xref: /linux/mm/vmscan.c (revision 60e9b39ebec56467c36c3da76eee28083196cdf1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
4  *
5  *  Swap reorganised 29.12.95, Stephen Tweedie.
6  *  kswapd added: 7.1.96  sct
7  *  Removed kswapd_ctl limits, and swap out as many pages as needed
8  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
9  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
10  *  Multiqueue VM started 5.8.00, Rik van Riel.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/mm.h>
16 #include <linux/sched/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h>	/* for buffer_heads_over_limit */
30 #include <linux/mm_inline.h>
31 #include <linux/backing-dev.h>
32 #include <linux/rmap.h>
33 #include <linux/topology.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/compaction.h>
37 #include <linux/notifier.h>
38 #include <linux/rwsem.h>
39 #include <linux/delay.h>
40 #include <linux/kthread.h>
41 #include <linux/freezer.h>
42 #include <linux/memcontrol.h>
43 #include <linux/migrate.h>
44 #include <linux/delayacct.h>
45 #include <linux/sysctl.h>
46 #include <linux/memory-tiers.h>
47 #include <linux/oom.h>
48 #include <linux/pagevec.h>
49 #include <linux/prefetch.h>
50 #include <linux/printk.h>
51 #include <linux/dax.h>
52 #include <linux/psi.h>
53 #include <linux/pagewalk.h>
54 #include <linux/shmem_fs.h>
55 #include <linux/ctype.h>
56 #include <linux/debugfs.h>
57 #include <linux/khugepaged.h>
58 
59 #include <asm/tlbflush.h>
60 #include <asm/div64.h>
61 
62 #include <linux/swapops.h>
63 #include <linux/balloon_compaction.h>
64 #include <linux/sched/sysctl.h>
65 
66 #include "internal.h"
67 #include "swap.h"
68 
69 #define CREATE_TRACE_POINTS
70 #include <trace/events/vmscan.h>
71 
72 struct scan_control {
73 	/* How many pages shrink_list() should reclaim */
74 	unsigned long nr_to_reclaim;
75 
76 	/*
77 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
78 	 * are scanned.
79 	 */
80 	nodemask_t	*nodemask;
81 
82 	/*
83 	 * The memory cgroup that hit its limit and as a result is the
84 	 * primary target of this reclaim invocation.
85 	 */
86 	struct mem_cgroup *target_mem_cgroup;
87 
88 	/*
89 	 * Scan pressure balancing between anon and file LRUs
90 	 */
91 	unsigned long	anon_cost;
92 	unsigned long	file_cost;
93 
94 	/* Can active folios be deactivated as part of reclaim? */
95 #define DEACTIVATE_ANON 1
96 #define DEACTIVATE_FILE 2
97 	unsigned int may_deactivate:2;
98 	unsigned int force_deactivate:1;
99 	unsigned int skipped_deactivate:1;
100 
101 	/* Writepage batching in laptop mode; RECLAIM_WRITE */
102 	unsigned int may_writepage:1;
103 
104 	/* Can mapped folios be reclaimed? */
105 	unsigned int may_unmap:1;
106 
107 	/* Can folios be swapped as part of reclaim? */
108 	unsigned int may_swap:1;
109 
110 	/* Proactive reclaim invoked by userspace through memory.reclaim */
111 	unsigned int proactive:1;
112 
113 	/*
114 	 * Cgroup memory below memory.low is protected as long as we
115 	 * don't threaten to OOM. If any cgroup is reclaimed at
116 	 * reduced force or passed over entirely due to its memory.low
117 	 * setting (memcg_low_skipped), and nothing is reclaimed as a
118 	 * result, then go back for one more cycle that reclaims the protected
119 	 * memory (memcg_low_reclaim) to avert OOM.
120 	 */
121 	unsigned int memcg_low_reclaim:1;
122 	unsigned int memcg_low_skipped:1;
123 
124 	unsigned int hibernation_mode:1;
125 
126 	/* One of the zones is ready for compaction */
127 	unsigned int compaction_ready:1;
128 
129 	/* There is easily reclaimable cold cache in the current node */
130 	unsigned int cache_trim_mode:1;
131 
132 	/* The file folios on the current node are dangerously low */
133 	unsigned int file_is_tiny:1;
134 
135 	/* Always discard instead of demoting to lower tier memory */
136 	unsigned int no_demotion:1;
137 
138 #ifdef CONFIG_LRU_GEN
139 	/* help kswapd make better choices among multiple memcgs */
140 	unsigned int memcgs_need_aging:1;
141 	unsigned long last_reclaimed;
142 #endif
143 
144 	/* Allocation order */
145 	s8 order;
146 
147 	/* Scan (total_size >> priority) pages at once */
148 	s8 priority;
149 
150 	/* The highest zone to isolate folios for reclaim from */
151 	s8 reclaim_idx;
152 
153 	/* This context's GFP mask */
154 	gfp_t gfp_mask;
155 
156 	/* Incremented by the number of inactive pages that were scanned */
157 	unsigned long nr_scanned;
158 
159 	/* Number of pages freed so far during a call to shrink_zones() */
160 	unsigned long nr_reclaimed;
161 
162 	struct {
163 		unsigned int dirty;
164 		unsigned int unqueued_dirty;
165 		unsigned int congested;
166 		unsigned int writeback;
167 		unsigned int immediate;
168 		unsigned int file_taken;
169 		unsigned int taken;
170 	} nr;
171 
172 	/* for recording the reclaimed slab by now */
173 	struct reclaim_state reclaim_state;
174 };
175 
176 #ifdef ARCH_HAS_PREFETCHW
177 #define prefetchw_prev_lru_folio(_folio, _base, _field)			\
178 	do {								\
179 		if ((_folio)->lru.prev != _base) {			\
180 			struct folio *prev;				\
181 									\
182 			prev = lru_to_folio(&(_folio->lru));		\
183 			prefetchw(&prev->_field);			\
184 		}							\
185 	} while (0)
186 #else
187 #define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0)
188 #endif
189 
190 /*
191  * From 0 .. 200.  Higher means more swappy.
192  */
193 int vm_swappiness = 60;
194 
195 static void set_task_reclaim_state(struct task_struct *task,
196 				   struct reclaim_state *rs)
197 {
198 	/* Check for an overwrite */
199 	WARN_ON_ONCE(rs && task->reclaim_state);
200 
201 	/* Check for the nulling of an already-nulled member */
202 	WARN_ON_ONCE(!rs && !task->reclaim_state);
203 
204 	task->reclaim_state = rs;
205 }
206 
207 LIST_HEAD(shrinker_list);
208 DECLARE_RWSEM(shrinker_rwsem);
209 
210 #ifdef CONFIG_MEMCG
211 static int shrinker_nr_max;
212 
213 /* The shrinker_info is expanded in a batch of BITS_PER_LONG */
214 static inline int shrinker_map_size(int nr_items)
215 {
216 	return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long));
217 }
218 
219 static inline int shrinker_defer_size(int nr_items)
220 {
221 	return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t));
222 }
223 
224 static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg,
225 						     int nid)
226 {
227 	return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info,
228 					 lockdep_is_held(&shrinker_rwsem));
229 }
230 
231 static int expand_one_shrinker_info(struct mem_cgroup *memcg,
232 				    int map_size, int defer_size,
233 				    int old_map_size, int old_defer_size)
234 {
235 	struct shrinker_info *new, *old;
236 	struct mem_cgroup_per_node *pn;
237 	int nid;
238 	int size = map_size + defer_size;
239 
240 	for_each_node(nid) {
241 		pn = memcg->nodeinfo[nid];
242 		old = shrinker_info_protected(memcg, nid);
243 		/* Not yet online memcg */
244 		if (!old)
245 			return 0;
246 
247 		new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
248 		if (!new)
249 			return -ENOMEM;
250 
251 		new->nr_deferred = (atomic_long_t *)(new + 1);
252 		new->map = (void *)new->nr_deferred + defer_size;
253 
254 		/* map: set all old bits, clear all new bits */
255 		memset(new->map, (int)0xff, old_map_size);
256 		memset((void *)new->map + old_map_size, 0, map_size - old_map_size);
257 		/* nr_deferred: copy old values, clear all new values */
258 		memcpy(new->nr_deferred, old->nr_deferred, old_defer_size);
259 		memset((void *)new->nr_deferred + old_defer_size, 0,
260 		       defer_size - old_defer_size);
261 
262 		rcu_assign_pointer(pn->shrinker_info, new);
263 		kvfree_rcu(old, rcu);
264 	}
265 
266 	return 0;
267 }
268 
269 void free_shrinker_info(struct mem_cgroup *memcg)
270 {
271 	struct mem_cgroup_per_node *pn;
272 	struct shrinker_info *info;
273 	int nid;
274 
275 	for_each_node(nid) {
276 		pn = memcg->nodeinfo[nid];
277 		info = rcu_dereference_protected(pn->shrinker_info, true);
278 		kvfree(info);
279 		rcu_assign_pointer(pn->shrinker_info, NULL);
280 	}
281 }
282 
283 int alloc_shrinker_info(struct mem_cgroup *memcg)
284 {
285 	struct shrinker_info *info;
286 	int nid, size, ret = 0;
287 	int map_size, defer_size = 0;
288 
289 	down_write(&shrinker_rwsem);
290 	map_size = shrinker_map_size(shrinker_nr_max);
291 	defer_size = shrinker_defer_size(shrinker_nr_max);
292 	size = map_size + defer_size;
293 	for_each_node(nid) {
294 		info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid);
295 		if (!info) {
296 			free_shrinker_info(memcg);
297 			ret = -ENOMEM;
298 			break;
299 		}
300 		info->nr_deferred = (atomic_long_t *)(info + 1);
301 		info->map = (void *)info->nr_deferred + defer_size;
302 		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info);
303 	}
304 	up_write(&shrinker_rwsem);
305 
306 	return ret;
307 }
308 
309 static inline bool need_expand(int nr_max)
310 {
311 	return round_up(nr_max, BITS_PER_LONG) >
312 	       round_up(shrinker_nr_max, BITS_PER_LONG);
313 }
314 
315 static int expand_shrinker_info(int new_id)
316 {
317 	int ret = 0;
318 	int new_nr_max = new_id + 1;
319 	int map_size, defer_size = 0;
320 	int old_map_size, old_defer_size = 0;
321 	struct mem_cgroup *memcg;
322 
323 	if (!need_expand(new_nr_max))
324 		goto out;
325 
326 	if (!root_mem_cgroup)
327 		goto out;
328 
329 	lockdep_assert_held(&shrinker_rwsem);
330 
331 	map_size = shrinker_map_size(new_nr_max);
332 	defer_size = shrinker_defer_size(new_nr_max);
333 	old_map_size = shrinker_map_size(shrinker_nr_max);
334 	old_defer_size = shrinker_defer_size(shrinker_nr_max);
335 
336 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
337 	do {
338 		ret = expand_one_shrinker_info(memcg, map_size, defer_size,
339 					       old_map_size, old_defer_size);
340 		if (ret) {
341 			mem_cgroup_iter_break(NULL, memcg);
342 			goto out;
343 		}
344 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
345 out:
346 	if (!ret)
347 		shrinker_nr_max = new_nr_max;
348 
349 	return ret;
350 }
351 
352 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
353 {
354 	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
355 		struct shrinker_info *info;
356 
357 		rcu_read_lock();
358 		info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info);
359 		/* Pairs with smp mb in shrink_slab() */
360 		smp_mb__before_atomic();
361 		set_bit(shrinker_id, info->map);
362 		rcu_read_unlock();
363 	}
364 }
365 
366 static DEFINE_IDR(shrinker_idr);
367 
368 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
369 {
370 	int id, ret = -ENOMEM;
371 
372 	if (mem_cgroup_disabled())
373 		return -ENOSYS;
374 
375 	down_write(&shrinker_rwsem);
376 	/* This may call shrinker, so it must use down_read_trylock() */
377 	id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL);
378 	if (id < 0)
379 		goto unlock;
380 
381 	if (id >= shrinker_nr_max) {
382 		if (expand_shrinker_info(id)) {
383 			idr_remove(&shrinker_idr, id);
384 			goto unlock;
385 		}
386 	}
387 	shrinker->id = id;
388 	ret = 0;
389 unlock:
390 	up_write(&shrinker_rwsem);
391 	return ret;
392 }
393 
394 static void unregister_memcg_shrinker(struct shrinker *shrinker)
395 {
396 	int id = shrinker->id;
397 
398 	BUG_ON(id < 0);
399 
400 	lockdep_assert_held(&shrinker_rwsem);
401 
402 	idr_remove(&shrinker_idr, id);
403 }
404 
405 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
406 				   struct mem_cgroup *memcg)
407 {
408 	struct shrinker_info *info;
409 
410 	info = shrinker_info_protected(memcg, nid);
411 	return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0);
412 }
413 
414 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
415 				  struct mem_cgroup *memcg)
416 {
417 	struct shrinker_info *info;
418 
419 	info = shrinker_info_protected(memcg, nid);
420 	return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]);
421 }
422 
423 void reparent_shrinker_deferred(struct mem_cgroup *memcg)
424 {
425 	int i, nid;
426 	long nr;
427 	struct mem_cgroup *parent;
428 	struct shrinker_info *child_info, *parent_info;
429 
430 	parent = parent_mem_cgroup(memcg);
431 	if (!parent)
432 		parent = root_mem_cgroup;
433 
434 	/* Prevent from concurrent shrinker_info expand */
435 	down_read(&shrinker_rwsem);
436 	for_each_node(nid) {
437 		child_info = shrinker_info_protected(memcg, nid);
438 		parent_info = shrinker_info_protected(parent, nid);
439 		for (i = 0; i < shrinker_nr_max; i++) {
440 			nr = atomic_long_read(&child_info->nr_deferred[i]);
441 			atomic_long_add(nr, &parent_info->nr_deferred[i]);
442 		}
443 	}
444 	up_read(&shrinker_rwsem);
445 }
446 
447 static bool cgroup_reclaim(struct scan_control *sc)
448 {
449 	return sc->target_mem_cgroup;
450 }
451 
452 /**
453  * writeback_throttling_sane - is the usual dirty throttling mechanism available?
454  * @sc: scan_control in question
455  *
456  * The normal page dirty throttling mechanism in balance_dirty_pages() is
457  * completely broken with the legacy memcg and direct stalling in
458  * shrink_folio_list() is used for throttling instead, which lacks all the
459  * niceties such as fairness, adaptive pausing, bandwidth proportional
460  * allocation and configurability.
461  *
462  * This function tests whether the vmscan currently in progress can assume
463  * that the normal dirty throttling mechanism is operational.
464  */
465 static bool writeback_throttling_sane(struct scan_control *sc)
466 {
467 	if (!cgroup_reclaim(sc))
468 		return true;
469 #ifdef CONFIG_CGROUP_WRITEBACK
470 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
471 		return true;
472 #endif
473 	return false;
474 }
475 #else
476 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
477 {
478 	return -ENOSYS;
479 }
480 
481 static void unregister_memcg_shrinker(struct shrinker *shrinker)
482 {
483 }
484 
485 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
486 				   struct mem_cgroup *memcg)
487 {
488 	return 0;
489 }
490 
491 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
492 				  struct mem_cgroup *memcg)
493 {
494 	return 0;
495 }
496 
497 static bool cgroup_reclaim(struct scan_control *sc)
498 {
499 	return false;
500 }
501 
502 static bool writeback_throttling_sane(struct scan_control *sc)
503 {
504 	return true;
505 }
506 #endif
507 
508 static long xchg_nr_deferred(struct shrinker *shrinker,
509 			     struct shrink_control *sc)
510 {
511 	int nid = sc->nid;
512 
513 	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
514 		nid = 0;
515 
516 	if (sc->memcg &&
517 	    (shrinker->flags & SHRINKER_MEMCG_AWARE))
518 		return xchg_nr_deferred_memcg(nid, shrinker,
519 					      sc->memcg);
520 
521 	return atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
522 }
523 
524 
525 static long add_nr_deferred(long nr, struct shrinker *shrinker,
526 			    struct shrink_control *sc)
527 {
528 	int nid = sc->nid;
529 
530 	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
531 		nid = 0;
532 
533 	if (sc->memcg &&
534 	    (shrinker->flags & SHRINKER_MEMCG_AWARE))
535 		return add_nr_deferred_memcg(nr, nid, shrinker,
536 					     sc->memcg);
537 
538 	return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]);
539 }
540 
541 static bool can_demote(int nid, struct scan_control *sc)
542 {
543 	if (!numa_demotion_enabled)
544 		return false;
545 	if (sc && sc->no_demotion)
546 		return false;
547 	if (next_demotion_node(nid) == NUMA_NO_NODE)
548 		return false;
549 
550 	return true;
551 }
552 
553 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
554 					  int nid,
555 					  struct scan_control *sc)
556 {
557 	if (memcg == NULL) {
558 		/*
559 		 * For non-memcg reclaim, is there
560 		 * space in any swap device?
561 		 */
562 		if (get_nr_swap_pages() > 0)
563 			return true;
564 	} else {
565 		/* Is the memcg below its swap limit? */
566 		if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
567 			return true;
568 	}
569 
570 	/*
571 	 * The page can not be swapped.
572 	 *
573 	 * Can it be reclaimed from this node via demotion?
574 	 */
575 	return can_demote(nid, sc);
576 }
577 
578 /*
579  * This misses isolated folios which are not accounted for to save counters.
580  * As the data only determines if reclaim or compaction continues, it is
581  * not expected that isolated folios will be a dominating factor.
582  */
583 unsigned long zone_reclaimable_pages(struct zone *zone)
584 {
585 	unsigned long nr;
586 
587 	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
588 		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
589 	if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
590 		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
591 			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
592 
593 	return nr;
594 }
595 
596 /**
597  * lruvec_lru_size -  Returns the number of pages on the given LRU list.
598  * @lruvec: lru vector
599  * @lru: lru to use
600  * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list)
601  */
602 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
603 				     int zone_idx)
604 {
605 	unsigned long size = 0;
606 	int zid;
607 
608 	for (zid = 0; zid <= zone_idx; zid++) {
609 		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
610 
611 		if (!managed_zone(zone))
612 			continue;
613 
614 		if (!mem_cgroup_disabled())
615 			size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
616 		else
617 			size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
618 	}
619 	return size;
620 }
621 
622 /*
623  * Add a shrinker callback to be called from the vm.
624  */
625 static int __prealloc_shrinker(struct shrinker *shrinker)
626 {
627 	unsigned int size;
628 	int err;
629 
630 	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
631 		err = prealloc_memcg_shrinker(shrinker);
632 		if (err != -ENOSYS)
633 			return err;
634 
635 		shrinker->flags &= ~SHRINKER_MEMCG_AWARE;
636 	}
637 
638 	size = sizeof(*shrinker->nr_deferred);
639 	if (shrinker->flags & SHRINKER_NUMA_AWARE)
640 		size *= nr_node_ids;
641 
642 	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
643 	if (!shrinker->nr_deferred)
644 		return -ENOMEM;
645 
646 	return 0;
647 }
648 
649 #ifdef CONFIG_SHRINKER_DEBUG
650 int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...)
651 {
652 	va_list ap;
653 	int err;
654 
655 	va_start(ap, fmt);
656 	shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap);
657 	va_end(ap);
658 	if (!shrinker->name)
659 		return -ENOMEM;
660 
661 	err = __prealloc_shrinker(shrinker);
662 	if (err) {
663 		kfree_const(shrinker->name);
664 		shrinker->name = NULL;
665 	}
666 
667 	return err;
668 }
669 #else
670 int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...)
671 {
672 	return __prealloc_shrinker(shrinker);
673 }
674 #endif
675 
676 void free_prealloced_shrinker(struct shrinker *shrinker)
677 {
678 #ifdef CONFIG_SHRINKER_DEBUG
679 	kfree_const(shrinker->name);
680 	shrinker->name = NULL;
681 #endif
682 	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
683 		down_write(&shrinker_rwsem);
684 		unregister_memcg_shrinker(shrinker);
685 		up_write(&shrinker_rwsem);
686 		return;
687 	}
688 
689 	kfree(shrinker->nr_deferred);
690 	shrinker->nr_deferred = NULL;
691 }
692 
693 void register_shrinker_prepared(struct shrinker *shrinker)
694 {
695 	down_write(&shrinker_rwsem);
696 	list_add_tail(&shrinker->list, &shrinker_list);
697 	shrinker->flags |= SHRINKER_REGISTERED;
698 	shrinker_debugfs_add(shrinker);
699 	up_write(&shrinker_rwsem);
700 }
701 
702 static int __register_shrinker(struct shrinker *shrinker)
703 {
704 	int err = __prealloc_shrinker(shrinker);
705 
706 	if (err)
707 		return err;
708 	register_shrinker_prepared(shrinker);
709 	return 0;
710 }
711 
712 #ifdef CONFIG_SHRINKER_DEBUG
713 int register_shrinker(struct shrinker *shrinker, const char *fmt, ...)
714 {
715 	va_list ap;
716 	int err;
717 
718 	va_start(ap, fmt);
719 	shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap);
720 	va_end(ap);
721 	if (!shrinker->name)
722 		return -ENOMEM;
723 
724 	err = __register_shrinker(shrinker);
725 	if (err) {
726 		kfree_const(shrinker->name);
727 		shrinker->name = NULL;
728 	}
729 	return err;
730 }
731 #else
732 int register_shrinker(struct shrinker *shrinker, const char *fmt, ...)
733 {
734 	return __register_shrinker(shrinker);
735 }
736 #endif
737 EXPORT_SYMBOL(register_shrinker);
738 
739 /*
740  * Remove one
741  */
742 void unregister_shrinker(struct shrinker *shrinker)
743 {
744 	if (!(shrinker->flags & SHRINKER_REGISTERED))
745 		return;
746 
747 	down_write(&shrinker_rwsem);
748 	list_del(&shrinker->list);
749 	shrinker->flags &= ~SHRINKER_REGISTERED;
750 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
751 		unregister_memcg_shrinker(shrinker);
752 	shrinker_debugfs_remove(shrinker);
753 	up_write(&shrinker_rwsem);
754 
755 	kfree(shrinker->nr_deferred);
756 	shrinker->nr_deferred = NULL;
757 }
758 EXPORT_SYMBOL(unregister_shrinker);
759 
760 /**
761  * synchronize_shrinkers - Wait for all running shrinkers to complete.
762  *
763  * This is equivalent to calling unregister_shrink() and register_shrinker(),
764  * but atomically and with less overhead. This is useful to guarantee that all
765  * shrinker invocations have seen an update, before freeing memory, similar to
766  * rcu.
767  */
768 void synchronize_shrinkers(void)
769 {
770 	down_write(&shrinker_rwsem);
771 	up_write(&shrinker_rwsem);
772 }
773 EXPORT_SYMBOL(synchronize_shrinkers);
774 
775 #define SHRINK_BATCH 128
776 
777 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
778 				    struct shrinker *shrinker, int priority)
779 {
780 	unsigned long freed = 0;
781 	unsigned long long delta;
782 	long total_scan;
783 	long freeable;
784 	long nr;
785 	long new_nr;
786 	long batch_size = shrinker->batch ? shrinker->batch
787 					  : SHRINK_BATCH;
788 	long scanned = 0, next_deferred;
789 
790 	freeable = shrinker->count_objects(shrinker, shrinkctl);
791 	if (freeable == 0 || freeable == SHRINK_EMPTY)
792 		return freeable;
793 
794 	/*
795 	 * copy the current shrinker scan count into a local variable
796 	 * and zero it so that other concurrent shrinker invocations
797 	 * don't also do this scanning work.
798 	 */
799 	nr = xchg_nr_deferred(shrinker, shrinkctl);
800 
801 	if (shrinker->seeks) {
802 		delta = freeable >> priority;
803 		delta *= 4;
804 		do_div(delta, shrinker->seeks);
805 	} else {
806 		/*
807 		 * These objects don't require any IO to create. Trim
808 		 * them aggressively under memory pressure to keep
809 		 * them from causing refetches in the IO caches.
810 		 */
811 		delta = freeable / 2;
812 	}
813 
814 	total_scan = nr >> priority;
815 	total_scan += delta;
816 	total_scan = min(total_scan, (2 * freeable));
817 
818 	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
819 				   freeable, delta, total_scan, priority);
820 
821 	/*
822 	 * Normally, we should not scan less than batch_size objects in one
823 	 * pass to avoid too frequent shrinker calls, but if the slab has less
824 	 * than batch_size objects in total and we are really tight on memory,
825 	 * we will try to reclaim all available objects, otherwise we can end
826 	 * up failing allocations although there are plenty of reclaimable
827 	 * objects spread over several slabs with usage less than the
828 	 * batch_size.
829 	 *
830 	 * We detect the "tight on memory" situations by looking at the total
831 	 * number of objects we want to scan (total_scan). If it is greater
832 	 * than the total number of objects on slab (freeable), we must be
833 	 * scanning at high prio and therefore should try to reclaim as much as
834 	 * possible.
835 	 */
836 	while (total_scan >= batch_size ||
837 	       total_scan >= freeable) {
838 		unsigned long ret;
839 		unsigned long nr_to_scan = min(batch_size, total_scan);
840 
841 		shrinkctl->nr_to_scan = nr_to_scan;
842 		shrinkctl->nr_scanned = nr_to_scan;
843 		ret = shrinker->scan_objects(shrinker, shrinkctl);
844 		if (ret == SHRINK_STOP)
845 			break;
846 		freed += ret;
847 
848 		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
849 		total_scan -= shrinkctl->nr_scanned;
850 		scanned += shrinkctl->nr_scanned;
851 
852 		cond_resched();
853 	}
854 
855 	/*
856 	 * The deferred work is increased by any new work (delta) that wasn't
857 	 * done, decreased by old deferred work that was done now.
858 	 *
859 	 * And it is capped to two times of the freeable items.
860 	 */
861 	next_deferred = max_t(long, (nr + delta - scanned), 0);
862 	next_deferred = min(next_deferred, (2 * freeable));
863 
864 	/*
865 	 * move the unused scan count back into the shrinker in a
866 	 * manner that handles concurrent updates.
867 	 */
868 	new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl);
869 
870 	trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan);
871 	return freed;
872 }
873 
874 #ifdef CONFIG_MEMCG
875 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
876 			struct mem_cgroup *memcg, int priority)
877 {
878 	struct shrinker_info *info;
879 	unsigned long ret, freed = 0;
880 	int i;
881 
882 	if (!mem_cgroup_online(memcg))
883 		return 0;
884 
885 	if (!down_read_trylock(&shrinker_rwsem))
886 		return 0;
887 
888 	info = shrinker_info_protected(memcg, nid);
889 	if (unlikely(!info))
890 		goto unlock;
891 
892 	for_each_set_bit(i, info->map, shrinker_nr_max) {
893 		struct shrink_control sc = {
894 			.gfp_mask = gfp_mask,
895 			.nid = nid,
896 			.memcg = memcg,
897 		};
898 		struct shrinker *shrinker;
899 
900 		shrinker = idr_find(&shrinker_idr, i);
901 		if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) {
902 			if (!shrinker)
903 				clear_bit(i, info->map);
904 			continue;
905 		}
906 
907 		/* Call non-slab shrinkers even though kmem is disabled */
908 		if (!memcg_kmem_enabled() &&
909 		    !(shrinker->flags & SHRINKER_NONSLAB))
910 			continue;
911 
912 		ret = do_shrink_slab(&sc, shrinker, priority);
913 		if (ret == SHRINK_EMPTY) {
914 			clear_bit(i, info->map);
915 			/*
916 			 * After the shrinker reported that it had no objects to
917 			 * free, but before we cleared the corresponding bit in
918 			 * the memcg shrinker map, a new object might have been
919 			 * added. To make sure, we have the bit set in this
920 			 * case, we invoke the shrinker one more time and reset
921 			 * the bit if it reports that it is not empty anymore.
922 			 * The memory barrier here pairs with the barrier in
923 			 * set_shrinker_bit():
924 			 *
925 			 * list_lru_add()     shrink_slab_memcg()
926 			 *   list_add_tail()    clear_bit()
927 			 *   <MB>               <MB>
928 			 *   set_bit()          do_shrink_slab()
929 			 */
930 			smp_mb__after_atomic();
931 			ret = do_shrink_slab(&sc, shrinker, priority);
932 			if (ret == SHRINK_EMPTY)
933 				ret = 0;
934 			else
935 				set_shrinker_bit(memcg, nid, i);
936 		}
937 		freed += ret;
938 
939 		if (rwsem_is_contended(&shrinker_rwsem)) {
940 			freed = freed ? : 1;
941 			break;
942 		}
943 	}
944 unlock:
945 	up_read(&shrinker_rwsem);
946 	return freed;
947 }
948 #else /* CONFIG_MEMCG */
949 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
950 			struct mem_cgroup *memcg, int priority)
951 {
952 	return 0;
953 }
954 #endif /* CONFIG_MEMCG */
955 
956 /**
957  * shrink_slab - shrink slab caches
958  * @gfp_mask: allocation context
959  * @nid: node whose slab caches to target
960  * @memcg: memory cgroup whose slab caches to target
961  * @priority: the reclaim priority
962  *
963  * Call the shrink functions to age shrinkable caches.
964  *
965  * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
966  * unaware shrinkers will receive a node id of 0 instead.
967  *
968  * @memcg specifies the memory cgroup to target. Unaware shrinkers
969  * are called only if it is the root cgroup.
970  *
971  * @priority is sc->priority, we take the number of objects and >> by priority
972  * in order to get the scan target.
973  *
974  * Returns the number of reclaimed slab objects.
975  */
976 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
977 				 struct mem_cgroup *memcg,
978 				 int priority)
979 {
980 	unsigned long ret, freed = 0;
981 	struct shrinker *shrinker;
982 
983 	/*
984 	 * The root memcg might be allocated even though memcg is disabled
985 	 * via "cgroup_disable=memory" boot parameter.  This could make
986 	 * mem_cgroup_is_root() return false, then just run memcg slab
987 	 * shrink, but skip global shrink.  This may result in premature
988 	 * oom.
989 	 */
990 	if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
991 		return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
992 
993 	if (!down_read_trylock(&shrinker_rwsem))
994 		goto out;
995 
996 	list_for_each_entry(shrinker, &shrinker_list, list) {
997 		struct shrink_control sc = {
998 			.gfp_mask = gfp_mask,
999 			.nid = nid,
1000 			.memcg = memcg,
1001 		};
1002 
1003 		ret = do_shrink_slab(&sc, shrinker, priority);
1004 		if (ret == SHRINK_EMPTY)
1005 			ret = 0;
1006 		freed += ret;
1007 		/*
1008 		 * Bail out if someone want to register a new shrinker to
1009 		 * prevent the registration from being stalled for long periods
1010 		 * by parallel ongoing shrinking.
1011 		 */
1012 		if (rwsem_is_contended(&shrinker_rwsem)) {
1013 			freed = freed ? : 1;
1014 			break;
1015 		}
1016 	}
1017 
1018 	up_read(&shrinker_rwsem);
1019 out:
1020 	cond_resched();
1021 	return freed;
1022 }
1023 
1024 static void drop_slab_node(int nid)
1025 {
1026 	unsigned long freed;
1027 	int shift = 0;
1028 
1029 	do {
1030 		struct mem_cgroup *memcg = NULL;
1031 
1032 		if (fatal_signal_pending(current))
1033 			return;
1034 
1035 		freed = 0;
1036 		memcg = mem_cgroup_iter(NULL, NULL, NULL);
1037 		do {
1038 			freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
1039 		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
1040 	} while ((freed >> shift++) > 1);
1041 }
1042 
1043 void drop_slab(void)
1044 {
1045 	int nid;
1046 
1047 	for_each_online_node(nid)
1048 		drop_slab_node(nid);
1049 }
1050 
1051 static int reclaimer_offset(void)
1052 {
1053 	BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD !=
1054 			PGDEMOTE_DIRECT - PGDEMOTE_KSWAPD);
1055 	BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD !=
1056 			PGSCAN_DIRECT - PGSCAN_KSWAPD);
1057 	BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD !=
1058 			PGDEMOTE_KHUGEPAGED - PGDEMOTE_KSWAPD);
1059 	BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD !=
1060 			PGSCAN_KHUGEPAGED - PGSCAN_KSWAPD);
1061 
1062 	if (current_is_kswapd())
1063 		return 0;
1064 	if (current_is_khugepaged())
1065 		return PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD;
1066 	return PGSTEAL_DIRECT - PGSTEAL_KSWAPD;
1067 }
1068 
1069 static inline int is_page_cache_freeable(struct folio *folio)
1070 {
1071 	/*
1072 	 * A freeable page cache folio is referenced only by the caller
1073 	 * that isolated the folio, the page cache and optional filesystem
1074 	 * private data at folio->private.
1075 	 */
1076 	return folio_ref_count(folio) - folio_test_private(folio) ==
1077 		1 + folio_nr_pages(folio);
1078 }
1079 
1080 /*
1081  * We detected a synchronous write error writing a folio out.  Probably
1082  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
1083  * fsync(), msync() or close().
1084  *
1085  * The tricky part is that after writepage we cannot touch the mapping: nothing
1086  * prevents it from being freed up.  But we have a ref on the folio and once
1087  * that folio is locked, the mapping is pinned.
1088  *
1089  * We're allowed to run sleeping folio_lock() here because we know the caller has
1090  * __GFP_FS.
1091  */
1092 static void handle_write_error(struct address_space *mapping,
1093 				struct folio *folio, int error)
1094 {
1095 	folio_lock(folio);
1096 	if (folio_mapping(folio) == mapping)
1097 		mapping_set_error(mapping, error);
1098 	folio_unlock(folio);
1099 }
1100 
1101 static bool skip_throttle_noprogress(pg_data_t *pgdat)
1102 {
1103 	int reclaimable = 0, write_pending = 0;
1104 	int i;
1105 
1106 	/*
1107 	 * If kswapd is disabled, reschedule if necessary but do not
1108 	 * throttle as the system is likely near OOM.
