_leave(&pflags); 7156 set_task_reclaim_state(current, NULL); 7157 7158 /* 7159 * Return the order kswapd stopped reclaiming at as 7160 * prepare_kswapd_sleep() takes it into account. If another caller 7161 * entered the allocator slow path while kswapd was awake, order will 7162 * remain at the higher level. 7163 */ 7164 return sc.order; 7165 } 7166 7167 /* 7168 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to 7169 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is 7170 * not a valid index then either kswapd runs for first time or kswapd couldn't 7171 * sleep after previous reclaim attempt (node is still unbalanced). In that 7172 * case return the zone index of the previous kswapd reclaim cycle. 7173 */ 7174 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat, 7175 enum zone_type prev_highest_zoneidx) 7176 { 7177 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 7178 7179 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx; 7180 } 7181 7182 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order, 7183 unsigned int highest_zoneidx) 7184 { 7185 long remaining = 0; 7186 DEFINE_WAIT(wait); 7187 7188 if (freezing(current) || kthread_should_stop()) 7189 return; 7190 7191 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 7192 7193 /* 7194 * Try to sleep for a short interval. Note that kcompactd will only be 7195 * woken if it is possible to sleep for a short interval. This is 7196 * deliberate on the assumption that if reclaim cannot keep an 7197 * eligible zone balanced that it's also unlikely that compaction will 7198 * succeed. 7199 */ 7200 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 7201 /* 7202 * Compaction records what page blocks it recently failed to 7203 * isolate pages from and skips them in the future scanning. 7204 * When kswapd is going to sleep, it is reasonable to assume 7205 * that pages and compaction may succeed so reset the cache. 7206 */ 7207 reset_isolation_suitable(pgdat); 7208 7209 /* 7210 * We have freed the memory, now we should compact it to make 7211 * allocation of the requested order possible. 7212 */ 7213 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx); 7214 7215 remaining = schedule_timeout(HZ/10); 7216 7217 /* 7218 * If woken prematurely then reset kswapd_highest_zoneidx and 7219 * order. The values will either be from a wakeup request or 7220 * the previous request that slept prematurely. 7221 */ 7222 if (remaining) { 7223 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, 7224 kswapd_highest_zoneidx(pgdat, 7225 highest_zoneidx)); 7226 7227 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order) 7228 WRITE_ONCE(pgdat->kswapd_order, reclaim_order); 7229 } 7230 7231 finish_wait(&pgdat->kswapd_wait, &wait); 7232 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 7233 } 7234 7235 /* 7236 * After a short sleep, check if it was a premature sleep. If not, then 7237 * go fully to sleep until explicitly woken up. 7238 */ 7239 if (!remaining && 7240 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 7241 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 7242 7243 /* 7244 * vmstat counters are not perfectly accurate and the estimated 7245 * value for counters such as NR_FREE_PAGES can deviate from the 7246 * true value by nr_online_cpus * threshold. To avoid the zone 7247 * watermarks being breached while under pressure, we reduce the 7248 * per-cpu vmstat threshold while kswapd is awake and restore 7249 * them before going back to sleep. 