xref: /linux/mm/vmscan.c (revision 55f3538c4923e9dfca132e99ebec370e8094afda)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/mm/vmscan.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *
7  *  Swap reorganised 29.12.95, Stephen Tweedie.
8  *  kswapd added: 7.1.96  sct
9  *  Removed kswapd_ctl limits, and swap out as many pages as needed
10  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
12  *  Multiqueue VM started 5.8.00, Rik van Riel.
13  */
14 
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/mm.h>
18 #include <linux/sched/mm.h>
19 #include <linux/module.h>
20 #include <linux/gfp.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/swap.h>
23 #include <linux/pagemap.h>
24 #include <linux/init.h>
25 #include <linux/highmem.h>
26 #include <linux/vmpressure.h>
27 #include <linux/vmstat.h>
28 #include <linux/file.h>
29 #include <linux/writeback.h>
30 #include <linux/blkdev.h>
31 #include <linux/buffer_head.h>	/* for try_to_release_page(),
32 					buffer_heads_over_limit */
33 #include <linux/mm_inline.h>
34 #include <linux/backing-dev.h>
35 #include <linux/rmap.h>
36 #include <linux/topology.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/compaction.h>
40 #include <linux/notifier.h>
41 #include <linux/rwsem.h>
42 #include <linux/delay.h>
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45 #include <linux/memcontrol.h>
46 #include <linux/delayacct.h>
47 #include <linux/sysctl.h>
48 #include <linux/oom.h>
49 #include <linux/prefetch.h>
50 #include <linux/printk.h>
51 #include <linux/dax.h>
52 
53 #include <asm/tlbflush.h>
54 #include <asm/div64.h>
55 
56 #include <linux/swapops.h>
57 #include <linux/balloon_compaction.h>
58 
59 #include "internal.h"
60 
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/vmscan.h>
63 
64 struct scan_control {
65 	/* How many pages shrink_list() should reclaim */
66 	unsigned long nr_to_reclaim;
67 
68 	/* This context's GFP mask */
69 	gfp_t gfp_mask;
70 
71 	/* Allocation order */
72 	int order;
73 
74 	/*
75 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
76 	 * are scanned.
77 	 */
78 	nodemask_t	*nodemask;
79 
80 	/*
81 	 * The memory cgroup that hit its limit and as a result is the
82 	 * primary target of this reclaim invocation.
83 	 */
84 	struct mem_cgroup *target_mem_cgroup;
85 
86 	/* Scan (total_size >> priority) pages at once */
87 	int priority;
88 
89 	/* The highest zone to isolate pages for reclaim from */
90 	enum zone_type reclaim_idx;
91 
92 	/* Writepage batching in laptop mode; RECLAIM_WRITE */
93 	unsigned int may_writepage:1;
94 
95 	/* Can mapped pages be reclaimed? */
96 	unsigned int may_unmap:1;
97 
98 	/* Can pages be swapped as part of reclaim? */
99 	unsigned int may_swap:1;
100 
101 	/*
102 	 * Cgroups are not reclaimed below their configured memory.low,
103 	 * unless we threaten to OOM. If any cgroups are skipped due to
104 	 * memory.low and nothing was reclaimed, go back for memory.low.
105 	 */
106 	unsigned int memcg_low_reclaim:1;
107 	unsigned int memcg_low_skipped:1;
108 
109 	unsigned int hibernation_mode:1;
110 
111 	/* One of the zones is ready for compaction */
112 	unsigned int compaction_ready:1;
113 
114 	/* Incremented by the number of inactive pages that were scanned */
115 	unsigned long nr_scanned;
116 
117 	/* Number of pages freed so far during a call to shrink_zones() */
118 	unsigned long nr_reclaimed;
119 };
120 
121 #ifdef ARCH_HAS_PREFETCH
122 #define prefetch_prev_lru_page(_page, _base, _field)			\
123 	do {								\
124 		if ((_page)->lru.prev != _base) {			\
125 			struct page *prev;				\
126 									\
127 			prev = lru_to_page(&(_page->lru));		\
128 			prefetch(&prev->_field);			\
129 		}							\
130 	} while (0)
131 #else
132 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
133 #endif
134 
135 #ifdef ARCH_HAS_PREFETCHW
136 #define prefetchw_prev_lru_page(_page, _base, _field)			\
137 	do {								\
138 		if ((_page)->lru.prev != _base) {			\
139 			struct page *prev;				\
140 									\
141 			prev = lru_to_page(&(_page->lru));		\
142 			prefetchw(&prev->_field);			\
143 		}							\
144 	} while (0)
145 #else
146 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
147 #endif
148 
149 /*
150  * From 0 .. 100.  Higher means more swappy.
151  */
152 int vm_swappiness = 60;
153 /*
154  * The total number of pages which are beyond the high watermark within all
155  * zones.
156  */
157 unsigned long vm_total_pages;
158 
159 static LIST_HEAD(shrinker_list);
160 static DECLARE_RWSEM(shrinker_rwsem);
161 
162 #ifdef CONFIG_MEMCG
163 static bool global_reclaim(struct scan_control *sc)
164 {
165 	return !sc->target_mem_cgroup;
166 }
167 
168 /**
169  * sane_reclaim - is the usual dirty throttling mechanism operational?
170  * @sc: scan_control in question
171  *
172  * The normal page dirty throttling mechanism in balance_dirty_pages() is
173  * completely broken with the legacy memcg and direct stalling in
174  * shrink_page_list() is used for throttling instead, which lacks all the
175  * niceties such as fairness, adaptive pausing, bandwidth proportional
176  * allocation and configurability.
177  *
178  * This function tests whether the vmscan currently in progress can assume
179  * that the normal dirty throttling mechanism is operational.
180  */
181 static bool sane_reclaim(struct scan_control *sc)
182 {
183 	struct mem_cgroup *memcg = sc->target_mem_cgroup;
184 
185 	if (!memcg)
186 		return true;
187 #ifdef CONFIG_CGROUP_WRITEBACK
188 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
189 		return true;
190 #endif
191 	return false;
192 }
193 #else
194 static bool global_reclaim(struct scan_control *sc)
195 {
196 	return true;
197 }
198 
199 static bool sane_reclaim(struct scan_control *sc)
200 {
201 	return true;
202 }
203 #endif
204 
205 /*
206  * This misses isolated pages which are not accounted for to save counters.
207  * As the data only determines if reclaim or compaction continues, it is
208  * not expected that isolated pages will be a dominating factor.
209  */
210 unsigned long zone_reclaimable_pages(struct zone *zone)
211 {
212 	unsigned long nr;
213 
214 	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
215 		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
216 	if (get_nr_swap_pages() > 0)
217 		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
218 			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
219 
220 	return nr;
221 }
222 
223 /**
224  * lruvec_lru_size -  Returns the number of pages on the given LRU list.
225  * @lruvec: lru vector
226  * @lru: lru to use
227  * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
228  */
229 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
230 {
231 	unsigned long lru_size;
232 	int zid;
233 
234 	if (!mem_cgroup_disabled())
235 		lru_size = mem_cgroup_get_lru_size(lruvec, lru);
236 	else
237 		lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
238 
239 	for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
240 		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
241 		unsigned long size;
242 
243 		if (!managed_zone(zone))
244 			continue;
245 
246 		if (!mem_cgroup_disabled())
247 			size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
248 		else
249 			size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
250 				       NR_ZONE_LRU_BASE + lru);
251 		lru_size -= min(size, lru_size);
252 	}
253 
254 	return lru_size;
255 
256 }
257 
258 /*
259  * Add a shrinker callback to be called from the vm.
260  */
261 int register_shrinker(struct shrinker *shrinker)
262 {
263 	size_t size = sizeof(*shrinker->nr_deferred);
264 
265 	if (shrinker->flags & SHRINKER_NUMA_AWARE)
266 		size *= nr_node_ids;
267 
268 	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
269 	if (!shrinker->nr_deferred)
270 		return -ENOMEM;
271 
272 	down_write(&shrinker_rwsem);
273 	list_add_tail(&shrinker->list, &shrinker_list);
274 	up_write(&shrinker_rwsem);
275 	return 0;
276 }
277 EXPORT_SYMBOL(register_shrinker);
278 
279 /*
280  * Remove one
281  */
282 void unregister_shrinker(struct shrinker *shrinker)
283 {
284 	if (!shrinker->nr_deferred)
285 		return;
286 	down_write(&shrinker_rwsem);
287 	list_del(&shrinker->list);
288 	up_write(&shrinker_rwsem);
289 	kfree(shrinker->nr_deferred);
290 	shrinker->nr_deferred = NULL;
291 }
292 EXPORT_SYMBOL(unregister_shrinker);
293 
294 #define SHRINK_BATCH 128
295 
296 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
297 				    struct shrinker *shrinker, int priority)
298 {
299 	unsigned long freed = 0;
300 	unsigned long long delta;
301 	long total_scan;
302 	long freeable;
303 	long nr;
304 	long new_nr;
305 	int nid = shrinkctl->nid;
306 	long batch_size = shrinker->batch ? shrinker->batch
307 					  : SHRINK_BATCH;
308 	long scanned = 0, next_deferred;
309 
310 	freeable = shrinker->count_objects(shrinker, shrinkctl);
311 	if (freeable == 0)
312 		return 0;
313 
314 	/*
315 	 * copy the current shrinker scan count into a local variable
316 	 * and zero it so that other concurrent shrinker invocations
317 	 * don't also do this scanning work.
318 	 */
319 	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
320 
321 	total_scan = nr;
322 	delta = freeable >> priority;
323 	delta *= 4;
324 	do_div(delta, shrinker->seeks);
325 	total_scan += delta;
326 	if (total_scan < 0) {
327 		pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
328 		       shrinker->scan_objects, total_scan);
329 		total_scan = freeable;
330 		next_deferred = nr;
331 	} else
332 		next_deferred = total_scan;
333 
334 	/*
335 	 * We need to avoid excessive windup on filesystem shrinkers
336 	 * due to large numbers of GFP_NOFS allocations causing the
337 	 * shrinkers to return -1 all the time. This results in a large
338 	 * nr being built up so when a shrink that can do some work
339 	 * comes along it empties the entire cache due to nr >>>
340 	 * freeable. This is bad for sustaining a working set in
341 	 * memory.
342 	 *
343 	 * Hence only allow the shrinker to scan the entire cache when
344 	 * a large delta change is calculated directly.
345 	 */
346 	if (delta < freeable / 4)
347 		total_scan = min(total_scan, freeable / 2);
348 
349 	/*
350 	 * Avoid risking looping forever due to too large nr value:
351 	 * never try to free more than twice the estimate number of
352 	 * freeable entries.
353 	 */
354 	if (total_scan > freeable * 2)
355 		total_scan = freeable * 2;
356 
357 	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
358 				   freeable, delta, total_scan, priority);
359 
360 	/*
361 	 * Normally, we should not scan less than batch_size objects in one
362 	 * pass to avoid too frequent shrinker calls, but if the slab has less
363 	 * than batch_size objects in total and we are really tight on memory,
364 	 * we will try to reclaim all available objects, otherwise we can end
365 	 * up failing allocations although there are plenty of reclaimable
366 	 * objects spread over several slabs with usage less than the
367 	 * batch_size.
368 	 *
369 	 * We detect the "tight on memory" situations by looking at the total
370 	 * number of objects we want to scan (total_scan). If it is greater
371 	 * than the total number of objects on slab (freeable), we must be
372 	 * scanning at high prio and therefore should try to reclaim as much as
373 	 * possible.
374 	 */
375 	while (total_scan >= batch_size ||
376 	       total_scan >= freeable) {
377 		unsigned long ret;
378 		unsigned long nr_to_scan = min(batch_size, total_scan);
379 
380 		shrinkctl->nr_to_scan = nr_to_scan;
381 		shrinkctl->nr_scanned = nr_to_scan;
382 		ret = shrinker->scan_objects(shrinker, shrinkctl);
383 		if (ret == SHRINK_STOP)
384 			break;
385 		freed += ret;
386 
387 		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
388 		total_scan -= shrinkctl->nr_scanned;
389 		scanned += shrinkctl->nr_scanned;
390 
391 		cond_resched();
392 	}
393 
394 	if (next_deferred >= scanned)
395 		next_deferred -= scanned;
396 	else
397 		next_deferred = 0;
398 	/*
399 	 * move the unused scan count back into the shrinker in a
400 	 * manner that handles concurrent updates. If we exhausted the
401 	 * scan, there is no need to do an update.
402 	 */
403 	if (next_deferred > 0)
404 		new_nr = atomic_long_add_return(next_deferred,
405 						&shrinker->nr_deferred[nid]);
406 	else
407 		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
408 
409 	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
410 	return freed;
411 }
412 
413 /**
414  * shrink_slab - shrink slab caches
415  * @gfp_mask: allocation context
416  * @nid: node whose slab caches to target
417  * @memcg: memory cgroup whose slab caches to target
418  * @priority: the reclaim priority
419  *
420  * Call the shrink functions to age shrinkable caches.
421  *
422  * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
423  * unaware shrinkers will receive a node id of 0 instead.
424  *
425  * @memcg specifies the memory cgroup to target. If it is not NULL,
426  * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
427  * objects from the memory cgroup specified. Otherwise, only unaware
428  * shrinkers are called.
429  *
430  * @priority is sc->priority, we take the number of objects and >> by priority
431  * in order to get the scan target.
432  *
433  * Returns the number of reclaimed slab objects.
434  */
435 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
436 				 struct mem_cgroup *memcg,
437 				 int priority)
438 {
439 	struct shrinker *shrinker;
440 	unsigned long freed = 0;
441 
442 	if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
443 		return 0;
444 
445 	if (!down_read_trylock(&shrinker_rwsem)) {
446 		/*
447 		 * If we would return 0, our callers would understand that we
448 		 * have nothing else to shrink and give up trying. By returning
449 		 * 1 we keep it going and assume we'll be able to shrink next
450 		 * time.
451 		 */
452 		freed = 1;
453 		goto out;
454 	}
455 
456 	list_for_each_entry(shrinker, &shrinker_list, list) {
457 		struct shrink_control sc = {
458 			.gfp_mask = gfp_mask,
459 			.nid = nid,
460 			.memcg = memcg,
461 		};
462 
463 		/*
464 		 * If kernel memory accounting is disabled, we ignore
465 		 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
466 		 * passing NULL for memcg.
467 		 */
468 		if (memcg_kmem_enabled() &&
469 		    !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
470 			continue;
471 
472 		if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
473 			sc.nid = 0;
474 
475 		freed += do_shrink_slab(&sc, shrinker, priority);
476 		/*
477 		 * Bail out if someone want to register a new shrinker to
478 		 * prevent the regsitration from being stalled for long periods
479 		 * by parallel ongoing shrinking.
480 		 */
481 		if (rwsem_is_contended(&shrinker_rwsem)) {
482 			freed = freed ? : 1;
483 			break;
484 		}
485 	}
486 
487 	up_read(&shrinker_rwsem);
488 out:
489 	cond_resched();
490 	return freed;
491 }
492 
493 void drop_slab_node(int nid)
494 {
495 	unsigned long freed;
496 
497 	do {
498 		struct mem_cgroup *memcg = NULL;
499 
500 		freed = 0;
501 		do {
502 			freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
503 		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
504 	} while (freed > 10);
505 }
506 
507 void drop_slab(void)
508 {
509 	int nid;
510 
511 	for_each_online_node(nid)
512 		drop_slab_node(nid);
513 }
514 
515 static inline int is_page_cache_freeable(struct page *page)
516 {
517 	/*
518 	 * A freeable page cache page is referenced only by the caller
519 	 * that isolated the page, the page cache radix tree and
520 	 * optional buffer heads at page->private.
521 	 */
522 	int radix_pins = PageTransHuge(page) && PageSwapCache(page) ?
523 		HPAGE_PMD_NR : 1;
524 	return page_count(page) - page_has_private(page) == 1 + radix_pins;
525 }
526 
527 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
528 {
529 	if (current->flags & PF_SWAPWRITE)
530 		return 1;
531 	if (!inode_write_congested(inode))
532 		return 1;
533 	if (inode_to_bdi(inode) == current->backing_dev_info)
534 		return 1;
535 	return 0;
536 }
537 
538 /*
539  * We detected a synchronous write error writing a page out.  Probably
540  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
541  * fsync(), msync() or close().
542  *
543  * The tricky part is that after writepage we cannot touch the mapping: nothing
544  * prevents it from being freed up.  But we have a ref on the page and once
545  * that page is locked, the mapping is pinned.
546  *
547  * We're allowed to run sleeping lock_page() here because we know the caller has
548  * __GFP_FS.
