1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 4 * 5 * Swap reorganised 29.12.95, Stephen Tweedie. 6 * kswapd added: 7.1.96 sct 7 * Removed kswapd_ctl limits, and swap out as many pages as needed 8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 9 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 10 * Multiqueue VM started 5.8.00, Rik van Riel. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 15 #include <linux/mm.h> 16 #include <linux/sched/mm.h> 17 #include <linux/module.h> 18 #include <linux/gfp.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/swap.h> 21 #include <linux/pagemap.h> 22 #include <linux/init.h> 23 #include <linux/highmem.h> 24 #include <linux/vmpressure.h> 25 #include <linux/vmstat.h> 26 #include <linux/file.h> 27 #include <linux/writeback.h> 28 #include <linux/blkdev.h> 29 #include <linux/buffer_head.h> /* for buffer_heads_over_limit */ 30 #include <linux/mm_inline.h> 31 #include <linux/backing-dev.h> 32 #include <linux/rmap.h> 33 #include <linux/topology.h> 34 #include <linux/cpu.h> 35 #include <linux/cpuset.h> 36 #include <linux/compaction.h> 37 #include <linux/notifier.h> 38 #include <linux/delay.h> 39 #include <linux/kthread.h> 40 #include <linux/freezer.h> 41 #include <linux/memcontrol.h> 42 #include <linux/migrate.h> 43 #include <linux/delayacct.h> 44 #include <linux/sysctl.h> 45 #include <linux/memory-tiers.h> 46 #include <linux/oom.h> 47 #include <linux/pagevec.h> 48 #include <linux/prefetch.h> 49 #include <linux/printk.h> 50 #include <linux/dax.h> 51 #include <linux/psi.h> 52 #include <linux/pagewalk.h> 53 #include <linux/shmem_fs.h> 54 #include <linux/ctype.h> 55 #include <linux/debugfs.h> 56 #include <linux/khugepaged.h> 57 #include <linux/rculist_nulls.h> 58 #include <linux/random.h> 59 #include <linux/mmu_notifier.h> 60 #include <linux/parser.h> 61 62 #include <asm/tlbflush.h> 63 #include <asm/div64.h> 64 65 #include <linux/swapops.h> 66 #include <linux/balloon_compaction.h> 67 #include <linux/sched/sysctl.h> 68 69 #include "internal.h" 70 #include "swap.h" 71 72 #define CREATE_TRACE_POINTS 73 #include <trace/events/vmscan.h> 74 75 struct scan_control { 76 /* How many pages shrink_list() should reclaim */ 77 unsigned long nr_to_reclaim; 78 79 /* 80 * Nodemask of nodes allowed by the caller. If NULL, all nodes 81 * are scanned. 82 */ 83 nodemask_t *nodemask; 84 85 /* 86 * The memory cgroup that hit its limit and as a result is the 87 * primary target of this reclaim invocation. 88 */ 89 struct mem_cgroup *target_mem_cgroup; 90 91 /* 92 * Scan pressure balancing between anon and file LRUs 93 */ 94 unsigned long anon_cost; 95 unsigned long file_cost; 96 97 /* Swappiness value for proactive reclaim. Always use sc_swappiness()! */ 98 int *proactive_swappiness; 99 100 /* Can active folios be deactivated as part of reclaim? */ 101 #define DEACTIVATE_ANON 1 102 #define DEACTIVATE_FILE 2 103 unsigned int may_deactivate:2; 104 unsigned int force_deactivate:1; 105 unsigned int skipped_deactivate:1; 106 107 /* Writepage batching in laptop mode; RECLAIM_WRITE */ 108 unsigned int may_writepage:1; 109 110 /* Can mapped folios be reclaimed? */ 111 unsigned int may_unmap:1; 112 113 /* Can folios be swapped as part of reclaim? */ 114 unsigned int may_swap:1; 115 116 /* Not allow cache_trim_mode to be turned on as part of reclaim? */ 117 unsigned int no_cache_trim_mode:1; 118 119 /* Has cache_trim_mode failed at least once? */ 120 unsigned int cache_trim_mode_failed:1; 121 122 /* Proactive reclaim invoked by userspace */ 123 unsigned int proactive:1; 124 125 /* 126 * Cgroup memory below memory.low is protected as long as we 127 * don't threaten to OOM. If any cgroup is reclaimed at 128 * reduced force or passed over entirely due to its memory.low 129 * setting (memcg_low_skipped), and nothing is reclaimed as a 130 * result, then go back for one more cycle that reclaims the protected 131 * memory (memcg_low_reclaim) to avert OOM. 132 */ 133 unsigned int memcg_low_reclaim:1; 134 unsigned int memcg_low_skipped:1; 135 136 /* Shared cgroup tree walk failed, rescan the whole tree */ 137 unsigned int memcg_full_walk:1; 138 139 unsigned int hibernation_mode:1; 140 141 /* One of the zones is ready for compaction */ 142 unsigned int compaction_ready:1; 143 144 /* There is easily reclaimable cold cache in the current node */ 145 unsigned int cache_trim_mode:1; 146 147 /* The file folios on the current node are dangerously low */ 148 unsigned int file_is_tiny:1; 149 150 /* Always discard instead of demoting to lower tier memory */ 151 unsigned int no_demotion:1; 152 153 /* Allocation order */ 154 s8 order; 155 156 /* Scan (total_size >> priority) pages at once */ 157 s8 priority; 158 159 /* The highest zone to isolate folios for reclaim from */ 160 s8 reclaim_idx; 161 162 /* This context's GFP mask */ 163 gfp_t gfp_mask; 164 165 /* Incremented by the number of inactive pages that were scanned */ 166 unsigned long nr_scanned; 167 168 /* Number of pages freed so far during a call to shrink_zones() */ 169 unsigned long nr_reclaimed; 170 171 struct { 172 unsigned int dirty; 173 unsigned int unqueued_dirty; 174 unsigned int congested; 175 unsigned int writeback; 176 unsigned int immediate; 177 unsigned int file_taken; 178 unsigned int taken; 179 } nr; 180 181 /* for recording the reclaimed slab by now */ 182 struct reclaim_state reclaim_state; 183 }; 184 185 #ifdef ARCH_HAS_PREFETCHW 186 #define prefetchw_prev_lru_folio(_folio, _base, _field) \ 187 do { \ 188 if ((_folio)->lru.prev != _base) { \ 189 struct folio *prev; \ 190 \ 191 prev = lru_to_folio(&(_folio->lru)); \ 192 prefetchw(&prev->_field); \ 193 } \ 194 } while (0) 195 #else 196 #define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0) 197 #endif 198 199 /* 200 * From 0 .. MAX_SWAPPINESS. Higher means more swappy. 201 */ 202 int vm_swappiness = 60; 203 204 #ifdef CONFIG_MEMCG 205 206 /* Returns true for reclaim through cgroup limits or cgroup interfaces. */ 207 static bool cgroup_reclaim(struct scan_control *sc) 208 { 209 return sc->target_mem_cgroup; 210 } 211 212 /* 213 * Returns true for reclaim on the root cgroup. This is true for direct 214 * allocator reclaim and reclaim through cgroup interfaces on the root cgroup. 215 */ 216 static bool root_reclaim(struct scan_control *sc) 217 { 218 return !sc->target_mem_cgroup || mem_cgroup_is_root(sc->target_mem_cgroup); 219 } 220 221 /** 222 * writeback_throttling_sane - is the usual dirty throttling mechanism available? 223 * @sc: scan_control in question 224 * 225 * The normal page dirty throttling mechanism in balance_dirty_pages() is 226 * completely broken with the legacy memcg and direct stalling in 227 * shrink_folio_list() is used for throttling instead, which lacks all the 228 * niceties such as fairness, adaptive pausing, bandwidth proportional 229 * allocation and configurability. 230 * 231 * This function tests whether the vmscan currently in progress can assume 232 * that the normal dirty throttling mechanism is operational. 233 */ 234 static bool writeback_throttling_sane(struct scan_control *sc) 235 { 236 if (!cgroup_reclaim(sc)) 237 return true; 238 #ifdef CONFIG_CGROUP_WRITEBACK 239 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 240 return true; 241 #endif 242 return false; 243 } 244 245 static int sc_swappiness(struct scan_control *sc, struct mem_cgroup *memcg) 246 { 247 if (sc->proactive && sc->proactive_swappiness) 248 return *sc->proactive_swappiness; 249 return mem_cgroup_swappiness(memcg); 250 } 251 #else 252 static bool cgroup_reclaim(struct scan_control *sc) 253 { 254 return false; 255 } 256 257 static bool root_reclaim(struct scan_control *sc) 258 { 259 return true; 260 } 261 262 static bool writeback_throttling_sane(struct scan_control *sc) 263 { 264 return true; 265 } 266 267 static int sc_swappiness(struct scan_control *sc, struct mem_cgroup *memcg) 268 { 269 return READ_ONCE(vm_swappiness); 270 } 271 #endif 272 273 /* for_each_managed_zone_pgdat - helper macro to iterate over all managed zones in a pgdat up to 274 * and including the specified highidx 275 * @zone: The current zone in the iterator 276 * @pgdat: The pgdat which node_zones are being iterated 277 * @idx: The index variable 278 * @highidx: The index of the highest zone to return 279 * 280 * This macro iterates through all managed zones up to and including the specified highidx. 281 * The zone iterator enters an invalid state after macro call and must be reinitialized 282 * before it can be used again. 283 */ 284 #define for_each_managed_zone_pgdat(zone, pgdat, idx, highidx) \ 285 for ((idx) = 0, (zone) = (pgdat)->node_zones; \ 286 (idx) <= (highidx); \ 287 (idx)++, (zone)++) \ 288 if (!managed_zone(zone)) \ 289 continue; \ 290 else 291 292 static void set_task_reclaim_state(struct task_struct *task, 293 struct reclaim_state *rs) 294 { 295 /* Check for an overwrite */ 296 WARN_ON_ONCE(rs && task->reclaim_state); 297 298 /* Check for the nulling of an already-nulled member */ 299 WARN_ON_ONCE(!rs && !task->reclaim_state); 300 301 task->reclaim_state = rs; 302 } 303 304 /* 305 * flush_reclaim_state(): add pages reclaimed outside of LRU-based reclaim to 306 * scan_control->nr_reclaimed. 307 */ 308 static void flush_reclaim_state(struct scan_control *sc) 309 { 310 /* 311 * Currently, reclaim_state->reclaimed includes three types of pages 312 * freed outside of vmscan: 313 * (1) Slab pages. 314 * (2) Clean file pages from pruned inodes (on highmem systems). 315 * (3) XFS freed buffer pages. 316 * 317 * For all of these cases, we cannot universally link the pages to a 318 * single memcg. For example, a memcg-aware shrinker can free one object 319 * charged to the target memcg, causing an entire page to be freed. 320 * If we count the entire page as reclaimed from the memcg, we end up 321 * overestimating the reclaimed amount (potentially under-reclaiming). 322 * 323 * Only count such pages for global reclaim to prevent under-reclaiming 324 * from the target memcg; preventing unnecessary retries during memcg 325 * charging and false positives from proactive reclaim. 326 * 327 * For uncommon cases where the freed pages were actually mostly 328 * charged to the target memcg, we end up underestimating the reclaimed 329 * amount. This should be fine. The freed pages will be uncharged 330 * anyway, even if they are not counted here properly, and we will be 331 * able to make forward progress in charging (which is usually in a 332 * retry loop). 333 * 334 * We can go one step further, and report the uncharged objcg pages in 335 * memcg reclaim, to make reporting more accurate and reduce 336 * underestimation, but it's probably not worth the complexity for now. 337 */ 338 if (current->reclaim_state && root_reclaim(sc)) { 339 sc->nr_reclaimed += current->reclaim_state->reclaimed; 340 current->reclaim_state->reclaimed = 0; 341 } 342 } 343 344 static bool can_demote(int nid, struct scan_control *sc, 345 struct mem_cgroup *memcg) 346 { 347 int demotion_nid; 348 349 if (!numa_demotion_enabled) 350 return false; 351 if (sc && sc->no_demotion) 352 return false; 353 354 demotion_nid = next_demotion_node(nid); 355 if (demotion_nid == NUMA_NO_NODE) 356 return false; 357 358 /* If demotion node isn't in the cgroup's mems_allowed, fall back */ 359 return mem_cgroup_node_allowed(memcg, demotion_nid); 360 } 361 362 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg, 363 int nid, 364 struct scan_control *sc) 365 { 366 if (memcg == NULL) { 367 /* 368 * For non-memcg reclaim, is there 369 * space in any swap device? 370 */ 371 if (get_nr_swap_pages() > 0) 372 return true; 373 } else { 374 /* Is the memcg below its swap limit? */ 375 if (mem_cgroup_get_nr_swap_pages(memcg) > 0) 376 return true; 377 } 378 379 /* 380 * The page can not be swapped. 381 * 382 * Can it be reclaimed from this node via demotion? 383 */ 384 return can_demote(nid, sc, memcg); 385 } 386 387 /* 388 * This misses isolated folios which are not accounted for to save counters. 389 * As the data only determines if reclaim or compaction continues, it is 390 * not expected that isolated folios will be a dominating factor. 391 */ 392 unsigned long zone_reclaimable_pages(struct zone *zone) 393 { 394 unsigned long nr; 395 396 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) + 397 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE); 398 if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL)) 399 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) + 400 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON); 401 402 return nr; 403 } 404 405 /** 406 * lruvec_lru_size - Returns the number of pages on the given LRU list. 407 * @lruvec: lru vector 408 * @lru: lru to use 409 * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list) 410 */ 411 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, 412 int zone_idx) 413 { 414 unsigned long size = 0; 415 int zid; 416 struct zone *zone; 417 418 for_each_managed_zone_pgdat(zone, lruvec_pgdat(lruvec), zid, zone_idx) { 419 if (!mem_cgroup_disabled()) 420 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid); 421 else 422 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru); 423 } 424 return size; 425 } 426 427 static unsigned long drop_slab_node(int nid) 428 { 429 unsigned long freed = 0; 430 struct mem_cgroup *memcg = NULL; 431 432 memcg = mem_cgroup_iter(NULL, NULL, NULL); 433 do { 434 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0); 435 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 436 437 return freed; 438 } 439 440 void drop_slab(void) 441 { 442 int nid; 443 int shift = 0; 444 unsigned long freed; 445 446 do { 447 freed = 0; 448 for_each_online_node(nid) { 449 if (fatal_signal_pending(current)) 450 return; 451 452 freed += drop_slab_node(nid); 453 } 454 } while ((freed >> shift++) > 1); 455 } 456 457 #define CHECK_RECLAIMER_OFFSET(type) \ 458 do { \ 459 BUILD_BUG_ON(PGSTEAL_##type - PGSTEAL_KSWAPD != \ 460 PGDEMOTE_##type - PGDEMOTE_KSWAPD); \ 461 BUILD_BUG_ON(PGSTEAL_##type - PGSTEAL_KSWAPD != \ 462 PGSCAN_##type - PGSCAN_KSWAPD); \ 463 } while (0) 464 465 static int reclaimer_offset(struct scan_control *sc) 466 { 467 CHECK_RECLAIMER_OFFSET(DIRECT); 468 CHECK_RECLAIMER_OFFSET(KHUGEPAGED); 469 CHECK_RECLAIMER_OFFSET(PROACTIVE); 470 471 if (current_is_kswapd()) 472 return 0; 473 if (current_is_khugepaged()) 474 return PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD; 475 if (sc->proactive) 476 return PGSTEAL_PROACTIVE - PGSTEAL_KSWAPD; 477 return PGSTEAL_DIRECT - PGSTEAL_KSWAPD; 478 } 479 480 static inline int is_page_cache_freeable(struct folio *folio) 481 { 482 /* 483 * A freeable page cache folio is referenced only by the caller 484 * that isolated the folio, the page cache and optional filesystem 485 * private data at folio->private. 486 */ 487 return folio_ref_count(folio) - folio_test_private(folio) == 488 1 + folio_nr_pages(folio); 489 } 490 491 /* 492 * We detected a synchronous write error writing a folio out. Probably 493 * -ENOSPC. We need to propagate that into the address_space for a subsequent 494 * fsync(), msync() or close(). 495 * 496 * The tricky part is that after writepage we cannot touch the mapping: nothing 497 * prevents it from being freed up. But we have a ref on the folio and once 498 * that folio is locked, the mapping is pinned. 499 * 500 * We're allowed to run sleeping folio_lock() here because we know the caller has 501 * __GFP_FS. 502 */ 503 static void handle_write_error(struct address_space *mapping, 504 struct folio *folio, int error) 505 { 506 folio_lock(folio); 507 if (folio_mapping(folio) == mapping) 508 mapping_set_error(mapping, error); 509 folio_unlock(folio); 510 } 511 512 static bool skip_throttle_noprogress(pg_data_t *pgdat) 513 { 514 int reclaimable = 0, write_pending = 0; 515 int i; 516 struct zone *zone; 517 /* 518 * If kswapd is disabled, reschedule if necessary but do not 519 * throttle as the system is likely near OOM. 520 */ 521 if (atomic_read(&pgdat->kswapd_failures) >= MAX_RECLAIM_RETRIES) 522 return true; 523 524 /* 525 * If there are a lot of dirty/writeback folios then do not 526 * throttle as throttling will occur when the folios cycle 527 * towards the end of the LRU if still under writeback. 528 */ 529 for_each_managed_zone_pgdat(zone, pgdat, i, MAX_NR_ZONES - 1) { 530 reclaimable += zone_reclaimable_pages(zone); 531 write_pending += zone_page_state_snapshot(zone, 532 NR_ZONE_WRITE_PENDING); 533 } 534 if (2 * write_pending <= reclaimable) 535 return true; 536 537 return false; 538 } 539 540 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason) 541 { 542 wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason]; 543 long timeout, ret; 544 DEFINE_WAIT(wait); 545 546 /* 547 * Do not throttle user workers, kthreads other than kswapd or 548 * workqueues. They may be required for reclaim to make 549 * forward progress (e.g. journalling workqueues or kthreads). 550 */ 551 if (!current_is_kswapd() && 552 current->flags & (PF_USER_WORKER|PF_KTHREAD)) { 553 cond_resched(); 554 return; 555 } 556 557 /* 558 * These figures are pulled out of thin air. 559 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many 560 * parallel reclaimers which is a short-lived event so the timeout is 561 * short. Failing to make progress or waiting on writeback are 562 * potentially long-lived events so use a longer timeout. This is shaky 563 * logic as a failure to make progress could be due to anything from 564 * writeback to a slow device to excessive referenced folios at the tail 565 * of the inactive LRU. 566 */ 567 switch(reason) { 568 case VMSCAN_THROTTLE_WRITEBACK: 569 timeout = HZ/10; 570 571 if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) { 572 WRITE_ONCE(pgdat->nr_reclaim_start, 573 node_page_state(pgdat, NR_THROTTLED_WRITTEN)); 574 } 575 576 break; 577 case VMSCAN_THROTTLE_CONGESTED: 578 fallthrough; 579 case VMSCAN_THROTTLE_NOPROGRESS: 580 if (skip_throttle_noprogress(pgdat)) { 581 cond_resched(); 582 return; 583 } 584 585 timeout = 1; 586 587 break; 588 case VMSCAN_THROTTLE_ISOLATED: 589 timeout = HZ/50; 590 break; 591 default: 592 WARN_ON_ONCE(1); 593 timeout = HZ; 594 break; 595 } 596 597 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE); 598 ret = schedule_timeout(timeout); 599 finish_wait(wqh, &wait); 600 601 if (reason == VMSCAN_THROTTLE_WRITEBACK) 602 atomic_dec(&pgdat->nr_writeback_throttled); 603 604 trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout), 605 jiffies_to_usecs(timeout - ret), 606 reason); 607 } 608 609 /* 610 * Account for folios written if tasks are throttled waiting on dirty 611 * folios to clean. If enough folios have been cleaned since throttling 612 * started then wakeup the throttled tasks. 613 */ 614 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio, 615 int nr_throttled) 616 { 617 unsigned long nr_written; 618 619 node_stat_add_folio(folio, NR_THROTTLED_WRITTEN); 620 621 /* 622 * This is an inaccurate read as the per-cpu deltas may not 623 * be synchronised. However, given that the system is 624 * writeback throttled, it is not worth taking the penalty 625 * of getting an accurate count. At worst, the throttle 626 * timeout guarantees forward progress. 627 */ 628 nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) - 629 READ_ONCE(pgdat->nr_reclaim_start); 630 631 if (nr_written > SWAP_CLUSTER_MAX * nr_throttled) 632 wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]); 633 } 634 635 /* possible outcome of pageout() */ 636 typedef enum { 637 /* failed to write folio out, folio is locked */ 638 PAGE_KEEP, 639 /* move folio to the active list, folio is locked */ 640 PAGE_ACTIVATE, 641 /* folio has been sent to the disk successfully, folio is unlocked */ 642 PAGE_SUCCESS, 643 /* folio is clean and locked */ 644 PAGE_CLEAN, 645 } pageout_t; 646 647 static pageout_t writeout(struct folio *folio, struct address_space *mapping, 648 struct swap_iocb **plug, struct list_head *folio_list) 649 { 650 int res; 651 652 folio_set_reclaim(folio); 653 654 /* 655 * The large shmem folio can be split if CONFIG_THP_SWAP is not enabled 656 * or we failed to allocate contiguous swap entries, in which case 657 * the split out folios get added back to folio_list. 658 */ 659 if (shmem_mapping(mapping)) 660 res = shmem_writeout(folio, plug, folio_list); 661 else 662 res = swap_writeout(folio, plug); 663 664 if (res < 0) 665 handle_write_error(mapping, folio, res); 666 if (res == AOP_WRITEPAGE_ACTIVATE) { 667 folio_clear_reclaim(folio); 668 return PAGE_ACTIVATE; 669 } 670 671 /* synchronous write? */ 672 if (!folio_test_writeback(folio)) 673 folio_clear_reclaim(folio); 674 675 trace_mm_vmscan_write_folio(folio); 676 node_stat_add_folio(folio, NR_VMSCAN_WRITE); 677 return PAGE_SUCCESS; 678 } 679 680 /* 681 * pageout is called by shrink_folio_list() for each dirty folio. 682 */ 683 static pageout_t pageout(struct folio *folio, struct address_space *mapping, 684 struct swap_iocb **plug, struct list_head *folio_list) 685 { 686 /* 687 * We no longer attempt to writeback filesystem folios here, other 688 * than tmpfs/shmem. That's taken care of in page-writeback. 689 * If we find a dirty filesystem folio at the end of the LRU list, 690 * typically that means the filesystem is saturating the storage 691 * with contiguous writes and telling it to write a folio here 692 * would only make the situation worse by injecting an element 693 * of random access. 694 * 695 * If the folio is swapcache, write it back even if that would 696 * block, for some throttling. This happens by accident, because 697 * swap_backing_dev_info is bust: it doesn't reflect the 698 * congestion state of the swapdevs. Easy to fix, if needed. 699 */ 700 if (!is_page_cache_freeable(folio)) 701 return PAGE_KEEP; 702 if (!mapping) { 703 /* 704 * Some data journaling orphaned folios can have 705 * folio->mapping == NULL while being dirty with clean buffers. 706 */ 707 if (folio_test_private(folio)) { 708 if (try_to_free_buffers(folio)) { 709 folio_clear_dirty(folio); 710 pr_info("%s: orphaned folio\n", __func__); 711 return PAGE_CLEAN; 712 } 713 } 714 return PAGE_KEEP; 715 } 716 717 if (!shmem_mapping(mapping) && !folio_test_anon(folio)) 718 return PAGE_ACTIVATE; 719 if (!folio_clear_dirty_for_io(folio)) 720 return PAGE_CLEAN; 721 return writeout(folio, mapping, plug, folio_list); 722 } 723 724 /* 725 * Same as remove_mapping, but if the folio is removed from the mapping, it 726 * gets returned with a refcount of 0. 727 */ 728 static int __remove_mapping(struct address_space *mapping, struct folio *folio, 729 bool reclaimed, struct mem_cgroup *target_memcg) 730 { 731 int refcount; 732 void *shadow = NULL; 733 struct swap_cluster_info *ci; 734 735 BUG_ON(!folio_test_locked(folio)); 736 BUG_ON(mapping != folio_mapping(folio)); 737 738 if (folio_test_swapcache(folio)) { 739 ci = swap_cluster_get_and_lock_irq(folio); 740 } else { 741 spin_lock(&mapping->host->i_lock); 742 xa_lock_irq(&mapping->i_pages); 743 } 744 745 /* 746 * The non racy check for a busy folio. 747 * 748 * Must be careful with the order of the tests. When someone has 749 * a ref to the folio, it may be possible that they dirty it then 750 * drop the reference. So if the dirty flag is tested before the 751 * refcount here, then the following race may occur: 752 * 753 * get_user_pages(&page); 754 * [user mapping goes away] 755 * write_to(page); 756 * !folio_test_dirty(folio) [good] 757 * folio_set_dirty(folio); 758 * folio_put(folio); 759 * !refcount(folio) [good, discard it] 760 * 761 * [oops, our write_to data is lost] 762 * 763 * Reversing the order of the tests ensures such a situation cannot 764 * escape unnoticed. The smp_rmb is needed to ensure the folio->flags 765 * load is not satisfied before that of folio->_refcount. 766 * 767 * Note that if the dirty flag is always set via folio_mark_dirty, 768 * and thus under the i_pages lock, then this ordering is not required. 769 */ 770 refcount = 1 + folio_nr_pages(folio); 771 if (!folio_ref_freeze(folio, refcount)) 772 goto cannot_free; 773 /* note: atomic_cmpxchg in folio_ref_freeze provides the smp_rmb */ 774 if (unlikely(folio_test_dirty(folio))) { 775 folio_ref_unfreeze(folio, refcount); 776 goto cannot_free; 777 } 778 779 if (folio_test_swapcache(folio)) { 780 swp_entry_t swap = folio->swap; 781 782 if (reclaimed && !mapping_exiting(mapping)) 783 shadow = workingset_eviction(folio, target_memcg); 784 __swap_cache_del_folio(ci, folio, swap, shadow); 785 memcg1_swapout(folio, swap); 786 swap_cluster_unlock_irq(ci); 787 put_swap_folio(folio, swap); 788 } else { 789 void (*free_folio)(struct folio *); 790 791 free_folio = mapping->a_ops->free_folio; 792 /* 793 * Remember a shadow entry for reclaimed file cache in 794 * order to detect refaults, thus thrashing, later on. 795 * 796 * But don't store shadows in an address space that is 797 * already exiting. This is not just an optimization, 798 * inode reclaim needs to empty out the radix tree or 799 * the nodes are lost. Don't plant shadows behind its 800 * back. 801 * 802 * We also don't store shadows for DAX mappings because the 803 * only page cache folios found in these are zero pages 804 * covering holes, and because we don't want to mix DAX 805 * exceptional entries and shadow exceptional entries in the 806 * same address_space. 807 */ 808 if (reclaimed && folio_is_file_lru(folio) && 809 !mapping_exiting(mapping) && !dax_mapping(mapping)) 810 shadow = workingset_eviction(folio, target_memcg); 811 __filemap_remove_folio(folio, shadow); 812 xa_unlock_irq(&mapping->i_pages); 813 if (mapping_shrinkable(mapping)) 814 inode_add_lru(mapping->host); 815 spin_unlock(&mapping->host->i_lock); 816 817 if (free_folio) 818 free_folio(folio); 819 } 820 821 return 1; 822 823 cannot_free: 824 if (folio_test_swapcache(folio)) { 825 swap_cluster_unlock_irq(ci); 826 } else { 827 xa_unlock_irq(&mapping->i_pages); 828 spin_unlock(&mapping->host->i_lock); 829 } 830 return 0; 831 } 832 833 /** 834 * remove_mapping() - Attempt to remove a folio from its mapping. 835 * @mapping: The address space. 836 * @folio: The folio to remove. 837 * 838 * If the folio is dirty, under writeback or if someone else has a ref 839 * on it, removal will fail. 840 * Return: The number of pages removed from the mapping. 0 if the folio 841 * could not be removed. 842 * Context: The caller should have a single refcount on the folio and 843 * hold its lock. 844 */ 845 long remove_mapping(struct address_space *mapping, struct folio *folio) 846 { 847 if (__remove_mapping(mapping, folio, false, NULL)) { 848 /* 849 * Unfreezing the refcount with 1 effectively 850 * drops the pagecache ref for us without requiring another 851 * atomic operation. 852 */ 853 folio_ref_unfreeze(folio, 1); 854 return folio_nr_pages(folio); 855 } 856 return 0; 857 } 858 859 /** 860 * folio_putback_lru - Put previously isolated folio onto appropriate LRU list. 861 * @folio: Folio to be returned to an LRU list. 862 * 863 * Add previously isolated @folio to appropriate LRU list. 864 * The folio may still be unevictable for other reasons. 865 * 866 * Context: lru_lock must not be held, interrupts must be enabled. 867 */ 868 void folio_putback_lru(struct folio *folio) 869 { 870 folio_add_lru(folio); 871 folio_put(folio); /* drop ref from isolate */ 872 } 873 874 enum folio_references { 875 FOLIOREF_RECLAIM, 876 FOLIOREF_RECLAIM_CLEAN, 877 FOLIOREF_KEEP, 878 FOLIOREF_ACTIVATE, 879 }; 880 881 #ifdef CONFIG_LRU_GEN 882 /* 883 * Only used on a mapped folio in the eviction (rmap walk) path, where promotion 884 * needs to be done by taking the folio off the LRU list and then adding it back 885 * with PG_active set. In contrast, the aging (page table walk) path uses 886 * folio_update_gen(). 887 */ 888 static bool lru_gen_set_refs(struct folio *folio) 889 { 890 /* see the comment on LRU_REFS_FLAGS */ 891 if (!folio_test_referenced(folio) && !folio_test_workingset(folio)) { 892 set_mask_bits(&folio->flags.f, LRU_REFS_MASK, BIT(PG_referenced)); 893 return false; 894 } 895 896 set_mask_bits(&folio->flags.f, LRU_REFS_FLAGS, BIT(PG_workingset)); 897 return true; 898 } 899 #else 900 static bool lru_gen_set_refs(struct folio *folio) 901 { 902 return false; 903 } 904 #endif /* CONFIG_LRU_GEN */ 905 906 static enum folio_references folio_check_references(struct folio *folio, 907 struct scan_control *sc) 908 { 909 int referenced_ptes, referenced_folio; 910 vm_flags_t vm_flags; 911 912 referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup, 913 &vm_flags); 914 915 /* 916 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma. 917 * Let the folio, now marked Mlocked, be moved to the unevictable list. 918 */ 919 if (vm_flags & VM_LOCKED) 920 return FOLIOREF_ACTIVATE; 921 922 /* 923 * There are two cases to consider. 924 * 1) Rmap lock contention: rotate. 925 * 2) Skip the non-shared swapbacked folio mapped solely by 926 * the exiting or OOM-reaped process. 927 */ 928 if (referenced_ptes == -1) 929 return FOLIOREF_KEEP; 930 931 if (lru_gen_enabled()) { 932 if (!referenced_ptes) 933 return FOLIOREF_RECLAIM; 934 935 return lru_gen_set_refs(folio) ? FOLIOREF_ACTIVATE : FOLIOREF_KEEP; 936 } 937 938 referenced_folio = folio_test_clear_referenced(folio); 939 940 if (referenced_ptes) { 941 /* 942 * All mapped folios start out with page table 943 * references from the instantiating fault, so we need 944 * to look twice if a mapped file/anon folio is used more 945 * than once. 946 * 947 * Mark it and spare it for another trip around the 948 * inactive list. Another page table reference will 949 * lead to its activation. 950 * 951 * Note: the mark is set for activated folios as well 952 * so that recently deactivated but used folios are 953 * quickly recovered. 954 */ 955 folio_set_referenced(folio); 956 957 if (referenced_folio || referenced_ptes > 1) 958 return FOLIOREF_ACTIVATE; 959 960 /* 961 * Activate file-backed executable folios after first usage. 962 */ 963 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) 964 return FOLIOREF_ACTIVATE; 965 966 return FOLIOREF_KEEP; 967 } 968 969 /* Reclaim if clean, defer dirty folios to writeback */ 970 if (referenced_folio && folio_is_file_lru(folio)) 971 return FOLIOREF_RECLAIM_CLEAN; 972 973 return FOLIOREF_RECLAIM; 974 } 975 976 /* Check if a folio is dirty or under writeback */ 977 static void folio_check_dirty_writeback(struct folio *folio, 978 bool *dirty, bool *writeback) 979 { 980 struct address_space *mapping; 981 982 /* 983 * Anonymous folios are not handled by flushers and must be written 984 * from reclaim context. Do not stall reclaim based on them. 985 * MADV_FREE anonymous folios are put into inactive file list too. 986 * They could be mistakenly treated as file lru. So further anon 987 * test is needed. 