xref: /linux/mm/vmscan.c (revision 6161352142d5fed4cd753b32e5ccde66e705b14e)
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13 
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h>	/* for try_to_release_page(),
27 					buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41 #include <linux/delayacct.h>
42 #include <linux/sysctl.h>
43 
44 #include <asm/tlbflush.h>
45 #include <asm/div64.h>
46 
47 #include <linux/swapops.h>
48 
49 #include "internal.h"
50 
51 struct scan_control {
52 	/* Incremented by the number of inactive pages that were scanned */
53 	unsigned long nr_scanned;
54 
55 	/* Number of pages freed so far during a call to shrink_zones() */
56 	unsigned long nr_reclaimed;
57 
58 	/* This context's GFP mask */
59 	gfp_t gfp_mask;
60 
61 	int may_writepage;
62 
63 	/* Can mapped pages be reclaimed? */
64 	int may_unmap;
65 
66 	/* Can pages be swapped as part of reclaim? */
67 	int may_swap;
68 
69 	/* This context's SWAP_CLUSTER_MAX. If freeing memory for
70 	 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
71 	 * In this context, it doesn't matter that we scan the
72 	 * whole list at once. */
73 	int swap_cluster_max;
74 
75 	int swappiness;
76 
77 	int all_unreclaimable;
78 
79 	int order;
80 
81 	/* Which cgroup do we reclaim from */
82 	struct mem_cgroup *mem_cgroup;
83 
84 	/*
85 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
86 	 * are scanned.
87 	 */
88 	nodemask_t	*nodemask;
89 
90 	/* Pluggable isolate pages callback */
91 	unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst,
92 			unsigned long *scanned, int order, int mode,
93 			struct zone *z, struct mem_cgroup *mem_cont,
94 			int active, int file);
95 };
96 
97 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
98 
99 #ifdef ARCH_HAS_PREFETCH
100 #define prefetch_prev_lru_page(_page, _base, _field)			\
101 	do {								\
102 		if ((_page)->lru.prev != _base) {			\
103 			struct page *prev;				\
104 									\
105 			prev = lru_to_page(&(_page->lru));		\
106 			prefetch(&prev->_field);			\
107 		}							\
108 	} while (0)
109 #else
110 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
111 #endif
112 
113 #ifdef ARCH_HAS_PREFETCHW
114 #define prefetchw_prev_lru_page(_page, _base, _field)			\
115 	do {								\
116 		if ((_page)->lru.prev != _base) {			\
117 			struct page *prev;				\
118 									\
119 			prev = lru_to_page(&(_page->lru));		\
120 			prefetchw(&prev->_field);			\
121 		}							\
122 	} while (0)
123 #else
124 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
125 #endif
126 
127 /*
128  * From 0 .. 100.  Higher means more swappy.
129  */
130 int vm_swappiness = 60;
131 long vm_total_pages;	/* The total number of pages which the VM controls */
132 
133 static LIST_HEAD(shrinker_list);
134 static DECLARE_RWSEM(shrinker_rwsem);
135 
136 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
137 #define scanning_global_lru(sc)	(!(sc)->mem_cgroup)
138 #else
139 #define scanning_global_lru(sc)	(1)
140 #endif
141 
142 static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
143 						  struct scan_control *sc)
144 {
145 	if (!scanning_global_lru(sc))
146 		return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
147 
148 	return &zone->reclaim_stat;
149 }
150 
151 static unsigned long zone_nr_pages(struct zone *zone, struct scan_control *sc,
152 				   enum lru_list lru)
153 {
154 	if (!scanning_global_lru(sc))
155 		return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru);
156 
157 	return zone_page_state(zone, NR_LRU_BASE + lru);
158 }
159 
160 
161 /*
162  * Add a shrinker callback to be called from the vm
163  */
164 void register_shrinker(struct shrinker *shrinker)
165 {
166 	shrinker->nr = 0;
167 	down_write(&shrinker_rwsem);
168 	list_add_tail(&shrinker->list, &shrinker_list);
169 	up_write(&shrinker_rwsem);
170 }
171 EXPORT_SYMBOL(register_shrinker);
172 
173 /*
174  * Remove one
175  */
176 void unregister_shrinker(struct shrinker *shrinker)
177 {
178 	down_write(&shrinker_rwsem);
179 	list_del(&shrinker->list);
180 	up_write(&shrinker_rwsem);
181 }
182 EXPORT_SYMBOL(unregister_shrinker);
183 
184 #define SHRINK_BATCH 128
185 /*
186  * Call the shrink functions to age shrinkable caches
187  *
188  * Here we assume it costs one seek to replace a lru page and that it also
189  * takes a seek to recreate a cache object.  With this in mind we age equal
190  * percentages of the lru and ageable caches.  This should balance the seeks
191  * generated by these structures.
192  *
193  * If the vm encountered mapped pages on the LRU it increase the pressure on
194  * slab to avoid swapping.
195  *
196  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
197  *
198  * `lru_pages' represents the number of on-LRU pages in all the zones which
199  * are eligible for the caller's allocation attempt.  It is used for balancing
200  * slab reclaim versus page reclaim.
201  *
202  * Returns the number of slab objects which we shrunk.
203  */
204 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
205 			unsigned long lru_pages)
206 {
207 	struct shrinker *shrinker;
208 	unsigned long ret = 0;
209 
210 	if (scanned == 0)
211 		scanned = SWAP_CLUSTER_MAX;
212 
213 	if (!down_read_trylock(&shrinker_rwsem))
214 		return 1;	/* Assume we'll be able to shrink next time */
215 
216 	list_for_each_entry(shrinker, &shrinker_list, list) {
217 		unsigned long long delta;
218 		unsigned long total_scan;
219 		unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask);
220 
221 		delta = (4 * scanned) / shrinker->seeks;
222 		delta *= max_pass;
223 		do_div(delta, lru_pages + 1);
224 		shrinker->nr += delta;
225 		if (shrinker->nr < 0) {
226 			printk(KERN_ERR "shrink_slab: %pF negative objects to "
227 			       "delete nr=%ld\n",
228 			       shrinker->shrink, shrinker->nr);
229 			shrinker->nr = max_pass;
230 		}
231 
232 		/*
233 		 * Avoid risking looping forever due to too large nr value:
234 		 * never try to free more than twice the estimate number of
235 		 * freeable entries.
236 		 */
237 		if (shrinker->nr > max_pass * 2)
238 			shrinker->nr = max_pass * 2;
239 
240 		total_scan = shrinker->nr;
241 		shrinker->nr = 0;
242 
243 		while (total_scan >= SHRINK_BATCH) {
244 			long this_scan = SHRINK_BATCH;
245 			int shrink_ret;
246 			int nr_before;
247 
248 			nr_before = (*shrinker->shrink)(0, gfp_mask);
249 			shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask);
250 			if (shrink_ret == -1)
251 				break;
252 			if (shrink_ret < nr_before)
253 				ret += nr_before - shrink_ret;
254 			count_vm_events(SLABS_SCANNED, this_scan);
255 			total_scan -= this_scan;
256 
257 			cond_resched();
258 		}
259 
260 		shrinker->nr += total_scan;
261 	}
262 	up_read(&shrinker_rwsem);
263 	return ret;
264 }
265 
266 /* Called without lock on whether page is mapped, so answer is unstable */
267 static inline int page_mapping_inuse(struct page *page)
268 {
269 	struct address_space *mapping;
270 
271 	/* Page is in somebody's page tables. */
272 	if (page_mapped(page))
273 		return 1;
274 
275 	/* Be more reluctant to reclaim swapcache than pagecache */
276 	if (PageSwapCache(page))
277 		return 1;
278 
279 	mapping = page_mapping(page);
280 	if (!mapping)
281 		return 0;
282 
283 	/* File is mmap'd by somebody? */
284 	return mapping_mapped(mapping);
285 }
286 
287 static inline int is_page_cache_freeable(struct page *page)
288 {
289 	return page_count(page) - !!page_has_private(page) == 2;
290 }
291 
292 static int may_write_to_queue(struct backing_dev_info *bdi)
293 {
294 	if (current->flags & PF_SWAPWRITE)
295 		return 1;
296 	if (!bdi_write_congested(bdi))
297 		return 1;
298 	if (bdi == current->backing_dev_info)
299 		return 1;
300 	return 0;
301 }
302 
303 /*
304  * We detected a synchronous write error writing a page out.  Probably
305  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
306  * fsync(), msync() or close().
307  *
308  * The tricky part is that after writepage we cannot touch the mapping: nothing
309  * prevents it from being freed up.  But we have a ref on the page and once
310  * that page is locked, the mapping is pinned.
311  *
312  * We're allowed to run sleeping lock_page() here because we know the caller has
313  * __GFP_FS.
314  */
315 static void handle_write_error(struct address_space *mapping,
316 				struct page *page, int error)
317 {
318 	lock_page(page);
319 	if (page_mapping(page) == mapping)
320 		mapping_set_error(mapping, error);
321 	unlock_page(page);
322 }
323 
324 /* Request for sync pageout. */
325 enum pageout_io {
326 	PAGEOUT_IO_ASYNC,
327 	PAGEOUT_IO_SYNC,
328 };
329 
330 /* possible outcome of pageout() */
331 typedef enum {
332 	/* failed to write page out, page is locked */
333 	PAGE_KEEP,
334 	/* move page to the active list, page is locked */
335 	PAGE_ACTIVATE,
336 	/* page has been sent to the disk successfully, page is unlocked */
337 	PAGE_SUCCESS,
338 	/* page is clean and locked */
339 	PAGE_CLEAN,
340 } pageout_t;
341 
342 /*
343  * pageout is called by shrink_page_list() for each dirty page.
344  * Calls ->writepage().
345  */
346 static pageout_t pageout(struct page *page, struct address_space *mapping,
347 						enum pageout_io sync_writeback)
348 {
349 	/*
350 	 * If the page is dirty, only perform writeback if that write
351 	 * will be non-blocking.  To prevent this allocation from being
352 	 * stalled by pagecache activity.  But note that there may be
353 	 * stalls if we need to run get_block().  We could test
354 	 * PagePrivate for that.
355 	 *
356 	 * If this process is currently in generic_file_write() against
357 	 * this page's queue, we can perform writeback even if that
358 	 * will block.
359 	 *
360 	 * If the page is swapcache, write it back even if that would
361 	 * block, for some throttling. This happens by accident, because
362 	 * swap_backing_dev_info is bust: it doesn't reflect the
363 	 * congestion state of the swapdevs.  Easy to fix, if needed.
364 	 * See swapfile.c:page_queue_congested().
365 	 */
366 	if (!is_page_cache_freeable(page))
367 		return PAGE_KEEP;
368 	if (!mapping) {
369 		/*
370 		 * Some data journaling orphaned pages can have
371 		 * page->mapping == NULL while being dirty with clean buffers.
372 		 */
373 		if (page_has_private(page)) {
374 			if (try_to_free_buffers(page)) {
375 				ClearPageDirty(page);
376 				printk("%s: orphaned page\n", __func__);
377 				return PAGE_CLEAN;
378 			}
379 		}
380 		return PAGE_KEEP;
381 	}
382 	if (mapping->a_ops->writepage == NULL)
383 		return PAGE_ACTIVATE;
384 	if (!may_write_to_queue(mapping->backing_dev_info))
385 		return PAGE_KEEP;
386 
387 	if (clear_page_dirty_for_io(page)) {
388 		int res;
389 		struct writeback_control wbc = {
390 			.sync_mode = WB_SYNC_NONE,
391 			.nr_to_write = SWAP_CLUSTER_MAX,
392 			.range_start = 0,
393 			.range_end = LLONG_MAX,
394 			.nonblocking = 1,
395 			.for_reclaim = 1,
396 		};
397 
398 		SetPageReclaim(page);
399 		res = mapping->a_ops->writepage(page, &wbc);
400 		if (res < 0)
401 			handle_write_error(mapping, page, res);
402 		if (res == AOP_WRITEPAGE_ACTIVATE) {
403 			ClearPageReclaim(page);
404 			return PAGE_ACTIVATE;
405 		}
406 
407 		/*
408 		 * Wait on writeback if requested to. This happens when
409 		 * direct reclaiming a large contiguous area and the
410 		 * first attempt to free a range of pages fails.
