xref: /linux/mm/vmscan.c (revision 60684c2bd35064043360e6f716d1b7c20e967b7d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
4  *
5  *  Swap reorganised 29.12.95, Stephen Tweedie.
6  *  kswapd added: 7.1.96  sct
7  *  Removed kswapd_ctl limits, and swap out as many pages as needed
8  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
9  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
10  *  Multiqueue VM started 5.8.00, Rik van Riel.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/mm.h>
16 #include <linux/sched/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h>	/* for buffer_heads_over_limit */
30 #include <linux/mm_inline.h>
31 #include <linux/backing-dev.h>
32 #include <linux/rmap.h>
33 #include <linux/topology.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/compaction.h>
37 #include <linux/notifier.h>
38 #include <linux/rwsem.h>
39 #include <linux/delay.h>
40 #include <linux/kthread.h>
41 #include <linux/freezer.h>
42 #include <linux/memcontrol.h>
43 #include <linux/migrate.h>
44 #include <linux/delayacct.h>
45 #include <linux/sysctl.h>
46 #include <linux/memory-tiers.h>
47 #include <linux/oom.h>
48 #include <linux/pagevec.h>
49 #include <linux/prefetch.h>
50 #include <linux/printk.h>
51 #include <linux/dax.h>
52 #include <linux/psi.h>
53 #include <linux/pagewalk.h>
54 #include <linux/shmem_fs.h>
55 #include <linux/ctype.h>
56 #include <linux/debugfs.h>
57 #include <linux/khugepaged.h>
58 #include <linux/rculist_nulls.h>
59 #include <linux/random.h>
60 
61 #include <asm/tlbflush.h>
62 #include <asm/div64.h>
63 
64 #include <linux/swapops.h>
65 #include <linux/balloon_compaction.h>
66 #include <linux/sched/sysctl.h>
67 
68 #include "internal.h"
69 #include "swap.h"
70 
71 #define CREATE_TRACE_POINTS
72 #include <trace/events/vmscan.h>
73 
74 struct scan_control {
75 	/* How many pages shrink_list() should reclaim */
76 	unsigned long nr_to_reclaim;
77 
78 	/*
79 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
80 	 * are scanned.
81 	 */
82 	nodemask_t	*nodemask;
83 
84 	/*
85 	 * The memory cgroup that hit its limit and as a result is the
86 	 * primary target of this reclaim invocation.
87 	 */
88 	struct mem_cgroup *target_mem_cgroup;
89 
90 	/*
91 	 * Scan pressure balancing between anon and file LRUs
92 	 */
93 	unsigned long	anon_cost;
94 	unsigned long	file_cost;
95 
96 	/* Can active folios be deactivated as part of reclaim? */
97 #define DEACTIVATE_ANON 1
98 #define DEACTIVATE_FILE 2
99 	unsigned int may_deactivate:2;
100 	unsigned int force_deactivate:1;
101 	unsigned int skipped_deactivate:1;
102 
103 	/* Writepage batching in laptop mode; RECLAIM_WRITE */
104 	unsigned int may_writepage:1;
105 
106 	/* Can mapped folios be reclaimed? */
107 	unsigned int may_unmap:1;
108 
109 	/* Can folios be swapped as part of reclaim? */
110 	unsigned int may_swap:1;
111 
112 	/* Proactive reclaim invoked by userspace through memory.reclaim */
113 	unsigned int proactive:1;
114 
115 	/*
116 	 * Cgroup memory below memory.low is protected as long as we
117 	 * don't threaten to OOM. If any cgroup is reclaimed at
118 	 * reduced force or passed over entirely due to its memory.low
119 	 * setting (memcg_low_skipped), and nothing is reclaimed as a
120 	 * result, then go back for one more cycle that reclaims the protected
121 	 * memory (memcg_low_reclaim) to avert OOM.
122 	 */
123 	unsigned int memcg_low_reclaim:1;
124 	unsigned int memcg_low_skipped:1;
125 
126 	unsigned int hibernation_mode:1;
127 
128 	/* One of the zones is ready for compaction */
129 	unsigned int compaction_ready:1;
130 
131 	/* There is easily reclaimable cold cache in the current node */
132 	unsigned int cache_trim_mode:1;
133 
134 	/* The file folios on the current node are dangerously low */
135 	unsigned int file_is_tiny:1;
136 
137 	/* Always discard instead of demoting to lower tier memory */
138 	unsigned int no_demotion:1;
139 
140 	/* Allocation order */
141 	s8 order;
142 
143 	/* Scan (total_size >> priority) pages at once */
144 	s8 priority;
145 
146 	/* The highest zone to isolate folios for reclaim from */
147 	s8 reclaim_idx;
148 
149 	/* This context's GFP mask */
150 	gfp_t gfp_mask;
151 
152 	/* Incremented by the number of inactive pages that were scanned */
153 	unsigned long nr_scanned;
154 
155 	/* Number of pages freed so far during a call to shrink_zones() */
156 	unsigned long nr_reclaimed;
157 
158 	struct {
159 		unsigned int dirty;
160 		unsigned int unqueued_dirty;
161 		unsigned int congested;
162 		unsigned int writeback;
163 		unsigned int immediate;
164 		unsigned int file_taken;
165 		unsigned int taken;
166 	} nr;
167 
168 	/* for recording the reclaimed slab by now */
169 	struct reclaim_state reclaim_state;
170 };
171 
172 #ifdef ARCH_HAS_PREFETCHW
173 #define prefetchw_prev_lru_folio(_folio, _base, _field)			\
174 	do {								\
175 		if ((_folio)->lru.prev != _base) {			\
176 			struct folio *prev;				\
177 									\
178 			prev = lru_to_folio(&(_folio->lru));		\
179 			prefetchw(&prev->_field);			\
180 		}							\
181 	} while (0)
182 #else
183 #define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0)
184 #endif
185 
186 /*
187  * From 0 .. 200.  Higher means more swappy.
188  */
189 int vm_swappiness = 60;
190 
191 static void set_task_reclaim_state(struct task_struct *task,
192 				   struct reclaim_state *rs)
193 {
194 	/* Check for an overwrite */
195 	WARN_ON_ONCE(rs && task->reclaim_state);
196 
197 	/* Check for the nulling of an already-nulled member */
198 	WARN_ON_ONCE(!rs && !task->reclaim_state);
199 
200 	task->reclaim_state = rs;
201 }
202 
203 LIST_HEAD(shrinker_list);
204 DECLARE_RWSEM(shrinker_rwsem);
205 
206 #ifdef CONFIG_MEMCG
207 static int shrinker_nr_max;
208 
209 /* The shrinker_info is expanded in a batch of BITS_PER_LONG */
210 static inline int shrinker_map_size(int nr_items)
211 {
212 	return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long));
213 }
214 
215 static inline int shrinker_defer_size(int nr_items)
216 {
217 	return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t));
218 }
219 
220 static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg,
221 						     int nid)
222 {
223 	return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info,
224 					 lockdep_is_held(&shrinker_rwsem));
225 }
226 
227 static int expand_one_shrinker_info(struct mem_cgroup *memcg,
228 				    int map_size, int defer_size,
229 				    int old_map_size, int old_defer_size)
230 {
231 	struct shrinker_info *new, *old;
232 	struct mem_cgroup_per_node *pn;
233 	int nid;
234 	int size = map_size + defer_size;
235 
236 	for_each_node(nid) {
237 		pn = memcg->nodeinfo[nid];
238 		old = shrinker_info_protected(memcg, nid);
239 		/* Not yet online memcg */
240 		if (!old)
241 			return 0;
242 
243 		new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
244 		if (!new)
245 			return -ENOMEM;
246 
247 		new->nr_deferred = (atomic_long_t *)(new + 1);
248 		new->map = (void *)new->nr_deferred + defer_size;
249 
250 		/* map: set all old bits, clear all new bits */
251 		memset(new->map, (int)0xff, old_map_size);
252 		memset((void *)new->map + old_map_size, 0, map_size - old_map_size);
253 		/* nr_deferred: copy old values, clear all new values */
254 		memcpy(new->nr_deferred, old->nr_deferred, old_defer_size);
255 		memset((void *)new->nr_deferred + old_defer_size, 0,
256 		       defer_size - old_defer_size);
257 
258 		rcu_assign_pointer(pn->shrinker_info, new);
259 		kvfree_rcu(old, rcu);
260 	}
261 
262 	return 0;
263 }
264 
265 void free_shrinker_info(struct mem_cgroup *memcg)
266 {
267 	struct mem_cgroup_per_node *pn;
268 	struct shrinker_info *info;
269 	int nid;
270 
271 	for_each_node(nid) {
272 		pn = memcg->nodeinfo[nid];
273 		info = rcu_dereference_protected(pn->shrinker_info, true);
274 		kvfree(info);
275 		rcu_assign_pointer(pn->shrinker_info, NULL);
276 	}
277 }
278 
279 int alloc_shrinker_info(struct mem_cgroup *memcg)
280 {
281 	struct shrinker_info *info;
282 	int nid, size, ret = 0;
283 	int map_size, defer_size = 0;
284 
285 	down_write(&shrinker_rwsem);
286 	map_size = shrinker_map_size(shrinker_nr_max);
287 	defer_size = shrinker_defer_size(shrinker_nr_max);
288 	size = map_size + defer_size;
289 	for_each_node(nid) {
290 		info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid);
291 		if (!info) {
292 			free_shrinker_info(memcg);
293 			ret = -ENOMEM;
294 			break;
295 		}
296 		info->nr_deferred = (atomic_long_t *)(info + 1);
297 		info->map = (void *)info->nr_deferred + defer_size;
298 		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info);
299 	}
300 	up_write(&shrinker_rwsem);
301 
302 	return ret;
303 }
304 
305 static inline bool need_expand(int nr_max)
306 {
307 	return round_up(nr_max, BITS_PER_LONG) >
308 	       round_up(shrinker_nr_max, BITS_PER_LONG);
309 }
310 
311 static int expand_shrinker_info(int new_id)
312 {
313 	int ret = 0;
314 	int new_nr_max = new_id + 1;
315 	int map_size, defer_size = 0;
316 	int old_map_size, old_defer_size = 0;
317 	struct mem_cgroup *memcg;
318 
319 	if (!need_expand(new_nr_max))
320 		goto out;
321 
322 	if (!root_mem_cgroup)
323 		goto out;
324 
325 	lockdep_assert_held(&shrinker_rwsem);
326 
327 	map_size = shrinker_map_size(new_nr_max);
328 	defer_size = shrinker_defer_size(new_nr_max);
329 	old_map_size = shrinker_map_size(shrinker_nr_max);
330 	old_defer_size = shrinker_defer_size(shrinker_nr_max);
331 
332 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
333 	do {
334 		ret = expand_one_shrinker_info(memcg, map_size, defer_size,
335 					       old_map_size, old_defer_size);
336 		if (ret) {
337 			mem_cgroup_iter_break(NULL, memcg);
338 			goto out;
339 		}
340 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
341 out:
342 	if (!ret)
343 		shrinker_nr_max = new_nr_max;
344 
345 	return ret;
346 }
347 
348 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
349 {
350 	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
351 		struct shrinker_info *info;
352 
353 		rcu_read_lock();
354 		info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info);
355 		/* Pairs with smp mb in shrink_slab() */
356 		smp_mb__before_atomic();
357 		set_bit(shrinker_id, info->map);
358 		rcu_read_unlock();
359 	}
360 }
361 
362 static DEFINE_IDR(shrinker_idr);
363 
364 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
365 {
366 	int id, ret = -ENOMEM;
367 
368 	if (mem_cgroup_disabled())
369 		return -ENOSYS;
370 
371 	down_write(&shrinker_rwsem);
372 	/* This may call shrinker, so it must use down_read_trylock() */
373 	id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL);
374 	if (id < 0)
375 		goto unlock;
376 
377 	if (id >= shrinker_nr_max) {
378 		if (expand_shrinker_info(id)) {
379 			idr_remove(&shrinker_idr, id);
380 			goto unlock;
381 		}
382 	}
383 	shrinker->id = id;
384 	ret = 0;
385 unlock:
386 	up_write(&shrinker_rwsem);
387 	return ret;
388 }
389 
390 static void unregister_memcg_shrinker(struct shrinker *shrinker)
391 {
392 	int id = shrinker->id;
393 
394 	BUG_ON(id < 0);
395 
396 	lockdep_assert_held(&shrinker_rwsem);
397 
398 	idr_remove(&shrinker_idr, id);
399 }
400 
401 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
402 				   struct mem_cgroup *memcg)
403 {
404 	struct shrinker_info *info;
405 
406 	info = shrinker_info_protected(memcg, nid);
407 	return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0);
408 }
409 
410 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
411 				  struct mem_cgroup *memcg)
412 {
413 	struct shrinker_info *info;
414 
415 	info = shrinker_info_protected(memcg, nid);
416 	return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]);
417 }
418 
419 void reparent_shrinker_deferred(struct mem_cgroup *memcg)
420 {
421 	int i, nid;
422 	long nr;
423 	struct mem_cgroup *parent;
424 	struct shrinker_info *child_info, *parent_info;
425 
426 	parent = parent_mem_cgroup(memcg);
427 	if (!parent)
428 		parent = root_mem_cgroup;
429 
430 	/* Prevent from concurrent shrinker_info expand */
431 	down_read(&shrinker_rwsem);
432 	for_each_node(nid) {
433 		child_info = shrinker_info_protected(memcg, nid);
434 		parent_info = shrinker_info_protected(parent, nid);
435 		for (i = 0; i < shrinker_nr_max; i++) {
436 			nr = atomic_long_read(&child_info->nr_deferred[i]);
437 			atomic_long_add(nr, &parent_info->nr_deferred[i]);
438 		}
439 	}
440 	up_read(&shrinker_rwsem);
441 }
442 
443 static bool cgroup_reclaim(struct scan_control *sc)
444 {
445 	return sc->target_mem_cgroup;
446 }
447 
448 static bool global_reclaim(struct scan_control *sc)
449 {
450 	return !sc->target_mem_cgroup || mem_cgroup_is_root(sc->target_mem_cgroup);
451 }
452 
453 /**
454  * writeback_throttling_sane - is the usual dirty throttling mechanism available?
455  * @sc: scan_control in question
456  *
457  * The normal page dirty throttling mechanism in balance_dirty_pages() is
458  * completely broken with the legacy memcg and direct stalling in
459  * shrink_folio_list() is used for throttling instead, which lacks all the
460  * niceties such as fairness, adaptive pausing, bandwidth proportional
461  * allocation and configurability.
462  *
463  * This function tests whether the vmscan currently in progress can assume
464  * that the normal dirty throttling mechanism is operational.
465  */
466 static bool writeback_throttling_sane(struct scan_control *sc)
467 {
468 	if (!cgroup_reclaim(sc))
469 		return true;
470 #ifdef CONFIG_CGROUP_WRITEBACK
471 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
472 		return true;
473 #endif
474 	return false;
475 }
476 #else
477 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
478 {
479 	return -ENOSYS;
480 }
481 
482 static void unregister_memcg_shrinker(struct shrinker *shrinker)
483 {
484 }
485 
486 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
487 				   struct mem_cgroup *memcg)
488 {
489 	return 0;
490 }
491 
492 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
493 				  struct mem_cgroup *memcg)
494 {
495 	return 0;
496 }
497 
498 static bool cgroup_reclaim(struct scan_control *sc)
499 {
500 	return false;
501 }
502 
503 static bool global_reclaim(struct scan_control *sc)
504 {
505 	return true;
506 }
507 
508 static bool writeback_throttling_sane(struct scan_control *sc)
509 {
510 	return true;
511 }
512 #endif
513 
514 static long xchg_nr_deferred(struct shrinker *shrinker,
515 			     struct shrink_control *sc)
516 {
517 	int nid = sc->nid;
518 
519 	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
520 		nid = 0;
521 
522 	if (sc->memcg &&
523 	    (shrinker->flags & SHRINKER_MEMCG_AWARE))
524 		return xchg_nr_deferred_memcg(nid, shrinker,
525 					      sc->memcg);
526 
527 	return atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
528 }
529 
530 
531 static long add_nr_deferred(long nr, struct shrinker *shrinker,
532 			    struct shrink_control *sc)
533 {
534 	int nid = sc->nid;
535 
536 	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
537 		nid = 0;
538 
539 	if (sc->memcg &&
540 	    (shrinker->flags & SHRINKER_MEMCG_AWARE))
541 		return add_nr_deferred_memcg(nr, nid, shrinker,
542 					     sc->memcg);
543 
544 	return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]);
545 }
546 
547 static bool can_demote(int nid, struct scan_control *sc)
548 {
549 	if (!numa_demotion_enabled)
550 		return false;
551 	if (sc && sc->no_demotion)
552 		return false;
553 	if (next_demotion_node(nid) == NUMA_NO_NODE)
554 		return false;
555 
556 	return true;
557 }
558 
559 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
560 					  int nid,
561 					  struct scan_control *sc)
562 {
563 	if (memcg == NULL) {
564 		/*
565 		 * For non-memcg reclaim, is there
566 		 * space in any swap device?
567 		 */
568 		if (get_nr_swap_pages() > 0)
569 			return true;
570 	} else {
571 		/* Is the memcg below its swap limit? */
572 		if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
573 			return true;
574 	}
575 
576 	/*
577 	 * The page can not be swapped.
578 	 *
579 	 * Can it be reclaimed from this node via demotion?
580 	 */
581 	return can_demote(nid, sc);
582 }
583 
584 /*
585  * This misses isolated folios which are not accounted for to save counters.
586  * As the data only determines if reclaim or compaction continues, it is
587  * not expected that isolated folios will be a dominating factor.
588  */
589 unsigned long zone_reclaimable_pages(struct zone *zone)
590 {
591 	unsigned long nr;
592 
593 	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
594 		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
595 	if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
596 		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
597 			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
598 
599 	return nr;
600 }
601 
602 /**
603  * lruvec_lru_size -  Returns the number of pages on the given LRU list.
604  * @lruvec: lru vector
605  * @lru: lru to use
606  * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list)
607  */
608 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
609 				     int zone_idx)
610 {
611 	unsigned long size = 0;
612 	int zid;
613 
614 	for (zid = 0; zid <= zone_idx; zid++) {
615 		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
616 
617 		if (!managed_zone(zone))
618 			continue;
619 
620 		if (!mem_cgroup_disabled())
621 			size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
622 		else
623 			size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
624 	}
625 	return size;
626 }
627 
628 /*
629  * Add a shrinker callback to be called from the vm.
630  */
631 static int __prealloc_shrinker(struct shrinker *shrinker)
632 {
633 	unsigned int size;
634 	int err;
635 
636 	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
637 		err = prealloc_memcg_shrinker(shrinker);
638 		if (err != -ENOSYS)
639 			return err;
640 
641 		shrinker->flags &= ~SHRINKER_MEMCG_AWARE;
642 	}
643 
644 	size = sizeof(*shrinker->nr_deferred);
645 	if (shrinker->flags & SHRINKER_NUMA_AWARE)
646 		size *= nr_node_ids;
647 
648 	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
649 	if (!shrinker->nr_deferred)
650 		return -ENOMEM;
651 
652 	return 0;
653 }
654 
655 #ifdef CONFIG_SHRINKER_DEBUG
656 int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...)
657 {
658 	va_list ap;
659 	int err;
660 
661 	va_start(ap, fmt);
662 	shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap);
663 	va_end(ap);
664 	if (!shrinker->name)
665 		return -ENOMEM;
666 
667 	err = __prealloc_shrinker(shrinker);
668 	if (err) {
669 		kfree_const(shrinker->name);
670 		shrinker->name = NULL;
671 	}
672 
673 	return err;
674 }
675 #else
676 int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...)
677 {
678 	return __prealloc_shrinker(shrinker);
679 }
680 #endif
681 
682 void free_prealloced_shrinker(struct shrinker *shrinker)
683 {
684 #ifdef CONFIG_SHRINKER_DEBUG
685 	kfree_const(shrinker->name);
686 	shrinker->name = NULL;
687 #endif
688 	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
689 		down_write(&shrinker_rwsem);
690 		unregister_memcg_shrinker(shrinker);
691 		up_write(&shrinker_rwsem);
692 		return;
693 	}
694 
695 	kfree(shrinker->nr_deferred);
696 	shrinker->nr_deferred = NULL;
697 }
698 
699 void register_shrinker_prepared(struct shrinker *shrinker)
700 {
701 	down_write(&shrinker_rwsem);
702 	list_add_tail(&shrinker->list, &shrinker_list);
703 	shrinker->flags |= SHRINKER_REGISTERED;
704 	shrinker_debugfs_add(shrinker);
705 	up_write(&shrinker_rwsem);
706 }
707 
708 static int __register_shrinker(struct shrinker *shrinker)
709 {
710 	int err = __prealloc_shrinker(shrinker);
711 
712 	if (err)
713 		return err;
714 	register_shrinker_prepared(shrinker);
715 	return 0;
716 }
717 
718 #ifdef CONFIG_SHRINKER_DEBUG
719 int register_shrinker(struct shrinker *shrinker, const char *fmt, ...)
720 {
721 	va_list ap;
722 	int err;
723 
724 	va_start(ap, fmt);
725 	shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap);
726 	va_end(ap);
727 	if (!shrinker->name)
728 		return -ENOMEM;
729 
730 	err = __register_shrinker(shrinker);
731 	if (err) {
732 		kfree_const(shrinker->name);
733 		shrinker->name = NULL;
734 	}
735 	return err;
736 }
737 #else
738 int register_shrinker(struct shrinker *shrinker, const char *fmt, ...)
739 {
740 	return __register_shrinker(shrinker);
741 }
742 #endif
743 EXPORT_SYMBOL(register_shrinker);
744 
745 /*
746  * Remove one
747  */
748 void unregister_shrinker(struct shrinker *shrinker)
749 {
750 	struct dentry *debugfs_entry;
751 
752 	if (!(shrinker->flags & SHRINKER_REGISTERED))
753 		return;
754 
755 	down_write(&shrinker_rwsem);
756 	list_del(&shrinker->list);
757 	shrinker->flags &= ~SHRINKER_REGISTERED;
758 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
759 		unregister_memcg_shrinker(shrinker);
760 	debugfs_entry = shrinker_debugfs_remove(shrinker);
761 	up_write(&shrinker_rwsem);
762 
763 	debugfs_remove_recursive(debugfs_entry);
764 
765 	kfree(shrinker->nr_deferred);
766 	shrinker->nr_deferred = NULL;
767 }
768 EXPORT_SYMBOL(unregister_shrinker);
769 
770 /**
771  * synchronize_shrinkers - Wait for all running shrinkers to complete.
772  *
773  * This is equivalent to calling unregister_shrink() and register_shrinker(),
774  * but atomically and with less overhead. This is useful to guarantee that all
775  * shrinker invocations have seen an update, before freeing memory, similar to
776  * rcu.
777  */
778 void synchronize_shrinkers(void)
779 {
780 	down_write(&shrinker_rwsem);
781 	up_write(&shrinker_rwsem);
782 }
783 EXPORT_SYMBOL(synchronize_shrinkers);
784 
785 #define SHRINK_BATCH 128
786 
787 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
788 				    struct shrinker *shrinker, int priority)
789 {
790 	unsigned long freed = 0;
791 	unsigned long long delta;
792 	long total_scan;
793 	long freeable;
794 	long nr;
795 	long new_nr;
796 	long batch_size = shrinker->batch ? shrinker->batch
797 					  : SHRINK_BATCH;
798 	long scanned = 0, next_deferred;
799 
800 	freeable = shrinker->count_objects(shrinker, shrinkctl);
801 	if (freeable == 0 || freeable == SHRINK_EMPTY)
802 		return freeable;
803 
804 	/*
805 	 * copy the current shrinker scan count into a local variable
806 	 * and zero it so that other concurrent shrinker invocations
807 	 * don't also do this scanning work.
808 	 */
809 	nr = xchg_nr_deferred(shrinker, shrinkctl);
810 
811 	if (shrinker->seeks) {
812 		delta = freeable >> priority;
813 		delta *= 4;
814 		do_div(delta, shrinker->seeks);
815 	} else {
816 		/*
817 		 * These objects don't require any IO to create. Trim
818 		 * them aggressively under memory pressure to keep
819 		 * them from causing refetches in the IO caches.
820 		 */
821 		delta = freeable / 2;
822 	}
823 
824 	total_scan = nr >> priority;
825 	total_scan += delta;
826 	total_scan = min(total_scan, (2 * freeable));
827 
828 	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
829 				   freeable, delta, total_scan, priority);
830 
831 	/*
832 	 * Normally, we should not scan less than batch_size objects in one
833 	 * pass to avoid too frequent shrinker calls, but if the slab has less
834 	 * than batch_size objects in total and we are really tight on memory,
835 	 * we will try to reclaim all available objects, otherwise we can end
836 	 * up failing allocations although there are plenty of reclaimable
837 	 * objects spread over several slabs with usage less than the
838 	 * batch_size.
839 	 *
840 	 * We detect the "tight on memory" situations by looking at the total
841 	 * number of objects we want to scan (total_scan). If it is greater
842 	 * than the total number of objects on slab (freeable), we must be
843 	 * scanning at high prio and therefore should try to reclaim as much as
844 	 * possible.
845 	 */
846 	while (total_scan >= batch_size ||
847 	       total_scan >= freeable) {
848 		unsigned long ret;
849 		unsigned long nr_to_scan = min(batch_size, total_scan);
850 
851 		shrinkctl->nr_to_scan = nr_to_scan;
852 		shrinkctl->nr_scanned = nr_to_scan;
853 		ret = shrinker->scan_objects(shrinker, shrinkctl);
854 		if (ret == SHRINK_STOP)
855 			break;
856 		freed += ret;
857 
858 		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
859 		total_scan -= shrinkctl->nr_scanned;
860 		scanned += shrinkctl->nr_scanned;
861 
862 		cond_resched();
863 	}
864 
865 	/*
866 	 * The deferred work is increased by any new work (delta) that wasn't
867 	 * done, decreased by old deferred work that was done now.
868 	 *
869 	 * And it is capped to two times of the freeable items.
870 	 */
871 	next_deferred = max_t(long, (nr + delta - scanned), 0);
872 	next_deferred = min(next_deferred, (2 * freeable));
873 
874 	/*
875 	 * move the unused scan count back into the shrinker in a
876 	 * manner that handles concurrent updates.
877 	 */
878 	new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl);
879 
880 	trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan);
881 	return freed;
882 }
883 
884 #ifdef CONFIG_MEMCG
885 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
886 			struct mem_cgroup *memcg, int priority)
887 {
888 	struct shrinker_info *info;
889 	unsigned long ret, freed = 0;
890 	int i;
891 
892 	if (!mem_cgroup_online(memcg))
893 		return 0;
894 
895 	if (!down_read_trylock(&shrinker_rwsem))
896 		return 0;
897 
898 	info = shrinker_info_protected(memcg, nid);
899 	if (unlikely(!info))
900 		goto unlock;
901 
902 	for_each_set_bit(i, info->map, shrinker_nr_max) {
903 		struct shrink_control sc = {
904 			.gfp_mask = gfp_mask,
905 			.nid = nid,
906 			.memcg = memcg,
907 		};
908 		struct shrinker *shrinker;
909 
910 		shrinker = idr_find(&shrinker_idr, i);
911 		if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) {
912 			if (!shrinker)
913 				clear_bit(i, info->map);
914 			continue;
915 		}
916 
917 		/* Call non-slab shrinkers even though kmem is disabled */
918 		if (!memcg_kmem_online() &&
919 		    !(shrinker->flags & SHRINKER_NONSLAB))
920 			continue;
921 
922 		ret = do_shrink_slab(&sc, shrinker, priority);
923 		if (ret == SHRINK_EMPTY) {
924 			clear_bit(i, info->map);
925 			/*
926 			 * After the shrinker reported that it had no objects to
927 			 * free, but before we cleared the corresponding bit in
928 			 * the memcg shrinker map, a new object might have been
929 			 * added. To make sure, we have the bit set in this
930 			 * case, we invoke the shrinker one more time and reset
931 			 * the bit if it reports that it is not empty anymore.
932 			 * The memory barrier here pairs with the barrier in
933 			 * set_shrinker_bit():
934 			 *
935 			 * list_lru_add()     shrink_slab_memcg()
936 			 *   list_add_tail()    clear_bit()
937 			 *   <MB>               <MB>
938 			 *   set_bit()          do_shrink_slab()
939 			 */
940 			smp_mb__after_atomic();
941 			ret = do_shrink_slab(&sc, shrinker, priority);
942 			if (ret == SHRINK_EMPTY)
943 				ret = 0;
944 			else
945 				set_shrinker_bit(memcg, nid, i);
946 		}
947 		freed += ret;
948 
949 		if (rwsem_is_contended(&shrinker_rwsem)) {
950 			freed = freed ? : 1;
951 			break;
952 		}
953 	}
954 unlock:
955 	up_read(&shrinker_rwsem);
956 	return freed;
957 }
958 #else /* CONFIG_MEMCG */
959 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
960 			struct mem_cgroup *memcg, int priority)
961 {
962 	return 0;
963 }
964 #endif /* CONFIG_MEMCG */
965 
966 /**
967  * shrink_slab - shrink slab caches
968  * @gfp_mask: allocation context
969  * @nid: node whose slab caches to target
970  * @memcg: memory cgroup whose slab caches to target
971  * @priority: the reclaim priority
972  *
973  * Call the shrink functions to age shrinkable caches.
974  *
975  * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
976  * unaware shrinkers will receive a node id of 0 instead.
977  *
978  * @memcg specifies the memory cgroup to target. Unaware shrinkers
979  * are called only if it is the root cgroup.
980  *
981  * @priority is sc->priority, we take the number of objects and >> by priority
982  * in order to get the scan target.
983  *
984  * Returns the number of reclaimed slab objects.
985  */
986 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
987 				 struct mem_cgroup *memcg,
988 				 int priority)
989 {
990 	unsigned long ret, freed = 0;
991 	struct shrinker *shrinker;
992 
993 	/*
994 	 * The root memcg might be allocated even though memcg is disabled
995 	 * via "cgroup_disable=memory" boot parameter.  This could make
996 	 * mem_cgroup_is_root() return false, then just run memcg slab
997 	 * shrink, but skip global shrink.  This may result in premature
998 	 * oom.
999 	 */
1000 	if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
1001 		return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
1002 
1003 	if (!down_read_trylock(&shrinker_rwsem))
1004 		goto out;
1005 
1006 	list_for_each_entry(shrinker, &shrinker_list, list) {
1007 		struct shrink_control sc = {
1008 			.gfp_mask = gfp_mask,
1009 			.nid = nid,
1010 			.memcg = memcg,
1011 		};
1012 
1013 		ret = do_shrink_slab(&sc, shrinker, priority);
1014 		if (ret == SHRINK_EMPTY)
1015 			ret = 0;
1016 		freed += ret;
1017 		/*
1018 		 * Bail out if someone want to register a new shrinker to
1019 		 * prevent the registration from being stalled for long periods
1020 		 * by parallel ongoing shrinking.
1021 		 */
1022 		if (rwsem_is_contended(&shrinker_rwsem)) {
1023 			freed = freed ? : 1;
1024 			break;
1025 		}
1026 	}
1027 
1028 	up_read(&shrinker_rwsem);
1029 out:
1030 	cond_resched();
1031 	return freed;
1032 }
1033 
1034 static unsigned long drop_slab_node(int nid)
1035 {
1036 	unsigned long freed = 0;
1037 	struct mem_cgroup *memcg = NULL;
1038 
1039 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
1040 	do {
1041 		freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
1042 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
1043 
1044 	return freed;
1045 }
1046 
1047 void drop_slab(void)
1048 {
1049 	int nid;
1050 	int shift = 0;
1051 	unsigned long freed;
1052 
1053 	do {
1054 		freed = 0;
1055 		for_each_online_node(nid) {
1056 			if (fatal_signal_pending(current))
1057 				return;
1058 
1059 			freed += drop_slab_node(nid);
1060 		}
1061 	} while ((freed >> shift++) > 1);
1062 }
1063 
1064 static int reclaimer_offset(void)
1065 {
1066 	BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD !=
1067 			PGDEMOTE_DIRECT - PGDEMOTE_KSWAPD);
1068 	BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD !=
1069 			PGSCAN_DIRECT - PGSCAN_KSWAPD);
1070 	BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD !=
1071 			PGDEMOTE_KHUGEPAGED - PGDEMOTE_KSWAPD);
1072 	BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD !=
1073 			PGSCAN_KHUGEPAGED - PGSCAN_KSWAPD);
1074 
1075 	if (current_is_kswapd())
1076 		return 0;
1077 	if (current_is_khugepaged())
1078 		return PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD;
1079 	return PGSTEAL_DIRECT - PGSTEAL_KSWAPD;
1080 }
1081 
1082 static inline int is_page_cache_freeable(struct folio *folio)
1083 {
1084 	/*
1085 	 * A freeable page cache folio is referenced only by the caller
1086 	 * that isolated the folio, the page cache and optional filesystem
1087 	 * private data at folio->private.
1088 	 */
1089 	return folio_ref_count(folio) - folio_test_private(folio) ==
1090 		1 + folio_nr_pages(folio);
1091 }
1092 
1093 /*
1094  * We detected a synchronous write error writing a folio out.  Probably
1095  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
1096  * fsync(), msync() or close().
1097  *
1098  * The tricky part is that after writepage we cannot touch the mapping: nothing
1099  * prevents it from being freed up.  But we have a ref on the folio and once
1100  * that folio is locked, the mapping is pinned.
1101  *
1102  * We're allowed to run sleeping folio_lock() here because we know the caller has
1103  * __GFP_FS.
1104  */
1105 static void handle_write_error(struct address_space *mapping,
1106 				struct folio *folio, int error)
1107 {
1108 	folio_lock(folio);
1109 	if (folio_mapping(folio) == mapping)
1110 		mapping_set_error(mapping, error);
1111 	folio_unlock(folio);
1112 }
1113 
1114 static bool skip_throttle_noprogress(pg_data_t *pgdat)
1115 {
1116 	int reclaimable = 0, write_pending = 0;
1117 	int i;
1118 
1119 	/*
1120 	 * If kswapd is disabled, reschedule if necessary but do not
1121 	 * throttle as the system is likely near OOM.
1122 	 */
1123 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
1124 		return true;
1125 
1126 	/*
1127 	 * If there are a lot of dirty/writeback folios then do not
1128 	 * throttle as throttling will occur when the folios cycle
1129 	 * towards the end of the LRU if still under writeback.
1130 	 */
1131 	for (i = 0; i < MAX_NR_ZONES; i++) {
1132 		struct zone *zone = pgdat->node_zones + i;
1133 
1134 		if (!managed_zone(zone))
1135 			continue;
1136 
1137 		reclaimable += zone_reclaimable_pages(zone);
1138 		write_pending += zone_page_state_snapshot(zone,
1139 						  NR_ZONE_WRITE_PENDING);
1140 	}
1141 	if (2 * write_pending <= reclaimable)
1142 		return true;
1143 
1144 	return false;
1145 }
1146 
1147 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
1148 {
1149 	wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason];
1150 	long timeout, ret;
1151 	DEFINE_WAIT(wait);
1152 
1153 	/*
1154 	 * Do not throttle IO workers, kthreads other than kswapd or
1155 	 * workqueues. They may be required for reclaim to make
1156 	 * forward progress (e.g. journalling workqueues or kthreads).