988 */ 989 if (!folio_is_file_lru(folio) || 990 (folio_test_anon(folio) && !folio_test_swapbacked(folio))) { 991 *dirty = false; 992 *writeback = false; 993 return; 994 } 995 996 /* By default assume that the folio flags are accurate */ 997 *dirty = folio_test_dirty(folio); 998 *writeback = folio_test_writeback(folio); 999 1000 /* Verify dirty/writeback state if the filesystem supports it */ 1001 if (!folio_test_private(folio)) 1002 return; 1003 1004 mapping = folio_mapping(folio); 1005 if (mapping && mapping->a_ops->is_dirty_writeback) 1006 mapping->a_ops->is_dirty_writeback(folio, dirty, writeback); 1007 } 1008 1009 static struct folio *alloc_demote_folio(struct folio *src, 1010 unsigned long private) 1011 { 1012 struct folio *dst; 1013 nodemask_t *allowed_mask; 1014 struct migration_target_control *mtc; 1015 1016 mtc = (struct migration_target_control *)private; 1017 1018 allowed_mask = mtc->nmask; 1019 /* 1020 * make sure we allocate from the target node first also trying to 1021 * demote or reclaim pages from the target node via kswapd if we are 1022 * low on free memory on target node. If we don't do this and if 1023 * we have free memory on the slower(lower) memtier, we would start 1024 * allocating pages from slower(lower) memory tiers without even forcing 1025 * a demotion of cold pages from the target memtier. This can result 1026 * in the kernel placing hot pages in slower(lower) memory tiers. 1027 */ 1028 mtc->nmask = NULL; 1029 mtc->gfp_mask |= __GFP_THISNODE; 1030 dst = alloc_migration_target(src, (unsigned long)mtc); 1031 if (dst) 1032 return dst; 1033 1034 mtc->gfp_mask &= ~__GFP_THISNODE; 1035 mtc->nmask = allowed_mask; 1036 1037 return alloc_migration_target(src, (unsigned long)mtc); 1038 } 1039 1040 /* 1041 * Take folios on @demote_folios and attempt to demote them to another node. 1042 * Folios which are not demoted are left on @demote_folios. 1043 */ 1044 static unsigned int demote_folio_list(struct list_head *demote_folios, 1045 struct pglist_data *pgdat) 1046 { 1047 int target_nid = next_demotion_node(pgdat->node_id); 1048 unsigned int nr_succeeded; 1049 nodemask_t allowed_mask; 1050 1051 struct migration_target_control mtc = { 1052 /* 1053 * Allocate from 'node', or fail quickly and quietly. 1054 * When this happens, 'page' will likely just be discarded 1055 * instead of migrated. 1056 */ 1057 .gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | __GFP_NOWARN | 1058 __GFP_NOMEMALLOC | GFP_NOWAIT, 1059 .nid = target_nid, 1060 .nmask = &allowed_mask, 1061 .reason = MR_DEMOTION, 1062 }; 1063 1064 if (list_empty(demote_folios)) 1065 return 0; 1066 1067 if (target_nid == NUMA_NO_NODE) 1068 return 0; 1069 1070 node_get_allowed_targets(pgdat, &allowed_mask); 1071 1072 /* Demotion ignores all cpuset and mempolicy settings */ 1073 migrate_pages(demote_folios, alloc_demote_folio, NULL, 1074 (unsigned long)&mtc, MIGRATE_ASYNC, MR_DEMOTION, 1075 &nr_succeeded); 1076 1077 return nr_succeeded; 1078 } 1079 1080 static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask) 1081 { 1082 if (gfp_mask & __GFP_FS) 1083 return true; 1084 if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO)) 1085 return false; 1086 /* 1087 * We can "enter_fs" for swap-cache with only __GFP_IO 1088 * providing this isn't SWP_FS_OPS. 1089 * ->flags can be updated non-atomicially (scan_swap_map_slots), 1090 * but that will never affect SWP_FS_OPS, so the data_race 1091 * is safe. 1092 */ 1093 return !data_race(folio_swap_flags(folio) & SWP_FS_OPS); 1094 } 1095 1096 /* 1097 * shrink_folio_list() returns the number of reclaimed pages 1098 */ 1099 static unsigned int shrink_folio_list(struct list_head *folio_list, 1100 struct pglist_data *pgdat, struct scan_control *sc, 1101 struct reclaim_stat *stat, bool ignore_references, 1102 struct mem_cgroup *memcg) 1103 { 1104 struct folio_batch free_folios; 1105 LIST_HEAD(ret_folios); 1106 LIST_HEAD(demote_folios); 1107 unsigned int nr_reclaimed = 0, nr_demoted = 0; 1108 unsigned int pgactivate = 0; 1109 bool do_demote_pass; 1110 struct swap_iocb *plug = NULL; 1111 1112 folio_batch_init(&free_folios); 1113 memset(stat, 0, sizeof(*stat)); 1114 cond_resched(); 1115 do_demote_pass = can_demote(pgdat->node_id, sc, memcg); 1116 1117 retry: 1118 while (!list_empty(folio_list)) { 1119 struct address_space *mapping; 1120 struct folio *folio; 1121 enum folio_references references = FOLIOREF_RECLAIM; 1122 bool dirty, writeback; 1123 unsigned int nr_pages; 1124 1125 cond_resched(); 1126 1127 folio = lru_to_folio(folio_list); 1128 list_del(&folio->lru); 1129 1130 if (!folio_trylock(folio)) 1131 goto keep; 1132 1133 if (folio_contain_hwpoisoned_page(folio)) { 1134 /* 1135 * unmap_poisoned_folio() can't handle large 1136 * folio, just skip it. memory_failure() will 1137 * handle it if the UCE is triggered again. 1138 */ 1139 if (folio_test_large(folio)) 1140 goto keep_locked; 1141 1142 unmap_poisoned_folio(folio, folio_pfn(folio), false); 1143 folio_unlock(folio); 1144 folio_put(folio); 1145 continue; 1146 } 1147 1148 VM_BUG_ON_FOLIO(folio_test_active(folio), folio); 1149 1150 nr_pages = folio_nr_pages(folio); 1151 1152 /* Account the number of base pages */ 1153 sc->nr_scanned += nr_pages; 1154 1155 if (unlikely(!folio_evictable(folio))) 1156 goto activate_locked; 1157 1158 if (!sc->may_unmap && folio_mapped(folio)) 1159 goto keep_locked; 1160 1161 /* 1162 * The number of dirty pages determines if a node is marked 1163 * reclaim_congested. kswapd will stall and start writing 1164 * folios if the tail of the LRU is all dirty unqueued folios. 1165 */ 1166 folio_check_dirty_writeback(folio, &dirty, &writeback); 1167 if (dirty || writeback) 1168 stat->nr_dirty += nr_pages; 1169 1170 if (dirty && !writeback) 1171 stat->nr_unqueued_dirty += nr_pages; 1172 1173 /* 1174 * Treat this folio as congested if folios are cycling 1175 * through the LRU so quickly that the folios marked 1176 * for immediate reclaim are making it to the end of 1177 * the LRU a second time. 1178 */ 1179 if (writeback && folio_test_reclaim(folio)) 1180 stat->nr_congested += nr_pages; 1181 1182 /* 1183 * If a folio at the tail of the LRU is under writeback, there 1184 * are three cases to consider. 1185 * 1186 * 1) If reclaim is encountering an excessive number 1187 * of folios under writeback and this folio has both 1188 * the writeback and reclaim flags set, then it 1189 * indicates that folios are being queued for I/O but 1190 * are being recycled through the LRU before the I/O 1191 * can complete. Waiting on the folio itself risks an 1192 * indefinite stall if it is impossible to writeback 1193 * the folio due to I/O error or disconnected storage 1194 * so instead note that the LRU is being scanned too 1195 * quickly and the caller can stall after the folio 1196 * list has been processed. 1197 * 1198 * 2) Global or new memcg reclaim encounters a folio that is 1199 * not marked for immediate reclaim, or the caller does not 1200 * have __GFP_FS (or __GFP_IO if it's simply going to swap, 1201 * not to fs), or the folio belongs to a mapping where 1202 * waiting on writeback during reclaim may lead to a deadlock. 1203 * In this case mark the folio for immediate reclaim and 1204 * continue scanning. 1205 * 1206 * Require may_enter_fs() because we would wait on fs, which 1207 * may not have submitted I/O yet. And the loop driver might 1208 * enter reclaim, and deadlock if it waits on a folio for 1209 * which it is needed to do the write (loop masks off 1210 * __GFP_IO|__GFP_FS for this reason); but more thought 1211 * would probably show more reasons. 1212 * 1213 * 3) Legacy memcg encounters a folio that already has the 1214 * reclaim flag set. memcg does not have any dirty folio 1215 * throttling so we could easily OOM just because too many 1216 * folios are in writeback and there is nothing else to 1217 * reclaim. Wait for the writeback to complete. 1218 * 1219 * In cases 1) and 2) we activate the folios to get them out of 1220 * the way while we continue scanning for clean folios on the 1221 * inactive list and refilling from the active list. The 1222 * observation here is that waiting for disk writes is more 1223 * expensive than potentially causing reloads down the line. 1224 * Since they're marked for immediate reclaim, they won't put 1225 * memory pressure on the cache working set any longer than it 1226 * takes to write them to disk. 1227 */ 1228 if (folio_test_writeback(folio)) { 1229 mapping = folio_mapping(folio); 1230 1231 /* Case 1 above */ 1232 if (current_is_kswapd() && 1233 folio_test_reclaim(folio) && 1234 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) { 1235 stat->nr_immediate += nr_pages; 1236 goto activate_locked; 1237 1238 /* Case 2 above */ 1239 } else if (writeback_throttling_sane(sc) || 1240 !folio_test_reclaim(folio) || 1241 !may_enter_fs(folio, sc->gfp_mask) || 1242 (mapping && 1243 mapping_writeback_may_deadlock_on_reclaim(mapping))) { 1244 /* 1245 * This is slightly racy - 1246 * folio_end_writeback() might have 1247 * just cleared the reclaim flag, then 1248 * setting the reclaim flag here ends up 1249 * interpreted as the readahead flag - but 1250 * that does not matter enough to care. 1251 * What we do want is for this folio to 1252 * have the reclaim flag set next time 1253 * memcg reclaim reaches the tests above, 1254 * so it will then wait for writeback to 1255 * avoid OOM; and it's also appropriate 1256 * in global reclaim. 1257 */ 1258 folio_set_reclaim(folio); 1259 stat->nr_writeback += nr_pages; 1260 goto activate_locked; 1261 1262 /* Case 3 above */ 1263 } else { 1264 folio_unlock(folio); 1265 folio_wait_writeback(folio); 1266 /* then go back and try same folio again */ 1267 list_add_tail(&folio->lru, folio_list); 1268 continue; 1269 } 1270 } 1271 1272 if (!ignore_references) 1273 references = folio_check_references(folio, sc); 1274 1275 switch (references) { 1276 case FOLIOREF_ACTIVATE: 1277 goto activate_locked; 1278 case FOLIOREF_KEEP: 1279 stat->nr_ref_keep += nr_pages; 1280 goto keep_locked; 1281 case FOLIOREF_RECLAIM: 1282 case FOLIOREF_RECLAIM_CLEAN: 1283 ; /* try to reclaim the folio below */ 1284 } 1285 1286 /* 1287 * Before reclaiming the folio, try to relocate 1288 * its contents to another node. 1289 */ 1290 if (do_demote_pass && 1291 (thp_migration_supported() || !folio_test_large(folio))) { 1292 list_add(&folio->lru, &demote_folios); 1293 folio_unlock(folio); 1294 continue; 1295 } 1296 1297 /* 1298 * Anonymous process memory has backing store? 1299 * Try to allocate it some swap space here. 1300 * Lazyfree folio could be freed directly 1301 */ 1302 if (folio_test_anon(folio) && folio_test_swapbacked(folio)) { 1303 if (!folio_test_swapcache(folio)) { 1304 if (!(sc->gfp_mask & __GFP_IO)) 1305 goto keep_locked; 1306 if (folio_maybe_dma_pinned(folio)) 1307 goto keep_locked; 1308 if (folio_test_large(folio)) { 1309 /* cannot split folio, skip it */ 1310 if (!can_split_folio(folio, 1, NULL)) 1311 goto activate_locked; 1312 /* 1313 * Split partially mapped folios right away. 1314 * We can free the unmapped pages without IO. 1315 */ 1316 if (data_race(!list_empty(&folio->_deferred_list) && 1317 folio_test_partially_mapped(folio)) && 1318 split_folio_to_list(folio, folio_list)) 1319 goto activate_locked; 1320 } 1321 if (folio_alloc_swap(folio, __GFP_HIGH | __GFP_NOWARN)) { 1322 int __maybe_unused order = folio_order(folio); 1323 1324 if (!folio_test_large(folio)) 1325 goto activate_locked_split; 1326 /* Fallback to swap normal pages */ 1327 if (split_folio_to_list(folio, folio_list)) 1328 goto activate_locked; 1329 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1330 if (nr_pages >= HPAGE_PMD_NR) { 1331 count_memcg_folio_events(folio, 1332 THP_SWPOUT_FALLBACK, 1); 1333 count_vm_event(THP_SWPOUT_FALLBACK); 1334 } 1335 #endif 1336 count_mthp_stat(order, MTHP_STAT_SWPOUT_FALLBACK); 1337 if (folio_alloc_swap(folio, __GFP_HIGH | __GFP_NOWARN)) 1338 goto activate_locked_split; 1339 } 1340 /* 1341 * Normally the folio will be dirtied in unmap because its 1342 * pte should be dirty. A special case is MADV_FREE page. The 1343 * page's pte could have dirty bit cleared but the folio's 1344 * SwapBacked flag is still set because clearing the dirty bit 1345 * and SwapBacked flag has no lock protected. For such folio, 1346 * unmap will not set dirty bit for it, so folio reclaim will 1347 * not write the folio out. This can cause data corruption when 1348 * the folio is swapped in later. Always setting the dirty flag 1349 * for the folio solves the problem. 1350 */ 1351 folio_mark_dirty(folio); 1352 } 1353 } 1354 1355 /* 1356 * If the folio was split above, the tail pages will make 1357 * their own pass through this function and be accounted 1358 * then. 1359 */ 1360 if ((nr_pages > 1) && !folio_test_large(folio)) { 1361 sc->nr_scanned -= (nr_pages - 1); 1362 nr_pages = 1; 1363 } 1364 1365 /* 1366 * The folio is mapped into the page tables of one or more 1367 * processes. Try to unmap it here. 1368 */ 1369 if (folio_mapped(folio)) { 1370 enum ttu_flags flags = TTU_BATCH_FLUSH; 1371 bool was_swapbacked = folio_test_swapbacked(folio); 1372 1373 if (folio_test_pmd_mappable(folio)) 1374 flags |= TTU_SPLIT_HUGE_PMD; 1375 /* 1376 * Without TTU_SYNC, try_to_unmap will only begin to 1377 * hold PTL from the first present PTE within a large 1378 * folio. Some initial PTEs might be skipped due to 1379 * races with parallel PTE writes in which PTEs can be 1380 * cleared temporarily before being written new present 1381 * values. This will lead to a large folio is still 1382 * mapped while some subpages have been partially 1383 * unmapped after try_to_unmap; TTU_SYNC helps 1384 * try_to_unmap acquire PTL from the first PTE, 1385 * eliminating the influence of temporary PTE values. 1386 */ 1387 if (folio_test_large(folio)) 1388 flags |= TTU_SYNC; 1389 1390 try_to_unmap(folio, flags); 1391 if (folio_mapped(folio)) { 1392 stat->nr_unmap_fail += nr_pages; 1393 if (!was_swapbacked && 1394 folio_test_swapbacked(folio)) 1395 stat->nr_lazyfree_fail += nr_pages; 1396 goto activate_locked; 1397 } 1398 } 1399 1400 /* 1401 * Folio is unmapped now so it cannot be newly pinned anymore. 1402 * No point in trying to reclaim folio if it is pinned. 1403 * Furthermore we don't want to reclaim underlying fs metadata 1404 * if the folio is pinned and thus potentially modified by the 1405 * pinning process as that may upset the filesystem. 1406 */ 1407 if (folio_maybe_dma_pinned(folio)) 1408 goto activate_locked; 1409 1410 mapping = folio_mapping(folio); 1411 if (folio_test_dirty(folio)) { 1412 /* 1413 * Only kswapd can writeback filesystem folios 1414 * to avoid risk of stack overflow. But avoid 1415 * injecting inefficient single-folio I/O into 1416 * flusher writeback as much as possible: only 1417 * write folios when we've encountered many 1418 * dirty folios, and when we've already scanned 1419 * the rest of the LRU for clean folios and see 1420 * the same dirty folios again (with the reclaim 1421 * flag set). 1422 */ 1423 if (folio_is_file_lru(folio) && 1424 (!current_is_kswapd() || 1425 !folio_test_reclaim(folio) || 1426 !test_bit(PGDAT_DIRTY, &pgdat->flags))) { 1427 /* 1428 * Immediately reclaim when written back. 1429 * Similar in principle to folio_deactivate() 1430 * except we already have the folio isolated 1431 * and know it's dirty 1432 */ 1433 node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE, 1434 nr_pages); 1435 folio_set_reclaim(folio); 1436 1437 goto activate_locked; 1438 } 1439 1440 if (references == FOLIOREF_RECLAIM_CLEAN) 1441 goto keep_locked; 1442 if (!may_enter_fs(folio, sc->gfp_mask)) 1443 goto keep_locked; 1444 if (!sc->may_writepage) 1445 goto keep_locked; 1446 1447 /* 1448 * Folio is dirty. Flush the TLB if a writable entry 1449 * potentially exists to avoid CPU writes after I/O 1450 * starts and then write it out here. 1451 */ 1452 try_to_unmap_flush_dirty(); 1453 switch (pageout(folio, mapping, &plug, folio_list)) { 1454 case PAGE_KEEP: 1455 goto keep_locked; 1456 case PAGE_ACTIVATE: 1457 /* 1458 * If shmem folio is split when writeback to swap, 1459 * the tail pages will make their own pass through 1460 * this function and be accounted then. 1461 */ 1462 if (nr_pages > 1 && !folio_test_large(folio)) { 1463 sc->nr_scanned -= (nr_pages - 1); 1464 nr_pages = 1; 1465 } 1466 goto activate_locked; 1467 case PAGE_SUCCESS: 1468 if (nr_pages > 1 && !folio_test_large(folio)) { 1469 sc->nr_scanned -= (nr_pages - 1); 1470 nr_pages = 1; 1471 } 1472 stat->nr_pageout += nr_pages; 1473 1474 if (folio_test_writeback(folio)) 1475 goto keep; 1476 if (folio_test_dirty(folio)) 1477 goto keep; 1478 1479 /* 1480 * A synchronous write - probably a ramdisk. Go 1481 * ahead and try to reclaim the folio. 1482 */ 1483 if (!folio_trylock(folio)) 1484 goto keep; 1485 if (folio_test_dirty(folio) || 1486 folio_test_writeback(folio)) 1487 goto keep_locked; 1488 mapping = folio_mapping(folio); 1489 fallthrough; 1490 case PAGE_CLEAN: 1491 ; /* try to free the folio below */ 1492 } 1493 } 1494 1495 /* 1496 * If the folio has buffers, try to free the buffer 1497 * mappings associated with this folio. If we succeed 1498 * we try to free the folio as well. 1499 * 1500 * We do this even if the folio is dirty. 1501 * filemap_release_folio() does not perform I/O, but it 1502 * is possible for a folio to have the dirty flag set, 1503 * but it is actually clean (all its buffers are clean). 1504 * This happens if the buffers were written out directly, 1505 * with submit_bh(). ext3 will do this, as well as 1506 * the blockdev mapping. filemap_release_folio() will 1507 * discover that cleanness and will drop the buffers 1508 * and mark the folio clean - it can be freed. 1509 * 1510 * Rarely, folios can have buffers and no ->mapping. 1511 * These are the folios which were not successfully 1512 * invalidated in truncate_cleanup_folio(). We try to 1513 * drop those buffers here and if that worked, and the 1514 * folio is no longer mapped into process address space 1515 * (refcount == 1) it can be freed. Otherwise, leave 1516 * the folio on the LRU so it is swappable. 1517 */ 1518 if (folio_needs_release(folio)) { 1519 if (!filemap_release_folio(folio, sc->gfp_mask)) 1520 goto activate_locked; 1521 if (!mapping && folio_ref_count(folio) == 1) { 1522 folio_unlock(folio); 1523 if (folio_put_testzero(folio)) 1524 goto free_it; 1525 else { 1526 /* 1527 * rare race with speculative reference. 1528 * the speculative reference will free 1529 * this folio shortly, so we may 1530 * increment nr_reclaimed here (and 1531 * leave it off the LRU). 1532 */ 1533 nr_reclaimed += nr_pages; 1534 continue; 1535 } 1536 } 1537 } 1538 1539 if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) { 1540 /* follow __remove_mapping for reference */ 1541 if (!folio_ref_freeze(folio, 1)) 1542 goto keep_locked; 1543 /* 1544 * The folio has only one reference left, which is 1545 * from the isolation. After the caller puts the 1546 * folio back on the lru and drops the reference, the 1547 * folio will be freed anyway. It doesn't matter 1548 * which lru it goes on. So we don't bother checking 1549 * the dirty flag here. 1550 */ 1551 count_vm_events(PGLAZYFREED, nr_pages); 1552 count_memcg_folio_events(folio, PGLAZYFREED, nr_pages); 1553 } else if (!mapping || !__remove_mapping(mapping, folio, true, 1554 sc->target_mem_cgroup)) 1555 goto keep_locked; 1556 1557 folio_unlock(folio); 1558 free_it: 1559 /* 1560 * Folio may get swapped out as a whole, need to account 1561 * all pages in it. 1562 */ 1563 nr_reclaimed += nr_pages; 1564 1565 folio_unqueue_deferred_split(folio); 1566 if (folio_batch_add(&free_folios, folio) == 0) { 1567 mem_cgroup_uncharge_folios(&free_folios); 1568 try_to_unmap_flush(); 1569 free_unref_folios(&free_folios); 1570 } 1571 continue; 1572 1573 activate_locked_split: 1574 /* 1575 * The tail pages that are failed to add into swap cache 1576 * reach here. Fixup nr_scanned and nr_pages. 1577 */ 1578 if (nr_pages > 1) { 1579 sc->nr_scanned -= (nr_pages - 1); 1580 nr_pages = 1; 1581 } 1582 activate_locked: 1583 /* Not a candidate for swapping, so reclaim swap space. */ 1584 if (folio_test_swapcache(folio) && 1585 (mem_cgroup_swap_full(folio) || folio_test_mlocked(folio))) 1586 folio_free_swap(folio); 1587 VM_BUG_ON_FOLIO(folio_test_active(folio), folio); 1588 if (!folio_test_mlocked(folio)) { 1589 int type = folio_is_file_lru(folio); 1590 folio_set_active(folio); 1591 stat->nr_activate[type] += nr_pages; 1592 count_memcg_folio_events(folio, PGACTIVATE, nr_pages); 1593 } 1594 keep_locked: 1595 folio_unlock(folio); 1596 keep: 1597 list_add(&folio->lru, &ret_folios); 1598 VM_BUG_ON_FOLIO(folio_test_lru(folio) || 1599 folio_test_unevictable(folio), folio); 1600 } 1601 /* 'folio_list' is always empty here */ 1602 1603 /* Migrate folios selected for demotion */ 1604 nr_demoted = demote_folio_list(&demote_folios, pgdat); 1605 nr_reclaimed += nr_demoted; 1606 stat->nr_demoted += nr_demoted; 1607 /* Folios that could not be demoted are still in @demote_folios */ 1608 if (!list_empty(&demote_folios)) { 1609 /* Folios which weren't demoted go back on @folio_list */ 1610 list_splice_init(&demote_folios, folio_list); 1611 1612 /* 1613 * goto retry to reclaim the undemoted folios in folio_list if 1614 * desired. 1615 * 1616 * Reclaiming directly from top tier nodes is not often desired 1617 * due to it breaking the LRU ordering: in general memory 1618 * should be reclaimed from lower tier nodes and demoted from 1619 * top tier nodes. 1620 * 1621 * However, disabling reclaim from top tier nodes entirely 1622 * would cause ooms in edge scenarios where lower tier memory 1623 * is unreclaimable for whatever reason, eg memory being 1624 * mlocked or too hot to reclaim. We can disable reclaim 1625 * from top tier nodes in proactive reclaim though as that is 1626 * not real memory pressure. 1627 */ 1628 if (!sc->proactive) { 1629 do_demote_pass = false; 1630 goto retry; 1631 } 1632 } 1633 1634 pgactivate = stat->nr_activate[0] + stat->nr_activate[1]; 1635 1636 mem_cgroup_uncharge_folios(&free_folios); 1637 try_to_unmap_flush(); 1638 free_unref_folios(&free_folios); 1639 1640 list_splice(&ret_folios, folio_list); 1641 count_vm_events(PGACTIVATE, pgactivate); 1642 1643 if (plug) 1644 swap_write_unplug(plug); 1645 return nr_reclaimed; 1646 } 1647 1648 unsigned int reclaim_clean_pages_from_list(struct zone *zone, 1649 struct list_head *folio_list) 1650 { 1651 struct scan_control sc = { 1652 .gfp_mask = GFP_KERNEL, 1653 .may_unmap = 1, 1654 }; 1655 struct reclaim_stat stat; 1656 unsigned int nr_reclaimed; 1657 struct folio *folio, *next; 1658 LIST_HEAD(clean_folios); 1659 unsigned int noreclaim_flag; 1660 1661 list_for_each_entry_safe(folio, next, folio_list, lru) { 1662 /* TODO: these pages should not even appear in this list. */ 1663 if (page_has_movable_ops(&folio->page)) 1664 continue; 1665 if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) && 1666 !folio_test_dirty(folio) && !folio_test_unevictable(folio)) { 1667 folio_clear_active(folio); 1668 list_move(&folio->lru, &clean_folios); 1669 } 1670 } 1671 1672 /* 1673 * We should be safe here since we are only dealing with file pages and 1674 * we are not kswapd and therefore cannot write dirty file pages. But 1675 * call memalloc_noreclaim_save() anyway, just in case these conditions 1676 * change in the future. 1677 */ 1678 noreclaim_flag = memalloc_noreclaim_save(); 1679 nr_reclaimed = shrink_folio_list(&clean_folios, zone->zone_pgdat, &sc, 1680 &stat, true, NULL); 1681 memalloc_noreclaim_restore(noreclaim_flag); 1682 1683 list_splice(&clean_folios, folio_list); 1684 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, 1685 -(long)nr_reclaimed); 1686 /* 1687 * Since lazyfree pages are isolated from file LRU from the beginning, 1688 * they will rotate back to anonymous LRU in the end if it failed to 1689 * discard so isolated count will be mismatched. 1690 * Compensate the isolated count for both LRU lists. 1691 */ 1692 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON, 1693 stat.nr_lazyfree_fail); 1694 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, 1695 -(long)stat.nr_lazyfree_fail); 1696 return nr_reclaimed; 1697 } 1698 1699 /* 1700 * Update LRU sizes after isolating pages. The LRU size updates must 1701 * be complete before mem_cgroup_update_lru_size due to a sanity check. 1702 */ 1703 static __always_inline void update_lru_sizes(struct lruvec *lruvec, 1704 enum lru_list lru, unsigned long *nr_zone_taken) 1705 { 1706 int zid; 1707 1708 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1709 if (!nr_zone_taken[zid]) 1710 continue; 1711 1712 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 1713 } 1714 1715 } 1716 1717 /* 1718 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times. 1719 * 1720 * lruvec->lru_lock is heavily contended. Some of the functions that 1721 * shrink the lists perform better by taking out a batch of pages 1722 * and working on them outside the LRU lock. 1723 * 1724 * For pagecache intensive workloads, this function is the hottest 1725 * spot in the kernel (apart from copy_*_user functions). 1726 * 1727 * Lru_lock must be held before calling this function. 1728 * 1729 * @nr_to_scan: The number of eligible pages to look through on the list. 1730 * @lruvec: The LRU vector to pull pages from. 1731 * @dst: The temp list to put pages on to. 1732 * @nr_scanned: The number of pages that were scanned. 1733 * @sc: The scan_control struct for this reclaim session 1734 * @lru: LRU list id for isolating 1735 * 1736 * returns how many pages were moved onto *@dst. 1737 */ 1738 static unsigned long isolate_lru_folios(unsigned long nr_to_scan, 1739 struct lruvec *lruvec, struct list_head *dst, 1740 unsigned long *nr_scanned, struct scan_control *sc, 1741 enum lru_list lru) 1742 { 1743 struct list_head *src = &lruvec->lists[lru]; 1744 unsigned long nr_taken = 0; 1745 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 }; 1746 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, }; 1747 unsigned long skipped = 0, total_scan = 0, scan = 0; 1748 unsigned long nr_pages; 1749 unsigned long max_nr_skipped = 0; 1750 LIST_HEAD(folios_skipped); 1751 1752 while (scan < nr_to_scan && !list_empty(src)) { 1753 struct list_head *move_to = src; 1754 struct folio *folio; 1755 1756 folio = lru_to_folio(src); 1757 prefetchw_prev_lru_folio(folio, src, flags); 1758 1759 nr_pages = folio_nr_pages(folio); 1760 total_scan += nr_pages; 1761 1762 /* Using max_nr_skipped to prevent hard LOCKUP*/ 1763 if (max_nr_skipped < SWAP_CLUSTER_MAX_SKIPPED && 1764 (folio_zonenum(folio) > sc->reclaim_idx)) { 1765 nr_skipped[folio_zonenum(folio)] += nr_pages; 1766 move_to = &folios_skipped; 1767 max_nr_skipped++; 1768 goto move; 1769 } 1770 1771 /* 1772 * Do not count skipped folios because that makes the function 1773 * return with no isolated folios if the LRU mostly contains 1774 * ineligible folios. This causes the VM to not reclaim any 1775 * folios, triggering a premature OOM. 1776 * Account all pages in a folio. 1777 */ 1778 scan += nr_pages; 1779 1780 if (!folio_test_lru(folio)) 1781 goto move; 1782 if (!sc->may_unmap && folio_mapped(folio)) 1783 goto move; 1784 1785 /* 1786 * Be careful not to clear the lru flag until after we're 1787 * sure the folio is not being freed elsewhere -- the 1788 * folio release code relies on it. 1789 */ 1790 if (unlikely(!folio_try_get(folio))) 1791 goto move; 1792 1793 if (!folio_test_clear_lru(folio)) { 1794 /* Another thread is already isolating this folio */ 1795 folio_put(folio); 1796 goto move; 1797 } 1798 1799 nr_taken += nr_pages; 1800 nr_zone_taken[folio_zonenum(folio)] += nr_pages; 1801 move_to = dst; 1802 move: 1803 list_move(&folio->lru, move_to); 1804 } 1805 1806 /* 1807 * Splice any skipped folios to the start of the LRU list. Note that 1808 * this disrupts the LRU order when reclaiming for lower zones but 1809 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX 1810 * scanning would soon rescan the same folios to skip and waste lots 1811 * of cpu cycles. 1812 */ 1813 if (!list_empty(&folios_skipped)) { 1814 int zid; 1815 1816 list_splice(&folios_skipped, src); 1817 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1818 if (!nr_skipped[zid]) 1819 continue; 1820 1821 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]); 1822 skipped += nr_skipped[zid]; 1823 } 1824 } 1825 *nr_scanned = total_scan; 1826 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, 1827 total_scan, skipped, nr_taken, lru); 1828 update_lru_sizes(lruvec, lru, nr_zone_taken); 1829 return nr_taken; 1830 } 1831 1832 /** 1833 * folio_isolate_lru() - Try to isolate a folio from its LRU list. 1834 * @folio: Folio to isolate from its LRU list. 1835 * 1836 * Isolate a @folio from an LRU list and adjust the vmstat statistic 1837 * corresponding to whatever LRU list the folio was on. 1838 * 1839 * The folio will have its LRU flag cleared. If it was found on the 1840 * active list, it will have the Active flag set. If it was found on the 1841 * unevictable list, it will have the Unevictable flag set. These flags 1842 * may need to be cleared by the caller before letting the page go. 1843 * 1844 * Context: 1845 * 1846 * (1) Must be called with an elevated refcount on the folio. This is a 1847 * fundamental difference from isolate_lru_folios() (which is called 1848 * without a stable reference). 1849 * (2) The lru_lock must not be held. 1850 * (3) Interrupts must be enabled. 1851 * 1852 * Return: true if the folio was removed from an LRU list. 1853 * false if the folio was not on an LRU list. 1854 */ 1855 bool folio_isolate_lru(struct folio *folio) 1856 { 1857 bool ret = false; 1858 1859 VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio); 1860 1861 if (folio_test_clear_lru(folio)) { 1862 struct lruvec *lruvec; 1863 1864 folio_get(folio); 1865 lruvec = folio_lruvec_lock_irq(folio); 1866 lruvec_del_folio(lruvec, folio); 1867 unlock_page_lruvec_irq(lruvec); 1868 ret = true; 1869 } 1870 1871 return ret; 1872 } 1873 1874 /* 1875 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 1876 * then get rescheduled. When there are massive number of tasks doing page 1877 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 1878 * the LRU list will go small and be scanned faster than necessary, leading to 1879 * unnecessary swapping, thrashing and OOM. 1880 */ 1881 static bool too_many_isolated(struct pglist_data *pgdat, int file, 1882 struct scan_control *sc) 1883 { 1884 unsigned long inactive, isolated; 1885 bool too_many; 1886 1887 if (current_is_kswapd()) 1888 return false; 1889 1890 if (!writeback_throttling_sane(sc)) 1891 return false; 1892 1893 if (file) { 1894 inactive = node_page_state(pgdat, NR_INACTIVE_FILE); 1895 isolated = node_page_state(pgdat, NR_ISOLATED_FILE); 1896 } else { 1897 inactive = node_page_state(pgdat, NR_INACTIVE_ANON); 1898 isolated = node_page_state(pgdat, NR_ISOLATED_ANON); 1899 } 1900 1901 /* 1902 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 1903 * won't get blocked by normal direct-reclaimers, forming a circular 1904 * deadlock. 