549  */
550 static void handle_write_error(struct address_space *mapping,
551 				struct page *page, int error)
552 {
553 	lock_page(page);
554 	if (page_mapping(page) == mapping)
555 		mapping_set_error(mapping, error);
556 	unlock_page(page);
557 }
558 
559 /* possible outcome of pageout() */
560 typedef enum {
561 	/* failed to write page out, page is locked */
562 	PAGE_KEEP,
563 	/* move page to the active list, page is locked */
564 	PAGE_ACTIVATE,
565 	/* page has been sent to the disk successfully, page is unlocked */
566 	PAGE_SUCCESS,
567 	/* page is clean and locked */
568 	PAGE_CLEAN,
569 } pageout_t;
570 
571 /*
572  * pageout is called by shrink_page_list() for each dirty page.
573  * Calls ->writepage().
574  */
575 static pageout_t pageout(struct page *page, struct address_space *mapping,
576 			 struct scan_control *sc)
577 {
578 	/*
579 	 * If the page is dirty, only perform writeback if that write
580 	 * will be non-blocking.  To prevent this allocation from being
581 	 * stalled by pagecache activity.  But note that there may be
582 	 * stalls if we need to run get_block().  We could test
583 	 * PagePrivate for that.
584 	 *
585 	 * If this process is currently in __generic_file_write_iter() against
586 	 * this page's queue, we can perform writeback even if that
587 	 * will block.
588 	 *
589 	 * If the page is swapcache, write it back even if that would
590 	 * block, for some throttling. This happens by accident, because
591 	 * swap_backing_dev_info is bust: it doesn't reflect the
592 	 * congestion state of the swapdevs.  Easy to fix, if needed.
593 	 */
594 	if (!is_page_cache_freeable(page))
595 		return PAGE_KEEP;
596 	if (!mapping) {
597 		/*
598 		 * Some data journaling orphaned pages can have
599 		 * page->mapping == NULL while being dirty with clean buffers.
600 		 */
601 		if (page_has_private(page)) {
602 			if (try_to_free_buffers(page)) {
603 				ClearPageDirty(page);
604 				pr_info("%s: orphaned page\n", __func__);
605 				return PAGE_CLEAN;
606 			}
607 		}
608 		return PAGE_KEEP;
609 	}
610 	if (mapping->a_ops->writepage == NULL)
611 		return PAGE_ACTIVATE;
612 	if (!may_write_to_inode(mapping->host, sc))
613 		return PAGE_KEEP;
614 
615 	if (clear_page_dirty_for_io(page)) {
616 		int res;
617 		struct writeback_control wbc = {
618 			.sync_mode = WB_SYNC_NONE,
619 			.nr_to_write = SWAP_CLUSTER_MAX,
620 			.range_start = 0,
621 			.range_end = LLONG_MAX,
622 			.for_reclaim = 1,
623 		};
624 
625 		SetPageReclaim(page);
626 		res = mapping->a_ops->writepage(page, &wbc);
627 		if (res < 0)
628 			handle_write_error(mapping, page, res);
629 		if (res == AOP_WRITEPAGE_ACTIVATE) {
630 			ClearPageReclaim(page);
631 			return PAGE_ACTIVATE;
632 		}
633 
634 		if (!PageWriteback(page)) {
635 			/* synchronous write or broken a_ops? */
636 			ClearPageReclaim(page);
637 		}
638 		trace_mm_vmscan_writepage(page);
639 		inc_node_page_state(page, NR_VMSCAN_WRITE);
640 		return PAGE_SUCCESS;
641 	}
642 
643 	return PAGE_CLEAN;
644 }
645 
646 /*
647  * Same as remove_mapping, but if the page is removed from the mapping, it
648  * gets returned with a refcount of 0.
649  */
650 static int __remove_mapping(struct address_space *mapping, struct page *page,
651 			    bool reclaimed)
652 {
653 	unsigned long flags;
654 	int refcount;
655 
656 	BUG_ON(!PageLocked(page));
657 	BUG_ON(mapping != page_mapping(page));
658 
659 	spin_lock_irqsave(&mapping->tree_lock, flags);
660 	/*
661 	 * The non racy check for a busy page.
662 	 *
663 	 * Must be careful with the order of the tests. When someone has
664 	 * a ref to the page, it may be possible that they dirty it then
665 	 * drop the reference. So if PageDirty is tested before page_count
666 	 * here, then the following race may occur:
667 	 *
668 	 * get_user_pages(&page);
669 	 * [user mapping goes away]
670 	 * write_to(page);
671 	 *				!PageDirty(page)    [good]
672 	 * SetPageDirty(page);
673 	 * put_page(page);
674 	 *				!page_count(page)   [good, discard it]
675 	 *
676 	 * [oops, our write_to data is lost]
677 	 *
678 	 * Reversing the order of the tests ensures such a situation cannot
679 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
680 	 * load is not satisfied before that of page->_refcount.
681 	 *
682 	 * Note that if SetPageDirty is always performed via set_page_dirty,
683 	 * and thus under tree_lock, then this ordering is not required.
684 	 */
685 	if (unlikely(PageTransHuge(page)) && PageSwapCache(page))
686 		refcount = 1 + HPAGE_PMD_NR;
687 	else
688 		refcount = 2;
689 	if (!page_ref_freeze(page, refcount))
690 		goto cannot_free;
691 	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
692 	if (unlikely(PageDirty(page))) {
693 		page_ref_unfreeze(page, refcount);
694 		goto cannot_free;
695 	}
696 
697 	if (PageSwapCache(page)) {
698 		swp_entry_t swap = { .val = page_private(page) };
699 		mem_cgroup_swapout(page, swap);
700 		__delete_from_swap_cache(page);
701 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
702 		put_swap_page(page, swap);
703 	} else {
704 		void (*freepage)(struct page *);
705 		void *shadow = NULL;
706 
707 		freepage = mapping->a_ops->freepage;
708 		/*
709 		 * Remember a shadow entry for reclaimed file cache in
710 		 * order to detect refaults, thus thrashing, later on.
711 		 *
712 		 * But don't store shadows in an address space that is
713 		 * already exiting.  This is not just an optizimation,
714 		 * inode reclaim needs to empty out the radix tree or
715 		 * the nodes are lost.  Don't plant shadows behind its
716 		 * back.
717 		 *
718 		 * We also don't store shadows for DAX mappings because the
719 		 * only page cache pages found in these are zero pages
720 		 * covering holes, and because we don't want to mix DAX
721 		 * exceptional entries and shadow exceptional entries in the
722 		 * same page_tree.
723 		 */
724 		if (reclaimed && page_is_file_cache(page) &&
725 		    !mapping_exiting(mapping) && !dax_mapping(mapping))
726 			shadow = workingset_eviction(mapping, page);
727 		__delete_from_page_cache(page, shadow);
728 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
729 
730 		if (freepage != NULL)
731 			freepage(page);
732 	}
733 
734 	return 1;
735 
736 cannot_free:
737 	spin_unlock_irqrestore(&mapping->tree_lock, flags);
738 	return 0;
739 }
740 
741 /*
742  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
743  * someone else has a ref on the page, abort and return 0.  If it was
744  * successfully detached, return 1.  Assumes the caller has a single ref on
745  * this page.
746  */
747 int remove_mapping(struct address_space *mapping, struct page *page)
748 {
749 	if (__remove_mapping(mapping, page, false)) {
750 		/*
751 		 * Unfreezing the refcount with 1 rather than 2 effectively
752 		 * drops the pagecache ref for us without requiring another
753 		 * atomic operation.
754 		 */
755 		page_ref_unfreeze(page, 1);
756 		return 1;
757 	}
758 	return 0;
759 }
760 
761 /**
762  * putback_lru_page - put previously isolated page onto appropriate LRU list
763  * @page: page to be put back to appropriate lru list
764  *
765  * Add previously isolated @page to appropriate LRU list.
766  * Page may still be unevictable for other reasons.
767  *
768  * lru_lock must not be held, interrupts must be enabled.
769  */
770 void putback_lru_page(struct page *page)
771 {
772 	bool is_unevictable;
773 	int was_unevictable = PageUnevictable(page);
774 
775 	VM_BUG_ON_PAGE(PageLRU(page), page);
776 
777 redo:
778 	ClearPageUnevictable(page);
779 
780 	if (page_evictable(page)) {
781 		/*
782 		 * For evictable pages, we can use the cache.
783 		 * In event of a race, worst case is we end up with an
784 		 * unevictable page on [in]active list.
785 		 * We know how to handle that.
786 		 */
787 		is_unevictable = false;
788 		lru_cache_add(page);
789 	} else {
790 		/*
791 		 * Put unevictable pages directly on zone's unevictable
792 		 * list.
793 		 */
794 		is_unevictable = true;
795 		add_page_to_unevictable_list(page);
796 		/*
797 		 * When racing with an mlock or AS_UNEVICTABLE clearing
798 		 * (page is unlocked) make sure that if the other thread
799 		 * does not observe our setting of PG_lru and fails
800 		 * isolation/check_move_unevictable_pages,
801 		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
802 		 * the page back to the evictable list.
803 		 *
804 		 * The other side is TestClearPageMlocked() or shmem_lock().
805 		 */
806 		smp_mb();
807 	}
808 
809 	/*
810 	 * page's status can change while we move it among lru. If an evictable
811 	 * page is on unevictable list, it never be freed. To avoid that,
812 	 * check after we added it to the list, again.
813 	 */
814 	if (is_unevictable && page_evictable(page)) {
815 		if (!isolate_lru_page(page)) {
816 			put_page(page);
817 			goto redo;
818 		}
819 		/* This means someone else dropped this page from LRU
820 		 * So, it will be freed or putback to LRU again. There is
821 		 * nothing to do here.
822 		 */
823 	}
824 
825 	if (was_unevictable && !is_unevictable)
826 		count_vm_event(UNEVICTABLE_PGRESCUED);
827 	else if (!was_unevictable && is_unevictable)
828 		count_vm_event(UNEVICTABLE_PGCULLED);
829 
830 	put_page(page);		/* drop ref from isolate */
831 }
832 
833 enum page_references {
834 	PAGEREF_RECLAIM,
835 	PAGEREF_RECLAIM_CLEAN,
836 	PAGEREF_KEEP,
837 	PAGEREF_ACTIVATE,
838 };
839 
840 static enum page_references page_check_references(struct page *page,
841 						  struct scan_control *sc)
842 {
843 	int referenced_ptes, referenced_page;
844 	unsigned long vm_flags;
845 
846 	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
847 					  &vm_flags);
848 	referenced_page = TestClearPageReferenced(page);
849 
850 	/*
851 	 * Mlock lost the isolation race with us.  Let try_to_unmap()
852 	 * move the page to the unevictable list.
853 	 */
854 	if (vm_flags & VM_LOCKED)
855 		return PAGEREF_RECLAIM;
856 
857 	if (referenced_ptes) {
858 		if (PageSwapBacked(page))
859 			return PAGEREF_ACTIVATE;
860 		/*
861 		 * All mapped pages start out with page table
862 		 * references from the instantiating fault, so we need
863 		 * to look twice if a mapped file page is used more
864 		 * than once.
865 		 *
866 		 * Mark it and spare it for another trip around the
867 		 * inactive list.  Another page table reference will
868 		 * lead to its activation.
869 		 *
870 		 * Note: the mark is set for activated pages as well
871 		 * so that recently deactivated but used pages are
872 		 * quickly recovered.
873 		 */
874 		SetPageReferenced(page);
875 
876 		if (referenced_page || referenced_ptes > 1)
877 			return PAGEREF_ACTIVATE;
878 
879 		/*
880 		 * Activate file-backed executable pages after first usage.
881 		 */
882 		if (vm_flags & VM_EXEC)
883 			return PAGEREF_ACTIVATE;
884 
885 		return PAGEREF_KEEP;
886 	}
887 
888 	/* Reclaim if clean, defer dirty pages to writeback */
889 	if (referenced_page && !PageSwapBacked(page))
890 		return PAGEREF_RECLAIM_CLEAN;
891 
892 	return PAGEREF_RECLAIM;
893 }
894 
895 /* Check if a page is dirty or under writeback */
896 static void page_check_dirty_writeback(struct page *page,
897 				       bool *dirty, bool *writeback)
898 {
899 	struct address_space *mapping;
900 
901 	/*
902 	 * Anonymous pages are not handled by flushers and must be written
903 	 * from reclaim context. Do not stall reclaim based on them
904 	 */
905 	if (!page_is_file_cache(page) ||
906 	    (PageAnon(page) && !PageSwapBacked(page))) {
907 		*dirty = false;
908 		*writeback = false;
909 		return;
910 	}
911 
912 	/* By default assume that the page flags are accurate */
913 	*dirty = PageDirty(page);
914 	*writeback = PageWriteback(page);
915 
916 	/* Verify dirty/writeback state if the filesystem supports it */
917 	if (!page_has_private(page))
918 		return;
919 
920 	mapping = page_mapping(page);
921 	if (mapping && mapping->a_ops->is_dirty_writeback)
922 		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
923 }
924 
925 struct reclaim_stat {
926 	unsigned nr_dirty;
927 	unsigned nr_unqueued_dirty;
928 	unsigned nr_congested;
929 	unsigned nr_writeback;
930 	unsigned nr_immediate;
931 	unsigned nr_activate;
932 	unsigned nr_ref_keep;
933 	unsigned nr_unmap_fail;
934 };
935 
936 /*
937  * shrink_page_list() returns the number of reclaimed pages
938  */
939 static unsigned long shrink_page_list(struct list_head *page_list,
940 				      struct pglist_data *pgdat,
941 				      struct scan_control *sc,
942 				      enum ttu_flags ttu_flags,
943 				      struct reclaim_stat *stat,
944 				      bool force_reclaim)
945 {
946 	LIST_HEAD(ret_pages);
947 	LIST_HEAD(free_pages);
948 	int pgactivate = 0;
949 	unsigned nr_unqueued_dirty = 0;
950 	unsigned nr_dirty = 0;
951 	unsigned nr_congested = 0;
952 	unsigned nr_reclaimed = 0;
953 	unsigned nr_writeback = 0;
954 	unsigned nr_immediate = 0;
955 	unsigned nr_ref_keep = 0;
956 	unsigned nr_unmap_fail = 0;
957 
958 	cond_resched();
959 
960 	while (!list_empty(page_list)) {
961 		struct address_space *mapping;
962 		struct page *page;
963 		int may_enter_fs;
964 		enum page_references references = PAGEREF_RECLAIM_CLEAN;
965 		bool dirty, writeback;
966 
967 		cond_resched();
968 
969 		page = lru_to_page(page_list);
970 		list_del(&page->lru);
971 
972 		if (!trylock_page(page))
973 			goto keep;
974 
975 		VM_BUG_ON_PAGE(PageActive(page), page);
976 
977 		sc->nr_scanned++;
978 
979 		if (unlikely(!page_evictable(page)))
980 			goto activate_locked;
981 
982 		if (!sc->may_unmap && page_mapped(page))
983 			goto keep_locked;
984 
985 		/* Double the slab pressure for mapped and swapcache pages */
986 		if ((page_mapped(page) || PageSwapCache(page)) &&
987 		    !(PageAnon(page) && !PageSwapBacked(page)))
988 			sc->nr_scanned++;
989 
990 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
991 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
992 
993 		/*
994 		 * The number of dirty pages determines if a zone is marked
995 		 * reclaim_congested which affects wait_iff_congested. kswapd
996 		 * will stall and start writing pages if the tail of the LRU
997 		 * is all dirty unqueued pages.
998 		 */
999 		page_check_dirty_writeback(page, &dirty, &writeback);
1000 		if (dirty || writeback)
1001 			nr_dirty++;
1002 
1003 		if (dirty && !writeback)
1004 			nr_unqueued_dirty++;
1005 
1006 		/*
1007 		 * Treat this page as congested if the underlying BDI is or if
1008 		 * pages are cycling through the LRU so quickly that the
1009 		 * pages marked for immediate reclaim are making it to the
1010 		 * end of the LRU a second time.
1011 		 */
1012 		mapping = page_mapping(page);
1013 		if (((dirty || writeback) && mapping &&
1014 		     inode_write_congested(mapping->host)) ||
1015 		    (writeback && PageReclaim(page)))
1016 			nr_congested++;
1017 
1018 		/*
1019 		 * If a page at the tail of the LRU is under writeback, there
1020 		 * are three cases to consider.
1021 		 *
1022 		 * 1) If reclaim is encountering an excessive number of pages
1023 		 *    under writeback and this page is both under writeback and
1024 		 *    PageReclaim then it indicates that pages are being queued
1025 		 *    for IO but are being recycled through the LRU before the
1026 		 *    IO can complete. Waiting on the page itself risks an
1027 		 *    indefinite stall if it is impossible to writeback the
1028 		 *    page due to IO error or disconnected storage so instead
1029 		 *    note that the LRU is being scanned too quickly and the
1030 		 *    caller can stall after page list has been processed.
1031 		 *
1032 		 * 2) Global or new memcg reclaim encounters a page that is
1033 		 *    not marked for immediate reclaim, or the caller does not
1034 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1035 		 *    not to fs). In this case mark the page for immediate
1036 		 *    reclaim and continue scanning.