7250 */ 7251 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 7252 7253 if (!kthread_should_stop()) 7254 schedule(); 7255 7256 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 7257 } else { 7258 if (remaining) 7259 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 7260 else 7261 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 7262 } 7263 finish_wait(&pgdat->kswapd_wait, &wait); 7264 } 7265 7266 /* 7267 * The background pageout daemon, started as a kernel thread 7268 * from the init process. 7269 * 7270 * This basically trickles out pages so that we have _some_ 7271 * free memory available even if there is no other activity 7272 * that frees anything up. This is needed for things like routing 7273 * etc, where we otherwise might have all activity going on in 7274 * asynchronous contexts that cannot page things out. 7275 * 7276 * If there are applications that are active memory-allocators 7277 * (most normal use), this basically shouldn't matter. 7278 */ 7279 static int kswapd(void *p) 7280 { 7281 unsigned int alloc_order, reclaim_order; 7282 unsigned int highest_zoneidx = MAX_NR_ZONES - 1; 7283 pg_data_t *pgdat = (pg_data_t *)p; 7284 struct task_struct *tsk = current; 7285 7286 /* 7287 * Tell the memory management that we're a "memory allocator", 7288 * and that if we need more memory we should get access to it 7289 * regardless (see "__alloc_pages()"). "kswapd" should 7290 * never get caught in the normal page freeing logic. 7291 * 7292 * (Kswapd normally doesn't need memory anyway, but sometimes 7293 * you need a small amount of memory in order to be able to 7294 * page out something else, and this flag essentially protects 7295 * us from recursively trying to free more memory as we're 7296 * trying to free the first piece of memory in the first place). 7297 */ 7298 tsk->flags |= PF_MEMALLOC | PF_KSWAPD; 7299 set_freezable(); 7300 7301 WRITE_ONCE(pgdat->kswapd_order, 0); 7302 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 7303 atomic_set(&pgdat->nr_writeback_throttled, 0); 7304 for ( ; ; ) { 7305 bool was_frozen; 7306 7307 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order); 7308 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 7309 highest_zoneidx); 7310 7311 kswapd_try_sleep: 7312 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order, 7313 highest_zoneidx); 7314 7315 /* Read the new order and highest_zoneidx */ 7316 alloc_order = READ_ONCE(pgdat->kswapd_order); 7317 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 7318 highest_zoneidx); 7319 WRITE_ONCE(pgdat->kswapd_order, 0); 7320 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 7321 7322 if (kthread_freezable_should_stop(&was_frozen)) 7323 break; 7324 7325 /* 7326 * We can speed up thawing tasks if we don't call balance_pgdat 7327 * after returning from the refrigerator 7328 */ 7329 if (was_frozen) 7330 continue; 7331 7332 /* 7333 * Reclaim begins at the requested order but if a high-order 7334 * reclaim fails then kswapd falls back to reclaiming for 7335 * order-0. If that happens, kswapd will consider sleeping 7336 * for the order it finished reclaiming at (reclaim_order) 7337 * but kcompactd is woken to compact for the original 7338 * request (alloc_order). 