1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 4 * 5 * Swap reorganised 29.12.95, Stephen Tweedie. 6 * kswapd added: 7.1.96 sct 7 * Removed kswapd_ctl limits, and swap out as many pages as needed 8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 9 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 10 * Multiqueue VM started 5.8.00, Rik van Riel. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 15 #include <linux/mm.h> 16 #include <linux/sched/mm.h> 17 #include <linux/module.h> 18 #include <linux/gfp.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/swap.h> 21 #include <linux/pagemap.h> 22 #include <linux/init.h> 23 #include <linux/highmem.h> 24 #include <linux/vmpressure.h> 25 #include <linux/vmstat.h> 26 #include <linux/file.h> 27 #include <linux/writeback.h> 28 #include <linux/blkdev.h> 29 #include <linux/buffer_head.h> /* for try_to_release_page(), 30 buffer_heads_over_limit */ 31 #include <linux/mm_inline.h> 32 #include <linux/backing-dev.h> 33 #include <linux/rmap.h> 34 #include <linux/topology.h> 35 #include <linux/cpu.h> 36 #include <linux/cpuset.h> 37 #include <linux/compaction.h> 38 #include <linux/notifier.h> 39 #include <linux/rwsem.h> 40 #include <linux/delay.h> 41 #include <linux/kthread.h> 42 #include <linux/freezer.h> 43 #include <linux/memcontrol.h> 44 #include <linux/migrate.h> 45 #include <linux/delayacct.h> 46 #include <linux/sysctl.h> 47 #include <linux/oom.h> 48 #include <linux/pagevec.h> 49 #include <linux/prefetch.h> 50 #include <linux/printk.h> 51 #include <linux/dax.h> 52 #include <linux/psi.h> 53 54 #include <asm/tlbflush.h> 55 #include <asm/div64.h> 56 57 #include <linux/swapops.h> 58 #include <linux/balloon_compaction.h> 59 60 #include "internal.h" 61 62 #define CREATE_TRACE_POINTS 63 #include <trace/events/vmscan.h> 64 65 struct scan_control { 66 /* How many pages shrink_list() should reclaim */ 67 unsigned long nr_to_reclaim; 68 69 /* 70 * Nodemask of nodes allowed by the caller. If NULL, all nodes 71 * are scanned. 72 */ 73 nodemask_t *nodemask; 74 75 /* 76 * The memory cgroup that hit its limit and as a result is the 77 * primary target of this reclaim invocation. 78 */ 79 struct mem_cgroup *target_mem_cgroup; 80 81 /* 82 * Scan pressure balancing between anon and file LRUs 83 */ 84 unsigned long anon_cost; 85 unsigned long file_cost; 86 87 /* Can active pages be deactivated as part of reclaim? */ 88 #define DEACTIVATE_ANON 1 89 #define DEACTIVATE_FILE 2 90 unsigned int may_deactivate:2; 91 unsigned int force_deactivate:1; 92 unsigned int skipped_deactivate:1; 93 94 /* Writepage batching in laptop mode; RECLAIM_WRITE */ 95 unsigned int may_writepage:1; 96 97 /* Can mapped pages be reclaimed? */ 98 unsigned int may_unmap:1; 99 100 /* Can pages be swapped as part of reclaim? */ 101 unsigned int may_swap:1; 102 103 /* 104 * Cgroup memory below memory.low is protected as long as we 105 * don't threaten to OOM. If any cgroup is reclaimed at 106 * reduced force or passed over entirely due to its memory.low 107 * setting (memcg_low_skipped), and nothing is reclaimed as a 108 * result, then go back for one more cycle that reclaims the protected 109 * memory (memcg_low_reclaim) to avert OOM. 110 */ 111 unsigned int memcg_low_reclaim:1; 112 unsigned int memcg_low_skipped:1; 113 114 unsigned int hibernation_mode:1; 115 116 /* One of the zones is ready for compaction */ 117 unsigned int compaction_ready:1; 118 119 /* There is easily reclaimable cold cache in the current node */ 120 unsigned int cache_trim_mode:1; 121 122 /* The file pages on the current node are dangerously low */ 123 unsigned int file_is_tiny:1; 124 125 /* Always discard instead of demoting to lower tier memory */ 126 unsigned int no_demotion:1; 127 128 /* Allocation order */ 129 s8 order; 130 131 /* Scan (total_size >> priority) pages at once */ 132 s8 priority; 133 134 /* The highest zone to isolate pages for reclaim from */ 135 s8 reclaim_idx; 136 137 /* This context's GFP mask */ 138 gfp_t gfp_mask; 139 140 /* Incremented by the number of inactive pages that were scanned */ 141 unsigned long nr_scanned; 142 143 /* Number of pages freed so far during a call to shrink_zones() */ 144 unsigned long nr_reclaimed; 145 146 struct { 147 unsigned int dirty; 148 unsigned int unqueued_dirty; 149 unsigned int congested; 150 unsigned int writeback; 151 unsigned int immediate; 152 unsigned int file_taken; 153 unsigned int taken; 154 } nr; 155 156 /* for recording the reclaimed slab by now */ 157 struct reclaim_state reclaim_state; 158 }; 159 160 #ifdef ARCH_HAS_PREFETCHW 161 #define prefetchw_prev_lru_page(_page, _base, _field) \ 162 do { \ 163 if ((_page)->lru.prev != _base) { \ 164 struct page *prev; \ 165 \ 166 prev = lru_to_page(&(_page->lru)); \ 167 prefetchw(&prev->_field); \ 168 } \ 169 } while (0) 170 #else 171 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 172 #endif 173 174 /* 175 * From 0 .. 200. Higher means more swappy. 176 */ 177 int vm_swappiness = 60; 178 179 static void set_task_reclaim_state(struct task_struct *task, 180 struct reclaim_state *rs) 181 { 182 /* Check for an overwrite */ 183 WARN_ON_ONCE(rs && task->reclaim_state); 184 185 /* Check for the nulling of an already-nulled member */ 186 WARN_ON_ONCE(!rs && !task->reclaim_state); 187 188 task->reclaim_state = rs; 189 } 190 191 static LIST_HEAD(shrinker_list); 192 static DECLARE_RWSEM(shrinker_rwsem); 193 194 #ifdef CONFIG_MEMCG 195 static int shrinker_nr_max; 196 197 /* The shrinker_info is expanded in a batch of BITS_PER_LONG */ 198 static inline int shrinker_map_size(int nr_items) 199 { 200 return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long)); 201 } 202 203 static inline int shrinker_defer_size(int nr_items) 204 { 205 return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t)); 206 } 207 208 static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg, 209 int nid) 210 { 211 return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info, 212 lockdep_is_held(&shrinker_rwsem)); 213 } 214 215 static int expand_one_shrinker_info(struct mem_cgroup *memcg, 216 int map_size, int defer_size, 217 int old_map_size, int old_defer_size) 218 { 219 struct shrinker_info *new, *old; 220 struct mem_cgroup_per_node *pn; 221 int nid; 222 int size = map_size + defer_size; 223 224 for_each_node(nid) { 225 pn = memcg->nodeinfo[nid]; 226 old = shrinker_info_protected(memcg, nid); 227 /* Not yet online memcg */ 228 if (!old) 229 return 0; 230 231 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid); 232 if (!new) 233 return -ENOMEM; 234 235 new->nr_deferred = (atomic_long_t *)(new + 1); 236 new->map = (void *)new->nr_deferred + defer_size; 237 238 /* map: set all old bits, clear all new bits */ 239 memset(new->map, (int)0xff, old_map_size); 240 memset((void *)new->map + old_map_size, 0, map_size - old_map_size); 241 /* nr_deferred: copy old values, clear all new values */ 242 memcpy(new->nr_deferred, old->nr_deferred, old_defer_size); 243 memset((void *)new->nr_deferred + old_defer_size, 0, 244 defer_size - old_defer_size); 245 246 rcu_assign_pointer(pn->shrinker_info, new); 247 kvfree_rcu(old, rcu); 248 } 249 250 return 0; 251 } 252 253 void free_shrinker_info(struct mem_cgroup *memcg) 254 { 255 struct mem_cgroup_per_node *pn; 256 struct shrinker_info *info; 257 int nid; 258 259 for_each_node(nid) { 260 pn = memcg->nodeinfo[nid]; 261 info = rcu_dereference_protected(pn->shrinker_info, true); 262 kvfree(info); 263 rcu_assign_pointer(pn->shrinker_info, NULL); 264 } 265 } 266 267 int alloc_shrinker_info(struct mem_cgroup *memcg) 268 { 269 struct shrinker_info *info; 270 int nid, size, ret = 0; 271 int map_size, defer_size = 0; 272 273 down_write(&shrinker_rwsem); 274 map_size = shrinker_map_size(shrinker_nr_max); 275 defer_size = shrinker_defer_size(shrinker_nr_max); 276 size = map_size + defer_size; 277 for_each_node(nid) { 278 info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid); 279 if (!info) { 280 free_shrinker_info(memcg); 281 ret = -ENOMEM; 282 break; 283 } 284 info->nr_deferred = (atomic_long_t *)(info + 1); 285 info->map = (void *)info->nr_deferred + defer_size; 286 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info); 287 } 288 up_write(&shrinker_rwsem); 289 290 return ret; 291 } 292 293 static inline bool need_expand(int nr_max) 294 { 295 return round_up(nr_max, BITS_PER_LONG) > 296 round_up(shrinker_nr_max, BITS_PER_LONG); 297 } 298 299 static int expand_shrinker_info(int new_id) 300 { 301 int ret = 0; 302 int new_nr_max = new_id + 1; 303 int map_size, defer_size = 0; 304 int old_map_size, old_defer_size = 0; 305 struct mem_cgroup *memcg; 306 307 if (!need_expand(new_nr_max)) 308 goto out; 309 310 if (!root_mem_cgroup) 311 goto out; 312 313 lockdep_assert_held(&shrinker_rwsem); 314 315 map_size = shrinker_map_size(new_nr_max); 316 defer_size = shrinker_defer_size(new_nr_max); 317 old_map_size = shrinker_map_size(shrinker_nr_max); 318 old_defer_size = shrinker_defer_size(shrinker_nr_max); 319 320 memcg = mem_cgroup_iter(NULL, NULL, NULL); 321 do { 322 ret = expand_one_shrinker_info(memcg, map_size, defer_size, 323 old_map_size, old_defer_size); 324 if (ret) { 325 mem_cgroup_iter_break(NULL, memcg); 326 goto out; 327 } 328 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 329 out: 330 if (!ret) 331 shrinker_nr_max = new_nr_max; 332 333 return ret; 334 } 335 336 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id) 337 { 338 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) { 339 struct shrinker_info *info; 340 341 rcu_read_lock(); 342 info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info); 343 /* Pairs with smp mb in shrink_slab() */ 344 smp_mb__before_atomic(); 345 set_bit(shrinker_id, info->map); 346 rcu_read_unlock(); 347 } 348 } 349 350 static DEFINE_IDR(shrinker_idr); 351 352 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 353 { 354 int id, ret = -ENOMEM; 355 356 if (mem_cgroup_disabled()) 357 return -ENOSYS; 358 359 down_write(&shrinker_rwsem); 360 /* This may call shrinker, so it must use down_read_trylock() */ 361 id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL); 362 if (id < 0) 363 goto unlock; 364 365 if (id >= shrinker_nr_max) { 366 if (expand_shrinker_info(id)) { 367 idr_remove(&shrinker_idr, id); 368 goto unlock; 369 } 370 } 371 shrinker->id = id; 372 ret = 0; 373 unlock: 374 up_write(&shrinker_rwsem); 375 return ret; 376 } 377 378 static void unregister_memcg_shrinker(struct shrinker *shrinker) 379 { 380 int id = shrinker->id; 381 382 BUG_ON(id < 0); 383 384 lockdep_assert_held(&shrinker_rwsem); 385 386 idr_remove(&shrinker_idr, id); 387 } 388 389 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker, 390 struct mem_cgroup *memcg) 391 { 392 struct shrinker_info *info; 393 394 info = shrinker_info_protected(memcg, nid); 395 return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0); 396 } 397 398 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker, 399 struct mem_cgroup *memcg) 400 { 401 struct shrinker_info *info; 402 403 info = shrinker_info_protected(memcg, nid); 404 return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]); 405 } 406 407 void reparent_shrinker_deferred(struct mem_cgroup *memcg) 408 { 409 int i, nid; 410 long nr; 411 struct mem_cgroup *parent; 412 struct shrinker_info *child_info, *parent_info; 413 414 parent = parent_mem_cgroup(memcg); 415 if (!parent) 416 parent = root_mem_cgroup; 417 418 /* Prevent from concurrent shrinker_info expand */ 419 down_read(&shrinker_rwsem); 420 for_each_node(nid) { 421 child_info = shrinker_info_protected(memcg, nid); 422 parent_info = shrinker_info_protected(parent, nid); 423 for (i = 0; i < shrinker_nr_max; i++) { 424 nr = atomic_long_read(&child_info->nr_deferred[i]); 425 atomic_long_add(nr, &parent_info->nr_deferred[i]); 426 } 427 } 428 up_read(&shrinker_rwsem); 429 } 430 431 static bool cgroup_reclaim(struct scan_control *sc) 432 { 433 return sc->target_mem_cgroup; 434 } 435 436 /** 437 * writeback_throttling_sane - is the usual dirty throttling mechanism available? 438 * @sc: scan_control in question 439 * 440 * The normal page dirty throttling mechanism in balance_dirty_pages() is 441 * completely broken with the legacy memcg and direct stalling in 442 * shrink_page_list() is used for throttling instead, which lacks all the 443 * niceties such as fairness, adaptive pausing, bandwidth proportional 444 * allocation and configurability. 445 * 446 * This function tests whether the vmscan currently in progress can assume 447 * that the normal dirty throttling mechanism is operational. 448 */ 449 static bool writeback_throttling_sane(struct scan_control *sc) 450 { 451 if (!cgroup_reclaim(sc)) 452 return true; 453 #ifdef CONFIG_CGROUP_WRITEBACK 454 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 455 return true; 456 #endif 457 return false; 458 } 459 #else 460 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 461 { 462 return -ENOSYS; 463 } 464 465 static void unregister_memcg_shrinker(struct shrinker *shrinker) 466 { 467 } 468 469 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker, 470 struct mem_cgroup *memcg) 471 { 472 return 0; 473 } 474 475 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker, 476 struct mem_cgroup *memcg) 477 { 478 return 0; 479 } 480 481 static bool cgroup_reclaim(struct scan_control *sc) 482 { 483 return false; 484 } 485 486 static bool writeback_throttling_sane(struct scan_control *sc) 487 { 488 return true; 489 } 490 #endif 491 492 static long xchg_nr_deferred(struct shrinker *shrinker, 493 struct shrink_control *sc) 494 { 495 int nid = sc->nid; 496 497 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 498 nid = 0; 499 500 if (sc->memcg && 501 (shrinker->flags & SHRINKER_MEMCG_AWARE)) 502 return xchg_nr_deferred_memcg(nid, shrinker, 503 sc->memcg); 504 505 return atomic_long_xchg(&shrinker->nr_deferred[nid], 0); 506 } 507 508 509 static long add_nr_deferred(long nr, struct shrinker *shrinker, 510 struct shrink_control *sc) 511 { 512 int nid = sc->nid; 513 514 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 515 nid = 0; 516 517 if (sc->memcg && 518 (shrinker->flags & SHRINKER_MEMCG_AWARE)) 519 return add_nr_deferred_memcg(nr, nid, shrinker, 520 sc->memcg); 521 522 return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]); 523 } 524 525 static bool can_demote(int nid, struct scan_control *sc) 526 { 527 if (!numa_demotion_enabled) 528 return false; 529 if (sc) { 530 if (sc->no_demotion) 531 return false; 532 /* It is pointless to do demotion in memcg reclaim */ 533 if (cgroup_reclaim(sc)) 534 return false; 535 } 536 if (next_demotion_node(nid) == NUMA_NO_NODE) 537 return false; 538 539 return true; 540 } 541 542 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg, 543 int nid, 544 struct scan_control *sc) 545 { 546 if (memcg == NULL) { 547 /* 548 * For non-memcg reclaim, is there 549 * space in any swap device? 550 */ 551 if (get_nr_swap_pages() > 0) 552 return true; 553 } else { 554 /* Is the memcg below its swap limit? */ 555 if (mem_cgroup_get_nr_swap_pages(memcg) > 0) 556 return true; 557 } 558 559 /* 560 * The page can not be swapped. 561 * 562 * Can it be reclaimed from this node via demotion? 563 */ 564 return can_demote(nid, sc); 565 } 566 567 /* 568 * This misses isolated pages which are not accounted for to save counters. 569 * As the data only determines if reclaim or compaction continues, it is 570 * not expected that isolated pages will be a dominating factor. 571 */ 572 unsigned long zone_reclaimable_pages(struct zone *zone) 573 { 574 unsigned long nr; 575 576 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) + 577 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE); 578 if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL)) 579 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) + 580 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON); 581 582 return nr; 583 } 584 585 /** 586 * lruvec_lru_size - Returns the number of pages on the given LRU list. 587 * @lruvec: lru vector 588 * @lru: lru to use 589 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list) 590 */ 591 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, 592 int zone_idx) 593 { 594 unsigned long size = 0; 595 int zid; 596 597 for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) { 598 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid]; 599 600 if (!managed_zone(zone)) 601 continue; 602 603 if (!mem_cgroup_disabled()) 604 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid); 605 else 606 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru); 607 } 608 return size; 609 } 610 611 /* 612 * Add a shrinker callback to be called from the vm. 613 */ 614 int prealloc_shrinker(struct shrinker *shrinker) 615 { 616 unsigned int size; 617 int err; 618 619 if (shrinker->flags & SHRINKER_MEMCG_AWARE) { 620 err = prealloc_memcg_shrinker(shrinker); 621 if (err != -ENOSYS) 622 return err; 623 624 shrinker->flags &= ~SHRINKER_MEMCG_AWARE; 625 } 626 627 size = sizeof(*shrinker->nr_deferred); 628 if (shrinker->flags & SHRINKER_NUMA_AWARE) 629 size *= nr_node_ids; 630 631 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); 632 if (!shrinker->nr_deferred) 633 return -ENOMEM; 634 635 return 0; 636 } 637 638 void free_prealloced_shrinker(struct shrinker *shrinker) 639 { 640 if (shrinker->flags & SHRINKER_MEMCG_AWARE) { 641 down_write(&shrinker_rwsem); 642 unregister_memcg_shrinker(shrinker); 643 up_write(&shrinker_rwsem); 644 return; 645 } 646 647 kfree(shrinker->nr_deferred); 648 shrinker->nr_deferred = NULL; 649 } 650 651 void register_shrinker_prepared(struct shrinker *shrinker) 652 { 653 down_write(&shrinker_rwsem); 654 list_add_tail(&shrinker->list, &shrinker_list); 655 shrinker->flags |= SHRINKER_REGISTERED; 656 up_write(&shrinker_rwsem); 657 } 658 659 int register_shrinker(struct shrinker *shrinker) 660 { 661 int err = prealloc_shrinker(shrinker); 662 663 if (err) 664 return err; 665 register_shrinker_prepared(shrinker); 666 return 0; 667 } 668 EXPORT_SYMBOL(register_shrinker); 669 670 /* 671 * Remove one 672 */ 673 void unregister_shrinker(struct shrinker *shrinker) 674 { 675 if (!