xref: /linux/mm/vmscan.c (revision 5e8c0fb6a95728b852d56c0a9244425d474670c0)
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13 
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h>	/* for try_to_release_page(),
30 					buffer_heads_over_limit */
31 #include <linux/mm_inline.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rmap.h>
34 #include <linux/topology.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/compaction.h>
38 #include <linux/notifier.h>
39 #include <linux/rwsem.h>
40 #include <linux/delay.h>
41 #include <linux/kthread.h>
42 #include <linux/freezer.h>
43 #include <linux/memcontrol.h>
44 #include <linux/delayacct.h>
45 #include <linux/sysctl.h>
46 #include <linux/oom.h>
47 #include <linux/prefetch.h>
48 #include <linux/printk.h>
49 
50 #include <asm/tlbflush.h>
51 #include <asm/div64.h>
52 
53 #include <linux/swapops.h>
54 #include <linux/balloon_compaction.h>
55 
56 #include "internal.h"
57 
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/vmscan.h>
60 
61 struct scan_control {
62 	/* How many pages shrink_list() should reclaim */
63 	unsigned long nr_to_reclaim;
64 
65 	/* This context's GFP mask */
66 	gfp_t gfp_mask;
67 
68 	/* Allocation order */
69 	int order;
70 
71 	/*
72 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
73 	 * are scanned.
74 	 */
75 	nodemask_t	*nodemask;
76 
77 	/*
78 	 * The memory cgroup that hit its limit and as a result is the
79 	 * primary target of this reclaim invocation.
80 	 */
81 	struct mem_cgroup *target_mem_cgroup;
82 
83 	/* Scan (total_size >> priority) pages at once */
84 	int priority;
85 
86 	unsigned int may_writepage:1;
87 
88 	/* Can mapped pages be reclaimed? */
89 	unsigned int may_unmap:1;
90 
91 	/* Can pages be swapped as part of reclaim? */
92 	unsigned int may_swap:1;
93 
94 	unsigned int hibernation_mode:1;
95 
96 	/* One of the zones is ready for compaction */
97 	unsigned int compaction_ready:1;
98 
99 	/* Incremented by the number of inactive pages that were scanned */
100 	unsigned long nr_scanned;
101 
102 	/* Number of pages freed so far during a call to shrink_zones() */
103 	unsigned long nr_reclaimed;
104 };
105 
106 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
107 
108 #ifdef ARCH_HAS_PREFETCH
109 #define prefetch_prev_lru_page(_page, _base, _field)			\
110 	do {								\
111 		if ((_page)->lru.prev != _base) {			\
112 			struct page *prev;				\
113 									\
114 			prev = lru_to_page(&(_page->lru));		\
115 			prefetch(&prev->_field);			\
116 		}							\
117 	} while (0)
118 #else
119 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
120 #endif
121 
122 #ifdef ARCH_HAS_PREFETCHW
123 #define prefetchw_prev_lru_page(_page, _base, _field)			\
124 	do {								\
125 		if ((_page)->lru.prev != _base) {			\
126 			struct page *prev;				\
127 									\
128 			prev = lru_to_page(&(_page->lru));		\
129 			prefetchw(&prev->_field);			\
130 		}							\
131 	} while (0)
132 #else
133 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
134 #endif
135 
136 /*
137  * From 0 .. 100.  Higher means more swappy.
138  */
139 int vm_swappiness = 60;
140 /*
141  * The total number of pages which are beyond the high watermark within all
142  * zones.
143  */
144 unsigned long vm_total_pages;
145 
146 static LIST_HEAD(shrinker_list);
147 static DECLARE_RWSEM(shrinker_rwsem);
148 
149 #ifdef CONFIG_MEMCG
150 static bool global_reclaim(struct scan_control *sc)
151 {
152 	return !sc->target_mem_cgroup;
153 }
154 #else
155 static bool global_reclaim(struct scan_control *sc)
156 {
157 	return true;
158 }
159 #endif
160 
161 static unsigned long zone_reclaimable_pages(struct zone *zone)
162 {
163 	int nr;
164 
165 	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
166 	     zone_page_state(zone, NR_INACTIVE_FILE);
167 
168 	if (get_nr_swap_pages() > 0)
169 		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
170 		      zone_page_state(zone, NR_INACTIVE_ANON);
171 
172 	return nr;
173 }
174 
175 bool zone_reclaimable(struct zone *zone)
176 {
177 	return zone_page_state(zone, NR_PAGES_SCANNED) <
178 		zone_reclaimable_pages(zone) * 6;
179 }
180 
181 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
182 {
183 	if (!mem_cgroup_disabled())
184 		return mem_cgroup_get_lru_size(lruvec, lru);
185 
186 	return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
187 }
188 
189 /*
190  * Add a shrinker callback to be called from the vm.
191  */
192 int register_shrinker(struct shrinker *shrinker)
193 {
194 	size_t size = sizeof(*shrinker->nr_deferred);
195 
196 	/*
197 	 * If we only have one possible node in the system anyway, save
198 	 * ourselves the trouble and disable NUMA aware behavior. This way we
199 	 * will save memory and some small loop time later.
200 	 */
201 	if (nr_node_ids == 1)
202 		shrinker->flags &= ~SHRINKER_NUMA_AWARE;
203 
204 	if (shrinker->flags & SHRINKER_NUMA_AWARE)
205 		size *= nr_node_ids;
206 
207 	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
208 	if (!shrinker->nr_deferred)
209 		return -ENOMEM;
210 
211 	down_write(&shrinker_rwsem);
212 	list_add_tail(&shrinker->list, &shrinker_list);
213 	up_write(&shrinker_rwsem);
214 	return 0;
215 }
216 EXPORT_SYMBOL(register_shrinker);
217 
218 /*
219  * Remove one
220  */
221 void unregister_shrinker(struct shrinker *shrinker)
222 {
223 	down_write(&shrinker_rwsem);
224 	list_del(&shrinker->list);
225 	up_write(&shrinker_rwsem);
226 	kfree(shrinker->nr_deferred);
227 }
228 EXPORT_SYMBOL(unregister_shrinker);
229 
230 #define SHRINK_BATCH 128
231 
232 static unsigned long shrink_slabs(struct shrink_control *shrinkctl,
233 				  struct shrinker *shrinker,
234 				  unsigned long nr_scanned,
235 				  unsigned long nr_eligible)
236 {
237 	unsigned long freed = 0;
238 	unsigned long long delta;
239 	long total_scan;
240 	long freeable;
241 	long nr;
242 	long new_nr;
243 	int nid = shrinkctl->nid;
244 	long batch_size = shrinker->batch ? shrinker->batch
245 					  : SHRINK_BATCH;
246 
247 	freeable = shrinker->count_objects(shrinker, shrinkctl);
248 	if (freeable == 0)
249 		return 0;
250 
251 	/*
252 	 * copy the current shrinker scan count into a local variable
253 	 * and zero it so that other concurrent shrinker invocations
254 	 * don't also do this scanning work.
255 	 */
256 	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
257 
258 	total_scan = nr;
259 	delta = (4 * nr_scanned) / shrinker->seeks;
260 	delta *= freeable;
261 	do_div(delta, nr_eligible + 1);
262 	total_scan += delta;
263 	if (total_scan < 0) {
264 		pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
265 		       shrinker->scan_objects, total_scan);
266 		total_scan = freeable;
267 	}
268 
269 	/*
270 	 * We need to avoid excessive windup on filesystem shrinkers
271 	 * due to large numbers of GFP_NOFS allocations causing the
272 	 * shrinkers to return -1 all the time. This results in a large
273 	 * nr being built up so when a shrink that can do some work
274 	 * comes along it empties the entire cache due to nr >>>
275 	 * freeable. This is bad for sustaining a working set in
276 	 * memory.
277 	 *
278 	 * Hence only allow the shrinker to scan the entire cache when
279 	 * a large delta change is calculated directly.
280 	 */
281 	if (delta < freeable / 4)
282 		total_scan = min(total_scan, freeable / 2);
283 
284 	/*
285 	 * Avoid risking looping forever due to too large nr value:
286 	 * never try to free more than twice the estimate number of
287 	 * freeable entries.
288 	 */
289 	if (total_scan > freeable * 2)
290 		total_scan = freeable * 2;
291 
292 	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
293 				   nr_scanned, nr_eligible,
294 				   freeable, delta, total_scan);
295 
296 	/*
297 	 * Normally, we should not scan less than batch_size objects in one
298 	 * pass to avoid too frequent shrinker calls, but if the slab has less
299 	 * than batch_size objects in total and we are really tight on memory,
300 	 * we will try to reclaim all available objects, otherwise we can end
301 	 * up failing allocations although there are plenty of reclaimable
302 	 * objects spread over several slabs with usage less than the
303 	 * batch_size.
304 	 *
305 	 * We detect the "tight on memory" situations by looking at the total
306 	 * number of objects we want to scan (total_scan). If it is greater
307 	 * than the total number of objects on slab (freeable), we must be
308 	 * scanning at high prio and therefore should try to reclaim as much as
309 	 * possible.
310 	 */
311 	while (total_scan >= batch_size ||
312 	       total_scan >= freeable) {
313 		unsigned long ret;
314 		unsigned long nr_to_scan = min(batch_size, total_scan);
315 
316 		shrinkctl->nr_to_scan = nr_to_scan;
317 		ret = shrinker->scan_objects(shrinker, shrinkctl);
318 		if (ret == SHRINK_STOP)
319 			break;
320 		freed += ret;
321 
322 		count_vm_events(SLABS_SCANNED, nr_to_scan);
323 		total_scan -= nr_to_scan;
324 
325 		cond_resched();
326 	}
327 
328 	/*
329 	 * move the unused scan count back into the shrinker in a
330 	 * manner that handles concurrent updates. If we exhausted the
331 	 * scan, there is no need to do an update.
332 	 */
333 	if (total_scan > 0)
334 		new_nr = atomic_long_add_return(total_scan,
335 						&shrinker->nr_deferred[nid]);
336 	else
337 		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
338 
339 	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
340 	return freed;
341 }
342 
343 /**
344  * shrink_node_slabs - shrink slab caches of a given node
345  * @gfp_mask: allocation context
346  * @nid: node whose slab caches to target
347  * @nr_scanned: pressure numerator
348  * @nr_eligible: pressure denominator
349  *
350  * Call the shrink functions to age shrinkable caches.
351  *
352  * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
353  * unaware shrinkers will receive a node id of 0 instead.
354  *
355  * @nr_scanned and @nr_eligible form a ratio that indicate how much of
356  * the available objects should be scanned.  Page reclaim for example
357  * passes the number of pages scanned and the number of pages on the
358  * LRU lists that it considered on @nid, plus a bias in @nr_scanned
359  * when it encountered mapped pages.  The ratio is further biased by
360  * the ->seeks setting of the shrink function, which indicates the
361  * cost to recreate an object relative to that of an LRU page.
362  *
363  * Returns the number of reclaimed slab objects.
364  */
365 unsigned long shrink_node_slabs(gfp_t gfp_mask, int nid,
366 				unsigned long nr_scanned,
367 				unsigned long nr_eligible)
368 {
369 	struct shrinker *shrinker;
370 	unsigned long freed = 0;
371 
372 	if (nr_scanned == 0)
373 		nr_scanned = SWAP_CLUSTER_MAX;
374 
375 	if (!down_read_trylock(&shrinker_rwsem)) {
376 		/*
377 		 * If we would return 0, our callers would understand that we
378 		 * have nothing else to shrink and give up trying. By returning
379 		 * 1 we keep it going and assume we'll be able to shrink next
380 		 * time.
381 		 */
382 		freed = 1;
383 		goto out;
384 	}
385 
386 	list_for_each_entry(shrinker, &shrinker_list, list) {
387 		struct shrink_control sc = {
388 			.gfp_mask = gfp_mask,
389 			.nid = nid,
390 		};
391 
392 		if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
393 			sc.nid = 0;
394 
395 		freed += shrink_slabs(&sc, shrinker, nr_scanned, nr_eligible);
396 	}
397 
398 	up_read(&shrinker_rwsem);
399 out:
400 	cond_resched();
401 	return freed;
402 }
403 
404 static inline int is_page_cache_freeable(struct page *page)
405 {
406 	/*
407 	 * A freeable page cache page is referenced only by the caller
408 	 * that isolated the page, the page cache radix tree and
409 	 * optional buffer heads at page->private.
410 	 */
411 	return page_count(page) - page_has_private(page) == 2;
412 }
413 
414 static int may_write_to_queue(struct backing_dev_info *bdi,
415 			      struct scan_control *sc)
416 {
417 	if (current->flags & PF_SWAPWRITE)
418 		return 1;
419 	if (!bdi_write_congested(bdi))
420 		return 1;
421 	if (bdi == current->backing_dev_info)
422 		return 1;
423 	return 0;
424 }
425 
426 /*
427  * We detected a synchronous write error writing a page out.  Probably
428  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
429  * fsync(), msync() or close().
430  *
431  * The tricky part is that after writepage we cannot touch the mapping: nothing
432  * prevents it from being freed up.  But we have a ref on the page and once
433  * that page is locked, the mapping is pinned.
434  *
435  * We're allowed to run sleeping lock_page() here because we know the caller has
436  * __GFP_FS.
437  */
438 static void handle_write_error(struct address_space *mapping,
439 				struct page *page, int error)
440 {
441 	lock_page(page);
442 	if (page_mapping(page) == mapping)
443 		mapping_set_error(mapping, error);
444 	unlock_page(page);
445 }
446 
447 /* possible outcome of pageout() */
448 typedef enum {
449 	/* failed to write page out, page is locked */
450 	PAGE_KEEP,
451 	/* move page to the active list, page is locked */
452 	PAGE_ACTIVATE,
453 	/* page has been sent to the disk successfully, page is unlocked */
454 	PAGE_SUCCESS,
455 	/* page is clean and locked */
456 	PAGE_CLEAN,
457 } pageout_t;
458 
459 /*
460  * pageout is called by shrink_page_list() for each dirty page.
461  * Calls ->writepage().
462  */
463 static pageout_t pageout(struct page *page, struct address_space *mapping,
464 			 struct scan_control *sc)
465 {
466 	/*
467 	 * If the page is dirty, only perform writeback if that write
468 	 * will be non-blocking.  To prevent this allocation from being
469 	 * stalled by pagecache activity.  But note that there may be
470 	 * stalls if we need to run get_block().  We could test
471 	 * PagePrivate for that.
472 	 *
473 	 * If this process is currently in __generic_file_write_iter() against
474 	 * this page's queue, we can perform writeback even if that
475 	 * will block.
476 	 *
477 	 * If the page is swapcache, write it back even if that would
478 	 * block, for some throttling. This happens by accident, because
479 	 * swap_backing_dev_info is bust: it doesn't reflect the
480 	 * congestion state of the swapdevs.  Easy to fix, if needed.
481 	 */
482 	if (!is_page_cache_freeable(page))
483 		return PAGE_KEEP;
484 	if (!mapping) {
485 		/*
486 		 * Some data journaling orphaned pages can have
487 		 * page->mapping == NULL while being dirty with clean buffers.
488 		 */
489 		if (page_has_private(page)) {
490 			if (try_to_free_buffers(page)) {
491 				ClearPageDirty(page);
492 				pr_info("%s: orphaned page\n", __func__);
493 				return PAGE_CLEAN;
494 			}
495 		}
496 		return PAGE_KEEP;
497 	}
498 	if (mapping->a_ops->writepage == NULL)
499 		return PAGE_ACTIVATE;
500 	if (!may_write_to_queue(mapping->backing_dev_info, sc))
501 		return PAGE_KEEP;
502 
503 	if (clear_page_dirty_for_io(page)) {
504 		int res;
505 		struct writeback_control wbc = {
506 			.sync_mode = WB_SYNC_NONE,
507 			.nr_to_write = SWAP_CLUSTER_MAX,
508 			.range_start = 0,
509 			.range_end = LLONG_MAX,
510 			.for_reclaim = 1,
511 		};
512 
513 		SetPageReclaim(page);
514 		res = mapping->a_ops->writepage(page, &wbc);
515 		if (res < 0)
516 			handle_write_error(mapping, page, res);
517 		if (res == AOP_WRITEPAGE_ACTIVATE) {
518 			ClearPageReclaim(page);
519 			return PAGE_ACTIVATE;
520 		}
521 
522 		if (!PageWriteback(page)) {
523 			/* synchronous write or broken a_ops? */
524 			ClearPageReclaim(page);
525 		}
526 		trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
527 		inc_zone_page_state(page, NR_VMSCAN_WRITE);
528 		return PAGE_SUCCESS;
529 	}
530 
531 	return PAGE_CLEAN;
532 }
533 
534 /*
535  * Same as remove_mapping, but if the page is removed from the mapping, it
536  * gets returned with a refcount of 0.