1905 */ 1906 if (gfp_has_io_fs(sc->gfp_mask)) 1907 inactive >>= 3; 1908 1909 too_many = isolated > inactive; 1910 1911 /* Wake up tasks throttled due to too_many_isolated. */ 1912 if (!too_many) 1913 wake_throttle_isolated(pgdat); 1914 1915 return too_many; 1916 } 1917 1918 /* 1919 * move_folios_to_lru() moves folios from private @list to appropriate LRU list. 1920 * 1921 * Returns the number of pages moved to the given lruvec. 1922 */ 1923 static unsigned int move_folios_to_lru(struct lruvec *lruvec, 1924 struct list_head *list) 1925 { 1926 int nr_pages, nr_moved = 0; 1927 struct folio_batch free_folios; 1928 1929 folio_batch_init(&free_folios); 1930 while (!list_empty(list)) { 1931 struct folio *folio = lru_to_folio(list); 1932 1933 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 1934 list_del(&folio->lru); 1935 if (unlikely(!folio_evictable(folio))) { 1936 spin_unlock_irq(&lruvec->lru_lock); 1937 folio_putback_lru(folio); 1938 spin_lock_irq(&lruvec->lru_lock); 1939 continue; 1940 } 1941 1942 /* 1943 * The folio_set_lru needs to be kept here for list integrity. 1944 * Otherwise: 1945 * #0 move_folios_to_lru #1 release_pages 1946 * if (!folio_put_testzero()) 1947 * if (folio_put_testzero()) 1948 * !lru //skip lru_lock 1949 * folio_set_lru() 1950 * list_add(&folio->lru,) 1951 * list_add(&folio->lru,) 1952 */ 1953 folio_set_lru(folio); 1954 1955 if (unlikely(folio_put_testzero(folio))) { 1956 __folio_clear_lru_flags(folio); 1957 1958 folio_unqueue_deferred_split(folio); 1959 if (folio_batch_add(&free_folios, folio) == 0) { 1960 spin_unlock_irq(&lruvec->lru_lock); 1961 mem_cgroup_uncharge_folios(&free_folios); 1962 free_unref_folios(&free_folios); 1963 spin_lock_irq(&lruvec->lru_lock); 1964 } 1965 1966 continue; 1967 } 1968 1969 /* 1970 * All pages were isolated from the same lruvec (and isolation 1971 * inhibits memcg migration). 1972 */ 1973 VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio); 1974 lruvec_add_folio(lruvec, folio); 1975 nr_pages = folio_nr_pages(folio); 1976 nr_moved += nr_pages; 1977 if (folio_test_active(folio)) 1978 workingset_age_nonresident(lruvec, nr_pages); 1979 } 1980 1981 if (free_folios.nr) { 1982 spin_unlock_irq(&lruvec->lru_lock); 1983 mem_cgroup_uncharge_folios(&free_folios); 1984 free_unref_folios(&free_folios); 1985 spin_lock_irq(&lruvec->lru_lock); 1986 } 1987 1988 return nr_moved; 1989 } 1990 1991 /* 1992 * If a kernel thread (such as nfsd for loop-back mounts) services a backing 1993 * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case 1994 * we should not throttle. Otherwise it is safe to do so. 1995 */ 1996 static int current_may_throttle(void) 1997 { 1998 return !(current->flags & PF_LOCAL_THROTTLE); 1999 } 2000 2001 /* 2002 * shrink_inactive_list() is a helper for shrink_node(). It returns the number 2003 * of reclaimed pages 2004 */ 2005 static unsigned long shrink_inactive_list(unsigned long nr_to_scan, 2006 struct lruvec *lruvec, struct scan_control *sc, 2007 enum lru_list lru) 2008 { 2009 LIST_HEAD(folio_list); 2010 unsigned long nr_scanned; 2011 unsigned int nr_reclaimed = 0; 2012 unsigned long nr_taken; 2013 struct reclaim_stat stat; 2014 bool file = is_file_lru(lru); 2015 enum vm_event_item item; 2016 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2017 bool stalled = false; 2018 2019 while (unlikely(too_many_isolated(pgdat, file, sc))) { 2020 if (stalled) 2021 return 0; 2022 2023 /* wait a bit for the reclaimer. */ 2024 stalled = true; 2025 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED); 2026 2027 /* We are about to die and free our memory. Return now. */ 2028 if (fatal_signal_pending(current)) 2029 return SWAP_CLUSTER_MAX; 2030 } 2031 2032 lru_add_drain(); 2033 2034 spin_lock_irq(&lruvec->lru_lock); 2035 2036 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &folio_list, 2037 &nr_scanned, sc, lru); 2038 2039 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2040 item = PGSCAN_KSWAPD + reclaimer_offset(sc); 2041 if (!cgroup_reclaim(sc)) 2042 __count_vm_events(item, nr_scanned); 2043 count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned); 2044 __count_vm_events(PGSCAN_ANON + file, nr_scanned); 2045 2046 spin_unlock_irq(&lruvec->lru_lock); 2047 2048 if (nr_taken == 0) 2049 return 0; 2050 2051 nr_reclaimed = shrink_folio_list(&folio_list, pgdat, sc, &stat, false, 2052 lruvec_memcg(lruvec)); 2053 2054 spin_lock_irq(&lruvec->lru_lock); 2055 move_folios_to_lru(lruvec, &folio_list); 2056 2057 __mod_lruvec_state(lruvec, PGDEMOTE_KSWAPD + reclaimer_offset(sc), 2058 stat.nr_demoted); 2059 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2060 item = PGSTEAL_KSWAPD + reclaimer_offset(sc); 2061 if (!cgroup_reclaim(sc)) 2062 __count_vm_events(item, nr_reclaimed); 2063 count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed); 2064 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed); 2065 2066 lru_note_cost_unlock_irq(lruvec, file, stat.nr_pageout, 2067 nr_scanned - nr_reclaimed); 2068 2069 /* 2070 * If dirty folios are scanned that are not queued for IO, it 2071 * implies that flushers are not doing their job. This can 2072 * happen when memory pressure pushes dirty folios to the end of 2073 * the LRU before the dirty limits are breached and the dirty 2074 * data has expired. It can also happen when the proportion of 2075 * dirty folios grows not through writes but through memory 2076 * pressure reclaiming all the clean cache. And in some cases, 2077 * the flushers simply cannot keep up with the allocation 2078 * rate. Nudge the flusher threads in case they are asleep. 2079 */ 2080 if (stat.nr_unqueued_dirty == nr_taken) { 2081 wakeup_flusher_threads(WB_REASON_VMSCAN); 2082 /* 2083 * For cgroupv1 dirty throttling is achieved by waking up 2084 * the kernel flusher here and later waiting on folios 2085 * which are in writeback to finish (see shrink_folio_list()). 2086 * 2087 * Flusher may not be able to issue writeback quickly 2088 * enough for cgroupv1 writeback throttling to work 2089 * on a large system. 2090 */ 2091 if (!writeback_throttling_sane(sc)) 2092 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK); 2093 } 2094 2095 sc->nr.dirty += stat.nr_dirty; 2096 sc->nr.congested += stat.nr_congested; 2097 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty; 2098 sc->nr.writeback += stat.nr_writeback; 2099 sc->nr.immediate += stat.nr_immediate; 2100 sc->nr.taken += nr_taken; 2101 if (file) 2102 sc->nr.file_taken += nr_taken; 2103 2104 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 2105 nr_scanned, nr_reclaimed, &stat, sc->priority, file); 2106 return nr_reclaimed; 2107 } 2108 2109 /* 2110 * shrink_active_list() moves folios from the active LRU to the inactive LRU. 2111 * 2112 * We move them the other way if the folio is referenced by one or more 2113 * processes. 2114 * 2115 * If the folios are mostly unmapped, the processing is fast and it is 2116 * appropriate to hold lru_lock across the whole operation. But if 2117 * the folios are mapped, the processing is slow (folio_referenced()), so 2118 * we should drop lru_lock around each folio. It's impossible to balance 2119 * this, so instead we remove the folios from the LRU while processing them. 2120 * It is safe to rely on the active flag against the non-LRU folios in here 2121 * because nobody will play with that bit on a non-LRU folio. 2122 * 2123 * The downside is that we have to touch folio->_refcount against each folio. 2124 * But we had to alter folio->flags anyway. 2125 */ 2126 static void shrink_active_list(unsigned long nr_to_scan, 2127 struct lruvec *lruvec, 2128 struct scan_control *sc, 2129 enum lru_list lru) 2130 { 2131 unsigned long nr_taken; 2132 unsigned long nr_scanned; 2133 vm_flags_t vm_flags; 2134 LIST_HEAD(l_hold); /* The folios which were snipped off */ 2135 LIST_HEAD(l_active); 2136 LIST_HEAD(l_inactive); 2137 unsigned nr_deactivate, nr_activate; 2138 unsigned nr_rotated = 0; 2139 bool file = is_file_lru(lru); 2140 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2141 2142 lru_add_drain(); 2143 2144 spin_lock_irq(&lruvec->lru_lock); 2145 2146 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &l_hold, 2147 &nr_scanned, sc, lru); 2148 2149 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2150 2151 if (!cgroup_reclaim(sc)) 2152 __count_vm_events(PGREFILL, nr_scanned); 2153 count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned); 2154 2155 spin_unlock_irq(&lruvec->lru_lock); 2156 2157 while (!list_empty(&l_hold)) { 2158 struct folio *folio; 2159 2160 cond_resched(); 2161 folio = lru_to_folio(&l_hold); 2162 list_del(&folio->lru); 2163 2164 if (unlikely(!folio_evictable(folio))) { 2165 folio_putback_lru(folio); 2166 continue; 2167 } 2168 2169 if (unlikely(buffer_heads_over_limit)) { 2170 if (folio_needs_release(folio) && 2171 folio_trylock(folio)) { 2172 filemap_release_folio(folio, 0); 2173 folio_unlock(folio); 2174 } 2175 } 2176 2177 /* Referenced or rmap lock contention: rotate */ 2178 if (folio_referenced(folio, 0, sc->target_mem_cgroup, 2179 &vm_flags) != 0) { 2180 /* 2181 * Identify referenced, file-backed active folios and 2182 * give them one more trip around the active list. So 2183 * that executable code get better chances to stay in 2184 * memory under moderate memory pressure. Anon folios 2185 * are not likely to be evicted by use-once streaming 2186 * IO, plus JVM can create lots of anon VM_EXEC folios, 2187 * so we ignore them here. 2188 */ 2189 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) { 2190 nr_rotated += folio_nr_pages(folio); 2191 list_add(&folio->lru, &l_active); 2192 continue; 2193 } 2194 } 2195 2196 folio_clear_active(folio); /* we are de-activating */ 2197 folio_set_workingset(folio); 2198 list_add(&folio->lru, &l_inactive); 2199 } 2200 2201 /* 2202 * Move folios back to the lru list. 2203 */ 2204 spin_lock_irq(&lruvec->lru_lock); 2205 2206 nr_activate = move_folios_to_lru(lruvec, &l_active); 2207 nr_deactivate = move_folios_to_lru(lruvec, &l_inactive); 2208 2209 __count_vm_events(PGDEACTIVATE, nr_deactivate); 2210 count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate); 2211 2212 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2213 2214 lru_note_cost_unlock_irq(lruvec, file, 0, nr_rotated); 2215 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate, 2216 nr_deactivate, nr_rotated, sc->priority, file); 2217 } 2218 2219 static unsigned int reclaim_folio_list(struct list_head *folio_list, 2220 struct pglist_data *pgdat) 2221 { 2222 struct reclaim_stat stat; 2223 unsigned int nr_reclaimed; 2224 struct folio *folio; 2225 struct scan_control sc = { 2226 .gfp_mask = GFP_KERNEL, 2227 .may_writepage = 1, 2228 .may_unmap = 1, 2229 .may_swap = 1, 2230 .no_demotion = 1, 2231 }; 2232 2233 nr_reclaimed = shrink_folio_list(folio_list, pgdat, &sc, &stat, true, NULL); 2234 while (!list_empty(folio_list)) { 2235 folio = lru_to_folio(folio_list); 2236 list_del(&folio->lru); 2237 folio_putback_lru(folio); 2238 } 2239 trace_mm_vmscan_reclaim_pages(pgdat->node_id, sc.nr_scanned, nr_reclaimed, &stat); 2240 2241 return nr_reclaimed; 2242 } 2243 2244 unsigned long reclaim_pages(struct list_head *folio_list) 2245 { 2246 int nid; 2247 unsigned int nr_reclaimed = 0; 2248 LIST_HEAD(node_folio_list); 2249 unsigned int noreclaim_flag; 2250 2251 if (list_empty(folio_list)) 2252 return nr_reclaimed; 2253 2254 noreclaim_flag = memalloc_noreclaim_save(); 2255 2256 nid = folio_nid(lru_to_folio(folio_list)); 2257 do { 2258 struct folio *folio = lru_to_folio(folio_list); 2259 2260 if (nid == folio_nid(folio)) { 2261 folio_clear_active(folio); 2262 list_move(&folio->lru, &node_folio_list); 2263 continue; 2264 } 2265 2266 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid)); 2267 nid = folio_nid(lru_to_folio(folio_list)); 2268 } while (!list_empty(folio_list)); 2269 2270 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid)); 2271 2272 memalloc_noreclaim_restore(noreclaim_flag); 2273 2274 return nr_reclaimed; 2275 } 2276 2277 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 2278 struct lruvec *lruvec, struct scan_control *sc) 2279 { 2280 if (is_active_lru(lru)) { 2281 if (sc->may_deactivate & (1 << is_file_lru(lru))) 2282 shrink_active_list(nr_to_scan, lruvec, sc, lru); 2283 else 2284 sc->skipped_deactivate = 1; 2285 return 0; 2286 } 2287 2288 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 2289 } 2290 2291 /* 2292 * The inactive anon list should be small enough that the VM never has 2293 * to do too much work. 2294 * 2295 * The inactive file list should be small enough to leave most memory 2296 * to the established workingset on the scan-resistant active list, 2297 * but large enough to avoid thrashing the aggregate readahead window. 2298 * 2299 * Both inactive lists should also be large enough that each inactive 2300 * folio has a chance to be referenced again before it is reclaimed. 2301 * 2302 * If that fails and refaulting is observed, the inactive list grows. 2303 * 2304 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE folios 2305 * on this LRU, maintained by the pageout code. An inactive_ratio 2306 * of 3 means 3:1 or 25% of the folios are kept on the inactive list. 2307 * 2308 * total target max 2309 * memory ratio inactive 2310 * ------------------------------------- 2311 * 10MB 1 5MB 2312 * 100MB 1 50MB 2313 * 1GB 3 250MB 2314 * 10GB 10 0.9GB 2315 * 100GB 31 3GB 2316 * 1TB 101 10GB 2317 * 10TB 320 32GB 2318 */ 2319 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru) 2320 { 2321 enum lru_list active_lru = inactive_lru + LRU_ACTIVE; 2322 unsigned long inactive, active; 2323 unsigned long inactive_ratio; 2324 unsigned long gb; 2325 2326 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru); 2327 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru); 2328 2329 gb = (inactive + active) >> (30 - PAGE_SHIFT); 2330 if (gb) 2331 inactive_ratio = int_sqrt(10 * gb); 2332 else 2333 inactive_ratio = 1; 2334 2335 return inactive * inactive_ratio < active; 2336 } 2337 2338 enum scan_balance { 2339 SCAN_EQUAL, 2340 SCAN_FRACT, 2341 SCAN_ANON, 2342 SCAN_FILE, 2343 }; 2344 2345 static void prepare_scan_control(pg_data_t *pgdat, struct scan_control *sc) 2346 { 2347 unsigned long file; 2348 struct lruvec *target_lruvec; 2349 2350 if (lru_gen_enabled()) 2351 return; 2352 2353 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat); 2354 2355 /* 2356 * Flush the memory cgroup stats in rate-limited way as we don't need 2357 * most accurate stats here. We may switch to regular stats flushing 2358 * in the future once it is cheap enough. 2359 */ 2360 mem_cgroup_flush_stats_ratelimited(sc->target_mem_cgroup); 2361 2362 /* 2363 * Determine the scan balance between anon and file LRUs. 2364 */ 2365 spin_lock_irq(&target_lruvec->lru_lock); 2366 sc->anon_cost = target_lruvec->anon_cost; 2367 sc->file_cost = target_lruvec->file_cost; 2368 spin_unlock_irq(&target_lruvec->lru_lock); 2369 2370 /* 2371 * Target desirable inactive:active list ratios for the anon 2372 * and file LRU lists. 2373 */ 2374 if (!sc->force_deactivate) { 2375 unsigned long refaults; 2376 2377 /* 2378 * When refaults are being observed, it means a new 2379 * workingset is being established. Deactivate to get 2380 * rid of any stale active pages quickly. 2381 */ 2382 refaults = lruvec_page_state(target_lruvec, 2383 WORKINGSET_ACTIVATE_ANON); 2384 if (refaults != target_lruvec->refaults[WORKINGSET_ANON] || 2385 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON)) 2386 sc->may_deactivate |= DEACTIVATE_ANON; 2387 else 2388 sc->may_deactivate &= ~DEACTIVATE_ANON; 2389 2390 refaults = lruvec_page_state(target_lruvec, 2391 WORKINGSET_ACTIVATE_FILE); 2392 if (refaults != target_lruvec->refaults[WORKINGSET_FILE] || 2393 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE)) 2394 sc->may_deactivate |= DEACTIVATE_FILE; 2395 else 2396 sc->may_deactivate &= ~DEACTIVATE_FILE; 2397 } else 2398 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE; 2399 2400 /* 2401 * If we have plenty of inactive file pages that aren't 2402 * thrashing, try to reclaim those first before touching 2403 * anonymous pages. 2404 */ 2405 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE); 2406 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE) && 2407 !sc->no_cache_trim_mode) 2408 sc->cache_trim_mode = 1; 2409 else 2410 sc->cache_trim_mode = 0; 2411 2412 /* 2413 * Prevent the reclaimer from falling into the cache trap: as 2414 * cache pages start out inactive, every cache fault will tip 2415 * the scan balance towards the file LRU. And as the file LRU 2416 * shrinks, so does the window for rotation from references. 2417 * This means we have a runaway feedback loop where a tiny 2418 * thrashing file LRU becomes infinitely more attractive than 2419 * anon pages. Try to detect this based on file LRU size. 2420 */ 2421 if (!cgroup_reclaim(sc)) { 2422 unsigned long total_high_wmark = 0; 2423 unsigned long free, anon; 2424 int z; 2425 struct zone *zone; 2426 2427 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES); 2428 file = node_page_state(pgdat, NR_ACTIVE_FILE) + 2429 node_page_state(pgdat, NR_INACTIVE_FILE); 2430 2431 for_each_managed_zone_pgdat(zone, pgdat, z, MAX_NR_ZONES - 1) { 2432 total_high_wmark += high_wmark_pages(zone); 2433 } 2434 2435 /* 2436 * Consider anon: if that's low too, this isn't a 2437 * runaway file reclaim problem, but rather just 2438 * extreme pressure. Reclaim as per usual then. 2439 */ 2440 anon = node_page_state(pgdat, NR_INACTIVE_ANON); 2441 2442 sc->file_is_tiny = 2443 file + free <= total_high_wmark && 2444 !(sc->may_deactivate & DEACTIVATE_ANON) && 2445 anon >> sc->priority; 2446 } 2447 } 2448 2449 static inline void calculate_pressure_balance(struct scan_control *sc, 2450 int swappiness, u64 *fraction, u64 *denominator) 2451 { 2452 unsigned long anon_cost, file_cost, total_cost; 2453 unsigned long ap, fp; 2454 2455 /* 2456 * Calculate the pressure balance between anon and file pages. 2457 * 2458 * The amount of pressure we put on each LRU is inversely 2459 * proportional to the cost of reclaiming each list, as 2460 * determined by the share of pages that are refaulting, times 2461 * the relative IO cost of bringing back a swapped out 2462 * anonymous page vs reloading a filesystem page (swappiness). 2463 * 2464 * Although we limit that influence to ensure no list gets 2465 * left behind completely: at least a third of the pressure is 2466 * applied, before swappiness. 2467 * 2468 * With swappiness at 100, anon and file have equal IO cost. 2469 */ 2470 total_cost = sc->anon_cost + sc->file_cost; 2471 anon_cost = total_cost + sc->anon_cost; 2472 file_cost = total_cost + sc->file_cost; 2473 total_cost = anon_cost + file_cost; 2474 2475 ap = swappiness * (total_cost + 1); 2476 ap /= anon_cost + 1; 2477 2478 fp = (MAX_SWAPPINESS - swappiness) * (total_cost + 1); 2479 fp /= file_cost + 1; 2480 2481 fraction[WORKINGSET_ANON] = ap; 2482 fraction[WORKINGSET_FILE] = fp; 2483 *denominator = ap + fp; 2484 } 2485 2486 static unsigned long apply_proportional_protection(struct mem_cgroup *memcg, 2487 struct scan_control *sc, unsigned long scan) 2488 { 2489 unsigned long min, low; 2490 2491 mem_cgroup_protection(sc->target_mem_cgroup, memcg, &min, &low); 2492 2493 if (min || low) { 2494 /* 2495 * Scale a cgroup's reclaim pressure by proportioning 2496 * its current usage to its memory.low or memory.min 2497 * setting. 2498 * 2499 * This is important, as otherwise scanning aggression 2500 * becomes extremely binary -- from nothing as we 2501 * approach the memory protection threshold, to totally 2502 * nominal as we exceed it. This results in requiring 2503 * setting extremely liberal protection thresholds. It 2504 * also means we simply get no protection at all if we 2505 * set it too low, which is not ideal. 2506 * 2507 * If there is any protection in place, we reduce scan 2508 * pressure by how much of the total memory used is 2509 * within protection thresholds. 2510 * 2511 * There is one special case: in the first reclaim pass, 2512 * we skip over all groups that are within their low 2513 * protection. If that fails to reclaim enough pages to 2514 * satisfy the reclaim goal, we come back and override 2515 * the best-effort low protection. However, we still 2516 * ideally want to honor how well-behaved groups are in 2517 * that case instead of simply punishing them all 2518 * equally. As such, we reclaim them based on how much 2519 * memory they are using, reducing the scan pressure 2520 * again by how much of the total memory used is under 2521 * hard protection. 2522 */ 2523 unsigned long cgroup_size = mem_cgroup_size(memcg); 2524 unsigned long protection; 2525 2526 /* memory.low scaling, make sure we retry before OOM */ 2527 if (!sc->memcg_low_reclaim && low > min) { 2528 protection = low; 2529 sc->memcg_low_skipped = 1; 2530 } else { 2531 protection = min; 2532 } 2533 2534 /* Avoid TOCTOU with earlier protection check */ 2535 cgroup_size = max(cgroup_size, protection); 2536 2537 scan -= scan * protection / (cgroup_size + 1); 2538 2539 /* 2540 * Minimally target SWAP_CLUSTER_MAX pages to keep 2541 * reclaim moving forwards, avoiding decrementing 2542 * sc->priority further than desirable. 2543 */ 2544 scan = max(scan, SWAP_CLUSTER_MAX); 2545 } 2546 return scan; 2547 } 2548 2549 /* 2550 * Determine how aggressively the anon and file LRU lists should be 2551 * scanned. 2552 * 2553 * nr[0] = anon inactive folios to scan; nr[1] = anon active folios to scan 2554 * nr[2] = file inactive folios to scan; nr[3] = file active folios to scan 2555 */ 2556 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc, 2557 unsigned long *nr) 2558 { 2559 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2560 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 2561 int swappiness = sc_swappiness(sc, memcg); 2562 u64 fraction[ANON_AND_FILE]; 2563 u64 denominator = 0; /* gcc */ 2564 enum scan_balance scan_balance; 2565 enum lru_list lru; 2566 2567 /* If we have no swap space, do not bother scanning anon folios. */ 2568 if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) { 2569 scan_balance = SCAN_FILE; 2570 goto out; 2571 } 2572 2573 /* 2574 * Global reclaim will swap to prevent OOM even with no 2575 * swappiness, but memcg users want to use this knob to 2576 * disable swapping for individual groups completely when 2577 * using the memory controller's swap limit feature would be 2578 * too expensive. 2579 */ 2580 if (cgroup_reclaim(sc) && !swappiness) { 2581 scan_balance = SCAN_FILE; 2582 goto out; 2583 } 2584 2585 /* Proactive reclaim initiated by userspace for anonymous memory only */ 2586 if (swappiness == SWAPPINESS_ANON_ONLY) { 2587 WARN_ON_ONCE(!sc->proactive); 2588 scan_balance = SCAN_ANON; 2589 goto out; 2590 } 2591 2592 /* 2593 * Do not apply any pressure balancing cleverness when the 2594 * system is close to OOM, scan both anon and file equally 2595 * (unless the swappiness setting disagrees with swapping). 2596 */ 2597 if (!sc->priority && swappiness) { 2598 scan_balance = SCAN_EQUAL; 2599 goto out; 2600 } 2601 2602 /* 2603 * If the system is almost out of file pages, force-scan anon. 2604 */ 2605 if (sc->file_is_tiny) { 2606 scan_balance = SCAN_ANON; 2607 goto out; 2608 } 2609 2610 /* 2611 * If there is enough inactive page cache, we do not reclaim 2612 * anything from the anonymous working right now to make sure 2613 * a streaming file access pattern doesn't cause swapping. 2614 */ 2615 if (sc->cache_trim_mode) { 2616 scan_balance = SCAN_FILE; 2617 goto out; 2618 } 2619 2620 scan_balance = SCAN_FRACT; 2621 calculate_pressure_balance(sc, swappiness, fraction, &denominator); 2622 2623 out: 2624 for_each_evictable_lru(lru) { 2625 bool file = is_file_lru(lru); 2626 unsigned long lruvec_size; 2627 unsigned long scan; 2628 2629 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx); 2630 scan = apply_proportional_protection(memcg, sc, lruvec_size); 2631 scan >>= sc->priority; 2632 2633 /* 2634 * If the cgroup's already been deleted, make sure to 2635 * scrape out the remaining cache. 2636 */ 2637 if (!scan && !mem_cgroup_online(memcg)) 2638 scan = min(lruvec_size, SWAP_CLUSTER_MAX); 2639 2640 switch (scan_balance) { 2641 case SCAN_EQUAL: 2642 /* Scan lists relative to size */ 2643 break; 2644 case SCAN_FRACT: 2645 /* 2646 * Scan types proportional to swappiness and 2647 * their relative recent reclaim efficiency. 2648 * Make sure we don't miss the last page on 2649 * the offlined memory cgroups because of a 2650 * round-off error. 2651 */ 2652 scan = mem_cgroup_online(memcg) ? 2653 div64_u64(scan * fraction[file], denominator) : 2654 DIV64_U64_ROUND_UP(scan * fraction[file], 2655 denominator); 2656 break; 2657 case SCAN_FILE: 2658 case SCAN_ANON: 2659 /* Scan one type exclusively */ 2660 if ((scan_balance == SCAN_FILE) != file) 2661 scan = 0; 2662 break; 2663 default: 2664 /* Look ma, no brain */ 2665 BUG(); 2666 } 2667 2668 nr[lru] = scan; 2669 } 2670 } 2671 2672 /* 2673 * Anonymous LRU management is a waste if there is 2674 * ultimately no way to reclaim the memory. 2675 */ 2676 static bool can_age_anon_pages(struct lruvec *lruvec, 2677 struct scan_control *sc) 2678 { 2679 /* Aging the anon LRU is valuable if swap is present: */ 2680 if (total_swap_pages > 0) 2681 return true; 2682 2683 /* Also valuable if anon pages can be demoted: */ 2684 return can_demote(lruvec_pgdat(lruvec)->node_id, sc, 2685 lruvec_memcg(lruvec)); 2686 } 2687 2688 #ifdef CONFIG_LRU_GEN 2689 2690 #ifdef CONFIG_LRU_GEN_ENABLED 2691 DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS); 2692 #define get_cap(cap) static_branch_likely(&lru_gen_caps[cap]) 2693 #else 2694 DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS); 2695 #define get_cap(cap) static_branch_unlikely(&lru_gen_caps[cap]) 2696 #endif 2697 2698 static bool should_walk_mmu(void) 2699 { 2700 return arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK); 2701 } 2702 2703 static bool should_clear_pmd_young(void) 2704 { 2705 return arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG); 2706 } 2707 2708 /****************************************************************************** 2709 * shorthand helpers 2710 ******************************************************************************/ 2711 2712 #define DEFINE_MAX_SEQ(lruvec) \ 2713 unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq) 2714 2715 #define DEFINE_MIN_SEQ(lruvec) \ 2716 unsigned long min_seq[ANON_AND_FILE] = { \ 2717 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]), \ 2718 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]), \ 2719 } 2720 2721 /* Get the min/max evictable type based on swappiness */ 2722 #define min_type(swappiness) (!(swappiness)) 2723 #define max_type(swappiness) ((swappiness) < SWAPPINESS_ANON_ONLY) 2724 2725 #define evictable_min_seq(min_seq, swappiness) \ 2726 min((min_seq)[min_type(swappiness)], (min_seq)[max_type(swappiness)]) 2727 2728 #define for_each_gen_type_zone(gen, type, zone) \ 2729 for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++) \ 2730 for ((type) = 0; (type) < ANON_AND_FILE; (type)++) \ 2731 for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++) 2732 2733 #define for_each_evictable_type(type, swappiness) \ 2734 for ((type) = min_type(swappiness); (type) <= max_type(swappiness); (type)++) 2735 2736 #define get_memcg_gen(seq) ((seq) % MEMCG_NR_GENS) 2737 #define get_memcg_bin(bin) ((bin) % MEMCG_NR_BINS) 2738 2739 static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid) 2740 { 2741 struct pglist_data *pgdat = NODE_DATA(nid); 2742 2743 #ifdef CONFIG_MEMCG 2744 if (memcg) { 2745 struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec; 2746 2747 /* see the comment in mem_cgroup_lruvec() */ 2748 if (!lruvec->pgdat) 2749 lruvec->pgdat = pgdat; 2750 2751 return lruvec; 2752 } 2753 #endif 2754 VM_WARN_ON_ONCE(!mem_cgroup_disabled()); 2755 2756 return &pgdat->__lruvec; 2757 } 2758 2759 static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc) 2760 { 2761 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 2762 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2763 2764 if (!sc->may_swap) 2765 return 0; 2766 2767 if (!can_demote(pgdat->node_id, sc, memcg) && 2768 mem_cgroup_get_nr_swap_pages(memcg) < MIN_LRU_BATCH) 2769 return 0; 2770 2771 return sc_swappiness(sc, memcg); 2772 } 2773 2774 static int get_nr_gens(struct lruvec *lruvec, int type) 2775 { 2776 return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1; 2777 } 2778 2779 static bool __maybe_unused seq_is_valid(struct lruvec *lruvec) 2780 { 2781 int type; 2782 2783 for (type = 0; type < ANON_AND_FILE; type++) { 2784 int n = get_nr_gens(lruvec, type); 2785 2786 if (n < MIN_NR_GENS || n > MAX_NR_GENS) 2787 return false; 2788 } 2789 2790 return true; 2791 } 2792 2793 /****************************************************************************** 2794 * Bloom filters 2795 ******************************************************************************/ 2796 2797 /* 2798 * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when 2799 * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of 2800 * bits in a bitmap, k is the number of hash functions and n is the number of 2801 * inserted items. 2802 * 2803 * Page table walkers use one of the two filters to reduce their search space. 2804 * To get rid of non-leaf entries that no longer have enough leaf entries, the 2805 * aging uses the double-buffering technique to flip to the other filter each 2806 * time it produces a new generation. For non-leaf entries that have enough 2807 * leaf entries, the aging carries them over to the next generation in 2808 * walk_pmd_range(); the eviction also report them when walking the rmap 2809 * in lru_gen_look_around(). 2810 * 2811 * For future optimizations: 2812 * 1. It's not necessary to keep both filters all the time. The spare one can be 2813 * freed after the RCU grace period and reallocated if needed again. 2814 * 2. And when reallocating, it's worth scaling its size according to the number 2815 * of inserted entries in the other filter, to reduce the memory overhead on 2816 * small systems and false positives on large systems. 