(shrinker->flags & SHRINKER_REGISTERED)) 676 return; 677 678 down_write(&shrinker_rwsem); 679 list_del(&shrinker->list); 680 shrinker->flags &= ~SHRINKER_REGISTERED; 681 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 682 unregister_memcg_shrinker(shrinker); 683 up_write(&shrinker_rwsem); 684 685 kfree(shrinker->nr_deferred); 686 shrinker->nr_deferred = NULL; 687 } 688 EXPORT_SYMBOL(unregister_shrinker); 689 690 #define SHRINK_BATCH 128 691 692 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl, 693 struct shrinker *shrinker, int priority) 694 { 695 unsigned long freed = 0; 696 unsigned long long delta; 697 long total_scan; 698 long freeable; 699 long nr; 700 long new_nr; 701 long batch_size = shrinker->batch ? shrinker->batch 702 : SHRINK_BATCH; 703 long scanned = 0, next_deferred; 704 705 freeable = shrinker->count_objects(shrinker, shrinkctl); 706 if (freeable == 0 || freeable == SHRINK_EMPTY) 707 return freeable; 708 709 /* 710 * copy the current shrinker scan count into a local variable 711 * and zero it so that other concurrent shrinker invocations 712 * don't also do this scanning work. 713 */ 714 nr = xchg_nr_deferred(shrinker, shrinkctl); 715 716 if (shrinker->seeks) { 717 delta = freeable >> priority; 718 delta *= 4; 719 do_div(delta, shrinker->seeks); 720 } else { 721 /* 722 * These objects don't require any IO to create. Trim 723 * them aggressively under memory pressure to keep 724 * them from causing refetches in the IO caches. 725 */ 726 delta = freeable / 2; 727 } 728 729 total_scan = nr >> priority; 730 total_scan += delta; 731 total_scan = min(total_scan, (2 * freeable)); 732 733 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, 734 freeable, delta, total_scan, priority); 735 736 /* 737 * Normally, we should not scan less than batch_size objects in one 738 * pass to avoid too frequent shrinker calls, but if the slab has less 739 * than batch_size objects in total and we are really tight on memory, 740 * we will try to reclaim all available objects, otherwise we can end 741 * up failing allocations although there are plenty of reclaimable 742 * objects spread over several slabs with usage less than the 743 * batch_size. 744 * 745 * We detect the "tight on memory" situations by looking at the total 746 * number of objects we want to scan (total_scan). If it is greater 747 * than the total number of objects on slab (freeable), we must be 748 * scanning at high prio and therefore should try to reclaim as much as 749 * possible. 750 */ 751 while (total_scan >= batch_size || 752 total_scan >= freeable) { 753 unsigned long ret; 754 unsigned long nr_to_scan = min(batch_size, total_scan); 755 756 shrinkctl->nr_to_scan = nr_to_scan; 757 shrinkctl->nr_scanned = nr_to_scan; 758 ret = shrinker->scan_objects(shrinker, shrinkctl); 759 if (ret == SHRINK_STOP) 760 break; 761 freed += ret; 762 763 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned); 764 total_scan -= shrinkctl->nr_scanned; 765 scanned += shrinkctl->nr_scanned; 766 767 cond_resched(); 768 } 769 770 /* 771 * The deferred work is increased by any new work (delta) that wasn't 772 * done, decreased by old deferred work that was done now. 773 * 774 * And it is capped to two times of the freeable items. 775 */ 776 next_deferred = max_t(long, (nr + delta - scanned), 0); 777 next_deferred = min(next_deferred, (2 * freeable)); 778 779 /* 780 * move the unused scan count back into the shrinker in a 781 * manner that handles concurrent updates. 782 */ 783 new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl); 784 785 trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan); 786 return freed; 787 } 788 789 #ifdef CONFIG_MEMCG 790 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 791 struct mem_cgroup *memcg, int priority) 792 { 793 struct shrinker_info *info; 794 unsigned long ret, freed = 0; 795 int i; 796 797 if (!mem_cgroup_online(memcg)) 798 return 0; 799 800 if (!down_read_trylock(&shrinker_rwsem)) 801 return 0; 802 803 info = shrinker_info_protected(memcg, nid); 804 if (unlikely(!info)) 805 goto unlock; 806 807 for_each_set_bit(i, info->map, shrinker_nr_max) { 808 struct shrink_control sc = { 809 .gfp_mask = gfp_mask, 810 .nid = nid, 811 .memcg = memcg, 812 }; 813 struct shrinker *shrinker; 814 815 shrinker = idr_find(&shrinker_idr, i); 816 if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) { 817 if (!shrinker) 818 clear_bit(i, info->map); 819 continue; 820 } 821 822 /* Call non-slab shrinkers even though kmem is disabled */ 823 if (!memcg_kmem_enabled() && 824 !(shrinker->flags & SHRINKER_NONSLAB)) 825 continue; 826 827 ret = do_shrink_slab(&sc, shrinker, priority); 828 if (ret == SHRINK_EMPTY) { 829 clear_bit(i, info->map); 830 /* 831 * After the shrinker reported that it had no objects to 832 * free, but before we cleared the corresponding bit in 833 * the memcg shrinker map, a new object might have been 834 * added. To make sure, we have the bit set in this 835 * case, we invoke the shrinker one more time and reset 836 * the bit if it reports that it is not empty anymore. 837 * The memory barrier here pairs with the barrier in 838 * set_shrinker_bit(): 839 * 840 * list_lru_add() shrink_slab_memcg() 841 * list_add_tail() clear_bit() 842 * <MB> <MB> 843 * set_bit() do_shrink_slab() 844 */ 845 smp_mb__after_atomic(); 846 ret = do_shrink_slab(&sc, shrinker, priority); 847 if (ret == SHRINK_EMPTY) 848 ret = 0; 849 else 850 set_shrinker_bit(memcg, nid, i); 851 } 852 freed += ret; 853 854 if (rwsem_is_contended(&shrinker_rwsem)) { 855 freed = freed ? : 1; 856 break; 857 } 858 } 859 unlock: 860 up_read(&shrinker_rwsem); 861 return freed; 862 } 863 #else /* CONFIG_MEMCG */ 864 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 865 struct mem_cgroup *memcg, int priority) 866 { 867 return 0; 868 } 869 #endif /* CONFIG_MEMCG */ 870 871 /** 872 * shrink_slab - shrink slab caches 873 * @gfp_mask: allocation context 874 * @nid: node whose slab caches to target 875 * @memcg: memory cgroup whose slab caches to target 876 * @priority: the reclaim priority 877 * 878 * Call the shrink functions to age shrinkable caches. 879 * 880 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set, 881 * unaware shrinkers will receive a node id of 0 instead. 882 * 883 * @memcg specifies the memory cgroup to target. Unaware shrinkers 884 * are called only if it is the root cgroup. 885 * 886 * @priority is sc->priority, we take the number of objects and >> by priority 887 * in order to get the scan target. 888 * 889 * Returns the number of reclaimed slab objects. 890 */ 891 static unsigned long shrink_slab(gfp_t gfp_mask, int nid, 892 struct mem_cgroup *memcg, 893 int priority) 894 { 895 unsigned long ret, freed = 0; 896 struct shrinker *shrinker; 897 898 /* 899 * The root memcg might be allocated even though memcg is disabled 900 * via "cgroup_disable=memory" boot parameter. This could make 901 * mem_cgroup_is_root() return false, then just run memcg slab 902 * shrink, but skip global shrink. This may result in premature 903 * oom. 904 */ 905 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg)) 906 return shrink_slab_memcg(gfp_mask, nid, memcg, priority); 907 908 if (!down_read_trylock(&shrinker_rwsem)) 909 goto out; 910 911 list_for_each_entry(shrinker, &shrinker_list, list) { 912 struct shrink_control sc = { 913 .gfp_mask = gfp_mask, 914 .nid = nid, 915 .memcg = memcg, 916 }; 917 918 ret = do_shrink_slab(&sc, shrinker, priority); 919 if (ret == SHRINK_EMPTY) 920 ret = 0; 921 freed += ret; 922 /* 923 * Bail out if someone want to register a new shrinker to 924 * prevent the registration from being stalled for long periods 925 * by parallel ongoing shrinking. 926 */ 927 if (rwsem_is_contended(&shrinker_rwsem)) { 928 freed = freed ? : 1; 929 break; 930 } 931 } 932 933 up_read(&shrinker_rwsem); 934 out: 935 cond_resched(); 936 return freed; 937 } 938 939 void drop_slab_node(int nid) 940 { 941 unsigned long freed; 942 int shift = 0; 943 944 do { 945 struct mem_cgroup *memcg = NULL; 946 947 if (fatal_signal_pending(current)) 948 return; 949 950 freed = 0; 951 memcg = mem_cgroup_iter(NULL, NULL, NULL); 952 do { 953 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0); 954 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 955 } while ((freed >> shift++) > 1); 956 } 957 958 void drop_slab(void) 959 { 960 int nid; 961 962 for_each_online_node(nid) 963 drop_slab_node(nid); 964 } 965 966 static inline int is_page_cache_freeable(struct page *page) 967 { 968 /* 969 * A freeable page cache page is referenced only by the caller 970 * that isolated the page, the page cache and optional buffer 971 * heads at page->private. 972 */ 973 int page_cache_pins = thp_nr_pages(page); 974 return page_count(page) - page_has_private(page) == 1 + page_cache_pins; 975 } 976 977 static int may_write_to_inode(struct inode *inode) 978 { 979 if (current->flags & PF_SWAPWRITE) 980 return 1; 981 if (!inode_write_congested(inode)) 982 return 1; 983 if (inode_to_bdi(inode) == current->backing_dev_info) 984 return 1; 985 return 0; 986 } 987 988 /* 989 * We detected a synchronous write error writing a page out. Probably 990 * -ENOSPC. We need to propagate that into the address_space for a subsequent 991 * fsync(), msync() or close(). 992 * 993 * The tricky part is that after writepage we cannot touch the mapping: nothing 994 * prevents it from being freed up. But we have a ref on the page and once 995 * that page is locked, the mapping is pinned. 996 * 997 * We're allowed to run sleeping lock_page() here because we know the caller has 998 * __GFP_FS. 999 */ 1000 static void handle_write_error(struct address_space *mapping, 1001 struct page *page, int error) 1002 { 1003 lock_page(page); 1004 if (page_mapping(page) == mapping) 1005 mapping_set_error(mapping, error); 1006 unlock_page(page); 1007 } 1008 1009 /* possible outcome of pageout() */ 1010 typedef enum { 1011 /* failed to write page out, page is locked */ 1012 PAGE_KEEP, 1013 /* move page to the active list, page is locked */ 1014 PAGE_ACTIVATE, 1015 /* page has been sent to the disk successfully, page is unlocked */ 1016 PAGE_SUCCESS, 1017 /* page is clean and locked */ 1018 PAGE_CLEAN, 1019 } pageout_t; 1020 1021 /* 1022 * pageout is called by shrink_page_list() for each dirty page. 1023 * Calls ->writepage(). 1024 */ 1025 static pageout_t pageout(struct page *page, struct address_space *mapping) 1026 { 1027 /* 1028 * If the page is dirty, only perform writeback if that write 1029 * will be non-blocking. To prevent this allocation from being 1030 * stalled by pagecache activity. But note that there may be 1031 * stalls if we need to run get_block(). We could test 1032 * PagePrivate for that. 1033 * 1034 * If this process is currently in __generic_file_write_iter() against 1035 * this page's queue, we can perform writeback even if that 1036 * will block. 1037 * 1038 * If the page is swapcache, write it back even if that would 1039 * block, for some throttling. This happens by accident, because 1040 * swap_backing_dev_info is bust: it doesn't reflect the 1041 * congestion state of the swapdevs. Easy to fix, if needed. 1042 */ 1043 if (!is_page_cache_freeable(page)) 1044 return PAGE_KEEP; 1045 if (!mapping) { 1046 /* 1047 * Some data journaling orphaned pages can have 1048 * page->mapping == NULL while being dirty with clean buffers. 1049 */ 1050 if (page_has_private(page)) { 1051 if (try_to_free_buffers(page)) { 1052 ClearPageDirty(page); 1053 pr_info("%s: orphaned page\n", __func__); 1054 return PAGE_CLEAN; 1055 } 1056 } 1057 return PAGE_KEEP; 1058 } 1059 if (mapping->a_ops->writepage == NULL) 1060 return PAGE_ACTIVATE; 1061 if (!may_write_to_inode(mapping->host)) 1062 return PAGE_KEEP; 1063 1064 if (clear_page_dirty_for_io(page)) { 1065 int res; 1066 struct writeback_control wbc = { 1067 .sync_mode = WB_SYNC_NONE, 1068 .nr_to_write = SWAP_CLUSTER_MAX, 1069 .range_start = 0, 1070 .range_end = LLONG_MAX, 1071 .for_reclaim = 1, 1072 }; 1073 1074 SetPageReclaim(page); 1075 res = mapping->a_ops->writepage(page, &wbc); 1076 if (res < 0) 1077 handle_write_error(mapping, page, res); 1078 if (res == AOP_WRITEPAGE_ACTIVATE) { 1079 ClearPageReclaim(page); 1080 return PAGE_ACTIVATE; 1081 } 1082 1083 if (!PageWriteback(page)) { 1084 /* synchronous write or broken a_ops? */ 1085 ClearPageReclaim(page); 1086 } 1087 trace_mm_vmscan_writepage(page); 1088 inc_node_page_state(page, NR_VMSCAN_WRITE); 1089 return PAGE_SUCCESS; 1090 } 1091 1092 return PAGE_CLEAN; 1093 } 1094 1095 /* 1096 * Same as remove_mapping, but if the page is removed from the mapping, it 1097 * gets returned with a refcount of 0. 1098 */ 1099 static int __remove_mapping(struct address_space *mapping, struct page *page, 1100 bool reclaimed, struct mem_cgroup *target_memcg) 1101 { 1102 int refcount; 1103 void *shadow = NULL; 1104 1105 BUG_ON(!PageLocked(page)); 1106 BUG_ON(mapping != page_mapping(page)); 1107 1108 xa_lock_irq(&mapping->i_pages); 1109 /* 1110 * The non racy check for a busy page. 1111 * 1112 * Must be careful with the order of the tests. When someone has 1113 * a ref to the page, it may be possible that they dirty it then 1114 * drop the reference. So if PageDirty is tested before page_count 1115 * here, then the following race may occur: 1116 * 1117 * get_user_pages(&page); 1118 * [user mapping goes away] 1119 * write_to(page); 1120 * !PageDirty(page) [good] 1121 * SetPageDirty(page); 1122 * put_page(page); 1123 * !page_count(page) [good, discard it] 1124 * 1125 * [oops, our write_to data is lost] 1126 * 1127 * Reversing the order of the tests ensures such a situation cannot 1128 * escape unnoticed. The smp_rmb is needed to ensure the page->flags 1129 * load is not satisfied before that of page->_refcount. 1130 * 1131 * Note that if SetPageDirty is always performed via set_page_dirty, 1132 * and thus under the i_pages lock, then this ordering is not required. 1133 */ 1134 refcount = 1 + compound_nr(page); 1135 if (!page_ref_freeze(page, refcount)) 1136 goto cannot_free; 1137 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */ 1138 if (unlikely(PageDirty(page))) { 1139 page_ref_unfreeze(page, refcount); 1140 goto cannot_free; 1141 } 1142 1143 if (PageSwapCache(page)) { 1144 swp_entry_t swap = { .val = page_private(page) }; 1145 mem_cgroup_swapout(page, swap); 1146 if (reclaimed && !mapping_exiting(mapping)) 1147 shadow = workingset_eviction(page, target_memcg); 1148 __delete_from_swap_cache(page, swap, shadow); 1149 xa_unlock_irq(&mapping->i_pages); 1150 put_swap_page(page, swap); 1151 } else { 1152 void (*freepage)(struct page *); 1153 1154 freepage = mapping->a_ops->freepage; 1155 /* 1156 * Remember a shadow entry for reclaimed file cache in 1157 * order to detect refaults, thus thrashing, later on. 1158 * 1159 * But don't store shadows in an address space that is 1160 * already exiting. This is not just an optimization, 1161 * inode reclaim needs to empty out the radix tree or 1162 * the nodes are lost. Don't plant shadows behind its 1163 * back. 1164 * 1165 * We also don't store shadows for DAX mappings because the 1166 * only page cache pages found in these are zero pages 1167 * covering holes, and because we don't want to mix DAX 1168 * exceptional entries and shadow exceptional entries in the 1169 * same address_space. 1170 */ 1171 if (reclaimed && page_is_file_lru(page) && 1172 !mapping_exiting(mapping) && !dax_mapping(mapping)) 1173 shadow = workingset_eviction(page, target_memcg); 1174 __delete_from_page_cache(page, shadow); 1175 xa_unlock_irq(&mapping->i_pages); 1176 1177 if (freepage != NULL) 1178 freepage(page); 1179 } 1180 1181 return 1; 1182 1183 cannot_free: 1184 xa_unlock_irq(&mapping->i_pages); 1185 return 0; 1186 } 1187 1188 /* 1189 * Attempt to detach a locked page from its ->mapping. If it is dirty or if 1190 * someone else has a ref on the page, abort and return 0. If it was 1191 * successfully detached, return 1. Assumes the caller has a single ref on 1192 * this page. 1193 */ 1194 int remove_mapping(struct address_space *mapping, struct page *page) 1195 { 1196 if (__remove_mapping(mapping, page, false, NULL)) { 1197 /* 1198 * Unfreezing the refcount with 1 rather than 2 effectively 1199 * drops the pagecache ref for us without requiring another 1200 * atomic operation. 1201 */ 1202 page_ref_unfreeze(page, 1); 1203 return 1; 1204 } 1205 return 0; 1206 } 1207 1208 /** 1209 * putback_lru_page - put previously isolated page onto appropriate LRU list 1210 * @page: page to be put back to appropriate lru list 1211 * 1212 * Add previously isolated @page to appropriate LRU list. 1213 * Page may still be unevictable for other reasons. 1214 * 1215 * lru_lock must not be held, interrupts must be enabled. 1216 */ 1217 void putback_lru_page(struct page *page) 1218 { 1219 lru_cache_add(page); 1220 put_page(page); /* drop ref from isolate */ 1221 } 1222 1223 enum page_references { 1224 PAGEREF_RECLAIM, 1225 PAGEREF_RECLAIM_CLEAN, 1226 PAGEREF_KEEP, 1227 PAGEREF_ACTIVATE, 1228 }; 1229 1230 static enum page_references page_check_references(struct page *page, 1231 struct scan_control *sc) 1232 { 1233 int referenced_ptes, referenced_page; 1234 unsigned long vm_flags; 1235 1236 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup, 1237 &vm_flags); 1238 referenced_page = TestClearPageReferenced(page); 1239 1240 /* 1241 * Mlock lost the isolation race with us. Let try_to_unmap() 1242 * move the page to the unevictable list. 1243 */ 1244 if (vm_flags & VM_LOCKED) 1245 return PAGEREF_RECLAIM; 1246 1247 if (referenced_ptes) { 1248 /* 1249 * All mapped pages start out with page table 1250 * references from the instantiating fault, so we need 1251 * to look twice if a mapped file page is used more 1252 * than once. 1253 * 1254 * Mark it and spare it for another trip around the 1255 * inactive list. Another page table reference will 1256 * lead to its activation. 1257 * 1258 * Note: the mark is set for activated pages as well 1259 * so that recently deactivated but used pages are 1260 * quickly recovered. 1261 */ 1262 SetPageReferenced(page); 1263 1264 if (referenced_page || referenced_ptes > 1) 1265 return PAGEREF_ACTIVATE; 1266 1267 /* 1268 * Activate file-backed executable pages after first usage. 1269 */ 1270 if ((vm_flags & VM_EXEC) && !PageSwapBacked(page)) 1271 return PAGEREF_ACTIVATE; 1272 1273 return PAGEREF_KEEP; 1274 } 1275 1276 /* Reclaim if clean, defer dirty pages to writeback */ 1277 if (referenced_page && !PageSwapBacked(page)) 1278 return PAGEREF_RECLAIM_CLEAN; 1279 1280 return PAGEREF_RECLAIM; 1281 } 1282 1283 /* Check if a page is dirty or under writeback */ 1284 static void page_check_dirty_writeback(struct page *page, 1285 bool *dirty, bool *writeback) 1286 { 1287 struct address_space *mapping; 1288 1289 /* 1290 * Anonymous pages are not handled by flushers and must be written 1291 * from reclaim context. Do not stall reclaim based on them 1292 */ 1293 if (!page_is_file_lru(page) || 1294 (PageAnon(page) && !PageSwapBacked(page))) { 1295 *dirty = false; 1296 *writeback = false; 1297 return; 1298 } 1299 1300 /* By default assume that the page flags are accurate */ 1301 *dirty = PageDirty(page); 1302 *writeback = PageWriteback(page); 1303 1304 /* Verify dirty/writeback state if the filesystem supports it */ 1305 if (!page_has_private(page)) 1306 return; 1307 1308 mapping = page_mapping(page); 1309 if (mapping && mapping->a_ops->is_dirty_writeback) 1310 mapping->a_ops->is_dirty_writeback(page, dirty, writeback); 1311 } 1312 1313 static struct page *alloc_demote_page(struct page *page, unsigned long node) 1314 { 1315 struct migration_target_control mtc = { 1316 /* 1317 * Allocate from 'node', or fail quickly and quietly. 