411 		 */
412 		if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
413 			wait_on_page_writeback(page);
414 
415 		if (!PageWriteback(page)) {
416 			/* synchronous write or broken a_ops? */
417 			ClearPageReclaim(page);
418 		}
419 		inc_zone_page_state(page, NR_VMSCAN_WRITE);
420 		return PAGE_SUCCESS;
421 	}
422 
423 	return PAGE_CLEAN;
424 }
425 
426 /*
427  * Same as remove_mapping, but if the page is removed from the mapping, it
428  * gets returned with a refcount of 0.
429  */
430 static int __remove_mapping(struct address_space *mapping, struct page *page)
431 {
432 	BUG_ON(!PageLocked(page));
433 	BUG_ON(mapping != page_mapping(page));
434 
435 	spin_lock_irq(&mapping->tree_lock);
436 	/*
437 	 * The non racy check for a busy page.
438 	 *
439 	 * Must be careful with the order of the tests. When someone has
440 	 * a ref to the page, it may be possible that they dirty it then
441 	 * drop the reference. So if PageDirty is tested before page_count
442 	 * here, then the following race may occur:
443 	 *
444 	 * get_user_pages(&page);
445 	 * [user mapping goes away]
446 	 * write_to(page);
447 	 *				!PageDirty(page)    [good]
448 	 * SetPageDirty(page);
449 	 * put_page(page);
450 	 *				!page_count(page)   [good, discard it]
451 	 *
452 	 * [oops, our write_to data is lost]
453 	 *
454 	 * Reversing the order of the tests ensures such a situation cannot
455 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
456 	 * load is not satisfied before that of page->_count.
457 	 *
458 	 * Note that if SetPageDirty is always performed via set_page_dirty,
459 	 * and thus under tree_lock, then this ordering is not required.
460 	 */
461 	if (!page_freeze_refs(page, 2))
462 		goto cannot_free;
463 	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
464 	if (unlikely(PageDirty(page))) {
465 		page_unfreeze_refs(page, 2);
466 		goto cannot_free;
467 	}
468 
469 	if (PageSwapCache(page)) {
470 		swp_entry_t swap = { .val = page_private(page) };
471 		__delete_from_swap_cache(page);
472 		spin_unlock_irq(&mapping->tree_lock);
473 		swapcache_free(swap, page);
474 	} else {
475 		__remove_from_page_cache(page);
476 		spin_unlock_irq(&mapping->tree_lock);
477 		mem_cgroup_uncharge_cache_page(page);
478 	}
479 
480 	return 1;
481 
482 cannot_free:
483 	spin_unlock_irq(&mapping->tree_lock);
484 	return 0;
485 }
486 
487 /*
488  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
489  * someone else has a ref on the page, abort and return 0.  If it was
490  * successfully detached, return 1.  Assumes the caller has a single ref on
491  * this page.
492  */
493 int remove_mapping(struct address_space *mapping, struct page *page)
494 {
495 	if (__remove_mapping(mapping, page)) {
496 		/*
497 		 * Unfreezing the refcount with 1 rather than 2 effectively
498 		 * drops the pagecache ref for us without requiring another
499 		 * atomic operation.
500 		 */
501 		page_unfreeze_refs(page, 1);
502 		return 1;
503 	}
504 	return 0;
505 }
506 
507 /**
508  * putback_lru_page - put previously isolated page onto appropriate LRU list
509  * @page: page to be put back to appropriate lru list
510  *
511  * Add previously isolated @page to appropriate LRU list.
512  * Page may still be unevictable for other reasons.
513  *
514  * lru_lock must not be held, interrupts must be enabled.
515  */
516 void putback_lru_page(struct page *page)
517 {
518 	int lru;
519 	int active = !!TestClearPageActive(page);
520 	int was_unevictable = PageUnevictable(page);
521 
522 	VM_BUG_ON(PageLRU(page));
523 
524 redo:
525 	ClearPageUnevictable(page);
526 
527 	if (page_evictable(page, NULL)) {
528 		/*
529 		 * For evictable pages, we can use the cache.
530 		 * In event of a race, worst case is we end up with an
531 		 * unevictable page on [in]active list.
532 		 * We know how to handle that.
533 		 */
534 		lru = active + page_is_file_cache(page);
535 		lru_cache_add_lru(page, lru);
536 	} else {
537 		/*
538 		 * Put unevictable pages directly on zone's unevictable
539 		 * list.
540 		 */
541 		lru = LRU_UNEVICTABLE;
542 		add_page_to_unevictable_list(page);
543 	}
544 
545 	/*
546 	 * page's status can change while we move it among lru. If an evictable
547 	 * page is on unevictable list, it never be freed. To avoid that,
548 	 * check after we added it to the list, again.
549 	 */
550 	if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
551 		if (!isolate_lru_page(page)) {
552 			put_page(page);
553 			goto redo;
554 		}
555 		/* This means someone else dropped this page from LRU
556 		 * So, it will be freed or putback to LRU again. There is
557 		 * nothing to do here.
558 		 */
559 	}
560 
561 	if (was_unevictable && lru != LRU_UNEVICTABLE)
562 		count_vm_event(UNEVICTABLE_PGRESCUED);
563 	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
564 		count_vm_event(UNEVICTABLE_PGCULLED);
565 
566 	put_page(page);		/* drop ref from isolate */
567 }
568 
569 /*
570  * shrink_page_list() returns the number of reclaimed pages
571  */
572 static unsigned long shrink_page_list(struct list_head *page_list,
573 					struct scan_control *sc,
574 					enum pageout_io sync_writeback)
575 {
576 	LIST_HEAD(ret_pages);
577 	struct pagevec freed_pvec;
578 	int pgactivate = 0;
579 	unsigned long nr_reclaimed = 0;
580 	unsigned long vm_flags;
581 
582 	cond_resched();
583 
584 	pagevec_init(&freed_pvec, 1);
585 	while (!list_empty(page_list)) {
586 		struct address_space *mapping;
587 		struct page *page;
588 		int may_enter_fs;
589 		int referenced;
590 
591 		cond_resched();
592 
593 		page = lru_to_page(page_list);
594 		list_del(&page->lru);
595 
596 		if (!trylock_page(page))
597 			goto keep;
598 
599 		VM_BUG_ON(PageActive(page));
600 
601 		sc->nr_scanned++;
602 
603 		if (unlikely(!page_evictable(page, NULL)))
604 			goto cull_mlocked;
605 
606 		if (!sc->may_unmap && page_mapped(page))
607 			goto keep_locked;
608 
609 		/* Double the slab pressure for mapped and swapcache pages */
610 		if (page_mapped(page) || PageSwapCache(page))
611 			sc->nr_scanned++;
612 
613 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
614 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
615 
616 		if (PageWriteback(page)) {
617 			/*
618 			 * Synchronous reclaim is performed in two passes,
619 			 * first an asynchronous pass over the list to
620 			 * start parallel writeback, and a second synchronous
621 			 * pass to wait for the IO to complete.  Wait here
622 			 * for any page for which writeback has already
623 			 * started.
624 			 */
625 			if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
626 				wait_on_page_writeback(page);
627 			else
628 				goto keep_locked;
629 		}
630 
631 		referenced = page_referenced(page, 1,
632 						sc->mem_cgroup, &vm_flags);
633 		/*
634 		 * In active use or really unfreeable?  Activate it.
635 		 * If page which have PG_mlocked lost isoltation race,
636 		 * try_to_unmap moves it to unevictable list
637 		 */
638 		if (sc->order <= PAGE_ALLOC_COSTLY_ORDER &&
639 					referenced && page_mapping_inuse(page)
640 					&& !(vm_flags & VM_LOCKED))
641 			goto activate_locked;
642 
643 		/*
644 		 * Anonymous process memory has backing store?
645 		 * Try to allocate it some swap space here.
646 		 */
647 		if (PageAnon(page) && !PageSwapCache(page)) {
648 			if (!(sc->gfp_mask & __GFP_IO))
649 				goto keep_locked;
650 			if (!add_to_swap(page))
651 				goto activate_locked;
652 			may_enter_fs = 1;
653 		}
654 
655 		mapping = page_mapping(page);
656 
657 		/*
658 		 * The page is mapped into the page tables of one or more
659 		 * processes. Try to unmap it here.
660 		 */
661 		if (page_mapped(page) && mapping) {
662 			switch (try_to_unmap(page, 0)) {
663 			case SWAP_FAIL:
664 				goto activate_locked;
665 			case SWAP_AGAIN:
666 				goto keep_locked;
667 			case SWAP_MLOCK:
668 				goto cull_mlocked;
669 			case SWAP_SUCCESS:
670 				; /* try to free the page below */
671 			}
672 		}
673 
674 		if (PageDirty(page)) {
675 			if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && referenced)
676 				goto keep_locked;
677 			if (!may_enter_fs)
678 				goto keep_locked;
679 			if (!sc->may_writepage)
680 				goto keep_locked;
681 
682 			/* Page is dirty, try to write it out here */
683 			switch (pageout(page, mapping, sync_writeback)) {
684 			case PAGE_KEEP:
685 				goto keep_locked;
686 			case PAGE_ACTIVATE:
687 				goto activate_locked;
688 			case PAGE_SUCCESS:
689 				if (PageWriteback(page) || PageDirty(page))
690 					goto keep;
691 				/*
692 				 * A synchronous write - probably a ramdisk.  Go
693 				 * ahead and try to reclaim the page.
694 				 */
695 				if (!trylock_page(page))
696 					goto keep;
697 				if (PageDirty(page) || PageWriteback(page))
698 					goto keep_locked;
699 				mapping = page_mapping(page);
700 			case PAGE_CLEAN:
701 				; /* try to free the page below */
702 			}
703 		}
704 
705 		/*
706 		 * If the page has buffers, try to free the buffer mappings
707 		 * associated with this page. If we succeed we try to free
708 		 * the page as well.
709 		 *
710 		 * We do this even if the page is PageDirty().
711 		 * try_to_release_page() does not perform I/O, but it is
712 		 * possible for a page to have PageDirty set, but it is actually
713 		 * clean (all its buffers are clean).  This happens if the
714 		 * buffers were written out directly, with submit_bh(). ext3
715 		 * will do this, as well as the blockdev mapping.
716 		 * try_to_release_page() will discover that cleanness and will
717 		 * drop the buffers and mark the page clean - it can be freed.
718 		 *
719 		 * Rarely, pages can have buffers and no ->mapping.  These are
720 		 * the pages which were not successfully invalidated in
721 		 * truncate_complete_page().  We try to drop those buffers here
722 		 * and if that worked, and the page is no longer mapped into
723 		 * process address space (page_count == 1) it can be freed.
724 		 * Otherwise, leave the page on the LRU so it is swappable.
725 		 */
726 		if (page_has_private(page)) {
727 			if (!try_to_release_page(page, sc->gfp_mask))
728 				goto activate_locked;
729 			if (!mapping && page_count(page) == 1) {
730 				unlock_page(page);
731 				if (put_page_testzero(page))
732 					goto free_it;
733 				else {
734 					/*
735 					 * rare race with speculative reference.
736 					 * the speculative reference will free
737 					 * this page shortly, so we may
738 					 * increment nr_reclaimed here (and
739 					 * leave it off the LRU).
740 					 */
741 					nr_reclaimed++;
742 					continue;
743 				}
744 			}
745 		}
746 
747 		if (!mapping || !__remove_mapping(mapping, page))
748 			goto keep_locked;
749 
750 		/*
751 		 * At this point, we have no other references and there is
752 		 * no way to pick any more up (removed from LRU, removed
753 		 * from pagecache). Can use non-atomic bitops now (and
754 		 * we obviously don't have to worry about waking up a process
755 		 * waiting on the page lock, because there are no references.
