1 /* 2 * linux/mm/vmscan.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * 6 * Swap reorganised 29.12.95, Stephen Tweedie. 7 * kswapd added: 7.1.96 sct 8 * Removed kswapd_ctl limits, and swap out as many pages as needed 9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 11 * Multiqueue VM started 5.8.00, Rik van Riel. 12 */ 13 14 #include <linux/mm.h> 15 #include <linux/module.h> 16 #include <linux/slab.h> 17 #include <linux/kernel_stat.h> 18 #include <linux/swap.h> 19 #include <linux/pagemap.h> 20 #include <linux/init.h> 21 #include <linux/highmem.h> 22 #include <linux/vmstat.h> 23 #include <linux/file.h> 24 #include <linux/writeback.h> 25 #include <linux/blkdev.h> 26 #include <linux/buffer_head.h> /* for try_to_release_page(), 27 buffer_heads_over_limit */ 28 #include <linux/mm_inline.h> 29 #include <linux/pagevec.h> 30 #include <linux/backing-dev.h> 31 #include <linux/rmap.h> 32 #include <linux/topology.h> 33 #include <linux/cpu.h> 34 #include <linux/cpuset.h> 35 #include <linux/notifier.h> 36 #include <linux/rwsem.h> 37 #include <linux/delay.h> 38 #include <linux/kthread.h> 39 #include <linux/freezer.h> 40 #include <linux/memcontrol.h> 41 #include <linux/delayacct.h> 42 #include <linux/sysctl.h> 43 44 #include <asm/tlbflush.h> 45 #include <asm/div64.h> 46 47 #include <linux/swapops.h> 48 49 #include "internal.h" 50 51 struct scan_control { 52 /* Incremented by the number of inactive pages that were scanned */ 53 unsigned long nr_scanned; 54 55 /* Number of pages freed so far during a call to shrink_zones() */ 56 unsigned long nr_reclaimed; 57 58 /* This context's GFP mask */ 59 gfp_t gfp_mask; 60 61 int may_writepage; 62 63 /* Can mapped pages be reclaimed? */ 64 int may_unmap; 65 66 /* Can pages be swapped as part of reclaim? */ 67 int may_swap; 68 69 /* This context's SWAP_CLUSTER_MAX. If freeing memory for 70 * suspend, we effectively ignore SWAP_CLUSTER_MAX. 71 * In this context, it doesn't matter that we scan the 72 * whole list at once. */ 73 int swap_cluster_max; 74 75 int swappiness; 76 77 int all_unreclaimable; 78 79 int order; 80 81 /* Which cgroup do we reclaim from */ 82 struct mem_cgroup *mem_cgroup; 83 84 /* 85 * Nodemask of nodes allowed by the caller. If NULL, all nodes 86 * are scanned. 87 */ 88 nodemask_t *nodemask; 89 90 /* Pluggable isolate pages callback */ 91 unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst, 92 unsigned long *scanned, int order, int mode, 93 struct zone *z, struct mem_cgroup *mem_cont, 94 int active, int file); 95 }; 96 97 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru)) 98 99 #ifdef ARCH_HAS_PREFETCH 100 #define prefetch_prev_lru_page(_page, _base, _field) \ 101 do { \ 102 if ((_page)->lru.prev != _base) { \ 103 struct page *prev; \ 104 \ 105 prev = lru_to_page(&(_page->lru)); \ 106 prefetch(&prev->_field); \ 107 } \ 108 } while (0) 109 #else 110 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0) 111 #endif 112 113 #ifdef ARCH_HAS_PREFETCHW 114 #define prefetchw_prev_lru_page(_page, _base, _field) \ 115 do { \ 116 if ((_page)->lru.prev != _base) { \ 117 struct page *prev; \ 118 \ 119 prev = lru_to_page(&(_page->lru)); \ 120 prefetchw(&prev->_field); \ 121 } \ 122 } while (0) 123 #else 124 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 125 #endif 126 127 /* 128 * From 0 .. 100. Higher means more swappy. 129 */ 130 int vm_swappiness = 60; 131 long vm_total_pages; /* The total number of pages which the VM controls */ 132 133 static LIST_HEAD(shrinker_list); 134 static DECLARE_RWSEM(shrinker_rwsem); 135 136 #ifdef CONFIG_CGROUP_MEM_RES_CTLR 137 #define scanning_global_lru(sc) (!(sc)->mem_cgroup) 138 #else 139 #define scanning_global_lru(sc) (1) 140 #endif 141 142 static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone, 143 struct scan_control *sc) 144 { 145 if (!scanning_global_lru(sc)) 146 return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone); 147 148 return &zone->reclaim_stat; 149 } 150 151 static unsigned long zone_nr_pages(struct zone *zone, struct scan_control *sc, 152 enum lru_list lru) 153 { 154 if (!scanning_global_lru(sc)) 155 return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru); 156 157 return zone_page_state(zone, NR_LRU_BASE + lru); 158 } 159 160 161 /* 162 * Add a shrinker callback to be called from the vm 163 */ 164 void register_shrinker(struct shrinker *shrinker) 165 { 166 shrinker->nr = 0; 167 down_write(&shrinker_rwsem); 168 list_add_tail(&shrinker->list, &shrinker_list); 169 up_write(&shrinker_rwsem); 170 } 171 EXPORT_SYMBOL(register_shrinker); 172 173 /* 174 * Remove one 175 */ 176 void unregister_shrinker(struct shrinker *shrinker) 177 { 178 down_write(&shrinker_rwsem); 179 list_del(&shrinker->list); 180 up_write(&shrinker_rwsem); 181 } 182 EXPORT_SYMBOL(unregister_shrinker); 183 184 #define SHRINK_BATCH 128 185 /* 186 * Call the shrink functions to age shrinkable caches 187 * 188 * Here we assume it costs one seek to replace a lru page and that it also 189 * takes a seek to recreate a cache object. With this in mind we age equal 190 * percentages of the lru and ageable caches. This should balance the seeks 191 * generated by these structures. 192 * 193 * If the vm encountered mapped pages on the LRU it increase the pressure on 194 * slab to avoid swapping. 195 * 196 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits. 197 * 198 * `lru_pages' represents the number of on-LRU pages in all the zones which 199 * are eligible for the caller's allocation attempt. It is used for balancing 200 * slab reclaim versus page reclaim. 201 * 202 * Returns the number of slab objects which we shrunk. 203 */ 204 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask, 205 unsigned long lru_pages) 206 { 207 struct shrinker *shrinker; 208 unsigned long ret = 0; 209 210 if (scanned == 0) 211 scanned = SWAP_CLUSTER_MAX; 212 213 if (!down_read_trylock(&shrinker_rwsem)) 214 return 1; /* Assume we'll be able to shrink next time */ 215 216 list_for_each_entry(shrinker, &shrinker_list, list) { 217 unsigned long long delta; 218 unsigned long total_scan; 219 unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask); 220 221 delta = (4 * scanned) / shrinker->seeks; 222 delta *= max_pass; 223 do_div(delta, lru_pages + 1); 224 shrinker->nr += delta; 225 if (shrinker->nr < 0) { 226 printk(KERN_ERR "shrink_slab: %pF negative objects to " 227 "delete nr=%ld\n", 228 shrinker->shrink, shrinker->nr); 229 shrinker->nr = max_pass; 230 } 231 232 /* 233 * Avoid risking looping forever due to too large nr value: 234 * never try to free more than twice the estimate number of 235 * freeable entries. 236 */ 237 if (shrinker->nr > max_pass * 2) 238 shrinker->nr = max_pass * 2; 239 240 total_scan = shrinker->nr; 241 shrinker->nr = 0; 242 243 while (total_scan >= SHRINK_BATCH) { 244 long this_scan = SHRINK_BATCH; 245 int shrink_ret; 246 int nr_before; 247 248 nr_before = (*shrinker->shrink)(0, gfp_mask); 249 shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask); 250 if (shrink_ret == -1) 251 break; 252 if (shrink_ret < nr_before) 253 ret += nr_before - shrink_ret; 254 count_vm_events(SLABS_SCANNED, this_scan); 255 total_scan -= this_scan; 256 257 cond_resched(); 258 } 259 260 shrinker->nr += total_scan; 261 } 262 up_read(&shrinker_rwsem); 263 return ret; 264 } 265 266 /* Called without lock on whether page is mapped, so answer is unstable */ 267 static inline int page_mapping_inuse(struct page *page) 268 { 269 struct address_space *mapping; 270 271 /* Page is in somebody's page tables. */ 272 if (page_mapped(page)) 273 return 1; 274 275 /* Be more reluctant to reclaim swapcache than pagecache */ 276 if (PageSwapCache(page)) 277 return 1; 278 279 mapping = page_mapping(page); 280 if (!mapping) 281 return 0; 282 283 /* File is mmap'd by somebody? */ 284 return mapping_mapped(mapping); 285 } 286 287 static inline int is_page_cache_freeable(struct page *page) 288 { 289 return page_count(page) - !!page_has_private(page) == 2; 290 } 291 292 static int may_write_to_queue(struct backing_dev_info *bdi) 293 { 294 if (current->flags & PF_SWAPWRITE) 295 return 1; 296 if (!bdi_write_congested(bdi)) 297 return 1; 298 if (bdi == current->backing_dev_info) 299 return 1; 300 return 0; 301 } 302 303 /* 304 * We detected a synchronous write error writing a page out. Probably 305 * -ENOSPC. We need to propagate that into the address_space for a subsequent 306 * fsync(), msync() or close(). 307 * 308 * The tricky part is that after writepage we cannot touch the mapping: nothing 309 * prevents it from being freed up. But we have a ref on the page and once 310 * that page is locked, the mapping is pinned. 311 * 312 * We're allowed to run sleeping lock_page() here because we know the caller has 313 * __GFP_FS. 314 */ 315 static void handle_write_error(struct address_space *mapping, 316 struct page *page, int error) 317 { 318 lock_page(page); 319 if (page_mapping(page) == mapping) 320 mapping_set_error(mapping, error); 321 unlock_page(page); 322 } 323 324 /* Request for sync pageout. */ 325 enum pageout_io { 326 PAGEOUT_IO_ASYNC, 327 PAGEOUT_IO_SYNC, 328 }; 329 330 /* possible outcome of pageout() */ 331 typedef enum { 332 /* failed to write page out, page is locked */ 333 PAGE_KEEP, 334 /* move page to the active list, page is locked */ 335 PAGE_ACTIVATE, 336 /* page has been sent to the disk successfully, page is unlocked */ 337 PAGE_SUCCESS, 338 /* page is clean and locked */ 339 PAGE_CLEAN, 340 } pageout_t; 341 342 /* 343 * pageout is called by shrink_page_list() for each dirty page. 344 * Calls ->writepage(). 345 */ 346 static pageout_t pageout(struct page *page, struct address_space *mapping, 347 enum pageout_io sync_writeback) 348 { 349 /* 350 * If the page is dirty, only perform writeback if that write 351 * will be non-blocking. To prevent this allocation from being 352 * stalled by pagecache activity. But note that there may be 353 * stalls if we need to run get_block(). We could test 354 * PagePrivate for that. 355 * 356 * If this process is currently in generic_file_write() against 357 * this page's queue, we can perform writeback even if that 358 * will block. 359 * 360 * If the page is swapcache, write it back even if that would 361 * block, for some throttling. This happens by accident, because 362 * swap_backing_dev_info is bust: it doesn't reflect the 363 * congestion state of the swapdevs. Easy to fix, if needed. 364 * See swapfile.c:page_queue_congested(). 365 */ 366 if (!is_page_cache_freeable(page)) 367 return PAGE_KEEP; 368 if (!mapping) { 369 /* 370 * Some data journaling orphaned pages can have 371 * page->mapping == NULL while being dirty with clean buffers. 