537  */
538 static int __remove_mapping(struct address_space *mapping, struct page *page,
539 			    bool reclaimed)
540 {
541 	BUG_ON(!PageLocked(page));
542 	BUG_ON(mapping != page_mapping(page));
543 
544 	spin_lock_irq(&mapping->tree_lock);
545 	/*
546 	 * The non racy check for a busy page.
547 	 *
548 	 * Must be careful with the order of the tests. When someone has
549 	 * a ref to the page, it may be possible that they dirty it then
550 	 * drop the reference. So if PageDirty is tested before page_count
551 	 * here, then the following race may occur:
552 	 *
553 	 * get_user_pages(&page);
554 	 * [user mapping goes away]
555 	 * write_to(page);
556 	 *				!PageDirty(page)    [good]
557 	 * SetPageDirty(page);
558 	 * put_page(page);
559 	 *				!page_count(page)   [good, discard it]
560 	 *
561 	 * [oops, our write_to data is lost]
562 	 *
563 	 * Reversing the order of the tests ensures such a situation cannot
564 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
565 	 * load is not satisfied before that of page->_count.
566 	 *
567 	 * Note that if SetPageDirty is always performed via set_page_dirty,
568 	 * and thus under tree_lock, then this ordering is not required.
569 	 */
570 	if (!page_freeze_refs(page, 2))
571 		goto cannot_free;
572 	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
573 	if (unlikely(PageDirty(page))) {
574 		page_unfreeze_refs(page, 2);
575 		goto cannot_free;
576 	}
577 
578 	if (PageSwapCache(page)) {
579 		swp_entry_t swap = { .val = page_private(page) };
580 		mem_cgroup_swapout(page, swap);
581 		__delete_from_swap_cache(page);
582 		spin_unlock_irq(&mapping->tree_lock);
583 		swapcache_free(swap);
584 	} else {
585 		void (*freepage)(struct page *);
586 		void *shadow = NULL;
587 
588 		freepage = mapping->a_ops->freepage;
589 		/*
590 		 * Remember a shadow entry for reclaimed file cache in
591 		 * order to detect refaults, thus thrashing, later on.
592 		 *
593 		 * But don't store shadows in an address space that is
594 		 * already exiting.  This is not just an optizimation,
595 		 * inode reclaim needs to empty out the radix tree or
596 		 * the nodes are lost.  Don't plant shadows behind its
597 		 * back.
598 		 */
599 		if (reclaimed && page_is_file_cache(page) &&
600 		    !mapping_exiting(mapping))
601 			shadow = workingset_eviction(mapping, page);
602 		__delete_from_page_cache(page, shadow);
603 		spin_unlock_irq(&mapping->tree_lock);
604 
605 		if (freepage != NULL)
606 			freepage(page);
607 	}
608 
609 	return 1;
610 
611 cannot_free:
612 	spin_unlock_irq(&mapping->tree_lock);
613 	return 0;
614 }
615 
616 /*
617  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
618  * someone else has a ref on the page, abort and return 0.  If it was
619  * successfully detached, return 1.  Assumes the caller has a single ref on
620  * this page.
621  */
622 int remove_mapping(struct address_space *mapping, struct page *page)
623 {
624 	if (__remove_mapping(mapping, page, false)) {
625 		/*
626 		 * Unfreezing the refcount with 1 rather than 2 effectively
627 		 * drops the pagecache ref for us without requiring another
628 		 * atomic operation.
629 		 */
630 		page_unfreeze_refs(page, 1);
631 		return 1;
632 	}
633 	return 0;
634 }
635 
636 /**
637  * putback_lru_page - put previously isolated page onto appropriate LRU list
638  * @page: page to be put back to appropriate lru list
639  *
640  * Add previously isolated @page to appropriate LRU list.
641  * Page may still be unevictable for other reasons.
642  *
643  * lru_lock must not be held, interrupts must be enabled.
644  */
645 void putback_lru_page(struct page *page)
646 {
647 	bool is_unevictable;
648 	int was_unevictable = PageUnevictable(page);
649 
650 	VM_BUG_ON_PAGE(PageLRU(page), page);
651 
652 redo:
653 	ClearPageUnevictable(page);
654 
655 	if (page_evictable(page)) {
656 		/*
657 		 * For evictable pages, we can use the cache.
658 		 * In event of a race, worst case is we end up with an
659 		 * unevictable page on [in]active list.
660 		 * We know how to handle that.
661 		 */
662 		is_unevictable = false;
663 		lru_cache_add(page);
664 	} else {
665 		/*
666 		 * Put unevictable pages directly on zone's unevictable
667 		 * list.
668 		 */
669 		is_unevictable = true;
670 		add_page_to_unevictable_list(page);
671 		/*
672 		 * When racing with an mlock or AS_UNEVICTABLE clearing
673 		 * (page is unlocked) make sure that if the other thread
674 		 * does not observe our setting of PG_lru and fails
675 		 * isolation/check_move_unevictable_pages,
676 		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
677 		 * the page back to the evictable list.
678 		 *
679 		 * The other side is TestClearPageMlocked() or shmem_lock().
680 		 */
681 		smp_mb();
682 	}
683 
684 	/*
685 	 * page's status can change while we move it among lru. If an evictable
686 	 * page is on unevictable list, it never be freed. To avoid that,
687 	 * check after we added it to the list, again.
688 	 */
689 	if (is_unevictable && page_evictable(page)) {
690 		if (!isolate_lru_page(page)) {
691 			put_page(page);
692 			goto redo;
693 		}
694 		/* This means someone else dropped this page from LRU
695 		 * So, it will be freed or putback to LRU again. There is
696 		 * nothing to do here.
697 		 */
698 	}
699 
700 	if (was_unevictable && !is_unevictable)
701 		count_vm_event(UNEVICTABLE_PGRESCUED);
702 	else if (!was_unevictable && is_unevictable)
703 		count_vm_event(UNEVICTABLE_PGCULLED);
704 
705 	put_page(page);		/* drop ref from isolate */
706 }
707 
708 enum page_references {
709 	PAGEREF_RECLAIM,
710 	PAGEREF_RECLAIM_CLEAN,
711 	PAGEREF_KEEP,
712 	PAGEREF_ACTIVATE,
713 };
714 
715 static enum page_references page_check_references(struct page *page,
716 						  struct scan_control *sc)
717 {
718 	int referenced_ptes, referenced_page;
719 	unsigned long vm_flags;
720 
721 	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
722 					  &vm_flags);
723 	referenced_page = TestClearPageReferenced(page);
724 
725 	/*
726 	 * Mlock lost the isolation race with us.  Let try_to_unmap()
727 	 * move the page to the unevictable list.
728 	 */
729 	if (vm_flags & VM_LOCKED)
730 		return PAGEREF_RECLAIM;
731 
732 	if (referenced_ptes) {
733 		if (PageSwapBacked(page))
734 			return PAGEREF_ACTIVATE;
735 		/*
736 		 * All mapped pages start out with page table
737 		 * references from the instantiating fault, so we need
738 		 * to look twice if a mapped file page is used more
739 		 * than once.
740 		 *
741 		 * Mark it and spare it for another trip around the
742 		 * inactive list.  Another page table reference will
743 		 * lead to its activation.
744 		 *
745 		 * Note: the mark is set for activated pages as well
746 		 * so that recently deactivated but used pages are
747 		 * quickly recovered.
748 		 */
749 		SetPageReferenced(page);
750 
751 		if (referenced_page || referenced_ptes > 1)
752 			return PAGEREF_ACTIVATE;
753 
754 		/*
755 		 * Activate file-backed executable pages after first usage.
756 		 */
757 		if (vm_flags & VM_EXEC)
758 			return PAGEREF_ACTIVATE;
759 
760 		return PAGEREF_KEEP;
761 	}
762 
763 	/* Reclaim if clean, defer dirty pages to writeback */
764 	if (referenced_page && !PageSwapBacked(page))
765 		return PAGEREF_RECLAIM_CLEAN;
766 
767 	return PAGEREF_RECLAIM;
768 }
769 
770 /* Check if a page is dirty or under writeback */
771 static void page_check_dirty_writeback(struct page *page,
772 				       bool *dirty, bool *writeback)
773 {
774 	struct address_space *mapping;
775 
776 	/*
777 	 * Anonymous pages are not handled by flushers and must be written
778 	 * from reclaim context. Do not stall reclaim based on them
779 	 */
780 	if (!page_is_file_cache(page)) {
781 		*dirty = false;
782 		*writeback = false;
783 		return;
784 	}
785 
786 	/* By default assume that the page flags are accurate */
787 	*dirty = PageDirty(page);
788 	*writeback = PageWriteback(page);
789 
790 	/* Verify dirty/writeback state if the filesystem supports it */
791 	if (!page_has_private(page))
792 		return;
793 
794 	mapping = page_mapping(page);
795 	if (mapping && mapping->a_ops->is_dirty_writeback)
796 		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
797 }
798 
799 /*
800  * shrink_page_list() returns the number of reclaimed pages
801  */
802 static unsigned long shrink_page_list(struct list_head *page_list,
803 				      struct zone *zone,
804 				      struct scan_control *sc,
805 				      enum ttu_flags ttu_flags,
806 				      unsigned long *ret_nr_dirty,
807 				      unsigned long *ret_nr_unqueued_dirty,
808 				      unsigned long *ret_nr_congested,
809 				      unsigned long *ret_nr_writeback,
810 				      unsigned long *ret_nr_immediate,
811 				      bool force_reclaim)
812 {
813 	LIST_HEAD(ret_pages);
814 	LIST_HEAD(free_pages);
815 	int pgactivate = 0;
816 	unsigned long nr_unqueued_dirty = 0;
817 	unsigned long nr_dirty = 0;
818 	unsigned long nr_congested = 0;
819 	unsigned long nr_reclaimed = 0;
820 	unsigned long nr_writeback = 0;
821 	unsigned long nr_immediate = 0;
822 
823 	cond_resched();
824 
825 	while (!list_empty(page_list)) {
826 		struct address_space *mapping;
827 		struct page *page;
828 		int may_enter_fs;
829 		enum page_references references = PAGEREF_RECLAIM_CLEAN;
830 		bool dirty, writeback;
831 
832 		cond_resched();
833 
834 		page = lru_to_page(page_list);
835 		list_del(&page->lru);
836 
837 		if (!trylock_page(page))
838 			goto keep;
839 
840 		VM_BUG_ON_PAGE(PageActive(page), page);
841 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
842 
843 		sc->nr_scanned++;
844 
845 		if (unlikely(!page_evictable(page)))
846 			goto cull_mlocked;
847 
848 		if (!sc->may_unmap && page_mapped(page))
849 			goto keep_locked;
850 
851 		/* Double the slab pressure for mapped and swapcache pages */
852 		if (page_mapped(page) || PageSwapCache(page))
853 			sc->nr_scanned++;
854 
855 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
856 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
857 
858 		/*
859 		 * The number of dirty pages determines if a zone is marked
860 		 * reclaim_congested which affects wait_iff_congested. kswapd
861 		 * will stall and start writing pages if the tail of the LRU
862 		 * is all dirty unqueued pages.
863 		 */
864 		page_check_dirty_writeback(page, &dirty, &writeback);
865 		if (dirty || writeback)
866 			nr_dirty++;
867 
868 		if (dirty && !writeback)
869 			nr_unqueued_dirty++;
870 
871 		/*
872 		 * Treat this page as congested if the underlying BDI is or if
873 		 * pages are cycling through the LRU so quickly that the
874 		 * pages marked for immediate reclaim are making it to the
875 		 * end of the LRU a second time.
876 		 */
877 		mapping = page_mapping(page);
878 		if (((dirty || writeback) && mapping &&
879 		     bdi_write_congested(mapping->backing_dev_info)) ||
880 		    (writeback && PageReclaim(page)))
881 			nr_congested++;
882 
883 		/*
884 		 * If a page at the tail of the LRU is under writeback, there
885 		 * are three cases to consider.
886 		 *
887 		 * 1) If reclaim is encountering an excessive number of pages
888 		 *    under writeback and this page is both under writeback and
889 		 *    PageReclaim then it indicates that pages are being queued
890 		 *    for IO but are being recycled through the LRU before the
891 		 *    IO can complete. Waiting on the page itself risks an
892 		 *    indefinite stall if it is impossible to writeback the
893 		 *    page due to IO error or disconnected storage so instead
894 		 *    note that the LRU is being scanned too quickly and the
895 		 *    caller can stall after page list has been processed.
896 		 *
897 		 * 2) Global reclaim encounters a page, memcg encounters a
898 		 *    page that is not marked for immediate reclaim or
899 		 *    the caller does not have __GFP_IO. In this case mark
900 		 *    the page for immediate reclaim and continue scanning.
901 		 *
902 		 *    __GFP_IO is checked  because a loop driver thread might
903 		 *    enter reclaim, and deadlock if it waits on a page for
904 		 *    which it is needed to do the write (loop masks off
905 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
906 		 *    would probably show more reasons.
907 		 *
908 		 *    Don't require __GFP_FS, since we're not going into the
909 		 *    FS, just waiting on its writeback completion. Worryingly,
910 		 *    ext4 gfs2 and xfs allocate pages with
911 		 *    grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing
912 		 *    may_enter_fs here is liable to OOM on them.
913 		 *
914 		 * 3) memcg encounters a page that is not already marked
915 		 *    PageReclaim. memcg does not have any dirty pages
916 		 *    throttling so we could easily OOM just because too many
917 		 *    pages are in writeback and there is nothing else to
918 		 *    reclaim. Wait for the writeback to complete.
919 		 */
920 		if (PageWriteback(page)) {
921 			/* Case 1 above */
922 			if (current_is_kswapd() &&
923 			    PageReclaim(page) &&
924 			    test_bit(ZONE_WRITEBACK, &zone->flags)) {
925 				nr_immediate++;
926 				goto keep_locked;
927 
928 			/* Case 2 above */
929 			} else if (global_reclaim(sc) ||
930 			    !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
931 				/*
932 				 * This is slightly racy - end_page_writeback()
933 				 * might have just cleared PageReclaim, then
934 				 * setting PageReclaim here end up interpreted
935 				 * as PageReadahead - but that does not matter
936 				 * enough to care.  What we do want is for this
937 				 * page to have PageReclaim set next time memcg
938 				 * reclaim reaches the tests above, so it will
939 				 * then wait_on_page_writeback() to avoid OOM;
940 				 * and it's also appropriate in global reclaim.
941 				 */
942 				SetPageReclaim(page);
943 				nr_writeback++;
944 
945 				goto keep_locked;
946 
947 			/* Case 3 above */
948 			} else {
949 				wait_on_page_writeback(page);
950 			}
951 		}
952 
953 		if (!force_reclaim)
954 			references = page_check_references(page, sc);
955 
956 		switch (references) {
957 		case PAGEREF_ACTIVATE:
958 			goto activate_locked;
959 		case PAGEREF_KEEP:
960 			goto keep_locked;
961 		case PAGEREF_RECLAIM:
962 		case PAGEREF_RECLAIM_CLEAN:
963 			; /* try to reclaim the page below */
964 		}
965 
966 		/*
967 		 * Anonymous process memory has backing store?
968 		 * Try to allocate it some swap space here.
969 		 */
970 		if (PageAnon(page) && !PageSwapCache(page)) {
971 			if (!(sc->gfp_mask & __GFP_IO))
972 				goto keep_locked;
973 			if (!add_to_swap(page, page_list))
974 				goto activate_locked;
975 			may_enter_fs = 1;
976 
977 			/* Adding to swap updated mapping */
978 			mapping = page_mapping(page);
979 		}
980 
981 		/*
982 		 * The page is mapped into the page tables of one or more
983 		 * processes. Try to unmap it here.