756 		 */
757 		__clear_page_locked(page);
758 free_it:
759 		nr_reclaimed++;
760 		if (!pagevec_add(&freed_pvec, page)) {
761 			__pagevec_free(&freed_pvec);
762 			pagevec_reinit(&freed_pvec);
763 		}
764 		continue;
765 
766 cull_mlocked:
767 		if (PageSwapCache(page))
768 			try_to_free_swap(page);
769 		unlock_page(page);
770 		putback_lru_page(page);
771 		continue;
772 
773 activate_locked:
774 		/* Not a candidate for swapping, so reclaim swap space. */
775 		if (PageSwapCache(page) && vm_swap_full())
776 			try_to_free_swap(page);
777 		VM_BUG_ON(PageActive(page));
778 		SetPageActive(page);
779 		pgactivate++;
780 keep_locked:
781 		unlock_page(page);
782 keep:
783 		list_add(&page->lru, &ret_pages);
784 		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
785 	}
786 	list_splice(&ret_pages, page_list);
787 	if (pagevec_count(&freed_pvec))
788 		__pagevec_free(&freed_pvec);
789 	count_vm_events(PGACTIVATE, pgactivate);
790 	return nr_reclaimed;
791 }
792 
793 /* LRU Isolation modes. */
794 #define ISOLATE_INACTIVE 0	/* Isolate inactive pages. */
795 #define ISOLATE_ACTIVE 1	/* Isolate active pages. */
796 #define ISOLATE_BOTH 2		/* Isolate both active and inactive pages. */
797 
798 /*
799  * Attempt to remove the specified page from its LRU.  Only take this page
800  * if it is of the appropriate PageActive status.  Pages which are being
801  * freed elsewhere are also ignored.
802  *
803  * page:	page to consider
804  * mode:	one of the LRU isolation modes defined above
805  *
806  * returns 0 on success, -ve errno on failure.
807  */
808 int __isolate_lru_page(struct page *page, int mode, int file)
809 {
810 	int ret = -EINVAL;
811 
812 	/* Only take pages on the LRU. */
813 	if (!PageLRU(page))
814 		return ret;
815 
816 	/*
817 	 * When checking the active state, we need to be sure we are
818 	 * dealing with comparible boolean values.  Take the logical not
819 	 * of each.
820 	 */
821 	if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
822 		return ret;
823 
824 	if (mode != ISOLATE_BOTH && (!page_is_file_cache(page) != !file))
825 		return ret;
826 
827 	/*
828 	 * When this function is being called for lumpy reclaim, we
829 	 * initially look into all LRU pages, active, inactive and
830 	 * unevictable; only give shrink_page_list evictable pages.
831 	 */
832 	if (PageUnevictable(page))
833 		return ret;
834 
835 	ret = -EBUSY;
836 
837 	if (likely(get_page_unless_zero(page))) {
838 		/*
839 		 * Be careful not to clear PageLRU until after we're
840 		 * sure the page is not being freed elsewhere -- the
841 		 * page release code relies on it.
842 		 */
843 		ClearPageLRU(page);
844 		ret = 0;
845 	}
846 
847 	return ret;
848 }
849 
850 /*
851  * zone->lru_lock is heavily contended.  Some of the functions that
852  * shrink the lists perform better by taking out a batch of pages
853  * and working on them outside the LRU lock.
854  *
855  * For pagecache intensive workloads, this function is the hottest
856  * spot in the kernel (apart from copy_*_user functions).
857  *
858  * Appropriate locks must be held before calling this function.
859  *
860  * @nr_to_scan:	The number of pages to look through on the list.
861  * @src:	The LRU list to pull pages off.
862  * @dst:	The temp list to put pages on to.
863  * @scanned:	The number of pages that were scanned.
864  * @order:	The caller's attempted allocation order
865  * @mode:	One of the LRU isolation modes
866  * @file:	True [1] if isolating file [!anon] pages
867  *
868  * returns how many pages were moved onto *@dst.
869  */
870 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
871 		struct list_head *src, struct list_head *dst,
872 		unsigned long *scanned, int order, int mode, int file)
873 {
874 	unsigned long nr_taken = 0;
875 	unsigned long scan;
876 
877 	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
878 		struct page *page;
879 		unsigned long pfn;
880 		unsigned long end_pfn;
881 		unsigned long page_pfn;
882 		int zone_id;
883 
884 		page = lru_to_page(src);
885 		prefetchw_prev_lru_page(page, src, flags);
886 
887 		VM_BUG_ON(!PageLRU(page));
888 
889 		switch (__isolate_lru_page(page, mode, file)) {
890 		case 0:
891 			list_move(&page->lru, dst);
892 			mem_cgroup_del_lru(page);
893 			nr_taken++;
894 			break;
895 
896 		case -EBUSY:
897 			/* else it is being freed elsewhere */
898 			list_move(&page->lru, src);
899 			mem_cgroup_rotate_lru_list(page, page_lru(page));
900 			continue;
901 
902 		default:
903 			BUG();
904 		}
905 
906 		if (!order)
907 			continue;
908 
909 		/*
910 		 * Attempt to take all pages in the order aligned region
911 		 * surrounding the tag page.  Only take those pages of
912 		 * the same active state as that tag page.  We may safely
913 		 * round the target page pfn down to the requested order
914 		 * as the mem_map is guarenteed valid out to MAX_ORDER,
915 		 * where that page is in a different zone we will detect
916 		 * it from its zone id and abort this block scan.
917 		 */
918 		zone_id = page_zone_id(page);
919 		page_pfn = page_to_pfn(page);
920 		pfn = page_pfn & ~((1 << order) - 1);
921 		end_pfn = pfn + (1 << order);
922 		for (; pfn < end_pfn; pfn++) {
923 			struct page *cursor_page;
924 
925 			/* The target page is in the block, ignore it. */
926 			if (unlikely(pfn == page_pfn))
927 				continue;
928 
929 			/* Avoid holes within the zone. */
930 			if (unlikely(!pfn_valid_within(pfn)))
931 				break;
932 
933 			cursor_page = pfn_to_page(pfn);
934 
935 			/* Check that we have not crossed a zone boundary. */
936 			if (unlikely(page_zone_id(cursor_page) != zone_id))
937 				continue;
938 			if (__isolate_lru_page(cursor_page, mode, file) == 0) {
939 				list_move(&cursor_page->lru, dst);
940 				mem_cgroup_del_lru(cursor_page);
941 				nr_taken++;
942 				scan++;
943 			}
944 		}
945 	}
946 
947 	*scanned = scan;
948 	return nr_taken;
949 }
950 
951 static unsigned long isolate_pages_global(unsigned long nr,
952 					struct list_head *dst,
953 					unsigned long *scanned, int order,
954 					int mode, struct zone *z,
955 					struct mem_cgroup *mem_cont,
956 					int active, int file)
957 {
958 	int lru = LRU_BASE;
959 	if (active)
960 		lru += LRU_ACTIVE;
961 	if (file)
962 		lru += LRU_FILE;
963 	return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
964 								mode, !!file);
965 }
966 
967 /*
968  * clear_active_flags() is a helper for shrink_active_list(), clearing
969  * any active bits from the pages in the list.
970  */
971 static unsigned long clear_active_flags(struct list_head *page_list,
972 					unsigned int *count)
973 {
974 	int nr_active = 0;
975 	int lru;
976 	struct page *page;
977 
978 	list_for_each_entry(page, page_list, lru) {
979 		lru = page_is_file_cache(page);
980 		if (PageActive(page)) {
981 			lru += LRU_ACTIVE;
982 			ClearPageActive(page);
983 			nr_active++;
984 		}
985 		count[lru]++;
986 	}
987 
988 	return nr_active;
989 }
990 
991 /**
992  * isolate_lru_page - tries to isolate a page from its LRU list
993  * @page: page to isolate from its LRU list
994  *
995  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
996  * vmstat statistic corresponding to whatever LRU list the page was on.
997  *
998  * Returns 0 if the page was removed from an LRU list.
999  * Returns -EBUSY if the page was not on an LRU list.
1000  *
1001  * The returned page will have PageLRU() cleared.  If it was found on
1002  * the active list, it will have PageActive set.  If it was found on
1003  * the unevictable list, it will have the PageUnevictable bit set. That flag
1004  * may need to be cleared by the caller before letting the page go.
1005  *
1006  * The vmstat statistic corresponding to the list on which the page was
1007  * found will be decremented.
1008  *
1009  * Restrictions:
1010  * (1) Must be called with an elevated refcount on the page. This is a
1011  *     fundamentnal difference from isolate_lru_pages (which is called
1012  *     without a stable reference).
1013  * (2) the lru_lock must not be held.
1014  * (3) interrupts must be enabled.
1015  */
1016 int isolate_lru_page(struct page *page)
1017 {
1018 	int ret = -EBUSY;
1019 
1020 	if (PageLRU(page)) {
1021 		struct zone *zone = page_zone(page);
1022 
1023 		spin_lock_irq(&zone->lru_lock);
1024 		if (PageLRU(page) && get_page_unless_zero(page)) {
1025 			int lru = page_lru(page);
1026 			ret = 0;
1027 			ClearPageLRU(page);
1028 
1029 			del_page_from_lru_list(zone, page, lru);
1030 		}
1031 		spin_unlock_irq(&zone->lru_lock);
1032 	}
1033 	return ret;
1034 }
1035 
1036 /*
1037  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1038  * of reclaimed pages
1039  */
1040 static unsigned long shrink_inactive_list(unsigned long max_scan,
1041 			struct zone *zone, struct scan_control *sc,
1042 			int priority, int file)
1043 {
1044 	LIST_HEAD(page_list);
1045 	struct pagevec pvec;
1046 	unsigned long nr_scanned = 0;
1047 	unsigned long nr_reclaimed = 0;
1048 	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1049 	int lumpy_reclaim = 0;
1050 
1051 	/*
1052 	 * If we need a large contiguous chunk of memory, or have
1053 	 * trouble getting a small set of contiguous pages, we
1054 	 * will reclaim both active and inactive pages.
1055 	 *
1056 	 * We use the same threshold as pageout congestion_wait below.
1057 	 */
1058 	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1059 		lumpy_reclaim = 1;
1060 	else if (sc->order && priority < DEF_PRIORITY - 2)
1061 		lumpy_reclaim = 1;
1062 
1063 	pagevec_init(&pvec, 1);
1064 
1065 	lru_add_drain();
1066 	spin_lock_irq(&zone->lru_lock);
1067 	do {
1068 		struct page *page;
1069 		unsigned long nr_taken;
1070 		unsigned long nr_scan;
1071 		unsigned long nr_freed;
1072 		unsigned long nr_active;
1073 		unsigned int count[NR_LRU_LISTS] = { 0, };
1074 		int mode = lumpy_reclaim ? ISOLATE_BOTH : ISOLATE_INACTIVE;
1075 
1076 		nr_taken = sc->isolate_pages(sc->swap_cluster_max,
1077 			     &page_list, &nr_scan, sc->order, mode,
1078 				zone, sc->mem_cgroup, 0, file);
1079 		nr_active = clear_active_flags(&page_list, count);
1080 		__count_vm_events(PGDEACTIVATE, nr_active);
1081 
1082 		__mod_zone_page_state(zone, NR_ACTIVE_FILE,
1083 						-count[LRU_ACTIVE_FILE]);
1084 		__mod_zone_page_state(zone, NR_INACTIVE_FILE,
1085 						-count[LRU_INACTIVE_FILE]);
1086 		__mod_zone_page_state(zone, NR_ACTIVE_ANON,
1087 						-count[LRU_ACTIVE_ANON]);
1088 		__mod_zone_page_state(zone, NR_INACTIVE_ANON,
1089 						-count[LRU_INACTIVE_ANON]);
1090 
1091 		if (scanning_global_lru(sc))
1092 			zone->pages_scanned += nr_scan;
1093 
1094 		reclaim_stat->recent_scanned[0] += count[LRU_INACTIVE_ANON];
1095 		reclaim_stat->recent_scanned[0] += count[LRU_ACTIVE_ANON];
1096 		reclaim_stat->recent_scanned[1] += count[LRU_INACTIVE_FILE];
1097 		reclaim_stat->recent_scanned[1] += count[LRU_ACTIVE_FILE];
1098 
1099 		spin_unlock_irq(&zone->lru_lock);
1100 
1101 		nr_scanned += nr_scan;
1102 		nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);
1103 
1104 		/*
1105 		 * If we are direct reclaiming for contiguous pages and we do
1106 		 * not reclaim everything in the list, try again and wait
1107 		 * for IO to complete. This will stall high-order allocations
1108 		 * but that should be acceptable to the caller
1109 		 */
1110 		if (nr_freed < nr_taken && !current_is_kswapd() &&
1111 		    lumpy_reclaim) {
1112 			congestion_wait(BLK_RW_ASYNC, HZ/10);
1113 
1114 			/*
1115 			 * The attempt at page out may have made some
1116 			 * of the pages active, mark them inactive again.