372 */ 373 if (page_has_private(page)) { 374 if (try_to_free_buffers(page)) { 375 ClearPageDirty(page); 376 printk("%s: orphaned page\n", __func__); 377 return PAGE_CLEAN; 378 } 379 } 380 return PAGE_KEEP; 381 } 382 if (mapping->a_ops->writepage == NULL) 383 return PAGE_ACTIVATE; 384 if (!may_write_to_queue(mapping->backing_dev_info)) 385 return PAGE_KEEP; 386 387 if (clear_page_dirty_for_io(page)) { 388 int res; 389 struct writeback_control wbc = { 390 .sync_mode = WB_SYNC_NONE, 391 .nr_to_write = SWAP_CLUSTER_MAX, 392 .range_start = 0, 393 .range_end = LLONG_MAX, 394 .nonblocking = 1, 395 .for_reclaim = 1, 396 }; 397 398 SetPageReclaim(page); 399 res = mapping->a_ops->writepage(page, &wbc); 400 if (res < 0) 401 handle_write_error(mapping, page, res); 402 if (res == AOP_WRITEPAGE_ACTIVATE) { 403 ClearPageReclaim(page); 404 return PAGE_ACTIVATE; 405 } 406 407 /* 408 * Wait on writeback if requested to. This happens when 409 * direct reclaiming a large contiguous area and the 410 * first attempt to free a range of pages fails. 411 */ 412 if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC) 413 wait_on_page_writeback(page); 414 415 if (!PageWriteback(page)) { 416 /* synchronous write or broken a_ops? */ 417 ClearPageReclaim(page); 418 } 419 inc_zone_page_state(page, NR_VMSCAN_WRITE); 420 return PAGE_SUCCESS; 421 } 422 423 return PAGE_CLEAN; 424 } 425 426 /* 427 * Same as remove_mapping, but if the page is removed from the mapping, it 428 * gets returned with a refcount of 0. 429 */ 430 static int __remove_mapping(struct address_space *mapping, struct page *page) 431 { 432 BUG_ON(!PageLocked(page)); 433 BUG_ON(mapping != page_mapping(page)); 434 435 spin_lock_irq(&mapping->tree_lock); 436 /* 437 * The non racy check for a busy page. 438 * 439 * Must be careful with the order of the tests. When someone has 440 * a ref to the page, it may be possible that they dirty it then 441 * drop the reference. So if PageDirty is tested before page_count 442 * here, then the following race may occur: 443 * 444 * get_user_pages(&page); 445 * [user mapping goes away] 446 * write_to(page); 447 * !PageDirty(page) [good] 448 * SetPageDirty(page); 449 * put_page(page); 450 * !page_count(page) [good, discard it] 451 * 452 * [oops, our write_to data is lost] 453 * 454 * Reversing the order of the tests ensures such a situation cannot 455 * escape unnoticed. The smp_rmb is needed to ensure the page->flags 456 * load is not satisfied before that of page->_count. 457 * 458 * Note that if SetPageDirty is always performed via set_page_dirty, 459 * and thus under tree_lock, then this ordering is not required. 460 */ 461 if (!page_freeze_refs(page, 2)) 462 goto cannot_free; 463 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */ 464 if (unlikely(PageDirty(page))) { 465 page_unfreeze_refs(page, 2); 466 goto cannot_free; 467 } 468 469 if (PageSwapCache(page)) { 470 swp_entry_t swap = { .val = page_private(page) }; 471 __delete_from_swap_cache(page); 472 spin_unlock_irq(&mapping->tree_lock); 473 swapcache_free(swap, page); 474 } else { 475 __remove_from_page_cache(page); 476 spin_unlock_irq(&mapping->tree_lock); 477 mem_cgroup_uncharge_cache_page(page); 478 } 479 480 return 1; 481 482 cannot_free: 483 spin_unlock_irq(&mapping->tree_lock); 484 return 0; 485 } 486 487 /* 488 * Attempt to detach a locked page from its ->mapping. If it is dirty or if 489 * someone else has a ref on the page, abort and return 0. If it was 490 * successfully detached, return 1. Assumes the caller has a single ref on 491 * this page. 492 */ 493 int remove_mapping(struct address_space *mapping, struct page *page) 494 { 495 if (__remove_mapping(mapping, page)) { 496 /* 497 * Unfreezing the refcount with 1 rather than 2 effectively 498 * drops the pagecache ref for us without requiring another 499 * atomic operation. 500 */ 501 page_unfreeze_refs(page, 1); 502 return 1; 503 } 504 return 0; 505 } 506 507 /** 508 * putback_lru_page - put previously isolated page onto appropriate LRU list 509 * @page: page to be put back to appropriate lru list 510 * 511 * Add previously isolated @page to appropriate LRU list. 512 * Page may still be unevictable for other reasons. 513 * 514 * lru_lock must not be held, interrupts must be enabled. 515 */ 516 void putback_lru_page(struct page *page) 517 { 518 int lru; 519 int active = !!TestClearPageActive(page); 520 int was_unevictable = PageUnevictable(page); 521 522 VM_BUG_ON(PageLRU(page)); 523 524 redo: 525 ClearPageUnevictable(page); 526 527 if (page_evictable(page, NULL)) { 528 /* 529 * For evictable pages, we can use the cache. 530 * In event of a race, worst case is we end up with an 531 * unevictable page on [in]active list. 532 * We know how to handle that. 533 */ 534 lru = active + page_is_file_cache(page); 535 lru_cache_add_lru(page, lru); 536 } else { 537 /* 538 * Put unevictable pages directly on zone's unevictable 539 * list. 540 */ 541 lru = LRU_UNEVICTABLE; 542 add_page_to_unevictable_list(page); 543 } 544 545 /* 546 * page's status can change while we move it among lru. If an evictable 547 * page is on unevictable list, it never be freed. To avoid that, 548 * check after we added it to the list, again. 549 */ 550 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) { 551 if (!isolate_lru_page(page)) { 552 put_page(page); 553 goto redo; 554 } 555 /* This means someone else dropped this page from LRU 556 * So, it will be freed or putback to LRU again. There is 557 * nothing to do here. 558 */ 559 } 560 561 if (was_unevictable && lru != LRU_UNEVICTABLE) 562 count_vm_event(UNEVICTABLE_PGRESCUED); 563 else if (!was_unevictable && lru == LRU_UNEVICTABLE) 564 count_vm_event(UNEVICTABLE_PGCULLED); 565 566 put_page(page); /* drop ref from isolate */ 567 } 568 569 /* 570 * shrink_page_list() returns the number of reclaimed pages 571 */ 572 static unsigned long shrink_page_list(struct list_head *page_list, 573 struct scan_control *sc, 574 enum pageout_io sync_writeback) 575 { 576 LIST_HEAD(ret_pages); 577 struct pagevec freed_pvec; 578 int pgactivate = 0; 579 unsigned long nr_reclaimed = 0; 580 unsigned long vm_flags; 581 582 cond_resched(); 583 584 pagevec_init(&freed_pvec, 1); 585 while (!list_empty(page_list)) { 586 struct address_space *mapping; 587 struct page *page; 588 int may_enter_fs; 589 int referenced; 590 591 cond_resched(); 592 593 page = lru_to_page(page_list); 594 list_del(&page->lru); 595 596 if (!trylock_page(page)) 597 goto keep; 598 599 VM_BUG_ON(PageActive(page)); 600 601 sc->nr_scanned++; 602 603 if (unlikely(!page_evictable(page, NULL))) 604 goto cull_mlocked; 605 606 if (!sc->may_unmap && page_mapped(page)) 607 goto keep_locked; 608 609 /* Double the slab pressure for mapped and swapcache pages */ 610 if (page_mapped(page) || PageSwapCache(page)) 611 sc->nr_scanned++; 612 613 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 614 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 615 616 if (PageWriteback(page)) { 617 /* 618 * Synchronous reclaim is performed in two passes, 619 * first an asynchronous pass over the list to 620 * start parallel writeback, and a second synchronous 621 * pass to wait for the IO to complete. Wait here 622 * for any page for which writeback has already 623 * started. 624 */ 625 if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs) 626 wait_on_page_writeback(page); 627 else 628 goto keep_locked; 629 } 630 631 referenced = page_referenced(page, 1, 632 sc->mem_cgroup, &vm_flags); 633 /* 634 * In active use or really unfreeable? Activate it. 635 * If page which have PG_mlocked lost isoltation race, 636 * try_to_unmap moves it to unevictable list 637 */ 638 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && 639 referenced && page_mapping_inuse(page) 640 && !(vm_flags & VM_LOCKED)) 641 goto activate_locked; 642 643 /* 644 * Anonymous process memory has backing store? 645 * Try to allocate it some swap space here. 646 */ 647 if (PageAnon(page) && !PageSwapCache(page)) { 648 if (!(sc->gfp_mask & __GFP_IO)) 649 goto keep_locked; 650 if (!add_to_swap(page)) 651 goto activate_locked; 652 may_enter_fs = 1; 653 } 654 655 mapping = page_mapping(page); 656 657 /* 658 * The page is mapped into the page tables of one or more 659 * processes. Try to unmap it here. 660 */ 661 if (page_mapped(page) && mapping) { 662 switch (try_to_unmap(page, 0)) { 663 case SWAP_FAIL: 664 goto activate_locked; 665 case SWAP_AGAIN: 666 goto keep_locked; 667 case SWAP_MLOCK: 668 goto cull_mlocked; 669 case SWAP_SUCCESS: 670 ; /* try to free the page below */ 671 } 672 } 673 674 if (PageDirty(page)) { 675 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && referenced) 676 goto keep_locked; 677 if (!may_enter_fs) 678 goto keep_locked; 679 if (!sc->may_writepage) 680 goto keep_locked; 681 682 /* Page is dirty, try to write it out here */ 683 switch (pageout(page, mapping, sync_writeback)) { 684 case PAGE_KEEP: 685 goto keep_locked; 686 case PAGE_ACTIVATE: 687 goto activate_locked; 688 case PAGE_SUCCESS: 689 if (PageWriteback(page) || PageDirty(page)) 690 goto keep; 691 /* 692 * A synchronous write - probably a ramdisk. Go 693 * ahead and try to reclaim the page. 694 */ 695 if (!trylock_page(page)) 696 goto keep; 697 if (PageDirty(page) || PageWriteback(page)) 698 goto keep_locked; 699 mapping = page_mapping(page); 700 case PAGE_CLEAN: 701 ; /* try to free the page below */ 702 } 703 } 704 705 /* 706 * If the page has buffers, try to free the buffer mappings 707 * associated with this page. If we succeed we try to free 708 * the page as well. 709 * 710 * We do this even if the page is PageDirty(). 711 * try_to_release_page() does not perform I/O, but it is 712 * possible for a page to have PageDirty set, but it is actually 713 * clean (all its buffers are clean). This happens if the 714 * buffers were written out directly, with submit_bh(). ext3 715 * will do this, as well as the blockdev mapping. 716 * try_to_release_page() will discover that cleanness and will 717 * drop the buffers and mark the page clean - it can be freed. 718 * 719 * Rarely, pages can have buffers and no ->mapping. These are 720 * the pages which were not successfully invalidated in 721 * truncate_complete_page(). We try to drop those buffers here 722 * and if that worked, and the page is no longer mapped into 723 * process address space (page_count == 1) it can be freed. 724 * Otherwise, leave the page on the LRU so it is swappable. 725 */ 726 if (page_has_private(page)) { 727 if (!try_to_release_page(page, sc->gfp_mask)) 728 goto activate_locked; 729 if (!mapping && page_count(page) == 1) { 730 unlock_page(page); 731 if (put_page_testzero(page)) 732 goto free_it; 733 else { 734 /* 735 * rare race with speculative reference. 736 * the speculative reference will free 737 * this page shortly, so we may 738 * increment nr_reclaimed here (and 739 * leave it off the LRU). 