984 		 */
985 		if (page_mapped(page) && mapping) {
986 			switch (try_to_unmap(page, ttu_flags)) {
987 			case SWAP_FAIL:
988 				goto activate_locked;
989 			case SWAP_AGAIN:
990 				goto keep_locked;
991 			case SWAP_MLOCK:
992 				goto cull_mlocked;
993 			case SWAP_SUCCESS:
994 				; /* try to free the page below */
995 			}
996 		}
997 
998 		if (PageDirty(page)) {
999 			/*
1000 			 * Only kswapd can writeback filesystem pages to
1001 			 * avoid risk of stack overflow but only writeback
1002 			 * if many dirty pages have been encountered.
1003 			 */
1004 			if (page_is_file_cache(page) &&
1005 					(!current_is_kswapd() ||
1006 					 !test_bit(ZONE_DIRTY, &zone->flags))) {
1007 				/*
1008 				 * Immediately reclaim when written back.
1009 				 * Similar in principal to deactivate_page()
1010 				 * except we already have the page isolated
1011 				 * and know it's dirty
1012 				 */
1013 				inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
1014 				SetPageReclaim(page);
1015 
1016 				goto keep_locked;
1017 			}
1018 
1019 			if (references == PAGEREF_RECLAIM_CLEAN)
1020 				goto keep_locked;
1021 			if (!may_enter_fs)
1022 				goto keep_locked;
1023 			if (!sc->may_writepage)
1024 				goto keep_locked;
1025 
1026 			/* Page is dirty, try to write it out here */
1027 			switch (pageout(page, mapping, sc)) {
1028 			case PAGE_KEEP:
1029 				goto keep_locked;
1030 			case PAGE_ACTIVATE:
1031 				goto activate_locked;
1032 			case PAGE_SUCCESS:
1033 				if (PageWriteback(page))
1034 					goto keep;
1035 				if (PageDirty(page))
1036 					goto keep;
1037 
1038 				/*
1039 				 * A synchronous write - probably a ramdisk.  Go
1040 				 * ahead and try to reclaim the page.
1041 				 */
1042 				if (!trylock_page(page))
1043 					goto keep;
1044 				if (PageDirty(page) || PageWriteback(page))
1045 					goto keep_locked;
1046 				mapping = page_mapping(page);
1047 			case PAGE_CLEAN:
1048 				; /* try to free the page below */
1049 			}
1050 		}
1051 
1052 		/*
1053 		 * If the page has buffers, try to free the buffer mappings
1054 		 * associated with this page. If we succeed we try to free
1055 		 * the page as well.
1056 		 *
1057 		 * We do this even if the page is PageDirty().
1058 		 * try_to_release_page() does not perform I/O, but it is
1059 		 * possible for a page to have PageDirty set, but it is actually
1060 		 * clean (all its buffers are clean).  This happens if the
1061 		 * buffers were written out directly, with submit_bh(). ext3
1062 		 * will do this, as well as the blockdev mapping.
1063 		 * try_to_release_page() will discover that cleanness and will
1064 		 * drop the buffers and mark the page clean - it can be freed.
1065 		 *
1066 		 * Rarely, pages can have buffers and no ->mapping.  These are
1067 		 * the pages which were not successfully invalidated in
1068 		 * truncate_complete_page().  We try to drop those buffers here
1069 		 * and if that worked, and the page is no longer mapped into
1070 		 * process address space (page_count == 1) it can be freed.
1071 		 * Otherwise, leave the page on the LRU so it is swappable.
1072 		 */
1073 		if (page_has_private(page)) {
1074 			if (!try_to_release_page(page, sc->gfp_mask))
1075 				goto activate_locked;
1076 			if (!mapping && page_count(page) == 1) {
1077 				unlock_page(page);
1078 				if (put_page_testzero(page))
1079 					goto free_it;
1080 				else {
1081 					/*
1082 					 * rare race with speculative reference.
1083 					 * the speculative reference will free
1084 					 * this page shortly, so we may
1085 					 * increment nr_reclaimed here (and
1086 					 * leave it off the LRU).
1087 					 */
1088 					nr_reclaimed++;
1089 					continue;
1090 				}
1091 			}
1092 		}
1093 
1094 		if (!mapping || !__remove_mapping(mapping, page, true))
1095 			goto keep_locked;
1096 
1097 		/*
1098 		 * At this point, we have no other references and there is
1099 		 * no way to pick any more up (removed from LRU, removed
1100 		 * from pagecache). Can use non-atomic bitops now (and
1101 		 * we obviously don't have to worry about waking up a process
1102 		 * waiting on the page lock, because there are no references.
1103 		 */
1104 		__clear_page_locked(page);
1105 free_it:
1106 		nr_reclaimed++;
1107 
1108 		/*
1109 		 * Is there need to periodically free_page_list? It would
1110 		 * appear not as the counts should be low
1111 		 */
1112 		list_add(&page->lru, &free_pages);
1113 		continue;
1114 
1115 cull_mlocked:
1116 		if (PageSwapCache(page))
1117 			try_to_free_swap(page);
1118 		unlock_page(page);
1119 		putback_lru_page(page);
1120 		continue;
1121 
1122 activate_locked:
1123 		/* Not a candidate for swapping, so reclaim swap space. */
1124 		if (PageSwapCache(page) && vm_swap_full())
1125 			try_to_free_swap(page);
1126 		VM_BUG_ON_PAGE(PageActive(page), page);
1127 		SetPageActive(page);
1128 		pgactivate++;
1129 keep_locked:
1130 		unlock_page(page);
1131 keep:
1132 		list_add(&page->lru, &ret_pages);
1133 		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1134 	}
1135 
1136 	mem_cgroup_uncharge_list(&free_pages);
1137 	free_hot_cold_page_list(&free_pages, true);
1138 
1139 	list_splice(&ret_pages, page_list);
1140 	count_vm_events(PGACTIVATE, pgactivate);
1141 
1142 	*ret_nr_dirty += nr_dirty;
1143 	*ret_nr_congested += nr_congested;
1144 	*ret_nr_unqueued_dirty += nr_unqueued_dirty;
1145 	*ret_nr_writeback += nr_writeback;
1146 	*ret_nr_immediate += nr_immediate;
1147 	return nr_reclaimed;
1148 }
1149 
1150 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1151 					    struct list_head *page_list)
1152 {
1153 	struct scan_control sc = {
1154 		.gfp_mask = GFP_KERNEL,
1155 		.priority = DEF_PRIORITY,
1156 		.may_unmap = 1,
1157 	};
1158 	unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1159 	struct page *page, *next;
1160 	LIST_HEAD(clean_pages);
1161 
1162 	list_for_each_entry_safe(page, next, page_list, lru) {
1163 		if (page_is_file_cache(page) && !PageDirty(page) &&
1164 		    !isolated_balloon_page(page)) {
1165 			ClearPageActive(page);
1166 			list_move(&page->lru, &clean_pages);
1167 		}
1168 	}
1169 
1170 	ret = shrink_page_list(&clean_pages, zone, &sc,
1171 			TTU_UNMAP|TTU_IGNORE_ACCESS,
1172 			&dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1173 	list_splice(&clean_pages, page_list);
1174 	mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
1175 	return ret;
1176 }
1177 
1178 /*
1179  * Attempt to remove the specified page from its LRU.  Only take this page
1180  * if it is of the appropriate PageActive status.  Pages which are being
1181  * freed elsewhere are also ignored.
1182  *
1183  * page:	page to consider
1184  * mode:	one of the LRU isolation modes defined above
1185  *
1186  * returns 0 on success, -ve errno on failure.
1187  */
1188 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1189 {
1190 	int ret = -EINVAL;
1191 
1192 	/* Only take pages on the LRU. */
1193 	if (!PageLRU(page))
1194 		return ret;
1195 
1196 	/* Compaction should not handle unevictable pages but CMA can do so */
1197 	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1198 		return ret;
1199 
1200 	ret = -EBUSY;
1201 
1202 	/*
1203 	 * To minimise LRU disruption, the caller can indicate that it only
1204 	 * wants to isolate pages it will be able to operate on without
1205 	 * blocking - clean pages for the most part.
1206 	 *
1207 	 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1208 	 * is used by reclaim when it is cannot write to backing storage
1209 	 *
1210 	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1211 	 * that it is possible to migrate without blocking
1212 	 */
1213 	if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1214 		/* All the caller can do on PageWriteback is block */
1215 		if (PageWriteback(page))
1216 			return ret;
1217 
1218 		if (PageDirty(page)) {
1219 			struct address_space *mapping;
1220 
1221 			/* ISOLATE_CLEAN means only clean pages */
1222 			if (mode & ISOLATE_CLEAN)
1223 				return ret;
1224 
1225 			/*
1226 			 * Only pages without mappings or that have a
1227 			 * ->migratepage callback are possible to migrate
1228 			 * without blocking
1229 			 */
1230 			mapping = page_mapping(page);
1231 			if (mapping && !mapping->a_ops->migratepage)
1232 				return ret;
1233 		}
1234 	}
1235 
1236 	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1237 		return ret;
1238 
1239 	if (likely(get_page_unless_zero(page))) {
1240 		/*
1241 		 * Be careful not to clear PageLRU until after we're
1242 		 * sure the page is not being freed elsewhere -- the
1243 		 * page release code relies on it.
1244 		 */
1245 		ClearPageLRU(page);
1246 		ret = 0;
1247 	}
1248 
1249 	return ret;
1250 }
1251 
1252 /*
1253  * zone->lru_lock is heavily contended.  Some of the functions that
1254  * shrink the lists perform better by taking out a batch of pages
1255  * and working on them outside the LRU lock.
1256  *
1257  * For pagecache intensive workloads, this function is the hottest
1258  * spot in the kernel (apart from copy_*_user functions).
1259  *
1260  * Appropriate locks must be held before calling this function.
1261  *
1262  * @nr_to_scan:	The number of pages to look through on the list.
1263  * @lruvec:	The LRU vector to pull pages from.
1264  * @dst:	The temp list to put pages on to.
1265  * @nr_scanned:	The number of pages that were scanned.
1266  * @sc:		The scan_control struct for this reclaim session
1267  * @mode:	One of the LRU isolation modes
1268  * @lru:	LRU list id for isolating
1269  *
1270  * returns how many pages were moved onto *@dst.
1271  */
1272 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1273 		struct lruvec *lruvec, struct list_head *dst,
1274 		unsigned long *nr_scanned, struct scan_control *sc,
1275 		isolate_mode_t mode, enum lru_list lru)
1276 {
1277 	struct list_head *src = &lruvec->lists[lru];
1278 	unsigned long nr_taken = 0;
1279 	unsigned long scan;
1280 
1281 	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1282 		struct page *page;
1283 		int nr_pages;
1284 
1285 		page = lru_to_page(src);
1286 		prefetchw_prev_lru_page(page, src, flags);
1287 
1288 		VM_BUG_ON_PAGE(!PageLRU(page), page);
1289 
1290 		switch (__isolate_lru_page(page, mode)) {
1291 		case 0:
1292 			nr_pages = hpage_nr_pages(page);
1293 			mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
1294 			list_move(&page->lru, dst);
1295 			nr_taken += nr_pages;
1296 			break;
1297 
1298 		case -EBUSY:
1299 			/* else it is being freed elsewhere */
1300 			list_move(&page->lru, src);
1301 			continue;
1302 
1303 		default:
1304 			BUG();
1305 		}
1306 	}
1307 
1308 	*nr_scanned = scan;
1309 	trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1310 				    nr_taken, mode, is_file_lru(lru));
1311 	return nr_taken;
1312 }
1313 
1314 /**
1315  * isolate_lru_page - tries to isolate a page from its LRU list
1316  * @page: page to isolate from its LRU list
1317  *
1318  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1319  * vmstat statistic corresponding to whatever LRU list the page was on.
1320  *
1321  * Returns 0 if the page was removed from an LRU list.
1322  * Returns -EBUSY if the page was not on an LRU list.
1323  *
1324  * The returned page will have PageLRU() cleared.  If it was found on
1325  * the active list, it will have PageActive set.  If it was found on
1326  * the unevictable list, it will have the PageUnevictable bit set. That flag
1327  * may need to be cleared by the caller before letting the page go.
1328  *
1329  * The vmstat statistic corresponding to the list on which the page was
1330  * found will be decremented.
1331  *
1332  * Restrictions:
1333  * (1) Must be called with an elevated refcount on the page. This is a
1334  *     fundamentnal difference from isolate_lru_pages (which is called
1335  *     without a stable reference).
1336  * (2) the lru_lock must not be held.
1337  * (3) interrupts must be enabled.
1338  */
1339 int isolate_lru_page(struct page *page)
1340 {
1341 	int ret = -EBUSY;
1342 
1343 	VM_BUG_ON_PAGE(!page_count(page), page);
1344 
1345 	if (PageLRU(page)) {
1346 		struct zone *zone = page_zone(page);
1347 		struct lruvec *lruvec;
1348 
1349 		spin_lock_irq(&zone->lru_lock);
1350 		lruvec = mem_cgroup_page_lruvec(page, zone);
1351 		if (PageLRU(page)) {
1352 			int lru = page_lru(page);
1353 			get_page(page);
1354 			ClearPageLRU(page);
1355 			del_page_from_lru_list(page, lruvec, lru);
1356 			ret = 0;
1357 		}
1358 		spin_unlock_irq(&zone->lru_lock);
1359 	}
1360 	return ret;
1361 }
1362 
1363 /*
1364  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1365  * then get resheduled. When there are massive number of tasks doing page
1366  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1367  * the LRU list will go small and be scanned faster than necessary, leading to
1368  * unnecessary swapping, thrashing and OOM.
1369  */
1370 static int too_many_isolated(struct zone *zone, int file,
1371 		struct scan_control *sc)
1372 {
1373 	unsigned long inactive, isolated;
1374 
1375 	if (current_is_kswapd())
1376 		return 0;
1377 
1378 	if (!global_reclaim(sc))
1379 		return 0;
1380 
1381 	if (file) {
1382 		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1383 		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1384 	} else {
1385 		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1386 		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1387 	}
1388 
1389 	/*
1390 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1391 	 * won't get blocked by normal direct-reclaimers, forming a circular
1392 	 * deadlock.
1393 	 */
1394 	if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
1395 		inactive >>= 3;
1396 
1397 	return isolated > inactive;
1398 }
1399 
1400 static noinline_for_stack void
1401 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1402 {
1403 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1404 	struct zone *zone = lruvec_zone(lruvec);
1405 	LIST_HEAD(pages_to_free);
1406 
1407 	/*
1408 	 * Put back any unfreeable pages.
1409 	 */
1410 	while (!list_empty(page_list)) {
1411 		struct page *page = lru_to_page(page_list);
1412 		int lru;
1413 
1414 		VM_BUG_ON_PAGE(PageLRU(page), page);
1415 		list_del(&page->lru);
1416 		if (unlikely(!page_evictable(page))) {
1417 			spin_unlock_irq(&zone->lru_lock);
1418 			putback_lru_page(page);
1419 			spin_lock_irq(&zone->lru_lock);
1420 			continue;
1421 		}
1422 
1423 		lruvec = mem_cgroup_page_lruvec(page, zone);
1424 
1425 		SetPageLRU(page);
1426 		lru = page_lru(page);
1427 		add_page_to_lru_list(page, lruvec, lru);
1428 
1429 		if (is_active_lru(lru)) {
1430 			int file = is_file_lru(lru);
1431 			int numpages = hpage_nr_pages(page);
1432 			reclaim_stat->recent_rotated[file] += numpages;
1433 		}
1434 		if (put_page_testzero(page)) {
1435 			__ClearPageLRU(page);
1436 			__ClearPageActive(page);
1437 			del_page_from_lru_list(page, lruvec, lru);
1438 
1439 			if (unlikely(PageCompound(page))) {
1440 				spin_unlock_irq(&zone->lru_lock);
1441 				mem_cgroup_uncharge(page);
1442 				(*get_compound_page_dtor(page))(page);
1443 				spin_lock_irq(&zone->lru_lock);
1444 			} else
1445 				list_add(&page->lru, &pages_to_free);
1446 		}
1447 	}
1448 
1449 	/*
1450 	 * To save our caller's stack, now use input list for pages to free.