2817 * 3. Jenkins' hash function is an alternative to Knuth's. 2818 */ 2819 #define BLOOM_FILTER_SHIFT 15 2820 2821 static inline int filter_gen_from_seq(unsigned long seq) 2822 { 2823 return seq % NR_BLOOM_FILTERS; 2824 } 2825 2826 static void get_item_key(void *item, int *key) 2827 { 2828 u32 hash = hash_ptr(item, BLOOM_FILTER_SHIFT * 2); 2829 2830 BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32)); 2831 2832 key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1); 2833 key[1] = hash >> BLOOM_FILTER_SHIFT; 2834 } 2835 2836 static bool test_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq, 2837 void *item) 2838 { 2839 int key[2]; 2840 unsigned long *filter; 2841 int gen = filter_gen_from_seq(seq); 2842 2843 filter = READ_ONCE(mm_state->filters[gen]); 2844 if (!filter) 2845 return true; 2846 2847 get_item_key(item, key); 2848 2849 return test_bit(key[0], filter) && test_bit(key[1], filter); 2850 } 2851 2852 static void update_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq, 2853 void *item) 2854 { 2855 int key[2]; 2856 unsigned long *filter; 2857 int gen = filter_gen_from_seq(seq); 2858 2859 filter = READ_ONCE(mm_state->filters[gen]); 2860 if (!filter) 2861 return; 2862 2863 get_item_key(item, key); 2864 2865 if (!test_bit(key[0], filter)) 2866 set_bit(key[0], filter); 2867 if (!test_bit(key[1], filter)) 2868 set_bit(key[1], filter); 2869 } 2870 2871 static void reset_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq) 2872 { 2873 unsigned long *filter; 2874 int gen = filter_gen_from_seq(seq); 2875 2876 filter = mm_state->filters[gen]; 2877 if (filter) { 2878 bitmap_clear(filter, 0, BIT(BLOOM_FILTER_SHIFT)); 2879 return; 2880 } 2881 2882 filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT), 2883 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN); 2884 WRITE_ONCE(mm_state->filters[gen], filter); 2885 } 2886 2887 /****************************************************************************** 2888 * mm_struct list 2889 ******************************************************************************/ 2890 2891 #ifdef CONFIG_LRU_GEN_WALKS_MMU 2892 2893 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg) 2894 { 2895 static struct lru_gen_mm_list mm_list = { 2896 .fifo = LIST_HEAD_INIT(mm_list.fifo), 2897 .lock = __SPIN_LOCK_UNLOCKED(mm_list.lock), 2898 }; 2899 2900 #ifdef CONFIG_MEMCG 2901 if (memcg) 2902 return &memcg->mm_list; 2903 #endif 2904 VM_WARN_ON_ONCE(!mem_cgroup_disabled()); 2905 2906 return &mm_list; 2907 } 2908 2909 static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec) 2910 { 2911 return &lruvec->mm_state; 2912 } 2913 2914 static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk) 2915 { 2916 int key; 2917 struct mm_struct *mm; 2918 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 2919 struct lru_gen_mm_state *mm_state = get_mm_state(walk->lruvec); 2920 2921 mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list); 2922 key = pgdat->node_id % BITS_PER_TYPE(mm->lru_gen.bitmap); 2923 2924 if (!walk->force_scan && !test_bit(key, &mm->lru_gen.bitmap)) 2925 return NULL; 2926 2927 clear_bit(key, &mm->lru_gen.bitmap); 2928 2929 return mmget_not_zero(mm) ? mm : NULL; 2930 } 2931 2932 void lru_gen_add_mm(struct mm_struct *mm) 2933 { 2934 int nid; 2935 struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm); 2936 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 2937 2938 VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list)); 2939 #ifdef CONFIG_MEMCG 2940 VM_WARN_ON_ONCE(mm->lru_gen.memcg); 2941 mm->lru_gen.memcg = memcg; 2942 #endif 2943 spin_lock(&mm_list->lock); 2944 2945 for_each_node_state(nid, N_MEMORY) { 2946 struct lruvec *lruvec = get_lruvec(memcg, nid); 2947 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 2948 2949 /* the first addition since the last iteration */ 2950 if (mm_state->tail == &mm_list->fifo) 2951 mm_state->tail = &mm->lru_gen.list; 2952 } 2953 2954 list_add_tail(&mm->lru_gen.list, &mm_list->fifo); 2955 2956 spin_unlock(&mm_list->lock); 2957 } 2958 2959 void lru_gen_del_mm(struct mm_struct *mm) 2960 { 2961 int nid; 2962 struct lru_gen_mm_list *mm_list; 2963 struct mem_cgroup *memcg = NULL; 2964 2965 if (list_empty(&mm->lru_gen.list)) 2966 return; 2967 2968 #ifdef CONFIG_MEMCG 2969 memcg = mm->lru_gen.memcg; 2970 #endif 2971 mm_list = get_mm_list(memcg); 2972 2973 spin_lock(&mm_list->lock); 2974 2975 for_each_node(nid) { 2976 struct lruvec *lruvec = get_lruvec(memcg, nid); 2977 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 2978 2979 /* where the current iteration continues after */ 2980 if (mm_state->head == &mm->lru_gen.list) 2981 mm_state->head = mm_state->head->prev; 2982 2983 /* where the last iteration ended before */ 2984 if (mm_state->tail == &mm->lru_gen.list) 2985 mm_state->tail = mm_state->tail->next; 2986 } 2987 2988 list_del_init(&mm->lru_gen.list); 2989 2990 spin_unlock(&mm_list->lock); 2991 2992 #ifdef CONFIG_MEMCG 2993 mem_cgroup_put(mm->lru_gen.memcg); 2994 mm->lru_gen.memcg = NULL; 2995 #endif 2996 } 2997 2998 #ifdef CONFIG_MEMCG 2999 void lru_gen_migrate_mm(struct mm_struct *mm) 3000 { 3001 struct mem_cgroup *memcg; 3002 struct task_struct *task = rcu_dereference_protected(mm->owner, true); 3003 3004 VM_WARN_ON_ONCE(task->mm != mm); 3005 lockdep_assert_held(&task->alloc_lock); 3006 3007 /* for mm_update_next_owner() */ 3008 if (mem_cgroup_disabled()) 3009 return; 3010 3011 /* migration can happen before addition */ 3012 if (!mm->lru_gen.memcg) 3013 return; 3014 3015 rcu_read_lock(); 3016 memcg = mem_cgroup_from_task(task); 3017 rcu_read_unlock(); 3018 if (memcg == mm->lru_gen.memcg) 3019 return; 3020 3021 VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list)); 3022 3023 lru_gen_del_mm(mm); 3024 lru_gen_add_mm(mm); 3025 } 3026 #endif 3027 3028 #else /* !CONFIG_LRU_GEN_WALKS_MMU */ 3029 3030 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg) 3031 { 3032 return NULL; 3033 } 3034 3035 static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec) 3036 { 3037 return NULL; 3038 } 3039 3040 static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk) 3041 { 3042 return NULL; 3043 } 3044 3045 #endif 3046 3047 static void reset_mm_stats(struct lru_gen_mm_walk *walk, bool last) 3048 { 3049 int i; 3050 int hist; 3051 struct lruvec *lruvec = walk->lruvec; 3052 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 3053 3054 lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock); 3055 3056 hist = lru_hist_from_seq(walk->seq); 3057 3058 for (i = 0; i < NR_MM_STATS; i++) { 3059 WRITE_ONCE(mm_state->stats[hist][i], 3060 mm_state->stats[hist][i] + walk->mm_stats[i]); 3061 walk->mm_stats[i] = 0; 3062 } 3063 3064 if (NR_HIST_GENS > 1 && last) { 3065 hist = lru_hist_from_seq(walk->seq + 1); 3066 3067 for (i = 0; i < NR_MM_STATS; i++) 3068 WRITE_ONCE(mm_state->stats[hist][i], 0); 3069 } 3070 } 3071 3072 static bool iterate_mm_list(struct lru_gen_mm_walk *walk, struct mm_struct **iter) 3073 { 3074 bool first = false; 3075 bool last = false; 3076 struct mm_struct *mm = NULL; 3077 struct lruvec *lruvec = walk->lruvec; 3078 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 3079 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 3080 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 3081 3082 /* 3083 * mm_state->seq is incremented after each iteration of mm_list. There 3084 * are three interesting cases for this page table walker: 3085 * 1. It tries to start a new iteration with a stale max_seq: there is 3086 * nothing left to do. 3087 * 2. It started the next iteration: it needs to reset the Bloom filter 3088 * so that a fresh set of PTE tables can be recorded. 3089 * 3. It ended the current iteration: it needs to reset the mm stats 3090 * counters and tell its caller to increment max_seq. 3091 */ 3092 spin_lock(&mm_list->lock); 3093 3094 VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->seq); 3095 3096 if (walk->seq <= mm_state->seq) 3097 goto done; 3098 3099 if (!mm_state->head) 3100 mm_state->head = &mm_list->fifo; 3101 3102 if (mm_state->head == &mm_list->fifo) 3103 first = true; 3104 3105 do { 3106 mm_state->head = mm_state->head->next; 3107 if (mm_state->head == &mm_list->fifo) { 3108 WRITE_ONCE(mm_state->seq, mm_state->seq + 1); 3109 last = true; 3110 break; 3111 } 3112 3113 /* force scan for those added after the last iteration */ 3114 if (!mm_state->tail || mm_state->tail == mm_state->head) { 3115 mm_state->tail = mm_state->head->next; 3116 walk->force_scan = true; 3117 } 3118 } while (!(mm = get_next_mm(walk))); 3119 done: 3120 if (*iter || last) 3121 reset_mm_stats(walk, last); 3122 3123 spin_unlock(&mm_list->lock); 3124 3125 if (mm && first) 3126 reset_bloom_filter(mm_state, walk->seq + 1); 3127 3128 if (*iter) 3129 mmput_async(*iter); 3130 3131 *iter = mm; 3132 3133 return last; 3134 } 3135 3136 static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long seq) 3137 { 3138 bool success = false; 3139 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 3140 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 3141 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 3142 3143 spin_lock(&mm_list->lock); 3144 3145 VM_WARN_ON_ONCE(mm_state->seq + 1 < seq); 3146 3147 if (seq > mm_state->seq) { 3148 mm_state->head = NULL; 3149 mm_state->tail = NULL; 3150 WRITE_ONCE(mm_state->seq, mm_state->seq + 1); 3151 success = true; 3152 } 3153 3154 spin_unlock(&mm_list->lock); 3155 3156 return success; 3157 } 3158 3159 /****************************************************************************** 3160 * PID controller 3161 ******************************************************************************/ 3162 3163 /* 3164 * A feedback loop based on Proportional-Integral-Derivative (PID) controller. 3165 * 3166 * The P term is refaulted/(evicted+protected) from a tier in the generation 3167 * currently being evicted; the I term is the exponential moving average of the 3168 * P term over the generations previously evicted, using the smoothing factor 3169 * 1/2; the D term isn't supported. 3170 * 3171 * The setpoint (SP) is always the first tier of one type; the process variable 3172 * (PV) is either any tier of the other type or any other tier of the same 3173 * type. 3174 * 3175 * The error is the difference between the SP and the PV; the correction is to 3176 * turn off protection when SP>PV or turn on protection when SP<PV. 3177 * 3178 * For future optimizations: 3179 * 1. The D term may discount the other two terms over time so that long-lived 3180 * generations can resist stale information. 3181 */ 3182 struct ctrl_pos { 3183 unsigned long refaulted; 3184 unsigned long total; 3185 int gain; 3186 }; 3187 3188 static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain, 3189 struct ctrl_pos *pos) 3190 { 3191 int i; 3192 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3193 int hist = lru_hist_from_seq(lrugen->min_seq[type]); 3194 3195 pos->gain = gain; 3196 pos->refaulted = pos->total = 0; 3197 3198 for (i = tier % MAX_NR_TIERS; i <= min(tier, MAX_NR_TIERS - 1); i++) { 3199 pos->refaulted += lrugen->avg_refaulted[type][i] + 3200 atomic_long_read(&lrugen->refaulted[hist][type][i]); 3201 pos->total += lrugen->avg_total[type][i] + 3202 lrugen->protected[hist][type][i] + 3203 atomic_long_read(&lrugen->evicted[hist][type][i]); 3204 } 3205 } 3206 3207 static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover) 3208 { 3209 int hist, tier; 3210 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3211 bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1; 3212 unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1; 3213 3214 lockdep_assert_held(&lruvec->lru_lock); 3215 3216 if (!carryover && !clear) 3217 return; 3218 3219 hist = lru_hist_from_seq(seq); 3220 3221 for (tier = 0; tier < MAX_NR_TIERS; tier++) { 3222 if (carryover) { 3223 unsigned long sum; 3224 3225 sum = lrugen->avg_refaulted[type][tier] + 3226 atomic_long_read(&lrugen->refaulted[hist][type][tier]); 3227 WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2); 3228 3229 sum = lrugen->avg_total[type][tier] + 3230 lrugen->protected[hist][type][tier] + 3231 atomic_long_read(&lrugen->evicted[hist][type][tier]); 3232 WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2); 3233 } 3234 3235 if (clear) { 3236 atomic_long_set(&lrugen->refaulted[hist][type][tier], 0); 3237 atomic_long_set(&lrugen->evicted[hist][type][tier], 0); 3238 WRITE_ONCE(lrugen->protected[hist][type][tier], 0); 3239 } 3240 } 3241 } 3242 3243 static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv) 3244 { 3245 /* 3246 * Return true if the PV has a limited number of refaults or a lower 3247 * refaulted/total than the SP. 3248 */ 3249 return pv->refaulted < MIN_LRU_BATCH || 3250 pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <= 3251 (sp->refaulted + 1) * pv->total * pv->gain; 3252 } 3253 3254 /****************************************************************************** 3255 * the aging 3256 ******************************************************************************/ 3257 3258 /* promote pages accessed through page tables */ 3259 static int folio_update_gen(struct folio *folio, int gen) 3260 { 3261 unsigned long new_flags, old_flags = READ_ONCE(folio->flags.f); 3262 3263 VM_WARN_ON_ONCE(gen >= MAX_NR_GENS); 3264 3265 /* see the comment on LRU_REFS_FLAGS */ 3266 if (!folio_test_referenced(folio) && !folio_test_workingset(folio)) { 3267 set_mask_bits(&folio->flags.f, LRU_REFS_MASK, BIT(PG_referenced)); 3268 return -1; 3269 } 3270 3271 do { 3272 /* lru_gen_del_folio() has isolated this page? */ 3273 if (!(old_flags & LRU_GEN_MASK)) 3274 return -1; 3275 3276 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_FLAGS); 3277 new_flags |= ((gen + 1UL) << LRU_GEN_PGOFF) | BIT(PG_workingset); 3278 } while (!try_cmpxchg(&folio->flags.f, &old_flags, new_flags)); 3279 3280 return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1; 3281 } 3282 3283 /* protect pages accessed multiple times through file descriptors */ 3284 static int folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming) 3285 { 3286 int type = folio_is_file_lru(folio); 3287 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3288 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]); 3289 unsigned long new_flags, old_flags = READ_ONCE(folio->flags.f); 3290 3291 VM_WARN_ON_ONCE_FOLIO(!(old_flags & LRU_GEN_MASK), folio); 3292 3293 do { 3294 new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1; 3295 /* folio_update_gen() has promoted this page? */ 3296 if (new_gen >= 0 && new_gen != old_gen) 3297 return new_gen; 3298 3299 new_gen = (old_gen + 1) % MAX_NR_GENS; 3300 3301 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_FLAGS); 3302 new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF; 3303 /* for folio_end_writeback() */ 3304 if (reclaiming) 3305 new_flags |= BIT(PG_reclaim); 3306 } while (!try_cmpxchg(&folio->flags.f, &old_flags, new_flags)); 3307 3308 lru_gen_update_size(lruvec, folio, old_gen, new_gen); 3309 3310 return new_gen; 3311 } 3312 3313 static void update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio, 3314 int old_gen, int new_gen) 3315 { 3316 int type = folio_is_file_lru(folio); 3317 int zone = folio_zonenum(folio); 3318 int delta = folio_nr_pages(folio); 3319 3320 VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS); 3321 VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS); 3322 3323 walk->batched++; 3324 3325 walk->nr_pages[old_gen][type][zone] -= delta; 3326 walk->nr_pages[new_gen][type][zone] += delta; 3327 } 3328 3329 static void reset_batch_size(struct lru_gen_mm_walk *walk) 3330 { 3331 int gen, type, zone; 3332 struct lruvec *lruvec = walk->lruvec; 3333 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3334 3335 walk->batched = 0; 3336 3337 for_each_gen_type_zone(gen, type, zone) { 3338 enum lru_list lru = type * LRU_INACTIVE_FILE; 3339 int delta = walk->nr_pages[gen][type][zone]; 3340 3341 if (!delta) 3342 continue; 3343 3344 walk->nr_pages[gen][type][zone] = 0; 3345 WRITE_ONCE(lrugen->nr_pages[gen][type][zone], 3346 lrugen->nr_pages[gen][type][zone] + delta); 3347 3348 if (lru_gen_is_active(lruvec, gen)) 3349 lru += LRU_ACTIVE; 3350 __update_lru_size(lruvec, lru, zone, delta); 3351 } 3352 } 3353 3354 static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args) 3355 { 3356 struct address_space *mapping; 3357 struct vm_area_struct *vma = args->vma; 3358 struct lru_gen_mm_walk *walk = args->private; 3359 3360 if (!vma_is_accessible(vma)) 3361 return true; 3362 3363 if (is_vm_hugetlb_page(vma)) 3364 return true; 3365 3366 if (!vma_has_recency(vma)) 3367 return true; 3368 3369 if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) 3370 return true; 3371 3372 if (vma == get_gate_vma(vma->vm_mm)) 3373 return true; 3374 3375 if (vma_is_anonymous(vma)) 3376 return !walk->swappiness; 3377 3378 if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping)) 3379 return true; 3380 3381 mapping = vma->vm_file->f_mapping; 3382 if (mapping_unevictable(mapping)) 3383 return true; 3384 3385 if (shmem_mapping(mapping)) 3386 return !walk->swappiness; 3387 3388 if (walk->swappiness > MAX_SWAPPINESS) 3389 return true; 3390 3391 /* to exclude special mappings like dax, etc. */ 3392 return !mapping->a_ops->read_folio; 3393 } 3394 3395 /* 3396 * Some userspace memory allocators map many single-page VMAs. Instead of 3397 * returning back to the PGD table for each of such VMAs, finish an entire PMD 3398 * table to reduce zigzags and improve cache performance. 3399 */ 3400 static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args, 3401 unsigned long *vm_start, unsigned long *vm_end) 3402 { 3403 unsigned long start = round_up(*vm_end, size); 3404 unsigned long end = (start | ~mask) + 1; 3405 VMA_ITERATOR(vmi, args->mm, start); 3406 3407 VM_WARN_ON_ONCE(mask & size); 3408 VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask)); 3409 3410 for_each_vma(vmi, args->vma) { 3411 if (end && end <= args->vma->vm_start) 3412 return false; 3413 3414 if (should_skip_vma(args->vma->vm_start, args->vma->vm_end, args)) 3415 continue; 3416 3417 *vm_start = max(start, args->vma->vm_start); 3418 *vm_end = min(end - 1, args->vma->vm_end - 1) + 1; 3419 3420 return true; 3421 } 3422 3423 return false; 3424 } 3425 3426 static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr, 3427 struct pglist_data *pgdat) 3428 { 3429 unsigned long pfn = pte_pfn(pte); 3430 3431 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end); 3432 3433 if (!pte_present(pte) || is_zero_pfn(pfn)) 3434 return -1; 3435 3436 if (WARN_ON_ONCE(pte_special(pte))) 3437 return -1; 3438 3439 if (!pte_young(pte) && !mm_has_notifiers(vma->vm_mm)) 3440 return -1; 3441 3442 if (WARN_ON_ONCE(!pfn_valid(pfn))) 3443 return -1; 3444 3445 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat)) 3446 return -1; 3447 3448 return pfn; 3449 } 3450 3451 static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr, 3452 struct pglist_data *pgdat) 3453 { 3454 unsigned long pfn = pmd_pfn(pmd); 3455 3456 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end); 3457 3458 if (!pmd_present(pmd) || is_huge_zero_pmd(pmd)) 3459 return -1; 3460 3461 if (!pmd_young(pmd) && !mm_has_notifiers(vma->vm_mm)) 3462 return -1; 3463 3464 if (WARN_ON_ONCE(!pfn_valid(pfn))) 3465 return -1; 3466 3467 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat)) 3468 return -1; 3469 3470 return pfn; 3471 } 3472 3473 static struct folio *get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg, 3474 struct pglist_data *pgdat) 3475 { 3476 struct folio *folio = pfn_folio(pfn); 3477 3478 if (folio_lru_gen(folio) < 0) 3479 return NULL; 3480 3481 if (folio_nid(folio) != pgdat->node_id) 3482 return NULL; 3483 3484 if (folio_memcg(folio) != memcg) 3485 return NULL; 3486 3487 return folio; 3488 } 3489 3490 static bool suitable_to_scan(int total, int young) 3491 { 3492 int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8); 3493 3494 /* suitable if the average number of young PTEs per cacheline is >=1 */ 3495 return young * n >= total; 3496 } 3497 3498 static void walk_update_folio(struct lru_gen_mm_walk *walk, struct folio *folio, 3499 int new_gen, bool dirty) 3500 { 3501 int old_gen; 3502 3503 if (!folio) 3504 return; 3505 3506 if (dirty && !folio_test_dirty(folio) && 3507 !(folio_test_anon(folio) && folio_test_swapbacked(folio) && 3508 !folio_test_swapcache(folio))) 3509 folio_mark_dirty(folio); 3510 3511 if (walk) { 3512 old_gen = folio_update_gen(folio, new_gen); 3513 if (old_gen >= 0 && old_gen != new_gen) 3514 update_batch_size(walk, folio, old_gen, new_gen); 3515 } else if (lru_gen_set_refs(folio)) { 3516 old_gen = folio_lru_gen(folio); 3517 if (old_gen >= 0 && old_gen != new_gen) 3518 folio_activate(folio); 3519 } 3520 } 3521 3522 static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end, 3523 struct mm_walk *args) 3524 { 3525 int i; 3526 bool dirty; 3527 pte_t *pte; 3528 spinlock_t *ptl; 3529 unsigned long addr; 3530 int total = 0; 3531 int young = 0; 3532 struct folio *last = NULL; 3533 struct lru_gen_mm_walk *walk = args->private; 3534 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec); 3535 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 3536 DEFINE_MAX_SEQ(walk->lruvec); 3537 int gen = lru_gen_from_seq(max_seq); 3538 pmd_t pmdval; 3539 3540 pte = pte_offset_map_rw_nolock(args->mm, pmd, start & PMD_MASK, &pmdval, &ptl); 3541 if (!pte) 3542 return false; 3543 3544 if (!spin_trylock(ptl)) { 3545 pte_unmap(pte); 3546 return true; 3547 } 3548 3549 if (unlikely(!pmd_same(pmdval, pmdp_get_lockless(pmd)))) { 3550 pte_unmap_unlock(pte, ptl); 3551 return false; 3552 } 3553 3554 arch_enter_lazy_mmu_mode(); 3555 restart: 3556 for (i = pte_index(start), addr = start; addr != end; i++, addr += PAGE_SIZE) { 3557 unsigned long pfn; 3558 struct folio *folio; 3559 pte_t ptent = ptep_get(pte + i); 3560 3561 total++; 3562 walk->mm_stats[MM_LEAF_TOTAL]++; 3563 3564 pfn = get_pte_pfn(ptent, args->vma, addr, pgdat); 3565 if (pfn == -1) 3566 continue; 3567 3568 folio = get_pfn_folio(pfn, memcg, pgdat); 3569 if (!folio) 3570 continue; 3571 3572 if (!ptep_clear_young_notify(args->vma, addr, pte + i)) 3573 continue; 3574 3575 if (last != folio) { 3576 walk_update_folio(walk, last, gen, dirty); 3577 3578 last = folio; 3579 dirty = false; 3580 } 3581 3582 if (pte_dirty(ptent)) 3583 dirty = true; 3584 3585 young++; 3586 walk->mm_stats[MM_LEAF_YOUNG]++; 3587 } 3588 3589 walk_update_folio(walk, last, gen, dirty); 3590 last = NULL; 3591 3592 if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, &start, &end)) 3593 goto restart; 3594 3595 arch_leave_lazy_mmu_mode(); 3596 pte_unmap_unlock(pte, ptl); 3597 3598 return suitable_to_scan(total, young); 3599 } 3600 3601 static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma, 3602 struct mm_walk *args, unsigned long *bitmap, unsigned long *first) 3603 { 3604 int i; 3605 bool dirty; 3606 pmd_t *pmd; 3607 spinlock_t *ptl; 3608 struct folio *last = NULL; 3609 struct lru_gen_mm_walk *walk = args->private; 3610 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec); 3611 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 3612 DEFINE_MAX_SEQ(walk->lruvec); 3613 int gen = lru_gen_from_seq(max_seq); 3614 3615 VM_WARN_ON_ONCE(pud_leaf(*pud)); 3616 3617 /* try to batch at most 1+MIN_LRU_BATCH+1 entries */ 3618 if (*first == -1) { 3619 *first = addr; 3620 bitmap_zero(bitmap, MIN_LRU_BATCH); 3621 return; 3622 } 3623 3624 i = addr == -1 ? 0 : pmd_index(addr) - pmd_index(*first); 3625 if (i && i <= MIN_LRU_BATCH) { 3626 __set_bit(i - 1, bitmap); 3627 return; 3628 } 3629 3630 pmd = pmd_offset(pud, *first); 3631 3632 ptl = pmd_lockptr(args->mm, pmd); 3633 if (!spin_trylock(ptl)) 3634 goto done; 3635 3636 arch_enter_lazy_mmu_mode(); 3637 3638 do { 3639 unsigned long pfn; 3640 struct folio *folio; 3641 3642 /* don't round down the first address */ 3643 addr = i ? (*first & PMD_MASK) + i * PMD_SIZE : *first; 3644 3645 if (!pmd_present(pmd[i])) 3646 goto next; 3647 3648 if (!pmd_trans_huge(pmd[i])) { 3649 if (!walk->force_scan && should_clear_pmd_young() && 3650 !mm_has_notifiers(args->mm)) 3651 pmdp_test_and_clear_young(vma, addr, pmd + i); 3652 goto next; 3653 } 3654 3655 pfn = get_pmd_pfn(pmd[i], vma, addr, pgdat); 3656 if (pfn == -1) 3657 goto next; 3658 3659 folio = get_pfn_folio(pfn, memcg, pgdat); 3660 if (!folio) 3661 goto next; 3662 3663 if (!pmdp_clear_young_notify(vma, addr, pmd + i)) 3664 goto next; 3665 3666 if (last != folio) { 3667 walk_update_folio(walk, last, gen, dirty); 3668 3669 last = folio; 3670 dirty = false; 3671 } 3672 3673 if (pmd_dirty(pmd[i])) 3674 dirty = true; 3675 3676 walk->mm_stats[MM_LEAF_YOUNG]++; 3677 next: 3678 i = i > MIN_LRU_BATCH ? 0 : find_next_bit(bitmap, MIN_LRU_BATCH, i) + 1; 3679 } while (i <= MIN_LRU_BATCH); 3680 3681 walk_update_folio(walk, last, gen, dirty); 3682 3683 arch_leave_lazy_mmu_mode(); 3684 spin_unlock(ptl); 3685 done: 3686 *first = -1; 3687 } 3688 3689 static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end, 3690 struct mm_walk *args) 3691 { 3692 int i; 3693 pmd_t *pmd; 3694 unsigned long next; 3695 unsigned long addr; 3696 struct vm_area_struct *vma; 3697 DECLARE_BITMAP(bitmap, MIN_LRU_BATCH); 3698 unsigned long first = -1; 3699 struct lru_gen_mm_walk *walk = args->private; 3700 struct lru_gen_mm_state *mm_state = get_mm_state(walk->lruvec); 3701 3702 VM_WARN_ON_ONCE(pud_leaf(*pud)); 3703 3704 /* 3705 * Finish an entire PMD in two passes: the first only reaches to PTE 3706 * tables to avoid taking the PMD lock; the second, if necessary, takes 3707 * the PMD lock to clear the accessed bit in PMD entries. 3708 */ 3709 pmd = pmd_offset(pud, start & PUD_MASK); 3710 restart: 3711 /* walk_pte_range() may call get_next_vma() */ 3712 vma = args->vma; 3713 for (i = pmd_index(start), addr = start; addr != end; i++, addr = next) { 3714 pmd_t val = pmdp_get_lockless(pmd + i); 3715 3716 next = pmd_addr_end(addr, end); 3717 3718 if (!pmd_present(val) || is_huge_zero_pmd(val)) { 3719 walk->mm_stats[MM_LEAF_TOTAL]++; 3720 continue; 3721 } 3722 3723 if (pmd_trans_huge(val)) { 3724 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 3725 unsigned long pfn = get_pmd_pfn(val, vma, addr, pgdat); 3726 3727 walk->mm_stats[MM_LEAF_TOTAL]++; 3728 3729 if (pfn != -1) 3730 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first); 3731 continue; 3732 } 3733 3734 if (!walk->force_scan && should_clear_pmd_young() && 3735 !mm_has_notifiers(args->mm)) { 3736 if (!pmd_young(val)) 3737 continue; 3738 3739 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first); 3740 } 3741 3742 if (!walk->force_scan && !test_bloom_filter(mm_state, walk->seq, pmd + i)) 3743 continue; 3744 3745 walk->mm_stats[MM_NONLEAF_FOUND]++; 3746 3747 if (!walk_pte_range(&val, addr, next, args)) 3748 continue; 3749 3750 walk->mm_stats[MM_NONLEAF_ADDED]++; 3751 3752 /* carry over to the next generation */ 3753 update_bloom_filter(mm_state, walk->seq + 1, pmd + i); 3754 } 3755 3756 walk_pmd_range_locked(pud, -1, vma, args, bitmap, &first); 3757 3758 if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, &start, &end)) 3759 goto restart; 3760 } 3761 3762 static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end, 3763 struct mm_walk *args) 3764 { 3765 int i; 3766 pud_t *pud; 3767 unsigned long addr; 3768 unsigned long next; 3769 struct lru_gen_mm_walk *walk = args->private; 3770 3771 VM_WARN_ON_ONCE(p4d_leaf(*p4d)); 3772 3773 pud = pud_offset(p4d, start & P4D_MASK); 3774 restart: 3775 for (i = pud_index(start), addr = start; addr != end; i++, addr = next) { 3776 pud_t val = READ_ONCE(pud[i]); 3777 3778 next = pud_addr_end(addr, end); 3779 3780 if (!pud_present(val) || WARN_ON_ONCE(pud_leaf(val))) 3781 continue; 3782 3783 walk_pmd_range(&val, addr, next, args); 3784 3785 if (need_resched() || walk->batched >= MAX_LRU_BATCH) { 3786 end = (addr | ~PUD_MASK) + 1; 3787 goto done; 3788 } 3789 } 3790 3791 if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, &start, &end)) 3792 goto restart; 3793 3794 end = round_up(end, P4D_SIZE); 3795 done: 3796 if (!end || !args->vma) 3797 return 1; 3798 3799 walk->next_addr = max(end, args->vma->vm_start); 3800 3801 return -EAGAIN; 3802 } 3803 3804 static void walk_mm(struct mm_struct *mm, struct lru_gen_mm_walk *walk) 3805 { 3806 static const struct mm_walk_ops mm_walk_ops = { 3807 .test_walk = should_skip_vma, 3808 .p4d_entry = walk_pud_range, 3809 .walk_lock = PGWALK_RDLOCK, 3810 }; 3811 int err; 3812 struct lruvec *lruvec = walk->lruvec; 3813 3814 walk->next_addr = FIRST_USER_ADDRESS; 3815 3816 do { 3817 DEFINE_MAX_SEQ(lruvec); 3818 3819 err = -EBUSY; 3820 3821 /* another thread might have called inc_max_seq() */ 3822 if (walk->seq != max_seq) 3823 break; 3824 3825 /* the caller might be holding the lock for write */ 3826 if (mmap_read_trylock(mm)) { 3827 err = walk_page_range(mm, walk->next_addr, ULONG_MAX, &mm_walk_ops, walk); 3828 3829 mmap_read_unlock(mm); 3830 } 3831 3832 if (walk->batched) { 3833 spin_lock_irq(&lruvec->lru_lock); 3834 reset_batch_size(walk); 3835 spin_unlock_irq(&lruvec->lru_lock); 3836 } 3837 3838 cond_resched(); 3839 } while (err == -EAGAIN); 3840 } 3841 3842 static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat, bool force_alloc) 3843 { 3844 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk; 3845 3846 if (pgdat && current_is_kswapd()) { 3847 VM_WARN_ON_ONCE(walk); 3848 3849 walk = &pgdat->mm_walk; 3850 } else if (!walk && force_alloc) { 3851 VM_WARN_ON_ONCE(current_is_kswapd()); 3852 3853 walk = kzalloc(sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN); 3854 } 3855 3856 current->reclaim_state->mm_walk = walk; 3857 3858 return walk; 3859 } 3860 3861 static void clear_mm_walk(void) 3862 { 3863 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk; 3864 3865 VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages))); 3866 VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats))); 3867 3868 current->reclaim_state->mm_walk = NULL; 3869 3870 if (!current_is_kswapd()) 3871 kfree(walk); 3872 } 3873 3874 static bool inc_min_seq(struct lruvec *lruvec, int type, int swappiness) 3875 { 3876 int zone; 3877 int remaining = MAX_LRU_BATCH; 3878 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3879 int hist = lru_hist_from_seq(lrugen->min_seq[type]); 3880 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]); 3881 3882 /* For file type, skip the check if swappiness is anon only */ 3883 if (type && (swappiness == SWAPPINESS_ANON_ONLY)) 3884 goto done; 3885 3886 /* For anon type, skip the check if swappiness is zero (file only) */ 3887 if (!type && !swappiness) 3888 goto done; 3889 3890 /* prevent cold/hot inversion if the type is evictable */ 3891 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 3892 struct list_head *head = &lrugen->folios[old_gen][type][zone]; 3893 3894 while (!list_empty(head)) { 3895 struct folio *folio = lru_to_folio(head); 3896 int refs = folio_lru_refs(folio); 3897 bool workingset = folio_test_workingset(folio); 3898 3899 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 3900 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio); 3901 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 3902 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio); 3903 3904 new_gen = folio_inc_gen(lruvec, folio, false); 3905 list_move_tail(&folio->lru, &lrugen->folios[new_gen][type][zone]); 3906 3907 /* don't count the workingset being lazily promoted */ 3908 if (refs + workingset != BIT(LRU_REFS_WIDTH) + 1) { 3909 int tier = lru_tier_from_refs(refs, workingset); 3910 int delta = folio_nr_pages(folio); 3911 3912 WRITE_ONCE(lrugen->protected[hist][type][tier], 3913 lrugen->protected[hist][type][tier] + delta); 3914 } 3915 3916 if (!