740 */ 741 nr_reclaimed++; 742 continue; 743 } 744 } 745 } 746 747 if (!mapping || !__remove_mapping(mapping, page)) 748 goto keep_locked; 749 750 /* 751 * At this point, we have no other references and there is 752 * no way to pick any more up (removed from LRU, removed 753 * from pagecache). Can use non-atomic bitops now (and 754 * we obviously don't have to worry about waking up a process 755 * waiting on the page lock, because there are no references. 756 */ 757 __clear_page_locked(page); 758 free_it: 759 nr_reclaimed++; 760 if (!pagevec_add(&freed_pvec, page)) { 761 __pagevec_free(&freed_pvec); 762 pagevec_reinit(&freed_pvec); 763 } 764 continue; 765 766 cull_mlocked: 767 if (PageSwapCache(page)) 768 try_to_free_swap(page); 769 unlock_page(page); 770 putback_lru_page(page); 771 continue; 772 773 activate_locked: 774 /* Not a candidate for swapping, so reclaim swap space. */ 775 if (PageSwapCache(page) && vm_swap_full()) 776 try_to_free_swap(page); 777 VM_BUG_ON(PageActive(page)); 778 SetPageActive(page); 779 pgactivate++; 780 keep_locked: 781 unlock_page(page); 782 keep: 783 list_add(&page->lru, &ret_pages); 784 VM_BUG_ON(PageLRU(page) || PageUnevictable(page)); 785 } 786 list_splice(&ret_pages, page_list); 787 if (pagevec_count(&freed_pvec)) 788 __pagevec_free(&freed_pvec); 789 count_vm_events(PGACTIVATE, pgactivate); 790 return nr_reclaimed; 791 } 792 793 /* LRU Isolation modes. */ 794 #define ISOLATE_INACTIVE 0 /* Isolate inactive pages. */ 795 #define ISOLATE_ACTIVE 1 /* Isolate active pages. */ 796 #define ISOLATE_BOTH 2 /* Isolate both active and inactive pages. */ 797 798 /* 799 * Attempt to remove the specified page from its LRU. Only take this page 800 * if it is of the appropriate PageActive status. Pages which are being 801 * freed elsewhere are also ignored. 802 * 803 * page: page to consider 804 * mode: one of the LRU isolation modes defined above 805 * 806 * returns 0 on success, -ve errno on failure. 807 */ 808 int __isolate_lru_page(struct page *page, int mode, int file) 809 { 810 int ret = -EINVAL; 811 812 /* Only take pages on the LRU. */ 813 if (!PageLRU(page)) 814 return ret; 815 816 /* 817 * When checking the active state, we need to be sure we are 818 * dealing with comparible boolean values. Take the logical not 819 * of each. 820 */ 821 if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode)) 822 return ret; 823 824 if (mode != ISOLATE_BOTH && (!page_is_file_cache(page) != !file)) 825 return ret; 826 827 /* 828 * When this function is being called for lumpy reclaim, we 829 * initially look into all LRU pages, active, inactive and 830 * unevictable; only give shrink_page_list evictable pages. 831 */ 832 if (PageUnevictable(page)) 833 return ret; 834 835 ret = -EBUSY; 836 837 if (likely(get_page_unless_zero(page))) { 838 /* 839 * Be careful not to clear PageLRU until after we're 840 * sure the page is not being freed elsewhere -- the 841 * page release code relies on it. 842 */ 843 ClearPageLRU(page); 844 ret = 0; 845 } 846 847 return ret; 848 } 849 850 /* 851 * zone->lru_lock is heavily contended. Some of the functions that 852 * shrink the lists perform better by taking out a batch of pages 853 * and working on them outside the LRU lock. 854 * 855 * For pagecache intensive workloads, this function is the hottest 856 * spot in the kernel (apart from copy_*_user functions). 857 * 858 * Appropriate locks must be held before calling this function. 859 * 860 * @nr_to_scan: The number of pages to look through on the list. 861 * @src: The LRU list to pull pages off. 862 * @dst: The temp list to put pages on to. 863 * @scanned: The number of pages that were scanned. 864 * @order: The caller's attempted allocation order 865 * @mode: One of the LRU isolation modes 866 * @file: True [1] if isolating file [!anon] pages 867 * 868 * returns how many pages were moved onto *@dst. 869 */ 870 static unsigned long isolate_lru_pages(unsigned long nr_to_scan, 871 struct list_head *src, struct list_head *dst, 872 unsigned long *scanned, int order, int mode, int file) 873 { 874 unsigned long nr_taken = 0; 875 unsigned long scan; 876 877 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) { 878 struct page *page; 879 unsigned long pfn; 880 unsigned long end_pfn; 881 unsigned long page_pfn; 882 int zone_id; 883 884 page = lru_to_page(src); 885 prefetchw_prev_lru_page(page, src, flags); 886 887 VM_BUG_ON(!PageLRU(page)); 888 889 switch (__isolate_lru_page(page, mode, file)) { 890 case 0: 891 list_move(&page->lru, dst); 892 mem_cgroup_del_lru(page); 893 nr_taken++; 894 break; 895 896 case -EBUSY: 897 /* else it is being freed elsewhere */ 898 list_move(&page->lru, src); 899 mem_cgroup_rotate_lru_list(page, page_lru(page)); 900 continue; 901 902 default: 903 BUG(); 904 } 905 906 if (!order) 907 continue; 908 909 /* 910 * Attempt to take all pages in the order aligned region 911 * surrounding the tag page. Only take those pages of 912 * the same active state as that tag page. We may safely 913 * round the target page pfn down to the requested order 914 * as the mem_map is guarenteed valid out to MAX_ORDER, 915 * where that page is in a different zone we will detect 916 * it from its zone id and abort this block scan. 917 */ 918 zone_id = page_zone_id(page); 919 page_pfn = page_to_pfn(page); 920 pfn = page_pfn & ~((1 << order) - 1); 921 end_pfn = pfn + (1 << order); 922 for (; pfn < end_pfn; pfn++) { 923 struct page *cursor_page; 924 925 /* The target page is in the block, ignore it. */ 926 if (unlikely(pfn == page_pfn)) 927 continue; 928 929 /* Avoid holes within the zone. */ 930 if (unlikely(!pfn_valid_within(pfn))) 931 break; 932 933 cursor_page = pfn_to_page(pfn); 934 935 /* Check that we have not crossed a zone boundary. */ 936 if (unlikely(page_zone_id(cursor_page) != zone_id)) 937 continue; 938 if (__isolate_lru_page(cursor_page, mode, file) == 0) { 939 list_move(&cursor_page->lru, dst); 940 mem_cgroup_del_lru(cursor_page); 941 nr_taken++; 942 scan++; 943 } 944 } 945 } 946 947 *scanned = scan; 948 return nr_taken; 949 } 950 951 static unsigned long isolate_pages_global(unsigned long nr, 952 struct list_head *dst, 953 unsigned long *scanned, int order, 954 int mode, struct zone *z, 955 struct mem_cgroup *mem_cont, 956 int active, int file) 957 { 958 int lru = LRU_BASE; 959 if (active) 960 lru += LRU_ACTIVE; 961 if (file) 962 lru += LRU_FILE; 963 return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order, 964 mode, !!file); 965 } 966 967 /* 968 * clear_active_flags() is a helper for shrink_active_list(), clearing 969 * any active bits from the pages in the list. 970 */ 971 static unsigned long clear_active_flags(struct list_head *page_list, 972 unsigned int *count) 973 { 974 int nr_active = 0; 975 int lru; 976 struct page *page; 977 978 list_for_each_entry(page, page_list, lru) { 979 lru = page_is_file_cache(page); 980 if (PageActive(page)) { 981 lru += LRU_ACTIVE; 982 ClearPageActive(page); 983 nr_active++; 984 } 985 count[lru]++; 986 } 987 988 return nr_active; 989 } 990 991 /** 992 * isolate_lru_page - tries to isolate a page from its LRU list 993 * @page: page to isolate from its LRU list 994 * 995 * Isolates a @page from an LRU list, clears PageLRU and adjusts the 996 * vmstat statistic corresponding to whatever LRU list the page was on. 997 * 998 * Returns 0 if the page was removed from an LRU list. 999 * Returns -EBUSY if the page was not on an LRU list. 1000 * 1001 * The returned page will have PageLRU() cleared. If it was found on 1002 * the active list, it will have PageActive set. If it was found on 1003 * the unevictable list, it will have the PageUnevictable bit set. That flag 1004 * may need to be cleared by the caller before letting the page go. 1005 * 1006 * The vmstat statistic corresponding to the list on which the page was 1007 * found will be decremented. 1008 * 1009 * Restrictions: 1010 * (1) Must be called with an elevated refcount on the page. This is a 1011 * fundamentnal difference from isolate_lru_pages (which is called 1012 * without a stable reference). 1013 * (2) the lru_lock must not be held. 1014 * (3) interrupts must be enabled. 1015 */ 1016 int isolate_lru_page(struct page *page) 1017 { 1018 int ret = -EBUSY; 1019 1020 if (PageLRU(page)) { 1021 struct zone *zone = page_zone(page); 1022 1023 spin_lock_irq(&zone->lru_lock); 1024 if (PageLRU(page) && get_page_unless_zero(page)) { 1025 int lru = page_lru(page); 1026 ret = 0; 1027 ClearPageLRU(page); 1028 1029 del_page_from_lru_list(zone, page, lru); 1030 } 1031 spin_unlock_irq(&zone->lru_lock); 1032 } 1033 return ret; 1034 } 1035 1036 /* 1037 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number 1038 * of reclaimed pages 1039 */ 1040 static unsigned long shrink_inactive_list(unsigned long max_scan, 1041 struct zone *zone, struct scan_control *sc, 1042 int priority, int file) 1043 { 1044 LIST_HEAD(page_list); 1045 struct pagevec pvec; 1046 unsigned long nr_scanned = 0; 1047 unsigned long nr_reclaimed = 0; 1048 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc); 1049 int lumpy_reclaim = 0; 1050 1051 /* 1052 * If we need a large contiguous chunk of memory, or have 1053 * trouble getting a small set of contiguous pages, we 1054 * will reclaim both active and inactive pages. 1055 * 1056 * We use the same threshold as pageout congestion_wait below. 1057 */ 1058 if (sc->order > PAGE_ALLOC_COSTLY_ORDER) 1059 lumpy_reclaim = 1; 1060 else if (sc->order && priority < DEF_PRIORITY - 2) 1061 lumpy_reclaim = 1; 1062 1063 pagevec_init(&pvec, 1); 1064 1065 lru_add_drain(); 1066 spin_lock_irq(&zone->lru_lock); 1067 do { 1068 struct page *page; 1069 unsigned long nr_taken; 1070 unsigned long nr_scan; 1071 unsigned long nr_freed; 1072 unsigned long nr_active; 1073 unsigned int count[NR_LRU_LISTS] = { 0, }; 1074 int mode = lumpy_reclaim ? ISOLATE_BOTH : ISOLATE_INACTIVE; 1075 1076 nr_taken = sc->isolate_pages(sc->swap_cluster_max, 1077 &page_list, &nr_scan, sc->order, mode, 1078 zone, sc->mem_cgroup, 0, file); 1079 nr_active = clear_active_flags(&page_list, count); 1080 __count_vm_events(PGDEACTIVATE, nr_active); 1081 1082 __mod_zone_page_state(zone, NR_ACTIVE_FILE, 1083 -count[LRU_ACTIVE_FILE]); 1084 __mod_zone_page_state(zone, NR_INACTIVE_FILE, 1085 -count[LRU_INACTIVE_FILE]); 1086 __mod_zone_page_state(zone, NR_ACTIVE_ANON, 1087 -count[LRU_ACTIVE_ANON]); 1088 __mod_zone_page_state(zone, NR_INACTIVE_ANON, 1089 -count[LRU_INACTIVE_ANON]); 1090 1091 if (scanning_global_lru(sc)) 1092 zone->pages_scanned += nr_scan; 1093 1094 reclaim_stat->recent_scanned[0] += count[LRU_INACTIVE_ANON]; 1095 reclaim_stat->recent_scanned[0] += count[LRU_ACTIVE_ANON]; 1096 reclaim_stat->recent_scanned[1] += count[LRU_INACTIVE_FILE]; 1097 reclaim_stat->recent_scanned[1] += count[LRU_ACTIVE_FILE]; 1098 1099 spin_unlock_irq(&zone->lru_lock); 1100 1101 nr_scanned += nr_scan; 1102 nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC); 1103 1104 /* 1105 * If we are direct reclaiming for contiguous pages and we do 1106 * not reclaim everything in the list, try again and wait 1107 * for IO to complete. This will stall high-order allocations 1108 * but that should be acceptable to the caller 1109 */ 1110 if (nr_freed < nr_taken && !current_is_kswapd() && 1111 lumpy_reclaim) { 1112 congestion_wait(BLK_RW_ASYNC, HZ/10); 1113 1114 /* 1115 * The attempt at page out may have made some 1116 * of the pages active, mark them inactive again. 