7339 */ 7340 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx, 7341 alloc_order); 7342 reclaim_order = balance_pgdat(pgdat, alloc_order, 7343 highest_zoneidx); 7344 if (reclaim_order < alloc_order) 7345 goto kswapd_try_sleep; 7346 } 7347 7348 tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD); 7349 7350 return 0; 7351 } 7352 7353 /* 7354 * A zone is low on free memory or too fragmented for high-order memory. If 7355 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's 7356 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim 7357 * has failed or is not needed, still wake up kcompactd if only compaction is 7358 * needed. 7359 */ 7360 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order, 7361 enum zone_type highest_zoneidx) 7362 { 7363 pg_data_t *pgdat; 7364 enum zone_type curr_idx; 7365 7366 if (!managed_zone(zone)) 7367 return; 7368 7369 if (!cpuset_zone_allowed(zone, gfp_flags)) 7370 return; 7371 7372 pgdat = zone->zone_pgdat; 7373 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 7374 7375 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx) 7376 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx); 7377 7378 if (READ_ONCE(pgdat->kswapd_order) < order) 7379 WRITE_ONCE(pgdat->kswapd_order, order); 7380 7381 if (!waitqueue_active(&pgdat->kswapd_wait)) 7382 return; 7383 7384 /* Hopeless node, leave it to direct reclaim if possible */ 7385 if (kswapd_test_hopeless(pgdat) || 7386 (pgdat_balanced(pgdat, order, highest_zoneidx) && 7387 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) { 7388 /* 7389 * There may be plenty of free memory available, but it's too 7390 * fragmented for high-order allocations. Wake up kcompactd 7391 * and rely on compaction_suitable() to determine if it's 7392 * needed. If it fails, it will defer subsequent attempts to 7393 * ratelimit its work. 7394 */ 7395 if (!(gfp_flags & __GFP_DIRECT_RECLAIM)) 7396 wakeup_kcompactd(pgdat, order, highest_zoneidx); 7397 return; 7398 } 7399 7400 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order, 7401 gfp_flags); 7402 wake_up_interruptible(&pgdat->kswapd_wait); 7403 } 7404 7405 void kswapd_clear_hopeless(pg_data_t *pgdat, enum kswapd_clear_hopeless_reason reason) 7406 { 7407 /* Only trace actual resets, not redundant zero-to-zero */ 7408 if (atomic_xchg(&pgdat->kswapd_failures, 0)) 7409 trace_mm_vmscan_kswapd_clear_hopeless(pgdat->node_id, reason); 7410 } 7411 7412 /* 7413 * Reset kswapd_failures only when the node is balanced. Without this 7414 * check, successful direct reclaim (e.g., from cgroup memory.high 7415 * throttling) can keep resetting kswapd_failures even when the node 7416 * cannot be balanced, causing kswapd to run endlessly. 7417 */ 7418 void kswapd_try_clear_hopeless(struct pglist_data *pgdat, 7419 unsigned int order, int highest_zoneidx) 7420 { 7421 if (pgdat_balanced(pgdat, order, highest_zoneidx)) 7422 kswapd_clear_hopeless(pgdat, current_is_kswapd() ? 7423 KSWAPD_CLEAR_HOPELESS_KSWAPD : KSWAPD_CLEAR_HOPELESS_DIRECT); 7424 } 7425 7426 bool kswapd_test_hopeless(pg_data_t *pgdat) 7427 { 7428 return atomic_read(&pgdat->kswapd_failures) >= MAX_RECLAIM_RETRIES; 7429 } 7430 7431 #ifdef CONFIG_HIBERNATION 7432 /* 7433 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 7434 * freed pages. 