1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 4 * 5 * Swap reorganised 29.12.95, Stephen Tweedie. 6 * kswapd added: 7.1.96 sct 7 * Removed kswapd_ctl limits, and swap out as many pages as needed 8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 9 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 10 * Multiqueue VM started 5.8.00, Rik van Riel. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 15 #include <linux/mm.h> 16 #include <linux/sched/mm.h> 17 #include <linux/module.h> 18 #include <linux/gfp.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/swap.h> 21 #include <linux/pagemap.h> 22 #include <linux/init.h> 23 #include <linux/highmem.h> 24 #include <linux/vmpressure.h> 25 #include <linux/vmstat.h> 26 #include <linux/file.h> 27 #include <linux/writeback.h> 28 #include <linux/blkdev.h> 29 #include <linux/buffer_head.h> /* for buffer_heads_over_limit */ 30 #include <linux/mm_inline.h> 31 #include <linux/backing-dev.h> 32 #include <linux/rmap.h> 33 #include <linux/topology.h> 34 #include <linux/cpu.h> 35 #include <linux/cpuset.h> 36 #include <linux/compaction.h> 37 #include <linux/notifier.h> 38 #include <linux/delay.h> 39 #include <linux/kthread.h> 40 #include <linux/freezer.h> 41 #include <linux/memcontrol.h> 42 #include <linux/migrate.h> 43 #include <linux/delayacct.h> 44 #include <linux/sysctl.h> 45 #include <linux/memory-tiers.h> 46 #include <linux/oom.h> 47 #include <linux/pagevec.h> 48 #include <linux/prefetch.h> 49 #include <linux/printk.h> 50 #include <linux/dax.h> 51 #include <linux/psi.h> 52 #include <linux/pagewalk.h> 53 #include <linux/shmem_fs.h> 54 #include <linux/ctype.h> 55 #include <linux/debugfs.h> 56 #include <linux/khugepaged.h> 57 #include <linux/rculist_nulls.h> 58 #include <linux/random.h> 59 #include <linux/mmu_notifier.h> 60 61 #include <asm/tlbflush.h> 62 #include <asm/div64.h> 63 64 #include <linux/swapops.h> 65 #include <linux/balloon_compaction.h> 66 #include <linux/sched/sysctl.h> 67 68 #include "internal.h" 69 #include "swap.h" 70 71 #define CREATE_TRACE_POINTS 72 #include <trace/events/vmscan.h> 73 74 struct scan_control { 75 /* How many pages shrink_list() should reclaim */ 76 unsigned long nr_to_reclaim; 77 78 /* 79 * Nodemask of nodes allowed by the caller. If NULL, all nodes 80 * are scanned. 81 */ 82 nodemask_t *nodemask; 83 84 /* 85 * The memory cgroup that hit its limit and as a result is the 86 * primary target of this reclaim invocation. 87 */ 88 struct mem_cgroup *target_mem_cgroup; 89 90 /* 91 * Scan pressure balancing between anon and file LRUs 92 */ 93 unsigned long anon_cost; 94 unsigned long file_cost; 95 96 #ifdef CONFIG_MEMCG 97 /* Swappiness value for proactive reclaim. Always use sc_swappiness()! */ 98 int *proactive_swappiness; 99 #endif 100 101 /* Can active folios be deactivated as part of reclaim? */ 102 #define DEACTIVATE_ANON 1 103 #define DEACTIVATE_FILE 2 104 unsigned int may_deactivate:2; 105 unsigned int force_deactivate:1; 106 unsigned int skipped_deactivate:1; 107 108 /* Writepage batching in laptop mode; RECLAIM_WRITE */ 109 unsigned int may_writepage:1; 110 111 /* Can mapped folios be reclaimed? */ 112 unsigned int may_unmap:1; 113 114 /* Can folios be swapped as part of reclaim? */ 115 unsigned int may_swap:1; 116 117 /* Not allow cache_trim_mode to be turned on as part of reclaim? */ 118 unsigned int no_cache_trim_mode:1; 119 120 /* Has cache_trim_mode failed at least once? */ 121 unsigned int cache_trim_mode_failed:1; 122 123 /* Proactive reclaim invoked by userspace through memory.reclaim */ 124 unsigned int proactive:1; 125 126 /* 127 * Cgroup memory below memory.low is protected as long as we 128 * don't threaten to OOM. If any cgroup is reclaimed at 129 * reduced force or passed over entirely due to its memory.low 130 * setting (memcg_low_skipped), and nothing is reclaimed as a 131 * result, then go back for one more cycle that reclaims the protected 132 * memory (memcg_low_reclaim) to avert OOM. 133 */ 134 unsigned int memcg_low_reclaim:1; 135 unsigned int memcg_low_skipped:1; 136 137 /* Shared cgroup tree walk failed, rescan the whole tree */ 138 unsigned int memcg_full_walk:1; 139 140 unsigned int hibernation_mode:1; 141 142 /* One of the zones is ready for compaction */ 143 unsigned int compaction_ready:1; 144 145 /* There is easily reclaimable cold cache in the current node */ 146 unsigned int cache_trim_mode:1; 147 148 /* The file folios on the current node are dangerously low */ 149 unsigned int file_is_tiny:1; 150 151 /* Always discard instead of demoting to lower tier memory */ 152 unsigned int no_demotion:1; 153 154 /* Allocation order */ 155 s8 order; 156 157 /* Scan (total_size >> priority) pages at once */ 158 s8 priority; 159 160 /* The highest zone to isolate folios for reclaim from */ 161 s8 reclaim_idx; 162 163 /* This context's GFP mask */ 164 gfp_t gfp_mask; 165 166 /* Incremented by the number of inactive pages that were scanned */ 167 unsigned long nr_scanned; 168 169 /* Number of pages freed so far during a call to shrink_zones() */ 170 unsigned long nr_reclaimed; 171 172 struct { 173 unsigned int dirty; 174 unsigned int unqueued_dirty; 175 unsigned int congested; 176 unsigned int writeback; 177 unsigned int immediate; 178 unsigned int file_taken; 179 unsigned int taken; 180 } nr; 181 182 /* for recording the reclaimed slab by now */ 183 struct reclaim_state reclaim_state; 184 }; 185 186 #ifdef ARCH_HAS_PREFETCHW 187 #define prefetchw_prev_lru_folio(_folio, _base, _field) \ 188 do { \ 189 if ((_folio)->lru.prev != _base) { \ 190 struct folio *prev; \ 191 \ 192 prev = lru_to_folio(&(_folio->lru)); \ 193 prefetchw(&prev->_field); \ 194 } \ 195 } while (0) 196 #else 197 #define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0) 198 #endif 199 200 /* 201 * From 0 .. MAX_SWAPPINESS. Higher means more swappy. 202 */ 203 int vm_swappiness = 60; 204 205 #ifdef CONFIG_MEMCG 206 207 /* Returns true for reclaim through cgroup limits or cgroup interfaces. */ 208 static bool cgroup_reclaim(struct scan_control *sc) 209 { 210 return sc->target_mem_cgroup; 211 } 212 213 /* 214 * Returns true for reclaim on the root cgroup. This is true for direct 215 * allocator reclaim and reclaim through cgroup interfaces on the root cgroup. 216 */ 217 static bool root_reclaim(struct scan_control *sc) 218 { 219 return !sc->target_mem_cgroup || mem_cgroup_is_root(sc->target_mem_cgroup); 220 } 221 222 /** 223 * writeback_throttling_sane - is the usual dirty throttling mechanism available? 224 * @sc: scan_control in question 225 * 226 * The normal page dirty throttling mechanism in balance_dirty_pages() is 227 * completely broken with the legacy memcg and direct stalling in 228 * shrink_folio_list() is used for throttling instead, which lacks all the 229 * niceties such as fairness, adaptive pausing, bandwidth proportional 230 * allocation and configurability. 231 * 232 * This function tests whether the vmscan currently in progress can assume 233 * that the normal dirty throttling mechanism is operational. 234 */ 235 static bool writeback_throttling_sane(struct scan_control *sc) 236 { 237 if (!cgroup_reclaim(sc)) 238 return true; 239 #ifdef CONFIG_CGROUP_WRITEBACK 240 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 241 return true; 242 #endif 243 return false; 244 } 245 246 static int sc_swappiness(struct scan_control *sc, struct mem_cgroup *memcg) 247 { 248 if (sc->proactive && sc->proactive_swappiness) 249 return *sc->proactive_swappiness; 250 return mem_cgroup_swappiness(memcg); 251 } 252 #else 253 static bool cgroup_reclaim(struct scan_control *sc) 254 { 255 return false; 256 } 257 258 static bool root_reclaim(struct scan_control *sc) 259 { 260 return true; 261 } 262 263 static bool writeback_throttling_sane(struct scan_control *sc) 264 { 265 return true; 266 } 267 268 static int sc_swappiness(struct scan_control *sc, struct mem_cgroup *memcg) 269 { 270 return READ_ONCE(vm_swappiness); 271 } 272 #endif 273 274 static void set_task_reclaim_state(struct task_struct *task, 275 struct reclaim_state *rs) 276 { 277 /* Check for an overwrite */ 278 WARN_ON_ONCE(rs && task->reclaim_state); 279 280 /* Check for the nulling of an already-nulled member */ 281 WARN_ON_ONCE(!rs && !task->reclaim_state); 282 283 task->reclaim_state = rs; 284 } 285 286 /* 287 * flush_reclaim_state(): add pages reclaimed outside of LRU-based reclaim to 288 * scan_control->nr_reclaimed. 289 */ 290 static void flush_reclaim_state(struct scan_control *sc) 291 { 292 /* 293 * Currently, reclaim_state->reclaimed includes three types of pages 294 * freed outside of vmscan: 295 * (1) Slab pages. 296 * (2) Clean file pages from pruned inodes (on highmem systems). 297 * (3) XFS freed buffer pages. 298 * 299 * For all of these cases, we cannot universally link the pages to a 300 * single memcg. For example, a memcg-aware shrinker can free one object 301 * charged to the target memcg, causing an entire page to be freed. 302 * If we count the entire page as reclaimed from the memcg, we end up 303 * overestimating the reclaimed amount (potentially under-reclaiming). 304 * 305 * Only count such pages for global reclaim to prevent under-reclaiming 306 * from the target memcg; preventing unnecessary retries during memcg 307 * charging and false positives from proactive reclaim. 308 * 309 * For uncommon cases where the freed pages were actually mostly 310 * charged to the target memcg, we end up underestimating the reclaimed 311 * amount. This should be fine. The freed pages will be uncharged 312 * anyway, even if they are not counted here properly, and we will be 313 * able to make forward progress in charging (which is usually in a 314 * retry loop). 315 * 316 * We can go one step further, and report the uncharged objcg pages in 317 * memcg reclaim, to make reporting more accurate and reduce 318 * underestimation, but it's probably not worth the complexity for now. 319 */ 320 if (current->reclaim_state && root_reclaim(sc)) { 321 sc->nr_reclaimed += current->reclaim_state->reclaimed; 322 current->reclaim_state->reclaimed = 0; 323 } 324 } 325 326 static bool can_demote(int nid, struct scan_control *sc) 327 { 328 if (!numa_demotion_enabled) 329 return false; 330 if (sc && sc->no_demotion) 331 return false; 332 if (next_demotion_node(nid) == NUMA_NO_NODE) 333 return false; 334 335 return true; 336 } 337 338 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg, 339 int nid, 340 struct scan_control *sc) 341 { 342 if (memcg == NULL) { 343 /* 344 * For non-memcg reclaim, is there 345 * space in any swap device? 346 */ 347 if (get_nr_swap_pages() > 0) 348 return true; 349 } else { 350 /* Is the memcg below its swap limit? */ 351 if (mem_cgroup_get_nr_swap_pages(memcg) > 0) 352 return true; 353 } 354 355 /* 356 * The page can not be swapped. 357 * 358 * Can it be reclaimed from this node via demotion? 359 */ 360 return can_demote(nid, sc); 361 } 362 363 /* 364 * This misses isolated folios which are not accounted for to save counters. 365 * As the data only determines if reclaim or compaction continues, it is 366 * not expected that isolated folios will be a dominating factor. 367 */ 368 unsigned long zone_reclaimable_pages(struct zone *zone) 369 { 370 unsigned long nr; 371 372 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) + 373 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE); 374 if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL)) 375 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) + 376 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON); 377 378 return nr; 379 } 380 381 /** 382 * lruvec_lru_size - Returns the number of pages on the given LRU list. 383 * @lruvec: lru vector 384 * @lru: lru to use 385 * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list) 386 */ 387 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, 388 int zone_idx) 389 { 390 unsigned long size = 0; 391 int zid; 392 393 for (zid = 0; zid <= zone_idx; zid++) { 394 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid]; 395 396 if (!managed_zone(zone)) 397 continue; 398 399 if (!mem_cgroup_disabled()) 400 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid); 401 else 402 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru); 403 } 404 return size; 405 } 406 407 static unsigned long drop_slab_node(int nid) 408 { 409 unsigned long freed = 0; 410 struct mem_cgroup *memcg = NULL; 411 412 memcg = mem_cgroup_iter(NULL, NULL, NULL); 413 do { 414 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0); 415 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 416 417 return freed; 418 } 419 420 void drop_slab(void) 421 { 422 int nid; 423 int shift = 0; 424 unsigned long freed; 425 426 do { 427 freed = 0; 428 for_each_online_node(nid) { 429 if (fatal_signal_pending(current)) 430 return; 431 432 freed += drop_slab_node(nid); 433 } 434 } while ((freed >> shift++) > 1); 435 } 436 437 static int reclaimer_offset(void) 438 { 439 BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD != 440 PGDEMOTE_DIRECT - PGDEMOTE_KSWAPD); 441 BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD != 442 PGDEMOTE_KHUGEPAGED - PGDEMOTE_KSWAPD); 443 BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD != 444 PGSCAN_DIRECT - PGSCAN_KSWAPD); 445 BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD != 446 PGSCAN_KHUGEPAGED - PGSCAN_KSWAPD); 447 448 if (current_is_kswapd()) 449 return 0; 450 if (current_is_khugepaged()) 451 return PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD; 452 return PGSTEAL_DIRECT - PGSTEAL_KSWAPD; 453 } 454 455 static inline int is_page_cache_freeable(struct folio *folio) 456 { 457 /* 458 * A freeable page cache folio is referenced only by the caller 459 * that isolated the folio, the page cache and optional filesystem 460 * private data at folio->private. 461 */ 462 return folio_ref_count(folio) - folio_test_private(folio) == 463 1 + folio_nr_pages(folio); 464 } 465 466 /* 467 * We detected a synchronous write error writing a folio out. Probably 468 * -ENOSPC. We need to propagate that into the address_space for a subsequent 469 * fsync(), msync() or close(). 470 * 471 * The tricky part is that after writepage we cannot touch the mapping: nothing 472 * prevents it from being freed up. But we have a ref on the folio and once 473 * that folio is locked, the mapping is pinned. 474 * 475 * We're allowed to run sleeping folio_lock() here because we know the caller has 476 * __GFP_FS. 477 */ 478 static void handle_write_error(struct address_space *mapping, 479 struct folio *folio, int error) 480 { 481 folio_lock(folio); 482 if (folio_mapping(folio) == mapping) 483 mapping_set_error(mapping, error); 484 folio_unlock(folio); 485 } 486 487 static bool skip_throttle_noprogress(pg_data_t *pgdat) 488 { 489 int reclaimable = 0, write_pending = 0; 490 int i; 491 492 /* 493 * If kswapd is disabled, reschedule if necessary but do not 494 * throttle as the system is likely near OOM. 495 */ 496 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 497 return true; 498 499 /* 500 * If there are a lot of dirty/writeback folios then do not 501 * throttle as throttling will occur when the folios cycle 502 * towards the end of the LRU if still under writeback. 503 */ 504 for (i = 0; i < MAX_NR_ZONES; i++) { 505 struct zone *zone = pgdat->node_zones + i; 506 507 if (!managed_zone(zone)) 508 continue; 509 510 reclaimable += zone_reclaimable_pages(zone); 511 write_pending += zone_page_state_snapshot(zone, 512 NR_ZONE_WRITE_PENDING); 513 } 514 if (2 * write_pending <= reclaimable) 515 return true; 516 517 return false; 518 } 519 520 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason) 521 { 522 wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason]; 523 long timeout, ret; 524 DEFINE_WAIT(wait); 525 526 /* 527 * Do not throttle user workers, kthreads other than kswapd or 528 * workqueues. They may be required for reclaim to make 529 * forward progress (e.g. journalling workqueues or kthreads). 530 */ 531 if (!current_is_kswapd() && 532 current->flags & (PF_USER_WORKER|PF_KTHREAD)) { 533 cond_resched(); 534 return; 535 } 536 537 /* 538 * These figures are pulled out of thin air. 539 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many 540 * parallel reclaimers which is a short-lived event so the timeout is 541 * short. Failing to make progress or waiting on writeback are 542 * potentially long-lived events so use a longer timeout. This is shaky 543 * logic as a failure to make progress could be due to anything from 544 * writeback to a slow device to excessive referenced folios at the tail 545 * of the inactive LRU. 546 */ 547 switch(reason) { 548 case VMSCAN_THROTTLE_WRITEBACK: 549 timeout = HZ/10; 550 551 if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) { 552 WRITE_ONCE(pgdat->nr_reclaim_start, 553 node_page_state(pgdat, NR_THROTTLED_WRITTEN)); 554 } 555 556 break; 557 case VMSCAN_THROTTLE_CONGESTED: 558 fallthrough; 559 case VMSCAN_THROTTLE_NOPROGRESS: 560 if (skip_throttle_noprogress(pgdat)) { 561 cond_resched(); 562 return; 563 } 564 565 timeout = 1; 566 567 break; 568 case VMSCAN_THROTTLE_ISOLATED: 569 timeout = HZ/50; 570 break; 571 default: 572 WARN_ON_ONCE(1); 573 timeout = HZ; 574 break; 575 } 576 577 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE); 578 ret = schedule_timeout(timeout); 579 finish_wait(wqh, &wait); 580 581 if (reason == VMSCAN_THROTTLE_WRITEBACK) 582 atomic_dec(&pgdat->nr_writeback_throttled); 583 584 trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout), 585 jiffies_to_usecs(timeout - ret), 586 reason); 587 } 588 589 /* 590 * Account for folios written if tasks are throttled waiting on dirty 591 * folios to clean. If enough folios have been cleaned since throttling 592 * started then wakeup the throttled tasks. 593 */ 594 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio, 595 int nr_throttled) 596 { 597 unsigned long nr_written; 598 599 node_stat_add_folio(folio, NR_THROTTLED_WRITTEN); 600 601 /* 602 * This is an inaccurate read as the per-cpu deltas may not 603 * be synchronised. However, given that the system is 604 * writeback throttled, it is not worth taking the penalty 605 * of getting an accurate count. At worst, the throttle 606 * timeout guarantees forward progress. 607 */ 608 nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) - 609 READ_ONCE(pgdat->nr_reclaim_start); 610 611 if (nr_written > SWAP_CLUSTER_MAX * nr_throttled) 612 wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]); 613 } 614 615 /* possible outcome of pageout() */ 616 typedef enum { 617 /* failed to write folio out, folio is locked */ 618 PAGE_KEEP, 619 /* move folio to the active list, folio is locked */ 620 PAGE_ACTIVATE, 621 /* folio has been sent to the disk successfully, folio is unlocked */ 622 PAGE_SUCCESS, 623 /* folio is clean and locked */ 624 PAGE_CLEAN, 625 } pageout_t; 626 627 /* 628 * pageout is called by shrink_folio_list() for each dirty folio. 629 * Calls ->writepage(). 630 */ 631 static pageout_t pageout(struct folio *folio, struct address_space *mapping, 632 struct swap_iocb **plug, struct list_head *folio_list) 633 { 634 /* 635 * If the folio is dirty, only perform writeback if that write 636 * will be non-blocking. To prevent this allocation from being 637 * stalled by pagecache activity. But note that there may be 638 * stalls if we need to run get_block(). We could test 639 * PagePrivate for that. 640 * 641 * If this process is currently in __generic_file_write_iter() against 642 * this folio's queue, we can perform writeback even if that 643 * will block. 644 * 645 * If the folio is swapcache, write it back even if that would 646 * block, for some throttling. This happens by accident, because 647 * swap_backing_dev_info is bust: it doesn't reflect the 648 * congestion state of the swapdevs. Easy to fix, if needed. 649 */ 650 if (!is_page_cache_freeable(folio)) 651 return PAGE_KEEP; 652 if (!mapping) { 653 /* 654 * Some data journaling orphaned folios can have 655 * folio->mapping == NULL while being dirty with clean buffers. 656 */ 657 if (folio_test_private(folio)) { 658 if (try_to_free_buffers(folio)) { 659 folio_clear_dirty(folio); 660 pr_info("%s: orphaned folio\n", __func__); 661 return PAGE_CLEAN; 662 } 663 } 664 return PAGE_KEEP; 665 } 666 if (mapping->a_ops->writepage == NULL) 667 return PAGE_ACTIVATE; 668 669 if (folio_clear_dirty_for_io(folio)) { 670 int res; 671 struct writeback_control wbc = { 672 .sync_mode = WB_SYNC_NONE, 673 .nr_to_write = SWAP_CLUSTER_MAX, 674 .range_start = 0, 675 .range_end = LLONG_MAX, 676 .for_reclaim = 1, 677 .swap_plug = plug, 678 }; 679 680 /* 681 * The large shmem folio can be split if CONFIG_THP_SWAP is 682 * not enabled or contiguous swap entries are failed to 683 * allocate. 684 */ 685 if (shmem_mapping(mapping) && folio_test_large(folio)) 686 wbc.list = folio_list; 687 688 folio_set_reclaim(folio); 689 res = mapping->a_ops->writepage(&folio->page, &wbc); 690 if (res < 0) 691 handle_write_error(mapping, folio, res); 692 if (res == AOP_WRITEPAGE_ACTIVATE) { 693 folio_clear_reclaim(folio); 694 return PAGE_ACTIVATE; 695 } 696 697 if (!folio_test_writeback(folio)) { 698 /* synchronous write or broken a_ops? */ 699 folio_clear_reclaim(folio); 700 } 701 trace_mm_vmscan_write_folio(folio); 702 node_stat_add_folio(folio, NR_VMSCAN_WRITE); 703 return PAGE_SUCCESS; 704 } 705 706 return PAGE_CLEAN; 707 } 708 709 /* 710 * Same as remove_mapping, but if the folio is removed from the mapping, it 711 * gets returned with a refcount of 0. 712 */ 713 static int __remove_mapping(struct address_space *mapping, struct folio *folio, 714 bool reclaimed, struct mem_cgroup *target_memcg) 715 { 716 int refcount; 717 void *shadow = NULL; 718 719 BUG_ON(!folio_test_locked(folio)); 720 BUG_ON(mapping != folio_mapping(folio)); 721 722 if (!folio_test_swapcache(folio)) 723 spin_lock(&mapping->host->i_lock); 724 xa_lock_irq(&mapping->i_pages); 725 /* 726 * The non racy check for a busy folio. 727 * 728 * Must be careful with the order of the tests. When someone has 729 * a ref to the folio, it may be possible that they dirty it then 730 * drop the reference. So if the dirty flag is tested before the 731 * refcount here, then the following race may occur: 732 * 733 * get_user_pages(&page); 734 * [user mapping goes away] 735 * write_to(page); 736 * !folio_test_dirty(folio) [good] 737 * folio_set_dirty(folio); 738 * folio_put(folio); 739 * !refcount(folio) [good, discard it] 740 * 741 * [oops, our write_to data is lost] 742 * 743 * Reversing the order of the tests ensures such a situation cannot 744 * escape unnoticed. The smp_rmb is needed to ensure the folio->flags 745 * load is not satisfied before that of folio->_refcount. 746 * 747 * Note that if the dirty flag is always set via folio_mark_dirty, 748 * and thus under the i_pages lock, then this ordering is not required. 749 */ 750 refcount = 1 + folio_nr_pages(folio); 751 if (!folio_ref_freeze(folio, refcount)) 752 goto cannot_free; 753 /* note: atomic_cmpxchg in folio_ref_freeze provides the smp_rmb */ 754 if (unlikely(folio_test_dirty(folio))) { 755 folio_ref_unfreeze(folio, refcount); 756 goto cannot_free; 757 } 758 759 if (folio_test_swapcache(folio)) { 760 swp_entry_t swap = folio->swap; 761 762 if (reclaimed && !mapping_exiting(mapping)) 763 shadow = workingset_eviction(folio, target_memcg); 764 __delete_from_swap_cache(folio, swap, shadow); 765 mem_cgroup_swapout(folio, swap); 766 xa_unlock_irq(&mapping->i_pages); 767 put_swap_folio(folio, swap); 768 } else { 769 void (*free_folio)(struct folio *); 770 771 free_folio = mapping->a_ops->free_folio; 772 /* 773 * Remember a shadow entry for reclaimed file cache in 774 * order to detect refaults, thus thrashing, later on. 775 * 776 * But don't store shadows in an address space that is 777 * already exiting. This is not just an optimization, 778 * inode reclaim needs to empty out the radix tree or 779 * the nodes are lost. Don't plant shadows behind its 780 * back. 781 * 782 * We also don't store shadows for DAX mappings because the 783 * only page cache folios found in these are zero pages 784 * covering holes, and because we don't want to mix DAX 785 * exceptional entries and shadow exceptional entries in the 786 * same address_space. 787 */ 788 if (reclaimed && folio_is_file_lru(folio) && 789 !mapping_exiting(mapping) && !dax_mapping(mapping)) 790 shadow = workingset_eviction(folio, target_memcg); 791 __filemap_remove_folio(folio, shadow); 792 xa_unlock_irq(&mapping->i_pages); 793 if (mapping_shrinkable(mapping)) 794 inode_add_lru(mapping->host); 795 spin_unlock(&mapping->host->i_lock); 796 797 if (free_folio) 798 free_folio(folio); 799 } 800 801 return 1; 802 803 cannot_free: 804 xa_unlock_irq(&mapping->i_pages); 805 if (!folio_test_swapcache(folio)) 806 spin_unlock(&mapping->host->i_lock); 807 return 0; 808 } 809 810 /** 811 * remove_mapping() - Attempt to remove a folio from its mapping. 812 * @mapping: The address space. 813 * @folio: The folio to remove. 814 * 815 * If the folio is dirty, under writeback or if someone else has a ref 816 * on it, removal will fail. 817 * Return: The number of pages removed from the mapping. 0 if the folio 818 * could not be removed. 819 * Context: The caller should have a single refcount on the folio and 820 * hold its lock. 821 */ 822 long remove_mapping(struct address_space *mapping, struct folio *folio) 823 { 824 if (__remove_mapping(mapping, folio, false, NULL)) { 825 /* 826 * Unfreezing the refcount with 1 effectively 827 * drops the pagecache ref for us without requiring another 828 * atomic operation. 829 */ 830 folio_ref_unfreeze(folio, 1); 831 return folio_nr_pages(folio); 832 } 833 return 0; 834 } 835 836 /** 837 * folio_putback_lru - Put previously isolated folio onto appropriate LRU list. 838 * @folio: Folio to be returned to an LRU list. 839 * 840 * Add previously isolated @folio to appropriate LRU list. 841 * The folio may still be unevictable for other reasons. 842 * 843 * Context: lru_lock must not be held, interrupts must be enabled. 844 */ 845 void folio_putback_lru(struct folio *folio) 846 { 847 folio_add_lru(folio); 848 folio_put(folio); /* drop ref from isolate */ 849 } 850 851 enum folio_references { 852 FOLIOREF_RECLAIM, 853 FOLIOREF_RECLAIM_CLEAN, 854 FOLIOREF_KEEP, 855 FOLIOREF_ACTIVATE, 856 }; 857 858 static enum folio_references folio_check_references(struct folio *folio, 859 struct scan_control *sc) 860 { 861 int referenced_ptes, referenced_folio; 862 unsigned long vm_flags; 863 864 referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup, 865 &vm_flags); 866 referenced_folio = folio_test_clear_referenced(folio); 867 868 /* 869 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma. 870 * Let the folio, now marked Mlocked, be moved to the unevictable list. 871 */ 872 if (vm_flags & VM_LOCKED) 873 return FOLIOREF_ACTIVATE; 874 875 /* 876 * There are two cases to consider. 877 * 1) Rmap lock contention: rotate. 878 * 2) Skip the non-shared swapbacked folio mapped solely by 879 * the exiting or OOM-reaped process. 880 */ 881 if (referenced_ptes == -1) 882 return FOLIOREF_KEEP; 883 884 if (referenced_ptes) { 885 /* 886 * All mapped folios start out with page table 887 * references from the instantiating fault, so we need 888 * to look twice if a mapped file/anon folio is used more 889 * than once. 890 * 891 * Mark it and spare it for another trip around the 892 * inactive list. Another page table reference will 893 * lead to its activation. 894 * 895 * Note: the mark is set for activated folios as well 896 * so that recently deactivated but used folios are 897 * quickly recovered. 898 */ 899 folio_set_referenced(folio); 900 901 if (referenced_folio || referenced_ptes > 1) 902 return FOLIOREF_ACTIVATE; 903 904 /* 905 * Activate file-backed executable folios after first usage. 906 */ 907 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) 908 return FOLIOREF_ACTIVATE; 909 910 return FOLIOREF_KEEP; 911 } 912 913 /* Reclaim if clean, defer dirty folios to writeback */ 914 if (referenced_folio && folio_is_file_lru(folio)) 915 return FOLIOREF_RECLAIM_CLEAN; 916 917 return FOLIOREF_RECLAIM; 918 } 919 920 /* Check if a folio is dirty or under writeback */ 921 static void folio_check_dirty_writeback(struct folio *folio, 922 bool *dirty, bool *writeback) 923 { 924 struct address_space *mapping; 925 926 /* 927 * Anonymous folios are not handled by flushers and must be written 928 * from reclaim context. Do not stall reclaim based on them. 929 * MADV_FREE anonymous folios are put into inactive file list too. 930 * They could be mistakenly treated as file lru. So further anon 931 * test is needed. 932 */ 933 if (!folio_is_file_lru(folio) || 934 (folio_test_anon(folio) && !folio_test_swapbacked(folio))) { 935 *dirty = false; 936 *writeback = false; 937 return; 938 } 939 940 /* By default assume that the folio flags are accurate */ 941 *dirty = folio_test_dirty(folio); 942 *writeback = folio_test_writeback(folio); 943 944 /* Verify dirty/writeback state if the filesystem supports it */ 945 if (!folio_test_private(folio)) 946 return; 947 948 mapping = folio_mapping(folio); 949 if (mapping && mapping->a_ops->is_dirty_writeback) 950 mapping->a_ops->is_dirty_writeback(folio, dirty, writeback); 951 } 952 953 struct folio *alloc_migrate_folio(struct folio *src, unsigned long private) 954 { 955 struct folio *dst; 956 nodemask_t *allowed_mask; 957 struct migration_target_control *mtc; 958 959 mtc = (struct migration_target_control *)private; 960 961 allowed_mask = mtc->nmask; 962 /* 963 * make sure we allocate from the target node first also trying to 964 * demote or reclaim pages from the target node via kswapd if we are 965 * low on free memory on target node. If we don't do this and if 966 * we have free memory on the slower(lower) memtier, we would start 967 * allocating pages from slower(lower) memory tiers without even forcing 968 * a demotion of cold pages from the target memtier. This can result 969 * in the kernel placing hot pages in slower(lower) memory tiers. 