1451 	 */
1452 	list_splice(&pages_to_free, page_list);
1453 }
1454 
1455 /*
1456  * If a kernel thread (such as nfsd for loop-back mounts) services
1457  * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1458  * In that case we should only throttle if the backing device it is
1459  * writing to is congested.  In other cases it is safe to throttle.
1460  */
1461 static int current_may_throttle(void)
1462 {
1463 	return !(current->flags & PF_LESS_THROTTLE) ||
1464 		current->backing_dev_info == NULL ||
1465 		bdi_write_congested(current->backing_dev_info);
1466 }
1467 
1468 /*
1469  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1470  * of reclaimed pages
1471  */
1472 static noinline_for_stack unsigned long
1473 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1474 		     struct scan_control *sc, enum lru_list lru)
1475 {
1476 	LIST_HEAD(page_list);
1477 	unsigned long nr_scanned;
1478 	unsigned long nr_reclaimed = 0;
1479 	unsigned long nr_taken;
1480 	unsigned long nr_dirty = 0;
1481 	unsigned long nr_congested = 0;
1482 	unsigned long nr_unqueued_dirty = 0;
1483 	unsigned long nr_writeback = 0;
1484 	unsigned long nr_immediate = 0;
1485 	isolate_mode_t isolate_mode = 0;
1486 	int file = is_file_lru(lru);
1487 	struct zone *zone = lruvec_zone(lruvec);
1488 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1489 
1490 	while (unlikely(too_many_isolated(zone, file, sc))) {
1491 		congestion_wait(BLK_RW_ASYNC, HZ/10);
1492 
1493 		/* We are about to die and free our memory. Return now. */
1494 		if (fatal_signal_pending(current))
1495 			return SWAP_CLUSTER_MAX;
1496 	}
1497 
1498 	lru_add_drain();
1499 
1500 	if (!sc->may_unmap)
1501 		isolate_mode |= ISOLATE_UNMAPPED;
1502 	if (!sc->may_writepage)
1503 		isolate_mode |= ISOLATE_CLEAN;
1504 
1505 	spin_lock_irq(&zone->lru_lock);
1506 
1507 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1508 				     &nr_scanned, sc, isolate_mode, lru);
1509 
1510 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1511 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1512 
1513 	if (global_reclaim(sc)) {
1514 		__mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
1515 		if (current_is_kswapd())
1516 			__count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1517 		else
1518 			__count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1519 	}
1520 	spin_unlock_irq(&zone->lru_lock);
1521 
1522 	if (nr_taken == 0)
1523 		return 0;
1524 
1525 	nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1526 				&nr_dirty, &nr_unqueued_dirty, &nr_congested,
1527 				&nr_writeback, &nr_immediate,
1528 				false);
1529 
1530 	spin_lock_irq(&zone->lru_lock);
1531 
1532 	reclaim_stat->recent_scanned[file] += nr_taken;
1533 
1534 	if (global_reclaim(sc)) {
1535 		if (current_is_kswapd())
1536 			__count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1537 					       nr_reclaimed);
1538 		else
1539 			__count_zone_vm_events(PGSTEAL_DIRECT, zone,
1540 					       nr_reclaimed);
1541 	}
1542 
1543 	putback_inactive_pages(lruvec, &page_list);
1544 
1545 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1546 
1547 	spin_unlock_irq(&zone->lru_lock);
1548 
1549 	mem_cgroup_uncharge_list(&page_list);
1550 	free_hot_cold_page_list(&page_list, true);
1551 
1552 	/*
1553 	 * If reclaim is isolating dirty pages under writeback, it implies
1554 	 * that the long-lived page allocation rate is exceeding the page
1555 	 * laundering rate. Either the global limits are not being effective
1556 	 * at throttling processes due to the page distribution throughout
1557 	 * zones or there is heavy usage of a slow backing device. The
1558 	 * only option is to throttle from reclaim context which is not ideal
1559 	 * as there is no guarantee the dirtying process is throttled in the
1560 	 * same way balance_dirty_pages() manages.
1561 	 *
1562 	 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1563 	 * of pages under pages flagged for immediate reclaim and stall if any
1564 	 * are encountered in the nr_immediate check below.
1565 	 */
1566 	if (nr_writeback && nr_writeback == nr_taken)
1567 		set_bit(ZONE_WRITEBACK, &zone->flags);
1568 
1569 	/*
1570 	 * memcg will stall in page writeback so only consider forcibly
1571 	 * stalling for global reclaim
1572 	 */
1573 	if (global_reclaim(sc)) {
1574 		/*
1575 		 * Tag a zone as congested if all the dirty pages scanned were
1576 		 * backed by a congested BDI and wait_iff_congested will stall.
1577 		 */
1578 		if (nr_dirty && nr_dirty == nr_congested)
1579 			set_bit(ZONE_CONGESTED, &zone->flags);
1580 
1581 		/*
1582 		 * If dirty pages are scanned that are not queued for IO, it
1583 		 * implies that flushers are not keeping up. In this case, flag
1584 		 * the zone ZONE_DIRTY and kswapd will start writing pages from
1585 		 * reclaim context.
1586 		 */
1587 		if (nr_unqueued_dirty == nr_taken)
1588 			set_bit(ZONE_DIRTY, &zone->flags);
1589 
1590 		/*
1591 		 * If kswapd scans pages marked marked for immediate
1592 		 * reclaim and under writeback (nr_immediate), it implies
1593 		 * that pages are cycling through the LRU faster than
1594 		 * they are written so also forcibly stall.
1595 		 */
1596 		if (nr_immediate && current_may_throttle())
1597 			congestion_wait(BLK_RW_ASYNC, HZ/10);
1598 	}
1599 
1600 	/*
1601 	 * Stall direct reclaim for IO completions if underlying BDIs or zone
1602 	 * is congested. Allow kswapd to continue until it starts encountering
1603 	 * unqueued dirty pages or cycling through the LRU too quickly.
1604 	 */
1605 	if (!sc->hibernation_mode && !current_is_kswapd() &&
1606 	    current_may_throttle())
1607 		wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1608 
1609 	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1610 		zone_idx(zone),
1611 		nr_scanned, nr_reclaimed,
1612 		sc->priority,
1613 		trace_shrink_flags(file));
1614 	return nr_reclaimed;
1615 }
1616 
1617 /*
1618  * This moves pages from the active list to the inactive list.
1619  *
1620  * We move them the other way if the page is referenced by one or more
1621  * processes, from rmap.
1622  *
1623  * If the pages are mostly unmapped, the processing is fast and it is
1624  * appropriate to hold zone->lru_lock across the whole operation.  But if
1625  * the pages are mapped, the processing is slow (page_referenced()) so we
1626  * should drop zone->lru_lock around each page.  It's impossible to balance
1627  * this, so instead we remove the pages from the LRU while processing them.
1628  * It is safe to rely on PG_active against the non-LRU pages in here because
1629  * nobody will play with that bit on a non-LRU page.
1630  *
1631  * The downside is that we have to touch page->_count against each page.
1632  * But we had to alter page->flags anyway.
1633  */
1634 
1635 static void move_active_pages_to_lru(struct lruvec *lruvec,
1636 				     struct list_head *list,
1637 				     struct list_head *pages_to_free,
1638 				     enum lru_list lru)
1639 {
1640 	struct zone *zone = lruvec_zone(lruvec);
1641 	unsigned long pgmoved = 0;
1642 	struct page *page;
1643 	int nr_pages;
1644 
1645 	while (!list_empty(list)) {
1646 		page = lru_to_page(list);
1647 		lruvec = mem_cgroup_page_lruvec(page, zone);
1648 
1649 		VM_BUG_ON_PAGE(PageLRU(page), page);
1650 		SetPageLRU(page);
1651 
1652 		nr_pages = hpage_nr_pages(page);
1653 		mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1654 		list_move(&page->lru, &lruvec->lists[lru]);
1655 		pgmoved += nr_pages;
1656 
1657 		if (put_page_testzero(page)) {
1658 			__ClearPageLRU(page);
1659 			__ClearPageActive(page);
1660 			del_page_from_lru_list(page, lruvec, lru);
1661 
1662 			if (unlikely(PageCompound(page))) {
1663 				spin_unlock_irq(&zone->lru_lock);
1664 				mem_cgroup_uncharge(page);
1665 				(*get_compound_page_dtor(page))(page);
1666 				spin_lock_irq(&zone->lru_lock);
1667 			} else
1668 				list_add(&page->lru, pages_to_free);
1669 		}
1670 	}
1671 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1672 	if (!is_active_lru(lru))
1673 		__count_vm_events(PGDEACTIVATE, pgmoved);
1674 }
1675 
1676 static void shrink_active_list(unsigned long nr_to_scan,
1677 			       struct lruvec *lruvec,
1678 			       struct scan_control *sc,
1679 			       enum lru_list lru)
1680 {
1681 	unsigned long nr_taken;
1682 	unsigned long nr_scanned;
1683 	unsigned long vm_flags;
1684 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1685 	LIST_HEAD(l_active);
1686 	LIST_HEAD(l_inactive);
1687 	struct page *page;
1688 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1689 	unsigned long nr_rotated = 0;
1690 	isolate_mode_t isolate_mode = 0;
1691 	int file = is_file_lru(lru);
1692 	struct zone *zone = lruvec_zone(lruvec);
1693 
1694 	lru_add_drain();
1695 
1696 	if (!sc->may_unmap)
1697 		isolate_mode |= ISOLATE_UNMAPPED;
1698 	if (!sc->may_writepage)
1699 		isolate_mode |= ISOLATE_CLEAN;
1700 
1701 	spin_lock_irq(&zone->lru_lock);
1702 
1703 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1704 				     &nr_scanned, sc, isolate_mode, lru);
1705 	if (global_reclaim(sc))
1706 		__mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
1707 
1708 	reclaim_stat->recent_scanned[file] += nr_taken;
1709 
1710 	__count_zone_vm_events(PGREFILL, zone, nr_scanned);
1711 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1712 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1713 	spin_unlock_irq(&zone->lru_lock);
1714 
1715 	while (!list_empty(&l_hold)) {
1716 		cond_resched();
1717 		page = lru_to_page(&l_hold);
1718 		list_del(&page->lru);
1719 
1720 		if (unlikely(!page_evictable(page))) {
1721 			putback_lru_page(page);
1722 			continue;
1723 		}
1724 
1725 		if (unlikely(buffer_heads_over_limit)) {
1726 			if (page_has_private(page) && trylock_page(page)) {
1727 				if (page_has_private(page))
1728 					try_to_release_page(page, 0);
1729 				unlock_page(page);
1730 			}
1731 		}
1732 
1733 		if (page_referenced(page, 0, sc->target_mem_cgroup,
1734 				    &vm_flags)) {
1735 			nr_rotated += hpage_nr_pages(page);
1736 			/*
1737 			 * Identify referenced, file-backed active pages and
1738 			 * give them one more trip around the active list. So
1739 			 * that executable code get better chances to stay in
1740 			 * memory under moderate memory pressure.  Anon pages
1741 			 * are not likely to be evicted by use-once streaming
1742 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
1743 			 * so we ignore them here.
1744 			 */
1745 			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1746 				list_add(&page->lru, &l_active);
1747 				continue;
1748 			}
1749 		}
1750 
1751 		ClearPageActive(page);	/* we are de-activating */
1752 		list_add(&page->lru, &l_inactive);
1753 	}
1754 
1755 	/*
1756 	 * Move pages back to the lru list.
1757 	 */
1758 	spin_lock_irq(&zone->lru_lock);
1759 	/*
1760 	 * Count referenced pages from currently used mappings as rotated,
1761 	 * even though only some of them are actually re-activated.  This
1762 	 * helps balance scan pressure between file and anonymous pages in
1763 	 * get_scan_count.
1764 	 */
1765 	reclaim_stat->recent_rotated[file] += nr_rotated;
1766 
1767 	move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1768 	move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1769 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1770 	spin_unlock_irq(&zone->lru_lock);
1771 
1772 	mem_cgroup_uncharge_list(&l_hold);
1773 	free_hot_cold_page_list(&l_hold, true);
1774 }
1775 
1776 #ifdef CONFIG_SWAP
1777 static int inactive_anon_is_low_global(struct zone *zone)
1778 {
1779 	unsigned long active, inactive;
1780 
1781 	active = zone_page_state(zone, NR_ACTIVE_ANON);
1782 	inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1783 
1784 	if (inactive * zone->inactive_ratio < active)
1785 		return 1;
1786 
1787 	return 0;
1788 }
1789 
1790 /**
1791  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1792  * @lruvec: LRU vector to check
1793  *
1794  * Returns true if the zone does not have enough inactive anon pages,
1795  * meaning some active anon pages need to be deactivated.
1796  */
1797 static int inactive_anon_is_low(struct lruvec *lruvec)
1798 {
1799 	/*
1800 	 * If we don't have swap space, anonymous page deactivation
1801 	 * is pointless.
1802 	 */
1803 	if (!total_swap_pages)
1804 		return 0;
1805 
1806 	if (!mem_cgroup_disabled())
1807 		return mem_cgroup_inactive_anon_is_low(lruvec);
1808 
1809 	return inactive_anon_is_low_global(lruvec_zone(lruvec));
1810 }
1811 #else
1812 static inline int inactive_anon_is_low(struct lruvec *lruvec)
1813 {
1814 	return 0;
1815 }
1816 #endif
1817 
1818 /**
1819  * inactive_file_is_low - check if file pages need to be deactivated
1820  * @lruvec: LRU vector to check
1821  *
1822  * When the system is doing streaming IO, memory pressure here
1823  * ensures that active file pages get deactivated, until more
1824  * than half of the file pages are on the inactive list.
1825  *
1826  * Once we get to that situation, protect the system's working
1827  * set from being evicted by disabling active file page aging.
1828  *
1829  * This uses a different ratio than the anonymous pages, because
1830  * the page cache uses a use-once replacement algorithm.
1831  */
1832 static int inactive_file_is_low(struct lruvec *lruvec)
1833 {
1834 	unsigned long inactive;
1835 	unsigned long active;
1836 
1837 	inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1838 	active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1839 
1840 	return active > inactive;
1841 }
1842 
1843 static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1844 {
1845 	if (is_file_lru(lru))
1846 		return inactive_file_is_low(lruvec);
1847 	else
1848 		return inactive_anon_is_low(lruvec);
1849 }
1850 
1851 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1852 				 struct lruvec *lruvec, struct scan_control *sc)
1853 {
1854 	if (is_active_lru(lru)) {
1855 		if (inactive_list_is_low(lruvec, lru))
1856 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
1857 		return 0;
1858 	}
1859 
1860 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1861 }
1862 
1863 enum scan_balance {
1864 	SCAN_EQUAL,
1865 	SCAN_FRACT,
1866 	SCAN_ANON,
1867 	SCAN_FILE,
1868 };
1869 
1870 /*
1871  * Determine how aggressively the anon and file LRU lists should be
1872  * scanned.  The relative value of each set of LRU lists is determined
1873  * by looking at the fraction of the pages scanned we did rotate back
1874  * onto the active list instead of evict.
1875  *
1876  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1877  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1878  */
1879 static void get_scan_count(struct lruvec *lruvec, int swappiness,
1880 			   struct scan_control *sc, unsigned long *nr,
1881 			   unsigned long *lru_pages)
1882 {
1883 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1884 	u64 fraction[2];
1885 	u64 denominator = 0;	/* gcc */
1886 	struct zone *zone = lruvec_zone(lruvec);
1887 	unsigned long anon_prio, file_prio;
1888 	enum scan_balance scan_balance;
1889 	unsigned long anon, file;
1890 	bool force_scan = false;
1891 	unsigned long ap, fp;
1892 	enum lru_list lru;
1893 	bool some_scanned;
1894 	int pass;
1895 
1896 	/*
1897 	 * If the zone or memcg is small, nr[l] can be 0.  This
1898 	 * results in no scanning on this priority and a potential
1899 	 * priority drop.  Global direct reclaim can go to the next
1900 	 * zone and tends to have no problems. Global kswapd is for
1901 	 * zone balancing and it needs to scan a minimum amount. When
1902 	 * reclaiming for a memcg, a priority drop can cause high
1903 	 * latencies, so it's better to scan a minimum amount there as
1904 	 * well.