--remaining) 3917 return false; 3918 } 3919 } 3920 done: 3921 reset_ctrl_pos(lruvec, type, true); 3922 WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1); 3923 3924 return true; 3925 } 3926 3927 static bool try_to_inc_min_seq(struct lruvec *lruvec, int swappiness) 3928 { 3929 int gen, type, zone; 3930 bool success = false; 3931 bool seq_inc_flag = false; 3932 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3933 DEFINE_MIN_SEQ(lruvec); 3934 3935 VM_WARN_ON_ONCE(!seq_is_valid(lruvec)); 3936 3937 /* find the oldest populated generation */ 3938 for_each_evictable_type(type, swappiness) { 3939 while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) { 3940 gen = lru_gen_from_seq(min_seq[type]); 3941 3942 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 3943 if (!list_empty(&lrugen->folios[gen][type][zone])) 3944 goto next; 3945 } 3946 3947 min_seq[type]++; 3948 seq_inc_flag = true; 3949 } 3950 next: 3951 ; 3952 } 3953 3954 /* 3955 * If min_seq[type] of both anonymous and file is not increased, 3956 * we can directly return false to avoid unnecessary checking 3957 * overhead later. 3958 */ 3959 if (!seq_inc_flag) 3960 return success; 3961 3962 /* see the comment on lru_gen_folio */ 3963 if (swappiness && swappiness <= MAX_SWAPPINESS) { 3964 unsigned long seq = lrugen->max_seq - MIN_NR_GENS; 3965 3966 if (min_seq[LRU_GEN_ANON] > seq && min_seq[LRU_GEN_FILE] < seq) 3967 min_seq[LRU_GEN_ANON] = seq; 3968 else if (min_seq[LRU_GEN_FILE] > seq && min_seq[LRU_GEN_ANON] < seq) 3969 min_seq[LRU_GEN_FILE] = seq; 3970 } 3971 3972 for_each_evictable_type(type, swappiness) { 3973 if (min_seq[type] <= lrugen->min_seq[type]) 3974 continue; 3975 3976 reset_ctrl_pos(lruvec, type, true); 3977 WRITE_ONCE(lrugen->min_seq[type], min_seq[type]); 3978 success = true; 3979 } 3980 3981 return success; 3982 } 3983 3984 static bool inc_max_seq(struct lruvec *lruvec, unsigned long seq, int swappiness) 3985 { 3986 bool success; 3987 int prev, next; 3988 int type, zone; 3989 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3990 restart: 3991 if (seq < READ_ONCE(lrugen->max_seq)) 3992 return false; 3993 3994 spin_lock_irq(&lruvec->lru_lock); 3995 3996 VM_WARN_ON_ONCE(!seq_is_valid(lruvec)); 3997 3998 success = seq == lrugen->max_seq; 3999 if (!success) 4000 goto unlock; 4001 4002 for (type = 0; type < ANON_AND_FILE; type++) { 4003 if (get_nr_gens(lruvec, type) != MAX_NR_GENS) 4004 continue; 4005 4006 if (inc_min_seq(lruvec, type, swappiness)) 4007 continue; 4008 4009 spin_unlock_irq(&lruvec->lru_lock); 4010 cond_resched(); 4011 goto restart; 4012 } 4013 4014 /* 4015 * Update the active/inactive LRU sizes for compatibility. Both sides of 4016 * the current max_seq need to be covered, since max_seq+1 can overlap 4017 * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do 4018 * overlap, cold/hot inversion happens. 4019 */ 4020 prev = lru_gen_from_seq(lrugen->max_seq - 1); 4021 next = lru_gen_from_seq(lrugen->max_seq + 1); 4022 4023 for (type = 0; type < ANON_AND_FILE; type++) { 4024 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 4025 enum lru_list lru = type * LRU_INACTIVE_FILE; 4026 long delta = lrugen->nr_pages[prev][type][zone] - 4027 lrugen->nr_pages[next][type][zone]; 4028 4029 if (!delta) 4030 continue; 4031 4032 __update_lru_size(lruvec, lru, zone, delta); 4033 __update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta); 4034 } 4035 } 4036 4037 for (type = 0; type < ANON_AND_FILE; type++) 4038 reset_ctrl_pos(lruvec, type, false); 4039 4040 WRITE_ONCE(lrugen->timestamps[next], jiffies); 4041 /* make sure preceding modifications appear */ 4042 smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1); 4043 unlock: 4044 spin_unlock_irq(&lruvec->lru_lock); 4045 4046 return success; 4047 } 4048 4049 static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long seq, 4050 int swappiness, bool force_scan) 4051 { 4052 bool success; 4053 struct lru_gen_mm_walk *walk; 4054 struct mm_struct *mm = NULL; 4055 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4056 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 4057 4058 VM_WARN_ON_ONCE(seq > READ_ONCE(lrugen->max_seq)); 4059 4060 if (!mm_state) 4061 return inc_max_seq(lruvec, seq, swappiness); 4062 4063 /* see the comment in iterate_mm_list() */ 4064 if (seq <= READ_ONCE(mm_state->seq)) 4065 return false; 4066 4067 /* 4068 * If the hardware doesn't automatically set the accessed bit, fallback 4069 * to lru_gen_look_around(), which only clears the accessed bit in a 4070 * handful of PTEs. Spreading the work out over a period of time usually 4071 * is less efficient, but it avoids bursty page faults. 4072 */ 4073 if (!should_walk_mmu()) { 4074 success = iterate_mm_list_nowalk(lruvec, seq); 4075 goto done; 4076 } 4077 4078 walk = set_mm_walk(NULL, true); 4079 if (!walk) { 4080 success = iterate_mm_list_nowalk(lruvec, seq); 4081 goto done; 4082 } 4083 4084 walk->lruvec = lruvec; 4085 walk->seq = seq; 4086 walk->swappiness = swappiness; 4087 walk->force_scan = force_scan; 4088 4089 do { 4090 success = iterate_mm_list(walk, &mm); 4091 if (mm) 4092 walk_mm(mm, walk); 4093 } while (mm); 4094 done: 4095 if (success) { 4096 success = inc_max_seq(lruvec, seq, swappiness); 4097 WARN_ON_ONCE(!success); 4098 } 4099 4100 return success; 4101 } 4102 4103 /****************************************************************************** 4104 * working set protection 4105 ******************************************************************************/ 4106 4107 static void set_initial_priority(struct pglist_data *pgdat, struct scan_control *sc) 4108 { 4109 int priority; 4110 unsigned long reclaimable; 4111 4112 if (sc->priority != DEF_PRIORITY || sc->nr_to_reclaim < MIN_LRU_BATCH) 4113 return; 4114 /* 4115 * Determine the initial priority based on 4116 * (total >> priority) * reclaimed_to_scanned_ratio = nr_to_reclaim, 4117 * where reclaimed_to_scanned_ratio = inactive / total. 4118 */ 4119 reclaimable = node_page_state(pgdat, NR_INACTIVE_FILE); 4120 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc)) 4121 reclaimable += node_page_state(pgdat, NR_INACTIVE_ANON); 4122 4123 /* round down reclaimable and round up sc->nr_to_reclaim */ 4124 priority = fls_long(reclaimable) - 1 - fls_long(sc->nr_to_reclaim - 1); 4125 4126 /* 4127 * The estimation is based on LRU pages only, so cap it to prevent 4128 * overshoots of shrinker objects by large margins. 4129 */ 4130 sc->priority = clamp(priority, DEF_PRIORITY / 2, DEF_PRIORITY); 4131 } 4132 4133 static bool lruvec_is_sizable(struct lruvec *lruvec, struct scan_control *sc) 4134 { 4135 int gen, type, zone; 4136 unsigned long total = 0; 4137 int swappiness = get_swappiness(lruvec, sc); 4138 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4139 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4140 DEFINE_MAX_SEQ(lruvec); 4141 DEFINE_MIN_SEQ(lruvec); 4142 4143 for_each_evictable_type(type, swappiness) { 4144 unsigned long seq; 4145 4146 for (seq = min_seq[type]; seq <= max_seq; seq++) { 4147 gen = lru_gen_from_seq(seq); 4148 4149 for (zone = 0; zone < MAX_NR_ZONES; zone++) 4150 total += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L); 4151 } 4152 } 4153 4154 /* whether the size is big enough to be helpful */ 4155 return mem_cgroup_online(memcg) ? (total >> sc->priority) : total; 4156 } 4157 4158 static bool lruvec_is_reclaimable(struct lruvec *lruvec, struct scan_control *sc, 4159 unsigned long min_ttl) 4160 { 4161 int gen; 4162 unsigned long birth; 4163 int swappiness = get_swappiness(lruvec, sc); 4164 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4165 DEFINE_MIN_SEQ(lruvec); 4166 4167 if (mem_cgroup_below_min(NULL, memcg)) 4168 return false; 4169 4170 if (!lruvec_is_sizable(lruvec, sc)) 4171 return false; 4172 4173 gen = lru_gen_from_seq(evictable_min_seq(min_seq, swappiness)); 4174 birth = READ_ONCE(lruvec->lrugen.timestamps[gen]); 4175 4176 return time_is_before_jiffies(birth + min_ttl); 4177 } 4178 4179 /* to protect the working set of the last N jiffies */ 4180 static unsigned long lru_gen_min_ttl __read_mostly; 4181 4182 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc) 4183 { 4184 struct mem_cgroup *memcg; 4185 unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl); 4186 bool reclaimable = !min_ttl; 4187 4188 VM_WARN_ON_ONCE(!current_is_kswapd()); 4189 4190 set_initial_priority(pgdat, sc); 4191 4192 memcg = mem_cgroup_iter(NULL, NULL, NULL); 4193 do { 4194 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 4195 4196 mem_cgroup_calculate_protection(NULL, memcg); 4197 4198 if (!reclaimable) 4199 reclaimable = lruvec_is_reclaimable(lruvec, sc, min_ttl); 4200 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL))); 4201 4202 /* 4203 * The main goal is to OOM kill if every generation from all memcgs is 4204 * younger than min_ttl. However, another possibility is all memcgs are 4205 * either too small or below min. 4206 */ 4207 if (!reclaimable && mutex_trylock(&oom_lock)) { 4208 struct oom_control oc = { 4209 .gfp_mask = sc->gfp_mask, 4210 }; 4211 4212 out_of_memory(&oc); 4213 4214 mutex_unlock(&oom_lock); 4215 } 4216 } 4217 4218 /****************************************************************************** 4219 * rmap/PT walk feedback 4220 ******************************************************************************/ 4221 4222 /* 4223 * This function exploits spatial locality when shrink_folio_list() walks the 4224 * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If 4225 * the scan was done cacheline efficiently, it adds the PMD entry pointing to 4226 * the PTE table to the Bloom filter. This forms a feedback loop between the 4227 * eviction and the aging. 4228 */ 4229 bool lru_gen_look_around(struct page_vma_mapped_walk *pvmw) 4230 { 4231 int i; 4232 bool dirty; 4233 unsigned long start; 4234 unsigned long end; 4235 struct lru_gen_mm_walk *walk; 4236 struct folio *last = NULL; 4237 int young = 1; 4238 pte_t *pte = pvmw->pte; 4239 unsigned long addr = pvmw->address; 4240 struct vm_area_struct *vma = pvmw->vma; 4241 struct folio *folio = pfn_folio(pvmw->pfn); 4242 struct mem_cgroup *memcg = folio_memcg(folio); 4243 struct pglist_data *pgdat = folio_pgdat(folio); 4244 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 4245 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 4246 DEFINE_MAX_SEQ(lruvec); 4247 int gen = lru_gen_from_seq(max_seq); 4248 4249 lockdep_assert_held(pvmw->ptl); 4250 VM_WARN_ON_ONCE_FOLIO(folio_test_lru(folio), folio); 4251 4252 if (!ptep_clear_young_notify(vma, addr, pte)) 4253 return false; 4254 4255 if (spin_is_contended(pvmw->ptl)) 4256 return true; 4257 4258 /* exclude special VMAs containing anon pages from COW */ 4259 if (vma->vm_flags & VM_SPECIAL) 4260 return true; 4261 4262 /* avoid taking the LRU lock under the PTL when possible */ 4263 walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL; 4264 4265 start = max(addr & PMD_MASK, vma->vm_start); 4266 end = min(addr | ~PMD_MASK, vma->vm_end - 1) + 1; 4267 4268 if (end - start == PAGE_SIZE) 4269 return true; 4270 4271 if (end - start > MIN_LRU_BATCH * PAGE_SIZE) { 4272 if (addr - start < MIN_LRU_BATCH * PAGE_SIZE / 2) 4273 end = start + MIN_LRU_BATCH * PAGE_SIZE; 4274 else if (end - addr < MIN_LRU_BATCH * PAGE_SIZE / 2) 4275 start = end - MIN_LRU_BATCH * PAGE_SIZE; 4276 else { 4277 start = addr - MIN_LRU_BATCH * PAGE_SIZE / 2; 4278 end = addr + MIN_LRU_BATCH * PAGE_SIZE / 2; 4279 } 4280 } 4281 4282 arch_enter_lazy_mmu_mode(); 4283 4284 pte -= (addr - start) / PAGE_SIZE; 4285 4286 for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) { 4287 unsigned long pfn; 4288 pte_t ptent = ptep_get(pte + i); 4289 4290 pfn = get_pte_pfn(ptent, vma, addr, pgdat); 4291 if (pfn == -1) 4292 continue; 4293 4294 folio = get_pfn_folio(pfn, memcg, pgdat); 4295 if (!folio) 4296 continue; 4297 4298 if (!ptep_clear_young_notify(vma, addr, pte + i)) 4299 continue; 4300 4301 if (last != folio) { 4302 walk_update_folio(walk, last, gen, dirty); 4303 4304 last = folio; 4305 dirty = false; 4306 } 4307 4308 if (pte_dirty(ptent)) 4309 dirty = true; 4310 4311 young++; 4312 } 4313 4314 walk_update_folio(walk, last, gen, dirty); 4315 4316 arch_leave_lazy_mmu_mode(); 4317 4318 /* feedback from rmap walkers to page table walkers */ 4319 if (mm_state && suitable_to_scan(i, young)) 4320 update_bloom_filter(mm_state, max_seq, pvmw->pmd); 4321 4322 return true; 4323 } 4324 4325 /****************************************************************************** 4326 * memcg LRU 4327 ******************************************************************************/ 4328 4329 /* see the comment on MEMCG_NR_GENS */ 4330 enum { 4331 MEMCG_LRU_NOP, 4332 MEMCG_LRU_HEAD, 4333 MEMCG_LRU_TAIL, 4334 MEMCG_LRU_OLD, 4335 MEMCG_LRU_YOUNG, 4336 }; 4337 4338 static void lru_gen_rotate_memcg(struct lruvec *lruvec, int op) 4339 { 4340 int seg; 4341 int old, new; 4342 unsigned long flags; 4343 int bin = get_random_u32_below(MEMCG_NR_BINS); 4344 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 4345 4346 spin_lock_irqsave(&pgdat->memcg_lru.lock, flags); 4347 4348 VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list)); 4349 4350 seg = 0; 4351 new = old = lruvec->lrugen.gen; 4352 4353 /* see the comment on MEMCG_NR_GENS */ 4354 if (op == MEMCG_LRU_HEAD) 4355 seg = MEMCG_LRU_HEAD; 4356 else if (op == MEMCG_LRU_TAIL) 4357 seg = MEMCG_LRU_TAIL; 4358 else if (op == MEMCG_LRU_OLD) 4359 new = get_memcg_gen(pgdat->memcg_lru.seq); 4360 else if (op == MEMCG_LRU_YOUNG) 4361 new = get_memcg_gen(pgdat->memcg_lru.seq + 1); 4362 else 4363 VM_WARN_ON_ONCE(true); 4364 4365 WRITE_ONCE(lruvec->lrugen.seg, seg); 4366 WRITE_ONCE(lruvec->lrugen.gen, new); 4367 4368 hlist_nulls_del_rcu(&lruvec->lrugen.list); 4369 4370 if (op == MEMCG_LRU_HEAD || op == MEMCG_LRU_OLD) 4371 hlist_nulls_add_head_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]); 4372 else 4373 hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]); 4374 4375 pgdat->memcg_lru.nr_memcgs[old]--; 4376 pgdat->memcg_lru.nr_memcgs[new]++; 4377 4378 if (!pgdat->memcg_lru.nr_memcgs[old] && old == get_memcg_gen(pgdat->memcg_lru.seq)) 4379 WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1); 4380 4381 spin_unlock_irqrestore(&pgdat->memcg_lru.lock, flags); 4382 } 4383 4384 #ifdef CONFIG_MEMCG 4385 4386 void lru_gen_online_memcg(struct mem_cgroup *memcg) 4387 { 4388 int gen; 4389 int nid; 4390 int bin = get_random_u32_below(MEMCG_NR_BINS); 4391 4392 for_each_node(nid) { 4393 struct pglist_data *pgdat = NODE_DATA(nid); 4394 struct lruvec *lruvec = get_lruvec(memcg, nid); 4395 4396 spin_lock_irq(&pgdat->memcg_lru.lock); 4397 4398 VM_WARN_ON_ONCE(!hlist_nulls_unhashed(&lruvec->lrugen.list)); 4399 4400 gen = get_memcg_gen(pgdat->memcg_lru.seq); 4401 4402 lruvec->lrugen.gen = gen; 4403 4404 hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[gen][bin]); 4405 pgdat->memcg_lru.nr_memcgs[gen]++; 4406 4407 spin_unlock_irq(&pgdat->memcg_lru.lock); 4408 } 4409 } 4410 4411 void lru_gen_offline_memcg(struct mem_cgroup *memcg) 4412 { 4413 int nid; 4414 4415 for_each_node(nid) { 4416 struct lruvec *lruvec = get_lruvec(memcg, nid); 4417 4418 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_OLD); 4419 } 4420 } 4421 4422 void lru_gen_release_memcg(struct mem_cgroup *memcg) 4423 { 4424 int gen; 4425 int nid; 4426 4427 for_each_node(nid) { 4428 struct pglist_data *pgdat = NODE_DATA(nid); 4429 struct lruvec *lruvec = get_lruvec(memcg, nid); 4430 4431 spin_lock_irq(&pgdat->memcg_lru.lock); 4432 4433 if (hlist_nulls_unhashed(&lruvec->lrugen.list)) 4434 goto unlock; 4435 4436 gen = lruvec->lrugen.gen; 4437 4438 hlist_nulls_del_init_rcu(&lruvec->lrugen.list); 4439 pgdat->memcg_lru.nr_memcgs[gen]--; 4440 4441 if (!pgdat->memcg_lru.nr_memcgs[gen] && gen == get_memcg_gen(pgdat->memcg_lru.seq)) 4442 WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1); 4443 unlock: 4444 spin_unlock_irq(&pgdat->memcg_lru.lock); 4445 } 4446 } 4447 4448 void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid) 4449 { 4450 struct lruvec *lruvec = get_lruvec(memcg, nid); 4451 4452 /* see the comment on MEMCG_NR_GENS */ 4453 if (READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_HEAD) 4454 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_HEAD); 4455 } 4456 4457 #endif /* CONFIG_MEMCG */ 4458 4459 /****************************************************************************** 4460 * the eviction 4461 ******************************************************************************/ 4462 4463 static bool sort_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc, 4464 int tier_idx) 4465 { 4466 bool success; 4467 bool dirty, writeback; 4468 int gen = folio_lru_gen(folio); 4469 int type = folio_is_file_lru(folio); 4470 int zone = folio_zonenum(folio); 4471 int delta = folio_nr_pages(folio); 4472 int refs = folio_lru_refs(folio); 4473 bool workingset = folio_test_workingset(folio); 4474 int tier = lru_tier_from_refs(refs, workingset); 4475 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4476 4477 VM_WARN_ON_ONCE_FOLIO(gen >= MAX_NR_GENS, folio); 4478 4479 /* unevictable */ 4480 if (!folio_evictable(folio)) { 4481 success = lru_gen_del_folio(lruvec, folio, true); 4482 VM_WARN_ON_ONCE_FOLIO(!success, folio); 4483 folio_set_unevictable(folio); 4484 lruvec_add_folio(lruvec, folio); 4485 __count_vm_events(UNEVICTABLE_PGCULLED, delta); 4486 return true; 4487 } 4488 4489 /* promoted */ 4490 if (gen != lru_gen_from_seq(lrugen->min_seq[type])) { 4491 list_move(&folio->lru, &lrugen->folios[gen][type][zone]); 4492 return true; 4493 } 4494 4495 /* protected */ 4496 if (tier > tier_idx || refs + workingset == BIT(LRU_REFS_WIDTH) + 1) { 4497 gen = folio_inc_gen(lruvec, folio, false); 4498 list_move(&folio->lru, &lrugen->folios[gen][type][zone]); 4499 4500 /* don't count the workingset being lazily promoted */ 4501 if (refs + workingset != BIT(LRU_REFS_WIDTH) + 1) { 4502 int hist = lru_hist_from_seq(lrugen->min_seq[type]); 4503 4504 WRITE_ONCE(lrugen->protected[hist][type][tier], 4505 lrugen->protected[hist][type][tier] + delta); 4506 } 4507 return true; 4508 } 4509 4510 /* ineligible */ 4511 if (zone > sc->reclaim_idx) { 4512 gen = folio_inc_gen(lruvec, folio, false); 4513 list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]); 4514 return true; 4515 } 4516 4517 dirty = folio_test_dirty(folio); 4518 writeback = folio_test_writeback(folio); 4519 if (type == LRU_GEN_FILE && dirty) { 4520 sc->nr.file_taken += delta; 4521 if (!writeback) 4522 sc->nr.unqueued_dirty += delta; 4523 } 4524 4525 /* waiting for writeback */ 4526 if (writeback || (type == LRU_GEN_FILE && dirty)) { 4527 gen = folio_inc_gen(lruvec, folio, true); 4528 list_move(&folio->lru, &lrugen->folios[gen][type][zone]); 4529 return true; 4530 } 4531 4532 return false; 4533 } 4534 4535 static bool isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc) 4536 { 4537 bool success; 4538 4539 /* swap constrained */ 4540 if (!(sc->gfp_mask & __GFP_IO) && 4541 (folio_test_dirty(folio) || 4542 (folio_test_anon(folio) && !folio_test_swapcache(folio)))) 4543 return false; 4544 4545 /* raced with release_pages() */ 4546 if (!folio_try_get(folio)) 4547 return false; 4548 4549 /* raced with another isolation */ 4550 if (!folio_test_clear_lru(folio)) { 4551 folio_put(folio); 4552 return false; 4553 } 4554 4555 /* see the comment on LRU_REFS_FLAGS */ 4556 if (!folio_test_referenced(folio)) 4557 set_mask_bits(&folio->flags.f, LRU_REFS_MASK, 0); 4558 4559 /* for shrink_folio_list() */ 4560 folio_clear_reclaim(folio); 4561 4562 success = lru_gen_del_folio(lruvec, folio, true); 4563 VM_WARN_ON_ONCE_FOLIO(!success, folio); 4564 4565 return true; 4566 } 4567 4568 static int scan_folios(unsigned long nr_to_scan, struct lruvec *lruvec, 4569 struct scan_control *sc, int type, int tier, 4570 struct list_head *list) 4571 { 4572 int i; 4573 int gen; 4574 enum vm_event_item item; 4575 int sorted = 0; 4576 int scanned = 0; 4577 int isolated = 0; 4578 int skipped = 0; 4579 int remaining = min(nr_to_scan, MAX_LRU_BATCH); 4580 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4581 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4582 4583 VM_WARN_ON_ONCE(!list_empty(list)); 4584 4585 if (get_nr_gens(lruvec, type) == MIN_NR_GENS) 4586 return 0; 4587 4588 gen = lru_gen_from_seq(lrugen->min_seq[type]); 4589 4590 for (i = MAX_NR_ZONES; i > 0; i--) { 4591 LIST_HEAD(moved); 4592 int skipped_zone = 0; 4593 int zone = (sc->reclaim_idx + i) % MAX_NR_ZONES; 4594 struct list_head *head = &lrugen->folios[gen][type][zone]; 4595 4596 while (!list_empty(head)) { 4597 struct folio *folio = lru_to_folio(head); 4598 int delta = folio_nr_pages(folio); 4599 4600 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 4601 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio); 4602 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 4603 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio); 4604 4605 scanned += delta; 4606 4607 if (sort_folio(lruvec, folio, sc, tier)) 4608 sorted += delta; 4609 else if (isolate_folio(lruvec, folio, sc)) { 4610 list_add(&folio->lru, list); 4611 isolated += delta; 4612 } else { 4613 list_move(&folio->lru, &moved); 4614 skipped_zone += delta; 4615 } 4616 4617 if (!--remaining || max(isolated, skipped_zone) >= MIN_LRU_BATCH) 4618 break; 4619 } 4620 4621 if (skipped_zone) { 4622 list_splice(&moved, head); 4623 __count_zid_vm_events(PGSCAN_SKIP, zone, skipped_zone); 4624 skipped += skipped_zone; 4625 } 4626 4627 if (!remaining || isolated >= MIN_LRU_BATCH) 4628 break; 4629 } 4630 4631 item = PGSCAN_KSWAPD + reclaimer_offset(sc); 4632 if (!cgroup_reclaim(sc)) { 4633 __count_vm_events(item, isolated); 4634 __count_vm_events(PGREFILL, sorted); 4635 } 4636 count_memcg_events(memcg, item, isolated); 4637 count_memcg_events(memcg, PGREFILL, sorted); 4638 __count_vm_events(PGSCAN_ANON + type, isolated); 4639 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, MAX_LRU_BATCH, 4640 scanned, skipped, isolated, 4641 type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON); 4642 if (type == LRU_GEN_FILE) 4643 sc->nr.file_taken += isolated; 4644 /* 4645 * There might not be eligible folios due to reclaim_idx. Check the 4646 * remaining to prevent livelock if it's not making progress. 4647 */ 4648 return isolated || !remaining ? scanned : 0; 4649 } 4650 4651 static int get_tier_idx(struct lruvec *lruvec, int type) 4652 { 4653 int tier; 4654 struct ctrl_pos sp, pv; 4655 4656 /* 4657 * To leave a margin for fluctuations, use a larger gain factor (2:3). 4658 * This value is chosen because any other tier would have at least twice 4659 * as many refaults as the first tier. 4660 */ 4661 read_ctrl_pos(lruvec, type, 0, 2, &sp); 4662 for (tier = 1; tier < MAX_NR_TIERS; tier++) { 4663 read_ctrl_pos(lruvec, type, tier, 3, &pv); 4664 if (!positive_ctrl_err(&sp, &pv)) 4665 break; 4666 } 4667 4668 return tier - 1; 4669 } 4670 4671 static int get_type_to_scan(struct lruvec *lruvec, int swappiness) 4672 { 4673 struct ctrl_pos sp, pv; 4674 4675 if (swappiness <= MIN_SWAPPINESS + 1) 4676 return LRU_GEN_FILE; 4677 4678 if (swappiness >= MAX_SWAPPINESS) 4679 return LRU_GEN_ANON; 4680 /* 4681 * Compare the sum of all tiers of anon with that of file to determine 4682 * which type to scan. 4683 */ 4684 read_ctrl_pos(lruvec, LRU_GEN_ANON, MAX_NR_TIERS, swappiness, &sp); 4685 read_ctrl_pos(lruvec, LRU_GEN_FILE, MAX_NR_TIERS, MAX_SWAPPINESS - swappiness, &pv); 4686 4687 return positive_ctrl_err(&sp, &pv); 4688 } 4689 4690 static int isolate_folios(unsigned long nr_to_scan, struct lruvec *lruvec, 4691 struct scan_control *sc, int swappiness, 4692 int *type_scanned, struct list_head *list) 4693 { 4694 int i; 4695 int type = get_type_to_scan(lruvec, swappiness); 4696 4697 for_each_evictable_type(i, swappiness) { 4698 int scanned; 4699 int tier = get_tier_idx(lruvec, type); 4700 4701 *type_scanned = type; 4702 4703 scanned = scan_folios(nr_to_scan, lruvec, sc, type, tier, list); 4704 if (scanned) 4705 return scanned; 4706 4707 type = !type; 4708 } 4709 4710 return 0; 4711 } 4712 4713 static int evict_folios(unsigned long nr_to_scan, struct lruvec *lruvec, 4714 struct scan_control *sc, int swappiness) 4715 { 4716 int type; 4717 int scanned; 4718 int reclaimed; 4719 LIST_HEAD(list); 4720 LIST_HEAD(clean); 4721 struct folio *folio; 4722 struct folio *next; 4723 enum vm_event_item item; 4724 struct reclaim_stat stat; 4725 struct lru_gen_mm_walk *walk; 4726 bool skip_retry = false; 4727 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4728 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4729 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 4730 4731 spin_lock_irq(&lruvec->lru_lock); 4732 4733 scanned = isolate_folios(nr_to_scan, lruvec, sc, swappiness, &type, &list); 4734 4735 scanned += try_to_inc_min_seq(lruvec, swappiness); 4736 4737 if (evictable_min_seq(lrugen->min_seq, swappiness) + MIN_NR_GENS > lrugen->max_seq) 4738 scanned = 0; 4739 4740 spin_unlock_irq(&lruvec->lru_lock); 4741 4742 if (list_empty(&list)) 4743 return scanned; 4744 retry: 4745 reclaimed = shrink_folio_list(&list, pgdat, sc, &stat, false, memcg); 4746 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty; 4747 sc->nr_reclaimed += reclaimed; 4748 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 4749 scanned, reclaimed, &stat, sc->priority, 4750 type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON); 4751 4752 list_for_each_entry_safe_reverse(folio, next, &list, lru) { 4753 DEFINE_MIN_SEQ(lruvec); 4754 4755 if (!folio_evictable(folio)) { 4756 list_del(&folio->lru); 4757 folio_putback_lru(folio); 4758 continue; 4759 } 4760 4761 /* retry folios that may have missed folio_rotate_reclaimable() */ 4762 if (!skip_retry && !folio_test_active(folio) && !folio_mapped(folio) && 4763 !folio_test_dirty(folio) && !folio_test_writeback(folio)) { 4764 list_move(&folio->lru, &clean); 4765 continue; 4766 } 4767 4768 /* don't add rejected folios to the oldest generation */ 4769 if (lru_gen_folio_seq(lruvec, folio, false) == min_seq[type]) 4770 set_mask_bits(&folio->flags.f, LRU_REFS_FLAGS, BIT(PG_active)); 4771 } 4772 4773 spin_lock_irq(&lruvec->lru_lock); 4774 4775 move_folios_to_lru(lruvec, &list); 4776 4777 walk = current->reclaim_state->mm_walk; 4778 if (walk && walk->batched) { 4779 walk->lruvec = lruvec; 4780 reset_batch_size(walk); 4781 } 4782 4783 __mod_lruvec_state(lruvec, PGDEMOTE_KSWAPD + reclaimer_offset(sc), 4784 stat.nr_demoted); 4785 4786 item = PGSTEAL_KSWAPD + reclaimer_offset(sc); 4787 if (!cgroup_reclaim(sc)) 4788 __count_vm_events(item, reclaimed); 4789 count_memcg_events(memcg, item, reclaimed); 4790 __count_vm_events(PGSTEAL_ANON + type, reclaimed); 4791 4792 spin_unlock_irq(&lruvec->lru_lock); 4793 4794 list_splice_init(&clean, &list); 4795 4796 if (!list_empty(&list)) { 4797 skip_retry = true; 4798 goto retry; 4799 } 4800 4801 return scanned; 4802 } 4803 4804 static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq, 4805 int swappiness, unsigned long *nr_to_scan) 4806 { 4807 int gen, type, zone; 4808 unsigned long size = 0; 4809 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4810 DEFINE_MIN_SEQ(lruvec); 4811 4812 *nr_to_scan = 0; 4813 /* have to run aging, since eviction is not possible anymore */ 4814 if (evictable_min_seq(min_seq, swappiness) + MIN_NR_GENS > max_seq) 4815 return true; 4816 4817 for_each_evictable_type(type, swappiness) { 4818 unsigned long seq; 4819 4820 for (seq = min_seq[type]; seq <= max_seq; seq++) { 4821 gen = lru_gen_from_seq(seq); 4822 4823 for (zone = 0; zone < MAX_NR_ZONES; zone++) 4824 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L); 4825 } 4826 } 4827 4828 *nr_to_scan = size; 4829 /* better to run aging even though eviction is still possible */ 4830 return evictable_min_seq(min_seq, swappiness) + MIN_NR_GENS == max_seq; 4831 } 4832 4833 /* 4834 * For future optimizations: 4835 * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg 4836 * reclaim. 4837 */ 4838 static long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc, int swappiness) 4839 { 4840 bool success; 4841 unsigned long nr_to_scan; 4842 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4843 DEFINE_MAX_SEQ(lruvec); 4844 4845 if (mem_cgroup_below_min(sc->target_mem_cgroup, memcg)) 4846 return -1; 4847 4848 success = should_run_aging(lruvec, max_seq, swappiness, &nr_to_scan); 4849 4850 /* try to scrape all its memory if this memcg was deleted */ 4851 if (nr_to_scan && !mem_cgroup_online(memcg)) 4852 return nr_to_scan; 4853 4854 nr_to_scan = apply_proportional_protection(memcg, sc, nr_to_scan); 4855 4856 /* try to get away with not aging at the default priority */ 4857 if (!success || sc->priority == DEF_PRIORITY) 4858 return nr_to_scan >> sc->priority; 4859 4860 /* stop scanning this lruvec as it's low on cold folios */ 4861 return try_to_inc_max_seq(lruvec, max_seq, swappiness, false) ? -1 : 0; 4862 } 4863 4864 static bool should_abort_scan(struct lruvec *lruvec, struct scan_control *sc) 4865 { 4866 int i; 4867 enum zone_watermarks mark; 4868 4869 /* don't abort memcg reclaim to ensure fairness */ 4870 if (!root_reclaim(sc)) 4871 return false; 4872 4873 if (sc->nr_reclaimed >= max(sc->nr_to_reclaim, compact_gap(sc->order))) 4874 return true; 4875 4876 /* check the order to exclude compaction-induced reclaim */ 4877 if (!current_is_kswapd() || sc->order) 4878 return false; 4879 4880 mark = sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ? 4881 WMARK_PROMO : WMARK_HIGH; 4882 4883 for (i = 0; i <= sc->reclaim_idx; i++) { 4884 struct zone *zone = lruvec_pgdat(lruvec)->node_zones + i; 4885 unsigned long size = wmark_pages(zone, mark) + MIN_LRU_BATCH; 4886 4887 if (managed_zone(zone) && !zone_watermark_ok(zone, 0, size, sc->reclaim_idx, 0)) 4888 return false; 4889 } 4890 4891 /* kswapd should abort if all eligible zones are safe */ 4892 return true; 4893 } 4894 4895 static bool try_to_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 4896 { 4897 long nr_to_scan; 4898 unsigned long scanned = 0; 4899 int swappiness = get_swappiness(lruvec, sc); 4900 4901 while (true) { 4902 int delta; 4903 4904 nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness); 4905 if (nr_to_scan <= 0) 4906 break; 4907 4908 delta = evict_folios(nr_to_scan, lruvec, sc, swappiness); 4909 if (!delta) 4910 break; 4911 4912 scanned += delta; 4913 if (scanned >= nr_to_scan) 4914 break; 4915 4916 if (should_abort_scan(lruvec, sc)) 4917 break; 4918 4919 cond_resched(); 4920 } 4921 4922 /* 4923 * If too many file cache in the coldest generation can't be evicted 4924 * due to being dirty, wake up the flusher. 