970 */ 971 mtc->nmask = NULL; 972 mtc->gfp_mask |= __GFP_THISNODE; 973 dst = alloc_migration_target(src, (unsigned long)mtc); 974 if (dst) 975 return dst; 976 977 mtc->gfp_mask &= ~__GFP_THISNODE; 978 mtc->nmask = allowed_mask; 979 980 return alloc_migration_target(src, (unsigned long)mtc); 981 } 982 983 /* 984 * Take folios on @demote_folios and attempt to demote them to another node. 985 * Folios which are not demoted are left on @demote_folios. 986 */ 987 static unsigned int demote_folio_list(struct list_head *demote_folios, 988 struct pglist_data *pgdat) 989 { 990 int target_nid = next_demotion_node(pgdat->node_id); 991 unsigned int nr_succeeded; 992 nodemask_t allowed_mask; 993 994 struct migration_target_control mtc = { 995 /* 996 * Allocate from 'node', or fail quickly and quietly. 997 * When this happens, 'page' will likely just be discarded 998 * instead of migrated. 999 */ 1000 .gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | __GFP_NOWARN | 1001 __GFP_NOMEMALLOC | GFP_NOWAIT, 1002 .nid = target_nid, 1003 .nmask = &allowed_mask, 1004 .reason = MR_DEMOTION, 1005 }; 1006 1007 if (list_empty(demote_folios)) 1008 return 0; 1009 1010 if (target_nid == NUMA_NO_NODE) 1011 return 0; 1012 1013 node_get_allowed_targets(pgdat, &allowed_mask); 1014 1015 /* Demotion ignores all cpuset and mempolicy settings */ 1016 migrate_pages(demote_folios, alloc_migrate_folio, NULL, 1017 (unsigned long)&mtc, MIGRATE_ASYNC, MR_DEMOTION, 1018 &nr_succeeded); 1019 1020 return nr_succeeded; 1021 } 1022 1023 static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask) 1024 { 1025 if (gfp_mask & __GFP_FS) 1026 return true; 1027 if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO)) 1028 return false; 1029 /* 1030 * We can "enter_fs" for swap-cache with only __GFP_IO 1031 * providing this isn't SWP_FS_OPS. 1032 * ->flags can be updated non-atomicially (scan_swap_map_slots), 1033 * but that will never affect SWP_FS_OPS, so the data_race 1034 * is safe. 1035 */ 1036 return !data_race(folio_swap_flags(folio) & SWP_FS_OPS); 1037 } 1038 1039 /* 1040 * shrink_folio_list() returns the number of reclaimed pages 1041 */ 1042 static unsigned int shrink_folio_list(struct list_head *folio_list, 1043 struct pglist_data *pgdat, struct scan_control *sc, 1044 struct reclaim_stat *stat, bool ignore_references) 1045 { 1046 struct folio_batch free_folios; 1047 LIST_HEAD(ret_folios); 1048 LIST_HEAD(demote_folios); 1049 unsigned int nr_reclaimed = 0; 1050 unsigned int pgactivate = 0; 1051 bool do_demote_pass; 1052 struct swap_iocb *plug = NULL; 1053 1054 folio_batch_init(&free_folios); 1055 memset(stat, 0, sizeof(*stat)); 1056 cond_resched(); 1057 do_demote_pass = can_demote(pgdat->node_id, sc); 1058 1059 retry: 1060 while (!list_empty(folio_list)) { 1061 struct address_space *mapping; 1062 struct folio *folio; 1063 enum folio_references references = FOLIOREF_RECLAIM; 1064 bool dirty, writeback; 1065 unsigned int nr_pages; 1066 1067 cond_resched(); 1068 1069 folio = lru_to_folio(folio_list); 1070 list_del(&folio->lru); 1071 1072 if (!folio_trylock(folio)) 1073 goto keep; 1074 1075 VM_BUG_ON_FOLIO(folio_test_active(folio), folio); 1076 1077 nr_pages = folio_nr_pages(folio); 1078 1079 /* Account the number of base pages */ 1080 sc->nr_scanned += nr_pages; 1081 1082 if (unlikely(!folio_evictable(folio))) 1083 goto activate_locked; 1084 1085 if (!sc->may_unmap && folio_mapped(folio)) 1086 goto keep_locked; 1087 1088 /* folio_update_gen() tried to promote this page? */ 1089 if (lru_gen_enabled() && !ignore_references && 1090 folio_mapped(folio) && folio_test_referenced(folio)) 1091 goto keep_locked; 1092 1093 /* 1094 * The number of dirty pages determines if a node is marked 1095 * reclaim_congested. kswapd will stall and start writing 1096 * folios if the tail of the LRU is all dirty unqueued folios. 1097 */ 1098 folio_check_dirty_writeback(folio, &dirty, &writeback); 1099 if (dirty || writeback) 1100 stat->nr_dirty += nr_pages; 1101 1102 if (dirty && !writeback) 1103 stat->nr_unqueued_dirty += nr_pages; 1104 1105 /* 1106 * Treat this folio as congested if folios are cycling 1107 * through the LRU so quickly that the folios marked 1108 * for immediate reclaim are making it to the end of 1109 * the LRU a second time. 1110 */ 1111 if (writeback && folio_test_reclaim(folio)) 1112 stat->nr_congested += nr_pages; 1113 1114 /* 1115 * If a folio at the tail of the LRU is under writeback, there 1116 * are three cases to consider. 1117 * 1118 * 1) If reclaim is encountering an excessive number 1119 * of folios under writeback and this folio has both 1120 * the writeback and reclaim flags set, then it 1121 * indicates that folios are being queued for I/O but 1122 * are being recycled through the LRU before the I/O 1123 * can complete. Waiting on the folio itself risks an 1124 * indefinite stall if it is impossible to writeback 1125 * the folio due to I/O error or disconnected storage 1126 * so instead note that the LRU is being scanned too 1127 * quickly and the caller can stall after the folio 1128 * list has been processed. 1129 * 1130 * 2) Global or new memcg reclaim encounters a folio that is 1131 * not marked for immediate reclaim, or the caller does not 1132 * have __GFP_FS (or __GFP_IO if it's simply going to swap, 1133 * not to fs). In this case mark the folio for immediate 1134 * reclaim and continue scanning. 1135 * 1136 * Require may_enter_fs() because we would wait on fs, which 1137 * may not have submitted I/O yet. And the loop driver might 1138 * enter reclaim, and deadlock if it waits on a folio for 1139 * which it is needed to do the write (loop masks off 1140 * __GFP_IO|__GFP_FS for this reason); but more thought 1141 * would probably show more reasons. 1142 * 1143 * 3) Legacy memcg encounters a folio that already has the 1144 * reclaim flag set. memcg does not have any dirty folio 1145 * throttling so we could easily OOM just because too many 1146 * folios are in writeback and there is nothing else to 1147 * reclaim. Wait for the writeback to complete. 1148 * 1149 * In cases 1) and 2) we activate the folios to get them out of 1150 * the way while we continue scanning for clean folios on the 1151 * inactive list and refilling from the active list. The 1152 * observation here is that waiting for disk writes is more 1153 * expensive than potentially causing reloads down the line. 1154 * Since they're marked for immediate reclaim, they won't put 1155 * memory pressure on the cache working set any longer than it 1156 * takes to write them to disk. 1157 */ 1158 if (folio_test_writeback(folio)) { 1159 /* Case 1 above */ 1160 if (current_is_kswapd() && 1161 folio_test_reclaim(folio) && 1162 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) { 1163 stat->nr_immediate += nr_pages; 1164 goto activate_locked; 1165 1166 /* Case 2 above */ 1167 } else if (writeback_throttling_sane(sc) || 1168 !folio_test_reclaim(folio) || 1169 !may_enter_fs(folio, sc->gfp_mask)) { 1170 /* 1171 * This is slightly racy - 1172 * folio_end_writeback() might have 1173 * just cleared the reclaim flag, then 1174 * setting the reclaim flag here ends up 1175 * interpreted as the readahead flag - but 1176 * that does not matter enough to care. 1177 * What we do want is for this folio to 1178 * have the reclaim flag set next time 1179 * memcg reclaim reaches the tests above, 1180 * so it will then wait for writeback to 1181 * avoid OOM; and it's also appropriate 1182 * in global reclaim. 1183 */ 1184 folio_set_reclaim(folio); 1185 stat->nr_writeback += nr_pages; 1186 goto activate_locked; 1187 1188 /* Case 3 above */ 1189 } else { 1190 folio_unlock(folio); 1191 folio_wait_writeback(folio); 1192 /* then go back and try same folio again */ 1193 list_add_tail(&folio->lru, folio_list); 1194 continue; 1195 } 1196 } 1197 1198 if (!ignore_references) 1199 references = folio_check_references(folio, sc); 1200 1201 switch (references) { 1202 case FOLIOREF_ACTIVATE: 1203 goto activate_locked; 1204 case FOLIOREF_KEEP: 1205 stat->nr_ref_keep += nr_pages; 1206 goto keep_locked; 1207 case FOLIOREF_RECLAIM: 1208 case FOLIOREF_RECLAIM_CLEAN: 1209 ; /* try to reclaim the folio below */ 1210 } 1211 1212 /* 1213 * Before reclaiming the folio, try to relocate 1214 * its contents to another node. 1215 */ 1216 if (do_demote_pass && 1217 (thp_migration_supported() || !folio_test_large(folio))) { 1218 list_add(&folio->lru, &demote_folios); 1219 folio_unlock(folio); 1220 continue; 1221 } 1222 1223 /* 1224 * Anonymous process memory has backing store? 1225 * Try to allocate it some swap space here. 1226 * Lazyfree folio could be freed directly 1227 */ 1228 if (folio_test_anon(folio) && folio_test_swapbacked(folio)) { 1229 if (!folio_test_swapcache(folio)) { 1230 if (!(sc->gfp_mask & __GFP_IO)) 1231 goto keep_locked; 1232 if (folio_maybe_dma_pinned(folio)) 1233 goto keep_locked; 1234 if (folio_test_large(folio)) { 1235 /* cannot split folio, skip it */ 1236 if (!can_split_folio(folio, 1, NULL)) 1237 goto activate_locked; 1238 /* 1239 * Split partially mapped folios right away. 1240 * We can free the unmapped pages without IO. 1241 */ 1242 if (data_race(!list_empty(&folio->_deferred_list) && 1243 folio_test_partially_mapped(folio)) && 1244 split_folio_to_list(folio, folio_list)) 1245 goto activate_locked; 1246 } 1247 if (!add_to_swap(folio)) { 1248 int __maybe_unused order = folio_order(folio); 1249 1250 if (!folio_test_large(folio)) 1251 goto activate_locked_split; 1252 /* Fallback to swap normal pages */ 1253 if (split_folio_to_list(folio, folio_list)) 1254 goto activate_locked; 1255 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1256 if (nr_pages >= HPAGE_PMD_NR) { 1257 count_memcg_folio_events(folio, 1258 THP_SWPOUT_FALLBACK, 1); 1259 count_vm_event(THP_SWPOUT_FALLBACK); 1260 } 1261 count_mthp_stat(order, MTHP_STAT_SWPOUT_FALLBACK); 1262 #endif 1263 if (!add_to_swap(folio)) 1264 goto activate_locked_split; 1265 } 1266 } 1267 } 1268 1269 /* 1270 * If the folio was split above, the tail pages will make 1271 * their own pass through this function and be accounted 1272 * then. 1273 */ 1274 if ((nr_pages > 1) && !folio_test_large(folio)) { 1275 sc->nr_scanned -= (nr_pages - 1); 1276 nr_pages = 1; 1277 } 1278 1279 /* 1280 * The folio is mapped into the page tables of one or more 1281 * processes. Try to unmap it here. 1282 */ 1283 if (folio_mapped(folio)) { 1284 enum ttu_flags flags = TTU_BATCH_FLUSH; 1285 bool was_swapbacked = folio_test_swapbacked(folio); 1286 1287 if (folio_test_pmd_mappable(folio)) 1288 flags |= TTU_SPLIT_HUGE_PMD; 1289 /* 1290 * Without TTU_SYNC, try_to_unmap will only begin to 1291 * hold PTL from the first present PTE within a large 1292 * folio. Some initial PTEs might be skipped due to 1293 * races with parallel PTE writes in which PTEs can be 1294 * cleared temporarily before being written new present 1295 * values. This will lead to a large folio is still 1296 * mapped while some subpages have been partially 1297 * unmapped after try_to_unmap; TTU_SYNC helps 1298 * try_to_unmap acquire PTL from the first PTE, 1299 * eliminating the influence of temporary PTE values. 1300 */ 1301 if (folio_test_large(folio)) 1302 flags |= TTU_SYNC; 1303 1304 try_to_unmap(folio, flags); 1305 if (folio_mapped(folio)) { 1306 stat->nr_unmap_fail += nr_pages; 1307 if (!was_swapbacked && 1308 folio_test_swapbacked(folio)) 1309 stat->nr_lazyfree_fail += nr_pages; 1310 goto activate_locked; 1311 } 1312 } 1313 1314 /* 1315 * Folio is unmapped now so it cannot be newly pinned anymore. 1316 * No point in trying to reclaim folio if it is pinned. 1317 * Furthermore we don't want to reclaim underlying fs metadata 1318 * if the folio is pinned and thus potentially modified by the 1319 * pinning process as that may upset the filesystem. 1320 */ 1321 if (folio_maybe_dma_pinned(folio)) 1322 goto activate_locked; 1323 1324 mapping = folio_mapping(folio); 1325 if (folio_test_dirty(folio)) { 1326 /* 1327 * Only kswapd can writeback filesystem folios 1328 * to avoid risk of stack overflow. But avoid 1329 * injecting inefficient single-folio I/O into 1330 * flusher writeback as much as possible: only 1331 * write folios when we've encountered many 1332 * dirty folios, and when we've already scanned 1333 * the rest of the LRU for clean folios and see 1334 * the same dirty folios again (with the reclaim 1335 * flag set). 1336 */ 1337 if (folio_is_file_lru(folio) && 1338 (!current_is_kswapd() || 1339 !folio_test_reclaim(folio) || 1340 !test_bit(PGDAT_DIRTY, &pgdat->flags))) { 1341 /* 1342 * Immediately reclaim when written back. 1343 * Similar in principle to folio_deactivate() 1344 * except we already have the folio isolated 1345 * and know it's dirty 1346 */ 1347 node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE, 1348 nr_pages); 1349 folio_set_reclaim(folio); 1350 1351 goto activate_locked; 1352 } 1353 1354 if (references == FOLIOREF_RECLAIM_CLEAN) 1355 goto keep_locked; 1356 if (!may_enter_fs(folio, sc->gfp_mask)) 1357 goto keep_locked; 1358 if (!sc->may_writepage) 1359 goto keep_locked; 1360 1361 /* 1362 * Folio is dirty. Flush the TLB if a writable entry 1363 * potentially exists to avoid CPU writes after I/O 1364 * starts and then write it out here. 1365 */ 1366 try_to_unmap_flush_dirty(); 1367 switch (pageout(folio, mapping, &plug, folio_list)) { 1368 case PAGE_KEEP: 1369 goto keep_locked; 1370 case PAGE_ACTIVATE: 1371 /* 1372 * If shmem folio is split when writeback to swap, 1373 * the tail pages will make their own pass through 1374 * this function and be accounted then. 1375 */ 1376 if (nr_pages > 1 && !folio_test_large(folio)) { 1377 sc->nr_scanned -= (nr_pages - 1); 1378 nr_pages = 1; 1379 } 1380 goto activate_locked; 1381 case PAGE_SUCCESS: 1382 if (nr_pages > 1 && !folio_test_large(folio)) { 1383 sc->nr_scanned -= (nr_pages - 1); 1384 nr_pages = 1; 1385 } 1386 stat->nr_pageout += nr_pages; 1387 1388 if (folio_test_writeback(folio)) 1389 goto keep; 1390 if (folio_test_dirty(folio)) 1391 goto keep; 1392 1393 /* 1394 * A synchronous write - probably a ramdisk. Go 1395 * ahead and try to reclaim the folio. 1396 */ 1397 if (!folio_trylock(folio)) 1398 goto keep; 1399 if (folio_test_dirty(folio) || 1400 folio_test_writeback(folio)) 1401 goto keep_locked; 1402 mapping = folio_mapping(folio); 1403 fallthrough; 1404 case PAGE_CLEAN: 1405 ; /* try to free the folio below */ 1406 } 1407 } 1408 1409 /* 1410 * If the folio has buffers, try to free the buffer 1411 * mappings associated with this folio. If we succeed 1412 * we try to free the folio as well. 1413 * 1414 * We do this even if the folio is dirty. 1415 * filemap_release_folio() does not perform I/O, but it 1416 * is possible for a folio to have the dirty flag set, 1417 * but it is actually clean (all its buffers are clean). 1418 * This happens if the buffers were written out directly, 1419 * with submit_bh(). ext3 will do this, as well as 1420 * the blockdev mapping. filemap_release_folio() will 1421 * discover that cleanness and will drop the buffers 1422 * and mark the folio clean - it can be freed. 1423 * 1424 * Rarely, folios can have buffers and no ->mapping. 1425 * These are the folios which were not successfully 1426 * invalidated in truncate_cleanup_folio(). We try to 1427 * drop those buffers here and if that worked, and the 1428 * folio is no longer mapped into process address space 1429 * (refcount == 1) it can be freed. Otherwise, leave 1430 * the folio on the LRU so it is swappable. 1431 */ 1432 if (folio_needs_release(folio)) { 1433 if (!filemap_release_folio(folio, sc->gfp_mask)) 1434 goto activate_locked; 1435 if (!mapping && folio_ref_count(folio) == 1) { 1436 folio_unlock(folio); 1437 if (folio_put_testzero(folio)) 1438 goto free_it; 1439 else { 1440 /* 1441 * rare race with speculative reference. 1442 * the speculative reference will free 1443 * this folio shortly, so we may 1444 * increment nr_reclaimed here (and 1445 * leave it off the LRU). 1446 */ 1447 nr_reclaimed += nr_pages; 1448 continue; 1449 } 1450 } 1451 } 1452 1453 if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) { 1454 /* follow __remove_mapping for reference */ 1455 if (!folio_ref_freeze(folio, 1)) 1456 goto keep_locked; 1457 /* 1458 * The folio has only one reference left, which is 1459 * from the isolation. After the caller puts the 1460 * folio back on the lru and drops the reference, the 1461 * folio will be freed anyway. It doesn't matter 1462 * which lru it goes on. So we don't bother checking 1463 * the dirty flag here. 1464 */ 1465 count_vm_events(PGLAZYFREED, nr_pages); 1466 count_memcg_folio_events(folio, PGLAZYFREED, nr_pages); 1467 } else if (!mapping || !__remove_mapping(mapping, folio, true, 1468 sc->target_mem_cgroup)) 1469 goto keep_locked; 1470 1471 folio_unlock(folio); 1472 free_it: 1473 /* 1474 * Folio may get swapped out as a whole, need to account 1475 * all pages in it. 1476 */ 1477 nr_reclaimed += nr_pages; 1478 1479 folio_unqueue_deferred_split(folio); 1480 if (folio_batch_add(&free_folios, folio) == 0) { 1481 mem_cgroup_uncharge_folios(&free_folios); 1482 try_to_unmap_flush(); 1483 free_unref_folios(&free_folios); 1484 } 1485 continue; 1486 1487 activate_locked_split: 1488 /* 1489 * The tail pages that are failed to add into swap cache 1490 * reach here. Fixup nr_scanned and nr_pages. 1491 */ 1492 if (nr_pages > 1) { 1493 sc->nr_scanned -= (nr_pages - 1); 1494 nr_pages = 1; 1495 } 1496 activate_locked: 1497 /* Not a candidate for swapping, so reclaim swap space. */ 1498 if (folio_test_swapcache(folio) && 1499 (mem_cgroup_swap_full(folio) || folio_test_mlocked(folio))) 1500 folio_free_swap(folio); 1501 VM_BUG_ON_FOLIO(folio_test_active(folio), folio); 1502 if (!folio_test_mlocked(folio)) { 1503 int type = folio_is_file_lru(folio); 1504 folio_set_active(folio); 1505 stat->nr_activate[type] += nr_pages; 1506 count_memcg_folio_events(folio, PGACTIVATE, nr_pages); 1507 } 1508 keep_locked: 1509 folio_unlock(folio); 1510 keep: 1511 list_add(&folio->lru, &ret_folios); 1512 VM_BUG_ON_FOLIO(folio_test_lru(folio) || 1513 folio_test_unevictable(folio), folio); 1514 } 1515 /* 'folio_list' is always empty here */ 1516 1517 /* Migrate folios selected for demotion */ 1518 stat->nr_demoted = demote_folio_list(&demote_folios, pgdat); 1519 nr_reclaimed += stat->nr_demoted; 1520 /* Folios that could not be demoted are still in @demote_folios */ 1521 if (!list_empty(&demote_folios)) { 1522 /* Folios which weren't demoted go back on @folio_list */ 1523 list_splice_init(&demote_folios, folio_list); 1524 1525 /* 1526 * goto retry to reclaim the undemoted folios in folio_list if 1527 * desired. 1528 * 1529 * Reclaiming directly from top tier nodes is not often desired 1530 * due to it breaking the LRU ordering: in general memory 1531 * should be reclaimed from lower tier nodes and demoted from 1532 * top tier nodes. 1533 * 1534 * However, disabling reclaim from top tier nodes entirely 1535 * would cause ooms in edge scenarios where lower tier memory 1536 * is unreclaimable for whatever reason, eg memory being 1537 * mlocked or too hot to reclaim. We can disable reclaim 1538 * from top tier nodes in proactive reclaim though as that is 1539 * not real memory pressure. 1540 */ 1541 if (!sc->proactive) { 1542 do_demote_pass = false; 1543 goto retry; 1544 } 1545 } 1546 1547 pgactivate = stat->nr_activate[0] + stat->nr_activate[1]; 1548 1549 mem_cgroup_uncharge_folios(&free_folios); 1550 try_to_unmap_flush(); 1551 free_unref_folios(&free_folios); 1552 1553 list_splice(&ret_folios, folio_list); 1554 count_vm_events(PGACTIVATE, pgactivate); 1555 1556 if (plug) 1557 swap_write_unplug(plug); 1558 return nr_reclaimed; 1559 } 1560 1561 unsigned int reclaim_clean_pages_from_list(struct zone *zone, 1562 struct list_head *folio_list) 1563 { 1564 struct scan_control sc = { 1565 .gfp_mask = GFP_KERNEL, 1566 .may_unmap = 1, 1567 }; 1568 struct reclaim_stat stat; 1569 unsigned int nr_reclaimed; 1570 struct folio *folio, *next; 1571 LIST_HEAD(clean_folios); 1572 unsigned int noreclaim_flag; 1573 1574 list_for_each_entry_safe(folio, next, folio_list, lru) { 1575 if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) && 1576 !folio_test_dirty(folio) && !__folio_test_movable(folio) && 1577 !folio_test_unevictable(folio)) { 1578 folio_clear_active(folio); 1579 list_move(&folio->lru, &clean_folios); 1580 } 1581 } 1582 1583 /* 1584 * We should be safe here since we are only dealing with file pages and 1585 * we are not kswapd and therefore cannot write dirty file pages. But 1586 * call memalloc_noreclaim_save() anyway, just in case these conditions 1587 * change in the future. 1588 */ 1589 noreclaim_flag = memalloc_noreclaim_save(); 1590 nr_reclaimed = shrink_folio_list(&clean_folios, zone->zone_pgdat, &sc, 1591 &stat, true); 1592 memalloc_noreclaim_restore(noreclaim_flag); 1593 1594 list_splice(&clean_folios, folio_list); 1595 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, 1596 -(long)nr_reclaimed); 1597 /* 1598 * Since lazyfree pages are isolated from file LRU from the beginning, 1599 * they will rotate back to anonymous LRU in the end if it failed to 1600 * discard so isolated count will be mismatched. 1601 * Compensate the isolated count for both LRU lists. 1602 */ 1603 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON, 1604 stat.nr_lazyfree_fail); 1605 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, 1606 -(long)stat.nr_lazyfree_fail); 1607 return nr_reclaimed; 1608 } 1609 1610 /* 1611 * Update LRU sizes after isolating pages. The LRU size updates must 1612 * be complete before mem_cgroup_update_lru_size due to a sanity check. 1613 */ 1614 static __always_inline void update_lru_sizes(struct lruvec *lruvec, 1615 enum lru_list lru, unsigned long *nr_zone_taken) 1616 { 1617 int zid; 1618 1619 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1620 if (!nr_zone_taken[zid]) 1621 continue; 1622 1623 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 1624 } 1625 1626 } 1627 1628 /* 1629 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times. 1630 * 1631 * lruvec->lru_lock is heavily contended. Some of the functions that 1632 * shrink the lists perform better by taking out a batch of pages 1633 * and working on them outside the LRU lock. 1634 * 1635 * For pagecache intensive workloads, this function is the hottest 1636 * spot in the kernel (apart from copy_*_user functions). 1637 * 1638 * Lru_lock must be held before calling this function. 1639 * 1640 * @nr_to_scan: The number of eligible pages to look through on the list. 1641 * @lruvec: The LRU vector to pull pages from. 1642 * @dst: The temp list to put pages on to. 1643 * @nr_scanned: The number of pages that were scanned. 1644 * @sc: The scan_control struct for this reclaim session 1645 * @lru: LRU list id for isolating 1646 * 1647 * returns how many pages were moved onto *@dst. 1648 */ 1649 static unsigned long isolate_lru_folios(unsigned long nr_to_scan, 1650 struct lruvec *lruvec, struct list_head *dst, 1651 unsigned long *nr_scanned, struct scan_control *sc, 1652 enum lru_list lru) 1653 { 1654 struct list_head *src = &lruvec->lists[lru]; 1655 unsigned long nr_taken = 0; 1656 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 }; 1657 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, }; 1658 unsigned long skipped = 0; 1659 unsigned long scan, total_scan, nr_pages; 1660 LIST_HEAD(folios_skipped); 1661 1662 total_scan = 0; 1663 scan = 0; 1664 while (scan < nr_to_scan && !list_empty(src)) { 1665 struct list_head *move_to = src; 1666 struct folio *folio; 1667 1668 folio = lru_to_folio(src); 1669 prefetchw_prev_lru_folio(folio, src, flags); 1670 1671 nr_pages = folio_nr_pages(folio); 1672 total_scan += nr_pages; 1673 1674 if (folio_zonenum(folio) > sc->reclaim_idx) { 1675 nr_skipped[folio_zonenum(folio)] += nr_pages; 1676 move_to = &folios_skipped; 1677 goto move; 1678 } 1679 1680 /* 1681 * Do not count skipped folios because that makes the function 1682 * return with no isolated folios if the LRU mostly contains 1683 * ineligible folios. This causes the VM to not reclaim any 1684 * folios, triggering a premature OOM. 1685 * Account all pages in a folio. 1686 */ 1687 scan += nr_pages; 1688 1689 if (!folio_test_lru(folio)) 1690 goto move; 1691 if (!sc->may_unmap && folio_mapped(folio)) 1692 goto move; 1693 1694 /* 1695 * Be careful not to clear the lru flag until after we're 1696 * sure the folio is not being freed elsewhere -- the 1697 * folio release code relies on it. 1698 */ 1699 if (unlikely(!folio_try_get(folio))) 1700 goto move; 1701 1702 if (!folio_test_clear_lru(folio)) { 1703 /* Another thread is already isolating this folio */ 1704 folio_put(folio); 1705 goto move; 1706 } 1707 1708 nr_taken += nr_pages; 1709 nr_zone_taken[folio_zonenum(folio)] += nr_pages; 1710 move_to = dst; 1711 move: 1712 list_move(&folio->lru, move_to); 1713 } 1714 1715 /* 1716 * Splice any skipped folios to the start of the LRU list. Note that 1717 * this disrupts the LRU order when reclaiming for lower zones but 1718 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX 1719 * scanning would soon rescan the same folios to skip and waste lots 1720 * of cpu cycles. 1721 */ 1722 if (!list_empty(&folios_skipped)) { 1723 int zid; 1724 1725 list_splice(&folios_skipped, src); 1726 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1727 if (!nr_skipped[zid]) 1728 continue; 1729 1730 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]); 1731 skipped += nr_skipped[zid]; 1732 } 1733 } 1734 *nr_scanned = total_scan; 1735 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, 1736 total_scan, skipped, nr_taken, lru); 1737 update_lru_sizes(lruvec, lru, nr_zone_taken); 1738 return nr_taken; 1739 } 1740 1741 /** 1742 * folio_isolate_lru() - Try to isolate a folio from its LRU list. 1743 * @folio: Folio to isolate from its LRU list. 1744 * 1745 * Isolate a @folio from an LRU list and adjust the vmstat statistic 1746 * corresponding to whatever LRU list the folio was on. 1747 * 1748 * The folio will have its LRU flag cleared. If it was found on the 1749 * active list, it will have the Active flag set. If it was found on the 1750 * unevictable list, it will have the Unevictable flag set. These flags 1751 * may need to be cleared by the caller before letting the page go. 1752 * 1753 * Context: 1754 * 1755 * (1) Must be called with an elevated refcount on the folio. This is a 1756 * fundamental difference from isolate_lru_folios() (which is called 1757 * without a stable reference). 1758 * (2) The lru_lock must not be held. 1759 * (3) Interrupts must be enabled. 1760 * 1761 * Return: true if the folio was removed from an LRU list. 1762 * false if the folio was not on an LRU list. 1763 */ 1764 bool folio_isolate_lru(struct folio *folio) 1765 { 1766 bool ret = false; 1767 1768 VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio); 1769 1770 if (folio_test_clear_lru(folio)) { 1771 struct lruvec *lruvec; 1772 1773 folio_get(folio); 1774 lruvec = folio_lruvec_lock_irq(folio); 1775 lruvec_del_folio(lruvec, folio); 1776 unlock_page_lruvec_irq(lruvec); 1777 ret = true; 1778 } 1779 1780 return ret; 1781 } 1782 1783 /* 1784 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 1785 * then get rescheduled. When there are massive number of tasks doing page 1786 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 1787 * the LRU list will go small and be scanned faster than necessary, leading to 1788 * unnecessary swapping, thrashing and OOM. 1789 */ 1790 static bool too_many_isolated(struct pglist_data *pgdat, int file, 1791 struct scan_control *sc) 1792 { 1793 unsigned long inactive, isolated; 1794 bool too_many; 1795 1796 if (current_is_kswapd()) 1797 return false; 1798 1799 if (!writeback_throttling_sane(sc)) 1800 return false; 1801 1802 if (file) { 1803 inactive = node_page_state(pgdat, NR_INACTIVE_FILE); 1804 isolated = node_page_state(pgdat, NR_ISOLATED_FILE); 1805 } else { 1806 inactive = node_page_state(pgdat, NR_INACTIVE_ANON); 1807 isolated = node_page_state(pgdat, NR_ISOLATED_ANON); 1808 } 1809 1810 /* 1811 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 1812 * won't get blocked by normal direct-reclaimers, forming a circular 1813 * deadlock. 1814 */ 1815 if (gfp_has_io_fs(sc->gfp_mask)) 1816 inactive >>= 3; 1817 1818 too_many = isolated > inactive; 1819 1820 /* Wake up tasks throttled due to too_many_isolated. */ 1821 if (!too_many) 1822 wake_throttle_isolated(pgdat); 1823 1824 return too_many; 1825 } 1826 1827 /* 1828 * move_folios_to_lru() moves folios from private @list to appropriate LRU list. 1829 * 1830 * Returns the number of pages moved to the given lruvec. 1831 */ 1832 static unsigned int move_folios_to_lru(struct lruvec *lruvec, 1833 struct list_head *list) 1834 { 1835 int nr_pages, nr_moved = 0; 1836 struct folio_batch free_folios; 1837 1838 folio_batch_init(&free_folios); 1839 while (!list_empty(list)) { 1840 struct folio *folio = lru_to_folio(list); 1841 1842 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 1843 list_del(&folio->lru); 1844 if (unlikely(!folio_evictable(folio))) { 1845 spin_unlock_irq(&lruvec->lru_lock); 1846 folio_putback_lru(folio); 1847 spin_lock_irq(&lruvec->lru_lock); 1848 continue; 1849 } 1850 1851 /* 1852 * The folio_set_lru needs to be kept here for list integrity. 