1318 * When this happens, 'page' will likely just be discarded 1319 * instead of migrated. 1320 */ 1321 .gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | 1322 __GFP_THISNODE | __GFP_NOWARN | 1323 __GFP_NOMEMALLOC | GFP_NOWAIT, 1324 .nid = node 1325 }; 1326 1327 return alloc_migration_target(page, (unsigned long)&mtc); 1328 } 1329 1330 /* 1331 * Take pages on @demote_list and attempt to demote them to 1332 * another node. Pages which are not demoted are left on 1333 * @demote_pages. 1334 */ 1335 static unsigned int demote_page_list(struct list_head *demote_pages, 1336 struct pglist_data *pgdat) 1337 { 1338 int target_nid = next_demotion_node(pgdat->node_id); 1339 unsigned int nr_succeeded; 1340 int err; 1341 1342 if (list_empty(demote_pages)) 1343 return 0; 1344 1345 if (target_nid == NUMA_NO_NODE) 1346 return 0; 1347 1348 /* Demotion ignores all cpuset and mempolicy settings */ 1349 err = migrate_pages(demote_pages, alloc_demote_page, NULL, 1350 target_nid, MIGRATE_ASYNC, MR_DEMOTION, 1351 &nr_succeeded); 1352 1353 if (current_is_kswapd()) 1354 __count_vm_events(PGDEMOTE_KSWAPD, nr_succeeded); 1355 else 1356 __count_vm_events(PGDEMOTE_DIRECT, nr_succeeded); 1357 1358 return nr_succeeded; 1359 } 1360 1361 /* 1362 * shrink_page_list() returns the number of reclaimed pages 1363 */ 1364 static unsigned int shrink_page_list(struct list_head *page_list, 1365 struct pglist_data *pgdat, 1366 struct scan_control *sc, 1367 struct reclaim_stat *stat, 1368 bool ignore_references) 1369 { 1370 LIST_HEAD(ret_pages); 1371 LIST_HEAD(free_pages); 1372 LIST_HEAD(demote_pages); 1373 unsigned int nr_reclaimed = 0; 1374 unsigned int pgactivate = 0; 1375 bool do_demote_pass; 1376 1377 memset(stat, 0, sizeof(*stat)); 1378 cond_resched(); 1379 do_demote_pass = can_demote(pgdat->node_id, sc); 1380 1381 retry: 1382 while (!list_empty(page_list)) { 1383 struct address_space *mapping; 1384 struct page *page; 1385 enum page_references references = PAGEREF_RECLAIM; 1386 bool dirty, writeback, may_enter_fs; 1387 unsigned int nr_pages; 1388 1389 cond_resched(); 1390 1391 page = lru_to_page(page_list); 1392 list_del(&page->lru); 1393 1394 if (!trylock_page(page)) 1395 goto keep; 1396 1397 VM_BUG_ON_PAGE(PageActive(page), page); 1398 1399 nr_pages = compound_nr(page); 1400 1401 /* Account the number of base pages even though THP */ 1402 sc->nr_scanned += nr_pages; 1403 1404 if (unlikely(!page_evictable(page))) 1405 goto activate_locked; 1406 1407 if (!sc->may_unmap && page_mapped(page)) 1408 goto keep_locked; 1409 1410 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 1411 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 1412 1413 /* 1414 * The number of dirty pages determines if a node is marked 1415 * reclaim_congested which affects wait_iff_congested. kswapd 1416 * will stall and start writing pages if the tail of the LRU 1417 * is all dirty unqueued pages. 1418 */ 1419 page_check_dirty_writeback(page, &dirty, &writeback); 1420 if (dirty || writeback) 1421 stat->nr_dirty++; 1422 1423 if (dirty && !writeback) 1424 stat->nr_unqueued_dirty++; 1425 1426 /* 1427 * Treat this page as congested if the underlying BDI is or if 1428 * pages are cycling through the LRU so quickly that the 1429 * pages marked for immediate reclaim are making it to the 1430 * end of the LRU a second time. 1431 */ 1432 mapping = page_mapping(page); 1433 if (((dirty || writeback) && mapping && 1434 inode_write_congested(mapping->host)) || 1435 (writeback && PageReclaim(page))) 1436 stat->nr_congested++; 1437 1438 /* 1439 * If a page at the tail of the LRU is under writeback, there 1440 * are three cases to consider. 1441 * 1442 * 1) If reclaim is encountering an excessive number of pages 1443 * under writeback and this page is both under writeback and 1444 * PageReclaim then it indicates that pages are being queued 1445 * for IO but are being recycled through the LRU before the 1446 * IO can complete. Waiting on the page itself risks an 1447 * indefinite stall if it is impossible to writeback the 1448 * page due to IO error or disconnected storage so instead 1449 * note that the LRU is being scanned too quickly and the 1450 * caller can stall after page list has been processed. 1451 * 1452 * 2) Global or new memcg reclaim encounters a page that is 1453 * not marked for immediate reclaim, or the caller does not 1454 * have __GFP_FS (or __GFP_IO if it's simply going to swap, 1455 * not to fs). In this case mark the page for immediate 1456 * reclaim and continue scanning. 1457 * 1458 * Require may_enter_fs because we would wait on fs, which 1459 * may not have submitted IO yet. And the loop driver might 1460 * enter reclaim, and deadlock if it waits on a page for 1461 * which it is needed to do the write (loop masks off 1462 * __GFP_IO|__GFP_FS for this reason); but more thought 1463 * would probably show more reasons. 1464 * 1465 * 3) Legacy memcg encounters a page that is already marked 1466 * PageReclaim. memcg does not have any dirty pages 1467 * throttling so we could easily OOM just because too many 1468 * pages are in writeback and there is nothing else to 1469 * reclaim. Wait for the writeback to complete. 1470 * 1471 * In cases 1) and 2) we activate the pages to get them out of 1472 * the way while we continue scanning for clean pages on the 1473 * inactive list and refilling from the active list. The 1474 * observation here is that waiting for disk writes is more 1475 * expensive than potentially causing reloads down the line. 1476 * Since they're marked for immediate reclaim, they won't put 1477 * memory pressure on the cache working set any longer than it 1478 * takes to write them to disk. 1479 */ 1480 if (PageWriteback(page)) { 1481 /* Case 1 above */ 1482 if (current_is_kswapd() && 1483 PageReclaim(page) && 1484 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) { 1485 stat->nr_immediate++; 1486 goto activate_locked; 1487 1488 /* Case 2 above */ 1489 } else if (writeback_throttling_sane(sc) || 1490 !PageReclaim(page) || !may_enter_fs) { 1491 /* 1492 * This is slightly racy - end_page_writeback() 1493 * might have just cleared PageReclaim, then 1494 * setting PageReclaim here end up interpreted 1495 * as PageReadahead - but that does not matter 1496 * enough to care. What we do want is for this 1497 * page to have PageReclaim set next time memcg 1498 * reclaim reaches the tests above, so it will 1499 * then wait_on_page_writeback() to avoid OOM; 1500 * and it's also appropriate in global reclaim. 1501 */ 1502 SetPageReclaim(page); 1503 stat->nr_writeback++; 1504 goto activate_locked; 1505 1506 /* Case 3 above */ 1507 } else { 1508 unlock_page(page); 1509 wait_on_page_writeback(page); 1510 /* then go back and try same page again */ 1511 list_add_tail(&page->lru, page_list); 1512 continue; 1513 } 1514 } 1515 1516 if (!ignore_references) 1517 references = page_check_references(page, sc); 1518 1519 switch (references) { 1520 case PAGEREF_ACTIVATE: 1521 goto activate_locked; 1522 case PAGEREF_KEEP: 1523 stat->nr_ref_keep += nr_pages; 1524 goto keep_locked; 1525 case PAGEREF_RECLAIM: 1526 case PAGEREF_RECLAIM_CLEAN: 1527 ; /* try to reclaim the page below */ 1528 } 1529 1530 /* 1531 * Before reclaiming the page, try to relocate 1532 * its contents to another node. 1533 */ 1534 if (do_demote_pass && 1535 (thp_migration_supported() || !PageTransHuge(page))) { 1536 list_add(&page->lru, &demote_pages); 1537 unlock_page(page); 1538 continue; 1539 } 1540 1541 /* 1542 * Anonymous process memory has backing store? 1543 * Try to allocate it some swap space here. 1544 * Lazyfree page could be freed directly 1545 */ 1546 if (PageAnon(page) && PageSwapBacked(page)) { 1547 if (!PageSwapCache(page)) { 1548 if (!(sc->gfp_mask & __GFP_IO)) 1549 goto keep_locked; 1550 if (page_maybe_dma_pinned(page)) 1551 goto keep_locked; 1552 if (PageTransHuge(page)) { 1553 /* cannot split THP, skip it */ 1554 if (!can_split_huge_page(page, NULL)) 1555 goto activate_locked; 1556 /* 1557 * Split pages without a PMD map right 1558 * away. Chances are some or all of the 1559 * tail pages can be freed without IO. 1560 */ 1561 if (!compound_mapcount(page) && 1562 split_huge_page_to_list(page, 1563 page_list)) 1564 goto activate_locked; 1565 } 1566 if (!add_to_swap(page)) { 1567 if (!PageTransHuge(page)) 1568 goto activate_locked_split; 1569 /* Fallback to swap normal pages */ 1570 if (split_huge_page_to_list(page, 1571 page_list)) 1572 goto activate_locked; 1573 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1574 count_vm_event(THP_SWPOUT_FALLBACK); 1575 #endif 1576 if (!add_to_swap(page)) 1577 goto activate_locked_split; 1578 } 1579 1580 may_enter_fs = true; 1581 1582 /* Adding to swap updated mapping */ 1583 mapping = page_mapping(page); 1584 } 1585 } else if (unlikely(PageTransHuge(page))) { 1586 /* Split file THP */ 1587 if (split_huge_page_to_list(page, page_list)) 1588 goto keep_locked; 1589 } 1590 1591 /* 1592 * THP may get split above, need minus tail pages and update 1593 * nr_pages to avoid accounting tail pages twice. 1594 * 1595 * The tail pages that are added into swap cache successfully 1596 * reach here. 1597 */ 1598 if ((nr_pages > 1) && !PageTransHuge(page)) { 1599 sc->nr_scanned -= (nr_pages - 1); 1600 nr_pages = 1; 1601 } 1602 1603 /* 1604 * The page is mapped into the page tables of one or more 1605 * processes. Try to unmap it here. 1606 */ 1607 if (page_mapped(page)) { 1608 enum ttu_flags flags = TTU_BATCH_FLUSH; 1609 bool was_swapbacked = PageSwapBacked(page); 1610 1611 if (unlikely(PageTransHuge(page))) 1612 flags |= TTU_SPLIT_HUGE_PMD; 1613 1614 try_to_unmap(page, flags); 1615 if (page_mapped(page)) { 1616 stat->nr_unmap_fail += nr_pages; 1617 if (!was_swapbacked && PageSwapBacked(page)) 1618 stat->nr_lazyfree_fail += nr_pages; 1619 goto activate_locked; 1620 } 1621 } 1622 1623 if (PageDirty(page)) { 1624 /* 1625 * Only kswapd can writeback filesystem pages 1626 * to avoid risk of stack overflow. But avoid 1627 * injecting inefficient single-page IO into 1628 * flusher writeback as much as possible: only 1629 * write pages when we've encountered many 1630 * dirty pages, and when we've already scanned 1631 * the rest of the LRU for clean pages and see 1632 * the same dirty pages again (PageReclaim). 1633 */ 1634 if (page_is_file_lru(page) && 1635 (!current_is_kswapd() || !PageReclaim(page) || 1636 !test_bit(PGDAT_DIRTY, &pgdat->flags))) { 1637 /* 1638 * Immediately reclaim when written back. 1639 * Similar in principal to deactivate_page() 1640 * except we already have the page isolated 1641 * and know it's dirty 1642 */ 1643 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE); 1644 SetPageReclaim(page); 1645 1646 goto activate_locked; 1647 } 1648 1649 if (references == PAGEREF_RECLAIM_CLEAN) 1650 goto keep_locked; 1651 if (!may_enter_fs) 1652 goto keep_locked; 1653 if (!sc->may_writepage) 1654 goto keep_locked; 1655 1656 /* 1657 * Page is dirty. Flush the TLB if a writable entry 1658 * potentially exists to avoid CPU writes after IO 1659 * starts and then write it out here. 1660 */ 1661 try_to_unmap_flush_dirty(); 1662 switch (pageout(page, mapping)) { 1663 case PAGE_KEEP: 1664 goto keep_locked; 1665 case PAGE_ACTIVATE: 1666 goto activate_locked; 1667 case PAGE_SUCCESS: 1668 stat->nr_pageout += thp_nr_pages(page); 1669 1670 if (PageWriteback(page)) 1671 goto keep; 1672 if (PageDirty(page)) 1673 goto keep; 1674 1675 /* 1676 * A synchronous write - probably a ramdisk. Go 1677 * ahead and try to reclaim the page. 1678 */ 1679 if (!trylock_page(page)) 1680 goto keep; 1681 if (PageDirty(page) || PageWriteback(page)) 1682 goto keep_locked; 1683 mapping = page_mapping(page); 1684 fallthrough; 1685 case PAGE_CLEAN: 1686 ; /* try to free the page below */ 1687 } 1688 } 1689 1690 /* 1691 * If the page has buffers, try to free the buffer mappings 1692 * associated with this page. If we succeed we try to free 1693 * the page as well. 1694 * 1695 * We do this even if the page is PageDirty(). 1696 * try_to_release_page() does not perform I/O, but it is 1697 * possible for a page to have PageDirty set, but it is actually 1698 * clean (all its buffers are clean). This happens if the 1699 * buffers were written out directly, with submit_bh(). ext3 1700 * will do this, as well as the blockdev mapping. 1701 * try_to_release_page() will discover that cleanness and will 1702 * drop the buffers and mark the page clean - it can be freed. 1703 * 1704 * Rarely, pages can have buffers and no ->mapping. These are 1705 * the pages which were not successfully invalidated in 1706 * truncate_cleanup_page(). We try to drop those buffers here 1707 * and if that worked, and the page is no longer mapped into 1708 * process address space (page_count == 1) it can be freed. 1709 * Otherwise, leave the page on the LRU so it is swappable. 1710 */ 1711 if (page_has_private(page)) { 1712 if (!try_to_release_page(page, sc->gfp_mask)) 1713 goto activate_locked; 1714 if (!mapping && page_count(page) == 1) { 1715 unlock_page(page); 1716 if (put_page_testzero(page)) 1717 goto free_it; 1718 else { 1719 /* 1720 * rare race with speculative reference. 1721 * the speculative reference will free 1722 * this page shortly, so we may 1723 * increment nr_reclaimed here (and 1724 * leave it off the LRU). 1725 */ 1726 nr_reclaimed++; 1727 continue; 1728 } 1729 } 1730 } 1731 1732 if (PageAnon(page) && !PageSwapBacked(page)) { 1733 /* follow __remove_mapping for reference */ 1734 if (!page_ref_freeze(page, 1)) 1735 goto keep_locked; 1736 /* 1737 * The page has only one reference left, which is 1738 * from the isolation. After the caller puts the 1739 * page back on lru and drops the reference, the 1740 * page will be freed anyway. It doesn't matter 1741 * which lru it goes. So we don't bother checking 1742 * PageDirty here. 1743 */ 1744 count_vm_event(PGLAZYFREED); 1745 count_memcg_page_event(page, PGLAZYFREED); 1746 } else if (!mapping || !__remove_mapping(mapping, page, true, 1747 sc->target_mem_cgroup)) 1748 goto keep_locked; 1749 1750 unlock_page(page); 1751 free_it: 1752 /* 1753 * THP may get swapped out in a whole, need account 1754 * all base pages. 1755 */ 1756 nr_reclaimed += nr_pages; 1757 1758 /* 1759 * Is there need to periodically free_page_list? It would 1760 * appear not as the counts should be low 1761 */ 1762 if (unlikely(PageTransHuge(page))) 1763 destroy_compound_page(page); 1764 else 1765 list_add(&page->lru, &free_pages); 1766 continue; 1767 1768 activate_locked_split: 1769 /* 1770 * The tail pages that are failed to add into swap cache 1771 * reach here. Fixup nr_scanned and nr_pages. 1772 */ 1773 if (nr_pages > 1) { 1774 sc->nr_scanned -= (nr_pages - 1); 1775 nr_pages = 1; 1776 } 1777 activate_locked: 1778 /* Not a candidate for swapping, so reclaim swap space. */ 1779 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) || 1780 PageMlocked(page))) 1781 try_to_free_swap(page); 1782 VM_BUG_ON_PAGE(PageActive(page), page); 1783 if (!PageMlocked(page)) { 1784 int type = page_is_file_lru(page); 1785 SetPageActive(page); 1786 stat->nr_activate[type] += nr_pages; 1787 count_memcg_page_event(page, PGACTIVATE); 1788 } 1789 keep_locked: 1790 unlock_page(page); 1791 keep: 1792 list_add(&page->lru, &ret_pages); 1793 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page); 1794 } 1795 /* 'page_list' is always empty here */ 1796 1797 /* Migrate pages selected for demotion */ 1798 nr_reclaimed += demote_page_list(&demote_pages, pgdat); 1799 /* Pages that could not be demoted are still in @demote_pages */ 1800 if (!list_empty(&demote_pages)) { 1801 /* Pages which failed to demoted go back on @page_list for retry: */ 1802 list_splice_init(&demote_pages, page_list); 1803 do_demote_pass = false; 1804 goto retry; 1805 } 1806 1807 pgactivate = stat->nr_activate[0] + stat->nr_activate[1]; 1808 1809 mem_cgroup_uncharge_list(&free_pages); 1810 try_to_unmap_flush(); 1811 free_unref_page_list(&free_pages); 1812 1813 list_splice(&ret_pages, page_list); 1814 count_vm_events(PGACTIVATE, pgactivate); 1815 1816 return nr_reclaimed; 1817 } 1818 1819 unsigned int reclaim_clean_pages_from_list(struct zone *zone, 1820 struct list_head *page_list) 1821 { 1822 struct scan_control sc = { 1823 .gfp_mask = GFP_KERNEL, 1824 .may_unmap = 1, 1825 }; 1826 struct reclaim_stat stat; 1827 unsigned int nr_reclaimed; 1828 struct page *page, *next; 1829 LIST_HEAD(clean_pages); 1830 unsigned int noreclaim_flag; 1831 1832 list_for_each_entry_safe(page, next, page_list, lru) { 1833 if (!PageHuge(page) && page_is_file_lru(page) && 1834 !PageDirty(page) && !__PageMovable(page) && 1835 !PageUnevictable(page)) { 1836 ClearPageActive(page); 1837 list_move(&page->lru, &clean_pages); 1838 } 1839 } 1840 1841 /* 1842 * We should be safe here since we are only dealing with file pages and 1843 * we are not kswapd and therefore cannot write dirty file pages. But 1844 * call memalloc_noreclaim_save() anyway, just in case these conditions 1845 * change in the future. 1846 */ 1847 noreclaim_flag = memalloc_noreclaim_save(); 1848 nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc, 1849 &stat, true); 1850 memalloc_noreclaim_restore(noreclaim_flag); 1851 1852 list_splice(&clean_pages, page_list); 1853 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, 1854 -(long)nr_reclaimed); 1855 /* 1856 * Since lazyfree pages are isolated from file LRU from the beginning, 1857 * they will rotate back to anonymous LRU in the end if it failed to 1858 * discard so isolated count will be mismatched. 1859 * Compensate the isolated count for both LRU lists. 1860 */ 1861 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON, 1862 stat.nr_lazyfree_fail); 1863 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, 1864 -(long)stat.nr_lazyfree_fail); 1865 return nr_reclaimed; 1866 } 1867 1868 /* 1869 * Attempt to remove the specified page from its LRU. Only take this page 1870 * if it is of the appropriate PageActive status. Pages which are being 1871 * freed elsewhere are also ignored. 