1157 	 */
1158 	if (!current_is_kswapd() &&
1159 	    current->flags & (PF_IO_WORKER|PF_KTHREAD)) {
1160 		cond_resched();
1161 		return;
1162 	}
1163 
1164 	/*
1165 	 * These figures are pulled out of thin air.
1166 	 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
1167 	 * parallel reclaimers which is a short-lived event so the timeout is
1168 	 * short. Failing to make progress or waiting on writeback are
1169 	 * potentially long-lived events so use a longer timeout. This is shaky
1170 	 * logic as a failure to make progress could be due to anything from
1171 	 * writeback to a slow device to excessive referenced folios at the tail
1172 	 * of the inactive LRU.
1173 	 */
1174 	switch(reason) {
1175 	case VMSCAN_THROTTLE_WRITEBACK:
1176 		timeout = HZ/10;
1177 
1178 		if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) {
1179 			WRITE_ONCE(pgdat->nr_reclaim_start,
1180 				node_page_state(pgdat, NR_THROTTLED_WRITTEN));
1181 		}
1182 
1183 		break;
1184 	case VMSCAN_THROTTLE_CONGESTED:
1185 		fallthrough;
1186 	case VMSCAN_THROTTLE_NOPROGRESS:
1187 		if (skip_throttle_noprogress(pgdat)) {
1188 			cond_resched();
1189 			return;
1190 		}
1191 
1192 		timeout = 1;
1193 
1194 		break;
1195 	case VMSCAN_THROTTLE_ISOLATED:
1196 		timeout = HZ/50;
1197 		break;
1198 	default:
1199 		WARN_ON_ONCE(1);
1200 		timeout = HZ;
1201 		break;
1202 	}
1203 
1204 	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1205 	ret = schedule_timeout(timeout);
1206 	finish_wait(wqh, &wait);
1207 
1208 	if (reason == VMSCAN_THROTTLE_WRITEBACK)
1209 		atomic_dec(&pgdat->nr_writeback_throttled);
1210 
1211 	trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout),
1212 				jiffies_to_usecs(timeout - ret),
1213 				reason);
1214 }
1215 
1216 /*
1217  * Account for folios written if tasks are throttled waiting on dirty
1218  * folios to clean. If enough folios have been cleaned since throttling
1219  * started then wakeup the throttled tasks.
1220  */
1221 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
1222 							int nr_throttled)
1223 {
1224 	unsigned long nr_written;
1225 
1226 	node_stat_add_folio(folio, NR_THROTTLED_WRITTEN);
1227 
1228 	/*
1229 	 * This is an inaccurate read as the per-cpu deltas may not
1230 	 * be synchronised. However, given that the system is
1231 	 * writeback throttled, it is not worth taking the penalty
1232 	 * of getting an accurate count. At worst, the throttle
1233 	 * timeout guarantees forward progress.
1234 	 */
1235 	nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) -
1236 		READ_ONCE(pgdat->nr_reclaim_start);
1237 
1238 	if (nr_written > SWAP_CLUSTER_MAX * nr_throttled)
1239 		wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]);
1240 }
1241 
1242 /* possible outcome of pageout() */
1243 typedef enum {
1244 	/* failed to write folio out, folio is locked */
1245 	PAGE_KEEP,
1246 	/* move folio to the active list, folio is locked */
1247 	PAGE_ACTIVATE,
1248 	/* folio has been sent to the disk successfully, folio is unlocked */
1249 	PAGE_SUCCESS,
1250 	/* folio is clean and locked */
1251 	PAGE_CLEAN,
1252 } pageout_t;
1253 
1254 /*
1255  * pageout is called by shrink_folio_list() for each dirty folio.
1256  * Calls ->writepage().
1257  */
1258 static pageout_t pageout(struct folio *folio, struct address_space *mapping,
1259 			 struct swap_iocb **plug)
1260 {
1261 	/*
1262 	 * If the folio is dirty, only perform writeback if that write
1263 	 * will be non-blocking.  To prevent this allocation from being
1264 	 * stalled by pagecache activity.  But note that there may be
1265 	 * stalls if we need to run get_block().  We could test
1266 	 * PagePrivate for that.
1267 	 *
1268 	 * If this process is currently in __generic_file_write_iter() against
1269 	 * this folio's queue, we can perform writeback even if that
1270 	 * will block.
1271 	 *
1272 	 * If the folio is swapcache, write it back even if that would
1273 	 * block, for some throttling. This happens by accident, because
1274 	 * swap_backing_dev_info is bust: it doesn't reflect the
1275 	 * congestion state of the swapdevs.  Easy to fix, if needed.
1276 	 */
1277 	if (!is_page_cache_freeable(folio))
1278 		return PAGE_KEEP;
1279 	if (!mapping) {
1280 		/*
1281 		 * Some data journaling orphaned folios can have
1282 		 * folio->mapping == NULL while being dirty with clean buffers.
1283 		 */
1284 		if (folio_test_private(folio)) {
1285 			if (try_to_free_buffers(folio)) {
1286 				folio_clear_dirty(folio);
1287 				pr_info("%s: orphaned folio\n", __func__);
1288 				return PAGE_CLEAN;
1289 			}
1290 		}
1291 		return PAGE_KEEP;
1292 	}
1293 	if (mapping->a_ops->writepage == NULL)
1294 		return PAGE_ACTIVATE;
1295 
1296 	if (folio_clear_dirty_for_io(folio)) {
1297 		int res;
1298 		struct writeback_control wbc = {
1299 			.sync_mode = WB_SYNC_NONE,
1300 			.nr_to_write = SWAP_CLUSTER_MAX,
1301 			.range_start = 0,
1302 			.range_end = LLONG_MAX,
1303 			.for_reclaim = 1,
1304 			.swap_plug = plug,
1305 		};
1306 
1307 		folio_set_reclaim(folio);
1308 		res = mapping->a_ops->writepage(&folio->page, &wbc);
1309 		if (res < 0)
1310 			handle_write_error(mapping, folio, res);
1311 		if (res == AOP_WRITEPAGE_ACTIVATE) {
1312 			folio_clear_reclaim(folio);
1313 			return PAGE_ACTIVATE;
1314 		}
1315 
1316 		if (!folio_test_writeback(folio)) {
1317 			/* synchronous write or broken a_ops? */
1318 			folio_clear_reclaim(folio);
1319 		}
1320 		trace_mm_vmscan_write_folio(folio);
1321 		node_stat_add_folio(folio, NR_VMSCAN_WRITE);
1322 		return PAGE_SUCCESS;
1323 	}
1324 
1325 	return PAGE_CLEAN;
1326 }
1327 
1328 /*
1329  * Same as remove_mapping, but if the folio is removed from the mapping, it
1330  * gets returned with a refcount of 0.
1331  */
1332 static int __remove_mapping(struct address_space *mapping, struct folio *folio,
1333 			    bool reclaimed, struct mem_cgroup *target_memcg)
1334 {
1335 	int refcount;
1336 	void *shadow = NULL;
1337 
1338 	BUG_ON(!folio_test_locked(folio));
1339 	BUG_ON(mapping != folio_mapping(folio));
1340 
1341 	if (!folio_test_swapcache(folio))
1342 		spin_lock(&mapping->host->i_lock);
1343 	xa_lock_irq(&mapping->i_pages);
1344 	/*
1345 	 * The non racy check for a busy folio.
1346 	 *
1347 	 * Must be careful with the order of the tests. When someone has
1348 	 * a ref to the folio, it may be possible that they dirty it then
1349 	 * drop the reference. So if the dirty flag is tested before the
1350 	 * refcount here, then the following race may occur:
1351 	 *
1352 	 * get_user_pages(&page);
1353 	 * [user mapping goes away]
1354 	 * write_to(page);
1355 	 *				!folio_test_dirty(folio)    [good]
1356 	 * folio_set_dirty(folio);
1357 	 * folio_put(folio);
1358 	 *				!refcount(folio)   [good, discard it]
1359 	 *
1360 	 * [oops, our write_to data is lost]
1361 	 *
1362 	 * Reversing the order of the tests ensures such a situation cannot
1363 	 * escape unnoticed. The smp_rmb is needed to ensure the folio->flags
1364 	 * load is not satisfied before that of folio->_refcount.
1365 	 *
1366 	 * Note that if the dirty flag is always set via folio_mark_dirty,
1367 	 * and thus under the i_pages lock, then this ordering is not required.
1368 	 */
1369 	refcount = 1 + folio_nr_pages(folio);
1370 	if (!folio_ref_freeze(folio, refcount))
1371 		goto cannot_free;
1372 	/* note: atomic_cmpxchg in folio_ref_freeze provides the smp_rmb */
1373 	if (unlikely(folio_test_dirty(folio))) {
1374 		folio_ref_unfreeze(folio, refcount);
1375 		goto cannot_free;
1376 	}
1377 
1378 	if (folio_test_swapcache(folio)) {
1379 		swp_entry_t swap = folio_swap_entry(folio);
1380 
1381 		if (reclaimed && !mapping_exiting(mapping))
1382 			shadow = workingset_eviction(folio, target_memcg);
1383 		__delete_from_swap_cache(folio, swap, shadow);
1384 		mem_cgroup_swapout(folio, swap);
1385 		xa_unlock_irq(&mapping->i_pages);
1386 		put_swap_folio(folio, swap);
1387 	} else {
1388 		void (*free_folio)(struct folio *);
1389 
1390 		free_folio = mapping->a_ops->free_folio;
1391 		/*
1392 		 * Remember a shadow entry for reclaimed file cache in
1393 		 * order to detect refaults, thus thrashing, later on.
1394 		 *
1395 		 * But don't store shadows in an address space that is
1396 		 * already exiting.  This is not just an optimization,
1397 		 * inode reclaim needs to empty out the radix tree or
1398 		 * the nodes are lost.  Don't plant shadows behind its
1399 		 * back.
1400 		 *
1401 		 * We also don't store shadows for DAX mappings because the
1402 		 * only page cache folios found in these are zero pages
1403 		 * covering holes, and because we don't want to mix DAX
1404 		 * exceptional entries and shadow exceptional entries in the
1405 		 * same address_space.
1406 		 */
1407 		if (reclaimed && folio_is_file_lru(folio) &&
1408 		    !mapping_exiting(mapping) && !dax_mapping(mapping))
1409 			shadow = workingset_eviction(folio, target_memcg);
1410 		__filemap_remove_folio(folio, shadow);
1411 		xa_unlock_irq(&mapping->i_pages);
1412 		if (mapping_shrinkable(mapping))
1413 			inode_add_lru(mapping->host);
1414 		spin_unlock(&mapping->host->i_lock);
1415 
1416 		if (free_folio)
1417 			free_folio(folio);
1418 	}
1419 
1420 	return 1;
1421 
1422 cannot_free:
1423 	xa_unlock_irq(&mapping->i_pages);
1424 	if (!folio_test_swapcache(folio))
1425 		spin_unlock(&mapping->host->i_lock);
1426 	return 0;
1427 }
1428 
1429 /**
1430  * remove_mapping() - Attempt to remove a folio from its mapping.
1431  * @mapping: The address space.
1432  * @folio: The folio to remove.
1433  *
1434  * If the folio is dirty, under writeback or if someone else has a ref
1435  * on it, removal will fail.
1436  * Return: The number of pages removed from the mapping.  0 if the folio
1437  * could not be removed.
1438  * Context: The caller should have a single refcount on the folio and
1439  * hold its lock.
1440  */
1441 long remove_mapping(struct address_space *mapping, struct folio *folio)
1442 {
1443 	if (__remove_mapping(mapping, folio, false, NULL)) {
1444 		/*
1445 		 * Unfreezing the refcount with 1 effectively
1446 		 * drops the pagecache ref for us without requiring another
1447 		 * atomic operation.
1448 		 */
1449 		folio_ref_unfreeze(folio, 1);
1450 		return folio_nr_pages(folio);
1451 	}
1452 	return 0;
1453 }
1454 
1455 /**
1456  * folio_putback_lru - Put previously isolated folio onto appropriate LRU list.
1457  * @folio: Folio to be returned to an LRU list.
1458  *
1459  * Add previously isolated @folio to appropriate LRU list.
1460  * The folio may still be unevictable for other reasons.
1461  *
1462  * Context: lru_lock must not be held, interrupts must be enabled.
1463  */
1464 void folio_putback_lru(struct folio *folio)
1465 {
1466 	folio_add_lru(folio);
1467 	folio_put(folio);		/* drop ref from isolate */
1468 }
1469 
1470 enum folio_references {
1471 	FOLIOREF_RECLAIM,
1472 	FOLIOREF_RECLAIM_CLEAN,
1473 	FOLIOREF_KEEP,
1474 	FOLIOREF_ACTIVATE,
1475 };
1476 
1477 static enum folio_references folio_check_references(struct folio *folio,
1478 						  struct scan_control *sc)
1479 {
1480 	int referenced_ptes, referenced_folio;
1481 	unsigned long vm_flags;
1482 
1483 	referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup,
1484 					   &vm_flags);
1485 	referenced_folio = folio_test_clear_referenced(folio);
1486 
1487 	/*
1488 	 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma.
1489 	 * Let the folio, now marked Mlocked, be moved to the unevictable list.
1490 	 */
1491 	if (vm_flags & VM_LOCKED)
1492 		return FOLIOREF_ACTIVATE;
1493 
1494 	/* rmap lock contention: rotate */
1495 	if (referenced_ptes == -1)
1496 		return FOLIOREF_KEEP;
1497 
1498 	if (referenced_ptes) {
1499 		/*
1500 		 * All mapped folios start out with page table
1501 		 * references from the instantiating fault, so we need
1502 		 * to look twice if a mapped file/anon folio is used more
1503 		 * than once.
1504 		 *
1505 		 * Mark it and spare it for another trip around the
1506 		 * inactive list.  Another page table reference will
1507 		 * lead to its activation.
1508 		 *
1509 		 * Note: the mark is set for activated folios as well
1510 		 * so that recently deactivated but used folios are
1511 		 * quickly recovered.
1512 		 */
1513 		folio_set_referenced(folio);
1514 
1515 		if (referenced_folio || referenced_ptes > 1)
1516 			return FOLIOREF_ACTIVATE;
1517 
1518 		/*
1519 		 * Activate file-backed executable folios after first usage.
1520 		 */
1521 		if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio))
1522 			return FOLIOREF_ACTIVATE;
1523 
1524 		return FOLIOREF_KEEP;
1525 	}
1526 
1527 	/* Reclaim if clean, defer dirty folios to writeback */
1528 	if (referenced_folio && folio_is_file_lru(folio))
1529 		return FOLIOREF_RECLAIM_CLEAN;
1530 
1531 	return FOLIOREF_RECLAIM;
1532 }
1533 
1534 /* Check if a folio is dirty or under writeback */
1535 static void folio_check_dirty_writeback(struct folio *folio,
1536 				       bool *dirty, bool *writeback)
1537 {
1538 	struct address_space *mapping;
1539 
1540 	/*
1541 	 * Anonymous folios are not handled by flushers and must be written
1542 	 * from reclaim context. Do not stall reclaim based on them.
1543 	 * MADV_FREE anonymous folios are put into inactive file list too.
1544 	 * They could be mistakenly treated as file lru. So further anon
1545 	 * test is needed.
1546 	 */
1547 	if (!folio_is_file_lru(folio) ||
1548 	    (folio_test_anon(folio) && !folio_test_swapbacked(folio))) {
1549 		*dirty = false;
1550 		*writeback = false;
1551 		return;
1552 	}
1553 
1554 	/* By default assume that the folio flags are accurate */
1555 	*dirty = folio_test_dirty(folio);
1556 	*writeback = folio_test_writeback(folio);
1557 
1558 	/* Verify dirty/writeback state if the filesystem supports it */
1559 	if (!folio_test_private(folio))
1560 		return;
1561 
1562 	mapping = folio_mapping(folio);
1563 	if (mapping && mapping->a_ops->is_dirty_writeback)
1564 		mapping->a_ops->is_dirty_writeback(folio, dirty, writeback);
1565 }
1566 
1567 static struct page *alloc_demote_page(struct page *page, unsigned long private)
1568 {
1569 	struct page *target_page;
1570 	nodemask_t *allowed_mask;
1571 	struct migration_target_control *mtc;
1572 
1573 	mtc = (struct migration_target_control *)private;
1574 
1575 	allowed_mask = mtc->nmask;
1576 	/*
1577 	 * make sure we allocate from the target node first also trying to
1578 	 * demote or reclaim pages from the target node via kswapd if we are
1579 	 * low on free memory on target node. If we don't do this and if
1580 	 * we have free memory on the slower(lower) memtier, we would start
1581 	 * allocating pages from slower(lower) memory tiers without even forcing
1582 	 * a demotion of cold pages from the target memtier. This can result
1583 	 * in the kernel placing hot pages in slower(lower) memory tiers.
1584 	 */
1585 	mtc->nmask = NULL;
1586 	mtc->gfp_mask |= __GFP_THISNODE;
1587 	target_page = alloc_migration_target(page, (unsigned long)mtc);
1588 	if (target_page)
1589 		return target_page;
1590 
1591 	mtc->gfp_mask &= ~__GFP_THISNODE;
1592 	mtc->nmask = allowed_mask;
1593 
1594 	return alloc_migration_target(page, (unsigned long)mtc);
1595 }
1596 
1597 /*
1598  * Take folios on @demote_folios and attempt to demote them to another node.
1599  * Folios which are not demoted are left on @demote_folios.
1600  */
1601 static unsigned int demote_folio_list(struct list_head *demote_folios,
1602 				     struct pglist_data *pgdat)
1603 {
1604 	int target_nid = next_demotion_node(pgdat->node_id);
1605 	unsigned int nr_succeeded;
1606 	nodemask_t allowed_mask;
1607 
1608 	struct migration_target_control mtc = {
1609 		/*
1610 		 * Allocate from 'node', or fail quickly and quietly.
1611 		 * When this happens, 'page' will likely just be discarded
1612 		 * instead of migrated.
1613 		 */
1614 		.gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | __GFP_NOWARN |
1615 			__GFP_NOMEMALLOC | GFP_NOWAIT,
1616 		.nid = target_nid,
1617 		.nmask = &allowed_mask
1618 	};
1619 
1620 	if (list_empty(demote_folios))
1621 		return 0;
1622 
1623 	if (target_nid == NUMA_NO_NODE)
1624 		return 0;
1625 
1626 	node_get_allowed_targets(pgdat, &allowed_mask);
1627 
1628 	/* Demotion ignores all cpuset and mempolicy settings */
1629 	migrate_pages(demote_folios, alloc_demote_page, NULL,
1630 		      (unsigned long)&mtc, MIGRATE_ASYNC, MR_DEMOTION,
1631 		      &nr_succeeded);
1632 
1633 	__count_vm_events(PGDEMOTE_KSWAPD + reclaimer_offset(), nr_succeeded);
1634 
1635 	return nr_succeeded;
1636 }
1637 
1638 static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask)
1639 {
1640 	if (gfp_mask & __GFP_FS)
1641 		return true;
1642 	if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO))
1643 		return false;
1644 	/*
1645 	 * We can "enter_fs" for swap-cache with only __GFP_IO
1646 	 * providing this isn't SWP_FS_OPS.
1647 	 * ->flags can be updated non-atomicially (scan_swap_map_slots),
1648 	 * but that will never affect SWP_FS_OPS, so the data_race
1649 	 * is safe.
1650 	 */
1651 	return !data_race(folio_swap_flags(folio) & SWP_FS_OPS);
1652 }
1653 
1654 /*
1655  * shrink_folio_list() returns the number of reclaimed pages
1656  */
1657 static unsigned int shrink_folio_list(struct list_head *folio_list,
1658 		struct pglist_data *pgdat, struct scan_control *sc,
1659 		struct reclaim_stat *stat, bool ignore_references)
1660 {
1661 	LIST_HEAD(ret_folios);
1662 	LIST_HEAD(free_folios);
1663 	LIST_HEAD(demote_folios);
1664 	unsigned int nr_reclaimed = 0;
1665 	unsigned int pgactivate = 0;
1666 	bool do_demote_pass;
1667 	struct swap_iocb *plug = NULL;
1668 
1669 	memset(stat, 0, sizeof(*stat));
1670 	cond_resched();
1671 	do_demote_pass = can_demote(pgdat->node_id, sc);
1672 
1673 retry:
1674 	while (!list_empty(folio_list)) {
1675 		struct address_space *mapping;
1676 		struct folio *folio;
1677 		enum folio_references references = FOLIOREF_RECLAIM;
1678 		bool dirty, writeback;
1679 		unsigned int nr_pages;
1680 
1681 		cond_resched();
1682 
1683 		folio = lru_to_folio(folio_list);
1684 		list_del(&folio->lru);
1685 
1686 		if (!folio_trylock(folio))
1687 			goto keep;
1688 
1689 		VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1690 
1691 		nr_pages = folio_nr_pages(folio);
1692 
1693 		/* Account the number of base pages */
1694 		sc->nr_scanned += nr_pages;
1695 
1696 		if (unlikely(!folio_evictable(folio)))
1697 			goto activate_locked;
1698 
1699 		if (!sc->may_unmap && folio_mapped(folio))
1700 			goto keep_locked;
1701 
1702 		/* folio_update_gen() tried to promote this page? */
1703 		if (lru_gen_enabled() && !ignore_references &&
1704 		    folio_mapped(folio) && folio_test_referenced(folio))
1705 			goto keep_locked;
1706 
1707 		/*
1708 		 * The number of dirty pages determines if a node is marked
1709 		 * reclaim_congested. kswapd will stall and start writing
1710 		 * folios if the tail of the LRU is all dirty unqueued folios.
1711 		 */
1712 		folio_check_dirty_writeback(folio, &dirty, &writeback);
1713 		if (dirty || writeback)
1714 			stat->nr_dirty += nr_pages;
1715 
1716 		if (dirty && !writeback)
1717 			stat->nr_unqueued_dirty += nr_pages;
1718 
1719 		/*
1720 		 * Treat this folio as congested if folios are cycling
1721 		 * through the LRU so quickly that the folios marked
1722 		 * for immediate reclaim are making it to the end of
1723 		 * the LRU a second time.
1724 		 */
1725 		if (writeback && folio_test_reclaim(folio))
1726 			stat->nr_congested += nr_pages;
1727 
1728 		/*
1729 		 * If a folio at the tail of the LRU is under writeback, there
1730 		 * are three cases to consider.
1731 		 *
1732 		 * 1) If reclaim is encountering an excessive number
1733 		 *    of folios under writeback and this folio has both
1734 		 *    the writeback and reclaim flags set, then it
1735 		 *    indicates that folios are being queued for I/O but
1736 		 *    are being recycled through the LRU before the I/O
1737 		 *    can complete. Waiting on the folio itself risks an
1738 		 *    indefinite stall if it is impossible to writeback
1739 		 *    the folio due to I/O error or disconnected storage
1740 		 *    so instead note that the LRU is being scanned too
1741 		 *    quickly and the caller can stall after the folio
1742 		 *    list has been processed.
1743 		 *
1744 		 * 2) Global or new memcg reclaim encounters a folio that is
1745 		 *    not marked for immediate reclaim, or the caller does not
1746 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1747 		 *    not to fs). In this case mark the folio for immediate
1748 		 *    reclaim and continue scanning.
1749 		 *
1750 		 *    Require may_enter_fs() because we would wait on fs, which
1751 		 *    may not have submitted I/O yet. And the loop driver might
1752 		 *    enter reclaim, and deadlock if it waits on a folio for
1753 		 *    which it is needed to do the write (loop masks off
1754 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1755 		 *    would probably show more reasons.
1756 		 *
1757 		 * 3) Legacy memcg encounters a folio that already has the
1758 		 *    reclaim flag set. memcg does not have any dirty folio
1759 		 *    throttling so we could easily OOM just because too many
1760 		 *    folios are in writeback and there is nothing else to
1761 		 *    reclaim. Wait for the writeback to complete.
1762 		 *
1763 		 * In cases 1) and 2) we activate the folios to get them out of
1764 		 * the way while we continue scanning for clean folios on the
1765 		 * inactive list and refilling from the active list. The
1766 		 * observation here is that waiting for disk writes is more
1767 		 * expensive than potentially causing reloads down the line.
1768 		 * Since they're marked for immediate reclaim, they won't put
1769 		 * memory pressure on the cache working set any longer than it
1770 		 * takes to write them to disk.
1771 		 */
1772 		if (folio_test_writeback(folio)) {
1773 			/* Case 1 above */
1774 			if (current_is_kswapd() &&
1775 			    folio_test_reclaim(folio) &&
1776 			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1777 				stat->nr_immediate += nr_pages;
1778 				goto activate_locked;
1779 
1780 			/* Case 2 above */
1781 			} else if (writeback_throttling_sane(sc) ||
1782 			    !folio_test_reclaim(folio) ||
1783 			    !may_enter_fs(folio, sc->gfp_mask)) {
1784 				/*
1785 				 * This is slightly racy -
1786 				 * folio_end_writeback() might have
1787 				 * just cleared the reclaim flag, then
1788 				 * setting the reclaim flag here ends up
1789 				 * interpreted as the readahead flag - but
1790 				 * that does not matter enough to care.
1791 				 * What we do want is for this folio to
1792 				 * have the reclaim flag set next time
1793 				 * memcg reclaim reaches the tests above,
1794 				 * so it will then wait for writeback to
1795 				 * avoid OOM; and it's also appropriate
1796 				 * in global reclaim.
1797 				 */
1798 				folio_set_reclaim(folio);
1799 				stat->nr_writeback += nr_pages;
1800 				goto activate_locked;
1801 
1802 			/* Case 3 above */
1803 			} else {
1804 				folio_unlock(folio);
1805 				folio_wait_writeback(folio);
1806 				/* then go back and try same folio again */
1807 				list_add_tail(&folio->lru, folio_list);
1808 				continue;
1809 			}
1810 		}
1811 
1812 		if (!ignore_references)
1813 			references = folio_check_references(folio, sc);
1814 
1815 		switch (references) {
1816 		case FOLIOREF_ACTIVATE:
1817 			goto activate_locked;
1818 		case FOLIOREF_KEEP:
1819 			stat->nr_ref_keep += nr_pages;
1820 			goto keep_locked;
1821 		case FOLIOREF_RECLAIM:
1822 		case FOLIOREF_RECLAIM_CLEAN:
1823 			; /* try to reclaim the folio below */
1824 		}
1825 
1826 		/*
1827 		 * Before reclaiming the folio, try to relocate
1828 		 * its contents to another node.
1829 		 */
1830 		if (do_demote_pass &&
1831 		    (thp_migration_supported() || !folio_test_large(folio))) {
1832 			list_add(&folio->lru, &demote_folios);
1833 			folio_unlock(folio);
1834 			continue;
1835 		}
1836 
1837 		/*
1838 		 * Anonymous process memory has backing store?
1839 		 * Try to allocate it some swap space here.
1840 		 * Lazyfree folio could be freed directly
1841 		 */
1842 		if (folio_test_anon(folio) && folio_test_swapbacked(folio)) {
1843 			if (!folio_test_swapcache(folio)) {
1844 				if (!(sc->gfp_mask & __GFP_IO))
1845 					goto keep_locked;
1846 				if (folio_maybe_dma_pinned(folio))
1847 					goto keep_locked;
1848 				if (folio_test_large(folio)) {
1849 					/* cannot split folio, skip it */
1850 					if (!can_split_folio(folio, NULL))
1851 						goto activate_locked;
1852 					/*
1853 					 * Split folios without a PMD map right
1854 					 * away. Chances are some or all of the
1855 					 * tail pages can be freed without IO.
1856 					 */
1857 					if (!folio_entire_mapcount(folio) &&
1858 					    split_folio_to_list(folio,
1859 								folio_list))
1860 						goto activate_locked;
1861 				}
1862 				if (!add_to_swap(folio)) {
1863 					if (!folio_test_large(folio))
1864 						goto activate_locked_split;
1865 					/* Fallback to swap normal pages */
1866 					if (split_folio_to_list(folio,
1867 								folio_list))
1868 						goto activate_locked;
1869 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1870 					count_vm_event(THP_SWPOUT_FALLBACK);
1871 #endif
1872 					if (!add_to_swap(folio))
1873 						goto activate_locked_split;
1874 				}
1875 			}
1876 		} else if (folio_test_swapbacked(folio) &&
1877 			   folio_test_large(folio)) {
1878 			/* Split shmem folio */
1879 			if (split_folio_to_list(folio, folio_list))
1880 				goto keep_locked;
1881 		}
1882 
1883 		/*
1884 		 * If the folio was split above, the tail pages will make
1885 		 * their own pass through this function and be accounted
1886 		 * then.
1887 		 */
1888 		if ((nr_pages > 1) && !folio_test_large(folio)) {
1889 			sc->nr_scanned -= (nr_pages - 1);
1890 			nr_pages = 1;
1891 		}
1892 
1893 		/*
1894 		 * The folio is mapped into the page tables of one or more
1895 		 * processes. Try to unmap it here.
1896 		 */
1897 		if (folio_mapped(folio)) {
1898 			enum ttu_flags flags = TTU_BATCH_FLUSH;
1899 			bool was_swapbacked = folio_test_swapbacked(folio);
1900 
1901 			if (folio_test_pmd_mappable(folio))
1902 				flags |= TTU_SPLIT_HUGE_PMD;
1903 
1904 			try_to_unmap(folio, flags);
1905 			if (folio_mapped(folio)) {
1906 				stat->nr_unmap_fail += nr_pages;
1907 				if (!was_swapbacked &&
1908 				    folio_test_swapbacked(folio))
1909 					stat->nr_lazyfree_fail += nr_pages;
1910 				goto activate_locked;
1911 			}
1912 		}
1913 
1914 		mapping = folio_mapping(folio);
1915 		if (folio_test_dirty(folio)) {
1916 			/*
1917 			 * Only kswapd can writeback filesystem folios
1918 			 * to avoid risk of stack overflow. But avoid
1919 			 * injecting inefficient single-folio I/O into
1920 			 * flusher writeback as much as possible: only
1921 			 * write folios when we've encountered many
1922 			 * dirty folios, and when we've already scanned
1923 			 * the rest of the LRU for clean folios and see
1924 			 * the same dirty folios again (with the reclaim
1925 			 * flag set).
1926 			 */
1927 			if (folio_is_file_lru(folio) &&
1928 			    (!current_is_kswapd() ||
1929 			     !folio_test_reclaim(folio) ||
1930 			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1931 				/*
1932 				 * Immediately reclaim when written back.
1933 				 * Similar in principle to folio_deactivate()
1934 				 * except we already have the folio isolated
1935 				 * and know it's dirty
1936 				 */
1937 				node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE,
1938 						nr_pages);
1939 				folio_set_reclaim(folio);
1940 
1941 				goto activate_locked;
1942 			}
1943 
1944 			if (references == FOLIOREF_RECLAIM_CLEAN)
1945 				goto keep_locked;
1946 			if (!may_enter_fs(folio, sc->gfp_mask))
1947 				goto keep_locked;
1948 			if (!sc->may_writepage)
1949 				goto keep_locked;
1950 
1951 			/*
1952 			 * Folio is dirty. Flush the TLB if a writable entry
1953 			 * potentially exists to avoid CPU writes after I/O
1954 			 * starts and then write it out here.
1955 			 */
1956 			try_to_unmap_flush_dirty();
1957 			switch (pageout(folio, mapping, &plug)) {
1958 			case PAGE_KEEP:
1959 				goto keep_locked;
1960 			case PAGE_ACTIVATE:
1961 				goto activate_locked;
1962 			case PAGE_SUCCESS:
1963 				stat->nr_pageout += nr_pages;
1964 
1965 				if (folio_test_writeback(folio))
1966 					goto keep;
1967 				if (folio_test_dirty(folio))
1968 					goto keep;
1969 
1970 				/*
1971 				 * A synchronous write - probably a ramdisk.  Go
1972 				 * ahead and try to reclaim the folio.
1973 				 */
1974 				if (!folio_trylock(folio))
1975 					goto keep;
1976 				if (folio_test_dirty(folio) ||
1977 				    folio_test_writeback(folio))
1978 					goto keep_locked;
1979 				mapping = folio_mapping(folio);
1980 				fallthrough;
1981 			case PAGE_CLEAN:
1982 				; /* try to free the folio below */
1983 			}
1984 		}
1985 
1986 		/*
1987 		 * If the folio has buffers, try to free the buffer
1988 		 * mappings associated with this folio. If we succeed
1989 		 * we try to free the folio as well.
1990 		 *
1991 		 * We do this even if the folio is dirty.
1992 		 * filemap_release_folio() does not perform I/O, but it
1993 		 * is possible for a folio to have the dirty flag set,
1994 		 * but it is actually clean (all its buffers are clean).
1995 		 * This happens if the buffers were written out directly,
1996 		 * with submit_bh(). ext3 will do this, as well as
1997 		 * the blockdev mapping.  filemap_release_folio() will
1998 		 * discover that cleanness and will drop the buffers
1999 		 * and mark the folio clean - it can be freed.
2000 		 *
2001 		 * Rarely, folios can have buffers and no ->mapping.
2002 		 * These are the folios which were not successfully
2003 		 * invalidated in truncate_cleanup_folio().  We try to
2004 		 * drop those buffers here and if that worked, and the
2005 		 * folio is no longer mapped into process address space
2006 		 * (refcount == 1) it can be freed.  Otherwise, leave
2007 		 * the folio on the LRU so it is swappable.
2008 		 */
2009 		if (folio_has_private(folio)) {
2010 			if (!filemap_release_folio(folio, sc->gfp_mask))
2011 				goto activate_locked;
2012 			if (!mapping && folio_ref_count(folio) == 1) {
2013 				folio_unlock(folio);
2014 				if (folio_put_testzero(folio))
2015 					goto free_it;
2016 				else {
2017 					/*
2018 					 * rare race with speculative reference.
2019 					 * the speculative reference will free
2020 					 * this folio shortly, so we may
2021 					 * increment nr_reclaimed here (and
2022 					 * leave it off the LRU).
2023 					 */
2024 					nr_reclaimed += nr_pages;
2025 					continue;
2026 				}
2027 			}
2028 		}
2029 
2030 		if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) {
2031 			/* follow __remove_mapping for reference */
2032 			if (!folio_ref_freeze(folio, 1))
2033 				goto keep_locked;
2034 			/*
2035 			 * The folio has only one reference left, which is
2036 			 * from the isolation. After the caller puts the
2037 			 * folio back on the lru and drops the reference, the
2038 			 * folio will be freed anyway. It doesn't matter
2039 			 * which lru it goes on. So we don't bother checking
2040 			 * the dirty flag here.
2041 			 */
2042 			count_vm_events(PGLAZYFREED, nr_pages);
2043 			count_memcg_folio_events(folio, PGLAZYFREED, nr_pages);
2044 		} else if (!mapping || !__remove_mapping(mapping, folio, true,
2045 							 sc->target_mem_cgroup))
2046 			goto keep_locked;
2047 
2048 		folio_unlock(folio);
2049 free_it:
2050 		/*
2051 		 * Folio may get swapped out as a whole, need to account
2052 		 * all pages in it.