1109 	 */
1110 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
1111 		return true;
1112 
1113 	/*
1114 	 * If there are a lot of dirty/writeback folios then do not
1115 	 * throttle as throttling will occur when the folios cycle
1116 	 * towards the end of the LRU if still under writeback.
1117 	 */
1118 	for (i = 0; i < MAX_NR_ZONES; i++) {
1119 		struct zone *zone = pgdat->node_zones + i;
1120 
1121 		if (!managed_zone(zone))
1122 			continue;
1123 
1124 		reclaimable += zone_reclaimable_pages(zone);
1125 		write_pending += zone_page_state_snapshot(zone,
1126 						  NR_ZONE_WRITE_PENDING);
1127 	}
1128 	if (2 * write_pending <= reclaimable)
1129 		return true;
1130 
1131 	return false;
1132 }
1133 
1134 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
1135 {
1136 	wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason];
1137 	long timeout, ret;
1138 	DEFINE_WAIT(wait);
1139 
1140 	/*
1141 	 * Do not throttle IO workers, kthreads other than kswapd or
1142 	 * workqueues. They may be required for reclaim to make
1143 	 * forward progress (e.g. journalling workqueues or kthreads).
1144 	 */
1145 	if (!current_is_kswapd() &&
1146 	    current->flags & (PF_IO_WORKER|PF_KTHREAD)) {
1147 		cond_resched();
1148 		return;
1149 	}
1150 
1151 	/*
1152 	 * These figures are pulled out of thin air.
1153 	 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
1154 	 * parallel reclaimers which is a short-lived event so the timeout is
1155 	 * short. Failing to make progress or waiting on writeback are
1156 	 * potentially long-lived events so use a longer timeout. This is shaky
1157 	 * logic as a failure to make progress could be due to anything from
1158 	 * writeback to a slow device to excessive referenced folios at the tail
1159 	 * of the inactive LRU.
1160 	 */
1161 	switch(reason) {
1162 	case VMSCAN_THROTTLE_WRITEBACK:
1163 		timeout = HZ/10;
1164 
1165 		if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) {
1166 			WRITE_ONCE(pgdat->nr_reclaim_start,
1167 				node_page_state(pgdat, NR_THROTTLED_WRITTEN));
1168 		}
1169 
1170 		break;
1171 	case VMSCAN_THROTTLE_CONGESTED:
1172 		fallthrough;
1173 	case VMSCAN_THROTTLE_NOPROGRESS:
1174 		if (skip_throttle_noprogress(pgdat)) {
1175 			cond_resched();
1176 			return;
1177 		}
1178 
1179 		timeout = 1;
1180 
1181 		break;
1182 	case VMSCAN_THROTTLE_ISOLATED:
1183 		timeout = HZ/50;
1184 		break;
1185 	default:
1186 		WARN_ON_ONCE(1);
1187 		timeout = HZ;
1188 		break;
1189 	}
1190 
1191 	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1192 	ret = schedule_timeout(timeout);
1193 	finish_wait(wqh, &wait);
1194 
1195 	if (reason == VMSCAN_THROTTLE_WRITEBACK)
1196 		atomic_dec(&pgdat->nr_writeback_throttled);
1197 
1198 	trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout),
1199 				jiffies_to_usecs(timeout - ret),
1200 				reason);
1201 }
1202 
1203 /*
1204  * Account for folios written if tasks are throttled waiting on dirty
1205  * folios to clean. If enough folios have been cleaned since throttling
1206  * started then wakeup the throttled tasks.
1207  */
1208 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
1209 							int nr_throttled)
1210 {
1211 	unsigned long nr_written;
1212 
1213 	node_stat_add_folio(folio, NR_THROTTLED_WRITTEN);
1214 
1215 	/*
1216 	 * This is an inaccurate read as the per-cpu deltas may not
1217 	 * be synchronised. However, given that the system is
1218 	 * writeback throttled, it is not worth taking the penalty
1219 	 * of getting an accurate count. At worst, the throttle
1220 	 * timeout guarantees forward progress.
1221 	 */
1222 	nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) -
1223 		READ_ONCE(pgdat->nr_reclaim_start);
1224 
1225 	if (nr_written > SWAP_CLUSTER_MAX * nr_throttled)
1226 		wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]);
1227 }
1228 
1229 /* possible outcome of pageout() */
1230 typedef enum {
1231 	/* failed to write folio out, folio is locked */
1232 	PAGE_KEEP,
1233 	/* move folio to the active list, folio is locked */
1234 	PAGE_ACTIVATE,
1235 	/* folio has been sent to the disk successfully, folio is unlocked */
1236 	PAGE_SUCCESS,
1237 	/* folio is clean and locked */
1238 	PAGE_CLEAN,
1239 } pageout_t;
1240 
1241 /*
1242  * pageout is called by shrink_folio_list() for each dirty folio.
1243  * Calls ->writepage().
1244  */
1245 static pageout_t pageout(struct folio *folio, struct address_space *mapping,
1246 			 struct swap_iocb **plug)
1247 {
1248 	/*
1249 	 * If the folio is dirty, only perform writeback if that write
1250 	 * will be non-blocking.  To prevent this allocation from being
1251 	 * stalled by pagecache activity.  But note that there may be
1252 	 * stalls if we need to run get_block().  We could test
1253 	 * PagePrivate for that.
1254 	 *
1255 	 * If this process is currently in __generic_file_write_iter() against
1256 	 * this folio's queue, we can perform writeback even if that
1257 	 * will block.
1258 	 *
1259 	 * If the folio is swapcache, write it back even if that would
1260 	 * block, for some throttling. This happens by accident, because
1261 	 * swap_backing_dev_info is bust: it doesn't reflect the
1262 	 * congestion state of the swapdevs.  Easy to fix, if needed.
1263 	 */
1264 	if (!is_page_cache_freeable(folio))
1265 		return PAGE_KEEP;
1266 	if (!mapping) {
1267 		/*
1268 		 * Some data journaling orphaned folios can have
1269 		 * folio->mapping == NULL while being dirty with clean buffers.
1270 		 */
1271 		if (folio_test_private(folio)) {
1272 			if (try_to_free_buffers(folio)) {
1273 				folio_clear_dirty(folio);
1274 				pr_info("%s: orphaned folio\n", __func__);
1275 				return PAGE_CLEAN;
1276 			}
1277 		}
1278 		return PAGE_KEEP;
1279 	}
1280 	if (mapping->a_ops->writepage == NULL)
1281 		return PAGE_ACTIVATE;
1282 
1283 	if (folio_clear_dirty_for_io(folio)) {
1284 		int res;
1285 		struct writeback_control wbc = {
1286 			.sync_mode = WB_SYNC_NONE,
1287 			.nr_to_write = SWAP_CLUSTER_MAX,
1288 			.range_start = 0,
1289 			.range_end = LLONG_MAX,
1290 			.for_reclaim = 1,
1291 			.swap_plug = plug,
1292 		};
1293 
1294 		folio_set_reclaim(folio);
1295 		res = mapping->a_ops->writepage(&folio->page, &wbc);
1296 		if (res < 0)
1297 			handle_write_error(mapping, folio, res);
1298 		if (res == AOP_WRITEPAGE_ACTIVATE) {
1299 			folio_clear_reclaim(folio);
1300 			return PAGE_ACTIVATE;
1301 		}
1302 
1303 		if (!folio_test_writeback(folio)) {
1304 			/* synchronous write or broken a_ops? */
1305 			folio_clear_reclaim(folio);
1306 		}
1307 		trace_mm_vmscan_write_folio(folio);
1308 		node_stat_add_folio(folio, NR_VMSCAN_WRITE);
1309 		return PAGE_SUCCESS;
1310 	}
1311 
1312 	return PAGE_CLEAN;
1313 }
1314 
1315 /*
1316  * Same as remove_mapping, but if the folio is removed from the mapping, it
1317  * gets returned with a refcount of 0.
1318  */
1319 static int __remove_mapping(struct address_space *mapping, struct folio *folio,
1320 			    bool reclaimed, struct mem_cgroup *target_memcg)
1321 {
1322 	int refcount;
1323 	void *shadow = NULL;
1324 
1325 	BUG_ON(!folio_test_locked(folio));
1326 	BUG_ON(mapping != folio_mapping(folio));
1327 
1328 	if (!folio_test_swapcache(folio))
1329 		spin_lock(&mapping->host->i_lock);
1330 	xa_lock_irq(&mapping->i_pages);
1331 	/*
1332 	 * The non racy check for a busy folio.
1333 	 *
1334 	 * Must be careful with the order of the tests. When someone has
1335 	 * a ref to the folio, it may be possible that they dirty it then
1336 	 * drop the reference. So if the dirty flag is tested before the
1337 	 * refcount here, then the following race may occur:
1338 	 *
1339 	 * get_user_pages(&page);
1340 	 * [user mapping goes away]
1341 	 * write_to(page);
1342 	 *				!folio_test_dirty(folio)    [good]
1343 	 * folio_set_dirty(folio);
1344 	 * folio_put(folio);
1345 	 *				!refcount(folio)   [good, discard it]
1346 	 *
1347 	 * [oops, our write_to data is lost]
1348 	 *
1349 	 * Reversing the order of the tests ensures such a situation cannot
1350 	 * escape unnoticed. The smp_rmb is needed to ensure the folio->flags
1351 	 * load is not satisfied before that of folio->_refcount.
1352 	 *
1353 	 * Note that if the dirty flag is always set via folio_mark_dirty,
1354 	 * and thus under the i_pages lock, then this ordering is not required.
1355 	 */
1356 	refcount = 1 + folio_nr_pages(folio);
1357 	if (!folio_ref_freeze(folio, refcount))
1358 		goto cannot_free;
1359 	/* note: atomic_cmpxchg in folio_ref_freeze provides the smp_rmb */
1360 	if (unlikely(folio_test_dirty(folio))) {
1361 		folio_ref_unfreeze(folio, refcount);
1362 		goto cannot_free;
1363 	}
1364 
1365 	if (folio_test_swapcache(folio)) {
1366 		swp_entry_t swap = folio_swap_entry(folio);
1367 
1368 		/* get a shadow entry before mem_cgroup_swapout() clears folio_memcg() */
1369 		if (reclaimed && !mapping_exiting(mapping))
1370 			shadow = workingset_eviction(folio, target_memcg);
1371 		mem_cgroup_swapout(folio, swap);
1372 		__delete_from_swap_cache(folio, swap, shadow);
1373 		xa_unlock_irq(&mapping->i_pages);
1374 		put_swap_folio(folio, swap);
1375 	} else {
1376 		void (*free_folio)(struct folio *);
1377 
1378 		free_folio = mapping->a_ops->free_folio;
1379 		/*
1380 		 * Remember a shadow entry for reclaimed file cache in
1381 		 * order to detect refaults, thus thrashing, later on.
1382 		 *
1383 		 * But don't store shadows in an address space that is
1384 		 * already exiting.  This is not just an optimization,
1385 		 * inode reclaim needs to empty out the radix tree or
1386 		 * the nodes are lost.  Don't plant shadows behind its
1387 		 * back.
1388 		 *
1389 		 * We also don't store shadows for DAX mappings because the
1390 		 * only page cache folios found in these are zero pages
1391 		 * covering holes, and because we don't want to mix DAX
1392 		 * exceptional entries and shadow exceptional entries in the
1393 		 * same address_space.
1394 		 */
1395 		if (reclaimed && folio_is_file_lru(folio) &&
1396 		    !mapping_exiting(mapping) && !dax_mapping(mapping))
1397 			shadow = workingset_eviction(folio, target_memcg);
1398 		__filemap_remove_folio(folio, shadow);
1399 		xa_unlock_irq(&mapping->i_pages);
1400 		if (mapping_shrinkable(mapping))
1401 			inode_add_lru(mapping->host);
1402 		spin_unlock(&mapping->host->i_lock);
1403 
1404 		if (free_folio)
1405 			free_folio(folio);
1406 	}
1407 
1408 	return 1;
1409 
1410 cannot_free:
1411 	xa_unlock_irq(&mapping->i_pages);
1412 	if (!folio_test_swapcache(folio))
1413 		spin_unlock(&mapping->host->i_lock);
1414 	return 0;
1415 }
1416 
1417 /**
1418  * remove_mapping() - Attempt to remove a folio from its mapping.
1419  * @mapping: The address space.
1420  * @folio: The folio to remove.
1421  *
1422  * If the folio is dirty, under writeback or if someone else has a ref
1423  * on it, removal will fail.
1424  * Return: The number of pages removed from the mapping.  0 if the folio
1425  * could not be removed.
1426  * Context: The caller should have a single refcount on the folio and
1427  * hold its lock.
1428  */
1429 long remove_mapping(struct address_space *mapping, struct folio *folio)
1430 {
1431 	if (__remove_mapping(mapping, folio, false, NULL)) {
1432 		/*
1433 		 * Unfreezing the refcount with 1 effectively
1434 		 * drops the pagecache ref for us without requiring another
1435 		 * atomic operation.
1436 		 */
1437 		folio_ref_unfreeze(folio, 1);
1438 		return folio_nr_pages(folio);
1439 	}
1440 	return 0;
1441 }
1442 
1443 /**
1444  * folio_putback_lru - Put previously isolated folio onto appropriate LRU list.
1445  * @folio: Folio to be returned to an LRU list.
1446  *
1447  * Add previously isolated @folio to appropriate LRU list.
1448  * The folio may still be unevictable for other reasons.
1449  *
1450  * Context: lru_lock must not be held, interrupts must be enabled.
1451  */
1452 void folio_putback_lru(struct folio *folio)
1453 {
1454 	folio_add_lru(folio);
1455 	folio_put(folio);		/* drop ref from isolate */
1456 }
1457 
1458 enum folio_references {
1459 	FOLIOREF_RECLAIM,
1460 	FOLIOREF_RECLAIM_CLEAN,
1461 	FOLIOREF_KEEP,
1462 	FOLIOREF_ACTIVATE,
1463 };
1464 
1465 static enum folio_references folio_check_references(struct folio *folio,
1466 						  struct scan_control *sc)
1467 {
1468 	int referenced_ptes, referenced_folio;
1469 	unsigned long vm_flags;
1470 
1471 	referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup,
1472 					   &vm_flags);
1473 	referenced_folio = folio_test_clear_referenced(folio);
1474 
1475 	/*
1476 	 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma.
1477 	 * Let the folio, now marked Mlocked, be moved to the unevictable list.
1478 	 */
1479 	if (vm_flags & VM_LOCKED)
1480 		return FOLIOREF_ACTIVATE;
1481 
1482 	/* rmap lock contention: rotate */
1483 	if (referenced_ptes == -1)
1484 		return FOLIOREF_KEEP;
1485 
1486 	if (referenced_ptes) {
1487 		/*
1488 		 * All mapped folios start out with page table
1489 		 * references from the instantiating fault, so we need
1490 		 * to look twice if a mapped file/anon folio is used more
1491 		 * than once.
1492 		 *
1493 		 * Mark it and spare it for another trip around the
1494 		 * inactive list.  Another page table reference will
1495 		 * lead to its activation.
1496 		 *
1497 		 * Note: the mark is set for activated folios as well
1498 		 * so that recently deactivated but used folios are
1499 		 * quickly recovered.
1500 		 */
1501 		folio_set_referenced(folio);
1502 
1503 		if (referenced_folio || referenced_ptes > 1)
1504 			return FOLIOREF_ACTIVATE;
1505 
1506 		/*
1507 		 * Activate file-backed executable folios after first usage.
1508 		 */
1509 		if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio))
1510 			return FOLIOREF_ACTIVATE;
1511 
1512 		return FOLIOREF_KEEP;
1513 	}
1514 
1515 	/* Reclaim if clean, defer dirty folios to writeback */
1516 	if (referenced_folio && folio_is_file_lru(folio))
1517 		return FOLIOREF_RECLAIM_CLEAN;
1518 
1519 	return FOLIOREF_RECLAIM;
1520 }
1521 
1522 /* Check if a folio is dirty or under writeback */
1523 static void folio_check_dirty_writeback(struct folio *folio,
1524 				       bool *dirty, bool *writeback)
1525 {
1526 	struct address_space *mapping;
1527 
1528 	/*
1529 	 * Anonymous folios are not handled by flushers and must be written
1530 	 * from reclaim context. Do not stall reclaim based on them.
1531 	 * MADV_FREE anonymous folios are put into inactive file list too.
1532 	 * They could be mistakenly treated as file lru. So further anon
1533 	 * test is needed.
1534 	 */
1535 	if (!folio_is_file_lru(folio) ||
1536 	    (folio_test_anon(folio) && !folio_test_swapbacked(folio))) {
1537 		*dirty = false;
1538 		*writeback = false;
1539 		return;
1540 	}
1541 
1542 	/* By default assume that the folio flags are accurate */
1543 	*dirty = folio_test_dirty(folio);
1544 	*writeback = folio_test_writeback(folio);
1545 
1546 	/* Verify dirty/writeback state if the filesystem supports it */
1547 	if (!folio_test_private(folio))
1548 		return;
1549 
1550 	mapping = folio_mapping(folio);
1551 	if (mapping && mapping->a_ops->is_dirty_writeback)
1552 		mapping->a_ops->is_dirty_writeback(folio, dirty, writeback);
1553 }
1554 
1555 static struct page *alloc_demote_page(struct page *page, unsigned long private)
1556 {
1557 	struct page *target_page;
1558 	nodemask_t *allowed_mask;
1559 	struct migration_target_control *mtc;
1560 
1561 	mtc = (struct migration_target_control *)private;
1562 
1563 	allowed_mask = mtc->nmask;
1564 	/*
1565 	 * make sure we allocate from the target node first also trying to
1566 	 * demote or reclaim pages from the target node via kswapd if we are
1567 	 * low on free memory on target node. If we don't do this and if
1568 	 * we have free memory on the slower(lower) memtier, we would start
1569 	 * allocating pages from slower(lower) memory tiers without even forcing
1570 	 * a demotion of cold pages from the target memtier. This can result
1571 	 * in the kernel placing hot pages in slower(lower) memory tiers.
1572 	 */
1573 	mtc->nmask = NULL;
1574 	mtc->gfp_mask |= __GFP_THISNODE;
1575 	target_page = alloc_migration_target(page, (unsigned long)mtc);
1576 	if (target_page)
1577 		return target_page;
1578 
1579 	mtc->gfp_mask &= ~__GFP_THISNODE;
1580 	mtc->nmask = allowed_mask;
1581 
1582 	return alloc_migration_target(page, (unsigned long)mtc);
1583 }
1584 
1585 /*
1586  * Take folios on @demote_folios and attempt to demote them to another node.
1587  * Folios which are not demoted are left on @demote_folios.
1588  */
1589 static unsigned int demote_folio_list(struct list_head *demote_folios,
1590 				     struct pglist_data *pgdat)
1591 {
1592 	int target_nid = next_demotion_node(pgdat->node_id);
1593 	unsigned int nr_succeeded;
1594 	nodemask_t allowed_mask;
1595 
1596 	struct migration_target_control mtc = {
1597 		/*
1598 		 * Allocate from 'node', or fail quickly and quietly.
1599 		 * When this happens, 'page' will likely just be discarded
1600 		 * instead of migrated.
1601 		 */
1602 		.gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | __GFP_NOWARN |
1603 			__GFP_NOMEMALLOC | GFP_NOWAIT,
1604 		.nid = target_nid,
1605 		.nmask = &allowed_mask
1606 	};
1607 
1608 	if (list_empty(demote_folios))
1609 		return 0;
1610 
1611 	if (target_nid == NUMA_NO_NODE)
1612 		return 0;
1613 
1614 	node_get_allowed_targets(pgdat, &allowed_mask);
1615 
1616 	/* Demotion ignores all cpuset and mempolicy settings */
1617 	migrate_pages(demote_folios, alloc_demote_page, NULL,
1618 		      (unsigned long)&mtc, MIGRATE_ASYNC, MR_DEMOTION,
1619 		      &nr_succeeded);
1620 
1621 	__count_vm_events(PGDEMOTE_KSWAPD + reclaimer_offset(), nr_succeeded);
1622 
1623 	return nr_succeeded;
1624 }
1625 
1626 static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask)
1627 {
1628 	if (gfp_mask & __GFP_FS)
1629 		return true;
1630 	if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO))
1631 		return false;
1632 	/*
1633 	 * We can "enter_fs" for swap-cache with only __GFP_IO
1634 	 * providing this isn't SWP_FS_OPS.
1635 	 * ->flags can be updated non-atomicially (scan_swap_map_slots),
1636 	 * but that will never affect SWP_FS_OPS, so the data_race
1637 	 * is safe.
1638 	 */
1639 	return !data_race(folio_swap_flags(folio) & SWP_FS_OPS);
1640 }
1641 
1642 /*
1643  * shrink_folio_list() returns the number of reclaimed pages
1644  */
1645 static unsigned int shrink_folio_list(struct list_head *folio_list,
1646 		struct pglist_data *pgdat, struct scan_control *sc,
1647 		struct reclaim_stat *stat, bool ignore_references)
1648 {
1649 	LIST_HEAD(ret_folios);
1650 	LIST_HEAD(free_folios);
1651 	LIST_HEAD(demote_folios);
1652 	unsigned int nr_reclaimed = 0;
1653 	unsigned int pgactivate = 0;
1654 	bool do_demote_pass;
1655 	struct swap_iocb *plug = NULL;
1656 
1657 	memset(stat, 0, sizeof(*stat));
1658 	cond_resched();
1659 	do_demote_pass = can_demote(pgdat->node_id, sc);
1660 
1661 retry:
1662 	while (!list_empty(folio_list)) {
1663 		struct address_space *mapping;
1664 		struct folio *folio;
1665 		enum folio_references references = FOLIOREF_RECLAIM;
1666 		bool dirty, writeback;
1667 		unsigned int nr_pages;
1668 
1669 		cond_resched();
1670 
1671 		folio = lru_to_folio(folio_list);
1672 		list_del(&folio->lru);
1673 
1674 		if (!folio_trylock(folio))
1675 			goto keep;
1676 
1677 		VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1678 
1679 		nr_pages = folio_nr_pages(folio);
1680 
1681 		/* Account the number of base pages */
1682 		sc->nr_scanned += nr_pages;
1683 
1684 		if (unlikely(!folio_evictable(folio)))
1685 			goto activate_locked;
1686 
1687 		if (!sc->may_unmap && folio_mapped(folio))
1688 			goto keep_locked;
1689 
1690 		/* folio_update_gen() tried to promote this page? */
1691 		if (lru_gen_enabled() && !ignore_references &&
1692 		    folio_mapped(folio) && folio_test_referenced(folio))
1693 			goto keep_locked;
1694 
1695 		/*
1696 		 * The number of dirty pages determines if a node is marked
1697 		 * reclaim_congested. kswapd will stall and start writing
1698 		 * folios if the tail of the LRU is all dirty unqueued folios.
1699 		 */
1700 		folio_check_dirty_writeback(folio, &dirty, &writeback);
1701 		if (dirty || writeback)
1702 			stat->nr_dirty += nr_pages;
1703 
1704 		if (dirty && !writeback)
1705 			stat->nr_unqueued_dirty += nr_pages;
1706 
1707 		/*
1708 		 * Treat this folio as congested if folios are cycling
1709 		 * through the LRU so quickly that the folios marked
1710 		 * for immediate reclaim are making it to the end of
1711 		 * the LRU a second time.
1712 		 */
1713 		if (writeback && folio_test_reclaim(folio))
1714 			stat->nr_congested += nr_pages;
1715 
1716 		/*
1717 		 * If a folio at the tail of the LRU is under writeback, there
1718 		 * are three cases to consider.
1719 		 *
1720 		 * 1) If reclaim is encountering an excessive number
1721 		 *    of folios under writeback and this folio has both
1722 		 *    the writeback and reclaim flags set, then it
1723 		 *    indicates that folios are being queued for I/O but
1724 		 *    are being recycled through the LRU before the I/O
1725 		 *    can complete. Waiting on the folio itself risks an
1726 		 *    indefinite stall if it is impossible to writeback
1727 		 *    the folio due to I/O error or disconnected storage
1728 		 *    so instead note that the LRU is being scanned too
1729 		 *    quickly and the caller can stall after the folio
1730 		 *    list has been processed.
1731 		 *
1732 		 * 2) Global or new memcg reclaim encounters a folio that is
1733 		 *    not marked for immediate reclaim, or the caller does not
1734 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1735 		 *    not to fs). In this case mark the folio for immediate
1736 		 *    reclaim and continue scanning.
1737 		 *
1738 		 *    Require may_enter_fs() because we would wait on fs, which
1739 		 *    may not have submitted I/O yet. And the loop driver might
1740 		 *    enter reclaim, and deadlock if it waits on a folio for
1741 		 *    which it is needed to do the write (loop masks off
1742 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1743 		 *    would probably show more reasons.
1744 		 *
1745 		 * 3) Legacy memcg encounters a folio that already has the
1746 		 *    reclaim flag set. memcg does not have any dirty folio
1747 		 *    throttling so we could easily OOM just because too many
1748 		 *    folios are in writeback and there is nothing else to
1749 		 *    reclaim. Wait for the writeback to complete.
1750 		 *
1751 		 * In cases 1) and 2) we activate the folios to get them out of
1752 		 * the way while we continue scanning for clean folios on the
1753 		 * inactive list and refilling from the active list. The
1754 		 * observation here is that waiting for disk writes is more
1755 		 * expensive than potentially causing reloads down the line.
1756 		 * Since they're marked for immediate reclaim, they won't put
1757 		 * memory pressure on the cache working set any longer than it
1758 		 * takes to write them to disk.
1759 		 */
1760 		if (folio_test_writeback(folio)) {
1761 			/* Case 1 above */
1762 			if (current_is_kswapd() &&
1763 			    folio_test_reclaim(folio) &&
1764 			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1765 				stat->nr_immediate += nr_pages;
1766 				goto activate_locked;
1767 
1768 			/* Case 2 above */
1769 			} else if (writeback_throttling_sane(sc) ||
1770 			    !folio_test_reclaim(folio) ||
1771 			    !may_enter_fs(folio, sc->gfp_mask)) {
1772 				/*
1773 				 * This is slightly racy -
1774 				 * folio_end_writeback() might have
1775 				 * just cleared the reclaim flag, then
1776 				 * setting the reclaim flag here ends up
1777 				 * interpreted as the readahead flag - but
1778 				 * that does not matter enough to care.
1779 				 * What we do want is for this folio to
1780 				 * have the reclaim flag set next time
1781 				 * memcg reclaim reaches the tests above,
1782 				 * so it will then wait for writeback to
1783 				 * avoid OOM; and it's also appropriate
1784 				 * in global reclaim.
1785 				 */
1786 				folio_set_reclaim(folio);
1787 				stat->nr_writeback += nr_pages;
1788 				goto activate_locked;
1789 
1790 			/* Case 3 above */
1791 			} else {
1792 				folio_unlock(folio);
1793 				folio_wait_writeback(folio);
1794 				/* then go back and try same folio again */
1795 				list_add_tail(&folio->lru, folio_list);
1796 				continue;
1797 			}
1798 		}
1799 
1800 		if (!ignore_references)
1801 			references = folio_check_references(folio, sc);
1802 
1803 		switch (references) {
1804 		case FOLIOREF_ACTIVATE:
1805 			goto activate_locked;
1806 		case FOLIOREF_KEEP:
1807 			stat->nr_ref_keep += nr_pages;
1808 			goto keep_locked;
1809 		case FOLIOREF_RECLAIM:
1810 		case FOLIOREF_RECLAIM_CLEAN:
1811 			; /* try to reclaim the folio below */
1812 		}
1813 
1814 		/*
1815 		 * Before reclaiming the folio, try to relocate
1816 		 * its contents to another node.
1817 		 */
1818 		if (do_demote_pass &&
1819 		    (thp_migration_supported() || !folio_test_large(folio))) {
1820 			list_add(&folio->lru, &demote_folios);
1821 			folio_unlock(folio);
1822 			continue;
1823 		}
1824 
1825 		/*
1826 		 * Anonymous process memory has backing store?
1827 		 * Try to allocate it some swap space here.
1828 		 * Lazyfree folio could be freed directly
1829 		 */
1830 		if (folio_test_anon(folio) && folio_test_swapbacked(folio)) {
1831 			if (!folio_test_swapcache(folio)) {
1832 				if (!(sc->gfp_mask & __GFP_IO))
1833 					goto keep_locked;
1834 				if (folio_maybe_dma_pinned(folio))
1835 					goto keep_locked;
1836 				if (folio_test_large(folio)) {
1837 					/* cannot split folio, skip it */
1838 					if (!can_split_folio(folio, NULL))
1839 						goto activate_locked;
1840 					/*
1841 					 * Split folios without a PMD map right
1842 					 * away. Chances are some or all of the
1843 					 * tail pages can be freed without IO.
1844 					 */
1845 					if (!folio_entire_mapcount(folio) &&
1846 					    split_folio_to_list(folio,
1847 								folio_list))
1848 						goto activate_locked;
1849 				}
1850 				if (!add_to_swap(folio)) {
1851 					if (!folio_test_large(folio))
1852 						goto activate_locked_split;
1853 					/* Fallback to swap normal pages */
1854 					if (split_folio_to_list(folio,
1855 								folio_list))
1856 						goto activate_locked;
1857 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1858 					count_vm_event(THP_SWPOUT_FALLBACK);
1859 #endif
1860 					if (!add_to_swap(folio))
1861 						goto activate_locked_split;
1862 				}
1863 			}
1864 		} else if (folio_test_swapbacked(folio) &&
1865 			   folio_test_large(folio)) {
1866 			/* Split shmem folio */
1867 			if (split_folio_to_list(folio, folio_list))
1868 				goto keep_locked;
1869 		}
1870 
1871 		/*
1872 		 * If the folio was split above, the tail pages will make
1873 		 * their own pass through this function and be accounted
1874 		 * then.
1875 		 */
1876 		if ((nr_pages > 1) && !folio_test_large(folio)) {
1877 			sc->nr_scanned -= (nr_pages - 1);
1878 			nr_pages = 1;
1879 		}
1880 
1881 		/*
1882 		 * The folio is mapped into the page tables of one or more
1883 		 * processes. Try to unmap it here.
1884 		 */
1885 		if (folio_mapped(folio)) {
1886 			enum ttu_flags flags = TTU_BATCH_FLUSH;
1887 			bool was_swapbacked = folio_test_swapbacked(folio);
1888 
1889 			if (folio_test_pmd_mappable(folio))
1890 				flags |= TTU_SPLIT_HUGE_PMD;
1891 
1892 			try_to_unmap(folio, flags);
1893 			if (folio_mapped(folio)) {
1894 				stat->nr_unmap_fail += nr_pages;
1895 				if (!was_swapbacked &&
1896 				    folio_test_swapbacked(folio))
1897 					stat->nr_lazyfree_fail += nr_pages;
1898 				goto activate_locked;
1899 			}
1900 		}
1901 
1902 		mapping = folio_mapping(folio);
1903 		if (folio_test_dirty(folio)) {
1904 			/*
1905 			 * Only kswapd can writeback filesystem folios
1906 			 * to avoid risk of stack overflow. But avoid
1907 			 * injecting inefficient single-folio I/O into
1908 			 * flusher writeback as much as possible: only
1909 			 * write folios when we've encountered many
1910 			 * dirty folios, and when we've already scanned
1911 			 * the rest of the LRU for clean folios and see
1912 			 * the same dirty folios again (with the reclaim
1913 			 * flag set).
1914 			 */
1915 			if (folio_is_file_lru(folio) &&
1916 			    (!current_is_kswapd() ||
1917 			     !folio_test_reclaim(folio) ||
1918 			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1919 				/*
1920 				 * Immediately reclaim when written back.
1921 				 * Similar in principle to deactivate_page()
1922 				 * except we already have the folio isolated
1923 				 * and know it's dirty
1924 				 */
1925 				node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE,
1926 						nr_pages);
1927 				folio_set_reclaim(folio);
1928 
1929 				goto activate_locked;
1930 			}
1931 
1932 			if (references == FOLIOREF_RECLAIM_CLEAN)
1933 				goto keep_locked;
1934 			if (!may_enter_fs(folio, sc->gfp_mask))
1935 				goto keep_locked;
1936 			if (!sc->may_writepage)
1937 				goto keep_locked;
1938 
1939 			/*
1940 			 * Folio is dirty. Flush the TLB if a writable entry
1941 			 * potentially exists to avoid CPU writes after I/O
1942 			 * starts and then write it out here.
1943 			 */
1944 			try_to_unmap_flush_dirty();
1945 			switch (pageout(folio, mapping, &plug)) {
1946 			case PAGE_KEEP:
1947 				goto keep_locked;
1948 			case PAGE_ACTIVATE:
1949 				goto activate_locked;
1950 			case PAGE_SUCCESS:
1951 				stat->nr_pageout += nr_pages;
1952 
1953 				if (folio_test_writeback(folio))
1954 					goto keep;
1955 				if (folio_test_dirty(folio))
1956 					goto keep;
1957 
1958 				/*
1959 				 * A synchronous write - probably a ramdisk.  Go
1960 				 * ahead and try to reclaim the folio.
1961 				 */
1962 				if (!folio_trylock(folio))
1963 					goto keep;
1964 				if (folio_test_dirty(folio) ||
1965 				    folio_test_writeback(folio))
1966 					goto keep_locked;
1967 				mapping = folio_mapping(folio);
1968 				fallthrough;
1969 			case PAGE_CLEAN:
1970 				; /* try to free the folio below */
1971 			}
1972 		}
1973 
1974 		/*
1975 		 * If the folio has buffers, try to free the buffer
1976 		 * mappings associated with this folio. If we succeed
1977 		 * we try to free the folio as well.
1978 		 *
1979 		 * We do this even if the folio is dirty.
1980 		 * filemap_release_folio() does not perform I/O, but it
1981 		 * is possible for a folio to have the dirty flag set,
1982 		 * but it is actually clean (all its buffers are clean).
1983 		 * This happens if the buffers were written out directly,
1984 		 * with submit_bh(). ext3 will do this, as well as
1985 		 * the blockdev mapping.  filemap_release_folio() will
1986 		 * discover that cleanness and will drop the buffers
1987 		 * and mark the folio clean - it can be freed.