1872 * 1873 * page: page to consider 1874 * mode: one of the LRU isolation modes defined above 1875 * 1876 * returns true on success, false on failure. 1877 */ 1878 bool __isolate_lru_page_prepare(struct page *page, isolate_mode_t mode) 1879 { 1880 /* Only take pages on the LRU. */ 1881 if (!PageLRU(page)) 1882 return false; 1883 1884 /* Compaction should not handle unevictable pages but CMA can do so */ 1885 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE)) 1886 return false; 1887 1888 /* 1889 * To minimise LRU disruption, the caller can indicate that it only 1890 * wants to isolate pages it will be able to operate on without 1891 * blocking - clean pages for the most part. 1892 * 1893 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages 1894 * that it is possible to migrate without blocking 1895 */ 1896 if (mode & ISOLATE_ASYNC_MIGRATE) { 1897 /* All the caller can do on PageWriteback is block */ 1898 if (PageWriteback(page)) 1899 return false; 1900 1901 if (PageDirty(page)) { 1902 struct address_space *mapping; 1903 bool migrate_dirty; 1904 1905 /* 1906 * Only pages without mappings or that have a 1907 * ->migratepage callback are possible to migrate 1908 * without blocking. However, we can be racing with 1909 * truncation so it's necessary to lock the page 1910 * to stabilise the mapping as truncation holds 1911 * the page lock until after the page is removed 1912 * from the page cache. 1913 */ 1914 if (!trylock_page(page)) 1915 return false; 1916 1917 mapping = page_mapping(page); 1918 migrate_dirty = !mapping || mapping->a_ops->migratepage; 1919 unlock_page(page); 1920 if (!migrate_dirty) 1921 return false; 1922 } 1923 } 1924 1925 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page)) 1926 return false; 1927 1928 return true; 1929 } 1930 1931 /* 1932 * Update LRU sizes after isolating pages. The LRU size updates must 1933 * be complete before mem_cgroup_update_lru_size due to a sanity check. 1934 */ 1935 static __always_inline void update_lru_sizes(struct lruvec *lruvec, 1936 enum lru_list lru, unsigned long *nr_zone_taken) 1937 { 1938 int zid; 1939 1940 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1941 if (!nr_zone_taken[zid]) 1942 continue; 1943 1944 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 1945 } 1946 1947 } 1948 1949 /* 1950 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times. 1951 * 1952 * lruvec->lru_lock is heavily contended. Some of the functions that 1953 * shrink the lists perform better by taking out a batch of pages 1954 * and working on them outside the LRU lock. 1955 * 1956 * For pagecache intensive workloads, this function is the hottest 1957 * spot in the kernel (apart from copy_*_user functions). 1958 * 1959 * Lru_lock must be held before calling this function. 1960 * 1961 * @nr_to_scan: The number of eligible pages to look through on the list. 1962 * @lruvec: The LRU vector to pull pages from. 1963 * @dst: The temp list to put pages on to. 1964 * @nr_scanned: The number of pages that were scanned. 1965 * @sc: The scan_control struct for this reclaim session 1966 * @lru: LRU list id for isolating 1967 * 1968 * returns how many pages were moved onto *@dst. 1969 */ 1970 static unsigned long isolate_lru_pages(unsigned long nr_to_scan, 1971 struct lruvec *lruvec, struct list_head *dst, 1972 unsigned long *nr_scanned, struct scan_control *sc, 1973 enum lru_list lru) 1974 { 1975 struct list_head *src = &lruvec->lists[lru]; 1976 unsigned long nr_taken = 0; 1977 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 }; 1978 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, }; 1979 unsigned long skipped = 0; 1980 unsigned long scan, total_scan, nr_pages; 1981 LIST_HEAD(pages_skipped); 1982 isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED); 1983 1984 total_scan = 0; 1985 scan = 0; 1986 while (scan < nr_to_scan && !list_empty(src)) { 1987 struct page *page; 1988 1989 page = lru_to_page(src); 1990 prefetchw_prev_lru_page(page, src, flags); 1991 1992 nr_pages = compound_nr(page); 1993 total_scan += nr_pages; 1994 1995 if (page_zonenum(page) > sc->reclaim_idx) { 1996 list_move(&page->lru, &pages_skipped); 1997 nr_skipped[page_zonenum(page)] += nr_pages; 1998 continue; 1999 } 2000 2001 /* 2002 * Do not count skipped pages because that makes the function 2003 * return with no isolated pages if the LRU mostly contains 2004 * ineligible pages. This causes the VM to not reclaim any 2005 * pages, triggering a premature OOM. 2006 * 2007 * Account all tail pages of THP. This would not cause 2008 * premature OOM since __isolate_lru_page() returns -EBUSY 2009 * only when the page is being freed somewhere else. 2010 */ 2011 scan += nr_pages; 2012 if (!__isolate_lru_page_prepare(page, mode)) { 2013 /* It is being freed elsewhere */ 2014 list_move(&page->lru, src); 2015 continue; 2016 } 2017 /* 2018 * Be careful not to clear PageLRU until after we're 2019 * sure the page is not being freed elsewhere -- the 2020 * page release code relies on it. 2021 */ 2022 if (unlikely(!get_page_unless_zero(page))) { 2023 list_move(&page->lru, src); 2024 continue; 2025 } 2026 2027 if (!TestClearPageLRU(page)) { 2028 /* Another thread is already isolating this page */ 2029 put_page(page); 2030 list_move(&page->lru, src); 2031 continue; 2032 } 2033 2034 nr_taken += nr_pages; 2035 nr_zone_taken[page_zonenum(page)] += nr_pages; 2036 list_move(&page->lru, dst); 2037 } 2038 2039 /* 2040 * Splice any skipped pages to the start of the LRU list. Note that 2041 * this disrupts the LRU order when reclaiming for lower zones but 2042 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX 2043 * scanning would soon rescan the same pages to skip and put the 2044 * system at risk of premature OOM. 2045 */ 2046 if (!list_empty(&pages_skipped)) { 2047 int zid; 2048 2049 list_splice(&pages_skipped, src); 2050 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 2051 if (!nr_skipped[zid]) 2052 continue; 2053 2054 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]); 2055 skipped += nr_skipped[zid]; 2056 } 2057 } 2058 *nr_scanned = total_scan; 2059 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, 2060 total_scan, skipped, nr_taken, mode, lru); 2061 update_lru_sizes(lruvec, lru, nr_zone_taken); 2062 return nr_taken; 2063 } 2064 2065 /** 2066 * isolate_lru_page - tries to isolate a page from its LRU list 2067 * @page: page to isolate from its LRU list 2068 * 2069 * Isolates a @page from an LRU list, clears PageLRU and adjusts the 2070 * vmstat statistic corresponding to whatever LRU list the page was on. 2071 * 2072 * Returns 0 if the page was removed from an LRU list. 2073 * Returns -EBUSY if the page was not on an LRU list. 2074 * 2075 * The returned page will have PageLRU() cleared. If it was found on 2076 * the active list, it will have PageActive set. If it was found on 2077 * the unevictable list, it will have the PageUnevictable bit set. That flag 2078 * may need to be cleared by the caller before letting the page go. 2079 * 2080 * The vmstat statistic corresponding to the list on which the page was 2081 * found will be decremented. 2082 * 2083 * Restrictions: 2084 * 2085 * (1) Must be called with an elevated refcount on the page. This is a 2086 * fundamental difference from isolate_lru_pages (which is called 2087 * without a stable reference). 2088 * (2) the lru_lock must not be held. 2089 * (3) interrupts must be enabled. 2090 */ 2091 int isolate_lru_page(struct page *page) 2092 { 2093 int ret = -EBUSY; 2094 2095 VM_BUG_ON_PAGE(!page_count(page), page); 2096 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page"); 2097 2098 if (TestClearPageLRU(page)) { 2099 struct lruvec *lruvec; 2100 2101 get_page(page); 2102 lruvec = lock_page_lruvec_irq(page); 2103 del_page_from_lru_list(page, lruvec); 2104 unlock_page_lruvec_irq(lruvec); 2105 ret = 0; 2106 } 2107 2108 return ret; 2109 } 2110 2111 /* 2112 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 2113 * then get rescheduled. When there are massive number of tasks doing page 2114 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 2115 * the LRU list will go small and be scanned faster than necessary, leading to 2116 * unnecessary swapping, thrashing and OOM. 2117 */ 2118 static int too_many_isolated(struct pglist_data *pgdat, int file, 2119 struct scan_control *sc) 2120 { 2121 unsigned long inactive, isolated; 2122 2123 if (current_is_kswapd()) 2124 return 0; 2125 2126 if (!writeback_throttling_sane(sc)) 2127 return 0; 2128 2129 if (file) { 2130 inactive = node_page_state(pgdat, NR_INACTIVE_FILE); 2131 isolated = node_page_state(pgdat, NR_ISOLATED_FILE); 2132 } else { 2133 inactive = node_page_state(pgdat, NR_INACTIVE_ANON); 2134 isolated = node_page_state(pgdat, NR_ISOLATED_ANON); 2135 } 2136 2137 /* 2138 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 2139 * won't get blocked by normal direct-reclaimers, forming a circular 2140 * deadlock. 2141 */ 2142 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 2143 inactive >>= 3; 2144 2145 return isolated > inactive; 2146 } 2147 2148 /* 2149 * move_pages_to_lru() moves pages from private @list to appropriate LRU list. 2150 * On return, @list is reused as a list of pages to be freed by the caller. 2151 * 2152 * Returns the number of pages moved to the given lruvec. 2153 */ 2154 static unsigned int move_pages_to_lru(struct lruvec *lruvec, 2155 struct list_head *list) 2156 { 2157 int nr_pages, nr_moved = 0; 2158 LIST_HEAD(pages_to_free); 2159 struct page *page; 2160 2161 while (!list_empty(list)) { 2162 page = lru_to_page(list); 2163 VM_BUG_ON_PAGE(PageLRU(page), page); 2164 list_del(&page->lru); 2165 if (unlikely(!page_evictable(page))) { 2166 spin_unlock_irq(&lruvec->lru_lock); 2167 putback_lru_page(page); 2168 spin_lock_irq(&lruvec->lru_lock); 2169 continue; 2170 } 2171 2172 /* 2173 * The SetPageLRU needs to be kept here for list integrity. 2174 * Otherwise: 2175 * #0 move_pages_to_lru #1 release_pages 2176 * if !put_page_testzero 2177 * if (put_page_testzero()) 2178 * !PageLRU //skip lru_lock 2179 * SetPageLRU() 2180 * list_add(&page->lru,) 2181 * list_add(&page->lru,) 2182 */ 2183 SetPageLRU(page); 2184 2185 if (unlikely(put_page_testzero(page))) { 2186 __clear_page_lru_flags(page); 2187 2188 if (unlikely(PageCompound(page))) { 2189 spin_unlock_irq(&lruvec->lru_lock); 2190 destroy_compound_page(page); 2191 spin_lock_irq(&lruvec->lru_lock); 2192 } else 2193 list_add(&page->lru, &pages_to_free); 2194 2195 continue; 2196 } 2197 2198 /* 2199 * All pages were isolated from the same lruvec (and isolation 2200 * inhibits memcg migration). 2201 */ 2202 VM_BUG_ON_PAGE(!page_matches_lruvec(page, lruvec), page); 2203 add_page_to_lru_list(page, lruvec); 2204 nr_pages = thp_nr_pages(page); 2205 nr_moved += nr_pages; 2206 if (PageActive(page)) 2207 workingset_age_nonresident(lruvec, nr_pages); 2208 } 2209 2210 /* 2211 * To save our caller's stack, now use input list for pages to free. 2212 */ 2213 list_splice(&pages_to_free, list); 2214 2215 return nr_moved; 2216 } 2217 2218 /* 2219 * If a kernel thread (such as nfsd for loop-back mounts) services 2220 * a backing device by writing to the page cache it sets PF_LOCAL_THROTTLE. 2221 * In that case we should only throttle if the backing device it is 2222 * writing to is congested. In other cases it is safe to throttle. 2223 */ 2224 static int current_may_throttle(void) 2225 { 2226 return !(current->flags & PF_LOCAL_THROTTLE) || 2227 current->backing_dev_info == NULL || 2228 bdi_write_congested(current->backing_dev_info); 2229 } 2230 2231 /* 2232 * shrink_inactive_list() is a helper for shrink_node(). It returns the number 2233 * of reclaimed pages 2234 */ 2235 static unsigned long 2236 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, 2237 struct scan_control *sc, enum lru_list lru) 2238 { 2239 LIST_HEAD(page_list); 2240 unsigned long nr_scanned; 2241 unsigned int nr_reclaimed = 0; 2242 unsigned long nr_taken; 2243 struct reclaim_stat stat; 2244 bool file = is_file_lru(lru); 2245 enum vm_event_item item; 2246 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2247 bool stalled = false; 2248 2249 while (unlikely(too_many_isolated(pgdat, file, sc))) { 2250 if (stalled) 2251 return 0; 2252 2253 /* wait a bit for the reclaimer. */ 2254 msleep(100); 2255 stalled = true; 2256 2257 /* We are about to die and free our memory. Return now. */ 2258 if (fatal_signal_pending(current)) 2259 return SWAP_CLUSTER_MAX; 2260 } 2261 2262 lru_add_drain(); 2263 2264 spin_lock_irq(&lruvec->lru_lock); 2265 2266 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list, 2267 &nr_scanned, sc, lru); 2268 2269 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2270 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT; 2271 if (!cgroup_reclaim(sc)) 2272 __count_vm_events(item, nr_scanned); 2273 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned); 2274 __count_vm_events(PGSCAN_ANON + file, nr_scanned); 2275 2276 spin_unlock_irq(&lruvec->lru_lock); 2277 2278 if (nr_taken == 0) 2279 return 0; 2280 2281 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, &stat, false); 2282 2283 spin_lock_irq(&lruvec->lru_lock); 2284 move_pages_to_lru(lruvec, &page_list); 2285 2286 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2287 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT; 2288 if (!cgroup_reclaim(sc)) 2289 __count_vm_events(item, nr_reclaimed); 2290 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed); 2291 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed); 2292 spin_unlock_irq(&lruvec->lru_lock); 2293 2294 lru_note_cost(lruvec, file, stat.nr_pageout); 2295 mem_cgroup_uncharge_list(&page_list); 2296 free_unref_page_list(&page_list); 2297 2298 /* 2299 * If dirty pages are scanned that are not queued for IO, it 2300 * implies that flushers are not doing their job. This can 2301 * happen when memory pressure pushes dirty pages to the end of 2302 * the LRU before the dirty limits are breached and the dirty 2303 * data has expired. It can also happen when the proportion of 2304 * dirty pages grows not through writes but through memory 2305 * pressure reclaiming all the clean cache. And in some cases, 2306 * the flushers simply cannot keep up with the allocation 2307 * rate. Nudge the flusher threads in case they are asleep. 2308 */ 2309 if (stat.nr_unqueued_dirty == nr_taken) 2310 wakeup_flusher_threads(WB_REASON_VMSCAN); 2311 2312 sc->nr.dirty += stat.nr_dirty; 2313 sc->nr.congested += stat.nr_congested; 2314 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty; 2315 sc->nr.writeback += stat.nr_writeback; 2316 sc->nr.immediate += stat.nr_immediate; 2317 sc->nr.taken += nr_taken; 2318 if (file) 2319 sc->nr.file_taken += nr_taken; 2320 2321 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 2322 nr_scanned, nr_reclaimed, &stat, sc->priority, file); 2323 return nr_reclaimed; 2324 } 2325 2326 /* 2327 * shrink_active_list() moves pages from the active LRU to the inactive LRU. 2328 * 2329 * We move them the other way if the page is referenced by one or more 2330 * processes. 2331 * 2332 * If the pages are mostly unmapped, the processing is fast and it is 2333 * appropriate to hold lru_lock across the whole operation. But if 2334 * the pages are mapped, the processing is slow (page_referenced()), so 2335 * we should drop lru_lock around each page. It's impossible to balance 2336 * this, so instead we remove the pages from the LRU while processing them. 2337 * It is safe to rely on PG_active against the non-LRU pages in here because 2338 * nobody will play with that bit on a non-LRU page. 2339 * 2340 * The downside is that we have to touch page->_refcount against each page. 2341 * But we had to alter page->flags anyway. 2342 */ 2343 static void shrink_active_list(unsigned long nr_to_scan, 2344 struct lruvec *lruvec, 2345 struct scan_control *sc, 2346 enum lru_list lru) 2347 { 2348 unsigned long nr_taken; 2349 unsigned long nr_scanned; 2350 unsigned long vm_flags; 2351 LIST_HEAD(l_hold); /* The pages which were snipped off */ 2352 LIST_HEAD(l_active); 2353 LIST_HEAD(l_inactive); 2354 struct page *page; 2355 unsigned nr_deactivate, nr_activate; 2356 unsigned nr_rotated = 0; 2357 int file = is_file_lru(lru); 2358 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2359 2360 lru_add_drain(); 2361 2362 spin_lock_irq(&lruvec->lru_lock); 2363 2364 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold, 2365 &nr_scanned, sc, lru); 2366 2367 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2368 2369 if (!cgroup_reclaim(sc)) 2370 __count_vm_events(PGREFILL, nr_scanned); 2371 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned); 2372 2373 spin_unlock_irq(&lruvec->lru_lock); 2374 2375 while (!list_empty(&l_hold)) { 2376 cond_resched(); 2377 page = lru_to_page(&l_hold); 2378 list_del(&page->lru); 2379 2380 if (unlikely(!page_evictable(page))) { 2381 putback_lru_page(page); 2382 continue; 2383 } 2384 2385 if (unlikely(buffer_heads_over_limit)) { 2386 if (page_has_private(page) && trylock_page(page)) { 2387 if (page_has_private(page)) 2388 try_to_release_page(page, 0); 2389 unlock_page(page); 2390 } 2391 } 2392 2393 if (page_referenced(page, 0, sc->target_mem_cgroup, 2394 &vm_flags)) { 2395 /* 2396 * Identify referenced, file-backed active pages and 2397 * give them one more trip around the active list. So 2398 * that executable code get better chances to stay in 2399 * memory under moderate memory pressure. Anon pages 2400 * are not likely to be evicted by use-once streaming 2401 * IO, plus JVM can create lots of anon VM_EXEC pages, 2402 * so we ignore them here. 2403 */ 2404 if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) { 2405 nr_rotated += thp_nr_pages(page); 2406 list_add(&page->lru, &l_active); 2407 continue; 2408 } 2409 } 2410 2411 ClearPageActive(page); /* we are de-activating */ 2412 SetPageWorkingset(page); 2413 list_add(&page->lru, &l_inactive); 2414 } 2415 2416 /* 2417 * Move pages back to the lru list. 2418 */ 2419 spin_lock_irq(&lruvec->lru_lock); 2420 2421 nr_activate = move_pages_to_lru(lruvec, &l_active); 2422 nr_deactivate = move_pages_to_lru(lruvec, &l_inactive); 2423 /* Keep all free pages in l_active list */ 2424 list_splice(&l_inactive, &l_active); 2425 2426 __count_vm_events(PGDEACTIVATE, nr_deactivate); 2427 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate); 2428 2429 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2430 spin_unlock_irq(&lruvec->lru_lock); 2431 2432 mem_cgroup_uncharge_list(&l_active); 2433 free_unref_page_list(&l_active); 2434 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate, 2435 nr_deactivate, nr_rotated, sc->priority, file); 2436 } 2437 2438 unsigned long reclaim_pages(struct list_head *page_list) 2439 { 2440 int nid = NUMA_NO_NODE; 2441 unsigned int nr_reclaimed = 0; 2442 LIST_HEAD(node_page_list); 2443 struct reclaim_stat dummy_stat; 2444 struct page *page; 2445 unsigned int noreclaim_flag; 2446 struct scan_control sc = { 2447 .gfp_mask = GFP_KERNEL, 2448 .may_writepage = 1, 2449 .may_unmap = 1, 2450 .may_swap = 1, 2451 .no_demotion = 1, 2452 }; 2453 2454 noreclaim_flag = memalloc_noreclaim_save(); 2455 2456 while (!list_empty(page_list)) { 2457 page = lru_to_page(page_list); 2458 if (nid == NUMA_NO_NODE) { 2459 nid = page_to_nid(page); 2460 INIT_LIST_HEAD(&node_page_list); 2461 } 2462 2463 if (nid == page_to_nid(page)) { 2464 ClearPageActive(page); 2465 list_move(&page->lru, &node_page_list); 2466 continue; 2467 } 2468 2469 nr_reclaimed += shrink_page_list(&node_page_list, 2470 NODE_DATA(nid), 2471 &sc, &dummy_stat, false); 2472 while (!list_empty(&node_page_list)) { 2473 page = lru_to_page(&node_page_list); 2474 list_del(&page->lru); 2475 putback_lru_page(page); 2476 } 2477 2478 nid = NUMA_NO_NODE; 2479 } 2480 2481 if (!list_empty(&node_page_list)) { 2482 nr_reclaimed += shrink_page_list(&node_page_list, 2483 NODE_DATA(nid), 2484 &sc, &dummy_stat, false); 2485 while (!list_empty(&node_page_list)) { 2486 page = lru_to_page(&node_page_list); 2487 list_del(&page->lru); 2488 putback_lru_page(page); 2489 } 2490 } 2491 2492 memalloc_noreclaim_restore(noreclaim_flag); 2493 2494 return nr_reclaimed; 2495 } 2496 2497 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 2498 struct lruvec *lruvec, struct scan_control *sc) 2499 { 2500 if (is_active_lru(lru)) { 2501 if (sc->may_deactivate & (1 << is_file_lru(lru))) 2502 shrink_active_list(nr_to_scan, lruvec, sc, lru); 2503 else 2504 sc->skipped_deactivate = 1; 2505 return 0; 2506 } 2507 2508 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 2509 } 2510 2511 /* 2512 * The inactive anon list should be small enough that the VM never has 2513 * to do too much work. 2514 * 2515 * The inactive file list should be small enough to leave most memory 2516 * to the established workingset on the scan-resistant active list, 2517 * but large enough to avoid thrashing the aggregate readahead window. 