4925 */ 4926 if (sc->nr.unqueued_dirty && sc->nr.unqueued_dirty == sc->nr.file_taken) 4927 wakeup_flusher_threads(WB_REASON_VMSCAN); 4928 4929 /* whether this lruvec should be rotated */ 4930 return nr_to_scan < 0; 4931 } 4932 4933 static int shrink_one(struct lruvec *lruvec, struct scan_control *sc) 4934 { 4935 bool success; 4936 unsigned long scanned = sc->nr_scanned; 4937 unsigned long reclaimed = sc->nr_reclaimed; 4938 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4939 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 4940 4941 /* lru_gen_age_node() called mem_cgroup_calculate_protection() */ 4942 if (mem_cgroup_below_min(NULL, memcg)) 4943 return MEMCG_LRU_YOUNG; 4944 4945 if (mem_cgroup_below_low(NULL, memcg)) { 4946 /* see the comment on MEMCG_NR_GENS */ 4947 if (READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_TAIL) 4948 return MEMCG_LRU_TAIL; 4949 4950 memcg_memory_event(memcg, MEMCG_LOW); 4951 } 4952 4953 success = try_to_shrink_lruvec(lruvec, sc); 4954 4955 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, sc->priority); 4956 4957 if (!sc->proactive) 4958 vmpressure(sc->gfp_mask, memcg, false, sc->nr_scanned - scanned, 4959 sc->nr_reclaimed - reclaimed); 4960 4961 flush_reclaim_state(sc); 4962 4963 if (success && mem_cgroup_online(memcg)) 4964 return MEMCG_LRU_YOUNG; 4965 4966 if (!success && lruvec_is_sizable(lruvec, sc)) 4967 return 0; 4968 4969 /* one retry if offlined or too small */ 4970 return READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_TAIL ? 4971 MEMCG_LRU_TAIL : MEMCG_LRU_YOUNG; 4972 } 4973 4974 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc) 4975 { 4976 int op; 4977 int gen; 4978 int bin; 4979 int first_bin; 4980 struct lruvec *lruvec; 4981 struct lru_gen_folio *lrugen; 4982 struct mem_cgroup *memcg; 4983 struct hlist_nulls_node *pos; 4984 4985 gen = get_memcg_gen(READ_ONCE(pgdat->memcg_lru.seq)); 4986 bin = first_bin = get_random_u32_below(MEMCG_NR_BINS); 4987 restart: 4988 op = 0; 4989 memcg = NULL; 4990 4991 rcu_read_lock(); 4992 4993 hlist_nulls_for_each_entry_rcu(lrugen, pos, &pgdat->memcg_lru.fifo[gen][bin], list) { 4994 if (op) { 4995 lru_gen_rotate_memcg(lruvec, op); 4996 op = 0; 4997 } 4998 4999 mem_cgroup_put(memcg); 5000 memcg = NULL; 5001 5002 if (gen != READ_ONCE(lrugen->gen)) 5003 continue; 5004 5005 lruvec = container_of(lrugen, struct lruvec, lrugen); 5006 memcg = lruvec_memcg(lruvec); 5007 5008 if (!mem_cgroup_tryget(memcg)) { 5009 lru_gen_release_memcg(memcg); 5010 memcg = NULL; 5011 continue; 5012 } 5013 5014 rcu_read_unlock(); 5015 5016 op = shrink_one(lruvec, sc); 5017 5018 rcu_read_lock(); 5019 5020 if (should_abort_scan(lruvec, sc)) 5021 break; 5022 } 5023 5024 rcu_read_unlock(); 5025 5026 if (op) 5027 lru_gen_rotate_memcg(lruvec, op); 5028 5029 mem_cgroup_put(memcg); 5030 5031 if (!is_a_nulls(pos)) 5032 return; 5033 5034 /* restart if raced with lru_gen_rotate_memcg() */ 5035 if (gen != get_nulls_value(pos)) 5036 goto restart; 5037 5038 /* try the rest of the bins of the current generation */ 5039 bin = get_memcg_bin(bin + 1); 5040 if (bin != first_bin) 5041 goto restart; 5042 } 5043 5044 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 5045 { 5046 struct blk_plug plug; 5047 5048 VM_WARN_ON_ONCE(root_reclaim(sc)); 5049 VM_WARN_ON_ONCE(!sc->may_writepage || !sc->may_unmap); 5050 5051 lru_add_drain(); 5052 5053 blk_start_plug(&plug); 5054 5055 set_mm_walk(NULL, sc->proactive); 5056 5057 if (try_to_shrink_lruvec(lruvec, sc)) 5058 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_YOUNG); 5059 5060 clear_mm_walk(); 5061 5062 blk_finish_plug(&plug); 5063 } 5064 5065 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc) 5066 { 5067 struct blk_plug plug; 5068 unsigned long reclaimed = sc->nr_reclaimed; 5069 5070 VM_WARN_ON_ONCE(!root_reclaim(sc)); 5071 5072 /* 5073 * Unmapped clean folios are already prioritized. Scanning for more of 5074 * them is likely futile and can cause high reclaim latency when there 5075 * is a large number of memcgs. 5076 */ 5077 if (!sc->may_writepage || !sc->may_unmap) 5078 goto done; 5079 5080 lru_add_drain(); 5081 5082 blk_start_plug(&plug); 5083 5084 set_mm_walk(pgdat, sc->proactive); 5085 5086 set_initial_priority(pgdat, sc); 5087 5088 if (current_is_kswapd()) 5089 sc->nr_reclaimed = 0; 5090 5091 if (mem_cgroup_disabled()) 5092 shrink_one(&pgdat->__lruvec, sc); 5093 else 5094 shrink_many(pgdat, sc); 5095 5096 if (current_is_kswapd()) 5097 sc->nr_reclaimed += reclaimed; 5098 5099 clear_mm_walk(); 5100 5101 blk_finish_plug(&plug); 5102 done: 5103 if (sc->nr_reclaimed > reclaimed) 5104 atomic_set(&pgdat->kswapd_failures, 0); 5105 } 5106 5107 /****************************************************************************** 5108 * state change 5109 ******************************************************************************/ 5110 5111 static bool __maybe_unused state_is_valid(struct lruvec *lruvec) 5112 { 5113 struct lru_gen_folio *lrugen = &lruvec->lrugen; 5114 5115 if (lrugen->enabled) { 5116 enum lru_list lru; 5117 5118 for_each_evictable_lru(lru) { 5119 if (!list_empty(&lruvec->lists[lru])) 5120 return false; 5121 } 5122 } else { 5123 int gen, type, zone; 5124 5125 for_each_gen_type_zone(gen, type, zone) { 5126 if (!list_empty(&lrugen->folios[gen][type][zone])) 5127 return false; 5128 } 5129 } 5130 5131 return true; 5132 } 5133 5134 static bool fill_evictable(struct lruvec *lruvec) 5135 { 5136 enum lru_list lru; 5137 int remaining = MAX_LRU_BATCH; 5138 5139 for_each_evictable_lru(lru) { 5140 int type = is_file_lru(lru); 5141 bool active = is_active_lru(lru); 5142 struct list_head *head = &lruvec->lists[lru]; 5143 5144 while (!list_empty(head)) { 5145 bool success; 5146 struct folio *folio = lru_to_folio(head); 5147 5148 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 5149 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio) != active, folio); 5150 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 5151 VM_WARN_ON_ONCE_FOLIO(folio_lru_gen(folio) != -1, folio); 5152 5153 lruvec_del_folio(lruvec, folio); 5154 success = lru_gen_add_folio(lruvec, folio, false); 5155 VM_WARN_ON_ONCE(!success); 5156 5157 if (!--remaining) 5158 return false; 5159 } 5160 } 5161 5162 return true; 5163 } 5164 5165 static bool drain_evictable(struct lruvec *lruvec) 5166 { 5167 int gen, type, zone; 5168 int remaining = MAX_LRU_BATCH; 5169 5170 for_each_gen_type_zone(gen, type, zone) { 5171 struct list_head *head = &lruvec->lrugen.folios[gen][type][zone]; 5172 5173 while (!list_empty(head)) { 5174 bool success; 5175 struct folio *folio = lru_to_folio(head); 5176 5177 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 5178 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio); 5179 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 5180 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio); 5181 5182 success = lru_gen_del_folio(lruvec, folio, false); 5183 VM_WARN_ON_ONCE(!success); 5184 lruvec_add_folio(lruvec, folio); 5185 5186 if (!--remaining) 5187 return false; 5188 } 5189 } 5190 5191 return true; 5192 } 5193 5194 static void lru_gen_change_state(bool enabled) 5195 { 5196 static DEFINE_MUTEX(state_mutex); 5197 5198 struct mem_cgroup *memcg; 5199 5200 cgroup_lock(); 5201 cpus_read_lock(); 5202 get_online_mems(); 5203 mutex_lock(&state_mutex); 5204 5205 if (enabled == lru_gen_enabled()) 5206 goto unlock; 5207 5208 if (enabled) 5209 static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]); 5210 else 5211 static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]); 5212 5213 memcg = mem_cgroup_iter(NULL, NULL, NULL); 5214 do { 5215 int nid; 5216 5217 for_each_node(nid) { 5218 struct lruvec *lruvec = get_lruvec(memcg, nid); 5219 5220 spin_lock_irq(&lruvec->lru_lock); 5221 5222 VM_WARN_ON_ONCE(!seq_is_valid(lruvec)); 5223 VM_WARN_ON_ONCE(!state_is_valid(lruvec)); 5224 5225 lruvec->lrugen.enabled = enabled; 5226 5227 while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) { 5228 spin_unlock_irq(&lruvec->lru_lock); 5229 cond_resched(); 5230 spin_lock_irq(&lruvec->lru_lock); 5231 } 5232 5233 spin_unlock_irq(&lruvec->lru_lock); 5234 } 5235 5236 cond_resched(); 5237 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL))); 5238 unlock: 5239 mutex_unlock(&state_mutex); 5240 put_online_mems(); 5241 cpus_read_unlock(); 5242 cgroup_unlock(); 5243 } 5244 5245 /****************************************************************************** 5246 * sysfs interface 5247 ******************************************************************************/ 5248 5249 static ssize_t min_ttl_ms_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) 5250 { 5251 return sysfs_emit(buf, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl))); 5252 } 5253 5254 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5255 static ssize_t min_ttl_ms_store(struct kobject *kobj, struct kobj_attribute *attr, 5256 const char *buf, size_t len) 5257 { 5258 unsigned int msecs; 5259 5260 if (kstrtouint(buf, 0, &msecs)) 5261 return -EINVAL; 5262 5263 WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs)); 5264 5265 return len; 5266 } 5267 5268 static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR_RW(min_ttl_ms); 5269 5270 static ssize_t enabled_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) 5271 { 5272 unsigned int caps = 0; 5273 5274 if (get_cap(LRU_GEN_CORE)) 5275 caps |= BIT(LRU_GEN_CORE); 5276 5277 if (should_walk_mmu()) 5278 caps |= BIT(LRU_GEN_MM_WALK); 5279 5280 if (should_clear_pmd_young()) 5281 caps |= BIT(LRU_GEN_NONLEAF_YOUNG); 5282 5283 return sysfs_emit(buf, "0x%04x\n", caps); 5284 } 5285 5286 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5287 static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr, 5288 const char *buf, size_t len) 5289 { 5290 int i; 5291 unsigned int caps; 5292 5293 if (tolower(*buf) == 'n') 5294 caps = 0; 5295 else if (tolower(*buf) == 'y') 5296 caps = -1; 5297 else if (kstrtouint(buf, 0, &caps)) 5298 return -EINVAL; 5299 5300 for (i = 0; i < NR_LRU_GEN_CAPS; i++) { 5301 bool enabled = caps & BIT(i); 5302 5303 if (i == LRU_GEN_CORE) 5304 lru_gen_change_state(enabled); 5305 else if (enabled) 5306 static_branch_enable(&lru_gen_caps[i]); 5307 else 5308 static_branch_disable(&lru_gen_caps[i]); 5309 } 5310 5311 return len; 5312 } 5313 5314 static struct kobj_attribute lru_gen_enabled_attr = __ATTR_RW(enabled); 5315 5316 static struct attribute *lru_gen_attrs[] = { 5317 &lru_gen_min_ttl_attr.attr, 5318 &lru_gen_enabled_attr.attr, 5319 NULL 5320 }; 5321 5322 static const struct attribute_group lru_gen_attr_group = { 5323 .name = "lru_gen", 5324 .attrs = lru_gen_attrs, 5325 }; 5326 5327 /****************************************************************************** 5328 * debugfs interface 5329 ******************************************************************************/ 5330 5331 static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos) 5332 { 5333 struct mem_cgroup *memcg; 5334 loff_t nr_to_skip = *pos; 5335 5336 m->private = kvmalloc(PATH_MAX, GFP_KERNEL); 5337 if (!m->private) 5338 return ERR_PTR(-ENOMEM); 5339 5340 memcg = mem_cgroup_iter(NULL, NULL, NULL); 5341 do { 5342 int nid; 5343 5344 for_each_node_state(nid, N_MEMORY) { 5345 if (!nr_to_skip--) 5346 return get_lruvec(memcg, nid); 5347 } 5348 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL))); 5349 5350 return NULL; 5351 } 5352 5353 static void lru_gen_seq_stop(struct seq_file *m, void *v) 5354 { 5355 if (!IS_ERR_OR_NULL(v)) 5356 mem_cgroup_iter_break(NULL, lruvec_memcg(v)); 5357 5358 kvfree(m->private); 5359 m->private = NULL; 5360 } 5361 5362 static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos) 5363 { 5364 int nid = lruvec_pgdat(v)->node_id; 5365 struct mem_cgroup *memcg = lruvec_memcg(v); 5366 5367 ++*pos; 5368 5369 nid = next_memory_node(nid); 5370 if (nid == MAX_NUMNODES) { 5371 memcg = mem_cgroup_iter(NULL, memcg, NULL); 5372 if (!memcg) 5373 return NULL; 5374 5375 nid = first_memory_node; 5376 } 5377 5378 return get_lruvec(memcg, nid); 5379 } 5380 5381 static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec, 5382 unsigned long max_seq, unsigned long *min_seq, 5383 unsigned long seq) 5384 { 5385 int i; 5386 int type, tier; 5387 int hist = lru_hist_from_seq(seq); 5388 struct lru_gen_folio *lrugen = &lruvec->lrugen; 5389 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 5390 5391 for (tier = 0; tier < MAX_NR_TIERS; tier++) { 5392 seq_printf(m, " %10d", tier); 5393 for (type = 0; type < ANON_AND_FILE; type++) { 5394 const char *s = "xxx"; 5395 unsigned long n[3] = {}; 5396 5397 if (seq == max_seq) { 5398 s = "RTx"; 5399 n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]); 5400 n[1] = READ_ONCE(lrugen->avg_total[type][tier]); 5401 } else if (seq == min_seq[type] || NR_HIST_GENS > 1) { 5402 s = "rep"; 5403 n[0] = atomic_long_read(&lrugen->refaulted[hist][type][tier]); 5404 n[1] = atomic_long_read(&lrugen->evicted[hist][type][tier]); 5405 n[2] = READ_ONCE(lrugen->protected[hist][type][tier]); 5406 } 5407 5408 for (i = 0; i < 3; i++) 5409 seq_printf(m, " %10lu%c", n[i], s[i]); 5410 } 5411 seq_putc(m, '\n'); 5412 } 5413 5414 if (!mm_state) 5415 return; 5416 5417 seq_puts(m, " "); 5418 for (i = 0; i < NR_MM_STATS; i++) { 5419 const char *s = "xxxx"; 5420 unsigned long n = 0; 5421 5422 if (seq == max_seq && NR_HIST_GENS == 1) { 5423 s = "TYFA"; 5424 n = READ_ONCE(mm_state->stats[hist][i]); 5425 } else if (seq != max_seq && NR_HIST_GENS > 1) { 5426 s = "tyfa"; 5427 n = READ_ONCE(mm_state->stats[hist][i]); 5428 } 5429 5430 seq_printf(m, " %10lu%c", n, s[i]); 5431 } 5432 seq_putc(m, '\n'); 5433 } 5434 5435 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5436 static int lru_gen_seq_show(struct seq_file *m, void *v) 5437 { 5438 unsigned long seq; 5439 bool full = debugfs_get_aux_num(m->file); 5440 struct lruvec *lruvec = v; 5441 struct lru_gen_folio *lrugen = &lruvec->lrugen; 5442 int nid = lruvec_pgdat(lruvec)->node_id; 5443 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 5444 DEFINE_MAX_SEQ(lruvec); 5445 DEFINE_MIN_SEQ(lruvec); 5446 5447 if (nid == first_memory_node) { 5448 const char *path = memcg ? m->private : ""; 5449 5450 #ifdef CONFIG_MEMCG 5451 if (memcg) 5452 cgroup_path(memcg->css.cgroup, m->private, PATH_MAX); 5453 #endif 5454 seq_printf(m, "memcg %5hu %s\n", mem_cgroup_id(memcg), path); 5455 } 5456 5457 seq_printf(m, " node %5d\n", nid); 5458 5459 if (!full) 5460 seq = evictable_min_seq(min_seq, MAX_SWAPPINESS / 2); 5461 else if (max_seq >= MAX_NR_GENS) 5462 seq = max_seq - MAX_NR_GENS + 1; 5463 else 5464 seq = 0; 5465 5466 for (; seq <= max_seq; seq++) { 5467 int type, zone; 5468 int gen = lru_gen_from_seq(seq); 5469 unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]); 5470 5471 seq_printf(m, " %10lu %10u", seq, jiffies_to_msecs(jiffies - birth)); 5472 5473 for (type = 0; type < ANON_AND_FILE; type++) { 5474 unsigned long size = 0; 5475 char mark = full && seq < min_seq[type] ? 'x' : ' '; 5476 5477 for (zone = 0; zone < MAX_NR_ZONES; zone++) 5478 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L); 5479 5480 seq_printf(m, " %10lu%c", size, mark); 5481 } 5482 5483 seq_putc(m, '\n'); 5484 5485 if (full) 5486 lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq); 5487 } 5488 5489 return 0; 5490 } 5491 5492 static const struct seq_operations lru_gen_seq_ops = { 5493 .start = lru_gen_seq_start, 5494 .stop = lru_gen_seq_stop, 5495 .next = lru_gen_seq_next, 5496 .show = lru_gen_seq_show, 5497 }; 5498 5499 static int run_aging(struct lruvec *lruvec, unsigned long seq, 5500 int swappiness, bool force_scan) 5501 { 5502 DEFINE_MAX_SEQ(lruvec); 5503 5504 if (seq > max_seq) 5505 return -EINVAL; 5506 5507 return try_to_inc_max_seq(lruvec, max_seq, swappiness, force_scan) ? 0 : -EEXIST; 5508 } 5509 5510 static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc, 5511 int swappiness, unsigned long nr_to_reclaim) 5512 { 5513 DEFINE_MAX_SEQ(lruvec); 5514 5515 if (seq + MIN_NR_GENS > max_seq) 5516 return -EINVAL; 5517 5518 sc->nr_reclaimed = 0; 5519 5520 while (!signal_pending(current)) { 5521 DEFINE_MIN_SEQ(lruvec); 5522 5523 if (seq < evictable_min_seq(min_seq, swappiness)) 5524 return 0; 5525 5526 if (sc->nr_reclaimed >= nr_to_reclaim) 5527 return 0; 5528 5529 if (!evict_folios(nr_to_reclaim - sc->nr_reclaimed, lruvec, sc, 5530 swappiness)) 5531 return 0; 5532 5533 cond_resched(); 5534 } 5535 5536 return -EINTR; 5537 } 5538 5539 static int run_cmd(char cmd, int memcg_id, int nid, unsigned long seq, 5540 struct scan_control *sc, int swappiness, unsigned long opt) 5541 { 5542 struct lruvec *lruvec; 5543 int err = -EINVAL; 5544 struct mem_cgroup *memcg = NULL; 5545 5546 if (nid < 0 || nid >= MAX_NUMNODES || !node_state(nid, N_MEMORY)) 5547 return -EINVAL; 5548 5549 if (!mem_cgroup_disabled()) { 5550 rcu_read_lock(); 5551 5552 memcg = mem_cgroup_from_id(memcg_id); 5553 if (!mem_cgroup_tryget(memcg)) 5554 memcg = NULL; 5555 5556 rcu_read_unlock(); 5557 5558 if (!memcg) 5559 return -EINVAL; 5560 } 5561 5562 if (memcg_id != mem_cgroup_id(memcg)) 5563 goto done; 5564 5565 sc->target_mem_cgroup = memcg; 5566 lruvec = get_lruvec(memcg, nid); 5567 5568 if (swappiness < MIN_SWAPPINESS) 5569 swappiness = get_swappiness(lruvec, sc); 5570 else if (swappiness > SWAPPINESS_ANON_ONLY) 5571 goto done; 5572 5573 switch (cmd) { 5574 case '+': 5575 err = run_aging(lruvec, seq, swappiness, opt); 5576 break; 5577 case '-': 5578 err = run_eviction(lruvec, seq, sc, swappiness, opt); 5579 break; 5580 } 5581 done: 5582 mem_cgroup_put(memcg); 5583 5584 return err; 5585 } 5586 5587 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5588 static ssize_t lru_gen_seq_write(struct file *file, const char __user *src, 5589 size_t len, loff_t *pos) 5590 { 5591 void *buf; 5592 char *cur, *next; 5593 unsigned int flags; 5594 struct blk_plug plug; 5595 int err = -EINVAL; 5596 struct scan_control sc = { 5597 .may_writepage = true, 5598 .may_unmap = true, 5599 .may_swap = true, 5600 .reclaim_idx = MAX_NR_ZONES - 1, 5601 .gfp_mask = GFP_KERNEL, 5602 .proactive = true, 5603 }; 5604 5605 buf = kvmalloc(len + 1, GFP_KERNEL); 5606 if (!buf) 5607 return -ENOMEM; 5608 5609 if (copy_from_user(buf, src, len)) { 5610 kvfree(buf); 5611 return -EFAULT; 5612 } 5613 5614 set_task_reclaim_state(current, &sc.reclaim_state); 5615 flags = memalloc_noreclaim_save(); 5616 blk_start_plug(&plug); 5617 if (!set_mm_walk(NULL, true)) { 5618 err = -ENOMEM; 5619 goto done; 5620 } 5621 5622 next = buf; 5623 next[len] = '\0'; 5624 5625 while ((cur = strsep(&next, ",;\n"))) { 5626 int n; 5627 int end; 5628 char cmd, swap_string[5]; 5629 unsigned int memcg_id; 5630 unsigned int nid; 5631 unsigned long seq; 5632 unsigned int swappiness; 5633 unsigned long opt = -1; 5634 5635 cur = skip_spaces(cur); 5636 if (!*cur) 5637 continue; 5638 5639 n = sscanf(cur, "%c %u %u %lu %n %4s %n %lu %n", &cmd, &memcg_id, &nid, 5640 &seq, &end, swap_string, &end, &opt, &end); 5641 if (n < 4 || cur[end]) { 5642 err = -EINVAL; 5643 break; 5644 } 5645 5646 if (n == 4) { 5647 swappiness = -1; 5648 } else if (!strcmp("max", swap_string)) { 5649 /* set by userspace for anonymous memory only */ 5650 swappiness = SWAPPINESS_ANON_ONLY; 5651 } else { 5652 err = kstrtouint(swap_string, 0, &swappiness); 5653 if (err) 5654 break; 5655 } 5656 5657 err = run_cmd(cmd, memcg_id, nid, seq, &sc, swappiness, opt); 5658 if (err) 5659 break; 5660 } 5661 done: 5662 clear_mm_walk(); 5663 blk_finish_plug(&plug); 5664 memalloc_noreclaim_restore(flags); 5665 set_task_reclaim_state(current, NULL); 5666 5667 kvfree(buf); 5668 5669 return err ? : len; 5670 } 5671 5672 static int lru_gen_seq_open(struct inode *inode, struct file *file) 5673 { 5674 return seq_open(file, &lru_gen_seq_ops); 5675 } 5676 5677 static const struct file_operations lru_gen_rw_fops = { 5678 .open = lru_gen_seq_open, 5679 .read = seq_read, 5680 .write = lru_gen_seq_write, 5681 .llseek = seq_lseek, 5682 .release = seq_release, 5683 }; 5684 5685 static const struct file_operations lru_gen_ro_fops = { 5686 .open = lru_gen_seq_open, 5687 .read = seq_read, 5688 .llseek = seq_lseek, 5689 .release = seq_release, 5690 }; 5691 5692 /****************************************************************************** 5693 * initialization 5694 ******************************************************************************/ 5695 5696 void lru_gen_init_pgdat(struct pglist_data *pgdat) 5697 { 5698 int i, j; 5699 5700 spin_lock_init(&pgdat->memcg_lru.lock); 5701 5702 for (i = 0; i < MEMCG_NR_GENS; i++) { 5703 for (j = 0; j < MEMCG_NR_BINS; j++) 5704 INIT_HLIST_NULLS_HEAD(&pgdat->memcg_lru.fifo[i][j], i); 5705 } 5706 } 5707 5708 void lru_gen_init_lruvec(struct lruvec *lruvec) 5709 { 5710 int i; 5711 int gen, type, zone; 5712 struct lru_gen_folio *lrugen = &lruvec->lrugen; 5713 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 5714 5715 lrugen->max_seq = MIN_NR_GENS + 1; 5716 lrugen->enabled = lru_gen_enabled(); 5717 5718 for (i = 0; i <= MIN_NR_GENS + 1; i++) 5719 lrugen->timestamps[i] = jiffies; 5720 5721 for_each_gen_type_zone(gen, type, zone) 5722 INIT_LIST_HEAD(&lrugen->folios[gen][type][zone]); 5723 5724 if (mm_state) 5725 mm_state->seq = MIN_NR_GENS; 5726 } 5727 5728 #ifdef CONFIG_MEMCG 5729 5730 void lru_gen_init_memcg(struct mem_cgroup *memcg) 5731 { 5732 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 5733 5734 if (!mm_list) 5735 return; 5736 5737 INIT_LIST_HEAD(&mm_list->fifo); 5738 spin_lock_init(&mm_list->lock); 5739 } 5740 5741 void lru_gen_exit_memcg(struct mem_cgroup *memcg) 5742 { 5743 int i; 5744 int nid; 5745 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 5746 5747 VM_WARN_ON_ONCE(mm_list && !list_empty(&mm_list->fifo)); 5748 5749 for_each_node(nid) { 5750 struct lruvec *lruvec = get_lruvec(memcg, nid); 5751 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 5752 5753 VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0, 5754 sizeof(lruvec->lrugen.nr_pages))); 5755 5756 lruvec->lrugen.list.next = LIST_POISON1; 5757 5758 if (!mm_state) 5759 continue; 5760 5761 for (i = 0; i < NR_BLOOM_FILTERS; i++) { 5762 bitmap_free(mm_state->filters[i]); 5763 mm_state->filters[i] = NULL; 5764 } 5765 } 5766 } 5767 5768 #endif /* CONFIG_MEMCG */ 5769 5770 static int __init init_lru_gen(void) 5771 { 5772 BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS); 5773 BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS); 5774 5775 if (sysfs_create_group(mm_kobj, &lru_gen_attr_group)) 5776 pr_err("lru_gen: failed to create sysfs group\n"); 5777 5778 debugfs_create_file_aux_num("lru_gen", 0644, NULL, NULL, false, 5779 &lru_gen_rw_fops); 5780 debugfs_create_file_aux_num("lru_gen_full", 0444, NULL, NULL, true, 5781 &lru_gen_ro_fops); 5782 5783 return 0; 5784 }; 5785 late_initcall(init_lru_gen); 5786 5787 #else /* !CONFIG_LRU_GEN */ 5788 5789 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc) 5790 { 5791 BUILD_BUG(); 5792 } 5793 5794 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 5795 { 5796 BUILD_BUG(); 5797 } 5798 5799 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc) 5800 { 5801 BUILD_BUG(); 5802 } 5803 5804 #endif /* CONFIG_LRU_GEN */ 5805 5806 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 5807 { 5808 unsigned long nr[NR_LRU_LISTS]; 5809 unsigned long targets[NR_LRU_LISTS]; 5810 unsigned long nr_to_scan; 5811 enum lru_list lru; 5812 unsigned long nr_reclaimed = 0; 5813 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 5814 bool proportional_reclaim; 5815 struct blk_plug plug; 5816 5817 if (lru_gen_enabled() && !root_reclaim(sc)) { 5818 lru_gen_shrink_lruvec(lruvec, sc); 5819 return; 5820 } 5821 5822 get_scan_count(lruvec, sc, nr); 5823 5824 /* Record the original scan target for proportional adjustments later */ 5825 memcpy(targets, nr, sizeof(nr)); 5826 5827 /* 5828 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal 5829 * event that can occur when there is little memory pressure e.g. 5830 * multiple streaming readers/writers. Hence, we do not abort scanning 5831 * when the requested number of pages are reclaimed when scanning at 5832 * DEF_PRIORITY on the assumption that the fact we are direct 5833 * reclaiming implies that kswapd is not keeping up and it is best to 5834 * do a batch of work at once. For memcg reclaim one check is made to 5835 * abort proportional reclaim if either the file or anon lru has already 5836 * dropped to zero at the first pass. 5837 */ 5838 proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() && 5839 sc->priority == DEF_PRIORITY); 5840 5841 blk_start_plug(&plug); 5842 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 5843 nr[LRU_INACTIVE_FILE]) { 5844 unsigned long nr_anon, nr_file, percentage; 5845 unsigned long nr_scanned; 5846 5847 for_each_evictable_lru(lru) { 5848 if (nr[lru]) { 5849 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 5850 nr[lru] -= nr_to_scan; 5851 5852 nr_reclaimed += shrink_list(lru, nr_to_scan, 5853 lruvec, sc); 5854 } 5855 } 5856 5857 cond_resched(); 5858 5859 if (nr_reclaimed < nr_to_reclaim || proportional_reclaim) 5860 continue; 5861 5862 /* 5863 * For kswapd and memcg, reclaim at least the number of pages 5864 * requested. Ensure that the anon and file LRUs are scanned 5865 * proportionally what was requested by get_scan_count(). We 5866 * stop reclaiming one LRU and reduce the amount scanning 5867 * proportional to the original scan target. 5868 */ 5869 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 5870 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 5871 5872 /* 5873 * It's just vindictive to attack the larger once the smaller 5874 * has gone to zero. And given the way we stop scanning the 5875 * smaller below, this makes sure that we only make one nudge 5876 * towards proportionality once we've got nr_to_reclaim. 5877 */ 5878 if (!nr_file || !nr_anon) 5879 break; 5880 5881 if (nr_file > nr_anon) { 5882 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 5883 targets[LRU_ACTIVE_ANON] + 1; 5884 lru = LRU_BASE; 5885 percentage = nr_anon * 100 / scan_target; 5886 } else { 5887 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 5888 targets[LRU_ACTIVE_FILE] + 1; 5889 lru = LRU_FILE; 5890 percentage = nr_file * 100 / scan_target; 5891 } 5892 5893 /* Stop scanning the smaller of the LRU */ 5894 nr[lru] = 0; 5895 nr[lru + LRU_ACTIVE] = 0; 5896 5897 /* 5898 * Recalculate the other LRU scan count based on its original 5899 * scan target and the percentage scanning already complete 5900 */ 5901 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 5902 nr_scanned = targets[lru] - nr[lru]; 5903 nr[lru] = targets[lru] * (100 - percentage) / 100; 5904 nr[lru] -= min(nr[lru], nr_scanned); 5905 5906 lru += LRU_ACTIVE; 5907 nr_scanned = targets[lru] - nr[lru]; 5908 nr[lru] = targets[lru] * (100 - percentage) / 100; 5909 nr[lru] -= min(nr[lru], nr_scanned); 5910 } 5911 blk_finish_plug(&plug); 5912 sc->nr_reclaimed += nr_reclaimed; 5913 5914 /* 5915 * Even if we did not try to evict anon pages at all, we want to 5916 * rebalance the anon lru active/inactive ratio. 5917 */ 5918 if (can_age_anon_pages(lruvec, sc) && 5919 inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 5920 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 5921 sc, LRU_ACTIVE_ANON); 5922 } 5923 5924 /* Use reclaim/compaction for costly allocs or under memory pressure */ 5925 static bool in_reclaim_compaction(struct scan_control *sc) 5926 { 5927 if (gfp_compaction_allowed(sc->gfp_mask) && sc->order && 5928 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 5929 sc->priority < DEF_PRIORITY - 2)) 5930 return true; 5931 5932 return false; 5933 } 5934 5935 /* 5936 * Reclaim/compaction is used for high-order allocation requests. It reclaims 5937 * order-0 pages before compacting the zone. should_continue_reclaim() returns 5938 * true if more pages should be reclaimed such that when the page allocator 5939 * calls try_to_compact_pages() that it will have enough free pages to succeed. 5940 * It will give up earlier than that if there is difficulty reclaiming pages. 5941 */ 5942 static inline bool should_continue_reclaim(struct pglist_data *pgdat, 5943 unsigned long nr_reclaimed, 5944 struct scan_control *sc) 5945 { 5946 unsigned long pages_for_compaction; 5947 unsigned long inactive_lru_pages; 5948 int z; 5949 struct zone *zone; 5950 5951 /* If not in reclaim/compaction mode, stop */ 5952 if (!in_reclaim_compaction(sc)) 5953 return false; 5954 5955 /* 5956 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX 5957 * number of pages that were scanned. This will return to the caller 5958 * with the risk reclaim/compaction and the resulting allocation attempt 5959 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL 5960 * allocations through requiring that the full LRU list has been scanned 5961 * first, by assuming that zero delta of sc->nr_scanned means full LRU 5962 * scan, but that approximation was wrong, and there were corner cases 5963 * where always a non-zero amount of pages were scanned. 5964 */ 5965 if (!nr_reclaimed) 5966 return false; 5967 5968 /* If compaction would go ahead or the allocation would succeed, stop */ 5969 for_each_managed_zone_pgdat(zone, pgdat, z, sc->reclaim_idx) { 5970 unsigned long watermark = min_wmark_pages(zone); 5971 5972 /* Allocation can already succeed, nothing to do */ 5973 if (zone_watermark_ok(zone, sc->order, watermark, 5974 sc->reclaim_idx, 0)) 5975 return false; 5976 5977 if (compaction_suitable(zone, sc->order, watermark, 5978 sc->reclaim_idx)) 5979 return false; 5980 } 5981 5982 /* 5983 * If we have not reclaimed enough pages for compaction and the 5984 * inactive lists are large enough, continue reclaiming 5985 */ 5986 pages_for_compaction = compact_gap(sc->order); 5987 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE); 5988 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc)) 5989 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON); 5990 5991 return inactive_lru_pages > pages_for_compaction; 5992 } 5993 5994 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc) 5995 { 5996 struct mem_cgroup *target_memcg = sc->target_mem_cgroup; 5997 struct mem_cgroup_reclaim_cookie reclaim = { 5998 .pgdat = pgdat, 5999 }; 6000 struct mem_cgroup_reclaim_cookie *partial = &reclaim; 6001 struct mem_cgroup *memcg; 6002 6003 /* 6004 * In most cases, direct reclaimers can do partial walks 6005 * through the cgroup tree, using an iterator state that 6006 * persists across invocations. This strikes a balance between 6007 * fairness and allocation latency. 6008 * 6009 * For kswapd, reliable forward progress is more important 6010 * than a quick return to idle. Always do full walks. 6011 */ 6012 if (current_is_kswapd() || sc->memcg_full_walk) 6013 partial = NULL; 6014 6015 memcg = mem_cgroup_iter(target_memcg, NULL, partial); 6016 do { 6017 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 6018 unsigned long reclaimed; 6019 unsigned long scanned; 6020 6021 /* 6022 * This loop can become CPU-bound when target memcgs 6023 * aren't eligible for reclaim - either because they 6024 * don't have any reclaimable pages, or because their 6025 * memory is explicitly protected. Avoid soft lockups. 6026 */ 6027 cond_resched(); 6028 6029 mem_cgroup_calculate_protection(target_memcg, memcg); 6030 6031 if (mem_cgroup_below_min(target_memcg, memcg)) { 6032 /* 6033 * Hard protection. 6034 * If there is no reclaimable memory, OOM. 6035 */ 6036 continue; 6037 } else if (mem_cgroup_below_low(target_memcg, memcg)) { 6038 /* 6039 * Soft protection. 