1988 		 *
1989 		 * Rarely, folios can have buffers and no ->mapping.
1990 		 * These are the folios which were not successfully
1991 		 * invalidated in truncate_cleanup_folio().  We try to
1992 		 * drop those buffers here and if that worked, and the
1993 		 * folio is no longer mapped into process address space
1994 		 * (refcount == 1) it can be freed.  Otherwise, leave
1995 		 * the folio on the LRU so it is swappable.
1996 		 */
1997 		if (folio_has_private(folio)) {
1998 			if (!filemap_release_folio(folio, sc->gfp_mask))
1999 				goto activate_locked;
2000 			if (!mapping && folio_ref_count(folio) == 1) {
2001 				folio_unlock(folio);
2002 				if (folio_put_testzero(folio))
2003 					goto free_it;
2004 				else {
2005 					/*
2006 					 * rare race with speculative reference.
2007 					 * the speculative reference will free
2008 					 * this folio shortly, so we may
2009 					 * increment nr_reclaimed here (and
2010 					 * leave it off the LRU).
2011 					 */
2012 					nr_reclaimed += nr_pages;
2013 					continue;
2014 				}
2015 			}
2016 		}
2017 
2018 		if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) {
2019 			/* follow __remove_mapping for reference */
2020 			if (!folio_ref_freeze(folio, 1))
2021 				goto keep_locked;
2022 			/*
2023 			 * The folio has only one reference left, which is
2024 			 * from the isolation. After the caller puts the
2025 			 * folio back on the lru and drops the reference, the
2026 			 * folio will be freed anyway. It doesn't matter
2027 			 * which lru it goes on. So we don't bother checking
2028 			 * the dirty flag here.
2029 			 */
2030 			count_vm_events(PGLAZYFREED, nr_pages);
2031 			count_memcg_folio_events(folio, PGLAZYFREED, nr_pages);
2032 		} else if (!mapping || !__remove_mapping(mapping, folio, true,
2033 							 sc->target_mem_cgroup))
2034 			goto keep_locked;
2035 
2036 		folio_unlock(folio);
2037 free_it:
2038 		/*
2039 		 * Folio may get swapped out as a whole, need to account
2040 		 * all pages in it.
2041 		 */
2042 		nr_reclaimed += nr_pages;
2043 
2044 		/*
2045 		 * Is there need to periodically free_folio_list? It would
2046 		 * appear not as the counts should be low
2047 		 */
2048 		if (unlikely(folio_test_large(folio)))
2049 			destroy_large_folio(folio);
2050 		else
2051 			list_add(&folio->lru, &free_folios);
2052 		continue;
2053 
2054 activate_locked_split:
2055 		/*
2056 		 * The tail pages that are failed to add into swap cache
2057 		 * reach here.  Fixup nr_scanned and nr_pages.
2058 		 */
2059 		if (nr_pages > 1) {
2060 			sc->nr_scanned -= (nr_pages - 1);
2061 			nr_pages = 1;
2062 		}
2063 activate_locked:
2064 		/* Not a candidate for swapping, so reclaim swap space. */
2065 		if (folio_test_swapcache(folio) &&
2066 		    (mem_cgroup_swap_full(folio) || folio_test_mlocked(folio)))
2067 			folio_free_swap(folio);
2068 		VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
2069 		if (!folio_test_mlocked(folio)) {
2070 			int type = folio_is_file_lru(folio);
2071 			folio_set_active(folio);
2072 			stat->nr_activate[type] += nr_pages;
2073 			count_memcg_folio_events(folio, PGACTIVATE, nr_pages);
2074 		}
2075 keep_locked:
2076 		folio_unlock(folio);
2077 keep:
2078 		list_add(&folio->lru, &ret_folios);
2079 		VM_BUG_ON_FOLIO(folio_test_lru(folio) ||
2080 				folio_test_unevictable(folio), folio);
2081 	}
2082 	/* 'folio_list' is always empty here */
2083 
2084 	/* Migrate folios selected for demotion */
2085 	nr_reclaimed += demote_folio_list(&demote_folios, pgdat);
2086 	/* Folios that could not be demoted are still in @demote_folios */
2087 	if (!list_empty(&demote_folios)) {
2088 		/* Folios which weren't demoted go back on @folio_list for retry: */
2089 		list_splice_init(&demote_folios, folio_list);
2090 		do_demote_pass = false;
2091 		goto retry;
2092 	}
2093 
2094 	pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
2095 
2096 	mem_cgroup_uncharge_list(&free_folios);
2097 	try_to_unmap_flush();
2098 	free_unref_page_list(&free_folios);
2099 
2100 	list_splice(&ret_folios, folio_list);
2101 	count_vm_events(PGACTIVATE, pgactivate);
2102 
2103 	if (plug)
2104 		swap_write_unplug(plug);
2105 	return nr_reclaimed;
2106 }
2107 
2108 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
2109 					   struct list_head *folio_list)
2110 {
2111 	struct scan_control sc = {
2112 		.gfp_mask = GFP_KERNEL,
2113 		.may_unmap = 1,
2114 	};
2115 	struct reclaim_stat stat;
2116 	unsigned int nr_reclaimed;
2117 	struct folio *folio, *next;
2118 	LIST_HEAD(clean_folios);
2119 	unsigned int noreclaim_flag;
2120 
2121 	list_for_each_entry_safe(folio, next, folio_list, lru) {
2122 		if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) &&
2123 		    !folio_test_dirty(folio) && !__folio_test_movable(folio) &&
2124 		    !folio_test_unevictable(folio)) {
2125 			folio_clear_active(folio);
2126 			list_move(&folio->lru, &clean_folios);
2127 		}
2128 	}
2129 
2130 	/*
2131 	 * We should be safe here since we are only dealing with file pages and
2132 	 * we are not kswapd and therefore cannot write dirty file pages. But
2133 	 * call memalloc_noreclaim_save() anyway, just in case these conditions
2134 	 * change in the future.
2135 	 */
2136 	noreclaim_flag = memalloc_noreclaim_save();
2137 	nr_reclaimed = shrink_folio_list(&clean_folios, zone->zone_pgdat, &sc,
2138 					&stat, true);
2139 	memalloc_noreclaim_restore(noreclaim_flag);
2140 
2141 	list_splice(&clean_folios, folio_list);
2142 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2143 			    -(long)nr_reclaimed);
2144 	/*
2145 	 * Since lazyfree pages are isolated from file LRU from the beginning,
2146 	 * they will rotate back to anonymous LRU in the end if it failed to
2147 	 * discard so isolated count will be mismatched.
2148 	 * Compensate the isolated count for both LRU lists.
2149 	 */
2150 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
2151 			    stat.nr_lazyfree_fail);
2152 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2153 			    -(long)stat.nr_lazyfree_fail);
2154 	return nr_reclaimed;
2155 }
2156 
2157 /*
2158  * Update LRU sizes after isolating pages. The LRU size updates must
2159  * be complete before mem_cgroup_update_lru_size due to a sanity check.
2160  */
2161 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
2162 			enum lru_list lru, unsigned long *nr_zone_taken)
2163 {
2164 	int zid;
2165 
2166 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2167 		if (!nr_zone_taken[zid])
2168 			continue;
2169 
2170 		update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
2171 	}
2172 
2173 }
2174 
2175 /*
2176  * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
2177  *
2178  * lruvec->lru_lock is heavily contended.  Some of the functions that
2179  * shrink the lists perform better by taking out a batch of pages
2180  * and working on them outside the LRU lock.
2181  *
2182  * For pagecache intensive workloads, this function is the hottest
2183  * spot in the kernel (apart from copy_*_user functions).
2184  *
2185  * Lru_lock must be held before calling this function.
2186  *
2187  * @nr_to_scan:	The number of eligible pages to look through on the list.
2188  * @lruvec:	The LRU vector to pull pages from.
2189  * @dst:	The temp list to put pages on to.
2190  * @nr_scanned:	The number of pages that were scanned.
2191  * @sc:		The scan_control struct for this reclaim session
2192  * @lru:	LRU list id for isolating
2193  *
2194  * returns how many pages were moved onto *@dst.
2195  */
2196 static unsigned long isolate_lru_folios(unsigned long nr_to_scan,
2197 		struct lruvec *lruvec, struct list_head *dst,
2198 		unsigned long *nr_scanned, struct scan_control *sc,
2199 		enum lru_list lru)
2200 {
2201 	struct list_head *src = &lruvec->lists[lru];
2202 	unsigned long nr_taken = 0;
2203 	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
2204 	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
2205 	unsigned long skipped = 0;
2206 	unsigned long scan, total_scan, nr_pages;
2207 	LIST_HEAD(folios_skipped);
2208 
2209 	total_scan = 0;
2210 	scan = 0;
2211 	while (scan < nr_to_scan && !list_empty(src)) {
2212 		struct list_head *move_to = src;
2213 		struct folio *folio;
2214 
2215 		folio = lru_to_folio(src);
2216 		prefetchw_prev_lru_folio(folio, src, flags);
2217 
2218 		nr_pages = folio_nr_pages(folio);
2219 		total_scan += nr_pages;
2220 
2221 		if (folio_zonenum(folio) > sc->reclaim_idx) {
2222 			nr_skipped[folio_zonenum(folio)] += nr_pages;
2223 			move_to = &folios_skipped;
2224 			goto move;
2225 		}
2226 
2227 		/*
2228 		 * Do not count skipped folios because that makes the function
2229 		 * return with no isolated folios if the LRU mostly contains
2230 		 * ineligible folios.  This causes the VM to not reclaim any
2231 		 * folios, triggering a premature OOM.
2232 		 * Account all pages in a folio.
2233 		 */
2234 		scan += nr_pages;
2235 
2236 		if (!folio_test_lru(folio))
2237 			goto move;
2238 		if (!sc->may_unmap && folio_mapped(folio))
2239 			goto move;
2240 
2241 		/*
2242 		 * Be careful not to clear the lru flag until after we're
2243 		 * sure the folio is not being freed elsewhere -- the
2244 		 * folio release code relies on it.
2245 		 */
2246 		if (unlikely(!folio_try_get(folio)))
2247 			goto move;
2248 
2249 		if (!folio_test_clear_lru(folio)) {
2250 			/* Another thread is already isolating this folio */
2251 			folio_put(folio);
2252 			goto move;
2253 		}
2254 
2255 		nr_taken += nr_pages;
2256 		nr_zone_taken[folio_zonenum(folio)] += nr_pages;
2257 		move_to = dst;
2258 move:
2259 		list_move(&folio->lru, move_to);
2260 	}
2261 
2262 	/*
2263 	 * Splice any skipped folios to the start of the LRU list. Note that
2264 	 * this disrupts the LRU order when reclaiming for lower zones but
2265 	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
2266 	 * scanning would soon rescan the same folios to skip and waste lots
2267 	 * of cpu cycles.
2268 	 */
2269 	if (!list_empty(&folios_skipped)) {
2270 		int zid;
2271 
2272 		list_splice(&folios_skipped, src);
2273 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2274 			if (!nr_skipped[zid])
2275 				continue;
2276 
2277 			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
2278 			skipped += nr_skipped[zid];
2279 		}
2280 	}
2281 	*nr_scanned = total_scan;
2282 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
2283 				    total_scan, skipped, nr_taken,
2284 				    sc->may_unmap ? 0 : ISOLATE_UNMAPPED, lru);
2285 	update_lru_sizes(lruvec, lru, nr_zone_taken);
2286 	return nr_taken;
2287 }
2288 
2289 /**
2290  * folio_isolate_lru() - Try to isolate a folio from its LRU list.
2291  * @folio: Folio to isolate from its LRU list.
2292  *
2293  * Isolate a @folio from an LRU list and adjust the vmstat statistic
2294  * corresponding to whatever LRU list the folio was on.
2295  *
2296  * The folio will have its LRU flag cleared.  If it was found on the
2297  * active list, it will have the Active flag set.  If it was found on the
2298  * unevictable list, it will have the Unevictable flag set.  These flags
2299  * may need to be cleared by the caller before letting the page go.
2300  *
2301  * Context:
2302  *
2303  * (1) Must be called with an elevated refcount on the folio. This is a
2304  *     fundamental difference from isolate_lru_folios() (which is called
2305  *     without a stable reference).
2306  * (2) The lru_lock must not be held.
2307  * (3) Interrupts must be enabled.
2308  *
2309  * Return: 0 if the folio was removed from an LRU list.
2310  * -EBUSY if the folio was not on an LRU list.
2311  */
2312 int folio_isolate_lru(struct folio *folio)
2313 {
2314 	int ret = -EBUSY;
2315 
2316 	VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio);
2317 
2318 	if (folio_test_clear_lru(folio)) {
2319 		struct lruvec *lruvec;
2320 
2321 		folio_get(folio);
2322 		lruvec = folio_lruvec_lock_irq(folio);
2323 		lruvec_del_folio(lruvec, folio);
2324 		unlock_page_lruvec_irq(lruvec);
2325 		ret = 0;
2326 	}
2327 
2328 	return ret;
2329 }
2330 
2331 /*
2332  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
2333  * then get rescheduled. When there are massive number of tasks doing page
2334  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
2335  * the LRU list will go small and be scanned faster than necessary, leading to
2336  * unnecessary swapping, thrashing and OOM.
2337  */
2338 static int too_many_isolated(struct pglist_data *pgdat, int file,
2339 		struct scan_control *sc)
2340 {
2341 	unsigned long inactive, isolated;
2342 	bool too_many;
2343 
2344 	if (current_is_kswapd())
2345 		return 0;
2346 
2347 	if (!writeback_throttling_sane(sc))
2348 		return 0;
2349 
2350 	if (file) {
2351 		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
2352 		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
2353 	} else {
2354 		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
2355 		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
2356 	}
2357 
2358 	/*
2359 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
2360 	 * won't get blocked by normal direct-reclaimers, forming a circular
2361 	 * deadlock.
2362 	 */
2363 	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
2364 		inactive >>= 3;
2365 
2366 	too_many = isolated > inactive;
2367 
2368 	/* Wake up tasks throttled due to too_many_isolated. */
2369 	if (!too_many)
2370 		wake_throttle_isolated(pgdat);
2371 
2372 	return too_many;
2373 }
2374 
2375 /*
2376  * move_folios_to_lru() moves folios from private @list to appropriate LRU list.
2377  * On return, @list is reused as a list of folios to be freed by the caller.
2378  *
2379  * Returns the number of pages moved to the given lruvec.
2380  */
2381 static unsigned int move_folios_to_lru(struct lruvec *lruvec,
2382 		struct list_head *list)
2383 {
2384 	int nr_pages, nr_moved = 0;
2385 	LIST_HEAD(folios_to_free);
2386 
2387 	while (!list_empty(list)) {
2388 		struct folio *folio = lru_to_folio(list);
2389 
2390 		VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
2391 		list_del(&folio->lru);
2392 		if (unlikely(!folio_evictable(folio))) {
2393 			spin_unlock_irq(&lruvec->lru_lock);
2394 			folio_putback_lru(folio);
2395 			spin_lock_irq(&lruvec->lru_lock);
2396 			continue;
2397 		}
2398 
2399 		/*
2400 		 * The folio_set_lru needs to be kept here for list integrity.
2401 		 * Otherwise:
2402 		 *   #0 move_folios_to_lru             #1 release_pages
2403 		 *   if (!folio_put_testzero())
2404 		 *				      if (folio_put_testzero())
2405 		 *				        !lru //skip lru_lock
2406 		 *     folio_set_lru()
2407 		 *     list_add(&folio->lru,)
2408 		 *                                        list_add(&folio->lru,)
2409 		 */
2410 		folio_set_lru(folio);
2411 
2412 		if (unlikely(folio_put_testzero(folio))) {
2413 			__folio_clear_lru_flags(folio);
2414 
2415 			if (unlikely(folio_test_large(folio))) {
2416 				spin_unlock_irq(&lruvec->lru_lock);
2417 				destroy_large_folio(folio);
2418 				spin_lock_irq(&lruvec->lru_lock);
2419 			} else
2420 				list_add(&folio->lru, &folios_to_free);
2421 
2422 			continue;
2423 		}
2424 
2425 		/*
2426 		 * All pages were isolated from the same lruvec (and isolation
2427 		 * inhibits memcg migration).
2428 		 */
2429 		VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio);
2430 		lruvec_add_folio(lruvec, folio);
2431 		nr_pages = folio_nr_pages(folio);
2432 		nr_moved += nr_pages;
2433 		if (folio_test_active(folio))
2434 			workingset_age_nonresident(lruvec, nr_pages);
2435 	}
2436 
2437 	/*
2438 	 * To save our caller's stack, now use input list for pages to free.
2439 	 */
2440 	list_splice(&folios_to_free, list);
2441 
2442 	return nr_moved;
2443 }
2444 
2445 /*
2446  * If a kernel thread (such as nfsd for loop-back mounts) services a backing
2447  * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case
2448  * we should not throttle.  Otherwise it is safe to do so.
2449  */
2450 static int current_may_throttle(void)
2451 {
2452 	return !(current->flags & PF_LOCAL_THROTTLE);
2453 }
2454 
2455 /*
2456  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
2457  * of reclaimed pages
2458  */
2459 static unsigned long shrink_inactive_list(unsigned long nr_to_scan,
2460 		struct lruvec *lruvec, struct scan_control *sc,
2461 		enum lru_list lru)
2462 {
2463 	LIST_HEAD(folio_list);
2464 	unsigned long nr_scanned;
2465 	unsigned int nr_reclaimed = 0;
2466 	unsigned long nr_taken;
2467 	struct reclaim_stat stat;
2468 	bool file = is_file_lru(lru);
2469 	enum vm_event_item item;
2470 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2471 	bool stalled = false;
2472 
2473 	while (unlikely(too_many_isolated(pgdat, file, sc))) {
2474 		if (stalled)
2475 			return 0;
2476 
2477 		/* wait a bit for the reclaimer. */
2478 		stalled = true;
2479 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
2480 
2481 		/* We are about to die and free our memory. Return now. */
2482 		if (fatal_signal_pending(current))
2483 			return SWAP_CLUSTER_MAX;
2484 	}
2485 
2486 	lru_add_drain();
2487 
2488 	spin_lock_irq(&lruvec->lru_lock);
2489 
2490 	nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &folio_list,
2491 				     &nr_scanned, sc, lru);
2492 
2493 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2494 	item = PGSCAN_KSWAPD + reclaimer_offset();
2495 	if (!cgroup_reclaim(sc))
2496 		__count_vm_events(item, nr_scanned);
2497 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
2498 	__count_vm_events(PGSCAN_ANON + file, nr_scanned);
2499 
2500 	spin_unlock_irq(&lruvec->lru_lock);
2501 
2502 	if (nr_taken == 0)
2503 		return 0;
2504 
2505 	nr_reclaimed = shrink_folio_list(&folio_list, pgdat, sc, &stat, false);
2506 
2507 	spin_lock_irq(&lruvec->lru_lock);
2508 	move_folios_to_lru(lruvec, &folio_list);
2509 
2510 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2511 	item = PGSTEAL_KSWAPD + reclaimer_offset();
2512 	if (!cgroup_reclaim(sc))
2513 		__count_vm_events(item, nr_reclaimed);
2514 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
2515 	__count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
2516 	spin_unlock_irq(&lruvec->lru_lock);
2517 
2518 	lru_note_cost(lruvec, file, stat.nr_pageout, nr_scanned - nr_reclaimed);
2519 	mem_cgroup_uncharge_list(&folio_list);
2520 	free_unref_page_list(&folio_list);
2521 
2522 	/*
2523 	 * If dirty folios are scanned that are not queued for IO, it
2524 	 * implies that flushers are not doing their job. This can
2525 	 * happen when memory pressure pushes dirty folios to the end of
2526 	 * the LRU before the dirty limits are breached and the dirty
2527 	 * data has expired. It can also happen when the proportion of
2528 	 * dirty folios grows not through writes but through memory
2529 	 * pressure reclaiming all the clean cache. And in some cases,
2530 	 * the flushers simply cannot keep up with the allocation
2531 	 * rate. Nudge the flusher threads in case they are asleep.
2532 	 */
2533 	if (stat.nr_unqueued_dirty == nr_taken) {
2534 		wakeup_flusher_threads(WB_REASON_VMSCAN);
2535 		/*
2536 		 * For cgroupv1 dirty throttling is achieved by waking up
2537 		 * the kernel flusher here and later waiting on folios
2538 		 * which are in writeback to finish (see shrink_folio_list()).
2539 		 *
2540 		 * Flusher may not be able to issue writeback quickly
2541 		 * enough for cgroupv1 writeback throttling to work
2542 		 * on a large system.
2543 		 */
2544 		if (!writeback_throttling_sane(sc))
2545 			reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
2546 	}
2547 
2548 	sc->nr.dirty += stat.nr_dirty;
2549 	sc->nr.congested += stat.nr_congested;
2550 	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2551 	sc->nr.writeback += stat.nr_writeback;
2552 	sc->nr.immediate += stat.nr_immediate;
2553 	sc->nr.taken += nr_taken;
2554 	if (file)
2555 		sc->nr.file_taken += nr_taken;
2556 
2557 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2558 			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2559 	return nr_reclaimed;
2560 }
2561 
2562 /*
2563  * shrink_active_list() moves folios from the active LRU to the inactive LRU.
2564  *
2565  * We move them the other way if the folio is referenced by one or more
2566  * processes.
2567  *
2568  * If the folios are mostly unmapped, the processing is fast and it is
2569  * appropriate to hold lru_lock across the whole operation.  But if
2570  * the folios are mapped, the processing is slow (folio_referenced()), so
2571  * we should drop lru_lock around each folio.  It's impossible to balance
2572  * this, so instead we remove the folios from the LRU while processing them.
2573  * It is safe to rely on the active flag against the non-LRU folios in here
2574  * because nobody will play with that bit on a non-LRU folio.
2575  *
2576  * The downside is that we have to touch folio->_refcount against each folio.
2577  * But we had to alter folio->flags anyway.
2578  */
2579 static void shrink_active_list(unsigned long nr_to_scan,
2580 			       struct lruvec *lruvec,
2581 			       struct scan_control *sc,
2582 			       enum lru_list lru)
2583 {
2584 	unsigned long nr_taken;
2585 	unsigned long nr_scanned;
2586 	unsigned long vm_flags;
2587 	LIST_HEAD(l_hold);	/* The folios which were snipped off */
2588 	LIST_HEAD(l_active);
2589 	LIST_HEAD(l_inactive);
2590 	unsigned nr_deactivate, nr_activate;
2591 	unsigned nr_rotated = 0;
2592 	int file = is_file_lru(lru);
2593 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2594 
2595 	lru_add_drain();
2596 
2597 	spin_lock_irq(&lruvec->lru_lock);
2598 
2599 	nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &l_hold,
2600 				     &nr_scanned, sc, lru);
2601 
2602 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2603 
2604 	if (!cgroup_reclaim(sc))
2605 		__count_vm_events(PGREFILL, nr_scanned);
2606 	__count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2607 
2608 	spin_unlock_irq(&lruvec->lru_lock);
2609 
2610 	while (!list_empty(&l_hold)) {
2611 		struct folio *folio;
2612 
2613 		cond_resched();
2614 		folio = lru_to_folio(&l_hold);
2615 		list_del(&folio->lru);
2616 
2617 		if (unlikely(!folio_evictable(folio))) {
2618 			folio_putback_lru(folio);
2619 			continue;
2620 		}
2621 
2622 		if (unlikely(buffer_heads_over_limit)) {
2623 			if (folio_test_private(folio) && folio_trylock(folio)) {
2624 				if (folio_test_private(folio))
2625 					filemap_release_folio(folio, 0);
2626 				folio_unlock(folio);
2627 			}
2628 		}
2629 
2630 		/* Referenced or rmap lock contention: rotate */
2631 		if (folio_referenced(folio, 0, sc->target_mem_cgroup,
2632 				     &vm_flags) != 0) {
2633 			/*
2634 			 * Identify referenced, file-backed active folios and
2635 			 * give them one more trip around the active list. So
2636 			 * that executable code get better chances to stay in
2637 			 * memory under moderate memory pressure.  Anon folios
2638 			 * are not likely to be evicted by use-once streaming
2639 			 * IO, plus JVM can create lots of anon VM_EXEC folios,
2640 			 * so we ignore them here.
2641 			 */
2642 			if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) {
2643 				nr_rotated += folio_nr_pages(folio);
2644 				list_add(&folio->lru, &l_active);
2645 				continue;
2646 			}
2647 		}
2648 
2649 		folio_clear_active(folio);	/* we are de-activating */
2650 		folio_set_workingset(folio);
2651 		list_add(&folio->lru, &l_inactive);
2652 	}
2653 
2654 	/*
2655 	 * Move folios back to the lru list.
2656 	 */
2657 	spin_lock_irq(&lruvec->lru_lock);
2658 
2659 	nr_activate = move_folios_to_lru(lruvec, &l_active);
2660 	nr_deactivate = move_folios_to_lru(lruvec, &l_inactive);
2661 	/* Keep all free folios in l_active list */
2662 	list_splice(&l_inactive, &l_active);
2663 
2664 	__count_vm_events(PGDEACTIVATE, nr_deactivate);
2665 	__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2666 
2667 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2668 	spin_unlock_irq(&lruvec->lru_lock);
2669 
2670 	if (nr_rotated)
2671 		lru_note_cost(lruvec, file, 0, nr_rotated);
2672 	mem_cgroup_uncharge_list(&l_active);
2673 	free_unref_page_list(&l_active);
2674 	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2675 			nr_deactivate, nr_rotated, sc->priority, file);
2676 }
2677 
2678 static unsigned int reclaim_folio_list(struct list_head *folio_list,
2679 				      struct pglist_data *pgdat)
2680 {
2681 	struct reclaim_stat dummy_stat;
2682 	unsigned int nr_reclaimed;
2683 	struct folio *folio;
2684 	struct scan_control sc = {
2685 		.gfp_mask = GFP_KERNEL,
2686 		.may_writepage = 1,
2687 		.may_unmap = 1,
2688 		.may_swap = 1,
2689 		.no_demotion = 1,
2690 	};
2691 
2692 	nr_reclaimed = shrink_folio_list(folio_list, pgdat, &sc, &dummy_stat, false);
2693 	while (!list_empty(folio_list)) {
2694 		folio = lru_to_folio(folio_list);
2695 		list_del(&folio->lru);
2696 		folio_putback_lru(folio);
2697 	}
2698 
2699 	return nr_reclaimed;
2700 }
2701 
2702 unsigned long reclaim_pages(struct list_head *folio_list)
2703 {
2704 	int nid;
2705 	unsigned int nr_reclaimed = 0;
2706 	LIST_HEAD(node_folio_list);
2707 	unsigned int noreclaim_flag;
2708 
2709 	if (list_empty(folio_list))
2710 		return nr_reclaimed;
2711 
2712 	noreclaim_flag = memalloc_noreclaim_save();
2713 
2714 	nid = folio_nid(lru_to_folio(folio_list));
2715 	do {
2716 		struct folio *folio = lru_to_folio(folio_list);
2717 
2718 		if (nid == folio_nid(folio)) {
2719 			folio_clear_active(folio);
2720 			list_move(&folio->lru, &node_folio_list);
2721 			continue;
2722 		}
2723 
2724 		nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2725 		nid = folio_nid(lru_to_folio(folio_list));
2726 	} while (!list_empty(folio_list));
2727 
2728 	nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2729 
2730 	memalloc_noreclaim_restore(noreclaim_flag);
2731 
2732 	return nr_reclaimed;
2733 }
2734 
2735 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2736 				 struct lruvec *lruvec, struct scan_control *sc)
2737 {
2738 	if (is_active_lru(lru)) {
2739 		if (sc->may_deactivate & (1 << is_file_lru(lru)))
2740 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2741 		else
2742 			sc->skipped_deactivate = 1;
2743 		return 0;
2744 	}
2745 
2746 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2747 }
2748 
2749 /*
2750  * The inactive anon list should be small enough that the VM never has
2751  * to do too much work.
2752  *
2753  * The inactive file list should be small enough to leave most memory
2754  * to the established workingset on the scan-resistant active list,
2755  * but large enough to avoid thrashing the aggregate readahead window.
2756  *
2757  * Both inactive lists should also be large enough that each inactive
2758  * folio has a chance to be referenced again before it is reclaimed.
2759  *
2760  * If that fails and refaulting is observed, the inactive list grows.
2761  *
2762  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE folios
2763  * on this LRU, maintained by the pageout code. An inactive_ratio
2764  * of 3 means 3:1 or 25% of the folios are kept on the inactive list.
2765  *
2766  * total     target    max
2767  * memory    ratio     inactive
2768  * -------------------------------------
2769  *   10MB       1         5MB
2770  *  100MB       1        50MB
2771  *    1GB       3       250MB
2772  *   10GB      10       0.9GB
2773  *  100GB      31         3GB
2774  *    1TB     101        10GB
2775  *   10TB     320        32GB
2776  */
2777 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2778 {
2779 	enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2780 	unsigned long inactive, active;
2781 	unsigned long inactive_ratio;
2782 	unsigned long gb;
2783 
2784 	inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2785 	active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2786 
2787 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
2788 	if (gb)
2789 		inactive_ratio = int_sqrt(10 * gb);
2790 	else
2791 		inactive_ratio = 1;
2792 
2793 	return inactive * inactive_ratio < active;
2794 }
2795 
2796 enum scan_balance {
2797 	SCAN_EQUAL,
2798 	SCAN_FRACT,
2799 	SCAN_ANON,
2800 	SCAN_FILE,
2801 };
2802 
2803 static void prepare_scan_count(pg_data_t *pgdat, struct scan_control *sc)
2804 {
2805 	unsigned long file;
2806 	struct lruvec *target_lruvec;
2807 
2808 	if (lru_gen_enabled())
2809 		return;
2810 
2811 	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2812 
2813 	/*
2814 	 * Flush the memory cgroup stats, so that we read accurate per-memcg
2815 	 * lruvec stats for heuristics.
2816 	 */
2817 	mem_cgroup_flush_stats();
2818 
2819 	/*
2820 	 * Determine the scan balance between anon and file LRUs.
2821 	 */
2822 	spin_lock_irq(&target_lruvec->lru_lock);
2823 	sc->anon_cost = target_lruvec->anon_cost;
2824 	sc->file_cost = target_lruvec->file_cost;
2825 	spin_unlock_irq(&target_lruvec->lru_lock);
2826 
2827 	/*
2828 	 * Target desirable inactive:active list ratios for the anon
2829 	 * and file LRU lists.
2830 	 */
2831 	if (!sc->force_deactivate) {
2832 		unsigned long refaults;
2833 
2834 		/*
2835 		 * When refaults are being observed, it means a new
2836 		 * workingset is being established. Deactivate to get
2837 		 * rid of any stale active pages quickly.
2838 		 */
2839 		refaults = lruvec_page_state(target_lruvec,
2840 				WORKINGSET_ACTIVATE_ANON);
2841 		if (refaults != target_lruvec->refaults[WORKINGSET_ANON] ||
2842 			inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2843 			sc->may_deactivate |= DEACTIVATE_ANON;
2844 		else
2845 			sc->may_deactivate &= ~DEACTIVATE_ANON;
2846 
2847 		refaults = lruvec_page_state(target_lruvec,
2848 				WORKINGSET_ACTIVATE_FILE);
2849 		if (refaults != target_lruvec->refaults[WORKINGSET_FILE] ||
2850 		    inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2851 			sc->may_deactivate |= DEACTIVATE_FILE;
2852 		else
2853 			sc->may_deactivate &= ~DEACTIVATE_FILE;
2854 	} else
2855 		sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2856 
2857 	/*
2858 	 * If we have plenty of inactive file pages that aren't
2859 	 * thrashing, try to reclaim those first before touching
2860 	 * anonymous pages.
2861 	 */
2862 	file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2863 	if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
2864 		sc->cache_trim_mode = 1;
2865 	else
2866 		sc->cache_trim_mode = 0;
2867 
2868 	/*
2869 	 * Prevent the reclaimer from falling into the cache trap: as
2870 	 * cache pages start out inactive, every cache fault will tip
2871 	 * the scan balance towards the file LRU.  And as the file LRU
2872 	 * shrinks, so does the window for rotation from references.
2873 	 * This means we have a runaway feedback loop where a tiny
2874 	 * thrashing file LRU becomes infinitely more attractive than
2875 	 * anon pages.  Try to detect this based on file LRU size.
2876 	 */
2877 	if (!cgroup_reclaim(sc)) {
2878 		unsigned long total_high_wmark = 0;
2879 		unsigned long free, anon;
2880 		int z;
2881 
2882 		free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2883 		file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2884 			   node_page_state(pgdat, NR_INACTIVE_FILE);
2885 
2886 		for (z = 0; z < MAX_NR_ZONES; z++) {
2887 			struct zone *zone = &pgdat->node_zones[z];
2888 
2889 			if (!managed_zone(zone))
2890 				continue;
2891 
2892 			total_high_wmark += high_wmark_pages(zone);
2893 		}
2894 
2895 		/*
2896 		 * Consider anon: if that's low too, this isn't a
2897 		 * runaway file reclaim problem, but rather just
2898 		 * extreme pressure. Reclaim as per usual then.
2899 		 */
2900 		anon = node_page_state(pgdat, NR_INACTIVE_ANON);
2901 
2902 		sc->file_is_tiny =
2903 			file + free <= total_high_wmark &&
2904 			!(sc->may_deactivate & DEACTIVATE_ANON) &&
2905 			anon >> sc->priority;
2906 	}
2907 }
2908 
2909 /*
2910  * Determine how aggressively the anon and file LRU lists should be
2911  * scanned.