2053 		 */
2054 		nr_reclaimed += nr_pages;
2055 
2056 		/*
2057 		 * Is there need to periodically free_folio_list? It would
2058 		 * appear not as the counts should be low
2059 		 */
2060 		if (unlikely(folio_test_large(folio)))
2061 			destroy_large_folio(folio);
2062 		else
2063 			list_add(&folio->lru, &free_folios);
2064 		continue;
2065 
2066 activate_locked_split:
2067 		/*
2068 		 * The tail pages that are failed to add into swap cache
2069 		 * reach here.  Fixup nr_scanned and nr_pages.
2070 		 */
2071 		if (nr_pages > 1) {
2072 			sc->nr_scanned -= (nr_pages - 1);
2073 			nr_pages = 1;
2074 		}
2075 activate_locked:
2076 		/* Not a candidate for swapping, so reclaim swap space. */
2077 		if (folio_test_swapcache(folio) &&
2078 		    (mem_cgroup_swap_full(folio) || folio_test_mlocked(folio)))
2079 			folio_free_swap(folio);
2080 		VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
2081 		if (!folio_test_mlocked(folio)) {
2082 			int type = folio_is_file_lru(folio);
2083 			folio_set_active(folio);
2084 			stat->nr_activate[type] += nr_pages;
2085 			count_memcg_folio_events(folio, PGACTIVATE, nr_pages);
2086 		}
2087 keep_locked:
2088 		folio_unlock(folio);
2089 keep:
2090 		list_add(&folio->lru, &ret_folios);
2091 		VM_BUG_ON_FOLIO(folio_test_lru(folio) ||
2092 				folio_test_unevictable(folio), folio);
2093 	}
2094 	/* 'folio_list' is always empty here */
2095 
2096 	/* Migrate folios selected for demotion */
2097 	nr_reclaimed += demote_folio_list(&demote_folios, pgdat);
2098 	/* Folios that could not be demoted are still in @demote_folios */
2099 	if (!list_empty(&demote_folios)) {
2100 		/* Folios which weren't demoted go back on @folio_list */
2101 		list_splice_init(&demote_folios, folio_list);
2102 
2103 		/*
2104 		 * goto retry to reclaim the undemoted folios in folio_list if
2105 		 * desired.
2106 		 *
2107 		 * Reclaiming directly from top tier nodes is not often desired
2108 		 * due to it breaking the LRU ordering: in general memory
2109 		 * should be reclaimed from lower tier nodes and demoted from
2110 		 * top tier nodes.
2111 		 *
2112 		 * However, disabling reclaim from top tier nodes entirely
2113 		 * would cause ooms in edge scenarios where lower tier memory
2114 		 * is unreclaimable for whatever reason, eg memory being
2115 		 * mlocked or too hot to reclaim. We can disable reclaim
2116 		 * from top tier nodes in proactive reclaim though as that is
2117 		 * not real memory pressure.
2118 		 */
2119 		if (!sc->proactive) {
2120 			do_demote_pass = false;
2121 			goto retry;
2122 		}
2123 	}
2124 
2125 	pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
2126 
2127 	mem_cgroup_uncharge_list(&free_folios);
2128 	try_to_unmap_flush();
2129 	free_unref_page_list(&free_folios);
2130 
2131 	list_splice(&ret_folios, folio_list);
2132 	count_vm_events(PGACTIVATE, pgactivate);
2133 
2134 	if (plug)
2135 		swap_write_unplug(plug);
2136 	return nr_reclaimed;
2137 }
2138 
2139 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
2140 					   struct list_head *folio_list)
2141 {
2142 	struct scan_control sc = {
2143 		.gfp_mask = GFP_KERNEL,
2144 		.may_unmap = 1,
2145 	};
2146 	struct reclaim_stat stat;
2147 	unsigned int nr_reclaimed;
2148 	struct folio *folio, *next;
2149 	LIST_HEAD(clean_folios);
2150 	unsigned int noreclaim_flag;
2151 
2152 	list_for_each_entry_safe(folio, next, folio_list, lru) {
2153 		if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) &&
2154 		    !folio_test_dirty(folio) && !__folio_test_movable(folio) &&
2155 		    !folio_test_unevictable(folio)) {
2156 			folio_clear_active(folio);
2157 			list_move(&folio->lru, &clean_folios);
2158 		}
2159 	}
2160 
2161 	/*
2162 	 * We should be safe here since we are only dealing with file pages and
2163 	 * we are not kswapd and therefore cannot write dirty file pages. But
2164 	 * call memalloc_noreclaim_save() anyway, just in case these conditions
2165 	 * change in the future.
2166 	 */
2167 	noreclaim_flag = memalloc_noreclaim_save();
2168 	nr_reclaimed = shrink_folio_list(&clean_folios, zone->zone_pgdat, &sc,
2169 					&stat, true);
2170 	memalloc_noreclaim_restore(noreclaim_flag);
2171 
2172 	list_splice(&clean_folios, folio_list);
2173 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2174 			    -(long)nr_reclaimed);
2175 	/*
2176 	 * Since lazyfree pages are isolated from file LRU from the beginning,
2177 	 * they will rotate back to anonymous LRU in the end if it failed to
2178 	 * discard so isolated count will be mismatched.
2179 	 * Compensate the isolated count for both LRU lists.
2180 	 */
2181 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
2182 			    stat.nr_lazyfree_fail);
2183 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2184 			    -(long)stat.nr_lazyfree_fail);
2185 	return nr_reclaimed;
2186 }
2187 
2188 /*
2189  * Update LRU sizes after isolating pages. The LRU size updates must
2190  * be complete before mem_cgroup_update_lru_size due to a sanity check.
2191  */
2192 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
2193 			enum lru_list lru, unsigned long *nr_zone_taken)
2194 {
2195 	int zid;
2196 
2197 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2198 		if (!nr_zone_taken[zid])
2199 			continue;
2200 
2201 		update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
2202 	}
2203 
2204 }
2205 
2206 /*
2207  * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
2208  *
2209  * lruvec->lru_lock is heavily contended.  Some of the functions that
2210  * shrink the lists perform better by taking out a batch of pages
2211  * and working on them outside the LRU lock.
2212  *
2213  * For pagecache intensive workloads, this function is the hottest
2214  * spot in the kernel (apart from copy_*_user functions).
2215  *
2216  * Lru_lock must be held before calling this function.
2217  *
2218  * @nr_to_scan:	The number of eligible pages to look through on the list.
2219  * @lruvec:	The LRU vector to pull pages from.
2220  * @dst:	The temp list to put pages on to.
2221  * @nr_scanned:	The number of pages that were scanned.
2222  * @sc:		The scan_control struct for this reclaim session
2223  * @lru:	LRU list id for isolating
2224  *
2225  * returns how many pages were moved onto *@dst.
2226  */
2227 static unsigned long isolate_lru_folios(unsigned long nr_to_scan,
2228 		struct lruvec *lruvec, struct list_head *dst,
2229 		unsigned long *nr_scanned, struct scan_control *sc,
2230 		enum lru_list lru)
2231 {
2232 	struct list_head *src = &lruvec->lists[lru];
2233 	unsigned long nr_taken = 0;
2234 	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
2235 	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
2236 	unsigned long skipped = 0;
2237 	unsigned long scan, total_scan, nr_pages;
2238 	LIST_HEAD(folios_skipped);
2239 
2240 	total_scan = 0;
2241 	scan = 0;
2242 	while (scan < nr_to_scan && !list_empty(src)) {
2243 		struct list_head *move_to = src;
2244 		struct folio *folio;
2245 
2246 		folio = lru_to_folio(src);
2247 		prefetchw_prev_lru_folio(folio, src, flags);
2248 
2249 		nr_pages = folio_nr_pages(folio);
2250 		total_scan += nr_pages;
2251 
2252 		if (folio_zonenum(folio) > sc->reclaim_idx) {
2253 			nr_skipped[folio_zonenum(folio)] += nr_pages;
2254 			move_to = &folios_skipped;
2255 			goto move;
2256 		}
2257 
2258 		/*
2259 		 * Do not count skipped folios because that makes the function
2260 		 * return with no isolated folios if the LRU mostly contains
2261 		 * ineligible folios.  This causes the VM to not reclaim any
2262 		 * folios, triggering a premature OOM.
2263 		 * Account all pages in a folio.
2264 		 */
2265 		scan += nr_pages;
2266 
2267 		if (!folio_test_lru(folio))
2268 			goto move;
2269 		if (!sc->may_unmap && folio_mapped(folio))
2270 			goto move;
2271 
2272 		/*
2273 		 * Be careful not to clear the lru flag until after we're
2274 		 * sure the folio is not being freed elsewhere -- the
2275 		 * folio release code relies on it.
2276 		 */
2277 		if (unlikely(!folio_try_get(folio)))
2278 			goto move;
2279 
2280 		if (!folio_test_clear_lru(folio)) {
2281 			/* Another thread is already isolating this folio */
2282 			folio_put(folio);
2283 			goto move;
2284 		}
2285 
2286 		nr_taken += nr_pages;
2287 		nr_zone_taken[folio_zonenum(folio)] += nr_pages;
2288 		move_to = dst;
2289 move:
2290 		list_move(&folio->lru, move_to);
2291 	}
2292 
2293 	/*
2294 	 * Splice any skipped folios to the start of the LRU list. Note that
2295 	 * this disrupts the LRU order when reclaiming for lower zones but
2296 	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
2297 	 * scanning would soon rescan the same folios to skip and waste lots
2298 	 * of cpu cycles.
2299 	 */
2300 	if (!list_empty(&folios_skipped)) {
2301 		int zid;
2302 
2303 		list_splice(&folios_skipped, src);
2304 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2305 			if (!nr_skipped[zid])
2306 				continue;
2307 
2308 			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
2309 			skipped += nr_skipped[zid];
2310 		}
2311 	}
2312 	*nr_scanned = total_scan;
2313 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
2314 				    total_scan, skipped, nr_taken,
2315 				    sc->may_unmap ? 0 : ISOLATE_UNMAPPED, lru);
2316 	update_lru_sizes(lruvec, lru, nr_zone_taken);
2317 	return nr_taken;
2318 }
2319 
2320 /**
2321  * folio_isolate_lru() - Try to isolate a folio from its LRU list.
2322  * @folio: Folio to isolate from its LRU list.
2323  *
2324  * Isolate a @folio from an LRU list and adjust the vmstat statistic
2325  * corresponding to whatever LRU list the folio was on.
2326  *
2327  * The folio will have its LRU flag cleared.  If it was found on the
2328  * active list, it will have the Active flag set.  If it was found on the
2329  * unevictable list, it will have the Unevictable flag set.  These flags
2330  * may need to be cleared by the caller before letting the page go.
2331  *
2332  * Context:
2333  *
2334  * (1) Must be called with an elevated refcount on the folio. This is a
2335  *     fundamental difference from isolate_lru_folios() (which is called
2336  *     without a stable reference).
2337  * (2) The lru_lock must not be held.
2338  * (3) Interrupts must be enabled.
2339  *
2340  * Return: true if the folio was removed from an LRU list.
2341  * false if the folio was not on an LRU list.
2342  */
2343 bool folio_isolate_lru(struct folio *folio)
2344 {
2345 	bool ret = false;
2346 
2347 	VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio);
2348 
2349 	if (folio_test_clear_lru(folio)) {
2350 		struct lruvec *lruvec;
2351 
2352 		folio_get(folio);
2353 		lruvec = folio_lruvec_lock_irq(folio);
2354 		lruvec_del_folio(lruvec, folio);
2355 		unlock_page_lruvec_irq(lruvec);
2356 		ret = true;
2357 	}
2358 
2359 	return ret;
2360 }
2361 
2362 /*
2363  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
2364  * then get rescheduled. When there are massive number of tasks doing page
2365  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
2366  * the LRU list will go small and be scanned faster than necessary, leading to
2367  * unnecessary swapping, thrashing and OOM.
2368  */
2369 static int too_many_isolated(struct pglist_data *pgdat, int file,
2370 		struct scan_control *sc)
2371 {
2372 	unsigned long inactive, isolated;
2373 	bool too_many;
2374 
2375 	if (current_is_kswapd())
2376 		return 0;
2377 
2378 	if (!writeback_throttling_sane(sc))
2379 		return 0;
2380 
2381 	if (file) {
2382 		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
2383 		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
2384 	} else {
2385 		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
2386 		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
2387 	}
2388 
2389 	/*
2390 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
2391 	 * won't get blocked by normal direct-reclaimers, forming a circular
2392 	 * deadlock.
2393 	 */
2394 	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
2395 		inactive >>= 3;
2396 
2397 	too_many = isolated > inactive;
2398 
2399 	/* Wake up tasks throttled due to too_many_isolated. */
2400 	if (!too_many)
2401 		wake_throttle_isolated(pgdat);
2402 
2403 	return too_many;
2404 }
2405 
2406 /*
2407  * move_folios_to_lru() moves folios from private @list to appropriate LRU list.
2408  * On return, @list is reused as a list of folios to be freed by the caller.
2409  *
2410  * Returns the number of pages moved to the given lruvec.
2411  */
2412 static unsigned int move_folios_to_lru(struct lruvec *lruvec,
2413 		struct list_head *list)
2414 {
2415 	int nr_pages, nr_moved = 0;
2416 	LIST_HEAD(folios_to_free);
2417 
2418 	while (!list_empty(list)) {
2419 		struct folio *folio = lru_to_folio(list);
2420 
2421 		VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
2422 		list_del(&folio->lru);
2423 		if (unlikely(!folio_evictable(folio))) {
2424 			spin_unlock_irq(&lruvec->lru_lock);
2425 			folio_putback_lru(folio);
2426 			spin_lock_irq(&lruvec->lru_lock);
2427 			continue;
2428 		}
2429 
2430 		/*
2431 		 * The folio_set_lru needs to be kept here for list integrity.
2432 		 * Otherwise:
2433 		 *   #0 move_folios_to_lru             #1 release_pages
2434 		 *   if (!folio_put_testzero())
2435 		 *				      if (folio_put_testzero())
2436 		 *				        !lru //skip lru_lock
2437 		 *     folio_set_lru()
2438 		 *     list_add(&folio->lru,)
2439 		 *                                        list_add(&folio->lru,)
2440 		 */
2441 		folio_set_lru(folio);
2442 
2443 		if (unlikely(folio_put_testzero(folio))) {
2444 			__folio_clear_lru_flags(folio);
2445 
2446 			if (unlikely(folio_test_large(folio))) {
2447 				spin_unlock_irq(&lruvec->lru_lock);
2448 				destroy_large_folio(folio);
2449 				spin_lock_irq(&lruvec->lru_lock);
2450 			} else
2451 				list_add(&folio->lru, &folios_to_free);
2452 
2453 			continue;
2454 		}
2455 
2456 		/*
2457 		 * All pages were isolated from the same lruvec (and isolation
2458 		 * inhibits memcg migration).
2459 		 */
2460 		VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio);
2461 		lruvec_add_folio(lruvec, folio);
2462 		nr_pages = folio_nr_pages(folio);
2463 		nr_moved += nr_pages;
2464 		if (folio_test_active(folio))
2465 			workingset_age_nonresident(lruvec, nr_pages);
2466 	}
2467 
2468 	/*
2469 	 * To save our caller's stack, now use input list for pages to free.
2470 	 */
2471 	list_splice(&folios_to_free, list);
2472 
2473 	return nr_moved;
2474 }
2475 
2476 /*
2477  * If a kernel thread (such as nfsd for loop-back mounts) services a backing
2478  * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case
2479  * we should not throttle.  Otherwise it is safe to do so.
2480  */
2481 static int current_may_throttle(void)
2482 {
2483 	return !(current->flags & PF_LOCAL_THROTTLE);
2484 }
2485 
2486 /*
2487  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
2488  * of reclaimed pages
2489  */
2490 static unsigned long shrink_inactive_list(unsigned long nr_to_scan,
2491 		struct lruvec *lruvec, struct scan_control *sc,
2492 		enum lru_list lru)
2493 {
2494 	LIST_HEAD(folio_list);
2495 	unsigned long nr_scanned;
2496 	unsigned int nr_reclaimed = 0;
2497 	unsigned long nr_taken;
2498 	struct reclaim_stat stat;
2499 	bool file = is_file_lru(lru);
2500 	enum vm_event_item item;
2501 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2502 	bool stalled = false;
2503 
2504 	while (unlikely(too_many_isolated(pgdat, file, sc))) {
2505 		if (stalled)
2506 			return 0;
2507 
2508 		/* wait a bit for the reclaimer. */
2509 		stalled = true;
2510 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
2511 
2512 		/* We are about to die and free our memory. Return now. */
2513 		if (fatal_signal_pending(current))
2514 			return SWAP_CLUSTER_MAX;
2515 	}
2516 
2517 	lru_add_drain();
2518 
2519 	spin_lock_irq(&lruvec->lru_lock);
2520 
2521 	nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &folio_list,
2522 				     &nr_scanned, sc, lru);
2523 
2524 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2525 	item = PGSCAN_KSWAPD + reclaimer_offset();
2526 	if (!cgroup_reclaim(sc))
2527 		__count_vm_events(item, nr_scanned);
2528 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
2529 	__count_vm_events(PGSCAN_ANON + file, nr_scanned);
2530 
2531 	spin_unlock_irq(&lruvec->lru_lock);
2532 
2533 	if (nr_taken == 0)
2534 		return 0;
2535 
2536 	nr_reclaimed = shrink_folio_list(&folio_list, pgdat, sc, &stat, false);
2537 
2538 	spin_lock_irq(&lruvec->lru_lock);
2539 	move_folios_to_lru(lruvec, &folio_list);
2540 
2541 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2542 	item = PGSTEAL_KSWAPD + reclaimer_offset();
2543 	if (!cgroup_reclaim(sc))
2544 		__count_vm_events(item, nr_reclaimed);
2545 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
2546 	__count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
2547 	spin_unlock_irq(&lruvec->lru_lock);
2548 
2549 	lru_note_cost(lruvec, file, stat.nr_pageout, nr_scanned - nr_reclaimed);
2550 	mem_cgroup_uncharge_list(&folio_list);
2551 	free_unref_page_list(&folio_list);
2552 
2553 	/*
2554 	 * If dirty folios are scanned that are not queued for IO, it
2555 	 * implies that flushers are not doing their job. This can
2556 	 * happen when memory pressure pushes dirty folios to the end of
2557 	 * the LRU before the dirty limits are breached and the dirty
2558 	 * data has expired. It can also happen when the proportion of
2559 	 * dirty folios grows not through writes but through memory
2560 	 * pressure reclaiming all the clean cache. And in some cases,
2561 	 * the flushers simply cannot keep up with the allocation
2562 	 * rate. Nudge the flusher threads in case they are asleep.
2563 	 */
2564 	if (stat.nr_unqueued_dirty == nr_taken) {
2565 		wakeup_flusher_threads(WB_REASON_VMSCAN);
2566 		/*
2567 		 * For cgroupv1 dirty throttling is achieved by waking up
2568 		 * the kernel flusher here and later waiting on folios
2569 		 * which are in writeback to finish (see shrink_folio_list()).
2570 		 *
2571 		 * Flusher may not be able to issue writeback quickly
2572 		 * enough for cgroupv1 writeback throttling to work
2573 		 * on a large system.
2574 		 */
2575 		if (!writeback_throttling_sane(sc))
2576 			reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
2577 	}
2578 
2579 	sc->nr.dirty += stat.nr_dirty;
2580 	sc->nr.congested += stat.nr_congested;
2581 	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2582 	sc->nr.writeback += stat.nr_writeback;
2583 	sc->nr.immediate += stat.nr_immediate;
2584 	sc->nr.taken += nr_taken;
2585 	if (file)
2586 		sc->nr.file_taken += nr_taken;
2587 
2588 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2589 			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2590 	return nr_reclaimed;
2591 }
2592 
2593 /*
2594  * shrink_active_list() moves folios from the active LRU to the inactive LRU.
2595  *
2596  * We move them the other way if the folio is referenced by one or more
2597  * processes.
2598  *
2599  * If the folios are mostly unmapped, the processing is fast and it is
2600  * appropriate to hold lru_lock across the whole operation.  But if
2601  * the folios are mapped, the processing is slow (folio_referenced()), so
2602  * we should drop lru_lock around each folio.  It's impossible to balance
2603  * this, so instead we remove the folios from the LRU while processing them.
2604  * It is safe to rely on the active flag against the non-LRU folios in here
2605  * because nobody will play with that bit on a non-LRU folio.
2606  *
2607  * The downside is that we have to touch folio->_refcount against each folio.
2608  * But we had to alter folio->flags anyway.
2609  */
2610 static void shrink_active_list(unsigned long nr_to_scan,
2611 			       struct lruvec *lruvec,
2612 			       struct scan_control *sc,
2613 			       enum lru_list lru)
2614 {
2615 	unsigned long nr_taken;
2616 	unsigned long nr_scanned;
2617 	unsigned long vm_flags;
2618 	LIST_HEAD(l_hold);	/* The folios which were snipped off */
2619 	LIST_HEAD(l_active);
2620 	LIST_HEAD(l_inactive);
2621 	unsigned nr_deactivate, nr_activate;
2622 	unsigned nr_rotated = 0;
2623 	int file = is_file_lru(lru);
2624 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2625 
2626 	lru_add_drain();
2627 
2628 	spin_lock_irq(&lruvec->lru_lock);
2629 
2630 	nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &l_hold,
2631 				     &nr_scanned, sc, lru);
2632 
2633 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2634 
2635 	if (!cgroup_reclaim(sc))
2636 		__count_vm_events(PGREFILL, nr_scanned);
2637 	__count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2638 
2639 	spin_unlock_irq(&lruvec->lru_lock);
2640 
2641 	while (!list_empty(&l_hold)) {
2642 		struct folio *folio;
2643 
2644 		cond_resched();
2645 		folio = lru_to_folio(&l_hold);
2646 		list_del(&folio->lru);
2647 
2648 		if (unlikely(!folio_evictable(folio))) {
2649 			folio_putback_lru(folio);
2650 			continue;
2651 		}
2652 
2653 		if (unlikely(buffer_heads_over_limit)) {
2654 			if (folio_test_private(folio) && folio_trylock(folio)) {
2655 				if (folio_test_private(folio))
2656 					filemap_release_folio(folio, 0);
2657 				folio_unlock(folio);
2658 			}
2659 		}
2660 
2661 		/* Referenced or rmap lock contention: rotate */
2662 		if (folio_referenced(folio, 0, sc->target_mem_cgroup,
2663 				     &vm_flags) != 0) {
2664 			/*
2665 			 * Identify referenced, file-backed active folios and
2666 			 * give them one more trip around the active list. So
2667 			 * that executable code get better chances to stay in
2668 			 * memory under moderate memory pressure.  Anon folios
2669 			 * are not likely to be evicted by use-once streaming
2670 			 * IO, plus JVM can create lots of anon VM_EXEC folios,
2671 			 * so we ignore them here.
2672 			 */
2673 			if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) {
2674 				nr_rotated += folio_nr_pages(folio);
2675 				list_add(&folio->lru, &l_active);
2676 				continue;
2677 			}
2678 		}
2679 
2680 		folio_clear_active(folio);	/* we are de-activating */
2681 		folio_set_workingset(folio);
2682 		list_add(&folio->lru, &l_inactive);
2683 	}
2684 
2685 	/*
2686 	 * Move folios back to the lru list.
2687 	 */
2688 	spin_lock_irq(&lruvec->lru_lock);
2689 
2690 	nr_activate = move_folios_to_lru(lruvec, &l_active);
2691 	nr_deactivate = move_folios_to_lru(lruvec, &l_inactive);
2692 	/* Keep all free folios in l_active list */
2693 	list_splice(&l_inactive, &l_active);
2694 
2695 	__count_vm_events(PGDEACTIVATE, nr_deactivate);
2696 	__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2697 
2698 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2699 	spin_unlock_irq(&lruvec->lru_lock);
2700 
2701 	if (nr_rotated)
2702 		lru_note_cost(lruvec, file, 0, nr_rotated);
2703 	mem_cgroup_uncharge_list(&l_active);
2704 	free_unref_page_list(&l_active);
2705 	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2706 			nr_deactivate, nr_rotated, sc->priority, file);
2707 }
2708 
2709 static unsigned int reclaim_folio_list(struct list_head *folio_list,
2710 				      struct pglist_data *pgdat)
2711 {
2712 	struct reclaim_stat dummy_stat;
2713 	unsigned int nr_reclaimed;
2714 	struct folio *folio;
2715 	struct scan_control sc = {
2716 		.gfp_mask = GFP_KERNEL,
2717 		.may_writepage = 1,
2718 		.may_unmap = 1,
2719 		.may_swap = 1,
2720 		.no_demotion = 1,
2721 	};
2722 
2723 	nr_reclaimed = shrink_folio_list(folio_list, pgdat, &sc, &dummy_stat, false);
2724 	while (!list_empty(folio_list)) {
2725 		folio = lru_to_folio(folio_list);
2726 		list_del(&folio->lru);
2727 		folio_putback_lru(folio);
2728 	}
2729 
2730 	return nr_reclaimed;
2731 }
2732 
2733 unsigned long reclaim_pages(struct list_head *folio_list)
2734 {
2735 	int nid;
2736 	unsigned int nr_reclaimed = 0;
2737 	LIST_HEAD(node_folio_list);
2738 	unsigned int noreclaim_flag;
2739 
2740 	if (list_empty(folio_list))
2741 		return nr_reclaimed;
2742 
2743 	noreclaim_flag = memalloc_noreclaim_save();
2744 
2745 	nid = folio_nid(lru_to_folio(folio_list));
2746 	do {
2747 		struct folio *folio = lru_to_folio(folio_list);
2748 
2749 		if (nid == folio_nid(folio)) {
2750 			folio_clear_active(folio);
2751 			list_move(&folio->lru, &node_folio_list);
2752 			continue;
2753 		}
2754 
2755 		nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2756 		nid = folio_nid(lru_to_folio(folio_list));
2757 	} while (!list_empty(folio_list));
2758 
2759 	nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2760 
2761 	memalloc_noreclaim_restore(noreclaim_flag);
2762 
2763 	return nr_reclaimed;
2764 }
2765 
2766 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2767 				 struct lruvec *lruvec, struct scan_control *sc)
2768 {
2769 	if (is_active_lru(lru)) {
2770 		if (sc->may_deactivate & (1 << is_file_lru(lru)))
2771 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2772 		else
2773 			sc->skipped_deactivate = 1;
2774 		return 0;
2775 	}
2776 
2777 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2778 }
2779 
2780 /*
2781  * The inactive anon list should be small enough that the VM never has
2782  * to do too much work.
2783  *
2784  * The inactive file list should be small enough to leave most memory
2785  * to the established workingset on the scan-resistant active list,
2786  * but large enough to avoid thrashing the aggregate readahead window.
2787  *
2788  * Both inactive lists should also be large enough that each inactive
2789  * folio has a chance to be referenced again before it is reclaimed.
2790  *
2791  * If that fails and refaulting is observed, the inactive list grows.
2792  *
2793  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE folios
2794  * on this LRU, maintained by the pageout code. An inactive_ratio
2795  * of 3 means 3:1 or 25% of the folios are kept on the inactive list.
2796  *
2797  * total     target    max
2798  * memory    ratio     inactive
2799  * -------------------------------------
2800  *   10MB       1         5MB
2801  *  100MB       1        50MB
2802  *    1GB       3       250MB
2803  *   10GB      10       0.9GB
2804  *  100GB      31         3GB
2805  *    1TB     101        10GB
2806  *   10TB     320        32GB
2807  */
2808 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2809 {
2810 	enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2811 	unsigned long inactive, active;
2812 	unsigned long inactive_ratio;
2813 	unsigned long gb;
2814 
2815 	inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2816 	active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2817 
2818 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
2819 	if (gb)
2820 		inactive_ratio = int_sqrt(10 * gb);
2821 	else
2822 		inactive_ratio = 1;
2823 
2824 	return inactive * inactive_ratio < active;
2825 }
2826 
2827 enum scan_balance {
2828 	SCAN_EQUAL,
2829 	SCAN_FRACT,
2830 	SCAN_ANON,
2831 	SCAN_FILE,
2832 };
2833 
2834 static void prepare_scan_count(pg_data_t *pgdat, struct scan_control *sc)
2835 {
2836 	unsigned long file;
2837 	struct lruvec *target_lruvec;
2838 
2839 	if (lru_gen_enabled())
2840 		return;
2841 
2842 	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2843 
2844 	/*
2845 	 * Flush the memory cgroup stats, so that we read accurate per-memcg
2846 	 * lruvec stats for heuristics.
2847 	 */
2848 	mem_cgroup_flush_stats();
2849 
2850 	/*
2851 	 * Determine the scan balance between anon and file LRUs.
2852 	 */
2853 	spin_lock_irq(&target_lruvec->lru_lock);
2854 	sc->anon_cost = target_lruvec->anon_cost;
2855 	sc->file_cost = target_lruvec->file_cost;
2856 	spin_unlock_irq(&target_lruvec->lru_lock);
2857 
2858 	/*
2859 	 * Target desirable inactive:active list ratios for the anon
2860 	 * and file LRU lists.
2861 	 */
2862 	if (!sc->force_deactivate) {
2863 		unsigned long refaults;
2864 
2865 		/*
2866 		 * When refaults are being observed, it means a new
2867 		 * workingset is being established. Deactivate to get
2868 		 * rid of any stale active pages quickly.
2869 		 */
2870 		refaults = lruvec_page_state(target_lruvec,
2871 				WORKINGSET_ACTIVATE_ANON);
2872 		if (refaults != target_lruvec->refaults[WORKINGSET_ANON] ||
2873 			inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2874 			sc->may_deactivate |= DEACTIVATE_ANON;
2875 		else
2876 			sc->may_deactivate &= ~DEACTIVATE_ANON;
2877 
2878 		refaults = lruvec_page_state(target_lruvec,
2879 				WORKINGSET_ACTIVATE_FILE);
2880 		if (refaults != target_lruvec->refaults[WORKINGSET_FILE] ||
2881 		    inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2882 			sc->may_deactivate |= DEACTIVATE_FILE;
2883 		else
2884 			sc->may_deactivate &= ~DEACTIVATE_FILE;
2885 	} else
2886 		sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2887 
2888 	/*
2889 	 * If we have plenty of inactive file pages that aren't
2890 	 * thrashing, try to reclaim those first before touching
2891 	 * anonymous pages.
2892 	 */
2893 	file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2894 	if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
2895 		sc->cache_trim_mode = 1;
2896 	else
2897 		sc->cache_trim_mode = 0;
2898 
2899 	/*
2900 	 * Prevent the reclaimer from falling into the cache trap: as
2901 	 * cache pages start out inactive, every cache fault will tip
2902 	 * the scan balance towards the file LRU.  And as the file LRU
2903 	 * shrinks, so does the window for rotation from references.
2904 	 * This means we have a runaway feedback loop where a tiny
2905 	 * thrashing file LRU becomes infinitely more attractive than
2906 	 * anon pages.  Try to detect this based on file LRU size.
2907 	 */
2908 	if (!cgroup_reclaim(sc)) {
2909 		unsigned long total_high_wmark = 0;
2910 		unsigned long free, anon;
2911 		int z;
2912 
2913 		free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2914 		file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2915 			   node_page_state(pgdat, NR_INACTIVE_FILE);
2916 
2917 		for (z = 0; z < MAX_NR_ZONES; z++) {
2918 			struct zone *zone = &pgdat->node_zones[z];
2919 
2920 			if (!managed_zone(zone))
2921 				continue;
2922 
2923 			total_high_wmark += high_wmark_pages(zone);
2924 		}
2925 
2926 		/*
2927 		 * Consider anon: if that's low too, this isn't a
2928 		 * runaway file reclaim problem, but rather just
2929 		 * extreme pressure. Reclaim as per usual then.
2930 		 */
2931 		anon = node_page_state(pgdat, NR_INACTIVE_ANON);
2932 
2933 		sc->file_is_tiny =
2934 			file + free <= total_high_wmark &&
2935 			!(sc->may_deactivate & DEACTIVATE_ANON) &&
2936 			anon >> sc->priority;
2937 	}
2938 }
2939 
2940 /*
2941  * Determine how aggressively the anon and file LRU lists should be
2942  * scanned.
2943  *
2944  * nr[0] = anon inactive folios to scan; nr[1] = anon active folios to scan
2945  * nr[2] = file inactive folios to scan; nr[3] = file active folios to scan
2946  */
2947 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2948 			   unsigned long *nr)
2949 {
2950 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2951 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2952 	unsigned long anon_cost, file_cost, total_cost;
2953 	int swappiness = mem_cgroup_swappiness(memcg);
2954 	u64 fraction[ANON_AND_FILE];
2955 	u64 denominator = 0;	/* gcc */
2956 	enum scan_balance scan_balance;
2957 	unsigned long ap, fp;
2958 	enum lru_list lru;
2959 
2960 	/* If we have no swap space, do not bother scanning anon folios. */
2961 	if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
2962 		scan_balance = SCAN_FILE;
2963 		goto out;
2964 	}
2965 
2966 	/*
2967 	 * Global reclaim will swap to prevent OOM even with no
2968 	 * swappiness, but memcg users want to use this knob to
2969 	 * disable swapping for individual groups completely when
2970 	 * using the memory controller's swap limit feature would be
2971 	 * too expensive.
2972 	 */
2973 	if (cgroup_reclaim(sc) && !swappiness) {
2974 		scan_balance = SCAN_FILE;
2975 		goto out;
2976 	}
2977 
2978 	/*
2979 	 * Do not apply any pressure balancing cleverness when the
2980 	 * system is close to OOM, scan both anon and file equally
2981 	 * (unless the swappiness setting disagrees with swapping).
2982 	 */
2983 	if (!sc->priority && swappiness) {
2984 		scan_balance = SCAN_EQUAL;
2985 		goto out;
2986 	}
2987 
2988 	/*
2989 	 * If the system is almost out of file pages, force-scan anon.
2990 	 */
2991 	if (sc->file_is_tiny) {
2992 		scan_balance = SCAN_ANON;
2993 		goto out;
2994 	}
2995 
2996 	/*
2997 	 * If there is enough inactive page cache, we do not reclaim
2998 	 * anything from the anonymous working right now.
2999 	 */
3000 	if (sc->cache_trim_mode) {
3001 		scan_balance = SCAN_FILE;
3002 		goto out;
3003 	}
3004 
3005 	scan_balance = SCAN_FRACT;
3006 	/*
3007 	 * Calculate the pressure balance between anon and file pages.
3008 	 *
3009 	 * The amount of pressure we put on each LRU is inversely
3010 	 * proportional to the cost of reclaiming each list, as
3011 	 * determined by the share of pages that are refaulting, times
3012 	 * the relative IO cost of bringing back a swapped out
3013 	 * anonymous page vs reloading a filesystem page (swappiness).
3014 	 *
3015 	 * Although we limit that influence to ensure no list gets
3016 	 * left behind completely: at least a third of the pressure is
3017 	 * applied, before swappiness.