1117 			 */
1118 			nr_active = clear_active_flags(&page_list, count);
1119 			count_vm_events(PGDEACTIVATE, nr_active);
1120 
1121 			nr_freed += shrink_page_list(&page_list, sc,
1122 							PAGEOUT_IO_SYNC);
1123 		}
1124 
1125 		nr_reclaimed += nr_freed;
1126 		local_irq_disable();
1127 		if (current_is_kswapd()) {
1128 			__count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scan);
1129 			__count_vm_events(KSWAPD_STEAL, nr_freed);
1130 		} else if (scanning_global_lru(sc))
1131 			__count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scan);
1132 
1133 		__count_zone_vm_events(PGSTEAL, zone, nr_freed);
1134 
1135 		if (nr_taken == 0)
1136 			goto done;
1137 
1138 		spin_lock(&zone->lru_lock);
1139 		/*
1140 		 * Put back any unfreeable pages.
1141 		 */
1142 		while (!list_empty(&page_list)) {
1143 			int lru;
1144 			page = lru_to_page(&page_list);
1145 			VM_BUG_ON(PageLRU(page));
1146 			list_del(&page->lru);
1147 			if (unlikely(!page_evictable(page, NULL))) {
1148 				spin_unlock_irq(&zone->lru_lock);
1149 				putback_lru_page(page);
1150 				spin_lock_irq(&zone->lru_lock);
1151 				continue;
1152 			}
1153 			SetPageLRU(page);
1154 			lru = page_lru(page);
1155 			add_page_to_lru_list(zone, page, lru);
1156 			if (PageActive(page)) {
1157 				int file = !!page_is_file_cache(page);
1158 				reclaim_stat->recent_rotated[file]++;
1159 			}
1160 			if (!pagevec_add(&pvec, page)) {
1161 				spin_unlock_irq(&zone->lru_lock);
1162 				__pagevec_release(&pvec);
1163 				spin_lock_irq(&zone->lru_lock);
1164 			}
1165 		}
1166   	} while (nr_scanned < max_scan);
1167 	spin_unlock(&zone->lru_lock);
1168 done:
1169 	local_irq_enable();
1170 	pagevec_release(&pvec);
1171 	return nr_reclaimed;
1172 }
1173 
1174 /*
1175  * We are about to scan this zone at a certain priority level.  If that priority
1176  * level is smaller (ie: more urgent) than the previous priority, then note
1177  * that priority level within the zone.  This is done so that when the next
1178  * process comes in to scan this zone, it will immediately start out at this
1179  * priority level rather than having to build up its own scanning priority.
1180  * Here, this priority affects only the reclaim-mapped threshold.
1181  */
1182 static inline void note_zone_scanning_priority(struct zone *zone, int priority)
1183 {
1184 	if (priority < zone->prev_priority)
1185 		zone->prev_priority = priority;
1186 }
1187 
1188 /*
1189  * This moves pages from the active list to the inactive list.
1190  *
1191  * We move them the other way if the page is referenced by one or more
1192  * processes, from rmap.
1193  *
1194  * If the pages are mostly unmapped, the processing is fast and it is
1195  * appropriate to hold zone->lru_lock across the whole operation.  But if
1196  * the pages are mapped, the processing is slow (page_referenced()) so we
1197  * should drop zone->lru_lock around each page.  It's impossible to balance
1198  * this, so instead we remove the pages from the LRU while processing them.
1199  * It is safe to rely on PG_active against the non-LRU pages in here because
1200  * nobody will play with that bit on a non-LRU page.
1201  *
1202  * The downside is that we have to touch page->_count against each page.
1203  * But we had to alter page->flags anyway.
1204  */
1205 
1206 static void move_active_pages_to_lru(struct zone *zone,
1207 				     struct list_head *list,
1208 				     enum lru_list lru)
1209 {
1210 	unsigned long pgmoved = 0;
1211 	struct pagevec pvec;
1212 	struct page *page;
1213 
1214 	pagevec_init(&pvec, 1);
1215 
1216 	while (!list_empty(list)) {
1217 		page = lru_to_page(list);
1218 		prefetchw_prev_lru_page(page, list, flags);
1219 
1220 		VM_BUG_ON(PageLRU(page));
1221 		SetPageLRU(page);
1222 
1223 		VM_BUG_ON(!PageActive(page));
1224 		if (!is_active_lru(lru))
1225 			ClearPageActive(page);	/* we are de-activating */
1226 
1227 		list_move(&page->lru, &zone->lru[lru].list);
1228 		mem_cgroup_add_lru_list(page, lru);
1229 		pgmoved++;
1230 
1231 		if (!pagevec_add(&pvec, page) || list_empty(list)) {
1232 			spin_unlock_irq(&zone->lru_lock);
1233 			if (buffer_heads_over_limit)
1234 				pagevec_strip(&pvec);
1235 			__pagevec_release(&pvec);
1236 			spin_lock_irq(&zone->lru_lock);
1237 		}
1238 	}
1239 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1240 	if (!is_active_lru(lru))
1241 		__count_vm_events(PGDEACTIVATE, pgmoved);
1242 }
1243 
1244 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1245 			struct scan_control *sc, int priority, int file)
1246 {
1247 	unsigned long pgmoved;
1248 	unsigned long pgscanned;
1249 	unsigned long vm_flags;
1250 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1251 	LIST_HEAD(l_active);
1252 	LIST_HEAD(l_inactive);
1253 	struct page *page;
1254 	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1255 
1256 	lru_add_drain();
1257 	spin_lock_irq(&zone->lru_lock);
1258 	pgmoved = sc->isolate_pages(nr_pages, &l_hold, &pgscanned, sc->order,
1259 					ISOLATE_ACTIVE, zone,
1260 					sc->mem_cgroup, 1, file);
1261 	/*
1262 	 * zone->pages_scanned is used for detect zone's oom
1263 	 * mem_cgroup remembers nr_scan by itself.
1264 	 */
1265 	if (scanning_global_lru(sc)) {
1266 		zone->pages_scanned += pgscanned;
1267 	}
1268 	reclaim_stat->recent_scanned[!!file] += pgmoved;
1269 
1270 	__count_zone_vm_events(PGREFILL, zone, pgscanned);
1271 	if (file)
1272 		__mod_zone_page_state(zone, NR_ACTIVE_FILE, -pgmoved);
1273 	else
1274 		__mod_zone_page_state(zone, NR_ACTIVE_ANON, -pgmoved);
1275 	spin_unlock_irq(&zone->lru_lock);
1276 
1277 	pgmoved = 0;  /* count referenced (mapping) mapped pages */
1278 	while (!list_empty(&l_hold)) {
1279 		cond_resched();
1280 		page = lru_to_page(&l_hold);
1281 		list_del(&page->lru);
1282 
1283 		if (unlikely(!page_evictable(page, NULL))) {
1284 			putback_lru_page(page);
1285 			continue;
1286 		}
1287 
1288 		/* page_referenced clears PageReferenced */
1289 		if (page_mapping_inuse(page) &&
1290 		    page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1291 			pgmoved++;
1292 			/*
1293 			 * Identify referenced, file-backed active pages and
1294 			 * give them one more trip around the active list. So
1295 			 * that executable code get better chances to stay in
1296 			 * memory under moderate memory pressure.  Anon pages
1297 			 * are not likely to be evicted by use-once streaming
1298 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
1299 			 * so we ignore them here.
1300 			 */
1301 			if ((vm_flags & VM_EXEC) && !PageAnon(page)) {
1302 				list_add(&page->lru, &l_active);
1303 				continue;
1304 			}
1305 		}
1306 
1307 		list_add(&page->lru, &l_inactive);
1308 	}
1309 
1310 	/*
1311 	 * Move pages back to the lru list.
1312 	 */
1313 	spin_lock_irq(&zone->lru_lock);
1314 	/*
1315 	 * Count referenced pages from currently used mappings as rotated,
1316 	 * even though only some of them are actually re-activated.  This
1317 	 * helps balance scan pressure between file and anonymous pages in
1318 	 * get_scan_ratio.
1319 	 */
1320 	reclaim_stat->recent_rotated[!!file] += pgmoved;
1321 
1322 	move_active_pages_to_lru(zone, &l_active,
1323 						LRU_ACTIVE + file * LRU_FILE);
1324 	move_active_pages_to_lru(zone, &l_inactive,
1325 						LRU_BASE   + file * LRU_FILE);
1326 
1327 	spin_unlock_irq(&zone->lru_lock);
1328 }
1329 
1330 static int inactive_anon_is_low_global(struct zone *zone)
1331 {
1332 	unsigned long active, inactive;
1333 
1334 	active = zone_page_state(zone, NR_ACTIVE_ANON);
1335 	inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1336 
1337 	if (inactive * zone->inactive_ratio < active)
1338 		return 1;
1339 
1340 	return 0;
1341 }
1342 
1343 /**
1344  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1345  * @zone: zone to check
1346  * @sc:   scan control of this context
1347  *
1348  * Returns true if the zone does not have enough inactive anon pages,
1349  * meaning some active anon pages need to be deactivated.
1350  */
1351 static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1352 {
1353 	int low;
1354 
1355 	if (scanning_global_lru(sc))
1356 		low = inactive_anon_is_low_global(zone);
1357 	else
1358 		low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1359 	return low;
1360 }
1361 
1362 static int inactive_file_is_low_global(struct zone *zone)
1363 {
1364 	unsigned long active, inactive;
1365 
1366 	active = zone_page_state(zone, NR_ACTIVE_FILE);
1367 	inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1368 
1369 	return (active > inactive);
1370 }
1371 
1372 /**
1373  * inactive_file_is_low - check if file pages need to be deactivated
1374  * @zone: zone to check
1375  * @sc:   scan control of this context
1376  *
1377  * When the system is doing streaming IO, memory pressure here
1378  * ensures that active file pages get deactivated, until more
1379  * than half of the file pages are on the inactive list.
1380  *
1381  * Once we get to that situation, protect the system's working
1382  * set from being evicted by disabling active file page aging.
1383  *
1384  * This uses a different ratio than the anonymous pages, because
1385  * the page cache uses a use-once replacement algorithm.
1386  */
1387 static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1388 {
1389 	int low;
1390 
1391 	if (scanning_global_lru(sc))
1392 		low = inactive_file_is_low_global(zone);
1393 	else
1394 		low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1395 	return low;
1396 }
1397 
1398 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1399 	struct zone *zone, struct scan_control *sc, int priority)
1400 {
1401 	int file = is_file_lru(lru);
1402 
1403 	if (lru == LRU_ACTIVE_FILE && inactive_file_is_low(zone, sc)) {
1404 		shrink_active_list(nr_to_scan, zone, sc, priority, file);
1405 		return 0;
1406 	}
1407 
1408 	if (lru == LRU_ACTIVE_ANON && inactive_anon_is_low(zone, sc)) {
1409 		shrink_active_list(nr_to_scan, zone, sc, priority, file);
1410 		return 0;
1411 	}
1412 	return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1413 }
1414 
1415 /*
1416  * Determine how aggressively the anon and file LRU lists should be
1417  * scanned.  The relative value of each set of LRU lists is determined
1418  * by looking at the fraction of the pages scanned we did rotate back
1419  * onto the active list instead of evict.
1420  *
1421  * percent[0] specifies how much pressure to put on ram/swap backed
1422  * memory, while percent[1] determines pressure on the file LRUs.