2912  *
2913  * nr[0] = anon inactive folios to scan; nr[1] = anon active folios to scan
2914  * nr[2] = file inactive folios to scan; nr[3] = file active folios to scan
2915  */
2916 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2917 			   unsigned long *nr)
2918 {
2919 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2920 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2921 	unsigned long anon_cost, file_cost, total_cost;
2922 	int swappiness = mem_cgroup_swappiness(memcg);
2923 	u64 fraction[ANON_AND_FILE];
2924 	u64 denominator = 0;	/* gcc */
2925 	enum scan_balance scan_balance;
2926 	unsigned long ap, fp;
2927 	enum lru_list lru;
2928 
2929 	/* If we have no swap space, do not bother scanning anon folios. */
2930 	if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
2931 		scan_balance = SCAN_FILE;
2932 		goto out;
2933 	}
2934 
2935 	/*
2936 	 * Global reclaim will swap to prevent OOM even with no
2937 	 * swappiness, but memcg users want to use this knob to
2938 	 * disable swapping for individual groups completely when
2939 	 * using the memory controller's swap limit feature would be
2940 	 * too expensive.
2941 	 */
2942 	if (cgroup_reclaim(sc) && !swappiness) {
2943 		scan_balance = SCAN_FILE;
2944 		goto out;
2945 	}
2946 
2947 	/*
2948 	 * Do not apply any pressure balancing cleverness when the
2949 	 * system is close to OOM, scan both anon and file equally
2950 	 * (unless the swappiness setting disagrees with swapping).
2951 	 */
2952 	if (!sc->priority && swappiness) {
2953 		scan_balance = SCAN_EQUAL;
2954 		goto out;
2955 	}
2956 
2957 	/*
2958 	 * If the system is almost out of file pages, force-scan anon.
2959 	 */
2960 	if (sc->file_is_tiny) {
2961 		scan_balance = SCAN_ANON;
2962 		goto out;
2963 	}
2964 
2965 	/*
2966 	 * If there is enough inactive page cache, we do not reclaim
2967 	 * anything from the anonymous working right now.
2968 	 */
2969 	if (sc->cache_trim_mode) {
2970 		scan_balance = SCAN_FILE;
2971 		goto out;
2972 	}
2973 
2974 	scan_balance = SCAN_FRACT;
2975 	/*
2976 	 * Calculate the pressure balance between anon and file pages.
2977 	 *
2978 	 * The amount of pressure we put on each LRU is inversely
2979 	 * proportional to the cost of reclaiming each list, as
2980 	 * determined by the share of pages that are refaulting, times
2981 	 * the relative IO cost of bringing back a swapped out
2982 	 * anonymous page vs reloading a filesystem page (swappiness).
2983 	 *
2984 	 * Although we limit that influence to ensure no list gets
2985 	 * left behind completely: at least a third of the pressure is
2986 	 * applied, before swappiness.
2987 	 *
2988 	 * With swappiness at 100, anon and file have equal IO cost.
2989 	 */
2990 	total_cost = sc->anon_cost + sc->file_cost;
2991 	anon_cost = total_cost + sc->anon_cost;
2992 	file_cost = total_cost + sc->file_cost;
2993 	total_cost = anon_cost + file_cost;
2994 
2995 	ap = swappiness * (total_cost + 1);
2996 	ap /= anon_cost + 1;
2997 
2998 	fp = (200 - swappiness) * (total_cost + 1);
2999 	fp /= file_cost + 1;
3000 
3001 	fraction[0] = ap;
3002 	fraction[1] = fp;
3003 	denominator = ap + fp;
3004 out:
3005 	for_each_evictable_lru(lru) {
3006 		int file = is_file_lru(lru);
3007 		unsigned long lruvec_size;
3008 		unsigned long low, min;
3009 		unsigned long scan;
3010 
3011 		lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
3012 		mem_cgroup_protection(sc->target_mem_cgroup, memcg,
3013 				      &min, &low);
3014 
3015 		if (min || low) {
3016 			/*
3017 			 * Scale a cgroup's reclaim pressure by proportioning
3018 			 * its current usage to its memory.low or memory.min
3019 			 * setting.
3020 			 *
3021 			 * This is important, as otherwise scanning aggression
3022 			 * becomes extremely binary -- from nothing as we
3023 			 * approach the memory protection threshold, to totally
3024 			 * nominal as we exceed it.  This results in requiring
3025 			 * setting extremely liberal protection thresholds. It
3026 			 * also means we simply get no protection at all if we
3027 			 * set it too low, which is not ideal.
3028 			 *
3029 			 * If there is any protection in place, we reduce scan
3030 			 * pressure by how much of the total memory used is
3031 			 * within protection thresholds.
3032 			 *
3033 			 * There is one special case: in the first reclaim pass,
3034 			 * we skip over all groups that are within their low
3035 			 * protection. If that fails to reclaim enough pages to
3036 			 * satisfy the reclaim goal, we come back and override
3037 			 * the best-effort low protection. However, we still
3038 			 * ideally want to honor how well-behaved groups are in
3039 			 * that case instead of simply punishing them all
3040 			 * equally. As such, we reclaim them based on how much
3041 			 * memory they are using, reducing the scan pressure
3042 			 * again by how much of the total memory used is under
3043 			 * hard protection.
3044 			 */
3045 			unsigned long cgroup_size = mem_cgroup_size(memcg);
3046 			unsigned long protection;
3047 
3048 			/* memory.low scaling, make sure we retry before OOM */
3049 			if (!sc->memcg_low_reclaim && low > min) {
3050 				protection = low;
3051 				sc->memcg_low_skipped = 1;
3052 			} else {
3053 				protection = min;
3054 			}
3055 
3056 			/* Avoid TOCTOU with earlier protection check */
3057 			cgroup_size = max(cgroup_size, protection);
3058 
3059 			scan = lruvec_size - lruvec_size * protection /
3060 				(cgroup_size + 1);
3061 
3062 			/*
3063 			 * Minimally target SWAP_CLUSTER_MAX pages to keep
3064 			 * reclaim moving forwards, avoiding decrementing
3065 			 * sc->priority further than desirable.
3066 			 */
3067 			scan = max(scan, SWAP_CLUSTER_MAX);
3068 		} else {
3069 			scan = lruvec_size;
3070 		}
3071 
3072 		scan >>= sc->priority;
3073 
3074 		/*
3075 		 * If the cgroup's already been deleted, make sure to
3076 		 * scrape out the remaining cache.
3077 		 */
3078 		if (!scan && !mem_cgroup_online(memcg))
3079 			scan = min(lruvec_size, SWAP_CLUSTER_MAX);
3080 
3081 		switch (scan_balance) {
3082 		case SCAN_EQUAL:
3083 			/* Scan lists relative to size */
3084 			break;
3085 		case SCAN_FRACT:
3086 			/*
3087 			 * Scan types proportional to swappiness and
3088 			 * their relative recent reclaim efficiency.
3089 			 * Make sure we don't miss the last page on
3090 			 * the offlined memory cgroups because of a
3091 			 * round-off error.
3092 			 */
3093 			scan = mem_cgroup_online(memcg) ?
3094 			       div64_u64(scan * fraction[file], denominator) :
3095 			       DIV64_U64_ROUND_UP(scan * fraction[file],
3096 						  denominator);
3097 			break;
3098 		case SCAN_FILE:
3099 		case SCAN_ANON:
3100 			/* Scan one type exclusively */
3101 			if ((scan_balance == SCAN_FILE) != file)
3102 				scan = 0;
3103 			break;
3104 		default:
3105 			/* Look ma, no brain */
3106 			BUG();
3107 		}
3108 
3109 		nr[lru] = scan;
3110 	}
3111 }
3112 
3113 /*
3114  * Anonymous LRU management is a waste if there is
3115  * ultimately no way to reclaim the memory.
3116  */
3117 static bool can_age_anon_pages(struct pglist_data *pgdat,
3118 			       struct scan_control *sc)
3119 {
3120 	/* Aging the anon LRU is valuable if swap is present: */
3121 	if (total_swap_pages > 0)
3122 		return true;
3123 
3124 	/* Also valuable if anon pages can be demoted: */
3125 	return can_demote(pgdat->node_id, sc);
3126 }
3127 
3128 #ifdef CONFIG_LRU_GEN
3129 
3130 #ifdef CONFIG_LRU_GEN_ENABLED
3131 DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS);
3132 #define get_cap(cap)	static_branch_likely(&lru_gen_caps[cap])
3133 #else
3134 DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS);
3135 #define get_cap(cap)	static_branch_unlikely(&lru_gen_caps[cap])
3136 #endif
3137 
3138 /******************************************************************************
3139  *                          shorthand helpers
3140  ******************************************************************************/
3141 
3142 #define LRU_REFS_FLAGS	(BIT(PG_referenced) | BIT(PG_workingset))
3143 
3144 #define DEFINE_MAX_SEQ(lruvec)						\
3145 	unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq)
3146 
3147 #define DEFINE_MIN_SEQ(lruvec)						\
3148 	unsigned long min_seq[ANON_AND_FILE] = {			\
3149 		READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]),	\
3150 		READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]),	\
3151 	}
3152 
3153 #define for_each_gen_type_zone(gen, type, zone)				\
3154 	for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++)			\
3155 		for ((type) = 0; (type) < ANON_AND_FILE; (type)++)	\
3156 			for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++)
3157 
3158 static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid)
3159 {
3160 	struct pglist_data *pgdat = NODE_DATA(nid);
3161 
3162 #ifdef CONFIG_MEMCG
3163 	if (memcg) {
3164 		struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec;
3165 
3166 		/* for hotadd_new_pgdat() */
3167 		if (!lruvec->pgdat)
3168 			lruvec->pgdat = pgdat;
3169 
3170 		return lruvec;
3171 	}
3172 #endif
3173 	VM_WARN_ON_ONCE(!mem_cgroup_disabled());
3174 
3175 	return pgdat ? &pgdat->__lruvec : NULL;
3176 }
3177 
3178 static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc)
3179 {
3180 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3181 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
3182 
3183 	if (!can_demote(pgdat->node_id, sc) &&
3184 	    mem_cgroup_get_nr_swap_pages(memcg) < MIN_LRU_BATCH)
3185 		return 0;
3186 
3187 	return mem_cgroup_swappiness(memcg);
3188 }
3189 
3190 static int get_nr_gens(struct lruvec *lruvec, int type)
3191 {
3192 	return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1;
3193 }
3194 
3195 static bool __maybe_unused seq_is_valid(struct lruvec *lruvec)
3196 {
3197 	/* see the comment on lru_gen_struct */
3198 	return get_nr_gens(lruvec, LRU_GEN_FILE) >= MIN_NR_GENS &&
3199 	       get_nr_gens(lruvec, LRU_GEN_FILE) <= get_nr_gens(lruvec, LRU_GEN_ANON) &&
3200 	       get_nr_gens(lruvec, LRU_GEN_ANON) <= MAX_NR_GENS;
3201 }
3202 
3203 /******************************************************************************
3204  *                          mm_struct list
3205  ******************************************************************************/
3206 
3207 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
3208 {
3209 	static struct lru_gen_mm_list mm_list = {
3210 		.fifo = LIST_HEAD_INIT(mm_list.fifo),
3211 		.lock = __SPIN_LOCK_UNLOCKED(mm_list.lock),
3212 	};
3213 
3214 #ifdef CONFIG_MEMCG
3215 	if (memcg)
3216 		return &memcg->mm_list;
3217 #endif
3218 	VM_WARN_ON_ONCE(!mem_cgroup_disabled());
3219 
3220 	return &mm_list;
3221 }
3222 
3223 void lru_gen_add_mm(struct mm_struct *mm)
3224 {
3225 	int nid;
3226 	struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm);
3227 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3228 
3229 	VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list));
3230 #ifdef CONFIG_MEMCG
3231 	VM_WARN_ON_ONCE(mm->lru_gen.memcg);
3232 	mm->lru_gen.memcg = memcg;
3233 #endif
3234 	spin_lock(&mm_list->lock);
3235 
3236 	for_each_node_state(nid, N_MEMORY) {
3237 		struct lruvec *lruvec = get_lruvec(memcg, nid);
3238 
3239 		if (!lruvec)
3240 			continue;
3241 
3242 		/* the first addition since the last iteration */
3243 		if (lruvec->mm_state.tail == &mm_list->fifo)
3244 			lruvec->mm_state.tail = &mm->lru_gen.list;
3245 	}
3246 
3247 	list_add_tail(&mm->lru_gen.list, &mm_list->fifo);
3248 
3249 	spin_unlock(&mm_list->lock);
3250 }
3251 
3252 void lru_gen_del_mm(struct mm_struct *mm)
3253 {
3254 	int nid;
3255 	struct lru_gen_mm_list *mm_list;
3256 	struct mem_cgroup *memcg = NULL;
3257 
3258 	if (list_empty(&mm->lru_gen.list))
3259 		return;
3260 
3261 #ifdef CONFIG_MEMCG
3262 	memcg = mm->lru_gen.memcg;
3263 #endif
3264 	mm_list = get_mm_list(memcg);
3265 
3266 	spin_lock(&mm_list->lock);
3267 
3268 	for_each_node(nid) {
3269 		struct lruvec *lruvec = get_lruvec(memcg, nid);
3270 
3271 		if (!lruvec)
3272 			continue;
3273 
3274 		/* where the last iteration ended (exclusive) */
3275 		if (lruvec->mm_state.tail == &mm->lru_gen.list)
3276 			lruvec->mm_state.tail = lruvec->mm_state.tail->next;
3277 
3278 		/* where the current iteration continues (inclusive) */
3279 		if (lruvec->mm_state.head != &mm->lru_gen.list)
3280 			continue;
3281 
3282 		lruvec->mm_state.head = lruvec->mm_state.head->next;
3283 		/* the deletion ends the current iteration */
3284 		if (lruvec->mm_state.head == &mm_list->fifo)
3285 			WRITE_ONCE(lruvec->mm_state.seq, lruvec->mm_state.seq + 1);
3286 	}
3287 
3288 	list_del_init(&mm->lru_gen.list);
3289 
3290 	spin_unlock(&mm_list->lock);
3291 
3292 #ifdef CONFIG_MEMCG
3293 	mem_cgroup_put(mm->lru_gen.memcg);
3294 	mm->lru_gen.memcg = NULL;
3295 #endif
3296 }
3297 
3298 #ifdef CONFIG_MEMCG
3299 void lru_gen_migrate_mm(struct mm_struct *mm)
3300 {
3301 	struct mem_cgroup *memcg;
3302 	struct task_struct *task = rcu_dereference_protected(mm->owner, true);
3303 
3304 	VM_WARN_ON_ONCE(task->mm != mm);
3305 	lockdep_assert_held(&task->alloc_lock);
3306 
3307 	/* for mm_update_next_owner() */
3308 	if (mem_cgroup_disabled())
3309 		return;
3310 
3311 	rcu_read_lock();
3312 	memcg = mem_cgroup_from_task(task);
3313 	rcu_read_unlock();
3314 	if (memcg == mm->lru_gen.memcg)
3315 		return;
3316 
3317 	VM_WARN_ON_ONCE(!mm->lru_gen.memcg);
3318 	VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list));
3319 
3320 	lru_gen_del_mm(mm);
3321 	lru_gen_add_mm(mm);
3322 }
3323 #endif
3324 
3325 /*
3326  * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when
3327  * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of
3328  * bits in a bitmap, k is the number of hash functions and n is the number of
3329  * inserted items.
3330  *
3331  * Page table walkers use one of the two filters to reduce their search space.
3332  * To get rid of non-leaf entries that no longer have enough leaf entries, the
3333  * aging uses the double-buffering technique to flip to the other filter each
3334  * time it produces a new generation. For non-leaf entries that have enough
3335  * leaf entries, the aging carries them over to the next generation in
3336  * walk_pmd_range(); the eviction also report them when walking the rmap
3337  * in lru_gen_look_around().
3338  *
3339  * For future optimizations:
3340  * 1. It's not necessary to keep both filters all the time. The spare one can be
3341  *    freed after the RCU grace period and reallocated if needed again.
3342  * 2. And when reallocating, it's worth scaling its size according to the number
3343  *    of inserted entries in the other filter, to reduce the memory overhead on
3344  *    small systems and false positives on large systems.
3345  * 3. Jenkins' hash function is an alternative to Knuth's.
3346  */
3347 #define BLOOM_FILTER_SHIFT	15
3348 
3349 static inline int filter_gen_from_seq(unsigned long seq)
3350 {
3351 	return seq % NR_BLOOM_FILTERS;
3352 }
3353 
3354 static void get_item_key(void *item, int *key)
3355 {
3356 	u32 hash = hash_ptr(item, BLOOM_FILTER_SHIFT * 2);
3357 
3358 	BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32));
3359 
3360 	key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1);
3361 	key[1] = hash >> BLOOM_FILTER_SHIFT;
3362 }
3363 
3364 static void reset_bloom_filter(struct lruvec *lruvec, unsigned long seq)
3365 {
3366 	unsigned long *filter;
3367 	int gen = filter_gen_from_seq(seq);
3368 
3369 	filter = lruvec->mm_state.filters[gen];
3370 	if (filter) {
3371 		bitmap_clear(filter, 0, BIT(BLOOM_FILTER_SHIFT));
3372 		return;
3373 	}
3374 
3375 	filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT),
3376 			       __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
3377 	WRITE_ONCE(lruvec->mm_state.filters[gen], filter);
3378 }
3379 
3380 static void update_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item)
3381 {
3382 	int key[2];
3383 	unsigned long *filter;
3384 	int gen = filter_gen_from_seq(seq);
3385 
3386 	filter = READ_ONCE(lruvec->mm_state.filters[gen]);
3387 	if (!filter)
3388 		return;
3389 
3390 	get_item_key(item, key);
3391 
3392 	if (!test_bit(key[0], filter))
3393 		set_bit(key[0], filter);
3394 	if (!test_bit(key[1], filter))
3395 		set_bit(key[1], filter);
3396 }
3397 
3398 static bool test_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item)
3399 {
3400 	int key[2];
3401 	unsigned long *filter;
3402 	int gen = filter_gen_from_seq(seq);
3403 
3404 	filter = READ_ONCE(lruvec->mm_state.filters[gen]);
3405 	if (!filter)
3406 		return true;
3407 
3408 	get_item_key(item, key);
3409 
3410 	return test_bit(key[0], filter) && test_bit(key[1], filter);
3411 }
3412 
3413 static void reset_mm_stats(struct lruvec *lruvec, struct lru_gen_mm_walk *walk, bool last)
3414 {
3415 	int i;
3416 	int hist;
3417 
3418 	lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock);
3419 
3420 	if (walk) {
3421 		hist = lru_hist_from_seq(walk->max_seq);
3422 
3423 		for (i = 0; i < NR_MM_STATS; i++) {
3424 			WRITE_ONCE(lruvec->mm_state.stats[hist][i],
3425 				   lruvec->mm_state.stats[hist][i] + walk->mm_stats[i]);
3426 			walk->mm_stats[i] = 0;
3427 		}
3428 	}
3429 
3430 	if (NR_HIST_GENS > 1 && last) {
3431 		hist = lru_hist_from_seq(lruvec->mm_state.seq + 1);
3432 
3433 		for (i = 0; i < NR_MM_STATS; i++)
3434 			WRITE_ONCE(lruvec->mm_state.stats[hist][i], 0);
3435 	}
3436 }
3437 
3438 static bool should_skip_mm(struct mm_struct *mm, struct lru_gen_mm_walk *walk)
3439 {
3440 	int type;
3441 	unsigned long size = 0;
3442 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3443 	int key = pgdat->node_id % BITS_PER_TYPE(mm->lru_gen.bitmap);
3444 
3445 	if (!walk->force_scan && !test_bit(key, &mm->lru_gen.bitmap))
3446 		return true;
3447 
3448 	clear_bit(key, &mm->lru_gen.bitmap);
3449 
3450 	for (type = !walk->can_swap; type < ANON_AND_FILE; type++) {
3451 		size += type ? get_mm_counter(mm, MM_FILEPAGES) :
3452 			       get_mm_counter(mm, MM_ANONPAGES) +
3453 			       get_mm_counter(mm, MM_SHMEMPAGES);
3454 	}
3455 
3456 	if (size < MIN_LRU_BATCH)
3457 		return true;
3458 
3459 	return !mmget_not_zero(mm);
3460 }
3461 
3462 static bool iterate_mm_list(struct lruvec *lruvec, struct lru_gen_mm_walk *walk,
3463 			    struct mm_struct **iter)
3464 {
3465 	bool first = false;
3466 	bool last = true;
3467 	struct mm_struct *mm = NULL;
3468 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3469 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3470 	struct lru_gen_mm_state *mm_state = &lruvec->mm_state;
3471 
3472 	/*
3473 	 * There are four interesting cases for this page table walker:
3474 	 * 1. It tries to start a new iteration of mm_list with a stale max_seq;
3475 	 *    there is nothing left to do.
3476 	 * 2. It's the first of the current generation, and it needs to reset
3477 	 *    the Bloom filter for the next generation.
3478 	 * 3. It reaches the end of mm_list, and it needs to increment
3479 	 *    mm_state->seq; the iteration is done.
3480 	 * 4. It's the last of the current generation, and it needs to reset the
3481 	 *    mm stats counters for the next generation.
3482 	 */
3483 	spin_lock(&mm_list->lock);
3484 
3485 	VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->max_seq);
3486 	VM_WARN_ON_ONCE(*iter && mm_state->seq > walk->max_seq);
3487 	VM_WARN_ON_ONCE(*iter && !mm_state->nr_walkers);
3488 
3489 	if (walk->max_seq <= mm_state->seq) {
3490 		if (!*iter)
3491 			last = false;
3492 		goto done;
3493 	}
3494 
3495 	if (!mm_state->nr_walkers) {
3496 		VM_WARN_ON_ONCE(mm_state->head && mm_state->head != &mm_list->fifo);
3497 
3498 		mm_state->head = mm_list->fifo.next;
3499 		first = true;
3500 	}
3501 
3502 	while (!mm && mm_state->head != &mm_list->fifo) {
3503 		mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list);
3504 
3505 		mm_state->head = mm_state->head->next;
3506 
3507 		/* force scan for those added after the last iteration */
3508 		if (!mm_state->tail || mm_state->tail == &mm->lru_gen.list) {
3509 			mm_state->tail = mm_state->head;
3510 			walk->force_scan = true;
3511 		}
3512 
3513 		if (should_skip_mm(mm, walk))
3514 			mm = NULL;
3515 	}
3516 
3517 	if (mm_state->head == &mm_list->fifo)
3518 		WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3519 done:
3520 	if (*iter && !mm)
3521 		mm_state->nr_walkers--;
3522 	if (!*iter && mm)
3523 		mm_state->nr_walkers++;
3524 
3525 	if (mm_state->nr_walkers)
3526 		last = false;
3527 
3528 	if (*iter || last)
3529 		reset_mm_stats(lruvec, walk, last);
3530 
3531 	spin_unlock(&mm_list->lock);
3532 
3533 	if (mm && first)
3534 		reset_bloom_filter(lruvec, walk->max_seq + 1);
3535 
3536 	if (*iter)
3537 		mmput_async(*iter);
3538 
3539 	*iter = mm;
3540 
3541 	return last;
3542 }
3543 
3544 static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long max_seq)
3545 {
3546 	bool success = false;
3547 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3548 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3549 	struct lru_gen_mm_state *mm_state = &lruvec->mm_state;
3550 
3551 	spin_lock(&mm_list->lock);
3552 
3553 	VM_WARN_ON_ONCE(mm_state->seq + 1 < max_seq);
3554 
3555 	if (max_seq > mm_state->seq && !mm_state->nr_walkers) {
3556 		VM_WARN_ON_ONCE(mm_state->head && mm_state->head != &mm_list->fifo);
3557 
3558 		WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3559 		reset_mm_stats(lruvec, NULL, true);
3560 		success = true;
3561 	}
3562 
3563 	spin_unlock(&mm_list->lock);
3564 
3565 	return success;
3566 }
3567 
3568 /******************************************************************************
3569  *                          refault feedback loop
3570  ******************************************************************************/
3571 
3572 /*
3573  * A feedback loop based on Proportional-Integral-Derivative (PID) controller.
3574  *
3575  * The P term is refaulted/(evicted+protected) from a tier in the generation
3576  * currently being evicted; the I term is the exponential moving average of the
3577  * P term over the generations previously evicted, using the smoothing factor
3578  * 1/2; the D term isn't supported.
3579  *
3580  * The setpoint (SP) is always the first tier of one type; the process variable
3581  * (PV) is either any tier of the other type or any other tier of the same
3582  * type.
3583  *
3584  * The error is the difference between the SP and the PV; the correction is to
3585  * turn off protection when SP>PV or turn on protection when SP<PV.
3586  *
3587  * For future optimizations:
3588  * 1. The D term may discount the other two terms over time so that long-lived
3589  *    generations can resist stale information.
3590  */
3591 struct ctrl_pos {
3592 	unsigned long refaulted;
3593 	unsigned long total;
3594 	int gain;
3595 };
3596 
3597 static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain,
3598 			  struct ctrl_pos *pos)
3599 {
3600 	struct lru_gen_struct *lrugen = &lruvec->lrugen;
3601 	int hist = lru_hist_from_seq(lrugen->min_seq[type]);
3602 
3603 	pos->refaulted = lrugen->avg_refaulted[type][tier] +
3604 			 atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3605 	pos->total = lrugen->avg_total[type][tier] +
3606 		     atomic_long_read(&lrugen->evicted[hist][type][tier]);
3607 	if (tier)
3608 		pos->total += lrugen->protected[hist][type][tier - 1];
3609 	pos->gain = gain;
3610 }
3611 
3612 static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover)
3613 {
3614 	int hist, tier;
3615 	struct lru_gen_struct *lrugen = &lruvec->lrugen;
3616 	bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1;
3617 	unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1;
3618 
3619 	lockdep_assert_held(&lruvec->lru_lock);
3620 
3621 	if (!carryover && !clear)
3622 		return;
3623 
3624 	hist = lru_hist_from_seq(seq);
3625 
3626 	for (tier = 0; tier < MAX_NR_TIERS; tier++) {
3627 		if (carryover) {
3628 			unsigned long sum;
3629 
3630 			sum = lrugen->avg_refaulted[type][tier] +
3631 			      atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3632 			WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2);
3633 
3634 			sum = lrugen->avg_total[type][tier] +
3635 			      atomic_long_read(&lrugen->evicted[hist][type][tier]);
3636 			if (tier)
3637 				sum += lrugen->protected[hist][type][tier - 1];
3638 			WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2);
3639 		}
3640 
3641 		if (clear) {
3642 			atomic_long_set(&lrugen->refaulted[hist][type][tier], 0);
3643 			atomic_long_set(&lrugen->evicted[hist][type][tier], 0);
3644 			if (tier)
3645 				WRITE_ONCE(lrugen->protected[hist][type][tier - 1], 0);
3646 		}
3647 	}
3648 }
3649 
3650 static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv)
3651 {
3652 	/*
3653 	 * Return true if the PV has a limited number of refaults or a lower
3654 	 * refaulted/total than the SP.
3655 	 */
3656 	return pv->refaulted < MIN_LRU_BATCH ||
3657 	       pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <=
3658 	       (sp->refaulted + 1) * pv->total * pv->gain;
3659 }
3660 
3661 /******************************************************************************
3662  *                          the aging
3663  ******************************************************************************/
3664 
3665 /* promote pages accessed through page tables */
3666 static int folio_update_gen(struct folio *folio, int gen)
3667 {
3668 	unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3669 
3670 	VM_WARN_ON_ONCE(gen >= MAX_NR_GENS);
3671 	VM_WARN_ON_ONCE(!rcu_read_lock_held());
3672 
3673 	do {
3674 		/* lru_gen_del_folio() has isolated this page? */
3675 		if (!(old_flags & LRU_GEN_MASK)) {
3676 			/* for shrink_folio_list() */
3677 			new_flags = old_flags | BIT(PG_referenced);
3678 			continue;
3679 		}
3680 
3681 		new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3682 		new_flags |= (gen + 1UL) << LRU_GEN_PGOFF;
3683 	} while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3684 
3685 	return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3686 }
3687 
3688 /* protect pages accessed multiple times through file descriptors */
3689 static int folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming)
3690 {
3691 	int type = folio_is_file_lru(folio);
3692 	struct lru_gen_struct *lrugen = &lruvec->lrugen;
3693 	int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
3694 	unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3695 
3696 	VM_WARN_ON_ONCE_FOLIO(!(old_flags & LRU_GEN_MASK), folio);
3697 
3698 	do {
3699 		new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3700 		/* folio_update_gen() has promoted this page? */
3701 		if (new_gen >= 0 && new_gen != old_gen)
3702 			return new_gen;
3703 
3704 		new_gen = (old_gen + 1) % MAX_NR_GENS;
3705 
3706 		new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3707 		new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF;
3708 		/* for folio_end_writeback() */
3709 		if (reclaiming)
3710 			new_flags |= BIT(PG_reclaim);
3711 	} while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3712 
3713 	lru_gen_update_size(lruvec, folio, old_gen, new_gen);
3714 
3715 	return new_gen;
3716 }
3717 
3718 static void update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio,
3719 			      int old_gen, int new_gen)
3720 {
3721 	int type = folio_is_file_lru(folio);
3722 	int zone = folio_zonenum(folio);
3723 	int delta = folio_nr_pages(folio);
3724 
3725 	VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS);
3726 	VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS);
3727 
3728 	walk->batched++;
3729 
3730 	walk->nr_pages[old_gen][type][zone] -= delta;
3731 	walk->nr_pages[new_gen][type][zone] += delta;
3732 }
3733 
3734 static void reset_batch_size(struct lruvec *lruvec, struct lru_gen_mm_walk *walk)
3735 {
3736 	int gen, type, zone;
3737 	struct lru_gen_struct *lrugen = &lruvec->lrugen;
3738 
3739 	walk->batched = 0;
3740 
3741 	for_each_gen_type_zone(gen, type, zone) {
3742 		enum lru_list lru = type * LRU_INACTIVE_FILE;
3743 		int delta = walk->nr_pages[gen][type][zone];
3744 
3745 		if (!delta)
3746 			continue;
3747 
3748 		walk->nr_pages[gen][type][zone] = 0;
3749 		WRITE_ONCE(lrugen->nr_pages[gen][type][zone],
3750 			   lrugen->nr_pages[gen][type][zone] + delta);
3751 
3752 		if (lru_gen_is_active(lruvec, gen))
3753 			lru += LRU_ACTIVE;
3754 		__update_lru_size(lruvec, lru, zone, delta);
3755 	}
3756 }
3757 
3758 static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args)
3759 {
3760 	struct address_space *mapping;
3761 	struct vm_area_struct *vma = args->vma;
3762 	struct lru_gen_mm_walk *walk = args->private;
3763 
3764 	if (!vma_is_accessible(vma))
3765 		return true;
3766 
3767 	if (is_vm_hugetlb_page(vma))
3768 		return true;
3769 
3770 	if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL | VM_SEQ_READ | VM_RAND_READ))
3771 		return true;
3772 
3773 	if (vma == get_gate_vma(vma->vm_mm))
3774 		return true;
3775 
3776 	if (vma_is_anonymous(vma))
3777 		return !walk->can_swap;
3778 
3779 	if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping))
3780 		return true;
3781 
3782 	mapping = vma->vm_file->f_mapping;
3783 	if (mapping_unevictable(mapping))
3784 		return true;
3785 
3786 	if (shmem_mapping(mapping))
3787 		return !walk->can_swap;
3788 
3789 	/* to exclude special mappings like dax, etc. */
3790 	return !mapping->a_ops->read_folio;
3791 }
3792 
3793 /*
3794  * Some userspace memory allocators map many single-page VMAs. Instead of
3795  * returning back to the PGD table for each of such VMAs, finish an entire PMD
3796  * table to reduce zigzags and improve cache performance.