1117 */ 1118 nr_active = clear_active_flags(&page_list, count); 1119 count_vm_events(PGDEACTIVATE, nr_active); 1120 1121 nr_freed += shrink_page_list(&page_list, sc, 1122 PAGEOUT_IO_SYNC); 1123 } 1124 1125 nr_reclaimed += nr_freed; 1126 local_irq_disable(); 1127 if (current_is_kswapd()) { 1128 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scan); 1129 __count_vm_events(KSWAPD_STEAL, nr_freed); 1130 } else if (scanning_global_lru(sc)) 1131 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scan); 1132 1133 __count_zone_vm_events(PGSTEAL, zone, nr_freed); 1134 1135 if (nr_taken == 0) 1136 goto done; 1137 1138 spin_lock(&zone->lru_lock); 1139 /* 1140 * Put back any unfreeable pages. 1141 */ 1142 while (!list_empty(&page_list)) { 1143 int lru; 1144 page = lru_to_page(&page_list); 1145 VM_BUG_ON(PageLRU(page)); 1146 list_del(&page->lru); 1147 if (unlikely(!page_evictable(page, NULL))) { 1148 spin_unlock_irq(&zone->lru_lock); 1149 putback_lru_page(page); 1150 spin_lock_irq(&zone->lru_lock); 1151 continue; 1152 } 1153 SetPageLRU(page); 1154 lru = page_lru(page); 1155 add_page_to_lru_list(zone, page, lru); 1156 if (PageActive(page)) { 1157 int file = !!page_is_file_cache(page); 1158 reclaim_stat->recent_rotated[file]++; 1159 } 1160 if (!pagevec_add(&pvec, page)) { 1161 spin_unlock_irq(&zone->lru_lock); 1162 __pagevec_release(&pvec); 1163 spin_lock_irq(&zone->lru_lock); 1164 } 1165 } 1166 } while (nr_scanned < max_scan); 1167 spin_unlock(&zone->lru_lock); 1168 done: 1169 local_irq_enable(); 1170 pagevec_release(&pvec); 1171 return nr_reclaimed; 1172 } 1173 1174 /* 1175 * We are about to scan this zone at a certain priority level. If that priority 1176 * level is smaller (ie: more urgent) than the previous priority, then note 1177 * that priority level within the zone. This is done so that when the next 1178 * process comes in to scan this zone, it will immediately start out at this 1179 * priority level rather than having to build up its own scanning priority. 1180 * Here, this priority affects only the reclaim-mapped threshold. 1181 */ 1182 static inline void note_zone_scanning_priority(struct zone *zone, int priority) 1183 { 1184 if (priority < zone->prev_priority) 1185 zone->prev_priority = priority; 1186 } 1187 1188 /* 1189 * This moves pages from the active list to the inactive list. 1190 * 1191 * We move them the other way if the page is referenced by one or more 1192 * processes, from rmap. 1193 * 1194 * If the pages are mostly unmapped, the processing is fast and it is 1195 * appropriate to hold zone->lru_lock across the whole operation. But if 1196 * the pages are mapped, the processing is slow (page_referenced()) so we 1197 * should drop zone->lru_lock around each page. It's impossible to balance 1198 * this, so instead we remove the pages from the LRU while processing them. 1199 * It is safe to rely on PG_active against the non-LRU pages in here because 1200 * nobody will play with that bit on a non-LRU page. 1201 * 1202 * The downside is that we have to touch page->_count against each page. 1203 * But we had to alter page->flags anyway. 1204 */ 1205 1206 static void move_active_pages_to_lru(struct zone *zone, 1207 struct list_head *list, 1208 enum lru_list lru) 1209 { 1210 unsigned long pgmoved = 0; 1211 struct pagevec pvec; 1212 struct page *page; 1213 1214 pagevec_init(&pvec, 1); 1215 1216 while (!list_empty(list)) { 1217 page = lru_to_page(list); 1218 prefetchw_prev_lru_page(page, list, flags); 1219 1220 VM_BUG_ON(PageLRU(page)); 1221 SetPageLRU(page); 1222 1223 VM_BUG_ON(!PageActive(page)); 1224 if (!is_active_lru(lru)) 1225 ClearPageActive(page); /* we are de-activating */ 1226 1227 list_move(&page->lru, &zone->lru[lru].list); 1228 mem_cgroup_add_lru_list(page, lru); 1229 pgmoved++; 1230 1231 if (!pagevec_add(&pvec, page) || list_empty(list)) { 1232 spin_unlock_irq(&zone->lru_lock); 1233 if (buffer_heads_over_limit) 1234 pagevec_strip(&pvec); 1235 __pagevec_release(&pvec); 1236 spin_lock_irq(&zone->lru_lock); 1237 } 1238 } 1239 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved); 1240 if (!is_active_lru(lru)) 1241 __count_vm_events(PGDEACTIVATE, pgmoved); 1242 } 1243 1244 static void shrink_active_list(unsigned long nr_pages, struct zone *zone, 1245 struct scan_control *sc, int priority, int file) 1246 { 1247 unsigned long pgmoved; 1248 unsigned long pgscanned; 1249 unsigned long vm_flags; 1250 LIST_HEAD(l_hold); /* The pages which were snipped off */ 1251 LIST_HEAD(l_active); 1252 LIST_HEAD(l_inactive); 1253 struct page *page; 1254 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc); 1255 1256 lru_add_drain(); 1257 spin_lock_irq(&zone->lru_lock); 1258 pgmoved = sc->isolate_pages(nr_pages, &l_hold, &pgscanned, sc->order, 1259 ISOLATE_ACTIVE, zone, 1260 sc->mem_cgroup, 1, file); 1261 /* 1262 * zone->pages_scanned is used for detect zone's oom 1263 * mem_cgroup remembers nr_scan by itself. 1264 */ 1265 if (scanning_global_lru(sc)) { 1266 zone->pages_scanned += pgscanned; 1267 } 1268 reclaim_stat->recent_scanned[!!file] += pgmoved; 1269 1270 __count_zone_vm_events(PGREFILL, zone, pgscanned); 1271 if (file) 1272 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -pgmoved); 1273 else 1274 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -pgmoved); 1275 spin_unlock_irq(&zone->lru_lock); 1276 1277 pgmoved = 0; /* count referenced (mapping) mapped pages */ 1278 while (!list_empty(&l_hold)) { 1279 cond_resched(); 1280 page = lru_to_page(&l_hold); 1281 list_del(&page->lru); 1282 1283 if (unlikely(!page_evictable(page, NULL))) { 1284 putback_lru_page(page); 1285 continue; 1286 } 1287 1288 /* page_referenced clears PageReferenced */ 1289 if (page_mapping_inuse(page) && 1290 page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) { 1291 pgmoved++; 1292 /* 1293 * Identify referenced, file-backed active pages and 1294 * give them one more trip around the active list. So 1295 * that executable code get better chances to stay in 1296 * memory under moderate memory pressure. Anon pages 1297 * are not likely to be evicted by use-once streaming 1298 * IO, plus JVM can create lots of anon VM_EXEC pages, 1299 * so we ignore them here. 1300 */ 1301 if ((vm_flags & VM_EXEC) && !PageAnon(page)) { 1302 list_add(&page->lru, &l_active); 1303 continue; 1304 } 1305 } 1306 1307 list_add(&page->lru, &l_inactive); 1308 } 1309 1310 /* 1311 * Move pages back to the lru list. 1312 */ 1313 spin_lock_irq(&zone->lru_lock); 1314 /* 1315 * Count referenced pages from currently used mappings as rotated, 1316 * even though only some of them are actually re-activated. This 1317 * helps balance scan pressure between file and anonymous pages in 1318 * get_scan_ratio. 1319 */ 1320 reclaim_stat->recent_rotated[!!file] += pgmoved; 1321 1322 move_active_pages_to_lru(zone, &l_active, 1323 LRU_ACTIVE + file * LRU_FILE); 1324 move_active_pages_to_lru(zone, &l_inactive, 1325 LRU_BASE + file * LRU_FILE); 1326 1327 spin_unlock_irq(&zone->lru_lock); 1328 } 1329 1330 static int inactive_anon_is_low_global(struct zone *zone) 1331 { 1332 unsigned long active, inactive; 1333 1334 active = zone_page_state(zone, NR_ACTIVE_ANON); 1335 inactive = zone_page_state(zone, NR_INACTIVE_ANON); 1336 1337 if (inactive * zone->inactive_ratio < active) 1338 return 1; 1339 1340 return 0; 1341 } 1342 1343 /** 1344 * inactive_anon_is_low - check if anonymous pages need to be deactivated 1345 * @zone: zone to check 1346 * @sc: scan control of this context 1347 * 1348 * Returns true if the zone does not have enough inactive anon pages, 1349 * meaning some active anon pages need to be deactivated. 1350 */ 1351 static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc) 1352 { 1353 int low; 1354 1355 if (scanning_global_lru(sc)) 1356 low = inactive_anon_is_low_global(zone); 1357 else 1358 low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup); 1359 return low; 1360 } 1361 1362 static int inactive_file_is_low_global(struct zone *zone) 1363 { 1364 unsigned long active, inactive; 1365 1366 active = zone_page_state(zone, NR_ACTIVE_FILE); 1367 inactive = zone_page_state(zone, NR_INACTIVE_FILE); 1368 1369 return (active > inactive); 1370 } 1371 1372 /** 1373 * inactive_file_is_low - check if file pages need to be deactivated 1374 * @zone: zone to check 1375 * @sc: scan control of this context 1376 * 1377 * When the system is doing streaming IO, memory pressure here 1378 * ensures that active file pages get deactivated, until more 1379 * than half of the file pages are on the inactive list. 1380 * 1381 * Once we get to that situation, protect the system's working 1382 * set from being evicted by disabling active file page aging. 1383 * 1384 * This uses a different ratio than the anonymous pages, because 1385 * the page cache uses a use-once replacement algorithm. 1386 */ 1387 static int inactive_file_is_low(struct zone *zone, struct scan_control *sc) 1388 { 1389 int low; 1390 1391 if (scanning_global_lru(sc)) 1392 low = inactive_file_is_low_global(zone); 1393 else 1394 low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup); 1395 return low; 1396 } 1397 1398 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 1399 struct zone *zone, struct scan_control *sc, int priority) 1400 { 1401 int file = is_file_lru(lru); 1402 1403 if (lru == LRU_ACTIVE_FILE && inactive_file_is_low(zone, sc)) { 1404 shrink_active_list(nr_to_scan, zone, sc, priority, file); 1405 return 0; 1406 } 1407 1408 if (lru == LRU_ACTIVE_ANON && inactive_anon_is_low(zone, sc)) { 1409 shrink_active_list(nr_to_scan, zone, sc, priority, file); 1410 return 0; 1411 } 1412 return shrink_inactive_list(nr_to_scan, zone, sc, priority, file); 1413 } 1414 1415 /* 1416 * Determine how aggressively the anon and file LRU lists should be 1417 * scanned. The relative value of each set of LRU lists is determined 1418 * by looking at the fraction of the pages scanned we did rotate back 1419 * onto the active list instead of evict. 