1037 		 *
1038 		 *    Require may_enter_fs because we would wait on fs, which
1039 		 *    may not have submitted IO yet. And the loop driver might
1040 		 *    enter reclaim, and deadlock if it waits on a page for
1041 		 *    which it is needed to do the write (loop masks off
1042 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1043 		 *    would probably show more reasons.
1044 		 *
1045 		 * 3) Legacy memcg encounters a page that is already marked
1046 		 *    PageReclaim. memcg does not have any dirty pages
1047 		 *    throttling so we could easily OOM just because too many
1048 		 *    pages are in writeback and there is nothing else to
1049 		 *    reclaim. Wait for the writeback to complete.
1050 		 *
1051 		 * In cases 1) and 2) we activate the pages to get them out of
1052 		 * the way while we continue scanning for clean pages on the
1053 		 * inactive list and refilling from the active list. The
1054 		 * observation here is that waiting for disk writes is more
1055 		 * expensive than potentially causing reloads down the line.
1056 		 * Since they're marked for immediate reclaim, they won't put
1057 		 * memory pressure on the cache working set any longer than it
1058 		 * takes to write them to disk.
1059 		 */
1060 		if (PageWriteback(page)) {
1061 			/* Case 1 above */
1062 			if (current_is_kswapd() &&
1063 			    PageReclaim(page) &&
1064 			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1065 				nr_immediate++;
1066 				goto activate_locked;
1067 
1068 			/* Case 2 above */
1069 			} else if (sane_reclaim(sc) ||
1070 			    !PageReclaim(page) || !may_enter_fs) {
1071 				/*
1072 				 * This is slightly racy - end_page_writeback()
1073 				 * might have just cleared PageReclaim, then
1074 				 * setting PageReclaim here end up interpreted
1075 				 * as PageReadahead - but that does not matter
1076 				 * enough to care.  What we do want is for this
1077 				 * page to have PageReclaim set next time memcg
1078 				 * reclaim reaches the tests above, so it will
1079 				 * then wait_on_page_writeback() to avoid OOM;
1080 				 * and it's also appropriate in global reclaim.
1081 				 */
1082 				SetPageReclaim(page);
1083 				nr_writeback++;
1084 				goto activate_locked;
1085 
1086 			/* Case 3 above */
1087 			} else {
1088 				unlock_page(page);
1089 				wait_on_page_writeback(page);
1090 				/* then go back and try same page again */
1091 				list_add_tail(&page->lru, page_list);
1092 				continue;
1093 			}
1094 		}
1095 
1096 		if (!force_reclaim)
1097 			references = page_check_references(page, sc);
1098 
1099 		switch (references) {
1100 		case PAGEREF_ACTIVATE:
1101 			goto activate_locked;
1102 		case PAGEREF_KEEP:
1103 			nr_ref_keep++;
1104 			goto keep_locked;
1105 		case PAGEREF_RECLAIM:
1106 		case PAGEREF_RECLAIM_CLEAN:
1107 			; /* try to reclaim the page below */
1108 		}
1109 
1110 		/*
1111 		 * Anonymous process memory has backing store?
1112 		 * Try to allocate it some swap space here.
1113 		 * Lazyfree page could be freed directly
1114 		 */
1115 		if (PageAnon(page) && PageSwapBacked(page)) {
1116 			if (!PageSwapCache(page)) {
1117 				if (!(sc->gfp_mask & __GFP_IO))
1118 					goto keep_locked;
1119 				if (PageTransHuge(page)) {
1120 					/* cannot split THP, skip it */
1121 					if (!can_split_huge_page(page, NULL))
1122 						goto activate_locked;
1123 					/*
1124 					 * Split pages without a PMD map right
1125 					 * away. Chances are some or all of the
1126 					 * tail pages can be freed without IO.
1127 					 */
1128 					if (!compound_mapcount(page) &&
1129 					    split_huge_page_to_list(page,
1130 								    page_list))
1131 						goto activate_locked;
1132 				}
1133 				if (!add_to_swap(page)) {
1134 					if (!PageTransHuge(page))
1135 						goto activate_locked;
1136 					/* Fallback to swap normal pages */
1137 					if (split_huge_page_to_list(page,
1138 								    page_list))
1139 						goto activate_locked;
1140 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1141 					count_vm_event(THP_SWPOUT_FALLBACK);
1142 #endif
1143 					if (!add_to_swap(page))
1144 						goto activate_locked;
1145 				}
1146 
1147 				may_enter_fs = 1;
1148 
1149 				/* Adding to swap updated mapping */
1150 				mapping = page_mapping(page);
1151 			}
1152 		} else if (unlikely(PageTransHuge(page))) {
1153 			/* Split file THP */
1154 			if (split_huge_page_to_list(page, page_list))
1155 				goto keep_locked;
1156 		}
1157 
1158 		/*
1159 		 * The page is mapped into the page tables of one or more
1160 		 * processes. Try to unmap it here.
1161 		 */
1162 		if (page_mapped(page)) {
1163 			enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1164 
1165 			if (unlikely(PageTransHuge(page)))
1166 				flags |= TTU_SPLIT_HUGE_PMD;
1167 			if (!try_to_unmap(page, flags)) {
1168 				nr_unmap_fail++;
1169 				goto activate_locked;
1170 			}
1171 		}
1172 
1173 		if (PageDirty(page)) {
1174 			/*
1175 			 * Only kswapd can writeback filesystem pages
1176 			 * to avoid risk of stack overflow. But avoid
1177 			 * injecting inefficient single-page IO into
1178 			 * flusher writeback as much as possible: only
1179 			 * write pages when we've encountered many
1180 			 * dirty pages, and when we've already scanned
1181 			 * the rest of the LRU for clean pages and see
1182 			 * the same dirty pages again (PageReclaim).
1183 			 */
1184 			if (page_is_file_cache(page) &&
1185 			    (!current_is_kswapd() || !PageReclaim(page) ||
1186 			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1187 				/*
1188 				 * Immediately reclaim when written back.
1189 				 * Similar in principal to deactivate_page()
1190 				 * except we already have the page isolated
1191 				 * and know it's dirty
1192 				 */
1193 				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1194 				SetPageReclaim(page);
1195 
1196 				goto activate_locked;
1197 			}
1198 
1199 			if (references == PAGEREF_RECLAIM_CLEAN)
1200 				goto keep_locked;
1201 			if (!may_enter_fs)
1202 				goto keep_locked;
1203 			if (!sc->may_writepage)
1204 				goto keep_locked;
1205 
1206 			/*
1207 			 * Page is dirty. Flush the TLB if a writable entry
1208 			 * potentially exists to avoid CPU writes after IO
1209 			 * starts and then write it out here.
1210 			 */
1211 			try_to_unmap_flush_dirty();
1212 			switch (pageout(page, mapping, sc)) {
1213 			case PAGE_KEEP:
1214 				goto keep_locked;
1215 			case PAGE_ACTIVATE:
1216 				goto activate_locked;
1217 			case PAGE_SUCCESS:
1218 				if (PageWriteback(page))
1219 					goto keep;
1220 				if (PageDirty(page))
1221 					goto keep;
1222 
1223 				/*
1224 				 * A synchronous write - probably a ramdisk.  Go
1225 				 * ahead and try to reclaim the page.
1226 				 */
1227 				if (!trylock_page(page))
1228 					goto keep;
1229 				if (PageDirty(page) || PageWriteback(page))
1230 					goto keep_locked;
1231 				mapping = page_mapping(page);
1232 			case PAGE_CLEAN:
1233 				; /* try to free the page below */
1234 			}
1235 		}
1236 
1237 		/*
1238 		 * If the page has buffers, try to free the buffer mappings
1239 		 * associated with this page. If we succeed we try to free
1240 		 * the page as well.
1241 		 *
1242 		 * We do this even if the page is PageDirty().
1243 		 * try_to_release_page() does not perform I/O, but it is
1244 		 * possible for a page to have PageDirty set, but it is actually
1245 		 * clean (all its buffers are clean).  This happens if the
1246 		 * buffers were written out directly, with submit_bh(). ext3
1247 		 * will do this, as well as the blockdev mapping.
1248 		 * try_to_release_page() will discover that cleanness and will
1249 		 * drop the buffers and mark the page clean - it can be freed.
1250 		 *
1251 		 * Rarely, pages can have buffers and no ->mapping.  These are
1252 		 * the pages which were not successfully invalidated in
1253 		 * truncate_complete_page().  We try to drop those buffers here
1254 		 * and if that worked, and the page is no longer mapped into
1255 		 * process address space (page_count == 1) it can be freed.
1256 		 * Otherwise, leave the page on the LRU so it is swappable.
1257 		 */
1258 		if (page_has_private(page)) {
1259 			if (!try_to_release_page(page, sc->gfp_mask))
1260 				goto activate_locked;
1261 			if (!mapping && page_count(page) == 1) {
1262 				unlock_page(page);
1263 				if (put_page_testzero(page))
1264 					goto free_it;
1265 				else {
1266 					/*
1267 					 * rare race with speculative reference.
1268 					 * the speculative reference will free
1269 					 * this page shortly, so we may
1270 					 * increment nr_reclaimed here (and
1271 					 * leave it off the LRU).
1272 					 */
1273 					nr_reclaimed++;
1274 					continue;
1275 				}
1276 			}
1277 		}
1278 
1279 		if (PageAnon(page) && !PageSwapBacked(page)) {
1280 			/* follow __remove_mapping for reference */
1281 			if (!page_ref_freeze(page, 1))
1282 				goto keep_locked;
1283 			if (PageDirty(page)) {
1284 				page_ref_unfreeze(page, 1);
1285 				goto keep_locked;
1286 			}
1287 
1288 			count_vm_event(PGLAZYFREED);
1289 			count_memcg_page_event(page, PGLAZYFREED);
1290 		} else if (!mapping || !__remove_mapping(mapping, page, true))
1291 			goto keep_locked;
1292 		/*
1293 		 * At this point, we have no other references and there is
1294 		 * no way to pick any more up (removed from LRU, removed
1295 		 * from pagecache). Can use non-atomic bitops now (and
1296 		 * we obviously don't have to worry about waking up a process
1297 		 * waiting on the page lock, because there are no references.
1298 		 */
1299 		__ClearPageLocked(page);
1300 free_it:
1301 		nr_reclaimed++;
1302 
1303 		/*
1304 		 * Is there need to periodically free_page_list? It would
1305 		 * appear not as the counts should be low
1306 		 */
1307 		if (unlikely(PageTransHuge(page))) {
1308 			mem_cgroup_uncharge(page);
1309 			(*get_compound_page_dtor(page))(page);
1310 		} else
1311 			list_add(&page->lru, &free_pages);
1312 		continue;
1313 
1314 activate_locked:
1315 		/* Not a candidate for swapping, so reclaim swap space. */
1316 		if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1317 						PageMlocked(page)))
1318 			try_to_free_swap(page);
1319 		VM_BUG_ON_PAGE(PageActive(page), page);
1320 		if (!PageMlocked(page)) {
1321 			SetPageActive(page);
1322 			pgactivate++;
1323 			count_memcg_page_event(page, PGACTIVATE);
1324 		}
1325 keep_locked:
1326 		unlock_page(page);
1327 keep:
1328 		list_add(&page->lru, &ret_pages);
1329 		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1330 	}
1331 
1332 	mem_cgroup_uncharge_list(&free_pages);
1333 	try_to_unmap_flush();
1334 	free_unref_page_list(&free_pages);
1335 
1336 	list_splice(&ret_pages, page_list);
1337 	count_vm_events(PGACTIVATE, pgactivate);
1338 
1339 	if (stat) {
1340 		stat->nr_dirty = nr_dirty;
1341 		stat->nr_congested = nr_congested;
1342 		stat->nr_unqueued_dirty = nr_unqueued_dirty;
1343 		stat->nr_writeback = nr_writeback;
1344 		stat->nr_immediate = nr_immediate;
1345 		stat->nr_activate = pgactivate;
1346 		stat->nr_ref_keep = nr_ref_keep;
1347 		stat->nr_unmap_fail = nr_unmap_fail;
1348 	}
1349 	return nr_reclaimed;
1350 }
1351 
1352 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1353 					    struct list_head *page_list)
1354 {
1355 	struct scan_control sc = {
1356 		.gfp_mask = GFP_KERNEL,
1357 		.priority = DEF_PRIORITY,
1358 		.may_unmap = 1,
1359 	};
1360 	unsigned long ret;
1361 	struct page *page, *next;
1362 	LIST_HEAD(clean_pages);
1363 
1364 	list_for_each_entry_safe(page, next, page_list, lru) {
1365 		if (page_is_file_cache(page) && !PageDirty(page) &&
1366 		    !__PageMovable(page)) {
1367 			ClearPageActive(page);
1368 			list_move(&page->lru, &clean_pages);
1369 		}
1370 	}
1371 
1372 	ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1373 			TTU_IGNORE_ACCESS, NULL, true);
1374 	list_splice(&clean_pages, page_list);
1375 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1376 	return ret;
1377 }
1378 
1379 /*
1380  * Attempt to remove the specified page from its LRU.  Only take this page
1381  * if it is of the appropriate PageActive status.  Pages which are being
1382  * freed elsewhere are also ignored.
1383  *
1384  * page:	page to consider
1385  * mode:	one of the LRU isolation modes defined above
1386  *
1387  * returns 0 on success, -ve errno on failure.
1388  */
1389 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1390 {
1391 	int ret = -EINVAL;
1392 
1393 	/* Only take pages on the LRU. */
1394 	if (!PageLRU(page))
1395 		return ret;
1396 
1397 	/* Compaction should not handle unevictable pages but CMA can do so */
1398 	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1399 		return ret;
1400 
1401 	ret = -EBUSY;
1402 
1403 	/*
1404 	 * To minimise LRU disruption, the caller can indicate that it only
1405 	 * wants to isolate pages it will be able to operate on without
1406 	 * blocking - clean pages for the most part.
1407 	 *
1408 	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1409 	 * that it is possible to migrate without blocking
1410 	 */
1411 	if (mode & ISOLATE_ASYNC_MIGRATE) {
1412 		/* All the caller can do on PageWriteback is block */
1413 		if (PageWriteback(page))
1414 			return ret;
1415 
1416 		if (PageDirty(page)) {
1417 			struct address_space *mapping;
1418 			bool migrate_dirty;
1419 
1420 			/*
1421 			 * Only pages without mappings or that have a
1422 			 * ->migratepage callback are possible to migrate
1423 			 * without blocking. However, we can be racing with
1424 			 * truncation so it's necessary to lock the page
1425 			 * to stabilise the mapping as truncation holds
1426 			 * the page lock until after the page is removed
1427 			 * from the page cache.
1428 			 */
1429 			if (!trylock_page(page))
1430 				return ret;
1431 
1432 			mapping = page_mapping(page);
1433 			migrate_dirty = mapping && mapping->a_ops->migratepage;
1434 			unlock_page(page);
1435 			if (!migrate_dirty)
1436 				return ret;
1437 		}
1438 	}
1439 
1440 	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1441 		return ret;
1442 
1443 	if (likely(get_page_unless_zero(page))) {
1444 		/*
1445 		 * Be careful not to clear PageLRU until after we're
1446 		 * sure the page is not being freed elsewhere -- the
1447 		 * page release code relies on it.
1448 		 */
1449 		ClearPageLRU(page);
1450 		ret = 0;
1451 	}
1452 
1453 	return ret;
1454 }
1455 
1456 
1457 /*
1458  * Update LRU sizes after isolating pages. The LRU size updates must
1459  * be complete before mem_cgroup_update_lru_size due to a santity check.
1460  */
1461 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1462 			enum lru_list lru, unsigned long *nr_zone_taken)
1463 {
1464 	int zid;
1465 
1466 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1467 		if (!nr_zone_taken[zid])
1468 			continue;
1469 
1470 		__update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1471 #ifdef CONFIG_MEMCG
1472 		mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1473 #endif
1474 	}
1475 
1476 }
1477 
1478 /*
1479  * zone_lru_lock is heavily contended.  Some of the functions that
1480  * shrink the lists perform better by taking out a batch of pages
1481  * and working on them outside the LRU lock.
1482  *
1483  * For pagecache intensive workloads, this function is the hottest
1484  * spot in the kernel (apart from copy_*_user functions).
1485  *
1486  * Appropriate locks must be held before calling this function.
1487  *
1488  * @nr_to_scan:	The number of eligible pages to look through on the list.
1489  * @lruvec:	The LRU vector to pull pages from.
1490  * @dst:	The temp list to put pages on to.
1491  * @nr_scanned:	The number of pages that were scanned.
1492  * @sc:		The scan_control struct for this reclaim session
1493  * @mode:	One of the LRU isolation modes
1494  * @lru:	LRU list id for isolating
1495  *
1496  * returns how many pages were moved onto *@dst.