1905 	 */
1906 	if (current_is_kswapd() && !zone_reclaimable(zone))
1907 		force_scan = true;
1908 	if (!global_reclaim(sc))
1909 		force_scan = true;
1910 
1911 	/* If we have no swap space, do not bother scanning anon pages. */
1912 	if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
1913 		scan_balance = SCAN_FILE;
1914 		goto out;
1915 	}
1916 
1917 	/*
1918 	 * Global reclaim will swap to prevent OOM even with no
1919 	 * swappiness, but memcg users want to use this knob to
1920 	 * disable swapping for individual groups completely when
1921 	 * using the memory controller's swap limit feature would be
1922 	 * too expensive.
1923 	 */
1924 	if (!global_reclaim(sc) && !swappiness) {
1925 		scan_balance = SCAN_FILE;
1926 		goto out;
1927 	}
1928 
1929 	/*
1930 	 * Do not apply any pressure balancing cleverness when the
1931 	 * system is close to OOM, scan both anon and file equally
1932 	 * (unless the swappiness setting disagrees with swapping).
1933 	 */
1934 	if (!sc->priority && swappiness) {
1935 		scan_balance = SCAN_EQUAL;
1936 		goto out;
1937 	}
1938 
1939 	/*
1940 	 * Prevent the reclaimer from falling into the cache trap: as
1941 	 * cache pages start out inactive, every cache fault will tip
1942 	 * the scan balance towards the file LRU.  And as the file LRU
1943 	 * shrinks, so does the window for rotation from references.
1944 	 * This means we have a runaway feedback loop where a tiny
1945 	 * thrashing file LRU becomes infinitely more attractive than
1946 	 * anon pages.  Try to detect this based on file LRU size.
1947 	 */
1948 	if (global_reclaim(sc)) {
1949 		unsigned long zonefile;
1950 		unsigned long zonefree;
1951 
1952 		zonefree = zone_page_state(zone, NR_FREE_PAGES);
1953 		zonefile = zone_page_state(zone, NR_ACTIVE_FILE) +
1954 			   zone_page_state(zone, NR_INACTIVE_FILE);
1955 
1956 		if (unlikely(zonefile + zonefree <= high_wmark_pages(zone))) {
1957 			scan_balance = SCAN_ANON;
1958 			goto out;
1959 		}
1960 	}
1961 
1962 	/*
1963 	 * There is enough inactive page cache, do not reclaim
1964 	 * anything from the anonymous working set right now.
1965 	 */
1966 	if (!inactive_file_is_low(lruvec)) {
1967 		scan_balance = SCAN_FILE;
1968 		goto out;
1969 	}
1970 
1971 	scan_balance = SCAN_FRACT;
1972 
1973 	/*
1974 	 * With swappiness at 100, anonymous and file have the same priority.
1975 	 * This scanning priority is essentially the inverse of IO cost.
1976 	 */
1977 	anon_prio = swappiness;
1978 	file_prio = 200 - anon_prio;
1979 
1980 	/*
1981 	 * OK, so we have swap space and a fair amount of page cache
1982 	 * pages.  We use the recently rotated / recently scanned
1983 	 * ratios to determine how valuable each cache is.
1984 	 *
1985 	 * Because workloads change over time (and to avoid overflow)
1986 	 * we keep these statistics as a floating average, which ends
1987 	 * up weighing recent references more than old ones.
1988 	 *
1989 	 * anon in [0], file in [1]
1990 	 */
1991 
1992 	anon  = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
1993 		get_lru_size(lruvec, LRU_INACTIVE_ANON);
1994 	file  = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
1995 		get_lru_size(lruvec, LRU_INACTIVE_FILE);
1996 
1997 	spin_lock_irq(&zone->lru_lock);
1998 	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1999 		reclaim_stat->recent_scanned[0] /= 2;
2000 		reclaim_stat->recent_rotated[0] /= 2;
2001 	}
2002 
2003 	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2004 		reclaim_stat->recent_scanned[1] /= 2;
2005 		reclaim_stat->recent_rotated[1] /= 2;
2006 	}
2007 
2008 	/*
2009 	 * The amount of pressure on anon vs file pages is inversely
2010 	 * proportional to the fraction of recently scanned pages on
2011 	 * each list that were recently referenced and in active use.
2012 	 */
2013 	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2014 	ap /= reclaim_stat->recent_rotated[0] + 1;
2015 
2016 	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2017 	fp /= reclaim_stat->recent_rotated[1] + 1;
2018 	spin_unlock_irq(&zone->lru_lock);
2019 
2020 	fraction[0] = ap;
2021 	fraction[1] = fp;
2022 	denominator = ap + fp + 1;
2023 out:
2024 	some_scanned = false;
2025 	/* Only use force_scan on second pass. */
2026 	for (pass = 0; !some_scanned && pass < 2; pass++) {
2027 		*lru_pages = 0;
2028 		for_each_evictable_lru(lru) {
2029 			int file = is_file_lru(lru);
2030 			unsigned long size;
2031 			unsigned long scan;
2032 
2033 			size = get_lru_size(lruvec, lru);
2034 			scan = size >> sc->priority;
2035 
2036 			if (!scan && pass && force_scan)
2037 				scan = min(size, SWAP_CLUSTER_MAX);
2038 
2039 			switch (scan_balance) {
2040 			case SCAN_EQUAL:
2041 				/* Scan lists relative to size */
2042 				break;
2043 			case SCAN_FRACT:
2044 				/*
2045 				 * Scan types proportional to swappiness and
2046 				 * their relative recent reclaim efficiency.
2047 				 */
2048 				scan = div64_u64(scan * fraction[file],
2049 							denominator);
2050 				break;
2051 			case SCAN_FILE:
2052 			case SCAN_ANON:
2053 				/* Scan one type exclusively */
2054 				if ((scan_balance == SCAN_FILE) != file) {
2055 					size = 0;
2056 					scan = 0;
2057 				}
2058 				break;
2059 			default:
2060 				/* Look ma, no brain */
2061 				BUG();
2062 			}
2063 
2064 			*lru_pages += size;
2065 			nr[lru] = scan;
2066 
2067 			/*
2068 			 * Skip the second pass and don't force_scan,
2069 			 * if we found something to scan.
2070 			 */
2071 			some_scanned |= !!scan;
2072 		}
2073 	}
2074 }
2075 
2076 /*
2077  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
2078  */
2079 static void shrink_lruvec(struct lruvec *lruvec, int swappiness,
2080 			  struct scan_control *sc, unsigned long *lru_pages)
2081 {
2082 	unsigned long nr[NR_LRU_LISTS];
2083 	unsigned long targets[NR_LRU_LISTS];
2084 	unsigned long nr_to_scan;
2085 	enum lru_list lru;
2086 	unsigned long nr_reclaimed = 0;
2087 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2088 	struct blk_plug plug;
2089 	bool scan_adjusted;
2090 
2091 	get_scan_count(lruvec, swappiness, sc, nr, lru_pages);
2092 
2093 	/* Record the original scan target for proportional adjustments later */
2094 	memcpy(targets, nr, sizeof(nr));
2095 
2096 	/*
2097 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2098 	 * event that can occur when there is little memory pressure e.g.
2099 	 * multiple streaming readers/writers. Hence, we do not abort scanning
2100 	 * when the requested number of pages are reclaimed when scanning at
2101 	 * DEF_PRIORITY on the assumption that the fact we are direct
2102 	 * reclaiming implies that kswapd is not keeping up and it is best to
2103 	 * do a batch of work at once. For memcg reclaim one check is made to
2104 	 * abort proportional reclaim if either the file or anon lru has already
2105 	 * dropped to zero at the first pass.
2106 	 */
2107 	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2108 			 sc->priority == DEF_PRIORITY);
2109 
2110 	blk_start_plug(&plug);
2111 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2112 					nr[LRU_INACTIVE_FILE]) {
2113 		unsigned long nr_anon, nr_file, percentage;
2114 		unsigned long nr_scanned;
2115 
2116 		for_each_evictable_lru(lru) {
2117 			if (nr[lru]) {
2118 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2119 				nr[lru] -= nr_to_scan;
2120 
2121 				nr_reclaimed += shrink_list(lru, nr_to_scan,
2122 							    lruvec, sc);
2123 			}
2124 		}
2125 
2126 		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2127 			continue;
2128 
2129 		/*
2130 		 * For kswapd and memcg, reclaim at least the number of pages
2131 		 * requested. Ensure that the anon and file LRUs are scanned
2132 		 * proportionally what was requested by get_scan_count(). We
2133 		 * stop reclaiming one LRU and reduce the amount scanning
2134 		 * proportional to the original scan target.
2135 		 */
2136 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2137 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2138 
2139 		/*
2140 		 * It's just vindictive to attack the larger once the smaller
2141 		 * has gone to zero.  And given the way we stop scanning the
2142 		 * smaller below, this makes sure that we only make one nudge
2143 		 * towards proportionality once we've got nr_to_reclaim.
2144 		 */
2145 		if (!nr_file || !nr_anon)
2146 			break;
2147 
2148 		if (nr_file > nr_anon) {
2149 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2150 						targets[LRU_ACTIVE_ANON] + 1;
2151 			lru = LRU_BASE;
2152 			percentage = nr_anon * 100 / scan_target;
2153 		} else {
2154 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2155 						targets[LRU_ACTIVE_FILE] + 1;
2156 			lru = LRU_FILE;
2157 			percentage = nr_file * 100 / scan_target;
2158 		}
2159 
2160 		/* Stop scanning the smaller of the LRU */
2161 		nr[lru] = 0;
2162 		nr[lru + LRU_ACTIVE] = 0;
2163 
2164 		/*
2165 		 * Recalculate the other LRU scan count based on its original
2166 		 * scan target and the percentage scanning already complete
2167 		 */
2168 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2169 		nr_scanned = targets[lru] - nr[lru];
2170 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2171 		nr[lru] -= min(nr[lru], nr_scanned);
2172 
2173 		lru += LRU_ACTIVE;
2174 		nr_scanned = targets[lru] - nr[lru];
2175 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2176 		nr[lru] -= min(nr[lru], nr_scanned);
2177 
2178 		scan_adjusted = true;
2179 	}
2180 	blk_finish_plug(&plug);
2181 	sc->nr_reclaimed += nr_reclaimed;
2182 
2183 	/*
2184 	 * Even if we did not try to evict anon pages at all, we want to
2185 	 * rebalance the anon lru active/inactive ratio.
2186 	 */
2187 	if (inactive_anon_is_low(lruvec))
2188 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2189 				   sc, LRU_ACTIVE_ANON);
2190 
2191 	throttle_vm_writeout(sc->gfp_mask);
2192 }
2193 
2194 /* Use reclaim/compaction for costly allocs or under memory pressure */
2195 static bool in_reclaim_compaction(struct scan_control *sc)
2196 {
2197 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2198 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2199 			 sc->priority < DEF_PRIORITY - 2))
2200 		return true;
2201 
2202 	return false;
2203 }
2204 
2205 /*
2206  * Reclaim/compaction is used for high-order allocation requests. It reclaims
2207  * order-0 pages before compacting the zone. should_continue_reclaim() returns
2208  * true if more pages should be reclaimed such that when the page allocator
2209  * calls try_to_compact_zone() that it will have enough free pages to succeed.
2210  * It will give up earlier than that if there is difficulty reclaiming pages.
2211  */
2212 static inline bool should_continue_reclaim(struct zone *zone,
2213 					unsigned long nr_reclaimed,
2214 					unsigned long nr_scanned,
2215 					struct scan_control *sc)
2216 {
2217 	unsigned long pages_for_compaction;
2218 	unsigned long inactive_lru_pages;
2219 
2220 	/* If not in reclaim/compaction mode, stop */
2221 	if (!in_reclaim_compaction(sc))
2222 		return false;
2223 
2224 	/* Consider stopping depending on scan and reclaim activity */
2225 	if (sc->gfp_mask & __GFP_REPEAT) {
2226 		/*
2227 		 * For __GFP_REPEAT allocations, stop reclaiming if the
2228 		 * full LRU list has been scanned and we are still failing
2229 		 * to reclaim pages. This full LRU scan is potentially
2230 		 * expensive but a __GFP_REPEAT caller really wants to succeed
2231 		 */
2232 		if (!nr_reclaimed && !nr_scanned)
2233 			return false;
2234 	} else {
2235 		/*
2236 		 * For non-__GFP_REPEAT allocations which can presumably
2237 		 * fail without consequence, stop if we failed to reclaim
2238 		 * any pages from the last SWAP_CLUSTER_MAX number of
2239 		 * pages that were scanned. This will return to the
2240 		 * caller faster at the risk reclaim/compaction and
2241 		 * the resulting allocation attempt fails
2242 		 */
2243 		if (!nr_reclaimed)
2244 			return false;
2245 	}
2246 
2247 	/*
2248 	 * If we have not reclaimed enough pages for compaction and the
2249 	 * inactive lists are large enough, continue reclaiming
2250 	 */
2251 	pages_for_compaction = (2UL << sc->order);
2252 	inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2253 	if (get_nr_swap_pages() > 0)
2254 		inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2255 	if (sc->nr_reclaimed < pages_for_compaction &&
2256 			inactive_lru_pages > pages_for_compaction)
2257 		return true;
2258 
2259 	/* If compaction would go ahead or the allocation would succeed, stop */
2260 	switch (compaction_suitable(zone, sc->order, 0, 0)) {
2261 	case COMPACT_PARTIAL:
2262 	case COMPACT_CONTINUE:
2263 		return false;
2264 	default:
2265 		return true;
2266 	}
2267 }
2268 
2269 static bool shrink_zone(struct zone *zone, struct scan_control *sc,
2270 			bool is_classzone)
2271 {
2272 	unsigned long nr_reclaimed, nr_scanned;
2273 	bool reclaimable = false;
2274 
2275 	do {
2276 		struct mem_cgroup *root = sc->target_mem_cgroup;
2277 		struct mem_cgroup_reclaim_cookie reclaim = {
2278 			.zone = zone,
2279 			.priority = sc->priority,
2280 		};
2281 		unsigned long zone_lru_pages = 0;
2282 		struct mem_cgroup *memcg;
2283 
2284 		nr_reclaimed = sc->nr_reclaimed;
2285 		nr_scanned = sc->nr_scanned;
2286 
2287 		memcg = mem_cgroup_iter(root, NULL, &reclaim);
2288 		do {
2289 			unsigned long lru_pages;
2290 			struct lruvec *lruvec;
2291 			int swappiness;
2292 
2293 			lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2294 			swappiness = mem_cgroup_swappiness(memcg);
2295 
2296 			shrink_lruvec(lruvec, swappiness, sc, &lru_pages);
2297 			zone_lru_pages += lru_pages;
2298 
2299 			/*
2300 			 * Direct reclaim and kswapd have to scan all memory
2301 			 * cgroups to fulfill the overall scan target for the
2302 			 * zone.
2303 			 *
2304 			 * Limit reclaim, on the other hand, only cares about
2305 			 * nr_to_reclaim pages to be reclaimed and it will
2306 			 * retry with decreasing priority if one round over the
2307 			 * whole hierarchy is not sufficient.
2308 			 */
2309 			if (!global_reclaim(sc) &&
2310 					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2311 				mem_cgroup_iter_break(root, memcg);
2312 				break;
2313 			}
2314 			memcg = mem_cgroup_iter(root, memcg, &reclaim);
2315 		} while (memcg);
2316 
2317 		/*
2318 		 * Shrink the slab caches in the same proportion that
2319 		 * the eligible LRU pages were scanned.