1420 * 1421 * percent[0] specifies how much pressure to put on ram/swap backed 1422 * memory, while percent[1] determines pressure on the file LRUs. 1423 */ 1424 static void get_scan_ratio(struct zone *zone, struct scan_control *sc, 1425 unsigned long *percent) 1426 { 1427 unsigned long anon, file, free; 1428 unsigned long anon_prio, file_prio; 1429 unsigned long ap, fp; 1430 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc); 1431 1432 anon = zone_nr_pages(zone, sc, LRU_ACTIVE_ANON) + 1433 zone_nr_pages(zone, sc, LRU_INACTIVE_ANON); 1434 file = zone_nr_pages(zone, sc, LRU_ACTIVE_FILE) + 1435 zone_nr_pages(zone, sc, LRU_INACTIVE_FILE); 1436 1437 if (scanning_global_lru(sc)) { 1438 free = zone_page_state(zone, NR_FREE_PAGES); 1439 /* If we have very few page cache pages, 1440 force-scan anon pages. */ 1441 if (unlikely(file + free <= high_wmark_pages(zone))) { 1442 percent[0] = 100; 1443 percent[1] = 0; 1444 return; 1445 } 1446 } 1447 1448 /* 1449 * OK, so we have swap space and a fair amount of page cache 1450 * pages. We use the recently rotated / recently scanned 1451 * ratios to determine how valuable each cache is. 1452 * 1453 * Because workloads change over time (and to avoid overflow) 1454 * we keep these statistics as a floating average, which ends 1455 * up weighing recent references more than old ones. 1456 * 1457 * anon in [0], file in [1] 1458 */ 1459 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) { 1460 spin_lock_irq(&zone->lru_lock); 1461 reclaim_stat->recent_scanned[0] /= 2; 1462 reclaim_stat->recent_rotated[0] /= 2; 1463 spin_unlock_irq(&zone->lru_lock); 1464 } 1465 1466 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) { 1467 spin_lock_irq(&zone->lru_lock); 1468 reclaim_stat->recent_scanned[1] /= 2; 1469 reclaim_stat->recent_rotated[1] /= 2; 1470 spin_unlock_irq(&zone->lru_lock); 1471 } 1472 1473 /* 1474 * With swappiness at 100, anonymous and file have the same priority. 1475 * This scanning priority is essentially the inverse of IO cost. 1476 */ 1477 anon_prio = sc->swappiness; 1478 file_prio = 200 - sc->swappiness; 1479 1480 /* 1481 * The amount of pressure on anon vs file pages is inversely 1482 * proportional to the fraction of recently scanned pages on 1483 * each list that were recently referenced and in active use. 1484 */ 1485 ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1); 1486 ap /= reclaim_stat->recent_rotated[0] + 1; 1487 1488 fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1); 1489 fp /= reclaim_stat->recent_rotated[1] + 1; 1490 1491 /* Normalize to percentages */ 1492 percent[0] = 100 * ap / (ap + fp + 1); 1493 percent[1] = 100 - percent[0]; 1494 } 1495 1496 /* 1497 * Smallish @nr_to_scan's are deposited in @nr_saved_scan, 1498 * until we collected @swap_cluster_max pages to scan. 1499 */ 1500 static unsigned long nr_scan_try_batch(unsigned long nr_to_scan, 1501 unsigned long *nr_saved_scan, 1502 unsigned long swap_cluster_max) 1503 { 1504 unsigned long nr; 1505 1506 *nr_saved_scan += nr_to_scan; 1507 nr = *nr_saved_scan; 1508 1509 if (nr >= swap_cluster_max) 1510 *nr_saved_scan = 0; 1511 else 1512 nr = 0; 1513 1514 return nr; 1515 } 1516 1517 /* 1518 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim. 1519 */ 1520 static void shrink_zone(int priority, struct zone *zone, 1521 struct scan_control *sc) 1522 { 1523 unsigned long nr[NR_LRU_LISTS]; 1524 unsigned long nr_to_scan; 1525 unsigned long percent[2]; /* anon @ 0; file @ 1 */ 1526 enum lru_list l; 1527 unsigned long nr_reclaimed = sc->nr_reclaimed; 1528 unsigned long swap_cluster_max = sc->swap_cluster_max; 1529 int noswap = 0; 1530 1531 /* If we have no swap space, do not bother scanning anon pages. */ 1532 if (!sc->may_swap || (nr_swap_pages <= 0)) { 1533 noswap = 1; 1534 percent[0] = 0; 1535 percent[1] = 100; 1536 } else 1537 get_scan_ratio(zone, sc, percent); 1538 1539 for_each_evictable_lru(l) { 1540 int file = is_file_lru(l); 1541 unsigned long scan; 1542 1543 scan = zone_nr_pages(zone, sc, l); 1544 if (priority || noswap) { 1545 scan >>= priority; 1546 scan = (scan * percent[file]) / 100; 1547 } 1548 if (scanning_global_lru(sc)) 1549 nr[l] = nr_scan_try_batch(scan, 1550 &zone->lru[l].nr_saved_scan, 1551 swap_cluster_max); 1552 else 1553 nr[l] = scan; 1554 } 1555 1556 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 1557 nr[LRU_INACTIVE_FILE]) { 1558 for_each_evictable_lru(l) { 1559 if (nr[l]) { 1560 nr_to_scan = min(nr[l], swap_cluster_max); 1561 nr[l] -= nr_to_scan; 1562 1563 nr_reclaimed += shrink_list(l, nr_to_scan, 1564 zone, sc, priority); 1565 } 1566 } 1567 /* 1568 * On large memory systems, scan >> priority can become 1569 * really large. This is fine for the starting priority; 1570 * we want to put equal scanning pressure on each zone. 1571 * However, if the VM has a harder time of freeing pages, 1572 * with multiple processes reclaiming pages, the total 1573 * freeing target can get unreasonably large. 1574 */ 1575 if (nr_reclaimed > swap_cluster_max && 1576 priority < DEF_PRIORITY && !current_is_kswapd()) 1577 break; 1578 } 1579 1580 sc->nr_reclaimed = nr_reclaimed; 1581 1582 /* 1583 * Even if we did not try to evict anon pages at all, we want to 1584 * rebalance the anon lru active/inactive ratio. 1585 */ 1586 if (inactive_anon_is_low(zone, sc) && nr_swap_pages > 0) 1587 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0); 1588 1589 throttle_vm_writeout(sc->gfp_mask); 1590 } 1591 1592 /* 1593 * This is the direct reclaim path, for page-allocating processes. We only 1594 * try to reclaim pages from zones which will satisfy the caller's allocation 1595 * request. 1596 * 1597 * We reclaim from a zone even if that zone is over high_wmark_pages(zone). 1598 * Because: 1599 * a) The caller may be trying to free *extra* pages to satisfy a higher-order 1600 * allocation or 1601 * b) The target zone may be at high_wmark_pages(zone) but the lower zones 1602 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min' 1603 * zone defense algorithm. 1604 * 1605 * If a zone is deemed to be full of pinned pages then just give it a light 1606 * scan then give up on it. 1607 */ 1608 static void shrink_zones(int priority, struct zonelist *zonelist, 1609 struct scan_control *sc) 1610 { 1611 enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask); 1612 struct zoneref *z; 1613 struct zone *zone; 1614 1615 sc->all_unreclaimable = 1; 1616 for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx, 1617 sc->nodemask) { 1618 if (!populated_zone(zone)) 1619 continue; 1620 /* 1621 * Take care memory controller reclaiming has small influence 1622 * to global LRU. 1623 */ 1624 if (scanning_global_lru(sc)) { 1625 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 1626 continue; 1627 note_zone_scanning_priority(zone, priority); 1628 1629 if (zone_is_all_unreclaimable(zone) && 1630 priority != DEF_PRIORITY) 1631 continue; /* Let kswapd poll it */ 1632 sc->all_unreclaimable = 0; 1633 } else { 1634 /* 1635 * Ignore cpuset limitation here. We just want to reduce 1636 * # of used pages by us regardless of memory shortage. 1637 */ 1638 sc->all_unreclaimable = 0; 1639 mem_cgroup_note_reclaim_priority(sc->mem_cgroup, 1640 priority); 1641 } 1642 1643 shrink_zone(priority, zone, sc); 1644 } 1645 } 1646 1647 /* 1648 * This is the main entry point to direct page reclaim. 1649 * 1650 * If a full scan of the inactive list fails to free enough memory then we 1651 * are "out of memory" and something needs to be killed. 1652 * 1653 * If the caller is !__GFP_FS then the probability of a failure is reasonably 1654 * high - the zone may be full of dirty or under-writeback pages, which this 1655 * caller can't do much about. We kick pdflush and take explicit naps in the 1656 * hope that some of these pages can be written. But if the allocating task 1657 * holds filesystem locks which prevent writeout this might not work, and the 1658 * allocation attempt will fail. 1659 * 1660 * returns: 0, if no pages reclaimed 1661 * else, the number of pages reclaimed 1662 */ 1663 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 1664 struct scan_control *sc) 1665 { 1666 int priority; 1667 unsigned long ret = 0; 1668 unsigned long total_scanned = 0; 1669 struct reclaim_state *reclaim_state = current->reclaim_state; 1670 unsigned long lru_pages = 0; 1671 struct zoneref *z; 1672 struct zone *zone; 1673 enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask); 1674 1675 delayacct_freepages_start(); 1676 1677 if (scanning_global_lru(sc)) 1678 count_vm_event(ALLOCSTALL); 1679 /* 1680 * mem_cgroup will not do shrink_slab. 1681 */ 1682 if (scanning_global_lru(sc)) { 1683 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 1684 1685 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 1686 continue; 1687 1688 lru_pages += zone_lru_pages(zone); 1689 } 1690 } 1691 1692 for (priority = DEF_PRIORITY; priority >= 0; priority--) { 1693 sc->nr_scanned = 0; 1694 if (!priority) 1695 disable_swap_token(); 1696 shrink_zones(priority, zonelist, sc); 1697 /* 1698 * Don't shrink slabs when reclaiming memory from 1699 * over limit cgroups 1700 */ 1701 if (scanning_global_lru(sc)) { 1702 shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages); 1703 if (reclaim_state) { 1704 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 1705 reclaim_state->reclaimed_slab = 0; 1706 } 1707 } 1708 total_scanned += sc->nr_scanned; 1709 if (sc->nr_reclaimed >= sc->swap_cluster_max) { 1710 ret = sc->nr_reclaimed; 1711 goto out; 1712 } 1713 1714 /* 1715 * Try to write back as many pages as we just scanned. This 1716 * tends to cause slow streaming writers to write data to the 1717 * disk smoothly, at the dirtying rate, which is nice. But 1718 * that's undesirable in laptop mode, where we *want* lumpy 1719 * writeout. So in laptop mode, write out the whole world. 