6040 * Respect the protection only as long as 6041 * there is an unprotected supply 6042 * of reclaimable memory from other cgroups. 6043 */ 6044 if (!sc->memcg_low_reclaim) { 6045 sc->memcg_low_skipped = 1; 6046 continue; 6047 } 6048 memcg_memory_event(memcg, MEMCG_LOW); 6049 } 6050 6051 reclaimed = sc->nr_reclaimed; 6052 scanned = sc->nr_scanned; 6053 6054 shrink_lruvec(lruvec, sc); 6055 6056 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, 6057 sc->priority); 6058 6059 /* Record the group's reclaim efficiency */ 6060 if (!sc->proactive) 6061 vmpressure(sc->gfp_mask, memcg, false, 6062 sc->nr_scanned - scanned, 6063 sc->nr_reclaimed - reclaimed); 6064 6065 /* If partial walks are allowed, bail once goal is reached */ 6066 if (partial && sc->nr_reclaimed >= sc->nr_to_reclaim) { 6067 mem_cgroup_iter_break(target_memcg, memcg); 6068 break; 6069 } 6070 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, partial))); 6071 } 6072 6073 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc) 6074 { 6075 unsigned long nr_reclaimed, nr_scanned, nr_node_reclaimed; 6076 struct lruvec *target_lruvec; 6077 bool reclaimable = false; 6078 6079 if (lru_gen_enabled() && root_reclaim(sc)) { 6080 memset(&sc->nr, 0, sizeof(sc->nr)); 6081 lru_gen_shrink_node(pgdat, sc); 6082 return; 6083 } 6084 6085 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat); 6086 6087 again: 6088 memset(&sc->nr, 0, sizeof(sc->nr)); 6089 6090 nr_reclaimed = sc->nr_reclaimed; 6091 nr_scanned = sc->nr_scanned; 6092 6093 prepare_scan_control(pgdat, sc); 6094 6095 shrink_node_memcgs(pgdat, sc); 6096 6097 flush_reclaim_state(sc); 6098 6099 nr_node_reclaimed = sc->nr_reclaimed - nr_reclaimed; 6100 6101 /* Record the subtree's reclaim efficiency */ 6102 if (!sc->proactive) 6103 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, 6104 sc->nr_scanned - nr_scanned, nr_node_reclaimed); 6105 6106 if (nr_node_reclaimed) 6107 reclaimable = true; 6108 6109 if (current_is_kswapd()) { 6110 /* 6111 * If reclaim is isolating dirty pages under writeback, 6112 * it implies that the long-lived page allocation rate 6113 * is exceeding the page laundering rate. Either the 6114 * global limits are not being effective at throttling 6115 * processes due to the page distribution throughout 6116 * zones or there is heavy usage of a slow backing 6117 * device. The only option is to throttle from reclaim 6118 * context which is not ideal as there is no guarantee 6119 * the dirtying process is throttled in the same way 6120 * balance_dirty_pages() manages. 6121 * 6122 * Once a node is flagged PGDAT_WRITEBACK, kswapd will 6123 * count the number of pages under pages flagged for 6124 * immediate reclaim and stall if any are encountered 6125 * in the nr_immediate check below. 6126 */ 6127 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken) 6128 set_bit(PGDAT_WRITEBACK, &pgdat->flags); 6129 6130 /* Allow kswapd to start writing pages during reclaim.*/ 6131 if (sc->nr.unqueued_dirty && 6132 sc->nr.unqueued_dirty == sc->nr.file_taken) 6133 set_bit(PGDAT_DIRTY, &pgdat->flags); 6134 6135 /* 6136 * If kswapd scans pages marked for immediate 6137 * reclaim and under writeback (nr_immediate), it 6138 * implies that pages are cycling through the LRU 6139 * faster than they are written so forcibly stall 6140 * until some pages complete writeback. 6141 */ 6142 if (sc->nr.immediate) 6143 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK); 6144 } 6145 6146 /* 6147 * Tag a node/memcg as congested if all the dirty pages were marked 6148 * for writeback and immediate reclaim (counted in nr.congested). 6149 * 6150 * Legacy memcg will stall in page writeback so avoid forcibly 6151 * stalling in reclaim_throttle(). 6152 */ 6153 if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested) { 6154 if (cgroup_reclaim(sc) && writeback_throttling_sane(sc)) 6155 set_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags); 6156 6157 if (current_is_kswapd()) 6158 set_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags); 6159 } 6160 6161 /* 6162 * Stall direct reclaim for IO completions if the lruvec is 6163 * node is congested. Allow kswapd to continue until it 6164 * starts encountering unqueued dirty pages or cycling through 6165 * the LRU too quickly. 6166 */ 6167 if (!current_is_kswapd() && current_may_throttle() && 6168 !sc->hibernation_mode && 6169 (test_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags) || 6170 test_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags))) 6171 reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED); 6172 6173 if (should_continue_reclaim(pgdat, nr_node_reclaimed, sc)) 6174 goto again; 6175 6176 /* 6177 * Kswapd gives up on balancing particular nodes after too 6178 * many failures to reclaim anything from them and goes to 6179 * sleep. On reclaim progress, reset the failure counter. A 6180 * successful direct reclaim run will revive a dormant kswapd. 6181 */ 6182 if (reclaimable) 6183 atomic_set(&pgdat->kswapd_failures, 0); 6184 else if (sc->cache_trim_mode) 6185 sc->cache_trim_mode_failed = 1; 6186 } 6187 6188 /* 6189 * Returns true if compaction should go ahead for a costly-order request, or 6190 * the allocation would already succeed without compaction. Return false if we 6191 * should reclaim first. 6192 */ 6193 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) 6194 { 6195 unsigned long watermark; 6196 6197 if (!gfp_compaction_allowed(sc->gfp_mask)) 6198 return false; 6199 6200 /* Allocation can already succeed, nothing to do */ 6201 if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone), 6202 sc->reclaim_idx, 0)) 6203 return true; 6204 6205 /* 6206 * Direct reclaim usually targets the min watermark, but compaction 6207 * takes time to run and there are potentially other callers using the 6208 * pages just freed. So target a higher buffer to give compaction a 6209 * reasonable chance of completing and allocating the pages. 6210 * 6211 * Note that we won't actually reclaim the whole buffer in one attempt 6212 * as the target watermark in should_continue_reclaim() is lower. But if 6213 * we are already above the high+gap watermark, don't reclaim at all. 6214 */ 6215 watermark = high_wmark_pages(zone); 6216 if (compaction_suitable(zone, sc->order, watermark, sc->reclaim_idx)) 6217 return true; 6218 6219 return false; 6220 } 6221 6222 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc) 6223 { 6224 /* 6225 * If reclaim is making progress greater than 12% efficiency then 6226 * wake all the NOPROGRESS throttled tasks. 6227 */ 6228 if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) { 6229 wait_queue_head_t *wqh; 6230 6231 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS]; 6232 if (waitqueue_active(wqh)) 6233 wake_up(wqh); 6234 6235 return; 6236 } 6237 6238 /* 6239 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will 6240 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages 6241 * under writeback and marked for immediate reclaim at the tail of the 6242 * LRU. 6243 */ 6244 if (current_is_kswapd() || cgroup_reclaim(sc)) 6245 return; 6246 6247 /* Throttle if making no progress at high prioities. */ 6248 if (sc->priority == 1 && !sc->nr_reclaimed) 6249 reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS); 6250 } 6251 6252 /* 6253 * This is the direct reclaim path, for page-allocating processes. We only 6254 * try to reclaim pages from zones which will satisfy the caller's allocation 6255 * request. 6256 * 6257 * If a zone is deemed to be full of pinned pages then just give it a light 6258 * scan then give up on it. 6259 */ 6260 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 6261 { 6262 struct zoneref *z; 6263 struct zone *zone; 6264 unsigned long nr_soft_reclaimed; 6265 unsigned long nr_soft_scanned; 6266 gfp_t orig_mask; 6267 pg_data_t *last_pgdat = NULL; 6268 pg_data_t *first_pgdat = NULL; 6269 6270 /* 6271 * If the number of buffer_heads in the machine exceeds the maximum 6272 * allowed level, force direct reclaim to scan the highmem zone as 6273 * highmem pages could be pinning lowmem pages storing buffer_heads 6274 */ 6275 orig_mask = sc->gfp_mask; 6276 if (buffer_heads_over_limit) { 6277 sc->gfp_mask |= __GFP_HIGHMEM; 6278 sc->reclaim_idx = gfp_zone(sc->gfp_mask); 6279 } 6280 6281 for_each_zone_zonelist_nodemask(zone, z, zonelist, 6282 sc->reclaim_idx, sc->nodemask) { 6283 /* 6284 * Take care memory controller reclaiming has small influence 6285 * to global LRU. 6286 */ 6287 if (!cgroup_reclaim(sc)) { 6288 if (!cpuset_zone_allowed(zone, 6289 GFP_KERNEL | __GFP_HARDWALL)) 6290 continue; 6291 6292 /* 6293 * If we already have plenty of memory free for 6294 * compaction in this zone, don't free any more. 6295 * Even though compaction is invoked for any 6296 * non-zero order, only frequent costly order 6297 * reclamation is disruptive enough to become a 6298 * noticeable problem, like transparent huge 6299 * page allocations. 6300 */ 6301 if (IS_ENABLED(CONFIG_COMPACTION) && 6302 sc->order > PAGE_ALLOC_COSTLY_ORDER && 6303 compaction_ready(zone, sc)) { 6304 sc->compaction_ready = true; 6305 continue; 6306 } 6307 6308 /* 6309 * Shrink each node in the zonelist once. If the 6310 * zonelist is ordered by zone (not the default) then a 6311 * node may be shrunk multiple times but in that case 6312 * the user prefers lower zones being preserved. 6313 */ 6314 if (zone->zone_pgdat == last_pgdat) 6315 continue; 6316 6317 /* 6318 * This steals pages from memory cgroups over softlimit 6319 * and returns the number of reclaimed pages and 6320 * scanned pages. This works for global memory pressure 6321 * and balancing, not for a memcg's limit. 6322 */ 6323 nr_soft_scanned = 0; 6324 nr_soft_reclaimed = memcg1_soft_limit_reclaim(zone->zone_pgdat, 6325 sc->order, sc->gfp_mask, 6326 &nr_soft_scanned); 6327 sc->nr_reclaimed += nr_soft_reclaimed; 6328 sc->nr_scanned += nr_soft_scanned; 6329 /* need some check for avoid more shrink_zone() */ 6330 } 6331 6332 if (!first_pgdat) 6333 first_pgdat = zone->zone_pgdat; 6334 6335 /* See comment about same check for global reclaim above */ 6336 if (zone->zone_pgdat == last_pgdat) 6337 continue; 6338 last_pgdat = zone->zone_pgdat; 6339 shrink_node(zone->zone_pgdat, sc); 6340 } 6341 6342 if (first_pgdat) 6343 consider_reclaim_throttle(first_pgdat, sc); 6344 6345 /* 6346 * Restore to original mask to avoid the impact on the caller if we 6347 * promoted it to __GFP_HIGHMEM. 6348 */ 6349 sc->gfp_mask = orig_mask; 6350 } 6351 6352 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat) 6353 { 6354 struct lruvec *target_lruvec; 6355 unsigned long refaults; 6356 6357 if (lru_gen_enabled()) 6358 return; 6359 6360 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat); 6361 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON); 6362 target_lruvec->refaults[WORKINGSET_ANON] = refaults; 6363 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE); 6364 target_lruvec->refaults[WORKINGSET_FILE] = refaults; 6365 } 6366 6367 /* 6368 * This is the main entry point to direct page reclaim. 6369 * 6370 * If a full scan of the inactive list fails to free enough memory then we 6371 * are "out of memory" and something needs to be killed. 6372 * 6373 * If the caller is !__GFP_FS then the probability of a failure is reasonably 6374 * high - the zone may be full of dirty or under-writeback pages, which this 6375 * caller can't do much about. We kick the writeback threads and take explicit 6376 * naps in the hope that some of these pages can be written. But if the 6377 * allocating task holds filesystem locks which prevent writeout this might not 6378 * work, and the allocation attempt will fail. 6379 * 6380 * returns: 0, if no pages reclaimed 6381 * else, the number of pages reclaimed 6382 */ 6383 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 6384 struct scan_control *sc) 6385 { 6386 int initial_priority = sc->priority; 6387 pg_data_t *last_pgdat; 6388 struct zoneref *z; 6389 struct zone *zone; 6390 retry: 6391 delayacct_freepages_start(); 6392 6393 if (!cgroup_reclaim(sc)) 6394 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1); 6395 6396 do { 6397 if (!sc->proactive) 6398 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 6399 sc->priority); 6400 sc->nr_scanned = 0; 6401 shrink_zones(zonelist, sc); 6402 6403 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 6404 break; 6405 6406 if (sc->compaction_ready) 6407 break; 6408 6409 /* 6410 * If we're getting trouble reclaiming, start doing 6411 * writepage even in laptop mode. 6412 */ 6413 if (sc->priority < DEF_PRIORITY - 2) 6414 sc->may_writepage = 1; 6415 } while (--sc->priority >= 0); 6416 6417 last_pgdat = NULL; 6418 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx, 6419 sc->nodemask) { 6420 if (zone->zone_pgdat == last_pgdat) 6421 continue; 6422 last_pgdat = zone->zone_pgdat; 6423 6424 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat); 6425 6426 if (cgroup_reclaim(sc)) { 6427 struct lruvec *lruvec; 6428 6429 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, 6430 zone->zone_pgdat); 6431 clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags); 6432 } 6433 } 6434 6435 delayacct_freepages_end(); 6436 6437 if (sc->nr_reclaimed) 6438 return sc->nr_reclaimed; 6439 6440 /* Aborted reclaim to try compaction? don't OOM, then */ 6441 if (sc->compaction_ready) 6442 return 1; 6443 6444 /* 6445 * In most cases, direct reclaimers can do partial walks 6446 * through the cgroup tree to meet the reclaim goal while 6447 * keeping latency low. Since the iterator state is shared 6448 * among all direct reclaim invocations (to retain fairness 6449 * among cgroups), though, high concurrency can result in 6450 * individual threads not seeing enough cgroups to make 6451 * meaningful forward progress. Avoid false OOMs in this case. 6452 */ 6453 if (!sc->memcg_full_walk) { 6454 sc->priority = initial_priority; 6455 sc->memcg_full_walk = 1; 6456 goto retry; 6457 } 6458 6459 /* 6460 * We make inactive:active ratio decisions based on the node's 6461 * composition of memory, but a restrictive reclaim_idx or a 6462 * memory.low cgroup setting can exempt large amounts of 6463 * memory from reclaim. Neither of which are very common, so 6464 * instead of doing costly eligibility calculations of the 6465 * entire cgroup subtree up front, we assume the estimates are 6466 * good, and retry with forcible deactivation if that fails. 6467 */ 6468 if (sc->skipped_deactivate) { 6469 sc->priority = initial_priority; 6470 sc->force_deactivate = 1; 6471 sc->skipped_deactivate = 0; 6472 goto retry; 6473 } 6474 6475 /* Untapped cgroup reserves? Don't OOM, retry. */ 6476 if (sc->memcg_low_skipped) { 6477 sc->priority = initial_priority; 6478 sc->force_deactivate = 0; 6479 sc->memcg_low_reclaim = 1; 6480 sc->memcg_low_skipped = 0; 6481 goto retry; 6482 } 6483 6484 return 0; 6485 } 6486 6487 static bool allow_direct_reclaim(pg_data_t *pgdat) 6488 { 6489 struct zone *zone; 6490 unsigned long pfmemalloc_reserve = 0; 6491 unsigned long free_pages = 0; 6492 int i; 6493 bool wmark_ok; 6494 6495 if (atomic_read(&pgdat->kswapd_failures) >= MAX_RECLAIM_RETRIES) 6496 return true; 6497 6498 for_each_managed_zone_pgdat(zone, pgdat, i, ZONE_NORMAL) { 6499 if (!zone_reclaimable_pages(zone) && zone_page_state_snapshot(zone, NR_FREE_PAGES)) 6500 continue; 6501 6502 pfmemalloc_reserve += min_wmark_pages(zone); 6503 free_pages += zone_page_state_snapshot(zone, NR_FREE_PAGES); 6504 } 6505 6506 /* If there are no reserves (unexpected config) then do not throttle */ 6507 if (!pfmemalloc_reserve) 6508 return true; 6509 6510 wmark_ok = free_pages > pfmemalloc_reserve / 2; 6511 6512 /* kswapd must be awake if processes are being throttled */ 6513 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 6514 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL) 6515 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL); 6516 6517 wake_up_interruptible(&pgdat->kswapd_wait); 6518 } 6519 6520 return wmark_ok; 6521 } 6522 6523 /* 6524 * Throttle direct reclaimers if backing storage is backed by the network 6525 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 6526 * depleted. kswapd will continue to make progress and wake the processes 6527 * when the low watermark is reached. 6528 * 6529 * Returns true if a fatal signal was delivered during throttling. If this 6530 * happens, the page allocator should not consider triggering the OOM killer. 6531 */ 6532 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 6533 nodemask_t *nodemask) 6534 { 6535 struct zoneref *z; 6536 struct zone *zone; 6537 pg_data_t *pgdat = NULL; 6538 6539 /* 6540 * Kernel threads should not be throttled as they may be indirectly 6541 * responsible for cleaning pages necessary for reclaim to make forward 6542 * progress. kjournald for example may enter direct reclaim while 6543 * committing a transaction where throttling it could forcing other 6544 * processes to block on log_wait_commit(). 6545 */ 6546 if (current->flags & PF_KTHREAD) 6547 goto out; 6548 6549 /* 6550 * If a fatal signal is pending, this process should not throttle. 6551 * It should return quickly so it can exit and free its memory 6552 */ 6553 if (fatal_signal_pending(current)) 6554 goto out; 6555 6556 /* 6557 * Check if the pfmemalloc reserves are ok by finding the first node 6558 * with a usable ZONE_NORMAL or lower zone. The expectation is that 6559 * GFP_KERNEL will be required for allocating network buffers when 6560 * swapping over the network so ZONE_HIGHMEM is unusable. 6561 * 6562 * Throttling is based on the first usable node and throttled processes 6563 * wait on a queue until kswapd makes progress and wakes them. There 6564 * is an affinity then between processes waking up and where reclaim 6565 * progress has been made assuming the process wakes on the same node. 6566 * More importantly, processes running on remote nodes will not compete 6567 * for remote pfmemalloc reserves and processes on different nodes 6568 * should make reasonable progress. 6569 */ 6570 for_each_zone_zonelist_nodemask(zone, z, zonelist, 6571 gfp_zone(gfp_mask), nodemask) { 6572 if (zone_idx(zone) > ZONE_NORMAL) 6573 continue; 6574 6575 /* Throttle based on the first usable node */ 6576 pgdat = zone->zone_pgdat; 6577 if (allow_direct_reclaim(pgdat)) 6578 goto out; 6579 break; 6580 } 6581 6582 /* If no zone was usable by the allocation flags then do not throttle */ 6583 if (!pgdat) 6584 goto out; 6585 6586 /* Account for the throttling */ 6587 count_vm_event(PGSCAN_DIRECT_THROTTLE); 6588 6589 /* 6590 * If the caller cannot enter the filesystem, it's possible that it 6591 * is due to the caller holding an FS lock or performing a journal 6592 * transaction in the case of a filesystem like ext[3|4]. In this case, 6593 * it is not safe to block on pfmemalloc_wait as kswapd could be 6594 * blocked waiting on the same lock. Instead, throttle for up to a 6595 * second before continuing. 6596 */ 6597 if (!(gfp_mask & __GFP_FS)) 6598 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 6599 allow_direct_reclaim(pgdat), HZ); 6600 else 6601 /* Throttle until kswapd wakes the process */ 6602 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 6603 allow_direct_reclaim(pgdat)); 6604 6605 if (fatal_signal_pending(current)) 6606 return true; 6607 6608 out: 6609 return false; 6610 } 6611 6612 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 6613 gfp_t gfp_mask, nodemask_t *nodemask) 6614 { 6615 unsigned long nr_reclaimed; 6616 struct scan_control sc = { 6617 .nr_to_reclaim = SWAP_CLUSTER_MAX, 6618 .gfp_mask = current_gfp_context(gfp_mask), 6619 .reclaim_idx = gfp_zone(gfp_mask), 6620 .order = order, 6621 .nodemask = nodemask, 6622 .priority = DEF_PRIORITY, 6623 .may_writepage = !laptop_mode, 6624 .may_unmap = 1, 6625 .may_swap = 1, 6626 }; 6627 6628 /* 6629 * scan_control uses s8 fields for order, priority, and reclaim_idx. 6630 * Confirm they are large enough for max values. 6631 */ 6632 BUILD_BUG_ON(MAX_PAGE_ORDER >= S8_MAX); 6633 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX); 6634 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX); 6635 6636 /* 6637 * Do not enter reclaim if fatal signal was delivered while throttled. 6638 * 1 is returned so that the page allocator does not OOM kill at this 6639 * point. 6640 */ 6641 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask)) 6642 return 1; 6643 6644 set_task_reclaim_state(current, &sc.reclaim_state); 6645 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask); 6646 6647 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 6648 6649 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 6650 set_task_reclaim_state(current, NULL); 6651 6652 return nr_reclaimed; 6653 } 6654 6655 #ifdef CONFIG_MEMCG 6656 6657 /* Only used by soft limit reclaim. Do not reuse for anything else. */ 6658 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg, 6659 gfp_t gfp_mask, bool noswap, 6660 pg_data_t *pgdat, 6661 unsigned long *nr_scanned) 6662 { 6663 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 6664 struct scan_control sc = { 6665 .nr_to_reclaim = SWAP_CLUSTER_MAX, 6666 .target_mem_cgroup = memcg, 6667 .may_writepage = !laptop_mode, 6668 .may_unmap = 1, 6669 .reclaim_idx = MAX_NR_ZONES - 1, 6670 .may_swap = !noswap, 6671 }; 6672 6673 WARN_ON_ONCE(!current->reclaim_state); 6674 6675 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 6676 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 6677 6678 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 6679 sc.gfp_mask); 6680 6681 /* 6682 * NOTE: Although we can get the priority field, using it 6683 * here is not a good idea, since it limits the pages we can scan. 6684 * if we don't reclaim here, the shrink_node from balance_pgdat 6685 * will pick up pages from other mem cgroup's as well. We hack 6686 * the priority and make it zero. 6687 */ 6688 shrink_lruvec(lruvec, &sc); 6689 6690 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 6691 6692 *nr_scanned = sc.nr_scanned; 6693 6694 return sc.nr_reclaimed; 6695 } 6696 6697 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 6698 unsigned long nr_pages, 6699 gfp_t gfp_mask, 6700 unsigned int reclaim_options, 6701 int *swappiness) 6702 { 6703 unsigned long nr_reclaimed; 6704 unsigned int noreclaim_flag; 6705 struct scan_control sc = { 6706 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 6707 .proactive_swappiness = swappiness, 6708 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) | 6709 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 6710 .reclaim_idx = MAX_NR_ZONES - 1, 6711 .target_mem_cgroup = memcg, 6712 .priority = DEF_PRIORITY, 6713 .may_writepage = !laptop_mode, 6714 .may_unmap = 1, 6715 .may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP), 6716 .proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE), 6717 }; 6718 /* 6719 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put 6720 * equal pressure on all the nodes. This is based on the assumption that 6721 * the reclaim does not bail out early. 6722 */ 6723 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 6724 6725 set_task_reclaim_state(current, &sc.reclaim_state); 6726 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask); 6727 noreclaim_flag = memalloc_noreclaim_save(); 6728 6729 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 6730 6731 memalloc_noreclaim_restore(noreclaim_flag); 6732 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 6733 set_task_reclaim_state(current, NULL); 6734 6735 return nr_reclaimed; 6736 } 6737 #else 6738 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 6739 unsigned long nr_pages, 6740 gfp_t gfp_mask, 6741 unsigned int reclaim_options, 6742 int *swappiness) 6743 { 6744 return 0; 6745 } 6746 #endif 6747 6748 static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc) 6749 { 6750 struct mem_cgroup *memcg; 6751 struct lruvec *lruvec; 6752 6753 if (lru_gen_enabled()) { 6754 lru_gen_age_node(pgdat, sc); 6755 return; 6756 } 6757 6758 lruvec = mem_cgroup_lruvec(NULL, pgdat); 6759 if (!can_age_anon_pages(lruvec, sc)) 6760 return; 6761 6762 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 6763 return; 6764 6765 memcg = mem_cgroup_iter(NULL, NULL, NULL); 6766 do { 6767 lruvec = mem_cgroup_lruvec(memcg, pgdat); 6768 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 6769 sc, LRU_ACTIVE_ANON); 6770 memcg = mem_cgroup_iter(NULL, memcg, NULL); 6771 } while (memcg); 6772 } 6773 6774 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx) 6775 { 6776 int i; 6777 struct zone *zone; 6778 6779 /* 6780 * Check for watermark boosts top-down as the higher zones 6781 * are more likely to be boosted. Both watermarks and boosts 6782 * should not be checked at the same time as reclaim would 6783 * start prematurely when there is no boosting and a lower 6784 * zone is balanced. 6785 */ 6786 for (i = highest_zoneidx; i >= 0; i--) { 6787 zone = pgdat->node_zones + i; 6788 if (!managed_zone(zone)) 6789 continue; 6790 6791 if (zone->watermark_boost) 6792 return true; 6793 } 6794 6795 return false; 6796 } 6797 6798 /* 6799 * Returns true if there is an eligible zone balanced for the request order 6800 * and highest_zoneidx 6801 */ 6802 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx) 6803 { 6804 int i; 6805 unsigned long mark = -1; 6806 struct zone *zone; 6807 6808 /* 6809 * Check watermarks bottom-up as lower zones are more likely to 6810 * meet watermarks. 6811 */ 6812 for_each_managed_zone_pgdat(zone, pgdat, i, highest_zoneidx) { 6813 enum zone_stat_item item; 6814 unsigned long free_pages; 6815 6816 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) 6817 mark = promo_wmark_pages(zone); 6818 else 6819 mark = high_wmark_pages(zone); 6820 6821 /* 6822 * In defrag_mode, watermarks must be met in whole 6823 * blocks to avoid polluting allocator fallbacks. 6824 * 6825 * However, kswapd usually cannot accomplish this on 6826 * its own and needs kcompactd support. Once it's 6827 * reclaimed a compaction gap, and kswapd_shrink_node 6828 * has dropped order, simply ensure there are enough 6829 * base pages for compaction, wake kcompactd & sleep. 6830 */ 6831 if (defrag_mode && order) 6832 item = NR_FREE_PAGES_BLOCKS; 6833 else 6834 item = NR_FREE_PAGES; 6835 6836 /* 6837 * When there is a high number of CPUs in the system, 6838 * the cumulative error from the vmstat per-cpu cache 6839 * can blur the line between the watermarks. In that 6840 * case, be safe and get an accurate snapshot. 6841 * 6842 * TODO: NR_FREE_PAGES_BLOCKS moves in steps of 6843 * pageblock_nr_pages, while the vmstat pcp threshold 6844 * is limited to 125. On many configurations that 6845 * counter won't actually be per-cpu cached. But keep 6846 * things simple for now; revisit when somebody cares. 6847 */ 6848 free_pages = zone_page_state(zone, item); 6849 if (zone->percpu_drift_mark && free_pages < zone->percpu_drift_mark) 6850 free_pages = zone_page_state_snapshot(zone, item); 6851 6852 if (__zone_watermark_ok(zone, order, mark, highest_zoneidx, 6853 0, free_pages)) 6854 return true; 6855 } 6856 6857 /* 6858 * If a node has no managed zone within highest_zoneidx, it does not 6859 * need balancing by definition. This can happen if a zone-restricted 6860 * allocation tries to wake a remote kswapd. 6861 */ 6862 if (mark == -1) 6863 return true; 6864 6865 return false; 6866 } 6867 6868 /* Clear pgdat state for congested, dirty or under writeback. */ 6869 static void clear_pgdat_congested(pg_data_t *pgdat) 6870 { 6871 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat); 6872 6873 clear_bit(LRUVEC_NODE_CONGESTED, &lruvec->flags); 6874 clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags); 6875 clear_bit(PGDAT_DIRTY, &pgdat->flags); 6876 clear_bit(PGDAT_WRITEBACK, &pgdat->flags); 6877 } 6878 6879 /* 6880 * Prepare kswapd for sleeping. This verifies that there are no processes 6881 * waiting in throttle_direct_reclaim() and that watermarks have been met. 6882 * 6883 * Returns true if kswapd is ready to sleep 6884 */ 6885 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, 6886 int highest_zoneidx) 6887 { 6888 /* 6889 * The throttled processes are normally woken up in balance_pgdat() as 6890 * soon as allow_direct_reclaim() is true. But there is a potential 6891 * race between when kswapd checks the watermarks and a process gets 6892 * throttled. There is also a potential race if processes get 6893 * throttled, kswapd wakes, a large process exits thereby balancing the 6894 * zones, which causes kswapd to exit balance_pgdat() before reaching 6895 * the wake up checks. If kswapd is going to sleep, no process should 6896 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If 6897 * the wake up is premature, processes will wake kswapd and get 6898 * throttled again. The difference from wake ups in balance_pgdat() is 6899 * that here we are under prepare_to_wait(). 6900 */ 6901 if (waitqueue_active(&pgdat->pfmemalloc_wait)) 6902 wake_up_all(&pgdat->pfmemalloc_wait); 6903 6904 /* Hopeless node, leave it to direct reclaim */ 6905 if (atomic_read(&pgdat->kswapd_failures) >= MAX_RECLAIM_RETRIES) 6906 return true; 6907 6908 if (pgdat_balanced(pgdat, order, highest_zoneidx)) { 6909 clear_pgdat_congested(pgdat); 6910 return true; 6911 } 6912 6913 return false; 6914 } 6915 6916 /* 6917 * kswapd shrinks a node of pages that are at or below the highest usable 6918 * zone that is currently unbalanced. 6919 * 6920 * Returns true if kswapd scanned at least the requested number of pages to 6921 * reclaim or if the lack of progress was due to pages under writeback. 6922 * This is used to determine if the scanning priority needs to be raised. 6923 */ 6924 static bool kswapd_shrink_node(pg_data_t *pgdat, 6925 struct scan_control *sc) 6926 { 6927 struct zone *zone; 6928 int z; 6929 unsigned long nr_reclaimed = sc->nr_reclaimed; 6930 6931 /* Reclaim a number of pages proportional to the number of zones */ 6932 sc->nr_to_reclaim = 0; 6933 for_each_managed_zone_pgdat(zone, pgdat, z, sc->reclaim_idx) { 6934 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX); 6935 } 6936 6937 /* 6938 * Historically care was taken to put equal pressure on all zones but 6939 * now pressure is applied based on node LRU order. 6940 */ 6941 shrink_node(pgdat, sc); 6942 6943 /* 6944 * Fragmentation may mean that the system cannot be rebalanced for 6945 * high-order allocations. If twice the allocation size has been 6946 * reclaimed then recheck watermarks only at order-0 to prevent 6947 * excessive reclaim. Assume that a process requested a high-order 6948 * can direct reclaim/compact. 