1497  */
1498 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1499 		struct lruvec *lruvec, struct list_head *dst,
1500 		unsigned long *nr_scanned, struct scan_control *sc,
1501 		isolate_mode_t mode, enum lru_list lru)
1502 {
1503 	struct list_head *src = &lruvec->lists[lru];
1504 	unsigned long nr_taken = 0;
1505 	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1506 	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1507 	unsigned long skipped = 0;
1508 	unsigned long scan, total_scan, nr_pages;
1509 	LIST_HEAD(pages_skipped);
1510 
1511 	scan = 0;
1512 	for (total_scan = 0;
1513 	     scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src);
1514 	     total_scan++) {
1515 		struct page *page;
1516 
1517 		page = lru_to_page(src);
1518 		prefetchw_prev_lru_page(page, src, flags);
1519 
1520 		VM_BUG_ON_PAGE(!PageLRU(page), page);
1521 
1522 		if (page_zonenum(page) > sc->reclaim_idx) {
1523 			list_move(&page->lru, &pages_skipped);
1524 			nr_skipped[page_zonenum(page)]++;
1525 			continue;
1526 		}
1527 
1528 		/*
1529 		 * Do not count skipped pages because that makes the function
1530 		 * return with no isolated pages if the LRU mostly contains
1531 		 * ineligible pages.  This causes the VM to not reclaim any
1532 		 * pages, triggering a premature OOM.
1533 		 */
1534 		scan++;
1535 		switch (__isolate_lru_page(page, mode)) {
1536 		case 0:
1537 			nr_pages = hpage_nr_pages(page);
1538 			nr_taken += nr_pages;
1539 			nr_zone_taken[page_zonenum(page)] += nr_pages;
1540 			list_move(&page->lru, dst);
1541 			break;
1542 
1543 		case -EBUSY:
1544 			/* else it is being freed elsewhere */
1545 			list_move(&page->lru, src);
1546 			continue;
1547 
1548 		default:
1549 			BUG();
1550 		}
1551 	}
1552 
1553 	/*
1554 	 * Splice any skipped pages to the start of the LRU list. Note that
1555 	 * this disrupts the LRU order when reclaiming for lower zones but
1556 	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1557 	 * scanning would soon rescan the same pages to skip and put the
1558 	 * system at risk of premature OOM.
1559 	 */
1560 	if (!list_empty(&pages_skipped)) {
1561 		int zid;
1562 
1563 		list_splice(&pages_skipped, src);
1564 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1565 			if (!nr_skipped[zid])
1566 				continue;
1567 
1568 			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1569 			skipped += nr_skipped[zid];
1570 		}
1571 	}
1572 	*nr_scanned = total_scan;
1573 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1574 				    total_scan, skipped, nr_taken, mode, lru);
1575 	update_lru_sizes(lruvec, lru, nr_zone_taken);
1576 	return nr_taken;
1577 }
1578 
1579 /**
1580  * isolate_lru_page - tries to isolate a page from its LRU list
1581  * @page: page to isolate from its LRU list
1582  *
1583  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1584  * vmstat statistic corresponding to whatever LRU list the page was on.
1585  *
1586  * Returns 0 if the page was removed from an LRU list.
1587  * Returns -EBUSY if the page was not on an LRU list.
1588  *
1589  * The returned page will have PageLRU() cleared.  If it was found on
1590  * the active list, it will have PageActive set.  If it was found on
1591  * the unevictable list, it will have the PageUnevictable bit set. That flag
1592  * may need to be cleared by the caller before letting the page go.
1593  *
1594  * The vmstat statistic corresponding to the list on which the page was
1595  * found will be decremented.
1596  *
1597  * Restrictions:
1598  * (1) Must be called with an elevated refcount on the page. This is a
1599  *     fundamentnal difference from isolate_lru_pages (which is called
1600  *     without a stable reference).
1601  * (2) the lru_lock must not be held.
1602  * (3) interrupts must be enabled.
1603  */
1604 int isolate_lru_page(struct page *page)
1605 {
1606 	int ret = -EBUSY;
1607 
1608 	VM_BUG_ON_PAGE(!page_count(page), page);
1609 	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1610 
1611 	if (PageLRU(page)) {
1612 		struct zone *zone = page_zone(page);
1613 		struct lruvec *lruvec;
1614 
1615 		spin_lock_irq(zone_lru_lock(zone));
1616 		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1617 		if (PageLRU(page)) {
1618 			int lru = page_lru(page);
1619 			get_page(page);
1620 			ClearPageLRU(page);
1621 			del_page_from_lru_list(page, lruvec, lru);
1622 			ret = 0;
1623 		}
1624 		spin_unlock_irq(zone_lru_lock(zone));
1625 	}
1626 	return ret;
1627 }
1628 
1629 /*
1630  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1631  * then get resheduled. When there are massive number of tasks doing page
1632  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1633  * the LRU list will go small and be scanned faster than necessary, leading to
1634  * unnecessary swapping, thrashing and OOM.
1635  */
1636 static int too_many_isolated(struct pglist_data *pgdat, int file,
1637 		struct scan_control *sc)
1638 {
1639 	unsigned long inactive, isolated;
1640 
1641 	if (current_is_kswapd())
1642 		return 0;
1643 
1644 	if (!sane_reclaim(sc))
1645 		return 0;
1646 
1647 	if (file) {
1648 		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1649 		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1650 	} else {
1651 		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1652 		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1653 	}
1654 
1655 	/*
1656 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1657 	 * won't get blocked by normal direct-reclaimers, forming a circular
1658 	 * deadlock.
1659 	 */
1660 	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1661 		inactive >>= 3;
1662 
1663 	return isolated > inactive;
1664 }
1665 
1666 static noinline_for_stack void
1667 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1668 {
1669 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1670 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1671 	LIST_HEAD(pages_to_free);
1672 
1673 	/*
1674 	 * Put back any unfreeable pages.
1675 	 */
1676 	while (!list_empty(page_list)) {
1677 		struct page *page = lru_to_page(page_list);
1678 		int lru;
1679 
1680 		VM_BUG_ON_PAGE(PageLRU(page), page);
1681 		list_del(&page->lru);
1682 		if (unlikely(!page_evictable(page))) {
1683 			spin_unlock_irq(&pgdat->lru_lock);
1684 			putback_lru_page(page);
1685 			spin_lock_irq(&pgdat->lru_lock);
1686 			continue;
1687 		}
1688 
1689 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1690 
1691 		SetPageLRU(page);
1692 		lru = page_lru(page);
1693 		add_page_to_lru_list(page, lruvec, lru);
1694 
1695 		if (is_active_lru(lru)) {
1696 			int file = is_file_lru(lru);
1697 			int numpages = hpage_nr_pages(page);
1698 			reclaim_stat->recent_rotated[file] += numpages;
1699 		}
1700 		if (put_page_testzero(page)) {
1701 			__ClearPageLRU(page);
1702 			__ClearPageActive(page);
1703 			del_page_from_lru_list(page, lruvec, lru);
1704 
1705 			if (unlikely(PageCompound(page))) {
1706 				spin_unlock_irq(&pgdat->lru_lock);
1707 				mem_cgroup_uncharge(page);
1708 				(*get_compound_page_dtor(page))(page);
1709 				spin_lock_irq(&pgdat->lru_lock);
1710 			} else
1711 				list_add(&page->lru, &pages_to_free);
1712 		}
1713 	}
1714 
1715 	/*
1716 	 * To save our caller's stack, now use input list for pages to free.
1717 	 */
1718 	list_splice(&pages_to_free, page_list);
1719 }
1720 
1721 /*
1722  * If a kernel thread (such as nfsd for loop-back mounts) services
1723  * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1724  * In that case we should only throttle if the backing device it is
1725  * writing to is congested.  In other cases it is safe to throttle.
1726  */
1727 static int current_may_throttle(void)
1728 {
1729 	return !(current->flags & PF_LESS_THROTTLE) ||
1730 		current->backing_dev_info == NULL ||
1731 		bdi_write_congested(current->backing_dev_info);
1732 }
1733 
1734 /*
1735  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
1736  * of reclaimed pages
1737  */
1738 static noinline_for_stack unsigned long
1739 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1740 		     struct scan_control *sc, enum lru_list lru)
1741 {
1742 	LIST_HEAD(page_list);
1743 	unsigned long nr_scanned;
1744 	unsigned long nr_reclaimed = 0;
1745 	unsigned long nr_taken;
1746 	struct reclaim_stat stat = {};
1747 	isolate_mode_t isolate_mode = 0;
1748 	int file = is_file_lru(lru);
1749 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1750 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1751 	bool stalled = false;
1752 
1753 	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1754 		if (stalled)
1755 			return 0;
1756 
1757 		/* wait a bit for the reclaimer. */
1758 		msleep(100);
1759 		stalled = true;
1760 
1761 		/* We are about to die and free our memory. Return now. */
1762 		if (fatal_signal_pending(current))
1763 			return SWAP_CLUSTER_MAX;
1764 	}
1765 
1766 	lru_add_drain();
1767 
1768 	if (!sc->may_unmap)
1769 		isolate_mode |= ISOLATE_UNMAPPED;
1770 
1771 	spin_lock_irq(&pgdat->lru_lock);
1772 
1773 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1774 				     &nr_scanned, sc, isolate_mode, lru);
1775 
1776 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1777 	reclaim_stat->recent_scanned[file] += nr_taken;
1778 
1779 	if (current_is_kswapd()) {
1780 		if (global_reclaim(sc))
1781 			__count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1782 		count_memcg_events(lruvec_memcg(lruvec), PGSCAN_KSWAPD,
1783 				   nr_scanned);
1784 	} else {
1785 		if (global_reclaim(sc))
1786 			__count_vm_events(PGSCAN_DIRECT, nr_scanned);
1787 		count_memcg_events(lruvec_memcg(lruvec), PGSCAN_DIRECT,
1788 				   nr_scanned);
1789 	}
1790 	spin_unlock_irq(&pgdat->lru_lock);
1791 
1792 	if (nr_taken == 0)
1793 		return 0;
1794 
1795 	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1796 				&stat, false);
1797 
1798 	spin_lock_irq(&pgdat->lru_lock);
1799 
1800 	if (current_is_kswapd()) {
1801 		if (global_reclaim(sc))
1802 			__count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
1803 		count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_KSWAPD,
1804 				   nr_reclaimed);
1805 	} else {
1806 		if (global_reclaim(sc))
1807 			__count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
1808 		count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_DIRECT,
1809 				   nr_reclaimed);
1810 	}
1811 
1812 	putback_inactive_pages(lruvec, &page_list);
1813 
1814 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1815 
1816 	spin_unlock_irq(&pgdat->lru_lock);
1817 
1818 	mem_cgroup_uncharge_list(&page_list);
1819 	free_unref_page_list(&page_list);
1820 
1821 	/*
1822 	 * If reclaim is isolating dirty pages under writeback, it implies
1823 	 * that the long-lived page allocation rate is exceeding the page
1824 	 * laundering rate. Either the global limits are not being effective
1825 	 * at throttling processes due to the page distribution throughout
1826 	 * zones or there is heavy usage of a slow backing device. The
1827 	 * only option is to throttle from reclaim context which is not ideal
1828 	 * as there is no guarantee the dirtying process is throttled in the
1829 	 * same way balance_dirty_pages() manages.
1830 	 *
1831 	 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1832 	 * of pages under pages flagged for immediate reclaim and stall if any
1833 	 * are encountered in the nr_immediate check below.
1834 	 */
1835 	if (stat.nr_writeback && stat.nr_writeback == nr_taken)
1836 		set_bit(PGDAT_WRITEBACK, &pgdat->flags);
1837 
1838 	/*
1839 	 * Legacy memcg will stall in page writeback so avoid forcibly
1840 	 * stalling here.
1841 	 */
1842 	if (sane_reclaim(sc)) {
1843 		/*
1844 		 * Tag a zone as congested if all the dirty pages scanned were
1845 		 * backed by a congested BDI and wait_iff_congested will stall.
1846 		 */
1847 		if (stat.nr_dirty && stat.nr_dirty == stat.nr_congested)
1848 			set_bit(PGDAT_CONGESTED, &pgdat->flags);
1849 
1850 		/*
1851 		 * If dirty pages are scanned that are not queued for IO, it
1852 		 * implies that flushers are not doing their job. This can
1853 		 * happen when memory pressure pushes dirty pages to the end of
1854 		 * the LRU before the dirty limits are breached and the dirty
1855 		 * data has expired. It can also happen when the proportion of
1856 		 * dirty pages grows not through writes but through memory
1857 		 * pressure reclaiming all the clean cache. And in some cases,
1858 		 * the flushers simply cannot keep up with the allocation
1859 		 * rate. Nudge the flusher threads in case they are asleep, but
1860 		 * also allow kswapd to start writing pages during reclaim.
1861 		 */
1862 		if (stat.nr_unqueued_dirty == nr_taken) {
1863 			wakeup_flusher_threads(WB_REASON_VMSCAN);
1864 			set_bit(PGDAT_DIRTY, &pgdat->flags);
1865 		}
1866 
1867 		/*
1868 		 * If kswapd scans pages marked marked for immediate
1869 		 * reclaim and under writeback (nr_immediate), it implies
1870 		 * that pages are cycling through the LRU faster than
1871 		 * they are written so also forcibly stall.
1872 		 */
1873 		if (stat.nr_immediate && current_may_throttle())
1874 			congestion_wait(BLK_RW_ASYNC, HZ/10);
1875 	}
1876 
1877 	/*
1878 	 * Stall direct reclaim for IO completions if underlying BDIs or zone
1879 	 * is congested. Allow kswapd to continue until it starts encountering
1880 	 * unqueued dirty pages or cycling through the LRU too quickly.
1881 	 */
1882 	if (!sc->hibernation_mode && !current_is_kswapd() &&
1883 	    current_may_throttle())
1884 		wait_iff_congested(pgdat, BLK_RW_ASYNC, HZ/10);
1885 
1886 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1887 			nr_scanned, nr_reclaimed,
1888 			stat.nr_dirty,  stat.nr_writeback,
1889 			stat.nr_congested, stat.nr_immediate,
1890 			stat.nr_activate, stat.nr_ref_keep,
1891 			stat.nr_unmap_fail,
1892 			sc->priority, file);
1893 	return nr_reclaimed;
1894 }
1895 
1896 /*
1897  * This moves pages from the active list to the inactive list.
1898  *
1899  * We move them the other way if the page is referenced by one or more
1900  * processes, from rmap.
1901  *
1902  * If the pages are mostly unmapped, the processing is fast and it is
1903  * appropriate to hold zone_lru_lock across the whole operation.  But if
1904  * the pages are mapped, the processing is slow (page_referenced()) so we
1905  * should drop zone_lru_lock around each page.  It's impossible to balance
1906  * this, so instead we remove the pages from the LRU while processing them.
1907  * It is safe to rely on PG_active against the non-LRU pages in here because
1908  * nobody will play with that bit on a non-LRU page.
1909  *
1910  * The downside is that we have to touch page->_refcount against each page.
1911  * But we had to alter page->flags anyway.
1912  *
1913  * Returns the number of pages moved to the given lru.
1914  */
1915 
1916 static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
1917 				     struct list_head *list,
1918 				     struct list_head *pages_to_free,
1919 				     enum lru_list lru)
1920 {
1921 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1922 	struct page *page;
1923 	int nr_pages;
1924 	int nr_moved = 0;
1925 
1926 	while (!list_empty(list)) {
1927 		page = lru_to_page(list);
1928 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1929 
1930 		VM_BUG_ON_PAGE(PageLRU(page), page);
1931 		SetPageLRU(page);
1932 
1933 		nr_pages = hpage_nr_pages(page);
1934 		update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1935 		list_move(&page->lru, &lruvec->lists[lru]);
1936 
1937 		if (put_page_testzero(page)) {
1938 			__ClearPageLRU(page);
1939 			__ClearPageActive(page);
1940 			del_page_from_lru_list(page, lruvec, lru);
1941 
1942 			if (unlikely(PageCompound(page))) {
1943 				spin_unlock_irq(&pgdat->lru_lock);
1944 				mem_cgroup_uncharge(page);
1945 				(*get_compound_page_dtor(page))(page);
1946 				spin_lock_irq(&pgdat->lru_lock);
1947 			} else
1948 				list_add(&page->lru, pages_to_free);
1949 		} else {
1950 			nr_moved += nr_pages;
1951 		}
1952 	}
1953 
1954 	if (!is_active_lru(lru)) {
1955 		__count_vm_events(PGDEACTIVATE, nr_moved);
1956 		count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
1957 				   nr_moved);
1958 	}
1959 
1960 	return nr_moved;
1961 }
1962 
1963 static void shrink_active_list(unsigned long nr_to_scan,
1964 			       struct lruvec *lruvec,
1965 			       struct scan_control *sc,
1966 			       enum lru_list lru)
1967 {
1968 	unsigned long nr_taken;
1969 	unsigned long nr_scanned;
1970 	unsigned long vm_flags;
1971 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1972 	LIST_HEAD(l_active);
1973 	LIST_HEAD(l_inactive);
1974 	struct page *page;
1975 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1976 	unsigned nr_deactivate, nr_activate;
1977 	unsigned nr_rotated = 0;
1978 	isolate_mode_t isolate_mode = 0;
1979 	int file = is_file_lru(lru);
1980 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1981 
1982 	lru_add_drain();
1983 
1984 	if (!sc->may_unmap)
1985 		isolate_mode |= ISOLATE_UNMAPPED;
1986 
1987 	spin_lock_irq(&pgdat->lru_lock);
1988 
1989 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1990 				     &nr_scanned, sc, isolate_mode, lru);
1991 
1992 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1993 	reclaim_stat->recent_scanned[file] += nr_taken;
1994 
1995 	__count_vm_events(PGREFILL, nr_scanned);
1996 	count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
1997 
1998 	spin_unlock_irq(&pgdat->lru_lock);
1999 
2000 	while (!list_empty(&l_hold)) {
2001 		cond_resched();
2002 		page = lru_to_page(&l_hold);
2003 		list_del(&page->lru);
2004 
2005 		if (unlikely(!page_evictable(page))) {
2006 			putback_lru_page(page);
2007 			continue;
2008 		}
2009 
2010 		if (unlikely(buffer_heads_over_limit)) {
2011 			if (page_has_private(page) && trylock_page(page)) {
2012 				if (page_has_private(page))
2013 					try_to_release_page(page, 0);
2014 				unlock_page(page);
2015 			}
2016 		}
2017 
2018 		if (page_referenced(page, 0, sc->target_mem_cgroup,
2019 				    &vm_flags)) {
2020 			nr_rotated += hpage_nr_pages(page);
2021 			/*
2022 			 * Identify referenced, file-backed active pages and
2023 			 * give them one more trip around the active list. So
2024 			 * that executable code get better chances to stay in
2025 			 * memory under moderate memory pressure.  Anon pages
2026 			 * are not likely to be evicted by use-once streaming
2027 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
2028 			 * so we ignore them here.