1720 */ 1721 if (total_scanned > sc->swap_cluster_max + 1722 sc->swap_cluster_max / 2) { 1723 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned); 1724 sc->may_writepage = 1; 1725 } 1726 1727 /* Take a nap, wait for some writeback to complete */ 1728 if (sc->nr_scanned && priority < DEF_PRIORITY - 2) 1729 congestion_wait(BLK_RW_ASYNC, HZ/10); 1730 } 1731 /* top priority shrink_zones still had more to do? don't OOM, then */ 1732 if (!sc->all_unreclaimable && scanning_global_lru(sc)) 1733 ret = sc->nr_reclaimed; 1734 out: 1735 /* 1736 * Now that we've scanned all the zones at this priority level, note 1737 * that level within the zone so that the next thread which performs 1738 * scanning of this zone will immediately start out at this priority 1739 * level. This affects only the decision whether or not to bring 1740 * mapped pages onto the inactive list. 1741 */ 1742 if (priority < 0) 1743 priority = 0; 1744 1745 if (scanning_global_lru(sc)) { 1746 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 1747 1748 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 1749 continue; 1750 1751 zone->prev_priority = priority; 1752 } 1753 } else 1754 mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority); 1755 1756 delayacct_freepages_end(); 1757 1758 return ret; 1759 } 1760 1761 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 1762 gfp_t gfp_mask, nodemask_t *nodemask) 1763 { 1764 struct scan_control sc = { 1765 .gfp_mask = gfp_mask, 1766 .may_writepage = !laptop_mode, 1767 .swap_cluster_max = SWAP_CLUSTER_MAX, 1768 .may_unmap = 1, 1769 .may_swap = 1, 1770 .swappiness = vm_swappiness, 1771 .order = order, 1772 .mem_cgroup = NULL, 1773 .isolate_pages = isolate_pages_global, 1774 .nodemask = nodemask, 1775 }; 1776 1777 return do_try_to_free_pages(zonelist, &sc); 1778 } 1779 1780 #ifdef CONFIG_CGROUP_MEM_RES_CTLR 1781 1782 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont, 1783 gfp_t gfp_mask, 1784 bool noswap, 1785 unsigned int swappiness) 1786 { 1787 struct scan_control sc = { 1788 .may_writepage = !laptop_mode, 1789 .may_unmap = 1, 1790 .may_swap = !noswap, 1791 .swap_cluster_max = SWAP_CLUSTER_MAX, 1792 .swappiness = swappiness, 1793 .order = 0, 1794 .mem_cgroup = mem_cont, 1795 .isolate_pages = mem_cgroup_isolate_pages, 1796 .nodemask = NULL, /* we don't care the placement */ 1797 }; 1798 struct zonelist *zonelist; 1799 1800 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 1801 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 1802 zonelist = NODE_DATA(numa_node_id())->node_zonelists; 1803 return do_try_to_free_pages(zonelist, &sc); 1804 } 1805 #endif 1806 1807 /* 1808 * For kswapd, balance_pgdat() will work across all this node's zones until 1809 * they are all at high_wmark_pages(zone). 1810 * 1811 * Returns the number of pages which were actually freed. 1812 * 1813 * There is special handling here for zones which are full of pinned pages. 1814 * This can happen if the pages are all mlocked, or if they are all used by 1815 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb. 1816 * What we do is to detect the case where all pages in the zone have been 1817 * scanned twice and there has been zero successful reclaim. Mark the zone as 1818 * dead and from now on, only perform a short scan. Basically we're polling 1819 * the zone for when the problem goes away. 1820 * 1821 * kswapd scans the zones in the highmem->normal->dma direction. It skips 1822 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 1823 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the 1824 * lower zones regardless of the number of free pages in the lower zones. This 1825 * interoperates with the page allocator fallback scheme to ensure that aging 1826 * of pages is balanced across the zones. 1827 */ 1828 static unsigned long balance_pgdat(pg_data_t *pgdat, int order) 1829 { 1830 int all_zones_ok; 1831 int priority; 1832 int i; 1833 unsigned long total_scanned; 1834 struct reclaim_state *reclaim_state = current->reclaim_state; 1835 struct scan_control sc = { 1836 .gfp_mask = GFP_KERNEL, 1837 .may_unmap = 1, 1838 .may_swap = 1, 1839 .swap_cluster_max = SWAP_CLUSTER_MAX, 1840 .swappiness = vm_swappiness, 1841 .order = order, 1842 .mem_cgroup = NULL, 1843 .isolate_pages = isolate_pages_global, 1844 }; 1845 /* 1846 * temp_priority is used to remember the scanning priority at which 1847 * this zone was successfully refilled to 1848 * free_pages == high_wmark_pages(zone). 1849 */ 1850 int temp_priority[MAX_NR_ZONES]; 1851 1852 loop_again: 1853 total_scanned = 0; 1854 sc.nr_reclaimed = 0; 1855 sc.may_writepage = !laptop_mode; 1856 count_vm_event(PAGEOUTRUN); 1857 1858 for (i = 0; i < pgdat->nr_zones; i++) 1859 temp_priority[i] = DEF_PRIORITY; 1860 1861 for (priority = DEF_PRIORITY; priority >= 0; priority--) { 1862 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */ 1863 unsigned long lru_pages = 0; 1864 1865 /* The swap token gets in the way of swapout... */ 1866 if (!priority) 1867 disable_swap_token(); 1868 1869 all_zones_ok = 1; 1870 1871 /* 1872 * Scan in the highmem->dma direction for the highest 1873 * zone which needs scanning 1874 */ 1875 for (i = pgdat->nr_zones - 1; i >= 0; i--) { 1876 struct zone *zone = pgdat->node_zones + i; 1877 1878 if (!populated_zone(zone)) 1879 continue; 1880 1881 if (zone_is_all_unreclaimable(zone) && 1882 priority != DEF_PRIORITY) 1883 continue; 1884 1885 /* 1886 * Do some background aging of the anon list, to give 1887 * pages a chance to be referenced before reclaiming. 1888 */ 1889 if (inactive_anon_is_low(zone, &sc)) 1890 shrink_active_list(SWAP_CLUSTER_MAX, zone, 1891 &sc, priority, 0); 1892 1893 if (!zone_watermark_ok(zone, order, 1894 high_wmark_pages(zone), 0, 0)) { 1895 end_zone = i; 1896 break; 1897 } 1898 } 1899 if (i < 0) 1900 goto out; 1901 1902 for (i = 0; i <= end_zone; i++) { 1903 struct zone *zone = pgdat->node_zones + i; 1904 1905 lru_pages += zone_lru_pages(zone); 1906 } 1907 1908 /* 1909 * Now scan the zone in the dma->highmem direction, stopping 1910 * at the last zone which needs scanning. 1911 * 1912 * We do this because the page allocator works in the opposite 1913 * direction. This prevents the page allocator from allocating 1914 * pages behind kswapd's direction of progress, which would 1915 * cause too much scanning of the lower zones. 1916 */ 1917 for (i = 0; i <= end_zone; i++) { 1918 struct zone *zone = pgdat->node_zones + i; 1919 int nr_slab; 1920 1921 if (!populated_zone(zone)) 1922 continue; 1923 1924 if (zone_is_all_unreclaimable(zone) && 1925 priority != DEF_PRIORITY) 1926 continue; 1927 1928 if (!zone_watermark_ok(zone, order, 1929 high_wmark_pages(zone), end_zone, 0)) 1930 all_zones_ok = 0; 1931 temp_priority[i] = priority; 1932 sc.nr_scanned = 0; 1933 note_zone_scanning_priority(zone, priority); 1934 /* 1935 * We put equal pressure on every zone, unless one 1936 * zone has way too many pages free already. 1937 */ 1938 if (!zone_watermark_ok(zone, order, 1939 8*high_wmark_pages(zone), end_zone, 0)) 1940 shrink_zone(priority, zone, &sc); 1941 reclaim_state->reclaimed_slab = 0; 1942 nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL, 1943 lru_pages); 1944 sc.nr_reclaimed += reclaim_state->reclaimed_slab; 1945 total_scanned += sc.nr_scanned; 1946 if (zone_is_all_unreclaimable(zone)) 1947 continue; 1948 if (nr_slab == 0 && zone->pages_scanned >= 1949 (zone_lru_pages(zone) * 6)) 1950 zone_set_flag(zone, 1951 ZONE_ALL_UNRECLAIMABLE); 1952 /* 1953 * If we've done a decent amount of scanning and 1954 * the reclaim ratio is low, start doing writepage 1955 * even in laptop mode 1956 */ 1957 if (total_scanned > SWAP_CLUSTER_MAX * 2 && 1958 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2) 1959 sc.may_writepage = 1; 1960 } 1961 if (all_zones_ok) 1962 break; /* kswapd: all done */ 1963 /* 1964 * OK, kswapd is getting into trouble. Take a nap, then take 1965 * another pass across the zones. 1966 */ 1967 if (total_scanned && priority < DEF_PRIORITY - 2) 1968 congestion_wait(BLK_RW_ASYNC, HZ/10); 1969 1970 /* 1971 * We do this so kswapd doesn't build up large priorities for 1972 * example when it is freeing in parallel with allocators. It 1973 * matches the direct reclaim path behaviour in terms of impact 1974 * on zone->*_priority. 1975 */ 1976 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX) 1977 break; 1978 } 1979 out: 1980 /* 1981 * Note within each zone the priority level at which this zone was 1982 * brought into a happy state. So that the next thread which scans this 1983 * zone will start out at that priority level. 1984 */ 1985 for (i = 0; i < pgdat->nr_zones; i++) { 1986 struct zone *zone = pgdat->node_zones + i; 1987 1988 zone->prev_priority = temp_priority[i]; 1989 } 1990 if (!all_zones_ok) { 1991 cond_resched(); 1992 1993 try_to_freeze(); 1994 1995 /* 1996 * Fragmentation may mean that the system cannot be 1997 * rebalanced for high-order allocations in all zones. 1998 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX, 1999 * it means the zones have been fully scanned and are still 2000 * not balanced. For high-order allocations, there is 2001 * little point trying all over again as kswapd may 2002 * infinite loop. 2003 * 2004 * Instead, recheck all watermarks at order-0 as they 2005 * are the most important. If watermarks are ok, kswapd will go 2006 * back to sleep. High-order users can still perform direct 2007 * reclaim if they wish. 2008 */ 2009 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX) 2010 order = sc.order = 0; 2011 2012 goto loop_again; 2013 } 2014 2015 return sc.nr_reclaimed; 2016 } 2017 2018 /* 2019 * The background pageout daemon, started as a kernel thread 2020 * from the init process. 2021 * 2022 * This basically trickles out pages so that we have _some_ 2023 * free memory available even if there is no other activity 2024 * that frees anything up. This is needed for things like routing 2025 * etc, where we otherwise might have all activity going on in 2026 * asynchronous contexts that cannot page things out. 2027 * 2028 * If there are applications that are active memory-allocators 2029 * (most normal use), this basically shouldn't matter. 2030 */ 2031 static int kswapd(void *p) 2032 { 2033 unsigned long order; 2034 pg_data_t *pgdat = (pg_data_t*)p; 2035 struct task_struct *tsk = current; 2036 DEFINE_WAIT(wait); 2037 struct reclaim_state reclaim_state = { 2038 .reclaimed_slab = 0, 2039 }; 2040 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 2041 2042 lockdep_set_current_reclaim_state(GFP_KERNEL); 2043 2044 if (!cpumask_empty(cpumask)) 2045 set_cpus_allowed_ptr(tsk, cpumask); 2046 current->reclaim_state = &reclaim_state; 2047 2048 /* 2049 * Tell the memory management that we're a "memory allocator", 2050 * and that if we need more memory we should get access to it 2051 * regardless (see "__alloc_pages()"). "kswapd" should 2052 * never get caught in the normal page freeing logic. 2053 * 2054 * (Kswapd normally doesn't need memory anyway, but sometimes 2055 * you need a small amount of memory in order to be able to 2056 * page out something else, and this flag essentially protects 2057 * us from recursively trying to free more memory as we're 2058 * trying to free the first piece of memory in the first place). 