3797  */
3798 static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args,
3799 			 unsigned long *vm_start, unsigned long *vm_end)
3800 {
3801 	unsigned long start = round_up(*vm_end, size);
3802 	unsigned long end = (start | ~mask) + 1;
3803 	VMA_ITERATOR(vmi, args->mm, start);
3804 
3805 	VM_WARN_ON_ONCE(mask & size);
3806 	VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask));
3807 
3808 	for_each_vma(vmi, args->vma) {
3809 		if (end && end <= args->vma->vm_start)
3810 			return false;
3811 
3812 		if (should_skip_vma(args->vma->vm_start, args->vma->vm_end, args))
3813 			continue;
3814 
3815 		*vm_start = max(start, args->vma->vm_start);
3816 		*vm_end = min(end - 1, args->vma->vm_end - 1) + 1;
3817 
3818 		return true;
3819 	}
3820 
3821 	return false;
3822 }
3823 
3824 static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr)
3825 {
3826 	unsigned long pfn = pte_pfn(pte);
3827 
3828 	VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3829 
3830 	if (!pte_present(pte) || is_zero_pfn(pfn))
3831 		return -1;
3832 
3833 	if (WARN_ON_ONCE(pte_devmap(pte) || pte_special(pte)))
3834 		return -1;
3835 
3836 	if (WARN_ON_ONCE(!pfn_valid(pfn)))
3837 		return -1;
3838 
3839 	return pfn;
3840 }
3841 
3842 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
3843 static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr)
3844 {
3845 	unsigned long pfn = pmd_pfn(pmd);
3846 
3847 	VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3848 
3849 	if (!pmd_present(pmd) || is_huge_zero_pmd(pmd))
3850 		return -1;
3851 
3852 	if (WARN_ON_ONCE(pmd_devmap(pmd)))
3853 		return -1;
3854 
3855 	if (WARN_ON_ONCE(!pfn_valid(pfn)))
3856 		return -1;
3857 
3858 	return pfn;
3859 }
3860 #endif
3861 
3862 static struct folio *get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg,
3863 				   struct pglist_data *pgdat, bool can_swap)
3864 {
3865 	struct folio *folio;
3866 
3867 	/* try to avoid unnecessary memory loads */
3868 	if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
3869 		return NULL;
3870 
3871 	folio = pfn_folio(pfn);
3872 	if (folio_nid(folio) != pgdat->node_id)
3873 		return NULL;
3874 
3875 	if (folio_memcg_rcu(folio) != memcg)
3876 		return NULL;
3877 
3878 	/* file VMAs can contain anon pages from COW */
3879 	if (!folio_is_file_lru(folio) && !can_swap)
3880 		return NULL;
3881 
3882 	return folio;
3883 }
3884 
3885 static bool suitable_to_scan(int total, int young)
3886 {
3887 	int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8);
3888 
3889 	/* suitable if the average number of young PTEs per cacheline is >=1 */
3890 	return young * n >= total;
3891 }
3892 
3893 static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end,
3894 			   struct mm_walk *args)
3895 {
3896 	int i;
3897 	pte_t *pte;
3898 	spinlock_t *ptl;
3899 	unsigned long addr;
3900 	int total = 0;
3901 	int young = 0;
3902 	struct lru_gen_mm_walk *walk = args->private;
3903 	struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3904 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3905 	int old_gen, new_gen = lru_gen_from_seq(walk->max_seq);
3906 
3907 	VM_WARN_ON_ONCE(pmd_leaf(*pmd));
3908 
3909 	ptl = pte_lockptr(args->mm, pmd);
3910 	if (!spin_trylock(ptl))
3911 		return false;
3912 
3913 	arch_enter_lazy_mmu_mode();
3914 
3915 	pte = pte_offset_map(pmd, start & PMD_MASK);
3916 restart:
3917 	for (i = pte_index(start), addr = start; addr != end; i++, addr += PAGE_SIZE) {
3918 		unsigned long pfn;
3919 		struct folio *folio;
3920 
3921 		total++;
3922 		walk->mm_stats[MM_LEAF_TOTAL]++;
3923 
3924 		pfn = get_pte_pfn(pte[i], args->vma, addr);
3925 		if (pfn == -1)
3926 			continue;
3927 
3928 		if (!pte_young(pte[i])) {
3929 			walk->mm_stats[MM_LEAF_OLD]++;
3930 			continue;
3931 		}
3932 
3933 		folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
3934 		if (!folio)
3935 			continue;
3936 
3937 		if (!ptep_test_and_clear_young(args->vma, addr, pte + i))
3938 			VM_WARN_ON_ONCE(true);
3939 
3940 		young++;
3941 		walk->mm_stats[MM_LEAF_YOUNG]++;
3942 
3943 		if (pte_dirty(pte[i]) && !folio_test_dirty(folio) &&
3944 		    !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
3945 		      !folio_test_swapcache(folio)))
3946 			folio_mark_dirty(folio);
3947 
3948 		old_gen = folio_update_gen(folio, new_gen);
3949 		if (old_gen >= 0 && old_gen != new_gen)
3950 			update_batch_size(walk, folio, old_gen, new_gen);
3951 	}
3952 
3953 	if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, &start, &end))
3954 		goto restart;
3955 
3956 	pte_unmap(pte);
3957 
3958 	arch_leave_lazy_mmu_mode();
3959 	spin_unlock(ptl);
3960 
3961 	return suitable_to_scan(total, young);
3962 }
3963 
3964 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
3965 static void walk_pmd_range_locked(pud_t *pud, unsigned long next, struct vm_area_struct *vma,
3966 				  struct mm_walk *args, unsigned long *bitmap, unsigned long *start)
3967 {
3968 	int i;
3969 	pmd_t *pmd;
3970 	spinlock_t *ptl;
3971 	struct lru_gen_mm_walk *walk = args->private;
3972 	struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3973 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3974 	int old_gen, new_gen = lru_gen_from_seq(walk->max_seq);
3975 
3976 	VM_WARN_ON_ONCE(pud_leaf(*pud));
3977 
3978 	/* try to batch at most 1+MIN_LRU_BATCH+1 entries */
3979 	if (*start == -1) {
3980 		*start = next;
3981 		return;
3982 	}
3983 
3984 	i = next == -1 ? 0 : pmd_index(next) - pmd_index(*start);
3985 	if (i && i <= MIN_LRU_BATCH) {
3986 		__set_bit(i - 1, bitmap);
3987 		return;
3988 	}
3989 
3990 	pmd = pmd_offset(pud, *start);
3991 
3992 	ptl = pmd_lockptr(args->mm, pmd);
3993 	if (!spin_trylock(ptl))
3994 		goto done;
3995 
3996 	arch_enter_lazy_mmu_mode();
3997 
3998 	do {
3999 		unsigned long pfn;
4000 		struct folio *folio;
4001 		unsigned long addr = i ? (*start & PMD_MASK) + i * PMD_SIZE : *start;
4002 
4003 		pfn = get_pmd_pfn(pmd[i], vma, addr);
4004 		if (pfn == -1)
4005 			goto next;
4006 
4007 		if (!pmd_trans_huge(pmd[i])) {
4008 			if (arch_has_hw_nonleaf_pmd_young() &&
4009 			    get_cap(LRU_GEN_NONLEAF_YOUNG))
4010 				pmdp_test_and_clear_young(vma, addr, pmd + i);
4011 			goto next;
4012 		}
4013 
4014 		folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
4015 		if (!folio)
4016 			goto next;
4017 
4018 		if (!pmdp_test_and_clear_young(vma, addr, pmd + i))
4019 			goto next;
4020 
4021 		walk->mm_stats[MM_LEAF_YOUNG]++;
4022 
4023 		if (pmd_dirty(pmd[i]) && !folio_test_dirty(folio) &&
4024 		    !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
4025 		      !folio_test_swapcache(folio)))
4026 			folio_mark_dirty(folio);
4027 
4028 		old_gen = folio_update_gen(folio, new_gen);
4029 		if (old_gen >= 0 && old_gen != new_gen)
4030 			update_batch_size(walk, folio, old_gen, new_gen);
4031 next:
4032 		i = i > MIN_LRU_BATCH ? 0 : find_next_bit(bitmap, MIN_LRU_BATCH, i) + 1;
4033 	} while (i <= MIN_LRU_BATCH);
4034 
4035 	arch_leave_lazy_mmu_mode();
4036 	spin_unlock(ptl);
4037 done:
4038 	*start = -1;
4039 	bitmap_zero(bitmap, MIN_LRU_BATCH);
4040 }
4041 #else
4042 static void walk_pmd_range_locked(pud_t *pud, unsigned long next, struct vm_area_struct *vma,
4043 				  struct mm_walk *args, unsigned long *bitmap, unsigned long *start)
4044 {
4045 }
4046 #endif
4047 
4048 static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end,
4049 			   struct mm_walk *args)
4050 {
4051 	int i;
4052 	pmd_t *pmd;
4053 	unsigned long next;
4054 	unsigned long addr;
4055 	struct vm_area_struct *vma;
4056 	unsigned long pos = -1;
4057 	struct lru_gen_mm_walk *walk = args->private;
4058 	unsigned long bitmap[BITS_TO_LONGS(MIN_LRU_BATCH)] = {};
4059 
4060 	VM_WARN_ON_ONCE(pud_leaf(*pud));
4061 
4062 	/*
4063 	 * Finish an entire PMD in two passes: the first only reaches to PTE
4064 	 * tables to avoid taking the PMD lock; the second, if necessary, takes
4065 	 * the PMD lock to clear the accessed bit in PMD entries.
4066 	 */
4067 	pmd = pmd_offset(pud, start & PUD_MASK);
4068 restart:
4069 	/* walk_pte_range() may call get_next_vma() */
4070 	vma = args->vma;
4071 	for (i = pmd_index(start), addr = start; addr != end; i++, addr = next) {
4072 		pmd_t val = pmd_read_atomic(pmd + i);
4073 
4074 		/* for pmd_read_atomic() */
4075 		barrier();
4076 
4077 		next = pmd_addr_end(addr, end);
4078 
4079 		if (!pmd_present(val) || is_huge_zero_pmd(val)) {
4080 			walk->mm_stats[MM_LEAF_TOTAL]++;
4081 			continue;
4082 		}
4083 
4084 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4085 		if (pmd_trans_huge(val)) {
4086 			unsigned long pfn = pmd_pfn(val);
4087 			struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
4088 
4089 			walk->mm_stats[MM_LEAF_TOTAL]++;
4090 
4091 			if (!pmd_young(val)) {
4092 				walk->mm_stats[MM_LEAF_OLD]++;
4093 				continue;
4094 			}
4095 
4096 			/* try to avoid unnecessary memory loads */
4097 			if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
4098 				continue;
4099 
4100 			walk_pmd_range_locked(pud, addr, vma, args, bitmap, &pos);
4101 			continue;
4102 		}
4103 #endif
4104 		walk->mm_stats[MM_NONLEAF_TOTAL]++;
4105 
4106 		if (arch_has_hw_nonleaf_pmd_young() &&
4107 		    get_cap(LRU_GEN_NONLEAF_YOUNG)) {
4108 			if (!pmd_young(val))
4109 				continue;
4110 
4111 			walk_pmd_range_locked(pud, addr, vma, args, bitmap, &pos);
4112 		}
4113 
4114 		if (!walk->force_scan && !test_bloom_filter(walk->lruvec, walk->max_seq, pmd + i))
4115 			continue;
4116 
4117 		walk->mm_stats[MM_NONLEAF_FOUND]++;
4118 
4119 		if (!walk_pte_range(&val, addr, next, args))
4120 			continue;
4121 
4122 		walk->mm_stats[MM_NONLEAF_ADDED]++;
4123 
4124 		/* carry over to the next generation */
4125 		update_bloom_filter(walk->lruvec, walk->max_seq + 1, pmd + i);
4126 	}
4127 
4128 	walk_pmd_range_locked(pud, -1, vma, args, bitmap, &pos);
4129 
4130 	if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, &start, &end))
4131 		goto restart;
4132 }
4133 
4134 static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end,
4135 			  struct mm_walk *args)
4136 {
4137 	int i;
4138 	pud_t *pud;
4139 	unsigned long addr;
4140 	unsigned long next;
4141 	struct lru_gen_mm_walk *walk = args->private;
4142 
4143 	VM_WARN_ON_ONCE(p4d_leaf(*p4d));
4144 
4145 	pud = pud_offset(p4d, start & P4D_MASK);
4146 restart:
4147 	for (i = pud_index(start), addr = start; addr != end; i++, addr = next) {
4148 		pud_t val = READ_ONCE(pud[i]);
4149 
4150 		next = pud_addr_end(addr, end);
4151 
4152 		if (!pud_present(val) || WARN_ON_ONCE(pud_leaf(val)))
4153 			continue;
4154 
4155 		walk_pmd_range(&val, addr, next, args);
4156 
4157 		/* a racy check to curtail the waiting time */
4158 		if (wq_has_sleeper(&walk->lruvec->mm_state.wait))
4159 			return 1;
4160 
4161 		if (need_resched() || walk->batched >= MAX_LRU_BATCH) {
4162 			end = (addr | ~PUD_MASK) + 1;
4163 			goto done;
4164 		}
4165 	}
4166 
4167 	if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, &start, &end))
4168 		goto restart;
4169 
4170 	end = round_up(end, P4D_SIZE);
4171 done:
4172 	if (!end || !args->vma)
4173 		return 1;
4174 
4175 	walk->next_addr = max(end, args->vma->vm_start);
4176 
4177 	return -EAGAIN;
4178 }
4179 
4180 static void walk_mm(struct lruvec *lruvec, struct mm_struct *mm, struct lru_gen_mm_walk *walk)
4181 {
4182 	static const struct mm_walk_ops mm_walk_ops = {
4183 		.test_walk = should_skip_vma,
4184 		.p4d_entry = walk_pud_range,
4185 	};
4186 
4187 	int err;
4188 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4189 
4190 	walk->next_addr = FIRST_USER_ADDRESS;
4191 
4192 	do {
4193 		err = -EBUSY;
4194 
4195 		/* folio_update_gen() requires stable folio_memcg() */
4196 		if (!mem_cgroup_trylock_pages(memcg))
4197 			break;
4198 
4199 		/* the caller might be holding the lock for write */
4200 		if (mmap_read_trylock(mm)) {
4201 			err = walk_page_range(mm, walk->next_addr, ULONG_MAX, &mm_walk_ops, walk);
4202 
4203 			mmap_read_unlock(mm);
4204 		}
4205 
4206 		mem_cgroup_unlock_pages();
4207 
4208 		if (walk->batched) {
4209 			spin_lock_irq(&lruvec->lru_lock);
4210 			reset_batch_size(lruvec, walk);
4211 			spin_unlock_irq(&lruvec->lru_lock);
4212 		}
4213 
4214 		cond_resched();
4215 	} while (err == -EAGAIN);
4216 }
4217 
4218 static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat)
4219 {
4220 	struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
4221 
4222 	if (pgdat && current_is_kswapd()) {
4223 		VM_WARN_ON_ONCE(walk);
4224 
4225 		walk = &pgdat->mm_walk;
4226 	} else if (!pgdat && !walk) {
4227 		VM_WARN_ON_ONCE(current_is_kswapd());
4228 
4229 		walk = kzalloc(sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
4230 	}
4231 
4232 	current->reclaim_state->mm_walk = walk;
4233 
4234 	return walk;
4235 }
4236 
4237 static void clear_mm_walk(void)
4238 {
4239 	struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
4240 
4241 	VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages)));
4242 	VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats)));
4243 
4244 	current->reclaim_state->mm_walk = NULL;
4245 
4246 	if (!current_is_kswapd())
4247 		kfree(walk);
4248 }
4249 
4250 static bool inc_min_seq(struct lruvec *lruvec, int type, bool can_swap)
4251 {
4252 	int zone;
4253 	int remaining = MAX_LRU_BATCH;
4254 	struct lru_gen_struct *lrugen = &lruvec->lrugen;
4255 	int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
4256 
4257 	if (type == LRU_GEN_ANON && !can_swap)
4258 		goto done;
4259 
4260 	/* prevent cold/hot inversion if force_scan is true */
4261 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4262 		struct list_head *head = &lrugen->lists[old_gen][type][zone];
4263 
4264 		while (!list_empty(head)) {
4265 			struct folio *folio = lru_to_folio(head);
4266 
4267 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
4268 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
4269 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
4270 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
4271 
4272 			new_gen = folio_inc_gen(lruvec, folio, false);
4273 			list_move_tail(&folio->lru, &lrugen->lists[new_gen][type][zone]);
4274 
4275 			if (!--remaining)
4276 				return false;
4277 		}
4278 	}
4279 done:
4280 	reset_ctrl_pos(lruvec, type, true);
4281 	WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1);
4282 
4283 	return true;
4284 }
4285 
4286 static bool try_to_inc_min_seq(struct lruvec *lruvec, bool can_swap)
4287 {
4288 	int gen, type, zone;
4289 	bool success = false;
4290 	struct lru_gen_struct *lrugen = &lruvec->lrugen;
4291 	DEFINE_MIN_SEQ(lruvec);
4292 
4293 	VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
4294 
4295 	/* find the oldest populated generation */
4296 	for (type = !can_swap; type < ANON_AND_FILE; type++) {
4297 		while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) {
4298 			gen = lru_gen_from_seq(min_seq[type]);
4299 
4300 			for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4301 				if (!list_empty(&lrugen->lists[gen][type][zone]))
4302 					goto next;
4303 			}
4304 
4305 			min_seq[type]++;
4306 		}
4307 next:
4308 		;
4309 	}
4310 
4311 	/* see the comment on lru_gen_struct */
4312 	if (can_swap) {
4313 		min_seq[LRU_GEN_ANON] = min(min_seq[LRU_GEN_ANON], min_seq[LRU_GEN_FILE]);
4314 		min_seq[LRU_GEN_FILE] = max(min_seq[LRU_GEN_ANON], lrugen->min_seq[LRU_GEN_FILE]);
4315 	}
4316 
4317 	for (type = !can_swap; type < ANON_AND_FILE; type++) {
4318 		if (min_seq[type] == lrugen->min_seq[type])
4319 			continue;
4320 
4321 		reset_ctrl_pos(lruvec, type, true);
4322 		WRITE_ONCE(lrugen->min_seq[type], min_seq[type]);
4323 		success = true;
4324 	}
4325 
4326 	return success;
4327 }
4328 
4329 static void inc_max_seq(struct lruvec *lruvec, bool can_swap, bool force_scan)
4330 {
4331 	int prev, next;
4332 	int type, zone;
4333 	struct lru_gen_struct *lrugen = &lruvec->lrugen;
4334 
4335 	spin_lock_irq(&lruvec->lru_lock);
4336 
4337 	VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
4338 
4339 	for (type = ANON_AND_FILE - 1; type >= 0; type--) {
4340 		if (get_nr_gens(lruvec, type) != MAX_NR_GENS)
4341 			continue;
4342 
4343 		VM_WARN_ON_ONCE(!force_scan && (type == LRU_GEN_FILE || can_swap));
4344 
4345 		while (!inc_min_seq(lruvec, type, can_swap)) {
4346 			spin_unlock_irq(&lruvec->lru_lock);
4347 			cond_resched();
4348 			spin_lock_irq(&lruvec->lru_lock);
4349 		}
4350 	}
4351 
4352 	/*
4353 	 * Update the active/inactive LRU sizes for compatibility. Both sides of
4354 	 * the current max_seq need to be covered, since max_seq+1 can overlap
4355 	 * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do
4356 	 * overlap, cold/hot inversion happens.
4357 	 */
4358 	prev = lru_gen_from_seq(lrugen->max_seq - 1);
4359 	next = lru_gen_from_seq(lrugen->max_seq + 1);
4360 
4361 	for (type = 0; type < ANON_AND_FILE; type++) {
4362 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4363 			enum lru_list lru = type * LRU_INACTIVE_FILE;
4364 			long delta = lrugen->nr_pages[prev][type][zone] -
4365 				     lrugen->nr_pages[next][type][zone];
4366 
4367 			if (!delta)
4368 				continue;
4369 
4370 			__update_lru_size(lruvec, lru, zone, delta);
4371 			__update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta);
4372 		}
4373 	}
4374 
4375 	for (type = 0; type < ANON_AND_FILE; type++)
4376 		reset_ctrl_pos(lruvec, type, false);
4377 
4378 	WRITE_ONCE(lrugen->timestamps[next], jiffies);
4379 	/* make sure preceding modifications appear */
4380 	smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1);
4381 
4382 	spin_unlock_irq(&lruvec->lru_lock);
4383 }
4384 
4385 static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long max_seq,
4386 			       struct scan_control *sc, bool can_swap, bool force_scan)
4387 {
4388 	bool success;
4389 	struct lru_gen_mm_walk *walk;
4390 	struct mm_struct *mm = NULL;
4391 	struct lru_gen_struct *lrugen = &lruvec->lrugen;
4392 
4393 	VM_WARN_ON_ONCE(max_seq > READ_ONCE(lrugen->max_seq));
4394 
4395 	/* see the comment in iterate_mm_list() */
4396 	if (max_seq <= READ_ONCE(lruvec->mm_state.seq)) {
4397 		success = false;
4398 		goto done;
4399 	}
4400 
4401 	/*
4402 	 * If the hardware doesn't automatically set the accessed bit, fallback
4403 	 * to lru_gen_look_around(), which only clears the accessed bit in a
4404 	 * handful of PTEs. Spreading the work out over a period of time usually
4405 	 * is less efficient, but it avoids bursty page faults.
4406 	 */
4407 	if (!force_scan && !(arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK))) {
4408 		success = iterate_mm_list_nowalk(lruvec, max_seq);
4409 		goto done;
4410 	}
4411 
4412 	walk = set_mm_walk(NULL);
4413 	if (!walk) {
4414 		success = iterate_mm_list_nowalk(lruvec, max_seq);
4415 		goto done;
4416 	}
4417 
4418 	walk->lruvec = lruvec;
4419 	walk->max_seq = max_seq;
4420 	walk->can_swap = can_swap;
4421 	walk->force_scan = force_scan;
4422 
4423 	do {
4424 		success = iterate_mm_list(lruvec, walk, &mm);
4425 		if (mm)
4426 			walk_mm(lruvec, mm, walk);
4427 
4428 		cond_resched();
4429 	} while (mm);
4430 done:
4431 	if (!success) {
4432 		if (sc->priority <= DEF_PRIORITY - 2)
4433 			wait_event_killable(lruvec->mm_state.wait,
4434 					    max_seq < READ_ONCE(lrugen->max_seq));
4435 
4436 		return max_seq < READ_ONCE(lrugen->max_seq);
4437 	}
4438 
4439 	VM_WARN_ON_ONCE(max_seq != READ_ONCE(lrugen->max_seq));
4440 
4441 	inc_max_seq(lruvec, can_swap, force_scan);
4442 	/* either this sees any waiters or they will see updated max_seq */
4443 	if (wq_has_sleeper(&lruvec->mm_state.wait))
4444 		wake_up_all(&lruvec->mm_state.wait);
4445 
4446 	return true;
4447 }
4448 
4449 static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq, unsigned long *min_seq,
4450 			     struct scan_control *sc, bool can_swap, unsigned long *nr_to_scan)
4451 {
4452 	int gen, type, zone;
4453 	unsigned long old = 0;
4454 	unsigned long young = 0;
4455 	unsigned long total = 0;
4456 	struct lru_gen_struct *lrugen = &lruvec->lrugen;
4457 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4458 
4459 	for (type = !can_swap; type < ANON_AND_FILE; type++) {
4460 		unsigned long seq;
4461 
4462 		for (seq = min_seq[type]; seq <= max_seq; seq++) {
4463 			unsigned long size = 0;
4464 
4465 			gen = lru_gen_from_seq(seq);
4466 
4467 			for (zone = 0; zone < MAX_NR_ZONES; zone++)
4468 				size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
4469 
4470 			total += size;
4471 			if (seq == max_seq)
4472 				young += size;
4473 			else if (seq + MIN_NR_GENS == max_seq)
4474 				old += size;
4475 		}
4476 	}
4477 
4478 	/* try to scrape all its memory if this memcg was deleted */
4479 	*nr_to_scan = mem_cgroup_online(memcg) ? (total >> sc->priority) : total;
4480 
4481 	/*
4482 	 * The aging tries to be lazy to reduce the overhead, while the eviction
4483 	 * stalls when the number of generations reaches MIN_NR_GENS. Hence, the
4484 	 * ideal number of generations is MIN_NR_GENS+1.
4485 	 */
4486 	if (min_seq[!can_swap] + MIN_NR_GENS > max_seq)
4487 		return true;
4488 	if (min_seq[!can_swap] + MIN_NR_GENS < max_seq)
4489 		return false;
4490 
4491 	/*
4492 	 * It's also ideal to spread pages out evenly, i.e., 1/(MIN_NR_GENS+1)
4493 	 * of the total number of pages for each generation. A reasonable range
4494 	 * for this average portion is [1/MIN_NR_GENS, 1/(MIN_NR_GENS+2)]. The
4495 	 * aging cares about the upper bound of hot pages, while the eviction
4496 	 * cares about the lower bound of cold pages.
4497 	 */
4498 	if (young * MIN_NR_GENS > total)
4499 		return true;
4500 	if (old * (MIN_NR_GENS + 2) < total)
4501 		return true;
4502 
4503 	return false;
4504 }
4505 
4506 static bool age_lruvec(struct lruvec *lruvec, struct scan_control *sc, unsigned long min_ttl)
4507 {
4508 	bool need_aging;
4509 	unsigned long nr_to_scan;
4510 	int swappiness = get_swappiness(lruvec, sc);
4511 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4512 	DEFINE_MAX_SEQ(lruvec);
4513 	DEFINE_MIN_SEQ(lruvec);
4514 
4515 	VM_WARN_ON_ONCE(sc->memcg_low_reclaim);
4516 
4517 	mem_cgroup_calculate_protection(NULL, memcg);
4518 
4519 	if (mem_cgroup_below_min(memcg))
4520 		return false;
4521 
4522 	need_aging = should_run_aging(lruvec, max_seq, min_seq, sc, swappiness, &nr_to_scan);
4523 
4524 	if (min_ttl) {
4525 		int gen = lru_gen_from_seq(min_seq[LRU_GEN_FILE]);
4526 		unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
4527 
4528 		if (time_is_after_jiffies(birth + min_ttl))
4529 			return false;
4530 
4531 		/* the size is likely too small to be helpful */
4532 		if (!nr_to_scan && sc->priority != DEF_PRIORITY)
4533 			return false;
4534 	}
4535 
4536 	if (need_aging)
4537 		try_to_inc_max_seq(lruvec, max_seq, sc, swappiness, false);
4538 
4539 	return true;
4540 }
4541 
4542 /* to protect the working set of the last N jiffies */
4543 static unsigned long lru_gen_min_ttl __read_mostly;
4544 
4545 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
4546 {
4547 	struct mem_cgroup *memcg;
4548 	bool success = false;
4549 	unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl);
4550 
4551 	VM_WARN_ON_ONCE(!current_is_kswapd());
4552 
4553 	sc->last_reclaimed = sc->nr_reclaimed;
4554 
4555 	/*
4556 	 * To reduce the chance of going into the aging path, which can be
4557 	 * costly, optimistically skip it if the flag below was cleared in the
4558 	 * eviction path. This improves the overall performance when multiple
4559 	 * memcgs are available.
4560 	 */
4561 	if (!sc->memcgs_need_aging) {
4562 		sc->memcgs_need_aging = true;
4563 		return;
4564 	}
4565 
4566 	set_mm_walk(pgdat);
4567 
4568 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
4569 	do {
4570 		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4571 
4572 		if (age_lruvec(lruvec, sc, min_ttl))
4573 			success = true;
4574 
4575 		cond_resched();
4576 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
4577 
4578 	clear_mm_walk();
4579 
4580 	/* check the order to exclude compaction-induced reclaim */
4581 	if (success || !min_ttl || sc->order)
4582 		return;
4583 
4584 	/*
4585 	 * The main goal is to OOM kill if every generation from all memcgs is
4586 	 * younger than min_ttl. However, another possibility is all memcgs are
4587 	 * either below min or empty.
4588 	 */
4589 	if (mutex_trylock(&oom_lock)) {
4590 		struct oom_control oc = {
4591 			.gfp_mask = sc->gfp_mask,
4592 		};
4593 
4594 		out_of_memory(&oc);
4595 
4596 		mutex_unlock(&oom_lock);
4597 	}
4598 }
4599 
4600 /*
4601  * This function exploits spatial locality when shrink_folio_list() walks the
4602  * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If
4603  * the scan was done cacheline efficiently, it adds the PMD entry pointing to
4604  * the PTE table to the Bloom filter. This forms a feedback loop between the
4605  * eviction and the aging.
4606  */
4607 void lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
4608 {
4609 	int i;
4610 	pte_t *pte;
4611 	unsigned long start;
4612 	unsigned long end;
4613 	unsigned long addr;
4614 	struct lru_gen_mm_walk *walk;
4615 	int young = 0;
4616 	unsigned long bitmap[BITS_TO_LONGS(MIN_LRU_BATCH)] = {};
4617 	struct folio *folio = pfn_folio(pvmw->pfn);
4618 	struct mem_cgroup *memcg = folio_memcg(folio);
4619 	struct pglist_data *pgdat = folio_pgdat(folio);
4620 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4621 	DEFINE_MAX_SEQ(lruvec);
4622 	int old_gen, new_gen = lru_gen_from_seq(max_seq);
4623 
4624 	lockdep_assert_held(pvmw->ptl);
4625 	VM_WARN_ON_ONCE_FOLIO(folio_test_lru(folio), folio);
4626 
4627 	if (spin_is_contended(pvmw->ptl))
4628 		return;
4629 
4630 	/* avoid taking the LRU lock under the PTL when possible */
4631 	walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL;
4632 
4633 	start = max(pvmw->address & PMD_MASK, pvmw->vma->vm_start);
4634 	end = min(pvmw->address | ~PMD_MASK, pvmw->vma->vm_end - 1) + 1;
4635 
4636 	if (end - start > MIN_LRU_BATCH * PAGE_SIZE) {
4637 		if (pvmw->address - start < MIN_LRU_BATCH * PAGE_SIZE / 2)
4638 			end = start + MIN_LRU_BATCH * PAGE_SIZE;
4639 		else if (end - pvmw->address < MIN_LRU_BATCH * PAGE_SIZE / 2)
4640 			start = end - MIN_LRU_BATCH * PAGE_SIZE;
4641 		else {
4642 			start = pvmw->address - MIN_LRU_BATCH * PAGE_SIZE / 2;
4643 			end = pvmw->address + MIN_LRU_BATCH * PAGE_SIZE / 2;
4644 		}
4645 	}
4646 
4647 	pte = pvmw->pte - (pvmw->address - start) / PAGE_SIZE;
4648 
4649 	rcu_read_lock();
4650 	arch_enter_lazy_mmu_mode();
4651 
4652 	for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) {
4653 		unsigned long pfn;
4654 
4655 		pfn = get_pte_pfn(pte[i], pvmw->vma, addr);
4656 		if (pfn == -1)
4657 			continue;
4658 
4659 		if (!pte_young(pte[i]))
4660 			continue;
4661 
4662 		folio = get_pfn_folio(pfn, memcg, pgdat, !walk || walk->can_swap);
4663 		if (!folio)
4664 			continue;
4665 
4666 		if (!ptep_test_and_clear_young(pvmw->vma, addr, pte + i))
4667 			VM_WARN_ON_ONCE(true);
4668 
4669 		young++;
4670 
4671 		if (pte_dirty(pte[i]) && !folio_test_dirty(folio) &&
4672 		    !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
4673 		      !folio_test_swapcache(folio)))
4674 			folio_mark_dirty(folio);
4675 
4676 		old_gen = folio_lru_gen(folio);
4677 		if (old_gen < 0)
4678 			folio_set_referenced(folio);
4679 		else if (old_gen != new_gen)
4680 			__set_bit(i, bitmap);
4681 	}
4682 
4683 	arch_leave_lazy_mmu_mode();
4684 	rcu_read_unlock();
4685 
4686 	/* feedback from rmap walkers to page table walkers */
4687 	if (suitable_to_scan(i, young))
4688 		update_bloom_filter(lruvec, max_seq, pvmw->pmd);
4689 
4690 	if (!walk && bitmap_weight(bitmap, MIN_LRU_BATCH) < PAGEVEC_SIZE) {
4691 		for_each_set_bit(i, bitmap, MIN_LRU_BATCH) {
4692 			folio = pfn_folio(pte_pfn(pte[i]));
4693 			folio_activate(folio);
4694 		}
4695 		return;
4696 	}
4697 
4698 	/* folio_update_gen() requires stable folio_memcg() */
4699 	if (!mem_cgroup_trylock_pages(memcg))
4700 		return;
4701 
4702 	if (!walk) {
4703 		spin_lock_irq(&lruvec->lru_lock);
4704 		new_gen = lru_gen_from_seq(lruvec->lrugen.max_seq);
4705 	}
4706 
4707 	for_each_set_bit(i, bitmap, MIN_LRU_BATCH) {
4708 		folio = pfn_folio(pte_pfn(pte[i]));
4709 		if (folio_memcg_rcu(folio) != memcg)
4710 			continue;
4711 
4712 		old_gen = folio_update_gen(folio, new_gen);
4713 		if (old_gen < 0 || old_gen == new_gen)
4714 			continue;
4715 
4716 		if (walk)
4717 			update_batch_size(walk, folio, old_gen, new_gen);
4718 		else
4719 			lru_gen_update_size(lruvec, folio, old_gen, new_gen);
4720 	}
4721 
4722 	if (!walk)
4723 		spin_unlock_irq(&lruvec->lru_lock);
4724 
4725 	mem_cgroup_unlock_pages();
4726 }
4727 
4728 /******************************************************************************
4729  *                          the eviction
4730  ******************************************************************************/
4731 
4732 static bool sort_folio(struct lruvec *lruvec, struct folio *folio, int tier_idx)
4733 {
4734 	bool success;
4735 	int gen = folio_lru_gen(folio);
4736 	int type = folio_is_file_lru(folio);
4737 	int zone = folio_zonenum(folio);
4738 	int delta = folio_nr_pages(folio);
4739 	int refs = folio_lru_refs(folio);
4740 	int tier = lru_tier_from_refs(refs);
4741 	struct lru_gen_struct *lrugen = &lruvec->lrugen;
4742 
4743 	VM_WARN_ON_ONCE_FOLIO(gen >= MAX_NR_GENS, folio);
4744 
4745 	/* unevictable */
4746 	if (!folio_evictable(folio)) {
4747 		success = lru_gen_del_folio(lruvec, folio, true);
4748 		VM_WARN_ON_ONCE_FOLIO(!success, folio);
4749 		folio_set_unevictable(folio);
4750 		lruvec_add_folio(lruvec, folio);
4751 		__count_vm_events(UNEVICTABLE_PGCULLED, delta);
4752 		return true;
4753 	}
4754 
4755 	/* dirty lazyfree */
4756 	if (type == LRU_GEN_FILE && folio_test_anon(folio) && folio_test_dirty(folio)) {
4757 		success = lru_gen_del_folio(lruvec, folio, true);
4758 		VM_WARN_ON_ONCE_FOLIO(!success, folio);
4759 		folio_set_swapbacked(folio);
4760 		lruvec_add_folio_tail(lruvec, folio);
4761 		return true;
4762 	}
4763 
4764 	/* promoted */
4765 	if (gen != lru_gen_from_seq(lrugen->min_seq[type])) {
4766 		list_move(&folio->lru, &lrugen->lists[gen][type][zone]);
4767 		return true;
4768 	}
4769 
4770 	/* protected */
4771 	if (tier > tier_idx) {
4772 		int hist = lru_hist_from_seq(lrugen->min_seq[type]);
4773 
4774 		gen = folio_inc_gen(lruvec, folio, false);
4775 		list_move_tail(&folio->lru, &lrugen->lists[gen][type][zone]);
4776 
4777 		WRITE_ONCE(lrugen->protected[hist][type][tier - 1],
4778 			   lrugen->protected[hist][type][tier - 1] + delta);
4779 		__mod_lruvec_state(lruvec, WORKINGSET_ACTIVATE_BASE + type, delta);
4780 		return true;
4781 	}
4782 
4783 	/* waiting for writeback */
4784 	if (folio_test_locked(folio) || folio_test_writeback(folio) ||
4785 	    (type == LRU_GEN_FILE && folio_test_dirty(folio))) {
4786 		gen = folio_inc_gen(lruvec, folio, true);
4787 		list_move(&folio->lru, &lrugen->lists[gen][type][zone]);
4788 		return true;
4789 	}
4790 
4791 	return false;
4792 }
4793 
4794 static bool isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc)
4795 {
4796 	bool success;
4797 
4798 	/* unmapping inhibited */
4799 	if (!sc->may_unmap && folio_mapped(folio))
4800 		return false;
4801 
4802 	/* swapping inhibited */
4803 	if (!(sc->may_writepage && (sc->gfp_mask & __GFP_IO)) &&
4804 	    (folio_test_dirty(folio) ||
4805 	     (folio_test_anon(folio) && !folio_test_swapcache(folio))))
4806 		return false;
4807 
4808 	/* raced with release_pages() */
4809 	if (!folio_try_get(folio))
4810 		return false;
4811 
4812 	/* raced with another isolation */
4813 	if (!folio_test_clear_lru(folio)) {
4814 		folio_put(folio);
4815 		return false;
4816 	}
4817 
4818 	/* see the comment on MAX_NR_TIERS */
4819 	if (!folio_test_referenced(folio))
4820 		set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS, 0);
4821 
4822 	/* for shrink_folio_list() */
4823 	folio_clear_reclaim(folio);
4824 	folio_clear_referenced(folio);
4825 
4826 	success = lru_gen_del_folio(lruvec, folio, true);
4827 	VM_WARN_ON_ONCE_FOLIO(!success, folio);
4828 
4829 	return true;
4830 }
4831 
4832 static int scan_folios(struct lruvec *lruvec, struct scan_control *sc,
4833 		       int type, int tier, struct list_head *list)
4834 {
4835 	int gen, zone;
4836 	enum vm_event_item item;
4837 	int sorted = 0;
4838 	int scanned = 0;
4839 	int isolated = 0;
4840 	int remaining = MAX_LRU_BATCH;
4841 	struct lru_gen_struct *lrugen = &lruvec->lrugen;
4842 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4843 
4844 	VM_WARN_ON_ONCE(!list_empty(list));
4845 
4846 	if (get_nr_gens(lruvec, type) == MIN_NR_GENS)
4847 		return 0;
4848 
4849 	gen = lru_gen_from_seq(lrugen->min_seq[type]);
4850 
4851 	for (zone = sc->reclaim_idx; zone >= 0; zone--) {
4852 		LIST_HEAD(moved);
4853 		int skipped = 0;
4854 		struct list_head *head = &lrugen->lists[gen][type][zone];
4855 
4856 		while (!list_empty(head)) {
4857 			struct folio *folio = lru_to_folio(head);
4858 			int delta = folio_nr_pages(folio);
4859 
4860 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
4861 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
4862 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
4863 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
4864 
4865 			scanned += delta;
4866 
4867 			if (sort_folio(lruvec, folio, tier))
4868 				sorted += delta;
4869 			else if (isolate_folio(lruvec, folio, sc)) {
4870 				list_add(&folio->lru, list);
4871 				isolated += delta;
4872 			} else {
4873 				list_move(&folio->lru, &moved);
4874 				skipped += delta;
4875 			}
4876 
4877 			if (!--remaining || max(isolated, skipped) >= MIN_LRU_BATCH)
4878 				break;
4879 		}
4880 
4881 		if (skipped) {
4882 			list_splice(&moved, head);
4883 			__count_zid_vm_events(PGSCAN_SKIP, zone, skipped);
4884 		}
4885 
4886 		if (!remaining || isolated >= MIN_LRU_BATCH)
4887 			break;
4888 	}
4889 
4890 	item = PGSCAN_KSWAPD + reclaimer_offset();
4891 	if (!cgroup_reclaim(sc)) {
4892 		__count_vm_events(item, isolated);
4893 		__count_vm_events(PGREFILL, sorted);
4894 	}
4895 	__count_memcg_events(memcg, item, isolated);
4896 	__count_memcg_events(memcg, PGREFILL, sorted);
4897 	__count_vm_events(PGSCAN_ANON + type, isolated);
4898 
4899 	/*
4900 	 * There might not be eligible pages due to reclaim_idx, may_unmap and
4901 	 * may_writepage. Check the remaining to prevent livelock if it's not
4902 	 * making progress.