2029 			 */
2030 			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
2031 				list_add(&page->lru, &l_active);
2032 				continue;
2033 			}
2034 		}
2035 
2036 		ClearPageActive(page);	/* we are de-activating */
2037 		list_add(&page->lru, &l_inactive);
2038 	}
2039 
2040 	/*
2041 	 * Move pages back to the lru list.
2042 	 */
2043 	spin_lock_irq(&pgdat->lru_lock);
2044 	/*
2045 	 * Count referenced pages from currently used mappings as rotated,
2046 	 * even though only some of them are actually re-activated.  This
2047 	 * helps balance scan pressure between file and anonymous pages in
2048 	 * get_scan_count.
2049 	 */
2050 	reclaim_stat->recent_rotated[file] += nr_rotated;
2051 
2052 	nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
2053 	nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
2054 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2055 	spin_unlock_irq(&pgdat->lru_lock);
2056 
2057 	mem_cgroup_uncharge_list(&l_hold);
2058 	free_unref_page_list(&l_hold);
2059 	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2060 			nr_deactivate, nr_rotated, sc->priority, file);
2061 }
2062 
2063 /*
2064  * The inactive anon list should be small enough that the VM never has
2065  * to do too much work.
2066  *
2067  * The inactive file list should be small enough to leave most memory
2068  * to the established workingset on the scan-resistant active list,
2069  * but large enough to avoid thrashing the aggregate readahead window.
2070  *
2071  * Both inactive lists should also be large enough that each inactive
2072  * page has a chance to be referenced again before it is reclaimed.
2073  *
2074  * If that fails and refaulting is observed, the inactive list grows.
2075  *
2076  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2077  * on this LRU, maintained by the pageout code. An inactive_ratio
2078  * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2079  *
2080  * total     target    max
2081  * memory    ratio     inactive
2082  * -------------------------------------
2083  *   10MB       1         5MB
2084  *  100MB       1        50MB
2085  *    1GB       3       250MB
2086  *   10GB      10       0.9GB
2087  *  100GB      31         3GB
2088  *    1TB     101        10GB
2089  *   10TB     320        32GB
2090  */
2091 static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2092 				 struct mem_cgroup *memcg,
2093 				 struct scan_control *sc, bool actual_reclaim)
2094 {
2095 	enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2096 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2097 	enum lru_list inactive_lru = file * LRU_FILE;
2098 	unsigned long inactive, active;
2099 	unsigned long inactive_ratio;
2100 	unsigned long refaults;
2101 	unsigned long gb;
2102 
2103 	/*
2104 	 * If we don't have swap space, anonymous page deactivation
2105 	 * is pointless.
2106 	 */
2107 	if (!file && !total_swap_pages)
2108 		return false;
2109 
2110 	inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2111 	active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2112 
2113 	if (memcg)
2114 		refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2115 	else
2116 		refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2117 
2118 	/*
2119 	 * When refaults are being observed, it means a new workingset
2120 	 * is being established. Disable active list protection to get
2121 	 * rid of the stale workingset quickly.
2122 	 */
2123 	if (file && actual_reclaim && lruvec->refaults != refaults) {
2124 		inactive_ratio = 0;
2125 	} else {
2126 		gb = (inactive + active) >> (30 - PAGE_SHIFT);
2127 		if (gb)
2128 			inactive_ratio = int_sqrt(10 * gb);
2129 		else
2130 			inactive_ratio = 1;
2131 	}
2132 
2133 	if (actual_reclaim)
2134 		trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
2135 			lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2136 			lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2137 			inactive_ratio, file);
2138 
2139 	return inactive * inactive_ratio < active;
2140 }
2141 
2142 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2143 				 struct lruvec *lruvec, struct mem_cgroup *memcg,
2144 				 struct scan_control *sc)
2145 {
2146 	if (is_active_lru(lru)) {
2147 		if (inactive_list_is_low(lruvec, is_file_lru(lru),
2148 					 memcg, sc, true))
2149 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2150 		return 0;
2151 	}
2152 
2153 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2154 }
2155 
2156 enum scan_balance {
2157 	SCAN_EQUAL,
2158 	SCAN_FRACT,
2159 	SCAN_ANON,
2160 	SCAN_FILE,
2161 };
2162 
2163 /*
2164  * Determine how aggressively the anon and file LRU lists should be
2165  * scanned.  The relative value of each set of LRU lists is determined
2166  * by looking at the fraction of the pages scanned we did rotate back
2167  * onto the active list instead of evict.
2168  *
2169  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2170  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2171  */
2172 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2173 			   struct scan_control *sc, unsigned long *nr,
2174 			   unsigned long *lru_pages)
2175 {
2176 	int swappiness = mem_cgroup_swappiness(memcg);
2177 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2178 	u64 fraction[2];
2179 	u64 denominator = 0;	/* gcc */
2180 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2181 	unsigned long anon_prio, file_prio;
2182 	enum scan_balance scan_balance;
2183 	unsigned long anon, file;
2184 	unsigned long ap, fp;
2185 	enum lru_list lru;
2186 
2187 	/* If we have no swap space, do not bother scanning anon pages. */
2188 	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2189 		scan_balance = SCAN_FILE;
2190 		goto out;
2191 	}
2192 
2193 	/*
2194 	 * Global reclaim will swap to prevent OOM even with no
2195 	 * swappiness, but memcg users want to use this knob to
2196 	 * disable swapping for individual groups completely when
2197 	 * using the memory controller's swap limit feature would be
2198 	 * too expensive.
2199 	 */
2200 	if (!global_reclaim(sc) && !swappiness) {
2201 		scan_balance = SCAN_FILE;
2202 		goto out;
2203 	}
2204 
2205 	/*
2206 	 * Do not apply any pressure balancing cleverness when the
2207 	 * system is close to OOM, scan both anon and file equally
2208 	 * (unless the swappiness setting disagrees with swapping).
2209 	 */
2210 	if (!sc->priority && swappiness) {
2211 		scan_balance = SCAN_EQUAL;
2212 		goto out;
2213 	}
2214 
2215 	/*
2216 	 * Prevent the reclaimer from falling into the cache trap: as
2217 	 * cache pages start out inactive, every cache fault will tip
2218 	 * the scan balance towards the file LRU.  And as the file LRU
2219 	 * shrinks, so does the window for rotation from references.
2220 	 * This means we have a runaway feedback loop where a tiny
2221 	 * thrashing file LRU becomes infinitely more attractive than
2222 	 * anon pages.  Try to detect this based on file LRU size.
2223 	 */
2224 	if (global_reclaim(sc)) {
2225 		unsigned long pgdatfile;
2226 		unsigned long pgdatfree;
2227 		int z;
2228 		unsigned long total_high_wmark = 0;
2229 
2230 		pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2231 		pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2232 			   node_page_state(pgdat, NR_INACTIVE_FILE);
2233 
2234 		for (z = 0; z < MAX_NR_ZONES; z++) {
2235 			struct zone *zone = &pgdat->node_zones[z];
2236 			if (!managed_zone(zone))
2237 				continue;
2238 
2239 			total_high_wmark += high_wmark_pages(zone);
2240 		}
2241 
2242 		if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2243 			/*
2244 			 * Force SCAN_ANON if there are enough inactive
2245 			 * anonymous pages on the LRU in eligible zones.
2246 			 * Otherwise, the small LRU gets thrashed.
2247 			 */
2248 			if (!inactive_list_is_low(lruvec, false, memcg, sc, false) &&
2249 			    lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
2250 					>> sc->priority) {
2251 				scan_balance = SCAN_ANON;
2252 				goto out;
2253 			}
2254 		}
2255 	}
2256 
2257 	/*
2258 	 * If there is enough inactive page cache, i.e. if the size of the
2259 	 * inactive list is greater than that of the active list *and* the
2260 	 * inactive list actually has some pages to scan on this priority, we
2261 	 * do not reclaim anything from the anonymous working set right now.
2262 	 * Without the second condition we could end up never scanning an
2263 	 * lruvec even if it has plenty of old anonymous pages unless the
2264 	 * system is under heavy pressure.
2265 	 */
2266 	if (!inactive_list_is_low(lruvec, true, memcg, sc, false) &&
2267 	    lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2268 		scan_balance = SCAN_FILE;
2269 		goto out;
2270 	}
2271 
2272 	scan_balance = SCAN_FRACT;
2273 
2274 	/*
2275 	 * With swappiness at 100, anonymous and file have the same priority.
2276 	 * This scanning priority is essentially the inverse of IO cost.
2277 	 */
2278 	anon_prio = swappiness;
2279 	file_prio = 200 - anon_prio;
2280 
2281 	/*
2282 	 * OK, so we have swap space and a fair amount of page cache
2283 	 * pages.  We use the recently rotated / recently scanned
2284 	 * ratios to determine how valuable each cache is.
2285 	 *
2286 	 * Because workloads change over time (and to avoid overflow)
2287 	 * we keep these statistics as a floating average, which ends
2288 	 * up weighing recent references more than old ones.
2289 	 *
2290 	 * anon in [0], file in [1]
2291 	 */
2292 
2293 	anon  = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2294 		lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2295 	file  = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2296 		lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2297 
2298 	spin_lock_irq(&pgdat->lru_lock);
2299 	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2300 		reclaim_stat->recent_scanned[0] /= 2;
2301 		reclaim_stat->recent_rotated[0] /= 2;
2302 	}
2303 
2304 	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2305 		reclaim_stat->recent_scanned[1] /= 2;
2306 		reclaim_stat->recent_rotated[1] /= 2;
2307 	}
2308 
2309 	/*
2310 	 * The amount of pressure on anon vs file pages is inversely
2311 	 * proportional to the fraction of recently scanned pages on
2312 	 * each list that were recently referenced and in active use.
2313 	 */
2314 	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2315 	ap /= reclaim_stat->recent_rotated[0] + 1;
2316 
2317 	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2318 	fp /= reclaim_stat->recent_rotated[1] + 1;
2319 	spin_unlock_irq(&pgdat->lru_lock);
2320 
2321 	fraction[0] = ap;
2322 	fraction[1] = fp;
2323 	denominator = ap + fp + 1;
2324 out:
2325 	*lru_pages = 0;
2326 	for_each_evictable_lru(lru) {
2327 		int file = is_file_lru(lru);
2328 		unsigned long size;
2329 		unsigned long scan;
2330 
2331 		size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2332 		scan = size >> sc->priority;
2333 		/*
2334 		 * If the cgroup's already been deleted, make sure to
2335 		 * scrape out the remaining cache.
2336 		 */
2337 		if (!scan && !mem_cgroup_online(memcg))
2338 			scan = min(size, SWAP_CLUSTER_MAX);
2339 
2340 		switch (scan_balance) {
2341 		case SCAN_EQUAL:
2342 			/* Scan lists relative to size */
2343 			break;
2344 		case SCAN_FRACT:
2345 			/*
2346 			 * Scan types proportional to swappiness and
2347 			 * their relative recent reclaim efficiency.
2348 			 */
2349 			scan = div64_u64(scan * fraction[file],
2350 					 denominator);
2351 			break;
2352 		case SCAN_FILE:
2353 		case SCAN_ANON:
2354 			/* Scan one type exclusively */
2355 			if ((scan_balance == SCAN_FILE) != file) {
2356 				size = 0;
2357 				scan = 0;
2358 			}
2359 			break;
2360 		default:
2361 			/* Look ma, no brain */
2362 			BUG();
2363 		}
2364 
2365 		*lru_pages += size;
2366 		nr[lru] = scan;
2367 	}
2368 }
2369 
2370 /*
2371  * This is a basic per-node page freer.  Used by both kswapd and direct reclaim.
2372  */
2373 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2374 			      struct scan_control *sc, unsigned long *lru_pages)
2375 {
2376 	struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2377 	unsigned long nr[NR_LRU_LISTS];
2378 	unsigned long targets[NR_LRU_LISTS];
2379 	unsigned long nr_to_scan;
2380 	enum lru_list lru;
2381 	unsigned long nr_reclaimed = 0;
2382 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2383 	struct blk_plug plug;
2384 	bool scan_adjusted;
2385 
2386 	get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2387 
2388 	/* Record the original scan target for proportional adjustments later */
2389 	memcpy(targets, nr, sizeof(nr));
2390 
2391 	/*
2392 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2393 	 * event that can occur when there is little memory pressure e.g.
2394 	 * multiple streaming readers/writers. Hence, we do not abort scanning
2395 	 * when the requested number of pages are reclaimed when scanning at
2396 	 * DEF_PRIORITY on the assumption that the fact we are direct
2397 	 * reclaiming implies that kswapd is not keeping up and it is best to
2398 	 * do a batch of work at once. For memcg reclaim one check is made to
2399 	 * abort proportional reclaim if either the file or anon lru has already
2400 	 * dropped to zero at the first pass.
2401 	 */
2402 	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2403 			 sc->priority == DEF_PRIORITY);
2404 
2405 	blk_start_plug(&plug);
2406 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2407 					nr[LRU_INACTIVE_FILE]) {
2408 		unsigned long nr_anon, nr_file, percentage;
2409 		unsigned long nr_scanned;
2410 
2411 		for_each_evictable_lru(lru) {
2412 			if (nr[lru]) {
2413 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2414 				nr[lru] -= nr_to_scan;
2415 
2416 				nr_reclaimed += shrink_list(lru, nr_to_scan,
2417 							    lruvec, memcg, sc);
2418 			}
2419 		}
2420 
2421 		cond_resched();
2422 
2423 		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2424 			continue;
2425 
2426 		/*
2427 		 * For kswapd and memcg, reclaim at least the number of pages
2428 		 * requested. Ensure that the anon and file LRUs are scanned
2429 		 * proportionally what was requested by get_scan_count(). We
2430 		 * stop reclaiming one LRU and reduce the amount scanning
2431 		 * proportional to the original scan target.
2432 		 */
2433 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2434 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2435 
2436 		/*
2437 		 * It's just vindictive to attack the larger once the smaller
2438 		 * has gone to zero.  And given the way we stop scanning the
2439 		 * smaller below, this makes sure that we only make one nudge
2440 		 * towards proportionality once we've got nr_to_reclaim.
2441 		 */
2442 		if (!nr_file || !nr_anon)
2443 			break;
2444 
2445 		if (nr_file > nr_anon) {
2446 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2447 						targets[LRU_ACTIVE_ANON] + 1;
2448 			lru = LRU_BASE;
2449 			percentage = nr_anon * 100 / scan_target;
2450 		} else {
2451 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2452 						targets[LRU_ACTIVE_FILE] + 1;
2453 			lru = LRU_FILE;
2454 			percentage = nr_file * 100 / scan_target;
2455 		}
2456 
2457 		/* Stop scanning the smaller of the LRU */
2458 		nr[lru] = 0;
2459 		nr[lru + LRU_ACTIVE] = 0;
2460 
2461 		/*
2462 		 * Recalculate the other LRU scan count based on its original
2463 		 * scan target and the percentage scanning already complete
2464 		 */
2465 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2466 		nr_scanned = targets[lru] - nr[lru];
2467 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2468 		nr[lru] -= min(nr[lru], nr_scanned);
2469 
2470 		lru += LRU_ACTIVE;
2471 		nr_scanned = targets[lru] - nr[lru];
2472 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2473 		nr[lru] -= min(nr[lru], nr_scanned);
2474 
2475 		scan_adjusted = true;
2476 	}
2477 	blk_finish_plug(&plug);
2478 	sc->nr_reclaimed += nr_reclaimed;
2479 
2480 	/*
2481 	 * Even if we did not try to evict anon pages at all, we want to
2482 	 * rebalance the anon lru active/inactive ratio.