2320 		 */
2321 		if (global_reclaim(sc) && is_classzone) {
2322 			struct reclaim_state *reclaim_state;
2323 
2324 			shrink_node_slabs(sc->gfp_mask, zone_to_nid(zone),
2325 					  sc->nr_scanned - nr_scanned,
2326 					  zone_lru_pages);
2327 
2328 			reclaim_state = current->reclaim_state;
2329 			if (reclaim_state) {
2330 				sc->nr_reclaimed +=
2331 					reclaim_state->reclaimed_slab;
2332 				reclaim_state->reclaimed_slab = 0;
2333 			}
2334 		}
2335 
2336 		vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
2337 			   sc->nr_scanned - nr_scanned,
2338 			   sc->nr_reclaimed - nr_reclaimed);
2339 
2340 		if (sc->nr_reclaimed - nr_reclaimed)
2341 			reclaimable = true;
2342 
2343 	} while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2344 					 sc->nr_scanned - nr_scanned, sc));
2345 
2346 	return reclaimable;
2347 }
2348 
2349 /*
2350  * Returns true if compaction should go ahead for a high-order request, or
2351  * the high-order allocation would succeed without compaction.
2352  */
2353 static inline bool compaction_ready(struct zone *zone, int order)
2354 {
2355 	unsigned long balance_gap, watermark;
2356 	bool watermark_ok;
2357 
2358 	/*
2359 	 * Compaction takes time to run and there are potentially other
2360 	 * callers using the pages just freed. Continue reclaiming until
2361 	 * there is a buffer of free pages available to give compaction
2362 	 * a reasonable chance of completing and allocating the page
2363 	 */
2364 	balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
2365 			zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
2366 	watermark = high_wmark_pages(zone) + balance_gap + (2UL << order);
2367 	watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2368 
2369 	/*
2370 	 * If compaction is deferred, reclaim up to a point where
2371 	 * compaction will have a chance of success when re-enabled
2372 	 */
2373 	if (compaction_deferred(zone, order))
2374 		return watermark_ok;
2375 
2376 	/*
2377 	 * If compaction is not ready to start and allocation is not likely
2378 	 * to succeed without it, then keep reclaiming.
2379 	 */
2380 	if (compaction_suitable(zone, order, 0, 0) == COMPACT_SKIPPED)
2381 		return false;
2382 
2383 	return watermark_ok;
2384 }
2385 
2386 /*
2387  * This is the direct reclaim path, for page-allocating processes.  We only
2388  * try to reclaim pages from zones which will satisfy the caller's allocation
2389  * request.
2390  *
2391  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2392  * Because:
2393  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2394  *    allocation or
2395  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2396  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2397  *    zone defense algorithm.
2398  *
2399  * If a zone is deemed to be full of pinned pages then just give it a light
2400  * scan then give up on it.
2401  *
2402  * Returns true if a zone was reclaimable.
2403  */
2404 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2405 {
2406 	struct zoneref *z;
2407 	struct zone *zone;
2408 	unsigned long nr_soft_reclaimed;
2409 	unsigned long nr_soft_scanned;
2410 	gfp_t orig_mask;
2411 	enum zone_type requested_highidx = gfp_zone(sc->gfp_mask);
2412 	bool reclaimable = false;
2413 
2414 	/*
2415 	 * If the number of buffer_heads in the machine exceeds the maximum
2416 	 * allowed level, force direct reclaim to scan the highmem zone as
2417 	 * highmem pages could be pinning lowmem pages storing buffer_heads
2418 	 */
2419 	orig_mask = sc->gfp_mask;
2420 	if (buffer_heads_over_limit)
2421 		sc->gfp_mask |= __GFP_HIGHMEM;
2422 
2423 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2424 					requested_highidx, sc->nodemask) {
2425 		enum zone_type classzone_idx;
2426 
2427 		if (!populated_zone(zone))
2428 			continue;
2429 
2430 		classzone_idx = requested_highidx;
2431 		while (!populated_zone(zone->zone_pgdat->node_zones +
2432 							classzone_idx))
2433 			classzone_idx--;
2434 
2435 		/*
2436 		 * Take care memory controller reclaiming has small influence
2437 		 * to global LRU.
2438 		 */
2439 		if (global_reclaim(sc)) {
2440 			if (!cpuset_zone_allowed(zone,
2441 						 GFP_KERNEL | __GFP_HARDWALL))
2442 				continue;
2443 
2444 			if (sc->priority != DEF_PRIORITY &&
2445 			    !zone_reclaimable(zone))
2446 				continue;	/* Let kswapd poll it */
2447 
2448 			/*
2449 			 * If we already have plenty of memory free for
2450 			 * compaction in this zone, don't free any more.
2451 			 * Even though compaction is invoked for any
2452 			 * non-zero order, only frequent costly order
2453 			 * reclamation is disruptive enough to become a
2454 			 * noticeable problem, like transparent huge
2455 			 * page allocations.
2456 			 */
2457 			if (IS_ENABLED(CONFIG_COMPACTION) &&
2458 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2459 			    zonelist_zone_idx(z) <= requested_highidx &&
2460 			    compaction_ready(zone, sc->order)) {
2461 				sc->compaction_ready = true;
2462 				continue;
2463 			}
2464 
2465 			/*
2466 			 * This steals pages from memory cgroups over softlimit
2467 			 * and returns the number of reclaimed pages and
2468 			 * scanned pages. This works for global memory pressure
2469 			 * and balancing, not for a memcg's limit.
2470 			 */
2471 			nr_soft_scanned = 0;
2472 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2473 						sc->order, sc->gfp_mask,
2474 						&nr_soft_scanned);
2475 			sc->nr_reclaimed += nr_soft_reclaimed;
2476 			sc->nr_scanned += nr_soft_scanned;
2477 			if (nr_soft_reclaimed)
2478 				reclaimable = true;
2479 			/* need some check for avoid more shrink_zone() */
2480 		}
2481 
2482 		if (shrink_zone(zone, sc, zone_idx(zone) == classzone_idx))
2483 			reclaimable = true;
2484 
2485 		if (global_reclaim(sc) &&
2486 		    !reclaimable && zone_reclaimable(zone))
2487 			reclaimable = true;
2488 	}
2489 
2490 	/*
2491 	 * Restore to original mask to avoid the impact on the caller if we
2492 	 * promoted it to __GFP_HIGHMEM.
2493 	 */
2494 	sc->gfp_mask = orig_mask;
2495 
2496 	return reclaimable;
2497 }
2498 
2499 /*
2500  * This is the main entry point to direct page reclaim.
2501  *
2502  * If a full scan of the inactive list fails to free enough memory then we
2503  * are "out of memory" and something needs to be killed.
2504  *
2505  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2506  * high - the zone may be full of dirty or under-writeback pages, which this
2507  * caller can't do much about.  We kick the writeback threads and take explicit
2508  * naps in the hope that some of these pages can be written.  But if the
2509  * allocating task holds filesystem locks which prevent writeout this might not
2510  * work, and the allocation attempt will fail.
2511  *
2512  * returns:	0, if no pages reclaimed
2513  * 		else, the number of pages reclaimed
2514  */
2515 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2516 					  struct scan_control *sc)
2517 {
2518 	unsigned long total_scanned = 0;
2519 	unsigned long writeback_threshold;
2520 	bool zones_reclaimable;
2521 
2522 	delayacct_freepages_start();
2523 
2524 	if (global_reclaim(sc))
2525 		count_vm_event(ALLOCSTALL);
2526 
2527 	do {
2528 		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2529 				sc->priority);
2530 		sc->nr_scanned = 0;
2531 		zones_reclaimable = shrink_zones(zonelist, sc);
2532 
2533 		total_scanned += sc->nr_scanned;
2534 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2535 			break;
2536 
2537 		if (sc->compaction_ready)
2538 			break;
2539 
2540 		/*
2541 		 * If we're getting trouble reclaiming, start doing
2542 		 * writepage even in laptop mode.
2543 		 */
2544 		if (sc->priority < DEF_PRIORITY - 2)
2545 			sc->may_writepage = 1;
2546 
2547 		/*
2548 		 * Try to write back as many pages as we just scanned.  This
2549 		 * tends to cause slow streaming writers to write data to the
2550 		 * disk smoothly, at the dirtying rate, which is nice.   But
2551 		 * that's undesirable in laptop mode, where we *want* lumpy
2552 		 * writeout.  So in laptop mode, write out the whole world.
2553 		 */
2554 		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2555 		if (total_scanned > writeback_threshold) {
2556 			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2557 						WB_REASON_TRY_TO_FREE_PAGES);
2558 			sc->may_writepage = 1;
2559 		}
2560 	} while (--sc->priority >= 0);
2561 
2562 	delayacct_freepages_end();
2563 
2564 	if (sc->nr_reclaimed)
2565 		return sc->nr_reclaimed;
2566 
2567 	/* Aborted reclaim to try compaction? don't OOM, then */
2568 	if (sc->compaction_ready)
2569 		return 1;
2570 
2571 	/* Any of the zones still reclaimable?  Don't OOM. */
2572 	if (zones_reclaimable)
2573 		return 1;
2574 
2575 	return 0;
2576 }
2577 
2578 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2579 {
2580 	struct zone *zone;
2581 	unsigned long pfmemalloc_reserve = 0;
2582 	unsigned long free_pages = 0;
2583 	int i;
2584 	bool wmark_ok;
2585 
2586 	for (i = 0; i <= ZONE_NORMAL; i++) {
2587 		zone = &pgdat->node_zones[i];
2588 		if (!populated_zone(zone))
2589 			continue;
2590 
2591 		pfmemalloc_reserve += min_wmark_pages(zone);
2592 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
2593 	}
2594 
2595 	/* If there are no reserves (unexpected config) then do not throttle */
2596 	if (!pfmemalloc_reserve)
2597 		return true;
2598 
2599 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
2600 
2601 	/* kswapd must be awake if processes are being throttled */
2602 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2603 		pgdat->classzone_idx = min(pgdat->classzone_idx,
2604 						(enum zone_type)ZONE_NORMAL);
2605 		wake_up_interruptible(&pgdat->kswapd_wait);
2606 	}
2607 
2608 	return wmark_ok;
2609 }
2610 
2611 /*
2612  * Throttle direct reclaimers if backing storage is backed by the network
2613  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2614  * depleted. kswapd will continue to make progress and wake the processes
2615  * when the low watermark is reached.
2616  *
2617  * Returns true if a fatal signal was delivered during throttling. If this
2618  * happens, the page allocator should not consider triggering the OOM killer.
2619  */
2620 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2621 					nodemask_t *nodemask)
2622 {
2623 	struct zoneref *z;
2624 	struct zone *zone;
2625 	pg_data_t *pgdat = NULL;
2626 
2627 	/*
2628 	 * Kernel threads should not be throttled as they may be indirectly
2629 	 * responsible for cleaning pages necessary for reclaim to make forward
2630 	 * progress. kjournald for example may enter direct reclaim while
2631 	 * committing a transaction where throttling it could forcing other
2632 	 * processes to block on log_wait_commit().
2633 	 */
2634 	if (current->flags & PF_KTHREAD)
2635 		goto out;
2636 
2637 	/*
2638 	 * If a fatal signal is pending, this process should not throttle.
2639 	 * It should return quickly so it can exit and free its memory
2640 	 */
2641 	if (fatal_signal_pending(current))
2642 		goto out;
2643 
2644 	/*
2645 	 * Check if the pfmemalloc reserves are ok by finding the first node
2646 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2647 	 * GFP_KERNEL will be required for allocating network buffers when
2648 	 * swapping over the network so ZONE_HIGHMEM is unusable.
2649 	 *
2650 	 * Throttling is based on the first usable node and throttled processes
2651 	 * wait on a queue until kswapd makes progress and wakes them. There
2652 	 * is an affinity then between processes waking up and where reclaim
2653 	 * progress has been made assuming the process wakes on the same node.
2654 	 * More importantly, processes running on remote nodes will not compete
2655 	 * for remote pfmemalloc reserves and processes on different nodes
2656 	 * should make reasonable progress.
2657 	 */
2658 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2659 					gfp_zone(gfp_mask), nodemask) {
2660 		if (zone_idx(zone) > ZONE_NORMAL)
2661 			continue;
2662 
2663 		/* Throttle based on the first usable node */
2664 		pgdat = zone->zone_pgdat;
2665 		if (pfmemalloc_watermark_ok(pgdat))
2666 			goto out;
2667 		break;
2668 	}
2669 
2670 	/* If no zone was usable by the allocation flags then do not throttle */
2671 	if (!pgdat)
2672 		goto out;
2673 
2674 	/* Account for the throttling */
2675 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
2676 
2677 	/*
2678 	 * If the caller cannot enter the filesystem, it's possible that it
2679 	 * is due to the caller holding an FS lock or performing a journal
2680 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
2681 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
2682 	 * blocked waiting on the same lock. Instead, throttle for up to a
2683 	 * second before continuing.
2684 	 */
2685 	if (!(gfp_mask & __GFP_FS)) {
2686 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2687 			pfmemalloc_watermark_ok(pgdat), HZ);
2688 
2689 		goto check_pending;
2690 	}
2691 
2692 	/* Throttle until kswapd wakes the process */
2693 	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2694 		pfmemalloc_watermark_ok(pgdat));
2695 
2696 check_pending:
2697 	if (fatal_signal_pending(current))
2698 		return true;
2699 
2700 out:
2701 	return false;
2702 }
2703 
2704 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2705 				gfp_t gfp_mask, nodemask_t *nodemask)
2706 {
2707 	unsigned long nr_reclaimed;
2708 	struct scan_control sc = {
2709 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2710 		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2711 		.order = order,
2712 		.nodemask = nodemask,
2713 		.priority = DEF_PRIORITY,
2714 		.may_writepage = !laptop_mode,
2715 		.may_unmap = 1,
2716 		.may_swap = 1,
2717 	};
2718 
2719 	/*
2720 	 * Do not enter reclaim if fatal signal was delivered while throttled.
2721 	 * 1 is returned so that the page allocator does not OOM kill at this
2722 	 * point.
2723 	 */
2724 	if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2725 		return 1;
2726 
2727 	trace_mm_vmscan_direct_reclaim_begin(order,
2728 				sc.may_writepage,
2729 				gfp_mask);
2730 
2731 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2732 
2733 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2734 
2735 	return nr_reclaimed;
2736 }
2737 
2738 #ifdef CONFIG_MEMCG
2739 
2740 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2741 						gfp_t gfp_mask, bool noswap,
2742 						struct zone *zone,
2743 						unsigned long *nr_scanned)
2744 {
2745 	struct scan_control sc = {
2746 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2747 		.target_mem_cgroup = memcg,
2748 		.may_writepage = !laptop_mode,
2749 		.may_unmap = 1,
2750 		.may_swap = !noswap,
2751 	};
2752 	struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2753 	int swappiness = mem_cgroup_swappiness(memcg);
2754 	unsigned long lru_pages;
2755 
2756 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2757 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2758 
2759 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2760 						      sc.may_writepage,
2761 						      sc.gfp_mask);
2762 
2763 	/*
2764 	 * NOTE: Although we can get the priority field, using it
2765 	 * here is not a good idea, since it limits the pages we can scan.
2766 	 * if we don't reclaim here, the shrink_zone from balance_pgdat
2767 	 * will pick up pages from other mem cgroup's as well. We hack
2768 	 * the priority and make it zero.
2769 	 */
2770 	shrink_lruvec(lruvec, swappiness, &sc, &lru_pages);
2771 
2772 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2773 
2774 	*nr_scanned = sc.nr_scanned;
2775 	return sc.nr_reclaimed;
2776 }
2777 
2778 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2779 					   unsigned long nr_pages,
2780 					   gfp_t gfp_mask,
2781 					   bool may_swap)
2782 {
2783 	struct zonelist *zonelist;
2784 	unsigned long nr_reclaimed;
2785 	int nid;
2786 	struct scan_control sc = {
2787 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
2788 		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2789 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2790 		.target_mem_cgroup = memcg,
2791 		.priority = DEF_PRIORITY,
2792 		.may_writepage = !laptop_mode,
2793 		.may_unmap = 1,
2794 		.may_swap = may_swap,
2795 	};
2796 
2797 	/*
2798 	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2799 	 * take care of from where we get pages. So the node where we start the
2800 	 * scan does not need to be the current node.