3018 	 *
3019 	 * With swappiness at 100, anon and file have equal IO cost.
3020 	 */
3021 	total_cost = sc->anon_cost + sc->file_cost;
3022 	anon_cost = total_cost + sc->anon_cost;
3023 	file_cost = total_cost + sc->file_cost;
3024 	total_cost = anon_cost + file_cost;
3025 
3026 	ap = swappiness * (total_cost + 1);
3027 	ap /= anon_cost + 1;
3028 
3029 	fp = (200 - swappiness) * (total_cost + 1);
3030 	fp /= file_cost + 1;
3031 
3032 	fraction[0] = ap;
3033 	fraction[1] = fp;
3034 	denominator = ap + fp;
3035 out:
3036 	for_each_evictable_lru(lru) {
3037 		int file = is_file_lru(lru);
3038 		unsigned long lruvec_size;
3039 		unsigned long low, min;
3040 		unsigned long scan;
3041 
3042 		lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
3043 		mem_cgroup_protection(sc->target_mem_cgroup, memcg,
3044 				      &min, &low);
3045 
3046 		if (min || low) {
3047 			/*
3048 			 * Scale a cgroup's reclaim pressure by proportioning
3049 			 * its current usage to its memory.low or memory.min
3050 			 * setting.
3051 			 *
3052 			 * This is important, as otherwise scanning aggression
3053 			 * becomes extremely binary -- from nothing as we
3054 			 * approach the memory protection threshold, to totally
3055 			 * nominal as we exceed it.  This results in requiring
3056 			 * setting extremely liberal protection thresholds. It
3057 			 * also means we simply get no protection at all if we
3058 			 * set it too low, which is not ideal.
3059 			 *
3060 			 * If there is any protection in place, we reduce scan
3061 			 * pressure by how much of the total memory used is
3062 			 * within protection thresholds.
3063 			 *
3064 			 * There is one special case: in the first reclaim pass,
3065 			 * we skip over all groups that are within their low
3066 			 * protection. If that fails to reclaim enough pages to
3067 			 * satisfy the reclaim goal, we come back and override
3068 			 * the best-effort low protection. However, we still
3069 			 * ideally want to honor how well-behaved groups are in
3070 			 * that case instead of simply punishing them all
3071 			 * equally. As such, we reclaim them based on how much
3072 			 * memory they are using, reducing the scan pressure
3073 			 * again by how much of the total memory used is under
3074 			 * hard protection.
3075 			 */
3076 			unsigned long cgroup_size = mem_cgroup_size(memcg);
3077 			unsigned long protection;
3078 
3079 			/* memory.low scaling, make sure we retry before OOM */
3080 			if (!sc->memcg_low_reclaim && low > min) {
3081 				protection = low;
3082 				sc->memcg_low_skipped = 1;
3083 			} else {
3084 				protection = min;
3085 			}
3086 
3087 			/* Avoid TOCTOU with earlier protection check */
3088 			cgroup_size = max(cgroup_size, protection);
3089 
3090 			scan = lruvec_size - lruvec_size * protection /
3091 				(cgroup_size + 1);
3092 
3093 			/*
3094 			 * Minimally target SWAP_CLUSTER_MAX pages to keep
3095 			 * reclaim moving forwards, avoiding decrementing
3096 			 * sc->priority further than desirable.
3097 			 */
3098 			scan = max(scan, SWAP_CLUSTER_MAX);
3099 		} else {
3100 			scan = lruvec_size;
3101 		}
3102 
3103 		scan >>= sc->priority;
3104 
3105 		/*
3106 		 * If the cgroup's already been deleted, make sure to
3107 		 * scrape out the remaining cache.
3108 		 */
3109 		if (!scan && !mem_cgroup_online(memcg))
3110 			scan = min(lruvec_size, SWAP_CLUSTER_MAX);
3111 
3112 		switch (scan_balance) {
3113 		case SCAN_EQUAL:
3114 			/* Scan lists relative to size */
3115 			break;
3116 		case SCAN_FRACT:
3117 			/*
3118 			 * Scan types proportional to swappiness and
3119 			 * their relative recent reclaim efficiency.
3120 			 * Make sure we don't miss the last page on
3121 			 * the offlined memory cgroups because of a
3122 			 * round-off error.
3123 			 */
3124 			scan = mem_cgroup_online(memcg) ?
3125 			       div64_u64(scan * fraction[file], denominator) :
3126 			       DIV64_U64_ROUND_UP(scan * fraction[file],
3127 						  denominator);
3128 			break;
3129 		case SCAN_FILE:
3130 		case SCAN_ANON:
3131 			/* Scan one type exclusively */
3132 			if ((scan_balance == SCAN_FILE) != file)
3133 				scan = 0;
3134 			break;
3135 		default:
3136 			/* Look ma, no brain */
3137 			BUG();
3138 		}
3139 
3140 		nr[lru] = scan;
3141 	}
3142 }
3143 
3144 /*
3145  * Anonymous LRU management is a waste if there is
3146  * ultimately no way to reclaim the memory.
3147  */
3148 static bool can_age_anon_pages(struct pglist_data *pgdat,
3149 			       struct scan_control *sc)
3150 {
3151 	/* Aging the anon LRU is valuable if swap is present: */
3152 	if (total_swap_pages > 0)
3153 		return true;
3154 
3155 	/* Also valuable if anon pages can be demoted: */
3156 	return can_demote(pgdat->node_id, sc);
3157 }
3158 
3159 #ifdef CONFIG_LRU_GEN
3160 
3161 #ifdef CONFIG_LRU_GEN_ENABLED
3162 DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS);
3163 #define get_cap(cap)	static_branch_likely(&lru_gen_caps[cap])
3164 #else
3165 DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS);
3166 #define get_cap(cap)	static_branch_unlikely(&lru_gen_caps[cap])
3167 #endif
3168 
3169 /******************************************************************************
3170  *                          shorthand helpers
3171  ******************************************************************************/
3172 
3173 #define LRU_REFS_FLAGS	(BIT(PG_referenced) | BIT(PG_workingset))
3174 
3175 #define DEFINE_MAX_SEQ(lruvec)						\
3176 	unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq)
3177 
3178 #define DEFINE_MIN_SEQ(lruvec)						\
3179 	unsigned long min_seq[ANON_AND_FILE] = {			\
3180 		READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]),	\
3181 		READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]),	\
3182 	}
3183 
3184 #define for_each_gen_type_zone(gen, type, zone)				\
3185 	for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++)			\
3186 		for ((type) = 0; (type) < ANON_AND_FILE; (type)++)	\
3187 			for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++)
3188 
3189 #define get_memcg_gen(seq)	((seq) % MEMCG_NR_GENS)
3190 #define get_memcg_bin(bin)	((bin) % MEMCG_NR_BINS)
3191 
3192 static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid)
3193 {
3194 	struct pglist_data *pgdat = NODE_DATA(nid);
3195 
3196 #ifdef CONFIG_MEMCG
3197 	if (memcg) {
3198 		struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec;
3199 
3200 		/* see the comment in mem_cgroup_lruvec() */
3201 		if (!lruvec->pgdat)
3202 			lruvec->pgdat = pgdat;
3203 
3204 		return lruvec;
3205 	}
3206 #endif
3207 	VM_WARN_ON_ONCE(!mem_cgroup_disabled());
3208 
3209 	return &pgdat->__lruvec;
3210 }
3211 
3212 static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc)
3213 {
3214 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3215 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
3216 
3217 	if (!sc->may_swap)
3218 		return 0;
3219 
3220 	if (!can_demote(pgdat->node_id, sc) &&
3221 	    mem_cgroup_get_nr_swap_pages(memcg) < MIN_LRU_BATCH)
3222 		return 0;
3223 
3224 	return mem_cgroup_swappiness(memcg);
3225 }
3226 
3227 static int get_nr_gens(struct lruvec *lruvec, int type)
3228 {
3229 	return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1;
3230 }
3231 
3232 static bool __maybe_unused seq_is_valid(struct lruvec *lruvec)
3233 {
3234 	/* see the comment on lru_gen_folio */
3235 	return get_nr_gens(lruvec, LRU_GEN_FILE) >= MIN_NR_GENS &&
3236 	       get_nr_gens(lruvec, LRU_GEN_FILE) <= get_nr_gens(lruvec, LRU_GEN_ANON) &&
3237 	       get_nr_gens(lruvec, LRU_GEN_ANON) <= MAX_NR_GENS;
3238 }
3239 
3240 /******************************************************************************
3241  *                          Bloom filters
3242  ******************************************************************************/
3243 
3244 /*
3245  * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when
3246  * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of
3247  * bits in a bitmap, k is the number of hash functions and n is the number of
3248  * inserted items.
3249  *
3250  * Page table walkers use one of the two filters to reduce their search space.
3251  * To get rid of non-leaf entries that no longer have enough leaf entries, the
3252  * aging uses the double-buffering technique to flip to the other filter each
3253  * time it produces a new generation. For non-leaf entries that have enough
3254  * leaf entries, the aging carries them over to the next generation in
3255  * walk_pmd_range(); the eviction also report them when walking the rmap
3256  * in lru_gen_look_around().
3257  *
3258  * For future optimizations:
3259  * 1. It's not necessary to keep both filters all the time. The spare one can be
3260  *    freed after the RCU grace period and reallocated if needed again.
3261  * 2. And when reallocating, it's worth scaling its size according to the number
3262  *    of inserted entries in the other filter, to reduce the memory overhead on
3263  *    small systems and false positives on large systems.
3264  * 3. Jenkins' hash function is an alternative to Knuth's.
3265  */
3266 #define BLOOM_FILTER_SHIFT	15
3267 
3268 static inline int filter_gen_from_seq(unsigned long seq)
3269 {
3270 	return seq % NR_BLOOM_FILTERS;
3271 }
3272 
3273 static void get_item_key(void *item, int *key)
3274 {
3275 	u32 hash = hash_ptr(item, BLOOM_FILTER_SHIFT * 2);
3276 
3277 	BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32));
3278 
3279 	key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1);
3280 	key[1] = hash >> BLOOM_FILTER_SHIFT;
3281 }
3282 
3283 static bool test_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item)
3284 {
3285 	int key[2];
3286 	unsigned long *filter;
3287 	int gen = filter_gen_from_seq(seq);
3288 
3289 	filter = READ_ONCE(lruvec->mm_state.filters[gen]);
3290 	if (!filter)
3291 		return true;
3292 
3293 	get_item_key(item, key);
3294 
3295 	return test_bit(key[0], filter) && test_bit(key[1], filter);
3296 }
3297 
3298 static void update_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item)
3299 {
3300 	int key[2];
3301 	unsigned long *filter;
3302 	int gen = filter_gen_from_seq(seq);
3303 
3304 	filter = READ_ONCE(lruvec->mm_state.filters[gen]);
3305 	if (!filter)
3306 		return;
3307 
3308 	get_item_key(item, key);
3309 
3310 	if (!test_bit(key[0], filter))
3311 		set_bit(key[0], filter);
3312 	if (!test_bit(key[1], filter))
3313 		set_bit(key[1], filter);
3314 }
3315 
3316 static void reset_bloom_filter(struct lruvec *lruvec, unsigned long seq)
3317 {
3318 	unsigned long *filter;
3319 	int gen = filter_gen_from_seq(seq);
3320 
3321 	filter = lruvec->mm_state.filters[gen];
3322 	if (filter) {
3323 		bitmap_clear(filter, 0, BIT(BLOOM_FILTER_SHIFT));
3324 		return;
3325 	}
3326 
3327 	filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT),
3328 			       __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
3329 	WRITE_ONCE(lruvec->mm_state.filters[gen], filter);
3330 }
3331 
3332 /******************************************************************************
3333  *                          mm_struct list
3334  ******************************************************************************/
3335 
3336 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
3337 {
3338 	static struct lru_gen_mm_list mm_list = {
3339 		.fifo = LIST_HEAD_INIT(mm_list.fifo),
3340 		.lock = __SPIN_LOCK_UNLOCKED(mm_list.lock),
3341 	};
3342 
3343 #ifdef CONFIG_MEMCG
3344 	if (memcg)
3345 		return &memcg->mm_list;
3346 #endif
3347 	VM_WARN_ON_ONCE(!mem_cgroup_disabled());
3348 
3349 	return &mm_list;
3350 }
3351 
3352 void lru_gen_add_mm(struct mm_struct *mm)
3353 {
3354 	int nid;
3355 	struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm);
3356 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3357 
3358 	VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list));
3359 #ifdef CONFIG_MEMCG
3360 	VM_WARN_ON_ONCE(mm->lru_gen.memcg);
3361 	mm->lru_gen.memcg = memcg;
3362 #endif
3363 	spin_lock(&mm_list->lock);
3364 
3365 	for_each_node_state(nid, N_MEMORY) {
3366 		struct lruvec *lruvec = get_lruvec(memcg, nid);
3367 
3368 		/* the first addition since the last iteration */
3369 		if (lruvec->mm_state.tail == &mm_list->fifo)
3370 			lruvec->mm_state.tail = &mm->lru_gen.list;
3371 	}
3372 
3373 	list_add_tail(&mm->lru_gen.list, &mm_list->fifo);
3374 
3375 	spin_unlock(&mm_list->lock);
3376 }
3377 
3378 void lru_gen_del_mm(struct mm_struct *mm)
3379 {
3380 	int nid;
3381 	struct lru_gen_mm_list *mm_list;
3382 	struct mem_cgroup *memcg = NULL;
3383 
3384 	if (list_empty(&mm->lru_gen.list))
3385 		return;
3386 
3387 #ifdef CONFIG_MEMCG
3388 	memcg = mm->lru_gen.memcg;
3389 #endif
3390 	mm_list = get_mm_list(memcg);
3391 
3392 	spin_lock(&mm_list->lock);
3393 
3394 	for_each_node(nid) {
3395 		struct lruvec *lruvec = get_lruvec(memcg, nid);
3396 
3397 		/* where the last iteration ended (exclusive) */
3398 		if (lruvec->mm_state.tail == &mm->lru_gen.list)
3399 			lruvec->mm_state.tail = lruvec->mm_state.tail->next;
3400 
3401 		/* where the current iteration continues (inclusive) */
3402 		if (lruvec->mm_state.head != &mm->lru_gen.list)
3403 			continue;
3404 
3405 		lruvec->mm_state.head = lruvec->mm_state.head->next;
3406 		/* the deletion ends the current iteration */
3407 		if (lruvec->mm_state.head == &mm_list->fifo)
3408 			WRITE_ONCE(lruvec->mm_state.seq, lruvec->mm_state.seq + 1);
3409 	}
3410 
3411 	list_del_init(&mm->lru_gen.list);
3412 
3413 	spin_unlock(&mm_list->lock);
3414 
3415 #ifdef CONFIG_MEMCG
3416 	mem_cgroup_put(mm->lru_gen.memcg);
3417 	mm->lru_gen.memcg = NULL;
3418 #endif
3419 }
3420 
3421 #ifdef CONFIG_MEMCG
3422 void lru_gen_migrate_mm(struct mm_struct *mm)
3423 {
3424 	struct mem_cgroup *memcg;
3425 	struct task_struct *task = rcu_dereference_protected(mm->owner, true);
3426 
3427 	VM_WARN_ON_ONCE(task->mm != mm);
3428 	lockdep_assert_held(&task->alloc_lock);
3429 
3430 	/* for mm_update_next_owner() */
3431 	if (mem_cgroup_disabled())
3432 		return;
3433 
3434 	/* migration can happen before addition */
3435 	if (!mm->lru_gen.memcg)
3436 		return;
3437 
3438 	rcu_read_lock();
3439 	memcg = mem_cgroup_from_task(task);
3440 	rcu_read_unlock();
3441 	if (memcg == mm->lru_gen.memcg)
3442 		return;
3443 
3444 	VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list));
3445 
3446 	lru_gen_del_mm(mm);
3447 	lru_gen_add_mm(mm);
3448 }
3449 #endif
3450 
3451 static void reset_mm_stats(struct lruvec *lruvec, struct lru_gen_mm_walk *walk, bool last)
3452 {
3453 	int i;
3454 	int hist;
3455 
3456 	lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock);
3457 
3458 	if (walk) {
3459 		hist = lru_hist_from_seq(walk->max_seq);
3460 
3461 		for (i = 0; i < NR_MM_STATS; i++) {
3462 			WRITE_ONCE(lruvec->mm_state.stats[hist][i],
3463 				   lruvec->mm_state.stats[hist][i] + walk->mm_stats[i]);
3464 			walk->mm_stats[i] = 0;
3465 		}
3466 	}
3467 
3468 	if (NR_HIST_GENS > 1 && last) {
3469 		hist = lru_hist_from_seq(lruvec->mm_state.seq + 1);
3470 
3471 		for (i = 0; i < NR_MM_STATS; i++)
3472 			WRITE_ONCE(lruvec->mm_state.stats[hist][i], 0);
3473 	}
3474 }
3475 
3476 static bool should_skip_mm(struct mm_struct *mm, struct lru_gen_mm_walk *walk)
3477 {
3478 	int type;
3479 	unsigned long size = 0;
3480 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3481 	int key = pgdat->node_id % BITS_PER_TYPE(mm->lru_gen.bitmap);
3482 
3483 	if (!walk->force_scan && !test_bit(key, &mm->lru_gen.bitmap))
3484 		return true;
3485 
3486 	clear_bit(key, &mm->lru_gen.bitmap);
3487 
3488 	for (type = !walk->can_swap; type < ANON_AND_FILE; type++) {
3489 		size += type ? get_mm_counter(mm, MM_FILEPAGES) :
3490 			       get_mm_counter(mm, MM_ANONPAGES) +
3491 			       get_mm_counter(mm, MM_SHMEMPAGES);
3492 	}
3493 
3494 	if (size < MIN_LRU_BATCH)
3495 		return true;
3496 
3497 	return !mmget_not_zero(mm);
3498 }
3499 
3500 static bool iterate_mm_list(struct lruvec *lruvec, struct lru_gen_mm_walk *walk,
3501 			    struct mm_struct **iter)
3502 {
3503 	bool first = false;
3504 	bool last = true;
3505 	struct mm_struct *mm = NULL;
3506 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3507 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3508 	struct lru_gen_mm_state *mm_state = &lruvec->mm_state;
3509 
3510 	/*
3511 	 * There are four interesting cases for this page table walker:
3512 	 * 1. It tries to start a new iteration of mm_list with a stale max_seq;
3513 	 *    there is nothing left to do.
3514 	 * 2. It's the first of the current generation, and it needs to reset
3515 	 *    the Bloom filter for the next generation.
3516 	 * 3. It reaches the end of mm_list, and it needs to increment
3517 	 *    mm_state->seq; the iteration is done.
3518 	 * 4. It's the last of the current generation, and it needs to reset the
3519 	 *    mm stats counters for the next generation.
3520 	 */
3521 	spin_lock(&mm_list->lock);
3522 
3523 	VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->max_seq);
3524 	VM_WARN_ON_ONCE(*iter && mm_state->seq > walk->max_seq);
3525 	VM_WARN_ON_ONCE(*iter && !mm_state->nr_walkers);
3526 
3527 	if (walk->max_seq <= mm_state->seq) {
3528 		if (!*iter)
3529 			last = false;
3530 		goto done;
3531 	}
3532 
3533 	if (!mm_state->nr_walkers) {
3534 		VM_WARN_ON_ONCE(mm_state->head && mm_state->head != &mm_list->fifo);
3535 
3536 		mm_state->head = mm_list->fifo.next;
3537 		first = true;
3538 	}
3539 
3540 	while (!mm && mm_state->head != &mm_list->fifo) {
3541 		mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list);
3542 
3543 		mm_state->head = mm_state->head->next;
3544 
3545 		/* force scan for those added after the last iteration */
3546 		if (!mm_state->tail || mm_state->tail == &mm->lru_gen.list) {
3547 			mm_state->tail = mm_state->head;
3548 			walk->force_scan = true;
3549 		}
3550 
3551 		if (should_skip_mm(mm, walk))
3552 			mm = NULL;
3553 	}
3554 
3555 	if (mm_state->head == &mm_list->fifo)
3556 		WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3557 done:
3558 	if (*iter && !mm)
3559 		mm_state->nr_walkers--;
3560 	if (!*iter && mm)
3561 		mm_state->nr_walkers++;
3562 
3563 	if (mm_state->nr_walkers)
3564 		last = false;
3565 
3566 	if (*iter || last)
3567 		reset_mm_stats(lruvec, walk, last);
3568 
3569 	spin_unlock(&mm_list->lock);
3570 
3571 	if (mm && first)
3572 		reset_bloom_filter(lruvec, walk->max_seq + 1);
3573 
3574 	if (*iter)
3575 		mmput_async(*iter);
3576 
3577 	*iter = mm;
3578 
3579 	return last;
3580 }
3581 
3582 static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long max_seq)
3583 {
3584 	bool success = false;
3585 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3586 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3587 	struct lru_gen_mm_state *mm_state = &lruvec->mm_state;
3588 
3589 	spin_lock(&mm_list->lock);
3590 
3591 	VM_WARN_ON_ONCE(mm_state->seq + 1 < max_seq);
3592 
3593 	if (max_seq > mm_state->seq && !mm_state->nr_walkers) {
3594 		VM_WARN_ON_ONCE(mm_state->head && mm_state->head != &mm_list->fifo);
3595 
3596 		WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3597 		reset_mm_stats(lruvec, NULL, true);
3598 		success = true;
3599 	}
3600 
3601 	spin_unlock(&mm_list->lock);
3602 
3603 	return success;
3604 }
3605 
3606 /******************************************************************************
3607  *                          refault feedback loop
3608  ******************************************************************************/
3609 
3610 /*
3611  * A feedback loop based on Proportional-Integral-Derivative (PID) controller.
3612  *
3613  * The P term is refaulted/(evicted+protected) from a tier in the generation
3614  * currently being evicted; the I term is the exponential moving average of the
3615  * P term over the generations previously evicted, using the smoothing factor
3616  * 1/2; the D term isn't supported.
3617  *
3618  * The setpoint (SP) is always the first tier of one type; the process variable
3619  * (PV) is either any tier of the other type or any other tier of the same
3620  * type.
3621  *
3622  * The error is the difference between the SP and the PV; the correction is to
3623  * turn off protection when SP>PV or turn on protection when SP<PV.
3624  *
3625  * For future optimizations:
3626  * 1. The D term may discount the other two terms over time so that long-lived
3627  *    generations can resist stale information.
3628  */
3629 struct ctrl_pos {
3630 	unsigned long refaulted;
3631 	unsigned long total;
3632 	int gain;
3633 };
3634 
3635 static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain,
3636 			  struct ctrl_pos *pos)
3637 {
3638 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3639 	int hist = lru_hist_from_seq(lrugen->min_seq[type]);
3640 
3641 	pos->refaulted = lrugen->avg_refaulted[type][tier] +
3642 			 atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3643 	pos->total = lrugen->avg_total[type][tier] +
3644 		     atomic_long_read(&lrugen->evicted[hist][type][tier]);
3645 	if (tier)
3646 		pos->total += lrugen->protected[hist][type][tier - 1];
3647 	pos->gain = gain;
3648 }
3649 
3650 static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover)
3651 {
3652 	int hist, tier;
3653 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3654 	bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1;
3655 	unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1;
3656 
3657 	lockdep_assert_held(&lruvec->lru_lock);
3658 
3659 	if (!carryover && !clear)
3660 		return;
3661 
3662 	hist = lru_hist_from_seq(seq);
3663 
3664 	for (tier = 0; tier < MAX_NR_TIERS; tier++) {
3665 		if (carryover) {
3666 			unsigned long sum;
3667 
3668 			sum = lrugen->avg_refaulted[type][tier] +
3669 			      atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3670 			WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2);
3671 
3672 			sum = lrugen->avg_total[type][tier] +
3673 			      atomic_long_read(&lrugen->evicted[hist][type][tier]);
3674 			if (tier)
3675 				sum += lrugen->protected[hist][type][tier - 1];
3676 			WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2);
3677 		}
3678 
3679 		if (clear) {
3680 			atomic_long_set(&lrugen->refaulted[hist][type][tier], 0);
3681 			atomic_long_set(&lrugen->evicted[hist][type][tier], 0);
3682 			if (tier)
3683 				WRITE_ONCE(lrugen->protected[hist][type][tier - 1], 0);
3684 		}
3685 	}
3686 }
3687 
3688 static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv)
3689 {
3690 	/*
3691 	 * Return true if the PV has a limited number of refaults or a lower
3692 	 * refaulted/total than the SP.
3693 	 */
3694 	return pv->refaulted < MIN_LRU_BATCH ||
3695 	       pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <=
3696 	       (sp->refaulted + 1) * pv->total * pv->gain;
3697 }
3698 
3699 /******************************************************************************
3700  *                          the aging
3701  ******************************************************************************/
3702 
3703 /* promote pages accessed through page tables */
3704 static int folio_update_gen(struct folio *folio, int gen)
3705 {
3706 	unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3707 
3708 	VM_WARN_ON_ONCE(gen >= MAX_NR_GENS);
3709 	VM_WARN_ON_ONCE(!rcu_read_lock_held());
3710 
3711 	do {
3712 		/* lru_gen_del_folio() has isolated this page? */
3713 		if (!(old_flags & LRU_GEN_MASK)) {
3714 			/* for shrink_folio_list() */
3715 			new_flags = old_flags | BIT(PG_referenced);
3716 			continue;
3717 		}
3718 
3719 		new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3720 		new_flags |= (gen + 1UL) << LRU_GEN_PGOFF;
3721 	} while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3722 
3723 	return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3724 }
3725 
3726 /* protect pages accessed multiple times through file descriptors */
3727 static int folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming)
3728 {
3729 	int type = folio_is_file_lru(folio);
3730 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3731 	int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
3732 	unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3733 
3734 	VM_WARN_ON_ONCE_FOLIO(!(old_flags & LRU_GEN_MASK), folio);
3735 
3736 	do {
3737 		new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3738 		/* folio_update_gen() has promoted this page? */
3739 		if (new_gen >= 0 && new_gen != old_gen)
3740 			return new_gen;
3741 
3742 		new_gen = (old_gen + 1) % MAX_NR_GENS;
3743 
3744 		new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3745 		new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF;
3746 		/* for folio_end_writeback() */
3747 		if (reclaiming)
3748 			new_flags |= BIT(PG_reclaim);
3749 	} while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3750 
3751 	lru_gen_update_size(lruvec, folio, old_gen, new_gen);
3752 
3753 	return new_gen;
3754 }
3755 
3756 static void update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio,
3757 			      int old_gen, int new_gen)
3758 {
3759 	int type = folio_is_file_lru(folio);
3760 	int zone = folio_zonenum(folio);
3761 	int delta = folio_nr_pages(folio);
3762 
3763 	VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS);
3764 	VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS);
3765 
3766 	walk->batched++;
3767 
3768 	walk->nr_pages[old_gen][type][zone] -= delta;
3769 	walk->nr_pages[new_gen][type][zone] += delta;
3770 }
3771 
3772 static void reset_batch_size(struct lruvec *lruvec, struct lru_gen_mm_walk *walk)
3773 {
3774 	int gen, type, zone;
3775 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3776 
3777 	walk->batched = 0;
3778 
3779 	for_each_gen_type_zone(gen, type, zone) {
3780 		enum lru_list lru = type * LRU_INACTIVE_FILE;
3781 		int delta = walk->nr_pages[gen][type][zone];
3782 
3783 		if (!delta)
3784 			continue;
3785 
3786 		walk->nr_pages[gen][type][zone] = 0;
3787 		WRITE_ONCE(lrugen->nr_pages[gen][type][zone],
3788 			   lrugen->nr_pages[gen][type][zone] + delta);
3789 
3790 		if (lru_gen_is_active(lruvec, gen))
3791 			lru += LRU_ACTIVE;
3792 		__update_lru_size(lruvec, lru, zone, delta);
3793 	}
3794 }
3795 
3796 static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args)
3797 {
3798 	struct address_space *mapping;
3799 	struct vm_area_struct *vma = args->vma;
3800 	struct lru_gen_mm_walk *walk = args->private;
3801 
3802 	if (!vma_is_accessible(vma))
3803 		return true;
3804 
3805 	if (is_vm_hugetlb_page(vma))
3806 		return true;
3807 
3808 	if (!vma_has_recency(vma))
3809 		return true;
3810 
3811 	if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL))
3812 		return true;
3813 
3814 	if (vma == get_gate_vma(vma->vm_mm))
3815 		return true;
3816 
3817 	if (vma_is_anonymous(vma))
3818 		return !walk->can_swap;
3819 
3820 	if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping))
3821 		return true;
3822 
3823 	mapping = vma->vm_file->f_mapping;
3824 	if (mapping_unevictable(mapping))
3825 		return true;
3826 
3827 	if (shmem_mapping(mapping))
3828 		return !walk->can_swap;
3829 
3830 	/* to exclude special mappings like dax, etc. */
3831 	return !mapping->a_ops->read_folio;
3832 }
3833 
3834 /*
3835  * Some userspace memory allocators map many single-page VMAs. Instead of
3836  * returning back to the PGD table for each of such VMAs, finish an entire PMD
3837  * table to reduce zigzags and improve cache performance.
3838  */
3839 static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args,
3840 			 unsigned long *vm_start, unsigned long *vm_end)
3841 {
3842 	unsigned long start = round_up(*vm_end, size);
3843 	unsigned long end = (start | ~mask) + 1;
3844 	VMA_ITERATOR(vmi, args->mm, start);
3845 
3846 	VM_WARN_ON_ONCE(mask & size);
3847 	VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask));
3848 
3849 	for_each_vma(vmi, args->vma) {
3850 		if (end && end <= args->vma->vm_start)
3851 			return false;
3852 
3853 		if (should_skip_vma(args->vma->vm_start, args->vma->vm_end, args))
3854 			continue;
3855 
3856 		*vm_start = max(start, args->vma->vm_start);
3857 		*vm_end = min(end - 1, args->vma->vm_end - 1) + 1;
3858 
3859 		return true;
3860 	}
3861 
3862 	return false;
3863 }
3864 
3865 static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr)
3866 {
3867 	unsigned long pfn = pte_pfn(pte);
3868 
3869 	VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3870 
3871 	if (!pte_present(pte) || is_zero_pfn(pfn))
3872 		return -1;
3873 
3874 	if (WARN_ON_ONCE(pte_devmap(pte) || pte_special(pte)))
3875 		return -1;
3876 
3877 	if (WARN_ON_ONCE(!pfn_valid(pfn)))
3878 		return -1;
3879 
3880 	return pfn;
3881 }
3882 
3883 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
3884 static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr)
3885 {
3886 	unsigned long pfn = pmd_pfn(pmd);
3887 
3888 	VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3889 
3890 	if (!pmd_present(pmd) || is_huge_zero_pmd(pmd))
3891 		return -1;
3892 
3893 	if (WARN_ON_ONCE(pmd_devmap(pmd)))
3894 		return -1;
3895 
3896 	if (WARN_ON_ONCE(!pfn_valid(pfn)))
3897 		return -1;
3898 
3899 	return pfn;
3900 }
3901 #endif
3902 
3903 static struct folio *get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg,
3904 				   struct pglist_data *pgdat, bool can_swap)
3905 {
3906 	struct folio *folio;
3907 
3908 	/* try to avoid unnecessary memory loads */
3909 	if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
3910 		return NULL;
3911 
3912 	folio = pfn_folio(pfn);
3913 	if (folio_nid(folio) != pgdat->node_id)
3914 		return NULL;
3915 
3916 	if (folio_memcg_rcu(folio) != memcg)
3917 		return NULL;
3918 
3919 	/* file VMAs can contain anon pages from COW */
3920 	if (!folio_is_file_lru(folio) && !can_swap)
3921 		return NULL;
3922 
3923 	return folio;
3924 }
3925 
3926 static bool suitable_to_scan(int total, int young)
3927 {
3928 	int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8);
3929 
3930 	/* suitable if the average number of young PTEs per cacheline is >=1 */
3931 	return young * n >= total;
3932 }
3933 
3934 static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end,
3935 			   struct mm_walk *args)
3936 {
3937 	int i;
3938 	pte_t *pte;
3939 	spinlock_t *ptl;
3940 	unsigned long addr;
3941 	int total = 0;
3942 	int young = 0;
3943 	struct lru_gen_mm_walk *walk = args->private;
3944 	struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3945 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3946 	int old_gen, new_gen = lru_gen_from_seq(walk->max_seq);
3947 
3948 	VM_WARN_ON_ONCE(pmd_leaf(*pmd));
3949 
3950 	ptl = pte_lockptr(args->mm, pmd);
3951 	if (!spin_trylock(ptl))
3952 		return false;
3953 
3954 	arch_enter_lazy_mmu_mode();
3955 
3956 	pte = pte_offset_map(pmd, start & PMD_MASK);
3957 restart:
3958 	for (i = pte_index(start), addr = start; addr != end; i++, addr += PAGE_SIZE) {
3959 		unsigned long pfn;
3960 		struct folio *folio;
3961 
3962 		total++;
3963 		walk->mm_stats[MM_LEAF_TOTAL]++;
3964 
3965 		pfn = get_pte_pfn(pte[i], args->vma, addr);
3966 		if (pfn == -1)
3967 			continue;
3968 
3969 		if (!pte_young(pte[i])) {
3970 			walk->mm_stats[MM_LEAF_OLD]++;
3971 			continue;
3972 		}
3973 
3974 		folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
3975 		if (!folio)
3976 			continue;
3977 
3978 		if (!ptep_test_and_clear_young(args->vma, addr, pte + i))
3979 			VM_WARN_ON_ONCE(true);
3980 
3981 		young++;
3982 		walk->mm_stats[MM_LEAF_YOUNG]++;
3983 
3984 		if (pte_dirty(pte[i]) && !folio_test_dirty(folio) &&
3985 		    !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
3986 		      !folio_test_swapcache(folio)))
3987 			folio_mark_dirty(folio);
3988 
3989 		old_gen = folio_update_gen(folio, new_gen);
3990 		if (old_gen >= 0 && old_gen != new_gen)
3991 			update_batch_size(walk, folio, old_gen, new_gen);
3992 	}
3993 
3994 	if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, &start, &end))
3995 		goto restart;
3996 
3997 	pte_unmap(pte);
3998 
3999 	arch_leave_lazy_mmu_mode();
4000 	spin_unlock(ptl);
4001 
4002 	return suitable_to_scan(total, young);
4003 }
4004 
4005 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
4006 static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma,
4007 				  struct mm_walk *args, unsigned long *bitmap, unsigned long *first)
4008 {
4009 	int i;
4010 	pmd_t *pmd;
4011 	spinlock_t *ptl;
4012 	struct lru_gen_mm_walk *walk = args->private;
4013 	struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
4014 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
4015 	int old_gen, new_gen = lru_gen_from_seq(walk->max_seq);
4016 
4017 	VM_WARN_ON_ONCE(pud_leaf(*pud));
4018 
4019 	/* try to batch at most 1+MIN_LRU_BATCH+1 entries */
4020 	if (*first == -1) {
4021 		*first = addr;
4022 		bitmap_zero(bitmap, MIN_LRU_BATCH);
4023 		return;
4024 	}
4025 
4026 	i = addr == -1 ? 0 : pmd_index(addr) - pmd_index(*first);
4027 	if (i && i <= MIN_LRU_BATCH) {
4028 		__set_bit(i - 1, bitmap);
4029 		return;
4030 	}
4031 
4032 	pmd = pmd_offset(pud, *first);
4033 
4034 	ptl = pmd_lockptr(args->mm, pmd);
4035 	if (!spin_trylock(ptl))
4036 		goto done;
4037 
4038 	arch_enter_lazy_mmu_mode();
4039 
4040 	do {
4041 		unsigned long pfn;
4042 		struct folio *folio;
4043 
4044 		/* don't round down the first address */
4045 		addr = i ? (*first & PMD_MASK) + i * PMD_SIZE : *first;
4046 
4047 		pfn = get_pmd_pfn(pmd[i], vma, addr);
4048 		if (pfn == -1)
4049 			goto next;
4050 
4051 		if (!pmd_trans_huge(pmd[i])) {
4052 			if (arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG))
4053 				pmdp_test_and_clear_young(vma, addr, pmd + i);
4054 			goto next;
4055 		}
4056 
4057 		folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
4058 		if (!folio)
4059 			goto next;
4060 
4061 		if (!pmdp_test_and_clear_young(vma, addr, pmd + i))
4062 			goto next;
4063 
4064 		walk->mm_stats[MM_LEAF_YOUNG]++;
4065 
4066 		if (pmd_dirty(pmd[i]) && !folio_test_dirty(folio) &&
4067 		    !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
4068 		      !folio_test_swapcache(folio)))
4069 			folio_mark_dirty(folio);
4070 
4071 		old_gen = folio_update_gen(folio, new_gen);
4072 		if (old_gen >= 0 && old_gen != new_gen)
4073 			update_batch_size(walk, folio, old_gen, new_gen);
4074 next:
4075 		i = i > MIN_LRU_BATCH ? 0 : find_next_bit(bitmap, MIN_LRU_BATCH, i) + 1;
4076 	} while (i <= MIN_LRU_BATCH);
4077 
4078 	arch_leave_lazy_mmu_mode();
4079 	spin_unlock(ptl);
4080 done:
4081 	*first = -1;
4082 }
4083 #else
4084 static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma,
4085 				  struct mm_walk *args, unsigned long *bitmap, unsigned long *first)
4086 {
4087 }
4088 #endif
4089 
4090 static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end,
4091 			   struct mm_walk *args)
4092 {
4093 	int i;
4094 	pmd_t *pmd;
4095 	unsigned long next;
4096 	unsigned long addr;
4097 	struct vm_area_struct *vma;
4098 	unsigned long bitmap[BITS_TO_LONGS(MIN_LRU_BATCH)];
4099 	unsigned long first = -1;
4100 	struct lru_gen_mm_walk *walk = args->private;
4101 
4102 	VM_WARN_ON_ONCE(pud_leaf(*pud));
4103 
4104 	/*
4105 	 * Finish an entire PMD in two passes: the first only reaches to PTE
4106 	 * tables to avoid taking the PMD lock; the second, if necessary, takes
4107 	 * the PMD lock to clear the accessed bit in PMD entries.