1853 * Otherwise: 1854 * #0 move_folios_to_lru #1 release_pages 1855 * if (!folio_put_testzero()) 1856 * if (folio_put_testzero()) 1857 * !lru //skip lru_lock 1858 * folio_set_lru() 1859 * list_add(&folio->lru,) 1860 * list_add(&folio->lru,) 1861 */ 1862 folio_set_lru(folio); 1863 1864 if (unlikely(folio_put_testzero(folio))) { 1865 __folio_clear_lru_flags(folio); 1866 1867 folio_unqueue_deferred_split(folio); 1868 if (folio_batch_add(&free_folios, folio) == 0) { 1869 spin_unlock_irq(&lruvec->lru_lock); 1870 mem_cgroup_uncharge_folios(&free_folios); 1871 free_unref_folios(&free_folios); 1872 spin_lock_irq(&lruvec->lru_lock); 1873 } 1874 1875 continue; 1876 } 1877 1878 /* 1879 * All pages were isolated from the same lruvec (and isolation 1880 * inhibits memcg migration). 1881 */ 1882 VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio); 1883 lruvec_add_folio(lruvec, folio); 1884 nr_pages = folio_nr_pages(folio); 1885 nr_moved += nr_pages; 1886 if (folio_test_active(folio)) 1887 workingset_age_nonresident(lruvec, nr_pages); 1888 } 1889 1890 if (free_folios.nr) { 1891 spin_unlock_irq(&lruvec->lru_lock); 1892 mem_cgroup_uncharge_folios(&free_folios); 1893 free_unref_folios(&free_folios); 1894 spin_lock_irq(&lruvec->lru_lock); 1895 } 1896 1897 return nr_moved; 1898 } 1899 1900 /* 1901 * If a kernel thread (such as nfsd for loop-back mounts) services a backing 1902 * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case 1903 * we should not throttle. Otherwise it is safe to do so. 1904 */ 1905 static int current_may_throttle(void) 1906 { 1907 return !(current->flags & PF_LOCAL_THROTTLE); 1908 } 1909 1910 /* 1911 * shrink_inactive_list() is a helper for shrink_node(). It returns the number 1912 * of reclaimed pages 1913 */ 1914 static unsigned long shrink_inactive_list(unsigned long nr_to_scan, 1915 struct lruvec *lruvec, struct scan_control *sc, 1916 enum lru_list lru) 1917 { 1918 LIST_HEAD(folio_list); 1919 unsigned long nr_scanned; 1920 unsigned int nr_reclaimed = 0; 1921 unsigned long nr_taken; 1922 struct reclaim_stat stat; 1923 bool file = is_file_lru(lru); 1924 enum vm_event_item item; 1925 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1926 bool stalled = false; 1927 1928 while (unlikely(too_many_isolated(pgdat, file, sc))) { 1929 if (stalled) 1930 return 0; 1931 1932 /* wait a bit for the reclaimer. */ 1933 stalled = true; 1934 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED); 1935 1936 /* We are about to die and free our memory. Return now. */ 1937 if (fatal_signal_pending(current)) 1938 return SWAP_CLUSTER_MAX; 1939 } 1940 1941 lru_add_drain(); 1942 1943 spin_lock_irq(&lruvec->lru_lock); 1944 1945 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &folio_list, 1946 &nr_scanned, sc, lru); 1947 1948 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 1949 item = PGSCAN_KSWAPD + reclaimer_offset(); 1950 if (!cgroup_reclaim(sc)) 1951 __count_vm_events(item, nr_scanned); 1952 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned); 1953 __count_vm_events(PGSCAN_ANON + file, nr_scanned); 1954 1955 spin_unlock_irq(&lruvec->lru_lock); 1956 1957 if (nr_taken == 0) 1958 return 0; 1959 1960 nr_reclaimed = shrink_folio_list(&folio_list, pgdat, sc, &stat, false); 1961 1962 spin_lock_irq(&lruvec->lru_lock); 1963 move_folios_to_lru(lruvec, &folio_list); 1964 1965 __mod_lruvec_state(lruvec, PGDEMOTE_KSWAPD + reclaimer_offset(), 1966 stat.nr_demoted); 1967 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 1968 item = PGSTEAL_KSWAPD + reclaimer_offset(); 1969 if (!cgroup_reclaim(sc)) 1970 __count_vm_events(item, nr_reclaimed); 1971 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed); 1972 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed); 1973 spin_unlock_irq(&lruvec->lru_lock); 1974 1975 lru_note_cost(lruvec, file, stat.nr_pageout, nr_scanned - nr_reclaimed); 1976 1977 /* 1978 * If dirty folios are scanned that are not queued for IO, it 1979 * implies that flushers are not doing their job. This can 1980 * happen when memory pressure pushes dirty folios to the end of 1981 * the LRU before the dirty limits are breached and the dirty 1982 * data has expired. It can also happen when the proportion of 1983 * dirty folios grows not through writes but through memory 1984 * pressure reclaiming all the clean cache. And in some cases, 1985 * the flushers simply cannot keep up with the allocation 1986 * rate. Nudge the flusher threads in case they are asleep. 1987 */ 1988 if (stat.nr_unqueued_dirty == nr_taken) { 1989 wakeup_flusher_threads(WB_REASON_VMSCAN); 1990 /* 1991 * For cgroupv1 dirty throttling is achieved by waking up 1992 * the kernel flusher here and later waiting on folios 1993 * which are in writeback to finish (see shrink_folio_list()). 1994 * 1995 * Flusher may not be able to issue writeback quickly 1996 * enough for cgroupv1 writeback throttling to work 1997 * on a large system. 1998 */ 1999 if (!writeback_throttling_sane(sc)) 2000 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK); 2001 } 2002 2003 sc->nr.dirty += stat.nr_dirty; 2004 sc->nr.congested += stat.nr_congested; 2005 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty; 2006 sc->nr.writeback += stat.nr_writeback; 2007 sc->nr.immediate += stat.nr_immediate; 2008 sc->nr.taken += nr_taken; 2009 if (file) 2010 sc->nr.file_taken += nr_taken; 2011 2012 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 2013 nr_scanned, nr_reclaimed, &stat, sc->priority, file); 2014 return nr_reclaimed; 2015 } 2016 2017 /* 2018 * shrink_active_list() moves folios from the active LRU to the inactive LRU. 2019 * 2020 * We move them the other way if the folio is referenced by one or more 2021 * processes. 2022 * 2023 * If the folios are mostly unmapped, the processing is fast and it is 2024 * appropriate to hold lru_lock across the whole operation. But if 2025 * the folios are mapped, the processing is slow (folio_referenced()), so 2026 * we should drop lru_lock around each folio. It's impossible to balance 2027 * this, so instead we remove the folios from the LRU while processing them. 2028 * It is safe to rely on the active flag against the non-LRU folios in here 2029 * because nobody will play with that bit on a non-LRU folio. 2030 * 2031 * The downside is that we have to touch folio->_refcount against each folio. 2032 * But we had to alter folio->flags anyway. 2033 */ 2034 static void shrink_active_list(unsigned long nr_to_scan, 2035 struct lruvec *lruvec, 2036 struct scan_control *sc, 2037 enum lru_list lru) 2038 { 2039 unsigned long nr_taken; 2040 unsigned long nr_scanned; 2041 unsigned long vm_flags; 2042 LIST_HEAD(l_hold); /* The folios which were snipped off */ 2043 LIST_HEAD(l_active); 2044 LIST_HEAD(l_inactive); 2045 unsigned nr_deactivate, nr_activate; 2046 unsigned nr_rotated = 0; 2047 bool file = is_file_lru(lru); 2048 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2049 2050 lru_add_drain(); 2051 2052 spin_lock_irq(&lruvec->lru_lock); 2053 2054 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &l_hold, 2055 &nr_scanned, sc, lru); 2056 2057 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2058 2059 if (!cgroup_reclaim(sc)) 2060 __count_vm_events(PGREFILL, nr_scanned); 2061 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned); 2062 2063 spin_unlock_irq(&lruvec->lru_lock); 2064 2065 while (!list_empty(&l_hold)) { 2066 struct folio *folio; 2067 2068 cond_resched(); 2069 folio = lru_to_folio(&l_hold); 2070 list_del(&folio->lru); 2071 2072 if (unlikely(!folio_evictable(folio))) { 2073 folio_putback_lru(folio); 2074 continue; 2075 } 2076 2077 if (unlikely(buffer_heads_over_limit)) { 2078 if (folio_needs_release(folio) && 2079 folio_trylock(folio)) { 2080 filemap_release_folio(folio, 0); 2081 folio_unlock(folio); 2082 } 2083 } 2084 2085 /* Referenced or rmap lock contention: rotate */ 2086 if (folio_referenced(folio, 0, sc->target_mem_cgroup, 2087 &vm_flags) != 0) { 2088 /* 2089 * Identify referenced, file-backed active folios and 2090 * give them one more trip around the active list. So 2091 * that executable code get better chances to stay in 2092 * memory under moderate memory pressure. Anon folios 2093 * are not likely to be evicted by use-once streaming 2094 * IO, plus JVM can create lots of anon VM_EXEC folios, 2095 * so we ignore them here. 2096 */ 2097 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) { 2098 nr_rotated += folio_nr_pages(folio); 2099 list_add(&folio->lru, &l_active); 2100 continue; 2101 } 2102 } 2103 2104 folio_clear_active(folio); /* we are de-activating */ 2105 folio_set_workingset(folio); 2106 list_add(&folio->lru, &l_inactive); 2107 } 2108 2109 /* 2110 * Move folios back to the lru list. 2111 */ 2112 spin_lock_irq(&lruvec->lru_lock); 2113 2114 nr_activate = move_folios_to_lru(lruvec, &l_active); 2115 nr_deactivate = move_folios_to_lru(lruvec, &l_inactive); 2116 2117 __count_vm_events(PGDEACTIVATE, nr_deactivate); 2118 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate); 2119 2120 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2121 spin_unlock_irq(&lruvec->lru_lock); 2122 2123 if (nr_rotated) 2124 lru_note_cost(lruvec, file, 0, nr_rotated); 2125 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate, 2126 nr_deactivate, nr_rotated, sc->priority, file); 2127 } 2128 2129 static unsigned int reclaim_folio_list(struct list_head *folio_list, 2130 struct pglist_data *pgdat) 2131 { 2132 struct reclaim_stat dummy_stat; 2133 unsigned int nr_reclaimed; 2134 struct folio *folio; 2135 struct scan_control sc = { 2136 .gfp_mask = GFP_KERNEL, 2137 .may_writepage = 1, 2138 .may_unmap = 1, 2139 .may_swap = 1, 2140 .no_demotion = 1, 2141 }; 2142 2143 nr_reclaimed = shrink_folio_list(folio_list, pgdat, &sc, &dummy_stat, true); 2144 while (!list_empty(folio_list)) { 2145 folio = lru_to_folio(folio_list); 2146 list_del(&folio->lru); 2147 folio_putback_lru(folio); 2148 } 2149 2150 return nr_reclaimed; 2151 } 2152 2153 unsigned long reclaim_pages(struct list_head *folio_list) 2154 { 2155 int nid; 2156 unsigned int nr_reclaimed = 0; 2157 LIST_HEAD(node_folio_list); 2158 unsigned int noreclaim_flag; 2159 2160 if (list_empty(folio_list)) 2161 return nr_reclaimed; 2162 2163 noreclaim_flag = memalloc_noreclaim_save(); 2164 2165 nid = folio_nid(lru_to_folio(folio_list)); 2166 do { 2167 struct folio *folio = lru_to_folio(folio_list); 2168 2169 if (nid == folio_nid(folio)) { 2170 folio_clear_active(folio); 2171 list_move(&folio->lru, &node_folio_list); 2172 continue; 2173 } 2174 2175 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid)); 2176 nid = folio_nid(lru_to_folio(folio_list)); 2177 } while (!list_empty(folio_list)); 2178 2179 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid)); 2180 2181 memalloc_noreclaim_restore(noreclaim_flag); 2182 2183 return nr_reclaimed; 2184 } 2185 2186 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 2187 struct lruvec *lruvec, struct scan_control *sc) 2188 { 2189 if (is_active_lru(lru)) { 2190 if (sc->may_deactivate & (1 << is_file_lru(lru))) 2191 shrink_active_list(nr_to_scan, lruvec, sc, lru); 2192 else 2193 sc->skipped_deactivate = 1; 2194 return 0; 2195 } 2196 2197 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 2198 } 2199 2200 /* 2201 * The inactive anon list should be small enough that the VM never has 2202 * to do too much work. 2203 * 2204 * The inactive file list should be small enough to leave most memory 2205 * to the established workingset on the scan-resistant active list, 2206 * but large enough to avoid thrashing the aggregate readahead window. 2207 * 2208 * Both inactive lists should also be large enough that each inactive 2209 * folio has a chance to be referenced again before it is reclaimed. 2210 * 2211 * If that fails and refaulting is observed, the inactive list grows. 2212 * 2213 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE folios 2214 * on this LRU, maintained by the pageout code. An inactive_ratio 2215 * of 3 means 3:1 or 25% of the folios are kept on the inactive list. 2216 * 2217 * total target max 2218 * memory ratio inactive 2219 * ------------------------------------- 2220 * 10MB 1 5MB 2221 * 100MB 1 50MB 2222 * 1GB 3 250MB 2223 * 10GB 10 0.9GB 2224 * 100GB 31 3GB 2225 * 1TB 101 10GB 2226 * 10TB 320 32GB 2227 */ 2228 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru) 2229 { 2230 enum lru_list active_lru = inactive_lru + LRU_ACTIVE; 2231 unsigned long inactive, active; 2232 unsigned long inactive_ratio; 2233 unsigned long gb; 2234 2235 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru); 2236 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru); 2237 2238 gb = (inactive + active) >> (30 - PAGE_SHIFT); 2239 if (gb) 2240 inactive_ratio = int_sqrt(10 * gb); 2241 else 2242 inactive_ratio = 1; 2243 2244 return inactive * inactive_ratio < active; 2245 } 2246 2247 enum scan_balance { 2248 SCAN_EQUAL, 2249 SCAN_FRACT, 2250 SCAN_ANON, 2251 SCAN_FILE, 2252 }; 2253 2254 static void prepare_scan_control(pg_data_t *pgdat, struct scan_control *sc) 2255 { 2256 unsigned long file; 2257 struct lruvec *target_lruvec; 2258 2259 if (lru_gen_enabled()) 2260 return; 2261 2262 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat); 2263 2264 /* 2265 * Flush the memory cgroup stats in rate-limited way as we don't need 2266 * most accurate stats here. We may switch to regular stats flushing 2267 * in the future once it is cheap enough. 2268 */ 2269 mem_cgroup_flush_stats_ratelimited(sc->target_mem_cgroup); 2270 2271 /* 2272 * Determine the scan balance between anon and file LRUs. 2273 */ 2274 spin_lock_irq(&target_lruvec->lru_lock); 2275 sc->anon_cost = target_lruvec->anon_cost; 2276 sc->file_cost = target_lruvec->file_cost; 2277 spin_unlock_irq(&target_lruvec->lru_lock); 2278 2279 /* 2280 * Target desirable inactive:active list ratios for the anon 2281 * and file LRU lists. 2282 */ 2283 if (!sc->force_deactivate) { 2284 unsigned long refaults; 2285 2286 /* 2287 * When refaults are being observed, it means a new 2288 * workingset is being established. Deactivate to get 2289 * rid of any stale active pages quickly. 2290 */ 2291 refaults = lruvec_page_state(target_lruvec, 2292 WORKINGSET_ACTIVATE_ANON); 2293 if (refaults != target_lruvec->refaults[WORKINGSET_ANON] || 2294 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON)) 2295 sc->may_deactivate |= DEACTIVATE_ANON; 2296 else 2297 sc->may_deactivate &= ~DEACTIVATE_ANON; 2298 2299 refaults = lruvec_page_state(target_lruvec, 2300 WORKINGSET_ACTIVATE_FILE); 2301 if (refaults != target_lruvec->refaults[WORKINGSET_FILE] || 2302 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE)) 2303 sc->may_deactivate |= DEACTIVATE_FILE; 2304 else 2305 sc->may_deactivate &= ~DEACTIVATE_FILE; 2306 } else 2307 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE; 2308 2309 /* 2310 * If we have plenty of inactive file pages that aren't 2311 * thrashing, try to reclaim those first before touching 2312 * anonymous pages. 2313 */ 2314 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE); 2315 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE) && 2316 !sc->no_cache_trim_mode) 2317 sc->cache_trim_mode = 1; 2318 else 2319 sc->cache_trim_mode = 0; 2320 2321 /* 2322 * Prevent the reclaimer from falling into the cache trap: as 2323 * cache pages start out inactive, every cache fault will tip 2324 * the scan balance towards the file LRU. And as the file LRU 2325 * shrinks, so does the window for rotation from references. 2326 * This means we have a runaway feedback loop where a tiny 2327 * thrashing file LRU becomes infinitely more attractive than 2328 * anon pages. Try to detect this based on file LRU size. 2329 */ 2330 if (!cgroup_reclaim(sc)) { 2331 unsigned long total_high_wmark = 0; 2332 unsigned long free, anon; 2333 int z; 2334 2335 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES); 2336 file = node_page_state(pgdat, NR_ACTIVE_FILE) + 2337 node_page_state(pgdat, NR_INACTIVE_FILE); 2338 2339 for (z = 0; z < MAX_NR_ZONES; z++) { 2340 struct zone *zone = &pgdat->node_zones[z]; 2341 2342 if (!managed_zone(zone)) 2343 continue; 2344 2345 total_high_wmark += high_wmark_pages(zone); 2346 } 2347 2348 /* 2349 * Consider anon: if that's low too, this isn't a 2350 * runaway file reclaim problem, but rather just 2351 * extreme pressure. Reclaim as per usual then. 2352 */ 2353 anon = node_page_state(pgdat, NR_INACTIVE_ANON); 2354 2355 sc->file_is_tiny = 2356 file + free <= total_high_wmark && 2357 !(sc->may_deactivate & DEACTIVATE_ANON) && 2358 anon >> sc->priority; 2359 } 2360 } 2361 2362 /* 2363 * Determine how aggressively the anon and file LRU lists should be 2364 * scanned. 2365 * 2366 * nr[0] = anon inactive folios to scan; nr[1] = anon active folios to scan 2367 * nr[2] = file inactive folios to scan; nr[3] = file active folios to scan 2368 */ 2369 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc, 2370 unsigned long *nr) 2371 { 2372 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2373 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 2374 unsigned long anon_cost, file_cost, total_cost; 2375 int swappiness = sc_swappiness(sc, memcg); 2376 u64 fraction[ANON_AND_FILE]; 2377 u64 denominator = 0; /* gcc */ 2378 enum scan_balance scan_balance; 2379 unsigned long ap, fp; 2380 enum lru_list lru; 2381 2382 /* If we have no swap space, do not bother scanning anon folios. */ 2383 if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) { 2384 scan_balance = SCAN_FILE; 2385 goto out; 2386 } 2387 2388 /* 2389 * Global reclaim will swap to prevent OOM even with no 2390 * swappiness, but memcg users want to use this knob to 2391 * disable swapping for individual groups completely when 2392 * using the memory controller's swap limit feature would be 2393 * too expensive. 2394 */ 2395 if (cgroup_reclaim(sc) && !swappiness) { 2396 scan_balance = SCAN_FILE; 2397 goto out; 2398 } 2399 2400 /* 2401 * Do not apply any pressure balancing cleverness when the 2402 * system is close to OOM, scan both anon and file equally 2403 * (unless the swappiness setting disagrees with swapping). 2404 */ 2405 if (!sc->priority && swappiness) { 2406 scan_balance = SCAN_EQUAL; 2407 goto out; 2408 } 2409 2410 /* 2411 * If the system is almost out of file pages, force-scan anon. 2412 */ 2413 if (sc->file_is_tiny) { 2414 scan_balance = SCAN_ANON; 2415 goto out; 2416 } 2417 2418 /* 2419 * If there is enough inactive page cache, we do not reclaim 2420 * anything from the anonymous working right now. 2421 */ 2422 if (sc->cache_trim_mode) { 2423 scan_balance = SCAN_FILE; 2424 goto out; 2425 } 2426 2427 scan_balance = SCAN_FRACT; 2428 /* 2429 * Calculate the pressure balance between anon and file pages. 2430 * 2431 * The amount of pressure we put on each LRU is inversely 2432 * proportional to the cost of reclaiming each list, as 2433 * determined by the share of pages that are refaulting, times 2434 * the relative IO cost of bringing back a swapped out 2435 * anonymous page vs reloading a filesystem page (swappiness). 2436 * 2437 * Although we limit that influence to ensure no list gets 2438 * left behind completely: at least a third of the pressure is 2439 * applied, before swappiness. 2440 * 2441 * With swappiness at 100, anon and file have equal IO cost. 2442 */ 2443 total_cost = sc->anon_cost + sc->file_cost; 2444 anon_cost = total_cost + sc->anon_cost; 2445 file_cost = total_cost + sc->file_cost; 2446 total_cost = anon_cost + file_cost; 2447 2448 ap = swappiness * (total_cost + 1); 2449 ap /= anon_cost + 1; 2450 2451 fp = (MAX_SWAPPINESS - swappiness) * (total_cost + 1); 2452 fp /= file_cost + 1; 2453 2454 fraction[0] = ap; 2455 fraction[1] = fp; 2456 denominator = ap + fp; 2457 out: 2458 for_each_evictable_lru(lru) { 2459 bool file = is_file_lru(lru); 2460 unsigned long lruvec_size; 2461 unsigned long low, min; 2462 unsigned long scan; 2463 2464 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx); 2465 mem_cgroup_protection(sc->target_mem_cgroup, memcg, 2466 &min, &low); 2467 2468 if (min || low) { 2469 /* 2470 * Scale a cgroup's reclaim pressure by proportioning 2471 * its current usage to its memory.low or memory.min 2472 * setting. 2473 * 2474 * This is important, as otherwise scanning aggression 2475 * becomes extremely binary -- from nothing as we 2476 * approach the memory protection threshold, to totally 2477 * nominal as we exceed it. This results in requiring 2478 * setting extremely liberal protection thresholds. It 2479 * also means we simply get no protection at all if we 2480 * set it too low, which is not ideal. 2481 * 2482 * If there is any protection in place, we reduce scan 2483 * pressure by how much of the total memory used is 2484 * within protection thresholds. 2485 * 2486 * There is one special case: in the first reclaim pass, 2487 * we skip over all groups that are within their low 2488 * protection. If that fails to reclaim enough pages to 2489 * satisfy the reclaim goal, we come back and override 2490 * the best-effort low protection. However, we still 2491 * ideally want to honor how well-behaved groups are in 2492 * that case instead of simply punishing them all 2493 * equally. As such, we reclaim them based on how much 2494 * memory they are using, reducing the scan pressure 2495 * again by how much of the total memory used is under 2496 * hard protection. 2497 */ 2498 unsigned long cgroup_size = mem_cgroup_size(memcg); 2499 unsigned long protection; 2500 2501 /* memory.low scaling, make sure we retry before OOM */ 2502 if (!sc->memcg_low_reclaim && low > min) { 2503 protection = low; 2504 sc->memcg_low_skipped = 1; 2505 } else { 2506 protection = min; 2507 } 2508 2509 /* Avoid TOCTOU with earlier protection check */ 2510 cgroup_size = max(cgroup_size, protection); 2511 2512 scan = lruvec_size - lruvec_size * protection / 2513 (cgroup_size + 1); 2514 2515 /* 2516 * Minimally target SWAP_CLUSTER_MAX pages to keep 2517 * reclaim moving forwards, avoiding decrementing 2518 * sc->priority further than desirable. 2519 */ 2520 scan = max(scan, SWAP_CLUSTER_MAX); 2521 } else { 2522 scan = lruvec_size; 2523 } 2524 2525 scan >>= sc->priority; 2526 2527 /* 2528 * If the cgroup's already been deleted, make sure to 2529 * scrape out the remaining cache. 2530 */ 2531 if (!scan && !mem_cgroup_online(memcg)) 2532 scan = min(lruvec_size, SWAP_CLUSTER_MAX); 2533 2534 switch (scan_balance) { 2535 case SCAN_EQUAL: 2536 /* Scan lists relative to size */ 2537 break; 2538 case SCAN_FRACT: 2539 /* 2540 * Scan types proportional to swappiness and 2541 * their relative recent reclaim efficiency. 2542 * Make sure we don't miss the last page on 2543 * the offlined memory cgroups because of a 2544 * round-off error. 2545 */ 2546 scan = mem_cgroup_online(memcg) ? 2547 div64_u64(scan * fraction[file], denominator) : 2548 DIV64_U64_ROUND_UP(scan * fraction[file], 2549 denominator); 2550 break; 2551 case SCAN_FILE: 2552 case SCAN_ANON: 2553 /* Scan one type exclusively */ 2554 if ((scan_balance == SCAN_FILE) != file) 2555 scan = 0; 2556 break; 2557 default: 2558 /* Look ma, no brain */ 2559 BUG(); 2560 } 2561 2562 nr[lru] = scan; 2563 } 2564 } 2565 2566 /* 2567 * Anonymous LRU management is a waste if there is 2568 * ultimately no way to reclaim the memory. 2569 */ 2570 static bool can_age_anon_pages(struct pglist_data *pgdat, 2571 struct scan_control *sc) 2572 { 2573 /* Aging the anon LRU is valuable if swap is present: */ 2574 if (total_swap_pages > 0) 2575 return true; 2576 2577 /* Also valuable if anon pages can be demoted: */ 2578 return can_demote(pgdat->node_id, sc); 2579 } 2580 2581 #ifdef CONFIG_LRU_GEN 2582 2583 #ifdef CONFIG_LRU_GEN_ENABLED 2584 DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS); 2585 #define get_cap(cap) static_branch_likely(&lru_gen_caps[cap]) 2586 #else 2587 DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS); 2588 #define get_cap(cap) static_branch_unlikely(&lru_gen_caps[cap]) 2589 #endif 2590 2591 static bool should_walk_mmu(void) 2592 { 2593 return arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK); 2594 } 2595 2596 static bool should_clear_pmd_young(void) 2597 { 2598 return arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG); 2599 } 2600 2601 /****************************************************************************** 2602 * shorthand helpers 2603 ******************************************************************************/ 2604 2605 #define LRU_REFS_FLAGS (BIT(PG_referenced) | BIT(PG_workingset)) 2606 2607 #define DEFINE_MAX_SEQ(lruvec) \ 2608 unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq) 2609 2610 #define DEFINE_MIN_SEQ(lruvec) \ 2611 unsigned long min_seq[ANON_AND_FILE] = { \ 2612 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]), \ 2613 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]), \ 2614 } 2615 2616 #define for_each_gen_type_zone(gen, type, zone) \ 2617 for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++) \ 2618 for ((type) = 0; (type) < ANON_AND_FILE; (type)++) \ 2619 for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++) 2620 2621 #define get_memcg_gen(seq) ((seq) % MEMCG_NR_GENS) 2622 #define get_memcg_bin(bin) ((bin) % MEMCG_NR_BINS) 2623 2624 static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid) 2625 { 2626 struct pglist_data *pgdat = NODE_DATA(nid); 2627 2628 #ifdef CONFIG_MEMCG 2629 if (memcg) { 2630 struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec; 2631 2632 /* see the comment in mem_cgroup_lruvec() */ 2633 if (!lruvec->pgdat) 2634 lruvec->pgdat = pgdat; 2635 2636 return lruvec; 2637 } 2638 #endif 2639 VM_WARN_ON_ONCE(!mem_cgroup_disabled()); 2640 2641 return &pgdat->__lruvec; 2642 } 2643 2644 static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc) 2645 { 2646 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 2647 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2648 2649 if (!sc->may_swap) 2650 return 0; 2651 2652 if (!can_demote(pgdat->node_id, sc) && 2653 mem_cgroup_get_nr_swap_pages(memcg) < MIN_LRU_BATCH) 2654 return 0; 2655 2656 return sc_swappiness(sc, memcg); 2657 } 2658 2659 static int get_nr_gens(struct lruvec *lruvec, int type) 2660 { 2661 return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1; 2662 } 2663 2664 static bool __maybe_unused seq_is_valid(struct lruvec *lruvec) 2665 { 2666 /* see the comment on lru_gen_folio */ 2667 return get_nr_gens(lruvec, LRU_GEN_FILE) >= MIN_NR_GENS && 2668 get_nr_gens(lruvec, LRU_GEN_FILE) <= get_nr_gens(lruvec, LRU_GEN_ANON) && 2669 get_nr_gens(lruvec, LRU_GEN_ANON) <= MAX_NR_GENS; 2670 } 2671 2672 /****************************************************************************** 2673 * Bloom filters 2674 ******************************************************************************/ 2675 2676 /* 2677 * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when 2678 * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of 2679 * bits in a bitmap, k is the number of hash functions and n is the number of 2680 * inserted items. 2681 * 2682 * Page table walkers use one of the two filters to reduce their search space. 2683 * To get rid of non-leaf entries that no longer have enough leaf entries, the 2684 * aging uses the double-buffering technique to flip to the other filter each 2685 * time it produces a new generation. For non-leaf entries that have enough 2686 * leaf entries, the aging carries them over to the next generation in 2687 * walk_pmd_range(); the eviction also report them when walking the rmap 2688 * in lru_gen_look_around(). 2689 * 2690 * For future optimizations: 2691 * 1. It's not necessary to keep both filters all the time. The spare one can be 2692 * freed after the RCU grace period and reallocated if needed again. 2693 * 2. And when reallocating, it's worth scaling its size according to the number 2694 * of inserted entries in the other filter, to reduce the memory overhead on 2695 * small systems and false positives on large systems. 