2483 	 */
2484 	if (inactive_list_is_low(lruvec, false, memcg, sc, true))
2485 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2486 				   sc, LRU_ACTIVE_ANON);
2487 }
2488 
2489 /* Use reclaim/compaction for costly allocs or under memory pressure */
2490 static bool in_reclaim_compaction(struct scan_control *sc)
2491 {
2492 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2493 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2494 			 sc->priority < DEF_PRIORITY - 2))
2495 		return true;
2496 
2497 	return false;
2498 }
2499 
2500 /*
2501  * Reclaim/compaction is used for high-order allocation requests. It reclaims
2502  * order-0 pages before compacting the zone. should_continue_reclaim() returns
2503  * true if more pages should be reclaimed such that when the page allocator
2504  * calls try_to_compact_zone() that it will have enough free pages to succeed.
2505  * It will give up earlier than that if there is difficulty reclaiming pages.
2506  */
2507 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2508 					unsigned long nr_reclaimed,
2509 					unsigned long nr_scanned,
2510 					struct scan_control *sc)
2511 {
2512 	unsigned long pages_for_compaction;
2513 	unsigned long inactive_lru_pages;
2514 	int z;
2515 
2516 	/* If not in reclaim/compaction mode, stop */
2517 	if (!in_reclaim_compaction(sc))
2518 		return false;
2519 
2520 	/* Consider stopping depending on scan and reclaim activity */
2521 	if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) {
2522 		/*
2523 		 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2524 		 * full LRU list has been scanned and we are still failing
2525 		 * to reclaim pages. This full LRU scan is potentially
2526 		 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2527 		 */
2528 		if (!nr_reclaimed && !nr_scanned)
2529 			return false;
2530 	} else {
2531 		/*
2532 		 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2533 		 * fail without consequence, stop if we failed to reclaim
2534 		 * any pages from the last SWAP_CLUSTER_MAX number of
2535 		 * pages that were scanned. This will return to the
2536 		 * caller faster at the risk reclaim/compaction and
2537 		 * the resulting allocation attempt fails
2538 		 */
2539 		if (!nr_reclaimed)
2540 			return false;
2541 	}
2542 
2543 	/*
2544 	 * If we have not reclaimed enough pages for compaction and the
2545 	 * inactive lists are large enough, continue reclaiming
2546 	 */
2547 	pages_for_compaction = compact_gap(sc->order);
2548 	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2549 	if (get_nr_swap_pages() > 0)
2550 		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2551 	if (sc->nr_reclaimed < pages_for_compaction &&
2552 			inactive_lru_pages > pages_for_compaction)
2553 		return true;
2554 
2555 	/* If compaction would go ahead or the allocation would succeed, stop */
2556 	for (z = 0; z <= sc->reclaim_idx; z++) {
2557 		struct zone *zone = &pgdat->node_zones[z];
2558 		if (!managed_zone(zone))
2559 			continue;
2560 
2561 		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2562 		case COMPACT_SUCCESS:
2563 		case COMPACT_CONTINUE:
2564 			return false;
2565 		default:
2566 			/* check next zone */
2567 			;
2568 		}
2569 	}
2570 	return true;
2571 }
2572 
2573 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2574 {
2575 	struct reclaim_state *reclaim_state = current->reclaim_state;
2576 	unsigned long nr_reclaimed, nr_scanned;
2577 	bool reclaimable = false;
2578 
2579 	do {
2580 		struct mem_cgroup *root = sc->target_mem_cgroup;
2581 		struct mem_cgroup_reclaim_cookie reclaim = {
2582 			.pgdat = pgdat,
2583 			.priority = sc->priority,
2584 		};
2585 		unsigned long node_lru_pages = 0;
2586 		struct mem_cgroup *memcg;
2587 
2588 		nr_reclaimed = sc->nr_reclaimed;
2589 		nr_scanned = sc->nr_scanned;
2590 
2591 		memcg = mem_cgroup_iter(root, NULL, &reclaim);
2592 		do {
2593 			unsigned long lru_pages;
2594 			unsigned long reclaimed;
2595 			unsigned long scanned;
2596 
2597 			if (mem_cgroup_low(root, memcg)) {
2598 				if (!sc->memcg_low_reclaim) {
2599 					sc->memcg_low_skipped = 1;
2600 					continue;
2601 				}
2602 				mem_cgroup_event(memcg, MEMCG_LOW);
2603 			}
2604 
2605 			reclaimed = sc->nr_reclaimed;
2606 			scanned = sc->nr_scanned;
2607 			shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2608 			node_lru_pages += lru_pages;
2609 
2610 			if (memcg)
2611 				shrink_slab(sc->gfp_mask, pgdat->node_id,
2612 					    memcg, sc->priority);
2613 
2614 			/* Record the group's reclaim efficiency */
2615 			vmpressure(sc->gfp_mask, memcg, false,
2616 				   sc->nr_scanned - scanned,
2617 				   sc->nr_reclaimed - reclaimed);
2618 
2619 			/*
2620 			 * Direct reclaim and kswapd have to scan all memory
2621 			 * cgroups to fulfill the overall scan target for the
2622 			 * node.
2623 			 *
2624 			 * Limit reclaim, on the other hand, only cares about
2625 			 * nr_to_reclaim pages to be reclaimed and it will
2626 			 * retry with decreasing priority if one round over the
2627 			 * whole hierarchy is not sufficient.
2628 			 */
2629 			if (!global_reclaim(sc) &&
2630 					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2631 				mem_cgroup_iter_break(root, memcg);
2632 				break;
2633 			}
2634 		} while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2635 
2636 		if (global_reclaim(sc))
2637 			shrink_slab(sc->gfp_mask, pgdat->node_id, NULL,
2638 				    sc->priority);
2639 
2640 		if (reclaim_state) {
2641 			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2642 			reclaim_state->reclaimed_slab = 0;
2643 		}
2644 
2645 		/* Record the subtree's reclaim efficiency */
2646 		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2647 			   sc->nr_scanned - nr_scanned,
2648 			   sc->nr_reclaimed - nr_reclaimed);
2649 
2650 		if (sc->nr_reclaimed - nr_reclaimed)
2651 			reclaimable = true;
2652 
2653 	} while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2654 					 sc->nr_scanned - nr_scanned, sc));
2655 
2656 	/*
2657 	 * Kswapd gives up on balancing particular nodes after too
2658 	 * many failures to reclaim anything from them and goes to
2659 	 * sleep. On reclaim progress, reset the failure counter. A
2660 	 * successful direct reclaim run will revive a dormant kswapd.
2661 	 */
2662 	if (reclaimable)
2663 		pgdat->kswapd_failures = 0;
2664 
2665 	return reclaimable;
2666 }
2667 
2668 /*
2669  * Returns true if compaction should go ahead for a costly-order request, or
2670  * the allocation would already succeed without compaction. Return false if we
2671  * should reclaim first.
2672  */
2673 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2674 {
2675 	unsigned long watermark;
2676 	enum compact_result suitable;
2677 
2678 	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2679 	if (suitable == COMPACT_SUCCESS)
2680 		/* Allocation should succeed already. Don't reclaim. */
2681 		return true;
2682 	if (suitable == COMPACT_SKIPPED)
2683 		/* Compaction cannot yet proceed. Do reclaim. */
2684 		return false;
2685 
2686 	/*
2687 	 * Compaction is already possible, but it takes time to run and there
2688 	 * are potentially other callers using the pages just freed. So proceed
2689 	 * with reclaim to make a buffer of free pages available to give
2690 	 * compaction a reasonable chance of completing and allocating the page.
2691 	 * Note that we won't actually reclaim the whole buffer in one attempt
2692 	 * as the target watermark in should_continue_reclaim() is lower. But if
2693 	 * we are already above the high+gap watermark, don't reclaim at all.
2694 	 */
2695 	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2696 
2697 	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2698 }
2699 
2700 /*
2701  * This is the direct reclaim path, for page-allocating processes.  We only
2702  * try to reclaim pages from zones which will satisfy the caller's allocation
2703  * request.
2704  *
2705  * If a zone is deemed to be full of pinned pages then just give it a light
2706  * scan then give up on it.
2707  */
2708 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2709 {
2710 	struct zoneref *z;
2711 	struct zone *zone;
2712 	unsigned long nr_soft_reclaimed;
2713 	unsigned long nr_soft_scanned;
2714 	gfp_t orig_mask;
2715 	pg_data_t *last_pgdat = NULL;
2716 
2717 	/*
2718 	 * If the number of buffer_heads in the machine exceeds the maximum
2719 	 * allowed level, force direct reclaim to scan the highmem zone as
2720 	 * highmem pages could be pinning lowmem pages storing buffer_heads
2721 	 */
2722 	orig_mask = sc->gfp_mask;
2723 	if (buffer_heads_over_limit) {
2724 		sc->gfp_mask |= __GFP_HIGHMEM;
2725 		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2726 	}
2727 
2728 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2729 					sc->reclaim_idx, sc->nodemask) {
2730 		/*
2731 		 * Take care memory controller reclaiming has small influence
2732 		 * to global LRU.
2733 		 */
2734 		if (global_reclaim(sc)) {
2735 			if (!cpuset_zone_allowed(zone,
2736 						 GFP_KERNEL | __GFP_HARDWALL))
2737 				continue;
2738 
2739 			/*
2740 			 * If we already have plenty of memory free for
2741 			 * compaction in this zone, don't free any more.
2742 			 * Even though compaction is invoked for any
2743 			 * non-zero order, only frequent costly order
2744 			 * reclamation is disruptive enough to become a
2745 			 * noticeable problem, like transparent huge
2746 			 * page allocations.
2747 			 */
2748 			if (IS_ENABLED(CONFIG_COMPACTION) &&
2749 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2750 			    compaction_ready(zone, sc)) {
2751 				sc->compaction_ready = true;
2752 				continue;
2753 			}
2754 
2755 			/*
2756 			 * Shrink each node in the zonelist once. If the
2757 			 * zonelist is ordered by zone (not the default) then a
2758 			 * node may be shrunk multiple times but in that case
2759 			 * the user prefers lower zones being preserved.
2760 			 */
2761 			if (zone->zone_pgdat == last_pgdat)
2762 				continue;
2763 
2764 			/*
2765 			 * This steals pages from memory cgroups over softlimit
2766 			 * and returns the number of reclaimed pages and
2767 			 * scanned pages. This works for global memory pressure
2768 			 * and balancing, not for a memcg's limit.
2769 			 */
2770 			nr_soft_scanned = 0;
2771 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2772 						sc->order, sc->gfp_mask,
2773 						&nr_soft_scanned);
2774 			sc->nr_reclaimed += nr_soft_reclaimed;
2775 			sc->nr_scanned += nr_soft_scanned;
2776 			/* need some check for avoid more shrink_zone() */
2777 		}
2778 
2779 		/* See comment about same check for global reclaim above */
2780 		if (zone->zone_pgdat == last_pgdat)
2781 			continue;
2782 		last_pgdat = zone->zone_pgdat;
2783 		shrink_node(zone->zone_pgdat, sc);
2784 	}
2785 
2786 	/*
2787 	 * Restore to original mask to avoid the impact on the caller if we
2788 	 * promoted it to __GFP_HIGHMEM.
2789 	 */
2790 	sc->gfp_mask = orig_mask;
2791 }
2792 
2793 static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
2794 {
2795 	struct mem_cgroup *memcg;
2796 
2797 	memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
2798 	do {
2799 		unsigned long refaults;
2800 		struct lruvec *lruvec;
2801 
2802 		if (memcg)
2803 			refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2804 		else
2805 			refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2806 
2807 		lruvec = mem_cgroup_lruvec(pgdat, memcg);
2808 		lruvec->refaults = refaults;
2809 	} while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
2810 }
2811 
2812 /*
2813  * This is the main entry point to direct page reclaim.
2814  *
2815  * If a full scan of the inactive list fails to free enough memory then we
2816  * are "out of memory" and something needs to be killed.
2817  *
2818  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2819  * high - the zone may be full of dirty or under-writeback pages, which this
2820  * caller can't do much about.  We kick the writeback threads and take explicit
2821  * naps in the hope that some of these pages can be written.  But if the
2822  * allocating task holds filesystem locks which prevent writeout this might not
2823  * work, and the allocation attempt will fail.
2824  *
2825  * returns:	0, if no pages reclaimed
2826  * 		else, the number of pages reclaimed
2827  */
2828 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2829 					  struct scan_control *sc)
2830 {
2831 	int initial_priority = sc->priority;
2832 	pg_data_t *last_pgdat;
2833 	struct zoneref *z;
2834 	struct zone *zone;
2835 retry:
2836 	delayacct_freepages_start();
2837 
2838 	if (global_reclaim(sc))
2839 		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
2840 
2841 	do {
2842 		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2843 				sc->priority);
2844 		sc->nr_scanned = 0;
2845 		shrink_zones(zonelist, sc);
2846 
2847 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2848 			break;
2849 
2850 		if (sc->compaction_ready)
2851 			break;
2852 
2853 		/*
2854 		 * If we're getting trouble reclaiming, start doing
2855 		 * writepage even in laptop mode.
2856 		 */
2857 		if (sc->priority < DEF_PRIORITY - 2)
2858 			sc->may_writepage = 1;
2859 	} while (--sc->priority >= 0);
2860 
2861 	last_pgdat = NULL;
2862 	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
2863 					sc->nodemask) {
2864 		if (zone->zone_pgdat == last_pgdat)
2865 			continue;
2866 		last_pgdat = zone->zone_pgdat;
2867 		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
2868 	}
2869 
2870 	delayacct_freepages_end();
2871 
2872 	if (sc->nr_reclaimed)
2873 		return sc->nr_reclaimed;
2874 
2875 	/* Aborted reclaim to try compaction? don't OOM, then */
2876 	if (sc->compaction_ready)
2877 		return 1;
2878 
2879 	/* Untapped cgroup reserves?  Don't OOM, retry. */
2880 	if (sc->memcg_low_skipped) {
2881 		sc->priority = initial_priority;
2882 		sc->memcg_low_reclaim = 1;
2883 		sc->memcg_low_skipped = 0;
2884 		goto retry;
2885 	}
2886 
2887 	return 0;
2888 }
2889 
2890 static bool allow_direct_reclaim(pg_data_t *pgdat)
2891 {
2892 	struct zone *zone;
2893 	unsigned long pfmemalloc_reserve = 0;
2894 	unsigned long free_pages = 0;
2895 	int i;
2896 	bool wmark_ok;
2897 
2898 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
2899 		return true;
2900 
2901 	for (i = 0; i <= ZONE_NORMAL; i++) {
2902 		zone = &pgdat->node_zones[i];
2903 		if (!managed_zone(zone))
2904 			continue;
2905 
2906 		if (!zone_reclaimable_pages(zone))
2907 			continue;
2908 
2909 		pfmemalloc_reserve += min_wmark_pages(zone);
2910 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
2911 	}
2912 
2913 	/* If there are no reserves (unexpected config) then do not throttle */
2914 	if (!pfmemalloc_reserve)
2915 		return true;
2916 
2917 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
2918 
2919 	/* kswapd must be awake if processes are being throttled */
2920 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2921 		pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
2922 						(enum zone_type)ZONE_NORMAL);
2923 		wake_up_interruptible(&pgdat->kswapd_wait);
2924 	}
2925 
2926 	return wmark_ok;
2927 }
2928 
2929 /*
2930  * Throttle direct reclaimers if backing storage is backed by the network
2931  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2932  * depleted. kswapd will continue to make progress and wake the processes
2933  * when the low watermark is reached.
2934  *
2935  * Returns true if a fatal signal was delivered during throttling. If this
2936  * happens, the page allocator should not consider triggering the OOM killer.
2937  */
2938 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2939 					nodemask_t *nodemask)
2940 {
2941 	struct zoneref *z;
2942 	struct zone *zone;
2943 	pg_data_t *pgdat = NULL;
2944 
2945 	/*
2946 	 * Kernel threads should not be throttled as they may be indirectly
2947 	 * responsible for cleaning pages necessary for reclaim to make forward
2948 	 * progress. kjournald for example may enter direct reclaim while
2949 	 * committing a transaction where throttling it could forcing other
2950 	 * processes to block on log_wait_commit().
2951 	 */
2952 	if (current->flags & PF_KTHREAD)
2953 		goto out;
2954 
2955 	/*
2956 	 * If a fatal signal is pending, this process should not throttle.