4108 	 */
4109 	pmd = pmd_offset(pud, start & PUD_MASK);
4110 restart:
4111 	/* walk_pte_range() may call get_next_vma() */
4112 	vma = args->vma;
4113 	for (i = pmd_index(start), addr = start; addr != end; i++, addr = next) {
4114 		pmd_t val = pmdp_get_lockless(pmd + i);
4115 
4116 		next = pmd_addr_end(addr, end);
4117 
4118 		if (!pmd_present(val) || is_huge_zero_pmd(val)) {
4119 			walk->mm_stats[MM_LEAF_TOTAL]++;
4120 			continue;
4121 		}
4122 
4123 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4124 		if (pmd_trans_huge(val)) {
4125 			unsigned long pfn = pmd_pfn(val);
4126 			struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
4127 
4128 			walk->mm_stats[MM_LEAF_TOTAL]++;
4129 
4130 			if (!pmd_young(val)) {
4131 				walk->mm_stats[MM_LEAF_OLD]++;
4132 				continue;
4133 			}
4134 
4135 			/* try to avoid unnecessary memory loads */
4136 			if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
4137 				continue;
4138 
4139 			walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
4140 			continue;
4141 		}
4142 #endif
4143 		walk->mm_stats[MM_NONLEAF_TOTAL]++;
4144 
4145 		if (arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG)) {
4146 			if (!pmd_young(val))
4147 				continue;
4148 
4149 			walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
4150 		}
4151 
4152 		if (!walk->force_scan && !test_bloom_filter(walk->lruvec, walk->max_seq, pmd + i))
4153 			continue;
4154 
4155 		walk->mm_stats[MM_NONLEAF_FOUND]++;
4156 
4157 		if (!walk_pte_range(&val, addr, next, args))
4158 			continue;
4159 
4160 		walk->mm_stats[MM_NONLEAF_ADDED]++;
4161 
4162 		/* carry over to the next generation */
4163 		update_bloom_filter(walk->lruvec, walk->max_seq + 1, pmd + i);
4164 	}
4165 
4166 	walk_pmd_range_locked(pud, -1, vma, args, bitmap, &first);
4167 
4168 	if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, &start, &end))
4169 		goto restart;
4170 }
4171 
4172 static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end,
4173 			  struct mm_walk *args)
4174 {
4175 	int i;
4176 	pud_t *pud;
4177 	unsigned long addr;
4178 	unsigned long next;
4179 	struct lru_gen_mm_walk *walk = args->private;
4180 
4181 	VM_WARN_ON_ONCE(p4d_leaf(*p4d));
4182 
4183 	pud = pud_offset(p4d, start & P4D_MASK);
4184 restart:
4185 	for (i = pud_index(start), addr = start; addr != end; i++, addr = next) {
4186 		pud_t val = READ_ONCE(pud[i]);
4187 
4188 		next = pud_addr_end(addr, end);
4189 
4190 		if (!pud_present(val) || WARN_ON_ONCE(pud_leaf(val)))
4191 			continue;
4192 
4193 		walk_pmd_range(&val, addr, next, args);
4194 
4195 		/* a racy check to curtail the waiting time */
4196 		if (wq_has_sleeper(&walk->lruvec->mm_state.wait))
4197 			return 1;
4198 
4199 		if (need_resched() || walk->batched >= MAX_LRU_BATCH) {
4200 			end = (addr | ~PUD_MASK) + 1;
4201 			goto done;
4202 		}
4203 	}
4204 
4205 	if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, &start, &end))
4206 		goto restart;
4207 
4208 	end = round_up(end, P4D_SIZE);
4209 done:
4210 	if (!end || !args->vma)
4211 		return 1;
4212 
4213 	walk->next_addr = max(end, args->vma->vm_start);
4214 
4215 	return -EAGAIN;
4216 }
4217 
4218 static void walk_mm(struct lruvec *lruvec, struct mm_struct *mm, struct lru_gen_mm_walk *walk)
4219 {
4220 	static const struct mm_walk_ops mm_walk_ops = {
4221 		.test_walk = should_skip_vma,
4222 		.p4d_entry = walk_pud_range,
4223 	};
4224 
4225 	int err;
4226 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4227 
4228 	walk->next_addr = FIRST_USER_ADDRESS;
4229 
4230 	do {
4231 		err = -EBUSY;
4232 
4233 		/* folio_update_gen() requires stable folio_memcg() */
4234 		if (!mem_cgroup_trylock_pages(memcg))
4235 			break;
4236 
4237 		/* the caller might be holding the lock for write */
4238 		if (mmap_read_trylock(mm)) {
4239 			err = walk_page_range(mm, walk->next_addr, ULONG_MAX, &mm_walk_ops, walk);
4240 
4241 			mmap_read_unlock(mm);
4242 		}
4243 
4244 		mem_cgroup_unlock_pages();
4245 
4246 		if (walk->batched) {
4247 			spin_lock_irq(&lruvec->lru_lock);
4248 			reset_batch_size(lruvec, walk);
4249 			spin_unlock_irq(&lruvec->lru_lock);
4250 		}
4251 
4252 		cond_resched();
4253 	} while (err == -EAGAIN);
4254 }
4255 
4256 static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat, bool force_alloc)
4257 {
4258 	struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
4259 
4260 	if (pgdat && current_is_kswapd()) {
4261 		VM_WARN_ON_ONCE(walk);
4262 
4263 		walk = &pgdat->mm_walk;
4264 	} else if (!walk && force_alloc) {
4265 		VM_WARN_ON_ONCE(current_is_kswapd());
4266 
4267 		walk = kzalloc(sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
4268 	}
4269 
4270 	current->reclaim_state->mm_walk = walk;
4271 
4272 	return walk;
4273 }
4274 
4275 static void clear_mm_walk(void)
4276 {
4277 	struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
4278 
4279 	VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages)));
4280 	VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats)));
4281 
4282 	current->reclaim_state->mm_walk = NULL;
4283 
4284 	if (!current_is_kswapd())
4285 		kfree(walk);
4286 }
4287 
4288 static bool inc_min_seq(struct lruvec *lruvec, int type, bool can_swap)
4289 {
4290 	int zone;
4291 	int remaining = MAX_LRU_BATCH;
4292 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4293 	int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
4294 
4295 	if (type == LRU_GEN_ANON && !can_swap)
4296 		goto done;
4297 
4298 	/* prevent cold/hot inversion if force_scan is true */
4299 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4300 		struct list_head *head = &lrugen->folios[old_gen][type][zone];
4301 
4302 		while (!list_empty(head)) {
4303 			struct folio *folio = lru_to_folio(head);
4304 
4305 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
4306 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
4307 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
4308 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
4309 
4310 			new_gen = folio_inc_gen(lruvec, folio, false);
4311 			list_move_tail(&folio->lru, &lrugen->folios[new_gen][type][zone]);
4312 
4313 			if (!--remaining)
4314 				return false;
4315 		}
4316 	}
4317 done:
4318 	reset_ctrl_pos(lruvec, type, true);
4319 	WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1);
4320 
4321 	return true;
4322 }
4323 
4324 static bool try_to_inc_min_seq(struct lruvec *lruvec, bool can_swap)
4325 {
4326 	int gen, type, zone;
4327 	bool success = false;
4328 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4329 	DEFINE_MIN_SEQ(lruvec);
4330 
4331 	VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
4332 
4333 	/* find the oldest populated generation */
4334 	for (type = !can_swap; type < ANON_AND_FILE; type++) {
4335 		while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) {
4336 			gen = lru_gen_from_seq(min_seq[type]);
4337 
4338 			for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4339 				if (!list_empty(&lrugen->folios[gen][type][zone]))
4340 					goto next;
4341 			}
4342 
4343 			min_seq[type]++;
4344 		}
4345 next:
4346 		;
4347 	}
4348 
4349 	/* see the comment on lru_gen_folio */
4350 	if (can_swap) {
4351 		min_seq[LRU_GEN_ANON] = min(min_seq[LRU_GEN_ANON], min_seq[LRU_GEN_FILE]);
4352 		min_seq[LRU_GEN_FILE] = max(min_seq[LRU_GEN_ANON], lrugen->min_seq[LRU_GEN_FILE]);
4353 	}
4354 
4355 	for (type = !can_swap; type < ANON_AND_FILE; type++) {
4356 		if (min_seq[type] == lrugen->min_seq[type])
4357 			continue;
4358 
4359 		reset_ctrl_pos(lruvec, type, true);
4360 		WRITE_ONCE(lrugen->min_seq[type], min_seq[type]);
4361 		success = true;
4362 	}
4363 
4364 	return success;
4365 }
4366 
4367 static void inc_max_seq(struct lruvec *lruvec, bool can_swap, bool force_scan)
4368 {
4369 	int prev, next;
4370 	int type, zone;
4371 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4372 
4373 	spin_lock_irq(&lruvec->lru_lock);
4374 
4375 	VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
4376 
4377 	for (type = ANON_AND_FILE - 1; type >= 0; type--) {
4378 		if (get_nr_gens(lruvec, type) != MAX_NR_GENS)
4379 			continue;
4380 
4381 		VM_WARN_ON_ONCE(!force_scan && (type == LRU_GEN_FILE || can_swap));
4382 
4383 		while (!inc_min_seq(lruvec, type, can_swap)) {
4384 			spin_unlock_irq(&lruvec->lru_lock);
4385 			cond_resched();
4386 			spin_lock_irq(&lruvec->lru_lock);
4387 		}
4388 	}
4389 
4390 	/*
4391 	 * Update the active/inactive LRU sizes for compatibility. Both sides of
4392 	 * the current max_seq need to be covered, since max_seq+1 can overlap
4393 	 * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do
4394 	 * overlap, cold/hot inversion happens.
4395 	 */
4396 	prev = lru_gen_from_seq(lrugen->max_seq - 1);
4397 	next = lru_gen_from_seq(lrugen->max_seq + 1);
4398 
4399 	for (type = 0; type < ANON_AND_FILE; type++) {
4400 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4401 			enum lru_list lru = type * LRU_INACTIVE_FILE;
4402 			long delta = lrugen->nr_pages[prev][type][zone] -
4403 				     lrugen->nr_pages[next][type][zone];
4404 
4405 			if (!delta)
4406 				continue;
4407 
4408 			__update_lru_size(lruvec, lru, zone, delta);
4409 			__update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta);
4410 		}
4411 	}
4412 
4413 	for (type = 0; type < ANON_AND_FILE; type++)
4414 		reset_ctrl_pos(lruvec, type, false);
4415 
4416 	WRITE_ONCE(lrugen->timestamps[next], jiffies);
4417 	/* make sure preceding modifications appear */
4418 	smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1);
4419 
4420 	spin_unlock_irq(&lruvec->lru_lock);
4421 }
4422 
4423 static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long max_seq,
4424 			       struct scan_control *sc, bool can_swap, bool force_scan)
4425 {
4426 	bool success;
4427 	struct lru_gen_mm_walk *walk;
4428 	struct mm_struct *mm = NULL;
4429 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4430 
4431 	VM_WARN_ON_ONCE(max_seq > READ_ONCE(lrugen->max_seq));
4432 
4433 	/* see the comment in iterate_mm_list() */
4434 	if (max_seq <= READ_ONCE(lruvec->mm_state.seq)) {
4435 		success = false;
4436 		goto done;
4437 	}
4438 
4439 	/*
4440 	 * If the hardware doesn't automatically set the accessed bit, fallback
4441 	 * to lru_gen_look_around(), which only clears the accessed bit in a
4442 	 * handful of PTEs. Spreading the work out over a period of time usually
4443 	 * is less efficient, but it avoids bursty page faults.
4444 	 */
4445 	if (!arch_has_hw_pte_young() || !get_cap(LRU_GEN_MM_WALK)) {
4446 		success = iterate_mm_list_nowalk(lruvec, max_seq);
4447 		goto done;
4448 	}
4449 
4450 	walk = set_mm_walk(NULL, true);
4451 	if (!walk) {
4452 		success = iterate_mm_list_nowalk(lruvec, max_seq);
4453 		goto done;
4454 	}
4455 
4456 	walk->lruvec = lruvec;
4457 	walk->max_seq = max_seq;
4458 	walk->can_swap = can_swap;
4459 	walk->force_scan = force_scan;
4460 
4461 	do {
4462 		success = iterate_mm_list(lruvec, walk, &mm);
4463 		if (mm)
4464 			walk_mm(lruvec, mm, walk);
4465 
4466 		cond_resched();
4467 	} while (mm);
4468 done:
4469 	if (!success) {
4470 		if (sc->priority <= DEF_PRIORITY - 2)
4471 			wait_event_killable(lruvec->mm_state.wait,
4472 					    max_seq < READ_ONCE(lrugen->max_seq));
4473 		return false;
4474 	}
4475 
4476 	VM_WARN_ON_ONCE(max_seq != READ_ONCE(lrugen->max_seq));
4477 
4478 	inc_max_seq(lruvec, can_swap, force_scan);
4479 	/* either this sees any waiters or they will see updated max_seq */
4480 	if (wq_has_sleeper(&lruvec->mm_state.wait))
4481 		wake_up_all(&lruvec->mm_state.wait);
4482 
4483 	return true;
4484 }
4485 
4486 /******************************************************************************
4487  *                          working set protection
4488  ******************************************************************************/
4489 
4490 static bool lruvec_is_sizable(struct lruvec *lruvec, struct scan_control *sc)
4491 {
4492 	int gen, type, zone;
4493 	unsigned long total = 0;
4494 	bool can_swap = get_swappiness(lruvec, sc);
4495 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4496 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4497 	DEFINE_MAX_SEQ(lruvec);
4498 	DEFINE_MIN_SEQ(lruvec);
4499 
4500 	for (type = !can_swap; type < ANON_AND_FILE; type++) {
4501 		unsigned long seq;
4502 
4503 		for (seq = min_seq[type]; seq <= max_seq; seq++) {
4504 			gen = lru_gen_from_seq(seq);
4505 
4506 			for (zone = 0; zone < MAX_NR_ZONES; zone++)
4507 				total += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
4508 		}
4509 	}
4510 
4511 	/* whether the size is big enough to be helpful */
4512 	return mem_cgroup_online(memcg) ? (total >> sc->priority) : total;
4513 }
4514 
4515 static bool lruvec_is_reclaimable(struct lruvec *lruvec, struct scan_control *sc,
4516 				  unsigned long min_ttl)
4517 {
4518 	int gen;
4519 	unsigned long birth;
4520 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4521 	DEFINE_MIN_SEQ(lruvec);
4522 
4523 	/* see the comment on lru_gen_folio */
4524 	gen = lru_gen_from_seq(min_seq[LRU_GEN_FILE]);
4525 	birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
4526 
4527 	if (time_is_after_jiffies(birth + min_ttl))
4528 		return false;
4529 
4530 	if (!lruvec_is_sizable(lruvec, sc))
4531 		return false;
4532 
4533 	mem_cgroup_calculate_protection(NULL, memcg);
4534 
4535 	return !mem_cgroup_below_min(NULL, memcg);
4536 }
4537 
4538 /* to protect the working set of the last N jiffies */
4539 static unsigned long lru_gen_min_ttl __read_mostly;
4540 
4541 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
4542 {
4543 	struct mem_cgroup *memcg;
4544 	unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl);
4545 
4546 	VM_WARN_ON_ONCE(!current_is_kswapd());
4547 
4548 	/* check the order to exclude compaction-induced reclaim */
4549 	if (!min_ttl || sc->order || sc->priority == DEF_PRIORITY)
4550 		return;
4551 
4552 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
4553 	do {
4554 		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4555 
4556 		if (lruvec_is_reclaimable(lruvec, sc, min_ttl)) {
4557 			mem_cgroup_iter_break(NULL, memcg);
4558 			return;
4559 		}
4560 
4561 		cond_resched();
4562 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
4563 
4564 	/*
4565 	 * The main goal is to OOM kill if every generation from all memcgs is
4566 	 * younger than min_ttl. However, another possibility is all memcgs are
4567 	 * either too small or below min.
4568 	 */
4569 	if (mutex_trylock(&oom_lock)) {
4570 		struct oom_control oc = {
4571 			.gfp_mask = sc->gfp_mask,
4572 		};
4573 
4574 		out_of_memory(&oc);
4575 
4576 		mutex_unlock(&oom_lock);
4577 	}
4578 }
4579 
4580 /******************************************************************************
4581  *                          rmap/PT walk feedback
4582  ******************************************************************************/
4583 
4584 /*
4585  * This function exploits spatial locality when shrink_folio_list() walks the
4586  * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If
4587  * the scan was done cacheline efficiently, it adds the PMD entry pointing to
4588  * the PTE table to the Bloom filter. This forms a feedback loop between the
4589  * eviction and the aging.
4590  */
4591 void lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
4592 {
4593 	int i;
4594 	unsigned long start;
4595 	unsigned long end;
4596 	struct lru_gen_mm_walk *walk;
4597 	int young = 0;
4598 	pte_t *pte = pvmw->pte;
4599 	unsigned long addr = pvmw->address;
4600 	struct folio *folio = pfn_folio(pvmw->pfn);
4601 	struct mem_cgroup *memcg = folio_memcg(folio);
4602 	struct pglist_data *pgdat = folio_pgdat(folio);
4603 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4604 	DEFINE_MAX_SEQ(lruvec);
4605 	int old_gen, new_gen = lru_gen_from_seq(max_seq);
4606 
4607 	lockdep_assert_held(pvmw->ptl);
4608 	VM_WARN_ON_ONCE_FOLIO(folio_test_lru(folio), folio);
4609 
4610 	if (spin_is_contended(pvmw->ptl))
4611 		return;
4612 
4613 	/* avoid taking the LRU lock under the PTL when possible */
4614 	walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL;
4615 
4616 	start = max(addr & PMD_MASK, pvmw->vma->vm_start);
4617 	end = min(addr | ~PMD_MASK, pvmw->vma->vm_end - 1) + 1;
4618 
4619 	if (end - start > MIN_LRU_BATCH * PAGE_SIZE) {
4620 		if (addr - start < MIN_LRU_BATCH * PAGE_SIZE / 2)
4621 			end = start + MIN_LRU_BATCH * PAGE_SIZE;
4622 		else if (end - addr < MIN_LRU_BATCH * PAGE_SIZE / 2)
4623 			start = end - MIN_LRU_BATCH * PAGE_SIZE;
4624 		else {
4625 			start = addr - MIN_LRU_BATCH * PAGE_SIZE / 2;
4626 			end = addr + MIN_LRU_BATCH * PAGE_SIZE / 2;
4627 		}
4628 	}
4629 
4630 	/* folio_update_gen() requires stable folio_memcg() */
4631 	if (!mem_cgroup_trylock_pages(memcg))
4632 		return;
4633 
4634 	arch_enter_lazy_mmu_mode();
4635 
4636 	pte -= (addr - start) / PAGE_SIZE;
4637 
4638 	for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) {
4639 		unsigned long pfn;
4640 
4641 		pfn = get_pte_pfn(pte[i], pvmw->vma, addr);
4642 		if (pfn == -1)
4643 			continue;
4644 
4645 		if (!pte_young(pte[i]))
4646 			continue;
4647 
4648 		folio = get_pfn_folio(pfn, memcg, pgdat, !walk || walk->can_swap);
4649 		if (!folio)
4650 			continue;
4651 
4652 		if (!ptep_test_and_clear_young(pvmw->vma, addr, pte + i))
4653 			VM_WARN_ON_ONCE(true);
4654 
4655 		young++;
4656 
4657 		if (pte_dirty(pte[i]) && !folio_test_dirty(folio) &&
4658 		    !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
4659 		      !folio_test_swapcache(folio)))
4660 			folio_mark_dirty(folio);
4661 
4662 		if (walk) {
4663 			old_gen = folio_update_gen(folio, new_gen);
4664 			if (old_gen >= 0 && old_gen != new_gen)
4665 				update_batch_size(walk, folio, old_gen, new_gen);
4666 
4667 			continue;
4668 		}
4669 
4670 		old_gen = folio_lru_gen(folio);
4671 		if (old_gen < 0)
4672 			folio_set_referenced(folio);
4673 		else if (old_gen != new_gen)
4674 			folio_activate(folio);
4675 	}
4676 
4677 	arch_leave_lazy_mmu_mode();
4678 	mem_cgroup_unlock_pages();
4679 
4680 	/* feedback from rmap walkers to page table walkers */
4681 	if (suitable_to_scan(i, young))
4682 		update_bloom_filter(lruvec, max_seq, pvmw->pmd);
4683 }
4684 
4685 /******************************************************************************
4686  *                          memcg LRU
4687  ******************************************************************************/
4688 
4689 /* see the comment on MEMCG_NR_GENS */
4690 enum {
4691 	MEMCG_LRU_NOP,
4692 	MEMCG_LRU_HEAD,
4693 	MEMCG_LRU_TAIL,
4694 	MEMCG_LRU_OLD,
4695 	MEMCG_LRU_YOUNG,
4696 };
4697 
4698 #ifdef CONFIG_MEMCG
4699 
4700 static int lru_gen_memcg_seg(struct lruvec *lruvec)
4701 {
4702 	return READ_ONCE(lruvec->lrugen.seg);
4703 }
4704 
4705 static void lru_gen_rotate_memcg(struct lruvec *lruvec, int op)
4706 {
4707 	int seg;
4708 	int old, new;
4709 	int bin = get_random_u32_below(MEMCG_NR_BINS);
4710 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4711 
4712 	spin_lock(&pgdat->memcg_lru.lock);
4713 
4714 	VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list));
4715 
4716 	seg = 0;
4717 	new = old = lruvec->lrugen.gen;
4718 
4719 	/* see the comment on MEMCG_NR_GENS */
4720 	if (op == MEMCG_LRU_HEAD)
4721 		seg = MEMCG_LRU_HEAD;
4722 	else if (op == MEMCG_LRU_TAIL)
4723 		seg = MEMCG_LRU_TAIL;
4724 	else if (op == MEMCG_LRU_OLD)
4725 		new = get_memcg_gen(pgdat->memcg_lru.seq);
4726 	else if (op == MEMCG_LRU_YOUNG)
4727 		new = get_memcg_gen(pgdat->memcg_lru.seq + 1);
4728 	else
4729 		VM_WARN_ON_ONCE(true);
4730 
4731 	hlist_nulls_del_rcu(&lruvec->lrugen.list);
4732 
4733 	if (op == MEMCG_LRU_HEAD || op == MEMCG_LRU_OLD)
4734 		hlist_nulls_add_head_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
4735 	else
4736 		hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
4737 
4738 	pgdat->memcg_lru.nr_memcgs[old]--;
4739 	pgdat->memcg_lru.nr_memcgs[new]++;
4740 
4741 	lruvec->lrugen.gen = new;
4742 	WRITE_ONCE(lruvec->lrugen.seg, seg);
4743 
4744 	if (!pgdat->memcg_lru.nr_memcgs[old] && old == get_memcg_gen(pgdat->memcg_lru.seq))
4745 		WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
4746 
4747 	spin_unlock(&pgdat->memcg_lru.lock);
4748 }
4749 
4750 void lru_gen_online_memcg(struct mem_cgroup *memcg)
4751 {
4752 	int gen;
4753 	int nid;
4754 	int bin = get_random_u32_below(MEMCG_NR_BINS);
4755 
4756 	for_each_node(nid) {
4757 		struct pglist_data *pgdat = NODE_DATA(nid);
4758 		struct lruvec *lruvec = get_lruvec(memcg, nid);
4759 
4760 		spin_lock(&pgdat->memcg_lru.lock);
4761 
4762 		VM_WARN_ON_ONCE(!hlist_nulls_unhashed(&lruvec->lrugen.list));
4763 
4764 		gen = get_memcg_gen(pgdat->memcg_lru.seq);
4765 
4766 		hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[gen][bin]);
4767 		pgdat->memcg_lru.nr_memcgs[gen]++;
4768 
4769 		lruvec->lrugen.gen = gen;
4770 
4771 		spin_unlock(&pgdat->memcg_lru.lock);
4772 	}
4773 }
4774 
4775 void lru_gen_offline_memcg(struct mem_cgroup *memcg)
4776 {
4777 	int nid;
4778 
4779 	for_each_node(nid) {
4780 		struct lruvec *lruvec = get_lruvec(memcg, nid);
4781 
4782 		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_OLD);
4783 	}
4784 }
4785 
4786 void lru_gen_release_memcg(struct mem_cgroup *memcg)
4787 {
4788 	int gen;
4789 	int nid;
4790 
4791 	for_each_node(nid) {
4792 		struct pglist_data *pgdat = NODE_DATA(nid);
4793 		struct lruvec *lruvec = get_lruvec(memcg, nid);
4794 
4795 		spin_lock(&pgdat->memcg_lru.lock);
4796 
4797 		VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list));
4798 
4799 		gen = lruvec->lrugen.gen;
4800 
4801 		hlist_nulls_del_rcu(&lruvec->lrugen.list);
4802 		pgdat->memcg_lru.nr_memcgs[gen]--;
4803 
4804 		if (!pgdat->memcg_lru.nr_memcgs[gen] && gen == get_memcg_gen(pgdat->memcg_lru.seq))
4805 			WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
4806 
4807 		spin_unlock(&pgdat->memcg_lru.lock);
4808 	}
4809 }
4810 
4811 void lru_gen_soft_reclaim(struct lruvec *lruvec)
4812 {
4813 	/* see the comment on MEMCG_NR_GENS */
4814 	if (lru_gen_memcg_seg(lruvec) != MEMCG_LRU_HEAD)
4815 		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_HEAD);
4816 }
4817 
4818 #else /* !CONFIG_MEMCG */
4819 
4820 static int lru_gen_memcg_seg(struct lruvec *lruvec)
4821 {
4822 	return 0;
4823 }
4824 
4825 #endif
4826 
4827 /******************************************************************************
4828  *                          the eviction
4829  ******************************************************************************/
4830 
4831 static bool sort_folio(struct lruvec *lruvec, struct folio *folio, int tier_idx)
4832 {
4833 	bool success;
4834 	int gen = folio_lru_gen(folio);
4835 	int type = folio_is_file_lru(folio);
4836 	int zone = folio_zonenum(folio);
4837 	int delta = folio_nr_pages(folio);
4838 	int refs = folio_lru_refs(folio);
4839 	int tier = lru_tier_from_refs(refs);
4840 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4841 
4842 	VM_WARN_ON_ONCE_FOLIO(gen >= MAX_NR_GENS, folio);
4843 
4844 	/* unevictable */
4845 	if (!folio_evictable(folio)) {
4846 		success = lru_gen_del_folio(lruvec, folio, true);
4847 		VM_WARN_ON_ONCE_FOLIO(!success, folio);
4848 		folio_set_unevictable(folio);
4849 		lruvec_add_folio(lruvec, folio);
4850 		__count_vm_events(UNEVICTABLE_PGCULLED, delta);
4851 		return true;
4852 	}
4853 
4854 	/* dirty lazyfree */
4855 	if (type == LRU_GEN_FILE && folio_test_anon(folio) && folio_test_dirty(folio)) {
4856 		success = lru_gen_del_folio(lruvec, folio, true);
4857 		VM_WARN_ON_ONCE_FOLIO(!success, folio);
4858 		folio_set_swapbacked(folio);
4859 		lruvec_add_folio_tail(lruvec, folio);
4860 		return true;
4861 	}
4862 
4863 	/* promoted */
4864 	if (gen != lru_gen_from_seq(lrugen->min_seq[type])) {
4865 		list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4866 		return true;
4867 	}
4868 
4869 	/* protected */
4870 	if (tier > tier_idx) {
4871 		int hist = lru_hist_from_seq(lrugen->min_seq[type]);
4872 
4873 		gen = folio_inc_gen(lruvec, folio, false);
4874 		list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]);
4875 
4876 		WRITE_ONCE(lrugen->protected[hist][type][tier - 1],
4877 			   lrugen->protected[hist][type][tier - 1] + delta);
4878 		__mod_lruvec_state(lruvec, WORKINGSET_ACTIVATE_BASE + type, delta);
4879 		return true;
4880 	}
4881 
4882 	/* waiting for writeback */
4883 	if (folio_test_locked(folio) || folio_test_writeback(folio) ||
4884 	    (type == LRU_GEN_FILE && folio_test_dirty(folio))) {
4885 		gen = folio_inc_gen(lruvec, folio, true);
4886 		list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4887 		return true;
4888 	}
4889 
4890 	return false;
4891 }
4892 
4893 static bool isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc)
4894 {
4895 	bool success;
4896 
4897 	/* swapping inhibited */
4898 	if (!(sc->gfp_mask & __GFP_IO) &&
4899 	    (folio_test_dirty(folio) ||
4900 	     (folio_test_anon(folio) && !folio_test_swapcache(folio))))
4901 		return false;
4902 
4903 	/* raced with release_pages() */
4904 	if (!folio_try_get(folio))
4905 		return false;
4906 
4907 	/* raced with another isolation */
4908 	if (!folio_test_clear_lru(folio)) {
4909 		folio_put(folio);
4910 		return false;
4911 	}
4912 
4913 	/* see the comment on MAX_NR_TIERS */
4914 	if (!folio_test_referenced(folio))
4915 		set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS, 0);
4916 
4917 	/* for shrink_folio_list() */
4918 	folio_clear_reclaim(folio);
4919 	folio_clear_referenced(folio);
4920 
4921 	success = lru_gen_del_folio(lruvec, folio, true);
4922 	VM_WARN_ON_ONCE_FOLIO(!success, folio);
4923 
4924 	return true;
4925 }
4926 
4927 static int scan_folios(struct lruvec *lruvec, struct scan_control *sc,
4928 		       int type, int tier, struct list_head *list)
4929 {
4930 	int gen, zone;
4931 	enum vm_event_item item;
4932 	int sorted = 0;
4933 	int scanned = 0;
4934 	int isolated = 0;
4935 	int remaining = MAX_LRU_BATCH;
4936 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4937 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4938 
4939 	VM_WARN_ON_ONCE(!list_empty(list));
4940 
4941 	if (get_nr_gens(lruvec, type) == MIN_NR_GENS)
4942 		return 0;
4943 
4944 	gen = lru_gen_from_seq(lrugen->min_seq[type]);
4945 
4946 	for (zone = sc->reclaim_idx; zone >= 0; zone--) {
4947 		LIST_HEAD(moved);
4948 		int skipped = 0;
4949 		struct list_head *head = &lrugen->folios[gen][type][zone];
4950 
4951 		while (!list_empty(head)) {
4952 			struct folio *folio = lru_to_folio(head);
4953 			int delta = folio_nr_pages(folio);
4954 
4955 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
4956 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
4957 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
4958 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
4959 
4960 			scanned += delta;
4961 
4962 			if (sort_folio(lruvec, folio, tier))
4963 				sorted += delta;
4964 			else if (isolate_folio(lruvec, folio, sc)) {
4965 				list_add(&folio->lru, list);
4966 				isolated += delta;
4967 			} else {
4968 				list_move(&folio->lru, &moved);
4969 				skipped += delta;
4970 			}
4971 
4972 			if (!--remaining || max(isolated, skipped) >= MIN_LRU_BATCH)
4973 				break;
4974 		}
4975 
4976 		if (skipped) {
4977 			list_splice(&moved, head);
4978 			__count_zid_vm_events(PGSCAN_SKIP, zone, skipped);
4979 		}
4980 
4981 		if (!remaining || isolated >= MIN_LRU_BATCH)
4982 			break;
4983 	}
4984 
4985 	item = PGSCAN_KSWAPD + reclaimer_offset();
4986 	if (!cgroup_reclaim(sc)) {
4987 		__count_vm_events(item, isolated);
4988 		__count_vm_events(PGREFILL, sorted);
4989 	}
4990 	__count_memcg_events(memcg, item, isolated);
4991 	__count_memcg_events(memcg, PGREFILL, sorted);
4992 	__count_vm_events(PGSCAN_ANON + type, isolated);
4993 
4994 	/*
4995 	 * There might not be eligible folios due to reclaim_idx. Check the
4996 	 * remaining to prevent livelock if it's not making progress.