1423  */
1424 static void get_scan_ratio(struct zone *zone, struct scan_control *sc,
1425 					unsigned long *percent)
1426 {
1427 	unsigned long anon, file, free;
1428 	unsigned long anon_prio, file_prio;
1429 	unsigned long ap, fp;
1430 	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1431 
1432 	anon  = zone_nr_pages(zone, sc, LRU_ACTIVE_ANON) +
1433 		zone_nr_pages(zone, sc, LRU_INACTIVE_ANON);
1434 	file  = zone_nr_pages(zone, sc, LRU_ACTIVE_FILE) +
1435 		zone_nr_pages(zone, sc, LRU_INACTIVE_FILE);
1436 
1437 	if (scanning_global_lru(sc)) {
1438 		free  = zone_page_state(zone, NR_FREE_PAGES);
1439 		/* If we have very few page cache pages,
1440 		   force-scan anon pages. */
1441 		if (unlikely(file + free <= high_wmark_pages(zone))) {
1442 			percent[0] = 100;
1443 			percent[1] = 0;
1444 			return;
1445 		}
1446 	}
1447 
1448 	/*
1449 	 * OK, so we have swap space and a fair amount of page cache
1450 	 * pages.  We use the recently rotated / recently scanned
1451 	 * ratios to determine how valuable each cache is.
1452 	 *
1453 	 * Because workloads change over time (and to avoid overflow)
1454 	 * we keep these statistics as a floating average, which ends
1455 	 * up weighing recent references more than old ones.
1456 	 *
1457 	 * anon in [0], file in [1]
1458 	 */
1459 	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1460 		spin_lock_irq(&zone->lru_lock);
1461 		reclaim_stat->recent_scanned[0] /= 2;
1462 		reclaim_stat->recent_rotated[0] /= 2;
1463 		spin_unlock_irq(&zone->lru_lock);
1464 	}
1465 
1466 	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1467 		spin_lock_irq(&zone->lru_lock);
1468 		reclaim_stat->recent_scanned[1] /= 2;
1469 		reclaim_stat->recent_rotated[1] /= 2;
1470 		spin_unlock_irq(&zone->lru_lock);
1471 	}
1472 
1473 	/*
1474 	 * With swappiness at 100, anonymous and file have the same priority.
1475 	 * This scanning priority is essentially the inverse of IO cost.
1476 	 */
1477 	anon_prio = sc->swappiness;
1478 	file_prio = 200 - sc->swappiness;
1479 
1480 	/*
1481 	 * The amount of pressure on anon vs file pages is inversely
1482 	 * proportional to the fraction of recently scanned pages on
1483 	 * each list that were recently referenced and in active use.
1484 	 */
1485 	ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1486 	ap /= reclaim_stat->recent_rotated[0] + 1;
1487 
1488 	fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1489 	fp /= reclaim_stat->recent_rotated[1] + 1;
1490 
1491 	/* Normalize to percentages */
1492 	percent[0] = 100 * ap / (ap + fp + 1);
1493 	percent[1] = 100 - percent[0];
1494 }
1495 
1496 /*
1497  * Smallish @nr_to_scan's are deposited in @nr_saved_scan,
1498  * until we collected @swap_cluster_max pages to scan.
1499  */
1500 static unsigned long nr_scan_try_batch(unsigned long nr_to_scan,
1501 				       unsigned long *nr_saved_scan,
1502 				       unsigned long swap_cluster_max)
1503 {
1504 	unsigned long nr;
1505 
1506 	*nr_saved_scan += nr_to_scan;
1507 	nr = *nr_saved_scan;
1508 
1509 	if (nr >= swap_cluster_max)
1510 		*nr_saved_scan = 0;
1511 	else
1512 		nr = 0;
1513 
1514 	return nr;
1515 }
1516 
1517 /*
1518  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1519  */
1520 static void shrink_zone(int priority, struct zone *zone,
1521 				struct scan_control *sc)
1522 {
1523 	unsigned long nr[NR_LRU_LISTS];
1524 	unsigned long nr_to_scan;
1525 	unsigned long percent[2];	/* anon @ 0; file @ 1 */
1526 	enum lru_list l;
1527 	unsigned long nr_reclaimed = sc->nr_reclaimed;
1528 	unsigned long swap_cluster_max = sc->swap_cluster_max;
1529 	int noswap = 0;
1530 
1531 	/* If we have no swap space, do not bother scanning anon pages. */
1532 	if (!sc->may_swap || (nr_swap_pages <= 0)) {
1533 		noswap = 1;
1534 		percent[0] = 0;
1535 		percent[1] = 100;
1536 	} else
1537 		get_scan_ratio(zone, sc, percent);
1538 
1539 	for_each_evictable_lru(l) {
1540 		int file = is_file_lru(l);
1541 		unsigned long scan;
1542 
1543 		scan = zone_nr_pages(zone, sc, l);
1544 		if (priority || noswap) {
1545 			scan >>= priority;
1546 			scan = (scan * percent[file]) / 100;
1547 		}
1548 		if (scanning_global_lru(sc))
1549 			nr[l] = nr_scan_try_batch(scan,
1550 						  &zone->lru[l].nr_saved_scan,
1551 						  swap_cluster_max);
1552 		else
1553 			nr[l] = scan;
1554 	}
1555 
1556 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1557 					nr[LRU_INACTIVE_FILE]) {
1558 		for_each_evictable_lru(l) {
1559 			if (nr[l]) {
1560 				nr_to_scan = min(nr[l], swap_cluster_max);
1561 				nr[l] -= nr_to_scan;
1562 
1563 				nr_reclaimed += shrink_list(l, nr_to_scan,
1564 							    zone, sc, priority);
1565 			}
1566 		}
1567 		/*
1568 		 * On large memory systems, scan >> priority can become
1569 		 * really large. This is fine for the starting priority;
1570 		 * we want to put equal scanning pressure on each zone.
1571 		 * However, if the VM has a harder time of freeing pages,
1572 		 * with multiple processes reclaiming pages, the total
1573 		 * freeing target can get unreasonably large.
1574 		 */
1575 		if (nr_reclaimed > swap_cluster_max &&
1576 			priority < DEF_PRIORITY && !current_is_kswapd())
1577 			break;
1578 	}
1579 
1580 	sc->nr_reclaimed = nr_reclaimed;
1581 
1582 	/*
1583 	 * Even if we did not try to evict anon pages at all, we want to
1584 	 * rebalance the anon lru active/inactive ratio.
1585 	 */
1586 	if (inactive_anon_is_low(zone, sc) && nr_swap_pages > 0)
1587 		shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1588 
1589 	throttle_vm_writeout(sc->gfp_mask);
1590 }
1591 
1592 /*
1593  * This is the direct reclaim path, for page-allocating processes.  We only
1594  * try to reclaim pages from zones which will satisfy the caller's allocation
1595  * request.
1596  *
1597  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1598  * Because:
1599  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1600  *    allocation or
1601  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1602  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1603  *    zone defense algorithm.
1604  *
1605  * If a zone is deemed to be full of pinned pages then just give it a light
1606  * scan then give up on it.
1607  */
1608 static void shrink_zones(int priority, struct zonelist *zonelist,
1609 					struct scan_control *sc)
1610 {
1611 	enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1612 	struct zoneref *z;
1613 	struct zone *zone;
1614 
1615 	sc->all_unreclaimable = 1;
1616 	for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
1617 					sc->nodemask) {
1618 		if (!populated_zone(zone))
1619 			continue;
1620 		/*
1621 		 * Take care memory controller reclaiming has small influence
1622 		 * to global LRU.
1623 		 */
1624 		if (scanning_global_lru(sc)) {
1625 			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1626 				continue;
1627 			note_zone_scanning_priority(zone, priority);
1628 
1629 			if (zone_is_all_unreclaimable(zone) &&
1630 						priority != DEF_PRIORITY)
1631 				continue;	/* Let kswapd poll it */
1632 			sc->all_unreclaimable = 0;
1633 		} else {
1634 			/*
1635 			 * Ignore cpuset limitation here. We just want to reduce
1636 			 * # of used pages by us regardless of memory shortage.
1637 			 */
1638 			sc->all_unreclaimable = 0;
1639 			mem_cgroup_note_reclaim_priority(sc->mem_cgroup,
1640 							priority);
1641 		}
1642 
1643 		shrink_zone(priority, zone, sc);
1644 	}
1645 }
1646 
1647 /*
1648  * This is the main entry point to direct page reclaim.
1649  *
1650  * If a full scan of the inactive list fails to free enough memory then we
1651  * are "out of memory" and something needs to be killed.
1652  *
1653  * If the caller is !__GFP_FS then the probability of a failure is reasonably
1654  * high - the zone may be full of dirty or under-writeback pages, which this
1655  * caller can't do much about.  We kick pdflush and take explicit naps in the
1656  * hope that some of these pages can be written.  But if the allocating task
1657  * holds filesystem locks which prevent writeout this might not work, and the
1658  * allocation attempt will fail.
1659  *
1660  * returns:	0, if no pages reclaimed
1661  * 		else, the number of pages reclaimed
1662  */
1663 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
1664 					struct scan_control *sc)
1665 {
1666 	int priority;
1667 	unsigned long ret = 0;
1668 	unsigned long total_scanned = 0;
1669 	struct reclaim_state *reclaim_state = current->reclaim_state;
1670 	unsigned long lru_pages = 0;
1671 	struct zoneref *z;
1672 	struct zone *zone;
1673 	enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1674 
1675 	delayacct_freepages_start();
1676 
1677 	if (scanning_global_lru(sc))
1678 		count_vm_event(ALLOCSTALL);
1679 	/*
1680 	 * mem_cgroup will not do shrink_slab.
1681 	 */
1682 	if (scanning_global_lru(sc)) {
1683 		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1684 
1685 			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1686 				continue;
1687 
1688 			lru_pages += zone_lru_pages(zone);
1689 		}
1690 	}
1691 
1692 	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1693 		sc->nr_scanned = 0;
1694 		if (!priority)
1695 			disable_swap_token();
1696 		shrink_zones(priority, zonelist, sc);
1697 		/*
1698 		 * Don't shrink slabs when reclaiming memory from
1699 		 * over limit cgroups
1700 		 */
1701 		if (scanning_global_lru(sc)) {
1702 			shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
1703 			if (reclaim_state) {
1704 				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
1705 				reclaim_state->reclaimed_slab = 0;
1706 			}
1707 		}
1708 		total_scanned += sc->nr_scanned;
1709 		if (sc->nr_reclaimed >= sc->swap_cluster_max) {
1710 			ret = sc->nr_reclaimed;
1711 			goto out;
1712 		}
1713 
1714 		/*
1715 		 * Try to write back as many pages as we just scanned.  This
1716 		 * tends to cause slow streaming writers to write data to the
1717 		 * disk smoothly, at the dirtying rate, which is nice.   But
1718 		 * that's undesirable in laptop mode, where we *want* lumpy
1719 		 * writeout.  So in laptop mode, write out the whole world.
1720 		 */
1721 		if (total_scanned > sc->swap_cluster_max +
1722 					sc->swap_cluster_max / 2) {
1723 			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
1724 			sc->may_writepage = 1;
1725 		}
1726 
1727 		/* Take a nap, wait for some writeback to complete */
1728 		if (sc->nr_scanned && priority < DEF_PRIORITY - 2)
1729 			congestion_wait(BLK_RW_ASYNC, HZ/10);
1730 	}
1731 	/* top priority shrink_zones still had more to do? don't OOM, then */
1732 	if (!sc->all_unreclaimable && scanning_global_lru(sc))
1733 		ret = sc->nr_reclaimed;
1734 out:
1735 	/*
1736 	 * Now that we've scanned all the zones at this priority level, note
1737 	 * that level within the zone so that the next thread which performs
1738 	 * scanning of this zone will immediately start out at this priority
1739 	 * level.  This affects only the decision whether or not to bring
1740 	 * mapped pages onto the inactive list.