7435 * 7436 * Rather than trying to age LRUs the aim is to preserve the overall 7437 * LRU order by reclaiming preferentially 7438 * inactive > active > active referenced > active mapped 7439 */ 7440 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 7441 { 7442 struct scan_control sc = { 7443 .nr_to_reclaim = nr_to_reclaim, 7444 .gfp_mask = GFP_HIGHUSER_MOVABLE, 7445 .reclaim_idx = MAX_NR_ZONES - 1, 7446 .priority = DEF_PRIORITY, 7447 .may_writepage = 1, 7448 .may_unmap = 1, 7449 .may_swap = 1, 7450 .hibernation_mode = 1, 7451 }; 7452 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 7453 unsigned long nr_reclaimed; 7454 unsigned int noreclaim_flag; 7455 7456 fs_reclaim_acquire(sc.gfp_mask); 7457 noreclaim_flag = memalloc_noreclaim_save(); 7458 set_task_reclaim_state(current, &sc.reclaim_state); 7459 7460 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 7461 7462 set_task_reclaim_state(current, NULL); 7463 memalloc_noreclaim_restore(noreclaim_flag); 7464 fs_reclaim_release(sc.gfp_mask); 7465 7466 return nr_reclaimed; 7467 } 7468 #endif /* CONFIG_HIBERNATION */ 7469 7470 /* 7471 * This kswapd start function will be called by init and node-hot-add. 7472 */ 7473 void __meminit kswapd_run(int nid) 7474 { 7475 pg_data_t *pgdat = NODE_DATA(nid); 7476 7477 pgdat_kswapd_lock(pgdat); 7478 if (!pgdat->kswapd) { 7479 pgdat->kswapd = kthread_create_on_node(kswapd, pgdat, nid, "kswapd%d", nid); 7480 if (IS_ERR(pgdat->kswapd)) { 7481 /* failure at boot is fatal */ 7482 pr_err("Failed to start kswapd on node %d, ret=%pe\n", 7483 nid, pgdat->kswapd); 7484 BUG_ON(system_state < SYSTEM_RUNNING); 7485 pgdat->kswapd = NULL; 7486 } else { 7487 wake_up_process(pgdat->kswapd); 7488 } 7489 } 7490 pgdat_kswapd_unlock(pgdat); 7491 } 7492 7493 /* 7494 * Called by memory hotplug when all memory in a node is offlined. Caller must 7495 * be holding mem_hotplug_begin/done(). 7496 */ 7497 void __meminit kswapd_stop(int nid) 7498 { 7499 pg_data_t *pgdat = NODE_DATA(nid); 7500 struct task_struct *kswapd; 7501 7502 pgdat_kswapd_lock(pgdat); 7503 kswapd = pgdat->kswapd; 7504 if (kswapd) { 7505 kthread_stop(kswapd); 7506 pgdat->kswapd = NULL; 7507 } 7508 pgdat_kswapd_unlock(pgdat); 7509 } 7510 7511 static const struct ctl_table vmscan_sysctl_table[] = { 7512 { 7513 .procname = "swappiness", 7514 .data = &vm_swappiness, 7515 .maxlen = sizeof(vm_swappiness), 7516 .mode = 0644, 7517 .proc_handler = proc_dointvec_minmax, 7518 .extra1 = SYSCTL_ZERO, 7519 .extra2 = SYSCTL_TWO_HUNDRED, 7520 }, 7521 #ifdef CONFIG_NUMA 7522 { 7523 .procname = "zone_reclaim_mode", 7524 .data = &node_reclaim_mode, 7525 .maxlen = sizeof(node_reclaim_mode), 7526 .mode = 0644, 7527 .proc_handler = proc_dointvec_minmax, 7528 .extra1 = SYSCTL_ZERO, 7529 } 7530 #endif 7531 }; 7532 7533 static int __init kswapd_init(void) 7534 { 7535 int nid; 7536 7537 swap_setup(); 7538 for_each_node_state(nid, N_MEMORY) 7539 kswapd_run(nid); 7540 register_sysctl_init("vm", vmscan_sysctl_table); 7541 return 0; 7542 } 7543 7544 module_init(kswapd_init) 7545 7546 #ifdef CONFIG_NUMA 7547 /* 7548 * Node reclaim mode 7549 * 7550 * If non-zero call node_reclaim when the number of free pages falls below 7551 * the watermarks. 7552 */ 7553 int node_reclaim_mode __read_mostly; 7554 7555 /* 7556 * Priority for NODE_RECLAIM. This determines the fraction of pages 7557 * of a node considered for each zone_reclaim. 4 scans 1/16th of 7558 * a zone. 7559 */ 7560 #define NODE_RECLAIM_PRIORITY 4 7561 7562 /* 7563 * Percentage of pages in a zone that must be unmapped for node_reclaim to 7564 * occur. 7565 */ 7566 int sysctl_min_unmapped_ratio = 1; 7567 7568 /* 7569 * If the number of slab pages in a zone grows beyond this percentage then 7570 * slab reclaim needs to occur. 