2957 	 * It should return quickly so it can exit and free its memory
2958 	 */
2959 	if (fatal_signal_pending(current))
2960 		goto out;
2961 
2962 	/*
2963 	 * Check if the pfmemalloc reserves are ok by finding the first node
2964 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2965 	 * GFP_KERNEL will be required for allocating network buffers when
2966 	 * swapping over the network so ZONE_HIGHMEM is unusable.
2967 	 *
2968 	 * Throttling is based on the first usable node and throttled processes
2969 	 * wait on a queue until kswapd makes progress and wakes them. There
2970 	 * is an affinity then between processes waking up and where reclaim
2971 	 * progress has been made assuming the process wakes on the same node.
2972 	 * More importantly, processes running on remote nodes will not compete
2973 	 * for remote pfmemalloc reserves and processes on different nodes
2974 	 * should make reasonable progress.
2975 	 */
2976 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2977 					gfp_zone(gfp_mask), nodemask) {
2978 		if (zone_idx(zone) > ZONE_NORMAL)
2979 			continue;
2980 
2981 		/* Throttle based on the first usable node */
2982 		pgdat = zone->zone_pgdat;
2983 		if (allow_direct_reclaim(pgdat))
2984 			goto out;
2985 		break;
2986 	}
2987 
2988 	/* If no zone was usable by the allocation flags then do not throttle */
2989 	if (!pgdat)
2990 		goto out;
2991 
2992 	/* Account for the throttling */
2993 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
2994 
2995 	/*
2996 	 * If the caller cannot enter the filesystem, it's possible that it
2997 	 * is due to the caller holding an FS lock or performing a journal
2998 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
2999 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
3000 	 * blocked waiting on the same lock. Instead, throttle for up to a
3001 	 * second before continuing.
3002 	 */
3003 	if (!(gfp_mask & __GFP_FS)) {
3004 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3005 			allow_direct_reclaim(pgdat), HZ);
3006 
3007 		goto check_pending;
3008 	}
3009 
3010 	/* Throttle until kswapd wakes the process */
3011 	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3012 		allow_direct_reclaim(pgdat));
3013 
3014 check_pending:
3015 	if (fatal_signal_pending(current))
3016 		return true;
3017 
3018 out:
3019 	return false;
3020 }
3021 
3022 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3023 				gfp_t gfp_mask, nodemask_t *nodemask)
3024 {
3025 	unsigned long nr_reclaimed;
3026 	struct scan_control sc = {
3027 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3028 		.gfp_mask = current_gfp_context(gfp_mask),
3029 		.reclaim_idx = gfp_zone(gfp_mask),
3030 		.order = order,
3031 		.nodemask = nodemask,
3032 		.priority = DEF_PRIORITY,
3033 		.may_writepage = !laptop_mode,
3034 		.may_unmap = 1,
3035 		.may_swap = 1,
3036 	};
3037 
3038 	/*
3039 	 * Do not enter reclaim if fatal signal was delivered while throttled.
3040 	 * 1 is returned so that the page allocator does not OOM kill at this
3041 	 * point.
3042 	 */
3043 	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3044 		return 1;
3045 
3046 	trace_mm_vmscan_direct_reclaim_begin(order,
3047 				sc.may_writepage,
3048 				sc.gfp_mask,
3049 				sc.reclaim_idx);
3050 
3051 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3052 
3053 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3054 
3055 	return nr_reclaimed;
3056 }
3057 
3058 #ifdef CONFIG_MEMCG
3059 
3060 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3061 						gfp_t gfp_mask, bool noswap,
3062 						pg_data_t *pgdat,
3063 						unsigned long *nr_scanned)
3064 {
3065 	struct scan_control sc = {
3066 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3067 		.target_mem_cgroup = memcg,
3068 		.may_writepage = !laptop_mode,
3069 		.may_unmap = 1,
3070 		.reclaim_idx = MAX_NR_ZONES - 1,
3071 		.may_swap = !noswap,
3072 	};
3073 	unsigned long lru_pages;
3074 
3075 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3076 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3077 
3078 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3079 						      sc.may_writepage,
3080 						      sc.gfp_mask,
3081 						      sc.reclaim_idx);
3082 
3083 	/*
3084 	 * NOTE: Although we can get the priority field, using it
3085 	 * here is not a good idea, since it limits the pages we can scan.
3086 	 * if we don't reclaim here, the shrink_node from balance_pgdat
3087 	 * will pick up pages from other mem cgroup's as well. We hack
3088 	 * the priority and make it zero.
3089 	 */
3090 	shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3091 
3092 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3093 
3094 	*nr_scanned = sc.nr_scanned;
3095 	return sc.nr_reclaimed;
3096 }
3097 
3098 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3099 					   unsigned long nr_pages,
3100 					   gfp_t gfp_mask,
3101 					   bool may_swap)
3102 {
3103 	struct zonelist *zonelist;
3104 	unsigned long nr_reclaimed;
3105 	int nid;
3106 	unsigned int noreclaim_flag;
3107 	struct scan_control sc = {
3108 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3109 		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3110 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3111 		.reclaim_idx = MAX_NR_ZONES - 1,
3112 		.target_mem_cgroup = memcg,
3113 		.priority = DEF_PRIORITY,
3114 		.may_writepage = !laptop_mode,
3115 		.may_unmap = 1,
3116 		.may_swap = may_swap,
3117 	};
3118 
3119 	/*
3120 	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3121 	 * take care of from where we get pages. So the node where we start the
3122 	 * scan does not need to be the current node.
3123 	 */
3124 	nid = mem_cgroup_select_victim_node(memcg);
3125 
3126 	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3127 
3128 	trace_mm_vmscan_memcg_reclaim_begin(0,
3129 					    sc.may_writepage,
3130 					    sc.gfp_mask,
3131 					    sc.reclaim_idx);
3132 
3133 	noreclaim_flag = memalloc_noreclaim_save();
3134 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3135 	memalloc_noreclaim_restore(noreclaim_flag);
3136 
3137 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3138 
3139 	return nr_reclaimed;
3140 }
3141 #endif
3142 
3143 static void age_active_anon(struct pglist_data *pgdat,
3144 				struct scan_control *sc)
3145 {
3146 	struct mem_cgroup *memcg;
3147 
3148 	if (!total_swap_pages)
3149 		return;
3150 
3151 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
3152 	do {
3153 		struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3154 
3155 		if (inactive_list_is_low(lruvec, false, memcg, sc, true))
3156 			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3157 					   sc, LRU_ACTIVE_ANON);
3158 
3159 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
3160 	} while (memcg);
3161 }
3162 
3163 /*
3164  * Returns true if there is an eligible zone balanced for the request order
3165  * and classzone_idx
3166  */
3167 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3168 {
3169 	int i;
3170 	unsigned long mark = -1;
3171 	struct zone *zone;
3172 
3173 	for (i = 0; i <= classzone_idx; i++) {
3174 		zone = pgdat->node_zones + i;
3175 
3176 		if (!managed_zone(zone))
3177 			continue;
3178 
3179 		mark = high_wmark_pages(zone);
3180 		if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3181 			return true;
3182 	}
3183 
3184 	/*
3185 	 * If a node has no populated zone within classzone_idx, it does not
3186 	 * need balancing by definition. This can happen if a zone-restricted
3187 	 * allocation tries to wake a remote kswapd.
3188 	 */
3189 	if (mark == -1)
3190 		return true;
3191 
3192 	return false;
3193 }
3194 
3195 /* Clear pgdat state for congested, dirty or under writeback. */
3196 static void clear_pgdat_congested(pg_data_t *pgdat)
3197 {
3198 	clear_bit(PGDAT_CONGESTED, &pgdat->flags);
3199 	clear_bit(PGDAT_DIRTY, &pgdat->flags);
3200 	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3201 }
3202 
3203 /*
3204  * Prepare kswapd for sleeping. This verifies that there are no processes
3205  * waiting in throttle_direct_reclaim() and that watermarks have been met.
3206  *
3207  * Returns true if kswapd is ready to sleep
3208  */
3209 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3210 {
3211 	/*
3212 	 * The throttled processes are normally woken up in balance_pgdat() as
3213 	 * soon as allow_direct_reclaim() is true. But there is a potential
3214 	 * race between when kswapd checks the watermarks and a process gets
3215 	 * throttled. There is also a potential race if processes get
3216 	 * throttled, kswapd wakes, a large process exits thereby balancing the
3217 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
3218 	 * the wake up checks. If kswapd is going to sleep, no process should
3219 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3220 	 * the wake up is premature, processes will wake kswapd and get
3221 	 * throttled again. The difference from wake ups in balance_pgdat() is
3222 	 * that here we are under prepare_to_wait().
3223 	 */
3224 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
3225 		wake_up_all(&pgdat->pfmemalloc_wait);
3226 
3227 	/* Hopeless node, leave it to direct reclaim */
3228 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3229 		return true;
3230 
3231 	if (pgdat_balanced(pgdat, order, classzone_idx)) {
3232 		clear_pgdat_congested(pgdat);
3233 		return true;
3234 	}
3235 
3236 	return false;
3237 }
3238 
3239 /*
3240  * kswapd shrinks a node of pages that are at or below the highest usable
3241  * zone that is currently unbalanced.
3242  *
3243  * Returns true if kswapd scanned at least the requested number of pages to
3244  * reclaim or if the lack of progress was due to pages under writeback.
3245  * This is used to determine if the scanning priority needs to be raised.
3246  */
3247 static bool kswapd_shrink_node(pg_data_t *pgdat,
3248 			       struct scan_control *sc)
3249 {
3250 	struct zone *zone;
3251 	int z;
3252 
3253 	/* Reclaim a number of pages proportional to the number of zones */
3254 	sc->nr_to_reclaim = 0;
3255 	for (z = 0; z <= sc->reclaim_idx; z++) {
3256 		zone = pgdat->node_zones + z;
3257 		if (!managed_zone(zone))
3258 			continue;
3259 
3260 		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3261 	}
3262 
3263 	/*
3264 	 * Historically care was taken to put equal pressure on all zones but
3265 	 * now pressure is applied based on node LRU order.
3266 	 */
3267 	shrink_node(pgdat, sc);
3268 
3269 	/*
3270 	 * Fragmentation may mean that the system cannot be rebalanced for
3271 	 * high-order allocations. If twice the allocation size has been
3272 	 * reclaimed then recheck watermarks only at order-0 to prevent
3273 	 * excessive reclaim. Assume that a process requested a high-order
3274 	 * can direct reclaim/compact.
3275 	 */
3276 	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3277 		sc->order = 0;
3278 
3279 	return sc->nr_scanned >= sc->nr_to_reclaim;
3280 }
3281 
3282 /*
3283  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3284  * that are eligible for use by the caller until at least one zone is
3285  * balanced.
3286  *
3287  * Returns the order kswapd finished reclaiming at.
3288  *
3289  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3290  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3291  * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3292  * or lower is eligible for reclaim until at least one usable zone is
3293  * balanced.
3294  */
3295 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3296 {
3297 	int i;
3298 	unsigned long nr_soft_reclaimed;
3299 	unsigned long nr_soft_scanned;
3300 	struct zone *zone;
3301 	struct scan_control sc = {
3302 		.gfp_mask = GFP_KERNEL,
3303 		.order = order,
3304 		.priority = DEF_PRIORITY,
3305 		.may_writepage = !laptop_mode,
3306 		.may_unmap = 1,
3307 		.may_swap = 1,
3308 	};
3309 	count_vm_event(PAGEOUTRUN);
3310 
3311 	do {
3312 		unsigned long nr_reclaimed = sc.nr_reclaimed;
3313 		bool raise_priority = true;
3314 
3315 		sc.reclaim_idx = classzone_idx;
3316 
3317 		/*
3318 		 * If the number of buffer_heads exceeds the maximum allowed
3319 		 * then consider reclaiming from all zones. This has a dual
3320 		 * purpose -- on 64-bit systems it is expected that
3321 		 * buffer_heads are stripped during active rotation. On 32-bit
3322 		 * systems, highmem pages can pin lowmem memory and shrinking
3323 		 * buffers can relieve lowmem pressure. Reclaim may still not
3324 		 * go ahead if all eligible zones for the original allocation
3325 		 * request are balanced to avoid excessive reclaim from kswapd.
3326 		 */
3327 		if (buffer_heads_over_limit) {
3328 			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3329 				zone = pgdat->node_zones + i;
3330 				if (!managed_zone(zone))
3331 					continue;
3332 
3333 				sc.reclaim_idx = i;
3334 				break;
3335 			}
3336 		}
3337 
3338 		/*
3339 		 * Only reclaim if there are no eligible zones. Note that
3340 		 * sc.reclaim_idx is not used as buffer_heads_over_limit may
3341 		 * have adjusted it.
3342 		 */
3343 		if (pgdat_balanced(pgdat, sc.order, classzone_idx))
3344 			goto out;
3345 
3346 		/*
3347 		 * Do some background aging of the anon list, to give
3348 		 * pages a chance to be referenced before reclaiming. All
3349 		 * pages are rotated regardless of classzone as this is
3350 		 * about consistent aging.
3351 		 */
3352 		age_active_anon(pgdat, &sc);
3353 
3354 		/*
3355 		 * If we're getting trouble reclaiming, start doing writepage
3356 		 * even in laptop mode.
3357 		 */
3358 		if (sc.priority < DEF_PRIORITY - 2)
3359 			sc.may_writepage = 1;
3360 
3361 		/* Call soft limit reclaim before calling shrink_node. */
3362 		sc.nr_scanned = 0;
3363 		nr_soft_scanned = 0;
3364 		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3365 						sc.gfp_mask, &nr_soft_scanned);
3366 		sc.nr_reclaimed += nr_soft_reclaimed;
3367 
3368 		/*
3369 		 * There should be no need to raise the scanning priority if
3370 		 * enough pages are already being scanned that that high
3371 		 * watermark would be met at 100% efficiency.
3372 		 */
3373 		if (kswapd_shrink_node(pgdat, &sc))
3374 			raise_priority = false;
3375 
3376 		/*
3377 		 * If the low watermark is met there is no need for processes
3378 		 * to be throttled on pfmemalloc_wait as they should not be
3379 		 * able to safely make forward progress. Wake them
3380 		 */
3381 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3382 				allow_direct_reclaim(pgdat))
3383 			wake_up_all(&pgdat->pfmemalloc_wait);
3384 
3385 		/* Check if kswapd should be suspending */
3386 		if (try_to_freeze() || kthread_should_stop())
3387 			break;
3388 
3389 		/*
3390 		 * Raise priority if scanning rate is too low or there was no
3391 		 * progress in reclaiming pages
3392 		 */
3393 		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3394 		if (raise_priority || !nr_reclaimed)
3395 			sc.priority--;
3396 	} while (sc.priority >= 1);
3397 
3398 	if (!sc.nr_reclaimed)
3399 		pgdat->kswapd_failures++;
3400 
3401 out:
3402 	snapshot_refaults(NULL, pgdat);
3403 	/*
3404 	 * Return the order kswapd stopped reclaiming at as
3405 	 * prepare_kswapd_sleep() takes it into account. If another caller
3406 	 * entered the allocator slow path while kswapd was awake, order will
3407 	 * remain at the higher level.
3408 	 */
3409 	return sc.order;
3410 }
3411 
3412 /*
3413  * pgdat->kswapd_classzone_idx is the highest zone index that a recent
3414  * allocation request woke kswapd for. When kswapd has not woken recently,
3415  * the value is MAX_NR_ZONES which is not a valid index. This compares a
3416  * given classzone and returns it or the highest classzone index kswapd
3417  * was recently woke for.
3418  */
3419 static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
3420 					   enum zone_type classzone_idx)
3421 {
3422 	if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3423 		return classzone_idx;
3424 
3425 	return max(pgdat->kswapd_classzone_idx, classzone_idx);
3426 }
3427 
3428 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3429 				unsigned int classzone_idx)
3430 {
3431 	long remaining = 0;
3432 	DEFINE_WAIT(wait);
3433 
3434 	if (freezing(current) || kthread_should_stop())
3435 		return;
3436 
3437 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3438 
3439 	/*
3440 	 * Try to sleep for a short interval. Note that kcompactd will only be
3441 	 * woken if it is possible to sleep for a short interval. This is
3442 	 * deliberate on the assumption that if reclaim cannot keep an
3443 	 * eligible zone balanced that it's also unlikely that compaction will
3444 	 * succeed.
3445 	 */
3446 	if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3447 		/*
3448 		 * Compaction records what page blocks it recently failed to
3449 		 * isolate pages from and skips them in the future scanning.
3450 		 * When kswapd is going to sleep, it is reasonable to assume
3451 		 * that pages and compaction may succeed so reset the cache.
3452 		 */
3453 		reset_isolation_suitable(pgdat);
3454 
3455 		/*
3456 		 * We have freed the memory, now we should compact it to make
3457 		 * allocation of the requested order possible.
3458 		 */
3459 		wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3460 
3461 		remaining = schedule_timeout(HZ/10);
3462 
3463 		/*
3464 		 * If woken prematurely then reset kswapd_classzone_idx and
3465 		 * order. The values will either be from a wakeup request or
3466 		 * the previous request that slept prematurely.