1741 	 */
1742 	if (priority < 0)
1743 		priority = 0;
1744 
1745 	if (scanning_global_lru(sc)) {
1746 		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1747 
1748 			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1749 				continue;
1750 
1751 			zone->prev_priority = priority;
1752 		}
1753 	} else
1754 		mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority);
1755 
1756 	delayacct_freepages_end();
1757 
1758 	return ret;
1759 }
1760 
1761 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
1762 				gfp_t gfp_mask, nodemask_t *nodemask)
1763 {
1764 	struct scan_control sc = {
1765 		.gfp_mask = gfp_mask,
1766 		.may_writepage = !laptop_mode,
1767 		.swap_cluster_max = SWAP_CLUSTER_MAX,
1768 		.may_unmap = 1,
1769 		.may_swap = 1,
1770 		.swappiness = vm_swappiness,
1771 		.order = order,
1772 		.mem_cgroup = NULL,
1773 		.isolate_pages = isolate_pages_global,
1774 		.nodemask = nodemask,
1775 	};
1776 
1777 	return do_try_to_free_pages(zonelist, &sc);
1778 }
1779 
1780 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1781 
1782 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
1783 					   gfp_t gfp_mask,
1784 					   bool noswap,
1785 					   unsigned int swappiness)
1786 {
1787 	struct scan_control sc = {
1788 		.may_writepage = !laptop_mode,
1789 		.may_unmap = 1,
1790 		.may_swap = !noswap,
1791 		.swap_cluster_max = SWAP_CLUSTER_MAX,
1792 		.swappiness = swappiness,
1793 		.order = 0,
1794 		.mem_cgroup = mem_cont,
1795 		.isolate_pages = mem_cgroup_isolate_pages,
1796 		.nodemask = NULL, /* we don't care the placement */
1797 	};
1798 	struct zonelist *zonelist;
1799 
1800 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
1801 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
1802 	zonelist = NODE_DATA(numa_node_id())->node_zonelists;
1803 	return do_try_to_free_pages(zonelist, &sc);
1804 }
1805 #endif
1806 
1807 /*
1808  * For kswapd, balance_pgdat() will work across all this node's zones until
1809  * they are all at high_wmark_pages(zone).
1810  *
1811  * Returns the number of pages which were actually freed.
1812  *
1813  * There is special handling here for zones which are full of pinned pages.
1814  * This can happen if the pages are all mlocked, or if they are all used by
1815  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
1816  * What we do is to detect the case where all pages in the zone have been
1817  * scanned twice and there has been zero successful reclaim.  Mark the zone as
1818  * dead and from now on, only perform a short scan.  Basically we're polling
1819  * the zone for when the problem goes away.
1820  *
1821  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
1822  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
1823  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
1824  * lower zones regardless of the number of free pages in the lower zones. This
1825  * interoperates with the page allocator fallback scheme to ensure that aging
1826  * of pages is balanced across the zones.
1827  */
1828 static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
1829 {
1830 	int all_zones_ok;
1831 	int priority;
1832 	int i;
1833 	unsigned long total_scanned;
1834 	struct reclaim_state *reclaim_state = current->reclaim_state;
1835 	struct scan_control sc = {
1836 		.gfp_mask = GFP_KERNEL,
1837 		.may_unmap = 1,
1838 		.may_swap = 1,
1839 		.swap_cluster_max = SWAP_CLUSTER_MAX,
1840 		.swappiness = vm_swappiness,
1841 		.order = order,
1842 		.mem_cgroup = NULL,
1843 		.isolate_pages = isolate_pages_global,
1844 	};
1845 	/*
1846 	 * temp_priority is used to remember the scanning priority at which
1847 	 * this zone was successfully refilled to
1848 	 * free_pages == high_wmark_pages(zone).
1849 	 */
1850 	int temp_priority[MAX_NR_ZONES];
1851 
1852 loop_again:
1853 	total_scanned = 0;
1854 	sc.nr_reclaimed = 0;
1855 	sc.may_writepage = !laptop_mode;
1856 	count_vm_event(PAGEOUTRUN);
1857 
1858 	for (i = 0; i < pgdat->nr_zones; i++)
1859 		temp_priority[i] = DEF_PRIORITY;
1860 
1861 	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1862 		int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
1863 		unsigned long lru_pages = 0;
1864 
1865 		/* The swap token gets in the way of swapout... */
1866 		if (!priority)
1867 			disable_swap_token();
1868 
1869 		all_zones_ok = 1;
1870 
1871 		/*
1872 		 * Scan in the highmem->dma direction for the highest
1873 		 * zone which needs scanning
1874 		 */
1875 		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1876 			struct zone *zone = pgdat->node_zones + i;
1877 
1878 			if (!populated_zone(zone))
1879 				continue;
1880 
1881 			if (zone_is_all_unreclaimable(zone) &&
1882 			    priority != DEF_PRIORITY)
1883 				continue;
1884 
1885 			/*
1886 			 * Do some background aging of the anon list, to give
1887 			 * pages a chance to be referenced before reclaiming.
1888 			 */
1889 			if (inactive_anon_is_low(zone, &sc))
1890 				shrink_active_list(SWAP_CLUSTER_MAX, zone,
1891 							&sc, priority, 0);
1892 
1893 			if (!zone_watermark_ok(zone, order,
1894 					high_wmark_pages(zone), 0, 0)) {
1895 				end_zone = i;
1896 				break;
1897 			}
1898 		}
1899 		if (i < 0)
1900 			goto out;
1901 
1902 		for (i = 0; i <= end_zone; i++) {
1903 			struct zone *zone = pgdat->node_zones + i;
1904 
1905 			lru_pages += zone_lru_pages(zone);
1906 		}
1907 
1908 		/*
1909 		 * Now scan the zone in the dma->highmem direction, stopping
1910 		 * at the last zone which needs scanning.
1911 		 *
1912 		 * We do this because the page allocator works in the opposite
1913 		 * direction.  This prevents the page allocator from allocating
1914 		 * pages behind kswapd's direction of progress, which would
1915 		 * cause too much scanning of the lower zones.
1916 		 */
1917 		for (i = 0; i <= end_zone; i++) {
1918 			struct zone *zone = pgdat->node_zones + i;
1919 			int nr_slab;
1920 
1921 			if (!populated_zone(zone))
1922 				continue;
1923 
1924 			if (zone_is_all_unreclaimable(zone) &&
1925 					priority != DEF_PRIORITY)
1926 				continue;
1927 
1928 			if (!zone_watermark_ok(zone, order,
1929 					high_wmark_pages(zone), end_zone, 0))
1930 				all_zones_ok = 0;
1931 			temp_priority[i] = priority;
1932 			sc.nr_scanned = 0;
1933 			note_zone_scanning_priority(zone, priority);
1934 			/*
1935 			 * We put equal pressure on every zone, unless one
1936 			 * zone has way too many pages free already.
1937 			 */
1938 			if (!zone_watermark_ok(zone, order,
1939 					8*high_wmark_pages(zone), end_zone, 0))
1940 				shrink_zone(priority, zone, &sc);
1941 			reclaim_state->reclaimed_slab = 0;
1942 			nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
1943 						lru_pages);
1944 			sc.nr_reclaimed += reclaim_state->reclaimed_slab;
1945 			total_scanned += sc.nr_scanned;
1946 			if (zone_is_all_unreclaimable(zone))
1947 				continue;
1948 			if (nr_slab == 0 && zone->pages_scanned >=
1949 						(zone_lru_pages(zone) * 6))
1950 					zone_set_flag(zone,
1951 						      ZONE_ALL_UNRECLAIMABLE);
1952 			/*
1953 			 * If we've done a decent amount of scanning and
1954 			 * the reclaim ratio is low, start doing writepage
1955 			 * even in laptop mode
1956 			 */
1957 			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
1958 			    total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
1959 				sc.may_writepage = 1;
1960 		}
1961 		if (all_zones_ok)
1962 			break;		/* kswapd: all done */
1963 		/*
1964 		 * OK, kswapd is getting into trouble.  Take a nap, then take
1965 		 * another pass across the zones.
1966 		 */
1967 		if (total_scanned && priority < DEF_PRIORITY - 2)
1968 			congestion_wait(BLK_RW_ASYNC, HZ/10);
1969 
1970 		/*
1971 		 * We do this so kswapd doesn't build up large priorities for
1972 		 * example when it is freeing in parallel with allocators. It
1973 		 * matches the direct reclaim path behaviour in terms of impact
1974 		 * on zone->*_priority.
1975 		 */
1976 		if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
1977 			break;
1978 	}
1979 out:
1980 	/*
1981 	 * Note within each zone the priority level at which this zone was
1982 	 * brought into a happy state.  So that the next thread which scans this
1983 	 * zone will start out at that priority level.
1984 	 */
1985 	for (i = 0; i < pgdat->nr_zones; i++) {
1986 		struct zone *zone = pgdat->node_zones + i;
1987 
1988 		zone->prev_priority = temp_priority[i];
1989 	}
1990 	if (!all_zones_ok) {
1991 		cond_resched();
1992 
1993 		try_to_freeze();
1994 
1995 		/*
1996 		 * Fragmentation may mean that the system cannot be
1997 		 * rebalanced for high-order allocations in all zones.
1998 		 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
1999 		 * it means the zones have been fully scanned and are still
2000 		 * not balanced. For high-order allocations, there is
2001 		 * little point trying all over again as kswapd may
2002 		 * infinite loop.
2003 		 *
2004 		 * Instead, recheck all watermarks at order-0 as they
2005 		 * are the most important. If watermarks are ok, kswapd will go
2006 		 * back to sleep. High-order users can still perform direct
2007 		 * reclaim if they wish.
2008 		 */
2009 		if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2010 			order = sc.order = 0;
2011 
2012 		goto loop_again;
2013 	}
2014 
2015 	return sc.nr_reclaimed;
2016 }
2017 
2018 /*
2019  * The background pageout daemon, started as a kernel thread
2020  * from the init process.
2021  *
2022  * This basically trickles out pages so that we have _some_
2023  * free memory available even if there is no other activity
2024  * that frees anything up. This is needed for things like routing
2025  * etc, where we otherwise might have all activity going on in
2026  * asynchronous contexts that cannot page things out.
2027  *
2028  * If there are applications that are active memory-allocators
2029  * (most normal use), this basically shouldn't matter.
2030  */
2031 static int kswapd(void *p)
2032 {
2033 	unsigned long order;
2034 	pg_data_t *pgdat = (pg_data_t*)p;
2035 	struct task_struct *tsk = current;
2036 	DEFINE_WAIT(wait);
2037 	struct reclaim_state reclaim_state = {
2038 		.reclaimed_slab = 0,
2039 	};
2040 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2041 
2042 	lockdep_set_current_reclaim_state(GFP_KERNEL);
2043 
2044 	if (!cpumask_empty(cpumask))
2045 		set_cpus_allowed_ptr(tsk, cpumask);
2046 	current->reclaim_state = &reclaim_state;
2047 
2048 	/*
2049 	 * Tell the memory management that we're a "memory allocator",
2050 	 * and that if we need more memory we should get access to it
2051 	 * regardless (see "__alloc_pages()"). "kswapd" should
2052 	 * never get caught in the normal page freeing logic.
2053 	 *
2054 	 * (Kswapd normally doesn't need memory anyway, but sometimes
2055 	 * you need a small amount of memory in order to be able to
2056 	 * page out something else, and this flag essentially protects
2057 	 * us from recursively trying to free more memory as we're
2058 	 * trying to free the first piece of memory in the first place).
2059 	 */
2060 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2061 	set_freezable();
2062 
2063 	order = 0;
2064 	for ( ; ; ) {
2065 		unsigned long new_order;
2066 
2067 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2068 		new_order = pgdat->kswapd_max_order;
2069 		pgdat->kswapd_max_order = 0;
2070 		if (order < new_order) {
2071 			/*
2072 			 * Don't sleep if someone wants a larger 'order'
2073 			 * allocation
2074 			 */
2075 			order = new_order;
2076 		} else {
2077 			if (!freezing(current))
2078 				schedule();
2079 
2080 			order = pgdat->kswapd_max_order;
2081 		}
2082 		finish_wait(&pgdat->kswapd_wait, &wait);
2083 
2084 		if (!try_to_freeze()) {
2085 			/* We can speed up thawing tasks if we don't call
2086 			 * balance_pgdat after returning from the refrigerator
2087 			 */
2088 			balance_pgdat(pgdat, order);
2089 		}
2090 	}
2091 	return 0;
2092 }
2093 
2094 /*
2095  * A zone is low on free memory, so wake its kswapd task to service it.