2518 * 2519 * Both inactive lists should also be large enough that each inactive 2520 * page has a chance to be referenced again before it is reclaimed. 2521 * 2522 * If that fails and refaulting is observed, the inactive list grows. 2523 * 2524 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages 2525 * on this LRU, maintained by the pageout code. An inactive_ratio 2526 * of 3 means 3:1 or 25% of the pages are kept on the inactive list. 2527 * 2528 * total target max 2529 * memory ratio inactive 2530 * ------------------------------------- 2531 * 10MB 1 5MB 2532 * 100MB 1 50MB 2533 * 1GB 3 250MB 2534 * 10GB 10 0.9GB 2535 * 100GB 31 3GB 2536 * 1TB 101 10GB 2537 * 10TB 320 32GB 2538 */ 2539 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru) 2540 { 2541 enum lru_list active_lru = inactive_lru + LRU_ACTIVE; 2542 unsigned long inactive, active; 2543 unsigned long inactive_ratio; 2544 unsigned long gb; 2545 2546 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru); 2547 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru); 2548 2549 gb = (inactive + active) >> (30 - PAGE_SHIFT); 2550 if (gb) 2551 inactive_ratio = int_sqrt(10 * gb); 2552 else 2553 inactive_ratio = 1; 2554 2555 return inactive * inactive_ratio < active; 2556 } 2557 2558 enum scan_balance { 2559 SCAN_EQUAL, 2560 SCAN_FRACT, 2561 SCAN_ANON, 2562 SCAN_FILE, 2563 }; 2564 2565 /* 2566 * Determine how aggressively the anon and file LRU lists should be 2567 * scanned. The relative value of each set of LRU lists is determined 2568 * by looking at the fraction of the pages scanned we did rotate back 2569 * onto the active list instead of evict. 2570 * 2571 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan 2572 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan 2573 */ 2574 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc, 2575 unsigned long *nr) 2576 { 2577 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2578 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 2579 unsigned long anon_cost, file_cost, total_cost; 2580 int swappiness = mem_cgroup_swappiness(memcg); 2581 u64 fraction[ANON_AND_FILE]; 2582 u64 denominator = 0; /* gcc */ 2583 enum scan_balance scan_balance; 2584 unsigned long ap, fp; 2585 enum lru_list lru; 2586 2587 /* If we have no swap space, do not bother scanning anon pages. */ 2588 if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) { 2589 scan_balance = SCAN_FILE; 2590 goto out; 2591 } 2592 2593 /* 2594 * Global reclaim will swap to prevent OOM even with no 2595 * swappiness, but memcg users want to use this knob to 2596 * disable swapping for individual groups completely when 2597 * using the memory controller's swap limit feature would be 2598 * too expensive. 2599 */ 2600 if (cgroup_reclaim(sc) && !swappiness) { 2601 scan_balance = SCAN_FILE; 2602 goto out; 2603 } 2604 2605 /* 2606 * Do not apply any pressure balancing cleverness when the 2607 * system is close to OOM, scan both anon and file equally 2608 * (unless the swappiness setting disagrees with swapping). 2609 */ 2610 if (!sc->priority && swappiness) { 2611 scan_balance = SCAN_EQUAL; 2612 goto out; 2613 } 2614 2615 /* 2616 * If the system is almost out of file pages, force-scan anon. 2617 */ 2618 if (sc->file_is_tiny) { 2619 scan_balance = SCAN_ANON; 2620 goto out; 2621 } 2622 2623 /* 2624 * If there is enough inactive page cache, we do not reclaim 2625 * anything from the anonymous working right now. 2626 */ 2627 if (sc->cache_trim_mode) { 2628 scan_balance = SCAN_FILE; 2629 goto out; 2630 } 2631 2632 scan_balance = SCAN_FRACT; 2633 /* 2634 * Calculate the pressure balance between anon and file pages. 2635 * 2636 * The amount of pressure we put on each LRU is inversely 2637 * proportional to the cost of reclaiming each list, as 2638 * determined by the share of pages that are refaulting, times 2639 * the relative IO cost of bringing back a swapped out 2640 * anonymous page vs reloading a filesystem page (swappiness). 2641 * 2642 * Although we limit that influence to ensure no list gets 2643 * left behind completely: at least a third of the pressure is 2644 * applied, before swappiness. 2645 * 2646 * With swappiness at 100, anon and file have equal IO cost. 2647 */ 2648 total_cost = sc->anon_cost + sc->file_cost; 2649 anon_cost = total_cost + sc->anon_cost; 2650 file_cost = total_cost + sc->file_cost; 2651 total_cost = anon_cost + file_cost; 2652 2653 ap = swappiness * (total_cost + 1); 2654 ap /= anon_cost + 1; 2655 2656 fp = (200 - swappiness) * (total_cost + 1); 2657 fp /= file_cost + 1; 2658 2659 fraction[0] = ap; 2660 fraction[1] = fp; 2661 denominator = ap + fp; 2662 out: 2663 for_each_evictable_lru(lru) { 2664 int file = is_file_lru(lru); 2665 unsigned long lruvec_size; 2666 unsigned long low, min; 2667 unsigned long scan; 2668 2669 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx); 2670 mem_cgroup_protection(sc->target_mem_cgroup, memcg, 2671 &min, &low); 2672 2673 if (min || low) { 2674 /* 2675 * Scale a cgroup's reclaim pressure by proportioning 2676 * its current usage to its memory.low or memory.min 2677 * setting. 2678 * 2679 * This is important, as otherwise scanning aggression 2680 * becomes extremely binary -- from nothing as we 2681 * approach the memory protection threshold, to totally 2682 * nominal as we exceed it. This results in requiring 2683 * setting extremely liberal protection thresholds. It 2684 * also means we simply get no protection at all if we 2685 * set it too low, which is not ideal. 2686 * 2687 * If there is any protection in place, we reduce scan 2688 * pressure by how much of the total memory used is 2689 * within protection thresholds. 2690 * 2691 * There is one special case: in the first reclaim pass, 2692 * we skip over all groups that are within their low 2693 * protection. If that fails to reclaim enough pages to 2694 * satisfy the reclaim goal, we come back and override 2695 * the best-effort low protection. However, we still 2696 * ideally want to honor how well-behaved groups are in 2697 * that case instead of simply punishing them all 2698 * equally. As such, we reclaim them based on how much 2699 * memory they are using, reducing the scan pressure 2700 * again by how much of the total memory used is under 2701 * hard protection. 2702 */ 2703 unsigned long cgroup_size = mem_cgroup_size(memcg); 2704 unsigned long protection; 2705 2706 /* memory.low scaling, make sure we retry before OOM */ 2707 if (!sc->memcg_low_reclaim && low > min) { 2708 protection = low; 2709 sc->memcg_low_skipped = 1; 2710 } else { 2711 protection = min; 2712 } 2713 2714 /* Avoid TOCTOU with earlier protection check */ 2715 cgroup_size = max(cgroup_size, protection); 2716 2717 scan = lruvec_size - lruvec_size * protection / 2718 (cgroup_size + 1); 2719 2720 /* 2721 * Minimally target SWAP_CLUSTER_MAX pages to keep 2722 * reclaim moving forwards, avoiding decrementing 2723 * sc->priority further than desirable. 2724 */ 2725 scan = max(scan, SWAP_CLUSTER_MAX); 2726 } else { 2727 scan = lruvec_size; 2728 } 2729 2730 scan >>= sc->priority; 2731 2732 /* 2733 * If the cgroup's already been deleted, make sure to 2734 * scrape out the remaining cache. 2735 */ 2736 if (!scan && !mem_cgroup_online(memcg)) 2737 scan = min(lruvec_size, SWAP_CLUSTER_MAX); 2738 2739 switch (scan_balance) { 2740 case SCAN_EQUAL: 2741 /* Scan lists relative to size */ 2742 break; 2743 case SCAN_FRACT: 2744 /* 2745 * Scan types proportional to swappiness and 2746 * their relative recent reclaim efficiency. 2747 * Make sure we don't miss the last page on 2748 * the offlined memory cgroups because of a 2749 * round-off error. 2750 */ 2751 scan = mem_cgroup_online(memcg) ? 2752 div64_u64(scan * fraction[file], denominator) : 2753 DIV64_U64_ROUND_UP(scan * fraction[file], 2754 denominator); 2755 break; 2756 case SCAN_FILE: 2757 case SCAN_ANON: 2758 /* Scan one type exclusively */ 2759 if ((scan_balance == SCAN_FILE) != file) 2760 scan = 0; 2761 break; 2762 default: 2763 /* Look ma, no brain */ 2764 BUG(); 2765 } 2766 2767 nr[lru] = scan; 2768 } 2769 } 2770 2771 /* 2772 * Anonymous LRU management is a waste if there is 2773 * ultimately no way to reclaim the memory. 2774 */ 2775 static bool can_age_anon_pages(struct pglist_data *pgdat, 2776 struct scan_control *sc) 2777 { 2778 /* Aging the anon LRU is valuable if swap is present: */ 2779 if (total_swap_pages > 0) 2780 return true; 2781 2782 /* Also valuable if anon pages can be demoted: */ 2783 return can_demote(pgdat->node_id, sc); 2784 } 2785 2786 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 2787 { 2788 unsigned long nr[NR_LRU_LISTS]; 2789 unsigned long targets[NR_LRU_LISTS]; 2790 unsigned long nr_to_scan; 2791 enum lru_list lru; 2792 unsigned long nr_reclaimed = 0; 2793 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 2794 struct blk_plug plug; 2795 bool scan_adjusted; 2796 2797 get_scan_count(lruvec, sc, nr); 2798 2799 /* Record the original scan target for proportional adjustments later */ 2800 memcpy(targets, nr, sizeof(nr)); 2801 2802 /* 2803 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal 2804 * event that can occur when there is little memory pressure e.g. 2805 * multiple streaming readers/writers. Hence, we do not abort scanning 2806 * when the requested number of pages are reclaimed when scanning at 2807 * DEF_PRIORITY on the assumption that the fact we are direct 2808 * reclaiming implies that kswapd is not keeping up and it is best to 2809 * do a batch of work at once. For memcg reclaim one check is made to 2810 * abort proportional reclaim if either the file or anon lru has already 2811 * dropped to zero at the first pass. 2812 */ 2813 scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() && 2814 sc->priority == DEF_PRIORITY); 2815 2816 blk_start_plug(&plug); 2817 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 2818 nr[LRU_INACTIVE_FILE]) { 2819 unsigned long nr_anon, nr_file, percentage; 2820 unsigned long nr_scanned; 2821 2822 for_each_evictable_lru(lru) { 2823 if (nr[lru]) { 2824 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 2825 nr[lru] -= nr_to_scan; 2826 2827 nr_reclaimed += shrink_list(lru, nr_to_scan, 2828 lruvec, sc); 2829 } 2830 } 2831 2832 cond_resched(); 2833 2834 if (nr_reclaimed < nr_to_reclaim || scan_adjusted) 2835 continue; 2836 2837 /* 2838 * For kswapd and memcg, reclaim at least the number of pages 2839 * requested. Ensure that the anon and file LRUs are scanned 2840 * proportionally what was requested by get_scan_count(). We 2841 * stop reclaiming one LRU and reduce the amount scanning 2842 * proportional to the original scan target. 2843 */ 2844 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 2845 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 2846 2847 /* 2848 * It's just vindictive to attack the larger once the smaller 2849 * has gone to zero. And given the way we stop scanning the 2850 * smaller below, this makes sure that we only make one nudge 2851 * towards proportionality once we've got nr_to_reclaim. 2852 */ 2853 if (!nr_file || !nr_anon) 2854 break; 2855 2856 if (nr_file > nr_anon) { 2857 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 2858 targets[LRU_ACTIVE_ANON] + 1; 2859 lru = LRU_BASE; 2860 percentage = nr_anon * 100 / scan_target; 2861 } else { 2862 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 2863 targets[LRU_ACTIVE_FILE] + 1; 2864 lru = LRU_FILE; 2865 percentage = nr_file * 100 / scan_target; 2866 } 2867 2868 /* Stop scanning the smaller of the LRU */ 2869 nr[lru] = 0; 2870 nr[lru + LRU_ACTIVE] = 0; 2871 2872 /* 2873 * Recalculate the other LRU scan count based on its original 2874 * scan target and the percentage scanning already complete 2875 */ 2876 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 2877 nr_scanned = targets[lru] - nr[lru]; 2878 nr[lru] = targets[lru] * (100 - percentage) / 100; 2879 nr[lru] -= min(nr[lru], nr_scanned); 2880 2881 lru += LRU_ACTIVE; 2882 nr_scanned = targets[lru] - nr[lru]; 2883 nr[lru] = targets[lru] * (100 - percentage) / 100; 2884 nr[lru] -= min(nr[lru], nr_scanned); 2885 2886 scan_adjusted = true; 2887 } 2888 blk_finish_plug(&plug); 2889 sc->nr_reclaimed += nr_reclaimed; 2890 2891 /* 2892 * Even if we did not try to evict anon pages at all, we want to 2893 * rebalance the anon lru active/inactive ratio. 2894 */ 2895 if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) && 2896 inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 2897 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 2898 sc, LRU_ACTIVE_ANON); 2899 } 2900 2901 /* Use reclaim/compaction for costly allocs or under memory pressure */ 2902 static bool in_reclaim_compaction(struct scan_control *sc) 2903 { 2904 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 2905 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 2906 sc->priority < DEF_PRIORITY - 2)) 2907 return true; 2908 2909 return false; 2910 } 2911 2912 /* 2913 * Reclaim/compaction is used for high-order allocation requests. It reclaims 2914 * order-0 pages before compacting the zone. should_continue_reclaim() returns 2915 * true if more pages should be reclaimed such that when the page allocator 2916 * calls try_to_compact_pages() that it will have enough free pages to succeed. 2917 * It will give up earlier than that if there is difficulty reclaiming pages. 2918 */ 2919 static inline bool should_continue_reclaim(struct pglist_data *pgdat, 2920 unsigned long nr_reclaimed, 2921 struct scan_control *sc) 2922 { 2923 unsigned long pages_for_compaction; 2924 unsigned long inactive_lru_pages; 2925 int z; 2926 2927 /* If not in reclaim/compaction mode, stop */ 2928 if (!in_reclaim_compaction(sc)) 2929 return false; 2930 2931 /* 2932 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX 2933 * number of pages that were scanned. This will return to the caller 2934 * with the risk reclaim/compaction and the resulting allocation attempt 2935 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL 2936 * allocations through requiring that the full LRU list has been scanned 2937 * first, by assuming that zero delta of sc->nr_scanned means full LRU 2938 * scan, but that approximation was wrong, and there were corner cases 2939 * where always a non-zero amount of pages were scanned. 2940 */ 2941 if (!nr_reclaimed) 2942 return false; 2943 2944 /* If compaction would go ahead or the allocation would succeed, stop */ 2945 for (z = 0; z <= sc->reclaim_idx; z++) { 2946 struct zone *zone = &pgdat->node_zones[z]; 2947 if (!managed_zone(zone)) 2948 continue; 2949 2950 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) { 2951 case COMPACT_SUCCESS: 2952 case COMPACT_CONTINUE: 2953 return false; 2954 default: 2955 /* check next zone */ 2956 ; 2957 } 2958 } 2959 2960 /* 2961 * If we have not reclaimed enough pages for compaction and the 2962 * inactive lists are large enough, continue reclaiming 2963 */ 2964 pages_for_compaction = compact_gap(sc->order); 2965 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE); 2966 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc)) 2967 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON); 2968 2969 return inactive_lru_pages > pages_for_compaction; 2970 } 2971 2972 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc) 2973 { 2974 struct mem_cgroup *target_memcg = sc->target_mem_cgroup; 2975 struct mem_cgroup *memcg; 2976 2977 memcg = mem_cgroup_iter(target_memcg, NULL, NULL); 2978 do { 2979 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 2980 unsigned long reclaimed; 2981 unsigned long scanned; 2982 2983 /* 2984 * This loop can become CPU-bound when target memcgs 2985 * aren't eligible for reclaim - either because they 2986 * don't have any reclaimable pages, or because their 2987 * memory is explicitly protected. Avoid soft lockups. 2988 */ 2989 cond_resched(); 2990 2991 mem_cgroup_calculate_protection(target_memcg, memcg); 2992 2993 if (mem_cgroup_below_min(memcg)) { 2994 /* 2995 * Hard protection. 2996 * If there is no reclaimable memory, OOM. 2997 */ 2998 continue; 2999 } else if (mem_cgroup_below_low(memcg)) { 3000 /* 3001 * Soft protection. 3002 * Respect the protection only as long as 3003 * there is an unprotected supply 3004 * of reclaimable memory from other cgroups. 