3467 		 */
3468 		if (remaining) {
3469 			pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3470 			pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3471 		}
3472 
3473 		finish_wait(&pgdat->kswapd_wait, &wait);
3474 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3475 	}
3476 
3477 	/*
3478 	 * After a short sleep, check if it was a premature sleep. If not, then
3479 	 * go fully to sleep until explicitly woken up.
3480 	 */
3481 	if (!remaining &&
3482 	    prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3483 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3484 
3485 		/*
3486 		 * vmstat counters are not perfectly accurate and the estimated
3487 		 * value for counters such as NR_FREE_PAGES can deviate from the
3488 		 * true value by nr_online_cpus * threshold. To avoid the zone
3489 		 * watermarks being breached while under pressure, we reduce the
3490 		 * per-cpu vmstat threshold while kswapd is awake and restore
3491 		 * them before going back to sleep.
3492 		 */
3493 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3494 
3495 		if (!kthread_should_stop())
3496 			schedule();
3497 
3498 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3499 	} else {
3500 		if (remaining)
3501 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3502 		else
3503 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3504 	}
3505 	finish_wait(&pgdat->kswapd_wait, &wait);
3506 }
3507 
3508 /*
3509  * The background pageout daemon, started as a kernel thread
3510  * from the init process.
3511  *
3512  * This basically trickles out pages so that we have _some_
3513  * free memory available even if there is no other activity
3514  * that frees anything up. This is needed for things like routing
3515  * etc, where we otherwise might have all activity going on in
3516  * asynchronous contexts that cannot page things out.
3517  *
3518  * If there are applications that are active memory-allocators
3519  * (most normal use), this basically shouldn't matter.
3520  */
3521 static int kswapd(void *p)
3522 {
3523 	unsigned int alloc_order, reclaim_order;
3524 	unsigned int classzone_idx = MAX_NR_ZONES - 1;
3525 	pg_data_t *pgdat = (pg_data_t*)p;
3526 	struct task_struct *tsk = current;
3527 
3528 	struct reclaim_state reclaim_state = {
3529 		.reclaimed_slab = 0,
3530 	};
3531 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3532 
3533 	if (!cpumask_empty(cpumask))
3534 		set_cpus_allowed_ptr(tsk, cpumask);
3535 	current->reclaim_state = &reclaim_state;
3536 
3537 	/*
3538 	 * Tell the memory management that we're a "memory allocator",
3539 	 * and that if we need more memory we should get access to it
3540 	 * regardless (see "__alloc_pages()"). "kswapd" should
3541 	 * never get caught in the normal page freeing logic.
3542 	 *
3543 	 * (Kswapd normally doesn't need memory anyway, but sometimes
3544 	 * you need a small amount of memory in order to be able to
3545 	 * page out something else, and this flag essentially protects
3546 	 * us from recursively trying to free more memory as we're
3547 	 * trying to free the first piece of memory in the first place).
3548 	 */
3549 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3550 	set_freezable();
3551 
3552 	pgdat->kswapd_order = 0;
3553 	pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3554 	for ( ; ; ) {
3555 		bool ret;
3556 
3557 		alloc_order = reclaim_order = pgdat->kswapd_order;
3558 		classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3559 
3560 kswapd_try_sleep:
3561 		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3562 					classzone_idx);
3563 
3564 		/* Read the new order and classzone_idx */
3565 		alloc_order = reclaim_order = pgdat->kswapd_order;
3566 		classzone_idx = kswapd_classzone_idx(pgdat, 0);
3567 		pgdat->kswapd_order = 0;
3568 		pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3569 
3570 		ret = try_to_freeze();
3571 		if (kthread_should_stop())
3572 			break;
3573 
3574 		/*
3575 		 * We can speed up thawing tasks if we don't call balance_pgdat
3576 		 * after returning from the refrigerator
3577 		 */
3578 		if (ret)
3579 			continue;
3580 
3581 		/*
3582 		 * Reclaim begins at the requested order but if a high-order
3583 		 * reclaim fails then kswapd falls back to reclaiming for
3584 		 * order-0. If that happens, kswapd will consider sleeping
3585 		 * for the order it finished reclaiming at (reclaim_order)
3586 		 * but kcompactd is woken to compact for the original
3587 		 * request (alloc_order).
3588 		 */
3589 		trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3590 						alloc_order);
3591 		fs_reclaim_acquire(GFP_KERNEL);
3592 		reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3593 		fs_reclaim_release(GFP_KERNEL);
3594 		if (reclaim_order < alloc_order)
3595 			goto kswapd_try_sleep;
3596 	}
3597 
3598 	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3599 	current->reclaim_state = NULL;
3600 
3601 	return 0;
3602 }
3603 
3604 /*
3605  * A zone is low on free memory, so wake its kswapd task to service it.
3606  */
3607 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3608 {
3609 	pg_data_t *pgdat;
3610 
3611 	if (!managed_zone(zone))
3612 		return;
3613 
3614 	if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
3615 		return;
3616 	pgdat = zone->zone_pgdat;
3617 	pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat,
3618 							   classzone_idx);
3619 	pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3620 	if (!waitqueue_active(&pgdat->kswapd_wait))
3621 		return;
3622 
3623 	/* Hopeless node, leave it to direct reclaim */
3624 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3625 		return;
3626 
3627 	if (pgdat_balanced(pgdat, order, classzone_idx))
3628 		return;
3629 
3630 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order);
3631 	wake_up_interruptible(&pgdat->kswapd_wait);
3632 }
3633 
3634 #ifdef CONFIG_HIBERNATION
3635 /*
3636  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3637  * freed pages.
3638  *
3639  * Rather than trying to age LRUs the aim is to preserve the overall
3640  * LRU order by reclaiming preferentially
3641  * inactive > active > active referenced > active mapped
3642  */
3643 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3644 {
3645 	struct reclaim_state reclaim_state;
3646 	struct scan_control sc = {
3647 		.nr_to_reclaim = nr_to_reclaim,
3648 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3649 		.reclaim_idx = MAX_NR_ZONES - 1,
3650 		.priority = DEF_PRIORITY,
3651 		.may_writepage = 1,
3652 		.may_unmap = 1,
3653 		.may_swap = 1,
3654 		.hibernation_mode = 1,
3655 	};
3656 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3657 	struct task_struct *p = current;
3658 	unsigned long nr_reclaimed;
3659 	unsigned int noreclaim_flag;
3660 
3661 	noreclaim_flag = memalloc_noreclaim_save();
3662 	fs_reclaim_acquire(sc.gfp_mask);
3663 	reclaim_state.reclaimed_slab = 0;
3664 	p->reclaim_state = &reclaim_state;
3665 
3666 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3667 
3668 	p->reclaim_state = NULL;
3669 	fs_reclaim_release(sc.gfp_mask);
3670 	memalloc_noreclaim_restore(noreclaim_flag);
3671 
3672 	return nr_reclaimed;
3673 }
3674 #endif /* CONFIG_HIBERNATION */
3675 
3676 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3677    not required for correctness.  So if the last cpu in a node goes
3678    away, we get changed to run anywhere: as the first one comes back,
3679    restore their cpu bindings. */
3680 static int kswapd_cpu_online(unsigned int cpu)
3681 {
3682 	int nid;
3683 
3684 	for_each_node_state(nid, N_MEMORY) {
3685 		pg_data_t *pgdat = NODE_DATA(nid);
3686 		const struct cpumask *mask;
3687 
3688 		mask = cpumask_of_node(pgdat->node_id);
3689 
3690 		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3691 			/* One of our CPUs online: restore mask */
3692 			set_cpus_allowed_ptr(pgdat->kswapd, mask);
3693 	}
3694 	return 0;
3695 }
3696 
3697 /*
3698  * This kswapd start function will be called by init and node-hot-add.
3699  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3700  */
3701 int kswapd_run(int nid)
3702 {
3703 	pg_data_t *pgdat = NODE_DATA(nid);
3704 	int ret = 0;
3705 
3706 	if (pgdat->kswapd)
3707 		return 0;
3708 
3709 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3710 	if (IS_ERR(pgdat->kswapd)) {
3711 		/* failure at boot is fatal */
3712 		BUG_ON(system_state < SYSTEM_RUNNING);
3713 		pr_err("Failed to start kswapd on node %d\n", nid);
3714 		ret = PTR_ERR(pgdat->kswapd);
3715 		pgdat->kswapd = NULL;
3716 	}
3717 	return ret;
3718 }
3719 
3720 /*
3721  * Called by memory hotplug when all memory in a node is offlined.  Caller must
3722  * hold mem_hotplug_begin/end().
3723  */
3724 void kswapd_stop(int nid)
3725 {
3726 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3727 
3728 	if (kswapd) {
3729 		kthread_stop(kswapd);
3730 		NODE_DATA(nid)->kswapd = NULL;
3731 	}
3732 }
3733 
3734 static int __init kswapd_init(void)
3735 {
3736 	int nid, ret;
3737 
3738 	swap_setup();
3739 	for_each_node_state(nid, N_MEMORY)
3740  		kswapd_run(nid);
3741 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3742 					"mm/vmscan:online", kswapd_cpu_online,
3743 					NULL);
3744 	WARN_ON(ret < 0);
3745 	return 0;
3746 }
3747 
3748 module_init(kswapd_init)
3749 
3750 #ifdef CONFIG_NUMA
3751 /*
3752  * Node reclaim mode
3753  *
3754  * If non-zero call node_reclaim when the number of free pages falls below
3755  * the watermarks.
3756  */
3757 int node_reclaim_mode __read_mostly;
3758 
3759 #define RECLAIM_OFF 0
3760 #define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3761 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3762 #define RECLAIM_UNMAP (1<<2)	/* Unmap pages during reclaim */
3763 
3764 /*
3765  * Priority for NODE_RECLAIM. This determines the fraction of pages
3766  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3767  * a zone.
3768  */
3769 #define NODE_RECLAIM_PRIORITY 4
3770 
3771 /*
3772  * Percentage of pages in a zone that must be unmapped for node_reclaim to
3773  * occur.
3774  */
3775 int sysctl_min_unmapped_ratio = 1;
3776 
3777 /*
3778  * If the number of slab pages in a zone grows beyond this percentage then
3779  * slab reclaim needs to occur.
3780  */
3781 int sysctl_min_slab_ratio = 5;
3782 
3783 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
3784 {
3785 	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
3786 	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
3787 		node_page_state(pgdat, NR_ACTIVE_FILE);
3788 
3789 	/*
3790 	 * It's possible for there to be more file mapped pages than
3791 	 * accounted for by the pages on the file LRU lists because
3792 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3793 	 */
3794 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3795 }
3796 
3797 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3798 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
3799 {
3800 	unsigned long nr_pagecache_reclaimable;
3801 	unsigned long delta = 0;
3802 
3803 	/*
3804 	 * If RECLAIM_UNMAP is set, then all file pages are considered
3805 	 * potentially reclaimable. Otherwise, we have to worry about
3806 	 * pages like swapcache and node_unmapped_file_pages() provides
3807 	 * a better estimate
3808 	 */
3809 	if (node_reclaim_mode & RECLAIM_UNMAP)
3810 		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
3811 	else
3812 		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
3813 
3814 	/* If we can't clean pages, remove dirty pages from consideration */
3815 	if (!(node_reclaim_mode & RECLAIM_WRITE))
3816 		delta += node_page_state(pgdat, NR_FILE_DIRTY);
3817 
3818 	/* Watch for any possible underflows due to delta */
3819 	if (unlikely(delta > nr_pagecache_reclaimable))
3820 		delta = nr_pagecache_reclaimable;
3821 
3822 	return nr_pagecache_reclaimable - delta;
3823 }
3824 
3825 /*
3826  * Try to free up some pages from this node through reclaim.
3827  */
3828 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3829 {
3830 	/* Minimum pages needed in order to stay on node */
3831 	const unsigned long nr_pages = 1 << order;
3832 	struct task_struct *p = current;
3833 	struct reclaim_state reclaim_state;
3834 	unsigned int noreclaim_flag;
3835 	struct scan_control sc = {
3836 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3837 		.gfp_mask = current_gfp_context(gfp_mask),
3838 		.order = order,
3839 		.priority = NODE_RECLAIM_PRIORITY,
3840 		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
3841 		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
3842 		.may_swap = 1,
3843 		.reclaim_idx = gfp_zone(gfp_mask),
3844 	};
3845 
3846 	cond_resched();
3847 	/*
3848 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3849 	 * and we also need to be able to write out pages for RECLAIM_WRITE
3850 	 * and RECLAIM_UNMAP.
3851 	 */
3852 	noreclaim_flag = memalloc_noreclaim_save();
3853 	p->flags |= PF_SWAPWRITE;
3854 	fs_reclaim_acquire(sc.gfp_mask);
3855 	reclaim_state.reclaimed_slab = 0;
3856 	p->reclaim_state = &reclaim_state;
3857 
3858 	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
3859 		/*
3860 		 * Free memory by calling shrink zone with increasing
3861 		 * priorities until we have enough memory freed.
3862 		 */
3863 		do {
3864 			shrink_node(pgdat, &sc);
3865 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3866 	}
3867 
3868 	p->reclaim_state = NULL;
3869 	fs_reclaim_release(gfp_mask);
3870 	current->flags &= ~PF_SWAPWRITE;
3871 	memalloc_noreclaim_restore(noreclaim_flag);
3872 	return sc.nr_reclaimed >= nr_pages;
3873 }
3874 
3875 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3876 {
3877 	int ret;
3878 
3879 	/*
3880 	 * Node reclaim reclaims unmapped file backed pages and
3881 	 * slab pages if we are over the defined limits.
3882 	 *
3883 	 * A small portion of unmapped file backed pages is needed for
3884 	 * file I/O otherwise pages read by file I/O will be immediately
3885 	 * thrown out if the node is overallocated. So we do not reclaim
3886 	 * if less than a specified percentage of the node is used by
3887 	 * unmapped file backed pages.
3888 	 */
3889 	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
3890 	    node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
3891 		return NODE_RECLAIM_FULL;
3892 
3893 	/*
3894 	 * Do not scan if the allocation should not be delayed.
3895 	 */
3896 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
3897 		return NODE_RECLAIM_NOSCAN;
3898 
3899 	/*
3900 	 * Only run node reclaim on the local node or on nodes that do not
3901 	 * have associated processors. This will favor the local processor
3902 	 * over remote processors and spread off node memory allocations
3903 	 * as wide as possible.
3904 	 */
3905 	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
3906 		return NODE_RECLAIM_NOSCAN;
3907 
3908 	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
3909 		return NODE_RECLAIM_NOSCAN;
3910 
3911 	ret = __node_reclaim(pgdat, gfp_mask, order);
3912 	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
3913 
3914 	if (!ret)
3915 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3916 
3917 	return ret;
3918 }
3919 #endif
3920 
3921 /*
3922  * page_evictable - test whether a page is evictable
3923  * @page: the page to test
3924  *
3925  * Test whether page is evictable--i.e., should be placed on active/inactive
3926  * lists vs unevictable list.
3927  *
3928  * Reasons page might not be evictable:
3929  * (1) page's mapping marked unevictable
3930  * (2) page is part of an mlocked VMA
3931  *
3932  */
3933 int page_evictable(struct page *page)
3934 {
3935 	return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3936 }
3937 
3938 #ifdef CONFIG_SHMEM
3939 /**
3940  * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3941  * @pages:	array of pages to check
3942  * @nr_pages:	number of pages to check
3943  *
3944  * Checks pages for evictability and moves them to the appropriate lru list.
3945  *
3946  * This function is only used for SysV IPC SHM_UNLOCK.
3947  */
3948 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3949 {
3950 	struct lruvec *lruvec;
3951 	struct pglist_data *pgdat = NULL;
3952 	int pgscanned = 0;
3953 	int pgrescued = 0;
3954 	int i;
3955 
3956 	for (i = 0; i < nr_pages; i++) {
3957 		struct page *page = pages[i];
3958 		struct pglist_data *pagepgdat = page_pgdat(page);
3959 
3960 		pgscanned++;
3961 		if (pagepgdat != pgdat) {
3962 			if (pgdat)
3963 				spin_unlock_irq(&pgdat->lru_lock);
3964 			pgdat = pagepgdat;
3965 			spin_lock_irq(&pgdat->lru_lock);
3966 		}
3967 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
3968 
3969 		if (!PageLRU(page) || !PageUnevictable(page))
3970 			continue;
3971 
3972 		if (page_evictable(page)) {
3973 			enum lru_list lru = page_lru_base_type(page);
3974 
3975 			VM_BUG_ON_PAGE(PageActive(page), page);
3976 			ClearPageUnevictable(page);
3977 			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3978 			add_page_to_lru_list(page, lruvec, lru);
3979 			pgrescued++;
3980 		}
3981 	}
3982 
3983 	if (pgdat) {
3984 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3985 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3986 		spin_unlock_irq(&pgdat->lru_lock);
3987 	}
3988 }
3989 #endif /* CONFIG_SHMEM */
3990