2696 * 3. Jenkins' hash function is an alternative to Knuth's. 2697 */ 2698 #define BLOOM_FILTER_SHIFT 15 2699 2700 static inline int filter_gen_from_seq(unsigned long seq) 2701 { 2702 return seq % NR_BLOOM_FILTERS; 2703 } 2704 2705 static void get_item_key(void *item, int *key) 2706 { 2707 u32 hash = hash_ptr(item, BLOOM_FILTER_SHIFT * 2); 2708 2709 BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32)); 2710 2711 key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1); 2712 key[1] = hash >> BLOOM_FILTER_SHIFT; 2713 } 2714 2715 static bool test_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq, 2716 void *item) 2717 { 2718 int key[2]; 2719 unsigned long *filter; 2720 int gen = filter_gen_from_seq(seq); 2721 2722 filter = READ_ONCE(mm_state->filters[gen]); 2723 if (!filter) 2724 return true; 2725 2726 get_item_key(item, key); 2727 2728 return test_bit(key[0], filter) && test_bit(key[1], filter); 2729 } 2730 2731 static void update_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq, 2732 void *item) 2733 { 2734 int key[2]; 2735 unsigned long *filter; 2736 int gen = filter_gen_from_seq(seq); 2737 2738 filter = READ_ONCE(mm_state->filters[gen]); 2739 if (!filter) 2740 return; 2741 2742 get_item_key(item, key); 2743 2744 if (!test_bit(key[0], filter)) 2745 set_bit(key[0], filter); 2746 if (!test_bit(key[1], filter)) 2747 set_bit(key[1], filter); 2748 } 2749 2750 static void reset_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq) 2751 { 2752 unsigned long *filter; 2753 int gen = filter_gen_from_seq(seq); 2754 2755 filter = mm_state->filters[gen]; 2756 if (filter) { 2757 bitmap_clear(filter, 0, BIT(BLOOM_FILTER_SHIFT)); 2758 return; 2759 } 2760 2761 filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT), 2762 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN); 2763 WRITE_ONCE(mm_state->filters[gen], filter); 2764 } 2765 2766 /****************************************************************************** 2767 * mm_struct list 2768 ******************************************************************************/ 2769 2770 #ifdef CONFIG_LRU_GEN_WALKS_MMU 2771 2772 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg) 2773 { 2774 static struct lru_gen_mm_list mm_list = { 2775 .fifo = LIST_HEAD_INIT(mm_list.fifo), 2776 .lock = __SPIN_LOCK_UNLOCKED(mm_list.lock), 2777 }; 2778 2779 #ifdef CONFIG_MEMCG 2780 if (memcg) 2781 return &memcg->mm_list; 2782 #endif 2783 VM_WARN_ON_ONCE(!mem_cgroup_disabled()); 2784 2785 return &mm_list; 2786 } 2787 2788 static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec) 2789 { 2790 return &lruvec->mm_state; 2791 } 2792 2793 static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk) 2794 { 2795 int key; 2796 struct mm_struct *mm; 2797 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 2798 struct lru_gen_mm_state *mm_state = get_mm_state(walk->lruvec); 2799 2800 mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list); 2801 key = pgdat->node_id % BITS_PER_TYPE(mm->lru_gen.bitmap); 2802 2803 if (!walk->force_scan && !test_bit(key, &mm->lru_gen.bitmap)) 2804 return NULL; 2805 2806 clear_bit(key, &mm->lru_gen.bitmap); 2807 2808 return mmget_not_zero(mm) ? mm : NULL; 2809 } 2810 2811 void lru_gen_add_mm(struct mm_struct *mm) 2812 { 2813 int nid; 2814 struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm); 2815 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 2816 2817 VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list)); 2818 #ifdef CONFIG_MEMCG 2819 VM_WARN_ON_ONCE(mm->lru_gen.memcg); 2820 mm->lru_gen.memcg = memcg; 2821 #endif 2822 spin_lock(&mm_list->lock); 2823 2824 for_each_node_state(nid, N_MEMORY) { 2825 struct lruvec *lruvec = get_lruvec(memcg, nid); 2826 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 2827 2828 /* the first addition since the last iteration */ 2829 if (mm_state->tail == &mm_list->fifo) 2830 mm_state->tail = &mm->lru_gen.list; 2831 } 2832 2833 list_add_tail(&mm->lru_gen.list, &mm_list->fifo); 2834 2835 spin_unlock(&mm_list->lock); 2836 } 2837 2838 void lru_gen_del_mm(struct mm_struct *mm) 2839 { 2840 int nid; 2841 struct lru_gen_mm_list *mm_list; 2842 struct mem_cgroup *memcg = NULL; 2843 2844 if (list_empty(&mm->lru_gen.list)) 2845 return; 2846 2847 #ifdef CONFIG_MEMCG 2848 memcg = mm->lru_gen.memcg; 2849 #endif 2850 mm_list = get_mm_list(memcg); 2851 2852 spin_lock(&mm_list->lock); 2853 2854 for_each_node(nid) { 2855 struct lruvec *lruvec = get_lruvec(memcg, nid); 2856 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 2857 2858 /* where the current iteration continues after */ 2859 if (mm_state->head == &mm->lru_gen.list) 2860 mm_state->head = mm_state->head->prev; 2861 2862 /* where the last iteration ended before */ 2863 if (mm_state->tail == &mm->lru_gen.list) 2864 mm_state->tail = mm_state->tail->next; 2865 } 2866 2867 list_del_init(&mm->lru_gen.list); 2868 2869 spin_unlock(&mm_list->lock); 2870 2871 #ifdef CONFIG_MEMCG 2872 mem_cgroup_put(mm->lru_gen.memcg); 2873 mm->lru_gen.memcg = NULL; 2874 #endif 2875 } 2876 2877 #ifdef CONFIG_MEMCG 2878 void lru_gen_migrate_mm(struct mm_struct *mm) 2879 { 2880 struct mem_cgroup *memcg; 2881 struct task_struct *task = rcu_dereference_protected(mm->owner, true); 2882 2883 VM_WARN_ON_ONCE(task->mm != mm); 2884 lockdep_assert_held(&task->alloc_lock); 2885 2886 /* for mm_update_next_owner() */ 2887 if (mem_cgroup_disabled()) 2888 return; 2889 2890 /* migration can happen before addition */ 2891 if (!mm->lru_gen.memcg) 2892 return; 2893 2894 rcu_read_lock(); 2895 memcg = mem_cgroup_from_task(task); 2896 rcu_read_unlock(); 2897 if (memcg == mm->lru_gen.memcg) 2898 return; 2899 2900 VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list)); 2901 2902 lru_gen_del_mm(mm); 2903 lru_gen_add_mm(mm); 2904 } 2905 #endif 2906 2907 #else /* !CONFIG_LRU_GEN_WALKS_MMU */ 2908 2909 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg) 2910 { 2911 return NULL; 2912 } 2913 2914 static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec) 2915 { 2916 return NULL; 2917 } 2918 2919 static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk) 2920 { 2921 return NULL; 2922 } 2923 2924 #endif 2925 2926 static void reset_mm_stats(struct lru_gen_mm_walk *walk, bool last) 2927 { 2928 int i; 2929 int hist; 2930 struct lruvec *lruvec = walk->lruvec; 2931 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 2932 2933 lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock); 2934 2935 hist = lru_hist_from_seq(walk->seq); 2936 2937 for (i = 0; i < NR_MM_STATS; i++) { 2938 WRITE_ONCE(mm_state->stats[hist][i], 2939 mm_state->stats[hist][i] + walk->mm_stats[i]); 2940 walk->mm_stats[i] = 0; 2941 } 2942 2943 if (NR_HIST_GENS > 1 && last) { 2944 hist = lru_hist_from_seq(walk->seq + 1); 2945 2946 for (i = 0; i < NR_MM_STATS; i++) 2947 WRITE_ONCE(mm_state->stats[hist][i], 0); 2948 } 2949 } 2950 2951 static bool iterate_mm_list(struct lru_gen_mm_walk *walk, struct mm_struct **iter) 2952 { 2953 bool first = false; 2954 bool last = false; 2955 struct mm_struct *mm = NULL; 2956 struct lruvec *lruvec = walk->lruvec; 2957 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 2958 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 2959 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 2960 2961 /* 2962 * mm_state->seq is incremented after each iteration of mm_list. There 2963 * are three interesting cases for this page table walker: 2964 * 1. It tries to start a new iteration with a stale max_seq: there is 2965 * nothing left to do. 2966 * 2. It started the next iteration: it needs to reset the Bloom filter 2967 * so that a fresh set of PTE tables can be recorded. 2968 * 3. It ended the current iteration: it needs to reset the mm stats 2969 * counters and tell its caller to increment max_seq. 2970 */ 2971 spin_lock(&mm_list->lock); 2972 2973 VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->seq); 2974 2975 if (walk->seq <= mm_state->seq) 2976 goto done; 2977 2978 if (!mm_state->head) 2979 mm_state->head = &mm_list->fifo; 2980 2981 if (mm_state->head == &mm_list->fifo) 2982 first = true; 2983 2984 do { 2985 mm_state->head = mm_state->head->next; 2986 if (mm_state->head == &mm_list->fifo) { 2987 WRITE_ONCE(mm_state->seq, mm_state->seq + 1); 2988 last = true; 2989 break; 2990 } 2991 2992 /* force scan for those added after the last iteration */ 2993 if (!mm_state->tail || mm_state->tail == mm_state->head) { 2994 mm_state->tail = mm_state->head->next; 2995 walk->force_scan = true; 2996 } 2997 } while (!(mm = get_next_mm(walk))); 2998 done: 2999 if (*iter || last) 3000 reset_mm_stats(walk, last); 3001 3002 spin_unlock(&mm_list->lock); 3003 3004 if (mm && first) 3005 reset_bloom_filter(mm_state, walk->seq + 1); 3006 3007 if (*iter) 3008 mmput_async(*iter); 3009 3010 *iter = mm; 3011 3012 return last; 3013 } 3014 3015 static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long seq) 3016 { 3017 bool success = false; 3018 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 3019 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 3020 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 3021 3022 spin_lock(&mm_list->lock); 3023 3024 VM_WARN_ON_ONCE(mm_state->seq + 1 < seq); 3025 3026 if (seq > mm_state->seq) { 3027 mm_state->head = NULL; 3028 mm_state->tail = NULL; 3029 WRITE_ONCE(mm_state->seq, mm_state->seq + 1); 3030 success = true; 3031 } 3032 3033 spin_unlock(&mm_list->lock); 3034 3035 return success; 3036 } 3037 3038 /****************************************************************************** 3039 * PID controller 3040 ******************************************************************************/ 3041 3042 /* 3043 * A feedback loop based on Proportional-Integral-Derivative (PID) controller. 3044 * 3045 * The P term is refaulted/(evicted+protected) from a tier in the generation 3046 * currently being evicted; the I term is the exponential moving average of the 3047 * P term over the generations previously evicted, using the smoothing factor 3048 * 1/2; the D term isn't supported. 3049 * 3050 * The setpoint (SP) is always the first tier of one type; the process variable 3051 * (PV) is either any tier of the other type or any other tier of the same 3052 * type. 3053 * 3054 * The error is the difference between the SP and the PV; the correction is to 3055 * turn off protection when SP>PV or turn on protection when SP<PV. 3056 * 3057 * For future optimizations: 3058 * 1. The D term may discount the other two terms over time so that long-lived 3059 * generations can resist stale information. 3060 */ 3061 struct ctrl_pos { 3062 unsigned long refaulted; 3063 unsigned long total; 3064 int gain; 3065 }; 3066 3067 static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain, 3068 struct ctrl_pos *pos) 3069 { 3070 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3071 int hist = lru_hist_from_seq(lrugen->min_seq[type]); 3072 3073 pos->refaulted = lrugen->avg_refaulted[type][tier] + 3074 atomic_long_read(&lrugen->refaulted[hist][type][tier]); 3075 pos->total = lrugen->avg_total[type][tier] + 3076 atomic_long_read(&lrugen->evicted[hist][type][tier]); 3077 if (tier) 3078 pos->total += lrugen->protected[hist][type][tier - 1]; 3079 pos->gain = gain; 3080 } 3081 3082 static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover) 3083 { 3084 int hist, tier; 3085 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3086 bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1; 3087 unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1; 3088 3089 lockdep_assert_held(&lruvec->lru_lock); 3090 3091 if (!carryover && !clear) 3092 return; 3093 3094 hist = lru_hist_from_seq(seq); 3095 3096 for (tier = 0; tier < MAX_NR_TIERS; tier++) { 3097 if (carryover) { 3098 unsigned long sum; 3099 3100 sum = lrugen->avg_refaulted[type][tier] + 3101 atomic_long_read(&lrugen->refaulted[hist][type][tier]); 3102 WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2); 3103 3104 sum = lrugen->avg_total[type][tier] + 3105 atomic_long_read(&lrugen->evicted[hist][type][tier]); 3106 if (tier) 3107 sum += lrugen->protected[hist][type][tier - 1]; 3108 WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2); 3109 } 3110 3111 if (clear) { 3112 atomic_long_set(&lrugen->refaulted[hist][type][tier], 0); 3113 atomic_long_set(&lrugen->evicted[hist][type][tier], 0); 3114 if (tier) 3115 WRITE_ONCE(lrugen->protected[hist][type][tier - 1], 0); 3116 } 3117 } 3118 } 3119 3120 static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv) 3121 { 3122 /* 3123 * Return true if the PV has a limited number of refaults or a lower 3124 * refaulted/total than the SP. 3125 */ 3126 return pv->refaulted < MIN_LRU_BATCH || 3127 pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <= 3128 (sp->refaulted + 1) * pv->total * pv->gain; 3129 } 3130 3131 /****************************************************************************** 3132 * the aging 3133 ******************************************************************************/ 3134 3135 /* promote pages accessed through page tables */ 3136 static int folio_update_gen(struct folio *folio, int gen) 3137 { 3138 unsigned long new_flags, old_flags = READ_ONCE(folio->flags); 3139 3140 VM_WARN_ON_ONCE(gen >= MAX_NR_GENS); 3141 VM_WARN_ON_ONCE(!rcu_read_lock_held()); 3142 3143 do { 3144 /* lru_gen_del_folio() has isolated this page? */ 3145 if (!(old_flags & LRU_GEN_MASK)) { 3146 /* for shrink_folio_list() */ 3147 new_flags = old_flags | BIT(PG_referenced); 3148 continue; 3149 } 3150 3151 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS); 3152 new_flags |= (gen + 1UL) << LRU_GEN_PGOFF; 3153 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags)); 3154 3155 return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1; 3156 } 3157 3158 /* protect pages accessed multiple times through file descriptors */ 3159 static int folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming) 3160 { 3161 int type = folio_is_file_lru(folio); 3162 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3163 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]); 3164 unsigned long new_flags, old_flags = READ_ONCE(folio->flags); 3165 3166 VM_WARN_ON_ONCE_FOLIO(!(old_flags & LRU_GEN_MASK), folio); 3167 3168 do { 3169 new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1; 3170 /* folio_update_gen() has promoted this page? */ 3171 if (new_gen >= 0 && new_gen != old_gen) 3172 return new_gen; 3173 3174 new_gen = (old_gen + 1) % MAX_NR_GENS; 3175 3176 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS); 3177 new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF; 3178 /* for folio_end_writeback() */ 3179 if (reclaiming) 3180 new_flags |= BIT(PG_reclaim); 3181 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags)); 3182 3183 lru_gen_update_size(lruvec, folio, old_gen, new_gen); 3184 3185 return new_gen; 3186 } 3187 3188 static void update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio, 3189 int old_gen, int new_gen) 3190 { 3191 int type = folio_is_file_lru(folio); 3192 int zone = folio_zonenum(folio); 3193 int delta = folio_nr_pages(folio); 3194 3195 VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS); 3196 VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS); 3197 3198 walk->batched++; 3199 3200 walk->nr_pages[old_gen][type][zone] -= delta; 3201 walk->nr_pages[new_gen][type][zone] += delta; 3202 } 3203 3204 static void reset_batch_size(struct lru_gen_mm_walk *walk) 3205 { 3206 int gen, type, zone; 3207 struct lruvec *lruvec = walk->lruvec; 3208 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3209 3210 walk->batched = 0; 3211 3212 for_each_gen_type_zone(gen, type, zone) { 3213 enum lru_list lru = type * LRU_INACTIVE_FILE; 3214 int delta = walk->nr_pages[gen][type][zone]; 3215 3216 if (!delta) 3217 continue; 3218 3219 walk->nr_pages[gen][type][zone] = 0; 3220 WRITE_ONCE(lrugen->nr_pages[gen][type][zone], 3221 lrugen->nr_pages[gen][type][zone] + delta); 3222 3223 if (lru_gen_is_active(lruvec, gen)) 3224 lru += LRU_ACTIVE; 3225 __update_lru_size(lruvec, lru, zone, delta); 3226 } 3227 } 3228 3229 static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args) 3230 { 3231 struct address_space *mapping; 3232 struct vm_area_struct *vma = args->vma; 3233 struct lru_gen_mm_walk *walk = args->private; 3234 3235 if (!vma_is_accessible(vma)) 3236 return true; 3237 3238 if (is_vm_hugetlb_page(vma)) 3239 return true; 3240 3241 if (!vma_has_recency(vma)) 3242 return true; 3243 3244 if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) 3245 return true; 3246 3247 if (vma == get_gate_vma(vma->vm_mm)) 3248 return true; 3249 3250 if (vma_is_anonymous(vma)) 3251 return !walk->can_swap; 3252 3253 if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping)) 3254 return true; 3255 3256 mapping = vma->vm_file->f_mapping; 3257 if (mapping_unevictable(mapping)) 3258 return true; 3259 3260 if (shmem_mapping(mapping)) 3261 return !walk->can_swap; 3262 3263 /* to exclude special mappings like dax, etc. */ 3264 return !mapping->a_ops->read_folio; 3265 } 3266 3267 /* 3268 * Some userspace memory allocators map many single-page VMAs. Instead of 3269 * returning back to the PGD table for each of such VMAs, finish an entire PMD 3270 * table to reduce zigzags and improve cache performance. 3271 */ 3272 static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args, 3273 unsigned long *vm_start, unsigned long *vm_end) 3274 { 3275 unsigned long start = round_up(*vm_end, size); 3276 unsigned long end = (start | ~mask) + 1; 3277 VMA_ITERATOR(vmi, args->mm, start); 3278 3279 VM_WARN_ON_ONCE(mask & size); 3280 VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask)); 3281 3282 for_each_vma(vmi, args->vma) { 3283 if (end && end <= args->vma->vm_start) 3284 return false; 3285 3286 if (should_skip_vma(args->vma->vm_start, args->vma->vm_end, args)) 3287 continue; 3288 3289 *vm_start = max(start, args->vma->vm_start); 3290 *vm_end = min(end - 1, args->vma->vm_end - 1) + 1; 3291 3292 return true; 3293 } 3294 3295 return false; 3296 } 3297 3298 static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr, 3299 struct pglist_data *pgdat) 3300 { 3301 unsigned long pfn = pte_pfn(pte); 3302 3303 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end); 3304 3305 if (!pte_present(pte) || is_zero_pfn(pfn)) 3306 return -1; 3307 3308 if (WARN_ON_ONCE(pte_devmap(pte) || pte_special(pte))) 3309 return -1; 3310 3311 if (!pte_young(pte) && !mm_has_notifiers(vma->vm_mm)) 3312 return -1; 3313 3314 if (WARN_ON_ONCE(!pfn_valid(pfn))) 3315 return -1; 3316 3317 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat)) 3318 return -1; 3319 3320 return pfn; 3321 } 3322 3323 static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr, 3324 struct pglist_data *pgdat) 3325 { 3326 unsigned long pfn = pmd_pfn(pmd); 3327 3328 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end); 3329 3330 if (!pmd_present(pmd) || is_huge_zero_pmd(pmd)) 3331 return -1; 3332 3333 if (WARN_ON_ONCE(pmd_devmap(pmd))) 3334 return -1; 3335 3336 if (!pmd_young(pmd) && !mm_has_notifiers(vma->vm_mm)) 3337 return -1; 3338 3339 if (WARN_ON_ONCE(!pfn_valid(pfn))) 3340 return -1; 3341 3342 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat)) 3343 return -1; 3344 3345 return pfn; 3346 } 3347 3348 static struct folio *get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg, 3349 struct pglist_data *pgdat, bool can_swap) 3350 { 3351 struct folio *folio; 3352 3353 folio = pfn_folio(pfn); 3354 if (folio_nid(folio) != pgdat->node_id) 3355 return NULL; 3356 3357 if (folio_memcg_rcu(folio) != memcg) 3358 return NULL; 3359 3360 /* file VMAs can contain anon pages from COW */ 3361 if (!folio_is_file_lru(folio) && !can_swap) 3362 return NULL; 3363 3364 return folio; 3365 } 3366 3367 static bool suitable_to_scan(int total, int young) 3368 { 3369 int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8); 3370 3371 /* suitable if the average number of young PTEs per cacheline is >=1 */ 3372 return young * n >= total; 3373 } 3374 3375 static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end, 3376 struct mm_walk *args) 3377 { 3378 int i; 3379 pte_t *pte; 3380 spinlock_t *ptl; 3381 unsigned long addr; 3382 int total = 0; 3383 int young = 0; 3384 struct lru_gen_mm_walk *walk = args->private; 3385 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec); 3386 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 3387 DEFINE_MAX_SEQ(walk->lruvec); 3388 int old_gen, new_gen = lru_gen_from_seq(max_seq); 3389 3390 pte = pte_offset_map_nolock(args->mm, pmd, start & PMD_MASK, &ptl); 3391 if (!pte) 3392 return false; 3393 if (!spin_trylock(ptl)) { 3394 pte_unmap(pte); 3395 return false; 3396 } 3397 3398 arch_enter_lazy_mmu_mode(); 3399 restart: 3400 for (i = pte_index(start), addr = start; addr != end; i++, addr += PAGE_SIZE) { 3401 unsigned long pfn; 3402 struct folio *folio; 3403 pte_t ptent = ptep_get(pte + i); 3404 3405 total++; 3406 walk->mm_stats[MM_LEAF_TOTAL]++; 3407 3408 pfn = get_pte_pfn(ptent, args->vma, addr, pgdat); 3409 if (pfn == -1) 3410 continue; 3411 3412 folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap); 3413 if (!folio) 3414 continue; 3415 3416 if (!ptep_clear_young_notify(args->vma, addr, pte + i)) 3417 continue; 3418 3419 young++; 3420 walk->mm_stats[MM_LEAF_YOUNG]++; 3421 3422 if (pte_dirty(ptent) && !folio_test_dirty(folio) && 3423 !(folio_test_anon(folio) && folio_test_swapbacked(folio) && 3424 !folio_test_swapcache(folio))) 3425 folio_mark_dirty(folio); 3426 3427 old_gen = folio_update_gen(folio, new_gen); 3428 if (old_gen >= 0 && old_gen != new_gen) 3429 update_batch_size(walk, folio, old_gen, new_gen); 3430 } 3431 3432 if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, &start, &end)) 3433 goto restart; 3434 3435 arch_leave_lazy_mmu_mode(); 3436 pte_unmap_unlock(pte, ptl); 3437 3438 return suitable_to_scan(total, young); 3439 } 3440 3441 static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma, 3442 struct mm_walk *args, unsigned long *bitmap, unsigned long *first) 3443 { 3444 int i; 3445 pmd_t *pmd; 3446 spinlock_t *ptl; 3447 struct lru_gen_mm_walk *walk = args->private; 3448 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec); 3449 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 3450 DEFINE_MAX_SEQ(walk->lruvec); 3451 int old_gen, new_gen = lru_gen_from_seq(max_seq); 3452 3453 VM_WARN_ON_ONCE(pud_leaf(*pud)); 3454 3455 /* try to batch at most 1+MIN_LRU_BATCH+1 entries */ 3456 if (*first == -1) { 3457 *first = addr; 3458 bitmap_zero(bitmap, MIN_LRU_BATCH); 3459 return; 3460 } 3461 3462 i = addr == -1 ? 0 : pmd_index(addr) - pmd_index(*first); 3463 if (i && i <= MIN_LRU_BATCH) { 3464 __set_bit(i - 1, bitmap); 3465 return; 3466 } 3467 3468 pmd = pmd_offset(pud, *first); 3469 3470 ptl = pmd_lockptr(args->mm, pmd); 3471 if (!spin_trylock(ptl)) 3472 goto done; 3473 3474 arch_enter_lazy_mmu_mode(); 3475 3476 do { 3477 unsigned long pfn; 3478 struct folio *folio; 3479 3480 /* don't round down the first address */ 3481 addr = i ? (*first & PMD_MASK) + i * PMD_SIZE : *first; 3482 3483 if (!pmd_present(pmd[i])) 3484 goto next; 3485 3486 if (!pmd_trans_huge(pmd[i])) { 3487 if (!walk->force_scan && should_clear_pmd_young() && 3488 !mm_has_notifiers(args->mm)) 3489 pmdp_test_and_clear_young(vma, addr, pmd + i); 3490 goto next; 3491 } 3492 3493 pfn = get_pmd_pfn(pmd[i], vma, addr, pgdat); 3494 if (pfn == -1) 3495 goto next; 3496 3497 folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap); 3498 if (!folio) 3499 goto next; 3500 3501 if (!pmdp_clear_young_notify(vma, addr, pmd + i)) 3502 goto next; 3503 3504 walk->mm_stats[MM_LEAF_YOUNG]++; 3505 3506 if (pmd_dirty(pmd[i]) && !folio_test_dirty(folio) && 3507 !(folio_test_anon(folio) && folio_test_swapbacked(folio) && 3508 !folio_test_swapcache(folio))) 3509 folio_mark_dirty(folio); 3510 3511 old_gen = folio_update_gen(folio, new_gen); 3512 if (old_gen >= 0 && old_gen != new_gen) 3513 update_batch_size(walk, folio, old_gen, new_gen); 3514 next: 3515 i = i > MIN_LRU_BATCH ? 0 : find_next_bit(bitmap, MIN_LRU_BATCH, i) + 1; 3516 } while (i <= MIN_LRU_BATCH); 3517 3518 arch_leave_lazy_mmu_mode(); 3519 spin_unlock(ptl); 3520 done: 3521 *first = -1; 3522 } 3523 3524 static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end, 3525 struct mm_walk *args) 3526 { 3527 int i; 3528 pmd_t *pmd; 3529 unsigned long next; 3530 unsigned long addr; 3531 struct vm_area_struct *vma; 3532 DECLARE_BITMAP(bitmap, MIN_LRU_BATCH); 3533 unsigned long first = -1; 3534 struct lru_gen_mm_walk *walk = args->private; 3535 struct lru_gen_mm_state *mm_state = get_mm_state(walk->lruvec); 3536 3537 VM_WARN_ON_ONCE(pud_leaf(*pud)); 3538 3539 /* 3540 * Finish an entire PMD in two passes: the first only reaches to PTE 3541 * tables to avoid taking the PMD lock; the second, if necessary, takes 3542 * the PMD lock to clear the accessed bit in PMD entries. 3543 */ 3544 pmd = pmd_offset(pud, start & PUD_MASK); 3545 restart: 3546 /* walk_pte_range() may call get_next_vma() */ 3547 vma = args->vma; 3548 for (i = pmd_index(start), addr = start; addr != end; i++, addr = next) { 3549 pmd_t val = pmdp_get_lockless(pmd + i); 3550 3551 next = pmd_addr_end(addr, end); 3552 3553 if (!pmd_present(val) || is_huge_zero_pmd(val)) { 3554 walk->mm_stats[MM_LEAF_TOTAL]++; 3555 continue; 3556 } 3557 3558 if (pmd_trans_huge(val)) { 3559 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 3560 unsigned long pfn = get_pmd_pfn(val, vma, addr, pgdat); 3561 3562 walk->mm_stats[MM_LEAF_TOTAL]++; 3563 3564 if (pfn != -1) 3565 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first); 3566 continue; 3567 } 3568 3569 if (!walk->force_scan && should_clear_pmd_young() && 3570 !mm_has_notifiers(args->mm)) { 3571 if (!pmd_young(val)) 3572 continue; 3573 3574 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first); 3575 } 3576 3577 if (!walk->force_scan && !test_bloom_filter(mm_state, walk->seq, pmd + i)) 3578 continue; 3579 3580 walk->mm_stats[MM_NONLEAF_FOUND]++; 3581 3582 if (!walk_pte_range(&val, addr, next, args)) 3583 continue; 3584 3585 walk->mm_stats[MM_NONLEAF_ADDED]++; 3586 3587 /* carry over to the next generation */ 3588 update_bloom_filter(mm_state, walk->seq + 1, pmd + i); 3589 } 3590 3591 walk_pmd_range_locked(pud, -1, vma, args, bitmap, &first); 3592 3593 if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, &start, &end)) 3594 goto restart; 3595 } 3596 3597 static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end, 3598 struct mm_walk *args) 3599 { 3600 int i; 3601 pud_t *pud; 3602 unsigned long addr; 3603 unsigned long next; 3604 struct lru_gen_mm_walk *walk = args->private; 3605 3606 VM_WARN_ON_ONCE(p4d_leaf(*p4d)); 3607 3608 pud = pud_offset(p4d, start & P4D_MASK); 3609 restart: 3610 for (i = pud_index(start), addr = start; addr != end; i++, addr = next) { 3611 pud_t val = READ_ONCE(pud[i]); 3612 3613 next = pud_addr_end(addr, end); 3614 3615 if (!pud_present(val) || WARN_ON_ONCE(pud_leaf(val))) 3616 continue; 3617 3618 walk_pmd_range(&val, addr, next, args); 3619 3620 if (need_resched() || walk->batched >= MAX_LRU_BATCH) { 3621 end = (addr | ~PUD_MASK) + 1; 3622 goto done; 3623 } 3624 } 3625 3626 if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, &start, &end)) 3627 goto restart; 3628 3629 end = round_up(end, P4D_SIZE); 3630 done: 3631 if (!end || !args->vma) 3632 return 1; 3633 3634 walk->next_addr = max(end, args->vma->vm_start); 3635 3636 return -EAGAIN; 3637 } 3638 3639 static void walk_mm(struct mm_struct *mm, struct lru_gen_mm_walk *walk) 3640 { 3641 static const struct mm_walk_ops mm_walk_ops = { 3642 .test_walk = should_skip_vma, 3643 .p4d_entry = walk_pud_range, 3644 .walk_lock = PGWALK_RDLOCK, 3645 }; 3646 3647 int err; 3648 struct lruvec *lruvec = walk->lruvec; 3649 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 3650 3651 walk->next_addr = FIRST_USER_ADDRESS; 3652 3653 do { 3654 DEFINE_MAX_SEQ(lruvec); 3655 3656 err = -EBUSY; 3657 3658 /* another thread might have called inc_max_seq() */ 3659 if (walk->seq != max_seq) 3660 break; 3661 3662 /* folio_update_gen() requires stable folio_memcg() */ 3663 if (!mem_cgroup_trylock_pages(memcg)) 3664 break; 3665 3666 /* the caller might be holding the lock for write */ 3667 if (mmap_read_trylock(mm)) { 3668 err = walk_page_range(mm, walk->next_addr, ULONG_MAX, &mm_walk_ops, walk); 3669 3670 mmap_read_unlock(mm); 3671 } 3672 3673 mem_cgroup_unlock_pages(); 3674 3675 if (walk->batched) { 3676 spin_lock_irq(&lruvec->lru_lock); 3677 reset_batch_size(walk); 3678 spin_unlock_irq(&lruvec->lru_lock); 3679 } 3680 3681 cond_resched(); 3682 } while (err == -EAGAIN); 3683 } 3684 3685 static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat, bool force_alloc) 3686 { 3687 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk; 3688 3689 if (pgdat && current_is_kswapd()) { 3690 VM_WARN_ON_ONCE(walk); 3691 3692 walk = &pgdat->mm_walk; 3693 } else if (!walk && force_alloc) { 3694 VM_WARN_ON_ONCE(current_is_kswapd()); 3695 3696 walk = kzalloc(sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN); 3697 } 3698 3699 current->reclaim_state->mm_walk = walk; 3700 3701 return walk; 3702 } 3703 3704 static void clear_mm_walk(void) 3705 { 3706 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk; 3707 3708 VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages))); 3709 VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats))); 3710 3711 current->reclaim_state->mm_walk = NULL; 3712 3713 if (!current_is_kswapd()) 3714 kfree(walk); 3715 } 3716 3717 static bool inc_min_seq(struct lruvec *lruvec, int type, bool can_swap) 3718 { 3719 int zone; 3720 int remaining = MAX_LRU_BATCH; 3721 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3722 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]); 3723 3724 if (type == LRU_GEN_ANON && !can_swap) 3725 goto done; 3726 3727 /* prevent cold/hot inversion if force_scan is true */ 3728 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 3729 struct list_head *head = &lrugen->folios[old_gen][type][zone]; 3730 3731 while (!list_empty(head)) { 3732 struct folio *folio = lru_to_folio(head); 3733 3734 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 3735 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio); 3736 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 3737 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio); 3738 3739 new_gen = folio_inc_gen(lruvec, folio, false); 3740 list_move_tail(&folio->lru, &lrugen->folios[new_gen][type][zone]); 3741 3742 if (!