4903 	 */
4904 	return isolated || !remaining ? scanned : 0;
4905 }
4906 
4907 static int get_tier_idx(struct lruvec *lruvec, int type)
4908 {
4909 	int tier;
4910 	struct ctrl_pos sp, pv;
4911 
4912 	/*
4913 	 * To leave a margin for fluctuations, use a larger gain factor (1:2).
4914 	 * This value is chosen because any other tier would have at least twice
4915 	 * as many refaults as the first tier.
4916 	 */
4917 	read_ctrl_pos(lruvec, type, 0, 1, &sp);
4918 	for (tier = 1; tier < MAX_NR_TIERS; tier++) {
4919 		read_ctrl_pos(lruvec, type, tier, 2, &pv);
4920 		if (!positive_ctrl_err(&sp, &pv))
4921 			break;
4922 	}
4923 
4924 	return tier - 1;
4925 }
4926 
4927 static int get_type_to_scan(struct lruvec *lruvec, int swappiness, int *tier_idx)
4928 {
4929 	int type, tier;
4930 	struct ctrl_pos sp, pv;
4931 	int gain[ANON_AND_FILE] = { swappiness, 200 - swappiness };
4932 
4933 	/*
4934 	 * Compare the first tier of anon with that of file to determine which
4935 	 * type to scan. Also need to compare other tiers of the selected type
4936 	 * with the first tier of the other type to determine the last tier (of
4937 	 * the selected type) to evict.
4938 	 */
4939 	read_ctrl_pos(lruvec, LRU_GEN_ANON, 0, gain[LRU_GEN_ANON], &sp);
4940 	read_ctrl_pos(lruvec, LRU_GEN_FILE, 0, gain[LRU_GEN_FILE], &pv);
4941 	type = positive_ctrl_err(&sp, &pv);
4942 
4943 	read_ctrl_pos(lruvec, !type, 0, gain[!type], &sp);
4944 	for (tier = 1; tier < MAX_NR_TIERS; tier++) {
4945 		read_ctrl_pos(lruvec, type, tier, gain[type], &pv);
4946 		if (!positive_ctrl_err(&sp, &pv))
4947 			break;
4948 	}
4949 
4950 	*tier_idx = tier - 1;
4951 
4952 	return type;
4953 }
4954 
4955 static int isolate_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness,
4956 			  int *type_scanned, struct list_head *list)
4957 {
4958 	int i;
4959 	int type;
4960 	int scanned;
4961 	int tier = -1;
4962 	DEFINE_MIN_SEQ(lruvec);
4963 
4964 	/*
4965 	 * Try to make the obvious choice first. When anon and file are both
4966 	 * available from the same generation, interpret swappiness 1 as file
4967 	 * first and 200 as anon first.
4968 	 */
4969 	if (!swappiness)
4970 		type = LRU_GEN_FILE;
4971 	else if (min_seq[LRU_GEN_ANON] < min_seq[LRU_GEN_FILE])
4972 		type = LRU_GEN_ANON;
4973 	else if (swappiness == 1)
4974 		type = LRU_GEN_FILE;
4975 	else if (swappiness == 200)
4976 		type = LRU_GEN_ANON;
4977 	else
4978 		type = get_type_to_scan(lruvec, swappiness, &tier);
4979 
4980 	for (i = !swappiness; i < ANON_AND_FILE; i++) {
4981 		if (tier < 0)
4982 			tier = get_tier_idx(lruvec, type);
4983 
4984 		scanned = scan_folios(lruvec, sc, type, tier, list);
4985 		if (scanned)
4986 			break;
4987 
4988 		type = !type;
4989 		tier = -1;
4990 	}
4991 
4992 	*type_scanned = type;
4993 
4994 	return scanned;
4995 }
4996 
4997 static int evict_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness,
4998 			bool *need_swapping)
4999 {
5000 	int type;
5001 	int scanned;
5002 	int reclaimed;
5003 	LIST_HEAD(list);
5004 	LIST_HEAD(clean);
5005 	struct folio *folio;
5006 	struct folio *next;
5007 	enum vm_event_item item;
5008 	struct reclaim_stat stat;
5009 	struct lru_gen_mm_walk *walk;
5010 	bool skip_retry = false;
5011 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5012 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
5013 
5014 	spin_lock_irq(&lruvec->lru_lock);
5015 
5016 	scanned = isolate_folios(lruvec, sc, swappiness, &type, &list);
5017 
5018 	scanned += try_to_inc_min_seq(lruvec, swappiness);
5019 
5020 	if (get_nr_gens(lruvec, !swappiness) == MIN_NR_GENS)
5021 		scanned = 0;
5022 
5023 	spin_unlock_irq(&lruvec->lru_lock);
5024 
5025 	if (list_empty(&list))
5026 		return scanned;
5027 retry:
5028 	reclaimed = shrink_folio_list(&list, pgdat, sc, &stat, false);
5029 	sc->nr_reclaimed += reclaimed;
5030 
5031 	list_for_each_entry_safe_reverse(folio, next, &list, lru) {
5032 		if (!folio_evictable(folio)) {
5033 			list_del(&folio->lru);
5034 			folio_putback_lru(folio);
5035 			continue;
5036 		}
5037 
5038 		if (folio_test_reclaim(folio) &&
5039 		    (folio_test_dirty(folio) || folio_test_writeback(folio))) {
5040 			/* restore LRU_REFS_FLAGS cleared by isolate_folio() */
5041 			if (folio_test_workingset(folio))
5042 				folio_set_referenced(folio);
5043 			continue;
5044 		}
5045 
5046 		if (skip_retry || folio_test_active(folio) || folio_test_referenced(folio) ||
5047 		    folio_mapped(folio) || folio_test_locked(folio) ||
5048 		    folio_test_dirty(folio) || folio_test_writeback(folio)) {
5049 			/* don't add rejected folios to the oldest generation */
5050 			set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS,
5051 				      BIT(PG_active));
5052 			continue;
5053 		}
5054 
5055 		/* retry folios that may have missed folio_rotate_reclaimable() */
5056 		list_move(&folio->lru, &clean);
5057 		sc->nr_scanned -= folio_nr_pages(folio);
5058 	}
5059 
5060 	spin_lock_irq(&lruvec->lru_lock);
5061 
5062 	move_folios_to_lru(lruvec, &list);
5063 
5064 	walk = current->reclaim_state->mm_walk;
5065 	if (walk && walk->batched)
5066 		reset_batch_size(lruvec, walk);
5067 
5068 	item = PGSTEAL_KSWAPD + reclaimer_offset();
5069 	if (!cgroup_reclaim(sc))
5070 		__count_vm_events(item, reclaimed);
5071 	__count_memcg_events(memcg, item, reclaimed);
5072 	__count_vm_events(PGSTEAL_ANON + type, reclaimed);
5073 
5074 	spin_unlock_irq(&lruvec->lru_lock);
5075 
5076 	mem_cgroup_uncharge_list(&list);
5077 	free_unref_page_list(&list);
5078 
5079 	INIT_LIST_HEAD(&list);
5080 	list_splice_init(&clean, &list);
5081 
5082 	if (!list_empty(&list)) {
5083 		skip_retry = true;
5084 		goto retry;
5085 	}
5086 
5087 	if (need_swapping && type == LRU_GEN_ANON)
5088 		*need_swapping = true;
5089 
5090 	return scanned;
5091 }
5092 
5093 /*
5094  * For future optimizations:
5095  * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg
5096  *    reclaim.
5097  */
5098 static unsigned long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc,
5099 				    bool can_swap, bool *need_aging)
5100 {
5101 	unsigned long nr_to_scan;
5102 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5103 	DEFINE_MAX_SEQ(lruvec);
5104 	DEFINE_MIN_SEQ(lruvec);
5105 
5106 	if (mem_cgroup_below_min(memcg) ||
5107 	    (mem_cgroup_below_low(memcg) && !sc->memcg_low_reclaim))
5108 		return 0;
5109 
5110 	*need_aging = should_run_aging(lruvec, max_seq, min_seq, sc, can_swap, &nr_to_scan);
5111 	if (!*need_aging)
5112 		return nr_to_scan;
5113 
5114 	/* skip the aging path at the default priority */
5115 	if (sc->priority == DEF_PRIORITY)
5116 		goto done;
5117 
5118 	/* leave the work to lru_gen_age_node() */
5119 	if (current_is_kswapd())
5120 		return 0;
5121 
5122 	if (try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, false))
5123 		return nr_to_scan;
5124 done:
5125 	return min_seq[!can_swap] + MIN_NR_GENS <= max_seq ? nr_to_scan : 0;
5126 }
5127 
5128 static bool should_abort_scan(struct lruvec *lruvec, unsigned long seq,
5129 			      struct scan_control *sc, bool need_swapping)
5130 {
5131 	int i;
5132 	DEFINE_MAX_SEQ(lruvec);
5133 
5134 	if (!current_is_kswapd()) {
5135 		/* age each memcg at most once to ensure fairness */
5136 		if (max_seq - seq > 1)
5137 			return true;
5138 
5139 		/* over-swapping can increase allocation latency */
5140 		if (sc->nr_reclaimed >= sc->nr_to_reclaim && need_swapping)
5141 			return true;
5142 
5143 		/* give this thread a chance to exit and free its memory */
5144 		if (fatal_signal_pending(current)) {
5145 			sc->nr_reclaimed += MIN_LRU_BATCH;
5146 			return true;
5147 		}
5148 
5149 		if (cgroup_reclaim(sc))
5150 			return false;
5151 	} else if (sc->nr_reclaimed - sc->last_reclaimed < sc->nr_to_reclaim)
5152 		return false;
5153 
5154 	/* keep scanning at low priorities to ensure fairness */
5155 	if (sc->priority > DEF_PRIORITY - 2)
5156 		return false;
5157 
5158 	/*
5159 	 * A minimum amount of work was done under global memory pressure. For
5160 	 * kswapd, it may be overshooting. For direct reclaim, the allocation
5161 	 * may succeed if all suitable zones are somewhat safe. In either case,
5162 	 * it's better to stop now, and restart later if necessary.
5163 	 */
5164 	for (i = 0; i <= sc->reclaim_idx; i++) {
5165 		unsigned long wmark;
5166 		struct zone *zone = lruvec_pgdat(lruvec)->node_zones + i;
5167 
5168 		if (!managed_zone(zone))
5169 			continue;
5170 
5171 		wmark = current_is_kswapd() ? high_wmark_pages(zone) : low_wmark_pages(zone);
5172 		if (wmark > zone_page_state(zone, NR_FREE_PAGES))
5173 			return false;
5174 	}
5175 
5176 	sc->nr_reclaimed += MIN_LRU_BATCH;
5177 
5178 	return true;
5179 }
5180 
5181 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5182 {
5183 	struct blk_plug plug;
5184 	bool need_aging = false;
5185 	bool need_swapping = false;
5186 	unsigned long scanned = 0;
5187 	unsigned long reclaimed = sc->nr_reclaimed;
5188 	DEFINE_MAX_SEQ(lruvec);
5189 
5190 	lru_add_drain();
5191 
5192 	blk_start_plug(&plug);
5193 
5194 	set_mm_walk(lruvec_pgdat(lruvec));
5195 
5196 	while (true) {
5197 		int delta;
5198 		int swappiness;
5199 		unsigned long nr_to_scan;
5200 
5201 		if (sc->may_swap)
5202 			swappiness = get_swappiness(lruvec, sc);
5203 		else if (!cgroup_reclaim(sc) && get_swappiness(lruvec, sc))
5204 			swappiness = 1;
5205 		else
5206 			swappiness = 0;
5207 
5208 		nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness, &need_aging);
5209 		if (!nr_to_scan)
5210 			goto done;
5211 
5212 		delta = evict_folios(lruvec, sc, swappiness, &need_swapping);
5213 		if (!delta)
5214 			goto done;
5215 
5216 		scanned += delta;
5217 		if (scanned >= nr_to_scan)
5218 			break;
5219 
5220 		if (should_abort_scan(lruvec, max_seq, sc, need_swapping))
5221 			break;
5222 
5223 		cond_resched();
5224 	}
5225 
5226 	/* see the comment in lru_gen_age_node() */
5227 	if (sc->nr_reclaimed - reclaimed >= MIN_LRU_BATCH && !need_aging)
5228 		sc->memcgs_need_aging = false;
5229 done:
5230 	clear_mm_walk();
5231 
5232 	blk_finish_plug(&plug);
5233 }
5234 
5235 /******************************************************************************
5236  *                          state change
5237  ******************************************************************************/
5238 
5239 static bool __maybe_unused state_is_valid(struct lruvec *lruvec)
5240 {
5241 	struct lru_gen_struct *lrugen = &lruvec->lrugen;
5242 
5243 	if (lrugen->enabled) {
5244 		enum lru_list lru;
5245 
5246 		for_each_evictable_lru(lru) {
5247 			if (!list_empty(&lruvec->lists[lru]))
5248 				return false;
5249 		}
5250 	} else {
5251 		int gen, type, zone;
5252 
5253 		for_each_gen_type_zone(gen, type, zone) {
5254 			if (!list_empty(&lrugen->lists[gen][type][zone]))
5255 				return false;
5256 		}
5257 	}
5258 
5259 	return true;
5260 }
5261 
5262 static bool fill_evictable(struct lruvec *lruvec)
5263 {
5264 	enum lru_list lru;
5265 	int remaining = MAX_LRU_BATCH;
5266 
5267 	for_each_evictable_lru(lru) {
5268 		int type = is_file_lru(lru);
5269 		bool active = is_active_lru(lru);
5270 		struct list_head *head = &lruvec->lists[lru];
5271 
5272 		while (!list_empty(head)) {
5273 			bool success;
5274 			struct folio *folio = lru_to_folio(head);
5275 
5276 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5277 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio) != active, folio);
5278 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5279 			VM_WARN_ON_ONCE_FOLIO(folio_lru_gen(folio) != -1, folio);
5280 
5281 			lruvec_del_folio(lruvec, folio);
5282 			success = lru_gen_add_folio(lruvec, folio, false);
5283 			VM_WARN_ON_ONCE(!success);
5284 
5285 			if (!--remaining)
5286 				return false;
5287 		}
5288 	}
5289 
5290 	return true;
5291 }
5292 
5293 static bool drain_evictable(struct lruvec *lruvec)
5294 {
5295 	int gen, type, zone;
5296 	int remaining = MAX_LRU_BATCH;
5297 
5298 	for_each_gen_type_zone(gen, type, zone) {
5299 		struct list_head *head = &lruvec->lrugen.lists[gen][type][zone];
5300 
5301 		while (!list_empty(head)) {
5302 			bool success;
5303 			struct folio *folio = lru_to_folio(head);
5304 
5305 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5306 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
5307 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5308 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
5309 
5310 			success = lru_gen_del_folio(lruvec, folio, false);
5311 			VM_WARN_ON_ONCE(!success);
5312 			lruvec_add_folio(lruvec, folio);
5313 
5314 			if (!--remaining)
5315 				return false;
5316 		}
5317 	}
5318 
5319 	return true;
5320 }
5321 
5322 static void lru_gen_change_state(bool enabled)
5323 {
5324 	static DEFINE_MUTEX(state_mutex);
5325 
5326 	struct mem_cgroup *memcg;
5327 
5328 	cgroup_lock();
5329 	cpus_read_lock();
5330 	get_online_mems();
5331 	mutex_lock(&state_mutex);
5332 
5333 	if (enabled == lru_gen_enabled())
5334 		goto unlock;
5335 
5336 	if (enabled)
5337 		static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5338 	else
5339 		static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5340 
5341 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
5342 	do {
5343 		int nid;
5344 
5345 		for_each_node(nid) {
5346 			struct lruvec *lruvec = get_lruvec(memcg, nid);
5347 
5348 			if (!lruvec)
5349 				continue;
5350 
5351 			spin_lock_irq(&lruvec->lru_lock);
5352 
5353 			VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
5354 			VM_WARN_ON_ONCE(!state_is_valid(lruvec));
5355 
5356 			lruvec->lrugen.enabled = enabled;
5357 
5358 			while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) {
5359 				spin_unlock_irq(&lruvec->lru_lock);
5360 				cond_resched();
5361 				spin_lock_irq(&lruvec->lru_lock);
5362 			}
5363 
5364 			spin_unlock_irq(&lruvec->lru_lock);
5365 		}
5366 
5367 		cond_resched();
5368 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5369 unlock:
5370 	mutex_unlock(&state_mutex);
5371 	put_online_mems();
5372 	cpus_read_unlock();
5373 	cgroup_unlock();
5374 }
5375 
5376 /******************************************************************************
5377  *                          sysfs interface
5378  ******************************************************************************/
5379 
5380 static ssize_t show_min_ttl(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5381 {
5382 	return sprintf(buf, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl)));
5383 }
5384 
5385 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5386 static ssize_t store_min_ttl(struct kobject *kobj, struct kobj_attribute *attr,
5387 			     const char *buf, size_t len)
5388 {
5389 	unsigned int msecs;
5390 
5391 	if (kstrtouint(buf, 0, &msecs))
5392 		return -EINVAL;
5393 
5394 	WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs));
5395 
5396 	return len;
5397 }
5398 
5399 static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR(
5400 	min_ttl_ms, 0644, show_min_ttl, store_min_ttl
5401 );
5402 
5403 static ssize_t show_enabled(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5404 {
5405 	unsigned int caps = 0;
5406 
5407 	if (get_cap(LRU_GEN_CORE))
5408 		caps |= BIT(LRU_GEN_CORE);
5409 
5410 	if (arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK))
5411 		caps |= BIT(LRU_GEN_MM_WALK);
5412 
5413 	if (arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG))
5414 		caps |= BIT(LRU_GEN_NONLEAF_YOUNG);
5415 
5416 	return snprintf(buf, PAGE_SIZE, "0x%04x\n", caps);
5417 }
5418 
5419 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5420 static ssize_t store_enabled(struct kobject *kobj, struct kobj_attribute *attr,
5421 			     const char *buf, size_t len)
5422 {
5423 	int i;
5424 	unsigned int caps;
5425 
5426 	if (tolower(*buf) == 'n')
5427 		caps = 0;
5428 	else if (tolower(*buf) == 'y')
5429 		caps = -1;
5430 	else if (kstrtouint(buf, 0, &caps))
5431 		return -EINVAL;
5432 
5433 	for (i = 0; i < NR_LRU_GEN_CAPS; i++) {
5434 		bool enabled = caps & BIT(i);
5435 
5436 		if (i == LRU_GEN_CORE)
5437 			lru_gen_change_state(enabled);
5438 		else if (enabled)
5439 			static_branch_enable(&lru_gen_caps[i]);
5440 		else
5441 			static_branch_disable(&lru_gen_caps[i]);
5442 	}
5443 
5444 	return len;
5445 }
5446 
5447 static struct kobj_attribute lru_gen_enabled_attr = __ATTR(
5448 	enabled, 0644, show_enabled, store_enabled
5449 );
5450 
5451 static struct attribute *lru_gen_attrs[] = {
5452 	&lru_gen_min_ttl_attr.attr,
5453 	&lru_gen_enabled_attr.attr,
5454 	NULL
5455 };
5456 
5457 static struct attribute_group lru_gen_attr_group = {
5458 	.name = "lru_gen",
5459 	.attrs = lru_gen_attrs,
5460 };
5461 
5462 /******************************************************************************
5463  *                          debugfs interface
5464  ******************************************************************************/
5465 
5466 static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos)
5467 {
5468 	struct mem_cgroup *memcg;
5469 	loff_t nr_to_skip = *pos;
5470 
5471 	m->private = kvmalloc(PATH_MAX, GFP_KERNEL);
5472 	if (!m->private)
5473 		return ERR_PTR(-ENOMEM);
5474 
5475 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
5476 	do {
5477 		int nid;
5478 
5479 		for_each_node_state(nid, N_MEMORY) {
5480 			if (!nr_to_skip--)
5481 				return get_lruvec(memcg, nid);
5482 		}
5483 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5484 
5485 	return NULL;
5486 }
5487 
5488 static void lru_gen_seq_stop(struct seq_file *m, void *v)
5489 {
5490 	if (!IS_ERR_OR_NULL(v))
5491 		mem_cgroup_iter_break(NULL, lruvec_memcg(v));
5492 
5493 	kvfree(m->private);
5494 	m->private = NULL;
5495 }
5496 
5497 static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos)
5498 {
5499 	int nid = lruvec_pgdat(v)->node_id;
5500 	struct mem_cgroup *memcg = lruvec_memcg(v);
5501 
5502 	++*pos;
5503 
5504 	nid = next_memory_node(nid);
5505 	if (nid == MAX_NUMNODES) {
5506 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
5507 		if (!memcg)
5508 			return NULL;
5509 
5510 		nid = first_memory_node;
5511 	}
5512 
5513 	return get_lruvec(memcg, nid);
5514 }
5515 
5516 static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec,
5517 				  unsigned long max_seq, unsigned long *min_seq,
5518 				  unsigned long seq)
5519 {
5520 	int i;
5521 	int type, tier;
5522 	int hist = lru_hist_from_seq(seq);
5523 	struct lru_gen_struct *lrugen = &lruvec->lrugen;
5524 
5525 	for (tier = 0; tier < MAX_NR_TIERS; tier++) {
5526 		seq_printf(m, "            %10d", tier);
5527 		for (type = 0; type < ANON_AND_FILE; type++) {
5528 			const char *s = "   ";
5529 			unsigned long n[3] = {};
5530 
5531 			if (seq == max_seq) {
5532 				s = "RT ";
5533 				n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]);
5534 				n[1] = READ_ONCE(lrugen->avg_total[type][tier]);
5535 			} else if (seq == min_seq[type] || NR_HIST_GENS > 1) {
5536 				s = "rep";
5537 				n[0] = atomic_long_read(&lrugen->refaulted[hist][type][tier]);
5538 				n[1] = atomic_long_read(&lrugen->evicted[hist][type][tier]);
5539 				if (tier)
5540 					n[2] = READ_ONCE(lrugen->protected[hist][type][tier - 1]);
5541 			}
5542 
5543 			for (i = 0; i < 3; i++)
5544 				seq_printf(m, " %10lu%c", n[i], s[i]);
5545 		}
5546 		seq_putc(m, '\n');
5547 	}
5548 
5549 	seq_puts(m, "                      ");
5550 	for (i = 0; i < NR_MM_STATS; i++) {
5551 		const char *s = "      ";
5552 		unsigned long n = 0;
5553 
5554 		if (seq == max_seq && NR_HIST_GENS == 1) {
5555 			s = "LOYNFA";
5556 			n = READ_ONCE(lruvec->mm_state.stats[hist][i]);
5557 		} else if (seq != max_seq && NR_HIST_GENS > 1) {
5558 			s = "loynfa";
5559 			n = READ_ONCE(lruvec->mm_state.stats[hist][i]);
5560 		}
5561 
5562 		seq_printf(m, " %10lu%c", n, s[i]);
5563 	}
5564 	seq_putc(m, '\n');
5565 }
5566 
5567 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5568 static int lru_gen_seq_show(struct seq_file *m, void *v)
5569 {
5570 	unsigned long seq;
5571 	bool full = !debugfs_real_fops(m->file)->write;
5572 	struct lruvec *lruvec = v;
5573 	struct lru_gen_struct *lrugen = &lruvec->lrugen;
5574 	int nid = lruvec_pgdat(lruvec)->node_id;
5575 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5576 	DEFINE_MAX_SEQ(lruvec);
5577 	DEFINE_MIN_SEQ(lruvec);
5578 
5579 	if (nid == first_memory_node) {
5580 		const char *path = memcg ? m->private : "";
5581 
5582 #ifdef CONFIG_MEMCG
5583 		if (memcg)
5584 			cgroup_path(memcg->css.cgroup, m->private, PATH_MAX);
5585 #endif
5586 		seq_printf(m, "memcg %5hu %s\n", mem_cgroup_id(memcg), path);
5587 	}
5588 
5589 	seq_printf(m, " node %5d\n", nid);
5590 
5591 	if (!full)
5592 		seq = min_seq[LRU_GEN_ANON];
5593 	else if (max_seq >= MAX_NR_GENS)
5594 		seq = max_seq - MAX_NR_GENS + 1;
5595 	else
5596 		seq = 0;
5597 
5598 	for (; seq <= max_seq; seq++) {
5599 		int type, zone;
5600 		int gen = lru_gen_from_seq(seq);
5601 		unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
5602 
5603 		seq_printf(m, " %10lu %10u", seq, jiffies_to_msecs(jiffies - birth));
5604 
5605 		for (type = 0; type < ANON_AND_FILE; type++) {
5606 			unsigned long size = 0;
5607 			char mark = full && seq < min_seq[type] ? 'x' : ' ';
5608 
5609 			for (zone = 0; zone < MAX_NR_ZONES; zone++)
5610 				size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
5611 
5612 			seq_printf(m, " %10lu%c", size, mark);
5613 		}
5614 
5615 		seq_putc(m, '\n');
5616 
5617 		if (full)
5618 			lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq);
5619 	}
5620 
5621 	return 0;
5622 }
5623 
5624 static const struct seq_operations lru_gen_seq_ops = {
5625 	.start = lru_gen_seq_start,
5626 	.stop = lru_gen_seq_stop,
5627 	.next = lru_gen_seq_next,
5628 	.show = lru_gen_seq_show,
5629 };
5630 
5631 static int run_aging(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
5632 		     bool can_swap, bool force_scan)
5633 {
5634 	DEFINE_MAX_SEQ(lruvec);
5635 	DEFINE_MIN_SEQ(lruvec);
5636 
5637 	if (seq < max_seq)
5638 		return 0;
5639 
5640 	if (seq > max_seq)
5641 		return -EINVAL;
5642 
5643 	if (!force_scan && min_seq[!can_swap] + MAX_NR_GENS - 1 <= max_seq)
5644 		return -ERANGE;
5645 
5646 	try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, force_scan);
5647 
5648 	return 0;
5649 }
5650 
5651 static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
5652 			int swappiness, unsigned long nr_to_reclaim)
5653 {
5654 	DEFINE_MAX_SEQ(lruvec);
5655 
5656 	if (seq + MIN_NR_GENS > max_seq)
5657 		return -EINVAL;
5658 
5659 	sc->nr_reclaimed = 0;
5660 
5661 	while (!signal_pending(current)) {
5662 		DEFINE_MIN_SEQ(lruvec);
5663 
5664 		if (seq < min_seq[!swappiness])
5665 			return 0;
5666 
5667 		if (sc->nr_reclaimed >= nr_to_reclaim)
5668 			return 0;
5669 
5670 		if (!evict_folios(lruvec, sc, swappiness, NULL))
5671 			return 0;
5672 
5673 		cond_resched();
5674 	}
5675 
5676 	return -EINTR;
5677 }
5678 
5679 static int run_cmd(char cmd, int memcg_id, int nid, unsigned long seq,
5680 		   struct scan_control *sc, int swappiness, unsigned long opt)
5681 {
5682 	struct lruvec *lruvec;
5683 	int err = -EINVAL;
5684 	struct mem_cgroup *memcg = NULL;
5685 
5686 	if (nid < 0 || nid >= MAX_NUMNODES || !node_state(nid, N_MEMORY))
5687 		return -EINVAL;
5688 
5689 	if (!mem_cgroup_disabled()) {
5690 		rcu_read_lock();
5691 		memcg = mem_cgroup_from_id(memcg_id);
5692 #ifdef CONFIG_MEMCG
5693 		if (memcg && !css_tryget(&memcg->css))
5694 			memcg = NULL;
5695 #endif
5696 		rcu_read_unlock();
5697 
5698 		if (!memcg)
5699 			return -EINVAL;
5700 	}
5701 
5702 	if (memcg_id != mem_cgroup_id(memcg))
5703 		goto done;
5704 
5705 	lruvec = get_lruvec(memcg, nid);
5706 
5707 	if (swappiness < 0)
5708 		swappiness = get_swappiness(lruvec, sc);
5709 	else if (swappiness > 200)
5710 		goto done;
5711 
5712 	switch (cmd) {
5713 	case '+':
5714 		err = run_aging(lruvec, seq, sc, swappiness, opt);
5715 		break;
5716 	case '-':
5717 		err = run_eviction(lruvec, seq, sc, swappiness, opt);
5718 		break;
5719 	}
5720 done:
5721 	mem_cgroup_put(memcg);
5722 
5723 	return err;
5724 }
5725 
5726 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5727 static ssize_t lru_gen_seq_write(struct file *file, const char __user *src,
5728 				 size_t len, loff_t *pos)
5729 {
5730 	void *buf;
5731 	char *cur, *next;
5732 	unsigned int flags;
5733 	struct blk_plug plug;
5734 	int err = -EINVAL;
5735 	struct scan_control sc = {
5736 		.may_writepage = true,
5737 		.may_unmap = true,
5738 		.may_swap = true,
5739 		.reclaim_idx = MAX_NR_ZONES - 1,
5740 		.gfp_mask = GFP_KERNEL,
5741 	};
5742 
5743 	buf = kvmalloc(len + 1, GFP_KERNEL);
5744 	if (!buf)
5745 		return -ENOMEM;
5746 
5747 	if (copy_from_user(buf, src, len)) {
5748 		kvfree(buf);
5749 		return -EFAULT;
5750 	}
5751 
5752 	set_task_reclaim_state(current, &sc.reclaim_state);
5753 	flags = memalloc_noreclaim_save();
5754 	blk_start_plug(&plug);
5755 	if (!set_mm_walk(NULL)) {
5756 		err = -ENOMEM;
5757 		goto done;
5758 	}
5759 
5760 	next = buf;
5761 	next[len] = '\0';
5762 
5763 	while ((cur = strsep(&next, ",;\n"))) {
5764 		int n;
5765 		int end;
5766 		char cmd;
5767 		unsigned int memcg_id;
5768 		unsigned int nid;
5769 		unsigned long seq;
5770 		unsigned int swappiness = -1;
5771 		unsigned long opt = -1;
5772 
5773 		cur = skip_spaces(cur);
5774 		if (!*cur)
5775 			continue;
5776 
5777 		n = sscanf(cur, "%c %u %u %lu %n %u %n %lu %n", &cmd, &memcg_id, &nid,
5778 			   &seq, &end, &swappiness, &end, &opt, &end);
5779 		if (n < 4 || cur[end]) {
5780 			err = -EINVAL;
5781 			break;
5782 		}
5783 
5784 		err = run_cmd(cmd, memcg_id, nid, seq, &sc, swappiness, opt);
5785 		if (err)
5786 			break;
5787 	}
5788 done:
5789 	clear_mm_walk();
5790 	blk_finish_plug(&plug);
5791 	memalloc_noreclaim_restore(flags);
5792 	set_task_reclaim_state(current, NULL);
5793 
5794 	kvfree(buf);
5795 
5796 	return err ? : len;
5797 }
5798 
5799 static int lru_gen_seq_open(struct inode *inode, struct file *file)
5800 {
5801 	return seq_open(file, &lru_gen_seq_ops);
5802 }
5803 
5804 static const struct file_operations lru_gen_rw_fops = {
5805 	.open = lru_gen_seq_open,
5806 	.read = seq_read,
5807 	.write = lru_gen_seq_write,
5808 	.llseek = seq_lseek,
5809 	.release = seq_release,
5810 };
5811 
5812 static const struct file_operations lru_gen_ro_fops = {
5813 	.open = lru_gen_seq_open,
5814 	.read = seq_read,
5815 	.llseek = seq_lseek,
5816 	.release = seq_release,
5817 };
5818 
5819 /******************************************************************************
5820  *                          initialization
5821  ******************************************************************************/
5822 
5823 void lru_gen_init_lruvec(struct lruvec *lruvec)
5824 {
5825 	int i;
5826 	int gen, type, zone;
5827 	struct lru_gen_struct *lrugen = &lruvec->lrugen;
5828 
5829 	lrugen->max_seq = MIN_NR_GENS + 1;
5830 	lrugen->enabled = lru_gen_enabled();
5831 
5832 	for (i = 0; i <= MIN_NR_GENS + 1; i++)
5833 		lrugen->timestamps[i] = jiffies;
5834 
5835 	for_each_gen_type_zone(gen, type, zone)
5836 		INIT_LIST_HEAD(&lrugen->lists[gen][type][zone]);
5837 
5838 	lruvec->mm_state.seq = MIN_NR_GENS;
5839 	init_waitqueue_head(&lruvec->mm_state.wait);
5840 }
5841 
5842 #ifdef CONFIG_MEMCG
5843 void lru_gen_init_memcg(struct mem_cgroup *memcg)
5844 {
5845 	INIT_LIST_HEAD(&memcg->mm_list.fifo);
5846 	spin_lock_init(&memcg->mm_list.lock);
5847 }
5848 
5849 void lru_gen_exit_memcg(struct mem_cgroup *memcg)
5850 {
5851 	int i;
5852 	int nid;
5853 
5854 	for_each_node(nid) {
5855 		struct lruvec *lruvec = get_lruvec(memcg, nid);
5856 
5857 		VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0,
5858 					   sizeof(lruvec->lrugen.nr_pages)));
5859 
5860 		for (i = 0; i < NR_BLOOM_FILTERS; i++) {
5861 			bitmap_free(lruvec->mm_state.filters[i]);
5862 			lruvec->mm_state.filters[i] = NULL;
5863 		}
5864 	}
5865 }
5866 #endif
5867 
5868 static int __init init_lru_gen(void)
5869 {
5870 	BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS);
5871 	BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS);
5872 
5873 	if (sysfs_create_group(mm_kobj, &lru_gen_attr_group))
5874 		pr_err("lru_gen: failed to create sysfs group\n");
5875 
5876 	debugfs_create_file("lru_gen", 0644, NULL, NULL, &lru_gen_rw_fops);
5877 	debugfs_create_file("lru_gen_full", 0444, NULL, NULL, &lru_gen_ro_fops);
5878 
5879 	return 0;
5880 };
5881 late_initcall(init_lru_gen);
5882 
5883 #else /* !CONFIG_LRU_GEN */
5884 
5885 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
5886 {
5887 }
5888 
5889 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5890 {
5891 }
5892 
5893 #endif /* CONFIG_LRU_GEN */
5894 
5895 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5896 {
5897 	unsigned long nr[NR_LRU_LISTS];
5898 	unsigned long targets[NR_LRU_LISTS];
5899 	unsigned long nr_to_scan;
5900 	enum lru_list lru;
5901 	unsigned long nr_reclaimed = 0;
5902 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
5903 	bool proportional_reclaim;
5904 	struct blk_plug plug;
5905 
5906 	if (lru_gen_enabled()) {
5907 		lru_gen_shrink_lruvec(lruvec, sc);
5908 		return;
5909 	}
5910 
5911 	get_scan_count(lruvec, sc, nr);
5912 
5913 	/* Record the original scan target for proportional adjustments later */
5914 	memcpy(targets, nr, sizeof(nr));
5915 
5916 	/*
5917 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
5918 	 * event that can occur when there is little memory pressure e.g.