4997 	 */
4998 	return isolated || !remaining ? scanned : 0;
4999 }
5000 
5001 static int get_tier_idx(struct lruvec *lruvec, int type)
5002 {
5003 	int tier;
5004 	struct ctrl_pos sp, pv;
5005 
5006 	/*
5007 	 * To leave a margin for fluctuations, use a larger gain factor (1:2).
5008 	 * This value is chosen because any other tier would have at least twice
5009 	 * as many refaults as the first tier.
5010 	 */
5011 	read_ctrl_pos(lruvec, type, 0, 1, &sp);
5012 	for (tier = 1; tier < MAX_NR_TIERS; tier++) {
5013 		read_ctrl_pos(lruvec, type, tier, 2, &pv);
5014 		if (!positive_ctrl_err(&sp, &pv))
5015 			break;
5016 	}
5017 
5018 	return tier - 1;
5019 }
5020 
5021 static int get_type_to_scan(struct lruvec *lruvec, int swappiness, int *tier_idx)
5022 {
5023 	int type, tier;
5024 	struct ctrl_pos sp, pv;
5025 	int gain[ANON_AND_FILE] = { swappiness, 200 - swappiness };
5026 
5027 	/*
5028 	 * Compare the first tier of anon with that of file to determine which
5029 	 * type to scan. Also need to compare other tiers of the selected type
5030 	 * with the first tier of the other type to determine the last tier (of
5031 	 * the selected type) to evict.
5032 	 */
5033 	read_ctrl_pos(lruvec, LRU_GEN_ANON, 0, gain[LRU_GEN_ANON], &sp);
5034 	read_ctrl_pos(lruvec, LRU_GEN_FILE, 0, gain[LRU_GEN_FILE], &pv);
5035 	type = positive_ctrl_err(&sp, &pv);
5036 
5037 	read_ctrl_pos(lruvec, !type, 0, gain[!type], &sp);
5038 	for (tier = 1; tier < MAX_NR_TIERS; tier++) {
5039 		read_ctrl_pos(lruvec, type, tier, gain[type], &pv);
5040 		if (!positive_ctrl_err(&sp, &pv))
5041 			break;
5042 	}
5043 
5044 	*tier_idx = tier - 1;
5045 
5046 	return type;
5047 }
5048 
5049 static int isolate_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness,
5050 			  int *type_scanned, struct list_head *list)
5051 {
5052 	int i;
5053 	int type;
5054 	int scanned;
5055 	int tier = -1;
5056 	DEFINE_MIN_SEQ(lruvec);
5057 
5058 	/*
5059 	 * Try to make the obvious choice first. When anon and file are both
5060 	 * available from the same generation, interpret swappiness 1 as file
5061 	 * first and 200 as anon first.
5062 	 */
5063 	if (!swappiness)
5064 		type = LRU_GEN_FILE;
5065 	else if (min_seq[LRU_GEN_ANON] < min_seq[LRU_GEN_FILE])
5066 		type = LRU_GEN_ANON;
5067 	else if (swappiness == 1)
5068 		type = LRU_GEN_FILE;
5069 	else if (swappiness == 200)
5070 		type = LRU_GEN_ANON;
5071 	else
5072 		type = get_type_to_scan(lruvec, swappiness, &tier);
5073 
5074 	for (i = !swappiness; i < ANON_AND_FILE; i++) {
5075 		if (tier < 0)
5076 			tier = get_tier_idx(lruvec, type);
5077 
5078 		scanned = scan_folios(lruvec, sc, type, tier, list);
5079 		if (scanned)
5080 			break;
5081 
5082 		type = !type;
5083 		tier = -1;
5084 	}
5085 
5086 	*type_scanned = type;
5087 
5088 	return scanned;
5089 }
5090 
5091 static int evict_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness)
5092 {
5093 	int type;
5094 	int scanned;
5095 	int reclaimed;
5096 	LIST_HEAD(list);
5097 	LIST_HEAD(clean);
5098 	struct folio *folio;
5099 	struct folio *next;
5100 	enum vm_event_item item;
5101 	struct reclaim_stat stat;
5102 	struct lru_gen_mm_walk *walk;
5103 	bool skip_retry = false;
5104 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5105 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
5106 
5107 	spin_lock_irq(&lruvec->lru_lock);
5108 
5109 	scanned = isolate_folios(lruvec, sc, swappiness, &type, &list);
5110 
5111 	scanned += try_to_inc_min_seq(lruvec, swappiness);
5112 
5113 	if (get_nr_gens(lruvec, !swappiness) == MIN_NR_GENS)
5114 		scanned = 0;
5115 
5116 	spin_unlock_irq(&lruvec->lru_lock);
5117 
5118 	if (list_empty(&list))
5119 		return scanned;
5120 retry:
5121 	reclaimed = shrink_folio_list(&list, pgdat, sc, &stat, false);
5122 	sc->nr_reclaimed += reclaimed;
5123 
5124 	list_for_each_entry_safe_reverse(folio, next, &list, lru) {
5125 		if (!folio_evictable(folio)) {
5126 			list_del(&folio->lru);
5127 			folio_putback_lru(folio);
5128 			continue;
5129 		}
5130 
5131 		if (folio_test_reclaim(folio) &&
5132 		    (folio_test_dirty(folio) || folio_test_writeback(folio))) {
5133 			/* restore LRU_REFS_FLAGS cleared by isolate_folio() */
5134 			if (folio_test_workingset(folio))
5135 				folio_set_referenced(folio);
5136 			continue;
5137 		}
5138 
5139 		if (skip_retry || folio_test_active(folio) || folio_test_referenced(folio) ||
5140 		    folio_mapped(folio) || folio_test_locked(folio) ||
5141 		    folio_test_dirty(folio) || folio_test_writeback(folio)) {
5142 			/* don't add rejected folios to the oldest generation */
5143 			set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS,
5144 				      BIT(PG_active));
5145 			continue;
5146 		}
5147 
5148 		/* retry folios that may have missed folio_rotate_reclaimable() */
5149 		list_move(&folio->lru, &clean);
5150 		sc->nr_scanned -= folio_nr_pages(folio);
5151 	}
5152 
5153 	spin_lock_irq(&lruvec->lru_lock);
5154 
5155 	move_folios_to_lru(lruvec, &list);
5156 
5157 	walk = current->reclaim_state->mm_walk;
5158 	if (walk && walk->batched)
5159 		reset_batch_size(lruvec, walk);
5160 
5161 	item = PGSTEAL_KSWAPD + reclaimer_offset();
5162 	if (!cgroup_reclaim(sc))
5163 		__count_vm_events(item, reclaimed);
5164 	__count_memcg_events(memcg, item, reclaimed);
5165 	__count_vm_events(PGSTEAL_ANON + type, reclaimed);
5166 
5167 	spin_unlock_irq(&lruvec->lru_lock);
5168 
5169 	mem_cgroup_uncharge_list(&list);
5170 	free_unref_page_list(&list);
5171 
5172 	INIT_LIST_HEAD(&list);
5173 	list_splice_init(&clean, &list);
5174 
5175 	if (!list_empty(&list)) {
5176 		skip_retry = true;
5177 		goto retry;
5178 	}
5179 
5180 	return scanned;
5181 }
5182 
5183 static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq,
5184 			     struct scan_control *sc, bool can_swap, unsigned long *nr_to_scan)
5185 {
5186 	int gen, type, zone;
5187 	unsigned long old = 0;
5188 	unsigned long young = 0;
5189 	unsigned long total = 0;
5190 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5191 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5192 	DEFINE_MIN_SEQ(lruvec);
5193 
5194 	/* whether this lruvec is completely out of cold folios */
5195 	if (min_seq[!can_swap] + MIN_NR_GENS > max_seq) {
5196 		*nr_to_scan = 0;
5197 		return true;
5198 	}
5199 
5200 	for (type = !can_swap; type < ANON_AND_FILE; type++) {
5201 		unsigned long seq;
5202 
5203 		for (seq = min_seq[type]; seq <= max_seq; seq++) {
5204 			unsigned long size = 0;
5205 
5206 			gen = lru_gen_from_seq(seq);
5207 
5208 			for (zone = 0; zone < MAX_NR_ZONES; zone++)
5209 				size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
5210 
5211 			total += size;
5212 			if (seq == max_seq)
5213 				young += size;
5214 			else if (seq + MIN_NR_GENS == max_seq)
5215 				old += size;
5216 		}
5217 	}
5218 
5219 	/* try to scrape all its memory if this memcg was deleted */
5220 	*nr_to_scan = mem_cgroup_online(memcg) ? (total >> sc->priority) : total;
5221 
5222 	/*
5223 	 * The aging tries to be lazy to reduce the overhead, while the eviction
5224 	 * stalls when the number of generations reaches MIN_NR_GENS. Hence, the
5225 	 * ideal number of generations is MIN_NR_GENS+1.
5226 	 */
5227 	if (min_seq[!can_swap] + MIN_NR_GENS < max_seq)
5228 		return false;
5229 
5230 	/*
5231 	 * It's also ideal to spread pages out evenly, i.e., 1/(MIN_NR_GENS+1)
5232 	 * of the total number of pages for each generation. A reasonable range
5233 	 * for this average portion is [1/MIN_NR_GENS, 1/(MIN_NR_GENS+2)]. The
5234 	 * aging cares about the upper bound of hot pages, while the eviction
5235 	 * cares about the lower bound of cold pages.
5236 	 */
5237 	if (young * MIN_NR_GENS > total)
5238 		return true;
5239 	if (old * (MIN_NR_GENS + 2) < total)
5240 		return true;
5241 
5242 	return false;
5243 }
5244 
5245 /*
5246  * For future optimizations:
5247  * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg
5248  *    reclaim.
5249  */
5250 static long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc, bool can_swap)
5251 {
5252 	unsigned long nr_to_scan;
5253 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5254 	DEFINE_MAX_SEQ(lruvec);
5255 
5256 	if (mem_cgroup_below_min(sc->target_mem_cgroup, memcg))
5257 		return 0;
5258 
5259 	if (!should_run_aging(lruvec, max_seq, sc, can_swap, &nr_to_scan))
5260 		return nr_to_scan;
5261 
5262 	/* skip the aging path at the default priority */
5263 	if (sc->priority == DEF_PRIORITY)
5264 		return nr_to_scan;
5265 
5266 	/* skip this lruvec as it's low on cold folios */
5267 	return try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, false) ? -1 : 0;
5268 }
5269 
5270 static unsigned long get_nr_to_reclaim(struct scan_control *sc)
5271 {
5272 	/* don't abort memcg reclaim to ensure fairness */
5273 	if (!global_reclaim(sc))
5274 		return -1;
5275 
5276 	return max(sc->nr_to_reclaim, compact_gap(sc->order));
5277 }
5278 
5279 static bool try_to_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5280 {
5281 	long nr_to_scan;
5282 	unsigned long scanned = 0;
5283 	unsigned long nr_to_reclaim = get_nr_to_reclaim(sc);
5284 	int swappiness = get_swappiness(lruvec, sc);
5285 
5286 	/* clean file folios are more likely to exist */
5287 	if (swappiness && !(sc->gfp_mask & __GFP_IO))
5288 		swappiness = 1;
5289 
5290 	while (true) {
5291 		int delta;
5292 
5293 		nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness);
5294 		if (nr_to_scan <= 0)
5295 			break;
5296 
5297 		delta = evict_folios(lruvec, sc, swappiness);
5298 		if (!delta)
5299 			break;
5300 
5301 		scanned += delta;
5302 		if (scanned >= nr_to_scan)
5303 			break;
5304 
5305 		if (sc->nr_reclaimed >= nr_to_reclaim)
5306 			break;
5307 
5308 		cond_resched();
5309 	}
5310 
5311 	/* whether try_to_inc_max_seq() was successful */
5312 	return nr_to_scan < 0;
5313 }
5314 
5315 static int shrink_one(struct lruvec *lruvec, struct scan_control *sc)
5316 {
5317 	bool success;
5318 	unsigned long scanned = sc->nr_scanned;
5319 	unsigned long reclaimed = sc->nr_reclaimed;
5320 	int seg = lru_gen_memcg_seg(lruvec);
5321 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5322 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
5323 
5324 	/* see the comment on MEMCG_NR_GENS */
5325 	if (!lruvec_is_sizable(lruvec, sc))
5326 		return seg != MEMCG_LRU_TAIL ? MEMCG_LRU_TAIL : MEMCG_LRU_YOUNG;
5327 
5328 	mem_cgroup_calculate_protection(NULL, memcg);
5329 
5330 	if (mem_cgroup_below_min(NULL, memcg))
5331 		return MEMCG_LRU_YOUNG;
5332 
5333 	if (mem_cgroup_below_low(NULL, memcg)) {
5334 		/* see the comment on MEMCG_NR_GENS */
5335 		if (seg != MEMCG_LRU_TAIL)
5336 			return MEMCG_LRU_TAIL;
5337 
5338 		memcg_memory_event(memcg, MEMCG_LOW);
5339 	}
5340 
5341 	success = try_to_shrink_lruvec(lruvec, sc);
5342 
5343 	shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, sc->priority);
5344 
5345 	if (!sc->proactive)
5346 		vmpressure(sc->gfp_mask, memcg, false, sc->nr_scanned - scanned,
5347 			   sc->nr_reclaimed - reclaimed);
5348 
5349 	sc->nr_reclaimed += current->reclaim_state->reclaimed_slab;
5350 	current->reclaim_state->reclaimed_slab = 0;
5351 
5352 	return success ? MEMCG_LRU_YOUNG : 0;
5353 }
5354 
5355 #ifdef CONFIG_MEMCG
5356 
5357 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc)
5358 {
5359 	int op;
5360 	int gen;
5361 	int bin;
5362 	int first_bin;
5363 	struct lruvec *lruvec;
5364 	struct lru_gen_folio *lrugen;
5365 	struct mem_cgroup *memcg;
5366 	const struct hlist_nulls_node *pos;
5367 	unsigned long nr_to_reclaim = get_nr_to_reclaim(sc);
5368 
5369 	bin = first_bin = get_random_u32_below(MEMCG_NR_BINS);
5370 restart:
5371 	op = 0;
5372 	memcg = NULL;
5373 	gen = get_memcg_gen(READ_ONCE(pgdat->memcg_lru.seq));
5374 
5375 	rcu_read_lock();
5376 
5377 	hlist_nulls_for_each_entry_rcu(lrugen, pos, &pgdat->memcg_lru.fifo[gen][bin], list) {
5378 		if (op)
5379 			lru_gen_rotate_memcg(lruvec, op);
5380 
5381 		mem_cgroup_put(memcg);
5382 
5383 		lruvec = container_of(lrugen, struct lruvec, lrugen);
5384 		memcg = lruvec_memcg(lruvec);
5385 
5386 		if (!mem_cgroup_tryget(memcg)) {
5387 			op = 0;
5388 			memcg = NULL;
5389 			continue;
5390 		}
5391 
5392 		rcu_read_unlock();
5393 
5394 		op = shrink_one(lruvec, sc);
5395 
5396 		rcu_read_lock();
5397 
5398 		if (sc->nr_reclaimed >= nr_to_reclaim)
5399 			break;
5400 	}
5401 
5402 	rcu_read_unlock();
5403 
5404 	if (op)
5405 		lru_gen_rotate_memcg(lruvec, op);
5406 
5407 	mem_cgroup_put(memcg);
5408 
5409 	if (sc->nr_reclaimed >= nr_to_reclaim)
5410 		return;
5411 
5412 	/* restart if raced with lru_gen_rotate_memcg() */
5413 	if (gen != get_nulls_value(pos))
5414 		goto restart;
5415 
5416 	/* try the rest of the bins of the current generation */
5417 	bin = get_memcg_bin(bin + 1);
5418 	if (bin != first_bin)
5419 		goto restart;
5420 }
5421 
5422 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5423 {
5424 	struct blk_plug plug;
5425 
5426 	VM_WARN_ON_ONCE(global_reclaim(sc));
5427 	VM_WARN_ON_ONCE(!sc->may_writepage || !sc->may_unmap);
5428 
5429 	lru_add_drain();
5430 
5431 	blk_start_plug(&plug);
5432 
5433 	set_mm_walk(NULL, sc->proactive);
5434 
5435 	if (try_to_shrink_lruvec(lruvec, sc))
5436 		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_YOUNG);
5437 
5438 	clear_mm_walk();
5439 
5440 	blk_finish_plug(&plug);
5441 }
5442 
5443 #else /* !CONFIG_MEMCG */
5444 
5445 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc)
5446 {
5447 	BUILD_BUG();
5448 }
5449 
5450 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5451 {
5452 	BUILD_BUG();
5453 }
5454 
5455 #endif
5456 
5457 static void set_initial_priority(struct pglist_data *pgdat, struct scan_control *sc)
5458 {
5459 	int priority;
5460 	unsigned long reclaimable;
5461 	struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
5462 
5463 	if (sc->priority != DEF_PRIORITY || sc->nr_to_reclaim < MIN_LRU_BATCH)
5464 		return;
5465 	/*
5466 	 * Determine the initial priority based on ((total / MEMCG_NR_GENS) >>
5467 	 * priority) * reclaimed_to_scanned_ratio = nr_to_reclaim, where the
5468 	 * estimated reclaimed_to_scanned_ratio = inactive / total.
5469 	 */
5470 	reclaimable = node_page_state(pgdat, NR_INACTIVE_FILE);
5471 	if (get_swappiness(lruvec, sc))
5472 		reclaimable += node_page_state(pgdat, NR_INACTIVE_ANON);
5473 
5474 	reclaimable /= MEMCG_NR_GENS;
5475 
5476 	/* round down reclaimable and round up sc->nr_to_reclaim */
5477 	priority = fls_long(reclaimable) - 1 - fls_long(sc->nr_to_reclaim - 1);
5478 
5479 	sc->priority = clamp(priority, 0, DEF_PRIORITY);
5480 }
5481 
5482 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
5483 {
5484 	struct blk_plug plug;
5485 	unsigned long reclaimed = sc->nr_reclaimed;
5486 
5487 	VM_WARN_ON_ONCE(!global_reclaim(sc));
5488 
5489 	/*
5490 	 * Unmapped clean folios are already prioritized. Scanning for more of
5491 	 * them is likely futile and can cause high reclaim latency when there
5492 	 * is a large number of memcgs.
5493 	 */
5494 	if (!sc->may_writepage || !sc->may_unmap)
5495 		goto done;
5496 
5497 	lru_add_drain();
5498 
5499 	blk_start_plug(&plug);
5500 
5501 	set_mm_walk(pgdat, sc->proactive);
5502 
5503 	set_initial_priority(pgdat, sc);
5504 
5505 	if (current_is_kswapd())
5506 		sc->nr_reclaimed = 0;
5507 
5508 	if (mem_cgroup_disabled())
5509 		shrink_one(&pgdat->__lruvec, sc);
5510 	else
5511 		shrink_many(pgdat, sc);
5512 
5513 	if (current_is_kswapd())
5514 		sc->nr_reclaimed += reclaimed;
5515 
5516 	clear_mm_walk();
5517 
5518 	blk_finish_plug(&plug);
5519 done:
5520 	/* kswapd should never fail */
5521 	pgdat->kswapd_failures = 0;
5522 }
5523 
5524 /******************************************************************************
5525  *                          state change
5526  ******************************************************************************/
5527 
5528 static bool __maybe_unused state_is_valid(struct lruvec *lruvec)
5529 {
5530 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5531 
5532 	if (lrugen->enabled) {
5533 		enum lru_list lru;
5534 
5535 		for_each_evictable_lru(lru) {
5536 			if (!list_empty(&lruvec->lists[lru]))
5537 				return false;
5538 		}
5539 	} else {
5540 		int gen, type, zone;
5541 
5542 		for_each_gen_type_zone(gen, type, zone) {
5543 			if (!list_empty(&lrugen->folios[gen][type][zone]))
5544 				return false;
5545 		}
5546 	}
5547 
5548 	return true;
5549 }
5550 
5551 static bool fill_evictable(struct lruvec *lruvec)
5552 {
5553 	enum lru_list lru;
5554 	int remaining = MAX_LRU_BATCH;
5555 
5556 	for_each_evictable_lru(lru) {
5557 		int type = is_file_lru(lru);
5558 		bool active = is_active_lru(lru);
5559 		struct list_head *head = &lruvec->lists[lru];
5560 
5561 		while (!list_empty(head)) {
5562 			bool success;
5563 			struct folio *folio = lru_to_folio(head);
5564 
5565 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5566 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio) != active, folio);
5567 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5568 			VM_WARN_ON_ONCE_FOLIO(folio_lru_gen(folio) != -1, folio);
5569 
5570 			lruvec_del_folio(lruvec, folio);
5571 			success = lru_gen_add_folio(lruvec, folio, false);
5572 			VM_WARN_ON_ONCE(!success);
5573 
5574 			if (!--remaining)
5575 				return false;
5576 		}
5577 	}
5578 
5579 	return true;
5580 }
5581 
5582 static bool drain_evictable(struct lruvec *lruvec)
5583 {
5584 	int gen, type, zone;
5585 	int remaining = MAX_LRU_BATCH;
5586 
5587 	for_each_gen_type_zone(gen, type, zone) {
5588 		struct list_head *head = &lruvec->lrugen.folios[gen][type][zone];
5589 
5590 		while (!list_empty(head)) {
5591 			bool success;
5592 			struct folio *folio = lru_to_folio(head);
5593 
5594 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5595 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
5596 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5597 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
5598 
5599 			success = lru_gen_del_folio(lruvec, folio, false);
5600 			VM_WARN_ON_ONCE(!success);
5601 			lruvec_add_folio(lruvec, folio);
5602 
5603 			if (!--remaining)
5604 				return false;
5605 		}
5606 	}
5607 
5608 	return true;
5609 }
5610 
5611 static void lru_gen_change_state(bool enabled)
5612 {
5613 	static DEFINE_MUTEX(state_mutex);
5614 
5615 	struct mem_cgroup *memcg;
5616 
5617 	cgroup_lock();
5618 	cpus_read_lock();
5619 	get_online_mems();
5620 	mutex_lock(&state_mutex);
5621 
5622 	if (enabled == lru_gen_enabled())
5623 		goto unlock;
5624 
5625 	if (enabled)
5626 		static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5627 	else
5628 		static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5629 
5630 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
5631 	do {
5632 		int nid;
5633 
5634 		for_each_node(nid) {
5635 			struct lruvec *lruvec = get_lruvec(memcg, nid);
5636 
5637 			spin_lock_irq(&lruvec->lru_lock);
5638 
5639 			VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
5640 			VM_WARN_ON_ONCE(!state_is_valid(lruvec));
5641 
5642 			lruvec->lrugen.enabled = enabled;
5643 
5644 			while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) {
5645 				spin_unlock_irq(&lruvec->lru_lock);
5646 				cond_resched();
5647 				spin_lock_irq(&lruvec->lru_lock);
5648 			}
5649 
5650 			spin_unlock_irq(&lruvec->lru_lock);
5651 		}
5652 
5653 		cond_resched();
5654 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5655 unlock:
5656 	mutex_unlock(&state_mutex);
5657 	put_online_mems();
5658 	cpus_read_unlock();
5659 	cgroup_unlock();
5660 }
5661 
5662 /******************************************************************************
5663  *                          sysfs interface
5664  ******************************************************************************/
5665 
5666 static ssize_t show_min_ttl(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5667 {
5668 	return sprintf(buf, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl)));
5669 }
5670 
5671 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5672 static ssize_t store_min_ttl(struct kobject *kobj, struct kobj_attribute *attr,
5673 			     const char *buf, size_t len)
5674 {
5675 	unsigned int msecs;
5676 
5677 	if (kstrtouint(buf, 0, &msecs))
5678 		return -EINVAL;
5679 
5680 	WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs));
5681 
5682 	return len;
5683 }
5684 
5685 static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR(
5686 	min_ttl_ms, 0644, show_min_ttl, store_min_ttl
5687 );
5688 
5689 static ssize_t show_enabled(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5690 {
5691 	unsigned int caps = 0;
5692 
5693 	if (get_cap(LRU_GEN_CORE))
5694 		caps |= BIT(LRU_GEN_CORE);
5695 
5696 	if (arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK))
5697 		caps |= BIT(LRU_GEN_MM_WALK);
5698 
5699 	if (arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG))
5700 		caps |= BIT(LRU_GEN_NONLEAF_YOUNG);
5701 
5702 	return sysfs_emit(buf, "0x%04x\n", caps);
5703 }
5704 
5705 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5706 static ssize_t store_enabled(struct kobject *kobj, struct kobj_attribute *attr,
5707 			     const char *buf, size_t len)
5708 {
5709 	int i;
5710 	unsigned int caps;
5711 
5712 	if (tolower(*buf) == 'n')
5713 		caps = 0;
5714 	else if (tolower(*buf) == 'y')
5715 		caps = -1;
5716 	else if (kstrtouint(buf, 0, &caps))
5717 		return -EINVAL;
5718 
5719 	for (i = 0; i < NR_LRU_GEN_CAPS; i++) {
5720 		bool enabled = caps & BIT(i);
5721 
5722 		if (i == LRU_GEN_CORE)
5723 			lru_gen_change_state(enabled);
5724 		else if (enabled)
5725 			static_branch_enable(&lru_gen_caps[i]);
5726 		else
5727 			static_branch_disable(&lru_gen_caps[i]);
5728 	}
5729 
5730 	return len;
5731 }
5732 
5733 static struct kobj_attribute lru_gen_enabled_attr = __ATTR(
5734 	enabled, 0644, show_enabled, store_enabled
5735 );
5736 
5737 static struct attribute *lru_gen_attrs[] = {
5738 	&lru_gen_min_ttl_attr.attr,
5739 	&lru_gen_enabled_attr.attr,
5740 	NULL
5741 };
5742 
5743 static struct attribute_group lru_gen_attr_group = {
5744 	.name = "lru_gen",
5745 	.attrs = lru_gen_attrs,
5746 };
5747 
5748 /******************************************************************************
5749  *                          debugfs interface
5750  ******************************************************************************/
5751 
5752 static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos)
5753 {
5754 	struct mem_cgroup *memcg;
5755 	loff_t nr_to_skip = *pos;
5756 
5757 	m->private = kvmalloc(PATH_MAX, GFP_KERNEL);
5758 	if (!m->private)
5759 		return ERR_PTR(-ENOMEM);
5760 
5761 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
5762 	do {
5763 		int nid;
5764 
5765 		for_each_node_state(nid, N_MEMORY) {
5766 			if (!nr_to_skip--)
5767 				return get_lruvec(memcg, nid);
5768 		}
5769 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5770 
5771 	return NULL;
5772 }
5773 
5774 static void lru_gen_seq_stop(struct seq_file *m, void *v)
5775 {
5776 	if (!IS_ERR_OR_NULL(v))
5777 		mem_cgroup_iter_break(NULL, lruvec_memcg(v));
5778 
5779 	kvfree(m->private);
5780 	m->private = NULL;
5781 }
5782 
5783 static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos)
5784 {
5785 	int nid = lruvec_pgdat(v)->node_id;
5786 	struct mem_cgroup *memcg = lruvec_memcg(v);
5787 
5788 	++*pos;
5789 
5790 	nid = next_memory_node(nid);
5791 	if (nid == MAX_NUMNODES) {
5792 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
5793 		if (!memcg)
5794 			return NULL;
5795 
5796 		nid = first_memory_node;
5797 	}
5798 
5799 	return get_lruvec(memcg, nid);
5800 }
5801 
5802 static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec,
5803 				  unsigned long max_seq, unsigned long *min_seq,
5804 				  unsigned long seq)
5805 {
5806 	int i;
5807 	int type, tier;
5808 	int hist = lru_hist_from_seq(seq);
5809 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5810 
5811 	for (tier = 0; tier < MAX_NR_TIERS; tier++) {
5812 		seq_printf(m, "            %10d", tier);
5813 		for (type = 0; type < ANON_AND_FILE; type++) {
5814 			const char *s = "   ";
5815 			unsigned long n[3] = {};
5816 
5817 			if (seq == max_seq) {
5818 				s = "RT ";
5819 				n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]);
5820 				n[1] = READ_ONCE(lrugen->avg_total[type][tier]);
5821 			} else if (seq == min_seq[type] || NR_HIST_GENS > 1) {
5822 				s = "rep";
5823 				n[0] = atomic_long_read(&lrugen->refaulted[hist][type][tier]);
5824 				n[1] = atomic_long_read(&lrugen->evicted[hist][type][tier]);
5825 				if (tier)
5826 					n[2] = READ_ONCE(lrugen->protected[hist][type][tier - 1]);
5827 			}
5828 
5829 			for (i = 0; i < 3; i++)
5830 				seq_printf(m, " %10lu%c", n[i], s[i]);
5831 		}
5832 		seq_putc(m, '\n');
5833 	}
5834 
5835 	seq_puts(m, "                      ");
5836 	for (i = 0; i < NR_MM_STATS; i++) {
5837 		const char *s = "      ";
5838 		unsigned long n = 0;
5839 
5840 		if (seq == max_seq && NR_HIST_GENS == 1) {
5841 			s = "LOYNFA";
5842 			n = READ_ONCE(lruvec->mm_state.stats[hist][i]);
5843 		} else if (seq != max_seq && NR_HIST_GENS > 1) {
5844 			s = "loynfa";
5845 			n = READ_ONCE(lruvec->mm_state.stats[hist][i]);
5846 		}
5847 
5848 		seq_printf(m, " %10lu%c", n, s[i]);
5849 	}
5850 	seq_putc(m, '\n');
5851 }
5852 
5853 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5854 static int lru_gen_seq_show(struct seq_file *m, void *v)
5855 {
5856 	unsigned long seq;
5857 	bool full = !debugfs_real_fops(m->file)->write;
5858 	struct lruvec *lruvec = v;
5859 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5860 	int nid = lruvec_pgdat(lruvec)->node_id;
5861 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5862 	DEFINE_MAX_SEQ(lruvec);
5863 	DEFINE_MIN_SEQ(lruvec);
5864 
5865 	if (nid == first_memory_node) {
5866 		const char *path = memcg ? m->private : "";
5867 
5868 #ifdef CONFIG_MEMCG
5869 		if (memcg)
5870 			cgroup_path(memcg->css.cgroup, m->private, PATH_MAX);
5871 #endif
5872 		seq_printf(m, "memcg %5hu %s\n", mem_cgroup_id(memcg), path);
5873 	}
5874 
5875 	seq_printf(m, " node %5d\n", nid);
5876 
5877 	if (!full)
5878 		seq = min_seq[LRU_GEN_ANON];
5879 	else if (max_seq >= MAX_NR_GENS)
5880 		seq = max_seq - MAX_NR_GENS + 1;
5881 	else
5882 		seq = 0;
5883 
5884 	for (; seq <= max_seq; seq++) {
5885 		int type, zone;
5886 		int gen = lru_gen_from_seq(seq);
5887 		unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
5888 
5889 		seq_printf(m, " %10lu %10u", seq, jiffies_to_msecs(jiffies - birth));
5890 
5891 		for (type = 0; type < ANON_AND_FILE; type++) {
5892 			unsigned long size = 0;
5893 			char mark = full && seq < min_seq[type] ? 'x' : ' ';
5894 
5895 			for (zone = 0; zone < MAX_NR_ZONES; zone++)
5896 				size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
5897 
5898 			seq_printf(m, " %10lu%c", size, mark);
5899 		}
5900 
5901 		seq_putc(m, '\n');
5902 
5903 		if (full)
5904 			lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq);
5905 	}
5906 
5907 	return 0;
5908 }
5909 
5910 static const struct seq_operations lru_gen_seq_ops = {
5911 	.start = lru_gen_seq_start,
5912 	.stop = lru_gen_seq_stop,
5913 	.next = lru_gen_seq_next,
5914 	.show = lru_gen_seq_show,
5915 };
5916 
5917 static int run_aging(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
5918 		     bool can_swap, bool force_scan)
5919 {
5920 	DEFINE_MAX_SEQ(lruvec);
5921 	DEFINE_MIN_SEQ(lruvec);
5922 
5923 	if (seq < max_seq)
5924 		return 0;
5925 
5926 	if (seq > max_seq)
5927 		return -EINVAL;
5928 
5929 	if (!force_scan && min_seq[!can_swap] + MAX_NR_GENS - 1 <= max_seq)
5930 		return -ERANGE;
5931 
5932 	try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, force_scan);
5933 
5934 	return 0;
5935 }
5936 
5937 static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
5938 			int swappiness, unsigned long nr_to_reclaim)
5939 {
5940 	DEFINE_MAX_SEQ(lruvec);
5941 
5942 	if (seq + MIN_NR_GENS > max_seq)
5943 		return -EINVAL;
5944 
5945 	sc->nr_reclaimed = 0;
5946 
5947 	while (!signal_pending(current)) {
5948 		DEFINE_MIN_SEQ(lruvec);
5949 
5950 		if (seq < min_seq[!swappiness])
5951 			return 0;
5952 
5953 		if (sc->nr_reclaimed >= nr_to_reclaim)
5954 			return 0;
5955 
5956 		if (!evict_folios(lruvec, sc, swappiness))
5957 			return 0;
5958 
5959 		cond_resched();
5960 	}
5961 
5962 	return -EINTR;
5963 }
5964 
5965 static int run_cmd(char cmd, int memcg_id, int nid, unsigned long seq,
5966 		   struct scan_control *sc, int swappiness, unsigned long opt)
5967 {
5968 	struct lruvec *lruvec;
5969 	int err = -EINVAL;
5970 	struct mem_cgroup *memcg = NULL;
5971 
5972 	if (nid < 0 || nid >= MAX_NUMNODES || !node_state(nid, N_MEMORY))
5973 		return -EINVAL;
5974 
5975 	if (!mem_cgroup_disabled()) {
5976 		rcu_read_lock();
5977 
5978 		memcg = mem_cgroup_from_id(memcg_id);
5979 		if (!mem_cgroup_tryget(memcg))
5980 			memcg = NULL;
5981 
5982 		rcu_read_unlock();
5983 
5984 		if (!memcg)
5985 			return -EINVAL;
5986 	}
5987 
5988 	if (memcg_id != mem_cgroup_id(memcg))
5989 		goto done;
5990 
5991 	lruvec = get_lruvec(memcg, nid);
5992 
5993 	if (swappiness < 0)
5994 		swappiness = get_swappiness(lruvec, sc);
5995 	else if (swappiness > 200)
5996 		goto done;
5997 
5998 	switch (cmd) {
5999 	case '+':
6000 		err = run_aging(lruvec, seq, sc, swappiness, opt);
6001 		break;
6002 	case '-':
6003 		err = run_eviction(lruvec, seq, sc, swappiness, opt);
6004 		break;
6005 	}
6006 done:
6007 	mem_cgroup_put(memcg);
6008 
6009 	return err;
6010 }
6011 
6012 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
6013 static ssize_t lru_gen_seq_write(struct file *file, const char __user *src,
6014 				 size_t len, loff_t *pos)
6015 {
6016 	void *buf;
6017 	char *cur, *next;
6018 	unsigned int flags;
6019 	struct blk_plug plug;
6020 	int err = -EINVAL;
6021 	struct scan_control sc = {
6022 		.may_writepage = true,
6023 		.may_unmap = true,
6024 		.may_swap = true,
6025 		.reclaim_idx = MAX_NR_ZONES - 1,
6026 		.gfp_mask = GFP_KERNEL,
6027 	};
6028 
6029 	buf = kvmalloc(len + 1, GFP_KERNEL);
6030 	if (!buf)
6031 		return -ENOMEM;
6032 
6033 	if (copy_from_user(buf, src, len)) {
6034 		kvfree(buf);
6035 		return -EFAULT;
6036 	}
6037 
6038 	set_task_reclaim_state(current, &sc.reclaim_state);
6039 	flags = memalloc_noreclaim_save();
6040 	blk_start_plug(&plug);
6041 	if (!set_mm_walk(NULL, true)) {
6042 		err = -ENOMEM;
6043 		goto done;
6044 	}
6045 
6046 	next = buf;
6047 	next[len] = '\0';
6048 
6049 	while ((cur = strsep(&next, ",;\n"))) {
6050 		int n;
6051 		int end;
6052 		char cmd;
6053 		unsigned int memcg_id;
6054 		unsigned int nid;
6055 		unsigned long seq;
6056 		unsigned int swappiness = -1;
6057 		unsigned long opt = -1;
6058 
6059 		cur = skip_spaces(cur);
6060 		if (!*cur)
6061 			continue;
6062 
6063 		n = sscanf(cur, "%c %u %u %lu %n %u %n %lu %n", &cmd, &memcg_id, &nid,
6064 			   &seq, &end, &swappiness, &end, &opt, &end);
6065 		if (n < 4 || cur[end]) {
6066 			err = -EINVAL;
6067 			break;
6068 		}
6069 
6070 		err = run_cmd(cmd, memcg_id, nid, seq, &sc, swappiness, opt);
6071 		if (err)
6072 			break;
6073 	}
6074 done:
6075 	clear_mm_walk();
6076 	blk_finish_plug(&plug);
6077 	memalloc_noreclaim_restore(flags);
6078 	set_task_reclaim_state(current, NULL);
6079 
6080 	kvfree(buf);
6081 
6082 	return err ? : len;
6083 }
6084 
6085 static int lru_gen_seq_open(struct inode *inode, struct file *file)
6086 {
6087 	return seq_open(file, &lru_gen_seq_ops);
6088 }
6089 
6090 static const struct file_operations lru_gen_rw_fops = {
6091 	.open = lru_gen_seq_open,
6092 	.read = seq_read,
6093 	.write = lru_gen_seq_write,
6094 	.llseek = seq_lseek,
6095 	.release = seq_release,
6096 };
6097 
6098 static const struct file_operations lru_gen_ro_fops = {
6099 	.open = lru_gen_seq_open,
6100 	.read = seq_read,
6101 	.llseek = seq_lseek,
6102 	.release = seq_release,
6103 };
6104 
6105 /******************************************************************************
6106  *                          initialization
6107  ******************************************************************************/
6108 
6109 void lru_gen_init_lruvec(struct lruvec *lruvec)
6110 {
6111 	int i;
6112 	int gen, type, zone;
6113 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
6114 
6115 	lrugen->max_seq = MIN_NR_GENS + 1;
6116 	lrugen->enabled = lru_gen_enabled();
6117 
6118 	for (i = 0; i <= MIN_NR_GENS + 1; i++)
6119 		lrugen->timestamps[i] = jiffies;
6120 
6121 	for_each_gen_type_zone(gen, type, zone)
6122 		INIT_LIST_HEAD(&lrugen->folios[gen][type][zone]);
6123 
6124 	lruvec->mm_state.seq = MIN_NR_GENS;
6125 	init_waitqueue_head(&lruvec->mm_state.wait);
6126 }
6127 
6128 #ifdef CONFIG_MEMCG
6129 
6130 void lru_gen_init_pgdat(struct pglist_data *pgdat)
6131 {
6132 	int i, j;
6133 
6134 	spin_lock_init(&pgdat->memcg_lru.lock);
6135 
6136 	for (i = 0; i < MEMCG_NR_GENS; i++) {
6137 		for (j = 0; j < MEMCG_NR_BINS; j++)
6138 			INIT_HLIST_NULLS_HEAD(&pgdat->memcg_lru.fifo[i][j], i);
6139 	}
6140 }
6141 
6142 void lru_gen_init_memcg(struct mem_cgroup *memcg)
6143 {
6144 	INIT_LIST_HEAD(&memcg->mm_list.fifo);
6145 	spin_lock_init(&memcg->mm_list.lock);
6146 }
6147 
6148 void lru_gen_exit_memcg(struct mem_cgroup *memcg)
6149 {
6150 	int i;
6151 	int nid;
6152 
6153 	VM_WARN_ON_ONCE(!list_empty(&memcg->mm_list.fifo));
6154 
6155 	for_each_node(nid) {
6156 		struct lruvec *lruvec = get_lruvec(memcg, nid);
6157 
6158 		VM_WARN_ON_ONCE(lruvec->mm_state.nr_walkers);
6159 		VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0,
6160 					   sizeof(lruvec->lrugen.nr_pages)));
6161 
6162 		lruvec->lrugen.list.next = LIST_POISON1;
6163 
6164 		for (i = 0; i < NR_BLOOM_FILTERS; i++) {
6165 			bitmap_free(lruvec->mm_state.filters[i]);
6166 			lruvec->mm_state.filters[i] = NULL;
6167 		}
6168 	}
6169 }
6170 
6171 #endif /* CONFIG_MEMCG */
6172 
6173 static int __init init_lru_gen(void)
6174 {
6175 	BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS);
6176 	BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS);
6177 
6178 	if (sysfs_create_group(mm_kobj, &lru_gen_attr_group))
6179 		pr_err("lru_gen: failed to create sysfs group\n");
6180 
6181 	debugfs_create_file("lru_gen", 0644, NULL, NULL, &lru_gen_rw_fops);
6182 	debugfs_create_file("lru_gen_full", 0444, NULL, NULL, &lru_gen_ro_fops);
6183 
6184 	return 0;
6185 };
6186 late_initcall(init_lru_gen);
6187 
6188 #else /* !CONFIG_LRU_GEN */
6189 
6190 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
6191 {
6192 }
6193 
6194 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
6195 {
6196 }
6197 
6198 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
6199 {
6200 }
6201 
6202 #endif /* CONFIG_LRU_GEN */
6203 
6204 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
6205 {
6206 	unsigned long nr[NR_LRU_LISTS];
6207 	unsigned long targets[NR_LRU_LISTS];
6208 	unsigned long nr_to_scan;
6209 	enum lru_list lru;
6210 	unsigned long nr_reclaimed = 0;
6211 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
6212 	bool proportional_reclaim;
6213 	struct blk_plug plug;
6214 
6215 	if (lru_gen_enabled() && !global_reclaim(sc)) {
6216 		lru_gen_shrink_lruvec(lruvec, sc);
6217 		return;
6218 	}
6219 
6220 	get_scan_count(lruvec, sc, nr);
6221 
6222 	/* Record the original scan target for proportional adjustments later */
6223 	memcpy(targets, nr, sizeof(nr));
6224 
6225 	/*
6226 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
6227 	 * event that can occur when there is little memory pressure e.g.