--remaining) 3743 return false; 3744 } 3745 } 3746 done: 3747 reset_ctrl_pos(lruvec, type, true); 3748 WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1); 3749 3750 return true; 3751 } 3752 3753 static bool try_to_inc_min_seq(struct lruvec *lruvec, bool can_swap) 3754 { 3755 int gen, type, zone; 3756 bool success = false; 3757 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3758 DEFINE_MIN_SEQ(lruvec); 3759 3760 VM_WARN_ON_ONCE(!seq_is_valid(lruvec)); 3761 3762 /* find the oldest populated generation */ 3763 for (type = !can_swap; type < ANON_AND_FILE; type++) { 3764 while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) { 3765 gen = lru_gen_from_seq(min_seq[type]); 3766 3767 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 3768 if (!list_empty(&lrugen->folios[gen][type][zone])) 3769 goto next; 3770 } 3771 3772 min_seq[type]++; 3773 } 3774 next: 3775 ; 3776 } 3777 3778 /* see the comment on lru_gen_folio */ 3779 if (can_swap) { 3780 min_seq[LRU_GEN_ANON] = min(min_seq[LRU_GEN_ANON], min_seq[LRU_GEN_FILE]); 3781 min_seq[LRU_GEN_FILE] = max(min_seq[LRU_GEN_ANON], lrugen->min_seq[LRU_GEN_FILE]); 3782 } 3783 3784 for (type = !can_swap; type < ANON_AND_FILE; type++) { 3785 if (min_seq[type] == lrugen->min_seq[type]) 3786 continue; 3787 3788 reset_ctrl_pos(lruvec, type, true); 3789 WRITE_ONCE(lrugen->min_seq[type], min_seq[type]); 3790 success = true; 3791 } 3792 3793 return success; 3794 } 3795 3796 static bool inc_max_seq(struct lruvec *lruvec, unsigned long seq, 3797 bool can_swap, bool force_scan) 3798 { 3799 bool success; 3800 int prev, next; 3801 int type, zone; 3802 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3803 restart: 3804 if (seq < READ_ONCE(lrugen->max_seq)) 3805 return false; 3806 3807 spin_lock_irq(&lruvec->lru_lock); 3808 3809 VM_WARN_ON_ONCE(!seq_is_valid(lruvec)); 3810 3811 success = seq == lrugen->max_seq; 3812 if (!success) 3813 goto unlock; 3814 3815 for (type = ANON_AND_FILE - 1; type >= 0; type--) { 3816 if (get_nr_gens(lruvec, type) != MAX_NR_GENS) 3817 continue; 3818 3819 VM_WARN_ON_ONCE(!force_scan && (type == LRU_GEN_FILE || can_swap)); 3820 3821 if (inc_min_seq(lruvec, type, can_swap)) 3822 continue; 3823 3824 spin_unlock_irq(&lruvec->lru_lock); 3825 cond_resched(); 3826 goto restart; 3827 } 3828 3829 /* 3830 * Update the active/inactive LRU sizes for compatibility. Both sides of 3831 * the current max_seq need to be covered, since max_seq+1 can overlap 3832 * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do 3833 * overlap, cold/hot inversion happens. 3834 */ 3835 prev = lru_gen_from_seq(lrugen->max_seq - 1); 3836 next = lru_gen_from_seq(lrugen->max_seq + 1); 3837 3838 for (type = 0; type < ANON_AND_FILE; type++) { 3839 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 3840 enum lru_list lru = type * LRU_INACTIVE_FILE; 3841 long delta = lrugen->nr_pages[prev][type][zone] - 3842 lrugen->nr_pages[next][type][zone]; 3843 3844 if (!delta) 3845 continue; 3846 3847 __update_lru_size(lruvec, lru, zone, delta); 3848 __update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta); 3849 } 3850 } 3851 3852 for (type = 0; type < ANON_AND_FILE; type++) 3853 reset_ctrl_pos(lruvec, type, false); 3854 3855 WRITE_ONCE(lrugen->timestamps[next], jiffies); 3856 /* make sure preceding modifications appear */ 3857 smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1); 3858 unlock: 3859 spin_unlock_irq(&lruvec->lru_lock); 3860 3861 return success; 3862 } 3863 3864 static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long seq, 3865 bool can_swap, bool force_scan) 3866 { 3867 bool success; 3868 struct lru_gen_mm_walk *walk; 3869 struct mm_struct *mm = NULL; 3870 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3871 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 3872 3873 VM_WARN_ON_ONCE(seq > READ_ONCE(lrugen->max_seq)); 3874 3875 if (!mm_state) 3876 return inc_max_seq(lruvec, seq, can_swap, force_scan); 3877 3878 /* see the comment in iterate_mm_list() */ 3879 if (seq <= READ_ONCE(mm_state->seq)) 3880 return false; 3881 3882 /* 3883 * If the hardware doesn't automatically set the accessed bit, fallback 3884 * to lru_gen_look_around(), which only clears the accessed bit in a 3885 * handful of PTEs. Spreading the work out over a period of time usually 3886 * is less efficient, but it avoids bursty page faults. 3887 */ 3888 if (!should_walk_mmu()) { 3889 success = iterate_mm_list_nowalk(lruvec, seq); 3890 goto done; 3891 } 3892 3893 walk = set_mm_walk(NULL, true); 3894 if (!walk) { 3895 success = iterate_mm_list_nowalk(lruvec, seq); 3896 goto done; 3897 } 3898 3899 walk->lruvec = lruvec; 3900 walk->seq = seq; 3901 walk->can_swap = can_swap; 3902 walk->force_scan = force_scan; 3903 3904 do { 3905 success = iterate_mm_list(walk, &mm); 3906 if (mm) 3907 walk_mm(mm, walk); 3908 } while (mm); 3909 done: 3910 if (success) { 3911 success = inc_max_seq(lruvec, seq, can_swap, force_scan); 3912 WARN_ON_ONCE(!success); 3913 } 3914 3915 return success; 3916 } 3917 3918 /****************************************************************************** 3919 * working set protection 3920 ******************************************************************************/ 3921 3922 static void set_initial_priority(struct pglist_data *pgdat, struct scan_control *sc) 3923 { 3924 int priority; 3925 unsigned long reclaimable; 3926 3927 if (sc->priority != DEF_PRIORITY || sc->nr_to_reclaim < MIN_LRU_BATCH) 3928 return; 3929 /* 3930 * Determine the initial priority based on 3931 * (total >> priority) * reclaimed_to_scanned_ratio = nr_to_reclaim, 3932 * where reclaimed_to_scanned_ratio = inactive / total. 3933 */ 3934 reclaimable = node_page_state(pgdat, NR_INACTIVE_FILE); 3935 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc)) 3936 reclaimable += node_page_state(pgdat, NR_INACTIVE_ANON); 3937 3938 /* round down reclaimable and round up sc->nr_to_reclaim */ 3939 priority = fls_long(reclaimable) - 1 - fls_long(sc->nr_to_reclaim - 1); 3940 3941 /* 3942 * The estimation is based on LRU pages only, so cap it to prevent 3943 * overshoots of shrinker objects by large margins. 3944 */ 3945 sc->priority = clamp(priority, DEF_PRIORITY / 2, DEF_PRIORITY); 3946 } 3947 3948 static bool lruvec_is_sizable(struct lruvec *lruvec, struct scan_control *sc) 3949 { 3950 int gen, type, zone; 3951 unsigned long total = 0; 3952 bool can_swap = get_swappiness(lruvec, sc); 3953 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3954 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 3955 DEFINE_MAX_SEQ(lruvec); 3956 DEFINE_MIN_SEQ(lruvec); 3957 3958 for (type = !can_swap; type < ANON_AND_FILE; type++) { 3959 unsigned long seq; 3960 3961 for (seq = min_seq[type]; seq <= max_seq; seq++) { 3962 gen = lru_gen_from_seq(seq); 3963 3964 for (zone = 0; zone < MAX_NR_ZONES; zone++) 3965 total += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L); 3966 } 3967 } 3968 3969 /* whether the size is big enough to be helpful */ 3970 return mem_cgroup_online(memcg) ? (total >> sc->priority) : total; 3971 } 3972 3973 static bool lruvec_is_reclaimable(struct lruvec *lruvec, struct scan_control *sc, 3974 unsigned long min_ttl) 3975 { 3976 int gen; 3977 unsigned long birth; 3978 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 3979 DEFINE_MIN_SEQ(lruvec); 3980 3981 if (mem_cgroup_below_min(NULL, memcg)) 3982 return false; 3983 3984 if (!lruvec_is_sizable(lruvec, sc)) 3985 return false; 3986 3987 /* see the comment on lru_gen_folio */ 3988 gen = lru_gen_from_seq(min_seq[LRU_GEN_FILE]); 3989 birth = READ_ONCE(lruvec->lrugen.timestamps[gen]); 3990 3991 return time_is_before_jiffies(birth + min_ttl); 3992 } 3993 3994 /* to protect the working set of the last N jiffies */ 3995 static unsigned long lru_gen_min_ttl __read_mostly; 3996 3997 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc) 3998 { 3999 struct mem_cgroup *memcg; 4000 unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl); 4001 bool reclaimable = !min_ttl; 4002 4003 VM_WARN_ON_ONCE(!current_is_kswapd()); 4004 4005 set_initial_priority(pgdat, sc); 4006 4007 memcg = mem_cgroup_iter(NULL, NULL, NULL); 4008 do { 4009 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 4010 4011 mem_cgroup_calculate_protection(NULL, memcg); 4012 4013 if (!reclaimable) 4014 reclaimable = lruvec_is_reclaimable(lruvec, sc, min_ttl); 4015 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL))); 4016 4017 /* 4018 * The main goal is to OOM kill if every generation from all memcgs is 4019 * younger than min_ttl. However, another possibility is all memcgs are 4020 * either too small or below min. 4021 */ 4022 if (!reclaimable && mutex_trylock(&oom_lock)) { 4023 struct oom_control oc = { 4024 .gfp_mask = sc->gfp_mask, 4025 }; 4026 4027 out_of_memory(&oc); 4028 4029 mutex_unlock(&oom_lock); 4030 } 4031 } 4032 4033 /****************************************************************************** 4034 * rmap/PT walk feedback 4035 ******************************************************************************/ 4036 4037 /* 4038 * This function exploits spatial locality when shrink_folio_list() walks the 4039 * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If 4040 * the scan was done cacheline efficiently, it adds the PMD entry pointing to 4041 * the PTE table to the Bloom filter. This forms a feedback loop between the 4042 * eviction and the aging. 4043 */ 4044 bool lru_gen_look_around(struct page_vma_mapped_walk *pvmw) 4045 { 4046 int i; 4047 unsigned long start; 4048 unsigned long end; 4049 struct lru_gen_mm_walk *walk; 4050 int young = 1; 4051 pte_t *pte = pvmw->pte; 4052 unsigned long addr = pvmw->address; 4053 struct vm_area_struct *vma = pvmw->vma; 4054 struct folio *folio = pfn_folio(pvmw->pfn); 4055 bool can_swap = !folio_is_file_lru(folio); 4056 struct mem_cgroup *memcg = folio_memcg(folio); 4057 struct pglist_data *pgdat = folio_pgdat(folio); 4058 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 4059 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 4060 DEFINE_MAX_SEQ(lruvec); 4061 int old_gen, new_gen = lru_gen_from_seq(max_seq); 4062 4063 lockdep_assert_held(pvmw->ptl); 4064 VM_WARN_ON_ONCE_FOLIO(folio_test_lru(folio), folio); 4065 4066 if (!ptep_clear_young_notify(vma, addr, pte)) 4067 return false; 4068 4069 if (spin_is_contended(pvmw->ptl)) 4070 return true; 4071 4072 /* exclude special VMAs containing anon pages from COW */ 4073 if (vma->vm_flags & VM_SPECIAL) 4074 return true; 4075 4076 /* avoid taking the LRU lock under the PTL when possible */ 4077 walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL; 4078 4079 start = max(addr & PMD_MASK, vma->vm_start); 4080 end = min(addr | ~PMD_MASK, vma->vm_end - 1) + 1; 4081 4082 if (end - start == PAGE_SIZE) 4083 return true; 4084 4085 if (end - start > MIN_LRU_BATCH * PAGE_SIZE) { 4086 if (addr - start < MIN_LRU_BATCH * PAGE_SIZE / 2) 4087 end = start + MIN_LRU_BATCH * PAGE_SIZE; 4088 else if (end - addr < MIN_LRU_BATCH * PAGE_SIZE / 2) 4089 start = end - MIN_LRU_BATCH * PAGE_SIZE; 4090 else { 4091 start = addr - MIN_LRU_BATCH * PAGE_SIZE / 2; 4092 end = addr + MIN_LRU_BATCH * PAGE_SIZE / 2; 4093 } 4094 } 4095 4096 /* folio_update_gen() requires stable folio_memcg() */ 4097 if (!mem_cgroup_trylock_pages(memcg)) 4098 return true; 4099 4100 arch_enter_lazy_mmu_mode(); 4101 4102 pte -= (addr - start) / PAGE_SIZE; 4103 4104 for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) { 4105 unsigned long pfn; 4106 pte_t ptent = ptep_get(pte + i); 4107 4108 pfn = get_pte_pfn(ptent, vma, addr, pgdat); 4109 if (pfn == -1) 4110 continue; 4111 4112 folio = get_pfn_folio(pfn, memcg, pgdat, can_swap); 4113 if (!folio) 4114 continue; 4115 4116 if (!ptep_clear_young_notify(vma, addr, pte + i)) 4117 continue; 4118 4119 young++; 4120 4121 if (pte_dirty(ptent) && !folio_test_dirty(folio) && 4122 !(folio_test_anon(folio) && folio_test_swapbacked(folio) && 4123 !folio_test_swapcache(folio))) 4124 folio_mark_dirty(folio); 4125 4126 if (walk) { 4127 old_gen = folio_update_gen(folio, new_gen); 4128 if (old_gen >= 0 && old_gen != new_gen) 4129 update_batch_size(walk, folio, old_gen, new_gen); 4130 4131 continue; 4132 } 4133 4134 old_gen = folio_lru_gen(folio); 4135 if (old_gen < 0) 4136 folio_set_referenced(folio); 4137 else if (old_gen != new_gen) 4138 folio_activate(folio); 4139 } 4140 4141 arch_leave_lazy_mmu_mode(); 4142 mem_cgroup_unlock_pages(); 4143 4144 /* feedback from rmap walkers to page table walkers */ 4145 if (mm_state && suitable_to_scan(i, young)) 4146 update_bloom_filter(mm_state, max_seq, pvmw->pmd); 4147 4148 return true; 4149 } 4150 4151 /****************************************************************************** 4152 * memcg LRU 4153 ******************************************************************************/ 4154 4155 /* see the comment on MEMCG_NR_GENS */ 4156 enum { 4157 MEMCG_LRU_NOP, 4158 MEMCG_LRU_HEAD, 4159 MEMCG_LRU_TAIL, 4160 MEMCG_LRU_OLD, 4161 MEMCG_LRU_YOUNG, 4162 }; 4163 4164 static void lru_gen_rotate_memcg(struct lruvec *lruvec, int op) 4165 { 4166 int seg; 4167 int old, new; 4168 unsigned long flags; 4169 int bin = get_random_u32_below(MEMCG_NR_BINS); 4170 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 4171 4172 spin_lock_irqsave(&pgdat->memcg_lru.lock, flags); 4173 4174 VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list)); 4175 4176 seg = 0; 4177 new = old = lruvec->lrugen.gen; 4178 4179 /* see the comment on MEMCG_NR_GENS */ 4180 if (op == MEMCG_LRU_HEAD) 4181 seg = MEMCG_LRU_HEAD; 4182 else if (op == MEMCG_LRU_TAIL) 4183 seg = MEMCG_LRU_TAIL; 4184 else if (op == MEMCG_LRU_OLD) 4185 new = get_memcg_gen(pgdat->memcg_lru.seq); 4186 else if (op == MEMCG_LRU_YOUNG) 4187 new = get_memcg_gen(pgdat->memcg_lru.seq + 1); 4188 else 4189 VM_WARN_ON_ONCE(true); 4190 4191 WRITE_ONCE(lruvec->lrugen.seg, seg); 4192 WRITE_ONCE(lruvec->lrugen.gen, new); 4193 4194 hlist_nulls_del_rcu(&lruvec->lrugen.list); 4195 4196 if (op == MEMCG_LRU_HEAD || op == MEMCG_LRU_OLD) 4197 hlist_nulls_add_head_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]); 4198 else 4199 hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]); 4200 4201 pgdat->memcg_lru.nr_memcgs[old]--; 4202 pgdat->memcg_lru.nr_memcgs[new]++; 4203 4204 if (!pgdat->memcg_lru.nr_memcgs[old] && old == get_memcg_gen(pgdat->memcg_lru.seq)) 4205 WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1); 4206 4207 spin_unlock_irqrestore(&pgdat->memcg_lru.lock, flags); 4208 } 4209 4210 #ifdef CONFIG_MEMCG 4211 4212 void lru_gen_online_memcg(struct mem_cgroup *memcg) 4213 { 4214 int gen; 4215 int nid; 4216 int bin = get_random_u32_below(MEMCG_NR_BINS); 4217 4218 for_each_node(nid) { 4219 struct pglist_data *pgdat = NODE_DATA(nid); 4220 struct lruvec *lruvec = get_lruvec(memcg, nid); 4221 4222 spin_lock_irq(&pgdat->memcg_lru.lock); 4223 4224 VM_WARN_ON_ONCE(!hlist_nulls_unhashed(&lruvec->lrugen.list)); 4225 4226 gen = get_memcg_gen(pgdat->memcg_lru.seq); 4227 4228 lruvec->lrugen.gen = gen; 4229 4230 hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[gen][bin]); 4231 pgdat->memcg_lru.nr_memcgs[gen]++; 4232 4233 spin_unlock_irq(&pgdat->memcg_lru.lock); 4234 } 4235 } 4236 4237 void lru_gen_offline_memcg(struct mem_cgroup *memcg) 4238 { 4239 int nid; 4240 4241 for_each_node(nid) { 4242 struct lruvec *lruvec = get_lruvec(memcg, nid); 4243 4244 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_OLD); 4245 } 4246 } 4247 4248 void lru_gen_release_memcg(struct mem_cgroup *memcg) 4249 { 4250 int gen; 4251 int nid; 4252 4253 for_each_node(nid) { 4254 struct pglist_data *pgdat = NODE_DATA(nid); 4255 struct lruvec *lruvec = get_lruvec(memcg, nid); 4256 4257 spin_lock_irq(&pgdat->memcg_lru.lock); 4258 4259 if (hlist_nulls_unhashed(&lruvec->lrugen.list)) 4260 goto unlock; 4261 4262 gen = lruvec->lrugen.gen; 4263 4264 hlist_nulls_del_init_rcu(&lruvec->lrugen.list); 4265 pgdat->memcg_lru.nr_memcgs[gen]--; 4266 4267 if (!pgdat->memcg_lru.nr_memcgs[gen] && gen == get_memcg_gen(pgdat->memcg_lru.seq)) 4268 WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1); 4269 unlock: 4270 spin_unlock_irq(&pgdat->memcg_lru.lock); 4271 } 4272 } 4273 4274 void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid) 4275 { 4276 struct lruvec *lruvec = get_lruvec(memcg, nid); 4277 4278 /* see the comment on MEMCG_NR_GENS */ 4279 if (READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_HEAD) 4280 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_HEAD); 4281 } 4282 4283 #endif /* CONFIG_MEMCG */ 4284 4285 /****************************************************************************** 4286 * the eviction 4287 ******************************************************************************/ 4288 4289 static bool sort_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc, 4290 int tier_idx) 4291 { 4292 bool success; 4293 int gen = folio_lru_gen(folio); 4294 int type = folio_is_file_lru(folio); 4295 int zone = folio_zonenum(folio); 4296 int delta = folio_nr_pages(folio); 4297 int refs = folio_lru_refs(folio); 4298 int tier = lru_tier_from_refs(refs); 4299 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4300 4301 VM_WARN_ON_ONCE_FOLIO(gen >= MAX_NR_GENS, folio); 4302 4303 /* unevictable */ 4304 if (!folio_evictable(folio)) { 4305 success = lru_gen_del_folio(lruvec, folio, true); 4306 VM_WARN_ON_ONCE_FOLIO(!success, folio); 4307 folio_set_unevictable(folio); 4308 lruvec_add_folio(lruvec, folio); 4309 __count_vm_events(UNEVICTABLE_PGCULLED, delta); 4310 return true; 4311 } 4312 4313 /* promoted */ 4314 if (gen != lru_gen_from_seq(lrugen->min_seq[type])) { 4315 list_move(&folio->lru, &lrugen->folios[gen][type][zone]); 4316 return true; 4317 } 4318 4319 /* protected */ 4320 if (tier > tier_idx || refs == BIT(LRU_REFS_WIDTH)) { 4321 int hist = lru_hist_from_seq(lrugen->min_seq[type]); 4322 4323 gen = folio_inc_gen(lruvec, folio, false); 4324 list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]); 4325 4326 WRITE_ONCE(lrugen->protected[hist][type][tier - 1], 4327 lrugen->protected[hist][type][tier - 1] + delta); 4328 return true; 4329 } 4330 4331 /* ineligible */ 4332 if (!folio_test_lru(folio) || zone > sc->reclaim_idx) { 4333 gen = folio_inc_gen(lruvec, folio, false); 4334 list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]); 4335 return true; 4336 } 4337 4338 /* waiting for writeback */ 4339 if (folio_test_locked(folio) || folio_test_writeback(folio) || 4340 (type == LRU_GEN_FILE && folio_test_dirty(folio))) { 4341 gen = folio_inc_gen(lruvec, folio, true); 4342 list_move(&folio->lru, &lrugen->folios[gen][type][zone]); 4343 return true; 4344 } 4345 4346 return false; 4347 } 4348 4349 static bool isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc) 4350 { 4351 bool success; 4352 4353 /* swap constrained */ 4354 if (!(sc->gfp_mask & __GFP_IO) && 4355 (folio_test_dirty(folio) || 4356 (folio_test_anon(folio) && !folio_test_swapcache(folio)))) 4357 return false; 4358 4359 /* raced with release_pages() */ 4360 if (!folio_try_get(folio)) 4361 return false; 4362 4363 /* raced with another isolation */ 4364 if (!folio_test_clear_lru(folio)) { 4365 folio_put(folio); 4366 return false; 4367 } 4368 4369 /* see the comment on MAX_NR_TIERS */ 4370 if (!folio_test_referenced(folio)) 4371 set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS, 0); 4372 4373 /* for shrink_folio_list() */ 4374 folio_clear_reclaim(folio); 4375 folio_clear_referenced(folio); 4376 4377 success = lru_gen_del_folio(lruvec, folio, true); 4378 VM_WARN_ON_ONCE_FOLIO(!success, folio); 4379 4380 return true; 4381 } 4382 4383 static int scan_folios(struct lruvec *lruvec, struct scan_control *sc, 4384 int type, int tier, struct list_head *list) 4385 { 4386 int i; 4387 int gen; 4388 enum vm_event_item item; 4389 int sorted = 0; 4390 int scanned = 0; 4391 int isolated = 0; 4392 int skipped = 0; 4393 int remaining = MAX_LRU_BATCH; 4394 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4395 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4396 4397 VM_WARN_ON_ONCE(!list_empty(list)); 4398 4399 if (get_nr_gens(lruvec, type) == MIN_NR_GENS) 4400 return 0; 4401 4402 gen = lru_gen_from_seq(lrugen->min_seq[type]); 4403 4404 for (i = MAX_NR_ZONES; i > 0; i--) { 4405 LIST_HEAD(moved); 4406 int skipped_zone = 0; 4407 int zone = (sc->reclaim_idx + i) % MAX_NR_ZONES; 4408 struct list_head *head = &lrugen->folios[gen][type][zone]; 4409 4410 while (!list_empty(head)) { 4411 struct folio *folio = lru_to_folio(head); 4412 int delta = folio_nr_pages(folio); 4413 4414 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 4415 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio); 4416 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 4417 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio); 4418 4419 scanned += delta; 4420 4421 if (sort_folio(lruvec, folio, sc, tier)) 4422 sorted += delta; 4423 else if (isolate_folio(lruvec, folio, sc)) { 4424 list_add(&folio->lru, list); 4425 isolated += delta; 4426 } else { 4427 list_move(&folio->lru, &moved); 4428 skipped_zone += delta; 4429 } 4430 4431 if (!--remaining || max(isolated, skipped_zone) >= MIN_LRU_BATCH) 4432 break; 4433 } 4434 4435 if (skipped_zone) { 4436 list_splice(&moved, head); 4437 __count_zid_vm_events(PGSCAN_SKIP, zone, skipped_zone); 4438 skipped += skipped_zone; 4439 } 4440 4441 if (!remaining || isolated >= MIN_LRU_BATCH) 4442 break; 4443 } 4444 4445 item = PGSCAN_KSWAPD + reclaimer_offset(); 4446 if (!cgroup_reclaim(sc)) { 4447 __count_vm_events(item, isolated); 4448 __count_vm_events(PGREFILL, sorted); 4449 } 4450 __count_memcg_events(memcg, item, isolated); 4451 __count_memcg_events(memcg, PGREFILL, sorted); 4452 __count_vm_events(PGSCAN_ANON + type, isolated); 4453 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, MAX_LRU_BATCH, 4454 scanned, skipped, isolated, 4455 type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON); 4456 4457 /* 4458 * There might not be eligible folios due to reclaim_idx. Check the 4459 * remaining to prevent livelock if it's not making progress. 4460 */ 4461 return isolated || !remaining ? scanned : 0; 4462 } 4463 4464 static int get_tier_idx(struct lruvec *lruvec, int type) 4465 { 4466 int tier; 4467 struct ctrl_pos sp, pv; 4468 4469 /* 4470 * To leave a margin for fluctuations, use a larger gain factor (1:2). 4471 * This value is chosen because any other tier would have at least twice 4472 * as many refaults as the first tier. 4473 */ 4474 read_ctrl_pos(lruvec, type, 0, 1, &sp); 4475 for (tier = 1; tier < MAX_NR_TIERS; tier++) { 4476 read_ctrl_pos(lruvec, type, tier, 2, &pv); 4477 if (!positive_ctrl_err(&sp, &pv)) 4478 break; 4479 } 4480 4481 return tier - 1; 4482 } 4483 4484 static int get_type_to_scan(struct lruvec *lruvec, int swappiness, int *tier_idx) 4485 { 4486 int type, tier; 4487 struct ctrl_pos sp, pv; 4488 int gain[ANON_AND_FILE] = { swappiness, MAX_SWAPPINESS - swappiness }; 4489 4490 /* 4491 * Compare the first tier of anon with that of file to determine which 4492 * type to scan. Also need to compare other tiers of the selected type 4493 * with the first tier of the other type to determine the last tier (of 4494 * the selected type) to evict. 4495 */ 4496 read_ctrl_pos(lruvec, LRU_GEN_ANON, 0, gain[LRU_GEN_ANON], &sp); 4497 read_ctrl_pos(lruvec, LRU_GEN_FILE, 0, gain[LRU_GEN_FILE], &pv); 4498 type = positive_ctrl_err(&sp, &pv); 4499 4500 read_ctrl_pos(lruvec, !type, 0, gain[!type], &sp); 4501 for (tier = 1; tier < MAX_NR_TIERS; tier++) { 4502 read_ctrl_pos(lruvec, type, tier, gain[type], &pv); 4503 if (!positive_ctrl_err(&sp, &pv)) 4504 break; 4505 } 4506 4507 *tier_idx = tier - 1; 4508 4509 return type; 4510 } 4511 4512 static int isolate_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness, 4513 int *type_scanned, struct list_head *list) 4514 { 4515 int i; 4516 int type; 4517 int scanned; 4518 int tier = -1; 4519 DEFINE_MIN_SEQ(lruvec); 4520 4521 /* 4522 * Try to make the obvious choice first, and if anon and file are both 4523 * available from the same generation, 4524 * 1. Interpret swappiness 1 as file first and MAX_SWAPPINESS as anon 4525 * first. 4526 * 2. If !__GFP_IO, file first since clean pagecache is more likely to 4527 * exist than clean swapcache. 4528 */ 4529 if (!swappiness) 4530 type = LRU_GEN_FILE; 4531 else if (min_seq[LRU_GEN_ANON] < min_seq[LRU_GEN_FILE]) 4532 type = LRU_GEN_ANON; 4533 else if (swappiness == 1) 4534 type = LRU_GEN_FILE; 4535 else if (swappiness == MAX_SWAPPINESS) 4536 type = LRU_GEN_ANON; 4537 else if (!(sc->gfp_mask & __GFP_IO)) 4538 type = LRU_GEN_FILE; 4539 else 4540 type = get_type_to_scan(lruvec, swappiness, &tier); 4541 4542 for (i = !swappiness; i < ANON_AND_FILE; i++) { 4543 if (tier < 0) 4544 tier = get_tier_idx(lruvec, type); 4545 4546 scanned = scan_folios(lruvec, sc, type, tier, list); 4547 if (scanned) 4548 break; 4549 4550 type = !type; 4551 tier = -1; 4552 } 4553 4554 *type_scanned = type; 4555 4556 return scanned; 4557 } 4558 4559 static int evict_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness) 4560 { 4561 int type; 4562 int scanned; 4563 int reclaimed; 4564 LIST_HEAD(list); 4565 LIST_HEAD(clean); 4566 struct folio *folio; 4567 struct folio *next; 4568 enum vm_event_item item; 4569 struct reclaim_stat stat; 4570 struct lru_gen_mm_walk *walk; 4571 bool skip_retry = false; 4572 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4573 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 4574 4575 spin_lock_irq(&lruvec->lru_lock); 4576 4577 scanned = isolate_folios(lruvec, sc, swappiness, &type, &list); 4578 4579 scanned += try_to_inc_min_seq(lruvec, swappiness); 4580 4581 if (get_nr_gens(lruvec, !swappiness) == MIN_NR_GENS) 4582 scanned = 0; 4583 4584 spin_unlock_irq(&lruvec->lru_lock); 4585 4586 if (list_empty(&list)) 4587 return scanned; 4588 retry: 4589 reclaimed = shrink_folio_list(&list, pgdat, sc, &stat, false); 4590 sc->nr_reclaimed += reclaimed; 4591 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 4592 scanned, reclaimed, &stat, sc->priority, 4593 type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON); 4594 4595 list_for_each_entry_safe_reverse(folio, next, &list, lru) { 4596 if (!folio_evictable(folio)) { 4597 list_del(&folio->lru); 4598 folio_putback_lru(folio); 4599 continue; 4600 } 4601 4602 if (folio_test_reclaim(folio) && 4603 (folio_test_dirty(folio) || folio_test_writeback(folio))) { 4604 /* restore LRU_REFS_FLAGS cleared by isolate_folio() */ 4605 if (folio_test_workingset(folio)) 4606 folio_set_referenced(folio); 4607 continue; 4608 } 4609 4610 if (skip_retry || folio_test_active(folio) || folio_test_referenced(folio) || 4611 folio_mapped(folio) || folio_test_locked(folio) || 4612 folio_test_dirty(folio) || folio_test_writeback(folio)) { 4613 /* don't add rejected folios to the oldest generation */ 4614 set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS, 4615 BIT(PG_active)); 4616 continue; 4617 } 4618 4619 /* retry folios that may have missed folio_rotate_reclaimable() */ 4620 list_move(&folio->lru, &clean); 4621 } 4622 4623 spin_lock_irq(&lruvec->lru_lock); 4624 4625 move_folios_to_lru(lruvec, &list); 4626 4627 walk = current->reclaim_state->mm_walk; 4628 if (walk && walk->batched) { 4629 walk->lruvec = lruvec; 4630 reset_batch_size(walk); 4631 } 4632 4633 item = PGSTEAL_KSWAPD + reclaimer_offset(); 4634 if (!cgroup_reclaim(sc)) 4635 __count_vm_events(item, reclaimed); 4636 __count_memcg_events(memcg, item, reclaimed); 4637 __count_vm_events(PGSTEAL_ANON + type, reclaimed); 4638 4639 spin_unlock_irq(&lruvec->lru_lock); 4640 4641 list_splice_init(&clean, &list); 4642 4643 if (!list_empty(&list)) { 4644 skip_retry = true; 4645 goto retry; 4646 } 4647 4648 return scanned; 4649 } 4650 4651 static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq, 4652 bool can_swap, unsigned long *nr_to_scan) 4653 { 4654 int gen, type, zone; 4655 unsigned long old = 0; 4656 unsigned long young = 0; 4657 unsigned long total = 0; 4658 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4659 DEFINE_MIN_SEQ(lruvec); 4660 4661 /* whether this lruvec is completely out of cold folios */ 4662 if (min_seq[!can_swap] + MIN_NR_GENS > max_seq) { 4663 *nr_to_scan = 0; 4664 return true; 4665 } 4666 4667 for (type = !can_swap; type < ANON_AND_FILE; type++) { 4668 unsigned long seq; 4669 4670 for (seq = min_seq[type]; seq <= max_seq; seq++) { 4671 unsigned long size = 0; 4672 4673 gen = lru_gen_from_seq(seq); 4674 4675 for (zone = 0; zone < MAX_NR_ZONES; zone++) 4676 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L); 4677 4678 total += size; 4679 if (seq == max_seq) 4680 young += size; 4681 else if (seq + MIN_NR_GENS == max_seq) 4682 old += size; 4683 } 4684 } 4685 4686 *nr_to_scan = total; 4687 4688 /* 4689 * The aging tries to be lazy to reduce the overhead, while the eviction 4690 * stalls when the number of generations reaches MIN_NR_GENS. Hence, the 4691 * ideal number of generations is MIN_NR_GENS+1. 4692 */ 4693 if (min_seq[!can_swap] + MIN_NR_GENS < max_seq) 4694 return false; 4695 4696 /* 4697 * It's also ideal to spread pages out evenly, i.e., 1/(MIN_NR_GENS+1) 4698 * of the total number of pages for each generation. A reasonable range 4699 * for this average portion is [1/MIN_NR_GENS, 1/(MIN_NR_GENS+2)]. The 4700 * aging cares about the upper bound of hot pages, while the eviction 4701 * cares about the lower bound of cold pages. 4702 */ 4703 if (young * MIN_NR_GENS > total) 4704 return true; 4705 if (old * (MIN_NR_GENS + 2) < total) 4706 return true; 4707 4708 return false; 4709 } 4710 4711 /* 4712 * For future optimizations: 4713 * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg 4714 * reclaim. 4715 */ 4716 static long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc, bool can_swap) 4717 { 4718 bool success; 4719 unsigned long nr_to_scan; 4720 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4721 DEFINE_MAX_SEQ(lruvec); 4722 4723 if (mem_cgroup_below_min(sc->target_mem_cgroup, memcg)) 4724 return -1; 4725 4726 success = should_run_aging(lruvec, max_seq, can_swap, &nr_to_scan); 4727 4728 /* try to scrape all its memory if this memcg was deleted */ 4729 if (nr_to_scan && !mem_cgroup_online(memcg)) 4730 return nr_to_scan; 4731 4732 /* try to get away with not aging at the default priority */ 4733 if (!success || sc->priority == DEF_PRIORITY) 4734 return nr_to_scan >> sc->priority; 4735 4736 /* stop scanning this lruvec as it's low on cold folios */ 4737 return try_to_inc_max_seq(lruvec, max_seq, can_swap, false) ? -1 : 0; 4738 } 4739 4740 static bool should_abort_scan(struct lruvec *lruvec, struct scan_control *sc) 4741 { 4742 int i; 4743 enum zone_watermarks mark; 4744 4745 /* don't abort memcg reclaim to ensure fairness */ 4746 if (!root_reclaim(sc)) 4747 return false; 4748 4749 if (sc->nr_reclaimed >= max(sc->nr_to_reclaim, compact_gap(sc->order))) 4750 return true; 4751 4752 /* check the order to exclude compaction-induced reclaim */ 4753 if (!current_is_kswapd() || sc->order) 4754 return false; 4755 4756 mark = sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ? 