2059 */ 2060 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 2061 set_freezable(); 2062 2063 order = 0; 2064 for ( ; ; ) { 2065 unsigned long new_order; 2066 2067 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 2068 new_order = pgdat->kswapd_max_order; 2069 pgdat->kswapd_max_order = 0; 2070 if (order < new_order) { 2071 /* 2072 * Don't sleep if someone wants a larger 'order' 2073 * allocation 2074 */ 2075 order = new_order; 2076 } else { 2077 if (!freezing(current)) 2078 schedule(); 2079 2080 order = pgdat->kswapd_max_order; 2081 } 2082 finish_wait(&pgdat->kswapd_wait, &wait); 2083 2084 if (!try_to_freeze()) { 2085 /* We can speed up thawing tasks if we don't call 2086 * balance_pgdat after returning from the refrigerator 2087 */ 2088 balance_pgdat(pgdat, order); 2089 } 2090 } 2091 return 0; 2092 } 2093 2094 /* 2095 * A zone is low on free memory, so wake its kswapd task to service it. 2096 */ 2097 void wakeup_kswapd(struct zone *zone, int order) 2098 { 2099 pg_data_t *pgdat; 2100 2101 if (!populated_zone(zone)) 2102 return; 2103 2104 pgdat = zone->zone_pgdat; 2105 if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0)) 2106 return; 2107 if (pgdat->kswapd_max_order < order) 2108 pgdat->kswapd_max_order = order; 2109 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 2110 return; 2111 if (!waitqueue_active(&pgdat->kswapd_wait)) 2112 return; 2113 wake_up_interruptible(&pgdat->kswapd_wait); 2114 } 2115 2116 unsigned long global_lru_pages(void) 2117 { 2118 return global_page_state(NR_ACTIVE_ANON) 2119 + global_page_state(NR_ACTIVE_FILE) 2120 + global_page_state(NR_INACTIVE_ANON) 2121 + global_page_state(NR_INACTIVE_FILE); 2122 } 2123 2124 #ifdef CONFIG_HIBERNATION 2125 /* 2126 * Helper function for shrink_all_memory(). Tries to reclaim 'nr_pages' pages 2127 * from LRU lists system-wide, for given pass and priority. 2128 * 2129 * For pass > 3 we also try to shrink the LRU lists that contain a few pages 2130 */ 2131 static void shrink_all_zones(unsigned long nr_pages, int prio, 2132 int pass, struct scan_control *sc) 2133 { 2134 struct zone *zone; 2135 unsigned long nr_reclaimed = 0; 2136 2137 for_each_populated_zone(zone) { 2138 enum lru_list l; 2139 2140 if (zone_is_all_unreclaimable(zone) && prio != DEF_PRIORITY) 2141 continue; 2142 2143 for_each_evictable_lru(l) { 2144 enum zone_stat_item ls = NR_LRU_BASE + l; 2145 unsigned long lru_pages = zone_page_state(zone, ls); 2146 2147 /* For pass = 0, we don't shrink the active list */ 2148 if (pass == 0 && (l == LRU_ACTIVE_ANON || 2149 l == LRU_ACTIVE_FILE)) 2150 continue; 2151 2152 zone->lru[l].nr_saved_scan += (lru_pages >> prio) + 1; 2153 if (zone->lru[l].nr_saved_scan >= nr_pages || pass > 3) { 2154 unsigned long nr_to_scan; 2155 2156 zone->lru[l].nr_saved_scan = 0; 2157 nr_to_scan = min(nr_pages, lru_pages); 2158 nr_reclaimed += shrink_list(l, nr_to_scan, zone, 2159 sc, prio); 2160 if (nr_reclaimed >= nr_pages) { 2161 sc->nr_reclaimed += nr_reclaimed; 2162 return; 2163 } 2164 } 2165 } 2166 } 2167 sc->nr_reclaimed += nr_reclaimed; 2168 } 2169 2170 /* 2171 * Try to free `nr_pages' of memory, system-wide, and return the number of 2172 * freed pages. 2173 * 2174 * Rather than trying to age LRUs the aim is to preserve the overall 2175 * LRU order by reclaiming preferentially 2176 * inactive > active > active referenced > active mapped 2177 */ 2178 unsigned long shrink_all_memory(unsigned long nr_pages) 2179 { 2180 unsigned long lru_pages, nr_slab; 2181 int pass; 2182 struct reclaim_state reclaim_state; 2183 struct scan_control sc = { 2184 .gfp_mask = GFP_KERNEL, 2185 .may_unmap = 0, 2186 .may_writepage = 1, 2187 .isolate_pages = isolate_pages_global, 2188 .nr_reclaimed = 0, 2189 }; 2190 2191 current->reclaim_state = &reclaim_state; 2192 2193 lru_pages = global_lru_pages(); 2194 nr_slab = global_page_state(NR_SLAB_RECLAIMABLE); 2195 /* If slab caches are huge, it's better to hit them first */ 2196 while (nr_slab >= lru_pages) { 2197 reclaim_state.reclaimed_slab = 0; 2198 shrink_slab(nr_pages, sc.gfp_mask, lru_pages); 2199 if (!reclaim_state.reclaimed_slab) 2200 break; 2201 2202 sc.nr_reclaimed += reclaim_state.reclaimed_slab; 2203 if (sc.nr_reclaimed >= nr_pages) 2204 goto out; 2205 2206 nr_slab -= reclaim_state.reclaimed_slab; 2207 } 2208 2209 /* 2210 * We try to shrink LRUs in 5 passes: 2211 * 0 = Reclaim from inactive_list only 2212 * 1 = Reclaim from active list but don't reclaim mapped 2213 * 2 = 2nd pass of type 1 2214 * 3 = Reclaim mapped (normal reclaim) 2215 * 4 = 2nd pass of type 3 2216 */ 2217 for (pass = 0; pass < 5; pass++) { 2218 int prio; 2219 2220 /* Force reclaiming mapped pages in the passes #3 and #4 */ 2221 if (pass > 2) 2222 sc.may_unmap = 1; 2223 2224 for (prio = DEF_PRIORITY; prio >= 0; prio--) { 2225 unsigned long nr_to_scan = nr_pages - sc.nr_reclaimed; 2226 2227 sc.nr_scanned = 0; 2228 sc.swap_cluster_max = nr_to_scan; 2229 shrink_all_zones(nr_to_scan, prio, pass, &sc); 2230 if (sc.nr_reclaimed >= nr_pages) 2231 goto out; 2232 2233 reclaim_state.reclaimed_slab = 0; 2234 shrink_slab(sc.nr_scanned, sc.gfp_mask, 2235 global_lru_pages()); 2236 sc.nr_reclaimed += reclaim_state.reclaimed_slab; 2237 if (sc.nr_reclaimed >= nr_pages) 2238 goto out; 2239 2240 if (sc.nr_scanned && prio < DEF_PRIORITY - 2) 2241 congestion_wait(BLK_RW_ASYNC, HZ / 10); 2242 } 2243 } 2244 2245 /* 2246 * If sc.nr_reclaimed = 0, we could not shrink LRUs, but there may be 2247 * something in slab caches 2248 */ 2249 if (!sc.nr_reclaimed) { 2250 do { 2251 reclaim_state.reclaimed_slab = 0; 2252 shrink_slab(nr_pages, sc.gfp_mask, global_lru_pages()); 2253 sc.nr_reclaimed += reclaim_state.reclaimed_slab; 2254 } while (sc.nr_reclaimed < nr_pages && 2255 reclaim_state.reclaimed_slab > 0); 2256 } 2257 2258 2259 out: 2260 current->reclaim_state = NULL; 2261 2262 return sc.nr_reclaimed; 2263 } 2264 #endif /* CONFIG_HIBERNATION */ 2265 2266 /* It's optimal to keep kswapds on the same CPUs as their memory, but 2267 not required for correctness. So if the last cpu in a node goes 2268 away, we get changed to run anywhere: as the first one comes back, 2269 restore their cpu bindings. */ 2270 static int __devinit cpu_callback(struct notifier_block *nfb, 2271 unsigned long action, void *hcpu) 2272 { 2273 int nid; 2274 2275 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) { 2276 for_each_node_state(nid, N_HIGH_MEMORY) { 2277 pg_data_t *pgdat = NODE_DATA(nid); 2278 const struct cpumask *mask; 2279 2280 mask = cpumask_of_node(pgdat->node_id); 2281 2282 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 2283 /* One of our CPUs online: restore mask */ 2284 set_cpus_allowed_ptr(pgdat->kswapd, mask); 2285 } 2286 } 2287 return NOTIFY_OK; 2288 } 2289 2290 /* 2291 * This kswapd start function will be called by init and node-hot-add. 2292 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. 2293 */ 2294 int kswapd_run(int nid) 2295 { 2296 pg_data_t *pgdat = NODE_DATA(nid); 2297 int ret = 0; 2298 2299 if (pgdat->kswapd) 2300 return 0; 2301 2302 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 2303 if (IS_ERR(pgdat->kswapd)) { 2304 /* failure at boot is fatal */ 2305 BUG_ON(system_state == SYSTEM_BOOTING); 2306 printk("Failed to start kswapd on node %d\n",nid); 2307 ret = -1; 2308 } 2309 return ret; 2310 } 2311 2312 static int __init kswapd_init(void) 2313 { 2314 int nid; 2315 2316 swap_setup(); 2317 for_each_node_state(nid, N_HIGH_MEMORY) 2318 kswapd_run(nid); 2319 hotcpu_notifier(cpu_callback, 0); 2320 return 0; 2321 } 2322 2323 module_init(kswapd_init) 2324 2325 #ifdef CONFIG_NUMA 2326 /* 2327 * Zone reclaim mode 2328 * 2329 * If non-zero call zone_reclaim when the number of free pages falls below 2330 * the watermarks. 2331 */ 2332 int zone_reclaim_mode __read_mostly; 2333 2334 #define RECLAIM_OFF 0 2335 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */ 2336 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */ 2337 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */ 2338 2339 /* 2340 * Priority for ZONE_RECLAIM. This determines the fraction of pages 2341 * of a node considered for each zone_reclaim. 4 scans 1/16th of 2342 * a zone. 2343 */ 2344 #define ZONE_RECLAIM_PRIORITY 4 2345 2346 /* 2347 * Percentage of pages in a zone that must be unmapped for zone_reclaim to 2348 * occur. 2349 */ 2350 int sysctl_min_unmapped_ratio = 1; 2351 2352 /* 2353 * If the number of slab pages in a zone grows beyond this percentage then 2354 * slab reclaim needs to occur. 2355 */ 2356 int sysctl_min_slab_ratio = 5; 2357 2358 static inline unsigned long zone_unmapped_file_pages(struct zone *zone) 2359 { 2360 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED); 2361 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) + 2362 zone_page_state(zone, NR_ACTIVE_FILE); 2363 2364 /* 2365 * It's possible for there to be more file mapped pages than 2366 * accounted for by the pages on the file LRU lists because 2367 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 2368 */ 2369 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 2370 } 2371 2372 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 2373 static long zone_pagecache_reclaimable(struct zone *zone) 2374 { 2375 long nr_pagecache_reclaimable; 2376 long delta = 0; 2377 2378 /* 2379 * If RECLAIM_SWAP is set, then all file pages are considered 2380 * potentially reclaimable. Otherwise, we have to worry about 2381 * pages like swapcache and zone_unmapped_file_pages() provides 2382 * a better estimate 2383 */ 2384 if (zone_reclaim_mode & RECLAIM_SWAP) 2385 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES); 2386 else 2387 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone); 2388 2389 /* If we can't clean pages, remove dirty pages from consideration */ 2390 if (!(zone_reclaim_mode & RECLAIM_WRITE)) 2391 delta += zone_page_state(zone, NR_FILE_DIRTY); 2392 2393 /* Watch for any possible underflows due to delta */ 2394 if (unlikely(delta > nr_pagecache_reclaimable)) 2395 delta = nr_pagecache_reclaimable; 2396 2397 return nr_pagecache_reclaimable - delta; 2398 } 2399 2400 /* 2401 * Try to free up some pages from this zone through reclaim. 2402 */ 2403 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) 2404 { 2405 /* Minimum pages needed in order to stay on node */ 2406 const unsigned long nr_pages = 1 << order; 2407 struct task_struct *p = current; 2408 struct reclaim_state reclaim_state; 2409 int priority; 2410 struct scan_control sc = { 2411 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE), 2412 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP), 2413 .may_swap = 1, 2414 .swap_cluster_max = max_t(unsigned long, nr_pages, 2415 SWAP_CLUSTER_MAX), 2416 .gfp_mask = gfp_mask, 2417 .swappiness = vm_swappiness, 2418 .order = order, 2419 .isolate_pages = isolate_pages_global, 2420 }; 2421 unsigned long slab_reclaimable; 2422 2423 disable_swap_token(); 2424 cond_resched(); 2425 /* 2426 * We need to be able to allocate from the reserves for RECLAIM_SWAP 2427 * and we also need to be able to write out pages for RECLAIM_WRITE 2428 * and RECLAIM_SWAP. 2429 */ 2430 p->flags |= PF_MEMALLOC | PF_SWAPWRITE; 2431 reclaim_state.reclaimed_slab = 0; 2432 p->reclaim_state = &reclaim_state; 2433 2434 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) { 2435 /* 2436 * Free memory by calling shrink zone with increasing 2437 * priorities until we have enough memory freed. 