2801 	 */
2802 	nid = mem_cgroup_select_victim_node(memcg);
2803 
2804 	zonelist = NODE_DATA(nid)->node_zonelists;
2805 
2806 	trace_mm_vmscan_memcg_reclaim_begin(0,
2807 					    sc.may_writepage,
2808 					    sc.gfp_mask);
2809 
2810 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2811 
2812 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2813 
2814 	return nr_reclaimed;
2815 }
2816 #endif
2817 
2818 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2819 {
2820 	struct mem_cgroup *memcg;
2821 
2822 	if (!total_swap_pages)
2823 		return;
2824 
2825 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
2826 	do {
2827 		struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2828 
2829 		if (inactive_anon_is_low(lruvec))
2830 			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2831 					   sc, LRU_ACTIVE_ANON);
2832 
2833 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
2834 	} while (memcg);
2835 }
2836 
2837 static bool zone_balanced(struct zone *zone, int order,
2838 			  unsigned long balance_gap, int classzone_idx)
2839 {
2840 	if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2841 				    balance_gap, classzone_idx, 0))
2842 		return false;
2843 
2844 	if (IS_ENABLED(CONFIG_COMPACTION) && order && compaction_suitable(zone,
2845 				order, 0, classzone_idx) == COMPACT_SKIPPED)
2846 		return false;
2847 
2848 	return true;
2849 }
2850 
2851 /*
2852  * pgdat_balanced() is used when checking if a node is balanced.
2853  *
2854  * For order-0, all zones must be balanced!
2855  *
2856  * For high-order allocations only zones that meet watermarks and are in a
2857  * zone allowed by the callers classzone_idx are added to balanced_pages. The
2858  * total of balanced pages must be at least 25% of the zones allowed by
2859  * classzone_idx for the node to be considered balanced. Forcing all zones to
2860  * be balanced for high orders can cause excessive reclaim when there are
2861  * imbalanced zones.
2862  * The choice of 25% is due to
2863  *   o a 16M DMA zone that is balanced will not balance a zone on any
2864  *     reasonable sized machine
2865  *   o On all other machines, the top zone must be at least a reasonable
2866  *     percentage of the middle zones. For example, on 32-bit x86, highmem
2867  *     would need to be at least 256M for it to be balance a whole node.
2868  *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2869  *     to balance a node on its own. These seemed like reasonable ratios.
2870  */
2871 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
2872 {
2873 	unsigned long managed_pages = 0;
2874 	unsigned long balanced_pages = 0;
2875 	int i;
2876 
2877 	/* Check the watermark levels */
2878 	for (i = 0; i <= classzone_idx; i++) {
2879 		struct zone *zone = pgdat->node_zones + i;
2880 
2881 		if (!populated_zone(zone))
2882 			continue;
2883 
2884 		managed_pages += zone->managed_pages;
2885 
2886 		/*
2887 		 * A special case here:
2888 		 *
2889 		 * balance_pgdat() skips over all_unreclaimable after
2890 		 * DEF_PRIORITY. Effectively, it considers them balanced so
2891 		 * they must be considered balanced here as well!
2892 		 */
2893 		if (!zone_reclaimable(zone)) {
2894 			balanced_pages += zone->managed_pages;
2895 			continue;
2896 		}
2897 
2898 		if (zone_balanced(zone, order, 0, i))
2899 			balanced_pages += zone->managed_pages;
2900 		else if (!order)
2901 			return false;
2902 	}
2903 
2904 	if (order)
2905 		return balanced_pages >= (managed_pages >> 2);
2906 	else
2907 		return true;
2908 }
2909 
2910 /*
2911  * Prepare kswapd for sleeping. This verifies that there are no processes
2912  * waiting in throttle_direct_reclaim() and that watermarks have been met.
2913  *
2914  * Returns true if kswapd is ready to sleep
2915  */
2916 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2917 					int classzone_idx)
2918 {
2919 	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2920 	if (remaining)
2921 		return false;
2922 
2923 	/*
2924 	 * The throttled processes are normally woken up in balance_pgdat() as
2925 	 * soon as pfmemalloc_watermark_ok() is true. But there is a potential
2926 	 * race between when kswapd checks the watermarks and a process gets
2927 	 * throttled. There is also a potential race if processes get
2928 	 * throttled, kswapd wakes, a large process exits thereby balancing the
2929 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
2930 	 * the wake up checks. If kswapd is going to sleep, no process should
2931 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
2932 	 * the wake up is premature, processes will wake kswapd and get
2933 	 * throttled again. The difference from wake ups in balance_pgdat() is
2934 	 * that here we are under prepare_to_wait().
2935 	 */
2936 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
2937 		wake_up_all(&pgdat->pfmemalloc_wait);
2938 
2939 	return pgdat_balanced(pgdat, order, classzone_idx);
2940 }
2941 
2942 /*
2943  * kswapd shrinks the zone by the number of pages required to reach
2944  * the high watermark.
2945  *
2946  * Returns true if kswapd scanned at least the requested number of pages to
2947  * reclaim or if the lack of progress was due to pages under writeback.
2948  * This is used to determine if the scanning priority needs to be raised.
2949  */
2950 static bool kswapd_shrink_zone(struct zone *zone,
2951 			       int classzone_idx,
2952 			       struct scan_control *sc,
2953 			       unsigned long *nr_attempted)
2954 {
2955 	int testorder = sc->order;
2956 	unsigned long balance_gap;
2957 	bool lowmem_pressure;
2958 
2959 	/* Reclaim above the high watermark. */
2960 	sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
2961 
2962 	/*
2963 	 * Kswapd reclaims only single pages with compaction enabled. Trying
2964 	 * too hard to reclaim until contiguous free pages have become
2965 	 * available can hurt performance by evicting too much useful data
2966 	 * from memory. Do not reclaim more than needed for compaction.
2967 	 */
2968 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2969 			compaction_suitable(zone, sc->order, 0, classzone_idx)
2970 							!= COMPACT_SKIPPED)
2971 		testorder = 0;
2972 
2973 	/*
2974 	 * We put equal pressure on every zone, unless one zone has way too
2975 	 * many pages free already. The "too many pages" is defined as the
2976 	 * high wmark plus a "gap" where the gap is either the low
2977 	 * watermark or 1% of the zone, whichever is smaller.
2978 	 */
2979 	balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
2980 			zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
2981 
2982 	/*
2983 	 * If there is no low memory pressure or the zone is balanced then no
2984 	 * reclaim is necessary
2985 	 */
2986 	lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
2987 	if (!lowmem_pressure && zone_balanced(zone, testorder,
2988 						balance_gap, classzone_idx))
2989 		return true;
2990 
2991 	shrink_zone(zone, sc, zone_idx(zone) == classzone_idx);
2992 
2993 	/* Account for the number of pages attempted to reclaim */
2994 	*nr_attempted += sc->nr_to_reclaim;
2995 
2996 	clear_bit(ZONE_WRITEBACK, &zone->flags);
2997 
2998 	/*
2999 	 * If a zone reaches its high watermark, consider it to be no longer
3000 	 * congested. It's possible there are dirty pages backed by congested
3001 	 * BDIs but as pressure is relieved, speculatively avoid congestion
3002 	 * waits.
3003 	 */
3004 	if (zone_reclaimable(zone) &&
3005 	    zone_balanced(zone, testorder, 0, classzone_idx)) {
3006 		clear_bit(ZONE_CONGESTED, &zone->flags);
3007 		clear_bit(ZONE_DIRTY, &zone->flags);
3008 	}
3009 
3010 	return sc->nr_scanned >= sc->nr_to_reclaim;
3011 }
3012 
3013 /*
3014  * For kswapd, balance_pgdat() will work across all this node's zones until
3015  * they are all at high_wmark_pages(zone).
3016  *
3017  * Returns the final order kswapd was reclaiming at
3018  *
3019  * There is special handling here for zones which are full of pinned pages.
3020  * This can happen if the pages are all mlocked, or if they are all used by
3021  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
3022  * What we do is to detect the case where all pages in the zone have been
3023  * scanned twice and there has been zero successful reclaim.  Mark the zone as
3024  * dead and from now on, only perform a short scan.  Basically we're polling
3025  * the zone for when the problem goes away.
3026  *
3027  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3028  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3029  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
3030  * lower zones regardless of the number of free pages in the lower zones. This
3031  * interoperates with the page allocator fallback scheme to ensure that aging
3032  * of pages is balanced across the zones.
3033  */
3034 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
3035 							int *classzone_idx)
3036 {
3037 	int i;
3038 	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
3039 	unsigned long nr_soft_reclaimed;
3040 	unsigned long nr_soft_scanned;
3041 	struct scan_control sc = {
3042 		.gfp_mask = GFP_KERNEL,
3043 		.order = order,
3044 		.priority = DEF_PRIORITY,
3045 		.may_writepage = !laptop_mode,
3046 		.may_unmap = 1,
3047 		.may_swap = 1,
3048 	};
3049 	count_vm_event(PAGEOUTRUN);
3050 
3051 	do {
3052 		unsigned long nr_attempted = 0;
3053 		bool raise_priority = true;
3054 		bool pgdat_needs_compaction = (order > 0);
3055 
3056 		sc.nr_reclaimed = 0;
3057 
3058 		/*
3059 		 * Scan in the highmem->dma direction for the highest
3060 		 * zone which needs scanning
3061 		 */
3062 		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
3063 			struct zone *zone = pgdat->node_zones + i;
3064 
3065 			if (!populated_zone(zone))
3066 				continue;
3067 
3068 			if (sc.priority != DEF_PRIORITY &&
3069 			    !zone_reclaimable(zone))
3070 				continue;
3071 
3072 			/*
3073 			 * Do some background aging of the anon list, to give
3074 			 * pages a chance to be referenced before reclaiming.
3075 			 */
3076 			age_active_anon(zone, &sc);
3077 
3078 			/*
3079 			 * If the number of buffer_heads in the machine
3080 			 * exceeds the maximum allowed level and this node
3081 			 * has a highmem zone, force kswapd to reclaim from
3082 			 * it to relieve lowmem pressure.
3083 			 */
3084 			if (buffer_heads_over_limit && is_highmem_idx(i)) {
3085 				end_zone = i;
3086 				break;
3087 			}
3088 
3089 			if (!zone_balanced(zone, order, 0, 0)) {
3090 				end_zone = i;
3091 				break;
3092 			} else {
3093 				/*
3094 				 * If balanced, clear the dirty and congested
3095 				 * flags
3096 				 */
3097 				clear_bit(ZONE_CONGESTED, &zone->flags);
3098 				clear_bit(ZONE_DIRTY, &zone->flags);
3099 			}
3100 		}
3101 
3102 		if (i < 0)
3103 			goto out;
3104 
3105 		for (i = 0; i <= end_zone; i++) {
3106 			struct zone *zone = pgdat->node_zones + i;
3107 
3108 			if (!populated_zone(zone))
3109 				continue;
3110 
3111 			/*
3112 			 * If any zone is currently balanced then kswapd will
3113 			 * not call compaction as it is expected that the
3114 			 * necessary pages are already available.
3115 			 */
3116 			if (pgdat_needs_compaction &&
3117 					zone_watermark_ok(zone, order,
3118 						low_wmark_pages(zone),
3119 						*classzone_idx, 0))
3120 				pgdat_needs_compaction = false;
3121 		}
3122 
3123 		/*
3124 		 * If we're getting trouble reclaiming, start doing writepage
3125 		 * even in laptop mode.
3126 		 */
3127 		if (sc.priority < DEF_PRIORITY - 2)
3128 			sc.may_writepage = 1;
3129 
3130 		/*
3131 		 * Now scan the zone in the dma->highmem direction, stopping
3132 		 * at the last zone which needs scanning.
3133 		 *
3134 		 * We do this because the page allocator works in the opposite
3135 		 * direction.  This prevents the page allocator from allocating
3136 		 * pages behind kswapd's direction of progress, which would
3137 		 * cause too much scanning of the lower zones.
3138 		 */
3139 		for (i = 0; i <= end_zone; i++) {
3140 			struct zone *zone = pgdat->node_zones + i;
3141 
3142 			if (!populated_zone(zone))
3143 				continue;
3144 
3145 			if (sc.priority != DEF_PRIORITY &&
3146 			    !zone_reclaimable(zone))
3147 				continue;
3148 
3149 			sc.nr_scanned = 0;
3150 
3151 			nr_soft_scanned = 0;
3152 			/*
3153 			 * Call soft limit reclaim before calling shrink_zone.
3154 			 */
3155 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
3156 							order, sc.gfp_mask,
3157 							&nr_soft_scanned);
3158 			sc.nr_reclaimed += nr_soft_reclaimed;
3159 
3160 			/*
3161 			 * There should be no need to raise the scanning
3162 			 * priority if enough pages are already being scanned
3163 			 * that that high watermark would be met at 100%
3164 			 * efficiency.
3165 			 */
3166 			if (kswapd_shrink_zone(zone, end_zone,
3167 					       &sc, &nr_attempted))
3168 				raise_priority = false;
3169 		}
3170 
3171 		/*
3172 		 * If the low watermark is met there is no need for processes
3173 		 * to be throttled on pfmemalloc_wait as they should not be
3174 		 * able to safely make forward progress. Wake them
3175 		 */
3176 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3177 				pfmemalloc_watermark_ok(pgdat))
3178 			wake_up(&pgdat->pfmemalloc_wait);
3179 
3180 		/*
3181 		 * Fragmentation may mean that the system cannot be rebalanced
3182 		 * for high-order allocations in all zones. If twice the
3183 		 * allocation size has been reclaimed and the zones are still
3184 		 * not balanced then recheck the watermarks at order-0 to
3185 		 * prevent kswapd reclaiming excessively. Assume that a
3186 		 * process requested a high-order can direct reclaim/compact.
3187 		 */
3188 		if (order && sc.nr_reclaimed >= 2UL << order)
3189 			order = sc.order = 0;
3190 
3191 		/* Check if kswapd should be suspending */
3192 		if (try_to_freeze() || kthread_should_stop())
3193 			break;
3194 
3195 		/*
3196 		 * Compact if necessary and kswapd is reclaiming at least the
3197 		 * high watermark number of pages as requsted
3198 		 */
3199 		if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
3200 			compact_pgdat(pgdat, order);
3201 
3202 		/*
3203 		 * Raise priority if scanning rate is too low or there was no
3204 		 * progress in reclaiming pages
3205 		 */
3206 		if (raise_priority || !sc.nr_reclaimed)
3207 			sc.priority--;
3208 	} while (sc.priority >= 1 &&
3209 		 !pgdat_balanced(pgdat, order, *classzone_idx));
3210 
3211 out:
3212 	/*
3213 	 * Return the order we were reclaiming at so prepare_kswapd_sleep()
3214 	 * makes a decision on the order we were last reclaiming at. However,
3215 	 * if another caller entered the allocator slow path while kswapd
3216 	 * was awake, order will remain at the higher level
3217 	 */
3218 	*classzone_idx = end_zone;
3219 	return order;
3220 }
3221 
3222 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3223 {
3224 	long remaining = 0;
3225 	DEFINE_WAIT(wait);
3226 
3227 	if (freezing(current) || kthread_should_stop())
3228 		return;
3229 
3230 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3231 
3232 	/* Try to sleep for a short interval */
3233 	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3234 		remaining = schedule_timeout(HZ/10);
3235 		finish_wait(&pgdat->kswapd_wait, &wait);
3236 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3237 	}
3238 
3239 	/*
3240 	 * After a short sleep, check if it was a premature sleep. If not, then
3241 	 * go fully to sleep until explicitly woken up.
3242 	 */
3243 	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3244 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3245 
3246 		/*
3247 		 * vmstat counters are not perfectly accurate and the estimated
3248 		 * value for counters such as NR_FREE_PAGES can deviate from the
3249 		 * true value by nr_online_cpus * threshold. To avoid the zone
3250 		 * watermarks being breached while under pressure, we reduce the
3251 		 * per-cpu vmstat threshold while kswapd is awake and restore
3252 		 * them before going back to sleep.
3253 		 */
3254 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3255 
3256 		/*
3257 		 * Compaction records what page blocks it recently failed to
3258 		 * isolate pages from and skips them in the future scanning.
3259 		 * When kswapd is going to sleep, it is reasonable to assume
3260 		 * that pages and compaction may succeed so reset the cache.