4757 WMARK_PROMO : WMARK_HIGH; 4758 4759 for (i = 0; i <= sc->reclaim_idx; i++) { 4760 struct zone *zone = lruvec_pgdat(lruvec)->node_zones + i; 4761 unsigned long size = wmark_pages(zone, mark) + MIN_LRU_BATCH; 4762 4763 if (managed_zone(zone) && !zone_watermark_ok(zone, 0, size, sc->reclaim_idx, 0)) 4764 return false; 4765 } 4766 4767 /* kswapd should abort if all eligible zones are safe */ 4768 return true; 4769 } 4770 4771 static bool try_to_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 4772 { 4773 long nr_to_scan; 4774 unsigned long scanned = 0; 4775 int swappiness = get_swappiness(lruvec, sc); 4776 4777 while (true) { 4778 int delta; 4779 4780 nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness); 4781 if (nr_to_scan <= 0) 4782 break; 4783 4784 delta = evict_folios(lruvec, sc, swappiness); 4785 if (!delta) 4786 break; 4787 4788 scanned += delta; 4789 if (scanned >= nr_to_scan) 4790 break; 4791 4792 if (should_abort_scan(lruvec, sc)) 4793 break; 4794 4795 cond_resched(); 4796 } 4797 4798 /* whether this lruvec should be rotated */ 4799 return nr_to_scan < 0; 4800 } 4801 4802 static int shrink_one(struct lruvec *lruvec, struct scan_control *sc) 4803 { 4804 bool success; 4805 unsigned long scanned = sc->nr_scanned; 4806 unsigned long reclaimed = sc->nr_reclaimed; 4807 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4808 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 4809 4810 /* lru_gen_age_node() called mem_cgroup_calculate_protection() */ 4811 if (mem_cgroup_below_min(NULL, memcg)) 4812 return MEMCG_LRU_YOUNG; 4813 4814 if (mem_cgroup_below_low(NULL, memcg)) { 4815 /* see the comment on MEMCG_NR_GENS */ 4816 if (READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_TAIL) 4817 return MEMCG_LRU_TAIL; 4818 4819 memcg_memory_event(memcg, MEMCG_LOW); 4820 } 4821 4822 success = try_to_shrink_lruvec(lruvec, sc); 4823 4824 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, sc->priority); 4825 4826 if (!sc->proactive) 4827 vmpressure(sc->gfp_mask, memcg, false, sc->nr_scanned - scanned, 4828 sc->nr_reclaimed - reclaimed); 4829 4830 flush_reclaim_state(sc); 4831 4832 if (success && mem_cgroup_online(memcg)) 4833 return MEMCG_LRU_YOUNG; 4834 4835 if (!success && lruvec_is_sizable(lruvec, sc)) 4836 return 0; 4837 4838 /* one retry if offlined or too small */ 4839 return READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_TAIL ? 4840 MEMCG_LRU_TAIL : MEMCG_LRU_YOUNG; 4841 } 4842 4843 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc) 4844 { 4845 int op; 4846 int gen; 4847 int bin; 4848 int first_bin; 4849 struct lruvec *lruvec; 4850 struct lru_gen_folio *lrugen; 4851 struct mem_cgroup *memcg; 4852 struct hlist_nulls_node *pos; 4853 4854 gen = get_memcg_gen(READ_ONCE(pgdat->memcg_lru.seq)); 4855 bin = first_bin = get_random_u32_below(MEMCG_NR_BINS); 4856 restart: 4857 op = 0; 4858 memcg = NULL; 4859 4860 rcu_read_lock(); 4861 4862 hlist_nulls_for_each_entry_rcu(lrugen, pos, &pgdat->memcg_lru.fifo[gen][bin], list) { 4863 if (op) { 4864 lru_gen_rotate_memcg(lruvec, op); 4865 op = 0; 4866 } 4867 4868 mem_cgroup_put(memcg); 4869 memcg = NULL; 4870 4871 if (gen != READ_ONCE(lrugen->gen)) 4872 continue; 4873 4874 lruvec = container_of(lrugen, struct lruvec, lrugen); 4875 memcg = lruvec_memcg(lruvec); 4876 4877 if (!mem_cgroup_tryget(memcg)) { 4878 lru_gen_release_memcg(memcg); 4879 memcg = NULL; 4880 continue; 4881 } 4882 4883 rcu_read_unlock(); 4884 4885 op = shrink_one(lruvec, sc); 4886 4887 rcu_read_lock(); 4888 4889 if (should_abort_scan(lruvec, sc)) 4890 break; 4891 } 4892 4893 rcu_read_unlock(); 4894 4895 if (op) 4896 lru_gen_rotate_memcg(lruvec, op); 4897 4898 mem_cgroup_put(memcg); 4899 4900 if (!is_a_nulls(pos)) 4901 return; 4902 4903 /* restart if raced with lru_gen_rotate_memcg() */ 4904 if (gen != get_nulls_value(pos)) 4905 goto restart; 4906 4907 /* try the rest of the bins of the current generation */ 4908 bin = get_memcg_bin(bin + 1); 4909 if (bin != first_bin) 4910 goto restart; 4911 } 4912 4913 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 4914 { 4915 struct blk_plug plug; 4916 4917 VM_WARN_ON_ONCE(root_reclaim(sc)); 4918 VM_WARN_ON_ONCE(!sc->may_writepage || !sc->may_unmap); 4919 4920 lru_add_drain(); 4921 4922 blk_start_plug(&plug); 4923 4924 set_mm_walk(NULL, sc->proactive); 4925 4926 if (try_to_shrink_lruvec(lruvec, sc)) 4927 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_YOUNG); 4928 4929 clear_mm_walk(); 4930 4931 blk_finish_plug(&plug); 4932 } 4933 4934 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc) 4935 { 4936 struct blk_plug plug; 4937 unsigned long reclaimed = sc->nr_reclaimed; 4938 4939 VM_WARN_ON_ONCE(!root_reclaim(sc)); 4940 4941 /* 4942 * Unmapped clean folios are already prioritized. Scanning for more of 4943 * them is likely futile and can cause high reclaim latency when there 4944 * is a large number of memcgs. 4945 */ 4946 if (!sc->may_writepage || !sc->may_unmap) 4947 goto done; 4948 4949 lru_add_drain(); 4950 4951 blk_start_plug(&plug); 4952 4953 set_mm_walk(pgdat, sc->proactive); 4954 4955 set_initial_priority(pgdat, sc); 4956 4957 if (current_is_kswapd()) 4958 sc->nr_reclaimed = 0; 4959 4960 if (mem_cgroup_disabled()) 4961 shrink_one(&pgdat->__lruvec, sc); 4962 else 4963 shrink_many(pgdat, sc); 4964 4965 if (current_is_kswapd()) 4966 sc->nr_reclaimed += reclaimed; 4967 4968 clear_mm_walk(); 4969 4970 blk_finish_plug(&plug); 4971 done: 4972 if (sc->nr_reclaimed > reclaimed) 4973 pgdat->kswapd_failures = 0; 4974 } 4975 4976 /****************************************************************************** 4977 * state change 4978 ******************************************************************************/ 4979 4980 static bool __maybe_unused state_is_valid(struct lruvec *lruvec) 4981 { 4982 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4983 4984 if (lrugen->enabled) { 4985 enum lru_list lru; 4986 4987 for_each_evictable_lru(lru) { 4988 if (!list_empty(&lruvec->lists[lru])) 4989 return false; 4990 } 4991 } else { 4992 int gen, type, zone; 4993 4994 for_each_gen_type_zone(gen, type, zone) { 4995 if (!list_empty(&lrugen->folios[gen][type][zone])) 4996 return false; 4997 } 4998 } 4999 5000 return true; 5001 } 5002 5003 static bool fill_evictable(struct lruvec *lruvec) 5004 { 5005 enum lru_list lru; 5006 int remaining = MAX_LRU_BATCH; 5007 5008 for_each_evictable_lru(lru) { 5009 int type = is_file_lru(lru); 5010 bool active = is_active_lru(lru); 5011 struct list_head *head = &lruvec->lists[lru]; 5012 5013 while (!list_empty(head)) { 5014 bool success; 5015 struct folio *folio = lru_to_folio(head); 5016 5017 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 5018 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio) != active, folio); 5019 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 5020 VM_WARN_ON_ONCE_FOLIO(folio_lru_gen(folio) != -1, folio); 5021 5022 lruvec_del_folio(lruvec, folio); 5023 success = lru_gen_add_folio(lruvec, folio, false); 5024 VM_WARN_ON_ONCE(!success); 5025 5026 if (!--remaining) 5027 return false; 5028 } 5029 } 5030 5031 return true; 5032 } 5033 5034 static bool drain_evictable(struct lruvec *lruvec) 5035 { 5036 int gen, type, zone; 5037 int remaining = MAX_LRU_BATCH; 5038 5039 for_each_gen_type_zone(gen, type, zone) { 5040 struct list_head *head = &lruvec->lrugen.folios[gen][type][zone]; 5041 5042 while (!list_empty(head)) { 5043 bool success; 5044 struct folio *folio = lru_to_folio(head); 5045 5046 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 5047 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio); 5048 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 5049 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio); 5050 5051 success = lru_gen_del_folio(lruvec, folio, false); 5052 VM_WARN_ON_ONCE(!success); 5053 lruvec_add_folio(lruvec, folio); 5054 5055 if (!--remaining) 5056 return false; 5057 } 5058 } 5059 5060 return true; 5061 } 5062 5063 static void lru_gen_change_state(bool enabled) 5064 { 5065 static DEFINE_MUTEX(state_mutex); 5066 5067 struct mem_cgroup *memcg; 5068 5069 cgroup_lock(); 5070 cpus_read_lock(); 5071 get_online_mems(); 5072 mutex_lock(&state_mutex); 5073 5074 if (enabled == lru_gen_enabled()) 5075 goto unlock; 5076 5077 if (enabled) 5078 static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]); 5079 else 5080 static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]); 5081 5082 memcg = mem_cgroup_iter(NULL, NULL, NULL); 5083 do { 5084 int nid; 5085 5086 for_each_node(nid) { 5087 struct lruvec *lruvec = get_lruvec(memcg, nid); 5088 5089 spin_lock_irq(&lruvec->lru_lock); 5090 5091 VM_WARN_ON_ONCE(!seq_is_valid(lruvec)); 5092 VM_WARN_ON_ONCE(!state_is_valid(lruvec)); 5093 5094 lruvec->lrugen.enabled = enabled; 5095 5096 while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) { 5097 spin_unlock_irq(&lruvec->lru_lock); 5098 cond_resched(); 5099 spin_lock_irq(&lruvec->lru_lock); 5100 } 5101 5102 spin_unlock_irq(&lruvec->lru_lock); 5103 } 5104 5105 cond_resched(); 5106 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL))); 5107 unlock: 5108 mutex_unlock(&state_mutex); 5109 put_online_mems(); 5110 cpus_read_unlock(); 5111 cgroup_unlock(); 5112 } 5113 5114 /****************************************************************************** 5115 * sysfs interface 5116 ******************************************************************************/ 5117 5118 static ssize_t min_ttl_ms_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) 5119 { 5120 return sysfs_emit(buf, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl))); 5121 } 5122 5123 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5124 static ssize_t min_ttl_ms_store(struct kobject *kobj, struct kobj_attribute *attr, 5125 const char *buf, size_t len) 5126 { 5127 unsigned int msecs; 5128 5129 if (kstrtouint(buf, 0, &msecs)) 5130 return -EINVAL; 5131 5132 WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs)); 5133 5134 return len; 5135 } 5136 5137 static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR_RW(min_ttl_ms); 5138 5139 static ssize_t enabled_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) 5140 { 5141 unsigned int caps = 0; 5142 5143 if (get_cap(LRU_GEN_CORE)) 5144 caps |= BIT(LRU_GEN_CORE); 5145 5146 if (should_walk_mmu()) 5147 caps |= BIT(LRU_GEN_MM_WALK); 5148 5149 if (should_clear_pmd_young()) 5150 caps |= BIT(LRU_GEN_NONLEAF_YOUNG); 5151 5152 return sysfs_emit(buf, "0x%04x\n", caps); 5153 } 5154 5155 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5156 static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr, 5157 const char *buf, size_t len) 5158 { 5159 int i; 5160 unsigned int caps; 5161 5162 if (tolower(*buf) == 'n') 5163 caps = 0; 5164 else if (tolower(*buf) == 'y') 5165 caps = -1; 5166 else if (kstrtouint(buf, 0, &caps)) 5167 return -EINVAL; 5168 5169 for (i = 0; i < NR_LRU_GEN_CAPS; i++) { 5170 bool enabled = caps & BIT(i); 5171 5172 if (i == LRU_GEN_CORE) 5173 lru_gen_change_state(enabled); 5174 else if (enabled) 5175 static_branch_enable(&lru_gen_caps[i]); 5176 else 5177 static_branch_disable(&lru_gen_caps[i]); 5178 } 5179 5180 return len; 5181 } 5182 5183 static struct kobj_attribute lru_gen_enabled_attr = __ATTR_RW(enabled); 5184 5185 static struct attribute *lru_gen_attrs[] = { 5186 &lru_gen_min_ttl_attr.attr, 5187 &lru_gen_enabled_attr.attr, 5188 NULL 5189 }; 5190 5191 static const struct attribute_group lru_gen_attr_group = { 5192 .name = "lru_gen", 5193 .attrs = lru_gen_attrs, 5194 }; 5195 5196 /****************************************************************************** 5197 * debugfs interface 5198 ******************************************************************************/ 5199 5200 static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos) 5201 { 5202 struct mem_cgroup *memcg; 5203 loff_t nr_to_skip = *pos; 5204 5205 m->private = kvmalloc(PATH_MAX, GFP_KERNEL); 5206 if (!m->private) 5207 return ERR_PTR(-ENOMEM); 5208 5209 memcg = mem_cgroup_iter(NULL, NULL, NULL); 5210 do { 5211 int nid; 5212 5213 for_each_node_state(nid, N_MEMORY) { 5214 if (!nr_to_skip--) 5215 return get_lruvec(memcg, nid); 5216 } 5217 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL))); 5218 5219 return NULL; 5220 } 5221 5222 static void lru_gen_seq_stop(struct seq_file *m, void *v) 5223 { 5224 if (!IS_ERR_OR_NULL(v)) 5225 mem_cgroup_iter_break(NULL, lruvec_memcg(v)); 5226 5227 kvfree(m->private); 5228 m->private = NULL; 5229 } 5230 5231 static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos) 5232 { 5233 int nid = lruvec_pgdat(v)->node_id; 5234 struct mem_cgroup *memcg = lruvec_memcg(v); 5235 5236 ++*pos; 5237 5238 nid = next_memory_node(nid); 5239 if (nid == MAX_NUMNODES) { 5240 memcg = mem_cgroup_iter(NULL, memcg, NULL); 5241 if (!memcg) 5242 return NULL; 5243 5244 nid = first_memory_node; 5245 } 5246 5247 return get_lruvec(memcg, nid); 5248 } 5249 5250 static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec, 5251 unsigned long max_seq, unsigned long *min_seq, 5252 unsigned long seq) 5253 { 5254 int i; 5255 int type, tier; 5256 int hist = lru_hist_from_seq(seq); 5257 struct lru_gen_folio *lrugen = &lruvec->lrugen; 5258 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 5259 5260 for (tier = 0; tier < MAX_NR_TIERS; tier++) { 5261 seq_printf(m, " %10d", tier); 5262 for (type = 0; type < ANON_AND_FILE; type++) { 5263 const char *s = "xxx"; 5264 unsigned long n[3] = {}; 5265 5266 if (seq == max_seq) { 5267 s = "RTx"; 5268 n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]); 5269 n[1] = READ_ONCE(lrugen->avg_total[type][tier]); 5270 } else if (seq == min_seq[type] || NR_HIST_GENS > 1) { 5271 s = "rep"; 5272 n[0] = atomic_long_read(&lrugen->refaulted[hist][type][tier]); 5273 n[1] = atomic_long_read(&lrugen->evicted[hist][type][tier]); 5274 if (tier) 5275 n[2] = READ_ONCE(lrugen->protected[hist][type][tier - 1]); 5276 } 5277 5278 for (i = 0; i < 3; i++) 5279 seq_printf(m, " %10lu%c", n[i], s[i]); 5280 } 5281 seq_putc(m, '\n'); 5282 } 5283 5284 if (!mm_state) 5285 return; 5286 5287 seq_puts(m, " "); 5288 for (i = 0; i < NR_MM_STATS; i++) { 5289 const char *s = "xxxx"; 5290 unsigned long n = 0; 5291 5292 if (seq == max_seq && NR_HIST_GENS == 1) { 5293 s = "TYFA"; 5294 n = READ_ONCE(mm_state->stats[hist][i]); 5295 } else if (seq != max_seq && NR_HIST_GENS > 1) { 5296 s = "tyfa"; 5297 n = READ_ONCE(mm_state->stats[hist][i]); 5298 } 5299 5300 seq_printf(m, " %10lu%c", n, s[i]); 5301 } 5302 seq_putc(m, '\n'); 5303 } 5304 5305 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5306 static int lru_gen_seq_show(struct seq_file *m, void *v) 5307 { 5308 unsigned long seq; 5309 bool full = !debugfs_real_fops(m->file)->write; 5310 struct lruvec *lruvec = v; 5311 struct lru_gen_folio *lrugen = &lruvec->lrugen; 5312 int nid = lruvec_pgdat(lruvec)->node_id; 5313 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 5314 DEFINE_MAX_SEQ(lruvec); 5315 DEFINE_MIN_SEQ(lruvec); 5316 5317 if (nid == first_memory_node) { 5318 const char *path = memcg ? m->private : ""; 5319 5320 #ifdef CONFIG_MEMCG 5321 if (memcg) 5322 cgroup_path(memcg->css.cgroup, m->private, PATH_MAX); 5323 #endif 5324 seq_printf(m, "memcg %5hu %s\n", mem_cgroup_id(memcg), path); 5325 } 5326 5327 seq_printf(m, " node %5d\n", nid); 5328 5329 if (!full) 5330 seq = min_seq[LRU_GEN_ANON]; 5331 else if (max_seq >= MAX_NR_GENS) 5332 seq = max_seq - MAX_NR_GENS + 1; 5333 else 5334 seq = 0; 5335 5336 for (; seq <= max_seq; seq++) { 5337 int type, zone; 5338 int gen = lru_gen_from_seq(seq); 5339 unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]); 5340 5341 seq_printf(m, " %10lu %10u", seq, jiffies_to_msecs(jiffies - birth)); 5342 5343 for (type = 0; type < ANON_AND_FILE; type++) { 5344 unsigned long size = 0; 5345 char mark = full && seq < min_seq[type] ? 'x' : ' '; 5346 5347 for (zone = 0; zone < MAX_NR_ZONES; zone++) 5348 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L); 5349 5350 seq_printf(m, " %10lu%c", size, mark); 5351 } 5352 5353 seq_putc(m, '\n'); 5354 5355 if (full) 5356 lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq); 5357 } 5358 5359 return 0; 5360 } 5361 5362 static const struct seq_operations lru_gen_seq_ops = { 5363 .start = lru_gen_seq_start, 5364 .stop = lru_gen_seq_stop, 5365 .next = lru_gen_seq_next, 5366 .show = lru_gen_seq_show, 5367 }; 5368 5369 static int run_aging(struct lruvec *lruvec, unsigned long seq, 5370 bool can_swap, bool force_scan) 5371 { 5372 DEFINE_MAX_SEQ(lruvec); 5373 DEFINE_MIN_SEQ(lruvec); 5374 5375 if (seq < max_seq) 5376 return 0; 5377 5378 if (seq > max_seq) 5379 return -EINVAL; 5380 5381 if (!force_scan && min_seq[!can_swap] + MAX_NR_GENS - 1 <= max_seq) 5382 return -ERANGE; 5383 5384 try_to_inc_max_seq(lruvec, max_seq, can_swap, force_scan); 5385 5386 return 0; 5387 } 5388 5389 static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc, 5390 int swappiness, unsigned long nr_to_reclaim) 5391 { 5392 DEFINE_MAX_SEQ(lruvec); 5393 5394 if (seq + MIN_NR_GENS > max_seq) 5395 return -EINVAL; 5396 5397 sc->nr_reclaimed = 0; 5398 5399 while (!signal_pending(current)) { 5400 DEFINE_MIN_SEQ(lruvec); 5401 5402 if (seq < min_seq[!swappiness]) 5403 return 0; 5404 5405 if (sc->nr_reclaimed >= nr_to_reclaim) 5406 return 0; 5407 5408 if (!evict_folios(lruvec, sc, swappiness)) 5409 return 0; 5410 5411 cond_resched(); 5412 } 5413 5414 return -EINTR; 5415 } 5416 5417 static int run_cmd(char cmd, int memcg_id, int nid, unsigned long seq, 5418 struct scan_control *sc, int swappiness, unsigned long opt) 5419 { 5420 struct lruvec *lruvec; 5421 int err = -EINVAL; 5422 struct mem_cgroup *memcg = NULL; 5423 5424 if (nid < 0 || nid >= MAX_NUMNODES || !node_state(nid, N_MEMORY)) 5425 return -EINVAL; 5426 5427 if (!mem_cgroup_disabled()) { 5428 rcu_read_lock(); 5429 5430 memcg = mem_cgroup_from_id(memcg_id); 5431 if (!mem_cgroup_tryget(memcg)) 5432 memcg = NULL; 5433 5434 rcu_read_unlock(); 5435 5436 if (!memcg) 5437 return -EINVAL; 5438 } 5439 5440 if (memcg_id != mem_cgroup_id(memcg)) 5441 goto done; 5442 5443 lruvec = get_lruvec(memcg, nid); 5444 5445 if (swappiness < MIN_SWAPPINESS) 5446 swappiness = get_swappiness(lruvec, sc); 5447 else if (swappiness > MAX_SWAPPINESS) 5448 goto done; 5449 5450 switch (cmd) { 5451 case '+': 5452 err = run_aging(lruvec, seq, swappiness, opt); 5453 break; 5454 case '-': 5455 err = run_eviction(lruvec, seq, sc, swappiness, opt); 5456 break; 5457 } 5458 done: 5459 mem_cgroup_put(memcg); 5460 5461 return err; 5462 } 5463 5464 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5465 static ssize_t lru_gen_seq_write(struct file *file, const char __user *src, 5466 size_t len, loff_t *pos) 5467 { 5468 void *buf; 5469 char *cur, *next; 5470 unsigned int flags; 5471 struct blk_plug plug; 5472 int err = -EINVAL; 5473 struct scan_control sc = { 5474 .may_writepage = true, 5475 .may_unmap = true, 5476 .may_swap = true, 5477 .reclaim_idx = MAX_NR_ZONES - 1, 5478 .gfp_mask = GFP_KERNEL, 5479 }; 5480 5481 buf = kvmalloc(len + 1, GFP_KERNEL); 5482 if (!buf) 5483 return -ENOMEM; 5484 5485 if (copy_from_user(buf, src, len)) { 5486 kvfree(buf); 5487 return -EFAULT; 5488 } 5489 5490 set_task_reclaim_state(current, &sc.reclaim_state); 5491 flags = memalloc_noreclaim_save(); 5492 blk_start_plug(&plug); 5493 if (!set_mm_walk(NULL, true)) { 5494 err = -ENOMEM; 5495 goto done; 5496 } 5497 5498 next = buf; 5499 next[len] = '\0'; 5500 5501 while ((cur = strsep(&next, ",;\n"))) { 5502 int n; 5503 int end; 5504 char cmd; 5505 unsigned int memcg_id; 5506 unsigned int nid; 5507 unsigned long seq; 5508 unsigned int swappiness = -1; 5509 unsigned long opt = -1; 5510 5511 cur = skip_spaces(cur); 5512 if (!*cur) 5513 continue; 5514 5515 n = sscanf(cur, "%c %u %u %lu %n %u %n %lu %n", &cmd, &memcg_id, &nid, 5516 &seq, &end, &swappiness, &end, &opt, &end); 5517 if (n < 4 || cur[end]) { 5518 err = -EINVAL; 5519 break; 5520 } 5521 5522 err = run_cmd(cmd, memcg_id, nid, seq, &sc, swappiness, opt); 5523 if (err) 5524 break; 5525 } 5526 done: 5527 clear_mm_walk(); 5528 blk_finish_plug(&plug); 5529 memalloc_noreclaim_restore(flags); 5530 set_task_reclaim_state(current, NULL); 5531 5532 kvfree(buf); 5533 5534 return err ? : len; 5535 } 5536 5537 static int lru_gen_seq_open(struct inode *inode, struct file *file) 5538 { 5539 return seq_open(file, &lru_gen_seq_ops); 5540 } 5541 5542 static const struct file_operations lru_gen_rw_fops = { 5543 .open = lru_gen_seq_open, 5544 .read = seq_read, 5545 .write = lru_gen_seq_write, 5546 .llseek = seq_lseek, 5547 .release = seq_release, 5548 }; 5549 5550 static const struct file_operations lru_gen_ro_fops = { 5551 .open = lru_gen_seq_open, 5552 .read = seq_read, 5553 .llseek = seq_lseek, 5554 .release = seq_release, 5555 }; 5556 5557 /****************************************************************************** 5558 * initialization 5559 ******************************************************************************/ 5560 5561 void lru_gen_init_pgdat(struct pglist_data *pgdat) 5562 { 5563 int i, j; 5564 5565 spin_lock_init(&pgdat->memcg_lru.lock); 5566 5567 for (i = 0; i < MEMCG_NR_GENS; i++) { 5568 for (j = 0; j < MEMCG_NR_BINS; j++) 5569 INIT_HLIST_NULLS_HEAD(&pgdat->memcg_lru.fifo[i][j], i); 5570 } 5571 } 5572 5573 void lru_gen_init_lruvec(struct lruvec *lruvec) 5574 { 5575 int i; 5576 int gen, type, zone; 5577 struct lru_gen_folio *lrugen = &lruvec->lrugen; 5578 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 5579 5580 lrugen->max_seq = MIN_NR_GENS + 1; 5581 lrugen->enabled = lru_gen_enabled(); 5582 5583 for (i = 0; i <= MIN_NR_GENS + 1; i++) 5584 lrugen->timestamps[i] = jiffies; 5585 5586 for_each_gen_type_zone(gen, type, zone) 5587 INIT_LIST_HEAD(&lrugen->folios[gen][type][zone]); 5588 5589 if (mm_state) 5590 mm_state->seq = MIN_NR_GENS; 5591 } 5592 5593 #ifdef CONFIG_MEMCG 5594 5595 void lru_gen_init_memcg(struct mem_cgroup *memcg) 5596 { 5597 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 5598 5599 if (!mm_list) 5600 return; 5601 5602 INIT_LIST_HEAD(&mm_list->fifo); 5603 spin_lock_init(&mm_list->lock); 5604 } 5605 5606 void lru_gen_exit_memcg(struct mem_cgroup *memcg) 5607 { 5608 int i; 5609 int nid; 5610 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 5611 5612 VM_WARN_ON_ONCE(mm_list && !list_empty(&mm_list->fifo)); 5613 5614 for_each_node(nid) { 5615 struct lruvec *lruvec = get_lruvec(memcg, nid); 5616 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 5617 5618 VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0, 5619 sizeof(lruvec->lrugen.nr_pages))); 5620 5621 lruvec->lrugen.list.next = LIST_POISON1; 5622 5623 if (!mm_state) 5624 continue; 5625 5626 for (i = 0; i < NR_BLOOM_FILTERS; i++) { 5627 bitmap_free(mm_state->filters[i]); 5628 mm_state->filters[i] = NULL; 5629 } 5630 } 5631 } 5632 5633 #endif /* CONFIG_MEMCG */ 5634 5635 static int __init init_lru_gen(void) 5636 { 5637 BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS); 5638 BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS); 5639 5640 if (sysfs_create_group(mm_kobj, &lru_gen_attr_group)) 5641 pr_err("lru_gen: failed to create sysfs group\n"); 5642 5643 debugfs_create_file("lru_gen", 0644, NULL, NULL, &lru_gen_rw_fops); 5644 debugfs_create_file("lru_gen_full", 0444, NULL, NULL, &lru_gen_ro_fops); 5645 5646 return 0; 5647 }; 5648 late_initcall(init_lru_gen); 5649 5650 #else /* !CONFIG_LRU_GEN */ 5651 5652 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc) 5653 { 5654 BUILD_BUG(); 5655 } 5656 5657 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 5658 { 5659 BUILD_BUG(); 5660 } 5661 5662 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc) 5663 { 5664 BUILD_BUG(); 5665 } 5666 5667 #endif /* CONFIG_LRU_GEN */ 5668 5669 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 5670 { 5671 unsigned long nr[NR_LRU_LISTS]; 5672 unsigned long targets[NR_LRU_LISTS]; 5673 unsigned long nr_to_scan; 5674 enum lru_list lru; 5675 unsigned long nr_reclaimed = 0; 5676 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 5677 bool proportional_reclaim; 5678 struct blk_plug plug; 5679 5680 if (lru_gen_enabled() && !root_reclaim(sc)) { 5681 lru_gen_shrink_lruvec(lruvec, sc); 5682 return; 5683 } 5684 5685 get_scan_count(lruvec, sc, nr); 5686 5687 /* Record the original scan target for proportional adjustments later */ 5688 memcpy(targets, nr, sizeof(nr)); 5689 5690 /* 5691 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal 5692 * event that can occur when there is little memory pressure e.g. 5693 * multiple streaming readers/writers. Hence, we do not abort scanning 5694 * when the requested number of pages are reclaimed when scanning at 5695 * DEF_PRIORITY on the assumption that the fact we are direct 5696 * reclaiming implies that kswapd is not keeping up and it is best to 5697 * do a batch of work at once. For memcg reclaim one check is made to 5698 * abort proportional reclaim if either the file or anon lru has already 5699 * dropped to zero at the first pass. 5700 */ 5701 proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() && 5702 sc->priority == DEF_PRIORITY); 5703 5704 blk_start_plug(&plug); 5705 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 5706 nr[LRU_INACTIVE_FILE]) { 5707 unsigned long nr_anon, nr_file, percentage; 5708 unsigned long nr_scanned; 5709 5710 for_each_evictable_lru(lru) { 5711 if (nr[lru]) { 5712 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 5713 nr[lru] -= nr_to_scan; 5714 5715 nr_reclaimed += shrink_list(lru, nr_to_scan, 5716 lruvec, sc); 5717 } 5718 } 5719 5720 cond_resched(); 5721 5722 if (nr_reclaimed < nr_to_reclaim || proportional_reclaim) 5723 continue; 5724 5725 /* 5726 * For kswapd and memcg, reclaim at least the number of pages 5727 * requested. Ensure that the anon and file LRUs are scanned 5728 * proportionally what was requested by get_scan_count(). We 5729 * stop reclaiming one LRU and reduce the amount scanning 5730 * proportional to the original scan target. 5731 */ 5732 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 5733 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 5734 5735 /* 5736 * It's just vindictive to attack the larger once the smaller 5737 * has gone to zero. And given the way we stop scanning the 5738 * smaller below, this makes sure that we only make one nudge 5739 * towards proportionality once we've got nr_to_reclaim. 5740 */ 5741 if (!nr_file || !nr_anon) 5742 break; 5743 5744 if (nr_file > nr_anon) { 5745 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 5746 targets[LRU_ACTIVE_ANON] + 1; 5747 lru = LRU_BASE; 5748 percentage = nr_anon * 100 / scan_target; 5749 } else { 5750 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 5751 targets[LRU_ACTIVE_FILE] + 1; 5752 lru = LRU_FILE; 5753 percentage = nr_file * 100 / scan_target; 5754 } 5755 5756 /* Stop scanning the smaller of the LRU */ 5757 nr[lru] = 0; 5758 nr[lru + LRU_ACTIVE] = 0; 5759 5760 /* 5761 * Recalculate the other LRU scan count based on its original 5762 * scan target and the percentage scanning already complete 5763 */ 5764 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 5765 nr_scanned = targets[lru] - nr[lru]; 5766 nr[lru] = targets[lru] * (100 - percentage) / 100; 5767 nr[lru] -= min(nr[lru], nr_scanned); 5768 5769 lru += LRU_ACTIVE; 5770 nr_scanned = targets[lru] - nr[lru]; 5771 nr[lru] = targets[lru] * (100 - percentage) / 100; 5772 nr[lru] -= min(nr[lru], nr_scanned); 5773 } 5774 blk_finish_plug(&plug); 5775 sc->nr_reclaimed += nr_reclaimed; 5776 5777 /* 5778 * Even if we did not try to evict anon pages at all, we want to 5779 * rebalance the anon lru active/inactive ratio. 5780 */ 5781 if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) && 5782 inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 5783 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 5784 sc, LRU_ACTIVE_ANON); 5785 } 5786 5787 /* Use reclaim/compaction for costly allocs or under memory pressure */ 5788 static bool in_reclaim_compaction(struct scan_control *sc) 5789 { 5790 if (gfp_compaction_allowed(sc->gfp_mask) && sc->order && 5791 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 5792 sc->priority < DEF_PRIORITY - 2)) 5793 return true; 5794 5795 return false; 5796 } 5797 5798 /* 5799 * Reclaim/compaction is used for high-order allocation requests. It reclaims 5800 * order-0 pages before compacting the zone. should_continue_reclaim() returns 5801 * true if more pages should be reclaimed such that when the page allocator 5802 * calls try_to_compact_pages() that it will have enough free pages to succeed. 5803 * It will give up earlier than that if there is difficulty reclaiming pages. 5804 */ 5805 static inline bool should_continue_reclaim(struct pglist_data *pgdat, 5806 unsigned long nr_reclaimed, 5807 struct scan_control *sc) 5808 { 5809 unsigned long pages_for_compaction; 5810 unsigned long inactive_lru_pages; 5811 int z; 5812 5813 /* If not in reclaim/compaction mode, stop */ 5814 if (!in_reclaim_compaction(sc)) 5815 return false; 5816 5817 /* 5818 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX 5819 * number of pages that were scanned. This will return to the caller 5820 * with the risk reclaim/compaction and the resulting allocation attempt 5821 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL 5822 * allocations through requiring that the full LRU list has been scanned 5823 * first, by assuming that zero delta of sc->nr_scanned means full LRU 5824 * scan, but that approximation was wrong, and there were corner cases 5825 * where always a non-zero amount of pages were scanned. 