2438 */ 2439 priority = ZONE_RECLAIM_PRIORITY; 2440 do { 2441 note_zone_scanning_priority(zone, priority); 2442 shrink_zone(priority, zone, &sc); 2443 priority--; 2444 } while (priority >= 0 && sc.nr_reclaimed < nr_pages); 2445 } 2446 2447 slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE); 2448 if (slab_reclaimable > zone->min_slab_pages) { 2449 /* 2450 * shrink_slab() does not currently allow us to determine how 2451 * many pages were freed in this zone. So we take the current 2452 * number of slab pages and shake the slab until it is reduced 2453 * by the same nr_pages that we used for reclaiming unmapped 2454 * pages. 2455 * 2456 * Note that shrink_slab will free memory on all zones and may 2457 * take a long time. 2458 */ 2459 while (shrink_slab(sc.nr_scanned, gfp_mask, order) && 2460 zone_page_state(zone, NR_SLAB_RECLAIMABLE) > 2461 slab_reclaimable - nr_pages) 2462 ; 2463 2464 /* 2465 * Update nr_reclaimed by the number of slab pages we 2466 * reclaimed from this zone. 2467 */ 2468 sc.nr_reclaimed += slab_reclaimable - 2469 zone_page_state(zone, NR_SLAB_RECLAIMABLE); 2470 } 2471 2472 p->reclaim_state = NULL; 2473 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE); 2474 return sc.nr_reclaimed >= nr_pages; 2475 } 2476 2477 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) 2478 { 2479 int node_id; 2480 int ret; 2481 2482 /* 2483 * Zone reclaim reclaims unmapped file backed pages and 2484 * slab pages if we are over the defined limits. 2485 * 2486 * A small portion of unmapped file backed pages is needed for 2487 * file I/O otherwise pages read by file I/O will be immediately 2488 * thrown out if the zone is overallocated. So we do not reclaim 2489 * if less than a specified percentage of the zone is used by 2490 * unmapped file backed pages. 2491 */ 2492 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages && 2493 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages) 2494 return ZONE_RECLAIM_FULL; 2495 2496 if (zone_is_all_unreclaimable(zone)) 2497 return ZONE_RECLAIM_FULL; 2498 2499 /* 2500 * Do not scan if the allocation should not be delayed. 2501 */ 2502 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC)) 2503 return ZONE_RECLAIM_NOSCAN; 2504 2505 /* 2506 * Only run zone reclaim on the local zone or on zones that do not 2507 * have associated processors. This will favor the local processor 2508 * over remote processors and spread off node memory allocations 2509 * as wide as possible. 2510 */ 2511 node_id = zone_to_nid(zone); 2512 if (node_state(node_id, N_CPU) && node_id != numa_node_id()) 2513 return ZONE_RECLAIM_NOSCAN; 2514 2515 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED)) 2516 return ZONE_RECLAIM_NOSCAN; 2517 2518 ret = __zone_reclaim(zone, gfp_mask, order); 2519 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED); 2520 2521 if (!ret) 2522 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 2523 2524 return ret; 2525 } 2526 #endif 2527 2528 /* 2529 * page_evictable - test whether a page is evictable 2530 * @page: the page to test 2531 * @vma: the VMA in which the page is or will be mapped, may be NULL 2532 * 2533 * Test whether page is evictable--i.e., should be placed on active/inactive 2534 * lists vs unevictable list. The vma argument is !NULL when called from the 2535 * fault path to determine how to instantate a new page. 2536 * 2537 * Reasons page might not be evictable: 2538 * (1) page's mapping marked unevictable 2539 * (2) page is part of an mlocked VMA 2540 * 2541 */ 2542 int page_evictable(struct page *page, struct vm_area_struct *vma) 2543 { 2544 2545 if (mapping_unevictable(page_mapping(page))) 2546 return 0; 2547 2548 if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page))) 2549 return 0; 2550 2551 return 1; 2552 } 2553 2554 /** 2555 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list 2556 * @page: page to check evictability and move to appropriate lru list 2557 * @zone: zone page is in 2558 * 2559 * Checks a page for evictability and moves the page to the appropriate 2560 * zone lru list. 2561 * 2562 * Restrictions: zone->lru_lock must be held, page must be on LRU and must 2563 * have PageUnevictable set. 2564 */ 2565 static void check_move_unevictable_page(struct page *page, struct zone *zone) 2566 { 2567 VM_BUG_ON(PageActive(page)); 2568 2569 retry: 2570 ClearPageUnevictable(page); 2571 if (page_evictable(page, NULL)) { 2572 enum lru_list l = LRU_INACTIVE_ANON + page_is_file_cache(page); 2573 2574 __dec_zone_state(zone, NR_UNEVICTABLE); 2575 list_move(&page->lru, &zone->lru[l].list); 2576 mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l); 2577 __inc_zone_state(zone, NR_INACTIVE_ANON + l); 2578 __count_vm_event(UNEVICTABLE_PGRESCUED); 2579 } else { 2580 /* 2581 * rotate unevictable list 2582 */ 2583 SetPageUnevictable(page); 2584 list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list); 2585 mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE); 2586 if (page_evictable(page, NULL)) 2587 goto retry; 2588 } 2589 } 2590 2591 /** 2592 * scan_mapping_unevictable_pages - scan an address space for evictable pages 2593 * @mapping: struct address_space to scan for evictable pages 2594 * 2595 * Scan all pages in mapping. Check unevictable pages for 2596 * evictability and move them to the appropriate zone lru list. 2597 */ 2598 void scan_mapping_unevictable_pages(struct address_space *mapping) 2599 { 2600 pgoff_t next = 0; 2601 pgoff_t end = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >> 2602 PAGE_CACHE_SHIFT; 2603 struct zone *zone; 2604 struct pagevec pvec; 2605 2606 if (mapping->nrpages == 0) 2607 return; 2608 2609 pagevec_init(&pvec, 0); 2610 while (next < end && 2611 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) { 2612 int i; 2613 int pg_scanned = 0; 2614 2615 zone = NULL; 2616 2617 for (i = 0; i < pagevec_count(&pvec); i++) { 2618 struct page *page = pvec.pages[i]; 2619 pgoff_t page_index = page->index; 2620 struct zone *pagezone = page_zone(page); 2621 2622 pg_scanned++; 2623 if (page_index > next) 2624 next = page_index; 2625 next++; 2626 2627 if (pagezone != zone) { 2628 if (zone) 2629 spin_unlock_irq(&zone->lru_lock); 2630 zone = pagezone; 2631 spin_lock_irq(&zone->lru_lock); 2632 } 2633 2634 if (PageLRU(page) && PageUnevictable(page)) 2635 check_move_unevictable_page(page, zone); 2636 } 2637 if (zone) 2638 spin_unlock_irq(&zone->lru_lock); 2639 pagevec_release(&pvec); 2640 2641 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned); 2642 } 2643 2644 } 2645 2646 /** 2647 * scan_zone_unevictable_pages - check unevictable list for evictable pages 2648 * @zone - zone of which to scan the unevictable list 2649 * 2650 * Scan @zone's unevictable LRU lists to check for pages that have become 2651 * evictable. Move those that have to @zone's inactive list where they 2652 * become candidates for reclaim, unless shrink_inactive_zone() decides 2653 * to reactivate them. Pages that are still unevictable are rotated 2654 * back onto @zone's unevictable list. 2655 */ 2656 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */ 2657 static void scan_zone_unevictable_pages(struct zone *zone) 2658 { 2659 struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list; 2660 unsigned long scan; 2661 unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE); 2662 2663 while (nr_to_scan > 0) { 2664 unsigned long batch_size = min(nr_to_scan, 2665 SCAN_UNEVICTABLE_BATCH_SIZE); 2666 2667 spin_lock_irq(&zone->lru_lock); 2668 for (scan = 0; scan < batch_size; scan++) { 2669 struct page *page = lru_to_page(l_unevictable); 2670 2671 if (!trylock_page(page)) 2672 continue; 2673 2674 prefetchw_prev_lru_page(page, l_unevictable, flags); 2675 2676 if (likely(PageLRU(page) && PageUnevictable(page))) 2677 check_move_unevictable_page(page, zone); 2678 2679 unlock_page(page); 2680 } 2681 spin_unlock_irq(&zone->lru_lock); 2682 2683 nr_to_scan -= batch_size; 2684 } 2685 } 2686 2687 2688 /** 2689 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages 2690 * 2691 * A really big hammer: scan all zones' unevictable LRU lists to check for 2692 * pages that have become evictable. Move those back to the zones' 2693 * inactive list where they become candidates for reclaim. 2694 * This occurs when, e.g., we have unswappable pages on the unevictable lists, 2695 * and we add swap to the system. As such, it runs in the context of a task 2696 * that has possibly/probably made some previously unevictable pages 2697 * evictable. 2698 */ 2699 static void scan_all_zones_unevictable_pages(void) 2700 { 2701 struct zone *zone; 2702 2703 for_each_zone(zone) { 2704 scan_zone_unevictable_pages(zone); 2705 } 2706 } 2707 2708 /* 2709 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of 2710 * all nodes' unevictable lists for evictable pages 2711 */ 2712 unsigned long scan_unevictable_pages; 2713 2714 int scan_unevictable_handler(struct ctl_table *table, int write, 2715 struct file *file, void __user *buffer, 2716 size_t *length, loff_t *ppos) 2717 { 2718 proc_doulongvec_minmax(table, write, file, buffer, length, ppos); 2719 2720 if (write && *(unsigned long *)table->data) 2721 scan_all_zones_unevictable_pages(); 2722 2723 scan_unevictable_pages = 0; 2724 return 0; 2725 } 2726 2727 /* 2728 * per node 'scan_unevictable_pages' attribute. On demand re-scan of 2729 * a specified node's per zone unevictable lists for evictable pages. 2730 */ 2731 2732 static ssize_t read_scan_unevictable_node(struct sys_device *dev, 2733 struct sysdev_attribute *attr, 2734 char *buf) 2735 { 2736 return sprintf(buf, "0\n"); /* always zero; should fit... */ 2737 } 2738 2739 static ssize_t write_scan_unevictable_node(struct sys_device *dev, 2740 struct sysdev_attribute *attr, 2741 const char *buf, size_t count) 2742 { 2743 struct zone *node_zones = NODE_DATA(dev->id)->node_zones; 2744 struct zone *zone; 2745 unsigned long res; 2746 unsigned long req = strict_strtoul(buf, 10, &res); 2747 2748 if (!req) 2749 return 1; /* zero is no-op */ 2750 2751 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) { 2752 if (!populated_zone(zone)) 2753 continue; 2754 scan_zone_unevictable_pages(zone); 2755 } 2756 return 1; 2757 } 2758 2759 2760 static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR, 2761 read_scan_unevictable_node, 2762 write_scan_unevictable_node); 2763 2764 int scan_unevictable_register_node(struct node *node) 2765 { 2766 return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages); 2767 } 2768 2769 void scan_unevictable_unregister_node(struct node *node) 2770 { 2771 sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages); 2772 } 2773 2774