7571 */ 7572 int sysctl_min_slab_ratio = 5; 7573 7574 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat) 7575 { 7576 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED); 7577 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) + 7578 node_page_state(pgdat, NR_ACTIVE_FILE); 7579 7580 /* 7581 * It's possible for there to be more file mapped pages than 7582 * accounted for by the pages on the file LRU lists because 7583 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 7584 */ 7585 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 7586 } 7587 7588 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 7589 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat) 7590 { 7591 unsigned long nr_pagecache_reclaimable; 7592 unsigned long delta = 0; 7593 7594 /* 7595 * If RECLAIM_UNMAP is set, then all file pages are considered 7596 * potentially reclaimable. Otherwise, we have to worry about 7597 * pages like swapcache and node_unmapped_file_pages() provides 7598 * a better estimate 7599 */ 7600 if (node_reclaim_mode & RECLAIM_UNMAP) 7601 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES); 7602 else 7603 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat); 7604 7605 /* 7606 * Since we can't clean folios through reclaim, remove dirty file 7607 * folios from consideration. 7608 */ 7609 delta += node_page_state(pgdat, NR_FILE_DIRTY); 7610 7611 /* Watch for any possible underflows due to delta */ 7612 if (unlikely(delta > nr_pagecache_reclaimable)) 7613 delta = nr_pagecache_reclaimable; 7614 7615 return nr_pagecache_reclaimable - delta; 7616 } 7617 7618 /* 7619 * Try to free up some pages from this node through reclaim. 7620 */ 7621 static unsigned long __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, 7622 unsigned long nr_pages, 7623 struct scan_control *sc) 7624 { 7625 struct task_struct *p = current; 7626 unsigned int noreclaim_flag; 7627 unsigned long pflags; 7628 7629 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, sc->order, 7630 sc->gfp_mask); 7631 7632 cond_resched(); 7633 psi_memstall_enter(&pflags); 7634 delayacct_freepages_start(); 7635 fs_reclaim_acquire(sc->gfp_mask); 7636 /* 7637 * We need to be able to allocate from the reserves for RECLAIM_UNMAP 7638 */ 7639 noreclaim_flag = memalloc_noreclaim_save(); 7640 set_task_reclaim_state(p, &sc->reclaim_state); 7641 7642 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages || 7643 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) { 7644 /* 7645 * Free memory by calling shrink node with increasing 7646 * priorities until we have enough memory freed. 7647 */ 7648 do { 7649 shrink_node(pgdat, sc); 7650 } while (sc->nr_reclaimed < nr_pages && --sc->priority >= 0); 7651 } 7652 7653 set_task_reclaim_state(p, NULL); 7654 memalloc_noreclaim_restore(noreclaim_flag); 7655 fs_reclaim_release(sc->gfp_mask); 7656 delayacct_freepages_end(); 7657 psi_memstall_leave(&pflags); 7658 7659 trace_mm_vmscan_node_reclaim_end(sc->nr_reclaimed); 7660 7661 return sc->nr_reclaimed; 7662 } 7663 7664 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 7665 { 7666 int ret; 7667 /* Minimum pages needed in order to stay on node */ 7668 const unsigned long nr_pages = 1 << order; 7669 struct scan_control sc = { 7670 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 7671 .gfp_mask = current_gfp_context(gfp_mask), 7672 .order = order, 7673 .priority = NODE_RECLAIM_PRIORITY, 7674 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE), 7675 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP), 7676 .may_swap = 1, 7677 .reclaim_idx = gfp_zone(gfp_mask), 7678 }; 7679 7680 /* 7681 * Node reclaim reclaims unmapped file backed pages and 7682 * slab pages if we are over the defined limits. 