2096  */
2097 void wakeup_kswapd(struct zone *zone, int order)
2098 {
2099 	pg_data_t *pgdat;
2100 
2101 	if (!populated_zone(zone))
2102 		return;
2103 
2104 	pgdat = zone->zone_pgdat;
2105 	if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0))
2106 		return;
2107 	if (pgdat->kswapd_max_order < order)
2108 		pgdat->kswapd_max_order = order;
2109 	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2110 		return;
2111 	if (!waitqueue_active(&pgdat->kswapd_wait))
2112 		return;
2113 	wake_up_interruptible(&pgdat->kswapd_wait);
2114 }
2115 
2116 unsigned long global_lru_pages(void)
2117 {
2118 	return global_page_state(NR_ACTIVE_ANON)
2119 		+ global_page_state(NR_ACTIVE_FILE)
2120 		+ global_page_state(NR_INACTIVE_ANON)
2121 		+ global_page_state(NR_INACTIVE_FILE);
2122 }
2123 
2124 #ifdef CONFIG_HIBERNATION
2125 /*
2126  * Helper function for shrink_all_memory().  Tries to reclaim 'nr_pages' pages
2127  * from LRU lists system-wide, for given pass and priority.
2128  *
2129  * For pass > 3 we also try to shrink the LRU lists that contain a few pages
2130  */
2131 static void shrink_all_zones(unsigned long nr_pages, int prio,
2132 				      int pass, struct scan_control *sc)
2133 {
2134 	struct zone *zone;
2135 	unsigned long nr_reclaimed = 0;
2136 
2137 	for_each_populated_zone(zone) {
2138 		enum lru_list l;
2139 
2140 		if (zone_is_all_unreclaimable(zone) && prio != DEF_PRIORITY)
2141 			continue;
2142 
2143 		for_each_evictable_lru(l) {
2144 			enum zone_stat_item ls = NR_LRU_BASE + l;
2145 			unsigned long lru_pages = zone_page_state(zone, ls);
2146 
2147 			/* For pass = 0, we don't shrink the active list */
2148 			if (pass == 0 && (l == LRU_ACTIVE_ANON ||
2149 						l == LRU_ACTIVE_FILE))
2150 				continue;
2151 
2152 			zone->lru[l].nr_saved_scan += (lru_pages >> prio) + 1;
2153 			if (zone->lru[l].nr_saved_scan >= nr_pages || pass > 3) {
2154 				unsigned long nr_to_scan;
2155 
2156 				zone->lru[l].nr_saved_scan = 0;
2157 				nr_to_scan = min(nr_pages, lru_pages);
2158 				nr_reclaimed += shrink_list(l, nr_to_scan, zone,
2159 								sc, prio);
2160 				if (nr_reclaimed >= nr_pages) {
2161 					sc->nr_reclaimed += nr_reclaimed;
2162 					return;
2163 				}
2164 			}
2165 		}
2166 	}
2167 	sc->nr_reclaimed += nr_reclaimed;
2168 }
2169 
2170 /*
2171  * Try to free `nr_pages' of memory, system-wide, and return the number of
2172  * freed pages.
2173  *
2174  * Rather than trying to age LRUs the aim is to preserve the overall
2175  * LRU order by reclaiming preferentially
2176  * inactive > active > active referenced > active mapped
2177  */
2178 unsigned long shrink_all_memory(unsigned long nr_pages)
2179 {
2180 	unsigned long lru_pages, nr_slab;
2181 	int pass;
2182 	struct reclaim_state reclaim_state;
2183 	struct scan_control sc = {
2184 		.gfp_mask = GFP_KERNEL,
2185 		.may_unmap = 0,
2186 		.may_writepage = 1,
2187 		.isolate_pages = isolate_pages_global,
2188 		.nr_reclaimed = 0,
2189 	};
2190 
2191 	current->reclaim_state = &reclaim_state;
2192 
2193 	lru_pages = global_lru_pages();
2194 	nr_slab = global_page_state(NR_SLAB_RECLAIMABLE);
2195 	/* If slab caches are huge, it's better to hit them first */
2196 	while (nr_slab >= lru_pages) {
2197 		reclaim_state.reclaimed_slab = 0;
2198 		shrink_slab(nr_pages, sc.gfp_mask, lru_pages);
2199 		if (!reclaim_state.reclaimed_slab)
2200 			break;
2201 
2202 		sc.nr_reclaimed += reclaim_state.reclaimed_slab;
2203 		if (sc.nr_reclaimed >= nr_pages)
2204 			goto out;
2205 
2206 		nr_slab -= reclaim_state.reclaimed_slab;
2207 	}
2208 
2209 	/*
2210 	 * We try to shrink LRUs in 5 passes:
2211 	 * 0 = Reclaim from inactive_list only
2212 	 * 1 = Reclaim from active list but don't reclaim mapped
2213 	 * 2 = 2nd pass of type 1
2214 	 * 3 = Reclaim mapped (normal reclaim)
2215 	 * 4 = 2nd pass of type 3
2216 	 */
2217 	for (pass = 0; pass < 5; pass++) {
2218 		int prio;
2219 
2220 		/* Force reclaiming mapped pages in the passes #3 and #4 */
2221 		if (pass > 2)
2222 			sc.may_unmap = 1;
2223 
2224 		for (prio = DEF_PRIORITY; prio >= 0; prio--) {
2225 			unsigned long nr_to_scan = nr_pages - sc.nr_reclaimed;
2226 
2227 			sc.nr_scanned = 0;
2228 			sc.swap_cluster_max = nr_to_scan;
2229 			shrink_all_zones(nr_to_scan, prio, pass, &sc);
2230 			if (sc.nr_reclaimed >= nr_pages)
2231 				goto out;
2232 
2233 			reclaim_state.reclaimed_slab = 0;
2234 			shrink_slab(sc.nr_scanned, sc.gfp_mask,
2235 					global_lru_pages());
2236 			sc.nr_reclaimed += reclaim_state.reclaimed_slab;
2237 			if (sc.nr_reclaimed >= nr_pages)
2238 				goto out;
2239 
2240 			if (sc.nr_scanned && prio < DEF_PRIORITY - 2)
2241 				congestion_wait(BLK_RW_ASYNC, HZ / 10);
2242 		}
2243 	}
2244 
2245 	/*
2246 	 * If sc.nr_reclaimed = 0, we could not shrink LRUs, but there may be
2247 	 * something in slab caches
2248 	 */
2249 	if (!sc.nr_reclaimed) {
2250 		do {
2251 			reclaim_state.reclaimed_slab = 0;
2252 			shrink_slab(nr_pages, sc.gfp_mask, global_lru_pages());
2253 			sc.nr_reclaimed += reclaim_state.reclaimed_slab;
2254 		} while (sc.nr_reclaimed < nr_pages &&
2255 				reclaim_state.reclaimed_slab > 0);
2256 	}
2257 
2258 
2259 out:
2260 	current->reclaim_state = NULL;
2261 
2262 	return sc.nr_reclaimed;
2263 }
2264 #endif /* CONFIG_HIBERNATION */
2265 
2266 /* It's optimal to keep kswapds on the same CPUs as their memory, but
2267    not required for correctness.  So if the last cpu in a node goes
2268    away, we get changed to run anywhere: as the first one comes back,
2269    restore their cpu bindings. */
2270 static int __devinit cpu_callback(struct notifier_block *nfb,
2271 				  unsigned long action, void *hcpu)
2272 {
2273 	int nid;
2274 
2275 	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2276 		for_each_node_state(nid, N_HIGH_MEMORY) {
2277 			pg_data_t *pgdat = NODE_DATA(nid);
2278 			const struct cpumask *mask;
2279 
2280 			mask = cpumask_of_node(pgdat->node_id);
2281 
2282 			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2283 				/* One of our CPUs online: restore mask */
2284 				set_cpus_allowed_ptr(pgdat->kswapd, mask);
2285 		}
2286 	}
2287 	return NOTIFY_OK;
2288 }
2289 
2290 /*
2291  * This kswapd start function will be called by init and node-hot-add.
2292  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2293  */
2294 int kswapd_run(int nid)
2295 {
2296 	pg_data_t *pgdat = NODE_DATA(nid);
2297 	int ret = 0;
2298 
2299 	if (pgdat->kswapd)
2300 		return 0;
2301 
2302 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2303 	if (IS_ERR(pgdat->kswapd)) {
2304 		/* failure at boot is fatal */
2305 		BUG_ON(system_state == SYSTEM_BOOTING);
2306 		printk("Failed to start kswapd on node %d\n",nid);
2307 		ret = -1;
2308 	}
2309 	return ret;
2310 }
2311 
2312 static int __init kswapd_init(void)
2313 {
2314 	int nid;
2315 
2316 	swap_setup();
2317 	for_each_node_state(nid, N_HIGH_MEMORY)
2318  		kswapd_run(nid);
2319 	hotcpu_notifier(cpu_callback, 0);
2320 	return 0;
2321 }
2322 
2323 module_init(kswapd_init)
2324 
2325 #ifdef CONFIG_NUMA
2326 /*
2327  * Zone reclaim mode
2328  *
2329  * If non-zero call zone_reclaim when the number of free pages falls below
2330  * the watermarks.
2331  */
2332 int zone_reclaim_mode __read_mostly;
2333 
2334 #define RECLAIM_OFF 0
2335 #define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
2336 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
2337 #define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
2338 
2339 /*
2340  * Priority for ZONE_RECLAIM. This determines the fraction of pages
2341  * of a node considered for each zone_reclaim. 4 scans 1/16th of
2342  * a zone.
2343  */
2344 #define ZONE_RECLAIM_PRIORITY 4
2345 
2346 /*
2347  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2348  * occur.
2349  */
2350 int sysctl_min_unmapped_ratio = 1;
2351 
2352 /*
2353  * If the number of slab pages in a zone grows beyond this percentage then
2354  * slab reclaim needs to occur.
2355  */
2356 int sysctl_min_slab_ratio = 5;
2357 
2358 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
2359 {
2360 	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
2361 	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
2362 		zone_page_state(zone, NR_ACTIVE_FILE);
2363 
2364 	/*
2365 	 * It's possible for there to be more file mapped pages than
2366 	 * accounted for by the pages on the file LRU lists because
2367 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
2368 	 */
2369 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
2370 }
2371 
2372 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
2373 static long zone_pagecache_reclaimable(struct zone *zone)
2374 {
2375 	long nr_pagecache_reclaimable;
2376 	long delta = 0;
2377 
2378 	/*
2379 	 * If RECLAIM_SWAP is set, then all file pages are considered
2380 	 * potentially reclaimable. Otherwise, we have to worry about
2381 	 * pages like swapcache and zone_unmapped_file_pages() provides
2382 	 * a better estimate
2383 	 */
2384 	if (zone_reclaim_mode & RECLAIM_SWAP)
2385 		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
2386 	else
2387 		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
2388 
2389 	/* If we can't clean pages, remove dirty pages from consideration */
2390 	if (!(zone_reclaim_mode & RECLAIM_WRITE))
2391 		delta += zone_page_state(zone, NR_FILE_DIRTY);
2392 
2393 	/* Watch for any possible underflows due to delta */
2394 	if (unlikely(delta > nr_pagecache_reclaimable))
2395 		delta = nr_pagecache_reclaimable;
2396 
2397 	return nr_pagecache_reclaimable - delta;
2398 }
2399 
2400 /*
2401  * Try to free up some pages from this zone through reclaim.