6949 */ 6950 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order)) 6951 sc->order = 0; 6952 6953 /* account for progress from mm_account_reclaimed_pages() */ 6954 return max(sc->nr_scanned, sc->nr_reclaimed - nr_reclaimed) >= sc->nr_to_reclaim; 6955 } 6956 6957 /* Page allocator PCP high watermark is lowered if reclaim is active. */ 6958 static inline void 6959 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active) 6960 { 6961 int i; 6962 struct zone *zone; 6963 6964 for_each_managed_zone_pgdat(zone, pgdat, i, highest_zoneidx) { 6965 if (active) 6966 set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags); 6967 else 6968 clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags); 6969 } 6970 } 6971 6972 static inline void 6973 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx) 6974 { 6975 update_reclaim_active(pgdat, highest_zoneidx, true); 6976 } 6977 6978 static inline void 6979 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx) 6980 { 6981 update_reclaim_active(pgdat, highest_zoneidx, false); 6982 } 6983 6984 /* 6985 * For kswapd, balance_pgdat() will reclaim pages across a node from zones 6986 * that are eligible for use by the caller until at least one zone is 6987 * balanced. 6988 * 6989 * Returns the order kswapd finished reclaiming at. 6990 * 6991 * kswapd scans the zones in the highmem->normal->dma direction. It skips 6992 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 6993 * found to have free_pages <= high_wmark_pages(zone), any page in that zone 6994 * or lower is eligible for reclaim until at least one usable zone is 6995 * balanced. 6996 */ 6997 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx) 6998 { 6999 int i; 7000 unsigned long nr_soft_reclaimed; 7001 unsigned long nr_soft_scanned; 7002 unsigned long pflags; 7003 unsigned long nr_boost_reclaim; 7004 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, }; 7005 bool boosted; 7006 struct zone *zone; 7007 struct scan_control sc = { 7008 .gfp_mask = GFP_KERNEL, 7009 .order = order, 7010 .may_unmap = 1, 7011 }; 7012 7013 set_task_reclaim_state(current, &sc.reclaim_state); 7014 psi_memstall_enter(&pflags); 7015 __fs_reclaim_acquire(_THIS_IP_); 7016 7017 count_vm_event(PAGEOUTRUN); 7018 7019 /* 7020 * Account for the reclaim boost. Note that the zone boost is left in 7021 * place so that parallel allocations that are near the watermark will 7022 * stall or direct reclaim until kswapd is finished. 7023 */ 7024 nr_boost_reclaim = 0; 7025 for_each_managed_zone_pgdat(zone, pgdat, i, highest_zoneidx) { 7026 nr_boost_reclaim += zone->watermark_boost; 7027 zone_boosts[i] = zone->watermark_boost; 7028 } 7029 boosted = nr_boost_reclaim; 7030 7031 restart: 7032 set_reclaim_active(pgdat, highest_zoneidx); 7033 sc.priority = DEF_PRIORITY; 7034 do { 7035 unsigned long nr_reclaimed = sc.nr_reclaimed; 7036 bool raise_priority = true; 7037 bool balanced; 7038 bool ret; 7039 bool was_frozen; 7040 7041 sc.reclaim_idx = highest_zoneidx; 7042 7043 /* 7044 * If the number of buffer_heads exceeds the maximum allowed 7045 * then consider reclaiming from all zones. This has a dual 7046 * purpose -- on 64-bit systems it is expected that 7047 * buffer_heads are stripped during active rotation. On 32-bit 7048 * systems, highmem pages can pin lowmem memory and shrinking 7049 * buffers can relieve lowmem pressure. Reclaim may still not 7050 * go ahead if all eligible zones for the original allocation 7051 * request are balanced to avoid excessive reclaim from kswapd. 7052 */ 7053 if (buffer_heads_over_limit) { 7054 for (i = MAX_NR_ZONES - 1; i >= 0; i--) { 7055 zone = pgdat->node_zones + i; 7056 if (!managed_zone(zone)) 7057 continue; 7058 7059 sc.reclaim_idx = i; 7060 break; 7061 } 7062 } 7063 7064 /* 7065 * If the pgdat is imbalanced then ignore boosting and preserve 7066 * the watermarks for a later time and restart. Note that the 7067 * zone watermarks will be still reset at the end of balancing 7068 * on the grounds that the normal reclaim should be enough to 7069 * re-evaluate if boosting is required when kswapd next wakes. 7070 */ 7071 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx); 7072 if (!balanced && nr_boost_reclaim) { 7073 nr_boost_reclaim = 0; 7074 goto restart; 7075 } 7076 7077 /* 7078 * If boosting is not active then only reclaim if there are no 7079 * eligible zones. Note that sc.reclaim_idx is not used as 7080 * buffer_heads_over_limit may have adjusted it. 7081 */ 7082 if (!nr_boost_reclaim && balanced) 7083 goto out; 7084 7085 /* Limit the priority of boosting to avoid reclaim writeback */ 7086 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2) 7087 raise_priority = false; 7088 7089 /* 7090 * Do not writeback or swap pages for boosted reclaim. The 7091 * intent is to relieve pressure not issue sub-optimal IO 7092 * from reclaim context. If no pages are reclaimed, the 7093 * reclaim will be aborted. 7094 */ 7095 sc.may_writepage = !laptop_mode && !nr_boost_reclaim; 7096 sc.may_swap = !nr_boost_reclaim; 7097 7098 /* 7099 * Do some background aging, to give pages a chance to be 7100 * referenced before reclaiming. All pages are rotated 7101 * regardless of classzone as this is about consistent aging. 7102 */ 7103 kswapd_age_node(pgdat, &sc); 7104 7105 /* 7106 * If we're getting trouble reclaiming, start doing writepage 7107 * even in laptop mode. 7108 */ 7109 if (sc.priority < DEF_PRIORITY - 2) 7110 sc.may_writepage = 1; 7111 7112 /* Call soft limit reclaim before calling shrink_node. */ 7113 sc.nr_scanned = 0; 7114 nr_soft_scanned = 0; 7115 nr_soft_reclaimed = memcg1_soft_limit_reclaim(pgdat, sc.order, 7116 sc.gfp_mask, &nr_soft_scanned); 7117 sc.nr_reclaimed += nr_soft_reclaimed; 7118 7119 /* 7120 * There should be no need to raise the scanning priority if 7121 * enough pages are already being scanned that that high 7122 * watermark would be met at 100% efficiency. 7123 */ 7124 if (kswapd_shrink_node(pgdat, &sc)) 7125 raise_priority = false; 7126 7127 /* 7128 * If the low watermark is met there is no need for processes 7129 * to be throttled on pfmemalloc_wait as they should not be 7130 * able to safely make forward progress. Wake them 7131 */ 7132 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 7133 allow_direct_reclaim(pgdat)) 7134 wake_up_all(&pgdat->pfmemalloc_wait); 7135 7136 /* Check if kswapd should be suspending */ 7137 __fs_reclaim_release(_THIS_IP_); 7138 ret = kthread_freezable_should_stop(&was_frozen); 7139 __fs_reclaim_acquire(_THIS_IP_); 7140 if (was_frozen || ret) 7141 break; 7142 7143 /* 7144 * Raise priority if scanning rate is too low or there was no 7145 * progress in reclaiming pages 7146 */ 7147 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed; 7148 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed); 7149 7150 /* 7151 * If reclaim made no progress for a boost, stop reclaim as 7152 * IO cannot be queued and it could be an infinite loop in 7153 * extreme circumstances. 7154 */ 7155 if (nr_boost_reclaim && !nr_reclaimed) 7156 break; 7157 7158 if (raise_priority || !nr_reclaimed) 7159 sc.priority--; 7160 } while (sc.priority >= 1); 7161 7162 /* 7163 * Restart only if it went through the priority loop all the way, 7164 * but cache_trim_mode didn't work. 7165 */ 7166 if (!sc.nr_reclaimed && sc.priority < 1 && 7167 !sc.no_cache_trim_mode && sc.cache_trim_mode_failed) { 7168 sc.no_cache_trim_mode = 1; 7169 goto restart; 7170 } 7171 7172 if (!sc.nr_reclaimed) 7173 atomic_inc(&pgdat->kswapd_failures); 7174 7175 out: 7176 clear_reclaim_active(pgdat, highest_zoneidx); 7177 7178 /* If reclaim was boosted, account for the reclaim done in this pass */ 7179 if (boosted) { 7180 unsigned long flags; 7181 7182 for (i = 0; i <= highest_zoneidx; i++) { 7183 if (!zone_boosts[i]) 7184 continue; 7185 7186 /* Increments are under the zone lock */ 7187 zone = pgdat->node_zones + i; 7188 spin_lock_irqsave(&zone->lock, flags); 7189 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]); 7190 spin_unlock_irqrestore(&zone->lock, flags); 7191 } 7192 7193 /* 7194 * As there is now likely space, wakeup kcompact to defragment 7195 * pageblocks. 7196 */ 7197 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx); 7198 } 7199 7200 snapshot_refaults(NULL, pgdat); 7201 __fs_reclaim_release(_THIS_IP_); 7202 psi_memstall_leave(&pflags); 7203 set_task_reclaim_state(current, NULL); 7204 7205 /* 7206 * Return the order kswapd stopped reclaiming at as 7207 * prepare_kswapd_sleep() takes it into account. If another caller 7208 * entered the allocator slow path while kswapd was awake, order will 7209 * remain at the higher level. 7210 */ 7211 return sc.order; 7212 } 7213 7214 /* 7215 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to 7216 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is 7217 * not a valid index then either kswapd runs for first time or kswapd couldn't 7218 * sleep after previous reclaim attempt (node is still unbalanced). In that 7219 * case return the zone index of the previous kswapd reclaim cycle. 7220 */ 7221 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat, 7222 enum zone_type prev_highest_zoneidx) 7223 { 7224 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 7225 7226 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx; 7227 } 7228 7229 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order, 7230 unsigned int highest_zoneidx) 7231 { 7232 long remaining = 0; 7233 DEFINE_WAIT(wait); 7234 7235 if (freezing(current) || kthread_should_stop()) 7236 return; 7237 7238 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 7239 7240 /* 7241 * Try to sleep for a short interval. Note that kcompactd will only be 7242 * woken if it is possible to sleep for a short interval. This is 7243 * deliberate on the assumption that if reclaim cannot keep an 7244 * eligible zone balanced that it's also unlikely that compaction will 7245 * succeed. 7246 */ 7247 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 7248 /* 7249 * Compaction records what page blocks it recently failed to 7250 * isolate pages from and skips them in the future scanning. 7251 * When kswapd is going to sleep, it is reasonable to assume 7252 * that pages and compaction may succeed so reset the cache. 7253 */ 7254 reset_isolation_suitable(pgdat); 7255 7256 /* 7257 * We have freed the memory, now we should compact it to make 7258 * allocation of the requested order possible. 7259 */ 7260 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx); 7261 7262 remaining = schedule_timeout(HZ/10); 7263 7264 /* 7265 * If woken prematurely then reset kswapd_highest_zoneidx and 7266 * order. The values will either be from a wakeup request or 7267 * the previous request that slept prematurely. 7268 */ 7269 if (remaining) { 7270 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, 7271 kswapd_highest_zoneidx(pgdat, 7272 highest_zoneidx)); 7273 7274 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order) 7275 WRITE_ONCE(pgdat->kswapd_order, reclaim_order); 7276 } 7277 7278 finish_wait(&pgdat->kswapd_wait, &wait); 7279 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 7280 } 7281 7282 /* 7283 * After a short sleep, check if it was a premature sleep. If not, then 7284 * go fully to sleep until explicitly woken up. 7285 */ 7286 if (!remaining && 7287 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 7288 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 7289 7290 /* 7291 * vmstat counters are not perfectly accurate and the estimated 7292 * value for counters such as NR_FREE_PAGES can deviate from the 7293 * true value by nr_online_cpus * threshold. To avoid the zone 7294 * watermarks being breached while under pressure, we reduce the 7295 * per-cpu vmstat threshold while kswapd is awake and restore 7296 * them before going back to sleep. 7297 */ 7298 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 7299 7300 if (!kthread_should_stop()) 7301 schedule(); 7302 7303 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 7304 } else { 7305 if (remaining) 7306 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 7307 else 7308 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 7309 } 7310 finish_wait(&pgdat->kswapd_wait, &wait); 7311 } 7312 7313 /* 7314 * The background pageout daemon, started as a kernel thread 7315 * from the init process. 7316 * 7317 * This basically trickles out pages so that we have _some_ 7318 * free memory available even if there is no other activity 7319 * that frees anything up. This is needed for things like routing 7320 * etc, where we otherwise might have all activity going on in 7321 * asynchronous contexts that cannot page things out. 7322 * 7323 * If there are applications that are active memory-allocators 7324 * (most normal use), this basically shouldn't matter. 7325 */ 7326 static int kswapd(void *p) 7327 { 7328 unsigned int alloc_order, reclaim_order; 7329 unsigned int highest_zoneidx = MAX_NR_ZONES - 1; 7330 pg_data_t *pgdat = (pg_data_t *)p; 7331 struct task_struct *tsk = current; 7332 7333 /* 7334 * Tell the memory management that we're a "memory allocator", 7335 * and that if we need more memory we should get access to it 7336 * regardless (see "__alloc_pages()"). "kswapd" should 7337 * never get caught in the normal page freeing logic. 7338 * 7339 * (Kswapd normally doesn't need memory anyway, but sometimes 7340 * you need a small amount of memory in order to be able to 7341 * page out something else, and this flag essentially protects 7342 * us from recursively trying to free more memory as we're 7343 * trying to free the first piece of memory in the first place). 7344 */ 7345 tsk->flags |= PF_MEMALLOC | PF_KSWAPD; 7346 set_freezable(); 7347 7348 WRITE_ONCE(pgdat->kswapd_order, 0); 7349 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 7350 atomic_set(&pgdat->nr_writeback_throttled, 0); 7351 for ( ; ; ) { 7352 bool was_frozen; 7353 7354 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order); 7355 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 7356 highest_zoneidx); 7357 7358 kswapd_try_sleep: 7359 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order, 7360 highest_zoneidx); 7361 7362 /* Read the new order and highest_zoneidx */ 7363 alloc_order = READ_ONCE(pgdat->kswapd_order); 7364 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 7365 highest_zoneidx); 7366 WRITE_ONCE(pgdat->kswapd_order, 0); 7367 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 7368 7369 if (kthread_freezable_should_stop(&was_frozen)) 7370 break; 7371 7372 /* 7373 * We can speed up thawing tasks if we don't call balance_pgdat 7374 * after returning from the refrigerator 7375 */ 7376 if (was_frozen) 7377 continue; 7378 7379 /* 7380 * Reclaim begins at the requested order but if a high-order 7381 * reclaim fails then kswapd falls back to reclaiming for 7382 * order-0. If that happens, kswapd will consider sleeping 7383 * for the order it finished reclaiming at (reclaim_order) 7384 * but kcompactd is woken to compact for the original 7385 * request (alloc_order). 7386 */ 7387 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx, 7388 alloc_order); 7389 reclaim_order = balance_pgdat(pgdat, alloc_order, 7390 highest_zoneidx); 7391 if (reclaim_order < alloc_order) 7392 goto kswapd_try_sleep; 7393 } 7394 7395 tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD); 7396 7397 return 0; 7398 } 7399 7400 /* 7401 * A zone is low on free memory or too fragmented for high-order memory. If 7402 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's 7403 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim 7404 * has failed or is not needed, still wake up kcompactd if only compaction is 7405 * needed. 7406 */ 7407 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order, 7408 enum zone_type highest_zoneidx) 7409 { 7410 pg_data_t *pgdat; 7411 enum zone_type curr_idx; 7412 7413 if (!managed_zone(zone)) 7414 return; 7415 7416 if (!cpuset_zone_allowed(zone, gfp_flags)) 7417 return; 7418 7419 pgdat = zone->zone_pgdat; 7420 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 7421 7422 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx) 7423 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx); 7424 7425 if (READ_ONCE(pgdat->kswapd_order) < order) 7426 WRITE_ONCE(pgdat->kswapd_order, order); 7427 7428 if (!waitqueue_active(&pgdat->kswapd_wait)) 7429 return; 7430 7431 /* Hopeless node, leave it to direct reclaim if possible */ 7432 if (atomic_read(&pgdat->kswapd_failures) >= MAX_RECLAIM_RETRIES || 7433 (pgdat_balanced(pgdat, order, highest_zoneidx) && 7434 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) { 7435 /* 7436 * There may be plenty of free memory available, but it's too 7437 * fragmented for high-order allocations. Wake up kcompactd 7438 * and rely on compaction_suitable() to determine if it's 7439 * needed. If it fails, it will defer subsequent attempts to 7440 * ratelimit its work. 7441 */ 7442 if (!(gfp_flags & __GFP_DIRECT_RECLAIM)) 7443 wakeup_kcompactd(pgdat, order, highest_zoneidx); 7444 return; 7445 } 7446 7447 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order, 7448 gfp_flags); 7449 wake_up_interruptible(&pgdat->kswapd_wait); 7450 } 7451 7452 #ifdef CONFIG_HIBERNATION 7453 /* 7454 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 7455 * freed pages. 7456 * 7457 * Rather than trying to age LRUs the aim is to preserve the overall 7458 * LRU order by reclaiming preferentially 7459 * inactive > active > active referenced > active mapped 7460 */ 7461 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 7462 { 7463 struct scan_control sc = { 7464 .nr_to_reclaim = nr_to_reclaim, 7465 .gfp_mask = GFP_HIGHUSER_MOVABLE, 7466 .reclaim_idx = MAX_NR_ZONES - 1, 7467 .priority = DEF_PRIORITY, 7468 .may_writepage = 1, 7469 .may_unmap = 1, 7470 .may_swap = 1, 7471 .hibernation_mode = 1, 7472 }; 7473 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 7474 unsigned long nr_reclaimed; 7475 unsigned int noreclaim_flag; 7476 7477 fs_reclaim_acquire(sc.gfp_mask); 7478 noreclaim_flag = memalloc_noreclaim_save(); 7479 set_task_reclaim_state(current, &sc.reclaim_state); 7480 7481 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 7482 7483 set_task_reclaim_state(current, NULL); 7484 memalloc_noreclaim_restore(noreclaim_flag); 7485 fs_reclaim_release(sc.gfp_mask); 7486 7487 return nr_reclaimed; 7488 } 7489 #endif /* CONFIG_HIBERNATION */ 7490 7491 /* 7492 * This kswapd start function will be called by init and node-hot-add. 7493 */ 7494 void __meminit kswapd_run(int nid) 7495 { 7496 pg_data_t *pgdat = NODE_DATA(nid); 7497 7498 pgdat_kswapd_lock(pgdat); 7499 if (!pgdat->kswapd) { 7500 pgdat->kswapd = kthread_create_on_node(kswapd, pgdat, nid, "kswapd%d", nid); 7501 if (IS_ERR(pgdat->kswapd)) { 7502 /* failure at boot is fatal */ 7503 pr_err("Failed to start kswapd on node %d,ret=%ld\n", 7504 nid, PTR_ERR(pgdat->kswapd)); 7505 BUG_ON(system_state < SYSTEM_RUNNING); 7506 pgdat->kswapd = NULL; 7507 } else { 7508 wake_up_process(pgdat->kswapd); 7509 } 7510 } 7511 pgdat_kswapd_unlock(pgdat); 7512 } 7513 7514 /* 7515 * Called by memory hotplug when all memory in a node is offlined. Caller must 7516 * be holding mem_hotplug_begin/done(). 7517 */ 7518 void __meminit kswapd_stop(int nid) 7519 { 7520 pg_data_t *pgdat = NODE_DATA(nid); 7521 struct task_struct *kswapd; 7522 7523 pgdat_kswapd_lock(pgdat); 7524 kswapd = pgdat->kswapd; 7525 if (kswapd) { 7526 kthread_stop(kswapd); 7527 pgdat->kswapd = NULL; 7528 } 7529 pgdat_kswapd_unlock(pgdat); 7530 } 7531 7532 static const struct ctl_table vmscan_sysctl_table[] = { 7533 { 7534 .procname = "swappiness", 7535 .data = &vm_swappiness, 7536 .maxlen = sizeof(vm_swappiness), 7537 .mode = 0644, 7538 .proc_handler = proc_dointvec_minmax, 7539 .extra1 = SYSCTL_ZERO, 7540 .extra2 = SYSCTL_TWO_HUNDRED, 7541 }, 7542 #ifdef CONFIG_NUMA 7543 { 7544 .procname = "zone_reclaim_mode", 7545 .data = &node_reclaim_mode, 7546 .maxlen = sizeof(node_reclaim_mode), 7547 .mode = 0644, 7548 .proc_handler = proc_dointvec_minmax, 7549 .extra1 = SYSCTL_ZERO, 7550 } 7551 #endif 7552 }; 7553 7554 static int __init kswapd_init(void) 7555 { 7556 int nid; 7557 7558 swap_setup(); 7559 for_each_node_state(nid, N_MEMORY) 7560 kswapd_run(nid); 7561 register_sysctl_init("vm", vmscan_sysctl_table); 7562 return 0; 7563 } 7564 7565 module_init(kswapd_init) 7566 7567 #ifdef CONFIG_NUMA 7568 /* 7569 * Node reclaim mode 7570 * 7571 * If non-zero call node_reclaim when the number of free pages falls below 7572 * the watermarks. 7573 */ 7574 int node_reclaim_mode __read_mostly; 7575 7576 /* 7577 * Priority for NODE_RECLAIM. This determines the fraction of pages 7578 * of a node considered for each zone_reclaim. 4 scans 1/16th of 7579 * a zone. 7580 */ 7581 #define NODE_RECLAIM_PRIORITY 4 7582 7583 /* 7584 * Percentage of pages in a zone that must be unmapped for node_reclaim to 7585 * occur. 7586 */ 7587 int sysctl_min_unmapped_ratio = 1; 7588 7589 /* 7590 * If the number of slab pages in a zone grows beyond this percentage then 7591 * slab reclaim needs to occur. 7592 */ 7593 int sysctl_min_slab_ratio = 5; 7594 7595 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat) 7596 { 7597 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED); 7598 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) + 7599 node_page_state(pgdat, NR_ACTIVE_FILE); 7600 7601 /* 7602 * It's possible for there to be more file mapped pages than 7603 * accounted for by the pages on the file LRU lists because 7604 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 7605 */ 7606 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 7607 } 7608 7609 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 7610 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat) 7611 { 7612 unsigned long nr_pagecache_reclaimable; 7613 unsigned long delta = 0; 7614 7615 /* 7616 * If RECLAIM_UNMAP is set, then all file pages are considered 7617 * potentially reclaimable. Otherwise, we have to worry about 7618 * pages like swapcache and node_unmapped_file_pages() provides 7619 * a better estimate 7620 */ 7621 if (node_reclaim_mode & RECLAIM_UNMAP) 7622 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES); 7623 else 7624 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat); 7625 7626 /* If we can't clean pages, remove dirty pages from consideration */ 7627 if (!(node_reclaim_mode & RECLAIM_WRITE)) 7628 delta += node_page_state(pgdat, NR_FILE_DIRTY); 7629 7630 /* Watch for any possible underflows due to delta */ 7631 if (unlikely(delta > nr_pagecache_reclaimable)) 7632 delta = nr_pagecache_reclaimable; 7633 7634 return nr_pagecache_reclaimable - delta; 7635 } 7636 7637 /* 7638 * Try to free up some pages from this node through reclaim. 7639 */ 7640 static unsigned long __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, 7641 unsigned long nr_pages, 7642 struct scan_control *sc) 7643 { 7644 struct task_struct *p = current; 7645 unsigned int noreclaim_flag; 7646 unsigned long pflags; 7647 7648 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, sc->order, 7649 sc->gfp_mask); 7650 7651 cond_resched(); 7652 psi_memstall_enter(&pflags); 7653 delayacct_freepages_start(); 7654 fs_reclaim_acquire(sc->gfp_mask); 7655 /* 7656 * We need to be able to allocate from the reserves for RECLAIM_UNMAP 7657 */ 7658 noreclaim_flag = memalloc_noreclaim_save(); 7659 set_task_reclaim_state(p, &sc->reclaim_state); 7660 7661 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages || 7662 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) { 7663 /* 7664 * Free memory by calling shrink node with increasing 7665 * priorities until we have enough memory freed. 7666 */ 7667 do { 7668 shrink_node(pgdat, sc); 7669 } while (sc->nr_reclaimed < nr_pages && --sc->priority >= 0); 7670 } 7671 7672 set_task_reclaim_state(p, NULL); 7673 memalloc_noreclaim_restore(noreclaim_flag); 7674 fs_reclaim_release(sc->gfp_mask); 7675 delayacct_freepages_end(); 7676 psi_memstall_leave(&pflags); 7677 7678 trace_mm_vmscan_node_reclaim_end(sc->nr_reclaimed); 7679 7680 return sc->nr_reclaimed; 7681 } 7682 7683 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 7684 { 7685 int ret; 7686 /* Minimum pages needed in order to stay on node */ 7687 const unsigned long nr_pages = 1 << order; 7688 struct scan_control sc = { 7689 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 7690 .gfp_mask = current_gfp_context(gfp_mask), 7691 .order = order, 7692 .priority = NODE_RECLAIM_PRIORITY, 7693 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE), 7694 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP), 7695 .may_swap = 1, 7696 .reclaim_idx = gfp_zone(gfp_mask), 7697 }; 7698 7699 /* 7700 * Node reclaim reclaims unmapped file backed pages and 7701 * slab pages if we are over the defined limits. 7702 * 7703 * A small portion of unmapped file backed pages is needed for 7704 * file I/O otherwise pages read by file I/O will be immediately 7705 * thrown out if the node is overallocated. So we do not reclaim 7706 * if less than a specified percentage of the node is used by 7707 * unmapped file backed pages. 7708 */ 7709 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages && 7710 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <= 7711 pgdat->min_slab_pages) 7712 return NODE_RECLAIM_FULL; 7713 7714 /* 7715 * Do not scan if the allocation should not be delayed. 7716 */ 7717 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) 7718 return NODE_RECLAIM_NOSCAN; 7719 7720 /* 7721 * Only run node reclaim on the local node or on nodes that do not 7722 * have associated processors. This will favor the local processor 7723 * over remote processors and spread off node memory allocations 7724 * as wide as possible. 7725 */ 7726 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id()) 7727 return NODE_RECLAIM_NOSCAN; 7728 7729 if (test_and_set_bit_lock(PGDAT_RECLAIM_LOCKED, &pgdat->flags)) 7730 return NODE_RECLAIM_NOSCAN; 7731 7732 ret = __node_reclaim(pgdat, gfp_mask, nr_pages, &sc) >= nr_pages; 7733 clear_bit_unlock(PGDAT_RECLAIM_LOCKED, &pgdat->flags); 7734 7735 if (ret) 7736 count_vm_event(PGSCAN_ZONE_RECLAIM_SUCCESS); 7737 else 7738 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 7739 7740 return ret; 7741 } 7742 7743 enum { 7744 MEMORY_RECLAIM_SWAPPINESS = 0, 7745 MEMORY_RECLAIM_SWAPPINESS_MAX, 7746 MEMORY_RECLAIM_NULL, 7747 }; 7748 static const match_table_t tokens = { 7749 { MEMORY_RECLAIM_SWAPPINESS, "swappiness=%d"}, 7750 { MEMORY_RECLAIM_SWAPPINESS_MAX, "swappiness=max"}, 7751 { MEMORY_RECLAIM_NULL, NULL }, 7752 }; 7753 7754 int user_proactive_reclaim(char *buf, 7755 struct mem_cgroup *memcg, pg_data_t *pgdat) 7756 { 7757 unsigned int nr_retries = MAX_RECLAIM_RETRIES; 7758 unsigned long nr_to_reclaim, nr_reclaimed = 0; 7759 int swappiness = -1; 7760 char *old_buf, *start; 7761 substring_t args[MAX_OPT_ARGS]; 7762 gfp_t gfp_mask = GFP_KERNEL; 7763 7764 if (!buf || (!memcg && !pgdat) || (memcg && pgdat)) 7765 return -EINVAL; 7766 7767 buf = strstrip(buf); 7768 7769 old_buf = buf; 7770 nr_to_reclaim = memparse(buf, &buf) / PAGE_SIZE; 7771 if (buf == old_buf) 7772 return -EINVAL; 7773 7774 buf = strstrip(buf); 7775 7776 while ((start = strsep(&buf, " ")) != NULL) { 7777 if (!strlen(start)) 7778 continue; 7779 switch (match_token(start, tokens, args)) { 7780 case MEMORY_RECLAIM_SWAPPINESS: 7781 if (match_int(&args[0], &swappiness)) 7782 return -EINVAL; 7783 if (swappiness < MIN_SWAPPINESS || 7784 swappiness > MAX_SWAPPINESS) 7785 return -EINVAL; 7786 break; 7787 case MEMORY_RECLAIM_SWAPPINESS_MAX: 7788 swappiness = SWAPPINESS_ANON_ONLY; 7789 break; 7790 default: 7791 return -EINVAL; 7792 } 7793 } 7794 7795 while (nr_reclaimed < nr_to_reclaim) { 7796 /* Will converge on zero, but reclaim enforces a minimum */ 7797 unsigned long batch_size = (nr_to_reclaim - nr_reclaimed) / 4; 7798 unsigned long reclaimed; 7799 7800 if (signal_pending(current)) 7801 return -EINTR; 7802 7803 /* 7804 * This is the final attempt, drain percpu lru caches in the 7805 * hope of introducing more evictable pages. 7806 */ 7807 if (!nr_retries) 7808 lru_add_drain_all(); 7809 7810 if (memcg) { 7811 unsigned int reclaim_options; 7812 7813 reclaim_options = MEMCG_RECLAIM_MAY_SWAP | 7814 MEMCG_RECLAIM_PROACTIVE; 7815 reclaimed = try_to_free_mem_cgroup_pages(memcg, 7816 batch_size, gfp_mask, 7817 reclaim_options, 7818 swappiness == -1 ? NULL : &swappiness); 7819 } else { 7820 struct scan_control sc = { 7821 .gfp_mask = current_gfp_context(gfp_mask), 7822 .reclaim_idx = gfp_zone(gfp_mask), 7823 .proactive_swappiness = swappiness == -1 ? NULL : &swappiness, 7824 .priority = DEF_PRIORITY, 7825 .may_writepage = !laptop_mode, 7826 .nr_to_reclaim = max(batch_size, SWAP_CLUSTER_MAX), 7827 .may_unmap = 1, 7828 .may_swap = 1, 7829 .proactive = 1, 7830 }; 7831 7832 if (test_and_set_bit_lock(PGDAT_RECLAIM_LOCKED, 7833 &pgdat->flags)) 7834 return -EBUSY; 7835 7836 reclaimed = __node_reclaim(pgdat, gfp_mask, 7837 batch_size, &sc); 7838 clear_bit_unlock(PGDAT_RECLAIM_LOCKED, &pgdat->flags); 7839 } 7840 7841 if (!reclaimed && !nr_retries--) 7842 return -EAGAIN; 7843 7844 nr_reclaimed += reclaimed; 7845 } 7846 7847 return 0; 7848 } 7849 7850 #endif 7851 7852 /** 7853 * check_move_unevictable_folios - Move evictable folios to appropriate zone 7854 * lru list 7855 * @fbatch: Batch of lru folios to check. 7856 * 7857 * Checks folios for evictability, if an evictable folio is in the unevictable 7858 * lru list, moves it to the appropriate evictable lru list. This function 7859 * should be only used for lru folios. 7860 */ 7861 void check_move_unevictable_folios(struct folio_batch *fbatch) 7862 { 7863 struct lruvec *lruvec = NULL; 7864 int pgscanned = 0; 7865 int pgrescued = 0; 7866 int i; 7867 7868 for (i = 0; i < fbatch->nr; i++) { 7869 struct folio *folio = fbatch->folios[i]; 7870 int nr_pages = folio_nr_pages(folio); 7871 7872 pgscanned += nr_pages; 7873 7874 /* block memcg migration while the folio moves between lrus */ 7875 if (!folio_test_clear_lru(folio)) 7876 continue; 7877 7878 lruvec = folio_lruvec_relock_irq(folio, lruvec); 7879 if (folio_evictable(folio) && folio_test_unevictable(folio)) { 7880 lruvec_del_folio(lruvec, folio); 7881 folio_clear_unevictable(folio); 7882 lruvec_add_folio(lruvec, folio); 7883 pgrescued += nr_pages; 7884 } 7885 folio_set_lru(folio); 7886 } 7887 7888 if (lruvec) { 7889 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 7890 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 7891 unlock_page_lruvec_irq(lruvec); 7892 } else if (pgscanned) { 7893 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 7894 } 7895 } 7896 EXPORT_SYMBOL_GPL(check_move_unevictable_folios); 7897 7898 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA) 7899 static ssize_t reclaim_store(struct device *dev, 7900 struct device_attribute *attr, 7901 const char *buf, size_t count) 7902 { 7903 int ret, nid = dev->id; 7904 7905 ret = user_proactive_reclaim((char *)buf, NULL, NODE_DATA(nid)); 7906 return ret ? -EAGAIN : count; 7907 } 7908 7909 static DEVICE_ATTR_WO(reclaim); 7910 int reclaim_register_node(struct node *node) 7911 { 7912 return device_create_file(&node->dev, &dev_attr_reclaim); 7913 } 7914 7915 void reclaim_unregister_node(struct node *node) 7916 { 7917 return device_remove_file(&node->dev, &dev_attr_reclaim); 7918 } 7919 #endif 7920