6228 	 * multiple streaming readers/writers. Hence, we do not abort scanning
6229 	 * when the requested number of pages are reclaimed when scanning at
6230 	 * DEF_PRIORITY on the assumption that the fact we are direct
6231 	 * reclaiming implies that kswapd is not keeping up and it is best to
6232 	 * do a batch of work at once. For memcg reclaim one check is made to
6233 	 * abort proportional reclaim if either the file or anon lru has already
6234 	 * dropped to zero at the first pass.
6235 	 */
6236 	proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
6237 				sc->priority == DEF_PRIORITY);
6238 
6239 	blk_start_plug(&plug);
6240 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
6241 					nr[LRU_INACTIVE_FILE]) {
6242 		unsigned long nr_anon, nr_file, percentage;
6243 		unsigned long nr_scanned;
6244 
6245 		for_each_evictable_lru(lru) {
6246 			if (nr[lru]) {
6247 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
6248 				nr[lru] -= nr_to_scan;
6249 
6250 				nr_reclaimed += shrink_list(lru, nr_to_scan,
6251 							    lruvec, sc);
6252 			}
6253 		}
6254 
6255 		cond_resched();
6256 
6257 		if (nr_reclaimed < nr_to_reclaim || proportional_reclaim)
6258 			continue;
6259 
6260 		/*
6261 		 * For kswapd and memcg, reclaim at least the number of pages
6262 		 * requested. Ensure that the anon and file LRUs are scanned
6263 		 * proportionally what was requested by get_scan_count(). We
6264 		 * stop reclaiming one LRU and reduce the amount scanning
6265 		 * proportional to the original scan target.
6266 		 */
6267 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
6268 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
6269 
6270 		/*
6271 		 * It's just vindictive to attack the larger once the smaller
6272 		 * has gone to zero.  And given the way we stop scanning the
6273 		 * smaller below, this makes sure that we only make one nudge
6274 		 * towards proportionality once we've got nr_to_reclaim.
6275 		 */
6276 		if (!nr_file || !nr_anon)
6277 			break;
6278 
6279 		if (nr_file > nr_anon) {
6280 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
6281 						targets[LRU_ACTIVE_ANON] + 1;
6282 			lru = LRU_BASE;
6283 			percentage = nr_anon * 100 / scan_target;
6284 		} else {
6285 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
6286 						targets[LRU_ACTIVE_FILE] + 1;
6287 			lru = LRU_FILE;
6288 			percentage = nr_file * 100 / scan_target;
6289 		}
6290 
6291 		/* Stop scanning the smaller of the LRU */
6292 		nr[lru] = 0;
6293 		nr[lru + LRU_ACTIVE] = 0;
6294 
6295 		/*
6296 		 * Recalculate the other LRU scan count based on its original
6297 		 * scan target and the percentage scanning already complete
6298 		 */
6299 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
6300 		nr_scanned = targets[lru] - nr[lru];
6301 		nr[lru] = targets[lru] * (100 - percentage) / 100;
6302 		nr[lru] -= min(nr[lru], nr_scanned);
6303 
6304 		lru += LRU_ACTIVE;
6305 		nr_scanned = targets[lru] - nr[lru];
6306 		nr[lru] = targets[lru] * (100 - percentage) / 100;
6307 		nr[lru] -= min(nr[lru], nr_scanned);
6308 	}
6309 	blk_finish_plug(&plug);
6310 	sc->nr_reclaimed += nr_reclaimed;
6311 
6312 	/*
6313 	 * Even if we did not try to evict anon pages at all, we want to
6314 	 * rebalance the anon lru active/inactive ratio.
6315 	 */
6316 	if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) &&
6317 	    inactive_is_low(lruvec, LRU_INACTIVE_ANON))
6318 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
6319 				   sc, LRU_ACTIVE_ANON);
6320 }
6321 
6322 /* Use reclaim/compaction for costly allocs or under memory pressure */
6323 static bool in_reclaim_compaction(struct scan_control *sc)
6324 {
6325 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
6326 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
6327 			 sc->priority < DEF_PRIORITY - 2))
6328 		return true;
6329 
6330 	return false;
6331 }
6332 
6333 /*
6334  * Reclaim/compaction is used for high-order allocation requests. It reclaims
6335  * order-0 pages before compacting the zone. should_continue_reclaim() returns
6336  * true if more pages should be reclaimed such that when the page allocator
6337  * calls try_to_compact_pages() that it will have enough free pages to succeed.
6338  * It will give up earlier than that if there is difficulty reclaiming pages.
6339  */
6340 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
6341 					unsigned long nr_reclaimed,
6342 					struct scan_control *sc)
6343 {
6344 	unsigned long pages_for_compaction;
6345 	unsigned long inactive_lru_pages;
6346 	int z;
6347 
6348 	/* If not in reclaim/compaction mode, stop */
6349 	if (!in_reclaim_compaction(sc))
6350 		return false;
6351 
6352 	/*
6353 	 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
6354 	 * number of pages that were scanned. This will return to the caller
6355 	 * with the risk reclaim/compaction and the resulting allocation attempt
6356 	 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
6357 	 * allocations through requiring that the full LRU list has been scanned
6358 	 * first, by assuming that zero delta of sc->nr_scanned means full LRU
6359 	 * scan, but that approximation was wrong, and there were corner cases
6360 	 * where always a non-zero amount of pages were scanned.
6361 	 */
6362 	if (!nr_reclaimed)
6363 		return false;
6364 
6365 	/* If compaction would go ahead or the allocation would succeed, stop */
6366 	for (z = 0; z <= sc->reclaim_idx; z++) {
6367 		struct zone *zone = &pgdat->node_zones[z];
6368 		if (!managed_zone(zone))
6369 			continue;
6370 
6371 		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
6372 		case COMPACT_SUCCESS:
6373 		case COMPACT_CONTINUE:
6374 			return false;
6375 		default:
6376 			/* check next zone */
6377 			;
6378 		}
6379 	}
6380 
6381 	/*
6382 	 * If we have not reclaimed enough pages for compaction and the
6383 	 * inactive lists are large enough, continue reclaiming
6384 	 */
6385 	pages_for_compaction = compact_gap(sc->order);
6386 	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
6387 	if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
6388 		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
6389 
6390 	return inactive_lru_pages > pages_for_compaction;
6391 }
6392 
6393 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
6394 {
6395 	struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
6396 	struct mem_cgroup *memcg;
6397 
6398 	memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
6399 	do {
6400 		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
6401 		unsigned long reclaimed;
6402 		unsigned long scanned;
6403 
6404 		/*
6405 		 * This loop can become CPU-bound when target memcgs
6406 		 * aren't eligible for reclaim - either because they
6407 		 * don't have any reclaimable pages, or because their
6408 		 * memory is explicitly protected. Avoid soft lockups.
6409 		 */
6410 		cond_resched();
6411 
6412 		mem_cgroup_calculate_protection(target_memcg, memcg);
6413 
6414 		if (mem_cgroup_below_min(target_memcg, memcg)) {
6415 			/*
6416 			 * Hard protection.
6417 			 * If there is no reclaimable memory, OOM.
6418 			 */
6419 			continue;
6420 		} else if (mem_cgroup_below_low(target_memcg, memcg)) {
6421 			/*
6422 			 * Soft protection.
6423 			 * Respect the protection only as long as
6424 			 * there is an unprotected supply
6425 			 * of reclaimable memory from other cgroups.
6426 			 */
6427 			if (!sc->memcg_low_reclaim) {
6428 				sc->memcg_low_skipped = 1;
6429 				continue;
6430 			}
6431 			memcg_memory_event(memcg, MEMCG_LOW);
6432 		}
6433 
6434 		reclaimed = sc->nr_reclaimed;
6435 		scanned = sc->nr_scanned;
6436 
6437 		shrink_lruvec(lruvec, sc);
6438 
6439 		shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
6440 			    sc->priority);
6441 
6442 		/* Record the group's reclaim efficiency */
6443 		if (!sc->proactive)
6444 			vmpressure(sc->gfp_mask, memcg, false,
6445 				   sc->nr_scanned - scanned,
6446 				   sc->nr_reclaimed - reclaimed);
6447 
6448 	} while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
6449 }
6450 
6451 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
6452 {
6453 	struct reclaim_state *reclaim_state = current->reclaim_state;
6454 	unsigned long nr_reclaimed, nr_scanned;
6455 	struct lruvec *target_lruvec;
6456 	bool reclaimable = false;
6457 
6458 	if (lru_gen_enabled() && global_reclaim(sc)) {
6459 		lru_gen_shrink_node(pgdat, sc);
6460 		return;
6461 	}
6462 
6463 	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
6464 
6465 again:
6466 	memset(&sc->nr, 0, sizeof(sc->nr));
6467 
6468 	nr_reclaimed = sc->nr_reclaimed;
6469 	nr_scanned = sc->nr_scanned;
6470 
6471 	prepare_scan_count(pgdat, sc);
6472 
6473 	shrink_node_memcgs(pgdat, sc);
6474 
6475 	if (reclaim_state) {
6476 		sc->nr_reclaimed += reclaim_state->reclaimed_slab;
6477 		reclaim_state->reclaimed_slab = 0;
6478 	}
6479 
6480 	/* Record the subtree's reclaim efficiency */
6481 	if (!sc->proactive)
6482 		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
6483 			   sc->nr_scanned - nr_scanned,
6484 			   sc->nr_reclaimed - nr_reclaimed);
6485 
6486 	if (sc->nr_reclaimed - nr_reclaimed)
6487 		reclaimable = true;
6488 
6489 	if (current_is_kswapd()) {
6490 		/*
6491 		 * If reclaim is isolating dirty pages under writeback,
6492 		 * it implies that the long-lived page allocation rate
6493 		 * is exceeding the page laundering rate. Either the
6494 		 * global limits are not being effective at throttling
6495 		 * processes due to the page distribution throughout
6496 		 * zones or there is heavy usage of a slow backing
6497 		 * device. The only option is to throttle from reclaim
6498 		 * context which is not ideal as there is no guarantee
6499 		 * the dirtying process is throttled in the same way
6500 		 * balance_dirty_pages() manages.
6501 		 *
6502 		 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
6503 		 * count the number of pages under pages flagged for
6504 		 * immediate reclaim and stall if any are encountered
6505 		 * in the nr_immediate check below.
6506 		 */
6507 		if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
6508 			set_bit(PGDAT_WRITEBACK, &pgdat->flags);
6509 
6510 		/* Allow kswapd to start writing pages during reclaim.*/
6511 		if (sc->nr.unqueued_dirty == sc->nr.file_taken)
6512 			set_bit(PGDAT_DIRTY, &pgdat->flags);
6513 
6514 		/*
6515 		 * If kswapd scans pages marked for immediate
6516 		 * reclaim and under writeback (nr_immediate), it
6517 		 * implies that pages are cycling through the LRU
6518 		 * faster than they are written so forcibly stall
6519 		 * until some pages complete writeback.
6520 		 */
6521 		if (sc->nr.immediate)
6522 			reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
6523 	}
6524 
6525 	/*
6526 	 * Tag a node/memcg as congested if all the dirty pages were marked
6527 	 * for writeback and immediate reclaim (counted in nr.congested).
6528 	 *
6529 	 * Legacy memcg will stall in page writeback so avoid forcibly
6530 	 * stalling in reclaim_throttle().
6531 	 */
6532 	if ((current_is_kswapd() ||
6533 	     (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
6534 	    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
6535 		set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
6536 
6537 	/*
6538 	 * Stall direct reclaim for IO completions if the lruvec is
6539 	 * node is congested. Allow kswapd to continue until it
6540 	 * starts encountering unqueued dirty pages or cycling through
6541 	 * the LRU too quickly.
6542 	 */
6543 	if (!current_is_kswapd() && current_may_throttle() &&
6544 	    !sc->hibernation_mode &&
6545 	    test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
6546 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED);
6547 
6548 	if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
6549 				    sc))
6550 		goto again;
6551 
6552 	/*
6553 	 * Kswapd gives up on balancing particular nodes after too
6554 	 * many failures to reclaim anything from them and goes to
6555 	 * sleep. On reclaim progress, reset the failure counter. A
6556 	 * successful direct reclaim run will revive a dormant kswapd.
6557 	 */
6558 	if (reclaimable)
6559 		pgdat->kswapd_failures = 0;
6560 }
6561 
6562 /*
6563  * Returns true if compaction should go ahead for a costly-order request, or
6564  * the allocation would already succeed without compaction. Return false if we
6565  * should reclaim first.
6566  */
6567 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
6568 {
6569 	unsigned long watermark;
6570 	enum compact_result suitable;
6571 
6572 	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
6573 	if (suitable == COMPACT_SUCCESS)
6574 		/* Allocation should succeed already. Don't reclaim. */
6575 		return true;
6576 	if (suitable == COMPACT_SKIPPED)
6577 		/* Compaction cannot yet proceed. Do reclaim. */
6578 		return false;
6579 
6580 	/*
6581 	 * Compaction is already possible, but it takes time to run and there
6582 	 * are potentially other callers using the pages just freed. So proceed
6583 	 * with reclaim to make a buffer of free pages available to give
6584 	 * compaction a reasonable chance of completing and allocating the page.
6585 	 * Note that we won't actually reclaim the whole buffer in one attempt
6586 	 * as the target watermark in should_continue_reclaim() is lower. But if
6587 	 * we are already above the high+gap watermark, don't reclaim at all.
6588 	 */
6589 	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
6590 
6591 	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
6592 }
6593 
6594 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
6595 {
6596 	/*
6597 	 * If reclaim is making progress greater than 12% efficiency then
6598 	 * wake all the NOPROGRESS throttled tasks.
6599 	 */
6600 	if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) {
6601 		wait_queue_head_t *wqh;
6602 
6603 		wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS];
6604 		if (waitqueue_active(wqh))
6605 			wake_up(wqh);
6606 
6607 		return;
6608 	}
6609 
6610 	/*
6611 	 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will
6612 	 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages
6613 	 * under writeback and marked for immediate reclaim at the tail of the
6614 	 * LRU.
6615 	 */
6616 	if (current_is_kswapd() || cgroup_reclaim(sc))
6617 		return;
6618 
6619 	/* Throttle if making no progress at high prioities. */
6620 	if (sc->priority == 1 && !sc->nr_reclaimed)
6621 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS);
6622 }
6623 
6624 /*
6625  * This is the direct reclaim path, for page-allocating processes.  We only
6626  * try to reclaim pages from zones which will satisfy the caller's allocation
6627  * request.
6628  *
6629  * If a zone is deemed to be full of pinned pages then just give it a light
6630  * scan then give up on it.
6631  */
6632 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
6633 {
6634 	struct zoneref *z;
6635 	struct zone *zone;
6636 	unsigned long nr_soft_reclaimed;
6637 	unsigned long nr_soft_scanned;
6638 	gfp_t orig_mask;
6639 	pg_data_t *last_pgdat = NULL;
6640 	pg_data_t *first_pgdat = NULL;
6641 
6642 	/*
6643 	 * If the number of buffer_heads in the machine exceeds the maximum
6644 	 * allowed level, force direct reclaim to scan the highmem zone as
6645 	 * highmem pages could be pinning lowmem pages storing buffer_heads
6646 	 */
6647 	orig_mask = sc->gfp_mask;
6648 	if (buffer_heads_over_limit) {
6649 		sc->gfp_mask |= __GFP_HIGHMEM;
6650 		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
6651 	}
6652 
6653 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6654 					sc->reclaim_idx, sc->nodemask) {
6655 		/*
6656 		 * Take care memory controller reclaiming has small influence
6657 		 * to global LRU.
6658 		 */
6659 		if (!cgroup_reclaim(sc)) {
6660 			if (!cpuset_zone_allowed(zone,
6661 						 GFP_KERNEL | __GFP_HARDWALL))
6662 				continue;
6663 
6664 			/*
6665 			 * If we already have plenty of memory free for
6666 			 * compaction in this zone, don't free any more.
6667 			 * Even though compaction is invoked for any
6668 			 * non-zero order, only frequent costly order
6669 			 * reclamation is disruptive enough to become a
6670 			 * noticeable problem, like transparent huge
6671 			 * page allocations.
6672 			 */
6673 			if (IS_ENABLED(CONFIG_COMPACTION) &&
6674 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
6675 			    compaction_ready(zone, sc)) {
6676 				sc->compaction_ready = true;
6677 				continue;
6678 			}
6679 
6680 			/*
6681 			 * Shrink each node in the zonelist once. If the
6682 			 * zonelist is ordered by zone (not the default) then a
6683 			 * node may be shrunk multiple times but in that case
6684 			 * the user prefers lower zones being preserved.
6685 			 */
6686 			if (zone->zone_pgdat == last_pgdat)
6687 				continue;
6688 
6689 			/*
6690 			 * This steals pages from memory cgroups over softlimit
6691 			 * and returns the number of reclaimed pages and
6692 			 * scanned pages. This works for global memory pressure
6693 			 * and balancing, not for a memcg's limit.
6694 			 */
6695 			nr_soft_scanned = 0;
6696 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
6697 						sc->order, sc->gfp_mask,
6698 						&nr_soft_scanned);
6699 			sc->nr_reclaimed += nr_soft_reclaimed;
6700 			sc->nr_scanned += nr_soft_scanned;
6701 			/* need some check for avoid more shrink_zone() */
6702 		}
6703 
6704 		if (!first_pgdat)
6705 			first_pgdat = zone->zone_pgdat;
6706 
6707 		/* See comment about same check for global reclaim above */
6708 		if (zone->zone_pgdat == last_pgdat)
6709 			continue;
6710 		last_pgdat = zone->zone_pgdat;
6711 		shrink_node(zone->zone_pgdat, sc);
6712 	}
6713 
6714 	if (first_pgdat)
6715 		consider_reclaim_throttle(first_pgdat, sc);
6716 
6717 	/*
6718 	 * Restore to original mask to avoid the impact on the caller if we
6719 	 * promoted it to __GFP_HIGHMEM.
6720 	 */
6721 	sc->gfp_mask = orig_mask;
6722 }
6723 
6724 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
6725 {
6726 	struct lruvec *target_lruvec;
6727 	unsigned long refaults;
6728 
6729 	if (lru_gen_enabled())
6730 		return;
6731 
6732 	target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
6733 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
6734 	target_lruvec->refaults[WORKINGSET_ANON] = refaults;
6735 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
6736 	target_lruvec->refaults[WORKINGSET_FILE] = refaults;
6737 }
6738 
6739 /*
6740  * This is the main entry point to direct page reclaim.
6741  *
6742  * If a full scan of the inactive list fails to free enough memory then we
6743  * are "out of memory" and something needs to be killed.
6744  *
6745  * If the caller is !__GFP_FS then the probability of a failure is reasonably
6746  * high - the zone may be full of dirty or under-writeback pages, which this
6747  * caller can't do much about.  We kick the writeback threads and take explicit
6748  * naps in the hope that some of these pages can be written.  But if the
6749  * allocating task holds filesystem locks which prevent writeout this might not
6750  * work, and the allocation attempt will fail.
6751  *
6752  * returns:	0, if no pages reclaimed
6753  * 		else, the number of pages reclaimed
6754  */
6755 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
6756 					  struct scan_control *sc)
6757 {
6758 	int initial_priority = sc->priority;
6759 	pg_data_t *last_pgdat;
6760 	struct zoneref *z;
6761 	struct zone *zone;
6762 retry:
6763 	delayacct_freepages_start();
6764 
6765 	if (!cgroup_reclaim(sc))
6766 		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
6767 
6768 	do {
6769 		if (!sc->proactive)
6770 			vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
6771 					sc->priority);
6772 		sc->nr_scanned = 0;
6773 		shrink_zones(zonelist, sc);
6774 
6775 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
6776 			break;
6777 
6778 		if (sc->compaction_ready)
6779 			break;
6780 
6781 		/*
6782 		 * If we're getting trouble reclaiming, start doing
6783 		 * writepage even in laptop mode.
6784 		 */
6785 		if (sc->priority < DEF_PRIORITY - 2)
6786 			sc->may_writepage = 1;
6787 	} while (--sc->priority >= 0);
6788 
6789 	last_pgdat = NULL;
6790 	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
6791 					sc->nodemask) {
6792 		if (zone->zone_pgdat == last_pgdat)
6793 			continue;
6794 		last_pgdat = zone->zone_pgdat;
6795 
6796 		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
6797 
6798 		if (cgroup_reclaim(sc)) {
6799 			struct lruvec *lruvec;
6800 
6801 			lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
6802 						   zone->zone_pgdat);
6803 			clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
6804 		}
6805 	}
6806 
6807 	delayacct_freepages_end();
6808 
6809 	if (sc->nr_reclaimed)
6810 		return sc->nr_reclaimed;
6811 
6812 	/* Aborted reclaim to try compaction? don't OOM, then */
6813 	if (sc->compaction_ready)
6814 		return 1;
6815 
6816 	/*
6817 	 * We make inactive:active ratio decisions based on the node's
6818 	 * composition of memory, but a restrictive reclaim_idx or a
6819 	 * memory.low cgroup setting can exempt large amounts of
6820 	 * memory from reclaim. Neither of which are very common, so
6821 	 * instead of doing costly eligibility calculations of the
6822 	 * entire cgroup subtree up front, we assume the estimates are
6823 	 * good, and retry with forcible deactivation if that fails.
6824 	 */
6825 	if (sc->skipped_deactivate) {
6826 		sc->priority = initial_priority;
6827 		sc->force_deactivate = 1;
6828 		sc->skipped_deactivate = 0;
6829 		goto retry;
6830 	}
6831 
6832 	/* Untapped cgroup reserves?  Don't OOM, retry. */
6833 	if (sc->memcg_low_skipped) {
6834 		sc->priority = initial_priority;
6835 		sc->force_deactivate = 0;
6836 		sc->memcg_low_reclaim = 1;
6837 		sc->memcg_low_skipped = 0;
6838 		goto retry;
6839 	}
6840 
6841 	return 0;
6842 }
6843 
6844 static bool allow_direct_reclaim(pg_data_t *pgdat)
6845 {
6846 	struct zone *zone;
6847 	unsigned long pfmemalloc_reserve = 0;
6848 	unsigned long free_pages = 0;
6849 	int i;
6850 	bool wmark_ok;
6851 
6852 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6853 		return true;
6854 
6855 	for (i = 0; i <= ZONE_NORMAL; i++) {
6856 		zone = &pgdat->node_zones[i];
6857 		if (!managed_zone(zone))
6858 			continue;
6859 
6860 		if (!zone_reclaimable_pages(zone))
6861 			continue;
6862 
6863 		pfmemalloc_reserve += min_wmark_pages(zone);
6864 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
6865 	}
6866 
6867 	/* If there are no reserves (unexpected config) then do not throttle */
6868 	if (!pfmemalloc_reserve)
6869 		return true;
6870 
6871 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
6872 
6873 	/* kswapd must be awake if processes are being throttled */
6874 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
6875 		if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
6876 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
6877 
6878 		wake_up_interruptible(&pgdat->kswapd_wait);
6879 	}
6880 
6881 	return wmark_ok;
6882 }
6883 
6884 /*
6885  * Throttle direct reclaimers if backing storage is backed by the network
6886  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
6887  * depleted. kswapd will continue to make progress and wake the processes
6888  * when the low watermark is reached.
6889  *
6890  * Returns true if a fatal signal was delivered during throttling. If this
6891  * happens, the page allocator should not consider triggering the OOM killer.
6892  */
6893 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
6894 					nodemask_t *nodemask)
6895 {
6896 	struct zoneref *z;
6897 	struct zone *zone;
6898 	pg_data_t *pgdat = NULL;
6899 
6900 	/*
6901 	 * Kernel threads should not be throttled as they may be indirectly
6902 	 * responsible for cleaning pages necessary for reclaim to make forward
6903 	 * progress. kjournald for example may enter direct reclaim while
6904 	 * committing a transaction where throttling it could forcing other
6905 	 * processes to block on log_wait_commit().
6906 	 */
6907 	if (current->flags & PF_KTHREAD)
6908 		goto out;
6909 
6910 	/*
6911 	 * If a fatal signal is pending, this process should not throttle.
6912 	 * It should return quickly so it can exit and free its memory
6913 	 */
6914 	if (fatal_signal_pending(current))
6915 		goto out;
6916 
6917 	/*
6918 	 * Check if the pfmemalloc reserves are ok by finding the first node
6919 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
6920 	 * GFP_KERNEL will be required for allocating network buffers when
6921 	 * swapping over the network so ZONE_HIGHMEM is unusable.
6922 	 *
6923 	 * Throttling is based on the first usable node and throttled processes
6924 	 * wait on a queue until kswapd makes progress and wakes them. There
6925 	 * is an affinity then between processes waking up and where reclaim
6926 	 * progress has been made assuming the process wakes on the same node.
6927 	 * More importantly, processes running on remote nodes will not compete
6928 	 * for remote pfmemalloc reserves and processes on different nodes
6929 	 * should make reasonable progress.
6930 	 */
6931 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6932 					gfp_zone(gfp_mask), nodemask) {
6933 		if (zone_idx(zone) > ZONE_NORMAL)
6934 			continue;
6935 
6936 		/* Throttle based on the first usable node */
6937 		pgdat = zone->zone_pgdat;
6938 		if (allow_direct_reclaim(pgdat))
6939 			goto out;
6940 		break;
6941 	}
6942 
6943 	/* If no zone was usable by the allocation flags then do not throttle */
6944 	if (!pgdat)
6945 		goto out;
6946 
6947 	/* Account for the throttling */
6948 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
6949 
6950 	/*
6951 	 * If the caller cannot enter the filesystem, it's possible that it
6952 	 * is due to the caller holding an FS lock or performing a journal
6953 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
6954 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
6955 	 * blocked waiting on the same lock. Instead, throttle for up to a
6956 	 * second before continuing.
6957 	 */
6958 	if (!(gfp_mask & __GFP_FS))
6959 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
6960 			allow_direct_reclaim(pgdat), HZ);
6961 	else
6962 		/* Throttle until kswapd wakes the process */
6963 		wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
6964 			allow_direct_reclaim(pgdat));
6965 
6966 	if (fatal_signal_pending(current))
6967 		return true;
6968 
6969 out:
6970 	return false;
6971 }
6972 
6973 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
6974 				gfp_t gfp_mask, nodemask_t *nodemask)
6975 {
6976 	unsigned long nr_reclaimed;
6977 	struct scan_control sc = {
6978 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
6979 		.gfp_mask = current_gfp_context(gfp_mask),
6980 		.reclaim_idx = gfp_zone(gfp_mask),
6981 		.order = order,
6982 		.nodemask = nodemask,
6983 		.priority = DEF_PRIORITY,
6984 		.may_writepage = !laptop_mode,
6985 		.may_unmap = 1,
6986 		.may_swap = 1,
6987 	};
6988 
6989 	/*
6990 	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
6991 	 * Confirm they are large enough for max values.
6992 	 */
6993 	BUILD_BUG_ON(MAX_ORDER > S8_MAX);
6994 	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
6995 	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
6996 
6997 	/*
6998 	 * Do not enter reclaim if fatal signal was delivered while throttled.
6999 	 * 1 is returned so that the page allocator does not OOM kill at this
7000 	 * point.
7001 	 */
7002 	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
7003 		return 1;
7004 
7005 	set_task_reclaim_state(current, &sc.reclaim_state);
7006 	trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
7007 
7008 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
7009 
7010 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
7011 	set_task_reclaim_state(current, NULL);
7012 
7013 	return nr_reclaimed;
7014 }
7015 
7016 #ifdef CONFIG_MEMCG
7017 
7018 /* Only used by soft limit reclaim. Do not reuse for anything else. */
7019 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
7020 						gfp_t gfp_mask, bool noswap,
7021 						pg_data_t *pgdat,
7022 						unsigned long *nr_scanned)
7023 {
7024 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
7025 	struct scan_control sc = {
7026 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
7027 		.target_mem_cgroup = memcg,
7028 		.may_writepage = !laptop_mode,
7029 		.may_unmap = 1,
7030 		.reclaim_idx = MAX_NR_ZONES - 1,
7031 		.may_swap = !noswap,
7032 	};
7033 
7034 	WARN_ON_ONCE(!current->reclaim_state);
7035 
7036 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
7037 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
7038 
7039 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
7040 						      sc.gfp_mask);
7041 
7042 	/*
7043 	 * NOTE: Although we can get the priority field, using it
7044 	 * here is not a good idea, since it limits the pages we can scan.