2402  */
2403 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2404 {
2405 	/* Minimum pages needed in order to stay on node */
2406 	const unsigned long nr_pages = 1 << order;
2407 	struct task_struct *p = current;
2408 	struct reclaim_state reclaim_state;
2409 	int priority;
2410 	struct scan_control sc = {
2411 		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
2412 		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2413 		.may_swap = 1,
2414 		.swap_cluster_max = max_t(unsigned long, nr_pages,
2415 					SWAP_CLUSTER_MAX),
2416 		.gfp_mask = gfp_mask,
2417 		.swappiness = vm_swappiness,
2418 		.order = order,
2419 		.isolate_pages = isolate_pages_global,
2420 	};
2421 	unsigned long slab_reclaimable;
2422 
2423 	disable_swap_token();
2424 	cond_resched();
2425 	/*
2426 	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2427 	 * and we also need to be able to write out pages for RECLAIM_WRITE
2428 	 * and RECLAIM_SWAP.
2429 	 */
2430 	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
2431 	reclaim_state.reclaimed_slab = 0;
2432 	p->reclaim_state = &reclaim_state;
2433 
2434 	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
2435 		/*
2436 		 * Free memory by calling shrink zone with increasing
2437 		 * priorities until we have enough memory freed.
2438 		 */
2439 		priority = ZONE_RECLAIM_PRIORITY;
2440 		do {
2441 			note_zone_scanning_priority(zone, priority);
2442 			shrink_zone(priority, zone, &sc);
2443 			priority--;
2444 		} while (priority >= 0 && sc.nr_reclaimed < nr_pages);
2445 	}
2446 
2447 	slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2448 	if (slab_reclaimable > zone->min_slab_pages) {
2449 		/*
2450 		 * shrink_slab() does not currently allow us to determine how
2451 		 * many pages were freed in this zone. So we take the current
2452 		 * number of slab pages and shake the slab until it is reduced
2453 		 * by the same nr_pages that we used for reclaiming unmapped
2454 		 * pages.
2455 		 *
2456 		 * Note that shrink_slab will free memory on all zones and may
2457 		 * take a long time.
2458 		 */
2459 		while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
2460 			zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
2461 				slab_reclaimable - nr_pages)
2462 			;
2463 
2464 		/*
2465 		 * Update nr_reclaimed by the number of slab pages we
2466 		 * reclaimed from this zone.
2467 		 */
2468 		sc.nr_reclaimed += slab_reclaimable -
2469 			zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2470 	}
2471 
2472 	p->reclaim_state = NULL;
2473 	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
2474 	return sc.nr_reclaimed >= nr_pages;
2475 }
2476 
2477 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2478 {
2479 	int node_id;
2480 	int ret;
2481 
2482 	/*
2483 	 * Zone reclaim reclaims unmapped file backed pages and
2484 	 * slab pages if we are over the defined limits.
2485 	 *
2486 	 * A small portion of unmapped file backed pages is needed for
2487 	 * file I/O otherwise pages read by file I/O will be immediately
2488 	 * thrown out if the zone is overallocated. So we do not reclaim
2489 	 * if less than a specified percentage of the zone is used by
2490 	 * unmapped file backed pages.
2491 	 */
2492 	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
2493 	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
2494 		return ZONE_RECLAIM_FULL;
2495 
2496 	if (zone_is_all_unreclaimable(zone))
2497 		return ZONE_RECLAIM_FULL;
2498 
2499 	/*
2500 	 * Do not scan if the allocation should not be delayed.
2501 	 */
2502 	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
2503 		return ZONE_RECLAIM_NOSCAN;
2504 
2505 	/*
2506 	 * Only run zone reclaim on the local zone or on zones that do not
2507 	 * have associated processors. This will favor the local processor
2508 	 * over remote processors and spread off node memory allocations
2509 	 * as wide as possible.
2510 	 */
2511 	node_id = zone_to_nid(zone);
2512 	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
2513 		return ZONE_RECLAIM_NOSCAN;
2514 
2515 	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
2516 		return ZONE_RECLAIM_NOSCAN;
2517 
2518 	ret = __zone_reclaim(zone, gfp_mask, order);
2519 	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
2520 
2521 	if (!ret)
2522 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
2523 
2524 	return ret;
2525 }
2526 #endif
2527 
2528 /*
2529  * page_evictable - test whether a page is evictable
2530  * @page: the page to test
2531  * @vma: the VMA in which the page is or will be mapped, may be NULL
2532  *
2533  * Test whether page is evictable--i.e., should be placed on active/inactive
2534  * lists vs unevictable list.  The vma argument is !NULL when called from the
2535  * fault path to determine how to instantate a new page.
2536  *
2537  * Reasons page might not be evictable:
2538  * (1) page's mapping marked unevictable
2539  * (2) page is part of an mlocked VMA
2540  *
2541  */
2542 int page_evictable(struct page *page, struct vm_area_struct *vma)
2543 {
2544 
2545 	if (mapping_unevictable(page_mapping(page)))
2546 		return 0;
2547 
2548 	if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
2549 		return 0;
2550 
2551 	return 1;
2552 }
2553 
2554 /**
2555  * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
2556  * @page: page to check evictability and move to appropriate lru list
2557  * @zone: zone page is in
2558  *
2559  * Checks a page for evictability and moves the page to the appropriate
2560  * zone lru list.
2561  *
2562  * Restrictions: zone->lru_lock must be held, page must be on LRU and must
2563  * have PageUnevictable set.
2564  */
2565 static void check_move_unevictable_page(struct page *page, struct zone *zone)
2566 {
2567 	VM_BUG_ON(PageActive(page));
2568 
2569 retry:
2570 	ClearPageUnevictable(page);
2571 	if (page_evictable(page, NULL)) {
2572 		enum lru_list l = LRU_INACTIVE_ANON + page_is_file_cache(page);
2573 
2574 		__dec_zone_state(zone, NR_UNEVICTABLE);
2575 		list_move(&page->lru, &zone->lru[l].list);
2576 		mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
2577 		__inc_zone_state(zone, NR_INACTIVE_ANON + l);
2578 		__count_vm_event(UNEVICTABLE_PGRESCUED);
2579 	} else {
2580 		/*
2581 		 * rotate unevictable list
2582 		 */
2583 		SetPageUnevictable(page);
2584 		list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
2585 		mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
2586 		if (page_evictable(page, NULL))
2587 			goto retry;
2588 	}
2589 }
2590 
2591 /**
2592  * scan_mapping_unevictable_pages - scan an address space for evictable pages
2593  * @mapping: struct address_space to scan for evictable pages
2594  *
2595  * Scan all pages in mapping.  Check unevictable pages for
2596  * evictability and move them to the appropriate zone lru list.
2597  */
2598 void scan_mapping_unevictable_pages(struct address_space *mapping)
2599 {
2600 	pgoff_t next = 0;
2601 	pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
2602 			 PAGE_CACHE_SHIFT;
2603 	struct zone *zone;
2604 	struct pagevec pvec;
2605 
2606 	if (mapping->nrpages == 0)
2607 		return;
2608 
2609 	pagevec_init(&pvec, 0);
2610 	while (next < end &&
2611 		pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
2612 		int i;
2613 		int pg_scanned = 0;
2614 
2615 		zone = NULL;
2616 
2617 		for (i = 0; i < pagevec_count(&pvec); i++) {
2618 			struct page *page = pvec.pages[i];
2619 			pgoff_t page_index = page->index;
2620 			struct zone *pagezone = page_zone(page);
2621 
2622 			pg_scanned++;
2623 			if (page_index > next)
2624 				next = page_index;
2625 			next++;
2626 
2627 			if (pagezone != zone) {
2628 				if (zone)
2629 					spin_unlock_irq(&zone->lru_lock);
2630 				zone = pagezone;
2631 				spin_lock_irq(&zone->lru_lock);
2632 			}
2633 
2634 			if (PageLRU(page) && PageUnevictable(page))
2635 				check_move_unevictable_page(page, zone);
2636 		}
2637 		if (zone)
2638 			spin_unlock_irq(&zone->lru_lock);
2639 		pagevec_release(&pvec);
2640 
2641 		count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
2642 	}
2643 
2644 }
2645 
2646 /**
2647  * scan_zone_unevictable_pages - check unevictable list for evictable pages
2648  * @zone - zone of which to scan the unevictable list
2649  *
2650  * Scan @zone's unevictable LRU lists to check for pages that have become
2651  * evictable.  Move those that have to @zone's inactive list where they
2652  * become candidates for reclaim, unless shrink_inactive_zone() decides
2653  * to reactivate them.  Pages that are still unevictable are rotated
2654  * back onto @zone's unevictable list.
2655  */
2656 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
2657 static void scan_zone_unevictable_pages(struct zone *zone)
2658 {
2659 	struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
2660 	unsigned long scan;
2661 	unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
2662 
2663 	while (nr_to_scan > 0) {
2664 		unsigned long batch_size = min(nr_to_scan,
2665 						SCAN_UNEVICTABLE_BATCH_SIZE);
2666 
2667 		spin_lock_irq(&zone->lru_lock);
2668 		for (scan = 0;  scan < batch_size; scan++) {
2669 			struct page *page = lru_to_page(l_unevictable);
2670 
2671 			if (!trylock_page(page))
2672 				continue;
2673 
2674 			prefetchw_prev_lru_page(page, l_unevictable, flags);
2675 
2676 			if (likely(PageLRU(page) && PageUnevictable(page)))
2677 				check_move_unevictable_page(page, zone);
2678 
2679 			unlock_page(page);
2680 		}
2681 		spin_unlock_irq(&zone->lru_lock);
2682 
2683 		nr_to_scan -= batch_size;
2684 	}
2685 }
2686 
2687 
2688 /**
2689  * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
2690  *
2691  * A really big hammer:  scan all zones' unevictable LRU lists to check for
2692  * pages that have become evictable.  Move those back to the zones'
2693  * inactive list where they become candidates for reclaim.
2694  * This occurs when, e.g., we have unswappable pages on the unevictable lists,
2695  * and we add swap to the system.  As such, it runs in the context of a task
2696  * that has possibly/probably made some previously unevictable pages
2697  * evictable.
2698  */
2699 static void scan_all_zones_unevictable_pages(void)
2700 {
2701 	struct zone *zone;
2702 
2703 	for_each_zone(zone) {
2704 		scan_zone_unevictable_pages(zone);
2705 	}
2706 }
2707 
2708 /*
2709  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
2710  * all nodes' unevictable lists for evictable pages
2711  */
2712 unsigned long scan_unevictable_pages;
2713 
2714 int scan_unevictable_handler(struct ctl_table *table, int write,
2715 			   struct file *file, void __user *buffer,
2716 			   size_t *length, loff_t *ppos)
2717 {
2718 	proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
2719 
2720 	if (write && *(unsigned long *)table->data)
2721 		scan_all_zones_unevictable_pages();
2722 
2723 	scan_unevictable_pages = 0;
2724 	return 0;
2725 }
2726 
2727 /*
2728  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
2729  * a specified node's per zone unevictable lists for evictable pages.
2730  */
2731 
2732 static ssize_t read_scan_unevictable_node(struct sys_device *dev,
2733 					  struct sysdev_attribute *attr,
2734 					  char *buf)
2735 {
2736 	return sprintf(buf, "0\n");	/* always zero; should fit... */
2737 }
2738 
2739 static ssize_t write_scan_unevictable_node(struct sys_device *dev,
2740 					   struct sysdev_attribute *attr,
2741 					const char *buf, size_t count)
2742 {
2743 	struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
2744 	struct zone *zone;
2745 	unsigned long res;
2746 	unsigned long req = strict_strtoul(buf, 10, &res);
2747 
2748 	if (!req)
2749 		return 1;	/* zero is no-op */
2750 
2751 	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2752 		if (!populated_zone(zone))
2753 			continue;
2754 		scan_zone_unevictable_pages(zone);
2755 	}
2756 	return 1;
2757 }
2758 
2759 
2760 static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
2761 			read_scan_unevictable_node,
2762 			write_scan_unevictable_node);
2763 
2764 int scan_unevictable_register_node(struct node *node)
2765 {
2766 	return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
2767 }
2768 
2769 void scan_unevictable_unregister_node(struct node *node)
2770 {
2771 	sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
2772 }
2773 
2774