3005 */ 3006 if (!sc->memcg_low_reclaim) { 3007 sc->memcg_low_skipped = 1; 3008 continue; 3009 } 3010 memcg_memory_event(memcg, MEMCG_LOW); 3011 } 3012 3013 reclaimed = sc->nr_reclaimed; 3014 scanned = sc->nr_scanned; 3015 3016 shrink_lruvec(lruvec, sc); 3017 3018 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, 3019 sc->priority); 3020 3021 /* Record the group's reclaim efficiency */ 3022 vmpressure(sc->gfp_mask, memcg, false, 3023 sc->nr_scanned - scanned, 3024 sc->nr_reclaimed - reclaimed); 3025 3026 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL))); 3027 } 3028 3029 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc) 3030 { 3031 struct reclaim_state *reclaim_state = current->reclaim_state; 3032 unsigned long nr_reclaimed, nr_scanned; 3033 struct lruvec *target_lruvec; 3034 bool reclaimable = false; 3035 unsigned long file; 3036 3037 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat); 3038 3039 again: 3040 /* 3041 * Flush the memory cgroup stats, so that we read accurate per-memcg 3042 * lruvec stats for heuristics. 3043 */ 3044 mem_cgroup_flush_stats(); 3045 3046 memset(&sc->nr, 0, sizeof(sc->nr)); 3047 3048 nr_reclaimed = sc->nr_reclaimed; 3049 nr_scanned = sc->nr_scanned; 3050 3051 /* 3052 * Determine the scan balance between anon and file LRUs. 3053 */ 3054 spin_lock_irq(&target_lruvec->lru_lock); 3055 sc->anon_cost = target_lruvec->anon_cost; 3056 sc->file_cost = target_lruvec->file_cost; 3057 spin_unlock_irq(&target_lruvec->lru_lock); 3058 3059 /* 3060 * Target desirable inactive:active list ratios for the anon 3061 * and file LRU lists. 3062 */ 3063 if (!sc->force_deactivate) { 3064 unsigned long refaults; 3065 3066 refaults = lruvec_page_state(target_lruvec, 3067 WORKINGSET_ACTIVATE_ANON); 3068 if (refaults != target_lruvec->refaults[0] || 3069 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON)) 3070 sc->may_deactivate |= DEACTIVATE_ANON; 3071 else 3072 sc->may_deactivate &= ~DEACTIVATE_ANON; 3073 3074 /* 3075 * When refaults are being observed, it means a new 3076 * workingset is being established. Deactivate to get 3077 * rid of any stale active pages quickly. 3078 */ 3079 refaults = lruvec_page_state(target_lruvec, 3080 WORKINGSET_ACTIVATE_FILE); 3081 if (refaults != target_lruvec->refaults[1] || 3082 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE)) 3083 sc->may_deactivate |= DEACTIVATE_FILE; 3084 else 3085 sc->may_deactivate &= ~DEACTIVATE_FILE; 3086 } else 3087 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE; 3088 3089 /* 3090 * If we have plenty of inactive file pages that aren't 3091 * thrashing, try to reclaim those first before touching 3092 * anonymous pages. 3093 */ 3094 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE); 3095 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE)) 3096 sc->cache_trim_mode = 1; 3097 else 3098 sc->cache_trim_mode = 0; 3099 3100 /* 3101 * Prevent the reclaimer from falling into the cache trap: as 3102 * cache pages start out inactive, every cache fault will tip 3103 * the scan balance towards the file LRU. And as the file LRU 3104 * shrinks, so does the window for rotation from references. 3105 * This means we have a runaway feedback loop where a tiny 3106 * thrashing file LRU becomes infinitely more attractive than 3107 * anon pages. Try to detect this based on file LRU size. 3108 */ 3109 if (!cgroup_reclaim(sc)) { 3110 unsigned long total_high_wmark = 0; 3111 unsigned long free, anon; 3112 int z; 3113 3114 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES); 3115 file = node_page_state(pgdat, NR_ACTIVE_FILE) + 3116 node_page_state(pgdat, NR_INACTIVE_FILE); 3117 3118 for (z = 0; z < MAX_NR_ZONES; z++) { 3119 struct zone *zone = &pgdat->node_zones[z]; 3120 if (!managed_zone(zone)) 3121 continue; 3122 3123 total_high_wmark += high_wmark_pages(zone); 3124 } 3125 3126 /* 3127 * Consider anon: if that's low too, this isn't a 3128 * runaway file reclaim problem, but rather just 3129 * extreme pressure. Reclaim as per usual then. 3130 */ 3131 anon = node_page_state(pgdat, NR_INACTIVE_ANON); 3132 3133 sc->file_is_tiny = 3134 file + free <= total_high_wmark && 3135 !(sc->may_deactivate & DEACTIVATE_ANON) && 3136 anon >> sc->priority; 3137 } 3138 3139 shrink_node_memcgs(pgdat, sc); 3140 3141 if (reclaim_state) { 3142 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 3143 reclaim_state->reclaimed_slab = 0; 3144 } 3145 3146 /* Record the subtree's reclaim efficiency */ 3147 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, 3148 sc->nr_scanned - nr_scanned, 3149 sc->nr_reclaimed - nr_reclaimed); 3150 3151 if (sc->nr_reclaimed - nr_reclaimed) 3152 reclaimable = true; 3153 3154 if (current_is_kswapd()) { 3155 /* 3156 * If reclaim is isolating dirty pages under writeback, 3157 * it implies that the long-lived page allocation rate 3158 * is exceeding the page laundering rate. Either the 3159 * global limits are not being effective at throttling 3160 * processes due to the page distribution throughout 3161 * zones or there is heavy usage of a slow backing 3162 * device. The only option is to throttle from reclaim 3163 * context which is not ideal as there is no guarantee 3164 * the dirtying process is throttled in the same way 3165 * balance_dirty_pages() manages. 3166 * 3167 * Once a node is flagged PGDAT_WRITEBACK, kswapd will 3168 * count the number of pages under pages flagged for 3169 * immediate reclaim and stall if any are encountered 3170 * in the nr_immediate check below. 3171 */ 3172 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken) 3173 set_bit(PGDAT_WRITEBACK, &pgdat->flags); 3174 3175 /* Allow kswapd to start writing pages during reclaim.*/ 3176 if (sc->nr.unqueued_dirty == sc->nr.file_taken) 3177 set_bit(PGDAT_DIRTY, &pgdat->flags); 3178 3179 /* 3180 * If kswapd scans pages marked for immediate 3181 * reclaim and under writeback (nr_immediate), it 3182 * implies that pages are cycling through the LRU 3183 * faster than they are written so also forcibly stall. 3184 */ 3185 if (sc->nr.immediate) 3186 congestion_wait(BLK_RW_ASYNC, HZ/10); 3187 } 3188 3189 /* 3190 * Tag a node/memcg as congested if all the dirty pages 3191 * scanned were backed by a congested BDI and 3192 * wait_iff_congested will stall. 3193 * 3194 * Legacy memcg will stall in page writeback so avoid forcibly 3195 * stalling in wait_iff_congested(). 3196 */ 3197 if ((current_is_kswapd() || 3198 (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) && 3199 sc->nr.dirty && sc->nr.dirty == sc->nr.congested) 3200 set_bit(LRUVEC_CONGESTED, &target_lruvec->flags); 3201 3202 /* 3203 * Stall direct reclaim for IO completions if underlying BDIs 3204 * and node is congested. Allow kswapd to continue until it 3205 * starts encountering unqueued dirty pages or cycling through 3206 * the LRU too quickly. 3207 */ 3208 if (!current_is_kswapd() && current_may_throttle() && 3209 !sc->hibernation_mode && 3210 test_bit(LRUVEC_CONGESTED, &target_lruvec->flags)) 3211 wait_iff_congested(BLK_RW_ASYNC, HZ/10); 3212 3213 if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed, 3214 sc)) 3215 goto again; 3216 3217 /* 3218 * Kswapd gives up on balancing particular nodes after too 3219 * many failures to reclaim anything from them and goes to 3220 * sleep. On reclaim progress, reset the failure counter. A 3221 * successful direct reclaim run will revive a dormant kswapd. 3222 */ 3223 if (reclaimable) 3224 pgdat->kswapd_failures = 0; 3225 } 3226 3227 /* 3228 * Returns true if compaction should go ahead for a costly-order request, or 3229 * the allocation would already succeed without compaction. Return false if we 3230 * should reclaim first. 3231 */ 3232 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) 3233 { 3234 unsigned long watermark; 3235 enum compact_result suitable; 3236 3237 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx); 3238 if (suitable == COMPACT_SUCCESS) 3239 /* Allocation should succeed already. Don't reclaim. */ 3240 return true; 3241 if (suitable == COMPACT_SKIPPED) 3242 /* Compaction cannot yet proceed. Do reclaim. */ 3243 return false; 3244 3245 /* 3246 * Compaction is already possible, but it takes time to run and there 3247 * are potentially other callers using the pages just freed. So proceed 3248 * with reclaim to make a buffer of free pages available to give 3249 * compaction a reasonable chance of completing and allocating the page. 3250 * Note that we won't actually reclaim the whole buffer in one attempt 3251 * as the target watermark in should_continue_reclaim() is lower. But if 3252 * we are already above the high+gap watermark, don't reclaim at all. 3253 */ 3254 watermark = high_wmark_pages(zone) + compact_gap(sc->order); 3255 3256 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx); 3257 } 3258 3259 /* 3260 * This is the direct reclaim path, for page-allocating processes. We only 3261 * try to reclaim pages from zones which will satisfy the caller's allocation 3262 * request. 3263 * 3264 * If a zone is deemed to be full of pinned pages then just give it a light 3265 * scan then give up on it. 3266 */ 3267 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 3268 { 3269 struct zoneref *z; 3270 struct zone *zone; 3271 unsigned long nr_soft_reclaimed; 3272 unsigned long nr_soft_scanned; 3273 gfp_t orig_mask; 3274 pg_data_t *last_pgdat = NULL; 3275 3276 /* 3277 * If the number of buffer_heads in the machine exceeds the maximum 3278 * allowed level, force direct reclaim to scan the highmem zone as 3279 * highmem pages could be pinning lowmem pages storing buffer_heads 3280 */ 3281 orig_mask = sc->gfp_mask; 3282 if (buffer_heads_over_limit) { 3283 sc->gfp_mask |= __GFP_HIGHMEM; 3284 sc->reclaim_idx = gfp_zone(sc->gfp_mask); 3285 } 3286 3287 for_each_zone_zonelist_nodemask(zone, z, zonelist, 3288 sc->reclaim_idx, sc->nodemask) { 3289 /* 3290 * Take care memory controller reclaiming has small influence 3291 * to global LRU. 3292 */ 3293 if (!cgroup_reclaim(sc)) { 3294 if (!cpuset_zone_allowed(zone, 3295 GFP_KERNEL | __GFP_HARDWALL)) 3296 continue; 3297 3298 /* 3299 * If we already have plenty of memory free for 3300 * compaction in this zone, don't free any more. 3301 * Even though compaction is invoked for any 3302 * non-zero order, only frequent costly order 3303 * reclamation is disruptive enough to become a 3304 * noticeable problem, like transparent huge 3305 * page allocations. 3306 */ 3307 if (IS_ENABLED(CONFIG_COMPACTION) && 3308 sc->order > PAGE_ALLOC_COSTLY_ORDER && 3309 compaction_ready(zone, sc)) { 3310 sc->compaction_ready = true; 3311 continue; 3312 } 3313 3314 /* 3315 * Shrink each node in the zonelist once. If the 3316 * zonelist is ordered by zone (not the default) then a 3317 * node may be shrunk multiple times but in that case 3318 * the user prefers lower zones being preserved. 3319 */ 3320 if (zone->zone_pgdat == last_pgdat) 3321 continue; 3322 3323 /* 3324 * This steals pages from memory cgroups over softlimit 3325 * and returns the number of reclaimed pages and 3326 * scanned pages. This works for global memory pressure 3327 * and balancing, not for a memcg's limit. 3328 */ 3329 nr_soft_scanned = 0; 3330 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat, 3331 sc->order, sc->gfp_mask, 3332 &nr_soft_scanned); 3333 sc->nr_reclaimed += nr_soft_reclaimed; 3334 sc->nr_scanned += nr_soft_scanned; 3335 /* need some check for avoid more shrink_zone() */ 3336 } 3337 3338 /* See comment about same check for global reclaim above */ 3339 if (zone->zone_pgdat == last_pgdat) 3340 continue; 3341 last_pgdat = zone->zone_pgdat; 3342 shrink_node(zone->zone_pgdat, sc); 3343 } 3344 3345 /* 3346 * Restore to original mask to avoid the impact on the caller if we 3347 * promoted it to __GFP_HIGHMEM. 3348 */ 3349 sc->gfp_mask = orig_mask; 3350 } 3351 3352 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat) 3353 { 3354 struct lruvec *target_lruvec; 3355 unsigned long refaults; 3356 3357 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat); 3358 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON); 3359 target_lruvec->refaults[0] = refaults; 3360 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE); 3361 target_lruvec->refaults[1] = refaults; 3362 } 3363 3364 /* 3365 * This is the main entry point to direct page reclaim. 3366 * 3367 * If a full scan of the inactive list fails to free enough memory then we 3368 * are "out of memory" and something needs to be killed. 3369 * 3370 * If the caller is !__GFP_FS then the probability of a failure is reasonably 3371 * high - the zone may be full of dirty or under-writeback pages, which this 3372 * caller can't do much about. We kick the writeback threads and take explicit 3373 * naps in the hope that some of these pages can be written. But if the 3374 * allocating task holds filesystem locks which prevent writeout this might not 3375 * work, and the allocation attempt will fail. 3376 * 3377 * returns: 0, if no pages reclaimed 3378 * else, the number of pages reclaimed 3379 */ 3380 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 3381 struct scan_control *sc) 3382 { 3383 int initial_priority = sc->priority; 3384 pg_data_t *last_pgdat; 3385 struct zoneref *z; 3386 struct zone *zone; 3387 retry: 3388 delayacct_freepages_start(); 3389 3390 if (!cgroup_reclaim(sc)) 3391 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1); 3392 3393 do { 3394 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 3395 sc->priority); 3396 sc->nr_scanned = 0; 3397 shrink_zones(zonelist, sc); 3398 3399 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 3400 break; 3401 3402 if (sc->compaction_ready) 3403 break; 3404 3405 /* 3406 * If we're getting trouble reclaiming, start doing 3407 * writepage even in laptop mode. 3408 */ 3409 if (sc->priority < DEF_PRIORITY - 2) 3410 sc->may_writepage = 1; 3411 } while (--sc->priority >= 0); 3412 3413 last_pgdat = NULL; 3414 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx, 3415 sc->nodemask) { 3416 if (zone->zone_pgdat == last_pgdat) 3417 continue; 3418 last_pgdat = zone->zone_pgdat; 3419 3420 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat); 3421 3422 if (cgroup_reclaim(sc)) { 3423 struct lruvec *lruvec; 3424 3425 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, 3426 zone->zone_pgdat); 3427 clear_bit(LRUVEC_CONGESTED, &lruvec->flags); 3428 } 3429 } 3430 3431 delayacct_freepages_end(); 3432 3433 if (sc->nr_reclaimed) 3434 return sc->nr_reclaimed; 3435 3436 /* Aborted reclaim to try compaction? don't OOM, then */ 3437 if (sc->compaction_ready) 3438 return 1; 3439 3440 /* 3441 * We make inactive:active ratio decisions based on the node's 3442 * composition of memory, but a restrictive reclaim_idx or a 3443 * memory.low cgroup setting can exempt large amounts of 3444 * memory from reclaim. Neither of which are very common, so 3445 * instead of doing costly eligibility calculations of the 3446 * entire cgroup subtree up front, we assume the estimates are 3447 * good, and retry with forcible deactivation if that fails. 3448 */ 3449 if (sc->skipped_deactivate) { 3450 sc->priority = initial_priority; 3451 sc->force_deactivate = 1; 3452 sc->skipped_deactivate = 0; 3453 goto retry; 3454 } 3455 3456 /* Untapped cgroup reserves? Don't OOM, retry. */ 3457 if (sc->memcg_low_skipped) { 3458 sc->priority = initial_priority; 3459 sc->force_deactivate = 0; 3460 sc->memcg_low_reclaim = 1; 3461 sc->memcg_low_skipped = 0; 3462 goto retry; 3463 } 3464 3465 return 0; 3466 } 3467 3468 static bool allow_direct_reclaim(pg_data_t *pgdat) 3469 { 3470 struct zone *zone; 3471 unsigned long pfmemalloc_reserve = 0; 3472 unsigned long free_pages = 0; 3473 int i; 3474 bool wmark_ok; 3475 3476 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 3477 return true; 3478 3479 for (i = 0; i <= ZONE_NORMAL; i++) { 3480 zone = &pgdat->node_zones[i]; 3481 if (!managed_zone(zone)) 3482 continue; 3483 3484 if (!zone_reclaimable_pages(zone)) 3485 continue; 3486 3487 pfmemalloc_reserve += min_wmark_pages(zone); 3488 free_pages += zone_page_state(zone, NR_FREE_PAGES); 3489 } 3490 3491 /* If there are no reserves (unexpected config) then do not throttle */ 3492 if (!pfmemalloc_reserve) 3493 return true; 3494 3495 wmark_ok = free_pages > pfmemalloc_reserve / 2; 3496 3497 /* kswapd must be awake if processes are being throttled */ 3498 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 3499 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL) 3500 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL); 3501 3502 wake_up_interruptible(&pgdat->kswapd_wait); 3503 } 3504 3505 return wmark_ok; 3506 } 3507 3508 /* 3509 * Throttle direct reclaimers if backing storage is backed by the network 3510 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 3511 * depleted. kswapd will continue to make progress and wake the processes 3512 * when the low watermark is reached. 3513 * 3514 * Returns true if a fatal signal was delivered during throttling. If this 3515 * happens, the page allocator should not consider triggering the OOM killer. 3516 */ 3517 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 3518 nodemask_t *nodemask) 3519 { 3520 struct zoneref *z; 3521 struct zone *zone; 3522 pg_data_t *pgdat = NULL; 3523 3524 /* 3525 * Kernel threads should not be throttled as they may be indirectly 3526 * responsible for cleaning pages necessary for reclaim to make forward 3527 * progress. kjournald for example may enter direct reclaim while 3528 * committing a transaction where throttling it could forcing other 3529 * processes to block on log_wait_commit(). 3530 */ 3531 if (current->flags & PF_KTHREAD) 3532 goto out; 3533 3534 /* 3535 * If a fatal signal is pending, this process should not throttle. 3536 * It should return quickly so it can exit and free its memory 3537 */ 3538 if (fatal_signal_pending(current)) 3539 goto out; 3540 3541 /* 3542 * Check if the pfmemalloc reserves are ok by finding the first node 3543 * with a usable ZONE_NORMAL or lower zone. The expectation is that 3544 * GFP_KERNEL will be required for allocating network buffers when 3545 * swapping over the network so ZONE_HIGHMEM is unusable. 3546 * 3547 * Throttling is based on the first usable node and throttled processes 3548 * wait on a queue until kswapd makes progress and wakes them. There 3549 * is an affinity then between processes waking up and where reclaim 3550 * progress has been made assuming the process wakes on the same node. 3551 * More importantly, processes running on remote nodes will not compete 3552 * for remote pfmemalloc reserves and processes on different nodes 3553 * should make reasonable progress. 