5919 	 * multiple streaming readers/writers. Hence, we do not abort scanning
5920 	 * when the requested number of pages are reclaimed when scanning at
5921 	 * DEF_PRIORITY on the assumption that the fact we are direct
5922 	 * reclaiming implies that kswapd is not keeping up and it is best to
5923 	 * do a batch of work at once. For memcg reclaim one check is made to
5924 	 * abort proportional reclaim if either the file or anon lru has already
5925 	 * dropped to zero at the first pass.
5926 	 */
5927 	proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
5928 				sc->priority == DEF_PRIORITY);
5929 
5930 	blk_start_plug(&plug);
5931 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
5932 					nr[LRU_INACTIVE_FILE]) {
5933 		unsigned long nr_anon, nr_file, percentage;
5934 		unsigned long nr_scanned;
5935 
5936 		for_each_evictable_lru(lru) {
5937 			if (nr[lru]) {
5938 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
5939 				nr[lru] -= nr_to_scan;
5940 
5941 				nr_reclaimed += shrink_list(lru, nr_to_scan,
5942 							    lruvec, sc);
5943 			}
5944 		}
5945 
5946 		cond_resched();
5947 
5948 		if (nr_reclaimed < nr_to_reclaim || proportional_reclaim)
5949 			continue;
5950 
5951 		/*
5952 		 * For kswapd and memcg, reclaim at least the number of pages
5953 		 * requested. Ensure that the anon and file LRUs are scanned
5954 		 * proportionally what was requested by get_scan_count(). We
5955 		 * stop reclaiming one LRU and reduce the amount scanning
5956 		 * proportional to the original scan target.
5957 		 */
5958 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
5959 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
5960 
5961 		/*
5962 		 * It's just vindictive to attack the larger once the smaller
5963 		 * has gone to zero.  And given the way we stop scanning the
5964 		 * smaller below, this makes sure that we only make one nudge
5965 		 * towards proportionality once we've got nr_to_reclaim.
5966 		 */
5967 		if (!nr_file || !nr_anon)
5968 			break;
5969 
5970 		if (nr_file > nr_anon) {
5971 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
5972 						targets[LRU_ACTIVE_ANON] + 1;
5973 			lru = LRU_BASE;
5974 			percentage = nr_anon * 100 / scan_target;
5975 		} else {
5976 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
5977 						targets[LRU_ACTIVE_FILE] + 1;
5978 			lru = LRU_FILE;
5979 			percentage = nr_file * 100 / scan_target;
5980 		}
5981 
5982 		/* Stop scanning the smaller of the LRU */
5983 		nr[lru] = 0;
5984 		nr[lru + LRU_ACTIVE] = 0;
5985 
5986 		/*
5987 		 * Recalculate the other LRU scan count based on its original
5988 		 * scan target and the percentage scanning already complete
5989 		 */
5990 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
5991 		nr_scanned = targets[lru] - nr[lru];
5992 		nr[lru] = targets[lru] * (100 - percentage) / 100;
5993 		nr[lru] -= min(nr[lru], nr_scanned);
5994 
5995 		lru += LRU_ACTIVE;
5996 		nr_scanned = targets[lru] - nr[lru];
5997 		nr[lru] = targets[lru] * (100 - percentage) / 100;
5998 		nr[lru] -= min(nr[lru], nr_scanned);
5999 	}
6000 	blk_finish_plug(&plug);
6001 	sc->nr_reclaimed += nr_reclaimed;
6002 
6003 	/*
6004 	 * Even if we did not try to evict anon pages at all, we want to
6005 	 * rebalance the anon lru active/inactive ratio.
6006 	 */
6007 	if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) &&
6008 	    inactive_is_low(lruvec, LRU_INACTIVE_ANON))
6009 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
6010 				   sc, LRU_ACTIVE_ANON);
6011 }
6012 
6013 /* Use reclaim/compaction for costly allocs or under memory pressure */
6014 static bool in_reclaim_compaction(struct scan_control *sc)
6015 {
6016 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
6017 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
6018 			 sc->priority < DEF_PRIORITY - 2))
6019 		return true;
6020 
6021 	return false;
6022 }
6023 
6024 /*
6025  * Reclaim/compaction is used for high-order allocation requests. It reclaims
6026  * order-0 pages before compacting the zone. should_continue_reclaim() returns
6027  * true if more pages should be reclaimed such that when the page allocator
6028  * calls try_to_compact_pages() that it will have enough free pages to succeed.
6029  * It will give up earlier than that if there is difficulty reclaiming pages.
6030  */
6031 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
6032 					unsigned long nr_reclaimed,
6033 					struct scan_control *sc)
6034 {
6035 	unsigned long pages_for_compaction;
6036 	unsigned long inactive_lru_pages;
6037 	int z;
6038 
6039 	/* If not in reclaim/compaction mode, stop */
6040 	if (!in_reclaim_compaction(sc))
6041 		return false;
6042 
6043 	/*
6044 	 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
6045 	 * number of pages that were scanned. This will return to the caller
6046 	 * with the risk reclaim/compaction and the resulting allocation attempt
6047 	 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
6048 	 * allocations through requiring that the full LRU list has been scanned
6049 	 * first, by assuming that zero delta of sc->nr_scanned means full LRU
6050 	 * scan, but that approximation was wrong, and there were corner cases
6051 	 * where always a non-zero amount of pages were scanned.
6052 	 */
6053 	if (!nr_reclaimed)
6054 		return false;
6055 
6056 	/* If compaction would go ahead or the allocation would succeed, stop */
6057 	for (z = 0; z <= sc->reclaim_idx; z++) {
6058 		struct zone *zone = &pgdat->node_zones[z];
6059 		if (!managed_zone(zone))
6060 			continue;
6061 
6062 		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
6063 		case COMPACT_SUCCESS:
6064 		case COMPACT_CONTINUE:
6065 			return false;
6066 		default:
6067 			/* check next zone */
6068 			;
6069 		}
6070 	}
6071 
6072 	/*
6073 	 * If we have not reclaimed enough pages for compaction and the
6074 	 * inactive lists are large enough, continue reclaiming
6075 	 */
6076 	pages_for_compaction = compact_gap(sc->order);
6077 	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
6078 	if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
6079 		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
6080 
6081 	return inactive_lru_pages > pages_for_compaction;
6082 }
6083 
6084 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
6085 {
6086 	struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
6087 	struct mem_cgroup *memcg;
6088 
6089 	memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
6090 	do {
6091 		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
6092 		unsigned long reclaimed;
6093 		unsigned long scanned;
6094 
6095 		/*
6096 		 * This loop can become CPU-bound when target memcgs
6097 		 * aren't eligible for reclaim - either because they
6098 		 * don't have any reclaimable pages, or because their
6099 		 * memory is explicitly protected. Avoid soft lockups.
6100 		 */
6101 		cond_resched();
6102 
6103 		mem_cgroup_calculate_protection(target_memcg, memcg);
6104 
6105 		if (mem_cgroup_below_min(memcg)) {
6106 			/*
6107 			 * Hard protection.
6108 			 * If there is no reclaimable memory, OOM.
6109 			 */
6110 			continue;
6111 		} else if (mem_cgroup_below_low(memcg)) {
6112 			/*
6113 			 * Soft protection.
6114 			 * Respect the protection only as long as
6115 			 * there is an unprotected supply
6116 			 * of reclaimable memory from other cgroups.
6117 			 */
6118 			if (!sc->memcg_low_reclaim) {
6119 				sc->memcg_low_skipped = 1;
6120 				continue;
6121 			}
6122 			memcg_memory_event(memcg, MEMCG_LOW);
6123 		}
6124 
6125 		reclaimed = sc->nr_reclaimed;
6126 		scanned = sc->nr_scanned;
6127 
6128 		shrink_lruvec(lruvec, sc);
6129 
6130 		shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
6131 			    sc->priority);
6132 
6133 		/* Record the group's reclaim efficiency */
6134 		if (!sc->proactive)
6135 			vmpressure(sc->gfp_mask, memcg, false,
6136 				   sc->nr_scanned - scanned,
6137 				   sc->nr_reclaimed - reclaimed);
6138 
6139 	} while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
6140 }
6141 
6142 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
6143 {
6144 	struct reclaim_state *reclaim_state = current->reclaim_state;
6145 	unsigned long nr_reclaimed, nr_scanned;
6146 	struct lruvec *target_lruvec;
6147 	bool reclaimable = false;
6148 
6149 	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
6150 
6151 again:
6152 	memset(&sc->nr, 0, sizeof(sc->nr));
6153 
6154 	nr_reclaimed = sc->nr_reclaimed;
6155 	nr_scanned = sc->nr_scanned;
6156 
6157 	prepare_scan_count(pgdat, sc);
6158 
6159 	shrink_node_memcgs(pgdat, sc);
6160 
6161 	if (reclaim_state) {
6162 		sc->nr_reclaimed += reclaim_state->reclaimed_slab;
6163 		reclaim_state->reclaimed_slab = 0;
6164 	}
6165 
6166 	/* Record the subtree's reclaim efficiency */
6167 	if (!sc->proactive)
6168 		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
6169 			   sc->nr_scanned - nr_scanned,
6170 			   sc->nr_reclaimed - nr_reclaimed);
6171 
6172 	if (sc->nr_reclaimed - nr_reclaimed)
6173 		reclaimable = true;
6174 
6175 	if (current_is_kswapd()) {
6176 		/*
6177 		 * If reclaim is isolating dirty pages under writeback,
6178 		 * it implies that the long-lived page allocation rate
6179 		 * is exceeding the page laundering rate. Either the
6180 		 * global limits are not being effective at throttling
6181 		 * processes due to the page distribution throughout
6182 		 * zones or there is heavy usage of a slow backing
6183 		 * device. The only option is to throttle from reclaim
6184 		 * context which is not ideal as there is no guarantee
6185 		 * the dirtying process is throttled in the same way
6186 		 * balance_dirty_pages() manages.
6187 		 *
6188 		 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
6189 		 * count the number of pages under pages flagged for
6190 		 * immediate reclaim and stall if any are encountered
6191 		 * in the nr_immediate check below.
6192 		 */
6193 		if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
6194 			set_bit(PGDAT_WRITEBACK, &pgdat->flags);
6195 
6196 		/* Allow kswapd to start writing pages during reclaim.*/
6197 		if (sc->nr.unqueued_dirty == sc->nr.file_taken)
6198 			set_bit(PGDAT_DIRTY, &pgdat->flags);
6199 
6200 		/*
6201 		 * If kswapd scans pages marked for immediate
6202 		 * reclaim and under writeback (nr_immediate), it
6203 		 * implies that pages are cycling through the LRU
6204 		 * faster than they are written so forcibly stall
6205 		 * until some pages complete writeback.
6206 		 */
6207 		if (sc->nr.immediate)
6208 			reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
6209 	}
6210 
6211 	/*
6212 	 * Tag a node/memcg as congested if all the dirty pages were marked
6213 	 * for writeback and immediate reclaim (counted in nr.congested).
6214 	 *
6215 	 * Legacy memcg will stall in page writeback so avoid forcibly
6216 	 * stalling in reclaim_throttle().
6217 	 */
6218 	if ((current_is_kswapd() ||
6219 	     (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
6220 	    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
6221 		set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
6222 
6223 	/*
6224 	 * Stall direct reclaim for IO completions if the lruvec is
6225 	 * node is congested. Allow kswapd to continue until it
6226 	 * starts encountering unqueued dirty pages or cycling through
6227 	 * the LRU too quickly.
6228 	 */
6229 	if (!current_is_kswapd() && current_may_throttle() &&
6230 	    !sc->hibernation_mode &&
6231 	    test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
6232 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED);
6233 
6234 	if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
6235 				    sc))
6236 		goto again;
6237 
6238 	/*
6239 	 * Kswapd gives up on balancing particular nodes after too
6240 	 * many failures to reclaim anything from them and goes to
6241 	 * sleep. On reclaim progress, reset the failure counter. A
6242 	 * successful direct reclaim run will revive a dormant kswapd.
6243 	 */
6244 	if (reclaimable)
6245 		pgdat->kswapd_failures = 0;
6246 }
6247 
6248 /*
6249  * Returns true if compaction should go ahead for a costly-order request, or
6250  * the allocation would already succeed without compaction. Return false if we
6251  * should reclaim first.
6252  */
6253 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
6254 {
6255 	unsigned long watermark;
6256 	enum compact_result suitable;
6257 
6258 	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
6259 	if (suitable == COMPACT_SUCCESS)
6260 		/* Allocation should succeed already. Don't reclaim. */
6261 		return true;
6262 	if (suitable == COMPACT_SKIPPED)
6263 		/* Compaction cannot yet proceed. Do reclaim. */
6264 		return false;
6265 
6266 	/*
6267 	 * Compaction is already possible, but it takes time to run and there
6268 	 * are potentially other callers using the pages just freed. So proceed
6269 	 * with reclaim to make a buffer of free pages available to give
6270 	 * compaction a reasonable chance of completing and allocating the page.
6271 	 * Note that we won't actually reclaim the whole buffer in one attempt
6272 	 * as the target watermark in should_continue_reclaim() is lower. But if
6273 	 * we are already above the high+gap watermark, don't reclaim at all.
6274 	 */
6275 	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
6276 
6277 	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
6278 }
6279 
6280 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
6281 {
6282 	/*
6283 	 * If reclaim is making progress greater than 12% efficiency then
6284 	 * wake all the NOPROGRESS throttled tasks.
6285 	 */
6286 	if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) {
6287 		wait_queue_head_t *wqh;
6288 
6289 		wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS];
6290 		if (waitqueue_active(wqh))
6291 			wake_up(wqh);
6292 
6293 		return;
6294 	}
6295 
6296 	/*
6297 	 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will
6298 	 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages
6299 	 * under writeback and marked for immediate reclaim at the tail of the
6300 	 * LRU.
6301 	 */
6302 	if (current_is_kswapd() || cgroup_reclaim(sc))
6303 		return;
6304 
6305 	/* Throttle if making no progress at high prioities. */
6306 	if (sc->priority == 1 && !sc->nr_reclaimed)
6307 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS);
6308 }
6309 
6310 /*
6311  * This is the direct reclaim path, for page-allocating processes.  We only
6312  * try to reclaim pages from zones which will satisfy the caller's allocation
6313  * request.
6314  *
6315  * If a zone is deemed to be full of pinned pages then just give it a light
6316  * scan then give up on it.
6317  */
6318 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
6319 {
6320 	struct zoneref *z;
6321 	struct zone *zone;
6322 	unsigned long nr_soft_reclaimed;
6323 	unsigned long nr_soft_scanned;
6324 	gfp_t orig_mask;
6325 	pg_data_t *last_pgdat = NULL;
6326 	pg_data_t *first_pgdat = NULL;
6327 
6328 	/*
6329 	 * If the number of buffer_heads in the machine exceeds the maximum
6330 	 * allowed level, force direct reclaim to scan the highmem zone as
6331 	 * highmem pages could be pinning lowmem pages storing buffer_heads
6332 	 */
6333 	orig_mask = sc->gfp_mask;
6334 	if (buffer_heads_over_limit) {
6335 		sc->gfp_mask |= __GFP_HIGHMEM;
6336 		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
6337 	}
6338 
6339 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6340 					sc->reclaim_idx, sc->nodemask) {
6341 		/*
6342 		 * Take care memory controller reclaiming has small influence
6343 		 * to global LRU.
6344 		 */
6345 		if (!cgroup_reclaim(sc)) {
6346 			if (!cpuset_zone_allowed(zone,
6347 						 GFP_KERNEL | __GFP_HARDWALL))
6348 				continue;
6349 
6350 			/*
6351 			 * If we already have plenty of memory free for
6352 			 * compaction in this zone, don't free any more.
6353 			 * Even though compaction is invoked for any
6354 			 * non-zero order, only frequent costly order
6355 			 * reclamation is disruptive enough to become a
6356 			 * noticeable problem, like transparent huge
6357 			 * page allocations.
6358 			 */
6359 			if (IS_ENABLED(CONFIG_COMPACTION) &&
6360 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
6361 			    compaction_ready(zone, sc)) {
6362 				sc->compaction_ready = true;
6363 				continue;
6364 			}
6365 
6366 			/*
6367 			 * Shrink each node in the zonelist once. If the
6368 			 * zonelist is ordered by zone (not the default) then a
6369 			 * node may be shrunk multiple times but in that case
6370 			 * the user prefers lower zones being preserved.
6371 			 */
6372 			if (zone->zone_pgdat == last_pgdat)
6373 				continue;
6374 
6375 			/*
6376 			 * This steals pages from memory cgroups over softlimit
6377 			 * and returns the number of reclaimed pages and
6378 			 * scanned pages. This works for global memory pressure
6379 			 * and balancing, not for a memcg's limit.
6380 			 */
6381 			nr_soft_scanned = 0;
6382 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
6383 						sc->order, sc->gfp_mask,
6384 						&nr_soft_scanned);
6385 			sc->nr_reclaimed += nr_soft_reclaimed;
6386 			sc->nr_scanned += nr_soft_scanned;
6387 			/* need some check for avoid more shrink_zone() */
6388 		}
6389 
6390 		if (!first_pgdat)
6391 			first_pgdat = zone->zone_pgdat;
6392 
6393 		/* See comment about same check for global reclaim above */
6394 		if (zone->zone_pgdat == last_pgdat)
6395 			continue;
6396 		last_pgdat = zone->zone_pgdat;
6397 		shrink_node(zone->zone_pgdat, sc);
6398 	}
6399 
6400 	if (first_pgdat)
6401 		consider_reclaim_throttle(first_pgdat, sc);
6402 
6403 	/*
6404 	 * Restore to original mask to avoid the impact on the caller if we
6405 	 * promoted it to __GFP_HIGHMEM.
6406 	 */
6407 	sc->gfp_mask = orig_mask;
6408 }
6409 
6410 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
6411 {
6412 	struct lruvec *target_lruvec;
6413 	unsigned long refaults;
6414 
6415 	if (lru_gen_enabled())
6416 		return;
6417 
6418 	target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
6419 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
6420 	target_lruvec->refaults[WORKINGSET_ANON] = refaults;
6421 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
6422 	target_lruvec->refaults[WORKINGSET_FILE] = refaults;
6423 }
6424 
6425 /*
6426  * This is the main entry point to direct page reclaim.
6427  *
6428  * If a full scan of the inactive list fails to free enough memory then we
6429  * are "out of memory" and something needs to be killed.
6430  *
6431  * If the caller is !__GFP_FS then the probability of a failure is reasonably
6432  * high - the zone may be full of dirty or under-writeback pages, which this
6433  * caller can't do much about.  We kick the writeback threads and take explicit
6434  * naps in the hope that some of these pages can be written.  But if the
6435  * allocating task holds filesystem locks which prevent writeout this might not
6436  * work, and the allocation attempt will fail.
6437  *
6438  * returns:	0, if no pages reclaimed
6439  * 		else, the number of pages reclaimed
6440  */
6441 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
6442 					  struct scan_control *sc)
6443 {
6444 	int initial_priority = sc->priority;
6445 	pg_data_t *last_pgdat;
6446 	struct zoneref *z;
6447 	struct zone *zone;
6448 retry:
6449 	delayacct_freepages_start();
6450 
6451 	if (!cgroup_reclaim(sc))
6452 		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
6453 
6454 	do {
6455 		if (!sc->proactive)
6456 			vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
6457 					sc->priority);
6458 		sc->nr_scanned = 0;
6459 		shrink_zones(zonelist, sc);
6460 
6461 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
6462 			break;
6463 
6464 		if (sc->compaction_ready)
6465 			break;
6466 
6467 		/*
6468 		 * If we're getting trouble reclaiming, start doing
6469 		 * writepage even in laptop mode.
6470 		 */
6471 		if (sc->priority < DEF_PRIORITY - 2)
6472 			sc->may_writepage = 1;
6473 	} while (--sc->priority >= 0);
6474 
6475 	last_pgdat = NULL;
6476 	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
6477 					sc->nodemask) {
6478 		if (zone->zone_pgdat == last_pgdat)
6479 			continue;
6480 		last_pgdat = zone->zone_pgdat;
6481 
6482 		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
6483 
6484 		if (cgroup_reclaim(sc)) {
6485 			struct lruvec *lruvec;
6486 
6487 			lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
6488 						   zone->zone_pgdat);
6489 			clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
6490 		}
6491 	}
6492 
6493 	delayacct_freepages_end();
6494 
6495 	if (sc->nr_reclaimed)
6496 		return sc->nr_reclaimed;
6497 
6498 	/* Aborted reclaim to try compaction? don't OOM, then */
6499 	if (sc->compaction_ready)
6500 		return 1;
6501 
6502 	/*
6503 	 * We make inactive:active ratio decisions based on the node's
6504 	 * composition of memory, but a restrictive reclaim_idx or a
6505 	 * memory.low cgroup setting can exempt large amounts of
6506 	 * memory from reclaim. Neither of which are very common, so
6507 	 * instead of doing costly eligibility calculations of the
6508 	 * entire cgroup subtree up front, we assume the estimates are
6509 	 * good, and retry with forcible deactivation if that fails.
6510 	 */
6511 	if (sc->skipped_deactivate) {
6512 		sc->priority = initial_priority;
6513 		sc->force_deactivate = 1;
6514 		sc->skipped_deactivate = 0;
6515 		goto retry;
6516 	}
6517 
6518 	/* Untapped cgroup reserves?  Don't OOM, retry. */
6519 	if (sc->memcg_low_skipped) {
6520 		sc->priority = initial_priority;
6521 		sc->force_deactivate = 0;
6522 		sc->memcg_low_reclaim = 1;
6523 		sc->memcg_low_skipped = 0;
6524 		goto retry;
6525 	}
6526 
6527 	return 0;
6528 }
6529 
6530 static bool allow_direct_reclaim(pg_data_t *pgdat)
6531 {
6532 	struct zone *zone;
6533 	unsigned long pfmemalloc_reserve = 0;
6534 	unsigned long free_pages = 0;
6535 	int i;
6536 	bool wmark_ok;
6537 
6538 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6539 		return true;
6540 
6541 	for (i = 0; i <= ZONE_NORMAL; i++) {
6542 		zone = &pgdat->node_zones[i];
6543 		if (!managed_zone(zone))
6544 			continue;
6545 
6546 		if (!zone_reclaimable_pages(zone))
6547 			continue;
6548 
6549 		pfmemalloc_reserve += min_wmark_pages(zone);
6550 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
6551 	}
6552 
6553 	/* If there are no reserves (unexpected config) then do not throttle */
6554 	if (!pfmemalloc_reserve)
6555 		return true;
6556 
6557 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
6558 
6559 	/* kswapd must be awake if processes are being throttled */
6560 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
6561 		if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
6562 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
6563 
6564 		wake_up_interruptible(&pgdat->kswapd_wait);
6565 	}
6566 
6567 	return wmark_ok;
6568 }
6569 
6570 /*
6571  * Throttle direct reclaimers if backing storage is backed by the network
6572  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
6573  * depleted. kswapd will continue to make progress and wake the processes
6574  * when the low watermark is reached.
6575  *
6576  * Returns true if a fatal signal was delivered during throttling. If this
6577  * happens, the page allocator should not consider triggering the OOM killer.
6578  */
6579 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
6580 					nodemask_t *nodemask)
6581 {
6582 	struct zoneref *z;
6583 	struct zone *zone;
6584 	pg_data_t *pgdat = NULL;
6585 
6586 	/*
6587 	 * Kernel threads should not be throttled as they may be indirectly
6588 	 * responsible for cleaning pages necessary for reclaim to make forward
6589 	 * progress. kjournald for example may enter direct reclaim while
6590 	 * committing a transaction where throttling it could forcing other
6591 	 * processes to block on log_wait_commit().
6592 	 */
6593 	if (current->flags & PF_KTHREAD)
6594 		goto out;
6595 
6596 	/*
6597 	 * If a fatal signal is pending, this process should not throttle.
6598 	 * It should return quickly so it can exit and free its memory
6599 	 */
6600 	if (fatal_signal_pending(current))
6601 		goto out;
6602 
6603 	/*
6604 	 * Check if the pfmemalloc reserves are ok by finding the first node
6605 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
6606 	 * GFP_KERNEL will be required for allocating network buffers when
6607 	 * swapping over the network so ZONE_HIGHMEM is unusable.
6608 	 *
6609 	 * Throttling is based on the first usable node and throttled processes
6610 	 * wait on a queue until kswapd makes progress and wakes them. There
6611 	 * is an affinity then between processes waking up and where reclaim
6612 	 * progress has been made assuming the process wakes on the same node.
6613 	 * More importantly, processes running on remote nodes will not compete
6614 	 * for remote pfmemalloc reserves and processes on different nodes
6615 	 * should make reasonable progress.
6616 	 */
6617 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6618 					gfp_zone(gfp_mask), nodemask) {
6619 		if (zone_idx(zone) > ZONE_NORMAL)
6620 			continue;
6621 
6622 		/* Throttle based on the first usable node */
6623 		pgdat = zone->zone_pgdat;
6624 		if (allow_direct_reclaim(pgdat))
6625 			goto out;
6626 		break;
6627 	}
6628 
6629 	/* If no zone was usable by the allocation flags then do not throttle */
6630 	if (!pgdat)
6631 		goto out;
6632 
6633 	/* Account for the throttling */
6634 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
6635 
6636 	/*
6637 	 * If the caller cannot enter the filesystem, it's possible that it
6638 	 * is due to the caller holding an FS lock or performing a journal
6639 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
6640 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
6641 	 * blocked waiting on the same lock. Instead, throttle for up to a
6642 	 * second before continuing.
6643 	 */
6644 	if (!(gfp_mask & __GFP_FS))
6645 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
6646 			allow_direct_reclaim(pgdat), HZ);
6647 	else
6648 		/* Throttle until kswapd wakes the process */
6649 		wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
6650 			allow_direct_reclaim(pgdat));
6651 
6652 	if (fatal_signal_pending(current))
6653 		return true;
6654 
6655 out:
6656 	return false;
6657 }
6658 
6659 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
6660 				gfp_t gfp_mask, nodemask_t *nodemask)
6661 {
6662 	unsigned long nr_reclaimed;
6663 	struct scan_control sc = {
6664 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
6665 		.gfp_mask = current_gfp_context(gfp_mask),
6666 		.reclaim_idx = gfp_zone(gfp_mask),
6667 		.order = order,
6668 		.nodemask = nodemask,
6669 		.priority = DEF_PRIORITY,
6670 		.may_writepage = !laptop_mode,
6671 		.may_unmap = 1,
6672 		.may_swap = 1,
6673 	};
6674 
6675 	/*
6676 	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
6677 	 * Confirm they are large enough for max values.
6678 	 */
6679 	BUILD_BUG_ON(MAX_ORDER > S8_MAX);
6680 	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
6681 	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
6682 
6683 	/*
6684 	 * Do not enter reclaim if fatal signal was delivered while throttled.
6685 	 * 1 is returned so that the page allocator does not OOM kill at this
6686 	 * point.
6687 	 */
6688 	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
6689 		return 1;
6690 
6691 	set_task_reclaim_state(current, &sc.reclaim_state);
6692 	trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
6693 
6694 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
6695 
6696 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
6697 	set_task_reclaim_state(current, NULL);
6698 
6699 	return nr_reclaimed;
6700 }
6701 
6702 #ifdef CONFIG_MEMCG
6703 
6704 /* Only used by soft limit reclaim. Do not reuse for anything else. */
6705 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
6706 						gfp_t gfp_mask, bool noswap,
6707 						pg_data_t *pgdat,
6708 						unsigned long *nr_scanned)
6709 {
6710 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
6711 	struct scan_control sc = {
6712 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
6713 		.target_mem_cgroup = memcg,
6714 		.may_writepage = !laptop_mode,
6715 		.may_unmap = 1,
6716 		.reclaim_idx = MAX_NR_ZONES - 1,
6717 		.may_swap = !noswap,
6718 	};
6719 
6720 	WARN_ON_ONCE(!current->reclaim_state);
6721 
6722 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
6723 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
6724 
6725 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
6726 						      sc.gfp_mask);
6727 
6728 	/*
6729 	 * NOTE: Although we can get the priority field, using it
6730 	 * here is not a good idea, since it limits the pages we can scan.
6731 	 * if we don't reclaim here, the shrink_node from balance_pgdat
6732 	 * will pick up pages from other mem cgroup's as well. We hack
6733 	 * the priority and make it zero.
6734 	 */
6735 	shrink_lruvec(lruvec, &sc);
6736 
6737 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
6738 
6739 	*nr_scanned = sc.nr_scanned;
6740 
6741 	return sc.nr_reclaimed;
6742 }
6743 
6744 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
6745 					   unsigned long nr_pages,
6746 					   gfp_t gfp_mask,
6747 					   unsigned int reclaim_options)
6748 {
6749 	unsigned long nr_reclaimed;
6750 	unsigned int noreclaim_flag;
6751 	struct scan_control sc = {
6752 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
6753 		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
6754 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
6755 		.reclaim_idx = MAX_NR_ZONES - 1,
6756 		.target_mem_cgroup = memcg,
6757 		.priority = DEF_PRIORITY,
6758 		.may_writepage = !laptop_mode,
6759 		.may_unmap = 1,
6760 		.may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP),
6761 		.proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE),
6762 	};
6763 	/*
6764 	 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
6765 	 * equal pressure on all the nodes. This is based on the assumption that
6766 	 * the reclaim does not bail out early.