3261 		 */
3262 		reset_isolation_suitable(pgdat);
3263 
3264 		if (!kthread_should_stop())
3265 			schedule();
3266 
3267 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3268 	} else {
3269 		if (remaining)
3270 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3271 		else
3272 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3273 	}
3274 	finish_wait(&pgdat->kswapd_wait, &wait);
3275 }
3276 
3277 /*
3278  * The background pageout daemon, started as a kernel thread
3279  * from the init process.
3280  *
3281  * This basically trickles out pages so that we have _some_
3282  * free memory available even if there is no other activity
3283  * that frees anything up. This is needed for things like routing
3284  * etc, where we otherwise might have all activity going on in
3285  * asynchronous contexts that cannot page things out.
3286  *
3287  * If there are applications that are active memory-allocators
3288  * (most normal use), this basically shouldn't matter.
3289  */
3290 static int kswapd(void *p)
3291 {
3292 	unsigned long order, new_order;
3293 	unsigned balanced_order;
3294 	int classzone_idx, new_classzone_idx;
3295 	int balanced_classzone_idx;
3296 	pg_data_t *pgdat = (pg_data_t*)p;
3297 	struct task_struct *tsk = current;
3298 
3299 	struct reclaim_state reclaim_state = {
3300 		.reclaimed_slab = 0,
3301 	};
3302 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3303 
3304 	lockdep_set_current_reclaim_state(GFP_KERNEL);
3305 
3306 	if (!cpumask_empty(cpumask))
3307 		set_cpus_allowed_ptr(tsk, cpumask);
3308 	current->reclaim_state = &reclaim_state;
3309 
3310 	/*
3311 	 * Tell the memory management that we're a "memory allocator",
3312 	 * and that if we need more memory we should get access to it
3313 	 * regardless (see "__alloc_pages()"). "kswapd" should
3314 	 * never get caught in the normal page freeing logic.
3315 	 *
3316 	 * (Kswapd normally doesn't need memory anyway, but sometimes
3317 	 * you need a small amount of memory in order to be able to
3318 	 * page out something else, and this flag essentially protects
3319 	 * us from recursively trying to free more memory as we're
3320 	 * trying to free the first piece of memory in the first place).
3321 	 */
3322 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3323 	set_freezable();
3324 
3325 	order = new_order = 0;
3326 	balanced_order = 0;
3327 	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3328 	balanced_classzone_idx = classzone_idx;
3329 	for ( ; ; ) {
3330 		bool ret;
3331 
3332 		/*
3333 		 * If the last balance_pgdat was unsuccessful it's unlikely a
3334 		 * new request of a similar or harder type will succeed soon
3335 		 * so consider going to sleep on the basis we reclaimed at
3336 		 */
3337 		if (balanced_classzone_idx >= new_classzone_idx &&
3338 					balanced_order == new_order) {
3339 			new_order = pgdat->kswapd_max_order;
3340 			new_classzone_idx = pgdat->classzone_idx;
3341 			pgdat->kswapd_max_order =  0;
3342 			pgdat->classzone_idx = pgdat->nr_zones - 1;
3343 		}
3344 
3345 		if (order < new_order || classzone_idx > new_classzone_idx) {
3346 			/*
3347 			 * Don't sleep if someone wants a larger 'order'
3348 			 * allocation or has tigher zone constraints
3349 			 */
3350 			order = new_order;
3351 			classzone_idx = new_classzone_idx;
3352 		} else {
3353 			kswapd_try_to_sleep(pgdat, balanced_order,
3354 						balanced_classzone_idx);
3355 			order = pgdat->kswapd_max_order;
3356 			classzone_idx = pgdat->classzone_idx;
3357 			new_order = order;
3358 			new_classzone_idx = classzone_idx;
3359 			pgdat->kswapd_max_order = 0;
3360 			pgdat->classzone_idx = pgdat->nr_zones - 1;
3361 		}
3362 
3363 		ret = try_to_freeze();
3364 		if (kthread_should_stop())
3365 			break;
3366 
3367 		/*
3368 		 * We can speed up thawing tasks if we don't call balance_pgdat
3369 		 * after returning from the refrigerator
3370 		 */
3371 		if (!ret) {
3372 			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3373 			balanced_classzone_idx = classzone_idx;
3374 			balanced_order = balance_pgdat(pgdat, order,
3375 						&balanced_classzone_idx);
3376 		}
3377 	}
3378 
3379 	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3380 	current->reclaim_state = NULL;
3381 	lockdep_clear_current_reclaim_state();
3382 
3383 	return 0;
3384 }
3385 
3386 /*
3387  * A zone is low on free memory, so wake its kswapd task to service it.
3388  */
3389 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3390 {
3391 	pg_data_t *pgdat;
3392 
3393 	if (!populated_zone(zone))
3394 		return;
3395 
3396 	if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
3397 		return;
3398 	pgdat = zone->zone_pgdat;
3399 	if (pgdat->kswapd_max_order < order) {
3400 		pgdat->kswapd_max_order = order;
3401 		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3402 	}
3403 	if (!waitqueue_active(&pgdat->kswapd_wait))
3404 		return;
3405 	if (zone_balanced(zone, order, 0, 0))
3406 		return;
3407 
3408 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3409 	wake_up_interruptible(&pgdat->kswapd_wait);
3410 }
3411 
3412 #ifdef CONFIG_HIBERNATION
3413 /*
3414  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3415  * freed pages.
3416  *
3417  * Rather than trying to age LRUs the aim is to preserve the overall
3418  * LRU order by reclaiming preferentially
3419  * inactive > active > active referenced > active mapped
3420  */
3421 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3422 {
3423 	struct reclaim_state reclaim_state;
3424 	struct scan_control sc = {
3425 		.nr_to_reclaim = nr_to_reclaim,
3426 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3427 		.priority = DEF_PRIORITY,
3428 		.may_writepage = 1,
3429 		.may_unmap = 1,
3430 		.may_swap = 1,
3431 		.hibernation_mode = 1,
3432 	};
3433 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3434 	struct task_struct *p = current;
3435 	unsigned long nr_reclaimed;
3436 
3437 	p->flags |= PF_MEMALLOC;
3438 	lockdep_set_current_reclaim_state(sc.gfp_mask);
3439 	reclaim_state.reclaimed_slab = 0;
3440 	p->reclaim_state = &reclaim_state;
3441 
3442 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3443 
3444 	p->reclaim_state = NULL;
3445 	lockdep_clear_current_reclaim_state();
3446 	p->flags &= ~PF_MEMALLOC;
3447 
3448 	return nr_reclaimed;
3449 }
3450 #endif /* CONFIG_HIBERNATION */
3451 
3452 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3453    not required for correctness.  So if the last cpu in a node goes
3454    away, we get changed to run anywhere: as the first one comes back,
3455    restore their cpu bindings. */
3456 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3457 			void *hcpu)
3458 {
3459 	int nid;
3460 
3461 	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3462 		for_each_node_state(nid, N_MEMORY) {
3463 			pg_data_t *pgdat = NODE_DATA(nid);
3464 			const struct cpumask *mask;
3465 
3466 			mask = cpumask_of_node(pgdat->node_id);
3467 
3468 			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3469 				/* One of our CPUs online: restore mask */
3470 				set_cpus_allowed_ptr(pgdat->kswapd, mask);
3471 		}
3472 	}
3473 	return NOTIFY_OK;
3474 }
3475 
3476 /*
3477  * This kswapd start function will be called by init and node-hot-add.
3478  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3479  */
3480 int kswapd_run(int nid)
3481 {
3482 	pg_data_t *pgdat = NODE_DATA(nid);
3483 	int ret = 0;
3484 
3485 	if (pgdat->kswapd)
3486 		return 0;
3487 
3488 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3489 	if (IS_ERR(pgdat->kswapd)) {
3490 		/* failure at boot is fatal */
3491 		BUG_ON(system_state == SYSTEM_BOOTING);
3492 		pr_err("Failed to start kswapd on node %d\n", nid);
3493 		ret = PTR_ERR(pgdat->kswapd);
3494 		pgdat->kswapd = NULL;
3495 	}
3496 	return ret;
3497 }
3498 
3499 /*
3500  * Called by memory hotplug when all memory in a node is offlined.  Caller must
3501  * hold mem_hotplug_begin/end().
3502  */
3503 void kswapd_stop(int nid)
3504 {
3505 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3506 
3507 	if (kswapd) {
3508 		kthread_stop(kswapd);
3509 		NODE_DATA(nid)->kswapd = NULL;
3510 	}
3511 }
3512 
3513 static int __init kswapd_init(void)
3514 {
3515 	int nid;
3516 
3517 	swap_setup();
3518 	for_each_node_state(nid, N_MEMORY)
3519  		kswapd_run(nid);
3520 	hotcpu_notifier(cpu_callback, 0);
3521 	return 0;
3522 }
3523 
3524 module_init(kswapd_init)
3525 
3526 #ifdef CONFIG_NUMA
3527 /*
3528  * Zone reclaim mode
3529  *
3530  * If non-zero call zone_reclaim when the number of free pages falls below
3531  * the watermarks.
3532  */
3533 int zone_reclaim_mode __read_mostly;
3534 
3535 #define RECLAIM_OFF 0
3536 #define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3537 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3538 #define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
3539 
3540 /*
3541  * Priority for ZONE_RECLAIM. This determines the fraction of pages
3542  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3543  * a zone.
3544  */
3545 #define ZONE_RECLAIM_PRIORITY 4
3546 
3547 /*
3548  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3549  * occur.
3550  */
3551 int sysctl_min_unmapped_ratio = 1;
3552 
3553 /*
3554  * If the number of slab pages in a zone grows beyond this percentage then
3555  * slab reclaim needs to occur.
3556  */
3557 int sysctl_min_slab_ratio = 5;
3558 
3559 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3560 {
3561 	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3562 	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3563 		zone_page_state(zone, NR_ACTIVE_FILE);
3564 
3565 	/*
3566 	 * It's possible for there to be more file mapped pages than
3567 	 * accounted for by the pages on the file LRU lists because
3568 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3569 	 */
3570 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3571 }
3572 
3573 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3574 static long zone_pagecache_reclaimable(struct zone *zone)
3575 {
3576 	long nr_pagecache_reclaimable;
3577 	long delta = 0;
3578 
3579 	/*
3580 	 * If RECLAIM_SWAP is set, then all file pages are considered
3581 	 * potentially reclaimable. Otherwise, we have to worry about
3582 	 * pages like swapcache and zone_unmapped_file_pages() provides
3583 	 * a better estimate
3584 	 */
3585 	if (zone_reclaim_mode & RECLAIM_SWAP)
3586 		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3587 	else
3588 		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3589 
3590 	/* If we can't clean pages, remove dirty pages from consideration */
3591 	if (!(zone_reclaim_mode & RECLAIM_WRITE))
3592 		delta += zone_page_state(zone, NR_FILE_DIRTY);
3593 
3594 	/* Watch for any possible underflows due to delta */
3595 	if (unlikely(delta > nr_pagecache_reclaimable))
3596 		delta = nr_pagecache_reclaimable;
3597 
3598 	return nr_pagecache_reclaimable - delta;
3599 }
3600 
3601 /*
3602  * Try to free up some pages from this zone through reclaim.
3603  */
3604 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3605 {
3606 	/* Minimum pages needed in order to stay on node */
3607 	const unsigned long nr_pages = 1 << order;
3608 	struct task_struct *p = current;
3609 	struct reclaim_state reclaim_state;
3610 	struct scan_control sc = {
3611 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3612 		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3613 		.order = order,
3614 		.priority = ZONE_RECLAIM_PRIORITY,
3615 		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3616 		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3617 		.may_swap = 1,
3618 	};
3619 
3620 	cond_resched();
3621 	/*
3622 	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3623 	 * and we also need to be able to write out pages for RECLAIM_WRITE
3624 	 * and RECLAIM_SWAP.
3625 	 */
3626 	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3627 	lockdep_set_current_reclaim_state(gfp_mask);
3628 	reclaim_state.reclaimed_slab = 0;
3629 	p->reclaim_state = &reclaim_state;
3630 
3631 	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3632 		/*
3633 		 * Free memory by calling shrink zone with increasing
3634 		 * priorities until we have enough memory freed.
3635 		 */
3636 		do {
3637 			shrink_zone(zone, &sc, true);
3638 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3639 	}
3640 
3641 	p->reclaim_state = NULL;
3642 	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3643 	lockdep_clear_current_reclaim_state();
3644 	return sc.nr_reclaimed >= nr_pages;
3645 }
3646 
3647 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3648 {
3649 	int node_id;
3650 	int ret;
3651 
3652 	/*
3653 	 * Zone reclaim reclaims unmapped file backed pages and
3654 	 * slab pages if we are over the defined limits.
3655 	 *
3656 	 * A small portion of unmapped file backed pages is needed for
3657 	 * file I/O otherwise pages read by file I/O will be immediately
3658 	 * thrown out if the zone is overallocated. So we do not reclaim
3659 	 * if less than a specified percentage of the zone is used by
3660 	 * unmapped file backed pages.
3661 	 */
3662 	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3663 	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3664 		return ZONE_RECLAIM_FULL;
3665 
3666 	if (!zone_reclaimable(zone))
3667 		return ZONE_RECLAIM_FULL;
3668 
3669 	/*
3670 	 * Do not scan if the allocation should not be delayed.
3671 	 */
3672 	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3673 		return ZONE_RECLAIM_NOSCAN;
3674 
3675 	/*
3676 	 * Only run zone reclaim on the local zone or on zones that do not
3677 	 * have associated processors. This will favor the local processor
3678 	 * over remote processors and spread off node memory allocations
3679 	 * as wide as possible.
3680 	 */
3681 	node_id = zone_to_nid(zone);
3682 	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3683 		return ZONE_RECLAIM_NOSCAN;
3684 
3685 	if (test_and_set_bit(ZONE_RECLAIM_LOCKED, &zone->flags))
3686 		return ZONE_RECLAIM_NOSCAN;
3687 
3688 	ret = __zone_reclaim(zone, gfp_mask, order);
3689 	clear_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
3690 
3691 	if (!ret)
3692 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3693 
3694 	return ret;
3695 }
3696 #endif
3697 
3698 /*
3699  * page_evictable - test whether a page is evictable
3700  * @page: the page to test
3701  *
3702  * Test whether page is evictable--i.e., should be placed on active/inactive
3703  * lists vs unevictable list.
3704  *
3705  * Reasons page might not be evictable:
3706  * (1) page's mapping marked unevictable
3707  * (2) page is part of an mlocked VMA
3708  *
3709  */
3710 int page_evictable(struct page *page)
3711 {
3712 	return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3713 }
3714 
3715 #ifdef CONFIG_SHMEM
3716 /**
3717  * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3718  * @pages:	array of pages to check
3719  * @nr_pages:	number of pages to check
3720  *
3721  * Checks pages for evictability and moves them to the appropriate lru list.
3722  *
3723  * This function is only used for SysV IPC SHM_UNLOCK.
3724  */
3725 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3726 {
3727 	struct lruvec *lruvec;
3728 	struct zone *zone = NULL;
3729 	int pgscanned = 0;
3730 	int pgrescued = 0;
3731 	int i;
3732 
3733 	for (i = 0; i < nr_pages; i++) {
3734 		struct page *page = pages[i];
3735 		struct zone *pagezone;
3736 
3737 		pgscanned++;
3738 		pagezone = page_zone(page);
3739 		if (pagezone != zone) {
3740 			if (zone)
3741 				spin_unlock_irq(&zone->lru_lock);
3742 			zone = pagezone;
3743 			spin_lock_irq(&zone->lru_lock);
3744 		}
3745 		lruvec = mem_cgroup_page_lruvec(page, zone);
3746 
3747 		if (!PageLRU(page) || !PageUnevictable(page))
3748 			continue;
3749 
3750 		if (page_evictable(page)) {
3751 			enum lru_list lru = page_lru_base_type(page);
3752 
3753 			VM_BUG_ON_PAGE(PageActive(page), page);
3754 			ClearPageUnevictable(page);
3755 			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3756 			add_page_to_lru_list(page, lruvec, lru);
3757 			pgrescued++;
3758 		}
3759 	}
3760 
3761 	if (zone) {
3762 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3763 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3764 		spin_unlock_irq(&zone->lru_lock);
3765 	}
3766 }
3767 #endif /* CONFIG_SHMEM */
3768