3554 */ 3555 for_each_zone_zonelist_nodemask(zone, z, zonelist, 3556 gfp_zone(gfp_mask), nodemask) { 3557 if (zone_idx(zone) > ZONE_NORMAL) 3558 continue; 3559 3560 /* Throttle based on the first usable node */ 3561 pgdat = zone->zone_pgdat; 3562 if (allow_direct_reclaim(pgdat)) 3563 goto out; 3564 break; 3565 } 3566 3567 /* If no zone was usable by the allocation flags then do not throttle */ 3568 if (!pgdat) 3569 goto out; 3570 3571 /* Account for the throttling */ 3572 count_vm_event(PGSCAN_DIRECT_THROTTLE); 3573 3574 /* 3575 * If the caller cannot enter the filesystem, it's possible that it 3576 * is due to the caller holding an FS lock or performing a journal 3577 * transaction in the case of a filesystem like ext[3|4]. In this case, 3578 * it is not safe to block on pfmemalloc_wait as kswapd could be 3579 * blocked waiting on the same lock. Instead, throttle for up to a 3580 * second before continuing. 3581 */ 3582 if (!(gfp_mask & __GFP_FS)) 3583 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 3584 allow_direct_reclaim(pgdat), HZ); 3585 else 3586 /* Throttle until kswapd wakes the process */ 3587 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 3588 allow_direct_reclaim(pgdat)); 3589 3590 if (fatal_signal_pending(current)) 3591 return true; 3592 3593 out: 3594 return false; 3595 } 3596 3597 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 3598 gfp_t gfp_mask, nodemask_t *nodemask) 3599 { 3600 unsigned long nr_reclaimed; 3601 struct scan_control sc = { 3602 .nr_to_reclaim = SWAP_CLUSTER_MAX, 3603 .gfp_mask = current_gfp_context(gfp_mask), 3604 .reclaim_idx = gfp_zone(gfp_mask), 3605 .order = order, 3606 .nodemask = nodemask, 3607 .priority = DEF_PRIORITY, 3608 .may_writepage = !laptop_mode, 3609 .may_unmap = 1, 3610 .may_swap = 1, 3611 }; 3612 3613 /* 3614 * scan_control uses s8 fields for order, priority, and reclaim_idx. 3615 * Confirm they are large enough for max values. 3616 */ 3617 BUILD_BUG_ON(MAX_ORDER > S8_MAX); 3618 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX); 3619 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX); 3620 3621 /* 3622 * Do not enter reclaim if fatal signal was delivered while throttled. 3623 * 1 is returned so that the page allocator does not OOM kill at this 3624 * point. 3625 */ 3626 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask)) 3627 return 1; 3628 3629 set_task_reclaim_state(current, &sc.reclaim_state); 3630 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask); 3631 3632 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3633 3634 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 3635 set_task_reclaim_state(current, NULL); 3636 3637 return nr_reclaimed; 3638 } 3639 3640 #ifdef CONFIG_MEMCG 3641 3642 /* Only used by soft limit reclaim. Do not reuse for anything else. */ 3643 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg, 3644 gfp_t gfp_mask, bool noswap, 3645 pg_data_t *pgdat, 3646 unsigned long *nr_scanned) 3647 { 3648 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 3649 struct scan_control sc = { 3650 .nr_to_reclaim = SWAP_CLUSTER_MAX, 3651 .target_mem_cgroup = memcg, 3652 .may_writepage = !laptop_mode, 3653 .may_unmap = 1, 3654 .reclaim_idx = MAX_NR_ZONES - 1, 3655 .may_swap = !noswap, 3656 }; 3657 3658 WARN_ON_ONCE(!current->reclaim_state); 3659 3660 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 3661 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 3662 3663 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 3664 sc.gfp_mask); 3665 3666 /* 3667 * NOTE: Although we can get the priority field, using it 3668 * here is not a good idea, since it limits the pages we can scan. 3669 * if we don't reclaim here, the shrink_node from balance_pgdat 3670 * will pick up pages from other mem cgroup's as well. We hack 3671 * the priority and make it zero. 3672 */ 3673 shrink_lruvec(lruvec, &sc); 3674 3675 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 3676 3677 *nr_scanned = sc.nr_scanned; 3678 3679 return sc.nr_reclaimed; 3680 } 3681 3682 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 3683 unsigned long nr_pages, 3684 gfp_t gfp_mask, 3685 bool may_swap) 3686 { 3687 unsigned long nr_reclaimed; 3688 unsigned int noreclaim_flag; 3689 struct scan_control sc = { 3690 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 3691 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) | 3692 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 3693 .reclaim_idx = MAX_NR_ZONES - 1, 3694 .target_mem_cgroup = memcg, 3695 .priority = DEF_PRIORITY, 3696 .may_writepage = !laptop_mode, 3697 .may_unmap = 1, 3698 .may_swap = may_swap, 3699 }; 3700 /* 3701 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put 3702 * equal pressure on all the nodes. This is based on the assumption that 3703 * the reclaim does not bail out early. 3704 */ 3705 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 3706 3707 set_task_reclaim_state(current, &sc.reclaim_state); 3708 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask); 3709 noreclaim_flag = memalloc_noreclaim_save(); 3710 3711 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3712 3713 memalloc_noreclaim_restore(noreclaim_flag); 3714 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 3715 set_task_reclaim_state(current, NULL); 3716 3717 return nr_reclaimed; 3718 } 3719 #endif 3720 3721 static void age_active_anon(struct pglist_data *pgdat, 3722 struct scan_control *sc) 3723 { 3724 struct mem_cgroup *memcg; 3725 struct lruvec *lruvec; 3726 3727 if (!can_age_anon_pages(pgdat, sc)) 3728 return; 3729 3730 lruvec = mem_cgroup_lruvec(NULL, pgdat); 3731 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 3732 return; 3733 3734 memcg = mem_cgroup_iter(NULL, NULL, NULL); 3735 do { 3736 lruvec = mem_cgroup_lruvec(memcg, pgdat); 3737 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 3738 sc, LRU_ACTIVE_ANON); 3739 memcg = mem_cgroup_iter(NULL, memcg, NULL); 3740 } while (memcg); 3741 } 3742 3743 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx) 3744 { 3745 int i; 3746 struct zone *zone; 3747 3748 /* 3749 * Check for watermark boosts top-down as the higher zones 3750 * are more likely to be boosted. Both watermarks and boosts 3751 * should not be checked at the same time as reclaim would 3752 * start prematurely when there is no boosting and a lower 3753 * zone is balanced. 3754 */ 3755 for (i = highest_zoneidx; i >= 0; i--) { 3756 zone = pgdat->node_zones + i; 3757 if (!managed_zone(zone)) 3758 continue; 3759 3760 if (zone->watermark_boost) 3761 return true; 3762 } 3763 3764 return false; 3765 } 3766 3767 /* 3768 * Returns true if there is an eligible zone balanced for the request order 3769 * and highest_zoneidx 3770 */ 3771 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx) 3772 { 3773 int i; 3774 unsigned long mark = -1; 3775 struct zone *zone; 3776 3777 /* 3778 * Check watermarks bottom-up as lower zones are more likely to 3779 * meet watermarks. 3780 */ 3781 for (i = 0; i <= highest_zoneidx; i++) { 3782 zone = pgdat->node_zones + i; 3783 3784 if (!managed_zone(zone)) 3785 continue; 3786 3787 mark = high_wmark_pages(zone); 3788 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx)) 3789 return true; 3790 } 3791 3792 /* 3793 * If a node has no populated zone within highest_zoneidx, it does not 3794 * need balancing by definition. This can happen if a zone-restricted 3795 * allocation tries to wake a remote kswapd. 3796 */ 3797 if (mark == -1) 3798 return true; 3799 3800 return false; 3801 } 3802 3803 /* Clear pgdat state for congested, dirty or under writeback. */ 3804 static void clear_pgdat_congested(pg_data_t *pgdat) 3805 { 3806 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat); 3807 3808 clear_bit(LRUVEC_CONGESTED, &lruvec->flags); 3809 clear_bit(PGDAT_DIRTY, &pgdat->flags); 3810 clear_bit(PGDAT_WRITEBACK, &pgdat->flags); 3811 } 3812 3813 /* 3814 * Prepare kswapd for sleeping. This verifies that there are no processes 3815 * waiting in throttle_direct_reclaim() and that watermarks have been met. 3816 * 3817 * Returns true if kswapd is ready to sleep 3818 */ 3819 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, 3820 int highest_zoneidx) 3821 { 3822 /* 3823 * The throttled processes are normally woken up in balance_pgdat() as 3824 * soon as allow_direct_reclaim() is true. But there is a potential 3825 * race between when kswapd checks the watermarks and a process gets 3826 * throttled. There is also a potential race if processes get 3827 * throttled, kswapd wakes, a large process exits thereby balancing the 3828 * zones, which causes kswapd to exit balance_pgdat() before reaching 3829 * the wake up checks. If kswapd is going to sleep, no process should 3830 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If 3831 * the wake up is premature, processes will wake kswapd and get 3832 * throttled again. The difference from wake ups in balance_pgdat() is 3833 * that here we are under prepare_to_wait(). 3834 */ 3835 if (waitqueue_active(&pgdat->pfmemalloc_wait)) 3836 wake_up_all(&pgdat->pfmemalloc_wait); 3837 3838 /* Hopeless node, leave it to direct reclaim */ 3839 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 3840 return true; 3841 3842 if (pgdat_balanced(pgdat, order, highest_zoneidx)) { 3843 clear_pgdat_congested(pgdat); 3844 return true; 3845 } 3846 3847 return false; 3848 } 3849 3850 /* 3851 * kswapd shrinks a node of pages that are at or below the highest usable 3852 * zone that is currently unbalanced. 3853 * 3854 * Returns true if kswapd scanned at least the requested number of pages to 3855 * reclaim or if the lack of progress was due to pages under writeback. 3856 * This is used to determine if the scanning priority needs to be raised. 3857 */ 3858 static bool kswapd_shrink_node(pg_data_t *pgdat, 3859 struct scan_control *sc) 3860 { 3861 struct zone *zone; 3862 int z; 3863 3864 /* Reclaim a number of pages proportional to the number of zones */ 3865 sc->nr_to_reclaim = 0; 3866 for (z = 0; z <= sc->reclaim_idx; z++) { 3867 zone = pgdat->node_zones + z; 3868 if (!managed_zone(zone)) 3869 continue; 3870 3871 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX); 3872 } 3873 3874 /* 3875 * Historically care was taken to put equal pressure on all zones but 3876 * now pressure is applied based on node LRU order. 3877 */ 3878 shrink_node(pgdat, sc); 3879 3880 /* 3881 * Fragmentation may mean that the system cannot be rebalanced for 3882 * high-order allocations. If twice the allocation size has been 3883 * reclaimed then recheck watermarks only at order-0 to prevent 3884 * excessive reclaim. Assume that a process requested a high-order 3885 * can direct reclaim/compact. 3886 */ 3887 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order)) 3888 sc->order = 0; 3889 3890 return sc->nr_scanned >= sc->nr_to_reclaim; 3891 } 3892 3893 /* Page allocator PCP high watermark is lowered if reclaim is active. */ 3894 static inline void 3895 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active) 3896 { 3897 int i; 3898 struct zone *zone; 3899 3900 for (i = 0; i <= highest_zoneidx; i++) { 3901 zone = pgdat->node_zones + i; 3902 3903 if (!managed_zone(zone)) 3904 continue; 3905 3906 if (active) 3907 set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags); 3908 else 3909 clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags); 3910 } 3911 } 3912 3913 static inline void 3914 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx) 3915 { 3916 update_reclaim_active(pgdat, highest_zoneidx, true); 3917 } 3918 3919 static inline void 3920 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx) 3921 { 3922 update_reclaim_active(pgdat, highest_zoneidx, false); 3923 } 3924 3925 /* 3926 * For kswapd, balance_pgdat() will reclaim pages across a node from zones 3927 * that are eligible for use by the caller until at least one zone is 3928 * balanced. 3929 * 3930 * Returns the order kswapd finished reclaiming at. 3931 * 3932 * kswapd scans the zones in the highmem->normal->dma direction. It skips 3933 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 3934 * found to have free_pages <= high_wmark_pages(zone), any page in that zone 3935 * or lower is eligible for reclaim until at least one usable zone is 3936 * balanced. 3937 */ 3938 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx) 3939 { 3940 int i; 3941 unsigned long nr_soft_reclaimed; 3942 unsigned long nr_soft_scanned; 3943 unsigned long pflags; 3944 unsigned long nr_boost_reclaim; 3945 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, }; 3946 bool boosted; 3947 struct zone *zone; 3948 struct scan_control sc = { 3949 .gfp_mask = GFP_KERNEL, 3950 .order = order, 3951 .may_unmap = 1, 3952 }; 3953 3954 set_task_reclaim_state(current, &sc.reclaim_state); 3955 psi_memstall_enter(&pflags); 3956 __fs_reclaim_acquire(_THIS_IP_); 3957 3958 count_vm_event(PAGEOUTRUN); 3959 3960 /* 3961 * Account for the reclaim boost. Note that the zone boost is left in 3962 * place so that parallel allocations that are near the watermark will 3963 * stall or direct reclaim until kswapd is finished. 3964 */ 3965 nr_boost_reclaim = 0; 3966 for (i = 0; i <= highest_zoneidx; i++) { 3967 zone = pgdat->node_zones + i; 3968 if (!managed_zone(zone)) 3969 continue; 3970 3971 nr_boost_reclaim += zone->watermark_boost; 3972 zone_boosts[i] = zone->watermark_boost; 3973 } 3974 boosted = nr_boost_reclaim; 3975 3976 restart: 3977 set_reclaim_active(pgdat, highest_zoneidx); 3978 sc.priority = DEF_PRIORITY; 3979 do { 3980 unsigned long nr_reclaimed = sc.nr_reclaimed; 3981 bool raise_priority = true; 3982 bool balanced; 3983 bool ret; 3984 3985 sc.reclaim_idx = highest_zoneidx; 3986 3987 /* 3988 * If the number of buffer_heads exceeds the maximum allowed 3989 * then consider reclaiming from all zones. This has a dual 3990 * purpose -- on 64-bit systems it is expected that 3991 * buffer_heads are stripped during active rotation. On 32-bit 3992 * systems, highmem pages can pin lowmem memory and shrinking 3993 * buffers can relieve lowmem pressure. Reclaim may still not 3994 * go ahead if all eligible zones for the original allocation 3995 * request are balanced to avoid excessive reclaim from kswapd. 3996 */ 3997 if (buffer_heads_over_limit) { 3998 for (i = MAX_NR_ZONES - 1; i >= 0; i--) { 3999 zone = pgdat->node_zones + i; 4000 if (!managed_zone(zone)) 4001 continue; 4002 4003 sc.reclaim_idx = i; 4004 break; 4005 } 4006 } 4007 4008 /* 4009 * If the pgdat is imbalanced then ignore boosting and preserve 4010 * the watermarks for a later time and restart. Note that the 4011 * zone watermarks will be still reset at the end of balancing 4012 * on the grounds that the normal reclaim should be enough to 4013 * re-evaluate if boosting is required when kswapd next wakes. 4014 */ 4015 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx); 4016 if (!balanced && nr_boost_reclaim) { 4017 nr_boost_reclaim = 0; 4018 goto restart; 4019 } 4020 4021 /* 4022 * If boosting is not active then only reclaim if there are no 4023 * eligible zones. Note that sc.reclaim_idx is not used as 4024 * buffer_heads_over_limit may have adjusted it. 4025 */ 4026 if (!nr_boost_reclaim && balanced) 4027 goto out; 4028 4029 /* Limit the priority of boosting to avoid reclaim writeback */ 4030 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2) 4031 raise_priority = false; 4032 4033 /* 4034 * Do not writeback or swap pages for boosted reclaim. The 4035 * intent is to relieve pressure not issue sub-optimal IO 4036 * from reclaim context. If no pages are reclaimed, the 4037 * reclaim will be aborted. 4038 */ 4039 sc.may_writepage = !laptop_mode && !nr_boost_reclaim; 4040 sc.may_swap = !nr_boost_reclaim; 4041 4042 /* 4043 * Do some background aging of the anon list, to give 4044 * pages a chance to be referenced before reclaiming. All 4045 * pages are rotated regardless of classzone as this is 4046 * about consistent aging. 4047 */ 4048 age_active_anon(pgdat, &sc); 4049 4050 /* 4051 * If we're getting trouble reclaiming, start doing writepage 4052 * even in laptop mode. 4053 */ 4054 if (sc.priority < DEF_PRIORITY - 2) 4055 sc.may_writepage = 1; 4056 4057 /* Call soft limit reclaim before calling shrink_node. */ 4058 sc.nr_scanned = 0; 4059 nr_soft_scanned = 0; 4060 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order, 4061 sc.gfp_mask, &nr_soft_scanned); 4062 sc.nr_reclaimed += nr_soft_reclaimed; 4063 4064 /* 4065 * There should be no need to raise the scanning priority if 4066 * enough pages are already being scanned that that high 4067 * watermark would be met at 100% efficiency. 4068 */ 4069 if (kswapd_shrink_node(pgdat, &sc)) 4070 raise_priority = false; 4071 4072 /* 4073 * If the low watermark is met there is no need for processes 4074 * to be throttled on pfmemalloc_wait as they should not be 4075 * able to safely make forward progress. Wake them 4076 */ 4077 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 4078 allow_direct_reclaim(pgdat)) 4079 wake_up_all(&pgdat->pfmemalloc_wait); 4080 4081 /* Check if kswapd should be suspending */ 4082 __fs_reclaim_release(_THIS_IP_); 4083 ret = try_to_freeze(); 4084 __fs_reclaim_acquire(_THIS_IP_); 4085 if (ret || kthread_should_stop()) 4086 break; 4087 4088 /* 4089 * Raise priority if scanning rate is too low or there was no 4090 * progress in reclaiming pages 4091 */ 4092 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed; 4093 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed); 4094 4095 /* 4096 * If reclaim made no progress for a boost, stop reclaim as 4097 * IO cannot be queued and it could be an infinite loop in 4098 * extreme circumstances. 4099 */ 4100 if (nr_boost_reclaim && !nr_reclaimed) 4101 break; 4102 4103 if (raise_priority || !nr_reclaimed) 4104 sc.priority--; 4105 } while (sc.priority >= 1); 4106 4107 if (!sc.nr_reclaimed) 4108 pgdat->kswapd_failures++; 4109 4110 out: 4111 clear_reclaim_active(pgdat, highest_zoneidx); 4112 4113 /* If reclaim was boosted, account for the reclaim done in this pass */ 4114 if (boosted) { 4115 unsigned long flags; 4116 4117 for (i = 0; i <= highest_zoneidx; i++) { 4118 if (!zone_boosts[i]) 4119 continue; 4120 4121 /* Increments are under the zone lock */ 4122 zone = pgdat->node_zones + i; 4123 spin_lock_irqsave(&zone->lock, flags); 4124 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]); 4125 spin_unlock_irqrestore(&zone->lock, flags); 4126 } 4127 4128 /* 4129 * As there is now likely space, wakeup kcompact to defragment 4130 * pageblocks. 