7683 * 7684 * A small portion of unmapped file backed pages is needed for 7685 * file I/O otherwise pages read by file I/O will be immediately 7686 * thrown out if the node is overallocated. So we do not reclaim 7687 * if less than a specified percentage of the node is used by 7688 * unmapped file backed pages. 7689 */ 7690 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages && 7691 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <= 7692 pgdat->min_slab_pages) 7693 return NODE_RECLAIM_FULL; 7694 7695 /* 7696 * Do not scan if the allocation should not be delayed. 7697 */ 7698 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) 7699 return NODE_RECLAIM_NOSCAN; 7700 7701 /* 7702 * Only run node reclaim on the local node or on nodes that do not 7703 * have associated processors. This will favor the local processor 7704 * over remote processors and spread off node memory allocations 7705 * as wide as possible. 7706 */ 7707 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id()) 7708 return NODE_RECLAIM_NOSCAN; 7709 7710 if (test_and_set_bit_lock(PGDAT_RECLAIM_LOCKED, &pgdat->flags)) 7711 return NODE_RECLAIM_NOSCAN; 7712 7713 ret = __node_reclaim(pgdat, gfp_mask, nr_pages, &sc) >= nr_pages; 7714 clear_bit_unlock(PGDAT_RECLAIM_LOCKED, &pgdat->flags); 7715 7716 if (ret) 7717 count_vm_event(PGSCAN_ZONE_RECLAIM_SUCCESS); 7718 else 7719 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 7720 7721 return ret; 7722 } 7723 7724 #else 7725 7726 static unsigned long __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, 7727 unsigned long nr_pages, 7728 struct scan_control *sc) 7729 { 7730 return 0; 7731 } 7732 7733 #endif 7734 7735 enum { 7736 MEMORY_RECLAIM_SWAPPINESS = 0, 7737 MEMORY_RECLAIM_SWAPPINESS_MAX, 7738 MEMORY_RECLAIM_NULL, 7739 }; 7740 static const match_table_t tokens = { 7741 { MEMORY_RECLAIM_SWAPPINESS, "swappiness=%d"}, 7742 { MEMORY_RECLAIM_SWAPPINESS_MAX, "swappiness=max"}, 7743 { MEMORY_RECLAIM_NULL, NULL }, 7744 }; 7745 7746 int user_proactive_reclaim(char *buf, 7747 struct mem_cgroup *memcg, pg_data_t *pgdat) 7748 { 7749 unsigned int nr_retries = MAX_RECLAIM_RETRIES; 7750 unsigned long nr_to_reclaim, nr_reclaimed = 0; 7751 int swappiness = -1; 7752 char *old_buf, *start; 7753 substring_t args[MAX_OPT_ARGS]; 7754 gfp_t gfp_mask = GFP_KERNEL; 7755 7756 if (!buf || (!memcg && !pgdat) || (memcg && pgdat)) 7757 return -EINVAL; 7758 7759 buf = strstrip(buf); 7760 7761 old_buf = buf; 7762 nr_to_reclaim = memparse(buf, &buf) / PAGE_SIZE; 7763 if (buf == old_buf) 7764 return -EINVAL; 7765 7766 buf = strstrip(buf); 7767 7768 while ((start = strsep(&buf, " ")) != NULL) { 7769 if (!strlen(start)) 7770 continue; 7771 switch (match_token(start, tokens, args)) { 7772 case MEMORY_RECLAIM_SWAPPINESS: 7773 if (match_int(&args[0], &swappiness)) 7774 return -EINVAL; 7775 if (swappiness < MIN_SWAPPINESS || 7776 swappiness > MAX_SWAPPINESS) 7777 return -EINVAL; 7778 break; 7779 case MEMORY_RECLAIM_SWAPPINESS_MAX: 7780 swappiness = SWAPPINESS_ANON_ONLY; 7781 break; 7782 default: 7783 return -EINVAL; 7784 } 7785 } 7786 7787 while (nr_reclaimed < nr_to_reclaim) { 7788 /* Will converge on zero, but reclaim enforces a minimum */ 7789 unsigned long batch_size = (nr_to_reclaim - nr_reclaimed) / 4; 7790 unsigned long reclaimed; 7791 7792 if (signal_pending(current)) 7793 return -EINTR; 7794 7795 /* 7796 * This is the final attempt, drain percpu lru caches in the 7797 * hope of introducing more evictable pages. 