6767 	 */
6768 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
6769 
6770 	set_task_reclaim_state(current, &sc.reclaim_state);
6771 	trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
6772 	noreclaim_flag = memalloc_noreclaim_save();
6773 
6774 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
6775 
6776 	memalloc_noreclaim_restore(noreclaim_flag);
6777 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
6778 	set_task_reclaim_state(current, NULL);
6779 
6780 	return nr_reclaimed;
6781 }
6782 #endif
6783 
6784 static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc)
6785 {
6786 	struct mem_cgroup *memcg;
6787 	struct lruvec *lruvec;
6788 
6789 	if (lru_gen_enabled()) {
6790 		lru_gen_age_node(pgdat, sc);
6791 		return;
6792 	}
6793 
6794 	if (!can_age_anon_pages(pgdat, sc))
6795 		return;
6796 
6797 	lruvec = mem_cgroup_lruvec(NULL, pgdat);
6798 	if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
6799 		return;
6800 
6801 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
6802 	do {
6803 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
6804 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
6805 				   sc, LRU_ACTIVE_ANON);
6806 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
6807 	} while (memcg);
6808 }
6809 
6810 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
6811 {
6812 	int i;
6813 	struct zone *zone;
6814 
6815 	/*
6816 	 * Check for watermark boosts top-down as the higher zones
6817 	 * are more likely to be boosted. Both watermarks and boosts
6818 	 * should not be checked at the same time as reclaim would
6819 	 * start prematurely when there is no boosting and a lower
6820 	 * zone is balanced.
6821 	 */
6822 	for (i = highest_zoneidx; i >= 0; i--) {
6823 		zone = pgdat->node_zones + i;
6824 		if (!managed_zone(zone))
6825 			continue;
6826 
6827 		if (zone->watermark_boost)
6828 			return true;
6829 	}
6830 
6831 	return false;
6832 }
6833 
6834 /*
6835  * Returns true if there is an eligible zone balanced for the request order
6836  * and highest_zoneidx
6837  */
6838 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
6839 {
6840 	int i;
6841 	unsigned long mark = -1;
6842 	struct zone *zone;
6843 
6844 	/*
6845 	 * Check watermarks bottom-up as lower zones are more likely to
6846 	 * meet watermarks.
6847 	 */
6848 	for (i = 0; i <= highest_zoneidx; i++) {
6849 		zone = pgdat->node_zones + i;
6850 
6851 		if (!managed_zone(zone))
6852 			continue;
6853 
6854 		if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)
6855 			mark = wmark_pages(zone, WMARK_PROMO);
6856 		else
6857 			mark = high_wmark_pages(zone);
6858 		if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
6859 			return true;
6860 	}
6861 
6862 	/*
6863 	 * If a node has no managed zone within highest_zoneidx, it does not
6864 	 * need balancing by definition. This can happen if a zone-restricted
6865 	 * allocation tries to wake a remote kswapd.
6866 	 */
6867 	if (mark == -1)
6868 		return true;
6869 
6870 	return false;
6871 }
6872 
6873 /* Clear pgdat state for congested, dirty or under writeback. */
6874 static void clear_pgdat_congested(pg_data_t *pgdat)
6875 {
6876 	struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
6877 
6878 	clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
6879 	clear_bit(PGDAT_DIRTY, &pgdat->flags);
6880 	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
6881 }
6882 
6883 /*
6884  * Prepare kswapd for sleeping. This verifies that there are no processes
6885  * waiting in throttle_direct_reclaim() and that watermarks have been met.
6886  *
6887  * Returns true if kswapd is ready to sleep
6888  */
6889 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
6890 				int highest_zoneidx)
6891 {
6892 	/*
6893 	 * The throttled processes are normally woken up in balance_pgdat() as
6894 	 * soon as allow_direct_reclaim() is true. But there is a potential
6895 	 * race between when kswapd checks the watermarks and a process gets
6896 	 * throttled. There is also a potential race if processes get
6897 	 * throttled, kswapd wakes, a large process exits thereby balancing the
6898 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
6899 	 * the wake up checks. If kswapd is going to sleep, no process should
6900 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
6901 	 * the wake up is premature, processes will wake kswapd and get
6902 	 * throttled again. The difference from wake ups in balance_pgdat() is
6903 	 * that here we are under prepare_to_wait().
6904 	 */
6905 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
6906 		wake_up_all(&pgdat->pfmemalloc_wait);
6907 
6908 	/* Hopeless node, leave it to direct reclaim */
6909 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6910 		return true;
6911 
6912 	if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
6913 		clear_pgdat_congested(pgdat);
6914 		return true;
6915 	}
6916 
6917 	return false;
6918 }
6919 
6920 /*
6921  * kswapd shrinks a node of pages that are at or below the highest usable
6922  * zone that is currently unbalanced.
6923  *
6924  * Returns true if kswapd scanned at least the requested number of pages to
6925  * reclaim or if the lack of progress was due to pages under writeback.
6926  * This is used to determine if the scanning priority needs to be raised.
6927  */
6928 static bool kswapd_shrink_node(pg_data_t *pgdat,
6929 			       struct scan_control *sc)
6930 {
6931 	struct zone *zone;
6932 	int z;
6933 
6934 	/* Reclaim a number of pages proportional to the number of zones */
6935 	sc->nr_to_reclaim = 0;
6936 	for (z = 0; z <= sc->reclaim_idx; z++) {
6937 		zone = pgdat->node_zones + z;
6938 		if (!managed_zone(zone))
6939 			continue;
6940 
6941 		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
6942 	}
6943 
6944 	/*
6945 	 * Historically care was taken to put equal pressure on all zones but
6946 	 * now pressure is applied based on node LRU order.
6947 	 */
6948 	shrink_node(pgdat, sc);
6949 
6950 	/*
6951 	 * Fragmentation may mean that the system cannot be rebalanced for
6952 	 * high-order allocations. If twice the allocation size has been
6953 	 * reclaimed then recheck watermarks only at order-0 to prevent
6954 	 * excessive reclaim. Assume that a process requested a high-order
6955 	 * can direct reclaim/compact.
6956 	 */
6957 	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
6958 		sc->order = 0;
6959 
6960 	return sc->nr_scanned >= sc->nr_to_reclaim;
6961 }
6962 
6963 /* Page allocator PCP high watermark is lowered if reclaim is active. */
6964 static inline void
6965 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
6966 {
6967 	int i;
6968 	struct zone *zone;
6969 
6970 	for (i = 0; i <= highest_zoneidx; i++) {
6971 		zone = pgdat->node_zones + i;
6972 
6973 		if (!managed_zone(zone))
6974 			continue;
6975 
6976 		if (active)
6977 			set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
6978 		else
6979 			clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
6980 	}
6981 }
6982 
6983 static inline void
6984 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
6985 {
6986 	update_reclaim_active(pgdat, highest_zoneidx, true);
6987 }
6988 
6989 static inline void
6990 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
6991 {
6992 	update_reclaim_active(pgdat, highest_zoneidx, false);
6993 }
6994 
6995 /*
6996  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
6997  * that are eligible for use by the caller until at least one zone is
6998  * balanced.
6999  *
7000  * Returns the order kswapd finished reclaiming at.
7001  *
7002  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
7003  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
7004  * found to have free_pages <= high_wmark_pages(zone), any page in that zone
7005  * or lower is eligible for reclaim until at least one usable zone is
7006  * balanced.
7007  */
7008 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
7009 {
7010 	int i;
7011 	unsigned long nr_soft_reclaimed;
7012 	unsigned long nr_soft_scanned;
7013 	unsigned long pflags;
7014 	unsigned long nr_boost_reclaim;
7015 	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
7016 	bool boosted;
7017 	struct zone *zone;
7018 	struct scan_control sc = {
7019 		.gfp_mask = GFP_KERNEL,
7020 		.order = order,
7021 		.may_unmap = 1,
7022 	};
7023 
7024 	set_task_reclaim_state(current, &sc.reclaim_state);
7025 	psi_memstall_enter(&pflags);
7026 	__fs_reclaim_acquire(_THIS_IP_);
7027 
7028 	count_vm_event(PAGEOUTRUN);
7029 
7030 	/*
7031 	 * Account for the reclaim boost. Note that the zone boost is left in
7032 	 * place so that parallel allocations that are near the watermark will
7033 	 * stall or direct reclaim until kswapd is finished.
7034 	 */
7035 	nr_boost_reclaim = 0;
7036 	for (i = 0; i <= highest_zoneidx; i++) {
7037 		zone = pgdat->node_zones + i;
7038 		if (!managed_zone(zone))
7039 			continue;
7040 
7041 		nr_boost_reclaim += zone->watermark_boost;
7042 		zone_boosts[i] = zone->watermark_boost;
7043 	}
7044 	boosted = nr_boost_reclaim;
7045 
7046 restart:
7047 	set_reclaim_active(pgdat, highest_zoneidx);
7048 	sc.priority = DEF_PRIORITY;
7049 	do {
7050 		unsigned long nr_reclaimed = sc.nr_reclaimed;
7051 		bool raise_priority = true;
7052 		bool balanced;
7053 		bool ret;
7054 
7055 		sc.reclaim_idx = highest_zoneidx;
7056 
7057 		/*
7058 		 * If the number of buffer_heads exceeds the maximum allowed
7059 		 * then consider reclaiming from all zones. This has a dual
7060 		 * purpose -- on 64-bit systems it is expected that
7061 		 * buffer_heads are stripped during active rotation. On 32-bit
7062 		 * systems, highmem pages can pin lowmem memory and shrinking
7063 		 * buffers can relieve lowmem pressure. Reclaim may still not
7064 		 * go ahead if all eligible zones for the original allocation
7065 		 * request are balanced to avoid excessive reclaim from kswapd.
7066 		 */
7067 		if (buffer_heads_over_limit) {
7068 			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
7069 				zone = pgdat->node_zones + i;
7070 				if (!managed_zone(zone))
7071 					continue;
7072 
7073 				sc.reclaim_idx = i;
7074 				break;
7075 			}
7076 		}
7077 
7078 		/*
7079 		 * If the pgdat is imbalanced then ignore boosting and preserve
7080 		 * the watermarks for a later time and restart. Note that the
7081 		 * zone watermarks will be still reset at the end of balancing
7082 		 * on the grounds that the normal reclaim should be enough to
7083 		 * re-evaluate if boosting is required when kswapd next wakes.
7084 		 */
7085 		balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
7086 		if (!balanced && nr_boost_reclaim) {
7087 			nr_boost_reclaim = 0;
7088 			goto restart;
7089 		}
7090 
7091 		/*
7092 		 * If boosting is not active then only reclaim if there are no
7093 		 * eligible zones. Note that sc.reclaim_idx is not used as
7094 		 * buffer_heads_over_limit may have adjusted it.
7095 		 */
7096 		if (!nr_boost_reclaim && balanced)
7097 			goto out;
7098 
7099 		/* Limit the priority of boosting to avoid reclaim writeback */
7100 		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
7101 			raise_priority = false;
7102 
7103 		/*
7104 		 * Do not writeback or swap pages for boosted reclaim. The
7105 		 * intent is to relieve pressure not issue sub-optimal IO
7106 		 * from reclaim context. If no pages are reclaimed, the
7107 		 * reclaim will be aborted.
7108 		 */
7109 		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
7110 		sc.may_swap = !nr_boost_reclaim;
7111 
7112 		/*
7113 		 * Do some background aging, to give pages a chance to be
7114 		 * referenced before reclaiming. All pages are rotated
7115 		 * regardless of classzone as this is about consistent aging.
7116 		 */
7117 		kswapd_age_node(pgdat, &sc);
7118 
7119 		/*
7120 		 * If we're getting trouble reclaiming, start doing writepage
7121 		 * even in laptop mode.
7122 		 */
7123 		if (sc.priority < DEF_PRIORITY - 2)
7124 			sc.may_writepage = 1;
7125 
7126 		/* Call soft limit reclaim before calling shrink_node. */
7127 		sc.nr_scanned = 0;
7128 		nr_soft_scanned = 0;
7129 		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
7130 						sc.gfp_mask, &nr_soft_scanned);
7131 		sc.nr_reclaimed += nr_soft_reclaimed;
7132 
7133 		/*
7134 		 * There should be no need to raise the scanning priority if
7135 		 * enough pages are already being scanned that that high
7136 		 * watermark would be met at 100% efficiency.
7137 		 */
7138 		if (kswapd_shrink_node(pgdat, &sc))
7139 			raise_priority = false;
7140 
7141 		/*
7142 		 * If the low watermark is met there is no need for processes
7143 		 * to be throttled on pfmemalloc_wait as they should not be
7144 		 * able to safely make forward progress. Wake them
7145 		 */
7146 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
7147 				allow_direct_reclaim(pgdat))
7148 			wake_up_all(&pgdat->pfmemalloc_wait);
7149 
7150 		/* Check if kswapd should be suspending */
7151 		__fs_reclaim_release(_THIS_IP_);
7152 		ret = try_to_freeze();
7153 		__fs_reclaim_acquire(_THIS_IP_);
7154 		if (ret || kthread_should_stop())
7155 			break;
7156 
7157 		/*
7158 		 * Raise priority if scanning rate is too low or there was no
7159 		 * progress in reclaiming pages
7160 		 */
7161 		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
7162 		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
7163 
7164 		/*
7165 		 * If reclaim made no progress for a boost, stop reclaim as
7166 		 * IO cannot be queued and it could be an infinite loop in
7167 		 * extreme circumstances.
7168 		 */
7169 		if (nr_boost_reclaim && !nr_reclaimed)
7170 			break;
7171 
7172 		if (raise_priority || !nr_reclaimed)
7173 			sc.priority--;
7174 	} while (sc.priority >= 1);
7175 
7176 	if (!sc.nr_reclaimed)
7177 		pgdat->kswapd_failures++;
7178 
7179 out:
7180 	clear_reclaim_active(pgdat, highest_zoneidx);
7181 
7182 	/* If reclaim was boosted, account for the reclaim done in this pass */
7183 	if (boosted) {
7184 		unsigned long flags;
7185 
7186 		for (i = 0; i <= highest_zoneidx; i++) {
7187 			if (!zone_boosts[i])
7188 				continue;
7189 
7190 			/* Increments are under the zone lock */
7191 			zone = pgdat->node_zones + i;
7192 			spin_lock_irqsave(&zone->lock, flags);
7193 			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
7194 			spin_unlock_irqrestore(&zone->lock, flags);
7195 		}
7196 
7197 		/*
7198 		 * As there is now likely space, wakeup kcompact to defragment
7199 		 * pageblocks.
7200 		 */
7201 		wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
7202 	}
7203 
7204 	snapshot_refaults(NULL, pgdat);
7205 	__fs_reclaim_release(_THIS_IP_);
7206 	psi_memstall_leave(&pflags);
7207 	set_task_reclaim_state(current, NULL);
7208 
7209 	/*
7210 	 * Return the order kswapd stopped reclaiming at as
7211 	 * prepare_kswapd_sleep() takes it into account. If another caller
7212 	 * entered the allocator slow path while kswapd was awake, order will
7213 	 * remain at the higher level.
7214 	 */
7215 	return sc.order;
7216 }
7217 
7218 /*
7219  * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
7220  * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
7221  * not a valid index then either kswapd runs for first time or kswapd couldn't
7222  * sleep after previous reclaim attempt (node is still unbalanced). In that
7223  * case return the zone index of the previous kswapd reclaim cycle.
7224  */
7225 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
7226 					   enum zone_type prev_highest_zoneidx)
7227 {
7228 	enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7229 
7230 	return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
7231 }
7232 
7233 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
7234 				unsigned int highest_zoneidx)
7235 {
7236 	long remaining = 0;
7237 	DEFINE_WAIT(wait);
7238 
7239 	if (freezing(current) || kthread_should_stop())
7240 		return;
7241 
7242 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7243 
7244 	/*
7245 	 * Try to sleep for a short interval. Note that kcompactd will only be
7246 	 * woken if it is possible to sleep for a short interval. This is
7247 	 * deliberate on the assumption that if reclaim cannot keep an
7248 	 * eligible zone balanced that it's also unlikely that compaction will
7249 	 * succeed.
7250 	 */
7251 	if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7252 		/*
7253 		 * Compaction records what page blocks it recently failed to
7254 		 * isolate pages from and skips them in the future scanning.
7255 		 * When kswapd is going to sleep, it is reasonable to assume
7256 		 * that pages and compaction may succeed so reset the cache.
7257 		 */
7258 		reset_isolation_suitable(pgdat);
7259 
7260 		/*
7261 		 * We have freed the memory, now we should compact it to make
7262 		 * allocation of the requested order possible.
7263 		 */
7264 		wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
7265 
7266 		remaining = schedule_timeout(HZ/10);
7267 
7268 		/*
7269 		 * If woken prematurely then reset kswapd_highest_zoneidx and
7270 		 * order. The values will either be from a wakeup request or
7271 		 * the previous request that slept prematurely.
7272 		 */
7273 		if (remaining) {
7274 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
7275 					kswapd_highest_zoneidx(pgdat,
7276 							highest_zoneidx));
7277 
7278 			if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
7279 				WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
7280 		}
7281 
7282 		finish_wait(&pgdat->kswapd_wait, &wait);
7283 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7284 	}
7285 
7286 	/*
7287 	 * After a short sleep, check if it was a premature sleep. If not, then
7288 	 * go fully to sleep until explicitly woken up.
7289 	 */
7290 	if (!remaining &&
7291 	    prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7292 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
7293 
7294 		/*
7295 		 * vmstat counters are not perfectly accurate and the estimated
7296 		 * value for counters such as NR_FREE_PAGES can deviate from the
7297 		 * true value by nr_online_cpus * threshold. To avoid the zone
7298 		 * watermarks being breached while under pressure, we reduce the
7299 		 * per-cpu vmstat threshold while kswapd is awake and restore
7300 		 * them before going back to sleep.
7301 		 */
7302 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
7303 
7304 		if (!kthread_should_stop())
7305 			schedule();
7306 
7307 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
7308 	} else {
7309 		if (remaining)
7310 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
7311 		else
7312 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
7313 	}
7314 	finish_wait(&pgdat->kswapd_wait, &wait);
7315 }
7316 
7317 /*
7318  * The background pageout daemon, started as a kernel thread
7319  * from the init process.
7320  *
7321  * This basically trickles out pages so that we have _some_
7322  * free memory available even if there is no other activity
7323  * that frees anything up. This is needed for things like routing
7324  * etc, where we otherwise might have all activity going on in
7325  * asynchronous contexts that cannot page things out.
7326  *
7327  * If there are applications that are active memory-allocators
7328  * (most normal use), this basically shouldn't matter.
7329  */
7330 static int kswapd(void *p)
7331 {
7332 	unsigned int alloc_order, reclaim_order;
7333 	unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
7334 	pg_data_t *pgdat = (pg_data_t *)p;
7335 	struct task_struct *tsk = current;
7336 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7337 
7338 	if (!cpumask_empty(cpumask))
7339 		set_cpus_allowed_ptr(tsk, cpumask);
7340 
7341 	/*
7342 	 * Tell the memory management that we're a "memory allocator",
7343 	 * and that if we need more memory we should get access to it
7344 	 * regardless (see "__alloc_pages()"). "kswapd" should
7345 	 * never get caught in the normal page freeing logic.
7346 	 *
7347 	 * (Kswapd normally doesn't need memory anyway, but sometimes
7348 	 * you need a small amount of memory in order to be able to
7349 	 * page out something else, and this flag essentially protects
7350 	 * us from recursively trying to free more memory as we're
7351 	 * trying to free the first piece of memory in the first place).
7352 	 */
7353 	tsk->flags |= PF_MEMALLOC | PF_KSWAPD;
7354 	set_freezable();
7355 
7356 	WRITE_ONCE(pgdat->kswapd_order, 0);
7357 	WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7358 	atomic_set(&pgdat->nr_writeback_throttled, 0);
7359 	for ( ; ; ) {
7360 		bool ret;
7361 
7362 		alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
7363 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7364 							highest_zoneidx);
7365 
7366 kswapd_try_sleep:
7367 		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
7368 					highest_zoneidx);
7369 
7370 		/* Read the new order and highest_zoneidx */
7371 		alloc_order = READ_ONCE(pgdat->kswapd_order);
7372 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7373 							highest_zoneidx);
7374 		WRITE_ONCE(pgdat->kswapd_order, 0);
7375 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7376 
7377 		ret = try_to_freeze();
7378 		if (kthread_should_stop())
7379 			break;
7380 
7381 		/*
7382 		 * We can speed up thawing tasks if we don't call balance_pgdat
7383 		 * after returning from the refrigerator
7384 		 */
7385 		if (ret)
7386 			continue;
7387 
7388 		/*
7389 		 * Reclaim begins at the requested order but if a high-order
7390 		 * reclaim fails then kswapd falls back to reclaiming for
7391 		 * order-0. If that happens, kswapd will consider sleeping
7392 		 * for the order it finished reclaiming at (reclaim_order)
7393 		 * but kcompactd is woken to compact for the original
7394 		 * request (alloc_order).
7395 		 */
7396 		trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
7397 						alloc_order);
7398 		reclaim_order = balance_pgdat(pgdat, alloc_order,
7399 						highest_zoneidx);
7400 		if (reclaim_order < alloc_order)
7401 			goto kswapd_try_sleep;
7402 	}
7403 
7404 	tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD);
7405 
7406 	return 0;
7407 }
7408 
7409 /*
7410  * A zone is low on free memory or too fragmented for high-order memory.  If
7411  * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
7412  * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
7413  * has failed or is not needed, still wake up kcompactd if only compaction is
7414  * needed.
7415  */
7416 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
7417 		   enum zone_type highest_zoneidx)
7418 {
7419 	pg_data_t *pgdat;
7420 	enum zone_type curr_idx;
7421 
7422 	if (!managed_zone(zone))
7423 		return;
7424 
7425 	if (!cpuset_zone_allowed(zone, gfp_flags))
7426 		return;
7427 
7428 	pgdat = zone->zone_pgdat;
7429 	curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7430 
7431 	if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
7432 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
7433 
7434 	if (READ_ONCE(pgdat->kswapd_order) < order)
7435 		WRITE_ONCE(pgdat->kswapd_order, order);
7436 
7437 	if (!waitqueue_active(&pgdat->kswapd_wait))
7438 		return;
7439 
7440 	/* Hopeless node, leave it to direct reclaim if possible */
7441 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
7442 	    (pgdat_balanced(pgdat, order, highest_zoneidx) &&
7443 	     !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
7444 		/*
7445 		 * There may be plenty of free memory available, but it's too
7446 		 * fragmented for high-order allocations.  Wake up kcompactd
7447 		 * and rely on compaction_suitable() to determine if it's
7448 		 * needed.  If it fails, it will defer subsequent attempts to
7449 		 * ratelimit its work.
7450 		 */
7451 		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
7452 			wakeup_kcompactd(pgdat, order, highest_zoneidx);
7453 		return;
7454 	}
7455 
7456 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
7457 				      gfp_flags);
7458 	wake_up_interruptible(&pgdat->kswapd_wait);
7459 }
7460 
7461 #ifdef CONFIG_HIBERNATION
7462 /*
7463  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
7464  * freed pages.
7465  *
7466  * Rather than trying to age LRUs the aim is to preserve the overall
7467  * LRU order by reclaiming preferentially
7468  * inactive > active > active referenced > active mapped
7469  */
7470 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
7471 {
7472 	struct scan_control sc = {
7473 		.nr_to_reclaim = nr_to_reclaim,
7474 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
7475 		.reclaim_idx = MAX_NR_ZONES - 1,
7476 		.priority = DEF_PRIORITY,
7477 		.may_writepage = 1,
7478 		.may_unmap = 1,
7479 		.may_swap = 1,
7480 		.hibernation_mode = 1,
7481 	};
7482 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7483 	unsigned long nr_reclaimed;
7484 	unsigned int noreclaim_flag;
7485 
7486 	fs_reclaim_acquire(sc.gfp_mask);
7487 	noreclaim_flag = memalloc_noreclaim_save();
7488 	set_task_reclaim_state(current, &sc.reclaim_state);
7489 
7490 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
7491 
7492 	set_task_reclaim_state(current, NULL);
7493 	memalloc_noreclaim_restore(noreclaim_flag);
7494 	fs_reclaim_release(sc.gfp_mask);
7495 
7496 	return nr_reclaimed;
7497 }
7498 #endif /* CONFIG_HIBERNATION */
7499 
7500 /*
7501  * This kswapd start function will be called by init and node-hot-add.
7502  */
7503 void kswapd_run(int nid)
7504 {
7505 	pg_data_t *pgdat = NODE_DATA(nid);
7506 
7507 	pgdat_kswapd_lock(pgdat);
7508 	if (!pgdat->kswapd) {
7509 		pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
7510 		if (IS_ERR(pgdat->kswapd)) {
7511 			/* failure at boot is fatal */
7512 			BUG_ON(system_state < SYSTEM_RUNNING);
7513 			pr_err("Failed to start kswapd on node %d\n", nid);
7514 			pgdat->kswapd = NULL;
7515 		}
7516 	}
7517 	pgdat_kswapd_unlock(pgdat);
7518 }
7519 
7520 /*
7521  * Called by memory hotplug when all memory in a node is offlined.  Caller must
7522  * be holding mem_hotplug_begin/done().
7523  */
7524 void kswapd_stop(int nid)
7525 {
7526 	pg_data_t *pgdat = NODE_DATA(nid);
7527 	struct task_struct *kswapd;
7528 
7529 	pgdat_kswapd_lock(pgdat);
7530 	kswapd = pgdat->kswapd;
7531 	if (kswapd) {
7532 		kthread_stop(kswapd);
7533 		pgdat->kswapd = NULL;
7534 	}
7535 	pgdat_kswapd_unlock(pgdat);
7536 }
7537 
7538 static int __init kswapd_init(void)
7539 {
7540 	int nid;
7541 
7542 	swap_setup();
7543 	for_each_node_state(nid, N_MEMORY)
7544  		kswapd_run(nid);
7545 	return 0;
7546 }
7547 
7548 module_init(kswapd_init)
7549 
7550 #ifdef CONFIG_NUMA
7551 /*
7552  * Node reclaim mode
7553  *
7554  * If non-zero call node_reclaim when the number of free pages falls below
7555  * the watermarks.
7556  */
7557 int node_reclaim_mode __read_mostly;
7558 
7559 /*
7560  * Priority for NODE_RECLAIM. This determines the fraction of pages
7561  * of a node considered for each zone_reclaim. 4 scans 1/16th of
7562  * a zone.
7563  */
7564 #define NODE_RECLAIM_PRIORITY 4
7565 
7566 /*
7567  * Percentage of pages in a zone that must be unmapped for node_reclaim to
7568  * occur.
7569  */
7570 int sysctl_min_unmapped_ratio = 1;
7571 
7572 /*
7573  * If the number of slab pages in a zone grows beyond this percentage then
7574  * slab reclaim needs to occur.
7575  */
7576 int sysctl_min_slab_ratio = 5;
7577 
7578 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
7579 {
7580 	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
7581 	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
7582 		node_page_state(pgdat, NR_ACTIVE_FILE);
7583 
7584 	/*
7585 	 * It's possible for there to be more file mapped pages than
7586 	 * accounted for by the pages on the file LRU lists because
7587 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
7588 	 */
7589 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
7590 }
7591 
7592 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
7593 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
7594 {
7595 	unsigned long nr_pagecache_reclaimable;
7596 	unsigned long delta = 0;
7597 
7598 	/*
7599 	 * If RECLAIM_UNMAP is set, then all file pages are considered
7600 	 * potentially reclaimable. Otherwise, we have to worry about
7601 	 * pages like swapcache and node_unmapped_file_pages() provides
7602 	 * a better estimate
7603 	 */
7604 	if (node_reclaim_mode & RECLAIM_UNMAP)
7605 		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
7606 	else
7607 		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
7608 
7609 	/* If we can't clean pages, remove dirty pages from consideration */
7610 	if (!(node_reclaim_mode & RECLAIM_WRITE))
7611 		delta += node_page_state(pgdat, NR_FILE_DIRTY);
7612 
7613 	/* Watch for any possible underflows due to delta */
7614 	if (unlikely(delta > nr_pagecache_reclaimable))
7615 		delta = nr_pagecache_reclaimable;
7616 
7617 	return nr_pagecache_reclaimable - delta;
7618 }
7619 
7620 /*
7621  * Try to free up some pages from this node through reclaim.
7622  */
7623 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
7624 {
7625 	/* Minimum pages needed in order to stay on node */
7626 	const unsigned long nr_pages = 1 << order;
7627 	struct task_struct *p = current;
7628 	unsigned int noreclaim_flag;
7629 	struct scan_control sc = {
7630 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7631 		.gfp_mask = current_gfp_context(gfp_mask),
7632 		.order = order,
7633 		.priority = NODE_RECLAIM_PRIORITY,
7634 		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
7635 		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
7636 		.may_swap = 1,
7637 		.reclaim_idx = gfp_zone(gfp_mask),
7638 	};
7639 	unsigned long pflags;
7640 
7641 	trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
7642 					   sc.gfp_mask);
7643 
7644 	cond_resched();
7645 	psi_memstall_enter(&pflags);
7646 	fs_reclaim_acquire(sc.gfp_mask);
7647 	/*
7648 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
7649 	 */
7650 	noreclaim_flag = memalloc_noreclaim_save();
7651 	set_task_reclaim_state(p, &sc.reclaim_state);
7652 
7653 	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages ||
7654 	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) {
7655 		/*
7656 		 * Free memory by calling shrink node with increasing
7657 		 * priorities until we have enough memory freed.
7658 		 */
7659 		do {
7660 			shrink_node(pgdat, &sc);
7661 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
7662 	}
7663 
7664 	set_task_reclaim_state(p, NULL);
7665 	memalloc_noreclaim_restore(noreclaim_flag);
7666 	fs_reclaim_release(sc.gfp_mask);
7667 	psi_memstall_leave(&pflags);
7668 
7669 	trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
7670 
7671 	return sc.nr_reclaimed >= nr_pages;
7672 }
7673 
7674 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
7675 {
7676 	int ret;
7677 
7678 	/*
7679 	 * Node reclaim reclaims unmapped file backed pages and
7680 	 * slab pages if we are over the defined limits.
7681 	 *
7682 	 * A small portion of unmapped file backed pages is needed for
7683 	 * file I/O otherwise pages read by file I/O will be immediately
7684 	 * thrown out if the node is overallocated. So we do not reclaim
7685 	 * if less than a specified percentage of the node is used by
7686 	 * unmapped file backed pages.
7687 	 */
7688 	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
7689 	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
7690 	    pgdat->min_slab_pages)
7691 		return NODE_RECLAIM_FULL;
7692 
7693 	/*
7694 	 * Do not scan if the allocation should not be delayed.
7695 	 */
7696 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
7697 		return NODE_RECLAIM_NOSCAN;
7698 
7699 	/*
7700 	 * Only run node reclaim on the local node or on nodes that do not
7701 	 * have associated processors. This will favor the local processor
7702 	 * over remote processors and spread off node memory allocations
7703 	 * as wide as possible.
7704 	 */
7705 	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
7706 		return NODE_RECLAIM_NOSCAN;
7707 
7708 	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
7709 		return NODE_RECLAIM_NOSCAN;
7710 
7711 	ret = __node_reclaim(pgdat, gfp_mask, order);
7712 	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
7713 
7714 	if (!ret)
7715 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
7716 
7717 	return ret;
7718 }
7719 #endif
7720 
7721 void check_move_unevictable_pages(struct pagevec *pvec)
7722 {
7723 	struct folio_batch fbatch;
7724 	unsigned i;
7725 
7726 	folio_batch_init(&fbatch);
7727 	for (i = 0; i < pvec->nr; i++) {
7728 		struct page *page = pvec->pages[i];
7729 
7730 		if (PageTransTail(page))
7731 			continue;
7732 		folio_batch_add(&fbatch, page_folio(page));
7733 	}
7734 	check_move_unevictable_folios(&fbatch);
7735 }
7736 EXPORT_SYMBOL_GPL(check_move_unevictable_pages);
7737 
7738 /**
7739  * check_move_unevictable_folios - Move evictable folios to appropriate zone
7740  * lru list
7741  * @fbatch: Batch of lru folios to check.
7742  *
7743  * Checks folios for evictability, if an evictable folio is in the unevictable
7744  * lru list, moves it to the appropriate evictable lru list. This function
7745  * should be only used for lru folios.
7746  */
7747 void check_move_unevictable_folios(struct folio_batch *fbatch)
7748 {
7749 	struct lruvec *lruvec = NULL;
7750 	int pgscanned = 0;
7751 	int pgrescued = 0;
7752 	int i;
7753 
7754 	for (i = 0; i < fbatch->nr; i++) {
7755 		struct folio *folio = fbatch->folios[i];
7756 		int nr_pages = folio_nr_pages(folio);
7757 
7758 		pgscanned += nr_pages;
7759 
7760 		/* block memcg migration while the folio moves between lrus */
7761 		if (!folio_test_clear_lru(folio))
7762 			continue;
7763 
7764 		lruvec = folio_lruvec_relock_irq(folio, lruvec);
7765 		if (folio_evictable(folio) && folio_test_unevictable(folio)) {
7766 			lruvec_del_folio(lruvec, folio);
7767 			folio_clear_unevictable(folio);
7768 			lruvec_add_folio(lruvec, folio);
7769 			pgrescued += nr_pages;
7770 		}
7771 		folio_set_lru(folio);
7772 	}
7773 
7774 	if (lruvec) {
7775 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
7776 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
7777 		unlock_page_lruvec_irq(lruvec);
7778 	} else if (pgscanned) {
7779 		count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
7780 	}
7781 }
7782 EXPORT_SYMBOL_GPL(check_move_unevictable_folios);
7783