7045 	 * if we don't reclaim here, the shrink_node from balance_pgdat
7046 	 * will pick up pages from other mem cgroup's as well. We hack
7047 	 * the priority and make it zero.
7048 	 */
7049 	shrink_lruvec(lruvec, &sc);
7050 
7051 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
7052 
7053 	*nr_scanned = sc.nr_scanned;
7054 
7055 	return sc.nr_reclaimed;
7056 }
7057 
7058 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
7059 					   unsigned long nr_pages,
7060 					   gfp_t gfp_mask,
7061 					   unsigned int reclaim_options)
7062 {
7063 	unsigned long nr_reclaimed;
7064 	unsigned int noreclaim_flag;
7065 	struct scan_control sc = {
7066 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7067 		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
7068 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
7069 		.reclaim_idx = MAX_NR_ZONES - 1,
7070 		.target_mem_cgroup = memcg,
7071 		.priority = DEF_PRIORITY,
7072 		.may_writepage = !laptop_mode,
7073 		.may_unmap = 1,
7074 		.may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP),
7075 		.proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE),
7076 	};
7077 	/*
7078 	 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
7079 	 * equal pressure on all the nodes. This is based on the assumption that
7080 	 * the reclaim does not bail out early.
7081 	 */
7082 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7083 
7084 	set_task_reclaim_state(current, &sc.reclaim_state);
7085 	trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
7086 	noreclaim_flag = memalloc_noreclaim_save();
7087 
7088 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
7089 
7090 	memalloc_noreclaim_restore(noreclaim_flag);
7091 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
7092 	set_task_reclaim_state(current, NULL);
7093 
7094 	return nr_reclaimed;
7095 }
7096 #endif
7097 
7098 static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc)
7099 {
7100 	struct mem_cgroup *memcg;
7101 	struct lruvec *lruvec;
7102 
7103 	if (lru_gen_enabled()) {
7104 		lru_gen_age_node(pgdat, sc);
7105 		return;
7106 	}
7107 
7108 	if (!can_age_anon_pages(pgdat, sc))
7109 		return;
7110 
7111 	lruvec = mem_cgroup_lruvec(NULL, pgdat);
7112 	if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
7113 		return;
7114 
7115 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
7116 	do {
7117 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
7118 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
7119 				   sc, LRU_ACTIVE_ANON);
7120 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
7121 	} while (memcg);
7122 }
7123 
7124 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
7125 {
7126 	int i;
7127 	struct zone *zone;
7128 
7129 	/*
7130 	 * Check for watermark boosts top-down as the higher zones
7131 	 * are more likely to be boosted. Both watermarks and boosts
7132 	 * should not be checked at the same time as reclaim would
7133 	 * start prematurely when there is no boosting and a lower
7134 	 * zone is balanced.
7135 	 */
7136 	for (i = highest_zoneidx; i >= 0; i--) {
7137 		zone = pgdat->node_zones + i;
7138 		if (!managed_zone(zone))
7139 			continue;
7140 
7141 		if (zone->watermark_boost)
7142 			return true;
7143 	}
7144 
7145 	return false;
7146 }
7147 
7148 /*
7149  * Returns true if there is an eligible zone balanced for the request order
7150  * and highest_zoneidx
7151  */
7152 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
7153 {
7154 	int i;
7155 	unsigned long mark = -1;
7156 	struct zone *zone;
7157 
7158 	/*
7159 	 * Check watermarks bottom-up as lower zones are more likely to
7160 	 * meet watermarks.
7161 	 */
7162 	for (i = 0; i <= highest_zoneidx; i++) {
7163 		zone = pgdat->node_zones + i;
7164 
7165 		if (!managed_zone(zone))
7166 			continue;
7167 
7168 		if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)
7169 			mark = wmark_pages(zone, WMARK_PROMO);
7170 		else
7171 			mark = high_wmark_pages(zone);
7172 		if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
7173 			return true;
7174 	}
7175 
7176 	/*
7177 	 * If a node has no managed zone within highest_zoneidx, it does not
7178 	 * need balancing by definition. This can happen if a zone-restricted
7179 	 * allocation tries to wake a remote kswapd.
7180 	 */
7181 	if (mark == -1)
7182 		return true;
7183 
7184 	return false;
7185 }
7186 
7187 /* Clear pgdat state for congested, dirty or under writeback. */
7188 static void clear_pgdat_congested(pg_data_t *pgdat)
7189 {
7190 	struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
7191 
7192 	clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
7193 	clear_bit(PGDAT_DIRTY, &pgdat->flags);
7194 	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
7195 }
7196 
7197 /*
7198  * Prepare kswapd for sleeping. This verifies that there are no processes
7199  * waiting in throttle_direct_reclaim() and that watermarks have been met.
7200  *
7201  * Returns true if kswapd is ready to sleep
7202  */
7203 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
7204 				int highest_zoneidx)
7205 {
7206 	/*
7207 	 * The throttled processes are normally woken up in balance_pgdat() as
7208 	 * soon as allow_direct_reclaim() is true. But there is a potential
7209 	 * race between when kswapd checks the watermarks and a process gets
7210 	 * throttled. There is also a potential race if processes get
7211 	 * throttled, kswapd wakes, a large process exits thereby balancing the
7212 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
7213 	 * the wake up checks. If kswapd is going to sleep, no process should
7214 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
7215 	 * the wake up is premature, processes will wake kswapd and get
7216 	 * throttled again. The difference from wake ups in balance_pgdat() is
7217 	 * that here we are under prepare_to_wait().
7218 	 */
7219 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
7220 		wake_up_all(&pgdat->pfmemalloc_wait);
7221 
7222 	/* Hopeless node, leave it to direct reclaim */
7223 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
7224 		return true;
7225 
7226 	if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
7227 		clear_pgdat_congested(pgdat);
7228 		return true;
7229 	}
7230 
7231 	return false;
7232 }
7233 
7234 /*
7235  * kswapd shrinks a node of pages that are at or below the highest usable
7236  * zone that is currently unbalanced.
7237  *
7238  * Returns true if kswapd scanned at least the requested number of pages to
7239  * reclaim or if the lack of progress was due to pages under writeback.
7240  * This is used to determine if the scanning priority needs to be raised.
7241  */
7242 static bool kswapd_shrink_node(pg_data_t *pgdat,
7243 			       struct scan_control *sc)
7244 {
7245 	struct zone *zone;
7246 	int z;
7247 
7248 	/* Reclaim a number of pages proportional to the number of zones */
7249 	sc->nr_to_reclaim = 0;
7250 	for (z = 0; z <= sc->reclaim_idx; z++) {
7251 		zone = pgdat->node_zones + z;
7252 		if (!managed_zone(zone))
7253 			continue;
7254 
7255 		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
7256 	}
7257 
7258 	/*
7259 	 * Historically care was taken to put equal pressure on all zones but
7260 	 * now pressure is applied based on node LRU order.
7261 	 */
7262 	shrink_node(pgdat, sc);
7263 
7264 	/*
7265 	 * Fragmentation may mean that the system cannot be rebalanced for
7266 	 * high-order allocations. If twice the allocation size has been
7267 	 * reclaimed then recheck watermarks only at order-0 to prevent
7268 	 * excessive reclaim. Assume that a process requested a high-order
7269 	 * can direct reclaim/compact.
7270 	 */
7271 	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
7272 		sc->order = 0;
7273 
7274 	return sc->nr_scanned >= sc->nr_to_reclaim;
7275 }
7276 
7277 /* Page allocator PCP high watermark is lowered if reclaim is active. */
7278 static inline void
7279 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
7280 {
7281 	int i;
7282 	struct zone *zone;
7283 
7284 	for (i = 0; i <= highest_zoneidx; i++) {
7285 		zone = pgdat->node_zones + i;
7286 
7287 		if (!managed_zone(zone))
7288 			continue;
7289 
7290 		if (active)
7291 			set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
7292 		else
7293 			clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
7294 	}
7295 }
7296 
7297 static inline void
7298 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
7299 {
7300 	update_reclaim_active(pgdat, highest_zoneidx, true);
7301 }
7302 
7303 static inline void
7304 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
7305 {
7306 	update_reclaim_active(pgdat, highest_zoneidx, false);
7307 }
7308 
7309 /*
7310  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
7311  * that are eligible for use by the caller until at least one zone is
7312  * balanced.
7313  *
7314  * Returns the order kswapd finished reclaiming at.
7315  *
7316  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
7317  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
7318  * found to have free_pages <= high_wmark_pages(zone), any page in that zone
7319  * or lower is eligible for reclaim until at least one usable zone is
7320  * balanced.
7321  */
7322 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
7323 {
7324 	int i;
7325 	unsigned long nr_soft_reclaimed;
7326 	unsigned long nr_soft_scanned;
7327 	unsigned long pflags;
7328 	unsigned long nr_boost_reclaim;
7329 	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
7330 	bool boosted;
7331 	struct zone *zone;
7332 	struct scan_control sc = {
7333 		.gfp_mask = GFP_KERNEL,
7334 		.order = order,
7335 		.may_unmap = 1,
7336 	};
7337 
7338 	set_task_reclaim_state(current, &sc.reclaim_state);
7339 	psi_memstall_enter(&pflags);
7340 	__fs_reclaim_acquire(_THIS_IP_);
7341 
7342 	count_vm_event(PAGEOUTRUN);
7343 
7344 	/*
7345 	 * Account for the reclaim boost. Note that the zone boost is left in
7346 	 * place so that parallel allocations that are near the watermark will
7347 	 * stall or direct reclaim until kswapd is finished.
7348 	 */
7349 	nr_boost_reclaim = 0;
7350 	for (i = 0; i <= highest_zoneidx; i++) {
7351 		zone = pgdat->node_zones + i;
7352 		if (!managed_zone(zone))
7353 			continue;
7354 
7355 		nr_boost_reclaim += zone->watermark_boost;
7356 		zone_boosts[i] = zone->watermark_boost;
7357 	}
7358 	boosted = nr_boost_reclaim;
7359 
7360 restart:
7361 	set_reclaim_active(pgdat, highest_zoneidx);
7362 	sc.priority = DEF_PRIORITY;
7363 	do {
7364 		unsigned long nr_reclaimed = sc.nr_reclaimed;
7365 		bool raise_priority = true;
7366 		bool balanced;
7367 		bool ret;
7368 
7369 		sc.reclaim_idx = highest_zoneidx;
7370 
7371 		/*
7372 		 * If the number of buffer_heads exceeds the maximum allowed
7373 		 * then consider reclaiming from all zones. This has a dual
7374 		 * purpose -- on 64-bit systems it is expected that
7375 		 * buffer_heads are stripped during active rotation. On 32-bit
7376 		 * systems, highmem pages can pin lowmem memory and shrinking
7377 		 * buffers can relieve lowmem pressure. Reclaim may still not
7378 		 * go ahead if all eligible zones for the original allocation
7379 		 * request are balanced to avoid excessive reclaim from kswapd.
7380 		 */
7381 		if (buffer_heads_over_limit) {
7382 			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
7383 				zone = pgdat->node_zones + i;
7384 				if (!managed_zone(zone))
7385 					continue;
7386 
7387 				sc.reclaim_idx = i;
7388 				break;
7389 			}
7390 		}
7391 
7392 		/*
7393 		 * If the pgdat is imbalanced then ignore boosting and preserve
7394 		 * the watermarks for a later time and restart. Note that the
7395 		 * zone watermarks will be still reset at the end of balancing
7396 		 * on the grounds that the normal reclaim should be enough to
7397 		 * re-evaluate if boosting is required when kswapd next wakes.
7398 		 */
7399 		balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
7400 		if (!balanced && nr_boost_reclaim) {
7401 			nr_boost_reclaim = 0;
7402 			goto restart;
7403 		}
7404 
7405 		/*
7406 		 * If boosting is not active then only reclaim if there are no
7407 		 * eligible zones. Note that sc.reclaim_idx is not used as
7408 		 * buffer_heads_over_limit may have adjusted it.
7409 		 */
7410 		if (!nr_boost_reclaim && balanced)
7411 			goto out;
7412 
7413 		/* Limit the priority of boosting to avoid reclaim writeback */
7414 		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
7415 			raise_priority = false;
7416 
7417 		/*
7418 		 * Do not writeback or swap pages for boosted reclaim. The
7419 		 * intent is to relieve pressure not issue sub-optimal IO
7420 		 * from reclaim context. If no pages are reclaimed, the
7421 		 * reclaim will be aborted.
7422 		 */
7423 		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
7424 		sc.may_swap = !nr_boost_reclaim;
7425 
7426 		/*
7427 		 * Do some background aging, to give pages a chance to be
7428 		 * referenced before reclaiming. All pages are rotated
7429 		 * regardless of classzone as this is about consistent aging.
7430 		 */
7431 		kswapd_age_node(pgdat, &sc);
7432 
7433 		/*
7434 		 * If we're getting trouble reclaiming, start doing writepage
7435 		 * even in laptop mode.
7436 		 */
7437 		if (sc.priority < DEF_PRIORITY - 2)
7438 			sc.may_writepage = 1;
7439 
7440 		/* Call soft limit reclaim before calling shrink_node. */
7441 		sc.nr_scanned = 0;
7442 		nr_soft_scanned = 0;
7443 		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
7444 						sc.gfp_mask, &nr_soft_scanned);
7445 		sc.nr_reclaimed += nr_soft_reclaimed;
7446 
7447 		/*
7448 		 * There should be no need to raise the scanning priority if
7449 		 * enough pages are already being scanned that that high
7450 		 * watermark would be met at 100% efficiency.
7451 		 */
7452 		if (kswapd_shrink_node(pgdat, &sc))
7453 			raise_priority = false;
7454 
7455 		/*
7456 		 * If the low watermark is met there is no need for processes
7457 		 * to be throttled on pfmemalloc_wait as they should not be
7458 		 * able to safely make forward progress. Wake them
7459 		 */
7460 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
7461 				allow_direct_reclaim(pgdat))
7462 			wake_up_all(&pgdat->pfmemalloc_wait);
7463 
7464 		/* Check if kswapd should be suspending */
7465 		__fs_reclaim_release(_THIS_IP_);
7466 		ret = try_to_freeze();
7467 		__fs_reclaim_acquire(_THIS_IP_);
7468 		if (ret || kthread_should_stop())
7469 			break;
7470 
7471 		/*
7472 		 * Raise priority if scanning rate is too low or there was no
7473 		 * progress in reclaiming pages
7474 		 */
7475 		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
7476 		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
7477 
7478 		/*
7479 		 * If reclaim made no progress for a boost, stop reclaim as
7480 		 * IO cannot be queued and it could be an infinite loop in
7481 		 * extreme circumstances.
7482 		 */
7483 		if (nr_boost_reclaim && !nr_reclaimed)
7484 			break;
7485 
7486 		if (raise_priority || !nr_reclaimed)
7487 			sc.priority--;
7488 	} while (sc.priority >= 1);
7489 
7490 	if (!sc.nr_reclaimed)
7491 		pgdat->kswapd_failures++;
7492 
7493 out:
7494 	clear_reclaim_active(pgdat, highest_zoneidx);
7495 
7496 	/* If reclaim was boosted, account for the reclaim done in this pass */
7497 	if (boosted) {
7498 		unsigned long flags;
7499 
7500 		for (i = 0; i <= highest_zoneidx; i++) {
7501 			if (!zone_boosts[i])
7502 				continue;
7503 
7504 			/* Increments are under the zone lock */
7505 			zone = pgdat->node_zones + i;
7506 			spin_lock_irqsave(&zone->lock, flags);
7507 			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
7508 			spin_unlock_irqrestore(&zone->lock, flags);
7509 		}
7510 
7511 		/*
7512 		 * As there is now likely space, wakeup kcompact to defragment
7513 		 * pageblocks.
7514 		 */
7515 		wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
7516 	}
7517 
7518 	snapshot_refaults(NULL, pgdat);
7519 	__fs_reclaim_release(_THIS_IP_);
7520 	psi_memstall_leave(&pflags);
7521 	set_task_reclaim_state(current, NULL);
7522 
7523 	/*
7524 	 * Return the order kswapd stopped reclaiming at as
7525 	 * prepare_kswapd_sleep() takes it into account. If another caller
7526 	 * entered the allocator slow path while kswapd was awake, order will
7527 	 * remain at the higher level.
7528 	 */
7529 	return sc.order;
7530 }
7531 
7532 /*
7533  * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
7534  * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
7535  * not a valid index then either kswapd runs for first time or kswapd couldn't
7536  * sleep after previous reclaim attempt (node is still unbalanced). In that
7537  * case return the zone index of the previous kswapd reclaim cycle.
7538  */
7539 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
7540 					   enum zone_type prev_highest_zoneidx)
7541 {
7542 	enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7543 
7544 	return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
7545 }
7546 
7547 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
7548 				unsigned int highest_zoneidx)
7549 {
7550 	long remaining = 0;
7551 	DEFINE_WAIT(wait);
7552 
7553 	if (freezing(current) || kthread_should_stop())
7554 		return;
7555 
7556 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7557 
7558 	/*
7559 	 * Try to sleep for a short interval. Note that kcompactd will only be
7560 	 * woken if it is possible to sleep for a short interval. This is
7561 	 * deliberate on the assumption that if reclaim cannot keep an
7562 	 * eligible zone balanced that it's also unlikely that compaction will
7563 	 * succeed.
7564 	 */
7565 	if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7566 		/*
7567 		 * Compaction records what page blocks it recently failed to
7568 		 * isolate pages from and skips them in the future scanning.
7569 		 * When kswapd is going to sleep, it is reasonable to assume
7570 		 * that pages and compaction may succeed so reset the cache.
7571 		 */
7572 		reset_isolation_suitable(pgdat);
7573 
7574 		/*
7575 		 * We have freed the memory, now we should compact it to make
7576 		 * allocation of the requested order possible.
7577 		 */
7578 		wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
7579 
7580 		remaining = schedule_timeout(HZ/10);
7581 
7582 		/*
7583 		 * If woken prematurely then reset kswapd_highest_zoneidx and
7584 		 * order. The values will either be from a wakeup request or
7585 		 * the previous request that slept prematurely.
7586 		 */
7587 		if (remaining) {
7588 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
7589 					kswapd_highest_zoneidx(pgdat,
7590 							highest_zoneidx));
7591 
7592 			if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
7593 				WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
7594 		}
7595 
7596 		finish_wait(&pgdat->kswapd_wait, &wait);
7597 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7598 	}
7599 
7600 	/*
7601 	 * After a short sleep, check if it was a premature sleep. If not, then
7602 	 * go fully to sleep until explicitly woken up.
7603 	 */
7604 	if (!remaining &&
7605 	    prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7606 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
7607 
7608 		/*
7609 		 * vmstat counters are not perfectly accurate and the estimated
7610 		 * value for counters such as NR_FREE_PAGES can deviate from the
7611 		 * true value by nr_online_cpus * threshold. To avoid the zone
7612 		 * watermarks being breached while under pressure, we reduce the
7613 		 * per-cpu vmstat threshold while kswapd is awake and restore
7614 		 * them before going back to sleep.
7615 		 */
7616 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
7617 
7618 		if (!kthread_should_stop())
7619 			schedule();
7620 
7621 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
7622 	} else {
7623 		if (remaining)
7624 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
7625 		else
7626 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
7627 	}
7628 	finish_wait(&pgdat->kswapd_wait, &wait);
7629 }
7630 
7631 /*
7632  * The background pageout daemon, started as a kernel thread
7633  * from the init process.
7634  *
7635  * This basically trickles out pages so that we have _some_
7636  * free memory available even if there is no other activity
7637  * that frees anything up. This is needed for things like routing
7638  * etc, where we otherwise might have all activity going on in
7639  * asynchronous contexts that cannot page things out.
7640  *
7641  * If there are applications that are active memory-allocators
7642  * (most normal use), this basically shouldn't matter.
7643  */
7644 static int kswapd(void *p)
7645 {
7646 	unsigned int alloc_order, reclaim_order;
7647 	unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
7648 	pg_data_t *pgdat = (pg_data_t *)p;
7649 	struct task_struct *tsk = current;
7650 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7651 
7652 	if (!cpumask_empty(cpumask))
7653 		set_cpus_allowed_ptr(tsk, cpumask);
7654 
7655 	/*
7656 	 * Tell the memory management that we're a "memory allocator",
7657 	 * and that if we need more memory we should get access to it
7658 	 * regardless (see "__alloc_pages()"). "kswapd" should
7659 	 * never get caught in the normal page freeing logic.
7660 	 *
7661 	 * (Kswapd normally doesn't need memory anyway, but sometimes
7662 	 * you need a small amount of memory in order to be able to
7663 	 * page out something else, and this flag essentially protects
7664 	 * us from recursively trying to free more memory as we're
7665 	 * trying to free the first piece of memory in the first place).
7666 	 */
7667 	tsk->flags |= PF_MEMALLOC | PF_KSWAPD;
7668 	set_freezable();
7669 
7670 	WRITE_ONCE(pgdat->kswapd_order, 0);
7671 	WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7672 	atomic_set(&pgdat->nr_writeback_throttled, 0);
7673 	for ( ; ; ) {
7674 		bool ret;
7675 
7676 		alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
7677 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7678 							highest_zoneidx);
7679 
7680 kswapd_try_sleep:
7681 		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
7682 					highest_zoneidx);
7683 
7684 		/* Read the new order and highest_zoneidx */
7685 		alloc_order = READ_ONCE(pgdat->kswapd_order);
7686 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7687 							highest_zoneidx);
7688 		WRITE_ONCE(pgdat->kswapd_order, 0);
7689 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7690 
7691 		ret = try_to_freeze();
7692 		if (kthread_should_stop())
7693 			break;
7694 
7695 		/*
7696 		 * We can speed up thawing tasks if we don't call balance_pgdat
7697 		 * after returning from the refrigerator
7698 		 */
7699 		if (ret)
7700 			continue;
7701 
7702 		/*
7703 		 * Reclaim begins at the requested order but if a high-order
7704 		 * reclaim fails then kswapd falls back to reclaiming for
7705 		 * order-0. If that happens, kswapd will consider sleeping
7706 		 * for the order it finished reclaiming at (reclaim_order)
7707 		 * but kcompactd is woken to compact for the original
7708 		 * request (alloc_order).
7709 		 */
7710 		trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
7711 						alloc_order);
7712 		reclaim_order = balance_pgdat(pgdat, alloc_order,
7713 						highest_zoneidx);
7714 		if (reclaim_order < alloc_order)
7715 			goto kswapd_try_sleep;
7716 	}
7717 
7718 	tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD);
7719 
7720 	return 0;
7721 }
7722 
7723 /*
7724  * A zone is low on free memory or too fragmented for high-order memory.  If
7725  * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
7726  * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
7727  * has failed or is not needed, still wake up kcompactd if only compaction is
7728  * needed.
7729  */
7730 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
7731 		   enum zone_type highest_zoneidx)
7732 {
7733 	pg_data_t *pgdat;
7734 	enum zone_type curr_idx;
7735 
7736 	if (!managed_zone(zone))
7737 		return;
7738 
7739 	if (!cpuset_zone_allowed(zone, gfp_flags))
7740 		return;
7741 
7742 	pgdat = zone->zone_pgdat;
7743 	curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7744 
7745 	if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
7746 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
7747 
7748 	if (READ_ONCE(pgdat->kswapd_order) < order)
7749 		WRITE_ONCE(pgdat->kswapd_order, order);
7750 
7751 	if (!waitqueue_active(&pgdat->kswapd_wait))
7752 		return;
7753 
7754 	/* Hopeless node, leave it to direct reclaim if possible */
7755 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
7756 	    (pgdat_balanced(pgdat, order, highest_zoneidx) &&
7757 	     !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
7758 		/*
7759 		 * There may be plenty of free memory available, but it's too
7760 		 * fragmented for high-order allocations.  Wake up kcompactd
7761 		 * and rely on compaction_suitable() to determine if it's
7762 		 * needed.  If it fails, it will defer subsequent attempts to
7763 		 * ratelimit its work.
7764 		 */
7765 		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
7766 			wakeup_kcompactd(pgdat, order, highest_zoneidx);
7767 		return;
7768 	}
7769 
7770 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
7771 				      gfp_flags);
7772 	wake_up_interruptible(&pgdat->kswapd_wait);
7773 }
7774 
7775 #ifdef CONFIG_HIBERNATION
7776 /*
7777  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
7778  * freed pages.
7779  *
7780  * Rather than trying to age LRUs the aim is to preserve the overall
7781  * LRU order by reclaiming preferentially
7782  * inactive > active > active referenced > active mapped
7783  */
7784 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
7785 {
7786 	struct scan_control sc = {
7787 		.nr_to_reclaim = nr_to_reclaim,
7788 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
7789 		.reclaim_idx = MAX_NR_ZONES - 1,
7790 		.priority = DEF_PRIORITY,
7791 		.may_writepage = 1,
7792 		.may_unmap = 1,
7793 		.may_swap = 1,
7794 		.hibernation_mode = 1,
7795 	};
7796 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7797 	unsigned long nr_reclaimed;
7798 	unsigned int noreclaim_flag;
7799 
7800 	fs_reclaim_acquire(sc.gfp_mask);
7801 	noreclaim_flag = memalloc_noreclaim_save();
7802 	set_task_reclaim_state(current, &sc.reclaim_state);
7803 
7804 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
7805 
7806 	set_task_reclaim_state(current, NULL);
7807 	memalloc_noreclaim_restore(noreclaim_flag);
7808 	fs_reclaim_release(sc.gfp_mask);
7809 
7810 	return nr_reclaimed;
7811 }
7812 #endif /* CONFIG_HIBERNATION */
7813 
7814 /*
7815  * This kswapd start function will be called by init and node-hot-add.
7816  */
7817 void kswapd_run(int nid)
7818 {
7819 	pg_data_t *pgdat = NODE_DATA(nid);
7820 
7821 	pgdat_kswapd_lock(pgdat);
7822 	if (!pgdat->kswapd) {
7823 		pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
7824 		if (IS_ERR(pgdat->kswapd)) {
7825 			/* failure at boot is fatal */
7826 			BUG_ON(system_state < SYSTEM_RUNNING);
7827 			pr_err("Failed to start kswapd on node %d\n", nid);
7828 			pgdat->kswapd = NULL;
7829 		}
7830 	}
7831 	pgdat_kswapd_unlock(pgdat);
7832 }
7833 
7834 /*
7835  * Called by memory hotplug when all memory in a node is offlined.  Caller must
7836  * be holding mem_hotplug_begin/done().
7837  */
7838 void kswapd_stop(int nid)
7839 {
7840 	pg_data_t *pgdat = NODE_DATA(nid);
7841 	struct task_struct *kswapd;
7842 
7843 	pgdat_kswapd_lock(pgdat);
7844 	kswapd = pgdat->kswapd;
7845 	if (kswapd) {
7846 		kthread_stop(kswapd);
7847 		pgdat->kswapd = NULL;
7848 	}
7849 	pgdat_kswapd_unlock(pgdat);
7850 }
7851 
7852 static int __init kswapd_init(void)
7853 {
7854 	int nid;
7855 
7856 	swap_setup();
7857 	for_each_node_state(nid, N_MEMORY)
7858  		kswapd_run(nid);
7859 	return 0;
7860 }
7861 
7862 module_init(kswapd_init)
7863 
7864 #ifdef CONFIG_NUMA
7865 /*
7866  * Node reclaim mode
7867  *
7868  * If non-zero call node_reclaim when the number of free pages falls below
7869  * the watermarks.
7870  */
7871 int node_reclaim_mode __read_mostly;
7872 
7873 /*
7874  * Priority for NODE_RECLAIM. This determines the fraction of pages
7875  * of a node considered for each zone_reclaim. 4 scans 1/16th of
7876  * a zone.
7877  */
7878 #define NODE_RECLAIM_PRIORITY 4
7879 
7880 /*
7881  * Percentage of pages in a zone that must be unmapped for node_reclaim to
7882  * occur.
7883  */
7884 int sysctl_min_unmapped_ratio = 1;
7885 
7886 /*
7887  * If the number of slab pages in a zone grows beyond this percentage then
7888  * slab reclaim needs to occur.
7889  */
7890 int sysctl_min_slab_ratio = 5;
7891 
7892 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
7893 {
7894 	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
7895 	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
7896 		node_page_state(pgdat, NR_ACTIVE_FILE);
7897 
7898 	/*
7899 	 * It's possible for there to be more file mapped pages than
7900 	 * accounted for by the pages on the file LRU lists because
7901 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
7902 	 */
7903 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
7904 }
7905 
7906 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
7907 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
7908 {
7909 	unsigned long nr_pagecache_reclaimable;
7910 	unsigned long delta = 0;
7911 
7912 	/*
7913 	 * If RECLAIM_UNMAP is set, then all file pages are considered
7914 	 * potentially reclaimable. Otherwise, we have to worry about
7915 	 * pages like swapcache and node_unmapped_file_pages() provides
7916 	 * a better estimate
7917 	 */
7918 	if (node_reclaim_mode & RECLAIM_UNMAP)
7919 		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
7920 	else
7921 		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
7922 
7923 	/* If we can't clean pages, remove dirty pages from consideration */
7924 	if (!(node_reclaim_mode & RECLAIM_WRITE))
7925 		delta += node_page_state(pgdat, NR_FILE_DIRTY);
7926 
7927 	/* Watch for any possible underflows due to delta */
7928 	if (unlikely(delta > nr_pagecache_reclaimable))
7929 		delta = nr_pagecache_reclaimable;
7930 
7931 	return nr_pagecache_reclaimable - delta;
7932 }
7933 
7934 /*
7935  * Try to free up some pages from this node through reclaim.
7936  */
7937 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
7938 {
7939 	/* Minimum pages needed in order to stay on node */
7940 	const unsigned long nr_pages = 1 << order;
7941 	struct task_struct *p = current;
7942 	unsigned int noreclaim_flag;
7943 	struct scan_control sc = {
7944 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7945 		.gfp_mask = current_gfp_context(gfp_mask),
7946 		.order = order,
7947 		.priority = NODE_RECLAIM_PRIORITY,
7948 		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
7949 		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
7950 		.may_swap = 1,
7951 		.reclaim_idx = gfp_zone(gfp_mask),
7952 	};
7953 	unsigned long pflags;
7954 
7955 	trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
7956 					   sc.gfp_mask);
7957 
7958 	cond_resched();
7959 	psi_memstall_enter(&pflags);
7960 	fs_reclaim_acquire(sc.gfp_mask);
7961 	/*
7962 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
7963 	 */
7964 	noreclaim_flag = memalloc_noreclaim_save();
7965 	set_task_reclaim_state(p, &sc.reclaim_state);
7966 
7967 	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages ||
7968 	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) {
7969 		/*
7970 		 * Free memory by calling shrink node with increasing
7971 		 * priorities until we have enough memory freed.
7972 		 */
7973 		do {
7974 			shrink_node(pgdat, &sc);
7975 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
7976 	}
7977 
7978 	set_task_reclaim_state(p, NULL);
7979 	memalloc_noreclaim_restore(noreclaim_flag);
7980 	fs_reclaim_release(sc.gfp_mask);
7981 	psi_memstall_leave(&pflags);
7982 
7983 	trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
7984 
7985 	return sc.nr_reclaimed >= nr_pages;
7986 }
7987 
7988 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
7989 {
7990 	int ret;
7991 
7992 	/*
7993 	 * Node reclaim reclaims unmapped file backed pages and
7994 	 * slab pages if we are over the defined limits.
7995 	 *
7996 	 * A small portion of unmapped file backed pages is needed for
7997 	 * file I/O otherwise pages read by file I/O will be immediately
7998 	 * thrown out if the node is overallocated. So we do not reclaim
7999 	 * if less than a specified percentage of the node is used by
8000 	 * unmapped file backed pages.
8001 	 */
8002 	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
8003 	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
8004 	    pgdat->min_slab_pages)
8005 		return NODE_RECLAIM_FULL;
8006 
8007 	/*
8008 	 * Do not scan if the allocation should not be delayed.
8009 	 */
8010 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
8011 		return NODE_RECLAIM_NOSCAN;
8012 
8013 	/*
8014 	 * Only run node reclaim on the local node or on nodes that do not
8015 	 * have associated processors. This will favor the local processor
8016 	 * over remote processors and spread off node memory allocations
8017 	 * as wide as possible.
8018 	 */
8019 	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
8020 		return NODE_RECLAIM_NOSCAN;
8021 
8022 	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
8023 		return NODE_RECLAIM_NOSCAN;
8024 
8025 	ret = __node_reclaim(pgdat, gfp_mask, order);
8026 	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
8027 
8028 	if (!ret)
8029 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
8030 
8031 	return ret;
8032 }
8033 #endif
8034 
8035 void check_move_unevictable_pages(struct pagevec *pvec)
8036 {
8037 	struct folio_batch fbatch;
8038 	unsigned i;
8039 
8040 	folio_batch_init(&fbatch);
8041 	for (i = 0; i < pvec->nr; i++) {
8042 		struct page *page = pvec->pages[i];
8043 
8044 		if (PageTransTail(page))
8045 			continue;
8046 		folio_batch_add(&fbatch, page_folio(page));
8047 	}
8048 	check_move_unevictable_folios(&fbatch);
8049 }
8050 EXPORT_SYMBOL_GPL(check_move_unevictable_pages);
8051 
8052 /**
8053  * check_move_unevictable_folios - Move evictable folios to appropriate zone
8054  * lru list
8055  * @fbatch: Batch of lru folios to check.
8056  *
8057  * Checks folios for evictability, if an evictable folio is in the unevictable
8058  * lru list, moves it to the appropriate evictable lru list. This function
8059  * should be only used for lru folios.
8060  */
8061 void check_move_unevictable_folios(struct folio_batch *fbatch)
8062 {
8063 	struct lruvec *lruvec = NULL;
8064 	int pgscanned = 0;
8065 	int pgrescued = 0;
8066 	int i;
8067 
8068 	for (i = 0; i < fbatch->nr; i++) {
8069 		struct folio *folio = fbatch->folios[i];
8070 		int nr_pages = folio_nr_pages(folio);
8071 
8072 		pgscanned += nr_pages;
8073 
8074 		/* block memcg migration while the folio moves between lrus */
8075 		if (!folio_test_clear_lru(folio))
8076 			continue;
8077 
8078 		lruvec = folio_lruvec_relock_irq(folio, lruvec);
8079 		if (folio_evictable(folio) && folio_test_unevictable(folio)) {
8080 			lruvec_del_folio(lruvec, folio);
8081 			folio_clear_unevictable(folio);
8082 			lruvec_add_folio(lruvec, folio);
8083 			pgrescued += nr_pages;
8084 		}
8085 		folio_set_lru(folio);
8086 	}
8087 
8088 	if (lruvec) {
8089 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
8090 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
8091 		unlock_page_lruvec_irq(lruvec);
8092 	} else if (pgscanned) {
8093 		count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
8094 	}
8095 }
8096 EXPORT_SYMBOL_GPL(check_move_unevictable_folios);
8097