7798 */ 7799 if (!nr_retries) 7800 lru_add_drain_all(); 7801 7802 if (memcg) { 7803 unsigned int reclaim_options; 7804 7805 reclaim_options = MEMCG_RECLAIM_MAY_SWAP | 7806 MEMCG_RECLAIM_PROACTIVE; 7807 reclaimed = try_to_free_mem_cgroup_pages(memcg, 7808 batch_size, gfp_mask, 7809 reclaim_options, 7810 swappiness == -1 ? NULL : &swappiness); 7811 } else { 7812 struct scan_control sc = { 7813 .gfp_mask = current_gfp_context(gfp_mask), 7814 .reclaim_idx = gfp_zone(gfp_mask), 7815 .proactive_swappiness = swappiness == -1 ? NULL : &swappiness, 7816 .priority = DEF_PRIORITY, 7817 .may_writepage = 1, 7818 .nr_to_reclaim = max(batch_size, SWAP_CLUSTER_MAX), 7819 .may_unmap = 1, 7820 .may_swap = 1, 7821 .proactive = 1, 7822 }; 7823 7824 if (test_and_set_bit_lock(PGDAT_RECLAIM_LOCKED, 7825 &pgdat->flags)) 7826 return -EBUSY; 7827 7828 reclaimed = __node_reclaim(pgdat, gfp_mask, 7829 batch_size, &sc); 7830 clear_bit_unlock(PGDAT_RECLAIM_LOCKED, &pgdat->flags); 7831 } 7832 7833 if (!reclaimed && !nr_retries--) 7834 return -EAGAIN; 7835 7836 nr_reclaimed += reclaimed; 7837 } 7838 7839 return 0; 7840 } 7841 7842 /** 7843 * check_move_unevictable_folios - Move evictable folios to appropriate zone 7844 * lru list 7845 * @fbatch: Batch of lru folios to check. 7846 * 7847 * Checks folios for evictability, if an evictable folio is in the unevictable 7848 * lru list, moves it to the appropriate evictable lru list. This function 7849 * should be only used for lru folios. 7850 */ 7851 void check_move_unevictable_folios(struct folio_batch *fbatch) 7852 { 7853 struct lruvec *lruvec = NULL; 7854 int pgscanned = 0; 7855 int pgrescued = 0; 7856 int i; 7857 7858 for (i = 0; i < fbatch->nr; i++) { 7859 struct folio *folio = fbatch->folios[i]; 7860 int nr_pages = folio_nr_pages(folio); 7861 7862 pgscanned += nr_pages; 7863 7864 /* block memcg migration while the folio moves between lrus */ 7865 if (!folio_test_clear_lru(folio)) 7866 continue; 7867 7868 lruvec = folio_lruvec_relock_irq(folio, lruvec); 7869 if (folio_evictable(folio) && folio_test_unevictable(folio)) { 7870 lruvec_del_folio(lruvec, folio); 7871 folio_clear_unevictable(folio); 7872 lruvec_add_folio(lruvec, folio); 7873 pgrescued += nr_pages; 7874 } 7875 folio_set_lru(folio); 7876 } 7877 7878 if (lruvec) { 7879 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 7880 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 7881 unlock_page_lruvec_irq(lruvec); 7882 } else if (pgscanned) { 7883 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 7884 } 7885 } 7886 EXPORT_SYMBOL_GPL(check_move_unevictable_folios); 7887 7888 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA) 7889 static ssize_t reclaim_store(struct device *dev, 7890 struct device_attribute *attr, 7891 const char *buf, size_t count) 7892 { 7893 int ret, nid = dev->id; 7894 7895 ret = user_proactive_reclaim((char *)buf, NULL, NODE_DATA(nid)); 7896 return ret ? -EAGAIN : count; 7897 } 7898 7899 static DEVICE_ATTR_WO(reclaim); 7900 int reclaim_register_node(struct node *node) 7901 { 7902 return device_create_file(&node->dev, &dev_attr_reclaim); 7903 } 7904 7905 void reclaim_unregister_node(struct node *node) 7906 { 7907 return device_remove_file(&node->dev, &dev_attr_reclaim); 7908 } 7909 #endif 7910