4131 */ 4132 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx); 4133 } 4134 4135 snapshot_refaults(NULL, pgdat); 4136 __fs_reclaim_release(_THIS_IP_); 4137 psi_memstall_leave(&pflags); 4138 set_task_reclaim_state(current, NULL); 4139 4140 /* 4141 * Return the order kswapd stopped reclaiming at as 4142 * prepare_kswapd_sleep() takes it into account. If another caller 4143 * entered the allocator slow path while kswapd was awake, order will 4144 * remain at the higher level. 4145 */ 4146 return sc.order; 4147 } 4148 4149 /* 4150 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to 4151 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is 4152 * not a valid index then either kswapd runs for first time or kswapd couldn't 4153 * sleep after previous reclaim attempt (node is still unbalanced). In that 4154 * case return the zone index of the previous kswapd reclaim cycle. 4155 */ 4156 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat, 4157 enum zone_type prev_highest_zoneidx) 4158 { 4159 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 4160 4161 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx; 4162 } 4163 4164 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order, 4165 unsigned int highest_zoneidx) 4166 { 4167 long remaining = 0; 4168 DEFINE_WAIT(wait); 4169 4170 if (freezing(current) || kthread_should_stop()) 4171 return; 4172 4173 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 4174 4175 /* 4176 * Try to sleep for a short interval. Note that kcompactd will only be 4177 * woken if it is possible to sleep for a short interval. This is 4178 * deliberate on the assumption that if reclaim cannot keep an 4179 * eligible zone balanced that it's also unlikely that compaction will 4180 * succeed. 4181 */ 4182 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 4183 /* 4184 * Compaction records what page blocks it recently failed to 4185 * isolate pages from and skips them in the future scanning. 4186 * When kswapd is going to sleep, it is reasonable to assume 4187 * that pages and compaction may succeed so reset the cache. 4188 */ 4189 reset_isolation_suitable(pgdat); 4190 4191 /* 4192 * We have freed the memory, now we should compact it to make 4193 * allocation of the requested order possible. 4194 */ 4195 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx); 4196 4197 remaining = schedule_timeout(HZ/10); 4198 4199 /* 4200 * If woken prematurely then reset kswapd_highest_zoneidx and 4201 * order. The values will either be from a wakeup request or 4202 * the previous request that slept prematurely. 4203 */ 4204 if (remaining) { 4205 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, 4206 kswapd_highest_zoneidx(pgdat, 4207 highest_zoneidx)); 4208 4209 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order) 4210 WRITE_ONCE(pgdat->kswapd_order, reclaim_order); 4211 } 4212 4213 finish_wait(&pgdat->kswapd_wait, &wait); 4214 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 4215 } 4216 4217 /* 4218 * After a short sleep, check if it was a premature sleep. If not, then 4219 * go fully to sleep until explicitly woken up. 4220 */ 4221 if (!remaining && 4222 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 4223 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 4224 4225 /* 4226 * vmstat counters are not perfectly accurate and the estimated 4227 * value for counters such as NR_FREE_PAGES can deviate from the 4228 * true value by nr_online_cpus * threshold. To avoid the zone 4229 * watermarks being breached while under pressure, we reduce the 4230 * per-cpu vmstat threshold while kswapd is awake and restore 4231 * them before going back to sleep. 4232 */ 4233 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 4234 4235 if (!kthread_should_stop()) 4236 schedule(); 4237 4238 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 4239 } else { 4240 if (remaining) 4241 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 4242 else 4243 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 4244 } 4245 finish_wait(&pgdat->kswapd_wait, &wait); 4246 } 4247 4248 /* 4249 * The background pageout daemon, started as a kernel thread 4250 * from the init process. 4251 * 4252 * This basically trickles out pages so that we have _some_ 4253 * free memory available even if there is no other activity 4254 * that frees anything up. This is needed for things like routing 4255 * etc, where we otherwise might have all activity going on in 4256 * asynchronous contexts that cannot page things out. 4257 * 4258 * If there are applications that are active memory-allocators 4259 * (most normal use), this basically shouldn't matter. 4260 */ 4261 static int kswapd(void *p) 4262 { 4263 unsigned int alloc_order, reclaim_order; 4264 unsigned int highest_zoneidx = MAX_NR_ZONES - 1; 4265 pg_data_t *pgdat = (pg_data_t *)p; 4266 struct task_struct *tsk = current; 4267 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 4268 4269 if (!cpumask_empty(cpumask)) 4270 set_cpus_allowed_ptr(tsk, cpumask); 4271 4272 /* 4273 * Tell the memory management that we're a "memory allocator", 4274 * and that if we need more memory we should get access to it 4275 * regardless (see "__alloc_pages()"). "kswapd" should 4276 * never get caught in the normal page freeing logic. 4277 * 4278 * (Kswapd normally doesn't need memory anyway, but sometimes 4279 * you need a small amount of memory in order to be able to 4280 * page out something else, and this flag essentially protects 4281 * us from recursively trying to free more memory as we're 4282 * trying to free the first piece of memory in the first place). 4283 */ 4284 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 4285 set_freezable(); 4286 4287 WRITE_ONCE(pgdat->kswapd_order, 0); 4288 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 4289 for ( ; ; ) { 4290 bool ret; 4291 4292 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order); 4293 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 4294 highest_zoneidx); 4295 4296 kswapd_try_sleep: 4297 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order, 4298 highest_zoneidx); 4299 4300 /* Read the new order and highest_zoneidx */ 4301 alloc_order = READ_ONCE(pgdat->kswapd_order); 4302 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 4303 highest_zoneidx); 4304 WRITE_ONCE(pgdat->kswapd_order, 0); 4305 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 4306 4307 ret = try_to_freeze(); 4308 if (kthread_should_stop()) 4309 break; 4310 4311 /* 4312 * We can speed up thawing tasks if we don't call balance_pgdat 4313 * after returning from the refrigerator 4314 */ 4315 if (ret) 4316 continue; 4317 4318 /* 4319 * Reclaim begins at the requested order but if a high-order 4320 * reclaim fails then kswapd falls back to reclaiming for 4321 * order-0. If that happens, kswapd will consider sleeping 4322 * for the order it finished reclaiming at (reclaim_order) 4323 * but kcompactd is woken to compact for the original 4324 * request (alloc_order). 4325 */ 4326 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx, 4327 alloc_order); 4328 reclaim_order = balance_pgdat(pgdat, alloc_order, 4329 highest_zoneidx); 4330 if (reclaim_order < alloc_order) 4331 goto kswapd_try_sleep; 4332 } 4333 4334 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD); 4335 4336 return 0; 4337 } 4338 4339 /* 4340 * A zone is low on free memory or too fragmented for high-order memory. If 4341 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's 4342 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim 4343 * has failed or is not needed, still wake up kcompactd if only compaction is 4344 * needed. 4345 */ 4346 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order, 4347 enum zone_type highest_zoneidx) 4348 { 4349 pg_data_t *pgdat; 4350 enum zone_type curr_idx; 4351 4352 if (!managed_zone(zone)) 4353 return; 4354 4355 if (!cpuset_zone_allowed(zone, gfp_flags)) 4356 return; 4357 4358 pgdat = zone->zone_pgdat; 4359 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 4360 4361 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx) 4362 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx); 4363 4364 if (READ_ONCE(pgdat->kswapd_order) < order) 4365 WRITE_ONCE(pgdat->kswapd_order, order); 4366 4367 if (!waitqueue_active(&pgdat->kswapd_wait)) 4368 return; 4369 4370 /* Hopeless node, leave it to direct reclaim if possible */ 4371 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES || 4372 (pgdat_balanced(pgdat, order, highest_zoneidx) && 4373 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) { 4374 /* 4375 * There may be plenty of free memory available, but it's too 4376 * fragmented for high-order allocations. Wake up kcompactd 4377 * and rely on compaction_suitable() to determine if it's 4378 * needed. If it fails, it will defer subsequent attempts to 4379 * ratelimit its work. 4380 */ 4381 if (!(gfp_flags & __GFP_DIRECT_RECLAIM)) 4382 wakeup_kcompactd(pgdat, order, highest_zoneidx); 4383 return; 4384 } 4385 4386 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order, 4387 gfp_flags); 4388 wake_up_interruptible(&pgdat->kswapd_wait); 4389 } 4390 4391 #ifdef CONFIG_HIBERNATION 4392 /* 4393 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 4394 * freed pages. 4395 * 4396 * Rather than trying to age LRUs the aim is to preserve the overall 4397 * LRU order by reclaiming preferentially 4398 * inactive > active > active referenced > active mapped 4399 */ 4400 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 4401 { 4402 struct scan_control sc = { 4403 .nr_to_reclaim = nr_to_reclaim, 4404 .gfp_mask = GFP_HIGHUSER_MOVABLE, 4405 .reclaim_idx = MAX_NR_ZONES - 1, 4406 .priority = DEF_PRIORITY, 4407 .may_writepage = 1, 4408 .may_unmap = 1, 4409 .may_swap = 1, 4410 .hibernation_mode = 1, 4411 }; 4412 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 4413 unsigned long nr_reclaimed; 4414 unsigned int noreclaim_flag; 4415 4416 fs_reclaim_acquire(sc.gfp_mask); 4417 noreclaim_flag = memalloc_noreclaim_save(); 4418 set_task_reclaim_state(current, &sc.reclaim_state); 4419 4420 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 4421 4422 set_task_reclaim_state(current, NULL); 4423 memalloc_noreclaim_restore(noreclaim_flag); 4424 fs_reclaim_release(sc.gfp_mask); 4425 4426 return nr_reclaimed; 4427 } 4428 #endif /* CONFIG_HIBERNATION */ 4429 4430 /* 4431 * This kswapd start function will be called by init and node-hot-add. 4432 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. 4433 */ 4434 void kswapd_run(int nid) 4435 { 4436 pg_data_t *pgdat = NODE_DATA(nid); 4437 4438 if (pgdat->kswapd) 4439 return; 4440 4441 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 4442 if (IS_ERR(pgdat->kswapd)) { 4443 /* failure at boot is fatal */ 4444 BUG_ON(system_state < SYSTEM_RUNNING); 4445 pr_err("Failed to start kswapd on node %d\n", nid); 4446 pgdat->kswapd = NULL; 4447 } 4448 } 4449 4450 /* 4451 * Called by memory hotplug when all memory in a node is offlined. Caller must 4452 * hold mem_hotplug_begin/end(). 4453 */ 4454 void kswapd_stop(int nid) 4455 { 4456 struct task_struct *kswapd = NODE_DATA(nid)->kswapd; 4457 4458 if (kswapd) { 4459 kthread_stop(kswapd); 4460 NODE_DATA(nid)->kswapd = NULL; 4461 } 4462 } 4463 4464 static int __init kswapd_init(void) 4465 { 4466 int nid; 4467 4468 swap_setup(); 4469 for_each_node_state(nid, N_MEMORY) 4470 kswapd_run(nid); 4471 return 0; 4472 } 4473 4474 module_init(kswapd_init) 4475 4476 #ifdef CONFIG_NUMA 4477 /* 4478 * Node reclaim mode 4479 * 4480 * If non-zero call node_reclaim when the number of free pages falls below 4481 * the watermarks. 4482 */ 4483 int node_reclaim_mode __read_mostly; 4484 4485 /* 4486 * Priority for NODE_RECLAIM. This determines the fraction of pages 4487 * of a node considered for each zone_reclaim. 4 scans 1/16th of 4488 * a zone. 4489 */ 4490 #define NODE_RECLAIM_PRIORITY 4 4491 4492 /* 4493 * Percentage of pages in a zone that must be unmapped for node_reclaim to 4494 * occur. 4495 */ 4496 int sysctl_min_unmapped_ratio = 1; 4497 4498 /* 4499 * If the number of slab pages in a zone grows beyond this percentage then 4500 * slab reclaim needs to occur. 4501 */ 4502 int sysctl_min_slab_ratio = 5; 4503 4504 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat) 4505 { 4506 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED); 4507 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) + 4508 node_page_state(pgdat, NR_ACTIVE_FILE); 4509 4510 /* 4511 * It's possible for there to be more file mapped pages than 4512 * accounted for by the pages on the file LRU lists because 4513 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 4514 */ 4515 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 4516 } 4517 4518 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 4519 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat) 4520 { 4521 unsigned long nr_pagecache_reclaimable; 4522 unsigned long delta = 0; 4523 4524 /* 4525 * If RECLAIM_UNMAP is set, then all file pages are considered 4526 * potentially reclaimable. Otherwise, we have to worry about 4527 * pages like swapcache and node_unmapped_file_pages() provides 4528 * a better estimate 4529 */ 4530 if (node_reclaim_mode & RECLAIM_UNMAP) 4531 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES); 4532 else 4533 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat); 4534 4535 /* If we can't clean pages, remove dirty pages from consideration */ 4536 if (!(node_reclaim_mode & RECLAIM_WRITE)) 4537 delta += node_page_state(pgdat, NR_FILE_DIRTY); 4538 4539 /* Watch for any possible underflows due to delta */ 4540 if (unlikely(delta > nr_pagecache_reclaimable)) 4541 delta = nr_pagecache_reclaimable; 4542 4543 return nr_pagecache_reclaimable - delta; 4544 } 4545 4546 /* 4547 * Try to free up some pages from this node through reclaim. 4548 */ 4549 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 4550 { 4551 /* Minimum pages needed in order to stay on node */ 4552 const unsigned long nr_pages = 1 << order; 4553 struct task_struct *p = current; 4554 unsigned int noreclaim_flag; 4555 struct scan_control sc = { 4556 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 4557 .gfp_mask = current_gfp_context(gfp_mask), 4558 .order = order, 4559 .priority = NODE_RECLAIM_PRIORITY, 4560 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE), 4561 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP), 4562 .may_swap = 1, 4563 .reclaim_idx = gfp_zone(gfp_mask), 4564 }; 4565 unsigned long pflags; 4566 4567 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order, 4568 sc.gfp_mask); 4569 4570 cond_resched(); 4571 psi_memstall_enter(&pflags); 4572 fs_reclaim_acquire(sc.gfp_mask); 4573 /* 4574 * We need to be able to allocate from the reserves for RECLAIM_UNMAP 4575 * and we also need to be able to write out pages for RECLAIM_WRITE 4576 * and RECLAIM_UNMAP. 4577 */ 4578 noreclaim_flag = memalloc_noreclaim_save(); 4579 p->flags |= PF_SWAPWRITE; 4580 set_task_reclaim_state(p, &sc.reclaim_state); 4581 4582 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) { 4583 /* 4584 * Free memory by calling shrink node with increasing 4585 * priorities until we have enough memory freed. 4586 */ 4587 do { 4588 shrink_node(pgdat, &sc); 4589 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 4590 } 4591 4592 set_task_reclaim_state(p, NULL); 4593 current->flags &= ~PF_SWAPWRITE; 4594 memalloc_noreclaim_restore(noreclaim_flag); 4595 fs_reclaim_release(sc.gfp_mask); 4596 psi_memstall_leave(&pflags); 4597 4598 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed); 4599 4600 return sc.nr_reclaimed >= nr_pages; 4601 } 4602 4603 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 4604 { 4605 int ret; 4606 4607 /* 4608 * Node reclaim reclaims unmapped file backed pages and 4609 * slab pages if we are over the defined limits. 4610 * 4611 * A small portion of unmapped file backed pages is needed for 4612 * file I/O otherwise pages read by file I/O will be immediately 4613 * thrown out if the node is overallocated. So we do not reclaim 4614 * if less than a specified percentage of the node is used by 4615 * unmapped file backed pages. 4616 */ 4617 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages && 4618 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <= 4619 pgdat->min_slab_pages) 4620 return NODE_RECLAIM_FULL; 4621 4622 /* 4623 * Do not scan if the allocation should not be delayed. 4624 */ 4625 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) 4626 return NODE_RECLAIM_NOSCAN; 4627 4628 /* 4629 * Only run node reclaim on the local node or on nodes that do not 4630 * have associated processors. This will favor the local processor 4631 * over remote processors and spread off node memory allocations 4632 * as wide as possible. 4633 */ 4634 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id()) 4635 return NODE_RECLAIM_NOSCAN; 4636 4637 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags)) 4638 return NODE_RECLAIM_NOSCAN; 4639 4640 ret = __node_reclaim(pgdat, gfp_mask, order); 4641 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags); 4642 4643 if (!ret) 4644 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 4645 4646 return ret; 4647 } 4648 #endif 4649 4650 /** 4651 * check_move_unevictable_pages - check pages for evictability and move to 4652 * appropriate zone lru list 4653 * @pvec: pagevec with lru pages to check 4654 * 4655 * Checks pages for evictability, if an evictable page is in the unevictable 4656 * lru list, moves it to the appropriate evictable lru list. This function 4657 * should be only used for lru pages. 4658 */ 4659 void check_move_unevictable_pages(struct pagevec *pvec) 4660 { 4661 struct lruvec *lruvec = NULL; 4662 int pgscanned = 0; 4663 int pgrescued = 0; 4664 int i; 4665 4666 for (i = 0; i < pvec->nr; i++) { 4667 struct page *page = pvec->pages[i]; 4668 int nr_pages; 4669 4670 if (PageTransTail(page)) 4671 continue; 4672 4673 nr_pages = thp_nr_pages(page); 4674 pgscanned += nr_pages; 4675 4676 /* block memcg migration during page moving between lru */ 4677 if (!TestClearPageLRU(page)) 4678 continue; 4679 4680 lruvec = relock_page_lruvec_irq(page, lruvec); 4681 if (page_evictable(page) && PageUnevictable(page)) { 4682 del_page_from_lru_list(page, lruvec); 4683 ClearPageUnevictable(page); 4684 add_page_to_lru_list(page, lruvec); 4685 pgrescued += nr_pages; 4686 } 4687 SetPageLRU(page); 4688 } 4689 4690 if (lruvec) { 4691 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 4692 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 4693 unlock_page_lruvec_irq(lruvec); 4694 } else if (pgscanned) { 4695 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 4696 } 4697 } 4698 EXPORT_SYMBOL_GPL(check_move_unevictable_pages); 4699