5826 */ 5827 if (!nr_reclaimed) 5828 return false; 5829 5830 /* If compaction would go ahead or the allocation would succeed, stop */ 5831 for (z = 0; z <= sc->reclaim_idx; z++) { 5832 struct zone *zone = &pgdat->node_zones[z]; 5833 if (!managed_zone(zone)) 5834 continue; 5835 5836 /* Allocation can already succeed, nothing to do */ 5837 if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone), 5838 sc->reclaim_idx, 0)) 5839 return false; 5840 5841 if (compaction_suitable(zone, sc->order, sc->reclaim_idx)) 5842 return false; 5843 } 5844 5845 /* 5846 * If we have not reclaimed enough pages for compaction and the 5847 * inactive lists are large enough, continue reclaiming 5848 */ 5849 pages_for_compaction = compact_gap(sc->order); 5850 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE); 5851 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc)) 5852 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON); 5853 5854 return inactive_lru_pages > pages_for_compaction; 5855 } 5856 5857 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc) 5858 { 5859 struct mem_cgroup *target_memcg = sc->target_mem_cgroup; 5860 struct mem_cgroup_reclaim_cookie reclaim = { 5861 .pgdat = pgdat, 5862 }; 5863 struct mem_cgroup_reclaim_cookie *partial = &reclaim; 5864 struct mem_cgroup *memcg; 5865 5866 /* 5867 * In most cases, direct reclaimers can do partial walks 5868 * through the cgroup tree, using an iterator state that 5869 * persists across invocations. This strikes a balance between 5870 * fairness and allocation latency. 5871 * 5872 * For kswapd, reliable forward progress is more important 5873 * than a quick return to idle. Always do full walks. 5874 */ 5875 if (current_is_kswapd() || sc->memcg_full_walk) 5876 partial = NULL; 5877 5878 memcg = mem_cgroup_iter(target_memcg, NULL, partial); 5879 do { 5880 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 5881 unsigned long reclaimed; 5882 unsigned long scanned; 5883 5884 /* 5885 * This loop can become CPU-bound when target memcgs 5886 * aren't eligible for reclaim - either because they 5887 * don't have any reclaimable pages, or because their 5888 * memory is explicitly protected. Avoid soft lockups. 5889 */ 5890 cond_resched(); 5891 5892 mem_cgroup_calculate_protection(target_memcg, memcg); 5893 5894 if (mem_cgroup_below_min(target_memcg, memcg)) { 5895 /* 5896 * Hard protection. 5897 * If there is no reclaimable memory, OOM. 5898 */ 5899 continue; 5900 } else if (mem_cgroup_below_low(target_memcg, memcg)) { 5901 /* 5902 * Soft protection. 5903 * Respect the protection only as long as 5904 * there is an unprotected supply 5905 * of reclaimable memory from other cgroups. 5906 */ 5907 if (!sc->memcg_low_reclaim) { 5908 sc->memcg_low_skipped = 1; 5909 continue; 5910 } 5911 memcg_memory_event(memcg, MEMCG_LOW); 5912 } 5913 5914 reclaimed = sc->nr_reclaimed; 5915 scanned = sc->nr_scanned; 5916 5917 shrink_lruvec(lruvec, sc); 5918 5919 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, 5920 sc->priority); 5921 5922 /* Record the group's reclaim efficiency */ 5923 if (!sc->proactive) 5924 vmpressure(sc->gfp_mask, memcg, false, 5925 sc->nr_scanned - scanned, 5926 sc->nr_reclaimed - reclaimed); 5927 5928 /* If partial walks are allowed, bail once goal is reached */ 5929 if (partial && sc->nr_reclaimed >= sc->nr_to_reclaim) { 5930 mem_cgroup_iter_break(target_memcg, memcg); 5931 break; 5932 } 5933 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, partial))); 5934 } 5935 5936 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc) 5937 { 5938 unsigned long nr_reclaimed, nr_scanned, nr_node_reclaimed; 5939 struct lruvec *target_lruvec; 5940 bool reclaimable = false; 5941 5942 if (lru_gen_enabled() && root_reclaim(sc)) { 5943 lru_gen_shrink_node(pgdat, sc); 5944 return; 5945 } 5946 5947 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat); 5948 5949 again: 5950 memset(&sc->nr, 0, sizeof(sc->nr)); 5951 5952 nr_reclaimed = sc->nr_reclaimed; 5953 nr_scanned = sc->nr_scanned; 5954 5955 prepare_scan_control(pgdat, sc); 5956 5957 shrink_node_memcgs(pgdat, sc); 5958 5959 flush_reclaim_state(sc); 5960 5961 nr_node_reclaimed = sc->nr_reclaimed - nr_reclaimed; 5962 5963 /* Record the subtree's reclaim efficiency */ 5964 if (!sc->proactive) 5965 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, 5966 sc->nr_scanned - nr_scanned, nr_node_reclaimed); 5967 5968 if (nr_node_reclaimed) 5969 reclaimable = true; 5970 5971 if (current_is_kswapd()) { 5972 /* 5973 * If reclaim is isolating dirty pages under writeback, 5974 * it implies that the long-lived page allocation rate 5975 * is exceeding the page laundering rate. Either the 5976 * global limits are not being effective at throttling 5977 * processes due to the page distribution throughout 5978 * zones or there is heavy usage of a slow backing 5979 * device. The only option is to throttle from reclaim 5980 * context which is not ideal as there is no guarantee 5981 * the dirtying process is throttled in the same way 5982 * balance_dirty_pages() manages. 5983 * 5984 * Once a node is flagged PGDAT_WRITEBACK, kswapd will 5985 * count the number of pages under pages flagged for 5986 * immediate reclaim and stall if any are encountered 5987 * in the nr_immediate check below. 5988 */ 5989 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken) 5990 set_bit(PGDAT_WRITEBACK, &pgdat->flags); 5991 5992 /* Allow kswapd to start writing pages during reclaim.*/ 5993 if (sc->nr.unqueued_dirty == sc->nr.file_taken) 5994 set_bit(PGDAT_DIRTY, &pgdat->flags); 5995 5996 /* 5997 * If kswapd scans pages marked for immediate 5998 * reclaim and under writeback (nr_immediate), it 5999 * implies that pages are cycling through the LRU 6000 * faster than they are written so forcibly stall 6001 * until some pages complete writeback. 6002 */ 6003 if (sc->nr.immediate) 6004 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK); 6005 } 6006 6007 /* 6008 * Tag a node/memcg as congested if all the dirty pages were marked 6009 * for writeback and immediate reclaim (counted in nr.congested). 6010 * 6011 * Legacy memcg will stall in page writeback so avoid forcibly 6012 * stalling in reclaim_throttle(). 6013 */ 6014 if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested) { 6015 if (cgroup_reclaim(sc) && writeback_throttling_sane(sc)) 6016 set_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags); 6017 6018 if (current_is_kswapd()) 6019 set_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags); 6020 } 6021 6022 /* 6023 * Stall direct reclaim for IO completions if the lruvec is 6024 * node is congested. Allow kswapd to continue until it 6025 * starts encountering unqueued dirty pages or cycling through 6026 * the LRU too quickly. 6027 */ 6028 if (!current_is_kswapd() && current_may_throttle() && 6029 !sc->hibernation_mode && 6030 (test_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags) || 6031 test_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags))) 6032 reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED); 6033 6034 if (should_continue_reclaim(pgdat, nr_node_reclaimed, sc)) 6035 goto again; 6036 6037 /* 6038 * Kswapd gives up on balancing particular nodes after too 6039 * many failures to reclaim anything from them and goes to 6040 * sleep. On reclaim progress, reset the failure counter. A 6041 * successful direct reclaim run will revive a dormant kswapd. 6042 */ 6043 if (reclaimable) 6044 pgdat->kswapd_failures = 0; 6045 else if (sc->cache_trim_mode) 6046 sc->cache_trim_mode_failed = 1; 6047 } 6048 6049 /* 6050 * Returns true if compaction should go ahead for a costly-order request, or 6051 * the allocation would already succeed without compaction. Return false if we 6052 * should reclaim first. 6053 */ 6054 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) 6055 { 6056 unsigned long watermark; 6057 6058 if (!gfp_compaction_allowed(sc->gfp_mask)) 6059 return false; 6060 6061 /* Allocation can already succeed, nothing to do */ 6062 if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone), 6063 sc->reclaim_idx, 0)) 6064 return true; 6065 6066 /* Compaction cannot yet proceed. Do reclaim. */ 6067 if (!compaction_suitable(zone, sc->order, sc->reclaim_idx)) 6068 return false; 6069 6070 /* 6071 * Compaction is already possible, but it takes time to run and there 6072 * are potentially other callers using the pages just freed. So proceed 6073 * with reclaim to make a buffer of free pages available to give 6074 * compaction a reasonable chance of completing and allocating the page. 6075 * Note that we won't actually reclaim the whole buffer in one attempt 6076 * as the target watermark in should_continue_reclaim() is lower. But if 6077 * we are already above the high+gap watermark, don't reclaim at all. 6078 */ 6079 watermark = high_wmark_pages(zone) + compact_gap(sc->order); 6080 6081 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx); 6082 } 6083 6084 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc) 6085 { 6086 /* 6087 * If reclaim is making progress greater than 12% efficiency then 6088 * wake all the NOPROGRESS throttled tasks. 6089 */ 6090 if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) { 6091 wait_queue_head_t *wqh; 6092 6093 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS]; 6094 if (waitqueue_active(wqh)) 6095 wake_up(wqh); 6096 6097 return; 6098 } 6099 6100 /* 6101 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will 6102 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages 6103 * under writeback and marked for immediate reclaim at the tail of the 6104 * LRU. 6105 */ 6106 if (current_is_kswapd() || cgroup_reclaim(sc)) 6107 return; 6108 6109 /* Throttle if making no progress at high prioities. */ 6110 if (sc->priority == 1 && !sc->nr_reclaimed) 6111 reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS); 6112 } 6113 6114 /* 6115 * This is the direct reclaim path, for page-allocating processes. We only 6116 * try to reclaim pages from zones which will satisfy the caller's allocation 6117 * request. 6118 * 6119 * If a zone is deemed to be full of pinned pages then just give it a light 6120 * scan then give up on it. 6121 */ 6122 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 6123 { 6124 struct zoneref *z; 6125 struct zone *zone; 6126 unsigned long nr_soft_reclaimed; 6127 unsigned long nr_soft_scanned; 6128 gfp_t orig_mask; 6129 pg_data_t *last_pgdat = NULL; 6130 pg_data_t *first_pgdat = NULL; 6131 6132 /* 6133 * If the number of buffer_heads in the machine exceeds the maximum 6134 * allowed level, force direct reclaim to scan the highmem zone as 6135 * highmem pages could be pinning lowmem pages storing buffer_heads 6136 */ 6137 orig_mask = sc->gfp_mask; 6138 if (buffer_heads_over_limit) { 6139 sc->gfp_mask |= __GFP_HIGHMEM; 6140 sc->reclaim_idx = gfp_zone(sc->gfp_mask); 6141 } 6142 6143 for_each_zone_zonelist_nodemask(zone, z, zonelist, 6144 sc->reclaim_idx, sc->nodemask) { 6145 /* 6146 * Take care memory controller reclaiming has small influence 6147 * to global LRU. 6148 */ 6149 if (!cgroup_reclaim(sc)) { 6150 if (!cpuset_zone_allowed(zone, 6151 GFP_KERNEL | __GFP_HARDWALL)) 6152 continue; 6153 6154 /* 6155 * If we already have plenty of memory free for 6156 * compaction in this zone, don't free any more. 6157 * Even though compaction is invoked for any 6158 * non-zero order, only frequent costly order 6159 * reclamation is disruptive enough to become a 6160 * noticeable problem, like transparent huge 6161 * page allocations. 6162 */ 6163 if (IS_ENABLED(CONFIG_COMPACTION) && 6164 sc->order > PAGE_ALLOC_COSTLY_ORDER && 6165 compaction_ready(zone, sc)) { 6166 sc->compaction_ready = true; 6167 continue; 6168 } 6169 6170 /* 6171 * Shrink each node in the zonelist once. If the 6172 * zonelist is ordered by zone (not the default) then a 6173 * node may be shrunk multiple times but in that case 6174 * the user prefers lower zones being preserved. 6175 */ 6176 if (zone->zone_pgdat == last_pgdat) 6177 continue; 6178 6179 /* 6180 * This steals pages from memory cgroups over softlimit 6181 * and returns the number of reclaimed pages and 6182 * scanned pages. This works for global memory pressure 6183 * and balancing, not for a memcg's limit. 6184 */ 6185 nr_soft_scanned = 0; 6186 nr_soft_reclaimed = memcg1_soft_limit_reclaim(zone->zone_pgdat, 6187 sc->order, sc->gfp_mask, 6188 &nr_soft_scanned); 6189 sc->nr_reclaimed += nr_soft_reclaimed; 6190 sc->nr_scanned += nr_soft_scanned; 6191 /* need some check for avoid more shrink_zone() */ 6192 } 6193 6194 if (!first_pgdat) 6195 first_pgdat = zone->zone_pgdat; 6196 6197 /* See comment about same check for global reclaim above */ 6198 if (zone->zone_pgdat == last_pgdat) 6199 continue; 6200 last_pgdat = zone->zone_pgdat; 6201 shrink_node(zone->zone_pgdat, sc); 6202 } 6203 6204 if (first_pgdat) 6205 consider_reclaim_throttle(first_pgdat, sc); 6206 6207 /* 6208 * Restore to original mask to avoid the impact on the caller if we 6209 * promoted it to __GFP_HIGHMEM. 6210 */ 6211 sc->gfp_mask = orig_mask; 6212 } 6213 6214 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat) 6215 { 6216 struct lruvec *target_lruvec; 6217 unsigned long refaults; 6218 6219 if (lru_gen_enabled()) 6220 return; 6221 6222 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat); 6223 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON); 6224 target_lruvec->refaults[WORKINGSET_ANON] = refaults; 6225 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE); 6226 target_lruvec->refaults[WORKINGSET_FILE] = refaults; 6227 } 6228 6229 /* 6230 * This is the main entry point to direct page reclaim. 6231 * 6232 * If a full scan of the inactive list fails to free enough memory then we 6233 * are "out of memory" and something needs to be killed. 6234 * 6235 * If the caller is !__GFP_FS then the probability of a failure is reasonably 6236 * high - the zone may be full of dirty or under-writeback pages, which this 6237 * caller can't do much about. We kick the writeback threads and take explicit 6238 * naps in the hope that some of these pages can be written. But if the 6239 * allocating task holds filesystem locks which prevent writeout this might not 6240 * work, and the allocation attempt will fail. 6241 * 6242 * returns: 0, if no pages reclaimed 6243 * else, the number of pages reclaimed 6244 */ 6245 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 6246 struct scan_control *sc) 6247 { 6248 int initial_priority = sc->priority; 6249 pg_data_t *last_pgdat; 6250 struct zoneref *z; 6251 struct zone *zone; 6252 retry: 6253 delayacct_freepages_start(); 6254 6255 if (!cgroup_reclaim(sc)) 6256 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1); 6257 6258 do { 6259 if (!sc->proactive) 6260 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 6261 sc->priority); 6262 sc->nr_scanned = 0; 6263 shrink_zones(zonelist, sc); 6264 6265 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 6266 break; 6267 6268 if (sc->compaction_ready) 6269 break; 6270 6271 /* 6272 * If we're getting trouble reclaiming, start doing 6273 * writepage even in laptop mode. 6274 */ 6275 if (sc->priority < DEF_PRIORITY - 2) 6276 sc->may_writepage = 1; 6277 } while (--sc->priority >= 0); 6278 6279 last_pgdat = NULL; 6280 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx, 6281 sc->nodemask) { 6282 if (zone->zone_pgdat == last_pgdat) 6283 continue; 6284 last_pgdat = zone->zone_pgdat; 6285 6286 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat); 6287 6288 if (cgroup_reclaim(sc)) { 6289 struct lruvec *lruvec; 6290 6291 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, 6292 zone->zone_pgdat); 6293 clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags); 6294 } 6295 } 6296 6297 delayacct_freepages_end(); 6298 6299 if (sc->nr_reclaimed) 6300 return sc->nr_reclaimed; 6301 6302 /* Aborted reclaim to try compaction? don't OOM, then */ 6303 if (sc->compaction_ready) 6304 return 1; 6305 6306 /* 6307 * In most cases, direct reclaimers can do partial walks 6308 * through the cgroup tree to meet the reclaim goal while 6309 * keeping latency low. Since the iterator state is shared 6310 * among all direct reclaim invocations (to retain fairness 6311 * among cgroups), though, high concurrency can result in 6312 * individual threads not seeing enough cgroups to make 6313 * meaningful forward progress. Avoid false OOMs in this case. 6314 */ 6315 if (!sc->memcg_full_walk) { 6316 sc->priority = initial_priority; 6317 sc->memcg_full_walk = 1; 6318 goto retry; 6319 } 6320 6321 /* 6322 * We make inactive:active ratio decisions based on the node's 6323 * composition of memory, but a restrictive reclaim_idx or a 6324 * memory.low cgroup setting can exempt large amounts of 6325 * memory from reclaim. Neither of which are very common, so 6326 * instead of doing costly eligibility calculations of the 6327 * entire cgroup subtree up front, we assume the estimates are 6328 * good, and retry with forcible deactivation if that fails. 6329 */ 6330 if (sc->skipped_deactivate) { 6331 sc->priority = initial_priority; 6332 sc->force_deactivate = 1; 6333 sc->skipped_deactivate = 0; 6334 goto retry; 6335 } 6336 6337 /* Untapped cgroup reserves? Don't OOM, retry. */ 6338 if (sc->memcg_low_skipped) { 6339 sc->priority = initial_priority; 6340 sc->force_deactivate = 0; 6341 sc->memcg_low_reclaim = 1; 6342 sc->memcg_low_skipped = 0; 6343 goto retry; 6344 } 6345 6346 return 0; 6347 } 6348 6349 static bool allow_direct_reclaim(pg_data_t *pgdat) 6350 { 6351 struct zone *zone; 6352 unsigned long pfmemalloc_reserve = 0; 6353 unsigned long free_pages = 0; 6354 int i; 6355 bool wmark_ok; 6356 6357 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 6358 return true; 6359 6360 for (i = 0; i <= ZONE_NORMAL; i++) { 6361 zone = &pgdat->node_zones[i]; 6362 if (!managed_zone(zone)) 6363 continue; 6364 6365 if (!zone_reclaimable_pages(zone)) 6366 continue; 6367 6368 pfmemalloc_reserve += min_wmark_pages(zone); 6369 free_pages += zone_page_state_snapshot(zone, NR_FREE_PAGES); 6370 } 6371 6372 /* If there are no reserves (unexpected config) then do not throttle */ 6373 if (!pfmemalloc_reserve) 6374 return true; 6375 6376 wmark_ok = free_pages > pfmemalloc_reserve / 2; 6377 6378 /* kswapd must be awake if processes are being throttled */ 6379 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 6380 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL) 6381 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL); 6382 6383 wake_up_interruptible(&pgdat->kswapd_wait); 6384 } 6385 6386 return wmark_ok; 6387 } 6388 6389 /* 6390 * Throttle direct reclaimers if backing storage is backed by the network 6391 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 6392 * depleted. kswapd will continue to make progress and wake the processes 6393 * when the low watermark is reached. 6394 * 6395 * Returns true if a fatal signal was delivered during throttling. If this 6396 * happens, the page allocator should not consider triggering the OOM killer. 6397 */ 6398 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 6399 nodemask_t *nodemask) 6400 { 6401 struct zoneref *z; 6402 struct zone *zone; 6403 pg_data_t *pgdat = NULL; 6404 6405 /* 6406 * Kernel threads should not be throttled as they may be indirectly 6407 * responsible for cleaning pages necessary for reclaim to make forward 6408 * progress. kjournald for example may enter direct reclaim while 6409 * committing a transaction where throttling it could forcing other 6410 * processes to block on log_wait_commit(). 6411 */ 6412 if (current->flags & PF_KTHREAD) 6413 goto out; 6414 6415 /* 6416 * If a fatal signal is pending, this process should not throttle. 6417 * It should return quickly so it can exit and free its memory 6418 */ 6419 if (fatal_signal_pending(current)) 6420 goto out; 6421 6422 /* 6423 * Check if the pfmemalloc reserves are ok by finding the first node 6424 * with a usable ZONE_NORMAL or lower zone. The expectation is that 6425 * GFP_KERNEL will be required for allocating network buffers when 6426 * swapping over the network so ZONE_HIGHMEM is unusable. 6427 * 6428 * Throttling is based on the first usable node and throttled processes 6429 * wait on a queue until kswapd makes progress and wakes them. There 6430 * is an affinity then between processes waking up and where reclaim 6431 * progress has been made assuming the process wakes on the same node. 6432 * More importantly, processes running on remote nodes will not compete 6433 * for remote pfmemalloc reserves and processes on different nodes 6434 * should make reasonable progress. 6435 */ 6436 for_each_zone_zonelist_nodemask(zone, z, zonelist, 6437 gfp_zone(gfp_mask), nodemask) { 6438 if (zone_idx(zone) > ZONE_NORMAL) 6439 continue; 6440 6441 /* Throttle based on the first usable node */ 6442 pgdat = zone->zone_pgdat; 6443 if (allow_direct_reclaim(pgdat)) 6444 goto out; 6445 break; 6446 } 6447 6448 /* If no zone was usable by the allocation flags then do not throttle */ 6449 if (!pgdat) 6450 goto out; 6451 6452 /* Account for the throttling */ 6453 count_vm_event(PGSCAN_DIRECT_THROTTLE); 6454 6455 /* 6456 * If the caller cannot enter the filesystem, it's possible that it 6457 * is due to the caller holding an FS lock or performing a journal 6458 * transaction in the case of a filesystem like ext[3|4]. In this case, 6459 * it is not safe to block on pfmemalloc_wait as kswapd could be 6460 * blocked waiting on the same lock. Instead, throttle for up to a 6461 * second before continuing. 6462 */ 6463 if (!(gfp_mask & __GFP_FS)) 6464 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 6465 allow_direct_reclaim(pgdat), HZ); 6466 else 6467 /* Throttle until kswapd wakes the process */ 6468 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 6469 allow_direct_reclaim(pgdat)); 6470 6471 if (fatal_signal_pending(current)) 6472 return true; 6473 6474 out: 6475 return false; 6476 } 6477 6478 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 6479 gfp_t gfp_mask, nodemask_t *nodemask) 6480 { 6481 unsigned long nr_reclaimed; 6482 struct scan_control sc = { 6483 .nr_to_reclaim = SWAP_CLUSTER_MAX, 6484 .gfp_mask = current_gfp_context(gfp_mask), 6485 .reclaim_idx = gfp_zone(gfp_mask), 6486 .order = order, 6487 .nodemask = nodemask, 6488 .priority = DEF_PRIORITY, 6489 .may_writepage = !laptop_mode, 6490 .may_unmap = 1, 6491 .may_swap = 1, 6492 }; 6493 6494 /* 6495 * scan_control uses s8 fields for order, priority, and reclaim_idx. 6496 * Confirm they are large enough for max values. 6497 */ 6498 BUILD_BUG_ON(MAX_PAGE_ORDER >= S8_MAX); 6499 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX); 6500 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX); 6501 6502 /* 6503 * Do not enter reclaim if fatal signal was delivered while throttled. 6504 * 1 is returned so that the page allocator does not OOM kill at this 6505 * point. 6506 */ 6507 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask)) 6508 return 1; 6509 6510 set_task_reclaim_state(current, &sc.reclaim_state); 6511 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask); 6512 6513 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 6514 6515 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 6516 set_task_reclaim_state(current, NULL); 6517 6518 return nr_reclaimed; 6519 } 6520 6521 #ifdef CONFIG_MEMCG 6522 6523 /* Only used by soft limit reclaim. Do not reuse for anything else. */ 6524 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg, 6525 gfp_t gfp_mask, bool noswap, 6526 pg_data_t *pgdat, 6527 unsigned long *nr_scanned) 6528 { 6529 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 6530 struct scan_control sc = { 6531 .nr_to_reclaim = SWAP_CLUSTER_MAX, 6532 .target_mem_cgroup = memcg, 6533 .may_writepage = !laptop_mode, 6534 .may_unmap = 1, 6535 .reclaim_idx = MAX_NR_ZONES - 1, 6536 .may_swap = !noswap, 6537 }; 6538 6539 WARN_ON_ONCE(!current->reclaim_state); 6540 6541 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 6542 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 6543 6544 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 6545 sc.gfp_mask); 6546 6547 /* 6548 * NOTE: Although we can get the priority field, using it 6549 * here is not a good idea, since it limits the pages we can scan. 6550 * if we don't reclaim here, the shrink_node from balance_pgdat 6551 * will pick up pages from other mem cgroup's as well. We hack 6552 * the priority and make it zero. 6553 */ 6554 shrink_lruvec(lruvec, &sc); 6555 6556 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 6557 6558 *nr_scanned = sc.nr_scanned; 6559 6560 return sc.nr_reclaimed; 6561 } 6562 6563 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 6564 unsigned long nr_pages, 6565 gfp_t gfp_mask, 6566 unsigned int reclaim_options, 6567 int *swappiness) 6568 { 6569 unsigned long nr_reclaimed; 6570 unsigned int noreclaim_flag; 6571 struct scan_control sc = { 6572 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 6573 .proactive_swappiness = swappiness, 6574 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) | 6575 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 6576 .reclaim_idx = MAX_NR_ZONES - 1, 6577 .target_mem_cgroup = memcg, 6578 .priority = DEF_PRIORITY, 6579 .may_writepage = !laptop_mode, 6580 .may_unmap = 1, 6581 .may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP), 6582 .proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE), 6583 }; 6584 /* 6585 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put 6586 * equal pressure on all the nodes. This is based on the assumption that 6587 * the reclaim does not bail out early. 6588 */ 6589 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 6590 6591 set_task_reclaim_state(current, &sc.reclaim_state); 6592 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask); 6593 noreclaim_flag = memalloc_noreclaim_save(); 6594 6595 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 6596 6597 memalloc_noreclaim_restore(noreclaim_flag); 6598 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 6599 set_task_reclaim_state(current, NULL); 6600 6601 return nr_reclaimed; 6602 } 6603 #endif 6604 6605 static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc) 6606 { 6607 struct mem_cgroup *memcg; 6608 struct lruvec *lruvec; 6609 6610 if (lru_gen_enabled()) { 6611 lru_gen_age_node(pgdat, sc); 6612 return; 6613 } 6614 6615 if (!can_age_anon_pages(pgdat, sc)) 6616 return; 6617 6618 lruvec = mem_cgroup_lruvec(NULL, pgdat); 6619 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 6620 return; 6621 6622 memcg = mem_cgroup_iter(NULL, NULL, NULL); 6623 do { 6624 lruvec = mem_cgroup_lruvec(memcg, pgdat); 6625 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 6626 sc, LRU_ACTIVE_ANON); 6627 memcg = mem_cgroup_iter(NULL, memcg, NULL); 6628 } while (memcg); 6629 } 6630 6631 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx) 6632 { 6633 int i; 6634 struct zone *zone; 6635 6636 /* 6637 * Check for watermark boosts top-down as the higher zones 6638 * are more likely to be boosted. Both watermarks and boosts 6639 * should not be checked at the same time as reclaim would 6640 * start prematurely when there is no boosting and a lower 6641 * zone is balanced. 6642 */ 6643 for (i = highest_zoneidx; i >= 0; i--) { 6644 zone = pgdat->node_zones + i; 6645 if (!managed_zone(zone)) 6646 continue; 6647 6648 if (zone->watermark_boost) 6649 return true; 6650 } 6651 6652 return false; 6653 } 6654 6655 /* 6656 * Returns true if there is an eligible zone balanced for the request order 6657 * and highest_zoneidx 6658 */ 6659 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx) 6660 { 6661 int i; 6662 unsigned long mark = -1; 6663 struct zone *zone; 6664 6665 /* 6666 * Check watermarks bottom-up as lower zones are more likely to 6667 * meet watermarks. 6668 */ 6669 for (i = 0; i <= highest_zoneidx; i++) { 6670 zone = pgdat->node_zones + i; 6671 6672 if (!managed_zone(zone)) 6673 continue; 6674 6675 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) 6676 mark = promo_wmark_pages(zone); 6677 else 6678 mark = high_wmark_pages(zone); 6679 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx)) 6680 return true; 6681 } 6682 6683 /* 6684 * If a node has no managed zone within highest_zoneidx, it does not 6685 * need balancing by definition. This can happen if a zone-restricted 6686 * allocation tries to wake a remote kswapd. 6687 */ 6688 if (mark == -1) 6689 return true; 6690 6691 return false; 6692 } 6693 6694 /* Clear pgdat state for congested, dirty or under writeback. */ 6695 static void clear_pgdat_congested(pg_data_t *pgdat) 6696 { 6697 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat); 6698 6699 clear_bit(LRUVEC_NODE_CONGESTED, &lruvec->flags); 6700 clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags); 6701 clear_bit(PGDAT_DIRTY, &pgdat->flags); 6702 clear_bit(PGDAT_WRITEBACK, &pgdat->flags); 6703 } 6704 6705 /* 6706 * Prepare kswapd for sleeping. This verifies that there are no processes 6707 * waiting in throttle_direct_reclaim() and that watermarks have been met. 6708 * 6709 * Returns true if kswapd is ready to sleep 6710 */ 6711 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, 6712 int highest_zoneidx) 6713 { 6714 /* 6715 * The throttled processes are normally woken up in balance_pgdat() as 6716 * soon as allow_direct_reclaim() is true. But there is a potential 6717 * race between when kswapd checks the watermarks and a process gets 6718 * throttled. There is also a potential race if processes get 6719 * throttled, kswapd wakes, a large process exits thereby balancing the 6720 * zones, which causes kswapd to exit balance_pgdat() before reaching 6721 * the wake up checks. If kswapd is going to sleep, no process should 6722 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If 6723 * the wake up is premature, processes will wake kswapd and get 6724 * throttled again. The difference from wake ups in balance_pgdat() is 6725 * that here we are under prepare_to_wait(). 6726 */ 6727 if (waitqueue_active(&pgdat->pfmemalloc_wait)) 6728 wake_up_all(&pgdat->pfmemalloc_wait); 6729 6730 /* Hopeless node, leave it to direct reclaim */ 6731 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 6732 return true; 6733 6734 if (pgdat_balanced(pgdat, order, highest_zoneidx)) { 6735 clear_pgdat_congested(pgdat); 6736 return true; 6737 } 6738 6739 return false; 6740 } 6741 6742 /* 6743 * kswapd shrinks a node of pages that are at or below the highest usable 6744 * zone that is currently unbalanced. 6745 * 6746 * Returns true if kswapd scanned at least the requested number of pages to 6747 * reclaim or if the lack of progress was due to pages under writeback. 6748 * This is used to determine if the scanning priority needs to be raised. 6749 */ 6750 static bool kswapd_shrink_node(pg_data_t *pgdat, 6751 struct scan_control *sc) 6752 { 6753 struct zone *zone; 6754 int z; 6755 unsigned long nr_reclaimed = sc->nr_reclaimed; 6756 6757 /* Reclaim a number of pages proportional to the number of zones */ 6758 sc->nr_to_reclaim = 0; 6759 for (z = 0; z <= sc->reclaim_idx; z++) { 6760 zone = pgdat->node_zones + z; 6761 if (!managed_zone(zone)) 6762 continue; 6763 6764 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX); 6765 } 6766 6767 /* 6768 * Historically care was taken to put equal pressure on all zones but 6769 * now pressure is applied based on node LRU order. 6770 */ 6771 shrink_node(pgdat, sc); 6772 6773 /* 6774 * Fragmentation may mean that the system cannot be rebalanced for 6775 * high-order allocations. If twice the allocation size has been 6776 * reclaimed then recheck watermarks only at order-0 to prevent 6777 * excessive reclaim. Assume that a process requested a high-order 6778 * can direct reclaim/compact. 6779 */ 6780 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order)) 6781 sc->order = 0; 6782 6783 /* account for progress from mm_account_reclaimed_pages() */ 6784 return max(sc->nr_scanned, sc->nr_reclaimed - nr_reclaimed) >= sc->nr_to_reclaim; 6785 } 6786 6787 /* Page allocator PCP high watermark is lowered if reclaim is active. */ 6788 static inline void 6789 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active) 6790 { 6791 int i; 6792 struct zone *zone; 6793 6794 for (i = 0; i <= highest_zoneidx; i++) { 6795 zone = pgdat->node_zones + i; 6796 6797 if (!managed_zone(zone)) 6798 continue; 6799 6800 if (active) 6801 set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags); 6802 else 6803 clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags); 6804 } 6805 } 6806 6807 static inline void 6808 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx) 6809 { 6810 update_reclaim_active(pgdat, highest_zoneidx, true); 6811 } 6812 6813 static inline void 6814 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx) 6815 { 6816 update_reclaim_active(pgdat, highest_zoneidx, false); 6817 } 6818 6819 /* 6820 * For kswapd, balance_pgdat() will reclaim pages across a node from zones 6821 * that are eligible for use by the caller until at least one zone is 6822 * balanced. 6823 * 6824 * Returns the order kswapd finished reclaiming at. 6825 * 6826 * kswapd scans the zones in the highmem->normal->dma direction. It skips 6827 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 6828 * found to have free_pages <= high_wmark_pages(zone), any page in that zone 6829 * or lower is eligible for reclaim until at least one usable zone is 6830 * balanced. 6831 */ 6832 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx) 6833 { 6834 int i; 6835 unsigned long nr_soft_reclaimed; 6836 unsigned long nr_soft_scanned; 6837 unsigned long pflags; 6838 unsigned long nr_boost_reclaim; 6839 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, }; 6840 bool boosted; 6841 struct zone *zone; 6842 struct scan_control sc = { 6843 .gfp_mask = GFP_KERNEL, 6844 .order = order, 6845 .may_unmap = 1, 6846 }; 6847 6848 set_task_reclaim_state(current, &sc.reclaim_state); 6849 psi_memstall_enter(&pflags); 6850 __fs_reclaim_acquire(_THIS_IP_); 6851 6852 count_vm_event(PAGEOUTRUN); 6853 6854 /* 6855 * Account for the reclaim boost. Note that the zone boost is left in 6856 * place so that parallel allocations that are near the watermark will 6857 * stall or direct reclaim until kswapd is finished. 6858 */ 6859 nr_boost_reclaim = 0; 6860 for (i = 0; i <= highest_zoneidx; i++) { 6861 zone = pgdat->node_zones + i; 6862 if (!managed_zone(zone)) 6863 continue; 6864 6865 nr_boost_reclaim += zone->watermark_boost; 6866 zone_boosts[i] = zone->watermark_boost; 6867 } 6868 boosted = nr_boost_reclaim; 6869 6870 restart: 6871 set_reclaim_active(pgdat, highest_zoneidx); 6872 sc.priority = DEF_PRIORITY; 6873 do { 6874 unsigned long nr_reclaimed = sc.nr_reclaimed; 6875 bool raise_priority = true; 6876 bool balanced; 6877 bool ret; 6878 bool was_frozen; 6879 6880 sc.reclaim_idx = highest_zoneidx; 6881 6882 /* 6883 * If the number of buffer_heads exceeds the maximum allowed 6884 * then consider reclaiming from all zones. This has a dual 6885 * purpose -- on 64-bit systems it is expected that 6886 * buffer_heads are stripped during active rotation. On 32-bit 6887 * systems, highmem pages can pin lowmem memory and shrinking 6888 * buffers can relieve lowmem pressure. Reclaim may still not 6889 * go ahead if all eligible zones for the original allocation 6890 * request are balanced to avoid excessive reclaim from kswapd. 6891 */ 6892 if (buffer_heads_over_limit) { 6893 for (i = MAX_NR_ZONES - 1; i >= 0; i--) { 6894 zone = pgdat->node_zones + i; 6895 if (!managed_zone(zone)) 6896 continue; 6897 6898 sc.reclaim_idx = i; 6899 break; 6900 } 6901 } 6902 6903 /* 6904 * If the pgdat is imbalanced then ignore boosting and preserve 6905 * the watermarks for a later time and restart. Note that the 6906 * zone watermarks will be still reset at the end of balancing 6907 * on the grounds that the normal reclaim should be enough to 6908 * re-evaluate if boosting is required when kswapd next wakes. 6909 */ 6910 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx); 6911 if (!balanced && nr_boost_reclaim) { 6912 nr_boost_reclaim = 0; 6913 goto restart; 6914 } 6915 6916 /* 6917 * If boosting is not active then only reclaim if there are no 6918 * eligible zones. Note that sc.reclaim_idx is not used as 6919 * buffer_heads_over_limit may have adjusted it. 6920 */ 6921 if (!nr_boost_reclaim && balanced) 6922 goto out; 6923 6924 /* Limit the priority of boosting to avoid reclaim writeback */ 6925 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2) 6926 raise_priority = false; 6927 6928 /* 6929 * Do not writeback or swap pages for boosted reclaim. The 6930 * intent is to relieve pressure not issue sub-optimal IO 6931 * from reclaim context. If no pages are reclaimed, the 6932 * reclaim will be aborted. 6933 */ 6934 sc.may_writepage = !laptop_mode && !nr_boost_reclaim; 6935 sc.may_swap = !nr_boost_reclaim; 6936 6937 /* 6938 * Do some background aging, to give pages a chance to be 6939 * referenced before reclaiming. All pages are rotated 6940 * regardless of classzone as this is about consistent aging. 6941 */ 6942 kswapd_age_node(pgdat, &sc); 6943 6944 /* 6945 * If we're getting trouble reclaiming, start doing writepage 6946 * even in laptop mode. 6947 */ 6948 if (sc.priority < DEF_PRIORITY - 2) 6949 sc.may_writepage = 1; 6950 6951 /* Call soft limit reclaim before calling shrink_node. */ 6952 sc.nr_scanned = 0; 6953 nr_soft_scanned = 0; 6954 nr_soft_reclaimed = memcg1_soft_limit_reclaim(pgdat, sc.order, 6955 sc.gfp_mask, &nr_soft_scanned); 6956 sc.nr_reclaimed += nr_soft_reclaimed; 6957 6958 /* 6959 * There should be no need to raise the scanning priority if 6960 * enough pages are already being scanned that that high 6961 * watermark would be met at 100% efficiency. 6962 */ 6963 if (kswapd_shrink_node(pgdat, &sc)) 6964 raise_priority = false; 6965 6966 /* 6967 * If the low watermark is met there is no need for processes 6968 * to be throttled on pfmemalloc_wait as they should not be 6969 * able to safely make forward progress. Wake them 6970 */ 6971 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 6972 allow_direct_reclaim(pgdat)) 6973 wake_up_all(&pgdat->pfmemalloc_wait); 6974 6975 /* Check if kswapd should be suspending */ 6976 __fs_reclaim_release(_THIS_IP_); 6977 ret = kthread_freezable_should_stop(&was_frozen); 6978 __fs_reclaim_acquire(_THIS_IP_); 6979 if (was_frozen || ret) 6980 break; 6981 6982 /* 6983 * Raise priority if scanning rate is too low or there was no 6984 * progress in reclaiming pages 6985 */ 6986 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed; 6987 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed); 6988 6989 /* 6990 * If reclaim made no progress for a boost, stop reclaim as 6991 * IO cannot be queued and it could be an infinite loop in 6992 * extreme circumstances. 6993 */ 6994 if (nr_boost_reclaim && !nr_reclaimed) 6995 break; 6996 6997 if (raise_priority || !nr_reclaimed) 6998 sc.priority--; 6999 } while (sc.priority >= 1); 7000 7001 /* 7002 * Restart only if it went through the priority loop all the way, 7003 * but cache_trim_mode didn't work. 7004 */ 7005 if (!sc.nr_reclaimed && sc.priority < 1 && 7006 !sc.no_cache_trim_mode && sc.cache_trim_mode_failed) { 7007 sc.no_cache_trim_mode = 1; 7008 goto restart; 7009 } 7010 7011 if (!sc.nr_reclaimed) 7012 pgdat->kswapd_failures++; 7013 7014 out: 7015 clear_reclaim_active(pgdat, highest_zoneidx); 7016 7017 /* If reclaim was boosted, account for the reclaim done in this pass */ 7018 if (boosted) { 7019 unsigned long flags; 7020 7021 for (i = 0; i <= highest_zoneidx; i++) { 7022 if (!zone_boosts[i]) 7023 continue; 7024 7025 /* Increments are under the zone lock */ 7026 zone = pgdat->node_zones + i; 7027 spin_lock_irqsave(&zone->lock, flags); 7028 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]); 7029 spin_unlock_irqrestore(&zone->lock, flags); 7030 } 7031 7032 /* 7033 * As there is now likely space, wakeup kcompact to defragment 7034 * pageblocks. 7035 */ 7036 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx); 7037 } 7038 7039 snapshot_refaults(NULL, pgdat); 7040 __fs_reclaim_release(_THIS_IP_); 7041 psi_memstall_leave(&pflags); 7042 set_task_reclaim_state(current, NULL); 7043 7044 /* 7045 * Return the order kswapd stopped reclaiming at as 7046 * prepare_kswapd_sleep() takes it into account. If another caller 7047 * entered the allocator slow path while kswapd was awake, order will 7048 * remain at the higher level. 7049 */ 7050 return sc.order; 7051 } 7052 7053 /* 7054 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to 7055 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is 7056 * not a valid index then either kswapd runs for first time or kswapd couldn't 7057 * sleep after previous reclaim attempt (node is still unbalanced). In that 7058 * case return the zone index of the previous kswapd reclaim cycle. 7059 */ 7060 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat, 7061 enum zone_type prev_highest_zoneidx) 7062 { 7063 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 7064 7065 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx; 7066 } 7067 7068 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order, 7069 unsigned int highest_zoneidx) 7070 { 7071 long remaining = 0; 7072 DEFINE_WAIT(wait); 7073 7074 if (freezing(current) || kthread_should_stop()) 7075 return; 7076 7077 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 7078 7079 /* 7080 * Try to sleep for a short interval. Note that kcompactd will only be 7081 * woken if it is possible to sleep for a short interval. This is 7082 * deliberate on the assumption that if reclaim cannot keep an 7083 * eligible zone balanced that it's also unlikely that compaction will 7084 * succeed. 7085 */ 7086 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 7087 /* 7088 * Compaction records what page blocks it recently failed to 7089 * isolate pages from and skips them in the future scanning. 7090 * When kswapd is going to sleep, it is reasonable to assume 7091 * that pages and compaction may succeed so reset the cache. 7092 */ 7093 reset_isolation_suitable(pgdat); 7094 7095 /* 7096 * We have freed the memory, now we should compact it to make 7097 * allocation of the requested order possible. 7098 */ 7099 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx); 7100 7101 remaining = schedule_timeout(HZ/10); 7102 7103 /* 7104 * If woken prematurely then reset kswapd_highest_zoneidx and 7105 * order. The values will either be from a wakeup request or 7106 * the previous request that slept prematurely. 7107 */ 7108 if (remaining) { 7109 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, 7110 kswapd_highest_zoneidx(pgdat, 7111 highest_zoneidx)); 7112 7113 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order) 7114 WRITE_ONCE(pgdat->kswapd_order, reclaim_order); 7115 } 7116 7117 finish_wait(&pgdat->kswapd_wait, &wait); 7118 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 7119 } 7120 7121 /* 7122 * After a short sleep, check if it was a premature sleep. If not, then 7123 * go fully to sleep until explicitly woken up. 7124 */ 7125 if (!remaining && 7126 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 7127 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 7128 7129 /* 7130 * vmstat counters are not perfectly accurate and the estimated 7131 * value for counters such as NR_FREE_PAGES can deviate from the 7132 * true value by nr_online_cpus * threshold. To avoid the zone 7133 * watermarks being breached while under pressure, we reduce the 7134 * per-cpu vmstat threshold while kswapd is awake and restore 7135 * them before going back to sleep. 7136 */ 7137 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 7138 7139 if (!kthread_should_stop()) 7140 schedule(); 7141 7142 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 7143 } else { 7144 if (remaining) 7145 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 7146 else 7147 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 7148 } 7149 finish_wait(&pgdat->kswapd_wait, &wait); 7150 } 7151 7152 /* 7153 * The background pageout daemon, started as a kernel thread 7154 * from the init process. 7155 * 7156 * This basically trickles out pages so that we have _some_ 7157 * free memory available even if there is no other activity 7158 * that frees anything up. This is needed for things like routing 7159 * etc, where we otherwise might have all activity going on in 7160 * asynchronous contexts that cannot page things out. 7161 * 7162 * If there are applications that are active memory-allocators 7163 * (most normal use), this basically shouldn't matter. 7164 */ 7165 static int kswapd(void *p) 7166 { 7167 unsigned int alloc_order, reclaim_order; 7168 unsigned int highest_zoneidx = MAX_NR_ZONES - 1; 7169 pg_data_t *pgdat = (pg_data_t *)p; 7170 struct task_struct *tsk = current; 7171 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 7172 7173 if (!cpumask_empty(cpumask)) 7174 set_cpus_allowed_ptr(tsk, cpumask); 7175 7176 /* 7177 * Tell the memory management that we're a "memory allocator", 7178 * and that if we need more memory we should get access to it 7179 * regardless (see "__alloc_pages()"). "kswapd" should 7180 * never get caught in the normal page freeing logic. 7181 * 7182 * (Kswapd normally doesn't need memory anyway, but sometimes 7183 * you need a small amount of memory in order to be able to 7184 * page out something else, and this flag essentially protects 7185 * us from recursively trying to free more memory as we're 7186 * trying to free the first piece of memory in the first place). 7187 */ 7188 tsk->flags |= PF_MEMALLOC | PF_KSWAPD; 7189 set_freezable(); 7190 7191 WRITE_ONCE(pgdat->kswapd_order, 0); 7192 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 7193 atomic_set(&pgdat->nr_writeback_throttled, 0); 7194 for ( ; ; ) { 7195 bool was_frozen; 7196 7197 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order); 7198 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 7199 highest_zoneidx); 7200 7201 kswapd_try_sleep: 7202 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order, 7203 highest_zoneidx); 7204 7205 /* Read the new order and highest_zoneidx */ 7206 alloc_order = READ_ONCE(pgdat->kswapd_order); 7207 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 7208 highest_zoneidx); 7209 WRITE_ONCE(pgdat->kswapd_order, 0); 7210 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 7211 7212 if (kthread_freezable_should_stop(&was_frozen)) 7213 break; 7214 7215 /* 7216 * We can speed up thawing tasks if we don't call balance_pgdat 7217 * after returning from the refrigerator 7218 */ 7219 if (was_frozen) 7220 continue; 7221 7222 /* 7223 * Reclaim begins at the requested order but if a high-order 7224 * reclaim fails then kswapd falls back to reclaiming for 7225 * order-0. If that happens, kswapd will consider sleeping 7226 * for the order it finished reclaiming at (reclaim_order) 7227 * but kcompactd is woken to compact for the original 7228 * request (alloc_order). 7229 */ 7230 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx, 7231 alloc_order); 7232 reclaim_order = balance_pgdat(pgdat, alloc_order, 7233 highest_zoneidx); 7234 if (reclaim_order < alloc_order) 7235 goto kswapd_try_sleep; 7236 } 7237 7238 tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD); 7239 7240 return 0; 7241 } 7242 7243 /* 7244 * A zone is low on free memory or too fragmented for high-order memory. If 7245 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's 7246 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim 7247 * has failed or is not needed, still wake up kcompactd if only compaction is 7248 * needed. 7249 */ 7250 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order, 7251 enum zone_type highest_zoneidx) 7252 { 7253 pg_data_t *pgdat; 7254 enum zone_type curr_idx; 7255 7256 if (!managed_zone(zone)) 7257 return; 7258 7259 if (!cpuset_zone_allowed(zone, gfp_flags)) 7260 return; 7261 7262 pgdat = zone->zone_pgdat; 7263 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 7264 7265 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx) 7266 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx); 7267 7268 if (READ_ONCE(pgdat->kswapd_order) < order) 7269 WRITE_ONCE(pgdat->kswapd_order, order); 7270 7271 if (!waitqueue_active(&pgdat->kswapd_wait)) 7272 return; 7273 7274 /* Hopeless node, leave it to direct reclaim if possible */ 7275 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES || 7276 (pgdat_balanced(pgdat, order, highest_zoneidx) && 7277 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) { 7278 /* 7279 * There may be plenty of free memory available, but it's too 7280 * fragmented for high-order allocations. Wake up kcompactd 7281 * and rely on compaction_suitable() to determine if it's 7282 * needed. If it fails, it will defer subsequent attempts to 7283 * ratelimit its work. 7284 */ 7285 if (!(gfp_flags & __GFP_DIRECT_RECLAIM)) 7286 wakeup_kcompactd(pgdat, order, highest_zoneidx); 7287 return; 7288 } 7289 7290 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order, 7291 gfp_flags); 7292 wake_up_interruptible(&pgdat->kswapd_wait); 7293 } 7294 7295 #ifdef CONFIG_HIBERNATION 7296 /* 7297 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 7298 * freed pages. 7299 * 7300 * Rather than trying to age LRUs the aim is to preserve the overall 7301 * LRU order by reclaiming preferentially 7302 * inactive > active > active referenced > active mapped 7303 */ 7304 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 7305 { 7306 struct scan_control sc = { 7307 .nr_to_reclaim = nr_to_reclaim, 7308 .gfp_mask = GFP_HIGHUSER_MOVABLE, 7309 .reclaim_idx = MAX_NR_ZONES - 1, 7310 .priority = DEF_PRIORITY, 7311 .may_writepage = 1, 7312 .may_unmap = 1, 7313 .may_swap = 1, 7314 .hibernation_mode = 1, 7315 }; 7316 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 7317 unsigned long nr_reclaimed; 7318 unsigned int noreclaim_flag; 7319 7320 fs_reclaim_acquire(sc.gfp_mask); 7321 noreclaim_flag = memalloc_noreclaim_save(); 7322 set_task_reclaim_state(current, &sc.reclaim_state); 7323 7324 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 7325 7326 set_task_reclaim_state(current, NULL); 7327 memalloc_noreclaim_restore(noreclaim_flag); 7328 fs_reclaim_release(sc.gfp_mask); 7329 7330 return nr_reclaimed; 7331 } 7332 #endif /* CONFIG_HIBERNATION */ 7333 7334 /* 7335 * This kswapd start function will be called by init and node-hot-add. 7336 */ 7337 void __meminit kswapd_run(int nid) 7338 { 7339 pg_data_t *pgdat = NODE_DATA(nid); 7340 7341 pgdat_kswapd_lock(pgdat); 7342 if (!pgdat->kswapd) { 7343 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 7344 if (IS_ERR(pgdat->kswapd)) { 7345 /* failure at boot is fatal */ 7346 pr_err("Failed to start kswapd on node %d,ret=%ld\n", 7347 nid, PTR_ERR(pgdat->kswapd)); 7348 BUG_ON(system_state < SYSTEM_RUNNING); 7349 pgdat->kswapd = NULL; 7350 } 7351 } 7352 pgdat_kswapd_unlock(pgdat); 7353 } 7354 7355 /* 7356 * Called by memory hotplug when all memory in a node is offlined. Caller must 7357 * be holding mem_hotplug_begin/done(). 7358 */ 7359 void __meminit kswapd_stop(int nid) 7360 { 7361 pg_data_t *pgdat = NODE_DATA(nid); 7362 struct task_struct *kswapd; 7363 7364 pgdat_kswapd_lock(pgdat); 7365 kswapd = pgdat->kswapd; 7366 if (kswapd) { 7367 kthread_stop(kswapd); 7368 pgdat->kswapd = NULL; 7369 } 7370 pgdat_kswapd_unlock(pgdat); 7371 } 7372 7373 static int __init kswapd_init(void) 7374 { 7375 int nid; 7376 7377 swap_setup(); 7378 for_each_node_state(nid, N_MEMORY) 7379 kswapd_run(nid); 7380 return 0; 7381 } 7382 7383 module_init(kswapd_init) 7384 7385 #ifdef CONFIG_NUMA 7386 /* 7387 * Node reclaim mode 7388 * 7389 * If non-zero call node_reclaim when the number of free pages falls below 7390 * the watermarks. 7391 */ 7392 int node_reclaim_mode __read_mostly; 7393 7394 /* 7395 * Priority for NODE_RECLAIM. This determines the fraction of pages 7396 * of a node considered for each zone_reclaim. 4 scans 1/16th of 7397 * a zone. 7398 */ 7399 #define NODE_RECLAIM_PRIORITY 4 7400 7401 /* 7402 * Percentage of pages in a zone that must be unmapped for node_reclaim to 7403 * occur. 7404 */ 7405 int sysctl_min_unmapped_ratio = 1; 7406 7407 /* 7408 * If the number of slab pages in a zone grows beyond this percentage then 7409 * slab reclaim needs to occur. 7410 */ 7411 int sysctl_min_slab_ratio = 5; 7412 7413 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat) 7414 { 7415 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED); 7416 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) + 7417 node_page_state(pgdat, NR_ACTIVE_FILE); 7418 7419 /* 7420 * It's possible for there to be more file mapped pages than 7421 * accounted for by the pages on the file LRU lists because 7422 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 7423 */ 7424 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 7425 } 7426 7427 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 7428 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat) 7429 { 7430 unsigned long nr_pagecache_reclaimable; 7431 unsigned long delta = 0; 7432 7433 /* 7434 * If RECLAIM_UNMAP is set, then all file pages are considered 7435 * potentially reclaimable. Otherwise, we have to worry about 7436 * pages like swapcache and node_unmapped_file_pages() provides 7437 * a better estimate 7438 */ 7439 if (node_reclaim_mode & RECLAIM_UNMAP) 7440 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES); 7441 else 7442 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat); 7443 7444 /* If we can't clean pages, remove dirty pages from consideration */ 7445 if (!(node_reclaim_mode & RECLAIM_WRITE)) 7446 delta += node_page_state(pgdat, NR_FILE_DIRTY); 7447 7448 /* Watch for any possible underflows due to delta */ 7449 if (unlikely(delta > nr_pagecache_reclaimable)) 7450 delta = nr_pagecache_reclaimable; 7451 7452 return nr_pagecache_reclaimable - delta; 7453 } 7454 7455 /* 7456 * Try to free up some pages from this node through reclaim. 7457 */ 7458 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 7459 { 7460 /* Minimum pages needed in order to stay on node */ 7461 const unsigned long nr_pages = 1 << order; 7462 struct task_struct *p = current; 7463 unsigned int noreclaim_flag; 7464 struct scan_control sc = { 7465 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 7466 .gfp_mask = current_gfp_context(gfp_mask), 7467 .order = order, 7468 .priority = NODE_RECLAIM_PRIORITY, 7469 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE), 7470 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP), 7471 .may_swap = 1, 7472 .reclaim_idx = gfp_zone(gfp_mask), 7473 }; 7474 unsigned long pflags; 7475 7476 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order, 7477 sc.gfp_mask); 7478 7479 cond_resched(); 7480 psi_memstall_enter(&pflags); 7481 delayacct_freepages_start(); 7482 fs_reclaim_acquire(sc.gfp_mask); 7483 /* 7484 * We need to be able to allocate from the reserves for RECLAIM_UNMAP 7485 */ 7486 noreclaim_flag = memalloc_noreclaim_save(); 7487 set_task_reclaim_state(p, &sc.reclaim_state); 7488 7489 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages || 7490 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) { 7491 /* 7492 * Free memory by calling shrink node with increasing 7493 * priorities until we have enough memory freed. 7494 */ 7495 do { 7496 shrink_node(pgdat, &sc); 7497 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 7498 } 7499 7500 set_task_reclaim_state(p, NULL); 7501 memalloc_noreclaim_restore(noreclaim_flag); 7502 fs_reclaim_release(sc.gfp_mask); 7503 psi_memstall_leave(&pflags); 7504 delayacct_freepages_end(); 7505 7506 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed); 7507 7508 return sc.nr_reclaimed >= nr_pages; 7509 } 7510 7511 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 7512 { 7513 int ret; 7514 7515 /* 7516 * Node reclaim reclaims unmapped file backed pages and 7517 * slab pages if we are over the defined limits. 7518 * 7519 * A small portion of unmapped file backed pages is needed for 7520 * file I/O otherwise pages read by file I/O will be immediately 7521 * thrown out if the node is overallocated. So we do not reclaim 7522 * if less than a specified percentage of the node is used by 7523 * unmapped file backed pages. 7524 */ 7525 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages && 7526 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <= 7527 pgdat->min_slab_pages) 7528 return NODE_RECLAIM_FULL; 7529 7530 /* 7531 * Do not scan if the allocation should not be delayed. 7532 */ 7533 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) 7534 return NODE_RECLAIM_NOSCAN; 7535 7536 /* 7537 * Only run node reclaim on the local node or on nodes that do not 7538 * have associated processors. This will favor the local processor 7539 * over remote processors and spread off node memory allocations 7540 * as wide as possible. 7541 */ 7542 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id()) 7543 return NODE_RECLAIM_NOSCAN; 7544 7545 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags)) 7546 return NODE_RECLAIM_NOSCAN; 7547 7548 ret = __node_reclaim(pgdat, gfp_mask, order); 7549 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags); 7550 7551 if (ret) 7552 count_vm_event(PGSCAN_ZONE_RECLAIM_SUCCESS); 7553 else 7554 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 7555 7556 return ret; 7557 } 7558 #endif 7559 7560 /** 7561 * check_move_unevictable_folios - Move evictable folios to appropriate zone 7562 * lru list 7563 * @fbatch: Batch of lru folios to check. 7564 * 7565 * Checks folios for evictability, if an evictable folio is in the unevictable 7566 * lru list, moves it to the appropriate evictable lru list. This function 7567 * should be only used for lru folios. 7568 */ 7569 void check_move_unevictable_folios(struct folio_batch *fbatch) 7570 { 7571 struct lruvec *lruvec = NULL; 7572 int pgscanned = 0; 7573 int pgrescued = 0; 7574 int i; 7575 7576 for (i = 0; i < fbatch->nr; i++) { 7577 struct folio *folio = fbatch->folios[i]; 7578 int nr_pages = folio_nr_pages(folio); 7579 7580 pgscanned += nr_pages; 7581 7582 /* block memcg migration while the folio moves between lrus */ 7583 if (!folio_test_clear_lru(folio)) 7584 continue; 7585 7586 lruvec = folio_lruvec_relock_irq(folio, lruvec); 7587 if (folio_evictable(folio) && folio_test_unevictable(folio)) { 7588 lruvec_del_folio(lruvec, folio); 7589 folio_clear_unevictable(folio); 7590 lruvec_add_folio(lruvec, folio); 7591 pgrescued += nr_pages; 7592 } 7593 folio_set_lru(folio); 7594 } 7595 7596 if (lruvec) { 7597 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 7598 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 7599 unlock_page_lruvec_irq(lruvec); 7600 } else if (pgscanned) { 7601 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 7602 } 7603 } 7604 EXPORT_SYMBOL_GPL(check_move_unevictable_folios); 7605